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Abstract

Malaria is considered to be one of the main global health problems, with it causing
close to a million deaths each year. Ninety percent of these deaths occur in Sub-
Saharan Africa and 70% are of children under the age of 5 years. Uganda, ranked
6th worldwide in the number of malaria cases and 3rd in the number of malaria
deaths in 2008, experiences weather conditions that often allow malaria transmis-
sion to occur all year round with only a few areas that experience low or unstable
transmission. Malaria is the leading cause of morbidity in Uganda with 95% of the
population at risk and it killing between 70,000 and 100,000 children every year.
Children under the age of five years are among the most vulnerable to malaria in-
fection as they have not yet developed any immunity to the disease.

In order to apply successful implementations to eradicate malaria, there is a con-
tinuous need to understand the epidemiology and risk factors associated with the
disease. Although a large number of studies done worldwide have identified a
wide variety of risk factors; socioeconomic, environmental, demographic, and oth-
ers, associated with malaria infection, there is still a great need to identify the in-
fluence of these factors in a local context to allow a successful formulation of a na-
tional malaria-control strategy. There have, however, been very few studies done in
Uganda on malaria indicators and risk factors. These studies have also been specific
to one community at a time. Most recent studies on malaria in Uganda have been
hospital-based, investigating clinical malaria among young children and pregnant
women. One of the aims of this thesis was to identify significant socio-economic, de-
mographic and environmental risk factors associated with malaria infection, based
on the result of a microscopy test conducted on 3,972 children under the age of five
during a nationally represented Malaria Indicator Survey (MIS) done in Uganda in
2009.

The MIS sample was stratified according to 10 regions of Uganda and was not spread
geographically in proportion to the population, but rather equally across the regions.
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The survey consisted of a two-stage sample design where the first stage involved
selecting clusters, with probability proportional to size, from a list of enumeration
areas. The second stage involved systematic sampling of households from a list of
households in each cluster. Surveys carried out using these sampling techniques are
referred to as having complex survey designs.

The response variable of interest is binary, indicating whether a child tested posi-
tive or negative for malaria. Logistic regression is commonly used to explore the
relationship between a binary response variable and a set of explanatory variables.
However, this method of analysis is not valid if the data come from complex survey
designs. Failure to account for the complex design of a study may result in an over-
estimation of standard errors, therefore leading to incorrect results. There are many
methods of dealing with this design of the study. Two such commonly used ap-
proaches are design-based and model-based statistical methods. A designed-based
method, which involves the extension of logistic regression to complex survey de-
signs, is survey logistic regression. For design-based methods, parameter estimates
and inferences are based on the sampling weights, and only inferences concerning
the effects of certain covariates on the response variable are of interest. However,
model-based methods are used when interest is also on estimating the proportion of
variation in the response variable that is attributable to each of the multiple levels of
sampling. In this case, inference on the variance components of the model may also
be of interest. Such methods include generalized linear mixed models and gener-
alized estimating equations. This thesis discusses these three methods of analyzing
complex survey designs and compares the results of each applied to the MIS data.
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Background

Malaria, which is caused by the Plasmodium parasite that is transmitted via the bite
of infected Anopheles mosquitoes, is considered to be one of the main global health
problems, with it causing close to a million deaths each year (Malaria Foundation
International, 2013). Ninety percent of these deaths occur in Sub-Saharan Africa and
70% are of children under the age of 5 years. This is equivalent to one child in Africa
dying of malaria every 30 seconds (Against Malaria Foundation, 2013). According
to the World Health Organization (WHO), 7% of all deaths in children under the age
of 5 years in 2010 was caused by malaria.

Malaria imposes substantial costs to both individuals and governments (Centers
for Disease Control and Prevention (CDC, 2012)). It has a considerable effect on
poverty by affecting young people who would otherwise enter the workforce and
contribute to the local economy (Hochman & Kim, 2009). These infected individuals
require diagnosis, treatment and sometimes hospital care therefore creating a bur-
den on health services. The individual is prevented from going to work or children
from going to school, thus creating a knock-on effect on the economy (Malaria.com,
2013). High levels of absenteeism from school can hinder efforts to improve literacy
rates and stall the progress of education systems. Malaria is also considered a con-
tributing factor in decreasing the gross domestic product (GDP) in countries with
high infection rates. Over the long run these economic losses add up, resulting in
substantial differences in the GDP between countries with and without malaria, par-
ticularly in Africa. This presents an enormous challenge to efforts of lifting people
out of poverty (Gallup & Sachs, 2001).

In order to apply successful implementations to eradicate malaria, there is a con-
tinuous need to understand the epidemiology and risk factors associated with the
disease (Pullan et al., 2010). Within the last decade, increasing numbers of partners
and resources have rapidly increased malaria control efforts (CDC, 2012). (WHO,
2013).
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Background

This increase in interventions has led to decreased morbidity and mortality in a
number of countries, with mortality rates decreasing by more than 25% worldwide
between 2000 and 2010, and a decrease of 33% in the region of Africa where the
burden of the disease is greatest (WHO, 2013). Extensive research has been able to
define new tools and strategies for malaria control, such as long-lasting insecticide-
treated nets (LLIN), indoor residual spraying, intermittent preventative treatment
in pregnancy and infants, and prompt and effective treatment of infected individ-
uals (Johansson et al., 2007). Although a large number of studies have identified a
wide variety of risk factors; socioeconomic, environmental, demographic, and oth-
ers, associated with malaria infection (Nahum et al., 2010), there is still a great need
to identify the influence of these factors in a local context to allow a successful for-
mulation of a national malaria-control strategy. Despite the large efforts being made
to alleviate the burden of malaria, there are many barriers still to overcome. These
include drug and insecticide resistance, the availability of health care professionals
to administer tests and treatments, and according to Mayah (2011) climate change
has intensified the threat of malaria.

Malaria transmission occurs primarily in tropical and subtropical regions but usu-
ally not higher than 1,500 - 2,000m above sea level. Climate affects both the para-
site and the mosquito. Mosquitoes are unable to survive in low humidity and their
breeding grounds are expanded by rainfall. Plasmodium parasites are affected by
temperature where their development slows as the temperature drops and stops at
high temperatures, which explains why parasites can be found in temperate areas
(National Institute of Allergy and Infectious Diseases, 2007). Uganda, ranked 6th
worldwide in the number of malaria cases and 3rd in the number of malaria deaths
in 2008 (WHO, 2008), experiences weather conditions that often allow transmission
to occur all year round with only a few areas that experience low or unstable trans-
mission (Malaria Control Programme, 2005 - 2010). Malaria is the leading cause
of morbidity in Uganda with 95% of the population at risk and it killing between
70,000 and 100,000 children every year (Malaria Control Programme, 2005 - 2010).
Children under the age of five years are among the most vulnerable to malaria in-
fection as they have not yet developed any immunity to the disease (CDC, 2012).

In Uganda, malaria control received little attention from the Ministry of Health be-
fore 1995, after which the Malaria Control Programme (MCP) was established in
order to direct and guide the day to day implementation of the National Malaria
Control Strategy (Malaria Control Programme, 2005 - 2010). Uganda was one of the
first countries to introduce a waiver of taxes and tariffs for insecticide-treated nets
(ITNs).
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Background

Today, the fight against malaria is part of the overall effort of the Government of
Uganda to improve health. This effort is multi-sectoral and involves a broad part-
nership which forms the Roll Back Malaria Country Partnership (Ministry of Health
Online, 2013). The Roll Back Malaria (RBM) Partnership, which was launched in
1998 by numerous partners1, is a forum of all stakeholders in malaria control with
a goal to alleviate the burden of the disease (Ministry of Health Online, 2013). In
2002, Roll Back Malaria established the Monitoring and Evaluation Reference Group
(MERG) which was responsible for developing the Malaria Indicator Survey (MIS) in
an effort to monitor and evaluate efforts of malaria control (MEASURE DHS, MEA-
SURE Evaluation, Presidents Malaria Initiative, Roll Back Malaria and United Na-
tions Childrens Fund, 2013). MIS is a stand-alone household survey which collects
national and regional or provincial data from a representative sample of respon-
dents, and depending on the needs of the country, it may also include a measure-
ment of malaria parasites among household members most at risk. The MIS done
in Uganda in 2009, which includes results of two test procedures for malaria in chil-
dren under the age of five years, will provide the data set for this thesis.

There have been very few studies done in Uganda on malaria indicators and risk
factors. These studies have also been specific to one community at a time (Pullan
et al., 2010; Namanya, 2013; Clark et al., 2008). Most recent studies on malaria in
Uganda have been hospital-based, investigating clinical malaria among young chil-
dren and pregnant women (Idro et al., 2006, 2005; Ndyomugyenyi & Magnussen,
2001, 2004; Kiggundu et al., 2013). The Malaria Indicator Survey in 2009 was the first
nationally representative survey of malaria to be done in Uganda and the Ministry
of Health plans to carry out this survey every two to three years (Uganda Bureau of
Statistics (UBOS) and ICF Macro, 2010).

1World Health Organization (WHO), United Nations Children’s Fund (UNICEF) and United Na-
tions Development Programme (UNDP)

3



Chapter 1

Introduction

1.1 Country Profile

The Republic of Uganda is a small, landlocked country located on the equator in
East Africa. It shares borders with Sudan in the north, Kenya in the east, the Demo-
cratic Republic of Congo (DRC) in the west, and Tanzania and Rwanda in the south
(Uganda Bureau of Statistics (UBOS) and ICF Macro, 2010). The country has an
area of 241,039 square kilometres with approximately 45,000 square kilometres be-
ing taken up by open water and swamps, as can be seen in Figure 1.1 on page 5. This
abundance of water bodies in the country provides great breeding grounds for the
Anopheles mosquito. Uganda is administratively divided up into 111 districts and
one capital city, Kampala. However, at the time of designing and collecting data for
the MIS in Uganda in 2009, there were only 80 districts (Uganda Bureau of Statistics
(UBOS) and ICF Macro, 2010).

Uganda experiences a favourable tropical climate due to its relatively high altitude
with most of the Southwest lying between altitudes of 1,300 and 1,500m above sea
level. High mountain ranges above 1,800m are found in the border region in the
Southwest with Rwanda and the DRC, the Rwenzori Mountains in the West and
Mount Elgon in the East (Malaria Control Programme, 2005 - 2010). These areas are
sometimes prone to epidemics, experiencing low or unstable malaria transmission.
Uganda has mean annual temperatures of 16◦C in the Southwest, 25◦C in the Centre,
East and Northwest and close to 30◦C in the Northeast. Average relative humidity
varies between 54% and 88%.
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1.1. Country Profile

Uganda experiences two rainy seasons per year, with heavy rains from March to
May and light rains between September and December. The peak incidence of clini-
cal malaria follows the peak of the rains with a delay of about 4 to 6 weeks, therefore
most cases are seen between December and February, and May and July. However,
rainfall decreases in the North region of the country, turning it into just one rainy sea-
son per year, thus the malaria season is more between May and November (Malaria
Control Programme, 2005 - 2010).

Figure 1.1: Map of Uganda

Uganda is currently densely populated with a population of 35 million, and with
a population of 24,5 million in 2002 (2002 Uganda Population and Housing Census
Report), the annual population growth is currently 3.5%. Uganda has a very young
population, with a median age of 15 years. It also has the second highest fertility rate
in the world, at 6.2 births per woman (Population Secretariat (POPSEC) of Uganda,
2012). Some research has suggested this is an effect of high childhood mortality from
malaria, where parents plan on extra births in case a child is lost (Weil, 2010). The
economy of Uganda is predominately agricultural, with the majority of the popu-
lation dependent on subsistence farming (Uganda Bureau of Statistics (UBOS) and
ICF International Inc., 2012).
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1.2. The Data Set

Due to regular rainfall, the Southwest and Centre regions are rich in vegetation and
fertile soil, resulting in high population densities. Thus, 87.9% of the population
is exposed to moderate to very high malaria transmission (Malaria Control Pro-
gramme, 2005 - 2010). Uganda is considered one of the poorest countries in the
world with 24.5% of the population in 2009 living below the national poverty line1

(The World Bank, 2013). The majority of the population lives in rural areas, where
only 13.3% in 2010 were living in urban areas (Uganda Bureau of Statistics (UBOS)
and ICF International Inc., 2012).

1.2 The Data Set

The MIS was designed to provide national, regional, urban and rural estimates of
key malaria indicators (Uganda Bureau of Statistics (UBOS) and ICF Macro, 2010).
The survey was carried out during November and December 2009 to correspond
with peak malaria transmission. The survey was nationally represented with the
following objectives:

• Measure the extent of ownership and use of mosquito nets.

• Assess coverage of the intermittent preventative treatment (IPT) programme
for pregnant women.

• Identify practices used to treat malaria among children under the age of five
and the use of specific antimalarial medications.

• Measure prevalence of malaria and anaemia among children 0-59 months.

• Determine the species of Plasmodium parasite most prevalent in Uganda.

• Assess knowledge, attitudes, and practices of malaria in the general popula-
tion.

Two questionnaires were used in the MIS, a Household Questionnaire and a Woman’s
Questionnaire for all women aged 15 to 49 in the sample. Both instruments were
based on the standard MIS Questionnaire developed by the RBM and DHS pro-
grammes, with a few modifications to reflect issues relevant to malaria in Uganda.
The National Malaria Control Programme (NMCP) was responsible for developing
the survey protocol.

1Defined as the percentage of people living on $1.20 per day.
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1.2. The Data Set

1.2.1 Sampling Procedure

The sample was stratified into 9 survey regions of the country, plus the capital city,
Kampala, which, due to it being entirely an urban district, comprised a separate
region. Each of the 9 other regions consisted of 8 to 10 administrative districts of
Uganda that shared similar languages and cultural characteristics. The following
figure represents the 10 regions:

Figure 1.2: MIS 2009 Sample Regions in Uganda

The sample was not spread geographically in proportion to the population, but
rather equally across the regions, with 17 clusters per region. The survey consisted
of a two-stage sample design. The first stage involved selecting clusters from a list of
enumerations areas (EA) covered in the 2002 Population Census, these areas made
up the primary sampling units (PSUs). A total of 170 clusters (17 clusters for each of
the 10 regions) with probability proportional to size were collected. These clusters
consisted of 26 urban areas and 144 rural areas.
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1.2. The Data Set

Table 1.1: Allocation of clusters by region and type of residence.

Region Urban Rural

Central 1 0 17
Central 2 1 16
East Central 1 16
Kampala 17 0
Mid Eastern 1 16
Mid Northern 0 17
Mid Western 1 16
North East 1 16
South Western 1 16
West Nile 3 14

Total 26 144

Table 5.7 above shows the number of urban and rural clusters selected in each re-
gion. Several months before the survey took place, a list of all households in the
170 clusters was drawn up and provided the sampling frame from which the house-
holds were then selected for the survey. The second stage of the selection process
involved systematic sampling of households from the list of households in each clus-
ter. Twenty-eight households were selected in each cluster. Thus, the final sample
consisted of 4,760 households. Appendix A on page 102 shows the calculation of the
sample size as well as the sampling probabilities and weights associated with the
households.

1.2.2 Data Collection

The selected households were visited and interviewed by trained staff. The House-
hold Questionnaire collected basic information on the characteristics of each mem-
ber and recent visitors of the household, including age, sex, and relationship to the
head of the household. The Household Questionnaire also collected information on
characteristics of the household’s dwelling unit, such as source of water; type of
toilet facilities; materials used for the floor, roof and walls of the house; ownership
of various durable goods; and ownership and use of mosquito nets. The Woman’s
Questionnaire was used to collect a range of information from all eligible women in
the sample. With the consent of a parent or guardian in the household, all children
between the ages of 0 and 59 months were tested for malaria and anaemia.

Two types of testing procedures were used to determine the prevalence of malaria
in the children; a rapid diagnostic test (RDT) and microscopy.
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1.2. The Data Set

The RDT consisted of testing a drop of blood using the Paracheck PfTM rapid di-
agnostic test, which tests for the parasite Plasmodium falciparum, the most danger-
ous Plasmodium parasite. The result of the test was available in 15 minutes. This
type of test has become more widely used as a diagnostic test where a reliable mi-
croscopy test is not available (Uganda Bureau of Statistics (UBOS) and ICF Macro,
2010). Children who tested positive for malaria using the RDT were offered a full
course of treatment according to standard procedures for testing malaria in Uganda,
provided they were not currently on treatment and had not completed a full course
of Artemisinin-based Combination Therapy (ACT) during the last 2 weeks.

The second test procedure involved taking two blood smears; one thick and one
thin. These blood smears were then sent to the Uganda Malaria Surveillance Project
(UMSP) Molecular Research Lab at Mulago Hospital in Kampala. The thick smears
were first examined by microscopy to determine malaria infection, then the thin
smears of all positive thick smears were examined to determine the species of Plas-
modium parasite.

1.2.3 Variables of Interest

Unlike the microscopy tests, RDTs are more readily available and do not require
technicians with advanced skills and laboratories. However, the RDT detects the
Plasmodium falciparum-specific protein (not the parasite itself), which can remain in
the blood for several weeks after treatment. Therefore, this test is less sensitive and
often results in slightly higher rates of malaria. Microscopy is considered the gold
standard and is a highly sensitive test (Reyburn et al., 2007). Therefore, for the pur-
pose of this thesis, the prevalence of malaria in children under the age of 5 years will
be according to the microscopy test results. Thus, the response variable is binary,
indicating whether a child tested positive or negative for malaria.

Many studies have shown malaria transmission is not evenly distributed and some
regions, households or individuals may be more at risk than others (Greenwood,
1989). Much of these variations have been found to be related to a number of fac-
tors. These include a variety of environmental factors such as housing conditions
(main material used for the floors, roof and walls) and proximity to vector-breeding
sites (Guthmann et al., 2001; Schofield & White, 1984; Sintasash et al., 2005; Peterson
et al., 2009), as well as socio-economic factors where low socio-economic conditions
have been associated with a higher risk of malaria infection (Koram et al., 1995; Ghe-
bremeskel et al., 2000; Gahutu et al., 2011; Ayele et al., 2012). Mendez et al. (2000)
and Koram et al. (1995) have shown an individual’s knowledge of malaria has a sig-
nificant influence on their malaria status. The use of mosquito bed nets has been a
significate factor in very many studies done across the world.
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1.3. Thesis Objectives

Thus, the independent variables that are considered in the modelling of malaria sta-
tus in this thesis comprise of a number of socio-economic, demographic and envi-
ronmental factors. Such variables include:

• gender and age of the child

• number of members in the household

• caregiver’s age, education level and knowledge of malaria

• type of place of residence: rural or urban

• cluster altitude and region of Uganda

• main source of drinking water

• type of toilet facilities

• whether or not the household had electricity

• whether or not the household had a refrigerator, bicycle, television and a radio

• main material of the floors, walls and roof of the household

• incidence of anti-malarial spraying in the last 12 months

• use of mosquito nets and total number of mosquito nets used in the household

1.3 Thesis Objectives

Surveys carried out using sampling techniques such as multistage sampling, strati-
fied random sampling, cluster sampling or sampling with unequal weights are often
referred to as having complex survey designs (Nadimpalli & Hubbell, 2012). Mod-
eling of data obtained from these surveys must take into consideration the design of
the study for the following reasons:

• Observations within the same cluster or household may be correlated and thus
the assumption of independence in the data cannot be met.

• A limited number of clusters are sampled thus leaving a significant portion of
the population unsampled. This may result in certain characteristics not being
represented in the study.

• Sample units may be selected with unequal weights or probabilities.

• Often surveys are subjected to non-response. This may result in unmeasured
characteristics which could lead to biased results.
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1.4. Thesis Overview

Logistic regression, which is a class of generalized linear models, is commonly used
to explore the relationship between a binary response variable and a set of explana-
tory variables. However, this method of analysis is not valid if the data come from
complex survey designs (An, 2002). There are many methods of dealing with this
design of the study. Two such commonly used approaches are design-based and
model-based statistical methods (Ghosh & Pahwa, 2006). A designed-based method,
which involves the extension of logistic regression to complex survey designs, is sur-
vey logistic regression, first introduced by Binder (1983). For design-based methods,
parameter estimates and inferences are based on the sampling weights, and only in-
ferences concerning the effects of certain covariates on the response variable are of
interest. However, model-based methods are used when interest is also on estimat-
ing the proportion of variation in the response variable that is attributable to each
of the multiple levels of sampling (Heeringa et al., 2010). In this case, inference on
the variance components of the model may also be of interest. Such methods in-
clude generalized linear mixed models and generalized estimating equations. These
methods are both extensions of generalized linear models. One of the objectives of
this thesis is to examine and compare the different methods used for the analysis of
data from complex survey designs. However, the primary objectives of the thesis
are:

• to investigate the distribution of malaria infection in children under the age of
5 years old in the different regions of Uganda.

