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ABSTRACT 

 

RNA interference technology, based on the use of siRNA, has emerged as a promising approach 

in the treatment strategy to suppress disease-causing genes such as those associated with breast 

cancer (BC). Despite its potential as a form of therapy, instability and poor cellular uptake of the 

therapeutic nucleic acid have posed daunting challenges. The major hurdle for siRNA-based 

therapy is the evolution of nontoxic, stable and efficient delivery systems to channel siRNA into 

target cells. Accordingly, this study assesses the efficacy of two cationic lipid-based delivery 

systems to deliver intact siRNA which would target the Human Epidermal Growth Factor 

Receptor 2 (HER2/neu) oncogene in a BC cell model.  

 A series of cationic liposomes were formulated using an equimolar ratio of the respective 

cytofectins together with the neutral lipid dioleoylphosphatidylethanolamine (DOPE). Sterically 

stabilized or stealth liposomes contained a 0-5 mol.% 1,2-Distearoyl-sn-glycero-3-

phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000) grafting.  

 Cryogenic-transmission electron microscopy (cryo-TEM) and dynamic light scattering 

measurements revealed that PEGylation generated smaller, defined structures when compared to 

their non-PEGylated counterparts. The hydrodynamic size ranges of the liposomal formulations 

and lipoplexes were 65-127 nm and 103-237 nm respectively, with moderate particle size 

distributions (polydispersity indices were <0.4). Liposomes bound and efficiently compacted 

pCMV-luc plasmid DNA (pDNA) and siRNA as evidenced in band shift and ethidium bromide 

intercalation assays respectively, while nuclease digestion assays demonstrated that the 

degradative effect of serum on lipoplex-associated nucleic acid was minimal.  

 Cytotoxicity studies, involving the reduction of 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-

diphenyl-2H-tetrazolium bromide (MTT), indicated that the pDNA and siRNA lipoplexes 

elicited a dose-dependent cytotoxic effect, with cell viability remaining above 70% and 50% 

respectively. Effective in vitro pCMV-luc pDNA and HER2/neu-specific siRNA transfections 

were achieved in all BC cell lines tested in the presence of serum. Gene expression studies 

indicated that the Chol-T:DOPE (0% PEG)/siRNA complexes induced the highest HER2/neu 

silencing effect at all tested N/P charge ratios, as observed from the significant fold-decrease in 

gene expression (> 10 000-fold, P<0.001). Western blot analysis further confirmed this trend and 

revealed a dose-dependent decrease in HER2/neu protein expression levels as indicated by a 
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160.28, 163.89 and 212.80-fold decrease in protein expression relative to the untreated SKBR-3 

cells. Furthermore, the most active non-PEGylated Chol-T formulations were less cytotoxic and 

exceeded the knockdown level of Lipofectamine
®

 3000 control (4.1-fold decrease). Results 

suggest that these cytofectin-based cationic liposomes with moderate degree of PEGylation have 

potential as vectors for trans-gene expression and HER2/neu siRNA gene silencing in BC cells.  
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Figure 4.16: Analysis of HER2/neu oncoprotein expression by Western blotting. (A) Non-treated SKBR-

3 cells, NT-siRNA (non-targeting siRNA) and siRNA (HER2/neu targeting siRNA alone) served as 

negative controls. Lipofectamine
®
 3000-siRNA was included as a positive control. (B) SKBR-3 cells 

were treated with HER2/neu target siRNA (0.64 µg) with varying amounts of the cationic liposomes from 

suboptimal to supraoptimal ratios: Chol-T (7.68, 8.96, 10.24 μg); Chol-T 2% PEG (14.08, 15.36, 16.64 

μg); Chol-T 5% PEG (22.40, 23.68, 24.96 μg); (C) MS09 (12.16, 13.44, 14.72 μg); MS09 2% PEG 

(14.72, 16.00, 17.28 μg); MS09 5% PEG (21.76, 23.04, 24.32 μg). HER2/neu receptor expression was 

determined in cellular lysates by Western blotting analysis using the HER2/neu and β-actin antibodies. 

Graphs represent the HER2/neu/β-actin normalization ratios.            130 
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INTRODUCTION  
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1.1 Background to the Study 

 

Since its discovery in 1998 as a powerful sequence specific post-transcriptional gene silencing 

mechanism, RNA interference (RNAi) has opened up a range of opportunities for target gene 

function validation and therapeutic applications in several genetic disorders. In mammalian cells, 

transfected synthetic double stranded small interfering RNAs (siRNAs), generally 21-23 

nucleotides in length, target messenger RNA (mRNA) sequences with a high degree of 

specificity, inducing gene silencing. This versatile technique of target specific gene silencing has 

potential for use against any mRNA transcribed from an organism’s genome, thereby offering a 

unique class of drug molecules comparable to antibody based therapeutics. Based on 

conceptually simple beginnings, the evolution of siRNA gene silencing technology has inspired a 

new paradigm of therapeutic intervention strategies for a wide spectrum of disorders, including 

cancer (Huang et al., 2008; Oh and Park, 2009), Huntington’s disease (DiFiglia et al., 2007), 

respiratory syncytial virus (Bumcrot et al., 2006), and neurodegenerative disorders (Porras and 

Bezard, 2008). 

Malignant tumours, namely cancers, are complex and intrinsically heterogeneous 

diseases with approximately 8 million people dying from numerous types of cancers in 2008 

(Benson and Jatoi, 2012; Graham et al., 2012). In South Africa, cancer is an escalating public 

health problem. The most prevalent malignancy is breast cancer (BC), a major cause of cancer 

death among women, as is the global trend (DeSantis et al., 2011, Núñez et al., 2016, Shah and 

Osipo, 2016). Based on projections of BC incidences and population estimations, the annual 

global incidence of BC is expected to reach approximately 3.2 million by 2050 (Hortobagyi et 

al., 2005; WPP, 2004). These statistics clearly highlight the increasing threat that BC poses 

worldwide. Hence there is an urgernt need to investigate the molecular biology of BC to identify 

alterations associated with malignant behaviour for clinical use as diagnostic markers and as 

targets for therapy. 

Malignant breast tumours form when an individual cell gains and sustains a selective 

survival advantage, due to a series of somatic alterations that allow the cell to evade the 

checkpoints that would normally suppress its growth. In particular, overexpression of the Human 

Epidermal Growth Factor Receptor 2 (HER2/neu) oncogene, many researchers believe, is 

predictive of adverse BC prognosis. Overexpression of HER2/neu has been found in 
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approximately 30% of all invasive BCs and correlates with more unfettered and destructive 

tumour growth and greater resistance to cancer chemotherapy (Menard et al., 2000; Núñez et al., 

2016; Press et al., 2002; Rubin and Yarden, 2001; Slamon et al., 1989). Despite recent advances 

in treatment strategies, most, if not all conventional treatments such as chemotherapy, are limited 

by a lack of specificity for tumour cells and the cell cycle dependence of many chemotherapeutic 

agents. This has spurred efforts to develop unique anticancer agents with improved molecular 

target specificity. In this context, tailored treatments using siRNA to down-regulate the 

transcription or function of defective genes through specific cleavage of their associated mRNA, 

introduces an innovative, cutting-edge assemblage of treatment options for BC. 

Silencing of the HER2/neu oncogene expression using siRNA may be effective in 

treating patients with HER2/neu-overexpressing BCs. Despite the versatility, effectiveness and 

specificity of siRNAs’ use in tumour targeted therapy, the delicate and precise mechanism of 

action required for gene silencing is the same. However, the delivery of therapeutic siRNA to 

intracellular targets for the induction of sequence-specific mRNA degradation creates an 

encumberance which limits the success of siRNA therapy in clinical trials for several reasons. 

Firstly, the polyanionic nature, hydrophilic character and relatively high molecular weight of 

siRNA hamper its direct association with the cell membrane. This makes entry into cells via a 

passive diffusion mechanism difficult for these molecules (Whitehead et al., 2009). Furthermore, 

siRNA molecules in the physiological milieu are prone to degradation by serum nuleases, non-

targeted biodistribution and activation of immune response, thereby limiting systemic 

applications of this powerful tool to perform gene knockdown (Haupenthal et al., 2006; Juliano 

et al., 2009; Medarova et al., 2007).  

The major challenge for siRNA-based gene silencing therapy is the development of non-

toxic nanocarriers capable of efficiently transporting siRNAs into target cells. Numerous 

research efforts focusing on the development of lipid- and polymer-based systems have been 

directed at meeting this challenge. In particular, cationic liposomes have emerged as the most 

widely studied non-viral vectors for the transport of negatively charged gene medicines via the 

formation of lipoplexes. The main component of cationic liposomes, namely the cationic 

cytofectins, generally comprise four regions: cationic headgroups, hydrophobic lipid tails, spacer 

segments, and linkers (Ariatti, 2015). Despite progress in cationic liposome-mediated delivery, 

cell toxicity and the reduced cellular uptake efficiency of siRNA in the presence of serum 
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nucleases are still major drawbacks for in vitro and vivo application. The key challenges are to 

synthesize cytofectins with a unique combination of their domains, which are capable of self-

assembling into liposomes. Moreover, a deeper insight into the structure-activity associations of 

liposomal carriers with siRNA, in order to achieve high transfection performance is imperative. 

This leaves BC gene therapy at a point where the need for an optimal gene delivery vector has 

become the rate limiting step. Therefore, this study aims to develop cationic lipid-based delivery 

systems for siRNA that can increase serum stability and transfection efficiency. Clearly, the 

development of an agent with the ability to successfully inhibit cellular growth, migration, and 

invasion of BC cells is crucial for the suppression of cancer metastasis and progression, thus 

resulting in reduced mortality. 

 

1.2 Scope of the Present Study 

 

The major challenge for siRNA-based therapy is the development of non-toxic, stable and 

efficient delivery systems to channel siRNA into target cells. Since their introduction, non-viral 

vector-mediated nanocarriers have developed to a stage where they have demonstrable 

advantages over their viral counterparts, in particular where safety issues are concerned, making 

them an attractive alternative for nucleic acid delivery platforms. Research in this area, however, 

has to address low levels of gene delivery and transfection efficiency which compromise non-

viral gene delivery vector therapy. Undoubtably, non-viral carriers have emerged as essential 

components in siRNA gene delivery systems. Although research initiatives are being directed at 

improving current vector technologies, further development of non-viral nanocarrier systems 

with superior biocompatibility and higher transfection efficiencies is crucial for the success of 

gene silencing-based therapeutics. Accordingly, this study assesses the ability of two cationic 

lipid-based delivery systems to efficiently deliver intact siRNA targeting the Her2/neu oncogene 

in a BC cell model. 
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1.2.1 Hypothesis tested 

 

This study, which examines the efficacy with which liposomes-vehiculated siRNA induces 

silencing of HER2/neu oncogene expression in a BC cell model in vitro, hinges on the hypothesis 

that cationic liposome-based delivery systems that incorporate cytofectins: 3β-[N-(N', N'-

dimethylaminopropane)-carbamoyl] cholesterol (Chol-T) and N, N-dimethylaminopropyl 

aminylsuccinylcholesterylformylhydrazide (MS09) increase the serum stability of  the nucleic 

acid in their associated deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) lipoplexes 

(nucleic acid-liposome complex) and can deliver the cargo nucleic acid into mammalian cells 

effectively. 

 

1.2.2 Objectives 

 

The following objectives premise the testing of the above hypothesis: 

 To prepare and characterize a series of cationic liposomes (PEGylated and non-

PEGylated) in terms of imaging and lamellarity by cryogenic-transmission electron 

microscopy (cryo-TEM), and size and zeta potential using dynamic light scattering 

(DLS). 

 To characterize the formulated liposomes and their interactions with plasmid DNA 

(pDNA) and small interfering RNA (siRNA) for the purpose of optimizing their 

bifunctionality. 

 To evaluate cytotoxicity in vitro using the 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-

2H-tetrazolium bromide (MTT) test. To measure transfection activity of the cationic 

lipoplexes using the luciferase assay as well as HER2/neu targeted siRNA. 

 To monitor gene expression and silencing using standard reporter gene assays, 

quantitative Real-Time PCR (qRT-PCR) and Western Blotting. 
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1.2.3 Aims 

 

 To prepare a series of cationic liposomes (Chol-T and MS09) with and without 

PEGylation (sterically stable) at two different mole percentages, and to explore and 

compare the effects these formulations may have on the transfection of pDNA and 

siRNA. 

 To prepare Chol-T- and MS09-liposome/ pDNA- and siRNA-lipoplexes, and to assess 

these complexes in terms of size, polydispersity index and zeta potential. To further 

characterize lipoplexes using gel retardation, nuclease protection and ethidium bromide 

intercalation displacement assays. 

 To perform transfection activity studies using both pDNA and siRNA, and to evaluate the 

results of MTT cytotoxicity tests on various cancer cell lines. 

 To extract total RNA and proteins from transfected cells, and to determine their 

concentration, quality and integrity. 

 To conduct qRT-PCR by reverse transcribing total RNA, and then to separate total 

proteins and check for the presence of HER2/neu proteins via Western Blotting. 

 

1.3 Novelty of Study 

 

This study evaluates the ability of two cationic lipid-based carrier systems to efficiently deliver 

target specific siRNA into breast cancer cells. The two cationic cholesteryl cytofectins (CCCs), 

Chol-T and MS09, were previously synthesized in our laboratory (Singh and Ariatti, 2006; Singh 

et al., 2001). Liposomes were formulated with an equimolar ratio of the respective cytofectin 

with dioleoylphosphatidylethanolamine (DOPE); the degree of PEGylation varied from 0-5 

mol.%. Although these cationic liposomes have shown potential for nucleic acid delivery into 

mammalian cells, detailed studies on their ability to bind target specific siRNA have not been 

conducted. Accordingly, this study aims to assess the ability of these two cationic lipid-based 

delivery systems to efficiently deliver intact siRNA, which targets the HER2/neu oncogene in a 

BC cell model. 
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1.4 Overview of the Thesis 

 

 Chapter One  

 

This chapter provides an introduction and background to the study. It highlights the challenges 

encountered in siRNA gene therapy and non-viral gene delivery systems. Finally, it outlines the 

rationale, scope, objectives and aims of the study. 

 

 Chapter Two  

 

This chapter reviews the relevant literature. Firstly, it details the biology and classification of BC 

with particular reference to the HER2/neu receptor and its role in BCs. Secondly, it assesses 

HER2/neu as a target for BC therapy, together with current treatment options and their 

limitations. Lastly, it explores the therapeutic potential of siRNA gene silencing technology and 

delivery into cells using non-viral gene delivery systems. 

 

 Chapter Three 

 

Chapter Three describes the research design and details the laboratory procedures undertaken. 

The formulation and preparation of six cationic liposomes (PEGylated and non-PEGylated at two 

different mole percentages) are detailed, followed by physical characterization of the liposomes 

and liposome-nucleic acid interactions. These characterizations are based on particle imaging 

using Cryo-TEM, particle size distribution, and zeta potential analysis. Again, the formulated 

lipoplexes are comprehensively characterized to establish nucleic acid binding capacity (gel 

retardation assay), protection from nucleases (serum digestion assay), and condensation 

capabilities (ethidium bromide intercalation assay) provided by the vector. In vitro transfection 

activities are investigated in the human HEK-293, MCF-7 and SKBR-3 BC cell lines. 
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 Chapter Four  

 

Here, the focus is on the results obtained and a comprehensive report of all experimental work 

completed. This is followed by a robust interpretation of the results, with detailed discussion 

which lends shape, contour, and perpective to the study. 

 

 Chapter Five 

 

This chapter concludes the study by highlighting findings which are significant to the aims and 

objectives of the research. Possible limitations and shortcomings of the study are also conceded. 

Finally, the extent to which the study conceivably contributes to the body of knowledge in this 

area of research is objectively evaluated, and recommendations for further research initiatives are 

made. 
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2.1 The Nature of Cancer 

 

The human genome, comprising a total length of over 3 billion base pairs, controls the fate of 

cells in a systematic and precise manner. Genetic material, namely genomic DNA, is under 

constant attack from both genotoxic and non-genotoxic mechanisms, often resulting in 

modifications which can potentially transform a normal cell into a premalignant lesion 

(Nowsheen et al., 2014). Eventually, accumulation of dynamic alterations in the genome and a 

complex network of interactions among mutated cells with multiple distinct cell types lead to 

metastatic cancer with uncontrolled growth of tissues. According to Hanahan and Weinberg 

(2000; 2011), cancer may be characterized by six distinctive biological aptitudes: sustained 

proliferative signaling, insensitivity to growth suppressors, resistance to apoptosis, replicative 

immortality, induction and sustainment of angiogenesis, invasion through capillary walls and 

basal membranes and metastasis to other sites of the body. 

Globally, cancer rates are escalating at an alarming rate. In developing countries, in 

particular, an overburdened health sector further exacerbated by economic constraints makes 

cancer a serious health issue, resulting in the disease being the leading cause of death. Despite 

considerable advances in diagnostic technology and treatment modalities, the invasive, 

aggressive growth profile, the complexity of the signaling web involved in cancer development 

and propagation, coupled with multiple mechanisms to evade apoptosis, pose a formidable 

challenge to the quest for cancer treatment and a cure (Hanahan and Weinberg, 2000; Li et al., 

2013). Traditional cancer therapies such as chemotherapy, radiotherapy and surgery are 

ineffectual in more advanced cases, primarily because these interventions lack specificity and 

therefore induce adverse side-effects on normal cells. In most cases, these treatment options 

result in incomplete eradication of the invasive primary tumour or disseminated disease. 

Furthermore, when cancer treatments fail or when relapse occurs, cross-resistance with several 

structurally unrelated anticancer agents or multidrug resistance (MDR) is a common occurence 

(Fatemian et al., 2014). These phenotypes are the most prevalent form of tumour resistance, 

accounting for 90% of cancer treatment failure (Ozben, 2006). The urgency of the quest for 

innovative anticancer strategies can hardly be over-emphasised.  
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2.2 Breast Cancer 

 

The estimated global new incidence of BC cases in women was approximately 1.7 million with 

approximately half a million deaths in 2012, accounting for 25% of all cancer cases and 15% of 

all cancer deaths among the female population (Torre et al., 2015). According to a cancer report 

by the American Cancer Society, BC is over 100 times more common in women than in men 

(ACS, 2015). Although there is a higher incidence of BC in industrialized countries, adoption of 

urbanized lifestyles and changes in reproductive behaviour could possibly be the reasons for the 

increase of BC in non-industrialized countries (Porter, 2008). Based on BC incidence projections 

and population estimations, the annual global incidence of BC is expected to reach 

approximately 3.2 million by 2050 (Hortobagyi et al., 2005; WPP, 2004). Clearly, these statistics 

presage a global BC increase of alarming proportions. 

Although BCs are sporadic in nature, approximately, 5-10% of BC cases are genetic in 

provenance. Generally, BC develops in cells which line the milk ducts and the lobules that 

supply the ducts with milk, classified as ductal and lobular carcinomas respectively. The most 

common, invasive ductal carcinomas constitute approximately 80% of BCs; 10-15% are invasive 

lobular carcinomas; and additional rare types make up less than 5-10% of BCs (Perou et al., 

2000; Sørlie et al., 2003). Breast cancer tumours are heterogeneous, and pathological 

characteristics such as morphology, grade and hormone-receptor profile stratify tumours into 

biologically and clinically distinct groups (Simpson et al., 2005). 

 

2.3 The Normal Mammary Gland and the Biology of Breast Cancer 

 

2.3.1 Development of the mammary gland 

 

The human mammary gland is a unique organ; it originates in the embryonic stage of human 

development and undergoes a series of changes post-puberty to senescence (Cowin and 

Wysolmerski, 2010; Watson and Khaled, 2008). In normal physiological conditions, the 

mammary gland consists of a branching tubulo-alveolar system composed of a highly dynamic 

stratified epithelium surrounded by a basement membrane. This glandular structure is embedded 
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within a matrix of stroma composed of varying amounts of adipose and connective tissue, 

nerves, blood vessels and lymphatics (Osborne, 2000; Stingl et al., 2006). 

In newborn infants, the palpable mammary fat pad consists of a simple epithelial ductal 

structure that quiescently lies beneath the nipple until puberty. In both males and females, pre-

pubertal mammary glands are analogous in structure and cellularity with specialized cell biology 

(Howard and Gusterson, 2000; Javed and Lteif, 2013). Structural modifications of the breast 

observed at different stages in females (menstrual cycle, pregnancy, lactation and regression) led 

to the postulation of the existence of progenitor cells that are capable of developing new duct-

lobular systems (Raouf et al., 2012; Shore and Rosen, 2014; Villadsen et al., 2007) [Figure 2.1]. 

In females, the normal range of thelarche is from 8½ to 13 years. During this period, the release 

of ovarian and pituitary hormones such as estrogen, progesterone and growth hormones stimulate 

proliferation of the mammary epithelial cells resulting in the generation of an elaborate network 

of terminal end bud structures (Stingl, 2011). These are dynamic, highly proliferative structures 

located at the tips of the invading ducts that expand and increase extensively to allow complex 

branching, ductal elongation and lumen formation (Brisken and O'Malley, 2010; Hennighausen 

and Robinson, 2001; Sternlicht, 2006). In the adult, the epithelial ducts form into a branched, 

bilayered ductal structure, comprising an inner layer of polarized luminal epithelial cells and an 

outer basal layer of cells which are believed to arise from a common bipotent stem cell (Shore 

and Rosen, 2014; Visvader, 2009). The luminal cells can be further subdivided into luminal 

progenitors and mature luminal cells, i.e., ductal luminal cells, lining the inside of the ducts, and 

alveolar luminal cells which are the milk producing cells of the mammary gland. The outer basal 

layer consists of basal progenitor cells and a population of contractile myoepithelial cells. These 

are muscle-like cells which, in the presence of oxytocin, contract to force the movement of milk 

out of the alveoli into the ducts to be ejected from the nipples during lactation (Howard and 

Gusterson, 2000; Russo and Russo, 2004). Luminal and basal progenitors are believed to 

produce alveolar progenitors (Visvader, 2009). During pregnancy, these primary ducts that reach 

the nipple form a complex of auxiliary ducts, which undergo a stepwise process of differentiation 

to form several alveolar cells or acini (Brisken and Rajaram, 2006). A collection of alveolar cells 

arising from one terminal duct forms the functional unit of the breast, termed a terminal duct 

lobular unit. The morphogenesis and systematized differentiation of the mammary gland allow 

the secretory units of the mammary gland to be inactive, rather than persisting in a functionally 
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differentiated, milk producing state (Smith et al., 2012). During involution, the process when 

lactation stops and the mammary gland turns in on itself, the majority of differentiated alveolar 

cells undergo rounds of apoptosis in a controlled manner, reverting the gland to a pubertal state. 

Importantly, the mammary gland becomes fully differentiated only with the onset of pregnancy, 

which brings about the next major change in the hormonal environment (Anderson et al., 2007). 

 

 

Figure 2.1: A diagrammatic representation of human mammary gland development. (A) An illustration 

of the five different stages of human mammary gland development, beginning with pubertal growth, 

followed by progression from adult to lactating breasts and finally waning at involution. Depicted are 

mammary fat pads (pink) and ductal epithelium (purple). The circular objects represent lobulo-alveolar 

units during pregnancy, lactation, and involution. (B) A model of mammary epithelial cell hierarchy as 

proposed by Shore and Rosen (2014). 
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2.3.2 The biology of breast cancer 

 

Breast cancer is not a single disease but a highly heterogeneous group of neoplasms (Perou et al., 

2000). Regardless of the histological type of the tumour, almost all are believed to originate from 

the epithelial cells lining the milk ducts (Tavassoli and Devilee, 2003). The initiation of BC, i.e., 

deregulated cell growth and apoptosis, is due to both genetic and epigenetic modifications in a 

single cell. These changes include: point mutations, duplications, insertions, deletions, 

translocations, chromosome aberrations, and epigenetic inactivation such as histone 

deacetylation and promoter hypermethylation (Nowsheen et al., 2014). The most well 

characterized pre-malignant lesions studied and recognized were obtained from the ductal and 

lobular units of the mammary gland. These are termed atypical ductal or lobular hyperplasias, 

and ductal or lobular carcinomas in situ (Allred et al., 2001). The prevailing model focuses 

specifically on the progression of lesions present within the ductal region of the mammary gland 

[Figure 2.2]. Essentially, the natural history of breast tumourigenesis assumes a sequential 

progression through defined pathophysiological stages, beginning with atypical ductal 

hyperplasia (ADH), to ductal carcinoma in situ (DCIS), with subsequent evolution into invasive 

ductal carcinoma (IDC) and metastatic carcinoma (Burstein et al., 2004; Polyak, 2007). 

Collectively, clinical and experimental data suggest that ADH is a pre-malignant tumour and a 

precursor lesion of DCIS, characterized by abnormal epithelial cells that have proliferated and 

formed numerous layers within the lumen. Based on molecular and pathological studies, DCIS 

(also referred to as intraductal carcinoma) is the precursor lesion of invasive BC. DCIS is a 

clonal proliferation of pre-malignant cells, capable of rupturing the basement membrane 

surrounding the mammary ducts and invading into the adjacent stroma. Despite being a crucial 

stage in tumour progression, there is no consensus about its nature. Some researches suggest that 

it is the result of the accumulation of additional genetic changes coupled with clonal expansion 

and selection (Place et al., 2011). The most prominent changes observed in epithelial cells at 

both the ADH and DCIS stages are the loss of polarity, abnormal cell morphology, and the 

ability to hyperproliferate within the mammary duct (Shore and Rosen, 2014). Numerous 

changes in the cellular composition from normal mammary gland to IDC have been documented. 

These included loss of epithelial cells, increase in fibroblasts, mast cells, macrophages (immune-

competent cells) in the stroma, and enhanced vascularization, which is the most common 
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(Gudjonsson et al., 2005; Lewis and Pollard, 2006; Shekhar et al., 2003). Following basement 

membrane invasion, the spread of malignant mammary epithelial cells to distant organs results in 

metastatic disease. A range of motility mechanisms facilitate invasion of cancerous breast tissues 

and metastasis. These include: epithelial mesenchymal transition, structural modifications of the 

actin cytoskeleton, as well as the control of membrane proteins through endocytosis. These 

cellular responses within the tumour environment are tightly regulated as each of the constituents 

within the niche is able to secrete growth factors, chemokines, cytokines and proteins capable of 

remodelling the extracellular matrix (Jiang et al., 2009; Mathias et al., 2013; van Zijl et al., 

2011). Taken together, invasive and metastasized lesions display a variety of morphological 

features, molecular subtypes, and clinical behaviours which make BC a formidable disease. 
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Figure 2.2: Outline of BC progression. Breast cancer is believed to advance through a series of well-

defined stages. This sketch depicts cross-sections of the mammary duct at different stages of BC 

progression: Normal duct, Atypical ductal hyperplasia (ADH), Ductal carcinoma in situ (DCIS), and 

Invasive ductal carcinoma (IDC) (Mukhopadhyay et al., 2011; Shore and Rosen, 2014). 
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2.4 Classification of Breast Cancer 

 

2.4.1 Immunohistochemical classification 

 

Traditional, histopathological subclassification of BCs by immunohistochemistry has resulted in 

a clinically relevant classification system which contextualizes pathogenesis and therapeutic 

approaches for its treatment. Typically, this procedure uses the immunostaining technique in 

paraffin sections of BC (Goldhirsch et al., 2009). In clinical practice three predictive biomarkers 

in BC, not mutually exclusive, have been identified and addressed (Bertos and Park, 2011). 

These immunohistological biomarkers are categorized on the basis of the 

amplification/overexpression of the Human Epidermal Growth Factor Receptor 2 (HER2/neu), 

and the presence or absence of expression of the estrogen receptors (ER) and progesterone 

receptors (PgR) (Hammond et al., 2010; Patani et al., 2013; Wolff et al., 2007). Breast cancers 

are further sub-classified into four major clinical groups based on cell marker expressions: 

ER
+
/PgR

+
/(HER2/neu)

-
, ER

+
/PgR

+
/(HER2/neu)

+
, ER

-
/PgR

-
/(HER2/neu)

+
 (HER2/neu-enriched), 

and ER
-
/PgR

-
/(HER2/neu)

-
 (triple negative which has none of the abovementioned receptors). 

Numerous ecological/lifestyle and hereditary risk factors associated with the aetiology of BC 

also play a role in the hormone-receptor status of the tumour. For example, early menarche, 

nulliparity, late age at first birth, as well as obesity among postmenopausal women have been 

more strongly linked to ER and/or PgR
+
 than the ER

-
 tumours (Colditz et al., 2004; Cotterchio et 

al., 2003; Rusiecki et al., 2005). The majority of BCs express ER and PgR, and the percentage of 

positive tumours increases with age at diagnoses. Thus in women younger than 35 years, ER
+
 

varies from 60-70%, whereas in women over 60 years it increases to 80% (Mavaddat et al., 

2010). In contrast, the fraction of HER2/neu
+
 and HER2/neu

-
 tumours remains approximately the 

same over all age groups. The issue of heterogeneity which the existing accepted classification 

posits may explain diversity in tumour proliferative capability and resistance to therapy (Bauer et 

al., 2010; D’Amato et al., 2015; Nitta et al., 2016). 
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2.4.2 Molecular classification 

 

Breast cancer classification based on gene expression microarrays has revealed both biologically 

and clinically meaningful molecular profiles, each with distinct characteristics (Sørlie et al., 

2001; 2003). Computational systems have enabled the simultaneous gene expression analysis of 

large cohorts of BC samples in a single experiment in order to generate gene signatures 

(Rivenbark et al., 2013). In 2000, Perou et al. were the first to classify BC into intrinsic subtypes 

based on common gene expression patterns determined by overexpressed genes. In the pivotal 

study, the group screened 38 BC cases using complementary DNA (cDNA) microarray, and 

reported a defined list of intrinsic genes. Based on these intrinsic gene signatures, a hierarchical 

cluster analysis identified four major molecular subtypes of BC: Luminal, HER2/neu enriched, 

Basal-like and Claudin-low (Perou et al., 2000; Sørlie et al., 2001; 2003; Sotiriou et al., 2005). 

The subsequent expansion of transcription profiling studies in a larger cohort of BC patients 

provided additional information and created new classifications validated by independent groups. 

Currently, the Luminal group has been divided into two subcategories, namely, Luminal A and 

Luminal B. These novel classifications group breast tumours according to their biological 

characteristics regardless of their prognostic and clinical features (Eroles et al., 2012). This study 

focuses primarily on the HER2/neu molecular subtype which is discussed in greater detail below. 

 

2.5 The Human Epidermal Growth Factor Receptor 2 (HER2/neu) 

 

2.5.1 Physiological role of HER2/neu 

 

The HER2/neu, also termed HER2, ErbB-2 or c-erbB2, is a 185 kDa transmembrane 

glycoprotein (p185
HER2/neu

), encoded by the ERBB2 gene located at the long arm of human 

chromosome 17 (17q21-q22) (Burgess, 2008; Coussens et al., 1985; Yarden and Sliwkowski, 

2001). HER2/neu is a member of the HER (ErbB) lineage of proteins, which includes three other 

structurally related Epidermal Growth Factor Receptors (EGFR): HER1 (EGFR, ErbB-1), HER3 

(ErbB-3) and HER4 (ErbB-4). These receptors form part of a group of 90 protein-tyrosine 

kinases, of which 58 are receptor and 32 are non-receptor kinases (Alonso et al., 2004; Klapper 
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et al., 2000; Roskoski Jr, 2014). Structurally, the ErbB family of receptors is expressed as single-

pass integral transmembrane receptor proteins. 

Under normal physiological conditions, HER2/neu is usually expressed at low levels, 

anchored in the membrane of epithelial cells in a wide variety of tissues, viz., the placenta, 

ovary, breast, gastrointestinal tract, endometrium, lung, kidney and the central nervous system 

(Lemoine et al., 1990; Natali et al., 1990). In humans, HER2/neu is over-expressed on the 

surface of trophoblasts and foetal epithelial cells during the final stages of trophoblastic 

differentiation (Mielke et al., 1998; Press et al., 1990). HER2/neu is believed to be an orphan 

receptor, as none of the epidermal growth factor ligands which are capable of dimerizing with 

the other HER family members is able to activate it. At the molecular level, HER2/neu has no 

known ligand and its receptors are activated upon homo- or hetero-dimerization with the other 

members of the HER family or by proteolytic cleavage of their extracellular domain (termed 

HER2/neu shedding) (Olayioye, 2001; Tsé et al., 2012). Upon activation, HER2/neu is normally 

involved in the signal transduction pathways leading to cell growth and differentiation. 

 

2.5.2 HER2/neu receptor biology  

 

Based upon the primary amino acid structure and cDNA analysis of the HER2/neu receptor, 

three distinct regions have been identified: a glycosylated N-terminal extracellular domain, a 

single hydrophobic α-helical transmembrane domain, and an intracellular portion with a 

juxtamembrane segment, a protein tyrosine kinase domain, and a carboxyterminal tail (Ullrich et 

al., 1984; Olayioye et al., 2000) [Figure 2.3A]. Similar to all HER receptors, the N-terminal 

extracellular domain of the HER2/neu receptor is the largest of the three domains (95-115 kDa), 

and is organized into four subdomains (I-IV) (Cho et al., 2003). Subdomains I and III are related 

leucine-rich segments that form a binding site for the receptor's potential ligands, and 

subdomains II and IV, which are cysteine-rich residues, participate in disulfide homo- and 

hetero-dimerization (Lax et al., 1988; Pietras et al., 1995). In particular, subdomain II contains a 

short hairpin loop dimerization arm which protrudes on the outer surface of this subdomain. 

Therefore, subdomain II is believed to be the main contributor to dimerization, capable of 

connecting with the dimerization arm of HER family members (Tai et al., 2010a). Based on the 

X-ray crystal structure of the extracellular domain, two conformations are known to exist: a 
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closed (inactive) configuration and an open (active) configuration (Garrett et al., 2003). In the 

inactive conformation, the interplay between domains II and IV prevents the association with 

dimerization arms from other HER receptors because these receptors possess a tethered and 

closed structure. In contrast, binding of its native ligand to the receptor induces the interaction 

between subdomains I and III, resulting in an extended and open conformation in which the 

dimerization arm of subdomains II and IV are exposed and not buried, effectively forming an 

active conformation state. Except the HER2/neu receptor, all other members of the HER family 

of receptors (ErbB-1/3/4), employ a receptor-only mediated dimerization mechanism (Lemmon, 

2009). HER2/neu receptors in their native form exist in an open configuration, indicating that the 

dimerization arm remains constitutively extended and capable of dimerizing with the other 

receptors (Burgess et al., 2003; Garrett et al., 2003; Tai et al., 2010a). Together, the four HER 

family members are able to form 28 homo- and hetero-dimers, with HER2/neu being the 

preferred dimerization partner for all the other HER (ErbB-1/3/4) receptors (Graus-Porta et al., 

1997; Pinkas-Kramarski et al., 1996). 

Connecting the extracellular region to the intracellular protein tyrosine kinase domain is a 

single α-helical transmembrane domain comprised of 19-25 amino acid residues. Fleishman et 

al. (2002) recognize a molecular activation switch in the HER2/neu transmembrane region, and 

show that there are two motifs with a conserved sequence of approximately 5 residues. Further, 

these two dimerization motifs play a major role for receptor dimerization. The dimerization is 

triggered by strong dimerization interactions which are created by hydrogen bonds and van der 

Waal forces between hydrophobic segments within the dimerization motifs (Bazley and Gullick, 

2005). This mechanism has been substantiated by crystallographic analysis of the HER2/neu 

transmembrane homodimers (Tai et al., 2010a). 

The intracellular protein tyrosine kinase region has approximately 570 residues, and is 

divided into three major subdomains: (i) a cytoplasmic juxtamembrane linker, (ii) a tyrosine 

kinase domain, and (iii) a carboxyl-terminal tail. The juxtamembrane is a small flexible segment 

which links the transmembrane domain and tyrosine kinase domain. The tyrosine kinase domain 

has several short amino-terminal lobes/loops containing several conserved α-helices and β-stands 

which form the enzyme active site (Knighton et al., 1991; Telesco and Radhakrishnan., 2009). 

This region is the most complicated of the HER2/neu protein receptor. Numerous studies have 

focused on this segment of the receptor, and it has been extensively reviewed (Jones et al., 2006; 
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Roskoski Jr, 2014; Schulze et al., 2005). The carboxyl-terminal tail contains several tyrosine 

residues which are available for phosphorylation, and serve as docking sites for adaptor proteins 

or enzymes containing either modular Src homology 2 or phosphotyrosine binding domains (or 

both) (Roskoski Jr, 2014). 

 

2.5.3 HER2/neu receptor mechanism of action and signaling pathways 

 

In the physiological quiescent state, HER2/neu receptors are inactive monomers. Receptor 

dimerization is a fundamental requirement for HER2/neu signalling activities that govern 

essential cellular processes (Olayioye et al., 2000). Among the different dimers formed by the 

HER receptors, HER2/neu-containing heterodimers are characterized by the most powerful 

signal transduction cascade; this markedly reduces the rate of ligand dissociation, allowing 

potent and prolonged activation of downstream signaling pathways (Rubin and Yarden, 2001). 

