UNIVERSITY OF KWAZULU-NATAL

RELATIVISTIC RADIATING STARS
WITH GENERALISED ATMOSPHERES

GABRIEL GOVENDER



Relativistic radiating stars with
generalised atmospheres

by

Gabriel Govender

Submitted in fulfilment of the
academic requirements for the degree of
Doctor of Philosophy
in the
School of Mathematical Sciences
University of KwaZulu-Natal

Durban

December 2010

As the candidate’s supervisor I have approved this dissertation for submission.

Signed: Name: Date:



Abstract

In this dissertation we construct radiating models for dense compact stars in rela-
tivistic astrophysics. We first utilise the standard Santos (1985) junction condition to
model Euclidean stars. By making use of the heuristic Euclidean condition and a linear
transformation in the gravitational potentials, we generate a particular exact solution
in closed form to the nonlinear stellar boundary condition. Earlier models of spherical
nonadiabatic gravitational collapse are then extended by considering the effect of ra-
dial perturbations in the matter and metric variables, on the evolution of the stellar
fluid and the dynamics of the collapse process. The governing equation describing the
temporal behaviour of the model is solved on the stellar surface. The model becomes
static in the later stages of collapse. The Santos junction condition is then generalised
to describe a radiating star which has a two-fluid atmosphere, consisting of a radiation
field and a string fluid. We show that in the appropriate limit when the string energy
density goes to zero, the standard result is regained. An exact solution to the gener-
alised boundary condition is found. The generalised boundary condition is extended to
hold in the case when the shear is nonvanishing. We demonstrate that our results can

be used to model the flow of a string fluid in terms of a diffusion transport process.
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Chapter 1

Introduction

Research in the field of relativistic astrophysics is crucial in improving our under-
standing of the various physical processes and phenomena that drive the dynamics of
gravitation. From trying to understand the behaviour of neutron stars, quark stars,
black holes, collapse of supermassive black holes and pulsars, to explaining how stars
collapse under gravity to form these compact objects, the field of astrophysics has
become one of the fundamental cornerstones of modern science. The main focus of
this thesis is to study the evolution and dynamics of dense compact stars and stellar
configurations, using the framework of general relativity.

Since the inception of the theory of general relativity, a substantial amount of
research has been completed involving applications to astrophysics. Four notable ex-
amples representing fundamental breakthroughs, in the absence of rotation, in this field

are;

e The generation of the first analytical solution to the Einstein field equations
describing the exterior gravitational field of a static star. The interior and exterior
Schwarzschild solutions provided the first complete relativistic description of the

matter content and spacetime geometry for a star (Schwarzschild 1916a, 1916b).

e The derivation of the physical and mathematical conditions governing the dy-

namics of the gravitational collapse of a star (Oppenheimer and Snyder 1939).
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e The discovery of the first radiating solution to the Einstein field equations which
describes the radial flow of coherent null radiation in the presence of a spherically

symmetric gravitational field (Vaidya 1951).

e More recently, and especially relevant to this thesis, is the construction of the
junction conditions relating the matter and thermodynamic variables on the stel-
lar surface. This is crucial in modeling the radiative transfer of heat energy in

compact stars (Santos 1985).

These basic results, and subsequent developments, have made it possible to completely
model a radiating relativistic compact object in astrophysics. The studies that are
presented in this work are separated into two parts. The first part involves the con-
struction of two exact stellar models in the context of the standard Santos formalism
for radiating stars. The second part considers the generalisation and extension of the
standard Santos (1985) framework. As mentioned earlier, the second part of this study
comprises a major theme of this dissertation, and effectively involves extending and
reconstructing the Santos junction condition. The purpose is to generate a framework
to produce more general and realistic radiating stellar models in future research efforts.

In terms of the standard Santos junction conditions, we first investigate the thermal
evolution and stability of a special class of relativistic stars called Euclidean stars. Her-
rera and Santos (2010) have investigated the general properties of these stars, in both
the nonadiabatic and adiabatic limits, and presented the appropriate stellar boundary
condition that governs the temporal dynamics of the model. Owing to the high degree
of nonlinearity in the boundary condition, no corresponding exact solution was pro-
duced in their studies. Consequently the thermal evolution during the latter dissipative
phases of collapse was left as an open question. With this application in mind, we ex-
tend the existing model for these stars by providing an exact solution to the junction
condition; this is then used to complete the description of the thermodynamics. We

also consider collapse models with heat flow that were first investigated by Govender



et al (2003). In their work they studied the effect of radial perturbations in the matter
quantities and the gravitational potentials on the collapse process. It was demonstrated
that these perturbations allow for the dissipating star to eventually collapse to a static
compact state. Their results are useful in constructing models for compact X-ray pul-
sars, in particular Her X-1 (Sharma and Maharaj 2007). In our contribution to these
efforts, we strengthen existing models by mapping out the complete thermodynamic
evolution of a radiating star through to the final static state. This enables us to study
additional physical features of the model that arise from the perturbations.

In the second part we consider extending the standard Santos formalism to de-
scribe more general matter fields. Our intention is to provide a model which is more
meaningful physically, and to provide viable mechanisms for the radiative transfer of
heat energy in compact relativistic stars. This is effectively done by allowing the mass
function in the Vaidya radiating metric to be dependent on both the Eddington re-
tarded time and the comoving radial coordinate. This means that the emission of the
null photon radiation across the stellar surface is anisotropic and, significantly, the
atmosphere of the star must now be a coupled two-component fluid. We demonstrate
in detail how the new generalised junction conditions are derived from first principles.
We also show by means of direct application that these generalised conditions have the
remarkable consequence that the atmosphere and local interstellar region of such stars
exhibit evolutionary and dynamical behaviour that is still yet to be understood. The
physics governing these compact stellar systems may be far more complicated than in
the standard scenario. This is an area of ongoing research.

This dissertation is organised as follows:
e Chapter 1: Introduction.

e Chapter 2: In this chapter we present a review and background on the funda-
mental concepts of differential geometry, general relativity and relativistic astro-

physics which are essential for constructing the stellar models to be studied. A



number of key definitions and formalisms are highlighted. The Einstein-Maxwell
system of field equations are presented for charged fluid distributions as well as
those for neutral matter. The Oppenheimer-Volkoff equations for gravitational
collapse of stars are introduced and key physical features as well as dynamical

quantities are highlighted.

Chapter 3: We investigate the thermal evolution of radiating Euclidean stars in
dissipative collapse. A particular exact solution, to the second order nonlinear
boundary condition in two variables, is generated by imposing the Euclidean con-
dition and a linear transformation in the gravitational potentials. This solution
is then used, in conjunction with the causal heat transport equation, to construct
the complete temperature, relaxation time and proper radius profiles. This work
and that of chapter 4 are done in the context of the standard Santos (1985)

formalism for radiative transfer in relativistic stars.

Chapter 4: Here we investigate the gravitational and temporal dynamics of stars
that undergo nonadiabatic collapse to eventually reach a static configuration.
We consider the effect of radial perturbations in the metric as well as the matter
variables, on the evolution of the stellar fluid distribution and the collapse process

in terms of the causal and noncausal thermodynamics.

Chapter 5: This chapter forms a substantial and central part of this study. The
Santos (1985) junction conditions for radiating stars are generalised and extended
to include the effect of an additional string fluid coupled with the standard null
radiation field in the star’s atmosphere. This is done by first introducing the
generalised Vaidya radiating solution and the stress energy tensor describing a
stellar atmosphere consisting of a two-fluid system. The new generalised junc-
tion conditions are then derived from first principles by carrying out the smooth
matching of a shear-free interior stellar spacetime to the stellar exterior described

by the generalised Vaidya metric. This result is then verified by considering the
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conservation of photon momentum flux across the stellar boundary. The new
junction conditions are then utilised to study some of the physics of the two-fluid
atmosphere. Profiles for the luminosity and redshift of the emitted radiation are
generated, taking into account the effect of the string fluid in the extended con-
dition on the surface of the dissipating star. We also generate an exact solution
to the generalised junction condition and show that it describes a model in which
a relativistic radiating star is undergoing geodesic heat flow in the presence of a

diffusing string atmosphere.

e Chapter 6: In this chapter we extend the results of the previous chapter by con-
sidering the role of shearing stresses in the interior stellar fluid on the generalised
junction conditions. We verify this result by using an alternative set of geometric
conditions that include the relevant spacetime curvatures without following the
matching process used in chapter 5. The shearing analogue of the modified condi-
tions are then applied to models describing the evolution of the star’s atmosphere

including the diffusion of the string fluid component.

e Chapter 7: Conclusion



Chapter 2

Basic theory for relativistic stellar

astrophysics

Einstein’s theory of general relativity is successful in describing the dynamical be-
haviour of spherically symmetric matter distributions in strong gravitational fields. A
review of the physics of compact objects, black holes and relativistic stellar processes
is provided by Shapiro and Teukolsky (1983). For a recent treatment of cosmological
models see Gron and Hervik (2007). In this chapter, we present the background theory
that enables us to generate a model of a dense compact relativistic star within the
context of a localised astrophysical system. We present a brief outline of the relevant
differential geometry, the Einstein-Maxwell system of equations for charged matter dis-
tributions and the essential physical criteria for a physically acceptable stellar model.
For more extensive details on differential manifolds and tensor analysis, and related
topics, the reader is referred to Bishop and Goldberg (1968), Misner et al (1973) and
Wald (1984). In §2.2, the essential components of differential geometry such as the
Riemann tensor, the Ricci tensor, the Ricci scalar and the Einstein tensor are intro-
duced. These components are required to generate the Einstein field equations which
are the governing equations needed to model a dense gravitating system. We introduce

the energy momentum tensor and the special case of a perfect fluid, for modeling as-



trophysical situations, in §2.3. Then we present a covariant formulation of Maxwell’s
laws of electromagnetism. This allows us to formulate the Einstein-Maxwell system
of equations in which the electromagnetic and matter fields are coupled. In §2.4, the
physical conditions necessary for interior solutions for relativistic stellar systems are
considered. Finally in §2.5, we briefly discuss the concept of stability in stars and
consider the process of nonadiabatic gravitational collapse. We highlight key concepts

such as the Oppenheimer-Volkoff equations and the effective adiabatic index.

2.1 Spacetime geometry

In general relativity, we assume that the spacetime M is a four-dimensional differen-
tiable manifiold endowed with a symmetric, nonsingular metric tensor field g. In local
regions the manifold has the structure of Euclidean space which implies that it may be
covered by overlapping coordinate patches so that special relativity is regained in the
relevant limit. The manifold of general relativity, with an indefinite metric tensor field,
is called a pseudo-Riemannian manifold. The tensor field g represents the gravitational
field and it has signature (— + ++). Individual points in the manifold are labelled by
the real coordinates (z¢) = (2°, 2!, 22, 23), where 2° = ct (c is the speed of light in
vacuum) is the timelike coordinate and z!, 22, 23 are spacelike coordinates. In this
thesis, we use the convention that the speed of light ¢ = 1. For more comprehensive
treatments of spacetime geometry, the reader is referred to the standard text books in
differential geometry such as Bishop and Goldberg (1968), de Felice and Clark (1990),
Hawking and Ellis (1973), Misner et al (1973) and Wald (1984).

The invariant distance between neighbouring points in M is defined by the line

element

ds® = gapda®da® (2.1.1)
The metric connection I' is defined in terms of the metric tensor and its derivatives by

1
[ = _gad(

5 Gedyp + Gabe — Goe,d) (2.1.2)



where commas denote partial differentiation. There exists a unique symmetric connec-
tion I' that preserves inner products under parallel transport (do Carmo 1992). The

Riemannian (curvature or Riemann-Christoffel) tensor R is given by
Rdabc = I‘dac,b - Fdab,c + F6acheb - F60Ldeec (213)
On contraction of (2.1.3) we obtain the Ricci tensor

c
Rab = R acb

= FCab,c - 1—‘cac,b + chcrdab - chbrdac (214)
which is symmetric. On contracting the Ricci tensor (2.1.4) we obtain

R = R%,

= ¢®“Ru (2.1.5)

which is the Ricci (or curvature) scalar.
With these definitions it is now possible to construct the Einstein tensor G, in

terms of the Ricci tensor (2.1.4) and the Ricci scalar (2.1.5), as follows
1
G = R™ — §Rg“b (2.1.6)

Clearly the Einstein tensor G is symmetric. The Einstein tensor has zero divergence
so that

Gy =0 (2.1.7)

)

which follows from the definition of the Einstein tensor (2.1.6). This property is some-
times called the Bianchi identity, and it is a necessary condition to generate the con-

servation of energy momentum via the Einstein field equations.



2.2 Fluids and electromagnetic fields

For applications in astrophysics the matter distribution is described by a relativistic
fluid. The energy momentum tensor for uncharged matter is described by the symmet-

ric tensor T where
Tab — (M+p)uaub +pgab + qaub +qbua _|_7rab (221)

where 1 is the energy density, p is the isotropic (kinetic) pressure, ¢* is the heat flux
vector (q%u,) = 0 and 7 is the anisotropic pressure (stress) tensor (7%u, = 0 = 74,).
These quantities are measured relative to a comoving fluid four-velocity w which is
unit and timelike (u®u, = —1). In perfect adiabatic fluids there are no heat conduction
and stress terms (g% = 0,7% = 0). For a perfect fluid the energy momentum tensor,

equation (2.2.1) becomes

T = (u+ p)u‘u’ + pg™ (2:2:2)

For many applications in large scale and open astrophysical systems, we require that

the matter distribution satisfies a barotropic equation of state

p=p(n) (2.2.3)

on physical grounds. Sometimes the particular equation of state

p=(—1u

where 0 < v < 1, is assumed in galaxy and galaxy cluster astrophysics and cosmology
to describe matter distributions. This is called the linear v equation of state. The case
v = 1 corresponds to pressureless relativistic dust; v = 2 gives a stiff equation of state
(valid for certain white dwarf stars) in which the speed of sound is equal to the speed

of light; v = 4/3 corresponds to radiation. Often the particular equation of state
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where k and n are constants, is assumed in relativistic astrophysics. This is called a
polytropic equation of state and is fundamental for the realistic description of much
stellar matter. Hence, most stars in both the relativistic as well as the Newtonian
limits, are modelled as polytropes. Fang and Ruffini (1983) have provided more details
on polytropic stars.
The Einstein field equations
G = 7% (2.2.4)

govern the interaction between the curvature of spacetime and the matter content in
the absence of electric charge. We have set the coupling constant to be unity in (2.2.4).

