
NUMERICAL SIMULATIONS OF FUNDAMENTAL

LIGHT-MATTER INTERACTIONS

Henry S. Qwabe

A dissertation submitted in fulfilment of the academic requirements for the degree of

Masters of Science in the School of Chemistry and Physics, University of

KwaZulu-Natal, Durban.

Supervisor:

Prof. Francesco Petruccione

Co-Supervisor:

Dr. Ilya Sinayskiy

December 2017



Contents

Abstract i

Preface ii

Declaration - Plagiarism iii

Acknowledgement iv

1 Introduction 1

2 Quantum mechanical description of an atom and quantization of the

electromagnetic field 4

2.1 Quantum description of the atom . . . . . . . . . . . . . . . . . . . . . 4

2.2 Solutions to the classical Maxwell’s equations for the electromagnetic

field waves in a box at the pre-condition for the quantization . . . . . . 6

2.2.1 Quantization procedure . . . . . . . . . . . . . . . . . . . . . . . 13

3 Adoptation of the generic Hamiltonians for the needs of numerical

simulations 16

3.1 Two-level atom approximation . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 The Hamiltonian of the system . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 The Hamiltonian of a two-level system . . . . . . . . . . . . . . 18

3.2.2 The interaction Hamiltonian between light and matter in quan-

tum optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Details of the model and the calculations . . . . . . . . . . . . . . . . . 21

3.4 Numerical methods in 1-D and 2-D . . . . . . . . . . . . . . . . . . . . 26

3.5 Simulation Scheme in 1-D and 2-D . . . . . . . . . . . . . . . . . . . . 27

ii



4 Results and Discussion 29

4.1 A free photon simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Numerical simulations of mirror and beam splitter in 1-D and 2-D . . . 31

4.2.1 Mirror simulations in 1-D . . . . . . . . . . . . . . . . . . . . . 31

4.2.2 A beam splitter simulations in 1-D . . . . . . . . . . . . . . . . 33

4.2.3 Mirror simulations in 2-D . . . . . . . . . . . . . . . . . . . . . 34

4.2.4 A beam splitter simulations in 2-D . . . . . . . . . . . . . . . . 37

5 Conclusions 40

iii



iv



Abstract

We present the results of the numerical investigations of light-matter interactions in

one and two dimensions from the quantum mechanical perspective. We investigate the

dynamics of two-level systems coupled to quantized electromagnetic fields. We con-

struct a quantum mechanical model to demonstrate how light interacts with classical

objects such as mirrors and beam-splitters made from group of atoms, where each atom

is modelled as a two-level system. We have been able to simulate behaviour of a single-

photon being reflected and transmitted as a process of absorption and re-emission by

the atoms.
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Chapter 1

Introduction

Quantum electrodynamics (QED) is an important building block of quantum field

theory. QED is also better known as the quantum theory of light and has been seen

as the most precise, if not, the most accurate and scientifically proven theory in the

field of science at large [1, 2]. In essence, it explains how light and matter interact.

Light has always been a subject of interest to humankind, it occupies a central role

in the attempts to comprehend the nature in both quantum and classical mechanics.

Most of the efforts have focused on the study of the generation of light and its applica-

tions in optical fibres and telecommunications. Light-matter interaction is one of the

fundamental issues that remain of interest in the field of research and technological

advancements. It is believed that, the interaction of light and matter forms a basis

towards the understanding of almost every quantum platform that governs them. In

general, the quantum theory of light, describes a system of direct interaction of pho-

tons and atoms, like cavity QED [3]. The study of matter at the atomic scale has been

seen as one of the ambitious goals for the scientists in the past, present and future.

Significant efforts have set the sight on implementing the strong coupling between

photons and atoms [4–6]. Recent advances have shown some diverse methods on how

one can manipulate single atoms with single photons [7, 8].

One of the famous approaches to light-matter interaction is the Jaynes-Cummings

model which was proposed in 1963 by the two american physicists by the names of

Edwin Jaynes and Fred Cummings [9]. This theoretical model was introduced to

investigate the relation between quantum theory and the semi-classical theory of ra-

diation, with the motivation to describe the process of spontaneous emission. Within
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the process, they studied the interaction between an electromagnetic field mode and

a quantum mechanical two-level system. Even though this model is undoubtedly

an approximation, it plays an important role in understanding the fundamentals of

light-matter interaction. This approach offers a quantum mechanical description of

light-matter interaction that was in good agreement with experiments [10]. In addi-

tion, this model has induced a huge progress in the field of quantum optics and has

become a fundamental principle in the field of quantum physics ever since. Over the

past years, this model has been the core to further developments, which led to multiple

applications and improvements like masers, lasers, optical trapping and cooling tech-

niques, and more generally measuring and manipulating individual quantum systems

(cavity QED)[10–12].

The main task of this work concerns the interactions between the atoms and the field at

a fundamental level. This thesis presents the work based on an approach implemented

in [13] which utilises the Jaynes-Cumming model. The basic idea of this numerical

work is to regard the whole system to be in a quantum mechanical state. The au-

thors of this paper outline how the results of several quantum mechanical simulations

were conducted in the interaction picture. The aim of this thesis is to reproduce and

improve the approach of this work. We study the dynamics of light interacting with

matter with the help of numerical simulations. For this quantum mechanical model,

light is described in terms of a single-photon wave packet created from a number of

modes of electromagnetic radiation, whereas for the matter part, we are aiming to

model optical elements such as mirrors and beam-splitters. These are modelled by an

ensemble of two-level atoms [14, 15]. Usually, mirrors and beam-splitters are taken

as classical objects that interact with the light. Classically, light being reflected by a

mirror does not present any mystery. However, in this work, such light and mirror are

ultimately described by photons and atoms. It is known that the process of reflection

of light is quantum mechanical in nature. The interaction of light and matter is ap-

proximated by the Jaynes-Cummings model (building block of QED).

It is far from obvious how such a model ever explain the phenomenon of light re-

flection by a mirror. However, with the use of a two-dimensional cavity the authors

of [13] were able to interpret the quantum behaviour of these optical components in

the simulations. The state vector of the systems is taken to accept only a single ex-
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citation. The field-atoms interaction is of the Jaynes-Cummings form, which ensures

that the state vector keeps its single excitation. The authors of this paper then go on

further and illustrate how to build quantum mirrors and beam-splitters using two-level

atoms. The numerical analysis relies upon the use of the fast Fourier transform (FFT)

to integrate the time evolution of the system.

The aim of this thesis is to implement numerical simulations of light-matter interac-

tions on the fundamental level and extend the approach for future modelling of more

complex experimental set-ups. The thesis is seen as the first step in the development of

the numerical tools for the direct simulations of the light-matter interaction systems.

Although it has been done already in [13], we are aiming in this thesis to familiarise

ourselves with the technique and be able to reproduce what others have done. How-

ever, we want to try a slightly different approach. For our work we will conduct all the

numerical simulations in the Schrödinger picture, and not in the interaction picture as

previously demonstrated in [13]. In general, we consider a classical approach of how

light and matter interact, then we transform that idea to work out a quantum mechan-

ical description. In essence, we model a system of only one-photon interacting with a

group of quantized atoms arranged into an atomic slab inside a two-dimensional cavity.

This thesis is structured in the following manner: In chapter 2, we give a brief quantum

description of the atomic absorption and emission. We thereafter review the quanti-

zation of the electromagnetic field.

Chapter 3 is one of the key chapters. Here we further extend our discussion from

the previous section in order to describe the model to work out the general Hamil-

tonians for the needs of the numerical simulations. Within the chapter, we look into

the two-level approximation system. We illustrate how the calculations were derived.

Lastly, we explain the numerical method that was adopted to conduct the simulations

in 1-D and 2-D, respectively.

