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Abstract
In this dissertation we consider spherically symmetric gravitational �elds that arisein relativistic astrophysics and cosmology. We �rst present a general review of staticspherically symmetric spacetimes, and highlight a particular class of exact solutions ofthe Einstein-Maxwell system for charged spheres. In the case of shear-free spacetimeswith heat 
ow, the integration of the system is reduced to solving the condition ofpressure isotropy. This condition is a second order linear di�erential equation withvariable coe�cients. By choosing particular forms for the gravitational potentials, sev-eral classes of new solutions are generated. We regain known solutions correspondingto conformal 
atness when tidal forces are absent. We also consider expanding, accel-erating and shearing models when the heat 
ux is not present. A new general class ofmodels is found. This new class of shearing solutions contains the model of Maharajet al (1993) when a parameter is set to zero. Our new solution does not contain asingularity at the stellar centre, and it is therefore useful in modelling the interior ofstars. Finally, we demonstrate that the shearing models obtained by Marklund andBradley (1999) do not satisfy the Einstein �eld equations.
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Chapter 1

Introduction
The theory of general relativity, developed by Einstein, thus far has been the mostsuccessful model in describing the phenomenon of gravity especially for strong gravi-tational �elds. For a long time, the gravitational interaction between heavenly bodieswas described by the classical Newtonian theory of gravity but there were some as-tronomical observations that Newtonian gravity failed to explain. It was due to thisfact that Einstein developed a new theory of gravity which would not only explainthe observations, but also rede�ne our understanding of the concept of gravity andthe important role it plays in shaping our universe. Not only does general relativitydescribe the interaction between objects but it also de�nes the interaction due to thegravitational �eld of the various interacting bodies. Gravity is not just de�ned as asimple force but rather as being part of a more powerful and richer structure, the four-dimensional spacetime manifold. It is the understanding of this gravitational �eld thatenables us to study the gravitational nature and behaviour of various astrophysicaland cosmological objects. In order to analyse the evolution of celestial objects, suchas stars and galaxies, and the impact they have on the evolving universe, we �rst needto understand the behaviour of their gravitational �elds. Models that are generatedin the context of general relativity are important as they enable us to interpret ob-servations made on the scale of the universe and, also, for strong local gravitational
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�elds. For a comprehensive guide on the basic principles of general relativity and itsrole in astrophysics and cosmology the reader is referred to Gron and Hervik (2007)and Narlikar (2002).
We aim to �nd exact solutions to the Einstein �eld equations in spherically symmet-ric manifolds which form the basis of a relativistic model in astrophysics and cosmology.Even though there exist many classes of exact solutions, only a few classes are physi-cally acceptable. Certain solutions that are found may be mathematically interestingbut may not be appropriate for describing the physics of the problem. However, anyexact model helps to provide a deeper insight into the behaviour of the gravitational�eld; they may provide qualitative features which are present in more complex modelsin physical scenarios. Exact solutions should be used in conjunction with other fun-damental theories of physics, such as thermodynamics and electromagnetism, to makespeci�c predictions and to study the physical features of the model. Hence �ndingexact solutions is a crucial starting point in the modelling process. Exact solutions tothe Einstein �eld equations may be generated using a number of di�erent techniquesand assumptions: ad hoc choices for some of the matter and gravitational variables;imposing an equation of state; utilizing symmetries on the spacetime manifold, e.g.conformal transformations; using the Lie analysis of di�erential equations; applyinggeneration techniques such as harmonic maps; and transforming nonlinear equationsinto familiar forms using Backlund transformations, etc. A comprehensive review ofthe methods and procedures utilized in generating solutions is provided by Stephani etal (2003).
Static spherically symmetric gravitational �elds form the basis of the descriptionfor models of highly dense objects in astrophysics. Normally the matter distribution isconsidered to be a static perfect 
uid which may be either neutral or charged. The mostfamiliar exact solutions which are of physical importance are the Schwarzschild exte-
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rior and interior solutions (Schwarzschild 1916a, 1916b) and the Reissner-Nordstromsolution (Nordstrom 1918, Reissner 1916). The exterior Schwarzschild solution, whichwas the �rst solution of the Einstein �eld equations to be found, describes the grav-itational �eld in the exterior spacetime of a body; the interior Schwarzschild solutionmodels the gravitational �eld in the interior spacetime with constant density. TheReissner-Nordstrom solution is charged and describes the exterior spacetime. Thereare many interior stellar solutions which are known; some recent new interior solutionsare the charged models obtained by Hansraj and Maharaj (2006), the solutions forcharged superdense stars obtained by Komathiraj and Maharaj (2007) and the resultfor charged compact spheres found by Thirukkanesh and Maharaj (2006, 2008). Thesesolutions contain the well known models obtained by Durgapal and Bannerji (1983),Finch and Skea (1989) and Tikekar (1990). There are also particular solutions of theEinstein �eld equations which are known for shear-free spacetimes. The earliest modelis due to Kustaanheimo and Qvist (1948). Shear-free models may also include heat
ow in the form of a nonvanishing heat 
ux across the boundary for a radiating star.Some recent results with nonvanishing heat 
ux were obtained by Deng and Mannheim(1990, 1991), in cosmology, and Naidu et al (2006), in astrophysics. Conformally 
atradiating solutions were found by Banerjee et al (1989). These solutions were appliedto radiating relativistic stars by Herrera et al (2004, 2006), Maharaj and Govender(2005), and Misthry et al (2008). The most general case involves spacetimes whichhave nonzero shear, acceleration and expansion. In these models the Einstein �eldequations are highly nonlinear, and only two classes of solutions have been reportedin the literature. The �rst solution is by Maharaj et al (1993) and the other is byMarklund and Bradley (1999). These results are applicable in cosmological processesin the absence of heat 
ux. The shearing models may be easily adapted to include heat
ux for particular physical applications.
This dissertation is organised as follows:
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� Chapter 1: Introduction.
� Chapter 2: In this chapter we present a review and background on the funda-mental concepts of di�erential geometry which are essential for constructing therelativistic models to be studied. A number of key de�nitions and formalisms arehighlighted. The Einstein-Maxwell system of �eld equations are presented.
� Chapter 3: We set up the model for static spherically symmetric spacetimes, andderive the Einstein �eld equations for both neutral and charged matter distri-butions. We review the two classes of exact solutions, of the Einstein-Maxwellsystem, in the form of elementary functions obtained by Thirukkanesh and Ma-haraj (2008). We regain previous other solutions for both charged and unchargedstars obtained by various other researchers.
� Chapter 4: This chapter forms a substantial part of this study. We generatethe �eld equations for the shear-free model with heat 
ow. We make use ofthe condition of pressure isotropy to generate a linear di�erential equation withvariable coe�cients which we solve by choosing various forms for the gravitationalpotentials. A number of new solutions to the pressure isotropy condition arefound in terms of elementary functions. It is interesting to note that the specialcase of conformal 
atness is contained in our models.
� Chapter 5: We construct the model for a spacetime with nonzero expansion,acceleration and shear. The Einstein �eld equations that are generated are highlynonlinear. The shearing solutions obtained by Maharaj et al (1993) are discussedin detail, and we present a new solution which does not contain the singularityat the stellar centre that is present in their results. We also demonstrate aninconsistency in the shearing solutions obtained by Marklund and Bradley (1999),and indicate the 
aw in their reasoning.
� Chapter 6: Conclusion
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Chapter 2

Basic theory

2.1 Introduction
Einstein's theory of general relativity is successful in describing spherically symmetricmatter distributions in strong gravitational �elds. A review of the physics of compactobjects, black holes and relativistic stellar processes is provided by Shapiro and Teukol-sky (1983). For a recent treatment of cosmological models see Gron and Hervik (2007).In this chapter, we present the background theory that enables us to generate a modelof a relativistic star or a cosmological system. We present a brief outline of the relevantdi�erential geometry, the Einstein-Maxwell system of equations for charged matter dis-tributions and the essential physical criteria for a stellar model. For more extensivedetails on di�erential manifolds and tensor analysis, and related topics, the reader isreferred to Bishop and Goldberg (1968), Misner et al (1973) and Wald (1984). In x2.2,the essential components of di�erential geometry such as the Riemann tensor, the Riccitensor, the Ricci scalar and the Einstein tensor are introduced. These components arerequired to generate the Einstein �eld equations which are the primary area of investi-gation in this dissertation. We introduce the energy momentum tensor and the specialcase of a perfect 
uid, for modelling astrophysical and cosmological situations, in x2.3.Then we present a covariant formulation of Maxwell's laws of electromagnetism. This
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allows us to formulate the Einstein-Maxwell system of equations in which the electro-magnetic and matter �elds are coupled. In x2.4, the physical conditions necessary forinterior solutions for relativistic stellar systems are considered.
2.2 Spacetime geometry
In general relativity, we assume that the spacetime M is a four-dimensional di�eren-tiable mani�old endowed with a symmetric, nonsingular metric tensor �eld g. In localregions the manifold has the structure of Euclidean space which implies that it may becovered by overlapping coordinate patches so that special relativity is regained in therelevant limit. The manifold of general relativity, with an inde�nite metric tensor �eld,is called a pseudo-Riemannian manifold. The tensor �eld g represents the gravitational�eld and it has signature (�+++). Individual points in the manifold are labelled bythe real coordinates (xa) = (x0; x1; x2; x3), where x0 = ct (c is the speed of light invacuum) is the timelike coordinate and x1; x2; x3 are spacelike coordinates. In this dis-sertation, we use the convention that the speed of light c = 1. For more comprehensivetreatments of spacetime geometry, the reader is referred to the standard text books indi�erential geometry such as Bishop and Goldberg (1968), de Felice and Clark (1990),Hawking and Ellis (1973), Misner et al (1973) and Wald (1984).

