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Abstract 

The oxidation of alkanes into valuable products such as alcohols, ketones and aldehydes is very 

important to industry for detergents and perfumes.  One of the challenges with alkanes is their 

inertness which results from the strong and localized C-C and C-H bonds.  There are few 

methods that are known to transform alkanes into products of value.  Therefore in this study 

xanthene-based ligands were used in an attempt to transform alkanes into products of value.  

Xanthene-based ligands are known to produce catalysts that are highly active and selective in 

reactions such as hydroformylation and hydrocyanation.  These ligands are bidentate and their 

structure consists of a xanthene backbone with two phosphorus donor atoms and a rigid 

backbone.  Five xanthene-based ligands were synthesized, characterized and complexed to cobalt 

and nickel.  In this study modification at position X was done by using a sulphur atom, a methyl 

group as well as an isopropyl group in order to observe the effect this has on the activation of n-

octane.   

Crystal structures of ligand (4,5-bis(di-p-tolylphosphino)-9,9-dimethyl xanthene)  and complex 

(Co(4,5-bis(di-p-tolylphosphino)-9,9-dimethylxanthene)Cl2) and (Ni(4,5-bis(di-p-

tolylphosphino)-9,9-dimethylxanthene)Cl2) were obtained.  The five cobalt and five nickel 

complexes were catalytically tested in the oxidation of n-octane, using three oxidants tert-butyl 

hydroperoxide, hydrogen peroxide and meta-chloroperbenzoic acid.  This was carried out in 

tetrahydrofuran solvent at varying temperatures.   

Hydrogen peroxide and meta-chloroperbenzoic acid gave no substantial activation, while tert-

butyl hydroperoxide showed activity.  Modifications to the backbone at position X brought 

changes to the bite angle and minor changes to activity.  Selectivity at 50 and 60 °C favoured the 

C-2 position with 2-octanone as the dominant product.  Terminal position showed no products of 

alkane oxygenation.  Alcohols (3-octanol and 4-octanol) were observed at higher temperatures.  

Steric factors had no significance effect on activity while temperature had a greater effect.  The 

temperature that was best to work with was 50 °C since all catalysts were active.  Sulphur had a 

deactivating effect on efficacy of both cobalt and nickel catalysts. 
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Chapter 1 

Introduction 

1.1 Catalysis 

The term catalysis was coined by Berzelius in 1836.  Many years later Ostwald described it as 

:“a substance which increases the rate at which a chemical reaction approaches equilibrium 

without becoming itself permanently involved” [1].  In simple terms, a catalyst is a substance that 

speeds up a reaction without itself being consumed in the reaction.  It does this by lowering the 

activation energy, making it easier for reactants to reach the final stage as products [2, 3].  

Catalysis is the core of many chemical processes that convert inexpensive raw materials into 

products of value that are relevant to human needs in energy, transportation, health and comfort.  

Catalysis is important in the industrial chemistry in the production of liquid fuels and bulk 

chemicals.  The more established areas of industrial catalysis include pharmaceutical, 

environmental and petrochemicals [4].  In a catalytic process, a catalyst usually goes through 

many cycles, meaning that it converts many substrates into products, hence the term turn-over 

number is used.  In reality, a catalyst is not active forever, because substances called poisons 

may hinder its activity.  A catalyst can be organic in nature, inorganic or a mixture of the two.  In 

the context of this study, in the main three types of catalysis are relevant: 

• biological (enzymatic)  

• heterogeneous 

• homogeneous 

Enzymatic catalysis is involved in many commercial applications even though it is a relatively 

new emerging discipline.  Heterogeneous catalysis by definition refers to a system whereby a 

substrate and the catalyst are brought together in different phases.  It was the first to be applied 

commercially in a large scale and heterogeneous catalysis still dominates.  In homogeneous 

catalysis a substrate and a catalyst are in one phase.  About 85% of chemical processes are run 

catalytically and the ratio of heterogeneous to homogeneous is 75:25.  In homogeneous catalysis, 
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proper ligand design is vital and an appropriate choice of ligand is important for tuning the 

catalytic activity and selectivity [5].  

1.2 History of C-H Activation 

The activation of C-H compounds started in the 1930s with the involvement of transition metal 

complexes.  It was only in the 1970s that metals like Pt, Pd, Ru, Co, Ir and Ti were used in the 

oxidation of alkanes.  At the end of 1980 and 1990, C-H activation by low valent metal 

complexes was replaced by high valent metal oxo-compounds and oxygen.  In the early 2000s 

attention was also growing on biological oxidation and its chemical models [6, 7]. 

1.3 C-H Activation 

The oxidation of alkanes into valuable products such as alcohols, ketones and aldehydes is very 

important to industry for detergents and perfumes [8].  The problem is, few methods for 

transforming alkanes into products of value exist.  This is due to the inertness of alkanes which 

results from the strong and localized C-C and C-H bonds [9].  Saturated hydrocarbons lack 

empty orbitals of low lying energy or filled orbitals of high energy that could participate in a 

chemical reaction.  Another factor attributing to this is that the reactions that use alkanes are 

thermodynamically unfavorable at mild temperatures of 30 to 40 °C [10, 11]. 

Selectivity is a major problem in C-H activation and there are two challenges associated with 

this:  

• chemoselectivity and 

• regioselectivity 

In chemoselectivity the product of alkane activation is more reactive than the starting material.  

An example, in (equation 1), shows a direct oxidation of methane to methanol.  Methanol is 

more reactive than methane and, as a result, the product formed is over-oxidized, since the 

strength of the C-H bond in methanol is weaker than that of methane itself. 

CH4(g) + 1/2 O2(g) CH3OH(l)

Ho = - 30.7 kcal mol-1                                                       (1) 
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Therefore, a more efficient way of methanol production is by first forming syngas and then using 

it to produce methanol as shown in (equation 2 and 3) [10]. 

CH4(g) + H2O(g) CO(g) + 3H2(g)

Ho = 49.3 kcal mol-1

Ni ,

     (2) 

CO(g) + 2H2(g) CH3OH(g)

Ho = - 21.7 kcal mol-1

Cu/ZnO

      (3) 

The use of radicals and electrophilic reagents for C-H activation shows that tertiary C-H bonds 

are attacked first over primary or secondary bonds.  As a result, the selectivity is not so high.  

Selectivity problems could be overcome by using organometallic systems.  These systems show 

that C-H bond activation in a reversed regioselectivity can be obtained [10-12].  The variety of 

organometallic systems includes: 

 

I Oxidative addition 

 

LmMn + R-H LmMn+2
H

R

      (4) 

             

               L = ligand (PMe3), M = metal, R = alkyl  

 

II Sigma bond metathesis 

 

R HLmMn R + R' H LmMn R' +    (5) 

 



4 
 

III 1,2 addition 

LmMn X + R H LmMn X

R H

X = O, NR, CR2      (6) 

 

IV Electrophilic activation 

 

LmMn X + R H LmMn R

X = halide, hydroxide, trif late, etc

+ HX

    (7) 

 

V Metalloradical activation 

 

[{(por)RhII}2] 2[(por)RhII ] R H
[(por)RhIIIR] + [(por)RhIIIH]  

                                  por = porphyrin 

 

The main disadvantage of these organometallic systems is that the metal in the complex does not 

tolerate oxidants such as hydrogen peroxide, which are also required for oxidation catalysis.  The 

only complex that is an exception to this is a platinum complex, which was introduced by Shilov 

and co-workers in 1969 [6].  This platinum complex is soluble in water, robust to air and 

moisture and can still attain the selectivity pattern similar to the organometallic systems [6, 7, 

10]. 

The chemical inertness of alkanes can be overcome, if the transformations are done at high 

temperatures between 300 – 500 °C.  The key disadvantage to this is that unwanted products are 

produced and the reactions are uncontrollable.  Alkanes such as methane are similar to molecular 
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hydrogen at room temperature.  Molecular hydrogen does not combine with oxygen in air at low 

temperatures to give water, however, this is possible at high temperatures [9].  

There are a few other methods such as cracking and thermal dehydrogenation that can be used to 

transform hydrocarbons into valuable products, but their drawback is that high energy is 

required, therefore making them expensive processes.  Such reactions, from an economic 

viewpoint, are unproductive as they also lack selectivity.  This has been a motivation to chemists 

to search for new ways to transform alkanes into valuable products under mild conditions with 

high selectivity.  A new method used highly reactive species such as superacids and free radicals, 

however, these species are expensive and the selectivity did not improve [13-15].  Furthermore, a 

method developed for alkane activation used coordination metal complex catalysis.  In this 

method, a molecule or its fragment enters the coordination sphere of the metal complex where it 

is chemically activated.  The mechanism involves a metal complex coordinating to the alkane C-

H bond resulting in an unstable product, which comprises of a carbon-metal bond and a metal-

hydride bond.  In addition to coordination complexes, biological systems are well-established for 

C-H activation [6, 8, 10, 12, 16].  It has been discovered that many enzymes can catalyze alkanes 

into valuable products at physiological temperatures, however a problem is volume limitation 

which limits this to small scale production only [12, 16, 17].  

1.4 Ligand design for C-H activation 

1.4.1 Ligand of choice 

Ligands are very important in transition metal complexes, because they control features such as 

stability, selectivity and activity by using their electronic and steric properties.  A lot of work on 

monodentate ligands has been done and it showed that various metal complexes e.g CAMP- 

(methylcyclohexyl-o-anisylphosphane) were highly active catalysts on reactions such as 

hydrocyanation, hydrogenation and hydroformylation.  In the early seventies, bidentate ligands 

such as DIPAMP were introduced and they showed superior selectivity and activity compared to 

monodentate ligands in reactions such as asymmetric hydrogenation.  Therefore, various 

transition metal complexes which contained bidentate ligands such as DIPAMP- ethane-1,2-

diylbis[(2-methoxyphenyl) phenylphosphane)], DIOP- (2,3-o-isopropylidene-2,3-dihydroxy-1,4-
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bis(diphenylphosphino) butane), BISBI-[2,2-bis((diphenylphosphino)methyl)-1,1-biphenyl]  and 

duxantphos have been investigated and they all showed excellent performance in several 

catalytic reactions [18, 19].  In this work, bidentate ligands were chosen, because most of them 

such as xanthene-based are known to be stable and show superior selectivity and activity in 

several reactions. 

1.4.2 Ligand design parameters 

Ligand design is very important in synthetic organometallic chemistry.  This is because the 

ligand controls the manner in which the metal center coordinates in the complex.  Ligands can 

contain different chemical donor functions, such as hard and soft donor atoms.  Figure 1.1 shows 

that there are many variables to consider when one designs a ligand, in this case a bidentate 

ligand [18].  The main tools to look at when designing a complex are ligand parameters as they 

play a vital role in the structure and reactivity of the metal complex.  

 

Figure 1.1: Parameters for bidentate design [18]. 

In bidentate phosphorus ligands the key parameters are contained in Figure 1.1 [18].  Electronic 

effects determine the behavior of the ligands and complexes in reactions and their stability is 

largely determined by the steric effects.  Another parameter that is used to describe the rigidity of 

a bidentate ligand is the flexibility range.  This is defined as the bite angles that can be reached 

within the energy barrier of 3 kcal.mol-1 [20]. 
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1.4.3 Ligand backbone 

Typically a ligand is a Lewis base that consists of a backbone and donor atoms.  The backbone is 

often a scaffolding of carbon atoms (linear, ring, etc), that keeps the donor atoms at a certain 

distance or orientation.  For diphosphine ligands different backbones result in different P…P 

distances.  A change in the P…P distance may affect catalytic activity, hence for these types of 

ligands, the P…P distance is significant in their design, coordination chemistry and application 

in catalysis.  The most common backbones are either straight chain or composed of aromatic 

rings [21-23]. 

Recent studies on bidentate ligands have shifted to the backbones that have heteroatoms such as 

silicon, nitrogen, oxygen and many others.  This is due to the effect they have on the selectivity 

and rates of the reaction.  Amongst these are different types of xanthene-based ligands (Figure 

1.2) [22, 24]. 
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Figure 1.2: Some xanthene-based ligands [22]. 

1.4.4 Donor atoms 

Donor atoms in a ligand are very important as they play a major role in catalytic performance.  

Generally, the donor atom is a heteroatom that binds to the central metal.  In a chemical 

transformation, it is the donor atom and its substituents that control accessibility to the metal for 

potential substrates [25].  Phosphorus is a soft donor atom that has been known for decades as a 

strongly ligating atom for late transition metals.  Their easy coordination to metal centres 
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through the lone pair of electrons on the phosphorus atoms and the variety of coordination modes 

makes phosphorus based ligands important and popular in catalysis [1, 26, 27]. 

Commonly, phosphorus containing ligands have been observed to coordinate to metal centres in 

one of the following manner:  

• monodentate 

• bidentate 

• tridentate 

A major difference between these coordination modes is the number of donor atoms used to bind 

to a metal [27].  In the terdentate fashion, the ligand coordinates in a pincer manner.  The most 

common types of pincer skeletons are NCN, NON, SCS, CNC, PNP, PONOP as well as PCP 

[28-30].  These donor atoms provide different chemical functions such as N, which is 

intermediate donor and P, a soft donor atom.  The pincer skeleton PCP was first reported by 

Moulton and Shaw 35 years ago [31, 32].  Phosphine ligands are good sigma donors and good 

pi-acceptors.  Alkyl phosphines are good sigma donors and that makes them strong bases, 

whereby phosphites are good pi-acceptors [33]. 

In terms of applications, phosphine based ligands are the most popular in hydroformylation and 

hydrogenation studies, an example is the known Wilkinson’s catalyst [1].  In the Shell process 

for alkene hydroformylation it was observed that the use of catalysts with phosphorus as donor 

atoms resulted in the formation of linear products, which is observed to a far lesser extent with 

the use of phosphine free catalyst [34].  

1.4.5 Transition metals in homogeneous catalysis 

Transition metals play a major role in homogeneous processes as they are incorporated in these 

systems.  They are divided into early and late transition metals, depending on their reactivity and 

coordination to other atoms.  Early transition metals are electronically hard metals that generally 

are intolerant of many functional groups in ligands.  Late transition metals are electronically soft 

metals that tolerate many functional groups.  Every ligand has a bonding motif, which originates 

from the type of donor atoms.  Early transition metals are suitable for hard ligands and late 

transition metal prefers soft ligand [35]. 
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1.4.6 Electronic effect 

This parameter gives an insight to how chemical bonds influence reactivity.  Electronics and 

sterics are inter-related parameters where a change in one may affect the other.  It shows how 

electrons move around the complex and the term electronic refers to the changes at the metal 

centre due to the movement of electrons (Figure 1.3) [18].  Donor atoms such as phosphines are 

known to have σ-basicity and π -acidity.  This put simply, phosphorus as a donor atom can act as 

a base through its lone pair by simply donating the lone pair to a metal.  When possessing π –

acidity properties, it allows π-back donation from the metal to its anti-bonding σ*-orbitals which 

play the role of π-acceptor orbitals.  The bond lengths are altered due to the transfer of electron 

density.  Therefore, this property classifies some ligands as basic and some as acidic and 

ultimately determines the stability of a complex.  This parameter focuses on the type of bonds 

created between complexes and differs from one metal to the other [1, 18, 22, 27]. 

 

                       

Figure 1.3: Electronic effects of ligands [18]. 

1.4.7 Steric effect 

The steric effect is defined by the Tolman’s steric parameter that measures the bulkiness of a 

ligand.  Tolman (Figure 1.4) measured cone angles by using CPK models, which is calculated 

based on the distance between the metal to the phosphorus and the substituents around the 

phosphorus [27].  It is a measurement of steric bulkiness in a metal-ligand complex.  Systematic 

studies have revealed that steric effects are as important as electronic effects, however, steric 

effects are better at explaining the stability of complexes.  The bigger the cone angle the bulkier 

the ligand, which in many cases can give rise to stable complexes.  This parameter can have a 
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major influence on the activity and selectivity of transition metal complexes in catalysis [18, 21, 

22, 25, 27, 36].  

 

Figure 1.4: Illustration of the Tolman's cone angle [37]. 

1.4.8 Natural bite angle  

This concept was introduced in 1990 by Whiteker and Casey, it a concept used to define 

diphosphine ligands such as the BISBI- [2,2-bis((diphenylphosphino)methyl)-1,1-biphenyl] 

ligand in hydroformylation [36, 38].  This concept is defined as the preferred chelation angle that 

is controlled by the ligand backbone and not by the metal valence angles.  It is believed to have 

an effect on the reactivity of the metal complexes [39].  Ligands with a wide bite angle are stable 

and favourable to catalytic performance[40].  In bidentate diphosphines based on xanthene, the 

backbone induces large bite angles, due to the rigidity in the backbone.  It shows possible 

changes to the central ring as the xanthene backbone changes the natural bite angle automatically 

(Figure 1.5), but the sterics and electronics are not affected [22].  Another parameter which goes 

with natural bite angle is the flexibility range, which is the range in which the bite angle can 

reach or have access to, within 3 kcal.mol-1 [1]. 
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Figure 1.5: Bite angle measured using bidentate ligand (a) and (b) and the example of the P-P 

distance determined by the xantphos backbone (c) [22]. 

1.5 Diphosphine complexes  

A complex is a metal ion surrounded by a set of ligands.  The metal ion is the Lewis acid in the 

complex and is also known as the acceptor atom.  Coordination complexes are of many different 

geometries, the most common being octahedral, tetrahedral, square planar and trigonal 

bipyramidal.  The type of bonding between a metal and a ligand can be through a sigma or  pi-

bond.  In general, bidentate diphosphine ligands form stable complexes, as some phosphine 

based ligands are good sigma donors while others are strong pi-acceptors.  

About a decade ago, the most reported diphosphines were those in which the carbon chain was 

longer than two carbons and those with an aromatic link between donor atoms.  This was mainly 

due to their ease of coordination to metal centres as well as variability of coordination modes.  

Lately, the more desired diphosphine ligands are those with larger bite angles and rigid 

backbones as they are believed to increase the migration rate.  Rigid backbone ligands have 

constrained geometries and certain coordination behavior that can affect the catalytic cycle by 

stabilization or destabilization of the initial, transition or final state [21]. 

The first diphosphine to meet required properties mentioned was Venanzi’s transphos as it had a 

rigid polyaromatic backbone which enforces the formation of trans chelates [21, 41].  The use of 

βn 

βn 
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fused ring hydrocarbon bridges such as anthracene was common.  Therefore, the most promising 

backbones are those that are heterocyclic such as xanthene-based backbone [21, 26, 27].  

1.5.1 Application of diphosphine ligands in catalysis 

Research has shown that diphosphine ligands based on the simple alkyl linkers dppe - 

(diphenylphosphino) ethane and dppp – (diphenylphosphino) propane were amongst those 

reported as highly stable [1].  They were reported to form stable organometallic complexes due 

to their chelating effect. Their application in catalysis was reported by many, but Iwamoto and 

Yuguchi were the first to report promising results for the co-dimerization of butadiene and 

ethene using an iron catalyst in 1966 [22].  The results showed that when ligands of varying 

bridge length, such as dppe, were used instead of PPh3 (monophosphine) low activity was 

obtained and this is explained by the chelate effect.  This effect showed a decline in the activity 

of these ligands.  Monophosphines then became the dominant field of study.  Years later, the 

introduction of BISBI in the late 1980’s was a major breakthrough, as this showed high 

regioselectivity in the formation of linear aldehydes in hydroformylation.  This was followed by 

other bidentate ligands such DIOP - (2,3-o-isopropylidene-2,3-dihydroxy-1,4-

bis(diphenylphosphino) butane) and DIPAMP - ethane-1,2-diylbis[(2-methoxyphenyl) 

phenylphosphane)] which became popular as effective asymmetric hydrogenation catalysts [1, 

20].  

In catalysis, diphosphine ligands (Figure 1.6) based on xanthene have mostly been applied in 

hydroformylation, cross-coupling, allylic alkylation, hydrocyanation, hydroamination and 

hydrogen transfer reactions.  In hydroformylation it was observed that application of ligands with 

a large bite angle (rhodium catalysed) favoured the formation of linear aldehydes [20, 22, 24].  

The DBFPhos – 4,6-bis(diphenylphosphino)dibenzofuran ligand was the only exception and this 

is explained by the way it coordinated to the metal centre.  At higher temperatures high 

selectivity was obtained.  Due to the rigid backbone of the ligand, coordination occured in a 

bisequitorial manner that was maintained even at high temperatures [20, 24, 40, 42].  Apart from 

hydroformylation, these bidentate ligands were also used in hydrocyanation by Du Pont, 

carbonylation chemistry and copolymerization of butadiene [1, 43]. 
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Recent work has revealed that diphosphines of xanthene-based ligands were applied industrially 

for the manufacture of sulphuric acid via the chamber process.  This led to renewed interest in 

bidentate ligands, which is still sustained to date [38]. 
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Figure 1.6: Diphosphine ligands [18, 44]. 

1.5.2 Xanthene–based ligands 

Xanthenes are a family of diphosphine ligands with wide natural bite angles.  Xanthene-based 

ligands resemble a butterfly in their structure and have bite angles larger than 90°.  When the 

bridge at the X-position (Figure 1.7(b)) is varied, small changes are observed with the bite angle, 

whilst the sterics and electronics remain unaffected [21, 23].  These ligands have a heterocyclic 

backbone, which makes them efficient catalysts.  Xanthene-based scaffolds can be flexible as in 

Fig 1.7 (a) or rigid as in Fig 1.7 (b).  The backbone is functionalized by donor atoms, which 

include amines, phosphines, sulfur, etc.  A donor atom of interest to this study is phosphorus.  It 

is the donor atom in conjunction with its substituents that controls the accessibility of the metal 

to a potential substrate as well as the electron density around the metal [25].  
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Figure 1.7: Generic structure of xanthene-based ligands with flexibility (a) and rigid (b) 

backbones. 

Xanthene based catalysts exhibit luminescence properties..  Those complexed to gold show rich 

photochemistry and they are used in the development of molecular sensors and switches or 

energy storage devices [45].  Other uses include dyes, and in the pharmaceutical and catalysis 

industries. 

In cross-coupling and allylic alkylation, the type of ligand used has a large impact on the 

catalysis.  In terms of reaction rate and selectivity, an increase was observed when catalysts with 

natural bite angles up to 102.7° were used.  Catalysts with natural bite angles larger than 102.7° 

result in decreased reaction rates and selectivities.  Steric hindrance induced by the ligand 

determines the reaction rate as well as the selectivities of the catalyst.  An increased natural bite 

angle was observed to increase steric hindrance to the substrate, thereby limiting access to the 

metal centre, resulting in high regioselectivity [27, 36].   

1.6 Biological catalysis 

1.6.1 Biomimetic catalysis 

In natural systems, the oxidation of alkanes is performed in two ways: through aerobic oxidation 

and anaerobic oxidation.  Enzymes that catalyse via activation of oxygen are referred to as 

monooxygenases.  The term monooxygenase simple means a group of enzymes catalyzing 
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alkanes by molecular oxygen.  These monooxygenases insert one oxygen from O2 into the C-H 

bond, while the other oxygen is reduced to form water (see Figure 1.8) [9]. 

C H + O2 + AH2 C OH + H2O + A

 

                                  AH2 = hydrogen donor 

Figure 1.8: Oxidation of alkanes by monooxygenase [6]. 

Many monooxygenases contain metals as part of their active sites for biological transformations.  

The majority of metals found in active sites of enzymes are iron and copper.  Examples of such 

enzymes are methane monooxygenase and cytochrome P450 [6, 46].  For a monooxygenase 

cycle to be complete a reducing agent from an organic component is required in the system.  This 

biological reductant will activate the molecular oxygen of the metalloenzyme.  These reductants 

transfer the electrons to the metal of the metalloenzyme, reducing it to react with the molecular 

oxygen and thereafter activating it, to react with alkanes.  Molecular oxygen activation creates 

peroxo and oxo-complexes which initiate the catalytic effect of monooxygenases [9]. 

Therefore in a biomimetic study chemical analogues of enzymes are synthesized and used in C-H 

activation.  Even though there have been analogues of enzymes, they have not been able to 

mimic the exact behavior of these enzymes.  Selectivity has been observed, but does not match 

that of the naturally occurring enzymes.  One offsetting condition about biomimetic catalysts is 

that they cannot accomplish the activation of C-H bonds under mild conditions [9].  

1.6.2 Methane monoxygenase in C-H activation 

The methane monooxygenases are those enzymes that are extracted from methane oxidizing 

bacteria.  The oxidation occurs as shown in (Equation 8): 

CH4(g) + O2 + NAD(P)H + H+ CH3OH + NAD(P)+ + H2O
MMO

             (8) 

                                NADPH = hydrogen donor 
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Methane monooxygenase is known as a non-heme enzyme, which means it does not require any 

heme-group for the activation of hydrocarbons.  Its mechanism involves the transfer of oxygen 

from a high valent metal oxo species into the alkane.  It oxidizes alkanes and shows highest 

activity of methane conversion to methanol.  It fails to oxidize aromatic hydrocarbons.  Many 

mimics of methane monooxygenase show high activity in alkane conversion but they all fail to 

oxidize methane to methanol under mild conditions [6, 7, 9, 47]. 

1.6.3 Cytochrome P450 monoxygenase in C-H activation 

The family of cytochrome P450 is a vast and diverse set of enzymes.  To date about 3800 

microbial P450 are known.  Only about 10-17% of these are said to be active towards 

degradations of fatty acids and alkanes.  There are approximately 500 cytochrome P450 

suprafamily that are known today.  They all differ from each other in the structure of their 

globular protein in the region of the active center and have similar prosthetic groups.  It is the 

most abundant in nature and it oxidizes saturated and unsaturated hydrocarbons.  P450 is a heme 

type methane monooxygenase (Figure 1.9). 

N

NN

N

-OOCCOO-

Fe

 

Figure 1.9: Structure of cytochrome P450 showing the heme structure [6]. 
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The structure of P450 consists of four coordination sites with iron involved in the active centre. 

The iron is coupled to nitrogen atoms from a porphyrin molecule and a sulfur atom in the fifth 

position from a cystein molecule.  It can break down any natural organic compound including 

alkanes, which are relatively chemically inert.  They can be degraded and used as a carbon 

source by bacteria and fungi [7, 9, 48].   

The catalytic cycle proposed for alkane oxidation, which uses dioxygen in the presence of P450 

consists of eight steps (see Scheme 1).  The initial step involves the change of P450 from a low-

spin form into a high spin form, which is followed by the second and third steps, the reduction 

steps where the dioxygen molecule is coupled to the Fe(II) ion.  The fourth and fifth steps 

involve the coordination of hydrogen and elimination of water.  In the sixth and seven steps, the 

cleavage of C-H bond in a substrate molecule and transfer of the second electron to 

oxycytochrome P450 forming Fe2+ O2- or Fe3+O2- species occurs.  The last step is the 

decomposition of these species into a superoxide and the rate constant for the formation of 

oxygenated products is 30 min-1 depending on the substrate and the nature of the enzymes [6, 7, 

9]. 
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Scheme 1.1: The catalytic cycle proposed for alkane oxidation by O2 promoted by cytochrome 

P450 [6]. 

1.7 Heterogeneous catalysis in C-H Activation 

In heterogeneous catalysis, the catalyst is usually present in a solid state and it catalyzes 

reactions in a liquid or gas phase.  Since these catalysts are solids they are impenetrable and that 

results in reactions taking place on the surface of the catalyst.  In most cases, these catalysts are 

supported on porous materials.  Therefore, the particles present are in the nanometer size range.  

Heterogeneous catalysis is the backbone of many chemical industries, since approximately 85% 

of industry processes use these catalysts [5, 49-51].  Heterogeneous catalysts are essential in: 
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1. Bulk and fine chemical production 

2. Minimization of waste products as they convert all the unwanted products into desirable 

products 

3. Prevention of pollution since they convert all pollutants from car exhausts  

4. Production of fuel for the motor industry 

Heterogeneous catalysis is more popular than homogeneous catalysis, because it comparatively 

offers some key advantages.  The catalysts are easily separated from the products, which make 

them favorable and important in large-scale industries.  Since heterogeneous catalysts are usually 

solids they are usually thermally more stable than homogeneous catalysts.  As a result, they give 

rise to higher reaction rates.  Deactivation of these catalysts involves deposition of by-products 

onto the catalysts surface, however, regeneration can often be performed by burning off the 

deposited by-products.  This is where the importance of thermally stable catalysts is important.  

This regeneration can also be done under in situ conditions, which is an advantage for large scale 

industries [1, 3, 52].  Examples of heterogeneous reactions are dehydrogenation, catalytic 

cracking, steam reforming, etc. 

1.8 Homogenous catalysis 

Homogeneous catalytic processes generally use soluble metal complexes of transition metals for 

the production of organic compounds.  This is due to the solubility of these catalysts in the 

reaction medium, which allows them control in chemoselectivity, regioselectivity, as well as 

enantioselectivity [48].  Homogeneous catalysts have disadvantages which limits their industrial 

use because their reactions may involve side reactions, which tends to minimize the 

concentration of the main product.  This can happen through the deactivation of the active 

species into inactive complexes.  Another disadvantage of homogeneous catalysis is the 

difficulty often encountered in separation of the products and reactants.  There are homogeneous 

catalysts that are commercialized, however, most of those give products with a low boiling point 

and therefore they are easily separable, or the organic ligands are not thermally sensitive.  The 

reasons for choosing homogeneous catalysts over heterogeneous are based on their selectivity, 

activity, ease of study and ease of modification [48]. 
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1.9 Methods of C-H bond activation using homogeneous catalysis 

1.9.1 Oxidative addition of paraffins 

Oxidative addition is a type of reaction that results in an increased coordination number as well 

as increased oxidation number of the metal atom.  In this reaction the coordination number 

increases by two and the total electron count increases by two at the metal atom.  Oxidative 

addition mostly occurs in d-group metals although sometimes it occurs with Grignard reagents.  

