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ABSTRACT 

RNA interference (RNAi), which can be induced by chemically synthesized small interfering 

RNA (siRNA), has emerged as a powerful tool in molecular biology for the treatment of genetic 

disorders. However, due to the challenges that exist in delivery of these siRNA molecules, 

which include poor cellular uptake and instability, an efficient, stable and non-toxic delivery 

vehicle needs to be designed and developed for the introduction of siRNA to target cells. Due 

to the rapid progress achieved in the field of nanotechnology for drug and gene delivery, gold 

nanoparticles (AuNPs) have presented themselves as potential candidates for the therapeutic 

delivery of siRNA. 

In this study, five cationic AuNP-based delivery systems were formulated, their cellular uptake 

efficiency assessed in four different mammalian cell lines in vitro and their ability to introduce 

the c-MYC oncogene targeted siRNA for gene silencing in a cancer cell culture model was 

investigated. AuNPs were synthesized using the modified Turckevich-Frens citrate reduction 

method and were functionalised with the natural cationic polymer, chitosan. The AuNP 

formulations were further modified with 0 – 5 % (w/w) of either polyethylene-glycol 400 

(PEG400) or polyethylene-glycol 2000 (PEG2000), which afforded sterically stabilized AuNP 

formulations. The shape, size and zeta potential of the functionalised AuNPs (FAuNPs) and 

their corresponding nanocomplexes with siRNA were evaluated by transmission electron 

microscopy (TEM) and nanoparticle tracking analysis (NTA), with synthesis and 

functionalisation being confirmed by UV spectroscopy and Fourier Transformed Infra-red 

(FTIR) spectroscopy. The ability of these FAuNPs to bind, condense and protect siRNA were 

assessed using the band shift, SYBR Green II dye displacement and RNase A protection assays, 

respectively. In vitro cytotoxicity of the nanocomplexes was determined using the MTT, 

AlamarBlue® and acridine orange/ethidium bromide dual staining in the human embryonic 

kidney (HEK293), epithelial colorectal adenocarcinoma (Caco 2), breast adenocarcinoma 

(MCF-7) and colon adenocarcinoma (HT-29) cell lines. Cellular uptake studies were conducted 

using FITC-labelled siRNA in all 4 cell lines and the fluorescence quantitatively evaluated. 

The gene silencing efficiency of the FAuNP formulations were further assessed at the mRNA 

and protein levels by qRT-PCR and ELISA analysis following the introduction of c-MYC 

siRNA to the MCF-7 cell line, in vitro. 

All FAuNP formulations were capable of successfully binding, condensing and protecting the 

siRNA against degradation. The FAuNPs were well tolerated by all the cell lines being tested 
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in vitro with observed cell death found to be apoptotic in nature. Enhanced cellular uptake of 

the siRNA nanocomplexes was observed which corresponded to successful silencing of the c-

MYC gene at the mRNA level, exceeding that of commercially available Lipofectamine 3000®.  

PEG400 Chito-AuNPs were the most successful with up to a 7 -fold decrease in c-MYC 

expression at the mRNA level, and up to 94.6% reduction in gene expression at the protein 

level. Overall, these FAuNP nanocomplexes have shown great potential as vehicles for 

enhancing cellular uptake and c-MYC siRNA gene silencing in the tested cancer cell culture 

model.  

Key words: Gold nanoparticles, PEGylation, gene silencing, cytotoxicity 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 BACKGROUND OF STUDY 

Since the discovery of RNA interference (RNAi) in 1998, a new paradigm for the treatment of 

various incurable genetic diseases has been created. RNAi is a post-transcriptional gene 

regulatory mechanism that is activated by small interfering RNA (siRNA), which are double 

stranded 21-25 nucleotide RNA molecules, that inhibit translation or lead to the degradation of 

target mRNA which supresses the expression of that gene (Zhao et al.,2012). The use of 

chemically synthesized siRNA molecules to target a specific mRNA sequence in mammalian 

cells can lead to sequence specific gene silencing. These siRNA molecules present a unique 

group of therapeutic agents comparable to protein-based drugs, namely, antibodies and 

vaccines. A siRNA-based drug can potentially target any gene of interest, irrespective of the 

location within the cell or the protein structure and, therefore, have emerged as a new 

generation of bio-drugs.  

 

Malignant tumours are a result of a multistep process of alterations in several tumour 

suppressor genes, oncogenes or genes involved in the regulation of differentiation and growth 

of cells. Cancer is the leading cause of death worldwide with conventional cancer therapies 

including chemotherapy, radiation and surgery. However, due to the adaptive nature of cancer 

cells, most of these therapies fail. Furthermore, the exposure of the malignant tumours to 

chemical agents presents selective pressure which allows these cancerous cells to adapt, survive 

and grow which results in their resistance to treatment (Croce, 2008; Ashworth et al., 2011). 

Hence the use of gene therapy as a viable alternative. Among the many proto-oncogenes 

causing the onset of cancer is the c-MYC oncogene. This oncogene is found to be upregulated 

in a variety of different human cancers and is believed to be involved in the initiation, 

maintenance and progression of the disease. Strategies aimed at eliminating the oncogenic 

activity of the c-MYC oncogene can be achieved using RNAi, mediated by specifically 

designed siRNA molecules which can inhibit the expression of the c-MYC gene, thereby 

eliminating its oncogenic activity.  

 

Although RNAi, mediated by siRNA molecules, offers an attractive alternative to the 

conventional therapeutic strategies, there exists challenges in the systemic delivery of siRNA 
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to intracellular targets, which present limitations for the success of siRNA-based therapy. 

These hurdles include the high molecular weight, hydrophilic character and polyanionic nature 

of siRNA which minimizes its association with the cell membrane, thereby hampering the 

cellular entry of siRNA molecules (Whitehead et al., 2009). Furthermore, these siRNA 

molecules are prone to nuclease degradation, activation of the immune response and short 

circulation times in the blood system which limits their gene knockdown potential. Hence, a 

major challenge for siRNA- based therapeutics is the development of a suitable carrier that is 

non-toxic and capable of introducing the siRNA to the target. Several experimental designs for 

gene therapy have utilised viral vectors that were based on recombinant viruses for the delivery 

of the therapeutic agent, however the hosts experienced inflammatory- type toxicities due to 

the adaptive immune response to the viral vectors. Furthermore, the large-scale production of 

viral vectors is also a major limitation. This led to an increased interest in non-viral vectors 

which became the delivery vehicles of choice as they provide possible solutions to the 

limitations associated with viral vectors. To date, there have been several nanoparticulate 

systems that have emerged to meet these challenges although the transfection and expression 

levels of the delivered gene needs to be enhanced. Hence, the cellular uptake and endosomal 

release of the gene of interest requires improvement. Due to the rapidly developing field of 

nanotechnology, inorganic nanoparticles have been utilised as gene delivery vehicles as they 

can effectively bind and release the siRNA from the endosome while preventing degradation. 

Among these, gold nanoparticles (AuNPs) have attracted much attention for their biological 

and biomedical applications due to their desirable physical and chemical properties, ease of 

synthesis, functionalisation with polymers, and low toxicity due to their inert core.  

 

The study at hand aims to address the challenges associated with siRNA delivery by developing 

a AuNP delivery system that is non-toxic and efficient. The development of an ideal vector can 

overcome some of the associated obstacles and provide effective RNAi to target cells, thereby 

allowing for the possible cure and treatment of diseases, such as cancer, at a molecular level.  

 

1.2 SCOPE OF STUDY 

The delivery of siRNA molecules remains one of the major obstacles that needs to be overcome 

for the effectiveness of RNAi therapy to be achieved. Due to the safety concerns associated 

with viral vectors, non-viral vectors have become the delivery vehicles of choice. For the 

success of RNAi therapy to be achieved, a delivery vehicle needs to be formulated that is non-
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toxic, safe, stable under storage conditions, capable of protecting the siRNA against 

degradation and have a high transfection potential. AuNPs have become increasingly popular 

as, once functionalised with suitable polymers, meet the requirements for an ideal delivery 

vehicle. However, their design and functionalisation need to be optimized for the efficient 

delivery of siRNA, for their potential use in clinical trials. In this study, five cationic AuNP 

formulations will be evaluated for their ability to enhance cellular uptake in four cell lines, as 

well as their ability to deliver c-MYC siRNA to a c-MYC over-expressing breast cancer cell 

line for effective gene silencing. 

 

1.2.1 Hypothesis 

AuNP delivery systems functionalised with the highly cationic, natural polymer chitosan and 

further modified with steric stabilising polyethylene glycol (PEG) can enhance the delivery of 

siRNA in vitro, as well as increase the c-MYC siRNA delivery to MCF-7 cells, thereby 

enhancing the oncogenic silencing potential of these siRNA molecules, while exhibiting 

minimal toxicity to the cell lines being tested.  

 

1.2.2 Aim 

The aim of this study was to develop cationic AuNPs functionalised with chitosan and further 

modified with PEG polymers (PEG2000 or PEG400) at two different mass percentages, and to 

evaluate their physical and chemical characteristics, cytotoxicity and transfection abilities in 

four mammalian cell lines as well as the delivery of c-MYC siRNA for gene silencing in a 

breast cancer cell model.  

 

1.2.3 Objectives 

The following objectives form the premise to test the hypothesis and achieve the aim, 

• Synthesis of five AuNP delivery systems, each functionalised with chitosan and to 

PEGylate four of the chitosan functionalised AuNP formulations with either 2 or 5 % 

(w/w) of PEG400 or PEG2000. 

• Preparation of nanocomplexes between the siRNA and functionalised AuNP (FAuNP) 

and assessing the binding and protection efficiency using the band shift, SYBR Green 

II dye displacement and RNase A protection assays. 
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• Characterisation of the AuNP, FAuNPs and their nanocomplexes with siRNA by 

measuring the zeta potential and sizing using NTA and TEM analysis. 

• To evaluate the toxicity of the FAuNP systems with the 3-(4,5- Dimethyl-2-thiazolyl)-

2,5-diphenyl-2H-tetrazolium bromide (MTT), AlamarBlue® toxicity assays and 

apoptosis determination using Acridine orange/ Ethidium Bromide dual staining in 

vitro in four mammalian cell lines. 

• To monitor the transfection activity of the FAuNP delivery systems using fluorescent 

cellular uptake studies. 

• To assess gene silencing activity of the FAuNP delivered c-MYC siRNA by qRT-PCR 

and ELISA assays. 

 

1.3 NOVELTY OF STUDY  

AuNPs were synthesized using the modified Turkevich- Frens method. These AuNPs were 

then functionalised with 0.1% Chitosan (w/v) and PEGylated with PEG400 and PEG2000 at mass 

percentages varying between 0-5%. To date, the current focus is the interaction between AuNPs 

and DNA with target specific siRNA binding and delivery for gene silencing not been 

conducted. Furthermore, PEGylation of AuNPs with PEG400 and PEG2000 has not been fully 

exploited. Accordingly, this study aims to evaluate the ability of these five AuNP formulations 

to efficiently deliver siRNA that targets the c-MYC oncogene in vitro. 

 

1.4 OVERVIEW OF THESIS 

 

Chapter One 

This chapter outlines the background to the study and the challenges inherent in siRNA 

delivery. It also focuses on the scope, hypothesis, aim and objectives of the study. 

 

Chapter Two 

In this chapter, the relevant literature is reviewed. Firstly, an overview of RNAi is discussed 

and the potential of the c-MYC gene as a gene target for siRNA therapeutics. The obstacles 

faced in siRNA delivery and the use of non-viral delivery systems is outlined. Lastly, the 

cellular uptake mechanisms of the nanoparticles are discussed. 
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Chapter Three 

Chapter three details the research design and laboratory methodologies undertaken in this 

study. The AuNP synthesis and functionalisation with chitosan and PEG is described, followed 

by the characterisation of their physical and chemical properties using UV spectroscopy, ICP-

OES and FTIR.  The siRNA binding and protection studies were conducted and siRNA 

nanocomplexes were further characterised with respect to size and zeta potential. Finally, the 

toxicity and transfection efficiency of the siRNA: FAuNP nanocomplexes were evaluated, in 

vitro, in the Caco 2, HEK293, MCF-7 and HT-29 cell lines., while the gene knockdown 

efficiency of the c-MYC siRNA: FAuNP nanocomplexes was assessed at the level of 

transcription and translation using qRT-PCR and ELISA assays in the MCF-7 cell line.   

 

Chapter Four 

This chapter highlights all the findings in this study with an interpretation of the results and 

comprehensive discussion which adds perspective to the investigation. 

 

Chapter Five 

This chapter provides the conclusion to the study and highlights the outcomes with respect to 

the aims and objectives. Contributions made by this investigation in siRNA therapeutics are 

discussed with possible limitations in this study being documented and assessed. Finally, 

further research recommendations are made to assist in optimising the current system for 

clinical studies. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 Gene Therapy: An Overview 

In the early 1850’s, Gregor Mendel, an Austrian monk, began the study of genetics by 

conducting a number of experiments on peas. He observed that inheritance of characteristics 

occurred as separate units that we now know are genes (Misra, 2013). This work became the 

foundation for future scientific achievements in the field of genetics. A major breakthrough 

occurred in the 1950’s by James Watson and Francis Crick when they discovered and 

developed their model of the double stranded helix of DNA. Genetic advances and DNA gene 

isolations that followed, resulted in the emergence of gene therapy in the 1980’s. 

Gene therapy has gained much interest in the field of science over the years and has become 

an important strategy to potentially treat or cure the development of genetically based diseases. 

The basis of this therapy is the introduction of a corrective or functional copy of a gene into a 

cell that possesses the defective gene. Hence, genetic defects can be corrected, and cancerous 

cells can be eliminated. Although it appears that gene therapy is a new field of research, it has 

been a point of interest for decades with the first proposal being expressed by Amos in the 

1960’s who discovered that nucleic acid uptake by cultured cells was enhanced following the 

complexation of RNA with protamine (Amos, 1961; Huang et al., 1999). This was followed 

by the proposal of introducing exogenous DNA to the nuclei of cells for treatment of disease 

in 1972 (Kim et al., 2013).  

Many laboratories in medicine, biochemistry, and pharmacy are now focusing their attention 

on gene therapy and research into this concept has since expanded tremendously (El-Aneed, 

2004). Following advances in research, gene therapy can now be defined as the introduction of 

nucleic acids, either DNA or RNA, which can be used to prevent or treat inherited or acquired 

diseases (El-Aneed, 2004; Robbins and Ghivizanni, 1998). However, one of the most important 

requirements is the identification of the disease-causing gene to be treated. This will, lead to 

the diagnosis of the disease and appropriate treatment for the defect. Approximately, 2000 gene 

therapy clinical trials have been conducted for the treatment of diseases over the past 25 years, 

some of which are outlined below (Table 2.1). 
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Table 2.1: Some of the disorders undergoing gene therapy clinical trials (Misra et al., 2013; 

Hill et al., 2016). 

Disease 

AIDS 

ADA Deficiency 

Asthma 

Brain Tumours 

Breast, Colon, Lung, Liver, Ovarian and Prostate cancers 

Diabetes 

Hemophilia 

Melanoma 

Muscular Dystrophy 

Neurodegenerative Disease 

 

Although gene therapy was discovered almost 5 decades ago, it has had moderate success with 

95% of clinical trials not progressing beyond Phase II trials. Hence, there is still a need to 

overcome challenges which can produce an effective and clinically relevant treatment (Hill et 

al., 2016).  The majority of these trials have been conducted in Europe and the United States 

with a large portion used for the treatment of certain cancers (Figure 2.1) (Ferro et al., 2016; 

Knoel and Yiu, 1998; Ginter, 2000).  The potential use of gene therapy for cancer therapeutics 

will be discussed further. 

 

Figure 2.1: Graphical representation of diseases currently addressed by gene therapy trials (Adapted 

from Misra et al., 2013). 

Cancer

70%

Infectious 

Diseases

10%
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Diseases
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Other Diseases
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2.2 Gene Therapy for Cancer Therapeutics 

 
Cancer is said to be one of the leading causes of death worldwide and is a major health issue 

(Yamamoto and Curiel, 2005). Although knowledge into cancer biology has increased 

tremendously with time, fatalities that occur due to this disease seems to be on the rise with 8.2 

million deaths and 14.1 million new cases in 2012 alone (Mendes et al., 2017; Arvizer et 

al.,2010; Amer, 2014).  

Cancer is believed to be a result of a multi-step process of alterations or mutations to 

oncogenes, tumour suppressor genes or micro RNA genes which control cell growth 

(Figueiredo et al. 2010). When there is an increase in activity or overexpression of proto-

oncogenes, proliferation signalling pathways become activated and these genes, therefore, 

become cancer causing genes and are referred to as oncogenes. Cell growth and division are 

controlled by tumour suppressor genes and when inactivated, results in uncontrolled cell 

division and tumour formation (Draz et al., 2014). 

There are many challenges present in the search for a treatment and possible cure for cancer 

due to the aggressive and invasive growth of tumours, their ability to avoid mechanisms that 

prevent apoptosis, as well as the complexity of the pathways involved in cancer development 

(Hanahan and Weinberg, 2000; Li et al., 2013). The common and traditional methods of cancer 

treatment include chemotherapy, radiotherapy and surgery. These treatment strategies are not 

as effective due to the lack of specificity which results in negative side effects on normal cells 

and, in most cases, do not completely eradicate the invasive tumour. Furthermore, when a 

relapse occurs, multidrug resistance or cross-resistance with anticancer agents may take place, 

which could lead to an increased risk of developing other types of cancers (Fatemian et al., 

2014; Bassal et al., 2006). Therefore, there is a need to develop new treatment options which 

can overcome these issues, and with gene therapy treatment can occur at the molecular level 

with the use of gene silencing, mutation correction, suicide gene therapies and antiangiogenic 

therapies (Cross and Burmester, 2006; Amer, 2014; Duarte et al.,2012). 

The identification of genes that play a role in tumour cell genetic alterations, that is, cancer 

causing genes, can lead to the possibility of designing silencing strategies that are selective and 

can treat cancer at the molecular level. Therefore, the use of siRNA gene therapy, that is, gene 

silencing, is an attractive method for the treatment of cancer at its source (Mendes et al., 2017). 

Following several pre-clinical studies, it was reported that tumour cell growth, metastasis and 

chemotherapeutic drug resistance can be inhibited by gene silencing (Deng et al.,2014). RNA 
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interference (RNAi) is a fairly new technology and it has become one of the most widely used 

and a powerful tool for sequence- specific gene silencing (Deng et al.,2014; Duarte et al.,2012). 

 

2.3 RNA Interference 

2.3.1 An Overview of RNA Interference 

RNA interference (RNAi) is a natural, sequence specific, post transcriptional mechanism for 

gene regulation. It is known to control gene expression through the degradation of the 

corresponding mRNA, a process mediated by small double stranded RNA (ds RNA) molecules 

known as siRNA (Zhang et al.,2007). In recent years, RNAi has gained interest for the analysis 

of mammalian gene functions in vitro and in vivo as well as for the silencing of gene expression 

(Kim et al. 2010; Leung and Whittaker, 2005).  

RNAi was first discovered in the late 1980’s by plant biologists, Napoli and co-workers, who 

found gene silencing pathways in plants, however, the exact mechanism was unclear 

(Hammond, 2005; Zhang et al.,2007). Andrew Fire and Craig Mello made a ground-breaking 

discovery in the late 1990’s, as their studies showed that ds RNA can elicit gene silencing in 

the nematode Caenorhabditis elegans (Fire et al., 1988). Their research revealed that RNAi 

was an evolutionary conserved gene silencing mechanism, and that gene silencing was more 

effective when using ds RNA as opposed to either individual strand (Zhang et al.,2007). In 

2001, El-Bashir and co-workers demonstrated that RNAi occurs in mammalian cell lines using 

synthetic siRNA. The siRNA duplex consists of short dsRNA molecules that are made up of 

21- 23 nucleotides with a 19-base pair duplex region (Figure 2.3) (Kim et al., 2010). A 

characteristic feature of siRNA is the presence of a two nucleotide 3ˈ overhangs which is 

recognized by the enzymatic machinery of RNAi (Meister and Tuschl, 2001). 

 

 

 

 

 

Figure 2.2: Schematic representation of siRNA duplex  

19 Nucleotide duplex region 

3ˈ 

5ˈ 3ˈ 

5ˈ 
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The use of siRNA as a therapeutic agent has an advantage in affecting undruggable targets 

(Draz et al.,2014). Cancer has been shown to be heterogeneous in nature with each patient 

being unique and requiring individualized treatment. siRNA can be chemically synthesized to 

target any mRNA, and treat each individual based on the gene being overexpressed. These 

breakthroughs have showcased the great potential of this technology and have spurred intensive 

research on siRNA therapeutics and its applications (Davis, 2009; de Fougeroles, 2008). 

Potential targets for siRNA gene silencing are outlined in Table 2.2. 

 

Table 2.2: Possible targets for siRNA in cancer therapy (Resnier et al.,2013; Zhou et al., 

2013; Draz et al.,2014). 

siRNA Target Disease 

PLK 1 Breast Cancer 

Cyclin B Prostate Cancer 

MAD 2 Colon Cancer 

Mcl-1 Breast Cancer 

c-MYC Breast, Colon Cancer 

PAR-1 Melanoma 

E6/7 Renal Cancer 

KRASG12D Pancreatic Cancer 

 

2.3.2 siRNA mediated Gene Silencing 

The RNAi machinery is initiated following the introduction of siRNA. The siRNA 

macromolecule is produced from large ds RNA duplexes that are digested by the endonuclease, 

DICER-2 (Zhang et al.,2007; Kong et al.,2007; Tuschl et al.,1999). Alternately, siRNA can be 

synthesized chemically and introduced into the cytoplasm of mammalian cells to trigger the 

process. The process of RNAi is outlined in Figure 2.4.  

The siRNA forms part of a nuclease complex called the RNA-Induced Silencing Complex 

(RISC) (Hammond, 2005; Aargaard and Rossi, 2007). The RISC complex contains Argonaute-

2 (Ago-2) within its core, which is responsible for RISC activation by melting the ds RNA and 

cleaving the target mRNA (Wall and Shi, 2003). Ago-2 consists of three domains, namely, 

PAZ, MID and PIWI. The PAZ and MID domains anchor the RNA and PIWI is involved in 

the mRNA silencing (Kim et al.,2009). The duplex is unwound by ATP-dependant helicases 

and the sense strand is then cleaved by Ago-2 (Matranga et al.,2005; Rand et al.,2005). The 

cleavage of the ds RNA by Ago-2 results in the formation of the activated RISC complex which 
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contains a ss RNA molecule, being the anti-sense strand of siRNA, and remains bound to the 

RISC complex via Mg2+ (Ma et al.,2005). Complimentary mRNA sequences are then 

recognised by the activated RISC complex, a recognition is guided by the anti-sense RNA 

strand in the cytoplasm by Watson-Crick base pairing (Ryther et al.,2005). Cleavage of the 

mRNA strand by Ago-2 occurs between bases 10 and 11 relative to the 5ˈ phosphorylated end 

of the antisense siRNA, inhibiting translation of the mRNA (Hammond, 2005; Elbashir et 

al.,2001). The guide strand is then recycled and allows for cleavage of other mRNA copies. A 

distinguishing feature of siRNA mediated gene silencing, as compared to other nucleic acid 

therapeutics, is RISC recycling which may result in a prolonged silencing effect, of up to 7 

days in dividing cells and weeks in non-dividing cells. Furthermore, repeated siRNA 

administration can result in long term gene knockdown (Bartlett and Davis, 2006). 

 

Figure 2.3: Illustration of the mechanism of RNA interference initiated by synthetic siRNA (Liao et 

al.,2016) 

 

2.3.3 Potential of siRNA gene silencing therapeutics in cancer treatment 

Cancer occurs due to a number of cellular gene mutations which usually involve a combination 

of oncogene activation or tumour suppressor gene inhibition which results in the suppression 

of the naturally occurring apoptotic processes and uncontrolled cell growth (McCleod, 2013; 
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Suva et al.,2013). The use of RNAi, induced by therapeutic siRNA, can be effective for cancer 

treatment as there are many key genetic mutations that lead to the onset of cancer. The 

specificity of the therapeutic siRNA molecule to target and inhibit various cancer related genes 

is a major advantage and allows for the treatment of ‘undruggable’ proteins, such as 

transcription factors, that are involved in the initiation of tumour formation, growth and 

metastasis. Therefore, the molecular targets need to be identified to allow for ‘personalised’ 

therapies for various cancers (Lee et al.,2016). The current targets for siRNA-based cancer 

therapies shall be discussed below.   

 

2.3.3 (a) Lung Cancer 

 Lung cancer is the most common tumour type and among the three lung cancer types, non-

small cell lung cancer is the most frequently occurring and makes up approximately 85% of 

lung cancers (Molina et al.,2008; Herbst et al.,2008). Treatment strategies for lung cancer, 

which include surgery and radiochemical therapies, often fail due to the metastatic nature 

associated with lung cancers, therefore, siRNA therapeutics can be considered.  

Mutations of the epidermal growth factor receptor (EGFR) are found to be in various cancer 

types and is the most frequent in non-small cell lung cancer. Mutations usually occur on 

exons18-21 with the most common mutation involving the deletion of exon 19. This exon is 

involved in the activation of tyrosine kinase activity, and its deletion induces the downstream 

survival signalling and poor growth pathways. In 2003, Takahashi and colleagues found that 

the wet weight of tumours that were targeted by allele specific siRNA against the oncogenic 

EGFR mutant was much lower in the treated group as compared to the untreated control group. 

Moreover, the treated tumour tissue showed increased caspase-3 activity which indicates that 

apoptosis was induced. With this treatment, the oncogenic EGFR mutant was inhibited with 

the normal EGFR allele being unaffected (Takahashi et al.,2013).  

KRAS mutations are often found in lung tumours and those found in EGFR mutant lung 

tumours are resistant to EGFR- directed treatment strategies. In 2014, Xue et al. used a 

combination treatment strategy targeting KRAS activation and p53 function loss in a 

genetically engineered mouse model. The authors utilized a polymer-based nanoparticle loaded 

with KRAS-targeted siRNA and miRNA that could partially restore p53 functions and injected 

these therapeutic molecules intravenously to mouse models. The authors found that 63% of 

tumour regression resulted in an increase in apoptotic cells. Furthermore, it was found that the 
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mice models treated with this combination therapeutic model survived much longer than those 

treated with either siRNA or miRNA treatment alone (Xue et al., 2014). This combination 

treatment strategy allows for personalised treatment for multiple gene mutations identified in 

a particular cancer patient. 

Resistance to chemotherapy drugs, such as docetaxel, is generally known to be facilitated by 

the protein Human- ribophorin II (RPN2), which is part of the N-oligosaccharyltranferase 

complex. Additionally, this protein is also known to be anti-apoptotic by stabilizing the p53 

mutant which results in tumour survival (Kurashige et al.,2012). Fujita and co-workers 

delivered RPN2 targeted siRNA, via inhalation, to the lung and found that RPN2 expression 

was suppressed with inhibition of A549 lung xenograft growth (Fujita et al.,2013).  

