
Durban

1994

POLYNOMIAL APPROXIMATIONS TO
FUNCTIONS OF OPERATORS

by

Pravin Singh

Submitted in partial fulfilment of the

requirements for the degree of

Doctor of Philosophy,

in the

Department of Mathematics and Applied Mathematics,

University of Natal

1994



PREFACE

The theoretical work described in this thesis was carried out in the Department of

Mathematics and Applied Mathematics, University of Natal, Durban, from March 1991 to

June 1994, under the supervision of Professor Janusz R. Mika.

The studies represent original work by the author and have not been submitted in any

form to another University. Where use was made of the work of others it has been duly

acknowledged in the text.



ACKNOWLEDGEMENTS

The author is indebted to his supervisor Professor Janusz Mika for his expert guidance.

Great appreciation is expressed for the financial support from Professor Mika's FRD grant

which made it possible to attend the SAMS and SANUM conferences in 1992. The UDP

is acknowledged for their financial support which covered the cost of registration for this

degree.

11



To three beautiful people:

Rookmoney, Sarishka and Shivani

III



ABSTRACT

To solve the linear equation Ax = f, where f is an element of Hilbert space H and A

is a positive definite operator such that the spectrum (T (A) ( [m,M] , we approximate

-1
the inverse operator A by an operator V which is a polynomial in A. Using the

spectral theory of bounded normal operators the problem is reduced to that of

approximating a function of the real variable by polynomials of best uniform

approxi mation. We apply two different techniques of evaluating
-1A so that the

operator V is chosen either as a polynomial P (A) when P (A) approximates the
n n

function 1/A on the interval [m,M] or a polynomial Q
n

(A) when 1 - A Q
n

(A)

approximates the function zero on [m,M]. The polynomials Pn (A) and Q
n
(A)

satisfy three point recurrence relations, thus the approximate solution vectors P (A)f
n

and Q (A)f can be evaluated iteratively. We compare the procedures involving
n

Pn (A)f and Q
n
(A)f by solving matrix vector systems where A is positive definite.

We also show that the technique can be applied to an operator which is not selfadjoint,

but close, in the sense of operator norm, to a selfadjoint operator. The iterative

techniques we develop are used to solve linear systems arising from the discretization of

Freedholm integral equations of the second kind. Both smooth and weakly singular

kernels are considered. We show that earlier work done on the approximation of linear

functionals < x,g > , where 9 EH, involve a zero order approximation to the inverse

operator and are thus special cases of a general result involving an approximation of

arbitrary degree to A -1 .
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Here we evaluate the integral using the technique by Atkinson [3] which involves an

adaptation of the trapezoidal rule which is summarized below.

Firstly, the interval (a, b) is divided into N equally spaced subintervals and the integral

is evaluated over each subinterval.

Hence

N

Jb \' JYk+lK(x,y) ~ (y) dy = L K(x,y) ~ (y) dy,
a k=l Yk

(6.11)

where Yk = a + (k -l)h, k = 1, 2, ... N+1 and h = (b-a)jN is the length of each

subinterval. On each subinterval (Yk' Yk+l) we replace ~ (y) by the linear Lagrange

polynomial

Substituting (6 .12) into (6.11) and letting X= Y
i

(i= 1,2,···N + 1), we obtain

b N+l

J K(Yi,y)~(y)dy= l wik~(Yk)'
a k=l

where the weights wik are given by

(6.12)

(6.13)
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INTRODUCTION

-1
Let A be a bounded normal operator and let the inverse A exist. Most of the

methods available for solving the linear system Ax = f , where f is an element of Hilbert

space H, avoid the calculation of A -1 since such calculation is expensive. We consider

approximations to A -1 by polynomials in A since such polynomials are bounded and

are easily evaluated.

In chapter 1 we review the spectral theory of functions of normal operators. If A is a

bounded normal operator and f().) is a function that is bounded and continuous on a

domain containing the spectrum IT(A), then the operator function f(A) is related to

the function f(),) by equations (1.6) and (1.7). If A is bounded and positive definite

with IT (A) c [m,M] (0 < m < M) then f(A) = A-1 is related to the function

f().) = 1/), in the interval [m,M]. For non-selfadjoint operators we would have to

consider functions of the complex variable . However, the approximation of such functions

is numerically not very attractive. So in this thesis we consider only positive definite

operators and operators that deviate little from symmetry.

For positive definite operators A we choose to approximate A - 1 by a polynomial

operator V in A. By the spectral theory discussed in chapter 1 the problem is reduced

to that of the approximation of a function of the real variable by polynomials of best

uniform approximation. The operator V is chosen as a polynomial P (A) of degree n
n

when P ().) approximates the function 1/), in the interval [m,M] or a polynomial
n

Q
n

(A) when 1 - ),Q
n

(),) approximates the function zero in the interval [m,M].

These two polynomials P (A) and Q (A) satisfy three point recurrence relations .
n n

The derivation of these two approximations is presented in chapter 2. The theory

pertaining to the polynomials Pn (A) is due to Bond and Mika [1].
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However Bond and Mika [1] had not fully investigated the application and usefulness of

these polynomials. The theory pertaining to the polynomials Q (A) represents original
n

work by the author. These polynomials were derived from the Chebyshev polynomials.

In chapter 3 the polynomials P (A) and Q (A) are used to solve matrix vector
n n

systems of the form Ax = 1 I where 1 is an element of Hilbert space H and A is a

positive definite operator with 0'" (A) c [m.M]. Some of the available techniques for

solving such matrix vector systems is presented. We then devise a method to generate

the positive definite matrix A. The approximate solution vectors P (A)1 and Q (A)1
n n

are calculated by using the three point recurrence relations. The procedures P (A)1
n

and Q (A)1 are compared in detail. From the numerical results it is evident that the
n

method P (A)1 is slightly superior to the method Q (A)I. This is mainly due to our
n n

modification of the original recursion formula for the polynomials P (A). The classical
n

Chebyshev acceleration scheme is discussed in detail (page 26). It is shown that

the Chebyshev scheme [eqn (3 .17)] yields after n iterations (n - 1 matrix vector

multiplications) the same result as the vector Qn-l (A)I, which is evaluated iteratively.

The disadvantage of the Chebyshev scheme is that the intermediate results have no

meaning and can go off the number representation scale on the computer (see [2]). The

polynomial scheme Qn -l (A)1 yields an approximate solution after each iteration. This

should be considered as a great advantage of the present method.

It is shown in chapter 4 that a non-symmetric matrix vector system can be symmetrized

by using the adjoint operator A* and solved by using the methods given in chapter 3. If

the operator A is non -symmetric but close in the sense of operator norm to the

symmetric operator L = (A+A*)/2 and the operator L is bounded and positive

definite. then the system can still be solved by the methods of chapter 3 without using

the symmetrizing procedure. The above method is characterized by a greater rate of
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convergence than the symmetrizing procedure. Furthermore the solution of such slightly

non-symmetric systems by using the polynomials Q
n

(A) yields better results than when

the polynomials P (A) are implemented .
n

A comprehensive analysis of papers involving the evaluation of linear functionals of the

form < x,g > , where 9 EH, is presented in chapter 5. The method in all these papers

involve deriving upper and lower bounds to the functional < x,g > in order to avoid

calculation of the solution z . We show that results from the literature all involve the

zero order (n = 0) approximation to A -1. This point had not been realized by the

relevant authors. In addition we show that the use of variational methods to evaluate the

linear functional < x,g > is too expensive for applications. It seems best to first

evaluate the solution x by using the polynomial methods developed in chapter 3 and then

to directly evaluate the functional < x,g > .

In chapter 6 we consider the application to Fredholm integral equations of the second

kind . Both smooth and weakly singular kernels are considered. If the solution of the

integral equation is required at a particular point, we show how it can be evaluated by

using the polynomials P (A) or Q (A). The polynomials Q (A) provide better
n n n

results than the polynomials P (A). However, both techniques yield far superior results
n

than existing methods . A discretization of the integral equation yields a slightly

non-symmetric matrix vector system. The discretization is accomplished by using

Simpson quadrature for smooth kernels and a technique by Atkinson [3] for weakly

singular kernels. The method of chapter 4 is applied to calculate the solution . The

solution differs little from each other when the polynomials P (A) or Q (A) are used.
n n

The results in appendix A pertaining to the polynomials P (A) are quoted in Bond and
n

Mika [1]. We show in detail how these results are derived. In appendix B we derive

3



results pertaining to the polynomial Q (A) . Appendix C contains a review of some of
n

the earlier work done on the approximation to the inverse operator. In appendix D we

derive in detail some of the results in chapter 5 on the application to linear functionals.
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CHAPTER 1

FUNCTIONS OF NORMAL OPERATORS

let H be a Hilbert space with an inner product <.,.> and norm 11 .11. let B(H) be

the Banach algebra of all bounded linear operators in Hand N(H) the set of all

normal linear operators in H. Then Nb (H) = B (H) n N(H) is the set of all bounded

normal linear operators in H.

If yE H, x E D(A) ( H, where D(A) is the domain of a normal operator A, then by

the spectral theory (see [4] and [1]).

< Ax,y > = JA d ( < EA (A) x, y > ),
IT(A)

(1.1)

where (J(A) is the spectrum of A and EA(A) the family of projection operators.

Equation (1.1) is usually written in an abbreviated form as

Ax = JA d (EA(A)x);
IT(A)

x E D(A),

which if A E Nb (H) and D(A) = H is simply written as

A = JA dEA(A)·
IT(A)

Thedomain D(A) is given by

5
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D(A) = {XE H: J IAI 2
d( IIEA (A )xI1

2
) < CD }.

a (A)

If A E Nb (H) then IIAII is just the spectral radius

IIAII = spr(A) = sup { lA I : A E o(A) }.

Let L (A) be the space of all complex valued functions of a complex variable continuous

on a domain containing O"(A) • and equip L(A) with the seminorm

11/11(A)=SUp{ I/P)I :AElJ(A)}; IEL(A). (1.3)

For each A E N(H) and lE L(A) one can define an operator WA (I) E Nb(H) by the

formula

Since [4]

WA (I) = J I P) dEA (A).
lJ (A)

(1.4)

(1.5)

for a fixed A E N(H) equation (1.4) defines an isometric mapping WA : L (A) -I Nb (H)

and for a fixed lE L an operator function W(I) : N(H) -I Nb (H). where A H WA (I) .

By relaxing restrictions on lone can define more general operator functions \IT (I)

whose values are unbounded normal operators.

It is customary to abuse slightly the notation and write WA (I) as I(A) (see [4]) .

6



Hence instead of (1.4) we have

and from (1.5)

f(A) = J fP) dEA ().) ,

IT (A)

(1.6)

Ilf(A)11 = sup { IfP)1 : AE IT(A)} (1.7)

As an example take f E L (A) defined by fP) = P- p,) -1, P, i IT (A). From (1.6)

f(A) = (A - p,Ir1 is the resolvent operator. If 0 i IT (A) I take p, = 0 I then

f(),) = ), -1 and f(A) = A-1 represents the inverse operator.

7



CHAPTER 2

METHOD OF APPROXIMATE INVERSE

Consider the linear equation

Ax = f, (2.1)

where f E H and A is a bounded positive definite operator from H into itself that is

bounded below by m > 0 and above by M > m so that the following inequality is

satisfied.

m < ~,~ > ~ < A~,~ > ~ M < ~,~ >; V ~ EH. (2.2)

-1
Hence u(A) C [m,M]. If V is an operator approximating the inverse A and x = Vf

an approximate solution of (2.1) then the error can be written as

- 1x-x= (A - V)f= (l- VA)x, (2.3)

where x = A - I f is the exact solution of (2.1). The above formula suggests two possible

approaches to evaluating V (see [1]). It can be chosen as a polynomial P (A)
n

optimizing IIA-1_ V 11 or a polynomial Q
n

(A) when optimizing III - VA 11 .

(1.7) with f(A) = A-1_ P (A) or f(A) = I-A Q (A) we have
n n

p 11 -1E = A -P(A)II=sup Il/A-P(A)1
n n >'Eu(A) n

E
Q

= IIl-A Q (A)II = sup Il-A Q (A)/,
n n >'Eu(A) n

8
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(2.4)
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Thus the problem is reduced to that of approximating functions of the real variable by

polynomials of best uniform approximation. As in writing (1.6), here we also use the

same symbols P or Q to denote both the polynomial in A and the polynomial in A.
n n

This, however, should not lead to any confusion.