For oxidative addition to occur it requires a coordinative unsaturated metal centre and as a result 

these reactions are common with 16-electron square-planar metal complexes.  The kind of 

molecules that can be added oxidatively to a metal atom are alkyl halides, aryl halides, 

dihydrogen and simple hydrocarbons [9, 17].  Oxidation in a presence of C-H bond occurs when 

a molecule such as an alkane adds to a metal atom by first cleavage of the C-H bond and forming 

a new M-H and M-C bond.  The oxidative addition mechanisms are divided into: 

• concerted fashion,  

• SN2 (Nucleophilic Substitution) 

• radical oxidative addition. 

I Concerted oxidative addition 

When the substrate molecules coordinate to the metal centre, they are said to react in a concerted 

fashion.  This means the molecule is coordinated to form a ơ-bonded ligand.  Due to back 

bonding from the metal, this double bond oxygen cleaves making the two incoming ligands cis to 

each other (figure 1.10) [52].  
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Figure 1.10: The concerted oxidative addition mechanism [52]. 

II SN2 oxidative addition 

In SN2 oxidative addition (Figure 1.11), the two incoming ligands do not end up cis to each other 

and the chirality of the alkyl group is inverted.  This type of oxidative addition is common for 

molecules such as alkyl halides.  The lone pair of the metal attacks and cleaves the alkyl halide, 

which then coordinates, however, the coordination occurs via the SN2 mechanism.  
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Figure 1.11: SN2 oxidative addition mechanism [52]. 

III Radical oxidative addition   

This oxidative type of reaction is divided into two types, the non-radical chain and radical chain 

reaction.  In Figures 1.12 & 1.13, both types of reactions occur in the presence of alkyl halides.  

The only difference is that in the radical chain reaction a radical initiator is utilized, whereby in a 

non-radical chain it is the metal centre that cleaves the alkyl halide.  The non-radical chain route 

involves the movement of electrons from the metal centre to the alkyl halide, which cleaves and 

forms a halide ion and a radical alkyl.  
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Figure 1.12: Non-radical chain oxidative addition mechanism [52]. 
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Figure 1.13: Radical chain oxidative addition mechanism [52]. 

1.9.2 Reductive elimination 

Reductive elimination is the opposite of oxidative addition (Figure 1.14).  This type of reaction is 

mostly seen in higher oxidation states whereby the formal oxidation states of metal is reduced by 

two units in a reaction.  It occurs from the coordinatively saturated metal centre, where the two 

ligands in an 18-electron octahedral metal complex couple and eliminate from the metal centre.  

Oxidative addition and reductive elimination are reversible reactions.  The formation of one is 

thermodynamically favoured [9, 52].  
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Figure 1.14: Reductive elimination mechanism [52]. 

1.10 Future use of Hydrocarbons in Catalysis 

About 90% of all the products used will at one stage in their production require a catalyst [50].  

Hence catalysis is very important in the industrial world.  Catalysis has developed tremendously 

from humble beginnings in the 1880s both in diversity of application and applicable technology.  

Hydrogen production has a major impact in the industrial sector, since it is a promising energy 

carrier offering high-energy yields and limits secondary reactions.  The major source of 

hydrogen is gaseous and liquid hydrocarbons and this is due to their abundance.  Hydrogen is 

produced by the catalytic decomposition of liquid hydrocarbons via metal catalysis or a plasma 

approach with a decomposer, which consists of a catalytic bed of transition metals or carbon-

based catalysts.  This is the basis of fuel cell technology, which may be used in electricity 

production [50, 53]. 

1.11 The project aims and goal 

The main challenge in homogeneous catalysis is to produce stable, highly selective and highly 

active catalysts.  The key factor in designing such catalysts is based on the right choice of 

ligands.  A lot of interesting work has been done on diphosphine ligands with xanthene-based 

backbones and they have been utilized in homogeneous catalysis due to their large bite angle.  

Notable findings include the work by van Leeuwen and co-workers where xanthene-based 

ligands were applied in hydroformylation, hydrocyanation and hydrogenation as they showed 

high activity and selectivity [1, 20, 27, 39, 44].  No application of xanthene-based complexes has 

been observed in the C-H activation of n-octane.   

Therefore, alkanes will be the main focus on this study.  They are very abundant molecules as 

they are produced from natural gas and oil.  Production of linear alcohols is important in industry 
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as these are used as intermediates for the production of other chemicals.  They are used as 

feedstock in chemical production as they are cheaper than their derivatives.  Transformation of 

these hydrocarbons such as methane to methanol is important in energy production.  In industry, 

there should be no waste because what is considered as waste should always transformed into 

products of value.  As a result there are always new methods that are being developed into 

changing by-products such as hydrocarbons into valuable products.  The development of these 

new routes has increased the demand for the use of linear alkanes since they are selective and 

efficient.  

1-octanol is another important intermediate product in the production of α-olefins such as 1-

octene, which are used in chemical industry.  There is a high demand of 1-octene since it is one 

of the key products in the production of LLDPE (Linear Low Density PolyEthylene), which is a 

polymer used as a film in packaging.  Therefore, companies like SASOL have built a new plant 

in Secunda which was completed in 2007 only for production of 1-octenes.  1-octanol is 

converted into 1-octene by a dehydration process [54]. 

In this study, the aim is to: 

• Use xanthene-based complexes in the C-H activation of n-octane into products of 

value, which can find use e.g. in solvents, detergent and LLDPE production [55]. 

• Design and synthesize xanthene-based ligands, Figure 1.7(b), focusing on two 

primary parameters: 

! ligand backbone: By introducing small variations in the backbone this will affect the bite 

angle and have influence on catalytic activity [22, 29].  Therefore to substitute this Y-

position in Figure 1.7(b) by an aliphatic chain  

! bite angle:  

a) Two substituents will be used, electron withdrawing (phenyl ring) and electron 

donating (p-tolyl ring).   

b) The X-position will be exchanged with sulphur, a methyl group, as well as an 

isopropyl group.  
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• Attempt to chelate synthesized ligands onto metals such as cobalt and nickel, 

since very few complexes of these metals are known for xanthene-based ligands.  

These metals were used in this study because they are abundant and cheap.  

• Investigate the chelate effect on the activity of these catalysts, as it is known that 

highly stable complexes tend to be inactive, due to strong chelation between 

ligand and metal. 

• Investigate the effects of oxidants, tert-butyl hydroperoxide, hydrogen peroxide 

and meta-chloroperbenzoic acid, on the catalytic behavior of catalysts 

• Investigate the effects of temperature on activity: RT (room temperature), 50 °C 

and 60 °C.  
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Chapter 2 

Experimental 

2.1 General 

All reactions were performed using Schlenk techniques under an atmosphere of UHP grade 

argon.  All the solvents used were dried according to standard procedures and all catalytic 

reactions were performed under inert conditions with the solvents of analytical grade.  

Tetrahydrofuran (THF), diethyl ether, toluene and hexane were dried over sodium wire with 

benzophenone as the indicator.  Methanol and ethanol were dried over magnesium turnings and 

iodine.  Dichloromethane (DCM) was dried over phosphorus pentoxide.  

All chemicals, 9,9-dimethyl xanthene (2.1), hexanoyl chloride, aluminium chloride (AlCl3), 

magnesium sulphate anhydrous (MgSO4), magnesium turnings, triethylene glycol, sodium 

hydroxide (NaOH), bromopropane, xanthone, ammonium chloride, hydrochloric acid (HCl), 

sodium wire, benzophenone, potassium hydroxide (KOH), hydrazine monohydrate, silica gel, 

thin layer chromatography (TLC) plates, tetramethylethylenediamine (TMEDA), 1.6 M solution 

in hexane of n-BuLi, chlorodiphenylphosphine, chlorodi(p-tolyl)phosphine, CoCl2.xH2O and 

NiCl2.xH2O were purchased from Merck, Sigma Aldrich, and DLD Scientific and used as 

supplied. 

The reagents used in catalysis, oxidants and standards were: n-octane (99%), 1-octanol (99%), 2-

octanol (97%), 3-octanol (98%), 4-octanol (98%), 2-octanone (98%), 3-octanone (97%), 4-

octanone (99%), octanal (99%), octanoic acid (99%), pentanoic acid (98%), H2O2 (30%) and 

TBHP (70%) and were purchased from Sigma Aldrich, Merck or DLD Scientific. 

TMEDA was distilled and stored in a refrigerator.  Chlorodiphenylphosphine and chlorodi(p-

tolyl)phosphine were used as received.  2,8-dimethylphenoxathiin (2.7) was synthesized by 

Thashree Marimuthu [1] 
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Purification of ligands was done using column chromatography over silica and alumina.  

Purification of the metal complexes was conducted via recrystallization from suitable solvents. 

2.1.1 Instrumentation 

Structural elucidation was conducted using NMR, IR spectroscopy and Liquid Chromatography 

Mass Spectroscopy (LC-MS).  Melting point and elemental analysis were used to determine 

purity.  Lastly, single crystal X-Ray diffraction was undertaken for structure determination. 

All NMR spectra were recorded on a Bruker Avance III 400 MHz spectrometer at ambient 

temperature.  The 1H-NMR spectra were reported as chemical shifts in parts per million (ppm) 

and referenced to CDCl3 with the solvent peak (7.24).  Multiplicity, number of protons and 

coupling constants are reported.  13C-NMR was reported as chemical shifts in ppm and 

referenced to the CDCl3 peak (δ = 77.0), multiplicity due to (C-P) coupling, coupling constant 

and number of carbons.  Melting points were recorded using a Bibby Stuart Scientific. 

Significant band modes for structure elucidation were recorded using a Perkin Elmer FTIR 

spectrophotometer with an Attenuated Total Reflectance (ATR) kit.  LC-MS was recorded with 

an Agilent Technologies 1200 Series Quaternary. 

2.1.2 Experimental Methods 

2.1.2.1  4,5-bis(diphenylphosphino)-9,9-dimethyl xanthene  (2.2) 

Ligand 2.2 was prepared according to the literature method [1-5].  A Schlenk tube saturated with 

argon and filled with a solution of compound 2.1 (1 g, 1.72 mmol) and TMEDA (0.70 ml, 4.47 

mmol) in THF was cooled to 0 °C.  n-BuLi (2.79 ml, 4.47 mmol) was then added to the chilled 

mixture.  The reaction was allowed to warm up to room temperature and left to stir for 16 h.  

Thereafter the resulting dark red solution was cooled to 0 °C and chlorodiphenylphosphine (  

0.80 ml, 4.47 mmol) was added dropwise and the reaction was left to stir for another 16 h at 

room temperature.  It was then hydrolysed with 10% HCl, brine and extracted with DCM (3 x 20 

ml) under inert conditions.  The organic fractions were dried with MgSO4 and the solvent was 

removed under reduced pressure, resulting in an oil.  The oil was triturated with diethyl ether and 
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evaporated to offer an off-white powder.  It was further washed with hexane (3 x 10 ml) and left 

to dry overnight in vacuo. 

O

PPh2PPh2  

 

Yield:                                          55%, 0.54 g (white powder) 

MP:                                            219-222 °C (lit. value 221-222 °C) 

1H NMR (400 MHz, CDCl3,δ):  7.37 (dd, J = 7.4, 1.4 Hz, 2H), 7.22 – 7.14 (arom, 20H),  

                                                    6.95 (t, J = 7.6 Hz, 2H), 6.54 (dd, J = 7.4, 1.4 Hz, 2H),  

                                                    1.62 (s, 6H). 

13C NMR (101 MHz, CDCl3,δ):150.26 (t, CO), 138.60 – 134.22 (m, C), 133.80 (t, CH),  

                                                    132.02 (CH), 128.12 (CH), 128.02 (d, CH),  

                                                    126.30 (CH), 126.21 – 125.70 (m, CP), 123.10 (CH), 

                                                    34.40 (C), 31.84 (CH3). 

31P NMR (162 MHz, CDCl3,δ): -17.9 ppm 

IR:                                               1398(s), 1432(w), 1560 (w), 1458 (w), 3056 (w), 

                                                     2951 (w), 2974(w), 1098 (s), 1231 (m), 688 (s) 

2.1.2.2  4,5-bis(di-p-tolylphosphino)-9,9-dimethyl xanthene  (2.3) 

This compound was prepared analogous to compound 2.2 using chlorodi(p-tolyl)phosphine (1.92 

ml, 9.0 mmol), TMEDA (1.34 ml, 9.0 mmol), n-BuLi (5.6 ml, 9.0 mmol) and compound 2.1 (2 

g, 3.5 mmol). 

2.2 
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O

P(p-tolyl)2P(p-tolyl)2  

 

Yield:                                           64%, 3.85 g (off-white powder) 

MP:                                              259-261 °C 

1H NMR (400 MHz, CDCl3,δ):    7.35 (dd, J = 7.7, 1.1 Hz, 2H), 7.04 – 6.97 (arom., 20H),  

                                                     6.93 (t, J = 7.6 Hz, 2H), 6.54 (dd, J = 7.5, 1.6 Hz, 2H),  

                                                     2.28 (s, 12H), 1.61 (s, 6H). 

13C NMR (101 MHz, CDCl3,δ): 152.71 – 152.52 (t, CO), 137.79 (C), 133.98 – 133.77 (t, C),                          

                                                     132 (s, CH), 129.89 (s, CH ), 128.92 – 128.85 (t, C),  

                                                     126.07 (s, CH), 123.20 (s, CH), 34.44 (s, CH2),  

                                                     31.74 (s, CH2), 21.34 (s, CH3). 

31P NMR (162 MHz, CDCl3,δ): -19.6 ppm  

IR:                                               1405 (s), 1440 (w), 1495 (w), 1563 (w), 3012 (w),  

                                                     2864 (w), 2967 (w), 1091 (s), 1239 (m), 625 (s) 

2.1.2.3 (2,7-di-n-hexanoyl-9,9-dimethyl xanthene) (2.4) 

This synthetic method was adapted from literature [1, 6].  To an argon saturated Schlenk tube, 25 

ml of DCM was purged with argon.  Then a solution of compound 2.1 (1.8 ml, 11.4 mmol) and 

hexanoyl chloride (3.2 ml, 23.5 mmol) were added and cooled to 0 °C.  To the chilled reaction 

mixture, AlCl3 (3 g, 22.5 mmol) was added slowly, the reaction was allowed to then warm to 

room temperature and left stirring for 5 h.  After stirring for 5 h it was poured into chilled water 

2.3 
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and extracted with (3 x 20 ml) DCM.  Organic fractions were combined and dried with MgSO4. 

The solvent was removed under reduced pressure to give a crude pale yellow powder.  The solid 

was washed with pentane several times to remove the unreacted starting material.  It was 

transferred into a round bottom flask fitted with a tap and dried overnight.  

O

OO

 

 

Yield:                                          81%, 3.73 g (yellow powder) 

MP:                                             70 – 72 °C 

1H NMR (400 MHz, CDCl3, δ):  8.11 (s, 2H), 7.84 – 7.82 (d, J = 8.50, 1.94 Hz, 2H),   

                                                    7.11 (d, J = 8.52 Hz, 2H), 2.96 (t, J = 7.40 Hz, 4H),  

                                                    1.70 (s, 6H), 1.40 – 1.36 (m, J = 10.44 Hz, 8H),  

                                                     0.94 – 0.90 (m, J = 13.96 Hz, 6H). 

13C NMR (101 MHz, CDCl3,δ): 199.17 (C=O), 153.17 (CO), 133,01 (C), 129.88 (C) 

                                                    128.17 (CH), 127.12 (CH), 116.57 (CH), 38.39 (C) 

                                                    34.16 (CH2), 32.85 (CH2), 31.59 (CH3), 24.23 (CH2), 

                                                    22.54 (CH2), 13.96 (CH3). 

2.1.2.4  2,7-di-n-hexyl-9,9-dimethyl xanthene  (2.5) 

This was prepared according to literature [1, 6].  To a flame dried Schlenk tube fitted with a 

condenser, triethylene glycol 15 ml and compound 2.4 (1 g, 2.5 mmol) was added.  To this 

stirred mixture NaOH pellets (0.6 g, 15 mmol) and hydrazine monohydrate (0.98 ml, 31.2 mmol) 

was added.  The reaction mixture was refluxed for 1 h at temperature between 110 – 115 °C. 

Compound 2.4 was then dissolved at 110 °C and thereafter, the condenser was removed and the 

2.4 
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temperature was raised to 195 °C.  The condenser was reattached and the reaction was refluxed 

for another 3 h at 220 °C. After 3 h the reaction mixture had turned yellow.  It was cooled to 

room temperature then diluted with DCM 20 ml and hydrolyzed with 10% aqueous HCl (3 x 10 

ml).  The organic fractions were combined and the solvent was removed under reduced pressure 

to get a crude yellow powder.  The crude product was chromatographed on a silica gel with 

100% hexane elution to afford a colourless oil. 

O  

 

 Yield:                                         37%, 0.35 g (colourless oil) 

1H NMR (400 MHz, CDCl3,δ):   7.16 (d, J = 1.84 Hz, 2H), 6.98 (d, J = 1.92 Hz, 2H),  

                                                     6.96 (d, J = 1.92 Hz, 2H), 2.57 (t, J = 7.76 Hz, 4H),  

                                                     1.60 (s, 6H), 1.31-1.28 (m, J = 5.16 Hz, 12H),  

                                                     0.88 (s, 6H). 

13C NMR (101 MHz, CDCl3,δ):  162.67 (CO), 151.25 (C), 133.02 (C), 129.76 (C), 

                                                     126.32(CH), 125.26 (CH), 116.30 (CH), 61.79 (CH2), 

                                                     34.24 (CH2), 32.76 (C), 32.56 (CH2), 32.22 (CH3), 

                                                     31.72 (CH2), 28.98 (CH2), 22.39 (CH2), 13.98 (CH3). 

2.1.2.5  4,5-bis(diphenylphosphino)-2,7-dihexyl-9,9-dimethyl xanthene  (2.6) 

This compound was prepared analogous to compound 2.2 using chlorodiphenylphosphine (0.43 

ml, 2.4 mmol), TMEDA (0.36 ml, 2.4 mmol), n-BuLi (1.5 ml, 2.4 mmol) and compound 2.5 

(0.35 g, 0.92 mmol). 

2.5 
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O

PPh2PPh2

(CH2)4CH3CH3(CH2)4

 

 

Yield:                                           47%, 0.32 g (white powder) 

MP:                                              152 – 154 °C 

1H NMR (400 MHz, CDCl3,δ):    7.21 (d, 2H), 7.19 – 7.13 (arom, 20H), 6.3 (d, 2H), 

                                                     2.38 (t, J = 6.98 Hz, 4H), 1.60 (s, 6H), 1.30 – 1.15  

                                                     (m, 16 H), 0.84 (t, J = 6.92 Hz, 6H). 

13C NMR (101 MHz, CDCl3,δ): 150.89 (s, CO), 137.75 – 137.62 (t, C), 137.12 (s, C),  

                                                    133.98 – 133.78 (t, CH), 131.88 (s, CH), 129.54 (s, C),  

                                                    128.06 -127.98 (t, CH), 126.20 (s, CH2),  

                                                    35.31 (s, CH3), 34.50 (s, CH2), 31.86 –30.97 (q, CH2),  

                                                    28.61 (s, CH2), 22.57 (s, CH2), 14.07 (s, CH3). 

31P NMR (162 MHz, CDCl3,δ):-17.8 ppm 

IR:                                               1418 (s), 1432 (w), 3054 (w), 2955 (w), 2921 (w),  

                                                    2851 (w), 1091 (s), 1239 (m), 691 (s) 

MS:                                             Calc. of C51H56OP2, 746.38, found 769.38 [M + Na]+ 

2.1.2.6  9-isopropyl-9H-xanthen-9-ol (2.8) 

The preparation of this compound involves a Grignard reaction.  The synthesis was taken from 

literature [7].  A Schlenk tube flushed with argon was filled with 20 ml of dry ether and 2-

bromopropane (8.5 ml, 89.2 mmol) which was then stirred at 0 °C.  This was followed by the 

2.6 
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addition of fresh magnesium turnings (2.2 g, 89.2 mmol) which was added slowly and continued 

stirring at 0 °C.  After 2 h, the reaction mixture had turned murky white with all the magnesium 

reacted.  A solution of xanthone (3.5 g, 17.8 mmol) in 10 ml of dry diethyl ether was added to 

the chilled Grignard reaction.  The reaction mixture was then allowed to warm up to room 

temperature and refluxed for 1 h.  It was then cooled to room temperature and diluted with 

diethyl ether (20 ml).  Thereafter, the reaction was cooled to 0 °C and quenched using 

ammonium chloride solution which was added drop wise.  The reaction mixture was filtered and 

the organic layer extracted twice with diethyl ether.  The fractions were combined and dried over 

anhydrous MgSO4.  The solvent was removed under vacuum to give a yellow viscous oil which 

was passed through a silica column (hexane 90/ diethyl ether 10 solvent elution).  The product 

was dried to get a white powder. 

O

HO

 

 

Yield:                                          54%, 2.3 g (white powder) 

MP:                                              69 – 70 °C 

1H NMR (400 MHz, CDCl3,δ):    7.66 (dd, J = 7.8, 1.6 Hz, 2H), 7.29  

                                                     (dd, J = 7.3, 1.7 Hz, 2H), 7.18 -7.07 (m, 4H), 

                                                     2.22 (s, 1H, OH), 2.10 (m, 1H), 0.71 (d, J = 6.8 Hz, 6H). 

13C NMR (101 MHz, CDCl3,δ): 152.01 (CO), 128.60 (C), 127.10 (CH), 126.90 (CH),  

                                                    123.02 (CH), 116.12 (CH), 72.14 (C), 42.62 (CH),  

                                                    16.80 (CH3). 

2.8 
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2.1.2.7  10-isopropylidene xanthene  (2.9) 

In a Schlenk tube flushed with argon, 20 ml of DCM was degassed with argon.  Thereafter, 

compound 2.8 (1g, 4.2 mmol) was dissolved followed by the addition of p-toluene sulfonic acid 

monohydrate (1.6 g, 8.4 mmol).  The reaction was refluxed for 2 h and monitored with TLC.  

The reaction was allowed to cool to room temperature, followed by the slow addition of 10 ml of 

deionized water and 15 ml of 10% sodium hydroxide.  The organic layer was extracted with 

DCM twice and dried over anhydrous MgSO4.  It was filtered and dried under vacuum to give a 

solid which was purified through a silica column with 100% hexane.  The solvent was 

evaporated to give a yellow solid. 

 

O  

 

Yield:                                          60%, 0.56 g (yellow solid) 

MP:                                             79 – 80 °C 

1H NMR (400 MHz, CDCl3,δ):   7.38 (dd, J = 7.6, 1.3 Hz, 2H), 7.17 (m, 4H),  

                                                    7.09 (m, 2H), 2.09 (s, 6H). 

13C NMR (101 MHz, CDCl3,δ): 152.21 (CO), 130.60 (C), 129.40 (CH), 128.03 (CH),  

                                                    126.95 (C), 122.42 (CH2), 120.20 (CH), 116.19 (CH), 

                                                     23.20 (CH3). 

2.9 
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2.1.2.8  4, 5-bis(diphenylphosphino) 10-isopropylidene xanthene  (2.10) 

Ligand 2.10 was prepared similarly to ligand 2.2 using compound 2.9 (0.3 g, 1.35 mmol), 

TMEDA (0.53 ml, 3.51 mmol), 1.6 M n-BuLi (2.2 ml, 3.51 mmol) and PPh2Cl (0.63 ml, 3.51 

mmol) in 10 ml of dry hexane. 

O

PPh2PPh2  

 

Yield:                                           63%, 0.5 g 

MP:                                              212-214 °C 

1H NMR (400 MHz, CDCl3,δ):   7.36 (dd, J = 7.6, 1.4 Hz, 2H), 7.23 – 7.22 (arom, 20H),  

                                                     7.01 (t, J = 7.6 Hz, 2H), 6.56 (dd, J = 7.6, 1.7 Hz, 2H), 

                                                     2.10 (s, 6H). 

13C NMR (101 MHz, CDCl3,δ): 151.30 (t, CO), 137.22 (s, C), 134.14 – 133.94 (t, CH),  

                                                     131.47 (s, CH), 131.31 (s, C), 128.97 (s, CH),  

                                                     128.25 – 128.14   (q, CH), 126.34 (s, CH),  

                                                     122.85 (s, C), 122.66 (s, CH), 23.28 (s, CH3). 

31P NMR (162 MHz, CDCl3,δ):-17.9 ppm 

IR:                                                1393 (s), 1417 (w), 1433 (w), 3057 (w), 2932 (w),  

                                                     1068 (s), 1220 (m), 692 (s) 

2.10 
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2.1.2.9  Co(4,5-bis(diphenylphosphino)-9,9-dimethyl xanthene)Cl2  (2.11) 

This method was adapted from literature [8].  To a solution of anhydrous cobalt(II) chloride 

(0.24 g, 1.0 mmol) and compound 2.2 (0.54 g, 0.93 mmol ) in THF (10 ml) was refluxed at 80 °C 

for 3 h.  Thereafter the solution was cooled to room temperature and diethyl ether was added.  

The volume of solvent was reduced in vacuo to yield a blue solid which was filtered and dried in 

vacuo.  

O

PPh2Ph2P Co
Cl Cl  

 

Yield:                                       83%, 0.55 g (blue powder) 

MP:                                          387-390 °C 

IR:                                            1409 (s), 1436 (w), 3061 (w), 2975 (w), 1100 (s),  

                                                 1243 (m), 690 (s) 

EA of C39H32OP2CoCl2:         %C - 66.64 (66.22). 

                                                %H - 4.30 (4.55) 

2.1.2.10 Co(4,5-bis(di-p-tolylphosphino)-9,9-dimethyl xanthene)Cl2 (2.12) 

This compound was prepared analogous to compound 2.11 by using compound 2.12 (0.30 g, 

0.47 mmol) and anhydrous cobalt(II) chloride (0.14 g, 0.59 mmol).  

2.11 
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O

P(p-tolyl)2(p-tolyl)2P Co
Cl Cl  

 

Yield:                                       83%, 0.30 g (indigo blue powder) 

MP:                                          448-450 °C 

IR:                                            1411 (s), 1435 (w), 3052 (w), 2957 (w), 2975 (w),  

                                                 1098 (s), 1246 (m), 621 (s) 

EA of C43H40OP2CoCl2:         %C 67.90 (67.55) 

                                                %H 5.06, (5.27) 

2.1.2.11 Co(4,5-bis(diphenylphosphino)-2,7-dihexyl-9,9-dimethyl xanthene)Cl2  (2.13) 

This compound was prepared analogous to compound 2.11 by using anhydrous cobalt(II) 

chloride (0.09 g, 0.38 mmol) and ligand 2.6 (0.24 g, 0.32 mmol).  

O

PPh2Ph2P

(CH2)4CH3CH3(CH2)4

Co
Cl Cl  

 

Yield:                                      42%, 0.12 g (blue powder) 

MP:                                         250-251°C 

2.13 

2.12 
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IR:                                           1422 (s), 3049 (w), 2924 (w), 2954 (w), 2855 (w),  

                                                1099 (s), 1239 (m), 691 (s) 

EA of C51H56OP2CoCl2:        %C 70.42 (69.95) 

                                               %H 6.27 (6.44) 

2.1.2.12 Co(Thixantphos)Cl2  (2.14) 

This compound was prepared analogous to compound 2.11 by using the thixantphos ligand (0.15 

g, 0.26 mmol) and anhydrous cobalt(II) chloride (0.06 g, 0.25 mmol).  

O

S

PPh2Ph2P Co
Cl Cl  

 

Yield:                                       66%, 0.12 g (pale blue powder) 

MP:                                          379-382 °C (decomposed) 

IR:                                            1410 (s), 1435 (m), 1480 (w), 3046 (w), 2865 (w),  

                                                 1094 (s), 1207 (m), 1243 (m), 694 (s) 

2.1.2.13 Co(4,5-bis(diphenylphosphino) 10-isopropylidene xanthene)Cl2  (2.15) 

This compound was prepared analogous to compound 2.11 by using ligand 2.10 (0.15 g, 0.25 

mmol) and anhydrous cobalt(II) chloride (0.055 g, 0.23 mmol).  

2.14 
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O

PPh2Ph2P Co
Cl Cl  

 

Yield:                                       82%, 0.14 g (blue powder) 

MP:                                          398-401 °C (decomposed) 

IR:                                            1402 (s), 1436 (m), 1482 (w), 3074 (w), 2960 (w),  

                                                  2861 (w), 1101 (s), 1227 (m), 692 (s) 

2.1.2.14 Ni(4, 5-bis(diphenylphosphino)-9,9-dimethyl xanthene)Cl2   (2.16) 

This method was adapted from literature [9, 10].  Two Schlenk tubes were used.  One was filled 

with a solution of NiCl2 hydrate (0.06 g, 0.25 mmol) in 5 ml of methanol and the other with a 

solution of compound 2.2 (0.15 g, 0.26 mmol) in 5 ml of DCM.  The solution containing 

compound 2.2 in DCM was added dropwise by cannula into the solution of NiCl2 under argon 

atmosphere.  The reaction mixture was then heated to 50°C and stirred for 2 h.  After 2 h, a green 

precipitate was observed and the reaction mixture was cooled to room temperature and filtered.  

