by

WOLTER A. M. TE RIELE M.Sc. (Eng.)

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in the Department of Chemical Engineering, University of Natal, Durban. March, 1970.

ABSTRACT

This work is concerned with the characterization of slowly moving fluids and was carried out on the flow of water through a narrow sedimentation tank. Dispersion in the type of flow structure involved is caused mainly by the presence of large eddies and, due to the fact that shear stresses are samll, these eddies persist for a considerable period of time.

Two flow models are presented:
The first model assumes the $\mathrm{X}-\mathrm{Y}-\mathrm{velocity}$
component pair to form a discrete state Markov process in time and dispersion equations for the mean concentration at a point, the variance as well as concentration crosscorrelations are generated.

In the second model the velocity fluctuation components are assumed to be independent, time-stationary Markov processes with normal probability density functions. The stochastic differential equation describing dispersion of tracer is formulated with and without the effect of molecular diffusion and solutions to both cases are presented.

Comparison of the model with experimental data obtained from tracer and anemometer measurements show that the model is capable of describing mean dispersion in a relatively small region of the tank and that the tracer experiments were insensitive to molecular diffusion.

ACKNOWLEDGEMENTS

The author wishes to express his appreciation to Professor E.T. Woodburn and Dr. R.P. King for their able supervision and guidance throughout the course of this work.

Assistance received from the following people is gratefully acknowledged :

- Staff and students of this department for many helpful suggestions and discussions;
- Workshop staff for the construction of apparatus;
- Staff of the Electronics Workshop of the department of Electrical Engineering for the construction and use of electronic equipment;
- Computer Centre staff for help with running of programmes;
- Miss Francoise Maingard for the skilful typing of these pages.

The author thanks the National Institute for Metallurgy for financing the project.

LIST OF CONTENTS

Page
ABSTRACT 1.
ACKNOWLEDGEMENTS ii
LIST OF CONTENTS iii
LIST OF FIGURES vii
LIST OF PHOTOGRAPHS x
LIST OF SYMBOLS xi
CHAPTER I
INTRODUCTION 1
CHAPTER II
DISCRETE STATE SPACE FLOW MODEL
2.1 Introduction 11
2.2 Flow State Equations 11
2.2.1 Autocorrelation of Velocity Process 12
2.3 Mixing Equations 15
2.3.1 Moments Equations 16
CHAPTER IIICONTINUOUS STATE FLOW MODEL
3.1 Velocity Process 21
3.2 Mixing Equations 22
3.3 $W(t, \tau)$ - Process 23
3.4 Moments Equations 24
3.4.1 Mean Concentration 24
3.4.2 Concentration Crosscorrelation 25
3.5 Effect of Molecular Diffusion 31CHAPTER IV
EXPERIMENTAL
4.1 General 35
4.2 Tracer Injection 35

LIST OF CONTENTS (Continued)

4.3 Tracer Detection and Recording 35
4.4 Calibration of Tracer Detectors 41
4.5 Hot Film Anemometer 41
4.5.1 Recording and Playback 43
4.5.2 Calibration 44
CHAPTER V
TESTING OF CONTINUOUS STATE SPACE FLOW MODEL
5.1 General 45
5.1.1 Position of Probes 48
5.1.2 Throughput and Withdrawal Flow Rates 49
5.2 Experimental Design Considerations 49
5.2.1 Introduction 49
5.2.2 The Mean Response Experiment 50
5.2.2.1 Width of Input Pulse 50
5.2.2.2 Pulse Frequency 56
5.2.2.3 Run Length 56
5.2.2.4 Sampling Interval 59
5.2.2.5 Computation of Mean Response 59 Curve
5.2.3 The Crosscorrelation Experiment 59
5.2.3.1 Pseudo-Random Binary Test Signal 60
5.2.3.2 Generation of Pseudo-Random Binary Signals 61
5.2.3.3 Number of Periods and Sampling Interval 65
5.2.3.4 Computation of Experimental 69 Crosscorrelation
5.2.3.5 Evaluation of Theoretical 69 Crosscorrelation

LIST OF CONTENTS (Continued)

Page
5.3 Hot Film Anemometer Measurements
5.3.1 General 70
5.3.2 Distribution Density Function of $V(t)$ 74
5.3.3 Autocorrelation of $v^{2}(t)$ 74
5.3.4 Computation of Experimental $\mathrm{f}(\mathrm{v})$ and$R_{v}^{2}(\tau)$ curves77
5. 4 Estimation of Parameters
5.4.1 Introduction 78
5.4.2 Parameters from Tracer Experiments 80
5.4.3 Parameters from the Hot Film Anemometer Experiment 83
CHAPTER VI
RESULTS AND DISCUSSION 84
6.1 Tracer Experiments 84
6.1.1 Group 1 84
6.1.2 Group 2 86
6.1.3 Group 3 87
6.l.4 Effect of Molecular Diffusion 89
6.2 Hot Film Anemometer Results and Conclusions 90
BLIBLIOGRAPHY 117
APPENDIX

1. Eddy Diffusion Model; Error Estimation 119
2. Derivation of Kolmogorov Equations 121
3. Derivation of Equation 2.30 125
4. Evaluation of Covariance 127
5. Mixing Equations for Continuous State Flow 129Model with Molecular Diffusion

LIST OF CONTENTS (Continued)

APPENDIX (Continued)
6. Introduction of Flow Parameter $\alpha \quad 134$
7. Note on Units of $q(t)$ and $C(t) \quad 136$
8. Details of Equipment 137

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Autocorrelation of velocity for discrete state model.	14
4.1	Plant Layout.	36
4.2	Recording and Playback Diagram.	40
4.3	Calibration curve of tracer detector.	41
4.4	Calibration curve of Anemometer Probe	47
5.1	Power Spectral Density of rectangular pulse.	51
5.2	Bode Plot.	53
5.3	Power Spectral Density of Velocity	
	Fluctuations.	54
5.4	Typical realisations of Mean Response	57
	Experiment.	
5.5	The effect of number of realisations on the Mean Response curve.	58
5.6	Power Spectral Density of Pseudo-Random Binary Sequence.	62
5.7	Shift register circuit.	64
5.8	Concentration versus time with corresponding P.R.B. signal.	66
5.9	Crosscorrelation - probability mass distribution in $\theta_{1}-, \theta_{2}-$ plane; lag $=$ 4 seconds.	71

FIGURE	TITLE	PAGE
5.10	```Crosscorrelation - Probability mass distribution in 的-,目-plane; lag = Tp}+4 seconds.```	72
6.1	Probe positions.	85
6.2	Mean Response, Run $\mathrm{l}_{\text {; }}$ two stations.	95
6.3	Mean Response, Run 2; two stations.	96
6.4	Mean Response, Run 3; two stations.	97
6.5	Mean Response, Run 4; two stations.	98
6.6	Mean Response, Run 4; lower station.	99
6.7	Mean Response, Run 4; upper station	100
6.8	Mean Response, Run 5, two stations.	101
6.9	Mean Response; Run 6; two stations.	102
6.10	Mean Response, Run 6; second station.	103
6.11	Mean Response, Run 7; two stations.	104
6.12	Crosscorrelations, Run 5.	105
6.13	Crosscorrelation, Run 6.	106
6.14	Mean Response, Run 8; two stations.	107
6.15	Crosscorrelation, Run 8.	108
6.16	Mean Response, Run 9; two stations.	109
6.17	Mean Response, Run 10;two stations.	110
6.18	Crosscorrelations, Run 9.	111
6.19	Crosscorrelations, Run 10.	112
6.20	Mean Response, Run 2; model without molecular diffusion.	113
6.21	Mean Response, Run 8; model without molecular diffusion.	114

6.22 Distribution Density of $v(t)$. 115
6.23 Autocorrelation of $v^{2}(t)$. 116
8.A Hot Film Anemometer circuit. 138

LIST OF PHOTOGRAPHS

PAGE
Tracer paths near point of injection - 2
continuous source.
Single tracer path extending further downstream - 3continuous source.
Fxperimental tank. 34
Probes mounted in position. 38
Anemometer Calibration Equipment. 46
Pseudo-Random Binary Signal Generator. 63
Data processing Unit. 139

LIST OF SYMBOLS

A
Area under Lagrangian-time Correlation Curve, Equation l.B
$c, c(x, y, t)$
$c, c(x, y, t)$
Realisation of C.
Tracer Concentration at the point (x, y) and time t; Random Process.
$\overline{\mathrm{C}}(\mathrm{s}, \mathrm{p}, \mathrm{t}) \quad$ Two-sided Laplace Transform of $\mathrm{C}(\mathrm{x}, \mathrm{y}, \mathrm{t})$; Random Process.
a
Switching Time (Decísion Interval) of Pseudo-Random Binary Sequence.

Width of rectangular input pulse.
Molecular Diffusion Coefficient
Eddy Diffusion Coefficient
E\{ \}
Expected Value of \{ \}.
f(v)
Distribution Density Function of $V(t)$
$f\left\{u_{x l}, u_{X 2}\left(\tau, \sigma_{0}^{2}, \beta\right)\right\} \quad$ Joint Probability Density Function for $U_{X}^{\prime}(t)$ and $U_{X}^{\prime}(t+\tau)$.
$\mathrm{f}\left(\mathrm{w}_{\mathrm{x}}, \mathrm{w}_{\mathrm{y}}, \mathrm{t}, \tau\right) \quad$ Joint Probability Density Function for W_{x} and W_{y}.
$f\left(w_{x}, t, \tau\right), f\left(w_{y}, t, \tau\right)$ Probability Density Functions for W_{x}, W_{y}.
$G_{i}(w) G_{o}(w) \quad$ Frequency Content of Mean Response pulses.
$F_{i} \quad$ Frequency of occurrence of velocity v_{i}.
H(w)
Amplitude Ratio in Bode Plot.
i,j,k States of Discrete Space Flow Model.
$I_{0}(z) \quad$ Modified Bessel Function of Zero Order.

LIST OF SYMBOLS (Continued)

Characteristic* Function of

$$
f\left\{u_{x 1}, u_{x 2}\left(\tau, \sigma_{0}^{2}, \beta\right)\right\}
$$

$L\}$
$m_{l x}, m_{l x, l}, m_{1 x, 2}$
$m_{l y}, m_{l y, l}, m_{l y, 2}$
n
Laplace Transform of \{ \}
Mean of W_{x}; Equations 3.15, 3.29
Mean of W_{Y}; Equations 3.15,3.29
Number of Concentration Readings per
Station in experimental Crosscorrelation.
Total Number of Pulses in Mean Response Expt.
Number of $V(t)$ readings correlated.
Number of decisions in P.R.B.S.

Total number of Hot Film Anemometer readings.
$N_{\alpha}, N_{\alpha}(t)$
Random Impact Force with White Noise properties and Gaussian Distribution Density.

Laplace transformed coordinate y.
Stationary Probability of system being in flow state i; discrete space model.

Probability of system being in flow state j at time t; discrete space model.

Stationary Probability for observing a source strength q and concentration c at the point (x, y) ; discrete space model.

Probability density for observing the concentration c at the point (x, y) while the flow is in state j at time t; discrete space model.

LIST OF SYMBOLS (Continued)

${ }^{r} 1,2, \mathrm{n}$	Eigen values of switching rates matrix; discrete space model.
r	Normalised covariance; equation 3.43.
R_{N}	Normalised Lagrangian autocorrelation of
	velocity fluctuations.
${ }^{R} \mathrm{Q}$	Autocorrelation of Pseudo-Random Binary
	Sequence.
$\mathrm{R}_{\text {Qf }}$	Autocorrelation of filtered Pseudo-Random
	Binary Sequence, Equation 5.10.
${ }^{\chi_{j, ~}, q, q}$	Partial autocorrelation of stationary
	source strength; discrete space model.
R_{qq}	Autocorrelation of $Q(t)$; discrete space
	model.
$\mathrm{R}_{\mathrm{OX}}, \mathrm{R}_{\mathrm{OY}}, \mathrm{R}_{0}$	Autocorrelation of velocity fluctuation components.
$\mathrm{R}_{\mathrm{v}}{ }^{2}$	Autocorrelation of $\mathrm{V}^{2}(t)$
$\mathrm{R}_{\mathrm{N}}{ }_{\alpha}$	Autocorrelation of $\mathrm{N}_{\alpha}(\mathrm{t})$.
$s(j, x, y ; t)$	Partial Mean square concentration; discrete space model.
s	Laplace transformed coordinate x .
Tp	Period of Pseudo-Random Binary Sequence.
T_{c}	Time constant of tracer injection system.
\bar{u}_{x}, \bar{u}_{y}	Components of mean fluid velocity.
$u_{x},{ }^{\text {u }}{ }^{\text {y }}$	Realisations of U_{x}, U_{y}.
$u_{x i} u^{\prime}{ }^{\text {i }}$	Realisations of U_{x}, U_{Y} in flowstate i; discrete space model.
$\mathrm{U}_{\mathrm{X}}, \mathrm{U}_{\mathrm{Y}}$	X-,y-component of fluid velocity; random

LIST OF SYMBOLS (Continued)

$U_{x}^{\prime}, U^{\prime}{ }_{Y}$	Fluid velocity fluctuation component; random process.
v	Realisation of $V(t)$.
$V(t)$	Vector sum of U_{X} and U_{Y}; random process.
V_{c}	Volume of liquid used in calibration of
	light probes; Appendix 7.
$\mathrm{w}_{\mathrm{x}}, \mathrm{w}_{\mathrm{y}}$	Realisations of W_{X}, W_{Y}.
W_{X}, W_{Y}	Random process defined by equation 3.11.
w	Frequency in radians per second.
x, y	Coordinates with respect to point of tracer
	injection.
X, Y	Coordinates of fluid particle; random
	process.
X_{R}, Y_{L}	Right hand and Left hand Eigen vectors of
	switching rates matrix; discrete space
	model.
$\overline{x^{2}}(t)$	Variance of position of fluid particle in
	random flow field.
z	Dummy variable; Equation 5.12.
$\alpha, \alpha_{1}^{\prime}, \alpha_{2}^{\prime}$	Power Spectral Density of $N_{\alpha}(t), N_{\alpha_{1}^{\prime}}(t)$ and $N_{\alpha_{2}^{\prime}}(t)$
α_{1}, α_{2}	Auxiliary variables for crosscorrelation
	with molecular diffusion; Equations
	3.45 。
$\alpha_{c}{ }^{\alpha}()$	Derivate moment in Kolmogorov equations for term involving $\frac{\partial}{\partial c}$
α_{q}	Derivate moment in Kolmogorov equations for term involving $\frac{\partial}{\partial q}$

IIST OF SYMBOLS (Continued)

β_{1}, β_{2}	Auxiliary variables for crosscorrelation
	with molecular diffusion; Equation 3.45.
$\beta, \beta_{1}^{\prime}, \beta_{2}^{\prime}\left(\beta_{x}, \beta_{y}\right)$	Flow scale parameters in Lagrangian time-
	correlation of (X-and Y-) velocity fluctua-
	tions.
γ_{1}, γ_{2}	Auxiliary variable in crosscorrelation with
	molecular diffusion; Equations 3.45
$\delta_{i j}$	Kronecker Delta.
$\delta()$	Dirac Function.
Φ ex.	Experimental concentration crosscorre-
	lation between points $\left(x_{1}, Y_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{Y}_{2}\right)$.
Φ	Model crosscorrelation between points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$.
$\Phi_{q, ~}$	Crosscorrelation between source strength and concentration at the point (x, y); discrete space model.
$\Phi_{j, q, c}$	Partial crosscorrelation between source strength and concentration at the point (x, y); discrete space model.
$x_{x} x_{y}$	Variance parameters for velocity processes in Kolmogorov Equation 1.4.
$\lambda_{i j}$	Mean switching rate from state i to state j; discrete space model.
$\mu_{e x}\left(t_{i}\right)$	Experimental Mean Response curve.
$\mu(x, y, t)$	Mean concentration; continuous space model.
$\mu(j, x, y ; t)$	Partial mean concentration; discrete

LIST OF SYMBOLS (continued)

$v_{x} \cdot v_{y}$	Drift parameters for velocity processes
	in Equation 1.4.
$\pi(j \mid i: \tau)$	Transitional probability for transfer
	from flow state i to j in time interval
	τ; discrete space model.
$\pi\left(j, c_{l}, \mathrm{c} \mid \mathrm{i}, \mathrm{q}: \tau\right) \mathrm{S}$	Stationary transitional probability for
	transfer from flow state i and source
	strength q to flow state j, source
	strength q_{1} and concentration c at the
	point (x,y) in time interval τ; discrete
	space model.
$\pi\left(j, q_{1}, c ; t+\tau \mid i, q ; t\right)$;t) Transitional probability for the
	transfer from flow state i and source
	strength q at time t to flow state j and
	source strength q_{1} and concentration c at
	the point (x, y) at time $t+\tau$; discrete
	space model.
$\pi u_{x}, u_{y}, c ; t \mid u_{x O}, u^{\prime}$	$u_{y O}, c_{o} ; t_{0}$) Transitional probability for
	the transfer from velocities $u_{x o}, u_{y o}$ and
	concentration c_{0} at time t_{0} to velocities
	u_{x}, u_{y} and concentration c at time t.
$\begin{aligned} \rho\left(t, \tau_{1} ; t, \tau_{2}\right) & C \\ & W\end{aligned}$	Covariance of $W_{x}\left(t, \tau_{1}\right)$ and $W_{x}\left(t, \tau_{2}\right)$;
	$W_{y}\left(t, \tau_{1}\right) \text { and } W_{y}\left(t, \tau_{2}\right)$
$\sigma_{0}^{2},\left(\sigma_{o x}^{2}, \sigma_{o y}^{2}\right) \quad \mathrm{V}$	Variance of continuous space velocity (com-
	ponents) processes.
$\sigma_{l x}^{2}, \sigma_{l y}^{2}, \sigma_{1}^{2}$	Variance of W_{x}, W_{y}, W
	Lag in auto- and crosscorrelations; time
	interval.

LIST OF SYMBOLS (continued)

τ_{1}, τ_{2}	Variable space for crosscorrelation;
	Equation 3.3l.
$\sigma_{l, l}^{2}, \sigma_{l, 2}^{2}$	Variance of W defined by Equations 3.42.
$\theta^{\prime}, \theta^{\prime \prime}$	Dummy variables of integration.
θ_{1}, θ_{2}	Variable space for crosscorrelation;
	Equation 3.31.
ξ_{I}, ξ_{2}	Variable space of characteristic function K.

CHAPTER I

INTRODUCTION
Our interest lies in the flow structure developed when large masses of fluids move comparatively slowly. To 1llustrate the type of dispersion obtained in such a flow structure one may observe the smoke from the tip of a stationary cigarette in a well ventilated room. The character of the dispersion action may be roughly split into two parts:

Firstly, a randomly varying velocity responsible for large scale dispersion and secondly the effect of a diffusion type mechanism. Under these circumstances the shear stresses within the fluid are low giving rise to large scale turbulence of low intensity.

Tracer experiments were carried out on the flow of water through a narrow sedimentation tank. The photographs on page 2 show the path taken by a dye solution injected continuously at a point in the tank. They were taken at intervals of about thirty seconds and show clearly that the general direction of flow varies substantially, even though the flows into and out of the tank had been constant for a considerable period of time. Furthermore, the jagged paths indicate that the general direction of flow is the same throughout the region shown and changes fairly slowly with time. (See photograph on page 3). Under these conditions the velocity history of a fluid particle is identical to that recorded by a stationary ob-

widening of the dye path indicates the presence of a small scale, diffusion-type dispersion mechanism. The flow situation is therefore interesting from a theoretical point of view, because, to a close approximation, the Eulerian and Lagrangian statistics are identical.

The stochastic nature of the flow was further illustrated by the widely differing paths taken by pulses of tracer material injected intermittently at a point in the tank. Clearly the above flow structure cannot be realistically described by the well-used Eddy Diffusion model applicable to dispersion in highly turbulent fluids. The latter is associated with large shear stresses and small, high frequency eddies superimposed on a constant mean velocity. The inadequacy of this model for the flow structure considered here is shown in more detail below. The dispersion of tracer material may be described by the following stochastic partial differential equation:

$$
\frac{\partial C}{\partial t}=-U_{x}(x, y, t) \frac{\partial C}{\partial x}-U_{y}(x, y, t) \frac{\partial C}{\partial y}+q(t) \delta(x) \delta(y) \quad 1.1
$$

where,
$C=$ tracer concentration at the point x, y and time t.
$q(t)=$ tracer flow rate injected at the origin.
$U_{x}(x, y, t)=x$-component of velocity.
$\mathrm{U}_{\mathrm{y}}(\mathrm{x}, \mathrm{y}, \mathrm{t})=\mathrm{Y}$-component of velocity.
Both $U_{X}(x, y, t)$ and $U_{Y}(x, y, t)$ are stochastic processes. The solution to the above equation is unknown at present, because the stochastic processes $U_{x}(x, y, t)$ and $U_{y}(x, y, t)$ are functions of both position and time; (l) i.e. the equation is an Eulerian description of dispersion. If,
sense, they become effectively functions of time only and equation 1.1 may be written:

$$
\frac{\partial C}{\partial t}=-U_{x}(t) \frac{\partial C}{\partial x}-U_{y}(t) \frac{\partial C}{\partial y}+q(t) \delta(x) \delta(y)
$$

Hence, Lagrangian statistics of the velocity processes must be used to obtain statistical properties of the solution functions $C(x, y, t)$. This method of interpreting and solving equation 1.2 Yields results identical to the solution of the familiar Lagrangian equations :

$$
\frac{d X}{d t}=U_{x}(t) \quad ; \quad \frac{d Y}{d t}=U_{Y}(t)
$$

first investigated by Taylor (2) as a model for turbulent flow. This correspondence might appear surprising at first sight and is developed in detail below.

In order to solve equation 1.2 we assume the velocities U_{X} and U_{y} to be Markov processes; in addition, the solution $C(x, y, t)$ together with U_{x} and U_{y} form a composite Markov process and hence the associated Kolmogorov equation must exist : (3)
$\frac{\partial \pi}{\partial t}=-\frac{\partial}{\partial c}\left(\alpha_{c} \pi\right)-\frac{\partial}{\partial u_{X}}\left(\nu_{x} \pi\right)-\frac{\partial}{\partial u_{y}}\left(\nu_{y} \pi\right)+\frac{1 / 2}{\partial} \frac{\partial^{2}}{\partial u_{x}^{2}}\left(X_{x} \pi\right)+\frac{1}{2} \frac{\partial^{2}}{\partial u_{y}^{2}}{ }_{y}^{2}\left(X_{Y} \pi\right)$ where,

$$
\begin{align*}
& \pi\left(u_{x}, u_{y}, c ; t \mid u_{x o}, u_{y o}, c_{o} ; t_{0}\right)=\text { transition prob. density. } \\
& \alpha_{c}=-u_{x} \frac{\partial c}{\partial x}-u_{y} \frac{\partial c}{\partial y}
\end{align*}
$$

$\nu_{x}, \nu_{y}, X_{x}, X_{y}=d r i f t$ and variance parameters respectively for the velocity processes.

This equation, however, cannot be used to generate a closed system of moment equations due to the non-linear coupling
between the velocities and concentrations in α_{c}. We therefore investigated two possible assumptions to overcome this difficulty.