It has been proved by Chebyshev (see [5]) that for any function f(A) defined and

continuous on a closed interval [m,M] and for any non-negative integer n, there

exists a unique polynomial h (A) of degree n which deviates least from f(A) over
n

the interval [m,M]. This polynomial of best approximation is characterized by the

fact that In the interval [m,M] the number of consecutive points at which the

difference f(A) - h (A) with alternate change of signs assumes the maximum value
n

Ilf(A) - h (A)II [m,M] is not less than n + 2. Here
n

119(A)II[m,M] = sup { 19(A)1 : A E [m,M]} ,

similarly as was done in (1.3).

THE POLYNOMIALS P (A)
n

Since the norms 11.11 and 11.11 (A) are equivalent by (1.5), the problem of approximating

the inverse A - 1 by a polynomial Pn (A) in the uniform operator norm is equivalent to

the problem of the uniform approximation of the function 1/A by a polynomial P (A)
n

on the interval [m,M].

Chebyshev found an explicit expression for a polynomial of best approximation r (t) of
n

arbitrary degree n to the function 1/ (u - t) for -1 $ t $ 1 and u > 1 [Appendix A].
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This is given by

n-1

Tn(t) = 1~~2 [1 + 2 L 8
k

Tk(t) + 1~~; Tn(t)]; n~ 1, (2.6)
k=l

where 8 = u - j u2
- 1 and the optimal error of approximation is

(2.7)

Here T (t) = cos n(cos- 1t ) is the Chebyshev polynomial of degree n . The error in
n

(2.7) is optimal in the sense that for an arbitrary polynomia l r (t) f T (t) we have
n n

11 1/ (u - t) - r (t)1I [-l,lJ > 111/ (u - t) - T (t)1I [-l,lJ .
n n

To approximate J().) = 1/A one has to introduce a new variable

t = M+m-2A
M-m ' (2.8)

such that tE [-l,lJ. Since l/A = a/(u-t), where U= (M+m)/(M-m) and

a = 2/ (M-m), it follows that the polynomial best approximating 1/A in [m,M] IS

p ().) = ai: (t) or
n n

p ().) = 1
n VMm

n-1

[
\ k 28

n
]1 + 2 L 8 Tk (t) + -2 T

n
(t) ; n ~ 1,

k=l 1-8
(2.9)

where by expressing 8 in terms of m and M we have 8 = (JM-fiii) / (JM+fiii) and t

10



in the right hand side has to be replaced by A according to (2.8). The optimal error f.P
n

is given by.

(2 .10)

The zero order polynomial PO(A) for which the optimal error is f.~ = 1/2 (l/m-l/M)

can easily be deduced from the simple sketch in fig 2.1 [see also Appendix Al.

f(>. )

m

l/A
/

poP.) = 1/2 (1/M+l/m)

I

M

FIG 2.1: Polynomial Po (A) approximating the function 1/A.

Thus

The next polynomial,

P (A) = _1_ [1 +~ T (t)] = (fM+.[iii)2 __A
1 ~Mm 1-82 1 2mM Mm

11



can be obtained from equation (2.9) or directly [see Appendix A].

The polynomials P (A) satisfy the recurrence relation [see Appendix A]
n

P 2(-\) = 28t P 1(-\) - 8
2 P (A) + 2a8.

n+ n+ n

Thus the polynomials P (A) can be evaluated from the recurrence relation
n

P 2(A)=28tAP 1(A)-82P (A)+2a8I,
n+ n+ n

where t
A

= uI - aA , with

and

THE POLYNOMIALS Q (A)
n ·

T~;

(2.11)

(2.12)

(2.13)

(2.14)

It is clear that optimization of equation (2.5) requires the polynomial Q (-\) such that
n

A Q (A) best approximates the function f(A) = 1 in [m,M] or such that
n

Z 1 (-\) = 1 - A Q (-\),
n+ n

(2.15)

best approximates zero in [m,M]. We notice that Z 1 (A) has to satisfy the condition
n+

Z 1 (0) = 1 .
n+

12
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The best polynomial of degree n + 1 approximating zero in [-1,1] is 2- n T 1 (t) for
n+

-1 ~ t ~ 1. The preceding result can be found in the literature (see [6]). To

approximate zero in [m,M] by a polynomial satisfying (2.16), we make the change of

variable as in (2.8). Returning to the original variable A we have

2-n T [ M+m- 2 A ] .
n+1 M-m

Since we have the additional requirement (2.16), we must have

[ [ ] ]

- 1
Z A = T M+m T u-m- 2 A

n+1 ( ) n+1 M-m n+1[ M-m] .

The maximum error of approximation is given by [Appendix B]

[ [ ] ]

- 1
T M+m = 2

n+1 M-m 8n+1+r (n+1)'

(2.17)

(2.18)

(2.19)

where as previously 8 = (JM-fiii,)/ (JM+fiii,). SinceQn (A) is related to Zn+1 (A) by

equation (2.15), the error of approximation E
Q using polynomials Q (A) is also given
n n

by (2.19).

From (2.15), (2.18) and (2.19), we obtain the expression

Q (A) = ! [ 1 - 2 T [ M+m- 2 A] ]
n A 8n+1+r(n+l) n+1 M-m . (2.20)

The polynomial Qo(A) can easily be deduced from the simple sketch in fig 2.2 or from

(2.20) [see Appendix B].

13



1-2>'/ (M+m)
-:

J(>.)

m M

FIG 2.2: Polynomial Qo(>.) such that 1- >. Qo(>.) approximates the function zero.

Thus

The next polynomial

Q
1

(>.) = 8 (M+m1-8 >. I

(M+ m) +4Mm

can be obtained from (2.20) [Appendix B].

The polynomials Q (>.) satisfy the recurrence relation [Appendix B]
n

1 02n+4
Q 2 (>.) = Q (>.) + + 2 +6 [ 20t Q 1 (>.) - 20u Q (>.) + 2ao]. (2.21)

n+ n 1+0 n n+ n

14



· Thus the polynomials Q
n

(A) are evaluated from the recurrence relation

Q 2(A) = Q (A) + 1+8:
n+:

[28t
A

Q l(A) -28u Q (A) + 2a8I] , (2.22)
n+ n 1+8 n+ n+ n

where t
A

= uI - aA , with

and

Q1 (A) = ~ [ (M+m) I - A ]
(M+m) +4Mm

(2.23)

(2.24)

After this necessary background we are now in a position to follow the review, presented

in Appendix C, of some of the ea r1ier work done on the approximation to the inverse

operator.

15



CHAPTER 3

SOLUTION OF LINEAR SYSTEMS WITH SYMMETRIC MATRICES

We consider the approximate solution of the system of linear equations

Ax=f (3.1)

A is a bounded positive definite matrix operator and hence selfadjoint . Among various

methods, the approximate solution of (3 .1) can be achieved by means of the cyclic

iterative scheme

(3.2)

where Rn (A) is implemented iteratively and Xo is a starting vector. Here we will take

R (A) as P (A) or Q (A) .
n n n

First we summarize some of the other methods (see for instance [7]) available for solving

(3.1). The Jacobi method

or equivalently

( -1) -1
Xk+1 = I - D A xk + D 1. (3.3)

(3.4)

has been used to solve matrix vector problems. Here D is a diagonal matrix composed

of the diagonal elements of A.

16



The extrapolated Jacobi method

-1 -1
Xk+1 = (1 - w D A) xk + w D j,

or equivalently

is a modification of the Jacobi technique involving a relaxation parameter

Convergence is guaranteed as long as w is chosen so that 11 1 - w D-1A 11 < 1 .

The stationary Richardson method

(3.5)

(3.6)

w.

(3.7)

has been used to solve operator equations, in particular integral equations by Kleinman et

al [8].

The successive overrelaxation (SOR) method

- 1 )-1] ( -1 ) -1
Xk+1 = [1 - (w D + LD,. A xk + w D + LD,. f I (3.8)

where D is a diagonal matrix composed of the diagonal elements of A and LtJ.

is a matrix composed of the lower triangular part of A, has proved particularly

useful in solving linear systems arising from difference equations for solution of

elliptical partial differential equations (see [7]). For convergence the iteration matrix

( -1 ) -1 11 -1 11 - w D + LD,. A must satisfy the inequality 1 - (w D + LD,.r A 11 < 1 thus

17



restricting w to the range 0 < w < 2. We note that (3 .8) can be expressed in the

equivalent form

-1 )-1 )
xkt-1 = xk + (w D+ Lt!. (j-Axk

The c1assica I Chebyshev iteration method

(3.9)

(3.10)

where the parameters {3k are connected with the roots of the Chebyshev polynomials,

has been used since the early fifties to solve equations of the form (3 .1) (see [2]). When

the scheme of (3 .10) is implemented on a computer with a fixed number of digits and

when the operator A is ill -posed, a loss of significant digits can occur in the

intermediate and final results in x
k

and the values of the intermediate iterates may go

off the number representation scale in the computer. This instability has inhibited the

use of this technique in certain cases. Young [9] has succeeded in reducing computational

instabilities by showing how the {3k should be implemented. Lebedev and Finogenov [2]

showed how the {3k should be properly ordered to eliminate instability. However, it must

be stressed that intermediate values of x
k

(k = 0,1,·· .n-l) have no meaning, they are

just a means to get to the approximate solution x . The Chebyshev scheme is discussed
n

in detail on page 26 and we compare it to the polynomial scheme Qn-1 (A)f.

The technique in (3.7) can be obtained by multiplying (3.1) by a relaxation parameter w

and letting w A = 1- B. Hence one obtains the equation x = Bz + wf or the

iteration scheme xkt-1 = BXk + wf, which is equivalent to (3.7) upon substitution of

B = 1- w A. Convergence is guaranteed as long as 11 B 11 = 11 1- wAil < 1. If A is

positive definite and IT(A) C [m,M] then minimizing 11 1- wAil yields the optimal

choice for w, namely w = 2/(M+m). Here A -1 ~ w I with w = Q
o

(A) .

18



The technique we consider here is derived in a similar way, except that equation (3 .1) is

multiplied by the polynomial R (A) rather than by w.
n

If w is replaced by w
k

in (3 .7) then one obtains the general relaxation scheme

xk+l = x
k
+ w

k
(1- Ax

k
) , where the relaxation parameter wk need not be constant at

each step. One however has the difficulty of determining suitable "»> before each

iteration is performed, in order that convergence may occur and be speeded up. In the

same spirit R (A) could be replaced by Rk (A) in (3 .2). This indicates that
n n

polynomials R (A) of different order could be used at each step. Although these
n

\olynomials are readily available to us, we choose for convenience to use the scheme

indicat ed in (3 .2) with polynomials of fixed order.

Now the error e
k

= x - x
k

,after k cycles, can be expressed in terms of eo by using

equation (3.2). Hence

= x- xk_1
- Rn (A) (Ax- Ax

k
_

1
)

= [I-ARn(A)] ek-1

= [I-ARn(A)]k eo·

Hence we obtain convergence as long as 11 1- AR (A) 11 < 1
n

(3.11)

We now devise a procedure to check the methods for matrix vector systems of the form

(3 .1). The N x N matrix A is generated from an orthogonal transformation using

Householder matrices [10]. Hence

A=UDU,
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where U = I - 2 W wt is the N x N Householder matrix, with w a chosen real N

column vector such that wtw = IIwll; = 1 and D is a diagonal N x N matrix with

chosen (positive) eigenvalues. Householder matrices are chosen because of their

orthogonal and symmetry property. We choose the vector w to have identical

components 1/IN .The distribution of eigenvalues Ak is chosen such that

k-l ( )Ak = m + k+l M-m : k = 1,2,· .. N-1 , (3 .13)

with AN = M. It should be noted that similar results are obtained with other

distributions of eigenvalues. A suitable vector f is chosen for the right hand side of

equation (3.1). Since A -1 = U D-1 U, the exact solution of (3 .1) can be obtained.

The calculation of the vector Pn(A) (f - Ax
k

) of equation (3 .2) can be achieved in

two ways. Firstly we can evaluate Po(A) and Pi (A) and generate Pn(A) from the

recurrence relation (2.12). We can then multiply by the residual (f - Ax
k

) .

Alternatively the recurrence relation (2.12) can first be modified by multiplying

by the residual (f - Ax
k

) · We can evaluate the vectors Po (A) (f - Ax
k

) and

Pi (A) (f- Ax
k

) and generate the vector Pn(A) (f- Ax
k

) by using this modification

of (2 .12). We choose the latter technique since it involves vector iterates and is less

expensive (from a computational point of view) than the former technique which involves

matrix iterates. The vector Qn(A) (f - Ax
k

) is calculated in a similar fashion by using

a modification of the recurrence relat ion (2 .22). Throughout this thesis the recurrence

relations are used only to evaluate vector iterates. Therefore wherever mention is made

of using the recurrence relations, it is to be understood in the above sense, where the

necessary modification must first be made.

