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Abstract

In this study Spectral Quasilinearisation Method (SQLM) coupled with finite differ-

ence and Bivariate Spectral Quasilinearisation Method (BSQLM) in solving second

order nonlinear evolution partial differential equations are compared. Both meth-

ods use Newton-Raphson quasilinearisation method (QLM) and Chebyshev spectral

collocation based on Lagrange interpolation to solve the governing equations. The

Spectral Quasilinearisation Method coupled with finite difference is obtained by ap-

plying the spectral collocation method on space derivatives and finite difference of

time derivatives while the BSQLM is a Bivariate Lagrange interpolation based scheme

in which the spectral collocation method is applied independently to both time and

space derivatives. The applicability of these methods is shown by solving a class

of second order nonlinear evolution partial differential equations (NPDEs), namely

Burgers equation, Burgers-Fisher, Fisher’s equation, Newell-Whitehead-Segel equa-

tion and Zeldovich equation that arise in some fields of science and engineering. The

numerical approximation results are validated for accuracy by comparing them with

exact solutions. Tables for Explicit, Implicit and Crank-Nicolson SQLM and BSQLM

with their computational times were generated for comparison; the order of accuracy

for each method and error graphs are presented.
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Chapter 1

Introduction

This thesis discusses the comparison of Spectral Quasilinearisation Method coupled

with finite difference and Bivariate Spectral Quasilinearisation Method in solving

second order nonlinear evolution partial differential equations. Both methods are

spectral based and different studies show that there is an increase in the use of spectral

methods [6]. The methods to be used in this study have been used in solving boundary

layer problems and evolution equations by Motsa et al. in [55, 57]. However, there

has been no study which compared these methods in solving second order nonlinear

evolution partial differential equations. This work discusses the question why it is

important to solve nonlinear evolution partial differential equations, the importance

of spectral methods, testing the methods and reaching a conclusion on which method

is better than the other.

1.1 Background of the Problem

Partial differential equations as a field of research has been given attention by different

authors for example [24, 28, 70]. However, research on finding solutions of nonlinear

evolution partial differential equations using numerical methods continues. A nonlin-

1



Introduction 2

ear evolution partial differential equation is a system depending on continuous time

variable t and the space variable y described by an equation of the form

∂u

∂t
= F

(
u,
∂u

∂y
,
∂2u

∂y2

)
, (1.1)

where u(y, t) is a function of space y and time t,
∂u

∂y
and

∂2u

∂y2
are the first and second

partial derivatives of the function u(y, t) with respect to y. The function F can be

expressed as the summation of linear and nonlinear functions L and N respectively,

that is

∂u

∂t
= L

(
u,
∂u

∂y
,
∂2u

∂y2

)
+N

(
u,
∂u

∂y
,
∂2u

∂y2

)
,

and is discussed further in Chapter 2. For notational simplicity, u(y, t) is written as

u. It is still crucial to conduct more research on finding the solution of nonlinear

evolution partial differential equations with the aim of improving accuracy. Agreeing

with Chang Shu [24] in most of the science and engineering fields, partial differential

equations (PDEs) might be encountered, singly or as a system. Examples are Burg-

ers equation, Fisher’s equation and Burgers-Fisher equation. This study focuses on

second order nonlinear evolution partial differential equations which can effectively

model the interaction between diffusion transport, reaction mechanisms and convec-

tion properties. Reaction-diffusion equations possess interesting properties that make

them unique to study from both a numerical and an analytic point of view. The phys-

ical applications of reaction-diffusion equations are very broad; such equations can

describe many of the dynamics found in nature, from chemical reactions, biological

processes, ecological patterns, to geological events [70]. Thus, understanding the lim-

itations of numerical solutions to these types of equations is of great importance to

many scientists [24,70]. Generally, most of these problems may involve nonlinear evo-

lution partial differential equations where exact solution is unattainable or difficult

to get. This makes numerical scientists see the importance of developing alternative
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ways to estimate the solutions of the nonlinear evolution partial differential equations.

After years of research, scientists, therefore, approximate the solution of the system

of partial differential equations by using numerical discretisation techniques on some

function values at certain distinct points, which are called grid points or mesh points.

The most widely used numerical methods in engineering and in computational fluid

dynamics are the finite difference, finite element and finite volume methods.

1.2 Review of Nonlinear Partial Differential Equa-

tions

Nonlinear partial differential equations are found in many different fields of science

particularly in engineering, physics, chemistry and biology [35]. Other examples are

the filtration of fluids, diffusion in the chemical reaction, population dynamics and

the famous Black and Scholes equation in finance which are all modeled using evolu-

tion partial differential equations [72]. Thus, evolution partial differential equations

are crucial in our societal life. Many nonlinear models of real-life problems are solved

either numerically or analytically. As a result, many researchers have devoted their

lives to investigating the solutions of evolution partial differential equations using

different methods. It is noted in the literature that the time-dependent partial differ-

ential equations showed much development in application during 1945, immediately

after the Second World War, when large-scale practical application became possible

with the help of computers. During this evolution, many researchers played their role,

which includes Von Neuman in 1951 [5], Crank and Nicolson in 1947 [54]. Finite differ-

ence method (FDM), finite element method (FEM) and finite volume method (FVM)

are the methods that were used in the past. The FDM lost its attractiveness because

of hitches in stability and inaccuracy. In the case of FVM and FEM mesh generation
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in higher dimensions became more cumbersome [26]. To overcome such problems the

spectral method has taken over and become the most popular method in the last

two decades because of the accuracy and efficiency that it brings in the computation.

Recently, researchers have been using spectral methods which are more accurate and

efficient compared to traditional methods [29].

1.3 Review of Spectral Methods

This section gives a brief introduction to spectral methods. Spectral methods and

finite elements are closely connected and constructed from similar ideas; the main

differentiating factor is that spectral methods use basis or test functions that are

nonzero over the entire domain, while finite element methods use basis functions that

are not zero only on small sub-domains. Hence, spectral methods take on a global ap-

proach whereas finite element methods (FEM) and finite difference methods (FDM)

take a local approach. The computations at a given point does not depend only on

information at the neighbouring points but also on information on the complete do-

main. For this reason, spectral methods have an exceptional error property which is

known as exponential convergence, being the fastest possible, when the solution is

smooth [6]. If the problem have disjoints, finite element methods (FEM) and finite

volume methods (FVM) will be preferred than spectral methods since these two can

handle the problems with disjoints much easily. The focal idea of spectral methods is

to approximate the solution of the problem as a weighted sum of certain elementary

functions and then choose the coefficients in the sum in order to minimise the differ-

ence between the exact solution and the estimated one as far as possible. The way

in which test functions are selected leads to three well-known categories of spectral

methods called Galerkin Method, Tau Method and the Collocation Method. Spectral

collocation methods, also known as pseudo-spectral methods, are a subclass of spec-
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tral methods and are similar to Finite Difference methods due to direct use of a set

of grid points, which are known as collocation points [25]. The differential equation

need to be satisfied exactly at the collocation points. The Tau and Galerkin spectral

methods are similar to each other due to the fact that the expanding basis is not

obliged to satisfy boundary conditions, requiring extra equations to be applied in the

boundary conditions [4]. Among the three methods, the spectral collocation method

is measured to be the simplest with extraordinary precision and stability [3]. Doha et

al. [28] also highlighted that the collocation method deals with nonlinear terms more

easily than Galerkin and Tau Methods. During the last thirty years, the spectral

collocation method has been considered a good candidate for solving nonlinear phys-

ical modeling problems and fractional differential equations because of its simplicity

and accuracy as compared to finite difference methods [3]. The rate of convergence

of spectral approximations depends only on the smoothness of the solution, yield-

ing the ability to achieve high precision with a small amount of data. This fact is

known in the literature as “spectral accuracy” [25]. The spectral collocation method

is chosen considering the fact that it gives an exponential convergence rate, which is

very useful in providing highly accurate solutions to nonlinear differential equations

even if a small number of grid points are used. The spectral methods also work well

in solving both linear and nonlinear equations. Generally the spectral methods are

computationally less challenging compared to traditional methods but become inac-

curate for problems with disjointed coefficients [6]. This increase in inaccuracy is the

result of the Gibbs phenomenon. It is caused by oscillations arising from the discon-

tinuity caused by the fact that a discontinuous solution is being approximated by an

oscillatory set of smooth functions [6]. The Pseudospectral Collocation Method has

been used together with several methods to solve evolution problems eg. with the

Runge-Kutta method [34]. The Spectral Quasilinearisation Method coupled with
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finite difference in time was used for the first time in solving unsteady boundary layer

flow problems by Motsa et al. [58]. This was the first paper in which both methods

were applied in partial differential equations. Before that, these methods were applied

to ordinary differential equations. Another method that has been employed which

is based on spectral methods is the spectral relaxation method. The procedure in

this method uses the idea of the Gauss-Seidel method to decouple the governing sys-

tems. From there, the arising equations form an iterative scheme which is developed

by estimating linear terms in the current iteration level and nonlinear terms in the

previous iteration level. Kameswaran et al. [60] used the Spectral Relaxation Method

to solve boundary value problems that arise in fluid mechanics applications. Another

method based on spectral methods is the Spectral Local Linearisation approach used

by Motsa et al. [59] for natural convection boundary layer flow. This really shows

how the spectral methods have gained the interest of different researchers. This study

will use the pseudo-spectral methods known as Spectral Quasilinearisation Method

coupled with finite difference in time (SQLM) and Bivariate Spectral Quasilinearisa-

tion Method (BSQLM). These methods have been used by Dlamini et al. [27] and

Motsa et al. [53, 57], in solving Similarity Boundary Layer Problems and evolution

problems respectively. It is important to note that both SQLM and BSQLM fall

under collocation methods. There are aspects that need to be considered for efficient

implementation of spectral methods. They are discussed in detail as:

• Evaluation of derivatives: The derivatives are approximated using differentia-

tion matrices as fully discussed in [71]. The methods use different approaches

to approximate or evaluate the derivatives. In the SQLM, time derivatives are

evaluated using finite difference method (FDM) and space derivatives using the

spectral method. In the BSQLM, both time and space derivatives are evaluated

using the spectral method.
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• Evaluation of nonlinear and non-constant coefficient terms: The most efficient

way to evaluate nonlinear and general non-constant terms in spectral approx-

imations is to apply transformation methods. For this study, nonlinear terms

are linearised using the QLM which is discussed in Section 3.3. In general, it

is easier to implement the collocation method than the other types of spectral

methods and it deals quite well with nonlinear equations.

• Modeling error: These errors arise due to the difference between the real prob-

lem and the mathematical model. Modeling errors can be brought about both

by time and spacing. Time discretisation errors in spectral methods are usually

smaller than space discretisation errors. According to David in [25], there are

two main reasons for this, which are: (i) change in time is commonly restricted in

size by explicit stability conditions and stability of the time integration require

time-differencing errors to be insignificant,(ii) many problems involve several

space coordinates so any possible efficiency in the representation of the space

disparity of the dependent variables is significant to the overall effectiveness of

the method.

1.4 Aims and Research Objectives

This study will use Spectral Quasilinearisation Method (SQLM) and Bivariate Spec-

tral Quasilinearisation Method (BSQLM) to compute the numerical solution of non-

linear evolution equations. The aim of the study is to investigate the applicability

of these methods in solving second order nonlinear evolution equations, to exam-

ine the best method between SQLM and BSQLM by comparing the accuracy and

computational speed of each method. Approximate solutions obtained are compared

with the exact solutions which are available in the literature. The study will explore
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different forms of SQLM which use Explicit Method, Implicit Method and Crank-

Nicolson finite difference schemes for time derivatives and compare them with results

for BSQLM that uses spectral derivatives for all derivatives in time and space.

1.5 Problem Statement

In this study, the Spectral Quasilinearisation Method coupled with finite difference in

time and Bivariate Spectral Quasilinearisation Method are employed in solving Burg-

ers equation, Burgers-Fisher equation, Fisher’s equation, Newell-Whitehead-Segel

and Zeldovich equations. The results found using the Spectral Quasilinearisation

Method coupled with finite difference in time and Bivariate Spectral Quasilinearisa-

tion Method are compared with the exact solutions to measure their accuracy and

convergence. Finally, the governing equations will also be solved using the Matlab

computing software. There are many ways to approximate solutions of nonlinear evo-

lution partial differential equations and the development of both numerical and ana-

lytical methods for solving these equations continues to be an area of interest to many

scientists, whose research aim is to improve the understanding of nonlinear problems.

Different methods for obtaining analytical and approximate solutions to nonlinear

evolution equations have been proposed and used successfully. However, some meth-

ods have limitations and drawbacks in approximating numerical solutions. These

include slow convergence and poor accuracy, particularly for large time (t > 1) [57].

In this study, the effect of large time is examined using both methods. Spectral meth-

ods have been used effectively in numerous fields of sciences and engineering because

of their ability to give accurate solutions of differential equations. Khater et al. [35]

applied the Chebyshev spectral collocation method in space and finite differences to

approximate the time derivative to solve Burger type equations. The SQLM uses a

similar idea, that using explicit, implicit and Crank-Nicolson schemes on time deriva-
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tives will give an understanding of the effect that is brought about by the use of finite

differences in time derivatives and spectral derivatives on space derivatives. There are

problems that have been discovered in using finite differences, for example it requires

many grid points to achieve good accuracy and, therefore, requires a lot of computer

memory and computational time. To address this challenge, the BSQLM is used. It

uses the spectral method on both space and time derivatives.

1.6 Significance of the Study

This study is undertaken to compare the effect of using the finite difference derivatives

in time together with spectral derivatives in space and spectral derivatives on time

and space derivatives. The proposed study will add value in the following ways:

1. Provide knowledge on how to use SQLM and BSQLM as a mathematical tool

to solve nonlinear evolution equations.

2. Also act as the base for further research on numerical methods for Partial Dif-

ferential Equations in numerical methods.

1.7 Plan of the Dissertation

Chapter 2 begins by giving the general form of the evolution problem to be inves-

tigated with defined initial and boundary conditions. Methods that have been used

to solve nonlinear evolution partial differential equations in the past are considered,

then a general introduction to spectral methods and the reasons which led to the use

of spectral over other methods is given. Chapter 3 describes the SQLM by starting

with linearisation of the problem using QLM and shows how to apply the spectral

method to the linearised equation. Chapter 4, then defines the BSQLM and shows
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how this method works. In Chapter 5 the test problems are solved and results and

discussion are presented. Concluding remarks follow in Chapter 6.



