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Abstract

The Lie theory of extended groups applied to differential equations is ar­

guably one of the most successful methods in the solution of differential equa­

tions. In fact, the theory unifies a number of previously unrelated methods into

a single algorithm. However, as with all theories, there are instances in which

it provides no useful information. Thus extensions and generalisations of the

method (which classically employs only point and contact transformations) are

necessary to broaden the class of equations solvable by this method.

The most obvious extension is to generalised (or Lie-Biicklund) symmetries.

While a subset of these, called contact symmetries, were considered by Lie and

Biicklund they have been thought to be curiosities. We show that contact

transformations have an important role to play'in the solution of differential

equations. In particular we linearise the Kummer-Schwarz equation (which

is not linearisable via a point transformation) via a contact transformation.

We also determine the full contact symmetry Lie algebra of the third order

equation with maximal symmetry (ylll = 0), viz sp(4).

We also undertake an investigation of nonlocal symmetries which have been

shown to be the origin of so-called hidden symmetries. A new procedure for the

determination of these symmetries is presented and applied to some examples.

The impact of nonlocal symmetries is further demonstrated in the solution of

equations devoid of point symmetries. As a result we present new classes of

second order equations solvable by group theoretic means.

A brief foray into Painleve analysis is undertaken and then applied to some

physical examples (together with a Lie analysis thereof). The close relationship

between these two areas of analysis is investigated.

We conclude by noting that our view of the world of symmetry has been

clouded. A more broad-minded approach to the concept of symmetry is im­

perative to successfully realise Sophus Lie's dream of a single unified theory to

solve differential equations.
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Preface

I am often asked the question: 'What possesses anyone to study Mathematics?'.

One could easily wax lyrical about the great applications of Mathematics to

problems in the real world. This would immediately suggest that one studies

Mathematics for some philanthropic reason - a need to be able to contribute to

the improvement of life on earth. As attractive a reason as this is, I cannot, in

all honesty, use it as my excuse. Indeed, I do what I do, for purely selfish reasons

- I enjoy it! As hedonistic as this sounds, I take comfort in the knowledge that

I am not alone in this regard. For example, Poincare observes: The scientist

does not study nature because it is useful; he studies it because he delights in

it} and he delights in it because it is beautiful. [176, p v]

That is precisely the reason I am enamoured with the study of differential

equations in general and Lie's method for their analysis in particular. There

can be no greater harmonious order than Lie's method which encompasses

many divers (often ad hoc) methods of solution of differential equations. To

Lie I am imminently grateful for drawing me into the world of invariance and

differential equations. He provided the impetus for, what I hope to be, a long

and lasting romance with differential equations.

K S Govinder

November 1995
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Chapter 1

Historical Overview

We present a brief overview of the historical events leading to and including

Lie's development of the theory of continuous groups.

1.1 Introduction

It is an oft-related tale [173] that Sophus Marius Lie (1842-1899) and Fe­

lix Christian Klein (1849-1925) met in Paris in 1870, and learned group the­

ory from Camille Jordan (1838-1922) and his Traite des substitutions et des

equations algebriques. Thereafter, the story goes, they divided the subject be­

tween them; Lie took continuous and Klein discrete groups [179, p 271]. Rowe

[173], however, points out that at best this can be regarded as 'a first-order

approximation of the truth'. Indeed, Lie had studied a semester of group the­

ory under Ludwig Sylow (1832-1918) in 1862/1863 [173]. There is also ample

evidence to support the view that Klein was well aware of group theory before

his arrival in Paris [95]. Further, both Lie and Klein had difficulty digesting

Jordan's book. Klein referred to it as a 'book sealed with seven seals' [30, p

411]. Nonetheless, Klein, unlike Lie, was greatly impressed with the book [95].

Whatever the origin of their introduction to group theory, today it is ac­

cepted that the work of Lie and Klein formed one of the three founding pillars

of group theory [173]. (The other two were Gauss' theory of binary quadratic
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forms and the work of Lagrange, Cauchy, Abel and Galois on permutations.)

As Galois' work had the greatest influence on Lie, we begin our exposition with

him.

1.2 A tragedy of errors

The life of Evariste Galois (1811-1832) was plagued with misfortune [189, pI].

As a young boy he was easily bored with exercises in the Classics and subse­

quently did not pass his examinations. This setback was the first experienced

in his short life. His early lessons in mathematics sparked his interest despite

the fact that it was taught as an 'aside' to Latin and Greek. Luckily, during

his first year of proper mathematical studies at school he came into possession

of Legendre's geometrical work. He was mastered it 'as easily as other boys

read a pirate yarn' [25, p 408]. Galois had found his niche.

At the age of sixteen Galois repeated Abel's mistake of obtaining the general

solution for the quintic. (This was just one of the many parallels in their lives.)

Hotheaded and stubborn, Galois' conviction of his own worth led him to ignore

kindly advice from friends and teachers. He took the entrance examination to

the Ecole Polytechnique in Paris without preparation and was promptly failed.

(This downfall has often been ascribed to the ineptitude of his examiners (189,

pI]. )

The following year Galois came into contact with Louis-Paul-Emile Richard

(1795-1849), a teacher of advanced mathematics at Louis-le-Grand. Under

Richard's tutelage, Galois flourished; leading Richard to hail him as 'the Abel

of France' [25, p 412]. This was his greatest year, with the publication of his

first paper on continued fractions; his fundamental discoveries, however, were

saved for a memoir he wished the Paris Academy to publish. This manuscript

was sent to Cauchy to present, but Galois never heard from him thereafter.

Augustin Louis Cauchy (1789-1857), for all his contributions to the advance­

ment of mathematics, was most irresponsible in neglecting Galois' manuscript.
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This carelessness was a repeat of his abysmal treatment of Abel's memoir on

transcendental functions. (In that respect he shares the blame with Adrien­

Marie Legendre (1752-1833). However, it is acknowledged that the latter at­

tempted to make amends [157].) Such treatment caused both the young math­

ematicians considerable distress. In Abel's case it exacerbated his depression.

For Calois, it eventually led to his abandonment of mathematics.

Calois' eighteenth year brought more illfortune. It was the year of his second

failure at entering the Ecole Polytechnique. During this entrance examination

he demonstrated his only use for a blackboard eraser - he threw it at (and

hit) an examiner who irritated him [25, p 414]. Sadly, his father's death and

subsequent slandering soon followed. These incidents, together with the loss

of his entry for the Crand Prix in mathematics of the Academy of Sciences

proved too much for the young Calois who renounced mathematics for politics

(The secretary who took his entry home died that evening. No trace was ever

found of the manuscript.) [25, p 416].

His path through politics (on the side of republicanism) was no less tumul­

tuous. Arrested repeatedly, he was eventually given a six month prison sentence

for illegally wearing a uniform. This period in gaol was one of reflection. He

resolved, upon his release, to retire to the country to meditate. Unfortunately

this was not to be.

On the day of his release, he agreed to a duel with some apparent loyalists.

Perhaps anticipating his end, he spent the night feverishly noting his discoveries

in the theory of algebraic equations. He was fatally wounded in the duel and

died in his brother's company on 31 May 1832 [189, pI].

Calois' furious scribblings that fateful evening were destined to play a fun­

damental role in nineteenth and twentieth century mathematics. Niels Hendrik

Abel (1802-1829) had already provided the first (correct) proof that the gen­

eral quintic equation could not be solved in radicals (a paper Carl Friedrich

Gauss (1777-1855) dismissed without reading [25, p 353]). This was a special

case of Lagrange's conjecture that no general method of solution existed for
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algebraic equations of degree greater than four. Joseph Louis Lagrange (1736­

1814) came to this conclusion in his long memoir Refiexions sur la resolution

algebrique des equations wherein he reviewed all previous attempts to solve the

quintic [189, pp 6-7]. Noting that the solutions to the quadratic, cubic and

quartic were obtained via resolvents, he attempted the same for the quintic.

He soon realised that this required the solution of a sixth degree equation and

conjectured that, generally, the solution of an nth degree equation required the

solution of an (n + 1)th degree equation. Lagrange's work relied heavily on

permutations of the equation's roots and led to his prophetic statement that

the theory of permutations was the key to the proof of his conjecture [189, p

7]. Although he was unaware of the term 'group', Lagrange was certainly led

in that direction by his study of permutations of roots. As a result of this work

one of the first theorems in group theory was named after him [189, p 7].

The proof of Lagrange's conjecture (using the theory of permutation of

roots) was contained in Calois' writings. Calois, already aware of (and im­

pressed by) Abel's work, clearly saw the route to the solution of the problem.

He expressed the fundamental properties of the transformation group belonging

to the roots of an algebraic equations and showed that the field of rationality of

these roots was determined by the group. Calois' work was based on the idea

of the 'degree of symmetry' of an algebraic equation [189, p 10]. According to

him, the degree of symmetry of an nth degree equation f(x) = 0 (with rational

coefficients) is described by the set of permutations of its roots Xl, X2,"" X n

that preserve all the algebraic relationships between them. This set, G say,

contained

(i) the unique identity permutation,

(ii) the product of every two permutations already contained in G and

(iii) the inverse of every permutation already in G.

Such a set Calois called a group of permutations. (While this notion is evident

in the work of Lagrange and Abel, Calois was the first to clearly delineate the
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idea.. The more abstract approach to the notion of a group (without specify­

ing the nature of the elements or the meaning of the group operation) is due

to Cauchy.) He showed this transformation group, leaving the algebraic rela­

tionships between the roots of the equation invariant, determined the field of

rationality of those roots. Calois is also credited with introducing the concept

of a field (again already known to others in some vague form), subgroup, order

of a group, normal subgroup, simple groups, solvable groups and many other

group theoretic terms in use today [189, p 14].

Calois' final writings did not lead directly to the popularising of his results.

In an ironic twist, it was Cauchy's work that spurred development in Calois'

area. In his 'theory of substitutions', Cauchy grasped at the notion of a group

(though he did not use the word) [189, p 139]. He flooded mathematical

literature during 1844-1846 with notes and memoirs on his theory [189, p

139]. (Indeed his legendary productivity was responsible for the restriction in

Comptes Rendus hebdomadaires des Seances de l 'Academie des Sciences of the

length of articles to a maximum of four pages [25, p 324].) This paved the

way for Joseph Louiville (1809-1882) to publish most of Calois' papers in his

Journal de mathematiques pures et appliques in 1846. The pivotal role played

by Cauchy in popularising Calois' work was yet to come.

After Cauchy's death, Jordan was given the task of overseeing publication

of his collected works. Searching for unpublished papers among Cauchy's writ­

ings, Jordan came across Calois' neglected letter to Cauchy [189, p 2]. Civen

his own interest in group theoretic-type work [95] Jordan immediately recog­

nised the importance of Calois' letter. After collecting and assimilating all

Calois' work he clarified and elaborated on the ideas in his Traite of 1870. The

importance of this work lies not only in popularising Calois' main result of the

solvability of algebraic equations in radicals, but in making Calois' methods

accessible to a wide audience.

Building on Jordan's dissemination of Calois' work, Lie and Klein were

responsible for introducing group theoretic concepts into various branches of
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mathematics. In the sequel we provide a brief biography of Lie's life and

describe some of his results.

1.3 A lonely wanderer

Sophus Lie was born in 1842 in a seaside town near Bergen, Norway. Even

as a young boy he enjoyed travelling the length and breadth of his beloved

country. This passion for his homeland fostered many returns through his life.

Unlike Galois [25, p 408], Lie flourished at school and soon had his pick of

professions. Like Abel [157] he came from a theological background and, after

initial hesitation [38], seized upon mathematics as his vocation.

His first forays into mathematics were not very encouraging. However, he

eventually came across the geometers Victor Poncelet (1789-1867) and Julius

Plucker (1801-1868). Their work greatly influenced the young Lie and led

to his first publications. To continue his education he travelled to Berlin in

1870 where he met Klein (a former student of Plucker). Both were immediately

drawn to each other (somewhat encouraged by the cold reception they received

by the other mathematicians). Here they cemented what was to become a long

and lasting friendship.

Desiring a meeting with Jordan and Gaston Darboux (1824-1917) Lie and

Klein set off for Paris in 1871. They planned to acquaint themselves with the

French school before moving on to London. However, the Franco-Prussian war

soon put an end to these ambitions - Klein had to leave for Germany in some

haste. Alone again, Lie reverted to his favourite pastime, beginning a hike

through the French countryside on his way to the Alps and Italy. His abstract

wanderings in France, coupled with feverish mathematical scribblings in his

notebook (in Norwegian of course), were sufficient to rouse the suspicions of

the locals. There is little doubt that his poor French did not help. He was

arrested as a German spy and spent a month in the prison of Fontainebleau

[189, p 24].
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Despite this setback, the time in prison was not wasted. Lie spent the month

pondering Plucker's line geometry and his discussions with Klein in Paris.

(Indeed these musings eventually brought him his greatest fame [189, p 125].)

Upon gaining his freedom (through Darboux's intervention) he continued his

hike through France and Italy.

Lie's first task on returning to Norway was the completion of his doctoral

degree (1871). Subsequently, Klein used his extensive scientific connections to

secure a professorship for Lie in Oslo (then Christiana). With the exception

of a year teaching at Lund (Sweden) Lie spent the next decade in his beloved

Norway. During this period he met and married Anna Sophie Birch; a marriage

which was by all accounts a happy one.

Much as Norway appealed to Lie's nature, the setting posed considerable

limitations. These included a lack of vibrant scientific community and com­

petent students. Once again, Klein came to his rescue, suggesting that Lie

take his (Klein's) chair of geometry at Leipzig University - Klein having been

called to Gottingen. The years in Germany were Lie's most productive and

saw fruitful collaboration with his students Freidrich Engel (1861-1941), Georg

Scheffers (1866-1945) and Felix Hausdorff (1868-1949). However, sensitive and

highly strung, Lie was unhappy in Leipzig's austere environment. He suffered

bouts of depression towards the end of his stay, and ended up attending a

psychiatric clinic in Hannover.

The only blemish on Lie's conduct occurred during this period. He rather

bluntly pointed out in [135] that he was not Klein's pupil, but that the opposite

was true. This tactless remark in a scientific work hurt Klein deeply. It is to his

great tribute that he did not respond and the friendship survived this mishap

intact.

In 1898, Lie received the first International Lobachevsky prize [189, p 127] to

add to his many titles and awards [38]. Later that year he returned to Norway,

no doubt hoping to spend his days in quiet retirement. This was terminated

prematurely by his death the following year (18 February 1899) of cerebral

7



an;:emla.

1.4 The Group theoretic work of Lie

In this section, we are primarily concerned with Lie's (and to a lesser extent

Klein's) contributions to group theory. Nonetheless, it would be inaccurate to

suggest that this was the only subject consuming his attention. His background

was in geometry and he considered himself a representative of that field [173].

The work of Lie and Klein grew from their first collaborative effort on W­

curves. This arose from Lie's considerations on tetrahedral complexes before

arriving in Berlin. His interest lay in invariance (or symmetry) and led to the

introduction of the totality of all projective transformations of space (denoted

by G) which leave the vertices of a fixed tetrahedron fixed. In his study of the

geometry of tetrahedral complexes Lie made use of the properties of G. These

properties can be seen to be related to the structure of G as a continuous

group [95]. Together with Klein, Lie continued these deliberations to consider

the determination of each curve of the plane that has a 'complex group of

projective motions along itself' [189, p 110]. These curves were called W­

curves. This eventually led to his discovery of the correspondence between

systems of straight lines and spheres [95].

In fact, in the work on W -curves, Lie had been studying one-parameter

subgroups of a given continuous group. This played a great role in the con­

struction of Lie algebras and was pivotal in Klein's Erlangen Program [189, p

110]. For Lie it marked the beginning of his remarkable work on continuous

groups.

Lie's main result is the proof that it is always possible to assign to a con­

tinuous (Lie) group a corresponding (Lie) algebra. He also worked out the

construction to obtain a (Lie) group from each (Lie) algebra [189, p 103].

Thus he was able to carry into the theory of (Lie) algebra all previously group

theoretic notions. Today the distinction is often blurred.
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In the early to middle 1870s, Lie observed that special types of differen­

tial equations with known methods of solution admitted known infinitesimal

transformations. He believed it was the existence of these transformations that

was the 'real' reason behind the integration of these equations [95]. Greatly

inspired by Galois, he wrote in 1874:

In the theory of algebraic equations before Galois only these ques­

tions were posed: Is an equation solvable by radicals, and how is

it to be solved? Since Galois, among other questions proposed is

this: How is an equation to be solved by radicals in the simplest

way possible? I believe the time is come to make a similar progress

in differential equations. [25, p 436]

Lie conceived of a variant of the role of the Galois (finite) group method for al­

gebraic equations to that of a continuous group of infinitesimal transformations

of a differential equation whose properties enabled one to solve the equation.

Lie's theory of continuous groups applied to differential equations soon be­

came the standard in many texts [108, 65]. However, it was eventually lost

in the mathematical advances of the early twentieth century. Interest in the

theory today is largely due to the work of Lev Vasil'evich Ovsyannikov (1919-)

and his group in Novosibirsk in the mid twentieth century. The term 'modern

group analysis' used widely today is due to one of his students, Nail Hair­

ullovich Ibragimov (1939-) [104]. Interest in Lie groups did not undergo a

similar wane, primarily due to applications in particle physics.

Another topic in continuous groups that attracted Lie's attention was that

of contact transformations. (Contact transformations are those that transform

curves into curves leaving their degree of contact invariant.) He believed that

they had an important role to play in the solution of partial differential equa­

tions. This work flowed from his previous studies of W -curves and appeared as

early as 1873 [38]. Lie was also grasping towards a group theoretic approach to

Huygen's principle [136, p 49][102]. In addition to these applications contact
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transformations provided the key to understanding Hamiltonian dynamics as

a part of group theory [179, p 274]. (See also [31].)

A testament to Lie's research is his collected works - spanning ten volumes.

The compilation of his work was started in 1900. With the help of the Leipzig

Scientific Society and the Teubner publishing house, this effort endured World

War I to be produced in 1920-1934 [189, p 128]. These 15 books did not include

his three volume work on transformation groups with Engel [133, 134, 135] or

his three books on differential equations [132], continuous groups [136] and

contact transformations [137] with Scheffers. It is said that Lie was one of the

last great mathematicians of the nineteenth century. He had a touch of Gauss

and Riemann in his scientific profile [189, p 12].

For those interested in biographies of mathematicians we recommend [105,

25,26, 179, 64, 157, 92, 114, 176, 189, 30, 95, 173, 113, 158]. Those interested

in Lie and/or Klein are particularly encouraged to read [189].
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Chapter 2

Lie Theory of Differential

Equations

We present a brief introduction to the classical Lie theory of extended groups

applied to differential equations. Simple examples are used to illustrate differ­

ent aspects of the theory.

2.1 Definitions

We present some definitions that will aid in the clarification of the subsequent

analysis.

Group: A group G is a set of elements with a law of composition <jJ between

elements satisfying the following axioms [29]:

(i) CLOSURE PROPERTY: For any element a and b of G, <jJ(a, b) is an

element of G.

(ii) ASSOCIATIVE PROPERTY: For any elements a, band c of G,

<jJ(a,<jJ(b,c)) = <jJ(<jJ(a,b),c).
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(iii) IDENTITY ELEMENT: There exists a unique identity element I of

G such that, for any element a of G,

c/;(a,I) = c/;(I, a) = a.

(iv) INVERSE ELEMENT: For any element a of G there exists a unique

inverse element a-I in G such that

Abelian group: A group G is Abelian if c/;(a, b) = c/;(b, a) holds for all ele­

ments a and b in G.

Group of transformations: The set of transformations

x = X(x;c)

defined for each x in the space D C R, depending on the parameter c

lying in the set 5 c R, with c/;(c, <5) defining a composition of parameters

c and <5 in 5, forms a group of transformations on D if:

(i) For each parameter c in 5 the transformations are one-to-one onto

D.

(ii) 5 with the law of composition c/; forms a group.

(iii) x = x when f = I, ie

X(x; 1) = x.

(iv) If x = X(x; c), X = X(x; <5), then

x= X(x; c/;(c, <5)).

Lie group of transformations: A one-parameter Lie group of transforma­

tions is a group of transformations which, in addition to the above, sat­

isfies the following:
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(i) c is a continuous parameter, ie 5 is an interval in R. (Without loss

of generality c = 0 corresponds to the identity element I.)

(ii) X is infinitely differentiable with respect to x in D and an analytic

function of c in 5.

(iii) c1Y(c, 8) is an analytic function of c and 8, c E 5, 8 E 5.

Subgroup: A subgroup of G is a group formed by a subset of elements of G

with the same law of composition.

Special linear group: The complex general linear group GL(n, C) and the

real general linear group GL(n, R) consist of all nonsingular complex and

real n x n matrices respectively [24]. (The latter may be considered as a

subgroup of the former.) The complex special linear group 5 L(n, C) is

the subgroup of GL(n, C) consisting of matrices with determinant one.

The real special linear group 5L(n, R) is the intersection of these two

subgroups

5L(n,R) = 5L(n,C) n GL(n,R).

Rotation group: The rotation group 50(n, R) is the special or proper real

orthogonal group given by the intersection of the group of orthogonal

matrices O(n, R) and the complex special linear group, ie

50(n,R) = O(n,R) n 5L(n, C).

Lie algebra: A Lie algebra £ is a vector space together with a product [x, y]

that:

(i) is BILINEAR (ie linear in x and y separately),

(ii) is ANTICOMMUTATIVE (antisymmetric):

[x, y] = -[y, x],

(iii) satisfies the J ACO Br ID ENTITY

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

13



for all vectors x, y, z in the Lie algebra.

Abelian algebra: A Lie algebra £ is called Abelian (equivalently commuta­

tive) if [x,y] = OVx,y E £ [159].

Solvable algebra: A Lie algebra £ is called solvable if the derived series

£;2£'=[£,£]

;2 £" = [£', £']

::) ...

;2 £(k) = [£(k-l), £(k-l)]

terminates with a null ideal, ie £(k) = 0, k > 0 [106]. Note: Any Abelian

algebra is solvable and indeed any Lie algebra of dimension::; 3 is solvable

except when dim £ = 3 = dim £'.

A few comments about Lie algebras are now in order. The Jacobi identity

plays the same role for Lie algebras that the associative law plays for asso­

ciative algebras. While we can define a Lie algebra over any field, in practice

it is usually considered over real and complex fields. We define the product

associated with the Lie algebra as that of commutation, ie

[X,Y] = XY - YX.

If a differential equation admits the operators X and Y, it also admits their

commutator [X, Y]. Lie's main result [189] is the proof that it is always possible

to assign to a continuous group (Lie group) a corresponding Lie algebra and

vice versa. Thus for the real special linear group SL(n, R) the corresponding

Lie algebra is sf(n, R) and for SO(n, R), so(n, R). Here we will be primarily

concerned with Lie algebras and accept that the transformations we employ

may not always be globally valid.

14



2.2 The Algorithm

We present an introduction to the Lie analysis of differential equations. More

comprehensive details can be found in [55, 18, 19, 28, 21, 159, 172, 101, 29,

171, 178,20, 102, 156, 103].

An nth order ordinary differential equation

N( I (n)) - 0x,y,y, ... ,y -

admits the one-parameter Lie group of transformations

x = x + e~

y = y + er;

with infinitesimal generator

a a
G =~-+r;­ax ay

if

(2.2.1)

(2.2:2)

(2.2.3)

(2.2.4)

(2.2.5)

where G[n] is the nth extension of G needed to transform the derivatives in

(2.2.1) and is given by [146]

(2.2.6)

Note that the superscripts in (2.2.6) refer to total differentiation with respect

to the independent variable. (In the case of partial differential equations or

systems, ~, r;, x and y acquire suitable subscripts.) We say that (2.2.1) possesses

the symmetry (group generator) (2.2.4) iff (2.2.5) holds.