From (2.1.7) and (2.2.4) we obtain

T, =0 (2.2.5)

)

which is the conservation of matter.

We define the electromagnetic field tensor F' in terms of the four-potential A by
Fab = Ab;a - Aa;b

which is skew-symmetric. The electromagnetic field tensor can be written in terms of
the electric field E = (E', E?, E3) and the magnetic field B = (B!, B, B?) as follows

0 E'  E? E3
-E' 0 B® B2

F* = (2.2.6)
-E? -B> 0 B

-E* B* -B' 0
The electromagnetic contribution E to the total energy momentum is given by the

result
c 1 cd
Eab = Fach — Z_LgabFCdF (227)

10



To consider the effect of E on the gravitational field it is necessary to express the
fundamental equations of electromagnetism, namely Maxwell’s laws, in covariant form.

The governing equations are given by

Fab;c + Fbc;a + Fca;b = 0 (228&)

Fy, = J° (2.2.8b)

)

where J is the four-current density defined by
J* =ou” (2.2.9)

and o is the proper charge density. For further information on Maxwell’s field equations
(2.2.8) see Misner et al (1973) and Narlikar (2002). Note that the Maxwell equations
(2.2.8) are the basic equations that govern the behaviour of the electromagnetic field
in a curved background.

We point out that the total energy momentum tensor is the sum of T' and E. We are
now in a position to introduce the Einstein-Maxwell system of equations for a charged
fluid in a gravitational field. The interaction between T, E and g is governed by the

Einstein-Maxwell system of equations

G?® = T g (2.2.10a)
Fope + Foca + Foap = 0 (2.2.10b)
Fy, = g0 (2.2.10c)

The system (2.2.10) is a highly nonlinear system of coupled, partial differential equa-
tions governing the behaviour of gravitating systems in the presence of an electromag-
netic field. In (2.2.10a), we use units in which the coupling constant in the Einstein

equations is unity. We need to solve the system (2.2.10) to generate an exact solution;
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one approach is to specify a particular form for the matter distribution and electro-
magnetic field on physical grounds and then integrate the partial differential equations
to find the metric tensor field g. For uncharged matter, the only equation that has to
be satisfied is the Einstein field equation (2.2.10a) with E = 0. Note that from (2.1.7)
and (2.2.10a) we obtain

(T™ + E™), =0 (2.2.11)

which is the total conservation of matter and charge which generalises (2.2.5).

2.3 Physical conditions

We briefly consider the physical conditions applicable to a relativistic stellar model.
For physical viability, any solution applicable to the interior of the stellar body should
match smoothly to the appropriate exterior spacetime. The gravitational field outside

a static spherically symmetric body, in the absence of charge, is given by

2 om\ !
ds? — — (1 _ _m) dt? + (1 — —m) dr? + r2(d6? + sin? 0d¢?) (2.3.1)

r T

which is the exterior Schwarzschild solution. Here the quantity m is the mass of the
stellar body as measured by an observer at infinity. The exterior gravitational field to

a static spherically symmetric body, in the presence of charge, has the form
2 2 2 2\
ds? = — (1 S q—g) dt? + (1 -y q_2) dr? + r2(d6? + sin® 0de?) (2.3.2)
r r r r

In the above ¢ is the constant related to the total charge of the sphere. The line element

(2.3.2) is the exterior Reissner-Nordstrom solution. The radial electric field is

=4

r2
and, consequently, the proper charge density is ¢ = 0. Therefore, the four current

density J = 0 which is consistent with an exterior spacetime with no barotropic matter.

If ¢ = 0 then (2.3.2) reduces to the exterior Schwarzschild line element (2.3.1).

12



Physical conditions will restrict the solutions of the Einstein-Maxwell system (2.2.10)
for a realistic star. It is often assumed by researchers that realistic stellar models for
isotropic matter should satisfy the following conditions:

(a) The energy density u and the pressure p should be positive and finite throughout

the interior of the star. The radial pressure should vanish at the boundary r = b:
O<p<oo, 0<p<oo, p(b)=0

(b) The energy density p and the pressure p should be monotonic decreasing functions

from the centre to the boundary:
d d
& <0, <0

(c) Causality should be satisfied. The speed of sound should remain less than the speed

of light throughout the interior of the star which leads to the condition:

(d) The metric functions € and e** and the electric field intensity £ should be positive
and nonsingular throughout the interior of the star.

(e) At the boundary the interior gravitational potentials should match smoothly to the
exterior line elements (2.3.1) and (2.3.2) for neutral and charged matter, respectively.

This generates the following conditions on the gravitational potentials:

20 = =20 =1 2 (p — ()

) = A0 =1 — 2m 4 Z—z, (E #0)

(f) The electric field intensity £ should be continuous across the boundary for the case

of charged models:

E@®) =%

13



(g) The models should be stable with respect to radial perturbations.

It should be observed that not all relativistic stellar models satisfy the full set of
the conditions listed above throughout the stellar interior; particular solutions may be
valid only in some regions of spacetime. Several examples are listed by Delgaty and
Lake (1998) which become singular at the centre. Such solutions need to be treated
as an envelope of the star and should be matched to another solution valid for the
core. An example of a core-envelope model is provided by Thomas et al (2005). Some
of the conditions (a)-(g) may be very restrictive. For example, observational evidence
suggests that in some stars the energy density g may be not a strictly decreasing
function. However, many researchers, for example Delgaty and Lake (1998), require
that an exact solution satisfy these conditions. In addition, it is interesting to study
the behaviour of anisotropic matter distributions with radial pressures different from
tangential pressures. Such cases were studied by Chaisi and Maharaj (2005), and Dev
and Gleiser (2002, 2003) in the case of neutral spheres; Herrera and Ponce de Leon
(1985) analysed tangential pressures in the presence of charge. Anisotropic matter and
charge distributions may be relevant in the description of quark stars as pointed out by
Sharma and Maharaj (2007) and Komathiraj and Maharaj (2007), respectively. Exact
solutions to the field equations which do not satisfy all of the conditions (a)-(g) are
still of value because they provide useful information which assist in the qualitative

analysis of relativistic stars.

2.4 Gravitational collapse of stars

In general a star is in a state of hydrostatic equilibrium if the governing forces that
dominate in the stellar matter are balanced. These forces are due to the interior
hydrodynamic thermal fluid pressure directed radially outward and the self gravity
due to the stars mass which is directed radially inwards. An internal pressure gradient

from within is responsible for opposing the inward self gravity, and thus keeping it in

14



hydrostatic equilibrium. For a relativistic star, this pressure gradient forms part of a
crucial system of dynamical equations which govern its stability and collapse. These are

called the Oppenheimer-Volkoff equations, and they are written for isotropic pressures

m(r) = %/OT p(z)zid (2.4.1a)
dp  [p+u) [m+ %]
R T (2.4.1b)

where p(r) and p(r) are the radial fluid mass density and pressure, respectively. The
quantity m is interpreted as the gravitational mass of the star. The above system
(2.4.1) describes a star which is static and spherically symmetric (sometimes called
Schwarzschild stars). They are crucial in describing stars which are initially in a static
state before undergoing dissipative gravitational collapse. The system (2.4.1) becomes
important in the early stages of collapse. For more information on (2.4.1) and their
role in the stability and collapse dynamics of relativistic stars, the reader is referred
to Glendenning (2000). For the general principles underlying relativistic gravitational
collapse and the formation of singularities the reader is referred to Penrose (1969).
Once hydrostatic equilibrium is broken, the stellar fluid starts to contract and col-
lapse radially inward and heat energy is released due to the changing gravitational
field. This heat energy is used within the core and envelope regions to aid the dissoci-
ation of fluid particles and to reionize the neutral fluid. The excess heat energy must
then be dissipated across the stellar surface in the form of null radiation by means of
radiative transfer (Phillips 1994). In this thesis we focus on the process of heat dissi-
pation in relativistic stars. During the collapsing phases, it is important to be able to
describe the temporal evolution of the stellar fluid from within the core region through
to the surface across which the radiation is lost. In order to achieve this we have to
solve the Maxwell-Cattaneo equation, a causal heat transport equation, and generate

the corresponding temperature profiles for particular values of the model parameters
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and integration constants. Another physical quantity which is of importance in mod-
elling the temperature evolution in a dissipative collapsing stellar fluid is the effective

adiabatic index

Lepp = [ggﬁiﬂ § (2.4.2)

at the stellar surface . The effective adiabatic index measures the ability of the
stellar matter to resist compression under gravity, and depends on the fluid pressure
and energy density profiles which must be obtained by generating an exact solution to

the Einstein field equations.
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Chapter 3

Thermal behaviour of Euclidean

stars

3.1 Introduction

The study of dissipative gravitational collapse achieved prominence with the presen-
tation of the junction conditions by Santos (1985). Earlier work on collapsing stars in
general relativity assumed the exterior spacetime to be empty and as a consequence,
it was required that the pressure at the boundary vanish. Santos provided the gen-
eral junction conditions required for the smooth matching of a spherically symmetric,
shear-free spacetime to the exterior Vaidya (1951) solution across a timelike hypersur-
face. An important consequence of the matching conditions is that the pressure on the
boundary of the radiating star cannot be zero. It is assumed that the interior of the
star is radiating energy in the form of a radial heat flux. The junction conditions due to
Santos rejuvenated the study of gravitational collapse and the end states of radiating
stars. The simplistic model of Oppenheimer and Snyder (1939) has been generalised
to include pressure (Bonnor et al 1989), anisotropic stresses (Chan 1997), electromag-
netic field (Maharaj and Govender 2000), and the cosmological constant (Govender

and Thirukkanesh 2009). These exact models, although simplified, give much insight
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into the dissipative collapse process as well as physical characteristics of the radiating
star such as its temperature and luminosity.

What makes the study of dissipative collapse of stars particularly difficult is the
solution to the boundary condition representing the conservation of momentum across
the timelike hypersurface. While many exact solutions for shear-free radiating spheres
have appeared in the recent literature, there are very few models that include the effects
of shear in the interior of the star. One of the first exact models of a shearing radiating
star that allowed for an analysis of the gravitational and thermodynamical behaviour of
the stellar fluid was found by Naidu et al (2006). However, their model was restrictive
in the sense that it was acceleration-free, but more importantly, the matter variables
such as pressure and density become infinite at the centre of the star. It was pointed
out that this model could form part of a core-envelope model of a radiating star.
Further exact shearing solutions were obtained by Rajah and Maharaj (2008) in which
it was assumed that the particle trajectories within the stellar core were geodesics.
An analysis of the temperature profiles for these models reveals unphysical behaviour
in that the temperatures closer to the surface of the star become negative. A recent
study of shearing, dissipative collapse considered a model of a spherically symmetric
matter distribution in which the areal radius is equal to the proper radius throughout
the stellar evolution (Herrera and Santos 2010). These Euclidean stars were shown to
exhibit very interesting general properties. In this chapter we present an exact solution
to the boundary condition that determines the temporal evolution of an Euclidean star.
Our solution allows us to study the physical and thermodynamical properties of this
class of stars even when the stellar fluid is far from equilibrium. Since Euclidean stars
are not acceleration-free we are able to draw comparisons with the earlier models of
Naidu et al (2006) and Rajah and Maharaj (2008).

In this chapter we study the dynamical and thermal evolution of these compact
radiating stars and investigate some of the physical features during the collapse process.

In §3.2 we provide the details describing the interior stellar fluid distribution and the
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associated Einstein field equations. The exterior spacetime of the star and the junction
conditions that are valid on the stellar surface are defined in §3.3. Section 3.4 is a
crucial component of this chapter. Here we introduce the Euclidean condition and
generate an exact solution to the boundary condition which will be used to study
the thermal evolution of the model. In §3.5 we present a detailed description of the
thermodynamics. Profiles for the causal and noncausal temperatures, the relaxation
time scale and the proper radius of the collapsing star are generated. Finally some

concluding remarks are made in §3.6.

