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Abstract 

Most tomato cultivars used for commercial food production are imported into South 

Africa. Optimal growing conditions for these specific cultivars need to be determined, as 

wrong cultivar choices can lead to great financial losses. Lack of information on selecting 

well-performing cultivars may lead to lower yield or unacceptable fruit quality. Information 

on the performance of tomato cultivars under South African conditions, utilizing plastic 

tunnels or shadenet structures under soilless cultivation is still very limited. Soilless 

cultivation of vegetables is becoming a preferable over in-soil cultivation due to the 

improved yield and quality of produce, efficient water and nutrients usage by the crop; 

furthermore, the grower can regulate nutrient solution, electrical conductivity and pH of the 

nutrient solution.   

To identify the optimal system for growing tomatoes hydroponically, the performance 

of four tomato cultivars (‘FA593’, ‘Miramar’, ‘FiveOFive’ and ‘Malory’) under different 

growing conditions was evaluated: directly planted in soil under 40% shadenet with drip 

irrigation, a closed hydroponic system under 40% shadenet, an open bag system under 40% 

shadenet, or an open-bag system in a temperature controlled as well as a non-temperature 

controlled tunnel. The study revealed that ‘Miramar’ performed better than the other cultivars 

in all production systems, with the exception of soil cultivation where there were no 

differences amongst the four cultivars. Fruit cracking was found to be directly correlated with 

fruit size, as the large-sized cultivars ‘Malory’ and ‘FA593’ were more susceptible than the 

other two cultivars. Plants grown under shadenet were prone to fruit cracking and raincheck 

as well as early blight. Higher yields were obtained when plants were produced in the open 

bag system under temperature controlled conditions and in the closed system under shadenet. 

Growing tomatoes in the non-temperature controlled tunnel resulted in high incidences of 

fruit cracking, poor yield and pre-mature fruit ripening probably due to high and fluctuating 

temperatures under such conditions. The average marketable yield was 88% and 59% of the 

total yield in the temperature controlled and non-temperature controlled tunnels, respectively.  

A further experiment was carried out to improve yield and quality of tunnel tomatoes 

using beneficial micro-organisms, i.e., arbuscular mycorrhiza fungi (AMF) at different 
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nutrient concentrations. Tomato seedlings were treated with Mycoroot™ containing four 

mycorrhiza species (Glomus etunicatum, Paraglomus occultum, Glomus clarum and Glomus 

mossea) at transplanting and subsequently transferred to either a temperature controlled or a 

non-temperature controlled tunnel under the recommended (100%) or reduced (75 and 50%) 

nutrient concentrations. Sawdust was used as a growing medium in this experiment. 

Application of AMF neither enhanced plant growth, yield, nor fruit mineral nutrient 

concentrations; although fruit Mn and Zn concentrations in the temperature controlled tunnel 

increased significantly following AMF application. Plants grown in the non-temperature 

controlled tunnel had significantly poorer plant growth, and lower yield and lower fruit 

mineral concentrations, compared with fruit from plants in the temperature controlled tunnel. 

Tomato plants in the non-temperature controlled tunnel had higher levels of micro-elements 

in leaf tissue, compared with those in the temperature controlled tunnel. The highest yields 

were obtained from plants fertigated with 75% of the recommended nutrient concentration, as 

compared with the 100 and 50% nutrient concentrations.  

When coir was subsequently used as the growing medium, Mycoroot™ applied at 

seeding and transplanting did not enhance mycorrhizal colonization or fruit quality. Growing 

tomatoes under reduced nutrient supply reduced the total soluble solids in the juice of the 

fruit, but improved total and marketable yield, as well as the number of marketable fruit. This 

effect was more substantial in the temperature controlled than in the non-temperature 

controlled tunnel. Fruit firmness and leaf chlorophyll concentrations were significantly 

higher in plants grown in the temperature controlled tunnel. Growing tomatoes in sawdust 

improved the leaf Mn and Ca concentration over that of tomato plants grown in coir. 

Mycorrhizal colonisation did not have a beneficial effect on tomato yield and quality.  

The study indicated that cultivar selection was important in obtaining the highest 

yield and quality of tomato using the closed hydroponic system under shadenet and the open 

bag hydroponic system in the temperature controlled tunnel. Temperature controlled tunnels 

with a pad–and-fan cooling system are still an effective way of cooling the tunnel 

environment which resulted in high yield and high quality of tomatoes with a higher fruit 

mineral content than that obtained under non-temperature controlled conditions where only 

natural ventilation is relied on. Results also demonstrated that mycorrhizal colonization in 
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soilless condition has limited beneficial effects in allowing for better nutrient uptake and 

thereby for improved yield and quality of tomatoes. Further studies, including different 

media, nutrient composition and concentrations, need to be carried out to investigate the 

possible causes of AMF failure to improve yield, despite good AMF root colonization.  
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CHAPTER 1 

GENERAL INTRODUCTION 

 

In South Africa, with its diverse climatic conditions and soil types, growing plants in 

soil is unpredictable. There is a wide range of challenges, such as variations in temperature, 

water holding capacity, cation exchange capacity, soils contaminated with heavy metals, 

available nutrient supply, proper root aeration as well as disease and pest control (du Plooy et 

al., 2012). Soilless production may alleviate some of these problems, while giving the farmer 

better control over plant growth and development. Soilless production of vegetables, as 

compared with traditional field and greenhouse production in soil, allows the efficient use of 

water and nutrients by crops (Resh, 1997). Advantages of soilless cultures include more 

efficient regulation of nutrient and water supply, electrical conductivity and pH of the 

nutrient solution, and temperature by the grower. Soilless culture therefore provides an ideal 

environment for growth and development of plants which often results in higher yield and 

quality compared to traditional cultivation methods. Growers in South Africa are faced with 

the challenge of producing high yields combined with good quality, in order to satisfy local 

consumer demand (Maboko et al., 2011). Rarely is this demand met, mainly due to poor 

cultivation methods, poor cultivar choice, inadequate plant nutrition, adverse climatic 

conditions, or pest and disease infestation (Maboko et al., 2011).  

The pioneer of commercial greenhouse crop production in South Africa, Don Bilton, 

adapted the ‘Nutrient film technique’ (NFT) in the late 1970’s by using gravel in plastic lined 

beds instead of pure nutrient solution. The technique was named 'Gravel Film Technique' 

(GFT), the first commercial hydroponic system in South Africa and still utilised on a 

commercial scale in the country. Although vegetable production (including tomatoes) in 

South Africa is mainly open field cultivation, soilless cultivation in a protected environment 

has gained popularity due to improved yield and quality (Niederwieser, 2001; Maboko et al., 

2009). Unfavourable weather conditions, such as hail and high temperatures during the 

summer season, have resulted in farmers trying to optimise yield and quality of tomatoes by 

using soilless production systems under shadenet structures (Maboko et al., 2011) while 
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other vegetable growers are under the impression that only greenhouse (tunnels) are suitable 

to ensure good yield and quality (Combrink, 2005).   

Hydroponically grown vegetables are high value crops and play a major role in 

income generation for small scale and commercial farmers in South Africa. Two hydroponic 

systems are applied commercially in South Africa (open bag and closed hydroponic system), 

with the majority of hydroponic farmers using plastic tunnels in open bag system (OBS) for 

production of crops such as tomatoes, sweet pepper, runner beans and cucumber, while leafy 

vegetables, such as lettuce, herbs, Swiss chard and spring onion are produced in tunnels or 

shade net structures using closed hydroponic system. The majority of vegetables are still 

produced seasonally in the open field, resulting in an inconsistent availability and 

affordability of vegetables in South Africa. Because of the diverse climatic conditions in 

South Africa, production of vegetables under protection plays a major role in increasing 

yield, quality and availability (Maboko et al., 2009; 2011).  

Recently, the use of beneficial micro-organisms, such as arbuscular mycorrhizal fungi 

(AMF), has increased in agricultural production due to their ability to increase water and 

nutrient uptake, thereby increasing production efficiency (Sardi et al., 1992). These micro-

organisms provide an important tool to enhance plant growth, yield and nutrient uptake under 

various environmental stress conditions, such as high salinity, drought and low fertility 

supply (Azcon-Aguilar and Barea, 1997; Abdel-Rahman et al., 2011). Arbuscular 

mycorrhizal fungi (AMF) form mutualistic associations with the majority of plant species 

(Smith and Read, 1997). Only a small number of plant species belonging mainly to the 

Cyperaceae, Chenopodiaceae, Juncaceae and Proteaceae are reported to be non-mycorrhizal 

or show restricted susceptibility to the mutualists (Azcon-Aguilar and Barea, 1997). These 

AMF increase the effective absorptive area of roots by formation of an extensive extraradical 

hyphae network that enhances efficiency in absorption of nutrients. Arbuscular mycorrhizae 

fungi (AMF) grow in close association with plant roots, and play an important symbiotic role 

in the uptake and transfer of water and nutrients by the root system. In exchange, the plant 

supplies the fungus with sugars. The hyphae of AMF penetrate roots, and grow extensively 

between and within living cortical cells, forming a very large and dynamic interface between 

symbionts (Farahani et al., 2008).  
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The fungus colonises the root cortex and develop an extra-mycelium that helps the 

plant to acquire mineral nutrients from soil (Harley and Smith, 1983). As the internal 

colonisation spreads, the extra-radical hyphae ramify, and grow along the root surface 

forming more penetration points. They also grow outwards, into the surrounding soil, thus 

developing an externsive tri-dimensional network of mycelium which interfaces with soil 

particles. The mycelial network can extend several centimeters outward from the root 

surface, bridging over the zone of nutrient depletion around roots to absorb low mobile 

elements from the bulk soil (Azcon and Barea, 1997). Once the hyphae reach the inner 

cortex, they will grow into the cells and, by means of repeated dichotomous branching, form 

tree-like structures called ‘arbuscules’. Arbuscules formation, therefore, represents a large 

surface of cellular contact between symbionts. This facilitates the exchange of metabolites 

between host and fungus (Azcon and Barea, 1997). The arbuscules are the main transfer sit of 

mineral nutrients from fungus to plant and C compounds to the fungus (Smith and 

Gianinazzi-Pearson, 1988; Smith and Smith, 1990).  