The classical approach requires that the coefficient functions ~ and r; depend

on the independent and dependent variables only (in this case x and y). The

operation of (2.2.6) on (2.2.1) produces an overdetermined system of linear

partial differential equations, the solution of which gives ~ and r;. We illustrate
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the procedure with a simplified form of the Ermakov-Pinney equation [58, 166]

11 1
y =-.y3 (2.2.7)

(See [79] for a generalisation of (2.2.7) and the use of Lie analysis in its solu­

tion.) The operation of G[2] on (2.2.7) produces the equation

0
2

7] I 0
2

7] 12 027] 1 07] 1 (oe I oe)
ox2 + 2y oxoy +Y oy2 + y3 0y - 2y3 ox +Y oy

_ I (0
2
e 2 I 0

2
e 12 0

2
e) __ 37]

y ~ 2 + Y ~ ~ + y ~ 2 - 4' (2.2.8)uX uxuy uy y

We observe that, while eand 7] do not depend on derivatives of y, these deriva­

tives do appear in (2.2.8). This allows us to equate different powers of y' to

zero to obtain a system of linear partial differential equations. In the case of

(2.2.8) the system is

02e
-2 =0
oy

02 7] 02e
--2--=0
oy2 oxoy

027] 3 oe 02e
2-------=0

oxoy y3 0y ox2

027] 1 07] 2 oe 37]-+-----=--ox2 y3 oy y2 Ox y4 .

We solve (2.2.9) to obtain

e = Aa + Alx + A2x2

7]= (~Al+A2X)Y

which gives the three symmetries of (2.2.7) as

o
G l =­

ox
o 1 0

G2 = x- + -y-
ox 2 oy
20 0

G3 = X ox + xy oy .

(2.2.9)

(2.2.10)

(2.2.11)

(Note that (2.2.10) gives a three parameter symmetry. The usual practice is to

set each of the constants in an n-parameter symmetry to one in turn and the

16



We have verified using M athematica [185] that (2.2.7) is invariant under the

finite transformation (2.2.18).

Having obtained the symmetries we are now in a position to utilise them in

the solution of differential equations.

2.3 Reduction of Order

The most important use of symmetries is in the reduction of order of an equa­

tion. If an equation is invariant under the symmetry

a a
G = ~(x,y) ox +TJ(X,y) ay'

the variables for the reduction of order are obtained by requiring

(2.3.1)

(2.3.2)

(2.3.3)

where z = z( x, y, y') is an arbitrary function of its arguments. The operation

(2.3.2) results in the equation

oz oz (' ") oz
~- + TJ- + TJ - y ~ - = 0

ox ay ay'

which has the associated Lagrange's system

dx dy dy'

~ TJ TJ' - y'e. (2.3.4)

The integration of the first two terms gives the zeroth order differential in­

variant (which we denote u) and that of the second two terms the first order

differential invariant (which we denote v). The terminology follows from

and

In the case of Gl , (2.3.4) is

Gu(x, y) = 0

G[l)V(X,y,y') = o.

dx dy dy'

1 0 0

18
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We have verified using Mathematica [185] that (2.2.7) is invariant under the

finite transformation (2.2.18).

Having obtained the symmetries we are now in a position to utilise them in

the solution of differential equations.

2.3 Reduction of Order

The most important use of symmetries is in the reduction of order of an equa­

tion. If an equation is invariant under the symmetry

a a
G = ~(x, y) ax + "1 (x, y) ay ,

the variables for the reduction of order are obtained by requiring

G[l]Z = 0,

(2.3.1)

(2.3.2)

(2.3.3)

where z = z(x, y, y') is an arbitrary function of its arguments. The operation

(2.3.2) results in the equation

oz OZ (' , ') oz
~ Ox + "1 ay + "1 - Y ~ ay' = 0

which has the associated Lagrange's system

dx dy dy'

~ "1 "1' - y'e' (2.3.4)

The integration of the first two terms gives the zeroth order differential in­

variant (which we denote u) and that of the second two terms the first order

differential invariant (which we denote v). The terminology follows from

and

In the case of Gl , (2.3.4) is

Gu(x, y) = 0

G[l]V(X,y,y') = O.

(2.3.5)

(2.3.6)

dx

1

dy
-o

18
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from which

u=y ,
v = y. (2.3.8)

To find the reduced equation we determine v' and substitute from the original

equation as follows:

,
v

dv

du

= dv /dU
dx dx

y"

y'
1 1
y'y3
1

(2.3.9)

Thus the transformation (2.3.8) reduces (2.2.7) to

, 1
vv = 3'u

The symmetries O2 and 0 3 transform as follows:

(2.3.10)

(2.3.12)

(2.3.11)

ell] _ a 1 aI' a
2 - xax + "2Y ay - "2Y ay'

_ au a 1 au aI' au a av a 1 av aI' av a
- xax au + 2Y ay au - 2Y ay' au + xax av + 2Yay av - 2Y ayav

1 a 1 a
= -u-- -v­

2 au 2 av
[2J 2 a a , a

0 3 = X ax + xy ay + (y - xy )ay'
a a

= xu- + (u - xv)-.au av
Now, from (2.3.8) we can write

dyv=-
dx
du

dx

dx = du
v

x = J~u.

19
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(2.3.14)

The symmetry G3 then becomes

G~ll = uJ du~ + (u - vJ dU) ~.
v ou v ov

As the symmetry now contains an integral of the dependent variable, it is no

longer a point symmetry, but falls under the class of nonlocal symmetries which

we discuss in the next chapter. This result can be inferred from the Lie Bracket

relations of (2.2.11), viz

(2.3.15)

Is can be easily proved [156, p 148] that, if the Lie Bracket relation between

two symmetries is

(2.3.16)

(2.3.17)

(A = 0 or a constant usually scaled to 1), then reduction via Xl will result in

X~ll being a point symmetry of the reduced equation. Reduction via X 2 will

result in XPl being a nonlocal symmetry of the reduced equation.

Eq (2.3.10) contains (at least) one point symmetry of the form

o 0
Xl = u- -V-.

oU ov

When a first order equation possesses a symmetry, it is usual to convert that

symmetry into one of translation in the independent variable thereby trans­

forming the equation into autonomous form [5]. It is thereafter a trivial matter

to write down the quadrature. In this case we wish to transform (2.3.17) to

o
Zl = oQ (2.3.18)

under the point transformation

Q=F(u,v) P=G(u,v). (2.3.19)

We require the operation of (2.3.17) on (2.3.19) to produce (2.3.18). This

results in the system

of of
u--v-=l

OU OV
oG oG

u--v-=o
OU ov

20
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which is easily solved to give

F = In u + H (u v) G = G(uv), (2.3.21 )

where G and H are arbitrary functions of their arguments. If we take G to be

the identity and H as zero, (2.3.19) becomes

Then we have

Q = lnu P = uv. (2.3.22)

from which the quadrature

dP v +uv'

dQ 1/u

= uv + u2 (1/(vu 3
))

= P +p-l

J PdP
Q - Qo = p2 + 1

(2.3.23)

(2.3.24)

follows naturally. The solution to (2.2.7) is obtained from (2.3.24) by inverting

the transformations (2.3.22) and (2.3.8) respectively.

Remarks: i) Eq (2.2.7) is trivially integrable. The above procedure is merely

illustrative. ii) In the case of (2.3.10) it is also easily integrable as it is in vari­

ables separable form. However, in practice this is rarely the case and the

subsequent procedure need be followed to make any progress. iii) We men­

tioned that (2.3.10) has at least one point symmetry, viz (2.3.17). In fact, it

is well-known [132, p 114][29, p 103] that all first order equations possess an

infinite number of point symmetries, the determination of which requires the

solution of the original equation! The standard method to determine symme­

tries of first order equations is to examine the fate of symmetries of higher order

equations under successive reductions of order. Convenient tables of symme­

tries for specific first order equations exist in [102]. iv) The transformation of

(2.3.10) to autonomous form illustrates another use of symmetries - that of

transforming equations to recognisable and/or solvable equations by a change

of basis of the algebra of the symmetries.
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2.4 First Integrals of Equations

In addition to solving equations, symmetries can be used to determine first

integrals of systems of equations. The physical importance of first integrals is

that, in some instances, they represent conserved quantities.

The differential equation (2.2.1) possesses a first integral

1 - f( , (n-l))- x,y,y, ... ,y

in which the dependence on y(n-l) is nontrivial if

(2.4.1)

df

dx
N=O

= o. (2.4.2)

(The subscript N = 0 is used to emphasise that the differential equation must

be invoked. This underscores the fact that first integrals cannot exist in isola­

tion of their equations of motion.) To calculate a first integral, I, associated

with a symmetry, G, two linear partial differential equations need be solved.

The first is obtained from the restriction that the integral satisfies the re­

quirement of annihilation under the action of the (n - 1)th extension of the

symmetry and the second from its vanishing total derivative with respect to

the independent variable, x (taking the equation into account). If the first

integral is (2.4.1), we require

(2.4.3)

There are n characteristics of (2.4.3) (which we denote Ui, i = 1 ... n) and we

have

f = g(Ui). (2.4.4)

(2.4.5)

The second partial differential equation results from the further requirement

dgl- =0
dx N=O

for which there are n -1 characteristics (we which denote Vi, i = 1 ... (n -1)).

(Obviously the method does not work for first order equations.) The first

integral is now

1= h(Vi),
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where h is an arbitrary function of its arguments. In particular, each of the

Vi (which (must) include y(n-l) nontrivially) are first integrals. It may be

advantageous to take combinations. However, it must be noted that only n-1

independent first integrals can be obtained from anyone symmetry.

Let us consider the equation [89]

y'" + y" + yy' = 0 (2.4.7)

which arises in the study of shear-free, spherically symmetric perfect fluid

spacetimes which admit a conformal symmetry. Eq (2.4.7) possesses the sole

Lie point symmetry [96]

Reduction of order via

(2.4.8)

results in

u=y V = y' (2.4.9)

which integrates to

vv" + v' + V'2 + u = 0

vv' + v + ~U2 = K.

(2.4.10)

(2.4.11)

We now investigate the occurrence of first integrals for (2.4.7). A first inte­

gral of (2.4.7) will have the form

1= f(x, y, y', y").

To find f we first require

The associated Lagrange's system is

dx dy _ dy' _ dy"
1 0 - 0 - 0

from which

1= f(u, v, w) = f(y, y', y").
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The further requirement that

dJI = 0
dx

(2.4.7)

(2.4.16)

results in
du

v

dv

w

dw

-w-uv
(2.4.17)

The normal way to proceed is to take suitable combinations of the terms in

(2.4.17) and integrate them to obtain the characteristics [105, p 49]. Here we

take u X (2.4.17)1 + (2.4.17h + (2.4.17h to obtain

from which we obtain

udu +dv + dw

o

p = ~U2 + V +w

_ 12+ '+ 11- "iY Y y.

(2.4.18)

(2.4.19)

It is not obvious that any other characteristic can be obtained from (2.4.17).

This example depicts clearly that while n - 1 first integrals are expected for a

given symmetry, this is merely an 'in principle' existence. We have

J = f(p) (2.4.20)

which is a first integral of (2.4.7). For convenience f is taken to be the identity.

The combinations that are required to integrate the associated Lagrange's

system are not always obvious. However, we can make some progress by follow­

ing a purely formal route without knowledge of the appropriate combination.

Consider (2.4.17h and (2.4.17h, viz

du dv

v w
(2.4.21 )

which we can formally integrate to obtain
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Substitution of (2.4.22) into (2.4.17h and (2.4.17h produces

du dw
(2.4.23)

This is easily integrated to obtain (after substitution from (2.4.22) again)

(2.4.24)

which is (2.4.19) again. Further progress could be made by substituting (2.4.24)

back into (2.4.17). However, this results in the equivalent of (2.4.11) and does

not facilitate further analysis.

2.5 Generalised and Contact Symmetries

We have thus far been primarily concerned with Lie point symmetries of the

form
a a

G = ~ ax + 'TJ ay' (2.5.1)

in which the coefficient functions ~ and 'TJ depend on (x, y) only. It is natural

to consider the extension of the dependence of the coefficient functions to

derivatives of the dependent variable. These symmetries are called generalised

symmetries and have the form [156, p 289]

G = ~(x, y, y', .. .)~ +t 'TJi(X, y, y', ... ) a(i)'
uX ;=0 ay

(2.5.2)

Symmetries of the form (2.5.2) are also referred to as Lie-Biicklund symme­

tries [21, 29]. GIver [156, p 375] quite emphatically points out that both Lie

and Biicklund did not make the transition from contact symmetries to the

consideration of truly generalised symmetries and discourages the use of that

terminology. We use both terms interchangeably as there is reason [144] to

dispute GIver's choice of terminology as well.

The determination of generalised symmetries, while algorithmically the same

as that of point symmetries, does contain some intricacies not present in the

latter. In general, the coefficient functions depend on (up to) the (n - 1)th
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derivative of y. For the practical determination of these symmetries one has

to place a restriction on the order of the derivatives. Thus we can consider,

for example, the third order generalised symmetries of Burgers' equation (in

potential form) [156, p 295]

Ut - u; - U xx = 0 (2.5.3)

or the fifth order Lie-Biicklund symmetries of the Korteweg-de Vries equation

[29, p 279]

Ut +UU x + U xxx = O. (2.5.4)

In the determination of generalised symmetries it must be borne in mind that

differential consequences need to be taken into account. In the case of (2.5.3)

we replace the time derivatives that arise in the extension of (2.5.2) via the

equation, ie

(2.5.5)

(2.5.6)

This leads to a great simplification as the coefficient functions are then free of

time derivatives. The technique now proceeds as in the case of point symme­

tries. While their greatest application is to partial differential equations Adam

et al [17] show that it is possible to successfully apply the concept to ordi­

nary differential equations. (See [21] for a detailed exposition of Lie-Biicklund

symmetries and [180] for a recent contribution.)

A subset of generalised symmetries, called contact symmetries, has proven

to have important application in the study of higher order ordinary differential

equations [22, 137]. That Lie believed in their importance is evidenced by the

fact that two [134, 137] of his six books are devoted to them.

A scalar nth order ordinary differential equation

E( I (nl) - 0x,y,y, ... ,y -
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possesses the contact symmetry

, a ( ') a r ( ') aG = e(x,y,y) Ox + r; x,y,y ay +" x,y,y ay'

provided there exists a characteristic function [137, p 95] W such that

avV
e= ay'

,aW
r; = y ay' - W

aW ,aW
(=---y-.ox ay

Note that W is defined by [29]

The implication of (2.5.8) is that

or; _ y'!!{ = o.
ay' ay'

(2.5.8)

(2.5.9)

(2.5.10)

(2.5.11)

(2.5.12)

(2.5.13)

This requirement forces the space of transformations to close and obviates

assumptions about the y' dependence of the coefficient functions. Again the

determination of these symmetries follows the same algorithm of that of point

symmetries.

In the case of a second order ordinary differential equation an infinite num­

ber of contact symmetries exists [137, p 84]. While their form and relationship

to first integrals are of some interest [147], their existence for second order

equations is analogous to that of point symmetries for first order equations.

The importance of contact symmetries is evidenced by their presence and ap­

plicability in third order equations [15, 59, 9, 60]. We provide an instance of

third order equations equivalent under a contact transformation but not under

a point transformation.

It is easy to verify that

y'" = 0
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has the ten contact symmetries [137, p 242]

a
G1 =­

ay
a a

G2=X~+~
uy uy

2 0 a
G3 =x ~+2x~

uy uy
a

G4 = ­
ox
a a

Gs=x-+y-
ox ay

2 0 a a ( )
G6 = X ox + 2xy ay + 2y ay' 2.5.15

a ,a
G7 = y ay + y ay'

,a 1'2 aGs = y - + -y -
Ox 2 ay

( ' ) a '2 a '2 aG9 = 2 xy - y - + xy - + y -,
ox ay ay

2 , ) a (1 2 '2 2) a ('2 ') aGlO = (x y - 2xy Ox + 2X Y - 2y ay + xy - 2yy ay"

the commutation relations of which are given in Table 2.1.

The Lie algebra generated by these symmetries is a IQ-dimensional simple

Lie algebra, isomorphic to the Lie algebra of the symplectic group Sp(4). This

isomorphism can be realised as follows. Write a general element of the Lie

algebra in (2.5.15) as L}~l gjGj . Then this element corresponds to the matrix

below in the Lie algebra of sp(4):

~(g5 - g7) g9 glO g6

-g2 ~(gS+g7) g6 -2g3
(2.5.16)

-Hgs ~ g7)2g2 -g4 g2

-g4 -g2 -g9 -~(gs + g7)

Note that the first seven symmetries in (2.5.15) are really first extensions of

point symmetries. (Obviously all point symmetries are contact symmetries.)

It is conventional to call the remaining three symmetries in (2.5.15) intrinsic

or 'purely' contact symmetries. The ten contact symmetries of (2.5.14) are
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Table 2.1: Commutation table for the ten contact symmetries of ylll = o. The table has been subdivided to highlight the

3Al , 8£(2, R) El) Al (rv g£(2, R)) and 3A l subalgebras.

~ Gl G2 G3 ~ G4 Gs G6 I G7 ~

t:"
CD

Gl 0 0 0 0 Gl 2G2 Gl 0 -2G4 -2(Gs +G7 )

O2 0 0 0 -01 0 0 3 O2 0 4 207 -06

0 3 0 0 0 -2G2 -G3 0 G3 2(Gs - G7 ) 2G6 0

0 4 0 Gl 202 0 G4 20s 0 0 2Gs Og

Gs -01 0 G3 -G4 0 G6 0 -Os 0 GlO

0 6 -202 -G3 0 -2Gs -06 0 0 -Gg -20 ID 0

0 7 -Gl -G2 -G3 0 0 0 0 Gs Gg GID

Os 0 -G4 -2(Gs - 0 7 ) 0 Os Gg -Os 0 0 0

0 9 2G4 -2G7 -2G6 -2Gs 0 2GlO -Gg 0 0 0

OID 2(Gs + G7 ) G6 0 -Gg -G lO 0 -GlO 0 0 0



the maximum number for third order ordinary differential equations [137, P

241]. In addition to the equivalence of all third order equations with seven

point symmetries to (2.5.14) under a point transformation we now have the

equivalence of all third order equations with ten contact symmetries to (2.5.14)

under a contact transformation. Consider the Kummer-Schwarz equation [27]

2Y'y'II - 3y"2 = 0

which has the ten contact symmetries [96]

(2.5.17)

a
Zl = oX

a , a
Z2 = X aX - y ay'

2 0 ,a
Z3 = X oX - 2XY ay'

a
Z4 = ay

a ,a
Zs = y ay + y ay'

20 ,a ( )
Z6 = Y ay +2YY ay' 2.5.18

Z = 2y'-1!2~ _ 2y'l!2~
7 oX ay

Z = 2Xy,-1!2~ _ 2xyl1!2~ _ 4yl1!2~
8 oX ay ay'

Z = 2yy,-1/2~ _ 2yy,l!2~ _ 4y,3/2~
9 oX ay· ay'

Z = 2Xyy'-1!2~ - 2Xyy'l!2~ _ 4 (Xy'3!2 + yyl1!2)~
10 ax ay ay'·

The last four symmetries in (2.5.18) are intrinsic contact symmetries. The first

six are point with the Lie algebra that decomposes into sf(2, R) EB sf(2, R).

(Although s£(2, C) EB sf(2, C) f'.J so(4, C) there does not exist a similar char­

acteristic of the real form [15].) As the Lie algebras of the point symmetries

of (2.5.14) and (2.5.17) differ these equations are not equivalent under a point

transformation. That the dimension of the Lie algebras of the contact sym­

metries of (2.5.14) and (2.5.17) are equal is suggestive. We find that the Lie

Bracket relations of (2.5.18) are the same as those of (2.5.15) with Zs replaced
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by X s if we make the identifications

(2.5.19)

Noting the equivalence of the contact Lie algebras we look for a contact trans­

formation between (2.5.14) and (2.5.17). This must have the form

x = F(x, y, y') Y = G(x, y, y') Y' = H(x, y, y'). (2.5.20)

(2.5.21)

(2.5.23)

(2.5.22)

We pick on three symmetries from (2.5.14) to transform to three symmetries

of (2.5.17). The choice is aided by the knowledge that sp(4) decomposes into

the 3A I , s£(2, R), Al and 3A I subalgebras. We choose those symmetries which

form the 8£(2, R) subalgebras, viz

3
G4 = ­

3x
fJ fJ

G5 =x-+y-
3x 3y
23 3 3

G6 = x Ox + 2xy 3y + 2y oy'

and

x = Xy'-1/2~ _ Xy'I/2~ _ 2ytl / 2~
4 3X 3Y 3Y'

X X
3 fJ ,3

5=- -+Y-+2Y­
3X 3Y 3Y'

X = yy'-1/2~ _ yy'I/2~ _ 2y'3/2~
6 3X 3Y 3Y"
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We obtain the three sets of quasi-linear partial differential equations

8F F
8x H1/2

8C = _FH1 / 2

8x
8H = _2H1/2
8x

8F 8F
x-+y-=-F

8x 8y
8C 8G

x-+y-=G
8x 8y

8H 8H
x-+y-=2H

8x 8y

and

28F 8F. 8F G
x 8x + 2xy 8y + 2y 8y' = H1/2

28G 8G 8G 1/2x -+2xy-+2y- = -GH
8x 8y 8y'

28H· 8H 8H 3/2
x -+2xy-+2y- = -2H ,

8x 8y 8y'

which we solve to obtain

(2.5.27)

(2.5.28)

(2.5.29)

(2.5.30)

(2.5.31 )

(2.5.32)

(2.5.33)

(2.5.34)

(2.5.35)

x- 2
- xy' - 2y'

Y= 2x, 'y
(2.5.36)

(It is easily verified that Y' = dY/ dX.) Thus (2.5.14) is transformed to (2.5.17)

via the contact transformation (2.5.36). This result is consistent with Lie's [137,

p 86] that it is necessary for third order equations to be of the form

1/' _ A 1/3 + E 1/2 + C 1/ + Dy - y y y , (2.5.37)

where A, E, C and D are arbitrary functions of x, y and y', to be equivalent to

(2.5.14) under a contact transformation. This further underscores the impor­

tance of contact symmetries for third order equations. The solution of (2.5.17)

follows from that of (2.5.14), viz

y = A + Ex + Cx 2
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which, via (2.5.36), is

y = 4(1 +AX)
4C + (4AC - B2)X

(2.5.39)

We note that both contact and generalised symmetries can be calculated

using PROGRAM LIE [96]. The calculation of the former is straightforward and

a standard input file can easily be constructed. However, in the case of the

latter the input file depends on the equation under consideration. See Appendix

A for further details.



Chapter 3

N onIoeaI symmetries

We explore the implications of extending the concept of Lie symmetries to

include nonlocal symmetries. A method is presented for the calculation of

nonlocal symmetries for equations possessing a single point symmetry [83].

Classes of second order equations not possessing Lie point symmetries but

possessing a rich structure of nonlocal symmetries (and thereby enabling their

solution) are calculated [8, 87]. vVe also demonstrate the equivalence of linear

third order ordinary differential equations under nonlocal transformations [88].

3.1 Introduction

In a number of papers Abraham-Shrauner and co-workers [10,4, 11, 13,91,5,

12] have discussed what they term hidden symmetries. Hidden symmetries are

those that arise unexpectedly in the change of order of an equation. Consider

the three-parameter group

(3.1.1)

34



with the Lie Bracket relations

[Cl' C2 ] = Cl

[Cl' C3 ] = 2C2

[C2 , C3 ] = C3 .