In the first case, the velocity can only assume a finite number of fixed values; i.e. $U_{x, y}(t)$ has discrete state space. This model was inspired by the work of Krambeck, Shinnar and Katz (4). These workers modelled a flow reactor by a network of perfectly stirred tanks. The volumes of the tanks remain constant; whilst the interstage flow rates between them are allowed to switch randomly in time between discrete levels according to a stationary Markov process. Clearly, the physical significance of this model is limited and cannot be applied directly to the present problem. Their treatment is adapted by assuming the X-and-Y-velocity component pair to be a discrete state, time-stationary Markov process. Equations describing the development of a number of concentration moments are derived from a consideration of the appropriate Kolmogorov equations. The major drawback of this model, however, lies in the difficulty of obtaining solutions to these equations as well as in its large number of parameters. Consequently, no attempt was made to compare the predictions of this model with experimental data. The model is presented in Chapter II and the reader may omit this chapter on first reading without loss of continuity.

In the second case we make an a priori assumption regarding the probability density function for the velocity process. $U_{x, y}(t)$ has continuous state space and thus provides a more realistic description of the flow
structure under consideration. The above Kolmogorov equation (Equation 1.4) was not used in the solution, as a direct method of solution was available, and is presented in Chapter III.

To illustrate the correspondence of the results developed in Chapter III with those obtained by Taylor (5), Doob (6), a.o. we may examine the expression for the mean concentration : (see Equation 3.25)

$$
\mu(x, t)=\int_{0}^{\infty} q(\tau) \frac{1}{\left\{2 \pi \sigma_{1}^{2}(t, \tau)\right\}^{\frac{1}{2}}} \exp -\frac{\left\{x-m_{l x}(t, \tau)\right\}^{2}}{2 \sigma_{1}^{2}(t, \tau)} d \tau
$$

If tracer enters the system as an instantaneous point source then: $q(\tau)=\delta(\tau)$ and the resultant response for the mean concentration is seen to be Gaussian. Furthermore, development of the model results in the following expressions for the mean and variance of this distribution:

$$
\begin{align*}
& m_{l x}=\bar{u}_{x} t \\
& \sigma_{1}^{2}(t)=\frac{\alpha}{\beta}\{\exp (-\beta t)-1+\beta t\}
\end{align*}
$$

(compare Equations 3.15,

Taylor (2) developed the following expression for the variance of particle position in a turbulent velocity field :

$$
\bar{x}^{2}(t)=2 \sigma_{0}^{2} \int_{0}^{t} \int_{0}^{\tau} R_{N}(\tau) d \tau d \tau 1
$$

where,
$R_{N}(\tau)=N o r m a l i s e d$ Lagrangian autocorrelation of

$$
\sigma_{0}^{2}=\text { Variance of velocity fluctuations. }
$$

Substitution of the assumed form of $R(\tau)$ (see Equation
3.3) in Equation 1.9 and integrating yields a result identical to Equation 1.8. Clearly, when the flow field suffers a mean displacement velocity \bar{u}_{x}, then $\bar{x}^{2}(t)$ relates to the variance about the point $\bar{u}_{x} t$.

In order to show the correspondence in more detail we require the form of the probability density function for $X(t)$. Doob (6) a.o. make use of the following two equations to obtain this function:

$$
\begin{align*}
\frac{d U(t)}{d t}+\beta U(t) & =N_{\alpha}(t) \\
U(t) & =\frac{d X(t)}{d t}
\end{align*}
$$

where,
$\beta=$ damping parameter.
No(t) = random impact force with White Noise properties and Gaussian distribution density. These workers showed that both the probability density for position $p(x, t)$ and velocity $p(u, t)$ have a Gaussian form.

Hence, the results derived by Taylor, Doob a.o. for the motion of a single particle are similar to those developed in Chapter III and the equivalence is complete if the probability density for the position of a single particle is interpreted as the concentration resulting from the release of a large number of tracer particle at the origin. The correspondence between the mean concentration $\mu(x, t)$ and the probability density $p(x, t)$ is, of course, easy to justify for fully developed turbulence,
tainly not be true due to the slow variation of the instantaneous velocity.

The use of a pseudo Eulerian formulation of Equation 1.2 may be justified for three reasons :

Firstly, it allows one to work directly with tracer concentration.

Secondly, molecular diffusion terms may be written in directly :

$$
\begin{aligned}
\frac{\partial C}{\partial t}= & -U_{x}(t) \frac{\partial C}{\partial x}+D \frac{\partial^{2} C}{\partial x^{2}}-U_{y}(t) \frac{\partial C}{\partial y}+D \frac{\partial}{}_{2}^{\partial y^{2}}{ }^{2} \\
& +q(t) \delta(x) \delta(y)
\end{aligned}
$$

where,

$$
D \text { = molecular diffusion coefficient. }
$$

Thirdly, the model is not restricted to periods of dispersion which are considerably longer than the lag at which the Lagrangian autocorrelation of velocity has reached zero. This restriction does apply to the Eddy Diffusion model :

$$
\frac{\partial c}{\partial t}=-\bar{u}_{x} \frac{\partial c}{\partial x}+E \frac{\partial^{2} c}{\partial x^{2}}
$$

where,

$$
\begin{aligned}
& \bar{u}_{\mathrm{x}}=\text { constant mean velocity } \\
& \mathrm{E}=\text { Eddy Diffusion Coeficient }
\end{aligned}
$$

Taylor (7) has shown that E may be expressed as :

$$
E=\frac{1}{2} \sigma_{0}^{2} \int_{0}^{\infty} R_{N}(\tau) d \tau
$$

The above expression for E, however, is based on the following approximation:

$$
\bar{X}^{2}(t)=2 \sigma_{0}^{2} A t \quad \text { where, } A=\int_{0}^{\infty} R_{N}(\tau) d \tau
$$

becomes :

$$
\bar{X}^{2}(t)=2 \sigma_{0}^{2} A t-2 \sigma_{0}^{2} \int_{0}^{t_{1}} \int_{\tau_{1}}^{t_{R_{N}}}(\tau) d \tau d \tau I
$$

It can be shown that for the tracer experiments carried out in this work errors of the order of thirty per cent result when the second term is neglected. (Appendix I)

Equations 1.2 and 1.12 are solved by assuming the velocity components to be independent, time stationary Markov processes with Gaussian probability density functions. Solutions for both the mean concentration at a point as well as the concentration cross correlation between two points are obtained in terms of model parameters and tracer input function. The validity of this model was tested experimentally in two ways :

Firstly, tracer experiments were carried out to obtain experimental estimates of concentration moments for a number of positions. Comparisons with model predictions provided a means for evaluation of the parameters as well as a measure for the ability of the model to describe dispersion.

Secondly, the fluid velocity at a point was measured directly with the aid of a Hot Film Anemometer. This experiment provided a test of the physical significance of the model parameters together with an independent estimate of their values.

CHAPTER II

DISCRETE STATE SPACE FLOW MODEL

2.1. INTRODUCTION

The model is based on the assumption that the velocity of the fluid may be represented by a stationary, discrete state Markov process. The instantaneous veloCity components in the X-and $-Y$ coordinate directions $U_{X}(t)$, $U_{y}(t)$ can therefore assume any of a finite number of pair values ($u_{x j}, u_{y\}}$; the flow process is said to be in flow state j. The randomness of the model is introduced by allowing instantaneous switching to occur from one flow state to another as a random function of time. Furthermore, it is assumed that the statistical properties of the flow process do not vary with time. This assumption will hold when the process has been in progress long enough, so that start-up conditions have no influence on the state of the system. The flow process is assumed to be Markov and therefore may be described by a matrix of transition probability densities:

$$
||\pi(j \mid i: \tau)||
$$

where $\pi(j \mid i: \tau)$ represents the probability of the flow process switching from state i to state j in a time interval τ.

2.2 FLOW STATE EQUATIONS

The following properties of such a Markov process are known and will be used below:

$$
\begin{align*}
& \sum_{j} \pi(i \mid j: \tau)=1 \\
& \pi(i \mid j: \tau)=\delta_{i j}+\lambda_{1 j} \tau+0(\tau)
\end{align*}
$$

where,

$$
\begin{aligned}
\delta_{i j} & =0 \quad ; \quad i \neq j \\
& =1 \quad ; \quad i=j
\end{aligned}
$$

$\lambda_{i j}=$ constant and may be interpreted as a measure of the mean switching rate from state i to state j.

$$
\lim _{\tau \rightarrow 0} \frac{O(\tau)}{\tau}=0
$$

From Equations 2.1 and 2.2 it follows that :

$$
\sum_{j} \lambda_{i j}=0
$$

If $p(i ; t)$ represents the probability that the flow process is in state i at a time t, then :

$$
p(j ; t+\tau)=\sum_{i} p(i ; t) \pi(j \mid i: \tau)
$$

From Equations 2.2 and 2.4 it follows that

$$
\frac{d p(j ; t)}{d t}=\sum_{i} \lambda_{i j} p(i ; t)
$$

When the process has become stationary Equation 2.5
becomes :

$$
\sum_{i} \lambda_{i j} p(i)=0
$$

Equation 2.6 together with

$$
\sum_{i} p(i)=1
$$

may be solved uniquely for the stationary flow state probabilities $p(i)$, provided zero is a single (i.e. not multiple) Eigen - value of the matrix $\left|\left|\lambda_{i j}\right|\right|$.
2.2.1

AUTOCORRELATION OF VELOCITY PROCESS

If $p(i ; t, j ; t+\tau)$ is defined as the joint probability that the X-component of velocity $\left(U_{X}\right)$ has the value $u_{x i}$ at time t and $u_{x j}$ at time $t+\tau$, then the autocorrelation
may be written as :

$$
R_{o x}(\tau)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u_{x i} u_{x j} p(i ; t, j ; t+\tau) d u_{x i} d u_{x j}
$$

For a time stationary, discrete process this may be simplified as follows:

$$
\begin{align*}
R_{o x}(\tau) & =\sum_{j} \sum_{i} u_{x i} u_{x j} p(i, j: \tau) \\
& =\sum_{j} \sum_{i} u_{x i} u_{x j} p(i) \pi(j \mid i: \tau)
\end{align*}
$$

It can be shown (8) that the transition probability density matrix as a function of time may be written as :

$$
||\pi(j \mid i: \tau)||=\left|x_{R}\right| \operatorname{diag}| | \exp \left(r_{1} \tau\right), \ldots \exp \left(r_{n} \tau\right)| | Y_{L} \mid
$$

where $\left|X_{R}\right|$ and $\left|Y_{L}\right|$ are the Righthand and Lefthand Eigenvectors of the matrix $\lambda_{i j}$ and $r_{1} \ldots n$ the Eigen-values. $\operatorname{diag}\left|\exp \left(r_{1} \tau\right), \ldots \exp \left(r_{n} \tau\right)\right| \mid$ is a square matrix with elements $\exp \left(r_{1} \tau\right), \ldots \exp \left(r_{n} \tau\right)$ on the diagonal and all other elements equal to zero.

Hence, from a knowledge of the switching rate matrix $\lambda_{i j}$ and the allowable values of U_{x} and U_{y} both the stationary flow state probabilities $p(i)$ and the component autocorrelations $R_{o x}(\tau), R_{o y}(\tau)$ may be calculated. Figure l.l shows a typical autocorrelation $R_{o x}(\tau)$ as a function of τ for a three-state flow structure. The autocorrelation fuunction has an exponential type decay typical of Markov processes. This model could only be expected to be useful for modelling flow systems having such a velocity autocorrelation.

FIG. 1.1

In order to describe the dispersion of tracer material in the above flow process we now introduce a composite Markov process, whose state comprises the discrete flow states $p(i)$ and the continuous states of tracer concentration c and spatial coordinates x, y. Hence $p(j, c ; t)$ dc represents the joint probability of the flow being in state j and of the concentration at the point x, y having a value between c and $c+d c$ at a time t. The forward Kolmogorov equation associated with $p(j, c ; t)$ may be show to have the following form: (Appendix 2)

$$
\frac{\partial p}{\partial t}(j, c ; t)=\sum_{i} \lambda_{i j} p(i, c ; t)-\frac{\partial}{\partial c}\left\{\alpha_{c}(j, c ; t) p(j, c ; t)\right\} \quad 2.10
$$

where,
$\alpha_{c}(j, c ; t)=\lim _{\Delta t \rightarrow 0} \frac{1}{\Delta t} E\{C(t+\Delta t)-C(t) \mid C(t)=c, f l o w$ state $=j\}$

If the system is excited by means of a point source of tracer then the dispersive action of the flow process is described by the following stochastic partial differential equation :

$$
\frac{\partial C}{\partial t}(t)=-U_{x} \frac{\partial C(t)}{\partial x}-U_{y} \frac{\partial C}{\partial y}(t)+q(t) \delta(x) \delta(y)
$$

where,

$$
q(t)=\text { tracer flow rate. }
$$

Hence from Equation 2.11 :

$$
\alpha_{c}(j, c ; t)=-u_{x j} \frac{\partial c}{\partial x}-u_{y j} \frac{\partial c}{\partial y}+q(t) \delta(x) \delta(y)
$$

The most convenient way of testing prediction of the model and of estimating the model parameters is to compare the moments of the distribution of concentration with those measured experimentally. We define the Partial Mean Concentration at the point (x, y) as :

$$
\mu(j, x, y, t)=\int_{0}^{\infty} c p(j, c ; t) d c
$$

and the Partial Mean Square Concentration as :

$$
s(j, x, y, t)=\int_{0}^{\infty} c^{2} p(j, c ; t)
$$

The development of these moments in time is obtained by differentiation:

$$
\begin{align*}
& \frac{\partial \mu}{\partial t}(j, x, y, t)=\int_{0}^{\infty} c \frac{\partial p}{\partial t}(j, c ; t) d c \\
& \frac{\partial s}{\partial t}(j, x, y, t)=\int_{0}^{\infty} c^{2} \frac{\partial p}{\partial t}(j, c ; t) d c
\end{align*}
$$

Substituting Equations 2,10 and 2.13 and integrating by parts yields :

$$
\begin{align*}
\frac{\partial \mu}{\partial t}(j, x, y, t) & =\sum_{i} \lambda_{i j} \mu(i, x, y, t)-u_{x j} \frac{\partial \mu}{\partial x}(j, x, y, t) \\
& -u_{y j} \frac{\partial \mu}{\partial y}(j, x, y, t)+q(t) p(j) \delta(x) \delta(y)
\end{align*}
$$

$$
\begin{aligned}
\frac{\partial s}{\partial t}(j, x, y, t) & =\sum_{i} \lambda_{i j} s(i, x, y, t)-u_{x j} \frac{\partial s}{\partial x}(j, x, y, t) \\
-u_{y j} \frac{\partial s}{\partial y}(j, x, y, t) & +2 q(t) p(j) \mu(j, x, y, t) \delta(x) \delta(y)
\end{aligned}
$$

Crosscorrelation between the source strength $Q(t)$ and tracer concentration $C(t)$ at point (x, y).

Tracer material is injected at the origin at a rate $Q(t)$. If $Q(t)$ is a time-stationary, random function then $Q(t), C(t)$ and flow state form a composite Markov process. Hence we may define a probability density function $p(j, q, c ; t)$, such that $p(j, q, c ; t) d q$ dc represents the joint probability of the system being in flow state j, the tracer flow rate having a value between q and $q+d q$ and the tracer concentration at the point (x, y) having a value between c and $c+d c$ at time t. The associated Kolmogorov equation has the following form : (Appendix 2)

$$
\begin{align*}
\frac{\partial p}{\partial t}(j, q, c ; t)= & \sum_{k} \lambda_{k j} p(k, q, c ; t)-\frac{\partial}{\partial q}\left\{\alpha_{q}(j, q, c ; t) p(j, q, c ; t)\right\} \\
& -\frac{\partial}{\partial c}\left\{\alpha_{c}(j, q, c ; t) p(j, q, c ; t)\right\}
\end{align*}
$$

where,

$$
\begin{gather*}
\alpha_{q}(j, q, c ; t)=\lim _{\Delta t \rightarrow 0} \frac{1}{\Delta t} E\{Q(t+\Delta t)-Q(t) \mid Q(t)=q, \\
C C(t)=c, f l o w \text { state }=j\} \\
\alpha_{c}(j, q, c ; t)=\lim _{\Delta t \rightarrow 0} \frac{1}{\Delta t} E\{C(t+\Delta t)-C(t) \mid Q(t)=q, \\
C(t)=c, f l o w \text { state }=j\}
\end{gather*}
$$

Similarly, a transitional probability density function $\pi\left(j, q_{l}, c ; t+\tau \mid i, q ; t\right)$ may be defined such that $\pi\left(j, q_{1}, c ; t+\tau \mid i, q ; t\right) d q_{1}$ dc represents the joint probability of the system being in flow state j and the concentration at the point (x, y) having a value between c and $c+d c$ and the source strength between q_{1} and $q_{1}+d q_{1}$ at $t+\tau_{1}$
the source strength had a value q. If the process is timestationary this function will be independent of t and the appropriate Kolmogorov equation becomes : (Appendix 2)

$$
\begin{gather*}
\frac{\partial \pi}{\partial \tau}\left(j, q_{1}, c \mid i, q: \tau\right)=\sum_{k} \lambda_{k j} \pi\left(k, q_{1}, c \mid i, q,: \tau\right)-\frac{\partial}{\partial c}\left\{\alpha_{c}\left(j, q_{1}, c\right) \pi\right\} \\
-\frac{\partial}{\partial q_{1}}\left\{\alpha_{q}\left(j, q_{1}, c\right) \pi\right\}
\end{gather*}
$$

where,

$$
\begin{array}{r}
\alpha_{q}\left(j, q_{1} c\right)=\lim _{\Delta t \rightarrow 0} \frac{1}{\Delta t} E\left\{Q(t+\Delta t)-Q(t) \mid Q(t)=q_{1},\right. \\
C(t)=c, f l o w \text { state }=j\} \\
\alpha_{c}\left(j, q_{1}, c\right)=\lim _{\Delta t \rightarrow 0} \frac{1}{\Delta t} E\{C(t+\Delta t)-C(t) \mid C(t)=c, \\
\left.Q(t)=q_{1}, \text { flow state }=j\right\}
\end{array}
$$

The Crosscorrelation between the source strength $Q(t)$ and tracer concentration at the point (x, y) is defined as :

$$
\Phi_{q c}(t, \tau)=\sum_{j i} \int_{0}^{\infty} \int_{0}^{\infty} q c p(i, q ; t, j, c ; t+\tau) d q d c
$$

If the system is time-stationary we define a Partial Crosscorrelation as :

$$
\Phi_{j q c}(\tau)=\sum_{i} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} q c p(i, q) \pi\left(j, q_{1}, c \mid i, q: \tau\right) d q d c d q_{1}
$$

Differentiating Equation 2.26 , substituting from Equations 2.23 and 2.13 and integrating by parts yields :

$$
\frac{\partial \Phi}{\partial \tau} j q c^{(\tau)}=\sum_{k} \lambda_{k j} \Phi_{k q C}(\tau)-u_{x j} \frac{\partial \Phi}{\partial x} j q c^{(\tau)}
$$

where,

$$
\begin{align*}
R_{j q q}(\tau) & =\text { Partial Autocorrelation of } Q(t) \\
& =\sum_{i} \int_{0}^{\infty} \int_{0}^{\infty} q q_{1} p(i, q) \pi\left(j, q_{1} \mid i, q: \tau\right) d q d q_{1}
\end{align*}
$$

In order to solve Equation 2.27 we require initial conditions $\Phi_{\text {jqc }}(0):$

$$
\Phi_{j q c}(0)=\int_{0}^{\infty} \int_{0}^{\infty} q c p(j, q, c ; t) d q d c
$$

Differentiating Equation 2.29 with respect to t and substituting from Equation 2.20, assuming the process to be time-stationary yields: (Appendix 3)

$$
\begin{aligned}
0= & \sum_{k} \lambda_{k j} \Phi_{k q C}(0)-\frac{1}{T}_{c} \Phi_{j q c}(0)-u_{x j} \frac{\partial \Phi}{\partial x} j q{ }^{(0)}-u_{y j} \frac{\partial \Phi}{\partial y} j q C \\
& +\frac{1}{T_{c}} E\left\{N_{w}(t) \mid Q(t)=q\right\} \mu(j, x, y)+R_{q q}(0) p(j) \delta(x) \delta(y)
\end{aligned}
$$

where,

$$
R_{q q}(\tau)=\text { Autocorrelation of } Q(t)
$$

The source strength $Q(t)$ is the output of a first order filter (time constant T_{C}) with input $N_{W}(t)$. Hence the solution of Equations 2.30 serves as initial conditions for Equations 2.27. A similar set of equations may be developed for concentration autocorrelations and crosscorrelations between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. In order to solve the non-time-stationary
forms of Equations 2.18 and 2.19 in an infinite plane a numerical approach must be adopted. It will be realised that each case involves the simultaneous solution of a number of partial differential equations equal to the number of allowable flow states. Hence the time consuming

20.

complete solution of the above equations for a realistic number of flow states are not considered warranted.

CHAPTER III

CONTINUOUS STATE SPACE FLOW MODEL.

3.1 VELOCITY PROCESS.

The model is based on the following assumptions:
Firstly, the instantaneous fluid velocity $U(t)$
is regarded to consist of a mean component \bar{u} and a fluctuating component $U^{\prime}(t)$. Hence

$$
\begin{aligned}
& U_{X}(t)=\bar{u}_{x}+U_{x}^{\prime}(t) \\
& U_{Y}(t)=\bar{u}_{y}+U_{Y}^{\prime}(t)
\end{aligned}
$$

Secondly, the stochastic processes $U_{X}^{\prime}(t)$
and $U_{y}^{\prime}(t)$ are time-stationary and have continuous state Markov properties as well as Gaussian probability density functions. (Ornstein-Uehlenbeck processes)

Thirdly, it is assumed that the random motion is isotropic as far as rotations about the X -axis are concerned; the X - and Y -motions may then be shown to be uncorrelated.(9) Since their distributions are Gaussian they are also independent. (10) Mean of $U^{\prime}(t)$:

$$
\begin{equation*}
E\left\{U_{X}^{\prime}(t)\right\}=E\left\{U_{Y}^{\prime}(t)\right\}=0 \tag{3.}
\end{equation*}
$$

Autocorrelation of $U^{\prime}(t)$:

$$
\begin{align*}
& R_{O X}(\tau)=E\left\{U_{X}^{\prime}(t) U_{X}^{\prime}(t+\tau)\right\}=\sigma_{O X}^{2} \exp \left(-\beta_{X}|\tau|\right) \\
& R_{O X}(\tau)=E\left\{U_{Y}^{\prime}(t) U_{Y}^{\prime}(t+\tau)\right\}=\sigma_{O y}^{2} \exp \left(-\beta_{Y}|\tau|\right)
\end{align*}
$$

Crosscorrelation between $U_{X}^{\prime}(t)$ and $U_{Y}^{\prime}(t)$:

$$
\begin{align*}
E\left\{U_{x}^{\prime}(t) U_{y}^{\prime}(t+\tau)\right\}= & 0 \\
& \text { for all } \tau .
\end{align*}
$$

3.2 MIXING EQUATIONS.

Neglecting the effect of molecular diffusion dispersion of tracer material originating from a point source at a rate $q(t)$ is described by the following partial stochastic differential equation :

$$
\frac{\partial C}{\partial t}=-U_{x}(t) \frac{\partial C}{\partial x}-U_{Y}(t) \frac{\partial C}{\partial y}+q(t) \delta(x) \delta(y)
$$

We define a two-sided Laplace Transform by :
$L\{C(x, y, t)\}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} C(x, y, t) \exp (-s x) \exp (-p y) d x d y \quad 3.6$
Hence
$L\left\{\frac{\partial C}{\partial x}\right\}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial C}{\partial x} \exp (-s x) \exp (-p y) d x d y$
Integrating by parts and noting that $C(x, y, t)=0 @$ $x, y=-\infty$, we obtain :

$$
L\left\{\frac{\partial C}{\partial x}\right\}=s \bar{C}(s, p, t)
$$

Taking the Laplace Transform of Equation 3.5 we obtain :

$$
\frac{d \bar{C}}{d t}=-U_{x}(t) \bar{C} s-U_{Y}(t) \bar{C}_{p}+q(t)
$$

Using the initial condition :

$$
c(x, y, 0)=0 \quad ; \quad \bar{c}(s, p, o)=0
$$

this ordinary stochastic differential equation may be solved to give :

$$
\bar{C}(s, p, t)=\int_{0}^{t} q(\tau) \exp -\left\{s W_{x}(t, \tau)+p W_{Y}(t, \tau)\right\} d \tau
$$

where,

$$
\begin{align*}
& W_{X}(t, \tau)=\int_{\tau}^{t} U_{X}\left(\theta^{\prime}\right) d \theta^{\prime} \\
& W_{V}(t, \tau)=\int^{t} U_{V}\left(\theta^{\prime}\right) d \theta^{\prime}
\end{align*}
$$

Inverting the transform of Equation 3.10 gives :

$$
C(x, y, t)=\int_{0}^{t} q(\tau) \delta\left\{W_{x}(t, \tau)-x\right\} \delta\left\{W_{y}(t, \tau)-y\right\} d \tau
$$

The corresponding solution for a time-stationary, random source is :

$$
C(x, y, t)=\int_{-\infty}^{t} Q(\tau) \delta\left\{W_{x}(t, \tau)-x\right\} \delta\left\{W_{Y}(t, \tau)-y\right\} d \tau
$$

3.3 W(t, 3 - PROCESS

In order to obtain expressions for the moments of $C(x, y, t)$ and compare these with values determined experimentally we must first derive corresponding expressions for the random processes $W_{X}(t, \tau)$ and $W_{Y}(t, \tau)$. (subscripts x, y are omitted where not explicitly required.)