The invariant distance between neighbouring points in M is de�ned by the lineelement
ds2 = gabdxadxb (2.2.1)

The metric connection � is de�ned in terms of the metric tensor and its derivatives by
�abc = 12gad(gcd;b + gdb;c � gbc;d) (2.2.2)
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where commas denote partial di�erentiation. There exists a unique symmetric connec-tion � that preserves inner products under parallel transport (do Carmo 1992). TheRiemannian (curvature or Riemann-Christo�el) tensor R is given by
Rdabc = �dac;b � �dab;c + �eac�deb � �eab�dec (2.2.3)

On contraction of (2.2.3) we obtain the Ricci tensor
Rab = Rcacb

= �cab;c � �cac;b + �cdc�dab � �cdb�dac (2.2.4)
which is symmetric. On contracting the Ricci tensor (2.2.4) we obtain

R = Raa
= gabRab (2.2.5)

which is the Ricci (or curvature) scalar.
With these de�nitions it is now possible to construct the Einstein tensor G, interms of the Ricci tensor (2.2.4) and the Ricci scalar (2.2.5), as follows

Gab = Rab � 12Rgab (2.2.6)
7



Clearly the Einstein tensor G is symmetric. The Einstein tensor has zero divergenceso that
Gab;b = 0 (2.2.7)

which follows from the de�nition of the Einstein tensor (2.2.6). This property is some-times called the Bianchi identity, and it is a necessary condition to generate the con-servation of energy momentum via the Einstein �eld equations.
2.3 Fluids and electromagnetic �elds
For applications in astrophysics and cosmology the matter distribution is described bya relativistic 
uid. The energy momentum tensor for uncharged matter is described bythe symmetric tensor T where

T ab = (�+ p)uaub + pgab + qaub + qbua + �ab (2.3.1)
where � is the energy density, p is the isotropic (kinetic) pressure, qa is the heat 
uxvector (qaua) = 0 and �ab is the anisotropic pressure (stress) tensor (�abua = 0 = �aa).These quantities are measured relative to a comoving 
uid four-velocity u which is unitand timelike (uaua = �1). In perfect 
uids there are no heat conduction and stressterms (qa = 0; �ab = 0). For a perfect 
uid the energy momentum tensor, equation(2.3.1) becomes

T ab = (�+ p)uaub + pgab (2.3.2)
8



For many applications we require that the matter distribution satis�es a barotropicequation of state
p = p(�) (2.3.3)

on physical grounds. Sometimes the particular equation of state
p = (
 � 1)�

where 0 � 
 � 1, is assumed in cosmology to describe matter distributions. This iscalled the linear 
 equation of state. The case 
 = 1 corresponds to dust; 
 = 2 givesa sti� equation of state in which the speed of sound is equal to the speed of light ;

 = 4=3 corresponds to radiation. Often the particular equation of state

p = k�1+ 1n

where k and n are constants, is assumed in relativistic astrophysics. This is called apolytropic equation of state.
The Einstein �eld equations

Gab = T ab (2.3.4)
governs the interaction between curvature and the matter content in the absence ofcharge. We have set the coupling constant to be unity in (2.3.4). From (2.2.7) and(2.3.4) we obtain
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T ab;b = 0 (2.3.5)
which is the conservation of matter.

We de�ne the electromagnetic �eld tensor F in terms of the four-potential A by
Fab = Ab;a � Aa;b

which is skew-symmetric. The electromagnetic �eld tensor can be written in terms ofthe electric �eld E = (E1; E2; E3) and the magnetic �eld B = (B1; B2; B3) as follows

F ab =
0BBBBBBB@

0 E1 E2 E3
�E1 0 B3 �B2
�E2 �B3 0 B1
�E3 B2 �B1 0

1CCCCCCCA (2.3.6)

The electromagnetic contribution E to the total energy momentum is given by theresult
Eab = FacFbc � 14gabFcdF cd (2.3.7)

To consider the e�ect of E on the gravitational �eld it is necessary to express thefundamental equations of electromagnetism, namely Maxwell's laws, in covariant form.The governing equations are given by
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Fab;c + Fbc;a + Fca;b = 0 (2.3.8a)
F ab;b = Ja (2.3.8b)

where J is the four-current density de�ned by
Ja = �ua (2.3.9)

and � is the proper charge density. For further information on Maxwell's �eld equations(2.3.8) see Misner et al (1973) and Narlikar (2002). Note that the Maxwell equations(2.3.8) are the basic equations that govern the behaviour of the electromagnetic �eldin a curved background.
We point out that the total energy momentum tensor is the sum of T and E. We arenow in a position to introduce the Einstein-Maxwell system of equations for a charged
uid in a gravitational �eld. The interaction between T, E and g is governed by theEinstein-Maxwell system of equations

Gab = T ab + Eab (2.3.10a)
Fab;c + Fbc;a + Fca;b = 0 (2.3.10b)

F ab;b = Ja (2.3.10c)
The system (2.3.10) is a highly nonlinear system of coupled, partial di�erential equa-
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tions governing the behaviour of gravitating systems in the presence of an electromag-netic �eld. In (2.3.10a), we use units in which the coupling constant in the Einsteinequations is unity. We need to solve the system (2.3.10) to generate an exact solution;one approach is to specify a particular form for the matter distribution and electro-magnetic �eld on physical grounds and then integrate the partial di�erential equationsto �nd the metric tensor �eld g. For uncharged matter, the only equation that has tobe satis�ed is the Einstein �eld equation (2.3.10a) with E = 0. Note that from (2.2.7)and (2.3.10a) we obtain
(T ab + Eab);b = 0 (2.3.11)

which is the total conservation of matter and charge which generalises (2.3.5).

2.4 Physical conditions
We brie
y consider the physical conditions applicable to a relativistic stellar model.For physical viability, any solution applicable to the interior of the stellar body shouldmatch smoothly to the appropriate exterior spacetime. The gravitational �eld outsidea static spherically symmetric body, in the absence of charge, is given by

ds2 = ��1� 2mr � dt2 + �1� 2mr ��1 dr2 + r2(d�2 + sin2 �d�2) (2.4.1)
which is the exterior Schwarzschild solution. Here the quantity m is the mass of thestellar body as measured by an observer at in�nity. The exterior gravitational �eld toa static spherically symmetric body, in the presence of charge, has the form
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ds2 = ��1� 2mr + q2r2
� dt2 + �1� 2mr + q2r2

��1 dr2 + r2(d�2 + sin2 �d�2) (2.4.2)
In the above q is the constant related to the total charge of the sphere. The line element(2.4.2) is the exterior Reissner-Nordstrom solution. The radial electric �eld is

E = qr2
and, consequently, the proper charge density is � = 0. Consequently, the four currentdensity J = 0 which is consistent with an exterior spacetime with no barotropic matter.When q = 0, (2.4.2) reduces to the exterior Schwarzschild line element (2.4.1).

Physical conditions will restrict the solutions of the Einstein-Maxwell system (2.3.10)for a realistic star. It is often assumed by researchers that realistic stellar models forisotropic matter should satisfy the following conditions:
(a) The energy density � and the pressure p should be positive and �nite throughoutthe interior of the star. The radial pressure should vanish at the boundary r = b:

0 < � <1; 0 < p <1; p(b) = 0
(b) The energy density � and the pressure p should be monotonic decreasing functionsfrom the centre to the boundary:

d�dr � 0; dpdr � 0
13



(c) Causality should be satis�ed. The speed of sound should remain less than the speedof light throughout the interior of the star which leads to the condition:
0 � dpd� � 1

(d) The metric functions e2� and e2� and the electric �eld intensity E should be positiveand nonsingular throughout the interior of the star.
(e) At the boundary the interior gravitational potentials should match smoothly to theexterior line elements (2.4.1) and (2.4.2) for neutral and charged matter, respectively.This generates the following conditions on the gravitational potentials:

e2�(b) = e�2�(b) = 1� 2mb ; (E = 0)
e2�(b) = e�2�(b) = 1� 2mb + q2b2 ; (E 6= 0)

(f) The electric �eld intensity E should be continuous across the boundary for the caseof charged models:
E(b) = qb2