3.2 Shearing spacetimes

The interior spacetime is described by the general spherically symmetric, shearing

metric in comoving coordinates
ds* = —A%dt* + B*dr* + R*(d6* + sin’® 0d¢*) (3.2.1)

where A = A(t,r), B = B(t,r) and R = R(t,r) are metric functions yet to be deter-

mined. The matter content for the interior is described by

Top = (0 + pr)uats + prgay + (Dr — PT)XaXb + Qalls + Qg (3.2.2)

where p represents the energy density, p, the radial pressure, pr the tangential pressure

and ¢* the heat flux vector. The fluid four—velocity w is comoving and is given by
a 1 a
u = 250 (3.2.3)
The heat flow vector assumes the form
q* =(0,¢,0,0) (3.2.4)

since q“u, = 0 ensuring radial heat dissipation. We introduce the vector x® such that

a

XXa = 1, XU =0 (3.2.5)
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The expansion scalar and the fluid four acceleration are given by

O =u",, (g = ua;bub (3.2.6)
where
A/

«=10,—,0,0 3.2.7
= (0.5.0.0) (327

and the shear tensor by

1

Oay = U(ap) T A(aUp) — gQ(Qab + UqUsp) (3.2.8)

For the comoving line element (3.2.1) the kinematical quantities take the following

form
. %’ (3.2.9a)
o — %(24_2}5;) (3.2.9b)
. % (g _ g) (3.2.9¢)

where dots and primes denote differentiation with respect to t and r respectively. The

nonzero components of the Einstein field equations for the line element (3.2.1) and the
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energy momentum tensor (3.2.2) are

1 (B R\R 1| R R\’ BR B\?
1 [ R A R\YR| 1 /.4 R\R 1
— |9 _ [ _ 2 — (22— + =) = — — 2.1
Pr 22 |°R (A R)R B2(A+R)R g (32100)
1 'B+R_A B+R BR
bro= "0 |\B "R A\B " R) " BR
1 'A// RII A/ BI A/ BI R/
A B AR (A B A 2.1
B|ATR AB+<A B>R] (3.2.10c)
2 (R BR RA
7= E(E"EE_EZ) (32100

This is an underdetermined system of four highly nonlinear coupled partial differential

equations in seven unknowns, viz. A, B, R, u, p,, pr and q.

3.3 Exterior spacetime and junction conditions
The exterior spacetime is taken to be Vaidya’s outgoing solution

ds? — — <1 _ Qm_é“)> dv? — 2dvdR + R? (d6 + sin® 0d¢?) (3.3.1)

where m(v) represents the gravitational energy contained within the stellar radius and
can also be interpreted as the Newtonian mass of the gravitating body as measured
by an observer at infinity. The necessary conditions for the smooth matching of the
interior spacetime (3.2.1) to the exterior spacetime (3.3.1) have been extensively inves-
tigated. We present the main results that are necessary for modelling a radiating star.

The continuity of the intrinsic and extrinsic curvature components of the interior and
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exterior spacetimes across a timelike boundary are

Relation (3.3.2b) determines the temporal evolution of the collapsing star.

m(v)s

HORGE

(¢B)s

2

3.4 Radiating Euclidean stars

(3.3.2a)

(3.3.2b)

Following Herrera and Santos (2010) we impose the condition that the areal radius of

any spherical surface contained within X, with centre placed at the origin, is equal to

the proper radius from the centre through to r = b, the boundary of the star. The

physical consequences of this assumption are discussed by Herrera and Santos (2010).

This implies that

B=R

The Einstein field equations (3.2.10) reduce to

Pr

pr

1
A?

R _,R\R

R °RI|R

'QR_ 2A_R R A1
R A R|R A RR
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(3.4.2b)
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and the mass function becomes

r {2\
m=1 (Z) (3.4.3)

The boundary condition (3.3.2b) yields

R 2

=) S5 - =0 (3.4.4)

B o1 <R>2 AR (A+RA

AR RR'
valid on r = b. We now have a system of six coupled partial differential equations, viz.
(3.4.1), (3.4.2) and (3.4.4) in seven unknowns.

We focus on (3.4.4), as a solution of this equation will yield all the relevant kine-
matical and physical quantities. In doing so, we note that we are requiring (3.4.4)
to hold for all » and not just on the boundary r» = b. Equation (3.4.4) is a nonlin-
ear partial differential equation in the gravitational potentials A(r,t) and R(r,t). We
could analyse it as a quasi-linear partial differential equation in A(r,¢) only. Then
the general solution of (3.4.4) will reduce to a general function of the solutions of two
ordinary differential equations. Unfortunately the resulting equations are still difficult
to solve. As a consequence, we provide a simple solution to (3.4.4) by imposing the

following linear relation

R=¢A (3.4.5)

for which e is an arbitrary constant. (Note that this closes our system of partial
differential equations as we now have seven equations in seven unknown functions.)

This assumption leads to

R(r,t) = [Cy(r)eM! + Cy(r)e*]? (3.4.6)
where
1++3 1-+/3
A= Ao = (3.4.7)

which is the general solution to the resulting form of (3.4.4) with the assumption (3.4.5)

valid for all ». To prevent divergence of the solution it may be necessary to restrict
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(3.4.6) for small time intervals. Utilising the form (3.4.6), the Einstein field equations

(3.2.10) yield

2¢2 [e* [(3 = VB)ChCY + (3 + VB) 1G]]

go= 226
12622 (M C1C e + M CorChe?2t)
+ 226
—2eM! (14 V/3) Oy — 2 (1 —V/3) Oy
DPr = 5
z
C2(y 3t (3 — 2\/§) + C3C) Mt (3 + 2\/5)
pr = - Z’ZG
C1Coel/® [(9+ 2v/3)CleMt + (9 — 2v/3)Che]
B 226
Z
q = —42‘:;

where we have defined
2(rt) = Ci(r)eM’ + Cy(r)et?

The magnitude of the shear tensor is given by

_VBelTHRVINE (0L 01 — C1CY)

223

g

(3.4.8a)

(3.4.8b)

(3.4.8¢)

(3.4.8d)

(3.4.9)

(3.4.10)

The above relation indicates that the shear vanishes when C}(r) oc Co(r). In the next

section we study the thermodynamical properties of our model. In order to ensure that

the shear remains finite and nonzero for all time we make the following choice, as a

specific example, for our metric function
R(r,t) = [(a2 F et 4 (2 +T2)6A2t]2

where a and ¢ are constants and A\; and Ay were defined earlier.
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3.5 Thermodynamics

In this section we investigate the evolution of the temperature profile of our model
within the context of extended irreversible thermodynamics. The causal transport

equation in the absence of rotation and viscous stress is
Th'abe +qo = —K (h'abvbT + Tua) (351)

where hqp, = gap + ugup projects into the comoving rest space, T’ is the local equilibrium
temperature, £ (> 0) is the thermal conductivity, and 7 (> 0) is the relaxational time-
scale which gives rise to the causal and stable behaviour of the theory. To obtain the
noncausal Fourier heat transport equation we set 7 = 0 in (3.5.1). For the metric

(3.2.1), equation (3.5.1) becomes

K(AT)'
B

7(¢B) + A¢B = — (3.5.2)

In order to obtain a physically reasonable stellar model we will adopt the thermody-
namic coefficients for radiative transfer. Hence we are considering the situation where
energy is transported away from the stellar interior by massless particles, moving with
long mean free path through matter that is effectively in hydrodynamic equilibrium,
and that is dynamically dominant. Govender et al (1998, 1999) have shown that the
choice

k=T, Te = <%> T, T = (%) Te (3.5.3)
is physically reasonable for the thermal conductivity x, the mean collision time between
massive and massless particles 7., and the relaxation time 7. The quantities a > 0,
B >0,v>0and w > 0 are constants. Note that the mean collision time decreases
with growing temperature as expected except for the special case w = 0, when it is

constant. With these assumptions the causal heat transport equation (3.5.2) becomes

T3 (AT)'

B(@B)T™ + A(¢B) = —« 3

(3.5.4)
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This equation was comprehensively studied in the noncausal (5 = 0) case by Govinder
and Govender (2001) as well as in specific causal cases. In the noncausal case, (3.5.4)
can be solved to yield

. —4
(AT = “T A*“qB%dr + F(t), w#0 (3.5.5a)

In(AT) = —l/qBZdr + F(t), w=4 (3.5.5b)
«

where F(t) is a function of integration which is fixed by the surface temperature of
the star. Note that 7" corresponds to the noncausal temperature when 3 = 0. For
a constant mean collision time (w = 0), (3.5.4) can be integrated to give the causal

temperature:

g4
«

(AT) [ﬁ / A3B(¢B)dr + / A4q32dr] + F(t) (3.5.6)

In (3.5.3) we can think of 5 as the ‘causality’ index, measuring the strength of relax-
ational effects, with = 0 giving the noncausal case.

The effective surface temperature of a star is given by

(TY)s = (TQ—EQ (%) (3.5.7)

where L is the luminosity at infinity and 6(> 0) is a constant. The luminosity at

infinity can be calculated from
dm

L, =——
dv

(3.5.8)

where m(v) is given in (3.4.3). We are now in a position to analyse the evolution of
the temperature in both the causal and noncausal theories.

Figure 3.1 represents the causal temperature (dashed line) and noncausal tempera-
ture (solid line) as a function of the radial coordinate. It is clear that the temperature
in both the causal and noncausal theories is a maximum at the centre of the star and
drops off smoothly as the radial coordinate increases towards the boundary. This trend
also indicates that the surface layers of the star are much cooler than the interior re-

gions. As in the acceleration-free case studied by Naidu et al (2006) and Rajah and
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Figure 3.1: Causal (dashed line)and noncausal (solid line) temperature profiles versus

radial coordinate.

Maharaj (2008), the causal temperature in Figure 3.1 is everywhere higher than its
noncausal counterpart at each interior point of the star. The causal and noncausal
temperatures are equal at the boundary of the star. Figure 3.1 also reveals that relax-
ational effects account for a larger temperature gradient within the stellar core. This
is expected at late times during the collapse as the stellar fluid is far from hydrostatic
equilibrium.

Figure 3.2 illustrates the trend in the relaxation times for the shear stresses. Fol-

lowing Naidu et al (2006) the shear transport equation yields

—p

S — 3.5.9
m p + %7’00' T4 ( )
where the coefficient of shear viscosity for a radiative fluid
_ A (3.5.10)
e -

was utilised. In (3.5.9) we have used p = 3 (pr — pr) and g is the radiation constant
for photons. We have further assumed that 7, = ;7. where [3; is a constant. Figure
3.2 also clearly shows that the relaxation time for the shear stresses can vary as much

as a factor of 10%s during the evolution of the collapsing fluid. A similar result was
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Figure 3.2: Relaxation time for the shear stress (close to equilibrium - dashed line),

(far from equilibrium - solid line) versus radial coordinate.

found for the acceleration-free model investigated by Naidu et al (2006).

Figure 3.3 shows the proper radius as a function of time. We have followed the
conventions of Chan (2003) in generating Figure 3.3. It is a monotonically decreasing
function as expected since the star is losing mass in the form of a radial heat flux. It is
interesting to note that the formation of the horizon can be avoided in our model even
in the presence of shear, by carefully choosing the arbitrary functions C(r) and Co(r).
Such a choice would ensure that the mass-to-radius ratio 2msy /ry, < 1 is satisfied and
thereby avoids the appearance of the horizon for all time. The horizon-free model of
a radiating, shear-free star undergoing collapse was first considered by Banerjee et al
(2002). The physical viability of this model was studied by Naidu and Govender (2008)
where it was shown that the temperature and luminosity profiles were well behaved

throughout the stellar interior.

3.6 Discussion

We have presented an exact solution that completely describes the temporal and radial

behaviour of a particular class of radiating stars, the Euclidean stars. We have shown
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Figure 3.3: Proper radius versus time.

that the model is reasonably well behaved throughout the collapse process, with the
physical and thermodynamical variables remaining physically viable. Our model of a
radiating star with nonvanishing shear adds to the limited class of such solutions that

are currently available in the literature.
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Chapter 4

Temperature evolution for a

perturbed model

4.1 Introduction

Dissipative processes such as heat generation, shear, particle creation and bulk viscosity
during stellar collapse have been extensively studied in the past. It has been shown in
numerous models that casual transport equations predict thermodynamical behaviour
that are different from their noncausal counterparts. In particular, radiating stellar
collapse has been shown to yield causal temperature profiles which are always higher
within the stellar core. It is well known that during the latter stages of collapse the
core temperature of stars are of the order of 10° K. Using a perturbative scheme in
which the metric functions and thermodynamical variables are perturbed to first order,
Herrera and Santos (1997) have shown that for a temperature range of 10° — 10°K,
the relaxation time may vary from as much as 7 ~ 10%s to as little as 7 ~ 107 s.
Herrera and Santos carried out both Newtonian and post-Newtonian approximations
on the causal heat transport equation. They demonstrated that the causal temperature
gradient can differ as much as five orders of magnitude from the noncausal temperature

gradient.
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It is now our aim to calculate and study the complete temperature profiles of a
compact star undergoing nonadiabatic gravitational collapse to a final static equilib-
rium state. In §4.2 we describe the matter distribution and spacetime geometry of the
stellar interior. The exterior of the star and junction conditions are defined in §4.3. In
§4.4 we construct a radiating model by introducing radial perturbations to first order
in the matter and gravitational variables. The thermodynamics of the compact static

state is studied in §4.5. We summarise our results in §4.6.

4.2 Interior Spacetime

The interior of the star is described by a spherically symmetric line element with

vanishing shear, in comoving and isotropic coordinates, so that
ds* = —A*dt* + B? [dr® + r*(d6” + sin® 0d¢”)] (4.2.1)

where A = A(t,r) and B = B(t,r) are metric functions. The matter distribution for

the stellar interior is represented by the energy momentum tensor of an imperfect fluid
Tup = (1 + p)tuaty + Pgap + qatty + Qotia (4.2.2)

where p is the energy density, p is the pressure and ¢ = (q“qa)% is the magnitude of

the heat flux. The fluid four-velocity u is comoving and is given by
a 1 a
u' = <6 (4.2.3)
The heat flow vector takes the form
q* =(0,q,0,0) (4.2.4)

since ¢“u, = 0 and the heat is assumed to flow in the radial direction. The fluid collapse

rate © = u®,, of the stellar model is given by

B
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The Einstein field equations reduce to

1 B2 1 B B/2+4B’ (4.2.62)
=3 === (2= -—= .2.6a
H 2 B\“B BB
(B BB
P = "p B B “AB
1 (B> _AB 24 2B
— (249 4.2.6b
+BQ< TABE A ) (4.2.6b)

_ QLE 2£§_LE+1£’L
P = "R BB A2p ;AR

1 B/ A// 1 B/Q B//
SET AR B m (4.2.6¢)

2 B BB AB
q = _AB2 <—§+ B2 +Z§> (426(].)

for the line element (4.2.1). In the above system we have used the convention that

overhead dots and primes denote derivatives with respect to the comoving and isotropic

coordinates t and r respectively.