(3.1.2)

If an equation invariant under only this group is reduced in order via Cl, then

[156, p 148] only the reduced form of C2 is expected as a point symmetry of

the reduced equation. All other point symmetries of the reduced equation that

are found by direct calculation are called hidden symmetries of the reduced

equation. (While the initial occurrences of hidden symmetries were as point

symmetries, there is no reason to exclude contact symmetries [14].)

There are two varieties. Hidden symmetries of Type I arise when the order

of an equation is increased and Type II when the order of an equation is

decreased. Equivalently we could say that Type I (II) hidden symmetries are

lost (gained) when the order of an equation is reduced. Consider the second

order ordinary differential equation [9]

(3.1.3)

with the single Lie point symmetry [96]

If we increase the order of (3.1. 3) via

(3.1.4)

V=x V' = y, (3.1.5)

we obtain the linear third order equation

VIII - V = 0

which has, in addition to the ascendant of (3.1.4), viz

8
Xl =v­ov
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and the symmetry created by (3.1.5), viz

a
X 2 =-,ou

the three 'solution' symmetries of (3.1.6) [82], viz

X 3 = eU !!.-ov
X -wu a

4 =e -
OV

X -WU a
s = e aV'

(3.1.8)

(3.1.9)

where w = (1 +iV3) /2. The three symmetries (3.1.9) are called Type I hidden

symmetries of (3.1.6) as they were gained in the increase of order of (3.1.3) to

(3.1.6).

If we now reduced the order of (3.1.6) using X 3 , ie via

X =u, Y = Vi - V, (3.1.10)

we obtain the linear second order equation

y" + y' +Y = O. (3.1.11)

As (3.1.11) is linear, it possesses, in addition to the descendants of Xl, X2 , X4

and X s, the symmetries

Us = sin (hx) ~ - Y sin (hx - ~) ~oX 3 ay
U6 = cos (hX) ~ - Y cos (hx - ~) ~oX 3 ay
U Y wX a y2 wX ( ) a

7 = e oX + e w - 1 ay
wX a 2 wX - a

Us = Ye oX + Y e (w -1) ay

(3.1.12)

for a total of eight. The four symmetries (3.1.12) are called Type II hidden

symmetries of (3.1.11) as they were gained in the reduction of order of (3.1.6)

to (3.1.11).

As our primary concern is the reduction of order of equations, hidden sym­

metries of Type II are the ones of obvious interest to us. (We show later the

importance of Type I hidden symmetries.)
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The obvious question to consider is that of the origin of hidden syrnmetries.

The route to the answer is simple. If we consider (3.1.11), the origin of its

hidden symmetries (3.1.12) is obtained via the transformation (3.1.10). A

symmetry of (3.1.6) must have the form

(3.1.13)

where the arguments of ~ and 1] are as yet unspecified. Under (3.1.10) X~11

transforms as

[1] _ (ax ax (' _ '(:') ax) ~
X 6 - ~ au + 1] av + 1] vf., av' ax

(
ay ay (' ") ay) a

+ eau + 1] av + 1] - ve av' ay

a (' ,(:') a= ~- + 1] -1] - v f., -.ax ay

In the case of Us in (3.1.12),

e= sin (V3X)

1]' - 1] - Vit = - Y sin (V3X - ~) .

In terms of the variables of (3.1.6) ~ and 1] are (via (3.1.10))

(3.1.14)

(3.1.15)

e= sin(V3u) (3.1.16)

1] = eU Je-u {v sin (V3u - ~) - Vi [sin (V3u -~) + V3 cos(V3u)]} duo
(3.1.17)

We observe that X 6 has integrals of the dependent variable in its coefficient

functions. (Note that the Vi in (3.1.17) can be removed by integration by

parts.) As integrals cannot be defined at a point (ie locally), we call symmetries

involving integrals of the dependent variable with respect to the independent

variable nonlocal symmetries. (See also [103, p 68].)

The origin of Type II hidden symmetries then is found in nonlocal symme­

tries of the higher order equation. In a similar manner we find that Type I
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hidden symmetries originate from nonlocal symmetries of the lower order equa­

tion. It is therefore natural to investigate nonlocal symmetries and attempt

to find a means of calculating them for a given differential equation. (We

note that some hidden symmetries originate in contact symmetries [9]. How­

ever, this occurrence is rare and we can confine our attention to those hidden

symmetries that originate in nonlocal symmetries.)

For the purposes of reduction of order we are interested in nonlocal sym­

metries which become point for the equation of reduced order. This type of

nonlocal symmetry we call first order and we have

where

a a
G = ~(x, y, 1) ox + ry(x, y, 1) ay'

1= Jf(x, y)dx.

(3.1.18)

(3.1.19)

We shall see in §3.3 that even (3.1.19) is too general, but it shall suffice for the

present.

In the following sections we investigate the implications of allowing the

generalisation to nonlocal symmetries on the reduction of differential equations

to quadratures.

3.2 Determination of nonlocal symmetries

We recall, if

(3.2.1)

is a symmetry of some differential equation, then X is the generator of the

group of infinitesimal point transformations

x = x + c~

y = y +cry (3.2.2)

which leave the equation invariant. vVe wish to broaden this class of transfor­

mations to nonlocal transformations.
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For our purposes we call the set of infinitesimal transformations

x = x +ee

y = y +cry (3.2.3)

J = I + e'"'(,

where

1= Jf(x,y)dx, (3.2.4)

a first order one-parameter Lie group of nonlocal infinitesimal transformations.

(Here order refers to the number of integrals in I. If I involved double integrals,

we would call (3.2.3) a second order one-parameter Lie group of nonlocal in­

finitesimal transformations.) The generator of these nonlocal transformations

IS

where

a a a
G = e(x, y, 1) ox + '"'((x, y, 1) 01 + ry(x, y, 1) ay' (3.2.5)

(3.2.6)

We require (3.2.6) to remove the possibility of derivatives in ry and thereby

that the space of transformations closes as in the case of contact symmetries.

The above notation is given to show the link between our concept of nonlocal

symmetries and that of the classic Lie point symmetries.

Remark: In general we could require e, '"'( and ry in (3.2.5) to depend on

x,y,y' and I = J f(x,y,y')dx. We address this possibility in §3.4.

Note that we need not include ry in (3.2.3) and (3.2.5) as the first extension

of

defines ry as
d'"'( de

ry=--y-.
dx dx

(3.2.7)

(3.2.8)

However, in practice one knows eand ry and works backwards to determine '"'(.

In the actual calculation of nonlocal symmetries we ignore '"'(ojoI in (3.2.5) as
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we are only concerned with differential equations. Abraham-Shrauner derives

the expressions for I in [7].

We are now in a position to calculate the nonlocal symmetries of a given

equation. The procedure is similar to that of determining its Lie point sym­

metries. vVe require the equation to be invariant under the nth extension of

(3.2.5). The main difference between the resulting calculation and that for

point symmetries is the introduction of 8/81 terms. The determining equa­

tions form a system of linear ordinary differential equations as opposed to the

partial differential equations of the classic Lie theory.

3.3 Nonlocal symmetries of second order or­

dinary differential e'quations

While it is of mathematical interest to determine nonlocal symmetries of differ­

ential equations in general, the important occurrence of these symmetries is in

second order ordinary differential equations. Recall that nonlocal symmetries

of a differential equation manifest themselves as Type II hidden symmetries of

the reduced equation. Thus a simple reduction of order and subsequent calcu­

lation of the Lie point symmetries (eg using PROGRAM LIE [96]) will determine

the 'useful' nonlocal symmetries of any equation. (We define 'useful' nonlocal

symmetries as those that reduce to point symmetries under a single reduction

of order of the equations.) vVhile this is true in general, it does not apply for

second order equations as there is no direct method to determine the infinite

number of point symmetries that arise in the reduced first order equation [29].

In the instance that the second order equation possesses more than one point

symmetry, reduction of order via the appropriate point symmetry (ie one which

does not annihilate the others as point symmetries [156, p 149]) will result in

a first order equation with at least one known point symmetry. Thus the case

of second order equations possessing just one point symmetry is the one of
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paramount importance. The determination of at least one 'useful' nonlocal

symmetry for such equations provides a systematic route to the solution of

these equations via the classical Lie theory of extended groups [29, 156].

We analyse the equation

E(y,y',y") = y" - g(y,y') = 0

with the sole Lie point symmetry

(3.3.1)

(3.3.2)

for the existence of nonlocal symmetries. The restriction to (3.3.1) causes no

loss of generality as all ordinary differential equations (not just those of second

order) with at least one symmetry can always be transformed to autonomous

form.

In the case of (3.3.1) possessing two point symmetries the Lie Bracket rela­

tionship

(3.3.3)

where'\ is a constant (either 0 or scaled to 1), guarantees G2 as a point sym­

metry of the reduced equation. If G1 is defined as in (3.3.2) and

(3.3.3) implies that G2 must have the form

a a
G2 = (Ax + k(y)) ox + a(y) ay'

(3.3.4)

(3.3.5)

The reduction of (3.3.1) by the transformation generated by (3.3.2), viz

u=y

results in the first order equation

v = y' (3.3.6)

vv'=g(u,v).
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Thus G2 will reduce (using (3.3.6) and the first extension of (3.3.5)) to

y = a(u)~ + v(a'(u) - A- k'(u)v) ~ .ou uv
(3.3.8)

(See also [29, P 129].)

The structure of a nonlocal symmetry will be, in general, (disregarding the

0/01 term)
o 0

Gnl = ~(x,y,I) Ox +TJ(x,y,I) oy'

where

1= J f(x,y)dx.

However, by noting the form of (3.3.5) we deduce that

(3.3.9)

(3.3.10)

TJ = a(y) and ~ = AX + k(y, I). (3.3.11)

This follows from the requirement

The nonlocal symmetry of (3.3.1) is then

The requirement that ~ be free of y' and t be free of x and I gives

where

I=Jc(Y)dx.

(3.3.12)

(3.3.13)

(3.3.14)

(3.3.15)

This form is more restrictive than just being of first order (ie more restrictive

than (3.1.18)). eWe are fortunate that I has this specific form. If not, our

prolongation formulce would not have the simple form we have assumed [127,

p 163].) Higher order nonlocal symmetries (with multiple integrals) cannot be

useful in the sense defined above as they will not reduce to point symmetries

under a single reduction of order.
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To determine the coefficient functions in (3.3.14) we require

(3.3.16)

ze

- aog +((,\ +C)y' - y'a' ) ~g + ((a' - 2('\ +c))g +y'2(a" - c')) = O. (3.3.17)
oy uy'

The solution of the associated Lagrange's system reduces to that of two linear

first order ordinary differential equations which we solve [105] for 9 to obtain

where

cP = a' - 2('\ + c) ,
a

_ a( c' - a") ( J,\ + c )'ljJ - 2 exp - 2 --dy ,
u a

a (J,\+c)u = y' exp - -a-dy .

(3.3.18)

(3.3.19)

To make this implicit result clearer it is useful to look at a practical example.

Consider the equation [61]

(3.3.20)

where J{ is a constant and c a parameter, which is a reduced form of the

complex Lorenz system under certain assumptions about its parameters. Eq

(3.3.20) has the single Lie point symmetry

2 0 0
G = (p + 1) op + pR oR'

We use (3.3.21) to rewrite (3.3.20) in autonomous form, viz

11 3 J{2
Y +cy + y - - = 0y3

via the transformation

(3.3.21)

(3.3.22)

x = tan- 1 p (3.3.23)



(3.3.24)

(3.4.1)

We can now analyse (3.3.22) for nonlocal symmetries of the form (3.3.14). We

find that

a = ~(AI + Aa Jpdy)

pi Jc=-p2(AI +Aa pdy)+Aa

3 f{2 - 1
P = cy + y - - Aa = -2 Aa - A,y3

where Aa and Al are constants and the I on p(y) means differentiation with

respect to its argument, y.

It is significant that (3.3.22) has at least two Lie symmetries of the form

(3.3.14) that commute. This guarantees the reduction of (3.3.20) to quadra­

tures. It has already been shown that (3.3.20) possesses the Painleve property

[170] and is hence conjectured to be integrable [168]. (See Chapter 4.) The

reduction to quadrature was previously performed [61] without knowledge of

the nonlocal symmetry.

3.4 Generalised nonlocal symmetries

We have thus far only considered 'point-like' nonlocal symmetries, ie the de­

pendence of the coefficient functions was free from derivatives. This was due

to the fact that we were working from a knowledge of point symmetries. How­

ever, there is no reason to exclude more general nonlocal symmetries as they

can reduce to point symmetries under a single reduction of order and are also

'useful'. We call these symmetries generalised nonlocal symmetries in keeping

with Olver's notation [156] for the local variant. However, they could equally

be called Lie-Backlund nonlocal symmetries.

Consider the generator of nonlocal infinitesimal transformations

Znl = e(x, y, y', Jf(x, y, y')dx) :x + 77(X, y, y', Jf(x, y, y')dx) :y'

For (3.4.1) to be a 'useful' nonlocal symmetry it has to reduce to

D D
Gred = a(u, v) DU + b(u, v) DV
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under

u = y, v = y'. (3.4.3)

This restriction, together with the analogue of (3.3.12), confines the analysis

to generalised nonlocal symmetries of the form

Znl = Jc(y, y')dx ;x + a(y, y') ;y . (3.4.4)

(Here we have taken ,\ = 0 for simplicity.) With c and a being arbitrary

functions of y and y' the analysis can only proceed to writing down the equation

to be solved. (The problem is similar to calculating contact symmetries of

second order ordinary differential equations.) Further progress can only be

made by assuming a priori a form for the nonlocal symmetry (3.4.4). We look

at some special cases.

3'.4.1 a(y, y') = 0

We require

E(y,y',y") = y" - g(y,y') = 0 (3.4.5)

to be invariant under (3.4.4) with a(y, y') = O. This results in 9 having the

following form

9 = c:" [F(Y) - y' ~y UCY'dY') ] (3.4.6)

for (3.4.5) to have a generalised nonlocal symmetry. Given 9 we can determine

c via (3.4.6) to obtain (3.4.4) with a(y,y') = O. (F(y) is an arbitrary function

of y.)

3.4.2 a(y, y') = 0, 9 = g(y)

In this example we require

to be invariant under

E(y, y") = y" - g(y) = 0

Znl = Jc(y, y')dx ;x .
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For a given g, c has the form

F (h'2 - Jg(y)dy)
c= ,y,2 (3.4.9)

where F is an arbitrary function of its argument. We note that the Lorenz

system (3.3.2~) falls into the class (3.4.7). This implies that (3.3.22) has 'an'

additional nonlocal symmetry of the form (3.4.8). (In fact (3.4.8), together

with (3.4.9), constitutes an infinite class of symmetries.) The occurrence of
~

the additional symmetry is unsurprising as the first order equation obtained

from (3.3.22) under the reduction (3.4.3) will have an infinite number of point

symmetries. We expect to find, in principle, an infinite number of 'useful'

nonlocal symmetries of (3.3.22). The form of these symmetries will depend on

our ansatze for a(y, y') and c(y, y').

The class of equations considered by Guo and Abraham-Shrauner [91] is

also contained in (3.4.7). They found that (3.4.7) was invariant under

(3.4.10)

by first considering the first order equation that results from the reduction of

(3.4.7) via (3.4.3). Our method has resulted in a generalisation of their results.

3.4.3 a = a(y), c = c(y'), g = g(y)

We look at

y" = g(y)

agam. This time we require it to be invariant under

Znl = Jc(y')dx ;x + a(y) ;y .

For a given g, a and c are related via

(3.4.11)

(3.4.12)

9 = Aoaexp [- (2C + y':;,) ndY] +y"J[:, ~>xp (- ndy) dy] ,

(3.4.13)

where Ao is an arbitrary constant of integration.
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3.4.4 Equations linear in y'

Equations that are at most linear in y', eg

" , ()y = ay +9 Y , (3.4.14)

where a is a constant, are of some interest as they reduce to an Abel's equation

[109, p 24] under (3.4.3). Unfortunately there is no simple way to compute its

nonlocal symmetry, eg nonlocal symmetries of the forms

and

Znl = Jc(y')dx :x

- J 0Znl = c(y )dx ox

(3.4.15)

(3.4.16)

do not leave (3.4.14) invariant. We obviously need to make a more complicated

ansatz. It is whimsical to note that the choice c = c(y, y') and a = 0 reduces

the problem to that of solving an Abel's equation to determine the nonlocal

symmetry! The interested reader is referred to [17] for a discussion of methods

to obtain solutions for Abel's equation and the impact of hidden symmetries.

Similar observations should aid in the choice of ansatze for a and c in (3.4.4).

It is apparent that these symmetries are most appropriate to third and higher

order equations in the same manner in which contact symmetries have appli­

cation to those equations.

3.5 Equations not possessing point symme-

tries

The motivation for what we report here lies in an example of a class of equations

given by Gonzalez-Gascon and Gonzalez-Lopez [76] which was easily integrable

and yet did not possess any Lie point symmetries. They wished to illustrate

that it was not true that every system of ordinary differential equations which

can be reduced to quadrature possesses at least one Lie point symmetry.
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The system Gonzalez-Gascon and Gonzalez-Lopez used to demonstrate

their point was

in which

u" = c(u)

v" = f(x, u, u')v' + J'v +g(x, u, u')

, of ,of ()of
f := ox + u ou + c u ou"

(3.5.1)

(3.5.2)

(3.5.3)

(This system could be thought of as describing some Newtonian system.)

Gonzalez-Gascon and Gonzalez-Lopez showed that there existed at least one

instance of choices of f and g for which the system (3.5.1) and (3.5.2) did not

possess a Lie point symmetry of the form

000
G = e(x, u, v) ox + TJ ( x, u, v) ou +((x, u, v) ov (3.5.4)

(thereby in effect a doubly denumerable infinity) and yet (3.5.1) and (3.5.2)

are always integrable. The argument for integration is that (3.5.1) is always

integrable to give

(3.5.5)

With (3.5.5) (3.5.2) can be integrated since it now becomes a linear second

order equation for v. Gonzalez-Gascon and Gonzalez-Lopez do show how

(3.5.2) can be integrated once to a first order linear equation and the final

quadrature performed. However, we are content to agree with Painleve [160]

that reduction to a linear equation is a sufficient criterion for integrability or,

as Conte [47] quotes him, the integration is 'parfaite'.

In their concluding remarks Gonzalez-Gascon and Gonzalez-Lopez point

out that the system (3.5.1) and (3.5.2), as far as their knowledge extends, is

the first one to be presented which is reducible to quadratures and yet devoid

of point symmetries. They also express the hope that a simpler example, say

of a single nonlinear second order equation, could be found. We explore this

avenue of investigation and demonstrate the role of nonlocal symmetries in the

solution of these equations.
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(3.5.6)G = (v - j)~,ov

We note that the system of Gonzalez-Gascon and Gonzalez-Lopez does

possess the symmetry

where j is a solution of

j" = j'f + j l' + g. (3.5.7)

Given a solution of (3.5.7), which can be found once (3.5.1) is solved, (3.5.6) is

a point symmetry. That we have to be able to solve the system to determine

the symmetry is nothing new. Indeed, this is the case for all linear equations

[146].

Recently [181, p 105] a more convincing example has been provided which

also fulfills the hope of Gonzalez-Gascon and Gonzalez-Lopez that an example

comprising a single equation would be found. The equation

(3.5.8)

where p is a nonzero constant and g(x) a nonzero arbitrary function, does not

possess a Lie point symmetry unless [181, p 105]

(3.5.9)

However, trivially a first integral is found to be

y'
1= - - g(x)yp.

y
(3.5.10)

Eq (3.5.10) is a Bernoulli equation and is easily integrated [109, p 19] to give

y= (J-pjg(x)ep1xdx)1/P'
(3.5.11)

where J is the second constant of integration.

The ease of integration of (3.5.8) is sufficient to suggest that an inherent

property of the equation has been exploited (without knowledge thereof). The

equation may not have any point symmetries, but that is not necessarily an

obstacle to solution by group theoretic techniques. Normally one uses the
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possession of a point symmetry to reduce the order of a differential equation.

However, there is no reason why one cannot reverse the procedure and increase

the order of a differential equation to create a point symmetry in the higher

order equation. This technique has been used to good effect in the case of

Abel's equation [17]. There is always the hope that by increasing the order in

this manner more than one point symmetry can be gained, the so-called Type

I hidden symmetries introduced earlier. Our choice of transformation is sug­

gested by the success of the generalised Riccati transformation in transforming

the first order nonlinear generalised Riccati equation [105, p 23]

y' + a(x) + b(x)y + C(X)y2 = 0

to the second order linear equation

( ')11 C,
Z + b - -;; z + acz = 0

VIa

(3.5.12)

(3.5.13)

z'(x)
y(x) = c(x )z(x) (3.5.14)

without a knowledge of the solution of (3.5.13). The transformation (3.5.14) is

associated with the homogeneity symmetry, G2 , for which appropriate variables

are found from the solution of the associated Lagrange's system

dx dw

o w

The invariants of (3.5.15) are

u=x

and so suitable new variables are

dw'

w'

w'
v= ­

w

(3.5.15)

(3.5.16)

(3.5.17)

where F and G are independent functions. The well-known transformation

(3.5.14) falls obviously into the class given by (3.5.17).
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In the case of (3.5.8) we write the transformation as

-w'yP = __
pgw

(3.5.18)

to obtain the third order nonlinear equation

, 1/' 1/2 (g' ), '2 0ww -w - - w =
9

(3.5.19)

which does have a second symmetry in addition to the one produced by the

transformation (3.5.18). The symmetries are

(3.5.20)

(3.5.21)X=x

and, since [Cl, C2 ] = Cl, it is evident that the reduction of (3.5.19) to (3.5.8)

was via the non-normal subgroup [156, p 148], ie using (3.5.18), and so the

first symmetry was lost as a point symmetry of the reduced equation. We use

Cl to reduce the order of (3.5.19) by means of the transformation

vV = log (:')

and obtain

(3.5.22)

which is easy enough to solve and possesses the eight element algebra of point

symmetries 5£(3, R).

It is possible to obtain the solution of (3.5.8) from that of (3.5.22) by re­

versing the transformations. Thus from the solution of (3.5.22) we have in

turn

W=A+BX

w' = 9(x ) exp (A + B x )

w = C + J( Jg(x) exp(Bx)dx
1

(
-J( exp(Bx) ) P

Y = P (C + J( f g(x) exp(Bx)dx) (3.5.23)

which is in agreement with (3.5.11) when constants are suitably relabelled.

vVhen the eight point symmetries of (3.5.22) are transported to (3.5.8) via
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(3.5.19), they become, as one would expect, quite nonlocal. As Gonzalez­

Gascon and Gonzalez-Lopez suspected, there are nonlocal symmetries behind

easy integrability. The main problem is to find a co-ordinate system in which

they can take point (or contact if at the third order level) form so that they can

be readily determined. Unfortunately the point symmetries of (3.5.22) become

horribly nonlocal by the time (3.5.8) is reached. To give some idea of their

appearance we list

x, = [~exp (pJgyPdx) Jexp ( -pJgyPdx) dx - xl; 1] ~y

X 6 = y [log (-pyP) - pJgyPdx + exp (p JgyPdx) x

JgyP (log (-pyP) - pJgyPdx) exp ( -p JgyPdx) )dx] ;y

(3.5.24)

in the standard numbering of the 2A1 EEls (s£(2, R) EEls Ai) EEls 2A1 decomposition

of s£(3, R) [142]. Thus X 2 is the second element of the first two-dimensional

Abelian subalgebra and X 6 is the sole element of the one-dimensional Abelian

subalgebra. However, G1 in (3.5.20) becomes the exponential nonlocal symme-

try [5]

U1 = yexp (J g( x )yPdX) ;y (3.5.25)

of (3.5.8) and the first integral associated with U1 is just (3.5.10). Thus, if the

integration of (3.5.8) had not been obvious, it could easily have been performed

by group theoretical methods. It is true that G1 is not a point symmetry, but

exponential nonlocal symmetries are just as useful in the determination of first

integrals.