There is a growing interest from hydroponic vegetable growers on biologically based 

approaches to plant production in order to reduce the utilisation of high amounts of fertilisers 

and pesticides. Plant growth and yield are improved by AMF inoculation, particularly under 

conditions of limited water supply, low-quality irrigation water, low soil fertility, high 

daytime temperatures with high evapotranspiration rates, or soil salinity (Copeman et al., 

1996; Al-Karaki, 2000; Abdel-Rahman et al., 2011). Amongst numerous benefits to plants, 

AMF increases the absorption of mineral elements, enhances defence against pathogens and 

drought conditions (Jeffries et al., 2003). By increasing the surface area of the root system of 

the host plant AMF support stronger, healthier, higher-yielding plants through increased 

nutrient acquisition (Miller, 2000), reduced levels of water stress (Auge, 2001), lower disease 

incidence and increased phytohormone production (Shaul-Keinan et al., 2002). Seedlings 

colonized by AMF often have better growth, improved water relations, greater tolerance to 

environmental stresses, resulting in better transplant survival when compared with similar 

non-colonised plants (Varma and Schuepp, 1995). However, mycorrhizal root colonisation 

can be affected by various factors or influencing growth of plant as reported below: 
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Crop improvement  

In contrast to natural ecosystems, where mycorrhizae are common, soilless mixes 

used in hydroponics for vegetable production do not contain propagules of mycorrhizal fungi. 

Mycorrhiza inoculation in soilless media has been found to increase tomato and pepper 

seedling growth in nurseries (Oseni et al., 2010; Ortas et al., 2011), yield of peppers (Ikiz et 

al., 2009) and tomato (Dasgan, 2008). Inoculation with mycorrhiza in seedling growing 

medium at seeding stage before transplanting can be a successful strategy to enhance 

mycorrhiza root colonisation (Ikiz et al., 2009; Ortas et al., 2011). Inoculation with AMF in 

soilless systems did not positively influence plant growth and nutrient uptake of the tomato 

cultivar M19 (Dasgan et al., 2008).  In field grown tomatoes, however, AMF inoculation 

enhances yield and quality (Subramanian et al., 2006); similarly, growth of pepper under 

saline conditions was improved following AMF inoculation (Kaya et al., 2009).   

 

Growing media 

Substrates (e.g. sawdust, coir, perlite, rockwool, etc.) are commonly used in 

hydroponic vegetable production where soil is not incorporated. In such soilless growing 

media AMF are absent, therefore addition of AMF to substrate culture is often beneficial 

(Cekic and Yilmaz, 2011), promoting plant growth and yield of soillessly grown peppers 

(Ikiz, 2003; Ikiz et al., 2009) and melons (Rehber, 2004), when cultivated in open bag 

hydroponic system. Dasgan et al. (2008) investigated mycorrhizal response on tomato when 

cultivated in a recycling hydroponic system. Pulatkan et al. (2010) reported the highest 

percentage (52.78%) mycorrhiza colonization on the ornamental Forsythia x intermedia 

when grown in soil combined with river sand and organic matter compared with plants 

grown in soil (31%), soil plus river sand (28%), indicating that the medium and its organic 

matter are important factors for successful AMF colonization. Zucchini plants inoculated 

with AMF and grown in sand culture under saline condition had higher leaf chlorophyll and 

relative water content than zucchini plants without AMF (Colla et al., 2008), underlining the 

potential benefits of AMF to plant growth and development, particularly under stressful 

conditions. Successful mycorrhizal colonisation has been reported in substrates containing 
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sand, gravel, peat, expanded clay, pumice, perlite, bark, sawdust, vermiculite or mixtures of 

these (Gianinazzi et al., 1990).  

 

Drought  

Mycorrhizal fungi have been reported to improve water use efficiency in Rosa 

hybrids (Henderson and Davies, 1990) as well as in safflower and wheat (Bryla and 

Duniway, 1997). Mycorrhizal inoculation may directly enhance water uptake by the roots, 

providing adequate water to preserve physiological activity in plants, especially under severe 

drought conditions (Faber et al., 1991; Smith and Read, 1997). Plant roots colonized with 

mycorrhiza were found to have significantly higher biomass and fruit yield compared with 

non-mycorrhizal plants, whether plants were water-stressed or not (Kaya et al., 2003). 

Furthermore, these authors reported that mycorrhizal colonization of water-stressed plants 

was able to restore leaf nutrient concentrations to levels similar to well-watered plants (Kaya 

et al., 2003). Plants colonised by AMF showed high photosynthetic activity and high proline 

accumulation. These mechanisms are important in adaptation to drought stress (Azcon et al., 

1996).  

 

Temperature  

Temperature is an important factor influencing mycorrhizal development and function 

(Jakobsen and Andersen, 1982; Liu et al., 2004). Mycorrhizal development is usually optimal 

in cool temperature climates, with temperatures ranging from 20 to 25oC (Matsubara et al., 

2000); maximal spore germination occurs between 20 and 28oC, depending on the species 

(Wang et al., 1997). Carpio et al. (2005) found that AMF are able to colonise and survive in 

the medium of containerised bush morning glory (Ipomoea carnea ssp. fistulosa) plants at a 

temperature of 44.8oC. Newman and Davies (1988) reported that AMF are known to enhance 

nursery crop resistance to high temperatures. Wu and Zou (2010) stated that three month 

citrus seedlings grown at a temperature of 15oC showed less mycorrhiza root colonisation 

than those grown at a warmer temperature of 25oC. These authors concluded that mycorrhizal 

colonisation has beneficial effects on plant growth, photosynthetic activity, root morphology 
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and nutrient uptake (specifically P, Ca and Mg) of citrus seedlings when grown at moderate 

temperature (25oC) compared with lower temperature (15oC).   

 

Diseases 

Currently AMF are studied as biological control agents of root diseases caused by 

soil-borne pathogens (Norman and Hooker, 2000; Giri et al., 2003). In greenhouse studies, 

protection of muskmelon fruit, Cucumis melo L., from Meloidogyne incognita under infested 

conditions was reported to be due to AMF (Heald et al., 1989). Inoculation of tomato 

seedlings with AMF (i.e., Glomus macrocarpum or Glomus fasciculatum) 20 days after 

infection with Fusarium oxysporum f. sp. lycopersici reduced pathogen spread and disease 

severity by 75 and 78%, respectively (Kapoor, 2008). Tomato plants inoculated with AMF 

(Glomus monosporum and Glomus mosseae) showed lower Fusarium oxysporum f. sp. 

radicis-lycopersici root infection than untreated plants in a hydroponic system under 

greenhouse conditions (Utkhede, 2006). Several studies reported that mycorrhizal protection 

of tomato plants against soil-borne pests, like nematodes and various root diseases, is 

commonly observed (Cordier et al., 1996; Boedker et al., 1998). In contrast, Lindermann 

(1994) reported the susceptibility of tomato plants to leaf pathogens to be higher in 

mycorrhizal than non-mycorrhizal plants. Fritz and Kakobsen (2006) found the presence of 

AMF to significantly reduce Alternaria solani symptoms in tomato plants.  

 

Salinity 

Arbuscular mycorrhiza fungi can provide the host plant with resistance against high 

salinity by optimising the hormonal balance (Danneberg et al., 1992) or by enhancing water 

uptake (Ruiz-Lozano and Azcon, 1995). Results of glasshouse studies have shown that AMF 

can increase salinity tolerance resulting in higher yield under saline conditions (Hirrel and 

Gerdemann, 1980; Tian et al., 2004; Asghari et al., 2005; Al-Karaki, 2006; Zuccarini and 

Okaurowska, 2008). High salinity may, however, have negative effects on AMF growth and 

hyphal extension (Juniper and Abbott, 1993; Asghari et al., 2008). Asghari et al. (2008) 

reported that high soil salinity (45 dS m-1) inhibited mycorrhizal root colonization, possibly 

due to inhibition of spore germination, hyphal growth and hyphal spreading after initial 
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infection (McMillen et al., 1998). Reduction of arbuscules in high saline environment has 

also been observed (Pfeiffer and Bloss, 1988). Under saline conditions, a certain degree of 

tolerance is afforded by  utitilisation of AMF as reported in eggplants grown in pumice 

(Yilmaz, 2005) and pepper grown in a perlite/ sand mixture (1:1; v/v). Grafted tomato plants 

inoculated with mycorrhiza also showed tolerance to soil salinity (Oztekin et al., 2012).  

 

Nutrient uptake 

In symbiotic relationships, AMF can alleviate certain mineral elements deficiencies in 

plants by increasing nutrient uptake (Ortas and Akpinar, 2006; Ciftci et al., 2010). The 

primary effect of AMF symbiosis is to increase the supply of mineral nutrients to the plant, 

particularly those whose ionic forms have poor mobility or are present at low concentration 

in the soil solution. This mainly applies to P, NH4, Zn and Cu (Barea, 1991). Mycorrhizal 

hyphae extending into soil or substrate increase nutrient absorption (i.e. P, Zn, Cu, and Fe) 

(Al-Karaki, 2006) by penetrating into small particles. Mycorrhizal inoculation reduces the 

quantity of fertilizer applied to achieve a certain response (Charron et al., 2001; Ortas et al., 

2011). Cimen et al. (2010) reported an increase in tomato leaf mineral concentrations, i.e. P, 

K, Mg, Fe, Mn, Zn and Cu following inoculated of plants with AMF.  