It is best to use Xo = 0 as a starting value in equation (3.2) since this saves on one
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matrix vector multiplication (henceforth called operation). Examining the first iterate

xl = Xo + Rn(A) (1- Axo)' one notes that it involves n + 1 operations (if xo:f. 0).

Clearly R
n

+
l
(A)f would give better results for the same effort.

Consider the direct approach x = P (A)f and x = Q (A)f for solving (3.1). Then n n n

corresponding errors l = x - P (A)f and eQ
= z - Q (A)f satisfy the inequalitiesn n n n

and

11 e~1I ~ IIA-
l

- Pn(A)lIllfll

= ~ [ ~ -1] 8
n

11 f 11,

2
n+l - (n+1) 11 xII·

8 +8

(3.14)

(3.15)

Here we have used equations (2.4), (2.5), (2.10) and (2.19). We note that (3.14) gives

an a priori error bound and hence the solution can be determined to any prescribed

tolerance. The method of solution is quite simple. Starting with Ro(A)f and Ri (A)f,

generate higher order approximations R (A)f by using the recurrence relations (2.12) or
n

(2.22). The results using this technique are presented in table 3.1. Note that we

present actual errors.

As evident from the table, the effects of roundoff error appear sooner using equation

(2.12) than (2.22). Whilst theoretically the error should decrease with increasing n, for

n = 23, 24, 25 the error remains constant using (2.12). This roundoff error is due to the

82 coefficient in the second term of equation (2.12). Since 8 < 1, we lose significant

digits in computing the second term 82P (A) in (2.12). This error accumulates and
n
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TABLE 3.1: Solution of a symmetric matrix vector system

n Error (P ) Error (P ) Error (Q )
n n n

using (2.12) using (3.16) using (2.22)

11 II w 11 11 2 11 II w 11 11 2 11 II w 11 11 2

10 0.216e-4 0.362e-4 0.216e-4 0.363e-4 0.390e-4 0.530e-4

15 0.142e-6 0.26ge-6 0.165e-6 0.317e-6 0.297e-6 o.451e-6

20 0.542e-7 0.784e-7 0.147e-8 0.267e-8 0.241e-8 0.357e-8

23 0.556e-7 0.79ge-7 0.901e-10 0.145e-9 0.143e-9 0.195e-9

24 0.556e-7 0.800e-7 0.312e-10 0.59ge-10 0.513e-10 0.770e-10

25 0.556e-7 0.800e-7 0.128e-10 0.223e-10 0.213e-10 0.29ge-10

Solution of a symmetric 10 x 10 matrix vector system using the direct approach

P (A)f and Q (A)! Here [m,M] = [1,5] , 8 = 0.38197 , the componentsn n
f
k
(k = 1, 2,· .. 10) of f are chosen obey the relation f

k
= O.lk (k = 1, 2,· .. 10),

Ilfll
m

= 1.0 and IIfll 2 = 1.96214 .

it's effect is evident after several iterations. We therefore propose to rewrite

equation (2.12) in the form

where we have used the identity 8
2

= 28u - 1. In table 3.1 we also present results

using the relation (3.16) to generate P (A)f. It is clear that the results are superior
n

using the relation (3.16) instead of (2.12). Comparing the recurrence relations (3.16) and

(2.22) for P (A) and Q (A) respectively, we observe a remarkable similarity becausen n

the coefficient (1+82n+4)j(1+82n+6) in (2.22) is close to unity with large n since

8 < 1. Thus it is no wonder that (3.16) and (2.22) behave in a similar fashion. From

now on we will therefore use the relation (3.16) for the polynomials P (A) as it is
n

computationally more stable than (2.12).
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For the selfadjoint case, it is simpler and yields slightly better results to implement a

direct rather than cyclic approach. Using a cyclic approach of k cycles with xo = 0

requires k (n + 1) - 1 operations. Better results should be obtained by using the direct

approach R
k

(n+l )-1 (A)f as an approximation to the solution. This is evident by

comparing the results presented in tables 3.2 and 3.3, where we solve the same problem

by using the direct as well as cyclic approaches. For example, 32 operations (using P32)

in table 3.2 yields an error that is roughly 10
2

times smaller than when 32 operations

(3 cycles of PlO) are implemented in table 3.3 .

We compare the procedures P (A)f and Q (A)f by examining the results presentedn n

in tables 3.4 and 3.5. It is seen that the results are better using the procedure P (A)f.
n

Rewriting equation (3 .14) and (3.15), we obtain

and

Since 1/2 (l/m + l/M) f is the zero order approximation to z , the upper bound for

11 e
P

11 is less than that for 11 eQ
11· This gives some indication why P (A)f gives

n n n

better results than Q (A)f. We note that the errors in tables 3.4 and 3.5 satisfy the
n

inequalities (3.14) and (3 .15) for the upper bounds (for the induced norm 11 .11
2

) , except

for n = 25 (Q25) and n = 26 (P26 and Q26) in table 3.4. This is due to the effect of

roundoff error which occurs sooner for small 8 as compared to large 8. We recall the

dependence of the recurrence relations on 8. In comparing tables 3.4 and 3.5 we notice

a dramatic decrease in the rate of convergence due to large 8, making it necessary for

higher order approximations to achieve the same accuracy. However, it must be

mentioned that the use of very high order polynomial approximations involve a large
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number of successive iterations which can lead to inaccuracies due to roundoff error. For

such cases it would be better to implement low order polynomials in a cyclic approach.

TABLE 3.2: Solution of a symmetric matrix vector system

n Error (P )
n

11 II m 11 11 2

Error (Q )
n

11 II m 11 11 2

10

21

32

43

0.324e-2

0.104e-4

0.561e -7

0.151e -9

0.701e-2

0.243e-4

0.S94e-7

0.29Se-9

0.580e-2

0.21ge-4

0.S14e-7

0.283e-9

0.73Se-2

0.26Se-4

0.9S2e-7

0.357e-9

Solution of a symmetric 50 x 50 matrix vector system using the

direct approach P (A)f and Q (A)f Here [m,M] = [1,16],
n n

6 = 0.6 , f
k

= 1.0 (k = 1, 2,,, ·50) , IIf 11
00

= 1.0 and

11111 2 = 7.07106 .

TABLE 3.3: Solution of a symmetric matrix vector system

n Ops Error(P )
n

11 II m 11 11 2

Error(Q )
n

11 II m 11 11 2

10 10

21

32

43

0.324e-2

0.992e-4

0.533e-5

0.14ge-6

0.701e-2

0.207e-3
0.77ge-5

0.316e-6

0.580e-2

0.3S4e-4

0.310e -6

0.20ge-8

0.73Se-2

0.532e -4

0.385e-6

0.27ge-S

Solution of the problem presented in table 3.2 using the cyclic technique

described in equation (3.2). Ops - denote the number of matrix vector

operations at the end of each iteration or cycle.
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TABLE 3.4: Solution of a symmetric matrix vector system

n Error(P ) Error(Q )
n n

11 11 111 11 11 2 11 11 111 11 11 2

0 0.445 0.462 0.428 0.516

1 0.113 0.143 0.159 0.174

2 0.260e-l 0.382e-l 0.28ge-l 0.451e-l

5 0.511e-3 0.678e-3 0.535e-3 0.851e-3

10 0.508e-6 0.846e-6 0.782e-6 o.113e-5

15 0.768e-9 0.136e-8 0.977e-9 0.171e-8

20 0.986e-12 0.183e-11 o.134e-11 0.224e-11

25 0.172e-14 0.296e-14 0.233e-14 0.361e-14

26 0.611e-15 0.977e-15 0.833e-15 o.118e-14

Solution of a symmetric 10 x 10 matrix vector system using the

direct approach P (A)f and Q (A)1 Here [m,M] = [1,3]
n n

8 = 0.26795 , f
k

= O.lk (k = 1, 2,·· ·10) , IIf 11
111

= 1.0 ,

IIfll2 = 1.96214, Ilx 11(1) = 0.58844 and Ilx 11 2 = 1.30681 .

TABLE 3.5: Solution of a symmetric matrix vector system.

n Error(P ) Error(Q )
n n

11 11 111 11 11 2 11 11 111 11 11 2

0 0.834e+2 0.957e+2 0.785e+2 0.980e+2
10 0.593e+l o.111e+2 o.173e+2 0.217e+2

40 0.181e-l 0.223e-l 0.427e-l 0.535e-l

60 0.336e-3 o.428e-3 0.771e-3 0.966e-3
80 0.671e-5 0.884e-5 0.13ge-4 0.175e-4
100 0.930e-7 0.164e-6 0.254e-6 0.315e-6
150 0.374e-ll 0.670e-ll o.111e-l0 0.137e-l0

Solution of a symmetric 10 x 10 matrix vector system using the

direct approach Pn (A)f and Q
n
(A)f. Here [m,M] = [0.01,1],

8 = 0.81818 , fk = O.lk (k = I, 2,·· ·10) , IIf 11(1) = 1.0

IIfll2 = 1.96214 , Ilx /1(1) = 78.350031 and IIx 11
2

= 100.06323.
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CHEBYSHEV ACCELERATION TECHNIQUE

The Chebyshev acceleration technique has originally been used for systems of linear

equations but it can be extended to equations in Hilbert space (see [11]). For the equation

(3.1). we consider the general scheme

(3.17)

proposed by Richardson [11 ,12]. Here {3o' {3l'· .. {3n-l are some non - zero numbers and

the value of xo is assumed given (usually xo = 0 ).

The error e
k

after k iterations is given by

Hence after n steps

n-l
e = IT (1- (3kA ) eo
n k=O

(3 .18)

where H
n

(A) is a polynomial operator function corresponding to the nth degree

polynomial Hn(). ) = IT ~:~ (1 - (3k).)· Since the inequality 11 en 11 ~ 11 Hn(A) 111I eo 11

is satisfied, the optimal error is obtained if H ().) is chosen as the best polynomial
n

approximating zero in the interval [m,M]. with the additional property that H (0) = 1.
n

. But this polynomial has already been found and is given by Zn().) from equation (2.18).
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Hence

H (A) = Z (A) = nUl (1-{i'\) = [T [M+m] ] -1 T [M+m-2,\], (3.19)
n n k=Q k n M-m n M-m

so that the optimal values {iQ' {il'· .. {in-l are equal to the reciprocal of the roots ,\k of

the Chebyshev polynomials, given by

(3.20)

With x
Q

= 0 in the standard Chebyshev scheme, one obtains from equation (3.18), with

Z (A) replacing H (A) ,
n n

x = [ 1- Z (A) ] A -1 1
n n

= Sn_l (A) f, (3.21)

where Sn_l (A) = [ I - Zn (A) ] A- 1 is a polynomial of degree n - 1. Since

Zn (A) = [I - A Sn_l (A)] , it follows from equation (2 .15) that Sn_l (A) = Qn-l (A).

After n iterations of the scheme (3.17) one obtains the approximate solution

x
n

= Qn-l (A)1· Hence the Chebyshev scheme (3 .17) yields the same result after n

iterations as does the vector Qn-l (A)1 ' which is evaluated iteratively by using the

recurrence relation (2.22). It must be noted that both schemes involve the same number

(n - 1) of operations (with x
Q

= 0). The advantage of the polynomial scheme is that

each iteration yields an approximate solution. However, with the Chebyshev scheme, each

iterate x
k

(k = 1,2" .. n - 1) has no meaning. The approximation is only completed

after the nth iteration and it is this last iterate x
n

that yields the approximate solution.

This leads to instabilities (see [2]) as already discussed.
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CONCLUSION

For symmetric systems the solution should be obtained by using the procedure Pn (A)f

where the P (A)f are evaluated by using the recurrence relation (3.16) to generate
n

vector iterates. It is essential to use relatively low order polynomials in order to minimize

roundoff error. The order can be decided on from the magnitude of 8. For large 8 one

can use large order polynomials. For small 8, the order of the polynomials should be

smaller. Recall that 8 occurs in the recurrence relations (3.16) and (2.22) for P (A)
n

and Q (A) respectively, which when implemented iteratively results in powers of 8. For
n

large polynomial orders n the number of iterations are large resulting in greater powers

of 8. Since 8 < 1 , for small 8 the value of these powers of 8 are close to zero

resulting in inexact representation on the computer. This explains why one cannot get

-15 -6
errors smaller than the order of 10 . But usually errors of the order of 10 are more

than sufficient.

For ill-conditioned problems (8 large) it is theoretically necessa ry to use high order

polynomials to achieve the desired accuracy. However, as already explained, this may lead

to roundoff errors due to large number of iterations. For such cases it is better to

implement a cyclic approach using low polynomial orders (see problem in table 3.3),

thereby reducing roundoff error.