(g) The models should be stable with respect to radial perturbations.
It should be observed that not all relativistic stellar models satisfy the full set of theconditions listed above throughout the stellar interior; particular solutions may be validonly in some regions of spacetime. For example, the Schwarzschild interior solutionbecomes singular at the centre. Such solutions need to be treated as an envelope ofthe star and should be matched to another solution valid for the core. An example ofa core-envelope model is provided by Thomas et al (2005). Some of the conditions (a)-(g) may be very restrictive. For example, observational evidence suggests that in some
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stars the energy density � may be not a strictly decreasing function. However, manyresearchers, for example Delgaty and Lake (1998), require that an exact solution satisfythese conditions. In addition, it is interesting to study the behaviour of anisotropicmatter distributions with radial pressures di�erent from tangential pressures. Suchcases were studied by Chaisi and Maharaj (2005), and Dev and Gleiser (2002, 2003)in the case of neutral spheres; Herrera and Ponce de Leon (1985) analysed tangentialpressures in the presence of charge. Anisotropic matter and charge distributions maybe relevant in the description of quark stars as pointed out by Sharma and Maharaj(2007) and Komathiraj and Maharaj (2007), respectively. Exact solutions to the �eldequations which do not satisfy all of the conditions (a)-(g) are still of value becausethey provide useful information which assist in the qualitative analysis of relativisticstars.
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Chapter 3

Spherically symmetric static models

3.1 Introduction
Static spherically symmetric spacetimes are used to model the behaviour of compactrelativistic spheres. This model caters for both neutral as well as charged matter distri-butions; the charged case reduces to the neutral case when the electromagnetic �eld isabsent. There exist particular classes of physically reasonable exact solutions that areknown for both charged and uncharged matter. These exact solutions for the interior ofcharged spheres are required to match the Reissner-Nordstrom metric at the boundary,and satisfy the conditions listed in x2.4. The Reissner-Nordstrom metric describes theexterior spacetime for a spherically symmetric, charged matter distribution. Chargedrelativistic spheres may be used to model core-envelope stellar con�gurations as shownby Paul and Tikekar (2005), Thomas et al (2005), and Tikekar and Thomas (1998).Here the core is an isotropic 
uid and the surrounding envelope is taken to be ananisotropic 
uid. The role of the electromagnetic �eld in describing the gravitationalbehaviour of the quark stars (with a linear equation of state) has been recently investi-gated by Komathiraj and Maharaj (2007), and Mak and Harko (2004). An interestingfact about the presence of charge is that it may prevent the gravitational collapse ofa spherically symmetric matter distribution to a point singularity. Here the inwardly
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directed gravitational attraction is counterbalanced by the repulsive Coulombic forcein addition to the e�ect of the pressure gradient. In x3.2, we discuss the spacetimegeometry for static spherically symmetric gravitational �elds. We generate the relevantquantities associated with the curvature. The Einstein �eld equations are found forneutral 
uids in x3.3. This is extended to include the electromagnetic �eld. Then theEinstein-Maxwell system is transformed to an equivalent form using a transformationof Durgapal and Bannerji (1983). A general class of exact solutions to the Einstein-Maxwell coupled equations is presented in x3.4. Particular solutions found previouslyfor charged and neutral spheres are shown to be contained in this class of solutions.The results of this chapter serve as a basis for the research undertaken in chapters 4and 5.
3.2 Spacetime geometry
In this section, we describe the spacetime geometry corresponding to static sphericallysymmetric manifolds. The line element can be written in the form

ds2 = �e2�(r)dt2 + e2�(r)dr2 + r2(d�2 + sin2 �d�2) (3.2.1)
in standard coordinates (xa) = (t; r; �; �). The quantities �(r) and �(r) are associatedwith the gravitational potentials.

The nonvanishing connection coe�cients (2.2.2) are given by
�001 = � 0 �100 = � 0e2(���)
�111 = �0 �122 = �re�2�
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�133 = �re�2� sin2 � �212 = 1r
�233 = � sin � cos � �313 = 1r
�323 = cot �
for the metric (3.2.1). Primes denote di�erentiation with respect to the radial coor-dinate r. Substituting the above connection coe�cients into the de�nition (2.2.4) weobtain the nonvanishing Ricci tensor components

R00 = �� 00 + � 02 � � 0�0 + 2� 0r � e2(���) (3.2.2a)
R11 = � �� 00 + � 02 � � 0�0 � 2�0r � (3.2.2b)
R22 = 1� [1 + r(� 0 � �0)] e�2� (3.2.2c)
R33 = sin2 �R22 (3.2.2d)

Using (3.2.2) and the de�nition for the Ricci scalar (2.2.5) we obtain the result
R = 2 � 1r2 � �� 00 + � 02 � � 0�0 + 2� 0r � 2�0r + 1r2� e�2�� (3.2.3)

The Ricci tensor components (3.2.2), together with the Ricci scalar (3.2.3), may beused to generate the nonvanishing Einstein tensor components (2.2.6). These are givenby
18



G00 = 1r2 e�2� �r �1� e�2���0 (3.2.4a)
G11 = e�2� �� 1r2 �1� e�2��+ 2� 0r e�2�� (3.2.4b)
G22 = 1r2 e�2��� 00 + � 02 + � 0r � � 0�0 � �0r

� (3.2.4c)
G33 = 1sin2 �G22 (3.2.4d)

for the line element (3.2.1).
3.3 Field equations
As the 
uid four-velocity is comoving we have ua = e���a0 for the metric (3.2.1). Thenthe perfect 
uid energy momentum tensor (2.3.2) has the nonvanishing components

T 00 = e�2�� (3.3.1a)
T 11 = e�2�p (3.3.1b)
T 22 = 1r2p (3.3.1c)
T 33 = 1r2 sin2 �p (3.3.1d)

On equating the components of the Einstein tensor (3.2.4) to the components of the
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energy momentum tensor (3.3.1), we obtain the Einstein �eld equations (2.3.4) in theform
� = 1r2 �r �1� e�2���0 (3.3.2a)
p = � 1r2 �1� e�2��+ 2� 0r e�2� (3.3.2b)
p = e�2��� 00 + � 02 + � 0r � � 0�0 � �0r

� (3.3.2c)
From the conservation law (2.3.5) we have

dpdr = � (�+ p) d�dr (3.3.3)
Note that (3.3.3) can also be obtained directly from the �eld equations (3.3.2); it maybe used to replace one of the �eld equations in the integration process. The systemof Einstein �eld equations (3.3.2) determines the evolution of the static sphericallysymmetric star which we have modelled as a perfect 
uid.

The Einstein equations given above may be generalized to include nonzero electriccharge. For the perfect 
uid energy momentum tensor (2.3.2), together with the elec-tromagnetic contribution (2.3.7), the Einstein-Maxwell system (2.3.10) can be writtenas
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1r2 (1� e�2�) + 2�0r e�2� = �+ 12E2 (3.3.4a)
� 1r2 (1� e�2�) + 2� 0r e�2� = p� 12E2 (3.3.4b)

e�2��� 00 + � 02 + � 0r � � 0�0 � �0r
� = p+ 12E2 (3.3.4c)
� = 1r2 e��(r2E)0 (3.3.4d)

It is possible to transform (3.3.4) to a simpler form. Durgapal and Bannerji (1983)introduced the following transformation
x = Cr2; Z(x) = e�2�(r); A2y2(x) = e2�(r) (3.3.5)

The metric (3.2.1) now has the equivalent form
ds2 = �A2y2dt2 + 14CxZdx2 + xC (d�2 + sin2 �d�2)

The corresponding Einstein-Maxwell system may be written as
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1� Zx � 2dZdx = �C + E22C (3.3.6a)
4Z 1y dydx + Z � 1x = pC � E22C (3.3.6b)

4Zx2 d2ydx2 + 2dZdxx2 dydx + �dZdxx� Z + 1� E2xC
� y = 0 (3.3.6c)
�2C = 4Zx �xdEdx + E�2(3.3.6d)

which follows from (3.3.4) and (3.3.5). Equation (3.3.6c) is the condition of pressureisotropy generalised to include the electromagnetic �eld. It is the master equation thatmust be integrated to provide a solution to the system (3.3.6).
3.4 Exact solutions
There exist many exact solutions to the systems (3.3.2) and (3.3.4) for neutral andcharged matter, respectively. However, only a few of the known solutions are physi-cally reasonable. For comprehensive reviews of the known solutions and their physicalproperties the reader is referred to Delgaty and Lake (1998), Finch and Skea (1989) andIvanov (2002). In recent treatments there have been attempts to �nd general classesof exact solutions which unify particular cases found previously. Examples of thesetreatments are provided by Komathiraj and Maharaj (2007), Maharaj and Komathi-raj (2007), Maharaj and Thirukkanesh (2006) and Thirukkanesh and Maharaj (2006,2008). These treatments provide new generalised classes of Einstein-Maxwell solutionsin closed form which are physically acceptable. For example, the speed of sound is lessthan the speed of light in these models.
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A general class of models is the charged perfect 
uid solution found by Thirukkaneshand Maharaj (2008) to the Einstein-Maxwell system (3.3.6). The gravitational poten-tial Z was chosen to be of the particular form
Z = 1 + ax1 + bx

where a and b are constants. The electric �eld was chosen to be
E2 = �Cbx(1 + bx)2