Associations between plants and AMF improve plant performance in low fertility soils (Tran 

and Cavagnaro, 2010). Bush morning glory plants inoculated with AMF were larger than 

non–treated ones and were subsequently able to absorb a greater amount of ions, potentially 

minimizing nutrient leaching and runoff (Carpio et al., 2005). High P supply is known to 

inhibit mycorrhiza colonisation at the root system (Dasgan et al., 2008; Cwala et al., 2010). 

A concentration as low as 7 mg kg-1 P soil was reported to inhibit root colonisation by AMF 

(Brundrett et al., 1996) while other authors (Schubert et al., 1990) reported tolerance to much 

higher P concentration in soil. Ryan and Graham (2002) reported that highly available P 

often limits AMF colonization. Cekic and Yilmaz (2011) reported a non-significant effect of 

P level applied to hydroponically grown strawberry cultivars on mycorrhiza root 

colonization, when applying three levels of phosphorus (10, 30 and 60 ppm P). However, 

plants inoculated with mycorrhiza had a significant increase in strawberry yield compared 

with non-inoculated plants, possibly due to the increased plant growth through enhanced 
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nutrient uptake. Nasim (2005) calculated that a root system associated with mycorrhizal fungi 

can transport phosphorus at a rate more than four times higher than that of a root not 

associated with mycorrhiza.  

Growing vegetables under protection has gained the interest of many vegetable 

growers in South Africa. Among environmental factors, temperature during fruit 

development plays the main role in determining fruit quantity and quality (Dorais et al., 

2001). Tomato plants are susceptible to damages when exposed to high solar radiation and 

high temperature. Some of the effects of such radiation and temperature conditions are 

transplant shock, low pollination, flower abortion or sunburn (Peet, 1992). While there are 

several beneficial effects of protected cultivation, the choice of an appropriate cultivar is 

important to maximise profit. Genetic factors linked to the tomato cultivar can have 

considerable influence on important economic parameters such as yield potential, resistance 

to disease and fruit quality (Gould, 1983; Dumas et al., 2003). Growers are constantly in 

search of cultivars that will improve yield and quality in their production systems. Most of 

the tomato cultivars grown in southern Africa are imported into the region and distributed by 

international seed companies. It is imperative to evaluate the performance of tomato cultivars 

in different production systems since these cultivars probably have different abilities to adapt 

to various environmental conditions. There is little or no information available on the optimal 

soilless production system for good yield and quality of tomato, with no such information 

existing for South African conditions. The use of AMF could potentially play an important 

role in natural as well as agricultural ecosystems, opening opportunities, particularly for low–

input farming. Although AMF has been tested in soilless cultivation (Dasgan et al., 2008; 

Ikiz et al., 2009), there is limited information on the effect of mycorrhiza in reducing 

fertiliser application rates as well as improving tomato growth and yield in non-temperature 

controlled tunnels, often associated with heat stress.  

 

AIM OF THE STUDY 

Improvement of tomato production involves the use of improved cultivars, cultivars 

adapted to a particular production system, and the use of soilless media. The inclusion of 

microbial organisms in such media might enhance nutrient uptake by plants grown 
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hydroponically. In order to ascertain if tomato production and quality can be improved under 

soilless cultivation the following set of objectives was followed:  

 

 To compare yield and quality parameters of tomato cultivars grown in soil to those 

maintained under a shadenet structure using an open bag hydroponic system in a 

plastic tunnel 

 To compare the performance of commonly grown cultivars, with regard to yield and 

quality when grown in two different production systems, viz. an open-bag hydroponic 

or a closed hydroponic (gravel-film technique) system. 

 To compare the performance of four tomato cultivars commonly grown in southern 

Africa with regard to yield and quality when grown in soilless systems in non-

temperature and temperature controlled tunnels 

 To investigate whether AMF can colonize tomato plants in hydroponic fertigation 

systems and enhance nutrient uptake, thereby reducing the fertilization rate  

 To investigate the effect of mycorrhiza, growing media and nutrient concentration in 

a temperature controlled and a non-temperature controlled tunnel on hydroponically 

grown tomato yield and quality 
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Abstract 
  A study was conducted to compare yield and quality parameters of tomato 
cultivars cultivated in-soil under a shadenet structure with an open bag hydroponic 
(soilless) system in a plastic tunnel.  Four tomato cultivars, namely, FA593, Malory, 
Miramar and FiveOFive were included using a randomized complete block design with 
four replicates for both trials. Total, marketable and unmarketable yield, plant height, 
total soluble solids (%Brix) as well as the pH of the tomato juice were determined. 
Results showed that plants in the soilless system developed faster with higher total yield 
compared with in-soil cultivation. The average marketable yield using soilless 
cultivation was 92.1%, while in-soil cultivation was only 77.0%. There was no 
significant difference in %Brix between cultivars under in-soil cultivation, while under 
soilless conditions ‘Malory’ and ‘FiveOFive’ had a higher %Brix than ‘FA 593’ and 
‘Miramar’. The pH of tomato juice was highest in ‘Miramar’ and ‘FA593’ under both 
production systems. The most promising cultivars with regard to yield and quality were 
‘Miramar’, followed by ‘FA593’ when grown in the soilless system, while there were no 
significant differences between any of the tested cultivars under in-soil cultivation. 
Results indicate that soilless cultivation can improve yield and quality, with cultivar 
selection playing an important role when utilizing this production system.  
 
INTRODUCTION 
  Tomatoes are widely grown in South Africa and rank second after potato as a 
vegetable commodity.  Growers in South Africa are faced with the challenge of producing 
high yield combined with good quality in order to satisfy the local demand.  Very often this 
demand is not met, mainly due to inadequate plant nutrition, adverse climatic conditions, or 
pest and disease infestation (Johnson et al., 1975). 

The population increase in South Africa and improvement of the standard of living 
have resulted in an increased demand for high value foods of high quality.  Although the 
majority of tomato production in South Africa is open field production, a small amount is 
also produced under protection (greenhouse and shadenet structures). Many vegetable 
growers in and around South Africa utilizing a variety of soilless production systems have 
become interested in the greenhouse cultivation of vegetables.  Little to no comparative 
information is available on in-soil vs soilless production systems for tomatoes under local 
conditions. The objective of this study was to compare two different production systems, i.e. 
soilless and in-soil cultivation using four tomato cultivars.   
                                                                                                                    
MATERIALS AND METHODS 
  Two trials were conducted at the ARC-VOPI, Roodeplaat, South Africa (25o 59’ S, 
28o 35’ E at an altitude of 1200 m.a.s.l.). Trials were conducted separately in different 
production systems, namely plants cultivated in soil under a 40% shadenet structure and in an 
open-bag system in a temperature controlled plastic tunnel. The following four cultivars were 
evaluated in each production system: ‘FiveOFive’, ‘Malory’, ‘Miramar’ and ‘FA593’. Seed 
trays were filled with a commercial growth medium, Hygromix® (Hygrotech, South Africa), 
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and covered with a thin layer of vermiculite after seeding. As soon as the first two true leaves 
were fully developed, foliar fertilizer (Multifeed® at 1 g/L water) was applied every second 
day, followed by irrigation with tap water to reduce the build-up of salts. Seedlings were 
transplanted 35 days after seeding. Each experiment was laid out as a randomized complete 
block design. Data loggers placed 15 cm above plant canopy (unprotected from sunrays) 
were used for temperature recording. Mean monthly temperature and rainfall and for the 
experimental sites during the experimental period are presented in Table 1, although rainfall 
was only applicable to the shadenet structure.   
 
In-soil production  

Seedlings were transplanted to 25 cm high and 70 cm wide soil ridges. Ridges were 1 
m apart and seedlings were transplanted to a double row on the 70 cm wide ridges, resulting 
in a plant population of 2.5 plants/m2. Pre-plant fertilizer application (63 kg/ha N and 100 
kg/ha K) was applied based on soil analysis results. The soil type was a sandy clay loam 
comprising of 52.1% sand, 21.9% silt and 26.0% clay, with a bulk density of 1.39 g/cm3. 
Plants where then irrigated with drippers (discharge rate of 2.1 L/hour) placed in the soil next 
to each plant. The plants were irrigated when 50% of the available water was depleted in the 
soil profile with the use of a neutron probe. The pH of the irrigation water was kept in a 
range of 5.8-6.8 by adding nitric acid. Every fourth week, plants were top-dressed through 
fertigation to a total application of 177 kg/ha of nitrogen and 100 kg/ha potassium.   
 
Soilless production 

A plastic tunnel (30 m x 10 m) was equipped with a fan and pad cooling system to 
maintain the temperature between 9.7 to 47.9oC (Table 1). Seedlings were transplanted into 
10 L black plastic bags filled with sawdust as growing medium. Plants were irrigated through 
a dripper system with one dripper per plant delivering 2.1 L/h nutrient solution. Bags were 
placed as double rows at a distance of 50 cm between bags of the double row and 100 cm 
between double rows, with an intra-row spacing of 50 cm. Therefore, a plant density of 2.5 
plants/m2 was also achieved in the tunnel trial. The electrical conductivity (EC) of the 
nutrient solution was kept between 2.1 and 2.3 mS/cm.  The volume applied per irrigation 
was gradually increased as the plant developed to ensure that 10-15% of the applied water 
would leach out to reduce salt build-up in the growth medium.  The pH was measured and 
maintained within a range of 5.8 to 6.1.   

 
Cultural practices  

Plants in both trials were trained to a single stem by twisting trellis twine around the 
main stem and fixing it to a strain wire 2 m above soil surface to support the plant. Lateral 
branches were removed weekly to maintain a single stem system.  When plants had reached 
the horizontal wire at 2 m, the growing point was removed to stop further plant growth.  
 