Chapter 2

Nonlinear Evolution Equations and

Properties of Numerical Methods

Nonlinear evolution partial differential equations form a foundation of many models

in mathematics, physical science, chemical and biological phenomena and recently

their applications have extended to financial forecasting and economics. Since these

equations cannot in general be solved analytically, it is, therefore, important to ap-

proximate their solution numerically. This study will use Explicit, Implicit and Crank-

Nicolson Spectral Quasilinearisation Method and Bivariate Spectral Quasilinearisa-

tion Method to estimate solutions of nonlinear evolution partial differential equations.

The next section will consider the general model which the study attempts to solve.

2.1 Mathematical Model

Consider the second order nonlinear parabolic evolution equation of this form:

∂u

∂t
= L

(
u,
∂u

∂y
,
∂2u

∂y2

)
+N

(
u,
∂u

∂y
,
∂2u

∂y2

)
, 0 ≤ y ≤ l, t ∈ [0, T ] (2.1)

11
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with the initial and boundary conditions

u(y, 0) = u0(y), 0 ≤ y ≤ l, t = 0, (2.2)

u(0, t) = g0(t), u(l, t) = g1(t), t ∈ [0, T ] (2.3)

where u(y, t) is the solution to be approximated and y and t are space and time vari-

ables respectively, and L and N are linear and nonlinear operators respectively. It is

very important to note that u0(y) in (2.2) is the initial condition and (2.3) shows the

left and right boundary conditions when y = 0 and y = l respectively. In this study,

the model represented by equation (2.1-2.3) is solved.

Among the evolution equations that are considered in this study is the Burgers equa-

tion. The Burgers equation is a quasi-linear parabolic partial differential equation

that defines the time evolution of the function u(y, t) under nonlinear convection and

linear dissipation that takes the following form:

ut = εuyy − uuy + f(y, t), 0 ≤ y ≤ l, t ≥ 0, (2.4)

where ε > 0 is the quantity that represents the kinematic viscosity in the equa-

tion. When the viscosity is equal to zero, the evolution of the function u(y, t) may

develop tremors and if viscosity is small, sharp gradients can develop and disperse

as t → ∞ [67]. The Burgers equation is an essential partial differential equation

from fluid mechanics. It arises in several areas of everyday life sciences such as gas

dynamics and traffic flow [43]. The Burgers equation seems to have applications

even in economics according to Schumpeter in [30]. In the period 1911 to 1939,

economic development of industry was a periodical process with a period of order

half-century (“business cycle”). It consisted of cascades of creation, processes of

formation and cascades of destruction. Creative and destructive cascades can be de-

scribed by Lotka-Volterra type equations. The mechanism of technological changes
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in the industry during processes of formation can be divided into two components:

creation of new technologies by a firm (innovation process) and adoption of technolo-

gies, created by other firms (imitation process). For an industry with many firms, its

development can be described as an evolution of its efficiency distribution [30]. The

Burger type equation first appeared in 1915 in a paper written by Batman according

to Nguyen [67]. Yet, the equation gets its name from far-ranging research by Burgers

at the beginning of 1939 [64]. Burgers equation appears frequently as the description

of a more complex and sophisticated models. Hence, it is usually thought of as a “toy

model”, namely, a tool that is used to understand some of the inside behavior of the

general problem. The results confirm that it is correspondent to the Navier-Stokes

equation for incompressible flow with the pressure term uninvolved [47]. Burgers

equation has been used as a modest model for many physically exciting problems

for convection-diffusion phenomena such as shock waves, turbulence, decaying free

turbulence, traffic flows, flow-related problems, gas dynamics, number theory, forest

fire, population growth models etc. [35]. Khater et al. [35] used the method which

is called Chebyshev spectral collocation (ChSC) method to solve Burgers equation.

The ChSC method is obtained through starting with Chebyshev approximation for

the approximate solution and creating approximations for the higher-order deriva-

tives through successive differentiation of the approximate solution. Reducing the

equation to a system of ordinary differential equations (ODEs) that are solved by

the Runge–Kutta method of fourth order. Biazar et al. [22] used the Variation Iter-

ation Method (VIM) to find the solution to Burgers equation where they compared

their results to the ones obtained using Adomian’s Decomposition Method (ADM).

The Burgers equation has also been solved by Nguyen [67] using the Finite Element

Method. The equation is first transformed using the Hopf-Cole transformation [67].

A modified Adomian’s method was used by Darvishi et al. [1]. Their method was
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based on decomposing the equation using the Hofp-Cole Transformation. Tamer et

al. [64] highlighted that evolution equations have not been solved exactly, but with

many combinations of initial and boundary conditions, using specified conditions an

approximate solution close to exact solution can be found certainly.

The Fisher’s equation is also considered as another example of the nonlinear evolution

equation. The Fisher’s equation was first introduced by R.A. Fisher as a model of

the wave propagation of a favoured gene in a population in 1937 [32]. According to

Zarebnia and Jalili [70], the Fisher’s equation plays a crucial role in neutron flux in

a nuclear reactor. It has a wide application in ecology and plasma physics. It is also

used to describe the interaction of diffusion and reaction processes in biology, chem-

istry and in engineering [19]. Recently Mittal and Jain [49] used the Modified Cubic

Spline Collocation method to solve Fisher’s equation. This method is applied without

any transformation and linearisation process. Jalili et al. [70] used the spectral collo-

cation method to solve Fisher’s equation. Their method combines the Crank-Nicolson

scheme operating on the diffusive terms and a second-order Adams-Bashforth scheme

acting on the advective terms [70]. Fisher’s equation is also encountered in various

applications such as tissue engineering, autocatalytic and other chemical reactions,

combustion, and neurophysiology [9]. The Fisher’s equation has the form

ut = vuyy + ρf(u) (2.5)

[19]. There are two cases that are most popular, firstly f(u) = u(1−u) and secondly

f(u) = ρu(1−u), where ρ > 0. The first case is commonly used to describe the kinetic

advancing rate of an advantageous gene and the second case arises in large number

of biological and chemical phenomena [48]. The coefficient v and ρ are the diffusion

coefficient and reactive factor respectively, t is the time, y is the distance and u(y, t)

is the population density. The solution of Fisher’s equation has been studied using
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many different computational approaches. This includes the numerical solutions that

were presented in [13] with a pseudo-spectral approach. Gazdag and Canosa [25]

were the first to study numerical solutions of Fisher’s equation using pseudo-spectral

method. Later, many researchers studied numerical solutions of the Fisher’s equation.

Hagstrom and Keller [12] presented asymptotic boundary conditions by using a cen-

tred finite-difference algorithm. The numerical approach which was named Accurate

Space Derivatives (ASD) method was carried out efficiently by the use of the Fast

Fourier Transform (FFT) algorithm in [10, 13]. Mittal and Arora [48] used B-spline

scheme to find the solution of the Fisher’s equation.

Thirdly, the Burgers-Fisher equation is considered as another example of the non-

linear evolution equation. The common form of the Burgers-Fisher equation can be

expressed as:

ut = uyy − αuγuy − βu(uγ − 1), (2.6)

where α, γ and β are non-zero parameters [38]. The Burgers-Fisher equation occurs

in many areas of sciences and physical applications, for example in modeling of gas

dynamics, financial mathematics and fluid mechanics. In this study, Equation 2.6

has been solved using the numerical approaches BSQLM and the SQLM and the con-

vergence of the method proved to be rapid. Many authors have investigated the use

and application of the Burgers-Fisher equation. Javidi and Golbabai [34] introduced

a spectral collocation method for the solution of Burgers-Fisher equation. Dhawan

et al. [26] solved the same equation using a Multi Quadratic Scheme. They men-

tioned that this type of equation has many applications in gas dynamics. Kaya and

Sayed [36] used Adomian Decomposition Method (ADM) to solve nonlinear evolu-

tion partial differential equations of this nature. They found that solutions are very

rapidly convergent by utilising the ADM. Furthermore, the Adomian Decomposition
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Method does not require discretisation of the variables, (in time and space), as it is not

affected by calculation rounding off errors and the need for large computer memory

and time. Rashid and Abbas [14] solved the Burgers-Fisher equation by first reducing

the problem to a system of ordinary differential equations which can be solved by the

fourth order Runge-Kutta method. The application of the Burgers-Fisher nonlinear

second-order evolution equations describes numerous processes in science and biol-

ogy, e.g. heat and mass transfer, filtration of liquids, diffusion in chemical reactions,

population dynamics etc [38]. Therefore, it is important to study the solution profiles

of this nature to handle a large range of problems occurring in day-to-day life

Another type of equation that is investigated in this study is Newell-Whitehead-

Segel equation that describes the dynamic behaviour near the bifurcation point of

the Rayleigh-Bernard convection of binary fluid mixtures, nonlinear optics, chemical

reactions and biological systems [50]. The Newell-Whitehead-Segel equation takes

the following form:

ut = uyy − u(1− u)(a− u). (2.7)

The Newell-Whitehead-Segel equation has been given considerable attention in re-

cent years by introducing various methods and techniques to solve it. For example,

Saravanan and Magesh [63] used the reduced differential transform method and the

Adomian Decomposition Method. Among other researchers that have solved Newell-

Whitehead-Segel equation is Pue-on [50]. Pue-on used Laplace Adomian Decompo-

sition Method to solve Newell-Whitehead-Segel equation.

Lastly, the Zeldovich equation is investigated. The equation appears in combustion

theory. The Zeldovich equation takes the following form:

ut = uyy + u2 − u3. (2.8)
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The function u(y, t) is unknown and it represents the temperature while other terms

are concerned with generating heat combustion [45]. The Zeldovich and Newell-

Whitehead-Segel equations arise from the well-known Fitzhugh-Nagumo equation.

These nonlinear partial differential equations are extensively used as models to de-

scribe complex physical occurrences in various fields of science, especially in fluid me-

chanics, solid-state physics, plasma physics, plasma wave and chemical physics [66].

The Newell-Whitehead-Segel and Zeldovich equations are special cases of the classical

Fitzhugh-Nagumo (FN) equation of the form:

ut = uyy − u(1− u)(a− u), (2.9)

where a is constant and u(y, t) is the unknown function depending on the time-based

variable t and y is the space variable. When a = −1 the equation reduces to the

Newell-Whitehead-Segel equation and when a = 0 reduces to the Zeldovich equa-

tion [46, 66]. Many authors have solved this equation using different approaches,

among others Motsa [55] using the Homotopy Analysis Method. Jiwari et al. [66]

used the polynomial differential quadrature method (PDQM) to solve the Zeldovich

equation.

Its clear from the above discussion that many researchers have investigated and solved

nonlinear evolution partial differential equations using different methods, but that

does not prohibit new research on solving same the equations. For this study, the

Spectral Quasilinearisation Method coupled with finite difference in time and Bivari-

ate Spectral Quasilinearisation Method will be used to solve the equations (2.1-2.3).

The approximated results are then compared to exact solutions of each type of equa-

tion available in the literature to show the accuracy of the method. The Zeldovich and

Newell-Whitehead-Segel equations describe the interaction between diffusion, convec-

tion reaction and diffusion transports. It has been highlighted earlier that there is



Nonlinear Evolution Equations and Properties of Numerical Methods 18

no general procedure for finding analytic solutions of the nonlinear diffusion equation

to date. Numerical solutions are of great importance in approximating the solutions

of many physical problems. There are many researchers who used various numerical

procedures to obtain the numerical solution of nonlinear evolution partial differential

equations of the type given by equations (2.1- 2.3). In the past few years, several

powerful mathematical methods such as Adomian Decomposition Method, Homo-

topy Analysis Method have been used in attempting to solve the equation. It is

still demanding to solve these equations, either numerically or analytically. As a

result several assumptions have to be made unnecessarily to make nonlinear models

solvable [21, 69]. Evolution problems like other problems in mathematics have some

numerical properties that need to be taken into consideration when solving them. In

the next section, the properties of numerical methods are discussed.

2.2 Properties of Numerical Methods

In scientific computation, the numerical methods used to solve problems should be

robust. A numerical method is said to be robust if the conclusions remain true, even

though the model is not perfect. The robustness in the numerical approximation is

an important property since in real life there is no perfect model even if the perfect

information is available to construct the model [44]. There are several properties

that need to be considered in numerical analysis which include; accuracy, stability,

consistency and convergence. It is important to choose a method considering these

concepts. The summary of these numerical properties is discussed below.

2.2.1 Accuracy and Consistency

Numerical schemes are used to approximate the solution of evolution equations. In

the algorithm development, when approximating the function u(y, t) there are errors
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that arise. The errors that are associated with the algorithm development of the

numerical scheme are:

• Convergence error: it is the difference in numerical solution and exact solutions

of the given equations. It is also called iteration error.

• Modeling error: Modeling errors arise due to the difference between the real

problem and its formulation as a mathematical model.

• Truncation error: Truncation error refers to the error in a method, which occurs

because some series (finite or infinite) is truncated to a fewer number of terms.

Such errors are essentially algorithmic errors and can predict the extent of the

error that will occur in the method.

• Round off error: Round off error occur because of the computing machine in-

ability to deal with certain numbers. Such numbers need to be rounded off to

some near approximation which is dependent on the word size used to represent

numbers of the device.

A scheme is consistent if the operator reduces to the original differential equation

as the increases in the independent variables vanish. Consistency requires that the

original equations can be recovered from the arithmetical equations. Clearly this

should be a minimum requirement for any discretisation. Consistency is necessary

for convergence, but not every consistent scheme is convergent [18].

2.2.2 Convergence and Stability

For a numerical scheme to be useful it needs to correspond to the partial differential

equation that is approximated. A numerical method is said to be convergent if the

solution of the discrete equations tends to exact solution of the differential equation
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as the distance between the computational grid is defined. The significance of spec-

tral methods is that they can achieve high accuracy with little more resolution than

is required to achieve moderate accuracy [25]. The fundamental problem of the nu-

merical analysis in the boundary value problems is to find the approximate solution

u(y, t) which converges to exact solution as Ny increases for some given time inter-

val [0, T ]. To estimate the error, the estimated solution is subtracted from the exact

solution. The primary result is the Lax-Richtmyer equivalence theorem which states

that stability is equivalent to convergence for consistent approximations to well-posed

linear problems [25]. It is important to note that the theorem is applicable to any

discretisation; real fluid dynamics is usually nonlinear and a typical problem is usu-

ally boundary value or mixed initial and boundary value problems. Let the infinity

norm error is approximated as

Ei = ‖uni − u∗i ‖∞, 0 ≤ i ≤ Ny,

where uni is the approximated solution, ui
∗ is the exact solution at time level (t)

and Ny represent collocation points in the space direction. The scheme is consistent

if as Ny tends to infinity, infinity norm error goes to zero and then the scheme is

said to be convergent [29]. For nonlinear evolution problems which are influenced by

boundary conditions, convergence and stability are difficult to prove. Convergence can

be proved by repeating the experiments many times. The study to be conducted solves

the nonlinear evolution equations which are linearised using QLM (see Section 3.3).