The green powder obtained was washed several times with hexane and dried over night under 

high vacuum.  

O

PPh2Ph2P Ni
Cl Cl  

 

2.15 

2.16 
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Yield:                                       50%, 0.09 g (green powder) 

MP:                                       > 350 °C (decomposed) 

IR:                                           1411 (s), 1435 (w), 3052 (w), 2957 (w), 2975 (w),  

                                                1098 (s), 1246 (m), 689 (s) 

EA of C39H32OP2NiCl2:          %C 63.53 (63.16) 

                                                %H 6.91 (6.51) 

2.1.2.15 Ni(4, 5-bis(di-p-tolylphosphino)-9,9-dimethyl xanthene)Cl2   (2.17) 

This complex was prepared analogous to complex 2.16 using ligand 2.3 (0.054 g, 0.085 mmol) 

and NiCl2 hydrate (0.03 g, 0.13 mmol). 

O

P(p-tolyl)2(p-tolyl)2P Ni
Cl Cl  

 

Yield:                                       49%, 32 mg (olive green) 

MP:                                       > 350 °C (decomposed) 

IR:                                           1425 (s), 3052 (w), 2953 (w), 2925 (w), 2855 (w), 

                                                1099 (s), 1239 (m), 620 (s) 

EA of C43H40OP2NiCl2:         %C 67.39 (67.57) 

                                                %H 5.05 (5.27) 

2.17 
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2.1.2.16 Ni(4, 5-bis(diphenylphosphino)-2,7-dihexyl-9,9-dimethyl xanthene)Cl2   (2.18) 

Complex 2.18 was prepared analogous to complex 2.16 using compound 2.6 (0.2 g, 0.27 mmol) 

and NiCl2 hydrate (0.093 g, 0.39 mmol). 

O

PPh2Ph2P

(CH2)4CH3CH3(CH2)4

Ni
Cl Cl  

 

Yield:                                       45%, 0.11 g (dark green) 

MP:                                          258–260 °C 

IR:                                           1425 (s), 3052 (w), 2525 (m), 2953 (m), 2855 (w),  

                                                1099 (s), 1239 (m), 691 (s) 

EA of C51H56OP2NiCl2:          %C 69.72 (69.88) 

                                                %H 6.38 (6.44) 

2.1.2.17 Ni(thixantphos)Cl2   (2.19) 

This complex was prepared analogous to complex 2.16 using thixantphos ligand (0.15 g, 0.26 

mmol) and NiCl2 hydrate (0.05 g, 0.21 mmol). 

O

S

PPh2Ph2P Ni
Cl Cl  

 

Yield:                                       80%, 0.12 g (olive green) 

2.18 

2.19 



46 
 

MP:                                          366-370 °C 

IR:                                           1412 (s), 1434 (m), 1480 (w), 3051 (w), 2865 (w), 

                                                1094 (s), 1207 (w), 1243 (m), 693 (s) 

2.1.2.18 Ni(4,5-bis(diphenylphosphino) 10-isopropylidene xanthene)Cl2   (2.20)  

This complex was prepared analogous to complex 2.16 using ligand 2.10 (0.15 g, 0.25 mmol) 

and NiCl2 hydrate (0.055 g, 0.23 mmol). 

O

PPh2Ph2P Ni
Cl Cl  

 

Yield:                                      82%, 0.14 g (dark green) 

MP:                                         387-390 °C 

IR:                                           1404 (s), 1435 (m), 1481 (w), 3050 (w), 2865 (w),  

                                                1101 (s), 1229 (m), 691(s) 

 

 

 

  

2.20 
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Chapter 3 

Results & Discussion 

3.1 Introduction 

3.1.1 Preparation of Ligands 

All the ligands prepared in this study are built around the general xantphos structure depicted in 

Figure 3.1.  At position X, different donors were introduced which contribute to the electronic 

variability of the backbone without affecting the electronic environment around the phosphorus 

donors.  Hence, to get the thio-derivative, the carbon atom was replaced by the more electron 

withdrawing heteroatom sulphur at position X.  For other ligands, the carbon atom was 

mantained, only the functionality on the carbon was varied with a methyl group and then an 

isopropyl group.  The substitution at position Y with an aliphatic chain was done to change the 

solubility of the ligand in organic solvents.  The substituents of the phosphorus donor atoms were 

varied to study their effect on the reactivity of the catalyst.  Phenyl substituents were replaced 

with more electron donating p-tolyl ones in order to induce positive electronic effects around the 

environment of the phosphorus donor atom [1]. 

 

O

X YY

PR2 PR2  

Figure 3.1: General structure of the ligands studied in this project. 

The preparation of these ligands involved the abstraction of the acidic proton from the respective 

backbone, followed by lithiation, which is a critical step as it requires very-dry reagents.  

Therefore, the Lewis base (TMEDA) used was distilled to remove any moisture and the whole 
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process was conducted using Schlenk techniques under an atmosphere of argon gas.  The 

solvents used were dry and the n-BuLi was added via a syringe flushed with argon.  To couple 

the phosphorus to the respective backbones, electrophilic PR2Cl was used and this required 

moisture and oxygen free conditions, since PR2Cl oxidizes easily.  Synthesis was continued 

using Schlenk techniques under argon gas to eliminate any oxygen [1-4]. 

In this work, four ligands were synthesized and one was purchased.  Of the four that were 

synthesized, one (ligand 2.3) is new.  For the complexes, all five ligands were complexed to 

cobalt and then to nickel.  To our knowledge, eight of the complexes are novel.  Scheme 1 shows 

the general procedure for the preparation of ligands (2.2-2.10).  Tables 3.1, 3.2, 3.3 and 3.4 

respectively show percentage yields of the synthesized precursors, ligands and the complexes. 

 

O

X
1. TMEDA, nBuLi,
Et2O, 0 oC, 16 h

2. PPh2Cl, hexane
0 oC, 16 h

O

X

PR2 PR2

YYY Y

 

X = C(Me)2,  Y = H   R = PPh2   2.2 

X = C(Me)2,  Y = H   R = P(p-tolyl)2  2.3 

X = C(Me)2,  Y = (CH2)5Me  R = PPh2   2.6 

X = C=C(Me)2 Y = H   R = PPh2   2.10 

Scheme 3.1: General procedure for the synthesis of ligands (2.2, 2.3, 2.6 & 2.10). 

3.1.2 NMR Analysis 

NMR spectroscopy is the dominant characterization technique most suited to the elucidation of 

ligand structures.  Hence, in this study, 1H, 13C and 31P NMR were employed.  

The most significant peaks for xanthene-based ligands appear in the aromatic and aliphatic 

regions.  Xanthene-backbones are symmetric in nature with a C2 plane passing through the X 
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and oxygen atoms (Table 3.1).  1H-NMR spectra of ligands 2.2, 2.3, 2.6 and 2.10 are represented 

in Figures 3.2-3.5 with the assignment of important peak positions summarized in Table 3.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 
 

Table 3.1: Precursors and their percentage yields. 

Name Precursor Yield% 

   

 

O

O

O

OO

O

OH

O  

 

 

 

 

 

2.1 

54 

2.5 

2.4 81 

purchased 

37 

2.8 

2.9 60 
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Table 3.2: Ligand structures and their percentage yields. 

O

PPh2PPh2

O

P(p-tolyl)2P(p-tolyl)2

O

S

PPh2PPh2

O

PPh2PPh2

(CH2)4CH3CH3(CH2)4

O

PPh2PPh2

2.2

2.3

2.6

2.7

2.10

55

64

47

previously synthesized

63

Name Ligand Yield %

(reference 17)
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O

PPh2Ph2P Co
Cl Cl

O

P(p-tolyl)2P(p-tolyl)2 Co
Cl Cl

O

S

PPh2Ph2P Co
Cl Cl

O

PPh2Ph2P Co
Cl Cl

O

PPh2Ph2P

(CH2)4CH3CH3(CH2)4

Co
Cl Cl

2.11

2.13

2.12

2.14

2.15

83

83

42

66

82

Name Complex Yield %

 

 

 

Table 3.3: Cobalt complexes and their percentage yields. 
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O

PPh2Ph2P Ni
Cl Cl

O

P(p-tolyl)2(p-tolyl)2P Ni
Cl Cl

O

S

PPh2Ph2P Ni
Cl Cl

O

PPh2Ph2P Ni
Cl Cl

O

PPh2Ph2P

(CH2)4CH3CH3(CH2)4

Ni
Cl Cl

2.16

2.17

2.18

2.19

2.20

50

49

45

80

82

Name Complex Yield %

 

 

Table 3.4: Nickel complexes and their percentage yields. 
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In ligand 2.2 (Figure 3.2), position1 represents the two shielded methyl groups which gave rise to 

a singlet at 1.62 ppm.  They appear as a singlet because they are in equivalent chemical 

environments due to the symmetric backbone.  Protons on position 2 of the phenyl rings appear 

as a doublet of doublets at 6.54 ppm and those on position 3 as a triplet at 6.95 ppm.  The 

multiplicity is due to the neighbouring protons that couple with them.  Position 4, which is a 

doublet of doublets, resonates at 7.37 ppm.  It is more deshielded when compared to other 

protons in the ring due to the negative inductive effect of the neighbouring oxygen atom, which 

pulls electron density from position 4 leaving it deshielded.  The rest of the protons are aromatic 

protons from the phenyl rings which appear, as expected, between 7.22 – 7.14 ppm. 

 

Figure 3.2: 1H NMR of ligands 4,5-bis(diphenylphosphino)-9,9-dimethyl xanthene (2.2). 

Ligand 2.3 (Figure 3.3) differs from ligand 2.2 due to the methyl groups on the phenyl rings at 

the para-position to the donor P atom.  Protons b of the methyl groups appear as a singlet at 2.28 

ppm and integrate to 12 units. 
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Figure 3.3: 1H NMR of ligand 4,5-bis(di-p-tolylphosphino)-9,9-dimethyl xanthene (2.3). 

The difference between ligand 2.6 (Figure 3.4) and ligand 2.2 is the aliphatic chain labelled 4-7 

on the structure of ligand 2.6.  The methylene protons (position 4) appear as a triplet at 2.38 ppm 

due to their proximity to the benzene ring, deshielding the protons and shifting their resonance 

downfield.  The methylene protons at position 6 appear as a multiplet between 1.30 – 1.15 ppm.  

The methyl group (position 7) appear as a triplet at 0.84 ppm.  The multiplicity is explained by 

the coupling effect which is brought about by the neighbouring protons. 

 

Figure 3.4: 1H NMR of ligand 2,7-di-n-hexyl-9,9-dimethyl xanthene (2.6). 
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Finally, ligand 2.10 (Figure 3.5) is also similar to ligand 2.2, with the only difference being an 

isopropyl group instead of the two methyl groups at the central carbon.  The two protons in 

position 1 are equivalent to each other and appear as a singlet at 2.10 ppm.  The methyl groups, 

which normally appear at 0.9 ppm, are deshielded with their resonance shifted slightly downfield 

due to the effect of the C=C which withdraws electron density away from the methyl protons [5]. 

 

Figure 3.5: 1H NMR of ligand 4,5-bis(diphenylphosphino)-10-isopropylidene xanthene (2.10). 
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Table 3.5: 1H NMR peaks of representative ligands and their integration. 

Ligand Position of Proton H-NMR peak (CDCl3)/ ppm Proton integration 

2.2 1 1.62(s) 6H 

 2 6.54(dd)(J = 7.4, 1.4 Hz) 2H 

 3 6.95(t) (J = 7.6 Hz) 2H 

 4 7.37(dd) (J = 7.4, 1.4 Hz) 2H 

 a 7.22-7.14 20H 

2.3 1 1.61 (s) 6H 

 2 6.54 (dd) (J = 7.5, 1.6 Hz) 2H 

 3 6.93 (t) (J = 7.6 Hz) 2H 

 4 7.35 (dd) (J = 7.7, 1.1 Hz) 2H 

 a 7.04 - 6.97 (arom) 20H 

 b 2.28 (s) 12H 
2.6 1 1.60 (s) 6H 

 2 6.3 (d) 2H 

 3 7.21 (d) 2H 

 4 2.38 (t) (J = 6.98 Hz) 4H 

 5 1.30 (t) 4H 

 6 1.30-1.15 (m) 12H 

 7 0.84 (t) (J = 6.92 Hz) 6H 

 a 7.19 - 7.13 (arom) 20H 

2.10 1 2.10 (s) 6H 

 2 6.56 (dd) (J = 7.6, 1.7 Hz) 2H 

 3 7.01 (t) (J = 7.6 Hz) 2H 

 4 7.36 (dd) (J = 7.6, 1.4 Hz) 2H 

 a 7.23 – 7.22 (arom) 20H 

 

Table 3.6 shows a summary of the 31P-NMR data of the ligands.  When compared to those of 

related known compounds in literature, the values confirm that the ligands have been 

successfully synthesized [2, 3, 6].  The 31P NMR peak of diphenylphosphine appeared at -41 

ppm which was deshielded when hydrogen is replaced by a more electron withdrawing group, 

such as chlorine.  Therefore, the 31P NMR peak of chlorodiphenylphosphine appeared downfield 
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at 81 ppm.  If the chloride from chlorodiphenylphosphine was replaced by a less electron 

withdrawing atom an upfield shift was observed.  However, this means that the sp hybridized 

carbon from the xanthene backbone creates a more electron rich environment, resulting in a 

shielding effect which shifts the phosphorus resonance peak upfield [7, 8].  Hence, it appeared 

around -17.8 ppm for ligands 2.2, 2.6 and 2.10.  

Another observation to take note of is the 31P chemical shift of ligand 2.3, when compared to 

ligands 2.2, 2.6 and 2.10.  The phosphorus peak of 2.3 has shifted upfield to -19 ppm, while the 

other ligands have peaks at -17.8 ppm.  This shows the effect of the methyl groups on the 

phosphorus peak shift.  Since the methyl groups are electron donating they increase the electron 

density slightly, causing a shielding effect, thereby shifting the phosphorus peak upfield [5]. 

Table 3.6: 31P NMR data of ligands 2.2, 2.3, 2.6 and 2.10. 

Ligand 31P-NMR peak shits (CDCl3)/ ppm 

Experimental Literature 

2.2 -17.9 -17.5 

2.3 -19.6 N/A 

2.6 -17.8 -17.8 

2.10 -17.9 -17.9 

3.1.3 IR Analysis 

IR was used to compare changes in bond vibration frequencies between the metal complexes and 

the respective uncoordinated ligands, as shown in Table 3.7. 

The aromatic C-H stretch which appears in the 3100 – 3000 cm-1 region was detected in all 

ligands and complexes [9].  This confirms the presence of the xanthene backbone.  Another 

observation is the absorption at 690 cm-1 for the Ar-H bend.  The methylene C-H stretch, which 

appears between 3000-2900 cm-1, was common for all ligands and complexes as well [9, 10].  

This is the characteristic band of methyl groups and indicates the presence of an aliphatic chain if 

the intensity is strong.  The presence of methyl and methylene C-H bends at 1400-1435 cm-1 

showed the presence of methyl groups in the ligands and complexes.  For ligands 2.2, 2.7 and 

2.10 an absorption at 2950 cm-1 was also observed for the methyl groups.  In the case of ligand 
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2.3, a medium absorption at 2967 cm-1 indicated the presence of the methyl group at position 9 

of the xanthene backbone and methyl groups on the phenyl rings at the para-position.  Ligand 

2.6 showed strong intensity bands at 2921 cm-1 and 2851 cm-1 indicating the presence of the 

aliphatic chain.  The absorption at 722 cm-1, representing a C-H bend, is also an indication of the 

presence of the aliphatic chain.  It is important to note the strong intensity of the band at 2921 

cm-1.  The intensity of the absorption depends on the number of C-H bonds present, as well as 

the dipole moment of the bond, therefore, for an aliphatic chain a relatively strong intensity is 

expected due a combination of the methyl, methylene and methyne groups present [11, 12]. 

The aryl or alkyl ether group (C-O-C) shows strong bands between 1275-1200 cm-1 due to a 

large dipole moment in the C-O bond.  This stretch appears for all ligands and complexes, 

mainly because of the C-O-C linkage of the xanthene backbone [9].  An aryl thioether C-S 

stretch is visible in the range of 800-600 cm-1, which was only observed for ligand 2.7 and 

complexes 2.14 and 2.19 indicating the presence of sulphur between the carbons [6, 13-17]. 

A trend of peak shifts from lower to higher frequencies was observed when comparing 

uncoordinated ligands with corresponding complexes.  Bands such as those of the aryl ethers (C-

O-C stretch), C-H aromatic stretch, CH3 and CH2 stretches, methyl and methylene C-H bends 

were observed to have shifted to higher frequencies upon coordination.  The shift to higher 

frequency is explained by the nature of the substituents on the phenyl groups.  Phosphorus 

substituents have strong electron accepting properties.  Therefore, a transfer of electron density 

from metal to the ligand increases the electron density in the ligand causing the energy of 

vibrations (C-O-C, CH3 and CH2 stretch, aromatic C-H stretch and CH3 and CH2 bend) to 

increase, giving rise to signals at higher frequencies [18]. 
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Table 3.7: IR data of ligands and corresponding complexes. 

Ligand/ 

Complex 

CH3, CH2 

bend 

ѵ/cm-1 

C-H aromatic, CH3, 

CH2(stretch) 

ѵ/cm-1 

 Aryl ethers  

C-O-C (stretch) 

ѵ/cm-1 

C-S 

stretch 

ѵ/cm-1 

Ar-H 

bend 

ѵ/cm-1 

2.2 1398, 1432 3056, 2974,2951 1231 - 688 

2.11 1409, 1436 3061, 2975 1243 - 690 

2.16 1411, 1435 3052, 2975, 2957 1246 - 689 

2.3 1405, 1440 3012, 2967 1239 - 625 

2.12 1441, 1498 3019, 2953 1253 - 621 

2.17 1415, 1498 3018, 2951 1254 - 620 

2.6 1418, 1432 3054, 2955, 2921 1239 - 691 

2.13 1422, 1481 3049, 2954, 2924 1239 - 691 

2.18 1425, 1481 3052, 2953, 2925  1239 - 691 

2.7 1403, 1432, 1476 3050, 2951 1200,1221, 1238 741 692 

2.14 1410, 1435, 1480,  3046 1207, 1243 749 694 

2.19 1412, 1434, 1480 3051 1207, 1243 748 693 

2.10 1393, 1417, 1433 3057, 2932 1220 - 692 

2.15 1402, 1436, 1482 3074, 2960 1227 - 692 

2.20 1404, 1435, 1481 3050 1229 - 691 

3.1.4 Melting points 

Impurities are associated with a widening of the melting range and lowering of the melting 

points of pure compounds.  The melting points for the ligands were sharp, implying high purity 

(Table 3.8).  Also noted was that all ligands first changed from powder to crystalline form, 

followed by melting.  Most of the complexes decomposed at temperatures above 350 °C [19].  

The melting points of the ligands 2.2, 2.3, 2.7 and 2.10 were comparable, while that of ligand 2.6 
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was totally different, as it was found to be between 152-154°C, which is lower than those of the 

other ligands.  This may be due to the aliphatic chain at positions 2 and 7 which has many 

conformations about the C-C bonds and restricts orderly packing of the molecule, thereby 

lowering the melting point [3, 4]. 

Table 3.8: Melting point of ligands and their complexes. 

Ligand/Complex Melting point/ °C 

2.2 

2.11 

2.16 

219-221 

387-390 

>350 (decomposed) 

2.3 

2.12 

2.17 

259-261 

448-450 

>350 (decomposed) 

2.6 

2.13 

2.18 

152-154 

250-251 

258-260 

2.14 

2.19 

379-382 (decomposed) 

366-370 

2.10 

2.15 

2.20 

212-213 

398-401 (decomposed) 

387-390 

3.2 Complexes 

Two metals, nickel and cobalt, were used for complexation with the synthesized ligands.  These 

transition metals are abundant in nature, relatively cheap and readily available.  Many 

characterization techniques were used to confirm complexation such as melting point, IR, colour 

change from ligands to complexes, as well as single crystal XRD.  All the complexes are high 

spin and paramagnetic, hence NMR and MS characterization were not employed. 

All the complexes of nickel and cobalt were found to be stable in air, the metals are in the +2 

oxidation state. 
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3.2.1 Elemental Analysis 

Elemental analysis for carbon and hydrogen is important and is used to confirm the elemental 

composition and bulk purity of the compounds.  The obtained elemental analyses data are within 

the acceptable range of 0.5 % of theoretically calculated values.  This not only confirms that 

complexation had taken place, but also that the complexes were pure.  Table 3.9 shows the 

results obtained for each complexes. 

Table 3.9: Elemental analysis data for complexes 2.11-2.20. 

Complexes %C %H 

2.11 

2.16 

66.64 (66.22) 

63.53 (63.16) 

4.30 (4.55) 

6.91 (6.51) 

2.12 

2.17 

67.90 (67.55) 

67.39 (67.57) 

5.06 (5.27) 

5.05 (5.27) 

2.13 

2.18 

70.42 (69.95) 

69.72 (69.88) 

6.27 (6.44) 

6.38 (6.44) 

2.19 62.62 (62.84) 4.55 (4.16) 

2.20 66.73 (66.70) 4.83 (4.48) 

(calculated values are shown in paranthesis). 

3.2.2 XRD 

Single crystal X-ray diffraction determines the structure of molecules by employing electron 

density maps.  A crystal is bombarded with X-rays producing diffraction patterns.  The 

diffraction patterns reflect an electron density which is used in elucidating the structure of the 

crystalline compound.  This type of technique shows the connectivity of the atoms in space so 

that the stereochemistry can be determined.  It also gives bond distances between atoms as well 

as bond angles [20, 21]. 

Crystals that were analyzed were grown by two methods, slow vapour diffusion of diethyl ether 

into saturated dichloromethane and by slow evaporation [22]. 
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3.2.2.1 Crystal Structures 

The data was collected on a Bruker Smart APEXII diffractometer with Mo k α radiation (λ = 

0.71073 Å).  Reflections were successfully indexed by an automated indexing routine built in the 

APEXII programme suite (Bruker, 2008).  The data collection method involved ω scans of width 

0.5°.  Data reduction was carried out using the programme SAINT + (Bruker, 2008).  The 

structure was solved by direct methods using SHELXS (Sheldrick, 2008) and refined (Bruker, 

2008).  All hydrogen atoms were positioned geometrically and were refined isotropically. 

X-ray quality crystals were grown of ligand 2.3, complexes 2.12 and 2.17.  Ligand 2.3 is an 

analogue of 2.2 with the only difference being the methyl group on the phenyl rings at the para-

position.  The crystal data and structure refinement is shown in Table 3.10. 
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Table 3.10: Crystallographic and structure refinement data for ligand 2.3, complexes 2.12 and 

2.17. 

 Ligand 2.3 Complex 2.12 Complex 2.17 

Empirical formula C43H40OP2 C43H40Cl2CoOP2 C43H40Cl2NiOP2 

Formula weight 634.69 764.52 764.30 

Temperature 173(2)K 173(2)K 173(2)K 

Wavelength 0.71073 Å 0.71073 Å 0.71073 Å 

Crystal system Triclinic Triclinic Triclinic 

Space group P-1 P-1 P-1 

 

Unit cell dimensions 

a= 9.8811(6) Å, 

b= 9.9770(6) Å 

c= 18.3504(11) Å 

α = 97.650(3) Å 

β  = 96.262(2) Å 

γ = 94.637(2) Å 

a = 10.2166(3) Å 

b = 11.0261(3) Å 

c = 17.6982(5) Å 

α = 74.7610(10) Å 

β = 86.7170(10) Å 

γ  = 83.0110(10) Å 

a = 10.2501(3) Å 

b = 11.1611(3) Å 

c= 17.7687(5) Å 

α = 73.9650(10) Å 

β = 86.322(2) Å 

γ = 83.512(2) Å 

Volume 1773.88(19) Å3 1908.63(9) Å3 1940.03(10) Å3 

Z 2 2 2 

Density (calculated) 1.188 Mg/m3 1.330 Mg/m3 1.308 Mg/m3 

Absorption coefficient 0.155mm-1 0.706 mm-1 0.752 mm-1 

F(000) 672 794 796 

Crystal size 0.48 x 0.23 x0.13 

mm3 

0.25 x 0.24 x 0.12 

mm3 

0.586 x 0.529 x 0.382 

mm3 

The range for data 

collection 

2.07 to 25.00° 1.19 to 28.00° 1.193 to 28.393° 

Index ranges -11<=h<=11, 

-11<=k<=11 

-21<=l<=21 

-13<=h<=13 

-14<=k<=14 

-23<=l<=23 

-13<=h<=12, 

-14<=k<=14, 

-23<=l<=23 

Reflections collected 25830 54347 58526 

Completeness to theta 

= 25.242 

96.8% 98.2% 100.0% 
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Final R indices 

[I>2sigma(I)] 

R1 = 0.0349, wR2 = 

0.0904 

R1 = 0.0488, wR2 = 

0.1178 

R1 = 0.0327, wR2 = 

0.0786 

R indices (all data) R1 = 0.0398, wR2 = 

0.0938 

R1 = 0.0563, wR2 = 

0.1225 

R1 = 0.0512, wR2 = 

0.0878 

 

An ORTEP representation of ligand 2.3 is shown in Figure 3.6.  The colourless single crystal of 

ligand 2.3 crystalized in the triclinic crystal system.  Ligand 2.3 is symmetric in structure just 

like its analogue 2.2.  It has a twofold rotation axis dissecting the structure through the dimethyl 

bearing carbon (C21) and the oxygen atom (O1) into half.  It shows the two phosphorus donor 

atoms as well as the oxygen atom.  The orientation of the ORTEP diagram of the ligand shows 

that the backbone of the ligand 2.3 is not planar due to the stacking interaction between the 

phenyl rings of the diphenylphosphine which makes it dihedral angle between the two phenyl 

rings to be 166.12 °.  This effect is also observed on the analogue 2.2 where its xanthene 

backbone is also not planar with a dihedral angle of 166 °.  Xanthene backbone that are planar 

like that of xantham (4,5-(bis-(di(4-diethylaminomethylphenyl)phosphino)-9,9-

dimethylxanthene) have a dihedral angle of 175.6 °.  The bond lengths P1-C1, P1-C8, P2-C37 

and P2-C30, which holds the tolyl groups are all at similar distance of about 1.84 Å to that of its 

analogue 2.2 which is 1.83 Å.  The angles between the sets of phenyl rings are very close 

showing that the ligand is symmetric in its structure with C8—P1—C1 101.56 ° and C37—P2—

C30 101.09 ° matching those of its analogue 2.2  which were 101.2 °.  Addition of the methyl 

groups to the phenyl rings was seen to have minor effect, as the bond lengths changed slightly in 

comparison to its analogue ligand 2.2.  Table 3.11 shows selected bond lengths as well as the 

bond angles of ligand 2.3. 
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Figure 3.6: ORTEP diagram of ligand 2.3 showing the atom numbering scheme. Thermal 

ellipsoids are represented at the 50% probability levels. 

 

Table 3.11: Selected bond lengths and bond angles of ligand 2.3. 

Bond Lengths [Å and °] 

P1—C1 1.8413(16) 

P1—C8 1.8395(16) 

P2—C37  1.8351(16) 

P2—C30 1.8390(17) 

P2—C28 1.8464(16) 

P1—C15 

P1–P2  

1.8402(16) 

4.168 

 

Bond Angles  

C8—P1—C1 101.56(7) 
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The ORTEP diagram of the crystal structure of a blue crystal of complex 2.12 grown by slow 

diffusion is shown in Figure 3.7.  Table 3.12 shows the selected bond lengths and bond angles of 

complex 2.12 and 2.17.  Complex 2.12 crystallized in a triclinic crystal system and collected at 

173 K.  The structure of 2.12 shows a tetrahedral geometry around the Co ion in a highly 

symmetrical molecular unit.  The structure of ligand 2.3 shows that only little adjustment is 

required to form a chelate.  The P-P distance in the free ligand 2.3 is 4.168 Å, while in a 

chelation with a P-Co-P (2.12) it P-P distance is 3.973 Å.  The P atoms are brought together by 

means of a decrease of the angle between the phenyl planes in the backbone of the ligand 2.3 

from 4.168 to 3.973 Å.  The angles between the two sets of phenyl rings (C37—P1—C30) and( 

C16—P2—C23) are found to be similar with an angle of 105.94 °.  The P1—Co—P2 angle is 

found to be 111.76 °.  To complete the tetrahedral geometry, the other two sites are occupied by 

two chlorides with a Cl—Co—Cl angle of 117.98 °.  These show some distortion, as the angle is 

greater than 109 ° for a perfect tetrahedron, however, this is due to the lone-pair repulsion 

between the chlorine atoms [23].  The molecular structure also shows that the xanthene-based 

ligand is bound to the cobalt in a bidentate fashion via the phosphorus donor atoms.  An 

analogue of this ligand, xantphos 2.2, has showed that these xanthene – based ligands can be 

pincers by using the central oxygen to also bind to a metal [3].  This is explained by the 

flexibility range which is calculated to be between 97 and 133 °.  A number of studies have 

reported xanthene-based ligands of the xantphos type to behave as pincer ligands.  The natural 

bite angle of xantphos has been determined as 111 ° [3].  There are other factors that also 

contribute towards the geometry of the 2.2 ligand, bearing in mind a knowledge that the bite 

angle preferred by the metal, is as a result of electronic effects.  Therefore, parameters such as 

the type of ligands surrounding the metal complex, the charge and the type of metal play a role in 

determining whether the ligand will act as a bidentate or a pincer type ligand [24, 25].  An 

example, where 2.2 was reported as a pincer ligand, is the complex [Rh(xantphos)(COMe)I2] 

[26].   
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Figure 3.7: ORTEP diagram of complex 2.12 showing the atom numbering scheme. Thermal 

ellipsoids are represented at the 50% probability levels. 

