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Abstract 

We consider the solidification of a binary alloy in a mushy layer subject to Coriolis 

effects. A near-eutectic approximation and large far-field temperature is employed in 

order to study the dynamics of the mushy layer in the form of small deviations from the 

classical case of convection in a horizontal porous layer of homogenous permeability. 

The linear stability theory is used to investigate analytically the Corio lis effect in a 

rotating mushy layer for, a diffusion time scale used by Amberg & Homsey (1993) and 

Anderson & Worster (1996), and for a new diffusion time scale proposed in the current 

study. As such, it is found that in contrast to the problem of a stationary mushy layer, 

rotating the mushy layer has a stabilising effect on convection. For the case of the new 

diffusion time scale proposed by the author, it is established that the viscosity at high 

rotation rates has a destabilising effect on the onset of stationary convection, ie. the 

higher the viscosity, the less stable the liquid. Finite amplitude results obtained by using a 

weak non-linear analysis provide differential equations for the amplitude, corresponding 

to both stationary and overstable convection. These amplitude equations permit one to 

identify from the post-transient conditions that the fluid is subject to a pitchfork 

bifurcation in the stationary case and to a Hopf bifurcation associated with the overstable 

convection. Heat transfer results were evaluated from the amplitude solution and are 

presented in terms of the Nusselt number for both stationary and overstable convection. 

They show that rotation enhances the convective heat transfer in the case of stationary 

convection and retards convective heat transfer in the oscillatory case, but only for low 

values of the parameter X I = 8 Pr ~ 0 So· The parameter 1/ X I represents the coefficient of 

the time derivative term in the Darcy equation. For high X I values, the contribution from 

the time derivative term is small (and may be neglected), whilst for small X I values the 

time derivative term may be retained. 
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St 
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Ta 

Nomenclature 

Composition. 

Darcy number. 

Unit vector in the direction of gravity. 

Unit vector in the direction of the rotation. 

Unit vector in the z-direction. 

Gravitational acceleration [9.81 m / S2 ]. 

Height of the mushy layer [m]. 

Latent heat of fluid [kJ/kg] 

Characteristic permeability [m 2 
]. 

Dimensional permeability function. 

Length of the mushy layer. 

Nusselt number. 

Reduced pressure. 

Specific heat of fluid [kJ/kg]. 

Prandtl number. 

Rescaled mushy layer Rayleigh number. 

Mushy layer Rayleigh number. 

x -component of wavenumber. 

y-component of wavenumber. 

z-component of wavenumber. 

Modulus of amplitude, corresponding to overstable 

convection. 

Stefan number. 

Time [s]. 

Dimensional temperature [K]. 

Taylor number. 
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Greek Symbols 

a 

~ T 

Xo 

x 

E 

110 

K 

Horizontal x-component of velocity [m/s] . 

Dimensionless velocity vector. 

Horizontal y-component of velocity [m/s]. 

Velocity of solidifying front [m Is]. 

Vertical component of velocity [m/s] 

Horizontal length co-ordinate. 

Slow space scale. 

Horizontal width co-ordinate. 

Vertical co-ordinate. 

Scaled wavenumber. 

Solutal expansion coefficient. 

Thermal expansion coefficient [11K]. 

= Pr$ oB o' 

= 8 2X O' 

=8Xo· 

Dimensionless depth of mushy layer. 

Disturbance amplitude. 

Porosity. 

Solid fraction = 1- $ 

Phase angle corresponding to oscillatory convection. 

Relaxation time corresponding to stationary convection. 

Coefficient of the diffusion term corresponding to 

stationary convection. 

= 411 0 • 

Thermal diffusivity of liquid [m2 Is]. 

=s/n 2c~ . 
Dynamic viscosity of the fluid [Pa-s]. 
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p 

r 
cr 

ill 

Superscripts 

* 
asym 

oblique 

0' 

Kinematic viscosity [m2 
/ s]. 

Dimensionless permeability function. 

Dimensionless temperature. 

Mobility ratio. 

Fluid density [kg / m3
]. 

Slope of liquidus line. 

Oscillatory frequency [1/ s ]. 

Corresponds to the critical frequency for either stationary 

or overstable convection. 

Slow time scale at order !: 2 • 

Slow time scale at order !: . 

Angular velocity of rotating mushy layer [rad/s]. 

= 1+ St/~ = 1+ sics. 
=K /n 2c2 

c s . 

Stream function. 

Composition ratio. 

Linear coefficient corresponding to overstable convection. 

Linear coefficient corresponding to stationary convection. 

=4):0 
" st 

Dimensional quantities. 

Asymptotical quantities. 

Refers to quantities on the oblique plane containing the 

streamlines. 

Refers to scaled terms used in the weak non-linear analysis 

of overstable convection. 
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Subscripts 

00 

01 

1 

2 

3 

B 

c 

cr. 

E 

h 

i1 

l/f 

m 

o 

ov 

p 

s 

S 

st 

Over 

Refers to quantities at order E °8 ° 

Refers to quantities at order E °8 I 

Refers to quantities at order E • 

Refers to quantities at order E 2 • 

Refers to quantities at order E 3 

Refers to basic flow quantities. 

Refers to characteristic values. 

Refers to critical values. 

Refers to eutectic conditions. 

Refers to homogenous solutions to differential equations. 

Refers to quantities at order E °8 I 

Refers to oscillatory frequency in Author's scaling. 

Refers to liquid conditions 

Mush conditions 

Refers to liquidus conditions. 

Refers to overstable conditions. 

Refers to particular solutions to differential equations. 

Solid conditions 

Refers to solidus conditions. 

Refers to stationary conditions. 

Refers to far field conditions. 

Refers to scaled quantities. 

Refers to perturbed quantities 

Refers to scaled quantities 

Derivative with respect to time. 
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1.Introduction 

1.1 General 

The internal structure of solid alloy depends largely on the history of its solidification 

from the liquid melt phase. The geometry of the melt region, the rate of solidification, 

and associated fluid motions in the liquid melt all contribute to the properties of the 

microstructure of the final product. These properties are all determined by internal 

processes that occur in response to external conditions such as the shape of the container 

and the location of the cooled boundaries, degree of cooling, the initial concentration of 

the liquid melt, and the existence of body forces such as those produced by gravitational, 

rotational or magnetic forces. 

The most commonly analysed case is one where the solidification of the liquid melt 

occurs in the presence of the gravitational body force. In this case the natural convective 

flow of the melt can be driven by thermal gradients that are set up by the imposed 

cooling, or by compositional gradients that are generated when one component of the 

alloy is preferentially incorporated within the growing solid, or by both thermal and 

compositional gradients. A detailed description of the solidification process with regards 

to the phase diagram is provided in Section 1.2. Often during the solidification process, 

the planar solid-liquid melt interface is highly (morphologically) unstable and takes the 

form of small dendrite arms occupying a zone of finite thickness, called the mushy layer 

or mushy zone. These dendrite arms appear as a forest of solid crystals orientated 

principally along the direction of strongest thermal gradient, with fluid filling the 

interstitial spaces, see Figure 1. Figure 1 shows a mushy layer of ammonium chloride 

crystals. The millimetre scale on the top left hand corner shows that the typical spacing 

between the crystals is very small in comparison with the depth of the mushy layer, 

which is of the order of 7mm. This dendrite zone can be thought of as performing a 

function of smearing out the concentration jump over a much larger distance than the 

planar front in the case of planar solidification. 

It must be borne in mind that the dynamics in the mushy layer is governed by the 

complex interaction between the compositional convection and the solidification process. 
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from below. Courtesy of Worster (1991) 

A direct result of compositional convection is the formation of freckles, which are non­

uniformities that manifest themselves as vertical channels that are of a composition 

different from the surrounding solid. In cross section they appear as "spots" and will 

henceforth be referred to as freckles. In practice, the presence of freckles in the cast alloy 

compromises the mechanical properties of the component. In the gas turbine blade 

manufacture industry, where the blade is directionally cast in a "pigtail mould", freckle 

formation in the cast blades could cause catastrophic failure when the blade is subjected 

to its harsh operating environment. The need to avoid such failures in practice coupled 

with the limited understanding of the complex process of solidification has gained 

considerable international interest among the fluid dynamicists, metallurgists, engineers 

and applied mathematicians. 

The freckles formed in solidified alloys has been compared to the freckles formed in 

aqueous ammonium chloride salt solutions, and it was concluded that the mechanism for 

freckle formation was as a result of convection through chimneys in the mushy layer, see 

Copley et al (1970), Sample & Hellawell (1984) and Sarazin & Hellawell (1988). 

7 



Worster (1991) later supplemented this experimental work by providing an analytical 

solution for the flow and temperature fields in chimneys. In addition Worster (1991) 

provided a mechanism for the formation of chimneys. 

The analogous behaviour that exists between a solidifying metallic alloy and a freezing 

aqueous salt solution has led to numerous laboratory tests being undertaken, using 

ammonium salts, to investigate compositional convection and its bearing on freckle 

formation. Ammonium salts are preferred as a medium for performing laboratory 

experiments due to its transparency, as far as flow visualisation is concerned, and also 

due to the fact that it is easy to handle. Such experiments have directed much of the 

current thought in this field. The solidification process always seems to occur in three 

phases ( see Chen & Chen 1991 and Tait & Jaupart 1992). At the start a uniform layer of 

dendritic crystals forms at the base of the experimental tank, and buoyant residual fluid, 

depleted of the ammonium chloride taken up by the crystallised salt, rises convectively to 

form a layer of double-diffusive fingers. A short time later, a few isolated convective 

plumes begin to rise to a height much greater than the top layer of double-diffusive 

fingers. Eventually, a chimney or vent forms beneath each plume, which extends through 

the crystal pile to the base of the tank. The plume number and strength increases with 

time, and as a result suppresses the double diffusive mode. This strengthened plume 

activity decays with time, and the number of chimneys begin to decrease. The 

experiments revealed that two modes of convection viz. the double-diffusive mode ( 

which emanates from the mush-liquid interface) and the mushy layer mode ( as a result of 

plumes being emitted from chimneys in the mushy layer) exists in a solidifying system. 

The experimental investigations led to the development of a mathematical model to 

describe the flow physics in a solidifying alloy system. Fowler (1985) proposed a model 

for mushy layer and investigated a limiting case where there was no coupling between the 

convection and solidification processes. Worster (1992) later performed a stability 

analysis of the liquid and mushy regions of the binary alloy system and found that the 

model predicted the two modes of convection mentioned earlier. Up to this point it was 

assumed that the double diffusive convection provides disturbances that initiate the 
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that was discovered during the weak non-linear analysis. Anderson & Worster (1996) 

indicated that although there exists circumstances under which the oscillatory mode is the 

most critical, it nonetheless gives way to the steady mode for larger values of Rayleigh 

number. They also pointed out that in practice oscillatory convection may be confined to 

situations close to the marginal conditions. 

The current study utilises the parameter scalings as presented by Anderson & Worster 

(1996), and includes the effects of rotation. The study is structured as follows : Section 1; 

the problem geometry is defined, outlining the body forces in the Darcy equation, and a 

description of the solidification process is provided, whilst the momentum equation for 

the mushy layer region is rescaled to include the Coriolis body force and a time 

derivative on the velocity vector, Section 2; a linear stability analysis is performed for the 

stationary and overstable convection cases adopting Anderson & Worster's (1996) 

scaling for time, Section 3; a linear stability analysis is performed for the Author's 

proposed scaling for time, Section 4; A weak non linear analysis of convection as a result 

of rotational effects is performed for the Author's scaling for time by expansion to higher 

orders and a complete amplitude equation defining the leading order amplitude is 

developed for both stationary and oscillatory convection, Section 5; The Nusselt number 

for both the stationary and oscillatory is developed, Section 6; Graphical plots for the 

flow, temperature and solid fraction patterns is provided for Anderson & Worster's 

(1996) scaling for time, Section 7; a conclusion summarising the findings in the thesis is 

provided. 
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Solidification of binary alloys are to a large extent governed by the phase diagram which 

differs for different alloys. The phase diagrams provide relations between composition c * 

and temperature T* at the solid/melt boundaries. A typical phase diagram for a binary 

alloy system is shown in Figure 3 below. 

Too 
Liquidus .. . ............. .. .... . . . ..... . ... . .............. 

Liquid - Melt 

Mush 
(Liquid + Solid cJ 

c
A 
+ Eutectic Cs + Eutec:tic 

A 

Figure 3 : Sketch of phase diagram 

Solidus 

Li e 

Eutectic 

B 

c 

During the solidification of binary alloys, the liquid melt will always solidify into an 

extremely fine mixture usually visible under a microscope. The two separate parts of this 

mixture initially exists as pure metal A and pure metal B as depicted in Figure 3. If we 

assume that a small amount of pure metal A is solidified, then the remaining liquid melt 

is left rich in metal B. This causes a slight shift in the composition to the right. To restore 

the liquid composition to its equilibrium value, metal B will now solidify. Now if too 

much of metal B solidifies, the liquid melt composition will shift to the left, thereby 

causing metal A to solidify to restore equilibrium. Therefore, at constant temperature, the 
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liquid solidifies alternately pure A and pure B, resulting in an extremely fine mixture. An 

alloy exhibiting this behaviour is referred to as an eutectic alloy. 

In freezing aqueous ammomum salt (NH4 Cl- H 20) systems as used in laboratory 

experiments, the components A and B, in Figure 3, refers to the H20 and NH4Cl 

respectively, see Sarazin & Hellawell (1988). 

The composition, referred to above, may be thought of as the weight percentage of each 

component A and B in the alloy. The liquidus line TL (c *) relates the composition of the 

liquid in the porous mush to the temperature. The mushy layer is taken to be in thermo­

dynamic equilibrium and the relationship between T* and c * is given by the following 

linear liquidus relation of the form 

(1.1) 

where r is the gradient of the liquidus line at co' see Figure 3. Note that the relation 

given in Eqn.(1.1) is valid for the range TE < T* < Too . For temperatures above the 

melting point of the alloy ie. for T* > Too, no solid is formed regardless of the 

composition c *. When the temperature falls below the eutectic temperature, TE, all 

remaining liquid, which by that time has a composition cE' solidifies immediately. Note 

that the two solidus curves are assumed to be vertical, ie. the gradient of the solidus lines 

are infinitely large. Noting that the segregation/partition coefficient is the ratio of the 

liquidus to solidus line slopes, we may infer that in our case the segregation coefficient is 

zero. The density in the liquid is a much stronger function of composition (c * ) than it is 

of temperature (T*), as shown in Figure 3. Adopting the Boussinesq approximation and 

using the result given in Eqn.(1.1), we define a linear relation between the density PI and 

the composition c * to be of the form, 
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where r is the slope of the liquidus curve. The effective expanSIOn coefficient 

[(~ · Ir ) - ~ T' ], may become positive and lead to buoyancy driven convection when 

solutal effects dominate. Note that typically ~ . > r~ T' (and ~ . is positive) due to the fact 

that density is largely a function of composition than it is of temperature, see vertical 

solidus lines in Figure 3. This provides the explanation as to why a melt whose 

composition is less than the eutectic composition cE releases more dense fluid, while a 

melt whose composition exceeds cE releases less dense fluid when the fluid is cooled and 

solidified. In the problem presented in Figure 2, the initial composition Co is taken to be 

greater than the eutectic composition cE • 

Many authors have proposed formulations for the governing equations in the mushy 

layer, see Chiarelli & Worster (1995) and Brattkus & Davies (1988). The formulation 

presented here follows closely that of Anderson & Worster (1996). Not far (at distances 

L* < < g' I ill '2 ) from the axis of rotation it may be assumed that the gravitational 

buoyancy to be greater than the centrifugal buoyancy. For this reason the centrifugal 

effect may be neglected thus limiting the effect of rotation to the Coriolis acceleration . 

The centrifugal effects are taken to be constant and absorbed into the reduced pressure 

term. The Darcy equation is extended only to include the time derivative and the Coriolis 

terms, while the Boussinesq approximation is applied to account for the effects of the 

density variations. Subject to these conditions the following dimensionless set of 

governing equations for the continuity, energy, solute balance and Darcy equation 

extended to include Coriolis effects is obtained: 

V·U=O 

(~ - ~) (9 - St <p) + U· V 9 = V 29 at az 

(1.3) 

(1.4) 

15 



( ~ - ~) [( 1- <p )8 + ~ <p ] + U· v 8 = 0 at az 

1 au 1\ 1\ 

--+ II (<p)U = - Vp+ Ram8 ec Ta l
/
2 ero x U. 

Xo at 

(1.5) 

(1.6) 

In the system (1.3-1.6), <p refers to the solid fraction, U refers to the filtration velocity in 

the mush, whilst 8 refers to the temperature. Note that the non-dimensional form of the 

liquidus relation (c = 8) has been used to replace the solute concentration by the non­

dimensional temperature, Eqn.(1.8) below. This is inferred from the simplified phase 

diagram given in Figure 3. Eqns. (1.3-1.6) were rendered dimensionless by using V· (the 

advance velocity of the melt/mush interface) for the velocity scale, IK' = K • Iv· (the 

thermal diffusion length scale) for length, and K · I (V· )2 for the time scale, where K · is 

the thermal diffusivity of the liquid. The pressure scale is K·Il · Iko where Il · is the 

dynamic viscosity of the liquid and ko is a characteristic permeability of the mush 

defined as 

(1.7) 

The non-dimensional temperature for the mush (or equivalently the composition) is given 

by 

(1.8) 

Refer Appendix A provides a detailed non-dimensionalisation analysis for (1.3-1.8). 

The dimensionless parameters that emanate as a result of the non-dimensionalisation of 

the governing equations are the Stefan number St, the concentration ratio ~ , the mushy 

layer Rayleigh number Ram' the Taylor number Ta and a parameter X 0 which represents 
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the coefficient of the time derivative III the Darcy equation. These dimensionless 

parameters may be presented as follows: 

(1.9) 

(1.10) 

(1.11) 

2co kO 
[ 

, ]2 
Ta = v ' ~ 0 ' 

(1.12) 

(1.13) 

where hfs is the latent heat, qs is the specific heat, c~ is the solid composition, cE is the 

eutectic composition, g' is the gravitational acceleration, co ' is the angular velocity of 

rotation, and v' is the kinematic viscosity of the liquid. The Stefan number gives an 

indication of the latent heat relative to the heat content, or internal energy. The 

composition ratio ~ relates the difference in characteristic compositions of the liquid and 

solid phases with the compositional variation of the liquid within the mushy layer. In 

Eqn.(1.13) Pr= v ' /K ' is the Prandtl number, S o = l ~. /ko is the mobility ratio which is 

typically very large (S 0 ~ 0(105 ~ 106
) , see Worster (1992)) and can be thought of as 

the square of the ratio of the thermal length scale ( on which the mushy layer height 

depends) to the average spacing between the dendrites within the mushy layer. 

The boundary conditions applicable to the system (1 .3- 1.6) are given by 
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8 = - 1, w = 0 at z = 0 

8 = 0, w = 0, <p = 0 at z = 8. 
(1.14) 

The parameter 8 = H'/(K' IV') is the dimensionless depth of the layer, or growth Peclet 

number that will playa major role in the scaling of the governing equations later on. For 

all intents and purposes the growth Peclet number simply denotes the ratio between the 

actual height of the domain H' and the length scale I K' = K • I V ' , which has been used in 

the non-dimensionalization. 

We follow Anderson & Worster(1996) in reducing the model asymptotically. We assume 

that the mushy layer is thin so that 8 < < 1. Chen et al (1994) found that 

V· = 1.5 x 10-4 cm I s as the mush height reached H* = 1cm. Using a thermal diffusivity of 

K ' = 1.58 X 10-3 cm2 Is, yields 8 = 0.095, which satisfies the requirement 8« 1. Worster 

(1991) showed, by analysing the exact solution for a non-convecting mushy layer that as 

8 <Xl = Too / ~ T -) 00 (where 8 <Xl > > 1), the mush thickness IS glVen by 

8 >::: In( 1 + 1/8 <Xl ) >::: 1/8 <Xl . Physically this implies that the dimensionless mushy layer 

thickness can be associated with the inverse of the non-dimensional far field temperature. 

We also consider the case when the initial composition of the liquid is close to the 

eutectic composition (co>::: cE ) thus resulting in a large value for ~ (see Eqn.(1.l0)) 

which may be defined as, 

(1.15) 

where Cs is O( 1) as 8 ---) o. This approximation (8 -) 0, ~ -) 00 ) corresponds to the near­

eutectic approximation used by Fowler (1985). This limit allows for the leading order 

system describing the mushy layer to be expressed as a mushy layer of constant 

permeability by usage of the permeability definition II (<p ) = 1 + O( <p) where <p is 

O( E ,8) . The effects of permeability variations will then be introduced at a later stage as 
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perturbations to the system. We follow Anderson & Worster (1996) and assume that the 

Stefan number is large by expressing it as, 

S 
St= -

8 ' 
(1.16) 

where S = 0(1) as 8 --+ o. This is different from the Amberg & Homsey (1993) who 

assumed a Stefan number ofthe form St = 0(1) . 

19 



2. Case One: Time scale used by Anderson & Worster (1996) 

2.1 Rescaled Equations 

We proceed to rescale space and time and also introduce a new effective Rayleigh 

number based on the mushy layer thickness 8 as follows, 

(2. la-c) 

The scaling adopted for the dependent variables in Eqn.(2.1) is consistent with that used 

by Anderson & Worster (1996). The time scale represented here is associated with the 

diffusion time across the mushy layer. Next, we introduce the following scalings as used 

in the non-linear analysis of Anderson & Worster (1996): 

R-
U= "8U, p= Rp. (2.2a-b) 

These scalings are applied to the system (1.3-1.6) and result in the following governing 

set of equations: 

v ·U= 0 (2.3) 

(2.4) 

(2.5) 

(2.6) 

where X = 8 \ 0 • Using the earlier defmition for the thermal length scale 8 and X the 
" 0 ' 

expression for X may be transformed to the following form: 
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(2.7) 

where Pr is the fluid Prandtl number, $ 0 is the porosity and Da is the Darcy number 

defined as Da= ko/(H*)2. The Darcy number (Da= ko/(H*)2) is very similar to the 

mobility ratio (S 0 = l ~. /ko ), the only difference that being that it is the inverse of the 

mobility ratio with the mushy layer height H* being replaced by the thermal length scale 

I . , as observed from their respective definitions. Vadasz (1998) was the first to point out 
K 

the definition of the parameter X in his paper on flows in porous media. In porous media 

theory the value of X is usually quite big and allows to neglect the time derivative term, 

hence usually it is neglected. In the current case the parameter X would be retained based 

on the following arguments: the Prandtl number (Pr) in systems undergoing solidification 

ranges from Pr = 10-3 (for metallic alloys) to Pr = 10 (for aqueous solutions). Vadasz 

(1998) suggested that Da = 10-4
, $ 0 = 0.1 , and Pr = 10-3 are typical values for a mushy 

layer. Using Vadasz's (1998) suggested values for the mushy layer yields X = 1. 

Furthermore the mobility ratio may be recovered from the calculated value of X and a 

growth Peelet number (8) using the relation X = 0 2X o . Using the values of Prandtl 

number (Pr), porosity ($ 0)' together with the calculated value of X yields a mobility 

ratio of S 0 = 1 x 106
. This value of mobility ratio is in total agreement with the value 

range suggested by Worster (1991). In the present study we retain the time derivative 

term in the equation in order to allow for the possibility of oscillatory convection and will 

observe how the value of X affects the various parameters in the system. A full 

derivation of the system (2.3-2.6) as well as the derivation of Eqn.(2.7) is provided in 

Appendix B. 
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2.2 Basic Flow Solution 

There is a basic steady state (8e B/ 8t= 8c.p B/ 8t= 0) represented by subscript 'B' , which 

is horizontally uniform (8e B/8x= 8c.p B/ 8x= 0 , 8e B/8y= 8c.p B/ 8y = 0 ), corresponds to 

zero flow (U B = 0) and satisfies the following system of equations: 

d-
-~-Re = 0 

d:Z B 

dPB dPB ----0 dx - dy - . 

(2.8) 

(2.9) 

(2.10a) 

(2.10b) 

It is interesting to note that Eqns.(2.8-2.10) resemble Anderson & Worster' s (1996) 

system exactly. Eqns.(2.8 - 2.10) are subject to the boundary conditions 

at Z= 0 (2.11) 

c.p B = 0 , at Z = 1. (2.12) 

Using an expansion in () (where () «1) to express the basic state solution as follows: 

(2.13) 

(2.14) 
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Substituting expansions (2.13 - 2.14) in the system (2.8 - 2.10) and solving for the 

functions of z to the different orders in 8 yields the following result: 

2[0
2

(1_3 1_2) S(1_3 - 2) 1(2S 1(1 2]_] 8 - -z --z -- -z -z +- -+-~~ z 
2 3 2 c~ 3 3 c~ 4 

(2.15) 

_ (z- 1) 2[-(Z- 1)2 0 - 2 -1 
<ps(z)= -8 +8 2 +-2 (z - z) , 

Cs Cs Cs 
(2.16) 

where 0 = 1 + sics = 1 + St/~ . The parameter 0 can assume values greater than unity, 

ie. 0 > 1. For 0 =1, we note that the Stefan number becomes zero. This is unphysical as 

the Stefan number St used in the current study is non zero. In the current study we ensure 

that 0 is always greater than unity. Recall that the assumption that ~ ~ 0(1/8) leads to a 

small basic state solid fraction. A detailed derivation of the basic state solution is 

presented in Appendix C. It is interesting to note that in the limit 8 ~ 0 we find that 

<p s -t 0 thereby corresponding to convection in a non-porous medium. 

The scaling in the Stefan number leads to a basic solution that is slightly different to that 

found by Amberg & Homsey (1993), see Eqns.(2.9a) and (2.9b) in their paper. 

Note that the governing partial differential system (2.3 - 2.6) forms a three dimensional 

non-linear coupled system . To provide a non-trivial solution to the system it is 

convenient to apply the curl operator (V x) on Eqn.(2.6) and obtain an equation which 

includes the vorticity, defined as co = \1 x U , in the form 

l aO) dII[ ] au rae ae 1 --a- +II(<p)O)+---=- TIe -ve -Ta I/2-=-R -e --e x t dz Y x az ay x ax Y 
(2.17) 
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It can be noticed that the vertical component of Eqn.(2.17) IS independent of 

temperature and may be given as, 

[~+I1(<p)lCO =Tal/28wj8z 
x8t z 

(2.18) 

where co z is the vertical component of vorticity. Then, applying the curl operator (V' x ) 

again on Eqn.(2.17) and using the property of U being solenoidal, which comes out as a 

result of Eqn.(2.3) , and considering only the z-component of the result yields the 

following equation, 

[ 
1 8 1 2 dIl 8w 2 1/2 8co z ---=-+ I1(m) V w+ --+ RV 8 + Ta - = 0 
X 8t 't' dz 8z H 8z' 

(2.19) 

where the horizontal Laplacian operator is defined in the form V ~ = 82/ 8x 2 + 82/ 8y 2 . 

2.3 Linear Stability Analysis 

The stability of the basic solution (2.15 -2.16) is examined by determining the growth 

and decay of infinitesimal disturbances around this solution. We introduce normal-mode 

perturbations to the basic state solution as follows: 

(2.20) 

~ - i(s x+s -y) <p = <P B + c<p (z)eO"te x )' + C.c (2.21) 

(2.22) 

where (J is the growth rate, Sx and Sy are the horizontal wave numbers of the 

perturbation and c.c represents the complex conjugate. By substituting the normal-mode 
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expanSIOns (2.20-2.22) in Eqns.(2.3-2.5) and Eqns.(2.18-2.19) yields the following 

linearised heat and solute balance equations and Darcy equation to order f: , 

[ ~ s 1 ~ ( 2 2 ) ~ [cr-oD] e-8~ +RwDe B = D - s e (2.23) 

[cr - 0 D][ (1- q> B)8 - e B~ + ~s ~ 1 + R~rDe B = 0 (2.24) 

where D = djdz and cr = cr r + icr i' A detailed derivation of Eqns.(2.18-2.19) and the 

system (2.23-2.25) is given in Appendix D. The system is solved subject to the following 

boundary conditions: 

e = 0, w=o z = o 

e = 0, w=o ~=o z = 1. 
(2.26) 

, 

We assume longitudinal roll solutions for y« 1 (y « 0). We are interested in the 

solution to these equations for 8 < < 1, so we follow Anderson & Worster (1996) an 

expand the dependent variables in powers of 8 as follows, 

(2.27) 

(2.28) 

(2.29) 

(2.30) 
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(2.31) 

Note that owing to the fact that the basic state solid fraction is small, the permeability 

function II (q» is expanded in a Taylor series following Anderson & Worster (1996) as 

follows, 

(2.32) 

From Eqn.(2.16) q> BJ = -(z- l)/cs ' where the constant K J characterises the linear 

variation of the permeability with the local solid fraction and must be positive in order to 

ensure that the permeability decreases with increasing solid fraction. It can also be noted 

from Eqn.(2.32) that at the leading order the permeability is constant. We proceed with 

the expansion in powers of 8 and find from the solute balance equation, Eqn.(2.24), that 

there exists an 0(1/0) problem which may be expressed as, 

(2.33) 

where () 00 = () rO + () iO· Eqn.(2.33) is solved by taking () rO = () iO = 0, ie. () 00 = o. Note 

that to order 0(0 0) we fmd that 

subject to the boundary conditions 

e 00 = 0, woo = 0 

e 00 = 0, woo = 0, q> 00 = 0 

z=o 
z = 1. 
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(2.35) 

(2.36) 

(2.37) 



where Q = 1 + sf Cs . See Appendix E for the derivation of the equations to order 0(0
0
). 