Using Equations 3.1 and 3.11 we may write :

$$
W(t, \tau)=\int_{\tau}^{t} U\left(\theta^{\prime}\right) d \theta^{\prime}=\int_{\tau}^{t} U^{\prime}\left(\theta^{\prime}\right) d \theta^{\prime}+\bar{u}(t-\tau)
$$

Mean $m_{1}(t, \tau)$:

$$
\begin{aligned}
m_{1}(t, \tau) & =E\left\{\int_{\tau}^{t} U^{\prime}\left(\theta^{\prime}\right) d \theta^{\prime}\right\}+\bar{u}(t-\tau) \\
& =\int_{\tau}^{t} E\left\{U^{\prime}\left(\theta^{\prime}\right)\right\} d \theta^{\prime}+\bar{u}(t-\tau)
\end{aligned}
$$

Hence from Equation 3.2 it follows that

$$
m_{1}(t, \tau)=\bar{u}(t-\tau)
$$

Variance $\sigma_{1}^{2}(t, \tau):$
Using Equations 3.14 and 3.15 we may write :

Substituting Equation 3.3 and integrating yields:

$$
\sigma_{1}^{2}(t, \tau)=\frac{2 \sigma_{o}^{2}}{\beta^{2}}(\exp \{-\beta(t-\tau)\}+\beta(t-\tau)-1)
$$

Autocorrelation $\rho\left(t, \tau_{1} t_{i} \tau_{2}\right)$
Similarly, substituting Equation 3.3 and integrating we obtain :

$$
\begin{gather*}
\rho\left(t, \tau_{1} ; t, \tau_{2}\right)=E\left\{\left(W\left(t, \tau_{1}\right)-m_{1}\left(t, \tau_{1}\right)\right]\left(W\left(t, \tau_{2}\right)-m_{1}\left(t, \tau_{2}\right)\right\}\right\} \\
= \\
\quad \frac{\sigma_{0}^{2}}{\beta^{2}}\left[2 \beta\left(t-\tau_{2}\right)+\exp \left\{-\beta\left(t-\tau_{2}\right)\right\}+\exp \left\{-\beta\left(t-\tau_{1}\right)\right\}\right. \\
\left.\quad-\exp \left\{-\beta\left(\tau_{2}-\tau_{1}\right)\right\}-1\right) \quad 3
\end{gather*}
$$

It can be shown that if $U(t)$ has a Gaussian distribution density function, $W(t, \tau)$ will likewise have one. This relationship does not hold generally for distributions other than Gaussian (12) and the analysis relies heavily on the choice of this distribution. Furthermore, since $U_{X}(t)$ and $U_{Y}(t)$ are independent the same will be true for $W_{x}(t, \tau)$ and $W_{Y}(t, \tau)$.

3.4 MOMENTS EQUAT IONS

3.4.1 MEAN CONCENTRATION $\mu(x, y, t)$

$$
\mu(x, y, t)=E\{C(x, y, t)\}
$$

Substituting from Equation 3.12 yields :

$$
\mu(x, y, t)=\int_{0}^{t} q(\tau) E\left\{\delta\left(W_{x}(t, \tau)-x\right) \delta\left(W_{Y}(t, \tau)-y\right)\right\} d \tau
$$

$$
=\int_{0}^{t} q(\tau) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta\left(w_{x}(t, \tau)-x\right) \delta\left(w_{y}(t, \tau)-y\right) f\left(w_{x}, w_{y}, t, \tau\right)
$$

where,

$$
\begin{array}{r}
f\left(W_{x}, W_{y}, t, \tau\right)=\text { Joint probability density of } W_{x}(t, \tau) \\
\text { and } W_{y}(t, \tau)
\end{array}
$$

Noting that

$$
f\left(w_{x}, w_{y}, t, \tau\right)=f\left(w_{x}, t, \tau\right) f\left(w_{y}, t, \tau\right)
$$

and integrating Equation 3.20 yields :

$$
\mu(x, y, t)=\int_{0}^{t} q(\tau) f(x, t, \tau) f(y, t, \tau) d \tau
$$

where,

$$
\begin{aligned}
& f(x, t, \tau)=\frac{1}{\left(2 \pi \sigma_{1 x}^{2}\right)^{\frac{1}{2}}} \exp \left(-\frac{\left(x-m_{1 x}\right)^{2}}{2 \sigma_{l x}^{2}}\right) \\
& f(y, t, \tau)=\frac{1}{\left(2 \pi \sigma_{1 y}^{2}\right)^{\frac{1}{2}}} \exp \left(-\frac{\left(y-m_{l y}\right)^{2}}{2 \sigma_{1 y}^{2}}\right)
\end{aligned}
$$

If it is assumed that :

$$
\begin{align*}
& \beta_{X}=\beta_{Y}=\beta \quad ; \quad \sigma_{O X}^{2}=\sigma_{o y}^{2}=\sigma_{o}^{2} \quad \text { and hence } \\
& R_{O X}(\tau)=R_{O Y}(\tau)=R_{O}(\tau) ; \sigma_{l X}^{2}=\sigma_{l y}^{2}=\sigma_{l}^{2}
\end{align*}
$$

Equation 3.22. becomes :

$$
\mu(x, y, t)=\int_{0}^{t} \frac{g(\tau)}{2 \pi \sigma_{1}^{2}} \exp \left[-\frac{\left(x-m_{l x}\right)^{2}+\left(y-m_{l y}\right)^{2}}{2 \sigma_{1}^{2}}\right] d \tau
$$

3.4.2 CROSSCORRELATION $\Phi\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{2}, \mathrm{Y}_{2}, \mathrm{t}, \tau\right)$

The concentration crosscorrelation between two points $\left(x_{1}, Y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is defined as :

$$
\Phi\left(x_{1}, y_{1}, x_{2}, y_{2}, t, \tau\right)=E\left\{C\left(x_{1}, y_{1}, t\right) C\left(x_{2}, y_{2}, t+\tau\right)\right\}
$$

If the tracer source function $Q(t)$ is time-stationary we may substitute Equation 3.13 :

$$
\begin{array}{r}
E\left\{\int_{-\infty}^{t+\pi} \int_{-\infty}^{t} Q\left(\tau_{1}\right) Q\left(\tau_{2}\right) \delta\left(W_{x}\left(t, \tau_{1}\right)-x_{1}\right) \delta\left(W_{x}\left(t+\tau, \tau_{2}\right)-x_{2}\right)\right. \\
\left.\delta\left(W_{Y}\left(t, \tau_{1}\right)-y_{1}\right) \delta\left(W_{Y}\left(t+\tau_{1} \tau_{2}\right)-y_{2}\right) d \tau_{1} d \tau_{2}\right\} \\
=\int_{-\infty}^{t+\tau} \int_{-\infty}^{t} E\left\{Q\left(\tau_{1}\right) Q\left(\tau_{2}\right)\right\} E\left\{\delta\left(W_{x}\left(t_{1} \tau_{1}\right)-x_{1}\right) \delta\left(W_{x}\left(t+\tau_{1}, \tau_{2}\right)-x_{2}\right)\right. \\
\left.\delta\left(W_{Y}\left(t, \tau_{1}\right)-y_{1}\right) \delta\left(W_{Y}\left(t+\tau_{1} \tau_{2}\right)-y_{2}\right)\right\} d \tau_{1} d \tau_{2}
\end{array}
$$

The above equation makes use of the fact that the source and the flow process are independent.

Taking the Expected Values yields :

$$
\Phi\left(x_{1}, Y_{1}, x_{2}, y_{2}, t, \tau\right)=\int_{-\infty}^{t+\tau} \int_{-\infty}^{t} R_{Q}\left(\left|\tau_{2}-\tau_{1}\right|\right)
$$

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta\left\{w_{x}\left(t, \tau_{1}\right)-x_{1}\right\} \delta\left\{w_{x}\left(t+\tau, \tau_{2}\right)-x_{2}\right\} f\left(w_{x 1}, w_{x 2}\right) d w_{x 1} d w_{x 2} \\
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta\left\{w_{y}\left(t, \tau_{1}\right)-y_{1}\right\} \delta\left\{w_{y}\left(t+\tau, \tau_{2}\right)-y_{2}\right\} f\left(w_{\dot{y} 1}, w_{Y 2}\right) d w_{Y 1} d w_{Y 2} d \tau_{1}^{\prime} d \tau_{2}
\end{aligned}
$$

where,
$R\left(\left|\tau_{2} \tau_{1}\right|\right)=$ Autocorrelation of tracer source $Q(t)$.
$f\left(W_{x 1}, w_{x 2}\right)=$ Joint probability density function for the
pair of Normal random variables $W_{x}\left(t, \tau_{1}\right)$ and $W_{x}\left(t+\tau, \tau_{2}\right)$

$$
f\left(\mathrm{w}_{\mathrm{y} 1}, \mathrm{w}_{\mathrm{y} 2}\right)=\text { Joint probability density function for the }
$$

pair of Normal random variables $W_{Y}\left(t, \tau_{1}\right)$ and $W_{Y}\left(t+\tau, \tau_{2}\right)$. The above density functions are Normal themselves.(13)

Writing

$$
m_{l x, 1}=m_{l x}\left(t, \tau_{1}\right) \quad ; \quad m_{l y, l}=m_{l y}\left(t, \tau_{1}\right)
$$

and carrying out the integrations with respect to w_{xl} ' $\mathrm{w}_{\mathrm{x} 2}$, $\mathrm{w}_{\mathrm{y} 1}$, and $\mathrm{w}_{\mathrm{y} 2}$ we obtain :

$$
\exp \left\{-\frac{1}{1-r_{y}^{2}\left(t_{1} \tau_{1} ; t+\tau, \tau_{2}\right)} \int \frac{\left(y_{1}-m_{l y, 1}\right)^{2}}{\sigma_{l y, l}^{2}}\right.
$$

$$
\left.\left.-\frac{2 r_{y}\left(t, \tau_{1} ; t+\tau_{,} \tau_{2}\right)\left(y_{1}-m_{l y, 1}\right)\left(y_{2}-m_{l y, 2}\right)}{\sigma_{l y, 1} \sigma_{l y, 2}}+\frac{\left(y_{2}-m_{l y, 2}\right)^{2}}{\sigma_{l y, 2}^{2}}\right)\right\} d \tau_{1} d \tau_{2}
$$

If both the tracer source function $Q(t)$ and the velocity process are time-stationary the concentration

$$
\begin{aligned}
& \Phi\left(x_{1}, y_{1}, x_{2}, y_{2}: \tau\right)= \\
& \int_{-\infty}^{t+\tau} \int_{-\infty}^{t} \frac{R_{Q}\left(\left|\tau_{2}-\tau_{l}\right|\right)}{(2 \pi)^{2} \sigma_{l x, 1} \sigma_{l x, 2} \sigma_{l y, l} \sigma_{l y, 2}} \\
& \frac{1}{\left(1-r_{x}^{2}\left(t, \tau_{1} ; t+\tau, \tau_{2}\right)\right)^{\frac{1}{2}}\left(1-r_{Y}^{2}\left(t, \tau_{1} ; t+\tau, \tau_{2}\right)\right)^{\frac{1}{2}}} \\
& \exp \left\{-\frac{1}{1-r_{x}^{2}\left(t, \tau_{1} ; t+\tau, \tau_{2}\right)} \int \frac{\left(x_{1}-m_{1 x, 1}\right)^{2}}{\sigma_{1 x, 1}^{2}}\right. \\
& \left.\left.-\frac{2 r_{x}\left(t, \tau_{1} ; t+\tau_{, ~ \tau_{2}}\right)\left(x_{1}-m_{l x, 1}\right)\left(x_{2}-m_{l x, 2}\right)}{\sigma_{l x, 1}{ }_{l x, 2}}+\frac{\left(x_{2}-m_{l x, 2}\right)^{2}}{\sigma_{l x, 2}^{2}}\right)\right\}
\end{aligned}
$$

$$
\begin{align*}
& \sigma_{l x, 1}=\sigma_{L x}\left(t, \tau_{1}\right) \quad ; \quad \sigma_{l y, 1}=\sigma_{l y}\left(t, \tau_{1}\right) \\
& \sigma_{1 x, 2}=\sigma_{1 x}\left(t+\tau, \tau_{2}\right) \quad ; \quad \sigma_{1 y, 2}=\sigma_{1 y}\left(t+\tau, \tau_{2}\right) \\
& r_{x}\left(t, \tau_{1} ; t+\tau, \tau_{2}\right)=\frac{\rho\left(t_{, ~ \tau_{1} ;} ; t+\tau_{2}\right)}{\sigma_{1 x, 1} \sigma_{l x, 2}} ; \\
& r_{y}\left(t, \tau_{1} ; t+\tau, \tau_{2}\right)=\frac{\rho\left(t, \tau_{1} ; t+\tau, \tau_{2}\right)}{\sigma_{l y, 1}{ }^{\sigma_{y}, 2}}
\end{align*}
$$

crosscorrelation must likewise be time-stationary. In order to eliminate t from the above expression we make the following transformation of variables :

$$
\begin{align*}
t-\tau_{1} & =\tau-\theta_{1} \\
t+\tau-\tau_{2} & =\tau-\theta_{2}
\end{align*}
$$

It is interesting to note that the mean and variance of the random processes $W\left(t, \tau_{1}\right)$ and $W\left(t+\tau, \tau_{2}\right)$ depend oniy on the size of the time interval on which they are defined. Hence we may write :

$$
\begin{align*}
& m_{l X}\left(\tau, \theta_{1}\right)=m_{l x}\left(t, \tau_{1}\right) ; m_{l y}\left(\tau, \theta_{1}\right)=m_{l y}\left(t, \tau_{1}\right) \\
& m_{l x}\left(\tau, \theta_{2}\right)=m_{l X}\left(t+\tau_{1} \tau_{2}\right) ; m_{l y}\left(\tau, \theta_{2}\right)=m_{l y}\left(t+\tau, \tau_{2}\right) \\
& \sigma_{l_{X}}^{2}\left(\tau, \theta_{1}\right)=\sigma_{l X}^{2}\left(t, \tau_{1}\right) ; \sigma_{l_{Y}}^{2}\left(\tau, \theta_{1}\right)=\sigma_{l_{Y}}^{2}\left(t, \tau_{1}\right) \\
& \sigma_{l X}^{2}\left(\tau, \theta_{2}\right)=\sigma_{l X}^{2}\left(t+\tau, \tau_{2}\right) ; \sigma_{l_{Y}}^{2}\left(\tau, \theta_{2}\right)=\sigma_{l y}^{2}\left(t+\tau, \tau_{2}\right)
\end{align*}
$$

The covariance $r\left(t, \tau_{1} ; t+\tau, \tau_{2}\right)$ however, depends not only on the size of the time intervals $\left(t-\tau_{1}\right)$ and $\left(t+\tau-\tau_{2}\right)$, but more importantly on the amount of overlap of these intervals. Hence, since the amount of overlap is not preserved by the transformation of variables (Equation 3.31),

$$
r\left(\tau, \theta_{1} ; \tau, \theta_{2}\right) \neq r\left(t, \tau_{1} ; t+\tau, \tau_{2}\right)
$$

This may best be illustrated by considering the case when $\theta_{1}=\theta_{2}$. The time intervals for $W\left(\tau, \theta_{1}\right)$ and $W\left(\tau, \theta_{2}\right)$ are then identical resulting in a covariance of one. This situation is clearly impossible for $W\left(t, \tau_{1}\right)$ and $W\left(t+\tau, \tau_{2}\right)$ for any positive value of τ. Expressions for the covariance between $W\left(t, \tau_{1}\right)$ and $W\left(t+\tau, \tau_{2}\right)$ must therefore be derived before the new variables

$$
\text { Consider } \rho\left(t, \tau_{1} ; t+\tau, \tau_{2}\right)=E\left\{W\left(t, \tau_{1}\right) W\left(t+\tau, \tau_{2}\right)\right\}-
$$

Noting that at all times

$$
m_{1}\left(t, \tau_{1}\right) m_{1}\left(t+\tau, \tau_{2}\right)
$$

$\tau>0 \quad ; \quad t \geqslant \tau_{1} ; \quad t+\tau \geqslant \tau_{2}$
we distinguish three cases :
Case A
$t+\tau>t>\tau_{2} \geqslant \tau_{1}$
case B
$t+\tau>t>\tau_{1} \geqslant \tau_{2}$
case C
$t+\tau>\tau_{2} \geqslant \quad t>\tau_{1}$
From Equations 3.11 and 3.3 it follows that :

$$
\begin{align*}
\rho\left(t, \tau_{1} ; t+\tau, \tau_{2}\right) & =\int_{\tau_{2}}^{t+\tau} \int_{\tau_{1}}^{t} E\left\{U\left(\theta^{\prime}\right) U\left(\theta^{\prime} '\right)\right\} d \theta^{\prime} d \theta^{\prime \prime} \\
& =\int_{\tau_{2}}^{t+\tau} \int_{\tau_{1}}^{t} \sigma_{0}^{2} \exp \left\{-\beta\left(\left|\theta^{\prime}-\theta^{\prime} \prime\right|\right) d \theta^{\prime} d \theta^{\prime \prime}\right.
\end{align*}
$$

Performing the integration for each case separately
(Appendix 4) yields :
case A

$$
\begin{aligned}
\frac{\sigma_{0}^{2}}{\beta^{2}}(-\exp \{-\beta \tau\} & +\exp \left\{-\beta\left(t+\tau-\tau_{1}\right)\right\}+2 \beta\left(t-\tau_{2}\right) \\
& \left.-\exp \left\{-\beta\left(\tau_{2}-\tau_{1}\right)\right\}+\exp \left\{-\beta\left(t-\tau_{2}\right)\right\}\right]
\end{aligned}
$$

Case B

$$
\begin{aligned}
\frac{\sigma_{0}^{2}}{\beta^{2}}\{-\exp \{-\beta \tau\} & +\exp \left\{-\beta\left(t+\tau-\tau_{1}\right)\right\}+2 \beta\left(t-\tau_{1}\right) \\
& \left.+\exp \left\{-\beta\left(t-\tau_{2}\right)\right\}-\exp \left\{-\beta\left(\tau_{1}-\tau_{2}\right)\right\}\right)
\end{aligned}
$$

case C

$$
\begin{aligned}
\frac{\sigma_{0}^{2}}{\beta^{2}}(-\exp \{-\beta \tau\} & +\exp \left\{-\beta\left(t+\tau-\tau_{1}\right)\right\}+\exp \left\{-\beta\left(\tau_{2}-t\right)\right\} \\
& \left.-\exp \left\{-\beta\left(\tau_{2}-\tau_{1}\right)\right\}\right)
\end{aligned}
$$

Substituting the new variables (Equations 3.31) in the above expressions yields :
case A $\quad 0>\theta_{2} \geqslant \theta_{1}-\tau$

$$
\begin{aligned}
\frac{\sigma_{0}^{2}}{\beta^{2}}(-\exp \{-\beta \tau\} & +\exp \left\{-\beta\left(2 \tau-\theta_{1}\right)\right\}-2 \beta \theta_{2} \\
& -\exp \left\{-\beta\left(\tau-\theta_{1}+\theta_{2}\right)+\exp \left\{\beta \theta_{2}\right\}\right)
\end{aligned}
$$

case B $\quad 0>\theta_{1}-\tau \geqslant \theta_{2}$

$$
\begin{aligned}
\frac{\sigma_{o}^{2}}{\beta^{2}}(-\exp \{-\beta \tau\} & +\exp \left\{-\beta\left(2 \tau-\theta_{1}\right)\right\}-2 \beta\left(\tau-\theta_{1}\right) \\
& \left.-\exp \left\{-\beta\left(\theta_{1}-\theta_{2}-\tau\right)\right\}+\exp \left\{\beta \theta_{2}\right\}\right)
\end{aligned}
$$

case C

$$
\theta_{2} \geq 0
$$

$$
\begin{aligned}
\frac{\sigma_{0}^{2}}{\beta^{2}}\{-\exp \{-\beta \tau\} & +\exp \left\{-\beta\left(2 \tau-\theta_{1}\right)\right\}-\exp \left\{-\beta\left(\tau-\theta_{1}+\theta_{2}\right)\right\} \\
& \left.\left.+\exp \left\{-\beta \theta_{2}\right)\right\}\right\}
\end{aligned}
$$

Transforming the limits of integration we note that when

$$
\begin{array}{ll}
\tau_{1}=-\infty, & \theta_{1}=-\infty \\
\tau_{2}=-\infty, & \theta_{2}=-\infty \\
\tau_{1}=t, & \theta_{1}=\tau \\
\tau_{2}=t+\tau, & \theta_{2}=\tau
\end{array}
$$

and Equation 3.30 becomes :

$$
\begin{aligned}
\Phi\left(x_{1}, Y_{1}, x_{2}, Y_{2}: \tau\right) & =\int_{-\infty}^{\tau} \int_{-\infty}^{\tau} R_{Q}\left(\left|\tau-\theta_{1}+\theta_{2}\right|\right) \\
& f\left(x_{1}, x_{2}, \tau, \theta_{1} ; \tau, \theta_{2}\right) f\left(y_{1}, Y_{2}, \tau, \theta_{1} ; \tau, \theta_{2}\right) d \theta_{1} d \theta_{2}
\end{aligned}
$$

where,

$$
f\left(x_{1}, x_{2}, \tau, \theta_{1} ; \tau, \theta_{2}\right) \text { and } f\left(y_{1}, y_{2}, \tau, \theta_{1} ; \tau, \theta_{2}\right) \text { are }
$$

joint Normal density functions of $\left\{W_{x}\left(\tau, \theta_{1}\right), W_{x}\left(\tau, \theta_{2}\right)\right\}$ and $\left\{W_{Y}\left(\tau, \theta_{1}\right), W_{Y}\left(\tau, \theta_{2}\right)\right\}$ respectively, with

$$
w_{x}\left(\tau, \theta_{1}\right)=x_{1}, w_{x}\left(\tau, \theta_{2}\right)=x_{2}, w_{y}\left(\tau, \theta_{1}\right)=y_{1} \text { and }
$$

$\mathrm{w}_{\mathrm{Y}}\left(\tau,{ }_{2}\right)=\mathrm{Y}_{2}$. The appropriate correlation coefficients

Thus the transformation (Equations 3.31) has eliminated the time,t, from the expression for the crosscorrelation function.