Dimerization results in the phosphorylation of tyrosine residues which are catalyzed by the 

juxtaposed cytoplasmic kinase domains leading to protein kinase activation. The response to 

HER2/neu activation depends largely on the different dimeric combinations of HER proteins 

within the dimers and the pattern of dimerization, mediated by the activation of at least three 

different pathways, namely, phosphatidyl inositol 3 kinase (PI3K)/ Ak transforming factor (Akt)/ 

mammalian target of rapamycin (mTOR), mitogenic Ras/ receptor activation factor 

(RAF)/mitogen-activated protein kinase (MAPK), and phospholipase C-γ (PLCγ) pathways 

(Citri and Yarden, 2006; Rubin and Yarden, 2001) [Figure 2.3B]. Depending on which of the 

signal cascades are activated, HER2/neu receptors can be involved in the regulation of complex 

cellular processes including proliferation, cell survival, differentiation, adhesion and migration. 

Typically, induction of the PI3K cascade is stimulated by the (HER2/neu)/HER3 heterodimer, 

this dimerization pair being the most robust of the HER homo- and hetero-dimers (Tzahar et al., 

1996). On the other hand, HER2/neu dimerization with all of the HER (ErbB-1/3/4) members 

can activate the MAPK pathway (Yarden and Sliwkowski, 2001). Both the PI3K and MAPK 

pathways are known to provide the key signaling cascades that prevent apoptosis, promote cell 

growth and proliferation, cellular migration and angiogenesis (Tai et al., 2010a). 



   

 
 

Figure 2.3: Portrait of the HER2/neu structure (A). The extracellular domain consists of four subdomains (I-IV); two leucine-rich domains (L 

1/ I and L 2/ III) which are marked with a stop symbol as they do not participate in ligand binding, and two cysteine-rich domains (CR 1/ II 

and CR 2/ IV) responsible for receptor dimerization. Depicted are the transmembrane domain; the amino- (NH) and carboxyl-terminal lobes 

of the kinase domain and the carboxyl-terminal tail containing several tyrosine residues that can be phosphorylated. Inhibitors of HER2/neu 

mediated signalling using monoclonal antibody (Trastuzumab) and small molecule tyrosine kinase inhibitor (Lapatinib) are also indicated. 

Key HER2/neu signalling pathways involved in tumorigenesis are also schematically illustrated (B). HER2/neu dimerizes with the activated 

HER receptor resulting in the phosphorylation of the tyrosine residues and signal transduction in the intracellular domain. This activates the 

lipid kinase phosphatidyl inositol 3 kinase (PI3K), which phosphorylates a phosphatidylinositol that in turn binds and phosphorylates the 

enzyme Ak transforming factor (Akt). Among the Akt multiple targets is the mammalian target of rapamycin (mTOR), which drives cell 

survival by promoting cell cycle progression and inhibiting pro-apoptotic members of the Bcl-2 family. On the other hand, the mammalian 

homologue of the son of sevenless (SOS), a guanine nucleotide exchange factor, activates the rat sarcoma (RAS) enzyme which, in turn, 

activates the receptor activation factor (RAF) and then mitogen extracellular signal kinase (MEK). MEK then phosphorylates the mitogen-

activated protein kinase (MAPK), which results in cell cycle progression and proliferation (Adapted from Colombo et al., 2010; Roskoski Jr, 

2014; Seliger and Kiessling, 2013; Thery et al., 2014; Videira et al., 2014). 

 

(A) (B) 
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2.5.4 The role of HER2/neu in breast cancer 

 

One of the most common malignant transformations of mammary cells leads to amplification 

and/or over-expression of the HER2/neu oncogene, accounting for ~30% of all invasive BC 

cases (Menard et al., 2000; Press et al., 2002; Rubin and Yarden, 2001; Slamon et al., 1989).  

HER2/neu mutations are rare in BCs. In a novel study, Bose et al. (2013) concluded that 

approximately 1.6% of BC patients possess an HER2/neu gene mutation. These mutations were 

reported to occur in the extracellular domain, carboxyterminal tail as well as in the protein kinase 

domain. Gene amplification and transcriptional up-regulation have major roles in HER2/neu 

over-expression. In HER2/neu-amplified breast carcinomas, HER2/neu expression levels are 

significantly higher, varying from five hundred thousand to more than two million receptors per 

tumour cell, compared to twenty-five to one-hundred and eighty-five thousand receptors per 

tumour cell in non-amplified tumours (Tsé et al., 2012; Yarden, 2001). Over-expression of 

HER2/neu receptors is an adverse prognostic marker associated with poor disease-free survival. 

At the time of diagnosis, patients with HER2/neu-enriched subtype are likely to have a higher 

incidence of advanced disease, coupled with reduced overall survival rate and time of relapse 

(Kennecke et al., 2010; Voduc et al., 2010). It has been found to correlate with tumours which 

are larger in size, of high nuclear grade, and with a decrease in the expression of steroid hormone 

receptors (Konecny et al., 2003; Nielsen et al., 2009). They are characterized as a more 

aggressive tumour phenotype associated with increased cell proliferation, a greater likelihood of 

lymph node involvement, increased tumour invasiveness, and metastasis (Moasser, 2007; 

Slamon et al., 1987). In addition, HER2/neu enhances angiogenesis by increasing vascular 

endoethelial growth factor production, and reduces apoptosis by increasing the expression of 

survivin (Siddiqa et al., 2008; Zhou et al., 2000). 

Although HER2/neu BCs usually display several genomic aberrations, cell proliferation 

and survival depend critically on HER2/neu activation and signalling. Thus far, two different 

mechanisms have been described. In the first and more common type, HER2/neu permanently 

forms self-dimerization or partners with one of the other HER family of receptors to form homo- 

and/or hetero-dimers, whereupon an increase in cell signal transduction cascades is triggered 

(Graus-Porta et al., 1997; Pinkas-Kramarski et al., 1996; Warren and Landgraf, 2006; Yarden, 

2001). In the second, HER2/neu signalling transduction can be induced via formation of 
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truncated HER2/neu carboxy-terminal fragments, which constitutively maintain kinase activity 

(Anido et al., 2006; Pedersen et al., 2009). HER2/neu hetero-dimers are capable of evading 

inactivation processes as they contain strong bonds which decrease the rate of ligand 

dissociation. Moreover, they are able to bypass the degradative pathway by returning to their 

primary site on the cell surface (Harari and Yarden, 2000). 

 

2.5.5 HER2/neu as a target for breast cancer therapy 

 

In recent years, targeted molecular therapeutics for BC has been changing considerably. 

Research efforts have focused mainly on the identification of the precise molecular abnormalities 

responsible for tumourigenesis (Workman, 2005). In the late 1980s, Slamon et al. (1987) were 

the first to associate HER2/neu amplification with negative clinical outcomes. In addition, they 

described HER2/neu protein over-expression as a likely predictive target for treatment. The 

discovery of HER2/neu and its role in malignant progression constituted a major breakthrough, 

and led to the development of a number of targets for anticancer drugs. 

There are several reasons for the exploitation of the HER2/neu receptor as a therapeutic 

target for BC. Firstly, the identification and molecular characterization of HER2/neu, indicated 

that all three domains are involved in a specific aspect of the signalling cascade responsible for 

abnormal growth and malignant transformation. Therefore, each domain can be targeted 

separately to inhibit the HER2/neu signalling pathway. Secondly, HER2/neu is over-expressed in 

cancer cells and is present in high numbers in both pre-malignant tumours and metastasized 

organs (Moasser, 2007). Finally, as mentioned in the previous section, HER2/neu-containing 

hetero-dimers have the greatest mitogenic potential among all HER2/neu dimers. Thus, blocking 

the extracellular domain inhibits HER2/neu dimerization and prevents the activation of 

intracellular signalling pathways involved in the onset and progression of BC. Currently, several 

novel HER2/neu targeted therapies are used in clinical trials to test their efficacy in BC 

therapeutics. Recent reviews on HER2/neu targeted therapies include those published by 

Figueroa-Magalhães et al., 2014; Gullo et al., 2013; Hurvitz et al., 2013; Nandy et al., 2014; 

Palmieri et al., 2014. 
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2.6 Current Treatment Options for HER2/neu 

 

To date, several anti-HER2/neu targeted therapies have been developed and approved in the 

United States and elsewhere based on their role in increasing survival outcomes in patients. Most 

notably, Trastuzumab and Lapatinib are the main targeted therapies exclusively associated with 

HER2/neu gene amplification and/or over-expression of the protein, which have demonstrable 

benefits in the clinical setting. Traditionally, these treatments are first administered and analyzed 

in the metastatic disease state, and then in neoadjuvant trials (Campone et al., 2011; Figueroa-

Magalhães et al., 2014; Shah and Osipo, 2016). 

 

2.6.1 Antibody targeting the extracellular domain 

 

The extracellular domain of HER2/neu has been the target of several monoclonal antibodies used 

to suppress its dimerization with other HER family members. The binding of antibody blocks the 

activation of all HER2/neu dimers, thereby preventing phosphorylation of the tyrosine kinase 

domain as well as retarding or inactivating its downstream signalling pathway (Tai et al., 2010a). 

In 1998, the recombinant humanized monoclonal antibody Trastuzumab (Herceptin
®

) 

(Genentech Inc. San Francisco, CA, USA; Hoffmann-La Roche Ltd. Basel, Switzerland) was 

approved by the USA Food and Drug Administration (FDA) for the treatment of HER2/neu 

positive BC (Schaefer et al., 2006; Shawver et al., 2002; Tokunaga et al., 2006; Yeon and 

Pegram, 2005). Trastuzumab is currently recommended as first-line treatment for patients with 

HER2/neu over-expressing metastatic tumours, either as a single agent or in combination with 

endocrine therapy and/or chemotherapy. It has also been used as a treatment option in early stage 

BC, as well as in the adjuvant setting (Awada et al., 2012). It is recommended that 3+ over-

expression or gene amplification by immunohistochemical and fluorescent in situ hybridization, 

respectively, is essential for likely benefits from treatment (Nielsen et al., 2009). 

Basically, Trastuzumab acts by binding to domain IV on the juxtamembrane region of the 

extracellular domain [Figure 2.3A] of HER2/neu protein (Azim and Azim Jr, 2008). Although 

the precise mechanism of Trastuzumab’s anti-tumour action has not been fully elucidated, 

several proposed mechanisms exist based upon preclinical and clinical trials (Colombo et al., 

2010). These include: the down-regulation of the HER2/neu receptor resulting in the reduction of 
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available receptors; blockage of HER2/neu extracellular proteolysis, thus preventing the 

formation of truncated highly active receptors; anti-angiogenesis leading to reduced micro vessel 

development in vivo, coupled with decreased cellular migration in vitro; induction of apoptosis 

mediated through the activation of antibody-dependent cellular cytotoxicity; and induction of 

cell cycle arrest during the G1 phase, followed by reduction of proliferation (Dean-Colomb and 

Esteva, 2008; Klos et al., 2003; Molina et al., 2001; Spector and Blackwell, 2009). 

There are, however, a number of concerns associated with its use in the clinical setting. 

For one, cardiac toxicity has raised a major safety concern, and remains the hallmark side effect. 

This is primarily due to the pivotal role of HER2/neu in embryonic cardiac development (Negro 

et al., 2004; Perez, 2008), thus precluding its use in patients with poor cardiac function. Again, 

not all patients respond positively to Trastuzumab (Tai et al., 2010a), with a significant number 

of patients acquiring intrinsic resistance within a year of treatment. Resistance to Tratuzumab has 

been shown to develop via several mechanisms, including; (1) impaired receptor-antibody 

binding, (2) truncated HER2/neu protein, (3) gene mutations, (4) signalling via alternative 

pathways, (5) co-expression of insulin growth factor receptor, (6) loss of phosphatase and tensin 

homolog (PTEN), and (7) cancer-associated fibroblasts (Browne et al., 2011; Mao et al., 2015; 

Nahta et al., 2005; 2006; Pohlmann et al., 2009; Saini et al., 2011). Furthermore, BC recurrence 

has been observed in early BC, and disease progression has been reported with most metastatic 

disease cases within a year of administering treatment. Large trials, too, have documented an 

increase in central nervous system metastasis (primary site of tumour recurrence) (Collins et al., 

2009; Montemurro et al., 2006). Finally, the high cost of Trastuzumab limits its use, and all these 

constraints have prompted research aimed at developing more efficient and better tolerated 

HER2/neu targeted therapies. 

 

2.6.2 Tyrosine kinase inhibitors to HER2/neu receptor 

 

Tyrosine kinase inhibitors are small molecules which constitute another group of agents designed 

to target the HER2/neu receptor. In 2007, the first promising small molecule inhibitor, Lapatinib 

(GW572016, Tykerb
™

/Tyverb
™

) (GlaskoSmithKline, Middlesex, UK), was approved by the 

FDA and the European Medicines Agency as an effective drug for the treatment of  HER2/neu 

and HER1 overexpressing breast carcinomas (Geyer et al., 2006; Spector et al., 2005). Lapatinib 



24 
 

is a reversible dual HER2/neu and HER1 tyrosine kinase inhibitor that has a unique mechanism 

of action compared to other tyrosine kinase inhibitors. Small molecule inhibitors are designed to 

compete with adenosine triphosphate (ATP) for the intracellular ATP-binding pocket of the 

tyrosine kinase domain. The nature of the contact between Lapatinib and the domain results in a 

very slow dissociation, enabling prolonged inhibition of tyrosine kinase phosphorylation. 

Lapatinib selectively interrupts signal transduction, which leads to inhibition of downstream 

pathways that control proliferation and survival of tumour cells (Tevaarwerk and Kolesar, 2009). 

In addition, Lapatinib inhibits the downstream signalling proteins such as cyclin D, extracellular 

signal-related kinase (Erk) and Akt (Collins et al., 2009; Xia et al., 2002). 

Unlike Trastuzumab, Lapatinib is able, as a small molecule, to cross the blood brain barrier 

and could therefore be effective in dealing with brain metastasis. Moreover, cardiac toxicity risks 

associated with Trastuzumab are considerably lower with Lapatinib (Collins et al., 2009; Saini et 

al., 2011). Lapatinib clearly demonstrates significant clinical activity. However, both in the 

adjuvant and neoadjuvant setting, Lapatinib has been associated with a high incidence of 

diarrhoea, hepatic toxicity, skin rash, anorexia, fatigue, nausea, headache, and vomiting (Collins 

et al., 2009; Moy and Gross, 2006; 2007; Metzger Filho et al., 2012; Vu et al., 2014). 

 

2.7  Overview of Gene Therapy 

 

Gene therapy is a unique therapeutic technique which has been developed as an alternative to 

conventional medicine to favourably modify or cure both contracted and inherited genetic 

defects (Fischer and Cavazzana-Calvo, 2008). Significant advances in basic gene therapy 

research are occurring in countries all around the world.  To date, gene therapy has been used to 

address a wide variety of diseases at their root cause, ranging from cancer (Faneca et al., 2008; 

Li and Huang, 2006; Nakase et al., 2005; Xing et al., 1998) to neurological disorders (Kaplitt et 

al., 2007; Zhang et al., 2003). Numerous clinical trials are ongoing worldwide (Edelstein et al., 

2004; 2007), with the majority focussing on cancer, the latter comprising approximately 64% of 

all on-going clinical gene therapy trials, followed by monogenic and cardiovascular diseases 

[Figure 2.4]. However, as yet, widespread therapeutic success has remained elusive. 
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Figure 2.4: A graphic representation of the widespread application of gene therapy in clinical trials 

(Wirth et al., 2013). 

 

Current legislature permits gene therapy only in somatic cells. This means that the genetic 

material is inserted into some target cells of an individual, and genetic changes occur only in the 

targeted cells, and cannot be passed on to the next generation. Prior to developing gene therapy 

for any specific condition, the following challenges need to be addressed: genetic malfunctions 

must be precisely characterized and the causal gene identified; the specific cells in the host 

requiring treatment must be identified and accessible; and a functional copy of the gene involved 

must be available. Furthermore, a gene delivery vehicle must be available to efficiently carry the 

functional copy of the gene into target cells where it can be stably expressed for an extended 

period. 

The spectrum of gene therapy applications includes the use of nucleic acids (DNAs or 

RNAs) with regulatory function. Presently, these molecules belong to one of at least six possible 

classes, namely, DNA oligonucleotides, small regulatory RNAs, long anti-sense RNAs, other 

molecular binding RNAs, small catalytic RNAs and DNAs and decoy RNAs and DNAs (Giacca, 

2010). Unlike traditional pharmaceutical drugs, gene therapy has the potential to treat almost any 

disease. Due to their diverse biological activities and unique mechanisms of action, gene-based 

therapeutics has resulted in several approaches for modifying defective genes (Wang et al., 

2015). These include: 1) replacing an abnormal gene with a normal gene through homologous 

recombination; 2) replacing a non-functional gene by inserting a normal gene into a non-specific 
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location within the genome; 3) repairing an abnormal gene through selective reverse mutation; 

and 4) altering the expression of a particular gene (gene knockdown) (Grimm and Kay, 2007). 

Plasmid DNA (pDNA) and small interfering RNA (siRNA) are the two major classes of genetic 

materials which have been applied to mediate their effects at the transcriptional and/or 

translational level (Bumcrot et al., 2006; Gary et al., 2007; Park et al., 2006). DNA-based gene 

therapy is founded on the episomal or integrated presence and expression of corrective DNA in 

the host cell. This entails the delivery of exogenous pDNA encoding a particular gene and the 

subsequent stable or transient expression of the resulting transgene. The expression of 

therapeutic proteins thus ameliorates a specific pathological condition (Anderson, 1998; Verma 

and Somia, 1997). More recently, the field of new therapies based on RNAi has become the 

focus of the pharmaceutical industry as an attractive approach for investigating physiological 

gene function validation and for the potential treatment of human disease (de Fougerolles et al., 

2007; Pecot et al., 2011; Wittrup and Lieberman, 2015). RNAi is a biological process which 

makes use of siRNA to induce sequence-specific post transcriptional gene silencing via the 

cleavage of homologous mRNA. This leads to the targeted inhibition of gene expression both in 

vivo and in vitro (de Fougerolles et al., 2007; Kim and Rossi, 2007; Kurreck, 2009; Leung and 

Whittaker, 2005; Takahashi et al., 2009). 

 

2.8 History, Uniqueness and Mechanism of siRNA Gene Silencing 

 

2.8.1  Advances in RNA interference 

 

RNA interference represents an exclusive form of post-transcriptional gene silencing.  It is an 

evolutionarily conserved cellular mechanism which is exploited for RNA-guided regulation of 

gene expression in mammalian cells and model organisms. This phenomenon was first 

discovered in Petunia flowers in the late 1980s by Napoli and co-workers (1990). Its molecular 

mechanism, however, remained unclear for almost a decade until Fire et al. (1998), using the 

nematode Caenorhabditis elegans, concluded that RNAi is a natural gene knockdown 

mechanism. This discovery was lauded by the Science magazine as “Breakthrough of the year” 

in 2002. Four years later Andrew Fire and Craig Mello were awarded the Nobel Prize for 

Medicine or Physiology for their pioneering work (Fire et al., 1998; Reinhart et al., 2000). In 
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2001, Elbashir et al., using synthetic siRNA, demonstrated the occurrence of RNAi in 

mammalian cell lines. These significant breakthroughs have highlighted the enormous potential 

of this technology to create selective gene silencing and to develop a new transgenic research 

field. Spurred by this development, the scientific community has engaged in intensive research 

efforts focused on siRNA therapeutics and its applications. Numerous scientific and 

technological breakthroughs in related fields have steered a rapid transition of potential 

therapeutic siRNAs from in vitro studies to clinical trials, resulting in remarkable progress in just 

over a decade (Davis, 2009; de Fougerolles, 2008). 

 

2.8.2 Mechanism of siRNA gene silencing 

 

Small interfering RNAs belong to a class of macromolecules (oligonucleotides) which are 21-23 

nucleotide RNA duplexes derived from the digestion of larger double stranded RNA (dsRNA) 

trigger duplexes (> 30-50 bp) by an RNase III-like endonuclease known as Dicer-2 (Tuschl et 

al., 1999; Zhang et al., 2004). Alternatively, chemically or enzymatically synthesized siRNAs 

may be used as precursors to trigger the pathway (Amarzguioui et al., 2005; Elbashir et al., 

2001). In each case, these siRNAs are characterized as ‘small’ dsRNA molecules with 2-

nucleotides unpaired in the 5’-phosphorylated ends and with 3’-unphosphorylated ends (Elbashir 

et al., 2001; Hannon, 2002). Figure 2.5 depicts the siRNA-mediated gene silencing pathway. In 

mammalian cells, within the cytoplasm, siRNA duplexes are incorporated into RNA induced 

silencing complex (RISC). Contained within the core of RISC is the multifunctional protein-

RNA endonuclease, Argonaute-2 (Ago-2), which is involved in RISC activation (Liu et al., 

2004a). Ago-2 is composed primarily of three domains, namely, the PAZ, MID and PIWI 

domains. The PAZ and MID domains are involved in the anchoring and docking of RNA, 

whereas PIWI functions in the mRNA silencing activity (Kim et al., 2009). ATP-dependent 

helicase unwinds the duplex, followed by Ago-2 mediated cleavage of the passenger (sense) 

strand (Matranga et al., 2005; Rand et al., 2005). The guide (anti-sense) strand remains bound to 

RISC via the divalent ion Mg
2+

 (Ma et al., 2005a), and guides it to anneal to complementary 

target mRNA molecules in the mid region between nucleotide bases ten and eleven relative to 

the 5’-phosphorylated end of the anti-sense siRNA strand (Elbashir et al., 2001; Matranga et al., 

2005). Following this, the PIWI domain cleaves the target phosphodiester bond of the mRNA, 
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thereby rendering mRNA dysfunctional (Elbashir et al., 2001). mRNA silencing may be 

achieved via two mechanisms depending on the degree of complementarity between the anti-

sense strand and the cognate mRNA: 1) site-specific cleavage of the message in the region of the 

siRNA-mRNA duplex leading to sequence-specific degradation, or 2) through translational 

repression (Caudy et al., 2003; Doench et al., 2003). The guide strand is recycled, thus 

permitting cleavage of numerous mRNA copies. The degree to which this process occurs 

depends mostly on the dissociation rate of the cleaved mRNA from the RISC assembly (Haley 

and Zamore, 2004). RISC recycling is a feature which distinguishes siRNA from other nucleic 

acid therapeutics such as anti-sense oligonucleotides, as it may demonstrate a silencing effect for 

up to seven days in dividing cells and for several weeks in non-dividing cells. Additionally, 

repeated administration of siRNA can result in stable long term target gene knockdown (Bartlett 

and Davis, 2006). The intrinsic capacity of siRNAs to selectively silence mRNA in a temporal 

and spatial modus is cause for optimism in the field of human BC therapeutics. 
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Figure 2.5: A schematic representation of the siRNA-mediated gene silencing pathway. 1) 

Introduction of exogenous long dsRNA is recognized by Dicer-2 in the cytoplasm; 2) Long dsRNA is 

cleaved by Dicer-2 into siRNA duplexes of 21-23 nucleotides in length followed by interaction with 

R2D2; 3) Synthetic siRNAs bypass the requirement for Dicer-2 processing and are recognized by both 

Dicer-2 and R2D2; 4) Dicer-2 and R2D2 facilitate the transport of siRNA to Ago-2, followed by 

formation of RISC; 5) Ago-2 protein promotes the unwinding of the duplexed siRNA, and the sense 

(passenger) strand is rapidly cleaved and dissociated; 6) The anti-sense (guide) strand remains bound 

to the RISC complex and mediates recognition of the target RNA; 7) Anti-sense RNA strand guides 

RISC and binds to the complementary site in the target mRNA; 8) RISC engages the endonucleolytic 

activity of Ago-2, resulting in target mRNA cleavage which shuts off translation of the corresponding 

protein (Adapted from Yang et al., 2013a). 
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2.9 Therapeutic Potential of siRNA Gene Silencing  

 

2.9.1 Identifying targets for siRNA-induced gene silencing 

 

The mapping of the human genome in the new millennium paved the way for scientists Perou et 

al. (2000) to classify human BC tumours based on their molecular portraits and unique gene 

expression profiles. They described four distinct BC subtypes: HER2/neu-positive, luminal, 

basal, and normal breast-like. A critical event in the progression of each of these BC subtypes is 

the initiation of specific gene expression patterns as a consequence of gene aberrations or 

upstream activation. The ability to selectively silence the expression of an activated oncogene at 

the mRNA level inhibits the production of abnormal proteins. This novel therapeutic strategy 

may be exploited in BC to modulate the expression of any protein, even undruggable target 

proteins (e.g., transcription factors) which are involved in tumour initiation, growth, and 

metastasis formation, thus providing an attractive, useful and promising technique for targeted 

therapeutics in gene therapy (Scherr et al., 2005). The identification of molecular targets is a 

prime research area in the pursuit of ‘personalized’ therapies for metastatic types of BC. The 

heterogeneous nature of BC and its attendant diversity in gene expression patterns present a 

range of specific targets for siRNA therapeutics. Furthermore, different signalling pathways have 

been determined and incorporated within the BC network. These will help identify key molecular 

relays which may be exploited to discover surrogate biomarkers for prognosis and siRNA 

therapy assessment. In the main, siRNA mediated BC therapies include: inhibition of tumour 

survival and induction of apoptosis (Huang et al., 2008) via HER2/neu gene silencing (Tan et al., 

2007); Bcl-2 gene silencing (Beh et al., 2009); p53 gene silencing (Martinez et al., 2002) or 

inhibiting Wnt pathway (Wieczorek et al., 2008); angiogenesis (Xie et al., 2004); and 

chemoresistance (Creixell and Peppas, 2012). 

 

2.9.1.1 Inhibition of angiogenesis 

 

The development of new blood vessels from the existing vascular network (angiogenesis) 

significantly regulates tumour growth, invasion and metastasis of BC (Boudreau and Myers, 

2003; Hobday and Perez, 2005; Sobel et al., 1992). Irrespective of cellular origin, initiation of 
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tumour angiogenesis at the molecular level is mediated by either a switch between up-regulation 

of inducers/activators or suppression of inhibitors of angiogenesis. Some key angiogenic 

activators include the vascular endothelial growth factor (VEGF), fibroblast growth factor 

(FGF), and transcription factor for hypoxia inducible factor-1 (HIF-1), whereas inhibitors 

include thrombospondin-1, angiostatin, interferon α/β and endostatin (Hanahan and Weinberg, 

2000; Klagsbrun and Moses, 1999; Şalva et al., 2015). Research suggests that the VEGF 

(glycoprotein) family in particular is a vital angiogenesis oncogene target, and high levels of 

VEGF produced by tumour cells are attested as key contributors to tumour angiogenesis and 

growth (Davidoff and Nathwani, 2004; Dvorak et al., 1999; Sledge et al., 2006; Zelnak and 

O’Regan, 2007). In breast carcinoma cells, high VEGF levels are thought to act in an autocrine 

manner for cell survival (Bachelder et al., 2001), to induce disruption of endothelial cell 

basement membrane, contributing to metastasis (Weis and Cheresh, 2005), and decreasing 

response to conventional hormonal- and chemo-therapies (Toi et al., 1995). In addition, tumour 

cells overexpressing VEGF have been associated with poor prognosis and decreased survival 

rates (Linderholm et al., 1998; 2000). Intratumoural delivery of siRNA targeting VEGF was 

reported to inhibit breast tumour growth in an MDA-435 xenograft model (Xie et al., 2004). 

Some transcription factors such as ER-α (Stoner et al., 2004), HIF-1 (Forsythe et al., 1996) and 

polyomavirus enhancer activator 3 (PEA3) (Hua et al., 2009) can influence the activation VEGF 

transcription. In a study conducted by Hua et al. (2009), chromatin immunoprecipitation and 

luciferase assays were used to demonstrate the binding of PEA3 to the VEGF promoter, and 

PEA3 activation of VEGF promoter activity in cells overexpressing PEA3, respectively. PEA3 

siRNA was reported to reduce VEGF promoter activity as well as attenuate the binding of PEA3 

to the VEGF promoter in SKBR-3 cells. These researches suggest that PEA3 siRNA provides a 

possible means to demarcate potential targets for inhibiting or preventing cancer development 

and progression. 

 

2.9.1.2 Apoptosis 

 

The apoptotic system comprises an organization of sensors that detect pro-apoptotic stimuli, a 

signal transduction network, and execution machinery. This complex system is effected by the 

activation of a well-defined family of caspase proteases that influence cells through proteolytic 
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activity (Kerr et al., 1972). Activation of caspases mainly occurs through one of two pathways, 

namely, the intrinsic pathway which includes cell stress such as DNA damage or growth factor 

withdrawal, or the extrinsic pathway which is triggered by death ligands such as TNF-related 

apoptosis-inducing ligand (TRAIL). In normal cells, programmed cell death is closely controlled 

by a balance between pro-apoptotic and anti-apoptotic factors. At each level of pro-apoptotic 

stimulation, specific proteins are able to negatively regulate caspases and block apoptosis (Liu et 

al., 2004b). These include several members of the Bcl-2 family, nuclear factor-kB family of 

transcription factors, and inhibitor of apoptosis proteins (IAP) (Fulda, 2007; Hunter et al., 2007; 

Yang et al., 2003). These proteins and their regulators act in combination during “programmed” 

cell death. On the other hand, dysregulation due to aberrations in many genes that regulates the 

apoptotic system results in a blockage of cell death which ultimately leads to disease 

progression, and to chemio- and radio-resistance. Abnormalities have been identified in many 

genes that regulate the apoptotic cascade; these include Bcl-2 (Piché et al., 1998), bax (Su et al., 

1998), and p53 (Elledge and Allred, 1994). Bcl-2 and Bcl-XL from the Bcl-2 anti-apoptotic 

family, for example, are overexpressed in cancer cells and have a strong anti-apoptotic effect. 

Basically, they counteract the activity of Bid, Bax and Bak (pro-apoptotic molecules), thereby 

supressing pro-apoptotic signalling in the mitochondria. The expression levels of Bcl-2 generally 

correlate with chemotherapy resistance (Buchholz et al., 2005; Ferlini et al., 2003; Tophkhane et 

al., 2007). siRNA-mediated down-regulation of Bcl-2 in MCF-7 cells results in an increase in 

apoptosis by 9% (at 72 h) and 11% (at 96 h) in comparison with the positive control (Lima et al., 

2004). Foster et al. (2009) reported that siRNA-based depletion of a member of the IAP family 

XIAP increased apoptosis in response to Trastuzumab, Lapatinib or Gefitinib in Her2/neu-

overexpressing BT-474 cells. Moreover, depleting the cells of XIAP overcomes the intrinsic 

resistance of BT-20 and MDA-MB-468 cells to TRAIL. Another frequent genetic abnormality is 

the elevated expression of c-Myc which is also involved in the apoptotic casade (Doisneau-Sixou 

et al., 2003; Liao and Dickson, 2000). Wang et al. (2005) found that 31.1% of MCF-7 cells 

transfected with pSilencer-c-Myc (short hairpin RNAs ligated into pSilencer) underwent 

apoptosis after serum starvation. Furthermore, they showed that on the 5
th

 day of transfection the 

plasmids endogenously expressing siRNA could successfully deplete up to 80% of c-Myc 

expression in MCF-7 cells. Tumour inhibition effects persisted for at least 12 days after 

transfection in vitro and for 2 months in nude mice respectively. 



33 
 

2.9.1.3 Cell cycle regulation 

 

Silencing of certain genes associated with the development of tumours, poor prognosis, as well 

as resistance to anticancer agents can halt cell division and regulate the cell to enhance apoptosis. 

An example is the Akt pathway which is constitutively activated in BC cells (Nicholson and 

Anderson, 2002). In a report by Santi and Lee (2011), siRNA down-regulation of the Akt2 

isoform in MDA-MB-231 BC cells showed a pronounced decrease in cell proliferation. The 

authors further reported that this was due, in part, to the unique role of Akt2 in the promotion of 

cell cycle progression, as the silencing of Akt2 decreases the levels of Cdk2 and cyclin D 

(responds to oncogenes and various growth factors). Since complexes are formed between Cdk2 

and cyclin A or E, and between cyclin D with Cdk4 or Cdk6 (Rivard et al., 1996), the down-

regulation of only two proteins (Cdk2 and cyclin D) in Akt2-siRNA transfected cells ensured the 

effective cell cycle arrest in the G0/G1 phase. Futher, upregulation of the E2F3 transcription 

factor also plays a role in controlling cell cycle progression (Vimala et al., 2012). More 

specifically, siRNA targeting cyclin E overexpression in SKBR-3, MDA-MB-157 and MDA-

MB-436 cell lines promoted apoptosis, blocking their proliferation and transformation 

phenotypes. In addition, cyclin E siRNA synergistically enhanced the cell killing effects of 

doxorubicin in cell culture, and this combination significantly suppressed tumour growth in mice 

(Liang et al., 2010). In a comprehensive study utilizing E2F3 overexpressed BC cell lines, E2F3-

siRNA markedly blocked the expression of the E2F3 proteins in the MCF-7 cell line, thus 

controlling rapid tumour cell proliferation (Vimala et al., 2012). In another study, siRNA 

mediated silencing of the anterior-gradient 2 (an estrogen-responsive secreted protein) in an ER-

α positive BC cell line resulted in down-regulation of ER and cyclin D1 (Vanderlaag et al., 

2010). These findings presage the likelihood of positive outcomes of the therapeutic application 

of siRNA in BC models and ER-positive cell lines in particular. 

 

2.9.1.4 HER2/neu 

 

Overexpression of growth factor receptors results in an increase of hetero-dimers, which in turn 

leads to an overall increase in intracellular signalling and activation of genes involved in cell 

proliferation (Fernández Val et al., 2002; Ross and Fletcher, 1999). This is naturally concomitant 
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with unabated aggressive tumour growth and death. As mentioned before, HER2/neu is 

associated with more aggressive tumour phenotypes, a greater likelihood of lymph node 

involvement, and increased resistance to cancer endocrine/chemotherapy (Bartsch et al., 2007; 

Engel and Kaklamani, 2007; Menard et al., 2000; Moasser, 2007; Slamon et al., 1987). 

In response, scientists have therefore focussed on HER2/neu as a logical target for siRNA 

based BC therapies (Tan et al., 2007; Urban-Klein et al., 2005). Complications which arise are 

attributed to the primary resistance of HER2/neu gene-amplified breast carcinomas to HER-

targeted therapies. This has been explained in the context of overactive HER2/neu-independent 

downstream pro-survival pathways by Oliveras-Ferraros et al. (2011). These authors addressed a 

specific role of the IAP survivin on the molecular efficacy of HER2/neu targeting drugs, and 

discovered that the up-regulation of survivin contributed to the enhanced survival of JIMT-1 

cells, intrinsically displaying cross-resistance to HER1/2-targeted molecular therapies. 

Moreover, siRNA down-regulation of survivin (up to 80% survivin reduction 72 h after siRNA 

transfection) was sufficient to competently inhibit cell growth and survival as well as allow a 

combined anti-proliferative effect with HER antagonists. Wong et al. (2010) investigated the 

effects of siRNA knockdown of the PP2A catalytic subunit in two HER2/neu-positive BC cell 

lines, BT-474 and SKBR-3. PP2A-siRNA down-regulation demonstrably caused the silenced 

HER2/neu BC cells to undergo apoptosis, which was mediated by p38 MAPK-caspase 3/PARP 

activation. In a clinical study reported by Konecny et al. (2004), 87.7% of HER2/neu positive 

BCs were associated with overexpressed VEGF. Tai et al. (2010b) examined the effect of dual 

silencing of HER2/neu and VEGF genes on tumour growth and invasiveness. Their 

comprehensive study included nine HER2/neu and ten VEGF siRNAs which were capable of 

silencing the target genes by up to 75-83.5%. Furthermore, dual silencing of HER2/neu and 

VEGF resulted in significant change in cell morphology, substantial suppression of migration, 

cell adhesion, and proliferation. These observations suggested that HER2/neu-positive breast 

carcinomas may be more effectively treated by dual silencing of HER2/neu and VEGF gene 

expressions using siRNA (Tai et al., 2010b). 
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2.9.1.5 Sensitizing drug resistant proteins to conventional therapies 

 

Chemotherapy entails the use of cytotoxic drugs commonly implemented in the treatment of 

many cancer types, including BC (Tack et al., 2004). A significant variety of cells, however, 

demonstrate suboptimal therapeutic responses associated with MDR. In essence, cancerous cells 

present altered strategies to prevent apoptosis induced by chemotherapy. Two main mechanisms 

exist, which enable cells to become multidrug resistant; firstly by increasing drug efflux pumps 

present on the cell membrane, and secondly by upregulating anti-apoptotic pathways 

(Gottesman, 2002). Using siRNA to down-regulate the activity of overexpressed genes encoding 

efflux pump proteins has become a feasible approach to sensitize cells to chemotherapeutic 

agents. The P-glycoprotein (P-gp), a 170 kDa membrane-associated drug efflux transporter, is 

often overexpressed, thereby impeding the permeability of several cytotoxic drugs such as 

doxorubicin, paclitaxel, and anthracycline, amongst others. Patil et al. (2010) encapsulated 

paclitaxel into a biodegradable polymer poly(D,L-lactide-coglycolide) mixed with 

polyethyleneimine (PEI) to form micelles. siP-gp was complexed to the nanoparticle via 

electrostatic interactions and the nanoplex was transfected into drug resistant JC cells. P-gp gene 

knockdown increased intracellular paclitaxel accumulation in vitro and enhanced in vivo 

cytotoxicity of paclitaxel, ultimately resulting in a reduction of tumour growth. Li et al. (2010) 

analyzed gene expression profiles of 115 breast carcinomas from women and conducted a 

neoadjuvant chemotherapy trial. Overexpression of YWHAZ (an anti-apoptotic gene) and 

LAPTM4B (a lysosomal gene) was associated with poor tumour response to anthracycline 

administration. They demonstrated the synergistic effect of co-delivering target specific siRNA 

and anthracycline using a lipid-mediated siRNA vector, and reported that the down-regulation of 

these genes enhanced the drug concentrations within the nucleus. Similarly, cationic 

biodegradable polymeric nanoparticles were reported to encapsulate siRNA targeting Plk1, 

MDR-1, and Bcl-2 into MDA-MB-435 and MDA-MB-231 breast carcinoma cell lines, thereby 

sensitizing the cells to paclitaxel and doxorubicin respectively (Sun et al., 2011; Wang et al., 

2006; Xiong and Lavasanifar, 2011). 
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2.10 Challenging Pharmacokinetic Characteristics of Synthetic siRNA 

 

By definition, pharmacokinetic characteristics refer to the process by which a drug is 

internalized, distributed, metabolized and eliminated by the body. Synthetic siRNAs have been 

intensively investigated in basic and pre-clinical science as a versatile gene expression silencer. 