The solution to order 0(0 0
) may be presented as, 

800 = - A oo sin(nz) (2.38) 

w oo = Boo sine n z) (2.39) 

[ 
( X- - I) - (crr l +cr il ). (-)] 

In --C e"rl+"il Z +cos(nz) + smnz 't"oo - 00 n (2.40) 

(2.41) 

where the coefficients in Eqn.(2.39) and Eqn.(2.40) are given as 

(2.42) 

(2.43) 

A detailed derivation of Eqns.(2.38-2.43) is provided in Appendix F. We note from 

Eqn.(2.40) that cr rl and cr il yet to be determined (where cr 01 = cr rl + icr il). In order to 

evaluate these terms we need to continue our expansion to order 0(0). At order 0(0) 

the modified heat balance equation and the Darcy equation is given as, 

(2.44) 
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2 2 2 2 _ rl II 2 _ 2 _ 

[ 
(cr + icr . ) 1 ( ) (D - s )W OI - s Rooe ol + TaD WOI - -2 X + KI(jlsl D s woo 

(2.45) 

A detailed derivation of Eqns.(2.44-2.45) is provided in Appendix G. The existence of 

solutions to Eqns.(2.44-2.45) requires that a solvability condition be satisfied. The 

determination of the solvability condition involves decoupling Eqns.(2.44) and (2.45) to 

obtain a single non-homogenous partial differential equation for e 01' Multiplying the 

resulting partial differential equation for e 0 1 by e 00 (Eqn.(2.38)) and integrating over the 

regIOn Z E [0,1] , and usmg the boundary conditions e 01 (0) = e 0 1 (1) = 0 

WOI(O) = wOI(1) = 0 and d2wol(0)/dz2 = PI, d2wol (1)/dz2 = P2 ,which is obtained from 

Eqn.(2.45), to give the solvability condition that must be satisfied as, 

(2.46) 

Note that the quantities PI and P2 are scalar quantities that represent the second 

derivative of the vertical component of the velocity, WOI' at the lower and upper 

boundary of the domain. Refer to Appendix H for a detailed derivation of the solvability 

condition. The real and imaginary parts of the characteristic equation, Eqn.(2.46), 

represents two conditions relating RoI, cr rl , and cr il . In the following section we proceed 

to search for solutions to Eqn.(2.46) in order to determine the linear stability properties of 

the mushy layer. 
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2.4 Stationary Convection 

For stationary convection cr rl and cr i l in Eqn.(2.46) are real and for marginal stability 

cr rI = 0 , therefore the corresponding Rayleigh number correction R OI associated with 

stationary convection is obtained by substituting cr iI = 0 in Eqn.(2.46) and is presented 

in the form, 

(2.47) 

Rescaling the wavenumber in the form a = S2 f 7t 2 , setting A = sf (0 CS) 2 and applying to 

Eqn.(2.47) yields, 

(2.48) 

Rescaling Eqn.(2.41) using the above scaling parameters yields, 

2 7t
2 (a + 1)(a + 1+ Ta) 

R oo = - -'---..:......:....----'-
o a 

(2.49) 

The parameter A = S/(O CS) 2 refers to a ratio between the Stefan number and the 

composition ratio. The parameter 0 = 1 + sics may assume values greater than unity, as 

mentioned earlier. If we select 0 = 2 say, then sics = 1. Noting that the composition 

ratio Cs can assume values ranging from Cs = 0.25 (for molten alloys) to about 

Cs = 4 (for aqueous salt solutions) we may infer that the parameter A can assume values 

ranging from A = 0.0625 to A = 1 across the band of composition ratios at 0 = 2 . 

Noting that R = R oo + 8Ro1 yields characteristic Rayleigh number values associated with 

stationary convection which may be presented as 
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(a + 1) (a + 1+ Ta)[ ((a + 1- Ta) 1 K, ~(1 2 ))] R =n 1+8 --+QII. - +-2 
C,s! Qa (a+1+Ta)4cs 4 n 

(2.50) 

where the subscript OS! stands for identifying stationary convection. Note that as 

Ta -t 0 Eqn.(2.50) collapses to the exact Rayleigh number definition as proposed by 

Anderson & Worster (1996) and is presented using the current scaling as, 

(2.51 ) 

The form of the equation, given by Eqn.(2.50), however presents the case when the 

effects of rotation is included and it is this case that is our current area of interest. 

Graphical representation of the characteristic curves for Ta=O, Ta=5, Ta=10,Ta=20, 

Ta=50 and Ta=100 for different A, values following Eqn.(2.50). It can be observed from 

Figures 4 to 9 that as the Taylor number is increased from Ta=O (non-rotating case) to 

Ta=100, there is a corresponding increase in the critical Rayleigh and wave numbers 

respectively. Another interesting feature that can be noted is that as the Rayleigh number 

becomes larger the curves begin to flatten out or reach an asymptoticallimit. The onset of 

this asymptote occurred for wavenumber values (sin) greater than unity, ie for larger 

wavenumbers. This feature is most evident at Ta=50 and Ta=100. Incidentally this 

feature persists for values of Taylor number greater than Ta=100. 
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Figure 4 : Characteristic Rayleigh number curves at Ta=O for different values of A 
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Figure 5 : Characteristictiayleigh number curves at Ta=5 for different values of A 
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Figure 6 : Characteristic Rayleigh number curves at Ta=lO for different values of A. 
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Figure 7 : Characteristic Rayleigh number curves at Ta=20 for different values of A. 

32 



Ta=50 
100 

80 

+'" 60 
rJl 
un 

~ 40 

20 

0 

0 1 2 3 4 

sire 

I -A=O.1 - A=3 - A=7 - A=101 

Figure 8 : Characteristic Rayleigh number curves at Ta=50 for different values of A. 
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For high values of Taylor number Eqn.(2.S0) may be approximated as, 

(2 .S2) 

Refer to Appendix I for the derivation of Eqn.(2.S0) and Eqn.(2.S2). Now it can be very 

clearly seen from Eqn.(2.S2) that for large values of wavenumber, a, we approach a 

critical value for the asymptote at high Taylor numbers, 

R (asym) = (reNa] [1+ 8(- 1.&+ nA(~+ 1.)]] er ,s! n 4 c re 2 4 
s 

(2 .S3) 

for appreciably large values of wavenumber, where R~::;m) represents the asymptotical 

value of Rayleigh number. For all intents and purposes this represents the minimum point 

for any given value of Taylor number and A value. The critical Rayleigh and 

wavenumbers are obtained by minimising Re,S! in Eqn.(2.S0) with respect to a, a process 

which produces a cubic algebraic equation for a er ,s! in the form, 

[4+0(~1 +4~,]] n 3 +[4(I+Ta)+o(~1 (1+3Ta)+4~ ,(I+Ta)]] n'+ 

[-4(1 + Ta)- o( ~: (1- 3Ta) + 4~ , (1 + Ta))] n + 

[-4(1 + Ta)' - o( ~: (1- Ta' ) + 4~Jl + Ta)' )] = 0, (2.S4a) 

where 11 s = n A ( 1/ 4 + 2/ re 2) . It is interesting to note that for very small values of 8 , ie. as 

8 ~ 0, Eqn.(2.S4a) reduces to, 

a 3 + (1 + Ta) a 2 - (1 + Ta)a - (1 + Ta)2 = 0 , (2.S4b) 
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which is applicable to flow in a non-porous medium. Another point worthy of note is 

that at very low Taylor numbers, ie. Ta -+ 0 , Eqn.(2.S4a) reduces to, 

(2.S4c) 

The only real and positive solution to Eqn.(2.S4c) is a = 1. This corresponds to the 

critical wavenumber evaluated by Anderson & Worster (1996) in their study of a non­

rotating (Ta=O) mushy layer. It can be noted that this critical value of wavenumber is 

independent of the parameter A. The solution to Eqn.(2.S4a) was obtained numerically 

showing that only one real and positive root, associated with the various selected 

parameter values, existed.,Appendix J provides a derivation of Eqn.(2.S4a). A solution to 

Eqn.(2.S4a) is presented for 8 = 0.2 , K)cs = 1.0 , and Q = 2 in Figures 10 and 11. 

Figure 10 provides a plot of the critical wavenumber as a function of the Taylor number 

for different values of the parameter A. It can be observed from Figure 10 that for any 

selected value of Taylor number there is very little variation in the critical wavenumber 

across the parameter range A. However the critical wavenumber increases with 

increasing Taylor number for a selected A curve. The locus of the critical Rayleigh 

number values as a function of the Taylor number is shown in Figure 11. It can be seen 

that increasing the value of the parameter A causes the gradient of the curves to increase 

across the Taylor number range. If we set say sics = 1 so that Q = 2 , this implies that 

A = S / (Q Cs r = 1/( 4cs) = 1/( 48 ~) , where the value for 8 is fixed. It can be seen that 

materials with high composition ratios ~ (typically aqueous ammonium chloride) result 

in low values for the parameter A, whilst those with low values of composition ratio 

~ (typically liquid metals) result in relatively higher values of the parameter A. Therefore 

for a particular setting of Taylor number it can be observed from Figure 10 that the onset 

of the stationary mode of convection for liquid metals occurs at a higher value of critical 

wavenumber in comparison to the lower value observed for the aqueous salts. 
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( 

2 [1 27t
2 

sin(a il)]J - 0 
ail l+A7t (a+1) (2_ 2)-( 2_ 2)2 a . - , 7t ail 7t all 11 

(2.63) 

which is of a form that was solved for by Anderson & Worster (1996). 

It can be noted from Eqn.(2.60) and Eqn.(2.61) that the frequency a il couples these two 

equations, and it is for this reason that they need to be solved simultaneously using a 

numerical technique. It was decided upon to express Eqn.(2.61) in a manner such that a 

is made the subject of the formula as follows, 

(2.64) 

where the coefficients of Eqn.(2.64) are given by, 

(2.65) 

1 2 [1 27t
2 

sina il ] 
a2 = (2- Ta)-+ A7t (2+ Ta) ( 2 2) - (2 2)2 + 1 

Oy 7t -ail 7t -ail ail 
(2.66) 

1 ( 2 [1 27t 2 sin a ill ] a3= (l-Ta)-+ A7t ( 2_ 2) - ( 2_ 2)2 +1 (1+Ta) . 
Oy 7t ail 7t ail ail 

(2.67) 

It can be observed that Eqn.(2.64) is a function of the frequency and the mentioned scaled 

parameters. Note that Eqn.(2.64) yields two solutions to the wavenumber, given by a I 

and a 2 respectively, note the subscripts in Eqn.(2.64). Now we may proceed to generate 

characteristic values for the wavenumber a for varying a il values at different parameter 

values (ie. Ta, A, and y etc.). Note that the wavenumber can only assume values greater 
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than or equal to zero, hence it satisfies the inequality, u 1,2 ~ O. Eqn.(2.64) produces two 

real values for the wavenumber, which then produces two corresponding characteristic 

values for the Rayleigh number, given by Rc,QV = R oo + 8Ro"Qv' Note that Roo is as given 

by Eqn.(2.49). The Rayleigh number curve producing the smaller critical Rayleigh 

number value is then selected. Note that the characteristic values for the Rayleigh number 

is given by, 

(u + 1)(u + 1+ Ta)[ s:( (u + 1- Ta) ~ K, f"\ ~ [~ 7t
2 

(1 )]J] R - 7t 1 + u + ~l /\, + 2 2 2 + cosO' iI 
C,QV - Qu . (u+ l+Ta)4cs 4 (7t -O' il) 

(2.68) 

Refer to Appendix M for the derivation of Eqn.(2.64) and Eqns.(2.65-2.67). A graphical 

representation of the characteristic curves for Ta=3 is presented below for the indicated 

parameter settings. To illustrate the results in the following figures we have chosen to 

show the case where S = Cs so that Q = 2. Further we have fixed 8 = 0.2 and 

K,/cs = 1. 

Figures 12a-12d also depicts the characteristic curve corresponding to stationary 

convection (0' i 1 = 0). It can be noted that at A = 0.4 , Figure 12a, the curve denoted by 

X = 2 seems to intersect the stationary curve ( 0' i 1 = 0) close to the minimum of the 

stationary curve. The intersection point with the stationary curve denotes the transition to 

stationary convection. However, the curve denoted by X = 10 and X = 50 never intersects 

the stationary curve. The curve denoted by X = 10 ends at the point s/7t ~ 1.29 . The 

region beyond the endpoints of the curves for X = 2 , X = 10 , and X = 50 indicates the 

absence of real positive solutions there. As the value of A is increased from A = 0.4 to 

A = 5.0 , we see that the transition point to stationary convection moves towards the right 

as observed from Figures 12b and 12d until it becomes detached from the stationary 

curve at A = 5.0 in Figure 12d for the selected range of X values. Physically the graphs 
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imply that as the value of A increases for a particular setting of Taylor number , the 

possibility of stationary convection diminishes and oscillatory convection exists over the 

entire bandwidth of wavenumbers. It was found that the lowest oscillatory convection 

threshold point exists for high X values. In Figures 12a-12d, it can be noted that 

increasing the A value for X = SO served to decrease slightly the critical value at which 

the onset of oscillatory convection results. The characteristic curves corresponding to 

Ta=S are presented below in Figures 13a to 13d for Q = 2 , 8 = 0.2 and K,/cs = 1. 

It can be observed that a similar behaviour as that reported for Ta=3 occurs at Ta=S. The 

only difference is that at a higher Taylor number of Ta=S and for at A = 0.1-1.0, the 

transition to stationary convection has moved further to the right of the minimum point 

on the characteristic curve denoting stationary convection (cr i ' = 0) for low values of the 

parameter X . This is very clearly seen in on comparing Figures 12a-c to Figures 13a-c. 

Again, it can be noted that at A = S.O , Figure 13d, there is no transition to stationary 

convection for the entire range of at X values. The interesting point to note is that at 

Ta=S the critical values for the Rayleigh number have increased in value and the absolute 

difference between the stationary curve and the oscillatory curves for the different values 

of X has diminished. Again, the region beyond the endpoints of the curves for X 

indicates the absence of real positive solutions there. 

43 



12 

11 

10 

~ 

~ 

Ta 5 
).,=0.4 

> o 
o~ 9 \\ 

'\ 
0 

~ / ~ 

> 
0 
o~ 

~ 

8 

7 

6 

12 

11 

10 

9 

8 

7 

~ --

o 0.5 1 

~ - ~ 

1.5 
sire 

2 2.5 3 

I-~,O - X=3 --X=10 - X=50 1 

(a) 

Ta 5 
).,=0.6 

6 

0 0.5 1 1.5 2 2.5 3 
sIre 

1-0-1,0 - X=3 --X=lO - X=50 I 
(b) 

Figure 13 : Characteristic curves for Rayleigh number for selected values of 'X, at, (a) A. = 0.4 (b) A. = 0.6 

44 



> 

12 

11 

10 

o~ 9 

~ 
8 

7 

6 

Ta=5 
)"=1.0 

o 1 234 

sire 
1-'1,0 - ):=3 - ):=10 - ):=50 1 

(c) 

18 

16 

14 

~ 
~ 12 
~ 

10 

8 

6 

o 1 

Ta 5 
).,=5.0 

2 
sire 

(d) 

3 4 

X=10 - X=50 1 

Figure 13 : Characteristic curves for Rayleigh number for selected values of 'X, at, (c) A. = 1.0 (d) A = 5.0 

45 



We present yet another set of curves for Ta=6 in Figures 14a to 14d for n = 2, 0 = 0.2 

and K) / Cs = 1. As the Taylor number is increased beyond Ta=6, it becomes clear that for 

').., ~ 1.0 the stationary mode becomes the more dangerous mode, ie. the critical Rayleigh 

number for the onset of oscillatory convection becomes greater than the critical Rayleigh 

number for the stationary mode. It can be seen that for ').., ~ 1.0 increasing the Taylor 

number renders the stationary mode most unstable. Though not presented, it was 

confirmed that for ').., ~ 5.0, increasing the Taylor number considerably, to say Ta=1000, 

causes the stationary mode to become most unstable. This point may be inferred from 

Figures 12d-14d for increasing Taylor numbers. It can be very clearly observed from 

Figure 12d and Figure 13d that increasing the Taylor number from Ta=3 to Ta=6 has 

moved the curves for the different X values closer to the stationary convection curve 

(cri)=O). 
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Figures 15 to 18 denotes the non-zero solutions to Eqn.(2.61) as a function of the 

wavenumber sin for different values of A. These results are presented at Ta=3 for 

different values of X for Q = 2 , 8 = 0.2 and K, I Cs = 1. It can be noted from Figures 15 

to 18 that as the value of X is increased from X = 2 to X ~ ex) the curves tend to 

approach the form of the curves presented by Anderson & Worster (1996) at high values 

of X . At X = 2 we note that the curves presented in Figure 15 for the different values of 

A collapses to an asymptote denoted by a value of wavenumber on the x-axis. It can be 

seen that increasing the value of the parameter A causes the curves to move towards this 

asymptote. However, for large values of the parameter A, say A = 5.0 , it can be observed 

from Figure 15 that the asymptote is reached only at very high values of the oscillatory 

frequency (cr i'). At X = 5 , approximately, there is a transition from the curves depicted 

in Figure 15 to that ofa form similar to Anderson & Worster (1996). Increasing the value 

of X to X = 50 , we note that the resulting set of curves presented in Figure 17 resembles 

the form of the curves presented by Anderson and Worster (1996). The curves presented 

in Figure 18 for X ~ ex) bears a strong resemblance to Anderson & Worster's (1996) 

curves. It can be seen in Figure 18 that at A = 1 the oscillatory mode attaches to the 

stationary mode at zero wavenumber (infinite Rayleigh number) and therefore exists for 

all wavenumbers s. 
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Figures 19 to 22 presents results at Ta=50 for different values of X for Q = 2, () = 0.2 

and K) / Cs = 1. It can be noted that the asymptote for the curves for different values of A. 

at X = 2 has moved to the right but the basic form of the curves resembles Figure 15. It 

may be inferred that the asymptote is a strong function of the Taylor number, a point that 

will be elucidated on at a later stage. The point at which the curves showed transition to 

the form of the curves presented by Anderson & Worster (1996) was found to occur at 

X = 9 and is presented in Figure 20. We also observe that increasing the Taylor number 

has increased the value of X at which the curves begin to resemble Anderson & 

Worster's set of curves. We note from Figure 21 that only oscillatory convection is 

possible for A. > 1.0 and is always the most unstable mode. This point is also evident in 

Figure 17. The curves presented in Figure 12 for X ---+ OCJ bears a strong resemblance to 

Anderson & Worster's (1996) curves. It can be seen again in Figure 22 that at A. = 1 the 

oscillatory mode attaches to the stationary mode at zero wavenumber (infinite Rayleigh 

number) and therefore exists for all wavenumbers s. 
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The asymptote discovered at low values of X will be explained in further detail by 

examining the behaviour of Eqn.(2.61) a bit more closely. It was noted that this 

behaviour occurred for high values of a i I and low values of the parameter y = X /1t 2 . 

Firstly multiplying Eqn.(2.61) by y yields, 

1 (a + 1) (a + 1- Ta) ~ 2( 1)[ 1 21t 2 sin(a il)]_ 0 
- + y + yA1t a + 2 2 - 2 2 2 - . 
Q (a+l+Ta) (1t -a il ) (1t -ail) ail 

(2.69) 

Applying the limit limO to Eqn.(2.69) as follows, 
y-tO 

. {I (a + 1)(a + 1- Ta) 2 [1 21t 2 sin(a il)]} _ 0 
11m - + y + YA1t (a + 1) 2 2 - 2 2 2 - , 
y-tO Q (a + 1+ Ta) (1t - a il) (1t - a il) ail 

(2.70) 

yields the following result for the location of the asymptote, 

a = (s/1ty = Ta-l. (2.71) 

Eqn.(2.71) shows that the location of the asymptote is independent of the parameter A. 

We may demonstrate that at Ta=3 , the location of the asymptote given by Eqn.(2.71) is 

S/1t = J2 ~ 1.14 and corresponds to the value noted in Figure 15. Similarly for Ta=50, the 

asymptote is found to be s/1t = 7 , which corresponds exactly to the value noted in Figure 

19. It can be noted from Figures 15 and 19 that the curves corresponding to the different 

values of A reaches the asymptote calculated using Eqn.(2.71) at high a il values only. 

The corresponding asymptotical Rayleigh number at high values of a il may be inferred 

from Eqn.(2.60) by applying the limit lim 0 and is given as, 
(J i l ~OO 

R = 1t (a + 1)(a + 1+ Ta)[ l(a + 1- Ta)!.!S QA]] 
asym,ov Q a 1 + I) (a + 1 + Ta) 4 c

s 
+ 4 . (2.72) 
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It must be borne in mind that the asymptotical wavenumber found in Eqn.(2.71) and the 

asymptotical Rayleigh number given in Eqn.(2.72) indicates the critical values for the 

onset of convection at low settings of the parameter X. Refer to Appendix N for a 

derivation of Eqns. (2.71-2.72). 

The comparative behaviour of the critical Rayleigh number between the stationary mode 

(black curve) and the oscillatory mode (blue curve) is presented in Figure 23 to 26. Also 

indicated in Figures 23 to 26 is the frequency cr il (red curve) along the oscillatory branch 

with only the positive root shown. We have noted that the oscillatory mode depends on 

the presence of the parameter A. To illustrate the results we have chosen to show the 

case where S = Cs so that Q = 2 . We have also fixed 8 = 0.2 and taken KI / Cs = 1. The 

results will be presented for Ta=3, Ta=20, Ta=50, and Ta=100. For each of these Taylor 

numbers we will allow the parameter X to assume the values, X = 2, X = 10, X = 50 and 

X ~ 00. It can be observed from Figure 23a that stationary mode is the most unstable 

mode for A ~ 0.125, whilst the oscillatory mode the most unstable A > 0.125. The 

transition to oscillatory convection occurs at A == 0.125. In figure 23b however, it is noted 

that the oscillatory mode remains the most unstable mode for the entire bandwidth of A 

values. In Figure 23c, X = 50, it is noted that the stationary mode again becomes the most 

unstable mode at low A values and the most unstable mode at higher A values. It can be 

noted that the absolute difference between the two modes is extremely small for high A 

values, ie. the curves for the stationary and oscillatory modes practically overlap. The 

point at which the transition to oscillatory convection occurs is A == 0.375. At very high 

X values as depicted in Figure 23d that the result is similar to that in Figure 23a. the 

transition to oscillatory convection occurs at A == 0.498 . 
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To further investigate the effects of Taylor number on these curves we present results to 

Ta=20 in Figure 24. From Figure 24a, X = 2 , it can be noted that an increase in the 

Taylor number caused the onset of an asymptote (as discussed above). The stationary 

mode is the most unstable mode for the entire A domain. Figure 24b provides an 

interesting result, in that increasing the Taylor number has caused the stationary mode to 

now become the most unstable mode. It can be observed from Figure 24c that increasing 

the Taylor number has caused stationary mode to become the most unstable for low A 

values and the oscillatory mode to become the most unstable for high A values. The 

transition to oscillatory convection occurs at A ~ 0.1. From Figure 24d it can be noted 

that increasing the Taylor number has only caused the exchange of stability point to move 

to A ~ 0.125. The stationary mode still is the most unstable at low A values and the 

oscillatory mode is still the most unstable at high A values. 
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We now present results for Ta=50 in Figure 25. It can be very clearly seen from Figures 

25a and 25b that increasing the Taylor number for the lower X values causes the 

stationary mode to become unstable. Figures 25c and 25d show that for the higher X 

values the oscillatory modes remain most unstable. This is in agreement with the 

observations made from the characteristic Rayleigh number curves. In Figure 25d, the 

exchange of stability occurs at A ~ 0.125. 
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We now proceed to present the final graph set at Ta=100 in Figure 26. It can be very 

clearly seen from Figures 26a and 26 b that for small values of X the stationary mode 

becomes the most unstable for increasing Taylor numbers. Comparing Figures 25c and 

26c we note that the absolute difference between the stationary and oscillatory curves has 

diminished. Although the oscillatory mode is still the most unstable mode, further 

increases in the Taylor causes the stationary mode to become the most unstable mode, as 

pointed out earlier. At very high X values, the oscillatory mode still remains the most 

unstable mode as observed from Figures 26c-d. 

Figures 23 to 26 show that either the stationary or the oscillatory mode of convection can 

be the most unstable depending on the value of A for each setting of Taylor number and 

x· 
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We now compare the results of the current case involving rotation with that of Anderson 

& Worster (1995), who neglected rotational effects. In order to compare our results with 

Anderson & Worster (1995) we need to apply the limit X ~ 00 and consider the problem 

at different values of Taylor number. Note that X ~ 00 and Ta=O represents the problem 

solved by Anderson & Worster. This was presented earlier in Eqn.(2.62) and Eqn(2.63). 

Figure 27a and 27b shows the variation of the critical Rayleigh numbers for the stationary 

and oscillatory cases as a function of Ie for X ~ 00 for varying Taylor numbers. Note 

that in Figures 27a and 27b the curve denoted by Ta=O represents the result of Anderson 

& Worster (1995). It can be very clearly seen in Figures 27a and 27b that as the Taylor 

number is increased the critical Rayleigh number curves for both the stationary and 

oscillatory case lies above the case when Ta=O. This implies that increasing the Taylor 

number has a stabilising effect on the convection in the mushy layer as the onset of 

convection in the presence of rotation is delayed. 

It can also be noted from Figure 27c that increasing the Taylor number at high values of 

X causes the oscillatory mode to become the most unstable mode. It can also be noted 

from Figure 27c that stationary convection can only occur below Ie == 0.48 . For increasing 

Taylor numbers the Ie values for transition to oscillatory convection decreases, thus 

oscillatory convection occurs over a larger band of Ie values. At Ta= 100 it can be seen 

that no stationary convection is possible. In summary it can be seen that at high X values, 

increasing the Taylor number results in the oscillatory mode becoming the most unstable 

mode. This feature is clearly observed in Figures 23d to 26d as well. 

In the interest of identifying ways in which instabilities in the mushy layer can be 

avoided in practice, we investigate the dependence of the critical Rayleigh number and 

the frequency cr i1 on each of the experimental control parameters St, S , 8 as a function 

of X and Ta. 
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2.6 Parametric Dependencies 

Figures 28a to 28d shows the critical Rayleigh number curves for the stationary and 

oscillatory modes as well as the frequency (j i) for a variation in the Stefan number St for 

increasing Taylor number. The other parameters are fixed as 8 = 0.1 , ~ = 3, K) = 3 , and 

X = 1. Note that only the positive root of the frequency is shown. We note from Figure 

28a that at low Stefan numbers and Taylor number the stationary mode is the most 

unstable mode. In Figure 28a for low Taylor numbers (Ta=3) the transition to oscillatory 

convection occurs at about St ~ 0.9 (ie. the oscillatory mode becomes the most unstable 

mode). Note that as the Taylor number is increased the stationary mode becomes the 

most unstable mode over the entire range of Stefan numbers, as observed from Figures 

28b-d. 
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Figures 29a to 29d shows the critical Rayleigh number curves for the stationary and 

oscillatory modes as well as the frequency cr i) for a variation in the compositional ratio 

~ for increasing Taylor number. The other parameters are fixed as 8 = 0.1, ~ = 3, 

K) = 3, and St=5. It may be observed from Figure 29a that at low composition ratios (~ ) 

the stationary mode is the most unstable. The oscillatory mode is most unstable for the 

higher composition ratios with transition to oscillatory convection occurring at ~ == 6 . As 

the Taylor number from is increased from Ta=3 to Ta=100, the stationary mode becomes 

the most unstable mode across the range of selected ~ values, as can be observed from 

Figures 29b to 29d. 
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Figures 30a to 30d shows the critical Rayleigh number curves for the stationary and 

oscillatory modes as well as the frequency cr i) for a variation in the mushy layer depth 8 

for increasing Taylor number. The other parameters are fixed as X = 1, ~ = 3, K) = 3, 

and St=5. 

It can be observed from Figures 30a to 30d that the curves for the oscillatory mode 

adopts a flat shape over the appropriate 8 range. The stationary mode remains the most 

stable mode over a wider range of 8 values at lower Taylor number settings, as can be 

seen from Figure 30a. As the Taylor number is increased, this bandwidth of these 

8 values over which the stationary mode is stable becomes smaller as can be observed in 

Figures 30b to 30d. This point may be illustrated by considering the transition points. The 

transition to stationary convection occurs at 8 == 0.112 for Ta=3, at 8 == 0.0625 for Ta=10, 

at 8 == 0.025 for Ta=50 and at 8 == 0.024 for Ta=100. By increasing the Taylor number at 

small values of X the stationary mode becomes the most unstable mode for larger 

8 values. 

77 



10 

9 

8 ~\ 

I-< 
U 

~ 

7 

6 

5 

4 

3 

2 

16 

14 

12 

I-< 10 

o 

~8 
6 

4 

2 

\ 
"- .... 