3.5 THE EFFECT OF MOLECULAR DIFFUSION

When the effect of molecular diffusion is
included the following stochastic partial differential equation describes the dispersion of tracer material :

$$
\frac{\partial C}{\partial t}=-U_{x} \frac{\partial C}{\partial x}+D \frac{\partial^{2} C}{\partial x^{2}}-U_{y} \frac{\partial C}{\partial y}+D \frac{\partial^{2} C}{\partial y^{2}}+q(t) \delta(x) \delta(y)
$$

where,

$$
D=\text { Coefficient of Molecular Diffusion. }
$$

The method of obtaining expressions for the mean concentration and crosscorrelation is exactly analogous to that used for the continuous model without molecular diffusion; the details have been included in Appendix 5. The main results are : Concentration at the point (x, y) and time $t:$

$$
\begin{align*}
& C(x, y, t)=\int_{0}^{t} \frac{g(\tau)}{4 \pi D(t-\tau)} \\
& \quad \exp \left(\frac{-\left\{x-W_{x}(t, \tau)\right\}^{2}-\left\{y-W_{y}(t, \tau)\right\}^{2}}{4 D(t-\tau)}\right) d \tau
\end{align*}
$$

Mean concentration at the point (x, y) and time $t:$

$$
\begin{aligned}
& \mu(x, y, t)=\int_{0}^{t} \frac{g(\tau)}{8 \pi D(t-\tau)} \sigma_{1 x} \sigma_{l y} \\
& \left(\frac{\frac{1}{2} \sigma_{1 x}^{2}+D(t-\tau)}{2 D(t-\tau) \sigma_{1 x}^{2}}\right)^{-\frac{1}{2}}\left(\frac{\frac{1}{2} \sigma_{1 y}^{2}+D(t-\tau)}{2 D(t-\tau) \sigma_{l y}^{2}}\right)^{-\frac{1}{2}} \\
& \exp \left(\frac{-1}{2 D(t-\tau) \sigma_{l x}^{2}}\left(\frac{-\frac{1}{4}\left\{\sigma_{1 x}^{2} x+D(t-\tau) 2 m_{1 x}\right\}^{2}}{\frac{1}{2} \sigma_{l x}^{2}+D(t-\tau)}+\frac{1}{2} \sigma_{l x}^{2} x^{2}+D(t-\tau) m_{l x}^{2}\right)\right) \\
& \exp \left(\frac{-1}{2 D(t-\tau) \sigma_{l y}^{2}}\left[\frac{-\frac{1}{4}\left\{\sigma_{1 y}^{2} y+D(t-\tau) 2 m_{l y}\right\}^{2}}{\frac{1}{2} \sigma_{l y}^{2}+D(t-\tau)}+\frac{1}{2} \sigma_{l y}^{2} y^{2}+D(t-\tau) m_{l y}^{2}\right)\right) d \tau
\end{aligned}
$$

$$
3.40
$$

If it is assumed that

$$
\begin{aligned}
\beta_{x} & =\beta_{y}=\beta \quad ; \quad \sigma_{o x}^{2}=\sigma_{o y}^{2}=\sigma_{0}^{2} \quad \text { and hence } \\
\sigma_{l x}^{2} & =\sigma_{l y}^{2}=\sigma_{l}^{2} ;
\end{aligned}
$$

the above equation reduces to :

$$
\begin{align*}
& \mu(x, y, t)=\int_{0}^{t} \frac{q(\tau)}{4 \pi\left\{\frac{1}{2} \sigma_{1}^{2}+D(t-\tau)\right\}} \exp \left[\frac { - 1 } { 2 D (t - \tau) \sigma _ { 1 } ^ { 2 } } \left[\frac{-\frac{1}{4}}{\frac{1}{2} \sigma_{1}^{2}+D(t-\tau)}\right.\right. \\
& {\left[\left\{\sigma_{1}^{2} x+D(t-\tau) 2 m_{l x}\right\}^{2}+\left\{\sigma_{1}^{2} y+D(t-\tau) 2 m_{l y}\right\}^{2}\right]} \\
& \left.\quad+\frac{1}{2} \sigma_{1}^{2}\left(x^{2}+y^{2}\right)+D(t-\tau)\left(m_{l x}^{2}+m_{1 y}^{2}\right)\right] d \tau
\end{align*}
$$

Crosscorrelation :

Making the same assumptions as in Equation 3.41 and writing :

$$
\sigma_{1 x, 1}^{2}=\sigma_{1 y, 1}^{2}=\sigma_{1,1}^{2} ; \quad \sigma_{1 x, 2}^{2}=\sigma_{1 y, 2}^{2}=\sigma_{1,2}^{2}
$$

and

$$
r=\frac{\rho\left(\tau, \theta_{1} ; \tau, \theta_{2}\right)}{\sigma_{1,1} \sigma_{1,2}} \text { (see Equations } 3.29,3.32 \text {) } 3.43
$$

the expression for the crosscorrelation may be shown to have the following form :

$$
\begin{align*}
& \Phi\left(x_{1}, Y_{1}, x_{2}, Y_{2}: \tau\right)=\int_{-\infty}^{\tau} \int_{-\infty}^{\tau} \frac{R_{Q}\left(\left|\tau-\theta_{1}+\theta_{2}\right|\right)}{(4 \pi D)^{2}\left(\tau-\theta_{1}\right)\left(\tau-\theta_{2}\right)\left\{2 \pi \sigma_{1,1} \sigma_{1,2}\left(1-r^{2}\right)^{\frac{5}{2}}\right\}^{2}} \\
& \pi^{2}\left\{\frac{1}{\alpha_{1}}+\frac{1}{\beta_{1}}\right\}^{-1}\left\{\frac{1}{\alpha_{2}}+\frac{1}{\beta_{2}}-\left\{\frac{1}{\alpha_{1}}+\frac{1}{\beta_{1}}\right\}^{-1} \frac{r^{2}}{\left(1-r^{2}\right)^{2} \gamma^{2}}\right\}^{-1} \\
& \exp -\left(\frac{x_{1}^{2}}{\alpha_{1}}+\frac{x_{2}^{2}}{\alpha_{2}}+\frac{m_{1 x, 1}^{2}}{\beta_{1}}+\frac{m_{1 x, 2}^{2}}{\beta_{2}}-\frac{2 r m_{l x, 1} l x, 2}{\left(1-r^{2}\right) \gamma}-\right. \\
& \left\{\frac{1}{\alpha_{1}}+\frac{1}{\beta_{1}}\right\}^{-1}\left(\left\{\frac{x_{1}}{\alpha_{1}}+\frac{m_{1}}{\beta_{1} 1}\right\}^{2}+\frac{r^{2} m_{1 x_{, 2}}^{2}}{\left(1-r^{2}\right)^{2} \gamma^{2}}-\frac{2 r m_{1 x, 2}}{\left(1-r^{2}\right) \gamma}\left\{\frac{x_{1}}{\alpha_{1}}+\frac{m_{1}}{\beta_{1}} l_{1}\right\}\right) \\
& \exp \left((\frac { 1 } { \alpha _ { 2 } } + \frac { 1 } { \beta _ { 2 } } - \{ \frac { 1 } { \alpha _ { 1 } } + \frac { 1 } { \beta _ { 1 } } \} ^ { - 1 } \frac { r ^ { 2 } } { (1 - r ^ { 2 }) ^ { 2 } \cdot \gamma ^ { 2 } }) ^ { - 1 } \left(\frac{x_{2}}{\alpha_{2}}-\frac{r m_{l x, 1}}{\left(1-r^{2}\right) \gamma}+\frac{m_{l x, 2}}{\beta_{2}}\right.\right. \\
& \left.\left.+\left\{\frac{1}{\alpha_{1}}+\frac{1}{\beta_{1}}\right\}^{-1}\left(\frac{r}{\left(1-r^{2}\right) \gamma}\left\{\frac{x_{1}}{\alpha_{1}}+\frac{m_{1 x_{1}}}{\beta_{1}}\right\}-\frac{r^{2} m_{1 x, 2}}{\left(1-r^{2}\right)^{2} \gamma^{2}}\right)\right)^{2}\right) \\
& \exp -\left(\frac{y_{1}^{2}}{\alpha_{1}}+\frac{y_{2}^{2}}{\alpha_{2}}+\frac{m_{l y, 1}^{2}}{\beta_{1}}-\frac{m_{l y, 2}^{2}}{\beta_{2}}-\frac{2 r m_{l y, 1} m_{l y, 2}}{\left(1-r^{2}\right) \gamma}-\left\{\frac{1}{\alpha_{1}}+\frac{1}{\beta_{1}}\right\}^{-1}\right. \\
& \left(\left\{\frac{y_{1}}{\alpha_{1}}+\frac{m_{l y, 1}}{\beta_{1}}\right\}^{2}+\frac{r^{2} m_{l y, 2}^{2}}{\left(1-r^{2}\right)^{2} \gamma^{2}}-\frac{2 r m_{l y, 2}}{\left(1-r^{2}\right) \gamma}\left\{\frac{y_{1}}{\alpha_{1}}+\frac{m_{l y, l}}{\beta_{1}}\right\}\right) \\
& \exp \left\{(\frac { 1 } { \alpha _ { 2 } } + \frac { 1 } { \beta _ { 2 } } - \{ \frac { 1 } { \alpha _ { 1 } } + \frac { 1 } { \beta _ { 1 } } \} ^ { - 1 } \frac { r ^ { 2 } } { (1 - r ^ { 2 }) ^ { 2 } \gamma ^ { 2 } }) ^ { - 1 } \left(\frac{y_{2}}{\alpha_{2}}-\frac{r m_{l y, 1}}{\left(1-r^{2}\right) \gamma}+\frac{m_{l y, 2}}{\beta_{2}}\right.\right. \\
& \left.\left.+\left\{\frac{1}{\alpha_{1}}+\frac{l_{1}}{\beta_{1}}\right\}^{-1}\left[\frac{r}{\left(1-r^{2}\right) \gamma}\left\{\frac{y_{1}}{\alpha_{1}}+\frac{m_{l y, 1}}{\beta_{1}}\right\}-\frac{r^{2} m_{1 y, 2}}{\left(1-r^{2}\right)^{2} \gamma^{2}}\right]\right)^{2}\right) d \theta_{1} d \theta_{2}
\end{align*}
$$

where,

$$
\begin{array}{lll}
\alpha_{1}=4 D\left(\tau-\theta_{1}\right) & ; & \alpha_{2}=4 D\left(\tau-\theta_{2}\right) \\
\beta_{1}=\left(1-r^{2}\right) \sigma_{1,1}^{2} & ; & \beta_{2}=\left(1-r^{2}\right) \sigma_{1,2}^{2} \\
\gamma=\sigma_{1,1} \sigma_{1,2} & &
\end{array}
$$

CHAPTER IV

EXPERIMENTAL

4.1 GENERAL

The experiments were carried out in a narrow, Perspex tank, six inches wide and four feet long, which was provided with an inlet duct (4 inches x 6 inches) at one end. A double weir arrangement at the other end permitted continuous withdrawal from the surface and bottom of the tank. (see photograph on page 34)

A constant-head tank ensured a steady inlet flow rate which was measured with a rotameter and controlled with a one - inch globe valve. The water level in the tank and the outlet flows were controlled by the heights of the two weirs.

4.2 TRACER INJECTION

Tracer material consisting of a water soluble dye solution was injected at a point through a $\frac{1}{4}$-inch diameter copper tube and its concentration at two points further downstream was continuously monitored. In order to ensure isokinetic injection, the tracer flow rate was measured and the pressure drop across the injection line was kept constant by means of a small constant head tank with overflow circulation. (See Figure 4.1 on page 36). The on-off type of the tracer flow was controlled by means of a shift register circuit (photograph on page 63) operating an 80 V DC solenoid valve in the injection line. This circuit was capable of generating precisely and automa:ically the required pattern of tracer injection.

. 3 TRACER DETECTION AND RECORDING

0.2% solution of a watersoluble, green dye was used as :acer material; it was an iron complex of l-notroso-2-

FI G. $4 \cdot 1$
naphthol-6-sodium-sulphonate and strongiy absorbed light emitted from an incandescent globe. By means of a system of lenses and attenuators a narrow beam ($\frac{1}{4}$ inch) of parallel light was focussed across the width of the tank. On the opposite side a photoelectric cell mounted at the far end of a tube, was positioned such that only the light of the parallel beam reached its photosensitive surface. Two probes were constructed in this way; probe and light source supports were constructed in such a way that the concentration at any point in the tank could be monitored. The photograph on page 38 shows the two probes mounted in position. The output of the photorells was suitably offset, amplified, and frequency modulated before being recorded on magnetic tape. (See Figure 4.2 on page 40) The taperecorders were capable of operating at four different. tape speeds and of recording two signals simultaneously.

Speed variations of the tape recorders during recording and playback would destroy the required synchronism as well as the accuracy of the time base of the two signale. For this reason a special timing pulse generator was used to record markers on the second track of each tape for the duration of the run. Each marker consisted of a short burst of a $10 \mathrm{Kc} /$ second signal and for all runs a frequency of 5 markers per second was used. In this way the frequency modulated concentration signal at each monitoring station was recorded and simultaneously subdivided into 0.2 second intervals. Thus, even though speed variations between the two tape recorders may occur,

time during the run. Hence the total signal count between e.g. the 50th and 5lst marker for each tape is a measure of the average concentration which occured at the corresponding monitoring station in the interval between 9.8 seconds and 10.0 seconds measured from the start of the run.

On playback both the time marker track and signal track were monitored. The counting equipment consisted of two scalers and an output controller. (See Figure 4.2 on page 40). The arrival of the first timing marker causes scaler 1 to start counting the signal track. With the arrival of the second timing marker the input to scaler 1 is blocked and scaler 2, previously re-set to zero, takes over the counting of the signal track. During this second interval the count of scaler 1 is read by the printer controller, which in turn feeds it to an I.B.M. punching machine; scaler 1 is then re-set to zero. During the next time interval the roles of the two scalers are reversed and the count of scaler 2 is read, punched and re-set to zero, whilst scaler 1 is counting the signal track. In this way it was possible to obtain an accurate, digitalised concentration versus time record, punched on computer cards. Details of the equipment used for both recording and playback are given in Appendix 8. The operation of the counting equipment was slow and in order to obtain maximum time resolution, the signals were recorded at the fastest tape speed ($8 \frac{1}{2}$ inches per second) and played back at the slowest speed $\left(\frac{15}{16}\right.$ inches per second).

PLAYBACK

Taperecorder
 shaping circuit

F1G. $4 \cdot 2$

4.4 CALIBRATION OF TRACER DETECTORS

From BEER - LAMBERTS law of light absorption it follows that the output signal due to the presence of tracer depends only on the total amount of tracer in the light beam and not on the tracer concentration profile along the beam. Probes could, therefore, be calibrated in situ by adding known amounts of concentrated tracer to a fixed volume of water and making sure that the tracer was evenly distributed before recording the probe outputs. By isolating the system from the fresh water supply and recirculating through a mixing vessel and pump the tracer was quickly and effectively dispersed. (See Fi.gure 4.1 on page 36). Figure 4.3 shows a calibration curve obtained in this way.

4.5 HOT FILM ANEMOMETER

In order to obtain an independent estimate of the model parameters derived from tracer experiments, the water velocity at a point. was measured directly with a Hot-Film probe. It was a standard cylindrical film anemometer probe (Flow Corporation type $B-1 \pm$) and consisted of a small Pyrex glass rod coated with a thin strip of platinum making electrical contact with needle-supports at each end of the rod. The photograph on page 42 shows details of the sensor together with a millimetre scale. It was operated in the Constant Temperature Mode so that the output was a measure of the current required to keep the resistance and hence the temperature of the probe constant. The essential features of the circuit are shown in Figure A. 1 in Appendix 8.

4.5.1 RECORDING AND PLAYBACK

The output from the hot film probe circuit was suitably offset, amplified and frequency modulated before being recorded on a magnetic drum.

The recording drum was 10 inches long and had a diameter of 7 inches. It was coated with magnetic oxide and hence its surface was capable of storing digitalised information. Recording heads similar to those used in conventional magnetic tape recorders were arranged in groups of eight around the drum with a very small clearance from its surface. Each group of recording heads was capable of recording and reading from its associated track an eight binary-number. This corresponded to a resolution of l in 256. Each track could accommodate 1024 numbers (bits) and a total of 32 tracks were available.

The input signal is digitalised by means of a 9.5 MHz crystal clock signal to be counted for a period proportional to the incoming voltage. Thus the maximum allowable input voltage (3 volts) corresponded to a count of 256. The state of the binary counters is then written onto the drum by the appropriate group of recording heads in the correct position of the track. The binaries are reset before the cycle is repeated. The minimum cycle time was 100μ seconds. A "bit select" feature allowed one to pinpoint a particular bit on the drum. On playback the number in the appropriate bit is read and transferred to an output register from which it is fed to an I.B.M. punch machine.

4.5.2 CALIBRATION

The conventional way of calibrating Anemometer probes is to experimentally obtain the Anemometer output for one known velocity and use these values to evaluate C_{A} in the equation :

$$
\frac{U}{C_{A}}=\left(\frac{I^{2}}{I_{0}^{2}}-I\right)^{2}
$$

where : C_{A} - constant
I - Anemometer qutput at zero fluid velocity
I - Anemometer Output
This method was however found to be wholly inaccurate for the velocity range of interest and the probe was calibrated directly from 0 to 0.3 feet per second. For this purpose a trolley running along two parallel rails above a long and narrow calibration tank was constructed. The tank was filled with water and the probe stem was attached to the trolley such that the probe itself was about six inches below the surface. The trolley, fitted with roller bearing wheels, was then pulled along the rails with a piece of string at a constant speed and the time taken for the probe to travel 17 inches through the water was measured with a stopwatch whilst the probe output was recorded. The speed was varied by attaching the string to take-up pulleys of various sizes; these pulleys were fixed on a shaft which was driven by an electric motor through a wormgear and sprockets and chain type reduction. A photograph of this calibration equipment is shown on page 46 , whilst the calibration curve is
45.

```
The anemometer output at zero fluid velocity was checked before and after the run and the equipment was calibrated immediately afterwards in order to reduce the chance of instrument drift.
```


CHAPTER V

TESTING OF CONTINUOUS STATE SPACE FLOW MODEL

5.1 GENERAL

The usual procedure adopted when testing a theoretical model of a physical phenomenon is to obtain experimental data of the phenomenon itself or of one closely related to it in order to:
firstly, assess the extent to which the model is capable of describing the data and

Secondy, interpret the physical significance, if any, of the model parameters.

If the phenomenon has a random character, the model parameters describing it must of necessity be statistical in nature. Hence the experimental procedure must be such that adequate estimates of statistical quantities are obtained. Such experiments are usually not only time-consuming but also costly, as automatic recording and data processing equipment is essential.

In order to limit the experimental effort of this investigation it was decided to explore only a small region of the tank with a fixed point of tracer injection and constant water flow rate.
5.1.1 POSITION OF PROBES

From the basic assumptions of the flow model it is clear that the model cannot hold near the free surface or in the region of the weirs at the far end of the tank. Consequently probe positionswere chosen such that these regions, as well as stagnant pockets, were avoided. It
necessarily as severe in other physical situations where the flow model may be applied (for example : dispersion in the atmosphere.)

5.1.2 THROUGHPUT AND WITHDRAWAL FLOW RATES

In order to minimise the number of stagnant regions the two outlet weirs were adjusted so that the amounts withdrawn from the surface and bottom of the tank were egual. It was anticipated that the flow model would lend itself to an extension whereby a particle sedimentation process is superimposed on the flow pattern and for this reason a suitable throughput of fifty litres per minute was used.

5.2 EXPERIMENTAL DESIGN CONSIDERATIONS

5.2.1 INTRODUCTION

Two statistical quantities were estimated experimentally :

Firstly, the mean response to a rectangular input pulse of known width at pairs of points, situated downstream from the point of injection; this time-dependent response could be compared directly with predictions of the continuous state model (Chapter III) through equations 3.25 and 3.41.

Secondly, the concentration crosscorrelation between pairs of points for a time stationary tracer source function $Q(t)$; the corresponding model predictions are given by Equations 3.37 and 3.44 .

5.2.2. THE MEAN RESPONSE EXPERIMENT

A number of parameters controlling this experiment must be chosen such that adequate estimates of the mean response curves may be made. They are pulse width, pulse frequency, run length and sampling interval.

5.2.2.1 WIDTH OF INPUT PULSE

The importance of tailoring the exciting tracer signal in flow characterisation work has been realised for a considerable time $(14,15)$. The essential feature of this concept is that the frequency content of the signal exciting the system should adequately span the frequency response curve of the system itself. Figure 5.1 (page 51) illustrates how bandwidth and power of the rectangular pulse vary as a function of pulse width. It is interesting to note that for a given pulse amplitude the bandwidth can only be extended at the expense of power. The pulse width is chosen such that the Power Spectral Density is concentrated over the frequency range of interest.

In the present investigation the system is stochastic in nature and its filtering action will vary randomly. A useful measure of the average filtering action may be obtained by computing a Bode plot from the Mean Response curves. (16)

where,
H(w) - Bode plot amplitude
$G_{i}(w)$ - Frequency Content of normalised first

$G_{o}(w)-\underset{\text { pulse }}{ } \quad \underset{\text { prequency }}{ }$ Content of normalised second
$G_{i}(w)$ and $G_{O}(w)$ were calculated using thetrapezoidal rule of numerical integration on the Fourier Transform of the Mean Response curves. (16)

From the Bode plot (Figure 5.2) it can be seen that frequencies higher than about 1.5 radians per second are completely filtered out by the system and that the frequency range of interest lies between 0.2 and 1.5 radians per second.

A second method of obtaining a suitable input pulse width is to examine the Power Spectral Density of the velocity fluctuations themselves. This function may be calculated from the following expression : (17)

$$
\operatorname{PSD}_{U^{\prime}}(w)=\frac{2 \sigma_{0}^{2} \beta}{\beta^{2}+w^{2}}
$$

where,
σ_{0}^{2} - variance of velocity fluctuations.
B - flow model parameter
w - frequency in radians per second
Figure 5.3 shows the normalised Power Spectral
Density plotted versus frequency; the value for β was obtained from the Hot Film measurements (See Chapter Vl). It can be seen that the frequency at which the normalised PSD has dropped to a value of 0.6 is about 0.4 radians per second.