An ORTEP diagram of the emerald green complex 2.17 is shown in Figure 3.8.  The complex 

crystallized in a triclinic crystal system.  The data was collected at 173 K.  Tetrahedral geometry 

around Ni ion is observed with a highly symmetrical molecular unit.  Bond lengths P1-C30, P1-

C37, P2-C16, P2-C23 and P2-C9, which holds the tolyl groups remained the same at about    

1.81 Å even after complexation had taken place.  The bite angle, which is represented by P(1)—

Ni—P(2), was found to be 108.40 ° and to complete the tetrahedral geometry the other two sites 

are occupied by the two chloride ions with a Cl-Ni-Cl angle of 128.87 °.  It was observed that the 

chlorides are distorted due to the lone pair repulsion between the two chlorine atoms.  The 

structure also shows that the xanthene-based ligand is coordinated to the nickel in a bidentate 

fashion via the two phosphorus donor atoms [26]. 
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Figure 3.8: ORTEP diagram of complex 2.17 showing the atom numbering scheme. Thermal 

ellipsoids are represented at the 50% probability levels. 
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Table 3.12: Selected bond lengths and bond angles for complex 2.12 and 2.17. 

Bond lengths Complex 2.12/ 

[Å and °] 

Complex 2.17/ 

[Å and °] 

P1-C30 

P1-C37 

P2–C16 

P2-C23 / C9 

P1—Ni / Co 

1.813(3) 

1.805(3) 

1.816(3) 

1.808(3) 

2.3940(7) 

1.8109(18) 

        1.8191(18) 

        1.8193(17) 

1.8091(18) 

2.3398(5) 

P2—Ni / Co 2.4050(8) 2.3469(5) 

Cl(1)—Ni / Co 2.2213(8) 2.2048(5) 

Cl(2)—Ni / Co 2.2248(7) 2.1964(6) 

 

Bond Angles 

  

Cl(2)—Ni/Co—Cl(1) 117.98(3) 128.87(3) 

P(1)—Ni/Co—P(2) 111.76(3)   108.403(18) 

Cl(2)—Ni/Co—P(1) 101.69(3) 108.62(2) 

Cl(1)—Ni/Co—P(1) 110.89(3) 99.58(2) 

Cl(2)—Ni/Co—P(2) 108.75(3) 102.95(2) 

Cl(1)—Ni/Co—P(2) 105.87(3) 107.39(2) 

3.3 Summary 

The preparation of five cobalt and five nickel complexes with xanthene-based ligands was 

achieved.  Due to their paramagnetic nature, NMR was found to be unsuitable for structural 

characterization.  However, they were characterized by elemental analysis, IR, melting point and 

single crystal X-ray diffraction. 
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Chapter 4 

Oxidation of Alkanes 

4.1 Introduction 

The rapid development of the synthetic chemistry of metal-complexes serve to initiate the 

catalysis of saturated hydrocarbons [1].  A proper selection of metal-complexes, oxidants and 

reaction conditions can lead to the efficient oxidative transformation of alkanes [2-4].  The 

activation of C-H bonds by metal complexes is divided into three different types, based on the 

reaction mechanism.  This classification of reaction mechanism is premised on the way in which 

the substrate (alkane) interacts with a metal complex [4].  The three types of processes are: 

1.  “True” organometallic activation. 

It is referred to as a first type process and it involves a contact between the metal ion and 

the C-H bond.  A C-H compound enters the coordination sphere of the metal complex in 

the form of an organyl σ-ligand.  This is referred to as the preactivation of the 

compound’s C-H bond [4, 5]. 

2. Interaction of a complex with a C-H bond via the ligand only. 

This type of reaction has an interaction between a metal complex and a C-H bond 

through a complex ligand via the process called C-H bond cleavage.  In this case a σ-C-M 

interaction does not occur.  The function of the metal complex is to abstract an electron 

or hydrogen from the hydrocarbon, RH.  The abstraction of the hydrogen or electron 

results in the formation of a radical ion or radicals which then interact with any species in 

solution such as molecular oxygen.  Ligands of the metal complexes can serve as the 

species that abstract electrons or hydrogen from the hydrocarbons.  In the following 

example, an oxo complex of a high valent metal is responsible for abstraction of the 

hydrogen or electron of the hydrocarbon [4]. 

RH + O=M n+ R + HO - M (n-1)+ ROH + M (n-2)+  
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3. A metal complex generates an independent reactive species which then attacks the C-H 

bond. 

In the third type process, a metal complex activates reactants such as oxidants which 

form reactive species, such as hydroxyl radicals, which then attack the hydrocarbons.  

Oxidation of alkanes by Fenton’s reagent is a good example of this mechanistic pathway 

(1-5) [6]: 

H2O2 + Fe 2+ HO + HO- + Fe 3+

HO + RH H2O + R

R + O2 ROO

ROO + Fe 2+ ROO - + Fe 3+

ROO - + H+ ROOH  

 

In a case where TBHP is used as the oxidant, two radicals are formed, t-BuOO" ▪ and t-BuO ▪.  

Whereas the former does not have sufficient strength to abstract a hydrogen atom from a 

hydrocarbon, the latter does have.  Therefore, the first step involves the reduction of the metal by 

TBHP forming a t-BuOO ▪ radical as shown in the following equation 6 [7]: 

M n+ + t - BuOOH M n-1 + t - BuOO + H+  (6) 

Oxidation of alkanes by TBHP occurs by the participation of the t-BuO"▪ radical and proceeds as 

shown in equations 2-5.  The reactive radical t-BuO"▪ is formed when the low valent metal reacts 

with the second molecule of TBHP, (equation 7) or when it decomposes as in equation 8 [7, 8]. 

M n+ + t - BuOOH M n+1 + t - BuO + HO -  

t-BuOO t-BuO + O2  

The substrate of choice in this study is n-octane since it serves as a model of medium chain 

length alkanes.  Three oxidants were used, tert-butyl hydroperoxide (TBHP), hydrogen peroxide 

(H2O2) and meta-chloroperbenzoic acid. 

(1) 

(2) 

(3) 

(4) 

(5) 

 

   (7) 

   (8) 
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4.2 Instrumentation 

Analysis of catalytic reactions was done using a Perkin-Elmer Auto System gas chromatograph 

fitted with a Flame Ionization Detector (FID).  GC parameters and column specifications are 

depicted in Table 4.1.  Each GC run was conducted over a duration of 43 minutes excluding the 

oven cooling time.  The GC was calibrated with the multicomponent standards (Appendix B, 

Table 2) of the expected products and the respective RF values were calculated. 

Table 4.1: GC parameters and column specifications. 

Column Pona x 50 m x 0.20 mm x 0.5 µm  

Injector temperature 240 °C 

Detector temperature 260 °C 

Split On flow rate: 123 ml/min 

Attenuation 1 

Range 1 

Oven Programme 

Initial temperature 50 °C 

Ramp 1 1 °/min 

Temperature 2 80 °C 

Ramp 2 15 °/min 

Temperature 3 200 °C 

4.3 General Procedure 

Synthesis of ligands 2.2, 2.3, 2.6, 2.9 and complexes 2.11 – 2.20 was discussed in detail in 

Chapter 2.  All catalytic testing was done under inert atmosphere in a presence of argon in a 50 

ml pear shape flask that had a condenser attached and a tap mounted with an argon balloon.  In 

the pear shape flask the reaction mixture contained 10 ml of degassed THF, the respective 

oxidant, n-octane and 3 mg of the respective catalyst.  The reaction mixture was stirred in an oil 

bath at the respective temperature and after 48 h an aliquot was taken using a glass pasteur 

pipette.  A volume of 0.5 µl was then injected into a GC using a GC syringe for analysis and 

quantification. 
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4.4 Optimization 

The oxidation studies of n-octane were carried out using tetrahydrofuran (THF) as the solvent, 

since it was the only solvent that all complexes were soluble in.  To choose the optimum 

conditions for our catalysis part a study was conducted using THF as the solvent at different 

temperatures (RT, 40, 50 and 60 °C).  The oxidants used were TBHP, m-CPBA and H2O2 with 

pentanoic acid as the internal standard and n-octane as the substrate.  The substrate to oxidant 

ratio was varied (1:2.5, 1:5, 1:7.5 and 1:10) to obtain the optimum ratio for conversion and 

selectivity.  Catalyst to substrate ratio was kept at constant at 1:100.  The catalyst used for 

optimization was the most stable and abundant no specific criteria was used.  Each temperature 

(RT, 40, 50 and 60 °C) was tested on different oxidants (TBHP, m-CPBA and H2O2) different 

ratios (1:2.5, 1:5, 1:7.5 and 1:10) with pentanoic acid as the internal standard and n-octane as the 

substrate.  At room temperature (RT) and 40 °C no activity was observed even after using 

different oxidants at different ratios for 48 h.  Activity started to appear at 50 and 60 °C, TBHP 

was the only active oxidant at the ratios of 1:7.5 and 1:10. 

Three blanks were run.  The first blank contained all the other reagents (n-octane, pentanoic acid, 

TBHP, and THF) and no catalyst.  This blank was run to check if no catalyst was present, would 

there be any other reagents that can activate the reaction.  The second blank contained everything 

except TBHP.  This was done to check if the catalyst has the strength to activate the reaction in 

the absence of the oxidant.   The third blank contained everything except n-octane.  Lastly this 

blank was run to check if there are any other reagents that can resemble the substrate.  After 

running these blanks no activity was observed on all of them.  This therefore showed that for a 

catalyst to be able to activate some reaction it required some oxidant to kick start the reaction as 

well as some heat.  The activity started to appear from 50 and 60 °C. 

4.4.1 Optimization results for cobalt and nickel catalysts 

The 1:10 substrate to oxidant ratio gave the highest conversion of 8% conversion after 48 h with 

a 100% selectivity to 2-octanone.  A substrate to oxidant ratio of 1:7.5 gave a conversion of 6% 

with also 100% selectivity to 2-octanone.  The results on activity and selectivity at different 

substrate to oxidant ratios are shown in Figures 4.1 and 4.2.  It was noted that there was no trace 

of 2-octanol for both ratios, but instead the product formed was 2-octanone, which is the product 
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of the over-oxidation of 2-octanol.  The 2-octanol is more reactive than the substrate (octane) and 

over-oxidation is more prevalent, hence the formation of 2-octanone [3, 4, 6, 9]. 

 

 

Figure 4.1: Conversion on n-octane over the blank reaction and over the catalysts at different 
substrate to oxidant ratios. 

 

 

Figure 4.2: Selectivities at two substrate to oxidant ratios over catalyst 2.11. 
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To establish optimum conditions for nickel based catalysts, catalyst 2.16 was used for 48 h at 

substrate to oxidant ratios (1:7.5 &1:10) at 50 °C.  The optimization study using catalyst 2.16 

showed that the 1:10 ratio gave a conversion of 6% and it was decided to work with this ratio as 

this was used for the cobalt catalysts. 

4.4.2 Oxidation of n-octane in the presence of H2O2 as the oxidant 

In further study of n-octane activation, hydrogen peroxide was used as an oxidant, since it is the 

most widely used oxidant in hydrocarbon activation.  This is due to its accessibility and the fact 

that it produces water as the by-product, means it is environmentally friendly [10]. 

Blank reactions (no catalyst) were carried out at 50 °C in THF as the solvent.  No conversion was 

observed at the following substrate to oxidant ratios (1:7.5 and 1:10).  Using the cobalt and 

nickel catalysts, only trace amounts of oxidized products were observed showing that the cobalt 

and nickel catalysts were inactive with H2O2 as the oxidant. 

4.4.3 Oxidation of n-octane in the presence of m-CPBA as the oxidant 

meta-chloroperbenzoic acid (m-CPBA) is a strong oxidizing agent, normally used in the 

oxidation of epoxides, hence it was also investigated as a potential oxidant for n-octane 

activation.  An optimization study was carried out at 50 °C to determine if any thermal initiated 

oxidation may occur.  Using the substrate to oxidant ratios of 1:7.5 and 1:10 no activity was 

observed with either the Co or Ni based systems. 
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4.5 Results & Discussion 

4.5.1 Efficiency of the cobalt based catalyst using TBHP as oxidant at 50 °C 

Table 4.2: Optimization conditions used for catalysis. 

Solvent THF 

Temperature/ °C 50/ 60 

Substrate n-octane 

Oxidant TBHP 

Internal standard Pentanoic acid 

Substrate to oxidant ratio 1:10 

Catalyst to substrate 1:100 

Reaction duration 48 h 

Replication triplicate 

 

The blank reaction (no catalyst) gave no conversion but, all catalysts were active except for 

catalyst 2.14 as observed (Figure 4.3), which showed no activity and this can only be attributed 

to the sulphur atom in its ligand structure .  Looking at the conversions, all the other catalysts 

behaved similarly, catalyst 2.11 gave a conversion of 8%, 2.12 - 9%, 2.13 - 7% and 2.15 - 8%.  

This activity trend can be expected as their structure differs only slightly, therefore one expects 

minor changes in their activity or no change in activity at all.  Therefore, as much as their bite 

angle size changed, this had a minor impact on activity. 
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Figure 4.3: Conversion of n-octane over the cobalt catalysts at 50 °C. 

All catalysts structure are based on the same structure.  This structure comprises of various 

groups at position X (see Table 4.3) with changes made to this position expected to affect their 

activity as these have an impact on their bite angles [11-13].  Even catalyst 2.14 which has a 

strong donor atom, sulphur, gave no conversion. 

It has been noted that through the changes in electronic effects due to changes at position X of 

the ligand backbone, small variations to the bite angle occur which normally have an effect on 

the activity of the catalyst as seen in hydroformylation and hydrocyanation reactions.  In this 

study at RT the change of bite angle did not have any effect on activity [12, 14-16].  Table 4.3 

shows the different bite angles of the ligands. 
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Table 4.3: Natural bite angle of ligands [10, 16] 

 

O

XY Y

PR2PR2  

Ligand X Y R Bite angle [βn] 

2.2 

2.3 

C(Me)2 

C(Me)2 

H 

H 

Ph 

p-tolyl 

111.4 

111.7 

2.6 C(Me)2 (CH2)5Me Ph 116.0 

2.7 S CH3 Ph 109.6 

2.10 C=C(Me)2 H Ph 113.2 

 

Ligands 2.2, 2.7 and 2.10 are similar with the only difference being the group at position X, and 

they have different bite angles.  Substitution of the phenyl substituent by a tolyl group, which is 

another electron donating group, on catalyst 2.12 also gave no activity at RT.  This shows that 

the structure of the complexes played no part at this temperature, rather that activation energy 

was required for the reaction to proceed. 

Since there was no activity with TBHP at RT, another oxidant was investigated, namely m-

CPBA, but it also gave no substantial conversion.  Thus, while at RT no activity was observed 

for all catalysts, when the temperature was increased some activity was observed, which clearly 

points out the importance of activation energy. 

Figure 4.4 reveals that catalysts show high selectivity to the formation of 2-octanone.  At this 

temperature one starts to see the formation of 4-octanol as well.  Higher temperature means 

higher activation energy, and therefore the reactive 2-octanol reacts further forming products of 

over-oxidation.  At this temperature one also starts to see the activation of C-4, as catalyst 2.15 

forms 4-octanol. 
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Figure 4.4: Selectivity to products over the cobalt catalysts at 50 °C. 

The regioselectivity on Table 4.4 shows that all catalysts were selective to the ketone at position 

C-2.  Catalyst 2.15 shows the activation of C-4 by forming an alcohol. 

Table 4.4: Regioselectivity of cobalt catalysts (2.11-2.15) a at 50 °C. 

Catalysts Alcoholsb 

C3: C4 

Ketonesb 

C2: C3: C4 

Totalc 

C2: C3: C4 

2.11 0 1: 0: 0 1: 0: 0 

2.12 0 1: 0: 0 1: 0: 0 

2.13 0 1: 0: 0 1: 0: 0 

2.15 0: 1 1: 0: 0 2: 0: 1 
a  Regioselectivity Parameter C2: C3: C4 is the relative reactivities of hydrogen atoms at carbon 

2, 3 and 4 of the n-octane chain. 

b The calculated reactivities from % selectivity are normalized, this takes into account the 

number of hydrogen atoms at each carbon (Appendix B). 

c The % selectivity of all products were taken into account i.e. alcohols, ketones. 
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4.5.2 Catalyst efficiency at 60 °C 

At 60 °C the conversion of most catalysts dropped and some were not active at all.  Catalysts 

2.11, 2.13 and 2.14 were not active (Figure 4.5).  Therefore, at 60 °C the drop in activity of the 

catalysts could be ascribed to the decomposition of the catalyst at higher temperatures under an 

oxidizing environment.  Another observation was the colour change of the reaction, which was 

initially pale blue but turned yellow after 48 h. 

 

Figure 4.5: Conversion over the cobalt catalysts in the presence of TBHP at 60 °C. 

For catalysts 2.12 and 2.15 at 60 °C, more products formed (Figure 4.6) although the conversion 

was lower, which shows that at higher temperature the formation of more products from C-2, C-

3 and C-4 activation is favoured. 

0 

1 

2 

3 

4 

5 

2,12 2,15 

C
on

ve
rs

io
n/

 m
ol

 %
  

Catalysts 

60 °C 
Conversion 



85 
 

 

Figure 4.6: Selectivity over the cobalt catalysts in the presence of TBHP at 60 °C. 

 

Table 4.5 Presents data on the regioselectivity parameter, to C-2, C-3 and C-4 at 60 °C. 

Table 4.5: Regioselectivity of cobalt catalysts (2.12, 2.15) a at 60 °C. 

Catalysts Alcoholsb 

C3: C4 

Ketonesb 

C2: C3: C4 

Totalc 

C2: C3: C4 

2.12 1: 2 1: 0: 0 3: 1: 2 

2.15 1: 1 1: 0: 0 2: 1: 1 
a Regioselectivity Parameters C2: C3: C4 are the relative reactivities of hydrogen atoms at 

carbons 2, 3 and 4 of the n-octane chain. 

b Calculated reactivities from % selectivity are normalized, this takes into account the number of 

hydrogen atoms at each n-octane carbon (Appendix B). 

c The % selectivity of all products were taken into account i.e. alcohols and ketones. 
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4.5.3 Efficiency of the nickel based catalysts using TBHP as the oxidant at 50 °C 

The blank reaction (no catalyst) carried out at 50 °C showed no conversion, but most of the 

catalysts showed some level of activity at this temperature (Figure 4.7).  Catalyst 2.19 with a 

heteroatom at position X, was the only one that showed no activity.  Catalyst 2.16 showed a 

conversion of 6% and 2.18 showed 5% and they thus have similar activity.  Catalyst 2.17 showed 

a higher conversion than all the other catalysts with a conversion of 9%.  Comparatively, this 

was also the more active in the cobalt series, it showed the higher conversion of all the catalysts 

studied.  Hence, from the ligand structure, it shows that substituting the phenyl substituent with a 

p-tolyl substituent had a positive effect.  Therefore, the inductive effect brought in by the tolyl 

substituent had a positive effect on the activity. 

 

Figure 4.7: Nickel catalysts activity in the presence of TBHP as oxidant. 

All catalysts showed C-2 position activation producing 2-octanone, with the most efficient being 

2.17 and 2.18, which gave 100% selectivity.  Catalyst 2.16 also showed activation of the C-3 

position (Figure 4.8). 
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Figure 4.8: Selectivity over the nickel catalysts in the presence of TBHP as oxidant. 

 

The selectivity was dominant to ketones and this may be due to the higher temperature. 

Table 4.6: Selectivity parameters in n-octane activation by nickel catalysts (2.16-2.20) a at 50 °C. 

Catalysts Alcoholsb 

C3: C4 

Ketonesb 

C2: C3: C4 

Totalc 

C2: C3: C4 

2.16 1: 0 1: 0: 0 2: 1: 0 

2.17 0 1: 0: 0 1: 0: 0 

2.18 0 1: 0: 0 1: 0: 0 

2.19 0 0 0 

2.20 0 0 0 
a Regioselectivity Parameter C2: C3: C4 is the relative reactivities of hydrogen atoms at carbon 

2, 3 and 4 of the n-octane chain. 

b The calculated reactivities from % selectivity are normalized, this takes into account the 

number of hydrogen atoms at each carbon (Appendix B). 

c The % selectivity of all products were taken into account i.e. alcohols and ketones. 
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4.5.4 Catalyst efficiency at 60 °C 

There was a major drop in the activity of all catalysts at 60 °C, with catalysts 2.18, 2.19 and 2.20 

being inactive (Figure 4.9).  In terms of catalysts activity there is no particular trend to compare 

to the cobalt catalysts.  With the cobalt series several catalysts were inactive as observed here 

with the nickel series but the related ones were 2.13, 2.18 and 2.14, 2.19 (similar ligand 

structure) exhibited similar trends.  However, 2.16 and 2.17 showed low activities between 1-3% 

and as expected the blank reaction (no catalyst) gave no conversion. 

 

Figure 4.9: Conversion over the nickel catalysts in the presence of TBHP as oxidant. 

Both cobalt and nickel catalyst series produced 2-octanone as the dominant product (Figure 

4.10).  Catalyst 2.19 was the only one that showed no activity at all temperatures.  Formation of 

other products, such as 3-octanol and 4-octanol was observed with increased temperature (Figure 

4.10).  This trend was also observed with the cobalt catalysts.  The regioselectivity observed for 

catalysts 2.16 and 2.17 is presented in Table 4.7.  We can also conclude that sulphur at the X 

position deactivated the catalyst 2.14. 
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Figure 4.10: Selectivity of the nickel based catalysts in the presence of TBHP as oxidant. 

Table 4.7: Selectivity parameters in n-octane activation by the nickel catalysts (2.16-2.20) a at    
60 °C. 

Catalysts Alcoholsb 

C3: C4 

Ketonesb 

C2: C3: C4 

Totalc 

C2: C3: C4 

2.16 0 1: 0: 0 1: 0: 0 

2.17 1: 2 1: 0: 0 3: 1: 2 

2.18 0 0 0 

2.19 0 0 0 

2.20 0 0 0 
a Parameters C2: C3: C4 are the relative reactivities of hydrogen atoms at carbons 2, 3 and 4 of 

the n-octane chain. 

b The calculated reactivities from % selectivity are normalized, this takes into account the 

number of hydrogen atoms at each carbon (Appendix B). 

c The % selectivity of all products were taken into account i.e. alcohols and ketones. 
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4.6 Effects of oxidant 

A drastic change occured in the conversion when the oxidant, TBHP, was added in smaller 

portions with catalysts 2.16, 2.17 and 2.18.  The results obtained showed a major improvement in 

the conversions and the selectivity remained constant.  This showed a vital role of oxidant in 

catalytic testing.  The results are shown on Figure 4.11. 

 

 

Figure 4.11: Conversion over the nickel catalysts (2.16, 2.17 and 2.18) when TBHP was added 
slowly at the interval of 24 h. 

It was also observed that TBHP is not a stable oxidant, as it was observed to break down into 

radicals at higher temperatures.  This was seen when it was injected on a GC column, which 

showed many peaks.  In the presence of a polar aprotic solvent, such as THF, the reactive 

radicals reacted with the solvent.  Therefore this concludes that THF was not a good choice of 

solvent for this type of catalysis. 

4.7 Catalyst Efficiency 

Catalyst efficiency expressed in turn over numbers (TON) is presented in Table 4.8.  At 50 °C 

using TBHP as an oxidant, the nickel catalysts were more efficient than the cobalt catalysts.  

This trend is at variance with that observed for cyclohexene oxidation using cobalt and nickel 

Schiff base complexes, where cobalt complexes showed a higher activity than nickel complexes 
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[17].  In a study by Nagataki et al. whereby Mn, Fe, Co, and Ni were used in the presence of m-

CPBA as the oxidant on the hydroxylation of alkanes, it was discovered for the first time that 

nickel catalysts gave higher TON [18, 19].  Looking at the total efficiency of this study, both 

cobalt and nickel catalysts showed high selectivity towards 2-octanone.   

Table 4.8: Turn over numbers of various catalysts at 50 and 60 °C. 

Catalysts TONa 50°C TONa 60°C 

2.11 4.2 0 

2.12 5.1 3.3 

2.13 4.0 0 

2.15 4.7 4.8 

2.16 5.3 0.8 

2.17 7.2 1.7 

2.18 4.6 0 
a TON = Moles of product (mol)/Moles of catalyst (mol). 

The mechanism of the n-octane oxidation was considered in light of the high selectivity to C-2 

and C-4.  The lack of C-selectivity implies that the reaction proceeded through a free radical 

chain pathway as shown in Scheme 4.1.  The reaction likely took place at the metal center, as 

CoII(POP) was oxidized by t-BuOOH into CoIII(POP)OH and a t-BuO% radical (equation 9).  

Then the CoIII(POP)(OH) reacted with another t-BuOOH to form a t-BuOO% radical, H2O and 

CoII(POP) (equation 10).  The t-BuOO% radical broke down into a t-BuO% radical and O2, 

(equation 11).  The t-BuO% radical, which is more reactive, cleaved a hydrogen from the alkane 

forming t-BuOH and an R% radical (equation 12).  The R% radical combined with oxygen to form 

an ROO% radical (equation 13).  The ROO% radical can combine with a t-BuOO% radical forming 

the ketone (R=O) and t-BuOH (equation 14).  It can also abstract hydrogen from an alkane 

forming ROOH and an R% radical (equation 15).  The ROOH then reacts with CoII(POP) to form 

an RO% radical and CoIII(POP) (equation 16).  Lastly the RO% radical can abstract a hydrogen 

from the alkane forming an alcohol and an R% radical (equation 17) [9, 20, 21]. 
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+ t-BuOOH +

+ t-BuOOH CoII(POP) + t-BuOO + H2O

t-BuO + 1/2O2

+ RH t-BuOH + R

R + O2

+ R=O + t-BuOH + O2

+ RH ROOH R+

ROOH + +

+ RH ROH + R

(9)

(10)

ROO

t-BuO

t-BuOO (11)

t-BuO (12)

ROO (13)

ROO t-BuOO (14)

(15)

RO (16)

RO (17)

CoII(POP) CoIII(POP)OH

CoIII(POP)OH

CoII(POP) CoIII(POP)OH

 

Scheme 4.1: Adapted mechanism for the oxidation of n-octane (RH) by cobalt and nickel 
complexes and TBHP as oxidant [9, 21]. 

4.8 Summary 

The oxidation studies of n-octane activation using two sets of catalysts, namely cobalt and nickel 

complexes, were performed at room temperature, 50 and 60 °C.  Oxidants H2O2, TBHP and m-

CPBA were also investigated. 

H2O2 and m-CPBA as oxidants were not active for the series of xanthene-based complexes 

investigated in this study, while TBHP was active.  At RT all cobalt and nickel catalysts were 

inactive.  At 50 °C all catalysts showed highest activity, except for catalyst 2.14 which was 

inactive.  Of the nickel catalysts, only 2.19 was not active at 50 °C.  Selectivity at 50 °C favoured 

the C-2 position of the carbon chain producing 2-octanone.  At 60 °C all catalysts showed a 

major drop in activity.  In terms of selectivity, higher temperature did not only decrease activity, 

but also favoured the formation of other products, such as 3-octanol and 4-octanol.  Ketones (3-

octanone and 4-octanone) were observed but in trace amounts.  Alcohols were observed as the 

other products with all catalysts at the higher temperature.  The terminal position showed no 

products of alkane oxygenation.  Steric factors did not seem to have much effect on both 

selectivity and activity, but temperature seemed to have an effect in terms of both activity and 
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selectivity.  Changes that were made at position X of the ligand backbone affected the bite angle, 

which resulted in minor changes in the activity of the catalysts.  In comparison to other reactions 

such as hydroformylation and hydrocyanation the bite angle size had a minor effect on the 

oxidation of n-octane. 

Therefore, the best temperature to work with when using xanthene-based complexes of cobalt 

and nickel is 50 °C as it was the temperature where most catalysts were active. 
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Chapter 5 

 General Conclusion 

Xanthene-based ligands were successfully synthesized and characterized by NMR, melting point, 

IR and LC-MS.  Design of these ligands focused on different types of backbones with different 

bite angle size.  Complexation of xanthene-based ligands to nickel and cobalt was a success.  The 

prepared complexes were found to be NMR inactive due to their paramagnetic properties and 

they were then characterized by Mp, EA, IR and some by single crystal X-ray diffraction.  

Crystal structures of 4, 5-bis(di-p-tolylphosphino)-9,9-dimethyl xanthene, Co(4, 5-bis(di-p-

tolylphosphino)-9,9-dimethyl xanthene)Cl2, and Ni(4, 5-bis(di-p-tolylphosphino)-9,9-dimethyl 

xanthene)Cl2 were obtained. 