.............. r--, 
1\ 

0.1 0.2 

Rcr,st 

1\ 

\ 
~~ 
~-, ~ ...... 

o 0.1 0.2 

Ta=3 

X=l 

0.3 

8 
0.4 

Rcr,ov 

(a) 

Ta 10 
X=l 

--i'----

0.3 0.4 

0.5 

0.5 

--Rcr,st --Rcr,ov --

(b) 

0.6 

40 

32 

24 
..... 

t) 
16 

8 

o 

40 

32 

24 

16 

8 

0 

0.6 

ajl I 

;;::: 
t) 

Figure 30 : Critical Rayleigh number Rcr versus 0 at X = 1 for (a) Ta=3 (b) Ta= lO. Stationary mode 

(black curve), oscillatory mode (blue curve) and frequency (j it (red curve) 

78 



25 

20 

10 

5 

40 

35 

30 

I-< 25 

~ 20 

15 

10 

5 

~1 
\ 

r., '~ 

Ta 50 
X=l 

~ 
~ 
~ 

0 0.1 0.2 0.3 0.4 0.5 

8 
Rcr,st Rcr,ov <Ji, I 

(c) 

Ta=100 
X=l 

1\ 

~\ , 
'~ 

........ 
~ ---r----. r---. 

o 0.1 0.2 0.3 0.4 0.5 

8 

40 

32 

24 

16 

8 

o 
0.6 

40 

32 

24 

16 

8 

o 
0.6 

Rcr,st Rcr,ov <Jil I 

(d) 

...... ..... 
b 

...... ..... 
b 

Figure 30 : Critical Rayleigh number Rcr versus () at X = I for (c) Ta=50 and (d) Ta=IOO. Stationary 

mode (black curve), oscillatory mode (blue curve) and frequency 0" il (red curve) 

79 



Figures 31 a to 31 d shows the critical Rayleigh number curves for the stationary and 

oscillatory modes as well as the frequency cr i' for a variation in the Taylor number Ta for 

increasing X values. The other parameters are fixed as 0 = 0.1, C, = 3, K, = 3, and 8t=5. 

The value of A was approximated to be about 0.8 for the case presented in Figures 31a to 

31d. It can be observed from Figures 31a-b that the oscillatory mode is the most unstable 

mode for the lower range of Taylor numbers. The transition to stationary convection 

occurs at approximately Ta == 4. In figure 31c it can be noted that the stationary mode is 

now most unstable for Taylor numbers Ta ~ 4 . The oscillatory mode however is the most 

unstable for Taylor numbers Ta < 4. A similar behaviour is noted from Figure 31d, the 

only difference being that the band of Taylor numbers within which oscillatory 

convection is most unstable lies between Ta == 3 and Ta == 5. The endpoints refer to the 

points of transition to stationary convection. Outside this band stationary convection is 

the most unstable. 
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2.7 Eigenfunctions for Oscillatory Case 

To describe the oscillatory instability we shall develop and present the eigenfunctions for 

the temperature, solid fraction and the stream function. We combine the basic-state 

solution and the leading order solution defined by the given normal mode expansion, 

Eqns.(2.20-2.22). Using the solutions given by Eqns.(2.38-2.41) we may proceed to 

present the solutions to the eigenfunctions for e, <p , and Ijf defined in Eqns.(2.20-2.22). 

Note that in evaluating the eigenfunctions we let Sy = 0 so that S2 = s~ . The solution to 

the temperature field is given as; 

(2.73) 

The eigenfunction for the stream function is given as, 

(2.74) 

Finally, the solution for the solid fraction is given as, 

Note that 8 B and <P B have been previously evaluated and are given by Eqns.(2.15-2.16). 

Note that the system (2.73-2.75) contains a parameter EAoo which represents the 

amplitude. Note that E is understood to be a small parameter as required by linear theory. 
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A detailed derivation of the system (2.73-2.75) is provided in Appendix K. Graphical 

plots will be provided in Section 6. 
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3. Case Two: Time scale proposed by Author 
3.1 Rescaled Equations 

In this part of the study we propose a new scaling in time as compared to that proposed 

by Anderson & Worster (1996). The scaling on the other dependent variables are as 

presented by Anderson & Worster (1996). For clarity, the scaling on all the dependent 

variables will be outlined. We use the same space and Rayleigh number scaling as 

Anderson & Worster (1996) which is given as, 

(3.1 a-b) 

We now introduce the following scales on the velocity vector and the pressure terms, 

(3.2a-b) 

The author used the following scaling on time which is of the form, 

t = 8t , (3.3a) 

(instead of t = 82t proposed by Anderson & Worster (1996)) and represents the diffusion 

time scale across the mushy layer. We note that our time scaling (t = 8t) represents a 

relatively shorter time scale when compared to Anderson & Worster's (1996) time 

scaling (t = 821:). We propose to absorb the parameter X I in the scaling for time and 

propose the following scaling for time, 

(3.3b) 

These scalings are applied to the system (2.3-2.6), which results in the following scaled 

set of governing equations, 
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( a a ) ( S) - - - 2 8 X - - - 8 - - <p + RU· v 8 = V 8 , 
I at' az 8 

( a a)[ Cs 1 --8 X I - - -= (1- <p )8 + - <p + RU · v 8 = 0 , at' az 8 

au - - 1/2--+ II (rn)U = -V-p- R8e - Ta e x U at' 't' z z 

(3.4) 

(3.5) 

(3 .6) 

(3.7) 

where X 1= 8X o' Recall that 8 is the growth Peclet number, and parameter Xo is defined 

as, 

(3 .8) 

where S 0 is the mobility ratio, Pr is the Prandtl number and $ 0 is a characteristic value 

for the porosity, all of which have been defined earlier in Section 2. Vadasz (1998) 

suggested that for solidifying binary alloys, Pr = 10-3
, and $ 0 = 0.1 represent typical 

values in metallic systems. Obviously, in aqueous systems, the Prandtl number will be 

considerably higher. In addition Worster (1992) suggested that mobility ratios have 

values that lie within the range S 0 E [105
, 106

] . Selecting 8 = 0.1, Pr = 10-3
, $ 0 = 0.1, 

and S 0 = 105 yields X I = 1, implying that there exists combinations of the mentioned 

parameters for which X I is of the order unity thus allowing the time derivative to be of 

significance in the system (3.4-3 .7). A full derivation of the system (3.4-3.7) is provided 

in Appendix O. 
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3.2 Basic Flow Solution 

There is a basic steady state (asB/at= a ~ B /at = 0) represented by subscript 'B', which 

is horizontally uniform (asB/ax= a~ B /ax = 0 , asB/ay= a~ B /ay= 0 ), corresponds to 

zero flow (U B = 0) and satisfies the following system of equations : 

(3.9) 

(3.1 0) 

(3.11) 

Eqns.(3.9-3.11) corresponds exactly with that given by the system (2.8-2.10) found 

earlier using Anderson & Worster's (1996) scaling. The system (3.9-3.11) is subject to 

the boundary conditions, 

at Z= 0 (3.12a) 

at Z = 1. (3.12b) 

As before the solution to this systems is given as, 

~ 2[~ ( .!. -3 .!. -2) S ( 1_3 -2) 1 (2S 1 2] -] u Z - Z - - - z - z + - -+ -[2 z 
2 3 2 c~ 3 3 c~ 4 

(3.13) 
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(z-l) 2[ (z-1)2 n -2 _ ] 
<P B = -8 + 8 - 2 + -2 (z - z) , 

cs cs cs 
(3.14) 

where n = 1+ S/cs ' This corresponds exactly to the solution given in Eqns.(2.14-2.15). 

A detailed derivation is provided in Appendix C. Applying twice the curl operator 

(V' x) on Eqn.(3.7) and considering only the vertical component of this results yields the 

following form, 

[ a 1 2 dII aw 2 1/2 aCt) z -+ I1(rn) V' w+ --+ RV' e + Ta - = 0 at' 't' dz az H az ' (3.15) 

where the horizontal Laplacian operator is defIned in the form V' ~ = a2/a x2 + a2/a'i 
and the component of vertical vorticity is given as, 

(3.16) 

Refer to Appendix D for a detailed derivation of Eqns.(3.15-3.16). 

3.3 Linear Stability Analysis 

The stability of the system (3.4-3.7) is examined by determining the growth and decay of 

infInitesimal disturbances to the steady solution. We introduce normal-mode 

perturbations of the following form to order 8 , 

(3.17) 

(3.18) 

(3.19) 
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where cr is the growth rate, Sx and Sy are the horizontal wave numbers of the perturbation 

and (c.c) stands for the complex conjugate. Apply the normal-mode (3.17-3.19) to the 

(3.5-3.7) and in Eqns.(3.15-3.16) yields the following heat balance, solute balance and 

Darcy equation to order E 8 , 

( )[

A S 1 A 2 2 A 8 X ,cr - D 8 - 8 ~ + RwD8 B = (D - s )8 (3.20) 

(3.21) 

(3 .22) 

The system above is solved subject to the following boundary conditions, 

at Z= 0 (3.23a) 

at Z = 1. (3 .23b) 

A detailed derivation of the system (3.20-3.22) is given in Appendix P. 

In the system (3.20-3.23) D = d/dz and cr = cr r + icr i' Note also that <P B and 

8 B represents the basic state solution for the temperature distribution given by Eqn.(3.13-

3.14) and II (<p ) is the permeability function as a function of the solid fraction <p . Since 

the basic state solid fraction is small and the perturbations to the solid fraction will also 

be small, we follow a form similar Amberg and Homsey (1993) and propose a truncated 

form of the function II (<p) in a Taylor series expansion for <p < < 1 . 

(3.24) 
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It can be seen from Eqn.(3.24) that the effects of permeability are only introduced at 

O( <p 2) . We shall not specify a form for the permeability at this stage but we require that 

Kc> 0 so that the permeability decreases with increasing solid fraction. Note that the 

solid fraction may be written in terms of the basic solution and the pertubation as follows, 

(3.25) 

where <P B = 0 <P B and <P I = ~ (z)eO"t' ei(sxx+syY) . This implies that the permeability function 

may be represented as II (<p ) = II (0 <P B + E <P I)' Since we only consider the order 

0(0 °) problem for the current study, the permeability function becomes II (<p ) = II (E<p I) . 

Applying this result to Eqn.(3.24) and using the expansion given in Eqn.(3.25) yields to 

O( E 2) the following form of the permeability function as used in the current study, 

(3.26) 

It should be borne in mind that <P I represents the solution to the solid fraction at order 

O( E) . It can be seen that to O( EO) the permeability is 1, ie. the mushy layer is 

homogenous medium at the zeroth order. Refer to Appendix Q for the derivation of 

Eqn.(3.26). 

Consider the system (3 .20-3.22) to order O(EO 0) 

(3.27) 

(3.28) 

(3.29) 
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Refer to Appendix R for a detailed derivation of Eqns.(3.27-3.29). The solution to the 

system (3 .27-3.29) is given as, 

e = - B, sin(nz) (3 .30) 

(3.31) 

(3 .32) 

where the coefficients B, and C, are given by, 

(3.33) 

(3.34) 

In addition the characteristic Rayleigh number is given as, 

(3 .35) 

The scaling a = s2/n 2 , y = xJn 2 and R= R/n 2 has been applied to Eqns.(3.30-3.35). 

A detailed derivation of Eqns.(3.30-3 .35) is given in Appendix S. It is interesting to note 

that as (j ---* 0 and Ta ---* 0 , Eqn.(3.35) collapses to, 

(3.36) 

91 



which resembles the form of the Rayleigh number definition obtained by Anderson & 

Worster (1996) in the author's notation. We now proceed to analyse the above results for 

both stationary and oscillatory convection as separate analyses. 

3.4 Stationary Convection 

For stationary convection cr in Eqn.(3.35) is real and for marginal stability, cr = 0 , 

therefore the corresponding characteristic values of Rayleigh number associated with 

stationary convection are obtained by setting cr = 0 in Eqn.(3 .35). This operation then 

yields characteristic values of the form, 

- 2 (1+a)2 (l+a) 
R c sl = f"'\ 2 + f"'\ 2 Ta. 

, ~laTC ~laTC 
(3.37) 

The first term in Eqn.(3.37) represents the characteristic Rayleigh number for convection 

in the absence of rotation, whilst the second term introduces the contribution of rotation. 

Minimising R sI,c with respect to a yields the critical wave number and Rayleigh number 

for stationary convection, 

a cr,sl = .,jTa + 1 (3 .38) 

(3 .39) 

Refer to Appendix T for a derivation of the critical values given in Eqns.(3.38-3.39). 

Note that the critical conditions proposed in Eqns.(3.38-3.39) closely resembles the form 

defined by Vadasz (1998). By using the stability conditions in Eqns.(3 .38-3.39) we can 

establish the limit as Ta ~ 00 in the form, 
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{

R er.s! --t [1 + O(Ta 1/
2 )]1 n n 

Ta --t 00 : 

T 1/2 
a er.s! --t a 

(3.40) 

Then using the definition ofthe Rayleigh number and of P = ~ * (co - cE ) , we can express 

the critical compositional difference over the porous layer as follows , 

_ 4n 2(ro *)2koK * 1 

~ er .s! = g*H*$ ~ (1+St/~)7 for Ta --t 00 • (3.41) 

Eqn.(3.41) shows that the critical composition difference for a fast rotating mushy layer 

depends on the inverse power of viscosity. For the case Ta --t 0 , the critical composition 

difference is given as, 

2 * - 4n K * 

~ er .s! = g*H*(l+ St/~)ko v 
Ta --t o. (3.42) for 

The result shown in Eqn.(3.42) for a non-rotating mushy layer shows that the critical 

composition difference is in contrast to the result shown in Eqn.(3.41). Eqn.(3.41) implies 

that at high rotational speeds (Ta > > 1) increasing the fluid viscosity has a destabilising 

effect. This is because the as the difference Per = r(co - cE ) is made smaller, the 

corresponding critical Rayleigh number for the onset of convection is also made smaller, 

hence convection threshold point is lowered with increasing the fluid ' s viscosity. On the 

other hand, for the case with no rotation, Eqn.(3.42), increasing the fluid ' s viscosity has 

a stabilising effect since the convection threshold point occurs at a much higher Rayleigh 

number. Refer to Appendix U for the derivation of the critical composition differences. 

With the stability results evaluated, we may now proceed to present the complete 

eigenfunction solutions. For three dimensional flow patterns corresponding to convection 

rolls whose axes are parallel to the y direction, the variation of the variables in the y-
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direction vanishes, which allows the existence of a stream function, 1jI, to satisfy 

identically the continuity equation (3.4). Note that despite the existence of a stream 

function, the flow is still three dimensional and in general the component of filtration 

velocity in the y direction does not vanish. Setting Sy = 0 and S2 = s:, which upon 

substitution in the solution for e I (Eqn.(3.17» and accounting for the symmetry 

conditions at the axis of rotation yields for stationary convection, 

e 1= -2BI cos(sx)sin(1tz). (3.43) 

Using Eqn.(3.32) and substituting in Eqn.(3.18) yields the solution for the solid fraction 

<P I , 

<P 1= -2CI[lt cos(1tz)]cos(sx) (3.44) 

Using Eqn.(3 .31) and substituting in Eqn.(3.19) yields the solution for the vertical 

component of the filtration velocity WI ' 

WI = 2NI cos(sx)sin(1tz) . 

Now using Eqn.(3.45) and the vertical component of the vorticity given by 

8w 
ill = Ta 1/2 -

1 

z 8z ' 

yields the y component of the velocity, 

N 
VI = 2Ta l/

2 ~sin(sx)cos(1tz). 
a 

using the following form of the continuity equation, 

94 

(3.45) 

(3.46) 

(3.47) 



(3.48) 

and the vertical component of the velocity, Eqn.(3.45) yields the x-component of the 

velocity, 

N 
u l = - 2 tk sine sx) cos( 1t z) . 

a 
(3.49) 

Note that the coefficients NI and CI used above are as given in Eqns.(3.33-3.34). The 

amplitude AI will be determined later when a weak non-linear analysis is performed. 

The solution presented in Eqn.(3.47) and Eqn.(3.49) describes the convection cells which 

are tilted in the y-direction, forming an angle tan- l(v\/ul) with respect to the x-axis. On 

this tilted plane there is no velocity component normal to the plane, hence this is regarded 

as the plane oblique plane containing the streamlines. From Eqn.(3.47) and Eqn.(3.49) 

one can evaluate the ratio between the horizontal components of the filtration velocity in 

the form, 

(3.50) 

This result corresponds identically with that found by Vadasz (1998). Using the relation 

given in Eqn.(3.50) and the critical value of the wave number, given by Eqn.(3.38), 

allows us to describe the wave number in the oblique plane containing the streamlines in 

the form, 

oblique _ (t - I (- /- )) 1t 
Sst cr - Sst cr COS an v I u l = ( ) 1/4 • 

" Tat 1 
(3.51) 
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Eqn.(3.51) implies that the wavelength of the roll measured in the plane containing the 

streamlines is a function of the Taylor number, thus implying that it is dependent on 

rotation. 

A detailed derivation of the leading order solutions given in Eqns.(3.43-3.45), Eqn.(3.47), 

Eqn.(3.49) and Eqn.(3.51) is provided in Appendix V. 

3.5 Overstable Convection 

For overstable convection we allow for the possibility of oscillatory motion and therefore 

cr is represented in the form cr = cr r + icr i . At the marginal stability state cr r = 0 leaving 

only the imaginary part in the equation. Substituting cr = icr i into Eqn.(3.35) and 

imposing the condition cr ~ > 0 , which is the requirement for cr i to be real in order to get 

overstability possible at all, yields two algebraic equations by letting the real and 

imaginary part of Eqn.(3 .35) to vanish separately. This provides the solution for the 

characteristic values of Rayleigh number and the frequency cr i of the oscillations at 

marginal stability, in the form, 

- 2 2 2 
R COY = - 2 -(a + I) 

, 7t aQ 

2 Ta 
{j · =---I 

J a + 1 ' 

(3.52) 

(3 .53) 

where the subscript O.ov stands for identifying the overstable convection. Appendix W 

provides a detailed derivation of the characteristic Eqns.(3 .52-3.53). An interesting point 

to note is that the frequency cr ~ given in Eqn. (3 .53) is identical to Vadasz' s (1998) results 

for the case when y ~ O. Vadasz (1998) stated that the case y ~ 0 depicted the lower 

bound for the overstable characteristic curves. It can be observed from Eqn.(3.53) that 

when there is no rotation (Ta=O) then oscillatory convection is impossible since cr ~ < O. 

Minimising R C,OY with respect to a yields the critical wave number and Rayleigh number 

which is of the form, 
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a er,oY = 1 (3 .54) 

- 2# R ---er,OY 7t n (3.55) 

2 Ta 
(j i ,er = -2- - 1. (3.56) 

Refer to Appendix X for a detailed derivation ofthe critical values in Eqns.(3.54-3.56). It 

can be observed from Eqn.(3 .56) that the Taylor number limit should be Ta ~ 2 in order 

for the frequency to be real for a = 1. This is however not sufficient in order to have cr,ov 

the instability setting in as overstable convection. For this to occur one must require the 

overstable critical Rayleigh number to be less than the corresponding stationary critical 

Rayleigh number, ie. Rer,oY ~ Rer,s!' This condition implies that Ta ~ 4(2- .J2) . 

Graphical representation of the characteristic curves is provided in Figure 32 for different 

values of Taylor number. It can be observed from Figure 32 that the oscillatory mode 

becomes the most unstable mode with increasing Taylor number. In the case of no 

rotation (Ta=O) the stationary mode is the most unstable mode. The frequency (j i as a 

function of the wavenumber is shown in Figure 33a. Note that the points at which the 

curves for each of the Taylor number values intersects the x-axis represents the points at 

which stationary convection sets in. Figure 33b shows the variation of the critical 

frequency as a function of the Taylor number. It can be observed that the critical 

frequency increases proportionally with increasing Taylor number. 

The complete eigenfunctions for the oscillatory case will be developed and presented in 

the following section when the weak non-linear analysis of overstable convection is 

undertaken. 
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4. Weak Non-linear Analysis of Author scaling 

For the weak non-linear analysis it is convenient to use the definition of the stream 

function in the form u = a\lf l a-z ; w = - a \If l ax, and present Eqns.(3.5-3.6) and 

Eqns.(3.15-3.16) in terms of the stream function, temperature and solid fraction, 

following resolution of the coupling between the components of Eqn.(3 .15), as follows, 

( ~ ~) [e S l+R~~-R~~-V2e 
8 X I at' - a-z - 8 <P a-z ax ax a-z - (4.1) 

( a a ) [ Cs ] a\lf ae a\lf ae 8 X - - - (1- <p)e +-<p + R--- R--= 0 
I at' a-z 8 a-z ax ax a-z 

(4.2) 

[
a ]2 2 [ a ]( a\lf aIT ae) a 2 \If 12 aIT -+ IT(m) V \If + -+ IT(m) --- R- + Ta-+ Ta l '1-= 0 at' 't' 't' at' 't' a-z a-z ax a-z2 a-z ' (4.3) 

where t' = X It. Refer to Appendix Y for a detailed derivation of the stream function 

representation illustrated in Eqns.(4.1-4.3). Note that the definition of the Laplacian 

operator is given as '1 2 = a2/ax2 + a2/a-z2
• The point of the weak non-linear analysis is 

to provide quantitative results regarding the amplitude of convection and the heat flux for 

both the stationary and overstable cases. The existence of the codimension-2 point (CTP) 

which exists at the point of intersection of the stationary and overstable solutions is 

expected but not investigated in the current analysis. To investigate the solution in the 

vicinity of the codimension-2 point requires a further expansion, over and above the one 

that we use here. This expansion would then yield a differential equation for the 

amplitude which is second order in time. 
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4.1 Expansions around Stationary Solutions 

The system (4.1-4.3) presented above contains a small parameter 8 , which represents the 

mushy layer thickness. It was pointed out at the linear stability level that in the current 

study we are only interested in solutions to order 0(8°). The system (4.1-4.3) may be 

presented to order 0(8 0) as follows, 

-( 0 0 ) o\jf oe o\jf oe 2 -S X --- <p+R---R--=V e 
lot' OZ OZ ox ox OZ 

(4.4) 

( 
0 0 ) O\jf oe O\jf oe 

c --- +R---R--=O 
S X lot' OZ <p OZ ox ox OZ (4.5) 

The stream function, temperature and solid fraction may be expanded in terms of a small 

parameter E , which is defined as, 

[ 
R ]1/

2 

E = --1 , 
Rcr 

(4.7) 

following Newell & Whitehead (1969) and Segel (1969), in the form, 

where the basic motionless solution to order 0(8°) is given as, 

<PB=O, \jfB=O. (4.9) 
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By using the definition for E given in Eqn.(4.7), the Rayleigh number may be expanded 

as R = Rer (1 + E 2). The permeability function, referred to in the system (4.4-4.6) was 

defined at the linear stability level to order 0(8 °) as, 

(4.1 0) 

where q> J represents the solid fraction solution to order O( E) . In addition we allow time 

variations only at the slow time scale t = E 2t , in order to prevent exponential growth and 

reaching finite values for the amplitude at the steady state. Slow space scales are also 

introduced, in the form X = EX , following Newell & Whitehead (1969) and Segel (1969), 

in order to include a continuous finite band of horizontal modes. Substituting the 

expansions (4.7), (4.8) and (4.10) as well as the slow time and space scales just defined 

into the system (4.4-4.6) and equating like powers of E produces a hierarchy of linear 

partial differential equations to each order. Refer to Appendix Z for the derivation of the 

system of equations to the different orders in E . 

At the leading order the O(E) equations are very similar to the equations solved at the 

linear stability level, ie 

(4.11) 

(4.12) 

(4.13) 

The solution at this order is given by the eigenvalues of the stationary convection which 

are of the form, 
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- [A eisx + A*e-isx ]sin(nz) \If I - I I (4.14) 

(4.15) 

(4.16) 

where (.)" stands for identifying complex conjugate terms and the amplitudes AtC'r,X) , 

A~ ('r ,X), BtCr ,X), B~ ('t: ,X), CI ('t: ,X) and C~ ('t: ,X) are allowed to vary over the slow 

time and space scales. The relationship between the amplitudes is obtained by 

substituting Eqns.( 4.14-4.16) in the system (4.11-4.l3) and is found to be, 

OR a 1/2 OR 1/2 * __ . era A* (4.17) B1 = i n(1e: a) AI ' BI - 1 n (1 + a) I , 

and, 

R a 1/2 R a 1/2 
C . er A C*--' er A* (4.18) 1 = 1 \> 1 - 1 1 . 

cs cs 

The solution to Eqns.( 4.11-4.l3) and the relationships between the coefficients presented 

in Eqns.(4.17-4.18) are derived in Appendix AA. The amplitudes AI and A~ remain 

undetermined at this stage, and will be determined from a solvability condition of the 

order O( c 3) equations at order c 3 . 

At order c 2 the O( c 2) equations are presented in the form, 

(4.19) 

c a<p 2 + R a\lf 2 = _ R a\lf I + R [ a\lf I ae 1 _ a\lf I ae I] 

S aZ er ax cr ax er az ax ax az (4.20) 
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(4.21) 

where the right hand side of Eqns.(4.19-4.21) represents the non-homogenous part 

consisting of terms that include known solutions evaluated at the leading order I: . These 

non-homogenous terms forces a particular solution in addition to the solution of the 

homogenous operator. De-coupling the equations and working out the particular solutions 

yields the following complete solution to this order, 

(4.22) 

(4.23) 

(4.24) 

where the relationship between the amplitudes B2 and A2 and C2 and A2 is identical to 

that presented in Eqns.( 4.17) and (4.18). A complete derivation of the solutions given in 

(4.22-4.24) is presented in Appendix AB. 

The equations at order 0(1: 3) are presented in the form 
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R [{ a\V 1 ae 2 _ a\V 1 ae 2} + {a\V_2 a~ _ a\V_2 ae_l} + {a\V_I ae 1 _ a\V 1 a~} + a
2
e;] 

er az aX ax az az ax ax az az ax ax az ax 
(4.25) 

R [{ a\V 1 ae2 _ a\V 1 ae 2} + {a\V_2 a~ _ a\V_2 ae_l} + {a\V_I ae 1 _ a\V 1 a~}1 
er az ax ax az az ax ax az az ax ax az (4.26) 

am2 alii ae ael a ael ae2 a2 \V 1 K _'t'_1 _'t'_1 + R _I + K m 2R R + R e az az er ax e't' 1 er ax + er ax ~ er ax - ax2 . 
(4.27) 

The right hand side of Eqns.(4.25-4.27) consists of known solutions evaluated at orders E 

and E 2 and the differential operator of the system (4.25-4.27) is identical to the operator 

of the equations at order E • Since equations (4.25-4.27) at order E 3 are non-homogenous 

versions of the equations at order E, a solvability condition for the for the equations at 

order E 3 must be satisfied. This constrains the amplitude of the solution at order E and 

enables its determination. The solvability condition is obtained by decoupling 

Eqns.( 4.25-4.27) to yield a single partial differential equation for \V 3 with a 

corresponding forcing function which is represented in the following form, 

Rer ~{nRer[ { a\V_I ae~ _ a ~1 ae~ } +{ a \V_2 ael_ a\V 2 ael}+{ a\VI ael_ a\VI ael}]_ 
ax az ax ax az az ax ax az az ax ax az 
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(4.28) 

where V' 2RHS(4.27) refers to the Laplacian operator V' 2 = 82
/ 8x

2 
+ 8

2
/8z

2 
being 

applied to the forcing function on the right hand side of Eqn.( 4.27). By multiplying 

Eqn.( 4.28) by complex conjugate ( \If I) of the stream function, which has the form, 

\If I = A~e-iSX sin(7tz), (4.29) 

integrating over, X E [O,L] and Z E [0,1] , and noting that \If 3 (x,O) = \If 3 (x,l) = 0, 

\If 3 (0, z) = \If 3 (L, z) = 0 at the boundaries, yields the following differential equation for 

the complex 0(£) amplitude, 

(4.30) 

The process of decoupling the equation at 0(£ 3) as well as the derivation of the 

amplitude equation (4.30) is outlined in Appendix AC. Note in Eqn.(4.30) that A = £A, 

and A' = £A~ whilst the original time and space scales defined as t = t'lx I and X = £x 

are re-introduced as illustrated in Eqn.(4.30). The following notation was introduced, 

_ 2[Ta+2(a+1)] 
~I - [ 

7t 40(a + l)(a + 1+ Ta) K2c 2 (a + 1){7Ta- (Sa + 7)} - (a + 1+ Ta)] 
20 cs 
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(4.32) 



(4.33) 

The coefficients referred to in Eqns.( 4.31-4.33) are derived in detail in Appendix AC. It 

can be noted from amplitude differential equation, Eqn.( 4.30) , that the presence of space 

scales results in the appearance of the diffusion term. With the imposition of the 

symmetry conditions at the axis of rotation (x = 0) leads to the amplitude relation, 

AI = - A; , thereby resulting in the O(E) taking the form, 

\jf I = FI sine sx) sine 7t z) , (4.34) 

where FI = i2AI. This result satisfies the equations and all boundary conditions. A phase 

angle is not involved, and a solution without slow space scales is possible. The diffusion 

term is then negated from Eqn.(4.30), which then transforms to an ordinary differential 

equation for the real amplitude DI, 

(4.35) 

where F = EFI, Sst = 4S ~t ' and '11 2 = 4'11 0 . Equation (4.35) yields the following solutions at 

steady state, 

F-
{ 

0 

+J: 1/2 
-':> st 

V R < Rcr,st 

(4.36) 

The steady amplitude solution, Eqn.( 4.36) shows that a pitchfork bifurcation occurs at the 

critical value of the Rayleigh number associated with stationary convection. The current 

study will focus only on the case when the relaxation time '11 2 is positive. The results for 
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the case when the relaxation time is negative will be presented nonetheless. Figures 34a-

34d shows the amplitude trend for varying Taylor number and X I values for different 

values of the parameter ~ = Kj (n Cs Y . If we set Kc = cs ' and S = Cs so that n = 2 then 

we may present the parameter S as ~ = 1/( 4cs). It is very interesting to note that the 

parameter A defined in Section 2 may be expressed for the above parameter settings as, 

/... = S / (Q. Cs Y = 1/( 4cs) = s . This is deemed to be an important result as it connects the 

two different scalings used in Section 2 and Section 3. As pointed out earlier the 

parameter Cs may assume values ranging from Cs = 0.125 (for liquid metals) to Cs = 4.0 

(for aqueous salts). This implies that s may assume values ranging from ~ = 0.0625 to 

about ~ = 2.0 . 