• to investigate the relationship between malaria status of children under the
age of 5 years old in Uganda and selected socio-economic, demographic and
environmental factors.

• to determine which factors significantly increase the risk of malaria infection
in children under the age of 5 years old in Uganda.

1.4 Thesis Overview

In the last section of this chapter, some exploratory data analyses is carried out on
the MIS data set. In this section, the observed malaria prevalence is determined
for the data set, as well as the prevalence by gender, region, type of residence, and
many other variables of interest. Chapter 2 gives a brief overview of linear models
where the general linear model and linear mixed model are discussed. Chapter 3
discusses generalized linear models and the use of logistic regression in modeling a
binary outcome. In this chapter, the survey logistic regression model is introduced,
along with the different methods of variance estimation of the model’s parameter
estimates.
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1.5. Exploratory Data Analysis

Chapter 4 gives an overview of generalized estimating equations and generalized
linear mixed models and their use of modeling data where a correlation structure
may exist. Chapter 5 involves applying the survey logistic regression model to the
MIS data set where adjusted odds ratios are determined for significant variables.
Generalized estimating equations and a generalized linear mixed model are also
fitted to the data in this chapter. The last chapter discusses the results of the different
methods used in the analyses of the data. This chapter also discusses the conclusions
of the study, as well as possible areas of further study.

1.5 Exploratory Data Analysis

Before any statistical modeling of the data is done, it is ideal to first carry out some
exploratory analyses. This enables one to get a general understanding of the data.
Out of the 4,760 households interviewed, a total of 4,146 children under the age of
5 were eligible for testing. Of those 4,146 eligible children, 3,972 were tested for
malaria using the microscopy test, thus resulting in a response rate of 95.8%. These
3,972 children from a total of 2,491 households make up the sample that will be used
in the analyses.

Figure 1.3: Distribution of children under the age of 5 tested for malaria across the regions
Uganda. 12



1.5. Exploratory Data Analysis

Figure 1.3 on the previous page shows the percentage of children under the age of 5
tested for malaria in each region. Kampala, which is entirely urban and the smallest
region, had the lowest number of children at 4.5%, with the rest of the regions rang-
ing from 7.9% to 12.8%.

A total of 1,725 children tested positive for malaria, which was 43.4% of the sample.
More than half of the children in the sample in regions Central 2, East Central and
Mid Northern tested positive for malaria, with the East Central region of Uganda
having the highest observed prevalence of 67.7% of the 12.2% of children tested in
the region. This region, which experiences high malaria transmission, borders Lake
Victoria. Some studies have suggested Lake Victoria is a fertile breeding ground for
malaria vectors (Minakawa et al., 2012).

Figure 1.4: Observed prevalence of malaria according to region of Uganda.

Kampala had the lowest prevalence with only 4.4% of the children in the region
testing positive. This could be a result of the low number of children under the age
of 5 tested in the region or due to the fact that the region consists of only urban areas.

13



1.5. Exploratory Data Analysis

The table below shows that urban areas only made up 10.8% of the households in the
sample, which is a very low portion and therefore needs to be kept in mind during
the analyses. The majority of the sampled households were in clusters with altitudes
ranging between 1000m and 1500m. A very small portion of the households (7.4%)
were in clusters with altitudes higher than 1500m, where malaria transmission is
lower.

Table 1.2: Percentage of households in the sample according
to type of place of residence and cluster altitude.

Cluster Altitude
Type of place of Residence

Total
Urban Rural

< 1000m 2.2 7.8 10.1

1000 - 1500m 8.6 73.9 82.5

1500 - 2000m 0 6.2 6.2

> 2000m 0 1.2 1.2

Total 10.8 89.2 100

Figure 1.5: Observed prevalence of malaria according to type of place of residence and clus-
ter altitude.
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1.5. Exploratory Data Analysis

As seen in Figure 1.5 on the previous page, the observed prevalence was much
higher within rural areas compared to urban areas. Furthermore, the figure shows
there was a decrease in malaria prevalence as altitude increased, which is to be ex-
pected as malaria transmission decreases as altitude increases. However, even at
the higher altitudes of 1500m and above, children tested positive for malaria. The
sampled households at these altitudes consisted of only rural areas, as seen in Table
1.2, thus suggesting a rural place of residence may be associated with a higher risk
of malaria.

Figure 1.6 below reveals that households having access to electricity, a television
or a refrigerator was a rare event, however having access to a radio or bicycle was
more common. With only 7.7% of the households in the sample having had access
to electricity, shows the extent of how rural Uganda was at the time of this survey.

Out of the 3.2% of the households that had refrigerators, 1% did not have electricity.
Therefore, these refrigerators could possibly have been powered by gas.

Figure 1.6: Percentage of households with access to certain household items.

15



1.5. Exploratory Data Analysis

Table 1.3 on the next page also shows that a significantly higher percentage of house-
holds within urban areas had access to electricity, a television or a refrigerator com-
pared to households within rural areas, thus revealing access to these items are asso-
ciated with a higher socio-economic status. Whereas there was a higher percentage
of households within rural areas that had access to a bicycle, which may have been
used as a mode of transport rather than as a luxury. Ownership of a radio was com-
mon in both rural and urban areas.

Table 1.3: Percentage of households within each type of place of residence
with access to certain household items.

Household Type of place of Residence

Item Urban Rural

Electricity 43.9 3.3

Radio 79.3 65.9

Bicycle 29.3 46.9

Television 37.4 3.5

Refrigerator 15.3 1.7

Figure 1.7 on the next page reveals that the prevalence of malaria within the group
of children who resided in households with electricity was much lower compared
to those in households without electricity. Similarly, the prevalence amongst those
in households with a refrigerator or television was much lower than those in house-
holds without these items. Thus, suggesting a higher socio-economic status may
be associated with a lower risk of malaria. This can also be observed by the higher
prevalence of malaria amongst those in households with a bicycle compared to those
in households without a bicycle.

Table 1.4 on page 18 shows how the households in the sample are distributed ac-
cording to the socio-economic variables: source of drinking water, toilet facility and
main floor material, main wall material and main roof material of the house. The
majority of the households in the sample (59.1%) obtained their drinking water from
a protected source, which included protected wells (private and public), boreholes
and protected springs.
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1.5. Exploratory Data Analysis

Unprotected water sources included open wells (private and public), unprotected
springs, rainwater and surface water (rivers/streams, ponds/lakes and dams). Fur-
thermore, only 13.4% of the households obtained their drinking water from a tap,
which included public taps or standpipes, water piped into the dwelling and water
piped to the yard. The category ’other’ represents unspecified water sources and
only makes up 0.3% of the sample of households.

Figure 1.7: Observed prevalence of malaria according to electricity access and ownership of
certain household items.
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1.5. Exploratory Data Analysis

Table 1.4: Percentage of households in the sample according to source of drinking
water, toilet facility and main material for construction of house.

Source of Drinking Water Unprotected Water 27.2

Protected Water 59.1

Tap Water 13.4

Other 0.3

Toilet Facility No Facility 11

Uncovered Pit Latrine 22.4

Covered Pit Latrine 61.5

VIP Latrine 4

Flush Toilet 0.9

Other 0.3

Main Floor Material Earth/Sand 36.1

Earth and Dung 40.6

Cement 22

Other 1.3

Main Wall Material Thatch/Straw 1

Mud and Poles 35.8

Unburnt Bricks 27.7

Burnt Bricks 33.3

Cement Blocks 1.2

Other 1

Main Roof Material Thatch 43.6

Iron Sheets 55

Tiles 0.6

Other 0.8
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1.5. Exploratory Data Analysis

The most common type of toilet facility was a pit latrine with 61.5% and 22.4% of the
households using a covered and uncovered pit latrine respectively, both of which in-
cluded those with and without cement slabs. Only 4% of the households used a VIP
(ventilated improved) pit latrine which is an improvement to the simple pit latrines
in order to overcome their disadvantages. Just less than 1% of the households had a
flush toilet whereas 11% had no toilet facility.

The most commonly used material for a household’s floor was a mixture of earth
(sand) and dung at 40.6% of households in the sample followed by only earth at
36.1%. There were three main materials used for the walls of the households, with
a combination of mud and poles being the most commonly used material at 35.8%
of the households, followed by burnt bricks at 33.3% and unburnt bricks at 27.7%.
Very few households used cement blocks for their walls (1.2%). The two main ma-
terials used for the roofs was iron sheets (55%) and thatch (43.6%) with only 0.6% of
households using tiles.

Figure 1.8 on page 20 represents the observed malaria prevalence for each of the
different types of socio-economic variables discussed in Table 1.4 above. The preva-
lence amongst those children using unprotected water sources (46.6%) and pro-
tected water sources (47.8%) for drinking water was not much different, however
the prevalence was a lot lower amongst those using tap water (14.8%). Those using
uncovered pit latrines as their toilet facility had the highest prevalence at 52.6%, fol-
lowed by those with no toilet facilities (48.5%) and those using covered pit latrines
(41.1%). There was no prevalence of malaria amongst those children in households
with flush toilets, however these households only made up 0.9% of the sample.
Those with unspecified toilet facilities (’other’) had a prevalence of 60%, however
this category too made up a very small percentage of the households in the sample
(0.3%).

More than half (50.5%) of the children living in households with just earth (sand)
as the main floor material tested positive for malaria. The prevalence amongst those
living in households with earth and dung as the main floor material was 47.3%, not
much lower than those living in households with just earth. Only 23.8% of those liv-
ing in households with cement as the main floor material tested positive for malaria,
which is a much lower prevalence than the other materials. The prevalence amongst
those living in households with thatch/straw as the main wall material was 59.6%,
however these households only made up 1% of the sample. The three most com-
monly used main wall materials; mud and poles, unburnt bricks and burnt bricks,
had prevalences ranging from 38.9% to 51.4%, with unburnt bricks having the high-
est prevalence.
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1.5. Exploratory Data Analysis

Figure 1.8: Observed malaria prevalence according to source of water, toilet facility and
main floor, wall and roof material of the house.
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1.5. Exploratory Data Analysis

Out of the children living in households with thatch as the main roof material, 52.5%
tested positive for malaria. Thus, suggesting this material may be a significant risk
factor. The prevalence amongst those in households with iron sheets as the main roof
material was 36.6% and with tiles was 7.7%, which only made up 0.6% of the sam-
ple of households. The categories ’other’, which represent unspecified wall, floor
and roof materials, had prevalences ranging from 29% to 41.7%, however these cat-
egories only made up 1.3%, 1% and 0.8% of the main floor, wall and roof materials
of the houses, respectively.

The total number of mosquito nets available in the household was recorded. The
maximum number of nets in a household was 7 with a median of 1 and a mean of
1.3 nets. Figure 1.9 below represents the percentage of households corresponding to
the number of nets recorded in the household. Over a third of the households in the
sample had no nets and very few households had four or more. Whether or not the
child in the household that was tested for malaria slept under a mosquito net was
recorded. 64.7% of the children in the sample were recorded to sleep under a net.

Figure 1.9: Percentage of households according to the total number
of mosquito nets in the household.
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1.5. Exploratory Data Analysis

Figure 1.10: Observed prevalence of malaria according to use of mosquito nets and total
number of mosquito nets in the household.

As expected, Figure 1.10 reveals that the prevalence of malaria amongst the children
who did not sleep under a mosquito net was much greater than those who did sleep
under a mosquito net. There was a decreasing trend in the prevalence as the number
of mosquito nets in the household increased to a total of three. However, there was a
slight increase of 0.3% in prevalence as the total number of mosquito nets increased
from three to four, after which the prevalence decreased again. There was no malaria
prevalence amongst the children in households with seven mosquito nets, although
these households only made 0.3% of the sample.

Information about indoor residual spraying of the interior walls within the last 12
months prior to the survey was collected for each household. 94.6% of the house-
holds had no incidences of indoor spraying and 5.1% of the households had been
sprayed at least once within the 12 months. 0.3% of the households were recorded
to not have any knowledge of the incidence of spraying. Figure 1.11 shows there
was a higher prevalence amongst the children in households that had been sprayed
within the last 12 months compared to those in households with no incidences of
spraying.
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1.5. Exploratory Data Analysis

However, Table 1.5 reveals that over 62% of the households that had incidences of
spraying were from the three regions of Uganda (East Central, Mid Northern and
Central) with the highest prevalence. Whereas only 31.4% of the households that
had no incidences of spraying were located in these three regions.

Figure 1.11: Observed prevalence of malaria according to incidence of indoor residual spraying
within the last 12 months.

Table 1.5: Distribution of incidence of indoor residual spraying in households
across the regions of Uganda.

Region of Incidence of Indoor Residual Spraying

Uganda No Yes Don’t Know

East Central 12.8% 1.4% 0%

Mid Northern 9.6% 48.8% 23.1%

Central 2 9% 12.6% 15.4%

West Nile 13.5% 0% 15.4%

Mid Eastern 11.2% 1% 0%

Central 1 9.3% 0% 30.8%

Mid Western 11.7% 0% 7.7%

North East 10% 32.4% 0%

South Western 8.2% 1.9% 0%

Kampala 4.7% 1.9% 7.7%
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1.5. Exploratory Data Analysis

Out of the children tested for malaria, 50.3% were female and 49.6% were male.
Figure 1.12 displays the prevalence of malaria for males and females. 43% of the
males tested positive and 43.9% of the females tested positive. Thus, the prevalence
was not much different between males and females.

Figure 1.12: Observed prevalence of malaria according to gender.

The percentage of children in the sample within the different age groups, given in
Table 1.6, ranged from 8.7% between 0 and 5 months to 20.9% between 36 and 47
months. Only 2.8% of the children in the sample had caregivers of the age 45 to 49
years and the majority had caregivers of the age 20 to 29 years. Figure 1.13 on the
following page reveals there was an increase in the prevalence of malaria as the age
in months of a child increased. More than half the children in the age groups 36 to 47
months and 48 to 54 months tested positive. The prevalence according to the care-
giver’s age ranged from 38.6% to 51.4%, with the prevalence within the age groups
20 to 24 years, 25 to 29 years and 30 to 34 years not differing by much. Although the
prevalence was highest amongst the group of children who had caregivers aged 40
to 44 years and 45 to 49 years, these groups only made up 8.3% of the sample.

Table 1.6: Distribution of children in the sample according to age and caregiver’s age.

Age in Months of Child Percent Age in Years of Caregiver Percent

0 to 5 8.7 15 to 19 14.7

6 to 11 10 20 to 24 25.9

12 to 17 10.6 25 to 29 24.3

18 to 23 9.4 30 to 34 16.4

24 to 35 20 35 to 39 10.4

36 to 47 20.9 40 to 44 5.5

48 to 54 20.3 45 to 49 2.8
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1.5. Exploratory Data Analysis

Figure 1.13: Observed prevalence of malaria according to age of child and caregiver.

A total of 84.2% of the children in the sample had caregivers who knew mosquito
bites can cause malaria, and 85.8% had caregivers who knew there are ways of pre-
venting malaria. Figure 1.14 below shows the prevalence of malaria according to
the caregiver’s knowledge of malaria. The prevalence was highest amongst the chil-
dren whose caregivers did not believe malaria can be caused by mosquito bites. The
prevalence was also highest amongst the children whose caregivers did not believe
there are ways of preventing malaria. With more than half the children in these
two groups testing positive for malaria, this may suggest the caregiver’s inadequate
knowledge of malaria may be a significant risk factor.
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1.5. Exploratory Data Analysis

Figure 1.14: Observed prevalence of malaria according to the caregiver’s knowledge of
malaria.

Table 1.7 on the next page shows the distribution of the children in the sample ac-
cording to the highest education level of their caregiver. This table also shows the
distribution of education level for each type of place of residence (urban and rural)
as well as for malaria result. The majority of the children had caregivers with only
primary school level and only 1.4% had caregiver’s with an education higher than
secondary school. None of the children in the sample from urban areas whose care-
givers had higher education tested positive for malaria, however only 0.5% of the
children in the sample were from urban areas and had caregivers with higher edu-
cation. Almost half the children in the sample from rural areas with caregivers who
only had primary education tested positive for malaria (27.1% from a total of 57.4%).
Similarly, more than half of those in rural areas who had caregivers with no educa-
tion tested positive (10.9% from a total of 20.9%). Thus, suggesting these children
were most at risk for malaria.

Figure 1.15 on the next page reveals that the prevalence decreased as the education
level of the child’s caregiver increased, which is what one would expect. Just over
half (50.6%) of the children whose caregivers had no education and just under half
(45.2%) of those with caregivers who only had primary education tested positive.
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1.5. Exploratory Data Analysis

Table 1.7: Percentage of children in the sample according to caregiver’s highest education level,
type of place of residence and malaria result.

Education Level

Type of Place of Residence

TotalUrban Rural

Negative Positive Total Negative Positive Total

No Education 0.8 0.2 1 10 10.9 20.9 21.9

Primary 3.4 0.7 4.1 30.3 27.1 57.4 61.5

Secondary 4.1 0.3 4.4 7.2 3.6 10.8 15.2

Higher 0.5 0 0.5 0.7 0.2 0.9 1.4

Figure 1.15: Observed prevalence of malaria according to the caregiver’s highest education level.

The distribution of the children in the sample according to the number of members
within their households is shown in Table 1.8 below. The majority of the sample
(55.2%) had between 6 and 10 members within their households. Figure 1.16 on
the next page reveals that the prevalence amongst the different groups of children
according to the number of members within their households did not differ signif-
icantly, with the prevalence ranging from 38.1% to 44%. However, as seen in Table
1.8, only 6.6% of the children had more than 10 members within their households.
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1.5. Exploratory Data Analysis

Table 1.8: Distribution of the sample according to the number of members in each household.

Number of Members Percent

1 - 5 38.2
6 - 10 55.2
11 - 15 6.1
16 - 20 0.5

Figure 1.16: Observed prevalence of malaria according to the number of household members.

The variables time taken to collect water, proximity to vector-breeding sites and to-
tal number of rooms per household have been shown to be significant risk factors
for malaria (Ayele et al., 2013; Peterson et al., 2009), however, these variables were
not recorded in this MIS survey. Whether or not an insecticide-treated net (ITN) was
used has also been shown to be a significant risk factor, where its use is known to
be highly effective in reducing malaria morbidity and mortality (Atieli et al., 2011;
Nevill et al., 1996; Binka et al., 1996). However, this variable was missing from 58.9%
of the MIS data for this thesis.

In the next chapter, a review of linear models is given, where some of the theory
of general linear models and linear mixed models is discussed.

28



Chapter 2

Linear Models

Linear models are some of the most widely used statistical techniques to analyze
data sets, where such models can be used to test almost any hypothesis concern-
ing a response (dependent) variable and, or, the independent/explanatory variables
(Miller & Haden, 2006). The selection of an appropriate model is dependent on the
scale of measurements of the variables in the data set, particularly the response vari-
able.

2.1 General Linear Models

In this chapter we start by considering the general linear model (LM). The LM mod-

els a continuous response variable Yi, for i = 1, ..., n, in terms of a linear combination

of its corresponding explanatory variables xij , j = 1, ..., p. The LM assumes the Yi

are independent and follow a normal distribution with a constant variance. The ex-

planatory variables may be continuous or categorical.

The linear model for such variables is

Yi = β0 + β1xi1 + β2xi2 + . . . + βpxip + εi (2.1)

where β1, . . . , βp are the regression coefficients and εi is the error for the ith observa-

tion.

