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Abstract 

Piracy is still a significant threat to ships in a maritime environment. Areas such as the coast of Somalia 

and the Strait of Malacca are still plagued by pirates, and the total international cost of piracy numbers 

in the billions of dollars. The first line of defence against these threats is early detection and thus 

maritime surveillance has become an increasingly important task over the years. While surveillance has 

traditionally been a manual task using crew members in lookout positions on parts of the ship, much 

work is being done to automate this task using digital cameras equipped with computer vision software. 

While these systems are beneficial in that they do not grow tired like their human counterparts, the 

maritime environment is a challenging task for computer vision systems. This dissertation aims to 

address some of these challenges by presenting a system that is able to use prior knowledge of an 

object’s shape to aid in detection and tracking of the object. Additionally, it aims to test this system 

under various environmental conditions (such as weather). The system is based around the 

segmentation technique known as the level set method, which uses a contour in the image that is 

evolved to separate regions of interest. The system is split into two parts, comprising of an object 

detection stage that initially finds objects in a scene, and an object tracking stage that tracks detected 

objects for the rest of the sequence. The object detection stage uses a kernel density estimation-based 

background subtraction and a binary image level set filter, while the object tracker makes use of a 

tracking level set algorithm for its functionality. The object detector was tested using a group of 4 

sequences, of which it was able to find a prior-known object in 3. The object tracker was tested on a 

group of 10 sequences for 300 frames a sequence. In 6 of these sequences the object tracker was able 

to successfully track the object in every single frame. It is shown that the developed video tracking 

system outperforms level set–based systems that don’t use prior shape knowledge, working well even 

where these systems fail. 
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Chapter 1 - Introduction 

While the word “pirate” brings to mind thoughts of the swashbuckling, one-eyed seafarers of 

childhood fantasy, the term still, unfortunately, has use in today’s modern world. Costing an 

estimated $13 to $16 billion a year [1], piracy remains a pertinent problem. Areas such as the 

coast of Somalia, the Strait of Malacca, Falcon Lake and recently the Gulf of Guinea are infamous 

for their reputation as pirate hunting grounds. 

Despite increased security, piracy in these areas is increasing over the years. Inspection of pirate-

related incidents per year (Figure 1-1) shows a clear increase in the number of attacks. While 

recent years have seen a slight drop in reported incidents of piracy, 439 attacks were reported in 

2011 according to the International Maritime Bureau (IMB) [2].  
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Figure 1-1 – Number of pirate attacks per year according to a number of sources including the IMB [3] 

The abovementioned problem areas are subject to a high amount of international traffic, in which 

cargo ships must navigate through narrow bodies of water such as the Gulf of Aden near Somalia 

and the Strait of Malacca. This large amount of traffic requires that ships reduce their cruising 

speeds, making them prime targets for piracy [4]. The small motorboats that pirates use easily 

overtake their targets in these tight waters.  
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Due to the increased threat of piracy, surveillance is an absolute must on cargo ships travelling in 

these dangerous areas. While radar systems have been extensively used in maritime 

environments, these generally require large, metallic targets. Modern pirates favour small, fast 

Rigid Inflatable Boats (RIB) that are mainly non-metallic and thus difficult to detect [5]. While the 

solution to this would seem to be the use of manual detection using dedicated crew members on 

board, the small number at any given time makes this unfeasible.   

The advent of the digital camera system has been an essential addition to maritime surveillance. 

Rather than requiring a number of crew members at guard points around the ship, guards may be 

replaced by several cameras that are monitored by a single crew member.  

While this reduces the need for a large number of crew members, it still leaves a lot of room for 

human error. A single crew member monitoring each camera is required to stay alert at all times 

and identify and track various objects on the screen. This is far from ideal as human fatigue quickly 

sets in and after a few minutes a human observer can overlook a small vessel [6]. It is for these 

reasons that the surveillance process must be automated.   

As humans can grow tired, there is a necessity to design and implement automated surveillance 

systems that are able to constantly monitor camera feeds. These video tracking systems first 

detect objects of interest around a ship and then track detected objects. Production of such a 

system is a challenging task, especially in a maritime environment: 

 If cameras are to be mounted on a mast, constant motion from the ship produces a 

moving background. In methods that detect objects based on their motion, this would 

produce a large amount of errors. 