Data collection 

Plant height measurements were made from four weeks after transplanting onwards 
on a 14 day basis until the plant reached a 2 m height and the growing point was removed. 
Fruits were harvested weekly at the breaker stage from December 2007 to February 2008. 
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Data were collected from ten plants per treatment. The performance of the cultivars under the 
two systems was evaluated using total, marketable and unmarketable yield, as well as 
pathological and physiological disorders as parameters. Fruits were regarded as unmarketable 
when they exhibited cracking, zippering, rotting, blossom end rot (BER), catface or fell into 
the extra small size category. All harvested fruit were graded into classes according to fruit 
diameter, namely extra large (XL) (> 70 mm), large (L) (60-70 mm), medium (M) (50-60 
mm), small (S) (40-50 mm) and extra small (XS) (< 40 mm).  

For the determination of total soluble solids (%Brix) and pH, four ripe fruits per 
treatment were placed in a blender to produce a puree. The puree was then filtered through 
Whatman No. 4 filter paper, and the total soluble solids (%Brix) and pH of the tomato juice 
determined.  

Data was subjected to analysis of variance (ANOVA) using GenStat (2003). 
Treatment means were separated using Fisher’s protected T-test least significant difference 
(LSD) at the 5% level of significance (Snedecor and Cochran, 1980). 

 
RESULTS AND DISCUSSION  

The marketable and unmarketable yields are presented in Table 2. Under soilless 
cultivation conditions, the cultivars ‘Miramar’, ‘FA593’ and ‘Malory’ had a higher total yield 
compared to ‘FiveOFive’, with ‘Miramar’ having the significantly highest marketable yield.  
With in-soil cultivation there were no significant differences in total and marketable yield 
within the cultivars tested. However, ‘Malory’ had a tendency towards lower marketable 
yield than the other cultivars when cultivated in soil. ‘FiveOFive’ had the lowest 
unmarketable fruit yield under in-soil production, followed by ‘Miramar’, which had the 
lowest unmarketable yield under soilless cultivation. Under soilless cultivation ‘Malory’ had 
the highest unmarketable fruit yield, while under in-soil cultivation ‘FA593’ had the highest 
percentage of unmarketable fruit. Comparison of soilless and in-soil cultivation in the 
conditions of the experiments indicates that total as well as marketable yield can be improved 
under soilless cultivation.  

Generally retail markets in South Africa accept tomatoes of L, M and S fruit size. 
Fruit size is a quality parameter that influences consumer acceptance of, and preference for 
tomatoes. Results show significant differences in fruit size among the cultivars under the two 
production systems. Soilless cultivation had 22% of M to S-sized fruit while in-soil 
cultivation had 19%. Soilless cultivation of ‘Malory’ produced significantly more XL fruit 
than the other cultivars except for cultivar FA593 (Table 3). High significant percentages of 
XS fruit (unmarketable size) were found in soilless cultivation for ‘FiveOFive’, with the 
same tendency under in-soil cultivation. 

Significant differences in the number and weight of cracked fruit were observed 
among cultivars in both cultivation systems (Tables 4 and 5). In both cultivation systems 
‘Malory’ had the highest number and weight of cracked fruit, with ‘FA593’ in second place, 
although it should be noted that the number of cracked fruit was not significantly different 
between ‘Malory’ and ‘FA593’ in both systems. The higher number of cracked fruit in the 
latter lines could possibly be due to the fact that ‘Malory’ and ‘FA593’ produced larger sized 
fruit which were seemingly predisposed to cracking. The cracked fruit weight of ‘Miramar’ 
was least under both cultivation systems, possibly due to the low ratio of fruit weight to fruit 
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number. Peet (1992), however, reported that tomato cultivars of large fruit size are prone to 
fruit cracking. The lack of resistance to cracking has also been reported to exacerbate the 
incidence of fruit cracking (Dorais et al., 2001). The higher incidence of fruit cracking under 
in-soil cultivation might have been exacerbated by high soil moisture content caused by rain, 
since the shadenet was not waterproof, while the plastic tunnel was.  

In agreement with Peet (1992), rainfall during the ripening stage drastically affected 
the incidence of fruit cracking. Furthermore, early blight (Alternaria solani) was observed 
under in-soil cultivation, resulting in leaf and fruit drop, and eventually death of the entire 
plant. High rainfall during December 2007 and January 2008 (Table 1) might have favoured 
the incidence and spread of fungal spores in the production system.  Although preventative 
fungicides were applied on a weekly basis, rainfall might have washed off the applied 
fungicides. In soilless cultivation with a cooling system the harvesting period was longer 
compared with in-soil cultivation.  

Neither cultivars nor the cultivation systems had any significant effect on the 
development of blossom end rot. However, cultivars responded differently with respect to the 
occurrence of a further physiological disorder, zippering. Under in-soil cultivation, 
‘FiveOFive’ showed the highest number of ‘zip-fruit’ (Table 4), while under soilless 
cultivation ‘Malory’ had the highest number and weight of such fruit (Table 5). Under in-soil 
cultivation ‘Miramar’ had a higher number of rotten fruit than ‘Malory’ and ‘FiveOFive’, 
compared to the other cultivars in soil cultivation (Table 4). Lastly, no significant differences 
could be determined with respect to the number and weight of fruit affected by catface in 
both cultivation systems.  

The pH of the extracted tomato juice was lower in ‘Malory’ and ‘FiveOFive’, 
compared to the other two cultivars under in-soil cultivation, while ‘FiveOFive’ had a lower 
pH than ‘Miramar’ in the soilless system (Figure 1). Total soluble solids (%Brix) were not 
significantly affected by cultivar under in-soil cultivation; however, under soilless cultivation 
‘Miramar’ had the lowest %Brix. As total soluble solids (TSS) is an indication of sweetness, 
although sugars are not the sole soluble components, it is clear that an alteration in taste can 
be achieved by soilless tomato cultivation. The flavour of tomatoes is closely related to the 
concentration of TSS in the fruit (Cornish, 1992). Giordano et al. (2000) reported that tomato 
fruit processors have adopted a bonus system based on quality, whereby 5% bonus is given 
for produce with soluble solids content ranging between 4.8 and 5.2 %Brix. ‘Miramar’ had 
the lowest soluble solids content of 4.6 %Brix, compared to other cultivars in both 
production systems. However, production of this cultivar under soilless conditions could also 
not raise the %Brix above 4.6%. 

With in-soil cultivation, cultivars did not show any significant cultivar effect on plant 
height.  Although no significant effect was found, ‘Miramar’ had a tendency to grow slower 
than the other cultivars. The slower increase in the height of plants under in-soil cultivation 
compared with soilless cultivation might have been a transplant shock reaction. Under 
soilless cultivation ‘FiveOFive’ and ‘Miramar’ developed slower than ‘FA593’ and ‘Malory’. 
As these two cultivars produced a higher marketable yield under soilless cultivation, it seems 
that the more intense vegetative growth reduced the yield potential of these cultivars.  
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CONCLUSIONS 
Soilless cultivation of tomato can improve quality, total and marketable yield 

compared with in-soil cultivation.  Of the tested cultivars, ‘Miramar’ was the most promising 
one under soilless cultivation, followed by ‘FA593’. In-soil cultivation resulted in higher 
incidence of physiological disorders and diseases such as early blight. These conditions were 
favoured in the shadenet structure by high rainfall during the experiment. If these could be 
controlled efficiently in soil cultivation under shadenet structure might have the potential to 
outperform those in soilless cultivation.  
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Tables 
 
Table 1. Mean monthly temperature and rainfall during the 2007 trial at the experimental sites  
 
Month 

Plastic tunnel 
Ambient temperature 

(°C) 

40% Shade-net 
Ambient temperature 

(°C) 

Rainfall 
(mm) 

Min Average Max Min Average Max

October 9.7 22.4 43.7 7.6 20.2 45.6 189.4 

November 10.5 23.5 42.6 7.3 22.6 45.4 73.6 

December 13.2 23.5 39.5 9.2 23.5 44.2 187.0 

January 13.2 23.9 47.9 10.5 23.1 46.0 331.0 

February 11.0 25.3 47.9 8.9 24.9 45.4 23.2 

 
 
  Table 2. Effect of cultivation system on yield (g/10 plants) of four tomato cultivars   
 
 
Cultivar  

Cultivation systems 
Soilless Soil 

Yield (g)/10 plants 
Total Marketable Marketable 

(%) 
Unmarketable Total Marketable Marketable 

(%) 
Unmarketable 

Miramar 78440a 76342a 97.3 2098c 51181 43991 85.9 9255c 

FA593 75314a 69854b 92.8 5460b 53688 40623 75.7 18968a 
Malory 73516ab 62943c 85.6 10573a 53217 34249 64.4 13065b 

FiveOFive 68714b 63620c 92.6 5094b 51135 41880 81.9 7190d 

LSD 0.05 6224.3 5170.4  2357.6 ns ns  1527.8 
Figures in a column followed by the same letter are not significantly different (P > 0.05), using Fisher’s protected T-test. 
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Table 3. Influence of production systems on fruit size (g/10 plants) of four tomato cultivars  
Cultivar Soil Soilless 

Weight of fruits (g)/10 plants 
XL L M S XS XL L M S XS 

FiveOFive 18676 14286a 7418ab 1500 476 24251c 19926b 14485ab 4958a 1234a
Malory 22132 8517b 2951c 650 169 39805a 16125c 5878d 1136c 203b 
FA 593 16775 13314a 8800a 1734 244 34078ab 22131b 10640c 3005ab 596b 
Miramar 19734 15752a 6419b 2086 140 30150bc 26090a 15691a 4411a 445b 
LSD 0.05 ns 4322.1 2043.4 ns Ns 7729.8 3414.70 4380 2220.2 581.3 
Figures in a column followed by the same letter are not significantly different (P > 0.05), using Fishers’ protected T-test. 
 