4.3 Exterior Spacetime

Since the star is radiating energy to the exterior it is natural that the exterior spacetime

be described by Vaidya’s outgoing solution given by
2
ds® = — (1 - w) dv® — 2dvdr + ¢ (d6? + sin® 6d¢°) (4.3.1)

Where < (). In order to get a complete description of the radiating star, the interior
spacetime is matched to the Vaidya exterior across a timelike hypersurface. These
junction conditions were first presented by Santos and are widely utilised to model

radiating stars in relativistic astrophysics. Here we present the main results of the
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matching for easy reference. The continuity of the metric functions and the extrinsic

curvature across the boundary X yield

B rs
- (—B?—-r’B.— —B,? 4.3.2
m(v) (2A2 Y >2 (4.3.2a)
ps = (¢B)s (4.3.2b)

where m(v) represents the total mass contained within a sphere of radius r in (4.3.2a)

and (4.3.2b) ensures the conservation of momentum across the boundary.

4.4 A radiating model

Following Govender et al (2003) we consider a model in which the star undergoes
dissipative collapse and evolves to a stable equilibrium state. In order to obtain an
analytical model we impose the following conditions on our metric functions and ther-

modynamical variables

A(r,t) = Ao(r) + ea(r)H(t) (4.4.1a)
B(r,t) = Bo(r)+eb(r)H(t) (4.4.1b)
u(rt) = po(r)+ ea(r,t) (4.4.1¢)
p(r,t) = po(r) +ep(r,t) (4.4.1d)
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where the heat flux is of the order of ¢ (0 < ¢ < 1) and (Ao, By) represent the final

static configuration. For the static end state we have

1 | B [(B)\*® 4B
_ _ L l9bo (Do 250 4.4.2
Ho B2 | "B, (BO) B, (4.4.22)
1| (B> 2By, 24, _A, B}
_ ) 204 2704 920770 4.4.2b
Po B2 (Bo) Rt A T A h ( )

The pressure isotropy equation for the static configuration is

Ay By (AL B)\® 1 [A, B Ap\?
Lo Do) (Lo Zo) 2 (Lo Do) o (o) 4.4,
(A0+Bo) A0+Bo r A0+BO - Ag ! (443)

and the perturbed quantities up to first order in € are

b 1 B\ ? B, 2
i = —3ug—H+— |— (=) b+2( =220 —-2"| H (4.44
i o+ 5 (BO> + (BO T) ] (4.4.4a)
b b .
D = —2pg—H — 2 H
p pOBO A(Q)BO
2 [(B, 1 Al b\ (B, 1\ [a
(2R = L) (=) |H 4.4.4b
+B8 |:(BO _'_7‘ + Ao) (Bo> + Bo + T AO ( )
;o X (g (4.4.4¢)
q = Bg 0B, 4.4c

The condition of pressure isotropy for the perturbed matter distribution yields
al’ b\ al’ b\ /A, B
—_ — —o |l = — 04 70
KAO) +<BO)] KAO) +<BO)] (A0+BO>
1 a b\’ A a\
= — 42— =0 4.4.5
r KA0> i (BO) } T (AO) 445)

Introducing the following parameters

A [(/By 1 A b\ (B, 1\ [a)
c AEDE A EDE] e

A2 b
i () (s

34



allows us to write (4.4.4b) and (4.4.4c) as

b ab b
p = —2pp—H+2—H —2—H 4.4.
P P a2, A2B, (44.72)
4deb .
g = —BH 4.4.7b

Substituting (4.4.7a) and (4.4.7b) into (4.3.2b) we obtain the temporal evolution equa-
tion

H+28H —aH =0 (4.4.8)

where we have taken (pg)s = 0 which is necessary for the static end state. Bearing
in mind that we are investigating a collapse scenario, more specifically the evolution

leading to a final equilibrium configuration, we take
H(t) = Hoe—(b’w\/m%f (4.4.9)

which is obtained by direct integration of (4.4.8) and obeys the following set of bound-
ary conditions

H(t)]1=00 = 0, H{(t)]1=0 = Ho

where Hj is a constant. For the proper description of a physically reasonable stellar

situation we require H(t) to decrease with time, so we must have ay > 0.

4.5 Thermodynamics

Our primary interest is to investigate the physical viability of a collapsing star evolving
into a final static configuration. To this end, we seek to obtain the temperature profile
of our model within the context of extended irreversible thermodynamics. The role
of relaxational effects during dissipative gravitational collapse have been highlighted
in many studies. Previous works have shown that the inclusion of relaxation effects,

especially during the late stages of collapse (when the stellar fluid is far from hydrostatic
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equilibrium) lead to higher temperatures within the stellar core. The causal transport

equation in the absence of rotation and viscous stress is
The Gy + @a = —+ (ha" VT + Tiit) (4.5.1)

where hqe, = gap + uqup projects into the comoving rest space, 1" is the local equilibrium
temperature, £ (> 0) is the thermal conductivity, and 7 (> 0) is the relaxational time-
scale which gives rise to the causal and stable behaviour of the theory. To obtain the
noncausal Fourier heat transport equation we set 7 = 0 in (4.5.1). For the metric

(4.2.1), equation (4.5.1) becomes

K(AT)'
B

7(¢B) + A¢B = — (4.5.2)

In order to obtain a physically reasonable stellar model we will adopt the thermody-
namic coefficients for radiative transfer. Hence we are considering the situation where
energy is transported away from the stellar interior by massless particles (photons),
moving with a long mean free path through matter that is effectively in hydrodynamic
equilibrium, and that is dynamically dominant. Govender et al (1998, 1999) have

shown that the choice

k= T3, Te = (g) T, T = (ﬁl) Te (4.5.3)

y «
is physically reasonable for the thermal conductivity x, the mean collision time between
massive and massless particles 7. and the relaxation time 7. The quantities a@ > 0,
B >0,v>0and w > 0 are constants. Note that the mean collision time decreases
with growing temperature as expected except for the special case w = 0, when it is
constant.

With these assumptions the causal heat transport equation (4.5.2) becomes

T3<(ATY

BgB)T™ + A(¢B) = —a (4.5.4)

In (4.5.3) we can think of § as the ‘causality’ index measuring the strength of relax-

ational effects, with § = 0 giving the noncausal case. For our perturbative model, we
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write

T="To+€TS(t) (4.5.5)

where Ty represents the equilibrium temperature and S(t) is an arbitrary function.

Utilising (4.5.5) in (4.5.4) we obtain

o = 2[5 Guim) 5 i3 4 () ]
SR 2 (45.6)
where (' is an integration constant and
(AoTp) =0 (4.5.7)
Relation (4.5.7) leads to
T — % (4.5.8)

where Cjy > 0 is a constant. As pointed out by Herrera and Santos (1997), this is a well
known result first obtained by Tolman which ensures the existence of a temperature
gradient that prevents heat flux from regions of higher to regions of lower gravitational
field intensity during thermal equilibrium. This result follows since Ay is an increasing
factor of r. In order to investigate the evolution of the temperature we assume that
the end state of collapse is described by the static Schwarzschild interior solution in

isotropic coordinates

(4.5.9a)

2R
By = 4.5.9b
0 142 (4.5.9b)

where (1, (o and R are constants. We can easily calculate the energy density and
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pressure for the static configuration as

wo = % (4.5.10a)
1 265(1 — r2)
Po= (_1+C1(1+r2)—@(1—r2)) (4.5.10Db)

The vanishing of the pressure at the boundary and the continuity of the metric functions

across 2 leads to

G _ 0=
G (1+71%)
and
=7

As demonstrated by Bonnor et al (1989), the physical requirements oy > 0, pg > 0,

po < o and 0 < r < ry, are satisfied provided that

1
e < 3 (4.5.11a)
2m0 47’% 3
= < - 4.5.11b
(8> (1 + 7"%)2 4 ( )
where
4Rr3,
my= ———=—
D)

represents the total mass within the static sphere up to the boundary ¥. Furthermore,

the pressure isotropy condition for the nonstatic configuration is ensured by choosing

a b ]{31
B Bidr + k 4.5.12
AO BO 2 THodr + 2 ( )

where k; and ks are constants of integration.

It is clear from Figure 4.1 that the causal temperature is greater than the noncausal
temperature everywhere within the stellar interior. We must point out that the contri-
butions from T in (4.5.5) to the overall temperature profile T are due to the positive

contribution of 7 and the relaxational effects in 7. Plots of 7 in both the casual and
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Figure 4.1: Causal (dashed line)and noncausal (solid line) temperature profiles versus

radial coordinate.

noncausal cases indicate that 7 is a positive decreasing function from the centre of the
star through to the stellar surface. This perturbative contribution is greatly enhanced
by relaxational effects. Figure 4.1 clearly indicates that the causal temperature gra-
dient is steeper than its noncausal counterpart closer to the core with the difference

dropping off as one gets to the stellar surface.

4.6 Discussion

We have provided a complete description of a radiating star, undergoing dissipative
gravitational collapse in the form of radial heat emission, with the final end state
being static. The temperature profile is obtained for both the casual and noncausal
regimes. It is clear that the temperature induced by perturbations leads to higher core
temperatures. This effect is enhanced by relaxational effects which is noticeable at late
stages of collapse (when the system is far from hydrostatic equilibrium). Our results
confirm earlier findings by Herrera and Santos (1997) in which it was shown that the
causal temperature gradient can be as high as five orders of magnitude greater than its
noncausal counterpart. Our results are also in keeping with the perturbative results of

Govender et al (1999) in which it was shown that for a sphere collapsing from an initial
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static configuration, relaxational effects become dominant during the latter stages of

collapse.
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Chapter 5

Radiating stars with generalised

Vaidya atmospheres

5.1 Introduction

The study of radiating stars in the context of general relativity has generated much
interest in researchers because of the variety of applications in relativistic astrophysics.
These studies are important as they enable us to investigate physical features such
as surface luminosity, dynamical stability, particle production at the stellar surface,
relaxation effects, causal temperature gradients and other thermodynamical processes.
Some relevant references investigating these issues are given by Di Prisco et al (2007),
Govender et al (1998), Herrera et al (2009) and Pinheiro and Chan (2008). Relativistic
radiating stars are also important in the process of gravitational collapse, describing
the final state of stars, formation of singularities and black hole physics, in four and
higher dimensions. Recent investigations in this regard are contained in the works of
Goswami and Joshi (2007), Joshi (2007) and Madhav et al (2005). In particular, the
validity of the cosmic censorship conjecture can be tested in this physical scenario.
The model of a relativistic radiating star undergoing dissipation was completed by

Santos (1985) by analysing the junction conditions at the stellar surface. By matching
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a shear-free interior spacetime to the radiating Vaidya exterior spacetime, he showed
that at the surface the pressure is nonvanishing and proportional to the magnitude
of the heat flux. Subsequently several explicit relativistic radiating stellar models
have been found by investigating the appropriate boundary condition. Kramer (1992)
and Maharaj and Govender (1997) generated nonstatic radiating spheres from a static
model by allowing certain parameters to become functions of time. Kolassis et al (1988)
and Thirukkanesh and Maharaj (2009) assumed geodesic fluid trajectories to produce
new radiating models. In the approach of De Oliviera et al (1985) and Nogueira
and Chan (2004) the model has an initial static configuration before the radiating
sphere starts gradually to collapse. Exact solutions for shear-free interiors which are
conformally flat generate radiating stellar models as shown by Herrera et al (2004),
Herrera et al (2006), Maharaj and Govender (2005) and Misthry et al (2008). Stellar
models which are radiating with nonzero shear are difficult to analyse because of the
complexity of the boundary condition. However even in this case there have been
advances in obtaining exact solutions. Particular exact models have been found by
Naidu et al (2006) and Rajah and Maharaj (2008).

We now seek to generalise the Santos junction conditions by matching a shear-free
interior spacetime to the generalised Vaidya exterior spacetime (Husain 1996). The
energy momentum tensor of the generalised Vaidya spacetime may be interpreted as
a superposition of two fluids, a pressureless null dust and a null string fluid. The
physical properties of the generalised Vaidya spacetime have been discussed by Husain
(1996) and Wang and Wu (1999). Glass and Krisch (1998) have interpreted the exterior
spacetime as a superposition of two fluids outside a relativistic star, the original Vaidya
null fluid and a new null fluid composed of strings. By assuming diffusive transport
for the string fluid Glass and Krisch (1999) found new solutions to Einstein’s equa-
tions with transverse stresses. Physically reasonable energy transport mechanisms have
been generated by Krisch and Glass (2005) in the stellar interior with the generalised

Vaidya metric as the exterior spacetime. These investigations, and other treatments,
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have largely focussed on physical processes in the exterior of the stellar model with
a generalised Vaidya atmosphere. To fully describe a radiating stellar model requires

generation of the junction conditions at the stellar surface. This is now our aim.