In chapter 4, we present the results of several simulations. We provide how a group of

atoms can be used to build quantum mirrors and beam splitters for a system in 1-D

and 2-D. Finally in chapter 5, we present the conclusion and a further discussion on

possible extensions together with the applications of this work.
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Chapter 2

Quantum mechanical description of

an atom and quantization of the

electromagnetic field

In this section, a description of an atom is explained by the classical electromagnetic

radiation theory, or more precisely, by the quantum theory of light. In the next part

of the present chapter, we study the quantization of the field. In essence, we describe

the procedure by which quantum mechanics is applied to the electromagnetic field.

2.1 Quantum description of the atom

The focus of this thesis is the interaction of light with matter and thus, it is necessary

for our work that we look into the details of this phenomena. For the basic understand-

ing of matter, we are going to describe a simple two-level system that interacts with

light. We consider a purely quantum-mechanical treatment to describe light-matter

interactions in the presence of a two-level atomic system. In this work, atoms are

modelled as two-level systems and they interact with light which is considered as a

quantized electromagnetic field in a two-dimensional space. We assume that the energy

level of the atoms and their positions are known. From the quantum-mechanical point

of view, the position of the atoms are fixed by the interactions and by the Coulomb

forces such that the atoms forms a crystal grid.

In the classical regime, it is well understood that the light which goes through any

material is the same to that which comes out of it, governed by the laws of reflection
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and refraction. However, the question that arises in the world of quantum physics is

the following one. Can we say that the coherence properties of light remain the same

after the reflection in the mirror or propagation through beam splitter? The process

of reflection and transmission of the light by a material is the quantum-mechanical

process of the re-absorption and re-emission. In essence, does the light that is be-

ing absorbed by the material as a form of light interacting with the quantum matter

remain the same after reflection? Our intention is to show that, because all the exper-

imental observations proves that the light has to be the same then one can take this

kind of classical optics laws and transform it to quantum mechanics. The ability of

the computational techniques allows us to implement these theoretical demonstrations.

Therefore, it turns out that an atom has the ability to absorb and to emit the light.

By the understanding of the quantum hypothesis that energy exists in little packets of

certain sizes then one can better understand the process by which atoms absorb and

emit the light [1]. In 1913 Niels Bohr proposed a theory that explains how a quantum

light of frequency ω is either absorbed or emitted when an atomic transition occurs

between the two quantized energy levels that fulfil the following relation:

E2 − E1 = ~ω, (2.1)

where E1 and E2 represents the lower and upper energy levels. It became traditional

in many theoretical treatments to present an atom in any quantum system with two-

eigenstates respectively [16]. Since then, this theory was further developed by Einstein

who introduced what is known as Einstein coefficients to indicate how the quantum

light undergoes the process of absorption and re-emission by atoms. It is well under-

stood that every atom is made up of a nucleus together with one or more electrons

which are bound to the nucleus itself. In Fig. 2.1 we show the process of absorption

and re-emission which happens as a result of light-atoms interaction in the field of

quantum physics. Within Fig. 2.1, there are two diagrams. Part (a) illustrates the

absorption and part (b) the re-emission of the photon by atoms. In both diagrams we

have two energy levels with an atom and photon (~ω) shown by a wave arrow which

gives us an idea that a photon is light and that light has a wave nature. Let us consider

first the absorption process in Fig. 2.1(a). Let us assume that, the atom is initially

lying in the lower energy level E1 and the photon comes in. The atom will absorb the

photon. The atom will gain the energy of the photon, then it will eventually jump to
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(a) (b)

Figure 2.1: Optical transitions between the quantized energy levels: (a) absorption,
and (b) re-emission processes.

the higher energy level E2, also known as the excited state. Similarly, the re-emission

process is shown in Fig. 2.1(b). Here, the atom is in the upper energy level, but the

moment the atom emits the photon the atom now drops back down to the lower energy

level E1, also known as the ground state. So basically, in the event of photon emission

the atom loses some of the energy.

2.2 Solutions to the classical Maxwell’s equations

for the electromagnetic field waves in a box at

the pre-condition for the quantization

The main objective in this section is to review the classical and quantum mechanical

properties of the electromagnetic field. We begin by quantizing the classical electro-

magnetic field which is described by a set of four equations named after J. C. Maxwell

[17]. These Maxwell equations explain several phenomena related to the electric and

magnetic fields. Let us consider a classical electromagnetic field in an empty space,

assuming that there are no sources like charges and currents present. The field fulfils
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these homogeneous Maxwell equations which in SI units reads as

∇× E(r, t) =− ∂B(r, t)

∂t
, (2.2)

∇×B(r, t) =
1

c2

∂E(r, t)

∂t
, (2.3)

∇ · E(r, t) =0, (2.4)

∇ ·B(r, t) =0, (2.5)

where c is the speed of light in vacuum and E(r, t), B(r, t) denotes the electric and

magnetic field, respectively. In general, it is more convenient to let the free electro-

magnetic field be represented by the transverse vector potential A(r, t) in the Coulomb

gauge such that it fulfils the homogeneous wave equation,

∇2A(r, t)− 1

c2

∂2

∂t2
A(r, t) = 0, (2.6)

where operator ∇2 is the Laplacian and the divergence condition

∇ ·A(r, t) = 0. (2.7)

We can define the electric and magnetic fields E(r, t) and B(r, t) in terms of the vector

potential A(r, t) in the following way

E(r, t) = − ∂

∂t
A(r, t), (2.8)

B(r, t) = ∇×A(r, t). (2.9)

In order for us to determine the Hamiltonian equations of motion, it is better that we

first consider a Fourier decomposition of the vector potential A(r, t) with respect to its

space variables x, y, z. This can be achieved as either in the form of a Fourier integral

or as of a Fourier series. There is no clear advantage between these two forms at this
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stage, however, we will find it straightforward to deal with the quantized field in terms

of a discrete decomposition of A(r, t). Thus, we assume that the electromagnetic field

is contained in a very large cube of side L and set the periodic boundary conditions

on the field. At some point in the calculations, we will allow L to tend to infinity.

As might be expected, any physically meaningful result must not be controlled by

the magnitude of side of the cube L. Let us consider the three-dimensional Fourier

expansion of vector potential A(r, t) in terms of a plane-wave mode to have the form

A(r, t) =
1

ε
1/2
0 L3/2

∑
k

Ak(t) exp(ik · r), (2.10)

where terms ε0 denotes vacuum dielectric constant and Ak(t) is the coefficient of the

Fourier expansion of A(r, t), respectively. The wave vector k has the components

k1 =
2π

L
n1, n1 = 0,±1,±2, ...

k2 =
2π

L
n2, n2 = 0,±1,±2, ...

k3 =
2π

L
n3. n3 = 0,±1,±2, ...