 
Table 4. Incidence of physiological disorders of four tomato cultivars under in-soil cultivation  
 
 
Cultivar 

Cracking Blossom-end rot Zippering Catface Rotten 

Number Weight 
(g) 

Number Weight 
(g) 

Number Weight 
(g) 

Number Weight 
(g) 

Number Weight 
(g) 

FiveOFive 32.5b 5024c 10.8 515 9.5a 1178 3.0 394 17.0b 1669 
Malory 82.0a 13513a 4.3 742 6.0b 1174 5.8 1358 16.2b 2011 
FA 593 70.5a 9167b 6.5 371 3.8b 466 0.5 44 30.5ab 2772 
Miramar 15.5b 2246d 10.8 565 5.8b 991 2.0 242 41.5a 3006 
LSD 0.05 19.33 2615.1 ns ns 3.287 ns ns ns 14.40 ns 

Figures in a column followed by the same letter are not significantly different (P > 0.05), using Fisher’s protected T-test. 
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Table 5. Incidence of physiological disorders of four tomato cultivars under soilless cultivation  
 
 
Cultivar 

Cracking Blossom-end rot Zippering Catface Rotten 

Number Weight 
(g) 

Number Weight 
(g) 

Number Weight 
(g) 

Number Weight 
(g) 

Number Weight 
(g) 

FiveOFive 9.3b 1260bc 8.2 768 4.5b 414b 5.3 488 16.0 930 
Malory 46.2a 7151a 1.8 134 10.8a 1502a 6.3 984 7.0 600 
FA 593 31.8a 3602b 4.8 332 3.0b 557b 1.5 120 3.5 252 
Miramar 3.2b 406c 2.0 102 5.0b 404b 4.3 316 5.0 395 
LSD 0.05 15.46 2614.8 ns ns 5.03 777.6 Ns ns ns ns 

Figures in a column followed by the same letter are not significantly different (P > 0.05), using Fisher’s protected T-test. 
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Abstract 

Cultivar selection for different hydroponic production systems is an important management 

decision, potentially impacting the tomato grower’s profitability. Knowledge on the 

performance of tomato cultivars, in specific hydroponic systems (open-bag and closed 

system) under South African conditions, is still very limited. The performance of four 

cultivars was evaluated in an open and a closed hydroponic (gravel-film technique) system. 

The commonly grown cultivars evaluated in each of the two hydroponic systems were 

‘FA593’, ‘Malory’, ‘Miramar’ and ‘FiveOFive’. For each experimental, randomized 

complete block design was used with four replicates. Total, marketable and unmarketable 

yields, as well as internal fruit quality characteristics (total soluble solids (ºBrix) and pH) 

were determined. Although no significant differences in total yield could be established - 

neither in the open nor in the closed hydroponic system - differences in marketable yield 

were observed.  ‘Miramar’ and ‘FiveOFive’ produced the highest marketable yield in the 

closed system; the high unmarketable yield of ‘FA593’ and ‘Malory’ in the closed 

hydroponic system could be attributed to the high number of cracked fruit due to their 

inherent larger fruit size. There were no significant differences in ºBrix between cultivars in 

the closed system. Cultivar ‘FiveOFive’, ‘FA593’ and ‘Miramar’ produced higher 

marketable yields than cultivar ‘Malory’ when grown in the open-bag system. ‘Malory’ and 

‘FA593’ produced the highest number of fruit exhibiting fruit cracking in the open bag 

system.  In the open system, only cultivar ‘Malory’ had a higher ºBrix than ‘Miramar’ and 

‘FiveOFive’. The most promising cultivars for local hydroponic tomato production, with 

regard to yield and quality, were identified as ‘Miramar’ and ‘FiveOFive’, with ‘FA593’ 
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performing equally in the open system only. Further studies need to be undertaken on 

economical comparison of the two production systems. 

 

Keywords: closed hydroponic system, fruit cracking, open hydroponic system, marketable 

yield 

 

Introduction 

Tomatoes are the third most consumed vegetable, following potato and onion, and the most 

consumed fruit vegetable in South Africa (Department of Agriculture, 2010). Worldwide 

tomato production extends over 5.2 million ha, producing more than 130 million tons 

annually. In terms of tomato production, South Africa ranks 39th in the world, with a total of 

421 000 tons tomatoes produced annually (FAOSTAT, 2009). 

 

Soilless cultivation of fresh-market tomatoes has gained popularity in recent years in South 

Africa due to improved growth, yield and quality of commodities grown in such systems 

(Maboko et al., 2009). The majority of South African producers cultivate tomato in the open 

field, while a small number are producing in soilless systems under protection (Maboko et 

al., 2009). There is, however, an increase in soilless vegetable production (Raviv & Lieth, 

2008) because typical field-based monoculture systems often result in disease built-up, 

making soil a less suitable cultivation medium.  

 

Many new tomato cultivars are released annually in South Africa and internationally. This 

result in a fast turnover rate of cultivars that can complicate cultivar choice. Different 
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cultivars have different characteristics, including sensitivity to temperature extremes, 

tolerance or susceptibility to insects and diseases, fruit quality and size as well as yield 

(Niederwieser, 2001). Most tomato cultivars are imported into South Africa and, therefore, 

knowledge on the optimal growing conditions for specific cultivars needs to be determined, 

as a wrong cultivar choice can lead to large financial losses.  

 

In South Africa, the most popular are the open-bag hydroponic system and the closed 

hydroponic system using the gravel-film technique (Niederwieser, 2001). In closed systems, 

the excess nutrient solution is recovered, sometimes filtered, replenished and re-circulated, 

while open systems do not re-circulate the nutrient solution after it has passed the plant 

rooting zone. The open-bag system is generally used for production of crops with an 

indeterminate growth habit, like tomatoes, sweet peppers, cucumbers and runner beans, while 

the closed system (using the gravel-film technique) is generally used for leafy vegetables, 

such as lettuce, Swiss chard, spring onions, as well as herbs.  

 

Soilless cultivation has recently tended towards closed systems to avoid nutrient losses and 

thereby reducing potentially negative environmental impact (Schwarz et al., 2009). No 

information is available on the performance of indeterminate fresh-market tomato cultivars in 

a closed hydroponic system under local conditions. The objective of the study was, hence, to 

compare the performance of four tomato cultivars, commonly grown in southern Africa, with 

regards to yield and quality when grown in an open-bag hydroponic system or a closed 

hydroponic (gravel-film technique) system, to aid producers in the choice of tomato cultivars 

when using systems. 
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Material and methods 

Two experiments were conducted using a 40% shade-net (black and white) at the 

Agricultural Research Council - Vegetable and Ornamental Plant Institute (ARC-VOPI), 

Roodeplaat, South Africa (25o59’ S; 28o35’ E, altitude 1 200 m.a.s.l.).  In one experiment an 

open-bag hydroponic system was used and in the second experiment a closed system (gravel-

film technique) was used. Four indeterminate fresh-market tomato cultivars, commonly 

grown in South Africa, were evaluated in each production system: ‘FiveOFive’ and 

‘Miramar’ (Hygrotech Seed Pty. Ltd., South Africa), as well as ‘Malory’ and ‘FA593’ 

(Sakata Seed, Southern Africa, Pty. Ltd). Cultivar ‘FA593’ is regarded as the standard 

cultivar grown hydroponically in South Africa, while ‘Malory’, ‘Miramar’ and ‘FiveOFive’ 

are fairly new introductions. Both experiments were laid out in a randomized complete block 

design with four replicates. Maximum, minimum and mean monthly ambient temperatures 

and rainfall for the experimental sites (weather station) during the experimental period were 

recorded at the intake (top) and the end of the gullies (Table 1) using a Digi-Senser® 

Thermometer (EUTECH Instruments, Singapore) to determine the possible temperature 

differences due to radiation.  

 

Cultural practices 

Plants in both systems were trained to a single stem by twisting trellis twine around the main 

stem and fixing it to a stray wire, 2 m above medium surface to support the plant. Side 

branches were removed weekly to maintain a single stem. When plants had reached the 

horizontal wire at 2 m, the growing point was removed to restrict further vertical growth.   
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Open-bag hydroponic system 

Five-week-old tomato seedlings were transplanted into 10 L black plastic bags filled with 

sawdust as growing medium. Bags were placed in double rows with 50 cm intra-row spacing, 

a distance of 120 cm between double-rows and 47 cm between the double rows (2.5 plants m-

2). Plants were irrigated with a dripper system with one dripper per plant delivering 2.1 L 

nutrient solution h-1. Plants were irrigated seven times a day, every two hours between 5:15 

and 17:15. The irrigation volume was gradually increased as plants developed to ensure that 

10-15% of the applied water leached out to reduce salt build-up in the growing medium. The 

pH and electrical conductivity (EC) of the nutrient solution were measured using a handheld 

‘HANNA’ EC and pH meter (Hanna Instruments, Mauritius) when the fresh nutrient solution 

was topped up in a 5000 L container and maintained within a pH and EC range of 5.8 to 

6.1and 1.9 to 2.3 mS cm-1, respectively. The composition and chemical concentration of 

fertilizers used for tomato production, were: Hygroponic® (Hygrotech Seed Pty. Ltd., South 

Africa) comprising of N (68 g kg-1), P (42 g kg-1), K (208 g kg-1), Mg (30 g kg-1), S (64 g kg-

1), Fe (1.254 mg kg-1), Cu (0.022 mg kg-1), Zn (0.149 mg kg-1), Mn (0.299 mg kg-1), B (0.373 

mg kg-1) and Mo (0.037 mg kg-1), calcium nitrate [Ca(NO3)2] comprising of N (117 g kg-1) 

and Ca (166 g kg-1), and potassium nitrate (KNO3) comprising of K (38.6 g kg-1) and N (13.8 

g kg-1). An amount of 800 g Hygroponic® and 600 g Ca(NO3)2 was diluted in 1000 L water 

and applied from transplanting until the first flower trusses appeared. During development of 

the first to third flower truss, 900 g Hygroponic® and 700 g calcium nitrate, diluted in 1000 

L water, was applied; 1000 g Hygroponic®, 900 g Ca(NO3)2 and 200 g KNO3 per 1000 L 

water was applied from the third flower truss to termination of the experiment. 
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Closed hydroponic system 

A gravel-film technique hydroponic system was used to perform the experiment as described 

by Maboko and du Plooy (2008a). Each 6 cm deep, 1 m wide and 17 m long gully had a 

slope of 2.5 to 3% to allow efficient nutrient solution flow and was separated by a 70 cm 

path-row.  Five-week-old tomato seedlings were transplanted 6 cm deep into gullies filled 

with crushed granite rocks of irregular shape with a diameter ranging from 16 to 19 mm. 