8rG

We follow the convention that the coupling constant 7

and the speed of light ¢ are
unity; the metric has signature (— 4+ ++). In §5.2 we introduce the relevant definitions
and theory describing the junction conditions, and we present the junction conditions
in their most general form. We discuss in §5.3 the defining geometries for the interior
and exterior spacetimes, and the respective energy momentum tensors; the Einstein
field equations are presented in full. In §5.4 we perform the matching of the interior
and exterior spacetimes across the stellar surface in detail. The new set of junction
conditions are derived for the generalised Vaidya spacetime. In §5.5 we indicate how
the new junction conditions generalise the junction conditions previously derived by
Santos (1985). The physical significance of our new result is highlighted in terms of a
string fluid. We consider the new junction condition in the context of conservation of
momentum flux across the stellar boundary in §5.6. In §5.7 we discuss the luminosity
and redshift. An exact solution to the generalised boundary condition is given in §5.8.

We discuss the significance of our results in §5.9.

5.2 Junction conditions

Spacetime needs to be divided into two distinct regions, the interior spacetime M~
and the exterior spacetime M™ for a stellar model. The boundary of the star X serves
as the matching surface for M~ and M™. The boundary or stellar surface is a timelike
three-dimensional hypersurface. We assume that ¥ is endowed with an intrinsic metric
Jap SO that

dSQE = gaﬁdfadfﬁ
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The intrinsic coordinates on Y are given by £* where o = 1,2, 3. The line elements in

the exterior and interior spacetimes, respectively, have the form

ds? = GapdX %’
The coordinates in the exterior and interior spacetimes, respectively, are x4 where
a=10,1,2,3. For consistency we require that

(ds)s = (ds*)x = ds, (5.2.1)

so that the line elements match on the boundary Y. This implies that the coordinates
of ¥ in M¥ are YL = x4(£%). It is clear that the first junction condition (5.2.1) is
generated by the continuity of the metric across .

The second junction condition is generated by the continuity of the extrinsic cur-

vature of ¥ across the boundary. The extrinsic curvature of ¥ is defined by

+ _ + 82Xi +1a aXl:)t ox4

K+ = — — —_— 2.2
aff Ny 8&"‘8{5 Mgl be 8§a 855 (5 )

In the above nE(x4) are the components of the vector normal to 3. The second

junction condition is then given by
(Kis)e = (K 5)s (5.2.3)

Note that the junction conditions (5.2.1) and (5.2.3) are equivalent to the Lichnerowicz

(1955) and O’ Brien and Synge (1952) junction conditions.

5.3 Interior and exterior spacetimes
The line element for the interior manifold M~ is given by

ds* = —A%(t,r)dt® + B*(t,r)[dr* + r*(d6? + sin® 0d¢?)] (5.3.1)
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in comoving and isotropic coordinates. The interior spacetime is expanding and accel-

erating but is shear-free. The following Einstein tensor components

BQ AQ B B/Q 4 B
- _ 92 _ — 3.2
Goo e ( 5T B) (5.3.2a)
Gy, = 2 BB — B'B — BBA/ (5.3.2b)
0n = 32 1 .O.
_ 1 - ,A
1 A A2
B”* +2BB — B2 “BB’ 3.2
s ( - Tt B ) (5.3.2¢)
_ ,BB _, . A B
G22 = —27’ F+2 BBE—T ﬁ‘i‘
A/ B/ A// 2B/2 B//
TZ + ’f’E + r? A -r 32 + r? § (532d)
Gy = sin® 0G5, (5.3.2¢)

are nonvanishing for the shear-free metric (5.3.1). In the above dots and primes denote
differentiation with respect to the coordinates ¢t and r respectively. A physically relevant

interior matter distribution that is consistent with (5.3.1) and (5.3.2) is given by
T,y = (4 P)uaty + Pgab + Gatly + Qila (5.3.3)

where p is the energy density, p is the isotropic pressure, ¢, is the radial heat flux

vector and u® = %58 is the comoving fluid four-velocity. The Einstein field equations
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G, =T, for the interior manifold M~ are given by

B2 1 (. B" B? 4B
=Sk \*E BB

B BB
_ 1 (B B AB
P = g B B “AB

+1 B’2+2A’B’+2A’+2B’
B? \ B2 AB rA rB

B opdb B 14
A?B A3B  A’B?  rAB?

p = —2

1 B/ A// B/2 B//
rB3 AB? B* B3

2 (B BB AB
= A\ "B B "AB

where we have used (5.3.2) and (5.3.3).

The line element for the exterior manifold M™ is taken to be

m(v,r)

ds® = — (1 - 2—’) dv? — 2dvdr + r?(d6? + sin® §d¢?)

r

(5.3.4a)

(5.3.4b)

(5.3.4¢)

(5.3.4d)

(5.3.5)

where m(v,r) is the mass function, and is related to the gravitational energy within a

given radius r (Lake and Zannias 1991, Poisson and Israel 1990). This metric is often

called the generalised Vaidya spacetime since it reduces to the Vaidya spacetime when

m = m(v) which is the mass of the star as measured by an observer at infinity. The
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following nonzero Einstein tensor components

2 (r—2m)
Gl = —r—zquﬂ +2——m, (5.3.6a)
+ 2
Gy, = —rmy (5.3.6¢)
G, = sin?0G3, (5.3.6d)

are all defined in terms of m = m(v,r) and we have used the notation

_Im _Om o
- ov’ = v

or’ dr

My

where 7 is a timelike coordinate on the hypersurface.
It has been demonstrated by Husain (1996) and Wang and Wu (1999) that an

energy momentum tensor consistent with (5.3.5) and (5.3.6) is

TH = T 410 (5.3.7a)
TS = il (5.3.7b)
TS = (p+P) (lany + lyna) + Py (5.3.7¢)

which represents a superposition of a pressureless null dust and a null string fluid. In
general T.b represents a Type II fluid as defined by Hawking and Ellis (1973). The
null vector {* is a double null eigenvector of the energy momentum tensor 7.;. The
weak and strong energy conditions, and the dominant energy conditions are satisfied

for proper choices of the mass function m(v, r).
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In (5.3.7) we have introduced the two

I, = &

1
_{1_
2

Ng

where [,[*

exterior manifold M™ are then given by

=

P

where we have utilised (5.3.6) and (5.3.7).

null vectors

(5.3.8a)

m(v,r)

r

2 ] 60 + 0} (5.3.8b)

nen® = 0 and [,n* = —1. The Einstein field equations G: =T ;g for the

—27% (5.3.92)
2% (5.3.9b)
[ (5.3.9¢)

We interpret fi as the energy density of the

null dust radiation; p and P are the null string energy density and null string pressure,

respectively.

5.4 Matching

The intrinsic metric to the hypersurface ¥ is defined by

dst = —dr* + )? (d@2 4 sin? 0dq§2)

with coordinates £¢ =

on X and the coordinates are comoving. [

the hypersurface X is defined by

f(t,?") =

(5.4.1)

(1,0,¢) and Y = V(7). The timelike coordinate 7 is defined only

n the interior manifold M~, the equation of

r—ry =20
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where 7y is a constant. This implies that the vector df/dx® is orthogonal to .

Therefore the unit normal vector to X is
n, = 1[0, B(rs,t),0,0] (5.4.2)

On the hypersurface ¥ we must set dr = 0 in (5.3.1) and when comparing with (5.4.1)
we find

A(rs,t)dt = dr (5.4.3a)

reB(rs,t) = (1) (5.4.3b)

for the first junction condition (5.2.1).
The extrinsic curvature K_; can be evaluated with the quantities (5.2.2), (5.3.1)

and (5.4.2). The surviving nonzero components are

B 1A
Kll = (_EZ)E (544&)
K5, = [r(rB)g (5.4.4Db)
K; = sin®0K,, (5.4.4c)

which are valid on the stellar surface X. In the exterior region M™ the stellar surface

is defined by the equation

f(r,o)=r—rg(v)=0

Consequently the vector orthogonal to the stellar surface ¥ is ai]; = (—%, 1,0, O).
+

Then the unit vector normal to the hypersurface > can be written as

9 —1/2
nt = (1 Ay zdi) (—C;E, 1,0, 0) (5.4.5)
v
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For the exterior region M™ the first junction condition (5.2.1) yields the results

2
(1——m+
r

(5.4.6a)

), - @)
dv ) s, dr )

(5.4.6b)

- (#),

when comparing the line elements (5.3.5) and (5.4.1). Using equation (5.4.6b) the unit

normal vector (5.4.5) can be written as

(5.4.7)

In the above we have utilised the notation

f =

dr dv

V=

dr’ dr

The extrinsic curvature K, may now be evaluated from the quantities (5.2.2), (5.3.5),

(5.4.6b) and (5.4.7). The nonvanishing components of the extrinsic curvature tensor

are calculated and are given as follows

+
Kll -

+
K22

+
K33

vomm,
LAY L 4
p vr2+vr}2 (5.4.8a)
2
; (1 - —m> r rF] (5.4.8b)
r 2
sin? 0K, (5.4.8¢)

which are valid only on the stellar surface . Observe the appearance of the term

containing m, in K;; which does not exist in the treatment of Santos (1985). As we

shall see later this has a profound effect on the physics of the model.
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Equations (5.4.3) and (5.4.6) correspond to the first junction condition (5.2.1).
Observe that the quantity 7 was defined on the surface > as an intermediate variable.

On eliminating 7 we find that

2m drz 1/2
A(rs, t)dt = <1 - —+ 2—) dv (5.4.9a)
s dv
re(v) = rB(rs,t) (5.4.9b)

Equations (5.4.9) are the necessary and sufficient conditions for the first junction con-
dition (5.2.1) to be valid.
By equating the extrinsic curvature components (5.4.4) and (5.4.8) we generate the

second set of junction conditions (5.2.3). These are given by

1A [ _my
<—§Z>E = i +UT:|E (5.4.10&)

-0

| @n
Sl 3

(r(rB))y = v (1 - Q—m) r+ rF} . (5.4.10Db)

r

The mass profile in terms of the metric functions can be generated by eliminating r, r

and 0 from (5.4.100) with the help of (5.4.3) and (5.4.6). We find that

rB 232 1 9

which is the total gravitational energy contained within the stellar surface ¥. From

m(v,r) = (5.4.11)

by

(5.4.3a) and (5.4.6a) we can produce the relationship

. B
E—TA
b3

Using this expression for fy and substituting equation (5.4.11) into the junction con-

dition (5.4.10b) we obtain the following expression

. B  (rB) -
Uy = (TZ + T) . (5412)
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Now differentiating the above expression with respect to 7, and using the restriction

(5.4.3a) on the surface, we get

A I B/+B B BA+B/B— v (5.4.13)
v = A TB TA T’A2 TBQ TB TA A,

>
Then substituting (5.4.12) and (5.4.13) into the junction condition (5.4.10a) and using

the restrictions (5.4.3b) and (5.4.6a) on the surface, we get
N\ -1
LA _ (B, B
BA) ~ "BT'a

m, B rB? r B2 1 ( B B B'B . A)
— + = r——4r——r

il 22 .t
X 2L B 'aAT " m TP

2BA2 A

2

. . . . . . . B’ B e
This expression may be simplified further: multiply with 1 + 72 + rZ and utilise

(5.3.4b) and (5.3.4d). We then arrive at the result

m
— (¢B -2 )
b <q r?B2?/ s

which generalises the junction condition of Santos (1985).

Hence we have demonstrated that equations (5.4.10) are equivalent to

rB 232 1 9
TTL(’U, I’) = 7 (1 +r ﬁ — ﬁ(B + T'B/) ) . (5414&)
my
p = (qB—Zr—2>E (5.4.14b)

We have shown that (5.4.14) are the necessary and sufficient conditions for the second

junction condition (5.2.3) to be valid.

5.5 Santos conditions generalised

We have generated the relationships (5.4.9) and (5.4.14) so that the junction conditions
(5.2.1) and (5.2.3) are satisfied for the shear-free interior spacetime (5.3.1) and the gen-

eralised Vaidya exterior spacetime (5.3.5) across the hypersurface ¥. This generalises
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the Santos (1985) result for a relativistic radiating star when m = m(v). Observe that

when m depends on the coordinate v only then (5.4.14b) becomes
p=¢qB (5.5.1)

at the boundary X, which is the earlier Santos junction condition. When (5.5.1) is valid
then the pressure p on the boundary depends only on the heat flux q. We have shown
here that if m = m(v,r) then (5.4.14b) is valid, and the pressure p on the boundary
depends on the heat flux ¢ and the gradient m,(v,r).

The generalised Vaidya spacetime has physical significance and contains many
known solutions of the Einstein field equations with spherical symmetry. It contains
the monopole solution, the de Sitter and Anti-de Sitter solutions, the charged Vaidya
solution and the radiating dyon solution. The physical features and the energy mo-
mentum complexes, that provide acceptable energy momentum distributions for these
systems, have been studied by Barriola and Vilenkin (1989), Chamorro and Virbhadra
(1995), Virbhadra (1990a, 1990b,1999) and Yang (2007). Glass and Krisch (1998,1999)
and Krisch and Glass (2005) have interpreted the generalised Vaidya spacetime to rep-
resent a superposition of an atmosphere composed of two fluids: a string fluid and a
pressureless null dust fluid. This atmosphere may model several physical situations
at different distance scales, eg. the exterior regions of black holes (distance scale of
multiples of the Schwarzschild radius) and globular clusters containing a component of
dark matter (distance scale of the order of parsecs). The additional term 2% in the
boundary condition (5.4.14b) arises from the matching at the surface 3. This quan-
tity has physical significance and can be interpreted as a particular contribution from
the energy momentum tensor. We observe that the term 2% in (5.4.14b) is the same
quantity as that in (5.3.9b). Therefore we may interpret the quantity 27 as the string
density p.