The prepared cobalt and nickel complexes were used in the activation of n-octane.  The n-octane 

activation was done at different temperatures (RT, 50 °C, 60 °C) using three different types of 

oxidants (H2O2, TBHP, m-CPBA) in THF solvent.  The use of H2O2 and m-CPBA as an oxidant 

on n-octane activation in the presence of xanthene-based complexes showed no conversion.  

TBHP as an oxidant gave activity at all temperatures and showed its best activity at 50 °C.  

Selectivity towards 2-octanone was high at 50 °C and 60 °C for both cobalt and nickel catalysts.  

At higher temperatures a major drop in conversion was observed and formation of other products 

such as 3-octanol, 4-octanol were observed.  Alcohols were observed as other products at 50 °C 

and 60 °C temperatures.  Other products such as ketones (3-octanone and 4-octanone) were 

observed in trace amounts.  No products of alkane oxygenation were observed at the terminal 

position of n-octane. 

All catalysts showed that the bite angle size has a minor effect on the catalytic activity.  

Temperature seemed to have a greater effect in activity as well as selectivity.  Sulphur had a 

deactivating effect on both cobalt and nickel catalysts. 

To conclude, the aim of the study was achieved as ligand synthesis and complexation to cobalt 

and nickel was a success.  Small variations on the xanthene backbone brought changes to the bite 

angle size and resulted in minor changes in catalytic activity.  TBHP was the most successful 
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oxidant used.  The temperature effect was also investigated and one can conclude that when 

using xanthene-based catalysts the best temperature to work with is 50 °C. 



i	
  
	
  

List of Figure 
	
  

Figure 2: 1H NMR of ligand (4,5-bis(di-p-tolylphosphino)-9,9-dimethyl xanthene) ..................... 1 

Figure 1: 31P NMR of ligand (4,5-bis(diphenylphosphino)-9,9-dimethyl xanthene ....................... 1 

Figure 3: 13C NMR of ligand (4,5-bis(di-p-tolylphosphino)-9,9-dimethyl xanthene) .................... 2 

Figure 4: 31P NMR of ligand (4,5-bis(di-p-tolylphosphino)-9,9-dimethyl xanthene) .................... 2 

Figure 6: 13C NMR of precursor (2,7-(di-n-hexanoyl)-9,9-dimethyl xanthene) ............................. 3 

Figure 5: 1H NMR of precursor (2,7-(di-n-hexanoyl)-9,9-dimethyl xanthene) .............................. 3 

Figure 8: 13C NMR of precursor (2,7-(di-n-hexyl)-9,9-dimethyl xanthene) .................................. 4 

Figure 7: 1H NMR of precursor (2,7-(di-n-hexyl)-9,9-dimethyl xanthene) .................................... 4 

Figure 9: 1H NMR of ligand (4,5-bis(diphenylphoshino)-2,7-di-n-hexyl-9,9-dimethyl xanthene).5 

Figure 10: 13C NMR of ligand (4,5-bis(diphenylphoshino)-2,7-di-n-hexyl-9,9-dimethyl xanthene)  

......................................................................................................................................................... 5 

Figure 11: 31P NMR of ligand (4,5-bis(diphenylphoshino)-2,7-di-n-hexyl-9,9-dimethyl xanthene) 

......................................................................................................................................................... 6 

Figure 12: 1H NMR of ligand (4,5-bis(diphenylphosphino) 10-isopropylidene xanthene) ............ 6 

Figure 13: 13C NMR of ligand (4,5-bis(diphenylphosphino) 10-isopropylidene xanthene) ........... 7 

Figure 14: 31P NMR of ligand (4,5-bis(diphenylphosphino) 10-isopropylidene xanthene) ........... 7 

Figure 15: 1H NMR of ligand 2.7 ................................................................................................... 8 

 

	
   	
  



ii	
  
	
  

List of Tables 
	
  

Table 1: Standards used for GC calibration and the suppliers ........................................................ 8 

Table 2: Mass of standards used in THF solvents and their respective RF values ......................... 9 

Table 3: Quantities used in the blank runs for the optimization of the substrate to oxidant (TBHP) 

ratio ................................................................................................................................... 9 

Table 4: Quantities used in the optimization of the substrate to oxidant (TBHP) ratio using  

catalyst  ........................................................................................................................... 10 

Table 5: Quantities used in the blank runs for the substrate to oxidant (m-CPBA) ratio ............. 11 

Table 6: Quantities used in the optimization of the substrate to oxidant (m-CPBA) ratio using 

catalyst  ........................................................................................................................... 11 

Table 7: Quantities used in the blank runs for the optimization of the substrate to oxidant (H2O2) 

ratio ................................................................................................................................. 11 

Table 8: Quantities used in the optimization of the substrate to oxidant (H2O2) ratio using 

catalyst  ........................................................................................................................... 12 

Table 9: Mass and molar quantities used in the catalytic testing in THF with TBHP as the 

respective oxidant ........................................................................................................... 12 

Table 10: Calculated reactivities from the % selectivity of the alcohols and ketones for catalyst 

 ........................................................................................................................................ 13 

Table 11: Crystal data and structure refinement for (4, 5-bis(di-p-tolylphosphino)-9,9-dimethyl 

xanthene) ........................................................................................................................ 14 

Table 12: Atomic coordinates and isotropic displacement parameters for( 4,5-bis(di-p-

tolylphosphino)-9,9-dimethyl xanthene) ........................................................................ 16 

Table 13: Bond lengths [Å] and angles [°] for (4,5-bis(di-p-tolylphosphino)-9,9-dimethyl 

xanthene) ........................................................................................................................ 17 

Table 14: Anisotropic displacement parameters for (4, 5-bis(di-p-tolylphosphino)-9,9-dimethyl 

xanthene) ........................................................................................................................ 24 

Table 15: Hydrogen coordinates and isotropic displacement parameters for (4,5-bis(di-p-

tolylphosphino)-9,9-dimethyl xanthene) ........................................................................ 26 

Table 16: Torsion angles for (4,5-bis(di-p-tolylphosphino) 9,9-dimethyl xanthene) ................... 27 

Table 17: Hydrogen bonds for (4, 5-bis(di-p-tolylphosphino)-9,9-dimethyl xanthene) ............... 30 



iii	
  
	
  

Table 18: Crystal data and structure refinement for (Co(4,5-bis(di-p-tolylphosphino)-9,9-

dimethyl xanthene)Cl2) ................................................................................................... 31 

Table 19: Atomic coordinates and equivalent isotropic displacement parameters for (Co(4,5-

bis(di-p-tolylphosphino)-9,9-dimethyl xanthene)Cl2) .................................................... 32 

Table 20: Bond lengths [Å] and angles [°] for (Co(4,5-bis(di-p-tolylphosphino)-9,9-dimethyl 

xanthene)Cl2) .................................................................................................................. 34 

Table 21: Anisotropic displacement parameters for (Co(4,5-bis(di-p-tolylphosphino)-9,9-

dimethyl xanthene)Cl2) ................................................................................................... 42 

Table 22: Hydrogen coordinates and isotropic displacement parameters for (Co(4,5-bis(di-p-

tolylphosphino)-9,9-dimethyl xanthene)Cl2) .................................................................. 43 

Table 23: Torsion angles for (Co(4,5-bis(di-p-tolylphosphino)-9,9-dimethyl xanthene)Cl2) ...... 45 

Table 24: Crystal data and structure refinement for (Ni(4,5-bis(di-p-tolylphosphino)-9,9-

dimethyl xanthene)Cl2) ................................................................................................... 49 

Table 25: Atomic coordinates and equivalent isotropic displacement parameters for (Ni(4,5-

bis(di-p-tolylphosphino)-9,9-dimethyl xanthene)Cl2) .................................................... 50 

Table 26: Bond lengths [Å] and angles [°] for (Ni(4,5-bis(di-p-tolylphosphino)-9,9-dimethyl 

xanthene)Cl2) .................................................................................................................. 52 

Table 27: Anisotropic displacement parameters for (Ni(4,5-bis(di-p-tolylphosphino)-9,9-

dimethyl xanthene)Cl2) ................................................................................................... 60 

Table 28: Hydrogen coordinates and isotropic displacement parameters for (Ni((4,5-bis(di-p-

tolylphosphino)-9,9-dimethyl xanthene)Cl2) .................................................................. 61 

Table 29: Torsion angles for (Ni((4,5-bis(di-p-tolylphosphino)-9,9-dimethyl xanthene)Cl2) ..... 63 

Table 30: Hydrogen bonds for (Ni((4,5-bis(di-p-tolylphosphino)-9,9-dimethyl xanthene)Cl2) ... 66	
  



1	
  
	
  

Appendix A 

 

 

 

 

 

 

 

 

 

 

 

 

	
  

Figure 2: 1H NMR of ligand (4,5-bis(di-p-tolylphosphino)-9,9-dimethyl xanthene) 2.3 

Figure 1: 31P NMR of ligand (4,5-bis(diphenylphosphino)-9,9-dimethyl xanthene 2.2 

O

PP
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Figure 3: 13C NMR of ligand (4,5-bis(di-p-tolylphosphino)-9,9-dimethyl xanthene)  2.3 

 

 

	
  

Figure 4: 31P NMR of ligand (4,5-bis(di-p-tolylphosphino)-9,9-dimethyl xanthene) 2.3 
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Figure 6: 13C NMR of precursor (2,7-(di-n-hexanoyl)-9,9-dimethyl xanthene)   2.4 

O

O O

Figure 5: 1H NMR of precursor (2,7-(di-n-hexanoyl)-9,9-dimethyl xanthene) 2.4 
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Figure 8: 13C NMR of precursor (2,7-(di-n-hexyl)-9,9-dimethyl xanthene)  2.5 

 

Figure 7: 1H NMR of precursor (2,7-(di-n-hexyl)-9,9-dimethyl xanthene) 2.5 
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Figure 9: 1H NMR of ligand (4,5-bis(diphenylphoshino)-2,7-di-n-hexyl-9,9-dimethyl xanthene) 
2.6 

 

 

	
  

Figure 10: 13C NMR of ligand (4,5-bis(diphenylphoshino)-2,7-di-n-hexyl-9,9-dimethyl xanthene)  
2.6 
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Figure 11: 31P NMR of ligand (4,5-bis(diphenylphoshino)-2,7-di-n-hexyl-9,9-dimethyl xanthene) 
2.6 

 

 

	
  

Figure 12: 1H NMR of ligand (4,5-bis(diphenylphosphino) 10-isopropylidene xanthene)  2.10 
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Figure 13: 13C NMR of ligand (4,5-bis(diphenylphosphino) 10-isopropylidene xanthene) 2.10 

 

 

	
  

Figure 14: 31P NMR of ligand (4,5-bis(diphenylphosphino) 10-isopropylidene xanthene) 2.10 
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Figure 15: 1H NMR of ligand 2.7 
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Appendix B 

 

Standards used for GC calibration 

Table 1: Standards used for GC calibration and the suppliers 

Multi component standards Supplier 

Octane Fluka 

Octanol Sigma Aldrich 

Octanoic acid Sigma Aldrich 

2-octanol Sigma Aldrich 

3-octanol Fluka 

4-octanol Fluka 

2-octanone Fluka 

3-octanone Fluka 

4-octanone Sigma Aldrich 

Octanal Sigma Aldrich 

Pentanoic acid Merck 

 

The standards in the above were all weighed into a 10 ml volumetric flask and diluted into a 

mark by THF solvent.  This multicomponent standard mixture was used for GC calibration.  

RF values were calculated based on the following formula: 

RF = ((area of internal standard)(mol of analyte))/((area of analyte)(mol of internal standard)) 
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Table 2: Mass of standards used in THF solvents and their respective RF values 

Standards Tetrahydrofuran 

Mass/g RF value 

Octane 0.0100 0.389 

1-octanol 0.0127 0.638 

2-octanol 0.0130 0.709 

3-octanol 0.0134 0.901 

4-octanol 0.0109 0.715 

2-octanone 0.0155 0.459 

3-octanone 0.0150 0.461 

4-octanone 0.0126 0.577 

Octanal 0.0138 0.989 

Octanoic acid 0.0129 0.453 

 

Optimization of substrate to oxidant (TBHP) ratio in Tetrahydrofuran solvent and using 

complex 2.11 

Table 3: Quantities used in the blank runs for the optimization of the substrate to oxidant (TBHP) 
ratio 

Ratio octane t-BuOOH Pentanoic acid 

 Mass /g mol x 10-4 Mass /g mol x 10-3 Mass /g mol x 10-5 

1:7.5 0.0441 3.86 0.389 4.32 0.0094 9.20 

1:10 0.0439 3.84 0.511 5.67 0.0161 15.7 

 

Table 4: Quantities used in the optimization of the substrate to oxidant (TBHP) ratio using 
catalyst 2.11 

Ratio Catalyst Octane t-BuOOH Pentanoic acid 

 Mass /g mol  

x 10-6 

Mass /g mol  

x 10-4 

Mass /g mol  

x 10-3 

Mass /g mol  

x 10-4 

1:7.5 0.0031 4.37 0.0397 3.47 0.384 4.26 0.0108 1.05 

1:10 0.0029 4.09 0.0423 3.70 0.513 5.69 0.0103 1.00 
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Optimization of substrate to oxidant (TBHP) ratio in Tetrahydrofuran solvent and using 

complex 2.11 

Table 5: Quantities used in the blank runs for the substrate to oxidant (m-CPBA) ratio 

Ratio Octane m-CPBA Pentanoic acid 

 Mass /g mol x 10-4 Mass /g mol x 10-3 Mass /g mol x 10-5 

1:7.5 0.0478 4.18 0.554 3.21 0.0189 18.5 

1:10 0.0478 4.18 0.702 4.06 0.0259 25.3 

 

 

Table 6: Quantities used in the optimization of the substrate to oxidant (m-CPBA) ratio using 
catalyst 2.11 

Ratio Catalyst Octane m-CPBA Pentanoic acid 

 Mass /g mol  

x 10-6 

Mass /g mol  

x 10-4 

Mass /g mol  

x 10-3 

Mass /g mol  

x 10-4 

1:7.5 0.0033 4.65 0.0483 4.20 0.550 3.18 0.0128 1.25 

1:10 0.0035 4.94 0.0473 4.14 0.746 4.32 0.0204 1.99 

 

Optimization of substrate to oxidant (H2O2) ratio in Tetrahydrofuran solvent and using 

complex 2.11 

Table 7: Quantities used in the blank runs for the optimization of the substrate to oxidant (H2O2) 
ratio 

Ratio Octane H2O2 Pentanoic acid 

 Mass/g Mol x 10-4 Mass/g Mol x 10-3 Mass/g Mol x 10-4 

1:7.5 0.0457 4.00 0.2944 8.65 0.0129 1.26 

1:10 0.0445 3.89 0.4143 12.1 0.0203 1.98 

 

	
  



12	
  
	
  

Table 8: Quantities used in the optimization of the substrate to oxidant (H2O2) ratio using 
catalyst 2.11 

Ratio Catalyst Octane H2O2 Pentanoic acid 

 Mass/g Mol x 10-6 Mass/g Mol x 10-4 Mass/g Mol x 10-3 Mass/g Mol x 10-4 

1:7.5 0.0029 4.09 0.0489 4.28 0.290 8.52 0.0129 1.26 

1:7.5 0.0031 4.37 0.0481 4.21 0.284 8.34 0.0094 0.92 

 

Catalytic testing in the presence of TBHP 

Table 9: Mass and molar quantities used in the catalytic testing in THF with TBHP as the 
respective oxidant 

Ratio Catalyst Octane t-BuOOH Pentanoic acid 

 Mass /g mol 

x 10-6 

Mass /g mol 

x 10-4 

Mass /g mol 

x 10-3 

Mass /g mol 

x 10-4 

2.11 0.0026 3.66 0.0476 4.17 0.488 5.41 0.0120 1.17 

2.12 0.0029 3.79 0.0468 4.10 0.512 5.68 0.0107 1.04 

2.13 0.0026 2.96 0.0471 4.13 0.513 5.69 0.0091 0.891 

2.14 0.0025 3.44 0.0482 4.22 0.504 5.59 0.0145 1.41 

2.15 0.0031 4.30 0.0463 4.05 0.549 6.09 0.0109 1.06 

2.16 0.0036 5.08 0.0484 4.24 0.495 5.49 0.0124 1.21 

2.17 0.0035 4.57 0.0480 4.20 0.507 5.62 0.0186 1.82 

2.18 0.0032 3.65 0.0479 4.19 0.497 5.51 0.0107 1.04 

2.19 0.0031 4.26 0.0468 4.10 0.506 5.61 0.0201 1.96 

2.20 0.0034 4.72 0.0472 4.13 0.510 5.65 0.0111 1.09 
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Calculations of selectivity parameters 

Table 10: Calculated reactivities from the % selectivity of the alcohols and ketones for catalyst 
2.12 

Alcohols/ketones % Selectivity Number of 

hydrogens 

Normalized 

2 octanone 55 16 3 

3-octanol 17 17 1 

4-octanol 28 17 2 

Ratio = 3: 1: 2 
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Structure diagram of 4,5-(di-p-tolylphosphine)-9,9-dimethyl xanthene 

	
  

 
 
Table 11: Crystal data and structure refinement for (4, 5-bis(di-p-tolylphosphino)-9,9-dimethyl 
xanthene) 

	
  

Empirical formula  C43 H40 O P2 
Formula weight  634.69 
Temperature  173(2) K 
Wavelength  0.71073 Å 
Crystal system  Triclinic 
Space group  P-1 
Unit cell dimensions a = 9.8811(6) Å a= 97.650(3)°. 
 b = 9.9770(6) Å b= 96.262(2)°. 
 c = 18.3504(11) Å g = 94.637(2)°. 
Volume 1773.88(19) Å3 
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Z 2 
Density (calculated) 1.188 Mg/m3 
Absorption coefficient 0.155 mm-1 
F(000) 672 
Crystal size 0.48 x 0.23 x 0.13 mm3 
Theta range for data collection 2.07 to 25.00°. 
Index ranges -11<=h<=11, -11<=k<=11, -21<=l<=21 
Reflections collected 25830 
Independent reflections 6054 [R(int) = 0.0332] 
Completeness to theta = 25.00° 96.8 %  
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.9802 and 0.9295 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 6054 / 0 / 421 
Goodness-of-fit on F2 1.060 
Final R indices [I>2sigma(I)] R1 = 0.0349, wR2 = 0.0904 
R indices (all data) R1 = 0.0398, wR2 = 0.0938 
Largest diff. peak and hole 0.377 and -0.297 e.Å-3  
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Table 12: Atomic coordinates and isotropic displacement parameters for (4,5-bis(di-p-
tolylphosphino)-9,9-dimethyl xanthene) 

________________________________________________________________________________ 

 x y z U(eq) 

________________________________________________________________________________ 

C(1) 7105(2) 7484(2) 671(1) 19(1) 

C(2) 8309(2) 7964(2) 418(1) 22(1) 

C(3) 8269(2) 8681(2) -181(1) 24(1) 

C(4) 7032(2) 8972(2) -536(1) 23(1) 

C(5) 5830(2) 8480(2) -287(1) 23(1) 

C(6) 5863(2) 7737(2) 300(1) 21(1) 

C(7) 6989(2) 9805(2) -1168(1) 31(1) 

C(8) 5468(2) 6284(2) 1645(1) 19(1) 

C(9) 4707(2) 5074(2) 1320(1) 24(1) 

C(10) 3337(2) 4838(2) 1408(1) 27(1) 

C(11) 2670(2) 5806(2) 1805(1) 29(1) 

C(12) 3430(2) 7012(2) 2134(1) 30(1) 

C(13) 4815(2) 7241(2) 2065(1) 25(1) 

C(14) 1166(2) 5543(3) 1875(1) 45(1) 

C(15) 7700(2) 4997(2) 1162(1) 19(1) 

C(16) 7794(2) 4542(2) 424(1) 23(1) 

C(17) 8063(2) 3215(2) 200(1) 27(1) 

C(18) 8216(2) 2330(2) 717(1) 25(1) 

C(19) 8143(2) 2747(2) 1469(1) 20(1) 

C(20) 7911(2) 4087(2) 1675(1) 18(1) 

C(21) 8270(2) 1747(2) 2028(1) 22(1) 

C(22) 7055(2) 638(2) 1837(1) 32(1) 

C(23) 9627(2) 1095(2) 1991(1) 32(1) 

C(24) 8215(2) 2476(2) 2807(1) 20(1) 

C(25) 8333(2) 1755(2) 3411(1) 23(1) 

C(26) 8255(2) 2379(2) 4123(1) 24(1) 

C(27) 8070(2) 3751(2) 4250(1) 21(1) 

C(28) 7938(2) 4511(2) 3668(1) 18(1) 

C(29) 8003(2) 3836(2) 2952(1) 17(1) 

C(30) 9379(2) 7144(2) 3877(1) 20(1) 
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C(31) 10539(2) 6464(2) 3797(1) 22(1) 

C(32) 11824(2) 7176(2) 3858(1) 27(1) 

C(33) 11995(2) 8591(2) 4009(1) 30(1) 

C(34) 10834(2) 9265(2) 4091(1) 31(1) 

C(35) 9552(2) 8564(2) 4025(1) 28(1) 

C(36) 13400(2) 9360(2) 4092(1) 46(1) 

C(37) 7230(2) 6590(2) 4733(1) 20(1) 

C(38) 8198(2) 6731(2) 5358(1) 23(1) 

C(39) 7804(2) 6878(2) 6065(1) 28(1) 

C(40) 6431(2) 6889(2) 6170(1) 32(1) 

C(41) 5478(2) 6778(2) 5549(1) 36(1) 

C(42) 5863(2) 6633(2) 4841(1) 28(1) 

C(43) 5991(3) 7017(3) 6940(1) 54(1) 

O(1) 7841(1) 4639(1) 2399(1) 20(1) 

P(1) 7271(1) 6699(1) 1526(1) 18(1) 

P(2) 7621(1) 6321(1) 3772(1) 19(1) 

________________________________________________________________________________  

 

 

 
Table 13: Bond lengths [Å] and angles [°] for (4,5-bis(di-p-tolylphosphino)-9,9-dimethyl 
xanthene) 

_____________________________________________________ 

C(1)-C(6)  1.395(2) 

C(1)-C(2)  1.397(2) 

C(1)-P(1)  1.8413(16) 

C(2)-C(3)  1.387(2) 

C(2)-H(2)  0.9500 

C(3)-C(4)  1.392(2) 

C(3)-H(3)  0.9500 

C(4)-C(5)  1.395(2) 

C(4)-C(7)  1.512(2) 

C(5)-C(6)  1.386(2) 

C(5)-H(5)  0.9500 

C(6)-H(6)  0.9500 
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C(7)-H(7A)  0.9800 

C(7)-H(7B)  0.9800 

C(7)-H(7C)  0.9800 

C(8)-C(13)  1.390(2) 

C(8)-C(9)  1.394(2) 

C(8)-P(1)  1.8395(16) 

C(9)-C(10)  1.385(2) 

C(9)-H(9)  0.9500 

C(10)-C(11)  1.387(3) 

C(10)-H(10)  0.9500 

C(11)-C(12)  1.392(3) 

C(11)-C(14)  1.510(3) 

C(12)-C(13)  1.392(2) 

C(12)-H(12)  0.9500 

C(13)-H(13)  0.9500 

C(14)-H(14A)  0.9800 

C(14)-H(14B)  0.9800 

C(14)-H(14C)  0.9800 

C(15)-C(16)  1.387(2) 

C(15)-C(20)  1.402(2) 

C(15)-P(1)  1.8402(16) 

C(16)-C(17)  1.388(2) 

C(16)-H(16)  0.9500 

C(17)-C(18)  1.384(2) 

C(17)-H(17)  0.9500 

C(18)-C(19)  1.400(2) 

C(18)-H(18)  0.9500 

C(19)-C(20)  1.384(2) 

C(19)-C(21)  1.526(2) 

C(20)-O(1)  1.3798(18) 

C(21)-C(24)  1.524(2) 

C(21)-C(23)  1.541(2) 

C(21)-C(22)  1.542(2) 

C(22)-H(22A)  0.9800 

C(22)-H(22B)  0.9800 

C(22)-H(22C)  0.9800 
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C(23)-H(23A)  0.9800 

C(23)-H(23B)  0.9800 

C(23)-H(23C)  0.9800 

C(24)-C(29)  1.385(2) 

C(24)-C(25)  1.398(2) 

C(25)-C(26)  1.382(2) 

C(25)-H(25)  0.9500 

C(26)-C(27)  1.388(2) 

C(26)-H(26)  0.9500 

C(27)-C(28)  1.391(2) 

C(27)-H(27)  0.9500 

C(28)-C(29)  1.405(2) 

C(28)-P(2)  1.8464(16) 

C(29)-O(1)  1.3788(18) 

C(30)-C(31)  1.390(2) 

C(30)-C(35)  1.399(2) 

C(30)-P(2)  1.8390(17) 

C(31)-C(32)  1.390(2) 

C(31)-H(31)  0.9500 

C(32)-C(33)  1.394(3) 

C(32)-H(32)  0.9500 

C(33)-C(34)  1.388(3) 

C(33)-C(36)  1.513(3) 

C(34)-C(35)  1.382(3) 

C(34)-H(34)  0.9500 

C(35)-H(35)  0.9500 

C(36)-H(36A)  0.9800 

C(36)-H(36B)  0.9800 

C(36)-H(36C)  0.9800 

C(37)-C(42)  1.390(2) 

C(37)-C(38)  1.396(2) 

C(37)-P(2)  1.8351(16) 

C(38)-C(39)  1.388(2) 

C(38)-H(38)  0.9500 

C(39)-C(40)  1.392(3) 

C(39)-H(39)  0.9500 
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C(40)-C(41)  1.383(3) 

C(40)-C(43)  1.515(3) 

C(41)-C(42)  1.386(3) 

C(41)-H(41)  0.9500 

C(42)-H(42)  0.9500 

C(43)-H(43A)  0.9800 

C(43)-H(43B)  0.9800 

C(43)-H(43C)  0.9800 

 

C(6)-C(1)-C(2) 117.97(15) 

C(6)-C(1)-P(1) 124.35(12) 

C(2)-C(1)-P(1) 117.43(12) 

C(3)-C(2)-C(1) 120.88(15) 

C(3)-C(2)-H(2) 119.6 

C(1)-C(2)-H(2) 119.6 

C(2)-C(3)-C(4) 121.19(15) 

C(2)-C(3)-H(3) 119.4 

C(4)-C(3)-H(3) 119.4 

C(3)-C(4)-C(5) 117.81(15) 

C(3)-C(4)-C(7) 121.26(15) 

C(5)-C(4)-C(7) 120.92(16) 

C(6)-C(5)-C(4) 121.22(16) 

C(6)-C(5)-H(5) 119.4 

C(4)-C(5)-H(5) 119.4 

C(5)-C(6)-C(1) 120.88(15) 

C(5)-C(6)-H(6) 119.6 

C(1)-C(6)-H(6) 119.6 

C(4)-C(7)-H(7A) 109.5 

C(4)-C(7)-H(7B) 109.5 

H(7A)-C(7)-H(7B) 109.5 

C(4)-C(7)-H(7C) 109.5 

H(7A)-C(7)-H(7C) 109.5 

H(7B)-C(7)-H(7C) 109.5 

C(13)-C(8)-C(9) 118.09(15) 

C(13)-C(8)-P(1) 118.40(12) 

C(9)-C(8)-P(1) 123.48(13) 
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C(10)-C(9)-C(8) 120.90(16) 

C(10)-C(9)-H(9) 119.6 

C(8)-C(9)-H(9) 119.6 

C(9)-C(10)-C(11) 121.30(16) 

C(9)-C(10)-H(10) 119.4 

C(11)-C(10)-H(10) 119.4 

C(10)-C(11)-C(12) 117.85(16) 

C(10)-C(11)-C(14) 120.34(18) 

C(12)-C(11)-C(14) 121.81(18) 

C(11)-C(12)-C(13) 121.15(17) 

C(11)-C(12)-H(12) 119.4 

C(13)-C(12)-H(12) 119.4 

C(8)-C(13)-C(12) 120.66(16) 

C(8)-C(13)-H(13) 119.7 

C(12)-C(13)-H(13) 119.7 

C(11)-C(14)-H(14A) 109.5 

C(11)-C(14)-H(14B) 109.5 

H(14A)-C(14)-H(14B) 109.5 

C(11)-C(14)-H(14C) 109.5 

H(14A)-C(14)-H(14C) 109.5 

H(14B)-C(14)-H(14C) 109.5 

C(16)-C(15)-C(20) 118.06(15) 

C(16)-C(15)-P(1) 125.05(12) 

C(20)-C(15)-P(1) 116.87(11) 

C(15)-C(16)-C(17) 120.61(15) 

C(15)-C(16)-H(16) 119.7 

C(17)-C(16)-H(16) 119.7 

C(18)-C(17)-C(16) 119.81(15) 

C(18)-C(17)-H(17) 120.1 

C(16)-C(17)-H(17) 120.1 

C(17)-C(18)-C(19) 121.54(15) 

C(17)-C(18)-H(18) 119.2 

C(19)-C(18)-H(18) 119.2 

C(20)-C(19)-C(18) 117.08(15) 

C(20)-C(19)-C(21) 122.00(14) 

C(18)-C(19)-C(21) 120.89(14) 
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O(1)-C(20)-C(19) 123.10(14) 

O(1)-C(20)-C(15) 114.06(13) 

C(19)-C(20)-C(15) 122.83(14) 

C(24)-C(21)-C(19) 110.14(13) 