3.6 A Group Theoretic classification of equa-

tions not possessing Lie point symmetries

The example above contains the essence of what we wish to develop in general­

ity. The central principle is to increase the order of a differential equation by a
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transformation which produces a point symmetry in the higher order equation.

To recast (3.5.8) into more accessible form we set

z = yP

to obtain
12

Z 112
Z" = - + azz + a z

z

Using the transformation
w'

z=-­
aw

we obtain the third order equation

w'w'" - vi" - (~)' w" = 0

which has the two point symmetries

(3.6.1)

(3.6.2)

(3.6.3)

(3.6.4)

(3.6.5)

We wish to generate classes of second order ordinary differential equations not

possessing point symmetries but solvable by group theoretic means using the

above procedure.

The constraint placed on the original second order equation is that the third

order equation have two symmetries so that there is an alternate route to reduce

the third order equation to second order. The best approach is to start with a

third order equation which is required to have two Lie point symmetries and

that one of them persists in the second order equation obtained by reduction

using the normal subgroup. (We envisage that the second order equation we

are interested in was obtained by the reduction of this third order equation via

the nonnormal subgroup and so will not have any Lie point symmetries.) As

the existence of one point symmetry is not sufficient for integrability of the new

second order equation we determine those which have two point symmetries

according to the classification of two-dimensional algebras by Lie [132, p 412].

Note that the existence of two point symmetries at the second order level does

not imply the existence of three point symmetries at the third order level. The
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second symmetry could be a Type II hidden symmetry. Although the two­

dimensional algebra is sufficient for integrability we provide a listing of the

second order equations with three and eight point symmetries which fit into our

scheme. For all of these we give the representative second order equation with

no point symmetries from which the process commences. These will comprise

the new classes of second order equations solvable by the Lie method even

though they do not possess Lie point symmetries.

3.7 General Form of the Third Order Equa-

tion

We require that the third order equation be invariant under the action of a

two-dimensional algebra and that, due to the origin of the equation, one of the

symmetries be the homogeneity symmetry

(3.7.1)

(The labelling is with hindsight.) There are four two-dimensional Lie algebras

[132, p 412]. We are not interested in the two Abelian algebras

Type I

Type II

[G I , G2] = 0

[GI , G2] = 0
(3.7.2)

since both elements are normal subgroups and reduction by one does not mean

the loss of the other as a point symmetry of the reduced equation [156, p 148].

In our approach the original second order equation can be imagined as coming

from the third order equation as a result of reduction using G2 (in (3.7.1)).

The other symmetry is lost because G2 is not the normal subgroup. Our

method then utilises the normal subgroup to reduce the third order equation

to another second order equation. This equation will inherit G2 • To solve the

new second order equation we seek those equations which admit a second Lie

point symmetry. This procedure imposes the minimum constraint on the third
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[Cl, C2] = Cl.
(3.7.3)

order equation. We do not require that it have a third point symmetry, only

that it have a nonlocal symmetry which becomes point in the variables of the

reduced equation.

The two solvable algebras (Types III and IV of Lie's classification [132, p

425]) have the canonical forms

Type III Cl = -9v
Type IV Cl = -9v

We shall determine the class of third order equations invariant under each

canonical realisation and then transform the nonnormal subgroup to the desired

form of C2 , viz (3.7.1). In an attempt to avoid confusion we use the subscripts

'2' and '3' to denote the two-dimensional Lie algebras associated with the

second and third order equations respectively. We consider each canonical

realisation in turn.

3.7.1 Type 1113

We begin with the Type IIh two-dimensional algebra in (3.7.3). It is evident

that the general form of third order equation invariant under Cl is

y'" = !(X, Y', yll). (3.7.4)

Under C2 the function, 1, satisfies the first order linear partial differential

equation

X af _ y" af = _ 21
ax ay"

with associated Lagrange's system

(3.7.5)

The characteristics are

dX dY'
X 0

dY" df

-Y" -2j'
(3.7.6)

u = XY'

v = Y'

!
W=­

y"2
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and (3.7.4) becomes

y'" = yll2 f(Y', XY").

Under the transformation

(3.7.8)

x = F(X, Y)

G2 takes the required form (3.7.1) if

y = G(X, Y) (3.7.9)

(3.7.10)

where A and B are arbitrary functions of their arguments. If we take A to be

the identity and B to be one over the identity, the transformation (3.7.10) is

Y
x= -

X
y =X (3.7.11)

which represents all classes of equations up to the transformation

x -----+ a(x) y -----+ yb(x). (3.7.12)

Under the transformation (3.7.11) (3.7.8) becomes

yl/l = 3y" (yy" - y12) _ Y (yy" - 2
y12

)2 f [x yl + y, _L (yy" - 2
yI2

)]
yy' yy' y' y'2 yy'

(3.7.13)

or, equivalently,

//I _ ,,(yy" - y12) y'4 [x yl +Y y2 (yy" _ 2yI2 )]Y - 3y - -f ,-- .
yy' y3 y' y'2 yy'

The symmetry G1 is now
1 3

G1 = --.
y 3x

3.7.2 Type IV3

(3.7.14)

(3.7.15)

In a similar manner we find the third order equation invariant under the canon­

ical representation of the Type IV3 algebra in (3.7.3), viz

Y '" = Y"f (X, ~:) .
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As G2 is in the desired form, the only admissible transformations are those

which transform it to itself. These are of the class (3.7.12). Hence up to this

equivalence class the normal form of the equation is

and

III "f ( VII)V = V' X,-
Vi

(3.7.17)

a
G1 = av' (3.7.18)

While both (3.7.8) and (3.7.17) are given in [75] we present the above detail

to aid the reader in applying the method to equations other than second order.

(There are also errors and omissions in [75] which have only recently been

rectified [144].)

3.8 The Reduced Second Order Equation:

Type 1113 Lie Algebra

We first consider the reduction of the third order equation invariant under the

Type IIh two-dimensional Lie algebra, viz (3.7.14). The transformation which

the symmetry (3.7.15) naturally suggests is

u=V Vv = x+­
Vi

(3.8.1)

which reduces (3.7.14) to the second order equation

2 11 f( ')uv = V,'uv.

The symmetry is

(3.8.2)

(3.8.3)

Neither equation nor symmetry is in the most suitable form. We make the

further transformation

U = v Y = log u g(U, V') = - y '3 f (U, :,) - yl2
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Table 3.1: Canonical forms of v" = g(u, Vi) admitting two Lie point symmetries.

Type [Gl , Gz] Canonical forms Form of

of Gland Gz equation

Iz 0 0 v" = F(Vi)Gl = (JU

0
Gz = (JV

Ih 0 _ 0 v" = F(u)Gl - (JV

Gz =u§v

IIIz Gl
_ 0 uv" = F(Vi)Gl - (JV

o 0
Gz = U(JU +V(JV

IVz Gl
_ 0 v" = v'F(u)Gl - (JV

_ 0
Gz - V(JV

and obtain

(3.8.5)

which has the symmetry

(3.8.6)

so that we can make direct comparison with the four types of equations with

two symmetries (cf Table 3.1 with U +--7 U and V +--7 v.). Equations invariant

under the Type 1z algebra must have 9 free of U which means that (3.7.14) is

autonomous and so has the extra symmetry 0/ox which is not lost under the

reduction of order using ya/ay. Hence the original second order equation has

one symmetry and is not within the class considered here.

For (3.8.5) to be invariant under Type IIz it must be free of V' which means

that

f (U ~) = _ F (U) +V'z
, V' V,3

The third order equation takes the form

(
" ') 13 ( ") ( ") 3 ( )y'" = 3y" 'L - '!L + L 2 - yy + y' 2 - yy F x +!L .

y' y yZ y'Z y'Z y'
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Eq (3.8.8) has just the two point symmetries and so the original second order

equation obtained by means of the Riccati transformation

z=x
y'

w= -,
y

(3.8.9)

vzz
3W,2 (w' )3 ( 1 )

w" = ~ - ww' + w 1 - w 2 F z + w

has no symmetry for nontrivial F.

(3.8.10)

In the case of the Type III2 algebra the function in (3.8.5) has a very specific

U dependence [142], viz

g(U, V') = ~F(V')

and so

f (U, ~,) = -:'3 (~F(V') +V'2)

f(v,uv') = -(uv'? (tF (u~') + (u~')2)'

The third order equation is

(3.8.11)

(3.8.12)

(3.8.13)

(3.8.15)

", 3" (Y" Y') + Y' (2 '2 ") + (2y'2 - YY"? F (_---=--Y'_3__)
Y = Y y; - y y2 Y - YY y'4(xy' + y) y(2y'2 _ yy")

(3.8.14)

and the original second order equation (via (3.8.9)) is

3W,2 w
2 - W' (W3

)
W" = -- - ww' + F .

W w4 (1 + zw) w2 - w'

The third order equation has just the two symmetries for general F(V'). There

is a technical difficulty with this case in that the integration of

UV" = F(V') (3.8.16)

will give V' as an implicit function of U. In principle this is not a problem,

but there are certain to be practical difficulties for an unspecified F(V'). The

solution to this problem is addressed in part in §3.10.1 where we consider the

three-dimensional and eight-dimensional symmetry cases for Type III2 in both

this and the Type IV3 realisation.
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Type IV2 is linear and the solution readily expressed as a quadrature. From

(3.8.4)

(3.8.17)

and the third order equation is

y'" = 3y" (y" _ y') + y,3 (2 _yy") + y,2 (2 _yyll) 2 F (x +!.) . (3.8.18)
y' y y2 y,2 Y yl2 y'

The general dependence of F on U which contains x means that for arbitrary

F there is not an additional symmetry and the original second order equation

3W,2 (w')2 ( 1)w" = --;;;- - WW' + --;;; - w F z + w (3.8.19)

obtained by the Riccati reduction (3.8.9) will not have a point symmetry.

3.9 The Reduced Second Order Equation:

Type IV3 Lie Algebra

We now turn our attention to the third order equation invariant under the Type

IV3 two-dimensional Lie algebra, viz (3.7.17). The standard transformation for

the reduction of order of (3.7.17) with the symmetry (3.7.18) is to set

u=x v = y'. (3.9.1)

However, the reduced equation is made a little simpler in appearance if the

transformation

u = x v = logy' g(u,v') = v'f(u,v') - V,2

is used for then (3.7.17) becomes

11 ( ')V = 9 u, v .

In the new co-ordinates G2 becomes the symmetry
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It then becomes a very simple matter to read off the canonical forms of (3.9.3)

under the four algebras of dimension two since the symmetry (3.9.4) appears

in each one of them (cf Table 3.1).

For Type h the canonical form has g independent of u and (3.7.17) has the

additional symmetry

(3.9.5)

which has zero Lie Bracket with G2 . Hence the original second order equation

has at least one symmetry and is not of the class sought. For Type II2

and (3.7.17) has the form

f(u, Vi) = F(u) +Vi
Vi

(3.9.6)

(3.9.7)

For general F(x) (3.9.7) has no additional symmetry. The Type II2 canonical

form has eight symmetries and is integrable by quadrature. Hence the solution

of the original second order equation derived from (3.9.7) by reduction using

(3.8.9), viz
12

"W I ()W = --ww +wF z
w

(3.9.8)

is always integrable. Any equation related to (3.9.8) by an invertible point

transformation is also integrable.

For Type 1II2 the actual solution of the equation requires an inversion after

an integration. It is best to look at the particular instances in which this is

possible. (See §3.10.2.) For now we give the third order equation, viz

y'" = y' { ; F ( ;:) + (;:) 2}

and the original second order equation via (3.8.9), viz

W
'2

W (w I

)W" = - - ww' +- F - +w .
w z w
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In the case of a Type IV2 equation the solution follows from a straight

forward quadrature. The third order equation becomes

[( ")2 " ]y'" = y' '!L + '!LF(x)
y' y'

(3.9.11)

and for general F( x) this has no other point symmetries than Cl and C2 . Re­

duction by the Riccati transformation gives an integrable second order equa-

tion, viz
'2

W" = ~ - ww' + (w' + w 2 )F(z)
w

(3.9.12) ,

which has no point symmetries and is representative of a whole class of equa­

tions equivalent to it under a point transformation.

3.10 The Reduced Second Order Equation:

Type 1112 Lie Algebra

For both Type IIh and Type IV3 symmetries of the third order equation we

have seen that suitable equations, ie ones without point symmetry, can lead via

the increase in order with the use of the Riccati transformation and the reduc-

tion via the normal subgroup to equations which have either eight symmetries

(Types II2 and IV2) and are readily reduced to quadratures or equations which

have at least two point symmetries (Type III2 ). As we expect some difficulties

in the integration of the latter, it is well to look at the special cases of Type

IIh equations which have either three or eight symmetries.

The equations which have three symmetries are going to be either of Type

12 or Type III2 with some constraint due to the extra symmetry. As the Type

12 equations do not lead to the case of the second order equation not possessing

symmetry, we need consider only those equations which belong to Type IIh.

There are only four equivalence classes of equations of Type III2 [143] with

three symmetries and we list them together with their symmetries in Table

3.2.
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Table 3.2: Equivalence classes of equations of Type III2 with an additional

symmetry. (In each case I< i- 0.)

Equation Symmetries Algebra

uv" = V '3 + Vi + I<(1 + V '2 )3/2
_ f)

A3 ,8 (8£(2, R))GI - OV
a f) [GI ,G2] = GIG2 = U au + V ov

G = 2uv f) + (v 2 _ u2 ) f) [Gl, G3 ] = 2G23 au OV
[G2 , G3 ] = G3

uv" - I<V '3 - lv'
G - f) A3 ,8 (8£(2, R))- 2 I - OV

f) f)
[GI , G2 ] = GIG2 = U au +V ov

G3 = 2uv§U +v2& [Gl, G3 ] = G2

[G2 , G3 ] = G3

2a-1 G - f)uv" = (a - 1)v' + I<Vi a-I I - OV A~,5

a i- o,~,1,2
a f) [GI , G2 ] = GIG2 = U au +V ov

G - u l - a f) [GI , G3 ] = 03 - au
[G2 , G3 ] = (1 - a)G3

uv" = 1+ I< exp(Vi) G - f) A 3 ,2I - OV
_ f) f)

[GI , G2 ] = GIG2 - UCJU +V(fij

_ a a
[GI , G3 ] = 0G3 - CJU + log U ov
[G2 , G3 ] = Gl - G3
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3.10.1 Type 1113

We consider the Type IIh reduction first. (Note that the variables in Table

3.2 are read the same way as those for Table 3.1 in §3.8.) We recall that the

third order equation is (3.8.14), viz

1/1 _ 3 " (y" _ yl) JL(2 12 _ ") + (2 y'2 - yy")3 F ( y'3 )
Y - Y y' Y + y2 Y yy yl4( xyl + y) -y(-2-y'-2-_-y-y'-') ,

(3.10.1)

where F(·) is one of the functions listed in Table 3.2. The symmetry GI in

Table 3.2 corresponds to the symmetry G2 (in (3.7.1)) which is to be used

to reduce the third order equation to the second order equation with no point

symmetries. The Lie Brackets show that G2 in Table 3.2 is a possible symmetry

of the original equation in all cases since GI is the normal subgroup for the

pair. However, unravelling the various transformations at the third order level

we find that

G2 = (x +;JYdX) ;x +ylogy ;y (3.10.2)

which is nonlocal and reduction via y8/8y leaves it that way. In the case of

the two representations of s£(2, R) in Table 3.2 G3 is not possible as a point

symmetry of the original equation since [G I , G3 ] = G2 . However, in the cases

of A3 ,2 and A~,5 it must be considered. In both cases the symmetry is nonlocal

at the third order since for A~.5

and for A32,

1 ( ) I-a
~ = yJy' X + ;, dx ry=o (3.10.3)

(3.10.4)

and the nonlocal property persists with the y8/8y reduction. Thus all four

of the equivalence classes of Type III2 with the additional symmetry do not

produce a point symmetry in the original second order equation. It is a simple

matter to determine the original second order equation in all four cases. We

use (3.8.15) with F replaced by the expressions on the right hand side of the
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equations in Table 3.2 and Vi replaced by the argument of F. The third order

equation is obtained in a similar manner using (3.10.1).

3.10.2 Type IV3

The symmetry Gz of Table 3.2 becomes nonlocal at the third order level and

IS

Gz= x;x + (y +Jy/log y'dX) ;y'

The nonlocal nature persists after reduction using ya / ay. For A~ 5,

(3.10.5)

(3.10.6)

at the third order level and this remains nonlocal under reduction by ya/ ay.

For A3 ,2

G3 = ;x + (y log x-J;dx) ;y (3.10.7)

which also remains nonlocal when reduction via ya/ay is performed. (Recall

that a =I 0,1 and so the integral in (3.10.6) is always present.)

Concern was expressed in §3.8 as to the feasibility of Type HIz equations

because of problems of inversion. All integrals for these four classes can be

inverted. The original second order equation is (3.9.10) where we replace F

with the expressions on the right hand side of the equations in Table 3.2. We

also replace Vi in Table 3.2 with the argument of F. The third order equation

is obtained in a similar manner via (3.9.9).

3.10.3 Linear equations

The final case to consider is when Type 1Hz admits eight symmetries. The

representative equation is [143]

with the symmetries

uv" = V
/3 +Vi
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a a
G2 =u-+v-

au av

(
V2) aG3 = u+- ­
u au

1 a
G4 =--

uau
v

3 a I 2 . 2) aGs = -- - -(u + 3v -
u au 2 av

(
v4 u

3
) a I(2 3) aG6 = - - - - - - vu + v -

4u 4 au 2 av

va
G7 = --

uau

(
V3) a aGs = uv - - - + 2v 2

-.
U ou av

The Lie Brackets with G I are

(3.10.9)

[G I , G2 ] = GI ,

[GI , Gs] = -3(G2 - G3 ),

[GI , Gs] = 4G2 - 3G3

[GI , G3 ] = 2G7 , [Gb G4 ] = 0

[GI , Gs] = Gs, [GI , G7 ] = G4 (3.10.10)

(3.10.11)

and so possible candidates are just G2 and G4 . However, we have already seen

that G2 does not lead to a point symmetry and so we need only consider G4 .

For the Type IIh equations we find that at the third order level

G
4

= ~ j' y/2dx !!-.-
y xy' + y Ox

and consequently is nonlocal under the reduction via y.§y. The third order

equation is

(

11 ') 11/1 3 11 Y Y + Y (2 12 ")Y = Y - - - - y - yy
y' Y y2

(2 y'2 _ yy"? [( y'3 ) 3 y13]
+ y/4( xyl + y) y(2 y'2 - yyll) + y(2y/2 _ yyll)

and the original second order equation is

w" = _3:_" - ww' + w~: ~ ~~) [(w'~w'r+ -w-2w_~-w-J
For Type IV3 equations we find that G4 becomes
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which remains nonlocal when the reduction via y& is performed. The third

order equation is

y'" = y' {~ [(;:r + ;:] + (;:n
and the original second order equation is

"w'z I W { (w
l +w

Z
) 3 W ' +w

Z
}w = - -ww + - + .

w z w w

(3.10.15)

(3.10.16)

Hence in all cases the Type IIIz equations lead to no point symmetry in the

original second order equation.

3.11 Equivalence of linear third order equa-

tions

As a final endorsement of the importance of nonlocal symmetries we investigate

the equivalence of linear third order ordinary differential equations. Lie [137,

p 298] proved that the maximum number of point symmetries for an nth order

(n 2: 3) ordinary differential equation is n + 4. (In the case of n = 2 there are

eight.) He further showed that if an nth order equation was equivalent to

under a point transformation, viz

x = F(x,y) Y = G(x,y),

(3.11.1)

(3.11.2)

it possessed n + 4 point symmetries. (In the case of linear equations, (3.11.2)

reduces to the Kummer-Liouville [120, 138] transformation where F = F(x).)

Recently [118, 119, 146] there has been some interest in the algebraic properties

of linear nth order equations. Krause and fichel [118, 119] proved that the

maximum number of point symmetries for nth order (n 2: 3) equations is n +4

iff the equation is iterative, ie it can be written in the form

L[y] =r(x)y' + q(x)y = 0,
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They also strengthened Lie's result by proving that equations possessing n +4

point symmetries were equivalent to (3.11.1) under (3.11.2). Mahomed and

Leach [146] showed that all nth order linear equations were not equivalent to

(3.11.1) under a point transformation. There exist)inear equations with n +1

and n + 2 point symmetries. The corresponding Lie algebras are nA I EEls Al

and nAI EBs Al EB Al' For equations of maximal symmetry the Lie algebra is

In the case of second order equations all linear or linearisable (under a point

transformation) equations are equivalent to [132, p 405]

11 0Y = .

If the class of transformation is broadened to include contact, viz

(3.11.4)

x = F(x, y, y/) Y = G(x, y, y/) y/ = H(x,y,y'), (3.11.5)

all second order ordinary differential equations are equivalent to (3.11.4) [137,

p 84].

For third order equations there exist linear equations with four, five and

seven (the maximum) point symmetries. vVe take

and

with the symmetries

y"/ + f(x)y" + y/ + f(x)y = 0,

11/ 0Y - Y =

11/ 0Y =
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where z(x) = fcf exp[- J j(u)du] sin(x - u)du,

(3.11.10)

where w = (1 + iV3)/2, and

(3.11.11)

respectively, to be the representative equations of each class. As equations

of four, five and seven point symmetries (with the Lie algebras 3AI EBs AI,

3AI EBs Al EBs Al and (AI EB sf(2, R)) EBs 3AI respectively) are equivalent to

(3.11.6), (3.11.7) and (3.11.8) respectively under a point transformation, there

is no loss in generality in considering only these equations individually. All

results obtained will be up to a point transformation.

The natural question to contemplate is the equivalence of (3.11.6), (3.11.7)

and (3.11.8) under contact transformation. It is simple (using PROGRAM LIE

[96]) to confirm that the only contact symmetries of (3.11.6) and (3.11. 7) are

first extensions of the point symmetries in (3.11.9) and (3.11.10) respectively.
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(3.11.12)

In the case of (3.11.8) there are three irreducible contact symmetries (in addi­

tion to the first extensions of those in (3.11.11)), viz

,a 1'2 aUs = y - + -y -
ax 2 ay

( ' ) a '2 a '2 aUg = 2 xy - y - + xy - + y -,
ax ay ay

( 2 , ) a (1 2 '2 2) a ('2 ') aUlO = X Y - 2xy ax + 2X Y - 2y ay + xy - 2yy ay"

In spite of the extension to contact transformation, (3.11.6), (3.11.7) and

(3.11.8) are not equivalent. It remains to consider nonlocal transformations.

While some method to calculate nonlocal symmetries (and thereby find non­

local transformations) has been suggested [5, 83] the complexities of finding

the full Lie algebra of nonlocal symmetries suggest that an alternate route be

sought. Our approach involves the reduction of (3.11.6) and (3.11. 7) to second

order equations, the linearisation of these equations to (3.11.4) and finally an

increase of order to (3.11.8).

In the case of (3.11.6) we reduce the order using G1 • This implies that,

under the nonlocal transformation

(3.11.6) reduces to

u=x
, .

v = y sm x - y cos x, (3.11.13)

v" + (f(u) - cotu)v' = O.

Eq (3.11.14) is linear and, under the point transformation

t = - {J sinuexp[-ff(u)du]du}-1

q = v {J sin uexp[- ff(u)du]dU} -1,

becomes

q= O.