 

2.3.3 (b) Liver Cancer 

Hepatocellular carcinoma (HCC) is a major type of liver cancer and is the most frequently 

occurring. HCC is a complicated form of liver cancer as it is not only caused due to 

environmental mutations but also occur as a result of viral infections including hepatitis virus 

infections. There is limited current treatment strategies for HCC, which include aggressive 

surgery and transplants. 

Histone deacetylases (HDACs) are enzymes involved in gene expression regulation through 

the acetyl group deletion from histones (Lee et al.,2014). HDACs interact with transcription 

factors, such as Myc, β- catenin, p53, among others; which are known to regulate protein 

expression of those implicated in tumour development. Hence, HDAC mutations can result in 

tumour development. Lee and co-workers utilized HDAC targeted siRNA conjugated to lipid 

nanoparticles and found a reduction in the proliferation of liver cancer cells in vitro (Lee et 

al.,2014).  

The protein Survivin, is an apoptosis inhibitor and is overexpressed in HCC. This results in the 

inhibition of caspase activation which prevents apoptosis and stimulates HCC proliferation (Ito 

et al.,2000). Mice models with tumours from HCC were treated with survivin targeted siRNA 

molecules by Wu et al. These siRNA molecules were conjugated to RGD-PEG-g-PEI-SPION 

nanoparticles and the authors found that tumour growth was delayed with an increase in the 

expression of cleaved caspase-3 (Wu et al.,2013).  
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The human telomerase reverse transcriptase (hTERT) is a human telomerase component 

required in the stable maintenance of telomere length in cancer cells. hTERT is overexpressed 

in lung and breast cancers which correlates with the activity of telomerase. Xia and co-workers 

studied the effects of hTERT siRNA, conjugated to PEI, in HepG2 cells in vitro, and found 

that cell proliferation and the activity of telomerase was reduced. Furthermore, following intra-

tumoral injection into HepG2 tumour bearing mice, there was a reduction in tumour sizes as 

compared to the tumours treated with control siRNA (Xia et al.,2012).  

 

2.3.3 (c) Prostate Cancer 

Prostate cancer is the most common male malignant cancer with therapies including surgery, 

chemotherapy, hormone-therapy and radiotherapy. However, these treatment strategies reduce 

the quality of life or negatively impact healthy organs. 

The transcription factor Myc is involved in biological processes which include replication, 

proliferation, transcription, cell division, among others (Dang, 2012). Myc is highly expressed 

in primary and metastatic prostate cancers. Civenni and colleagues reported the reduction in 

tumour initiation in prostate cancer stem cells in vitro and in vivo in cells treated with Myc 

targeted siRNA. Myc siRNA: PEI complexes were introduced into mouse models and the 

results showed a suppression of tumour masses with an increase in tumour progression in the 

control group (Civenni et al.,2013).  

The Kallikrein- related peptidase 4 (KLK4) plays a role in the progression of prostate cancer 

and in the regulation of cell-cycle gene expression. This enzyme is normally expressed in 

prostate cells, however is found to be significantly overexpressed in the malignant form (Xi et 

al.,2004; Lai et al.,2010). Jin and colleagues found that the prostate cancer cells LNCaP and 

VCaP showed reduced KLK4 expression and AR-signalling down-regulation following 

treatment with KLK4 targeted siRNA/liposomes. Moreover, mice models treated with KLK4 

siRNA showed a 90% reduction in tumour size (Jin et al.,2013).  

 

2.3.3 (d) Breast Cancer 

Breast cancer is the leading cause of cancer related deaths in females (Zhang et al.,2014). The 

different breast cancer subtypes can be divided using either molecular profiling or 
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immunohistochemical (IHC) staining for key receptors. Treatment strategies include surgery, 

chemotherapy, radiotherapy and targeted therapies with siRNA- based gene inhibition has been 

tested using models. 

Breast cancers can be subdivided according to the expression of estrogen, progesterone and the 

human epidermal growth factor 2 receptor (HER2). The estrogen receptor alpha (ER-α) is 

found to be upregulated in approximately 70% of breast cancers and plays an important role in 

mammary epithelial cell cycle progression. Bouchlier and co-workers prepared nanocomplexes 

between PEG-co-poly(ε-caprolactone-co-dodecyl β-malate) and ER-α targeted siRNA which 

were introduced into MCF-7 xenografts and reported that tumour growth was reduced and ER-

α was downregulated (Bouchlier et al.,2008).  

Approximately 15% of breast cancers exhibit reduced expression following IHC in HER2 and 

progesterone receptors and are referred to as triple-negative breast cancer (Bosch et al.,2010; 

Reis-Filho and Tutt, 2008). Cyclin dependant kinase 1 (CDK1) inhibition results in the lethality 

of triple negative breast cancer that overexpresses c-MYC. In line with this, Liu and colleagues 

targeted CDK1and utilized stealth lipid nanoparticles conjugated to CDK1-siRNA molecules 

to deliver the siRNA to mice via systemic injection. They found that there was a reduction in 

tumour growth with no toxicity or immune response (Liu et al., 2014).  

Osteopotin (OPN) protein is considered to be a marker in the progression of breast cancer as 

elevated levels have been detected in the plasma and blood of metastatic breast cancer patients. 

Minai-Tehrani and colleagues targeted OPN in mice models bearing xenografts of MDA-MB-

231 by introducing OPN-siRNA molecules encapsulated nanoparticles composed of glycerol 

propoxylate triacrylate (GPT) and spermine and found that OPN knockdown occurred in the 

inhibition of tumour growth (Mirhai-Tehrani et al.,2012).  

 

2.4 c-MYC Oncogene: A Possible Target for Cancer Gene Therapy 

The human proto-oncogene, c-MYC was discovered approximately three decades ago as the 

cellular homolog of the retroviral v-MYC oncogene which was discovered during early studies 

of aggressive tumours in chickens (Dang, 1999; Hofffman and Lieberman, 2008). c-MYC is 

believed to play a role in cellular functions which include growth, metabolism, replication, 

differentiation and apoptosis (Dang et.al., 2006). Furthermore, studies have marked this gene 

as a genuine human oncogene as it was found to consistently change due to chromosomal 
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translocations as in Burkitt’s Lymphoma (Deusberg et al.,1979; Sheiness et al.,1979, Dalla- 

Favera et al.,1982; Shou et al.,2000). It is believed that overexpression of this oncogene is due 

to amplification in several human cancers, namely, lung, breast and in a few cases of colon 

carcinomas (Augenlicht et al.,1997; Little et al.,1983; Mariani- Constantini, 1988; Munzel et 

al.,1991).  

The c-MYC gene is located on chromosome 8 and consists of three exons. The AUG start codon 

is located on exon 2 and translation of the major polypeptide (64 kDa) is initiated at this codon. 

Translation of a longer 67 kDa polypeptide is initiated on codon 1 at the CUG codon which is 

located 15 codons upstream of the AUG codon (Hann et al., 1992). The c-MYC gene encodes 

a transcription factor with a base region/ helix-loop-helix/ leucine zipper domain, which is 

known to dimerize with its partner protein, Max, and trans-activate gene expression by binding 

to specific DNA sequences, namely, E-boxes with the consensus sequence 5ˈ-CACGTG- 3ˈ 

(Figure 2.2) (Blackwood et al., 1991). 

 

Figure 2.4: Interaction between c-MYC and Max protein during transactivation of gene expression 

(Dang, 1999). 

 

The role of MYC in transcription activation has been established, however, the mechanism of 

MYC involvement in the repression of transcription is not fully understood (Pelengaris et 

al.,2002). It is believed that transcription may be inhibited by the interaction between the c-

MYC- Max heterodimer and the MYC- interacting zinc finger protein-1 (Miz-1) (Eilers and 

Eisenman, 2008; Adhikary et al.,2005). Changes in cellular proliferation and metabolism 

occurs due to c-MYC regulation of several gene families, stimulating those genes that are 

involved in cancer metabolism, protein biosynthesis and transcription factors, while also 

inhibiting some tumour gene expression (Eilers and Eisenman, 2008). 
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The c-MYC oncogene is one of the most mutated oncogenes in human cancers (Wolfer and 

Ramaswamy, 2011). Studies have shown that changes on the chromosome 8q24 locus, not only 

increases tumour likelihood but also influences the expression of the MYC transcript. The 

overexpression of this gene is seen in pre-malignancy and invasive tumours. It has been 

estimated that 40% of all human cancers are due to an increase in MYC expression (Dang et 

al., 2010). The most common feature observed in cancer cells is the abnormal activation of the 

c-MYC (MYC) oncogene. This may be due to overexpression during transcription, 

translocation, or alterations in upstream signalling pathways. (Koh et al., 2016) In non-

transformed cells or normal cells, sustained MYC expression results in arrested cell 

proliferation, apoptosis and differentiation. Overexpression of c-MYC is required by tumour 

cells, as high protein levels of MYC is essential for cancer cell maintenance and to drive tumour 

progression and initiation (Gabay et al., 2014).    

 

2.4.1 MYC as a Transcription Factor (TF) 

MYC regulates the transcription of genes involved in protein synthesis, cell cycle, cell 

adhesion, metabolism, and micro-RNA expression (Hoffman and Lieberman, 2008). In non-

transformed cells, c-MYC expression is well controlled by developmental signals. The c-MYC 

mRNA has a short life span and, in the absence of positive regulatory signals, transcription of 

c-MYC is reduced leading to low MYC protein levels, and minimal proliferation. MYC is 

capable of regulating non-coding and coding RNA during transcription which are produced by 

RNA polymerase I, II and III (Kress et al.,2015; Gomez-Roman et al.,2006). The emergence 

of genome-wide profiles has revealed that MYC binds to every active promoter and enhancer 

(Koh et al., 2016). 

Specific post-transcriptional capping of RNA Pol II consists of a 7-methyl guanosine addition 

at the 5ˈ end of the first transcribed nucleotide which provides stability to the RNA and proper 

downstream processing of pre-mRNA. This cap addition is directly promoted by MYC with 

the assistance of TFIIH which results in the phosphorylation of the carboxy-terminal domain 

(CTD) of RNA Pol II, which is a requirement for capping (Cole and Cowling, 2009). MYC is 

also capable of upregulating transcription of S-adenyl-L-homocysteine hydrolase (SAHH) 

which is needed to metabolize SAH. SAH is an inhibitory by-product of the capping 

mechanism which can result in negative effects. MYC has been shown to control the 

transcription of splicing factors such as hnRNPA1, hnRNPA2 and the polypyrimidine tract 
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binding protein (PTB). These proteins, together with other events, control the splicing of 

pyruvate kinase which results in the formation of the tumour isoform PKM2, which is known 

to promote aerobic glycolysis, and PKM1, which is the adult isoform and brings about 

oxidative phosphorylation (Koh et al.,2016).  

 

Splicing factor hnRNPH is regulated by c-MYC and is needed for the splicing of the a-raf pre-

mRNA oncogene. Ras activation and transformation are suppressed in cells by low MYC and 

hnRNPH expression due to the production of the short A-raf isoform, which encodes a 

truncated A-Raf protein. However, in cancer cells, the overexpression of MYC and hnRNPH 

results in the production of a full-length A-raf protein, inhibiting the MST2 pro-apoptotic 

kinase activity (Rauch et al.,2011). 

 

2.4.2 c-MYC and Metabolism 

Due to transformations related to malignant cell growth abnormalities, metabolic changes in 

cancer cells occur in order to provide energy to drive the accelerated cell division. The c-MYC 

oncogene is known to have regulatory roles in transformation, however it is still not fully 

understood if the overexpression of MYC is primarily responsible for the metabolic changes 

during transformation, or whether the MYC overexpression may be a result of metabolic 

changes that occur due to malignant cell formation (Miller et al.,2012). 

A crucial step in tumour progression is the adaptation of the tumour cell under anaerobic 

conditions. Cancer cells have the ability to use glucose as an energy source under hypoxic 

conditions and aerobically overproduce lactic acid, process termed the Warburg effect, which 

was discovered approximately eight decades ago as a characteristic in many tumour types 

(Koppenol et al.,2011; Fletcher et al., 2008; Dang, 1999). Recently it has been shown that the 

Warburg effect is induced due to the activation of oncogenes with an observed increased 

consumption of glucose, oxidative phosphorylation and lactate production. Overexpression of 

the c-MYC oncogene results in changes that bring about malignancy. These changes allow for 

the production of cell growth and cell division intermediates and are known to be regulated by 

tumour suppressor genes and oncogenes (Miller et al., 2012). It has been observed that lactate 

dehydrogenase A (LDHA), which is known to convert pyruvate to lactate during glycolysis, is 

a target gene for c-MYC, which suggests that this oncogene plays an important role in the 

glycolytic pathway (Lewis et al.,1997, Ramanathan et al.,2005). Various glucose metabolic 
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genes, namely, glucose transporter, hexokinase 2, phosphofructokinase and enolase 1 are also 

regulated by c-MYC (Dang et al.,2009). It is believed that c-MYC contributes to the Warburg 

effect due to the upregulation of these genes involved in glycolysis, further causing the 

transformed cells to convert glucose to pyruvate under hypoxic conditions. These effects were 

confirmed in studies with mice that overexpress c-MYC in the liver. The results showed that 

there was an overproduction of lactic acid and an increase in the activity of glycolytic enzymes 

in the liver (Valera et al.,1995).   

Mammalian cells also obtain energy from glutamine catabolism. The normal expression of c-

MYC results in the expression of genes required to metabolise glutamine in the cells, however, 

overexpression of c-MYC results in catabolism that exceeds the requirements for protein and 

nucleotide synthesis by cells. It has been reported that in some human tumours, there are 

reduced circulating levels of glutamine in the plasma due to high glutamine consumption 

(Klimberg et al.,1996; Chen et al.,1993). In cancer cells, glutamine metabolism is an important 

function in the mitochondria for the breakdown of glutamine to ATP and lactate (Deberardinis 

et al.,2008). Recent studies have shown that c-MYC expression influences cancer related 

changes in the metabolism of glucose and glutamine (Le et al.,2012).  

 

2.4.3 c-MYC and Apoptosis 

Approximately 25 years ago, it was shown that the c-MYC gene can play a role in the apoptotic 

response by cells. Apoptosis triggered by MYC provides a mechanism to limit uncontrolled 

cell growth in inappropriate conditions and, therefore, tumour growth and progression will be 

regulated. However, the apoptotic mechanism in cells that overexpress MYC is disabled in 

most cases due to mutations. c-MYC controlled apoptosis can either be dependant or 

independent of the p53 tumour suppressor gene. The p53 tumour suppressor gene is often 

referred to as the ‘guardian of the genome’ as it mediates mammalian cell apoptosis to stress 

stimuli (Hoffman and Lieberman, 2008).  

In normal cells, the p53 protein is expressed at low levels, however, the expression of this 

protein increases in response to stress. The activation of p53 occurs with the downregulation 

of c-MYC expression and growth arrest (Guillouf et al.,1995). Studies have shown that p53 

represses the expression of c-MYC during transcription, which results in the discontinuation of 

p53-mediated growth arrest. MYC mediated apoptosis may also occur independent of p53. The 

interaction between c-MYC and p53 has been found to be dependent on the cell type, e.g. 
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lymphoid and mylenoid MYC apoptosis is p53 dependant (Hsu et al.,1995; Hoffmann and 

Lieberman, 1998). Epithelial cells exhibit both p53 dependent and independent MYC activated 

apoptosis mechanisms (Sakamuro et al., 1995).  

Evidence also shows that c-MYC can change the balance of members of the Bcl-2 family, which 

are anti and pro-apoptotic genes. Bcl-2 anti-apoptotic proteins inhibit MYC activated apoptosis 

in some cell systems, but the proliferative function of c-MYC is not affected (Nilsson and 

Cleveland, 2003). The c-MYC and Bcl-2 interaction provides an explanation on their role in 

cellular transformation, with the overexpression of c-MYC leading to a suppression of Bcl-2 

RNA and protein levels (Eischen et al.,2001). 

Due to its ubiquitous role in human cancers, c-MYC is an ideal target in cancer therapy. Change 

in c-MYC expression is associated with the pathogenesis of most human cancers (Pelengaris et 

al.,2002). Therefore, the specific downregulation of c-MYC could be a potential treatment 

strategy for human cancers.  

 

2.5 Pharmacokinetic Challenges Associated with siRNA Delivery 

The discovery of siRNA-mediated gene knockdown can be exploited for gene therapy. The 

ability to chemically synthesize siRNA to induce RNA interference in mammalian cells has 

stimulated interest in its therapeutic potential (Lu et al.,2009). If siRNA can be targeted to a 

specific oncogene, it can be used in cancer therapy as a therapeutic agent (Gao and Huang, 

2008). However, for RNAi to be effective, the siRNA has to reach its site of action, namely, 

the cytosol to induce its silencing effects. However, there are a number of hurdles that need to 

be overcome to allow for siRNA induced RNAi to take place. Although RNAi has a high 

specificity, off-target effects may be induced due to interactions between the siRNA and similar 

sequences, or targeted gene silencing may occur but not at the tissue of interest (Deng et 

al.,2014; Song et al.,2007; Li et al.,2008). The physicochemical properties of siRNA, namely 

the anionic backbone, hydrophilicity and relatively large molecular weight (approximately 13 

kDa), impedes cellular uptake by preventing the siRNA from crossing the cellular membrane 

(Thanki et al.,2017). Biological barriers hinder extracellular as well as intracellular siRNA 

trafficking (Figure 2.5). The extracellular barriers encountered by siRNA include nuclease 

degradation, renal clearance and phagocytosis by the mononuclear phagocytic system (MPS) 

(Wang and Thanou, 2010). Furthermore, due to the size of the siRNA, which has an average 

diameter of less than 10 mm, they are rapidly removed from the blood circulation through renal 
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clearance (Zhou et al.,2013). It is believed that siRNA has a circulating half-life that is less 

than 10 minutes (Banan and Puri, 2004). If naked siRNA is taken up via endocytosis, 

endosomal escape is a challenge. The siRNA is susceptible to degradation when fusion occurs 

between the late endosome and the lysosome (Song et al,2007). 

Figure 2.5: Intracellular and extracellular barriers encountered by siRNA (Xu and Wang, 2014) 

 

Due to these barriers, effective and safe siRNA delivery vehicles are desired to deliver siRNA 

to the target site without any adverse effects (Lorenzer et al.,2015). Delivery systems must be 

developed that can be administered safely, efficiently and repeatedly (Kumar and Clarke, 

2007). Furthermore, the gene delivery vector should be engineered to provide serum stability, 

be capable of binding and condensing siRNA, allow evasion of the immune system, mitigate 

interactions between serum proteins and non-cancer cells, resist renal clearance, permit cell 

entry and endosomal escape to enter the RNAi machinery, and have low toxicity (Alexis et 

al.,2008; Whitehead et al.,2009). 

 

2.6 Gene Delivery Vectors 

The success of gene therapy is dependent on the delivery vector as one of the main objectives 

is the transfer of genetic material to the cells being treated (Gao and Huang, 2008; El-Aneed, 

2003). The question of delivery still remains a major hurdle which needs to be solved in order 
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to prevent any setbacks during therapeutic application (Shi et al.,2003). Delivery vehicles can 

be divided into two categories, namely, viral and non-viral vectors.  

 

2.6.1 Viral Vectors 

Viral vectors can be described as replication deficient viruses where a portion of their viral 

sequence is modified by deletion and replaced with the therapeutic gene (Li and Ma, 2001). 

Among the most common viral vectors are retroviruses, herpes simplex viruses, lentiviruses, 

adenoviruses and adeno-associated viruses. Each viral vector has its own characteristics and 

offer advantages such as high transfection rates and the very quick transcription of the genetic 

material that is incorporated into the viral genome (Oligino et al., 2004). However, there are 

limitations that are associated with viral vectors. Firstly, the size of the genetic material that 

can be inserted into the viral genome is limited. Secondly, immune responses, toxicity and 

inflammatory responses are potential problems affecting patients and lastly, oncogenic effects 

and mutagenesis can occur following in vivo applications (Lee et al.,1998). 

Due these limitations with respect to safety, non-viral vectors have become attractive 

alternatives for the therapeutic delivery of genes. 

 

2.6.2 Non-Viral Vectors 

Non-viral vectors have gained much attention as gene delivery vehicles due to the advantages 

associated with them which include their ease of synthesis, low immune response and the 

unrestricted size of the therapeutic agent to be delivered (Akhtar and Benter, 2007; Zhang et 

al.,2007). The main objective of a non-viral delivery system is to mimic the viral vectors in 

their ability to overcome the cellular barriers, while minimizing the toxicity associated with 

these viral methods (Balicki and Beutler, 2002). Non-viral delivery systems can be divided into 

two categories, namely, physical and chemical approaches. These delivery systems shall be 

discussed briefly. 
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2.6.2.1 Physical Methods 

2.6.2.1 (a) Hydrodynamic Injection 

The direct transfer of siRNA into cells can be achieved using the hydrodynamic injection 

approach, whereby siRNA in a large volume of physiological buffer, is rapidly introduced into 

the target tissue (Gao and Huang, 2008; Davis, 2002).  Due to the invasive nature of the 

hydrodynamic injection as well as the high pressure that is generated following the injection 

of the genetic material, the application of this system is not currently viable for human clinical 

applications (Spagnou et al.,2004; Vandenbrouke et al.,2008; Gao and Huang, 2008).   

 

2.6.2.1 (b) Electroporation and Nucleofection 

Electroporation was designed to introduce molecules into a cell through the application of 

controlled, short bursts of electrical pulses. This electric shock creates pores in the cell 

membrane which allows for the nucleic acid to enter the cytoplasm (Ramon et al.,2008). 

Following this internalization, the negatively charged molecules become trapped within the 

cell (Nishikama and Huang, 2001; Nayerossadat et al.,2012). The application of this method 

on a large scale is difficult as the parameters for optimal gene expression varies in different 

tissues (Nishikama and Huang, 2001). 

Nucleofection is an extension of electroporation and follows the same principle, however, it is 

cell type specific and uses less harmful electrical pulses (Gresch et al.,2004). 

 

2.6.2.1 (c) Gene Gun Method 

The gene gun method involves the shooting of nucleic acid coated gold, silver or tungsten 

particles with a gene gun and allows the nucleic acid to directly enter the target cell. This is 

achieved by bypassing the endosomal pathway (Ramon et al.,2008; Nishikama and Huang, 

2001; Manjila et al.,2013). However, one of the drawbacks is that the target tissues have to be 

surgically exposed for gene delivery to be carried out (Huang et al.,2001; Ramon et al.,2005; 

Niidome and Huang, 2002), limiting its in vivo application. 
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2.6.2.2 Chemical Methods 

Chemical approaches include the use of inorganic particles, lipid based, peptide based, or 

polymer-based particles and are categorised by their ability to form complexes with the 

therapeutic agent which can offer protection to the gene from degradation by nucleases and 

other components in the blood. Furthermore, these chemical or synthetic vectors can be 

designed to target a specific cell or tissue, enhance the delivery of the therapeutic gene to the 

cytosol or nucleus and allow for the controlled release of the therapeutic agent in the cytosol 

(Ramamoorth and Narvekar, 2015). Some of these chemical approaches shall be discussed 

below.        

 

2.6.2.2.1 Advances in Nanotechnology 

The emergence of nanotechnology in the last decade has proven to have an impact on 

diagnostic and therapeutic applications. With this type of technology, scientists are able to 

manipulate and understand materials at an atomic and molecular scale (Safari and Zarnegar, 

2013). Through this control of matter at a nanometer range, the design, formulation, production 

and applications of new systems can be achieved (Jain et al.2012). These nanostructures can 

have hydrodynamic diameters that range between 1-100 nm. They can also be designed with 

control over their chemical and physical properties of the resulting nanoparticle structure, with 

larger structures being formed through combination (Rocco, 2001). Furthermore, due to their 

size and greater surface area to volume ratio, vectorization of multiple biomolecules, which 

include antibodies, nucleic acids, drugs among others, can be incorporated onto a single 

nanoparticle. 

Nanomedicine, which is the use of nanotechnology in medical applications, holds great 

promise for treatments and therapies in drug delivery, imaging, faster diagnosis and tissue 

regeneration (Sanvicens and Marco, 2008). The use of nanoparticle systems has many 

advantages that enables them to overcome a number of challenges, more especially with respect 

to the bioavailability and biodistribution of the therapeutic agent. Some of these properties is 

due to the nanoparticle surfaces that are immunochemically inert when in contact with the 

biological environment. Due to this interaction, the in vivo retention time of the nanoparticle is 

increased due to a decrease in enzymatic degradation and sequestration by phagocytes (Draz 

et al.,2014). Nanoparticles can be divided into two categories, namely organic and inorganic. 

Organic nanoparticles include lipid-based nanoparticles such as liposomes, and polymers such 
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as dendrimers, while inorganic nanoparticles include carbon nanotubes, and metal 

nanoparticles such as gold and silver, and silica nanoparticles among others, most of which 

have been applied in cancer therapeutics (Mendes et al.,2016). 

 

2.6.2.2.1 (a) Lipid based Nanoparticles 

Lipids are amphiphilic molecules, with one part of the molecule being hydrophilic, and the 

other hydrophobic (Çağdaş et al.,2014). To date, there have been various lipid based systems 

that have been developed for siRNA delivery; these include liposomes, emulsions and solid 

lipid nanoparticles. Among these, cationic liposomes have been one of the most attractive 

systems due to the ease at which they form complexes with anionic siRNA, their relatively low 

toxicity and immunogenicity and high transfection efficiency (Oh and Park, 2009).  

Liposomes may consist of natural or synthetic lipids, are biocompatible and biodegradable, 

making them suitable drug and gene delivery vehicles. Furthermore, they have the ability to 

naturally compartmentalize hydrophilic and hydrophobic material, and their surfaces can be 

easily modified to bear stealth like and targetable moieties (Grislain et al., 1983).  For cancer 

therapy, the surface modifications of the liposome allow for passive or active targeting to the 

specific cells, which enables efficient delivery of the therapeutic agent to the malignant cells 

with minimal impact on normal cells. The colloidal and physicochemical characteristics affect 

the capabilities of the liposome in drug and gene delivery. Although these cationic liposome 

formulations have demonstrated potential as gene delivery vehicles, some hurdles still remain, 

which include, low encapsulation, quick release of the therapeutic agent, lack of triggers for 

release of the drug or gene, and the release of the gene to extracellular fluids (Wangiaskara and 

Witharana, 2016). Studies have also described the appearance of unspecific interferon response 

in mice (Hornung et al., 2005; Ma et al.,2005). However, due to surface modifications, most 

of these hurdles can be overcome. Examples of cationic liposomes that have been used for the 

cellular delivery of nucleic acids include N-[1-(2,3-dioleyloxy)propyl]-N,N,N-

trimethylammonium chloride (DOTMA) (Figure 2.6 a) and 3β[N,N’,N’-

dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) (Figure 2.6 b).  
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2.6.2.2.1 (b) Dendrimers 

Dendrimers are synthetic, spherical, highly branched molecules with three dimensional 

nanometric structures (Kesharwani et al.,2012; Safari and Zarnegar, 2012). In 1985, Tomalia 

first proposed the term dendrimer due to its structure that resembles a tree (Tomalia et al., 

1990). Dendrimers consist of three structural components, namely, a focal core, building blocks 

with multiple interior layers consisting of repeating units and several peripheral functional 

groups. The interior layers, which are the branched units, are referred to as generations and are 

repeating monomeric units of macromolecules (Bronstein and Shifrina, 2012). Dendrimers 

have a precise shape and size, are water soluble, biocompatible and elicit negligible immune 

responses (Biswas and Torchillin,2013; Wu et al.,2013, Menjoge et al., 2010; Patil et al.,2008). 