(2.11)

They form a discrete set, and the summation
∑

k represents the sum over the integers

n1, n2, and n3. When we apply the Coulomb gauge in Eq. (2.7) to the plane wave

with the periodic boundary condition in sight of the transversality condition we get

that

i

ε
1/2
0 L3/2

∑
k

k ·Ak(t) exp(ik · r) = 0, (2.12)

for all r, such that

k ·Ak(t) = 0. (2.13)

Furthermore, the physical existence of A(r, t) leads us to the following condition

A−k(t) = A∗k(t). (2.14)
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Since the vector potential A(r, t) fulfils the homogeneous wave equation in Eq. (2.6),

this implies that

1

ε
1/2
0 L3/2

∑
k

(
−k2 − 1

c2

∂2

∂t2

)
Ak(t) exp(ik · r) = 0 (2.15)

for all r, such that Ak(t) fulfils the following equation of of motion(
∂2

∂t2
+ ω2

k

)
Ak(t) = 0. (2.16)

In Eq. (2.16), we introduced the angular frequency ωk = ck. The general solution to

Eq. (2.16), which also happens to obey the condition in Eq. (2.14) is given as

Ak(t) = ck exp(−iωkt) + c∗−k exp(iωkt). (2.17)

It is important for us that we work out the vector ck into two orthogonal components,

which are chosen such that they satisfy the condition given by Eq. (2.13). This can

be achieved by the means of selecting a pair of orthonormal polarisation vectors εk1,

εk2 which obey the following conditions

k · εks =0, (s = 1, 2)

ε∗ks · εks′ =δss′ , (s, s′ = 1, 2)

εk1 × εk2 =k/k ≡ κ,

(2.18)

which indicate then transversality, orthonormality and the right-handedness respec-

tively. We now define the vector ck to be

ck =
2∑

s=1

cksεks. (2.19)

The complex conjugate in line two from Eq. (2.18) is not needed, provided the εks are

real. The two real base vectors εk1, εk2 amount to the two states of orthogonal linear

polarization. The vector ck in Eq. (2.19) corresponds to the resolution of the field

amplitude into two orthogonal linear polarizations. The conditions that were selected

in Eq. (2.18) on the two base vectors does not determine them, but rather leaves them

undefined up to a rotation about the wave vector k.
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While the expansion in Eq. (2.19) is understood to be rational regardless of which

base vectors εks are taken, in general it is more convenient to leave them undefined

in the analysis, pending that we reach a stage when it becomes clear enough that one

particular set of base vectors simplifies the calculation. Thus, the base vectors at that

stage can be chosen in a manner that is suitable. We substitute Eq. (2.19) into Eq.

(2.17) and then make use of the results in Eq. (2.10). This leads us to the expansion

of the form

A(r, t) =
1

ε
1/2
0 L3/2

∑
k

2∑
s=1

[cksεks exp(−iωkst) + c∗−ksε
∗
−ks exp(iωkst)] exp(ik · r)

=
1

ε
1/2
0 L3/2

∑
k

2∑
s=1

[cksεks exp[i(k · r− ωkst)] + c∗ksε
∗
ks exp−i[(k · r− ωkst)]]

=
1

ε
1/2
0 L3/2

∑
k

2∑
s=1

[uks(t)εks exp(ik · r) + u∗ks(t)ε
∗
ks exp(−ik · r)],

(2.20)

where we have let

uks(t) = cks exp(−iωkst). (2.21)

Therefore, Eq. (2.20) is regarded as the expansion of the vector potential A(r, t)

in terms of the fundamental vector mode functions εks exp(ik · r), with the complex

amplitudes given in Eq. (2.21) respectively. We label each mode by a wave vector k

together with the polarization index s. Essentially, the corresponding mode function

clearly fulfils the Helmholtz equation such that

(∇2 + k2)εks exp(ik · r) = 0, (2.22)

whereas the corresponding mode amplitude uks(t) also fulfils the same harmonic os-

cillator equation of motion in Eq. (2.16) as Ak(t). One can utilize the relation in Eq.

(2.20) to obtain the mode expansions for the electric and magnetic fields E(r, t) and

B(r, t) given the expressions in Eq. (2.8), Eq. (2.9). Hence

E(r, t) =
i

ε
1/2
0 L3/2

∑
k

2∑
s=1

ωks[uks(t)εks exp(ik · r)− c.c], (2.23)
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and

B(r, t) =
i

ε
1/2
0 L3/2

∑
k

2∑
s=1

[uks(t)(k× εks) exp(ik · r)− c.c]. (2.24)

Let us consider Eq. (2.23) and Eq. (2.24) in order to work out the energy H of the

field, which we call the Hamiltonian function and has the form

H =
1

2

∫
L3

[ε0E
2(r, t) +

1

µ0

B2(r, t)]d3r. (2.25)

The energy of the field is given by the integral over the volume of the box L3. If we

substitute E(r, t) and B(r, t) back into Eq. (2.25) and then carry out the integration

over the space contained with the support from the following relations∫
L3

exp[i(k− k′) · r]d3r =L3δ3
kk′ ,

(k× ε∗−ks) · (k× εks′) =k2ε∗ks · εks′ = k2δss′ ,

(2.26)

we get the following classical Hamiltonian expression

H = 2
∑
k

2∑
s=1

ω2
ks| uks(t)|2, (2.27)

which illustrates the energy as a sum over the modes. Since our intention is to quantize

the field, it is necessary that we re-write H in the Hamiltonian form. This can be done

by introducing a set of real canonical variables qks and pks as

qks =[uks(t) + u∗ks(t)], (2.28)

pks =− iωks[uks(t)− u∗ks(t)]. (2.29)

Taking into consideration the time dependence of uks(t) given in Eq. (2.21), the two

variables qks(t) and pks(t) oscillate sinusoidally in time (t) at the frequency ω, and
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usually we get the following relations

∂

∂t
qks(t) =pks(t), (2.30)

∂

∂t
pks(t) =− ω2

ksqks(t). (2.31)

We can re-write the expression in Eq. (2.27) for the classical Hamiltonian in terms of

the qks(t) and pks(t) as follows

H =
1

2

∑
k

2∑
s=1

[p2
ks(t) + ω2

ksq
2
ks(t)]. (2.32)

This expression is seen as the energy of a system of independent harmonic oscillators.

Each harmonic oscillator corresponds to a single mode of the electromagnetic field

described by the wave vector k and state of polarisation s. The set of all canonical

variables qks(t), pks(t) describes the state of the classical radiation field. The set is

understood to be infinite, however due to the fact that we are dealing with the finite

volume together with the discrete set of modes, it is countably infinite. Let us consider

the canonical equations of motion in terms of the canonical variables to be

∂H
∂pks

=
∂qks
∂t

, (2.33)

and

∂H
∂qks

= −∂pks
∂t

. (2.34)

These expressions are similar to those in Eqs. (2.30) and (2.31) respectively. The

expansions in Eqs. (2.20), (2.23) and (2.24) for the field vectors A(r, t), E(r, t), B(r, t)
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can be expressed in terms of the canonical variables as

A(r, t) =
1

ε
1/2
0 L3/2

∑
k

2∑
s=1

{[qks(t) +
i

ωks

pks(t)]εks exp(ik · r) + c.c}, (2.35)

E(r, t) =
i

ε
1/2
0 L3/2

∑
k

2∑
s=1

{[ωksqks(t) + ipks(t)]εks exp(ik · r)− c.c}, (2.36)

B(r, t) =
i

ε
1/2
0 L3/2

∑
k

2∑
s=1

{[qks(t) +
i

ωks

pks(t)]k× εks exp(ik · r)− c.c}. (2.37)

2.2.1 Quantization procedure

In order for us to quantize the field, it is necessary that we associate the Hilbert space

operators with the dynamical variables, which in principle do not commute. In the

Hilbert space, the classical variables qks(t) and pks(t) are denoted by q̂ks(t) and p̂ks(t)

respectively. As it is stated in the postulate of quantum mechanics, each pair of these

canonical conjugate operators q̂ks(t) and p̂ks(t) satisfies a non-zero commutator i~.

While the classical variables associated with the two different modes are understood

to be uncoupled, the corresponding Hilbert space operators commute. The set of

commutation relations reads as

[q̂ks(t), p̂k′s′(t)] =i~δ3
kk′δss′ , (2.38)

[q̂ks(t), q̂k′s′(t)] =0, (2.39)

[p̂ks(t), p̂k′s′(t)] =0. (2.40)

The dynamical variables are to be considered as Hilbert space operators which happen

not to commute. Furthermore, all the above expressions of the expansions such as Eqs.