 The constant motion of the sea from waves will again produce a large amount of 

erroneous detections using these methods, even if a camera is stationary. 

A large number of previous works in literature attempt to circumvent these problems by trying to 

characterise the ocean. Some require the user input certain parts of the image that are known to 

be ocean, and attempt to characterise it according to its appearance [5,6] or group similar-looking 

parts of the image together in expectation that the ocean forms the largest segment [7]These 

approaches then remove the “ocean” parts of the image assuming that what remains are objects 

of substantial interest. 
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While they may work well, the requirement of user input is undesirable. Furthermore, the ocean is 

subject to a number of changes throughout the day, and one classification that works well in the 

morning may not work at all by the afternoon. 

Szpak and Tapamo [8] present a completely different approach that attempts to track objects 

using a closed curve in the image (a method known as level set segmentation) after they have 

been detected using a motion-based detection system.  While the tracking results are very good, 

object detection suffers from detection of a large number of non-ship objects due to motion from 

waves.  

1.1 Motivation and Problem Definition 

Owing to the large amount of non-ship objects that are detected in Szpak and Tapamo’s work, a 

method of sorting actual objects of interest from the rest would be beneficial. Although a purely 

motion-based detector would not be able to differentiate between parts of the image belonging to 

the waves and those belonging to an object of interest, the difference in shape between the two is 

easy to distinguish. 

This serves as a motivation for the incorporation of prior knowledge of shape into the system to 

increase accuracy. To do this, the use of level set segmentation with shape priors may be used.  

A further motivation for this methodology is the lack of current object tracking literature that does 

use knowledge of shape to aid results in a maritime problem. 

1.1.1 Problem Definition 

The final objective of this research is to produce a video tracking algorithm that is capable of 

finding and tracking various maritime objects in a given scene. The tracker should be tailored to 

operate in a maritime environment, which presents a unique set of image processing challenges. 

Additionally, according to Dubravko et al [9], any maritime video tracker should: 

1. “Determine potentially threatening objects within a scene containing a complex, moving 

background. In marine surveillance applications, it is essential that the algorithm can deal 

with moving background such as flickering water surfaces and moving clouds, and still 

detect potential objects of interest.” [9] 

2. “Produce no false negatives (mistakenly overlooking a ship in the image) and a minimal 

number of false positives (mistakenly classifying waves as a ship). A surveillance 
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application in general prefers no false negatives so that no potential threat is ever 

overlooked. On the other hand, having too many false positives would make potential 

postprocessing activities, such as object classification, highly impractical.” [9] 

3. “Be fast and highly efficient, operating at a reasonable frame rate. The object that poses a 

potential threat must be detected fast so that the appropriate preventive action can be 

taken in a timely manner. Furthermore, if the algorithm operates at an extremely small 

frame rate due to its inefficiency, some potential objects of interest could be overlooked.” 

[9] 

4. “Use a minimal number of scene-related assumptions. When designing an object 

detection method for marine surveillance, making the algorithm dependent upon too 

many assumptions regarding a scene setting would likely make the algorithm fail as soon 

as some of the assumptions do not hold.” [9] 

The problem definition for this dissertation is thus as follows:  

 Model and produce a prototype maritime video tracking system. This system will be 

equipped with prior-knowledge of maritime objects’ shape that may be used to aid results 

in both object detection and tracking. It should also be in agreement (or as much as 

possible) with the above requirements. 

 Run the system on a set of test data in the form of maritime scenes. These scenes contain 

a variety of scenarios with various targets, viewpoints and weather conditions.  

1.2 Main Goal and Specific Objectives 

The main goal of this work is to find a way to introduce knowledge of shape into the maritime 

tracking process that allows it to increase segmentation accuracy as much as possible. Specifically, 

the objectives that need to be achieved in this work are to: 

 Investigate and present current methodology for the incorporation of prior knowledge of 

an object’s shape into segmentation using level sets. 