Due to the high density of functional groups on the periphery of the dendrimer, multiple 

molecules can be introduced onto the surface, and the size of the dendrimer can be controlled, 

depending on the generation, satisfying various applications (Ciolkowski, et al., 2012; Gurdag 

et al.,2006; Siewara and Watala, 2012). Furthermore, dendritic structures have high penetration 

ability which results in increased cellular uptake of the conjugated therapeutic agent (Yang et 

al.,2009). Dendrimers have non-polar cavities which allows for encapsulation of hydrophobic 

molecules (Gupta et al.,2006). Depending on the monomer units, a high density of either 

positive or negative charges will be present on the surface, which will allow for the conjugation 

of a therapeutic agent with an opposite charge to the surface (Cheng and Xu, 2005). 

Polyamidoamine (PANAM) and polypropylene imine (PPI) are examples of dendrimers that 

have been more commonly used in studies for delivery of hydrophobic and hydrophilic drugs 

(Pan et al.,2011). 
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Figure 2.6: Examples of nanodelivery systems (a) DOTMA, (b) DC-Chol, (c) Silica nanoparticles and 

(d) Carbon Nanotubes (Martin et al.,2005; Davis et al, 2012; El Chaar et al.,2011). 

 

2.6.2.2.1 (c) Carbon Nanotubes 

Carbon nanotubes were discovered in 1991 and have drawn much attention for applications as 

structural materials due to their surface, mechanical and electrical properties (Iijima, 1991; 

Guldi et al.,2006; Goldberger et al.,2006). Carbon nanotubes are one dimensional hollow 

carbon structures with diameters of 1-2 nm, and a range of lengths between 50 nm to 1 cm 

(Draz et al.,2014). They are cylindrical molecules made up of carbon atoms in a series of 

hexagonal lattice structures and can be divided into two categories, namely, single walled and 

multi-walled carbon nanotubes (Figure 2.6 d) (Kesharwani et al.,2012). Studies have shown 

that carbon nanotubes tend to aggregate, are insoluble in most types of solvents and are 

cytotoxic (Tasis et al.,2003; Colvin et al.,2003; Warheit et al.,2004). Hence, for biomedical 

applications, carbon nanotubes require functionalization which has been shown to improve 

their solubility and biocompatibility. Due to their diameter, which is approximately 5x104 times 

smaller than a human hair, it has been proposed that these molecules can cross the plasma 

membrane easily and enter the cytoplasm of the target cell through endocytosis- independent 

mechanisms (Pantarotto et al.,2004; Cai et al., 2005). Due to their properties, carbon nanotubes 

show great potential for molecular diagnostics and targeted therapy of tumours. Furthermore, 

a 

b 

c 

d 
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the ability of functionalised carbon nanotubes to traverse the cell membrane make them 

attractive as a vector for gene delivery.   

 

2.6.2.2.1 (d) Silica based nanoparticles 

Mesoporous systems have gained much interest over the past decade due to their favourable 

pore size, stable structures and large surface area (Scott et al.,2001). Hence, mesoporous 

materials show potential for the encapsulation of drugs, proteins, nucleic acids, and other 

therapeutic macromolecules. Mesoporous silica is an example of a mesoporous material that 

can be used for biomedical and biotechnological applications. The pore size of these 

nanoparticles is one of their most important characteristics for biological and medical 

applications (Kesharwani, et al.,2012). The size of the mesoporous silica nanoparticles (MSNs) 

can be controlled from 50 to 300 nm. This permits their rapid endocytosis by cells. MSNs 

appear to be more stable to heat, mechanical stress, pH and degradation due to hydrolysis 

compared to other polymer-based nanoparticles. The uniformity of the pore size and tiny 

diameter of the MSNs (between 2-6 nm) allows one to adjust the amount of the therapeutic 

agent loaded onto the nanoparticles. Furthermore, the large surface area of the MSNs (> 900 

m2/g), and pore volume (> 0.9 cm3/g) allows for high loadings of therapeutic agents (Slowing 

et al.,2008). Selective functionalization with different moieties can be conducted on MSNs due 

to the presence of an internal surface, that contain cylindrical pores, and the external particle 

surface (Figure 2.6 c). Due to their unique porous structure, MSNs have potential as drug and 

gene delivery vehicles (Slowing et al.,2008; Vallet -Regi et al., 2001).  

 

2.6.2.2.1 (e) Metal Nanoparticles 

The use of metal nanoparticles in biomedical research has expanded in recent years due to their 

unique properties which include, small size, high reactivity to living cells, and large surface 

area to volume ratio. Hence, metal nanoparticles show immense potential for use in both 

diagnostics and therapeutics. Furthermore, their optical properties make them suitable for 

bioimaging applications due to their capability of producing quantum effects (Tiwari et 

al.,2011). To date, the most commonly studied metal nanoparticles include gold, silver, iron 

and titanium oxide nanoparticles, with gold nanoparticles (AuNPs) being the most extensively 

studied for drug and gene delivery, due to their inert nature and low cytotoxicity (El-Ansary 
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and Al-Daihon, 2009; Conner et al.,2005; Ghosh et al.,2008, Pissuwan et al.,2009). Gold 

nanoparticles which were used in this study shall be discussed in greater detail. 

  

2.6.2.3 Gold Nanoparticles 

Gold (Au) is a noble element and is naturally highly unreactive and therefore, does not 

deteriorate or undergo chemical oxidation. Nanostructured Au can be used for novel 

biomedical applications due to their chemical and physical properties. Gold is believed to be a 

highly functional metal. In its molecular form, they can serve as catalysts or anti-arthritic 

medications, while in its bulk form, gold is well known in its use for jewellery, electronics and 

coins (Greenwood and Earnshaw 1997; Chen and Goodman, 2004; Valden et al.,1998; Green 

et al.,2011). However, unlike these forms of gold, nanostructured gold exhibits different 

colours and are believed to be one of the best metals to form nanoparticles (Martínez et 

al.,2012).  

Colloidal gold was used for therapeutic and decorative purposes in ancient China, Rome and 

Egypt with several ways being used to develop nanostructured gold (Boisselier and Astruc, 

2009; Giljohann et al., 2010). During the middle ages, soluble gold was used in the treatment 

of various diseases, such as epilepsy, dysentery, heart problems, tumours and the diagnosis of 

syphilis (Daniel and Astruc, 2004). The physicochemical properties of nanoscale gold differ 

from bulk gold in various ways with the most prominent being the colour change from yellow 

to ruby red. This colour change can be explained by the surface plasmonics theory which 

suggests that free electrons of gold atom clusters (six electrons in the case of Au) when in 

contact with an electromagnetic field of incoming light, begin to oscillate which creates a 

plasmon band with a peak absorbance in the visible region (Riviere et al.,2005; Eustis and El-

Sayed, 2006). In 1857, Michael Faraday reported the first scientific finding of the deep red 

colour formation of colloidal gold following the reduction of chloroaurate aqueous solution 

with phosphorous, which was stabilised with carbon disulphide in a 2-phase system (Dreaden 

et al.,2011; Daniel and Astruc, 2004). Faraday also investigated the optical properties of the 

colloidal gold by preparing films from the dried solutions and noticed that upon mechanical 

compression, colour changes from bluish-purple to green occurred (Faraday,1857).   

Gold nanoparticles (AuNPs) have attracted much attention for a variety of biomedical 

applications, and due to their unique properties have the potential as highly multifunctional and 

selective agents for anti- cancer therapeutics (Niemeyer and Ceyhan,2001). These properties 
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include their ease of synthesis into a variety of sizes (1-100 nm) and shapes (nanospheres, 

nanorods, nanoshells, nanodiamonds), relatively low toxicity, non-oxidative nature, and ease 

of functionalisation with a number of polymers which can provide biological stability, and 

target selectivity to the AuNPs (Spencer et al.,2011; Sandhu et al.,2002). Nanoscale gold can 

appear in a variety of colours that include red, blue, green or brown. The resulting colour is 

determined by the interaction between the conduction band electrons with the electric field of 

the incident light. The shape, size and surrounding medium of the gold nanoparticle are all 

parameters that play a role in the localised surface plasmon resonance (LSPR), as there are a 

limited number of incident light frequencies that exist that can induce the oscillations of the 

resonance electron band. The LSPR is found in the visible and near infrared portion of the gold 

nanoparticle spectrum (Alkilany and Murphy, 2010). 

 

2.6.2.4 Biomedical Applications of Gold Nanoparticles 

Nanomedicine is one of the most important research fields of nanotechnology which can allow 

for the diagnosis, treatment and prevention of diseases at a molecular scale (Boyes et al, 2009). 

The application of AuNPs for the diagnosis and treatment of diseases in humans relies on the 

AuNPs being non-toxic, biocompatible, non-immunogenic, stable and environmentally 

friendly (Cornejo-Monroy et al.,2013). Furthermore, AuNPs require suitable properties for 

biomaterial conjugation, as well as cellular and sub-cellular targeting. AuNPs have been 

proposed as theranostic devices which refer to the combined diagnostic and therapeutic 

properties of an individual nanoparticle. The unique optical and electronic properties of 

AuNPs, due to their reduced size, can be used in bioimaging and therapeutic applications 

(Niemeyer and Ceyhan, 2001; Sandhu et al.,2002). Due to the optical properties of AuNPs, 

they can potentially serve in applications such as sensing, imaging as well as in cancer 

therapeutics (Figure 2.7) (Jelveh and Chithrani,2011; Dreaden et al.,2012; Daniel and Astruc, 

2004; Cao-Milán and Liz-Marzán,2014). These applications are further discussed below. 
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Figure 2.7: Biomedical Applications of gold nanoparticles (AuNP) (Gosh et al.,2008). 

 

2.6.2.4 (a) Bio-imaging 

AuNPs have optical properties that can be altered to a specific wavelength by changing the 

composition and shape of the nanoparticle (Conde et al.,2012). Hence, they have been used in 

imaging technology as enhancing agents for tracking and imaging cells, and in situ cancer 

diagnostics (Kim et al.,2011; Tseng et al.,2010). The high electron density of the AuNPs allows 

them to act as contrasting agents. Furthermore, by surface modification with antibodies or 

proteins and using the correct encapsulating agent, nanoparticles can be utilized for detection 

and treatment, simultaneously, of certain illnesses in vivo (Jiang et al., 2008). The basic 

principle that is involved in the AuNP biosensor design is that the AuNPs should be capped or 

functionalised with thiolated biomolecules and, when identifying the biomolecule, the AuNP 

optical absorbance changes (West and Halas, 2003). Light absorption is reduced in the near 

infrared region (NIR) in many biological tissues. AuNPs can be developed which are activated 

in these compartments which can result in in vivo imaging and hyperthermia treatments (Conde 

et al.,2012). Furthermore, the limitations associated with NIR dyes can be overcome using 

AuNPs, which include hydrophilicity and photostability as well as low detection sensitivity 

and stability in biological systems. Pavlov and co-workers (2004) prepared AuNPs that were 
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functionalised with aptamers. These aptamer-AuNPs bound specifically to thrombin causing 

AuNP aggregation and a resulting red shift in the plasmon band compared to a control which 

involved exposing these aptamer-AuNPs to non-specific proteins, such as BSA, which showed 

no aggregation (Pavlov et al.,2004). 

AuNPs can also be utilized as contrast agents for magnetic resonance imaging, computed 

tomography and in surface- enhanced Raman scattering (SERS). SERS employing AuNPs with 

a specific receptor molecule attached that has a distinct Raman signature, can be utilized to 

identify cellular structures, and provide structural information in live cells (Conde et al.,2012; 

Kneipp et al.,2006). Furthermore, SERS can be used for the detection of trace amounts of 

biomolecules that may be in proximity to or adsorbed onto the AuNP surface (Kniepp et 

al.,2002; Liu and Lee, 2005). The use of SERS will allow for the detection of biomolecules 

without any tags on the molecule, for example unmodified, label-free DNA conjugated to 

AuNPs can be detected within a cell or tissue upon introduction. 

AuNPs can also serve as immune-sensors, which is based on the detection of specific binding 

between antigen and antibody. AuNPs have attracted much attention for this application as they 

are relatively simple and economical for mass production, they have excellent limits of 

detection with small volumes of the analyte and are robust. Dequaire and colleagues developed 

a novel electrochemical immunoassay that is sensitive for immunoglobulin G (IgG) detection 

by utilizing a colloidal Au label prepared using an acidic stripping voltammetry technology. 

Concentrations as low as 3×10-12 M could be detected which is competitive with detection 

limits obtained with ELISA and immunoassays based on fluorescent labels (Dequaire et al., 

2000; Parida and Nayak, 2012).    

 

2.6.2.4 (b) Gene and Drug Delivery 

As discussed previously, there are many obstacles that need to be overcome in order for gene 

and drug therapy to be successful. AuNPs are the most widely used of all metallic nanoparticles 

for gene and drug delivery studies, due to their ease of synthesis and functionalisation, their 

inert core, biocompatibility and low cytotoxicity (Duncan et al.,2010). Furthermore, they have 

shown great potential as delivery vehicles for the intracellular delivery of genes due to 

protection of the therapeutic agent from nuclease degradation and targeting to specific tissues 

through functionalisation with targeting ligands. Due to the diversity in functionalisation of 

AuNPs, the therapeutic agent can be attached to the surface of the AuNP via non-covalent or 
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covalent approaches. The non-covalent method will incorporate the gene or drug to the AuNP 

surface, with no structural modification to the therapeutic agent required (Park et al.,2009).  

The covalent attachment of drugs to the AuNP involves the use of cleavable linkages that are 

utilised for the delivery of the therapeutic agent, and its release into the cell through either 

internal or external stimuli (Han et al.,2006; Hong et al.,2006). Anticancer drugs that can be 

delivered by AuNPs include paclitaxel, 5-fluorouracil, and doxorubicin (Selveraj and Alagar, 

2007). There have been various strategies that have been developed for the covalent attachment 

of drugs to the AuNP. These strategies include photo-regulated release and glutathione 

mediated release. The photo-regulated release mechanism uses an external stimulus to activate 

the release of the gene or drug, which also controls the rate of release and the site of action 

(Kim et al.,2006; Park et al.,2008; Park et al.,2008). This mechanism has been employed by 

several researchers. Radt and co-workers utilized AuNPs coated with polymers and were 

capable of releasing its contents by shining a laser onto the loaded nanoparticle (Radt et 

al.,2004). Nakanishi and colleagues used a near UV- irradiation to cleave the carbamate linkage 

of the 2-nitrobenzyl group of histamines and showed that following irradiation, the unreactive 

histamine became active (Nakanishi et al.,2009). Rotello and co-workers synthesized AuNPs 

with an o-nitrobenzyl ester moiety that was photocleavable and, upon the introduction of light 

irradiation, dissociation occurs, and the attached DNA is released intracellularly (Han et 

al.,2006). This controlled system can be potentially utilized for the delivery of various 

biomolecules. The second strategy involves the use of glutathione (GSH) and relies on the 

differences in the concentration of GSH within the cell (1-10 mM) and the extracellular 

concentration of thiols (cysteine 8 µM, GSH 2 µM) (Anderson, 1998; Sies, 1999; Jones et 

al.,1998; Jones et al.,2000). The bound therapeutic agent to the AuNP surface is released 

though disulphide exchanges with the intracellular GSH.  

The non-covalent attachment of therapeutic agents on the AuNP surface assists in avoiding any 

potential hurdles that may arise with the covalent encapsulation methods. For this mechanism, 

appropriate ligands are required which creates a hydrophobic environment within which the 

therapeutic agent is incorporated. Rotello and colleagues synthesized AuNPs that were 

functionalised with a hydrophilic outer surface composed of tetra (ethylene glycol) and a 

hydrophobic alkanethiol interior. The ligand headgroup was zwitterionic which minimized any 

non-specific interaction with biomolecules and the cell surface. The therapeutic agent was 

incorporated into the monolayer of the AuNP and was found to be stable in buffer and serum. 

Furthermore, using fluorescence microscopy, the anti-cancer drug was shown to be delivered 
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to the cell by diffusion with no cellular entry of the nanoparticle (Kim et al., 2009; Lin et al., 

2008; Rouhana et al.,2007; D’ Emanuele and Attwood, 2005).  Regardless of the mechanism 

used for the incorporation of the therapeutic agent to the AuNP surface, the AuNP monolayer 

is of great importance in the eventual release of the gene or drug into the cells. 

Although AuNPs are attractive gene delivery vehicles, the efficiency of delivery of the 

therapeutic agent still remains a major hurdle. This may be attributed to non-specific 

interactions between the functionalised AuNPs and serum proteins. Thus, PEGylation is a 

popular mechanism which can reduce AuNP aggregation and opsonization (Ramamoorth and 

Narvekar, 2015). PEGylation shall be discussed in greater detail in Section 2.6.2.7.   

 

2.6.2.4 (c) Thermal Therapy 

Hyperthermia is based on the principle that increasing the temperature above 42°C in living 

cells can result in cell death and, therefore, can be utilized as a therapeutic application for the 

immediate, irreversible destruction of malignant tissues. The effects that occur can range from 

the reduction of cell apoptosis and tumour metabolism, to the immediate destruction of the 

cancer cells. This is dependent on the temperature and time used. Due to the electron oscillation 

in the conduction band in noble metals, there is an induction of large electric fields on the 

surface and, therefore, upon interaction with electromagnetic radiation, the radiative properties 

of noble metals are enhanced (Nikoobakht and El-Sayed, 2003). This makes the absorption and 

light scattering properties of these nanoparticles much greater than absorbing molecules and 

organic dyes, respectively, and therefore, metal nanoparticles can serve as sensors and are 

excellent contrast agents during optical detection. Furthermore, the absorbed radiation is 

efficiently and rapidly converted to heat (picosecond time frame). This occurs as a result of 

electron-phonon and phonon-phonon processes making them potential agents in photothermal 

therapy (Varnavski et al.,2003).  Due to these favourable properties of metal nanoparticles 

functionalised with target –specific ligands, they can be employed to heat up the selected cancer 

tissue and destroy it. The heating of the nanoparticle can be achieved by exposing the target 

area or the patient to an intense light source, an altering magnetic field or radiofrequencies 

which results in the nanoparticle being heated to a temperature beyond the cancerous cell limits, 

causing ablation of the tumour (Jain et al., 2011).  

The first application was conducted in 2003 by Pitsillides et al. who showed that target cells 

were selectively damaged when using 20-30 nm spherical AuNPs which were irradiated with 
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laser pulses (20 nanosecond) at a wavelength of 532 nm. This treatment created local heating 

and, therefore, killed the target cells (Pitsillides et al.,2003). Huang and co-workers and Loo et 

al., using antibodies conjugated to Au nanorods and Au nanospheres, respectively, also 

demonstrated the potential of gold in photothermal therapy as they reported that following 

treatment, cancer cells were selectively destroyed while healthy cells remained unaffected 

(Huang et al.,2005; Loo et al.,2005). For in vivo treatment, AuNPs have been utilized as 

photothermal agents as they have the ability to absorb in a broad-spectrum range between 650-

900 nm and are capable of converting this radiation to heat in picoseconds (Conde et al.,2012). 

Due to the unique optical properties of AuNPs, they can be visualised over long periods of time 

in cells and hence can be irradiated with multiple laser pulses. This will allow for inactivation 

of the cell in a controlled and non-traumatic manner and can be applied for the treatment of 

cancers that are resistant to chemotherapy (Carpin et al.,2011). 

 

2.6.2.5 Gold Nanoparticle Functionalisation 

Gold nanoparticles have been synthesized by a variety of methods and follow a similar strategy 

where the gold salt is reduced in the presence of a stabilizing agent (Tiwari et al.,2011). The 

particle size of the colloidal gold can be controlled by varying the salt concentration, 

temperature and reducing agent (Dreaden et al.,2011). The two commonly employed methods 

for the synthesis of colloidal gold are the citrate reduction method and the Brust-Schuffron 

method. The latter being a two-phase synthesis and stabilisation process using thiols. The 

citrate reduction method was introduced by Turkevich and co-workers in 1951 which was later 

modified by Frens and colleagues in 1973 and involves the citrate reduction of HAuCl4 in water 

(Figure 2.8). The citrate molecules offer stabilisation to the resultant anionic AuNPs (Remant-

Bahadur et al.,2013, Oyelere et al.,2007). The citrate reduction method is the most popular 

method for AuNP synthesis, as it is simple and allows for large scale production of AuNPs.  

 
 

Figure 2.8: Synthesis of citrate capped AuNPs by reduction with sodium citrate (Makhsin et al.,2012) 
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One of the key issues for the integration of biological molecules into AuNPs is their surface 

chemistry which ultimately determines their stability, functionality and their biological 

applications. Uncoated AuNPs have a high sensitivity to environmental factors such as pH, 

temperature, electrolytes and solvent due to the free electrons on their surface which are highly 

reactive. This results in the tendency of AuNPs to easily aggregate in media (Boca et al.,2010). 

Most biological applications of AuNPs requires the modification of their surface with ligands 

containing functional groups such as amines, thiols or phosphines, that have a high affinity for 

the AuNP surface, and additionally can be used to bind proteins, nucleic acids, antibodies and 

aptamers (Cornejo-Monroy et al., 2013). AuNPs can be functionalised using synthetic and 

biological compounds. The choice of the functionalising agent depends on the application. 

Non-labile applications utilize thiol-based groups, while labile applications employ amine or 

carboxylate anchors. The non-covalent systems using amine functionalised anchors, are an 

attractive alternative to the covalent systems for nucleic acid delivery (Ding et al., 2014). The 

coverage of the surface of the monolayer is of great importance as this modification influences 

the final charge of the AuNP and its hydrophobicity, in an attempt to maximise the transfection 

efficiency and with minimal cytotoxicity (Sandhu et al.,2002). 

 

2.6.2.6 Polymer Functionalisation 

A non-covalent amine system can bind nucleic acids through electrostatic interactions and 

provide an effective means of gene delivery in mammalian cells. Polymers that have been 

commonly used for functionalisation include chitosan, poly-L-lysine (PLL), polyethylene-

imine (PEI), polyethylene glycol (PEG) and various targeting ligands. Synthetic positively 

charged polymers include the commonly used PLL (Figure 2.8 a), and PEI (Figure 2.8 b), with 

PEI being the most popular to date. PEI has a wide range of molecular weights and a high 

number of protonable amino groups, which results in a high cationic charge at physiological 

pH. However, the use of synthetic polymers such as PLL and PEI can be toxic to living cells 

through apoptosis and necrosis. This toxicity can be attributed to the high molecular weight of 

these branching polymers (Hunter, 2006).  

Natural polymers have been used due to their non-toxic nature, biocompatibility and 

biodegradability. Among the natural cationic polymers available, chitosan has been the most 

widely used for gene delivery and functionalisation of AuNPs. Chitosan is a natural 

biodegradable polysaccharide obtained by the deacetylation of chitin. Chitin is the structural 
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element found in the exoskeleton of crustaceans. Chitosan consists of repeating D-glucosamine 

and N-acetyl-D- glucosamine units which are linked via a (1-4) glycosidic bond (Figure 2.8 c) 

(Mao et al.,2010). Chitosan is non-toxic in humans and animals and can be characterised by its 

physicochemical properties that include the molecular weight, degree of deacetylation, 

crystallinity and viscosity (Kas, 1997). The solubility of chitosan in acidic media is attributed 

to each deacetylated subunit that contains a primary amine group with a pKa value of 6.5, 

therefore, chitosan is not soluble in alkaline or neutral media. The degree of deacetylation 

determines the positive charge density in acidic conditions. When there is a higher degree of 

deacetylation, there is an increased positive charge which can result in greater nucleic acid 

binding and cellular uptake. Deacetylation over 65% is required to form stable complexes with 

DNA whereas with siRNA, the degree of deacetylation should exceed 80% (Huang et al.,2005; 

Mao et al.,2010). Although synthetic polymers, in comparison to chitosan, have a higher charge 

density which is responsible for their transfection efficiency, they also induce a far greater 

cytotoxic effect. Due to its characteristics, chitosan is considered as one of the most important 

polymers for pharmaceutical and biological applications (Kumar, 2000). Furthermore, this 

natural polymer has shown great promise in the food industry as a preservative due to its anti-

microbial properties and is currently been used in dietary supplements (Dutta et al.,2009; Li 

and Huang, 2000). 

 

                

 

                         

 

Figure 2.9: Commonly used polymers for AuNP functionalisation (Chattopadhyay and Inamdar, 2010; 

Antila et al.,2015; Hunter et al.,2012; Jokerst et al.,2011). 
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2.6.2.7 PEGylation 

Biomedical applications require AuNPs that are highly stable in biological environments in the 

presence of high serum concentrations and ionic strengths. Despite the numerous advantages 

associated with AuNPs, there are some challenges that may affect their use in clinical 

applications. Some of these challenges include the reticuloendothelial system (RES) uptake 

which prevents the prolonged circulation of AuNPs, and the non-specific AuNP binding to 

non-diseased or non-target areas. Due to the RES accumulation, concerns have been raised 

about the toxicity of AuNPs (Jokerst et al.,2011). 

Surface modification using polyethylene glycol (PEG) is one of the most commonly used 

methods of functionalization of AuNPs for biomedical applications, due to its ability to 

overcome some of these challenges. PEG is a coiled polymer comprising of repeating ethylene 

units (Figure 2.8 d). The addition of PEG to the surface of nanoparticles for delivery and 

imaging applications have been shown to reduce uptake by the RES, and increase the 

circulation time (van Vlerken et al.,2007). PEG has been described as amphiphilic and hence 

soluble in both hydrophilic and lipophilic solvents. Due to the hydrophilic nature of PEG, it 

allows for the dispersion of AuNPs conjugated with lipophilic molecules in aqueous 

environments (Dreadan et al.,2009). Furthermore, PEGylation is said to increase the circulatory 

half-life of the AuNPs by imparting stealth characteristics to them, which further prevents the 

adsorption of serum proteins and opsonins which facilitate the uptake and clearance of the 

nanoparticles by RES (Harris and Chess,2003; Zheng et al.,2003; Niidome et al.,2006; von 

Maltzahn et al.,2009). PEGylations are known to be non-immunogenic, biocompatible and are 

proposed to reduce cytotoxicity (Harris et al.,2001; Lai and Liao, 2003; Vonarbourg et 

al.,2006). 