(2.20), (2.23), (2.24) together with the equations of motions in Eqs. (2.16), (2.30),

(2.31) remain valid operator equations. Hence, the Hamiltonian of the quantized

radiation field becomes

Ĥ =
1

2

∑
k

2∑
s=1

[p̂2
ks(t) + ω2

ksq̂
2
ks(t)]. (2.41)
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It is well understood that these operators q̂ks(t) and p̂ks(t) together with the field

vectors Â(r, t), Ê(r, t), B̂(r, t), etc., are dynamical variables, whereas the space-time

variables r, t only participate in the role of being parameters. For many reasons it

is advisable not to deal with the real dynamical variables or the Hermitian operators

but to chose to work with a set of non-Hermitian operators of the form

âks(t) =
1√

2~ωks

[ωksq̂ks(t) + ip̂ks(t)], (2.42)

â†ks(t) =
1√

2~ωks

[ωksq̂ks(t)− ip̂ks(t)]. (2.43)

The expression in Eq. (2.43) is the Hermitian conjugate of Eq. (2.42). We can also

invert these equations such that all the operators q̂ks(t) and p̂ks(t) can be expressed

in terms of âks(t) and â†ks(t) operators:

q̂ks(t) =

√
~

2ωks

[âks(t) + â†ks(t)], (2.44)

p̂ks(t) =i

√
~ωks

2
[âks(t)− â†ks(t)]. (2.45)

With the help of Eqs. (2.38) to (2.40), we can easily determine the corresponding

commutation relations for the âks(t) and â†ks(t) to be

[âks(t), â
†
k′s′(t)] =δ3

kk′δss′ , (2.46)

[âks(t), âk′s′(t)] =0, (2.47)

[â†ks(t), â
†
k′s′(t)] =0. (2.48)

Let us consider the rescaled operators of the momentum and position such that the

operators âks(t) and â†ks(t) correspond to the complex amplitudes uks(t) and u∗ks(t).

They have the same time dependence as in Eq. (2.21),

âks(t) =âks(0) exp(−iωkst), (2.49)

â†ks(t) =âks(0) exp(iωkst). (2.50)
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The product of these operators âks(t)â
†
ks(t) and â†ks(t)âks(t) are thus time dependent.

However, if we substitute q̂ks(t) and p̂ks(t) given in Eqs. (2.44) and (2.45) into the

Hamiltonian form Eq. (2.41) we get

Ĥ =
1

2

∑
k

2∑
s=1

~ωks[âks(t)â
†
ks(t) + â†ks(t)âks(t)]. (2.51)

If we use the commutation relation in Eq. (2.46), we can find an alternative way to

express Ĥ in the normally ordered form to be

Ĥ =
∑
k

2∑
s=1

~ωks[â
†
ks(t)âks(t) +

1

2
], (2.52)

where â†ks(t) and âks(t) represent the creation and annihilation operators, respectively.

The term 1
2
~ωks contributes to the energy of each k, whereas s the oscillator mode is

the zero point contribution. If we chose to omit the zero point energy contribution we

can always chose the vacuum energy to be zero, since it does not affect the particular

dynamics and the global phase in Eq. (2.52), then the corresponding Hamiltonian

becomes

Ĥ(t) =
∑
k

2∑
s=1

~ωksâ
†
ks(t)âks(t). (2.53)

Furthermore, we can re-write the expansions for the field operators in Eqs. (2.35)-

(2.37) as follows

Â(r, t) =
1

L3/2

∑
k,s

( ~
2ε0ωks

)1/2

[âks(0)εks exp[i(k · r− ωkst)] + h.c], (2.54)

Ê(r, t) =
1

L3/2

∑
k,s

(~ωks

2ε0

)1/2

[iâks(0)εks exp[i(k · r− ωkst)] + h.c], (2.55)

B̂(r, t) =
1

L3/2

∑
k,s

( ~
2ε0ωks

)1/2

[iâks(0)(k× εks) exp[i(k · r− ωkst)] + h.c], (2.56)

where h.c represents the Hermitian conjugate.
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Chapter 3

Adoptation of the generic

Hamiltonians for the needs of

numerical simulations

In this chapter, we present a brief discussion on the model that was adopted to conduct

the numerical simulations. In addition to that, we further present the Hamiltonian of

the whole system. Afterward, we will look into the details of how the whole numerical

simulations of quantum electrodynamics were generated since that is understood to

be the core of this thesis.

3.1 Two-level atom approximation

The quantum treatment of light interacting with atoms was vital in the progressive

development of quantum theory in the mid-twentieth century. However, real atoms are

quite complex systems. Even the hydrogen atom which is seen as the simplest atom has

a non-trivial energy level structure. As a result, it is necessary for one to approximate

the behaviour of a atom by making use of a much simpler quantum system. The

two level atom approximation was developed to interpret the interaction between light

and atoms. For such reasons, it is understood that only two sets of atomic energy

levels E1 and E2 are applicable in the interaction with the quantized electromagnetic

field. In principle, an atom is believed to have many quantum levels of different energy

and within these levels there are many possibilities of optical transitions. However,

in the two-level approximation only the specific transition that satisfies Eq. (2.1) is
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Figure 3.1: The two-level atom approximation.

considered and the rest of the levels are neglected. Therefore, it is necessary to label

the lower and upper levels as 1 and 2 respectively as shown in Fig. 3.1.

The physical basis for the two-level approximation is designed to accommodate the

process of resonance. Nonetheless in the classical picture of light interacting with an

atom, it is indicated that the light beam stimulates the dipole oscillations in the atom,

and consequently the light re-radiates at the same frequency. If the frequency of the

light is in line to the natural frequency of the resonant atom, then the magnitude

of the dipole oscillations will be large and the light-atom interaction will be strong.

Similarly, if the frequency of light is a distant apart from the natural frequency of

the atom (off-resonance), then the magnitude of controlled oscillations will be small,

so as the interaction between the light and the atom. In other words, the light-atom

interaction is said to be quite strong in the resonant case as compared to the off-

resonant transitions. In the next section we present the Hamiltonian of the system.
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3.2 The Hamiltonian of the system

In the previous section expressions for the full Hamiltonian of the free electromagnetic

field were derived. In this section the total Hamiltonian of the system describing the

interaction between the two-level atoms and quantized field is presented as the sum of

the field, atomic and interaction Hamiltonian of the form

Ĥ = ĤF + ĤA + ĤI , (3.1)

where ĤF is the field Hamiltonian given by the expression in Eq. (2.53) whereas the

atomic and the interaction Hamiltonian, ĤA and ĤI respectively, shall be derived in

the sections that follow.

3.2.1 The Hamiltonian of a two-level system

In addition to the field, in this section the Hamiltonian of the two-level system is

presented. The assumption is that, the two level system has an energy, which consists

of a ground state, denoted by |g〉 with energy Eg and an excited state denoted by |e〉,
with energy Ee = ~ω0 +Eg. The two-dimensional states are represented as vectors in

C2. The Hamiltonian operator of the two level atoms in the energy representation is

given as [18]

ĤA = Ee |e〉 〈e|+ Eg |g〉 〈g| . (3.2)

This Hamiltonian can be transformed to a more convenient form, if one chooses to

define the level of the energy to be zero halfway between the state |e〉 and |g〉 as shown

in Fig. 3.2. If we introduce the Pauli spin operator to be σ̂z = |e〉 〈e|− |g〉 〈g| and take

into account the identity representation 1 = |e〉 〈e|+ |g〉 〈g| in C2, it is straightforward

to see that, the free atomic Hamiltonian in Eq. (3.2) may be written as

ĤA =Ee

(
1
2

+
σz
2

)
+ Eg

(
1
2
− σz

2

)
, (3.3)

=(Ee − Eg)
σz
2

+ (Ee + Eg)
1
2
, (3.4)

=
~ω0

2
σz +

(
Ee + Eg

2

)
1. (3.5)
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Figure 3.2: An atom energy level diagram, with E=0 level at the middle between the
states |g〉 and |e〉, respectively.

where (Ee − Eg) = ~ω0, respectively. We drop the term which is proportional to the

identity since it does not contribute to the dynamics and only contribute to the global

phase. Then, the Hamiltonian that describes a set of NA, non-interacting two-level

atoms becomes

ĤA =
1

2

NA∑
j=1

~ωjσ̂
j
z. (3.6)

where ωj denotes the transition frequency of the jth atom.