However, most published research on pre-clinical animal models concern siRNA’s low 

biological stability, i.e., rapid degradation by nucleases (~15 min half-life in serum) (Aagaard 

and Rossi, 2007; Bumcrot et al., 2006; Kuhn et al., 2007; Ozpolat et al., 2014), and non-specific 

organ accumulation and rapid elimination through glomerular filtration (Aigner, 2006; Akhtar 

and Benter, 2007; Braasch et al., 2004; de Fougerolles et al., 2007; Kawakami and Hashida, 

2007; van de Water et al., 2006; Xie et al., 2006). Overall, these investigations suggest that 

siRNAs, with their relatively large molecular weight (~13 kDa), behave as typical 

macromolecules of less than 50 kDa and 7 nm, thereby limiting their use in naked form. At the 

level of target cells, in vitro applications of siRNA demonstrated a short serum half-life and 

limited binding to and passive diffusion across lipophilic cell membranes because of their 

anionic surface charge (~40 negative phosphate charges) and hydrophilic nature (Moreira et al., 

2008; Paroo and Corey, 2004). Additionally, within the cytoplasm, siRNA has to escape from the 

endocytic pathway and avoid lysosomal destruction prior to being incorporated into the RNAi 

machinery (Dams et al., 2000; Knop et al., 2010). 

Moreover, major concerns were raised regarding the adverse effects of siRNA therapeutics, 

which include off-target silencing (Svoboda, 2007), saturation of the RNAi machinery (Grimm et 

al., 2006) and unwanted immune activation (Judge and Maclachlan, 2008). The intertwining of 

cellular anti-viral systems with the siRNA system leads to greater complexity and 

unpredictability in the action of siRNA. Synthetic siRNAs may thus induce type I interferon 

responses and stimulate the production of pro-inflammatory cytokines. The development of an 

appropriate and efficient delivery system for synthetic siRNA to target sites in the body is 

consequently the main hurdle preventing successful clinical applications. Delivery systems 

should be designed to address the vagaries of the pharmacokinetic and biodistribution properties 

of siRNA. The resolution of these issues, clearly, would pave the way for the envisioned role of 

siRNA as a powerful therapeutic agent. 
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2.11 Nanocarriers for siRNA Gene Delivery 

 

Delivery vectors employed in gene therapy applications are broadly classified as viral or non-

viral. Viral vectors are generally able to transfect target cells efficiently following systemic 

administration. Their development for application in humans, however, is still limited by 

inherent immune responses to the vector envelope and potential toxicity. Therefore, research 

efforts increasingly focus on non-viral vectors which, although currently less efficient, have a 

superior safety profile (Al-Dosari and Gao, 2009). Non-viral vectors are relatively easy to 

produce in large scale and provide a cost effective alternative to deliver large amounts of siRNA 

to target cells. Nanocarrier engineering is employed to enhance the stability, specificity and 

efficiency of non-viral nucleic acid delivery systems. An important advantage of this approach is 

that it makes use of naturally occurring or synthetic materials that may eliminate immune 

responses and exhibit low toxicity. Additionally, the unique morphological and phenotypic 

features of BC cells or tissues may be exploited to achieve tumour targeted delivery. Moreover, 

non-viral vectors may be designed to protect siRNA cargoes from nuclease digestion, avoid 

endosomal compartmentalization, and promote localization in the cytoplasm where the siRNA 

can be recognized by the RISC. In summary, nanocarrier engineering of non-viral vectors offers 

superior pharmacodynamic and pharmacokinetic characteristics (Table 2.1). However, ensuring 

the successful expression of these design features in non-viral delivery systems is both 

challenging and arduous. For the purposes of this study, the literature review focuses on lipid and 

polymer based siRNA delivery systems in BC cell models. 
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Table 2.1: Examples of non-viral nanocarriers for siRNA gene delivery into breast cancer cell models 

Composition of delivery systems 
Particles’ 

sizeb (nm) 

Particles’ 

chargec 

(mV) 

PDI 
Coating 

PEG 

Targeting 

ligands 
Applicationsd Cell line Reference 

Cationic lipids         

DOGS/DOPE ~120 
Not 

informed 
~0.20 a a siRNAs directed 

against cyclin D1 
MCF-7 (in vitro) 

Lavigne and 

Thierry (2007) 

DC-Chol/DOPE  130 - 150 +30 - +65 
Not 

informed 
PEG a anti-HER-2 siRNA SKBR-3 (in vitro) 

Zhang et al. 

(2010) 

BHEM-Chol 170 +13.8 0.216 mPEG-PLA a siRNA directed 

against Plk1  

MDA-MB-435s murine 

xenograft model (in vivo: i. v. 

administration) 

Yang et al. 

(2011) 

DOTAP/CHOL/ePC 105.9 −42.8 
Not 

informed 
PEG-PE 

N-terminal fusion 

peptide 

DMPGTVLP 

siRNA directed 

against PRDM14 
MCF-7 (in vitro) 

Bedi et al. 

(2011) 

DDAB/CHOL/TPGS/HSA 79.5 ± 5.5 +15.3 
Not 

informed 
a a phrGFP siRNA 

MCF-7, MDA-MB-231 and 

SKBR-3- phrGFP (in vitro) 

Piao et al. 

(2013) 

Stabilized nucleic acid lipid particles 

(SNALP) 
        

DODAP/DSPC/CHOL 
194.7 - 

254.4 

Not 

informed 

0.144 - 

0.149 

CerC16-

PEG2000 

DSPE-PEG-

MAL-F3 
anti-eGFP siRNA MDA-MB-435s-eGFP (in vitro) 

Gomes-da-Silva 

et al. (2012) 

Anionic lipids         

DOPG/DOPE/Ca2+ 324.2 ±19.6 -22.9 ± 0.1 
Not 

informed 
a a anti-eGFP siRNA MDA-MB-231-eGFP (in vitro) 

Kapoor and 

Burgess (2012) 

Polymers         

mPEG2000-PLA3000-b-R15 54.30 ± 3.48 
+34.8 ± 

1.77 

Not 

informed 
PEG a anti-EGFR siRNA 

MCF-7 nude mice xenograft 

model (in vivo: i. v. 

administration) 

Zhao et al. 

(2012) 

mPHA-g-bPEI <200 +33 - +43 0.16 - 0.22 a a anti-luc siRNA MCF-7-luc (in vitro) 
Zhou et al. 

(2012) 

mPEG-b-PCL-b-PPEEA ~60 +48 
Not 

informed 
PEG a 

siRNA directed 

against acid 

ceramidase 

BT-474 murine xenograft 

model (in vivo:  i. v. 

administration) 

Mao et al. 

(2011) 

mP3/4HB-b-PEG-b-lPEI 158 +28 <0.33 PEG a anti-luc siRNA MCF-7-luc (in vitro) 
Zhou et al. 

(2013) 

P(MDSco-CES) <250 +70 1.57 PEG a siRNA directed 

against Bcl-2 
MDA-MB-231 (in vitro) 

Beh et al. 

(2009) 

Chitosan         

TAT-g-CS 212.2 
 

+18.58 
0.121 a TAT ligand 

siRNA directed 

against survivin 

4T1-luc mice xenograft model 

(in vivo: i. t.  administration) 

Yang et al. 

(2013b) 

CS/QD NPs 80 -35 
Not 

informed 
a HER-2 

antibody  

siRNA directed 

against HER2/neu 
SKBR-3 (in vitro) 

Tan et al. 

(2007) 

CS 130 
Not 

informed 

Not 

informed 
a a anti-luc siRNA MDA-MB-231-luc (in vitro) 

Kong et al. 

(2012) 



39 
 

Abbreviations: PDI: polydispersity index; siRNA: small interfering RNA; i. v.: intravenous; i. t.: intratumourally; PEG: polyethylene glycol; DOGS: dioctadecylamidoglycylspermidine; DOPE: 1,2-
dioleoyl-sn-glycero-3-phosphoethanolamine; DC-Chol: 3β-[N-(Nˊ,Nˊ-dimethylaminoethane) carbamoyl] cholesterol; BHEM-Chol: N,N-bis(2-hydroxyethyl)-N-methyl-N-(2-cholesteryloxycarbonyl 

aminoethyl) ammonium bromide; mPEG-PLA: poly(ethylene glycol)-b-poly(d,l-lactide); Plk1: polo-like kinase 1; DODAP: 1,2-dioleoyl-3-dimethylammonium-propane; DSPC: 1,2-distearoyl-sn-

glycero-3-phosphocholine; CHOL: cholesterol; CerC16-PEG2000: N-palmitoyl-sphingosine-1-[succinyl(methoxypolyethylene glycol)2000]; DSPE-PEG-MAL/F3: 1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-[maleimide(polyethylene glycol)2000] ammonium salt; ePC: L-α-phosphatidylcholine; DPPG: 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] sodium salt; DOTAP: 

1,2-dioleoyl-3-trimethylammonium-propane chloride salt; PEG-PE: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)2000] ammonium salt; DDAB: Dimethyl 

dioctadecyl ammonium bromide; TPGS: D-α-tocopheryl-polyethylene glycol 1000 succinate; HSA: human serum albumin; Ca2+: calcium ions; DOPG: 1,2-dioleoyl-sn-glycero-3-phospho-(1′-rac-
glycerol); mPEG2000-PLA3000: monomethoxy poly(ethylene glycol)-block-poly(d,l-lactide); b-R15: polyarginine; EGFR: Epidermal growth factor receptor; mPHA: monomethoxy-

poly(hydroxyalkanoates); bPEI: branched poly(ethyleneimine); mPEG: monomethoxy poly(ethylene glycol); b-PCL: block-poly(ϵ-caprolactone); b-PPEEA: block-poly(2-aminoethyl ethylene 

phosphate); mP3/4HB-b-PEG-b-lPEI: mono-methoxy-poly (3-hydroxybutyrate-co-4-hydroxybutyrate)-block-polyethylene glycol-block-linear polyethyleneimine; P(MDSco-CES): poly(N-
methyldietheneamine sebacate)-co-[(cholesteryl oxocarbonylamido ethyl) methyl bis(ethylene) ammonium bromide] sebacate); CS: chitosan; QD: quantum dot; NP: nanoparticle; F5-P: anti-HER-2 

single-chain antibody fragment with protamine; DNMT: DNA methyltransferase; PIL: PEGylated DC-Chol/DOPE immunoliposomes; anti-HER-2 Fab’: Fab’ of recombinant humanized anti-HER-2 

monoclonal antibody; TLPD-FCC: targeted DOTAP/Chol liposome-polycation-DNA complex conjugated with anti-EGFR Fab’; PEI-C-AuNPs: polyethyleneimine-coated gold nanoparticles using 
catechol-conjugated PEI. 
a: Absence 
b: Depending on the methodology 
c: Depending on the ± charge ratio 
d: The application to breast cancer therapy is indicated when it exists; otherwise, reporter genes were used as mentioned (eGFP: enhanced green fluorescent protein; luc: firefly luciferase reporter gene. 
  

Single-chain antibody (fusion 

proteins) 
        

F5-P N/A N/A N/A N/A 
HER-2 

antibody 
siRNA directed 

against DNMT 

BT-474 murine xenograft  

model (in vivo: i. v.  

administration) 

Dou et al. 

(2012) 

RNA aptamers         

HER-2 aptamer N/A N/A N/A N/A HER-2 siRNA directed 

against Bcl-2 

N202.1A (in vitro: HER2/neu 

transgenic mouse) 

Thiel et al. 

(2012) 

Immunoliposomes         

Lyophilized PIL ~400 ~35 
Not 

informed 
PEG anti-HER-2 Fab’ anti-RhoA siRNA SKBR-3 (in vitro) 

Gao et al. 

(2010) 

TLPD-FCC 150 <12 
Not 

informed 

DSPE-PEG-

Mal 

anti-EGFR 

antibody 
anti-luc siRNA 

MDA-MB-231-luc nude mice 

xenograft  

model (in vivo: i. v. 

administration) 

Gao et al. 

(2011) 

Gold nanoparticles         

PEI-C-AuNPs 15.3 +5 
Not 

informed 
a a anti-GFP siRNA MDA-MB-435-GFP (in vitro) Lee et al. (2011) 
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2.11.1 Stealth technology - nanocarrier biological stability  

 

When systemically applied, nanocarriers have to overcome several biological barriers within the 

bloodstream and the extracellular matrix. Blood plasma is rather complex, containing 

approximately 3700 identified proteins, i.e., 60-80 g L
-1

 serum total protein. In particular, 

liposomes are not inert with respect to blood components and they may interact with proteins and 

lipoproteins resulting in substantial changes in liposome identity. Unfavourable pharmacokinetic 

profiles follow, mainly due to the rapid clearance of particles by the tissues of the mononuclear 

phagocytic system (MPS) (Sharma and Sharma, 1997). Following introduction, nanocarriers are 

immediately surrounded by free protein, a process which is initiated either by a diffusion 

mechanism or an energy gradient (Caracciolo, 2015). Under thermodynamically favourable 

conditions, delivery systems are subject to unspecific interactions with the serum proteins 

(opsonins), influencing their fate in vivo (Scholz and Wagner, 2012; Walkey and Chan, 2012). In 

particular, liposomes bearing charged (anionic or cationic) phospholipid headgroups may have 

more efficiency to adsorb more proteins than those bearing neutral surfaces (Kabanov, 1999). 

Cationic lipids have a tendency to activate complement adsorption with acidic plasma proteins, 

whereas their anionic counterparts preferentially adsorb the basic proteins (Caracciolo, 2015). 

The tight binding of selected proteins on the surface of the liposomes forms a protein-corona 

which is recognized by the organism’s biological system. Therefore, it is not the liposomes 

themselves that are recognized by the MPS, but rather the opsonins on the interface of the 

liposome. As such, liposomes are efficiently taken up by the macrophages and consequently 

eliminated from circulation by the reticulo-endothelial system (RES) or by renal excretion, 

depending on the size of the particle (Reischl and Zimmer, 2009). In addition, protein binding 

may promote liposomal aggregation, as well as hinder cellular uptake of the lipoplex (Zhang et 

al., 2012). 

 These major obstacles in the field of liposome technology have prompted research to 

progress from conventional liposomal delivery vehicles to the field of “second-generation 

liposomes”. Here, conventional liposomes are surface modified by the incorporation of 

biocompatible, hydrophilic moieties (Allen, 1989; Sen and Mandal, 2013; Wang and Thanou, 

2010). The polymer most often employed is poly(ethylene glycol) (PEG) as it is neither toxic nor 

immunogenic, and is easily excreted from the biological system (Ishida and Kiwada, 2008; 
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Zalipsky, 1995). PEGylation involves PEG grafting on functionalized lipids or the integration of 

PEG conjugated phospholipid molecules into the liposomal bilayer (Klibanov et al., 1990; 

Torchilin et al., 1994). PEG polymers (ethylene oxide monomers) are inert and biocompatible, 

and have been FDA approved for use in humans (Harris et al., 2001). 

 PEGylation has become the best and most commonly employed strategy to impart 

promising pharmacodynamic and pharmacokinetic properties to increase the longevity of 

lipoplexes in circulation (Drummond et al., 1999; Immordino et al., 2006; Kolate et al., 2014; 

Perche and Torchilin, 2013). When tethered to the surface of liposomes, resulting vesicles are 

referred to as PEGylated-stealth or sterically stabilized liposomes, and are often depicted 

displaying a protective “cloud”. PEG chains hinder the close association or aggregation of lipid 

nanoparticles, thereby providing steric stabilization to the liposomes. In addition, PEG ‘masks’ 

the liposome surface (charge density), which obstructs opsonin protein adsorption and reduces 

recognition and uptake by macrophages of the RES (Papahadjopoulos et al., 1991; Yan et al., 

2005). Together, these factors aid in prolonging their plasma circulation time thus improving 

localization of the liposomes at the tumour site (passive targeting) (Gaumet et al., 2008), with the 

caveat that the presence of PEG chains may impede liposomal binding and internalization by 

cancer cells. 

 A typical PEG polymer comprises an anchor connected via ethylene glycol repeats to a 

distal terminal group. The anchor portion penetrates the liposome surface and the terminal group 

extends and interacts with the environment. The ethylene glycol repeats may vary in number and 

therefore determine the length and molecular weight of the PEG molecule. Strategies to 

immobilize PEG onto liposomal surfaces include simple direct adsorption, chemical and 

radiation cross-linking and self-assembled monolayers (Thalla et al., 2013). A technique, widely 

used is to anchor the polymer on the liposome bilayer through coupling to a phospholipid, e.g., 

1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)] (Allen et 

al., 1991). The arrangement and the activity of the PEG layer is dependent on three prime 

factors; PEG molecular weight, PEG chain length, and the concentration of PEG chains (surface 

densities) (Ho et al., 2010; Vonarbourg et al., 2006). Lipids containing covalently linked PEG2000 

have been the focus of attention, as the molecular weight of PEG was found to optimize blood 

circulation times of liposomes (Zhang et al., 2012). Ideally, a liposome layered by a near perfect 

PEG coat would be necessary to ensure suitable steric stabilization and reduced protein 
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adsorption. The volume which each flexible PEG chain occupies (Rf) and the distance between 

each PEG molecule (D) on the liposomal surface affect the resultant conformation of the PEG 

chains [Figure 2.6]. Low PEG densities allow the PEG chains to self-assemble into tightly 

coiled, “flat pancake”-like structures (D > Rf). An increase in PEG density creates a moderate 

lateral pressure between the PEG chains, forcing the pancake regimen to extend into an 

intermediate random coil-like “mushroom” conformation. A higher PEG density increases the 

lateral pressure between PEG “mushrooms” even further. This forces the PEG chains to uncoil 

and extend away from the liposomal surface, forming low-coiled, more linear “brush” structures 

(D < Rf). These findings have suggested that the PEG density is somewhat more important than 

the size of the polymer (Buyens et al., 2012; Dos Santos et al., 2007; Wang and Thanou, 2010). 

PEG polymers used in these applications are characterized by low polydispersity and solubility 

in aqueous solutions and numerous organic solvents. The solubility of PEGs is facilitated by the 

directional bonds formed between the PEG and water molecules (Sofia et al., 1998). This 

favourable polymer-solvent contact creates a “hydration shell” around the PEG chains. The PEG 

chain entangles 2-3 water molecules per oxyethylene unit, increasing its apparent molecular 

weight to 5-10 times that of a globular protein of similar molecular weight (Kolate et al., 2014). 

Upon hydration, the PEG chain swells, and this plays an important role in stabilizing PEG-

grafted liposomes. Tirosh et al. (1998) reported that grafting PEG-lipid at concentrations of 

about 5 to 7 mol.% onto the surface of liposomes compresses the liposomal lipid bilayer as water 

is being released from the lipid head group region. This enhances the lateral packaging of the 

phospholipid acyl chains, and, at the same time, decreases bilayer defects resulting in good 

stealth liposomes. In general, an 8-10 mol.% of PEG-lipid present in the liposomal formulation 

equates to the formation of a “brush” regime (Buyens et al., 2012); this generates greater protein 

repulsion. However, higher PEG-lipid concentrations result in lateral repulsion of the PEG 

chains (simultaneous micelle formation) which acts as a liposomal destabilization agent (Li and 

Huang, 2009). Moreover, high mol.% of PEG-lipid densities apparently hamper the release of 

siRNA cargo into the cytoplasm of transfected cells (Buyens et al., 2012). 
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Figure 2.6: Depicted are unilamellar liposomes (bottom) bearing different densities of PEG polymers on 

their surfaces. Presented from left are total, intermediate and partial surface coverage of the liposomal 

bilayer. A detailed zoom (top) of the three PEGylated liposomes shows the respective PEG regimens 

formed as a result of the different surface densities. When the density of PEG on the surface is low, it 

takes on a heavily coiled flat “pancake” configuration (D > Rf). Increasing PEG densities cause the 

conformations to switch to low coiled “mushroom” or to extend further into “brush” structures (D < Rf) 

This figure is adapted from Buyens et al. (2012) and Wang and Thanou (2010). 

 

2.11.2 Lipid-based systems 

 

In the biological milieu, the inherent properties of phospholipids (e.g. phosphatidylcholine) and 

cholesterol allow them to self-assemble into flexible biological bilayers forming an integral 

feature of membrane systems, which enables the trafficking of biomolecules within as well as 
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among cells. Many lipid-based systems designed for siRNA delivery are based on this natural 

phenomenon and make use of natural or synthetic biocompatible materials for interaction with 

the cell membrane to promote efficient delivery. Typically, lipid systems comprise a neutral, 

anionic or cationic lipid, a fusigenic helper/co-lipid [such as DOPE and 1,2-dioleoyl-sn-glycero-

3-phosphocholine (DOPC)] and, in some cases, a PEG-lipid, which together form self-closed 

spherical particles, referred to as liposomes [Figure 2.7B].  

Liposomes are vesicular colloidal particles which have gained interest and popularity as 

efficient siRNA delivery vehicles. Comprising natural membrane constituents, these vesicles, 

with an aqueous core, are biocompatible and biodegradable in vivo, and their by-products are 

non-toxic (Kesharwani et al., 2012; Oh and Park, 2009; Shim et al., 2013). Importantly, 

liposomes are readily prepared, as they form spontaneously when the constituent lipid mixture is 

dispersed in an aqueous solution. In addition, they may be prepared controllably to form 

structures varying in size, number of bilayers and entrapped aqueous phase. Liposome 

formulations may also include target-specific ligands that enhance their selectivity for tumour 

delivery (Guo et al., 2010). Pirollo and Chang (2008) reported specific knockdown of HER2/neu 

expression in BC animal models using siRNA immunolipoplexes containing an anti-transferrin 

receptor antibody ligand. Based on the molecular make-up of the polar head component, 

liposomes are categorized as anionic, cationic, zwitterionic and non-ionic in nature. Generally, 

cationic and anionic-lipidic nanoscaled vehicles have shown promise for successful siRNA 

delivery in BC therapeutics. Their unique characteristics in respect of their interactions with 

siRNA and the cell membrane will be discussed below. 
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Figure 2.7: A scheme of the typical components of a cationic lipid (A) and their spontaneous 

assembly with neutral co-lipids into liposomes (B). Adapted from Hong and Nam (2014); Natarajan et 

al. (2014).  
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2.11.2.1 Cationic liposomes 

 

Cationic liposomes comprise cationic lipids which are amphiphilic molecules displaying a net 

positive charge. In general, these cationic lipid molecules are composed of three basic modules: a 

hydrophilic positively charged head group which functions as a binding site for siRNA; a lipid 

hydrophobic tail moiety which anchors the head group to the liposomal membrane bilayer; and a 

linker which connects the hydrophilic and hydrophobic regions (Gao and Hui, 2001; Li and Jr 

Szoka, 2007; Liu and Huang, 2010; Schroeder et al., 2010) [Figure 2.7 (A)]. In general, head 

groups fall into the following categories: primary, secondary and tertiary amines, quaternary 

ammonium moieties, lipoamines, guanidinium or amidine salts, and heterocyclic rings (Heyes et 

al., 2002; Niculescu-Duvaz et al., 2003). The lipophilic tail domain is mainly comprised of 

aliphatic chains of lengths ranging from 12 to 20 carbons or cholesteryl groups (Wasungu and 

Hoekstra, 2006). The connecting linker bonds are usually ether, ester (Leventis and Silvius, 

1990), amide (Behr et al., 1989), urethane (Lee et al., 1996), or carbamate groups (Koynova and 

Tenchov, 2010). The nature of each of these components influences directly or indirectly the 

cohesive charge-charge interactions in siRNA-liposome complexes (lipoplexes). This, in turn, 

affects both transfection efficiency and degree of toxicity. Enhanced endosomal escape and 

efficient transfection are properties associated with lipoplexes formulated with cytofectins 

containing a bulky alkyl chain and a small hydrophilic head group (Tseng et al., 2009). For 

improved transfection in vitro and in vivo, cationic lipids are often mixed with neutral lipids, such 

as DOPE or cholesterol to form liposomes (Dass, 2004; Ramezani et al., 2009; Xu and 

Anchordoquy, 2008). Combinations and relative amounts of cationic lipids and co-lipids 

profoundly influence toxicity and transfection efficiency (Gao and Huang, 1995; Plank et al., 

1996). It is worth noting that some cationic lipids only function effectively as transfecting agents 

upon formulation with DOPE or cholesterol (Banerjee et al., 1999). DOPE seemingly enhances 

fusion of a lipoplex membrane with an endosomal membrane (Fletcher et al., 2006; Hoekstra et 

al., 2007), while cholesterol conceivably stabilizes lipoplexes and reduces interaction with serum 

proteins (Dass, 2004; Xu and Anchordoquy, 2008). Cationic liposome morphology with respect 

to lamellarity and size is largely determined by the method of preparation and, to a lesser extent, 

by lipid composition (Gabizon et al., 2006; Khuller et al., 2004). The facility and reproducibility 

of the electrostatic interaction between the polyanionic phosphate backbone of the siRNA and the 
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positively charged head groups of the cationic liposome to form the vector lipoplex (Felgner et 

al., 1997) have firmly established cationic liposomes as attractive delivery vehicles. 

Lavigne and Thierry (2007) formulated a highly stable and reproducible preparation of 

dioctadecylamidoglycylspermidine (DOGS) and DOPE with a low cationic net charge and 

termed these vectors DLS. As determined by dynamic light scattering, DLS liposome 

suspensions were homogeneous in size (~120 nm) with a low polydispersity. Rhodamine-labelled 

siRNA targeting cyclin D1 was allowed to form stable lipoplexes with the DLS formulation in 

sterile RNase-free water, prior to transfection. MCF-7 BC cells were transfected with DLS 

lipoplexes (50 nM with respect to siRNA). Thereafter, the cells were fixed to decrease non-

specific binding of the antibodies and permeabilized for immunocytochemical analysis using 

FITC-conjugated primary antibody against early endosomal autoantigen (anti-EEA1). Delivery 

by the DLS vector system and subcellular distribution of rhodamine-labelled siRNAs directed 

against cyclin D1 were examined. Results indicated that the rhodamine-labelled siRNA, 

vectorized by the DLS system, was localized to perinuclear regions within the cytoplasm, 

independent of the presence or absence of serum, in areas more distinct than early endosomal 

vesicles. Furthermore, the siRNA did not co-localize with anti-EEA1, as this antibody was 

shown to be specifically associated with the early endosomal membrane. This confirmed that the 

DLS:siRNA lipoplexes were not trapped in the endosomes, but were efficiently delivered into the 

cytoplasm where they enter the RNAi pathway. 

Cationic liposomes composed of 3β-[N-(Nʹ,Nʹ-dimethylaminoethane) carbamoyl] 

cholesterol (DC-Chol) and DOPE (DC-Chol/DOPE liposomes) were reported to stably transfect 

FAM-siRNA into SKBR-3 BC cells at an optimized equimolar DC-Chol/DOPE ratio of 1 (Zhang 

et al., 2010). Moreover, siRNA transfection efficiency of DC-Chol/DOPE liposomes improved 

with increased DC-Chol/DOPE:siRNA weight ratio, until a plateau was reached. Zhang et al. 

(2010) observed that an increase in lipoplex concentration was accompanied by increased 

internalization and more efficient transfection. Although DC-Chol/DOPE:antiHER-2 siRNA 

lipoplex was successfully internalized into the HER-2 overexpressing SKBR-3 cells, low levels 

(< 25%) of HER-2 gene silencing were achieved. Interestingly, siRNA transfection efficiency 

was not significantly affected by the presence of foetal bovine serum. Gene silencing 

competence, however, was greatly reduced to < 6% in the presence of serum. DC-Chol/DOPE 

liposomes exhibited stability in the presence of serum, a property which is desirable in vitro as it 
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ensures increased cell survival and lowers DC-Chol/DOPE:siRNA toxicity. In the same study, 

PEGylation was seen to reduce the size and the surface charge density of the liposomes, resulting 

in considerable reduction of siRNA transfection efficiency compared to their non-PEGylated 

counterparts. Furthermore, DC-Chol/DOPE liposomes containing even a small quantity of PEG 

(1 mol.%) significantly impaired siRNA silencing efficiency. PEGylation is often adopted as it 

prolongs the half-life of the lipoplexes in serum by providing a surface layer that minimizes the 

binding of serum proteins (Ross and Hui, 1999). However, this is sometimes partially offset by 

unfavourable interactions with the cell surface (Masson et al., 2004). 

 

2.11.2.2 Anionic and neutral liposomes 

 

The feasibility of anionic, neutral or zwitterionic lipids as potentially safe siRNA delivery agents 

has also been explored (Kapoor and Burgess, 2012; Pulford et al., 2010; Srinivasan and Burgess, 

2009). These systems, however, showed poor and variable nucleic acid entrapment or 

encapsulation and very low delivery efficiency when transfected as independent entities (Foged 

et al., 2007). It is theorized that the anionic head group prevents efficient siRNA compaction due 

to the lack of complexation-enhancing electrostatic forces that occur between the anionic 

phosphate backbone of the siRNA and the neutral/negatively charged head groups of the lipids. 

Therefore, to negate electrostatic repulsion and to facilitate intense association and lipoplex 

assembly, a third moiety, typically a divalent cation (Ca
2+

, Mg
2+

 and Mn
2+

), is incorporated into 

the anionic delivery vehicles. Research efforts have focussed on the use of Ca
2+

 as a bridging 

agent for siRNA delivery, as higher transfection efficiencies have been observed with calcium 

for DNA deliveries (Srinivasan and Burgess, 2009). These authors reported that the strong DNA 

and Ca
2+

 binding affinities are potentially due to the calcium which possesses a small 

hydrodynamic radius and renders a larger charge per unit surface area. 

Ideally, an optimized formulation represents the best charge balance between the anionic 

lipid and siRNA, with a slight excess of Ca
2+

 to facilitate binding between the cellular membrane 

and the lipoplexes. Kapoor and Burgess (2012) conducted formulation optimization studies on 

anionic liposomes composed of 1,2-dioleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (DOPG)/ 

DOPE and calcium. These researchers reported ~70% protein knockdown in MDA-MB-231 BC 

cells using anionic formulations composed of 40:60 DOPG/DOPE, 1 µg/mL lipid, 2.4 mM Ca
2+
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and 10 nM anti-eGFP siRNA. Notably, anionic liposome formulations containing > 40 mol.% 

DOPG resulted in no further increment in silencing efficiency as the concentration of DOPG 

reached a point of saturation for DOPG-Ca
2+

-siRNA bridging. Optimal formulations were in the 

size range of 324.2 ± 19.6 nm with a surface charge of -22.9 ± 0.1 mV and an encapsulation 

efficiency of 98.5 ± 1.4%. These optimized anionic lipoplexes were highly stable in the presence 

of serum, and were able to achieve an effective endosomal escape mechanism which resulted in 

increased silencing efficiency. In addition, lipoplexes were several-fold safer than the 

commercial cationic liposome Lipofectamine
TM

 2000. 

 

2.11.3 Polymer systems 

 

Polymeric delivery systems have evolved into a dominant strategy for siRNA gene delivery as 

they are biocompatible, biodegradable and offer increased stability and low polydispersity. As is 

the case with lipid based delivery systems, polymers usually comprise cationic moieties which 

allow for self-assemblage with the polyanionic backbone of siRNA forming polyplexes with a 

robust non-covalent interaction. While siRNA molecules are typically 2 nm in diameter and 7 nm 

in length, polyplexes may range from < 100 nm to several 100 nm in size due to siRNA-induced 

aggregation. A variety of polycations or polycation-containing block co-polymers have been 

employed to condense siRNA via electrostatic interactions into polyplexes or other polymeric 

carriers such as micelles (de Martimprey et al., 2009). Cationic polymers can be classified into 

natural and synthetic polymeric delivery systems. Natural polymers include chitosan, 

atelocollagen and cationic polypeptides, whereas synthetic polymers include polyethyleneimine 

(PEI), poly-L-lysine (PLL), poly(amido amine) (PAMAM) and cyclodextrin-based polycations. 

Physicochemical properties such as molecular weight, solubility, charge density and functional 

groups of both biological and synthetic polymers may be appropriately manipulated for a 

particular therapeutic application, due to their structural flexibility. Research efforts which have 

focussed on efficient polymeric siRNA delivery systems will now be discussed. 
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2.11.3.1 Synthetic polymers 

 

PEI is an organic linear or branched polymer which can be synthesized in various lengths with a 

wide range of molecular weights (1 to over 1000 kDa), and can be substituted with different 

functionalized degradable moieties and co-polymers. This protects siRNA from enzymatic 

degradation, reduces cytotoxicity, and enhances transfection efficacy (Meyer et al., 2008; 

Mintzer and Simanek, 2009; Neu et al., 2005; Philipp et al., 2009; Park et al., 2010; Zintchenko 

et al., 2008). PEIs harbour many amino groups, making them highly protonable polymers which 

exhibit a buffering ‘proton sponge effect’ on the cell endosomes. In essence, the amine groups in 

the PEIs have a buffering capability in the low pH environment of the endosome, stimulating the 

rupturing of the endosomal membrane which results in an increased release of siRNA from the 

complex into the cytoplasm (Howard, 2009). PEI transfection efficiency depends largely on its 

molecular weight, size and the amine/phosphate (N/P) ratio of the polyplexes. The N/P ratio is a 

prime formulation factor used to obtain PEI-siRNA polyplexes within a desired size range. It is 

defined as the number of amine groups of the polycation divided by the number of phosphate 

groups of the nucleic acid. In general, polyplexes attain a net positive charge when the N/P ratio 

is above 1. Furthermore, it has been reported that high N/P ratios correspond to a smaller mean 

diameter of the polyplex and vice versa (Grzelinski et al., 2006; Schiffelers et al., 2004). To 

promote cellular uptake, PEIs and similar polycationic polymers deliver nucleic acid material 

across the cell membrane via the formation of transient nanoscale holes. It has been speculated 

that the same destabilizing mechanism of action on cell membranes has a cytotoxic effect, 

suggesting that more efficient polymers are often also more cytotoxic (Hong et al., 2006; 

Lungwitz et al., 2005). High molecular weight PEI (> 25 kDa) polyplexes have been extensively 

explored for highly efficient siRNA transfection (Bologna et al., 2003; Jere et al., 2009; Urban-

Klein et al., 2005). However, high molecular weight PEIs are also characterized by appreciable 

cytotoxicity through cellular mechanisms such as necrosis and apoptosis (Boeckle et al., 2004; 

Hunter, 2006; Nimesh et al., 2006; Swami et al., 2007; Xie et al., 2006). Numerous 

modifications of PEIs have been investigated with the aim of reducing the potential cytotoxicity 

induced by high molecular weight PEIs. These include; PEGylation, conjugation of butyrate or 

alkanoates, and hydrophobic modifications (Aliabadi et al., 2012; Mao et al., 2006; Schiffelers et 

al., 2004; Zhou et al., 2012; Zhou et al., 2013). A range of PEG moieties have been used as 
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block elements, i.e., incorporated onto PEIs for production of block co-polymers to specifically 

reduce cytotoxicity (Mao et al., 2006). In addition, the combination of PEI-PEG is also able to 

coat (PEGylate) the siRNA polyplex structure and prevent non-specific binding to cells or 

proteins in the physiological milieu (Schiffelers et al., 2005). 

Polymer micelles are generated as a result of self-assemblage of amphiphilic block 

polymers i.e. from either di-block co-polymer AB, or tri-block co-polymers ABC or ABA. 