Plants were arranged in double rows with 40 cm intra-row spacing, 130 cm between double 

rows and 47 cm within double rows (2.5 plants m-2). The gravel-film technique is based on 

the nutrient-film technique system, where the nutrient solution flows down gullies by 

gravitation. The nutrient solution was pumped to the top of the gullies resulting in a thin layer 

of nutrient solution flowing downwards by gravitation into the reservoir at the bottom of the 

gullies, from where it was continuously pumped back to the top of the gullies. At the top of 

the gullies four tubes released the nutrient solution at a rate of 700 ml min-1 per tube, on a 

continuous basis. The nutrient solution was completely renewed on a weekly basis as 

reported for the open-bag system. Similarly, the pH and the EC of the nutrient solution were 

measured and maintained within a range of 5.8 to 6.1 and 1.9 to 2.3 mS cm-1, respectively, 

when the fresh nutrients were added into the 5000 L container.  

 

Data collection 

Fruit were harvested weekly at the breaker stage (Jones, 2008) from December to February. 

Data were collected from ten plants per replicate for each cultivar and the performance of the 

cultivars was evaluated using total yield, marketable and unmarketable yield, as well as 

physiological and pathological disorders. Fruit were regarded as unmarketable when they 
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exhibited pathological disorders or exhibited cracking (Peet, 1992), zippering (Niederwieser, 

2001), blossom-end rot (Saure, 2001), rain-check (Niederwieser, 2001; Huang & Snapp, 

2004), cat-face (Jones, 2008) or fell into the extra small size category (< 40 mm diameter). 

For the determination of total soluble solids (ºBrix) and pH of the tomato juice, four fruit 

were harvested per replicate for each cultivar from the fourth truss and placed in a blender to 

produce a puree that was then filtered through a cheese-cloth. The ºBrix and pH was 

determined using a pocket refractometer PAL-1 (ATAGO®, Japan) and a pH meter (Hanna 

Instruments, Mauritius), respectively.  

Data for each production system were subjected to analysis of variance (ANOVA) using 

GenStat (2003). Treatment means were separated using Fisher’s protected T-test least 

significant difference (LSD) at the 5% level of significance (Snedecor & Cochran, 1980). 

 

Results and Discussion 

 

Closed hydroponic system 

No significant difference in total yield between the cultivars tested could be established. 

However, ‘Miramar’ and ‘FiveOFive’ had a significantly higher marketable yield compared 

with ‘Malory’ and ‘FA593’. Significant differences in the number of marketable fruit were 

observed among cultivars (Table 2). ‘Miramar’ had a tendency to bear the highest number of 

marketable fruit, although it was not significantly different from ‘FiveOFive’. ‘Malory’ had 

the lowest number of marketable fruit compared with the other cultivars, while ‘FA593’ had 

the tendency to be the second lowest producer judging on the number of marketable fruit 
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produced. ‘Malory’ and ‘FA593’ showed a significantly higher unmarketable yield compared 

with other cultivars. 

 

Significant differences in the number and mass of cracked fruit were observed between 

cultivars (Table 3). The incidence of fruit cracking might have been exacerbated by high 

rainfall, especially in January, as well as by high temperatures (Table 1), since shade-net 

structures are not water-proof and do not provide temperature-controlled environments. This 

is in agreement with Peet (1992) who indicated that overhead irrigation and high 

temperatures increase the incidence of fruit cracking. Rain-check was observed among all 

cultivars, with the exception of ‘FiveOFive’. Rain-check incidences were significantly higher 

in ‘Miramar’ and ‘FA593’ compared with ‘FiveOFive’ and ‘Malory’. The disorder was not 

observed in the open-bag system, possibly because fruit in this system were harvested before 

those in the closed system exhibited symptoms. The cause of rain-check is not known, but 

heavy rain might alter fruit temperature and/or water uptake, which could disrupt epidermal 

development, causing cracks on fruit shoulders (Maboko, 2008; Huang & Snapp, 2004). 

Cultivars did not show any significant differences in number and mass of fruit exhibiting 

blossom-end rot and zippering. ‘Malory’ had a high incidence of cat-face, but not 

significantly different from ‘FA593’ and ‘Miramar’. Cultivar ‘Miramar’ and ‘FA593’ 

produced a higher number of diseased fruit in the closed system than the other two cultivars. 

No significant differences in °Brix were observed between cultivars; however, ‘Miramar’ had 

the highest fruit juice pH (Figure 1). 
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Open-bag hydroponic system 

No significant differences in total yield between the cultivars tested could be established 

(Table 2). ‘Malory’ produced significantly lower marketable yield as well as higher 

unmarketable yield than the other cultivars. The same trend was established for this cultivar 

in the closed system. Differences in marketable yield were due to differences in the number 

of marketable fruits among cultivars (Table 2). ‘Malory’ produced the lowest number of 

marketable fruit in this system, followed by ‘FA593’, ‘Miramar’ and ‘FiveOFive’. 

 

Significant differences in pathological and physiological disorders and the number and mass 

of cracked fruit were observed among cultivars (Table 4). ‘Malory’ and ‘FA593’ had the 

highest number of cracked fruit; this could possibly be due to the large-sized fruit of both 

cultivars which seemingly predisposed them to cracking (Maboko et al., 2009). According to 

Cheryld et al. (1997) and Guichard et al. (2001), the lack of epidermis elasticity, when fruit 

expand, results in its rupturing. This lack of elasticity has been reported to increase the 

incidence of fruit cracking among tomato cultivars (Abbott et al., 1986; Dorais et al., 2001; 

Maboko & Du Plooy, 2008b). The cultivars evaluated did not show any significant 

differences in number or mass of fruit exhibiting blossom-end rot and zippering. ‘Miramar’ 

had a higher number of diseased fruit than ‘Malory’ and ‘FA593’. °Brix is the most common 

flavour index associated directly with sugars and organic acid concentrations in tomato juice 

(Cornish, 1992; Young et al., 1993). The °Brix was highest in ‘Malory’ fruit, followed by 

‘FA593’, while the lowest °Brix was recorded for ‘FiveOFive’ and ‘Miramar’ in the open-

bag system (Figure 1). ‘Miramar’ had the highest fruit juice pH in the open-bag production 

system, while ‘Malory’ juice had 5.0 °Brix followed by ‘FA593’ and ‘FiveOFive’ juice, both 
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with 4.7 °Brix. The quality of the fruit of these cultivars is still acceptable, as the °Brix for 

tomatoes grown in greenhouses, using the nutrient film technique, can vary from 4.7 to 5.1 

°Brix (Dorais et al., 2001). The pH of ‘Malory’, ‘FA593’ and ‘FiveOFive’ tomato juice was 

lower than that of ‘Malory’ fruit (Figure 1). Cultivars with a high juice pH generally had 

lower °Brix, indicating that the acidity of these fruit was lower. Jones (1999) reported that the 

lower the pH the greater the tartness of the fruit, a factor by which some consumers judge the 

quality of tomato fruit. According to the same author (Jones 1999; 2008) the acceptable pH 

range of tomato juice averages between 4.0 and 4.5, and for most fruits pH was 4.0 to 4.4. 

 

Conclusions 

The results demonstrate that tomato cultivars respond differently regarding marketable yield, 

°Brix and pH, and resistance to disorders when grown in an open-bag system or in a re-

circulating hydroponic system. Of the tested cultivars, ‘Miramar’, ‘FiveOFive’ and ‘FA593’ 

outperformed ‘Malory’ in the open-bag system with the same tendency in the closed system. 

Although the closed cultivation system is not commonly utilized for tomato production, this 

system might improve the number of marketable fruit, as well as total and marketable yield 

of tomato. However, such a cultivation system seems to induce low °Brix, which is 

invariably linked to lower product quality. The most promising cultivars for local hydroponic 

tomato production, with regard to yield and quality, were identified as ‘Miramar’ and 

‘FiveOFive’.  
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Table 1 Monthly mean ambient and nutrient solution temperatures, and rainfall at the 

experimental site, Agricultural Research Council-Vegetable and Ornamental Plant Institute 

(ARC-VOPI), Roodeplaat, South Africa  

Month  Mean ambient 

temperature (oC) 

Closed  hydroponic system (gravel-film 

technique) 

Rainfall 

(mm) 

Mean nutrient solution temperature (oC) 

Top of gullies            Bottom of gullies 

Max Avg Min Max Av Min Max Avg Min 

Oct 

Nov 

Dec 

Jan 

Feb 

31.0 

29.1 

30.6 

29.2 

27.6 

21.73 

21.99 

23.10 

22.81 

21.34 

13.0 

15.7 

16.5 

17.8 

16.5 

25.0 

26.0 

25.0 

27.0 

27.0 

22.2 

23.1 

23.1 

23.2 

25.6 

17.0 

18.0 

19.0 

19.0 

24.0 

27.0 

28.0 

26.0 

28.0 

30.0 

23.1 

23.5 

23.9 

23.7 

27.0 

17.0 

19.0 

20.0 

18.0 

25.0 

189.4 

73.6 

187.0 

331.0 

23.2 
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Table 2 Yield parameters (of 10 plants per cultivar) of four tomato cultivars in different hydroponic cultivation systems 

Closed hydroponic system (gravel-film technique) Open-bag hydroponic system 

Cultivar Total 

(kg) 

Marketable 

(kg) 

Unmarketable 

(kg) 

Number of 

marketable 

fruit 

Total 

(kg) 

Marketable 

(kg) 

Unmarketable 

(kg) 

Number of 

marketable 

fruit 

FiveOFive 74.74 69.27ab 

 

5.47b 549ab 65.60 56.75a 

 

8.85c 456.8a 

Malory 79.42 57.36c 

 

22.06a 332c 60.20 42.77b 

 

17.42a 253.2c 

FA593 83.13 65.11bc 

 

18.02a 463b 68.37 54.40a 

 

13.98b 407.2b 

Miramar 87.05 76.08a 

 

10.97b 577a 68.08 55.45a 

 

12.63b 437.2ab 

LSD 0.05 ns 10.69 6.34 86.5 ns 5.55 3.25 41.18 

Figures within columns followed by the same letter are not significantly different (P > 0.05), using Fishers’ protected t-test.  
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Table 3 Incidence of physiological and pathological (rotten fruits) disorders (of 10 plants per cultivar) on four tomato cultivars 

cultivated under closed hydroponic gravel-film technique 

Figures in a column followed by the same letter are not significantly different (P > 0.05), using Fishers’ protected t-test.  