It is interesting to note the effect of frequency of velocity fluctuations at constant σ_{0}^{2} on the dispersive power of the system. If we focus our attention on a particular fluid particle and note its velocity at two instants of time separated by an interval τ, the

FIGURE 5 -2

correlation between the two values of velocity, when averaged over a large number of fluid particles, $R(\tau)$, will'be higher when the particle's velocity changes slowly than when it undergoes fast fluctuations in velocity. The influence of this effect on dispersion may best be illustrated by considering the case of fully developed turbulent flow. The dispersive power of the system may then be characterised by an Eddy Diffusion Coefficient E: (7)

$$
E .=\frac{1}{2} \sigma_{0}^{2} \int_{0}^{\infty} R_{N}(\tau) d \tau
$$

and the response to a Dirac becomes :

$$
\bar{x}^{2}=2 E t
$$

From the above it may be seen that if fluid particles undergo slow changes in velocity - i.e. the presence of eddies which persist for a considerable period of time - the $R_{N}(\tau)$ versus curve will drop off less sharply and hence the value of E and $\overline{\mathrm{X}}^{2}$ will increase.

In the present model a low value for parameter β gives rise to a slow decay of the $R(\tau)$ versus τ curve. (See Equations 3.3).

The variance of the response to a Dirac in this case is given by : (See Equation 3.17)

$$
\sigma_{1}^{2}(t)=\frac{2 \sigma_{0}^{2}}{\beta^{2}}\{\exp (-\beta t)-1+\beta t\}
$$

An examination of Equation 5.4 shows that the value of this variance $\left(\sigma_{1}^{2}\right)$ increases with a decrease in β.

In general, the presence of eddies which persist for a considerable period of time have a dominant effect on the dispersive power of the system. This must be borne in mind when deciding on a suitable input signal
on the basis of a power spectrum of velocity fluctuations.

A pulse width of 1.6 seconds was used throughout.

5.2.2.2 PULSE FREQUENCY

It is well known that the estimate of a statistical quantity of a stochastic process is improved when the number of realisations is increased. A high pulse frequency is therefore desirable. On the other hand in order to compute a mean pulse from such an ensemble it is important that each realisation can be uniquely identified. Hence the pulse frequency must be low enough to prevent merging of individual pulses as they travel through the system.

Intervals of $9.6,12.8$ and 14.4 seconds between successive input pulses were used. A typical set of successive realisations is shown in Figures 5.4.

5.2.2.3 RUN LENGTH

In order to obtain an accurate estimate of the Mean Response curve, the duration of the run must be long enough to incorporate the effect of all possible realisations of the underlying velocity process.

A practical way of ensuring that even the least frequent realisations have been adequately included is to compute the mean response for a number of run lengths and to note the time at which the shape of the curve no longer changes significantly. Mean response curves were computed for a number of run lengths and are plotted in Figure 5.5. It can be seen that the shortest allowable run length is about twenty minutes.

Fl G. $5 \cdot 5$

5.2.2.4 SAMPLING INTERVAL

A sampling interval of 0.2 seconds was used throughout; from the Bode plot (Figure 5.2) it can be seen to be sufficiently small for the frequency range of interest. Experimentally it was the smallest interval available and was chosen in order to obtain maximum resolution of the experimental curves.

5.2.2.5 COMPUTATION OF MEAN RESPONSE CURVE

The Mean Response Curve at each monitoring station was calculated by averaging over the ensemble of realisations.

$$
\mu_{e x}(\tau)=\frac{1}{N} \sum_{i=0}^{i=N-1} C(i P+\tau)
$$

Mean concentration values $\mu_{\mathrm{ex}}(\tau)$ were computed for values of τ ranging from zero to P at 0.2 seconds intervals.
$\mathrm{P}=$ period of input pulse train.
$\mathrm{N}=$ total number of pulses.

5.2.3 THE CROSSCORRELATION EXPERIMENT

In order to obtain experimental estimates of the crosscorrelation between the tracer concentration at two points in a time-stationary concentration space a suitable tracer source function $Q(t)$ must be used. The following requirements must be satisfied:

Firstly, it must be a time-stationary function and hence have a constant mean and mean square.

Secondly, its power spectral density must be suitably tailored to the frequency response of the system.

Thirdly, it must have a known autocorrelation,
so that the theoretical expression for the crasscorrelation may be computed and compared with experimental estimates.

Fourthly, the function must be conveniently realisable experimentally.

A Pseudo-Random Binary Test Signal was used for $Q(t)$, as it admirably conformed to the above requirements. 5.2.3.1 PSEUDO-RANDOM BINARY TEST SIGNAL (18)

It is a two-valued periodic function having instantaneous amplitude changes only at discrete instants of time separated by a constant interval, the switching time d. A switch need not necessarily take place at every allowable instant and the switching times are generated in such a way as to give the signal several useful properties. If the two allowable amplitudes are zero and q, the mean and mean square taken over any integral number of periods will be $\frac{1}{2} q$ and $\frac{1}{4} q^{2}$ respectively and are independent of the choice of the first interval. Furthermore, the autocorrelation function $R_{Q}(\tau)$ has the same period T_{p} and is defined as follows:

$$
\begin{array}{ll}
R_{Q}(\tau)=\frac{1}{4} q^{2}\left\{\left.1-\frac{N_{p}+1}{N_{p}} \right\rvert\, \frac{\tau \mid}{d}\right\} ; & -d \leqslant \tau \leqslant d \\
R_{Q}(\tau)=-\frac{\frac{1}{4} q^{2}}{N_{p}} & ; \quad d<|\tau|<\quad\left(N_{p}-1\right) d
\end{array}
$$

where,

$$
N_{p}=\frac{T_{p}}{d}=\text { Number of intervals in P.R.B.S. }
$$

The Power Spectral Density function of a timestationary, random signal may be obtained from its autocorrelation as follows : (15)

$$
\begin{aligned}
\operatorname{PSD}_{Q}\left(w_{i}\right) & =2 \int_{0}^{\infty} R_{Q}(\tau) \cos \left(w_{i} \tau\right) d \tau \\
& =\frac{1}{4} q^{2} \frac{\left(N_{P}+1\right)}{N_{p}} d\left\{\frac{\sin \left\{\frac{w_{i} d}{2}\right\}}{\frac{w_{i} d}{2}}\right)^{2}
\end{aligned}
$$

where,

$$
w_{i}=\frac{2 \pi i}{N_{p} d} \quad ; \quad i=1,2,3, \ldots
$$

as N tends to infinity,

$$
\operatorname{PSD}_{Q}(w)=\frac{1}{4} q^{2} d\left(\frac{\sin \left\{\frac{w d}{2}\right\}}{\frac{w d}{2}}\right)^{2}
$$

Figure 5.6 shows a number of Power Spectral
Density functions for various values of d. The similarity between this plot and that of Figure 5.1 is obvious and a decision time of 1.6 seconds was used for reasons discussed in section 5.2.1.1
5.2.3.2 GENERATION OF PSEUDO-RANDOM BINARY SIGNALS

The generation of P.R.B. signals based on the properties of digital filters, is discussed by Briggs et al. (18). A bit shift register circuit is ideally suited to accurately and automatically operate a solenoid valve in the tracer injection line according to a P.R.B. pattern. A photograph of the P.R.B. generator is shown on page 63. Figure 5.7 shows the relevant logic circuit. Each register of the circuit may be thought of to contain either 1 or 0 . They are connected in series

POWER SPECTRAL DENSITY OF PRRB.S:
FIG. $5 \cdot 6$

and during a shift of the circuitt the contents of each register is passed onto the next one. Furthermore, Modulo-2 addition between registers is performed by adding circuits, connected in such a way that the desired P.R.B. signal is generated. Shifting occurs instantaneously and d is controlled by the period of an externally applied shift pulse. The sequence is started by ensuring that all registers contain 1 and that a O is inserted into the first register with the first shift pulse.

The choice of a particular P.R.B.S. was not important and the same sequence was used for all runs. It had a period of 63 d seconds and was generated by the circuit shown on page 64 .

5.2.3.3 NUMBER OF PERIODS AND SAMPLING INTERVAL

The run length and hence the number of periods used in the crosscorrelation experiment was made as long as was experimentally feasible. Similarly the shortest available sampling interval (0.2 second) was used.

Experimental details for all runs are tabulated on page 68 .

5.2.3.4 COMPUTATION OF EXPERIMENTAL CROSSCORRELATIONS

A typical concentration versus time curve together with the P.R.B.S. is shown on page 66 .

Experimental crosscorrelations were calculated
according to:

$$
\Phi_{e x}(\tau)=\sum_{i=1}^{n} c_{1}\left(t_{i}\right) c_{2}\left(t_{i}+\tau\right)-\bar{c}_{e x, 1} \bar{c}_{e x, 2}
$$

F1G. 5.8
where,

$c_{1}\left(t_{i}\right)$	$=$ tracer concentration at point
	$\mathrm{x}_{1}, \mathrm{y}_{1}$
	and time $t=i \Delta t$.
$c_{2}\left(t_{i}\right)$	$=$ tracer concentration at point
	$\mathrm{x}_{2}, \mathrm{y}_{2}$
	and time $t=i \Delta t$
n	$=$ number of readings correlated.
$\bar{c}_{\text {ex, }}$	$=$ mean tracer concentration at
	point $\mathrm{x}_{1}, \mathrm{y}_{1}$
	over time interval from
	$t=0$ to $t=n \Delta t$
$\bar{c}_{\text {ex, } 2}$	$=$ mean tracer concentration at
	point $\mathrm{x}_{2}, \mathrm{y}_{2}$
	over time interval from
	$t=\tau$ to $t=n \Delta t+\tau$
Δt	sampling interval
rimental crosscorrelations were computed for	
of the lag τ, since the model predicted a ifference for the two cases. The first range	
rom $\tau=0$ to $\tau=20$ seconds; the second	
ded fro	p to $\tau=T_{p}+20$. secs .

Run 1 Run 2 Run 3 Run 4 Run 5 Run $6 \quad$ Run $7 \quad$ Run $8 \quad$ Run 9 Run 10 MEAN RESPONSE

No. of observations	8169	9759	9655	7971	8590	7692	10059	7926	10099	10484
No. of pulses	170	203	150	124	134	106	139	123	157	163
Duration of run minutes: seconds	27:10	32:28.8	32:00	24:47.2	28:35.2	25:26.4	33:11.6	26:14.4	33:29.6	34:46.4
CROSSCORRELATION										
No. of observations	-	-	-	-	9820	9852	-	10332	8145	8108
P.R.B. Signal										
No. of decisions	-	-	-	-	63	63	-	63	63	63
Dec. interval (sec)	-	-	-	-	1.6	1.6	-	1.6	1.6	1.6
No. of Periods correlated	-	-	-	-	18	17	-	19	14	15;14
Duration of run minutes: seconds	-	-	-	-	32: 44.4	32:50.4	-	34:26.4	27:9.0	27:1.6

$\frac{\text { COORDINATES (ET) }}{\text { Ist/upper station }}$

x_{1}	0.5	0.6667	0.6667	0.8333	0.25	0.25	0.25	0.25	0.25	0.25
Y_{1}	O. 1667	0.1667	0.1667	0.1667	0.0	0.0	0.0	0.0442	-0.0442	0.0917
2nd/lower station										
x_{2}	0.5	0.6667	0.6667	0.8333	0.6667	0.9167	1.25	0.6667	0.6667	0.6667
Y_{2}	-0.1667	-0.1667	-0.1667	-0.1667	0.0	0.0	0.0	0.1175	-0.1175	0.2417

5.2.3.5 EVALUATION OF THEORETYICAL CROSSCORRELATION

In order to allow for resistance and capacitance effects in the tracer injection line the square pulses of the Pseudo Random Binary input signal are assumed to have passed through a first order filter with time constant T_{C} before entering the tank. The Autocorrelation of the tracer input function may then be shown to have the following form:
$R_{Q E}(\tau)=\frac{N_{p}+1}{N_{p}} \frac{T_{C}}{d} \frac{\cosh \left\{d / T_{C}-1\right\}}{1-\exp \left\{-N_{p} d / T_{C}\right\}} \exp \left\{-\tau / T_{C}\right\}-\frac{1}{N_{p}}-J \quad 5.10$ where :
$d=$ decision time for P.R.B.S.
$N_{p}=$ number of decisions in P.R.B.S.
$T_{C}=$ time constant of first order filter
$J \quad=0, \quad|\tau|>d$
J

The model predictions of the crosscorrelation were obtained by performing the double integration of Equation 3.44 numerically. The region of integration extending from minus infinity to τ for both variables of integration θ_{1} and θ_{2} was divided up into a matrix of equal rectangles, The contribution of each rectangle was evaluated using Simpson's Rule. This procedure was carried out column by column, starting with the rectangle containing the upper limits τ, τ. Integration in the vertical direction was stopped when the contribution of a rectangle was less than one per cent of the total of its column computed so far.
(Fig 5.9) Similarly, the contribution of the last column was less than one per cent of the total integral. The size of the rectangle was chosen such that the value of the
integral did not change significantly when a smaller rectangle was used.

The computation was carried out on an I.B.M. 1130 machine and proved to be very time consuming.

The model predicts a considerable difference in amplitude for the two ranges of the lag (See Section 5.2.3.4 and Figure 6.12). This is due to the fact that for small lags the covariance between $W\left(t, \tau_{1}\right)$ and $W\left(t+\tau, \tau_{2}\right)$ (Equation 3.35) is large in the same region of the $\theta_{1}-, \theta_{2}$ - plane, where most of the probability mass is found. This is shown in Figure 5.9 for $\operatorname{lag} \tau=4.0$ seconds.

Figure 5.10 illustrates that for large lags ($\tau=T_{p}+4$ seconds) the crosscorrelation region in the $\theta_{1}-, \theta_{2}$ - plane containing most of the probability mass maintains the same position relative to the point (τ, τ) as in Figure 5.9. The covariance $r\left(\tau, \theta_{1} ; \tau, \theta_{2}\right)$ however, is very small in this region giving rise to weaker crosscorrelations.
5.3 HOT FILM ANEMOMETER MEASUREMENTS
5.3.1 GENERAL

In order to establish a physical significance for the flow model parameters and at the same time obtain an independent estimate of their values, the water velocity was measured directly by means of a Hot Film Anemometer.

From preliminary calibration expe riments (See Section 4.5.2) it was found that throughout the velocity range of interest the Hot Film Anemometer had no

FIG. $5 \cdot 9$

F1 G. $5 \cdot 10$
directional sensitivity for the two directions at right angles to the axis of the probe. Furthermore by rotating the probe from a position at right angles to the direction of flow to a position where the axis of the probe was parallel to the direction of flow the response varied by only 20%. It was therefore decided to place the probe such that its axis was at right angles to both the X-and-Y directions. Its response was then interpreted as the vector sum of the instantaneous velocity components $U_{x}(t)$ and $U_{Y}(t)$:

$$
V(t)=\left\{U_{X}^{2}(t)+U_{Y}^{2}(t)\right\}^{\frac{1}{2}}
$$

The probe was situated at the same depth as the tip of the tracer injection line and 5 inches further downstream at the centre of the tank. (Figure 6.1). The Anemometer signal was sampled every 0.167 seconds for a total period of some 55 minutes.

Two statistical quantities of $V(t)$ were computed, namely :

$$
\begin{aligned}
& f(v)=\text { distribution density function of } V(t) \\
& R_{v^{2}}(\tau)=\text { autocorrelation of } v^{2}(t) \\
& \text { It is clearly impossible to obtain estimates for }
\end{aligned}
$$ the flow parameters of the individual components from a knowledge of the statistics of $V(t)$.

Making the assumptions :

$$
\sigma_{o x}^{2}=\sigma_{o y}^{2}=\sigma_{o}^{2} ; \beta_{x}=\beta_{y}=\beta ; R_{o x}=R_{o y}=R_{o}(\tau)
$$ the two parameters σ_{0}^{2} and β may be determined as shown in the following two sections.

It can be shown (20) that, if $U_{x}(t)$ and $U_{Y}(t)$ are independent and normal, then $V(t)$ will have a Rayleigh distribution density function of the following form :

$$
f(v)=\frac{v}{\sigma_{0}^{2}} \exp \left(-\left(\frac{\left(v^{2}+\bar{u}_{x}^{2}+\bar{u}_{y}^{2}\right)}{2 \sigma_{0}^{2}}\right)\right) I_{0}\left(\frac{v\left\{\bar{u}_{x}^{2}+\bar{u}_{y}^{2}\right\}^{\frac{1}{2}}}{\sigma_{0}^{2}}\right)
$$

where,

$$
\begin{aligned}
I_{0}(z) & =\text { Modified Bessel Function of zero order } \\
& =\sum_{i=0}^{\infty} \frac{z^{2 i}}{2^{2 i}(i!)^{2}}
\end{aligned}
$$

5.3.3 AUTOCORRELATION OF $\mathrm{V}^{2}(\mathrm{t})$

The autocorrelation is defined as :

$$
R_{v^{2}}(\tau)=E\left\{V^{2}(t) V^{2}(t+\tau)\right\}
$$

Substituting Equations 5.11 and 3.1 in Equation 5.13 yields :

$$
\begin{align*}
R_{v^{2}}(\tau)=E\{ & \left(\left(U_{x}^{\prime}(t)+\bar{u}_{x}\right)^{2}+\left(U_{y}^{\prime}(t)+\bar{u}_{y}\right)^{2}\right) \\
& \left.\left(\left(U_{x}^{\prime}(t+\tau)+\bar{u}_{x}\right)^{2}+\left(U_{y}^{\prime}(t+\tau)+\bar{u}_{y}\right)^{2}\right)\right\}
\end{align*}
$$

Remembering that $U_{X}^{\prime}(t)$ and $U_{Y}^{\prime}(t)$ are assumed to be independent Equation 5.14 may be written as :

$$
\begin{align*}
R_{v^{2}}(\tau) & =E\left\{U_{x}^{\prime 2}(t) U_{x}^{\prime 2}(t+\tau)\right\}+E\left\{U_{y}^{\prime 2}(t) U_{y}^{\prime 2}(t+\tau)\right\} \\
& +4 \bar{u}_{x}^{2} E\left\{U_{x}^{\prime}(t) U_{x}^{\prime}(t+\tau)\right\}+4 \bar{u}_{y}^{2} E\left\{U^{\prime}(t) U_{y}^{\prime}(t+\tau)\right\} \\
& +2 \bar{u}_{x}^{2} E\left\{U_{x}^{\prime 2}(t)\right\}+2 \bar{u}_{y}^{2} E\left\{U_{y}^{\prime 2}(t)\right\}+\bar{u}_{x}^{4}+\bar{u}_{y}^{4}
\end{align*}
$$

Since $U_{X}^{\prime}(t)$ is a time-stationary random process with zero mean and Normal probability density function we may write :

$$
E\left\{U_{x}^{\prime 2}(t) U_{x}^{\prime 2}(t+\tau)\right\}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u_{x 1}^{2} u_{x 2}^{2} f\left\{u_{x 1} u_{x 2},\left(\tau, \sigma_{0}^{2}, \beta\right)\right\} d u_{x 1} d u_{x 2}
$$

where,

$$
f\left\{u_{x 1}, u_{x 2},\left(\tau, \sigma_{0}^{2}, \beta\right)\right\}=\text { joint Normal distribution }
$$

density function for $U_{X}^{\prime}(t)$ and $U_{X}^{\prime}(t+\tau)$.
The integrated result of Equation 5.16 may be conveniently obtained by making use of a property of the characteristic function $K\left(\xi_{1}, \xi_{2}, \tau\right)$: (2l)

$$
\begin{align*}
K\left(\xi_{1}, \xi_{2}, \tau\right)= & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left\{u_{x 1}, u_{x 2},\left(\tau, \sigma_{0}^{2}, \beta\right)\right\} \exp \left(i \xi_{1} u_{x 1}\right) \\
& \exp \left(i \xi_{2} u_{x 2}\right) d u_{x 1} d u_{x 2} \\
= & \exp \left\{-\frac{1}{2} \sigma_{0}^{2}\left(\xi_{1}^{2}+\xi_{2}^{2}+2 R_{0}(\tau) \xi_{1} \xi_{2}\right)\right\}
\end{align*}
$$

Expressions for the moments are obtained by differentiating the Characteristic Function an appropriate number of times and then equating ξ_{1} and ξ_{2} to zero.
Hence :

$$
E\left\{U_{\mathbf{X}}^{\prime 2}(t) U_{\mathbf{X}}^{\prime 2}(t+\tau)\right\}=\frac{\partial^{2}}{\partial \xi_{2}^{2}}\left(\frac{\partial^{2}}{\partial \xi_{1}^{2}}\left\{K\left(\xi_{1}, \xi_{2}, \tau\right)\right\}\right)
$$

Carrying out the differentiation in Equation 5.18 and equating ξ_{1} and ξ_{2} to zero yields :

$$
E\left\{U_{\mathbf{X}}^{\prime 2}(t) U_{\mathbf{X}}^{\prime}{ }^{2}(t+\tau)\right\}=\left(\frac{2 R_{0}^{2}(\tau)}{\left(\sigma_{0}^{2}\right)^{2}}+1\right)\left(\sigma_{0}^{2}\right)^{2}
$$

Similarly,

$$
E\left\{U_{Y}^{\prime 2}(t) U_{Y}^{\prime 2}(t+\tau)\right\}=\left(\frac{2 R_{0}^{2}(\tau)}{\left(\sigma_{0}^{2}\right)^{2}}+1\right)\left(\sigma_{0}^{2}\right)^{2}
$$

Substituting Equations 3.3, 5.19 in Equation 5.15 and combining terms not containing τ yields :

$$
\begin{aligned}
E\left\{V^{2}(t) V^{2}(t+\tau)\right\}= & 4 R_{0}^{2}(\tau)+4 R_{0}(\tau)\left(\bar{u}_{x}^{2}+\bar{u}_{y}^{2}\right) \\
& +\left(E\left\{U_{x}^{2}(t)\right\}+E\left\{U_{y}^{2}(t)\right\}\right)^{2} \\
= & 4 R_{0}^{2}(\tau)+4 R_{0}(\tau)\left(\bar{u}_{x}^{2}+\bar{u}_{y}^{2}\right) \\
& +\left(2 \sigma_{0}^{2}+\bar{u}_{x}^{2}+\bar{u}_{y}^{2}\right)^{2}
\end{aligned}
$$

$$
5.20
$$

COMPUTATION OF EXPERIMENTAL DISTRIBUTION DENSITY $f(v)$ AND AUTOCORRELATION $R_{v}{ }^{2}(\tau)$ CURVES.
Experimental readings from the recording drum were converted to velocities using the calibration curve shown in Figure 4.4. Thus a digitalised record (interval $\Delta t) \quad$ of $V(t)$ was obtained.