It can be observed from Figure 34a-d that over that increasing the value of the parameter 

X I serves to damp the relaxation time T] 2. It is also very interesting to note that that Ta=3 

represents a transition point in the sign of the relaxation time T] 2 . It can be observed 

from Figures 34a- 34d that at the lower values of ~ (say ~ = 0.1), the relaxation time 

assumes a negative sign over a larger range of Taylor numbers before becoming positive 

again at a Taylor number of approximately Ta == 30. At a larger value of ~ (say ~ = 1) it 

can be noted very clearly from Figure 34 that the relaxation time sign is negative over a 

very small range of Taylor numbers. It was found that to higher Taylor numbers the 

curves presented in Figure 34 become asymptotical with respect to the x-axis. It is seen 

that increasing the Taylor number considerably tends to damp out the relaxation time. 

Figure 35 shows the variation of the parameter ~ st/E 2 with the Taylor number for 

different parameter settings for S . 

It can be noted from Figure 35 that a low values ofthe parameter¢ (say t; = 0.1), the sign 

of the linear amplitude coefficient remains positive over a larger range of Taylor 

numbers. Increasing the value of ~ causes the range of Taylor number values over which 

the linear amplitude is positive, to become smaller. It was found that once the curve for a 

particular value of c; changes sign, it remains negative for increasing Taylor numbers and 

108 



becomes asymptotical with respect to the x-axis. Another feature apparent from Figure 35 

is that the Taylor number for which the curves change sign decreases as the value of the 

parameter ~ is increased. 
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4.2 Expansions around Overstable Solutions 

Eqns.(4.4-4.6) are still applicable for the weak non-linear analysis of the overstable 

convection in the mushy layer. Expansion (4.8) is still valid with the only difference 

being that we refer to the corresponding critical values consistent with overstable 

convection. Note that permeability definition as stated in Eqn.(4.10) is applicable for the 

case of overstable convection. In addition we also introduce the slow time scales 't = 82 t' 

and 't 0 = 8t' , but allow the short time scale t' to be present in order to represent the 

amplitude fluctuations. We further rescale the short time scale in the form T = cr ot' 

where the notation cr 0 = cr i,e)" was used. Substituting these into the Eqns.(4.4-4.6) yield at 

the leading order the following system of equations, 

(4.37) 

(4.38) 

(4.39) 

Refer to Appendix AD for a detailed derivation of the system (4.37-4.39) and the 

governing systems to the different orders in 8 . The general solution for the stream 

function \If I may be presented as, 

\11 = [A ei(sx+T) + B ei(sx-T) + A*e-i(sx+T) + B* -i(Sx-T) ] . ( -) 
'r I I I I Ie sm 7t z , (4.40) 

where the amplitudes A1('to,'t ,X) and B1('t o, 't , X) describe the modulations of the 

waves on the slow time ('t 0 = 8t', 't = 82t') and space (X = 8X) scales for a Hopf 

bifurcation. The concept of Hopf Bifurcation phenomena is well documented in looss & 

Joseph (1980) and Drazin & Reid (1981). The special cases of a pure left travelling wave 
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(BI = 0) or a pure right travelling wave (AI = 0) and of standing waves (AI = ±BI or 

AI = ±B;) can be recovered from Eqn.(4.40). By imposing the symmetry boundary 

conditions at the axis of rotation, \jf 1= 0 at, yields upon substitution in Eqn.(4.40) the 

following relations between the amplitudes, 

and 4.41) 

This result shows very clearly that the boundary condition at the axis of rotation results 

in a special case of standing waves thus eliminating travelling waves. The implications 

are that we may eliminate slow space scales from the system of governing equations 

using an argument similar to that presented in the case of stationary convection. 

Furthermore the absence of the slow space scales negates the diffusion term in the 

amplitude equation. Using the amplitude relations given in Eqn.(4.41) the solution for the 

stream function, temperature and solid fraction at the leading order may be expressed as, 

(4.42) 

(4.43) 

D; {e-i1l 2Y<JoCH) - inycr 0 sin(nz) + cos(nz) }e- il ] cos(sx) . (4.44) 

The relationships between the coefficients in the system (4.42-4.44) is as follows, 

1/2nR C . a ~~ cr 

1= I n (1+a) AI' 
1/20R 

C• - . a cr A ' 
I - 1 

n(1+a) I 
(4.45) 

and, 
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DI = i ( 2 ~ 2) AI ' 
cs 1- 7t Y (j 0 

2 I/2R • . a cr • 

DI = 1 ( 2 2 2) AI ' cs 1- 7t Y (j 0 

(4.46) 

Refer to Appendix AE for a derivation of the solutions in Eqns.( 4.42-4.44) and the 

relationships between the coefficients presented in Eqns.(4.45-4.46). 

The system of governing equations to order E 2 , 

(4.47) 

(4.48) 

Refer to Appendix AD for a derivation of the system (4.47-4.49). The solution to the 

system (4.47-4.49) is obtained by superimposing the homogenous solution and the 

particular solutions arising from the non-homogenous terms on the right hand side of 

Eqns.(4.47-4.49), which incidentally are known from the solutions obtained at order E . 

The homogenous operator in Eqns.(4.47-4.49) is exactly the same as that for the 

governing system at order E, hence the homogenous solution at order E 2 will resemble 

the order E solution somewhat and the stream function and temperature solution may be 

presented as, 

(4.50) 

(4.51 ) 
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The relationships between the coefficients are exactly the same as those given for AI and 

C I are as given in Eqns.(4.45-4.45). When evaluating the right hand side of Eqns.(4.47-

4.49) in order to evaluate the particular solutions, it is observed that the these non­

homogenous terms will produces particular solutions of the form t sin(t) sine sx) sine 7t z) 

or t cos(t) sine sx) sine 7t z) which are secular terms in solution, ie. they have a condition 

of resonance unless 8AI / 8't 0 = 0 . To avoid resonance we obtain particular solutions by 

setting 8 AI / 8't 0 = o. The particular solution for the stream function vanishes, ie 

\jI 2,p = 0 , and the particular solution for the temperature and solid fraction may be given 

as, 

e [b b 2iT b· -2iT ] . (2 -) 
2,p = 2 + Ie + Ie sm 7tZ (4.52) 

where the coefficients b2 , b l and b~ are related to the amplitude at order E as follows, 

(4.53) 

(4.54) 

(4.55) 

The complete solution at this order is therefore \jI 2 = \jI 2,h and e 2 = e 2,h + e 2,p. The 

complete solution for the solid fraction at this order is given as, 
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G[ cos(21tz) - 1] , 
(4.56) 

where the amplitude relations for D2 and D; are exactly the same as that presented in 

Eqn.(4.46). The amplitude relations for F2 , F; and G are given as, 

(4.57) 

(4.58) 

(4.59) 

Refer to Appendix AF for the derivation of the stream function, temperature and solid 

fraction eigenfunctions and their associated coefficients. 

The governing equations to order E 3 was decoupled to provide a single equation for the 

stream function in the form, 
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( a ) 2 4 2 ( a ) 02
\11 3 ~ 2 _ 

(J 0 at + 1 V \II 3 + Q Rcr (J 0 at + 1 ox2 + Ta o-z? v \II 3 -

( a ) a 2 R (J 0 ---;:;; + 1 -= RHS1 + V RHS2, 
cr a t ox (4.60) 

where RHS 1 and RHS2 are the non-homogenous terms defined as, 

= {[ O\ll' 082 _ 0\11, 0\11 2]+[ 0\11 2 08,_ 0\11_2 0\11_,]- O\ll_,} 
RHS1 QRcr oz ox ox oz oz ox ox oz ox (4.61) 

(4.62) 

where RHS 1 and RHS2 stands to identify the right hand side terms which have been 

evaluated from previously known solutions at orders E and E 2 • Refer to Appendix AD for 

the derivation of the system of equations to order E 3 and the decoupled form stream 

function partial differential equation given by Eqn.(4.60). The algebra associated with 

the solutions at this order are extremely tedious so solutions to order will not be 

established at this order. However the right hand side of Eqn.( 4.62) contains terms that 

are secular and thus cause resonance. In order to make the partial differential equation at 

order E 3, given by Eqn.(6.60), solvable we need to establish a solvability condition. We 

proceed by multiplying Eqn.( 4.60) by the complex conjugate solution of the stream 

function at order E , 
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\jf I = i2A;e- it sin(sx) sin(ltz) (4.63) 

and integrating over the length, x E [O,L] and height, z E [0,1], of the mushy, using the 

boundary conditions \jf 3 (0, z) = \jf 3 (L, z) = \jf 3 (x,O) = \jf 3 (x, L) = 0 . The resulting 

expression, after performing the mentioned operation, is representative of the relation that 

needs to be satisfied in order to render Eqn.( 4.60) solvable. The resulting solvability 

condition may be expressed as, 

(4.64) 

Eqn.(4.64) represents an ordinary differential equation for the unknown complex 

amplitude of the convection at order E . Refer to Appendix AG for a complete derivation 

of the solvability condition. A scaling of the form A = EA, and A· = EA~ has been used 

on the amplitude in Eqn.(4.64). The original time scale of the form t = 'fix, has also 

been reintroduced in Eqn.(4.64) and the following notation has been adopted, 

(4.65) 

while the definition of h~, , m2" h~2 and m32 is given as 

(4.66) 

(4.67) 

(4.68) 
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(4.69) 

where 

1 2 ( )[ 1 ( 2 2 2 ) 22yO" O· 2 1 . (2 2 )] h 0 = - -0" on 7a + 1 - 11 + 3n y 0" 0 - 0 0 sm(n yO" 0 ) + 4 2 0 sm n yO" 0 -
r 8 8 q g n yO" oq 

1 2( )[6YO" opo -n 7a + 1 0 0 
8 q g 

(4.69a) 

1 2 ( )[ 6y 0" oP 
0 

f O • 2 1. 2 ] 
h o = - - 0" on 7a + 1 0 0 - 2 0 sm(n yO" 0 ) + 2 0 sm(2n yO" 0 ) + 

I 8 q g 4n yO" oq 4n yO" oq 

(4.69b) 

1 ( 2 2 2 ) yO" o · 2 1 n 3yO" 0 ( 2 ) 0 2 "4 3- n y 0" 0 - 2
q

o sm(2n yO" 0 0 + -2- 1- 0" 0 - Ta p sin(n yO" 0)-

3 2 0 ( 2 ) n yO" oP COS n yO" 0 , (4.69c) 
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(4.69d) 

Note that in Eqns.4.68 and Eqns.4.69(a-d) the parameters j, and j2 is defined as, 

. 16(a + l)~Qcr 0 . 8tQ 
J,= (cr ~ +1)2 (1-1t 2 y 2 cr ~ )2' Jz= 1t(cr ~ +1)\1-1t 2y 2 cr ~ )' 

(4.70) 

In addition pO, so, qO and gO are defined as, 

. ° (1 2 2 2) q= -1tYcr o ' (4.71) 

Refer to Appendix AG for a derivation of the coefficients in Eqns.(4.66-4.69). 

It is convenient to represent Eqn.(4.64) for the complex amplitude as a system of two 

equations for the absolute value of the amplitude (r = IAI) and its phase angle (<D ) in the 

form 

A= rei(J) . , A • -i(J) = re (4.72) 

with AA· = r2 and 
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(4.73) 

(4.74) 

where , 

(4.75) 

Refer to Appendix AH for the derivation of Eqns.(4.74-4.75). The sign of the coefficient 

of the non-linear term, ie. h~2 indicates whether the bifurcation is forward or inverse. 

When h~2 > 0 the bifurcation is forward while a negative value of h~2 suggests an 

inverse bifurcation. The point where h~2 changes sign is known as the (non-equilibrium) 

tricritical point. Figures 36a-36d shows the variation of the coefficient of the non linear 

term, h~2' as a function of the Taylor number for different values of the parameter 

~ = Kc/(ncs)2 . If we set Kc = cs ' and S = Cs so that n = 2 then we may present the 

parameter S as ~ = 1/(4cs). It is very interesting to note that the parameter A defined in 

Section 2 may be expressed for the above parameter settings as, 

A = s/(ncsY = 1/(4cs) = ~. As pointed out earlier the parameter Cs may assume values 

ranging from Cs = 0.125 (for liquid metals) to Cs = 4.0 (for aqueous salts). This implies 

that ~ may assume values ranging from ~ = 0.0625 to about ~ = 2.0. 

Figures 36a-d shows the variation of the non-linear coefficient as a function of X I for 

various Taylor number values and ~ values. The linear stability results are insufficient to 

stipulate a maximum value for X I consistent with overstable convection. For this reason 

we are not able to pin point the domain of X I values for which overstable convection is 

possible. The points of intersection with the horizontal x-axis are referred to as the 

tricritical points. It can be observed from Figures 36a to 36d that there exists two 

tricritical points for the low ~ values and Taylor number values (see curve corresponding 
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to Ta= lOin Figures 36a-b) and at least three tricritical points for the higher S values and 

higher Taylor number values (see curve corresponding to Ta=lOO in Figures 36c-d). 

However as the value for S increases for the higher Taylor number settings, the number 

of tricritical points decreases correspondingly, a trend that is in contrast to the lower 

Taylor number case. It must be borne in mind that the relaxation time h~2 is always 

positive in the parameter domain considered. 
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Eqn.(4.73) yields at the post-transient state r2 = h~4~ov for supercritical values of R, 

where hO - l/ho hence providing the solution for r in the form, 24 - 42 , 

r = { 
o 1/2 ±[ h24~ ov) 

(4.76) 
o R < Rcrov 

With solution of r being defined at the post-transient state, the post-transient amplitude 

solution may be defined as, 

A = ieD! = + (h0): )1/2 eieD! re - 24" ov , 
(4.77) 

where the non linear frequency correction <D is obtained by substituting the solution for 

r2 in Eqn.(4.74) which may be presented as, 

(4.78) 

The post-transient values of IAI as presented in Eqn.(4.76) were evaluated in terms of 

loglo[IAI/E) and are presented graphically in Figures 37a to 37d. It can be observed from 

Figures 37a to 37d that the solutions diverge in the vicinity of the CTP points 

The bucket shaped curves for some of the Taylor number settings attributed to the 

presence of two co-dimension two (CTP) points very close to each other. The curves 

presented in Figures 37a to 37d nonetheless give a very clear indication that the points of 

divergence indicate that the CTP point is close by. At these points of divergence, ie. in 

the CTP neighbourhood, a different expansion is needed to investigate the solution there, 

as the divergence of the amplitude violates the assumptions made regarding the amplitude 

expansIOn. 
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Figure 37 : Finite amplitude results for overstable convection: Post -transient amplitude as a 
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Figure 37 : Finite amplitude results for overstable convection: Post -transient amplitude as a 
function of x'1 for different values of Taylor number for (c) ~ = 0.7 and (d) ~ = 1.0 . 
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The post-transient values for the non-linear frequency correction were evaluated using 

Eqn.( 4.78) in terms of loglo[ cD /~ ov] and are presented in Figures 38a to 38d as a function 

of X I for various Taylor number values over a range of ~ values. It can be observed from 

Figures 38a to 38d that the nonlinear frequency correction diverges in the vicinity of the 

CTP points. The behaviour observed in Figures 38a to 38d are is very similar to the that 

presented in Figures 37a to 37d. A very clear feature presented by Figures 38a to 38d is 

that for low Taylor numbers (Ta=10), the CTP points move to the left as the value of S is 

increased. Increasing the value of s for higher Taylor numbers (say Ta=100) reduces the 

number of solutions for the midrange X I values. The same argument applies to the 

intermediate Taylor numbers, a feature that is quite apparent in Figures 38a to 38d. 
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5. Heat Flux and Nusselt number: Author's Scaling 

This part of the study will be allocated to determining the heat flux in terms of the 

Nusselt number for both the stationary and overstable convection by making use of the 

of the previously evaluated amplitude results. 

5.1 Nusselt number for Stationary convection 

The mean Nusselt number may be defined as, 

(5.1) 

where L is the length of the domain and may well be taken as the cell wavelength. Using 

the fact that, 

a L 

-= f[-we + as/az] dx = 0 , 
az 0 

(5.2) 

implies that the Nusselt number is not a function of z and may therefore be evaluated for 

convenience at z = 0 where w = O. Using the solutions for 8 at the different orders and 

using the result just evaluated above allows the Nusselt number definition given in 

Eqn.(5 .1) to be represented as, 

(5.3) 

Substituting the solutions to the different orders in 8 and evaluating the integral given in 

Eqn.(5.3) yields the following Nusselt number definition for the case of stationary 

convection, 
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4a (a + 1)[ R/ R er,s! - 1] 3 

Nus! = 1 + [ 1 + O( s ) 
11:

4 ~~(a + 1)(5a + 7 - 7Ta) + (a + 1+ Ta) 
V R ~ Rer,s! ' (5.4) 

Note that the slow space scales have been eliminated from Eqn.(5.4) using the arguments 

as presented in Section 4.1. Refer to Appendix AI for the derivation of the Nusselt 

number for stationary convection. It can be observed from Eqn.(5.4 ) that Nus! = 1 

V R < Rer,s!' indicating that the convection heat transfer branches off from the conductive 

heat transfer line at the critical value of Rayleigh number. The variation of the Nusselt 

number as a function of the Taylor number was evaluated for different values of ~ and is 

presented in Figure 39 in terms of 10glO[(Nus! - 1}/s2] . 
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Figure 39 : Heat transfer results for stationary convection : post-transient Nusselt numbers as a function of 
Taylor number for different values of ~ . 

We may observe that the for a constant value of S, increasing the Taylor number , 

increases the values the heat flux value, thus implying that rotation enhances heat transfer 
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as far as stationary convection is concerned. We may now proceed to develop the Nusselt 

number for oscillatory convection. 
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5.2 Nusselt number for Overstable convection 

The heat flux corresponding to overstable convection may be evaluated as for stationary 

convection, the only difference being that here a time average over one cycle is 

performed. The pertinent form of the equation at z = 0 may be given as, 

The mean Nusselt number presented in Eqn.(5 .5) has the meaning of being averaged in 

space as well as in time. To order c 2 this yields for the post transient state, 

- 4(a+l)nh~4[ ] 3 
Nuov = 1 + 1t 2 R/Rcr,st - 1 + O(c ) 'rj R ~ Rcr,ov' (5.6) 

Note that h~4 = 1/h~2 and h~2 is defined in Eqn.(4.75). Refer to Appendix AI for the 

derivation of Eqn.(5.6). Figures 40a to 40d shows the variation of the Nusselt number as 

a function of X I for different Taylor numbers and selected ~ values, in terms of 

loglO[(Nuov -1)/c 2]. It can be noted from Figures 40a to 40d that the Nusselt number 

solutions diverge in the presence of the CTP points. In general it can be observed from 

Figures 40a to 40 d that increasing the parameter value for f; results in a decrease in the 

Nusselt number, for all the Taylor numbers, thereby causing a retardation in the heat 

transfer. For a fixed S value, increasing the Taylor number (from Ta=50 to Ta=100) 

causes the Nusselt number to decrease for low X J (say X J ~ 1.1) values whilst a notable 

increase is heat transfer is observed for high X J values(say X J > 1.1). 
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6. Structure of the thermal, flow and solid fraction fields 

To describe the flow and heat transfer we recall the eigenfunctions representing 

perturbations to the thermal, flow field and solid fraction developed in Section 2.4.2 for 

Anderson & Worster's (1996) scaling. Combining these perturbations with the basic state 

solution developed in Section 2.1 yields the following full solutions for the thermal, flow 

and solid fraction, 

e = e B - 2A sine 1t z) cos[ sx + 80' ) ] (6.1) 

(1t 2 + S2) . . [ _] 
\jf = 0- 2A sm(1tz) sm sx + 80' ilt 

nRoos 
(6.2) 

. 1t (1t 2 + S2) {( [ ]) [ _] 
<p=<PB- 2A (2 2) cos(1tz)+cosO'i,(z-l) ·coSSX+80'il t -

n Cs 1t - 0' il 

(0' ill 1t . sine 1tz) + sin[ 0' il (z - 1)]). sin[ sx + 80' ilt]} . (6.3) 

Note that e B and <P B have been previously evaluated and are given by Eqns.(2.15-2.l6). 

Note that the amplitude A in the system (6.1-6.3) is defmed as A = EAoo. Note that E is 

understood to be a small as required by weak non-linear theory. An amplitude value of 

A=O.Ol is selected and is henceforth used in all of the graphical plots that follow. 

The structure of the solutions presented in the system (6.l-6.3) varies quite dramatically 

with the values of frequency 0' iI' wavenumber s, Taylor number Ta, and the parameter 

X = Pr $ 0 IDa. The quantities just mentioned are related to important physical processes 

that occur within the mushy layer. The linear stability analysis presented in Section 2.2 

for Anderson & Worster's (1996) scaling provided ample insight into the effect of these 

parameters on the flow physics within the mushy layer. Setting the frequency, 0' i I = 0 
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Figure 41 : Streamline plot for the case Ta=50, A. = 1.0 

results in the onset of stationary convection, a case which is presented in Figure 41 a (for 

the flowfield). Figure 41 b represents a case when stationary convection is the most 

unstable mode thereby resulting 0' il = O. 

The case presented by 0' il 1:- 0 corresponds to the case of oscillatory convection as 

presented in the system (6.1-6.3). These oscillations could manifest themselves as left or 

right travelling waves, or any combination thereof, including standing waves. The wave 

form that occurs within the mushy layer is highly system dependent. For example, the 

boundary condition at the axis of rotation viz. \If ()() = 0 at x = 0 causes the solutions to the 

thermal, flow and solid fraction to assume the form of left travelling waves. For the 
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purposes of the current study we shall only focus on left travelling waves in order to 

illustrate the important flow characteristics within the mushy layer. Incidentally the 

system presented in the system (6.1-6.3) represents left travelling waves. The 

streamlines presented in Figure 41 c represents left travelling convection cells. At any 

instant in time the form of these convection cells are identical to the stationary convection 

cells presented in Figure 41a. Eqns.(6.1-6.3) provides mathematical rationale for the 

horizontal translation, by a shift of the horizontal co-ordinate with increasing time. This 

implies that the thermal and flow fields are identical to the stationary case, as pointed out 

earlier. For this reason, only a single set of results are presented for the flow field. 

The most profound effect of left translation can be observed for the solid fraction plots 

corresponding to the case of cr il * O. Due to the left translation of the convection cells, 

the solid fingers/dendrites are no longer aligned vertically as, presented in the stationary 

case, but now tends to slope monotonically in the direction of translation as observed 

from Figures 42b,c,f and Figures 43b,c,f. The results presented in Figures 42e and 43e 

represent the case when y -t 0 which results in the stationary mode manifesting itself as 

the most dangerous mode (note that y = X /1t 2 ). The point is that as y -t 0 (or at high 

frequencies) the characteristic Rayleigh number approaches an asymptote which for all 

intents and purposes is taken as the convection threshold point for the onset of stationary 

convection. This was motivated mathematically in Section 2.3 and Section 2.4. 

It can be observed from Figures 42 b-c and 43b-c that the increasing the parameter value 

for X has very little effect of the slope of the solid finger/dendrite. It should be noted that 

the spaces between the streamlines for the solid fingers/dendrites represents the 

surrounding liquid melt in the pores/channels. It can be observed from Figure 42c,f that 

increasing the Taylor number from Ta=3 to Ta=50 for fluids that have high X values 

prevents any channels from forming. Figure 42f captures the wavy nature of the solidified 

surface very well. The maximum points on the solid finger/dendrite plots were connected 

to illustrate the nature of the slopes of the solid fingers in the oscillatory case relative to 

the stationary case. 
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Figure 42 : Solid fraction plot showing solid finger slopes superimposed for the case A. = 0.5 
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Figure 43 : Solid fraction plot showing solid finger slopes superimposed for the case A. ::: 1.0 

Increasing the value of A. from A. = 0.5 to A. = 1.0 for Ta=3 causes the slope of the solid 

fmger/dendrite to become steeper. Perhaps the most interesting feature is noted from 

Figures 43e,d (as was in Figure 42e,d) in that it can be observed that increasing the 

Taylor number for low values of the parameter X actually forces the fmgers/dendrites to 

become vertically aligned. This is important since the implications are that for select 

combinations of Taylor number and X we have vertically orientated solid 

fmgers/dendrites. At high Taylor numbers and X values it can be seen that the slope of 

that solid fmgers/dendrites changes from monotonic to non-monotonic. Increasing the 

value of A. to A. = 1.0 suppressed the formation of channels as can be observed when 

comparing Figures 42 b-f and Figures 43b-£ The most profound effect of increasing the 

value of A. can be observed from Figure 43£ It can be seen that virtually no channels 

appear in the whole domain considered. 

The effect of the non-vertically orientated solid finger/dendrites is the horizontal 

translation of these fields. The fact that the thermal and flow fields does not differ from 
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the stationary case is as a result of the near-eutectic approximation upon which the 

solutions are based. The appearance of the convection rolls is similar to that of a porous 

medium of uniform permeability. This is attributed to the fact that the thermal and flow 

fields are decoupled from the solid fraction perturbation at the leading order. With this in 

mind the nature of the solid fraction fingers/dendrites forces the flow towards the left. It 

can be observed from Figures 42 and 43 that the left sloping channels forces the flow in 

that direction, or so it seems. The coupling between the flow field and the solid fraction 

occurs to higher orders in 8. The governing equations need to evaluated to higher orders 

to observe the interaction between the flow and solid fraction, but for the current study 

the linear stability results and the leading order perturbations are sufficient to infer flow 

patterns at higher orders. 

The results presented in Figures 42 and 43 prove that increasing the Taylor number 

encourages a solid front with almost no channels, as observed from Figures 42f and 43f 

for high X values. It can be clearly observed from Figure 42 and 43f that for higher "'­

values the solidification front has become flatter. 
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7. Summary and Conclusions 

Analytical results were presented for convection in a solidifying binary alloy system at 

the near-eutectic point subject to Coriolis effects. The model is based on a simple model 

of the mushy layer given by Amberg & Homsey (1993) in which the dynamics of the 

mushy layer are decoupled from the dynamics of the overlying melt. The problem was 

investigated using the time scale proposed by Anderson & Worster (1996) and for a time 

scale proposed by the author. Linear stability analyses were performed for both the 

scalings above whilst a weak non linear analysis was performed for the Author's time 

scale only. In addition the heat transfer was inferred from the Nusselt number solutions 

that were developed for both stationary and overstable convection for the Author's 

scaling. The weak non-linear analysis utilized a permeability definition which was similar 

to that of Amberg & Homsey (1993) with the only difference being that the effects 

permeability was only introduced at the third order of the disturbance amplitude E. In 

addition a new parameter ~ = Kjn 2 C~ was pointed out. This parameter served as a 

toggle switch between a mushy layer uniform or non-uniform permeability where ~ = 0 

represents the homogenous mushy layer and ~ t 0 indicates a non-homogenous mushy 

layer. For the current study only ~ t 0 was considered. The most interesting and salient 

features that were observed will be discussed separately for Anderson & Worster's 

(1996) scaling and the Author's time scale. The time scale used by Anderson & Wortser 

(1996) and the Author will henceforth be referred to as "Anderson & Worster' s scaling" 

and "Govender's scaling" respectively. 

Firstly for Anderson & Worster's scaling a full linear stability analysis was performed. It 

was found that the stationary mode became the most dangerous mode for increasing 

Taylor numbers and the parameter "A = sin 2 C~ . The oscillatory mode still appeared to 

manifest itself but only at very high X = Pr ~ 0 IDa values, whilst at the lower X values 

the stationary mode was deemed to be the most dangerous. Figures 12-14 depicts this 

transition very clearly. Another interesting feature that was observed (and worthy of note) 

is that at low values of the parameter X for increasing Taylor numbers, the characteristic 

curves tended to reach and asymptote as shown in Figures 15 and 19. As the value of X 
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is increased to a very large value the curves resemble that presented by Anderson & 

Worster (1996). This feature is apparent from Figures 15-22. The most interesting feature 

though was observed at at low values of the parameter X for increasing Taylor numbers. 

The curves for the different values of the parameter A tended converge to an 

asymptotical wave number for the case y -t 0 (or at high frequencies () il). The 

characteristic equation for the asymptotical Rayleigh number was developed and is given 

in Eqn.(2.72). It must be borne in mind that this represents the asymptote at high 

frequencies and is distinctly different from the case of stationary convection where 

() i I = 0 . However if the critical Rayleigh number corresponding to stationary convection 

is less than the asymptotical Rayleigh number mentioned above then only can we set 

() il = O. The results presented in Figures 24a,b and 26 a,b represents a case where the 

overstable asymptotical Rayleigh number was greater than the critical Rayleigh number 

associated with stationary convection over the entire A domain. In this instance the 

stationary mode is the most dangerous and the frequency () il = 0 applies. The results 

presented in Figure 26c shows a good illustration of a case of high frequency overstable 

convection the more dangerous mode in comparison to the stationary convection case. In 

this case the asymptotical Rayleigh number associated with overstable convection is less 

than the critical Rayleigh number for stationary convection over the entire A domain, 

thereby implying that () il to. Incidentally these results are in total agreement with that 

observed from the characteristic Rayleigh number plots in Figures 12-14. It was also 

demonstrated that the effect of rotation has a stabilising effect in comparison to a 

stationary mushy layer. Figure 27 shows that the critical values for the onset of 

convection for both stationary and overstable convection are greater than that of the non­

rotating case, thereby implying that the non-rotating case is the most unstable. 