The basic structure of PEG molecules contains one end that attaches to the surface of the 

nanoparticle, and the distal terminal group that interacts with the solvent. These two ends are 

attached by varying numbers of ethylene glycol units that determines the size of the PEG 

molecule, with larger PEG polymers containing a greater number of monomer units. The 

thickness of the PEG layer grafted onto the surface of the nanoparticle correlates with the 

conformation of the polymer. This conformation can be described by the Flory radius (F) which 

takes into account the number of monomer units per PEG chain and the length of each monomer 

(Degennes, 1987; Degennes, 1980). PEG chains can acquire two main conformations 

depending on their grafting density. When the surface density is low, the polymer takes up a 
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‘mushroom’ conformation (Figure 2.9 b). Here the distance between the PEG points of 

attachment to the nanoparticle surface is greater than F, with the PEG chain making up 

approximately 50% of the sphere, with a radius comparable to F. When the grafting density is 

increased, PEG will acquire a ‘brush’ conformation (Figure 2.9 a). In this regime, PEG extends 

from the surface of the nanoparticle as long, thin bristles (Degennes, 1980). These different 

conformations of PEG illustrate the diversity of PEGylation. Nanoparticles with the brush PEG 

conformation are said to have longer circulation times due to the dense coating that offers 

greater protection to the nanoparticle from the RES (Moghimi and Szebeni, 2003). 

 

 

 

Figure 2.10: Schematic representation of the different densities of PEG polymers on the AuNP surface. 

High density PEG polymers result in a brush regime (D < F) (a) with low density PEG polymers 

exhibiting a mushroom conformation (D >F) (b).    

 

There are two spatial components present in all nanoparticles, namely the core and the outer 

surface, which can add complexity to the nanoparticle. However, all nanoparticles possess an 

area that interfaces with the solvent or surrounding environment. The modification of this 

interface with PEG chains can increase the circulation time of the nanoparticle. The circulation 

half time refers to the period where the circulating AuNP concentration is above 50% of the 

initial dose, analogous to the half time of the therapeutic agent. The efficacy of the nanoparticle 

requires a sufficient half time to reach the target area and remain in the affected area for an 

adequate amount of time to allow for delivery of the therapeutic agent and for imaging. 

However, this process is often prevented by the RES system, as it removes AuNPs from 

circulation which inhibits its delivery to the target site. The RES is part of the immune system 

that makes use of monocytes, macrophages, liver Kupffer cells, the spleen as well as other 

lymphatic vessels for the removal of foreign material from the body (Saba, 1970). Opsonin 

proteins adsorb to and coat the surface of foreign material, which are then engulfed by 

phagocytic cells which transport the foreign material to the liver or spleen for degradation and 

AuNP AuNP 

 

 

 

 

 

  (a)             (b) 



40 
 

excretion (Jokerst et al.,2011). The presence of PEG molecules on the AuNP surface reduces 

the opsonisation process, thereby increasing the blood circulation time of the AuNPs since the 

recognition by macrophages and monocytes is now prevented.   

Poor circulation times of nanoparticles can also be attributed to aggregation, that is 

nanoparticle-nanoparticle interactions due to the stronger attraction between the particles as 

compared to their attraction to the solvent (van Vlerken et al.,2007; Zolnik and Sadreih, 2009). 

This phenomenon can be described by the Derjaguin-Landau-Verwey-Overbeek (DLVO) 

theory that states that nanoparticles have a greater tendency to aggregate due to their high 

surface energy. This interaction potential is attributed to the electrostatic repulsive potential 

and Van der Waals attraction potential (Guzman et al.,2006; Yang et al.,2010). The presence 

of the PEG polymer reduces the nanoparticle surface energy and hence decreases the Van der 

Waals attraction (Jun et al.,2003; Förster and Antonietti, 1998). Further reasons for this 

aggregation of AuNPs could include the high ionic strengths of the solvents (> 100mM) used, 

highly concentrated nanoparticle suspensions resulting in minimal space between 

nanoparticles, or preparation of AuNPs with a neutral zeta potential (between -10 and +10 mV) 

(Sze et al.,2003). The steric distance between nanoparticles is increased due to PEGylation, 

leading to a reduced attraction between the AuNPs. Furthermore, the hydrophilicity of the 

PEGylated AuNPs is increased due to the presence of ether groups which form hydrogen bonds 

with the solvent.  

 

2.7 Cellular Uptake 

An effective delivery system should favour cellular uptake and only target the tumour site or 

effected cells, while improving the therapeutic efficacy of the gene and limiting any side 

effects. Cellular uptake of AuNPs can occur voluntarily and is dependent on the characteristics 

of the nanoparticle which include size, shape, charge and surface modification (Zhang et 

al.,2009; Cho et al.,2011; Tkachenko et al.,2004). The concentration and exposure time of the 

AuNP to the cells can also play a role in their uptake. Vessels that are situated around the 

tumours have large fenestrations and poor lymphatic drainage which favours retention. This 

strongly favours the enhanced permeability and retention (EPR) effect, that was demonstrated 

by Maeda and colleagues which led to the development of passive targeting as a mechanism 

allowing for the natural accumulation of stealth nanoparticles at the tumour site. (Maeda et 

al.,2000). However, there are limitations associated with passive targeting. Although EPR will 
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allow for the entry of the delivery system into a tumour site, it will not lead to exclusive 

cancerous cell targeting. Furthermore, the host environment, type of tumour, angiogenesis and 

degree of vasculature all affect the EPR mechanism. Delivery can be further enhanced by active 

targeting, which allows for selective delivery of the therapeutic agent by grafting ligands such 

as peptides and antibodies, onto the surface of the nanoparticle that are recognised by cognate 

receptors overexpressed on the tumour cell surface (Figure 2.10) (Capco and Chen, 2014). 

Figure 2.11: Cellular Uptake mechanisms and intracellular trafficking of siRNA delivery systems 

(Adapted from Resnier et al.,2013). 

 

The cellular mechanisms that are involved in the nanoparticle uptake include phagocytosis, and 

pinocytosis. Phagocytosis is facilitated through endosomes which are small membrane-bound 

vesicles, whereas pinocytosis utilizes an energy dependent and receptor mediated endocytosis. 

This process is believed to be the dominant cellular uptake mechanism in several cell lines 

(Cho et al.,2011; Mironava et al.,2010; Albanese et al.,2012). Following internalization, the 

early endosomal vesicles mature into late endosomes. These late endosomes can be 

characterised by an acidic pH environment and active enzymes. These vesicles later fuse with 

the lysosomes. Within the endosomes, nanoparticles and nucleic acids can be degraded by 
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nucleases. Hence, for efficient siRNA delivery, the process of endosomal escape is a critical. 

Endosomal escape by nanoparticles has been described based on two principles. The first 

principle is attributed to the proton sponge effect or pH buffering. This is activated by 

protonation of the internalized molecules in the acidic pH of the vesicles, and results in the 

inflow of Cl- and H+ ions and water which produces osmotic swelling of the vesicles and 

rupture of the endosome. Nanoparticles that have amine groups are capable of sequestering 

protons once they enter the acidic environment of the lysosome (Figure 2.11) (Ding et 

al.,2014). The second mechanism involves membrane destabilization. This mechanism occurs 

in the presence of cationic lipids, peptides or polymers that are capable of fusing to the 

membrane of the endosome which perturbs the organization of the bilayer resulting in pore 

disruption (Brust et al.,1994). 

 

Figure 2.12: Schematic representation of the Proton Sponge Effect for the release of cationic AuNPs 

from the endosome following cellular uptake (Ding et al.,2014). 
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CHAPTER THREE 

MATERIALS AND METHOD 

 

3.1 Gold Nanoparticle Preparation and Functionalisation 

3.1.1 Materials 

Gold (III) chloride trihydrate 99% (HAuCl4), sodium citrate (Na3C6H5O7), and polyethylene 

glycol 2000 (PEG2000) were purchased from Merck (Darmstadt, Germany).  Chitosan (>75% 

DD, Mw: 25 kDa), polyethylene glycol 400 (PEG400), and dialysis tubing (25 mm × 16 mm 

cellulose membrane) were obtained from Sigma Aldrich (St Louis, USA), Ultrapure water 

(Milli-Q50) was used in all preparations. All other reagents were of analytical grade.  

 

3.1.2 Method 

3.1.2.1 Gold Nanoparticle Preparation 

Gold nanoparticles were prepared following a modified Turkevich-Frens method (Turkevich 

et al.,1951; Frens, 1973). Approximately, 0.33 ml of a 3×10-3 M stock colloidal gold 

suspension was added to 25 ml ultrapure water which was boiled (approximately 85˚C), with 

stirring, for 15 minutes in a 50 ml conical flask. Thereafter, 1 ml of 1% sodium citrate was 

rapidly added to the vortex of the solution, resulting in a colour change within the first 3 

minutes, from pale yellow to dark blue. This colour gradually changed after a period of 15 

minutes to a final deep red colour. The solution was boiled further for 5 minutes and thereafter, 

removed and cooled to room temperature. The resulting gold nanoparticle solution, at a final 

concentration of 0.45 ×10-3 M, was stored in a dark bottle at room temperature. 

 

3.1.2.2 Functionalisation of Gold Nanoparticles 

Gold nanoparticles were functionalised with a 1 mg/ml solution of chitosan (in 1% acetic acid) 

as outlined in Table 3.1. Approximately, 1 ml of the above colloidal AuNP suspension was 

added dropwise to 1 ml of the chitosan solution under constant stirring. The resulting 0.1 % 

chitosan AuNP (Chito-AuNP) suspension was then stirred for 24 hours at room temperature, 
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followed by dialysis in ultrapure water at a ratio of 100:1 (v/v buffer:sample) for 2 hours. The 

sample was then stored at room temperature for further use.   

 

3.1.2.3 PEGylation of Chitosan Functionalised AuNPs 

PEGylation of AuNPs was carried out by the method described by Manson et al. (2011). Gold 

nanoparticles were first functionalised as described in section 3.1.2.2. The Chito-AuNPs were 

then PEGylated with 2 and 5 mass percentages of polyethylene glycol 2000 (PEG2000) and 

polyethylene glycol 400 (PEG400) as outlined in Table 3.1. PEG was gradually added to the 

Chito-AuNP suspension under constant stirring. Following the addition of PEG, the suspension 

was then stirred for a further 2 hours, and the resulting PEGylated Chito-AuNP suspension was 

then dialysed as described in section 3.1.2.2 and stored at room temperature. 

 

Table 3.1: Composition of PEGylated and non-PEGylated Chito-AuNPs 

Nanoparticle AuNP (mg) Chitosan (mg) PEG2000(mg) PEG400 (mg) 

Chito- AuNP 0.08 1 - - 

2%PEG2000 Chito-

AuNP 

0.08 1 0.02 - 

5% PEG2000 Chito-

AuNP 

0.08 1 0.05 - 

2%PEG400Chito-

AuNP 

0.08 1 - 0.02 

5% PEG400 Chito-

AuNP 

0.08 1 - 0.05 

 

3.2. Characterisation of PEGylated and non-PEGylated Chito-AuNPs and siRNA 

Interactions with Functionalised AuNPs 

3.2.1 Materials 

Control, siGENOME non-targeting siRNA (D-001210–01) and 5× siRNA buffer was 

purchased from Thermo Scientific Dharmacon Products (Lafeyette, CO, USA). Ultrapure 

Agarose was purchased from Bio-Rad Laboratories (Richmond, VA, USA). Ethidium 

Bromide, glycerol, bromophenol blue, xylene cylanol, ethylenediaminetetraacetic acid (EDTA 

disodium salt), sodium dodecyl sulphate (SDS), tris [(hydroxymethyl)-aminoethane] and 

sodium dihydrogen phosphate were obtained from Merck (Darmstadt, Germany). SYBR Green 
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II RNA gel stain was purchased from Cambrex Bioscience (Rockland Inc., USA). RNase A 

was purchased from Novagen, Calbiochem (CA, USA). Ultrapure water (Milli-Q50) was 

utilized for all assays. All other reagents were of analytical grade.  

 

3.2.2 Preparation of siRNA Duplex 

To study the interactions between siRNA and the PEGylated and non-PEGylated Chito-

AuNPs, a control non-targeting siRNA was used. The siRNA (20 ρmole) was resuspended as 

per the manufacturer’s protocol in 1× siRNA buffer to a final concentration of 0.268 µg/µL. 

The concentration of the siRNA suspension was verified using the NanoDrop 2000c 

spectrophotometer (Thermo Scientific, Wilmington, DE, USA) prior to their use and at regular 

intervals for the duration of the study. 

 

3.2.3 Preparation of PEGylated and non-PEGylated Chito-AuNP: siRNA complexes 

All functionalised AuNP preparations were vortexed for approximately 1 minute and sonicated 

for 15 minutes prior to use. Varying amounts of the AuNP suspensions were added to the 

siRNA to attain a range of mass (w/w) or N/P (+/-) ratios. These nanocomplexes were made up 

to a final volume of 10 μl in HBS and allowed to incubate at room temperature for 1 hour to 

allow for complex formation. All nanocomplexes were freshly prepared prior to each assay. 

 

3.2.4 siRNA: PEGylated and non-PEGylated Chito-AuNP Interactions 

3.2.4.1 Band Shift Assay 

The ability of the PEGylated and non-PEGylated Chito-AuNPs (FAuNPs) to bind siRNA was 

determined using the band shift or gel retardation assay. Nanocomplexes were prepared as 

described in section 3.2.3, using increasing amounts of the AuNPs with 0.3 µg of control 

siRNA as outlined in Table 3.2. The reaction mixtures were made up to a final volume of 10 

µl in HBS (pH 7.4), and incubated at room temperature for 1 hour. Following this incubation 

period, approximately 2 µl of gel loading buffer (50% glycerol, 0.05% bromophenol blue, 

0.05% xylene cylanol) was added to each reaction mixture. The nanocomplexes were then 

subjected to agarose gel electrophoresis on a 2% (w/v) agarose gel (0.4 g of agarose, 18 ml of 

ultrapure water, 2 ml 10× electrophoresis buffer (w/v)) containing 1 μg/ml of ethidium bromide. 
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Thereafter, the gel was transferred to a Mini-Sub® electrophoresis tank (BioRad Laboratories, 

Richmond, USA) containing 1× electrophoresis buffer (36 mM Tris-HCl, 30 mM sodium 

dihydrogen phosphate, 10 mM EDTA, pH 7.5). Electrophoresis was conducted at 50 V for 30 

minutes at room temperature. Thereafter, the gels were viewed under UV300 transillumination 

and the images were captured using a Vacutec Syngene G:Box BioImaging system (Syngene, 

Cambridge, UK). 

 

Table 3.2: Varying amounts of Chitosan, PEGylated and non-PEGylated Chito-AuNPs 

used in band shift assay. siRNA was kept constant at 0.3 μg. 

 
 Nanoparticle Functionalised AuNP Mass Range (μg) 

Chitosan 0 0.12 0.15 0.18 0.21 0.24 0.27 0.3 

Chito-AuNP 0 0.075 0.09 0.105 0.12 0.135 0.15 0.165 

2% PEG2000 Chito-

AuNP 

0 0.18 0.21 0.24 0.27 0.3 0.33 0.36 

5% PEG2000Chito-

AuNP 

0 0.45 0.48 0.51 0.54 0.57 0.6 0.63 

2% PEG400Chito-

AuNP 

0 0.21 0.24 0.27 0.3 0.33 0.36 0.39 

5% PEG400 Chito-

AuNP 

0 0.6 0.66 0.72 0.78 0.84 0.9 0.96 

 

3.2.4.2 RNase A Protection Assay 

The ability of the FAuNPs to protect the siRNA against enzymatic degradation was 

investigated by agarose gel electrophoresis following RNase A mediated digestion. 

Nanocomplexes were prepared using 0.3 µg siRNA at the sub-optimum, optimum and supra-

optimum mass ratios (w/w), with their respective nanoparticles as determined from the band 

shift assay, and as outlined in Table 3.3. All reaction mixtures were made up to a final volume 

of 10 µl with HBS. Following a 1-hour incubation period, RNase A was added to each reaction 

mixture to a final concentration of 10% (v/v). Two controls were used for this assay, namely, a 

positive control which contains siRNA only in the absence of RNase A and nanoparticles and 

a negative control which is the uncomplexed siRNA in the presence of 10% RNase A. The 

reaction mixtures were then incubated at 37˚C for 2 hours in a digital temperature controlled 

water bath (TriLab Scientific, Johannesburg, Gauteng, South Africa). Following incubation, 

ethylenediaminetetraacetic acid (EDTA) and sodium dodecyl sulphate (SDS) was introduced 

to the reaction mixtures to a final concentration of 10 mM and 0.5%, respectively. The samples 
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were then incubated for a further 20 minutes at 55 °C, followed by electrophoresis on a 2% 

agarose gel at 50 V for 30 minutes and images captured as previously described in section 

3.4.2.1.  

Table 3.3: Varying amounts of Chitosan, PEGylated and Non-PEGylated Chito-AuNPs. 

siRNA was kept constant at 0.3 μg. 

 

 

Nanoparticle 

Nanoparticle Amount (µg) 

Sub-Optimum Optimum Supra-Optimum 

 

Chitosan 

 

0.18 

 

0.21 

 

0.24 

 

Chito-AuNP 

 

0.12 

 

0.15 

 

0.18 

2%PEG2000Chito-

AuNP 

 

0.24 

 

0.27 

 

0.3 

5%PEG2000Chito-

AuNP 

 

0.42 

 

0.45 

 

0.48 

2%PEG400Chito-

AuNP 

 

0.27 

 

0.3 

 

0.33 

5%PEG400Chito-

AuNP 

 

0.6 

 

0.66 

 

0.72 

 

3.2.4.3 SYBR Green II Displacement Assay 

The SYBR Green II dye is an alternative to ethidium bromide for siRNA visualization and 

measurements, due to its greater sensitivity. The assay was carried out using the method 

previously described by Dorasamy et al. (2009). The relative fluorescence was measured using 

the Glomax®-Multi Detection System (Promega Biosystems, Sunnyvale, USA) at excitation 

and emission wavelengths of 497 nm and 520 nm, respectively in a 96 well black flat-bottom 

FluorTrac plate. Approximately 1 µl of a 100× diluted SYBR Green II dye in 18 Mohm water 

was added to 100 µl HBS to produce a baseline fluorescence (0%). To this was added 0.28 µg 

siRNA and the fluorescence obtained was taken as 100%. The PEGylated and non-PEGylated 

Chito-AuNPs were then added in 1 µl aliquots to the respective wells containing the 

siRNA/SYBR Green II suspensions, and the fluorescence measured until a plateau in the 

readings were reached. The relative fluorescence was then calculated using the following 

equation: 

Fr (%) = (Fi – F0)/ (Fmax – F0) × 100 
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Where F0 = baseline fluorescence, Fmax = fluorescence intensity of fully intercalated siRNA, Fi 

= fluorescence intensity for each nanoparticle concentration.  

 

3.2.5 Imaging and Sizing 

3.2.5.1 UV Spectroscopy Analysis 

The optical properties of the AuNP, Chito-AuNP and PEGylated Chito-AuNP suspensions 

were analysed by examining the UV absorption spectra over a wavelength range of 400 nm to 

800 nm. The spectra of the individual nanoparticle suspensions (1 ml) were measured using a 

Biomate 3 spectrophotometer (Thermo Scientific, Lafeyette, CO, USA) in a quartz cuvette with 

a 1cm path length. 

 

3.2.5.2 Transmission Electron Microscopy (TEM) of AuNPs, Chito-AuNPs and 

PEGylated Chito-AuNPs 

The ultrastructural characteristics of the respective nanoparticles and their nanocomplexes with 

siRNA (prepared as described in section 3.2.3), were determined using TEM. Approximately, 

1 µl of the individual nanoparticle/nanocomplex suspensions were placed onto a 400-mesh 

carbon coated grid (Ted Pella Inc. Redding, USA), and allowed to air dry. Thereafter, they 

were viewed using a Jeol T-1010 transmission electron microscope (Tokyo, Japan), and images 

captured using a Soft Imaging Systems (SIS) MegaView III side mounted 3-megapixel digital 

camera.  

 

3.2.5.3 Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) and 

Fourier Transform Infrared (FTIR) Analysis 

The synthesised AuNPs were analysed using ICP-OES for the quantification and elemental 

detection of the Au concentration. This analysis was performed using a Perkin Elmer Optima 

5300DV Optical Emission Spectrophotometer. A standard 100 ppm Au solution (Fluka) was 

utilised to prepare a standard curve between 1 and 20 ppm.  

FTIR analysis was performed using a Perkin Elmer Spectrum 100 FT-IR spectrometer with a 

universal ATR sampling accessory, to confirm surface functionalisation of the AuNPs with 
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chitosan and PEG (400 and 2000) at 25˚C. Scanning was performed in the range of 380-4000 

cm-1.   

 

3.2.5.4 Particle Size and Zeta Potential Analysis 

The size and zeta potential of the AuNP, FAuNPs, as well as their nanocomplexes with siRNA 

were measured using Nanoparticle Tracking Analysis (NTA) facilitated by the Nanosight 

NS500 (Malvern Instruments, Malvern, Worchestershire, UK). The Nanosight NS500 has a 

sample chamber of approximately 0.25 ml, with a sCMOS camera and a laser wavelength of 

430 nm. All AuNP preparations were vortexed and sonicated prior to analysis. Thereafter, a 

1:600 dilution of each nanoparticle was prepared in 18 Mohm water. Nanocomplexes were 

prepared with siRNA at the optimum binding ratio, as described in section 3.2.3 and according 

to Table 3.3, and then diluted in 18 Mohm water. Images were captured and analysed using the 

NTA 3.2 analytical software. 

  

3.3 In Vitro Cell Culture Studies 

3.3.1 Materials 

Control, non-targeting siRNA and Block-iT Fluorescent Oligo siRNA were purchased from 

Thermo Scientific Dharmacon Products (Lafeyette, CO, USA). Eagles Minimum Essential 

Medium (EMEM) with L-glutamine (4.5 g/l), trypsin-versene mixture and penicillin-

streptomycin mixtures (10 000 U/ml) were purchased from Lonza BioWhittaker (Walkersville, 

USA). Foetal bovine serum (FBS) was purchased from GIBCO, Life Technologies Ltd 

(Inchinnan, Scotland). All tissue culture plastic wear was purchased from Corning Incorporated 

(New York, USA). Phosphate buffered saline (PBS) tablets, 3-[4,5-dimetylthiazol-2-yl]-2,5-

diphenyltetrazolium bromide (MTT), dimethylsulphoxide (DMSO), and acridine orange (AO) 

were obtained from Merck (Darmstadt, Germany). AlamarBlue® was purchased from 

Invitrogen (Carlsbad, CA, USA). Ultra-pure water was used throughout. All other reagents 

were of analytical grade. 
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3.3.2 Preparation of siRNA Duplexes 

siGENOME Non-Targeting siRNA and BLOCK-iTTM Fluorescent Oligo were purchased from 

Thermo Scientific Dharmacon Products (Lafeyette, CO). The non-targeting siRNA sequence 

has at least four mismatches with all known human genes and is used for in vitro studies to 

assess non-sequence specific effects of the siRNA nanocomplexes on the cell lines been 

studied. The target sequence of this duplex is 5’- UAG CGA CUA AAC ACA UCA A- 3’.  

BLOCK-iTTM Fluorescent Oligo is a double stranded RNA fluorescein labelled duplex with 

the same configuration, length and charge as the standard siRNA, and is not homologous to 

any known gene.   

 

3.3.3 Cell Line Maintenance 

Four cell lines were used for the duration of the study, namely, human embryonic kidney cells 

(HEK293) obtained from the Anti-Viral Gene Therapy Unit, Medical School, University of 

Witwatersrand, human epithelial colorectal adenocarcinoma cells (Caco 2), purchased from 

Highveld Biological (Pty) Ltd. (Kelvin, Gauteng, RSA), human breast adenocarcinoma cell 

line (MCF-7),supplied by the Department of Therapeutic and Medicines Management, Medical 

School, UKZN and the human colon adenocarcinoma cells (HT-29) purchased from the 

American Type Tissue Culture Collection (ATCC) , Manassas, VA,  USA. All cell work was 

carried out in sterile class II biohazard hoods. 

 

3.3.3.1 Reconstitution of Cell Lines  

Each cryopreserved cell line was removed from a -80˚C Nuaire biofreezer and immediately 

placed in a 37˚C water bath to thaw. The cell suspensions were then aseptically decanted into 

centrifuge tubes and were centrifuged at 1000 rpm for 5 minutes using an Eppendorf benchtop 

centrifuge. Following centrifugation, the supernatant was discarded, and the cells (pellet) was 

resuspended in 1 ml of sterile complete medium (EMEM +1% Antibiotic + 10 % FBS). The 

cell suspensions were then transferred to a 25 cm2 tissue culture flask containing 4 ml of sterile 

complete medium. The cells were then placed in a 37˚C incubator containing 5% CO2 and 

monitored daily using an inverted microscope (Nikon TMS-F 6V, Tokyo, Japan). The medium 

was changed every two to three days until the cells were sub-cultured when confluent. 
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3.3.3.2 Propagation of Cell Lines 

Once the cells had reached confluency, they were trypsinized. Briefly, the growth medium was 

discarded into a sterile waste bottle and the cells were washed with 5 ml of sterile PBS, pH 7.5. 

Thereafter, 1ml of pre-warmed trypsin-versene was introduced to the flask, and trypsinization 

of the cells was observed under the inverted microscope. The trypsinization time for each cell 

line varied from 1-3 minutes at room temperature or 37 °C. Once the cells had rounded off, 2 

ml of complete medium was added to the cells. Thereafter, the flask was tapped gently against 

the palm of the hand to dislodge the cells. The cells were split into desired ratios into 25cm2 

tissue culture flasks or multiwell plates as required. Each tissue culture flask contained 4 ml of 

complete medium and were incubated at 37˚C. The cells were then checked regularly, and the 

medium changed when necessary. Once the cells had reached confluence, they were 

trypsinized again and split into required ratios or the cells were frozen (section 3.3.3.3) and 

stored at -80˚C for short term storage, or in liquid nitrogen for long term storage. 

 

3.3.3.3 Cryopreservation of Cell Lines 

Confluent cells were washed with PBS and trypsinized following the procedure outlined in 

section 3.3.3.2. Following trypsinization, the cells were transferred to a 15 ml centrifuge tube 

and were pelleted by centrifugation for 3 minutes at 1000 rpm. The medium was replaced with 

0.9 ml complete medium and 0.1 ml DMSO. The cells were then resuspended by vortexing, 

and transferred to 2 ml cryogenic ampoules and frozen by placing the ampoule into a 

Nalgene™Cryo 1˚C freezing container which contained isopropanol and facilitated freezing at 

a rate of -1˚C per minute. This freezing container was placed directly into the -80˚C biofreezer 

(Nuaire, Lasec Laboratory and Scientific Equipment, Ndabeni, Cape Town, RSA).  