In their calculations, Bond and Mika [1] used the recurrence relation (2.12) for the

polynomials P
n
(A). However we have shown the relation (2 .12) leads to inexact

representation on the computer. From a computational point of view, we have provided

an improved recurrence relation in the form of (3.16) for the polynomials P (A) .
n
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CHAPTER 4

SOLUTION OF NON-SELFADJOINT SYSTEMS

Non-symmetric systems of the form (3.1) can be symmetrized by multiplying by the

adjoint. Thus

A*A X= A* f= f'

and the resulting symmetric system

Bx=f',

(4.1)

(4.2)

where B = A*A is positive definite, can be solved as before. However the convergence

rate is affected. This can be understood if we make the assumption

2 2
m < ~.~ > ~ < A~,A~ > ~ M < ~.~ >; 'V ~ EH. (4.3)

Since < A~,A~ > = < A*A~.~ > ,it follows that IT(A*A) ( [m2
,M

2
] . It also follows

from (4.3) that m ~ IAI ~ M, where A E IT(A). The convergence parameter for the

system (4.1) is now b* = (M-m)/ (M+m) as compared to b = (.fM-fiii)/(.fM+fiii)

had A been selfadjoint. It is easily verified that 6 < 6*. Hence convergence is slowed

down.

When the deviation from symmetry is small we can avoid the above disadvantage by

considering the symmetric operator L = (A+A*)/2 . Provided that L is positive

definite we can obtain the parameters m and M from IT (L) and use them to

construct the polynomial R (A). Substituting the operator A for A we obtain the
n
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approximation R (A). Hence we use the polynomials R (A) in the cyclic approach
n n

(3.2) to solve the original non-symmetric problem.

The deviation from symmetry is measured by 11 A - L 11 = 11 (A-A*)/2 11. The

non-symmetric matrix is generated by adding an upper triangular perturbation to the

matrix generated by equation (3.12). When the deviation from symmetry is large it is

essential to use the symmetrizing procedure in equation (4.1) to solve the general

non-symmetric system. We solve the same non-symmetric problem using both the

symmetrizing technique in (4.1) and the cyclic technique described above. These results

are presented in tables 4.1 and 4.2 respectively. In table 4.3 we summarize the solution

for a non-symmetric problem with a larger deviation from symmetry.

TABLE 4.1: Solution of a non-symmetric matrix vector system.

n Error(P )
n

11 11(1) 11 11 2

Error(Q )
n

11 11(1) 11 11 2

5

10

15

20

25

30

o.113e-l

0.741e-4

0.683e-6

0.588e-8

0.523e-l0

0.626e-12

0.155e-l

0.146e-3

0.127e-6

0.127e-7

o.11ge-9

0.121e-11

0.776e-2

0.740e-4

0.74ge-6

0.895e-8

0.837e-l0

0.718e-12

0.126e-12

0.10ge-3

o.118e-5

0.117e-7

o.112e-9

0.116e-11

Solution of a non-symmetric 10 x 10 matrix vector system using

the symmetrizing procedure in equation (4.1) and the direct

approach P (B)f 1 and Q (B)f I. Parameters m and M are
n n

taken from (J (B). Here [m,M] = [0.203 , 1.069] , 8 = 0.39298

,llf '11 m = 0.48474 and Ilf '11 2 = 1.0396 .
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TABLE 4.2: Solution of a non-symmetric matrix vector system.

n Ops Error (P ) Error (Q )
n n

11 II w 11 11 2 11 II w 11 11 2

5 5 0.16ge -3 0.218e-3 0.154e -3 0.192e-3

11 0.182e-7 0.377e-7 0.110e-7 0.247e-7

17 o.423e-11 0.707e-11 0.294e-11 0.367e-11

23 0.583e-15 0.137e-14 0.38ge-15 0.636e -15

10 10 0.380e- 7 0.833e-7 o.463e-7 0.778e -7

21 0.255e-15 0.485e-14 0.155e-14 0.294e -14

32 0.111e-15 0.222e-15 0.222e-15 0.312e -15

20 20 0.788e-14 0. 13ge-13 0.566e-14 o.114e-13

41 O.222e-15 0.23ge-15 0.111e-15 0.250e-15

Solution of the non-symmet ric problem presented in t able 4.1 using the

cyclic techn ique described in equation (3.2). Ops - denote the number of

matrix vector operations at the end of each iteration or cycle. Parameters

m and M are taken f rom (J (L) . Here [m,M] = [0.448 I 1.033],

8 = 0.20587 I Ilfll(l) = 0.71705 I 11/11 2 = 1.3309 and IIA-L 11
2

= 0.05627 .
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TABLE 4.3: Solution of a non-symmetric matrix vector system. -

n Ops Error (P ) Error (Q )
n n

11 11 00 11 11 2 11 11 00 11 11 2

10 5 0.143 0.247 0.251e-l o.443e-l

21 0.258e-l 0.511e-l 0.526e-3 0.10ge-2

32 0.860e-2 0.112e-l 0 .231e-4 0.307e -4

43 0.125e-2 0.282e-2 0.357e-6 0.85ge-6

20 20 0.387e-2 0.700e-2 0.572e-3 0.960e -3

41 0.176e-4 0.322e-4 0.295e -6 0.62ge-6

62 0.837e-7 o.171e-6 0.22ge-9 o.445e-9

83 0.445e -9 0.953e-9 0.150e-12 0.318e-12

Solution a non-symmetric 10 x 10 matrix vector system using the cyclic

technique described in equation (3.2). Parameters m and M are taken

from (1(L) . Here [m,M] = [0.55,16.29] , 0 = 0.68955 ,lIfll = 9.25786 ,
CD

IIfl1 2 = 15.9675 and IIA-L 11 2 = 0.50642.

Comparing tables 4.1 and 4.2, one clearly sees that convergence is very much slower when

one uses the symmetrizing procedure of equation (4.1). For example, 25 operations

(P2S) in table 4.1 yields an error that is roughly lOS times larger than that obtained

when 23 operations are implemented in table 4.2 (4 cycles of Ps)' No real advantage is

gained by using cycles of very high order polynomials because of roundoff error. From

table 4.3 (for larger deviation from symmetry) it is evident that the polynomials Q (A)
n

yield better results than the polynomials P (A) .
n
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· CONCLUSION

For slightly non-symmetric systems one should implement the polynomials Q (A) in a
n

cyclic fashion, where the parameters m and M are taken from the (J (L) , provided

that L = (A+A*)/2 is positive definite. The relative deviation from symmetry

IIA-L 112/IIL 11 expressed as a percentage is 5.4% for the problem in table 4.2 and

3.1% for the problem in table 4.3. However, the problem in table 4.3 is ill-posed

(M/m ~ 29.62) as compared to the problem in table 4.2 (M/m ~ 2.31) thus accounting

for the large number of iterations necessary for convergence. If the system IS

non-symmetric the symmetrizing procedure of equation (4.1) should to be used.
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CHAPTER 5

APPLICATION TO LINEAR FUNCTIONAlS

Consider equation

Ax = J, (5 .1)

where A is an invertible linear operator in Hand f is a given element of H. In some

physical applications, the object of primary interest is not the solution

(5.1), but the linear functional defined by the inner product

0= < x,g »,

-1
x = A f of

(5 .2)

where 9 E H is fixed . Such a functional is usually expressed by a suitable integral.

An approximate value for 0 can be found by evaluating an approximate solution of (5 .1)

and substituting into (5 .2). However, such an approach was considered not effective and

in the early 1970s it was suggested to use variational principles by extending the famous

variational principle of Courant and Hilbert [13]. Variational approximations to integral

quantities like 0 can also be obtained from functionals which have stationary properties

that do not necessarily attain extremal values. Such generalized variational principles

have been used extensively, for instance , in nuclear reactor physics (see Stacey [14]).

Initially the effort was directed at obtaining bounds for 0f= < x,f>.

Jensen, Smith and Wilkins ([15] - 1969) considered a positive semi-definite integral
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operator A and found the complementary (upper and lower) bounds

(5.3)

Such a procedure is only possible if A can be written as the sum of two semi-definite

operators of which one of them (say E) possesses an inverse. Here q> is an arbitrary

function approximating in some sense the solution.

In 1974, Barnsley and Robinson [16] obtained the bounds [see Appendix D].

for the case of positive definite A in a real Hilbert space. Here q> and q> I are

approximations to the solution of (5.1), J/q» = 2 < q>,J > - < q>,Aq> > [see

Appendix D] and the primes denote that different pairs of trial vectors can be used in the

upper and lower bounds. It is assumed that A is bounded below by m > 0 and above

by M> m. Using the adjoint equation [see Appendix D]

Ay= g, (5.5)

and after several manipulations they were able to obtain complementary bivariational

bounds on 0 as a consequence of bounds on Of' Bivariational indicates the

approximation to the solution of both the original and adjoint equations. Their bounds

are

o ~ J+ (~ - ~) 11 Aq>-fllll Aw-gll +~ (~+ ~) C-~ (~- ~) IC I,

(5.6)

O~J-(~-~) IIAq>-fIIlIAw-gll+~(~+~) C+~(~-~) ICI,
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· where C = C(w l<I» == < A<I> - j,Aw - 9 > ,w is an approximation to the solution of

equation (5 .5) and J = J(wl<I» == - <wJA<I> > + < <1>19> + <w} > [see Appendix D].

Cole and Pack ( [17] - 1975 ) found families of functionals bounding Of· Consider the

quadratic trial functional

W(<I» == < z.] » + < b.xIH' b.x >, (5 .7)

where H' is positive or negative definite and b.x = <I> - x represents the error in

approximating x by the trial function <1>. Substituting for b.x into (5.7) we obtain.

W(<I» == < XJ(A + H')X > - < <1> 1H' (2x- <1» >. (5.8)

It is necessary to choose H' == AHA - A (where H is selfadjoint) in order to eliminate

the unknown solution z from (5 .8) . Hence one obtains the expression

W(<I» == < <l>12f- A<I> >+ <f- A<I> IH(J- A<I» > . (5 .9)

For different choices of H in (5 .9), Cole and Pack were able to reproduce the

results that had been obtained previously. For H = 0 one obtains the lower bound

< <I>12f- A<I> > of Courant and Hilbert [13], provided H' = - A is negative definite.

If A is bounded below by m and H = Ijm , one obtains the upper bound

J/<I» + 1jm IIA<I> - fl1 2
as derived by Barnsley and Robinson [16] in 1974.

In 1976 Barnsley and Robinson [18] sought bounds associated with unbounded

non-selfadjoint operators. They made the assumption that 3 m > 0 such that

IIA~112 ~ m211~1I2 V~ E D(A) .
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Introducing the adjoint equation [Appendix D]

*A Y= g ,

they derived the bounds

(5 .10)

J - ~ IIAep - IIIIIA*w - 9 11 ~ [2 ~ J + ~ IIAep - IIIIIA*w - 9 11· (5 .11)

If A = A* in (5 .11), the bounds obtained are weaker than those previously obtained in

their 1974 paper [16].

Robinson [19] in 1978 derived bounds for [2 + n , associated with the special operator

A = H + ua , where H is positive definite and bounded below by m> 0 and w is real.

He obtained the expression

- - 1 * 1 11 I *[2 + [2 ~ J + J + m Re < Aep - j,A W- 9 >+ m Aep - I III A W- 9 11,

(5 .12)

- - 1 * 1 *[2 + [2 ~ J + J + m Re <Aep - j,A W- 9 >- m 11 Aep - I1I1I A W- 9 11.

If w = 0 then A = H is selfadjoint and the bounds obtained from (5.12) are tighter

than those obtained by Barnsley and Robinson in 1974 [16] and Cole and Pack in

1975 [17] for selfadjoint operators in real Hilbert spaces.

In 1979, Barnsley and Robinson [20] derived the bounds

1 1 1 1 1 1
[2 ~ J + 7; (m + M) < Aep - j,Aw - 9 >+ 7; (m - M) IIAep - IlIllAw - 9 11,

(5.13)

1 1 1 1 1 1
[2~J+7;(m+ M) < Aep - j,Aw - g> - 7; (m - M) IIAep -/IIIIAw -gll,
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where A is selfadjoint and bounded below by m> 0 and above by M> m.