3.2.2 The interaction Hamiltonian between light and matter

in quantum optics

In the previous sections, the quantum-mechanical description of the energy contribu-

tions of the field and the two-level system were derived. In this section, we introduce
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the energy contribution that arises from the interaction of the quantized electromag-

netic field and the two-level system. Assuming that the wavelength of the field is much

larger than the dimension of the atom, then the atom-field interaction will emerge by

treating the atom as an electric dipole. In quantum optics, the dipole approximation is

understood to be correct. In the general case, in the quantum theory the atom-field in-

teraction Hamiltonian can be described by the quantized electric-dipole approximation

of the form [1, 2, 19]

ĤInt = −d̂ · Ê(~R, t), (3.7)

where the vector ~R denotes the position of the atom. In particular, the term d̂ is the

dipole moment and can be expressed by

d̂ = dgeσ̂− + degσ̂+, (3.8)

where σ̂− = |g〉 〈e| and σ̂+ = |e〉 〈g|. However, here we applied the property that the

states |g〉 and |e〉 have opposite parity such that 〈g| r̂ |g〉 = 〈e| r̂ |e〉 = 0, respectively.

The term Ê(~R, t) in Eq. (3.7) represents the electric field given in Eq. (2.55). If we

substitute Eq. (2.55) and Eq. (3.8) into Eq. (3.7) we get the interaction Hamiltonian

of the form

ĤInt =− (dgeσ̂− + degσ̂+) ·
√

~ω
2ε0

[u(R)â+ h.c], (3.9)

=− ~g(σ̂− + σ̂+)(â+ â†), (3.10)

where u(R) is the mode function of the field given by u(R) = 1
L3/2 εks exp(ik ·R), and

we assume that ~g = dge · u(R)
√

~ω/(2ε0). However, we can re-write the interaction

Hamiltonian in Eq. (3.10) as

ĤInt = −~g(σ̂+â+ σ̂−â
† + σ̂−â+ σ̂+â

†), (3.11)

=− ~g(σ̂+â+ σ̂−â
†), (3.12)

For simplicity, we have invoked the rotating wave approximation in Eq. (3.11). The

last two terms were neglected because they violate the conservation of number of
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excitations [20]. Furthermore, in 2-D we have the transversality condition and of

course there are two-polarisations, but we can chose them in such a way that one

polarisation is always outside of the 2-D. If that is the case, we end up with a wave

vector and one polarisation. If we look into a case of 1-D there are no polarisation at

all since there is no k-vector which, implies that there is no directions. Finally, if we

drop the index s from Eq. (2.53), and insert it together with Eq. (3.6) and Eq. (3.12)

into the total Hamiltonian Eq. (3.1) we get the new Hamiltonian in the rotating wave

approximation (RWA) [21]

Ĥ =
∑
k

~ωkâ
†
kâk +

1

2

NA∑
j=1

~ωjσ̂
j
z +

∑
k

NA∑
j=1

~(gâkσ̂
j
+ + g∗â†kσ̂

j
−). (3.13)

Essentially, Eq. (3.13) describes the whole quantum-mechanical system of two-level

atoms interacting with discrete field modes. In the next sections, we give an outline on

how the numerical simulations of quantum electrodynamics were conducted together

with the numerical scheme.

3.3 Details of the model and the calculations

We begin our investigation of light-matter interaction by considering some basic ideas

from the classical regime of radiation. We want to re-produce a simulation of QED in

the quantum optical regime. The idea here is to exactly demonstrate what the authors

of [13] have done which is all classical optics but at the quantum mechanical level.

The quantum mechanical treatment of the interaction between the light and quantum

mirrors is based on how the mirror is simulated. A mirror is a material that is made

up of a collection of atoms and the light it interacts with doesn’t only get reflected

but it is being absorbed and re-emitted by these atoms. Similarly, if we took some

atoms off-resonance we get an interference pattern which allows us to simulate a beam-

splitter. We take into account all these statements from the classical optics point of

view and apply them directly to quantum mechanics. The motivation for our work, is

to demonstrate these QED simulations [13].

We are going to begin the simulations by first working out the energy densities of

the single photon in different two-dimensional atomic arrangements. We are going to
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adopt the model put forward in [13] to indicate how the calculations were conducted

together with the simulations. As in the 3-D case, we can show that the quantization

in 2-D allows us to introduce the energy-density operator that is contained in both

the electric and magnetic fields as:

Ĥ =
1

2
ε0Ê

2 +
1

2µ0

B̂2, (3.14)

and µ0 is the magnetic constant permeability of free space vacuum permeability,

whereas Ê, B̂ denotes the electric and magnetic field. We will then make use of

these results to describe the interaction of the photon with a collection of two-level

atoms inside the two-dimensional cavity. Using the expansions of the electric and

magnetic fields [17], these two terms in Eq. (3.14) become

1

2
ε0Ê

2 =
~

2L2
RR∗, (3.15)

1

2µ0

B̂2 =
~

2L2ε0µ0

(SxS
∗
x + SyS

∗
y), (3.16)

where R and Si are the Fourier transforms of the two different functions;

R =
∑
k

√
ωkck exp(ik · r), (3.17)

Si =
∑
i

ki√
ωk

ck exp(ik · r), i = x, y. (3.18)

We take into account that the polarisation is one. Substituting all these expressions

Eq. (3.15)-(3.18) into Eq. (3.14) yields

Ĥ =
c~

2L2

∑
k,k′

ckc
∗
k′ exp[i(k− k′) · r]

[√
| k| · | k′|+

kxk
′
x + kyk

′
y√

| k| · | k′|

]
. (3.19)

In general, if we know the value of the coefficient ck in Eq. (3.19) we can calculate the

energy density of the field inside an empty two-dimensional cavity. The choice of the

general state vector in all our simulations has the following form

|Ψ〉 =
∑
k

ck |1k, 0〉+

NA∑
j=1

cj |0, 1j〉 , (3.20)
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where NA is the total number of atoms. The basis functions |0〉j and |1〉j are the two-

internal states of the jth atom and the general Gaussian of one-photon state vector is

of the following form

|Ψ〉 =
∑
k

ck |1k, 0〉 , (3.21)

where the mode coefficient ck is given as

ck = (2π∆2
kx)−1/4(2π∆2

ky)
−1/4 exp(−ik · r0) exp

{
− (kx − kx0)2

4∆2
kx

− (ky − ky0)2

4∆2
ky

}
.