A frequency histogram of velocities was then constructed and the distribution density of $V(t)$ was calculated from the following equation :

$$
f\left\{\frac{v_{i}+v_{i+1}}{2}\right\}=\frac{F_{i}+F_{i+1}}{2 N_{v}\left(v_{i+1}-v_{i}\right)}
$$

(See Figure 6.22)
Where,

$$
\begin{aligned}
& \mathrm{F}_{i}=\text { Frequency of oecurrence of velocity } v_{i} \\
& N_{v}=\text { Total number of velocity readings. }
\end{aligned}
$$

The autocorrelation of $v^{2}(t)$ was computed as follows:

$$
R_{v^{2}}(\tau)=\frac{1}{N_{c}} \sum_{i=1}^{N_{C}} V^{2}\left(t_{i}\right) v^{2}\left(t_{i}+\tau\right)-\left(\overline{v^{2}}\right)^{2}
$$

for values of τ from 0 to $100 \Delta t$ at intervals of

$$
\Delta t=0.167 \mathrm{secs}
$$

(See Figure 6.23)
where,

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{C}}=\text { Number of readings correlated. } \\
& \overline{\mathrm{v}}^{2}=\frac{1}{\mathrm{~N}_{\mathrm{c}}} \sum_{i=1}^{N_{c}} v^{2}\left(t_{i}\right)
\end{aligned}
$$

5.4 .1 INTRODUCTION
In order to estimate parameters from the available experimental data it was found necessary to assume that :

$$
\begin{aligned}
& \beta_{x}=\beta_{y}=\beta \\
& \sigma_{o x}^{2}=\sigma_{o y}^{2}=\sigma_{o}^{2}
\end{aligned}
$$

and hence

$$
\begin{aligned}
R_{O X}(\tau) & =R_{O Y}(\tau)=R_{o}(\tau) \\
\sigma_{l X}^{2}(t, \tau) & =\sigma_{l y}^{2}(t, \tau)=\sigma_{l}^{2}(t, \tau)
\end{aligned}
$$

From tracer experiments two statistical quantities were estimated, namely :

The Mean Response at pairs of points to a rectangular input pulse. One set of runs involved probe positions vertically one above the other, whilst in a second set of runsthe two probes were placed such that they were in a straight line with the point of injection. Model predictions of Mean Response curves have the following form :

Without molecular diffusion

$$
\mu(x, y, t)=\int_{0}^{t} \frac{g(\tau)}{2 \pi \sigma_{l}^{2}} \exp -\left(\frac{\left(x-m_{l x}\right)^{2}+\left(y-m_{l y}\right)^{2}}{2 \sigma_{l}^{2}}\right) d \tau
$$

With molecular diffusion

$$
\begin{align*}
& \mu(x, y, t)= \int_{0}^{t} \frac{g(\tau)}{4 \pi\left\{\frac{1}{2} \sigma_{1}^{2}+D(t-\tau)\right\}} \exp \left(\frac{-1}{2 D(t-\tau) \sigma_{1}^{2}} \int \frac{-\frac{1}{4}}{\frac{\gamma}{2} \sigma_{1}^{2}+D(t-\tau)}\right. \\
&\left\{\left\{\sigma_{1}^{2} x+D(t-\tau) 2 m_{l x}\right\}^{2}+\left\{\sigma_{1}^{2} y+D(t-\tau) 2 m_{l y}\right\}^{2}\right] \\
&+\frac{1}{\left.\left.\frac{1}{2} \sigma_{1}^{2}\left(x^{2}+y^{2}\right)+D(t-\tau)\left(m_{\perp x}^{2}+m_{l y}^{2}\right)\right]\right) d \tau}
\end{align*}
$$

The second statistical quantity estimated from tracer experiments was the concentration crosscorrela-
tion between two pointis. The tracer input function was a Pseudo-Random Binary Sequence, which is time-stationary and periodic. The sequence is assumed to have passed through a first order filter before entering the tank. (Equation 5.10). The model prediction of the crosscorrelation for the case involving molecular diffusion was used to estimate parameters. (Equation 3.44).

Hot Film Anemometer data yielded estimates of two statistical quantities :

Firstly, the Probability Distribution Density for $V(t): f(v)$
where,

$$
V(t)=\left\{U_{x}^{2}(t)+U_{y}^{2}(t)\right\}^{\frac{1}{2}}
$$

$$
f(v)=\frac{v}{\sigma_{0}^{2}} \exp \left(-\frac{\left(v^{2}+\bar{u}_{x}^{2}+\bar{u}_{y}^{2}\right)}{2 \sigma_{0}^{2}}\right) I_{0}\left\{\frac{v\left(\bar{u}_{x}^{2}+\bar{u}_{y}^{2}\right)^{\frac{1}{2}}}{\sigma_{0}^{2}}\right\}
$$

where,

$$
I_{0}(z)=\sum_{i=0}^{\infty} \frac{z^{2 i}}{2^{2^{i}}\left(i^{!}\right)^{2}}
$$

Secondly, the autocorrelation of $v^{2}(t)$; this quantity was compared with the following expression:

$$
\begin{align*}
R_{v^{2}}(\tau)= & 4 R_{0}^{2}(\tau)+4 R_{0}(\tau)\left(\bar{u}_{x}^{2}+\bar{u}_{y}^{2}\right) \\
& +\left\{2 \sigma_{0}^{2}+\bar{u}_{x}^{2}+\bar{u}_{y}^{2}\right\}^{2}
\end{align*}
$$

The following parameters were estimated :
$\bar{u}_{x}=X$-component of the mean velocity
$\bar{u}_{y}=y$-component of the mean velocity
$\sigma_{0}^{2}=$ Variance of velocity fluctuations
$\beta=$ Flowscale parameter
$q=$ Tracer source strength.

5.4.2 PARAMETERS FROM TRACER EXPERIMENTS

Parameters were estimated from Mean Response curves using a non-linear regression technique based on a least squares criterion. (22) The application of this technique requires that the shape of the function should be sensitive to small changes in the values of the parameters and that the parameters are not correlated among themselves. It was found however, that both model predictions (Equations 3.25 and 3.40) were insensitive to β and this parameter could therefore not be estimated from the Mean Response Experiment.

In order to facilitate the estimation of the four remaining parameters a new parameter α was introduced. This parameter arises when the equation underlying the random process of velocity fluctuations is assumed to have the following form : (Ornstein-Uehlenbeck process, 23)

$$
\frac{d U^{\prime}(t)}{d t}+\beta U^{\prime}(t)=\beta N_{\alpha}(t)
$$

where,
$N_{\alpha}(t)=$ random process with White Noise properties, whose Power Spectral Density equals α. It can be shown (Appendix 6) that this equation satisfies the properties assumed for $U^{\prime}(t)$ and that :

$$
\alpha=\frac{2 \sigma_{0}^{2}}{\beta}
$$

(See Section 3.1)

Keeping the value of β fixed it was then possible to estimate parameters $\bar{u}_{x}, \bar{u}_{y}, \alpha$ and q by regression for particular probe positions. The effect of probe positions and the numerical results of the parameters are discussed in

Chapter VI.
It was found that the strength of the theoretical crosscorrelation was sensitive to the value of β. However, due to the complexity of this expression and limited computer facilities no attempt at regressing crosscorrelation data was made. Instead, a value of β was estimated by matching peak heights of experimental and theoretical crosscorrelations, using an iterative procedure. A value of β was assumed and the remaining parameters were obtained by regressing on a number of Mean Response curves (see table - on page 68). A new value of β was then obtained from crosscorrelations by matching peak heights, using average values for the parameters obtained by regression. Mean Response regressions were then repeated.

This procedure yielded a value of $\beta=0.3$; this value together with a set of average values for the remaining four parameters gave reasonable correspondence between theoretical and experimental crosscorrelations (Figures 6.12, 6.15 and 6.18).

If

$$
\mu_{e x}\left(t_{i}\right)=\text { experimental mean concentration, }
$$ and the first and last value of the Mean Response curve occur at times t_{0} and t_{n} respectively, then the nonlinear regression technique seeks to minimise the following function :

$$
\operatorname{SOS}=t_{t_{i}}^{t_{i}=t_{0}}\left\{\mu_{e x}\left(t_{i}\right)-\mu\left(x, y, t_{i}\right)\right\}^{2}
$$

where, $\mu(x, y, t)$ is given by Equations 5.22 and 5.23. The method invoives evaluations of $\mu(x, y, t)$ as well as its derivatives with respect to the parameters for values of t_{i} from t_{o} to t_{n}. Simpson's rule of numerical integration was used.

It was found necessary to slightly modify this technique when applied to both Mean Response curves simultaneously. In this case two pulses contribute to the sum of squared errors :

$$
\operatorname{SOS}=\operatorname{SOS} \text { (1st pulse) }+\operatorname{sos} \text { (2nd pulse) } 5.31
$$

In order to prevent a bias towards the pulse with larger amplitudes i.e. the pulse measured closer to the point of injection, the contribution of the smaller pulse was increased with a correction factor. Smooth curves (24) through the experimental points were computed with the aid of a digital filter and the ratio of the variance of the larger pulse to that of the smaller pulse was considered to be a suitable correction factor. (Page 88). The rectangular input pulse (amplitude q) was assumed to have passed through a first order filter with a time constant of 0.01 seconds before entering the tank (see Section 5.2.3.5).

Hence :

$$
\begin{array}{ll}
q(t)=q(1-\exp (-100 t)) & ; 0<t \leqslant 1 \\
q(t)=q(\exp \{-100(t-1.6)\}-\exp \{-100 t\}) ; & t>1.6
\end{array}
$$

5.4.3. PARAMETERS FROM THE HOT FIIM EXPERIMENT

The statistical quantities calculated from a direct measurement of the instantaneous velocity at a point provided an independent measurement of the following parameters :
$\sigma_{0}^{2}=$ variance of velocity fluctuations
$\beta=$ flow scale parameter $\bar{u}_{x}^{2}+\bar{u}_{y}^{2}=$ sum of squares of mean velocity components.

Best fit values of parameters

$$
\sigma_{0}^{2} \text { and }\left\{\bar{u}_{x}^{2}+\bar{u}_{y}^{2}\right\}
$$

were obtained by regressing the experimental distribution density function of $\mathrm{V}(\mathrm{t})$ using Equation 5,26.

The Autocorrelation of $\mathrm{V}^{2}(\mathrm{t})$ may be conveniently split into two parts; firstly,

A transient part, where its value is strongly
dependent on the $\operatorname{lag} \tau$, secondly,

$$
R_{v^{2}}(\tau) \text { for large values of } \tau \text {. From Equation }
$$

5.27 it may be seen that this value tends to $\left\{2 \sigma_{0}^{2}+\bar{u}_{x}^{2}+\bar{u}_{y}^{2}\right\}^{2}$

Parameters σ_{0}^{2} and β were estimated from the transient part of the experimental $\mathrm{R}_{\mathrm{v}^{2}}(\tau)$ curve by regression using τ - dependent terms of Equation 5.27.

CHAPTER VI

RESULTS AND DISCUSSION

6.1 TRACER EXPERIMENTS

The tracer experiments may be conveniently divided into three groups according to the positions of the monitoring stations relative to the point of injection. Figure 6.1 shows the positions of the two probes for each run. It will be noted that the point of injection was fairiy closely situated to the inlet duct and was kept in the same position for all runs. Furthermore, it can be seen that the region of the tank explored was relatively small. (See Figure 4.1)

In each case the results are compared with the continuous state flow model including the effect of molecular diffusion. A value of $0.1 \times 10^{-7} \mathrm{ft}$. per second was used for the molecular diffusion coefficient.
6.1.1. GROUP 1.

In the first group the probe positions are vertically above one another and equidistant from the point of injection (Figure 6.1). For each of the first three runs parameters $\bar{u}_{x}, \bar{u}_{y}, \alpha$ and q were evaluated by regressing on both Mean Response curves simultaneously using Equation 5.23. Figures $6.2,6.3$ and 6.4 show that the model can adequately describe Mean Response curves for these positions. The flow parameters \bar{u}_{x}, \bar{u}_{y}, and α remain reasonably constant, whilst the agreement between the measured source strength and the value for q obtained by regression is fair. (See table - on Page 88).

F1 G. 6.1

Figure 6.5 shows the Mean Response curves for Run 4 together with their model predictions. The prediction for the lower station is clearly inadequate; this may be attributed to the fact that its position lies in a region with different flow characteristics. This is confirmed by a comparison of the parameter values obtained from regressions on each Mean Response curve individually. (Figures 6.6 and 6.7).

The model predicts zero crosscorrelations and this fact was confirmed experimentally. 6.1.2. GROUP 2.

The second group of tracer experiments was carried out with the probe positions along the x-axis. The first probe was kept at a distance of three inches from the point of injection, whilst the second probe was placed at a. number of positions further downstream (Figure 6.1).

The Mean Response curves for these positions contain very little information concerning \bar{u}_{y}, the Y-component of the mean velocity, since both probes have the same Y coordinate. Parameters \bar{u}_{x}, α and q were again evaluated by regressing on both Mean Response curves simultaneously. An average value of \vec{u}_{y} obtained from the first group of tracer experiments was used in these regressions.

From Figures 6.8 and 6.9 it can be seen that the model is capable of describing the experimental Mean Response curves and that the values of the flow parameters are in good agreement with each other and with those of group I. There is, however, a considerable difference
in amplitude between the theoretical and experimental curves for the second station of Run 6. An examination of the parameters obtained from an individual regression of this pulse (Figure 6.10) shows an excessively high source strength q and good agreement for the flow parameters. Hence, even though the fit is excellent, little relifance can be placed on the estimation of the source strength from a single pulse regression. Figure 6.1l shows a comparison of the experimental Mean Response curves for Run 7 with those predicted by the model, using average parameter values obtained from previous regressions. Noting the large difference in amplitude and spread between the two pulses the model prediction is considered to be very good.

Figures 6.12 and 6.13 show comparisons of predicted and experimental concentration crosscorrelations. The values of the parameters are the same as those used to predict Mean Response curves. The effect of correlation between $W\left(t, \tau_{1}\right)$ and $W\left(t+\tau_{1} \tau_{2}\right)$ is clearly illustrated by the higher amplitudes obtained for small values of the lag τ. (see Section 5.2.3.5)

6.1.3. GROUP 3.

The third group of runs was carried out with the probes positioned such that they were on straight lines radiating from the point of injection at angles of 10°, 20°, and -10° with the $x-a x i s$.

Parameters obtained from a regression on both Mean Response curves of Run 8 are in good agreement with those of groups 2 and 3 (Figure 6.14), whilst Figure 6.15 shows

Parameter values

PARAMETER VALUES OBTAINED FROM TWO-PULSE REGRESSIONS.

	RUN 1	RUN 2	RUN 3	RUN 5	RUN 6	RUN 8	MODEL PREDICTIONS.
\bar{u}_{x}	0.093	0.097	0.0973	0.092	0.090	0.094	$0.096 \mathrm{ft} / sec.$.
\bar{u}_{y}	0.0113	0.0117	0.0091	* (0.011)	(0.Oll)	(0.011)	0.011 ft. $/ \mathrm{sec}$.
α	0.00557	0.0048	0.0073	0.00545	0.00597	0.0067	$0.006 \mathrm{ft} . / \mathrm{sec}$.
σ_{0}^{2}	0.000836	0.00072	0.0011	0.000818	0.000896	0.00102	$0.0009 \mathrm{ft}^{2} / \mathrm{sec}^{2}$.
β	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)	0.3 sec ${ }^{-1}$.
q	0.182	O. 197	0.314	0.24	0.303	0.295	0.3
$\mathrm{q}_{\text {measd }}$	0.247	0.247	0.3	0.3	0.3	0.3	- -
correction factor	7.0	2.5	1.7	20.0	5.0	14.0	-

* () value kept constant in
regression for remaining parameters.
** see Appendix 7.
satisfactory model predictions for the concentration crosscorrelations. Runs 9 and 10, however, show some discrepancy between the predicted and experimental curves. (Figures 6.16, 6.17, 6.18 and 6.19); it may be attributed to the fact that probes were situated at points with different flow characteristics. This is especially true for the second probe position of Run 10 which was observed to experience occasional intervals of near stagnancy. (Figure 6.1). All predicted curves are based on the same set of parameters.
6.1.4 EFFECT OF MOLECULAR DIFFUSION

In order to investigate the effect of molecular diffusion parameter values obtained from regressions on Mean Response curves using Equation 5.23 (with molecular diffusion) may be compared with those using Equation 5.22 (no molecular diffusion). From Figures 6.20 and 6.21 it can be seen that the simpler model without molecular diffusion is equally capable of describing Mean Response curves. Furthermore an examination of the table below shows that the values of the parameters obtained by regression are practically identical for the two cases.

WITH MOL. DIFFUSION NO MOL. DIFFUSION

\bar{u}_{x}	0.093	0.097	0.094	0.093	0.097	$0.094 \mathrm{ft} / \mathrm{sec}$	
\bar{u}_{y}	0.0113	0.0117	(0.011)	0.0113	0.0116	$(0.011) \mathrm{ft} / \mathrm{sec}$	
α	0.00557	0.0048	0.00677	0.00556	0.0048	$0.00676 \mathrm{ft}^{2} / \mathrm{sec}$	
β	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)	$(0.3) \mathrm{sec}^{-1}$	
q	0.182	0.197	0.295	0.182	0.197	0.295	$*$

The molecular diffusivity is a measure of the power associated with molecular vibrations and its value (o.1 x $10^{-7} \mathrm{ft}^{2} / \mathrm{s}$ may be compared directly with the power of the velocity fluctuations given by Equation 5.l. The values differ by a factor of the order of 10^{6} and it is therefore not surprising that molecular diffusion has a negligible effect on dispersion. This is likely to be true for all liquid flow systems with a similar flow structure, since molecular diffusivities do not vary a great deal from liquid to liquid. In gas flow systems, however, molecular diffusion will play a more important role, as diffusivity values are of the order of 10^{5} times greater.

The following table shows parameter values obtained by regression on a single Mean Response curve (Run 4, second station) for a number of values of molecular diffusivity.

Mol.Dif.	\bar{u}_{x}	\bar{u}_{y}	α	β	q	SOS
0.1×10^{-7}	0.106	0.011	0.00766	0.3	0.329	0.689
0.1×10^{-4}	0.106	0.011	0.00763	0.3	0.329	0.693
0.1×10^{-2}	0.106	0.011	0.00432	0.3	0.326	0.778

It can be seen that the value of α decreases as D increases in order to accommodate the same amount of spread. 6.2 . HOT FILM ANEMOMETER RESULTS

Figures 6.22 and 6.23 show the results obtained from the Hot Film Anemometer experiment. The value of $\left\{\bar{u}_{x}^{2}+\bar{u}_{y}^{2}\right\}^{\frac{1}{2}} \quad$ from a regression of the distribution density function of $V(t)$ was used in the estimation of from the Autocorrelation of $\mathrm{v}^{2}(\mathrm{t})$. (Figure 6.23).

The table below shows a comparison of parameters

$$
\left\{\bar{u}_{x}^{2}+\bar{u}_{y}^{2}\right\}^{\frac{1}{2}}, \alpha, \sigma_{0}^{2} \text { and } \beta
$$

for the various methods of parameter estimation.

	α	σ_{0}^{2}	β	$\left\{\bar{u}_{x}^{2}+\bar{u}_{y}^{2}\right\}^{\frac{1}{2}}$
tracer experiments	0.006	0.0009	0.3	0.0961
distribution density $f(v)$	-	0.00314	-	0.115
	0.0196	0.00532	0.544	0.115
autocorrelation $R_{v^{2}}(\tau)$	0.0251	0.00633	0.505	0.0961

It can be seen that, whereas there is reasonable agreement for the values of $\left(\bar{u}_{x}^{2}+\bar{u}_{y}^{2}\right)^{\frac{1}{2}}$ and β obtained from tracer experiments and Hot Film Anemometer data, parameter estimations of α (and hence σ_{0}^{2}) for the two methods differ widely. A number of reasons may be suggested :

The model only accounts for velocity fluctuations in the X-and Y - directions, whereas the Hot Film probe is affected by all three velocity components.

As mentioned earlier (Section 5.2.2.1). low frequency velocity fluctuations have a dominant effect on dispersion. It was shown that dispersion is related to the area under the $R_{o}(\tau)$ versus τ curve rather than to the variance of the velocity fluctuations. This may be further demonstrated by a consideration of the case where the velocity fluctuations $\left\{U^{\prime}(t)\right\}$ have White Noise properties (Wiener process, 25). The variance of position $\bar{X}^{2}(t)$ is then given. by:

$$
\bar{x}^{2}(t)=\alpha_{w} t
$$

where,

$$
\alpha_{w}=\text { Power Spectral Density of } U^{\prime}(t)
$$

whereas the variance of the velocity fluctuations themselves is infinite.

In order to show that the addition of a low power, high frequency Ornstein-Uehlenbeck velocity process has a negligible effect on dispersion, but makes a noticeable difference to the variance of the velocity fluctuations, we assume :

$$
U^{\prime}(t)=U_{1}^{\prime}(t)+U_{2}^{\prime}(t)
$$

and

$$
\frac{d U_{1}^{\prime}(t)}{d t}+\beta_{1}^{\prime} U_{1}^{\prime}(t)=\beta_{1}^{\prime} N_{\alpha_{1}}
$$

$$
\frac{d U_{2}^{\prime}(t)}{d t}+\beta_{2}^{\prime} U_{2}^{\prime}(t)=B_{2}^{\prime} N_{\alpha_{2}^{\prime}}
$$

(see Appendix 6)
where,

$$
\beta_{2}^{\prime}>\beta_{1}^{\prime} \text { and } a_{2}^{\prime}<\alpha_{1}^{\prime} \quad 6.3
$$

If we further assume $U_{1}(t)$ and $U_{2}^{\prime}(t)$ to be uncorrelated, the autocorrelation of U '(t) becomes :

$$
\begin{array}{rlr}
R_{0}(\tau) & =\frac{\alpha_{1}^{\prime} \beta_{1}^{\prime}}{2} \exp \left(-\beta_{1}^{\prime}|\tau|\right)+\frac{\alpha_{2}^{\prime} \beta_{2}^{\prime}}{2} \exp \left(-\beta_{2}^{\prime}|\tau|\right) & 6.4 \\
\sigma_{0}^{2} & =\frac{\alpha_{1}^{\prime} \beta_{1}^{\prime}}{2}+\frac{\alpha_{2}^{\prime} \beta_{2}^{\prime}}{2} & 6.5
\end{array}
$$

(see Equations 3.3, 5.29)

Similarly, the variance of the mean response to a Dirac input is :

$$
\sigma_{1}^{2}(t)=\frac{\alpha_{1}^{\prime}}{\beta_{1}^{\prime}}\left\{\exp \left(-\beta_{1}^{\prime} t\right)-1+\beta_{1}^{\prime} t\right\}+
$$

$$
\frac{\alpha_{2}^{\prime}}{\beta_{2}^{\prime}}\left\{\exp \left(-\beta_{2}^{\prime} t\right)-1+\beta_{2}^{\prime} t\right\}
$$

The contribution from the velocity U_{2}^{1} to the total variance measured with high frequency response Aspemometer equipment is dominated by the product $\alpha_{2}^{\prime} \beta_{2}^{\prime}$ as can be seen from Equation 6.4; however its contribution to tracer dispersion is dominated by the ratio $\frac{\alpha_{2}^{1}}{\beta_{2}^{1}}$ Bearing in mind the inequalities 6.3 it can be seen that if

$$
\alpha_{2}^{\prime} \beta_{2}^{\prime} \fallingdotseq \alpha_{1}^{\prime} \beta_{1}^{\prime} \quad \text { then } \quad \frac{\alpha_{2}^{\prime}}{\beta_{2}^{\prime}} \ll \frac{\alpha_{1}^{\prime}}{\beta_{1}^{\prime}}
$$

Thus the low-power high-frequency process U_{2}^{\prime} has no effect on the measured dispersion but a large effect on the measured variance of the total velocity process. If it is assumed that parameters obtained from tracer experiments are estimates of $\alpha_{1}^{\prime}, \beta_{1}^{\prime}$ i.e. parameters of the velocity process which has a dominant effect on dispersion, we may write :

Variance of $U_{2}^{\prime}(t)=\sigma_{0}^{2}$ (Hot Film Anemometer)

The lack of fit of the distribution density function $f(v)$ (Figure 6.22) indicates a weakness in the assumptions that velocity fluctuation components are normally distributed and that their statistical parameters σ_{0}^{2} and β are equal.