The subsequent part of the linear stability analysis involved studying the stability of the 

system with regards to the various parameters as presented in Section 2.4.1. The stability 

results were presented as a function of the Stefan number St, the composition ratio ~ , the 

mushy layer depth 8 ~ l/Too and the Taylor number Ta. It must be borne in mind that once 

a material is selected the values for St, X = Pr ~ aiDa and ~ are fixed. The remaining 
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control parameters are I) ~ 1fT", ( the farfield or furnace temperature) and the Taylor 

number. 

It was found that increasing the Taylor number rendered the stationary mode most 

dangerous over the entire St domain. The oscillatory mode only manifested itself at low 

Taylor number values (Ta=3), but for St > 1, as observed from Figure 28. The effect of 

increasing the Taylor number as a function of the composition ratio rendered the 

stationary mode unstable. The oscillatory mode was most unstable at low Taylor numbers 

(Ta=3) but for S ~ 6 as observed from Figure 29. The variation ofthe Taylor number as a 

function the mushy layer height is provided in Figure 30. It was observed that the 

oscillatory mode was most unstable for small 0 values or large far field temperatures T", . 

The effect of rotation however reduced this bandwidth of mushy layer heights over which 

the oscillatory mode is most unstable. The bandwidth of mushy layer heights over which 

the stationary mode is most unstable is increased with increasing rotation. Figure 31 

shows the variation of the stability parameters as a function of the Taylor number. The 

results indicate that increasing the value of the parameter X over the range of Taylor 

number values enhances the oscillatory mode. This feature agrees with the results 

observed from the characteristic curves presented in Figures 12-14. 

The following part of the study involved analyzing the system of governing equations for 

the Govender's scaling and included both a linear stability analysis and a weak non linear 

analysis to establish the amplitude explicitly for the leading order solution. The linear 

results obtained for the case of stationary convection resembled Vadasz's (1998) solution. 

The linear stability results obtained for the overstable convection resembled Vadasz's 

(1998) overstable convection results for a certain parameter setting. Figure 32 suggested 

that the case of no rotation (Ta=O) is the most unstable in comparison to the case 

including rotational effects. It was observed that the oscillatory mode is independent of 

the Taylor number, thus no comment can be made with regards to the stability of the 

oscillatory mode with regards to the case of no rotation where Ta=O. 
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A weak non linear analysis was performed for both the stationary and overstable 

solutions. A new parameter viz. t; = Kjn 2 C~ was pointed out so as to distinguish 

between a mushy layer of uniform and non-uniform permeability. It is worth pointing out 

that if Kc = Cs and if S = Cs so that n = 2 , we obtain an expression for the parameter ~ 

which is of the form ~ = 1/( 4cs) = A . This is deemed to be an important result as it relates 

the parameters ~ and A under the above mentioned circumstances. The most striking 

feature of the weak non linear results corresponding to stationary convection showed that 

increasing the parameter value for X 1= 8 Pr~ 0& a reduced the bandwidth of Taylor 

number values over which the relaxation time is positive. Similarly the linear amplitude 

coefficient assumed positive values over a larger range of Taylor number values for 

smaller ~ values as compared to larger values. 

No conclusion concerning the nature of the bifurcation (ie. if it is inverse or forward) 

could be made at weak non-linear level corresponding to the case of overstable 

convection as the results obtained at the linear stability level were insufficient. The 

presence of co-dimension 2 points (CTP) were also noted in the vicinity of the tricritical 

points, ie. the point where the bifurcation changes sign. It was noted that there existed 

multiple CTP points. The results for the modulus of the amplitude indicated that the 

effect of increasing the value for t; caused the amplitude of convection to get smaller. 

Physically this implies that as the permeability of the mush becomes more non-uniform, 

the strength of the oscillatory convection mode begins to damp out. It was found that 

increasing the parameter value for ~ damped out the frequency correction, but very 

slightly. 

The Nusselt number solutions were developed for both the stationary and overstable 

cases. For the stationary case is was observed that for a particular value of ~ , increasing 

the Taylor number enhances the heat transfer. For a fixed Taylor number above Ta=3, it 

can be seen that increasing the value of the parameter ~ enhances the heat transfer. This 

is in contrast to the results obtained less than Ta=3. The results produced by the 
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oscillatory case showed that increasing the parameter value for ~ reduces the heat 

transfer. For a fixed value for the parameter ~ , increasing the Taylor number retards the 

convective heat transfer for low X I values, which is in contrast to the result at high X I 

values. 

Finally the graphical solutions presented for the flow and solid fraction indicated the 

form of the solid fingers/dendrites formed. It was also inferred that the solid 

fingers/dendrites with non-vertical channels caused the horizontal translation of the 

flowfield. The transformation of the slope of the channels from monotonic variation to a 

non-monotonic variation was also illustrated for a particular parameter combination. 

It was also inferred from the leading order solutions of the perturbations to the flow and 

solid fraction that the presence of solid fingers/dendrites tends to confine the flow into 

steady patterns. From a practical point of view we thus require that oscillatory convection 

be confined to cases close to marginal conditions. 

The most important result of the study was that the effect of rotation does indeed have a 

stabilising effect on convection in the mushy layer ie. the critical Rayleigh numbers for 

both stationary and overstable convection for the rotating mushy layer (for Anderson & 

Worster's (1996) scaling) were greater than the critical Rayleigh numbers for both 

stationary and overstable convection for the non rotating (Ta=O) mushy layer. 
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Appendix A : N on-dimensionalistation of the governing system of equations 

The non-dimensional analysis of the governing system of equations corresponding to 

flow and heat transfer in the rotating mushy layer will be performed using appropriate 

scaling parameters. 

The dimensional continuity equation applicable to the problem may be represented as, 

a (p ·~) v · .[ ·J.U .]= 0 at· + p '" f , 
(1) 

where (r represents the dimensional quantities, p. is the fluid phase density, ~ is the 

porosity and U; is the fluid average velocity. Letting U· = ~ U; , then Eqn.(1) may be 

written as 

a(p •• ~ ) + v· . [p ·U*] = o. 
at 

Expanding Eqn.(2) yields the following dimensional form of the continuity equation 

• 
ap • a~ •• * * •• 

~ at. + p at· + p v . U + U . v p = o. 

(2) 

(3) 

Using K ·/v· for the length scale, K ·/V·2 for the time scale and V· for the velocity 

scale we may proceed to non-dimensionalise the continuity equation as follows, 

y ·2 a· y ·2 aJ. y ·2 y .2 
J. P • ", . • ",-. -a-+ P - . -a +p - . v ·u+ -. U·Vp = 0 

K t K t K K 
(4) 

Dividing Eqn.(4) by y .2/ K• , yields the following form of the continuity equation, 
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a p O 0 a~ 0 0 

~-+p -+pY'·u+u·Y'p =0. at at (5a) 

Dividing Eqn.(5a) by a reference value of density p~ yields 

ap a~ 
~-+p-+pY' ·U+ U·Y'p = 0, at at (5b) 

OJ 0 where p = p Po. 

Noting that the definition for the fluid density is given as 

(6a) 

where 

(6b) 

and 

(6c) 

Substituting Eqn.(6a) in Eqn.(5b) yields 
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Now, since ~T « 1 and ~c « 1 we apply the Boussinesq approximation and neglect 

density variations (in terms containing ~ T or ~ c as their coefficient) everywhere, except 

in body forces or buoyancy terms in the extended Darcy equation. Therefore Eqn.(7) 

becomes 

a ~ 
-+V·U=O. at 

(8) 

Most of the publications thus far have assumed that ~ = ~ 0 thus implying that the 

continuity equation may be presented as 

V ·U=O. (9) 

Eqn.(9) is identical to Eqn.(1.3). 

The differential equation for the dimensional form of the energy equation is given as, 

(10) 

if we assume no contraction upon change of phase. The physical prameters in Eqn.(lO) 

are the specific heat per unit volume q, the latent heat of solidification per unit volume, 

h fs ' and the thermal conductivity k. The subscripts ' s', ' f , 'm ' denote the properties of 

the solid, liquid and mushy phases respectively. The volume fraction of solid dendrites, 

of uniform composition cs ' is denoted by <p . The specific heat per unit volume of the 

mushy phase is given by, 

(11) 

The thermal conductivity of the mushy phase is given as, 
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(12) 

If the specific heats and thermal conductivities are assumed to be to be equal then 

Eqn.(11-12) may be presented as, 

(13) 

(14) 

Using the results in Eqns.(13-14), Eqn.(10) may be presented as, 

(15) 

Dividing Eqn.(15) by qs yields, 

(16) 

where K · is the thermal diffusivity. Rearranging Eqn.(16) as following, 

(17) 

U sing the transformation, 

(18) 

to denote the solidifying translating front allows Eqn.(17) to be expressed follows, 
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(19) 

Using K'/v' for the length scale and K ' /V'2 for the time scale we may proceed to non­

dimensionalise the energy equation (16) as follows, 

'2 ( ) ( 1 '2 '2 V a a ,hfs V , V 2' 
- , --- T --<p t-, U·VT =-, V T, 
K at az qs K K 

(20) 

which when divided through by V '2/K ' yields, 

(21) 

Using the following definition for the dimensional temperture, 

(22) 

allows Eqn.(21) to be written as, 

(:t -:J( m - ~~ ~ 1 + UI7(m)o 17 ' (m) (23) 

Dividing Eqn.(23) by /::,. T yields, 

( : t - :J (8 - St<p) t U · V 8 = V 28 , (24) 

where St = hfj (qs/::" T) . Incidentally Eqn.(24) is identical to Eqn.(1.4). 
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The dimensional form of the solute balance equation is given as, 

ac· * • * • ( ..) ( . ) a<p 
(1- <p ) ~ tV· V T = V . Dm 'ITt c - cs aA

., at t 
(25) 

where D represents the solutal diffusivity and is given as, 
m 

Dm=(l-<p)Df · (26) 

Rearranging Eqn.(25) yields, 

a [ • ] * •• • ( •• ) a1* (l-<p)c tc~<p tV ·V c =DfV . (l- <p )V c . (27) 

Applying Eqn.(l8) to Eqn.(27) to accommodate the translational effect of the solidifying 

front yields, 

( a. a )[ • ] * •• • ( •• ) at. - V az. (l-<p)c tc~<p tV · V c = D fV . (l-<p)V c . (28) 

Using K ·/v· for the length scale and K ·jV·2 
for the time scale we may proceed to non­

dimensionalise the continuity equation as follows, 

(29) 

which when divided through by V·2 j K · yields, 

(30) 
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Using the following definition for the dimensional concentration, 

(31) 

and applying to Eqn.(30) yields the following, 

( a a ) [ c' - c 1 D f ( ) /). c - - - (1- <p )8 + S 0 <p + /). cU · Vi' 8 = /). c -. D f Vi'. (1- <p ) Vi' 8 . at az Co - cE K 

(32) 

Dividing Eqn.(32) by /).c yields, 

(33) 

where Le represents the Lewis number defined as Le = K • /D f and ~ represents the 

concentration ratio defined as, 

(34) 

In the case of solidifying binary alloys the value of Lewis number is very high, thus 

implying that the effects of the term on the right hand side of Eqn.(33) are very small. 

Eqn.(33) may be approximated as follows for very high Lewis numbers, 

(:t -:J [(1- <p )8 + ~ <p ] + U· Vi' 8 = O. (35) 

Eqn.(35) is identical to Eqn.(1 .5). 
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The dimensional form of the Darcy equation may be written as follows, 

1 au· 11 · 1 . 1 .. ..A 1 h • • 

- --+ --u = - - v p + p g e - - 2(0 e x U . 
~ at K· p. p • g ~ 00 

(36) 

A basic approximation of fluid mechanics is the Boussinesq approximation, which 

consists of setting p. = p ~ except in buoyancy terms emanating from body forces in the 

Darcy equation. Similarly we may also assume that the porosity is constant everywhere in 

the Darcy equation, ie. ~ = ~ 0 (as was assumed in the continuity equation above), except 

in those terms containing permeability variations. Multiplying Eqn.(36) by p ~K· /11 · , 

noting that v· = 11 · / p ~ , accounting for the translational effects by using Eqn.(18), and 

implementing the above definitions for the density and porosity yields the following 

form of the Darcy equation, 

(37) 

Note that eg and eoo represents the unit vectors for gravity and rotation. We follow 

Anderson & Wortser (1996) and use Y·, K ·/Y· , K ./y*2 to scale the velocity, length 

and time scales, and K·Il · /ko to scale the pressure term, where K· is the thermal 

diffusivity of the liquid, Il · is the dynamic viscosity and ko is a characteristic value of 

permeability in the mushy layer. Implementing these scales in Eqn.(1) and dividing by 

Y· yields and equation of the form, 

(38) 

Recalling the linear liquidus relation as presented in Eqn.(1.2) in Section 1.2, and using a 

density relation of the form p. - p ~ = p ~~ • (c· - co) for the case when solutal buoyancy 

159 



effects dominate over thermal buoyancy effects. This also implies that density is largely a 

function of composition than it is of temperature. In addition the linear liquidus relation 

provides an additional relation between the temperature and the composition which is 

given as c· - Co = ~c9 . Applying these results to Eqn.(38) yields the following form of 

the Darcy equation, 

• • 2 () •• K ' K V 8 8 K K ... A 'A 

•• - - - V + V = - - V P + - . -. p o~ ~ cg 9 eg - ~ 2eo eO) x V. 
K V $ 0 at 8z ko fl V 'I' 0 V 

(39) 

Multiply Eqn.(39) by II (<p) = ko/K' to yield, 

(40) 

The thermal diffusion length spacing may be defined as lK' = K '/v' , which may be 

rearranged to obtain a velocity definition of the form V' = K' /1 K' . Substituting this form 

in Eqn.( 40) yields, 

(41) 

Eqn.(41) may be written in terms of dimensionless groups as follows, 

1 ( a 8 ) - -8 --8 V+II(<p)V=-Vp+Ra ge - Ta l/2e x V. Xo t z m g 0) 
(42) 

With reference to Eqn.( 42), X 0 = $ 0 Pr So, where $ 0 is the porosity, Pr is the Prandtl 

number and So = l~, Iko is the mobility ratio which may thought of as the square of the 

thermal length scale (on which the depth of the mushy layer depends) to the average 
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spacing between the dendrites within the mushy layer. This is very similar to the porous 

media Darcy number. The other dimensionless group identified in Eqn.( 42) is the mushy 

layer Rayleigh number which is defined as Ram = ~ *L1cg*k oI K. /v *K * that describes the 

buoyancy effects due to compostion differences. Finally the Taylor number that appears 

in Eqn.(42) is defined as Ta= (2m *ko/$ OV*)2 and describes the effect of rotation on the 

mushy layer. 

The parameter X 0 in Eqn.( 42) usually assumes values that are large, thus implying that 

the contribution from the first term in Eqn.( 42) is very small. This provides the 

justification for neglecting the time and space derivative from the Darcy equation. In 

some instances linked to modem porous media applications the value of X 0 can become 

a unit order of magnitude or even smaller, in which case the time and space derivative 

term should be retained. In the current study we retain only the time derivative in the 

Darcy equation in order to allow for the possibility of overstable convection and will 

observe how the value of X 0 affects the frequency of overstable solutions. The following 

truncated form of the Darcy equation results, 

(43) 

which is identical to Eqn.(1.6) in Sectionl.2. 
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Appendix B : Derivation of the governing system of equations for Anderson & 

Worster's (1996) scaling 

The system of governing equations analysed by Anderson & Worster (l996) was scaled 

in space, and time in terms of the dimensionless mushy layer growth parameter (). The 

Rayleigh number, velocity and pressure were also scaled in terms this parameter. The 

parameter () is the ratio between the height of the mushy layer and the thermal length 

scale (defined in Appendix A) and is sometimes referred to as the growth Peclet number. 

Worster scaled space and time as follows, 

(la-b) 

whilst the Rayleigh number, velocity and pressure were scaed as, 

(2a-c) 

These scalings were then applied to the continuity equation (1.3) to yield, 

v ·U= 0 , (2d) 

which is identical to Eqn.(2.3). 

Now considering applying the scalings defined in (la-b and 2a-c) to the heat balance 

equation yields, 

(3) 

Multiplying this equation by 02 yields, 
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( a a ) ( S) - - - 2 ~-o- e--<p +Ru·ve =v e at az 0 ' 
(4) 

which is identical to Eqn.(2.4). 

Applying the scalings given in Eqn.(la-b) and Eqn.(2a-c) to the solute balance equation 

(l.S) yields, 

( 
1 a 1 a) [ Cs 1 R - -

- 2 ~--- (l-<p)e+~<p + ~u·ve = o. o at 0 az u u 
(S) 

Multiplying Eqn.(S) by 02 gives, 

(6) 

which is identical to Eqn.(2.S) . 

Finally apply the scalings given by Eqn.(la-b) and Eqn.(2a-c) to the Darcy equation (1.6) 

to gives, 

(7) 

where eg = - ez and em = ez by virtue of the system of co-ordinates presented in Figure 

2a. Multiplying Eqn.(7) by o/R yields, 

1 au - - oRa 
~-a- + ll(<p)U=-V -p ___ mee - Ta l

/
2e xu. 

u Xo t R Z Z 
(8) 
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Substituting R2 = 8Ram in Eqn.(8) reduces its to, 

1 au - - _ ~ 1/2~-
- 2---+ IT (cp)U = -v p- R8ez - Ta ez x U . 
8 Xo at 

(9) 

The coefficient of the time derivative 1/8 2X 0 may be simplified by using the definitions 

for band Xo' Knowing that 8=H*jIK' and Xo =~ o Pr& o (where & o =l~. jko ) and 

introducing in the expression for 1/8 2X 0 yields, 

(10) 

where X = Pr ~ 0 IDa. Substituting the result of Eqn.(1 0) in Eqn.(9) yields, 

1 au - - 1/2 -
--- +IT(cp)U= -Vp-R8cz-Ta czx U , 
X at 

(11) 

which is identical to Eqn.(2.6). 

It should be noted that Vadasz(1998) was the first to point out the scaling X = ~ 0 Pr IDa. 

The parameter Da refers to the Darcy number, which is very similar to the mobility ratio 

the only difference being that it is the reciprocal of the mobility ratio with the thermal 

length scale being replaced by the mushy layer height. 
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Appendix C : Derivation of the Basic solution 

The basic flow solution to the system represents flow corresponding to the conduction 

solution. At a later disturbances in the form of perturbations will be applied to the system 

and the stability thereof will be investigated. In order to establish the basic flow we need 

to analyse the equation set corresponding to the motionless state where the flow velocity 

is zero and the temperature and solid fraction is horizontally uniform. For this state, the 

governing system that needs to be solved may be presented as, 

(1) 

(2) 

(3) 

where the subscript "B" refers to the basic state. Eqns.(1-3) are subject to the boundary 

conditions e B (0) = 0 , e B (1) = -1 and q> B (1) = 0 at each order in 8 . It can be observed 

that the equations system presented in Eqns. (1-2) represents a coupled non linear system. 

A solution in terms of the parameter 8 is anticipated. This may be achieved by 

developing asymtotic expansions for the basic temperature and the solid fraction in terms 

of the small parameter 8 where 8 « 1. The expansions for the basic temperature and 

solid fraction in terms of 8 may be presented as, 

(4) 

(5) 
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The idea is to solve for the solid fraction and the temperature at each order in (). The 

final solution is then presented as a function of the solutions evaluated at each order and 

(). 

To order 0(8°) the governing system is given as, 

(6) 

(7) 

Substituting Eqn.(7) in Eqn.(6) yields, 

(8) 

which upon solving subject to the boundary conditions stated earlier yields the following 

solution for the basic temperature at 0(8°), 

(9) 

Similarly the solution for the solid fraction at this order is given as, 

<P BO = o. (10) 

We now proceed to solve the system of equations for the basic flow to the next order in 

(). The governing equations to order 0(8) is given in terms of the lower order 0(8°) 

solutions as follows, 
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d
2
e B1 - dq> B1 de BO --=S---

dz2 dz dz 

dq> B 1 _ ~ de BO 

dz Cs dz 

(11) 

(12) 

Substituting the 0(8 0
) solutions in Eqns.(11-12) and decoupling the equation to obtain a 

single differential equation for the basic temperature as, 

(13) 

Solving Eqn.(13) subject to the stated boundary conditions yields, 

(14) 

Solving Eqn.(12) by similar methods yields the following solution for the solid fraction at 

this order, 

1 
q> B1 = - -(z- 1). 

Cs 
(15) 

Now we present the governing system of equations for the temperature and solid fraction 

to order 0(8 2
) in terms of the solutions evaluated at the lower orders, 

(16) 

dq> B2 de B1 de BO dq> B1 

- Cs dz = dz - q> B 1 dz - e BO d-Z . (17) 
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In this case we solve for the solid fraction first at order 0(0 2
). Substituting the lower 

order solutions in Eqn.(17), then integrating with respect to z, and finally solving for the 

integration constant by applying the given boundary conditions yields the following 

solution for the solid fraction at this order, 

1 [ (z- 1)2 n 2 1 <p = - - + - (z - z) . 
B2 C c 2 s s 

(18) 

Now we concentrate on evaluating the basic temperature at this order. Note that 

integrating Eqn.(16) once with respect to z yields, 

(19) 

where Co2 is the integration constant at this order. Now by substituting Eqn.(18) and the 

temperature solution given by Eqn.(14) in Eqn.(19), integrating the result and applying 

the boundary conditions given earlier, yields, 

(20) 

The full solutions for both the basic temperature and the solid fraction is given by 

substituting the solutions evaluated for each order in () in Eqns.(4-5) to yield, 

e B (z) = (z - 1) + 0 [ - ~ (Z2 - z) 1 + 

(21) 
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(z - 1) [(Z - 1)2 n 1 
(-) _ s: s:2 _(-2 -) <P B Z - -u + u - 2 + Z - Z . 

Cs Cs 2cS 

(22) 

Eqns.(21-22) are identical to the solution for the basic temperature and solid fraction as 

presented in Eqns.(2.15-2.16). 
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Appendix D : (a) Presentation of the Darcy equation in terms of the vertical 

component of velocity 

(b) Derivation of the perturbed heat balance, solute balance and modified Darcy 

equation 

(a) Presentation of the Darcy equation in terms of the vertical component of velocity 

Before presenting a derivation of the perturbed system of equations, we need to modify 

the Darcy equation to a form that allows for ease of analysis. We proceed to develop this 

desired form of the Darcy equation by applying the curl operator ('V x ) Eqn.(2.6) in order 

to eliminate the pressure terms as follows, 

1 a(v x u) ( - ) ( ) 1/2 ( -) X at +Vx II(q»U =-Rv x eez -Ta V x ez x U. (1) 

The theorem V x (Vp) = 0 was used to eliminate the pressure terms in Eqn.(1). Noting 

that co = V x U and acknowledging that II (q» is a function of z only, allows one to 

represent Eqn.(1) as, 

A A A 

1 aco ex ey ez ex ey ez ex ey ez 
x-at + a/ax a/ay a/az = -Ra/ax a/ay a/az - Ta l/2v x 0 0 1. 

II (q> )u II (q> )v II (q> )w 0 0 e u v 

Performing the operations denoted in the matrices yields, 

dII _ A dII _ A [ae A ae A 1 au ~ve +~ue = - R -e --e +Ta I/2 -
dz x dz y ay x ax y az 
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It can be seen that the three terms following the time derivative in Eqn.(3) is simply the 

vorticity definition in expanded notation. Eqn.(3) may simply be written as, 

1 aO) dII [ A ] 1/2 au [as A as A 1 - -_ + II (<p)0) + - lie - ve - Ta - = - R - e - - e . x at dz Y x az ay x ax Y 
(4) 

Eqn.( 4) is identical to the equation presented in Eqn.(2.17). It may be noticed from 

Eqn.( 4) that the z-component is independent of temperature. This component is of 

importance and will be used later in another computation. Writing the z-component of 

Eqn.(4) as, 

[
1 a 1 1/2 aw - --= + II (<p) 0) - Ta - = 0 x at z az' (5) 

Rewriting Eqn.(5) for the vorticity as follows, 

(6) 

which is identical to Eqn.(2.18). Note that, in Eqn.(6), 0) z represents the z-component of 

the vorticity vector. 

Applying the curl operator once more, on Eqn.( 4) 

l a(v xO)) [ ] (dII[ ]~ a(v xu) [as as] - a- + v x II(<p)O) + V x ---=- lie - ve - Ta l/2 = -RV x -e --e x t dz Y x az ay x ax Y 

(7) 
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Eqn.(7) may be written in matrix notation as, 

1 a ex e y 

X at a/ax a/ay 
COx CO y 

a/az t a/ax a/ay a/az + 
co z II ( <p )co x II ( <p )co y II ( <p )co y 

a/ax a/ay 
-vdII/dz udII/dz 

a/az -
o 

(8) 

Evaluating the above matrices and considering only the z-component of the result yields, 

[
1 a ](aco y aco x) dII [au av] 12 aco z [a 28 a28] ---=-tII(<p) --- +- -t- -Ta l -=R-t- . 
X at ax ay dz ax ay az ax2 ay2 (9) 

Noting that co x = aw/ay- awaz, co y = - aw/ax taU/az and recalling from the 

continuity equation that aw/az = - aU/ax - aWay yields upon substitution in Eqn.(9) the 

following equation, 

Using the definition of vertical component of the vorticity given by Eqn.(6) above and 

noting that V 2W = a2w/ax2 t a2w/a'i t a2w/az2 and V 28 H = a2/ax2 t a2/ay2 allows 

Eqn.(10) to be written in the form, 

172 



Eqn.(ll) resembles the final form of the modified form of the Darcy equation that will 

henceforth be used in the curreny study. We may now proceed to propose the perturbed 

system of governing equations. 

(b) Derivation of the perturbed heat balance, solute balance and modified Darcy 

equation 

For the derivation ofthe perturbation equations we adopt normal mode expansions for the 

temperature, solid fraction and velocity as, 

(12) 

(13) 

(14) 

Applying the expansions given in (12-14) to the heat balance equation (2.4) yields the 

following perturbed to order , 

Neglecting the O( E 2) and presenting the heat balance equation to order O( E) yields, 

(16) 

which after applying the definitions for the disturbed temperature, solid fraction and 

velocity as presented in Eqns.(12-14) at order O(E) yields the following form of the heat 

balance equation, 
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(17) 

Incidentally, Eqn.(17) is identical to Eqn.(2.23). 

Apply (12-14) to the solute balance equation (2.5) and using the sequence of steps 

outlined above yields, 

(18) 

where the O(E 2) terms have been neglected and the terms with the subscripts "B" refers 

to the basic solution. Eqn.(18) is identical to Eqn.(2.24). 

Now apply the expansions (12-14) to the Darcy Equation given by Eqn.(ll) and use 

exactly the same computation procedure as that outlined for the heat balance equation 

above to easily give the following disturbed form of the equation, 

Note that in Eqns.(15-19) that D= djdz and S2 = s~ + s~ . Eqn.(19) IS identical to 

Eqn.(2.25). 
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Appendix E : Derivation of the governing system of partial differential equations for 

the 0(8°) case for Anderson & Worster's (1996) scaling 

In order to derive the equations to order 0(0 0 ) we first propose an expansion of the 

perturbed quatities in terms of the parameter 0 as follows, 

0" = 0" 00 + 00" 01 (1) 

(2) 

(3) 

(4) 

(5) 

where the parameter 0 < < 1. Introducing the expanSIOns (1-5) in the perturbed heat 

balance equation (2.23) yields, 

Firstly it is interesting to note that Eqn.( 6) contains an 0(0 -I) form which is of the form, 

0" oo Sq> 00 = 0 (7) 
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The solution to Eqn.(7) is simply taken to assume the form cr 00 = cr rO + icr iO = O. Using 

this solution and considering Eqn.(6) to 0(0 0) yields the following form of the heat 

balance equation, 

(D2 - S2)S 00 = S(D - cr 01)<P 00 + R oo w ooDS BO' (8) 

where cr 01 = cr rl + icr il . Adopting exactly the same sequence of steps used to compute the 

heat balance equation to order 0(0 0), we proceed to develop the solute balance equation 

from Eqn.(2.24) as, 

(9) 

For the Darcy equation we assume a definition for the permeability to be of the form, 

IT(<p) = l+O<PBIKI ' where <PBI-(z-l)/cs is the solid fraction at order 0(0) for the 

basic state solid fraction. To order 0(0 0) the permeability is uniform and IT (<p ) = 1 is 

used in the the Darcy equation. Applying this permeability definition and adopting 

exactly the same approach as that used to evaluate the heat and solute balance equations 

to this order, yields the following form of the Darcy equation to order 0(0 0) , 

(10) 

We notice that Eqn.(8) and Eqn.(9) are coupled iI;l terms temperature, solid fraction and 

the vertical component of the velocity. By writing Eqn.(9) as, 

(D 
_ ) - R oo w ooDS BO 

cr 01 <P 00 - . 
Cs 

(11) 

Substituting Eqn.(11) in Eqn.(8) yields an equation of the form, 
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( 2 2) S 
D - s e 00 = - ROO w ooDe 80 + R OO w ooDe 80 . 