 

3.3.4 Toxicity Studies 

3.3.4.1 MTT Assay 

Cells were trypsinized and seeded into clear 96 well plates at cell densities of 1.5- 1.8 × 105 

cells per well, and incubated at 37˚C overnight to allow cells to attach. Nanocomplexes were 

prepared in triplicate using chitosan, Chito-AuNPs and PEGylated Chito-AuNPs with 50 nM 

siRNA (0.067 µg) as in Table 3.4. All the nanocomplexes were made up to a final volume of 
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10 µl in sterile HBS and were incubated at room temperature for 30 minutes. A positive control 

containing untreated cells was included and was used to represent 100% survival. The cells 

were prepared by first replacing the growth medium with fresh complete medium. The 

nanocomplexes were then added to the cells and incubated at 37˚C for 36 hours. Thereafter, 

the growth medium was aspirated and replaced with 0.1 ml of medium and 0.1 ml of MTT 

solution (5mg/ml in PBS), and cells incubated at 37˚C for a further 4 hours. The MTT and 

medium was then removed and 0.1 ml dimethylsulphoxide (DMSO) was added to the wells 

and the absorbances were measured at 570 nm using a Mindray MR-96A microplate reader 

(Vacutec, Hamburg, Germany).  

 

3.3.4.2 AlamarBlue® Assay 

Once the cells had reached semi-confluency, they were seeded into 96 well plates at cell 

densities of 1.3-1.7 ×105 cells per well. The siRNA nanocomplexes were prepared as outlined 

in section 3.3.4.1 and Table 3.4. Following the incubation of the cells with the prepared reaction 

mixtures for 36 hours at 37˚C, 10 µl (10%, v/v) of 10× AlamarBlue® was added to the growth 

medium in the wells, and cells incubated at 37˚C for 4 hours. Thereafter, the medium and 

AlamarBlue® solutions were transferred to a 96 well flat-bottomed black Fluor-Trac plate and 

fluorescence was measured at excitation and emission wavelengths of 570 nm and 585 nm 

respectively using a Glomax®-Multi Detection System (Promega BioSystems, Sunnyvale, CA, 

USA) operated by Instinct software. 

Table 3.4: siRNA: Au nanocomplex ratios used for cytotoxicity and transfection studies 

 

Nanoparticle 

siRNA: Functionalised AuNP Ratios (w/w) 

Sub-Optimum Optimum Supra-Optimum 

 

Chitosan 

 

1:0.6 

 

1:0.7 

 

1:0.8 

 

Chito-AuNP 

 

1:0.4 

 

1:0.5 

 

1:0.6 

2%PEG2000 Chito- AuNP  

1:0.8 

 

1:0.9 

 

1:1 

5%PEG2000 Chito-AuNP  

1:1.5 

 

1:1.6 

 

1:1.7 

2%PEG400 Chito-AuNP  

1:0.9 

 

1:1 

 

1:1.1 

5%PEG400 Chito-AuNP  

1:2 

 

1:2.2 

 

1:2.4 
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3.3.4.3 Apoptosis Analysis by Acridine Orange/Ethidium Bromide (AO/EB) Staining 

Cells were seeded at densities of 1.2 - 1.5×104 cells per well in a clear 48 well plate and allowed 

to attach overnight at 37˚C. Complexes were prepared with 50 nM siRNA (0.63 µg), the 

PEGylated Chito-AuNPs, Chito-AuNPs and chitosan as outlined in Table 3.4. The reaction 

mixtures were allowed to incubate at room temperature for 1 hour to allow for complex 

formation. Once the nanocomplexes were prepared, the growth medium was removed and 

replaced with 0.25 ml of complete medium. The nanocomplexes were then added and the cells 

incubated at 37˚C for 24 hours. Following incubation, the growth medium was aspirated, and 

the cells washed twice with 0.2 ml PBS and stained with 10 µl of the dye (100 µg/ml acridine 

orange, 100 µg/ml ethidium bromide in PBS) for 5 minutes on a Stuart Scientific platform 

rocker at 30 rev/min. The cells were then washed with PBS and viewed under an inverted 

fluorescent microscope (Olympus CKX41, Tokyo, Japan) at excitation and emission 

wavelengths of 490 nm and 516 nm respectively. The apoptotic index was calculated as a 

quantification of apoptosis as below. 

Apoptotic index = number of apoptotic cells/ number of total cells counted 

 

3.3.5 In vitro Transfection Studies 

3.3.5.1 Cellular Uptake Studies 

Confluent cells were seeded in 96 well plates at cell densities of 1.0- 1.2 ×105 cells per well, 

and were incubated at 37˚C overnight to allow for the attachment of the cells. Nanocomplexes 

were prepared in triplicate as outlined in Table 3.4 using 50 nM Block-It fluorescent oligo 

siRNA (0.067 µg), and incubated at room temperature for 1 hour. Thereafter, the growth 

medium from the plates were removed and replaced with complete medium, followed by the 

addition of the nanocomplexes and incubation at 37˚C for 24 hours. Two controls were set up, 

viz., cells not treated with siRNA or nanocomplexes, and cells incubated with siRNA only. 

Following incubation, the growth medium was removed, cells washed twice with 0.2 ml PBS, 

and 80 µl of 1× cell culture lysis reagent (10mM Tris-HCl, 1mM EDTA, 0.5% SDS) was added 

to the cells. The plate gently rocked on a Stuart Scientific platform rocker for 15 min at 30 

rev/min. The cells were dislodged from the multiwell plate using a cell scraper. Cell lysates 

were then transferred to a black 96 well flat-bottomed Fluor-Trac plate and fluorescence 

measured at excitation wavelengths of 419 nm and an emission wavelength of 512 nm using 
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the Glomax®-Multi Detection System. The results were represented as relative fluorescence 

units.   

 

3.4 c-MYC Gene Knockdown Studies at mRNA and Protein Levels 

3.4.1 Materials 

ON-TARGET plus Human MYC siRNA- SMARTpool was purchased from Thermo Scientific 

Dharmacon Products (Lafeyette, CO).  TRIzol® reagent, Lipofectamine® 3000 and 

DNase/RNase free water were purchased from Life Technologies (Carlsbad, CA, USA). RIPA 

buffer was obtained from Sigma Aldrich (St. Louis, USA). Blotting grade buffer (non-fat dry 

milk), iScript™ gDNA Clear cDNA synthesis kit, SsoAdvanced™ Universal SYBR® Green 

Supermix, Prime PCR Assay Mix, 10× tris-buffered saline (TBS) and Tween 20 were acquired 

from Bio-Rad Laboratories (Richmond, CA, USA). Tris-(hydroxymethyl)-aminoethane, 

sodium chloride (NaCl), hydrochloric acid (HCl), absolute ethanol, chloroform, isopropanol, 

sodium carbonate (Na2CO3) and sodium bicarbonate (NaHCO3) were purchased from Merck 

(Darmstadt, Germany). Anti-human c-myc (9E11); a mouse monoclonal antibody raised 

against a synthetic peptide corresponding to amino acid residues 408-439 from the c-terminus 

of c-myc (Mw = 64-67 kDa) was purchased from Invitrogen, Life Technologies (USA). β-

Actin (8H10D10), a mouse monoclonal antibody raised against a synthetic peptide 

corresponding to amino-terminal residues of human β-Actin conjugated to KLH (Mw=42 kDa) 

was obtained from Novus Biologicals (Littleton, Colorado, USA). Goat anti-mouse IgG2a 

secondary antibody, an affinity purified antibody with characterised specificity for mouse 

immunoglobulins and conjugated to horse radish peroxidase and 3,3’,5,5’- 

tetramethylbenzidine (TMB) was acquired from Thermo Scientific (Rockford, USA). Ultra-

pure 18 Mohm water was used throughout. All other reagents were of analytical grade.  

 

3.4.2 siRNA Duplexes 

The siRNA utilised for gene knockdown studies consists of four different sequences of 19 

nucleotides that are all target the c-MYC gene (ON-TARGET plus SMARTpool). The 

sequences of these siRNA molecules are 5’ ACG GAA CUC UUG UGC GUA A 3’, 5’ GAA 

CAC ACA ACG UCU UGG A 3’, 5’ AAC GUU AGC UUC ACC AAC A 3’ and 5’CGA 
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UGU UGU UUC UGU GGA A 3’.  The non-targeting siRNA was utilized as a control and 

contains at least four mismatches with any known gene (Section 3.4.2). 

 

3.4.3 siRNA Transfection 

For the in vitro gene silencing studies, MCF-7 cells were seeded into 6 well plates at a cell 

density of 3.3 × 105 cells per well, and incubated at 37 ̊C for 24 hours to allow for attachment 

of the cells. Nanocomplexes were then prepared with 50 nM c-MYC targeted siRNA (0.67 µg) 

and control non-targeting (NT) siRNA (0.67 µg) at the optimum binding ratios of chitosan, 

Chito-AuNPs and PEGylated Chito-AuNPs as per section 3.2.3 and Table 3.4. These 

nanocomplexes were allowed to mature at room temperature for 1 hour. Lipofectamine® 3000 

was utilized as a positive control and complexes were prepared as per the manufacturer’s 

instructions. Approximately, 5 µl of Lipofectamine® 3000 reagent was incubated with 2.5 µl 

of c-MYC siRNA in 0.25 ml of EMEM at room temperature for 5 minutes. Following 

nanocomplex formation, the growth medium from the wells were removed and replaced with 

1.5 ml of complete medium (EMEM + 10% FBS + 1% Antibiotics). The nanocomplexes were 

added to the cells, and cells incubated at 37 ̊ C for 48 and 72 hours, after which the cells were 

harvested to assess the knockdown of the c-MYC gene, using quantitative real-time polymerase 

chain reaction (qRT-PCR) and Enzyme Linked Immunosorbent Assay (ELISA). 

 

3.4.4 RNA Isolation and qRT-PCR 

3.4.4.1 RNA Isolation 

The total cellular RNA was extracted for qRT-PCR analysis. The RNA was isolated using 

TRIzol® Reagent following the manufacturer’s protocol. This procedure was carried out at 

room temperature under RNase free conditions in a Class II Biohazard laminar flow cabinet. 

The first step involved cellular homogenization. The growth medium was removed and 

replaced with 1 ml TRIzol® Reagent, and the cells were manually lysed with a pipette by 

homogenizing the cells several times (35-40 strokes). The homogenate was then incubated at 

room temperature for 5 minutes to allow for complete dissociation of the nucleoprotein. The 

samples were then transferred to sterile 2 ml microcentrifuge tubes, followed by the addition 

of 0.2 ml chloroform. The tubes were then vigorously shaken by hand for 15 seconds and left 

to stand at room temperature for 3 minutes. The samples were then centrifuged at 12 000 rcf 
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for 15 minutes at 4°C using an Eppendorf 5424R benchtop centrifuge. Following 

centrifugation, the mixture separated into an upper aqueous phase, an interphase and a lower 

red phenol-chloroform phase. The RNA remains in the colourless upper aqueous phase which 

was carefully removed by angling the tube and pipetting out this solution. This aqueous phase 

was then transferred to 2 ml microcentrifuge tubes, followed by the addition of 0.5 ml of 100% 

isopropanol for 15 minutes at - 20˚C. The sample was then centrifuged at 12 000 rcf for 10 

minutes at 4 °C. The supernatant was removed and the gel like pellet was washed twice in 75% 

ethanol by briefly vortexing and centrifuging at 7500 rcf for 5 minutes at 4 °C. The pellet was 

allowed to air dry and thereafter resuspended in 30 μl of RNase free water. This was conducted 

by pipetting the solution several times followed by incubation at 55 °C for 15 minutes. The 

concentration and quality of RNA was determined by measuring the absorbance at 260 nm and 

280 nm, and the integrity was assessed by electrophoresis on a 2% agarose gel, as previously 

outlined in section 3.2.4.1. 

 

3.4.4.2 Quantitative Real Time Polymerase Chain Reaction (qRT-PCR) 

The total isolated RNA was converted to cDNA using the iScript™ gDNA clear cDNA 

synthesis kit following the manufacturer’s detailed protocol. Approximately, 2 µg of the 

isolated RNA sample, diluted to 16 µl in nuclease free water, was treated with a DNase 

mastermix (iScript™ DNase, 0.5 µl; iScript DNase Buffer, 1.5 µl/ 16µl reaction) to remove 

any genomic DNA present. The reaction mixtures were incubated in 2 cycles with a Bio-Rad 

C1000 Touch™ Thermal Cycler at 25 ˚C (5 minutes) and 75 ˚C (5 minutes). Thereafter, 4 µl 

of the 5× iScript™ Reverse Transcription Supermix (RNase H+, Moloney murine leukaemia 

virus reverse transcriptase, dNTPs, oligo(dT), random primers, and RNase inhibitor) was added 

to the gDNA free RNA samples. The tubes were sealed and centrifuged briefly to remove any 

air bubbles and to spin down the solutions. Reactions with no reverse transcriptase were 

included for each sample as a negative control. The reverse transcription was conducted in a 

Bio-Rad C1000 Touch™ Thermal Cycler in 3 phases: step 1: 25 ˚C (5 minutes); step 2: 46 ˚C 

(20 minutes); 95˚C (1 minute).  Thereafter the resulting cDNA was diluted to 100 µl and stored 

at 4 ˚C.  

The level of gene expression was determined and quantified by qRT-PCR using the Prime PCR 

Gene expression Assay with the SsoAdvanced ™ Universal SYBR® Green Supermix. The 

primers used were the gene of interest, MYC (Assay ID: qHSACID002921) and the endogenous 
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control β Actin (ACTB) (Assay ID: qHSACED0036269). Each singleplex PCR reaction was 

carried out in triplicate for all the samples. The reaction mixtures (20 µl) contained 10 µl 

SsoAdvanced™ Universal SYBR® Green Supermix (Sso 7d-fusion polymerase, dNTPs, 

MgCl2, SYBR® Green I dye, enhancers, stabilizers, and passive reference dyes (ROX and 

fluorescein)), 1 µl of 10× Prime PCR Assay mix, 5 µl (100 ng) cDNA, and 4 µl nuclease free 

water. The reaction mixtures were mixed and transferred to Hard Shell® PCR 96 well plates 

(Biorad). The qRT-PCR amplification was performed using the following protocol: 98 ˚C (30 

seconds) (initial), followed by 40 cycles of 98˚C (15 seconds) (denature), 60 ˚C (30 seconds) 

(anneal/extension) on a CFX-96™ Real-Time System, C1000 Touch™ Thermal Cycler using 

the CFX Manager Software version 3.0 (Bio-Rad). The values of relative expression of the c-

MYC mRNA normalised to the level of ACTB mRNA were determined by the 2-ΔΔ Ct method 

(Livak and Schmittgen, 2001). 

Fold difference = 2-ΔΔ Ct 

Δ Ctsample – Δ Ctcalibrator = ΔΔ Ct 

Ct GOIs – Ct norms = Δ Ct sample 

Ct GOIc – Ct normc = Δ Ct calibrator 

Where s represents the sample, c the calibrator (normal cells), GOI the gene of interest c-MYC 

and norm the normaliser gene ACTB. 

 

3.4.5 Protein Isolation and ELISA 

3.4.5.1 Protein Isolation 

Proteins were isolated 72 hours after transfection. The growth medium was aspirated, and cells 

washed twice with 1.5 ml of PBS (pH 7.5). Thereafter, 1 ml of RIPA buffer was added to the 

cells, which were then incubated in the refrigerator (4 °C) for 5 minutes. The cells were then 

scraped with a pipette to remove and lyse the cells. The cell lysate was transferred to pre-cooled 

tubes on ice, followed by centrifugation at 8000 rcf at 4°C for 10 minutes to pellet the cell 

debris. The supernatant containing the protein was then transferred to cooled tubes and stored 

at - 80°C until further use.  
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3.4.5.2 Enzyme-Linked Immunosorbent Assay (ELISA) 

To evaluate gene silencing efficiency of the c-MYC targeted siRNA nanocomplexes at the 

protein level, the concentration of MYC protein was determined using an adapted ELISA 

protocol outlined by Thermo Scientific technical bulletin (2010).  Protein samples were diluted 

in a coating buffer (0.05 M carbonate-bicarbonate buffer, pH 9.6) to a final concentration of 50 

µg/ml and were introduced into a 96 well, polystyrene, flat bottomed multi-well plate. The 

plate was sealed and incubated at 4˚C overnight to allow for the attachment of the proteins to 

the wells. Following attachment, the coating buffer was removed, and the plates were washed 

twice with 200 µl Tris-buffered saline (20 mM Tris-HCl, pH 7.5, 150 mM NaCl) with 0.1% 

Tween 20 (TBS-T). Thereafter, unoccupied attachment sites within the well were saturated 

with 5% blocking agent (non-fat dry milk in TBS-T), at room temperature for 1 hour under 

constant agitation. The plate was then washed twice with TBS-T and the plate was incubated 

at room temperature for an hour with either MYC, (1:2000 in 1% blocking agent), or β-Actin, 

(1:10000 in 1% blocking agent) used as an internal control. The primary antibodies were 

removed, and the plates were washed for 5 minutes with constant agitation (total of 4 washes). 

Thereafter, the goat anti mouse IgG2a-HRP secondary antibody (1:2000 in 1% blocking agent) 

were added to all the wells and incubated at room temperature for one hour. The plate was then 

washed four times with TBS-T, followed by the addition of TMB (prepared as per the 

manufacturer’s instructions) to the wells and incubation at room temperature for a period of 30 

minutes for the desired colour to develop (colourless to blue). Thereafter, stop solution (2M 

H2SO4) was added, and the absorbance was then measured at 450 nm using a Mindray MR-

96A microplate reader (Vacutec, Hamburg, Germany).  

 

3.5 Statistical Analysis 

Data are presented as a means ± SD (n=3). Statistical analysis among mean values was 

performed using one-way ANOVA followed by the Dunnett multiple comparison post hoc test 

for all formulations. All statistics were performed using a 95% confidence interval and were 

considered significant when the P value was less than 0.05 (P< 0.05).  
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

 

4.1 Gold Nanoparticle Preparation and Characterization 

 

4.1.1 Synthesis and Functionalisation of AuNPs 

AuNPs have been synthesized by a variety of methods which follow a similar strategy whereby 

the gold salt is reduced in the presence of a stabilizing agent (Tiwari et al.,2011). The particle 

size of the colloidal gold can be controlled by varying the salt concentration, temperature and 

reducing agent (Dreaden et al.,2011). In this study, the citrate reduction method was employed.  

Variations in the citrate concentration results in the formation of gold particles of different 

diameters within a range of 12- 160 nm (Frens, 1973). Following reduction of HAuCl4 in water, 

the colloidal gold undergoes a colour change from yellow to a deep red wine colour (Figure 

4.1). This colour change is associated with a decrease in particle size with larger particles 

ranging between 100- 200 nm and smaller particles between 5-15 nm, and predominantly 

spherical in shape (Peng et al.,2008).    

 

                                                      

3×10-2 M HAuCl4 Solution               0.4×10-3 M citrate reduced AuNPs 
 

Figure 4.1: Image depicting the colour change observed following the citrate reduction of the gold salt 

(yellow) to gold nanoparticles (deep red wine colour).  

 

Due to the citrate reduction, the resultant AuNPs are negatively charged which allows for the 

relative ease of functionalisation with positively charged polymers. For this study, five 

  +  Na3C6H5O7 
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functionalised AuNP preparations were utilized and the final concentration of the prepared 

AuNP suspension was determined by ICP-OES analysis.  

Chitosan was the polymer of choice as it is a natural polysaccharide that is biodegradable, 

biocompatible and has characteristics that are desirable for siRNA delivery. Due to their 

cationic nature, they allow for complexation with anionic siRNA in a relatively quick and easy 

formulation process (Ragelle et al.,2013). For efficient gene silencing, the molecular weight 

and degree of deacetylation (DD) are important parameters for chitosan considering that there 

are different types of chitosan molecules. The molecular weight (MW) of chitosan further 

affects it’s morphological, physico-chemical and in vitro biological characteristics. For this 

study, low MW chitosan (25kDa) was utilized as it has been found that at this MW, the chitosan 

molecule was capable of completely binding to the siRNA when compared to very low MW 

chitosan (<10 kDa), which cannot completely bind siRNA due to their short chains. 

Interestingly, high MW chitosan molecules (80-300 kDa) that have been widely used for 

siRNA complexation, are incapable of forming suitable nanoparticles as their chain lengths 

were too long and therefore, the resulting particle size of the nanocomplex was too large for 

biological applications (Liu et al.,2007; Jackson and Linsley, 2007; Baldrick, 2010; Tapola et 

al.,2008; Garcia-Fuentes and Alonso, 2012; Cho et al.,2008; Howard et al.,2006). The charge 

density of the chitosan molecule is another important parameter and is determined by the 

degree of deacetylation (DD). This refers to the percentage of deacetylation of the primary 

amine groups of the chitosan molecule. Due to the short length and molecular topology of 

siRNA, a high number of positive charges is required to complex and keep the siRNA 

completely bound therefore, it has been reported that chitosan with a DD > 75% is required for 

nanoparticle formation and siRNA binding (Mao et al.,2010), as utilised in this study. The 

higher number of positive charges is also important for endosomal escape of the nanocomplex 

by the proton sponge effect following cellular uptake.  

The chitosan functionalised AuNPs (Chito-AuNPs) were further modified by the addition of 

polyethylene glycol (PEG). PEG modifications are known to increase the blood circulation 

time of the nanoparticles by reducing opsonisation and preventing uptake by the 

reticulaoendothelial system (RES) (Kah et al., 2009; Niidome et al.,2006). The PEG molecules 

are known to be non-immunogenic, biocompatible and can reduce renal clearance of the 

nanoparticles (Lai and Liao,2003; Vonarbourg et al.,2006; Harris et al.,2001). It is also 

believed that the introduction of PEG molecules can stabilize nanoparticle structures. The 
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effect of high and low MW PEG molecules (2000 and 400 respectively) at different mass ratios 

were studied. Chitosan functionalization was based on the ability of the amine functional 

groups to spontaneously bind to the negatively charged citrate capped AuNP through 

electrostatic interactions. The addition of PEG to this delivery system was based on the findings 

by Manson and colleagues (2011) which stated that by introducing PEG to the citrate capped 

AuNPs, an exchange occurs between the citrate and PEG molecules which allows for the 

attachment of PEG to the AuNP surface (Manson et al.,2011).  (Figure 4.2).    

Figure 4.2: Schematic representation of the composition of the PEGylated and non-PEGylated Chito-

AuNPs used in this study and its electrostatic interaction with siRNA. 
 

4.1.2 Functionalised AuNP: siRNA Interactions 

The unique surfaces of the AuNPs allow for functionalisation and the attachment of siRNA to 

their surfaces. The binding of the siRNA to the AuNP surface can occur through electrostatic 

interactions or chemical adsorption. These methods are relatively simple which involve the 

mixing and incubation of the siRNA with the positively charged functionalised AuNPs as 

represented in Figure 4.4.  

The chemical adsorption of the siRNA to the AuNP surface relies on the use of chemically 

modified siRNA that usually bear thiol functional groups, usually at the 5ˈ end of the sense 

strand. The siRNA then adsorbs onto the AuNP surface via a thiol- Au interaction (Figure 4.3 

a). For this strategy, the AuNPs do not require surface functionalisation, however, the 

therapeutic agent as well as the ligands and PEG need to be chemically modified to allow for 

adsorption. The second strategy involves the electrostatic interaction between the siRNA and 

functionalised AuNP. Amine functionalised AuNPs possess a positive charge on their surface 
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and, therefore, due to ionic interactions with the anionic siRNA are able to spontaneously bind 

to the AuNP surface (Figure 4.3 b). The third approach involves a ‘layer by layer’ strategy 

which results in multiple layers on the AuNP surface. This is achieved by repeating oppositely 

charged electrolytes (Zaky et al.,2009). For example, negatively charged AuNPs were 

functionalised with PEI followed by the sequential addition of siRNA and PEI which results in 

the formation of an AuNP/PEI/siRNA/PEI complex (Figure 4.3 c). This method is an extension 

of the electrostatic interaction; however, it is believed that the addition of the second layer of 

the polymer offers a protective ‘shield’ around the siRNA, thereby offering greater protection 

against enzymatic degradation (Hong and Nam, 2014). For this study, the second strategy 

involving electrostatic interactions, was employed for preparation of nanocomplexes between 

the functionalised AuNPs and siRNA.  

 

 

Figure 4.3: Illustration of interactions between siRNA and functionalised AuNPs (Adapted from Hong 

and Nam, 2014). 

 

 

 

 

(c) 
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4.2 Characterisation of Functionalised AuNPs and AuNP: siRNA Interactions 

4.2.1 UV-Visible spectrophotometry 

UV-visible absorption spectroscopy can be utilised for the characterisation and confirmation 

of the synthesis of AuNPs. The spectroscopic properties associated with AuNPs can be used to 

provide an indication of the size of the resultant synthesized AuNP suspension by assessing 

their surface plasmon resonance and fitting the position to a wavelength function (Wolfgang et 

al.,2007; Nikhil et al.,2001; Kenneth et al.,2000; Martinez et al.,2012). The surface plasmon 

band (SPB) of spherical particles can be described using the Mie theory (1908). Maxwell’s 

electromagnetic equations are the basis of the Mie theory which predicts the light scattering 

properties induced by spherical particles by measuring the difference in the refractive index 

between the particle and its medium (Malvern, 2010). Furthermore, this theory may also be 

used to describe the effect of the absorption characteristics of the particle with the amount of 

transmitted light and to determine how much of this light is either absorbed or refracted. 

According to this theory, the surface plasmon scattering and absorption is represented as 

magnetic and electric oscillations and attributes the SPB to the dipole oscillations of free 

electrons within the conduction band, which occupies energy states above the Fermi energy 

levels (Daniel and Astruc, 2004; Alvarez et al.,1997). To date, the majority of reports correlate 

the AuNP spectroscopic behaviour to the Mie theory (Daniel and Astruc, 2004). The 

characteristics of the uncoated AuNP SPB are as follows: (i) should position near the 520 nm 

region, (ii) a decrease in the AuNP core size should result in a blue shift/ decrease in the SPB 

band, (iii) monodispersed AuNPs with a core size between 1.1 – 1.9 nm should exhibit step-

like structures in the spectrum which indicates levels of the conduction band that are not 

occupied (Schaff et al.,1997; Zaitoun et al.,2001; Melinger et al.,2003).  The UV absorption 

spectra of the AuNPs, PEGylated and non-PEGylated Chito-AuNPs are shown in Figure 4.4.  

A well-defined adsorption band was observed for all AuNPs. The AuNPs showed a peak at 520 

nm which is in agreement with the adsorption maxima of nanoscale AuNPs and the Mie theory, 

and is a characteristic feature of AuNPs. The addition of chitosan as well as PEG2000 and PEG400 

was confirmed by a red shift of the AuNP adsorption spectrum from λmax of 520 nm for AuNP 

to λmax of 524nm - 527 nm for the functionalised AuNPs. A red shift in the absorption spectrum 

is an indication of an increase in particle size which can be attributed to the addition of chitosan, 

PEG2000 and PEG400, respectively. A similar result was observed by Manson and co-workers 

who showed that as the PEG density increased, the intensity of the surface plasmon band 
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increased. This effect was also previously reported by Oh and colleagues in 2008 (Oh et 

al.,2008). The spectral red shift can be attributed to the combining effects of polymer 

functionalisation and particle size increase.  