Equation (2.1) can also be written as follows:

Yi = x′iβ + εi

where x′i = (1, xi1, . . . , xip) and β′ = (β0, β1, . . . , βp)
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2.1. General Linear Models

In matrix form the model for all the observations is

y = Xβ + ε (2.2)

where y = [Y1, Y2, . . . , Yn]′ is an n×1 vector of response variables, X is the n×(p+1)
design matrix, β is a (p+1)×1 vector of parameters and ε is an n×1 vector of errors.
The errors are assumed to be independently and identically normally distributed
with mean 0 and variance σ2. In other words, ε ∼ N(0, σ2I) where I is an n × n

identity matrix.
Therefore,

E(y) = Xβ

and

V ar(y) = V ar(ε)

= σ2I

Thus, the response variables are independently distributed and y ∼ N(Xβ, σ2I).
The fitted model for the data is given by

ŷ = Xβ̂

where β̂ is the estimate of parameter β.

The value of β̂ can be found using two commonly used methods: the method of

ordinary least squares and the maximum likelihood method. The method of least

squares is based on minimizing the residual error ε̂i = yi − ŷi, the difference be-

tween the observed and fitted values. This is done by minimizing the error sums of

squares

n∑
i=1

ε̂ 2
i =

n∑
i=1

(yi − ŷi)
2

=
n∑

i=1

(yi − x′iβ̂)2

or equivalently

ε̂ ′ ε̂ = (y −Xβ̂)′(y −Xβ̂) (2.3)
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2.1. General Linear Models

The method of maximum likelihood (ML) chooses the values of the parameters that

are most consistent with the sample data under the assumption ε ∼ N(0, σ2I). This

is done by maximizing the likelihood function of y given below:

L(y) = (2πσ2)−
n
2 exp{− 1

2σ2
(y −Xβ)′(y −Xβ)}

This is equivalent to maximizing the log of the likelihood function:

ln L(y) = −n

2
ln(2π)− n

2
ln(σ2)− 1

2σ2
(y −Xβ)′(y −Xβ) (2.4)

The value of β̂ that minimizes Equation 2.3 and maximizes Equation 2.4 is

β̂ = (X′X)−1X′y

Thus, both methods obtain the same estimate for β. The mean and variance of this

estimate of β can be found as follows

E(β̂) = E[(X′X)−1X′y]

= (X′X)−1X′Xβ

= β

and

V ar(β̂) = V ar[(X′X)−1X′y]

= (X′X)−1σ2

Thus, β̂ is an unbiased estimator for β. Since β̂ is a linear combination of a normally

distributed random variable, it follows β̂ ∼ N(β, (X′X)−1σ2). Therefore, knowing

the distributional properties of this parameter estimator will allow one to perform

hypothesis tests to determine which independent variables are significant.

The method of maximum likelihood can also be used to estimate σ2, the variance

of the error term. This can be done by minimizing Equation 2.4 with respect to σ2

where it can easily be shown that the ML estimate of σ2 is given by

σ̂ 2 =
(y −Xβ̂)′(y −Xβ̂)

n
(2.5)

This value of σ̂ 2 can therefore be used to determine the variance, and thus the stan-
dard errors, of the parameter estimate β̂.
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2.2. Linear Mixed Models

2.2 Linear Mixed Models

The LM assumes the different levels of the independent variables or factors are fixed.

This model is only applicable when interest is on the effect of the specific factor lev-

els included in the model (Kutner et al., 2005). However, when the factor levels

represent a sample from a larger population of potential factor levels, and inferences

are to be made on the whole population of the levels, then these factors included in

the model are no longer considered fixed, but rather random, and therefore the LM

needs to be extended to represent this. When fixed effects and random effects are

included in the model, the resulting model is referred to as a linear mixed model

(LMM), sometimes also referred to as a linear mixed effect model. Random effects

are used to model the random variation in the dependent variable at different levels

of the factors (West et al., 2007) and can be used to represent unobserved effects or

characteristics influencing the pattern of responses of an individual when measures

on that individual are being repeated (Der & Everitt, 2006). LMMs are often utilized

in the modeling of hierarchical or multilevel data, where observations can be placed

in levels of hierarchy in the data (Ker, 2014). Such data include clustered, repeated-

measures and longitudinal data where observations within the same cluster or from

the same individual tend to be more homogeneous with one another than those from

another cluster or individual. Thus, these observations can no longer be treated as

independent. The inclusion of a random effect in the model allows the correlation

structure of the observations to be modeled.

LMMs may be expressed in different but equivalent forms (Fox, 2002). When mod-

eling hierarchical data, the common form of the LMM is

Yij = β0 + β1xij1 + β2xij2 + . . . + βpxijp + γi1zij1 + . . . + γiqzijq + εij (2.6)

where

• Yij is the value of the response variable for the jth of ni observations in the ith

of m clusters or individuals.

• β1, . . . , βp are the fixed effect coefficients, which are common for all clusters or
individuals.

• xij1 . . . xijp are the p fixed effect regressors for observation j in cluster/individual
i.

• γi1 . . . γiq are the random effect coefficients for cluster/individual i.

• zij1 . . . zijq are the q random effect regressors for cluster/individual i.

• εij is the error for observation j in cluster/individual i. 32



2.2. Linear Mixed Models

Alternatively, Equation 2.6 can be expressed in the form

yi = x′iβ + z′i γi + εi

Or more compactly, in matrix form

y = Xβ + Zγ + ε (2.7)

where

• y is an n× 1 vector of response variables, where
m∑

i=1
ni = n is the total number

of observations.

• X is the n× (p + 1) design matrix for the fixed-effects.

• β is a (p + 1)× 1 vector of fixed effect coefficients.

• Z is the n× q design matrix for the random effects.

• γ is a q × 1 vector of random effect coefficients.

• ε is an n× 1 vector of errors.

The random effects are random variables. Thus, there are two random effects in the
LMM with the following assumptions:

ε ∼ N(0,Rn×n)

γ ∼ N(0,Gq×q)

and
Cov(ε,γ) = 0n×q

Therefore
E(y) = Xβ

and

V ar(y) = V ar(Zγ) + V ar(ε)

= ZGZ′ + R

= V (say)

Which results in y ∼ N(Xβ,V ).
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2.2. Linear Mixed Models

For LMMs, one could be interested in the following:

1. Making inferences about the fixed effects, thus estimating and performing hy-
pothesis tests on β.

2. Making inferences about the random effect’s variance, thus estimating the vari-
ance components of V .

3. Predicting the realization of the random effects.

Estimating β:

There are many methods used to estimate β, however only the maximum likelihood

(ML) method will be considered.

Similar to solving for β in the LM, the ML method solves for the value of β which

maximizes the log-likelihood function, and thus the likelihood function, of y. For

the LMM with y ∼ N(Xβ,V ), the log-likelihood function is

ln L(y) = −n

2
ln(2π)− 1

2
ln(V )− 1

2
(y −Xβ)′ V −1(y −Xβ) (2.8)

Maximizing Equation 2.8 with respect to β will result in the following ML estimate

β̂ = (X′ V −1 X)−1X′ V −1 y (2.9)

Thus, using the same procedure as that from the previous section for the LM to find
the mean, variance and distribution of β̂, it follows β̂ ∼ N(β, (X′V −1X)−1).

The value of β̂, and the variance of β̂, requires the value of V to be known, thus
the variances of ε and γ, R and G respectively, need be known beforehand. In prac-
tice, these variances are usually unknown and therefore need to be estimated. Thus,
when V is unknown, we can replace it by its estimate V̂ . The ML estimate of β will
then become

β̂ = (X′ V̂
−1

X)−1X′ V̂
−1

y (2.10)

with

V ar(β̂) = (X′V̂
−1

X)−1 (2.11)
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2.2. Linear Mixed Models

Estimating V :

Let θ be a vector of unknown variance components in V to be estimated. The ML

method can be used to estimate these variance components by finding the value of θ

in V that maximizes the log-likelihood function in Equation 2.8. If β is unknown, it

can be replaced by its estimate β̂ from Equation 2.9. This will result in the following

log-likelihood function:

`p = −n

2
ln(2π)− 1

2
ln(V )− 1

2
y′Py (2.12)

where P = V −1 − V −1X (X′ V −1X)−1X′ V −1

Equation 2.12 is known as a profile log-likelihood function. Maximization of this
equation with respect to θ will result in a non-linear optimization (West et al., 2007).
Thus, iterative procedures such as Newton Raphson and Fisher Score (also com-
monly referred to as Fisher Scoring) are required to solve for the estimate of θ that
maximizes this profile log-likelihood function.

2.2.1 Newton Raphson

The iterative equation for Newton Raphson is given by

θ̂ (t+1) = θ̂ (t) − (H(t)) −1 U (t) (2.13)

where θ̂ (t) is the approximation of θ at the tth iteration. U (t) =
∂`p

∂θ
evaluated at

θ̂ (t), where U is called the score. H(t) is the Hessian matrix, H , with the following
elements evaluated at θ̂ (t):

Hjk =
∂2`p

∂θj ∂θk
(2.14)

2.2.2 Fisher Score

The Fisher Score iterative equation is given by

θ̂ (t+1) = θ̂ (t) + ( I(t)) −1 U (t) (2.15)

where I = −E(H) is referred to as the information matrix.

Both these iterative methods require an appropriate starting value θ̂ (0), whereafter
the process will continue until the algorithm converges. That is, until the difference
between successive approximations is negligible.
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2.2. Linear Mixed Models

This maximum likelihood method of estimating θ does not take into consideration
the loss of degrees of freedom from estimating the fixed effect parameters in β, and
thus the ML estimate of θ is biased (West et al., 2007). The restricted maximum
likelihood (REML) method, first introduced by Patterson & Thompson (1971), is a
modification of the ML method and can be used as an alternative for finding the
estimate of θ. This method takes into consideration the loss of degrees of freedom
from the estimation of β, and thus produces an unbiased estimate of θ.

The REML profile log-likelihood function is

`reml = `p −
1

2
ln|X′ V −1X|+ rank(X)

2
ln(2π) (2.16)

where `p is the profile log-likelihood function given in Equation 2.12 and |X′ V −1X|
is the determinant of matrix X′ V −1X.

Once again, this results in a non-linear optimization with respect to θ, thus itera-
tive procedures are required to solve for its estimate. The Newton Raphson Iterative
Equation 2.13 and Fisher Score Iterative Equation 2.15 can be used where the score
U and Hessian matrix H can be found by replacing `p, the profile log-likelihood
function, by `reml, the REML profile log-likelihood function. Once we have obtained
the REML estimate θ̂ in order to obtain V̂ , we can calculate β̂ by substituting the
estimate V̂ into Equation 2.10.

The next chapter discusses some of the theory of generalized linear models and in-
troduces the survey logistic regression model to be applied to the MIS data set.
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Chapter 3

Generalized Linear Models

As discussed in Chapter 1, the LM assumes the response variable is continuous and
follows a normal distribution. Suppose instead, the response variable represents a
count or a binary outcome and thus is discrete. It can no longer be modeled using
the LM as the predictions using this model can fall outside the range of the response
variable. A possible method of modeling a discrete/categorical outcome is the use of
generalized linear models (GLMs) first introduced by Nelder & Wedderburn (1972).
GLMs model response variables with non-normal distributions through a transfor-
mation called the link function (Nelder & Wedderburn, 1972).

3.1 The GLM Model

The GLM assumes the response variable Yi, i = 1, . . . , n, follows a distribution that

belongs to the exponential family with the following general form

f(yi; θi, φ) = exp

{
yiθi − b(θi)

ai(φ)
+ c(yi, φ)

}
(3.1)

where θi is referred to as a natural or canonical parameter and ai(φ), b(θi) and c(yi, φ)
are known functions. ai(φ) has the form ai(φ) = φ/wi , where wi is a known weight
depending on whether the data is grouped and φ is referred to as the dispersion or
scale parameter. It can be shown that if a response Yi has a distribution belonging to
the exponential family, then its mean and variance are

E(Yi) = µi = b′(θi) (3.2)

V ar(Yi) = ai(φ) b′′(θi) (3.3)

where b′(θi) and b′′(θi) are the first and second derivatives of b(θi) with respect to θi.
b′′(θi) is a function of the mean, thus it is referred to as the variance function denoted
by v(µi).
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3.1. The GLM Model

Therefore, Equation 3.3 can be expressed in the form

V ar(Yi) = ai(φ) v(µi) (3.4)

=
φ

wi
v(µi) since ai(φ) = φ/wi (3.5)

Thus, another property of the GLM is that of a non-constant variance where the
variance may vary across the responses. When ai(φ) > 1 the model is said to be
overdispersed since V ar(Yi) > v(µi). Similarly, the model will be underdispersed
when ai(φ) < 1. Therefore, standard errors calculated on the assumption ai(φ) = 1
would be incorrect when ai(φ) 6= 1.

The GLM is specified by the following three components:

• The Random Component:
This consists of the response variable Yi belonging to the exponential family
with probability distribution in the form given in Equation 3.1. The observa-
tions of Y are assumed to be independent.

• The Systematic Component:
This component of the GLM relates a linear predictor η to the explanatory
variables through a linear model as follows

η = Xβ

• The Link Function:
The expected value or mean of the random component, µ = (µ1, µ2, . . . , µn)′,
and the systematic component of the GLM are connected through a link func-
tion

η = g(µ)

where g is a monotone, differentiable function. This link function g(µ) is in-
vertible where its inverse is often referred to as the mean function

g−1(η) = µ

The canonical link function is that function that makes the linear predictor
η the same as the canonical parameter θ. Therefore, function g such that
g(µ) = θ is called the canonical link function.
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3.1. The GLM Model

Many distributions belong to the exponential family, such distributions include the
Binomial, Poisson, Gamma and Chi-Square distribution. The Normal distribution
also belongs to the exponential family, thus the LM is a class of GLMs where η = µ =
Xβ. Here the canonical link is referred to as the identity link since E(y) = µ = Xβ.

3.1.1 Parameter Estimation

Once again, the ML method can be used for the parameter estimation in GLMs. Due

to advances in statistical theory and computer software, this method of estimation

has become the most popular technique in applied statistics (Wu, 2005). The log-

likelihood function for a single observation is given by

`i = ln f(yi; θi, φ) =
yiθi − b(θi)

ai(φ)
+ c(yi, φ) (3.6)

Since Yi, i = 1, . . . , n, are independent, the joint log-likelihood function is

`(β,y) =
n∑

i=1

`i (3.7)

The ML estimate of βj , j = 0, . . . , p, is the solution to the score equation

∂`i

∂βj

= 0

To obtain this solution, we use the chain rule

∂`i

∂βj

=
∂`i

∂θi

∂θi

∂µi

∂µi

∂ηi

∂ηi

∂βj

Using Equation 3.6, we get
∂`i

∂θi

=
yi − b′(θi)

ai(φ)

Since µi = b′(θi), V ar(Yi) = ai(φ) v(µi) and ηi =
∑
j

βj xij ,

∂`i

∂θi

=
yi − µi

ai(φ)

∂µi

∂ηi

= b′′(θi) = v(µi)

∂ηi

∂βj

= xij
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3.1. The GLM Model

Thus,

∂`(β,y)

∂βj

=
n∑

i=1

yi − µi

ai(φ)

1

v(µi)

∂µi

∂ηi

xij

=
n∑

i=1

(yi − µi) Wi
∂ηi

∂µi

xij

where Wi is referred to as the iterative weights given by

Wi =
1

ai(φ)

(
∂µi

∂ηi

)2

v−1
i (3.8)

=
1

V ar(Yi)

(
∂µi

∂ηi

)2

(3.9)

and vi = v(µi) is the variance function. Since ηi = g(µi),
∂µi

∂ηi
depends on the link

function for the model.

Therefore, solving for the score equation below will give the ML estimate of β:

n∑
i=1

(yi − µi) Wi
∂ηi

∂µi

xij = 0 (3.10)

This score equation is a nonlinear function of β, and therefore requires iterative pro-

cedures to be solved. Again, the Newton Raphson and Fisher Score iterative Equa-

tions 2.13 and 2.15 from Chapter 2 can be used, where the score U is given by the left

hand side of Equation 3.10. Thus, the Newton Raphson iterative equation will be

β̂ (t+1) = β̂ (t) − (H(t)) −1 U (t) (3.11)

and the Fisher Score iterative equation

β̂ (t+1) = β̂ (t) + ( I(t)) −1 U (t) (3.12)

with information matrix

I = −E(H) (3.13)

= −E

(
∂2`

∂β ∂β′

)
(3.14)

= X′WX (3.15)
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3.1. The GLM Model

where W is known as the weight matrix with diagonal elements given in Equation

3.8. Equation 3.12 can also be represented as

I(t) β̂ (t+1) = I(t) β̂ (t) + U (t) (3.16)

It can be shown that the right hand side of Equation 3.16 can be written as

X′W(t) z(t)

where W(t) is weight matrix evaluated at β̂ (t), and z(t) has the following elements

evaluated at β̂ (t)

zi = ηi + (yi − µi)

(
∂ηi

∂µi

)
(3.17)

This variable zi is often called the adjusted dependent variable or the working vari-

able. Therefore, we can obtain

β̂ (t+1) = (X′W(t) X)−1 X′W(t) z(t) (3.18)

Thus, each iteration step is the result of a weighted least squares regression of the

adjusted variable zi on the predictors xi with working weight Wi. Fisher scoring can

therefore be regarded as iteratively reweighted least squares (IRWLS) carried out on

a transformed version of the dependent variable (Bates, 2010).

It follows that the asymptotic variance (also known as the asymptotic covariance)

of this estimate of β is the inverse of the information matrix given in Equation 3.15

and can be estimated by

V̂ ar(β̂) = (X′ ŴX)−1 (3.19)

where Ŵ is W evaluated at β̂ and depends on the link function of the model. The

dispersion parameter φ, in function ai(φ) that is used in the calculation of Wi, gets

cancelled out of the IRWLS procedure, thus the value of β̂ is the same under any

value of φ. However, the value of φ is required for the calculation of the variance

of β̂, therefore when φ is unknown, it can be estimated using a moment estimator

(McCulloch & Searle, 2001), given by

φ̂ =
1

n− p− 1

n∑
i=1

wi (yi − µ̂i)
2

v(µ̂i)
(3.20)

where wi is the weight defined in Equation 3.1.
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3.1. The GLM Model

3.1.2 Measure of Fit

An important step in statistical analyses is to assess the goodness-of-fit of the model

of interest. One way in which this could be done is by using the deviance, a measure

of discrepancy between the predicted values from the fitted model and the actual

values from the data set. If, for the fitted model with p + 1 parameters, `(µ̂, φ,y)

is the log-likelihood function maximized over β̂ for a fixed value of the dispersion

parameter φ, and `(y, φ,y) is the maximum log-likelihood achievable under the sat-

urated model where the number of parameters equals the number of observations,

the scaled deviance is

Ds =
−2[`(µ̂, φ,y)− `(y, φ,y)]

φ
(3.21)

If φ = 1, the the deviance is defined as

D = −2[`(µ̂, φ,y)− `(y, φ,y)] (3.22)

The (scaled) deviance converges asymptotically to a χ2 distribution with n−p−1 de-

grees of freedom. Thus, when testing at a level of significance of α, the fitted model

is rejected if the calculated deviance is greater than or equal to χ2
n−p−1; α

Another commonly used measure of goodness-of-fit is the generalized Pearson’s chi-
square statistic given by

χ2 =
n∑

i=1

(yi − µ̂i)
2

v(µ̂i)
(3.23)

where v(µ̂i) is the estimated variance function for the distribution in question. This
statistic also asymptotically follows a χ2 distribution with n− p− 1 degrees of free-
dom. Similar to the deviance, the smaller the value of the χ2 statistic, the better the

fit of the model. The scaled Pearson’s χ2 statistic is
χ2

φ
(Wu, 2005). For linear mod-

els, the value of the Pearson’s χ2 statistic is the residual sum of squares since v(µ̂i)
is generally taken as one, and both the deviance and Pearson’s χ2 statistic have ex-
act χ2 distributions. For other distributions, these measures of goodness-of-fit have
asymptotic χ2 distributions and neither is superior to one another when samples are
small. However, the deviance has an advantage over Pearson’s χ2 statistic as it is
additive for nested models (Nelder & Wedderburn, 1972).
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3.1. The GLM Model

3.1.3 Likelihood Ratio Test

Suppose one is interested in testing whether certain parameters are equal to zero.