In conclusion the results show that :
Firstly, the continuous state flow model is capable of describing dispersion in a relatively small region of the tank.

Secondly, the tracer experiments were insensitive to molecular diffusion and high frequency velocity fluctuations.

Thirdly, the various methods of parameter estimation yielded reasonably consistent results.

FIG. 6.6

FiG. $6 \cdot 7$

FIG. 6.10

F1G. 6.11

(2 $\left.:^{2} x^{\prime \prime} x^{\prime} x^{\prime} k^{\prime} x\right) \phi$

FIG. 6.15

FIG. 6.18

FIG. 6.20

FIG $6 \cdot 22$

FIG. 6.23

BIBLIOGRAPHY

1. Lumley J.L. and Corrsin S. Advances in Geophysics 1959 6 179. Edited by Frenkiel and Sheppard. Acad. Press Inc. N.Y. 1959.
2. Taylor G.I. Proc. London Math. Soc. Ser. 2 $192120 \quad 196$.
3. Bharucha-Reid A.T. Probabilistic Methods in Applied Mathematics. Volume 1, P 94. Academic Press 1968.
4. Krambeck F.J., Shinnar R., Katz S. I and EC Fundamentals, 19676276.
5. Taylor G.I. Proc. Roy. Soc. 1935151444.
6. Doob J.L. Selected Papers on Noise and Stochastic Processes. Edited by Wax N P. 351.
7. Taylor G.I. Proc Roy. Soc. 1954223.
8. Cox D.R. and Miller H.D. The Theory of Stochastic Processes. P. 183 Methuen.
9. de Karman T. and Howarth L. Proc Roy. Soc. $1938 \underline{164} 192$.
10. Papoulis A. Probability, Random Variables and Stochastic Processes. Chapter 8. P. 255. McGraw-Hill 1965.
11. King R.P. Chem. Eng. Sc. 1968 23 1035.
12. Doob J.I. Stochastic Processes. Chapters 2, 9. Wiley New York 1953.
13. Doob J.I. J. Appl. Math. 1942 43 357.
14. Dreifke G.E. Sc.D. Thesis, Washington University, 1961, P. 132.

BIBLIOGRAPHY (Continued)

15. Everson R.C. Ph.D. Thesis, University of Natal, South Africa, P. 50.
16. Clements W.C. Schnelle K.B. I and E.C. Proc. Des. and Development 1963 2 24.
17. Brown R.G. and Nilsson J.W. Introduction to Linear Systems Analysis. Chapter 12 P. 329.
18. Briggs P., Hammond P. Hughes M. and Plumb G. Proc. Inst. Mech. Eng. 1964 - 196579 Part 3H.
19. Roberts P.D. and Davis R.H. Proc. I.E.E., 1966 113190.
20. Papoulis A. Probability, Random Variables and Stochastic Processes. Chapter 7 P. 196. McGrawHill 1965.
21. Middleton D. Statistical Communication Theory. Chapter 7 P. 338.
22. Law V.J. and Bailey R.V. Chem. Eng. Sci. 1963, $18 \quad 189$.
23. Ornstein L.S. and Uehlenbeck G.E. Selected Papers on Noise and Stochastic Processes. P. 93. Edited by N. Wax. Dover 1954.
24. Bellman, R. Quant. Appl. Maths. $1957 \quad \underline{14} 353$.
25. Papoulis A. Probability, Random Variables and Stochastic Processes. Chapter 14 P. 502. McGraw-Hill 1965.

APPENDIX 1

EDDY DIFFUSION MODEL ** ERROR ESTIMATION

The error incurred by the application of the Eddy Diffusion model to tracer experiments carried out in this work may be estimated as follows: From Taylor (2):

$$
\overline{x^{2}}(t)=2 \sigma_{0}^{2} \int_{0}^{t} \int_{0}^{\tau} I_{R_{N}}(\tau) d \tau d \tau 1
$$

If $R_{N}(\tau)$ reaches zero at $\tau=t_{1}$ and $t>t_{1}$, we may write :
$\int_{0}^{t} \int_{0}^{\tau} I_{R_{N}}(\tau) d \tau d \tau_{1}=\int_{0}^{t}\left\{\int_{0}^{t} 1_{R_{N}}(\tau) d \tau+\int_{t_{1}}^{\tau} 1_{R_{N}}(\tau) d \tau\right\} d \tau_{1}$
where,

$$
=A t-\int_{0}^{t_{1}} \int_{\tau_{1}}^{t_{1}} R_{N}(\tau) d \tau d \tau_{l}
$$

$$
A=\int_{0}^{t_{1}} R_{N}(\tau) d \tau
$$

The last term of Equation l.B may be split up as follows:
$\int_{0}^{t} \int_{\tau_{1}}^{t_{1}} R_{N}(\tau) d \tau d \tau_{1}=\int_{0}^{t_{1}} \int_{\tau_{1}}^{t_{1}} R_{N}(\tau) d \tau d \tau_{1}+\int_{t_{1}}^{t_{1}} \int_{\tau_{1}}^{t_{1}} R_{N}(\tau) d \tau d \tau_{1}$ _.C
Since the value of τ_{1} ranges from t_{1} to t and $t>t_{1}$, the last term of Equation l.C equals zero. From Equations 3.3 it follows that :

$$
R_{N}(\tau)=\exp \{-\beta|\tau|\}
$$

Substitution of Equation l.D in Equation l. B followed by integration yields :

$$
\bar{x}^{2}(t)=\frac{2 \sigma_{0}^{2}}{\beta}\left\{t-\frac{1}{\beta}\left(1-\exp -\beta t_{1}\right)+t_{1} \exp \left(-\beta t_{1}\right)\right\}
$$

Since the Eddy Diffusion model implies : (7)

$$
\bar{x}^{2}(t)=2 \sigma_{0}^{2} A t=\frac{2 \sigma_{0}^{2} t}{\beta}
$$

the percentage error becomes :

$$
\frac{\left|-\frac{1}{\beta}\left\{1-\exp \left(-\beta t_{1}\right)\right\}+t_{1} \exp \left(-\beta t_{1}\right)\right|}{t-\frac{1}{\beta}\left\{1-\exp \left(-\beta t_{1}\right)\right\}+t_{1} \exp \left(-\beta t_{1}\right)} 100
$$

Substitution of the following values in the above expression gives a percentage error of 30%.

$$
B=0.3 ; t_{1}=8 \text { secs. (see Figure 6.23) } ; t=10 \text { secs. }
$$

APPENDIX 2

DERIVATION OF KOLMOGOROV EQUATIONS FOR

DISCRETE SPACE MODEL

The transition probability density function
$\pi\left(j, c_{2} ; t_{o}+\tau \mid i, c_{1} ; t_{o}\right)$ is defined such that
$\pi\left(j, c_{2} ; t_{0}+\tau \mid i, c_{1} ; t_{0}\right) d c_{2}$ represents the probability that at time $t_{0}+\tau$ the flow is in state j and the concentration at x_{2}, y_{2} has a value between c_{2} and $c_{2}+d c_{2}$ knowing that at time t_{0} the flow was in state i and the concentration at the point x_{1}, y_{1} had a value c_{1}.

If the source strength $q(t)$ is known flow state and concentration form a composite Markov Process and hence we may write the Chapman-kolmogorov equation :

$$
\begin{gathered}
\pi\left(j, c_{2} ; t_{0}+\tau+\Delta \tau \mid i, c_{1} ; t_{0}\right)= \\
\sum_{k} \int_{-\infty}^{\infty} \pi\left(j, c_{2} ; t_{0}+\tau+\Delta \tau \mid k, c_{2}-\Delta c ; t_{0}+\tau\right) \pi\left(k, c_{2}-\Delta c ; t_{0}+\tau \mid i, c_{1} ; t_{0}\right) d \Delta c
\end{gathered}
$$

Assuming first and second order derivatives to exist the integrand of Equation 2.A may be expanded in a closed Taylor series about c_{2} :

$$
\begin{aligned}
& \pi\left(j, c_{2} ; t_{0}+\tau+\Delta \tau \mid i, c_{1} ; t_{0}\right)= \\
& \sum_{k} \int_{-\infty}^{\infty} \pi\left(j, c_{2}+\Delta c ; t_{0}+\tau+\Delta \tau \mid k, c_{2} ; t_{0}+\tau\right) \pi\left(k, c_{2} ; t_{0}+\tau \mid i, c_{1} ; t_{0}\right) d \Delta c- \\
& \sum_{k}^{\infty} \int_{-\infty}^{\infty} \frac{\partial}{\partial c_{2}}\left\{\pi_{1}(0) \pi_{2}(0)\right\} \Delta c d \Delta c+\sum_{k} \int_{-\infty}^{\infty} \frac{\partial^{2}}{\partial c_{2}^{2}}\left\{\pi_{1}\left(\theta_{1 k}\right) \pi_{2}\left(\theta_{2 k}\right)\right\} \frac{\Delta c^{2}}{2} d \Delta c
\end{aligned}
$$

$$
\begin{gathered}
\pi_{1}\left(\theta_{1 k}\right)=\pi_{1}\left(j, c_{2}+\theta_{l k} \Delta c ; t_{0}+\tau+\Delta \tau \mid k, c_{2} ; t_{0}+\tau\right) \\
\pi_{2}\left(\theta_{2 k}\right)=\pi_{2}\left(k, c_{2}-\theta_{2 k} \Delta c ; t_{0}+\tau \mid i, c_{1} ; t_{0}\right) \\
0 \leqslant \theta_{1 k}, \theta_{2 k} \leqslant 1
\end{gathered}
$$

Integrating the first term of Equation 2.B and rearranging the second and third terms yields :

$$
\begin{gather*}
\pi\left(j, c_{2} ; t_{0}+\tau+\Delta \tau \mid i, c_{1} ; t_{0}\right)= \\
\sum_{k} \pi\left(j ; t_{0}+\tau+\Delta \tau \mid k, c_{2} ; t_{0}+\tau\right) \pi\left(k, c_{2} ; t_{0}+\tau \mid i, c_{1} ; t_{0}\right)- \\
\sum_{k} \frac{\partial}{\partial c_{2}}\left\{\pi_{2}(0) \int_{-\infty}^{\infty} \Delta c_{1}\left(j, c_{2}+\Delta c ; t_{0}+\tau+\Delta \tau \mid k, c_{2} ; t_{0}+\tau\right) d \Delta c\right\}- \\
\sum_{k} \frac{\partial^{2}}{\partial c_{2}^{2}}\left\{\int_{0}^{\infty} \frac{\Delta c^{2}}{2} \pi_{1}\left(\theta_{1 k}\right) \pi_{2}\left(\theta_{2 k}\right) d \Delta c\right\}
\end{gather*}
$$

Since the probability of a change in flow state is independent of concentration and assumed to be time-stationary we may write :

$$
\pi\left(j ; t_{0}+\tau+\Delta \tau \mid k, c_{2} t_{0}+\tau\right)=\pi(j \mid k: \Delta \tau)
$$

where,

$$
\pi(j \mid k: \Delta \tau)=\delta_{k j}+\lambda_{k j} \Delta \tau+O(\Delta \tau)
$$

Furthermore, since the concentration at the point x_{2}, y_{2} and time $t_{0}+\tau$ has the value c_{2} and the flow is in state k, the second term of the RHS of Equation $2 . C$ may be written as : (integral part only)
$\int_{-\infty}^{\infty} \frac{\partial c_{2}}{\partial t} \Delta \tau \pi_{1}\left(j, c_{2}+\Delta c ; t_{o}+\tau+\Delta \tau \mid k, c_{2} ; t_{0}+\tau\right) d \Delta c$
provided $\Delta \tau$ is small.

$$
\frac{\partial c_{2}}{\partial t} \text { is evaluated at time } t_{0}+\tau \text { and flow state } k \text {; hence }
$$

$$
\begin{align*}
\frac{\partial c_{2}}{\partial t} & =-u_{x k} \frac{\partial c_{2}}{\partial x}-u_{y k} \frac{\partial c_{2}}{\partial y}+q(t) \delta(x) \delta(y) \\
& =\alpha\left(k, c_{2}\right)
\end{align*}
$$

Similarly, the third term of the RHS of Equation 2.C may be written as : (integral part only)

$$
\int_{-\infty}^{\infty} \frac{\alpha^{2}\left(k, c_{2}\right)}{2} \Delta \tau^{2} \pi_{1}\left(\theta_{1 k}\right) \pi_{2}\left(\theta_{2 k}\right) d \Delta c
$$

and 2.F becomes :

$$
\alpha\left(k, c_{2}\right) \quad \Delta \tau
$$

Substituting Equations 2.D, 2.E, 2.F and 2.G in Equation 2.C, dividing by $\Delta \tau$ and letting $\Delta \tau \rightarrow 0$, yields the following Kolmogorov equation :

$$
\begin{aligned}
& \frac{\partial \pi}{\partial \tau}\left(j, c_{2} ; t_{0}+\tau \mid i, c_{1} ; t_{0}\right)=\sum_{k} \lambda_{k j} \pi\left(k, c_{2} ; t_{0}+\tau \mid i, c_{1} ; t_{0}\right) \\
& \quad-\frac{\partial}{\partial c_{2}}\left\{\alpha\left(j, c_{2}\right) \pi\left(j, c_{2} ; t_{0}+\tau \mid i, c_{1} ; t_{0}\right)\right\}
\end{aligned}
$$

The Kolmogorov equation associated with $p(j, c ; t)$ is obtained by multiplying each term of Equation 2.H by $p\left(i, c_{i} t\right)$, integrating over all values of c_{1} and summing over all possible flow states i.

Writing

$$
c=c_{2} \quad ; \quad t=\tau+t_{0}
$$

we obtain :

$$
\frac{\partial p}{\partial t}(j, c ; t)=\sum_{k} \lambda_{k j} p(k, c ; t)-\frac{\partial}{\partial c}\{a(j, c) p(j, c ; t)\}
$$

Similarly, a Kolmogorov equation associated with $p(j, q, c ; t)$ may be derived; it has the following form :

$$
\begin{aligned}
\frac{\partial p}{\partial t}(j, q, c ; t)= & \sum_{k} \lambda_{k j} p(k, q, c ; t)-\frac{\partial}{\partial q}\left\{\alpha_{q}(j, q) p(j, q, c ; t)\right\} \\
& -\frac{\partial}{\partial c}\left\{\alpha_{c}(j, c) p(j, q, c ; t)\right\}
\end{aligned}
$$

where,

$$
a_{q}(j, q)=E\left\{\left.\frac{d Q(t)}{d t} \right\rvert\, Q(t)=q, \text { flow state }=j\right\}
$$

For the case of a time-stationary random source function Q(t) the following Kolmogorov equation will hold :

$$
\begin{aligned}
\frac{\partial \pi}{\partial \tau}\left(j, q_{1}, c \mid i, q: \tau\right)= & \sum_{k} \lambda_{k j} \pi\left(k, q_{1}, c \mid i, q: \tau\right) \\
& -\frac{\partial}{\partial q_{1}}\left\{\alpha_{q_{1}}\left(j, q_{1}, c\right) \pi\left(j, q_{1}, c \mid i, q: \tau\right)\right\} \\
& -\frac{\partial}{\partial c}\left\{\alpha_{c}\left(j, q_{1}, c\right) \pi\left(j, q_{1}, c \mid i, q: \tau\right)\right\} \quad 2, k
\end{aligned}
$$

APPENDIX 3

DERIVATION OF EQUATION 2.30

The partial crosscorrelation is defined as :

$$
\Phi_{j q c}(0)=\int_{0}^{\infty} \int_{0}^{\infty} q c p(j, q, c ; t) d q d c
$$

Differentiating Equation 2.A with respect to t and substituting Equation 2.20 yields :

$$
\begin{align*}
\frac{\partial \Phi}{\partial t}{ }_{j q}(0) & =\int_{0}^{\infty} \int_{0}^{\infty} q c \sum_{k} \lambda_{k j} p(k, q, c ; t) d q d c- \\
& \int_{0}^{\infty} \int_{0}^{\infty} q c \frac{\partial}{\partial q}\left\{\alpha_{q}(j, q, c ; t) p(j, q, c ; t)\right\} d q d c- \\
& \int_{0}^{\infty} \int_{0}^{\infty} q c \frac{\partial}{\partial c}\left\{\alpha_{c}(j, q, c ; t) p(j, q, c ; t)\right\} d q d c
\end{align*}
$$

Substituting Equation 2.A and integrating by parts :

$$
\begin{aligned}
& \frac{\partial \Phi_{j q c}}{\partial t^{(0)}}=\sum_{k} \lambda_{k j} \Phi_{k q c}(0)-\int_{0}^{\infty} c\left|q \alpha_{q}(j \not q c ; t) p(j, q, c ; t)\right|_{q=0}^{q=\infty} d c \\
&+\int_{0}^{\infty} \int_{0}^{\infty} c \alpha_{q}(j, q, c ; t) p(j, q, c ; t) d q d c-\int_{0}^{\infty} q \mid c \alpha_{c}(j, q, c ; t) p\left(j, q, c ;\left.t\right|_{c=0} ^{c=\infty} d q\right.
\end{aligned}
$$

where,
$\alpha_{q}(j, q, c ; t)$ and $\alpha_{c}(j, q, c ; t)$ are defined by Equations

$$
2.21 \text { and } 2.22
$$

If $Q(t)$ is obtained from the output of a first order filter (time constant T_{C}) with input $N_{W}(t)$, we can write :

$$
T_{c} \frac{d Q(t)}{d t}+Q(t)=N_{w}(t)
$$

Since the value of the source strength at time t does not depend on the concentration at point (x, y) at time t, Equation 2.21 becomes :

$$
\alpha_{q}(j, q, c ; t)=E\left\{\left.\frac{d Q(t)}{d t} \right\rvert\, Q(t)=q, \text { flow state }=j\right\}
$$

From Equation 2.D it follows that :

$$
\alpha_{q}(j, q, c ; t)=\frac{1}{T_{c}} E\left\{N_{w}(t) \mid Q(t)=q\right\}-\frac{q}{T_{c}} \quad \text { 2.E }
$$

From Equation 2.22 it follows that :

$$
\alpha_{c}(j, q, c ; t)=-u_{x j} \frac{\partial c}{\partial x}-u_{y j} \frac{\partial c}{\partial y}+q(t) \delta(x) \delta(y) \quad \text { 2,F }
$$

Since $p(j, \infty, c ; t)=p(j, q, \infty ; t)=0$, the second and fourth terms of the RHS of Equation 2.C equal zero.
Substituting Equations 2,E and 2.F in Equation 2.C yields:
$\frac{\partial \Phi_{j g c^{(}}(0)}{\partial t}=\sum_{k} \lambda_{k j} \Phi_{k q c}(0)+\frac{1}{T_{c}} \int_{0}^{\infty} \int_{0}^{\infty} c E\left\{N_{W}(t) \mid Q(t)=q\right\} p(j, q, c ; t) d q d c$
$-\frac{1}{T_{c}} \int_{0}^{\infty} \int_{0}^{\infty} c q p(j, q, c ; t) d q d c-u_{x j} \int_{0}^{\infty} \int_{0}^{\infty} q \frac{\partial c}{\partial x} p(j, q, c ; t) d q d c$
$-u_{y j} \int_{0}^{\infty} \int_{0}^{\infty} q \frac{\partial c}{\partial y} p(j, q, c ; t) d q d c+\int_{0}^{\infty} \int_{0}^{\infty} q^{2} \delta(x) \delta(y) p(j, q, c ; t) d q d c$ 2.G

Consider the last term of Equation 2.G; integrating with respect to c and noting that $p(j, q ; t)=p(j ; t) p(q ; t)$, it may be written as : $R_{q q}(0, t) p(j ; t) \delta(x) \delta(y)$ where,

$$
{\underset{q}{\mathrm{P}}}_{\mathrm{q}}(\tau, t)=\text { Autocorrelation of } Q(t)
$$

Integrating the second term of the RHS of Equation 2.G with respect to q and substituting Equations 2.14 and 2.A in Equation 2.G for a time-stationary process finally yields

APPENDIX 4

EVALUATION OF COVARIANCE $\rho\left(t, \tau_{1} ; t+\tau, \tau_{2}\right)$

$$
\rho\left(t, \tau_{1} ; t+\tau_{1} \tau_{2}\right)=\int_{\tau_{2}}^{t+\tau} \int_{\tau_{1}^{t}}^{t} \operatorname{\sigma _{1}^{2}} \exp \left\{-\beta\left(\left|\theta^{\prime}-\theta^{\prime \prime}\right|\right)\right\} d \theta^{\prime} d \theta^{\prime \prime}
$$

case A

$$
t+\tau>t>\tau_{2}>\tau_{1}
$$

The region of integration is subdivided and the integral of each part is evaluated separately :

$$
\begin{aligned}
& \int_{t}^{t \cdot+\tau} \int_{\tau_{1}}^{t} \exp \left\{-\beta\left(\theta^{\prime \prime}-\theta^{\prime}\right)\right\} d \theta^{\prime} d \theta^{\prime \prime}=-\frac{1}{\beta^{2}}(\{\exp (-\beta \tau)-1\} \\
& \left.-\left[\exp \left\{-\beta\left(t+\tau-\tau_{1}\right)\right\}-\exp \left\{-\beta\left(t-\tau_{1}\right)\right\}\right]\right\}
\end{aligned}
$$

$$
\int_{\tau_{2}}^{t} \int_{\tau_{1}}^{\theta^{\prime \prime}} \exp \left\{-\beta\left(\theta^{\prime \prime}-\theta^{\prime}\right)\right\} d \theta^{\prime} d \theta^{\prime \prime}=-\frac{1}{\beta^{2}}\left(-\beta\left(t-\tau_{2}\right)\right.
$$

$$
-\left[\exp \left\{-\beta\left(t-\tau_{1}\right)\right\}-\exp \left\{-\beta\left(\tau_{2}^{\left.\left.\left.-\tau_{1}\right)\right\}\right]}\right]\right.\right.
$$

$$
\int_{\tau_{2}}^{t} \int_{\theta^{\prime \prime}}^{t} \exp \left\{-\beta\left(\theta^{\prime}-\theta^{\prime \prime}\right)\right\} d \theta^{\prime} d \theta^{\prime \prime}=
$$

$$
-\frac{1}{\beta^{2}}\left(1-\exp \left\{-\beta\left(t-\tau_{2}\right)\right\}-\beta\left(t-\tau_{2}\right)\right)
$$

Adding the three contributions yields :
$\int_{\tau_{2}}^{t+\tau} \int_{\tau_{1}}^{t} \exp \left\{-\beta\left(\left|\theta^{\prime}-\theta^{\prime \prime}\right|\right)\right\} d \theta^{\prime} d \theta^{\prime \prime}=\frac{1}{\beta^{2}}\{-\exp (-\beta \tau)+$
$\left.\exp \left\{-\beta\left(t+\tau-\tau_{1}\right)\right\}+2 \beta\left(t-\tau_{2}\right)-\exp \left\{-\beta\left(\tau_{2}-\tau_{1}\right)\right\}+\exp \left\{-\beta\left(t-\tau_{2}\right)\right\}\right)$
Case B

$$
t+\tau>t>\tau_{1}>\tau_{2}
$$

The region of integration is subdivided into two parts :

$$
\begin{aligned}
& \int_{\tau_{1}}^{t} \int_{\theta^{\prime}}^{t+\tau} \exp \left\{-\beta\left(\theta^{\prime \prime}-\theta^{\prime}\right)\right\} d \theta^{\prime \prime} d \theta^{\prime}=-\frac{1}{\beta^{2}}(\exp (-\beta \tau)- \\
&\left.\exp \left\{-\beta\left(t+\tau-\tau_{1}\right)\right\}-\beta\left(t-\tau_{1}\right)\right] \\
& \int_{\tau_{1}}^{t} \int_{\tau_{2}}^{\theta^{\prime}} \exp \left\{-\beta\left(\theta^{\prime}-\theta^{\prime \prime}\right)\right\} d \theta^{\prime \prime} d \theta^{\prime}=-\frac{1}{\beta^{2}}\left[-\beta\left(t-\tau_{1}\right)-\exp \left\{-\beta\left(t-\tau_{2}\right)\right\}\right. \\
&\left.-\exp \left\{-\beta\left(\tau_{1}-\tau_{2}\right)\right\}\right)
\end{aligned}
$$