In 1985, Mika, Cole and Pack [21] were the first to show that the bounds to n are linked

to the approximation of the inverse operator A -1. For positive definite operators, they

showed that the best approximation of zero order is 1/2 (1/m + 1/M) I with associated

error 1/2 (1/m-1/M). Using this approximation to A-1
they obtained the bounds of

Barnsley and Robinson [eqn (5 .13)]. They also derived bounds for n when the operator

A was non-selfadjoint. This involves symmetrizing equation (5.1) by multiplying by the

adjoint A* and making the assumption that m
2 11~112 ~ IIA~112 ~ M

2 11~112 V~ EH,

where M> m> O. Hence they derived the bounds

1 [1 1] * * * 1 [1 1] 11 * 11 11 * * 1n ~ J + "2 m2 + M 2 <g-A w,A f-A AcI> >+ "2 m2 - M 2 g-A W A I-A AcI>1 '

(5.14)

1 [1 1] * * * 1 [1 1] 11 * * *n ~ J +"2 m2 + M 2 <g-A w,A I-A AcI> > -"2 m2- M 2 g-A wllllA I-A AcI>11 '

as a consequence of bounds involving selfadjoint operators.

In 1986, Robinson and Vuen [22] derived bounds associated with the special operator

A = 1+ ).K ,where K is an integral operator. They introduced the selfadjoint operator

L = 1/2 (A + A*) and assumed that it was positive definite. They obtained the bounds

1 -1 *n ~ J + "2 <AcI> - j,L (A w- g»

+ ~ <A<I> - j,L-1(AcI> - /»1/2 <A*w _ g,L-1(A*w _ g»1/2,

(5.15)
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· Again we see the appearance of the inverse operator. If L -1 is unknown and L IS

bounded below by m> 0 , they obtained the bounds

n ~ J + 2~ < Acl> - iA*w - 9 >+ 2~ IIAcl> - fllllA*w - 9 11,

(5 .16)

n ~ J + 2~ <Acl> - iA*w - 9 >- 2~ IIAcl> - fl lllA*w - gll·

It was only in 1987 that Mika [23] realized that all the bounds derived previously were

special cases of the general result [see Appendix D ].

n ~ J + < V(J - Acl>),g- A*w >+ 11 A- 1
_ VlIlIg- A*w 1111 f- Acl> 11,

(5 .17)

n ~ J + < V(J - Acl>),g- A*w >-11 A-1
_ V ll lI g - A*w 1111 f- Acl> 11·

Here V is an approximation to the inverse operator A-i. The third term represents the

error which is cubic as compared to earlier work where the error is quadratic, because of

the presence of the factor 11 A-1 - VII. Optimization of the bounds in (5 .17) involves

minimization of the residuals 11 f - Acl> 11 and 11 9 - A*w 11 as well as the optimal

approximation of A -1 by V. Comparing (5.17) with the bounds obtained previously,

one can identify the different approximations to the inverse operator. These

approximations, all of zero order, are summarized in table 5.1 .

Computation of the approximate solutions cl> and W in (5.17) by minimum residual

techniques can be expensive. Although the zero order approximations Ro(A)f and

Ro(A)g for cl> and W respectively require no effort to compute, one still has to

perform two operations in evaluating the residuals f- Acl> and 9 - A*w . It seems best

to set cl> = W = 0 and concentrate on the approximation of the inverse operator.
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TABLE 5.1: Earlier zero order approximations to A -1.

Author Equation no. V::: A-1 Error

Barnsley
(5.6) Il m and I/M 1/m-1/M& Robinson (1974)

Barnsley
(5.11) 1/m& Robinson (1976) 0

Robinson( 1978) (5.12) I/2m 1/2m

[w - 0 j
rea I H

Barnsley
(5.13) 1/2 (1/ m-s ]M)I 1/2 (1/ m-1/M)& Robinson (1979)

Robinson
& Yuen (1986) (5.15) 1/2

[L-
1 = I]

K+K* = 0

1/2

(5.16) I/2m 1/2m

Different zero order approximations to the inverse operator A -1 deduced by

comparing (5.17) with the bounds obtained previously.

The operator V can be taken as one of the polynomials R (A) discussed in chapters
n

2 and 3. If say \If = 0 , then from (5.17) one obtains the approximation

(5.18)

where we have ignored the error term. If further <I> =R
k
(A)/ and V =Rn (A) I then
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(5.19)

Now Rk(A} + Rn(A) - A Rk(A) Rn(A) is a polynomial of degree n + k + 1

approximating the inverse operator A-1 , but the best such polynomial is obviously

R
k

l(A). Hence+n+

< Rk+n+1 (A )f,g > (5.20)

is a better approximation to the linear functional n involving the same number of

operations. We present some simple results in table 5.2 confirming the above.

From (5.17) with 4> = \lJ = 0 and ignoring the error term one obtains the approximation

n = < x,g > ~ < Vf,g > = < R (A )f,g > , which essentially involves finding the
n

approximate solution R (A)f first and then computing the functional.
n

TABLE 5.2: Calculation of a linear functional.

Ops

1

3

4

5

(n,k)

(0,0)

(1,1)

(2,1)

(2,2)

Error using
eq (5.19)

o.148e+1

0.171e-1

-0.147e-2

0.15ge-2

Error using
eq (5.20)

0.208

-0.731e-2

0.355e-3

0.635e-3

Calculation of a functional using equations (5 .19) and

(5.20). The system is a simple 10 )( 10 matrix vector

system. The functional is the dot product having an

exact value of 13.415. Here [m,M ] = [1,2] and

6 = 0.17157 Here we have used the polynomials

P
n

(A) .
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CONCLUSION

Variational techniques were used earlier in order to save on the computation of the true

solution, since such computation was expensive. Since the calculation of the true solution

by the method of approximate inverse is simple (iterative) and less expensive, it seems to

dispense with the need for variational methods in this context.
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CHAPTER 6

APPLICATION TO FREDHOlM INTEGRAL EQUATIONS

Consider the Fredholm integral equation of the second kind

b
~(x) +" I K(xly) ~(y) dy=j(x), a~ x~ b .

a

(6.1)

Here ~ (x) is the unknown solution, " a real constant and K(x1y) represents the

kernel.

Equation (6.1) can be cast in operator form

(A ~ )(x) = j(x) ,

where A = I + " K.

(6.2)

We now discuss some of the methods available for solving (6 .1). The method of

expansion of solution (see [24]) involves assuming a special form for the solution ~ (x) of

(6.1). If we write

N

~(x) ~ ~N(x) = L clN) hk(x) ,
k=O

(6.3)

where the set {hk(x)} is complete in £2(a,b), then with an appropriate choice of

the clN ), and for sufficiently large N, we may approximate ~ (x) as closely as we

please by ~N(x) . The problem is then one of determining the coefficients clN) . Th is
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may involve a least squares approximation where the c~N) are chosen such that

11 (A~N) (x) - j(x)11
2

is minimized. However this leads to the evaluation of N
2

triple

integrals which is expensive for large N.

Piessens and Branders [25] used the expansion method of the form (6.3) where they took

h
k
(x) = T

k
(x) - the Chebyshev polynomials of order k. Firstly the interval [a,b] is

mapped by a linear transformation to the interval [-1,1] because of the orthogonality of

the Chebyshev polynomials on [-1,1] with weight function (1 - ir1
/

2
. With

~ (x) = ~: c~N) T
k
(x) in (6.1) we obtain

where

N

L clN) [ Tk(x) + A Ik(x)] = j(x) ,
k=O

(6.4)

(6.5)

Substituting N + 1 values of x (x
k
' k = 0,1,·· .N) results in a linear system, the

solution of which gives the coefficients c~N). The values x
k

are chosen equidistantly

between - 1 and 1 . The evaluation of Ik(x
j
) (k,j = 0,1,·· .N) is done by means

of a three point recurrence relation for Ik(x). This recurrence relation saves on

computational effort. However it must be stressed that the derivation of a recurrence is

only possible for special kernels. For arbitrary kernels it is essential to use numerical

integration to evaluate I
k

(x) and this is very expensive.

The Nystrom or quadrature method (see [24]) entails approximating the integral in (6.1)

by a N-point quadrature rule.
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Hence

b N

J K(x,y) ~ (y) dy = L Wk K(x'Yk) ~ (Yk) ,
a k=l

(6.6)

where w
k

represents the relevant weight functions. Letting x = Yi in (6.1) and using

(6.6) one obtains the discretization

N

~ (Yi) + A L wk K(yi,yk) ~ (Yk) = f(Yi) , i = 1,2,···N.

k= 1

(6.7)

Solving the linear system in (6.7) by Gaussian elimination involves O(N3
) multiplications,

whilst the effort using (if possible) the Neumann series (Picard iteration) is of the order

O(N2
). Thus for N large Gaussian elimination can lead to surprisingly large computing

times. This simple comparison shows that iterative schemes are worth investigating. We

shall now investigate some.

If A is positive definite the solution ~ (x) = A-If (x) of (6.2) can be obtained by using

the polynomial methods P (A) or Q (A) discussed in chapter 2 to approximate the
n n

-1
inverse operator A . If the polynomials P (A) are used for example, one needs to

n

evaluate

(6.8)

(6.9)
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and generate higher order approximations Pnf(x) using the recurrence relation (3.16).

This method is usually possible up to some low order due to difficulty in evaluating the

integrals Kf(x) , K2f(x) , K3f(x) "', whether this evaluation is done analytically (in

special cases) or numerically. The preceding technique is quite useful for obtaining

pointwise solutions.

POINTWISE SOLUTIONS

To calculate the solution ~ (x) of (6.1) at some fixed point z = x* , we first calculate

Rof(x*) and R/(x*) and then generate higher order approximations Rnf(x*) using

the recurrence relations (2.22) or (3.16). Here R f(x*) denotes R f(x) evaluated at
n n

e. Since A = I + A K , this involves the calculation of the integrals Kf(x*) , K2f(x*) ,

~ f(x*),.. " where as before Knf(x*) denotes Knf(x) evaluated at e . These

integrals are calculated analytically where possible or numerically by using an appropriate

quadrature rule. We illustrate the above by solving the following problem (see [20]).

I1 K(x ) - { z (I - y)
,y - y(1 - z )

A = 1.0

2f(x) = x

a=O,b=1.0

for x ~ y
for z ~ y

with exact pointwise solution

~(0.5) = 2.5 seck(0.5) - 2 = 0.217047209925.

Results

The results, summarized in table 6.1, are quite impressive using low polynomial orders n.

This is because the convergence parameter 8 = 0.02412 is close to zero. The polynomial
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TABLE 6.1: Pointwise solution of an integral equation.

n

o
1

2

3

4

Error(P)
n

~(0.5)-P f(0.5)
n

-0.215e-l

o.42ge-3

-0.71ge-5

0.351e-6

-0.121e-7

Error (Q )
n

~(0.5)-Q f(0.5)
n

-0.20ge-l

o.404e-3

-0.670e-5

0.343e-6

-0.744e-8

Solution of problem I1 using the procedures P (A)f
n

and Q (A)f Here [m M] =[1 , 1.10132], 8 = 0.02412,
n

4 2 ( 3 6)/Kf(x) = (x-x )/12 and K f(x) = 4x-5x +x 360. A

20 interval Simpson quadrature is used to evaluate

K3f(0.5) and ~f(0.5).

procedure Q (A)f gives better results than the procedure P (A)f. Barnsley and
n n

Robinson [20] solved this problem by calculating upper and lower bounds to ~(0.5). They

obtained the bounds 0.217047 ~ ~(0.5) ~ 0.217048 from which ~(0.5) ~ 0.2170475.

This represents an absolute error of approximately 0.3 x 10-6 which is comparable with

our result for n = 3. While Barnsley and Robinson [20] used much numerical effort to

obtain their bounds their method did not allow for an improvement of the solution. We,

however, can improve the solution by choosing n larger. Thus for n = 4 (Q4) we

obtain the absolute error 0.744 x 10-8
.

If one requires the solution ~ (x) at few abscissae then the method just implemented is

advisable. However, if the behaviour of the solution ~ (x) in the interval [a,b] is

required then this would necessitate the calculation of a large number of function values
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of ~ (x). In such a case the procedure of pointwise solutions is not recommended since it

would require the calculation of a large number of integrals numerically which is a very

expensive process. The alternative approach is a full discretization of (6 .1).

SOLUTION BY D1SCRETIZATION

Smooth Kernels

We solve the following problems with a symmetric kernel.

12 K (z,y) = I z - y I
A = 1.0

f(x) =1 + x- sin(x)

a=OJ b=1r/2

with exact solution ~ (x) = sin (x)

13 K (z,y) = I x - y I
A = 1.0

f(x) = o.li+i - 0.25x + 0.2

a = 0, b= 1.0

with exact solution ~ (x) = i

For the above we use the Simpson quadrature technique to approximate the integral.
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This leads to the discretization

n-l

~ (x) + )'h/3 [K(x}a) + K(x}b) + 2l K(x}a+2ph) ~ (a+2ph)

p=l
n

+4l K(x,a+(2p-1)h) ~(a+(2p-1)h) ] =f(x) ,

p=l

(6.10)

with x = a + qh} q = 0,1, 2}- - -2n, h = (b - a)/2n, where 2n = N represents the

number of discretization intervals.