In other words, whether the corresponding variables have no effect on the response

variable given the other variables in the model. This can be done by comparing

the deviances of the full model and the reduced model. Thus, the test statistic is

calculated using the following

Dreduced −Dfull (3.24)

Since both the deviances above involve the log-likelihood for the saturated model,

this gets cancelled out resulting in the following test statistic

χ2 = −2[log-likelihood(reduced model) − log-likelihood(full model)] (3.25)

This test statistic has an asymptotic χ2 distribution with degrees of freedom equal to

the difference in the number of parameters fitted in the full model and the reduced

model. This test is referred to as a Likelihood Ratio Test.

If φ 6= 1, it was seen in Section 3.1.2 that a scaled deviance can be used. Thus,

using this definition of the scaled deviance, the test statistic in Equation 3.25 would

become

T =
−2[log-likelihood(reduced model) − log-likelihood(full model)]

φ
(3.26)

When φ 6= 1 and unknown, the value of φ can be estimated using equation 3.20.

3.1.4 Wald Test

When a hypothesis test on a single parameter, βj , is to be carried out, a commonly

used method is the Wald test. The test statistic for this test is

z0 =
β̂j

se(β̂j)
(3.27)

The standard error of β̂j is the square root of the diagonal elements in the inverse of
the information matrix given in Equation 3.15. This test statistic follows an approxi-
mate standard normal distribution. Some software packages square this value of the
Wald test statistic and thus compare it to a chi-square distribution with 1 degree of
freedom (Heeringa et al., 2010). Thus, for large values of the test statistic, one would
reject the null hypothesis H0 : βj = 0 and conclude its corresponding variable is
significant to the model.
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3.2. Quasi-Likelihood Function

3.2 Quasi-Likelihood Function

The method of maximum likelihood requires the probability distribution of Y to be

known in advance. Sometimes there is not enough information about the data for

a probability distribution to be specified (McCullagh & Nelder, 1989). In this case,

the quasi-likelihood (QL) function is a commonly used method of estimating the pa-

rameters. Wedderburn (1974) showed that only the relationship between the mean

and variance of the observations needs to be specified in order to define the quasi-

likelihood function for the data. Thus, it allows relaxation of the usual assumptions,

such as overdispersion which may be caused by correlated data (Agresti, 2007).

In determining the QL function for the data, only the first and second moments

of Yi are required (McCullagh, 1983). It is also assumed that for each observation, µi

can be represented in terms of some known function of the explanatory variables x′i

and regression parameters β. Wedderburn (1974) used the following relation to de-

termine the quasi-likelihood (specifically the quasi-log likelihood) function Q(yi; µi)

for each observation
∂Q(yi; µi)

∂µi

=
wi (yi − µi)

φ v(µi)
(3.28)

where wi is the known weight associated with observation Yi.

Therefore, from Equation 3.28 we can obtain

Q(yi; µi) =

∫ µi

yi

wi (yi − t)

φ v(t)
dt + some function of yi (3.29)

Thus, the maximum quasi-likelihood estimates of β can be obtained from Equation
3.29 using Fisher Scoring. The estimate of φ can be obtained using Equation 3.20.

The above QL method is for the case where the observations are independent,however,
this can be extended for the case where the observations are correlated. It can be
shown that the properties of the quasi-log likelihood function are similar to those of
the ordinary log-likelihood function, thus the asymptotic theory still applies which
makes it possible to carry out measures of fit and hypothesis tests using methods
discussed in previous sections. Furthermore, when the probability distribution of Yi

belongs to the exponential family, the quasi-log likelihood function of Yi is identical
to the log-likelihood function of Yi (Wedderburn, 1974).
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3.3. Logistic Regression

3.3 Logistic Regression

In the case where the response variable is binary, we can code the outcome as fol-
lows:

Yi =

{
1 if an event is observed, e.g. testing positive for malaria
0 if an event is not observed, e.g. testing negative for malaria

Thus, Yi follows a Bernoulli distribution with P (Yi = 1) = πi and P (Yi = 0) = 1−πi

Therefore,

E(Yi) = πi and (3.30)

V ar(Yi) = πi(1− πi) (3.31)

Suppose we used the LM to model Yi:

Yi = β0 + β1xi1 + β2xi2 + . . . + βpxip + εi i = 1, . . . , n (3.32)

Thus, by Equation 3.30

E(Yi) = πi = β0 + β1xi1 + β2xi2 + . . . + βpxip (3.33)

= x′iβ (3.34)

Since πi is a probability, it is limited by 0 ≤ πi ≤ 1. However, using Equation

3.32 to model a binary outcome would result in the value of E(Yi) outside of its

range. Therefore, a model for E(Yi) bounded between 0 and 1 would be more suit-

able (Rencher & Schaalje, 2008).

This model can be found by applying a logit transformation to Equation 3.33 as

follows:

logit(πi) = ln

(
πi

1− πi

)
= x′iβ (3.35)

The left hand side of the above equation is referred to as the logit link, denoted by ηi

in the GLM. Thus, Equation 3.33 will become

πi =
exp(x′iβ)

1 + exp(x′iβ)
(3.36)

This is known as the logistic regression model which is a class of the GLM with a
logit link. The value of the link ηi is allowed to range freely while restricting that of
E(Yi) = πi = µi between 0 and 1. The maximum likelihood estimates of β can be
found using the iterative equations discussed in Section 3.1.1, where the score U can
be found as follows.
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3.3. Logistic Regression

A binary variable has the following probability distribution

f(yi) = πi
yi (1− πi)

1−yi (3.37)

This can be expressed in the form

f(yi) = exp

[
yi ln

(
πi

1− πi

)
+ ln(1− πi)

]
(3.38)

The equation above is in the same form of Equation 3.1 where ai(φ) = 1, thus the

dispersion parameter φ = 1, c(yi, φ) = 0 and the canonical parameter θi = ln

(
πi

1− πi

)
,

which results in πi =
eθi

1 + eθi
. Thus, it follows b(θi) = ln(1 + eθi).

Since, for the logistic regression model, E(Yi) = πi = µi, V ar(Yi) = µi(1 − µi) = vi

and the link function

ηi = ln

(
µi

1− µi

)
= ln(µi)− ln(1− µi)

It follows

∂ηi

∂µi

=
∂

∂µi

[ln(µi)− ln(1− µi)]

=
1

µi

+
1

1− µi

=
1

µi (1− µi)

and

v−1
i =

1

µi(1− µi)

Therefore,

Wi =
1

ai(φ)

(
∂µi

∂ηi

)2

v−1
i (3.39)

= [µi (1− µi)]
2 1

µi(1− µi)
(3.40)

= µi (1− µi) (3.41)
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3.4. Survey Logistic Regression

Thus, the score U given in Equation 3.10 reduces to

U =
n∑

i=1

(yi − µi) xij

where µi, which is equal to πi, is given by Equation 3.36. Using this value of U in it-
erative Equations 3.11 and 3.12, the ML estimate of β can be obtained. Equation 3.19
can be used to determine the variance of β̂ where the diagonal elements in weight
matrix W are given by Equation 3.41.

A useful property of logistic regression is that the link function represents the log
of the odds of an event of interest occurring, where

πi

1− πi
is the odds of the event

occurring. Therefore, taking eβj gives the odds ratio corresponding to a one unit
increase in the corresponding explanatory variable xij , while all other explanatory
variables remain the same. In general, for a k unit change in the explanatory vari-
able, the odds ratio is ek βj . This is a helpful way to determine how much more likely
an event of interest is to occur when one explanatory variable changes (Kutner et al.,
2005).

3.4 Survey Logistic Regression

As discussed previously, logistic regression is a popular method to analyze the re-
lationship between a binary outcome and a set of explanatory variables, however,
this method does not take into account the design of a study (An, 2002). Failure to
account for the complex design of a study, where stratification or clustering is used,
the analysis may result in an overestimation of standard errors, therefore leading to
incorrect results (Nadimpalli & Hubbell, 2012). Thus, some adjustments to the or-
dinary logistic regression model that account for the survey design are necessary in
order to make valid inferences (Roberts et al., 1987). Logistic regression that is used
in the analysis of complex survey designs is referred to as survey logistic regression
(SLR). The theory for ordinary logistic regression and survey logistic regression is
the same, however, survey logistic regression uses special methods of estimating the
model’s parameters and the corresponding variances (Nadimpalli & Hubbell, 2012).

The most commonly used methods of variance estimation for the survey logistic
regression model, which will be discussed in the sections to come, are Taylor se-
ries approximation which is based on a linearization technique, Jackknife repeated
replication (JRR) and balanced repeated replication (BRR) which are based on a re-
sampling technique (Heeringa et al., 2010).
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3.4. Survey Logistic Regression

A number of studies have compared the results of these different methods of vari-
ance estimation for complex survey designs (Kish & Frankel, 1974; Rao & Wu, 1985;
Kovar et al., 1988). Many have shown that none of the methods obtain a better or
worse estimate, and the choice of method may depend on the design of the study
as well as the availability of resources, such as statistical programs and comput-
ing power (Nadimpalli & Hubbell, 2012). Krewski & Rao (1981) and Rao & Shao
(1992) have shown that the linearization and resampling techniques are asymptoti-
cally equivalent and both of the techniques lead to consistent variance estimators.

3.4.1 The Model

Let’s consider the survey logistic regression model for a binary response where Yhij ,

j = 1, . . . , nhi; i = 1, . . . , nh; h = 1, . . . ,H is an observation for the jth individual in

the ith PSU (cluster) within the hth stratum. Therefore, πhij = P (Yhij = 1) represents

the probability of an event of interest occurring for the jth individual in the ith PSU

within the hth stratum, e.g. the individual testing positive for malaria. Thus, the

survey logistic regression model is

logit(πhij) = x′hijβ (3.42)

with

πhij =
exp(x′hijβ)

1 + exp(x′hijβ)
(3.43)

where xhij is the row of the design matrix corresponding to the response of the jth

individual in the ith PSU within the hth stratum, and β is the vector of unknown
parameters to be estimated.

This survey logistic regression model is in the same form as the ordinary logistic
regression model from Section 3.3. Thus, it follows that the probability distribution
of the response variable is be given by

f(yhij) = π
yhij

hij (1− πhij)
1−yhij (3.44)

with

E(Yhij) = πhij

=
ex′

hijβ

1 + ex′
hijβ
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3.4. Survey Logistic Regression

and

V ar(Yhij) = πhij(1− πhij)

=
ex′

hijβ(
1 + ex′

hijβ
)2

Therefore, the log-likelihood function is

` = ln L(y) =
H∑

h=1

nh∑
i=1

nhi∑
j=1

ln f(yhij) (3.45)

The above log-likelihood function does not take the sampling weights into consid-
eration, thus the ML estimates of the model’s parameters obtained using this func-
tion are only valid for simple random samples where observations are unweighted
(Heeringa et al., 2010). Under more complex designs involving sampling weights
and clustering, the ML estimates of the parameters and their standard errors are not
consistent (Chandra, 2014), and thus the traditional ML method has to be modified
to account for weighted observations. The traditional likelihood function is based
on standard distributional assumptions about the response variable, however, for
complex survey designs, no convenient likelihood functions are available (Chandra,
2014).

Therefore, a likelihood function that incorporates the sampling weights should be
used. Such a likelihood function is referred to as a pseudo-likelihood function. The
method of estimation that uses this pseudo-likelihood function is known as pseudo-
maximum likelihood (PML) estimation.

3.4.2 Pseudo-Likelihood Function

Like the ML method, the PML method requires knowledge of the distribution of the

response variable, however it accounts for the sampling weights as follows

P` =
H∑

h=1

nh∑
i=1

nhi∑
j=1

whij ln f(yhij) (3.46)

where whij is the weight associated with observation Yhij and P` represents the
pseudo-log likelihood function.
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3.4. Survey Logistic Regression

Thus, for the survey logistic regression model, the pseudo-log likelihood function is

P` =
H∑

h=1

nh∑
i=1

nhi∑
j=1

whij [yhij ln(πhij) + (1− yhij) ln(1− πhij)]

In order to obtain the parameter estimates, the above equation is maximized with

respect to β. It can be shown this results in the following estimating equations

S(β) =
H∑

h=1

nh∑
i=1

nhi∑
j=1

whij(yhij − πhij) x′hij = 0 (3.47)

Thus, the weighted parameter estimates can be obtained using the Newton Raphson
and Fisher Score iterative procedures where the score U is given in Equation 3.47
(Agresti, 2002). It has been shown that the parameter estimates based on the PML
method of estimation is consistent (Heeringa et al., 2010).

3.4.3 Taylor Series Approximation

Due to weighting and clustering, the estimated variances of the PML parameter es-

timates are no longer equal to the inverse of the information matrix as discussed in

Section 3.1.1 for the GLM. In order to obtain these variance estimates, Binder (1983)

proposed making use of the Taylor series approximation method.

Since the parameter estimates, β̂, are defined by equations

S(β̂) = 0 (3.48)

the first order Taylor expansion of S(β̂) at β̂ = β, the population parameter value,

is

0 = S(β̂) ' S(β) +
∂S(β)

∂β
(β̂ − β) (3.49)

Therefore

S(β) ' −∂S(β)

∂β
(β̂ − β) (3.50)

After applying the Delta method, the following result is obtained in the limit

V ar
[
S(β̂)

]
=

[
∂S(β)

∂β

]
V ar(β̂)

[
∂S(β)

∂β

]′
(3.51)
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or equivalently

V ar(β̂) =

[
∂S(β)

∂β

]−1

V ar
[
S(β̂)

] [
∂S(β)

∂β

]−1

(3.52)

This leads to a sandwich-type variance estimator

V̂ ar(β̂) =
[
I(β̂)

]−1

V ar
[
S(β̂)

] [
I(β̂)

]−1

(3.53)

where I(β̂) =
∂S(β)

∂β
=

∂2P`

∂β ∂β′
is the information matrix evaluated at β = β̂

and V ar
[
S(β̂)

]
is the variance-covariance matrix for the p+1 estimating equations.

Since each of the estimating equations is a sample total of the individual scores for

the n survey respondents, obtained using stratified and cluster sampling, standard

formulae to estimate the variances and covariances of the estimating equations can

be used (Heeringa et al., 2010). Therefore, it follows

V ar
[
S(β̂)

]
=

n

n− p− 1

H∑
h=1

(1− fh)
nh

nh − 1

nh∑
i=1

(shi. − s̄h..)
′(shi. − s̄h..) (3.54)

where

shi. =

nhi∑
j=1

shij =

nhi∑
j=1

whij(yhij − π̂hij) x′hij (3.55)

and

s̄h.. =
1

nh

nh∑
i=1

shi. (3.56)

and the quantity (1− fh) is the finite population correction factor, where fh =
nh

Nh
is

the sampling rate for stratum H with Nh as the the total number of PSUs in stratum

h and nh is the number of sampled PSUs. If Nh is unknown, it is common to assume

that it is large enough such that fh is very small, which results in the correction factor

equalling one (Hosmer et al., 2013). The value of π̂hij is calculated by substituting

the parameter estimate β̂ into Equation 3.43. For large n, Equation 3.54 reduces to

V ar
[
S(β̂)

]
=

H∑
h=1

(1− fh)
nh

nh − 1

nh∑
i=1

(shi. − s̄h..)
′(shi. − s̄h..) (3.57)

The variance estimator in Equation 3.53 is a consistent estimator for the asymptotic
variance of β̂ (Lipsitz et al., 1994).
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3.4.4 Jackknife Repeated Replication

This method is applicable to a wide range of complex survey designs where the form

of the jackknife variance estimator depends on the design of the study (Heeringa

et al., 2010). There have been two distinct areas of research on the jackknife method.

Quenouille (1949) developed the method for bias reduction, and Tukey (1958) used

the basis of this research done by Quenouille (1949) for variance estimation. Lee

(1973) and Jones (1974), among others, extended Tuckey’s idea for stratified multi-

stage sampling. A property of the jackknife method is that it is not based on any

assumptions of the model and therefore is less susceptible to violation of any as-

sumptions (Shao, 1992).

This JRR method involves estimating parameters of several sub-samples, which are

obtained by deleting one observation at a time from the full sample, then determin-

ing the variance of the parameter estimate for the full sample using the variability

between the sub-sample estimates (Ahmad, 2014). Extensions to deleting more than

one observation or a group of observations are available (Ahmad, 2014). The general

form of of the jackknife variance estimator is

V̂ ar(θ̂) =
G

1−G

G∑
k=1

(θ̂(k) − θ̂)2 (3.58)

where θ̂(k) is the parameter estimate for the sub-sample with the kth observation

deleted, θ̂ is the parameter estimate for the full sample and G is the number of sub-

samples, also referred to as the number of replicates.

In the case of stratified cluster sampling without replacement, each of the sub-samples

are obtained by deleting one or more of the PSUs (in this case the clusters) from a

single stratum. Operationally the observations are not deleted, but rather are as-

signed a weight of zero (Heeringa et al., 2010). The remaining PSUs in the stratum

are assigned new weights, referred to as jackknife weights, while all other sample

weights in the other strata remain unchanged. Thus, the jackknife weight for the ith

PSU, i = 1, . . . , nh, in the hth stratum, h = 1, . . . ,H , when the jth PSU from the gth

stratum is deleted is given by

whi(gj) =


0 (gj) = (hi)

ng

ng − 1
wgi, h = g, i 6= j

whi h 6= g
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Therefore, these jackknife weights above can replace the sampling weights in Equa-

tion 3.47 to determine the estimating equations for each of the sub-samples. Newton

Raphson and Fisher Score iterative procedures once again can be used to determine

the solution to these new estimating equations in order to obtain the parameter es-

timates for each of the sub-samples. A common method used to estimate these pa-

rameters is the one-step jackknife method where the parameter estimate for the full

sample is used as the starting value in the Newton Raphson iterative procedure (Lip-

sitz et al., 1994).

Once these estimates have been obtained, the jackknife variance estimator for this

sampling design can be determined using

V̂ ar(β̂) =
H∑

g=1

ng − 1

ng

ng∑
j=1

(β̂(gj) − β̂)(β̂(gj) − β̂)′ (3.59)

where β̂(gj) is the parameter estimate for the sub-sample without the jth PSU from

the gth stratum and β̂ is the parameter estimate for the full sample.

The jackknife method has been shown to produce consistent results in large samples
(Miller, 1974). A disadvantage of this jackknife variance estimator is it can be time
consuming when calculating the replicate estimates for very large samples (Yung &
Rao, 2000). It was therefore proposed by Yung & Rao (1996) to linearize this variance
estimator, which is referred to as the the jackknife linearization variance estimator.
It was shown that the jackknife linearization variance estimator performed as well
as the jackknife variance estimator (Yung & Rao, 2000).

3.4.5 Balanced Repeated Replication

The BRR method, first proposed by McCarthy (1969), was developed specifically
for variance estimation under the design of two PSUs (clusters) per stratum. This
method is based on forming half-sample replicates by deleting one PSU in each stra-
tum. Thus, for a design with H strata, the full sample can be split into 2H half-
samples that overlap with H sample clusters in each. The parameter can be esti-
mated for each of the half-samples and used to estimate the variance of the param-
eter estimate for the full sample. However, this may be time consuming and very
difficult for large H . Thus, a balanced set of only K half-samples may be constructed,
where K is the smallest multiple of 4 that is greater than H . The half-samples are
selected by using the first H columns of the K × K orthogonal Hadamard matrix
(SAS Institute Inc., 2009).
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The kth half-sample will be selected from the full sample according to the following:

• If the element corresponding to the kth row and hth column in the Hadamard
matrix is 1, then the first PSU from the hth stratum is included in the kth half-
sample and the second PSU from the hth stratum is excluded.

• If the element corresponding to the kth row and hth column in the Hadamard
matrix is −1, then the second PSU from the hth stratum is included in the kth

half-sample and the first PSU from the hth stratum is excluded.