The nonlocal transformation

(3.11.14)

(3.11.15)

(3.11.16)

X =t
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increases the order of (3.11.16) to

y/l' = O. (3.11.18)

(3.11.19)

Eq (3.11.6) is equivalent to (3.11.8) under the nonlocal transformation

J(y' sin x - y cos x) sin x exp[- f(x )dx] d
y = 3 X

{f {sin x exp[- f(x )dx]dx}}

X = - {J sin x exp[- ff(x)dx]dx}-l

We remark that (3.11.19) is not a nonlocal contact transformation [84] as the

derivative in the integrand for Y can be removed by integration by parts. We

maintain the compact structure of (3.11.19) for purely resthetic reasons.

In the case of (3.11.7) we reduce the order using Xl, ie via the nonlocal

transformation

u=x v = y' - y, (3.11.20)

to obtain the linear second order equation

V" +v' +v = o.

Under the point transformation

(3.11.21)

t = 2 tan v'3uV'3 2 q = v exp(!u) sec '1u (3.11.22)

(3.11.21) is transformed to (3.11.16). Invoking (3.11.17) we obtain (3.11.18).

Eq (3.11.7) is equivalent to (3.11.8) under the nonlocal transformation

X = ...Ltan~v'3 2 (3.11.23)

From the above it can be seen that all linear third order equations are

equivalent to the simplest third order equation (3.11.8) under nonlocal trans­

formations.
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Chapter 4

Painleve Analysis

We depart, for the moment, from the Lie approach to consider the Painleve

analysis. As the Lie analysis is an algebraic process and the approach of

Painleve an analytic one, the results obtained from the former should encom­

pass those obtained from the latter. It is this interplay that we wish to exploit

and use as a further testament to the importance of considering a more general

class of symmetries than solely point.

4.1 Introduction

After the pioneering work of Cauchy on complex variable theory, it was natural

for the analysis of differential equations to be extended into the complex do­

main. Once local solutions (in the complex plane of the independent variable)

were established more global results could be obtained by analytic continu­

ation [105]. It is important to note that, even if a differential equation has

real coefficients and is defined on R, it is necessary to extend the solution to

the complex plane to obtain a global picture of its behaviour. Consider, for

example, the equations

and

w' - w = 0
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where Cl and C2 are complex constants. The full periodic behaviour of the

solutions of (4.1.1) and (4.1.2) is only observable in the complex plane [47].

It was Paul Painleve [160, 161] who sought to classify all ordinary differ­

ential equations the solutions of which were free of movable critical points in

an attempt to determine those equations which could be solved analytically.

Note that by critical points we mean branch points and essential singularities.

Critical points which depend upon parameters that appear in the equations

are termed fixed, eg in the solution of

vzz

(z - c)w' = AW,

w = K(z - c),\

(4.1.3)

(4.1.4)

for A E 7l < 0, z = c is a fixed pole and for A rational it is an algebraic

branch point. When the critical points depend on the initial conditions, they

are termed movable, eg

has the solution

w' - AW I - I / >. = 0

w = (z - zo)\

(4.1.5)

(4.1.6)

where Zo is an arbitrary constant obviously determined from the initial condi­

tions. Depending on the value of >., z = Zo is an analytic point, movable pole

or movable branch point.

As a result of Painleve's initial work, equations whose solutions are free of

movable critical points are said to possess the Painleve property. It was found

that, of all first order equations, the only one possessing this property is the.

Riccati equation [168, 47]. Painleve started the classification of second order

equations of the form

w" = f (w', w, z), (4.1. 7)

where f is rational in w', algebraic in wand analytic in z. For the case of

f being rational in w, the problem was completed by Gambier [71] with re­

finements by Ince [105] and Bureau [34]. Painleve also considered the case of
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f being rational in w to some depth [161]. Note that the class of equations

(4.1. 7) are of the first degree in the highest derivative. The classification prob­

lem has recently been extended to second order equations of arbitrary degree

[35, 37, 52, 51], but the simplifications imposed in these works have resulted in

the full classification problem remaining incomplete. For third order equations

some progress has been made [39, 74, 40, 33, 36], but the work is ongoing.

For the class of equations (4.1.7) it was found that only fifty (Bureau [34]

and Cosgrove [51] argue that more exist.) possessed the Painleve property,

most of which could be solved in terms of the (then known) elementary and

semi-transcendental functions [105]. However, for the six equations

w" = 6w2 + z

w" = 2w3 + zw + a

W'2 w' aw2+ b d
" 3w =---+ +cw +-

w z z w

" 1 12 3 3 2 (2 ) bw = -w +"2w +4zw +2 z - a w +-
2w . w

(4.1.8)

(4.1.9)

(4.1.10)

(4.1.11)

" (1 1) 12 W' (w-l)2 ( b) cw dw(w+l)w = - +-- w - - + aw +- + - + --'------'-
2w w - 1 Z z2 W Z W - 1

(4.1.12)

" 1 (1 1 1) 12 ( 1 1 1) 1
W =- -+--+-- w - -+--+-- w

2 w w-l w-z z z-1 w-z

w(w - 1)(w - z) ( bz c(z - 1) dz(z - 1))
+ a+-+ +--:---~
. z2(z-I)2 w2 (w-l)2 (W-Z)2

(4.1.13)

new functions, called the Painleve transcendants, had to be introduced. The

first three equations were discovered by Painleve [160], the next two by Gambier

[71] and the final one by Fuchs [70] [105, pp 344-345]. The literature on these

and related equations is vast. Fortunately a convenient bibliography has been

compiled by Peter Clarkson [42].
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4.2 The ARS Algorithm

Post 1980 interest in the Pairileve analysis was primarily due to the relation­

ship observed by Ablowitz et at [1, 2, 3] between partial differential equations

and their reduced ordinary differential equations. They conjectured that all

ordinary differential equations obtained by reductions of partial differential

equations which were solvable by inverse scattering possessed the Painleve

property. Considering the wealth of results available, the conjecture has been

extended to stating that equations possessing the Painleve property are inte­

grable [49]. Note that the conjecture is assumed to be sufficient, but is, by no

means, necessary. (See [168] for a review of results using the ARS algorithm.)

The attraction of the work of Ablowitz et at [1, 2, 3] is that they provided a

convenient algorithm (called the ARS algorithm) to test whether an equation

possessed the Painleve property. The method, that of 'pole-like' expansions,

is in fact due to Kowalevski [115, 116]. She first applied the method to the

equations of motion of the spinning top and thereby found another integrable

case (in addition to those of Euler and Lagrange). We carry out our analysis

using this method with the caution that the price for its algorithmic simplicity

is that it contains some pitfalls. (We mention these as they are encountered.)

The method essentially involves assuming a Laurent series expansion for the

dependent variable about some point z - zoo The procedure has three accepted

parts. The first is the determination of the leading order behaviour by the

substitution of

where a and p are constants to be determined and

x = z - Zo,

. (4.2.1)

(4.2.2)

with Zo being the location of the movable pole, into the equation of interest.

Note that, for the purposes of the algorithm, we insist on p E 7l < O. If not,
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we invoke the homographic transformation

a(x)U + ,8(x)
(u, x) -----t (U, X) : u = ,(x)U + 8(x)' X = ~ (x ) a8 - ,8, i= 0 (4.2.3)

to force p E 7l < O. (We use (4.2.3) as it is the only transformation that

preserves the Painleve property[71, 47]. As result the first step in analysing an

equation is to attempt to simplify it using a transformation of the form (4.2.3).)

In the determination of leading order behaviour the term involving the highest

derivative must be taken to be one of the dominant terms. This term is then

balanced with other terms in the equation to obtain p and a. More than one

family of solutions for p and a is possible. All have to be considered.

Thereafter the expression

(4.2.4)

is substituted into the dominant terms of the equation to determine the indices

i (at which the remaining constants of integration arise) by requiring that

the coefficient of terms linear in ,8 is zero. (The terms resonances [168] and

Kowalevski exponents [190, 191], which are equivalent to indices, can also be

found in theliterature.) In addition to -1, which must occur, it is usual for

the remaining indices to be positive integers. However, it has recently been

shown that some information can be obtained from fractional [168] and negative

indices [48].

Finally, the truncated Laurent expansion

(4.2.5)

is substituted into the original equation. This serves to verify that arbitrary

constants arise at the indices. A summation of the Laurent expansion (which

includes all arbitrary constants), when possible, produces the general solution

of the equation. In the case that less than the required number of constants

arise, logarithmic terms need be inserted at those indices where the constants

did not arise. The introduction of these logarithmic terms is normally an
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indication of non-integrability [168]. (In the case of families of solutions for p

and a every expansion of the form (4.2.5) must be considered. If there are any

inconsistencies in anyone of the expansions the equation does not possess the

Painleve property [48].)

We illustrate the procedure with the well-known Emden-Fowler equation

of index two

(4.2.6)

A substitution of (4.2.1) into (4.2.6) gives

from which it is evident that

(4.2.7)

p =-2 a=6 (4.2.8)

since both terms have to be dominant. We determine the indices by substi­

tuting (4.2.4), using (4.2.8), into (4.2.6) and equating the coefficients of terms

linear in f3 (These terms will involve equal powers of X.), viz

(i - 2)(i - 3)Xi
-

4 = 12Xi - 4
•

From (4.2.9) the indices are determined as

i = -1,6.

It now remains to substitute the truncated Laurent expansion

(4.2.9)

(4.2.10)

(4.2.11)

into (4.2.6) to check whether any incompatibilities arise at the indices. We

accomplish this by equating the coefficients of like powers of X and solving

for the aj (j = -2, ... , i). The results are summarised in Table 4.1. It is

unsurprising that the terms between the pole and index are zero as both terms

in the equation are dominant. An extension of the Laurent series reveals that
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Table 4.1: Calculation of terms in the Laurent expansion for the solution of

-4 -3X X

o== 0 a-I = 0 ao = 0 aI = 0 a2 = 0 a3 = 0 acarbitrary

the solution to (4.2.6) is, in fact, the Weierstrass P function. This, of course,

could have been obtained by integrating (4.2.6).

Remarks: i) The first step in the procedure is the requirement of negative

p for the order of the pole and suggests an immediate transformation of the

equation under consideration when p is positive. While the resulting equation

may possess the Painleve property, it must be noted that it could well fall

outside the class of equations listed by Gambier [71] and Ince [105]. The reason

is simple: these lists of equations do not insist on negative p! An example is

the Ermakov-Pinney [58, 166] equation

11 -3
Y = Y . (4.2.12)

Eq (4.2.12) possesses the full Painleve property, but does not occur in [71, 105]

in its present form. A simple transformation of the form (4.2.3) results in an

equation that does arise in [71, 105] with p now being positive.

ii) In the case of systems with arbitrary coefficients (cf the Lotka-Volterra and

Quadratic Systems [100]) the determination of the indices can lead to an ob­

scuring of the results. We note that the determination of these indices is merely

a convenient mechanism to aid the computations. In principle one could sub­

stitute a Laurent expansion from -00 to 00 for the dependent variable(s) into

the equation being studied and determine poles, indices and series expansions

for the solution. However, the algorithm provides us with a feel for what 'in­

finity' can be taken to be.

iii) The ARS algorithm cannot contend with negative (apart from -1) and

fractional indices. It was only recently that negative indices have been further
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analysed and their presence used to advantage in the so-called perturbative

Painleve approach [48]. The presence of fractional indices can also be linked

to integrability in what has been termed the 'weak' Painleve property [168].

(This excludes the case in which the fractional indices can be transformed away

by means of a homographic transformation (4.2.3) [168].) However, there is

only partial evidence to support this [168]. It suffices to mention that the oc­

currence of fractional and negative indices should not be a cause for dismay as

some information can still be obtained from them.

iv) In the case that irrational or complex indices are present, this can point

to non-integrability. In the case of homogeneous systems Yoshida [190, 191]

has shown that, for the system to be integrable, all the Kowalevski exponents

(KE) must be rational numbers. If at least one KE is irrational or imaginary,

then the system does not have algebraic integrals. [168].

v) It is inevitable, when dealing with systems, that extra care need be taken

in any analysis. This is also true of the Painleve analysis. (See [121] for an in­

depth analysis of coupled nonlinear oscillator systems.) A particularly delicate

aspect of the ARS algorithm is the determination of leading order behaviour

which necessitates considerable attention.

Thus due caution must be observed in the implementation of the algorithm

and the analysis of the results. It is little wonder that Painleve did not see the

need for 'le procede connu de Madame Kowaleski' [161].

4.3 The Partial Painleve Property

In their analysis of the gravitational field of the Mixmaster Universe [149] Cot­

sakis and Leach [53] observed that a Laurent expansion for the system of equa­

tions describing the model possessed fewer constants that arose at the indices

than was expected. They conjectured that such systems can be interpreted as

being integrable on an p-dimensional submanifold in the q-dimensional phase

space, where p is the number of constants found and q the degrees of freedom
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of the system (p < q). This property was called the partial Painleve property.

(We emphasise that this does not relate to the nature of the critical points

in the system as the Painleve property does. It is a (conjectured) measure

of integrability). While it is normal to introduce logarithmic terms into the

Laurent expansion at this stage, the attraction of the partial Painleve property

is that it suggests that partial solutions can still be found.

We have observed [89] a similar property in another physical system. As

the nature of the occurrence is not quite that of [53] we dub this the pseudo

partial Painleve property. The difference is that an arbitrary constant that

arises at one index becomes fixed when the next arbitrary constant appears in

the Laurent expansion. (See §5.3 for more details.)

4.4 Partial Differential Equations

Considering the success of the Painleve analysis applied to ordinary differential

equations via the ARS approach, it was natural to speculate on its applicability

to partial differential equations. After all the ARS algorithm was originally

applied to ordinary differential equations which were obtained by the reduction

of partial differential equations. In cases where this reduction was 'too trivial'

to obtain any information the ARS approach failed [168]. This encouraged

Weiss et al [183] to extend the algorithm to partial differential equations using

the concept of a singular manifold. This concept has also been used to develop

an invariant version of the analysis applicable to both ordinary and partial

differential equations [44, 45]. In fact the singular manifold concept has been

used to find Lax pairs and (auto-)Backlund transformations of differential

equations [182]. (See [54] for an unusually clear account of the application of

the singular manifold method to the analysis of the inhomogeneous spherically

symmetric Heisenberg ferromagnet.)

Considering the usefulness of the classification performed by Painleve and

co-workers for ordinary differential equations one would expect some benefit
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from a classification of partial differential equations. Work on this problem

has been started. In particular Hlavaty [98, 99] and Cosgrove [49, 50] have

completed preliminary classifications. The length of these contributions and

the partial results obtained suggests that the complete classification is far from

close to being realised.

4.5 The WTC Algorithm

Weiss et al [183] assert that, for a partial differential equation to possess the

Painleve property, its solutions must be single-valued about a movable singu­

larity manifold [168]. If we consider a (1 + I)-dimensional partial differential

equation, the singularity manifold is given by

<I>(x, t) = 0

and the solution of the equation

X(x, t, u, Ux,Ut, Uxx ,Uxt, Utt, . ..) = 0

is assumed to be an expansion of the form

00

u(x, t) = <I>(x, t)P L Uj(x, t)<I>j(x, t).
j=O

(4.5.1)

(4.5.2)

(4.5.3)

The determination of the poles is along the same manner as the ARS method

for ordinary differential equations. However, the indices are calculated by

determining a recursion relationship for Un in (4.5.3). The verification that

no incompatibilities arise at the indices is of much greater complexity than

for ordinary differential equations. We illustrate the procedure with Burger's

equation

Ut + UUx + Uxx = o.

The leading singularity behaviour is determined by substituting
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into (4.5.4) to obtain

(4.5.6)

ze

(4.5.7)

from which it is evident that the last two terms in (4.5.4) are dominant and

p =-1

The indices are obtained by substituting

Uo = 2</>x. (4.5.8)

into (4.5.4), viz

(4.5.9)

n n

_</>-2</>t LUj</>j + </>-1 L (Ujt</>j + jUj</>j-l</>t)
j=O j=O

n [ n n ]+ </>-1~ Uj</>j _</>-2</>X~ Uj</>j + </>-1~ (UjX</>j + jUj </>j-l </>X)

n n n

+ 2</>-3</>; L Uj</>j - </>-2</>xx L Uj</>j - 2</>-2</>X L (UjX</>j + jUj</>j-l</>X)
j=O j=O j=O
n

..,l.-I'" ( ..,l.j 2' ..,l.j-l..,l. O( ° 1) ..,l.j-2..,l.2 . ..,l.j-l..,l. )+ 'fI LJ Ujxx'fl + JUjx'fl 'fix + J J - Uj'fl 'fix + JUj'fl 'fIxx = 0
j=O

(4.5.10)

and establishing the recurrence relationship

</>;(2 - j)(l +j) = F(uo, ... , </>t, </>x, ... ) (4.5.11)

from which the indices are -1 and 2. To verify the compatibility condition at

index 2 we substitute

(4.5.12)
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into (4.5.4). For j = 1 we have

(4.5.13)

which defines Ul. For j = 2 we have

(4.5.14)

which, given (4.5.13), is identically satisfied. This implies U2 is arbitrary and

(4.5.4) possesses the Painleve property.

The simple example of Burger's equation is sufficient to discourage most

practitioners from applying the Painleve analysis to partial differential equa­

tions. Fortunately Kruskal has proposed an improvement [107]. Noting that

(4.5.1) can be solved for one of the variables, x say, he suggested replacing

</>(x, t) by x + 'ljJ(t). The analysis is greatly simplified and proceeds along the

lines of the ARS algorithm. To take the example of Burger's equation (4.5.4)

again we substitute

(4.5.15)

where Uo = uo(t), into (4.5.4) and obtain

The last two terms are dominant and give

p =-1 Uo = 2. (4.5.17)

The indices are calculated by the substitution of

U = 2(x + 'ljJ)-l + j3(x + 'ljJ)i-l (4.5.18)

(4.5.19)

into the last two terms of (4.5.4). (We could substitute an expression of the

form (4.5.9) and establish another recurrence relationship, but that is not nec­

essary is this case.) Collection of terms linear in j3 and solution for i gives

i = -1,2. To verify that no incompatibilities arise we substitute

2

U= (x + 'ljJt l L Uj(x + 'ljJ)j
j=O
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into (4.5.4) and obtain, for j = 1,

(4.5.20)

and, for j = 2,
o

0= ox (~t +Ul) (4.5.21)

which, given (4.5.20), is identically satisfied. The usefulness of the reduced

ansatz is emphasised in the example of the Boussinesq equation [183].

Thus Kruskal's refinement greatly reduces the complexity while preserving

the salient features of the original WTC algorithm. It must be noted, however,

that this requirement is only adequate for the purposes of the Painleve test.

We cannot use this form of the singular manifold to search for solutions of the

equation as the simplifying assumption is too restrictive [44, 47]. It is best to

resort to the invariant Painleve analysis of Conte [44, 45] to obtain the most

information about a particular system. The interested reader is referred to [47]

for a clear introduction to the method.
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Chapter 5

Applications

Having presented the necessary tools for the analysis of differential equations

we apply these techniques to equations that arise in the modelling of physical

phenomena [81, 89]. We restrict our analysis to two (related) equations. Space

prevents us from reporting our results on the pivotal equation in shear-free

motion of spherically symmetric charged perfect fluid distributions in general

relativity and an equation arising in population dynamics.

5.1 Integrability analysis of a conformal equa­

tion arising in relativity

Here we analyse a nonlinear third order differential equation and a nonlin­

ear second order differential equation that arise in general relativity. These

equations arise in the study of spherically symmetric gravitational fields that

possess a conformal symmetry in the t-r plane [56]. The third order equation

possesses the pseudo partial Painleve property. We can integrate it once to

obtain a second order first integral. For a particular value of the first inte­

gral this equation has the Painleve property, has two symmetries and can be

reduced to quadratures. It is remarkable that an equation that possesses the

pseudo partial Painleve property can be integrated to one that possesses the
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Painleve property. This demonstrates that the pseudo partial Painleve prop­

erty is significant in the solution of differential equations that arise in practical

applications. The second order equation is analysed using both the Lie and

Painleve methods. We show how this gives further evidence of the close re­

lationship between these two methods of solving differential equations. We

finally note that the problem of solving the two field equations of Dyer et al

[56] is essentially that of solving a single Emden-Fowler equation of index two..

5.2 The equations of Dyer, McVittie and Oat-

tes

Spherically symmetric gravitational fields are important in relativistic astro­

physics and cosmology [117, Ch 14]. Such gravitational fields with vanishing

shear and admitting a conformal Killing vector in the t-r plane have been

investigated by Dyer et al [56]. They generated the third order field equation

(5.2.1)

where T is related to the gravitational potential, /l = rIt is a self-similarity

variable and m is a constant. (For more information on conformal symmetries

andt their relationship to mathematical physics the reader is referred to [41].)

Solutions to (5.2.1) are important because they help to generate solutions to

the Einstein field equations. Dyer et al [56] did not present any solutions to

(5.2.1). It was only recently that Maharaj et al [140] found solutions to (5.2.1)

in the form of Weierstrass elliptic functions. Their solution has the form

where

(5.2.2)

T(/l) = I'y(x) +To,

2(m - 2)13 = 5a,

1321' = -6,

kf32 = 6a2, ( )5.2.3

k = ±[(m - 1)2(m - 3? +4kp/2,
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P is the Weierstrass elliptic function, k the value of a first integral of (5.2.1)

and To, Cl, C2 are arbitrary constants. Note that the assumption implicit in

(5.2.2) is that m ::j:. 2. For the case m = 2 a solution can be found by simple

integration. This is given by Havas [94]

where he used the homogeneity property of the Weierstrass elliptic function

and its evenness in x, (5.2.3), b= (k/,)3 + 12s/UP,) and s a constant.

It is interesting to note that other well-known solutions of the Einstein field

equations may be related to (5.2.1) as was observed by Havas. For example,

we regain some of the Wyman solutions [187, 188] for particular values of m

and the first integral of (5.2.1). These are given by

m= -3 T = -241l4p(1l2 + a, 0, b) (5.2.5a)

m=7 T = -241l-4p(Il-2 + a, 0, b) (5.2.5b)

9 24 [m=- T = - 49 1l4/7p(1l2/7 + a,O,b) + 1] (5.2.5c)
7
19 24 [m=- T = ~ 49 1l-4/7p(Il-2/7 + a, 0, b) + 1] . (5.2.5d)
7

We have independently verified that the functions (5.2.5) are solutions of the

field equation (5.2.1).

5.3 Painleve Analysis

Using the transformation

11 = ex/(2m-4) (5.3.1)

we rewrite (5.2.1) in the autonomous form

ylll + y" + yy' = 0.
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We proceed with the Painleve analysis as explained in Chapter 4. Firstly,

setting

where

x = x - xo,

(5.3.3)

(5.3.4)

we find that the singularity is a pole of second order and a = -12. Now setting

12 -2 + Q i-2Y = - X !JX (5.3.5)

we obtain the indices i = -1, 4 and 6. To verify that (5.3.2) passes the Painleve

test we substitute the truncated Lament expansion

(5.3.6)

into (5.3.2) and solve for the aj (j = -1, ... ,4). This procedure results in

1
a-I = 125

1
ao= -

25
12

aI =-
5

1
a2 = -12500

1
a - ----

3 - 187500

a4 is arbitrary.

(5.3.7)

As there are only two arbitrary constants as opposed to the required three cor­

responding to the three degrees of freedom for (5.3.2), this suggests that (5.3.2)

possesses the partial Painleve property of Cotsakis and Leach [53]. However,

if we truncate the expansion at the first index, viz make the substitution

(5.3.8)

into (5.3.2), we obtain
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1
a -­0-

25
12

al =-
5

a2 is arbitrary.