Generally, part A includes polycations such as PEI and PLL and part B is a highly hydrophilic 

polymer such as PEG or dextran. In a study conducted by Zhou et al. (2012), mono-methoxy-

poly(3-hydroxybutyrate-co-4-hydroxybutyrate)-graft-hyperbranched PEI (25 kDa) (mPHA-g-

bPEI) co-polymers displayed higher optimal transfection efficiencies (with low cytotoxicity) 

compared to the unmodified branched PEI (bPEI) in MCF-7-luc cells. In brief, the co-polymers 

were synthesized with various block length poly(hydroxyalkanoates) from 1300 to 2900 Da, 

through Michael addition between acrylated monomethoxy-poly(hydroxyalkanoates) and bPEI. 

Above a 
w
/w ratio of 1:1, bPEI/siRNA complexes were not able to mediate knockdown of 

luciferase (luc) expression without marked cytotoxic effects of bPEI/siRNA complexes. Notably, 

in vitro knockdown of luc expression in this cell line, using an mPHA-g-bPEI (mAP2) complex, 

was comparable (up to 85%) to that of the commercially available transfection agent 

Lipofectamine
TM

 2000. In a recent study, Zhou et al. (2013) synthesized a mono-methoxy-poly 

(3-hydroxybutyrate-co-4-hydroxybutyrate)-block-polyethylene glycol-block-linear PEI (mP3/ 

4HB-b-PEG-b-lPEI) using 1800 Da linear polyethyleneimine. They demonstrated that 

mP3/4HB-b-PEG-b-lPEI co-polymers could effectively bind siRNA, protect it from degradation 

by nucleases, and efficiently release the complexed siRNA under polyanionic heparin 

competition. However, the luc gene silencing efficiency of these micelles was unsatisfactory in 

MCF-7-luc cells, even at high N/P ratios of 70. The researchers deduced that the use of these co-

polymers as efficient siRNA gene delivery vehicles for exogenous gene silencing depended 

largely on cell type and N/P ratios. Cationic micelles composed of the amphiphilic copolymer 

poly(N-methyldietheneamine sebacate)-co-[(cholesteryl oxocarbonylamido ethyl) methyl 

bis(ethylene) ammonium bromide] sebacate) (P(MDSco-CES) were shown to complex with Bcl-

2-targeted siRNA and efficiently deliver it into the MDA-MB-231 BC cell line (Beh et al., 

2009). After transfection with P(MDSco-CES):siRNA micelles, low levels of Bcl-2 mRNA 

expression were reported. Consistent with the down-regulation of Bcl-2 mRNA levels, Bcl-2 
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protein expression was down-regulated by 36-66% in cells treated with micelles. Furthermore, 

the Bcl-2 mRNA down-regulation efficiency was comparable to that mediated by 

Lipofectamine
TM

 2000, but higher than that induced by PEI alone. Increasing the concentration 

of siRNA resulted in a lower Bcl-2 protein expression level; siRNA concentrations of 22 nM and 

1100 nM resulted in approximately 36 and 66% down-regulation respectively. 

Hydrophobic moieties are incorporated onto polymeric carrier systems to enhance the 

interaction with the lipophilic cell membrane to enable more efficient cellular uptake of the 

polymer associated siRNA. Aliabadi et al. (2011) reported the toxicity profile of modified 

polymers in a P-gp over-expressing BC cell line (MDA-MB-435/MDR). Lipid substitution on 

low molecular weight PEI (2 kDa) increased the toxicity of the complexes; however, the level of 

toxicity was significantly lower than the high molecular weight PEI (25 kDa) polymers. In 

another study which explored the feasibility of lipid-substituted low molecular weight (2 kDa) 

PEI as a delivery vector for siRNA-mediated BCRP down-regulation, a significant increase in 

siRNA delivery as a function of lipid substitution for a range of lipids ranging from C8 to C18, 

was reported (Aliabadi et al., 2012). Lipid-substituted polymers that enhanced the cellular uptake 

were most effective in BRCP gene silencing, which effectively lasted for 5 days after a single 

treatment of siRNA. This trend was corroborated by examining the correlation between cellular 

uptake and down-regulation level with a sigmoidal profile that plateaued after a certain level of 

cellular uptake. 

 

2.11.3.2 Natural polymers 

 

Properties of natural polymers which favour their potential application as siRNA delivery 

vehicles include biodegradability, low toxicity and immunogenicity (Frohlich and Wagner, 

2010). Among the biological polymers, chitosan, a linear polysaccharide polymer composed of 

repeating β-(1-4)-linked D-glucosamine and N-acetyl-D-glucosamine units derived from the 

deacetylation of chitin (Rudzinski and Aminabhavi, 2010), is perhaps the most prominent. It 

forms compact polyplexes with siRNA through electrostatic interactions and provides effective 

protection against enzymatic degradation (Katas and Alpar, 2006; Liu et al., 2007). The 

molecular weight and concentration of the polymer, its degree of deacetylation, and the N/P ratio 

of polyplexes and chitosan salt are important parameters that must be considered as they strongly 
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influence the resulting charge of the polyplexes (Mao et al., 2010). Kong et al. (2012) reported 

that low molecular weight chitosan (LMWC) (2 and 5 kDa) tends to form smaller particle size 

chitosan/siRNA complexes with a more favourable siRNA transporting capability compared to 

the higher molecular weight chitosan (20 to 80 kDa). However, poor functional ability to induce 

target luc mRNA knockdown was observed in MDA-MB-231-luc human BC cells. The authors 

suggested that the strong electrostatic interaction between the LMWC and siRNA facilitated 

cellular uptake of the LMWC/siRNA complex, but prevented effective intracellular unpacking of 

siRNA from its LMWC carrier. To overcome this obstacle, the authors utilized a 

phosphorylatable short peptide conjugated LMWC which led to improved intracellular siRNA 

disassociation and increased the target gene silencing effect of the chitosan/siRNA. Yang et al. 

(2013b) assessed the gene silencing level of trans-activated transcription (TAT) surface-modified 

chitosan/siRNA-luc nanoplexes in an endogenous MCF-7-luc cell line. Gene knockdown was 

similar to that achieved with Lipofectamine
TM

 2000; moreover, the gene silencing efficiency of 

TAT-g-chitosan/siRNA-luc nanoparticles (69.2%) was 3.7-fold higher than that of 

chitosan/siRNA-luc nanoparticles (18.8%). In this case, the introduction of TAT into chitosan 

molecules increased the cell penetrating ability of chitosan, and further resulted in the higher 

uptake efficiency of TAT-g-chitosan/siRNA nanoparticles than chitosan/siRNA nanoparticles. In 

another study, Tan et al. (2007) investigated chitosan nanoparticles encapsulating quantum dots, 

complexed to HER2/neu siRNA. The entrapped fluorescent quantum dots allowed the 

investigators to track the nanoparticles and determine the degree of internalization of siRNA 

complexes into SKBR-3 BC cells. HER-2 antibody-labelled chitosan nanoparticles provided 

specific delivery of siRNA to HER-2-overexpressing SKBR-3 BC cells. Gene knockdown of 

HER2/neu siRNA was observed following treatment of the cells. Chitosan, when used as a 

coating material, has also been shown to improve the transfection efficiency of other vectors in 

siRNA delivery. Pille et al. (2006) demonstrated the efficacy of intravenously administered anti-

RhoA siRNA encapsulated in chitosan-coated polyisohexylcyanoacrylate nanoparticles in nude 

mice bearing aggressive BC (MDA-MB-231) xenographs. The authors reported that after 3 

consecutive days of administering the chitosan-coated nanoparticles to mice at a dose of 0.15 or 

1.5 mg/kg body weight, the growth of tumours was inhibited by 90% in the 0.15 mg/kg group. 

Moreover, an even greater inhibition was observed in the 1.5 mg/kg group, signifying the 

potential efficiency of this carrier system. 
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2.12 Cellular Binding, Uptake and Internalization 

  

2.12.1 Cellular binding: Passive and active targeting 

 

Characteristically, newly formed tumour blood vessels are usually irregular in form and 

architecture and are highly permeable due to rapid and defective angiogenesis. Passive targeting 

of tumour cells by siRNA-containing liposomes employs this dysfunctional lymphatic drainage 

system present within tumours. Liposomes are designed with the premise that they will avoid 

clearance by the RES, thus prolonging their circulation in the peripheral blood. They are 

therefore expected to accumulate in tumours due to the enhanced permeability and retention 

effect (Sen and Mandal, 2013; Wang and Thanou, 2010). This phenomenon was identified by 

Maeda and Matsumura (1989) as a means to target anticancer agents onto tumours. Based on this 

effect, the liposomal delivery systems ranging in size from tens to hundreds of nanometers can 

passively escape through the fenestrations of the leaky vasculature into the tumour tissue. This is 

followed by increased accumulation of the liposome in the tumour tissue, i.e., an increased 

proximity to tumour cells compared to the normal tissue (Xu and Wang, 2015), allowing for the 

subsequent internalization of the siRNA-containing liposomes into the cytoplasm by a non-

targeted passive diffusion mechanism. 

On the other hand, liposomes can be formulated with targeting ligand agents such as 

protein (antibody or antibody fragments), and peptides and vitamins which can bind to respective 

receptors that are (over)expressed by target cells. This strategy allows for active targeting 

interactions and improves the therapeutic index by expanding the therapeutic window by 

increasing delivery to the target tissue and reducing toxic side effects. Two prime factors 

determine the binding and targeting efficiency, namely, the receptor density at the cell surface, 

and the affinity and avidity of the coupled ligands (Park et al., 2002; van der Meel et al., 2014). 

The urokinase plasminogen activator, uPA, is a natural protein ligand which targets the 

urokinase plasminogen activator receptor and shows potential as a BC targeting agent. In 

particular, protein fragments containing only the binding region of uPA have been used for 

targeting the over-expressed receptors on BC (Yang et al., 2009). In general, depending on the 

approach adopted, tumour targeting liposomes can accumulate in tumour tissues at levels 
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approximately 10-100 -fold greater than those achieved by passive delivery (Ozpolat et al., 

2014). 

 

2.12.2 Cellular uptake and internalization 

 

Following efficient passive or active target cell binding of the carrier, siRNA must be 

internalized into the cytoplasm of the cell (Zhou et al., 2014). A multitude of internalization 

mechanisms are known to exist, although there is no consensus on how these operate. 

Classically, the uptake mechanisms are divided into two groups: the endocytic and non-

endocytic pathways (David et al., 2010; Xiang et al., 2012). Endocytosis represents the major 

mechanism of entry via which lipoplexes and polyplexes mediate the delivery of siRNA cargo 

into the target cells (ur Rehman et al., 2013a). Within the endocytic group, there are a variety of 

entry pathways, including both clathrin- and caveolae-mediated endocytosis, phagocytosis and 

macropinocytosis, as well as entry portals that are clathrin- and caveolae-independent (Doherty 

and McMahon, 2009; Hillaireau and Couvreur, 2009; Juliano et al., 2008; Resnier et al., 2013). 

Non-endocytic pathways encompass two categories; invasive and non-invasive pathways. In 

particular, the naturally existing non-invasive pathways which include fusion and penetration 

mechanisms are deemed as being more useful to enhance the intracellular availability of non-

viral gene complexes (Xiang et al., 2012). Three fundamental factors are known to influence the 

uptake mechanism: the particle size; surface charge; and the presence of targeting ligands. For 

siRNA-containing liposomes ranging in size from 50 to 150 nm, the preferred uptake mechanism 

is the endocytic pathway. Complexes with a net positive charge show favoured binding to 

heparansulfate proteoglycan-containing negatively charged cell membranes. Alternatively, the 

presence of targeting ligands on the carrier may direct complexes to those cells expressing the 

corresponding receptor on the surface, leading to facilitated internalization of the siRNA-

containing delivery system (Scholz and Wagner, 2012). 
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3.1 Liposome Formulation 

 

3.1.1 Materials, chemicals and reagents 

 

Dioleoylphosphatidylethanolamine (DOPE, C41H78NO8P) were obtained from the Sigma-Aldrich 

Chemical Co. (St. Louis, MO, USA). Chloroform (CHCl3), absolute ethanol (EtOH, C2H6O), 

sodium chloride (NaCl) and 2-[4-(2-hydoxyethyl)-1-piperazinyl] ethanesulfonic acid (HEPES, 

C8H18N2O4S) were purchased from Merck (Darmstadt, Hesse, Germany). 1,2-Distearoyl-sn-

glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000), 

hereafter referred to as PEG, was acquired from Avanti Polar Lipids (Alabaster, AL, USA). The 

two CCCs namely; Chol-T and MS09, were previously synthesized and obtained from the Non-

viral Gene Delivery Laboratory, Department of Biochemistry, University of KwaZulu-Natal, 

Durban, South Africa. Nuclear magnetic resonance spectroscopy (NMR spectra) and 

electrospray mass spectra were captured using a Gemini 300 instrument and a Waters APIQ-

TOF Ultima instrument (ES-TOF) respectively (
1
H and 

13
C, Appendix A). All other chemicals 

and reagents were of analytical grade or higher, and purchased commercially. Ultrapure 

deionized 18 MΩ water (Milli-Q50) was used throughout.  

 

3.1.2 Liposome preparation 

 

The composition and molar ratio of six liposomal formulations used in the present study are 

outlined in Table 3.1. Cationic liposomes and PEGylated cationic liposomes were prepared 

according to the commonly used thin film evaporation method adapted from that of Gao and 

Huang (1991). The two CCCs, Chol-T and MS09, were previously synthesized in our laboratory 

(Singh and Ariatti, 2006; Singh et al., 2001). Stock solutions of the cytofectins (10 μg μL
-1

), 

DOPE (10 μg μL
-1

) and PEG (1 μg μL
-1

) were prepared separately in CHCl3. Appropriate 

volumes from the respective stock solutions were added to clean quickfit tubes to obtain 2 μmol. 

of total lipid in each case and a constant 1 μmol. cytofectin in each preparation. PEGylated 

liposomes were formulated with 2 or 5 mol.% of PEG, whilst DOPE was adjusted to 

accommodate changes in PEGylation. The lipid mixture was vortexed for 10 s and the CHCl3 

solvent was removed by evaporation (Büchi RE121 Rotavapor, Büchi, Switzerland) at reduced 
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pressure. Pressure equilibration was accomplished using a thin flow of moisture-free nitrogen 

gas at 25 °C. The residual solvent was removed by vacuum-desiccation in a Büchi TO-50 pistol 

drier for at least half-an-hour. The lipid film formed was hydrated overnight at 4 °C in 500 μL of 

filter-sterilized (0.2 μm pore size, Nucleopore, Pleasanton, USA) HEPES Buffered Saline (HBS, 

20 mM HEPES, 150 mM NaCl; pH 7.5). To achieve small unilamellar vesicles, the hydrated 

opalescent lipid film was vigorously vortexed (Vortex Genie 2, Scientific Industries, Bohemia, 

USA), and then sonicated to clarity using a temperature-controlled Transsonic T 460/H bath type 

sonicator (Elma GmbH & Co., Singen, Germany) for 5 min at 21 °C at a frequency of 35 kHz. 

The resulting unilamellar liposome preparations were stored at 4 °C. Liposomal suspensions 

were routinely subjected to DNA/ siRNA binding analyses and, with regular sonication, the 

preparations remained stable for several months.  

 

Table 3.1: Composition and mol. ratios of the different cationic liposomal formulations 

 

Formulation type 

Mol. ratios of the respective cationic liposome 

components (μmol. 500 μL
-1

) 
Total lipid content (μg μL

-1
) 

Cytofectin DOPE PEG 

Chol-T:DOPE 1.00 1.00 - 2.517 

Chol-T:DOPE:2% PEG 1.00 0.96 0.04 2.684 

Chol-T:DOPE:5% PEG 1.00 0.90 0.10 2.938 

MS09:DOPE 1.00 1.00 - 2.746 

MS09:DOPE:2% PEG 1.00 0.96 0.04 2.914 

MS09:DOPE:5% PEG 1.00 0.90 0.10 3.168 

 
Abbreviations: Chol-T: 3β-[N-(N', N'-dimethylaminopropane)-carbamoyl] cholesterol; MS09: N, N-

dimethylaminopropylaminylsuccinylcholesterylformylhydrazide; DOPE: Dioleoylphosphatidylethanol- 

amine; PEG: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]. 
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3.2 Physical Characterization of Liposome and Liposome-Nucleic Acid Interactions 

 

3.2.1 Materials, chemicals and reagents 

 

Escherichia coli strain JM109 was sourced from Promega Corp. (Dübendorf, Zürich, 

Switzerland). Plasmid pCMV-luc was purchased from Plasmid Factory (Bielefeld, North Rhine-

Westphalia, Germany). The various siRNAs were obtained from Thermo Scientific Dharmacon 

Products (Lafayette, CO). Agarose was purchased from Bio-Rad Laboratories (Richmond, CA, 

USA). The components of the gel loading buffer (glycerol, bromophenol blue, and xylene 

cyanol) were obtained from Merck (Darmstadt, Hesse, Germany), Sigma-Aldrich Chemical Co. 

(St. Louis, MO, USA), and Saarchem (Muldersdrift, Gauteng, RSA), respectively. Ethidium 

bromide (M 394.3 g mol.
-1

, EtBr) was purchased from Promega Corp. (Madison, WI, USA). Tris 

(hydroxymethyl)-aminomethane (M 121.2 g mol.
-1

, Tris base) and sodium dihydrogen phosphate 

(M 120 g mol.
-1

, NaH2PO4) were acquired from Merck (Darmstadt, Hesse, Germany). N, N, N', 

N'-ethylenediaminetetraacetic acid (M 372.2 g mol.
-1

, EDTA disodium salt) was purchased from 

Saarchem (Wadeville, Gauteng, RSA), and sodium dodecyl sulphate (M 288.4 g mol.
-1

, SDS) 

from Bio-Rad Laboratories (Richmond, WV, USA). HyClone
®

 Research Grade Foetal Bovine 

Serum (triple 0.1 μm sterile filtered, FBS) was purchased from Thermo Scientific 

(Northumberland, UK). Formvar-coated copper grids were prepared by the Electron Microscopy 

Unit, University of KwaZulu-Natal (Durban, KZN, RSA). Ultrapure deionized 18 MΩ water 

(Milli-Q50) was used throughout. All other chemicals and reagents were of analytical purity 

grade or higher, and purchased commercially. 

 

3.2.2 Plasmid DNA 

 

The plasmid used in this study was the pCMV-luc DNA [6.2 kbp] that codes for the firefly 

luciferase (luc) gene and carries the cytomegalovirus promoter (CMV) [Figure 3.1]. The plasmid 

was amplified in E. coli strain JM109 and isolated and purified according to the standard 

protocol. Plasmid purity was confirmed by 1% agarose gel electrophoresis followed by EtBr 

staining. Plasmid preparations with an OD
260

/280 value of more than 1.8 were utilized in this 

study. Short-term working stock concentrations of 1 μg μL
-1

 were prepared with ultrapure 
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deionized 18 MΩ water (Milli-Q50) and stored at -20 °C. Plasmid concentrations were 

confirmed using the NanoDrop 2000c spectrophotometer (Thermo Scientific, Wilmington, DE, 

USA). 

 

 

Figure 3.1: Plasmid map of the pCVM-luc vector. The vector comprises cDNA of the firefly luciferase 

(luc) gene and β-lactamase for ampicillin resistance (Amp
r
). The vector is driven by the cytomegalovirus 

promoter (CMV). 

 

3.2.3 Small interfering RNA (siRNA) duplexes 

 

siGENOME non-targeting siRNA #1 (D-001210-01-20), sequence: 

UAGCGACUAAACACAUCAA; ON-TARGETplus SMARTpool, and Human ERBB2 (2064) 

(L-003126-00-0020), target sequences: UGGAAGAGAUCACAGGUUA (J-003126-17), 

GAGACCCGCUGAACAAUAC (J-003126-18), GGAGGAAUGCCGAGUACUG (J-003126-

19), GCUCAUCGCUCACAACCAA (J-003126-20) were utilized in this study. siRNA duplexes 

[Figure 3.2] were resuspended according to the manufacturer’s specifications in 1× RNA buffer 

to a final concentration 20 μM. Stock solutions were stored at -80 °C and concentrations were 

routinely confirmed using the NanoDrop 2000c spectrophotometer (Thermo Scientific, 

Wilmington, DE, USA). 
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Figure 3.2: Diagrammatic representation of the siRNA duplex. 

 

3.2.4 Preparation of Chol-T- and MS09-liposome / pCMV-luc or siRNA lipoplexes 

 

Lipoplexes were freshly prepared for use in each of the assays. Chol-T and MS09 liposome 

suspensions were vortexed for 1 min and sonicated for 2 min prior to use. The nucleic acids (1 

μg of pCMV-luc or 0.32 μg siRNA) were mixed directly with various amounts of the appropriate 

cationic liposome suspensions to achieve specific ranges of mass (
w
/w) or N/P (+:‒) ratios. The 

reaction mixtures were brought up to volume (8 μL) with sterile HBS, gently vortexed for 30 s 

and incubated at room temperature for 30 min to allow for the development of complexes. The 

formation of lipolexes was confirmed by nucleic acid binding capacity studies. 

 

3.2.5 Imaging and sizing 

 

3.2.5.1 Cryogenic-transmission electron microscopy (cryo-TEM) 

 

The morphology of the cationic liposomes and lipoplexes (pCMV-luc/ siRNA:liposome 

complexes according to optimal binding capacities) was examined by cryogenic-transmission 

electron microscopy (cryo-TEM) which employed the combined negative staining (uranyl 

acetate)-vitrification protocol. A 2 µL aliquot of liposome:HBS (1:5; 
v
/v) or freshly prepared 

lipoplexes:HBS (1:5; 
v
/v) was deposited onto a 200-mesh copper grid bearing a carbon coated 

Lacey Formvar film (Ted Pella Inc. Redding, CA, USA) and contrasted 1:1 (
v
/v) with 4% 

saturated acidic uranyl acetate negative stain. The aqueous suspensions were allowed to stand for 

2 min at room temperature. Excess fluid was then wicked off with Whatman No. 5 filter paper 

(Sigma-Aldrich Chemical Co., St. Louis, MO, USA) until a very thin layer of fluid formed on 

siRNA helix  

3′OH 

5′PO4 3′OH 

5′PO4 

High GC 
content 

Low GC 
content 
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the grid surface. For vitrificaion of the ultrathin specimens, the prepared grids were immediately 

plunge-frozen in liquid nitrogen at -180 °C (cryo-protectant against freeze thaw damage and ice 

crystal formation) using an injector system (Leica Microsystems EM CPC, Illinois, USA). The 

grids were maintained at -180 °C in a Cryostation 626 single tilt liquid nitrogen cryo-transfer 

holder (Gatan Inc., München, Bavaria, Germany) equipped for low temperature transfer and 

subsequent recording of electron beam sensitive, frozen hydrated specimens in the cryogenic-

TEM. The ultra-structure of liposomes and lipoplexes was then examined under a cryogenic-

TEM JEOL JEM-1010 electron microscope (Jeol, Tokyo, Japan) operating at an accelerating 

voltage of 100 kV under low electron dose. The images were then captured using a Soft Imaging 

System (SIS) MegaView III, bearing a side mounted 3 mega pixel digital camera and analyzed 

using SIS iTEM software (Olympus, Münster, North Rhine-Westphalia, Germany). 

 

3.2.5.2 Determination of particle size, polydispersity index and zeta potential 

 

The hydrodynamic size (Z-average) and the size distribution (polydispersity index, PDI) of the 

liposomes and lipoplexes were determined by dynamic light scattering using the photon 

correlation spectroscopy technique. The light scattering was measured by a Malvern Nano-ZS 

ZetaSizer instrument (Malvern Instruments, Worcestershire, UK) which was equipped with a 5 

mW He-Ne laser beam (633 nm, fixed backscattering detection optics positioned at 173 °) at 25 

°C. Zeta potential (ζ) values of nanoparticles indirectly reflect the surface net charge acquired by 

the vesicle in a given medium. These values can therefore be used to assess the extent of 

interaction of the cationic liposomal surface charges with the anionic charges of DNA or siRNA. 

The zeta potential of the liposomes/lipoplex was measured by the Laser Doppler Velocimetry 

(LDV) electrophoresis technique. The liposome/lipoplex dispersions in filter-sterilized HBS 

(1:99, 
v
/v, 1 mL) were prepared as in the biological studies under dust-free conditions to obtain 

appropriate viscosities for measurement, and loaded into 1.5 mL semi-micro disposable quartz 

cuvettes and universal ‘dip’ cells for particle size analysis and zeta potential studies respectively. 

Liposomes were allowed to equilibrate to room temperature prior to measurement and lipoplex 

preparation. The instrument was programmed within the following parameters: sample refractive 

index, 1.59; viscosity, 0.89 cP; and temperature, 25 °C. Measurements were conducted in 

automatic mode. The particle size of the liposome/lipoplex was measured in triplicate and data 
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was expressed as mean hydrodynamic diameter vs. intensity, i.e., results were reported in terms 

of the intensity distribution. Average diameters were calculated using a monoclonal method 

(NNLS cumulant or cumulative analysis) and reported as mean ± SD (n = 3) of 12 recorded runs. 

Zeta potentials were calculated from the mean electrophoretic mobility by applying the 

Smoluchowski approximation; data represent average and standard deviation (SD) values from 

measurements carried out in triplicate. Width at half peak height is indicative of the homogeneity 

of size and charge distribution. All data was analyzed using the ZetaSizer software version 6.30. 

 

3.2.6 Nucleic acid binding capacity of cationic liposomes by gel retardation 

 

3.2.6.1 Cationic liposome-pDNA interactions 

 

Complexation of cationic lipid dispersions with pDNA retards pDNA electrophoretic mobility 

thus enabling an evaluation of the charge ratio equivalent to complete pDNA binding. pCMV-luc 

Plasmid DNA:cationic liposome complexes with various increasing mass ratios were freshly 

prepared before use by vortexing a mixture of pCMV-luc plasmid DNA (1 µg) and cationic 

liposome (3-10 µg) at 2500 rpm for 1 min. The complex suspension was brought up to a total 

volume of 8 μL with HBS at pH 7.4 (Table 3.2). After 30 min incubation at room temperature, 3 

µL gel loading buffer (50% glycerol, 0.05% bromophenol blue, 0.05% xylene cyanol, 72 mM 

Tris-HCl, 60 mM NaH2PO4, 20 mM EDTA, pH 7.5) was added to the lipoplex suspensions and 

mixed. Agarose (1%) gels were prepared (0.2 g agarose, 18 mL ultrapure deionized 18 MΩ 

water, 2 mL 10× running buffer, 
w
/v), moulded and allowed to form for a minimum of 45 min. 

The gels were submerged in 1× Tris-acetate-EDTA running buffer (36 mM Tris-base, 30 mM 

NaH2PO4, 10 mM EDTA, pH 7.5), and a total volume of 11 µL of each sample was loaded onto 

the gels. Electrophoresis was conducted at room temperature for 90 min at 50 V cm
-1

 (Bio-Rad 

PowerPac
TM

 Basic, USA) in a Mini-Sub Cell
®

 GT apparatus (Bio-Rad, Richmond, CA, USA). 

Naked pCMV-luc plasmid DNA (DNAc) loaded into the outermost lane served as a positive 

control. Following electrophoresis, the agarose gel was stained in an ethidium bromide solution 

(1 µg mL
-1

) for 30 min, visualized under UV300 transillumination, and images digitally 

photographed on a Vacutec Syngene G:Box BioImaging System (Syngene, Cambridge, UK) 

using GeneSnap Imaging Software version 7.05 (Syngene). 
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3.2.6.2 Cationic liposome-siRNA interactions 

 

siGENOME non-targeting siRNA:cationic liposomes (0.32:2 - 12; 
w
/w) were combined in 

microcentrifuge tubes and diluted to 8 µL with HBS (Table 3.3). The suspensions were vortexed 

at 2500 rpm for 2 min to ensure proper mixing, and incubated at room temperature for 30 min 

prior to adding 3 µL gel loading buffer (50% glycerol, 0.05% bromophenol blue, 0.05% xylene 

cyanol, 72 mM Tris-HCl, 60 mM NaH2PO4 and 20 mM EDTA, pH 7.5). Naked siRNA loaded 

into the outermost lane served as a positive control. Samples were loaded into the wells of a 2% 

agarose gel and analyzed electrophoretically as described in Section 3.2.6.1. Migration patterns 

were visualized and images were captured as in Section 3.2.6.1 above. 
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Table 3.2: Set up for gel retardation assays with varying amounts of cationic and PEGylated cationic 

liposome preparations with pCMV-luc plasmid DNA 

 

Components 
Volume (µL) 

1
 

2 3 4 5 6 7 8 

Chol-T:DOPE 0 
1        

(2.5 µg) 

 1.19     

(3 µg) 

1.59      

(4 µg) 

1.99      

(5 µg) 

2.38*    

(6 µg) 

2.78 

(7µg) 

3.18      

(8 µg) 

HBS 7 6 5.81 5.41 5.01 4.62 4.22 3.82 

Chol-T:DOPE:2% 

PEG 
0 

1.12      

(3 µg) 

1.30   

(3.5 µg) 

1.49      

(4 µg) 

1.86      

(5 µg) 

2.24      

(6 µg) 

2.61*    

(7 µg) 

2.98      

(8 µg) 

HBS 7 5.88 5.70 5.51 5.14 4.76 4.39 4.02 

Chol-T:DOPE:5% 

PEG 
0 

1.02      

(3 µg) 

1.36      

(4 µg) 

1.70      

(5 µg) 

2.04      

(6 µg) 

2.38*    

(7 µg) 

2.72      

(8 µg) 

3.06      

(9 µg) 

HBS 7 5.98 5.64 5.30 4.96 4.62 4.28 3.94 

MS09:DOPE 0 
0.73      

(2 µg) 

1.09      

(3 µg) 

1.46      

(4 µg) 

1.82      

(5 µg) 

2.18      

(6 µg) 

2.55*    

(7 µg) 

2.91      

(8 µg) 

HBS 7 6.27 5.91 5.54 5.18 4.82 4.45 4.09 

MS09:DOPE:2% 

PEG 
0 

1.37      

(4 µg) 

1.72      

(5 µg) 

2.06      

(6 µg) 

2.40      

(7 µg) 

2.75      

(8 µg)* 

3.09      

(9 µg) 

3.43    

(10 µg) 

HBS 7 5.63 5.28 4.94 4.60 4.25 3.91 3.57 

MS09:DOPE:5% 

PEG 
0 

1.26      

(4 µg) 

1.58      

(5 µg) 

1.89      

(6 µg) 

2.21      

(7 µg) 

2.53*    

(8 µg) 

2.84      

(9 µg) 

3.16    

(10 µg) 

HBS 7 5.74 5.42 5.11 4.79 4.47 4.16 3.84 

 
Abbreviations: Chol-T: 3β-[N-(N', N'-dimethylaminopropane)-carbamoyl] cholesterol; MS09: N, N-

dimethylaminopropylaminylsuccinylcholesterylformylhydrazide; DOPE: Dioleoylphosphatidylethanol- 

amine; PEG: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]; 

HBS: HEPES Buffered Saline. 

Note: In each reaction mixture pCMV-luc plasmid DNA was used at a constant concentration of (1μg).  

The volume of liposome required to reach the respective end-points is indicated by an *. 
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Table 3.3: Set up for gel retardation assays with varying amounts of cationic and PEGylated cationic 

liposome preparations with siGENOME non-targeting siRNA 

 

Components 
Volume (µL) 

1
 

2 3 4 5 6 7 8 

Chol-T:DOPE 0 
1.27 

(3.20 µg) 

 1.40 

(3.52 µg) 

1.53 

(3.84 µg) 

1.65 

(4.16 µg) 

1.78* 

(4.48 µg) 

1.91 

(4.80 µg) 

2.03 

(5.12 µg) 

HBS 7 5.73 5.60 5.47 5.35 5.22 5.09 4.97 

Chol-T:DOPE:2% 

PEG 
0 

 2.27 

(6.08 µg) 

 2.39 

(6.40 µg) 

2.50 

(6.72 µg) 

2.62 

(7.04 µg) 

 2.74 

(7.36 µg) 

2.86* 

(7.68 µg) 

2.98 

(8.00 µg) 

HBS 7 4.73 4.61 4.50 4.38 4.26 4.14 4.02 

Chol-T:DOPE:5% 

PEG 
0 

 3.59 

(10.56µg) 

 3.70 

(10.88µg) 

 3.81 

(11.20µg) 

 3.92 

(11.52µg) 

4.03* 

(11.84µg) 

4.14  

(12.16µg) 

4.25  

(12.48µg) 

HBS 7 3.41 3.30 3.19 3.08 2.97 2.86 2.75 

MS09:DOPE 0 
1.98 

(5.44 µg) 

2.10 

(5.76 µg) 

2.21 

(6.08 µg) 

2.33 

(6.40 µg) 

2.45* 

(6.72 µg) 

2.56 

(7.04 µg) 

2.68 

(7.36 µg) 

HBS 7 5.02 4.90 4.79 4.67 4.55 4.44 4.32 

MS09:DOPE:2% 

PEG 
0 

 2.09 

(6.08 µg) 

 2.20 

(6.40 µg) 

2.31 

(6.72 µg) 

2.42 

(7.04 µg) 

2.53 

(7.36 µg) 

2.64 

(7.68 µg) 

2.75* 

(8.00 µg) 

HBS 7 4.91 4.80 4.69 4.58 4.47 4.36 4.25 

MS09:DOPE:5% 

PEG 
0 

 3.03 

(9.60 µg) 

3.13 

(9.92 µg) 

3.23 

(10.24µg) 

 3.33 

(10.56µg) 

3.43 

(10.88µg) 

 3.54 

(11.20µg) 

 3.64* 

(11.52µg) 

HBS 7 3.97 3.87 3.77 3.67 3.57 3.46 3.36 

 
Abbreviations: Chol-T: 3β-[N-(N', N'-dimethylaminopropane)-carbamoyl] cholesterol; MS09: N, N-

dimethylaminopropylaminylsuccinylcholesterylformylhydrazide; DOPE: Dioleoylphosphatidylethanol- 

amine; PEG: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]; 

HBS: HEPES Buffered Saline. 

Note: In each reaction mixture siGENOME non-targeting siRNA was used at a constant concentration of  

(0.32μg).  

The volume of liposome required to reach the respective end-points is indicated by an *. 
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3.2.7 Serum nuclease protection assay 

 

Protection of nucleic acid from serum nucleases is essential for efficient gene delivery both in 

vitro and in vivo. For serum resistance assays, liposome:pDNA/siRNA complexes containing 

pCMV-luc plasmid DNA (1 μg) or siRNA (0.2 μg) were assembled according to three weight 

ratios based on binding values obtained for gel retardation studies described in Section 3.2.6 

(Tables 3.4 and 3.5) and incubated at room temperature for 30 min. Serum stabilities of 

liposome:pDNA/siRNA mixtures were investigated by adding foetal bovine serum (FBS) to the 

complexes at a final concentration of 10% (1 μL, 
v
/v). The reaction mixtures were then incubated 

at 37 °C for a further 4 h in a 14 L digital temperature-controlled water bath (TriLab Scientific, 

Johannesburg, Gauteng, RSA). The enzymatic digestion reaction was terminated with 10 mM 

EDTA (1.1 μL, 
v
/v, pH 8) and lipoplexes disassociated using 0.5% SDS (1.33 μL, 

w
/v). After an 

incubation of 20 min at 55 °C, the gel loading buffer (4 μL) was added. The following control 

samples were tested: naked pDNA/siRNA containing an equal volume HBS instead of the 

cationic liposome not treated with FBS, and naked pDNA/siRNA in the presence of FBS. The 

pDNA/siRNA samples were carefully added to the wells of a 1% or 2% agarose gel respectively, 

and subjected to electrophoresis and visualized as described in Sections 3.2.6.1 and 3.2.6.2 for 

the nucleic acid binding capacity assays. 
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Table 3.4: Set up for serum nuclease protection assays with varying amounts of cationic and PEGylated 

cationic liposome preparations with pCMV-luc plasmid DNA 

 

Components 

Volume (µL) 

Control 

1 

Control 

2 

Chol-T:DOPE MS09:DOPE 

1 2 3 1 2 3 

Liposome 0 0 
1.99     

(5 μg) 

2.38     

(6 μg) 

2.78     

(7 μg) 

2.18     

(6 μg) 

2.55     

(7 μg) 

2.91     

(8 μg) 

HBS 10 9 7.01 6.62 6.22 6.82 6.45 6.09 

FBS (10%) 0 1 1 1 1 1 1 1 

 
Control 

1 

Control 

2 

Chol-T:DOPE:2% PEG Chol-T:DOPE:5% PEG 

1 2 3 1 2 3 

Liposome 0 0 
2.24     

(6 μg) 

2.61     

(7 μg) 

2.98     

(8 μg) 

2.04     

(6 μg) 

2.38     

(7 μg) 

2.72     

(8 μg) 

HBS 10 9 6.76 6.39 6.02 6.96 6.62 6.28 

FBS (10%) 0 1 1 1 1 1 1 1 

 
Control 

1 

Control 

2 

MS09:DOPE:2% PEG MS09:DOPE:5% PEG 

1 2 3 1 2 3 

Liposome 0 0 
2.40     

(7 μg) 

2.75     

(8 μg) 

3.09     

(9 μg) 

2.21     

(7 μg) 

2.53      

(8 μg) 

2.84     

(9 μg) 

HBS 10 9 6.60 6.25 5.91 6.79 6.47 6.16 

FBS (10%) 0 1 1 1 1 1 1 1 

 
Abbreviations: Chol-T: 3β-[N-(N', N'-dimethylaminopropane)-carbamoyl] cholesterol; MS09: N, N-

dimethylaminopropylaminylsuccinylcholesterylformylhydrazide; DOPE: Dioleoylphosphatidylethanol- 

amine; PEG: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]; 

HBS: HEPES Buffered Saline; FBS: Foetal Bovine Serum. 