C(24)-C(21)-C(23) 110.01(13) 

C(19)-C(21)-C(23) 109.74(14) 

C(24)-C(21)-C(22) 108.45(14) 

C(19)-C(21)-C(22) 108.65(13) 

C(23)-C(21)-C(22) 109.82(14) 

C(21)-C(22)-H(22A) 109.5 

C(21)-C(22)-H(22B) 109.5 

H(22A)-C(22)-H(22B) 109.5 

C(21)-C(22)-H(22C) 109.5 

H(22A)-C(22)-H(22C) 109.5 

H(22B)-C(22)-H(22C) 109.5 

C(21)-C(23)-H(23A) 109.5 

C(21)-C(23)-H(23B) 109.5 

H(23A)-C(23)-H(23B) 109.5 

C(21)-C(23)-H(23C) 109.5 

H(23A)-C(23)-H(23C) 109.5 

H(23B)-C(23)-H(23C) 109.5 

C(29)-C(24)-C(25) 117.13(15) 

C(29)-C(24)-C(21) 122.87(14) 

C(25)-C(24)-C(21) 119.97(14) 

C(26)-C(25)-C(24) 121.38(15) 

C(26)-C(25)-H(25) 119.3 

C(24)-C(25)-H(25) 119.3 

C(25)-C(26)-C(27) 120.01(15) 

C(25)-C(26)-H(26) 120.0 

C(27)-C(26)-H(26) 120.0 

C(26)-C(27)-C(28) 120.87(15) 

C(26)-C(27)-H(27) 119.6 

C(28)-C(27)-H(27) 119.6 

C(27)-C(28)-C(29) 117.38(14) 

C(27)-C(28)-P(2) 124.35(12) 

C(29)-C(28)-P(2) 118.23(12) 



23	
  
	
  

O(1)-C(29)-C(24) 122.24(14) 

O(1)-C(29)-C(28) 114.55(13) 

C(24)-C(29)-C(28) 123.21(14) 

C(31)-C(30)-C(35) 117.72(16) 

C(31)-C(30)-P(2) 124.89(13) 

C(35)-C(30)-P(2) 117.36(13) 

C(32)-C(31)-C(30) 120.86(16) 

C(32)-C(31)-H(31) 119.6 

C(30)-C(31)-H(31) 119.6 

C(31)-C(32)-C(33) 121.29(17) 

C(31)-C(32)-H(32) 119.4 

C(33)-C(32)-H(32) 119.4 

C(34)-C(33)-C(32) 117.65(17) 

C(34)-C(33)-C(36) 121.26(18) 

C(32)-C(33)-C(36) 121.08(18) 

C(35)-C(34)-C(33) 121.33(17) 

C(35)-C(34)-H(34) 119.3 

C(33)-C(34)-H(34) 119.3 

C(34)-C(35)-C(30) 121.14(17) 

C(34)-C(35)-H(35) 119.4 

C(30)-C(35)-H(35) 119.4 

C(33)-C(36)-H(36A) 109.5 

C(33)-C(36)-H(36B) 109.5 

H(36A)-C(36)-H(36B) 109.5 

C(33)-C(36)-H(36C) 109.5 

H(36A)-C(36)-H(36C) 109.5 

H(36B)-C(36)-H(36C) 109.5 

C(42)-C(37)-C(38) 117.93(15) 

C(42)-C(37)-P(2) 117.18(13) 

C(38)-C(37)-P(2) 124.88(12) 

C(39)-C(38)-C(37) 120.96(16) 

C(39)-C(38)-H(38) 119.5 

C(37)-C(38)-H(38) 119.5 

C(38)-C(39)-C(40) 120.89(17) 

C(38)-C(39)-H(39) 119.6 

C(40)-C(39)-H(39) 119.6 
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C(41)-C(40)-C(39) 117.91(16) 

C(41)-C(40)-C(43) 120.91(19) 

C(39)-C(40)-C(43) 121.19(19) 

C(40)-C(41)-C(42) 121.58(17) 

C(40)-C(41)-H(41) 119.2 

C(42)-C(41)-H(41) 119.2 

C(41)-C(42)-C(37) 120.70(17) 

C(41)-C(42)-H(42) 119.6 

C(37)-C(42)-H(42) 119.6 

C(40)-C(43)-H(43A) 109.5 

C(40)-C(43)-H(43B) 109.5 

H(43A)-C(43)-H(43B) 109.5 

C(40)-C(43)-H(43C) 109.5 

H(43A)-C(43)-H(43C) 109.5 

H(43B)-C(43)-H(43C) 109.5 

C(29)-O(1)-C(20) 119.51(12) 

C(8)-P(1)-C(15) 99.46(7) 

C(8)-P(1)-C(1) 101.56(7) 

C(15)-P(1)-C(1) 100.66(7) 

C(37)-P(2)-C(30) 101.09(7) 

C(37)-P(2)-C(28) 100.93(7) 

C(30)-P(2)-C(28) 100.97(7) 

_____________________________________________________________ 

 

  

Table 14: Anisotropic displacement parameters for (4, 5-bis(di-p-tolylphosphino)-9,9-dimethyl 
xanthene) 
______________________________________________________________________________ 

 U11 U22 U33 U23 U13 U12 

______________________________________________________________________________ 

C(1) 23(1)  13(1) 18(1)  -1(1) 2(1)  2(1) 

C(2) 21(1)  20(1) 23(1)  -1(1) 0(1)  2(1) 

C(3) 28(1)  19(1) 24(1)  -1(1) 7(1)  -2(1) 

C(4) 34(1)  16(1) 18(1)  0(1) 4(1)  2(1) 

C(5) 27(1)  20(1) 21(1)  0(1) -1(1)  5(1) 

C(6) 23(1)  18(1) 20(1)  -1(1) 2(1)  0(1) 
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C(7) 41(1)  28(1) 25(1)  8(1) 5(1)  4(1) 

C(8) 22(1)  19(1) 17(1)  5(1) 1(1)  2(1) 

C(9) 26(1)  23(1) 22(1)  1(1) 1(1)  1(1) 

C(10) 29(1)  27(1) 22(1)  4(1) -2(1)  -6(1) 

C(11) 24(1)  40(1) 22(1)  10(1) 3(1)  0(1) 

C(12) 31(1)  33(1) 29(1)  3(1) 11(1)  7(1) 

C(13) 28(1)  22(1) 26(1)  1(1) 6(1)  1(1) 

C(14) 28(1)  65(2) 41(1)  2(1) 7(1)  -5(1) 

C(15) 18(1)  16(1) 20(1)  0(1) 0(1)  2(1) 

C(16) 26(1)  23(1) 19(1)  2(1) 0(1)  4(1) 

C(17) 34(1)  26(1) 18(1)  -2(1) 2(1)  7(1) 

C(18) 28(1)  20(1) 25(1)  -4(1) 1(1)  6(1) 

C(19) 19(1)  19(1) 22(1)  1(1) -1(1)  3(1) 

C(20) 16(1)  19(1) 17(1)  -1(1) 0(1)  2(1) 

C(21) 26(1)  15(1) 24(1)  1(1) -1(1)  4(1) 

C(22) 43(1)  19(1) 29(1)  1(1) -3(1)  -5(1) 

C(23) 39(1)  30(1) 29(1)  4(1) 4(1)  17(1) 

C(24) 17(1)  18(1) 22(1)  2(1) -1(1)  1(1) 

C(25) 25(1)  16(1) 29(1)  5(1) 0(1)  3(1) 

C(26) 26(1)  23(1) 24(1)  9(1) 0(1)  1(1) 

C(27) 20(1)  23(1) 19(1)  4(1) 1(1)  2(1) 

C(28) 15(1)  16(1) 21(1)  2(1) -1(1)  1(1) 

C(29) 14(1)  18(1) 20(1)  5(1) -1(1)  1(1) 

C(30) 28(1)  19(1) 14(1)  5(1) 2(1)  2(1) 

C(31) 28(1)  18(1) 21(1)  2(1) 4(1)  1(1) 

C(32) 27(1)  27(1) 28(1)  6(1) 4(1)  2(1) 

C(33) 36(1)  28(1) 24(1)  7(1) 1(1)  -7(1) 

C(34) 46(1)  16(1) 31(1)  6(1) 3(1)  -2(1) 

C(35) 37(1)  20(1) 27(1)  7(1) 5(1)  5(1) 

C(36) 42(1)  37(1) 56(1)  7(1) 1(1)  -14(1) 

C(37) 23(1)  15(1) 21(1)  0(1) 3(1)  4(1) 

C(38) 22(1)  25(1) 23(1)  3(1) 2(1)  4(1) 

C(39) 37(1)  24(1) 22(1)  2(1) 1(1)  3(1) 

C(40) 42(1)  24(1) 29(1)  -1(1) 15(1)  -1(1) 

C(41) 26(1)  37(1) 45(1)  -5(1) 14(1)  -4(1) 

C(42) 22(1)  27(1) 32(1)  -3(1) 0(1)  1(1) 
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C(43) 65(2)  61(2) 38(1)  1(1) 27(1)  -1(1) 

O(1) 29(1)  15(1) 15(1)  2(1) 1(1)  4(1) 

P(1) 20(1)  15(1) 17(1)  1(1) 0(1)  1(1) 

P(2) 23(1)  18(1) 17(1)  2(1) 0(1)  6(1) 

______________________________________________________________________________  

 

 
Table 15: Hydrogen coordinates and isotropic displacement parameters for (4,5-bis(di-p-
tolylphosphino)-9,9-dimethyl xanthene) 

________________________________________________________________________________ 

 x  y  z  U(eq) 

________________________________________________________________________________ 

 

H(2) 9167 7798 659 26 

H(3) 9101 8979 -351 28 

H(5) 4973 8656 -525 28 

H(6) 5030 7395 452 25 

H(7A) 6669 9212 -1635 46 

H(7B) 7907 10235 -1191 46 

H(7C) 6362 10508 -1086 46 

H(9) 5133 4402 1033 28 

H(10) 2846 3996 1191 32 

H(12) 2996 7690 2411 36 

H(13) 5320 8060 2306 30 

H(14A) 672 5161 1389 68 

H(14B) 807 6398 2053 68 

H(14C) 1041 4898 2226 68 

H(16) 7673 5144 67 28 

H(17) 8141 2916 -306 32 

H(18) 8375 1417 557 30 

H(22A) 6200 1049 1899 48 

H(22B) 7163 -50 2168 48 

H(22C) 7032 210 1322 48 

H(23A) 9622 567 1500 48 

H(23B) 9730 494 2370 48 
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H(23C) 10392 1809 2078 48 

H(25) 8470 818 3331 28 

H(26) 8328 1868 4524 29 

H(27) 8032 4176 4742 25 

H(31) 10452 5500 3698 27 

H(32) 12601 6690 3797 32 

H(34) 10923 10229 4195 37 

H(35) 8776 9053 4081 33 

H(36A) 13378 10098 3790 69 

H(36B) 14062 8740 3928 69 

H(36C) 13671 9739 4614 69 

H(38) 9141 6726 5299 28 

H(39) 8481 6971 6483 33 

H(41) 4537 6801 5610 43 

H(42) 5185 6561 4425 34 

H(43A) 5291 7656 6976 81 

H(43B) 6782 7350 7307 81 

H(43C) 5614 6125 7034 81 

________________________________________________________________________________  

 

 
Table 16: Torsion angles for (4,5-bis(di-p-tolylphosphino) 9,9-dimethyl xanthene) 

________________________________________________________________ 

C(6)-C(1)-C(2)-C(3) 0.6(2) 

P(1)-C(1)-C(2)-C(3) -173.90(12) 

C(1)-C(2)-C(3)-C(4) 1.5(2) 

C(2)-C(3)-C(4)-C(5) -2.2(2) 

C(2)-C(3)-C(4)-C(7) 177.33(16) 

C(3)-C(4)-C(5)-C(6) 0.7(2) 

C(7)-C(4)-C(5)-C(6) -178.78(15) 

C(4)-C(5)-C(6)-C(1) 1.4(2) 

C(2)-C(1)-C(6)-C(5) -2.0(2) 

P(1)-C(1)-C(6)-C(5) 172.05(12) 

C(13)-C(8)-C(9)-C(10) 0.4(2) 

P(1)-C(8)-C(9)-C(10) -177.65(12) 



28	
  
	
  

C(8)-C(9)-C(10)-C(11) 1.6(3) 

C(9)-C(10)-C(11)-C(12) -1.9(3) 

C(9)-C(10)-C(11)-C(14) 178.16(17) 

C(10)-C(11)-C(12)-C(13) 0.2(3) 

C(14)-C(11)-C(12)-C(13) -179.91(17) 

C(9)-C(8)-C(13)-C(12) -2.2(2) 

P(1)-C(8)-C(13)-C(12) 176.03(13) 

C(11)-C(12)-C(13)-C(8) 1.9(3) 

C(20)-C(15)-C(16)-C(17) 1.2(2) 

P(1)-C(15)-C(16)-C(17) -176.96(13) 

C(15)-C(16)-C(17)-C(18) 1.1(3) 

C(16)-C(17)-C(18)-C(19) -1.7(3) 

C(17)-C(18)-C(19)-C(20) -0.1(2) 

C(17)-C(18)-C(19)-C(21) 178.08(16) 

C(18)-C(19)-C(20)-O(1) -178.74(14) 

C(21)-C(19)-C(20)-O(1) 3.1(2) 

C(18)-C(19)-C(20)-C(15) 2.5(2) 

C(21)-C(19)-C(20)-C(15) -175.61(14) 

C(16)-C(15)-C(20)-O(1) 178.04(14) 

P(1)-C(15)-C(20)-O(1) -3.62(18) 

C(16)-C(15)-C(20)-C(19) -3.1(2) 

P(1)-C(15)-C(20)-C(19) 175.23(12) 

C(20)-C(19)-C(21)-C(24) -4.3(2) 

C(18)-C(19)-C(21)-C(24) 177.66(14) 

C(20)-C(19)-C(21)-C(23) -125.55(16) 

C(18)-C(19)-C(21)-C(23) 56.4(2) 

C(20)-C(19)-C(21)-C(22) 114.36(17) 

C(18)-C(19)-C(21)-C(22) -63.7(2) 

C(19)-C(21)-C(24)-C(29) 3.2(2) 

C(23)-C(21)-C(24)-C(29) 124.26(16) 

C(22)-C(21)-C(24)-C(29) -115.61(17) 

C(19)-C(21)-C(24)-C(25) -179.07(14) 

C(23)-C(21)-C(24)-C(25) -58.0(2) 

C(22)-C(21)-C(24)-C(25) 62.16(19) 

C(29)-C(24)-C(25)-C(26) -0.6(2) 

C(21)-C(24)-C(25)-C(26) -178.47(15) 
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C(24)-C(25)-C(26)-C(27) -0.7(3) 

C(25)-C(26)-C(27)-C(28) 1.1(2) 

C(26)-C(27)-C(28)-C(29) -0.2(2) 

C(26)-C(27)-C(28)-P(2) 177.49(12) 

C(25)-C(24)-C(29)-O(1) -178.56(14) 

C(21)-C(24)-C(29)-O(1) -0.7(2) 

C(25)-C(24)-C(29)-C(28) 1.5(2) 

C(21)-C(24)-C(29)-C(28) 179.38(14) 

C(27)-C(28)-C(29)-O(1) 178.90(13) 

P(2)-C(28)-C(29)-O(1) 1.11(18) 

C(27)-C(28)-C(29)-C(24) -1.2(2) 

P(2)-C(28)-C(29)-C(24) -178.99(12) 

C(35)-C(30)-C(31)-C(32) -0.3(2) 

P(2)-C(30)-C(31)-C(32) 177.51(12) 

C(30)-C(31)-C(32)-C(33) 0.6(3) 

C(31)-C(32)-C(33)-C(34) -0.4(3) 

C(31)-C(32)-C(33)-C(36) 178.62(17) 

C(32)-C(33)-C(34)-C(35) -0.1(3) 

C(36)-C(33)-C(34)-C(35) -179.12(17) 

C(33)-C(34)-C(35)-C(30) 0.4(3) 

C(31)-C(30)-C(35)-C(34) -0.2(2) 

P(2)-C(30)-C(35)-C(34) -178.18(13) 

C(42)-C(37)-C(38)-C(39) 1.4(2) 

P(2)-C(37)-C(38)-C(39) -177.41(13) 

C(37)-C(38)-C(39)-C(40) -0.1(3) 

C(38)-C(39)-C(40)-C(41) -1.3(3) 

C(38)-C(39)-C(40)-C(43) 178.58(18) 

C(39)-C(40)-C(41)-C(42) 1.2(3) 

C(43)-C(40)-C(41)-C(42) -178.64(19) 

C(40)-C(41)-C(42)-C(37) 0.2(3) 

C(38)-C(37)-C(42)-C(41) -1.5(3) 

P(2)-C(37)-C(42)-C(41) 177.43(14) 

C(24)-C(29)-O(1)-C(20) -1.0(2) 

C(28)-C(29)-O(1)-C(20) 178.88(13) 

C(19)-C(20)-O(1)-C(29) -0.2(2) 

C(15)-C(20)-O(1)-C(29) 178.64(13) 
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C(13)-C(8)-P(1)-C(15) 166.10(13) 

C(9)-C(8)-P(1)-C(15) -15.81(15) 

C(13)-C(8)-P(1)-C(1) -90.87(14) 

C(9)-C(8)-P(1)-C(1) 87.22(14) 

C(16)-C(15)-P(1)-C(8) 101.83(15) 

C(20)-C(15)-P(1)-C(8) -76.38(13) 

C(16)-C(15)-P(1)-C(1) -1.94(16) 

C(20)-C(15)-P(1)-C(1) 179.85(12) 

C(6)-C(1)-P(1)-C(8) 4.47(15) 

C(2)-C(1)-P(1)-C(8) 178.56(12) 

C(6)-C(1)-P(1)-C(15) 106.54(14) 

C(2)-C(1)-P(1)-C(15) -79.37(13) 

C(42)-C(37)-P(2)-C(30) 153.51(13) 

C(38)-C(37)-P(2)-C(30) -27.63(16) 

C(42)-C(37)-P(2)-C(28) -102.87(14) 

C(38)-C(37)-P(2)-C(28) 75.99(15) 

C(31)-C(30)-P(2)-C(37) 110.29(14) 

C(35)-C(30)-P(2)-C(37) -71.89(13) 

C(31)-C(30)-P(2)-C(28) 6.71(15) 

C(35)-C(30)-P(2)-C(28) -175.46(12) 

C(27)-C(28)-P(2)-C(37) -10.36(15) 

C(29)-C(28)-P(2)-C(37) 167.27(12) 

C(27)-C(28)-P(2)-C(30) 93.34(14) 

C(29)-C(28)-P(2)-C(30) -89.03(13) 

 

 

 
Table 17: Hydrogen bonds for (4, 5-bis(di-p-tolylphosphino)-9,9-dimethyl xanthene) 

____________________________________________________________________________ 

D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 

____________________________________________________________________________ 
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Structure diagram of (Co((4,5-di-p-tolylphosphine)-9,9-dimethyl xanthene)Cl2) 

 
 

 
Table 18: Crystal data and structure refinement for (Co(4,5-bis(di-p-tolylphosphino)-9,9-
dimethyl xanthene)Cl2) 

 

Empirical formula  C43 H40 Cl2 Co O P2 
Formula weight  764.52 
Temperature  173(2) K 
Wavelength  0.71073 Å 
Crystal system  Triclinic 
Space group  P-1 
Unit cell dimensions a = 10.2166(3) Å a= 74.7610(10)°. 
 b = 11.0261(3) Å b= 86.7170(10)°. 
 c = 17.6982(5) Å g = 83.0110(10)°. 
Volume 1908.63(9) Å3 
Z 2 
Density (calculated) 1.330 Mg/m3 
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Absorption coefficient 0.706 mm-1 
F(000) 794 
Crystal size 0.25 x 0.24 x 0.12 mm3 
Theta range for data collection 1.19 to 28.00°. 
Index ranges -13<=h<=13, -14<=k<=14, -23<=l<=23 
Reflections collected 54347 
Independent reflections 9060 [R(int) = 0.0258] 
Completeness to theta = 28.00° 98.2 %  
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.9201 and 0.8432 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 9060 / 0 / 448 
Goodness-of-fit on F2 1.077 
Final R indices [I>2sigma(I)] R1 = 0.0488, wR2 = 0.1178 
R indices (all data) R1 = 0.0563, wR2 = 0.1225 
Largest diff. peak and hole 2.070 and -0.748 e.Å-3 
 

 

 
Table 19: Atomic coordinates and equivalent isotropic displacement parameters for (Co(4,5-
bis(di-p-tolylphosphino)-9,9-dimethyl xanthene)Cl2) 

________________________________________________________________________________ 

 x y z U(eq) 

________________________________________________________________________________ 

C(1) 3432(3) 4349(2) 2139(2) 17(1) 

C(2) 3328(2) 4281(2) 1368(2) 17(1) 

C(3) 3261(3) 5407(3) 777(2) 20(1) 

C(4) 3296(3) 6546(3) 967(2) 23(1) 

C(5) 3358(3) 6581(3) 1742(2) 23(1) 

C(6) 3412(3) 5476(2) 2353(2) 18(1) 

C(7) 3434(3) 5510(2) 3211(2) 20(1) 

C(8) 4784(3) 5863(3) 3377(2) 32(1) 

C(9) 2317(3) 6489(3) 3371(2) 30(1) 

C(10) 3238(3) 4206(2) 3746(2) 18(1) 

C(11) 3015(3) 4006(3) 4556(2) 22(1) 



33	
  
	
  

C(12) 2864(3) 2814(3) 5037(2) 23(1) 

C(13) 2923(3) 1775(3) 4723(2) 19(1) 

C(14) 3143(2) 1934(2) 3921(2) 17(1) 

C(15) 3311(3) 3145(2) 3456(2) 17(1) 

C(16) 2649(3) -637(2) 4169(2) 19(1) 

C(17) 1298(3) -690(3) 4301(2) 27(1) 

C(18) 835(3) -1683(3) 4873(2) 33(1) 

C(19) 1703(3) -2650(3) 5317(2) 30(1) 

C(20) 3049(3) -2587(3) 5182(2) 26(1) 

C(21) 3524(3) -1596(3) 4616(2) 21(1) 

C(22) 1186(5) -3748(3) 5920(2) 47(1) 

C(23) 4931(3) 233(2) 3249(2) 16(1) 

C(24) 5251(3) -648(3) 2807(2) 21(1) 

C(25) 6560(3) -1065(3) 2677(2) 23(1) 

C(26) 7581(3) -601(3) 2963(2) 22(1) 

C(27) 7254(3) 315(3) 3378(2) 22(1) 

C(28) 5942(3) 721(3) 3525(2) 20(1) 

C(29) 9000(3) -1063(3) 2828(2) 33(1) 

C(30) 2425(3) 3102(3) 263(2) 20(1) 

C(31) 1056(3) 3191(3) 251(2) 28(1) 

C(32) 419(3) 3500(3) -459(2) 33(1) 

C(33) 1117(3) 3732(3) -1169(2) 28(1) 

C(34) 2483(3) 3637(3) -1152(2) 31(1) 

C(35) 3144(3) 3322(3) -448(2) 26(1) 

C(36) 397(4) 4079(4) -1928(2) 41(1) 

C(37) 4862(3) 2069(2) 1058(2) 18(1) 

C(38) 5970(3) 2570(3) 1224(2) 21(1) 

C(39) 7229(3) 1987(3) 1119(2) 27(1) 

C(40) 7416(3) 911(3) 838(2) 25(1) 

C(41) 6306(3) 395(3) 693(2) 25(1) 

C(42) 5044(3) 957(3) 805(2) 22(1) 

C(43) 8775(3) 323(4) 673(2) 40(1) 

O(1) 3572(2) 3191(2) 2681(1) 21(1) 

P(1) 3194(1) 2736(1) 1206(1) 16(1) 

P(2) 3199(1) 683(1) 3418(1) 16(1) 

Cl(1) 87(1) 2297(1) 2493(1) 29(1) 
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Cl(2) 2031(1) -320(1) 1719(1) 24(1) 

Co(1) 2025(1) 1340(1) 2212(1) 18(1) 

 

 
 

Table 20: Bond lengths [Å] and angles [°] for (Co(4,5-bis(di-p-tolylphosphino)-9,9-dimethyl 
xanthene)Cl2) 

_____________________________________________________ 

C(1)-O(1)  1.378(3) 

C(1)-C(6)  1.389(4) 

C(1)-C(2)  1.397(4) 

C(2)-C(3)  1.394(4) 

C(2)-P(1)  1.821(3) 

C(3)-C(4)  1.388(4) 

C(3)-H(3)  0.9500 

C(4)-C(5)  1.386(4) 

C(4)-H(4)  0.9500 

C(5)-C(6)  1.397(4) 

C(5)-H(5)  0.9500 

C(6)-C(7)  1.531(4) 

C(7)-C(10)  1.529(4) 

C(7)-C(9)  1.540(4) 

C(7)-C(8)  1.541(4) 

C(8)-H(8A)  0.9800 

C(8)-H(8B)  0.9800 

C(8)-H(8C)  0.9800 

C(9)-H(9A)  0.9800 

C(9)-H(9B)  0.9800 

C(9)-H(9C)  0.9800 

C(10)-C(15)  1.388(4) 

C(10)-C(11)  1.402(4) 

C(11)-C(12)  1.386(4) 

C(11)-H(11)  0.9500 

C(12)-C(13)  1.393(4) 

C(12)-H(12)  0.9500 
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C(13)-C(14)  1.392(4) 

C(13)-H(13)  0.9500 

C(14)-C(15)  1.397(4) 

C(14)-P(2)  1.821(3) 

C(15)-O(1)  1.372(3) 

C(16)-C(17)  1.393(4) 

C(16)-C(21)  1.398(4) 

C(16)-P(2)  1.816(3) 

C(17)-C(18)  1.392(4) 

C(17)-H(17)  0.9500 

C(18)-C(19)  1.396(5) 

C(18)-H(18)  0.9500 

C(19)-C(20)  1.389(5) 

C(19)-C(22)  1.516(4) 

C(20)-C(21)  1.389(4) 

C(20)-H(20)  0.9500 

C(21)-H(21)  0.9500 

C(22)-H(22A)  0.9800 

C(22)-H(22B)  0.9800 

C(22)-H(22C)  0.9800 

C(23)-C(28)  1.388(4) 

C(23)-C(24)  1.400(4) 

C(23)-P(2)  1.808(3) 

C(24)-C(25)  1.387(4) 

C(24)-H(24)  0.9500 

C(25)-C(26)  1.390(4) 

C(25)-H(25)  0.9500 

C(26)-C(27)  1.395(4) 

C(26)-C(29)  1.505(4) 

C(27)-C(28)  1.393(4) 

C(27)-H(27)  0.9500 

C(28)-H(28)  0.9500 

C(29)-H(29A)  0.9800 

C(29)-H(29B)  0.9800 

C(29)-H(29C)  0.9800 

C(30)-C(31)  1.392(4) 
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C(30)-C(35)  1.399(4) 

C(30)-P(1)  1.813(3) 

C(31)-C(32)  1.389(4) 

C(31)-H(31)  0.9500 

C(32)-C(33)  1.388(5) 

C(32)-H(32)  0.9500 

C(33)-C(34)  1.389(5) 

C(33)-C(36)  1.505(4) 

C(34)-C(35)  1.393(4) 

C(34)-H(34)  0.9500 

C(35)-H(35)  0.9500 

C(36)-H(36A)  0.9800 

C(36)-H(36B)  0.9800 

C(36)-H(36C)  0.9800 

C(37)-C(38)  1.396(4) 

C(37)-C(42)  1.400(4) 

C(37)-P(1)  1.805(3) 

C(38)-C(39)  1.391(4) 

C(38)-H(38)  0.9500 

C(39)-C(40)  1.390(4) 

C(39)-H(39)  0.9500 

C(40)-C(41)  1.394(4) 

C(40)-C(43)  1.506(4) 

C(41)-C(42)  1.389(4) 

C(41)-H(41)  0.9500 

C(42)-H(42)  0.9500 

C(43)-H(43A)  0.9800 

C(43)-H(43B)  0.9800 

C(43)-H(43C)  0.9800 

P(1)-Co(1)  2.3940(7) 

P(2)-Co(1)  2.4050(8) 

Cl(1)-Co(1)  2.2213(8) 

Cl(2)-Co(1)  2.2248(7) 

O(1)-C(1)-C(6) 122.0(2) 

O(1)-C(1)-C(2) 114.2(2) 

C(6)-C(1)-C(2) 123.7(2) 
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C(3)-C(2)-C(1) 117.9(2) 

C(3)-C(2)-P(1) 124.3(2) 

C(1)-C(2)-P(1) 117.75(19) 

C(4)-C(3)-C(2) 119.8(3) 

C(4)-C(3)-H(3) 120.1 

C(2)-C(3)-H(3) 120.1 

C(5)-C(4)-C(3) 120.6(3) 

C(5)-C(4)-H(4) 119.7 

C(3)-C(4)-H(4) 119.7 

C(4)-C(5)-C(6) 121.5(3) 

C(4)-C(5)-H(5) 119.3 

C(6)-C(5)-H(5) 119.3 

C(1)-C(6)-C(5) 116.3(2) 

C(1)-C(6)-C(7) 121.9(2) 

C(5)-C(6)-C(7) 121.8(2) 

C(10)-C(7)-C(6) 109.8(2) 