Taylor series is well known to converge in the largest circle around the expansion point

that does not contain any singularities. This result generalises in a straightforward

manner to interpolating polynomials, where the nodes are scattered over an interval

rather than all taken at one point. If the method is stable the solution obtained

converges to the exact solution [58]. In this chapter both the mathematical models of

interest and the numerical properties were discussed. The next chapter will introduce
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the Spectral Quasilinearisation Method coupled with finite difference in time (SQLM)

and show how it is formulated and applied to solve mathematical problems.



Chapter 3

Spectral Quasilinearisation Method

Coupled with Finite Difference

3.1 Introduction

In this chapter, spectral quasilinearisation method (SQLM) for solving the partial

differential equation (2.1) is presented. The quasilinearisation technique is essentially

a generalized Newton-Raphson Method that was originally used by Bellman and Kal-

aba [16] for solving functional equations. The SQLM uses Chebyshev spectral method

combined with quasilinearisation method (QLM). The governing nonlinear equations

are linearised using the Newton-Raphson based quasilinearisation method (QLM),

then integrated using Chebyshev spectral collocation method [52]. The method has

been used successfully in solving nonlinear boundary layer problems by Motsa [55].

Our focus in this study is to apply this method to second order nonlinear evolution

partial differential equations. The SQLM uses the finite difference method for time

derivatives and spectral method on the space derivatives. According to David et

al. [25] finite difference methods refers to method of descritisation which are acquired

by estimating a function u(y, t) and its derivative u′(y, t) approximation using the

22
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Taylor series. In this context local refers to the use of neighboring grid points to

estimate the function or its corresponding derivative at a specified point. He also

defines Spectral methods as a great methods used for the solution of partial differ-

ential equations. In contrast with finite difference methods, spectral methods are

global methods, which means the computation at any given point depends not only

on information at neighboring points, but on information from the whole domain.

Spectral methods converge exponentially, which gives them superiority in accuracy

over local methods. Global methods are better than local methods when the solution

differs significantly in time or in space, when very high spatial resolution is required,

and also when long time integration is needed [25]. It is then important to note

that the finite difference methods are local methods while the spectral methods are

global methods. The SQLM takes advantage of both methods to try to improve the

accuracy of the local methods. The SQLM is suitable for both ordinary differential

equations (ODEs) and partial differential equations (PDEs). For both cases, if the

equation is nonlinear it is always better to split the equation into linear and nonlinear

components then linearise the nonlinear part using the QLM. The difference between

ODE and PDE is that for PDEs, there are two or more independent variables while

in ODEs there is only one independent variable. For the purpose of this study, our

focus is on PDEs which are discussed in the next section.

3.2 Describing the Spectral Quasilinearisation Method

with Finite Difference

This section describe the Specral Quasilinearisation Method coupled with finite differ-

ence (SQLM) for solving partial differential equations. The spectral quasilinearisation

method uses a quasilinearisation technique which is basically a generalised Newton-
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Raphson Method that was originally used by Bellman and Kalaba [16] for solving

functional equations. The idea used in the construction of iterative techniques for

nonlinear evolution equations is a critical task in numerical analysis. The SQLM is

based on the Newton–Raphson method which is often used as a starting point in the

development of iterative methods with higher order convergence since it converges

to the root quadratically [56]. The SQLM has been used to solve boundary layer

problems [58]. In this study the method is used to solve second nonlinear evolution

problems. The SQLM is used to approximate u(y, t), the solution of equation (2.1-

2.3). Since this method is spectral-based, the domain is defined globally on [−1, 1].

The governing equation is a nonlinear evolution partial differential equation defined

on 0 ≤ y ≤ l. Before using the spectral method, the domain needs to be transformed

from 0 ≤ y ≤ l to −1 ≤ x ≤ 1 and the transformation equation y = l(x + 1)/2 is

used. An application of the chain rule gives

∂u

∂x
=

2

l

∂u

∂y
and

∂2u

∂x2
=

(
2

l

)2
∂2u

∂y2
. (3.1)

Thus, the governing partial differential equation (2.1) is expressed as:

∂u

∂t
= L

(
u,
∂u

∂x
,
∂2u

∂x2

)
+N

(
u,
∂u

∂x
,
∂2u

∂x2

)
, −1 ≤ x ≤ 1, t ∈ [0, T ] (3.2)

with the initial and boundary conditions

u(x, 0) = u0(x), −1 ≤ x ≤ 1, t = 0, (3.3)

u(−1, t) = g0(t), u(1, t) = g1(t), t ∈ [0, T ]. (3.4)

The spectral method uses all available function values to build the necessary approxi-

mation, thus rendering them global methods [31]. According to David et al. [25], the

spectral methods have become progressively common since the development of fast

transformed methods. As a result, it has been used in weather prediction, numerical

simulation of turbulence flow and other problems where high accuracy is desired for
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complicated solutions [72]. The method involves presenting the solution to a given

problem as a truncated series of known functions of independent variables. The spec-

tral method gives results of remarkable accuracy with the efficient use of computer

resources. It is chosen considering the following:

(a) Accuracy: To achieve the usefulness of the spectral method it is crucial

to design it to give greater accuracy than can be obtained using other

methods like finite difference methods. The choice of spectral method

representation depends on the kind of boundary conditions involved in the

problem.

(b) Efficiency: The spectral method must produce more accurate results than

the other methods that were traditionally used in the past, for example,

finite difference method [25].

The nonlinear part of the equation for which the study seeks to approximate is lin-

earised using Quasilinearisation Method (QLM). The linearisation is discussed in the

next section.

3.3 Quasilinearisation Method (QLM) and Differ-

entiation Matrix

The QLM is a very efficient method for constructing approximate solutions to non-

linear problems. The method is a Taylor series numerical approach in which the

truncation error is chosen so that the convergence of the iterations is quadratic [51].

The origin of the method lies in the theory of dynamic programming and was first

initiated by Bellman and Kabala in 1965 [16]. In this study, QLM is used to linearise
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the nonlinear terms in equation (3.2). The nonlinear part is N

(
u,
∂u

∂x
,
∂2u

∂x2

)
but for

convenience in notation N(u, u′u′′) will be used, where u′ and u′′ are first and second

partial derivatives with respect to x. The nonlinear part N(u, u′u′′) is then linearised

as follows:

N(u, u′u′′) ≈ N (ui, u
′
i, u
′′
i ) +

∂N

∂ui
(ui+1 − ui) +

∂N

∂u′i

(
u′i+1 − u′i

)
(3.5)

+
∂N

∂u′′i

(
u′′i+1 − u′′i ),

where the subscripts i and i+ 1 represent the current and next iteration respectively.

Equation (3.5) can be written as:

N (u, u′, u′′) ≈ N (ui, u
′
i, u
′′
i )−

2∑
p=0

∂N

∂u
(p)
i

u
(p)
i +

2∑
p=0

∂N

∂u
(p)
i

u
(p)
i+1. (3.6)

In equation (3.6) the index 0, 1 and 2 represents derivatives of u, u′ and u′′ with respect

to x when the sum is expanded. As a result, equation (3.2) can be written as follows:

∂ui+1

∂t
= L(ui+1, u

′
i+1, u

′′
i+1) +

2∑
p=0

∂N

∂u
(p)
i

u
(p)
i+1 +N (ui, u

′
i, u
′′
i ) (3.7)

−
2∑
p=0

∂N

∂u
(p)
i

u
(p)
i , x ∈ [−1, 1], t ≥ 0

which is now linear. Since our time is defined on [0, T ], the time derivative at the

next time interval is approximated by
∂ui+1

∂t
. More on time decritisation is discussed

in Section 3.4. It is now possible to apply Chebyshev spectral collocation method in

equation (3.7). The method is defined on a global domain [−1, 1] in the x-direction

as stated earlier. The grid points called collocation points are the Chebyshev -Gauss-

Lobatto points defined by

xr = cos

(
rπ

Nx

)
, r = 0, 1, 2, . . . , Nx
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[71].The underlying idea of the collocation method is to approximate the unknown

solution of u(x, t) in the entire domain by an interpolating higher order Lagrange

polynomial at the given collocation points. The partial derivatives in the x-variable

are approximated by the derivatives of the Lagrange polynomial. This N th
x order poly-

nomial is chosen such that it satisfies the boundary conditions of the given nonlinear

partial differential equation. Consider uNx(x, t) to be the approximated solution and

residual to be defined as

RNx(x, t) =
∂ui+1

∂t
−L(ui+1, u

′
i+1, u

′′
i+1)−

2∑
p=0

∂N

∂u
(p)
i

u
(p)
i+1−N (ui, u

′
i, u
′′
i ) +

2∑
p=0

∂N

∂u
(p)
i

u
(p)
i .

The residual vanishes at the interior grid points. Therefore RNx(xr, t) = 0 for r

∈ {0,1,2,. . . ,Nx}, leading to Nx + 1 equations. Equation (3.7) is evaluated at xr,

r = 0, 1, 2, . . . , Nx. Let u(x, t) be an interpolating polynomial given by

uNx(x, t) =
ux∑
r=0

lr(x)u(xr, t) r = 0, 1, 2, 3, . . . , Nx. (3.8)

The functions lr(x) are Lagrange cardinal polynomial that take the form:

lr(x) =
Nx∏

k=0,k 6=r

x− xk
xr − xk

.

At each xk, the values of lr is either 0 or 1; these indices are given as follows

lr(xk) =


1, k = r

0, k 6= r

. (3.9)

Differentiating equation (3.8) with respect to x, once, twice,. . . m times gives

∂uNx(x, t)

∂x
=

Nx∑
k=0

l′r(x)u(xr, t), x = xs; s = 0, 1, 2, . . . , Nx

∂2uNx(x, t)

∂x2
=

Nx∑
k=0

l′′r (x)u(xr, t),

...
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∂muNx(x, t)

∂xm
=

Nx∑
k=0

lmr (x)u(xr, t).

Which can be written as

u′ = Du,

u′′ = (Du)′ = Du′ = D(Du) = D2u,

...

u(m) = D(m)u,

where u = [u(x0, t), u(x1, t), . . . , u(xNx , t)]
T and D = Dsr = l′r(xs). The entries

of matrix D are computed using Theorem 3.3. Chebyshev spectral differentiation

matrix: For each Nx ≥ 1, let rows and columns of the (Nx + 1)× (Nx + 1) Chebyshev

spectral differentiation matrix D be indexed from 0 to Nx. The entries of this matrix

are

(D)00 =
2N2

x + 1

6
, (D)NxNx = −2N2

x + 1

6
, (3.10)

(D)jj =
−xj

2(1− x2j)
, j = 1, 2, . . . , Nx − 1, (3.11)

(D)rj =
cr(−1)r+j

cj(xr − xj)
, r 6= j, r, j = 1, 2, . . . , Nx − 1, (3.12)

where

cr =


2 r = 0 or Nx,

1 otherwise.

The application of the spectral method on the linearised PDE in equation (3.7)

gives

∂ui+1

∂t
= L(ui+1, Dui+1, D

2ui+1) +
2∑

p=0

a1,pD
pui+1 + N

(
ui, Dui, D

2ui

)
−

2∑
p=0

a1,pD
pui, (3.13)

where a1,0 =
∂N

∂u
, a1,1 =

∂N

∂u′
and a1,2 =

∂N

∂u′′
.

According to Trefethen [71], the purpose of all these spectral differentiation matrices
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is to replace the derivatives by differentiation matrices. Space derivatives are approx-

imated by differentiation matrices and time derivatives are approximated by finite

difference methods which are discussed in the next section.

3.4 Time Descritisation

This section discusses the time discretisation of the parabolic nonlinear evolution

equations. The time stepping method is used to compute the solution. Consider the

partial differential equation of this form

∂ui+1

∂t
=

(
L(I,D,D2) +

2∑
p=0

a1,pD
p

)
ui+1+N

(
ui, Dui, D

2ui
)
−

2∑
p=0

a1,pD
pui, (3.14)

where I is an (Nx + 1) × (Nx + 1) identity matrix. Suppose 0 ≤ t < T and let

0 = t0 < t1 < t2 < · · · < tn+1 = T . Considering the short time interval [tn, tn+1],

where tn+1 = tn + ∆t and ∆t is the time step t, the initial condition u(x, tn) = un

is used to compute un+1 ≈ u(x, tn+1) at the next time interval. The simplest time

stepping method involves differencing of u between time level n and n+ 1. Hence at

time level n

∂un

∂t
=
un+1 − un

∆t
. (3.15)

The method of time stepping affects both efficiency and accuracy of the approximate

solution to transient problems [42].

For this work, three types are considered, namely: Explicit, Implicit and Crank-

Nicolson Methods. The time-stepping approaches are described in the next section.

3.4.1 Explicit Spectral Quasilinearisation Method (ESQLM)

In an Explicit Spectral Quasilinearisation Method (ESQLM), the solution is approx-

imated at the present time interval n to get the solution at n + 1. The terms with
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lower script i are assumed to be known from the previous iteration and those with

i+ 1 are the terms at next iterations. Evaluating equation (3.14) at the time level n

using the forward difference approximation

∂uni+1

∂t
=
un+1
i+1 − uni+1

∆t
(3.16)

that give rise to

un+1
i+1 = uni+1 + ∆t

(
L(I,D,D2) +

2∑
p=0

an1,pD
p

)
uni+1 (3.17)

+∆t
(
N
(
uni , Duni , D

2uni
))
−∆t

(
2∑
p=0

an1,pD
puni

)
.

If we let

A1 =

(
I + ∆t

(
L(I,D,D2) +

2∑
p=0

an1,pD
p

))
(3.18)

and the vector

K1 = ∆t

(
N
(
uni , Duni , D

2uni
)
−

2∑
p=0

an1,pD
puni

)
, (3.19)

then re-arrange equation (3.17) gives

un+1
i+1 (x0)

un+1
i+1 (x1)

...

un+1
i+1 (xNx−1)

un+1
i+1 (xNx)



=



0 0 0 · · · 0 0 0

A1

0 0 0 · · · 0 0 0





uni+1(x0)

uni+1(x1)

...

uni+1(xNx−1)

uni+1(xNx)



+



u(1, t)

K1

u(−1, t)



,

which is same as;

un+1
i+1 = A1u

n
i+1 +K1, (3.20)

where un+1
i+1 is a column vector [u(x0, t

n+1), u(x1, t
n+1), . . . , u(xNx , t

n+1)]T at a next

iteration i + 1. Given uni , we compute uni+1 using equation (3.20) and applying
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the boundary conditions on K1 as shown above. The scheme represented by equa-

tion (3.20) is called fully explicit since it computes un+1
i+1 from known quantities at

time tn. When n = 0, equation (3.20) can be used to calculate u1i+1 since u0i+1 is known

from initial conditions. When n = 1, equation (3.20) can be used to compute u2i+1

since u1i+1 is now known from the previous iteration. Similarly for n = 2, 3, . . . . . . and

using equation (3.20) gives u3i+1, u
4
i+1, . . . . . . This subsection we discussed and showed

how the explicit method for SQLM is obtained. The model has been represented in

Matrix form as shown by equation (3.20) which will be solved using Matlab. The

next subsection will introduce the implicit scheme for SQLM.