The sampling weights of the PSUs included in the half-samples are adjusted by mul-

tiplying their original sampling weights by a factor of 2. These new weights are re-

ferred to as the replicate weights (Heeringa et al., 2010). Using this BRR method, the

variance estimator of the full sample parameter estimate is in the following form

V̂ ar(θ̂) =
1

K

K∑
k=1

(θ̂i − θ̂)2 (3.60)

where θ̂i is the parameter estimate for the ith half-sample using the new replicate
weights and θ̂ is the parameter estimate for the full sample.

The BRR method is not presently applicable for arbitrary sample sizes, however,
it is said to have an advantage over JRR as it leads to asymptotic inferences for both
smooth and non-smooth estimates (Rao, 1997).

3.4.6 Assessing the Model

Goodness-of-Fit

The goodness-of-fit tests discussed in Section 3.1.2 for the GLM are based on se-
lected observations that are independent and identically distributed. However, in
the case of a complex survey design, it is very common that observations from the
same cluster are often more homogeneous than observations from different clus-
ters. Thus, goodness-of-fit tests that take into consideration the design of the study
are more appropriate in assessing the fit of the survey logistic regression model.
For complex survey designs, Archer & Lemeshow (2006) and Archer et al. (2007)
extended the Hosmer-Lemeshow goodness-of-fit test, which was proposed by Hos-
mer & Lemeshow (1980) specifically for ordinary logistic regression to avoid possible
problems associated with the asymptotic distribution of the chi-square tests.
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The Hosmer-Lemeshow goodness-of-fit test is based on grouping the observations in

”deciles of risk”, where the observations are partitioned into 10 equal-sized groups

based on their ordered estimated probabilities, π̂i. The Hosmer-Lemeshow test statis-

tic is given by

Ĉ =
10∑

k=1

(Ok − Ek)
2

Ek

(
1− Ek

nk

) (3.61)

where

• nk is the number of observations in the kth decile.

• Ok =
∑
i

yi = observed number of cases in the kth decile.

• Ek =
∑
i

π̂i = expected number of cases in the kth decile.

This test statistic is has a chi-square distribution with 8 degrees of freedom (Hosmer

& Lemeshow, 1980). The extension of this Hosmer-Lemeshow goodness-of-fit test

proposed by Archer & Lemeshow (2006) is called the F-adjusted mean residual test,

sometimes also referred to as the Archer and Lemeshow goodness-of-fit test, which

is estimated as follows.

Suppose the design of the study is such that there is a total of m PSUs (clusters)

each containing a total of ni observations. Then using the fitted survey logistic re-

gression model, the residual for the jth observation in the ith PSU is calculated as

follows

r̂ij = yij − π̂(xij) (3.62)

Using the grouping strategy proposed by Graubard et al. (1997), the observations

are grouped into deciles of risk according to their residuals and weights (Archer &

Lemeshow, 2006). The size of the first decile group will be equal to number of obser-

vations with the smallest residuals such that the sum of the corresponding weights

represent one tenth of the total weights of all the observations. In a similar manner,

the size of the rest of the decile groups can be calculated. The mean residuals by

decile of risk M̂ ′ = (M̂1, M̂2, . . . , M̂10) are obtained where

M̂g =

∑
i

∑
j

wij r̂ij∑
i

∑
j

wij

(3.63)

is the mean residual for the gth percentile of the weighted residual values for g =
1, . . . , 10 and wij is the sampling weight associated with observation yij .
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The Wald test statistic for testing g categories is given by

Ŵ = M̂ ′
[
V̂ ar(M̂)

]−1

M̂ (3.64)

where V̂ ar(M̂) is the variance-covariance matrix of M̂ obtained using linearization

(Archer et al., 2007). This test statistic is approximately chi-square distributed with

g − 1 = 9 degrees of freedom since g = 10 in this case. However, this chi-square

distribution has been found to not be an appropriate reference distribution, therefore

the F-corrected Wald test statistic has been suggested instead (Archer & Lemeshow,

2006). This test statistic given by

F =
(f − g + 2)

fg
W (3.65)

is approximately F-distributed with g−1 numerator degrees of freedom and f−g+2

denominator degrees of freedom, where f is the number of clusters in the sample

minus the number of strata and g is the number of categories. Therefore, based on

this test statistic, the F-adjusted mean residual test statistic is

Q̂m =
(f − 8)

10f
M̂ ′

[
V̂ ar(M̂)

]−1

M̂ (3.66)

as g = 10 deciles of risk.

Testing Model Parameters

Since the estimates of the model parameters for the survey logistic regression model

are determined using the pseudo-likelihood function, which is an approximate to the

true likelihood, inferences about the parameters cannot be based on likelihood ratio

tests (Hosmer et al., 2013). Thus, it is more appropriate to use Wald tests instead.

The general form of the null hypothesis for this test is H0 : Cβ = 0 where C is a

matrix of constants that defines the hypothesis to be tested. The Wald test statistic is

calculated as

W = (Cβ̂)′
[
C V̂ ar(β̂) C ′

]−1

(Cβ̂) (3.67)

where V̂ ar(β̂) is the estimated variance-covariance matrix for β̂ using methods dis-
cussed in the previous sections. Under the null hypothesis, this test statistic follows
a chi-square distribution with q degrees of freedom, where q is the rank or the num-
ber of independent rows of the matrix C. It is again common to approximate this
Wald test statistic to an F-distribution using Equation 3.65, where g = q.

The next chapter discusses some of the theory for the last two methods that will be
applied to the MIS data; generalized estimating equations and generalized linear
mixed models. 56



Chapter 4

Modeling Cluster-Correlated Data

The GLM assumes observations are independent. However, in the case of complex
survey designs where stratified cluster sampling is carried out, very often the re-
sulting observations within the same cluster tend to be more similar to one another
than those from other clusters. Therefore, in this chapter two methods used for an-
alyzing correlated data are discussed, both of which are an extension of GLMs. The
choice of the two methods depends on what one is interested in determining from
the data. The first method discussed in this chapter, the generalized estimating equa-
tions technique (also referred to as marginal modeling), is a population averaged
approach where the population average fixed effects are the effects of interest. How-
ever, the second method discussed, the use of the generalized linear mixed model, is
a subject-specific model which can be used for modeling the effect on an individual
unit (Heeringa et al., 2010).

4.1 Generalized Estimating Equations

An extension of GLMs that can take into account intracluster correlation is the method
of generalized estimating equations (GEEs). This method was first proposed by
Liang & Zeger (1986) and is based on the quasi-likelihood approach (Agresti, 2002).
Thus, GEEs do not require full specification of the distribution of the data, but rather
only requires the specification of the mean as well as the mean-variance relationship.
An advantage of GEEs is that estimates will be consistent even if the correlation
structure of the observations has not been correctly specified (Jiang, 2007). This is
due to the fact that the covariance structure is treated as a nuisance. In the case of
missing data, GEEs require that the data are missing completely at random (MCAR),
where the missing observations are completely independent of their values (Agresti,
2002). If the data are missing at random (MAR) instead, GEEs are no longer appro-
priate and weighted generalized estimating equations are more suitable. Refer to
(Robins et al., 1995).
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Even though the GEE method does not require any assumptions about the joint

distribution of the observations, it does however make an assumption about the

marginal distribution of each Yij , the jth observation, j = 1, . . . , ni, from the ith

cluster, i = 1, . . . ,m (Agresti, 2002). Thus, assuming that Yij has a probability dis-

tribution belonging to the exponential family in the form of Equation 3.1, where the

weight of the observation is taken as 1, the mean

µij = E(Yij)

is related to a linear combination of the explanatory variables via the link function

ηij = g(µij) = x′ijβ

Therefore it follows, similar to the GLM, the marginal variance is given by

V ar(Yij) = φυ(µij)

where υ(µij) = b′′(θij) = υij is the variance function and φ is the dispersion param-

eter. Another way in which the score Equation 3.10 for the GLM can be represented

is (Agresti, 2002) ∑
i

∂µi

∂β
υ−1

i (yi − µi) = 0 (4.1)

Now, for the case where the outcome yi is an ni × 1 vector of correlated outcomes

for cluster i, the score equation above becomes

S(β) =
∑

i

∂µ′
i

∂β
V −1

i (yi − µi)

=
∑

i

F ′
i V

−1
i (yi − µi) = 0 (4.2)

where F i =
∂µi

∂β
is an ni × (p + 1) matrix, µi = E(yi) and V i is referred to as the

working covariance matrix for yi defined by

V i = A
1
2
i Ri(α)A

1
2
i (4.3)

where Ai = diag(V ar(Yij)) = diag(φ υij) and Ri(α) is the working correlation ma-
trix which depends on a vector of unknown parameters α. The GEE estimates of β

is the solution to the estimating equations in Equation 4.2.
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If Ri(α) is the true correlation matrix for yi, then V i = cov(yi). In the case of in-

dependent observations, Ri(α) is replaced by the identity matrix Ini and thus the

working covariance matrix reduces to V i = Ai = diag(φυij). Using this value of

V i in the estimating equations in Equation 4.2 would result in the ordinary GLM

estimate of β.

Iterative procedures are required to solve the estimating equations in Equation 4.2.

However, these solutions for β̂ depend on the parameters φ and α. Therefore, Liang

& Zeger (1986) proposed the method of moments to estimate these unknown pa-

rameters at a given iteration using a function of the current standardized Pearson

residuals

êij =
yij − µ̂ij√

υ(µ̂ij)
(4.4)

Note: this value of êij depends on the current value of the estimate for β (Liang &

Zeger, 1986). The dispersion parameter can be estimated by

φ̂ =
1

N − p− 1

m∑
i=1

ni∑
j=1

ê 2
ij (4.5)

where N =
m∑

i=1
ni is the total number of observations. The next section discusses

common estimates for α depending on the choice of the working correlation struc-
ture for the observations.

4.1.1 Specifying The Working Correlation Structure

The correlation structure of the data is not of primary interest, however, it is essential
for valid inferences. Different estimates for both φ and α are available. Table 4.1 on
the next page gives the moment based estimates that the statistical program SAS
uses for each of the common choices of the working correlation structure. In the
case φ is unknown, it is replaced by its estimate given in Equation 4.5. The closer
the chosen working correlation structure is to the true correlation, the more efficient
the estimate of both β and V i, however, for any choice of the working correlation
structure, both the estimates will be consistent (Liang & Zeger, 1986). Thus, it is
common to choose the structure with the smallest number of parameters to estimate,
therefore the exchangeable (compound symmetry) correlation structure with only
two parameters is often the choice.
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Table 4.1: Moment based estimators for the common choices of the working correlation structure.

Working Correlation Structure Estimator

Independent Corr(Yij , Yik) =
{

1 j = k
0 j 6= k

—

M -dependent Corr(Yij , Yi;j+t) =


1 t = 0
αt t = 1, . . . ,M
0 t > M

α̂t =
1

(mt − p− 1)φ

m∑
i=1

∑
j≤ni−1

êij êi;j+1

where mt =
m∑

i=1
(ni − t)

Exchangeable Corr(Yij , Yik) =
{

1 j = k
α j 6= k

α̂ =
1

(m∗ − p− 1)φ

m∑
i=1

∑
j<k

êij êik

where m∗ =
1
2

m∑
i=1

ni(ni − 1)

Unstructured Corr(Yij , Yik) =
{

1 j = k
αjk j 6= k

α̂jk =
1

(m− p− 1)φ

m∑
i=1

êij êik

AR(1) Corr(Yij , Yi;j+t) = αt, t = 0, 1, . . . , ni − j

α̂ =
1

(m1 − p− 1)φ

m∑
i=1

∑
j≤ni−1

êij êi;j+1

where m1 =
m∑

i=1
(ni − 1)

4.1.2 Fitting The GEE Model

The values of φ̂ and α̂ depend on the estimated Pearson residuals, êij , which in
turn depend on the estimated values of β. Thus, Liang & Zeger (1986) proposed
computing the GEE estimates of β using the following iterative procedure:

1. Compute the initial estimates of β using a GLM by assuming the observations
are independent.

2. Compute the standardized Pearson residuals êij using Equation 4.4.

3. Compute the estimates for α depending on the chosen correlation structure
from the table above.

4. Compute the estimate for φ using Equation 4.5.

5. Compute R̂i(α̂) according to the chosen correlation structure.
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4.1. Generalized Estimating Equations

6. Compute V̂ i(β̂, α̂, φ̂) = Ai(β̂)
1
2 R̂i(α̂) Ai(β̂)

1
2

7. Update the estimate for β :

β̂
(t+1)

= β̂
(t)
−

[
m∑

i=1

F̂
′
i V̂

−1

i F̂ i

]−1 [
m∑

i=1

F̂
′
i V̂

−1

i (yi − µ̂i)

]

where F̂ i =
∂µi

∂β
evaluated at β̂.

8. Repeat steps 2 to 7 until convergence is reached.

The resulting GEE estimate β̂ is asymptotically normally distributed. The robust or

empirical estimator of the variance-covariance matrix of β̂ is given by

V̂ ar(β̂) =

[
m∑

i=1

F̂
′
i V̂

−1

i F̂ i

]−1 [
m∑

i=1

F̂
′
i V̂

−1

i V ar(yi)V̂
−1

i F̂ i

] [
m∑

i=1

F̂
′
i V̂

−1

i F̂ i

]−1

It is common to replace V ar(yi) by (yi − µ̂i)(yi − µ̂i)′. The above is a consistent

estimator of the variance-covariance matrix of β̂, even if the working correlation

structure has been misspecified (Liang & Zeger, 1986). If the correlation structure

has been correctly specified, the estimator of the variance-covariance matrix of β̂

reduces to

V̂ ar(β̂) =

[
m∑

i=1

F̂
′
i V̂

−1

i F̂ i

]−1

This estimator is commonly referred to as a model-based estimator (SAS Institute
Inc., 2009).

4.1.3 Model Selection

The GEE method is not a likelihood-based method, therefore likelihood ratio tests
and information criteria such as Akaike’s Information Criterion (AIC) cannot be
used for model selection. Thus, Pan (2001) proposed a modification to AIC for the
GEE, where the likelihood function is replaced by the quasi-likelihood function and
the penalty term is adjusted. This modified information criterion is referred to as the
’Quasi-Likelihood Under the Independence Model Criterion’ (QIC).
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Using McCullagh & Nelder’s (1989) quasi-likelihood (log) function defined as

Q(µ, φ; y) =

∫ µ

y

y − t

φ υ(t)
dt

where V ar(y) = φ v(µ) is the specified relationship between the variance and the

mean for the distribution of y, the QIC is defined as

QIC(R) = −2 Q(β̂ bV , I) + 2 trace(Ω̂
−1

V̂ R)

where Q(β̂ bV , I) is the quasi-likelihood calculated using the independent working

correlation structure, I , but with the parameter estimates β̂ bV , determined using

the hypothesized correlation structure. Ω̂ is the model-based estimated variance-

covariance matrix for β̂ under the assumption of an independent working corre-

lation structure and V̂ R is the robust variance-covariance estimator with working

correlation structure R. The QIC can be used to determine the best fitting working

correlation structure by selecting the structure whose model has the smallest QIC

(Pan, 2001).

This QIC(R) can be approximated by QICu(R), which can be used in variable se-

lection. This is given by

QICu(R) = Q(β̂ bV , I) + 2d

where d is the number of parameters fitted to the model. The value 2d serves as a
penalty factor for increasing the number of parameters in the model. The model with
the smallest value of QICu(R) will be the optimal model. However, this QICu(R)
cannot be used to determine the best fitting working correlation structure (Pan,
2001).

4.2 Generalized Linear Mixed Models

For complex survey designs that use stratified cluster sampling methods, the design
of the study is such that the clusters included in the sample represent only a random
sample from a population of clusters. Thus, if one is interested in including the effect
of clustering in the model, it would be included as a random effect. As discussed in
Chapter 3, the GLM is used when modeling a non-normal response variable. When
a random effect is included in a GLM, the resulting model is referred to as a gener-
alized linear mixed model (GLMM).
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4.2.1 The GLMM

Similar to the the case of the linear mixed model discussed in chapter 2, Yij is the

jth response, j = 1, . . . , ni, from the ith cluster, i = 1, . . . ,m, and thus, yi is the

ni × 1 vector of responses for the ith cluster. In the GLMM, responses Yij in yi are

assumed to be conditionally independent given a vector of random effects, γi which

are normally distributed. It is also assumed that all Yij have a density belonging to

the exponential family with the following form

f(yij|θij, φ) = exp

{
yij θij − b(θij)

φ
+ c(yij, φ)

}
µij is the conditional mean of Yij that is modeled through a linear predictor, ηij ,

containing fixed regression parameters β, as well as subject-specific parameters γi,

thus

ηij = g(µij) = g [E(yij|γi)]

= x′ijβ + z′ijγi (4.6)

or in matrix form

g(µ) = Xβ + Zγ (4.7)

where g(.) is the known link function that links the conditional mean of y and the
linear form of predictors. X,β,Z and γ are defined as those in Equation 2.7 from
Chapter 2. Thus, it is assumed γ ∼ N(0,G) where G depends on unknown vari-
ance components.

There are two approaches used to estimate the parameters in a GLMM: the Bayesian
approach and the maximum likelihood approach. The method of maximum likeli-
hood is the most commonly used method of estimation and has a variety of optimal-
ity properties (Searle et al., 2006). Thus, this method of estimation will be focused
on.

4.2.2 Maximum Likelihood Estimation

For GLMMs, in order to obtain ML estimates, the marginal likelihood is maximized,

which is obtained by integrating over the distribution of the q-dimensional random

effects . The contribution of the ith cluster to the likelihood is given by

fi(yij |β, G, φ) =

∫ ni∏
j=1

fij(yij |γi, β, φ)f(γi |G) dγi (4.8)

where f(γi |G) is the distribution of the random effects.
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4.2. Generalized Linear Mixed Models

Therefore, the complete likelihood function for β,G and φ is given by

L(β, G, φ) =
m∏

i=1

fi(yij |β, G, φ)

=
m∏

i=1

∫ ni∏
j=1

fij(yij |γi, β, φ)f(γi |G) dγi (4.9)

In the case of normality assumptions, the method of maximum likelihood for the
estimation of the fixed effects in the GLMM becomes the same as that for the LMM.
However, for many cases of the GLMM, the likelihood function typically does not
have a closed-form expression (Jiang, 2007). This is due to the likelihood involving
high-dimensional integrals that cannot be evaluated analytically. Thus, approxima-
tions are required to evaluate the likelihood function given in Equation 4.9. There
have been a number of proposed methods of approximation (Hedeker, 2005), how-
ever, there are three basic approaches:

• Approximation of the integrand.

• Approximation of the integral itself.

• Approximation of the data.

Methods based on each of the above approaches are discussed in the following sec-
tions.

4.2.3 Laplace Approximation

When the exact likelihood function is difficult to evaluate, a common method used

for an approximation is the Laplace approximation, which is based on an approxi-

mation of the integrand (Jiang, 2007). Suppose one wishes to approximate an inte-

gral in the form ∫
eQ(x)dx (4.10)

where Q(x) is a known and unimodal function, and x is a q × 1 vector of variables.

If x̂ is such that Q(x̂) is minimized, then the second-order Taylor series expansion of

Q(x) around x̂ is

Q(x) ≈ Q(x̂) +
1

2
(x− x̂)′Q′′(x̂)(x− x̂) (4.11)

where Q′′(x̂) is the Hessian of Q evaluated at x̂.
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4.2. Generalized Linear Mixed Models

This yields an approximation to Equation 4.10:∫
eQ(x)dx ≈ (2π)

q
2 |Q′′(x̂)|−

1
2 e−Q′(x̂) (4.12)

The approximation to this integral uses as many different estimates of x̂ as necessary

according to the different modes of function Q. Since the γ ∼ N(0,G), it can be

shown that the integral in the likelihood Equation 4.9 is proportional to the integral

in Equation 4.10, where the function Q is given by

Q(γ) = φ−1

ni∑
j=1

[
yij(x

′
ijβ + z′ijγ)− b(x′ijβ + z′ijγ)

]
− 1

2
γ ′Gγ (4.13)

such that Laplace’s method can be applied. This approximation method tends to be
better for large cluster sizes and can be improved by adding higher-order terms to
the Taylor series expansion.