Weakly Singular Kernels

We solve the following problems:

1
14 K (x, y) = I x - y I-"2

). = 1.0

2 1 1 3 3
f(x) = 2x [ (l+x)2 + (l-x)2 ] + 4x/3 [ (l-x)2 - (l+x)2 ]

55 2+ 0.4 [ (l+x)2 + (l-x)2 ] + z

a = -1.0, b= 1.0

with exact solution ~ (x) = i

1
15 K (z,y) = I x - Y I-2

). = 0.5

f(x) = i
a = -1.0, b = 1.0

where the exact solution is unknown.
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· Here we evaluate the integral using the technique by Atkinson [3] which involves an

adaptation of the trapezo idal rule which is summarized below.

Firstly, the interval (a,b) is divided into N equally spaced subintervals and the integral

is evaluated over each subinterval.

Hence

N

Jb \' JYk+lK(x,y) ~ (y) dy = l K(x,y) ~ (y) dy,
a k=l Yk

(6.11)

where Yk=a+ (k-l)h,k=1,2, ... N+l and h = (b-a)/N is the length of each

subinterval. On each subinterval (Yk1 Yk+l) we replace ~ (y) by the linear Lagrange

polynomial

Substituting (6.12) into (6.11) and letting x = Y
i

(i = 1,2,··· N + 1) , we obtain

b N+l

J K(Yi,y)~(y)dy= L wik~(Yk)'
a k=l

where the weights wik are given by

(6 .12)

(6.13)
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Hence, with z = y . in equation (6.1) and using (6.13), one obtains the discretization
t

N+l

~ (Yi) + A L wik ~ (Yk) =!(Yi) J i =1,2J ••. N + 1 .

k=l

(6.14)

1
We note that for the kernel K(x,y) = I z - y 1-2 , the weights can be calculated

analytically.

Both discret ization procedures ment ioned above lead to slightly non-symmetric systems,

which are solved by using the cyclic technique discussed in chapter four for similar

systems.

Results

The results are quoted for polynomials of order ten , namely PlO and Q
10

and are

summarized in tables 6.2 to 6.14 . Note that we present actual errors. The results for

smooth and weakly singular kernels yield average errors of the order of magnitude 10-3

for N = 70 . We notice that the errors do not damp after the second iteration or cycle

which clearly shows that the final error is essentially the discretization error. To improve

the results we would have to increase N. This improvement is clearly seen in tables 6.5

and 6.12. From the captions to tables 6.2, 6.3 and 6.4 we observe that the deviation

from symmetry IIA - L 11
2

decreases with increasing N. In fact this pattern is

maintained throughout our results. Thus if our solution converges for small N then we

are guaranteed convergence for larger N because the discretized system tends more to a

symmetric one with increasing N. We also note that using the polynomials P (A) and
n

Q
n

(A) give equally good results. Our results for problem 15 (tables 6.12,6.13 and 6.14)
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agree remarkably well with that as quoted in the paper by Piessens and Branders [25].

except at z = 0.99313. However at this particular abscissa our result lies between that

calculated by various other authors and the revised solution of Piessens and Branders [25] .

The simple approach of full discretization of the integral equation (6 .1) together with the

solution of the resulting linear algebraic system by the iterative methods we have

discussed, yields quite acceptable results.

CONCLUSION

In cases where the solution ~ (x) of (6.1) is required at few selected points (abscissae), a

solution by discretization of (6.1) is unnecessary. The polynomial procedure Q (A)f(x)
n

provides a simple yet effective method of evaluating such pointwise solutions. If the

behaviour of ~ (x) on the interval [a}b] is required then a full discretization of (6.1) is

unavoidable.

The use of Gauss quadrature techniques in place of the Simpson technique in connection

with smooth kernels. would yield better results at the expense of more effort. Using the

midpoint rule inst ead of Simpson's rule for symmetric kernels would yield symmetric

systems, however this would require large discretizations to achieve the same error. For

weakly singular kernels, approximating ~ (y) on each subinterval by a higher order

Lagrange polynomial is possible, thus reducing discretization error. However, the

calculation of the weights are far more complicated and expensive.

We have presented here a brief motivation for the use of polynomial methods to solve

Fredholm integral equations of the second kind numerically. The subject of integral

equations is vast and requires special attention. A full analysis of numerical methods used

for solving integral equations is beyond the scope of this thesis.
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TABLE 6.2: Solution of an integral equation.

x Error(P ) Error(Q )
n n

cycle 1 0 o.484e-2 0.482e-2

0.942478 0.374e-3 0.362e -3

1.256637 -0.243e-3 -0.258e -3

1.570796 0.214e-3 0.193e-3

11 Ilm 0.847e-2 0.84ge-2

1111 2
0.142e-1 0.142e-1

cycle 2 0 0.482e-2 o.482e-2

0.942478 0.364e-3 0.362e-3
1. 256637 -0.250e-3 -0.250e-3
1.570796 0.206e-3 0.206e -3

11 Ilm 0.847e -2 0.847e -2

1111 2 0.142e-1 0.142e-1

Solution of problem 12. Here [m,M] = [0.46, 1.91]
6 = 0.34160 , N = 10 and IIA - L 11

2
= 0.23252 .
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TABLE 6.3: Solution of an integral equation.

x Error(P ) Error(Q )
n n

cycle 1 0 0.122e-2 0.120e-2
0.942478 0.937e-4 0.804e-4
1.256637 -0.656e-4 -0.814e-4
1.570796 o.472e-4 0.24ge-4

IIl1 m
0.208e-2 0.20ge-2

1111 2 o.490e-2 0.492e-2

cycle 2 0 0.120e-2 0.120e-2
0.942478 0.814e-4 0.814e-4
1.256637 -0.747e-4 -0.747e-4
1.570796 0.357e-4 0.357e-4

1IIIm
0.208e-2 0.208e-2

1111 2 o.491e-2 o.491e-2

Solution of problem 12. Here [m,M] = [0.46, 1.91]
8 = 0.34160 , N = 20 and IIA - L 11

2
= 0.19256 .
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TABLE 6.4: Solution of an integral equation.

x Error(P ) Error( Q )
n n

cycle 1 0 0.117e-3 0.988e-4
0.942478 0.194e-4 0.605e-5
1.256637 -0.356e-5 -0.124e-4

1. 570796 0.152e-4 -0.731e-5

1111(1) 0.161e-3 0.17ge-3

1111 2 0.730e-3 0.760e-3

cycle 2 0 0.980e-4 0.980e-4
0.942478 0.641e-5 0.641e-5
1.256637 -0.640e-5 -0.640e-5
1. 570796 0.253e-5 0.252e-5

1111(1) 0.171e-3 0.171e-3

1111 2 0.73ge-3 0.73ge-3

Solution of problem 12. Here [m,M ] = [0.46, 1.91]
8 = 0.34160 , N = 70 and IIA - L 11

2
= 0.15848 .
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TABLE 6.5: Discretization error.

x N= 10 N=20 N=40 N= 70

0 o.482e-2 0.120e-2 0.300e-3 0.980e-4

0.314159 0.347e-2 0.862e-3 0.215e-3 0.702e-4

0.942478 0.364e-3 0.814e-4 0.198e-4 0.641e-5
1.256637 -0.250e-3 -0.748e-4 -0.194e-4 -0.640e-5

1.570796 0.206e-3 0.357e-4 0.795e-5 0.252E-5

IIII(J) 0.847e-2 0.208e-2 0.522e-3 0.171e-3

1111 2 0.142e-1 o.491e-2 0.172e-2 0.73ge-3

Solution of Problem 12, illustrating the effect of discretization error at

selected abscissae. The discretized system is solved exactly using several
cycles.

TABLE 6.6: Solution of an integral equation.

x Error(P ) Error(Q )
n n

cycle 1 0 o.405e-3 o.405e-3
0.4 0.187e-3 0.187e-3
0.6 0.638e-4 0.638e-4
1.0 -0.173e-4 -0.173e-4

IIII(J) 0.244e-2 0.244e-2

1111 2 0.277e-2 0.277e-2

cycle 2 0 o.405e-3 0.405e-3
0.4 0.187e-3 0.187e-3
0.6 0.638e-4 0.638e-4
1.0 -0.173e-4 -0.173e-4

1I11(J) 0.244e-2 0.244e-2

1111 2 0.277e-2 0.277e-2

Solution of problem 13. Here [m,M] = [0 .78, 1.37]

8 = 0.13989 ) N = 10 and IIA - L 11
2

= 0.09424 .
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TABLE 6.7: Solution of an integral equation.

x Error(P ) Error( Q )
n n

cycle 1 0 0.102e -3 0.102e-3

0.4 0. 483e-4 0.483e-4

0.6 o.178e-4 0. 178e-4

1.0 -0.223e- 5 -0.223e-5

11 II rn
0.71ge -3 0.71ge -3

1111 2 0. 101e-2 0.101e -2

cycle 2 0 0.102e -3 0.102e-3

0.4 0. 483e-4 0.483e-4

0.6 0.178e -4 0.178e-4
1.0 -0.223e -5 -0.223e-5

11 II rn
0.71ge -3 0.71ge-3

1111 2 0.101e-2 0.101e-2

Solut ion of problem 13. Here [m,M] = [0.78, 1.37]

6 = 0.13989 , N = 20 and IIA - L 11
2

= 0.07804 .
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TABLE 6.8: Solution of an integral equation.

z Error(P ) Error( Q )
n n

cycle 1 0 0.256e -4 0.256e -4

0.4 0. 122e-4 0.122e -4

0.6 o.457e-5 o.457e-5

1.0 -0.433e -6 -0.433e-6

11 11 m 0.194e-3 0.194e-3

1111 2 0.35ge-3 0.35ge -3

cycle 2 0 0. 256e-4 0.256e-4

0.4 0.122e -4 0.122e -4

0.6 0.457e -5 o.457e-5

1.0 -0 .433e-6 -0.433e-6

II llrn 0.194e -3 0.194e -3

1111 2 0.35ge-3 0.35ge -3

Solution of problem 13. Here [m,M] = [0.78, 1.37]

8 = 0.13989 , N = 40 and IIA - L 11
2

= 0.06864 .
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TABLE 6.9: Solution of an integral equation.

x Error(P ) Error(Q )
n n

cycle 1 -1. 0 0.112e -2 o.114e-2

-0.4 0.125e-2 0.126e -2

0.4 0.125e-2 0.126e -2

1.0 o.112e-2 0.114e-2

1111(1) 0.126e -2 0.127e -2

11112 0.560e -2 0.562e-2

cycle 2 -1. 0 o.110e-2 0.110e -2
-0 .4 0.125e-2 0.125e -2

0.4 0.125e -2 0.125e-2
1.0 o.110e-2 o.110e-2

1111(1) 0.127e-2 0.127e -2

1111 2 0.560e -2 0.560e-2

Solution of problem 14. Here [m,M ] = [1.4, 4.8]
8 = 0.29865 , N = 20 and IIA - L 11

2
= 0. 18492 .
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TABLE 6.10: Solution of an integral equation.

x Error(P ) Error(Q )
n n

cycle 1 -1. 0 0.354e -3 0.380e-3

-0.4 0.31ge-3 0.323e-3

0.4 0.318e-3 0.323e-3

1.0 0.354e -3 0.380e-3

IIII CD
0.354e-3 0.380e-3

1111 2 0.201e-2 0.204e-2

cycle 2 -1. 0 0.274e -3 0.274e-3
-0.4 0.320e -3 0.320e-3
0.4 0.320e -3 0.320e -3
1.0 0.274e -3 0.274e-3

IIII CD
0.323e-3 0.323e-3

11 11 2 0.200e -2 O.200e-2

Solution of problem 14. Here [m,M ] = [1.4, 4.8]

8 = 0.29865 , N = 40 and IIA - L 11
2

= 0.14146 .
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TABLE 6.11: Solution of an integral equation.

x Error(P ) Error( Q )
n n

cycle 1 -1.0 0.222e-3 0.258e-3

-0.4 0.104e-3 0.10ge-3

0.4 0.104e-3 0.10ge-3

1.0 0.222e-3 0.258e -3

11 11 CD
0.222e-3 0.258e-3

11 112 0.897e-3 0.945e-3

cycle 2 -1.0 0.892e-4 0.892e-4

-0.4 0.106e-3 0.106e-3
0.4 0.106e-3 0.106e-3

1.0 0.891e-4 0.892e-4

11 11 CD
0.106e-3 0.106e-3

11 112 0.870e -3 0.870e-3

Solution of problem 14. Here [m,M ] = [1.4, 4.8]

8 = 0.29865 , N = 70 and IIA - L 11
2

= 0.11264 .
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TABLE 6.12: Discretization error.

z N= 10 N=20 N=40 N= 70

-1.0 oo438e-2 o.110e-2 0.274e-3 0.892e-4

-004 oo487e-2 0.125e-2 0.320e-3 0.106e-3

0 oo492e-2 0.127e-2 0.323e-3 0.106e-3

004 -Oo487e-2 0.125e-2 0.320e-3 0.106e-3

1.0 oo438e-2 0.110e-2 0.274e-3 0.892e-4

II IIQ} oo492e-2 0.127e-2 0.323e-3 0.106e-3

1111 2 0.157e-1 0.560e-2 0.200e-2 0.870e-3

Solution of Problem 14, illustrating the effect of discretization error at

selected abscissae. The discretized system is solved exactly using several

cycles.