 Design and implement a video tracking system that must produce object detection results 

that ideally have zero false negative and have as few false positives as possible, using 

shape knowledge. 
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 Use this knowledge for object tracking, maximising the number of frames for which the 

algorithm is able to track the object while maintaining a correct boundary around the 

object at all times. 

1.3 Contributions 

This work contributes in the following ways: 

 Design of a model that incorporates shape knowledge into object detection and tracking. 

This is in the form of a modification to the method presented by Tsai et al [10] to 

incorporate shape knowledge into level set segmentation.  

 The later modification opens up a number of possibilities for alterations of the algorithm’s 

behaviour. These include modifications for better segmentation results in binary images, 

and incorporation of both shape and interior pixel models for object tracking.  

1.4 Dissertation Outline 

Chapter 2 introduces the concept of video tracking and covers introductory theory to the subject. 

The subject of video tracking is a broad one containing a number of different approaches to the 

problem. This chapter tries to group these approaches into different varieties and introduces 

elementary theory on each variety of both object detection and object tracking. Finally, the 

various attempts at applying these methods to a maritime tracking problem are discussed. 

As Szpak and Tapamo’s approach [8] is used as a foundation for the work presented in this 

dissertation, various methods of applying background subtraction (the object detector used in [8]) 

are reviewed in Chapter 3 followed by a review of level set segmentation methods (the object 

tracker used) in Chapter 4.  

Chapter 4 contains a full discussion on the introduction of shape knowledge into the use of level 

sets for segmentation, including the various ways it is achieved and how multiple shapes may be 

incorporated.  

Chapter 5 presents explicit details of the final model implemented. The overall system is 

presented, followed by a discussion of the level set algorithm used. This algorithm is presented in 

detail, followed by novel modifications to it. The chapter continues with details of the various sub-

systems of the object detector and object tracker. It is further shown how the background 

subtraction algorithm is implemented, how the results are filtered and finally classified using a 
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level set method with shape priors. These modules form the basis of the object detection scheme.  

This is followed by a discussion of the method for tracking objects once they have been found in 

the scene using a level set method with shape priors. 

Chapter 6 presents results achieved. Metrics used to measure data and their meanings are 

covered, followed by a discussion of how various parameters in the system are optimised. Finally, 

results of the object detector and object tracker are presented and discussed. 

Chapter 7 summarizes the main elements of each chapter and outlines some ideas for future 

work.  



7 
 

Chapter 2 - Literature Review 

2.1 Introduction 

It has been shown that the maritime environment has a clear need for automated object detection 

and tracking methods for security purposes, particularly in the unexplored field of level set 

segmentation using shape prior information. This chapter explores the components of such an 

automated object detection and tracking system and the variety of methods that are used. This 

includes details on object detection and object tracking, and a discussion of previous work on 

video tracking in the maritime environment. 

2.2 Video Tracking 

Video tracking is loosely defined as the “process of estimating over time the location of one or 

more objects using a camera” [11] and systems generally consist of an object detector and object 

tracker. Video tracking is used in a variety of tasks such as [12]: 

 Human identification based on motion. 

 Automated surveillance. 

 Video indexing: Automated annotation and retrieval of videos in multimedia databases. 

 Human-computer interaction including iris tracking and gesture recognition such as 

Microsoft’s Kinect device [13]. 

 Traffic monitoring that provides real time statistics of traffic flow. 

 Vehicle navigation that uses video-based path planning and obstacle avoidance. 

Due to the unpredictable nature of video input, there are many challenges in the design of a video 

tracker. These include: 

 Changes in pose of a target - If a tracker is designed to detect objects that are in a 

particular orientation (say cars from the side) changes in the objects pose (the car turns 

and faces the camera) may cause errors. 

 Changes in ambient illumination due to weather conditions in an outdoor scene. This is 

particularly pertinent in a maritime environment where the sun may cause excessive 

amounts of glint on the ocean surface at particular times of the day. 

 Noise from the camera. 
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 Occlusions from a target moving behind an object, obscuring its view. Thankfully in a 

maritime environment this is seldom a problem as objects are so spaced out from one 

another. 