3.4.2 Implicit Spectral Quasilinearisation Method (ISQLM)

We now consider the Implicit Spectral Quasilinearisation Method (ISQLM). This

scheme is very similar to Explicit Spectral Quasilinearisation Method except that

equation (3.14) is evaluated at n+1. In
∂un+1

i+1

∂t
=

(
L(I,D,D2) +

2∑
p=0

a1,pD
p

)
un+1
i+1 +

N
(
ui, Dun+1

i , D2un+1
i

)
−

2∑
p=0

a1,pD
pun+1

i , we replace time derivative with backward

difference approximation;

∂un+1
i+1

∂t
=
un+1
i+1 − uni+1

∆t

to get

un+1
i+1 = uni+1 + ∆t

(
L(I,D,D2) +

2∑
p=0

an+1
1,p D

p

)
un+1
i+1 (3.21)

+∆t

(
N
(
un+1
i , Dun+1

i , D2un+1
i

)
−

2∑
p=0

an+1
1,p D

pun+1
i

)
.

Rearranging equation (3.21) leads to[
I −∆t

(
L(I,D,D2) +

2∑
p=0

an+1
1,p Dp

)]
un+1
i+1 = un

i+1 (3.22)

+∆t

(
N
(
un+1
i , Dun+1

i , D2un+1
i

)
−

2∑
p=0

an+1
1,p Dpun+1

i

)
.
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The above equation (3.22) can be written as

A2u
n+1
i+1 = B2u

n
i+1 +K2, (3.23)

where

A2 =

[
I −∆t

(
L(I,D,D2) +

2∑
p=0

an+1
1,p D

p

)]
,

B2 = I, K2 = ∆t

(
N
(
I,D,D2

)
−

2∑
p=0

an+1
1,p D

p

)
,

I is the (Nx + 1)× (Nx + 1) identity matrix and B = I.

Before we solve equation (3.23) for ui+1
i+1, we impose boundary conditions as follows

1 0 · · · 0 0

A2

0 0 · · · 0 1





un+1
i+1 (x0)

un+1
i+1 (x1)

...

un+1
i+1 (xNx−1)

un+1
i+1 (xNx)


=



0 0 · · · 0 0

B2

0 0 · · · 0 0





uni+1(x0)

uni+1(x1)

...

uni+1(xNx−1)

uni+1(xNx)


+



u(1, t)

K2

u(−1, t)


.

Solving the above system represented by equation (3.4.2) by inverting matrix A2

gives

un+1
i+1 = A−12 (B2u

n
i+1 +K2). (3.24)

When n = 0, equation (3.23) can be used to compute u1i+1 since u0i+1 is known from

initial conditions. When n = 1, equation (3.23) can be used to compute u2i+1 since

u1i+1 is now known from the previous iteration. Similarly for n = 2, 3, . . . . . . and using

equation (3.23) gives u3i+1, u
4
i+1, . . . . . .
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3.4.3 Crank-Nicolson Spectral Quasilinearisation Method (CN-

SQLM)

Another way used to discretise time step is the Crank-Nicolson method. In this

method, equation (3.14) is evaluated at time level n+ 1/2 to get

∂u
n+1/2
i+1

∂t
=

(
L(I,D,D2) +

2∑
p=0

a1,pD
p

)
u
n+1/2
i+1 + N

(
ui, Du

n+1/2
i , D2u

n+1/2
i

)
−

2∑
p=0

a1,pD
pu

n+1/2
i .

(3.25)

Then approximate
∂u

n+1/2
i+1

∂t
with central difference approximation;

∂u
n+1/2
i+1

∂t
=
un+1
i+1 − uni+1

∆t
,

and approximate u
n+1/2
i+1 with

u
n+1/2
i+1 =

un+1
i+1 + uni+1

2
.

This changes equation (3.25) above to equation (3.26)

un+1
i+1 = uni+1 + ∆t

(
L(I,D,D2) +

2∑
p=0

a
n+1/2
1,p Dp

)
u
n+1/2
i+1 (3.26)

+∆t

(
N
(
u
n+1/2
i , Du

n+1/2
i , D2u

n+1/2
i

)
−

2∑
p=0

a
n+1/2
1,p Dpu

n+1/2
i

)
.

The above equation (3.26) can be written as

A3u
n+1
i+1 = B3u

n
i+1 +K3, (3.27)

where

A3 = I − 1

2

[
∆t

(
L(I,D,D2) +

2∑
p=0

an+1
1,p D

p

)]
,

B3 = I +
1

2

[
∆t

(
L(I,D,D2) +

2∑
p=0

an1,pD
p

)]
,
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K3 = ∆t

(
N
(
u
n+1/2
i , Du

n+1/2
i , D2u

n+1/2
i

)
−

2∑
p=0

a
n+1/2
1,p Dpu

n+1/2
i

)
and I is the (Nx+1×Nx+1) identity matrix. Imposing the boundary conditions we get

1 0 · · · 0 0

A3

0 0 · · · 0 1





un+1
i+1 (x0)

un+1
i+1 (x1)

...

un+1
i+1 (xNx−1)

un+1
i+1 (xNx)


=



0 0 · · · 0 0

B3

0 0 · · · 0 0





uni+1(x0)

uni+1(x1)

...

uni+1(xNx−1)

uni+1(xNx)


+



u(1, t)

K3

u(−1, t)


.

Solving equation (3.27) by inverting matrix A3, gives

un+1
i+1 = A−13 (B3u

n
i+1 +K3). (3.28)

When n = 0, equation (3.28) can be used to compute u1i+1 since u0i+1 is known from

initial conditions. When n = 1, equation (3.28) can be used to compute u2i+1 since

u1i+1 is now known from the previous iteration. Similarly for n = 2, 3, . . . . . . and using

equation (3.28) gives u3i+1, u
4
i+1, . . . . . .

3.5 Summary

This chapter discussed the SQLM and show how it can be applied to nonlinear evo-

lution problems, first by describing the method, and by explaining how QLM works

on nonlinear evolution partial differential equations as first used by Bellman and Ka-

bala [16]. Time dicretisation was discussed which a crucial step is since the SQLM

uses the finite difference in time derivatives. Applying finite difference method on

time derivative gives rise to different forms of SQLM which are ESQLM, ISQLM

and CN-SQLM. In Chapter 5 we shall show how this method is applied to specific

examples.



Chapter 4

Bivariate Spectral Quasilinearisa-

tion Method

This chapter presents the Bivariate Spectral Quasilinearisation Method (BSQLM) for

solving the nonlinear evolution problems. Nonlinear evolution problems such as par-

tial differential equations with time t as one of the independent variables arise in many

fields of mathematics and other divisions of science. In physics, biology, mechanics

and material science. The examples include but are not limited to the Naiver-Stokes

from fluid mechanics, the nonlinear diffusion equation from heat transfer and bio-

logical science [73]. Consider the second order nonlinear evolution parabolic partial

differential equation discussed in Chapter 2:

∂u

∂τ
= L

(
u,
∂u

∂y
,
∂2u

∂y2

)
+N

(
u,
∂u

∂y
,
∂2u

∂y2

)
, 0 < y < l, τ ∈ (0, T ], (4.1)

with the initial and boundary conditions

u(y, 0) = u0(y), 0 ≤ y < l, τ = 0, (4.2)

u(0, τ) = g0(τ), u(l, τ) = g1(τ), τ ∈ (0, T ], (4.3)

where u(τ, y) is the solution to be approximated. For consistency in notation, in

Chapter 2 t was used as the time variable, and in this chapter τ will be used to

35
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denote the time variable. Both independent variables τ and y need to be transformed

to [−1, 1] independently. Consider the y-variable. The region 0 ≤ y ≤ l is converted

to −1 ≤ x ≤ 1 using linear transformation y = l(x + 1)/2, the τ takes the positive

values since it measures time variable. The τ -variable is transformed using τ =

T (t+1)/2 to t ∈ [−1, 1] so that spectral method can be applied. After transformation

equation (4.1) can be written as:

∂u

∂t
= L

(
u,
∂u

∂x
,
∂2u

∂y2

)
+N

(
u,
∂u

∂x
,
∂2u

∂x2

)
, −1 ≤ x ≤ 1, −1 ≤ t ≤ 1. (4.4)

The solution u(x, t) of equation (4.4) is approximated by a bivariate Lagrange interpo-

lation polynomial which is the same as 2-D Lagrange Interpolation polynomial. The

method of the 2-D Lagrange interpolation is based on the 1-D Lagrange interpolation.

According to Brezinski et al. [20], bivariate interpolation can be found in the tensor

product of univariate interpolation functions. The variables are treated separately

and this method is called the classical approach to multivariate interpolation. Since

the Bivariate Lagrange interpolation is being applied, one of the variables is kept as a

constant while the other is varying. The Lagrange interpolation method is convenient

for obtaining the function in explicit form. The Bivariate Lagrange interpolation can

be described as

u(x, t) =
Nx∑
r=0

Nt∑
s=0

u(xr, ts)lrs(x, t) (4.5)

with

lrs = lr(x)ls(t), 0 ≤ r ≤ Nx, 0 ≤ s ≤ Nt, (4.6)

and lr(x) and ls(t) defined as

lr(x) =
Nx∏

k=0,k 6=r

x− xk
xr − xk

, ls(t) =
Nt∏

k=0,k 6=s

t− tk
ts − tk

, (4.7)
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and

lrs(xk, tn) =


1, r = k , s = n

0, otherwise

. (4.8)

Where u(x, t) is a polynomial of degree ≤ Nx×Nt interpolating (Nx+ 1) × (Nt+ 1)

points [20]. We choose collocation points in both x and t directions which are defined

by

xr = cos

(
rπ

Nx

)
, ts = cos

(
sπ

Nt

)
, r = 0, 1, 2, . . . , Nx, s = 0, 1, 2, . . . , Nt. (4.9)

The grid points defined above in equation (4.9) are called Chebyshev-Gauss-Labatto

points. The grid points in equation (4.9) make it easier to evaluate equation (4.1)

on the points in [−1, 1]× [−1, 1] in both x and t variables. Since equation (4.4) con-

tains linear and nonlinear terms, nonlinear terms are linearised using the same QLM

procedure discussed in Section 3.3. After applying the quasilinearisation method, the

right-hand side of equation (4.4) takes the same form as equation (3.7) except for the

fact that for BSQLM transformation is also applied in t. The linearised terms are as

follows

N(u, u′, u′′) ≈ N (ui, u
′
i, u
′′
i ) +

2∑
p=0

∂N

∂u
(p)
i

(
u
(p)
i+1 − u

(p)
i

)
, (4.10)

where i and i+1 represent the previous and current iterations respectively and primes

represent the space derivatives. Let a1,p =
∂N

∂u(p)
, then

equation (4.4) can be written as

∂ui+1

∂t
− L(ui+1, u

′
i+1, u

′′
i+1)−

2∑
p=0

a1,pu
′
i+1 = Ki(ui, u

′
i, u
′′
i ), (4.11)

where

Ki(ui, u
′
i, u
′′
i ) = N(ui, u

′
i, u
′′
i )−

2∑
p=0

a1,pu
′
i. (4.12)
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The most crucial step in the implementation of the solution is the evaluating of the

time derivative at the grid points ts for s = 0, 1, 2, . . . , Nt and the space derivative

at the grid point xr for r = 0, 1, 2, . . . , Nx. Using the Lagrange polynomial in equa-

tion (4.5) the values of the time derivatives at collocation points (xr, ts) are computed

for s = 0, 1, 2, . . . , Nt as

∂u

∂t

∣∣∣∣
x=xr,t=ts

=
Nx∑
g=0

Nt∑
h=0

u(xg, tp)lg(xr)
dlp(ts)

dt
(4.13)

which is same as

∂u

∂t

∣∣∣∣
x=xr,t=ts

=
Nt∑
p=0

dspu(xr, tp), (4.14)

where dsp =
dlp(ts)

dt
is the first derivative Chebyshev differentiation matrix of size

(Nt + 1)× (Nt + 1) which is defined in [71]. The space derivatives at the collocation

points are worked out as

∂u

∂x

∣∣∣∣
x=xr,t=ts

=
Nx∑
g=0

Nt∑
p=0

u(xg, tp)lh(ts)
dlg(xr)

dx
(4.15)

which is similar to

∂u

∂x

∣∣∣∣
x=xr,t=ts

=
Nx∑
p=0

Drgu(xg, ts) = Du(xg, ts), (4.16)

where Drg =
dlg(xr)

dx
is the first derivative Chebyshev differentiation matrix of size

(Nx + 1)× (Nx + 1). The second,third, . . . . . . , mth derivatives are approximated by

∂2u

∂x2

∣∣∣∣
x=xr,t=ts

=
Nx∑
p=0

D2
rgu(xg, ts) = D2u(xg, ts), (4.17)

,

∂3u

∂x3

∣∣∣∣
x=xr,t=ts

=
Nx∑
p=0

D3
rgu(xg, ts) = D3u(xg, ts), (4.18)
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...

∂(m)u

∂x(m)

∣∣∣∣
x=xr,t=ts

=
Nx∑
h=0

D(m)
rg u(xg, ts) = D(m)u(xg, ts), r = 0, 1, 2, . . . , Nx, (4.19)

where D2
rg =

dl2g(xr)

dx2
, D3

rg =
dl3g(xr)

dx3
, . . . . . ., D

(m)
rg =

dl
(m)
g (xr)

dx(m)
and u(xg, ts) is

defined as

u(xr, ts) = [us(x0, ts), us(x1, ts), . . . , us(xNx,ts)]
T . (4.20)

The superscript T denotes the transpose. Substituting equation(4.14) and the space

derivatives discussed in equation (4.16-4.19) into equation (4.11) gives

L(ui+1,s,Dui+1,s,D
2ui+1,s)−

Nt∑
p=0

dspui+1,s +
2∑

p=0

a1,pDui+1,s = Ki(ui,s,Dui,s,D
2ui,s) (4.21)

for s = 0, 1, 2, . . . , Nt , with

a1,p =



a1,p(x0, ts)

a1,p(x1, ts)

a1,p(x2, ts)

. . .

a1,p(xNx , ts)


.