 

 

 

Cultivar Cracking Blossom-end rot Zippering Cat-face Rotten fruit Rain-check 

Number Mass 

(kg) 

Number Mass 

(kg) 

Number Mass 

(kg) 

Number Mass 

(kg) 

Number Mass 

(kg) 

Number Mass 

(kg) 

FiveOFive 27.0b 3.03c 3.8 0.28 12.2 1.11 0.8 0.09b 13.5ab 0.72b 0.0c 0.00c 

Malory 95.2a 16.81a 3.5 0.29 15.5 2.35 7.3 0.99a 7.0b 1.01b 4.2bc 0.52bc 

FA 593 88.2a 11.91b 5.0 0.40 9.5 0.85 3.5 0.46ab 24.2a 2.51a 14.2ab 1.62ab 

Miramar 25.0b 3.06c 11.3 0.73 11.2 1.72 4.75 0.53ab 27.0a 2.84a 17.8a 1.93a 

LSD 0.05 34.75 4.91 ns ns ns Ns ns 0.60 13.6 1.39 12.03 1.13 
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Table 4 Incidence of physiological and pathological (rotten fruits) disorders (of 10 plants per cultivar) on four tomato cultivars 

cultivated in an open-bag hydroponic system 

Cultivar Cracking Blossom-end rot Zippering Cat-face Rotten fruits 

Number Mass  

(kg) 

Number Mass 

(kg) 

Number Mass 

(kg) 

Number Mass 

(kg) 

Number Mass  

(kg) 

FiveOFive 51.0c 5.16d 5.5 0.362 10.5 1.062 4.50 0.490 16.2 1.15ab 

Malory 110.2a 14.60a 0.50 0.073 6.75 1.134 4.50 0.833 8.0 0.63b 

FA 593 100.2a 11.79b 1.75 0.110 4.25 0.557 1.50 0.265 9.0 0.73b 

Miramar 75.5b 8.47c 1.50 0.090 10.75 1.343 1.25 0.124 20.2 1.66a 

LSD 0.05 21.14 2.62 ns ns ns ns ns ns ns 0.68 

Figures in a column followed by the same letter are not significantly different (P > 0.05), using Fishers’ protected t-test.
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Figure 1 Total soluble solids (°Brix) and pH of four tomato cultivars in different hydroponic production systems

pH 

LSD 0.05 = ns LSD 0.05 = 0.27 LSD 0.05 = 0.05 LSD 0.05 = 0.10 
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Abstract  
The majority of tunnel production in South Africa is carried out in standard 

(non-temperature controlled) tunnels, while utilization of temperature controlled 
tunnels is increasing. Knowledge on the performance of common tomato cultivars 
utilizing tunnels is still very limited. Four tomato cultivars, namely, ‘FA593’, 
‘Malory’, ‘Miramar’ and ‘FiveOFive’ were grown in an open-bag system with 
sawdust as growing medium in non-temperature controlled and temperature 
controlled tunnels. The latter was equipped with a fan-and-pad cooling system, while 
the non-temperature controlled tunnel relied on natural ventilation. A randomised 
complete block design with four cultivars replicated four times was used for both 
conditions. Fruit number and mass, as well as total marketable and unmarketable 
yield per plant were calculated for each cultivar. ‘Miramar’ and ‘FiveOFive’ 
produced the highest marketable yield in both structures. The average marketable 
yield was 88% and 59% of the total yield in the temperature controlled and non-
temperature controlled tunnel, respectively. All cultivars produced a higher 
marketable yield in the temperature controlled tunnel than in the non-temperature 
controlled tunnel. The lower marketable yield in the non-temperature controlled 
tunnel was caused by the higher number of small-sized fruits and higher number of 
fruit cracking. This disorder was found to be directly correlated with fruit size, with 
cultivars ‘Malory’ and ‘FA593’ more susceptible than the other two cultivars. 
Results emphasize the importance of cultivar selection, while illustrating that 
temperature control can improve yield and quality of tomatoes produced in tunnels. 
 
Keywords: cultivar, fruit cracking, fruit size, temperature, tunnel, quality, yield 
 
 
INTRODUCTION  

Cultivation of fresh market tomatoes in a protected environment has gained 
popularity in recent years in South Africa due to improved growth, yield and quality of 
commodities grown in such a manner. The majority of producers cultivate tomato in the 
open field, while a smaller amount is produced in soilless production systems under 
protected environments (Maboko et al., 2009). There is, however, an increase in soilless 
production systems for vegetables (Raviv and Lieth, 2008) because typical field-based 
monoculture systems often result in disease build-up, making soil a less suitable 
cultivation medium. Unfavourable weather conditions, such as high rainfall and high 
temperature fluctuations, have resulted in farmers trying to optimise yield and quality of 
tomatoes by using soilless production systems under protection.  

The majority of tunnel production in southern Africa is still carried out in standard 
(non-temperature controlled) tunnels, while utilization of temperature controlled tunnels 
is continuously increasing. Producing vegetables successfully in such tunnels during the 
summer season requires cooling or ventilation to maintain a suitable microclimate. 
Tunnel growers and designers of protected cultivation systems are faced with the 
challenge to choose between installations of natural ventilations or expensive fans 
providing evaporative cooling (Teitel et al., 2007). Although such fan-and-pad cooling 
systems are efficient in reducing the heat load inside tunnels (Mutwiwa et al., 2007), such 
cooling systems are not widely used in South Africa due to high initial costs, high 
maintenance, as well as the high electricity costs. Farmers prefer non-temperature 
controlled tunnels due to their low cost and simplicity, and are relying on natural 
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ventilation in order to reduce the temperature in tunnels.  However, Perdigones et al. 
(2005) reported that natural ventilation is not sufficient to reduce heat load in protected 
cultivation.  

Many new tomato cultivars are released annually on the South African and the 
international markets. This results in a fast turnover rate of cultivars and can severely 
complicate cultivar choice. Farmers are relying on the description of cultivars in 
pamphlets released by seed companies or breeders.  New farmers often communicate with 
well-established commercial farmers when selecting a good cultivar.  Lack of information 
in selecting good cultivars may lead to lower yield or unacceptable fruit quality. Cultivars 
differ in characteristics, including sensitivity to temperature extremes, tolerance or 
susceptibility to pests and diseases, fruit quality, size and yield (Niederwieser, 2001). 
Most tomato cultivars are imported into South Africa and therefore optimal growing 
conditions for specific cultivars need to be determined, as wrong cultivar choices can lead 
to great financial losses.  

The objective of the study was to compare the performance of four tomato 
cultivars commonly grown in southern Africa with regard to yield and quality when 
grown under soilless systems in non-temperature controlled tunnel and temperature 
controlled tunnels.  
 
MATERIALS AND METHODS  

An  experiment was  conducted using a temperature controlled tunnel and a non-
temperature controlled tunnel at the Agricultural Research Council - Vegetable and 
Ornamental Plant Institute (ARC-VOPI), Roodeplaat, South Africa (25o59’ S; 28o35’ E, 
altitude 1 200 m.a.s.l.). A temperature controlled tunnel was equipped with a wet-wall 
(1.7m x 8m) and two extraction fans (1.1 kW fans, 1300 mm diameter), whereas the non-
temperature controlled tunnel relied on natural ventilation by means of a flap and door 
that could be opened on opposite sides. The size of the tunnel was 10 m width x 30 m 
length x 4.2 m height covered with a UV resistant 200 µm thick plastic (Chris Hefer 
Construction, South Africa). The following four hydroponically grown indeterminate 
fresh market tomato cultivars were evaluated in each production system: ‘FiveOFive’ and 
‘Miramar’ (Hygrotech Seed Pty. Ltd., South Africa), and ‘Malory’ and ‘FA593’ (Sakata 
Seed, Southern Africa, Pty.). Cultivar ‘FA593’ is regarded as the standard cultivar grown 
hydroponically in South Africa, while cultivars ‘Malory’, ‘Miramar’ and ‘FiveOFive’ are 
new introductions. A randomised complete block design experiment was performed for 
each of the two systems (non-temperature controlled tunnel and temperature controlled 
tunnel). For each production system, four tomato cultivars were randomly replicated 
within four blocks. 

Data-loggers (Gemini Data Loggers, United Kingdom), placed under a Stevenson-
type screen (ACS-5050), were used to record temperature (Table 1).  
 