Cs 

Refining Eqn.(12) further as follows, 

(12) 

(13) 

where Q = 1 + sics . Noting that De 80 = 1, the modified heat balance equation (13), the 

solute balance equation (9) and the Darcy equation (10) may be presented as, 

(14) 

(15) 

(16) 

which is identical to the system of equations presented in Eqns.(2.34-2.36) . 

177 



Appendix F : Derivation of the temperature, solid fraction, and vertical component 

of velocity at 0(8°) for Anderson & Worster's (1996) scaling 

The solutions to the system of equations (2.34-2.36) IS provided. This system of 

equations is given as, 

(1) 

(2) 

(3) 

Following Anderson & Worster (1996), we conjecture a solution for the temperature 

which is of the form, 

(4) 

and satisfies the imposed boundary conditions. Substituting Eqn.( 4) in Eqn.(1) and 

performing the respective derivatives with respect to z yields the following expression 

for the vertical component of the velocity, 

(5) 

which is identical to Eqn.(2.39), where, 

(6) 
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It can be noted that coefficient relation given by Eqn.(6) is identical to Eqn.(2.42). We 

may now proceed to establish the solute balance solution at this order using the solutions 

evaluated for the temperature and the vertical component of velocity as given by Eqn.(4) 

and Eqn.(5). 

From Eqn.(2), the solute balance equation, we have, 

(7) 

which takes the following form after substituting for the vertical component of velocity 

as given by Eqn.(5), 

(8) 

Eqn.(8) represents a non-homogenous ordinary differential equation for the solid fraction. 

We proceed by first solving the homogenous part, 

(9) 

which may be written as, 

d<p 
OO ,h ( • )d---= (J rl + HJ il Z. 

<p OO,h 
(10) 

The solution to this equation is simply given as, 

(12) 
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where Ch is simply an integration constant that will be solved for based on the full 

solution of the solid fraction in relation to the imposed boundary condition. We now 

move on to seek a solution for the non-homgenous part of Eqn.(8). 

We proceed by proposing a probable particular solution solution to Eqn.(8). This is given 

as, 

(13) 

The non-homgenous equation for the solid fraction is given as, 

(14) 

Substituting Eqn.(13) in Eqn.(14), performing the required derivatives and equating the 

like trigonometric terms, yields the following relationships for the coefficients, 

cr [I + icr il 
Apo = 1t Bpo (15) 

(16) 

Noting that the full solution to the solid fraction is given by <p 00 = <P OO,h + <P oO,p , and using 

the coefficients evaluated in Eqns.(15-16) together with the homogenous solution (12) 

and the particular solution (13) yield the following form of the solid fraction, 

( . )- cr 1 + icr 1 
m - C e (JrJ +

lcr
iJ Z + [ J B . (-) B ( -) 

'1'00 - h 1t opSIn 1tZ + opcos 1tZ . (17) 
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Applying the boundary condition <P 00 (1) = 0 to Eqn.(17) yields the following relation 

between the coefficients in Eqn.(17), 

(18) 

Substituting the relation given in Eqn.(18) in Eqn.(17) and using the coefficient relation 

given in Eqn.(16) gives the following full solution for the solid fraction, 

~ 00 = -Cool e (O" • • "X'- ') + cos(nz) + 0,,: io II sin(nz) 1 ' (19) 

where 

(20) 

Eqn.(19) is identical to Eqn.(2.40) whilst Eqn.(20) is identical to Eqn.(2.43). Substituting 

the solutions given by Eqns.(5-6) in Eqn.(3) and using the amplitude relation given in 

Eqn.(6) yields the following relation for the Rayleigh number (after minor algebraic 

manipulation); 

(21) 

Eqn.(21) is identical to Eqn.(2.41) 
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Appendix G : Derivation of the governing system of partial differential equations 

for the 0 (8 1) case for Anderson & Worster's (1996) scaling 

In order to derive the equations to order 0(0 0 ) we first propose an expansion of the 

perturbed quatities in terms of the parameter 0 as follows, 

cr = cr 00 + ocr 01 (1) 

(2) 

(3) 

(4) 

(5) 

where the parameter 0« l. Introducing the expansions (1-5) in the perturbed heat 

balance equation (2.23) yields, 

Taking cr 00 = cr rO + icr iO = 0 and considering Eqn.(6) to 0(0 1
) yields the following form 

of the heat balance equation after minor algebraic manipulation, 

182 



where cr 01 = cr rl + icr il and S BI is the basic temperature solution at order 0(8) and is 

simply inferred from Eqn.(2.1S). Adopting exactly the same sequence of steps used to 

compute the heat balance equation to order 0(8) , we simply present the solute balance 

equation from Eqn.(2.24) as, 

It can be noted that the heat balance equation (7) and the solute balance equation (8) are 

coupled in temperature, solid fraction and vertical velocity. Ideally we prefer to have a 

modified heat balance equation which is composed of the temperature and vertical 

velocity. Using exactly the same technique as that outlined in Appendix E to decouple the 

heat and solute balance equations, we obtain the following modified heat balance 

equation, 

(D' - s' )" - nRoo w" = [(0 " + io ") - DJ[ ns oo - :, S Boh 1 + 

o Roo wooDS BI + ORo1woo , (9) 

which is identical to Eqn.(2.44). For the Darcy equation we assume a definition for the 

permeability to be of the form, II(q»= l+ Oq> BI KI ' where q> BI-(z-l)/cs is the solid 

fraction at order 0(0) for the basic state solid fraction. Applying the permeability 

function definition together with the definitions given above for the dependant variables 

and parameters to Eqn.(2.2S) gives, 
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We can now expand Eqn.(10) and collect those terms to order 0(8), the result of which 

contains known and unknown solutions for the temperature and vertical component of 

velocity. Separating the unknown solutions for the temperature and solid fraction from 

the known solutions evaluated at order 0(8 0) , yields the following non-homogenous 

partial differential equation at order 0(8) , 

( 2 2) 2 2 [crfJ+icr iJ ]( 2 2) D - s W OJ - s RooS OJ + TaD W OJ = - 2 X + KJ<jl BJ D - S W OO -

which is identical to Eqn.(2.4S). 
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Appendix H : Derivation of solvability condition at 0 (b 1 ) for Anderson & 

Worster's (1996) scaling 

In essence the solvability condition to an ordinary or partial differential equation IS 

simply a parametric relation that renders the equation solvable. In our case the solvability 

condition would provide a relation between the Rayleigh number and frequency which 

are both a function of important parameters such as the Stefan number, composition, and 

permeability (to mention a few) that govern the flow patterns in the mushy layer. The 

various parameter settings found this way are defined in a manner that makes the system 

of equations solvable. The system of equations of which we are interested in finding a 

solvability condition for is given as, 

(D2 2) 2 2 [ cr r 1 + icr ill (2 2 ) 
- S W 01 - s Rooe OJ + TaD w 01 = - 2 X + KJ<p BJ D - s woo -

(2) 

To ease the calculation of the solvability condition, we may adopt the following symbolic 

notation, 

(3) 

(4) 
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where the right hand sides of Eqn.(3) and Eqn.(4) represent the respective function 

evaluated at the lower order and a full description of them is provided in Eqns.(1-2). 

Attention is also drawn to the scalar values PI and P2 referred to below Eqn.(2.46) are 

defined with respect to Eqn.(4) as, 

(5) 

(6) 

which represent the Darcy equation evaluated at z = ° and z = 1 respectively. Noting 

that w 01 (x,O) = w 01 (x,l) = e 01 (x,O) = e 01 (x,l) = 0, reduces the system (5-6) to, 

RHS (0) 
P = D2w (0) = Darcy 

I 01 (1 + Ta) (7) 

RHS (1) 
P = D2w (1) = Darcy 

2 01 (1+ Ta) (8) 

Incidentally it was found that PI + P2 = 0. The relations given in Eqn.(7-8) will prove 

useful later in the evaluation of the solvability condition. We decouple Eqns.(3-4) and 

obtain a single partial differntial equation for the vertical component of the velocity as 

follows, 

where D = djdz. We multiply Eqn.(9) by the the eigenfunction w oo = Boo sin(7tz) and 

integrate over the domain z E [0,1] , to give the following representation ofEqn.(9), 
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I I I 
f(D2 - S2YWOI.Woodz- fns2R~owo,.woodz+ fTa(D2 - s2)D2WOI.Woodz = 
o 0 0 

I I 

fs2RooRHS heat. woodz + f(D2 - S2)RHS DarCy .woodz . (10) 
o 0 

Noting that W01(x,O) = WOI(x,l) = 0 , allows the left hand side of Eqn.(10) to fall away, 

thereby allowing it to be presented as, 

I I 

f s2RooRHSheat· W oodz + f( D2 - S2 )RHS DarCY' W oodz = O. (11) 
o 0 

Using Mathematica to evaluate the above integrals and remembering that PI + P2 = 0, 

which is obtained from Eqns.(7-8), yields the following expression for the solvability 

condition, 

Multiplying Eqn.(12) by and usmg the fact that 

n s2R OO = (1\ 2 + S2)( 1\ 2 + S2 + 1\ 2Ta) , allows Eqn.(1 2) to be written in the following form 

after minor algebraic operation, 
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s (2 2)2l 1 0" 01 1t
2
(lte-

crOI )1 
n C2 1t t S "4 t 2( 2 t 2) t ( 2 2)2 = 0, (13) 

s 1t 0" 01 1t t 0" 01 

where 0" = 0" rl t iO" il. Eqn.(13) IS similar to the solvability condition presented III 

Eqn.(2.46). 
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Appendix I : Derivation of the characteristic Rayleigh number and asymtotical 

Rayleigh number, corresponding to Anderson & Worster's (1996) scaling 

The Rayleigh number correction corresponding to the case of stationary convection is 

obtained by substituting cr = cr r l = cr i l = 0 in Eqn.(2.46). The result of this operation 

gIves, 

(1) 

Rescaling the wavenumber by setting ex = S2 / 7t 2 and defining a parameter of the form, 

" = S/D.c~ , allows Eqn.(1) to be written in the form, 

ROI (1 t ex - Ta) 1 KI [ 1 2 ] -- -to." -t-
Roo - (1 text Ta) 4 cs 4 7t 2 , 

(2) 

which corresponds identically to Eqn.(2.48). Noting that the definition of the Rayleigh 

number my be presented as, 

[
RoIl R= Roo Ito- . 
Roo 

(3) 

The Rayleigh number established at order 0(0 0) was found to be ofthe form, 

R~o = 2C (a t 1)(a t It Ta) 
0. a (4) 

Substituting Eqn.(2) and Eqn.(4) in Eqn.(3) gives an expression of the form 

189 



(a t 1)(1 tat Ta) [ ( (1 t a - Ta) 1 K} [ 1 2]1 ~ R =1t 1t8 - -tQA - t-2 
c,st Q a (1 t a t Ta) 4 Cs 4 1t ' (5) 

which is identical to Eqn.(2.50). It can be noted, as pointed out in the Section 2.3 , that for 

the case of Ta -1 0 , Eqn.(5) collapses to the Rayleigh number proposed by Anderson & 

Worster (1996), given as, 

R = 1t(a t l)~[lt 8( .!. K} t QA[ '!' t ~]l l 
c,st Q a 4 C 4 1t 2 , 

S 

(6) 

the only diffemce being that Eqn.(6) is in the Author' s current scaling. 

It was noted from the characteristic curves presented in Figures 4 to 9 in Section 2.3 that 

as the Taylor number is increased, the Rayleigh number shows no appreciable changes 

with respect to the wavenumber. For the case of very high Taylor numbers we may obtain 

the minimum Rayleigh numbers from the limit, lim R c st . Before applying this limit, we 
Ta~oo ' 

write Eqn.(5) in the following form, 

(a t l)Ta(l/Tata /Tat 1) [ ( (l/Ta ta/Ta-1)lK1 [1 2]l1 R = 1t 1 t 8 - t Q A - t - (7) 
c,st Qa (l/Tat a /Tat 1) 4 Cs 4 1t 2 

. 

Now applying the limit lim Rcst to Eqn.(7) negates terms that are of the order O(l/Ta) 
Ta~ c:o ' , 

thereby resulting in the following definition of the Rayleigh number at high values of 

Taylor number, 

R (asym) = 1tPJa Rt 1 [1 t 8( - .!.~t QA['!'t ~ll l c,st r\ 4 4 2 . 
~l a Cs 1t (8) 
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Eqn.(8) is exactly the same as Eqn.(2.52).With reference to Figures 4 to 9 it can be 

inferred that the minimum of the characteristic curve that forms the asymptote with the x-

axis occurs at high wavenumbers. Applying the limit lim Rc sl to Eqn.(8) yields the 
o'-7CO ' 

critical value for high Taylor numbers and is expressed as, 

as m fJa [ (1 K] [ 1 2lll R( Y) = 1t - Ito ---tOA - t -
er ,Sl 0 4 c 4 1t 2 • 

S 

(9) 

Eqn.(9) is identical to Eqn.(2.53). 
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Appendix J : Derivation of the cubic equation for the critical wavenumber 

corresponding to Anderson & Worster's (1996) scaling 

To find the convection threshold point for stationary convection, we actually seek the 

minimum points on the characteristic curves corresponding to the different parameter 

settings. These points are denoted by differentiating the characteristic Rayleigh number 

with respect to the wavenumber and solving for the resulting polynomial for the critical 

wavenumber as a function of the system parameters, ie. we solve dRe,st / da = o. Firstly 

the characteristic Rayleigh number for stationary convection was found to be of the form, 

R =1t 1t8 -tOle -t-(a t 1)(1 tat Ta) [ ((1 t a - Ta) 1 K, [ 1 2lll 
e,st Oa (ltatTa)4 Cs 4 1t 2 . 

(1) 

Applying the derivative dRe,st / da = 0 to Eqn.(1) yields the following expression in 

symbolic form, 

d { (a t 1)(1 tat Ta)} [ ((1 t a - Ta) 1 K, [ 1 2lll - .lt8 -tOIe-t- t 
da a (1 tat Ta) 4 Cs 4 1t 2 

(a t 1)(1 tat Ta) d {[ ((1 t a - Ta) 1 K, [ 1 2lll} .- 1t8 --t Ole -t- = 0 (2) 
a da (1 tat Ta) 4 Cs 4 1t 2 

Setting Y] stat = 1 t 80 Ie [1/ 4 t 2/1t 2] , allows Eqn.(2) to be written in the form, 
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~{(a+1)(l+a+Ta)}.[ +8((l+a-Ta)lK'l]+ 
da a II stat (1 + a + Ta) 4 cs 

(a + 1)(1+ a + Ta) .~{8((1+ a - Ta) ~ K1l} = 0 (3) 
a da (1 + a + Ta) 4 cs 

Using Mathematica to evaluate derivatives in Eqn.(3) and collecting the like coefficients 

for the critical wavenumber as follows, 

(4) 

(5) 

(6) 

(7) 

(8) 

These terms may then be included in the third order polynomial, divided by Cs and 

substituting ll stat = 1+80A[l/4+2/n 2
] to give, 
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[ -4(1 + Ta) - o( ~: (1- 3Ta) + 4~ , (1 + Ta)) ]a + 

[ -4(1 + Ta)' - o( ~: (1- Ta') + 4~.c1 + Ta)')] = 0, (9) 

which is identical to Eqn.(2.S4a). Note that in Eqn.(9), 11 s = Q A [1/ 4 + 2/7t 2] . 
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Appendix K : Derivation of the eigenfunctions for the temperature, stream function 

and solid fraction for the (a) oscillatory convection case, and (b) stationary 

convection case for Anderson & Worster's (1996) scaling 

The expansion for the temperature in terms of the basic solution and the perturbation may 

be written as, 

(1) 

where the notation c.c stands to identify the complex conjugate of the first two terms in 

Eqn.(1). 

(a) Eigenfunctions for Oscillatory Convection 

The solution for 800 was established earlier and is respresented as, 

(2) 

In the current study we let Sy = 0 so that S2 = s:, thereby implying that there flowfield, 

though three-dimensional, is not a function of the co-ordinate y. Applying the above and 

noting that cr = icr iJ we may proceed to write Eqn.(1) in the following way, 

(3) 

The exponential terms may now be written in terms of sines and cosines using the 

following general notation, 

e iM = cos(M) + i sin(M) . (4) 
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Applying the theorem illustrated in Eqn.(4) and the temperature solution provided in 

Eqn.(2) to Eqn.(3) yields the following form, 

e = e B - (EAoo )sin(7tz)[ cos(s)c + a ) ) + isin(s) c + a))] + c.c , (5) 

which when added to the complex conjugate yields the following solution for 

temperature, 

(6) 

which is identical to the solution presented in Eqn.(2.73). The solution for the vertical 

component of the velocity follows exactly the same lines as that used for the 

determination of the temperature above. The process will not be repeated, but the result 

thereof is, 

(7) 

Using the definition of the stream function viz, w = - aljl l ax , we may integrate Eqn.(7) 

with respect to x to give the following definition for the stream function, 

(8) 

which is identical to Eqn.(2.74). 

We now proceed to develop the eigenfunction for the solid fraction by first providing a 

definition in terms of the basic flow and the perturbation as follows, 

(9) 
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In this case the solid fraction <P 00 is given as, 

(10) 

where 

(11) 

It can be noted that Eqn.(10) has both real and imaginary parts. Applying theorem (4) to 

Eqn.(10) yields, 

Applying theorem (4) on Eqn.(9) yields the following form, 

<p = <p s - Coo [ {cos[ a i I (z - 1)] t cos( 1t z) } t i {sin[ a i I (z - 1)] t a i 1/ 1t sine 1t z) } ] * 

Performing the algebra in Eqn.(13) above and adding the result to the complex conjugate 

yields, 

( ) 
1t ( 1t 2 t S2) {( [ _] _ ) [ _ _] 

<P=<Ps- 2EAoo (2 2) cosai,(z-l) tcos(1tz).cossxt8ai1t-
Qcs 1t - ail 

(a i I /1t . sine 1t z) t sin[ a i I ("2 - I)])}. sin[ sx t 8 a i It] , (14) 
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which is identical to Eqn.(2.75). 

(b) Eigenfunctions for Stationary Convection 

The eigenfunctions for the the temperature, stream function and the solid fraction for the 

stationary case are obtained by substituting (j il = 0 in the solutions for the oscillatory 

case. This is fairly simple and the temperature, stream function and solid fraction are 

gIVen as, 

B = BB - 2(EAoo)sin(7tz)cos(sx) (15) 

\jf = 0 - Boo sine 7t z) sine sx) (16) 

<p = <P B - Coo(l + cos(7tz))cos(sx). (17) 

Eqns.(15-17) are identical to Eqns.(2.55-2.57). The coefficients in Eqns.(16-17) are 

defined as, 

(7t 2 + S2) 
Boo = 2( EAoo) (18) o Roos 

and 

(n 2 + S2) 
COO = 2(EAoo) . (19) OCs7t 

198 



Appendix L : Derivation of the equation for the characteristic Rayleigh number and 

oscillatory frequency for Anderson & Worster's (1996) scaling 

Recall that the solvability condition was found to be of the form, 

(1) 

where a = a rl t ia il ' The characteristic Rayleigh number and the corresponding 

oscillatory frequency equations for the case of oscillatory convection are obtained by 

substituting a = ia il in Eqn.(l). Eqn.(1) then assumes the following form, 

n ts n ts -n Ta 1 KI la il ( 2 2)2 R OI ( 2 2)Ola il 
( 2 2 )2 ( 2 2 2 ) [ . 1 . 

--t- - n ts -t n ts --t 
(n 2 t S2 t n 2Ta) 4 Cs 2X Roo 2 

~( 2 2)2[2. ia il n2(1 t e-
iClil 

)] 

() 2 n t s 4 t ( 2 2 ) t ( )2 = 0 . 
~lCS 2n - a n2 _a 2 

11 il 

(2) 

Eqn.(2) is of the form Re + i Im = 0, which case we require that Re=Oand Im=O need 

to be satisfied. Using this fact and noting that e- iCl il = cos(a il )- isin(a
il
), Eqn.(2) 

provides two equations by equating the real and imaginary parts to zero. These equations 

are for the Rayleigh number correction for oscillatory convection, 

R ( 22 2) -[ ] OI,oY n t s - n Ta 1 KI SIn 2 
--= --t -- -t It cosa 
Roo (n' +,' + n'Ta) 4 Cs nc; 4 (n ' - cr:,)' ( ;,) , (3) 
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and for the frequency, 

- r 2 1 s 2 2 2 0" il n. 
-2 (n + s) (2 2) - (2 2)2 smO" il = O. 
Q cs 2 n - 0" il n - 0" il 

(4) 

Applying the scaling a = s2/n 2 , A. = S/Q2c; and y = X/n2 to Eqns.(3-4) and dividing 

the frequency equation (4) by 0" iI' yields, 

(5) 

( 
1 (a + l)(a + 1- Ta) 2 r 1 

O"il - ( ) +l+A.n (I+a) (2 2) 
Q y a + 1 + Ta n - 0" il 

2 
2 . II 

n smO"il 

( 
2 2 )2 = O. (6) 

n -O"il O"il 

Eqns.(5-6) are identical to Eqns.(2.60-2.61). If the limit Ta-t 0 and y -t 00, is applied 

to Eqn.(5) and Eqn.(6), we obtain, 

(7) 

( 
2( )r 1 2n

2 

sinO" III 
0" ill + A. n 1 + a (2 _ 2) - (2 2 )2 . I = 0 , 

n O"il n -O"il 0"11 
(8) 
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which represents the exact form of the equations solved by Anderson & Worster 

(1996) for oscillatory convection, the only difference being that Eqns.(7-8) are 

presented in the author's scaling. Incidentally Eqns.(7-8) are identical to Eqns.(2.62-

2.63). 
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Appendix M : Derivation of the characteristic equation for the wavenumber as a 

function of the frequency for Anderson and Worster's (1996) scaling 

We observe from Eqn.(2.60) and (2.61 ) that the frequency appears implicitly, thus 

implying that the characteristic values for the wavenumber and the frequency need to 

be evaluated numerically in order to predict the Rayleigh number correction from 

Eqn.(2.61). It was decided that it would be easier to solve for the wavenumber as a 

function of the frequency and the system parameters. The frequency equation may be 

stated as, 

[ 
1 (a + l)(a + 1- Ta) 2 [ 1 
~ ( 1 T) + 1 + A1t (1 + a ) ( 2 2) 
~ly a+ + a 1t -a i l 

2 
2 . 11 1t sma i l 

( 
2 _ 2 )2 a = 0 . (1) 

1t ail II 

U sing the following variables to represent the parameters, 

and 

1 
X =­

I Oy 

Substituting Eqns.(2-3) in Eqn.(1 ) yields the following form of Eqn.(1), 

(a + 1)(a + 1- Ta) 
XI (a+1+Ta) +1+(1+a)X2 = O 

Multiplying Eqn.(4) by (a + 1 + Ta) to give, 
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(3) 

(4) 



XI(a + 1)(a + 1- Ta)+ (a + 1+ Ta)+ X2(1+ a)(a + 1+ Ta) = O. (5) 

Expanding Eqn.(5) and grouping the like coefficients to yield an expression ofthe form, 

(XI + X2)a 2 + [2(XI + XJ+ Ta(X2 - X I)+ l]a + [(XI + X2)+ Ta(X2 - X I)+ Ta+ 1] = O. 
(6) 

If, 

(7) 

(8) 

(9) 

then Eqn.(6) may be presented in terms of the quadratic formula as follows, 

(10) 

It can be noted that Eqn.(10) produces two roots for the wavenumber for a gIVen 

frequency and a particular parameter setting. Obviously if only positive values of 

wavenumber are sought, and if one value is positive and the other is negative then only 

the positive root is considered. If both the roots are positive, then the root corresponding 

to the lower critical Rayleigh number is selected as it represents a lower convection 

threshold point. The definitions for XI and X2 are substituted in Eqns.(7-9) and are 

rearranged as follows, 
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(11) 

1 2 [1 21t 2 sina ill 
a2 = (2-Ta)-+1t A(2+Ta) ( 2 2)- ( 2 2)2 +1 

Oy 1t -a i l 1t -a i l a i l 
(12) 

1 (2 [1 21t 2 sinaill ] a3=(l-Ta)-+ 1t A ( 2 2)- ( 2 2)2 +1 (l+Ta) . 
Oy 1t -ail 1t - ail ail 

(13) 

Eqns.(10-13) are identical to Eqns.(2.64-2.67). 
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Appendix N : Derivation of the asymptotic wavenumber and Rayleigh number for 

Anderson & Worster's (1996) scaling 

It was found that for low values of the parameter X the curves of freqency versus the 

wavenumber reaches and asymptote, see Figures 15 and 19. This was found to occur at 

very high values of frequency. Considering the frequency equation, 

(a + l)(a + 1- Ta) 
XI ( 1 ) + 1 + (1 + a )X2 = 0 , 

a + + Ta 
(1) 

where 

1 
X =-

I Oy (2) 

and 

(3) 

Multiply Eqn.(1) by y to yield, 

1 (a + 1)(a + 1- Ta) 
n (a+l+Ta) +y+y(1+a)X2 =O (4) 

Applying the limit limO to Eqn.( 4) for small values of y gives 
y~O 

(a + l)(a + 1- Ta) = O. (5) 

Solving for the wavenumber yields, 

a = Ta - 1 , (and a = -1 which is not of physical significance) (6) 
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which represents the wavenumber towards which the curves for the different values of t.. 

converge. Eqn.(6) is identical to Eqn.(2.71 ). 

The Rayleigh number corresponding to oscillatory convection is given as, 

(7) 

The correction Rayleigh number is given by Eqn.(2.60) as, 

R Ol ov (1 t a - Ta) 1 KI [ 1 n 2 ( )] 
- '-= -tOt.. - t 1tcosa . 
R oo (ltatTa)4cs 4 (n 2 -a ;J II' 

(8) 

Substituting Eqn.(8) in Eqn.(7) and using the definition of the Rayleigh number as given 

by Eqn.(2.49), yields the following characteristic Rayleigh number for oscillatory 

convection, 

R c,ov = n (at1)(at1tTa)[ [ (lta-Ta)lK I [1 n
2 

( )ll] 
(lIt 8 (1 T ) 4 - tOt.. -4 t ( 2 2) 1 t cosO' il 

a~l tat a Cs n -ail 

(9) 

which is identical to Eqn.(2.68). Substituting the limit ail -t 00 in Eqn.(9) yields, 

- n 1t8 --t-R (asym) _ (at1)(at1tTa)[ ( (l t a-Ta)lK I Ot.. l ] 
C,ov aO (1 t a t Ta) 4 Cs 4 ' (10) 

which is identical to Eqn.(2.72). 

206 



Appendix 0 : Derivation of the governing system of equations for the Author's 

scaling 

The system of governing equations analysed by Anderson & Worster (1996) was scaled 

in space, and time in terms of the dimensionless mushy layer growth parameter (5 . The 

Rayleigh number, velocity and pressure were also scaled in terms this parameter. The 

parameter (5 is the ratio between the height of the mushy layer and the thermal length 

scale (defined in Appendix A) and is sometimes referred to as the growth Pec1et number. 

The current scaling for space and time may be presented as, 

t = ot (1 a-b) 

whilst the Rayleigh number, velocity and pressure were scaed as, 

(2a-c) 

These scalings were then applied to the continuity equation (1.3) to yield, 

v ·U= 0 , (2d) 

which is identical to Eqn.(3.4). 

Now considering applying the scalings defined in (1a-b and 2a-c) to the heat balance 

equation yields, 

(
1 a 1 a)( s) R - - 1 _ 8 at - 8 az 8 - "8 q> + 82 U . v 8 = 82 v 28 . (3) 

Multiplying this equation by I) 2 yields, 
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( a a ) ( S) - - -2 0-::--- 8--q> +RU · V8=V 8 . at az 0 
(4) 

Applying the scalings given in Eqn.(1 a-b) and Eqn.(2a-c) to the solute balance equation 

(1.5) yields, 

(5) 

Multiplying Eqn.(5) by 02 gives, 

(6) 

Finally apply the scalings given by Eqn.(1a-b) and Eqn.(2a-c) to the Darcy equation (1.6) 

to gives, 

R au R- R - / R-
----_ + I1(m)-U =--V-p- Ra 8e - Tal2e x -U o 2X 0 at 'f 0 0 m z z 0 (7) 

where eg = - ez and em = ez by virtue of the system of co-ordinates presented in Figure 

2a. Multiplying Eqn.(7) by o/R yields, 

1 au - - oRa _ 
--_ + I1(m)U =-V-p- _ _ m 8e - Ta l/2e x U ox 0 at 'f R z z· 

(8) 

Substituting R2 = oRam in Eqn.(8) reduces it to, 

1 au --
---+ I1(q»U =-Vp- - R8e - Ta l/2e x U ox 0 at z z ' 

(9) 
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If we set X I = oX 0' where X 0 = Pr $ oS 0 • In addition, if we set t' = Xl t, then we may write 

the heat balance, solute balance and Darcy equations given above as, 

v ·U= 0 (10) 

( a a ) ( S 1 - - -2 o X - - - 8 - -m + RU· V 8 = V 8 
I at' az 0 't' 

(11) 

(12) 

(13) 

Eqns.(10-13) are identical to the system presented in Eqns.(3.4-3.8). 
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Appendix P : Derivation of the perturbed heat balance, solute balance and modified 

Darcy equation for the Author's scaling 

For the derivation of the perturbation equations we adopt normal mode expansions for the 

temperature, solid fraction and velocity as, 

(1) 

(2) 

(3) 

Applying the expansions given in (1-3) to the heat balance equation (3.5) yields the 

following perturbed to order , 

Neglecting the O( E 2) and presenting the heat balance equation to order O( E) yields, 

(5) 

which after applying the definitions for the disturbed temperature, solid fraction and 

velocity as presented in Eqns.(1-3) at order O(E) yields the following form of the heat 

balance equation, 

(6) 
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Incidentally, Eqn.(6) is identical to Eqn.(3.20). 