(5.3.9)

This indicates that the constant at the first index is initially arbitrary, but

is restricted to a particular value when the arbitrary constant at the second

index is introduced. This system is said to possess the pseudo partial Painleve

property. The partial solution to (5.3.2) can be written as

-12 1 1 1 12 1 2

Y = (x - XO)2 + 125 (x - xo) + 25 + S(x - xo) - 12500 (x - xo)

1 (x _ xo? +a4(x - XO)4 +... (5.3.10)
187500

and we say that (5.3.2) is integrable on a surface in three-dimensional param-

eter space.

Our analysis would normally continue by introducing logarithmic terms into

the Laurent expansion (5.3.10). However, we note that (5.3.2) can be easily

integrated to obtain the first integral

"+ '+! 2_I<Y Y 2Y - , (5.3.11)

where I< is a constant of integration and thus a parameter. In general, (5.3.11)

does not possess the Painleve property (or any degree thereof). Reduction via

the only symmetry [96], a/ox, results in an Abel's equation of the second kind

the solution of which, unsurprisingly, is not obvious. However, for I< = 18/625

(5.3.11) does possess the Painleve property and has the solution

-12 12 1 1 1 1 2

Y = (x - XO)2 + S (x - xo) + 25 + 125 (x - xo) - 12500 (x - xo)

1 3 4 1 - 7500000 5
187500 (x - xo) +a4(x - xo) + 9375000 a4(x - xo) +....

(5.3.12)

To make the solution of (5.3.11) more transparent we use the transformation

Y = eX
/

5 (Ji _~)
5 25
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This transformation is suggested by the fact that, when J{ = 18/625, (5.3.11)

has the two symmetries
,

a
G1 =­ax

xiS a xiS (2 12 ) aG2 =e -+e --y+--,ax 5 125 ay

(5.3.14a)

(5.3.14b)

where we call (5.3.14b) a 'conditional' symmetry in the spirit of configurational

invariants [175]. We can now rewrite (5.3.11) as

which has the symmetries

y" +25y2 = 0 (5.3.15)

(5.3.16a)

(5.3.16b)

Since the transformation (5.3.13) is homographic, (5.3.15) still has the Painleve

property. We write its solution as

where X = X - Xo and P(X) is the Weierstrass P function with C2 = 0 and

C3 = b4 = (25/6)a4 [16, Ch 18]. The form of Y(X) is not surprising as (5.3.15)

is essentially the defining differential equation for the Weierstrass P function.

Note that (5.3.17) is the solution to (5.3.11) (and hence (5.3.2)) for a particular

value of the first integral J{, but for all values of rn, in contrast to Wyman's

solutions (5.2.5) which hold only for particular values of rn.
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5.4 The solution via point transformations

We can transform (5.3.11) into the standard form of the Emden-Fowler equa­

tion [122, 57, 66, 67, 68, 69]. Setting

y = 2z(x) + b,

where f{ = ~b2, we write (5.3.11) as

z" + z' + bz + Z2 = O.

(5.4.1)

(5.4.2)

We remove the z' and z terms in (5.3.11) using the well-known Kummer­

Liouville transformation [120, 138]

where, in our case,

z(x) = u(x)v(t) t = t(x) (5.4.3)

u(x) = e-(I+a)x/2

1
t(x) = -'a,eax

a = v''-1---4~b.

Eq (5.4.2) then becomes

(5.4.4)

(5.4.5)

For our particular value of f{, 18/625, a has the four values ±1/5, ±7/5. This

gives the set of equations

ij + v2 = 0
1

(5.4.6a)a= --
5

(t) -5 1- 2v+ 5 v =0 a=- (5.4.6b)
5

_ (t) -15/7 2 7
v+ - v =0 a= -- (5.4.6c)5 5

(t) -20/7 7
ij + - v2 = 0 a=- (5.4.6d)5 5'
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It is easy to eliminate the constant coefficients of v2 and consider the trans­

formed set of equations

with the corresponding symmetries

a
G-­

I - at

2a a
Xl =t -+vt-

at av

Yi = 343t6/7~ + (147r l
/
7v -12)i.-

at av

Zl = 343t8/7~t + (196t l
/
7

V +125) ;v

Since the Lie Bracket of each pair is

(5.4.7a)

(5.4.7b)

(5.4.7c)

(5.4.7d)

a a
G2 = t- - 2v- (5.4.8a)

at av
a a

X 2 = -t at - 3v av (5.4.8b)

a a
Y2 = 7t at +v av (5.4.8c)

a a
Z2 = -7t at - 6v av' (5.4.8d)

(5.4.9)

we can reduce each equation in (5.4.7) to quadratures [156, p 148] using first

GI then G2 • Eq (5.4.7a) can be reduced to the elliptic integral

or regarded as

J
dv

t - to = (Co _ (2v 3 )/3)1/2

v = P( J-1/6t + a, 0, b),

(5.4.10)

(5.4.11 )

where P is again the Weierstrass P function [90, p 631] and a and bare arbitrary

constants.

We can relate the solutions of (5.4.7b) to (5.4.11) by the mapping

25
t --+-

t
5v

v--+ -
t '
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of (5.4.7c) by

and of (5.4.7d) by

V --t vt3 +6t

1
t --t - (49tF

v--t 49~t4 (v + t~) .

(5.4.13a)

(5.4.13b)

(5.4.14a)

(5.4.14b)

Note that Leach et al [128] showed that (5.4.7d) can be reduced to

-1/7 -1/7 _ fP d7]
7(to - t ) - J

po
(21 - (27]3)/3)1/2'

where p was one of the two integral invariants of Z2, ie one of

(5.4.15)

6
t - 4/ 7 t2/7q1 = V --

49
4 12= t 4/ 7v _ _r 3/ 7 _ _ t 3/ 7

q2 7 343'

and also related (5.4.7c) to (5.4.7d) using the mapping

v
V --t -.

t

(5.4.16a)

(5.4.16b)

(5.4.17a)

(5.4.17b)

We note that the Painleve analysis provided the value 6
1
2
8
5 for K. This

translated into a (in (5.4.5)) having the values ±%' ±i which are the only

values for which (5.4.5) possesses two Lie point symmetries.

5.5 Analysis of the second field equation

Havas [94] showed that the second field equation of Dyer et al [56] could be

written in the form

(5.5.1)
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Following the idea of Mellin et at [148] we analyse (5.5.1) by requiring that it

possess two point symmetries and hence be integrable.

In accordance with Mellin et at [148] we require that (5.5.1) be invariant

under a point symmetry of the form

8 8
G = a(x) 8x + (b(x)w + e(x)) 8w' (5.5.2)

(While the equation considered by Mellin et at [148] is more general than (5.5.1)

it can be easily shown that a point symmetry of (5.5.1) must have the form

(5.5.2).) Separation by powers of w' and w results in the following system of

ordinary differential equations:

2b' = a",

(b +2a')x-5n = 5anx-5n- I ,

b" = 12ex-5n ,

e" = O.

Eqq (5.5.3d) and (5.5.3c) give e and hence b as

c = Co + CIx,
12Cox-5n+2 12CIx-5n+3

b = Bo + BIx + + .
(-5n +1)(-5n +2) (-5n +2)( -5n + 3)

In general, we can write a, via (5.5.3b), as

(5.5.3a)

(5.5.3b)

(5.5.3c)

(5.5.3d)

(5.5.4)

(5.5.5)

A 5n/2 Box
a = IX -

-5n +2 (-5n +1)(-5n +2)( -15n/2 + 3)

(-5 + 2)(-5n + 3)( -ISn/2 + 4)'
(5.5.6)

(5.5.7)

The final step in determining the form of (5.5.2) is to satisfy the consistency

condition given by (5.5.3a) which we can now write as

24C x-5n+l 24C x-5n
+2 Sn (sn ) B2BI + 0 + I = _ _ _ 1 A x5n-2 _ I

(-5n+l) (-Sn+2) 2 2 I -5n/2+2

6(-5n +3)Cox-5n+l 6( -5n +4)CIX- 5n+2

(-5n + 1)(-15n/2 + 3) (-5n + 2)( -15n/2 + 4)'

94



Note that Bo does not appear in (5.5.7) implying that we always have at least

one symmetry which has the form

o 0
GI = x- + (5n - 2)w-.

Ox ow
(5.5.8)

This implies that (5.5.1) can always be reduced to a first order equation. In ad­

dition, we have a possible second symmetry by equating coefficients of the pow­

ers of x in (5.5.7) to zero. Thereafter, setting each of the constants BI , Co, Cl

except one (which is set equal to one), in turn, to zero we obtain appropriate

values for n, ie for B I , n = 1; Co, n = 3/7 and for Cl, n = 4/7. Further for Al

we have n = 0,2/5. However, n = 2/5 makes the coefficient of Cl infinite and

is therefore invalid. These values of n imply that the equations

w" - 6w
2

= °

have the corresponding pairs of symmetries

n = 0,

3
n =-,

7
4

n =-,
7

n=l

(5.5.9a)

(5.5.9b)

(5.5.9c)

(5.5.9d)

o 0
GI = -x-+2w-ox ow

o 0
Xl = 7x-+w-

ox ow
o 0

Yi = 7x- +6w-
ox ow
o 0

ZI=x-+3w-
Ox ow

(5.5.10)

X 2 = 343x
6

/
7
:x + (147x- I/7

W + 2) :w,(5.5.11)

Y2 = 343x
8

/
7
:x + (196x l

/
7w - 2) :w' (5.5.12)

20 0
Z2 = x ox + xw ow' (5.5.13)

The constant coefficients of the nonlinear terms in (5.5.9) can be transformed

away. This reduces (5.5.9) to the system (5.4.7) and the discussion following

(5.4.7) applies equally in this case. Thus we have reduced the problem of

solving the two field equations of Dyer et al [56] to that of solving the single

equation

(5.5.14)
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Mellin et al [148] showed that the equation

y" +p(x)y' + r(x)y = f(x)y2

can be transformed to the autonomous form

(5.5.15)

(5.5.19)

Y" +2CoY' + (M +C6)Y + N = Ky 2
, (5.5.16)

where Co is given by our Bo in (5.5.5),

M = !aa"-~a'2-Hp'+!p2-2r)a2-2K1a~2 exp [!1(p - 2~o)] (5.5.17)

and

N = f{ {J a~2 exp [~J(p - 2~o)]r-J{[~aa'" - (p' + ~p' - 2r) aa'

-~ (p' + ~p2 - 2r) a2] [1 a~2 exp [~J (p - 2~O)]j} , (5.5.18)

where a is given in (5.5.2), K is a constant of integration and d is our c in

(5.5.2), provided f(x) is given by

f(x) = Ka- 5
/

2 exp [!1(p _ 2~o)].

The transformation that takes (5.5.15) to (5.5.16) is

x= Jd:
Y = yexp (- J~) -J[~exp (- J~)] ,

where c is our b in (5.5.2) and is given by

c = Co + Ha' - ap).

(5.5.20a)

(5.5.20b)

(5.5.21 )

Mellin et al [148] further showed that (5.5.16) had two symmetries iff

( C2) ( 49C
2)M + 2~ M + 25 0 +4KN = O. (5.5.22)

Our analysis is much simpler as we do not have the functions p(x) and r(x) of

[148] and f(x) is explicitly given by

(5.5.23)
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The condition (5.5.22) restricts n in (5.5.23), via (5.5.17), to 0,3/7,4/7 and

1. We note that (5.5.16) is also integrable when Co = O. (While the equation

only possesses a single Lie point symmetry it also possesses a 'useful' nonlocal

symmetry of the form (3.4.8) and so can be reduced to quadratures in a group

theoretic manner.) This gives n = 1/2 and (5.5.1) becomes

11 6 -5/2 2 0w-x w=. (5.5.24)

Eqq (5.5.9) and (5.5.24) are exactly those for which Wyman [187] found solu-

tions.

Noting the parallels between the two field equations one is tempted to find

an analogy for Co = 0 in the case of the first equation. This would require

setting the coefficient of z' in (5.4.2) to zero. However, we do not have that

latitude as the coefficient of z' is fixed.

It is interesting to analyse our version of (5.5.16) using the Painleve method

to determine if further solutions can be found. We find that our version of

(5.5.16) has the Painleve property only if n = 0,3/7,1/2,4/7 or 1. This is

equivalent to (5.5.22) or Co = 0 for (5.5.16). While not providing new solutions

this is further evidence of the close relationship between the Lie and Painleve

analyses of differential equations.

5.6 Discussion

In the above analysis we introduced the pseudo partial Painleve property. We

emphasise that the possession of this property merely suggests that the equa­

tion is integrable on a subspace of the space of initial conditions [53]. We

cannot predict the behaviour of the solution off the subspace: In fact, it has

recently been shown that the third order system that possesses the pseudo par­

tial Painleve property on a known subspace is chaotic in the sense of Lyapunov

for sets of initial conditions off that surface [169]. This is supported by the fact

that we are only able to find solutions to the first field equation for a particular
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value of its first integral, ie this value determines the subspace on which the

equation is integrable. This is in agreement with the ARS conjecture which

holds only for this value of the first integraL Thus we expect solutions of the

first field equation to be found, at best, for particular values of the first integral

and all m or vice versa. This explains Havas' results [94] which are only valid

for particular values of the first integral and Wyman's results [187, 188] which

only hold for particular values of m.

The forms of (5.4.5) and (5.5.1) suggest that the search for further solutions

of the Dyer-McVittie-Oattes field equations [56] should be confined to finding

further values of n for which

(5.6.1)

is integrable.

5.7 The generalised Emden-Fowler equation

The generalised Emden-Fowler equation [122, 57, 66, 67, 68, 69] (of which

(5.6.1) is a special case) has attracted much attention over the years. Wong, in

his review of 1976 [186], contains over 100 references, but even these were se­

lective. Subsequent to Wong's paper a further plethora of papers has appeared

devoted to a study of this ubiquitous equation. (See [85] for a recent review.)

The most general form studied today is

Y" + p(X)Y' + q(X)Y = r(X)yn
. (5.7.1)

However, a Kummer-Liouville transformation [120, 138] converts (5.7.1) into

standard form, viz

(5.7.2)

It is this form of the equation to which we confine our analysis. Eq (5.7.2) has

become increasingly important as it arises in the modelling of many physical

systems. It is perhaps best known for its occurrence as the pivotal equation
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in the study of the shear-free spherically symmetric perfect fluid motion in

Cosmology when n = 2 [177, 140,94,89,141]. More recently [139] it has been

shown to have application in the study of cosmic strings.

We study (5.7.2) from the viewpoints of Lie symmetries and the Painleve

analysis. In general, (5.7.2) does not possess any Lie point symmetries nor can

one easily say anything about its possession of the Painleve property. However,

for an appropriate f(x), (5.7.2) does possess at least one Lie point symmetry.

We analyse (5.7.2) for these instances and also consider the conditions for it to

possess more than one Lie point symmetry, thereby enabling the reduction to

quadratures. (See also in this respect [27].) In addition we show under what

further conditions (5.7.2) (with only one Lie point symmetry) can be reduced

to quadratures.

We also undertake a Painleve analysis of (5.7.2) (suitably transformed) and

discuss its possession of the full Painleve property. We comment on a possible

link between possession of the Painleve property and explicit integration of the

equation. Our interest is in the relationship between the equation possessing

the Painleve property and the evaluation of the quadrature it is reduced to via

the Lie analysis.

5.8 Lie Analysis

In the case of (5.7.2) it is easily verified that a point symmetry must have the

form
a a

G = a(x) ax + (c(x)y +d(x)) ay' (5.8.1)

The action of G(2) on (5.7.2) results in a nonlinear partial differential equation.

Equating different powers of y' and y in this equation to zero results in the

system

-2fa' +ef = af' +nef

nfd = 0
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e" = 0

d" = 0

2e' - a" = O.

We immediately integrate (5.8.6) to obtain

e = Ha' +a)

(5.8.4)

(5.8.5)

(5.8.6)

(5.8.7)

and observe that din (5.8.3) is zero. Thus (5.8.5) is identically satisfied. Note

that (5.8.3) and (5.8.4) coalesce in the case n = 2 and e and f are related via

d (See (5.10.8).). Note also that (5.8.2) can be rewritten as

I (n - 1(' ) ') faf + -2- a +a +2a = 0 (5.8.8)

which is special in the case n = -3 and a = O. We return to these cases later.

The cases n = 0,1 are equivalent as the equation is then linear. Linear second

order differential equations have eight Lie point symmetries which form the Lie

algebra 8£(3, R). (See [80] for a recent proof and references therein.)

For general n we write (5.8.8) as

j =_(n;3)~ _(n~l):

from which

f -}'/ -(n+3}/2 [(n-1)ajdxj- la exp - -
2 a'

The differential equation for a is (from (5.8.4) and (5.8.7))

alii - 0- ,

whence

Eq (5.7.2) has the symmetry

G {) 1(' ) {)
1 = a {)x + 2 a + a y {)y

if f(x) is given by (5.8.10).
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Using the transformation

x= Jdax

Y = a;/2 exp ( -aJ~:)

we rewrite (5.7.2) in autonomous form, viz

Y" +aY' + (6 + :2) Y = Kyn
,

where

Reduction via

(5.8.14)

(5.8.15)

(5.8.16)

(5.8.17)

u=y v = y' (5.8.18)

(5.8.19)

results in an Abel's equation of the second kind, viz

vv' = Kun
- av _ (6 + :2) u,

the solution of which (though it exists in principle) is unobvious.

Eq (5.7.2) can be reduced to a first order equation provided f is given by

(5.8.10) and a by (5.8.12).

To reduce (5.8.16) to quadratures we require that the equation which arises

after the first reduction of order possesses at least one Lie point symmetry. If

(5.8.16) possesses two Lie point symmetries, Cl and C2 say, and [Cl, C2 ] = )..,Cl

(>.. an arbitrary constant usually 1 or 0), the reduction via Cl will result in

a first order equation with C2 (suitably transformed) as a point symmetry

[156, p 148]. We therefore further examine (5.8.16) to determine under what

circumstances it possesses two point symmetries.

Setting

C = a(X) :x + c(X)Y:y, (5.8.20)

where we have removed d(X) in the coefficient of a/ay since the form of

(5.8.16) implies J(X) = 0, we require

(5.8.21 )
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where we have rewritten (5.8.16) as N(Y, Y', Y") = O. The operation (5.8.21)

results in the system

e- 20,' = ne

2C' + aa' - a" = 0

e" + 2ivla' + ae' = e,

where
a 2

M = 6.+-.
4

The function e is determined from (5.8.22), viz

_ 20,'
c= ---.

n-l

(5.8.22)

(5.8.23)

(5.8.24)

(5.8.25)

(5.8.26)

The differential equation for anow becomes (via (5.8.23) and (5.8.26))

n + 3 -If -, 0--a -aa =
n-l

and so a is given by

- - ((n - 1) )a= Aa + Al exp n + 3 aX .

Eq (5.8.24) becomes the consistency condition

-Ill -Ifa ,aa
-- - ivIa + -- = O.
n-l n-l

When (5.8.27) is invoked, (5.8.29) is satisfied only if

ivI = 2a
2
(n + 1)

(n + 3)2

from which (via (5.8.25))

6. = _ [a(n - 1)] 2

2(n + 3)

The substitution of (5.8.31) into (5.8.17) results in

lA2 _ A A = [a(n - 1)] 2

4 1 a 2 2(n+3)
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(5.8.33)

(5.8.34)

which requires the equation for a, viz (5.8.12), to have real roots!

From (5.8.20) and (5.8.28), (5.8.16) has the two Lie point symmetries

a
Cl = ax

G, = exp ( G~ ~) "x) (:x - ~:V3 :v)
provided (5.8.32) holds.

Under the transformation

x = a (~ ~ ~) exp ( (~ ~ ~) aX)

(5.8.16) becomes

y" = Kyn,

(5.8.33)-(5.8.34) transform to

y = Yexp ( (n~ 3) X)
(5.8.35)

(5.8.36)

a a
Xl = (1 - n)rY- +2Y-

arY ay
a

X 2 =-ax

and

We now evaluate j as

_!!..±1. ( A a n - 1) -(n+3)
j=KA2 2 x+_l

----
2A2 2A2 n + 3

Eq (5.8.36) can be reduced using X 2 and then Xl to the quadrature

x - Xo = ± J dY ! '

( --lS-yn+1 + K ) 2
n+l I

(5.8.37)

(5.8.38)

(5.8.39)

(5.8.40)

(5.8.41)

where Xo and K I are arbitrary constants of integration.

Remark: We observe that (5.8.16) can also be reduced to quadratures in the

case a = O. An extension of the Lie theory to nonlocal symmetries [83] reveals

that

y" + My = Kyn
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possesses an additional (nonlocal) symmetry of the form (3.4.8). The function

f now becomes

(5.8.43)

(See also [111] for a treatment of the two symmetry case for f = x m
.)

Thus for (5.7.2) to be reduced to quadratures f must be given by (5.8.10),

a by (5.8.12) and (5.8.32) must hold.

5.9 Painleve Analysis

From §5.8 it would seem that the Lie theory of differential equations (and its

extensions) is rather exhaustive in its treatment of the Emden-Fowler equa­

tion. We now investigate its possession of the Painleve property to determine

whether any further interesting information can be obtained. We note that

(5.8.36) does not naturally fall into the classes of equations listed in [71, 105]

as i) n can be rational and ii) these lists are complete up to a homographic

transformation. Thus a Painleve analysis of (5.8.36) should highlight interest­

ing properties of this equation.

We study the equation in the form

(5.9.1)

where the J( in (5.8.36) has been removed through the rescaling of y. It is

.easily verified that the pole arises at

2
p=--­

n -1'

and the coefficient of the pole is

n-l 2(n + 1)a = -:-'-_-,-'-
(n-l)2'

(5.9.2)

(5.9.3)

obviously with both terms in (5.9.1) being dominant. The indices arise at

. 2(n+l)
z = -1, .

n-l
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For the implementation of the ARS algorithm p in (5.9.3) must be a negative

integer. This arises for the values n = 2,3. The corresponding indices are

i = 6,4 respectively. It is not necessary to substitute the truncated Laurent

expansion into (5.9.1) to check for incompatibilities at the index. This follows

from both the terms in (5.9.1) being dominant. We note that (5.8.41) can be

easily evaluated for these values of n.

For n # 2,3 p and i are rational and the possibility that the solution of

(5.9.1) possesses algebraic branch points exists. However, we can transform

the denominator of p away by setting either

or

Y n-l=y

Y=y

x =X

x = x1/(n-l).

(5.9.5)

(5.9.6)

The transformation (5.9.6) is homographic (and thereby preserves the Painleve

property [71, 47]) and results in

y'
y" = (n - 2) X + (n - 1)2x 2{n-2)yn.

Our analysis of (5.9.7) yields the two cases

.) - 2 . - 1 2(1 ) n-l _ 2{n+l)
1 p - - ,z - - n, + n , et - (n-l)2

ii) p = n - 1, i = -1,0, et - arbitrary.

(5.9.7)

The first case does not have i = -1 and so the standard analysis halts (See [43]

for a detailed discussion of the absence of i = -1 in the Painleve analysis.).

An alternative route need be sought.

While (5.9.5) is not homographic, it does preserve the polynomial form of

(5.9.1) (for integer n) and so is an acceptable transformation [47]. The equation

becomes

Again two cases arise:

(
n - 2) yl2y" = -- -- + (n _1)y2.
n -1 Y
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.) _ . _ 1 2(n+l) _ 2(n+l)
1 p - -2, z - - , (n-l) , a - (n-l)2

ii) p = n - 1, i = -1,0, a - arbitrary.

Case ii) arises in the instance that the two derivative terms in (5.9.8) are

dominant only. However, this is equivalent to only the first term in (5.9.1)

being dominant. In case i) i is a positive integer only when n = -3, -1,2,3,5

(with the corresponding i values 1,0,6,4,3 respectively). The case n = -1 can

be immediately discounted as i = 0 implies a is arbitrary. However, we note

that 0:', in case i), is fixed (and is in fact zero!). This implies that the expected

arbitrary constant corresponding to i = 0 is fixed. This can only be resolved

by introducing logarithmic terms in the Laurent expansion for Y [168].