where � is a constant. These choices result in the following di�erential equation
4(1 + ax)(1 + bx)d2ydx2 + 2(a� b)dydx + [b(b� a)� ab] y = 0 (3.4.1)

which is the condition of pressure isotropy (3.3.6c).
Equation (3.4.1) can be integrated and it was found that the general solution to theabove system comprises two classes of elementary functions. The �rst class of solutionsmay be written as follows

y =
d1(1 + ax) 12 "1� (n+ 1) n+1X

i=1
� 4ab� a

�i (2i� 1)(n+ i)!(2i)!(n� i+ 1)!(1 + bx)i#

+d2(1 + bx) 32 "1 + 3(n+ 1) nX
i=1
� 4ab� a

�i (2i+ 2)(n+ i+ 1)!(n� i)!(2i+ 3)! (1 + bx)i#
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where a� b+ � = a(2n+ 3)(2n+ 1). The second class of solutions has the form
y =

d1(1 + ax) 12 (1 + bx) 32 "1 + 3n(n� 1) n�2X
i=1
� 4ab� a

�i (2i+ 2)(n+ i)!(2i+ 3)!(n� i� 2)!(1 + bx)i#

+d2 "1� n(n� 1) nX
i=1
� 4ab� a

�i (2i� 1)(n+ i� 2)!(2i)!(n� i)! (1 + bx)i#

where a� b+ � = 4an(n� 1) and d1 and d2 are constants. The restriction on n arisesbecause it is this value that ensures elementary functions (rather than in�nite series)are admissible as solutions.
The classes of solutions found by Thirukkanesh and Maharaj (2008) are physicallyreasonable: the matter variables and metric functions are continuous and regular inthe stellar interior; the interior line elements match to the Schwarzschild or Reissner-Nordstrom exterior line elements; the speed of sound is less than the speed of light;densities and pressures are consistent with observational results. Known solutionswhich are physically acceptable are contained in their general class. The Hansraj andMaharaj (2006) and Komathiraj and Maharaj (2007) solutions, which model chargedrelativistic spheres, are regained as special cases. The Durgapal and Bannerji (1983),Finch and Skea (1989) and Tikekar (1990) solutions, which model neutral relativisticspheres, are also special cases.
For completeness we present the explicit solutions mentioned above.
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3.4.1 Case 1: Hansraj and Maharaj charged stars
If we set a = 0, b = 1 and 0 � � � 1 we get

y = hd1 � d2p(1� �)(1 + x)i cosp(1� �)(1 + x)
+ hd2 + d1p(1� �)(1 + x)i sinp(1� �)(1 + x) (3.4.2)

from the above class of solutions. The class of charged solutions (3.4.2) is the �rstcategory of models found by Hansraj and Maharaj (2006). If � = 1 then
y = d1 + d2(1 + x) 32 (3.4.3)

This is the second category of the Hansraj-Maharaj (2006) charged solutions. When
� > 1 then we obtain

y = hd2 + d1p(�� 1)(1 + x)i sinhp(�� 1)(1 + x)
+ hd1 � d2p(�� 1)(1 + x)i coshp(�� 1)(1 + x) (3.4.4)

This is the third category of charged solutions found by Hansraj and Maharaj (2006).The exact solutions (3.4.2)-(3.4.4) model a charged relativistic sphere and satisfy theconditions for physical acceptability listed in x2.4.
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3.4.2 Case 2: Maharaj and Komathiraj charged stars
For the case a� 1 + � = a(2n+ 1)(2n+ 3) we obtain

y =
d1(1 + ax) 12 "1� (n+ 1) n+1X

i=1
� 4a1� a

�i (2i� 1)(n+ i)!(2i)!(n� i+ 1)!(1 + x)i#

+d2(1 + x) 32 "1 + 3(n+ 1) nX
i=1
� 4a1� a

�i (2i+ 2)(n+ i+ 1)!(n� i)!(2i+ 3)! (1 + x)i# (3.4.5)
In the case a� 1 + � = 4an(n� 1) we �nd

y =
d1(1 + ax) 12 (1 + x) 32 "1 + 3n(n� 1) n�2X

i=1
� 4a1� a

�i (2i+ 2)(n+ i)!(2i+ 3)!(n� i� 2)!(1 + x)i#

+d2 "1� n(n� 1) nX
i=1
� 4a1� a

�i (2i� 1)(n+ i� 2)!(2i)!(n� i)! (1 + x)i# (3.4.6)
The two categories of solutions (3.4.5) and (3.4.6) given above correspond to the Ma-haraj and Komathiraj (2007) model for a compact sphere in electric �elds. The Maharajand Komathiraj (2007) model for charged stars has a simple form written in terms ofelementary functions. They are physically reasonable and contain the Durgapal andBannerji (1983) model and other exact models corresponding to neutron stars as spe-cial cases.
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3.4.3 Case 3: Finch and Skea neutron stars
When � = 0, a = 0 and b = 1 we obtain

y = hd1 � d2p1 + xi cosp1 + x+ hd2 + d1p1 + xi sinp1 + x (3.4.7)
from the general solution. (Equivalently, we can set � = 0 in (3.4.2).) Thus, we regainthe Finch and Skea (1989) model for a neutron star when the electromagnetic �eldis absent. The Finch and Skea (1989) neutron star model has been proven to satisfyall the physical criteria for an isolated spherically symmetric stellar neutral matterdistribution. This model has therefore been used in many investigations to study theinterior of neutron stars in the context of general relativity.

3.4.4 Case 4: Durgapal and Bannerji neutron stars
If we take � = 0 and n = 0 then we get

y = d1(2� x) 12 (5 + 2x) + d2(1 + x) 32 (3.4.8)
Here we have regained the neutron star model of Durgapal and Bannerji (1983). Thismodel satis�es all criteria for being physically acceptable and has been used by manyresearchers to study neutral neutron stars.
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3.4.5 Case 5: Tikekar superdense stars
If we take � = 0 and n = 2 then we �nd

y = d1x(1� 78x2) 32 + d2 �1� 72x2 + 4924x4� (3.4.9)
Now we have regained the Tikekar (1990) model for superdense neutron stars. Thismodel plays an important role in describing highly dense matter distributions, coldcompact matter and core-envelope models for relativistic stars. It is interesting to notethat the Tikekar (1990), superdense stars may be extended to include electric �elds asdemonstrated by Komathiraj and Maharaj (2007a).
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Chapter 4

Shear-free models with heat 
ux

4.1 Introduction
In addition to radiating cosmological models, shear-free spacetimes are widely used tomodel relativistic stars which dissipate null radiation in the form of a radial heat 
ow.The heat 
ows from the hotter central regions to the stellar boundary. Various modelsinvolving gravitational collapse with radiative processes have been studied in the past.Deng and Mannheim (1990, 1991), Glass (1990), Santos et al (1985) and Stephani etal (2003) have discussed the physical features of shear-free solutions with heat 
ux. Anecessary requirement for these models is that the interior spacetime must be matchedat the boundary, where the radial pressure is nonzero, to the exterior Vaidya radiatingspacetime. Studies of relativistic radiating stars are also useful in the investigationof the cosmic censorship hypothesis and radiative collapse with vanishing tidal forces(Herrera et al (2004), Maharaj and Govender (2005), Misthry et al (2008)). Waghet al (2000) presented solutions to the Einstein �eld equations for a shear-free spher-ically symmetric spacetime, with radial heat 
ux, by choosing a barotropic equationof state. Herrera et al (2006) found analytical solutions to the �eld equations, forradiating collapsing spheres in the di�usion approximation. They demonstrated thatthe thermal evolution of the collapsing sphere can be modelled in causal thermody-
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namics. In this chapter we construct the model for shear-free spacetimes exhibitingheat 
ow. In x4.2, we discuss the spacetime geometry of shear-free spacetimes, andgenerate the Einstein �eld equations with heat 
ow in x4.3. From the �eld equationswe deduce the condition of pressure isotropy which is written as a second order dif-ferential equation with variable coe�cients. Some known solutions corresponding tothe case of conformal 
atness are reviewed in x4.4. We generate a number of new so-lutions in x4.5 by choosing a variety of particular forms for the gravitational potentials.

4.2 Spacetime geometry
Shear-free 
uids are important in modelling inhomogeneous cosmological processes andradiating stellar models. Spherically symmetric spacetimes which are shear-free can bewritten as

ds2 = �A2dt2 +B2[dr2 + r2(d�2 + sin2 �d�2)] (4.2.1)
in comoving coordinates (xa) = (t; r; �; �). The metric functions A and B depend onboth the timelike coordinate t and the radial coordinate r.