C(10)-C(7)-C(9) 109.5(2) 

C(6)-C(7)-C(9) 109.2(2) 

C(10)-C(7)-C(8) 108.6(2) 

C(6)-C(7)-C(8) 109.2(2) 

C(9)-C(7)-C(8) 110.5(2) 

C(7)-C(8)-H(8A) 109.5 

C(7)-C(8)-H(8B) 109.5 

H(8A)-C(8)-H(8B) 109.5 

C(7)-C(8)-H(8C) 109.5 

H(8A)-C(8)-H(8C) 109.5 

H(8B)-C(8)-H(8C) 109.5 

C(7)-C(9)-H(9A) 109.5 

C(7)-C(9)-H(9B) 109.5 

H(9A)-C(9)-H(9B) 109.5 

C(7)-C(9)-H(9C) 109.5 

H(9A)-C(9)-H(9C) 109.5 

H(9B)-C(9)-H(9C) 109.5 

C(15)-C(10)-C(11) 116.3(2) 

C(15)-C(10)-C(7) 121.6(2) 

C(11)-C(10)-C(7) 122.1(2) 
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C(12)-C(11)-C(10) 121.6(2) 

C(12)-C(11)-H(11) 119.2 

C(10)-C(11)-H(11) 119.2 

C(11)-C(12)-C(13) 120.5(3) 

C(11)-C(12)-H(12) 119.8 

C(13)-C(12)-H(12) 119.8 

C(12)-C(13)-C(14) 119.8(2) 

C(12)-C(13)-H(13) 120.1 

C(14)-C(13)-H(13) 120.1 

C(13)-C(14)-C(15) 118.2(2) 

C(13)-C(14)-P(2) 125.1(2) 

C(15)-C(14)-P(2) 116.75(19) 

O(1)-C(15)-C(10) 122.7(2) 

O(1)-C(15)-C(14) 113.6(2) 

C(10)-C(15)-C(14) 123.7(2) 

C(17)-C(16)-C(21) 119.0(3) 

C(17)-C(16)-P(2) 118.2(2) 

C(21)-C(16)-P(2) 122.8(2) 

C(18)-C(17)-C(16) 120.1(3) 

C(18)-C(17)-H(17) 120.0 

C(16)-C(17)-H(17) 120.0 

C(17)-C(18)-C(19) 121.2(3) 

C(17)-C(18)-H(18) 119.4 

C(19)-C(18)-H(18) 119.4 

C(20)-C(19)-C(18) 118.3(3) 

C(20)-C(19)-C(22) 121.0(3) 

C(18)-C(19)-C(22) 120.7(3) 

C(19)-C(20)-C(21) 121.1(3) 

C(19)-C(20)-H(20) 119.5 

C(21)-C(20)-H(20) 119.5 

C(20)-C(21)-C(16) 120.4(3) 

C(20)-C(21)-H(21) 119.8 

C(16)-C(21)-H(21) 119.8 

C(19)-C(22)-H(22A) 109.5 

C(19)-C(22)-H(22B) 109.5 

H(22A)-C(22)-H(22B) 109.5 
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C(19)-C(22)-H(22C) 109.5 

H(22A)-C(22)-H(22C) 109.5 

H(22B)-C(22)-H(22C) 109.5 

C(28)-C(23)-C(24) 118.9(2) 

C(28)-C(23)-P(2) 123.8(2) 

C(24)-C(23)-P(2) 117.3(2) 

C(25)-C(24)-C(23) 120.2(3) 

C(25)-C(24)-H(24) 119.9 

C(23)-C(24)-H(24) 119.9 

C(24)-C(25)-C(26) 121.3(3) 

C(24)-C(25)-H(25) 119.4 

C(26)-C(25)-H(25) 119.4 

C(25)-C(26)-C(27) 118.1(3) 

C(25)-C(26)-C(29) 121.2(3) 

C(27)-C(26)-C(29) 120.7(3) 

C(28)-C(27)-C(26) 121.0(3) 

C(28)-C(27)-H(27) 119.5 

C(26)-C(27)-H(27) 119.5 

C(23)-C(28)-C(27) 120.3(3) 

C(23)-C(28)-H(28) 119.8 

C(27)-C(28)-H(28) 119.8 

C(26)-C(29)-H(29A) 109.5 

C(26)-C(29)-H(29B) 109.5 

H(29A)-C(29)-H(29B) 109.5 

C(26)-C(29)-H(29C) 109.5 

H(29A)-C(29)-H(29C) 109.5 

H(29B)-C(29)-H(29C) 109.5 

C(31)-C(30)-C(35) 119.0(3) 

C(31)-C(30)-P(1) 118.0(2) 

C(35)-C(30)-P(1) 123.0(2) 

C(32)-C(31)-C(30) 120.2(3) 

C(32)-C(31)-H(31) 119.9 

C(30)-C(31)-H(31) 119.9 

C(33)-C(32)-C(31) 121.6(3) 

C(33)-C(32)-H(32) 119.2 

C(31)-C(32)-H(32) 119.2 
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C(34)-C(33)-C(32) 117.9(3) 

C(34)-C(33)-C(36) 121.8(3) 

C(32)-C(33)-C(36) 120.3(3) 

C(33)-C(34)-C(35) 121.6(3) 

C(33)-C(34)-H(34) 119.2 

C(35)-C(34)-H(34) 119.2 

C(34)-C(35)-C(30) 119.8(3) 

C(34)-C(35)-H(35) 120.1 

C(30)-C(35)-H(35) 120.1 

C(33)-C(36)-H(36A) 109.5 

C(33)-C(36)-H(36B) 109.5 

H(36A)-C(36)-H(36B) 109.5 

C(33)-C(36)-H(36C) 109.5 

H(36A)-C(36)-H(36C) 109.5 

H(36B)-C(36)-H(36C) 109.5 

C(38)-C(37)-C(42) 118.7(2) 

C(38)-C(37)-P(1) 123.1(2) 

C(42)-C(37)-P(1) 118.1(2) 

C(39)-C(38)-C(37) 120.2(3) 

C(39)-C(38)-H(38) 119.9 

C(37)-C(38)-H(38) 119.9 

C(40)-C(39)-C(38) 121.3(3) 

C(40)-C(39)-H(39) 119.4 

C(38)-C(39)-H(39) 119.4 

C(39)-C(40)-C(41) 118.4(3) 

C(39)-C(40)-C(43) 121.6(3) 

C(41)-C(40)-C(43) 120.0(3) 

C(42)-C(41)-C(40) 120.9(3) 

C(42)-C(41)-H(41) 119.5 

C(40)-C(41)-H(41) 119.5 

C(41)-C(42)-C(37) 120.4(3) 

C(41)-C(42)-H(42) 119.8 

C(37)-C(42)-H(42) 119.8 

C(40)-C(43)-H(43A) 109.5 

C(40)-C(43)-H(43B) 109.5 

H(43A)-C(43)-H(43B) 109.5 
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C(40)-C(43)-H(43C) 109.5 

H(43A)-C(43)-H(43C) 109.5 

H(43B)-C(43)-H(43C) 109.5 

C(15)-O(1)-C(1) 118.7(2) 

C(37)-P(1)-C(30) 105.94(12) 

C(37)-P(1)-C(2) 105.89(12) 

C(30)-P(1)-C(2) 103.97(12) 

C(37)-P(1)-Co(1) 112.13(9) 

C(30)-P(1)-Co(1) 112.62(9) 

C(2)-P(1)-Co(1) 115.47(9) 

C(23)-P(2)-C(16) 105.20(12) 

C(23)-P(2)-C(14) 105.56(12) 

C(16)-P(2)-C(14) 103.44(12) 

C(23)-P(2)-Co(1) 111.47(9) 

C(16)-P(2)-Co(1) 117.33(9) 

C(14)-P(2)-Co(1) 112.81(9) 

Cl(1)-Co(1)-Cl(2) 117.98(3) 

Cl(1)-Co(1)-P(1) 110.89(3) 

Cl(2)-Co(1)-P(1) 101.69(3) 

Cl(1)-Co(1)-P(2) 105.87(3) 

Cl(2)-Co(1)-P(2) 108.75(3) 

P(1)-Co(1)-P(2) 111.76(3) 

_____________________________________________________________ 
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Table 21: Anisotropic displacement parameters for (Co(4,5-bis(di-p-tolylphosphino)-9,9-
dimethyl xanthene)Cl2) 

______________________________________________________________________________ 

 U11 U22 U33 U23 U13 U12 

______________________________________________________________________________ 

C(1) 17(1)  14(1) 17(1)  -2(1) 1(1)  0(1) 

C(2) 16(1)  16(1) 19(1)  -4(1) 1(1)  0(1) 

C(3) 21(1)  22(1) 17(1)  -2(1) 1(1)  -1(1) 

C(4) 26(1)  17(1) 22(1)  1(1) 3(1)  -2(1) 

C(5) 25(1)  16(1) 25(1)  -4(1) 3(1)  -2(1) 

C(6) 18(1)  15(1) 21(1)  -6(1) 0(1)  0(1) 

C(7) 27(1)  14(1) 20(1)  -5(1) -3(1)  -1(1) 

C(8) 41(2)  24(2) 31(2)  -2(1) -9(1)  -13(1) 

C(9) 45(2)  21(1) 23(2)  -10(1) -2(1)  9(1) 

C(10) 20(1)  16(1) 20(1)  -6(1) -2(1)  -2(1) 

C(11) 28(1)  21(1) 20(1)  -10(1) 0(1)  -3(1) 

C(12) 29(1)  25(1) 17(1)  -7(1) 2(1)  -6(1) 

C(13) 21(1)  18(1) 18(1)  -4(1) -1(1)  -2(1) 

C(14) 16(1)  16(1) 18(1)  -5(1) -2(1)  -1(1) 

C(15) 19(1)  17(1) 15(1)  -5(1) -1(1)  -1(1) 

C(16) 22(1)  16(1) 19(1)  -6(1) 2(1)  -5(1) 

C(17) 23(1)  22(1) 35(2)  -9(1) 4(1)  -2(1) 

C(18) 28(2)  30(2) 44(2)  -16(1) 16(1)  -11(1) 

C(19) 47(2)  23(1) 23(2)  -12(1) 13(1)  -14(1) 

C(20) 41(2)  21(1) 18(1)  -5(1) -1(1)  -7(1) 

C(21) 25(1)  19(1) 21(1)  -5(1) -3(1)  -6(1) 

C(22) 71(3)  32(2) 39(2)  -10(2) 27(2)  -23(2) 

C(23) 18(1)  14(1) 15(1)  -1(1) -1(1)  -1(1) 

C(24) 23(1)  19(1) 24(1)  -7(1) -2(1)  -4(1) 

C(25) 27(1)  20(1) 22(1)  -6(1) 2(1)  -3(1) 

C(26) 21(1)  23(1) 19(1)  -1(1) 4(1)  -3(1) 

C(27) 19(1)  26(1) 21(1)  -6(1) -1(1)  -6(1) 

C(28) 22(1)  20(1) 18(1)  -6(1) -1(1)  -4(1) 

C(29) 21(1)  39(2) 41(2)  -14(2) 5(1)  -4(1) 

C(30) 21(1)  20(1) 19(1)  -6(1) -2(1)  -1(1) 
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C(31) 20(1)  36(2) 27(2)  -9(1) -1(1)  0(1) 

C(32) 22(1)  40(2) 36(2)  -9(1) -9(1)  2(1) 

C(33) 37(2)  22(1) 26(2)  -7(1) -14(1)  3(1) 

C(34) 38(2)  35(2) 18(1)  -6(1) -2(1)  -2(1) 

C(35) 22(1)  34(2) 21(1)  -6(1) -1(1)  -1(1) 

C(36) 52(2)  38(2) 32(2)  -9(2) -21(2)  4(2) 

C(37) 17(1)  21(1) 13(1)  -3(1) 1(1)  0(1) 

C(38) 20(1)  26(1) 19(1)  -8(1) 0(1)  -2(1) 

C(39) 19(1)  37(2) 22(1)  -6(1) 1(1)  -3(1) 

C(40) 23(1)  31(2) 16(1)  0(1) 2(1)  6(1) 

C(41) 32(2)  22(1) 19(1)  -5(1) 3(1)  4(1) 

C(42) 23(1)  21(1) 20(1)  -5(1) -1(1)  -1(1) 

C(43) 27(2)  48(2) 40(2)  -8(2) 4(1)  12(2) 

O(1) 34(1)  14(1) 13(1)  -3(1) 0(1)  0(1) 

P(1) 15(1)  17(1) 16(1)  -6(1) 1(1)  -1(1) 

P(2) 17(1)  14(1) 19(1)  -5(1) -2(1)  -2(1) 

Cl(1) 23(1)  29(1) 37(1)  -11(1) 4(1)  2(1) 

Cl(2) 24(1)  18(1) 32(1)  -10(1) -1(1)  -1(1) 

Co(1) 19(1)  15(1) 19(1)  -4(1) 0(1)  0(1) 

 

 
Table 22: Hydrogen coordinates and isotropic displacement parameters for (Co(4,5-bis(di-p-
tolylphosphino)-9,9-dimethyl xanthene)Cl2) 

________________________________________________________________________________ 

 x  y  z  U(eq) 

________________________________________________________________________________ 

 

H(3) 3192 5395 246 25 

H(4) 3277 7310 563 27 

H(5) 3364 7372 1860 27 

H(8A) 4807 5873 3928 48 

H(8B) 4919 6702 3041 48 

H(8C) 5484 5237 3267 48 

H(9A) 1463 6223 3296 45 

H(9B) 2414 7315 3009 45 
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H(9C) 2361 6550 3912 45 

H(11) 2965 4704 4781 26 

H(12) 2720 2705 5585 28 

H(13) 2814 961 5055 23 

H(17) 691 -47 4001 32 

H(18) -89 -1704 4964 39 

H(20) 3655 -3232 5482 32 

H(21) 4448 -1571 4532 26 

H(22A) 1928 -4304 6196 70 

H(22B) 699 -4226 5657 70 

H(22C) 597 -3425 6297 70 

H(24) 4569 -962 2594 25 

H(25) 6763 -1680 2387 28 

H(27) 7937 667 3562 26 

H(28) 5739 1334 3816 23 

H(29A) 9341 -1658 3308 50 

H(29B) 9521 -342 2682 50 

H(29C) 9062 -1489 2404 50 

H(31) 555 3039 729 34 

H(32) -516 3554 -458 39 

H(34) 2979 3790 -1631 37 

H(35) 4080 3258 -450 31 

H(36A) -262 3491 -1900 61 

H(36B) 1028 4028 -2360 61 

H(36C) -44 4943 -2018 61 

H(38) 5865 3311 1409 26 

H(39) 7974 2330 1241 32 

H(41) 6415 -353 514 30 

H(42) 4299 586 710 26 

H(43A) 9002 629 115 61 

H(43B) 8790 -599 810 61 

H(43C) 9417 557 985 61 

 

 

 
 



45	
  
	
  

Table 23: Torsion angles for (Co(4,5-di-p-tolylphosphino)-9,9-dimethyl xanthene)Cl2) 

________________________________________________________________ 

O(1)-C(1)-C(2)-C(3) -176.3(2) 

C(6)-C(1)-C(2)-C(3) 3.1(4) 

O(1)-C(1)-C(2)-P(1) 7.1(3) 

C(6)-C(1)-C(2)-P(1) -173.5(2) 

C(1)-C(2)-C(3)-C(4) -0.2(4) 

P(1)-C(2)-C(3)-C(4) 176.2(2) 

C(2)-C(3)-C(4)-C(5) -1.9(4) 

C(3)-C(4)-C(5)-C(6) 1.2(4) 

O(1)-C(1)-C(6)-C(5) 175.6(2) 

C(2)-C(1)-C(6)-C(5) -3.7(4) 

O(1)-C(1)-C(6)-C(7) -4.9(4) 

C(2)-C(1)-C(6)-C(7) 175.8(2) 

C(4)-C(5)-C(6)-C(1) 1.5(4) 

C(4)-C(5)-C(6)-C(7) -177.9(3) 

C(1)-C(6)-C(7)-C(10) -9.8(4) 

C(5)-C(6)-C(7)-C(10) 169.6(2) 

C(1)-C(6)-C(7)-C(9) -129.9(3) 

C(5)-C(6)-C(7)-C(9) 49.6(3) 

C(1)-C(6)-C(7)-C(8) 109.2(3) 

C(5)-C(6)-C(7)-C(8) -71.4(3) 

C(6)-C(7)-C(10)-C(15) 11.9(4) 

C(9)-C(7)-C(10)-C(15) 131.8(3) 

C(8)-C(7)-C(10)-C(15) -107.5(3) 

C(6)-C(7)-C(10)-C(11) -170.0(3) 

C(9)-C(7)-C(10)-C(11) -50.1(3) 

C(8)-C(7)-C(10)-C(11) 70.6(3) 

C(15)-C(10)-C(11)-C(12) -0.5(4) 

C(7)-C(10)-C(11)-C(12) -178.7(3) 

C(10)-C(11)-C(12)-C(13) -0.4(4) 

C(11)-C(12)-C(13)-C(14) 0.4(4) 

C(12)-C(13)-C(14)-C(15) 0.6(4) 

C(12)-C(13)-C(14)-P(2) -178.1(2) 

C(11)-C(10)-C(15)-O(1) -177.6(2) 
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C(7)-C(10)-C(15)-O(1) 0.6(4) 

C(11)-C(10)-C(15)-C(14) 1.6(4) 

C(7)-C(10)-C(15)-C(14) 179.8(2) 

C(13)-C(14)-C(15)-O(1) 177.6(2) 

P(2)-C(14)-C(15)-O(1) -3.6(3) 

C(13)-C(14)-C(15)-C(10) -1.6(4) 

P(2)-C(14)-C(15)-C(10) 177.2(2) 

C(21)-C(16)-C(17)-C(18) 0.3(4) 

P(2)-C(16)-C(17)-C(18) -179.7(2) 

C(16)-C(17)-C(18)-C(19) -0.9(5) 

C(17)-C(18)-C(19)-C(20) 1.1(5) 

C(17)-C(18)-C(19)-C(22) -178.0(3) 

C(18)-C(19)-C(20)-C(21) -0.7(4) 

C(22)-C(19)-C(20)-C(21) 178.4(3) 

C(19)-C(20)-C(21)-C(16) 0.1(4) 

C(17)-C(16)-C(21)-C(20) 0.1(4) 

P(2)-C(16)-C(21)-C(20) -179.9(2) 

C(28)-C(23)-C(24)-C(25) 2.8(4) 

P(2)-C(23)-C(24)-C(25) -177.9(2) 

C(23)-C(24)-C(25)-C(26) -1.6(4) 

C(24)-C(25)-C(26)-C(27) -0.9(4) 

C(24)-C(25)-C(26)-C(29) 179.5(3) 

C(25)-C(26)-C(27)-C(28) 2.2(4) 

C(29)-C(26)-C(27)-C(28) -178.1(3) 

C(24)-C(23)-C(28)-C(27) -1.5(4) 

P(2)-C(23)-C(28)-C(27) 179.3(2) 

C(26)-C(27)-C(28)-C(23) -1.1(4) 

C(35)-C(30)-C(31)-C(32) -0.3(5) 

P(1)-C(30)-C(31)-C(32) 178.4(3) 

C(30)-C(31)-C(32)-C(33) -0.2(5) 

C(31)-C(32)-C(33)-C(34) 0.5(5) 

C(31)-C(32)-C(33)-C(36) -179.3(3) 

C(32)-C(33)-C(34)-C(35) -0.2(5) 

C(36)-C(33)-C(34)-C(35) 179.7(3) 

C(33)-C(34)-C(35)-C(30) -0.4(5) 

C(31)-C(30)-C(35)-C(34) 0.6(4) 
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P(1)-C(30)-C(35)-C(34) -178.0(2) 

C(42)-C(37)-C(38)-C(39) 1.6(4) 

P(1)-C(37)-C(38)-C(39) 178.0(2) 

C(37)-C(38)-C(39)-C(40) 0.9(4) 

C(38)-C(39)-C(40)-C(41) -2.5(4) 

C(38)-C(39)-C(40)-C(43) 175.9(3) 

C(39)-C(40)-C(41)-C(42) 1.6(4) 

C(43)-C(40)-C(41)-C(42) -176.8(3) 

C(40)-C(41)-C(42)-C(37) 0.9(4) 

C(38)-C(37)-C(42)-C(41) -2.5(4) 

P(1)-C(37)-C(42)-C(41) -179.1(2) 

C(10)-C(15)-O(1)-C(1) -16.7(4) 

C(14)-C(15)-O(1)-C(1) 164.1(2) 

C(6)-C(1)-O(1)-C(15) 18.8(4) 

C(2)-C(1)-O(1)-C(15) -161.8(2) 

C(38)-C(37)-P(1)-C(30) 122.9(2) 

C(42)-C(37)-P(1)-C(30) -60.7(2) 

C(38)-C(37)-P(1)-C(2) 12.9(3) 

C(42)-C(37)-P(1)-C(2) -170.7(2) 

C(38)-C(37)-P(1)-Co(1) -113.9(2) 

C(42)-C(37)-P(1)-Co(1) 62.5(2) 

C(31)-C(30)-P(1)-C(37) 157.1(2) 

C(35)-C(30)-P(1)-C(37) -24.2(3) 

C(31)-C(30)-P(1)-C(2) -91.5(2) 

C(35)-C(30)-P(1)-C(2) 87.2(3) 

C(31)-C(30)-P(1)-Co(1) 34.2(3) 

C(35)-C(30)-P(1)-Co(1) -147.1(2) 

C(3)-C(2)-P(1)-C(37) 92.5(2) 

C(1)-C(2)-P(1)-C(37) -91.1(2) 

C(3)-C(2)-P(1)-C(30) -18.9(3) 

C(1)-C(2)-P(1)-C(30) 157.5(2) 

C(3)-C(2)-P(1)-Co(1) -142.8(2) 

C(1)-C(2)-P(1)-Co(1) 33.6(2) 

C(28)-C(23)-P(2)-C(16) -104.4(2) 

C(24)-C(23)-P(2)-C(16) 76.4(2) 

C(28)-C(23)-P(2)-C(14) 4.6(3) 
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C(24)-C(23)-P(2)-C(14) -174.6(2) 

C(28)-C(23)-P(2)-Co(1) 127.4(2) 

C(24)-C(23)-P(2)-Co(1) -51.8(2) 

C(17)-C(16)-P(2)-C(23) -166.2(2) 

C(21)-C(16)-P(2)-C(23) 13.8(3) 

C(17)-C(16)-P(2)-C(14) 83.3(2) 

C(21)-C(16)-P(2)-C(14) -96.7(2) 

C(17)-C(16)-P(2)-Co(1) -41.6(2) 

C(21)-C(16)-P(2)-Co(1) 138.3(2) 

C(13)-C(14)-P(2)-C(23) -101.4(2) 

C(15)-C(14)-P(2)-C(23) 79.8(2) 

C(13)-C(14)-P(2)-C(16) 8.8(3) 

C(15)-C(14)-P(2)-C(16) -169.9(2) 

C(13)-C(14)-P(2)-Co(1) 136.6(2) 

C(15)-C(14)-P(2)-Co(1) -42.1(2) 

C(37)-P(1)-Co(1)-Cl(1) 171.92(10) 

C(30)-P(1)-Co(1)-Cl(1) -68.71(10) 

C(2)-P(1)-Co(1)-Cl(1) 50.51(10) 

C(37)-P(1)-Co(1)-Cl(2) -61.80(10) 

C(30)-P(1)-Co(1)-Cl(2) 57.57(10) 

C(2)-P(1)-Co(1)-Cl(2) 176.79(10) 

C(37)-P(1)-Co(1)-P(2) 54.05(10) 

C(30)-P(1)-Co(1)-P(2) 173.42(10) 

C(2)-P(1)-Co(1)-P(2) -67.36(10) 

C(23)-P(2)-Co(1)-Cl(1) -166.03(9) 

C(16)-P(2)-Co(1)-Cl(1) 72.60(10) 

C(14)-P(2)-Co(1)-Cl(1) -47.48(10) 

C(23)-P(2)-Co(1)-Cl(2) 66.26(9) 

C(16)-P(2)-Co(1)-Cl(2) -55.10(10) 

C(14)-P(2)-Co(1)-Cl(2) -175.18(9) 

C(23)-P(2)-Co(1)-P(1) -45.20(9) 

C(16)-P(2)-Co(1)-P(1) -166.56(10) 

C(14)-P(2)-Co(1)-P(1) 73.36(10) 

________________________________________________________________ 
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Structure diagram of complex (Ni(4,5-bis(di-p-tolylphosphino)-9,9-dimethyl xanthene)Cl2) 

 

 
 

 
Table 24: Crystal data and structure refinement for (Ni(4,5-bis(di-p-tolylphosphino)-9,9-
dimethyl xanthene)Cl2) 

	
  

Empirical formula  C43 H40 Cl2 Ni O P2 
Formula weight  764.30 
Temperature  173(2) K 
Wavelength  0.71073 Å 
Crystal system  Triclinic 
Space group  P -1 
Unit cell dimensions a = 10.2501(3) Å a= 73.9650(10)°. 
 b = 11.1611(3) Å b= 86.322(2)°. 
 c = 17.7687(5) Å g = 83.512(2)°. 
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Volume 1940.03(10) Å3 
Z 2 
Density (calculated) 1.308 Mg/m3 
Absorption coefficient 0.752 mm-1 
F(000) 796 
Crystal size 0.586 x 0.529 x 0.382 mm3 
Theta range for data collection 1.193 to 28.393°. 
Index ranges -13<=h<=12, -14<=k<=14, -23<=l<=23 
Reflections collected 58526 
Independent reflections 9650 [R(int) = 0.0311] 
Completeness to theta = 25.242° 100.0 %  
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.750 and 0.637 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 9650 / 2 / 448 
Goodness-of-fit on F2 1.014 
Final R indices [I>2sigma(I)] R1 = 0.0327, wR2 = 0.0786 
R indices (all data) R1 = 0.0512, wR2 = 0.0878 
Extinction coefficient n/a 
Largest diff. peak and hole 0.419 and -0.256 e.Å-3 
 
 
 
Table 25: Atomic coordinates and equivalent isotropic displacement parameters for (Ni(4,5-
bis(di-p-tolylphosphino)-9,9-dimethyl xanthene)Cl2) 

________________________________________________________________________________ 

 x y z U(eq) 

________________________________________________________________________________ 

C(1) 3402(2) 4222(2) 1366(1) 32(1) 

C(2) 3546(2) 4324(1) 2118(1) 32(1) 

C(3) 3455(2) 3135(2) 3433(1) 33(1) 

C(4) 3307(2) 4184(2) 3710(1) 38(1) 

C(5) 2996(2) 3974(2) 4509(1) 49(1) 

C(6) 2837(2) 2791(2) 4984(1) 51(1) 

C(7) 2954(2) 1771(2) 4678(1) 43(1) 
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C(8) 3265(2) 1933(2) 3887(1) 34(1) 

C(9) 5061(2) 263(2) 3221(1) 33(1) 

C(10) 6070(2) 746(2) 3494(1) 42(1) 

C(11) 7364(2) 321(2) 3373(1) 48(1) 

C(12) 7696(2) -596(2) 2989(1) 46(1) 

C(13) 6684(2) -1056(2) 2706(1) 47(1) 

C(14) 5390(2) -625(2) 2811(1) 42(1) 

C(15) 9103(2) -1082(3) 2878(2) 76(1) 

C(16) 2752(2) -600(2) 4120(1) 36(1) 

C(17) 3599(2) -1567(2) 4558(1) 43(1) 

C(18) 3102(2) -2544(2) 5125(1) 52(1) 

C(19) 1773(3) -2597(2) 5274(1) 56(1) 

C(20) 1229(4) -3682(2) 5876(2) 92(1) 

C(21) 938(3) -1620(2) 4846(1) 62(1) 

C(22) 1419(2) -636(2) 4272(1) 52(1) 

C(23) 3510(2) 5475(2) 3166(1) 46(1) 

C(24) 4878(3) 5801(3) 3292(2) 82(1) 

C(25) 2431(3) 6453(2) 3340(1) 78(1) 

C(26) 3437(2) 5443(2) 2316(1) 38(1) 

C(27) 3263(2) 6526(2) 1699(1) 48(1) 

C(28) 3178(2) 6468(2) 938(1) 49(1) 

C(29) 3223(2) 5327(2) 768(1) 41(1) 

C(30) 4988(2) 2040(2) 1090(1) 35(1) 

C(31) 5191(2) 986(2) 808(1) 45(1) 

C(32) 6447(2) 468(2) 691(1) 53(1) 

C(33) 7531(2) 956(2) 867(1) 54(1) 

C(34) 8897(3) 399(3) 712(2) 92(1) 

C(35) 7327(2) 1974(2) 1170(1) 55(1) 

C(36) 6069(2) 2525(2) 1276(1) 44(1) 

C(37) 2541(2) 3009(2) 309(1) 37(1) 

C(38) 1194(2) 3160(2) 299(1) 57(1) 

C(39) 549(3) 3506(3) -403(2) 69(1) 

C(40) 1240(3) 3685(2) -1110(1) 61(1) 

C(41) 523(3) 4062(3) -1874(2) 94(1) 

C(42) 2580(3) 3526(2) -1094(1) 67(1) 

C(43) 3247(2) 3186(2) -397(1) 55(1) 
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O(1) 3828(1) 3195(1) 2669(1) 37(1) 