Certain assumptions, however, allow for simplification of the video tracking system. Some 

examples of common assumptions are: 

 The camera is stationary (no camera panning). 

 The motion of objects is smooth. 

 Objects move with constant velocity or acceleration. 

While the design of a video tracker varies from one method to another, Maggio and Cavallaro [11] 

suggest a generalisation of the system as shown in Figure 2-1. 

 

Figure 2-1 - Overview of an object tracker [11] 

The sequence            represents the input frames of the video sequence. Each frame    

is an element of    which is defined as the space of all possible images. For a single object, object 

tracking produces an estimation of the time series              where    represents the 

state of the target for frame  . This state is dependent on the target representation, which is 

dependent on the algorithm used. Figure 2-2 shows a number of target representations using a 

human as a target object. 
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Figure 2-2 - Various possible target representations for a particular object. (a) Centroid, (b) multiple points, (c) 
rectangular  patch, (d) elliptical patch, (e) part-based multiple patches, (f) object skeleton, (g) complete object contour, 

(h) control points on object contour, (i) object silhouette. [12] 

In order to estimate target states,    may be mapped from the image space    to the feature space 

   which highlights information that is relevant to tracking. This method is known as feature 

extraction and produces a set of observations in feature space      . 

From the extracted features, the location of the object is detected. It is necessary to detect the 

object in either every frame of the input video sequence or at least the first frame that it appears 

on.  

Once an object has been found, it is necessary to track its trajectory over time by finding 

correspondences in object position from frame to frame. Trackers are generally separated into 

those that perform object detection in multiple frames by an object detector described above and 

then try to find correspondences between them, or those that perform object detection and 

correspondence at the same time. The latter case initially detects the object and then updates its 

location from frame to frame.  

There are various methods of both object detection and tracking which are largely dependent on 

the states that are to be detected. Various object detection and object tracking methods are 

reviewed next. 
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2.3 Object Detection 

Object detection is necessary in order to find a target either in the first frame in which it appears 

or every single frame that is present. Commonly, each frame is analysed individually, however 

some algorithms make use of temporal information that is computed from a number of frames of 

the sequence [12]. 

Although there are a large number of different methods available, object detection can be 

categorised into four different varieties:  

 Point detectors, which are used to find a number of single interest points in an image. 

 Background subtraction, which builds a model of the background of a scene and considers 

deviations from it to be objects of interest. 

 Segmentation, which partitions an image into groups of similar regions. 

 Supervised learning, which automatically learns the views of a particular object to find it 

within a scene. 

These methods are next explained in detail. 

2.3.1 Point Detection 

This method of object detection involves finding a set of interest points in an image. The 

fundamental assumption is that the object being detected will contain a set of points that is 

unique. By looking for this pattern in the entire image, the object can be found. A substantial 

advantage is that detected points are generally invariant to changes in illumination and camera 

viewpoint. 

A rudimentary point detector was first introduced by Moravec [14]. This corner detector moves a 

local window through the image and calculates the change in its average intensity when shifting it 

in various directions from a particular point. Small changes in all directions indicate a flat region; 

larges changes in only two opposing directions indicate an edge, while large changes in all 

directions are considered corners.  
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The Harris detector [15], builds on the above technique by calculating first order image derivatives 

in both horizontal    and vertical    directions, and calculating the second moment of a small 

neighbourhood of pixels: 
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The variation of this neighbourhood is measured by calculating  : 
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Where     ( ) and   ( ) are the determinant and trace functions respectively.   is then 

thresholded to determine if the neighbourhood has a feature point in it. The main benefit of using 

the Harris detector is the invariance of the matrix   to rotation and translation.  

It is, however, not invariant to changes in scale and so Lowe [16] introduces the Scale Invariant 

Feature Transform (SIFT) to solve this problem. In order to be scale invariant, the algorithm is 

required to find features that are “stable” across all possible scales. To do this, it uses a continuous 

function of scale known as scale space, which is produced by convolving an image with a variable-

scale Gaussian function to simulate the effect of down-scaling. This produces a family of images 

that are separated by a factor that is an argument of the Gaussian function. Finding a feature 

present in the same location across all of these images would indicate its invariance to scale 

changes. 