4.2.4 Gaussian Quadrature

Laplace approximation is based on a linearization method of the integrand. An al-

ternative to this is an approximation of the integral or numerical integration. Two

such methods are the Gauss-Hermite Quadrature and the Adaptive Gauss-Hermite

Quadrature which, due to their relation with Gaussian densities, give approxima-

tions to an integral in the following form (Liu & Pierce, 1994)∫
h(x)e−x2

dx (4.14)

In order to apply these two methods, the likelihood contribution for the ith cluster in

Equation 4.8 must be represented in the form of the integral in Equation 4.14. This is

done by standardizing the random effects such that they have an identity variance-

covariance matrix I . Let δi = G−1
2 γi. Thus, δi has a normal distribution with

mean 0 and variance-covariance matrix I . The linear predictor therefore becomes

θij = x′ijβ+z′ij G
1
2 δi, which now contains the variance components in G. Therefore,

the likelihood contribution for the ith cluster is given by

fi(yij |β, G, φ) =

∫ ni∏
j=1

fij(yij |γi, β, φ)f(γi |G) dγi (4.15)

=

∫ ni∏
j=1

fij(yij |δi, β, G, φ)f(δi)dδi, (4.16)
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Thus, this equation is now in the form of Equation 4.14 and therefore can be approx-

imated using the Gauss-Hermite quadrature or adaptive Gauss-Hermite quadrature.

In Gauss-Hermite quadrature, the integral in Equation 4.14 is approximated by

∫
h(x)e−x2

dx ≈
L∑

i=1

wi h(xi) (4.17)

where the nodes or quadrature xi are the solutions of the Lth order to the Her-
mite polynomial with corresponding weights wi. The values of xi and wi for i =
1, 2, . . . , 20 are found in tables given by Abramowitz & Stegun (1972). Increasing
L improves the approximation, however when the sum is taken from 1 to L, this
Gauss-Hermite quadrature gives exact solutions for all polynomials of degree 2L−1
(McCulloch & Searle, 2001). A disadvantage with this method of approximation is
the quadrature points xi are chosen independently of the function h(x) and thus may
result in xi not lying in the region of interest (Pinheiro & Bates, 1995). This method
can also involve summation over a large number of points, especially as the number
of random effects in the model is increased (Hedeker, 2005).

To overcome the problems with the Gauss-Hermite quadrature discussed above, the
quadrature points are rescaled and shifted such that the integrand in Equation 4.14
is sampled in a suitable range (Liu & Pierce, 1994). This method is referred to as the
adaptive Gauss-Hermite quadrature and is based on centering the quadrature points
with respect to the mode of the function being integrated and scales them according
to the estimated curvature at that mode (Hartzel et al., 2001). This method requires
significantly less quadrature points in order to obtain the same level of accuracy as
the Gauss-Hermite quadrature. However, this adaptive Gauss-Hermite quadrature
is much more time consuming to compute as the mode and curvature is calculated
for each cluster in the data set (Hartzel et al., 2001). The adaptive Gauss-Hermite
quadrature reduces to the Laplace Approximation when L = 1.

Newton Raphson and Fisher Scoring iterative procedures can be used to maximize
the likelihood after applying these numerical approximations. These methods work
relatively well in the case of a single random effect or even when there are two or
three nested random effects in the model. However, for more complicated struc-
tures, these methods fail (McCulloch & Searle, 2001).
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4.2.5 Penalized Quasi-Likelihood

This approach is based on the decomposition of the data into the mean and an ap-

propriate error term using the Taylor series expansion of the mean. Since the mean

is the inverse of the link function, it is a non-linear function of the linear predictor

(Molenberghs & Verbeke, 2005). Consider the decomposition

Yij = µij + εij

= h(x′ijβ + z′ij γi) + εij (4.18)

where h(x′ijβ + z′ij γi) = g−1(x′ijβ + z′ij γi) is the inverse of the link function. The

error terms are assumed to follow a distribution with a mean of zero and variance

equal to V ar(Yij) = φ v(µij). Assuming the natural or canonical link function,

v(µij) = h′(x′ijβ + z′ij γi), where h′ is the derivative with respect to µij . In order

to obtain an approximation of the mean, and therefore the parameters, the Taylor

series expansion of Equation 4.18 is carried out. When this is done about current

estimates β̂ and γ̂i, the method is referred to as Penalized Quasi-Likelihood (PQL)

(Goldstein & Rasbash, 1996). This gives

Yij ≈ h(x′ijβ̂ + z′ij γ̂i)

+ h′(x′ijβ̂ + z′ij γ̂i) x′ij (β − β̂)

+ h′(x′ijβ̂ + z′ij γ̂i) z′ij (γi − γ̂) + εij

= µ̂ij + v(µ̂ij) x′ij (β − β̂) + v(µ̂ij) z′ij (γi − γ̂) + εij (4.19)

where µ̂ij is equal to its current predictor h(x′ijβ̂ + z′ij γ̂i) for the conditional mean

E(Yij |γi). More compactly in vector form, this becomes

yi ≈ µ̂i + V̂ i X i (β − β̂) + V̂ i Zi (γi − γ̂) + εi (4.20)

where Xi and Zi are appropriate design matrices and V̂ i is the diagonal matrix with

elements v(µ̂ij) = h′(x′ijβ̂ + z′ij γ̂i). Rearranging the terms in the above equation

and multiplying by V̂
−1

i gives

y∗i ≡ V̂
−1

i (yi − µ̂i) + X i β̂ + Zi γ̂ ≈ X i β + Zi γ + ε∗i (4.21)

where ε∗i = V̂
−1

i εi still has a mean of zero. Equation 4.21 can be viewed as a linear
mixed model for the pseudo response y∗i . Thus, methods of fitting LMMs become
available in order to obtain updated estimates for β,G and φ.
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Specifically, estimates can be obtained by optimizing the quasi-likelihood function

that includes a penalty term on the random effects of the form

1

2
γ ′Gγ

This results in optimizing a penalized quasi-likelihood function below

LPQL =
∑

Qi −
1

2
γ ′Gγ (4.22)

where Qi is McCullagh & Nelder’s (1989) quasi-likelihood function. Breslow & Clay-
ton (1993) give more information on this procedure.

4.2.6 Marginal Quasi-Likelihood

The marginal quasi-likelihood (MQL) method of approximation is very similar to

the PQL method, however the Taylor series expansion of the mean in Equation 4.18

is carried out about the current estimate of β̂ for the fixed effects but about γ̂i = 0

for the random effects. Thus, the current predictor of µ̂ij will be of the form h(x′ijβ̂).

Therefore, the pseudo data in Equation 4.21 can be represented as

y∗i ≡ V̂
−1

i (yi − µ̂i) + X i β̂+ ≈ X i β + Zi γ + ε∗i (4.23)

which satisfies the approximate linear mixed model. The same procedure of obtain-
ing the updated estimates of β,G and φ for the PQL method can be followed for
the MQL method, however, the resulting estimates will be referred to as marginal
quasi-likelihood estimates (Breslow & Clayton, 1993).

Both the PQL and MQL methods may result in estimates of the fixed effects and
variances components that are biased towards zero (Hedeker, 2005). Various meth-
ods of dealing with these bias estimates have been proposed. Beslow & Lin (1995)
and Lin & Breslow (1996) proposed the inclusion of bias correction terms and Kuk
(1995) proposed the use of iterative bootstrap. Goldstein & Rasbash (1996) showed
that including a second order term in the Taylor series expansion improves the ac-
curacy of the approximations.
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4.2.7 Model Selection

In the case where the fixed effect parameter estimates are obtained using the nu-
merical approximations discussed in Sections 4.2.3 and 4.2.4, inferences about these
parameters can be done using the likelihood ratio test and Wald test for GLMs, or
alternatively the approximate Wald-test (F-test) discussed for the survey logistic re-
gression model in Section 3.4.6. The likelihood ratio test can be used to compare two
nested models with different mean structures but with the same covariance struc-
ture. However, in the case where the estimates are obtained using the PQL and
MQL methods, the likelihood ratio test cannot be used for model selection as these
methods are not likelihood-based (Hedeker, 2005).

Similarly, the likelihood ratio test can also be used for comparing nested models
with different covariance structures but with the same mean, and inferences on the
variance components will also be valid for approximate Wald tests. However, if
the variance parameter to be tested takes values on the boundary of the parameter
space, the normal approximation fails and thus the test statistics for these tests will
not have the traditional chi-square distribution under the null hypothesis (Zhang &
Lin, 2008). Self & Liang (1987), Stram & Lee (1994) and Zhang & Lin (2008) have
shown that testing the null hypothesis of no random effects can be carried out us-
ing a mixture of chi-squared distributions rather that the classical single chi-squared
distribution.

In the next chapter, the results of the survey logistic regression model, generalized
estimating equations and generalized linear mixed model applied to the MIS data
are given.
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Chapter 5

Analysis of MIS Data

5.1 Survey Logistic Regression Applied to MIS Data

The socio-economic, demographic and environmental variables discussed in the ex-
ploratory data analysis in Section 1.5 were used to model the outcome of the malaria
microscopy test, however, the variables age of the child in months, age of the care-
giver in years, number of household members, total number of mosquito nets used
in the household and cluster altitude in metres were included in the model as con-
tinuous variables. The sampling weights were adjusted for non-response and to
represent only those households included in the data set used in this thesis, where
only the households that had children under the age of five years old tested for
malaria were included in the sample. The analyses in this thesis were done using
SAS version 9.3. Some of these SAS codes can be seen in Appendix B on page 105.
Specifically, the procedure PROC SURVEYLOGISTIC was used to fit the survey lo-
gistic regression model to the data. This procedure allowed the clusters, strata and
sampling weights to be specified in the analysis, where the 10 different regions of
Uganda discussed in Chapter 1 represented the strata.

Selection procedures (forward, backward and stepwise) used to fit an ordinary lo-
gistic regression model can also be used to fit a survey logistic regression model.
However, at this time, these selection procedures have not yet been included in SAS
9.3 for PROC SURVEYLOGISTIC. Thus, the SLR model was fitted to the MIS data
using similar steps suggested by Hosmer & Lemeshow (2000) as follows:

• Perform bivariate analyses of the relationship of malaria result with the ex-
planatory variables one at a time.

• Select the explanatory variables that have a bivariate association with malaria
result at p-values less than 0.1 to go into the multivariate survey logistic re-
gression model.
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• Exclude insignificant variables from the model one at a time based on the Wald
test (given in the Type III Analysis of Effects in SAS) and observe the contribu-
tion of the remaining variables to the deviance reduction.

• Continue the above step until only significant main effects are left in the model.

• Check for scientifically significant interactions among the remaining signifi-
cant explanatory variables.

In addition to these steps above, information criteria such as Akaike’s Information

Criteria (AIC) and Schwarz Criterion (SC) can be used to compare the goodness-

of-fit of two nested models. The Archer and Lemeshow goodness-of-fit test (an

extension of the Hosmer-Lemeshow goodness-of-fit test) used to assess the overall

goodness-of-fit of a model fitted to complex survey data, discussed in Section 3.4.6,

is also not available in PROC SURVEYLOGISTIC for SAS 9.3. However, the model’s

predictive accuracy can be assessed using statistics such as the concordance index

(c), Somers’ D (SD), Goodman-Kruskal Gamma (GKG), and Kendall’s Tau-a (KT),

which are produced in the output for PROC SURVEYLOGISTIC and calculated as

follows:
c = [nt − 0.5(t− nc − nd)]t

−1

SD = (nc − nd)t
−1

GKG = (nc − nd)(nc + nd)
−1

KT = (nc − nd)[0.5N(N − 1)]−1

where nc is the number of concordant pairs (a pair of observations with different
observed responses is concordant if the observation with the lower ordered response
value, y = 0, has a lower predicted mean score than the observation with the higher
ordered response value, y = 1), nd is the number of discordant pairs (the opposite
to concordant pairs), N is the sum of observation frequencies in the data and t is
the total number of pairs. The paired observations with different responses that are
neither concordant nor discordant are said to be tied and is given by t−nc−nd. The
concordance index c is equal to the area under the receiver operating characteristic
(ROC) curve and ranges from 0 to 1. A value of 0 implies that there is no association.
The predictive accuracy is poor if c is between 0.5 and 0.6, moderate between 0.6
and 0.7, acceptable between 0.7 and 0.8 and excellent if c is greater than 0.8. Somers’
D statistic is used to determine the strength and direction of relation of the pairs of
observations (UCLA: Statistical Consulting Group, 2014). It ranges from -1 (all pairs
disagree) to 1 (all pairs agree). The Goodman-Kruskal Gamma statistic is calculated
similarly to Somers’ D, however it does not take into consideration the tied pairs. It
also ranges from -1 (no association) to 1 (perfect association).
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The last statistic, Kendall’s Tau-a, is a modification to Somers’ D and takes into ac-
count the difference between the total number of paired observations and the num-
ber of paired observations with different responses.

Table 5.1 on the next page displays the p-values and odds ratios with their 95% con-
fidence intervals for each of the variables fitted in the bivariate analyses. The gender
of the child, the number of household members and incidence of indoor residual
spraying were insignificant. These three variables were therefore excluded in the
selection procedure in determining the multivariate SLR model.

After performing a backward selection procedure, in order to determine the final
SLR model given in Table 5.2, the remaining significant main effects (at a 5% sig-
nificance level) were age of the child in months, caregiver’s education level, cluster
altitude in metres, type of place of residence, source of drinking water, toilet facility,
main floor material and total number of mosquito nets in household. None of the
availability of the household items (radio, bicycle, television, refrigerator and elec-
tricity) were significant. The caregiver’s knowledge of malaria was also found to be
insignificant as well as their age in years. Furthermore, main wall and roof material
were found to be insignificant when included in the multivariate model. The use of
a mosquito bednet was also found to be insignificant, however this variable could
be explained by the inclusion of the total number of mosquito nets in the house-
hold. It was then determined if any interaction terms needed to be incorporated into
the model. Two-way interaction terms of the remaining variables were fitted one
at a time. Significant interaction terms that led to a large decrease in the deviance
were selected. Three two-way interaction terms were selected and included in the
model at the same time in order to assess the change in deviance. However, with
all three included, the deviance reduced by very little. Thus, the deviances of all the
combinations of two of the interaction terms included in the model were assessed.
The inclusion of the interaction between source of drinking water and main floor
material as well as the interaction between caregiver’s education level and type of
place of residence resulted in the smallest deviance with a reduction of 882.34. It was
further checked if higher order interaction terms should be included in the model,
however none resulted in a large enough change in the deviance to warrant being
included in the model. Thus, the final SLR model is displayed in Table 5.2 on page
75.

The Taylor series approximation method was used for variance estimation of the SLR
model, which is the default for SAS PROC SURVEYLOGISTIC. The concordance in-
dex (c) of the final model was 0.754, indicating that, in predicting the probability
of a positive malaria result, 75.4% of the cases were predicted correctly. Thus, the
predictive accuracy of the final SLR model is in an acceptable range. 72
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Table 5.1: Unadjusted odds ratios from bivariate survey logistic regression.

Variable (p-value) Odds Ratio (95% CI)

Age in Months (<0.0001) 1.023 (1.017, 1.030)

Gender (0.2609)

Female 1.096 (0.934, 1.286)

Male 1

Number of Household Members (0.1706) 1.024 (0.990, 1.058)

Caregiver’s Age in Years (0.0235) 1.013 (1.002, 1.025)

Caregiver’s Education Level (<0.0001)

No Education 3.035 (2.023, 4.553)

Primary 2.764 (1.973, 3.871)

Secondary 1

Higher 0.317 (0.113, 0.888)

Knowledge that mosquito bites can cause malaria (0.0015)

No 1.493 (1.166, 1.911)

Yes 1

Knowledge of ways of avoiding malaria (0.0709)

No 1.401 (0.972, 2.019)

Yes 1

Cluster Altitude in Metres (<0.0001) 0.997 (0.996, 0.997)

Type of Place of Residence (<0.0001)

Rural 5.474 (2.402, 12.471)

Urban 1

Household had a Radio (0.0895)

No 1.237 (0.968, 1.581)

Yes 1

Household had a Television (<0.0001)

No 5.775 (3.163, 10.544)

Yes 1

Household had a Bicycle (0.0002)

No 0.577 (0.433, 0.769)

Yes 1

Household had a Refrigerator (0.0002)

No 4.379 (2.003, 9.574)

Yes 1

Household had Electricity (<0.0001)

No 5.300 (2.826, 9.938)

Yes 1

Continued on next page
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Table 5.1 – Continued from previous page

Variable (p-value) Odds Ratio (95% CI)

Source of Drinking Water (<0.0001)

Other 0.897 (0.083, 9.655)

Tap Water 0.161 (0.092, 0.282)

Unprotected Water 0.788 (0.536, 1.158)

Protected Water 1

Toilet Facility (<0.0001)

No Toilet Facility 5.317 (2.668, 10.598)

Uncovered Pit Latrine 3.653 (1.893, 7.051)

Covered Pit Latrine 2.745 (1.497, 5.036)

Flush Toilet <0.001 ( <0.001, <0.001)

Other 4.280 (1.284, 14.266)

VIP Latrine 1

Main Floor Material (<0.0001)

Cement 0.300 (0.222, 0.406)

Earth/Sand 1

Earth and Dung 0.924 (0.681, 1.254)

Other 0.392 (0.175, 0.882)

Main Wall Material (<0.0001)

Thatch/Straw 2.890 (0.609, 13.705)

Unburnt Bricks 2.279 (1.493, 3.478)

Mud and Poles 1.117 (0.672, 1.858)

Cement Blocks 0.596 (0.264, 1.344)

Other 0.534 (0.264, 1.344)

Burnt Bricks 1

Main Roof Material (<0.0001)

Thatch 13.811 (6.758, 28.225)

Iron Sheets 5.481 (2.605, 11.531)

Other 2.166 (0.550, 8.532)

Tiles 1

Incidence of Indoor Residual Spraying (0.2166)

No 0.657 (0.409, 1.057)

Not Known 0.944 (0.230, 3.872)

Yes 1

Use of a bednet (<0.0001)

No 1.650 (1.300, 2.096)

Yes 1

Number of Mosquito Nets in Household (<0.0001) 0.794 (0.712, 0.884)
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Table 5.2: Type III analysis of effects for the final SLR model.

Effect DF Chi-Square P-Value

Age in Months 1 160.4844 <0.0001

Caregivers Education Level 3 242.5110 <0.0001

Cluster Altitude in Metres 1 61.1079 <0.0001

Type of Place of Residence 1 219.4395 <0.0001

Source of Drinking Water 3 68.5035 <0.0001

Toilet Facility 5 387.9419 <0.0001

Main Floor Material 3 261.0907 <0.0001

Number of Mosquito Nets in Household 1 18.1391 <0.0001

Caregiver’s Education Level ∗ Type of Place of Residence 3 188.7966 <0.0001

Main Floor Material ∗ Source of Drinking Water 7 421.3516 <0.0001

The parameter estimates, as well as the adjusted odds ratios (aOR) with their 95%
confidence intervals, and the p-values are given in Table 5.3 on the next page. When
controlling for the other variables in the final multivariate SLR model, as seen in Ta-
ble 5.3, the risk of malaria still remained higher for children that are a month older
(aOR = 1.033, p-value < 0.0001). Similarly, the risk decreases as the cluster altitude
in metres increases (aOR = 0.996, p-value < 0.0001) and the number of mosquito nets
in the household increases (aOR = 0.812, p-value < 0.0001). However, compared to
the unadjusted odds ratios, there was a large decrease in the odds ratios associated
with toilet facility when controlling for other variables, where children in house-
holds with no toilet facility no longer had the highest risk of malaria, but rather
those in households with uncovered pit latrines. Compared to those in households
with VIP latrines, children in households with uncovered pit latrines were 1.877
times more likely to have malaria, with the 95% confidence interval for the odds
ratio ranging from 1.101 to as high as 3.198. Not far behind were those children in
households with covered pit latrines, where their odds of having malaria were 1.736
times the odds for those in households with VIP latrines, with the 95% confidence
interval ranging from 1.002 to 3.008. The odds of malaria for those with either cov-
ered pit latrines or uncovered pit latrines were significantly different from the odds
of those with VIP latrines, however the odds of those with no toilet facility was not
significantly different. This differed substantially from the results of the bivariate
analysis with the odds ratio associated with no toilet facility decreasing from 5.317
in the bivariate analysis to 1.529 when controlling for other factors. The odds of
malaria for children with flush toilets remained significantly different from that for
children with VIP latrines, however this could be a result of no children in house-
holds with flush toilets testing positive for malaria. This was also evident by the
very small odds ratio and confidence interval (aOR < 0.00001).
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Table 5.3: Estimates and adjusted odds ratios (aOR) with 95% confidence intervals for the final SLR model.