TABLE 6.13: Solution of an integral equation.

x N= 20 N=30 N=50 N= 70

0.99313 0.6630540 0.6626137 0.6598361 0.6567397
0.96397 0.5901404 0.5761526 0.5520521 0.5483424

0.74633 0.2513220 0.2507034 0.2510444 0.2510025

0.51087 0.0662370 0.0670994 0.0671376 0.0671728

0.07653 -0.0784614 -0.0784229 -0.0782376 -0.0780721

Solution of problem IS, showing values of the solution ~ (x) at selected

abscissae. The solution is first obtained at evenly spaced points. Then the

values at the above abscissae are calculated using the fact that ~(x) is

assumed a linear function on each subinterval. Here [m,M] = [1.14, 2.9]
and 0 = 0.22927 .
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TABLE 6.14: Solution of an integral equation.

Cohen - P&B
x Ullman Schlitt I ckovic P&B Revised

0.99313 0.63303 0.63130 0.62997 0.62856 0.701180

0.96397 0.55114 0.54817 0.54650 0.55111 0.545315

0.74633 0.25311 0.25121 0.24995 0.25121 0.250216

0.51087 0.06767 0.06737 0.06631 0.06733 0.066658

0.07653 -0.07907 -0.07790 -0.07882 -0.07799 -0.078524

Solution of problem 15, by various authors, as quoted in Piessens and

Branders (P & B) [25]. The last column shows a revised solution by Piessens and

Branders [25].
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APPENDIXA

The results in this thesis, pertaining to the polynomials P (A), are quoted in Bond and
n

Mika [1]. Here we show in detail how these results are derived.

DERIVATION OF f (t)
n

The polynomial f (t) of best approximation to 1/ (u - t) for -1 ~ t ~ 1 and u > 1 ,
n

has been found by Chebyshev. We state the results from Meinardus [5] and use it to

show how f (t) can be written explicitly in terms of the Chebyshev polynomials.
n

Following [5] we define a function

~ (t) = f (t) _-.1..= r. [v n 8-v + «: 1-8v] ,
n n u-t 2 1-8v ii-» (AI)

and r is the optimal error of approximation given by

r = [~] 2 8n
= ~n.

1-8 u -1
(A2)

With v = e
i
() (since Ivi = 1 ). we have t = cos 8 = Re(v) for 0 ~ 8 ~ n . Hence as

t runs through the interval [-1,1] from left to right, v describes the upper half of the

circle Ivl = 1.

That I' describes the optimal error can easily be seen if one rewrites

trigonometric form. Since

/
8-v Il-ov = 1,
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we let

8-v i1J (A3)1-8v = e .

Then

~n(t) = ~ [ ein() ei1J + e-in() e-i1J]

= r cos (nO + TJ)

8n
(A4)= - \lJ (t),

2 1 nu -

where

\lJ (t) = cos (nO + TJ) . (A5)n

From (Al) and (A2) we have

Let

n 8-v
'l/Jn(v)=v 1-8v'

_ -i() -1
then using v = e = v , we obtain

-1
-n 1-6v -n v -6 _n s-» .1, (e)

v 8-v =V 6v- 1-1 =V 1-bv= 'l'n v.

But 'I/J (v) = 'I/J (v), hence (A6) becomes
n n

48n+2
~ (t)= 2 2 Re['I/J (v)].

n (1-8) n
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Using 1/(I-t5v) = ~=O (t5v)k (I t5vl < 1) I 'l/Jn(v) can be expressed as

(J)

'l/Jn(v)=v n(t5-v)l (t5v)k.

k=O

Thus ~ (t) can be simplified as follows
n

where we have used the dummy variable k' = k + n in the first summation and

k' = k + n + 1 in the second summation and omitted primes in the final expression.

Since 'Ilk = eikO I Re(v k) = cos kO = cos k(cos-1t) = Tk(t) I the Chebyshev

polynomial of degree k. Hence ~ (t) in (A7) can be expressed in terms of the
n

Chebyshev polynomials by

We now express 1/ (u - t) in terms of the Chebyshev polynomials.
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28v
= (u- 8)( 1-8v) .

Using partial fractions (A9) can be simplified. Hence

_1__~ [_1 +_8_]
u-t - 1-82 1-8v u-B

_~ [_1 + 8v-
1

]
- 1-82 1-8v 1-8v-1

=~ [_1 + 8v ]
1- 82 1- 8v 1- 8v

[l) [l)

= 1~ ~2 [ 1 + L 8
k

v
k
+ L 8

k
v

k
]

k=l k=l

[l)

= .u: [ 1 + 2 \ 8k T (t) ]
1-82 l k

k=l
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Hence from (Al),(A8) and (A10)

CD CD CD

since

We first derive expressions for fo(t) and f
1

(t) from first principles.
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Derivation of r0 (t)

From (A5)

where from (A3)

iTJ 0-v
e = l-ov

[ B-» ] [1-011]
= l-ov 1-011

2 J: J:2 -i» .o
o r o e -e

- 2 '1-20cosO+o

(AI2)

(AI3)

where we have used i8v = e Taking the real part of (AI3), using t = cos () and

02 = 2uo - I , we obtain

1-utcos TJ = -.u-t

From equations (AI), (A4), (AI2) and (A14) we have

=~+ i-ut
u-t 2(u -1) (u-t)
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Derivation of Tt (t)

Similarly from (AS)

W1 (t) = cos ((I + TJ)

= cos (I cos TJ - sin (I sin TJ •

Taking the imaginary part of (A13) and simplifying as before, we obtain

2. 8 -1 . n
sui TJ = 28(u-t) sui tr ,

But (82-1)/28=u-1/8=8-u=-ju2 -l,sothat

rr:. v u- -1 .
sm TJ = - t sm (I .u-

(A16)

(A17)

Using t = cos (I and substituting for cos TJ and sm TJ from (A14) and (AI7) into

(AI6) we obtain

W1 (t) = u~t [ t(I - ut) + (1 - t2) j u2
- 1 ] .

From (AI). (A4) and (AI8)

(A18)

1 2
- -----=2-[ u -1 + 8(u- t) W1(t)]

(u-t) (u -1)

= 1 2 [u
2
-1 + [u - j u

2
- 1] { t(I- ut) + (1 - t2) j u2

- 1 }].
(u-t) (u -1)
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where 8 = u - j U
2

- 1 has been substituted. After some simplification it can be

shown that

which is the same as from (All) for n = 1.

(A19)

We recall from chapter 2 that P (A) = a f (t) ,where a = 2/ (M - m) and
n n

t = u - aA ,with u = (M + m)/ (M - m). Thus using (A15) and (A19) we obtain

and

2
P (1) = (JM+/iii) A

1 1\ 2mM - Mm'

DERIVATION OF RECURRENCE RELATION

From (A5)

'It 2=cos[(n+2)0+TJ]
n+

= cos[ (n + 1)0 + TJ + 0]

= cos[ (n + 1)0 + TJ] cos 0 - sin[ (n + 1)0 + TJ] sin 0

= t 'Itn+1 - ~ .[ cos(nO + TJ) - cos[ (n + 2)0 + TJ] ] .

Here we have used t = cos 0 and the well known trigonometric identity

sin A sin B = 1/2 [ cos(A - B) - cos(A + B) ] .
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Hence we obtain the relation

q, = 2t q, - q,
n+2 n+1 n

From equations (AI), (A4) and (A22) we have,

_ 1 t5n+2
r =-+ - - q,

n+2 u-t 2 1 n+2u -

1 t5 n+2
= - + - (2t q, - q, )

u-t 2 1 n+1 nu -

1 t5n+1 2 t5n
= u-t + 2t5t~1 q,n+1 - 15 -2- q,

u - u -1 n

1 [1 t5
n

+
1 1]= - + 2t5t - +-- q, - -

u-t . u-t u2-1 n+1 u-t

2 [1 t5
n 1]-15 -+-q,--

u-t 2 n u-tu -1

2
= 2t5t f - 152 f + 1-2t5fi+.t5

n+1 n u-t

But 1 - 2t5t + 152 = 215 (u - t) , hence

f 2 = 215t f 1 - 15
2

f + 215 .n+ n+ n

Multiplying by a = 2/ (M- m) , one obtains the recurrence relation

p 2(A) = 2t5t P 1(A) - 152 P (A) + 2at5.n+ n+ n

for P (A) .
n
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APPENDIXB

Here we derive results pertaining to the polynomials Q (A). These results represent
n

original work.

DERIVATION OF ERROR

From equation (2 .18), the polynomial Z CA) of degree n best approximating zero in the
n

interval [m,M 1,with Z (0) = 1 , is given by
n

Z CA) = [ T [M+m] ] -1 T [M+m- 2 A] ,
n n M-m n M-m

with maximum error of approximation

With U = (M+m)/ (M-m) ,

T [M+m] = T (u)
n M-m n

-1
= cos n (cos u)

= cos nz ,

- 1
where z = cos U is in general complex.
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Now

u = cos z

iz -iz
e +e

- 2

where /3 = etz
. Hence /3 satisfies the quadratic equation

/32 - 2u/3 + 1 = 0 .

with roots /31 and /32 given by

(84)

(85)

(86)

In fact /31/32= 1 from (85) or directly from (86). Substituting u = (M+m)/ (M-m) In

(86) it is easy to show that

Hence from (83)

T (u) = cos nz
n

. .
tnz -tnz

e +e
- 2
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We note that if P
2

= 0-1
is taken In place of Pi I the expression (B7) remains

unchanged.

Hence the maximum error of approximation is given by

DERIVATION OF Qo{A)

Letting n = 0 in equation (2.20) one obtains the expression

Q (A) = 1. [ 1 - _2_ T [M+m- 2"\ ] ] .
o ,.\ 0+0-1 1 M-m

(B8)

substituting T1(t) = t = (M+m-2,.\)/ (M-m) and 2/ (0+0-1) = (M-m)/ (M+m) in the

above equation we obtain

Q (A) = 1. [ 1 _ M + m - 2,.\ ]
o ,.\ M+m

2
M+m·

DERIVATION OF Ql(A)

Letting n = 1 in equation (2 .20) one obtains the expression
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Using

( M+ m) 2 + 4Mm - 8 (M+ m) A + 8 A2
. 2

(M-m)

and

Ql(A) can be expressed as

2 (M- m) 2
2 . '

(M+m) +4Mm

2
Q(A)=1[1_{1_ 8 ( M+ m ) A+ 8 A }]

1 A . 2 4 .
(M+m) + Mm

_8(M+m)-8A
- . 2·

(M+m) + 4Mm

DERIVATION OF RECURRENCE RELATION

(BID)

We derive a recurrence relation for the polynomials Q (A) , by using the recurrence
n

relation

T 2(t)=2tT l(t)-T (t),
n+ n+ n

for the Chebyshev polynomials.

76

(B11)



We rewrite (81) in the form

where t = (M + m - 2),)/ (M - m) = u - /l), I with u = (M + m)/ (M - m) and

/l = 2/ (M- m). Hence

T 2 (t)
Z (A) - ~n_+_

n+2 - Tn+2(u)

2tT l(t)-T (t)n+ n

Tn+1 (t) Tn+1 (u)
= 2t T (u) T 2 (u)

n+l n+

T(t) T(u)
n n

T (u) T 2(u)n n+

From the recurrence relation (811) we obtain

T (u) T l(u)n n+
T () = 2u "'::;:T;":":"'="""""'(u-) - 1.

n+2 u n+2

With the above substitution (812) becomes

Tn+1 (u)
Zn+2(A) =Z(A)+ T ()[2tZ l(A)-2uZ(A)].

n n+2 u n+ n

(812)

Substituting Zk(A) = 1-), Qk-l(A) (k = n, n + 1, n + 2) , into the above equation we
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obtain

Using u - t = a A and (from B8)

the above equation can be simplified to read

which can more conveniently be written as

Q 2(,\) = Q (,\) + [1+0~n~] [20t Q 1(,\) - 20u Q (,\) + 2ao] . (B13)n+ n 1+0 n+ n+ n
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APPENDIX C

In this appendix we review some of the earlier work done on the approximation to the

inverse operator A-1. Here A is not necessarily a positive definite operator.