Apply (1-3) to the solute balance equation (3 .6) and using the sequence of steps outlined 

above yields, 

(7) 

where the O( E 2) terms have been neglected and the terms with the subscripts "B" refers 

to the basic solution. Eqn.(7) is identical to Eqn.(3.21). 

Now apply the expansions (1-3) to the Darcy Equation given by Eqn.(3.7) and use 

exactly the same computation procedure as that outlined for the heat balance equation 

above to easily give the following disturbed form of the equation, 

Note that in Eqns.(5-8) that D = djdz and S2 = s~ + s~ . Eqn.(8) is identical to Eqn.(3.22). 
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Appendix Q : Derivation of the permeability function used in Author's scaling 

Amberg & Homsey (1993) and Anderson & Worster (1995) used a Taylor senes 

expansion of the permeability function as a function of the solid fraction for <p < < 1, 

given in their notation as, 

(1) 

where K" K2 , ... defines the permeability constants. The implications of Eqn.(1) is that 

the effects of permeability are introduced at each order of the computation. In the current 

study we follow Amberg & Homsey (1993) and Anderson & Worster (1995) with the 

only difference being that we introduce the effects of permeability from the third order of 

disturbance only. Our new formulation of the permeability function is given as, 

(2) 

where the constant Kc > 0, so that the permeability decreases with increasing solid 

fraction. Noting that the solid fraction may be written in terms of the basic state and soild 

fraction as follows, 

<p = <P B + E<P , , (3) 

where <p, = ~ (z)e"t'ei(sxx+SyY) represents the solid fraction eigenfunction evaluated at the 

leading order. In the current study we only extend our expansions for the dependant 

variables to order 0(0°). The basic solution solid fraction to order 0(0 0) was found to 

be <p 80 = O. Substituting this result in Eqn.(3) yields the following definition for the solid 

fraction, 

(4) 
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Using the result presented in Eqn.(4), we may present the permeability function as 

(5) 

which is identical to Eqn.(3.26). As pointed out earlier, it can be noted from Eqn.(5) that 

the permeability effects are only introduced at the third orderO(E 3
) . 
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Appendix R : Derivation of the system of governing equations at 0 (b 0) for the 

Author's scaling 

The perturbed system of governing equations found for the author's scaling may be 

summarised as, 

(1) 

(2) 

(3) 

where D = d/ dz and S2 = s~ + s~. As pointed out earlier, we are only interested in the 

O(b 0) problem, so we need a representation of this case by reconsidering the system (1-

3). Expanding Eqn.(1) yields, 

(4) 

Although an expansion of the dependant variables in terms 0 could be undertaken, we do 

not do this for clarity as the order 0(0) is not investigated here. We retain the dependant 

variable scaling here and present the O(Eb 0) system inferred from Eqn.(4) as, 

(5) 

for the heat balance equation. By following the same steps as that above the soute balance 

equation may be presented as, 
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cs(x,cr - D)~ + R~De Bo = 0 , (6) 

at order Oed) 0). For the Darcy equation we recall that IT (Eq> ,) = 1 + K eE 2q> ~ , and present 

it as, 

(7) 

at order O(EO 0). Recalling that De BO = 1, and decoupling the heat and solute balance 

equation we may present the following system of governing equations for the modifed 

heat balance, solute balance and Darcy equations at order O(EO 0) , 

(8) 

(9) 

(10) 

Eqns.(8-1O) are identical to the systems presented in Eqns.(3 .27-3.29). 
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Appendix S : Derivation of the perturbed functions for the temperature, solid 

fraction and vertical velocity component for the Author's scaling 

The system that needs to be solved may be represented as, 

(1) 

(2) 

(3) 

As before we select an eigenfuncion for the temperature to be of the form, 

e = - B) sin(TCz). Substituting this in Eqn.(1) yields a solution for the vertical component 

of the velocity to be of the form, 

A (TC 2 + S2 ) 
- B '( -) N '(-) w = Q R ) sm TC Z = ) sm TC Z , (4) 

where 

(5) 

where the scaling a = S2 / TC 2 and R = R/ TC 2 . Note that Eqns.( 4-5) are identical to 

Eqn.(3.31) and Eqn.(3.33). The solution for the solid fraction follows exactly the sames 

sequence of steps as outlined in Appendix F, the only difference being that the parameter 

X) preceeds (J . The solution procedure won't be repeated here but the final solution is 

provided in the form, 

(6) 
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where the coefficient, 

c\ = ( 2 2 2) B\ , 
Q cs 1 + n y 0' 

n(l+a) 
(7) 

and the scaling y = X \/n 2 has been used. Note that Eqns.(6-7) are identical to Eqn.(3 .32) 

and Eqn.(3 .34). 

Substituting the solution for the temperature and vertical velocity given above in the 

Darcy Eqn, 

(8) 

gives, 

(9) 

Using the relation between N\ and B\, given by Eqn.(5) as, 

(10) 

and upon substitution in Eqn.(9) yields, 

- (1 + a) ([ 2 ( ) 
RR= [cr+l]Qa 0'+1] l+a)+Ta . (11) 

Using the scaling, R = R/ n 2 , allows Eqn.(11) to be written as, 
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(12) 

which is identical to Eqn.(3.35). 
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Appendix T : Derivation of the critical wavenumber and Rayleigh number for 

stationary convection for the Author's scaling 

The expression for the Rayleigh number in terms of the oscillatory frequency is given as, 

-2 (1 + a) ([ ] 2 ( ) ) 
R = [ ] 2 a + 1 1 + a + Ta . 

a+U2n a 
(1) 

Substituting a = 0 in Eqn.(1) to obtain the Rayleigh number for stationary convection 

yields the following expression, 

- (1 + a) 
R2= 2 (l+a+Ta), 

Qn a 

which may be written as, 

(1 + a) 
~--':""(1 + a + Ta) . 

a 

Minimising Eqn.(3) with respect to the wavenumber as follows, 

dR d 

da da 

(1 + a) 
~----=-(l+a +Ta) = 0, 

a 

(2) 

(3) 

(4) 

and using trivial algebraic manipulation yields the following simple result for the critical 

wavenumber, 

aer ,s! = ..JTa+ 1, (5) 

which is identical to Eqn.(3.38). Substituting Eqn.(5) in the definition for the Rayleigh 

number yields the critical Rayleigh number defined as, 
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( 1 + "'Ta + 1 ) ( ) 
R2 = 2.JTa+l Ta+ 1+ "'Ta+ 1 . 

er,st On Ta+ 1 
(6) 

Eqn.(6) may be refined further by expanding the brackets and grouping as follows, 

R2 t = ~((Ta+ 1)+ 2"'Ta+ 1 + 1). 
er ,s 0 n (7) 

The terms within brackets may be factorised to yield, 

-2 1( ~)2 R erst = --2 1+ vTa+ 1 , , On (8) 

which may be written as, 

(9) 

which represents the critical Rayleigh number for stationary convection and is identical to 

Eqn.(3.39). 
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Appendix U : Derivation of the critical composition difference for stationary 

convection for the Author's scaling 

The critical wave number and Rayleigh number found for stationary convection at the 

linear stability level are, 

a er ,s! = .JTa + 1 (1) 

(2) 

These equations may be represented in the following form, 

a er,s! = ffa~l + l/Ta (3) 

(4) 

For the case of high Taylor numbers, Ta ~ r:fJ ,Eqns.(3-4) reduces to, 

a er,s! = ffa (5) 

(6) 

and are identical to the expressions presented in Eqn.(3.40). From Eqn.(6) it can be 

concluded that as Ta ~ r:fJ then ffa » 1. Hence Eqn.(6) can be expressed as, 

ffa 
Rers! == ~. 

, TC'VQ (7) 
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Using the definition ofthe Rayleigh number given as 

~ ' L\cg' ko K '/v' 
Ram = '" '" 

V K 

Recall that the Rayleigh number was scaled in the form, 

and in the stationary case a further scaling on the Rayleigh number of the form, 

2-
R= 1t R, 

was undertaken. Substituting Eqn.(10) in Eqn.(9) yields, 

Substituting Eqn.(11) in Eqn(8) yields the following expression, 

(8) 

(9) 

(10) 

(11) 

(12) 

Recalling that 8 = H' j(K 'jV' ) and rearranging Eqn.(12) for the viscosity rL\c yields, 

(13) 

Using the critical Rayleigh number defined in Eqn.(7), and SUbstituting in Eqn.(13) to 

yield, 
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002 

o Tav K 1t 
~ t1c= ok R OO' 

g 0 

where the Taylor number is defined as, 

Ta = [_2CO_: k---,,-o] 2 
v ~ 0 

Introducing definition of the Taylor number given by Eqn.(15) in Eqn.(14) yields, 

(14) 

(15) 

(16) 

Recalling that 0 = 1 + St/~ and letting [3 = ~ 0 t1 c , allows Eqn.(16) to be presented as, 

(17) 

which represents the critical compositional difference at high Taylor numbers and is 

identical to Eqn.(3.41). 

Now for the case when Ta ~ 0 , the critcal wavenumber and Rayleigh number may be 

given as, 

a er ,s! = 1 (18) 

2 
Rers! = ~. 

, 1t'VO (19) 
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Substituting these values for the critical composition difference In the following 

expresslOn, 

- 4K *n 2 * 

~cr , st = g*H*(l+ St/~)ko v , (20) 

which represents the critical composition difference in the case of no rotation, and is 

identical to Eqn.(3 .42). 
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Appendix V : Derivation of the leading order temperature, solid fraction, and 

velocity solutions together with the definition of the wavenumber on the oblique 

plane containing the streamlines for the case of stationary convection for the 

Author's scaling 

For the case of stationary convection, the eigenfunctions for the temperature, solid 

fraction and vertical component of velocity may be presented as 

e e~ (-) i(s,x+syy) ,= z e · t C.C 

~ (-) i(s,x+syy) 
<p , = <p z e · t C. C 

where c.c stands for the complex conjugate and, 

where 

N _ (Ita) 
,- QR B, 
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(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 



The scaling a = S2 / n 2 , R = R/ n 2 and y = X, / n 2 has been used in the above equations. 

In the current study we assume that Sy = 0 so that S2 = s:, thereby enabling the solution 

for the temperature equation (1) to be of the form, 

e, = -2B, cos(sx)sin(nz). (9) 

Similarly, the solid fraction is given as, 

cp, = - 2C,[ 1 + cos( nz)] cos(sx), (10) 

and the vertical component of the velocity as, 

w, = 2N, cos(sx)sin(nz) . (11) 

The method used to compute Eqns.(9-11) is identical to that employed earlier m 

Appendix K. Eqns.(9-l1) are identical to Eqns.(3.43-3.45). 

Noting that although the y-co-ordinate does not appear in the eigenfunctions (9-11), the 

flow is still three dimensional. The three flow vectors are just not a function of y. We 

anticipate a stream function to describe the resulting flow. The plane containing the 

streamlines is somewhat oblique in nature due to the presence of a flow in the y-direction 

that is independent of the y co-ordinate. To find the wavenumber on this oblique plane 

we need to first evluate the the y-component of the velocity. 

Recall from Eqn.(2.18) that the vertical component of the vorticity is given by 

ill = [av, _ au,] = Ta I/2 aWl . 
z ax ay az (12) 

Noting that there are no variations in the y-directions and using Eqn.(1l) yields, 

226 



_ 1/2 NI . _ _ 
VI = 2Ta !72"sm(sx)cos(nz). 

a 
(13) 

Eqn.(13) is identical to Eqn.(3.47). Now using the continuity equation aU/ax = - awjaz 
and Eqn.(11) to evaluate the horizontal component of the velocity yields, 

N 
ul = -2~sin(sx)cos(nz) , 

a 
(14) 

which is identical to Eqn.(3.49). The solutions presented by Eqns.(13-14) represents the 

convection cells that are tilted in the y-direction and form and angle tan - I (VI ju l ) relative 

to the x-axis. Incidentally there is no velocity component normal to this plane, and is 

therefore deemed to be the plane that contains the streamlines. The ratio between the y­

component and the x-component of the velocities is simply inferred from Eqns.(13-14) 

and may be presented as, 

(15) 

which is identical to Eqn.(3.50). The wavenumber on the oblique plane containing the 

streamlines is given as 

(oblique) - (t -1(- j- )) 
s cr,s! - scr .s! COS an VI u l . (16) 

The critical wavenumber for stationary convection is given as a = S2 In 2 = -JTa + 1 
cr ,st cr ,st , 

thereby allowing the original wavenumber to be written as s = n (Ta + 1) 1/4 , cr ,st • 

The oblique plane angle relative to the x -axis may be defined as u = tan - I (v j-u ) 
'ob. I I' 

This could be rewritten as, tan(u ob) = (vJul ) = - Ta1/
2

. Now using a trigonometric 

identity of the form, 
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2 1 
tan (u ob )+ 1= 2( ) . 

. cos U ob. 
(17) 

Using the fact that tan(u ob) = - Ta 1/2, we may rewrite Eqn.(17) to yield the following 

result, 

1 
Ta+1= 2( ) ' 

cos U ob. 
(18) 

which may be rearranged to give, 

1 
cos(U ob) = (Ta+ 1)1/2 . (19) 

Substituting Eqn.(19) in Eqn.(16) and using the fact that sers! = n(Ta+ 1) 1/4 gives, 

n(Ta+ 1) 1/4 
n 

s (oblique) = S () 
er,s! er,s! cos Uo = (Ta+ 1) 1/2 = (Ta+ 1) 1/4 , 

(20) 

which is identical to Eqn.(3 .S1). 
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Appendix W : Derivation of the characteristic Rayleigh number and the frequency 

of the oscillations for the case of oscillatory convection for the Author's scaling 

The general definition for the Rayleigh number is given as, 

(1) 

For the case of ocillatory convection, we set (J = i(J i in the expression for the general 

definition for the Rayleigh number, Eqn.(1), which yields, 

-2 (l+a) ([. ]2( ) ) 
R = [. ] 2 1(J i + 1 1 + a + Ta . 

1(J i + 1 n 7t a 
(2) 

Eqn.(2) may be expanded to give the following expression, 

(3) 

which after equating real and imaginary parts yields the two equations of the form, 

(4) 

and 

(5) 

From Eqn.(5) we get the definition ofthe Rayleigh number presented as, 

(6) 
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which is identical to Eqn.(3 .52). Now substituting Eqn.(6) in Eqn.(4) yields the following 

expressIOn 

(7) 

Refining Eqn.(7) and solving for (J i yields the following expression for the frequency, 

(8) 

which is identical to Eqn.(3 .53). 
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Appendix X : Derivation of the critical wavenumber, Rayleigh number and 

frequency for the case of oscillatory convection for the Author's scaling 

The characteristic wavenumber for oscillatory convection is given as 

- _!Hi(l+a) 
Rer ov - (\. r . 

, 7t ~~ "a (1) 

Minimising the Rayleigh number gIven by Eqn.(1) yields the following critical 

wavenumber relation, 

dRe!" ov 1 
-da-'-'- = 2"(a + 1)+ a = 0 , (2) 

which after solving for a , yields the following critical wavenumber, 

a er ,ov = 1 . (3) 

which is identical to Eqn.(3.54). Substituting this result in, 

(4) 

yields, 

- 2[2 
R er,ov = ;~n ' (5) 

which is identical to Eqn.(3.55). Once more substituting Eqn.(3) in, 
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yields, 

2 Ta 
(J j = (a + 1) 1, 

2 Ta 
(J = --1 

I 2 

which is identical to Eqn.(3.S6). 

(6) 

(7) 
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Appendix Y : Weak non-linear analysis : A stream function representation of the 

governing equations for the Author's scaling 

For the weak non-linear analysis it is convenient to use the definition of the stream 

function in the form, ij = a\lf l az, w = - a\lf l ax. Recall that the heat balance equation 

corresponding to the author's scaling may be presented as, 

( a a ) ( S 1 as as - 2 8 X - - - s - - q> + Rij -= + Rw -= = v s . 
I at' az 8 ax az (1) 

Applying the stream function definition given in the opening paragraph allows Eqn.(1) to 

be written as, 

( a a)( S 1 a \If as a \If as - 2 8 --- s-- +R---R--=V S 
X I at' az 8 q> az ax ax az ' (2) 

which is identical to Eqn.( 4.1). Similary one may present the solute balance equation in 

exactly the same manner as follows, 

8( ~- ~)[ 1- S + cs ]+ R~~- ~~-X I at' az ( q> ) 8 q> az ax R ax az - 0 , (3) 

which is identical to Eqn.( 4.2) . Note that X I = OX 0 (where X 0 = Pr ~ 0 & 0 ) and t' = Xl t . 

Recall that the Darcy equation was found to be of the form, 

au __ 
at' + IT (q»U = -v p - RSez - Ta1

/
2ez x U. (4) 

In order to get the Darcy equation represented in terms of stream functions we need to 

first write the Eqn.( 4) in component form as follows, 
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au ap 1/2 -
-+IT(<p)u=---=+Ta v at' ax 

ay ap 1/2-
-+IT(<p)y=---Ta u 
at' ay 

aw ap 
- + IT (<p )w = -- -Re . 
at' az 

First differentiate Eqn.(5) with respect z to give, 

Now differentiate Eqn.(7) with respect to x as follows, 

a2w aW a2p ae 
--+IT(rn)-=---R-axat' 'I' ax axaz ax . 

Subract Eqn.(9) from Eqn.(8) to give, 

[
a ]( au aw) aIT (<p ) 1 2 ay ae 

-+IT(<p) --- +u =Ta l -+R-. at' az ax az az ax 

Now differentiate Eqn.(6) with respect to z to give, 

a2y ay _ aIT (<p) a2p 1/2 au 
--+ IT(rn)-+v =----Ta-azat' 'I' aZ aZ azay aZ . 

Now differentiate Eqn.(7) with respect to y to gi\Le, 
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(7) 

(8) 

(9) 

(10) 
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(12) 

Now subtract Eqn.(12) from Eqn.(11) to give, 

(13) 

From Eqn.(13) we get, 

(14) 

Substituting Eqn.(14) in Eqn.(10) yields, 

[ a ]2(au aw) [a ] aIT(q» [a ]ae 
~ + IT (q> ) a-z - ax + ~ + IT (q» u a-z = R ~ + IT (q» ax + 

-Ta-+RTal
/
2 --vTa I/2 q> + Ta l/2 -+IT(m) -au ae aIT ( ) [ a ] aw 

a-z ay a-z at' 't' ay .(15) 

Introducing the stream function definition in Eqn.(15) and neglecting effects in the y­

direction yields, 

[a~' + IT (q> ) r V 2\V + [a~' + IT (q> )]( ~~ a~;q» - R :~) + Ta ~~~ + Ta 1/2 V a~;q» = 0, 

(16) 

which is identical to Eqn.( 4.3). 
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Appendix Z : Weak non-linear analysis - Stationary convection : Derivation of the 

governing equations for each order of the disturbance amplitude E 

The governing equations to each order of the disturbance amplitude is derived for the 

stationary case by considering each of the energy balance, solute balance and Darcy 

equations separately. To further clarify the process each term in each of the governing 

equations are then considered separately so as to ensure that the correct equation set to 

each order is obtained. 

For the case of stationary convection we allow variations only at the slow time scale 

t = e 2t , in order to prevent exponential growth and reaching finite values for the 

amplitude at steady state. Slow spaces scale are also adopted in the form X = eX so as to 

include a continuous finite band of horizontal modes. Bearing these scalings in mind we 

may propose the following form of the energy equation, 

-8(e 2 ~-~) +R~~+Re~~-R~~-R ~~= 
X I at az <P az ax az ax ax az e ax az 

In addition we expand the dependant variables in terms of the disturbance amplitude as 

follows, 

(2) 

In addition the expansion for the permeability function and the Rayleigh number is given 

as, 

(3) 
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The basic solution depicted by subscript "B" in Eqn.(2) is given as, 

(4) 

Using these expansions (where necessary) we consider each term in Eqn.(l) separately 

and adopt the following naming convention, where the subscript "E" refers to the energy 

equation. 

which to the different orders in the disturbance amplitude is presented as, 

t (1;3)= -s(~-~) 
IE aT a-z' 

Next consider the second term, 

a\jf ae 
t -R--

2E - a-z ax' 

which to the different orders of the disturbance amplitude yields, 
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(5) 

(5a) 

(5b) 

(5c) 

(6) 

(6a) 



( 3) = [a\lf I ~ _ a\lf 2 ~l. 
t 2E E Rer az aX az ax 

We now consider the third term 

which to different orders of the disturbance amplitude produces, 

Now consider the fourth term 

a\lf ae 
t =-R--

4E ax az' 

which to different orders of the disturbance amplitude yields, 
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(6b) 

(6c) 

(7) 

(7a) 

(7b) 

(7c) 

(8) 

(8a) 



(8b) 

( 
3) = _ [a\jl 3 + a\jl, + a\jl , ae 2 + a\jl 2 ae ,]. 

t 4E E Ref aX ax ax az ax az (8c) 

Considering the fifth term, 

(9) 

to the different orders of the disturbance amplitude yields, 

(9a) 

(9b) 

t (E 3) = - R [a\jl 2 + a\jl, ~] 
5E er ax ax az . (9c) 

Considering the sixth term, 

(l0) 

which simply yields 

(lOa) 

(lOb) 
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(lOc) 

to the different orders of the disturbance amplitude. 

Considering the seventh term, 

(11) 

and considering to the different orders of the disturbance amplitude yields, 

(lla) 

(lIb) 

(llc) 

Finally considering the eighth term, 

(l2) 

to the different orders of the disturbance amplitude yields, 

(l2a) 

(l2b) 
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(12c) 

It can be observed that the energy balance and solute blance equations are very similar, 

the only difference being that the solute balance equations omits the Laplacian operator. 

For this reason, the process adopted above won't be repeated for the solute balance 

equation set. We now proceed to develop the Darcy equation to different orders of the 

disturbance amplitude. The Darcy equation containing the slow time and space scales 

may be presented as, 

[ 
2 a ] a\lf all (<p ) [ a ] as [ a ] as E -+ll(<p) --=- _ - R E2-+ ll(<p) -=- RE E2-+ll(<p) -+ 

aT az az aT ax aT ax 

(13) 

It should be pointed out that the effects of permeability are only felt at order O( E 3) . With 

this in mind it can be seen that the last term in Eqn.(13) falls away at the first two orders 

of the disturbance amplitude. Using the proposed expansions for the permeability 

function and the Rayleigh number we may consider each term in Eqn.(13) separately for 

clarity, noting that the variables with the subscript "D" refers to the Darcy equation. 

Referring to the first term in Eqn.(13) , 

[ 
2 a ] 2 2 

t lD = E ~+ll(<p) V \If , (14) 
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and considering to each order of the disturbance amplitude yields, 

t \D (f: ') = V 2\1f , 

t \D (f: 2
) = V 2 \If 2 

Considering the second term in Eqn.(13), 

[ 
8 ]2 82 

t20 = 2f: f: 2 ~ + IT (<j) ) ax:x ' 

and developing to the different orders of the disturbance amplitude yields, 

Analysing the third term in Eqn.(13), 

and considering to the different orders of the disturbance amplitude yields, 
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(14a) 

(14b) 

(14c) 

(15) 

(15a) 

(15b) 

(15c) 

(16) 



(16a) 

(16b) 

(16c) 

Recalling the fourth term in Eqn.(13), 

[ 

2 a 1 a\jf all (<p ) 
t 40 = E ~+ Il(<p) az az ' (17) 

and considering to each order of the disturbance amplitude yields, 

(17a) 

(17b) 

t ( 3) = K a\jf I a<p ~ 
40 E c az az' (17c) 

Recalling the fifth term in Eqn.(13), 

[ 
2 a l ae t = - R E - + II (rn) -

50 a", 'I' ax' (18) 

and considering to each order of the disturbance amplitude yields, 

243 



(18a) 

(18b) 

(18c) 

Recalling the sixth term in Eqn.(13), 

[ 
2 a 1 as 

t 6D = -RE E ~+ rr(<p) ax ' (19) 

and considering to each order of the disturbance amplitude yields, 

(19a) 

(19b) 

(19c) 

Recalling the seventh term in Eqn.(13), 

(20) 

and considering to the different orders of the disturbance amplitude yields, 
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(20a) 

(20b) 

(20c) 

Finally recalling the eighth term in Eqn.(13), 

_ 1/2 orr (<p ) 
t80 - Ta VI oZ ' (21) 

and considering to the different orders of the disturbance amplitude yields, 

(21a) 

(21b) 

(21c) 

We may now proceed to build the governing system of equations to each order by taking 

into account the terms developed to each order of the disturbance amplitude for the 

energy, solute and Darcy equations. This process is simply achieved by collecting the 

respective terms for each of the energy, solute balance and Darcy equations from 

Eqns.(5-21) above. 
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The governing system to order O(E ') is given as, 

(22a) 

_ a<p, _ a\jf , _ 0 
Cs a- Rcr a- -z x, 

(22b) 

(22c) 

which is identical to the system presented in Eqns.(4.11-4.13). 

N ext we propose the goiverning system to order O( E 2) which is given as, 

S a<p 2 _ R a\jf 2 _ V 2S = R a\jf , t 2 ~ _ R [a\jf, as, _ a\jf , as ,] (23a) 
az cr ax 2 cr ax axax cr az ax ax az 

_ c a<p 2 _ R a\jf 2 = R a\jf , _ R [ a\jf , as, _ a\jf, as ,] (23b) 
s az cr ax 2 cr ax cr az ax ax az 

V 2 111 -R aS 2 tTa a
2
\jf 2 = R as, - 2 a

2
\jf, 

'I' 2 cr ax az2 cr ax aXax ' (23c) 

which is identical to Eqns.(4.19-4.21). 
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Finally by carefully collecting the terms pertinent to order O(e 3) and using the fact that 

VI = - Ta l/2 a\jf I/az, we may present the governing system to order O(e 3) as follows, 

R [{ a\jf I ae 2 _ a\jf I ae 2} + {a\jf 2 ae I _ a\jf 2 ae I } + {a\jf I ae I _ a\jf I ae I } + a2e I] 
cr az ax ax az az ax ax az az ax ax az ax2 

(24a) 

R [{ a\jf I ae 2 _ a\jf I ae 2} + {a\jf 2 ~ _ a\jf 2 ~} + {a\jf I ae I _ a\jf I ae I}] (24b) 
cr az ax ax az az ax ax az az ax ax az 

which is identical to Eqns.(4.25-4.27). 
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Appendix AA : Weak non-linear Analysis - Stationary convection : Derivation of 

the eigenfunctions to the leading order O( E) 

The eigenfunctions to the leading order system 

(1) 

aq> , a\!f , 
c --R - = 0 

- S az cr ax , (2) 

(3) 

is sought. The solutions to the stream function and temperature is given as, 

(4) 

(5) 

Substituting Eqn.(4) in Eqn.(2) yields the following differential equation, 

am i7t a l/2R ._ . _'1'_' _ _ cr [A ISX _ A * - ISX] • ( - ) 

a- - ,e ,e sm 7tZ , 
Z Cs 

(6) 

which upon integration with respect to z yields, 

(7) 
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where C
E 

represents the integration constant. Applying the boundary condition 

cP 1(1) = 0 to Eqn.(7) in order to solve for the integration constant, yields the following 

final solution for the solid fraction at the leading order, 

(8) 

which is identical to Eqn.( 4.16). Note that 

iu '/2 R 
C - er A 

1- C I 
S 

. 1/2R 
d 

* lU er * 
an C I = - A l 

Cs 
(9) 

which is identical to Eqn.( 4.18) 

We now set out to evaluate the relationship between the coefficients Al and B, . From 

the solute balance equation (2) we have, 

acp I _ R er a\jf I 

az Cs ax I' (10) 

which upon substitution in the energy equation (1) yields 

(11) 

Setting n = 1 + sics we may present Eqn.(11 ) as, 

(12) 
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which for all intents and purposes represents the modified heat balance equation. Using 

the definition for the stream function and temperature given in Eqns.(4-5) above and 

substituting in Eqn.(12) above gives, 

Equating the like exponential indices gIves the following relation between the 

amplitiudes, 

OR a 1/2 OR 1/2 
B . er • . era • 

I = 1 7t (1 + a) A I and B I = - 1 7t (1 + a) A I , (14) 

which is identical to Eqn.( 4.17). 
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Appendix AB : Weak non-linear Analysis - Stationary convection : Derivation of 

the eigenfunctions to order 0(1:>2) 

At order O( E 2) of the disturbance amplitude the modified heat balance and Darcy 

equation is given as, 

(1) 

(2) 

where RHSA and RHS B are evaluated from known solutions at order O(E) and is given 

as, 

1/2 [ aBI - aB; . -j 2inu _ e15X 
- _ e- 15X sin(nz) (3) ax ax 

and, 

Decoupling Eqns.(1-2) by multiplying Eqn.(1 ) by Rer a/ax(.) and Eqn.(2) by V 2(.) and 

adding the result to yield a single equation for the stream function, given as, 

(5) 
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We may express the right hand side ofEqn.(5) symbolically as, 

(6) 

We may further evaluate Eqn.(6) , taking into account the relationship between the 

coefficients AI and BI and that between the critical Rayleigh number and wavenumber, 

yields 

. 3 2' 3 aA· 
2l1t [ 2 ( )] aAI . - • l1t [( ) 2] I - isx . ( - ) RHSs = ~ a - Ta+ 1 __ e 1SX sm(nz)+ ~ Ta+ 1 - a ax e sm nz 
a ax a 

(7) 

U sing the result of the critical wave number for the case of stationary convection given as 

a = a cr = .JTa + 1 , (8) 

results in the right hand side of Eqn.(7) collapsing to zero, ie. RHSs = O. Note that the 

subscripts referring to the critical values have been omitted for clarity. The implications 

of the result RHSs = 0 is that the particular solution for the stream function at this order 

vanishes thus resulting in the homogenous solution being the only solution. The solutiuon 

to the stream function at this order resembles the form of the homogenous solution for the 

stream function found at the leading order and is given as, 

(9) 

which is identical to Eqn.( 4.22). 