Parameter Estimate
Std.

aOR
95% C.I. (aOR)

P-Value
Error Lower Upper

Intercept 1.845 0.736 0.0122

Age in Months 0.032 0.003 1.033 1.028 1.038 <0.0001

Caregiver’s Education Level (ref = Secondary)

No Education -1.464 1.133 0.231 0.025 2.132 0.2310

Primary 1.222 0.319 3.392 1.817 6.332 0.0001

Higher -10.915 0.629 <0.0001 <0.0001 <0.0001 <0.0001

Cluster Altitude in Metres -0.004 0.001 0.996 0.995 0.997 <0.0001

Type of Place of Residence (ref = Urban)

Rural 1.810 0.283 6.111 3.509 10.646 <0.0001

Source of Drinking Water (ref = Prot. Water)

Other 0.514 1.218 1.671 0.154 18.191 0.6732

Tap Water -0.603 0.358 0.547 0.271 1.103 0.0918

Unprotected Water -0.410 0.225 0.664 0.427 1.031 0.0680

Toilet Facility (ref = VIP Latrine)

No Toilet Facility 0.425 0.362 1.529 0.752 3.107 0.2406

Uncovered Pit Latrine 0.630 0.272 1.877 1.101 3.198 0.0206

Covered Pit Latrine 0.558 0.280 1.736 1.002 3.008 0.0491

Flush Toilet -13.031 0.737 <0.0001 <0.0001 <0.0001 <0.0001

Other -0.062 1.309 0.940 0.072 12.235 0.9625

Main Floor Material (ref = Earth/Sand)

Cement -0.585 0.252 0.557 0.340 0.914 0.0205

Earth and Dung -0.251 0.176 0.778 0.551 1.098 0.1535

Other -0.753 0.649 0.471 0.132 1.682 0.2464

Number of Mosquito Nets in Household -0.208 0.049 0.812 0.738 0.894 <0.0001

Main Floor Material ∗ Source of Drinking Water (ref = Earth/Sand and Prot. Water)

Cement and Tap Water -0.509 0.475 0.601 0.237 1.525 0.2839

Cement and Unprotected Water 0.609 0.477 1.838 0.721 4.683 0.2022

Earth and Dung and Tap Water 0.344 0.646 1.411 0.398 5.005 0.5940

Earth and Dung and Unprotected Water 0.647 0.262 1.909 1.142 3.193 0.0137

Earth and Dung and Other -17.047 0.883 <0.0001 <0.0001 <0.0001 <0.0001

Other and Tap Water 0.314 1.143 1.369 0.146 12.860 0.7832

Other and Unprotected Water 1.684 0.833 5.386 1.052 27.586 0.0433

Caregiver’s Education Level ∗ Type of Place of Residence (ref = Secondary and Urban)

No Education and Rural 1.802 1.132 6.060 0.660 55.684 0.1113

Primary and Rural -0.932 0.383 0.186 0.833 6.332 0.0149

Higher and Rural 10.695 0.791 >1000 >1000 >1000 <0.0001
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5.1. Survey Logistic Regression Applied to MIS Data

Even though it is unknown what the category ’other’ for source of drinking water,
type of toilet facility and main floor material was, it could not be left out the anal-
ysis as it would reduce the sample size by a significant amount. However, for the
purpose of exploring the interaction effects, this category will not be reported. Thus,
the figure below shows the estimated probability of testing positive for malaria, de-
termined using the final SLR model’s estimates, associated with main floor material
and source of drinking water, excluding the categories ’other’. From the categories
reported in this figure, it is clear that children residing in households with cement
as the main floor material had the lowest risk of malaria, for all sources of drink-
ing water. Children using unprotected sources of drinking water had the highest
risk, however excluding those in households with just earth/sand as the main floor
material. These children instead had a higher risk when using protected sources of
drinking water, which is not a result one would expect. Children in households with
either of the three floor materials and tap water had the lowest risk of malaria.

Figure 5.1: Estimated probability of testing positive for malaria associated with
the interaction of main floor material and source of drinking water.
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5.1. Survey Logistic Regression Applied to MIS Data

The next figure displays the estimated probability of testing positive for malaria as-
sociated with the caregiver’s education level and type of place of residence. For
all levels of education, children residing in rural areas had a much higher risk of
malaria. The figure also reveals that children in rural areas who had caregiver’s
with no education were most at risk, with a slight decrease in risk as education level
increased. However, in urban areas, children who had caregivers with only primary
education had the highest risk of malaria. This may be a result of the very low
frequency of children in urban areas in the sample who had caregivers with no edu-
cation, as seen in the exploratory data analysis. Furthermore, in the exploratory data
analysis it was seen that, in urban areas, no children who had caregivers with higher
education tested positive for malaria, which explains the estimated probability for
these children being calculated as zero.

Figure 5.2: Estimated probability of testing positive for malaria associated with the
interaction of caregiver’s education level and type of place of residence.
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5.2. GEE Applied to MIS Data

The SLR model takes into consideration the design of the study. However, it does
not account for effects of clustering where children within the same cluster may be
more alike compared to those from different clusters. Thus, the next two analyses
will take this possible clustering effect into consideration.

5.2 GEE Applied to MIS Data

The SAS procedure PROC GENMOD with the logit link function was used to fit a
GEE model to the MIS data, where the REPEATED statement was used to specify the
cluster in order to model the cluster effect. The full model was fitted with different
correlation structures in order to determine which one best suited the data. How-
ever, region of Uganda was included as a variable in the full model, unlike the SLR
model where the regions were specified in the strata. The four correlation structures
fitted were Independent, Unstructured, Exchangeable and AR(1). Table 5.4 gives the
QIC for each of the different correlation structures fitted. The best correlation struc-
ture for the GEE model was AR(1) as it gave the smallest QIC, even though there
was not a large difference between the QIC for all the correlation structures.

Table 5.4: QIC Goodness-of-Fit Statistic for GEE.

Correlation Structure QIC

Independent 4200.68

Unstructured 4245.91

Exchangeable 4199.68

AR(1) 4199.07

As very briefly mentioned in Section 4.1.2: Fitting the GEE Model, the variance, and
hence the standard errors, of the parameter estimates can be based on two methods;
an empirical method of estimation and a model-based method of estimation. The
model-based standard errors are determined under the assumption that the stated
correlation structure is correct. However, the empirical standard errors are based on
the empirical covariance structure that is estimated directly using the data. If the
correlation structure has been correctly specified, there will be very little difference
between the empirical and model-based standard errors.

The GEE model was selected using a backward selection procedure according to
their p-values in the Type III analysis given in the SAS output. Each time a variable
was dropped from the model, the QICu was observed. The variables that minimized
the QICu were selected as the main effects.
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After these variables were selected, all two-way interaction effects were examined,
one at a time. However, a limitation of GEEs is that if a category, after cross-classification
of all the levels of the two variables, has no observations where the event of interest
has occurred (e.g. there were no children that tested positive for malaria in urban
areas with caregivers that had higher education), then the odds of that event occur-
ring for that category cannot be modeled. Thus, with the inclusion of the interaction
between caregiver’s education level and type of place of residence, SAS produced
an error in estimation. Similarly, the effect of the interaction between type of place
of residence and main floor material, as well as that between type of place of res-
idence and main wall material, could not be assessed. This may be a result of the
very small sample in urban areas. In general, GEEs produce better results for large
samples, therefore the results of this analysis should be interpreted with caution.
Consequently, none of the other two-way interactions were significant. Thus, the
final GEE model is represented in Table 5.6.

This model produced the lowest QICu. Even though the variables caregiver’s knowl-
edge that mosquito bites can cause malaria and their knowledge that there are ways
of avoiding malaria, were insignificant, excluding these variable from the model re-
sulted in a large increase in the QICu. Similar to the results of the SLR model, the
variables age of the child in months, caregiver’s education level, cluster altitude in
metres, type of place of residence, source of drinking water, main floor material and
total number of mosquito nets in the household were all significant. In addition
to these significant variables, region of Uganda, the household had electricity, and
main wall material were also found to be significant.

Table 5.5: Score statistics for Type III GEE analysis.

Effect DF Chi-Square P-Value

Age in months 1 216.30 <0.0001

Caregivers Education Level 3 10.76 0.0124

Knowledge that mosquito bites can cause malaria 1 1.82 0.1685

Knowledge of ways of avoiding malaria 1 1.93 0.1893

Region of Uganda 9 115.40 <0.0001

Cluster Altitude in Metres 1 81.51 <0.0001

Type of Place of Residence 1 23.98 <0.0001

Household had Electricity 1 5.21 0.0070

Source of Drinking Water 3 14.52 0.0020

Main Floor Material 3 13.51 0.0027

Main Wall Material 5 12.34 0.0262

Number of Mosquito Nets in Household 1 21.48 <0.0001
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The AR(1) correlation structure of the final model was once again checked. However,
this correlation structure still produced the lowest QIC value compared to the other
three structures. The empirical standard errors were compared with the model-
based standard errors and both gave similar estimates, thus suggesting AR(1) was
the correct correlation structure. SAS has the option to obtain the estimated work-
ing correlation matrix. In doing so, the non-zero elements produced in this matrix
ranged from 0.0006 to 0.2257, thus indicating there existed a slight positive correla-
tion between observations which occurred in the same cluster. This may possibly
be due to similar cultural beliefs and practices that are prevalent in regions closer
together.

The next table displays the results of the variables in the final GEE model, based
on the empirical standard errors. The adjusted odds ratio for an increase in the
child’s age by a month was 1.034, which is almost in line with that produced by the
SLR model (aOR = 1.033). The confidence interval for the aOR was however slightly
narrower for the GEE model, (1.029, 1.038) compared to (1.028, 1.038) for the SLR
model. This was also the case for cluster altitude in metres [aOR = 0.998 with 95%
C.I. (0.997, 0.998) for the GEE and aOR = 0.996 with 95% C.I. (0.995, 0.997) for the
SLR model] and number of mosquito nets in the household [aOR = 0.841 with 95%
C.I. (0.785, 0.902) for the GEE and aOR = 0.812 with 95% C.I. (0.738, 0.894) for the
SLR model]. Compared to children who had caregivers with a secondary education,
those who had caregivers with no education were most at risk for malaria (aOR =
1.669), followed by those who had caregivers with only primary education (aOR =
1.453). Even though the odds of malaria for children who had caregivers with higher
education were 1.445 times that for children who had caregivers with a secondary
education, there was no significant difference between them (p-value = 0.3619). As
one would expect, the odds of malaria were higher for children with caregivers who
did not know mosquito bites can cause malaria and/or that there are ways of avoid-
ing malaria (aOR = 1.175 and aOR = 1.174, respectively). However, there was no
significant difference between those with caregivers who had and did not have that
knowledge. Children in rural areas were largely more at risk for malaria compared
to those in urban areas (aOR = 3.557), with the 95% confidence interval for the odds
ratio ranging from 2.164 to as high as 5.849. Compared to children who resided in
the South Western region of Uganda, which had the second lowest observed preva-
lence of malaria, children who resided in all the other regions of Uganda were more
at risk, with the odds ratios ranging from 1.216 in the North East (which had the
third lowest observed prevalence) to 5.619 in the East Central (which had the high-
est observed prevalence). Even though Kampala was solely made up of urban areas
and had the lowest observed prevalence, it was still associated with a higher risk
of malaria (aOR = 1.720) compared to the South Western, however there was not a
significant difference between these two regions. 81
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Table 5.6: Estimates and adjusted odds ratios (aOR) with 95% confidence intervals for the final GEE model.

Parameter Estimate
Std.

aOR
95% C.I. (aOR)

P-Value
Error Lower Upper

Intercept -1.186 0.572 0.0396

Age in Months 0.033 0.002 1.034 1.029 1.038 <0.0001

Caregiver’s Education Level (ref = Secondary)

No Education 0.512 0.156 1.669 1.228 2.269 0.0011

Primary 0.374 0.135 1.453 1.114 1.895 0.0059

Higher 0.368 0.478 1.445 0.655 3.192 0.3619

Mosquito bites can cause malaria (ref = Yes) 0.162 0.117 1.175 0.935 1.478 0.1668

There are ways of avoiding malaria (ref = Yes) 0.161 0.122 1.174 0.923 1.494 0.1914

Region of Uganda (ref = South Western)

Central 1 0.776 0.239 2.150 1.339 3.453 0.0015

Central 2 1.193 0.236 3.298 2.073 5.246 <0.0001

East Central 1.726 0.235 5.619 3.537 8.924 <0.0001

Kampala 0.542 0.503 1.720 0.618 4.782 0.2989

Mid Eastern 1.062 0.226 2.893 1.867 4.483 <0.0001

Mid Northern 0.624 0.254 1.870 1.137 3.075 0.0137

Mid Western 0.488 0.233 1.629 1.038 2.558 0.0339

North East 0.195 0.250 1.216 0.742 1.993 0.4386

West Nile 0.390 0.247 1.478 0.912 2.394 0.1128

Cluster Altitude in Metres -0.002 0.00003 0.998 0.997 0.998 <0.0001

Type of Place of Residence (ref = Urban)

Rural 1.269 0.238 3.557 2.164 5.849 <0.0001

Household had Electricity (ref = Yes) 0.681 0.274 1.976 1.168 3.342 0.0111

Source of Drinking Water (ref = Protected Water)

Other -0.649 0.703 0.523 0.069 3.987 0.5315

Tap Water -0.636 0.182 0.530 0.378 0.743 0.0002

Unprotected Water 0.012 0.100 1.012 0.833 1.230 0.9018

Main Floor Material (ref = Earth/Sand)

Cement -0.540 0.151 0.583 0.432 0.787 0.0004

Earth and Dung 0.047 0.108 1.048 0.848 1.295 0.6662

Other 0.012 0.417 1.012 0.446 2.297 0.9771

Main Wall Material (ref = Burnt Bricks)

Thatch/Straw -0.266 0.385 0.767 0.372 1.583 0.4728

Unburnt Bricks 0.274 0.135 1.315 1.000 1.729 0.0496

Mud and Poles -0.176 0.126 0.839 0.652 1.080 0.1726

Cement Blocks 0.500 0.403 1.648 0.787 3.451 0.1852

Other -0.316 0.428 0.729 0.296 1.796 0.4921

Number of Mosquito Nets in Household -0.173 0.035 0.841 0.785 0.902 <0.0001

82



5.3. GLMM Applied to MIS Data

Children in households with no electricity had a higher risk of malaria (aOR = 1.976).
There was also a significant difference between those in households with and with-
out electricity with the 95% confidence interval for the odds ratio ranging from 1.168
to 3.342. Tap water was associated with a lower risk of malaria with an odds of just
over half of that for protected water sources (aOR = 0.530). Cement as the main floor
material was also associated with a lower risk and was significantly different from
just earth/sand as the main floor material. The only significantly different wall mate-
rial from burnt bricks was unburnt bricks, which was associated with a higher odds
of malaria (aOR = 1.315). Even though children who resided in households with
cement blocks as the main floor material had the highest odds of malaria, which is a
surprising result as it is associated with a higher socio-economic status compared to
the other wall materials, it was not significantly different from burnt bricks.

5.3 GLMM Applied to MIS Data

In SAS, the procedure PROC GLIMMIX allows a GLMM to be fitted to the data. The
RANDOM statement specifies the random effects to be included in the model. In
order to account for any heterogeneity between clusters in the MIS data, an inter-
cept term that varied at cluster level was included in the model, thus resulting in a
random intercept model. Once again the logit link function was used with a binary
distribution specified. The model was fitted using the Laplace approximation as this
method is likelihood based and therefore allows for the comparison of models using
model selection criteria such as AIC and BIC. This method was also computationally
less demanding. The need for a random intercept was assessed by testing if its cor-
responding covariance parameter equaled zero. This was done using the COVTEST
statement in SAS, which produces likelihood ratio tests for covariance parameters.
Since the parameter under the null hypothesis fell on the boundary of the parameter
space, the p-value for the test was determined using a linear combination of central
Chi-Square probabilities. The table below shows the result of this test when fitting
the full GLMM to the data. This result indicates that the null hypothesis of the co-
variance parameter equal to zero was rejected, thus suggesting the random cluster
effect was highly significant in the model.

Table 5.7: Test of covariance parameters based on the likelihood.

Label DF -2Log Likelihood χ2 P-value

No G - side effects 1 4093.84 122.73 <0.0001
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Notice the label SAS gives the covariance parameter of the random effect: ”G-side ef-
fects”. SAS distinguishes between two types of random effects, that included in the
linear predictor and/or that modeling correlations among the data directly. Covari-
ance parameters for the random components in the model that are contained in the
variance-covariance matrices G and R are termed G-side and R-side effects, respec-
tively. Thus, the inclusion of a random intercept according to the different clusters
resulted in the inclusion of G-side effects in the model. R-side effects are also called
”residual” effects. Models with only these effects are also known as marginal or
population-averaged models, equivalent to GEE models. Inclusion of R-side effects
in the model, via the SAS RANDOM RESIDUAL statement, adds an overdisper-
sion effect to the model that acts as a multiplier on the variance function, thus lifting
the restriction of the dispersion parameter φ = 1.

Before model selection of the fixed effects, the model was fitted with different co-
variance structures for G in order to determine which one best suited the data. The
first structure fitted was SAS’s default, VC or Variance Components, which is a sim-
ple diagonal matrix that gives a different variance component for each random effect
(SAS Institute Inc., 2013). Other structures fitted were AR(1), CS and UN (unstruc-
tured). However, VC and UN produced the lowest AIC values, both of which were
the same. As VC is the simplest of the two to fit, it was selected. In order to obtain
the final GLMM, a backward selection procedure was carried out where insignificant
fixed effects, according to the p-values of the fixed effects in the Type III analysis (de-
termined using the Wald F-test), were removed from the model one at a time until
only significant fixed effects were left. All two-way and higher order interactions
were explored, however PROC GLIMMIX produced none that were significant.

Table 5.8 gives the final GLMM. The denominator’s degrees of freedom was cal-
culated as 3560. Once again, the age of the child in months, caregiver’s education
level, cluster altitude in metres, type of place of residence, source of drinking water,
main floor material and number of mosquito nets in household were all significant,
which was consistent with both the SLR and GEE model. Similar to the GEE results,
region of Uganda, availability of electricity in the household, and main wall material
were also found to be significant. The Pearson Chi-Square statistic over its degrees of
freedom was 0.90, which is close to 1, thus indicating the variability in the data was
properly modeled, and hence there was no residual overdispersion. The variance
component for the random cluster effect was estimated as 0.5654 with a standard
error of 0.1141. This estimate is relatively far from zero, thus confirming again the
need for this random effect in the model.
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Table 5.8: Type III analysis of fixed effects for the final GLMM.