Cultural Practices 
Five-week-old tomato seedlings were transplanted into 10 L black plastic bags filled with 
sawdust as growing medium. Plants in both production systems were trained to a single 
stem by twisting trellis twine around the main stem and fixing it to a stray wire 2 m above 
ground surface to support the plant. Side branches were removed weekly to maintain a 
single stem system.  When plants had reached the horizontal wire at 2 m (on average eight 
trusses), the growing point was removed to restrict further plant growth.   
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Open-bag System 
Bags were placed as double rows with a distance of 50 cm intra-row spacing, a 

distance of 120 cm between double rows and 47 cm between the individual rows of a 
double row (2.5 plants/m2). Plants were irrigated through a dripper system with one 
dripper per plant delivering 2.1 L/h nutrient solution. Plants were irrigated seven times a 
day for every two hours. The irrigation volume was gradually increased as plants 
developed to ensure that 10-15% of the applied water leached out to reduce salt build-up 
in the growth medium. The pH was measured using a handheld ‘HANNA’ EC and pH 
meter (Hanna Instruments, Mauritius) and maintained within a range of 5.8 to 6.1 and 1.9 
to 2.3 mS/cm. The composition and chemical concentration of fertilizers used for tomato 
production were: Hygroponic® (Hygrotech Pty Ltd, South Africa) comprising of N (68 
mg/kg), P (42 mg/kg), K (208 mg/kg), Mg (30 mg/kg), S (64 mg/kg), Fe (1.254 mg/kg), 
Cu (0.022 mg/kg), Zn (0.149 mg/kg), Mn (0.299 mg/kg), B (0.373 mg/kg) and Mo (0.037 
mg/kg); calcium nitrate (CaNO3) comprising of N (117 mg/kg) and Ca (166 mg/kg); and 
potassium nitrate (KNO3) comprising of K (38.6 mg/kg) and N (13.8 mg/kg). An amount 
of 800 g Hygroponic® and 600 g CaNO3 was applied in 1000 L water at transplanting 
until the first flower truss appeared. During development of the first to third flower 
trusses, 900 g Hygroponic® and 700 g calcium nitrate were applied in 1000 L water. 
Fertiliser applied from the third flower truss to end of the experiment was 1000 g 
Hygroponic®, 900 g CaNO3 and 200 g KNO3 per 1000 L of water. 
 
Data Collection 

Fruit were harvested weekly at the breaker stage (Jones, 2008) from December 
2008 to February 2009. Data were collected from 10 plants per cultivar per replicate, and 
the performance of the cultivars was evaluated using total yield, marketable and 
unmarketable yield, as well as physiological and pathological disorders. Fruit were 
regarded as unmarketable when they exhibited pathological disorders or cracking, 
zippering, rotting, blossom-end rot, rain-check, cat-face or fell into the 'extra small size' 
category (less than 40 mm diameter).   

The data of the two production systems were tested for homogeneity of variances 
using Bartlett's test with SAS v9.2 statistical software (SAS, 1999). In cases where 
the variability in the observations of the two production systems were of comparable 
magnitude, an analysis of variance for the two systems' observations together could be 
validly carried out. In cases where there were strong evidence against homogeneity, a 
weighted analysis of variance was carried out on the two systems’ observations 
together  using the inverse of the pooled variances of each system as weight (John, 1977). 
The data was acceptably normal and Student's t-Least Significant Differences were 
calculated at the 5% level to compare treatment means of significant effects (Snedecor 
and Cochran, 1980). Analysis of variance was carried out using GenStat® (2010).   

 

RESULTS AND DISCUSSION  
 
Effect of Production System 
  Yield and number of marketable fruit per plant were significantly higher under 
temperature controlled than non-temperature controlled conditions (Figure 1, Table 2). 
This was probably due to air temperatures in the temperature controlled and non-
temperature controlled tunnel differing (Table 1), ranging from 13.2 to 38.0˚C in the 
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temperature controlled and 14.6 to 44.2˚C in the non-temperature controlled tunnel. The 
optimal temperature range for growing tomatoes has been identified as 18.5 to 26.5˚C 
(Jones 1998). Hence, the temperature controlled tunnel was better suited to tomato plant 
growth and development than the non-temperature controlled tunnel. 
  The marketable yield of tomatoes grown in the temperature controlled tunnel was 
at least 29% higher than in the non-temperature controlled tunnel (Figure 1). Total yield 
and marketable yield, as well as number of marketable fruits were significantly high in 
the temperature controlled tunnel than in the non-temperature controlled tunnel (Table 2). 
Conversely, unmarketable yield, number and mass of fruit cracking were significantly 
higher in the non-temperature controlled tunnel compared to the temperature controlled 
tunnel.    
  Larger temperature differences (Table 1) in the non-temperature controlled tunnel, 
as compared to the temperature controlled tunnel might have contributed to reduced fruit 
set in the former tunnel. Nonviable pollen and failure to set tomato fruit can result from 
temperatures above 29oC (Abdul-Baki and Stommel, 1995; Peet and Bartholomew, 1996, 
Sato et al., 2000). According to Perdigones et al. (2005) natural ventilation is not 
sufficient for extracting warm air during the sunny days. Comparison of temperature 
controlled and non-temperature controlled facilities indicates that total, as well as 
marketable yield can be improved in temperature controlled tunnels (Table 2, Figure 1). 
Similarly, Peet et al. (1997), as well as Mutwiwa et al. (2007) reported that fan-and-pad 
cooling systems can improve fruit set of tomatoes. 
 
Effect of Cultivar 
  Total yield, marketable yield and number of marketable fruits were significantly 
higher with ‘Miramar’ and ‘Five-O-Five’ as compared to ‘Malory’ and ‘FA593’ (Table 
2). ‘FiveOFive’ and ‘Miramar’ produced the highest number of marketable fruit, followed 
by ‘FA593’, while the lowest number was recorded for ‘Malory’. ‘Malory’ and ‘FA593’ 
produced a higher unmarketable yield than ‘Miramar’ and ‘FiveOFive’.  ‘FA593’, 
followed by ‘Malory’, produced the highest number of fruit exhibiting cracking, higher 
than ‘Five-O-Five’ and ‘Miramar’ (Table 2).   
 
Interaction Effect of Cultivar and Production System  

There was a significant interaction between production system and cultivar with 
regard to unmarketable yield, number of marketable fruits and mass of fruit with cracking 
(Table 3). The number of marketable fruits was significantly higher in ‘Miramar’ and 
‘FiveOFive’, followed by ‘‘FA593’ in the temperature controlled tunnel, while ‘Malory’ 
and ‘FA593’ recorded the lowest in the non-temperature controlled tunnel. In the non-
temperature controlled tunnel the highest unmarketable yield was recorded for ‘FA593’, 
followed by ‘Malory’, with the lowest unmarketable yield recorded for ‘Miramar’ and 
‘FiveOFive’ in the temperature controlled tunnel. This is in agreement with Maboko et al. 
(2009) who observed tomato cultivars responding differently when grown in different 
production systems. ‘Miramar’ and ‘FiveOFive’ produced the highest number of 
marketable fruits, compared to the other cultivars in the temperature controlled tunnel, 
while in the non-temperature controlled tunnel ‘Five-O-Five’ and ‘Miramar’ produced the 
highest number of marketable fruits, compared to ‘Malory’ and ‘FA593’.  

  ‘Malory’ produced significantly the highest number of cracked fruit, with 
‘FA593’ recording the second highest, compared to the other cultivars in the non-
temperature controlled tunnel than in the temperature controlled tunnel. This higher 
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number of cracked fruit could be due ‘Malory’ and ‘FA593’ producing larger-sized fruit, 
a feature which predisposes such fruit to cracking (Maboko and Du Plooy, 2008; Maboko 
et al., 2009). The lack of exocarp elasticity when fruit expand can result in rupturing of 
the epidermis (Peet, 1992; Cheryld et al., 1997).  The higher incidence of cracked fruit 
among cultivars grown in the non temperature controlled tunnel might have been caused 
by higher temperatures, as well as higher temperature fluctuations than in the temperature 
controlled tunnel. Peet (1992) reported that higher temperatures increase the incidence of 
tomato fruit cracking. Relying on natural ventilation to counteract heat build-up in tunnels 
seems insufficient to improve tomato yield.  However, cultivars that tolerate warm air or 
heat stress could be introduced to improve fruit set, yield and quality of tomato in non-
temperature controlled tunnels. 
 
CONCLUSIONS  
 
  Results emphasize the importance of cultivar selection, while illustrating that 
temperature control can improve yield and quality of tomatoes produced in tunnels. 
‘Miramar’ and ‘FiveOFive’ were the most promising cultivars in both systems with 
regard to yield and quality.  Use of the recommended cultivars can help tunnel production 
growers to positively compete with imported tomatoes.  
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Table 2. Yield and number of marketable fruit of tomato cultivars (g/plant, fruit/plant) in the temperature controlled tunnel and non-
temperature controlled tunnel 

Treatment Total yield Marketable 
yield 

Number of 
marketable  

fruits 

Unmarketable 
yield 

Number of 
marketable  

fruits 

Number of 
fruit 

cracking 

Mass of 
cracked 

fruit  
Production System  

C28 3978b 2349b 25.31b 1629a 25.31b 14.36a 1358a 
C29 6619a 5799a 45.20a 820b 45.20a 4.14b 616b 

Lsd 0.05 299.1 309.4 1.99 187.6 1.99 1.3 171.8 
Cultivars  

Five-O-Five 5596ab 4835a 43.40a 761b 43.40a 2.92c 413c 
Malory 4748c 3100b 23.41c 1648a 23.41c 9.64b 1424b 
FA593 5193b 3352b 28.89b 1841a 28.89b 12.85a 1671a 

Miramar 5657a 5007a 45.31a 650b 45.31a 3.07c 440c 
LSD 0.05 422.9 147.3 2.81 265.3 2.81 1.675 243 

Figures in a column followed by the same letter are not significantly different (P > 0.05), using Fisher’s protected t-test.  
C28 = non-temperature controlled tunnel; C29 = temperature controlled tunnel 
 
 
 
 
 
 
 
 
 
 