Note: In each reaction mixture, pCMV-luc plasmid DNA was used at a constant concentration of 1μg. 
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Table 3.5: Set up for serum nuclease protection assays with varying amounts of cationic and PEGylated 

cationic liposome preparations with siGENOME non-targeting siRNA 

 

Components 

Volume (µL) 

Control 

1 

Control 

2 

Chol-T:DOPE MS09:DOPE 

1 2 3 1 2 3 

Liposome 0 0 
0.95  

(2.4 μg) 

1.11  

(2.8 μg) 

1.27  

(3.2 μg) 

1.38  

(3.8 μg) 

 1.53  

(4.2 μg) 

1.68  

(4.6 μg) 

HBS 8.50 7.50 6.55 6.39 6.23 6.12 5.97 5.82 

FBS (10%) 0 1 1 1 1 1 1 1 

 
Control 

1 

Control 

2 

Chol-T:DOPE:2% PEG Chol-T:DOPE:5% PEG 

1 2 3 1 2 3 

Liposome 0 0 
  1.64  

(4.4 μg) 

  1.79   

(4.8 μg) 

1.94  

(5.2 μg) 

2.38  

(7.0 μg) 

 2.52  

(7.4 μg) 

 2.65  

(7.8 μg) 

HBS 8.50 7.50 5.86 5.71 5.56 5.12 4.98 4.85 

FBS (10%) 0 1 1 1 1 1 1 1 

 
Control 

1 

Control 

2 

MS09:DOPE:2% PEG MS09:DOPE:5% PEG 

1 2 3 1 2 3 

Liposome 0 0 
1.58  

(4.6 μg) 

1.72  

(5.0 μg) 

1.85  

(5.4 μg) 

2.15  

(6.8 μg) 

2.27  

(7.2 μg) 

2.40  

(7.6 μg) 

HBS 8.50 7.50 5.92 5.78 5.65 5.35 5.23 5.10 

FBS (10%) 0 1 1 1 1 1 1 1 

 
Abbreviations: Chol-T: 3β-[N-(N', N'-dimethylaminopropane)-carbamoyl] cholesterol; MS09: N, N-

dimethylaminopropylaminylsuccinylcholesterylformylhydrazide; DOPE: Dioleoylphosphatidylethanol- 

amine; PEG: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]; 

HBS: HEPES Buffered Saline; FBS: Foetal Bovine Serum. 

Note: In each reaction mixture, siGENOME non-targeting siRNA was used at a constant concentration of  

0.2 μg. 

 

3.2.8 Ethidium bromide dye displacement assay 

 

Fluorescence titrations of pDNA/siRNA-ethidium bromide (EtBr) complexes with cationic 

liposomes were adapted from the method previously described by Singh and Ariatti (2006). A 

solution of EtBr (10 µL, 100 µg mL
-1

) was added to 0.25 mL HBS in 96-well black flat-bottom 

FluorTrac plates, and a standard baseline reading of 0% relative fluorescence was established. 
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Subsequently, 3 µL pCMV-luc plasmid DNA (1 µg μL
-1

) or 10 µL siRNA (0.32 µg μL
-1

) was 

added to the mixture, and the fluorescence taken was set to represent 100% relative fluorescence 

intensity. Thereafter 1 μL aliquots of the complexation agents were sequentially added, the 

mixture was agitated for 30 s, and the fluorescence of the solution measured at excitation and 

emission wavelengths of 520 nm and 600 nm respectively using an automated 

spectrofluorometric microplate reader (SynergyMx ELX 800, BioTek Instruments, Winooski, 

VT, USA). Binding of the cationic liposomes to the nucleic acids caused condensation and 

displacement of intercalated EtBr, resulting in reduced fluorescence emission intensity until a 

plateau in readings was reached. All measurements were conducted in triplicate at 25 °C and 

relative fluorescence (Fr) was plotted against liposome lipid mass. Normalized fluorescence was 

calculated using the following equation: 

 

Fr (%) = (F - F0) / (F100 - F0) × 100 

 

where F represents the fluorescence of nucleic acid + EtBr + cationic liposome, F0 the 

fluorescence of EtBr alone, and F100 the fluorescence of nucleic acid + EtBr. 

 

3.3 Cell Lines and Routine Cell Culture Techniques 

 

3.3.1 Materials, chemicals and reagents 

 

Eagle’s Minimum Essential Medium (EMEM) containing ʟ-glutamine (4.5 g L
-1

), Trypsin-

EDTA mixture [Versene (EDTA) 200 mg L
-1

 and Trypsin 170.000 U L
-1

] and antibiotics (100×) 

containing penicillin G (10 000 U mL
-1

), streptomycin sulphate (10000 µg mL
-1

) and 

amphotericin B (25 μg mL
-1

) mixtures were purchased from Lonza BioWhittaker (Verviers, 

Liège, Belgium). Gamma-irradiated foetal bovine serum (FBS) and dimethyl sulfoxide (DMSO) 

were purchased from Hyclone, Thermo Scientific (Northumberland, UK). SKBR-3 cell line was 

purchased from American Tissue Culture Collection (ATCC) [HTB 30, University Boulevard, 

Manassas, VA, USA]. MCF-7 cells were supplied by the Department of Therapeutic and 

Medicines Mangement, Medical School, University of KwaZulu-Natal, Durban, South Africa, 

and the HEK293 cells were provided by the Anti-viral Gene Therapy Unit, Medical School, 
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University of the Witwatersrand, South Africa. Calbiochem
®

 phosphate buffered saline (PBS) 

tablets were obtained from Merck (Darmstadt, Hesse, Germany). All sterile tissue culture plastic 

consumables were obtained from Corning Incorporated (Corning, NY, USA). Milli-Q50 

ultrapure deionized 18 MΩ cm water was used throughout. All other chemicals and reagents 

were of analytical purity grade or higher, and purchased commercially. 

 

3.3.2 Cell lines and maintenance 

 

The SKBR-3 cell line is well known for the overexpression of the Her2/neu gene product. The 

SKBR-3 cell line was first isolated by G. Trempe and L.J. Old in 1970 from the malignant 

pleural effusion of a 43-year-old caucasian female with metastatic ductal adenocarcinoma of the 

breast. This cell line served as a positive BC cell line for Her2/neu gene knockdown using target 

specific siRNA. The MCF-7 cell line was also first isolated in 1970 from the malignant pleural 

effusion of a 69-year-old caucasian woman with adenocarcinoma of the breast tissue. In this BC 

cell line the Her2/neu gene product is not overexpressed, and was therefore used in this study as 

a negative control cell line together with the non-Her2/neu expressing human embryonic kidney 

cells (HEK-293). All routine cell culture procedures, including complete culture media 

preparartion, mammalian cell line propagation and maintenance, were carried out in a class II 

Airvolution biological safety cabinet (United Scientific (Pty) Ltd.) Cells were propagated in 25 

cm
2 

gas permeable screw-capped cell culture flasks containing 5 mL EMEM supplemented with 

10% (
v
/v) FBS and Pen./Strep. antibiotics. The cultures were incubated at 37 °C in a saturated 

humidified atmosphere containing 95% air and 5% CO2 (Labotec, ThermoElectron Corp., Steri-

Cult CO2 incubator, HEPA Class 100). Cells were maintained in monolayer culture, and were 

routinely trypsinized using 1 mL trypsin-EDTA and split at a 1:3-1:5 ratio every 3-4 days. The 

cells were then stored in a Nuaire Ultralow freezer at -80 °C in 0.9 mL complete medium 

containing 10% (
v
/v) dimethyl sulfoxide (DMSO). 
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3.3.3 Cryopreservation and reconstitution of cells 

 

The cells were cryopreserved by first washing the confluent cells twice with 2 mL phosphate 

buffered saline (PBS), followed by addition of 1 mL trypsin-EDTA to dislodge the cells and 2 

mL complete medium (EMEM, 10% FBS, antibiotics). The cells were then transferred to a 

microcentrifuge tube and pelleted by centrifugation (Eppendorf Centrifuge 5415D, Germany) at 

1000 rpm for 5 min. The supernatant was decanted; the pellet was resuspended in 0.9 mL 

complete medium and 0.1 mL DMSO (10%), and then dispensed into 2 mL sterile cryogenic 

storage vials. To achieve a -1 °C min
-1 

rate of cooling, the sealed cryogenic vials were placed 

into a Nalgene
TM

 Cryo 1 °C freezing container containing 2-propanol, and the latter in turn 

placed overnight in an ultralow biofreezer. The next day the vials were transferred to cryo-boxes 

and stored in a -86 °C ultralow biofreezer (Nuaire, Lasec Laboratory and Scientific Equipment). 

When required, the cells were reconstituted by removing the required cryogenic vial from the 

bio-freezer (-80 °C) and immediately allowing it to thaw out in a 37 °C water bath. The vial was 

then wiped with alcohol and the cells pelleted by centrifugation at 3000 rpm for 2 min. The 

supernatant containing the DMSO was decanted, and the cells resuspended in 1 mL complete 

medium and transferred to a 25 cm
2 

screw-capped cell culture flask. An additional 5 mL of 

complete growth medium was added to the reconstituted cell suspension to dilute traces of 

DMSO and to facilitate cellular growth. The flask was incubated at 37 °C overnight under a 

humidified atmosphere with 5% CO2. The following day, the medium was replaced with fresh 

culture medium to further remove residual DMSO which is toxic to cells above 4 °C. The cells 

were monitored daily with frequent medium changes until they reached confluency. Prior to each 

experiment, cells were freshly cultured and plated to maintain the correct pH balance and to 

eliminate cellular waste.  

 

3.3.4 Examination of cultures 

 

Cell cultures were examined daily under an inverted phase contrast microscope (Nikon TMS-F 

6V, Tokyo, Japan) to monitor the general appearance of cells. Key features inspected were the 

cell shape and general health condition, as well as any signs of contamination. Cultures were also 

examined during trypsinization to observe the rounding-off and detachment of cells. 
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3.4 Transfections 

 

3.4.1 Materials, chemicals and reagents 

 

3-(4, 5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) salt and 

Calbiochem
®

 phosphate buffered saline (PBS) tablets were obtained from Merck (Darmstadt, 

Germany). Dimethyl sulfoxide (DMSO) was obtained from Highveld Biological (Pty) Ltd., 

Kelvin, South Africa. The luciferase assay kit was purchased from Promega Corporation 

(Madison, WI). The bicinchoninic acid (BCA) assay reagents and the protein standard bovine 

serum albumin (BSA) protein standards were purchased from Sigma-Aldrich (St. Louis, MI). 

The 48-well microtiter plates and all other tissue culture plastic consumables were from Corning 

Incorporated (Corning, New York, USA). 

 

3.4.2 MTT cell viability assay 

 

The cytotoxicity of pDNA/siRNA lipoplexes was determined to indicate the viability and 

proliferation of cells against transfection complexes. MTT [3-(4, 5-dimethyl-2-thiazolyl)-2, 5-

diphenyl-2H-tetrazolium bromide, a yellow tetrazole] is reduced in the mitochondria of viable 

cells to a purple formazan product. These reductions take place only when reductase enzymes are 

active, and are often used as a measure of viable cells. The cytotoxicity of cationic liposomes 

(steric stabilized and non-steric stabilized MS09 and Chol-T liposomal formulations) was 

assessed using the MTT viability assay against HEK-293, MCF-7 and SKBR-3 cells. Confluent 

HEK-293, MCF-7 and SKBR-3 cells were separately trypsinized, harvested and then seeded into 

48-well microtiter plates at the following densities: 1.9 × 10
4
, 1.8 × 10

4
 and 2.0 × 10

4 
cells per 

well respectively. Cell counts were conducted using a haemocytometer. To allow attachment and 

growth to semi-confluency, the cells were incubated in 0.25 mL of EMEM supplemented with 

10% (
v
/v) FBS and antibiotics at 37 °C in a 5% CO2 atmosphere for 24 h. The following day, 

pDNA/siRNA lipoplexes were prepared in triplicate volumes (30 µL) based on various 

optimized end-point ratios (
w
/w) in HBS, and incubated at room temperature for 30 min. The 

medium in the cell culture microtiter plates was then replaced with fresh EMEM (0.25 mL), and 

10 μL of the various lipoplexes were pipetted into the wells in triplicate. The plates were then 
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incubated at 37 °C for 48 h. The cells of positive control were incubated with EMEM (10% FBS, 

antibiotics) only and the cell viability was assumed to be 100%. After 48 h, the complete 

medium was removed from each well and replaced with 0.2 mL of a MTT stock solution (5 mg 

mL
-1

 in PBS) and 0.2 mL complete EMEM. Thereafter, the plates were incubated for an 

additional 4 h at 37 °C until the purple precipitates were visible. Following incubation, the MTT-

containing medium was carefully aspirated to avoid disturbing any formazan crystals formed by 

living cells, and 0.2 mL DMSO was added to each well. The plates were gently agitated at room 

temperature to dissolve the formazan crystals. Finally, the UV570 absorbance of the formazan 

products was measured by a Vacutec, Mindray MR-96A microplate reader using DMSO as a 

blank. The cell viability (%) was then calculated using the following equation: 

 

% Cell Survival (CS) = Average of treated cells / Average of control cells × 100 

 

3.4.3 Luciferase assay 

 

A day before transfection, HEK-293, MCF-7 and SKBR-3 cells were trypsinized and evenly 

seeded into 48-well microtiter plates at a density of 2.1 × 10
4
, 2.4 × 10

4
 and 2.2 × 10

4
 cells per 

well in 0.25 mL complete medium. The cells were allowed to attach to the bottom of the wells 

and grow to semi-confluence at 37 °C in a 5% CO2 atmosphere. The following day, pCMV-luc 

plasmid DNA lipoplexes were prepared in triplicate volumes (30 µL) based on various optimized 

end-point ratios (
w
/w) in HBS and incubated at room temperature for 30 min. The cells were 

prepared by decanting the medium from each well and replacing it with 0.25 mL complete 

medium. The lipoplexes (10 μL) were then added to each well and mixed gently by rocking the 

plate back and forth. The cells were incubated at 37 °C with 5% CO2 for 4 h. The medium was 

then removed and replaced with complete growth medium and further cultured for 48 h at 37 °C 

with 5% CO2. Following the incubation period, relative luc activity was assessed using a 

Glomax
TM 

Multi+ Detection System (Promega Biosystems, Sunnyvale, USA). The cells were 

prepared by gently aspirating the medium from each well and carefully washing twice with 0.2 

mL PBS. Thereafter, 80 μL cell lysis reagent was added to each well and the microtiter plate was 

placed on a platform shaker (Stuart Scientific Platform Shaker STR6, UK) for 15 min at 30 rev 

min
-1

. To facilitate cell lysis, each well was manually ‘scraped’, and the resultant cell lysates 
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were transferred to microcentrifuge tubes and briefly centrifuged (5 s at 12 000 rpm) to pellet 

cellular debris. The cell-free extracts were transferred into a 96-well white GLOMAX plate 

followed by the addition of 50 μL Promega luciferase assay reagent. The reaction mixture was 

briefly vortexed and the luc activity of each sample was immediately measured in relative light 

units (RLU) for a period of 10 s in a Promega GLOMAX
®

 MULTI+ Detection system. 

Luciferase activity was expressed as RLU mg
-1

 protein. Protein determinations were performed 

on the cell-free extracts using the BCA protein assay. 

 

3.5 HER2/neu Silencing at mRNA and Protein Levels 

 

3.5.1 Materials, chemicals and reagents 

 

The ReadyPrep
TM

 protein extraction kit (total protein), 10× Tris/Glycine/SDS buffer, 5× transfer 

buffer, blotting-grade blocker (non-fat dry milk), Tween 20, Trans-Blot
®

 Turbo
TM

 transfer 

system RTA transfer kit, Mini-PROTEAN
®

 TGX
TM

 long shelf life precast gels, 2× Laemmli 

sample buffer, Precision Plus Protein
TM

 dual extra standards, clarity Western ECL substrate and 

RT-PCR strip tubes were purchased from Bio-Rad Laboratories (Richmond, CA, USA). Tris 

(hydroxymethyl)-aminomethane (M 121.2 g mol.
-1

, Tris base), sodium chloride (M 58.44 g mol.
-

1
, NaCl), hydrochloric acid (HCl), absolute ethanol (EtOH, C2H6O), chloroform (CHCl3), and 

isopropanol (CH3CHOHCH3) were acquired from Merck (Darmstadt, Hesse, Germany). TRIzol
®

 

Reagent, Lipofectamine
®

 3000, High Capacity cDNA Reverse Transcription Kit with RNase 

inhibitor, MicroAmp
®

 Fast optical 96-well reaction plates, MicroAmp
®

 Optical Adhesive Films, 

and distilled water DNase/RNase free were purchased from Life Technologies (Carlsbad, CA, 

USA). For all materials, chemicals and reagents used for the siRNA gene transfection refer to 

Section 3.1.1. The following antibodies were used for Western blotting: Neu (0.N.211); sc-

71667, a mouse monoclonal antibody raised against a synthetic peptide corresponding to amino 

acids 1242-1255 of human Neu (Mw 185 kDa), β-Actin (C4); sc-47778, a mouse monoclonal 

antibody raised against gizzard Actin of avian origin (Mw 43 kDa); and goat anti-mouse IgG-

HRP; sc-2005, an affinity purified secondary antibody raised in goat against mouse IgG and 

conjugated to horseradish peroxide (HRP). These antibodies were purchased from Santa Cruz 
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Biotechnology, Inc. (CA, USA). Ultrapure deionized 18 MΩ water (Milli-Q50) was used 

throughout. 

 

3.5.2 Transfection of siRNA 

 

Four different sequences of 19 nucleotides (ON-TARGETplus SMARTpool) were used as 

potential siRNAs targeting the HER2/neu gene (refer to Section 3.2.3). A non-targeting 

sequence siRNA was used as a non-specific siRNA control. For in vitro analysis, SKBR-3 cells 

were seeded into 6-well plates at a density of 1 × 10
5
 cells per well. This was conducted 24 h 

prior to transfection to allow the cells to attach and grow to semi-confluency. The following day, 

the culture medium was replaced with 1.5 mL fresh EMEM supplemented with 10% (
v
/v) FBS 

and antibiotics. Thereafter, 10 μL of pre-assembled siRNA lipoplexes (prepared according to 

end-point ratios) in HBS were added into each well in triplicate (Table 3.6). Lipofectamine
® 

3000 (Life Technologies, Carlsbad, CA, USA) was included as a positive transfection control 

and lipoplexes were assembled according to the manufacturer’s instructions. The cationic lipid 

complexes were prepared by incubating 5 μL Lipofectamine
®

 3000 Reagent and 2.5 μL siRNA 

in 250 μL EMEM medium for 5 min at room temperature. After 48 h and 72 h of transfection, 

the complete medium was removed from each well and cells were harvested for assessing 

HER2/neu gene knockdown status, using quantitative real time polymerase chain reaction (qRT-

PCR) and Western blotting analysis respectively. 
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Table 3.6: Set up for gene expression studies with varying amounts of cationic and PEGylated cationic 

liposome preparations with ON-TARGETplus SMARTpool HER2/neu siRNA 

 

Components 

Volume (µL) 

Chol-T:DOPE Chol-T:DOPE:2% PEG Chol-T:DOPE:5% PEG 

1 2 3 1 2 3 1 2 3 

Liposome 
3.05  

(7.7 μg) 

3.56  

(9.0 μg) 

4.07 

(10.2μg) 

5.25  

(14.1μg) 

5.72  

(15.4μg) 

6.20  

(16.6μg) 

7.62  

(22.4μg) 

8.06  

(23.7μg) 

8.50  

(25.0μg) 

HBS 4.45 3.94 3.43 2.25 1.78 1.30 4.88 4.44 4.00 

siRNA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 

 
MS09:DOPE MS09:DOPE:2% PEG MS09:DOPE:5% PEG 

1 2 3 1 2 3 1 2 3 

Liposome 
4.43  

(12.2μg) 

4.89   

(13.4μg) 

5.36  

(14.7μg) 

5.05  

(14.7μg) 

5.49  

(16.0μg) 

5.93 

(17.3μg) 

6.87  

(21.8μg) 

7.27  

(23.0μg) 

7.68  

(24.3μg) 

HBS 3.07 2.61 2.14 2.45 2.01 1.57 5.63 5.23 4.82 

siRNA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 

 
Abbreviations: Chol-T: 3β-[N-(N', N'-dimethylaminopropane)-carbamoyl] cholesterol; MS09: N, N-

dimethylaminopropylaminylsuccinylcholesterylformylhydrazide; DOPE: Dioleoylphosphatidylethanol- 

amine; PEG: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]; 

HBS: HEPES Buffered Saline. 

Note: In each reaction mixture, ON-TARGETplus SMARTpool HER2/neu siRNA was used at a constant 

concentration of 0.64 μg. 

 

3.5.3 RNA extraction and qRT-PCR 

 

3.5.3.1  RNA extraction 

 

For qRT-PCR analysis, total cellular RNA from transfected cells was extracted using TRIzol
®

 

Reagent (Life Technologies, Carlsbad, CA, USA), following the manufacturer’s detailed 

protocol. The RNA isolation procedure was conducted at room temperature in a class II 

biohazard laminar flow cabinet under sterile RNase free conditions, and involved four primary 

steps: cellular homogenization, RNA precipitation, RNA wash and RNA resuspension. Firstly, 

the growth medium was removed from the culture plates and 1 mL TRIzol reagent was added 

directly to the cells in each well. The cells were lysed manually by homogenizing the samples 
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several times (35-40 strokes) using a pipette. To allow complete dissociation of the nucleoprotein 

complex, the homogenate was incubated at room temperature for 5 min. Samples were 

transferred into sterile 2 mL polypropylene microcentrifuge tubes prior to the addition of 0.2 mL 

chloroform. The tubes were securely capped and shaken vigorously by hand for 15 seconds; the 

samples were then left to stand at room temperature for 3 min before centrifuging (Eppendorf 

centrifuge 5424R) at 12,000 × g for 15 min at 4 °C. The mixture separated into a lower red 

phenol chloroform phase, an interphase, and a colourless upper aqueous phase. RNA remains 

exclusively in the upper aqueous phase which makes up ~50% of the total volume of the sample. 

The aqueous phase was gently removed by angling the tube at 45 ° and pipetting out the solution. 

Care was taken to avoid contamination with the inter- and organic phases. The aqueous solution 

was transferred into a new 2 mL tube and treated with 0.5 mL of 100% isopropanol for 10 min at 

room temperature before centrifuging at 12,000 × g for 10 min at 4 °C. The supernatant was 

removed and the gel-like RNA pellet formed on the side of the tube was washed by briefly 

vortexing the sample in 75% ethanol followed by centrifugation at 7500 × g for 5 min at 4 °C. 

The pellet was allowed to air dry. The RNA pellet was resuspended in 30 μL RNase free water 

(Life Technologies, Carlsbad, CA, USA) by pipetting the solution up and down several times 

and incubating the suspension for 15 min at 55 °C. The concentration and quality of the cellular 

RNA were assessed by the absorbance ratio at 260 nm and 280 nm on the NanoDrop 2000c 

spectrophotometer (Thermo Scientific, Wilmington, DE, USA). The integrity of the RNA was 

analyzed by electrophoresis on a 2% agarose gel, following the method described in Section 

3.2.6.2. 

 

3.5.3.2  Quantitative Real-Time PCR (qRT-PCR) 

 

The efficiency of HER2/neu siRNA interference was evaluated by qRT-PCR which serves to 

indicate the gene knockdown at the mRNA level. The total RNA was converted into cDNA by 

reverse transcriptase PCR using the High Capacity cDNA Reverse Transcription (RT) Kit with 

RNase inhibitor (Life Technologies, Carlsbad, CA, USA), following the manufacturer’s 

protocol. The kit components were mixed to afford a 2× RT master mix per 20 μL reaction 

(Table 3.7). The cDNA RT reactions were prepared by mixing 10 μL 2× RT master mix and 10 

μL (~0.2 μg μL
-1

) total RNA sample in RT-PCR strip tubes. The tubes were sealed and briefly 
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centrifuged to spin down the contents and to eliminate any air bubbles. Reactions with no 

MultiScribe
TM

 reverse transcriptase were included as negative controls in each run. The reverse 

transcription was performed in three phases: step 1 - 25 °C (10 min); step 2 - 37 °C (120 min); 

and step 3 - 85 °C (5 min) on a Bio-Rad C1000 Touch
TM 

Thermal Cycler. Thereafter the cDNA 

products were stored at 4 °C. 

 

Table 3.7: High Capacity cDNA Reverse Transcription Kit components required to prepare 2× RT master 

mix  

 

Component Volume per reaction (μL) 

10× RT buffer 2.0 

25× dNTP mix (100 mM) 0.8 

10× RT random primers 2.0 

MultiScribe
TM

 reverse transcriptase  1.0 

RNase inhibitor  1.0 

Nuclease-free H2O 3.2 

Total per reaction 10.0 

 
Abbreviations: RT: Reverse Transcription; dNTP: deoxyribonucleotide triphosphate. 

 

Next, gene expression was quantified by qRT-PCR using the TaqMan
®

 gene expression assays 

which are FAM
TM

 dye-labelled and possess minor-groove binding (MGB) probe. The primers 

and probe used were the gene of interest HER2/neu (Assay ID Hs01001580_m1) and the 

endogenous control glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (Assay ID 

Hs03929097_g1) (Life Tachnologies, Carlsbad, CA, USA). Singleplex PCR reactions were 

conducted as triplicates for all samples tested. Each reaction mixture (20 μL) contained 10 μL 

TaqMan
®

 gene expression master mix [AmpliTaq Gold
®

 DNA polymerase, deoxyribonucleotide 

triphosphates (dNTPs) with deoxyuridine triphosphate (dUTP), UP (Ultra Pure), Uracil-DNA 

Glycosylase (UDG), ROX
TM

 Passive Reference, as well as buffer components optimized for 

specificity, sensitivity and precision], 1 μL 20× TaqMan
®

 gene expression assay mix, and 9 μL 

sample cDNA. Reaction mixtures were prepared and mixed in MicroAmp
®

 Fast optical 96-well 

reaction plates and covered with MicroAmp
®

 Optical Adhesive Films. The qRT-PCR 
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amplification was performed under the following conditions: initial setup 95 °C for 10 min 

(hold), followed by 40 cycles of 95 °C for 15 s (denature) and 60 °C for 1 min (anneal/extend) 

on a CFX 96
TM

 Real-Time System, C1000 Touch
TM 

Thermal Cycler using CFX Manager 

Software version 3.0 (Bio-Rad). Relative expression values of HER2/neu mRNA normalized to 

the level of GAPDH mRNA were determined using the 2
-∆∆Ct

 method (Livak and Schmittgen, 

2001). 

 

Fold difference = 2
-∆∆Ct 

∆Ct sample - ∆Ct calibrator = ∆∆Ct 

Ct GOI 
s
 - Ct norm 

s
 = ∆Ct sample 

Ct GOI 
c
 - Ct norm 

c
 = ∆Ct calibrator 

 

In the above equation, s represents the sample, c the calibrator (untreated cells), GOI the gene of 

interest HER2/neu, and norm the normalizer gene GAPDH. 

 

3.5.4 Protein extraction and Western blotting 

 

3.5.4.1 Protein extraction 

 

The extraction of total cellular proteins was performed 72 h after transfection, using the 

ReadyPrep
TM

 Protein Extraction Kit (Total Protein), following the manufacturer’s specifications 

(Bio-Rad, Hercules, CA, USA). The complete growth medium was aspirated from each well and 

1 mL of complete 2-D rehydration/sample buffer 1 [7 M urea, 2 M thiourea, 1% (
w
/v) ASB-14 

detergent, 40 mM Tris base, and 0.001% Bromophenol Blue] containing 10 μL of ReadyPrep 

tributylphosphine (TBP, 200 mM) reducing agent were added. The cells were lysed by gently 

‘scraping’ the bottom surface of the plate and then manually mixing the solution with a pipette 

several times. The samples were transferred into pre-cooled 2 mL microcentrifuge tubes and 

placed on ice for 1 min. To facilitate disruption of the cells and fragmentation of the genomic 

DNA, the suspension was vortexed for a total of 15 min and routinely chilled on ice every 3 min. 

The tubes were then centrifuged at 16 000 × g for 30 min at 18 °C to pellet cell debris. The 

supernatant, containing cellular proteins, was aspirated and transferred to clean microcentrifuge 
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tubes, and then quantified using a NanoDrop 2000c spectrophotometer (Thermo Scientific, 

Wilmington, DE, USA).  

 

3.5.4.2 Western blotting 

 

The Western blotting technique was used to analyze HER2/neu protein expression in SKBR-3 

cells. For the sample preparation, ~20 μg of protein from total cell lysate were treated with an 

equal volume of 2× Laemmli sample buffer (4% SDS, 10% 2-mercaptoethanol, 20% glycerol, 

0.004% bromophenol blue, and 125 mM Tris-HCl, pH 6.8) and heated at 95 °C for 5 min in a 14 

L digital temperature-controlled water bath (TriLab Scientific, Johannesburg, Gauteng, RSA). 

The preparation was then allowed to cool down. Prior loading, Mini-PROTEAN
®

 TGX
TM

 (10%) 

long shelf life pre-cast gel cassettes (Bio-Rad Laboratories, Richmond, CA, USA) were placed in 

a Bio-Rad Mini-PROTEAN
®

 Tetra System, and the integrated upper buffer chamber was filled 

with chilled 1× Tris/Glycine/SDS running buffer [25 mM Tris, 190 mM Glycine and 0.1% (
w
/v) 

SDS, pH 8.3 (Bio-Rad Laboratories, Richmond, CA, USA)]. Each well was washed twice with 

running buffer. Thereafter, the lower buffer tank was filled with chilled 1× Tris/Glycine/SDS 

running buffer to the marked fill line. The protein samples were loaded into the wells and 

electrophoresis was conducted at room temperature for 30 min at 200 V cm
-1

 (Bio-Rad 

PowerPac
TM

 Basic, USA). Three μL of the molecular weight marker (Precision Plus Protein
TM

 

Dual Extra Standards) was loaded into the first well.  

Following electrophoresis, protein transfer (blotting) was conducted using the Bio-Rad 

Trans-Blot
®

 Turbo
TM

 transfer system and RTA transfer kits following the manufacturer’s 

protocol. The PVDF membranes were immersed in absolute ethanol until the membranes were 

translucent, and then equilibrated for 3 min in a gel tray containing 30 mL of 1× transfer buffer 

(Bio-Rad Trans-Blot
®

 Turbo
TM

 transfer buffer). Two transfer stacks (7 layers of filter pads each) 

were soaked in 50 mL of 1× transfer buffer for 3 min. The transfer cassettes were assembled in 

sandwich like order: one wetted stack was placed on the bottom of the cassette [serves as bottom 

ion reservoir on cassette electrode (anode)], PVDF membrane and gel, and the second wetted 

transfer stack on top of the gel [serves as top ion reservoir on cassette electrode (cathode)]. The 

assembled sandwich was made even and trapped air bubbles were expelled using a blot roller. 

The cassettes were tightly locked and placed in the instrument blotter bay. Transfer was 
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conducted at 2.5 A, 25 V for 10 min to promote high Mw transfer (> 150 kDa). After the 

transfer, the blotting sandwich was dissembled and both the blot and the gel were placed in 

deionized water.  

Prior to antibody incubation, unoccupied sites on the blot were saturated in a solution of 

3% blotting-grade blocker (non-fat dry milk) in Tris-buffered saline (20 mM Tris-HCl, pH 7.5, 

150 mM NaCl) containing 0.1% Tween 20 (TBST) for 1 h at room temperature. The membranes 

were incubated overnight at 4 °C in TBST containing either Neu, a mouse monoclonal antibody 

raised against a synthetic peptide corresponding to amino acids 1242-1255 of human Neu 

(1:5000) for HER2/neu protein detection, or β-Actin, a mouse monoclonal antibody raised 

against gizzard Actin of avian origin (1:200) used as an internal control for protein loading. The 

following day, the primary antibody was poured out and the membranes were washed in 20 mL 

TBST with continuous agitation for 5 min (total of 5 washes). Thereafter, the membranes were 

incubated at room temperature in goat anti-mouse IgG-HRP secondary antibody (1:2000) 

prepared in TBST. After 1 h, the secondary antibody solution was poured out and the membranes 

were washed again in 20 mL TBST with continuous agitation for 5 min (total of 5 washes).  

The membranes were developed using the commercially available Clarity
TM

 Western ECL 

substrate kit (Bio-Rad Laboratories, Richmond, CA, USA) following the manufacturer’s 

instructions. The membranes were placed, protein side up, on a clear surface and the substrate kit 

components [mixed in a 1:1 ratio (12 μL)] were gently added onto the blot ensuring that no air 

bubbles were formed and that the blot was completely covered with substrate. The blots were 

incubated for 5 min at room temperature and then visualized using the Bio-Rad digital imager 

ChemiDoc
TM

 MP system. Band intensity was determined using Image Lab Software version 

5.2.2. 

 

3.6 Statistical Analysis 

 

Data are presented as means ± SD (n = 3). Statistical analysis among mean values was performed 

using one-way ANOVA followed by the Tukey-Kramer multiple comparisons test between 

formulations. All statistics were performed using a 95% confidence interval and was considered 

significant when the P value was less than 0.05 (P<0.05). 
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4.1 Liposome/Lipoplex Formulation 

 

Two previously synthesized amphiphilic cholesterol derivatives bearing cationic charges were 

used to formulate the cationic liposomes (Singh and Ariatti, 2006; Singh et al., 2001). As 

illustrated in Figure 4.1 (A) and (B), cytofectins comprise four functional units: (1) a lipophilic 

anchorage system which is a large hydrocarbon moiety referred to as the non-polar or lipid tail; 

(2) a hydrophilic cationic head group capable of binding with the negatively charged phosphate 

backbone of the nucleic acids; (3) a spacer arm for the distancing of an anchor and cationic head 

group; and (4) a linker group connecting these modules (hydrophobic and hydrophilic domains). 

Both CCCs, Chol-T and MS09, were previously synthesized from cholesteryl chloroformate. 

They were designed to harbour a common cationic amine (R3NH
+
) functionalized head group 

and a fused lipophilic ring system, but differed in the length of the cytofectin spacer elements 

between the two domains.  

 

 

 

Figure 4.1: Structural representation of the cholesteryl cytofectins. (A) 3β-[N-(N', N'-dimethyl- 

aminopropane)-carbamoyl] cholesterol (Chol-T) and (B) N, N-dimethylaminopropylaminylsuccinyl 

cholesterylformyl hydrazide (MS09). 

 

(A) 

(B) 
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4.1.1 Conventional and PEGylated cationic liposome components and formulation 

 

Liposome preparation techniques and the delicate physicochemical interactions amongst the 

various synthetic lipid classes are fundamental steps that govern the properties of cationic 

liposomes. Recently, in a review by Patil and Jadhav (2014), procedures for liposome 

preparation were divided into: (a) film methods which involved the deposition of lipids from an 

organic solvent onto a substrate and subsequent hydration of the film resulting in the formation 

of liposomes, and (b) bulk methods where liposomes are attained by transfer of phospholipids 

from an organic phase into an aqueous phase. In this study, six liposome formulations which 

included a synthetic CCC (Chol-T or MS09) for binding the negatively-charged nucleic acid 

(siRNA or pDNA) and a helper lipid (DOPE) were prepared using the dry-film method, first 

described by Bangham et al. (1965). The procedure involved dry-filming the phospholipids from 

solution in chloroform onto the sides of glass quickfit tubes, followed by hydration in sterile 

HBS. A constant concentration (2 mM) of the cytofectin (Chol-T or MS09) was retained in the 

preparation of all liposomes. The choice of bilayer components and optimization of formulation 

aspects determine the molecular fluidity or rigidity, interfacial elasticity and hydration of the 

resultant liposomes. In general, the bilayer thickness and Tm depend on the acyl chain length, and 

the bilayer fluidity is controlled by the acyl chain saturation (Kohli et al., 2014). With regard to 

cholesterol and cholesterol-containing derivatives, they do not readily form lipidic bilayer 

assemblies on their own. These molecules, due to their amphipathic structural property, permit 

their insertion into liposomes. Cholesterol is able to promote and stabilize homogeneous 

liposomal bilayers, thereby offering some degree of protection from mechanical fracture and 

protein binding (Yang et al., 2013c). Incorporation of cholesterol into liposome preparations was 

found to enhance the resistance of lipid-based carriers to serum-induced aggregation (Han et al., 

2008). In addition, formulations containing elevated quantities of cholesterol are not prone to 

metabolic degradation (Pozzi et al., 2012; Zhang et al., 2008). 