(3.22)

The mode coefficient ck in Eq. (3.22) represents the initial distribution used in all our

simulations. In order to proceed, we then need to work out the interaction Hamiltonian

in the RWA and the state vector associated to it. This will allow us to determine the

Schrödinger equation which will be used extensively in the next part of the numerical

methods. Essentially the Schrödinger equation has the form

i~ ˙|Ψ〉 = H|Ψ〉 (3.23)

where H is given by

H = H0 +HI , (3.24)

where the H0 is the free Hamiltonian and HI is the interaction Hamiltonian. In the

paper [13], the authors reverts to the interaction picture with respect to H0, however

here we choose to stay in the Schrödinger picture. The free Hamiltonian H0 reads as;

H0 =
∑
k

~ωka
†
kak +

∑
j

~
ωj

2
σj
z, (3.25)

and the interaction Hamiltonian HI in the RWA approximation has the form

HI =
∑
j

∑
k

gjkσ
j
+ak + g∗jkσ

j
−a
†
k. (3.26)
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The total Hamiltonian H commutes with the number of excitations operator

N̂ =
∑
k

a†kak +
∑
j

σj
z, (3.27)

such that [Ĥ, N̂ ] = 0. This implies that if initially there is only one photon in the field

and no excitation in the atoms then the total number of excitations is one and it is

conserved. The general state vector in Eq. (3.20) becomes

|Ψ〉 =
∑
k

ck(t) |1k〉+
∑
j

cj(t) |1j〉 . (3.28)

The first term represents the excitation in one of the modes of the field, and the second

term represents the excitation in one the atoms. The state vector ˙|Ψ〉 is as follows;

˙|Ψ〉 =
∑
k

ċk(t) |1k〉+
∑
j

ċj(t) |1j〉 . (3.29)

Let us first determine what happens when H0 acts on the state vector in Eq. (3.28).

Mathematically, we get that

H0 |Ψ〉 =
∑
k

∑
k′

(~ωk′a
†
k′ak′)ck |1k〉+

∑
j

∑
j′

(~
ωj′

2
σj′

z )cj |1j〉 . (3.30)

In the first term only the k-components acts on the k-state. The same applies to the

second term. Furthermore, when the k-components acts on |1j〉 we get zero, so as for

the j-components on |1k〉, respectively. In addition, we note that k′ is the number of

photons in the mode, so we can only have 1-photon on the k − th mode and the rest

becomes zero. So when k acts on k′ the result won’t be zero provided k = k′ and the

same thing applies for the j − th atom case. So the end result becomes

H0 |Ψ〉 =
∑
k

~ωkck |1k〉+
∑
j

~ωj

2
cj |1j〉 . (3.31)
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We will now work out the next step, that is HI acting on the state vector in Eq. (3.28)

as follows

HI |Ψ〉 =
[∑

j′

∑
k′

gj′k′σ
j′

+ak′ + g∗j′k′σ
j′

−a
†
k′

](∑
k

ck |1k〉+
∑
j

cj |1j〉
)
, (3.32)

=
∑
k

∑
j′

gj′kck |1j〉+
∑
j

∑
k′

g∗jk′cj |1k′〉 . (3.33)

If we neglect the primes, since it’s just indices we get

HI |Ψ〉 =
∑
k

∑
j′

gj′kck |1j〉+
∑
j

∑
k′

g∗jk′cj |1k′〉 . (3.34)

If we re-write Eq. (3.23) as

˙|Ψ〉 = − i
~
H|Ψ〉, (3.35)

and substitute Eq. (3.31) and Eq. (3.34) into Eq. (3.35) we get

− i
~
H|Ψ〉 =

∑
k

ċk |1k〉+
∑
j

ċj |1j〉 = ˙|Ψ〉. (3.36)

By equating terms with the same basis vectors |1k〉 and |1j〉 in Eq. (3.36) one can

rewrite the Schrödinger equation in Eq. (3.36) as system of linear differential equations

with constant coefficient for the components of the total wave function |Ψ〉 as follows;

ċk =− iωkck −
i

~
∑
j

g∗jkcj,

ċj = −iωj

2
cj −

i

~
∑
j

gjkck,

(3.37)

where the term gjk is the coupling constant given by

gjk = − i~
2ε0L

√
ωkDj exp(ik · rj). (3.38)
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We can approximate the frequency of the field ωk by the frequency of the atoms ωj

since we assume that the interaction is happening in close resonance, then gjk becomes

gjk ≈ −
i~

2ε0L

√
ωjDj exp(ik · rj). (3.39)

We can efficiently solve the system of linear equations in Eq. (3.37) provided we re-

write it in the form of Fourier transform algorithm since we chose to work with the

number of modes to be of the power of two i.e; 256 and 1024 modes which allows us

to implement the fast Fourier transform (FFT). If we substitute the term gjk into Eq.

(3.37), the sets of linear equations can be written in the form of the Fourier transform

algorithm

ċk =− iωkck +
∑
r

(∑
j

√
ωjD

∗
j

2ε0L
cjδ(r− rj)

)
exp(−ik · r),

ċj = −iωj

2
cj −

√
ωjDj

2ε0L

∑
k

ck exp(ik · r).

(3.40)

For our simulations, it is necessary that we work directly with the ċk and ċj in Eq.

(3.40) as functions of the two-dimensional Fourier transforms. In essence, the wave

function ˙|Ψ〉 is a set of these two matrices (ċk) and (ċj). The mirror and beam splitter

are materials constructed from a group of atoms arranged into an elongated atomic

slab inside the cavity. We created some spacing mirrors and beam splitters as a matrix

with one’s off-diagonal right at the centre and zeroes elsewhere. Furthermore, in order

to apply the Runge-Kutta of the 4th order (RK4) as our choice of mathematical tool,

we had to define the function Ĥ(tn) which will take in two arguments that is (ck, cj)

at any moment of time (t) and give out two new matrices. In the next section we

illustrate how we worked out the numerical results. In principle, the expression in

Eq. (3.35) is a differential equation. Since all our numerical simulations were done

in the Schrödinger picture, we will solve numerically this time dependent Schrödinger

problem in order to propagate the Gaussian wave packet coupled to a group of atoms.

3.4 Numerical methods in 1-D and 2-D

In this section, we provide an overview on how the numerical simulations were con-

ducted. We begin by indicating a mathematical tool that was applied to integrate the
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time dependent Schrödinger equation in Eq. (3.35). In addition, for our expression

we are solving numerically the right hand side of this differential equation. In our

simulations, this operation of Ĥ |Ψ(t)〉 is used quite often. We utilize the classical

fourth order Runge-Kutta method to work out this integration of the time dependent

Schrödinger’s equation. Suppose a wavefunction at time tn is given by |Ψ(tn)〉 then at

a later time (tn+1) the wavefunction will be given by the following algorithm [22]

|k1〉 =− i

~
Ĥ
(
tn

)
|Ψ(tn)〉 , (3.41)

|k2〉 =− i

~
Ĥ
(
tn +

h

2

)(
|Ψ(tn)〉+

h

2
|k1〉

)
, (3.42)

|k3〉 =− i

~
Ĥ
(
tn +

h

2

)(
|Ψ(tn)〉+

h

2
|k2〉

)
, (3.43)

|k4〉 =− i

~
Ĥ
(
tn + h

)(
|Ψ(tn)〉+ h |k3〉

)
, (3.44)

|Ψ(tn+1)〉 = |Ψ(tn)〉+ h
( |k1〉

6
+
|k2〉

3
+
|k3〉

3
+
|k4〉

6

)
+O((4t)5), (3.45)

where the index n and n+ 1 are time discretization and h is the step in time size;

they are determined by total time (T ) to run the simulation per number of steps

(n). Essentially, this form of integration works quite well to determine the right hand

side of Eq. (3.35) respectively. In principle the authors of the paper [13] have done

the simulations in the interaction picture, however in this work we have done the

simulations in the Schrödinger picture.

3.5 Simulation Scheme in 1-D and 2-D

Here we present a scheme on how the numerical results were conducted. In our work

all the numerical simulations were done in Mathematica. The initial state of the field

in these simulations is a general Gaussian Eq. (3.22). First we defined k as the two-

dimensional array for all possible values of k in the (x, y) space, by creating a table

function for it. We consider ck in Eq. (3.22) as the coefficient of the photonic wave

function. We calculate the sequence of the ck’s for some time interval to generate the

time evolution of the field. For the free-evolution it is necessary that we work directly

with the ck to determine the energy densities of the field and how they behave. Start-
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ing with the ck, we then apply the Fourier transform to generate the matrices of the

formulas for R and Si in Eq. (3.17) and Eq. (3.18). Afterwards, we put everything

together into Eq. (3.19) and form the matrices for the Hamiltonian for every field.