Upon including initial conditions for equation (4.11) on equation (4.21), we get

L(ui+1,s,Dui+1,s,D
2ui+1,s)−

Nt−1∑
p=0

dspui+1,s +
2∑
p=0

a1,pDui+1,s = Ks

(4.22)

where

Ks = Ki(ui,s,Dui,s,D
2ui,s) + dsNtuNt , s = 0, 1, 2, . . . , Nt − 1. (4.23)
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Equation (4.22) may be written as Nt(Nx + 1)×Nt(Nx + 1)

A0,0 A0,1 · · · A0,Nt−1

A1,0 A1,1 · · · A1,Nt−1

...
...

. . .
...

ANt−1,0 ANt−1,1 · · · ANt−1,Nt−1





u0

u1

...

uNt−1


=



K0

K1

...

KNt−1


, where

Ar,r = L[I,D,D2] +
2∑
p=0

a1,pD
p − dr,rI

and

Ar,s = −dr,sI,

when r 6= s, (4.24)and I represents the identity matrix of size (Nx + 1)× (Nx + 1).

4.1 Summary and Conclusion

This chapter investigated and showed how the BSQLM is applied. This new method

of solution uses Bivariate spectral method for solving nonlinear evolution partial dif-

ferential equations has been proposed and this study will use it to solve the second

order evolution partial differential equations. In this chapter, it was shown how

this method is formulated and how it works. In the next chapter, this method is

applied to different types of equations which are Burgers, Burgers-Fisher, Fisher’s,

Newell-Whitehead-Segel and Zeldovich equations. The following chapter will focus

on problem-solving using this method, the BSQLM discussed in this chapter and the

SQLM discussed in Chapter 3.



Chapter 5

Numerical Experiments for

Nonlinear Evolution Equations and

Discussion

This chapter discusses the approximation of the solutions of nonlinear evolution equa-

tions using spectral quasilinearisation method coupled with finite differences in time

and the bivariate spectral quasilinearisation method which uses spectral method in

both time and space derivatives. It will demonstrate the applications of the meth-

ods by solving second order nonlinear evolution equations. These equations include

the Burgers equation, Burgers-Fisher equation, Fisher’s equation, Newell-Whitehead-

Segel equation and Zeldovich equation. All numerical solutions are obtained using

Matlab.

41
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5.1 Numerical Convergence Analysis of the Meth-

ods

To illustrate the convergence and accuracy of the schemes, the infinity norm error

is considered. Since the equations considered have exact solutions, the infinity norm

can easily be determined at each iteration. The approximate solution at a particular

time level and the corresponding exact solution are used to determine the level of

accuracy of the methods. The infinity norm error for any bounded function is defined

as

Ei = ‖uni − u∗i ‖∞, 0 ≤ i ≤ Ny (5.1)

where uni is the approximated solution and ui
∗ is the exact solution at time level t.

To determine the level of accuracy for SQLM and BSQLM approximate solution, at

a particular time level, comparing it with the exact solution, we use the maximum

error or infinity norm error which is defined as

Ei = maxi{|u(yi, t)− u∗(yi, t)|, 0 ≤ i ≤ Ny} (5.2)

where u∗(yi, t) is the approximate solution and u(yi, t) is the exact solution at the time

level t as reported by Motsa et al. in [57]. The methods will converge if infinity norm

errors goes to zero as the number of collocation points increases. It also converges if

an increase in collocation points results in a decrease in the infinity norm errors. The

infinity norm errors will be presented in a tabular form and graphically. Parameters

used to obtain results will be stated explicitly.

5.2 Numerical Experiments

This section present the results obtained from the SQLM and BSQLM for the six

examples considered. These methods were discussed in Chapter 3 and Chapter 4
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respectively. The main aim of this study is to demonstrate the accuracy and show

the applicability of the methods used. Comparison of the infinity norm error results

is obtained from the numerical approximation and the exact solutions. A comparison

of the methods can be made. Before moving to the numerical solution examples, it

is important to note that all the results were obtained using ten iterations.

5.2.1 Burgers Equation

The general Burgers equation is given by:

∂u

∂t
= ε

∂2u

∂y2
− u∂u

∂y
+ f(y, t), 0 ≤ y ≤ l, t ≥ 0, (5.3)

where ε > 0 is the coefficient of the kinematic viscosity [67]. The initial and boundary

conditions respectively, are given by

u(y, 0) = u0(y), 0 ≤ y ≤ l, (5.4)

u(0, t) = g0(y), u(l, t) = g1(y). (5.5)

The nonlinear term is given by u
∂u

∂y
in equation (5.3). According to Nguyen [67], the

boundary condition must be well specified in order to achieve a well posed solution.

The exact solution of Burgers equation can only be found for restricted values of

ε [43]. For the purpose of comparing the numerical methods, the following particular

Burgers Equation is considered.

∂u

∂t
=
∂2u

∂y2
− u∂u

∂y
, 0 ≤ y ≤ 2, 0 ≤ t ≤ 2, (5.6)

subject to boundary conditions

u(0, t) =
1

2

[
1− tanh

{
1

4

(
−15− t

2

)}]
(5.7)
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and

u(l, t) =
1

2

[
1− tanh

{
1

4

(
l − 15− t

2

)}]
. (5.8)

The initial condition is given by

u(y, 0) =
1

2

[
1− tanh

{
1

4
(y − 15)

}]
, 0 ≤ y ≤ 2, (5.9)

and the exact solution of the initial boundary value problem (5.6-5.9) is

u(y, t) =
1

2

[
1− tanh

{
1

4

(
y − 15− t

2

)}]
which is given in [65].

After applying the transformation in equation (5.6), as discussed in Chapter 2, the

term u
∂u

∂y
which is nonlinear is linearised using QLM to become

N ≈ uiu
′
i+1 + u′iui+1 − uiu′i.

Note that f(y, t) = 0 in equation (5.3). Equation (5.6) is transformed using y =

l(x+ 1)/2 to map the domain on interval [0, l] to [−1, 1]. It is important to note that

l = 2 in this case. The BSQLM requires the transformation as discussed in Chapter 4.

The infinity norm errors for both SQLM and BSQLM are displayed in Tables 5.1-5.4

with their corresponding central processing times (CPU) in seconds. Figure 5.1 shows

the infinity norm error graph using the SQLM and BSQLM for the Burgers equation

and plotted in the same axes.
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Table 5.1: Infinity Norm Errors for ISQLM in solving Burgers Equation using Nt =

10001

t\Ny 6 8 10

0.2 3.04413e-004 1.50819e-004 1.00016e-009

0.4 2.89587e-004 1.43474e-004 1.58076e-009

0.6 2.75482e-004 1.36487e-004 1.86990e-009

0.8 2.62063e-004 1.29839e-004 1.99145e-009

1.0 2.49297e-004 1.23515e-004 2.01789e-009

1.2 2.37152e-004 1.17498e-004 1.99124e-009

1.4 2.25598e-004 1.11775e-004 1.93581e-009

1.6 2.14607e-004 1.06329e-004 1.86561e-009

1.8 2.04150e-004 1.01149e-004 1.78867e-009

2.0 1.94203e-004 9.62211e-005 1.70960e-009

CPU Time 3.745158 seconds 4.736429 seconds 5.118239 seconds

Table 5.2: Infinity Norm Errors for ESQLM in solving Burgers Equation using Nt =

10001.

t\Ny 6 8 10

0.2 3.04414e-004 1.50821e-004 1.00068e-009

0.4 2.89588e-004 1.43477e-004 1.58157e-009

0.6 2.75482e-004 1.36489e-004 1.87090e-009

0.8 2.62064e-004 1.29842e-004 1.99261e-009

1.0 2.49298e-004 1.23518e-004 2.01922e-009

1.2 2.37153e-004 1.17501e-004 1.99273e-009

1.4 2.25599e-004 1.11777e-004 1.93745e-009

1.6 2.14607e-004 1.06332e-004 1.86738e-009

1.8 2.04151e-004 1.01152e-004 1.79058e-009

2.0 1.94203e-004 9.62235e-005 1.71161e-009

CPU Time 1.716948 seconds 1.730464 seconds 1.770547 seconds
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Table 5.1 and Table 5.2 shows the infinity error norms of the Burgers equation. The

results were obtained from the ISQLM and ESQLM. The results were obtained us-

ing t ∈ [0, 2] in time variable and y ∈ [0, 2] in the space variable, and printed between

t ∈ [0.2, 2]. The numbers of collocation points that were used in both methods are

Nt = 10001 and Ny = 6, 8, 10 in time and space respectively. The central processing

time is also given and it increases up to 5.118239 for Implicit SQLM while in Explicit

SQLM it goes up to 1.770547. The time can be seen to increase with the increase in

the collocation points in the y-variable in both tables while the error norm decreases

as Ny increases.

Table 5.3: Infinity Norm Errors for CN-SQLM in solving Burgers Equation using

Nt = 100.

t\Ny 60 80 100

0.2 3.04413e-004 1.50820e-004 8.34626e-011

0.4 2.89587e-004 1.43476e-004 1.31918e-010

0.6 2.75482e-004 1.36488e-004 1.56018e-010

0.8 2.62063e-004 1.29841e-004 1.66169e-010

1.0 2.49297e-004 1.23517e-004 1.68394e-010

1.2 2.37152e-004 1.17500e-004 1.66185e-010

1.4 2.25599e-004 1.11776e-004 1.61570e-010

1.6 2.14607e-004 1.06331e-004 1.55681e-010

1.8 2.04151e-004 1.01151e-004 1.49255e-010

2.0 1.94203e-004 9.62224e-005 1.42663e-010

CPU Time 2.374973 seconds 2.651092 seconds 3.225580 seconds

Table 5.3 shows the infinity norm errors between exact and approximate solution for

Burgers equation. The equation was solved using the CN-SQLM. The results were

obtained using Ny = 60, 80 and 100 and Nt = 100. Keeping all other things the same

as in ISQLM and ESQLM presented in Table 5.1 and Table 5.2, t ∈ [0, 2] was used in
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the time variable and y ∈ [0, 2] in the space variable, and printed the results between

t ∈ [0.2, 2]. The collocation points for CN-SQLM are Ny = 60, 80 and 100 for space

variable and Nt = 100 in time variable. It can be seen that the CPU time increases as

Ny increases. It is also clear that as Ny increases, the infinity norm error decreases.

Table 5.4: Infinity Norm Errors for BSQLM in solving Burgers Equation using Nt =

10.

t\Ny 6 8 10

0.2 1.32511e-011 1.52101e-014 3.60822e-014

0.4 1.28206e-011 3.50830e-014 5.16254e-014

0.6 1.29469e-011 3.15303e-014 3.23075e-014

0.8 1.18751e-011 2.26485e-014 4.14113e-014

1.0 1.15774e-011 1.74305e-014 7.46070e-014

1.2 1.13397e-011 3.58402e-014 1.00475e-013

1.4 1.05408e-011 3.78586e-014 1.13243e-013

1.6 1.01664e-011 1.48770e-014 4.87388e-014

1.8 9.76508e-012 1.46449e-014 6.04039e-014

2.0 9.30122e-012 1.94289e-014 6.48370e-014

CPU Time 0.137524 seconds 0.147500 seconds 0.148133 seconds

The same example for Burgers equation is also solved using the Bivariate Spectral

Quasilinearization Method. The infinity norm error is given in Table 5.4 with cor-

responding CPU time above. To obtain Table 5.4 an equal number of collocation

points in t and y-variables were used which equals to ten. For the BSQLM, the CPU

time is less than a second. As Ny increases the time taken also increases. Few grid

points were used but better results were obtained than with the other methods. The

infinity norm error decreases as Ny increases, which implies the convergence. This is

actually what was also observed by Motsa et al. [57].
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Figure 5.1: Infinity norm error for Burgers equation problem at t = 2 for SQLM and

BQSLM.

Figure 5.1 shows the comparison of the infinity error norms of the ISQLM, ESQLM,

CN-SQLM and the BSQLM. The graphs are plotted in the same set of axes between

t ∈ [0.2, 2]. ISQLM and ESQLM on the graph do not show much difference between

them. CN-SQLM and BSQLM can be seen to give a small infinity norm error with

the smallest in BSQLM.

In this example it is observed that the accuracy for both methods, the SQLM and

BSQLM increases as the number of collocation Ny increases. In Tables 5.1, 5.2 and 5.4

as the number of collocation points increases from Ny = 6, 8 to Ny = 10, the infinity

error norm diminishes while keeping Nt at 10 for BSQLM and Nt = 10001 for ISQLM

and ESQLM. Although the CN-SQLM uses more collocation which is Ny = 100 in

the y-variable, from the results it is clear that it is much better than ISQLM and

ESQLM as expected from the theory. The results in Tables 5.1 - 5.4 indicate that

BSQLM is much superior to SQLM in solving the Burgers equation. Figure 5.1 is also

in agreement with the tables. During the computation, it is observed that explicit

and implicit methods work perfectly for large Nt while BSQLM gives more accurate
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results with small Ny and Nt. It was observed that the BSQLM gives a highly accurate

solution with infinity norm error of up to 10−14, CN-SQLM with an infinity norm error

of up to 10−11 while the ESQLM and ISQLM have errors of 10−9. Figure 5.1 is in

agreement with the observation from the three tables. For both methods SQLM and

BSQLM, the infinity norm error presented in tables are consistent with the graph.

5.2.2 Fisher’s Equation

This subsection will consider a nonlinear reaction-diffusion Fisher’s equation. The

equation given by

∂u

∂t
= v

∂2u

∂y2
+ ρf(u), y ∈ (0, l), t ≥ 0, (5.10)

where t is the time, y is the spatial coordinate, v is the diffusion coefficient, ρ the

reaction factor and f(u) the nonlinear reaction term [19]. The initial and boundary

conditions for Fisher’s Equation defined in equation (5.10) are as follows:

u(y, 0) = u0(y), 0 ≤ y ≤ l, (5.11)

u(0, t) = g0(y), u(l, t) = g1(y), (5.12)

.

Equation (5.10) with f(u) = u(1− u), v = 1 becomes

∂u

∂t
=
∂2u

∂y2
+ u(1− u), y ∈ (0, 2), t ≥ 0, (5.13)

subject to initial condition

u(y, 0) =
1

4

{
−1 + tanh

(
y

2
√

6

)}2

. (5.14)

It has exact solution

u(y, t) =
1

4

{
−1 + tanh

(
1

12

(
−5t+

√
6y
))}2

(5.15)



Numerical Experiments for Nonlinear Evolution Equations and Discussion 50

[49, 70]. The boundary conditions are obtained from the exact solution by first

setting y = 0 for the left boundary condition and y = 2 for the right boundary

condition. Equation (5.13) is transformed using linear transformation equation y =

l(x + 1)/2, in the examples, using l = 2, to convert y ∈ [0, 2] to x ∈ [−1, 1]. While

still discussing transformation for spectral methods, it is important to note that on

the time derivatives the finite difference for SQLM will be applied while BSQLM

employs spectral method on both variables. To use the bivariate spectral method

both variables are transformed to [−1, 1] using the linear transformation equation

discussed above. The nonlinear part −u2 is linearised to get

N ≈ 2uiui+1 + u′iui+1 − ui.