Cellular uptake and endosomal escape are two major barriers which need to be overcome 

in order to achieve efficient transgene expression. In a number of publications, Ewert et al. 

(2002; 2004; 2005; 2006) expatiated on the relationship between transfection efficacy and the 

supramolecular structures of lipoplexes using small angle X-ray scattering (SAXS). The merging 

of two lipid membranes (e.g. liposomal and endosomal membrane fusion) is mediated by a 
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lamellar phase (Lα) to inverted hexagonal phase (HII) transition (Gruner et al., 1985). This is 

accomplished by the amphiphile’s capacity to assume certain geometries when suspended in an 

aqueous environment. The phase structure of cationic lipids can be predicted as a function of 

their packing parameter; defined by the ratio of the hydrocarbon volume over the product of the 

hydrophilic head group area, and the critical length of the hydrophobic tail (Wasungu and 

Hoekstra, 2006). Lipids possessing a small hydrocarbon cross section area with a large head 

group (P < ½), form typical cone-shaped monomers, and self-assemble into micelles 

corresponding to a structure exhibiting positive membrane curvature. The formation of lipid 

bilayers or Lα structures is enhanced when the curvature of the self-assembled amphiphiles is 

negligible (½ < P > 1). In contrast, when P exceeds 1, the lipid tends to display a negative 

curvature, adopting the inverted hexagonal phases or inverted micelles (i.e., bilayer destabilizing 

structure) (Hsu et al., 2005; Šmisterová et al., 2001). Research suggests that liposomal 

formulations supplemented with the neutral or zwitterionic phospholipid, DOPE can 

significantly improve the transfection efficiency of cationic lipids (Farhood et al., 1995; Felgner 

et al., 1987; 1994; Zuhorn et al., 2002). DOPE is therefore referred to as a ‘helper’ co-lipid. In 

this study, DOPE was employed to further enhance the membrane fusion capacity of the cationic 

liposomes. Importantly, cationic liposomes that require DOPE as a helper do not exhibit HII 

formation when the lipids are mixed; they form ordered Lα structures.  In addition, supportive 

lipids like DOPE contribute to bilayer assemblies with cationic lipids that do not naturally 

display such properties (cationic lipids that repel each other) (ur Rehman et al., 2013a). Owing to 

its zwitterionic head, DOPE is pH sensitive; above pH 9.0 DOPE monomers form spherical 

micelles. However, when exposed to an acidic pH, a structural transition occurs forming an 

inverted hexagonal phase (Mochizuki et al., 2013). Internal endosomal environments (generally 

encountered on the transfection route) are characteristic of low pH ranges, allowing DOPE to 

undergo this phase change. Due to the propensity of DOPE to adopt an inverted hexagonal 

phase, this cone-shaped neutral lipid is known to play a critical role in membrane fusion within 

endosomes, thereby inducing strong destabilizing effects on the barrier properties of the 

endosomal membranes. Therefore, cationic liposomes containing DOPE promise effective lipid-

mediated siRNA gene delivery. 

In addition to formulating conventional liposomes featuring the CCCs (Chol-T and 

MS09), this study also investigated steric stabilization of the liposomes. Polyethylene glycol 
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(PEG) is arguably the most common hydrophilic, biocompatible and inert polymer currently 

employed to improve water solubility; prevent unspecific interactions with charged serum 

proteins (aggregation); and increase serum stability of cationic liposomes. PEGylated cationic 

liposomes were prepared by simply mixing solutions of the commercially available PEG-

conjugated lipid (DSPE-PEG2000), with the cationic cytofectin (Chol-T or MS09) and DOPE. 

Liposomes were formulated with 2 or 5 mol.% DSPE-PEG2000, Chol-T and MS09 were kept 

constant at 50 mol.%, and DOPE was adjusted to accommodate changes in PEGylation. This 

method of preparing PEGylated complexes is termed pre-PEGylation. The procedure entails 

inclusion complexation formation, as PEGylation occurs prior to lipoplex formation with pDNA 

or siRNA. PEGylation of conventional liposomes can occur with PEG chains of varying graft 

densities and length. DSPE-PEG2000 was incorporated into the liposomal mixture as this 

molecular weight PEG has been reported to optimize blood circulation times of liposomes (Pozzi 

et al., 2014; Zhang et al., 2012). 

 

4.2  Biophysical Characterization of Liposome and Liposome-Nucleic Acid Interactions 

 

4.2.1 Morphological observations using cryo-TEM 

 

Morphological and architectural characterization of liposomes and lipoplexes leads to a clearer 

understanding of their relative structure, orientation of the nucleic acid molecules, and 

arrangement of the complexes. The ultrastructure of cationic liposomes and lipoplexes was 

visualized by cryo-TEM, which enables direct examination of colloidal carriers in the vitrified, 

frozen-hydrated state. Transmission electron microscopy uses an electron gun and a system of 

electromagnetic lenses to focus an electron beam on a sample. Since electrons are easily 

refracted, the microscope column is maintained under high vacuum to avoid deflection of 

electrons by gas molecules (Kuntsche et al., 2011). The contrast is obtained by the interaction of 

the electrons with the specimen, during which the electrons are transformed to unscattered 

electrons, elastically scattered or inelastically scattered electrons. A series of electromagnetic 

lenses is then used to focus the unscattered or scattered electrons on a screen in order to generate 

a phase-contrast image (Lin et al., 2014). The sample preparation for cryo-TEM imaging is a 

rather sensitive process since electrons do not easily penetrate matter. To provide high contrast, a 
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negative stain containing a heavy metal salt (uranyl acetate) was used to stain the sample 

(Kuntsche et al., 2011). Basically, the stain allows the indicative evaluation of the liposomal 

structure by binding to the phosphate groups of phospholipids and poorly penetrating the lipid 

bilayer. Therefore, the outer surface of the liposome or lipoplex is black whilst the inner aqueous 

core is white (Ruozi et al., 2011). After drying, the sample was plunge frozen in liquid nitrogen; 

this technique preserves the biological material in the liposome/lipoplex inner core and also 

limits the formation of amorphous ice crystals (Friedrich et al., 2010). 

Figure 4.2 presents selected cryo-TEM micrographs of the Chol-T liposomes [(A) to 

(C)] and MS09 liposomes [(D) to (F)]. The images revealed a heterogeneous population of 

typically spherical or ellipsoidal shaped structures with a distinct bilayered membrane 

surrounding the internal aqueous core. The cationic liposomes appeared well dispersed with little 

aggregation. The majority of the liposomes appeared electron dense (dark regions), while some 

were associated with low-density lipid membranes (light regions).   
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Figure 4.2: Transmission electron micrographs of cationic and PEGylated cationic liposomes prepared 

according to Table 1: A, Chol-T:DOPE; B, Chol-T:DOPE:2% PEG; C, Chol-T:DOPE:5% PEG; D, 

MS09:DOPE; E, MS09:DOPE:2% PEG; F, MS09:DOPE:5% PEG. Bar = 100 nm or 200 nm.  

A D 

B E 

C F 

200 nm 200 nm 

200 nm 200 nm 

100 nm 100 nm 
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In particular, two factors influence the bright/dark contrast in cryo-TEM images; (1) the atom 

positioning in the crystalline structure, and (2) the atomic number (Belletti et al., 2013; Rao and 

Biswas, 2009). In these samples it can be hypothesized that the presence of looped, twisted and 

invaginated structures is due largely to the amorphous nature or flexibility of the liposomal 

membranes (i.e., lipid reorganization). Moreover, liposomes formulated with cationic lipids 

bearing a longer spacer (MS09) revealed multi-lamellar liposomal vesicles, indicating that the 

morphology of the liposomes was influenced by the spacer length. A certain degree of distortion 

of the original vesicular structure was also observed. Although this electron microscopic 

technique allows direct investigations of thin transparent samples in their frozen-hydrated state, 

processes like staining, freezing and drying may result in possible artifacts and morphological 

changes accompanied by a reorganization of the fragile liposome vesicle (Kuntsche et al., 2010; 

2011; Wessman et al., 2010). Dehydration of the samples under vacuum may result in an 

osmotic imbalance between the liposome core and the outer aqueous phase causing vesicle 

deformation and bilayer invaginations (Kuntsche et al., 2011). All liposome preparations 

containing increasing mol.% of PEGylation (0% to 5%) were similar with no obvious effects on 

liposomal morphology. It is important to note, however, that surface modifications of liposomal 

vesicles with PEG-chains are not visible in cryo-TEM images due to the low contrast of 

polyethylene glycol (Kuntsche et al., 2011). The PEGylated liposomes appeared as defined 

structures which are well separated. This implies that the PEG coating provided physical stability 

to the liposomes, thereby aiding in dispersing the particles and preventing close contact between 

the vesicles.  

Figure 4.3 represents cryo-TEM images of pCMV-luc-associated liposomes. The 

combination of non-PEGylated cationic liposomes and DNA [Figure 4.3, (A) and (D)] appeared 

as predominantly large dense non-spherical multi-lamellar aggregates with a varying number of 

individual lipoplex per aggregate. These heterogeneous assemblies with a twisted reorganization 

revealed a particulate surface coating as well as small cavities in the interior of lipoplexes, which 

are absent in the corresponding liposome micrographs. These observations suggest that the DNA 

has in fact compacted on the surface of the liposomes via electrostatic interactions. 
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Figure 4.3: Transmission electron micrographs of cationic and PEGylated cationic pCMV-luc plasmid 

DNA complexes (lipid:pCMV-luc (+:–) charge ratios): A, Chol-T:DOPE (1.6:1); B, Chol-T:DOPE:2% 

PEG (1.7:1); C, Chol-T:DOPE:5% PEG (1.6:1); D, MS09:DOPE (1.7:1); E, MS09:DOPE:2% PEG 

(1.8:1); F, MS09:DOPE:5% PEG (1.7:1). Bar = 200 nm.  

A D 

B E 

C F 

200 nm 200 nm 

200 nm 200 nm 

200 nm 200 nm 
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Moreover, these findings correlate with reports that have illustrated incongruent distribution of 

anionic DNA between bilayer membranes that tend to form concentric multi-layered structures 

or inverted hexagonal structures leading to the formation of small cavities on the surface of 

lipoplexes (Kapoor et al., 2012; Li et al., 2011). PEGylated pDNA lipoplexes appeared to have 

hazy indistinct edges and tended to aggregate to a lesser extent. This can be observed clearly in 

Figure 4.3 (E); the micrograph depicts few solitary uni-lamellar structures located at the 

periphery of aggregative structures. As mentioned previously, PEGylation provides steric 

stabilization by generating hydrated surfaces which ultimately reduces the surface-surface 

interactions and the aggregation of liposome-DNA complexes (Rangelov et al., 2010). 

As opposed to pDNA lipoplexes, both PEGylated and non-PEGylated siRNA-liposome 

complexes appeared as well defined spherical shaped structures with steady phase contrast 

[Figure 4.4]. The cryo-TEM images also revealed uni-lamellar complexes with distinct bilayered 

membranes. All lipoplexes appeared well dispersed and colloidally stable. The morphology of 

PEGylated liposome/siRNA complexes correlates with previous work in which PEGylated 

preformed liposomes formed small uni-lamellar vesicles with siRNA (Fenske and Cullis, 2008; 

Kim et al., 2010). However, micrographs obtained with the combination of siRNA and 

preformed non-PEGylated cationic liposomes differed from a previous report in which the 

siRNA self-assembled into multi-layered complexes (Desigaux et al., 2007; Weisman et al., 

2004). Therefore, it can be assumed that the siRNA was bound via electrostatic interactions to 

the outer surface of the liposomes and not stacked between lipid bilayers.  
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Figure 4.4: Transmission electron micrographs of cationic and PEGylated cationic liposome-siGENOME 

non-targeting siRNA complexes (lipid:siRNA (+:–) charge ratios): A, Chol-T:DOPE (3.9:1); B, Chol-

T:DOPE:2% PEG (6.3:1); C, Chol-T:DOPE:5% PEG (8.8:1); D, MS09:DOPE (5.4:1); E, 

MS09:DOPE:2% PEG (6.0:1); F, MS09:DOPE:5% PEG (7.9:1). Bar = 100 nm or 200 nm.   
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4.2.2 Particle size distribution and zeta potential analysis 

 

The route of circulation and navigation of any lipid-based nanoparticle being developed for in 

vivo application is almost exclusively determined by the particle size distribution, lipid 

component variation and the physicochemical surface properties. The size of the particle has a 

great influence on its intrinsic propensity for site- and cell-specific localization as well as cellular 

interaction and uptake. Moreover, optimal particle size (50 - 250 nm) is a prerequisite to bypass 

elimination and clearance by the RES (Lorenzer et al., 2015; Resnier et al., 2013).  

Dynamic light scattering (DLS) using the Photon Correlation Spectroscopy (PCS) 

technique was used to determine three principal physical characteristics of liposomal 

formulations alone, and of their lipoplexes formed with pDNA or siRNA: hydrodynamic size of 

the particles (diameter); particle size distribution (polydispersity index, PDI); and zeta potential 

(overall charge exhibited by a particle in suspension). The principle of DLS is based on the 

measurement of the time-dependent intensity fluctuations of laser light scattered from particles 

experiencing Brownian motion. Brownian motion is defined as the random movement of 

particles in solution, which results from collisions between suspended particles and surrounding 

solvent molecules. The intensity fluctuation trace comprises a combination of constructive and 

destructive interferences of the scattered light at a given angle. The hydrodynamic diameter and 

size distribution can be derived from analysis of the motion-dependent autocorrelation function 

according to the Stokes-Einstein equation (Brar and Verma, 2011; Lin et al., 2014; Troiber et al., 

2013). The zeta potential of the liposome/lipoplex was measured by the LDV technique, and the 

values were calculated from the mean electrophoretic mobility by applying the Smoluchowski 

approximation equation. The main strengths of DLS for physicochemical characterization, 

include its ability to make measurements in native environments in a non-invasive manner, 

precision in determining the hydrodynamic size of particles in an entire monodisperse 

suspension, analyzing samples in a wide range of concentrations as well as measuring diluted 

samples, with the added advantage of being more reproducible than other methods (Laouini et 

al., 2012; Lin et al., 2014). 

Table 4.1 summarizes the mean particle size, polydispersity indices and zeta potential 

profiles of the liposomes and lipoplexes [prepared at optimal lipoplex (N/P) ratio (+:‒)]. With 

regard to hydrodynamic diameters, DLS characterization of all liposome compositions and 
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lipoplexes revealed nanometer (nm) sized particles which were accompanied by moderate to 

narrow PDI (in brackets) as follows: 65.47 nm (0.269) to 127.07 nm (0.321) liposome samples; 

114.55 nm (0.229) to 237.31 nm (0.149) pDNA lipoplex samples; and 103.24 nm (0.128) to 

187.97 nm (0.127) siRNA lipoplex samples. These measurements indicate that the colloidal 

suspensions are fairly stable and homogeneous and are within the range generally considered 

ideal for both cellular uptake and systematic circulation (Kapoor et al., 2012; Mével et al., 2010). 

Prior to complex formation with pDNA or siRNA, both Chol-T and MS09 liposomes had a 

particle size below 130 nm. However, the sizes of the lipoplexes were much larger (up to 237.31 

nm) than their corresponding liposomes. This might be due to the binding of the nucleic acid on 

the liposome surface which is in contrast with the entrapment of nucleic acid inside the 

liposomes. Of particular interest, the siRNA lipoplexes were smaller in size (except Chol-T 5% 

PEG) and had a lower PDI than the corresponding pDNA complexes. The largest lipoplexes 

were formed with non-PEGylated Chol-T liposomes at the following charge ratios: pDNA (1.6:1, 

+:‒) and siRNA (3.9:1, +:‒), with pDNA lipoplexes exhibiting greater hydrodynamic diameters 

than siRNA lipoplexes. This suggests that the formation of large lipoplexes occurred when the 

charge of the liposome was neutralized. Zhang et al. (2010) observed a similar trend with 

cationic complexes at various N/P ratios and reported larger lipoplexes at near neutral charge 

(low N/P ratio). 

Confirmed size measurements also suggested a significant decrease in particle size and 

narrow size distributions of Chol-T and MS09 liposomes when PEGylation was introduced at 

2%, and then increased to 5% in liposomal formulations. The primary role of PEG is to facilitate 

the self-assembly of lipid molecules, thereby stabilizing the liposome bilayers. The decrease in 

size may be attributed to the strong inter-bilayer repulsion that can overcome the attractive van 

der Waals forces, thus providing a steric barrier at the surface of nascent liposomes. PEG chains 

on the liposomal surface provide steric stabilization, which is known to prevent vesicle 

aggregation and encourage the formation of a homogeneous population of smaller liposomes 

with colloidal stability and biocompatibility (Kenworthy et al., 1995; Needham et al., 1992). 

Complex formation with pDNA or siRNA to form lipoplexes shifted the population toward 

larger vesicle sizes and wider size distributions compared to the non-PEGylated preparations. 

Once more, lipoplexes containing PEG afforded significantly smaller vesicles indicating the 

stabilization effect offered by PEG. Many formulation optimization studies have demonstrated 
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that the capacity of PEGylated liposomes to prevent inter-particle aggregation depends largely on 

the degree of surface coverage and the distance between graft sites. This, in turn, hinges on the 

molecular mass and concentration of the polymer, as well as the graft density (de Gennes, 1980; 

1987; Dos Santos et al., 2007; Immordino et al., 2006). 

Interestingly, with both Chol-T and MS09 siRNA lipoplexes PEGylation at 2 mol.% 

formed complexes which were stable (PDI ~0.2) and slightly smaller in diameter than lipoplexes 

containing a 5 mol.% of DSPE-PEG2000. As described in Section 2.11.1, when tethered on the 

surface of liposomes, PEG chains display various conformations depending on the PEG chain 

density. It has been documented that the PEG2000 chain extends ~5.6 nm from the surface of a 

liposome, and at polymer concentrations below 4 mol.% intermediate random coil-like 

“mushroom” structures are favoured that, span a distance of ~3.5 nm (Garbuzenko et al., 2005; 

Gjetting et al., 2010; Wang and Thanou, 2010). Increasing the concentration (> 5 mol.%) of 

PEG, results in larger surface coverage and an increase in the lateral pressure between PEG 

mushrooms; favouring low-coiled “brush” conformations (lengthening between 10 nm to 15 nm) 

(Garbuzenko et al., 2005, Perrier et al., 2010; Yao et al., 2013). Hence, the influence of grafted 

PEG polymers on the hydrodynamic size of a liposome particle is mainly due to changes in the 

spatial organization of the PEG, which is reliant on the type of configuration favoured, i.e., 

“mushroom” or “brush” (Chen et al., 2011). In the case of Chol-T pDNA lipoplexes, those 

formulated with 2 mol.% PEG formed larger complexes. This is probably due to the “mushroom-

structured” PEG arrangement, which does not shield the cationic liposome as effectively as the 

5% “brush” configuration, leading to some aggregation of complexes.  

The measurement of zeta potential (ζ) is generally used to predict the long-term stability 

of colloidal systems and provides a very good index of the interaction magnitude between 

charged particles (Honary and Zahir, 2013; Wiese and Healy, 1970). In a colloidal suspension, 

the liquid layer surrounding the charged particle consists of two regions: an inner thin liquid 

layer termed the Stern layer, where the ions are strongly bound to the surface of the particle; and 

an outer diffuse layer containing loosely associated ions (Clogston and Patri, 2011). In the 

interior of the diffuse layer there is a notional margin in which the ions form a stable shear plane. 

When particles experience tangential motion (e.g., Brownian motion), the movement of charged 

particle shears ions migrating with the charged particles in the diffuse layer, and ions beyond the 

“margin” stay with the bulk dispersant. The electrokinetic potential on the shear plane (surface of 
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hydrodynamic shear) is the zeta potential, which is usually determined by measuring the velocity 

of the charged particle towards the electrode using methods such as the LDV electrophoresis 

technique (Lin et al., 2014; Sapsford et al., 2011). 

 

Table 4.1: ZetaSizer measurements of the various cationic/PEGylated cationic liposomes and 

corresponding DNA/siRNA lipoplexes 

 

Cationic 

liposome 

Liposome DNA lipoplex siRNA lipoplex 

Size (nm), 

(PDI) 

ζ Potential 

(mV) ± SD 

Size
a
 (nm), 

(PDI) 

ζ Potential 

(mV) ± SD 

Size
a
 (nm), 

(PDI) 

ζ Potential 

(mV) ± SD 

Chol-T 127.07 (0.321) 44.09 ± 10.56 237.31 (0.149) 49.15 ± 1.539 187.97 (0.127) 47.26 ± 5.39 

Chol-T 

2% PEG 
71.64 (0.304) 32.51 ± 11.02 162.11 (0.358) 38.60 ± 6.212 149.61 (0.227) 39.05 ± 8.16 

Chol-T 

5% PEG 
74.18 (0.136) –1.12 ± 4.818 120.22 (0.113) 19.03 ± 10.94 153.24 (0.109) 9.78 ± 1.13 

MS09 113.02 (0.348) 53.21 ± 4.329 206.08 (0.411) 35.22 ± 13.62 169.13 (0.326) 44.61 ± 7.56 

MS09 

2% PEG 
66.68 (0.136) 39.43 ± 1.185 114.55 (0.229) 27.46 ± 5.093 103.24 (0.218) 20.88 ± 3.052 

MS09 

5% PEG 
65.47 (0.269) 16.08 ± 3.799 156.19 (0.475) 40.84 ± 2.816 138.64 (0.337) 41.26 ± 9.79 

Abbreviations: Chol-T: 3β-[N-(N', N'-dimethylaminopropane)-carbamoyl] cholesterol; MS09: N, N-

dimethylaminopropylaminylsuccinylcholesterylformylhydrazide; PEG: Polyethylene glycol; DNA: 

Deoxyribonucleic acid; siRNA: Small interfering RNA; PDI: Polydispersity index; SD: Standard 

deviation. 

Note: Values are represented as mean, n = 3 

 

The zeta potential of the cationic liposomes was also measured, and formed part of the 

pharmacokinetic prolife. As indicated in Table 4.1, the zeta potential of the cationic liposomes 

was highly positive, Chol-T 44.09 ± 10.56 mV and MS09 53.21 ± 4.329 mV. There seemed to be 

no obvious effects or differences elicited by the specific CCCs on the zeta potential between 

liposomes or lipoplexes formulated with Chol-T and MS09. A zeta potential value of ± 30 mV is 

generally a prognostic of satisfactory particle stability, with sufficient barrier to prevent 

aggregation and flocculation (Laouini et al., 2012). Interestingly, the zeta potential of the 

cationic liposomes gradually decreased with increasing content of the negatively charged PEG 

lipid. A decrease of 11.58 mV (Chol-T) and 13.78 mV (MS09) was observed upon 2% 

PEGylation, and a further decrease of 33.63 mV (Chol-T) and 23.35 mV (MS09) was recorded 
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when PEGylated with 5% PEG. Upon complexation with anionic charged nucleic acids, the zeta 

potential of the lipoplexes maintained a relatively high positive charge ranging from 19.03 ± 

10.94 to 49.15 ± 1.539 (pDNA lipoplexes) and 9.78 ± 1.13 to 47.26 ± 5.39 (siRNA lipoplexes). 

There was no significant difference in zeta potential between each liposome and its 

corresponding lipoplex. With regard to cationic lipid based delivery systems, in vivo results have 

suggested that high levels of positive charge on the surface favour interaction with negatively 

charged plasmatic proteins forming aggregates which are recognized by the innate immune 

system (Resnier et al., 2013). PEG has been incorporated into liposomal surfaces to create 

artificially a negative hydrophilic and flexible shroud to mask the positive charges of the cationic 

head groups. Moreover, PEG is able to form dipole interactions with water which alters the zeta 

potential of lipid carriers (Vonarbourg et al., 2005). As observed, the change in zeta potential of 

the cationic liposomes containing PEG lipids confirms the presence of the polymer layer on the 

liposomal surface. 

It is also important for the carrier system to maintain some degree of positive charge to 

enable interaction with the anionic nucleic acid. The zeta potential of the liposomes containing 

2% PEG still remained highly positive (above 30 mV), indicating that the tethering of PEG on 

the liposomal surface offers good stability and also provides a suitable milieu for nucleic acid 

attachment. Sonoke et al. (2008) developed PEGylated cationic liposomes bearing highly 

positive charges which allowed prolonged in vivo circulation and protection of siRNA. They 

attributed the efficient delivery of siRNA to the effectual steric repulsion due to the high 

flexibility and hydrophilicity of PEG. 

 

4.3 Lipoplex Binding Affinity and Protection Efficiencies 

 

4.3.1 Electrophoretic mobility shift assay 

 

The pDNA or siRNA condensation induced by a nanocarrier system is a prerequisite for 

successful gene transfection. The capacity to condense nucleic acids and form lipoplexes with a 

minimum amount of cationic liposome was assessed by the conventional gel electrophoretic 

mobility technique, across a range of N/P (+:‒) charge ratios. When a constant amount of the 

anionic nucleic acid is efficiently bound to the cationic liposomal carrier, the formation of a 
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complex reduces the electrophoretic mobility of the nucleic acid through the gel matrix. During 

the run, the electric field enables unbound nucleic acid to migrate towards the cathode; whereas 

nucleic acids that have been completely incorporated into the structure of cationic liposomes 

result in an increase in the size and neutralization of their negative charge within the complexes, 

and are therefore unable to migrate into the gel matrix (lipoplexes remain within the wells). In 

order to optimize the charge ratio for transfection, positively charged liposomes were mixed with 

negatively charged pCMV-luc plasmid DNA or siRNA to form lipoplexes via electrostatic 

interaction at various lipid:pDNA/siRNA (
w
/w) or N/P (+:‒) ratios. The agarose gel migration 

patterns illustrated that all liposomal formulations were effective in binding both pDNA and 

siRNA, as evidenced by the retardation of the electrophoretic mobility of nucleic acids. Figure 

4.5 (pCMV-luc) and 4.6 (siRNA) show the nucleic acid complexation profiles of the various 

cationic liposomal preparations. 

The pDNA control lane containing 1 µg of uncomplexed pCMV-luc DNA produced three 

distinctive conformations: nicked circular (least migration from well), linearized and supercoiled 

helical (migrates the furthest). The siRNA control lane containing 0.32 µg of naked siRNA, on 

the other hand, appeared as a single band. The lipid:pDNA/siRNA or N/P (+:‒) charge ratios at 

which the cationic liposomes were able to fully retard nucleic acid mobility are summarized in 

Table 4.2. As can be seen in Figure 4.5, between N/P ratios of 6:1 and 8:1 (+:‒), the anionic 

pDNA was entirely neutralized by the gradual increase in cationic liposome, resulting in 

complete DNA condensation. At these N/P ratios, lipoplexes were retained in the wells and no 

further migration of the pDNA was observed. This is known as the point of electroneutrality and 

commonly referred to as the end-point. The migration pattern of siRNA [Figure 4.6] changed at 

a charge ratio (+:‒) of 3.9:1 (Chol-T) and 5.4:1 (MS09). Below these ratios, the band fluoresced 

brightly and then gradually lightened until the band completely disappeared, signifying that the 

negatively charged siRNA was neutralized entirely at the respective N/P charge ratios. Beyond 

these charge ratios, no migration of siRNA was detected for non-PEGylated lipoplexes. 

Interestingly, all lipoplexes were capable of retarding the same amount of pDNA (1 μg) and 

siRNA (0.32 μg) at various N/P ratios despite the concentration of the cationic cytofectin (Chol-

T or MS09) remaining constant (2 mM) in all liposome formulations. 
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Table 4.2: Gel retardation endpoints and charge ratios of the various cationic/ PEGylated cationic 

liposomes 

 

Cationic liposome 

Cationic liposome : nucleic acid 

endpoint (
w
/w) 

Charge ratio [N/P (+:‒)] 

DNA siRNA DNA siRNA 

Chol-T 6 : 1 14 : 1 1.6 : 1 3.9 : 1 

Chol-T 2% PEG 7 : 1 24 : 1 1.7 : 1 6.3 : 1 

Chol-T 5% PEG 7 : 1 37 : 1 1.6 : 1 8.8 : 1 

MS09 7 : 1 21 : 1 1.7 : 1 5.4 : 1 

MS09 2% PEG 8 : 1 25 : 1 1.8 : 1 6.0 : 1 

MS09 5% PEG 8 : 1 36 : 1 1.7 : 1 7.9 : 1 

Abbreviations: Chol-T: 3β-[N-(N', N'-dimethylaminopropane)-carbamoyl] cholesterol; MS09: N, N-

dimethylaminopropylaminylsuccinylcholesterylformylhydrazide; PEG: Polyethylene glycol; DNA: 

Deoxyribonucleic acid; siRNA: Small interfering RNA. 

The theoretical N/P (+:‒) ratio represents the charge ratio of cationic lipid to nucleotide. Values were 

calculated assuming one positive charge per cytofectin molecule at pH 7.5 and one negative charge per 

nucleotide (average mass 330 Da).  

 

The inference, therefore, is that the differences in binding affinities among the various lipoplex 

suspensions were most likely due to the incorporation of PEG polymers. As described previously 

in Section 4.2.2 the reduced zeta potential values indicate that PEGylation reduced the surface 

charge of liposomes. The partial masking of the positive charges by PEGylation thus resulted in 

a reduction of cationic charge available for nucleic acid binding. This phenomenon can be 

observed clearly with the siRNA lipoplexes that had a far higher N/P charge ratio [from 6.3:1 to 

8.8:1 (Chol-T) and 6.0:1 to 7.9:1 (MS09); 2% to 5% PEG, respectively]. Ultimately, greater 

amounts of the PEGylated liposomes were required to fully bind siRNA compared to the non-

PEGylated liposomes, demonstrating a relatively weaker affinity toward the siRNA. 

Interestingly, MS09 cationic liposomes containing 5% PEG were able to gradually retard siRNA 

migration to a certain extent although no complete end-point was established.  
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Figure 4.5: Gel retardation analysis of binding interaction between varying amounts of cationic and 

PEGylated cationic liposome preparations with pCMV-luc plasmid DNA (1 μg) in HBS. A, lanes 1-8 (0, 

2, 3, 4, 5, 6, 7, and 8 μg Chol-T); B, lanes 1-8 (0, 3, 3.5, 4, 5, 6, 7, and 8 μg Chol-T 2% PEG); C, lanes 1-

8 (0, 3, 4, 5, 6, 7, 8, and 9 μg Chol-T 5% PEG); D, lanes 1-8 (0, 2, 3, 4, 5, 6, 7, and 8 μg MS09); E, lanes 

1-8 (0, 4, 5, 6, 7, 8, 9, and 10 μg MS09 2% PEG); F, lanes 1-8 (0, 4, 5, 6, 7, 8, 9, and 10 μg MS09 5% 

PEG). (     ) indicates end point ratios or point of electroneutrality.  

 
Figure 4.6: Gel retardation analysis of binding interaction between varying amounts of cationic and 

PEGylated cationic liposome preparations with siRNA (0.32 μg) in HBS. A, lanes 1-8 (0, 3.20, 3.52, 3.84, 

4.16, 4.48, 4.80, and 5.12 μg Chol-T); B, lanes 1-8 (0, 6.08, 6.40, 6.72, 7.04, 7.36, 7.68, and 8.00 μg 

Chol-T 2% PEG); C, lanes 1-8 (0, 10.56, 10.88, 11.20, 11.52, 11.84, 12.16, and 12.48 μg Chol-T 5% 

PEG); D, lanes 1-8 (0, 5.44, 5.76, 6.08, 6.40, 6.72, 7.04, and 7.36 μg MS09); E, lanes 1-8 (0, 6.08, 6.40, 

6.72, 7.04, 7.36, 7.68, and 8.00 μg MS09 2% PEG); F, lanes 1-8 (0, 9.60, 9.92, 10.24, 10.56, 10.88, 

11.20, and 11.52 μg MS09 5% PEG). (    ) indicates end point ratios or point of electroneutrality. (     ) 

indicates no clear end point.   
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It has been suggested that mixing preformed cationic liposomes with a siRNA solution to form 

lipoplexes negatively impacts cationic liposomes containing higher PEG densities on their 

surfaces. The likely explanation is that high PEG densities form ‘brush borders’ on the surface of 

liposomes. This structural feature of highly PEGylated liposomes prevents the formation of 

siRNA sandwiching lipid multilayers since the siRNA becomes loosely bound to the outer 

surface of such PEGylated liposomes (Buyens et al., 2009; 2012; Desigaux et al., 2007). 

 

4.3.2  Nuclease protection assay 

 

Following systemic administration, the protection of nucleic acids (DNA or siRNA) against 

enzymes in circulation, is crucial to maintain the integrity of the genetic material, so that their 

effects can be met at the transcriptional and/or translational level. Upon in vivo administration, 

lipoplexes are immediately surrounded by high concentrations of free charged serum 

components that interact with the particles (Caracciolo, 2015; Kawakami and Hashida, 2007; 

Tranchant et al., 2004). Such interactions are driven either by a potential energy gradient or by 

diffusion, resulting in a variety of dynamic changes (Lynch and Dawson, 2008; Rocks and 

Dawson, 2014; Walkey and Chan, 2012). The serum proteins interacting with the complexes 

establish a protein rich environment around the surface of each particle, termed the protein-

corona (refer to Section 2.11.1). A number of studies have detailed the various ways in which 

serum components affect nucleic acid containing nanocarriers. The protein corona can lead to 

changes in size through aggregation, zeta potential due to surface charge neutralization, and 

other related surface characteristics which destabilize the lipoplex structure (Li et al., 1999; 

Lundqvist et al., 2008; Scholz and Wagner, 2012; Zelphati et al., 1998). Furthermore, the 

presence of charged serum components may induce dissociation of the lipoplexes, leading to 

irregularities in the lipid bilayers or to vesicle disruption. This in turn exposes the nucleic acid to 

intrinsic enzymatic degradation or rapid opsonization (Audouy et al., 2000; Buyens et al., 2008). 

Despite their importance, studies on in vitro transfection behaviour in the presence of biological 

fluids (serum, for example) are limited, resulting in inconclusive extrapolations and poor 

correlations between in vitro and in vivo transfection efficiencies.  

Therefore, assessing the ability of a liposomal carrier system to protect its nucleic acid 

consignment is of paramount importance, since any factor which increases its circulation time is 
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critical for high transfection efficiencies. To examine the protective capabilities of the 

formulated cationic liposomes against serum nucleases in vitro, the lipoplexes were incubated in 

FBS (10%, 
v
/v) at physiological temperature for 4 h and subjected to an electrophoretic analysis. 

FBS is a heterogeneous fluid prepared from blood plasma in which the blood cells and 

fibrinogens have been extracted. It contains various biological macromolecules: albumin, 

immunoglobulins, apolipoproteins, glycoproteins, lipases, nucleases, fibronectin as well as small 

molecules such as amino acids, vitamins and inorganic salts. In particular, albumin (the most 

abundant protein) has been reported to destabilize both charged and neutral liposomes (Chonn et 

al., 1992). In general, siRNA is more sensitive to nucleolytic degradation owing to the 2' OH 

group of ribose, whereas DNA is less prone to alkaline hydrolysis (Kapoor et al., 2012). Naked 

siRNAs exposed to plasmatic enzymes having a dsRNA binding domain were completely 

degraded within 30 min into the bloodstream (White, 2008). As mentioned previously, despite 

the fact that liposomes offer protection to their gene cargo, disruption of the lipoplex structure 

will trigger release of the bound nucleic acid and subsequent degradation. Therefore, liposomes 

have to not only safeguard their gene cargo from serum, but also to form a strong enough 

interaction with the nucleic acids to enable delivery in a serum-resistant manner. 