Finally, we plotted diagrams for the energy densities to propagate the photon wave

packet for the time evolution in free-space, respectively.

The mirror and beam splitter simulations were both done in 1-D and 2-D. Both the

mirrors and the beam splitters were created from a spacing matrix which consists of a

number of atoms inlined to seven layers of atoms where there is a mirror and one layer

of atoms where there is beam splitter. We then calculated a sequence of the ck’s from

Eq. (3.22) in order for us to work the Fourier transform from Eq. (3.17) and Eq. (3.18).

For simulations in 1-D we calculated the matrices for every Hamiltonian of the field

for only the x-components. Afterwards we simulated Eq. (3.40) by utilising the math-

ematical tool Fourier and inverse Fourier transform and Runge-Kutta method. It is

only necessary that we simulate the sets of linear equations in order to demonstrate

how the wave function propagate from time (tn) to (tn+1), respectively. We propagate

the wave function by dividing the time we want to simulate for a number of steps

which gives us discretization in time. Also, in 2-D simulations we applied the same

procedure except that the matrices for the Hamiltonian of the field were determined

in both x and y-components. In the next section, we present the results of numerical

simulations we were able to produce.

28



Chapter 4

Results and Discussion

Now we want to present the numerical results. We simulated the time dependent

Schrödinger equation in Eq. (3.35). In the previous chapter, it is demonstrated how

we performed the calculations in order to conduct the simulations. Afterwards, it was

shown how we generated the time evolution of the energy densities for a finite number

of steps. Furthermore, we have demonstrated how a group of atoms were used to build

mirror and beam splitter for the radiation.

We present the simulations as follows, we begin our simulations by demonstrating the

behaviour of a free photon inside an empty cavity. In the next section 4.2, we add a

group of atoms inside the cavity and perform simulations of a photon interacting with

the atoms of the (mirrors and beam splitters). In these sections, we have carried out

the simulations in both 1-D and 2-D system. In each and every simulation we have

included the time dependence on the numerical calculations of |ψ|2 plots. These plots

of the trace demonstrates the consistency of norm of the total wave-function during

numerical simulation.

4.1 A free photon simulation

In the first simulation, we show the time evolution of a free photon. There are no

atoms inside the cavity, only the field is present. The initial wave packet is given by

the Gaussian in Eq. (3.22). The time evolution of the energy density distribution at

various time steps is shown in Figure (4.1). The photon wave packet propagates to the

right as the number of time steps increases. The energy density becomes delocalized

during the free evolution. Later on the width of the wave packet spread out along
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Figure 4.1: The sequence of time evolutions of the energy density of a free-photon in
Eq. (3.19) with the initial Gaussian wave packet in Eq. (3.22) inside an empty cavity.
The parameters are x0=-8.0, y0=0.0, kx0 = 5.0, ky0 = 0, 42

kx=42
ky=1.0, ωj = 5.0,

Dj = 0.5 and the number of modes (N=256) with the size of the cavity L=10π. In
Fig. 4.1(a), the wave packet is well localized while in Fig. 4.1(d) it has changed its
initial shape, with the wave packet spreading along the y-direction.

the y-direction. This spread of the width occurs because of the standard quantum-

mechanical effect, since the mode-spectrum of the wave packet in the k-space happens

to be relatively broad and close to the origin. In the next sections, we add an ensemble

of atoms and carry the simulations in 1-D and in 2-D.
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Figure 4.2: The energy density distribution of a single-photon before and after reflec-
tion by the mirrors of atoms. The initial wave packet is a Gaussian in Eq. (3.22), and
here the parameters are; x0=-8.0, kx0 = 10.0, 42

kx=0.125, ωj = 10.0, Dj = 4.0 and
the number of modes is (N=1024). The size of the cavity is L=10π. In Fig. 4.2(a),
the energy density distribution of a photon wave packet is moving towards the edges
of the mirrors of atoms and reaches the mirror at Fig. 4.2(b)-(c) forming interference
pattern. In Fig. 4.2(d), the wave packet is fully reflected by the mirror.

4.2 Numerical simulations of mirror and beam split-

ter in 1-D and 2-D

4.2.1 Mirror simulations in 1-D

We have shown how atoms can operate as a mirror for radiation. Here we show the

energy density of the Hamiltonian as it moves along the x-axis. In Fig. 4.2 we present

the numerical simulations of the mirror in 1-D. In the middle of the x-axis we have the

atoms of the mirror. From Fig. 4.2(a), the photon is propagating towards the atoms of

the mirror right at the middle. As the photon moves towards the edges of the mirror

the interference pattern appears. In Fig. 4.2(d), we have shown that almost all of
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Figure 4.3: The probabilities |ψ|2 of finding the field interacting with the atoms of the
mirror in 1-D. Curve (1) correspond the total probability, curve (2) is the probability
of the field and curve (3) is the probability of the atoms.

the radiation is being reflected by the atoms while some small portion of the radiation

manages to pass through. The atoms of the mirror have seven layers, which indicate

the thickness of the mirror such that it is good enough to reflect the photon.

In Fig. 4.3, we present the trace of the the probabilities |ψ|2 of the field-atoms inter-

action in the mirror simulations in 1-D. We have labelled these probabilities as curve

(1); corresponds to the probability of the total (atoms + field) interaction |ψtotal|2 =

|ψfield|2 + |ψatoms|2, curve (2) is for the probability of the field |ψfield|2 =
∑

k |ψk|2

and curve (3) is for the probability of the atoms |ψatoms|2 =
∑

j |ψj|2 since both field

and atoms are in the Fourier space. These probabilities indicate the dynamics in the

simulations.
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Figure 4.4: The energy density distribution of a photon before and after its gets equally
divided by the beam splitter. The initial wave packet is a Gaussian in Eq. (3.22), and
here the parameters are; x0 = −8.0, kx0 = 15.0, 42

kx=1.0, ωj = 10.5, Dj = 6.25 and
the number of modes is (N=1024). The size of the cavity is L=10π. In Fig. 4.4(a)-(b),
the energy distribution of the photon forms interference pattern as it reaches the atoms
of the beam splitter and partially begins to split. In Fig. 4.4(c)-(d), the intensity of
energy density distribution of a photon is being fully divided into almost two equal
size by the atoms of the beam splitter.

4.2.2 A beam splitter simulations in 1-D

We have shown that it is possible for a beam splitter to be built by atoms. In order

for us to carry out this simulation we had to reduce the number of layers of the atoms

to one that is the thickness of the atoms. In Fig. 4.4, we present the numerical sim-

ulations of the beam splitter in 1-D. In the centre of the x-axis we have the atoms

of the beam splitter. In Fig. 4.4(a), we have a photon moving towards the edges

of the atoms of the beam splitter. As the photon reaches the beam splitter, there

is an interference structure. In Fig. 4.4(d), almost half of the radiation is reflected

back by the atoms and the remaining part is transmitted as it is shown. In Fig. 4.5,

33



(�)

(�)

(�)

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

t

|ψ
(t
)
2

Figure 4.5: The probabilities |ψ|2 of finding the field interacting with the atoms of
the beam splitter in 1-D. Curve (1) correspond the total probability, curve (2) is the
probability of the field and curve (3) is the probability of the atoms.

we present the trace of the the probabilities |ψ|2 of the light atoms interaction. We

have labelled these probabilities as follows; curve (1) denote the probability of the

total (atoms + field) interaction |ψtotal|2 = |ψfield|2 + |ψatoms|2, curve (2) is for the

probability of the field |ψfield|2 =
∑

k |ψk|2 and curve (3) is for the probability of the

atoms |ψatoms|2 =
∑

j |ψj|2 since both field and atoms are in the Fourier space. These

probabilities presents the behaviour of the norm in the beam splitter simulation as we

can see in Fig. 4.5 that the total probability gives us 1, which confirms that there is

dynamic in the simulation. In the next sections, we switch to 2-D and conduct the

numerical simulations of both mirror and beam splitter, respectively.