The nonvanishing connection coe�cients (2.2.2) are given by
�000 = _AA �001 = A0A
�011 = B _BA2 �022 = r2B _BA2
�033 = r2 sin2 �B _BA2 �100 = AA0B2
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�111 = B0B �122 = �r2 �B0B + 1r�
�133 = �r2 sin2 � �B0B + 1r� �101 = _BB
�202 = _BB �303 = _BB
�212 = B0B + 1r �313 = B0B + 1r
�233 = � sin � cos � �323 = cot �

for the metric (4.2.1). In the above, dots and primes denote di�erentiation with respectto t and r, respectively. Using the above connection coe�cients and the de�nition forthe Ricci tensor (2.2.4) we can write the nonvanishing Ricci tensor components as
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R00 = AA00B2 + AA0B0B3 � 3 �BB + 3 _AA _BB + 2r AA0B2 (4.2.2a)
R01 = 2 _BB0B2 � _B0B + A0 _BAB

! (4.2.2b)
R11 = 2 _B2A2 + A0A B0B � 2r B0B �B _B _AA3 � A00A

+B �BA2 + 2B02B2 � 2B00B (4.2.2c)
R22 = r2B �BA2 � r2B _B _AA3 + 2r2 _B2A2 � r2A0A B0B � rA0A

�3rB0B � r2B00B (4.2.2d)
R33 = sin2 �R22 (4.2.2e)

Using the Ricci tensor components (4.2.2), and the de�nition (2.2.5), we obtain theRicci scalar
R = �2 1B2 A00A � 4r 1B2 A0A + 6A2 _B2B2 � 8r B0B3 + 2B02B4

�2A0A B0B3 � 4B00B3 � 6 _AA3 _BB + 6 �BBA2 (4.2.3)
for the metric (4.2.1). Now using the Ricci tensor components (4.2.2), and the Ricciscalar (4.2.3), we obtain the nonvanishing Einstein tensor components in the form
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G00 = 3 _B2B2 � A2B2 �2B00B � B02B2 + 4r B0B
� (4.2.4a)

G01 = � 2B2 �B _B0 �B0 _B �B _BA0A
� (4.2.4b)

G11 = 1A2
 �2B �B � _B2 + 2B _B _AA

!+
1B2 �B02 + 2BB0A0A +B22r A0A +BB02r� (4.2.4c)

G22 = �2r2B �BA2 + 2r2B _B _AA3 � r2 _B2A2 +
rA0A + rB0B + r2A00A � r2B02B2 + r2B00B (4.2.4d)

G33 = sin2 �G22 (4.2.4e)
for the spacetime (4.2.1).
4.3 Field equations
For this particular model the nonvanishing components of the energy momentum tensorare written as
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T00 = �A2 (4.3.1a)
T01 = �AB2q (4.3.1b)
T11 = pB2 (4.3.1c)
T22 = pB2r2 (4.3.1d)
T33 = pB2r2 sin2 � (4.3.1e)

Using (4.2.4) and the energy momentum tensor components (4.3.1) we obtain theEinstein �eld equations for this model
� = 3 _B2A2B2 � 1B2 �2B00B � B02B2 + 4B0rB

� (4.3.2a)
p = 1A2

 �2 �BB � _B2B2 + 2 _A _BAB
!

+ 1B2 �B02B2 + 2A0B0AB + 2A0rA + 2B0rB
� (4.3.2b)

p = �2 �BBA2 + 2 _A _BBA3 � _B2A2B2 + A0rAB2
+ B0rB3 + A00AB2 � B02B4 + B00B3 (4.3.2c)

q = � 2AB2
 � _B0B + B0 _BB2 + A0A _BB

! (4.3.2d)
34



The �eld equations above are a system of coupled partial di�erential equations andthey model the evolution of the interior of a spherically symmetric radiating star or aradiating cosmological model.
Equations (4.3.2b) and (4.3.2c) yield the consistency condition

A00A 1B2 + B00B3 � 2A0A B0B3 � 2B02B4 � 1B2 1r �A0A + B0B
� = 0 (4.3.3)

which is the condition of pressure isotropy. This equation governs the gravitationalbehaviour of the radiating model and must be solved to yield an exact solution to thesystem (4.3.2). In the present form it is di�cult to solve, and we need to rewrite it insimpler form to make progress. We observe that (4.3.3) can be rewritten as
ArrA + BrrB = �2BrB + 1r��ArA + BrB

� (4.3.4)
Then we introduce the new variable

x = r2

so that the condition of pressure isotropy (4.3.4) can be written as
�AB

�
xx = 2A� 1B�xx (4.3.5)

where subscripts represent di�erentiation with respect to the new variable x. We
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present exact solutions to the governing equation (4.3.5) in the remainder of this chap-ter.
4.4 Known solutions
A number of solutions to (4.3.5), in closed form are known. Particular cases wereconsidered by Bergmann (1981), Maiti (1982) and Modak (1984). These solutionsare conformally 
at which correspond to a vanishing Weyl tensor. The most generalconformally 
at solution with heat 
ux was found by Banerjee et al (1989). We canexpress the conformally 
at solution in the form

AB = 1 + C1(t)r2 (4.4.1a)
B = 1C2(t)r2 + C3(t) (4.4.1b)

where C1(t); C2(t) and C3(t) are functions of integration. The form of solution (4.4.1),was used by Di Prisco et al (2007), Herrera et al (2004), Maharaj and Govender(2005) and Misthry et al (2008) to study radiating relativistic spheres, and to gener-ate temperature pro�les in the causal theory of thermodynamics. Triginer and Pavon(1995) studied dissipative processes in inhomogeneous spacetimes for a particular caseof (4.4.1).
Other particular solutions of (4.3.5) are known and these are listed by Krasinski(1997). It is interesting to note that a method of generating solutions to (4.3.5), wasfound by Deng and Mannheim (1990, 1991) which generates an in�nite sequence ofsolutions.
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4.5 New solutions
As pointed out in x4.4, particular solutions to (4.3.5), have been found previously.However these solutions are conformally 
at or have a complicated form. We requiresolutions in simple form, preferably expressible in terms of elementary functions or spe-cial functions, to study the physical features of the model. In this section we demon-strate that it is possible to generate simple exact solutions. We �rst write (4.3.5), inthe modi�ed form

� 1B�Axx + 2Ax� 1B�x � A� 1B�xx = 0 (4.5.1)
Observe that (4.5.1), is linear in the function A if 1B is speci�ed; it is linear in terms ofthe function 1B if A is a given quantity. We utilise this feature of (4.5.1), to generateseveral classes of new solutions. Observe that (4.5.1), is a partial di�erential equation.However, we can treat it as an ordinary di�erential equation in the integration process,because the variable t does not appear explicitly.
4.5.1 Solution I: B�1 = (a+ bx)k
It is possible to generate an Cauchy-Euler equation for a suitable choice of 1B . Weassume the following functional form

1B = (a+ bx)k (4.5.2)
where a and b are functions of time and k is a real parameter. Then the condition(4.5.1) becomes

(a+ bx)2Axx + 2bk(a+ bx)Ax � b2k(k � 1)A = 0 (4.5.3)
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We can simplify (4.5.3), by introducing the new dependent variable
z = a+ bx

Then (4.5.3) reduces to the Cauchy-Euler di�erential equation
z2b2 ~Azz + 2b2kz ~Az � b2k(k � 1) ~A = 0 (4.5.4)

where ~A = ~A(z; t). The characteristic equation corresponding to (4.5.4), is
m2 + (2k � 1)m� (k2 � k) = 0

The roots of the characteristic equation are
m1 = (1� 2k) +p8k2 � 8k + 12
m2 = (1� 2k)�p8k2 � 8k + 12

Three cases arise depending on the value of 8k2 � 8k + 1 which could be positive,negative or zero.
(i) Repeated rootsIf k = 12 �1 + 1p2� or k = 12 �1� 1p2� then the roots are repeated andm1 = m2 = 12�k.
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Then the solution of (4.5.4), is given by
~A = [c+ d ln z] z(1�2k)=2

In terms of the variable x we have
A(x; t) = [c+ d ln(a+ bx)] (a+ bx)(1�2k)=2 (4.5.5)

where c(t) and d(t) are functions of integration.
(ii) Real distinct rootsIf 12 �1� 1p2� < k < 12 �1 + 1p2� then the roots m1 and m2 are real and distinct andthe solution of (4.5.4) is

~A = cz[�(2k�1)+p8k2�8k+1]=2 + dz[�(2k�1)�p8k2�8k+1]=2 (4.5.6)
where c(t) and d(t) result from integration. The closed form solution in terms of x isgiven by

A(x; t) = c(a+ bx)[(1�2k)+p8k2�8k+1]=2
+d(a+ bx)[(1�2k)�p8k2�8k+1]=2 (4.5.7)

for this case.
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(iii) Complex rootsIf 12 �1 + 1p2� < k < 12 �1� 1p2� then the roots m1 and m2 are complex and the solu-tion of (4.5.4) is
~A = e(1�2k)(z�a)=2b

� �c cosp8k2 � 8k + 1�z � ab
�+ d sinp8k2 � 8k + 1�z � ab

�� (4.5.8)
where c and d are functions of integration. Then the closed form solution in terms ofthe original variable x is given by

A(x; t) = e(1�2k)x=2 hc cosp8k2 � 8k + 1x+ d sinp8k2 � 8k + 1xi (4.5.9)
for complex roots.