We can therefore write (5.4.14b) in the more transparent form

p=1aB - sl (5.5.2)
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at the boundary >. Consequently for a radiating star with outgoing dissipation in the
form of radial heat flow, with the generalised Vaidya spacetime as the exterior, the
pressure on the surface depends on the interior heat flux ¢ and the exterior string den-
sity p. The appearance of the quantity p in (5.5.2) allows for more general behaviour
that was the case in the Santos (1985) treatment. From (5.5.1) we observe that ¢ = 0
implies that p = 0 on ¥ and the exterior manifold M™* must be the Schwarzschild exte-
rior metric with m being constant. In (5.5.2) we note that we obtain the Schwarzschild
exterior geometry when ¢ = 0 = p. However it is clear from (5.5.2) that when ¢B = p
then p = 0 on X and the exterior spacetime remains the generalised Vaidya spacetime
with m = m(v,r). In addition, when ¢ = 0 then p = —p on ¥ and the interior is not

radiating.

5.6 Momentum Flux

It is possible to provide a physical interpretation of our result by consideration of the
momentum flux across the boundary ¥. Since the quantity (5.4.14a) represents the
total gravitational energy for a sphere of radius r within ¥ we can write m(v,r) =

m(t,r). Partially differentiate (5.4.14a) with respect to t to give

<8m) _(7“333 rP*BBB r3BB%2A
>

. 3B/B/ 3B/2B
) = Iy: z ) (5.6.1)

ST T yE B o

Then using the interior field equations (5.3.4b) and (5.3.4d) we can write (5.6.1) as

O 3, 2
(8_7;) — BB L ABB+rB)g (5.6.2)
>

Now taking note of (5.4.14b) and simplifying (5.6.2) we obtain

om r?pA 2m,\ r? A 2m, \ 72 A
(), =55 () e ()™ 56

where we have used (5.4.3a). Using the standard property of partial differentiation

dm = mydv + m,dr we have

v
(E) § = ;mv + ;mr (5.6.4)



Finally (5.6.3) and (5.6.4) yield

2 2
py = ——50"m, — —
.

m, (5.6.5)

which reduces to the corresponding Santos (1985) equation when m = m(v).

The radial flux of momentum across the hypersurface ¥ is defined by
F* = cgon T

where eam and n*® are vectors which are respectively tangent and normal to . For

conservation of momentum flux across X we must have
Ft=F" (5.6.6)

In the interior manifold M~ we have the forms

—a 1 a
_ 1
nt = —511’

and T}, is given by (5.3.3). Then we can generate the quantity
F~ = 4B (5.6.7)

In the exterior manifold M™ we have the forms
2 dr —1/2 dr
+a — 1-Z2 9 a ' sa
e ( rm—i— dv) (50+d1}51)

2
ntt = —o8)+ [‘r’+@ (1 — —m)] &
r
and T} is given by (6.2.11). This produces the quantity

F* = =v°m, (5.6.8)



which is the same as (5.4.14b). Therefore the junction condition (5.4.14b) corresponds
to the conservation of the radial flux of momentum across the hypersurface 3. It

represents the local conservation of momentum.

5.7 Surface redshift and luminosity

The junction condition given by (5.5.2) effectively relates the isotropic fluid pressure
on the stellar surface to the interior heat flux and the exterior string fluid density. This
relationship should have an effect on observable quantities measured on the surface of
the star as well as in the surrounding region. Investigations carried out by Chan (1997,
2003) show that the surface redshift and luminosity and the asymptotic luminosity play
a crucial role in understanding the formation of astrophysical black holes during the
radiative gravitational collapse of a dense star. In general, the redshift of the emitted

photon radiation observed on the stellar boundary is given by the equation
zp =4/ ——1 (5.7.1)

where Ly is the luminosity of the radiation on the surface of the star and is given by

dv\” dm
L = — | — -
B <d¢) dv
dv\ Om dt
= —|— | —=— 5.7.2
(dT) ot dr ( )
where % is given in terms of the interior gravitational potentials by
. -1
dv B (rB)
%—T is given in terms of the isotropic pressure p and the magnitude of the heat flux ¢
by
0 1 :
a_n; = (p?“SB2B + qr?ABX(B + rB’)) (5.7.4)
and
dt 1
— = 5.7.5
dr A ( )
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L, represents the luminosity of the radiation as measured by a stationary observer at

an asymptotic distance (r — oo) away from the radiating star and has the form

dm

L, = —
dv

om dt [dv\ "

With the new generalised junction condition (5.5.2), equation (5.7.4) can be rewritten

in the form

L ABN 1, ., B
— = ——pr°’B B+ A —preAB° |1 — .
5 SP" (7‘ +A+r— |+ pr +rg (5.7.7)

and using (5.7.7), (5.7.5) and (5.7.3) in (5.7.6) and (5.7.2) we are able to construct the

general forms for the surface and asymptotic luminosities as follows

1, (B @B\ B\ |
Ly = 2rB p(TA—i- B p 1+TB
(B (rB)

1 (B (B B |
Lo, = 57“232 p(rz—i-%)—P(l—H“E) TZ+T> (5.7.8b)

It is interesting to note that in the above system L., and Ly differ by the quantity

. A2
(r% + (Tg) ) . When p = 0 we have that

) 2
_122 _122 B (rB)
L2—2T’Bp7 LOO—Qer TA—I— 5 (5.7.9)

which are the standard results so that p # 0 for the generalised Vaidya metric generates
different values for the surface and asymptotic luminosities. Remarkably the form of

Ls remains the same as in the standard scenario, and can be written as

Lo
Lg dv -2

Now with the system (5.7.8) and equation (5.7.1) we can generate the surface redshift

5= (rE + (TB),> L (5.7.11)

the ratio

as follows
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Observe that the structural form of the surface redshift (5.7.11) does not change from
the standard form; however the gravitational potentials A and B in (5.7.11) are different
from the interior potentials as they now satisfy the Einstein field equations as well as
a new junction condition, namely equation (5.5.2). In view of this fact it would be

appropriate to now relabel the new set of metric potentials in the following way
A— X, B—Y

and with the above, equation (5.7.11) may be recast as

5 = (rz + (TY),) L (5.7.12)

X Y

This distinguishes the surface redshifts for the standard Vaidya and generalised Vaidya
metrics. We can consider (5.7.11) as a special case of (5.7.12).

We can summarise our results as follows:

e In the limit when p = 0 (when p = ¢B), we regain the standard forms for the

surface and asymptotic luminosities.

e A stationary observer, located at some asymptotic distance (r — oo) away from
the star, observes a much weaker luminosity signal when the atmosphere of the

star contains the string fluid (when compared with the standard Vaidya exterior).

e The surface redshift for the generalised Vaidya metric contains the standard result

even though the structural form for the formula remains the same in both cases.

5.8 An exact solution

We now turn our attention to relativistic stellar models in which the null fluid parti-
cles move along geodesics from the core and up through to the stellar surface where
the radiation is lost to the exterior. Such models were investigated by Govender

and Thirukkanesh (2009), Rajah and Maharaj (2008) and Thirukkanesh and Maharaj
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(2009). In particular the Govender and Thirukkanesh model studied a radiating star
undergoing geodesic heat flow in the presence of the cosmological constant. This sit-
uation may be interpreted as a star dissipating energy while immersed in a spacetime
background filled with a fluid having negative pressure. These works were carried out
using the standard Santos junction condition p = ¢B. We would now like to extend
these models by using the new generalised junction condition (5.5.2), and making use
of the fact that the stellar atmosphere is now a well defined two-fluid system. For
our investigations, we consider the string fluid density p to be constant on the stellar
surface and as we will see in the next chapter that this is not physically unreasonable
as this situation corresponds to the diffusion of the string fluid.

For geodesic motion of fluid particles in heat dissipation, the gravitational potential

A = 1. The fluid pressure and radial heat flux are given by

B B 1 (B? 2B
o\ E) e\ FE s (o:5:12)

2 B BB
¢ = - <_§+ B2> (5.8.1b)

from (5.3.4b) and (5.3.4d) respectively. The condition of pressure isotropy admits the

following analytical form
d

e (t)r? — co(t)

for the gravitational potential B. Here d is an arbitrary constant and ¢;(t) and cy(t)

B(r,t) = — (582)

are functions of integration which have to be determined in order to complete the exact
solution. With the above system (5.8.1) and the form (5.8.2) the generalised junction

condition given by (5.5.2) may be written as
—4db(0.162 — Clég)(cle — 02) — 46102(61()2 — 02)2 — 2d2(01b2 — CHQ)(Cle — CQ)

+5d*(¢1b* — ¢3)* — pd*(c1b* — ¢3)* =0 (5.8.3)

where we have taken r = ry, = b = constant, on the stellar surface. It is important to

note the presence of the additional term that arises due to the presence of the string
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fluid density p # 0. The density p is taken to be constant on the stellar boundary
and this corresponds to the diffusion of the string fluid in the exterior of the star. In
the limit when the string density goes to zero, we regain the earlier equation obtained
by Thirukkanesh and Maharaj (2009). To integrate (5.8.3) we make use of the new
transformation

u(t) = c1b* — ¢ (5.8.4)
Then equation (5.8.3) can be rewritten as

4bdu®cy + 4(u® — bdi)ue, — 4*u>c} = d* [(2uii — 50°) + pu’] (5.8.5)

Equation (5.8.5) is a Riccati equation in ¢; but is still difficult to solve in general. If

we let u = a (constant) then (5.8.5) becomes

e b, d
—C — -2 = — 5.8.6
T S T (5:86)
We now make use of the transformation
dw
= ——— 5.8.7
“ bw ( )
where w(t) is an arbitrary function. Then equation (5.8.6) becomes
. a . P
— —w =20 0.8.8
R YRR (5:88)

which is a second order linear ordinary differential equation with constant coefficients

and can be easily integrated. The general solution to equation (5.8.8) is given by
w(t) = gi(t) exp [Mt] + ga(t) exp [Ast] (5.8.9)

In the above solution g;(t) and g2(t) are functions of integration and

)\_1 a2__a )\__1 a2_+0z
YEo Ve P ) 2= 9 \Vee P W

Then the functions ¢;(t) and ¢y(t) become

A [a® (= 8) = ga(t) (& +m) exp(—np)| N
al) = =3 92(0) T g2(0) exp (1) (5:8.108)

~ o bd | gi(t) (0= 53) — 92(t) (5 + ) exp(—nt)
cot) = D) g1(t) + ga(t) exp(—nt) —a  (5.8.10b)
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Consequently the gravitational potential B has the form

—2db
e (0) (1= 1) —92(8) (g +n) exp(—nt) (5.8.11)
910 (1—53) =92 (gg+tn) exp(—nt) | 19 o
d g1(t)+g2(t) exp(—nt) (b r ) + 2boy

and the metric has the form

4d*v?
2 2 2, 2 (02 L w2 g2
ds* = —dt* + Q0% 2 1 2] [dr? + r* (d6* + sin® 6d¢?)] (5.8.12)

where €(t) is an arbitrary function given by

@) (n—3) — 9:(t) (&5 + 1) exp(—nt)
=T O F s el 81

in terms of ¢1(¢) and go(t).

Our new exact solution (5.8.12) is similar, in structure, to the solution found by
Govender and Thirukkanesh (2009). However our model results from a different physi-
cal scenario since the atmosphere of our star does not contain the cosmological constant
A, but a two-fluid system in which one of the components is a string fluid. This model
corresponds to geodesic heat dissipation in a relativistic star when the string fluid in
the stellar atmosphere is undergoing diffusion. The solution (5.8.12) can now be used
in the framework of irreversible causal and noncausal thermodynamics, as in the previ-
ous chapters, to study the temperature evolution of the radiating star. This is ongoing

research.

5.9 Discussion

In this chapter we have produced a general model of a relativistic radiating star by
performing the smooth matching of a shear-free interior spacetime to the generalised
Vaidya exterior spacetime, across a timelike spatial hypersurface. We have demon-
strated that with the generalised Vaidya radiating metric, the junction conditions on
the stellar surface change substantially, and consequently represents a more general at-

mosphere surrounding the star. The atmosphere is a superposition of the pressureless
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null dust and a string fluid. We find that the density of the string affects the fluid

pressure at the stellar boundary. We have shown explicitly that

P = qB — Pstring

at the stellar surface. If the weak and strong energy conditions or the dominant energy
conditions are satisfied then pstring > 0 (10 # 0) and psiring > Postring > 0 (10 # 0)
respectively. This indicates that for outgoing heat flux in gravitational collapse, the
string density reduces the pressure on the stellar boundary. It is interesting to note
that we have shown using a geometric approach that the derivative of the mass function
with respect to the exterior radial coordinate is related to the string density.

We have also demonstrated the importance and impact that the generalised junction
condition has in constructing physically viable star models, as well as its crucial role in
describing the physics of relativistic stellar atmospheres. Our new junction condition
has been directly applied in the construction of the luminosity and redshift profiles
on the stellar surface as well as in the local atmosphere of the star. We have shown
explicitly, that these luminosities have a different form from the standard results. It
was also found that the surface redshift of the emitted null radiation is affected by the
new junction condition since the metric potentials are different. The metric potentials
have to satisfy the new generalised condition on the stellar boundary.