Adding the two contributions yields :

$$
\begin{gathered}
\int_{\tau_{2}}^{t+\tau_{1}} \int_{\tau_{1}}^{t} \exp \left\{-\beta\left(\left|\theta^{\prime}-\theta^{\prime}\right|\right) d \theta^{\prime} d \theta^{\prime \prime}=\frac{1}{\beta^{2}}\left(-\exp (-\beta \tau)+2 \beta\left(t-\tau_{1}\right)+\right.\right. \\
\left.\quad \exp \left\{-\beta\left(t+\tau-\tau_{1}\right)\right\}+\exp \left\{-\beta\left(t-\tau_{2}\right)\right\}-\exp \left\{-\beta\left(\tau_{1}-\tau_{2}\right)\right\}\right)
\end{gathered}
$$

case C

$$
t+\tau>\tau_{2}>t>\tau_{1}
$$

$$
\begin{aligned}
& \int_{\tau_{2}}^{t+\tau} \int_{\tau_{1}}^{t} \exp \left\{-\beta\left(\left|\theta^{\prime \prime}-\theta^{\prime}\right|\right)\right\} d \theta^{\prime} d \theta^{\prime \prime}=\frac{1}{\beta^{2}}\{-\exp (-\beta \tau)+ \\
& \left.\quad \exp \left\{-\beta\left(t+\tau-\tau_{1}\right)\right\}+\exp \left\{-\beta\left(\tau_{2}-t\right)\right\}-\exp \left\{-\beta\left(\tau_{2}-\tau_{1}\right)\right\}\right\}
\end{aligned}
$$

APPENDIX 5

MIXING EQUATIONS FOR CONTINUOUS STATE FLOW MODEL

WITH MOLECULAR DIFFUSION

Dispersion is described by the following stochastic partial differential equation :
$\frac{\partial C}{\partial t}=-U_{x}(t) \frac{\partial C}{\partial x}+D \frac{\partial^{2} C}{\partial x^{2}}-U_{y}(t) \frac{\partial C}{\partial t}+D \frac{\partial^{2} C}{\partial y^{2}}+q(t) \delta(x) \delta(y) \quad$ 5.A
Defining a two-sided Laplace Transform by :
$L\{C(x, y, t)\}=\bar{C}(s, p, t)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} C(x, y, t) \exp (-s x) \exp (-p y) d x d y$ we obtain expressions for $L\left\{\frac{\partial C}{\partial x}\right\}$ and $L\left\{\frac{\partial^{2} C}{\partial x^{2}}\right\}$ as follows :
$L\left\{\frac{\partial C}{\partial x}\right\}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial C}{\partial x} \exp (-s x) \exp (-p y) d x d y$
Integrating Equation 5.B by parts and noting that $C(x, y, t)=0$, when $x, y=-\infty$, yields:
$L\left\{\frac{\partial C}{\partial x}\right\}=s \bar{C}(s, p, t) \quad ; \quad L\left\{\frac{\partial C}{\partial y}\right\}=p \bar{C}(s, p, t)$
$L\left\{\frac{\partial^{2} C}{\partial x^{2}}\right\}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial^{2} C}{\partial x^{2}} \exp (-s x) \exp (-p y) d x d y$
$=\int_{-\infty}^{\infty}\left|\frac{\partial C}{\partial x} \exp (-s x)\right|_{-\infty}^{\infty} \exp (-p y) d y-$ $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(-s) \frac{\partial C}{\partial x} \exp (-s x) \exp (-p y) d x d y$

Assuming that $\frac{\partial C}{\partial x}$ converges sufficiently strongly as $x \rightarrow-\infty$, the first term equals zero. Substitution of Equation 5.C yields :
$L\left\{\frac{\partial^{2} C}{\partial x^{2}}\right\}=s^{2} \bar{C}(s, p, t) \quad ; \quad L\left\{\frac{\partial^{2} C}{\partial y^{2}}\right\}=p^{2} \bar{C}(s, p, t)$

Taking the Laplace Transform of Equation 5.A :
$\frac{d \bar{C}}{d t}=-U_{x}(t) s \bar{C}+D s^{2} \bar{C}-U_{Y}(t) p \bar{C}+D p^{2} \bar{C}+q(t) \quad$ 5.E
and solving Equation 5.E with initial condition

$$
c(x, y, 0)=0 \quad ; \quad \bar{c}(s, p, 0)=0, \text { yields }:
$$

$\bar{C}(s, p, t)=\int_{0}^{t} q(\tau) \exp \left[s^{2} D(t-\tau)-s W_{x}(t, \tau)+\right.$

$$
\left.p^{2} D(t-\tau)-p W_{Y}(t, \tau)\right\} d \tau
$$

where $W_{x}(t, \tau)$ and $W_{y}(t, \tau)$ are defined by Equations 3.11 . Noting that
$\int_{-\infty}^{\infty} \exp \left\{\frac{-(x-u t)^{2}}{4 D t}\right\} \exp (-s x) d x=2(\pi D t)^{\frac{1}{2}} \exp \left(s^{2} D t-s u t\right)$
Equation 5.F may be inverted as follows :
$C(x, y, t)=\int_{0}^{t} \frac{q(\tau)}{4 \pi D(t-\tau)} \exp \left(\frac{-\left\{x-W_{x}(t, \tau)\right\}^{2}-\left\{y-W_{y}(t, \tau)\right\}^{2}}{4 D(t-\tau)}\right) d \tau$

Mean concentration $\mu(x, y, t)$
The mean concentration is defined as :

$$
\mu(x, y, t)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} c(x, y, t) f\left(w_{x}, t, \tau\right) f\left(w_{y}, t, \tau\right) d w_{x} d w_{y} \quad 5 . H
$$

where,
$f\left(w_{x}, t, \tau\right)$ and $f\left(w_{y}, t, \tau\right)$ are Normal probability
density functions for the Random Processes $W_{X}(t, \tau)$ and $W_{y}(t, \tau)$.
Substituting in Equation 5.H and integrating with respect to w_{x} and w_{y} by the method of completing the square finally yields Equation 3.40.

Crosscorrelation $\Phi\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{2}, \mathrm{Y}_{2}: \tau\right)$

When the tracer source is a time-stationary function $Q(t)$ the concentration at a point (x, y) is given by : $C(x, y, t)=\int_{-\infty}^{t} \frac{Q(\tau)}{4 \pi D(t-\tau)} \exp \left(\frac{-\left\{x-W_{x}(t, \tau)\right\}^{2}-\left\{y-W_{y}(t, \tau)\right\}^{2}}{4 D(t-\tau)}\right) d \tau \quad$ 5.I

The concentration crosscorrelation between points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is defined as :

$$
\Phi\left(x_{1}, Y_{1}, x_{2}, Y_{2} ; \tau\right)=E\left\{C\left(x_{1}, Y_{1}, t\right) C\left(x_{2}, Y_{2}, t+\tau\right)\right\}
$$

Substituting Equation 5.I and rearranging exponential terms yields :
$\Phi\left(x_{1}, y_{1}, x_{2}, y_{2}: \tau\right)=E\left\{\int_{-\infty}^{t+\tau} \int_{-\infty}^{t} \frac{Q\left(\tau_{1}\right) Q\left(\tau_{2}\right)}{(4 \pi D)^{2}\left(t-\tau_{1}\right)\left(t+\tau-\tau_{2}\right)}\right.$

$$
\left.\exp \left(\frac{-\left(x_{1}-W_{x 1}\right)^{2}}{4 D(t-\tau}\right)-\frac{\left(x_{2}-W_{x 2}\right)^{2}}{4 \bar{D}\left(t+\tau-\tau_{2}\right)}\right)
$$

$$
\left.\exp \left(\frac{-\left(y_{1}-W_{y I}\right)^{2}}{4 D\left(t-\tau_{I}\right)}-\frac{\left(y_{2}-W_{y 2}\right)^{2}}{4 D\left(t+\tau-\tau_{2}\right)}\right) d \tau_{I} d \tau_{2}\right\}
$$

Since the tracer source function $Q(t)$ and the Random Processes $W_{x}(t, \tau), W_{Y}(t, \tau)$ are mutually independent Equation 5. K may be written as :

$$
\begin{aligned}
& \Phi\left(x_{1}, y_{1}, x_{2}, y_{2}: \tau\right)=\int_{-\infty}^{t+\tau} \int_{-\infty}^{t} \frac{E\left\{Q\left(\tau_{1}\right) Q\left(\tau_{2}\right)\right\}}{(4 \pi D)^{2}\left(t-\tau_{1}\right)\left(t+\tau-\tau_{2}\right)} \\
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp \left(\frac{-\left(x_{1}-w_{x 1}\right)^{2}}{4 D\left(t-\tau_{1}\right)}-\frac{\left(x_{2}-w_{x 2}\right)^{2}}{4 D\left(t+\tau-\tau_{2}\right)}\right) f\left(w_{x 1}, w_{x 2}\right) d w_{x 1} d w_{x 2} \\
& \left.\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp \left(\frac{-\left(y_{1}-w_{y 1}\right)^{2}}{4 D\left(t-\tau_{1}\right)}-\frac{\left(y_{2}-w_{y 2}\right)^{2}}{4 D\left(t+\tau-\tau_{2}\right.}\right)\right) f\left(w_{y 1}, w_{y 2}\right) d w_{y 1} d w_{y 2} d \tau_{1} d \tau_{2}
\end{aligned}
$$

$f\left(W_{x 1}, w_{x 2}\right)=$ joint Normal probability density function for $W_{x 1}$ and $W_{x 2}$.
$f\left(w_{y_{1}}, w_{y_{2}}\right)=$ joint Normal probability density function for $W_{y 1}$ and $W_{y 2}$.
The above density functions have the following form (see Equations 3.29) :

$$
5 . \mathrm{M}
$$

Substituting Equations 5.M in Equation 5.L and carrying out the integrations with respect to $\mathrm{w}_{\mathrm{xl}}, \mathrm{w}_{\mathrm{x} 2}, \mathrm{w}_{\mathrm{y} 1}$ and $W_{Y_{2}}$ by the method of completing the square yields :

$$
\begin{aligned}
& \Phi\left(x_{1}, y_{1}, x_{2}, y_{2}: \tau\right)=\int_{-\infty}^{t+\tau} \int_{-\infty}^{t} \frac{E\left\{Q\left(\tau_{1}\right) Q\left(\tau_{2}\right)\right\}}{(4 \pi D)^{2}\left(t-\tau_{1}\right)\left(t+\tau-\tau_{2}\right)\left\{2 \pi \sigma_{1,1} \sigma_{1,2}\left(1-r^{2}\right)^{\frac{1}{2}}\right\}^{2}} \\
& \pi^{2}\left\{\frac{1}{\alpha_{1}}+\frac{1}{\beta_{1}}\right\}^{-1}\left(\frac{1}{\alpha_{2}}+\frac{1}{\beta_{2}}-\left\{\frac{1}{\alpha_{1}}+\frac{1}{\beta_{1}}\right\}^{-1} \frac{r^{2}}{\left(1-r^{2}\right)^{2} \gamma^{2}}\right)^{-1} \\
& \exp -\left(\frac{x_{1}^{2}}{\alpha_{1}}+\frac{x_{2}^{2}}{\alpha_{2}}+\frac{m_{1 x, 1}^{2}}{\beta_{1}}+\frac{m_{1 x, 2}^{2}}{\beta_{2}}-\frac{2 r m_{1 x, 1} 1 x_{, 2}}{\left(1-r^{2}\right) \gamma}-\left\{\frac{1}{\alpha_{1}}+\frac{1}{\beta_{1}}\right\}^{-1}\right. \\
& \left.\left\{\left(\frac{x_{1}}{\alpha_{1}}+\frac{m_{l x, 1}}{\beta_{1}}\right)^{2}+\frac{r^{2} m_{l x, 2}^{2}}{\left(1-r^{2}\right)^{2} \gamma^{2}}-\frac{2 r m_{l x, 2}}{\left(1-r^{2}\right) \gamma}\left\{\frac{x_{1}}{\alpha_{1}}+\frac{m_{l x, 1}}{\beta_{1}}\right)\right\}\right)
\end{aligned}
$$

$$
\begin{aligned}
& f\left(w_{x 1}, w_{x 2}\right)=\frac{1}{2 \pi\left(1-r^{2}\right)^{\frac{1}{2}}} \exp \left(\frac { - 1 } { (1 - r ^ { 2 }) } \left\{\frac{\left(w_{x 1}-m_{1 x, 1}\right)^{2}}{\sigma_{1,1}^{2}}-\right.\right. \\
& \left.\left.\frac{2 r\left(w_{x 1^{-m}} 1 x_{1,1}\right)\left(w_{x 2^{-m}} m_{1 x, 2}\right)}{\sigma_{1,1} \sigma_{1,2}}-\frac{\left(w_{x 2^{-m}} 1 x, 2\right)^{2}}{\sigma_{1,2}^{2}}\right\}\right) \\
& f\left(w_{y l}, w_{y 2}\right)=\frac{1}{2 \pi\left(1-r^{2}\right)^{\frac{1}{2}}} \exp \left(\frac { - 1 } { (1 - r ^ { 2 }) } \left\{\frac{\left(w_{y 1}-m_{l y, 1}\right)^{2}}{\sigma_{1,1}^{2}}-\right.\right. \\
& \left.\left.\frac{2 r\left(w_{y 1} 1^{-m} 1 y, 1\right)\left(w_{y 2^{-m}} l_{y, 2}\right)}{\sigma_{1,1}{ }^{\sigma} 1,2}-\frac{\left(w_{y 2^{-m}} 1 y, 2^{2}\right.}{\sigma_{1,2}^{2}}\right\}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \exp \left(\{ \frac { 1 } { \alpha _ { 2 } } + \frac { 1 } { \beta _ { 2 } } \{ \frac { 1 } { \alpha _ { 1 } } + \frac { 1 } { \beta _ { 1 } } \} ^ { - 1 } \frac { r ^ { 2 } } { (1 - r ^ { 2 }) ^ { 2 } \gamma ^ { 2 } }) ^ { - 1 } \left\{\frac{x_{2}}{\alpha_{2}}-\frac{r m_{1 x_{1}}}{\left(1-r^{2}\right) \gamma}+\frac{m_{1 x, 2}}{\beta_{2}}+\right.\right. \\
& \left.\left.\left\{\frac{1}{\alpha_{1}}+\frac{1}{\beta_{1}}\right\}^{-1}\left\{\frac{r}{\left(1-r^{2}\right) \gamma}\left\{\frac{x_{1}}{\alpha_{1}}+\frac{m_{1 x_{1}} l_{1}}{\beta_{1}}\right\}-\frac{r^{2} m_{1 x, 2}}{\left(1-r^{2}\right)^{2} \gamma^{2}}\right]\right)^{2}\right)
\end{aligned}
$$

$$
\exp -\left[\frac{y_{1}^{2}}{\alpha_{1}}+\frac{y_{2}^{2}}{\alpha_{2}}+\frac{m_{l y, 1}^{2}}{\beta_{1}}+\frac{m_{l y, 2}^{2}}{\beta_{2}}-\frac{2 r m_{1 y_{1} 1}^{m} l y_{1} 2}{\left(1-r^{2}\right) \gamma}-i \frac{1}{\alpha_{1}}+\frac{l_{1}}{\beta_{1}}\right\}^{-1}
$$

$$
\left.\left\{\left(\frac{y_{1}}{\alpha_{1}}+\frac{m_{l y, 1}}{\beta_{1}}\right)^{2}+\frac{r^{2} m_{1 y, 2}^{2}}{\left(1-r^{2}\right)^{2} y^{2}}-\frac{2 r m_{1 y, 2}}{\left(1-x^{2}\right) \gamma}\left(\frac{y_{1}}{\alpha_{1}}+\frac{m_{1 y, 1}}{\beta_{1}}\right)\right\}\right)
$$

$$
\exp \left[(\frac { 1 } { \alpha _ { 2 } } + \frac { 1 } { \beta _ { 2 } } \{ \frac { 1 } { \alpha _ { 1 } } + \frac { 1 } { \beta _ { 1 } } \} ^ { - 1 } \frac { r ^ { 2 } } { (1 - r ^ { 2 }) ^ { 2 } \gamma ^ { 2 } }) ^ { - 1 } \left(\frac{y_{2}}{\alpha_{2}}-\frac{r m_{1}, 1}{\left(1-r^{2}\right) \gamma}+\frac{m_{1 y_{1}}}{\beta_{2}}+\right.\right.
$$

$$
\left.\left.\left\{\frac{1}{\alpha_{1}}+\frac{1}{\beta_{1}}\right\}-1\left[\frac{r}{\left(1-r^{2}\right) \gamma}\left\{\frac{y_{1}}{\alpha_{1}}+\frac{m_{1 y, 1}}{\beta_{1}}\right\}-\frac{r^{2} m_{l y, 2}}{\left(1-r^{2}\right)^{2} \gamma^{2}}\right]\right)^{2}\right) d \tau_{1} d \tau_{2}
$$

where,

$$
\begin{array}{lll}
\alpha_{1} & =4 D\left(t-\tau_{1}\right) & ; \\
\beta_{1} & =\left(1-r^{2}\right) \sigma_{1,1}^{2}=4 D\left(t+\tau-\tau_{2}\right) \\
\gamma & =\sigma_{1,1} \sigma_{1,2} & ;
\end{array}
$$

A transformation of variables according to Equations 3.31 finally yields Equation 3.44.

APPENDIX 6

INTRODUCTION OF FLOW PARAMETER α

It is assumed that the random process of velocity fluctuations is described by the following stochastic differential equation :

$$
\frac{d U^{\prime}(t)}{d t}+\beta U^{\prime}(t)=\beta N_{\alpha}(t)
$$

where,
$N_{\alpha}(t)$ has the following White Noise properties :

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{N}_{\alpha}}(\tau)=\mathrm{E}\left\{\mathrm{~N}_{\alpha}(t) \mathrm{N}_{\alpha}(t+\tau)\right\}=\alpha \delta(\tau) \\
& \operatorname{PSD}_{\mathrm{N}_{\alpha}}(w)=\alpha
\end{aligned}
$$

Equation 6.A may be integrated as follows :

$$
U^{\prime}(t)=\int_{0}^{t} \beta N_{\alpha}(\tau) \exp \{-\beta(t-\tau)\} d \tau
$$

The autocorrelation of $U^{\prime}(t)$ is defined by :

$$
R_{0}\left(t_{1}, t_{2}\right)=E\left\{U^{\prime}\left(t_{1}\right) U^{\prime}\left(t_{2}\right)\right\}
$$

Substituting Equation 6.C and taking the Expected Value operation inside the integral yields :
$R_{0}\left(t_{1}, t_{2}\right)=\beta^{2} \int_{0}^{t_{2}} \int_{0}^{t_{1_{E}}\left\{N_{\alpha}\left(\tau_{1}\right) N_{\alpha}\left(\tau_{2}\right)\right\} \exp \left\{-\beta\left(t_{1}+t_{2}-\tau_{1}-\tau_{2}\right)\right\}}$
6.D

$$
\mathrm{d} \tau_{1} \mathrm{~d} \tau_{2}
$$

From Equations 6.B and 6.D it follows that :

$$
R_{0}\left(t_{1}, t_{2}\right)=\beta^{2} \int_{0}^{t_{2}} \int_{0}^{t_{1}} \alpha \delta\left(\tau_{1}-\tau_{2}\right) \exp \left\{-\beta\left(t_{1}+t_{2}-\tau_{1}-\tau_{2}\right)\right\} d \tau_{1} d \tau_{2}
$$

Integrating Equation 6.E with respect to τ_{1} and τ_{2} for $t_{1}>t_{2}$ yields :
$R_{0}\left(t_{1}, t_{2}\right)=\frac{\alpha \beta}{2}\left(\exp \left\{-\beta\left(t_{1}-t_{2}\right)\right\}-\exp \left\{-\beta\left(t_{1}+t_{2}\right)\right\}\right)$
For large values of t_{1}, t_{2} the second exponential term of Equation 6.F is small and may be neglected. Hence :

$$
R_{0}\left(t_{1}-t_{2}\right)=\frac{\alpha \beta}{2} \exp \left\{-\beta\left(t_{1}-t_{2}\right)\right\}
$$

From Equations 6.G, 3.3, 5.21 it follows that :

$$
\sigma_{0}^{2}=\frac{\alpha \beta}{2}
$$

APPENDIX' 7

NOTE ON UNITS OF $g(t)$ and $C(t)$

From equation 1.1 it follows that the units of $q(t) \cdot \delta(x) \cdot \delta(y)$ are concentration. Since concentration time
readings are integrated across the width of the tank (d), the units of concentration are $\frac{\text { mass }}{\operatorname{area}}$ and the units of
$q(t)$ become mass.
(see section 4.4)

The values of concentration actually used are in terms of mls. of concentrated tracer solution per V_{c} cu. ft. of water, where $V_{c}=$ volume of water used in calibration of probes.

The values of $q(t)$ actually measured are in terms of mls. of diluted ($1: 10$) tracer solution per minute. Hence in order to compare the values of q obtained from regressions with q^{\prime} measured the following conversion factor must be used :

$$
q_{\text {measured }}=\frac{V}{10 \times 60 \times d} \quad q_{\text {measured }}^{\prime}
$$

$$
V_{C} / d \quad q^{\prime} \text { measured } \quad q_{\text {measured }}
$$

Runs 1, 2	11.84	12.5	0.247
Runs 3, 4, 5,	11.94	15	0.3

The tracer flow rate was measured by noting the steady rotameter reading with the solenoid valve fully opened. (see Figure 4.1)

APPENDIX 8

DETAILS OF EQUIPMENT

(i) Photocells

Lange Gmbh. Berlin; Type Si-14.
(ii) Amplifiers

Beckman Data Amp. Type 491.
Power Supply Type 392.
Input Coupler Type 9801.
(iii) Frequency Modulators

Wavetek Voltage Controlled Generator ; Model 111.
(iv) Taperecorders

Philips International ; Type EL 3549 A / OO.
(v) Data processing Unit (see photograph on page 139)

Philips EL 3549 A/OO Taperecorder
Philips PW 4230 Scalers
Philips PW 4260 Timer
Philips PW 4201 Controller
Philips PW 4210 Power Supply
Philips PW 4211 Power Supply
Philips PW 4209 Printer Control
Addo-X Model 13-0341 - Printer
I.B.M. Card Punching machine ; Type 024.
(vi) P.R.B.S. Signal Generator

Control Logic, S.A.
(vii) Hot Film Anemometer

Flow Corporation U.S.A.
Constant Temp. Anemometer Series 900-1

FIG. 8.A


```
Velocity and Temp. Monitor Series 900-2
    (see Figure 8.A)
Sensor Type B-l-N
```