Hence we have generated a new class of solutions in terms of elementary functions,to the condition of pressure isotropy (4.5.1). We can present the solution in the com-pact form

A =

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

[c+ d ln(a+ bx)] (a+ bx)(1�2k)=2; k = 12 �1 + 1p2� or 12 �1� 1p2�

c(a+ bx)[(1�2k)+p8k2�8k+1]=2
+d(a+ bx)[(1�2k)�p8k2�8k+1]=2; 12 �1� 1p2� < k < 12 �1 + 1p2�

e(1�2k)x=2 �c cosp8k2 � 8k + 1x+d sinp8k2 � 8k + 1x� ; 12 �1 + 1p2� < k < 12 �1� 1p2�

(4.5.10)
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1B = (a+ bx)k

for the gravitational potentials A and B.
In the special case when k = 1, the roots are real and distinct. Then the abovesolution yields the particular case

A = c+ da+ bx
= (ca+ d) + cbxa+ bx (4.5.11a)

1B = a+ bx (4.5.11b)
If we make the identi�cation

ca+ d = 1
cb = C1
b = C2
a = C3

then we observe that (4.5.11), is equivalent to the conformally 
at solution (4.4.1).It is clear that the solutions found in this section reduce to the conformally 
at case
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in the relevant limit. Hence we have found a new class of exact radiating models forshear-free 
uids in terms of elementary functions which generalise the conformally 
atcase. These solutions will help in the construction of models where tidal e�ects areimportant, eg. in galaxy formation.

4.5.2 Solution II: A = (a+ bx)k
In an attempt to �nd other classes of solutions we observe that it is possible to choosepower law forms for the potential A. This will generate solutions that di�er from thosefound in x4.5.1. We now let

A = (a+ bx)k (4.5.12)
so that (4.5.1) reduces to

(a+ bx)2� 1B�xx � 2kb(a+ bx)� 1B�x � b2k(k � 1)� 1B� = 0 (4.5.13)
In a similar manner to the treatment above we obtain the second order Cauchy-Eulerdi�erential equation

z2~v00 � 2kz~v0 � k(k � 1)~v = 0 (4.5.14)
where v = 1=B and ~v = ~v(z; t). The characteristic equation for this di�erential equa-tion may be written as

m2 �m(2k + 1)� k(k � 1) = 0 (4.5.15)
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For this case the roots of the characteristic equation work out to be
m1 = 2k + 1 +p8k2 + 12
m2 = 2k + 1�p8k2 + 12

It is immediately clear that 8k2 + 1 > 0. Consequently the roots of the characteristicequation are always real and distinct. Therefore the above choice for the potential Aadmits only one class of solutions corresponding to 8k2 + 1 > 0. The general closedform solution to (4.5.14), may be written as
~v = cz[2k+1+p8k2+1]=2 + dz[2k+1�p8k2+1]=2 (4.5.17)

Hence the general closed form solution to (4.5.13) is given by
� 1B� (x; t) = c(a+ bx)[2k+1+p8k2+1]=2

+d(a+ bx)[2k+1�p8k2+1]=2 (4.5.18)

for the metric function 1B .
The exact models for this category of solution is given by (4.5.12) and (4.5.18).Note that the form of the potential A does not allow us to regain the conformally 
atradiating limit. For this class of radiating models tidal forces are always present.
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4.5.3 Solution III: B�1 = ea+bx

Also, we observe that if an exponential form for the potential 1B is chosen then we can�nd a new solution. In (4.5.1) we set
1B = ea+bx (4.5.19)

so that we get
A00 + 2bA0 � b2A = 0 (4.5.20)

which is a second order ordinary di�erential equation with constant coe�cients. Thecharacteristic equation of (4.5.20) is
m2 + 2bm� b2 = 0

The roots are
m1 = b(�1 +p2)
m2 = b(�1�p2)

which are real and distinct. This yields the general solution
A(x; t) = ceb(�1+p2)x + deb(�1�p2)x (4.5.22)
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Consequently we have generated another new exact solution given by (4.5.19) and(4.5.22) for a shear-free 
uid with heat 
ux. This form of the solution is particularlysuited to the asymptotic behaviour of the model because of the exponential dependencein the potentials.

4.5.4 Solution IV: A = ea+bx

Conversely we can now choose the exponential form for the potential A and set
A = ea+bx (4.5.23)

In this case (4.5.1) reduces to
V 00 � 2bV 0 � b2V = 0 (4.5.24)

where V = 1B . This is a second order ordinary di�erential equation with constantcoe�cients. The corresponding characteristic equation is
m2 � 2bm� b2 = 0

for which the roots are
m1 = b(1 +p2)
m2 = b(1�p2)
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which are real and distinct. This admits the general solution
� 1B� (x; t) = ceb(1+p2)x + deb(1�p2)x (4.5.26)

where once again c(t) and d(t) are functions of integration. In this section we havegenerated another exact solution which is given by (4.5.23) and (4.5.26).

4.5.5 Solution V: B�1 = A�

It is possible that we may express one of the potentials as a power of the second poten-tial when choosing a particular form to generate an exact solution. With this in mindwe made the particular choice
1B = A� (4.5.27)

for the potential 1B . Then (4.5.1) reduces to
(1� �)AAxx + (3�� �2)Ax2 = 0 (4.5.28)

in the potential A.
Two cases arise corresponding to � = 1 and � 6= 1. With � = 1 we get from (4.5.28)that

Ax = 0
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so that A = A(t). Consequently B = B(t) and the radial dependence of the model islost. We therefore take � 6= 1.
With � 6= 1, (4.5.28) can be written as

dAx2Ax2 = 2�(�� 3)1� � dAA (4.5.29)
We observe that this equation is easily integrable as it is separable. Upon integrating(4.5.29), we generate the �rst order di�erential equation

dAdx = cA�(��3)1�� (4.5.30)
Equation (4.5.30), is integrable and yields the general solution

A(x; t) = ���2 � 2�� 1�� 1 � (cx+ d)� ��1�2�2��1 (4.5.31)
where c and d are constants of integration. Consequently (4.5.27) and (4.5.31) consti-tute another new exact solution to the Einstein �eld equations with heat 
ux.

4.5.6 Solution VI: B�1 = A� + �

In attempting to obtain a more general class of exact solutions to (4.5.1), we makeanother choice for 1=B which is more general, and which contains the choice of x4.5.5.
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We make the assumption that
1B = A� + � (4.5.32)

where � is independent of x. Then (4.5.1) becomes
�A+ �A1�� � �A�Axx + [2�� �(�� 1)]Ax2 = 0 (4.5.33)

This can be reduced to the di�erential equation
dAx2Ax2 = 2�(�� 3)A��1

� h 1� (1� �)A� + 1idA (4.5.34)
Equation (4.5.34), can be integrated to generate the following di�erential equation

dAdx = c(t) � 1� (1� �)A� + 1���31�� (4.5.35)
where c(t) is a function of integration. We cannot integrate (4.5.35), in closed formfor arbitrary � and �. However it is possible to plot the behaviour of A using softwarepackages such as Mathematica. To regain the case considered in x4.5.5 we need to set
� = 0 in (4.5.33).
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Chapter 5

Shearing spacetimes

5.1 Introduction
In Chapter 4 we considered shear-free spacetimes. However it is important to includethe e�ects of shear for many physical applications in cosmology and astrophysics. Weobserve that very few exact solutions are known with nonzero expansion, accelerationand shear as pointed out by Stephani et al (2003). The inclusion of nonvanishing shearleads to highly nonlinear equations with few new solutions although there have beena number of studies carried out by researchers. Naidu et al (2006) investigated thethermal evolution of a radiating anisotropic star with shear. They obtained rathersimple, yet important solutions, to the �eld equations for which their model contains aFriedmann-like limit with vanishing heat 
ux. Maharaj and Misthry (2008), Misthryet al (2008) and Rajah and Maharaj (2008) also studied a collapsing star with non-vanishing shear and successfully found new classes of solutions in terms of elementaryfunctions. They demonstrated that their solutions were regular at the stellar centre andthat the solutions obtained by Naidu et al (2006) could be regained as a special case.In terms of cosmological models, Knutsen (1995) studied the properties of solutionsobtained in noncomoving coordinates and which had shear, acceleration and expansionpresent. Kitamura (1994) obtained a class of exact solutions with shear corresponding
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to spherically symmetric perfect 
uids; this class of models admit conformal transfor-mations as demonstrated by Kitamura (1995). In this chapter we are concerned withspherically symmetric gravitational �elds with _ua 6= 0, � 6= 0 and � 6= 0. In x5.2, westudy the spacetime geometry for the most general spherically symmetric metric. Thequantities associated with the curvature are determined. The Einstein �eld equations,for a perfect 
uid, are formulated in x5.3. In x5.4, we �nd a new class of expanding,accelerating and shearing spacetimes which are regular at the stellar centre. In x5.5,we demonstrate that a well known class of metrics do not satisfy the Einstein �eldequations.
5.2 Spacetime geometry
The most general spherically symmetric spacetime has nonvanishing acceleration, ex-pansion and shear. These spacetimes are important in modelling astrophysical andcosmological processes. The line element for spherically symmetric spacetimes can bewritten as

ds2 = �e2�(t;r)dt2 + e2�(t;r)dr2 + Y 2 (t; r) �d�2 + sin2 �d�2� (5.2.1)
where the functions �, � and Y are the gravitational potentials. We have utilised co-moving coordinates (xa) = (t; r; �; �) related to the 
uid four-velocity ua = e���a0 . Forthe spherically symmetric metric (5.2.1), the kinematical quantities are given by

50



!ab = 0
_ua = (0; � 0; 0; 0)
� = e��  _�+ 2 _YY

!