The infinity norm errors are presented in Tables 5.5 - 5.8 for both methods and

their corresponding CPU times. Figure 5.2 shows the infinity error norms for both

methods, the SQLM and BSQLM. The following results were obtained:

Table 5.5: Infinity Norm Errors for ISQLM in solving Fisher’s Equation using Nt =

10001.

t\Ny 6 8 10

0.2 8.52360e-002 3.56192e-002 1.32149e-006

0.4 9.23712e-002 3.90970e-002 2.83271e-006

0.6 9.80688e-002 4.20325e-002 4.43236e-006

0.8 1.02033e-001 4.42663e-002 6.07514e-006

1.0 1.04091e-001 4.56870e-002 7.68970e-006

1.2 1.04206e-001 4.62422e-002 9.19009e-006

1.4 1.02473e-001 4.59410e-002 1.04907e-005

1.6 2.19475e-001 4.48483e-002 1.15204e-005

1.8 9.43538e-002 4.30724e-002 1.22325e-005

2.0 8.85701e-002 4.07490e-002 1.26094e-005

CPU Time 3.516405 seconds 3.699973 seconds 4.058191 seconds



Numerical Experiments for Nonlinear Evolution Equations and Discussion 51

Table 5.6: Infinity Norm Errors for ESQLM solving Fisher’s Equation using Nt =

10001

t\Ny 6 8 10

0.2 8.52349e-002 3.56157e-002 5.37636e-006

0.4 9.23697e-002 3.90915e-002 9.55656e-006

0.6 9.80672e-002 4.20262e-002 1.23969e-005

0.8 1.02032e-001 4.42601e-002 1.40921e-005

1.0 1.04090e-001 4.56816e-002 1.48251e-005

1.2 1.04206e-001 4.62382e-002 1.47757e-005

1.4 1.02473e-001 4.59386e-002 1.41247e-005

1.6 9.90956e-002 4.48477e-002 1.30490e-005

1.8 9.43544e-002 4.30734e-002 1.17124e-005

2.0 8.85710e-002 4.07515e-002 1.02562e-005

CPU Time 0.822218 seconds 0.856920 seconds 0.886251 seconds

Table 5.5 and Table 5.6 show the infinity error norms between exact and approximate

solutions for Fisher’s equation using ISQLM and ESQLM. The results were obtained

using t ∈ [0, 2] in the time variable and y ∈ [0, 2] in the space variable, and printed

between t ∈ [0.2, 2]. The collocation points that were used in both methods are

Nt = 10001 and Ny = 6, 8, 10 in time and space respectively. The CPU time increased

up to 4.058191 for ISQLM while in ESQLM, increased to 0.886251, a value lower than

the first one. It is clear that the time increases with the increase in the collocation

points in the y-variable in both tables. The ESQLM is fast but it gives poor results

or large infinity error norms compared to ISQLM. In both methods ESQLM and

ISQLM, the infinity norm error decreases as Ny increases.



Numerical Experiments for Nonlinear Evolution Equations and Discussion 52

Table 5.7: Infinity Norm Errors for CN-SQLM in solving Fisher’s Equation using

Nt = 200.

t\Ny 60 80 100

0.2 8.52367e-002 3.56208e-002 1.07549e-007

0.4 9.23723e-002 3.91000e-002 1.79777e-007

0.6 9.80704e-002 4.20369e-002 2.21720e-007

0.8 1.02035e-001 4.42722e-002 2.45049e-007

1.0 1.04093e-001 4.56942e-002 2.59007e-007

1.2 1.04209e-001 4.62506e-002 2.69868e-007

1.4 1.02476e-001 4.59504e-002 2.80913e-007

1.6 9.90986e-002 4.48586e-002 2.92872e-007

1.8 9.43570e-002 4.30832e-002 3.04723e-007

2.0 8.85733e-002 4.07600e-002 3.14621e-007

CPU Time 0.699829 seconds 1.015784 seconds 1.721804 seconds

Table 5.7 shows the infinity norm errors for the Fisher’s equation which was solved

using CN-SQLM. The results were obtained using the same t and y-variables that were

used to obtain Table 5.5 and Table 5.6 which are t ∈ [0, 2] and y ∈ [0, 2] respectively,

and printed at t ∈ [0.2, 2]. For this example the collocation points used for CN-SQLM

are Ny = 60, 80 and 100 for the space variable and Nt = 200 for the time variable.

The increase of Nt brought some changes in the results. The CPU time increased as

Ny increased. An improvement of the results when Ny was increased from 80 to 100

(see Table 5.7) was observed.
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Table 5.8: Infinity Norm Errors for BSQLM in solving Fisher’s Equation using Nt =

10.

t\Ny 6 8 10

0.2 4.72638e-009 7.31253e-010 7.20778e-010

0.4 6.03092e-009 3.49795e-009 3.52016e-009

0.6 8.00753e-009 8.81872e-010 9.25764e-010

0.8 1.06166e-008 4.49431e-010 4.24011e-010

1.0 1.11248e-008 2.00848e-009 2.02626e-009

1.2 1.08120e-008 9.62241e-010 9.67102e-010

1.4 7.29772e-009 5.76628e-010 5.76644e-010

1.6 3.49390e-009 9.45206e-010 9.24232e-010

1.8 2.84109e-009 5.42070e-010 5.76087e-010

2.0 4.11841e-009 9.46436e-011 9.62009e-011

CPU Time 0.000472 seconds 0.000464 seconds 0.001619 seconds

Equation (5.13) was also solved using the Bivariate Spectral Quasilinearisation Method.

The infinity norm error is given in Table 5.8 which was obtained using an equal num-

ber of collocation points in t and y-variables which equals to ten. For this method,

the CPU time is far less than a second even considering the fact that the collocation

points were varied. As the number of collocation points increased from Ny = 6 to

Ny = 8, the CPU time decreased, and then when Ny = 10 was used, the CPU time

increased. The infinity norm error decreased as the number of collocation points in-

creased more significantly compared to SQLM.
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Figure 5.2: Infinity norm error for Fisher’s equation problem at t = 2 for SQLM and

BQSLM.

Figure 5.2 shows the comparison of the infinity error norms of the ISQLM, ESQLM,

CN-SQLM and the BSQLM. The graphs are plotted in the same set of axes ∀ t

∈ [0.2, 2]. Initially ESQLM gives large infinity norm errors compared to ISQLM from

t = 0 to t < 1.4, but after that ESQLM matches with ISQLM slightly from t ≥ 1.6.

CN-SQLM on the graph appears to be better than ESQLM and ISQLM. Lastly, the

BSQLM gives the smallest infinity norm errors out of all the methods.
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The Fisher’s equation was solved in this subsection and the infinity norm errors are

shown in Tables 5.5-5.7 for ISQLM, ESQLM and CN-SQLM. The BSQLM is also

used to solve the Fisher’s equation and the infinity norm errors are shown in Ta-

ble 5.8. The results are calculated using the following collocation points: Ny = 100

and Nt = 200 for CN-SQLM, Nt = 10001 and Ny = 10 for ISQLM and ESQLM

and Ny = Nt = 10 for BSQLM. When ISQLM was used, the infinity norm errors

show an increase as the collocation points Ny increase giving an infinity norm error

of up to 10−6. When ESQLM was used, the results show similar behaviour, but the

ESQLM gives large infinity error norms compared to the ISQLM. Initially Nx = 6

were used as the collocation points for ISQLM and ESQLM, and the results clearly

showed that ISQLM is better than ESQLM. As collocation points increase to Ny = 8

and 10 there is much improvement on the ESQLM. Figure 5.2 is also in agreement

with what is observed in Table 5.5 and Table 5.6. Although the ISQLM seems to

be better when comparing the time taken to execute the code, the ESQLM is much

faster since it took less than a second to give all the results. Turning to the results

of the CN-SQLM, where the same example was solved but using different collocation

points, namely Ny = 100 and Nt = 200. In the results shown in Table 5.7, as the

collocation points increase from Ny = 60, 80 and Ny = 100, the results get better

with an infinity error of up to 10−7 taking approximately 1.7 seconds to execute the

code. Moving to the second method for our study in solving the Fisher’s equation,

the results obtained here seem to be more accurate and take less than a second. Even

Figure 5.2 is in agreement with our observations. Comparing the two methods, the

BSQLM uses fewer collocation points. In the results of SQLM an infinity error of up

to 10−9 is not observed for all collocation points used, but for BSQLM that error is

obtained using collocation points Nt = 10 in the time direction and Ny = 6 in the

space direction. From the Tables 5.5-5.7 it is clear that in the SQLM, the CN-SQLM
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gives the better results with an infinity norm error of up to 10−7. Comparing the

CN-SQLM with the BSQLM, it is clear that BSQLM produces much better results

with an infinity norm errors of up to 10−11. The infinity norm errors for both meth-

ods are plotted and shown in Figure 5.2 which agrees with the results in Tables 5.5 -

5.8. Considering the CPU time for the Fisher’s equation example, the BSQLM takes

much less time than SQLM. The BSQLM gives more accurate results compared to

SQLM in solving the Fisher’s equation. The results were obtained ∀t ∈ [0.2, 2] in the

time variable and y ∈ [0, 2] in the space variable.

5.2.3 The Burgers-Fisher Equation

The Burgers-Fisher equations occur in various areas of science and physical applica-

tions, such as modeling of gas dynamics, financial mathematics, population dynamics

and others [38]. The boundary conditions are taken from the exact solution. The

standard form of Burgers-Fisher equation can be written as:

∂u

∂t
=
∂2u

∂y2
− αuγ ∂u

∂y
− βu(uγ − 1), y ∈ (0, l), t ≥ 0, (5.16)

with initial condition

u(y, 0) =

{
1

2
− 1

2
tanh

(
αγ

2(1 + γ)
x

)}1/γ

, (5.17)

and the exact solution given as:

u(y, t) =

{
1

2
− 1

2
tanh

(
αγ

2(1 + γ)

[
x−

(
α2 + β(1 + γ)2

α(1 + γ)

)
t

])}1/γ

. (5.18)

Consider the Burgers-Fisher equation [70]

∂u

∂t
=
∂2u

∂y2
− u∂u

∂y
− u(u− 1), 0 ≤ y ≤ 2, t ≥ 0, (5.19)
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with initial condition

u(y, 0) =
1

2
+

1

2
tanh

(y
4

)
, (5.20)

and the exact solution is

u(y, t) =
1

2
+

1

2
tanh

(
y

4
+

5t

8

)
. (5.21)

From the standard Burgers-Fisher equation in equation (5.16), it is noticeable that

α = β = γ = 1. The numerical solutions for equation (5.19) are shown in Tables 5.9

- 5.12. Figure 5.3 shows the corresponding infinity norm error graph in which both

methods are plotted on the same set of axes.

Table 5.9: Infinity Norm Errors for ISQLM solving Burgers-Fisher Equation using

Nt = 10001

t\Ny 6 8 10

0.2 1.32713e-001 1.67515e-001 1.78506e-001

0.4 1.23191e-001 1.25183e-001 1.08292e-001

0.6 1.12158e-001 9.27447e-002 6.41620e-002

0.8 1.00902e-001 7.05505e-002 3.71844e-002

1.0 8.94654e-002 5.52157e-002 2.10432e-002

1.2 7.80244e-002 4.41585e-002 1.16256e-002

1.4 6.69131e-002 3.57767e-002 6.27567e-003

1.6 5.64822e-002 2.91435e-002 3.31556e-003

1.8 4.70036e-002 2.37408e-002 1.71770e-003

2.0 3.86355e-002 1.92773e-002 8.74278e-004

CPU Time 4.151901 seconds 4.688118 seconds 5.216620 seconds
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Table 5.10: Infinity Norm Errors for ESQLM in solving Burgers-Fisher Equation

using Nt = 10001.

t\Ny 6 8 10

0.2 1.32719e-001 1.67547e-001 1.78532e-001

0.4 1.23192e-001 1.25180e-001 1.08272e-001

0.6 1.12155e-001 9.27293e-002 6.41361e-002

0.8 1.00900e-001 7.05373e-002 3.71637e-002

1.0 8.94646e-002 5.52083e-002 2.10311e-002

1.2 7.80248e-002 4.41570e-002 1.16218e-002

1.4 6.69144e-002 3.57796e-002 6.27830e-003

1.6 5.64839e-002 2.91492e-002 3.32239e-003

1.8 4.70055e-002 2.37479e-002 1.72675e-003

2.0 3.86374e-002 1.92846e-002 8.84053e-004

CPU Time 2.276083 seconds 2.593988 seconds 2.687586 seconds

Table 5.9 and Table 5.10 show the infinity norm errors for Burger-Fisher equation

which was solved using ISQLM and ESQLM. The results were obtained using t ∈ [0, 2]

in the time variable and y ∈ [0, 2] in the space variable, and printed at t ∈ [0.2, 2]. The

collocation points that were used in both methods are Nt = 10001 and Ny = 6, 8, 10

in time and space respectively. The CPU time increases up to 5.216620 for Implicit

SQLM while in Explicit SQLM it goes up to 2.687586. It clear from the tables that

time increases with the increase in the collocation points in the y-variable in both

tables. It can also be observed that as t→ 2 the infinity norm errors decreases.
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Table 5.11: Infinity Norm Errors for CN-SQLM in solving Burgers-Fisher Equation

using Nt = 100.

t\Ny 60 80 100

0.2 1.32785e-001 1.68664e-001 1.11562e-001

0.4 1.23436e-001 1.26388e-001 1.10165e-001

0.6 1.12322e-001 3.32207e-002 6.52414e-002

0.8 1.00997e-001 9.35036e-002 3.77973e-002

1.0 8.95187e-002 5.54602e-002 2.13862e-002

1.2 3.18125e-002 4.42936e-002 3.44256e-002

1.4 6.69295e-002 3.58514e-002 6.38106e-003

1.6 5.64914e-002 2.91856e-002 3.37492e-003

1.8 4.70091e-002 2.37655e-002 1.75237e-003

2.0 3.86390e-002 1.92925e-002 8.95679e-004

CPU Time 1.410424 seconds 2.090944 seconds 2.417226 seconds

Table 5.11 shows the infinity error norms between exact and approximate solution.

The Burger-Fisher equation was solved using the Crank-Nicolson Spectral Quasilin-

earisation Method. The results were obtained using the same t and y-variables that

were used in Table 5.5 and Table 5.6 above which are t ∈ [0, 2] and y ∈ [0, 2] respec-

tively, and printed at time t ∈ [0.2, 2]. The collocation points used for Crank-Nicolson

are Ny = 60, 80 and 100 for the space variable and Nt = 100 for the time variable.