In 1985, Mika, Cole and Pack [21] considered the approximation of the inverse operator

A-1 by approximations of the form Zo I . where A is a linear positive definite operator

in the sense that the inequality

m < ~,~ > ~ < A~,~ > ~ M < ~.~ >

is satisfied V~ E H. Using A -1 ~ z I we have

IIA-1-zII/=sup Il-zl·
>. E [m, M]

Since the supremum must occur at the end points m and M. we have

11 A -1 - z I 11 = max { I~ - z I, 11- z I}= ,(z) .

Minimization of (C2) with respect to z yields the optimal value

This is illustrated in figure C.1 overleaf.
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j(z)

l/M l/m
z

FIG C.1: Zero order approximation to A -1 .

The quantity r (zo) yields the optimal error of approximation

r = 1. [1.._1].o 2 m M

For non-selfadjoint operators A, they made the assumption

which is equivalent to m21I~112 ~ < A*A~,~ > ~ M
2 11~1I2. Now

(C4)

Since A*A is positive definite, the best zero order approximation to (A*Ar1 is

1/2 (1/m2+ 1/M 2) I.
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Hence A-1 approximated to first order in A* is given by

(C5)

It must be stated that the preceding approximation is due to the best approximation of

(A*A) - 1 by approximations of the form Zo I and is hence not the best approximation

-1
of A .

Mika and Pack [26] in 1986, sought approximations of the form zoI to A -1 , where

Zo E ((z) - the space of complex numbers, and A is a bounded linear and normal

operator in a complex Hilbert space H. Their technique involved locating the spectrum

(J (A-1) from the spectrum (J (A) and hence finding z = Zo that minimizes

11 A-1 - z I 11 = sup I t-z I·
AEa(A)

(C6)

For positive definite A with (J (A) c [m,M] , M > m > 0 I they obtained the well

known result in (C3) and (C4).

For A = 5 + iw ( w a real constant), with 5 positive definite and (J (5) c [m,M] I

(J (A-1) lies on the circle centred at -i/2w with radius 1/2w between points 1/ (M+iw)

and 1/(m+iw). From the illustration in figure C.2 it is clear that Zo is the centre of the

chord joining these two points .
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tW 1
Iv[+tW

(7(A)

z-Plane

M

Thus

and

FIG C.2: Zero order approximation to A-1 .

1[1 1]
Zo = 2" M+iw + m+iw (C7)

(C8)

If £T (A) lies within a circle of radius p with centre e= r l/J , p < r, then £T (A-1) is

contained in a circle of which the centre is Zo and the radius is '0' An example is the

operator A = U+ K with 11 K 11 ~ p < r . This is shown in figure C.3 .

Thus

1[1 1]Zo = 2" r-p + r+p
-it/J r e-tt/J

e = -"2~-=2-

r -p
(C9)
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o

z-Plane

FIG C.3: Zero order approximation to A -1 .

and

(ClO)

If A is such that IJ (A) ={ A : Re A ~ - k} ,then IJ (A-1) is the circle centred at

zo = -1/2k with radius '0 = 1/2k. (see figure CA).

I z-Plane
I

a (A) I
I

0
-k -l/k

I

FIG C.4: Zero order approximation to A-1 .
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Mika and Pack [26] also considered polynomial approximations Pn (A) to the

inverse operator A-1 for positive definite A. They found the zero and first order

approximations together with the associated errors and stated the necessity of numerical

algorithms to find higher order approximations. Thus they obtained

with associated error

2
P (A) = (..[M + JTii)

1 2mM

2_ (..[M - JTii)'1 - 2mM

A
Mm

(C11)

(C12)

For operators of the form A = I + K, where K is positive definite with o (K) C [O,M],

M < 1 , they showed the superiority of 'lover, , the error associated with the first
neu

order Neumann expansion of (I + K) -1. In fact they showed that '1 can be reduced

to less than 1/8 of, .
neu

Using the spectral theory of unbounded normal operators, Lamb, Mika and Roach [27], in

1987, found polynomial approximations for resolvents and semigroups in terms of inverses

and resolvents respectively. Consider the resolvent (I + A) - 1 , where A is unbounded

and selfadjoint with u (A) C [1/ e,m) (0 < e < 1) . Since u[ (I + Ar 1
] C (O,e/ (e+1)],

the zero order approximat ion to (I + A) -1 is given by

e I
2 (e+l) ,
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with associated error

c
2 (c+l) .

(C14)

Since polynomials in A are unbounded, it is not possible to find higher order

approximations in terms of A. Because A -1 is bounded, higher order approximations

in terms of A -1 are possible. Thus the first order approximation to (I + Afl is

represented by the polynomial

( -1) [2+C 1] A-
1

Pi A = 2(1+c) - .jl+c 1+ l+c '

with the error given by

1 [ 1]22" 1- (1 + Cf2

Using a Neumann expansion one can obtain the second order expression

(C15)

(C16)

It was shown in [27] that the optimal polynomial Pi (A-1) given in (C15) is superior to

the Neumann expansion of second order for most values of c. However, for values of c

close to zero the Neumann expansion is better, but at the expense of using a non optimal

second order polynomial.

The problem of the zero order approximation of inverses of arbitrary operators A whose

spectrum IT (A) is in general complex, is obviously complicated by the difficulty in
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locating (J (A) and hence (J (A-1). One can imagine the difficulty of obtaining higher

order approximations to inverses of operators whose spectrum is complex.

In 1992 Bond and Mika [1] derived the polynomials P (A) discussed in chapter 2. They
n

obtained the three point recurrence relation (2.12) thus providing an effective means for

evaluating these polynomials. However they did not investigate the application and

usefulness of these polynomials.
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APPENDIX D

In this appendix we derive in detail some of the results for linear functionals presented in

chapter 5.

DERIVATION OF Ji4!) AND BOUNDS FOR Of

Bounds for Of = < x,f> in equation (5.4) can easily be calculated by using the trial

function 4! = x + AX ,where x is the solution of equation (5.1) and AX represents the

error in approximating x by 4!. Here we take a real Hilbert space and hence symmetric

inner products and consider positive definite A, writing

< x,f> = < 4>,f> - < AX,f> .

Now

< AX,f> = < AX,Ax >

= < AX,A4> - AAX >

= < AX,A4> > - < AX,AAX>

= < AAx,4> > - < AAX,AX>

= < A4> - f,4> > - < AAX,AX > .

Substituting (02) into (01), one obtains

< z.]» = 1/4» + < AAX,AX> ,
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(03)



where

f/iI» = < iI>,2f- Ail> > . (04)

Since it is assumed that A is bounded below by m > 0 and above by M> m , the

condition

m < ~,~ > ~ < A~,~ > ~ M < ~,~ >

is satisfied V~ EH.

Hence

1/2 1/2< AD.x,D.x > = < A D.x,A D.x>

~ l/m< A (A 1
/
2D.x),A1

/
2D.X >

= l/m < AD.x,AD.x >

= l/m 11 Ail> - fl1 2
.

Similarly, it can be shown that

< AD.x,D.x > ~ 1/M 11 Ail> - fl1 2
.

Using (05) and (06) in (03) we obtain the result

(05)

(06)

as in equation (5.4).
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Now

J/fP) = < fP,2f- AfP >

= < fP,f> + < fP,f- AfP >

= < fP,f> + < fP,A(x- fP) >

= < fP,f> + < fP - z, A (x - fP) > + < z, A (z - fP) >

= < Ax, x > - < A (x - fP), x - fP > . (08)

Since A is positive definite, it follows from (08) that J/ fP) is maximum when fP = x.

The funct ional J/fP) can also be derived by using variational calculus [28]. Here the

linear functionals are defined by a suitable integral with respect to the variable z in the

interval (a,b). We depart from convention and use the symbol D. instead of 8 to

denote increments and first order variations. This is to avoid confusion since the symbol

8 has already been used in chapter 2 to denote a convergence parameter.

The basic problem is to find a functional J/fP) (fP = fP (z)) such that increments D.fP

in fP yield only second order increments in the functional J/fP). This is represented by

the equation

(09)

Terms involving o (D.fP) in Jf(fP + D.fP) - J/fP) represent the first variation D.J
f

of

J/fP) . The requirement that this first variation disappears results in an equation called

the Euler equation.
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If the equation

ACf> = f (010)

is to be an Euler equation of of the functional JiCf» , then the first variation !::J..Jj must

have the form

f)J b

b.J =~ b.Cf> =J (1- ACf» b.Cf> dz
j a

= < f- ACf>,b.Cf> >

= < j,b.Cf> > - < ACf>,b.Cf> >

= b. < j,Cf> > - 1/2 b. < ACf>,Cf> >

= ~ b. [< 2j,Cf> > - < ACf>,Cf> >] .

From (011) it follows that Jj(Cf» can be taken as

JiCf» = < 2j,Cf> > - < ACf>,Cf> > = < Cf>,2f- ACf> > ,

which is the same as (04).

DERIVATION OF J(w,CP) AND ADJOINT EQUATION

(011)

We derive the functional J(w,Cf» by again usmg variational calculus [28]. For

non-selfadjoint A it is necessary to introduce an additional trial function W = W(z) .

Hence, if equation (010) is to be the Euler equation of the functional J(w,Cf» r the first

variation b.J(if!) with respect to W must have the form
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b
llJ(iI!) = Ull'l1 =J (1-AcI»ll'l1 dz

a

= < f- AcI>,ll'l1 > .

Integrating (012) with respect to 'l1 yields

b
J('l1,cI» = J [(1- AcI» 'l1 + h(cI>,z) ] dz,

a

(012)

(013)

where h(cI>,z) is a constant of integration. Now the first variation llJ(ip) of equation

(013) with respect to cI> yields

If h (cI>,z) = 9 (z) cI> , then from (014)

llJ(ip) = - < AllcI>,'l1 > + < g,llcI> >

*= - < llcI>,A 'l1 > + < llcI>,g >

*= - < .6.cI>,A 'l1 - 9 > .

(014)

(015)

In the above we have assumed real inner products. Since the first variation fj.J(ip) must

also disappear, we obtain the dual or adjoint equation

*A'l1=g.
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From (DI3) we obtain

J(\IT,4» = < 4>,g > + < j,\IT >- < A4> ,\IT > .

DERIVATION OF BOUNDS FOR n

(DI7)

Bounds for n = < x,g > in equation (5.17) can easily be obtained by using the trial

functions 4> = x + /lx and \IT = y + /ly. Here we recall that x is the solution of the

equation Ax = f and y is the solution of the dual or adjoint equation A*y = 9 .

Hence

*< x,g > = < 4>,g > - < /lx,A y> .

Now

A* * *< /lx, y> = < /lx,A \IT - A /ly>

*= < A/lx,\IT > - < /lx,A /ly>

= < A4> - j,\IT > - < 4> - x,A*\IT - 9 > .

Substituting (DI9) into (DI8), one obtains

< x,g > = J('1',<P) + < z - <P,g - A*'1' > ,

(DI8)

(DI9)

(D20)

where J('1',4» is given by (017). Using x - 4> = A -1 (1- A4» , the last term in (020)

can be rewritten as

< x - 4>,g - A*\IT > = < (A -1 - V) (1- A4> ),g - A*\IT >

+ < V(1- A4> ),g - A*\IT > ,
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where V is an operator approximating the inverse A - 1 . Hence (020) becomes

< x,g > = J(W,cI» + < V(1- AcI> ),g - A*w >

-1 *+ < (A - V) (1- AcI> ),g- A W> .

Using the Schwarz inequality

(022)

I< (A -1 - V) (1- AcI> ),g - A*w > I s 11 A -1 - Villi f - AcI> 1111 9 - A*w 11 '

one obtains the result

n S J + < V(f- AcI>Lg- A*w >+ 11 A-1
_ Villi g- A*w 1111 f- AcI> 11,

(023)

n ~ J + < V(f - AcI>Lg - A*w >-11 A- 1
_ Villi g- A*w 1111 f- AcI> 11,

of (5.17). Here J denotes J(w,cI».
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