We need to examine the family p = n - 1 for the remaining values of n. For

n = 2,3,5, p > O. Ordinarily this would suggest the transformation

Y=~
Y

(5.9.9)

to make p negative. However, as we have specific values for n we can resort

to looking up the appropriate equations in [71, 105]. We find that the equa­

tions corresponding to n = -3,2,3,5 are eqq (22), (2), (18) and (21) of [71]

respectively. Thus (5.9.1) has the Painleve property for n = -3,2,3,5.

Note that, as n is a physical constant related to the ratio of specific heats in

the astrophysical context [124], it can be rational. In the subsequent analysis

we expressly ignore integer n. By inspection we see that (5.9.3) implies p

a negative integer for 1 < n < 5/3. For p = -2/(n - 1) E 7l < 0, i =
2(n+1)/(n-1) = 2-2p Ell> 0 (in (5.9.4)). This points to (5.9.1) possessing

the full Painleve property. In this instance we do not have recourse to the lists

in [71, 105] as these are concerned with rational functions of the dependent

variable. It should be noted that no such restriction was originally intended by

Painleve [160, 161]. Again, we do not have to substitute the truncated Laurent

expansion into (5.9.1) to verify that no incompatibilities arise at the index as

both terms are dominant. Thus we introduce equations of the form
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into the literature as part of the class of second order ordinary differential

equations possessing the Painleve property.

5.10 The special cases n == -3, 2

We have seen above that in the case n = -3,2, (5.7.2) can be reduced to a

quadrature that can be evaluated. However, these cases have a deeper signifi­

cance that the Lie analysis in §2 did not reveal.

For n = -3 and a = 0 we solve (5.8.8) to obtain

f -k- , (5.10.1 )

where I< is an arbitrary constant. The solution for a (obtained from (5.8.4)

and (5.8.7)) is

with c given by
Al

C ="2 + A2 x

and d = 0 as before. Eq (5.7.2) now has the form

11 }-'-3Y = iy

(5.10.2)

(5.10.3)

(5.10.4)

(5.10.7)

(5.10.6)

(5.10.5)

(which is the well-known Ermakov-Pinney equation [58, 166]) and has the

three Lie point symmetries

a
Cl =­ox

a a
C 2 = 2x-+y-ox ay

20 a
C3 = X -+xy-ox ay

which form the Lie algebra sf(2, R). (See also [110, 128, 111, 131].) This

Lie algebra is not solvable, but as we are only concerned with a second order

equation, it is sufficient to reduce (5.10.4) to quadratures.
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(5.10.21)

The 'new' point symmetry G~ is not a descendant of any of the point symme­

tries in (5.10.17), but comes from the nonlocal symmetry [6]

G4 = 3 (J adx) :x +2a2 :a
and is hence a Type II hidden symmetry. This hidden symmetry is the appro­

priate one for further reduction of (5.10.18). Using

we obtain

t = V'U- 1/ 2 1 ( I 3/2 1 -1/2)2
W = 2" VU - 2"VU

w" + 3w' + 2w = 0

(5.10.22)

(5.10.23)

which is trivially solved. Reversing the transformations we obtain

J
du

x - Xo = 32'
(-Ku 3 /6 - Lu2 /2 - 2Pu - 2Q) /

where K, L, P and Q are constants of integration and

u= Ja:/2 '

(5.10.24)

(5.10.25)

It is interesting to note that the trivial cases of setting all except one (in turn)

of K, L, P and Q to zero produce special cases of the function f given by

Srivastava [177] for the reduction of the Emden-Fowler equation of index two

to quadrature.

When ex::J. 0, eq (5.10.11) has only the two point symmetries

(5.10.26)

Unfortunately reduction using G1 does not produce any hidden symmetries.

However, it is of interest to test (5.10.11) for integrability using the Painleve

analysis. After transforming (5.10.11) to a suitable form for the analysis, we

find that one of the indices which occurs is arbitrary. In fixing this index it

turns out that the expected arbitrary constant at the other index becomes
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fixed. The analysis can only be continued by introducing logarithmic terms

into the expansion. Thus (5.10.11) does not possess the full Painleve property.

It has been observed [78] that some information about the partial solution of

(5.10.11) can be obtained from considering the different families of expansions

for y. However, this information is naturally contained in (5.10.24).

5.11 Discussion

The Emden-Fowler equation

y" = f(x)yn (5.11.1)

has been shown to be integrable (for certain functions f(x)) for all n (including

rational values) by considering a Lie analysis. It was further shown that, if

(5.11.1) possessed two Lie symmetries, it could always be transformed to

y" = yn. (5.11.2)

(Of course (5.11.1) can be reduced to quadratures if it has two point symme­

tries. We mention the transformation to (5.11.2) so that comparison can be

made with the Painleve property.) This point must be emphasised. All Emden­

Fowler equations with two symmetries Cl and C2 such that Cl =1= p(x,y)C2

(which form the Lie algebra A 2 ) can be transformed to (5.11.2) and the solu­

tion to the original equation is obtained from the solution of (5.11.2) via the

same transformation.

In this work, the Painleve analysis was restricted to equations of the form

(5.11.2) by requiring that (5.11.1) possess two Lie point symmetries. However,

noting that some of the equations in [71, 105] do not possess at least two Lie

point symmetries, the Painleve analysis of the equation in the form (5.11.1)

would be of some interest (See [46].). This could point the way to nonlocal

symmetries of (5.11.1).
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Chapter 6

Conclusion

The case is made for a less constrained approach to the definition of symmetries

of functions and differential equations.

6.1 The determination of nonlocal symmetries

In §§3.2-3.4 we presented a systematic approach to finding first order and gen­

eralised nonlocal symmetries of second order ordinary differential equations.

While the solutions of the resulting equations may look complicated their de­

termination is surprisingly straightforward (We need to solve linear first order

ordinary differential equations as opposed to the linear partial differential equa­

tions of the classical method.). The analysis was confined to the determination

of those nonlocal symmetries that reduce to point symmetries under reduction

of order via
. 0

G = ox' (6.1.1)

where x represents the independent variable. This restriction is valid as we are

only interested in those nonlocal symmetries of the second order equation that

allow us to reduce the resulting first order equation to quadratures.

To properly utilise the nonlocal symmetry some restrictions had to be placed

on the coefficient functions. The restrictions imposed are justified by the re­

quirement that the nonlocal symmetry commutes with (6.1.1) and that it be-
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comes a point symmetry under the reduction of order. In spite of these restric­

tions we have been able to make some progress. In particular we have been

able to classify all second order equations possessing a first order nonlocal sym­

metry in addition to the point symmetry (6.1.1). The further classification of

second order equations using nonlocal symmetries lies in making an appropri­

ate ansatz for the integrand in the coefficient functions. A few examples (not

meant to be exhaustive) were given to illustrate the principle.

We remarked in Chapter 3 that the search for nonlocal symmetries should be

confined to second order equations. In the case that one is dealing with higher

order systems where the reductions are nontrivial it may be of some benefit to

analyse those systems for first and higher order nonlocal symmetries. We leave

it to the practitioner to decided which of the two approaches is optimal.

vVe note that differential equations have a rich structure of nonlocal symme­

tries. This was amply illustrated by the reduced form of the complex Lorenz

system. A simple example is the analysis of

" 0y =

for nonlocal symmetries of the form

Gnl = ~(x,y,Jydx) ;x + r;(x,y,Jydx) ;y'

(6.1.2)

(6.1.3)

Even with this severe restriction on the integrand we find a large number of

nonlocal symmetries.

We have only concentrated on linear nonlocal symmetries. A method for

the systematic search for other possible nonlocal symmetries (eg involving ex­

ponential [5] or other functions) would be of interest. The determination of

exponential nonlocal symmetries is of particular interest as they allow us to

reduce the order of equations that do not necessarily possess any point sym­

metries [5]. They can also be used to determine first integrals. However, in the

calculation of these symmetries we need to solve a system of nonlinear partial

differential equations [5].
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A final remark, in order to place this work in its proper perspective, is that

hidden symmetries have recently been explained from a geometric viewpoint

[93] using the concept of solvable structures [23]. It is hoped that our treatment

complements that approach.

6.2 Equations not possessing Lie point sym­

metries

The Lie method of extended groups is attractive in that it provides an algorith­

mic method to solve differential equations. However, in those instances that

the equations being studied do not possess Lie point (contact) symmetries the

method is inapplicable. In §§3.5-3.10 we showed that, by reversing the stan­

dard procedure, some progress can still be made. Due to their proliferation

in applications we have concentrated on second order equations and presented

those which do not have Lie point symmetries and yet are solvable using a

variant of the classic Lie analysis. The method applies mutatis mutandis to

higher order equations.

In this work we have considered the two-dimensional algebras of symmetries.

We have thereby ignored the fact that the second order equations invariant

under Types II2 and IV2 are linear and hence have eight Lie point symmetries.

Thus there exists a point transformation to take the second order equation

invariant under Type II2 to that invariant under Type IV2. This suggests a

relationship between the original second order equations not possessing Lie

point symmetries. In the case of (3.9.8) the transformation

w = wJF(z)dz, (6.2.1)

yields (3.9.12) (with w, z in (3.9.12) replaced by W, Z respectively). A similar

result will hold for (3.8.10) and (3.8.19).

vVe note that the solutions of eqq (:L9.8) and (3.9.12) are easily obtained.

Both integrate trivially to a first integral that can be rewritten as a Riccati
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equation. This integration is related to the presence of exponential nonlocal

symmetries of the form [9]

G=exp[j P(x,Y)dx] (~(x,y);x +~(x,y)~) (6.2.2)

(Thus the route to the linear second order equation is obtainable by this ele­

mentary method and that detailed earlier.) The reason we still consider the

solution of these equations via our method is to show that those equations

which are solvable by elementary methods are so because of the group theoretic

basis. The practical usefulness of our approach is evidenced by the solutions

of (3.8.10), (3.8.15), (3.8.19) and (3.9.10) which are not obviously integrable.

This approach opens up a number of new avenues. The first is the extension

to second order equations possessing one Lie point symmetry. Here, one would

require that the third order equation possess three Lie point symmetries and

that reduction using the third symmetry result in a new second order equation

with more than one symmetry. A further aspect that would need investigation

in this case is that of the original second order equation possessing, in addition

to the one Lie point symmetry, a 'useful' nonlocal symmetry, ie a nonlocal

symmetry that reduces to a new point symmetry under the reduction of the

second order equation via the point symmetry. In fact that option can also be

applied to the new second order equations obtained earlier - it is not necessary

for these equations to possess two Lie point symmetries to be reducible to

quadratures.

Another possible line of research is the possession of contact symmetries by

the third order equation. As it has been shown [14] that contact symmetries

can reduce to point symmetries, this could result in new classes of third order

equations that reduce to second order equations which are solvable without the

imposition of further restrictions, ie they may naturally possess more than one

Lie point symmetry.

Contact symmetries can also be considered for the original second order

equations. 'While there may be technical difficulties associated with finding
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these contact symmetries, it is possible to assume that the second order equa­

tion has no Lie point symmetries but one contact symmetry of some specific

form (These difficulties have been largely overcome by the work of Mahomed

and Leach [147].). Then an increase of order could lead to a third order equa­

tion with more than one Lie contact symmetry etc.

From the above it can be seen that the ideas presented here can be used

successfully to extend the number of solvable equations. They can also be used

to explain the integration of equations not possessing Lie point symmetries via

group theory. It is worthwhile to note that we do not expect 'fundamental

equations' like the six Painleve equations [160, 161, 71] to be solvable using

our method. These equations are 'irreducible' [105, p 345].

6.3 The Lie-Painleve link

In Chapter 5 we presented two applications of Lie and Painleve analysis. Both

demonstrated clearly a possible link between these two types of analyses (An­

other example can be found in [130].). Take, for example, the equation

y" = yn. (6.3.1)

The Painleve analysis of (6.3.1) reveals integrability only for restricted values

of n. It is not surprising that, only for these restricted integer values, the

quadrature (6.3.1) reduces to, viz (5.8.41), can be evaluated. In the case of

rational n, it was shown that, for specific values of n in the range (1,~], (6.3.1)

possessed the Painleve property. While the quadrature (5.8.41) cannot, as yet,

be evaluated for these values, noting the results in [184, p 82] and [32] we

believe that the evaluation thereof is only a matter of time and effort.

As expected, the results of the Painleve analysis are a subset of those ob­

tained from the Lie analysis (extended in some cases to nonlocal symmetries).

The Painleve analysis isolates those cases in which the quadrature that the Lie

analysis provides can be easily evaluated, thereby identifying those cases with

analytic solutions (as opposed to the algebraic results of the Lie analysis).
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These examples are a clear indication that both Lie and Painleve analyses

provide important information about. equations and should both be attempted

for a given problem.

6.4 A proliferation of nonlocal symmetries

Consider the third order equation

and the second order equation

III 0Y =

y" = 0

(6.4.1)

(6.4.2)

which is obtained from (6.4.1) by means of the reduction of order transforma-

tion

x =:r Y = y' (6.4.3)

which is a consequence of the symmetry a/ay of (6.4.1). Consider the fates and

sources of the symmetries of the two equations which are summarised in Table

6.1. There is nothing esoteric about this example. It demonstrates clearly and

precisely just how closely local and nonlocal symmetries are related.

Why then should one restrict the type of functional dependence of the co­

efficient functions of a symmetry? If we think of the symmetry as an operator

a a
G = ~- +'(/-,ox ay (6.4.4)

we do not have to constrain the nature of the dependence of the coefficient

functions on the variables. In an application we may be forced to impose

restrictions in order to make any progress. However, we must always be sensi­

tive to the fact that we are imposing a restriction. The restriction we impose

should be the minimum possible so that we obtain the widest possible infor­

mation about the symmetry of the equation or function. Our approach marks

a departure from the classical approach which started from point transforma­

tions and sought generalisations. (See [86] for a comprehensive account of this
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Table 6.1: Fates of the symmetries of y"' = 0 and sources of the symmetries of

Y" = O. In the reduction of G1 - G lO any terms in a/ay are omitted as Y" = 0

is independent of y = JY dX.

I ylll = 0 I Fate I Y" = 0 ISource

G1 annihilated U1 Gz

Gz U1 Uz G3

G3 Uz U3 G4

G4 U3 U4
a + 3 a G IG

X ox 1.Yay = s + 2 7

Gs xtx = U4 - ~U6 Us xz§X + ~(xy - J ydx)§y

G6 X 2!x + 2(JYdX)-§v U6 G7

G7 U6 U7 Gs

Gs U7 Us xyl a +!(xy/2 + 3 J yl2dx) aox z ay
Gg 2(JYdX - XY)!x - yz-§v

GlO (2X JYdX - X 2y)-!x

+(2Y JYdX - XY Z)-9v
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concept.) Consequently the restriction imposed was usually greater than one

needs for practical purposes. In fact it often reduced the applicability of the

theory. We envision the existence of a sublevel of usable symmetries (effec­

tively point, at which most work has been done in the past). In this context

usable means being able to construct a transformation from the symmetry. In

our approach it is not a matter of generalising the concept of symmetry, but

of realising that in the past our thinking has been too confined.

It is hoped that our endeavours further enlarge the classes of equations

solvable via the Lie method and bring us closer to realising Lie's dream of the

solution of all differential equations in a unified manner.
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Appendix A

Noether's Theorem

A.I Introduction

Symmetries of differential equations are not the only symmetries which are

used to provide integrals and solutions. The invariance of the Action Integral

under infinitesimal transformation leads to the celebrated Noether's theorem

[154, 155] which relates a first integral to each symmetry obtained for the

Action Integral. The classical Noether's theorem provides for the infinitesimal

transformation to be a generalised transformation in that it can depend upon

derivatives as well as the dependent and independent variables [62, 63] despite

more recent opinions to the contrary [72, 73]. (See [174] for an excellent review

of generalisations of Noether's Theorem.)

Under an infinitesimal transformation

x = x + c~ y = y + cry, (A.I.1)

where c is the parameter of smallness and ~ and ry are differentiable, the Action

Integral

is invariant if

l
X1

A = L(x, y, y')dx
XQ

- lXIA = _ L(x, y, y')dx
XQ

= A,
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where now' denotes d/dx. However, it is not necessary for A to be equal to A

since Hamilton's Principle requires that the variation in the functional be zero

under a zero endpoint variation. We impose the restriction on ~ and "1 that

they conform to the requirements for Hamilton's Principle, but allow for the

freedom of a gauge function which does not contribute to the variation. Thus

we may write

iX1=Xl

A = _ L(x, y, y')dx
XQ=XQ

l
x1 dF

=A+ -ddx.
XQ x

(A.L4)

Invoking the transformation (A.L1) and requiring that (A.L4) be the iden­

tity for c = 0 we have

to the first order in c, where F = cf and ( = "I' - y't. Consequently

a a
G = ~- +"1-ax ay

is a Noether symmetry of (A.L2) if

aL aL aL , ,
~ ax + "1 ay +(ay' + ~ L= f .

(A.L5)

(A.L6)

(A.L7)

(A.L8)

We note that nothing has been said about the functional dependence of ~, "1

and f. We also note that there is no mention of a first integral. The solution of

(A.L 7) will provide the infinitesimal transformation under which the variation

of the Action Integral will be invariant.

Eq (A.L7) can be rewritten as

o= {f - [~L + ("1 - y'~) a~]}' - ("1 _ y'O [aL _~ (aL)]ay ay dx ay'
so that when the variational principle is imposed on (A.L2) for it to take a

stationary value and consequently the Euler-Lagrange equation applies, (A.L8)

leads to the Noetherian integral

I = f - [~L+ (~ -y'\) ;:.]
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(We refer the interested reader to [145, 112] for interesting results on Noether

symmetries. )

In the event that a Hamiltonian is known, it is useful to be able to use

Noether's Theorem directly. (This is of particular benefit to physicists who

wish to avoid the mathematical intricacies involved in transforming the Hamil­

tonian to a Lagrangian.) In the sequel we cast Noether's Theorem in Hamil­

tonian form [77]. We also show that nonlocal transformations have a role to

play in Noether's Theorem [84].

A.2 Hamiltonian Formulation

If we define a Hamiltonian, H( q, q, t), via the Legendre transformation

H (q, p, t) = pq - L (q, q, t),

where the momentum is
aL

p = aq'
the Action Integral can be written as

i t1

A (pq - H(q,p, t))dt.
ta

In transformed coordinates, if, p and f,

A = (1 (pq - H (if,p, l)) df,
Ita

(A.2.1)

(A.2.2)

(A.2.3)

(A.2.4)

where q= dif/ df. Suppose that q, p and t and if, p and f are related by the

infinitesimal transformation

f = t + eT

if = q + eTJ (A.2.5)

(A.2.6)

where e is the parameter of smallness and T, TJ and ~ are differentiable functions

of their as yet unspecified arguments, generated by the differential operator

a a a
G = T at + TJ aq + ~ap .
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As we eventually intend to apply the variational principle in its zero end-point

variation form, we equate to and t1 to to and t1 respectively.

We have

A-A= f {[pq-H(ij,p,i)l~; -[pq-lI(q,p,tll}dt

i tl { oH oH OH}=c pr,+eq-H+-ry--e-- T- dt,
to oq op at

where we have used (A.2.5),

and

[
oH oH OH]

H(ij,p, t) = H(q,p, t) + c ry oq +eop +T at '

(A.2.7)

(A.2.8)

(A.2.9)

to the first order in c. The change in A induced by the infinitesimal transforma­

tion (A.2.5) will be independent of the path in configuration space between to

and t1 provided the integrand in (A.2. 7) is expressed as the total time derivative

of some function, ie we require

. . . oH oH oH .
pry + eq - HT - ry- - e- - T- = f·

aq op at
(A.2.10)

Note that the effect of the presence of the gauge function, f, is to change

the value of the Action Integral from A to A when the transformation (A.2.5)

is applied and reduces to zero when c = 0, ie the transformation is the identity.

If we take T, ry, eand f to be functions of q, p and t, (A.2.10) becomes

(
ory .ory .Ory) . (aT. aT .aT) aH aH oHp -+q-+p- +eq-H -+q-+p- -ry--e--T-=
at oq op at oq op oq op at

of.of. of (A 2 )at + qoq + p op' ..11

Since the variational principle has not been invoked, Hamilton's equations of

motion do not apply and q and p are independent. Thus (A.2.11) may be

separated to give

of = pory _ HOT
op at op
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a! = pa"1 + ~ _ H aT
aq aq aq
a! a"1 aT aH aH aH
- = p- - H- - "1- - ~- - T-
at at at aq ap at

(A.2.13)

(A.2.14)

and these are the equations to be solved to determine the admissible symme-

tries.

If we regroup some terms in (A.2.10), we have

(f + HT - P"1)' = 0 (A.2.15)

when Hamilton's equations of motion are invoked. Hence it follows that the

symmetry G as determined by the solution of eqq (A.2.12-A.2.14) has associ­

ated with it a first integral

I=!+HT-p"1 (A.2.16)

for the system described by the Hamiltonian, H (q, p, t). We emphasise that the

symmetry exists independently of the integral which follows from the additional

requirement that the variational principle be applied.

For problems in higher dimensions the relevant expressions are

a a a
G = Tat +"1i aqi + ~i api

I=!+HT-Pi"1i,

where T, "1i, ~i and! satisfy

(A.2.17)

(A.2.18)

(A.2.19)

(A.2.20)

(A.2.21)

and summation from 1 to n is implied by repeated indices and a free index

indicates one of n equations.

In general eqq (A.2.19-A.2.21) are to be solved for T, "1i, ~i and! and this can­

not be done without some further information or ansatz. Although in Hamil­

tonian mechanics q and p are equivalent, in practice p occurs in a preferred
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mode. Hence one would normally specify the p dependence in 7, 'T/i and ~i'

That of f follows from (A.2.19).

A simplification does occur if the transformation in space and time is not

restricted to a point transformation. Differentiating (A.2.18) with respect to

Pj one finds that, given (A.2.19),

(A.2.22)

If the 'T/j are permitted to be momentum dependent, there is no loss of generality

in setting

7=0 (A.2.23)

which does simplify the appearance of (A.2.19-A.2.21). The relationship

or equivalently

o!
ru = -~,

Upj

! = - J'TJidPi +g(q, t),

(A.2.24)

(A.2.25)

does emphasise the close relationship between the momentum dependence of

the first integral and the symmetry since the p-dependence of f and the ~i

follows from (A.2.19) and (A.2.20).

A.3 N oetherian integrals via nonlocal trans-

formation

The derivation in §A.1 was completely independent of the functional depen­

dence of f, eand 'T/. Consequently Noether's Theorem applies equally well to

nonlocal symmetries as it does to the generalised symmetries used by Noether

[154, 155].

To take an illustrative, and so trivial, example we consider the free particle

with Lagrangian

(A.3.1)
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The corresponding equation of motion, viz

y" = 0,

has many nonlocal symmetries one of which is

(J ) 0 1 2 0
G = ydx Ox +"2Y oy'

The substitution of (A.3.1) and (A.3.3) into (A.1.7) leads to

f' = ~yy'2

f = ~ Jyy'2dx

so that (A.1.9) yields the first integral

f 1 12 J d 1 2 1 1 J 12d= "2Y y x - "2Y Y + 2 yy x

= ~y'2 Jydx - h2y'

(A.3.2)

(A.3.3)

(A.3.4)

(A.3.5)

(A.3.6)

in which the equation of motion (A;3.2) has been taken into account in the

integration of the second quadrature of (A.3.5). Although (A.3.6) satisfies the

formal requirement for a first integral in that

df
-0

dx 11 0 - ,
y =

(A.3.7)

it could be regarded as being somewhat unuseful since its evaluation requires a

knowledge of y (x). This is so even though (A.3.3) is a useful nonlocal symmetry

since under reduction of order of (A.3.2) by the obvious symmetry O/Ox it

becomes

(A.3.8)

where u = y and v = y' are the zeroth order and first order differential invari­

ants [55]. However, this example was more for the illustration of the idea than

an attempt at a serious treatment of the solution of (A.3.2).