 

Figure 4.4: UV-vis Absorption Spectrum of AuNPs, Chito- AuNPs and PEGylated Chito-AuNPs 

 

Standard citrate-capped AuNPs exhibit a single extinction band in the visible region at 520 nm 

and this is correlated to the size of the gold nanospheres being less than 50 nm (Boca et 

al.,2010). Since the AuNPs synthesized for this study exhibited a peak in the absorbance at this 

wavelength, it suggests that the size of the AuNPs are within this range. Interestingly, Chito-

AuNPs PEGylated with PEG400 showed an λmax 524 nm which is similar to that exhibited by 

the Chito-AuNPs, whereas PEGylation with PEG2000 showed a red shift of the spectrum to a 

λmax of 527 nm. The polymer coating of the AuNPs results in changes of the refractive index 

of the AuNPs, causing the red spectral shift, and hence, differs from that of the Mie theory 

which deals with uncoated AuNPs. The presence of the polymer shell results in an interaction 

with the electron cloud on the AuNP surface. The SPB of the functionalised AuNPs shifts to a 

higher wavelength upon the reduction between the spacing of the AuNPs (Daniel and 

Astruc,2004). This assists in understanding the highest λmax exhibited by the 2 and 5% PEG2000 

Chito-AuNPs. Since PEG2000 is a larger polymer than PEG400, the space between individual 

AuNPs PEGylated with PEG2000 will be reduced when compared to the non-PEGylated and 

PEG400 PEGylated Chito-AuNPs counterparts and hence, these PEG2000 PEGylated Chito-

AuNPs exhibit the highest wavelength at 527 nm. Surface functionalisation was confirmed by 
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FTIR analysis.  The sizes of all the AuNPs were further evaluated by TEM and NTA 

measurements.  

 

4.2.2 ICP-OES and FTIR Analysis 

ICP was conducted to determine the AuNP concentration within the prepared citrate reduced 

AuNP suspension. This technique is highly specific with excellent detection limits (18 parts 

per trillion for gold) (Alkilany and Murphy, 2010). It allows for a count of the number of Au 

atoms which results in a more precise quantification of the number of gold nanospheres. 

Furthermore, an elemental analysis can be carried out which provides an estimate of the number 

of nanoparticles within a sample (Lévy et al.,2010). The results are represented in Appendix 

A1 and show that the average AuNP concentration is 8.862 mg/L.  

Fourier Transmission Infrared analysis or FTIR is a method that can be used to determine the 

quality, components of a sample, and for identification of an unknown material. FTIR was used 

to analyse the surface functionalisation of the AuNPs with chitosan and PEG (400 and 2000) 

utilised in this study. Each material is unique, due to their atom combination; therefore, 

different materials will produce infrared spectrums that differ from each other. During FTIR 

analysis, the sample is exposed to IR radiation. The sample will absorb some of this radiation 

and also transmits a part of the IR radiation. Due to the vibration frequencies between the 

atomic bonds of a sample, various absorption peaks are generated that correspond to these 

frequencies and the spectrum that results serves as a ‘molecular fingerprint’ of the sample 

(Thermo Nicolet, 2001). From FTIR analysis, it was further confirmed that the AuNP surface 

was successfully functionalised with chitosan and PEG. The spectra are represented in 

Appendix A2 with characteristic peaks at approximately 1637 cm-1 and 2993 cm-1 due to the 

amino groups present in the chitosan molecule, and through the vibrations of repeated OCH2-

CH2 units in PEG, distinct peaks are present in the 3200 cm-1 range. Slight differences exist 

within these ranges which confirm the variations in the quantity and molecular weight of the 

PEG molecules utilised during functionalisation.        
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4.2.3 PEGylated and non-PEGylated Chitosan AuNP: siRNA Interactions 

 

4.2.3.1 siRNA Binding studies and Nuclease Protection Assays 

Nanocomplexes were prepared between chitosan, FAuNPs and siRNA by simply mixing and 

incubating the two molecules at room temperature. Complex formation occurred through 

electrostatic interactions as described previously. Evaluation of these nanocomplexes to 

determine the optimum binding ratios and siRNA protection, was investigated using the band 

shift, SYBR Green II displacement, and RNase A protection assays.  

 

4.2.3.1.1 Band Shift Assay 

The band shift assay or gel retardation assay was introduced by Fried and Crothers to evaluate 

the interaction between DNA and proteins (Scott et al.,1994; Hellman and Fried, 2007). It has 

been adapted for gene delivery studies to evaluate the interaction between DNA/RNA and 

cationic gene delivery vehicles. The principle of this study is that the migration of siRNA or 

DNA becomes retarded following complex formation between the nucleic acid and the cationic 

nanoparticles during electrophoresis. For this study, agarose gel electrophoresis was utilized to 

assess the binding efficiencies of the PEGylated and non-PEGylated Chito-AuNPs with 

siRNA. As the concentrations of the FAuNPs increases, the amount of siRNA associated with 

the FAuNPs increases until complete binding of the siRNA is achieved. At this point, the 

minimum amount of FAuNPs to completely bind and compact a constant amount of siRNA is 

achieved and the charge ratio which corresponds to that complex can be estimated (Percot et 

al.,2004). At complete retardation, an electroneutral complex is formed, and it is at this ratio 

that the negative charges of the siRNA are completely titrated by the positive charges 

associated with the FAuNPs and the resultant complex will not migrate through the matrix of 

the gel, but will be retained in the well. Uncomplexed siRNA, that is the siRNA in the absence 

of any FAuNP, will migrate into the gel matrix upon electrophoresis, however, in the presence 

of increasing cationic FAuNPs, the siRNA becomes neutralised and does not migrate into the 

gel, but is seen fluorescing in the wells. The results of the PEGylated and non-PEGylated Chito-

AuNPs binding with siRNA can be seen in Figure 4.5, and shows that all the FAuNP 

preparations were capable of successfully binding to the siRNA at various N/P or weight ratios 

(Table 4.1). The end points of each nanocomplex are indicated by the arrows.      
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Figure 4.5: Band Shift analysis the binding of various amounts of FAuNP preparations with a constant 

amount of siRNA (0.3µg) in a 10µl reaction mixture. (A) Chitosan, (B) Chito-AuNP, (C) 2% PEG2000 

Chito-AuNP, (D) 5% PEG2000 Chito-AuNP, (E) 2% PEG400 Chito-AuNP and (F) 5% PEG400 Chito-

AuNP. Lane 1: 0.3µg of uncomplexed siRNA in the absence of chitosan and FAuNPs; Lanes 2-8: the 

respective siRNA nanocomplexes prepared using various amounts of the FAuNPs and chitosan as 

indicated. Arrows or numbers in red indicate complete binding or point of electroneutrality. 
 

In lane 1, the naked siRNA serves as the control, against which retardation is measured. In this 

control lane, the siRNA exhibits a single band which is characteristic of the siRNA. In lanes 2-

8, increasing amounts of chitosan and the FAuNPs are present. In these lanes, it can be seen 

that the amount of uncomplexed siRNA that migrates through the gel decreases until all the 

siRNA is completely bound to the FAuNPs and chitosan. The ratio at which this minimum 

amount of FAuNP is needed to completely bind the siRNA is referred to as the optimum 

binding ratio. The N/P and weight ratio for each FAuNP and chitosan at the optimum binding 

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 
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ratio is outlined in Table 4.1. Interestingly, the amount of the PEGylated Chito-AuNPs to 

completely bind to the siRNA was higher than that required by the non-PEGylated Chito-

AuNPs. Since 1 mg of chitosan was utilized in all the preparations, it suggests that the presence 

of PEG on the AuNP surface may be responsible for shielding some of the positive charges 

presented on the chitosan surface, resulting in more of the PEGylated Chito-AuNPs being 

required to bind the same amount of siRNA. Furthermore, PEG400 Chito-AuNPs showed 

complete binding of the siRNA at a higher ratio compared to their PEG2000 Chito-AuNP 

counterparts. Since the PEG400 chain is much smaller than that of the PEG2000, a greater number 

of PEG400 molecules can attach to the nanoparticle surface, resulting in a higher number of 

positive charges being shielded, affecting the binding ability of the AuNP to the anionic siRNA. 

Hence, a greater amount of the Chito-AuNPs PEGylated with PEG400 will be required to 

completely bind the same amount of siRNA.  

 

Table 4.1: siRNA-Au nanocomplexes at the optimum binding ratio and their 

corresponding charge ratios for the band shift and SYBR Green II displacement 

assays. 
 
 

FAuNPs 

Band Shift Assay SYBR Green II 

Displacement Assay 

FAuNP 

Amount 

(µg) 

siRNA: 

FAuNP 

Ratio(w/w) 

N/P Ratio 

(+/-) 

siRNA: 

FAuNP 

Ratio(w/w) 

N/P Ratio 

(+/-) 

Chitosan 0.21 1:0.7 0.01:1 1:17 0.35:1 

Chito-AuNP 0.15 1:0.5 0.007:1 1:14 0.20:1 

2% PEG2000 Chito-AuNP 0.27 1:0.9 0.013:1 1:9 0.13:1 

5% PEG2000 Chito-AuNP 0.48 1:1.6 0.023:1 1:10 0.20:1 

2% PEG400 Chito-AuNP 0.3 1:1 0.014:1 1:9 0.13:1 

5% PEG400 Chito-AuNP 0.66 1:2.2 0.035:1 1:14 0.20:1 

  

From the results, it was observed that the Chito-AuNP was capable of binding the siRNA at a 

lower ratio (w/w) than chitosan on its own. This suggests that the presence of the AuNP 

introduced a positive influence on the delivery system by enhancing the interaction between 

the natural polysaccharide and the siRNA.  Furthermore, the resulting nanocomplex formed 

may be smaller, thereby favouring cellular uptake and transfection efficiency of the AuNPs. 

The ratios that were obtained from this assay were then utilized for further characterisation and 

in vitro studies.     
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4.2.3.1.2 RNase A Protection Assay 

One of the major hurdles in gene delivery is that the siRNA being introduced, is susceptible to 

nuclease degradation in circulation. These nucleases, which include RNase A, are present in 

the blood system during circulation and are also present in the interstitial spaces (Lu et 

al.,2009). An important and desirable feature of any nanoparticle is the protection that they 

afford to the siRNA against nuclease degradation. Hence, in this study, the ability of the 

prepared FAuNPs to protect the siRNA in the presence of RNase A was investigated in vitro 

using agarose gel electrophoresis.  

Theoretically, the siRNA that is associated with the FAuNPs will be protected against 

degradation by nucleases as they are completely bound and, therefore, condensed and 

compacted into supramolecular structures, whereas uncomplexed siRNA is rapidly destroyed 

by nucleases as they are not afforded any protection by the FAuNPs. The results of the assay 

are represented in Figure 4.6. In this assay, two controls were included, namely, a positive 

control: untreated, naked siRNA which displays a single siRNA band, and a negative control 

which is the naked siRNA treated with 10% RNase A. These controls serve to evaluate the 

degree of RNase A digestion of uncomplexed siRNA compared to the siRNA associated with 

the PEGylated and non- PEGylated Chito-AuNPs. Following incubation with the enzyme, 

EDTA was then added to the reaction mixtures to terminate the action of the enzyme. This was 

followed by the addition of SDS which releases the compacted siRNA from the 

nanocomplexes. The resultant reaction mixtures containing the released siRNA were then 

evaluated by agarose gel electrophoresis as described in section 3.2.4.1.  
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Figure 4.6: RNase A protection assay of chitosan and FAuNP- siRNA nanocomplexes. Lane 1: 0.3 µg 

of untreated, naked siRNA, Lane 2: 0.3 µg of RNase A treated naked siRNA, (A) Lanes 3-5: Chitosan 

nanocomplexes, (A) Lanes 6-8: Chito-Au nanocomplexes, (B) Lanes 3-5: 2% PEG2000 Chito-Au 

nanocomplexes, (B) Lanes 6-8: 5% PEG2000 Chito-Au nanocomplexes, (C) Lanes 3-5 2% PEG400 Chito-

Au nanocomplexes (C) Lanes 6-8: 5% PEG400 Chito-Au nanocomplexes.  The siRNA was kept constant 

at 0.3 µg per well.  

 

 

It can be seen from the results obtained, that all the FAuNPs were capable of fully protecting 

the siRNA against RNase A degradation across all the siRNA- FAuNP ratios (w/w), compared 

to the uncomplexed siRNA (lane 2) which was completely degraded. Chitosan also displayed 

protection of the siRNA. The chitosan utilized in this study has a MW of 25 kDa with a  >75% 

DD. Studies conducted by Fernandes and co-workers (2012) showed that chitosan at this MW 

was capable of completely binding siRNA offered better protection against enzymatic 

degradation, when compared to higher or lower MW chitosan molecules (Alameh et al.,2012). 

Furthermore, it was found that the DD should be greater than 75%, as this ensures complete 

binding and ensures that the siRNA remains complexed within the nanocomplex through 

electrostatic interactions. Therefore, from the results and as discussed above, it can be 

suggested that since the chitosan that was used for functionalisation met the above 
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requirements, the siRNA was completely complexed within the Au nanocomplex structure and 

was able to be fully protected against RNase A degradation. Overall, these results are an 

indication that the formulated PEGylated and non-PEGylated Chito-AuNPs are suitable as 

potential gene delivery vehicles, as treatment with of these siRNA-Au nanocomplexes with 

RNase A offered complete protection to the siRNA. This was a promising result for further 

transfection studies in vitro and future in vivo applications, with the anticipation of increased 

delivery of intact siRNA to the cells followed by efficient gene knockdown.  

 

4.2.3.1.3 SYBR Green II Displacement Assay   

The binding efficiency of the FAuNPs with siRNA attained from the band shift assay was 

further investigated using a fluorescence quenching assay based on that first reported by 

LePecq and Paoletti in 1967 which involved the use of ethidium bromide (Geall and 

Blagbrough, 2000; Duarte et al.,2011). For this study, the assay was slightly modified by using 

the SYBR Green II dye in place of ethidium bromide. The fluorescence quantum yield of 

SYBR Green II with RNA complexes is believed to be seven times greater than that obtained 

with ethidium bromide/ RNA complexes (Dorasamy et al., 2012). However, the principle of 

the assay remains the same. Free SYBR Green II dye, in aqueous solvents, exhibit low levels 

of fluorescence, however, when the dye becomes intercalated between the siRNA base pairs, 

it enters an environment that is hydrophobic which results in an increase in observed 

fluorescence (Figure 4.7). Upon the addition of FAuNPs, there is a competition between the 

dye and the nanoparticles. Since there is a greater affinity of the siRNA for the FAuNPs, this 

interaction is stronger and results in displacement of the SYBR Green II dye from the siRNA. 

This siRNA interaction with the FAuNPs results in the compaction of the siRNA. Hence, this 

displacement of the dye leads to a concomitant decrease in the measured fluorescence, which 

also correlates with the degree of interaction between the siRNA and FAuNPs.  

In agreement with this principle, all the FAuNPs prepared were capable of successfully 

displacing the SYBR Green II dye that was intercalated between the siRNA base pairs. This 

was evident following the stepwise addition of the FAuNPs to the siRNA-SYBR Green II 

mixtures which resulted in a steady decrease of fluorescence and is illustrated in Figure 4.8.  
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Figure 4.7: Graphical representation of the SYBR Green II dye intercalation between siRNA base pairs 

 

The relative percentage fluorescence was calculated as per section 3.2.4.3 and was represented 

as a function of the amount (µg) of FAuNPs. The FAuNPs were added in varying amounts to 

the siRNA-SYBR Green II reaction mixture until the point of inflection or a plateau in readings 

was reached. It is at this point that the FAuNP ratio had maximally displaced the SYBR Green 

II dye and completely condensed the siRNA. The resulting mass and N/P ratios at the point of 

inflection are represented in Table 4.1.    

The general trend observed for the chitosan, PEGylated and non-PEGylated nanocomplexes 

appear to correspond to that observed during the band shift assay with chitosan and Chito-

AuNP showing similar levels of fluorescence decline (75.43% and 75.97%, respectively). 

Furthermore, the ratios correlate with the pattern attained in the band shift assay. The 2% 

PEGylated AuNPs showed higher levels of compaction at lower concentrations compared to 

their 5% PEGylated counterparts. This could be attributed to the amount of PEG present on the 

surface of the AuNP, with a lesser amount of PEG present for the 2% PEGylated AuNPs 

resulting in more positive charges being present on the nanoparticle surface allowing for greater 

interaction with the siRNA. These lower ratios are indicative of greater levels of nanocomplex 

compaction. However, PEG2000 Chito-AuNPs showed lower levels of fluorescence decrease 

(17.65%, 73.77%) with the siRNA compared to the PEG400 Chito-AuNPs (81.16%, 78.74%). 

This could be due to the length of the PEG molecules which could hinder the compaction 

abilities of the PEG2000 Chito-AuNPs and hence, the resulting nanocomplexes with the siRNA 

were not as compact as the nanocomplexes achieved with the PEG400 Chito-AuNPs. 

 

SYBR Green II dye 

siRNA siRNA- SYBR Green II 

complex 

Intercalated dye 

 

 

 

 



73 
 

Figure 4.8:  SYBR Green II displacement assay of Chitosan, PEGylated and non-PEGylated Chito-

AuNPs. The FAuNPs were added systemically to the siRNA/ SYBR Green II reaction mixture (0.28 

µg siRNA) until the point of inflection was attained.  

 

All the prepared Chito-AuNP formulations, with the exception of 5% PEG2000 Chito-AuNP, 

exhibited good compaction of the siRNA and were capable of displacing large amounts of the 

intercalated SYBR Green II dye from the siRNA. The tight and compact binding of the siRNA 

to the FAuNPs had its advantages and disadvantages for future transfection studies. The strong 

interaction between the siRNA and FAuNPs also resulted in greater protection of the siRNA 

Au-nanocomplexes as seen in the RNase A protection assay. This further ensures the safe 

delivery of the siRNA to the cells being tested. However, this characteristic may also be 

unfavourable as the bound siRNA may not be easily released from the nanocomplex during the 

transfection process, and not able to undergo endosomal escape leading to lower levels of gene 

knockdown. Alternately, if a weak interaction exists between the siRNA and the FAuNPs, it 

may result in rapid dissociation of the siRNA: Au-nanocomplex, exposing the siRNA to 

degradation, which in turn limits the amount of siRNA that reaches the cell. Hence, an 

intermediary level of compaction is ideal for siRNA delivery.  

There appears to be very little correlation between the mass (w/w) and N/P ratios obtained with 

the band shift and dye displacement assays (Table 4.1). A possible reason for these 

discrepancies is that the ratios achieved during the band shift assay is based solely on charge 

neutralisation whereas the dye displacement assay is based on the condensation of the siRNA 

as well as charge neutralisation. However, the ratios that were obtained during the band shift 
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assay represent the minimum amount of the cationic FAuNPs to completely bind a constant 

amount of siRNA. 

 

4.2.3 Imaging and Sizing 

4.2.3.1 Transmission Electron Microscopy of PEGylated and non-PEGylated Chito-

AuNPs and their complexes with siRNA 

Transmission electron microscopy (TEM) was employed to analyse the ultrastructural 

characteristics of the AuNPs, Chito-AuNPs and the PEGylated Chito-AuNPs. Using this 

technique, one is able to study the ultrastructural morphology of the AuNPs. Due to the optical 

properties of the AuNPs, staining is not required to view the AuNPs in their native state. TEM 

can be characterised by the use of an electron beam which is concentrated onto the surface of 

the sample by a series of electromagnetic lenses. The electrons which are transmitted are then 

magnified and, due to the action of magnetic lenses, are focused resulting in an image which 

is projected onto a screen (Bibi et al.,2011; Kuntsche et al.,2011). 

The TEM micrographs of the AuNPs, FAuNPs and siRNA containing nanocomplexes are 

represented in Figures 4.9 and 4.10, respectively. All the AuNP preparations appeared spherical 

in shape, which correlates with that reported in the literature when using the citrate reduction 

method for the synthesis of AuNPs. Moreover, the FAuNPs appear to exhibit a slight halo 

around their surface which may indicate the presence of functional groups. The uncoated 

AuNPs and Chito-AuNPs appear well dispersed whereas the PEGylated Chito-AuNPs appear 

to have very slight aggregation. These chain-like structures may be attributed to the exchange 

interaction between the PEG and the citrate molecules, following the PEGylation process 

during synthesis which may result in an organic double layer (Manson et al.,2011; Majzik et 

al.,2010). The siRNA nanocomplexes with the PEGylated and non-PEGylated Chito-AuNPs 

revealed aggregates that appear to be intact. These complexes further confirm the binding 

interaction between the FAuNPs and the siRNA as previously studied in the band shift, 

nuclease and dye displacement assays. An indication of the size of the AuNPs, FAuNPs and 

their complexes with siRNA was obtained with TEM (Table 4.2), however, for a more accurate 

measurement on the size distribution, nanoparticle tracking analysis (NTA) was utilized.    

 

 



75 
 

 

Figure 4.9: Transmission electron micrographs of (A) AuNP, (B) Chito-AuNP, (C) 2% PEG2000 Chito-

AuNP, (D) 5% PEG2000 Chito-AuNP, (E) 2% PEG400 Chito-AuNP and (F) 5% PEG400 Chito-AuNP. Bar 

represents 50 nm (A-C) and 200 nm (D-F). 
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Figure 4.10: Transmission electron micrographs of siRNA:Au nanocomplexes prepared at the optimum 

binding or N/P ratios as determined from the band shift assay (A): Chito-AuNP, (B) 2% PEG2000 Chito-

AuNP, (C) 5% PEG2000 Chito-AuNP (D) 2% PEG400 Chito-AuNP and (E) 5% PEG400 Chito-AuNP. Bar 

= 100 nm 
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4.2.3.2 Nanoparticle Sizing and Zeta Potential 

An important parameter in the development of a nanoparticle delivery system is the particle 

size which is believed to have a great impact on its effectiveness during transfection. 

Furthermore, this morphological parameter can also influence the circulation time of the 

nanoparticle, its evasion from the RES as well as the nature of the nanoparticle cellular uptake, 

which can be either micropinocytosis or clathrin- or- caveolin mediated endocytosis (Ross and 

Hui, 1999; Ma et al.,2007; Marchini et al.,2009; Akbarzadeh et al.,2013). Another significant 

feature of the nanoparticles and the siRNA nanocomplexes, is their zeta potential which is a 

measure of the nanoparticle surface charge in a suspension. The zeta potential also acts as an 

indicator of the colloidal stability of the nanoparticle and nanocomplexes, which in turn affects 

the pharmacokinetic properties of these complexes in an in vivo system (Xu, 2008; Griffiths et 

al.,2011, Honary and Zahir, 2013). 

As mentioned previously, sizing of the AuNP preparations was conducted during TEM 

analysis, however, the sizes and zeta potential of the AuNPs, PEGylated and non-PEGylated 

Chito-AuNPs as well as their complexes with siRNA at the optimum binding ratios were 

evaluated by NTA. The Brownian motion and light scattering properties of the nanoparticle is 

measured, and the diffusion constant of the nanoparticle is calculated. This is then applied to 

determine the hydrodynamic diameter of the nanoparticle (Gross et al.,2016; Nanosight, 2015).  

During NTA measurements, the sample is loaded onto a sample chamber and a laser beam at a 

wavelength of 430 nm is passed through this sample chamber, and the nanoparticles that are in 

the range of this beam are capable of scattering light allowing them to be visualised. A 20× 

magnification microscope objective which is attached to a sCMOS camera allows for the 

visualisation of these nanoparticles under Brownian motion (Figure 4.11) and videos are 

captured.  

The videos were analysed using NTA 3.2 analytical software. The zeta potential of the 

nanoparticles is measured in a similar way; however, a variable electric current is passed 

through the sample chamber which is facilitated by the presence of two platinum electrodes 

within the sample chamber. The velocity of the particle motion under this electric current is 

recorded and measured on each nanoparticle which allows the zeta potential to be determined 

(Gross et al.,2011; Nanosight, 2013). A detailed NTA report is represented in Appendix A3.    
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Figure 4.11: Screenshot from recorded video showing the AuNPs light scatter and movement under 

Brownian motion. 

 

The sizes for the AuNPs and FAuNPs as well as their complexes with siRNA fell within low 

nanometre ranges. The size ranges determined during TEM analysis of the AuNPs were 

between 14.29 nm - 17.8 nm and their siRNA nanocomplexes were between 42.5 nm- 58.9 nm 

whereas the NTA showed sizes between 65.9 nm – 160.8 nm for AuNPs and FAuNPs and 

144.3 nm – 164.5 nm for their corresponding siRNA nanocomplexes. These discrepancies in 

the size measurements could be attributed to the sample preparation prior to analysis. During 

TEM analysis, the AuNP samples are dried on the copper grid and visualised whereas during 

NTA, the samples are prepared in a suspension and analysed which results in a hydrodynamic 

diameter measurement. Hence, the results achieved during NTA may be more reliable for the 

potential clinical use of these AuNPs, as they will be exposed to a hydrodynamic environment. 

However, although there are differences in the actual measurements, the trend observed for the 

AuNPs and their siRNA nanocomplexes using both analyses appear to be the same. The AuNPs 

have a smaller size range which increases following functionalisation with chitosan and PEG. 

This result correlates with the data obtained during UV spectroscopy which showed a red shift 

in the spectrum of the FAuNPs when compared to the uncoated AuNPs.  
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A similar trend was observed with the corresponding siRNA:Au nanocomplexes. The sizes of 

the resulting nanocomplexes increased in size depending on the PEGylation. Chito-AuNPs 

PEGylated with PEG2000 had formed larger complexes with siRNA compared to those 

PEGylated with PEG400.  As discussed previously, the resultant siRNA:Au  nanocomplex sizes 

could be due to the size of the PEG polymer, and since PEG2000 is larger than PEG400 in size, 

the nanocomplex that is formed is larger. Furthermore, the presence of PEG on the AuNP 

surface resulted in a greater nanocomplex size, as all the PEGylated AuNPs formed larger 

nanocomplexes with the siRNA compared to the non-PEGylated Chito-AuNP. This result is 

reinforced by those achieved in the band shift and dye displacement assays, as a greater amount 

of the PEGylated AuNPs were required to bind the same amount of siRNA and furthermore, 

the Chito-AuNPs that were PEGylated with PEG400 showed higher degrees of compaction with 

the siRNA compared to those Chito-AuNPs PEGylated with PEG2000. The average sizes and 

zeta potential of the AuNPs, FAuNPs and their complexes with siRNA are represented in Table 

4.2. 