Results from nuclease protection assays are presented in Figure 4.7 (pCMV-luc plasmid 

DNA) and Figure 4.8 (siRNA). In these studies two controls were included, viz., control 1 = 

untreated naked pCMV-luc; untreated naked siRNA (Figure 4.7 and 4.8 A, B, C; lane 1) and 

control 2 = naked pCMV-luc treated with 10% FBS; naked siRNA treated with 10% FBS 

(Figure 4.7 and 4.8 A, B, C; lane 2]. These were assigned positive and negative controls 

respectively and were used to assess the degree of serum nuclease digestion of both treated and 

untreated nucleic acids compared to those in association with cationic liposomes. From the gel 

patterns, untreated naked pDNA preparation produced three species of DNA in the plasmid, viz. 

low mobility nicked circular form, linearized form and high mobility compact supercoiled helical 

form. The untreated naked double stranded siRNA appeared as a single band. Based on EtBr 

staining intensity, all undigested controls reveal relative quantities of each species.  
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Figure 4.7: Nuclease protection assay of cationic and PEGylated cationic liposome-pDNA complexes in 

the presence of 10% FBS. Reaction mixtures (10 μL) contained pCMV-luc (1 μg) and varying amounts of 

liposome suspension. A, lanes 3-5 (5, 6, 7 μg Chol-T): lanes 6-8 (6, 7, 8 μg MS09); B, lanes 3-5 (6, 7, 8 

μg Chol-T 2% PEG): lanes 6-8 (6, 7, 8 μg Chol-T 5% PEG); C, lanes 3-5 (7, 8, 9 μg MS09 2% PEG): 

lanes 6-8 (7, 8, 9 μg MS09 5% PEG). In A-C, lane 1: FBS-untreated naked pCMV-luc plasmid DNA (1 

μg) (control 1) and lane 2: FBS-treated pCMV-luc plasmid DNA (1 μg) (control 2). 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.8: Nuclease protection assay of cationic and PEGylated cationic liposome-siRNA complexes in 

the presence of 10% FBS. Reaction mixtures (10 μL) contained siRNA (0.2 μg) and varying amounts of 

liposome suspension. A, lanes 3-5 (2.4, 2.8, 3.2 μg Chol-T): lanes 6-8 (3.8, 4.2, 4.6 μg MS09); B, lanes 3-

5 (4.4, 4.8, 5.2 μg Chol-T 2% PEG): lanes 6-8 (7.0, 7.4, 7.8 μg Chol-T 5% PEG); C, lanes 3-5 (4.6, 5.0, 

5.4 μg MS09 2% PEG): lanes 6-8 (6.8, 7.2, 7.6 μg MS09 5% PEG). In A-C, lane 1: FBS-untreated naked 

siRNA (0.2 μg) (control 1) and lane 2: FBS-treated siRNA (0.2 μg) (control 2). 
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With regard to pCMV-luc plasmid DNA, there was an increase in band intensities form each 

well, indicating that the pDNA existed mainly in the supercoiled helical form, followed by 

linearized, and then nicked circular. On the other hand, the naked FBS-treated (pDNA and 

siRNA) controls were completely digested within 4 h following exposure to serum enzymes. 

Compared to the fully digested controls, the pDNA associated with cationic liposomes remained 

relatively intact in the presence of FBS for all lipid:pDNA mass ratios (
w
/w) tested, indicating 

that the various liposomal formulations were able to sustain the integrity of the bound nucleic 

acids and offered some degree of protection to the relatively intact nucleic acid structure. 

A number of studies have reported the benefits of incorporating cholesterol and 

cholesterol-containing derivatives into nanocarrier systems (Ma et al., 2005b; Miyawaki-

Shimizu et al., 2006; Morrissey et al., 2005, Zimmermann et al., 2006). The inclusion of 

cholesterol and its derivatives into liposomal formulations increases the packaging densities of 

the phospholipid molecules, thus forming solid-ordered membranes and thereby reducing the 

penetration behaviour of solutes and ions (Arouri and Mouritsen, 2013; Mady, 2004; Pozzi et al., 

2012). Owing to the tight lipid arrangement facilitated by cholesterol, these membranes appear 

thicker and mechanically more stable. This maintained the liposomal integrity, by counteracting 

the disruptive effect of high density lipoproteins present in serum (Kraske and Mountcastle, 

2001; Mayer et al., 2000). However, findings related to pDNA confirm that the DNA underwent 

partial nicking, as evidenced by the relatively greater proportion of relaxed DNA and an 

accompanying decline of the supercoiled helical conformation compared to the undigested 

pDNA control. This has been a controversial issue; it has been shown that digestion of the 

supercoiled content by nucleases present in serum leads to decreased transfection efficiency 

(Kawabata et al., 1995). In contrast, it has also been reported that relative amounts of 

supercoiling in reporter plasmids do not significantly affect in vitro and in vivo gene transfection. 

Further, the relaxed, covalently closed forms of the plasmid are not less efficient than 

supercoiled forms in gene delivery (Bergan et al., 2000). In essence this study’s assessment of 

pDNA serum stability confirmed that the cationic liposomes were able to offer substantial 

protection in a nuclease rich environment. 

With regard to siRNA protection from serum nucleases, both non-PEGylated Chol-T and 

MS09 offered better protection to their siRNA cargo compared to their PEGylated counterparts 

[clear bands present in each lane, [Figure 4.8 (A)]. Han et al. (2008) reported an increase in 
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delivery efficiency of siRNA in serum with cationic liposomes containing an amine-based 

cholesterol derivative compared to cationic liposomes containing ordinary cholesterol in their 

structure. Hence, the cholesterol derivatives employed in this study helped preserve liposomal 

stability in the presence of FBS. Liposomal formulations containing 5% PEGylation offered the 

least protection as evidenced by lighter bands. However, the bands appeared brighter at the 

supraoptimal cationic liposome:siRNA (
w
/w) ratios compared to the optimal and suboptimal 

concentrations for both Chol-T and MS09. ZetaSizer measurements of non-PEGylated liposomes 

showed that they formed stable lipoplexes with zeta potentials of 47.26 mV (Chol-T) and 44.61 

mV (MS09) corresponding to proficient serum protection abilities. With regard to liposomes 

tethered with 5% PEG, there were variations in zeta potentials; Chol-T 5% PEG (9.78 mV ± 

1.13) and MS09 5% PEG (41.26 ± 9.79). The low zeta potential indicates liposomal instability 

and, therefore, reduced siRNA protection from nucleases. On the other hand, although MS09 5% 

PEG attained a more positive zeta potential, the PDI (0.337) was higher, suggesting that these 

lipoplexes do experience a certain degree of instability. Silvander et al. (1998) observed a similar 

trend with liposomes containing 5 mol.% PEG, where the sterically stabilized liposomes did not 

offer substantial stabilization against serum proteins.  

 

4.3.3 Ethidium bromide (EtBr) fluorescence quenching assay 

 

The EtBr fluorescence quenching assay further quantitatively investigated the electrostatic 

interactions between the cationic liposomes and nucleic acids (pDNA and siRNA). It also 

corroborated end-point ratios derived from the gel retardation assay. Intercalation of the classical 

planar molecule EtBr (an aromatic cationic fluorophore) between nucleic acid base pairs has 

been explored using various techniques over the past 5 decades (LePecq and Paoletti, 1967, Pohl 

et al., 1972; Celedon et al., 2010). Binding of EtBr between contiguous base pairs on the double 

helix structure results in more intense fluorescence and a ~10-fold higher emission intensity than 

when in water or buffer (Lakowicz, 1999). The high fluorescence emitted from EtBr 

intercalation into double stranded nucleic acids is primarily due to the hydrophobic milieu found 

between the base pairs. By moving into this hydrophobic environment, away from the bulk 

hydrophilic solvent, the EtBr cation dispels any water molecules that were associated with it. As 

water is a particularly efficient fluorescent quencher, elimination of these water molecules allows 
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EtBr to fluoresce. The binding of Et cation results in a decrease in the helical twist (~26 °) 

causing the distance between bases flanking an EtBr molecule to increase, thus creating an 

opening of ~0.34 nm (Hayashi and Harada, 2007; Tsai et al., 1975; Wang, 1974). Therefore, the 

unwinding of the helical twist induces local and structural changes, such as elongation or 

lengthening of the ds-DNA strand as illustrated in Figure 4.9 (Bugs and Cornelio, 2001; Nafisi 

et al., 2007; Palchaudhuri and Hergenrother, 2007). 

 

Figure 4.9: Schematic representation of preferred intercalation between EtBr and the nucleic acid helix 

which illustrates the lengthening and untwisting of the helical structure (Bugs and Cornelio, 2001; Nafisi 

et al., 2007; Palchaudhuri and Hergenrother, 2007). 

 

According to the assay principle, the fluorescence emission intensity of EtBr is greatly enhanced 

upon intercalative complexation between nucleic acid base pairs. This heightened fluorescence 

can be quenched, or partly assuaged when displaced upon titration with compounds having a 

higher affinity for nucleic acid binding (Huang et al., 2012). As such, quantification of the 

cationic liposome-induced compaction of pDNA and siRNA was assessed by determining the 

relative fluorescence of EtBr intercalation (excitation λ = 520 nm, emission λ = 600 nm) in the 

double helix when cationic liposomes were added. Figure 4.10 represents the EtBr fluorescence 

quenching assay where percentage relative fluorescence (Fr) with pDNA (A) and siRNA (B) was 

plotted as a function of the number of micrograms of cationic liposome Chol-T and MS09. 

Sequential addition of cationic liposomes to EtBr pretreated with pDNA or siRNA caused 

appreciable diminution of EtBr fluorescence, indicating that the EtBr was displaced by the 

liposomes. As the lipid:pDNA/siRNA
 
(

w
/w) ratio increased, a decline in fluorescence was 

recorded until a point of inflection was reached (i.e. maximum nucleic acid compaction and EtBr 
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displacement by the cationic liposome). The (
w
/w) or N/P (+:‒) ratios at which the liposome 

maximally displaced the EtBr and compacted the respective nucleic acid are presented in Table 

4.3. All liposomal formulations containing Chol-T or MS09 were able to successfully displace 

the intercalated EtBr cation and bind the nucleic acid to varying degrees, indicating good 

compaction abilities. The maximum percentage fluorescence quenching for pDNA was between 

42% - 58% (Chol-T based liposomes) and 42% - 68% (MS09 based liposomes), whereas for 

siRNA fluorescence decay ranged from 29% - 72% (Chol-T based liposomes) and 35% - 49% 

(MS09 based liposomes). Interestingly, for both pDNA and siRNA, high amounts of EtBr were 

displaced with the sequential addition of Chol-T (58% and 72% respectively) and MS09 2% 

PEG (68% and 49% repectively). 

 

Table 4.3: EtBr fluorescence quenching by the various cationic/ PEGylated cationic liposomes recorded 

at points of inflection  

 

Cationic liposome 

Cationic liposome : nucleic acid (
w
/w) Charge ratio [N/P (+:‒)] 

DNA siRNA DNA siRNA 

Chol-T 11 : 1 14.9 : 1 2.9 : 1 4.2 : 1 

Chol-T 2% PEG 16 : 1 26 : 1 3.9 : 1 6.8 : 1 

Chol-T 5% PEG 15 : 1 38.6 : 1 3.4 : 1 9.2 : 1 

MS09 13 : 1 16.3 : 1 3.0 : 1 4.2 : 1 

MS09 2% PEG 13 : 1 21.9 : 1 2.9 : 1 5.3 : 1 

MS09 5% PEG 13 : 1 43.6 : 1 2.7 : 1 9.6 : 1 

Abbreviations: Chol-T: 3β-[N-(N', N'-dimethylaminopropane)-carbamoyl] cholesterol; MS09: N, N-

dimethylaminopropylaminylsuccinylcholesterylformylhydrazide; PEG: Polyethylene glycol; DNA: 

Deoxyribonucleic acid; siRNA: Small interfering RNA; EtBr: Ethidium bromide. 

The theoretical N/P (+:‒) ratio represents the charge ratio of cationic lipid to nucleotide. Values were 

calculated assuming one positive charge per cytofectin molecule at pH 7.5 and one negative charge per 

nucleotide (average mass 330 Da).  
 

 

 

 

 

 

 



107 
 

 

Figure 4.10: Ethidium bromide fluorescence quenching assay of the cationic and PEGylated cationic 

liposomes in a total of 0.25 mL incubation mixtures containing (A) 3 μg pCMV-luc plasmid DNA, (B) 

3.2 μg siRNA and increasing amounts of liposome. 
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4.4  In Vitro Cell Culture 

 

4.4.1 Cell lines 

 

The SKBR-3 (overexpressed HER2/neu - positive cell line), MCF-7 and HEK-293 (negative 

cell lines) were used in this study [Figure 4.11]. HEK-293 cells are fibroblastoid semi-

adherent cells that grow as monolayer cultures. Colony morphologies of BC cell lines in 3-D 

culture fall into four distinct classes: round, mass, grape-like and stellate (Kenny et al., 2007). 

SKBR-3 cells appear as spherical structures and form loosely cohesive grape-like colonies 

displaying poor cell to cell contacts; whereas MCF-7 cells fit into the mass category of cells 

which form tightly interconnected structures with robust connections among cells. Both these 

BC cell lines predominantly adopted monolayer morphologies but tended to ‘clump’ and form 

small multicellular structures. 

 

4.4.2 MTT cytotoxicity assay 

 

One of the most important features of gene delivery systems is their safety. The 3-(4, 5-dimethyl-

2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) quantitative colorimetric assay was 

used to assess the metabolic viability of cell cultures exposed to transfection complexes. This 

assay is based on the ability of viable cells to produce a dark purple strongly lipophilic fomazan 

product by reducing the water-soluble yellow coloured tetrazolium dye (van Meerloo et al., 

2011). These reductions take place only in metabolically active cells when mitochondrial 

reductase enzymes are active. The quantity of formazan product formed is proportional to the 

metabolic activity of viable cells, which was determined spectrophotometrically (UV570 

absorbance), after dissolving the purple formazan crystals in dimethyl sulfoxide. The 

cytotoxicity of the different lipoplex formulations is depicted in Figure 4.12 (pCMV-luc) and 

Figure 4.13 (siRNA). Values are expressed as percentage cell viability against untreated control 

cells set at 100%, and represented as a function of lipid:nucleic acid N/P charge ratios (+:‒). 
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Cell culture 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.11: Colony morphologies of the three cell lines used in this study. (A) and (B) SKBR-3, (C) and 

(D) MCF-7, (E) and (F) HEK-293. Cells were viewed as a monolayer at semi-confluency under a 100 × 

magnification (Nikon TMS-F 6V, Tokyo, Japan). 
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Cell viabilities of HEK-293 (A), MCF-7 (B) and SKBR-3 (C) cells treated with pDNA 

lipoplexes ranged as follows: Chol-T (92 – 86%, 96 – 85% and 96 – 101%), Chol-T 2% PEG (94 

– 79%, 96 – 79% and 92 – 91%), Chol-T 5% PEG (83 – 78%, 96 – 74% and 89 – 87%), MS09 

(113 – 100%, 99 – 90% and 93 – 86%), MS09 2% PEG (91 – 81%, 96 – 83% and 96 – 98%), 

MS09 5% PEG (109 – 96%, 95 – 81% and 86 – 80%). As shown in Figure 4.12, after 48 h 

incubation, cell viability with non-PEGylated pDNA lipoplexes remained above 80% when 

compared with untreated cells. Similarly, pDNA lipoplexes with the incorporation of PEG did 

not show notable cytotoxicity in all three cell lines either. Cell viabilities of HEK-293, MCF-7 

and SKBR-3 cells treated with siRNA lipoplexes ranged as follows: Chol-T (89 – 85%, 89 – 

88% and 101 – 102%), Chol-T 2% PEG (84 – 76%, 90 – 81% and 94 – 92%), Chol-T 5% PEG 

(82 – 74%, 78 – 70% and 96 – 88%), MS09 (101 – 93%, 98 – 91% and 87 – 89%), MS09 2% 

PEG (87 – 82%, 87 – 85% and 87 – 74%), MS09 5% PEG (84 – 78%, 80 – 76% and 51 – 49%). 

These results show that the three cell lines maintained a viability of over 70% after treatment 

with the various siRNA lipoplexes, except for the SKBR-3 cells exposed to MS09 5% PEG 

lipoplexes which caused a 50% decrease in cell viability (P<0.001). Nevertheless, these findings 

suggest good biocompatibility with all three cell lines over the range of N/P charge ratios (+:‒) 

tested. Furthermore, these findings on cell viabilities are favourable when compared to that 

attained using the commercially available transfection reagent, Lipofectamine
®

 3000. The low 

cytotoxicities observed could be attributed to the use of monovalent cationic lipids which are 

known to be less toxic than multivalent cationic lipids (Spagnou et al., 2004). It is also very 

likely that the incorporation of DOPE and cholesterol into the liposomal formulations 

contributed to the lipoplexes biocompatibility and stability and therefore low levels of 

cytotoxicity. 

As shown in Figure 4.12 and Figure 4.13, HEK-293 (A) and MCF-7 (B) cells revealed a 

decrease in cell viability with an increase in lipid:nucleic acid N/P ratios (+:‒) for all tested 

liposomal formulations irrespective of degree of PEGylation, indicating a dose-dependent 

cytotoxic effect. This trend of visibly reduced cell viability at higher lipid to nucleic acid N/P 

ratios has been reported in previous studies (Dass, 2002; Lv et al., 2006). Research has shown 

that the cytotoxic effect of cationic liposomes is primarily determined by their cationic nature, 

since at high charge ratios N/P (+:‒) the presence of free or excess cationic liposomes is 

essentially associated with increased cell toxicity (Xu et al., 1999).  
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Figure 4.12: Cell cytotoxicity studies of cationic and PEGylated cationic liposome-pCMV-luc plasmid 

DNA complexes in (A) HEK-293, (B) MCF-7 and (C) SKBR-3 cells in vitro using MTT reagent. 

Incubation mixtures (0.25 mL) contained 0.5 μg of pDNA with varying amounts of liposome from 

suboptimal to supraoptimal N/P (+:‒) charge ratios: Controls - Untreated cells; Lipofectamine
®
 3000; 

Chol-T (1.1, 1.6, 2.1); Chol-T 2% PEG (1.2; 1.7, 2.2); Chol-T 5% PEG (1.1, 1.6, 2.1); MS09 (1.2, 1.7, 

2.2); MS09 2% PEG (1.4, 1.8, 2.3); MS09 5% PEG (1.3, 1.7, 2.1). The viability percentage of cells was 

expressed relative to Untreated control cells. Data are presented as means ± SD (n = 3). Statistical 

analysis among mean values was performed using one-way ANOVA followed by the Tukey-Kramer 

multiple comparisons test between formulations. Asterisks denote a significant difference compared to the 

Untreated control cells *P<0.05, **P<0.01, and ***P<0.001. 
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Figure 4.13: Cell cytotoxicity studies of cationic and PEGylated cationic liposome-siGENOME non-

targeting siRNA complexes in (A) HEK-293, (B) MCF-7 and (C) SKBR-3 cells in vitro using MTT 

reagent. Incubation mixtures (0.25 mL) contained 0.32 μg of siRNA with varying amounts of liposome 

from suboptimal to supraoptimal N/P (+:‒) charge ratios: Controls - Untreated cells; Lipofectamine
®
 

3000; Chol-T (3.4, 3.9, 4.4); Chol-T 2% PEG (5.8, 6.3, 6.8); Chol-T 5% PEG (8.3, 8.8, 9.3); MS09 (4.9, 

5.4, 5.9); MS09 2% PEG (5.5, 6.0, 6.5); MS09 5% PEG (7.4, 7.9, 8.4). The viability percentage of cells 

was expressed relative to Untreated control cells. Data are presented as means ± SD (n = 3). Statistical 

analysis among mean values was performed using one-way ANOVA followed by the Tukey-Kramer 

multiple comparisons test between formulations. Asterisks denote a significant difference compared to the 

Untreated control cells *P<0.05, **P<0.01, and ***P<0.001.  
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As such, formulated lipoplexes are in general far less cytotoxic than free cationic liposome 

components (van Gaal et al., 2011). 

Interestingly, for both the pDNA and siRNA lipoplexes, Chol-T containing treatments 

were in general slightly more toxic to the HEK-293 and MCF-7 cell lines compared to the MS09 

containing lipoplexes. As discussed previously, the structural property of these cytofectins 

features a cholesterol ring anchor, a monovalent dimethylamino head group, a biodegradable 

carbamoyl linker and a spacer element. It is well established that each segment of the cationic 

cytofectin has dramatic effects on cell toxicity (Lv et al., 2006). The distinguishing feature 

between the Chol-T and MS09 cytofectins is the length of the spacer element. The MS09 

cytofectin containing the longer spacer element was observed to be slightly less toxic than the 

Chol-T cytofectin. This trend of reduced cytotoxicity with MS09 compared to Chol-T can be 

clearly observed with HEK-293 cells exposed to pDNA lipoplexes (viability decrease of 21% 

and 14%) and siRNA (viability decrease of 12% and 8%), at both low and high charge ratios N/P 

(+:‒) respectively. Interestingly, MS09 N/P 4.9 and 5.4 (siRNA), MS09 N/P 1.2 and 1.7 and 

MS09 5% PEG N/P 1.3 and 1.7 (pDNA) lipoplexes were non-toxic to HEK-293 cells and in fact 

led to an increase in cell numbers and therefore increased cell viability above 100% was 

observed. This pattern of visibly reduced cytotoxicity corroborates previous studies by Floch et 

al. (2000), who reported that an increase in the length of the spacer segment resulted in 

decreased cytotoxicity in culture format. Moreover, carbamate-linked lipids offer lower 

cytotoxicity as this bond is stable under neutral conditions, and is prone to acid-catalyzed 

hydrolysis at low pH values (in the endosome), where lipids may be degraded into less toxic by-

products or low molecules within the cell (Boomer et al., 2002; Liu et al., 2005a; b). 

As observed in Figure 4.13 (A), (B), and (C), PEGylated siRNA lipoplexes resulted in an 

increase in cellular toxicity as evidenced by a decrease in cell viability in all three cell lines 

tested. At supraoptimal concentrations the non-PEGylated Chol-T siRNA lipoplexes (N/P 4.4) 

resulted in minimal cytotoxicities in HEK-293 (15%), MCF-7 (12%) and SKBR-3 (0%) cells, 

compared to their PEGylated counterparts: Chol-T 2% PEG N/P 6.8 (24%, 19% and 8%); Chol-

T 5% PEG N/P 9.3 (26%, 30% and 12%). In the same way, the non-PEGylated MS09 siRNA 

lipoplexes (N/P 5.9) elicited marginal cell deaths in HEK-293 (7%), MCF-7 (9%) and SKBR-3 

(11%) cells, compared to their PEGylated counterparts: Chol-T 2% PEG N/P 6.5 (18%, 15% and 

26%); Chol-T 5% PEG N/P 8.4 (22%, 24% and 51%). Although the chemical modification of 
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cationic liposomes with PEG resulted in increased stability (Chol-T and MS09 siRNA lipoplexes 

at 2 mol.% PEG) as well as smaller particle sizes, PEGylated cationic liposomes were still more 

cytotoxic than their non-PEGylated equivalents. Zhang et al. (2010) reported similar trends with 

PEGylated DC-Chol/DOPE siRNA lipoplexes. These authors suggested that the increase in 

cytoxicity was probably due to the higher cationic liposome concentration.  

With regard to SKBR-3 cells, a dose-independent decease in cell viability was observed 

with pDNA (Chol-T and MS09 2% PEG) and siRNA (MS09) lipoplexes, and in some instances 

MS09 was more toxic than Chol-T. Reports on cationic liposome cytotoxicity have shown that in 

some instances these lipids generate reactive oxygen species (ROS) (Park et al., 2004; Soenen et 

al., 2009), and that cancer cells exhibit greater ROS stress than normal cells. The mechanism of 

action of ROS within cells has been described as a two-edged sword. In one occurrence ROS 

activates receptor tyrosine kinases and growth factors, which facilitates cell-cycle progression 

and cell survival. Conversely, the presence of high levels of ROS can suppress cell growth via 

continuous activation of cell-cycle inhibitors which leads to apoptosis (Ramsey and Sharpless, 

2006; Scherz-Shouval and Elazar, 2007; Takahashi et al., 2006). Therefore, the variations in 

SKBR-3 cell viability may be attributable to the fluctuations of ROS production within these 

cells. Taken together, these findings indicate that the cationic liposomes synthesized in this study 

show relatively low cytotoxic effects on HEK-293, MCF-7 and SKBR-3 cell lines, and have the 

potential for future in vivo applications.  

 

4.4.3  Luciferase activity 

 

Plasmids are extra-chromosomal circular DNA molecules which have the ability to replicate 

autonomously within a suitable host. Moreover, modified plasmids encoding for a particular 

gene of interest and a promoter have the ability to be expressed within the nucleus of transfected 

cells in a temporary manner. The reporter gene pCMV-luc which comprises a cytomegalovirus 

promoter and the firefly luciferase (luc) gene was used to investigate the ability of the PEGylated 

and non-PEGylated Chol-T and MS09 cationic liposomes to stably transfect pDNA. The pCMV-

luc plasmid is a widely used reporter gene since it can be easily identified and gene expression 

can be measured quantitatively. The pDNA transfection capability of liposomal formulations was 

evaluated on the three cells lines, namely, HEK-293, MCF-7 and SKBR-3 cells, in an in vitro 
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transfection experiment using the luciferase reporter gene assay. Attached cells were transfected 

with lipoplexes comprising 1 µg pCMV-luc at predetermined N/P charge ratios (+:‒) and the 

RLU measured 48 h after transfection. Luciferase activity was normalized using the BCA protein 

assay and relative expression was recorded as RLU mg
-1

 protein. The performance of the 

PEGylated and non-PEGylated Chol-T and MS09 lipid vectors was compared to the established 

non-viral delivery vector Lipofectamine
®

 3000 Reagent (positive control). Assay controls also 

included cells unexposed to liposome or pDNA and cells treated with free pDNA (negative 

controls). The luciferase reporter assay offers unparalleled sensitivity and versatility to assess or 

study gene expression (Fan and Wood, 2007). Basically, the reporter technology involves the 

interaction of the luc enzyme with luciferin (luminescent substrate) and, via different 

chemistries, light is emitted by the process of bioluminescence. Two chemical reactions take 

place; firstly, ᴅ-luciferin is adenylated by Mg-ATP to generate luciferyl adenylate and 

pyrophosphate. Secondly, luciferyl adenylate is activated by ATP, resulting in oxidation by 

molecular oxygen to form a dioxetanone ring. A decarboxylation reaction forms oxyluciferin in 

an electronically excited state, and finally the reaction releases a photon of light as oxyluciferin 

returns to the ground state (Baldwin, 1996). This reaction is highly energetically efficient as all 

energy incorporated into the reaction is rapidly converted into light (Allard and Kopish, 2008). 

Plasmid DNA transfections of the three cell lines are depicted in Figure 4.14; HEK-293 (A), 

MCF-7 (B) and SKBR-3 (C). As expected, the transfection efficiency of free pDNA was very 

low. Naked or free pDNA is prone to enzymatic degradation in the presence of serum; on the 

other hand pDNA that is internalized is rapidly destroyed by DNAses present in the endosome or 

cytoplasm, prior entry into the nucleus (Audouy et al., 2000; Buyens et al., 2008; Lv et al., 

2006).  

On the other hand, the commercial product Lipofectamine
®

 3000 increased transfection 

by about 7.02-fold (HEK-293), 7.30-fold (MCF-7) and 10.90-fold (SKBR-3) compared to free 

pDNA. As mentioned previously, the incorporation of high levels of cholesterol and/or 

cholesterol-containing derivatives in liposomal formulations offers several advantages for gene 

delivery; these include enhanced transfection efficiency as well as resistance to serum-induced 

aggregation (Islam et al., 2009; Pozzi et al., 2012; Samadikhah et al., 2011; Zhang et al., 2008; 

Zidovska et al., 2009). It has been suggested that the increase in transfection offered by 

cholesterol may be a result of phase transition. Strong repulsive ‘hydration forces’ exist between 
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lipid membranes, which forms a major barrier for membrane-membrane interaction and fusion. 

The presence of cholesterol in the lipid membrane reduces the average hydration repulsion layer 

of the membrane, prompting phase transition toward a non-lamellar transfecting phase and/or 

enhanced fusion between the cationic lipoplex membrane and the anionic cell membrane (Pozzi 

et al., 2012; Zidovska et al., 2009). As such, the cholesterol containing lipoplexes employed in 

this study were able to stably transfect the various cell lines tested, albeit at varying degrees, by 

most likely favouring the interaction with cellular membranes and aiding in fusion-driven 

cellular uptake and endosomal release. 

The pDNA gene transfection efficiencies amongst the different cells lines varied. In 

general, SKBR-3 cells appeared to be most difficult to transfect amongst the three cells lines, as 

evidenced by the lower luciferase activity. This difference in transfection between the cell lines 

is mainly due to the surface charge of the cellular membrane as well as the cells doubling time. 

The surface charge influences electrostatic interaction between the lipoplexes and the cell 

membrane affecting the cellular uptake efficiency. On the other hand it could also affect the 

entry of pDNA into the nucleus (Brunner et al., 2000; Obata et al., 2010; Zuhorn and Hoekstra, 

2002). 

Transfection efficiency of non-PEGylated Chol-T and MS09 lipoplexes was considerably 

limited as compared to pDNA alone (negative control) for almost all N/P (+:‒) charge ratios 

analyzed, except for MS09 tested at suboptimal (N/P 1.2) and supraoptimal (N/P 2.2) ratios 

against MCF-7 (P<0.01) and HEK-293 (P<0.001) cells, respectively. It is well established that 

the first important step for transfection is entry into the cytoplasm. Liposome-mediated 

transfection is further dependent on the size and surface charge of the cationic liposomes. 

ZetaSizer measurements indicated that these lipoplexes displayed a highly positive zeta potential, 

and were larger than their corresponding PEGylated counterparts. Therefore, it can be assumed 

that although these pDNA containing complexes displayed a cationic charge on their surface 

which was favourable for binding to the anionic cell membrane and internalization into the 

cytoplasm, ineffective release of the pDNA from the lipoplex within the cell was most likely 

associated with low transfection. Reduced pDNA release can be further supported by the EtBr 

intercalation assay, particularly with regard to Chol-T complexes which demonstrated increased 

affinity and good compaction capabilities for pDNA. 
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Figure 4.14: In vitro gene transfection data of PEGylated and non-PEGylated lipoplexes studied in (A) 

HEK-293, (B) MCF-7, and (C) SKBR-3 cell lines. Lipoplexes were formulated with pCMV-luc plasmid  

DNA (1 µg) at various N/P charge ratios (+:‒): Control 1 (untreated cells, negative control); Control 2 

(pCMV-luc DNA alone, negative control) and Lipofectamine
®
 3000 (positive control); Chol-T (1.1, 1.6, 

2.1); Chol-T 2% PEG (1.2; 1.7, 2.2); Chol-T 5% PEG (1.1, 1.6, 2.1); MS09 (1.2, 1.7, 2.2); MS09 2% 

PEG (1.4, 1.8, 2.3); MS09 5% PEG (1.3, 1.7, 2.1). Transfections were carried out in the presence of 10% 

foetal bovine serum. Luciferase activity in terms of normalized light units was expressed as RLU mg
-1

 

protein. Data are presented as means ± SD (n = 3). Statistical analysis among mean values was performed 

using one-way ANOVA followed by the Tukey-Kramer multiple comparisons test between formulations. 

Asterisks denote a significant difference *P<0.05, **P<0.01, and ***P<0.001.  
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Maitani et al. (2007) reported similar cellular associations using DC-Chol:DOPE (molar ratio 1/2 

and 3/2) liposomes. DC-Chol:DOPE (1/2), however, demonstrated significantly greater 

transfection efficiency compared to DC-Chol:DOPE (3/2). These authors also suggested that it 

was the release of the DNA from the lipoplex and not the increase in cellular association that 

played a crucial role in efficient transfection. 

In general, cationic lipoplexes containing DSPE-PEG2000 resulted in increased luciferase 

activity compared to their non-PEGylated counterparts. A comparison of PEGylated Chol-T and 

MS09 lipoplexes revealed that the latter was more efficient in pDNA-luc transfection as 

indicated by the significant increases in luciferase activity, particularly with lipoplexes 

containing 5% PEG. The following fold-increases were recorded with MS09 lipoplexes at 

optimal N/P charge ratios (i.e. end-point) PEGylated at 2% and 5% compared to the non-

PEGylated MS09 lipoplexes: HEK-293, 3.6-fold (P<0.001) and 7.2-fold (P<0.001); MCF-7, 2.4-

fold (P<0.001) and 3.4-fold (P<0.001); SKBR-3, 1.6-fold and 4.1-fold (P<0.001), respectively. 

With regard to PEGylated Chol-T lipoplexes at suboptimal N/P charge ratios, the following 

findings were observed and recorded: HEK-293, 3.7-fold and 1.9-fold; MCF-7, 1.4-fold and 3.0-

fold; SKBR-3, 3.0-fold and 2.0-fold increase in luciferase activity, upon 2% and 5% PEGylation 

respectively. Although PEGylated Chol-T lipoplexes did result in an increase in luciferase 

activity, in general, these increases were not clinically significant. As discussed in Section 4.2.2, 

PEGylation induced a size stabilizing effect, forming lipoplexes which were significantly smaller 

than non-PEGylated lipoplexes. It has also been suggested that when PEGylated lipoplexes are in 

association with blood plasma or serum, they become restricted, causing a reduction in entropy 

between PEG chains. This in turn leads to the escalation of a repulsive force, preventing the 

attachment of plasma proteins as well as other components. In vitro transfection experiments 

performed in the presence of serum, suggested that PEGylation of the lipoplexes did in fact 

provide a stabilizing effect on the lipoplexes by resisting the formation of a protein corona 

around their surfaces. Moreover, the DSPE-PEG2000 polymer contains a pH sensitive carbamate 

bond which links the DSPE component to the PEG polymer. Therefore, under reduced pH 

conditions such as the endosomal compartments, these components are easily disassembled, 

facilitating the release of the pCMV-luc cargo, and thus contributing to increased luciferase gene 

expression. On the other hand, non-PEGylated lipoplexes formed larger-sized particles, most 

likely due to the formation of a protein corona and/or aggregation of the lipoplexes. Under these 
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conditions, the cationic charge of the lipoplexes tends toward neutralization, leading to reduced 

association between the lipoplexes and the cellular membrane and a consequent decrease in the 

expression of the luciferase gene.  

Interestingly, with regard to N/P charge ratios, a similar trend in luciferase activities was 

observed in HEK-293 and SKBR-3 cell lines. Basically, an increase in N/P charge ratio from 

suboptimal to optimal concentrations resulted in escalated luciferase activity for all tested 

lipoplexes, except Chol-T 2% PEG in HEK-293 cells, and all Chol-T containing lipoplexes in 

SKBR-3 cells. This result correlates with previous studies which confirmed increase in 

transfection levels due to increases in lipid/pDNA charge ratios. For example, Candiani et al. 

(2010) reported low transfection levels when using DOPC/DOPE lipid formulations with a 

charge ratio of 1.25 (close to isoneutrality). However, when the charge ratio was increased to 5, 

so did the degree of transfection. On the other hand, a further increase from optimal to 

supraoptimal concentrations led to a decline in luciferase activity. This decrease in luciferase 

activity was observed with all lipoplex formulations tested excluding MS09 in HEK-293 and 

Chol-T 2% PEG and MS09 2% PEG in SKBR-3 cells. Balbino et al. (2012) reported similar 

results. Firstly, when lipoplexes are prepared in close proximity to the isoneutrality region, there 

is an excess of pDNA that may induce the formation of larger particle aggregates via the 

construction of saturated liposomal surfaces retaining pDNA within their bilayers. Although this 

offers good pDNA packaging and protection, these multiple bilayers compromise DNA release 

within cells thus decreasing transfection activity. Secondly, it has been suggested that further 

increase in N/P charge ratio and the consequent decline in luciferase activity may be a result of 

the presence of an excess of liposomes. These compete with lipoplexes for cellular 

internalization thereby limiting the intake of pDNA lipoplxes, and ultimately reducing 

transfection levels. In most cases, however, the differences in luciferase activity based on N/P 

charge ratios were not significant. The MS09 5% PEG lipoplexes, in particular, resulted in the 

abovementioned trends being observed in all three tested cell types; a significant dose-dependent 

increase in luciferase signals was seen from suboptimal to optimal concentrations: HEK-293 

(P<0.001); MCF-7 (P<0.01); SKBR-3 (P<0.01). This result echoes the findings of Gjetting et al. 

(2010). Using DOTAP/cholesterol-based lipoplexes incorporating PEG (range 0 – 10%), they 

demonstrated that lipoplexes containing 5% PEG-lipid exhibit a threshold in physical properties, 

and particularly a size-stabilizing effect. Here the stabilizing effect was more pronounced in the 
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PEGylated MS09 containing lipoplexes than the Chol-T complexes as indicated by a superior 

PDI obtained with MS09. 

 

4.4.4 HER2/neu Gene Silencing in SKBR-3 Breast Cancer Cells 

 

4.4.4.1 Quantitative Real-Time PCR 

 

Quantitative Real-Time PCR (qRT-PCR) is a powerful technique in molecular biology. It is 

superior to other gene profiling methods because of its facility, sensitivity, precise detection, 

dynamic range, reliability, robustness and high-throughput potential for gene expression studies. 

This technology offers several advantages over traditional PCR: monitoring the progress of the 

qRT-PCR reaction in real time; allowing for an improved dynamic range of detection; enabling 

highly accurate measurements of the initial quantity of target amplicons; and omitting post-PCR 

handlings as amplification and detection of the PCR product take place in a single reaction tube 

(Derveaux et al., 2010; Stratford et al., 2008; Yuan et al., 2006).  