�11 = �22 = �12�33 = 13e��
 _YY � _�!

relative to the four-velocity u, where dots and primes denote partial di�erentiationwith respect to t and r respectively. In the above !ab is the vorticity tensor, _ua isthe acceleration vector, � is the expansion scalar (or rate of expansion) and � is themagnitude of the shear (or rate of shear). The vorticity vanishes since the spacetime isspherically symmetric. The acceleration, expansion and shear are nonzero in general.Since the work of this chapter is concerned with nonzero shear our solutions have tosatisfy the condition
_YY � _� 6= 0

If the shear vanishes (� = 0), then, after a suitable coordinate transformation, (5.2.1)assumes the form
ds2 = �e2~�(t;r)dt2 + e2~�(t;r)[dr2 + r2(d�2 + sin2 �d�2)]

It is only in the case of vanishing shear that we can �nd coordinates which are simul-
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taneously comoving and isotropic.
For the line element (5.2.1), the of nonvanishing connection coe�cients are givenbelow

�000 = _� �001 = � 0
�011 = e2(���) _� �022 = e�2�Y _Y
�033 = sin2 �e�2�Y _Y �100 = e2(���)� 0
�101 = _� �111 = �0
�122 = �e�2�Y Y 0 �133 = � sin2 �e�2�Y Y 0
�202 = _YY �212 = Y 0Y
�233 = � sin � cos � �303 = _YY
�313 = Y 0Y �323 = cot �
Then utilizing the above nonzero connection coe�cients, and the de�nition for theRicci tensor (2.2.4), we obtain the nonzero Ricci tensor components in the form
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R00 = ���� _�2 + _� _� + 2 _� _YY � 2 �YY
+e2(���)�� 00 + � 02 � � 0�0 + 2� 0Y 0Y

� (5.2.2a)
R01 = 2 _�Y 0Y + � 0 _YY � _Y 0Y

! (5.2.2b)
R11 = �� 00 � � 02 + �0� 0 + 2�0Y 0Y � 2Y 00Y

+e2(���) ��+ _�2 � _� _� + 2 _� _YY
! (5.2.2c)

R22 = e�2�Y _Y  _�� _� + _YY + �Y_Y
!

+e�2�Y Y 0��0 � � 0 � Y 0Y � Y 00Y 0 �+ 1 (5.2.2d)
R33 = sin2 �R22 (5.2.2e)

The Ricci tensor components (5.2.2), may be used to generate the following expressionfor the Ricci scalar
R = 2e�2�  ��+ _�2 � _� _� + 2 _� _YY � 2 _� _YY + _Y 2Y 2 + 2 �YY

!�
2e�2��� 00 + � 02 � � 0�0 � 2�0Y 0Y + 2� 0Y 0Y + Y 02Y 2 + 2Y 00Y

�+ 2Y 2 (5.2.3)
For the line element (5.2.1), the corresponding Einstein tensor components are given
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as
G00 = 2 _� _YY + _Y 2Y 2 � e2(���) �2�0Y 0Y + Y 02Y 2 + 2Y 00Y

!+ e2�Y 2 (5.2.4a)
G01 = 2 _�Y 0Y + 2� 0 _YY � 2 _Y 0Y (5.2.4b)
G11 = 2� 0Y 0Y + Y 02Y 2 + e2(���) 2 _� _YY � _YY 2 � 2 �YY

!� e2�Y 2 (5.2.4c)
G22 = �e�2� h���+ _�2 � _� _��Y 2 + � _� _Y � _� _Y + �Y �Y i

+e�2� h�� 00 + � 02 � � 0�0�Y 2 + (� 0Y 0 � �0Y 0 + Y 00)Y i (5.2.4d)
G33 = sin2 �G22 (5.2.4e)

which follow from (5.2.2) and (5.2.3).
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5.3 The �eld equations
For the line element (5.2.1), the energy momentum tensor has the following nonzerocomponents

T00 = �e2� (5.3.1a)
T11 = pe2� (5.3.1b)
T22 = pY 2 (5.3.1c)
T33 = p sin2 �Y 2 (5.3.1d)

for a perfect 
uid with vanishing heat 
ux.
Equating (5.2.4) and (5.3.1) leads to the Einstein �eld equations

� = 1Y 2 � 2Y e�2� Y 00 � �0Y 0 + Y 022Y
!+ 2Y e�2�  _� _Y + _Y 22Y

! (5.3.2a)
p = � 1Y 2 + 2Y e�2� � 0Y 0 + Y 022Y

!� 2Y e�2�  �Y � _� _Y + _Y 22Y
! (5.3.2b)

p = e�2� �� 00 + � 02 � � 0�0 + 1Y (� 0Y 0 � �0Y 0 + Y 00)�

�e�2� ���+ _�2 � _� _� + 1Y � _� _Y � _� _Y + �Y �� (5.3.2c)
0 = _Y 0 � _Y � 0 � Y 0 _� (5.3.2d)

which are highly nonlinear. From the conservation of energy momentum (2.3.5), we
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generate the di�erential equations
p0 = � (�+ p) � 0 (5.3.3a)
_� = � (�+ p) _�+ 2 _YY

! (5.3.3b)
which are conservation equations. The result (5.3.3), may be obtained directly from the�eld equations (5.3.2). The conservation equations are sometimes used in conjunctionwith the �eld equations to obtain a solution. The system (5.3.2), comprises four equa-tions in the �ve unknowns �; p; �; � and Y . Actually there are only three independentequations; (5.3.2b) and (5.3.2c) generate the condition of pressure isotropy. To obtaina solution it is necessary to impose additional restrictions. There are few solutions, incomoving coordinates, to the system (5.3.2) which are known with nonzero expansion,acceleration and shear as pointed out by Stephani et al (2003). In fact, only the twogeneral classes of Marklund and Bradley (1999) and Maharaj et al (1993) in comovingcoordinates have been published in the literature.
5.4 New shearing solutions
In this section we present a new class of exact solutions, in terms of elementary func-tions, which are expanding, accelerating and shearing. As a starting point we choosethe simple form

ds2 = �e2�(r)dt2 + e2�(r)dr2 + (r + �)2T 2(t)(d�2 + sin2 �d�2) (5.4.1)
for the line element where � is a real constant. This is the simplest form that allowsfor _ua 6= 0;� 6= 0 and � 6= 0. Particular models associated with (5.4.1) have been
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studied by Hajj-Boutros (1985), Maharaj et al (1993) and Wesson (1978), and othermodels as given in Stephani et al (2003).
The �eld equations (5.3.2) simplify, because of the reduced metric (5.4.1), and weobtain

� = 1(r + �)2T 2 + 2(r + �)e�2� ��0 � 12(r + �)�+ e�2�  _T 2T 2
! (5.4.2a)

p = 1(r + �)T �� 1(r + �)T + T �2� 0 + 1(r + �)� e�2�

�2(r + �) �T + _T 22T
! e�2�# (5.4.2b)

p = e�2� �(� 00 + � 02 � � 0�0) + 1(r + �)(� 0 � �0)�� �TT e�2� (5.4.2c)
0 = 1� (r + �)� 0 (5.4.2d)

Equation (5.4.2d) can be integrated to give
e2� = a2(r + �)2 (5.4.3)

where a is a constant of integration.
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Equating (5.4.2b) and (5.4.2c) leads to
1T 2 + (r + �)2e2�

" �TT + _T 2T 2
# =

(r + �)e2�
� 1r + � + � 0 + �0 + (r + �)(� 0�0 � � 02 � � 00)� (5.4.4)

which is the condition of pressure isotropy. We can eliminate e2� from (5.4.4), with thehelp of (5.4.3), to get
1T 2 + 1a2

" �TT + _T 2T 2
# = 2(r + �)e2�

� 1r + � + �0� (5.4.5)
Observe that in (5.4.5) the left hand side is a function of the coordinate t and the righthand side is a function of the coordinate r. This implies that

1T 2 + 1a2
" �TT + _T 2T 2

# = 2k (5.4.6a)
(r + �)e2�

� 1r + � + �0� = k (5.4.6b)
where k is an arbitrary constant. We can write (5.4.6a) in the form

(T 2)�� � 4a2kT 2 + 2a2 = 0 (5.4.7)
which is linear in T 2. Three classes of solutions are possible depending on the roots of

58



the characteristic equation, and we obtain

T 2 =
8>>>>>>>>>>><>>>>>>>>>>>:

�a2t2 + ct+ d; k = 0
c sin(2ant) + d cos(2ant)� 12n2 ; k = �n2 < 0
ce2ant + de�2ant + 12n2 ; k = n2 > 0

(5.4.8)

Therefore the general solution of (5.4.6a) is known. If we let e2� = y then (5.4.6b) istransformed to
y0 + � 2r + �

� y � � kr + �
� y2 = 0

This is a Riccati equation which is integrable. The general solution of (5.4.6b) canthen be written as
e2� = 1k + b(r + �)2 (5.4.9)

where b is a constant.
The solutions to (5.4.6) may be given for the three cases k = 0; k < 0 and k > 0.For these cases, the metric (5.4.1) may be written as

k = 0:
ds2 = �a2(r + �)2dt2 + � 1b(r + �)2� dr2 + (r + �)2

�(�a2t2 + ct+ d)(d�2 + sin2 �d�2) (5.4.10)
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k = �n2 < 0:
ds2 = �a2(r + �)2dt2 + � 1�n2 + b(r + �)2� dr2 + (r + �)2

��c sin(2ant) + d cos(2ant)� 12n2� (d�2 + sin2 �d�2) (5.4.11)
k = n2 > 0:

ds2 = �a2(r + �)2dt2 + � 1n2 + b(r + �)2� dr2 + (r + �)2
��ce2ant + de�2ant + 12n2� (d�2 + sin2 �d�2) (5.4.12)

where c and d are constants of integration. By (5.4.2), using (5.4.3), (5.4.8) and (5.4.9),the energy density and pressure may be written as
� = �3b+ k(r + �)2 � 1a2(r + �)2 �TT (5.4.13a)
p = 3b+ k(r + �)2 � 1a2(r + �)2 �TT (5.4.13b)

respectively. Combining (5.4.13b) and (5.4.13b), we obtain the following equation ofstate
p = �+ 6b (5.4.14)

which is of the barotropic form p = p(�). This equation of state is the same as obtainedby Maharaj et al (1993) although in the results above it was obtained from a di�erent
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nonsingular metric solution. This is a linear equation of state which generalises thesti� equation of state (p = �).
When � = 0, our results (5.4.10)-(5.4.12) reduce to the result of Maharaj et al(1993). Observe that at the point corresponding to r = 0, the Maharaj et al (1993)result is singular and cannot be used to model the stellar centre. This is an undesir-able feature in a relativistic stellar model. In our models (5.4.10)-(5.4.12), the pointcorresponding to r = 0 does not produce a singularity in the line element (5.4.1) since

� 6= 0 in general. Hence, the class of new solutions (5.4.10)-(5.4.12) are physicallyreasonable and may be used to model stellar centres. They also have the advantageof being given in terms of elementary functions which facilitates the investigation ofthe gravitational behaviour. We emphasize that the class of solutions presented in thissection are expanding, accelerating and shearing. It is interesting to observe that thesolutions (5.4.10)-(5.4.12) admit a conformal Killing vector of the form
X = @@r

which is orthogonal to the spacelike hypersurfaces. This was �rst observed by Maharajand Maharaj (1994). The in
uence of the electromagnetic �eld on the metric (5.4.1)was considered by Moodley et al (2003).
5.5 Correction: Marklund and Bradley solution
The second class of expanding, accelerating and shearing solutions that has been re-ported is due to Marklund and Bradley (1999). The line element in this class has theform
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ds2 = � r24t2(ct2 � t+ a)2dt2 + 1a� br2dr2 + tr2 (d�2 + sin2 �d�2) (5.5.1)
We deduce from this line element that the metric functions must be

e2� = r24t2(ct2 � t+ a)2
e2� = 1a� br2
Y 2 = tr2

If we substitute these functional forms in (5.3.2d) then we obtain
1r2t1=2 = 0 (5.5.2)

which is an inconsistency. Hence the Marklund and Bradley (1999) result is not asolution of the Einstein �eld equations. This is contrary to the claims in the literature.
We can demonstrate in principle why the Marklund and Bradley (1999) result doesnot work. Note that the Marklund and Bradley (1999) \solution" is of the form

ds2 = �e2�1(t)e2�2(r)dt2 + e2�(r)dr2 + Y12(t)Y22(r)(d�2 + sin2 �d�2) (5.5.3)
With the form (5.5.3) we �nd that (5.3.2d) becomes
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_Y1(Y20 � Y2�20) = 0
So that when _Y1 6= 0 we must have

Y20Y2 = �20

Hence we have the relationship
e�2 / Y2 (5.5.4)

Consequently, we have established that for metrics of the form (5.5.3), as chosen byMarklund and Bradley (1999), the condition (5.5.4) must hold. This means that theradial dependence of e�(t;r) and Y (t; r) must be the same. This is clearly not the case inthe Marklund and Bradley (1999) model. Our argument given here indicates why thesolution of Marklund and Bradley (1999) fails. Note that the condition (5.5.4) neces-sarily follows because the metric coe�cients �(t; r) and Y (t; r) are separable functions.

63



Chapter 6

Conclusion
The main objective of this dissertation was to study the spherically symmetric space-times, and associated relativistic models used to describe stars and cosmological pro-cesses. It was our aim to �nd new exact solutions to the Einstein �eld equations forrelativistic stars which are static and nonstatic models with vanishing shear in thepresence of heat 
ux. Nonstatic models with nonvanishing shear in the absence ofheat 
ux were also considered. Solutions to the highly nonlinear system of coupleddi�erential �eld equations were sought by solving the condition of pressure isotropy.Our assumptions e�ectively reduced the pressure isotropy condition to a simple secondorder di�erential equation with variable coe�cients. We solved this master equationby choosing particular forms for the gravitational potentials, and obtained several newclasses of exact solutions in terms of elementary functions. A new solution which isappropriate in describing the centre of a star was also presented for the shearing model.This solution contains the result obtained by Maharaj et al (1993) as a special case.We also made a number of general remarks on the shearing solution found by Marklundand Bradley (1999) and showed that it is inconsistent.

We now provide an overview of the main results obtained during the course of ourinvestigations:
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� In Chapter 2, we introduced the relevant de�nitions and formalisms of di�erentialgeometry that were necessary for later chapters. We generated the Einstein �eldequations for a neutral 
uid matter distribution, and also the Einstein-Maxwellsystem of equations for charged matter.
� In Chapter 3, we constructed the basic model for static spherically symmetricspacetimes containing neutral as well as charged perfect 
uids. For the case ofthe charged perfect 
uid model we showed that the Einstein-Maxwell system canbe rewritten as a simpler system by using the transformation of Durgapal andBannerji (1983). A number of exact solutions are known to the �eld equationswhich could model the interior of a dense static star. The two general classes ofexact solutions for charged relativistic stars, obtained by Thirukkanesh and Ma-haraj (2008), were presented. We demonstrated that this general class containswell known solutions for neutral and charged static stars. The explicit solutions,found previously, that model charged compact spheres and neutral neutron starswere explicitly regained.
� Chapter 4 formed a major part of this study. We constructed the model for ashear-free spacetime with nonvanishing radial heat 
ow. It is well known thatsuch a model is e�ective in describing radiative processes in both astrophysicsand cosmology. We produced a second order di�erential equation with variablecoe�cients representing the condition of pressure isotropy. It was our main pur-pose to solve this master equation to generate new exact solutions. The pressureisotropy equation contains two dependant variables, namely the gravitational po-tentials A and B, and can be written as

� 1B�Axx + 2Ax� 1B�x � A� 1B�xx = 0
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The known solutions for this equation, corresponding to conformal 
atness, werepresented. We generated several new classes of exact solutions corresponding tothe following choices
{ (a) 1B = (a+ bx)k
{ (b) A = (a+ bx)k
{ (c) 1B = ea+bx
{ (d) A = ea+bx
{ (e) 1B = A�
{ (f) 1B = A� + �

for the potentials. In each case we were able to solve the condition of pressureisotropy and present exact solutions in terms of elementary functions. Thesesolutions are new and have not been published previously. It is remarkable thatour simple ansatz allows for such a wide variety of simple models. It is importantto note that the conformally 
at solution
AB = 1 + C1(t)r2
B = 1C2(t)r2 + C3(t)
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is contained in our general class of solutions in the relevant limit.
� In Chapter 5, we considered the model for a spacetime with nonzero shear, ac-celeration and expansion. We presented three new classes of solutions to the�eld equations which are generalizations of those found by Maharaj et al (1993).These new solutions have the barotropic equation of state

p = �+ 6b
which is a generalization of the sti� equation of state p = �. Note that this newclass of shearing models is appropriate for describing the centre of relativisticstars as the metric functions remain regular unlike the models of Maharaj etal (1993). Also, we showed that the Marklund and Bradley (1999) model isinconsistent and does not satisfy the Einstein �eld equations.

In the above we have highlighted only those items of particular interest to sphericallysymmetric gravitational �elds. The primary aim of this dissertation was to study theappropriate models for relativistic stars and cosmological processes, as well as to �ndnew exact solutions if possible. We have produced a number of new solutions in terms ofsimple elementary functions which generalise earlier treatments. We have not carriedout any qualitative analysis of the behaviour of our new solutions or used them topredict the overall evolution of the systems which we have studied. This is outsidethe scope of this dissertation. In future work we aim to �nd other physically relevantsolutions and use them, in conjunction with other physical theories, to predict thebehaviour of the gravitating systems.
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