P(1) 3315(1) 2665(1) 1248(1) 31(1) 

P(2) 3336(1) 722(1) 3374(1) 32(1) 

Cl(1) 2260(1) -311(1) 1745(1) 52(1) 

Cl(2) 367(1) 2401(1) 2560(1) 66(1) 

Ni(1) 2127(1) 1319(1) 2229(1) 33(1) 

________________________________________________________________________________  

 

 
Table 26: Bond lengths [Å] and angles [°] for (Ni(4,5-bis(di-p-tolylphosphino)-9,9-dimethyl 
xanthene)Cl2) 

_____________________________________________________ 

C(1)-C(2)  1.390(2) 

C(1)-C(29)  1.390(2) 

C(1)-P(1)  1.8200(16) 

C(2)-O(1)  1.3793(18) 

C(2)-C(26)  1.379(2) 

C(3)-O(1)  1.3723(19) 

C(3)-C(4)  1.380(2) 

C(3)-C(8)  1.389(2) 

C(4)-C(5)  1.396(3) 

C(4)-C(23)  1.526(2) 

C(5)-C(6)  1.377(3) 

C(5)-H(5)  0.9500 

C(6)-C(7)  1.381(3) 

C(6)-H(6)  0.9500 

C(7)-C(8)  1.387(2) 

C(7)-H(7)  0.9500 

C(8)-P(2)  1.8205(17) 

C(9)-C(14)  1.385(2) 

C(9)-C(10)  1.389(2) 

C(9)-P(2)  1.8091(18) 

C(10)-C(11)  1.381(3) 

C(10)-H(10)  0.9500 

C(11)-C(12)  1.380(3) 
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C(11)-H(11)  0.9500 

C(12)-C(13)  1.386(3) 

C(12)-C(15)  1.503(3) 

C(13)-C(14)  1.378(3) 

C(13)-H(13)  0.9500 

C(14)-H(14)  0.9500 

C(15)-H(15A)  0.9800 

C(15)-H(15B)  0.9800 

C(15)-H(15C)  0.9800 

C(16)-C(22)  1.379(3) 

C(16)-C(17)  1.391(3) 

C(16)-P(2)  1.8193(17) 

C(17)-C(18)  1.385(3) 

C(17)-H(17)  0.9500 

C(18)-C(19)  1.376(3) 

C(18)-H(18)  0.9500 

C(19)-C(21)  1.383(3) 

C(19)-C(20)  1.511(3) 

C(20)-H(20A)  0.9800 

C(20)-H(20B)  0.9800 

C(20)-H(20C)  0.9800 

C(21)-C(22)  1.389(3) 

C(21)-H(21)  0.9500 

C(22)-H(22)  0.9500 

C(23)-C(26)  1.527(3) 

C(23)-C(24)  1.533(3) 

C(23)-C(25)  1.542(3) 

C(24)-H(24A)  0.9800 

C(24)-H(24B)  0.9800 

C(24)-H(24C)  0.9800 

C(25)-H(25A)  0.9800 

C(25)-H(25B)  0.9800 

C(25)-H(25C)  0.9800 

C(26)-C(27)  1.392(2) 

C(27)-C(28)  1.380(3) 

C(27)-H(27)  0.9500 
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C(28)-C(29)  1.383(3) 

C(28)-H(28)  0.9500 

C(29)-H(29)  0.9500 

C(30)-C(36)  1.382(3) 

C(30)-C(31)  1.391(3) 

C(30)-P(1)  1.8109(18) 

C(31)-C(32)  1.378(3) 

C(31)-H(31)  0.9500 

C(32)-C(33)  1.379(3) 

C(32)-H(32)  0.9500 

C(33)-C(35)  1.376(3) 

C(33)-C(34)  1.507(3) 

C(34)-H(34A)  0.9800 

C(34)-H(34B)  0.9800 

C(34)-H(34C)  0.9800 

C(35)-C(36)  1.390(3) 

C(35)-H(35)  0.9500 

C(36)-H(36)  0.9500 

C(37)-C(38)  1.373(3) 

C(37)-C(43)  1.384(3) 

C(37)-P(1)  1.8191(18) 

C(38)-C(39)  1.386(3) 

C(38)-H(38)  0.9500 

C(39)-C(40)  1.377(4) 

C(39)-H(39)  0.9500 

C(40)-C(42)  1.365(4) 

C(40)-C(41)  1.517(3) 

C(41)-H(41A)  0.9800 

C(41)-H(41B)  0.9800 

C(41)-H(41C)  0.9800 

C(42)-C(43)  1.392(3) 

C(42)-H(42)  0.9500 

C(43)-H(43)  0.9500 

P(1)-Ni(1)  2.3398(5) 

P(2)-Ni(1)  2.3469(5) 

Cl(1)-Ni(1)  2.2048(5) 
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Cl(2)-Ni(1)  2.1964(6) 

 

C(2)-C(1)-C(29) 117.49(15) 

C(2)-C(1)-P(1) 117.81(12) 

C(29)-C(1)-P(1) 124.46(13) 

O(1)-C(2)-C(26) 121.36(15) 

O(1)-C(2)-C(1) 114.31(14) 

C(26)-C(2)-C(1) 124.32(15) 

O(1)-C(3)-C(4) 121.99(15) 

O(1)-C(3)-C(8) 113.66(14) 

C(4)-C(3)-C(8) 124.35(15) 

C(3)-C(4)-C(5) 115.83(16) 

C(3)-C(4)-C(23) 120.89(15) 

C(5)-C(4)-C(23) 123.27(16) 

C(6)-C(5)-C(4) 121.55(17) 

C(6)-C(5)-H(5) 119.2 

C(4)-C(5)-H(5) 119.2 

C(5)-C(6)-C(7) 120.78(17) 

C(5)-C(6)-H(6) 119.6 

C(7)-C(6)-H(6) 119.6 

C(6)-C(7)-C(8) 119.78(17) 

C(6)-C(7)-H(7) 120.1 

C(8)-C(7)-H(7) 120.1 

C(7)-C(8)-C(3) 117.66(16) 

C(7)-C(8)-P(2) 125.56(13) 

C(3)-C(8)-P(2) 116.63(12) 

C(14)-C(9)-C(10) 118.29(17) 

C(14)-C(9)-P(2) 117.90(14) 

C(10)-C(9)-P(2) 123.81(14) 

C(11)-C(10)-C(9) 120.32(18) 

C(11)-C(10)-H(10) 119.8 

C(9)-C(10)-H(10) 119.8 

C(12)-C(11)-C(10) 121.62(18) 

C(12)-C(11)-H(11) 119.2 

C(10)-C(11)-H(11) 119.2 

C(11)-C(12)-C(13) 117.67(19) 
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C(11)-C(12)-C(15) 121.5(2) 

C(13)-C(12)-C(15) 120.9(2) 

C(14)-C(13)-C(12) 121.27(18) 

C(14)-C(13)-H(13) 119.4 

C(12)-C(13)-H(13) 119.4 

C(13)-C(14)-C(9) 120.76(17) 

C(13)-C(14)-H(14) 119.6 

C(9)-C(14)-H(14) 119.6 

C(12)-C(15)-H(15A) 109.5 

C(12)-C(15)-H(15B) 109.5 

H(15A)-C(15)-H(15B) 109.5 

C(12)-C(15)-H(15C) 109.5 

H(15A)-C(15)-H(15C) 109.5 

H(15B)-C(15)-H(15C) 109.5 

C(22)-C(16)-C(17) 118.43(17) 

C(22)-C(16)-P(2) 118.94(14) 

C(17)-C(16)-P(2) 122.62(15) 

C(18)-C(17)-C(16) 120.2(2) 

C(18)-C(17)-H(17) 119.9 

C(16)-C(17)-H(17) 119.9 

C(19)-C(18)-C(17) 121.8(2) 

C(19)-C(18)-H(18) 119.1 

C(17)-C(18)-H(18) 119.1 

C(18)-C(19)-C(21) 117.60(19) 

C(18)-C(19)-C(20) 121.8(2) 

C(21)-C(19)-C(20) 120.6(2) 

C(19)-C(20)-H(20A) 109.5 

C(19)-C(20)-H(20B) 109.5 

H(20A)-C(20)-H(20B) 109.5 

C(19)-C(20)-H(20C) 109.5 

H(20A)-C(20)-H(20C) 109.5 

H(20B)-C(20)-H(20C) 109.5 

C(19)-C(21)-C(22) 121.4(2) 

C(19)-C(21)-H(21) 119.3 

C(22)-C(21)-H(21) 119.3 

C(16)-C(22)-C(21) 120.5(2) 
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C(16)-C(22)-H(22) 119.7 

C(21)-C(22)-H(22) 119.7 

C(4)-C(23)-C(26) 109.39(14) 

C(4)-C(23)-C(24) 108.54(18) 

C(26)-C(23)-C(24) 108.83(19) 

C(4)-C(23)-C(25) 109.70(18) 

C(26)-C(23)-C(25) 109.38(17) 

C(24)-C(23)-C(25) 111.0(2) 

C(23)-C(24)-H(24A) 109.5 

C(23)-C(24)-H(24B) 109.5 

H(24A)-C(24)-H(24B) 109.5 

C(23)-C(24)-H(24C) 109.5 

H(24A)-C(24)-H(24C) 109.5 

H(24B)-C(24)-H(24C) 109.5 

C(23)-C(25)-H(25A) 109.5 

C(23)-C(25)-H(25B) 109.5 

H(25A)-C(25)-H(25B) 109.5 

C(23)-C(25)-H(25C) 109.5 

H(25A)-C(25)-H(25C) 109.5 

H(25B)-C(25)-H(25C) 109.5 

C(2)-C(26)-C(27) 116.14(16) 

C(2)-C(26)-C(23) 121.27(15) 

C(27)-C(26)-C(23) 122.59(15) 

C(28)-C(27)-C(26) 121.32(17) 

C(28)-C(27)-H(27) 119.3 

C(26)-C(27)-H(27) 119.3 

C(27)-C(28)-C(29) 120.80(17) 

C(27)-C(28)-H(28) 119.6 

C(29)-C(28)-H(28) 119.6 

C(28)-C(29)-C(1) 119.74(17) 

C(28)-C(29)-H(29) 120.1 

C(1)-C(29)-H(29) 120.1 

C(36)-C(30)-C(31) 118.55(17) 

C(36)-C(30)-P(1) 122.84(14) 

C(31)-C(30)-P(1) 118.52(14) 

C(32)-C(31)-C(30) 120.4(2) 
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C(32)-C(31)-H(31) 119.8 

C(30)-C(31)-H(31) 119.8 

C(31)-C(32)-C(33) 121.3(2) 

C(31)-C(32)-H(32) 119.4 

C(33)-C(32)-H(32) 119.4 

C(35)-C(33)-C(32) 118.21(19) 

C(35)-C(33)-C(34) 121.3(2) 

C(32)-C(33)-C(34) 120.5(2) 

C(33)-C(34)-H(34A) 109.5 

C(33)-C(34)-H(34B) 109.5 

H(34A)-C(34)-H(34B) 109.5 

C(33)-C(34)-H(34C) 109.5 

H(34A)-C(34)-H(34C) 109.5 

H(34B)-C(34)-H(34C) 109.5 

C(33)-C(35)-C(36) 121.3(2) 

C(33)-C(35)-H(35) 119.3 

C(36)-C(35)-H(35) 119.3 

C(30)-C(36)-C(35) 120.17(19) 

C(30)-C(36)-H(36) 119.9 

C(35)-C(36)-H(36) 119.9 

C(38)-C(37)-C(43) 118.67(18) 

C(38)-C(37)-P(1) 118.31(15) 

C(43)-C(37)-P(1) 122.94(16) 

C(37)-C(38)-C(39) 120.9(2) 

C(37)-C(38)-H(38) 119.5 

C(39)-C(38)-H(38) 119.5 

C(40)-C(39)-C(38) 121.0(2) 

C(40)-C(39)-H(39) 119.5 

C(38)-C(39)-H(39) 119.5 

C(42)-C(40)-C(39) 117.7(2) 

C(42)-C(40)-C(41) 121.8(2) 

C(39)-C(40)-C(41) 120.5(3) 

C(40)-C(41)-H(41A) 109.5 

C(40)-C(41)-H(41B) 109.5 

H(41A)-C(41)-H(41B) 109.5 

C(40)-C(41)-H(41C) 109.5 
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H(41A)-C(41)-H(41C) 109.5 

H(41B)-C(41)-H(41C) 109.5 

C(40)-C(42)-C(43) 122.3(2) 

C(40)-C(42)-H(42) 118.9 

C(43)-C(42)-H(42) 118.9 

C(37)-C(43)-C(42) 119.4(2) 

C(37)-C(43)-H(43) 120.3 

C(42)-C(43)-H(43) 120.3 

C(3)-O(1)-C(2) 117.23(13) 

C(30)-P(1)-C(37) 105.89(8) 

C(30)-P(1)-C(1) 106.62(8) 

C(37)-P(1)-C(1) 102.34(8) 

C(30)-P(1)-Ni(1) 114.08(6) 

C(37)-P(1)-Ni(1) 110.87(6) 

C(1)-P(1)-Ni(1) 115.95(6) 

C(9)-P(2)-C(16) 104.77(8) 

C(9)-P(2)-C(8) 106.19(8) 

C(16)-P(2)-C(8) 102.87(8) 

C(9)-P(2)-Ni(1) 114.32(6) 

C(16)-P(2)-Ni(1) 113.94(6) 

C(8)-P(2)-Ni(1) 113.65(6) 

Cl(2)-Ni(1)-Cl(1) 128.87(3) 

Cl(2)-Ni(1)-P(1) 108.62(2) 

Cl(1)-Ni(1)-P(1) 99.58(2) 

Cl(2)-Ni(1)-P(2) 102.95(2) 

Cl(1)-Ni(1)-P(2) 107.39(2) 

P(1)-Ni(1)-P(2) 108.403(18) 

_____________________________________________________________ 
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Table 27: Anisotropic displacement parameters for (Ni(4,5-bis(di-p-tolylphosphino)-9,9-
dimethyl xanthene)Cl2) 

______________________________________________________________________________ 

 U11 U22 U33 U23 U13 U12 

______________________________________________________________________________ 

C(1) 36(1)  26(1) 33(1)  -5(1) 3(1)  -2(1) 

C(2) 38(1)  24(1) 32(1)  -3(1) 2(1)  -2(1) 

C(3) 40(1)  30(1) 28(1)  -8(1) -3(1)  -1(1) 

C(4) 49(1)  31(1) 35(1)  -11(1) -2(1)  -3(1) 

C(5) 69(2)  44(1) 39(1)  -21(1) 1(1)  -5(1) 

C(6) 71(2)  53(1) 31(1)  -14(1) 5(1)  -8(1) 

C(7) 53(1)  40(1) 33(1)  -5(1) -1(1)  -8(1) 

C(8) 39(1)  31(1) 30(1)  -6(1) -5(1)  -3(1) 

C(9) 38(1)  28(1) 30(1)  -2(1) -4(1)  -5(1) 

C(10) 45(1)  43(1) 40(1)  -14(1) -3(1)  -9(1) 

C(11) 41(1)  59(1) 47(1)  -12(1) -5(1)  -16(1) 

C(12) 39(1)  53(1) 40(1)  -4(1) 3(1)  -8(1) 

C(13) 48(1)  45(1) 51(1)  -17(1) 1(1)  -2(1) 

C(14) 41(1)  39(1) 52(1)  -17(1) -7(1)  -7(1) 

C(15) 41(1)  104(2) 88(2)  -36(2) 8(1)  -5(1) 

C(16) 45(1)  29(1) 34(1)  -8(1) -3(1)  -7(1) 

C(17) 50(1)  36(1) 39(1)  -4(1) -7(1)  -7(1) 

C(18) 81(2)  36(1) 35(1)  -3(1) -5(1)  -7(1) 

C(19) 88(2)  41(1) 40(1)  -13(1) 19(1)  -20(1) 

C(20) 138(3)  59(2) 72(2)  -7(1) 49(2)  -30(2) 

C(21) 58(2)  58(1) 69(2)  -16(1) 23(1)  -19(1) 

C(22) 46(1)  44(1) 60(1)  -7(1) 3(1)  -4(1) 

C(23) 71(1)  28(1) 40(1)  -13(1) -5(1)  -5(1) 

C(24) 113(2)  68(2) 68(2)  -3(1) -23(2)  -49(2) 

C(25) 140(3)  42(1) 48(1)  -18(1) 1(1)  23(1) 

C(26) 48(1)  28(1) 38(1)  -9(1) 0(1)  -3(1) 

C(27) 66(1)  23(1) 51(1)  -7(1) 2(1)  -3(1) 

C(28) 67(1)  30(1) 42(1)  3(1) 0(1)  -3(1) 

C(29) 52(1)  35(1) 32(1)  -3(1) 0(1)  -4(1) 

C(30) 35(1)  39(1) 28(1)  -6(1) 0(1)  0(1) 
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C(31) 48(1)  43(1) 47(1)  -16(1) 0(1)  0(1) 

C(32) 61(2)  48(1) 45(1)  -14(1) 6(1)  12(1) 

C(33) 47(1)  62(1) 39(1)  -2(1) 7(1)  14(1) 

C(34) 54(2)  107(2) 99(2)  -18(2) 15(2)  26(2) 

C(35) 36(1)  76(2) 50(1)  -14(1) -1(1)  -5(1) 

C(36) 39(1)  54(1) 40(1)  -16(1) 1(1)  -5(1) 

C(37) 43(1)  35(1) 34(1)  -9(1) -4(1)  -2(1) 

C(38) 45(1)  76(2) 46(1)  -13(1) -7(1)  2(1) 

C(39) 52(2)  87(2) 63(2)  -13(1) -21(1)  7(1) 

C(40) 80(2)  51(1) 50(1)  -13(1) -28(1)  7(1) 

C(41) 121(3)  96(2) 61(2)  -17(2) -48(2)  16(2) 

C(42) 84(2)  79(2) 33(1)  -12(1) -5(1)  2(1) 

C(43) 51(1)  75(2) 36(1)  -12(1) -1(1)  -1(1) 

O(1) 59(1)  24(1) 27(1)  -6(1) 0(1)  1(1) 

P(1) 34(1)  29(1) 29(1)  -8(1) 0(1)  -2(1) 

P(2) 37(1)  25(1) 32(1)  -5(1) -4(1)  -3(1) 

Cl(1) 55(1)  35(1) 71(1)  -22(1) -5(1)  -4(1) 

Cl(2) 54(1)  66(1) 74(1)  -23(1) 8(1)  15(1) 

Ni(1) 34(1)  30(1) 35(1)  -6(1) -3(1)  -4(1) 

______________________________________________________________________________  

 

 

 
Table 28: Hydrogen coordinates and isotropic displacement parameters for (Ni(4,5-bis(di-p-
tolylphosphino)-9,9-dimethyl xanthene)Cl2) 

________________________________________________________________________________ 

 x  y  z  U(eq) 

________________________________________________________________________________ 

 

H(5) 2891 4663 4731 59 

H(6) 2644 2675 5528 62 

H(7) 2822 962 5008 51 

H(10) 5869 1371 3765 50 

H(11) 8042 668 3558 58 

H(13) 6887 -1680 2434 57 
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H(14) 4717 -940 2600 51 

H(15A) 9641 -376 2704 114 

H(15B) 9165 -1549 2482 114 

H(15C) 9422 -1637 3375 114 

H(17) 4522 -1557 4467 51 

H(18) 3695 -3195 5420 62 

H(20A) 671 -3367 6262 139 

H(20B) 1956 -4260 6140 139 

H(20C) 708 -4125 5616 139 

H(21) 17 -1623 4946 75 

H(22) 824 19 3982 62 

H(24A) 5546 5175 3170 123 

H(24B) 4942 5806 3839 123 

H(24C) 5021 6631 2947 123 

H(25A) 2552 7277 2981 118 

H(25B) 2490 6488 3882 118 

H(25C) 1566 6214 3268 118 

H(27) 3202 7320 1804 57 

H(28) 3088 7221 526 59 

H(29) 3131 5298 245 49 

H(31) 4459 622 695 54 

H(32) 6569 -239 485 64 

H(34A) 8904 -510 811 138 

H(34B) 9508 581 1059 138 

H(34C) 9169 765 165 138 

H(35) 8061 2307 1308 66 

H(36) 5951 3236 1477 52 

H(38) 696 3026 779 68 

H(39) -384 3621 -397 83 

H(41A) -1 4869 -1923 141 

H(41B) -56 3423 -1877 141 

H(41C) 1164 4138 -2314 141 

H(42) 3073 3651 -1576 80 

H(43) 4180 3078 -406 66 

________________________________________________________________________________  
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Table 29: Torsion angles for (Ni(4,5-bis(di-p-tolylphosphino)-9,9-dimethyl xanthene)Cl2) 

________________________________________________________________ 

C(29)-C(1)-C(2)-O(1) -174.93(16) 

P(1)-C(1)-C(2)-O(1) 10.4(2) 

C(29)-C(1)-C(2)-C(26) 4.4(3) 

P(1)-C(1)-C(2)-C(26) -170.21(15) 

O(1)-C(3)-C(4)-C(5) -176.53(17) 

C(8)-C(3)-C(4)-C(5) 2.6(3) 

O(1)-C(3)-C(4)-C(23) 2.1(3) 

C(8)-C(3)-C(4)-C(23) -178.78(18) 

C(3)-C(4)-C(5)-C(6) -0.6(3) 

C(23)-C(4)-C(5)-C(6) -179.2(2) 

C(4)-C(5)-C(6)-C(7) -1.4(4) 

C(5)-C(6)-C(7)-C(8) 1.5(3) 

C(6)-C(7)-C(8)-C(3) 0.4(3) 

C(6)-C(7)-C(8)-P(2) -175.08(16) 

O(1)-C(3)-C(8)-C(7) 176.66(16) 

C(4)-C(3)-C(8)-C(7) -2.5(3) 

O(1)-C(3)-C(8)-P(2) -7.5(2) 

C(4)-C(3)-C(8)-P(2) 173.34(15) 

C(14)-C(9)-C(10)-C(11) -1.6(3) 

P(2)-C(9)-C(10)-C(11) 178.12(14) 

C(9)-C(10)-C(11)-C(12) -0.7(3) 

C(10)-C(11)-C(12)-C(13) 1.9(3) 

C(10)-C(11)-C(12)-C(15) -178.3(2) 

C(11)-C(12)-C(13)-C(14) -0.8(3) 

C(15)-C(12)-C(13)-C(14) 179.4(2) 

C(12)-C(13)-C(14)-C(9) -1.5(3) 

C(10)-C(9)-C(14)-C(13) 2.7(3) 

P(2)-C(9)-C(14)-C(13) -177.03(15) 

C(22)-C(16)-C(17)-C(18) 0.7(3) 

P(2)-C(16)-C(17)-C(18) 179.25(14) 

C(16)-C(17)-C(18)-C(19) 0.2(3) 

C(17)-C(18)-C(19)-C(21) -1.3(3) 

C(17)-C(18)-C(19)-C(20) 178.1(2) 
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C(18)-C(19)-C(21)-C(22) 1.6(3) 

C(20)-C(19)-C(21)-C(22) -177.9(2) 

C(17)-C(16)-C(22)-C(21) -0.4(3) 

P(2)-C(16)-C(22)-C(21) -179.03(17) 

C(19)-C(21)-C(22)-C(16) -0.7(4) 

C(3)-C(4)-C(23)-C(26) 17.9(3) 

C(5)-C(4)-C(23)-C(26) -163.64(19) 

C(3)-C(4)-C(23)-C(24) -100.8(2) 

C(5)-C(4)-C(23)-C(24) 77.7(3) 

C(3)-C(4)-C(23)-C(25) 137.8(2) 

C(5)-C(4)-C(23)-C(25) -43.7(3) 

O(1)-C(2)-C(26)-C(27) 174.63(17) 

C(1)-C(2)-C(26)-C(27) -4.7(3) 

O(1)-C(2)-C(26)-C(23) -5.2(3) 

C(1)-C(2)-C(26)-C(23) 175.51(18) 

C(4)-C(23)-C(26)-C(2) -16.4(3) 

C(24)-C(23)-C(26)-C(2) 102.1(2) 

C(25)-C(23)-C(26)-C(2) -136.5(2) 

C(4)-C(23)-C(26)-C(27) 163.86(19) 

C(24)-C(23)-C(26)-C(27) -77.7(3) 

C(25)-C(23)-C(26)-C(27) 43.7(3) 

C(2)-C(26)-C(27)-C(28) 1.4(3) 

C(23)-C(26)-C(27)-C(28) -178.9(2) 

C(26)-C(27)-C(28)-C(29) 2.0(3) 

C(27)-C(28)-C(29)-C(1) -2.3(3) 

C(2)-C(1)-C(29)-C(28) -0.8(3) 

P(1)-C(1)-C(29)-C(28) 173.50(16) 

C(36)-C(30)-C(31)-C(32) -2.3(3) 

P(1)-C(30)-C(31)-C(32) -178.99(15) 

C(30)-C(31)-C(32)-C(33) 1.6(3) 

C(31)-C(32)-C(33)-C(35) 0.5(3) 

C(31)-C(32)-C(33)-C(34) -178.1(2) 

C(32)-C(33)-C(35)-C(36) -1.8(3) 

C(34)-C(33)-C(35)-C(36) 176.8(2) 

C(31)-C(30)-C(36)-C(35) 1.0(3) 

P(1)-C(30)-C(36)-C(35) 177.52(15) 
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C(33)-C(35)-C(36)-C(30) 1.1(3) 

C(43)-C(37)-C(38)-C(39) -1.2(3) 

P(1)-C(37)-C(38)-C(39) 175.61(19) 

C(37)-C(38)-C(39)-C(40) 1.2(4) 

C(38)-C(39)-C(40)-C(42) -0.8(4) 

C(38)-C(39)-C(40)-C(41) 179.9(3) 

C(39)-C(40)-C(42)-C(43) 0.4(4) 

C(41)-C(40)-C(42)-C(43) 179.7(2) 

C(38)-C(37)-C(43)-C(42) 0.7(3) 

P(1)-C(37)-C(43)-C(42) -175.87(18) 

C(40)-C(42)-C(43)-C(37) -0.4(4) 

C(4)-C(3)-O(1)-C(2) -25.7(2) 

C(8)-C(3)-O(1)-C(2) 155.10(15) 

C(26)-C(2)-O(1)-C(3) 27.2(2) 

C(1)-C(2)-O(1)-C(3) -153.41(15) 

C(36)-C(30)-P(1)-C(37) 126.24(15) 

C(31)-C(30)-P(1)-C(37) -57.21(16) 

C(36)-C(30)-P(1)-C(1) 17.76(17) 

C(31)-C(30)-P(1)-C(1) -165.69(14) 

C(36)-C(30)-P(1)-Ni(1) -111.56(15) 

C(31)-C(30)-P(1)-Ni(1) 64.99(15) 

C(38)-C(37)-P(1)-C(30) 162.04(16) 

C(43)-C(37)-P(1)-C(30) -21.35(19) 

C(38)-C(37)-P(1)-C(1) -86.44(17) 

C(43)-C(37)-P(1)-C(1) 90.17(18) 

C(38)-C(37)-P(1)-Ni(1) 37.81(18) 

C(43)-C(37)-P(1)-Ni(1) -145.58(16) 

C(2)-C(1)-P(1)-C(30) -89.35(15) 

C(29)-C(1)-P(1)-C(30) 96.41(17) 

C(2)-C(1)-P(1)-C(37) 159.69(14) 

C(29)-C(1)-P(1)-C(37) -14.55(18) 

C(2)-C(1)-P(1)-Ni(1) 38.89(16) 

C(29)-C(1)-P(1)-Ni(1) -135.35(15) 

C(14)-C(9)-P(2)-C(16) 73.92(15) 

C(10)-C(9)-P(2)-C(16) -105.77(15) 

C(14)-C(9)-P(2)-C(8) -177.64(14) 
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C(10)-C(9)-P(2)-C(8) 2.68(17) 

C(14)-C(9)-P(2)-Ni(1) -51.51(15) 

C(10)-C(9)-P(2)-Ni(1) 128.80(14) 

C(22)-C(16)-P(2)-C(9) -168.91(15) 

C(17)-C(16)-P(2)-C(9) 12.54(17) 

C(22)-C(16)-P(2)-C(8) 80.23(17) 

C(17)-C(16)-P(2)-C(8) -98.31(16) 

C(22)-C(16)-P(2)-Ni(1) -43.25(17) 

C(17)-C(16)-P(2)-Ni(1) 138.21(14) 

C(7)-C(8)-P(2)-C(9) -104.27(17) 

C(3)-C(8)-P(2)-C(9) 80.21(15) 

C(7)-C(8)-P(2)-C(16) 5.52(19) 

C(3)-C(8)-P(2)-C(16) -169.99(14) 

C(7)-C(8)-P(2)-Ni(1) 129.20(15) 

C(3)-C(8)-P(2)-Ni(1) -46.32(16) 

________________________________________________________________ 

 

 
Table 30: Hydrogen bonds for (Ni(4,5-bis(di-p-tolylphosphino)-9,9-dimethyl xanthene)Cl2) 

____________________________________________________________________________ 

D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 

____________________________________________________________________________ 

 C(14)-H(14)...Cl(1) 0.95 2.94 3.765(2) 146 

 C(31)-H(31)...Cl(1) 0.95 2.93 3.592(2) 128 

____________________________________________________________________________ 
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