We now proceed to decouple the energy and Darcy equation at this order in order to 

obtain a single equation for the temperature at this order. This is achieved by multiplying 
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the energy equation (1) by [V 2+Ta a2/ az2]O and the Darcy equation (2) by 

n R er a/ax (.). The resulting Darcy equation is then subtracted from the energy equation 

to give, 

Adopting exactly the same method as outlined above for the evaluation of the streamline 

solution, we attack Eqn.(1 0) to result in the following net result, 

As before the terms containing the slow spaces scales cancelled out as a result of 

algebraic maniplulations. The homogenous solution to Eqn.(11) is known and was found 

at the leading order. At this point we concern ourselves with establishing the correct 

particular solution. We select a trial function ofthe form, 

82,p = Bp sin(21t z) + Cp cos(21t z) , (12) 

which upon substitution in Eqn.(11) yields the following results for the coefficients of the 

trial functions selected in Eqn.(12), 

B = u n R~r A A· d 
p 21t(u+l) 11 an Cp=O . (13) 

The resulting solution for the temperature at this order is simply the sum of the 

homogenous and particular solutions respectively which is given as, 

(14) 
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which is identical to Eqn.(4.23). 

Now we need only find the solution to the solid fraction at this order. Recalling the solute 

balance equation to this order, 

c a<p 2 = _ R a\jf 2 + R [a\jf 1 ae 1 _ a\jf 1 ae 1 ] _ R a\jf 1 

S az cr ax cr az ax ax az cr ax (15) 

and substituting the known solutions on the right hand side yields the following form of 

the solid fraction to be solved, 

a<p 2 1 [ 27t a n R~r * 1/ 2 { . - * . - } - = - - A A sin(27tz) - i7t a R A e'sx - A e-'sx sin(7tz)-az Cs (1 + a) 1 1 cr 2 2 

Integrating Eqn.(16) with respect to z , 

cr ISX - )SX _ R laA1 - aA*1 .-} 1 -;- ax e + ax e cos(7tz) + Ce2 , (17) 

where C e2 represents the integration constant. Using the boundary condition <p 2 (1) = 0 , 

we may evaluate the integration constant and thereby present the full solution to the solid 

fraction at this order as, 
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R {aA1 - aA*1 .-}( )] ----.£!:.. _elsx + _e-Isx cos(7tz) + 1 
7t ax ax ' (18) 

which may be rearranged as, 

{C isx C* iSX }( ) anR~r *( ) 
<jl 2 = 2e + 2e- cos(7tz) + 1 + ( ) A1A1 cos(27tz) - 1 + 

Cs 1+ a 

(19) 

which is identical to Eqn.(4.24). 
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Appendix AC : Weak non-linear Analysis - Stationary convection: Derivation of 

the leading order amplitude differential equation at order 0(8
3

) 

The decoupled Darcy equation in terms of the stream function only may be presented as, 

a2 a2 a 
2 2 2 \jf 3 2 - \7 2RHS R -RHS V (V III 3) t n R -----=2 t Ta a-2 V \jf 3 - v 0 t cr a- E 

T cr ax z x 
(1) 

where RHSo represents the right hand side of the Darcy equation at this order and is 

gIVen as 

am 2 all( as I 2 as I a as I as 2 
K _ T_I _ T_I tR -tKm R -tR --tR 

c az az cr ax cT I cr ax cr ax aT cr ax (2) 

RHS = n R [{ a\jf I as 2 _ a\jf I as 21 t {a\jf 2 as I _ a\jf 2 as I 1 t {a\jf I as I _ a\jf I as I 1]-
E cr az ax ax az az ax ax az az ax ax az 

Now we multiply Eqn.(1) by the complex conjugate of the leading order solution \jf I and 

note that the stream function \jf 3 is zero at the boundaries of the mushy layer, x E [O,L] 

and z E [0,1]. The above operation enables the left hand side of Eqn.(1) to cancel off, 

leaving behind the right hand side solution which represents the solvability condition. 

The evaluation of the left hand side is complex from a algebraic point of view hence this 

process will be broken down into several sub-steps in order to maintain clarity 
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yields, 

IL 

RHS E1 " = J J RHS E 1' • \I' ,dxdz , 
o 0 

which after integration produces, 

(7) 

(8) 

(9) 

Following this procedure yields the following final result for the solvability condition 

contributed by the terms from the energy equation, 

We now proceed to evaluate the solvability condition contributed by the terms in the 

Darcy equation. Again we will evaluate one term and list the rest. 

Recalling the first term from Eqn.(2), 

(11) 

U sing the lower order solutions for the stream functions and the solid fraction that are 

pertinent to the case of stationary convection yields the following form ofEqn.(ll), 

258 



(1+ cos(nz)f. (12) 

Applying the Laplacian operator on Eqn.(12) (as illustrated III Eqn.(1)) yields the 

following expression, 

RHS ' = 2 4a 2(a + 1)R2 Kc [9A3e3iSX _ A 2 A*eisx - A A * 2 e-isx + 9A * 3e-3iSX ] sin(nz) 
DI n cr c2 1 1 I I I I • 

S 

(1 + cos(nz) f + 

(1 + cos(nz)f] . (13) 

Multiplying this equation by \If 1= A;e-sx sin(nz) and integrating over X E [O,L] and 

z E [0,1] as follows, 

(14) 

yields, 

I L 

RHS DI " = f f 2n 4a 2(a + l)R~r K2c A;[9Aie2iSX - AiA; - AlA; 2 e-2isx + 9A; 3e-4iSX ] sin2(nz) 
o 0 Cs 

I L K _ 
- f f2n 2a(a + 1)R2 _ c A*[A3e21SX - A2A* _ A A* 2 e-2isx + A*3 -4 iSX ]D2[ . ( -) cr C2 I I I I I 1 I e z SIn n z . 

o 0 s 
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(1 + cos( 7t z) Y] sine 7t z)dxdz , (15) 

which after integration provides, 

(16) 

Following exactly the same procedure as this for the remaining terms, we evaluate the 

solvability condition contributed by the Darcy terms, 

(17) 

Now we may combine the results of Eqn.(10) and Eqn.(17) by simply adding them to 

give the following result, 

(18) 

where 
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n
6
0 ( K )] f. = -(a + l)(a + 1+ Ta) 2

c 
2 (a + 1)(-5a -7 + 7Ta)- (a + 1+ Ta 

I 4 20 cs 

n 2 

f = -(2a + 2 + Ta) . 
o 2 

(19) 

(20) 

(21) 

(22) 

Reintroducing the original timescale 't = I:: \ } t , slow space scales, X = I:: X and 

rearranging Eqn.(18) as follows , 

(23) 

which may further be written as 

(24) 

where A = I::A} and A* = I:: A: , whilst 1::
2 = [R/Rcr,st -1]. Eqn.(24) is identical to 

Eqn.(4.30). The coefficients in Eqn.(24) are very simply evaluated from the definition of 

the terms in Eqns.(19-22) and are simply listed as, 

(25) 
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2[Ta+ 2(a + 1)] 

~ 1" ,40(a + 1)(a + 1 + Tal[ 2~;C~ (a + 1){7Ta- (Sa + 7)) - (a + 1 + Ta) 1 
(26) 

(27) 

Eqns.(25-27) are identical to Eqns.( 4.31-4.33). 
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Appendix AD: Weak non linear analysis - Overs table convection: Derivation of the 

governing equations for each order of the disturbance amplitude E 

The governing equations to each order of the disturbance amplitude is derived for the 

case of overstable convection by considering each of the energy balance, solute balance 

and Darcy equations separately. To further clarify the process each term in each of the 

governing equations are then considered separately so as to ensure that the correct 

equation set to each order is obtained. 

For the case of overstable convection we allow variations at the slow time scales 't = !: 2t , 

and 't 0 = !: It' and allow the short time scale t' to be present in order to represent the 

amplitude fluctuations. We rescale the short time scale in the form, t = (l' ot' , where 

(l' 0 = (l' i,cr' Slow spaces scale are also adopted in the form X =!:x so as to include a 

continuous finite band of horizontal modes. Bearing these scalings in mind we may 

propose the following form of the energy equation, 

(1) 

In addition we expand the dependant variables in terms of the disturbance amplitude as 

follows, 

[ \If ,8 , <p ] = [\If B' 8 B' <P B] + !: [ \If I ,8 I , <p I ] + !: 2 [ \If 2,8 2 , <p 2] + !: 3 [ \If 3,8 3 , <p 3] . (2) 

In addition the expansion for the permeability function and the Rayleigh number is given 

as, 
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(3) 

The basic solution depicted by subscript "B" in Eqn.(2) is given as, 

(4) 

Using these expansions (where necessary) we consider each term in Eqn.(1) separately 

and adopt the following naming convention, where the subscript "E" refers to the energy 

equation. Note that all the terms in the energy and solute balance equations in the case of 

overstable convection are identical to the stationary case except for the time derivatives 

that use a different scaling. For these two equations, this is trivial and only the first term 

in the energy and solute blance equations are affected. The rest of the terms remain 

unchanged. The first term of the energy equation is given as, 

-( 8 8 2 8 8 1 
tI E = - S (J oX I 8~ + EX 1-8 + E X 1-8 - --= <p . 

t 't o 't 8z 
(5) 

Using the expansion for the solid fraction given above and considering Eqn.(5) to the 

different orders of the disturbance amplitudes yields, 

(5a) 

(5b) 

(5c) 
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The other terms in the energy and solute balance equations are exactly the same as that 

evaluated for the stationary case. 

Representing the term containing the time derivative and the permeability function may 

be represented as, 

[
a I a 2 a 2 2] 

TOt = cr 0 --;:::; + 8 -a + 8 -a + 1 + 8 K c<jJ I , at 1 0 1 
(6) 

thereby enabling the Darcy equation containing the slow time and space scales may be 

presented as, 

It should be pointed out that the effects of permeability are only felt at order 0(8 3). With 

this in mind it can be seen that the last term in Eqn.(7) falls away at the first two orders of 

the disturbance amplitude. For these two orders Eqn.(7) is simply divided by TOt , thereby 

simplifying the task of evaluating the Darcy equation to the different orders. Using the 

proposed expansions for the permeability function and the Rayleigh number we may 

consider each term in Eqn.(7) separately for clarity, noting that the variables with the 

sUbscript "D" refers to the Darcy equation. 

Referring to the first term in Eqn.(7) , 

(8) 
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and considering to each order of the disturbance amplitude yields, 

(8a) 

(8b) 

Considering the second term in Eqn.(7), 

(9) 

and developing to the different orders of the disturbance amplitude yields, 

(9a) 

(9b) 

(9c) 

Analysing the third term in Eqn.(7), 
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(l0) 

and considering to the different orders of the disturbance amplitude yields, 

(lOa) 

(lab) 

(lac) 

Recalling the fourth term in Eqn.(ll), 

t = L _a \If _aII--'..( <r.:....:....) 

40 Ot az az ' (11) 

and considering to each order of the disturbance amplitude yields, 

(11 a) 

(lIb) 

( a )a a 2 
t (E 3)=K () ~+l ~~ 
40 c 0 at az az . (llc) 

Recalling the fifth term in Eqn.(7), 
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(12) 

and considering to each order of the disturbance amplitude yields, 

(12a) 

(12b) 

(12c) 

Recalling the sixth term in Eqn.(7), 

(13) 

and considering to each order of the disturbance amplitude yields, 

(l3a) 

(l3b) 

(l3c) 

Recalling the seventh term in Eqn.(7), 
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(14) 

and considering to the different orders of the disturbance amplitude yields, 

(14a) 

(14b) 

(14c) 

Finally recalling the eighth term in Eqn.(7), 

(15) 

and considering to the different orders of the disturbance amplitude yields, 

(15a) 

(15b) 

t (E 3) = K Ta 1/2 V 8q> ~ 
80 c I 8z . (15c) 
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We may now proceed to build the governing system of equations to each order by taking 

into account the terms developed to each order of the disturbance amplitude for the 

energy, solute and Darcy equations. This process is simply achieved by collecting the 

respective terms for each of the energy, solute balance and Darcy equations from 

Eqns.(S-lS) above. 

The governing equations to the leading order are given as, 

(16a) 

(16b) 

(16c) 

which is identical to eqns.(4.37-4.39). 

The system of governing equations to order E 2 , 

s(x cr ~ - ~) q> + R a\jl2 + V 2e = _ Sx aq> , + R [a\jl, ae, _ a\jl, a\jl,] 
, 0 at az 2 cr ax 2 , a't 0 cr az ax ax az (17a) 

(17b) 
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which is identical to Eqns.(4.47-4.49). 

Finally the governing equations to order E 3 were decoupled to provide a single equation 

for the stream function since this form is required to obtain the solvability condition. The 

decoupled equation to order E 3 is exclusive of the slow space scales and is given as, 

( a) a 2 
Rcr () 0 aT + 1 ax RHS1+ V RHS2 , (18) 

where RHS 1 and RHS2 are the non-homogenous terms defined as, 

RHS1 = n R {[ a \If , as 2 _ a \If , a \If 2] + [a \lf 2 as, _ a\lf 2 a\lf ,]_ a\lf ,} 
cr az ax ax az az ax ax az ax (19) 

(20) 

which is identical to Eqns.( 4.60-4.62) 
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Appendix AE : Weak non-linear Analysis - Overstable convection : Derivation of 

the eigenfunctions to the leading order O( E) 

The special case of standing waves is analysed by applying the boundary conditions 

applicable to the stream function adjacent the axis of rotation. This results in the 

following form of the stream function and temperature to the leading order, 

(1) 

(2) 

We now proceed to develop the solution for the solid fraction by stating the solute 

balance equation to the leading order as follows, 

(3) 

Eqn.(3) may be rearranged as, 

(4) 

Using the solution for the stream function stated in Eqn.(1) , Eqn.(4) may then be written 

as, 

(x cr ~ ~)rn 2' 1/2 Rcr [A iT A* "': iT] (-)' ( -) I 0 aT - az 't'l = l1tU ~ Ie + Ie cos sx sm 7tZ . (5) 

The solution to for the solid fraction assumes a solution of the form , 

272 



(6) 

Substituting Eqn.(6) in Eqn.(5) and collecting like indices ofthe exponential terms which 

are a function of time, yields two differential equations that need to be solved, 

d- 2' 1/2R 
2 • - q> I mu cr • _ 

n ycr olMIq> 1- MI ----=- = AI sm(nz) 
dz Cs 

(7) 

coeff( e - iT) d-* 2' 1/2 R 
2 • * - 0 0 q> I m u cr o. _ 

-n ycr oiMlq>I-MI d- = A l sm(nz). 
z Cs 

(8) 

First we start by solving Eqn.(7), 

d- 2' 1/2R 2 • - q> I mu cr . _ 
n ycr olMIq> 1- MI d- = AI sm(nz) . 

z Cs 
(9) 

We first solve the homogenous part of Eqn.(9), 

(10) 

the solution to which is given as, 

(11) 

Solving the full non-homogenous equation (9), 

d- 2' 1/2 R A ---.!.L 2 ·- m U cr I . _ 

d- - n ycr Olq> I = - M sm(nz) , 
z Cs I 

(12) 
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by assuming a particular solution of the form, 

(13) 

Substituting Eqn.(13) in Eqn.(12) and equating like coefficients of like trigonometric 

terms as follows, 

coeff : sine 7t z) 
2· l/2R A 2. 17tU cr , 

7tP2 + 7t ycr alP, = M 
cs , 

(14) 

coeff : cos( 7t Z) (15) 

Resolving these coefficients allows the particular solution to be written as, 

(16) 

where the definition for P2 is given as, 

2· l/2 R 1 A I7t U cr , 

P2 = ( 2 2 2) M . cs 7t 1- 7t Y cr a , 
(17) 

The solution to the solid fraction is given as, 

(18) 

Applying the boundary condition <p, (1) = 0 allows one to solve for the integration 

constant Ce , thus enabling the solution to be written as, 

(19) 
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Using exactly the same procedure as that outlined above, the solution for the solid 

fraction corresponding to the contribution from the complex conjugate yields, 

(20) 

where the definition for P; is given as, 

(21) 

The full solution to the solid fraction may then be presented by substituting the solutions 

in Eqns.(19-20) in Eqn.(6) to give, 

where, 

D;[ e- irr 2Y
O"o('H) - i1tya 0 sin(1tz) + cos(1tz) ]e- iT

} cos(sx) , (22) 

DI = i ( 2 ~ 2)AI ' 
Cs 1- 1t Y a 0 

2 I/2R •. a cr • 

DI = 1 ( 2 2 2) AI· 
Cs 1- 1t Y a 0 

(23) 

Note that Eqn.(22) is identical to Eqn.(4.44) and Eqn(23) is identical to Eqn.(4.46). 

We now proceed to develop the relationship between the coefficients Al and C
I

. Using 

the modified heat balance equation at the leading order, 

(24) 
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and substituting the leading order stream function and temperature solutions yields the 

following form of Eqn.(24), 

(25) 

Equating coefficients of like exponential terms yields, 

(26) 

. 1/2fl R • la ~l cr • 

CI = n(a + 1) AI· (27) 

Eqns.(26-27) compare identically with Eqn.( 4.45). 
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Appendix AF : Weak non-linear Analysis - Overstable convection : Derivation of 

the eigenfunctions to order 0(8 2
) 

The governing equations to order 0((;2) is given as, 

(1) 

(2) 

Decoupling Eqns.(1-2) yields the modified heat balance equation, 

(4) 

which is solved together with the Darcy equation (3), 

(5) 

To omit terms that produce resonance at this order, we obtain particular solutions by 

setting, aA, ja't 0 = O. Eqns.( 4-5) may now be written as, 

(6) 
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(7) 

The homogeneous solution to these equation are exactly of the same form as the lower 

order solutions, except for the coefficients, and may be written as, 

(8) 

(9) 

The relationship between the coefficients are identical to that presented at the lower 

order. It can be very clearly seen that the particular solution to Eqn.(7) is zero, thus 

implying that to this order the full solution for the stream function is simply given as, 

(10) 

which is identical to Eqn.(4.50). We now proceed to solve for the particular solution for 

the temperature at this order. As before we evaluate the right hand side of Eqn.(6) using 

the leading order solutions in the process and present the following form of the equation 

to be solved, 

(11) 

where 

(12) 
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Decoupling the modified heat balance and Darcy equations by applying the Laplacian 

operator V 2 (.) on the Darcy equation (7) and the operator Rer a/ax (.) on the modified 

heat balance equation (11), the result of which is added to provide a single partial 

differential equation for the temperature at this order, 

(13) 

where 

(14) 

The result of the operations on RHS A as depicted in Eqn.(14) is carried out and presented 

as, 

We select a particular solution of the form, 

8 [b b 2il b* -2il] . (2 -) 
2,p = 2 + Ie + Ie sm 7tZ • (16) 

279 



Substituting Eqn.(16) in Eqn.(13) and collecting coefficients of like terms yields the 

following solutions for the coefficients of the particular solution presented in eqn.(16), 

(17) 

(18) 

(19) 

Eqns.(17-19) are identical to Eqns.(4.53-4.55). The full solution to the temperature at this 

order is given as, 

8 - [b + b e2iT + b*e-2iT ]sin(2nz) 2 - 2 I I , (20) 

where the coefficients are defined in Eqns.(17-19). Eqn.(20), incidentally is identical to 

the solution presented by Eqn.( 4.52). 

We now proceed to develop the solution for the solid fraction at this order. Although it is 

not used in any computations henceforth, it will nonetheless be provided very briefly. 

The solid fraction equation that needs to be solved at this order may be presented as, 

(21) 
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A particular solution of the form, 

Substituting Eqn.(22) in Eqn.(21), performing the derivatives and equating the 

coefficients of the like indices of the exponential time terms, allows the terms which are a 

function of z in Eqn.(22) to be solved for. The full solution to Eqn.(22) is complicated 

and great care must be exercised in the algebraic process. The full solution for the solid 

fraction at this order is given as, 

q> 2 = [D2 {ei1t2YCJ (J(Z- I) + inycr 0 sin(nz) + cos(nz)}eiT + 

D; {e-i1t2YCJ(J(H) - inycr 0 sine nz) + cos(nz) }e-iT] cos(sx)­

[F2 {_e2i1t2YCJo('H) + inycr 0 sin(2nz) + cos(2nz)}e2iT + 

F; {- e-2i1t2YCJo(H) - in ycr 0 sin(2nz) + cos(2nz)}e -2iT] cos(sx) + 

G[ cos(2nz) - 1] , 

(23) 

where the amplitude relations for D2 and D; are exactly the same as that presented in 

Eqn.( 4.46). The amplitude relations for F2 , F; and G are given as, 

(24) 

(25) 
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(26) 

Eqns.(23-26) are identical to Eqns.(4.56-4.59). It is very interesting to note that the first 

term in Eqn.(23) resembles the solution to the leading order solid fraction. The two terms 

that follow the mentioned term simply implies the particular solution as a result of the 

nonlinear terms present on the right hand side of the solute balance equation (2). 
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Appendix AG : Weak non-linear Analysis - Overstable convection: Derivation of 

the leading order amplitude differential equation at order 0(E 3
) 

The governing equations to order E 3 was decoupled to provide a single equation for the 

stream function in the form, 

where RHS1 and RHS2 are the non-homogenous terms defined in Eqns.(4.61-4.62). 

Now we multiply Eqn.(l) by the complex conjugate of the leading order solution \jIl and 

note that the stream function \jI 3 is zero at the boundaries of the mushy layer, x E [0, L] 

and Z E [0,1]. The above operation enables the left hand side of Eqn.(l) to cancel off, 

leaving behind the right hand side solution which represents the solvability condition 

given as, 

(la) 

Noting that, 

[ a~ + l]V = _ Ta l/2 a\jll 
at 1 az ' (lb) 

we multiply Eqn.(la) by the operator [a/aT + 1] , thus enabling Eqn.(la) to be expressed 

as, 

283 



(Ic) 

where, 

= {[ a'V, aS2 _ a'V, a'V 2j+[ a'V2 as ,_ a'V 2 a'V'j_ a'V,) 
RHSI Q R cr az ax ax az az ax ax az ax (2) 

(3) 

In Eqn.(3), RHSI and RHS2
m 

stands to identify the right hand side terms which have 

been evaluated from previously known solutions at orders E and E 2 • The evaluation of 

the left hand side is complex from a algebraic point of view hence this process will be 

broken down into several sub-steps in order to maintain clarity throughout. In addition we 

shall refer to RHS2m as RHS2 for clarity. A detailed solution of the first term in Eqn.(3) 

will be provided whilst the final result of the remaining terms will be listed. 

Recalling the first term from Eqn.(3), 

RHS =QR {a'V,as 2_a'V, as2} 
A' cr az aX ax az (4) 
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Using the lower order solutions for the temperature and the stream functions we may 

evaluate Eqn.(4) to be, 

Applying the operator shown in Eqn.(1) on Eqn.(5) as follows, 

yields the following result, 

sine sx) sine 7t z) cos(27t z) + 

sine sx) sine 7t z) cos(27t z) + 

sine sx) sine 7t z) cos(27t z). 

(6) 
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Multiplying this equation by \If I = 2iA~e-iT sin(sx)sin(1tz) and integrating over the 

domain xE[O,L] and zE[O,l] and overtime t E[0,21t] as follows, 

I L 2Jt 

" J J J I ~ RHSA1 = RHS A1 • \If ,dtdxdz , (7) 
o 0 0 

which after integration produces, 

(8) 

The exact procedure is followed for the remaining terms for RHS A and the final form of 

the solution to RHS A is given as, 

(9) 

We now proceed to evaluate the solvability condition contributed by the terms in the 

Darcy equation. Again we will evaluate one term and list the rest. 

Recalling the first term from Eqn.(3), 

(10) 

Using the lower order solutions for the stream functions and the solid fraction that are 

pertinent to the case of overstable convection and solving the first part of Eqn.(1 0), 
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I ( 2 a) 2 RHS 01 = KC<p 1 + ~ V \If 1 , 

yields the following form ofEqn.(ll), 

[
a A .- a A ~ '- j . _ . _ 2in 2(a + 1) __ 1 ell + --e- II sm(sx) sm(nz) , 
a't a't 

where f and f are functions of z given as, z z 

whilst the coefficient Ko is simply, 

( )

2 
/I a I 

RHS01 = -2 cr 0 aT + 1 RHS o 1 , 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

211 

on Eqn.(12) and noting that all exponential terms for time that are of the order f et i2nT dT 
o 

produces a result of zero enables Eqn.(12) to be written in the following truncated form, 
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( )
28AI ·-

4i7t 2(a + 1) 1+ iO" 0 __ ell sin(sx)sin(7tz). 
81 

(17) 

Multiplying this equation by \jf I = 2iA; e -iT sine sx) sine 7t z) and integrating over X E [0, L] 

and z E [0,1] and in time over t E [0,27t]as follows, 

I L 

RHS
O

)'" = J J RHS O)" • \jf )dxdz , 
o 0 

which after integration provides, 

'" 3()(.)2 2 ( *)2 5( )2( . )2 * 8A) RHSo) = -167t a + 1 1 + 10" 0 KcKoK 0 AlA) + 47t a + 1 1 + 10" 0 LAI ----a;, 

where , 

(18) 

(19) 

) L 

K 0 = J J { V' 2 [ (f; + 2fJ: ) cos2 (sx) sine sx) sine 7t z) ]} . sine sx) sine 7t z)dxdz . (20) 
o 0 

Following exactly the same procedure as this for the remaining terms, we evaluate the 

solvability condition contributed by the Darcy terms, to give an expression of the form, 

I 3()(.)2 2 ( *)2 5( )2( )2 * 8A) RHS O final = -167t a + 1 1 + 10" 0 KcKoK 0 A)AI + 47t a + 1 1 + iO" 0 LA) ----a; + 

8 2K K2T A2 * 2 3 2 ( .)2 * 3 2 ( . ) * 8A) 7t c 0 aK) )A) -27t aQRcr 1+10" 0 LAIA)-27t aQRcr 1+10" 0 LAI----a;,(21) 
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where 

(22) 

where D z = djdz . Now the solvability condition is simply be found by adding Eqn.(9) 

and Eqn.(21) and presenting as, 

(23) 

where 

(24) 

(25) 

Reintroducing the original unsealed time as 't = c2X Jt and setting A= cA J and 

A* = cA~ , whilst performing some minor algebra on Eqn.(23), allows the following form 

of the amplitude equation, 

(27) 

which may be further presented as, 
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(28) 

where 

(29) 

Incidentally Eqn.(28) is identical to Eqn.( 4.64). In addition we note that 

(30) 

and the coefficients given in Eqn.(29) contain real and imaginary parts which may then 

be represented in the following manner, 

(31) 

Eqns.(30-31) are identical to the set presented in Eqn.( 4.65). 

The next step involves solving for the individual components of the terms in Eqn.(31). 

Firstly we evaluate the term, 

(32) 

which results in the following form, 

(33) 
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_ 1 21t L ~ 

Nuovo = - JJdeB/dzl-_ dX:dt =1. 2nL z-O o 0 

(13) 

The second term in Eqn.(l2) is given as, 

(14) 

Finally the third term is given as, 

- 1 2J1t LJ{ [c iT C· -iT ] ( - ) NUoV2 = -- -2n 2e + 2e cos sx + 
2nL 0 0 

(15) 

Performing the integration yields the following result, 

(16) 

where 

(17) 

Using the fact that n 2aQR~r = 2(a + 1)2, and using the definition for b2 as provided by 

Eqn.(l7), yields the following result, 

(18) 
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The solution for the Nusslet number is given as, 

(19) 

Noting that A = EA\ and A* = EA~ and AA* = r2, allows Eqn.(19) to be written as, 

- 4(a + 1)0 2 

Nuov = 1+ 2 r . 
1t 

(20) 

Recall that the modulus of the amplitude was found to be of the form r2 = h~4~ ov' where 

~ ov = E 2 = [R/Rcr,ov - 1] . Applying this to Eqn.(20) allows the Nusselt number at the post 

transient state for order E 2 to be given as 

- 4( a + 1)0 h~4 [ ] 3 
Nuov = 1 + 1t 2 R/Rcr,st - 1 + O(E ) V R~ Rcr,ov ' (21) 

Note that h~4 = 1/h~2 and h~2 is defined in Eqn.(4.7S). Eqn.(21) is identical to Eqn.(S.6). 
J 
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