2.3.2 Background Subtraction 

A second common method of object detection is background subtraction, which removes regions 

of an image deemed not to be of interest. If an algorithm is able to model the background of an 

image, any deviation from this can be identified as a possible object of interest. This of course 

requires that both a number of frames from a video sequence are available to build the model and 
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that objects to be detected are moving. If objects are stationary, they become part of the 

background model and are not detected. 

As it is used in the final model, this type of algorithm is covered in explicit detail in Chapter 3. 

2.3.3 Segmentation 

Segmentation is the subdivision of a particular image into its consistent regions or objects [17]. 

Ideally segmentation should stop when objects of interest (for a particular application) are 

isolated. In an object detection process for video tracking, segmentation algorithms seek to 

partition the image into regions belonging to objects of interest, and the background. 

Segmentation may be treated as a clustering problem. Here each pixel is represented by a set of 

features                 calculated from it that may be further represented as a point in  -

dimensional feature-space. High-density regions of pixels in this space are considered pixels of a 

single region with some specific properties and are clustered together. Clustering is a non-trivial 

process and thus there are many different ways of performing it. 

Comaniciu and Meer [18] present a method that clusters pixels using the Mean-Shift algorithm. 

The features used for each pixel consist of the pixel’s colour vector and its image coordinates. 

Pixels that are clustered together in this space will then be those that are similar in colour and 

position. This ideally reduces an image to a set of connected regions (or blobs), each 

homogeneous in colour. 

Mean-Shift is a method of clustering where a number of cluster centres are randomly chosen 

within a feature-space. For each cluster centre, an ellipsoid centred on this point is drawn and the 

mean of all feature-points lying within it is calculated. The cluster centre is then moved towards 

this mean point. This process is repeated iteratively until each cluster centre does not move. 

Shi and Malik [19] treat segmentation as graph-partitioning problem. Here, each pixel is 

considered a vertex of a connected graph. By pruning the joints or “edges” between graph 

vertices, one expects to produce a number of sub-graphs each representing the segmented image 

regions. Each edge may be weighted and in this case the total weight of edges pruned is called a 

“cut”. The weight of an edge may be calculated from a number of factors including the colour, 

brightness or texture similarity between the vertices it links. In order to group similar regions 

together, it is intuitive to make cuts that have a minimum value (i.e. separate dissimilar regions), 
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however this often results in over-segmentation in methods that use this [20]. Shi and Malik 

rather calculate a normalised version of the cut, the minimum of which produces better 

segmentation results.  

Segmentation may also be achieved using active contours. Here a closed contour, which is used to 

separate regions in the image, is iteratively evolved in the image. As it is used in the final system 

model, details of this methodology, specifically a derivative thereof known as level set methods 

are discussed in Chapter 4. 

2.3.4 Supervised Learning 

Object detection can be implemented by supervised learning, where an intelligent agent is taught 

different views of the object in question from a set of learning examples.  

Viola et al [21] present a pedestrian detection system that operates using this principle where a 

classifier is designed to perform binary classification on small images as being a pedestrian or not. 

A number of filters are applied to frames where each filter is designed to measure a particular 

feature. A classifier is built as a weighted sum of the filter outputs which is thresholded to 

determine presence of a pedestrian. To train the agent, a training set of images is applied to the 

input of the classifier. Filter weights and the threshold are adjusted to lower the error between 

the classifier’s output and the expected output for the images. 

2.4 Object Tracking 

The purpose of an object tracker is to find correspondences between consecutive image frames, in 

other words to match up objects in one frame to objects in the next. The function of the tracker is 

largely dependent on the type of object detection used: The function of the tracker is largely 

dependent on the type of object detection used. Again, trackers are grouped into different 

varieties:  

 Point trackers, which match feature points detected in each frame. 

 Kernel trackers, which are designed to track a pixel region within a geometric shape. 

 Silhouette trackers, which are able to track arbitrary object outlines.  

Details of the above methods are described below. 