For a more compelling example consider the nonlinear differential equation

12
y" = L + a(x)yy' + a'(x)y2

y
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(A.3.10)L = ~ (: - ay) 2 exp [-Jaydx] .

which we encountered earlier. A nonlocal Lagrangian for (A.3.9) is readily

found and is

A nonlocal symmetry of (A.3.9) is [8]

Cl = yexp [J aydx] ;y' (A.3.11)

Substitution of (A.3.11) into (A.1.7) gives

l' = 0 (A.3.12)

and so f may be taken as zero in (A.1.9). The first integral associated with

the nonlocal symmetry (A.3.11) is calculated from (A.1.9) to be

y'
1= - - ay.

y
(A.3.13)

Eq (A.3.9) does have another exponential nonlocal symmetry [8], viz

C2 = yexp [- Jaydx] ;y (A.3.14)

which is a Noether symmetry for the Lagrangian when there is the nonlocal

gauge function

f = (; - ay) (exp [-2Jaydx] +C) . (A.3.15)

However, the first integral obtained is the same as that with Cl, ie (A.3.13).

There are several points to be considered in the use of nonlocal symmetries

in Noether's theorem. The example of equation (A.3.9) shows that a nonlocal

Noether symmetry can be used to obtain a regular first integral from Noether's

Theorem. This must be regarded as useful. That this did not occur in the illus­

trative example of the free particle indicates that one cannot always expect to

'be successful in obtaining useful first integrals. That the nonlocal symmetries

which produced the first integral (A.3.13) are exponential nonlocal symmetries

[11] is suggestive. We are quite prepared to accept that the standard concept

of a first integral does not encompass the function in (A.3.6) even though it
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does satisfy the normal requirement that its first derivative be zero when the

differential equation is taken into account.

In the context of differential equations it does not seem to be of material

import whether a Lagrangian be of standard form or contain nonlocal aspects.

However, it becomes another matter if one thinks of the Lagrangian as the

pathway to Hamiltonian Mechanics and the implications in various branches

of Physics. There is no doubt that a Hamiltonian formulation is possible.

Proceeding formally we find that the momentum for (A.3.10) is

aL
p = ay'

= ~ (; - ay) exp [- Jaydx]

and consequently the Hamiltonian is

H =py'-L

= apy2 + ~p2y2 exp [J aydx]

(A.3.16)

(A.3.17)

which could be interpreted as the Hamiltonian of a particle in one degree of

freedom with a mass which depends upon both position and time. (The ex­

pression f aydx must be regarded as a function of the independent variable, x,

whenever total differentiation with respect to it is being performed.) Hamil­

ton's equations of motion lead to (A.3.9) in the usual way.

What we have done is to demonstrate that nonlocal symmetries can be used

in the context of Noether's theorem to produce realistic first integrals. What is

needed is a systematic procedure for the determination of Noetherian nonlocal

symmetries as has been proposed for second order ordinary differential equa­

tions [83]. It would be interesting to consider the development of a complete

Hamiltonian formalism for nonlocal Hamiltonians. Whilst at first sight it may

seem to be impractical to require a knowledge of the solution (to evaluate the

integral in the nonlocal symmetry) to obtain the solution, this may not be

as strange as it seems. We recall, for example, that for some time-dependent

Hamiltonian systems it is possible to obtain formal solutions which require just
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the solution of a single ordinary differential equation to obtain the numerical

results. A typical example is in the calculation of expectation values [123] or

Berry's phase [125] for nonautonomous Hamiltonian systems.
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Appendix B

Computer Methods

B.1 Introduction

A few manual calculations of Lie point symmetries will easily convince one

of the need to implement the procedure via computer algebra packages. Due

to its algorithmic nature, the calculation of Lie point symmetries can be pro­

grammed. To this end a number of packages do exist. The recent trend has

been to move away from the stand alone packages of the past to routines run­

ning under the more general, broadly applicable computer algebra systems

like Mathematica, iVIaple, Macsyma, Reduce etc. Hereman [97] has composed

an excellent survey of currently available packages, discussing their strengths,

weaknesses and ways to obtain them. It is reassuring to note that almost all

these packages are free.

We are concerned with one package in particular, that of Alan Head [96].

The package, PROGRAM LIE (hereinafter referred to as LIE), was written util­

ising the (now defunct) package Mumath that ran under DOS. However, it

is distributed as a stand alone package without the need for Mumath or its

manuals. The main criticism of LIE is that it only accesses 256Kb RAM - a

deficiency of Mumath itself - and so cannot cope with 'large' problems. How­

ever, 'large' here is relative. It is remarkable what can be achieved in only

256Kb.
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LIE is, to some extent, an interactive package. The user is encouraged

to 'help' the program along. However, the degree of automation is superior

to most available packages. Essentially the user creates a file containing the

equation(s) and reads it into LIE. Thereafter a series of commands is invoked

which i) calculate the determining equations, ii) solve these equations, iii) check

the solution, iv) calculate the symmetries and v) determine the non-zero Lie

Bracket relationships. While the files lie. doc, morelie. doc and readme. 1st

contain some documentation, we will embark on a detailed exposition of how

to use LIE based on our experiences.

B.2 The Input File

Let us first consider a standard input file:

ECHO:TRUE $
NIND#: 1 $

NDEP#: 1 $
DE#:DV#:{} $
DE# [1]: $

DV#[1]: $

ECHO:FALSE $
RDS () $

The first and penultimate commands turn the output of LIE to the standard

console on and off, respectively. The first 'proper' command is NIND# which

is the variable that stores the number of independent variables. Similarly

NDEP# stores the number of dependent variables. The fourth line is an internal

Mumath command that sets up the variables DE# and DV# as arrays. The

differential equation is entered after the command DE# [1] and the variable to

be eliminated (usually the highest derivative) is inserted after DV#[1]. The

equation must be linear in this term. Obviously one would have n pairs of DE#

and DV# for a system of n equations. The final command simply returns LIE

to accepting input from the keyboard.
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Remarks: Mumath is an uppercase system. All expressions must be entered

in uppercase. The colon, ':', is the Mumath assignment sign. Thus NDEP#: 2

is read as 'the number of dependent variables equals two'. The percent sign,

'%', brackets comments. Each line must be terminated with a '$'. (This applies

to files in general. It is usual to use';' for the interactive procedure.)

Equations must be written in the form

(n) f ( I (n-l)) - 0y - x,y,y, ... ,y - (B.2.1)

(with obvious extensions to systems and partial differential equations) and

entered without the '= 0' part. LIE interprets U(i) as a dependent variable

and Xi as an independent variable. Thus the dependent variables u and w will

be entered as U(l) and U(2) while the independent variables x and t will be

entered as Xl and X2. There are two equivalent techniques to enter derivatives.

The first is to use the DIF command in the following way: cPU/oxoy2 is entered

as DIF (U (1) ,X 1 ,X2 ,2). The second, in our opinion the more convenient, way

is to write 03U/oxoy2 as U(1,1,2,2). The first number in the argument of U is

used to determine the dependent variable. The remaining numbers determine

the order of differentiation (by the number of integers excluding the first) and

the number of occurrences of a particular number determines the number of

times the dependent variable is differentiated with respect to that independent

variable.

Other functions and constants that can be used are #PI, #E, #1, SIN, COS,

LOG (or LN), ERF and El. However, TAN, SEC or inverse trigonometric functions

cannot be used. vVhile it is strongly suggested that square roots, fractional

powers of derivatives and fractions not be used (and it is preferable to avoid

them), this is not, in our opinion, a rigid rule.

The commands '+', '-', 'I' and '*' are self-explanatory. We do stress that

'*' should be used as a rule to indicate multiplication even though it is not

always necessary. This serves to prevent a misinterpretation of input by LIE.

Consider the expression A x (x +y), where A is an arbitrary constant. Entering
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the expression as A (X1 + X2) causes the program to interpret this as A being

a function of x +y. The correct way to enter the expression is A * (X1 + X2).

We illustrate the above with some examples.

1. Equation:

y" + y' + y = 0

LIE input file:

ECHO:TRUE $
NIND#:1 $
NDEP#: 1 $
DE#:DV#:{} $
DE#[1J: U(1,1,1) + U(1,1) + U(1) $

DV#[1J: U(1,1,1) $

ECHO:FALSE $
RDS () $

2. Equations:

U xyz + V xx = 0

WXZ + f{ z = V x + U y

V x +W y = 0

LIE input file:

ECHO:TRUE $
NIND#:3 $
NDEP#:3 $
DE#:DV#:{} $

DE#[1J: U(1,1,2,3) + U(2,1,1) $
DV# [1J: U(1, 1, 2,3) $

DE#[2J: U(3,1,3) + K * X3 - U(2,1) - U(1,2) $
DV#[2J: U(3,1,3) $
DE#[3J: U(2,1) + U(3,2) $
DV#[3J: U(2,1) $

ECHO:FALSE $
RDS () $
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3. Equation:

ylll + f(X)y2 = 0

LIE input file:

ECHO:TRUE $
NIND#:1 $
NDEP#: 1 $
DE#:DV#:{} $
DE#[1J: U(1,1,1,1) + F(X1) * U(1)~2 $

DV# [1J: U(1, 1, 1, 1) $

ECHO:FALSE $

RDSO $

Note that some complications may arise in the initial stages of compiling the

input file when systems of equations are being studied. The main cause of

difficulty is due to cyclic substitution via DV#. A simple rearrangement of the

order of the equations normally solves the problem. If not, different terms

should be substituted in DV#.

B.3 Processing the Input

Now that we have created the input file we need to compile it using LIE. To

help illustrate the procedure we use the equation

//, + ' 0y y - x = . (B.3.1)

We execute LIE by typing MULIE at the DOS prompt. The user is then pre­

sented with the Mumath prompt '?'. The normal order of commands is as

follows:

(i) RDS (FILENAME ,DAT) ;

(ii) DOLIEO;

(iii) A#; (optional)

134



(iv) DOSOLVO;

(v) DOCHECKO;

(vi) DOVECO;

(vii) DONZCO;

The first command reads in the input file and checks whether the syntax is

correct. Obviously LIE cannot determine if the differential equation it has read

in conforms to the one the user wishes to analyse. If there is a problem with

the input, the user can exit the program using either the command SYSTEMO ;

at the prompt or Ctrl-C and then Y. The input file can then be re-edited.

We read in our example file using RDS (EG1 ,DAT) ;

? RDS(EG1,DAT);

EG1

?

?

NIND#:1 $
?

NDEP#: 1 $

?

DE#:DV#:{} $

?

DE#[1J: U(1,1,1,1) + U(1,1) - X1 $
?

DV# [1J: U(1,1,1,1) $
?

ECHO:FALSE $
?

As there are no problems we can immediately invoke DOLIEO ;

? DOLIEO;

Program LIE v. 4.3 (c) 1994 A K Head

(22)

(21)

(6 13)
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; Def Eqns = (6, 13)

This command calculates the determining (or defining) equations and gives the

user an update on its progress. The first number, 22, indicates the number

of terms resulting from the operation of the third extension of the generator

on DE# [1]. The second, 21, is the number of terms in the expression after

substituting for DV# [lJ. The expression is then split into 6 equations in 13

terms. LIE attempts to simplify them further (but fails in this example) and

saves the result (still 6 equations in 13 terms) as A#. (This simplification

process can be turned off with SCUT#; FALSE;)

We inspect the equations (not necessary but useful) using A#;

? A#;
{DIF (F# (1, Ui, Xi), Ul, 2),

DIF (F# (1, Ul, Xl), Ul, 3),
DIF (F# (i, Ui, Xl), Ul, 2, Xl),
DIF (F# (i, Ul, Xl), Ui, Xi) - DIF (F# (2, Xl), Xl, 2),
3*DIF (F# (1, Ui, Xl), Ui, Xl, 2) + 2*DIF (F# (2, Xl), Xl)

- DIF (F# (2, Xi), Xi, 3),
Xl*DIF (F# (1, Ui, Xl), Ul) - 3*Xl*DIF (F# (2, Xl), Xi) +

DIF (F# (1, Ui, Xi), Xi) + DIF (F# (i, Ul, Xi), Xi, 3) - F# (2, Xl),
UUU#l -- F# (1, Ul, Xl),
XXX#l == F# (2, Xi)}

?

The first six expressions are the equations to be solved. The last two are the

forms of"l (UUU#l) and ~ (XXX#l) respectively. Note that some simplification

has already taken place: the function representing~,F# (2, Xi), only depends

on x. In instances where DOSOLV() ; cannot solve the equations, one is at least

presented with the determining equations. This is, in fact, the most that some

packages do.

We attempt to solve these equations using DOSOLV() ;

? DOSOLV();
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(3 12 3 1)
(4 12 1 3)
(4 13 4 1)
(4 14 4 1)
(4 15 4 3)

(4 16 5 2)

(3 17 2 2)

(3 18 4 1)
(2 13 2 2)
(3 13 1 1)
(2 10 2 1)
(1821)
(1 9 4 1)
(1 13 5 1)
(0 0 2 1)

{UUU#l == -Ul*COS (Xl)*F# (9) - Ul*SIN (Xl)*F# (8) - Ul*F# (6)
+ Xl*COS (Xl) *F# (8) - Xl*SIN (Xl)*F# (9) - Xl*F# (10)
+ Xl-2*COS (Xl)*F# (9)/2 + Xl-2*SIN (Xl)*F# (8)/2 + Xl-2*F# (6)/2
- 3/4*COS (Xl)*F# (9) - COS (Xl)*F# (13) - SIN (Xl)*F# (8)/4
- SIN (Xl)*F# (12) - F# (6) - F# (11),

XXX#l == COS (Xl)*F# (8) - SIN (Xl)*F# (9) - F# (la)}

The four numbers (a bed) are interpreted as follows: there are a equations

containing b terms after applying operation c to what was the dth equation.

(There are eight operations that LIE attempts on any system of differential

equations as explained in the file morelie. doe) The final lines contain the

explicit expressions for Tf and ( Note that the terms F# (9) etc are arbitrary

constants. Sometimes unsolved equations precede these expressions.

It must be noted that the operations in DOSOLV () ; are heuristic and so it is

advisable to check the calculations. This is accomplished by DOCHECK () ;

? DOCHECK();

Check OK, proceed to DOVEC

In the event that the checking is not OK the user is prompted to Do DOCHECK

again. This message may be repeated. If there is no end to this recursion
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(B.3.2)

in a finite time, one cannot accept the results of the calculation. A manual

verification has to be undertaken.

The explicit form of the symmetries (or vectors as Head calls them in the

documentation) is given by DoVECO;

? DoVECO;

Vectors
VEC# (1) -- -D# (Ul)
VEC# (2) -- -SIN (Xl)*D# (Ul)
VEC# (3) -- -COS (Xl)*D# (Ul)
VEC# (4) -- -Xl*D# (Ul) - D# (Xl)
VEC# (5) -- -Ul*D# (Ul) + Xl-2*D# (Ul)/2 - D# (Ul)
VEC# (6) -- -Ul*SIN (Xl)*D# (Ul) + Xl*CoS (Xl)*D# (Ul)
+ Xl-2*SIN (Xl)*D# (Ul)/2 + COS (Xl)*D# (Xl) - SIN (Xl)*D# (Ul)/4
VEC# (7) == -Ul*CoS (Xl)*D# (Ul) - Xl*SIN (Xl)*D# (Ul)
+ Xl-2*CoS (Xl)*D# (Ul)/2 - 3/4*COS (Xl)*D# (Ul) - SIN (Xl)*D# (Xl)

We observe that there are seven symmetries. Noting that D# (Ul) and D#

(Xl) represent a/ay and a/ax respectively makes reading off these symmetries

trivial, eg

(
1 2 ) a

Gs = 2x - Y - 1 ay'

It is advisable to check that no symmetries are repeated.

The Lie algebra is determined from the Lie Bracket relationships. The

nonzero relationships are found using DoNZC 0 ;

? DONZCO;

Non Zero Commutators

NZCoM (1, 5) -- -VEC# (1)

NZCoM (1, 6) == -VEC# (2)
NZCOM (1, 7) -- -VEC# (3)
NZCoM (2, 4) -- VEC# (3)
NZCoM (2, 5) -- -VEC# (2)
NZCOM (2, 6) -- -VEC# (1)

NZCOM (3, 4) -- -VEC# (2)
NZCoM (3, 5) -- -VEC# (3)
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NZCOM (3, 7) == -VEC# (1)
NZCOM (4, 6) == U1*COS (X1)*D# (U1) + X1*SIN (X1)*D# (U1)
- X1~2*COS (X1)*D# (U1)/2 + COS (X1)*D# (U1)/4 + SIN (X1)*D# (Xi)
NZCOM (4, 7) == -U1*SIN (X1)*D# (U1) + X1*COS (X1)*D# (U1)
+ X1-2*SIN (X1)*D# (U1)/2 + COS (X1)*D# (Xi) - 3/4*SIN (X1)*D# (U1)
NZCOM (5, 6) -- -3/4*VEC# (2)
NZCOM (5, 7) -- -VEC# (3)/4
NZCOM (6, 7) -- VEC# (4)

Note that, while LIE attempts to express the result in terms of the original

symmetries, it cannot do so when the result is a combination of symmetries.

It is easy to work out those that LIE cannot handle, eg

(B.3.3)

B.4 Lie-Backlund and contact symmetries

A recent addition to LIE is the ability to calculate Lie-Backlund and contact

symmetries. The former depends on the order of the Lie-Backlund symmetries

required. The input file changes with each equation considered. We refer the

interested reader to the README. 1ST file of version 4.3 for further details. In

the case of contact symmetries we enter the equation as a system. Consider

the equation

'" + 0y y = .

If we set

v = y',

we can write (BA.I) as the system

v = y'

v" + y = o.

(BA.I)

(BA.2)

(BA.3)

(BAA)

If we enter the above system into LIE verbatim, the results are incorrect as

LIE treats Vi and y" as independent quantities. The correct method is to add
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the equation

v' = y" (B.4.5)

into the input file as well. The procedure is as before. The only difference will

be reading one of the dependent variables as y'.

B.5 Troubleshooting and Helpful Hints

The most frequently encountered problem in using LIE is that of the exhaustion

of memory. (At the Abort, DOS? prompt it is recommended that D be entered

and LIE started afresh.)

If the problem arises in the process of DOLIE 0 ;, two options are available.

The first is to rearrange the equations so that the simpler ones are analysed

first. However, what may seem simpler to the user may not seem so to LIE

and so, if this does not work, different combinations should be taken. The

other option is to introduce new dependent variables to lower the order of the

system. Caution must be exercised in extrapolating the results to the original

equation.

If the memory problem occurs in DOSOLVO ;, there are further options avail­

able than those mentioned above. If the equations contain more COS functions

than SIN functions, setting TRGSQ: -1; at the start of a LIE session (before

reading in the input file) will replace sin2 by 1 - cos2 instead of vice versa

which is the default setting.

The lowest priority operation is number 8 which adds the integrability con­

ditions to the determining equations. This is often long and tedious, but it

sometimes helps to add these conditions before attempting the other operations

in DOSOLVO;. This is accomplished by entering DOINTCONO; after DOLIEO ;

has run its course. Thereafter DOSOLVO; should have an easier time.

The remaining occurrence of memory problems is during DOCHECK 0 ;. For­

tunately the latest version of LIE has a new command TESTVEC 0 ;. After

obtaining the symmetries using DOVECO; we can test if one, say G2 , is indeed
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a symmetry of the equation using TESTVEC ( V# [2] );.

Sometimes, during the solution of the determining equations, LIE has trou­

ble carrying out some of the integrations. This is especially true when the

differential equation contains arbitrary functions. In some instances a new

route to the solution is found, but in others not. Consider the Emden-Fowler

equation of index two [122, 57, 66, 67, 68, 69]

y" +g(X)y2 = o. (B.5.1)

It is not advisable to enter the equation into LIE in the form U(1 , 1 , 1) + G(X1)

* U(1) -2 as LIE cannot integrate G(xi) - (2/5). The problem is circumvented

by replacing the arbitrary function G(X1) with another, equally arbitrary, func­

tion that is easily integrated, viz DIF ( H(X1), X1) - (5/2). Now LIE reports

that the equation has no symmetries, as expected.

In spite of one's (and LIE's) best efforts there are often equations that are

returned as unsolved in the route to determining the symmetries. If one can

solve these manually (as in the case of Euler equations), the solution can be

inserted into LIE using EVSA#() ;. Consider the output

{6*X1*DIF (F# (4, X1), X1, 3) - 3*X1-2*DIF (F# (4, X1), X1, 4)

+ X1-3*DIF (F# (4, X1), X1, 5) - 6*DIF (F# (4, X1), X1, 2),

UUU#1 -- -2*U1*F# (5) + F# (4, X1),

XXX#1 == -X1*F# (5)}

The equation that LIE cannot solve is the Euler equation

(B.5.2)

which is easily solved to give

(B.5.3)

We substitute this solution into LIE using

EVSA#( F#(4,X1), F#(10) + F#(11) X1 + F#(12) X1-3 + F#(13) X1-4

+ F#(14) X1-5);

141



We then proceed with DOCHECK 0; etc.

The command EVSA# 0; could also be used to verify whether a given sym­

metry is a symmetry of a particular equation. However, a more convenient

method is to use the command TESTVEC 0 ;. If we want to verify whether

is a symmetry of

o
ox (B.5.4)

(B.5.5)

we simply enter (after DOLIE 0 ;) TESTVEC ( D# (Xl)); which returns FALSE.

This technique is useful for single symmetries.

Experience dictates that the expressions for ~ and 7] are often polynomi­

als. LIE has the commands DOPOLYALL 0; and DOPOLY0; which assumes

polynomial expansions for all the unknowns and specified unknowns respec­

tively. They can only be invoked once the determining equations have been

calculated, ie after DOLIEO ;. We can assume that all the unknown functions

are polynomials of degree four by entering DOPOLYALL (4) ;. Running through

DOSOLV 0 ; discards the invalid- terms in the expressions. For specific functions,

F#(2,Ul,X1), say, we use DOPOLY( F#(2,Ul,X1) ,4);. Obviously any symme­

tries found will belong to the full Lie algebra of symmetries. However, there is

no way to verify that these are all the symmetries that exist for the equation.

B.6 Miscellaneous

Recent versions of LIE (since 4.1) have been bundled with the DOS program

PRN2FILE. This public domain package is useful to save the output of LIE to

a file. PRN2FILE is run with an .option iud5cating the name of the file to which

output should be directed, viz PRN2FILE LIE. OUT. This will redirect printer

directed output into the file LIE. OUT. In LIE, Ctrl-P toggles printing. Thus

one can ensure that only the relevant parts of the calculation are saved, eg the
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symmetries and nonzero Lie Brackets. Once the printing is complete, running

PRN2FILE (with no options) rechannels printer directed output to the printer.

LIE is obtainable from all SIMTEL repositories by anonymous ftp. It is nor­

mally in a math or education subdirectory on most of the popular anonymous

ftp servers. The package is free and the author requires no registration.

Given the success of Head's routines for solving linear partial differential

equations and the problem of memory constraints for. LIE it is desirable to

implement the algorithm on an unrestricted system. Discussions with this

goal in mind are currently underway [153]. The idea is to implement LIE on.

Mathematica [185].
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