The generalised junction condition has also been used to extend the models of
Govender and Thirukkanesh (2009) and Thirukkanesh and Maharaj (2009). We have
extended the model of a radiating star undergoing geodesic heat flow in the presence
of a generalised atmosphere. An exact solution to the generalised junction condition
(5.5.2) was found in terms of elementary functions. Even though the form of the
solution is the same as Govender and Thirukkanesh (2009) we are in a position to
model a two-fluid atmosphere with a constant string energy density. In future work we

intend to relate our results to astrophysical objects.
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Chapter 6

Generalised junction conditions

with shear

6.1 Introduction

Exact solutions of the Einstein field equations describing stellar configurations have
formed an active area of research within the framework of relativistic astrophysics.
The discovery of the Schwarzschild metrics (1916a, 1916b) have enabled researchers
to model various static stars with a wide spectrum of interior matter distributions in-
cluding perfect fluid sources, charged interiors and anisotropic matter. However, these
static models may represent only a small part of a star’s evolution. Observations indi-
cate that stars in general are continuously radiating energy to the exterior spacetime
while undergoing gravitational collapse. With the discovery of the exterior Vaidya radi-
ating solution (1951), it became possible to model a dynamically unstable, relativistic
star emitting null radiation across the stellar surface. The Vaidya solution is a unique
spherically symmetric solution of the Einstein field equations which describes a pure
radiation atmosphere. The junction conditions required for the complete description of
a spherically symmetric, shear-free stellar core undergoing nonadiabatic collapse with

a radiation atmosphere was first provided by Santos (1985). In this scenario, an imper-

63



fect contracting sphere with radial heat flow is matched to Vaidya’s outgoing metric
across a timelike hypersurface. The main feature of the junction conditions require
that the pressure at the boundary of the star be nonzero which differed from static
interiors matched to the exterior Schwarzschild solution. In the latter, the pressure at
the boundary was required to vanish as there was no heat flux across the surface of the
star.

The Santos junction conditions have subsequently been generalised to include shear,
electromagnetic field, bulk viscosity and nonsphericity. These models have produced
a rich vein of physically tractable stellar models including acceleration-free collapse,
collapse from an initial static configuration, gamma-ray bursts, expansion free collapse
and FEuclidean stars. The physical viability of these models have been extensively
studied within the framework of extended irreversible thermodynamics. Relaxational
effects have been highlighted within the stellar interior, particularly in the late stages
of collapse.

In the previous chapter the Santos junction conditions were generalised to describe
stars that have a two-fluid atmosphere. The exterior of such a star is described by
the generalised Vaidya solution in which the dynamical mass is a function of both the
temporal and radial coordinate. The generalised Vaidya solution has been widely em-
ployed in the study of the end state of gravitational collapse. It was shown that the
energy momentum tensor that is consistent with the generalised Vaidya solution con-
sists of a two-component fluid of strings and null radiation. In the previous chapter we
have shown that the matching of a general spherically symmetric, shear-free radiating
stellar interior to the exterior generalised Vaidya spacetime requires that the pressure
on the boundary be nonvanishing, similar to the Santos junction conditions. The main
difference is that the string density makes a contribution at the boundary. This is an
important result which highlights the role of the string component of the atmosphere
on the internal dynamics. We now aim to extend the results of the previous chapter

to include the effects of shear in the interior of the radiating model.
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In §6.2 we present the generalised junction condition for a radiating star with non-
vanishing shearing stresses. The Lichnerowiscz and O’ Brien and Synge conditions are
studied in detail in §6.3. The junction conditions are derived using a geometric argu-
ment. In §6.4 we study some physical features of the generalised boundary condition
and investigate models of isotropic strings and string fluid diffusion. Finally, in §6.5

we discuss our results.

6.2 Generalised junction conditions

The stellar interior is taken to be the most general relativistic fluid having nonzero

shear, expansion and acceleration and is described by the line element
ds® = —A*dt* + B*dr® + R* (d6” + sin® 0d¢?) (6.2.1)

Here A, B and R are the metric potentials describing the gravitational field inside the
star and are functions of the interior comoving coordinates ¢ and r. The interior stellar

fluid is described by the following energy momentum tensor
T, = (1t + p)uaty + Pgab + Tab + Gatp + Qolla (6.2.2)

where p and p are the energy density and isotropic pressure respectively, u, and g, are
the fluid four-velocity and the heat flux vectors respectively, and 7, is the anisotropic
stress (pressure) tensor. In general the anisotropic pressure tensor has the following

form

3

Here p, is the radial component of the interior pressure, pr is the tangential pressure

1
Tab = (pr = Pr) (nanb - —hab) (6.2.3)

component, and n is a unit radial vector given by
1
B

n® = =4t (6.2.4)

The interior isotropic fluid pressure p is related to the radial and tangential components

of pressure by the equation

1
P=3 [pr + 2p7]
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The kinematical quantities associated with the metric (6.2.1) may be given as

1 (B R

1 (B _R
0 = Z (E + 2E> (625b)
a = % (6.2.5¢)

where o is the shear, © is the scalar expansion and a is the fluid acceleration. The

energy momentum tensor (6.2.2) admits the following nonvanishing components

Too = pA? (6.2.6a)
T,, = —qAB (6.2.6b)
T, = pB? (6.2.6¢)
Ty = prR? (6.2.6d)
Ty = sin?0Ty, (6.2.6¢)
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and we may write the nonzero components of the Einstein curvature tensor as

BR R* A*| R’ R° _BR B
- — 9= - - 2 - — 2.
e 52T B2t e 25T R (6.2.7a)
R BR RA
Gy, = 2| —=-—==—-=2= 6.2.7b
01 ( R BR R A) ( )
B2 i R A R\ R A R\ R B2
- = T |9 _ (9L _ 2| 22—+ — | = — — 2.
e = |2 (A R)R +<A+R>R o (027
G* — _R_2—§+E_é §+§ +§E
2 = "A2|B"R A\B R) BR
R2 'A// R// A/ B/ Al B/ R/
*Eﬂf+§“25'(2‘§»ﬂ (6.2.7d)
Gy = sin?0Gs, (6.2.7¢)

where dots and primes represent derivatives with respect to the coordinates ¢ and r
respectively. With the systems (6.2.6) and (6.2.7) the Einstein field equations G, = T,

for the stellar interior become

(6.2.8a)

2 BR 1 1 R 1 R" R* _B'R
A2BR A2R2 B2\ R ' R2 B R

po= ———+ﬁ+————(2—+——2

[ AR g
Pro= "o |“RT“AR " R

1 [ AR R?] 1
— —  (6.2.8b)

+§[ZE+§4 R

' Ak BR
AR BR

B

* B

o &
=v] eok
o | s

pT:_ﬁ

B AR AB AR BR (6.2.8¢)

1 'A// R// A/ Bl A/ R/ B/ R/:|

2 R BR RA
¢ = ~am <___|___+_—> (6.2.8d)



Note that using the system (6.2.5), the heat flux (6.2.8d) may be rewritten in terms

of the dynamical quantities as follows

/

1
qB = 5(@ — o) — o (6.2.9)

We observe that in the above equation (6.2.9), if the interior stellar fluid is not shearing
and expanding (0 = 0,0 = 0), then the heat flux ¢ must vanish and the star is not
radiating. The stellar interior may be nonradiating (¢ = 0) but can still be shearing
and expanding.

The exterior spacetime of the star is described by the generalised Vaidya line element

ds® = — (1 — QM) dv? — 2dvdr 4 r?(d6? + sin® §d¢?) (6.2.10)

where m(v,r) is the mass of the star as observed at infinity. The atmosphere of the
star is considered to be a two-fluid system consisting of a pressureless null dust and a

null string fluid and is defined by the following energy momentum tensor
T8 = filaly + (p+ P) (Lny + lona) + Py (6.2.11)

where fi is the energy density of the null dust and p and P are the energy density
and pressure of the null string fluid respectively. Wang and Wu (1999) have provided
a detailed description and analysis of the above energy momentum tensor (6.2.11),
for relativistic stars having an atmosphere that is described by the generalised Vaidya
radiating metric. The nonvanishing components of the Einstein curvature tensor for

the metric (6.2.10) are given as follows

2 (r—2m)
Gy = —r—2mvv2 + 2 (6.2.12a)
4 2
Gy, = —rmy (6.2.12¢)
G, = sin?0Gy, (6.2.12d)
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and the relevant components of the energy momentum tensor for (6.2.10) are given by

+
TO 0

+
TO 1

+
T22

. 2m
AH'P—TP

r’P

(6.2.13a)

(6.2.13b)

(6.2.13¢)

Using the systems (6.2.12) and (6.2.13) the Einstein field equations G, = T} for the

exterior manifold M™ may be written as

3 My o

po= —2 2 (6.2.14a)
my

p = 23 (6.2.14D)

p = (6.2.14c)

which is of the same form (5.3.9).

In general, the junction conditions can be derived by carrying out the smooth
matching of the interior and exterior spacetime geometries across the stellar surface
Y} following the procedure in chapter 5. This process requires the use of the first and

second fundamental forms. The first fundamental form is written as
(ds)s = (ds*)x = dss, (6.2.15)

and relates the interior and exterior spacetime metrics on the stellar surface ¥. We

can show that condition (6.2.15) yields the following equations that hold on the stellar
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surface

2m dl’z 1/2
Alrs, )dt = (1——+2—> dv (6.2.16a)
rs dv
re(v) = rB(rg,t) (6.2.16Db)

The extrinsic curvature for the interior and exterior spacetimes are given by the second

fundamental form

(Kis)s = (K p)s (6.2.17)
where
aQXa axb aXc
K = —n* o A =2 2.1
aff n, (95"‘855 g L be 850‘ 855 (6 8)

Making use of the first and second fundamental forms (6.2.15) and (6.2.17) and per-
forming lengthy calculations as in chapter 5, we are able to generate the junction

conditions which are valid on the stellar surface >.. They are written as follows
R R\ (R’
= — |1 - - = 2.1
m(r,t) 5 |1t <A> (B> (6.2.19a)

pr = ¢B—22" (6.2.19h)
r

We can also generate these junction conditions using the Lichnerowiscz (1955) and O’

Brien and Synge (1952) conditions.

6.3 Derivation of the master equation

6.3.1 The Lichnerowiscz junction condition

The Lichnerowiscz (1955) approach is the first part of a geometric method that can be
used to derive the junction condition that relates the matter variables on the stellar

surface. A comprehensive discussion of this technique, for the modelling of a radiating

70



star, is provided by de Oliveira et al (1987). The Lichnerowiscz junction condition may

be written in general as
[Gagnanﬂ} =0

This can be written more precisely as
Goan®n’ = Gimin! (6.3.1)

The left hand side of equation (6.3.1) represents the relationship between the geometry
of the interior manifold and the three dimensional spatial hypersurface and the right
hand side represents the relationship between that of the exterior manifold and the
hypersurface. Gﬁﬁ are the intrinsic and extrinsic components of the Einstein curvature
tensor and 7n¢ are intrinsic and extrinsic vectors that are tangent to the stellar surface.

In the stellar interior the components of the Einstein curvature tensor are given by

the system (6.2.7) and the interior tangent vector has the form

1
ne = (0, E’O’O) (6.3.2)

The left hand side of the Lichnerowiscz condition in equation (6.3.1) may be written

as

G;gnfnf = Gfmlni

For the exterior spacetime M™ the Einstein curvature tensor components are given by

the system (6.2.12) and the exterior tangent vector has the form

e = (—@,F + (1 _ 2?) 5,0, o) (6.3.4)

In the above we have utilised the notation

ﬂ dv
dr’ dr

R
I
|

f =
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where 7 is a timelike coordinate on the spatial hypersurface. The exterior Lichnerowiscz

condition on the right hand side of equation (6.3.1) may be written as

Gl = Gannl + Ginlnl + Gimind + Giinint

2d ;
_ LMy 5T (6.3.5)

r2 dv r2
With (6.3.3) and (6.3.5) the Lichnerowiscz condition given by equation (6.3.1) can be

written as

Pr=———0"—2— (6.3.6)

which defines the radial fluid pressure.

6.3.2 The O’ Brien and Synge junction condition

The O’ Brien and Synge (1952) approach is the second part of the geometric method
that can be used to derive the general junction condition that is valid on the stellar

surface. In general the O’ Brien and Synge junction condition can be written as
[Gapl®™n’] =0
and this may be written more precisely as
Goglon” = Gl (6.3.7)

The O’ Brien and Synge condition relates the geometry of the interior and exterior
manifolds to the spatial hypersurface and is defined in terms of two distinct intrinsic
and extrinsic tangent vectors [§ and ni. For the interior manifold we make use of the

tangent vector given by (6.3.2) and the new vector [%:

e = <0, %,0,0) , 1* = (£,0,0,0) (6.3.8)

where
dt
dr

+y
I



We may write the O’ Brien and Synge condition for the stellar interior in the following

way

Golon’ = GoplPn® +Golont + Gilin® + Gpltnt

— —¢B (6.3.9)

In a similar manner the right hand side of equation (6.3.7) for the exterior O’ Brien
and Synge condition may be written in terms of the exterior tangent vectors given by

(6.3.4) and 1¢:

1
ne = (—17,F+ (1—2T> @,o,o), 1 = (6,:—?—17(1—2T> ,0,0)
r v r

(6.3.10)

The exterior O” Brien and Synge condition can now be written in expanded form as

GLltnl = Galin) + Galln! + GHlin}

2dm _,
——7 3.1
R (6.3.11)
We can now write down the form of the O’ Brien and Synge condition by utilising

equations (6.3.9) and (6.3.11) which yields

2 d
—¢B = r—2£@2 (6.3.12)

which defines the heat flux.