The infinity norm error decreases as t→ 2 and CPU increases as Ny increases.
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Table 5.12: Infinity Norm Errors for BSQLM in solving Burgers-Fisher Equation

using Nt = 10.

t\Ny 6 8 10

0.2 1.87740e-008 1.24961e-008 1.26302e-008

0.4 4.56477e-008 4.08365e-008 4.07989e-008

0.6 2.73151e-008 1.72630e-008 1.72630e-008

0.8 1.87368e-008 1.87368e-008 1.87368e-008

1.0 2.06177e-008 2.47657e-008 2.47913e-008

1.2 1.64798e-008 1.52373e-008 1.52373e-008

1.4 1.61543e-008 1.13923e-008 1.13923e-008

1.6 1.20451e-008 1.10165e-008 1.10224e-008

1.8 5.80282e-009 5.68583e-009 5.68959e-009

2.0 1.34142e-009 5.09331e-010 5.11942e-010

CPU Time 0.007001 seconds 0.033598 seconds 0.013124 seconds

The Bivariate Spectral Quasilinearisation Method has been used to solve the Burgers-

Fisher equation. The infinity norm error given in Table 5.12 was obtained using 10

collocation points in both the t and the y-variables. The CPU time is also given. For

the BSQLM, the CPU time is less than a second even if the collocation points were

varied. Initially, when 6 collocation points were used in thee space variable the CPU

time was the smallest with a value of 0.007001 seconds. As the number of collocation

points increases from 6 to 8 the CPU time initially increases then when Ny = 10 was

used the CPU time decreases to 0.013124.
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Figure 5.3: Infinity error norm for Burgers-Fisher equation problem at t = 2 for

SQLM and BQSLM.

Figure 5.3 shows the comparison of the infinity norm errors of the ISQLM, ESQLM,

CN-SQLM and the BSQLM. The graphs are plotted in the same set of axes at time

t ∈ [0.2, 2]. ISQLM, ESQLM and CN-SQLM on the graph does not show any differ-

ence between them. BSQLM can be seen to give a small infinity error norm compared

to SQLM.

In this subsection, the Burgers-Fisher equation has been solved using SQLM and

BSQLM. Using the same parameters, explicit and implicit methods were imple-

mented (i.e. Nt = 10001, Ny = 10) , Ny = Nt = 100 for Crank-Nicolson and

Ny = Nt = 10 for BSQLM were used. To solve the Burgers-Fisher equation the fol-

lowing parameters were used: α = 1, β = 1, γ = 1. The infinity norm error for SQLM

are shown in Tables 5.9 - 5.11. Correspondingly Table 5.12 shows the infinity norm

errors for the Burgers-Fisher equation using the BSQLM. The infinity error norms

are also plotted on the same set of axes for both methods and displayed in Figure 5.3.

As the number of collocations Ny increases, the infinity norm error decreases. The
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CPU time increases as the number of collocation points increases and as t → 2, the

infinity norm error decreases.

In the results for SQLM, using an explicit method, implicit method and Crank-

Nicolson and the BSQLM, it is observed that the infinity norm errors improve as

t → 2. Secondly, it is noted that as the number of collocation points increase, the

infinity norm errors decrease significantly. Comparing both methods, it is clear that

the BSQLM gives much better results even taking into consideration that different

collocation points have been employed. The infinity norm errors in general for this

example are poor and give only up to 10−4 for SQLM and are better for BSQLM

since it increases up to 10−10. Having solved this equation using both the SQLM and

BSQLM, it is clear from the results that BSQLM gives far better results than the

SQLM. The infinity norm error graph is shown in Figure 5.3 which also agrees that

the BSQLM is a better method than SQLM. In the same figure, the SQLM infinity

norm error seem to match each other and with BSQLM after t = 1.8, the infinity

norm error declines significantly.
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5.2.4 Newell-Whitehead-Segel and Zeldovich Equations

In this subsection the Newell-Whitehead-Segel and Zeldovich equations will be dis-

cussed. Newell-Whitehead-Segel (NWS) equation is an important nonlinear reaction-

diffusion equation and usually is used to model the transmission of nerve impulse,

also used in circuit theory, biology and the area of population genetics as mathe-

matical models while the Zeldovich has been reported to arise in combustion the-

ory [45]. These equations arise if the Fitzhugh-Nagumo (FN) equation is reduced.

The Fitzhugh-Nagumo (FN) equation takes this form:

∂u

∂t
=
∂2u

∂y2
− u(1− u)(a− u). (5.22)

If a = −1 in equation (5.22), then the NWS is formed to be
∂u

∂t
=
∂2u

∂y2
+ u(1 − u2)

and if a = 0 the Zeldovich equation is formed. The Zeldovich equation is represented

as

∂u

∂t
=
∂2u

∂y2
+ u2 − u3. (5.23)

The Newell-Whitehead-Segel (NWS) equation is a well known global equation to

govern evolution of nearly one-dimensional (1D) nonlinear patterns produced by a

finite-wavelength instability in isotropic two-dimensional media, a classical example

being the Rayleigh-Bernard convection [17]. The Rayleigh-Bernard convection ac-

cording to Zahra et al. [68] is a natural convection, that occurs in a horizontal plane

layer of fluids from below, in which the fluid develops a regular pattern of convec-

tion cells called Bernard cells. When heating is sufficiently intensive, the convective

motion of the fluid is developed spontaneously, the hot fluid moves upward, and the

cold fluid moves downward. Figure 5.4 and Figure 5.5 show the Rayleigh-Bernard

convection phenomenon and the convection cells in a gravity field respectively.
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Figure 5.4: Rayleigh-Bernard convection phenomenon.

by John Matsson [7]

Figure 5.5: Convection cells in a gravity field.

by Zahra et al. [68]

The Newell-Whitehead-Segel equation has been given considerable attention in recent

years and various methods and techniques have been introduced to solve it. These

methods includes Reduced Differential Transform Method (RDTM), and the Ado-

mian Decomposition Method [17, 63]. The Newell-Whitehead-Segel equation is used

to model the interaction of the effect of the diffusion term with the nonlinear effects

of the reaction term and has been applied in nonlinear optics, biological systems as

well as in chemical reaction [50].

This section is concerned by the approximate solutions of the Newell-Whitehead-Segel

equation of the form:

∂u

∂t
=
∂2u

∂y2
+ u− u4 (5.24)
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with the exact solution given by

u(y, t) =

{
1

2
+

1

2
tanh

(
− 3

2
√

10

(
y − 7t√

10

))}2/3

. (5.25)

The boundary conditions are taken from the exact solution [33]. Using SQLM and

BSQLM and by implementing them in Matlab, the following results were obtained:

Table 5.13: Infinity Norm Errors for ISQLM solving Newell-Whitehead-Segel Equa-

tion using Nt = 10001

t\Ny 6 8 10

0.2 1.73485e-001 7.86088e-002 2.01504e-006

0.4 1.59528e-001 7.50749e-002 6.53105e-007

0.6 1.36904e-001 6.66936e-002 2.82604e-006

0.8 1.10308e-001 5.53293e-002 6.49133e-006

1.0 8.42379e-002 4.32396e-002 8.81558e-006

1.2 6.16321e-002 3.21885e-002 9.31855e-006

1.4 4.36523e-002 2.30845e-002 8.41785e-006

1.6 3.01961e-002 1.61086e-002 6.84161e-006

1.8 2.05429e-002 6.36882e-002 5.17549e-006

2.0 1.38161e-002 7.44483e-003 3.73055e-006

CPU Time 1.174178 seconds 1.124924 seconds 2.688793 seconds
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Table 5.14: Infinity Norm Errors for ESQLM in solving Newell-Whitehead-Segel

Equation using Nt = 10001.

t\Ny 6 8 10

0.2 1.73486e-001 7.86083e-002 2.01458e-006

0.4 1.59530e-001 7.50775e-002 6.50252e-007

0.6 1.36908e-001 6.67015e-002 2.83193e-006

0.8 1.10312e-001 5.53419e-002 6.49909e-006

1.0 8.42425e-002 4.32547e-002 8.82338e-006

1.2 6.16363e-002 3.22035e-002 9.32473e-006

1.4 4.36559e-002 2.30976e-002 8.42164e-006

1.6 3.01989e-002 1.61191e-002 6.84328e-006

1.8 2.05450e-002 1.10326e-002 5.17579e-006

2.0 1.38176e-002 7.45046e-003 3.73018e-006

CPU Time 2.062504 seconds 2.293936 seconds 2.439014 seconds

Table 5.13 and Table 5.14 shows the infinity norm error for the Newell-Whitehead-

Segel Equation. The ISQLM and ESQLM were used to solve this equation. For

both tables Nt = 10001 and Ny = 6, 8, 10 were used for the time and space variables

respectively. From Table 5.13 and Table 5.14, it can be observed that the infinity

norm error decreases as the number of collocation points Ny increases and the CPU

time increases. In terms of the CPU time, the Explicit SQLM takes fewer seconds

than Implicit SQLM.
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Table 5.15: Infinity Norm Errors for CN-SQLM in solving Newell-Whitehead-Segel

Equation using Nt = 100.

t\Ny 60 80 100

0.2 1.73486e-001 7.86103e-002 1.11870e-006

0.4 1.59530e-001 7.50804e-002 3.41998e-006

0.6 1.36908e-001 6.67041e-002 6.42435e-006

0.8 1.10313e-001 5.53437e-002 9.03575e-006

1.0 8.42431e-002 4.32556e-002 1.02231e-005

1.2 6.16365e-002 3.22037e-002 9.76489e-006

1.4 4.36557e-002 2.30973e-002 8.19722e-006

1.6 3.01987e-002 1.61185e-002 6.26248e-006

1.8 2.05448e-002 1.10321e-002 4.48419e-006

2.0 1.38174e-002 7.44995e-003 3.08003e-006

CPU Time 1.626536 seconds 2.181471 seconds 2.998783 seconds

Table 5.15 represent the infinity norm error table for the Newell-Whitehead-Segel

solved by CN-SQLM using Ny = Nt = 100 and Ny = 200 as our collocation points.

Different collocation points have been used for Ny varied between 60, 80 and 100.

It can clearly be seen from Table 5.15 that as Ny increases, the infinity norm error

decreases and CPU time increases as the number of collocation points increases.
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Table 5.16: Infinity Norm Errors for BSQLM in solving Newell-Whitehead-Segel

Equation using Nt = 10.

t\Ny 6 8 10

0.2 8.71737e-007 7.04671e-007 7.31647e-007

0.4 1.85014e-006 2.27974e-006 2.35822e-006

0.6 1.31310e-006 1.41643e-006 1.36411e-006

0.8 1.14975e-006 1.14975e-006 1.14975e-006

1.0 1.47879e-006 1.37367e-006 1.31643e-006

1.2 1.52254e-006 1.31428e-006 1.37807e-006

1.4 3.50655e-007 3.50655e-007 3.50655e-007

1.6 6.49222e-007 6.48695e-007 6.82745e-007

1.8 6.36843e-007 5.82270e-007 6.45927e-007

2.0 6.70400e-008 5.93894e-008 5.54443e-008

CPU Time 0.029039 seconds 0.030137 seconds 0.103207 seconds

The infinity norm error results when using the Bivariate Spectral Quasilinearisation

Method for the Newell-Whitehead-Segel equation are given in Table 5.16 which was

obtained using an equal number of collocation points in t and y-variables, equal to 10.

The CPU time is also given. For the BSQLM, the CPU time is far less than a second

even if the collocation points were varied. As the number of collocation points in-

creases the CPU time initially decreases then when Ny = 10 is used the time increases.
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Figure 5.6: Infinity norm error for Newell-Whitehead-Segel equation problem at t = 2

for SQLM and BQSLM.

The infinity norm error graph is shown in Figure 5.6. It shows the comparison of

the two methods the SQLM and BSQLM infinity norm error results plotted on the

same set of axes, at time t ∈ [0.2, 2]. When t = 0.4 the ESQLM and ISQLM gives

the minimal infinity norm error compared to CN-SQLM. But as t increases, the

observation changes. For ESQLM and ISQLM from t > 0.3, these methods are better

than CN-SQLM until t ≤ 1 (see Figure 5.6). In the same figure, from t ≥ 1.4 to

t = 2, the infinity norm error of the CN-SQLM decreases. The BSQLM on the graph

appeared to give an infinity norm error better than the SQLM.

The second part of this subsection considers the Zeldovich equation given by the

following PDE:

∂u

∂t
=
∂2u

∂y2
+ u2(1− u) (5.26)

with the exact solution given by:

u(y, t) =

{
1

2
+

1

2
tanh

(
1

2
√

2

(
y +

t√
2

))}
, (5.27)
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with the following initial condition

u(y, 0) =
1

2
+

1

2
tanh

(
y

2
√

2

)
, (5.28)

cited in [66]. Solving this equation gives the results presented and discussed below:

Table 5.17: Infinity Norm Errors for ISQLM solving Zeldovich Equation using Nt =

10001

t\Ny 6 8 10

0.2 1.42962e-001 6.23347e-002 3.44329e-007

0.4 1.39253e-001 6.04930e-002 5.88798e-007

0.6 1.35032e-001 5.84444e-002 7.53944e-007

0.8 1.30368e-001 5.62222e-002 8.63953e-007

1.0 1.25336e-001 5.38606e-002 9.34596e-007

1.2 1.20009e-001 5.13935e-002 9.76287e-007

1.4 1.14462e-001 4.88536e-002 9.96109e-007

1.6 1.08766e-001 4.62720e-002 9.99069e-007

1.8 1.02987e-001 4.10950e-002 9.88877e-007

2.0 1.71887e-002 3.85481e-002 9.68402e-007

CPU Time 3.252149 seconds 3.875101 seconds 4.295436 seconds
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Table 5.18: Infinity Norm Errors for ESQLM in solving Zeldovich Equation using

Nt = 10001.