In this technique, mRNA is firstly reverse transcribed to generate a single-stranded 

cDNA template, which is then amplified via PCR. A PCR reaction occurs in three phases, 

namely, exponential, linear and plateau. In the exponential phase, under ideal conditions 

assuming 100% reaction efficiency, amplification of the amplicon occurs exponentially, i.e., the 

kinetics of the reaction favour doubling of the product since reagents are not limited. As the 

reagents become limited during the linear phase, the reaction starts to slow down, and there is a 

linear increase of the PCR product. As the reaction continues and the reagents become depleted, 

the reaction eventually reaches the plateau phase where the quantity of product formed does not 

change (Heid et al., 1996; Yuan et al., 2006). 

Real-Time PCR exploits the exponential phase for quantification data due to the fact that 

under ideal conditions initial amplicon doubles after every cycle, producing the most accurate 

and reproducible data. During this phase two values are calculated: the threshold fluorescence 

and the threshold cycle (Ct). Threshold fluorescence is defined as the level of signal that reflects 

a statistically significant increase in fluorescent intensity over the background fluorescent signal, 

and the Ct refers to the cycle number of the PCR reaction at which the florescent signal of the 
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reporter dye reaches the threshold. The Ct value is known as the quantitative end-point and it is 

used in both absolute and relative quantification (Pfaffl, 2001; Schmittgen and Livak, 2008).  

The chemically synthesized Chol-T and MS09 cationic liposomal formulations were 

tested for their ability to efficiently deliver target HER2/neu siRNA into SKBR-3 cells. 

Transfection experiments were conducted using the PEGylated and non-PEGylated cationic 

liposomes in parallel with the control samples: calibrator, non-targeting siRNA and HER2/neu 

target siRNA alone. Lipofectamine
®

-3000 Reagent is one of the most common transfection 

reagents and it is recommended for siRNA gene transfection experiments. Hence the researcher’s 

use of it as a positive control to compare the transfection activity with the liposomes synthesized 

in this study. Total cellular RNA was isolated from the treated cells 48 h post transfection, and 

thereafter gene expression and silencing were monitored using qRT-PCR with primers specific 

for the HER2/neu gene. Relative expression of the HER2/neu gene was normalized in relation to 

the GAPDH gene. The concentration of extracted cellular RNA was between 0.32 – 0.38 µg μL
-1

 

and of a relatively good quality with 
260

/280 ratio between 1.75 – 1.88. 

Quantitative RT-PCR results were analyzed using the 2
-∆∆Ct

 method for comparative or 

relative quantification; the results are presented as the fold-change in gene expression relative to 

the calibrator (SKBR-3 cells alone). According to the qRT-PCR results depicted in Figure 4.15, 

the calibrator revealed high levels of the HER2/neu gene; by definition the fold-change in gene 

expression of the untreated control is approximately one, since ∆∆Ct equals zero and 2
0
 equals 

one. The non-targeting siRNA (NT-siRNA) showed no knockdown, whereas the uncomplexed 

HER2/neu target siRNA resulted in a slight decrease of the HER2/neu gene at the mRNA level. 

The gene expression levels of the housekeeping normalizer gene GAPDH did not differ 

significantly among the control and test samples. 

Quantitative RT-PCR with HER2/neu-spanning primers revealed that each of the 

liposomal formulations was able to deliver siRNA against the HER2/neu gene in the SKBR-3 

BC cells in the presence of serum, as indicated by down-regulation of HER2/neu at the mRNA 

level (P<0.001). As described in Section 4.1.2, the cationic liposomes were formulated with 

DOPE, a neutral helper fusogenic lipid. Due to the propensity of DOPE to assume an inverted 

hexagonal phase, this cone-shaped neutral lipid is known to play a critical role in membrane-

membrane fusion events (Fletcher et al., 2008), thereby inducing strong destabilizing effects on 

the barrier properties of the endosomal membranes and offering efficient gene delivery into the 
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cytoplasm. A cationic cholesterol derivative in combination with DOPE has also been reported to 

provide serum-stable transfection of siRNA (Han et al., 2008; Spagnou et al., 2004). Also, it has 

been suggested that the cholesterol moiety may bind to certain ligand components present in the 

serum, thereby enabling uptake of the delivery system and its gene cargo into cells via ligand-

mediated endocytosis (Han et al., 2008). In this study, we cannot exclude the possibility that the 

factors mentioned above have contributed to efficient delivery of HER2/neu siRNA by the 

cationic liposomes. 

 

 
 

Figure 4.15: Analysis of HER2/neu gene expression in SKBR-3 cells by qRT-PCR. Incubation mixtures 

(1.5 mL) contained 0.64 µg of siRNA with varying amounts of liposome from suboptimal to supraoptimal 

concentrations: Chol-T:DOPE (7.68, 8.96, 10.24 μg); Chol-T:DOPE:2% PEG (14.08, 15.36, 16.64 μg); 

Chol-T:DOPE:5% PEG (22.40, 23.68, 24.96 μg); MS09:DOPE (12.16, 13.44, 14.72 μg); 

MS09:DOPE:2% PEG (14.72, 16.00, 17.28 μg); MS09:DOPE:5% PEG (21.76, 23.04, 24.32 μg). 

Calibrator (non-treated SKBR-3 cells), NT-siRNA (non-targeting siRNA) and siRNA (HER2/neu 

targeting siRNA alone) served as negative controls. Lipofectamine
®
 3000-siRNA was included as a 

positive control. The vertical axis represents the relative quantification of HER2/neu normalized against 

GAPDH mRNA level using the comparative quantification algorithm 2
-∆∆Ct

 (Livak and Schmittgen, 

2001). Data shown are the mean ± SD of independent experiments (n = 3). Asterisks denote a significant 

difference ***P<0.001. 
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A comparison of the non-PEGylated Chol-T and MS09 lipoplexes at different N/P charge ratios 

(+:‒) revealed that the Chol-T/siRNA complexes induced the highest HER2/neu silencing effect 

at all tested concentrations as indicated by the significant fold-difference in gene expression (> 

10 000-fold, P<0.001). Non-PEGylated MS09 lipoplexes yielded relative HER2/neu mRNA 

levels of 0.57, 0.45 and 0.50 which corresponds to a 1.87, 2.34, and 2.13-fold reduction in 

mRNA expression compared to the SKBR-3 untreated control (P<0.001). Moreover, the level of 

gene knockdown by Chol-T lipoplexes exceeded the knockdown level of Lipofectamine-3000 

(i.e., relative HER2/neu gene expression of 0.26 which represents a 4.1-fold decrease). 

Biophysical characterization of the Chol-T/siRNA complexes showed that these lipoplexes 

appeared as well-defined, spherical-shaped, uni-lamellar structures with distinct bilayered 

membranes which appeared well dispersed and colloidally stable [Figure 4.4 (A)]. These 

liposomes also formed the largest siRNA lipoplexes [187.97 nm (PDI 0.127)] with the highest 

zeta potential measurements (47.26 ± 5.39 mV), and were the least cytotoxic in SKBR-3 cells. In 

addition, the electrophoretic mobility shift assay indicated that the lowest charge ratio at which 

the liposomes were able to completely condense siRNA was obtained with the non-PEGylated 

Chol-T liposome [charge ratio (+:‒) 3.9:1]. These findings suggest that the Chol-T siRNA 

complexes formed condensed positively charged structures with low cytotoxic effects at a 

relatively low charge ratio. These characteristics of lipid based delivery systems have been 

previously reported to favour efficient gene delivery. In addition, larger lipoplexes have been 

generally described as being more efficient at gene delivery in vitro due to the fact that larger 

structures settle out from solution easily leading to fast sedimentation and increased contact with 

cellular membranes, as well as easier dissociation of the lipoplexes post endocytosis (Zhu and 

Mahato, 2010). Moreover, larger lipoplex formation has been shown to increase serum stability 

and effectively protect DNA from attack by DNAseI (Almofti et al., 2003; García et al., 2007). 

As shown in Figure 4.15, PEGylated Chol-T and MS09 lipoplexes reduced HER2/neu 

mRNA gene level at all concentrations tested (2% and 5% PEG). However, the effect of 

PEGylation on siRNA gene delivery differed with each of the cytofectins in the liposomal 

formulation. The following fold-changes in HER2/neu gene levels were recorded at different N/P 

(+:‒) charge ratios from suboptimal to supraoptimal concentrations: Chol-T 2% PEG (20.78, 

15.86 and 7.00); Chol-T 5% PEG (12.68, 12.14 and 1208.19); MS09 2% PEG (8.86; 31.01 and 

16.05) and MS09 5% PEG (72.37, 314.73 and 25.77). From the graph, a clear difference on the 
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effect of PEGylation can be observed. In the case of Chol-T lipoplexes, the effect of PEGylation 

at both 2% and 5% reduced the silencing efficiency of the Chol-T liposomes. Results indicated 

that PEGylation reduced the size and the zeta potential of Chol-T liposomes (Table 4.1). The 

reduced gene silencing effect, therefore, is most likely a result of the physical changes. This 

remarkable reduction in gene transfection efficiency accords with a previous report by Zhang et 

al. (2010). They suggested that PEGylation of DC-Chol/DOPE siRNA lipoplexes caused a 

decrease in particle size and zeta potential, and that the anti-HER2 siRNA DC-Chol/DOPE 

lipoplexes did not elicit any HER2 silencing in SKBR-3 cells. 

On the other hand, PEGylated MS09 lipoplexes significantly increased the HER2/neu 

gene silencing efficiency. An increase of 4.73-fold, 13.23-fold and 7.55-fold was observed upon 

2% PEGylation (P<0.001), and a further increase of 8.17-fold, 10.15-fold and 1.61-fold was 

recorded when PEGylated with 5% PEG (P<0.001). Interestingly, PEGylation also caused a 

decrease in particle size and zeta potential of MS09 liposomes. It was shown, however, that the 

high siRNA gene transfection efficiency of the PEGylated MS09 lipoplexes is concomitant with 

high cytotoxicity [Figure 4.13 (C)]. A comparison of the cell toxicity profiles of PEGylated 

MS09 siRNA complexes with those of non-PEGylated MS09 lipoplexes showed that there was 

up to 39.20% reduction in cell viability for the lipoplexes containing 5% PEG. 

 

4.4.4.2 HER2/neu protein expression  

 

To evaluate the modulation of HER2/neu target siRNA gene delivery into SKBR-3 cells via 

PEGylated and non-PEGylated Chol-T and MS09 cationic liposomal formulations, HER2/neu 

protein expression levels were analyzed using the Western blotting technique. Total protein 

lysate was firstly separated via electrophoresis using the sodium dodecyl sulphate-

polyacrylamide gel electrophoresis system (SDS-PAGE) and subsequently transferred onto a 

PVDF membrane. This was followed by specific primary and secondary antibody incubation, 

either Neu for HER2/neu protein detection or β-actin, an internal control for protein loading.  

The experimental set-up for Western blotting paralleled that implemented for qRT-PCR, 

except that protein extraction was conducted 72 h post transfection. The control samples 

included; SKBR-3 cells alone, non-targeting siRNA, HER2/neu target siRNA alone and 

Lipofectamine
®

-3000 Reagent. Results were analyzed based on densitometric values, and β-actin 
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control was used to determine normalization or equivalency of lane loading. Western blot 

analysis revealed high levels of HER2/neu protein expression (ratios) in negative control 

treatments relative to β-actin (SKBR-3 cells alone - 2.77, non-targeting siRNA - 2.57 and 

HER2/neu target siRNA alone - 1.93) [Figure 4.16 (A)]. In contrast, dramatic decreases in 

HER2/neu protein expression levels were observed for all siRNA delivery systems (PEGylated 

and non-PEGylated Chol-T and MS09) employed in this study. 

As indicated in Figure 4.16 (B) and (C), Western blot analysis demonstrated that non-

PEGylated Chol-T and MS09 liposomes resulted in a dose dependent decease in HER2/neu 

protein expression levels. Normalized HER2/neu protein expression levels were 0.017, 0.017 and 

0.013 (Chol-T) and 0.880, 0.231 and 0.217 (MS09). These values correspond to a 160.28, 163.89 

and 212.80 (Chol-T) and 3.15, 12.02 and 12.77 (MS09)-fold decrease in protein expression 

relative to the untreated SKBR-3 cells (alone). Comparing free HER2/neu target siRNA delivery 

(control, no liposome treatment) with the cationic liposomal delivery systems, a 111.39, 113.89 

and 147.89 (Chol-T) and 2.19, 8.35 and 8.89 (MS09)-fold decrease in protein expression was 

observed. These results indicate that as the N/P (+:‒) charge ratio increased from suboptimal to 

supraoptimal concentrations, a decrease in protein expression was observed. Reports have 

indicated that the charge ratio of lipoplexes significantly influences their morphology and 

capacity to transfect (Zhu and Mahato, 2010). The formation of lipoplexes with excess cationic 

liposomes (i.e., higher N/P charge ratio) tends toward developing spherical-shaped structures, in 

which the nucleic acid is effectively condensed and the resulting complexes are relatively more 

stable, making it easier for cellular internalization (van Gaal et al., 2011). To date, there are 

limited studies which specifically analyze the interaction between siRNA lipoplexes and cells 

membranes. Since siRNA lipoplexes formed from monovalent cationic liposomes have 

demonstrated successful gene silencing efficiency in vitro (Hattori et al., 2015; Xia et al., 2016; 

Zhang et al., 2010), two mechanisms have been postulated based on DNA lipoplexes. The first is 

a non-specific ionic interaction, where the proteoglycans on the cell membrane are involved in 

the internalization process (Mounkes et al., 1998). The second is an ion-pair mechanism where 

the cationic lipids form ion pairs with anionic lipids (e.g., phosphatidylserine) on the endosomal 

membrane. Subsequently, the ion-pairs lead to destabilization and disassembly of the lipoplexes 

and the endosome membrane, which in turn, enables release of the target siRNA into the 

cytoplasm (Xia et al., 2016; ur Rehman et al., 2013b). 
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Comparing the non-PEGylated Chol-T and MS09 HER2/neu target siRNA lipoplexes, the Chol-

T liposome resulted in a 50.85, 13.64 and 16.67-fold decrease in HER2/neu protein expression 

compared to the MS09 liposome at different N/P charge ratios (+:‒). These results corroborate 

qRT-PCR findings; the Chol-T/siRNA complexes induced the highest HER2/neu silencing effect 

at all tested concentrations as indicated by the significant-fold difference in gene expression 

[Figure 4.15]. Furthermore, there was a 5.61 (N/P 3.4), 5.73 (N/P 3.9) and 7.44 (N/P 4.4)-fold 

decrease in protein expression levels with non-PEGylated Chol-T lipoplexes compared to 

Lipofectamine
®

 3000 Reagent [Figure 4.16 (A)]. In a recent publication by Shi et al. (2016), 

cationic liposomes bearing shorter aliphatic chains offered better pDNA transfection efficiency 

than those containing longer chains. They postulated that increased transfection efficiencies with 

shorter hydrocarbon chains are due possibly to increased fluidity of the bilayer, leading to a 

greater degree of inter-membrane transfer and the subsequent mixing of the lipid membrane. 

These factors could be extrapolated to the siRNA delivery and be the reason why the Chol-T 

lipoplexes were most effective in gene silencing. Also, the size and zeta potential of a delivery 

system are important factors which must be considered for transfection. In particular, the size of 

the lipoplex has been reported to play a significant role in the entry pathway of complexes into 

the cells. Two main entry pathways have been suggested based on size of the lipoplex, namely, 

the clathrin coated and the caveolae-mediated pathways. A size range of ~300 nm or less favour 

the clathrin pathway. On the other hand, complexes which are > 500 nm enter basically via the 

caveolae-mediated pathways (Caracciolo et al., 2010). 
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Figure 4.16: Analysis of HER2/neu oncoprotein expression by Western blotting. (A) Non-treated SKBR-3 cells, NT-siRNA (non-targeting siRNA) 

and siRNA (HER2/neu targeting siRNA alone) served as negative controls. Lipofectamine
®
 3000-siRNA was included as a positive control. (B) 

SKBR-3 cells were treated with HER2/neu target siRNA (0.64 µg) with varying amounts of the cationic liposomes from suboptimal to supraoptimal 

ratios: Chol-T (7.68, 8.96, 10.24 μg); Chol-T 2% PEG (14.08, 15.36, 16.64 μg); Chol-T 5% PEG (22.40, 23.68, 24.96 μg); (C) MS09 (12.16, 13.44, 

14.72 μg); MS09 2% PEG (14.72, 16.00, 17.28 μg); MS09 5% PEG (21.76, 23.04, 24.32 μg). HER2/neu receptor expression was determined in 

cellular lysates by Western blotting analysis using the HER2/neu and β-actin antibodies. Graphs represent the HER2/neu/β-actin normalization ratios. 
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Interestingly, it has also been suggested that only the latter pathway produces an efficient 

transfection strategy, since it is capable of supressing lysosomal digestion as well as allowing for 

an efficient endosomal release mechanism (Rejman et al., 2006). In the presence of serum, 

lipoplexes in general tend to form structurally unstable complexes which lead to reduced or low 

transfection efficiencies (Cheung et al., 2005; Lundqvist et al., 2008). In this study, however, the 

significant gene silencing effect demonstrated by Chol-T/siRNA complexes at both the mRNA 

and protein levels indicates that these lipoplexes were most efficient at delivering the HER2/neu 

target siRNA into SKBR-3 in the presence of serum. The unusually high transfection efficiency 

in the presence of serum has been previously described by Caracciolo et al. (2010). These 

researchers used both dynamic light scattering measurements and proteomic experiments to 

show that in the presence of serum, the size of DC-Chol-DOPE/DNA complexes was regulated 

by the formation of a protein corona on the surface of the lipoplex which was concomitant with 

an inherent increase in particle size. They suggested that the formation of a protein-rich layer on 

the surface of lipoplexes caused the lipoplexes to aggregate due to decreased inter-bilayer 

electrostatic repulsions between the cationic lipoplexes, and that the larger size was most likely 

accompanied by caveolae-mediated internalization and an increase in transfection efficiency. 

With regard to Chol-T and MS09/siRNA lipoplexes, a similar trend is likely as these complexes 

were relatively larger with a higher ζ potential measurement, thereby enabling greater affinity for 

serum protein binding. However, MS09/siRNA complexes were less efficient than Chol-

T/siRNA in protecting the siRNA cargo from serum nuclease degradation [Figure 4.8]. 

Therefore, although MS09/siRNA lipoplexes possessed larger particle sizes for entry via 

caveolae-mediated endocytosis, insufficient internalization of the HER2/neu target siRNA 

resulted in low levels of siRNA gene silencing.  

As mentioned previously, in order to improve the stability of lipidic complexes in vivo, 

the effect of PEGylation (2 – 5 mol.% of DSPE-PEG2000 with respect to CholT:DOPE and 

MS09:DOPE) on the cationic liposomal delivery system was investigated. Both PEGylated Chol-

T and MS09 cationic liposomes resulted in HER2/neu gene silencing, as detected at the mRNA 

and the protein levels. Depicted in Figure 4.16, normalized HER2/neu protein expression levels 

decreased by: 53.50, 56.48 and 51.89-fold (Chol-T 2% PEG); 41.29, 41.96 and 48.28 (Chol-T 

5% PEG); 14.18, 17.60 and 22.61 (MS09 2% PEG); 6.94, 15.55 and 16.68 (MS09 5% PEG) 

compared to the untreated SKBR-3 cells (alone). qRT-PCR and Western blot results indicated 
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that PEGylated Chol-T (2% and 5%) reduced the siRNA gene silencing ability of the Chol-T 

liposome. Characterization of PEGylated complexes confirmed a decrease in particle size and 

zeta potential (Table 4.1). The phenomenon observed with PEGylated Chol-T lipoplexes 

correlates with the above-mentioned premise that a decrease in zeta potential (less cationic 

charge) most likely reduces the attraction of serum proteins and therefore favours cellular 

internalization via the clathrin-dependent pathway. It has also been suggested that preformed 

PEGylated liposomes have a tendency to form unstable complexes with siRNA, as the PEG 

chains are known to create a hydrophilic barrier that prevents the electrostatic interaction 

between the siRNA gene material and the cationic lipid carrier (Belletti et al., 2016). The siRNA 

molecules tend to form loose interactions and are usually exposed on the surface of the 

PEGylated liposomal structure. These siRNA molecules are in most cases unprotected and easily 

attacked by nucleases present in serum. Characterization of the PEGylated MS09/siRNA 

complexes indicated that these lipoplexes do experience a certain degree of instability. It was 

observed, however, that PEGylated lipoplexes were somewhat more efficient in HER2/neu gene 

silencing than their non-PEGylated counterparts, albeit lower than Lipofectamine
®

 3000 

Reagent. Moreover, serum nuclease digestion analysis indicated variations in siRNA gene 

protection. It can be suggested that during siRNA lipoplex formulation, the high energy 

transmission induced by vortexing may allow for these rather small siRNA molecules to 

manoeuver between the PEGs and harmoniously accommodate themselves on the cationic 

liposome. These siRNAs may then be internalized into the cell, enabling siRNA gene silencing 

(Barichello et al., 2012).  

Reports suggest that a 2% - 5% PEG concentration (relative to the lipidic composition) is 

required to stabilize particles (Belletti et al., 2016; Peeters et al., 2007). The pre-PEGylated 

lipoplexes, with only a minimal amount of PEG (2 mol.%), was able to efficiently form 

lipoplexes, offer adequate protection to their siRNA cargo, and deliver the HER2/neu target 

siRNA into SKBR-3 cells. At the protein expression level the Chol-T 2% PEG demonstrated a 

1.30, 1.35 and 1.08-fold decrease while MS09 2% PEG revealed a 2.04, 1.13 and 1.36-fold 

decrease compared to their 5% PEGylated equivalents. Belletti et al. (2016) reported a similar 

finding using the cationic lipid DOTAP and DSPE-PEG2000. Post-PEGylation at 2 mol.% was 

capable of effectively stabilizing Blimp-1 siRNA, efficiently delivering it into the BCBL-1 cell 

line and significantly reducing the BLIMP-1 protein levels. It was also demonstrated that when 
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the PEG concentration was increased to 5 mol.%, micelles on preformed lipoplexes did not 

produce the same silencing effect. In fact, a decrease in transfection efficiency resulted. 
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5.1 Concluding Remarks 

 

The potential of siRNA to silence the expression of a number of oncogenes at the transcriptional 

level offers an attractive and powerful therapeutic route for the treatment of BC. The RNAi 

pathway enables target-specific interference of genes which are expressed at abnormally high 

levels; these include either pathogenic genes or gene targets involved in cancer progression 

and/or cell cycle regulation. The application of siRNA-based therapeutics offers several 

advantages over traditional treatments with minimal side effects. It makes use of an innate 

cellular pathway, requiring the introduction of either a synthetic siRNA duplex molecule or a 

dsRNA trigger molecule. Despite recent progress in developing nanocarrier systems, cell toxicity 

and the reduced cellular uptake efficiency of siRNA in the presence of serum nucleases are still 

major drawbacks for in vitro and in vivo applications. This leaves BC gene therapy at a juncture 

where the need for an optimal gene delivery vector has become the rate limiting step. Further 

advances in the field of siRNA-gene based therapy depend on the discovery of a competent 

nanocarrier system which promotes specific tissue and cellular internalization of the therapeutic 

siRNA, as well as its efficient endosomal escape into the cytoplasm. Therefore, the development 

of safe nanocarrier delivery systems with the capacity for whole organism application still 

remains a formidable challenge in the continued quest to optimize the success of siRNA-based 

therapeutics. 

This study evaluated the ability of six cationic lipid-based delivery systems (PEGylated 

and non-PEGylated) to efficiently deliver intact siRNA which would target the HER2/neu 

oncogene in a BC cell model. Both Chol-T and MS09 cationic cholesterol cytofectins co-

formulated (1:1) with the neutral lipid DOPE were able to form liposomes with favourable 

physicochemical characteristics (particle size and zeta potential measurements) and was capable 

of binding and protecting nucleic acids (pDNA and siRNA). These delivery systems were 

reproducible and able to withstand long-term storage at 4 °C. Translation of siRNA lipofection 

from in vitro to in vivo applications requires stability of the lipid-based delivery system in the 

physiological milieu. Noted disadvantages with administration of cationic lipoplexes included: 

aggregation and poor control of the particle size, adsorption of biomolecules such as plasma 

proteins, rapid uptake by the reticuloendothelial system, as well as adverse toxicity effects due 

mainly to the cationic charge. PEGylation has become the most successful and popularly 
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employed strategy to impart promising pharmacodynamic and pharmacokinetic properties to 

increase the longevity of lipoplexes in circulation. In this study, grafting DSPE-PEG2000 on the 

surface of liposomal formulations did indeed provide a steric barrier at the surface of nascent 

liposomes. This prevented vesicle aggregation and encouraged the formation of a homogeneous 

population of smaller liposomes with colloidal stability and biocompatibility. On the other hand, 

the partial masking of the positive charges by PEGylation ultimately led to greater amounts of 

the PEGylated liposome being used to fully bind pDNA or siRNA compared to the non-

PEGylated liposomes. This was most apparent with siRNA, as indicated by the EtBr 

intercalation assay, where greater quantities of the PEGylated liposomes were required to 

successfully displace the intercalated EtBr cation and bind the siRNA, demonstrating a relatively 

weaker affinity toward the nucleic acid. As such, PEGylated cationic liposomes were more 

cytotoxic than their non-PEGylated equivalents due mainly to the higher concentration of the 

cationic cytofectin. 

Preliminary studies testing the ability of these lipid-based delivery systems to transfect 

pDNA collectively demonstrated that the non-viral cholesterol containing lipoplexes, Chol-T and 

MS09 (0%, 2% and 5% PEG), were able to stably transfect pDNA into the various cell lines 

tested, albeit to varying degrees. Results have indicated that PEGylated cationic lipoplexes were 

more efficient in transfecting the pCMV-luc gene and increasing luciferase activity than their 

non-PEGylated counterparts. Maximal transfection efficiency was attained with MS09 5% PEG 

(5.62 × 10
6
 RLU mg

-1
 protein) at N/P charge ratio 1.7. Furthermore, these liposomes displayed 

significant improvement in pCMV-luc plasmid DNA transfection [7.2-fold increase, (P<0.001)] 

compared to the non-PEGylated MS09 lipoplexes in the presence of serum. Interestingly, the 

MS09 5% PEG lipoplexes demonstrated a significant dose-dependent increase in luciferase 

signals from suboptimal (N/P 1.3) to optimal (N/P 1.7) charge ratios, and then a decrease in 

activity at supraoptimal ratios (N/P 2.1) in all three tested cell types. Along with mediating 

improved cellular uptake and transfection efficiency, MS09 5% PEG pDNA lipoplexes also 

assured their safety and biocompatibility in vitro as indicated by low levels of cytotoxicity (> 

80% cell survival).  

With regard to HER2/neu siRNA gene delivery, gene expression studies indicated that 

the Chol-T:DOPE (0% PEG)/siRNA complexes induced the highest HER2/neu silencing effect 

at all tested N/P charge ratios as indicated by the significant decrease in gene expression (> 10 
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000-fold, P<0.001). In addition, Western blot analysis confirmed the above profile and revealed 

a dose-dependent decrease in HER2/neu protein expression levels as indicated by a 160.28, 

163.89 and 212.80-fold decrease in protein expression relative to the untreated SKBR-3 cells 

(alone). Furthermore, the most active non-PEGylated Chol-T formulations were less cytotoxic 

and exceeded the knockdown level of Lipofectamine
®

 3000 control (4.1-fold decrease). 

PEGylated Chol-T and MS09 lipoplexes reduced HER2/neu mRNA gene level at all 

concentrations tested (2% and 5% PEG); however, the effect of PEGylation on siRNA gene 

delivery differed with each of the cytofectins in the liposomal formulations. In the case of Chol-

T lipoplexes, qRT-PCR and Western blot results indicated that PEGylated Chol-T (2% and 5%) 

reduced the siRNA gene silencing ability of the Chol-T liposome. On the other hand, although 

PEGylated MS09 lipoplexes significantly increased the HER2/neu gene silencing efficiency in 

an N/P charge ratio dependent manner (evidenced by protein expression levels), cytotoxicity was 

also increased with up to 39.20% reduction in cell viability for lipoplexes containing 5% PEG 

compared to non-PEGylated MS09 lipoplexes. 

These results reflect the immense potential of these PEGylated and non-PEGylated 

cationic liposomes in HER2/neu siRNA gene silencing in the BC cell model utilized in this 

study. The findings of this study support the hypothesis that these non-viral cationic liposome 

systems have the ability for future-therapeutic siRNA and DNA gene delivery. However, with 

the caveat that PEGylated cationic liposomes be used with caution, as their effects varied with 

each of the cytofectins used in this study. Post-inserting PEG on preformed siRNA lipoplexes is 

conceivably a viable option to ameliorate some of the negative effects of using PEG. This 

strategy demonstrably offers better siRNA binding capacity, as well as the potential for masking 

siRNAs and protecting them from nuclease attack.  

Future recommendations may involve optimizing PEGylated liposomal formulations by 

varying the percentage of PEG derivatives as well as the use of different molecular weights of 

PEG. Future studies aims at testing the ability of these cationic lipid based nanocarriers to safely 

and efficiently deliver target siRNA into a HER2/neu overexpressed animal model for evaluation 

in vivo. Although the conclusions obtained from this study provide evidence of efficient siRNA 

gene delivery in the presence of serum, it should be noted that the most efficient nanocarrier in 

cell culture may not always be the best performer in vivo. Additional work to evaluate modes of 

cell association, as well as, elucidating how the various formulations influence cellular 
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internalization capacity and endosomal release mechanisms may also be explored. Both 

pharmacokinetic and pharmacodynamic profiles are necessary to effectively predict the kinetic 

routes and the association of HER2/neu siRNA to its target. To conclude, given their 

biocompatibility and superior transfection efficiency as compared with the commercial 

transfection agent, the use of these cationic liposomes offers a promising and attractive 

alternative for siRNA gene therapy in vivo. 
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 Cholesterylformylhydrazide (MS04)  

 
3β-[N-(N’, N’-dimethylaminopropane)-carbamoyl] cholesterol (Chol-T)  

Chol-T: 
1
H NMR (250 MHz, CDCl3): δ 0.65 (s, 3H, CCH3), 0.83 (d, 6H, J = 5.2 Hz, CH(CH3)2), 

0.89 (d, 3H, J = 6.5 Hz, CHCH3), 2.19 (s, 6H, (CH3)2NCH2CH2)), 2.30 (t, 2H, J = 6.6 Hz, 

(CH3)2NCH2CH2CH2), 3.21 (q, 2H, J = 6.1 Hz, (CH3)2NCH2CH2CH2NH), 4.46 (m, 1H, Chol-

H3α), 5.35 (d, 1H, J = 5.3 H, H6). (HRMS) (M
+
) C33H58N2O2, Mw: calculated 514.4498, found 

514.4490. 

 

MS04: 
1
H NMR (300 MHz, DMSO d

6
): δ 0.66 (s, 3H, CCH3), 0.86 (d, 6H, CHCH3), 0.91 (d, 3H, 

CHCH3), 0.99 (s, 3H, CCH3), 3.88 (bs, 2H, NH2), 4.38 (m, 1H, Chol-H3α), 5.33 (d, 1H, Chol-H6), 

7.93 (s, 1H, NH). MS, m / z, ES-TOF: 445.4358 [M+ H
+
], 467.3932 [M + Na

+
]. 
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 Cholesterylformylhydrazide hemisuccinate (MS08)  

N-hydroxysuccinimide ester of MS08 (NHS-MS08)  

MS08: 
1
H NMR (300 MHz, DMSO d

6
): δ 0.64 (s, 3H, CCH3), 0.83 (d, 6H, CHCH3), 0.89 (d, 3H, 

CHCH3), 0.96 (s, 3H, CCH3), 4.3 (m, 1H, Chol-H3α), 5.34 (d, 1H, Chol-H6). MS, m / z, ES-TOF: 

545.09 [M+ H
+
], 567.63 [M + Na

+
]. 

 

NHS-MS08: 
1
H NMR (300 MHz, CDCl3): δ 0.68 (s, 3H, CCH3), 0.87 (d, 6H, CH-CH3), 1.01 (s, 

3H, C-CH3), 2.72 (s, 2H, CONH-CH2), 2.82 (bs, succinimide –CH2CH2-), 2.92 (d, 2H, OCO-

CH2), 4.54 (m, 1H, Chol-H3α), 5.38 (bd, 1H, Chol-H6). 
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N, N-dimethylaminopropylaminylsuccinylcholesterylformylhydrazide (MS09)  

MS09: 
1
H NMR (300 MHz, CDCl3): δ 0.65 (s, 3H, CCH3), 0.84 (d, 6H, CHCH3), 0.88 (d, 3H, 

CHCH3), 0.98 (s, 3H, CCH3), 2.26 (s, 6H, NCH3), 3.28 (q, CH2CH2NH), 4.48 (m, 1H, Chol-H3α), 

5.35 (bs, 1H, Chol-H6). MS, m / z, ES-TOF: 629.82 [M+ H
+
]. 
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Abstract 

 

Breast cancer is prevalent globally as the second leading cause of cancer-related mortality among women, 

with approximately 1.4 million new cases diagnosed annually. The genetic perturbations associated with 

this serious public health problem are emerging in the face of intense scientific enquiry thus facilitating its 

classification, prognostication, and treatment. RNA interference (RNAi) technology, utilizing short 

interfering RNA (siRNA), has emerged as a novel and potentially powerful approach in the treatment 

strategy to silence disease-causing genes such as those associated with breast cancer. RNAi is an 

evolutionarily conserved biological mechanism of post-transcriptional gene silencing mediated by either 

degradation or translation arrest of target mRNA. In spite of its promise as a novel class of therapy, 

instability of the therapeutic nucleic acid and its poor cellular uptake have limited its usefulness and 

application as an ideal clinical therapeutic approach. Nanocarriers have emerged as essential components 

in siRNA delivery systems and their further development in this role is crucial for the successful 

achievement of gene silencing based therapeutics. In this review, we highlight research efforts exploring 

breast cancer therapeutic targets particularly suitable for siRNA strategies, such as angiogenesis, 

apoptosis, cell cycle regulation, and HER-2/neu gene targets. We further explore non-viral nanocarriers 

based on the use of lipids and polymers which show potential as safe and effective delivery systems. 
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Abstract 

 

RNA interference technology, based on the use of siRNA, has emerged as a promising approach in the 

treatment strategy to suppress disease-causing genes such as those associated with breast cancer (BC). 

Despite its potential as a form of therapy, instability and poor cellular uptake of the therapeutic nucleic 

acid have posed daunting challenges. The major hurdle for siRNA-based therapy is the evolution of 

nontoxic, stable and efficient delivery systems to channel siRNA into target cells. Accordingly, this study 

assesses the efficacy of two cationic lipid-based delivery systems to deliver intact siRNA which would 

target the Human Epidermal Growth Factor Receptor 2 (HER2/neu) oncogene in a BC cell model.  

 Two cholesteryl cytofectins, 3β-[N-(N', N'-Dimethylaminopropane)-carbamoyl] cholesterol 

(Chol-T) and N, N-Dimethylaminopropylaminylsuccinylcholesterylformylhydrazide (MS09), were 

synthesized for the purposes of this study. A series of cationic liposomes were formulated using an 

equimolar ratio of the respective cytofectins together with the neutral lipid 

dioleoylphosphatidylethanolamine (DOPE). Sterically stabilized or stealth liposomes contained a 0-5 

mol.% 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] 

(DSPE-PEG2000) grafting.  

 Cryogenic-transmission electron microscopy (cryo-TEM) and dynamic light scattering 

measurements revealed that PEGylation generated smaller, defined structures when compared to their 

non-PEGylated counterparts. The hydrodynamic size ranges of the liposomal formulations and lipoplexes 

were 65-127 nm and 103-188 nm respectively, with moderate particle size distributions (polydispersity 

indices were <0.4). Liposomes bound and efficiently compacted siRNA as evidenced in band shift and 

ethidium bromide intercalation assays respectively, while nuclease digestion assays demonstrated that the 

degradative effect of serum on lipoplex-associated nucleic acid was minimal.  

 Cytotoxicity studies, involving the reduction of 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-

tetrazolium bromide (MTT), indicated that the siRNA lipoplexes elicited a dose-dependent cytotoxic 

effect, with cell viability remaining above 50% respectively. Gene expression studies indicated that the 

Chol-T:DOPE (0% PEG)/siRNA complexes induced the highest HER2/neu silencing effect at all tested 

N/P charge ratios, as observed from the significant fold-increase in gene expression (> 10 000-fold, 

P<0.001). Western blot analysis further confirmed this trend and revealed a dose-dependent decrease in 
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HER2/neu protein expression levels as indicated by a 160.28, 163.89 and 212.80-fold decrease in protein 

expression relative to the untreated SKBR-3 cells. Furthermore, the most active non-PEGylated Chol-T 

formulations were less cytotoxic and exceeded the knockdown level of Lipofectamine
®
 3000 control (4.1-

fold decrease). Results suggest that these cytofectin-based cationic liposomes with moderate degree of 

PEGylation have potential as vectors for trans-gene expression and HER2/neu siRNA gene silencing in 

BC cells. 

Keywords: HER2/neu, small interfering RNA (siRNA); breast cancer; cationic lipids, PEGylation 

 