14 
 

2.4.1 Point Tracking 

In the context of point tracking, the correspondence problem refers to matching identifiable 

feature points found using point detection algorithms in a particular frame with those in the next 

frame.  A correspondence of a particular point in a frame refers to that point’s location in a 

subsequent frame. 

Salari and Sethi [22] introduce a method of addressing two fundamental problems that face this 

type of tracking, specifically occlusion and poor feature point detection. It is assumed that one has 

  frames in a sequence with   feature points in every frame. Assuming that these points belong 

to real world objects, their trajectories are assumed to be smooth. It is intuitive that the 

correspondence for each point in a particular frame should be initialised to its nearest neighbour 

in the consecutive frame. A greedy exchange algorithm would then exchange correspondences 

between points to minimise some cost. However this method fails if actual correspondences are 

occluded or if they have not been picked up due to poor detection. The authors solve this problem 

by introducing phantom points that are used as fillers to extend trajectories. Points whose nearest 

neighbour correspondences are outside a threshold distance are considered incomplete 

trajectories and phantom points added to them. For every trajectory an additional trajectory is 

created solely from phantom points and points are exchanged between them to maximise a gain. 

This gain is a function of how smooth the trajectory is and whether points are phantom or not, 

naturally penalising them if they are.  

Broida and Chellappa [23] model points found in images as corners of a rigid body undergoing 

rotational or translational motion. The body is assumed to be undergoing constant motion, being 

modelled as an unknown centre of mass moving with constant but unknown translational velocity. 

Points form moment arms with the centre of mass whose unknown phase angles change at an 

unknown rate. Tracking is achieved by estimating these unknown object motion parameters using 

detected feature points. This can be done in two ways: Recursive solutions look at points frame by 

frame successively improving estimates as more points are used or batch solutions look at points 

from every frame and estimate parameters according to an objective function. The authors opt for 

a recursive solution using a Kalman filter. A Kalman filter uses noisy measurements observed over 

time and outputs a “truer” value of these measurements by calculating a predicted value, and 

outputting a weighted average of this and the original depending on a calculated uncertainty of 

the predicted value.  
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2.4.2 Kernel Tracking 

Rather than using individual points on an object for tracking, a kernel can be used. In an object-

tracking context the concept of a kernel refers to the shape and appearance of an object. For 

example, the kernel can be a rectangular template or an elliptical shape with an associated 

histogram [12]. 

Comaniciu et al [24] use a kernel consisting of an elliptical region surrounding the target combined 

with the colour histogram of the pixels within it. For frames where the target location is unknown, 

a candidate kernel can be created from any arbitrary elliptical region within the image. The 

candidate and target histograms are compared using a similarity function. Tracking is achieved by 

altering the position of the candidate elliptical region to maximise similarity. 

The similarity function has large variations for adjacent locations in the image which reduces the 

smoothness of the similarity function. As a consequence, estimating the direction of increasing 

similarity becomes problematic and requires exhaustive searches in the image every frame. The 

authors’ solution to this was to mask the elliptical region with an isotropic kernel so that pixels 

would have smaller weights (and thus play a smaller role in the histogram) the further from the 

centre they are. This ensures a smooth similarity function, and the search for correspondences can 

be confined to a local region around the last known location of the target.  

2.4.3 Silhouette Tracking 

Silhouette tracking is used when simple geometric shapes (such as ellipses) are not sufficient to 

describe objects with complicated boundaries (such as a person’s hands or head and shoulders). 

The goal is to find an object region in each frame using an object model generated from previous 

frames [12]. 

Huttenlocher et al [25] achieve this using shape matching methods. The motion of the silhouette is 

decomposed into two-dimensional motion and two-dimensional shape change components. 

Under the assumption that the shape change is gradual from frame to frame, the motion is easily 

factored out and the shape change can be represented as a sequence of 2D models.  

Bertalmio et al [26] present a method that uses level set segmentation for tracking. Level set 

segmentation is introduced as a derivative of active contour methods in section 2.3.3. While the 

finer details of the method are discussed later in Chapter 4, this method surrounds the tracked 

object with a contour. The final contour from a previous frame is used as an initial contour in the 
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next. This increases efficiency by using information from a previously segmented frame in the 

current one.  