t\Ny 6 8 10

0.2 1.42962e-001 6.04925e-002 3.44541e-007

0.4 1.39253e-001 5.84435e-002 5.89105e-007

0.6 1.35031e-001 5.62210e-002 7.54275e-007

0.8 1.30368e-001 5.38592e-002 8.64274e-007

1.0 1.25336e-001 5.13919e-002 9.34893e-007

1.2 1.20009e-001 4.88520e-002 9.76555e-007

1.4 1.14462e-001 4.62703e-002 9.96346e-007

1.6 1.08765e-001 4.36754e-002 9.99277e-007

1.8 1.02987e-001 4.10932e-002 9.89056e-007

2.0 9.71881e-002 3.85464e-002 9.68555e-007

CPU Time 1.073123 seconds 1.140519 seconds 1.223779 seconds

Table 5.17 and Table 5.18 show the infinity norm errors when the Zeldovich equation

was solved using ISQLM and ESQLM. The results were obtained using t ∈ [0, 2] in the

time variable and y ∈ [0, 2] in the space variable, and printed at time t ∈ [0.2, 2]. The

collocation points that were used in both methods are Nt = 10001 and Ny = 6, 8, 10

in time and space respectively. The CPU time increases to 4.295436 seconds for

ISQLM while in ESQLM it goes up to 1.223779 seconds. It is noticeable that the

time increases with the increase in the collocation points in the x-variable in both

tables. The ESQLM and ISQLM gave results which are similar when rounded off to

two significant numbers at Ny = 10.
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Table 5.19: Infinity Norm Errors for CN-SQLM in solving Zeldovich Equation using

Nt = 200.

t\Ny 60 80 100

0.2 1.42962e-001 6.04927e-002 4.17104e-008

0.4 1.39253e-001 5.84439e-002 6.95383e-008

0.6 1.35032e-001 5.62215e-002 8.66680e-008

0.8 1.30368e-001 5.38598e-002 9.65290e-008

1.0 1.25336e-001 5.13926e-002 1.01375e-007

1.2 1.20009e-001 4.88527e-002 1.02707e-007

1.4 1.14462e-001 4.62711e-002 1.01550e-007

1.6 1.08766e-001 4.36762e-002 9.86311e-008

1.8 1.02987e-001 4.10940e-002 9.44817e-008

2.0 9.71884e-002 3.85471e-002 8.95037e-008

CPU Time 1.969425 seconds 2.138365 seconds 2.665391 seconds

Table 5.19 above shows the infinity norm errors. The Zeldovich equation was solved

using Crank-Nicolson Spectral Quasilinearisation. The collocation points used for

CN-SQLM are Ny = 60, 80 and 100 for the space variable and Nt = 200 for the time

variable. The infinity norm error decreases as t → 2 and CPU time increases as Ny

increases.
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Table 5.20: Infinity Norm Errors for BSQLM in solving Zeldovich Equation using

Nt = 10.

t\Ny 6 8 10

0.2 7.683e-008 1.040e-009 1.107e-011

0.4 9.370e-008 1.060e-009 1.091e-011

0.6 1.051e-007 1.104e-009 1.109e-011

0.8 1.049e-007 1.033e-009 6.895e-012

1.0 1.013e-007 9.479e-010 4.840e-012

1.2 1.036e-007 7.950e-010 3.388e-012

1.4 9.908e-008 5.692e-010 2.713e-012

1.6 9.061e-008 3.776e-010 3.166e-012

1.8 7.863e-008 2.352e-010 3.552e-012

2.0 6.487e-008 1.872e-010 3.441e-012

CPU Time 0.000519 seconds 0.000627 seconds 0.000734 seconds

The Bivariate Spectral Quasilinearisation Method was also used to solve the Zeldovich

equation. The infinity norm error is given in Table 5.20 and its corresponding CPU

time. Table 5.20 was obtained using an equal number of collocation points in t and

y-variables, equal to 10. The BSQLM CPU time is far less than a second even if

the collocation points were varied. As the number of collocation points increases the

CPU time initially decreases but when Ny = 10 were used the time increases. It can

also be observed that as t → 2, the infinity norm error decreases for all collocation

points used, which is in agreement with the observation of Motsa et al. [57] when

BQSLM is used.
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Figure 5.7: Infinity norm error for Zeldovich equation problem at t = 2 for SQLM

and BQSLM.

Figure 5.7 shows the comparison of the infinity norm error using the ISQLM, EQSLM,

CN-SQLM and the BSQLM. The graphs are plotted in the same set of axes at time

t ∈ [0.2, 2]. From the figure, the ESQLM and IBSQLM seem to match, the CN-SQLM

appeared just below the two. The BSQLM appeared far below the three.

In this subsection, the Newell-Whitehead-Segel and Zeldovich equations were solved

using Ny = Nt = 100 and Ny = 200, Ny = 100 for CN-SQLM, and Nt = 10001,

Ny = 10 were used for ESQLM and ISQLM. Lastly Ny = Nt = 10 were used for

BSQLM. The exact solution from the literature [33] has been used to validate the re-

sults for Newell-Whitehead-Segel equation. The infinity norm error results are shown

in Tables 5.13 - 5.15 and their CPU time for SQLM. Table 5.16 displays the infinity

norm error results for BSQLM.

The SQLM results for Newell-Whitehead-Segel equation were obtained, and it was

noted that the Crank-Nicolson SQLM gives smaller infinity norm errors using much
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larger collocation points in the y-variable. The Explicit and Implicit SQLM uses large

number of collocation points in the t- variable which is due to the fact that on time

the finite differences are used. The BSQLM is further investigated, using fewer collo-

cation points to Ny = 10 in space and Nt = 10. The BSQLM gave striking results of

up to 10−8 while in the SQLM up to 10−6 was observed with much higher collocation

points. The BSQLM is clearly much more efficient than SQLM.

Lastly the Zeldovich equation was solved, and the infinity norm errors are shown in

Tables 5.17- 5.19 for SQLM and Table 5.20 for BSQLM. The maximum errors are

improving as the number of collocation points increases. This shows that BSQLM

is still superior to SQLM in solving the Zelvovich equation. The infinity norm error

graph is shown in Figure 5.7. This figure shows that the BSQLM gives better results

than SQLM. In the Zeldovich, the SQLM gives an infinity norm error of up to 10−7

while the BSQLM gives an infinity norm error of up to 10−12.
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5.2.5 Comparative Discussion

Six examples were solved using SQLM and BSQLM and the results were described

in Chapter 5. Numerical simulations were carried out to find approximate numerical

solutions of the infinity norm error which is the quantity of interest for this study.

In all examples for Explicit and Implicit spectral quasilinearisation method in the

time domain Nt = 10001 was used. Through all numerical experimentation using the

SQLM, this value was found to give accurate results. In the space direction which is a

spectral discretisation Ny = 6, 8, 10 were used. For Crank-Nicolson SQLM, Nt = 100

and 200 were used in the time variable and Ny = 60, 80, 100. This was found to

give accurate results. When the value of Ny was increased and keeping Nt constant

the results did not change to a significant extent. For the BSQLM the number of

collocation points used in both time and space directions (t, y) were Ny = Nt = 10

in all cases. It was found to give accurate results. It was discovered that both the

SQLM and BSQLM algorithms are based on the computation of the value of some

quantity, say un+1
i+1 , at each time step. This was achieved by iterating using the known

value at the previous time step i obtained from initial conditions to find the solution

at the next iteration i + 1. The solutions were obtained using 10 iterations for both

methods. The correctness of the computed SQLM and BSQLM approximate results

was confirmed against the results obtained using the exact solution for each exam-

ple. The equations that were solved were linearised using the QLM since they are

nonlinear. In the SQLM the time derivatives were approximated by finite difference

method and in space derivative spectral method is applied while in BSQLM both

the y-variables and t-variables spectral method was applied. Tables 5.1, 5.2, 5.5, 5.6,

5.9, 5.10, 5.13, 5.14, 5.17, 5.18 show the infinity error norms for SQLM. The tables

show results for all examples solved using ISQLM and ESQLM. The tables also give

the CPU time for each corresponding table. It was observed that the results were
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computed using the same number of collocation points in the x and t -variables. The

Crank-Nicolson SQLM results are given in Tables 5.3, 5.7, 5.11, 5.15, 5.19. These

tables were obtained using an equal number of collocation points in the space di-

rection Ny and in the time variable, Nt = 100 for all other examples except for the

Fisher’s equation and Zeldovich equation. It is noted that for Fisher’s and Zeldovich

equations an increase in the collocation points in the time variable decreases the in-

finity norm errors, while in the other examples there is no significant change in the

results if Nt is increased. All the examples solved by SQLM were also solved by the

BSQLM, the second method employed in this study. Tables 5.4, 5.8, 5.8, 5.16, 5.20

show the infinity error norms. The results in these tables were obtained using ten

collocations in both x and t-directions. Corresponding CPU times for each example

are also given. All the results have been printed between 0.2 ≤ t ≤ 2. It is clear

from the comparison of the computational run times (CPU time) that the BSQLM

takes less computer time than the SQLM. The results furthermore indicate in both

methods, as the number of collocation points increases in the space variable the com-

putational time also increases. It is revealing that from all examples, the BQSLM

takes less than a second to execute the code while with the SQLM, the maximum

time that was observed is 5.623292 seconds. The actual superiority of the BSQLM in

terms of computational proficiency and accuracy when compared to the SQLM may

be elucidated by the fact that the SQLM scheme used the finite difference in time

derivative which has been proven in literature to be less accurate than the spectral

methods. Figures 5.1, 5.2, 5.3, 5.6, 5.7 show the infinity error norms each example

solved using the SQLM and BSQLM and plotted on the same set of axes. These

figures are in agreement with our observations. Even though different collocation

points were used, the BSQLM appeared to give much less infinity error norm, and

moreover required fewer collocation points. The apparent computational speed and
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smaller error showed by the BSQLM over the SQLM prevailed in all the types of the

equations which were considered. Hence, the BSQLM is a better method that can be

used to obtain numerical solutions of nonlinear partial differential equations than the

SQLM.
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5.3 Overview

In this chapter the spectral quasilinearisation method (SQLM) and bivariate spectral

quasilinearisation method (BSQLM) were applied in solving the nonlinear evolution

problem of second order. The following examples were solved: Burgers equation,

Burgers-Fisher equation, Fisher’s equation, Newell-Whitehead-Segel equation and

Zeldovich equation. The results for the approximate solution have been computed.

To be able to compare the SQLM and BSQLM, the exact and approximate solutions

have been used to find the infinity norm error for each example. Finally, the infinity

norm error were plotted on the same set of axes for all examples. In all the examples

solved, y ∈ [0, 2] were used in the space domain and different values of collocation

points Ny. The tables show the infinity error norm at t ∈ [0.2, 2]. Figures 5.1, 5.2,

5.3, 5.6, 5.7 show the the infinity error norm at a fixed time t = 2 that were used for

error analysis. The purpose of this chapter was to do comparisons and investigate

the applicability of the SQLM and BSQLM for solving second order evolution prob-

lems. The BSQLM gives much smaller infinity norm error than SQLM using fewer

collocation points in the space direction and time direction. The numerical results

presented in this study clearly prove that the BSQLM is much better than SQLM.



Chapter 6

Conclusion

6.1 Concluding Remarks

This study was conducted to investigate the applicability of two methods, the SQLM

and the BSQLM. Both methods that are employed are Chebyshev collocation spec-

tral methods. The main aim was to do a comparative study and apply both methods

to the same problems. For this study, nonlinear partial differential equations of the

second order were considered. Firstly, the discussion began by studying the back-

ground of nonlinear evolution partial differential equations trying to gain insight into

what actually made researchers try to find solutions to these equations. The spectral

methods were then discussed in detail, investigating the advantages of using them

and the reasons that make them the method of choice for some researchers and for

this study.

In Chapter 2 our main focus was to explain the numerical properties of nonlinear

evolution partial differential equations. Since many researchers had studied the evo-

lution problems using different approaches, traditional methods were visited, namely

finite difference methods, finite elements and finite volume [26]. The limitations that

80
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brought by these methods were also highlighted. Some methods which are spectral-

based were studied and have been used to solve evolution problems (see for exam-

ple [21], [22]).

Chapter 3 and Chapter 4 discussed the main focuses of the study, the SQLM, and

BSQLM respectively. The SQLM was developed by combining the quasilinearisa-

tion method, Chebyshev collocation spectral method with Lagrange interpolation

and applying the finite difference method to time derivatives. That gave rise to Ex-

plicit, Implicit and Crank-Nicolson SQLM, while bivariate spectral quasilinearisation

method (BSQLM) was developed using the quasilinearisation together with Cheby-

shev collocation spectral method with bivariate Lagrange interpolation. The main

aim of this study was to conduct a comparative study of these methods in solving

the nonlinear partial differential equations, investigating the accuracy, robustness and

effectiveness of each method.

In Chapter 5 and Chapter 6 numerical simulations were carried out and the results dis-

cussed. The types of problems that were solved are Burgers, Burgers-Fisher, Fisher’s,

Newell-Whitehead-Segel and Zeldovich equations. Comparing the results obtained

using both methods, it is clear that the BSQLM gives accurate results compared

to the SQLM. The limitation of the SQLM is that on the time derivative the finite

difference method is applied, which requires many collocation points which require

more computing power to be used to solve these equations. From the results it was

also noted that the BSQLM gives accurate results even with small intervals both in

space and time variables, with CPU times which are less than a second, while in

SQLM, with some examples like Newell-Whitehead-Segel, results are obtained with

CPU time of more than five seconds. It is clear from the results presented in this
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study that BSQLM works much better that the SQLM. The collocation points were

even increased to 200 for the Newell-Whitehead-Segel example and observe that the

SQLM results were giving large infinity error norms and BSQLM results continued

to give use small infinity error norms.

In thesis, the SQLM and BSQLM was used for second order nonlinear evolution equa-

tions with exact solutions. It may be concluded that the BSQLM is a very powerful

and efficient technique in finding solutions for wide classes of problems like the ones

considered. With regard to the applications, the BSQLM outlined in the previous

sections was found to be quite efficient than SQLM achieving less computational time

and small infinity norm errors. It is also crucial to note out that the advantage of the

BSQLM over the SQLM is that BSQLM does not use finite difference which requires

more collocation points. Both methods required linearisation and we used QLM.

BSQLM showed to be much better than SQLM in solving the examples that were

discussed in this study.

6.2 Further Studies or Research

In this study, our focus was to compare the two methods of solving nonlinear parabolic

evolution problems. From the results, it is clear that the BSQLM gives better results

than the SQLM. To take this study further it will be useful to investigate coupled

systems and to discover whether the findings made here also apply to solving coupled

systems. Khater et al. [75] used the spectral collocation methods based on Lagrange

polynomials for spatial derivatives to obtain numerical solutions of some coupled

equations. The problem is reduced to a system of ODEs that are solved by the fourth

order Runge–Kutta method. They tested their method on coupled KdV equations,

coupled modified KdV equations, coupled KdV system and Boussinesq system. To

take this study further coupled system that fall under same class that was considered
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in this study will examined. Another researcher that also looked at coupled system

is Kaya [74] in solving viscous Burgers equations. He considered a coupled system

of viscous Burgers’ equations with appropriate initial values using the decomposition

method. In his method, the solution is calculated in the form of a convergent power

series with easily computable components. The method does not need linearization,

weak nonlinearity assumptions or perturbation theory. I also wish to study the effect

of linearization in the problems which are nonlinear.
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