6.3.3 The general junction condition

The Lichnerowiscz and O’ Brien and Synge conditions can now be combined to generate
the general junction condition on the stellar surface. With the Lichnerowiscz condition

we obtained the equation

Pr=———0" —2—- (6.3.13)



It is clear that the Lichnerowiscz condition relates the radial pressure in the stellar
interior to the energy densities of the null dust and null string fluid in the stellar
exterior. The interior radial pressure is balanced by the exterior energy densities on

the boundary of the star. The O’ Brien and Synge condition generated the equation

2dm _
—qB = TQ%”Q (6.3.14)

It can be seen that on the stellar boundary the interior heat flux is equal to the exterior
null dust energy density. This confirms the fact that the null dust that is present in
the atmosphere of a radiating star is due only to the presence of a nonzero interior heat
source, namely the radial heat flux. Relating (6.3.13) and (6.3.14) we can generate the

junction condition

My
pr=qB—2-5 (6.3.15)

Note that this is precisely the result (6.2.190) that we have obtained by performing
the formal matching of the interior and exterior spacetimes across the stellar surface
obtained by following the general procedure as in chapter 5. Observe that the second
term on the right hand side of equation (6.3.15) corresponds to the string density p in
the exterior Einstein field equation (6.2.14b) hence equation (6.3.15) may be written
in the more compact form

pr=qB—p (6.3.16)

This result has the same form as in chapter 5 but in this case the shear is nonzero, and

consequently (6.3.16) is a new differential equation.

6.4 Some qualitative features

The junction condition (6.3.16) is crucial in modelling a relativistic radiating star, as
it explicitly relates the interior matter variables to the exterior matter variables on the
stellar boundary. For an interior stellar fluid that has nonzero shear, the radial pressure

is balanced by the interior heat flux as well as the energy density of the exterior string
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fluid. It is possible that for a shearing anisotropic stellar fluid, the radial component
of pressure may be zero (p, = 0). In such a case the above junction condition demands

that the interior heat flux is balanced by the exterior string density

gB = p (6.4.1)

In this case, although the pressure on the surface is zero the interior of the star is
still radiating and the stellar atmosphere is still a two-fluid system. When the stellar
interior is not radiating the radial heat flux must vanish (¢ = 0) and this results in the

radial pressure balancing the string density on the surface,

Pr=—p (6.4.2)

Here the pressure must decrease towards the boundary and is possibly suppressed by

the density of the exterior string fluid.

6.4.1 Two-fluid models

A number of radiating stellar models for which the interior is shearing and anisotropic
and the atmosphere is a two-fluid system have been investigated. Glass and Krisch
(1998, 1999) and Krisch and Glass (2005) have extensively studied various physical
situations for the dynamics of the atmosphere which is described by the generalised
Vaidya radiating metric and the resulting null dust and string fluid system. These
treatments were carried out for general spherically symmetric spacetimes; Ghosh and
Deshkar (2010) have subsequently extended and generalised these models to include
plane symmetric as well as cylindrically symmetric spacetime geometries. In these
treatments the authors concentrated only on the physics of the interior or the exterior
of the radiating star. We have shown that the junction conditions are satisfied if

(6.3.16) holds, and now the model can be treated as a single system.
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6.4.2 Isotropic string fluid

An isotropic string fluid is described as a cloud of strings for which the string pressure
is isotropic, i.e. P, = P,. This condition of pressure isotropy results in the following
differential equation for the string fluid mass

Mgy my

2r r2

which upon integration admits the radial mass profile
m(v,r) = r’ci(v) + ca(v) (6.4.3)

Using the above mass (6.4.3) the junction condition (6.2.19) in terms of the exterior

radial mass gradient m, becomes
pr = qB — 6¢1(v) (6.4.4)

This is the governing equation that has to be solved in order to provide a more complete

model of an isotropic string atmosphere.

6.4.3 Diffusive transport

It is possible to model the flow of a string fluid in terms of a diffusive transport
process. Diffusion has been used in the description of cosmic strings by Vilenkin
(1981). Tt is also largely understood that diffusive processes may play a pivotal role in
understanding quantum gravitational fluctuations (Percival 1995, Percival and Strunz
1997), particularly in the very early stages of the universe. For diffusion of the exterior
string fluid, the string number density n and the string fluid density p are related by
the following equation

p = Mn

where M, is the constant string element mass. The governing diffusion equation for

the string fluid is written as

B
i = 4Dl
-

(6.4.5)
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Here D is the positive coefficient of self diffusion, which is taken to be constant. It
has been shown by Glass and Krisch (1999) that the above diffusion equation can be
solved for p and the resulting solutions then integrated to generate forms for m. These
analytical forms for p and m are exact solutions to the exterior Einstein field equations
in the region outside the star and may be interpreted as either anisotropic fluids or

diffusing string fluids. The above mentioned solutions are given below

p = pot+hki/r (6.4.6a)
p = po+ (ky/6)r* + kyDu (6.4.6b)
p = po+ ks(Dv)=3?exp[—r?/(4Dv)] (6.4.6¢)
p = po+ (ke/r) exp(—k3Dv)[sin(kar) + ks cos(kar)] (6.4.6d)

where pg is a static or constant string fluid density. The explicit spatial dependance of
the above density profiles (6.4.6) now allow us to investigate their asymptotic behaviour
as well as their effect on the junction condition (6.3.16).

It is clear that the density solutions given by (6.4.6a), (6.4.6¢) and (6.4.6d) represent
spatially decaying behaviours, i.e. the string fluid density decays as the distance from
the stellar surface and the stars atmosphere increases. These solutions also show that in
regions very far away from the stellar atmosphere (r — oo) the string fluid density must
become constant (p — pg). The evolutionary behaviour exhibited in these profiles are

consistent with diffusion of the string fluid. With the density solutions (6.4.6a), (6.4.6¢)
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and (6.4.6d) the junction condition (6.3.16) takes the following forms respectively

pr = qB—po—Fki/r (6.4.7a)
pr = 4B~ po— ks(Dv)"*?exp[—r*/(4Dv)] (6.4.7b)
pr = qB — py— (kg/r) exp(—kiDv)[sin(kyr) + ks cos(kyr)] (6.4.7¢)

It is important to note that in the above system (6.4.7), the radial pressure at the
stellar surface is dependent on the static string fluid density po. If the constants py,
ki, k3 and kg are all strictly positive then the radial pressure remains reduced and is
consistent with the outflow of null radiation. If these constants are strictly negative
then the radial pressure at the surface of the star is increased and this does not depict
behaviour that is physically reasonable. The junction condition (6.3.16) thus places

the restriction on the density solutions (6.4.6a), (6.4.6¢) and (6.4.6d) that
Po > 0, k’l > 0, k‘g > 0, ke >0 (648)

for the acceptable description of a radiating stellar system with a two-fluid atmosphere.

Glass and Krisch (1999) have shown that the density solution given by (6.4.6b) has
two distinct types of behaviour. When ky > 0, the string fluid density grows with
increasing radius and is not realistic, and when ks < 0, the density decays with radius
indicating that the string atmosphere could be bounded. With the density profile

(6.4.6b) the junction condition (6.3.16) becomes
pr = qB — po — (k2/6)r* — kDo (6.4.9)

For the above form of the junction condition (6.4.9) we have the restriction that py >

0, k2 > 0 in order to have an acceptable radial pressure at the surface of the star.
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6.5 Discussion

The general junction condition on the surface of a relativistic radiating star having
an interior stellar fluid with nonzero shear has been presented. The matching of the
interior spacetime geometry to that of the exterior shows that on the stellar boundary
the interior radial pressure is related to the interior heat flux as well as the exterior

string fluid energy density as follows

pr=qB—p

We have also demonstrated that the above junction condition can be derived alter-
natively by using a systematic geometric approach which involves the Lichnerowiscz
and the O’ Brien and Synge conditions. In this treatment the junction conditions on
the stellar boundary have been obtained purely from the geometry of the spacetime
manifolds, and consequently it is the geometry that prescribes the way in which the
interior and exterior matter variables of a relativistic radiating star are related on the
spatial hypersurface. Physically reasonable stellar situations have been discussed and
the associated governing equations are highlighted. These equations are consistency
equations and must be solved as differential equations on the surface in order to yield
exact radiating models. In future we intend to use our results to construct more com-

plete models of astrophysical objects.
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Chapter 7

Conclusion

The major theme of this dissertation has been to generalise the stellar junction con-
ditions that are necessary for the well defined modelling of the radiative transfer of
heat energy in dense compact relativistic stars. The extended junction conditions may
be used to model a radiating star with a two-fluid atmosphere. In addition to this, it
has been our aim to construct new models for radiating relativistic stars, both in the
standard as well as the new generalised formalism. Within the standard framework
of a radiating star, we have studied the exact thermal behaviour of a special class of
relativistic stars by making use of the ‘Euclidean condition” which allows one of the
gravitational potentials to be transformed away. These Euclidean stars were modelled
as having interior gravitating fluids with nonvanishing shear and undergoing nonadi-
abatic spherical gravitational collpase with a radial heat flux. Furthermore, we have
also investigated models in which a compact star is evolving under the action of radial
perturbations in the metric as well as matter variables. It has been demonstrated that
these perturbations play a pivotal role in the various stages of collapsing stellar mate-
rial and that the late phase thermodynamics and matter behaviour are substantially
affected.

We now provide an overview of the main results obtained during the course of our

investigations:
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e In Chapter 2, we provided the basic theory that is essential for the construction
and study of stellar and other localised astrophysical systems within the context of
general relativity. A concrete formalism for the geometry and matter distribution
in the presence of strong spherically symmetrical gravitational fields on curved
spacetime backgrounds was provided. Stability criteria and physical conditions
for the general dynamics as well as gravitational collapse of stars were briefly

discussed.

e Chapter 3 focussed on a study involving a special class of radiating stars which
satisfy a transformation property called the Euclidean condition. In these Eu-
clidean stars the areal radius, which is the radius measured according to a chang-
ing area, is equal to the proper radius of the dissipating star, as measured from
the central core region to the outer surface layer. The governing second order
nonlinear ordinary differential equation

E+1<5>2_4§_@4+_M:0
R 2\R

was examined on the stellar boundary. A particular analytical solution which is

regular, well behaved and without any singularities at the centre of the star was

found. The new radiating solution
R(r,t) = [Cy(r)eMt 4 Cy(r)e!]”

enabled us to study the causal and noncausal thermal evolution of the collapsing

stellar matter from the central core region up to the stellar surface.

e In Chapter 4 we investigated the effects of radial perturbations in the gravi-
tational as well as the matter variables for a radiating star. A perturbative
construction was adopted to allow for a relativistic star to undergo nonadiabatic
spherical collapse which eventually leads to a static compact stellar configuration.

These perturbations affect the dynamics of the dissipation as well as the collapse
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and they have a marked impact on the thermodynamics of the stellar model. The

boundary condition has the exact solution
T(t) — Toe—(/32+\/042+5%)t

which ensures that the model becomes static in the later stages of evolution. An
expression for the perturbed temperature can be found explicitly, and this plays
a major role in understanding the thermal evolution of the model in the final

stages just before reaching equilibrium.

Chapter 5 extends the formalism developed by Santos in 1985. The Santos junc-
tion condition indicates that for a dense star undergoing nonadiabatic gravita-
tional collapse, the interior fluid pressure is proportional to the magnitude of
the heat flux across the star’s surface. The exterior of the star is described by
the conventional Vaidya solution with outgoing null radiation that is radially
isotropic with mass function depending only on the retarded time. We know
that the Santos junction condition can be generalised and extended by allowing
the mass function to be dependant on both the retarded time and comoving ra-
dial coordinates. The extrinsic curvature of the star’s interior and exterior were
matched and we were able to arrive at the following new generalised junction

condition
p= qB — Pstring

which shows that the interior isotropic fluid pressure now has an additional de-
pendance on the exterior string fluid energy density. The effect of the additional
string fluid, on the atmosphere and local exterior region of the star was investi-
gated by generating the surface and asymptotic luminosity profiles as well as the
surface redshift and showing that they are reduced by the string energy density.

We also generated a new exact solution to the expanded form of the generalised
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junction condition given by

4d%v?

ds* = —dt* +
[Q(t)(b? — r?)d + 2ba]

5 [dr2 +r? (d92 + sin? 9d¢2)]

This solution provides a physically meaningful interpretation of the idea of a

dissipating star in the presence of a two-fluid atmosphere.

e In Chapter 6 we extended the results of chapter 5 for a fluid having nonvanish-
ing shear and showed that the same junction condition holds and that the radial
component of the pressure now depends on the heat flux as well as the string den-
sity. An alternate geometric approach to derive the generalised junction condition
was also provided utilising the Lichnerowiscz and O’ Brien and Synge conditions.
The physical impact and importance of the new junction condition were further
studied by applying it to the two-fluid star models proposed by Glass and Krisch
(1998, 1999) and Krisch and Glass (2005).

It has been clearly shown in this dissertation that the junction conditions on the stellar
boundary are crucial for the construction of physically reasonable and acceptable mod-
els of dissipating stars in relativistic astrophysics. In view of the fact that our central
result for the generalised Vaidya metric is new, it will have far reaching consequences
for the framework and formalism for radiating stars. It is our aim, in future work, to
apply our result to previous stellar models constructed and to provide more concrete
solutions to existing problems. The results presented in this thesis will be directly

applied to the following stellar astrophysical problems:
e The geodesic motion of fluid particles in radiating stars.
e The horizon-free gravitational collapse of stars.
e Collapse of dense stars from an initial static configuration.

e Radiating stars with conformal flatness.
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e Radiating stars having electromagnetic fields.

e Stellar models with polytropic equations of state.

amongst many others. This will form the basis for work to be carried out in the future.
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