Effect Numerator DF F-Value P-Value

Age in months 1 225.50 <0.0001

Caregivers Education Level 3 4.12 0.0063

Region of Uganda 9 4.62 <0.0001

Cluster Altitude in Metres 1 27.1 <0.0001

Type of Place of Residence 1 11.90 0.0006

Household had Electricity 1 5.62 0.0177

Source of Drinking Water 3 3.37 0.0178

Main Floor Material 3 4.92 0.0021

Main Wall Material 5 2.27 0.0448

Number of Mosquito Nets in Household 1 33.13 <0.0001

Table 5.9 on the next page presents the parameter estimates, adjusted odds ratios
with their 95% confidence intervals, and p-values for the fixed effects of the final
GLMM . The GLMM produced very similar estimates to the GEE model, however, it
also produced many higher standard errors, and hence wider confidence intervals.
As a result, some of the levels of the variables found to be significantly different in
the GEE model, were not found in the GLMM, specifically for the region of Uganda.
The GEE model found a significant difference between the South Western region of
Uganda and 6 out of the other 9 regions. Whereas the GLMM only found a sig-
nificant difference between the South Western region and 3 of the other regions.
However, like the GEE model, the GLMM also resulted in East Central having the
highest risk of malaria compared to the South Western region, followed by Central
2 and Mid Eastern. In terms of the adjusted odds ratios, the South Western region
remained least at risk for malaria compared to each of the other regions. The results
of the GLMM for age in months, cluster altitude in metres, and number of mosquito
nets in the household were very similar to that of the GEE model. Furthermore,
children with caregivers who had no education remained most at risk for malaria
compared to those with caregivers who had a secondary education. Again, those in
households with no electricity had a higher risk of malaria. Both models gave an ad-
justed odds ratio of just over 1 for unprotected water sources compared to protected
water sources ( aOR = 1.012 for the GEE model and aOR = 1.009 for the GLMM),
however neither model produced a significant difference between the two sources
of water. Children in households with cement as the main floor material remained
less at risk for malaria compared to those in households with just earth/sand. For
the main wall material of a household, unburnt bricks, which was associated with
a higher risk of malaria, was the only significantly different material compared to
burnt bricks, as seen with the GEE model.

85



5.3. GLMM Applied to MIS Data

Table 5.9: Estimates and adjusted odds ratios (aOR) with 95% confidence intervals for the fixed effects in the
final GLMM with one random effect.

Parameter Estimate
Std.

aOR
95% C.I. (aOR)

P-Value
Error Lower Upper

Intercept -1.203 0.877 0.1703

Age in Months 0.037 0.002 1.038 1.033 1.043 <0.0001

Caregiver’s Education Level (ref = Secondary)

No Education 0.554 0.160 1.740 1.273 2.380 0.0005

Primary 0.414 0.138 1.513 1.155 1.982 0.0026

Higher 0.369 0.491 1.447 0.552 3.790 0.4524

Region of Uganda (ref = South Western)

Central 1 0.726 0.383 2.067 0.976 4.380 0.0580

Central 2 1.234 0.382 3.424 1.624 7.261 0.0013

East Central 1.714 0.387 5.552 2.600 11.857 <0.0001

Kampala 0.526 0.645 1.693 0.478 5.996 0.4145

Mid Eastern 0.974 0.365 2.648 1.295 5.413 0.0076

Mid Northern 0.583 0.412 1.792 0.798 4.022 0.1572

Mid Western 0.476 0.383 1.609 0.759 3.412 0.2143

North East 0.168 0.397 1.183 0.543 2.577 0.6725

West Nile 0.380 0.418 1.463 0.644 3.321 0.3632

Cluster Altitude in Metres -0.002 0.0005 0.998 0.997 0.998 <0.0001

Type of Place of Residence (ref = Urban)

Rural 1.317 0.382 3.732 1.765 7.888 0.0006

Household had Electricity (ref = Yes) 0.663 0.279 1.940 1.122 3.355 0.0178

Source of Drinking Water (ref = Protected Water)

Other -0.381 0.765 0.684 0.152 3.065 0.6191

Tap Water -0.637 0.206 0.529 0.353 0.792 0.0020

Unprotected Water 0.009 0.112 1.009 0.809 1.257 0.9393

Main Floor Material (ref = Earth/Sand)

Cement -0.553 0.154 0.575 0.425 0.778 0.0003

Earth and Dung 0.021 0.111 1.022 0.822 1.270 0.8470

Other 0.036 0.436 1.036 0.441 2.434 0.9345

Main Wall Material (ref = Burnt Bricks)

Thatch/Straw -0.151 0.401 0.860 0.392 1.886 0.7062

Unburnt Bricks 0.273 0.138 1.314 1.001 1.723 0.0489

Mud and Poles -0.165 0.135 0.848 0.651 1.105 0.2218

Cement Blocks 0.541 0.393 1.717 0.795 3.707 0.1685

Other -0.224 0.445 0.800 0.335 1.912 0.6151

Number of Mosquito Nets in Household -0.219 0.038 0.804 0.746 0.866 <0.0001
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5.3. GLMM Applied to MIS Data

By adding cluster into the model as a random effect, the heterogeneity between clus-
ters is accounted for, however there may be an extra source of variation between
households within clusters. It may be the case that children within the same house-
hold are more homogeneous than those from different households, and with some
households having up to six children tested for malaria, it may be necessary to ac-
count for possible correlations that may exist within the households. Therefore,
households nested within clusters were further added as random effect. In fitting
the full GLMM with this additional random effect, the test of covariance parame-
ters once again concluded the G-side effects were significant (p-value < 0.0001). The
AIC for this model was also lower than that for the full GLMM with only the cluster
random effect. Thus suggesting inclusion of both the cluster and household nested
within the cluster as random effects may be useful. The same selection procedure
was carried out for the new GLMM, again using the Laplace approximation method
of estimation. The resulting model was the same as the previous GLMM, however
main floor material was no longer significant at 5%, but rather at a 10% significance
level. A test of covariance parameters still showed the G-side effects were signifi-
cant. The variance components for the cluster effect and household by cluster effect
were estimated at 0.6239 and 0.5886, respectively, as seen in Table 5.10 below.

Table 5.10: Covariance parameter estimates for GLMM with two random effects.

Covariance Parameter Subject Estimate Standard Error

Intercept Cluster 0.6239 0.1261

Intercept Household(Cluster) 0.5886 0.1707

The Pearson Chi-Square statistic over its degrees of freedom was 0.69, thus signif-
icantly reducing from 0.90 in the GLMM with only one random effect. Therefore,
by including an extra random effect, there is a concern for underdispersion in the
model, however, this is not as serious as overdispersion. The next table gives the
results of the fixed effects for the final GLMM with two random effects. This new
GLMM produced slightly higher standard errors compared to the GLMM with only
one random effect, which is expected as it is accounting for an extra source of vari-
ation. This explains why main wall material was no longer significant at a 5% level
of significance. However, both models produced similar parameter estimates. Thus,
very similar conclusions can be drawn from this new model.

The last chapter in this thesis discusses the results of all the different models ap-
plied to the MIS data. This chapter also discusses the limitations to the study as well
as recommendations for future research.
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5.3. GLMM Applied to MIS Data

Table 5.11: Estimates and adjusted odds ratios (aOR) with 95% confidence intervals for the fixed effects in the
final GLMM with two random effects.

Parameter Estimate
Std.

aOR
95% C.I. (aOR)

P-Value
Error Lower Upper

Intercept -0.988 0.953 0.3015

Age in Months 0.041 0.003 1.042 1.036 1.048 <0.0001

Caregiver’s Education Level (ref = Secondary)

No Education 0.576 0.183 1.779 1.244 2.546 0.0016

Primary 0.405 0.156 1.499 1.104 2.038 0.0095

Higher 0.293 0.556 1.340 0.450 3.988 0.5988

Region of Uganda (ref = South Western)

Central 1 0.813 0.415 2.255 0.998 5.094 0.0504

Central 2 1.276 0.415 3.583 1.589 8.080 0.0021

East Central 1.956 0.422 7.070 3.087 16.191 <0.0001

Kampala 0.492 0.705 1.636 0.410 6.526 0.4853

Mid Eastern 1.218 0.398 3.379 1.549 7.371 0.0022

Mid Northern 0.733 0.448 2.081 0.864 5.008 0.1020

Mid Western 0.332 0.414 1.393 0.618 3.140 0.4235

North East 0.126 0.431 1.134 0.487 2.641 0.7702

West Nile 0.368 0.452 1.444 0.595 3.505 0.4161

Cluster Altitude in Metres -0.003 0.001 0.997 0.996 0.998 <0.0001

Type of Place of Residence (ref = Urban)

Rural 1.703 0.416 5.488 2.428 12.405 <0.0001

Household had Electricity (ref = Yes) 0.791 0.312 2.204 1.194 4.069 0.0115

Source of Drinking Water (ref = Protected Water)

Other -0.376 0.879 0.687 0.122 3.850 0.6688

Tap Water -0.573 0.231 0.564 0.359 0.886 0.0131

Unprotected Water 0.085 0.129 1.089 0.845 1.402 0.5103

Main Floor Material (ref = Earth/Sand)

Cement -0.522 0.177 0.593 0.419 0.839 0.0032

Earth and Dung -0.022 0.128 0.978 0.761 1.257 0.8409

Other -0.088 0.492 0.916 0.349 2.406 0.8584

Main Wall Material (ref = Burnt Bricks)

Thatch/Straw -0.124 0.467 0.884 0.354 2.209 0.7913

Unburnt Bricks 0.258 0.160 1.294 0.947 1.770 0.1058

Mud and Poles -0.194 0.155 0.824 0.608 1.116 0.2106

Cement Blocks 0.638 0.452 1.893 0.779 4.597 0.1586

Other -0.295 0.503 0.745 0.278 1.997 0.5580

Number of Mosquito Nets in Household -0.238 0.044 0.788 0.723 0.859 <0.0001
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Chapter 6

Discussion and Conclusion

The main objective of this thesis was to identify significant risk factors associated
with malaria infection in children under the age of five in Uganda. This was done
using three statistical approaches applied to the MIS data. The survey logistic re-
gression model was used to account for the design of the study, where sampling
weights were included in the analysis. Both generalized estimating equations and
generalized linear mixed models were used in order to account for intracluster cor-
relation that may have existed, with the generalized linear mixed model extended
to account for possible correlations within households, nested within clusters. The
GEE method is a population averaged approach that determines a working corre-
lation structure within the subjects. This working correlation is assumed to be the
same for all subjects, which in this case was represented by the clusters. However,
the GLMM is a subject-specific approach and therefore allows the within-subject cor-
relation to vary from one subject to another, by means of the inclusion of a random
effect in the model (Carrière & Bouyer, 2002). With the GEE applied to the MIS data,
where the clusters were specified as the repeated subjects, the best fitting correla-
tion structure was AR(1). The working correlation matrix indicated that there was a
slight positive correlation between children in the same clusters. Even though three
two-way interaction effects in the GEE model were unable to be explored, no inter-
action effects were found to be significant in the GLMM, which leads one to have
more confidence in the GEE results. In contrast, the SLR model produced two sig-
nificant two-way interactions that resulted in a substantial reduction in the model’s
deviance. This may be an effect of taking the sampling weights into consideration,
where observations are either up-weighted or down-weighted depending on their
associated sampling weight.

The GEE model and GLMM with one random effect produced very similar results,
where possible differences seen in the parameter estimates of the two models could
be attributed to the two extra variables (caregiver’s knowledge of malaria) main-
tained in the GEE model, which was selected by minimizing the QICu.
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Discussion and Conclusion

Both these models found the child’s age in months, the caregiver’s education level,
region of Uganda, cluster altitude, type of place of residence, availability of electric-
ity in the household, source of drinking water, main floor and wall material, and the
number of mosquito nets in the household to be significant. With the addition of
another random effect in the GLMM, in order to account for a possible correlation
among children within the same household, nested within a cluster, the variable
main wall material was no longer significant at 5%, but rather at a 10% level of sig-
nificance. This could be seen as a result of the new GLMM’s higher standard errors
due to an extra source of variation being modeled. However, this GLMM with two
random effects produced results relatively consistent with that of the GEE model
and the GLMM with only one random effect. The survey logistic regression model,
however, produced a slightly different result where, in addition to the significant
two-way interactions between caregiver’s education level and type of place of resi-
dence as well as that between main floor material and source of drinking water, the
type of toilet facility was found to be significant, which was not found in any of the
other three models fitted. Furthermore, the variables main wall material of a house-
hold and availability of electricity were not significant in the SLR model, in contrast
to the GEE model and GLMM.

Despite these differences in the models, the same conclusions can be drawn. An
older child was associated with a higher risk of malaria. However, their risk de-
creased with an increase in cluster altitude and as the number of mosquito nets in the
household increased. Compared to children with caregivers who had secondary ed-
ucation, those with caregivers who had no education were most at risk for malaria,
followed by those with caregivers who had only primary education. These results
for the age of the child and caregiver’s education level are consistent with those in
the literature (Ghebremeskel et al., 2000; Gahutu et al., 2011). According to the SLR
model, a child’s risk of malaria was substantially greater in rural areas, regardless
of their caregiver’s education level. This higher risk of malaria for children in rural
areas was also evident in the other statistical models fitted to the MIS data. The GEE
model and both GLMMs produced significant results for the region of Uganda, with
children in the East Central region having the highest risk of malaria, followed by
the Central 2 and Mid Eastern regions. Both tap water and cement as the main floor
material were associated with a lower risk of malaria, which is in line with other
research (Ayele et al., 2012). Thus, poor housing conditions were associated with
a higher risk of malaria. Furthermore, children in households with no electricity
had a higher risk of malaria. While electricity in a household could be related to
one’s socio-economic status, it also contributes to an individual’s way of life, where
those in households with no electricity may be required to go outside more often
and therefore may be more susceptible to mosquito bites, and thus malaria.
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Discussion and Conclusion

While none of the models found access to household items, such as a radio, televi-
sion, bicycle and refrigerator, significant, many of these variables could be explained
by the inclusion of electricity access in the model. Gender was found to be highly
insignificant, with the distribution of malaria prevalence being almost the same for
both males and females. This was also the case for the number of members in the
household. Incidence of indoor residual spraying within the last 12 months was also
found to be insignificant, however this could be as a result of the very low percent-
age of households that were sprayed. While the use of a bednet by the child was
not significant in any of the models, which is a contrast to the findings of Gahutu
et al. (2011), Baragatti et al. (2009) and Ayele et al. (2012), this variable could be ex-
plained by the number of nets in the household, which was highly significant in all
the models.

The small sample sizes within the different levels of some variables were found to be
very limiting. This could possibly account for some of the variables not producing
significant results. This is specifically seen with the variable main roof material,
where other studies have shown that it is an important contributing factor towards
an individual’s malaria status (Ghebremeskel et al., 2000; Ayele et al., 2012). The
Malaria Indicator Survey was a cross-sectional study, therefore it was not taken into
consideration whether children who tested negative for malaria had previously been
infected. A future study that possibly takes this into consideration could be useful.

The results of this study largely agree with those in the literature, where a lower
socio-economic status was associated with a higher risk of malaria. This could par-
ticularly be why the results revealed that children in rural areas were largely more at
risk for malaria compared to those in urban areas. This study also revealed the extent
of the under-development of Uganda, and how there was a great lack of knowledge
of the causes of malaria, as well as possible ways of avoiding it. Mosquito net usage
and incidence of indoor residual spraying were very low. Although the government
of Uganda has adopted various strategies for malaria control, there is still a consid-
erable way to go before a significant reduction in malaria can be seen. The extent
of the under-development of the country presents a great challenge in the efforts of
malaria reduction, especially as poor housing conditions are experienced by a vast
majority of the population. As resources for malaria control in Uganda are very lim-
ited, and the different regions of the country have been shown to be unequally at
risk, it is of great importance to identify the geographical areas that are most at risk
through spatial modeling. This aids in the production of malaria maps, which have
been recognized as an important tool for malaria control where they can effectively
guide the allocation of the limited resources and interventions. This presents the
future direction of this study.
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Appendix A

A.1 Sample Size Calculation

The primary sampling units were the census enumeration areas of the 2002 National
Housing and Population Census. The sample was designed to provide malaria
prevalence estimates for each of the 10 regions with a relative standard error (RSE)
of approximately 12%. The determination of the sample size for this MIS was based
on an estimated prevalence of plasmodia parasitemia in Uganda of 20% among chil-
dren under the age of 5 (Uganda Bureau of Statistics (UBOS) and ICF Macro, 2010).
Since the survey used a cluster design, the design effect was taken into consideration
in the sample size calculation. Design effect is the loss of effectiveness when cluster
sampling is used instead of simple random sampling (Shackman, 2001). This design
effect was assumed to be 1.44. A response rate of 98% was expected.

The following formula was used to estimate the required sample size (n) of children
under the age of 5 for each region:

n =
p(1− p)

se2
× DEFF

R

where

p = 0.2 (estimated 20% malaria prevalence)

se = 12%× 0.2 = 0.024 (estimated sampling error)

DEFF = 1.44 (design effect)

R = 0.98 (estimated 98% response rate)

Using the above in the formula, a total of 408 children were required for each re-
gion. Assuming the number of children under the age of 5 per household was just
less than 1 (0.96 to be exact), then the required number of households per region was
408 ÷ 0.96 = 425. Thus, a total of 4,250 households for the 10 regions of the country
was required.
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A total of 17 EAs/clusters per region was chosen resulting in 170 clusters selected
in total. Therefore, since 4,250 households were required from 170 clusters, a total
of 25 households per cluster needed to be selected. It was decided that selecting
28 households per cluster would ensure that about 25 would be interviewed, which
would result in the required number of children under the age of 5.

A.2 Sample Probabilities and Weights

Since the sample was not spread geographically in proportion to the population, but

rather equally across the regions, sampling weights are required in the analysis of

the MIS data. Since the MIS sample was obtained using a stratified two-stage cluster

design, sampling weights were calculated based on sampling probabilities for each

stage of the sampling. The sampling probability for the first stage, which involved

selecting 17 EAs/clusters for each of the 10 regions proportional to size, is given by

P1hi =
b×mhi∑

mhi

where

b = 17 is the fixed number of clusters selected in each region

mhi is the number of households according to the sampling frame in the ith

cluster for the hth region, with i = 1, ..., 17 and h = 1, ..., 10∑
mhi is the total number of households in the hth region

In other words, P1hi represents the sampling probability associated with the ith clus-

ter in the hth region.

The sampling probability for the second stage, which involved obtaining a system-

atic sample of 28 households for each cluster, is given by

P2hi =
c

Lhi

where

c = 28 is the fixed number of households selected in each cluster

Lhi is the total number of households found in the listing process for the ith

cluster in the hth region

Thus, P2hi represents the sampling probability associated with a household in the
selected ith cluster in the hth region.
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Therefore, the overall selection probability of each household in the ith cluster in the

hth region is:

Phi = P1hi × P2hi

And the sampling weight for each household in the ith cluster in the hth region is the

inverse of its overall selection probability:

Whi =
1

P1hi
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SAS Codes

The SAS codes for the models used in the analysis of the MIS data are given below:

/********************* Final SLR Model *********************/
proc surveylogistic data = Datamalaria;
stratum X7 / list;
cluster Cluster;
class X4b X9 X10a X11b X17c / param=glm;
model Y (descending) = X1a X4b X8a X9 X11b X10a X17c X10a*X17c X9*X4b
X22a / clparm;
weight SamplingWeight;
run;

/********************* Final GEE Model *********************/
proc genmod data = Datamalaria descending;
class X4b X6a X6b X7b X9 X10a X16 X17c X18c Cluster / param=glm;
model Y = X1a X4b X6a X6b X7b X8a X9 X10a X16 X17c X18c X22a / link=logit
dist=bin type3 ;
repeated subject = Cluster / type=ar(1) modelse corrw ;
run;

/*************** Final GLMM with cluster random effect ***************/
proc glimmix data = Datamalaria method=laplace;
class X4b X7b X9 X10a X16 X17c X18c Cluster ;
model Y (descending) = X1a X4b X7b X8a X9 X10a X16 X17c X18c X22a /
link=logit dist=binary oddsratio solution ;
random intercept / subject=Cluster type=VC ;
covtest zerog ;
run;
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/********** Final GLMM with cluster & household(cluster) random effects **********/
proc glimmix data = Datamalaria method=laplace;
class X4b X7b X9 X10a X16 X17c X18c Cluster HHNumber;
model Y (descending) = X1a X4b X7b X8a X9 X10a X16 X17c X18c X22a /
link=logit dist=binary oddsratio solution ;
random intercept / subject=Cluster ;
random intercept / subject=HHNumber(Cluster) ;
covtest zerog ;
run;

where:

X1a = age of child in months

X4b = caregiver’s education level

X6a = caregiver’s knowledge that mosquito bites can cause malaria

X6b = caregiver’s knowledge that there are ways of avoiding malaria

X7 = region of Uganda

X8a = cluster altitude in metres

X9 = type of place of residence

X10a = source of drinking water

X11b = type of toilet facility

X16 = household had electricity

X17c = main floor material

X18c = main wall material

X22a = number of mosquito nets in the household
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