Previous studies have suggested that the size of the resulting nanocomplex may affect its 

transfection efficiency as size plays a role in the cellular internalisation pathway (Zuhorn et 

al.,2002; Ross and Hui, 1999, Ma et al.,2007; Marchini et al.,2009). Furthermore, the size 

range of the nanoparticle for efficient gene delivery is also conflicting. Some studies suggest 

that larger nanocomplexes result in higher degrees of transfection while others believe that 

smaller nanoparticles are superior (Ma et al.,2007; Marchini et al.,2009; Masotti et al., 2009; 

Wang et al.,2012). For this study, the FAuNPs are proposed to be taken up by cells via a passive 

cellular uptake mechanism, that is, a combination of clathrin mediated endocytosis and 

micropinocytosis. This is a non-specific cellular uptake process where particles within a broad 

size range (up to 5 µm) can be internalised. Therefore, this may not be a limiting parameter of 

the AuNPs in determining efficient uptake in vitro, however, this feature may be of vital 

importance for in vivo applications. 
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Table 4.2:  Average particle size and zeta potential of AuNPs, FAuNPs and optimal siRNA: 

Au nanocomplex ratios   

 

FAuNPs 

TEM (n= 3) NTA (n=3) 

 

Nanoparticle 

Size (nm) ± 

SE 

 

Nanocomplex 

Size (nm) ± SE 

Nanoparticle Nanocomplex 

Size (nm) 

± SE 

ζ 

Potential 

(mV) ± 

SE 

Size (nm) ± 

SE 

ζ Potential 

(mV) ± SE 

AuNP 14.29 ± 1.69 - 65.9 ± 9.8 -15.5 ±1.6 - - 

Chito-AuNP 15.27 ± 1.75 42.7 ± 9.8 69.6± 15.2 55.5 ± 1.2 144.3 ± 7.3 - 35.8 ± 1.3 

2% PEG2000 

Chito-AuNP 

16.12 ± 2.3 57.7 ± 9.06 90.9 ± 3.4 29.5 ± 1.6 164.6 ± 15.2 -25.8 ± 0.7 

5% PEG2000 

Chito-AuNP 

16.5 ± 0.97 58.9 ± 4.7 160.8± 3.9 34.6 ± 1.4 171.6 ± 5.9 -25.5 ± 0.3 

2% PEG400 

Chito-AuNP 

16.7 ± 1.6 48.5 ± 13 140.3± 0.2 36 ± 0.5 147.1 ± 5.7 -44.5 ± 0.1  

5% PEG400 

Chito-AuNP 

16.6 ±3.18 44.4 ± 12.7 160.3± 7.1 26.9 ± 0.1 153.3 ± 12.4 -33.2 ± 2.6 

  Abbreviation: SE-=Standard Error 

 

The zeta potential refers to the electrostatic value of the nanoparticle and correlates to the 

nanoparticle surface charge (Honary and Zahir, 2013). Hence, a desirable zeta potential for 

nanoparticles should be greater than 25 mV or less than – 30 mV. Nanoparticles that have zeta 

potentials within this range are believed to be more stable due to the greater levels of mobility 

in solution and higher levels of electrostatic repulsion which will, therefore, minimise 

aggregation of the nanoparticles (Griffiths et al.,2013). The results obtained show that uncoated 

AuNPs had a negative zeta potential that measured – 15.5 mV. This suggests that these AuNPs 

have a low level of colloidal stability and require stabilization by a polymer which will interact 

with the electron cloud present on the AuNP surface (Daniel and Astruc,2004). The results 

obtained confirm this theory as the AuNPs that were functionalised with chitosan and PEG 

exhibited greater colloidal stability with their zeta potential ranging between 29.5 mV and 55.5 

mV. Furthermore, due to the overall positive charge, the interaction of these FAuNPs with 

siRNA will be enhanced. The surface charges can also assist in explaining the optimal ratios 

attained during the binding studies, which shows that Chito-AuNP has the highest charge 55.5 

mV and 5% PEG400 Chito-AuNP has a charge of 29.5 mV, hence, 5% PEG400 Chito-AuNP 

required a higher mass (w/w) and N/P ratio to bind siRNA compared to Chito-AuNP which 

required much less.  
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The results obtained during the zeta potential analysis show that the siRNA nanocomplexes 

have a negative charge. Previous studies suggest that this is not a limiting factor as they have 

shown that nanoparticles with a negative zeta potential have been successfully internalised by 

cells. This is due to the formation of nanoparticle clusters as well as non-specific cell membrane 

adsorption by the nanoparticle (Honary and Zahir, 2013 (a)). It was also shown by Honary and 

Zahir that negatively charged nanoparticles show lower cytotoxicity and enhanced circulation 

times in rats (Honary and Zahir, 2013 (b)). The cellular toxicity of highly positively charged 

nanoparticles are increased as they can combine with plasma proteins. Therefore, the siRNA 

nanocomplexes prepared and utilised in this study possess a negative zeta potential and have 

shown minimal toxicity to the cell lines being studied as determined form the AlamarBlue® 

an MTT toxicity assays and shall be further discussed below.  

 

4.3 Cell Culture Studies 

4.3.1 Cell Line Maintenance  

The human epithelial colorectal adenocarcinoma cell line (Caco 2), human embryonic kidney 

cell line (HEK293), human breast adenocarcinoma cell line (MCF-7) and human colon 

adenocarcinoma cell line (HT-29) were utilized for in vitro cell culture studies. The HEK293 

cell line is semi-adherent and was derived from human primary embryonic kidney cells of an 

aborted embryo that was exposed to fragments of the adenovirus type 5 (AD5) DNA that was 

mechanically sheared (Thomas and Smart, 2005; Stepanenko and Dmitrenko, 2015). The 

Caco2 cell line grows as a monolayer and are adherent cells. They are differentiated cells that 

exhibit various morphological and functional characteristics of small bowel enterocytes (Lea, 

2012). The HT-29 cell line was isolated by Fogh and Tremp in 1964 from a primary tumour of 

a Caucasian female (Martínez-Maqueda et al.,2015). They are undifferentiated cells that grow 

as a multilayer and can express characteristics of intestinal cells and have therefore, attracted 

much attention. The MCF-7 cell line was isolated from the pleural effusion of a Caucasian 

female with metastatic breast cancer (Levenson and Jordan, 1997). This cell line exhibits an 

epithelial-like morphology and grows as monolayers with dome structures. These 4 cell lines 

are shown in Figure 4.12. 
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Figure 4.12: Images of cell lines utilized during in vitro studies. Cells are viewed as a monolayer at 

confluence under 100 × magnification with an Olympus CKX41 inverted microscope (Tokyo, Japan). 

Bar = 100nm. 

 

To maintain healthy cells under in vitro conditions, the original environment of the cells need 

to be mimicked which include the temperature, pH, availability of nutrients and vitamins, etc. 

The minimal essential nutrients are provided by the medium which is supplemented with foetal 

bovine serum (FBS). The medium also serves as a means of monitoring the pH. The 

temperature and humidity are controlled using the CO2 incubator which maintains the 

temperature at 37˚C with 5% humidity. Most cell lines in culture grow as a monolayer and 

upon reaching confluency, their cell growth may be suppressed leading to cell death. To avoid 

Caco 2 HEK293 

HT-29 MCF-7 
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this from occurring, the cell lines need to be sub-cultured regularly to ensure the propagation 

of healthy cells.  

In this study, all cell lines were maintained in Eagle’s Minimal Essential Medium (EMEM) 

supplemented with 10% FBS and 1% antibiotics. Initial cell propagation was slow with 

confluence being reached within 5-7 days, thereafter, cell growth was exponential as the cell 

lines reached confluence within 3-4 days and were regularly sub-divided into 1:2 or 1:3 ratios 

by trypsinization or utilized for cell culture studies.   

 

4.3.2 Cytotoxicity Studies 

A safe an efficient vector is an important requirement for siRNA delivery. The use of cell lines 

for pre-clinical screenings of compounds is an accepted system as cell lines are well established 

for in vitro analyses (van Tonder, et al.,2015). In this study, in vitro cytotoxicity of the 

PEGylated and non-PEGylated AuNPs were investigated using two cell viability assays, 

namely, the MTT reduction and AlamarBlue® assays on the HEK293, Caco 2, HT-29 and 

MCF-7 cell lines. 

 

4.3.2.1 MTT Reduction Assay 

The MTT Assay was developed by Mosmann in the 1980’s and was the first cytotoxicity assay 

developed that could be utilized for high throughput screenings (Mosmann, 1983). MTT is a 

tetrazolium compound that is utilized for the detection of viable cells. The principle of this 

assay is based on the active metabolism of viable cells that are capable of converting MTT into 

a purple formazan product (Figure 4.13). This product absorbs light maximally at 570 nm. The 

mechanism of this conversion is not well understood; however, it is believed that a reaction 

with NADH is involved which transfers electrons to MTT (Marshall et al.,1995).  
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Figure 4.13: MTT conversion to the insoluble formazan product following a reduction reaction (Riss 

et al.,2013).  

 

The resulting formazan product accumulates within the cell as well as near the surface of the 

cell and cell culture medium as an insoluble product which requires solubilisation prior to 

measurement of the absorbance. The solubilisation method utilized in this investigation 

involved the use of DMSO which allowed for absorbance readings to be recorded (Tada et 

al.,1986; Hansen et al.,1989; Denizot and Lang, 1986). The results achieved for this assay are 

represented in Figure 4.14.  

From the results obtained (Figure 4.14 A-D), it is evident that all nanocomplexes were well 

tolerated by the different cell lines with cell survival over 65%, and minimal toxicity in the 

MCF-7 and HT-29 cell lines. In these cell lines, cell survival was very high, with some cases, 

the percentage cell viability was higher than the control. Cell viabilities of the Caco 2, HEK293, 

MCF-7 and HT-29 cell lines respectively were: Chitosan (89-67, 129-174, 286.9- 190.4, 132.2-

145.2) %; Chito-AuNP (66.7- 95.8, 138-149.1,237-241, 124-118.4) %; 2% PEG2000 Chito-

AuNP (90.9-74.7, 136.4-116.3, 259-248, 100.8-99.35) %, 5% PEG2000 Chito-AuNP (82.8-67.7, 

120-87.3, 149-173.6, 84.2-83.5) %; 2% PEG400 Chito-AuNP (108.8-92.7, 106.2-156.4, 318-

80, 133.2-132.9) % and 5% PEG400 Chito-AuNP (99.6-88.8, 187.1-69, 93-79.5, 130.4-124.9) 

%. Of the cell lines being tested, the Caco 2 appears to have been most adversely affected, 

however cell viability was still over 65%. Overall there appears to be no severe cytotoxic effect 

of the nanocomplexes in the different cell lines. However, in most cases, cell survival of the 

treated cells appeared to be greater than the control. This could be attributed to the presence of 

chitosan in the preparations which allow the AuNPs to interact with the cell membranes and 

resulted in stimulation of growth factors (Rajam et al.,2011).  
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Figure 4.14: MTT reduction assay of siRNA nanocomplexes in (A) Caco 2, (B) HEK293, (C) MCF-7 

and (D) HT-29 cell lines. Nanocomplexes were prepared with 50 nM control, non-targeting siRNA at 

various siRNA:FAuNP ratios (w/w). A control containing untreated cells was assumed to have 100% 

survival. The results are represented as means ± SD, n = 3 and shown as a percentage of the control 

sample. Statistical analysis was performed using one-way ANOVA which was followed by the Dunnett 

multiple comparison post hoc test (*P <0.05 and **P < 0.01 compared to the control).     
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4.3.2.2 AlamarBlue® Toxicity Assay 

The AlamarBlue® assay utilizes the dye resazurin which is cell permeable and a redox 

indicator. Resazurin has been widely used as a viable cell indicator and the principle of this 

assay lies in the ability of cells with an active metabolism to reduce the blue resazurin to a 

resofurin product which is pink in colour and fluoresces (Figure 4.15). It is said that 

mitochondrial enzymes such as NADPH dehydrogenases are involved in the reduction reaction 

and are responsible for transferring electrons from NADPH + H+ to resazurin (O’Brien et 

al.,2000). The amount of resofurin that is produced during this reduction is directly 

proportional to the number of viable cells present.  

Figure 4.16 represents the results obtained following the incubation of all four cell lines with 

the various siRNA nanocomplexes. Similar to the results obtained from the MTT assay, all 

prepared siRNA: Au nanocomplexes were well tolerated by all cell lines with cell viability 

greater than 75%. In most cases, the percentage of resazurin reduction was much higher in the 

treated cells compared to the control (represented as       on the graphs). Following the 

AlamarBlue® assay, it appears that the Caco 2 cells showed resistance to cytotoxic effects 

(Figure 4.16 A) which contrasts with the results obtained from the MTT assay (Figure 4.14 A). 

 

 

 

Figure 4.15: Chemical structure of resazurin and its reduction to resafurin by viable cells (Adapted 

from Riss et al.,2013). 
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Figure 4.16: AlamarBlue® toxicity assay in (A) Caco 2, (B) HEK 293, (C) MCF-7 and (D) HT-29 cell 

lines. Nanocomplexes were prepared with 50 nM control, non-targeting siRNA at various siRNA: 

FAuNP ratios (w/w). The control containing cells only were assumed to have 100 % survival. Results 

represented as a means ± SD, n = 3.  

 

Overall, this assay showed that all the AuNP formulations were capable of greater reduction of 

AlamarBlue® which correlates to a higher level of cell viability compared to the MTT assay. 

This can be attributed to the higher sensitivity of the AlamarBlue® assay, and therefore 
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suggests that it may have a higher degree of accuracy than the MTT assay. Further advantages 

include its higher stability, lower toxicity for cells and resazurin has a high solubility in medium 

(Al-Nasiry et al.,2007). Furthermore, the AlamarBlue® assay can be multiplexed with various 

other methods, for example, caspase activity may be measured, which will allow one to gain 

more information on cytotoxicity whereas, with the MTT assay, follow up investigations 

cannot be conducted on the same cells as the cell integrity may be damaged (Riss et al.,2013; 

Al-Nasiry et al.,2007; Rampersad, 2012). 

The results obtained from both cytotoxicity assays show that all the siRNA nanocomplexes 

were well tolerated by all four cell lines, however, in vivo outcomes cannot be predicted and, 

hence, analysis of the data is vitally important.  

 

4.3.3 Apoptosis Analysis using Acridine Orange/ Ethidium Bromide (AO/EB) Staining 

The average cell number of multicellular eukaryotes is regulated by a combination of cell 

division and death during the normal function and growth of the cells. Apoptosis is a term used 

to describe this initiation of cell death (Kerr et al.,1972; Liegler et al.,1995). This programmed 

cell death is controlled genetically and is intrinsic to each cell. Apoptosis differs from necrosis, 

that is accidental cell death, which arises due to detrimental changes in the environment such 

as toxins or trauma. Apoptosis is an important study in biology as a deficiency of this cellular 

function is believed to be the major cause of certain diseases such as Alzheimer’s, cancers, 

autoimmune diseases, degeneration of the central nervous system and AIDS (Ribble et 

al.,2005; Liegler et al., 1995). The morphological changes of cells following apoptosis include 

condensation of the nucleus and chromatin, reduction of membrane integrity, cell shrinkage 

and membrane blebbing. Despite the many morphological changes, nuclear fragmentation and 

chromatin condensation are the characteristic features of apoptotic cells. There are many 

methods that can be utilized to study apoptotic cells, however, for this investigation, 

fluorescence microscopy coupled with the differential uptake of acridine orange (AO) and 

ethidium bromide (EB) DNA binding dyes, was employed due to its rapidity, accuracy and 

simplicity.   

In this study, the cell viability assays, that is the MTT and AlamarBlue® assays, that were 

utilized showed that the AuNP preparations induced minimal cytotoxic effects to the cell lines 

being studied, and the AO/EB technique was conducted to evaluate if the cell death that did 

occur was due to apoptosis or necrosis. The siRNA: FAuNP nanocomplexes were prepared at 
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the ratios that exhibited the highest level of cytotoxicity and were incubated with the cell lines 

for 24 hours, followed by staining with AO/EB, the fluorescent images of which are depicted 

in Figure 4.18 (A-D). Acridine orange is a nucleic acid dye and is taken up by viable and non-

viable cells and the nucleus appears green. Ethidium bromide permeates cells that have lost 

their membrane integrity, thereby allowing the dye to enter the cell and bind to the DNA, and 

hence, viable cells appear green with a normal nucleus, early apoptotic cells have a fragmented 

and condensed chromatin that appears as yellow-green dots with the cells appearing green. The 

nuclei of late apoptotic cells appear orange due to the incorporation of ethidium bromide and 

is fragmented and condensed. Necrotic cells differ from late apoptotic cells as they have a 

structurally normal nucleus and appear orange (Ribble et al.,2005; Renvoize et al., 1998). The 

apoptotic index (AI) was determined following the evaluation of the morphological changes of 

the cell lines from their fluorescent images. The AI is the percentage of apoptotic cells within 

the population and is represented as a function of the respective cell lines. These results are 

illustrated in Figure 4.17. 

 

 

Figure 4.17: Apoptotic Index in each cell line. Nanocomplexes were prepared with 50 nM control non-

targeting siRNA at the ratios that exhibited the highest cytotoxic effects and were incubated with the 

Caco 2, HEK293, MCF-7 and HT-29 cell lines. A control of untreated cell was utilized for each cell 

line. The results are represented as a mean ± SD, n = 3. Statistical analysis was performed using one-

way ANOVA and Dunnett multiple comparison post hoc test (*P < 0.05, **P < 0.01).  
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Figure 4.18 A: AO/EB dual staining and fluorescence microscopy images illustrating the changes in 

morphology of the Caco 2 cell line treated with (b) Chitosan, (c) Chito-AuNP, (d) 2% PEG2000 Chito-

AuNP, (e) 5% PEG2000 Chito-AuNP, (f) 2% PEG400 Chito-AuNP and (g) 5% PEG400 Chito-AuNP 

nanocomplexes (containing 50 nM control, non-targeting siRNA).  A control being the untreated Caco 

2 cells (a) was included.  L: Live cells and NV: Non-viable cells. Bar = 100 µm. 
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Figure 4.18 B: AO/EB dual staining and fluorescence microscopy images illustrating the changes in 

morphology of the HEK293 cell line treated with (b) Chitosan, (c) Chito-AuNP, (d) 2% PEG2000 Chito-

AuNP, (e) 5% PEG2000 Chito-AuNP, (f) 2% PEG400 Chito-AuNP and (g) 5% PEG400 Chito-AuNP 

nanocomplexes (containing 50 nM control, non-targeting siRNA).  A control being the untreated 

HEK293 cells (a) was included.  L: Live cells, A: Apoptotic cells and NV: Non-viable cells. Bar = 100 

µm. 
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Figure 4.18 C: AO/EB dual staining and fluorescence microscopy images illustrating the changes in 

morphology of the MCF-7 cell line treated with (b) Chitosan, (c) Chito-AuNP, (d) 2% PEG2000 Chito-

AuNP, (e) 5% PEG2000 Chito-AuNP, (f) 2% PEG400 Chito-AuNP and (g) 5% PEG400 Chito-AuNP 

nanocomplexes (containing 50 nM control, non-targeting siRNA).  A control being the untreated MCF-

7 cells (a) was included.  L: Live cells, EA: Early Apoptotic cells, LA: Late Apoptotic cells and NV: 

Non-viable cells. Bar = 100 µm 
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Figure 4.18 D: AO/EB dual staining and fluorescence microscopy images illustrating the changes in 

morphology of the HT-29 cell line treated with (b) Chitosan, (c) Chito-AuNP, (d) 2% PEG2000 Chito-

AuNP, (e) 5% PEG2000 Chito-AuNP, (f) 2% PEG400 Chito-AuNP and (g) 5% PEG400 Chito-AuNP 

nanocomplexes (containing 50 nM control, non-targeting siRNA).  A control being the untreated HT-

29 cells (a) was included.  L: Live cells, A: Apoptotic cells, LA: Late Apoptotic cells and NV: Non-

viable cells. Bar = 100 µm 
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From the results, it can be observed that all the cell lines appear to have similar levels of 

apoptosis with the MCF-7 cell line exhibiting the highest level. Furthermore, cells that were 

treated with the different siRNA: FAuNP formulations appear to have higher levels of apoptotic 

cells, which can be expected. In most cases, however, these levels are extremely low and are 

comparable to those obtained from the control (non-treated) cells. These results do correspond 

with the previous cell viability assays that were conducted which showed that these AuNP 

preparations possess minimal cytotoxic effects, and that any cell death that did occur may be 

due to apoptosis and not necrosis.  

 

4.3.4 Cellular Uptake Studies 

The transfection efficiency of the PEGylated and non-PEGylated Chito-AuNPs was assessed 

using the BLOCK-iT™ fluorescent oligo (Dharmacon) in the Caco 2, HEK293, MCF-7 and 

HT-29 cell lines. The BLOCK-iT™ fluorescent oligo is a siRNA molecule that has the same 

length and configuration as the non-targeted control siRNA, however, this siRNA molecule is 

labelled with the FITC fluorescent tag. Hence, upon successful transfection, a fluorescent 

signal will be emitted and can be measured.  

Initial attempts at this evaluation utilizing fluorescence microscopy were unsuccessful due to 

the optical properties of the AuNPs which quenched the fluorescent signal emitted by the FITC-

tag on the siRNA and, therefore, no fluorescence was detected. Thus, the quantitative 

measurement of fluorescence became the method utilised as it is more sensitive, and a better 

interpretation of the results could be presented. The fluorescence was measured in cell 

homogenates following lysis of each cell line and are represented below in Figure 4.19 A-D. 
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Figure 4.19: Evaluation of the cellular uptake of chitosan, PEGylated and non-PEGylated Chito-AuNPs 

at the sub-optimum, optimum and supra-optimum binding ratios in (A) Caco 2, (B) HEK 293, (C) MCF-

7 and (D) HT-29 cell lines with 50 nM (0.067 µg) BLOCK-iT™ Fluorescent Oligo. Two controls were 

utilised which included non-treated cells and cells incubated with siRNA only. Results are represented 

as a mean ± SD n=3. Statistical analysis was carried out using one-way ANOVA followed by Dunnett 

multiple comparison post hoc test (** P< 0.01) indicates a significant difference. 
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discernible fluorescence, while the cells treated with the uncomplexed BLOCK-iT™ 

fluorescent oligo siRNA would be degraded by serum nucleases present in the complete 

medium. There appears to be slight variances in the cellular uptake of the FAuNPs with respect 

to the different cell lines. This may be due to the differences in the cellular uptake mechanisms 

and plasma membrane properties of the different cell lines. The plasma membrane separates 

the cell interior from its environment and allows for the diffusion of non-polar and small 

molecules into the cell due to the semi-permeability of the membrane. AuNPs are voluntarily 

taken up by the cells, however, the AuNP size, shape, charge and surface modification 

influence their uptake (Heufner et al.,2014). In this investigation, the PEGylated and non-

PEGylated AuNPs will be taken up by a non-specific cellular uptake mechanism. Studies that 

have been previously conducted have shown that the cell size and topography also have an 

effect on the cellular uptake mechanism. This is due to the regulation of the tension of the cell 

membrane and cell spreading (Huang et al.,2013; Huang et al.,2016).  For this study, all the 

PEGylated and non-PEGylated Chito-AuNPs were successful in the delivery of the siRNA to 

the cell lines studied. The results show that the MCF-7 cell line exhibited the greatest level of 

nucleic acid uptake (Figure 4.19 C) with HT-29 exhibiting very low fluorescence levels (Figure 

4.19 D). The larger the cell size, the greater the surface area for the adhesion of the AuNPs to 

the cell membrane which can enhance the efficiency of cellular uptake (Wang et al.,2016; 

Lesniak et al.,2013). This could assist in the understanding of the low transfection efficiency 

exhibited by the HT-29 cell line as their cell size is much smaller as compared to the other cell 

lines being studied which resulted in the lowest level of transfection.   

Interestingly, there appears to be very small difference in the cellular uptake ability of Chitosan 

and the PEGylated and non-PEGylated Chito-AuNPs in the Caco 2, HEK 293 and HT-29 cell 

lines. However, this similarity in the results may be attributed to the fluorescence quenching 

of the AuNPs. The distance of the FITC tag on the siRNA molecule from the AuNP core during 

nanoparticle formation determines the amount fluorescence that may be emitted by the FITC 

tag due to the transfer of energy which prevents the emission of photons (Lévy et al., 2010). 

The closer the FITC tag is to the AuNP core, the greater the amount of fluorescence that is 

inhibited. The results obtained from the dye displacement assay showed that all the AuNP 

preparations were capable of high levels of compaction (> 70%), which suggests that the bound 

siRNA will have a highly condensed nanocomplex and, hence, the FITC tag will be in close 

proximity to the AuNP core which will result in fluorescence quenching. 
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A limiting factor in the transfection efficiency of nanocomplexes is their interaction with serum 

proteins. The growth media utilized during in vitro studies contains serum proteins, amino 

acids, electrolytes, vitamins and antibiotics that can interact with nanoparticles. Upon 

interaction, the nanoparticle characteristics may change which can result in aggregation. This 

aggregation can affect cellular uptake due to their larger size. Plasma proteins may also adsorb 

to the nanoparticle surface which results in a protein shell also referred to as a protein corona 

(Alkilany and Murphy, 2010). It is believed that the adsorption of the negatively charged 

protein to the cationic AuNP formulations may result in a reversal of their charge. However, 

the resulting nanocomplexes utilised in this study all exhibited negative surface charges during 

zeta potential analysis. This may have prevented the formation of the protein corona due to 

repulsive electrostatic forces. Furthermore, PEGylation stabilises the nanocomplexes by 

inhibiting protein adsorption onto the nanocomplex and thus, aggregation is prevented and the 

size of the resulting nanocomplex may remain unaltered allowing for successful cellular uptake 

and transfection. This is the case in the MCF-7 cell line were the PEGylated Chito-AuNPs have 

a better cellular uptake capacity compared to the non-PEGylated Chito-AuNPs as the 

fluorescence levels of the cells transfected with these FAuNPs were significantly higher than 

the controls and their non-PEGylated counterparts. There also appears to be a dose dependant 

increase in the uptake levels in this cell line as at the supra-optimum ratio of 5% PEG2000 Chito-

AuNP exhibited the highest level of fluorescence (956.6 a.u). This was also evident for the 

nanocomplexes prepared with 2% PEG400 Chito-AuNP (925 a.u). This dose dependant trend 

was also observed in the HT-29 cell line, with 2% PEG2000 showing the highest level of 

transfection (220 a.u), however, this cell line also exhibited the greatest resistance to 

nanocomplex uptake.     

Since all the AuNP formulations contained chitosan, this enabled the release of the siRNA 

nanocomplexes from the endosome due to chitosan’s high amine content, which introduces 

positive charges into the acidic environment and allows for the release of the nanocomplex due 

to the proton sponge effect (Crayton and Tsourkas, 2011). This is evident due to the 

fluorescence measured in all four cell lines following cellular uptake of the FAuNPs which was 

significantly higher than that measured in the controls.  

The results obtained have shown that both the PEGylated and non-PEGylated Chito-AuNPs 

were capable of enhancing the cellular uptake of the siRNA compared to the controls (P< 0.01). 