4.2.3 Mirror simulations in 2-D

We have shown that it is possible for atoms to reflect and transmit the radiation of

the photon in 1-D above. Here we want to switch to 2-D and perhaps apply the same

34



(a)

x

y
 time-steps=1 

(b)

x

y

 time-steps=500 

(c)

x

y

 time-steps=1300 

(d)

x

y
 time-steps=2000 

Figure 4.6: The energy density distribution of a single-photon before and after being
reflected by the mirrors of atoms. The initial wave packet is a Gaussian in Eq. (3.22)
and the parameters are the same to that of the free-photon simulation given in Fig.
4.1, respectively. In Fig. 4.6(a), the energy density distribution of the incoming photon
is approaching the mirror. As it reaches the mirror in Fig. 4.6(b) the incoming photon
interferes with the re-emitted radiation. In Fig. 4.6(c) the interference pattern occurs
as the photon gets partially reflected by the mirror. In Fig. 4.6(d), the energy density
of the photon wave packet is being fully reflected by the mirrors of atoms.

procedure to produce these simulations. In Fig. 4.6, we have the atoms of the mirror

arranged into an elongated atomic slab positioned at the centre of the cavity at angle

of 45 degrees. There are seven layers of the atoms. In Fig. 4.6(a) we have a photon

propagating towards the atoms. As the photon reaches the atoms, almost all of the

intensity is being partially reflected in Fig. 4.6(b)-(c). As a result, we can see the

35



(�)
(�)

(�)

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

t

|ψ
(t
)
2

Figure 4.7: The probabilities |ψ|2 of the field and atoms of the mirror in 2-D. Curve
(1) correspond the total probability, curve (2) is the probability of the field and curve
(3) is the probability of the atoms.

interference structure when the incoming and the reflected radiation interferes. In

Fig. 4.6(d), the atoms of the mirror fully reflect photon making sure that no portion

of the radiation passes through the mirror. The intensity profile of the radiation that

is fully reflected is no longer symmetric.

In Fig. 4.7, we present the plot of the trace of the the probabilities |ψ|2 of the light

atoms interaction in the mirror simulations. We have labelled these probabilities as

follows; curve (1) presents the time dependent of numerical calculations of |ψ|2 as we

can see that the total probability gives us 1, curve (2) corresponds to the probability of

the field and curve (3) corresponds to the probability of the atoms since both field and

atoms are in the Fourier space. These probabilities confirms that there is dynamic in

the simulations as we can clearly see how the energy that goes into the mirror and gets

reflected. The shape of curve (2) and curve (3) shows that, there is some interaction

between the atoms and the light and the probability of finding excitation in light is

decreasing while in the same way it is increasing in the atoms and afterwards the

excitation goes to the atoms and gets reflected back.
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Figure 4.8: The energy density distribution of a photon wave packet before and after
being equally divided by the atoms of the beam splitter. The initial Gaussian wave
packet is given in Eq. (3.22), with the parameters; x0=-10.0, y0=0.0, kx0 = 15.0,
ky0 = 0, 42

kx=42
ky=0.125, ωj = 10.4, Dj = 0.5 and the number of modes is (N=256).

The size of the cavity is L=10π. In Fig. 4.8(a), the energy density distribution of
a photon wave packet is coming towards the beam splitter. In Fig. 4.8(b)-(c), the
photon is partially divided into two halves by the beam splitter as we can see the
interference structure which shows part of the radiation being transmitted. In Fig.
4.8(d), the photon is being fully equally divided by the atoms of beam splitter.

4.2.4 A beam splitter simulations in 2-D

In this simulation, we demonstrate that it is possible to simulate the beam splitter

provided that we reduce the number of layers of the atoms in the centre. In Fig. 4.8,

we present the numerical simulations of the beam splitter in 2-D. In Fig. 4.8(a), it
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Figure 4.9: The probabilities |ψ|2 of the field and atoms of the beam splitter in 2-D.
Curve (1) correspond the total probability, curve (2) is the probability of the field and
curve (3) is the probability of the atoms.

is clearly seen as the photon approaches the atoms of the beam splitter. As can be

seen in Fig. 4.8(b)-(c), on the left of the atoms of the beam splitter we have the

interference pattern whereas on the right we have the outgoing part of radiation with

no interference. In Fig. 4.8(d), part of the photon wave packet is being reflected by

the atoms of the beam splitter and the remaining part manages to pass through the

single layer atoms.

We can then concede that, the photon excites the atoms and this imply the quan-

tum interference between incoming photon and the emitted photon such that almost

half of the original radiation gets transmitted by the atoms and the rest of the radia-

tion is being reflected. In essence, the incoming photon is split into two equal halves

with one moving up and the other one moving to the right. Essential, we can see

that the atoms in such a case forms a 50:50 beam splitter for the incoming radiation.

This implies that, the quantum beam splitter and mirror are linear devices and this is

important if one want to build optical networks out of the considered optical elements.
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In Fig. 4.9, we present the plot of the trace of the the probabilities |ψ|2 of the light

atoms interaction. We have labelled these probabilities as follows; curve (1) presents

the time dependent of numerical calculations of |ψ|2 and the total probability gives

us 1, curve (2) corresponds to the probability of the field and curve (3) corresponds

to the probability of the atoms since both field and atoms are in the Fourier space.

These probabilities presents how the norm behaves in the beam splitter simulation

which serves as a proof that there is dynamics in the simulation. From the function,

we can clearly see how the energy that goes into the beam splitter is being transmitted

and reflected equally. The shape of curve (2) and curve (3) indicate the interaction

between the light and the atoms of the beam splitter, which implies that, there is

50:50 probability of getting excitation in the light since it is decreasing and slightly

increasing in the atoms, respectively.

We investigated in the thesis, an approach that offers a direct quantum-mechanical

way to simulate more complex optical elements, and that is exactly what we plan

to build in future, i.e; the optical polarizer beam splitter, wave plates, dove prisms

etc. In general, these optical components are considered to be classical objects in the

description of propagation, scattering, reflected and transmitted wave. In this work,

we modelled the full system quantum mechanically and surprisingly the transmitted

and reflected wave occurs naturally as a result of quantum-mechanical interference.

This direct numerical simulation, allows us to create a new optical setup with multiple

components where we will consider the behaviour of the system to be derived from

the first principles of quantum mechanics. These QED simulations also offers us an

opportunity to build cavities of arbitrary shape and analyse the time evolution of the

photon intensity inside the cavity. Furthermore, another possibility would be to con-

duct direct simulations with atoms moving inside the cavity, and consider the basis

states to have more than one photon excitation.
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Chapter 5

Conclusions

In this work, we have numerically studied a quantum electrodynamic model to describe

light-matter interactions at a fundamental level. We have demonstrated the numerical

simulations to illustrate how a two-level systems interacts with the quantized field

inside a two dimensional cavity. All the numerical simulations were done in both 1-D

and 2-D, respectively. This model enables us to understand, at the microscopic levels

how a photon wave packets propagates through an arrangement of a crystal grid of

atoms. In addition the model allows us to formulate another way to generalise the

system, like extending our work into the 3 dimension. In the 3-D case we can conduct

more interesting simulations, such as the microscopic simulation of a QKD Protocol.

Also, one could generalise the model by increasing the number of excitations together

with the number of levels.
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