However, the use of a fluorescently-tagged siRNA molecule may not be a completely reliable 

method for the measurement of the transfection efficiency of AuNPs due to the fluorescence 
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quenching properties of the AuNP core. Overall, we can deduce that the use of the PEGylated 

and non-PEGylated Chito-AuNPs had a beneficial effect on the cellular uptake of the siRNA 

in vitro. 

 

4.3.5 c-MYC Gene Silencing in MCF-7 cell line 

The success of RNAi for the treatment of genetic diseases lies in the delivery of sequence 

specific siRNA molecules that can target the mRNA strand of interest. To evaluate the 

efficiency of the prepared PEGylated and non-PEGylated Chito-AuNP formulations in the 

delivery of c-MYC oncogene targeted siRNA in the MCF-7 cell line was conducted. The c-

MYC oncogene is believed to be involved in many cellular function activities and upregulated 

in a variety of human cancers especially in human breast cancers. Studies conducted by Kozbar 

and Croce (1984) have shown elevated c-MYC oncogene levels in the MCF-7 cell line. 

Furthermore, the MCF-7 cell line has been used previously in various studies for c-MYC gene 

silencing evaluations as it is known to express high levels of this oncogene. Orr and colleagues 

showed that a reduction of c-MYC expression in the MCF-7 cell line parallels the inhibition of 

cell growth (Orr et al.,1995). A similar result was achieved by Magnet et al. in 2001 and Wang 

et al. in 2005 who showed that suppression of c-MYC mRNA expression results in inhibition 

of MCF-7 tumour cells (Magnet et al.,2001; Wang et al.,2005). Hypoxia is found in most 

tumours and is involved in the malignancy associated with cancers, including breast cancers. 

Wu and co-workers demonstrated that exposing the MCF-7 cell line to hypoxic conditions 

resulted in an upregulation of c-MYC expression (Wu et al.,2014). Due to these previous 

studies, it is evident that the c-MYC oncogene is expressed at elevated levels in the MCF-7 cell 

line and plays a vital role in cell growth and tumour formation, therefore, this cell line was 

utilized for c-MYC gene silencing evaluation in this study.  Furthermore, the MCF-7 cell line 

exhibited the highest level of transfection following cellular uptake studies with the FITC- 

tagged siRNA (Section 4.3.4).  

The siRNA utilized in the gene silencing studies was the SMARTpool™ siRNA 

(Dharmacon™) which consist of siRNA molecules that are designed to target four regions of 

the target mRNA strand (Figure 4.20). Gene silencing efficiency was measured at the mRNA 

and protein levels using qRT-PCR and ELISA analyses.  
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Figure 4.20: Graphical representation of the SMARTpool™ siRNA design for the target mRNA 

(Adapted from Dharmacon™). 

 

4.3.5.1 Quantitative Real-Time PCR  

Quantitative Real-Time PCR (qRT-PCR) has become the method of choice for the detection 

of low concentrations of RNA targets and is a powerful tool in molecular biology (Stephens et 

al.,2011). There are several advantages associated with RT-PCR over PCR which include the 

use of a fluorescent detection system that monitors the amplification products during each PCR 

cycle, post-PCR processing is not required as the steps for DNA amplification and detection 

are in one assay, the results attained are reproducible and reliable due to minimal variations 

between assays, and RT-PCR is a quantitative rather than qualitative assay (Bustin and 

Meuller,2005). The difference between qRT-PCR and PCR lies in the addition of an initial step 

which involves the conversion of RNA to cDNA by reverse transcriptase that is a RNA- 

dependant DNA polymerase. Following cDNA synthesis, PCR is carried that consists of three 

cycles, namely; exponential, linear and plateau. During the exponential phase of PCR, there is 

an exponential amplification of the target DNA sequence, provided that the conditions are ideal 

and there is 100% reaction efficiency. It is this phase that is exploited during RT-PCR for data 

quantification due to the doubling of the amplicon following every PCR cycle. This exponential 

amplification of the amplicon occurs due to the abundance of reagents and the kinetics of the 

reaction and results in data that is accurate and reproducible. Two values are calculated during 

this exponential phase, namely, the threshold fluorescence and the threshold cycle (Ct). The 

threshold fluorescence refers to the level of the signal that shows an increase in fluorescent 

intensity over the background fluorescence signal that is statistically significant. The cycle 
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number during the PCR reaction at which the reporter dye’s fluorescent signal reaches the 

threshold is referred to as the Ct and is known as the qualitative end-point of the reaction and 

is used in relative and absolute quantification (Pfaffl,2001; Schmittigen and Livak, 2008). The 

reaction then begins to slow down during the linear phase due to a limitation in the reagents 

that are used during the reaction, and a linear production of the amplicon occurs. Once all the 

reagents are utilized in the PCR reaction, a plateau is reached, and the product quantity remains 

constant (Heid, et al.,1996; Yuan, et al.,2006).     

For this study, Prime PCR™ was utilised which is a non-probe based system. This detection 

method makes use of the SYBR Green I dye as a fluorescent detection system which binds to 

dsDNA. Unbound SYBR Green I, in solution, emits little fluorescence, however, during PCR, 

there is an increase in the amount of dye that binds to the nascent dsDNA which results in an 

increase in fluorescence during polymerisation. The increase in fluorescence intensity is a 

direct indication of an increase in dsDNA which can monitored in real time (Morrison et 

al.,1988). An important parameter in RT-PCR is the normalization of the data which can 

account for any differences that may have occurred during the multi-step process (Hugget et 

al.,2005). There have been various methods for data normalization that have been used which 

include cell numbers, RNA and genomic DNA input, however, the most commonly employed 

strategy is the normalisation to housekeeper genes which are internal controls. Housekeeping 

genes are stably expressed in all samples and, thus, can adjust for variations between samples. 

This method of data normalisation was employed in this study with β-Actin (ACTB) used as 

the normaliser gene.  

The transfection efficiency of the PEGylated and non-PEGylated Chito-AuNP formulations 

were assessed following the delivery of complexed c-MYC siRNA to the MCF-7 cell line. The 

controls used for the transfection study were the non-treated cells (calibrator); a scrambled, 

non-targeting siRNA (NT siRNA) sequence complexed with the FAuNPs; uncomplexed c-

MYC siRNA and non-targeting siRNA and Lipofectamine® 3000 which served as a positive 

control. Lipofectamine® 3000 is the most extensively used, commercially available reagent for 

siRNA transfection and the transfection efficiency achieved with this reagent will be compared 

to that achieved by the FAuNPs. The control, NT siRNA was also included as a negative control 

as the sequence of this siRNA molecule is scrambled and is not homologous to any mRNA 

sequence and, thus, would be incapable of gene knockdown and will be used to confirm that 

sequence specific gene knockdown occurred following transfection. The prepared complexes 

were introduced to the MCF-7 cell line and following a 48-hour incubation the total cellular 
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RNA was isolated, and the concentration, quality and purity was assessed. The 260/280 ratios for 

all the RNA samples were between 1.95-2.1 and were considered pure and of a high quality. 

The concentration of the isolated RNA ranged between 0.4 - 0.9 µg/µL.     

The process of qRT-PCR was then carried out to determine gene expression and silencing with 

c-MYC specific primers. Normalization of the expression of c-MYC was carried out relative to 

ACTB. The 2-ΔΔCt method was used to analyse the results obtained during qRT-PCR and are 

represented as a percentage of the fold-change in gene expression of the treated cells relative 

to the calibrator, that is, the non-treated MCF-7 cells and are shown in Figure 4.21. Hence, 

ΔΔCt for the calibrator equals 0 and, therefore, 20 is 1 which, by definition, means that the fold 

change in gene expression for the MCF-7 cells is 1, and is therefore represented as 100% c-

MYC expression. From the results, both uncomplexed siRNA molecules, i.e., the c-MYC and 

control non-targeting siRNA were incapable of eliciting any gene knockdown. This 

unsuccessful transfection was expected and can be attributed to the degradation of unprotected 

siRNA molecules by serum nucleases as seen in the RNase protection assay, hence, they were 

not taken up by the MCF-7 cell line and were incapable of gene knockdown. siRNA 

nanocomplexes were prepared between chitosan, the FAuNP formulations and the siRNA 

molecules at the optimum binding ratios as determined from the band shift assay. The results 

obtained show that the nanocomplexes prepared with the NT siRNA showed no gene 

knockdown with fold differences between 1.1- 1.23 (87-91%) This confirmed that the 

reduction of c-MYC expression observed in the MCF-7 cell line treated with c-MYC siRNA 

nanocomplexes was a result of sequence specific gene knockdown.  
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Figure 4.21: Analysis of c-MYC gene expression in the MCF-7 cell line. Reaction mixtures (10 µl) 

were prepared at the optimum binding or N/P (+/-) ratios as determined from the band shift assay 

between chitosan, the FAuNP formulations and either c-MYC or non-targeting (NT) siRNA (0.065 µg). 

Calibrator (cells only), NT siRNA only and c-MYC siRNA only were included as negative controls. 

Lipofectamine® 3000 was utilized as a positive control. The relative quantification of c-MYC 

normalized against β-Actin mRNA using the algorithm 2-ΔΔCt (Livak and Schmittgen, 2001).  Results 

are represented as a mean ± SD n = 3. Statistical analysis was carried out using one-way ANOVA 

followed by Dunnett multiple comparison post hoc test (** P< 0.01) indicates a significant difference. 

 

The five nanocomplexes prepared between the c-MYC siRNA and the FAuNP formulations 

exhibited high levels of c-MYC gene silencing of following qRT- PCR. This suggests that all 

five of the FAuNP formulations were successfully taken up by the MCF-7 cells by a passive, 

non-specific cellular uptake mechanism, that is, clathrin mediated endocytosis and that the 

reduction of c-MYC expression was due to sequence specific gene silencing as there was a 

significant difference in the gene expression levels of the siRNA nanocomplexes compared to 

the controls (P< 0.01). Chitosan was also capable of successful transfection and since all the 

FAuNP formulations were prepared with a constant amount of chitosan (1 mg), it can be noted 

that cellular uptake was enhanced and endosomal escape of the siRNA nanocomplexes 

occurred via the proton sponge effect due to the high amine content present in the chitosan 

molecule which provides a positive charge in the acidic environment within the endosome. 

This amine content also enhances cellular uptake by cancerous cells (Crayton and Tsourkas, 

2011). The FAuNPs exhibited higher levels of gene silencing compared to chitosan alone 

which suggests that the presence of the AuNPs increased the efficiency of cellular uptake which 

resulted in better gene silencing through the stabilization of the siRNA nanocomplexes. This 

prevented interactions with the serum proteins and allowed the siRNA to reach the target 
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mRNA producing significant gene knockdown, with recorded normalized gene expressions 

ranging between 0.14 – 0.33 (3.01- 7.06-fold differences) (Figure 4.21). The PEG400 PEGylated 

Chito-AuNPs showed gene knockdown levels that exceeded those obtained by 

Lipofectamine® 3000 (4.7-fold difference, 80% gene knockdown) which served as a positive 

control and is a commercially available transfection reagent. These PEGylated FAuNPs further 

enhanced the transfection efficiency of the nanocomplexes with 2% and 5% PEG400 Chito-

AuNPs exhibiting the highest level of gene knockdown (7.06-fold difference, 86% gene 

knockdown and 6.02-fold difference, 84% gene knockdown respectively). It does appear that 

the presence of PEG in these formulations further stabilized the nanocomplexes against the 

formation of the ‘protein corona’ and therefore, cellular uptake of theses nanocomplexes was 

enhanced. Furthermore, the nanocomplexes that formed between the siRNA and these AuNP 

formulations with PEG400 showed high levels of compaction, as determined from the dye 

displacement assay, which resulted in the formation of compact and condensed nanocomplexes 

with high levels of colloidal stability. Chito-AuNP and 2% PEG2000 Chito-AuNP produced a 

similar reduction of c-MYC expression (4.6 -fold difference, 79% gene knockdown and 4.7 -

fold difference, 80% gene knockdown, respectively) and are comparable to Lipofectamine® 

3000 (80% gene knockdown). Similarly, Gilojohann and co-workers (2009) showed that the 

stability of the siRNA was increased following complexation with AuNPs which resulted in 

gene silencing when compared to Lipofectamine® 2000 (Gilojohann et al.,2009). 

The trend observed following qRT-PCR mirrored that achieved following cellular uptake 

studies of the MCF-7 cell line where Chito-AuNP and 2% PEG2000 Chito-AuNP showed similar 

levels of cellular uptake with higher levels achieved using 2% and 5% PEG400 Chito-AuNPs. 

Interestingly, in contrast to those results, 5% PEG2000 Chito-AuNP exhibited the lowest gene 

silencing of the five FAuNP formulations (3.01-fold difference, 67% gene knockdown). 

However, it should be noted that the cellular uptake studies utilized a FITC-tagged siRNA and 

the fluorescence intensity of the siRNA nanocomplex depends on the proximity of the tag to 

the AuNP core. Hence, due to the low levels of compaction obtained by 5% PEG2000 Chito-

AuNP, the FITC-tag may have been further away from the AuNP core which resulted in higher 

fluorescence being measured. Although this AuNP preparation exhibited the lowest 

transfection ability of the five AuNP formulations, reduction of c-MYC expression was quite 

significant (P< 0.01) and comparable to their non-PEGylated and PEGylated counterparts. 

Overall, the qRT-PCR studies have revealed that all the PEGylated and non-PEGylated Chito-
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AuNP formulations displayed significant levels of reduction of c-MYC gene expression in the 

MCF-7 cell line.   

 

4.3.5.2 Enzyme-Linked Immunosorbent Assay (ELISA) 

The level of c-MYC oncoprotein expression was analysed by ELISA, a powerful technique for 

the detection of a specific protein within a complex protein mixture. This technique was first 

described by Engvall and Perlmann in1971 and allows for the analysis of immobilized protein 

samples in microplate wells with specific antibodies (Engvall and Perlmann, 1971). The ELISA 

assay comprises of four basic steps that include (i) Coating which involves the immobilisation 

of the protein (Antigen) to the surface of the microplate wells, (ii) Well blocking, were 

unsaturated sites for surface binding are covered by an irrelevant protein, (iii) Probing, where 

antigen-specific antibodies are incubated and bind to the antigen and (iv) Detection, which 

involves the measurement of the signal emitted by the tag on the specific antibody. For this 

study, an indirect ELISA assay was conducted which utilized a secondary antibody that was 

tagged with horse radish peroxidase (HRP) and its sole purpose was to deliver a signal that can 

be measured following specific attachment to the primary antibody that was bound to the 

protein of interest (Figure 4.22).  

 

Figure 4.22: Diagrammatic representation of an Indirect ELISA assay (Thermo Fisher Scientific, 

2010). 
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The assay set up for ELISA paralleled that of qRT-PCR, however, protein isolation was 

conducted 72 hours following transfection. The reference protein utilized in this assay was β-

actin, which, when expressed, is a cytoskeleton protein. β- actin is known to be expressed in 

all cells and tissues with minimal variations among samples. The controls included in this study 

were the untreated MCF-7 cells, uncomplexed c-MYC and non-targeting (NT) siRNA and the 

positive control, Lipofectamine® 3000.  Nanocomplexes were prepared between the FAuNPs 

and NT- siRNA which served as negative controls as the NT-siRNA molecule has a scrambled 

sequence and is not homologous to any gene. The test samples comprised of nanocomplexes 

prepared between chitosan, FAuNPs and c-MYC siRNA. The results shown in Figure 4.25 are 

represented as a percentage of protein expression relative to the untreated MCF-7 cells 

(control). The MCF-7 cells alone showed the highest level of MYC protein expression which 

was expected as this control group was untreated and was represented as 100% protein 

expression (Figure 4.23 A). The cells treated with either uncomplexed c-MYC or NT-siRNA 

also exhibited high levels of MYC oncoprotein expression, comparable to that of the untreated 

cells, as these siRNA molecules may have been degraded by serum nucleases during the 

delivery process (Figure 4.23 A). β- actin was present in all samples being tested and was 

expressed in high amounts, with some reaction mixtures exceeding that of the control (Figure 

4.23). This protein expression was expected as β-actin is a housekeeping gene and is expressed 

in all cells with minimal variance. MCF-7 cells treated with NT siRNA: Au nanocomplexes 

did not elicit any gene knockdown which was expected, and confirmed that the reduction of 

MYC protein levels following transfection was due to c-MYC specific siRNA gene silencing 

(Figure 4.23 B). 
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Figure 4.23: Analysis of MYC protein expression with ELISA. (A) Untreated cells, c-MYC siRNA 

only, NT-siRNA only and Lipofectamine® 3000 were utilized as controls. siRNA nanocomplexes were 

prepared at the optimum binding ratios with the FAuNP formulations and 50 nM of either (B) NT-

siRNA or (C) c-MYC targeted siRNA. Data represented as a mean ± SD, n = 3. Statistical analysis was 

conducted with one-way ANOVA followed by the Dunnett multiple comparison post-hoc test. (*P < 

0.05) (**P < 0.01) is considered significant.   
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All five FAuNP preparations exhibited considerable levels of transgene knockdown with MYC 

oncoprotein expression reduced between 75-95% (Figure 4.23 C). All five FAuNP 

formulations showed higher levels of knockdown when compared to chitosan alone (53% 

knockdown), which further suggests that the presence of AuNPs enhanced the transfection 

ability of chitosan, which could be also attributed to the inert core of the AuNP. Four of the 

five FAuNP preparations showed higher levels of transfection efficiency compared to the 

positive control, Lipofectamine® 3000 (75% knockdown), with 5% PEG2000 Chito-AuNP 

exhibiting similar knockdown activity. 

In line with these findings, the results corroborated those attained during qRT-PCR studies 

with comparable levels of knockdown achieved by the PEGylated and non-PEGylated Chito-

AuNPs. Following ELISA analysis, it was found that the 2 and 5% PEG400 Chito-AuNP 

exhibited the highest level of c-MYC knockdown with protein levels reduced by 95% and 

90.5%, respectively. Chito-AuNPs showed considerable knockdown levels of 86.5% with 2 

and 5% PEG2000 Chito-AuNP exhibiting knockdown levels of 79.7% and 75%, respectively. 

This trend was also present after gene expression analysis following qRT-PCR. Vinhas and 

colleagues (2017) showed similar findings with AuNPs functionalised with thiolated PEG 

(356.48 Da) and incorporating a thiolated oligonucleotide for silencing of the BCR-ABL 1 gene 

in the K562 cell line. They obtained a reduced gene expression using these PEGylated AuNPs 

suggesting that the incorporation of the PEG moiety enhanced the transfection of the 

oligonucleotide in vitro (Vinhas et al.,2017).   

The results obtained show that the overall negative charge of the resulting siRNA 

nanocomplexes, as determined by NTA analysis, was not a limiting factor as all the AuNP 

formulations showed significantly lower levels of MYC protein expression when compared to 

the control (P<0.01). However, the size of the resulting nanocomplex did impact cellular 

uptake, as the nanocomplexes prepared with 2 and 5% PEG2000 Chito-AuNP were larger with 

lower levels of siRNA compaction and resulted in slightly higher levels of MYC oncoprotein 

expression. The Chito-AuNPs and 2 and 5% PEG400 Chito-AuNPs from earlier studies have 

shown greater protection to the siRNA, thus resulting in safer delivery of the siRNA followed 

by higher levels of gene knockdown. Overall, the gene expression analysis at the mRNA and 

protein levels following qRT-PCR and ELISA have shown that the formulated non-PEGylated 

and PEGylated Chito-AuNPs can function as siRNA delivery vehicles, as evidenced by their 

enhanced gene silencing abilities in the MCF-7 cell line following transfection with these novel 

AuNP formulations 
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CHAPTER FIVE 

CONCLUSION 

 

5.1 Concluding Remarks 

The emergence of siRNA in recent years has shown great promise and potential for the 

treatment of diseases through the silencing of aberrant levels of expression of various 

oncogenes or genes involved in cancer progression and the regulation of cell cycles. Provided 

that the sequence of the gene of interest is known, siRNA molecules can be designed to target 

and potentially knockdown the overexpression of the disease-causing gene. Despite the 

development of numerous non-viral gene vectors over the past two decades, the use of siRNA-

based gene therapy remains at a juncture due to poor cellular uptake, cytotoxicity and the 

degradation of the siRNA molecules in the presence of nucleases limits their application both 

in vitro and in vivo. Therefore, the challenge facing the use of siRNA-based therapeutics is the 

development of a delivery vehicle that is safe and efficient while enhancing cellular uptake and 

endosomal escape of the siRNA molecule. 

This study assessed the ability of five cationic AuNP-based formulations to enhance the cellular 

uptake efficiency of siRNA in four cell culture models and to evaluate the effect of the c-MYC 

targeted siRNA in c-MYC oncogene silencing in the MYC-overexpressing MCF-7 cell line. The 

sterically stabilised, cationic FAuNPs containing PEG400 or PEG2000 were capable of 

successfully binding and protecting the siRNA molecules against degradation from RNase A. 

The particle sizes and zeta potentials of the FAuNPs and their corresponding nanocomplexes 

with siRNA were favourable and were found to be spherical in shape. These FAuNP 

preparations were stable at room temperature with minimal aggregation observed for the 

duration of the study (36 months). The FAuNP formulations were well tolerated by the 

HEK293, Caco 2, MCF-7 and HT-29 cell culture models and exhibited minimal cytotoxicity 

with cell survival exceeding 75%. Further evaluation of the cytotoxicity indicated that 

apoptosis was the predominant mechanism of cell death.  

Cellular uptake studies of all nanocomplexes were significantly enhanced when compared to 

the two controls utilized (P<0.01), which showed indiscernible fluorescence. However, the 

FITC-labelled siRNA complexed to the FAuNPs exhibited considerably higher levels of 

fluorescence in all four cell line models in vitro. This suggests a relative ease in the mechanism 
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of cellular uptake, that is endocytosis, and endosomal escape of the siRNA: FAuNP 

nanocomplexes which resulted in the delivery of intact siRNA. This is a promising feature as 

the main site of action of the siRNA molecules is in the cytoplasm. 

With regards to c-MYC siRNA delivery, gene expression studies revealed that the 

nanocomplexes produced superior levels of transfection compared to chitosan alone. This may 

be attributed to the presence of the AuNP core which is electrokinetically stable. Furthermore, 

four of the five FAuNP formulations exhibited higher levels of gene silencing than that of the 

Lipofectamine 3000® (80% gene knockdown), and the FAuNPs that were PEGylated with 

PEG400 induced the highest c-MYC oncogene silencing effect (86% and 83%) and showed 

comparable levels of gene knockdown to the non-PEGylated and PEG2000 PEGylated Chito-

AuNPs (> 77% gene knockdown). This trend was further confirmed by ELISA studies which 

showed decreased c-MYC protein levels in cells treated with the FAuNP formulations (> 75%) 

with the highest level of gene knockdown exhibited by 2 and 5% PEG400 Chito-AuNPs (94.6% 

and 90.5%, respectively). All the FAuNP formulations displayed high levels of compaction 

and binding of siRNA, and low cytotoxicity as determined from the dye displacement, MTT 

and AlamarBlue® assays, respectively. These results have suggested that the FAuNPs can 

enhance the in vitro transfection of the siRNA in the model MCF-7 cell line.  

The results obtained further confirm the potential of all FAuNP formulations to enhance 

cellular uptake in the cell culture models studied and silencing of the c-MYC oncogene in the 

MCF-7 cell line, supporting the hypothesis that the PEGylated and non-PEGylated Chito-

AuNPs hold great potential for future siRNA gene-based delivery. These findings will allow 

for the treatment of human diseases at the post-transcriptional level and with optimizations can 

be further developed and enhanced for clinical applications.  

Possible limitations to this investigation included the use of a fluorescent oligo to assess the 

cellular uptake efficiency of the FAuNPs. Although all FAuNP preparations exhibited 

enhanced cellular uptake capabilities compared to the uncomplexed siRNA, the fluorescence 

quenching by the AuNP core may have hindered the evaluation of the true potential of these 

FAuNP preparations. A possible solution to determine the efficiency of siRNA delivery by the 

FAuNPs across various cell lines may be the use of siTOX siRNA molecules that induce cell 

death upon successful transfection. Since all the FAuNPs showed minimal cytotoxicity, one 

can conclude that a decrease in cell viability using siTOX is due to successful delivery and 

cellular uptake of the intact siRNA molecule.  
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Future studies and recommendations, can include the addition of targeting ligands incorporated 

into the FAuNP formulation, which will allow for specificity of the AuNP vector to the target 

tissue. For example, the addition of an asialoglycoprotein moiety to the AuNP preparation can 

be used to target hepatocytes, or the inclusion of a transferrin ligand can be beneficial in 

crossing the blood-brain barrier.  Further investigations are required to understand the cellular 

uptake mechanisms and intracellular trafficking of the nanocomplexes which will allow for 

improvement of the efficiency of the delivery vehicle. Furthermore, due to the optical 

properties associated with the AuNP core, these nanoparticles can be used for bioimaging and 

can, therefore, be used in medicine as diagnostic tools.  

In summary, the FAuNP formulations used in this study were capable of successfully binding 

and protecting the siRNA against degradation, with minimal toxicity and enhanced gene 

silencing ability, making these nanoparticles attractive options for the therapeutic delivery of 

siRNA in vivo.   
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Abstract 

Elevated c-MYC expression is a genetic aberration present in breast cancers. The use of RNA 

interference (RNAi), mediated by siRNA molecules, for the silencing of the c-MYC oncogene 

is an attractive option for inhibiting and controlling breast cancer progression. The delivery of 

these therapeutic siRNA molecules is crucial and thus, a suitable carrier is important and 

needed for their cellular delivery. Accordingly, this study investigates the efficiency of three 

gold nanoparticle (AuNP) based delivery systems to deliver intact c-MYC targeted siRNA to 

the MCF-7 cell line, in vitro.  

 

AuNPs were prepared using the citrate reduction method, functionalised with chitosan and 

further modified using 0-5 mass percentage of poly(ethylene glycol)-400 (PEG400) to afford 

sterically stabilised Chitosan- AuNPs. TEM and NTA analysis revealed that the AuNPs were 

spherical in shape with favourable sizes in the nanometre size range. The AuNP formulations 

were capable of successfully binding, condensing and protecting the siRNA against 

degradation following the band shift, dye displacement and RNase A protection assays, 

respectively. Cytotoxicity studies showed that all the AuNP preparations were well tolerated 

by the MCF-7 cell line with cell survival exceeding 75%. Gene knockdown studies following 

qRT-PCR revealed that the PEGylated and non-PEGylated AuNPs showed comparable levels 

of gene knockdown with the PEGylated Chitosan-AuNPs inducing > 84% of c-MYC gene 

silencing, exceeding that achieved by Lipofectamine® 3000 (80% gene knockdown). This 

trend was confirmed by the ELISA assay which showed a reduction of MYC protein levels 

greater than 90% by the PEGylated Chitosan-AuNPs as compared to the untreated MCF-7 
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cells. The results obtained suggest that these AuNP formulations have great potential as vectors 

for siRNA mediated gene silencing in breast cancer cells.  

 

Key words: siRNA, c-MYC, gold nanoparticles, PEGylation, gene silencing 
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