2.5 Previous Works on Video Tracking in a Maritime Environment 

The following discussion is a review of previous attempts at introducing object tracking to the 

maritime field. As it has been mentioned earlier, the maritime environment is a particularly 

challenging one for tracking and thus the majority of works discussed here deal with very low-level 

solutions to the problem. 

As the ocean, constantly filled with moving waves, is prone to producing erroneous detection with 

methods that detect moving objects, some authors choose to characterise it and label pixels that 

don’t match this characterisation as objects of interest. 

Sanderson et al [5] implement an algorithm that does this using frequency information. The 

algorithm’s initial stage selects 10 points that are known to be part of the sea and applies a 32 by 

32 pixel window to each. The Fast Fourier Transform (FFT) of each window is calculated and is 

used to model the current sea state with a characteristic set of frequencies. This step constitutes 

the calibration phase of the system.  

Once these frequencies have been found, difference images are created for each input frame by 

transforming the frame into the frequency domain, subtracting the sea frequencies and then 

transforming this back into the spatial domain. This constitutes detection of objects of interest. 

The result passed onto the object tracking algorithm that uses a frame differencing technique to 

detect motion cues in the difference images. This technique works by statistically analysing four by 

four pixel regions over a number of frames. Regions that change statistically constitute ones that 

contain motion, while those that remain the same are labelled as static. Detected objects are then 

tested against a set of motion constraints. These constraints are known prior to tracking and 

enforce certain limits on maximum acceleration and orientation change of objects of interest. 

Objects that do not satisfy these constraints are ignored. 

Smith and Teal  [6] implement a similar approach using a histogram-based descriptor of the 

appearance of the sea. Rather than characterising the sea by its frequency, the algorithm learns its 

grey level distribution in a 32 by 32 pixel tile. The image is subsequently divided into overlapping 
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32 by 32 pixel tiles and those tiles whose distribution match that of the sea are labelled as such. 

Thereafter, tracking is implemented in the same manner as in [5].  

Voles and Teal [27] continue with the theme of using crude descriptors of tiles in an image. 

Differences between their method and earlier papers include the use of a varying tile size that 

overlap as shown in Figure 2-3. The thinking behind this is that the ocean is a horizontal plane, and 

thus objects closer to the camera will appear larger compared to those further away and therefore 

require larger tiles. Due to this reason, tiles increase in size towards the bottom of the image. The 

tiles overlap so that the algorithm is able to pick up smaller objects that may be only partially 

covered by a segment.  

 

Figure 2-3 - Overlapping tiles of varying size used in [27] 

For each tile a set of four features are calculated that constitute a feature vector. Similarly to the 

clustering method in [18], these can be considered as points in a four dimensional feature-space. 

The underlying assumption is that a large main cluster of points would belong to tiles that lie on 

the sea, while outliers would belong to tiles with objects of interest in them. The separation (or 

clustering) of these two groups of points can be done using a number of methods ranging from 

using neural networks to purely statistical methods. The major limitation of this method is its 

imprecise segmentation results, for example those shown in Figure 2-4. Bounding boxes are at 

times far larger than the target they contain, and are clipped above the horizon.  
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Figure 2-4 - Segmentation results using [27] 

Voles et al [7] combine the use of these same four features from Vole and Teal [27] with motion 

information obtained by frame differencing. A simple difference image is created by subtracting 

the current image’s pixel values from those of the previous and taking the absolute value of the 

result. Regions containing more motion will have brighter pixel values in this image. The image is 

projected onto horizontal and vertical axis that results in two projection histograms. An example 

of a difference image and its associated horizontal projection histogram are shown in Figure 2-5 

and Figure 2-6 respectively.  

 

Figure 2-5 - Example difference image [7] 
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Figure 2-6 - Example of a horizontal projection histogram (Adapted from [7]) 

The histograms are filtered to remove small incidents of motion due to the sea and finally clipped 

so that regions above a certain threshold are set to one and below it to zero. An example of the 

result of this is shown in Figure 2-7. 

 

Figure 2-7 - Example of a horizontal projection histogram after clipping and filtering (Adapted from [7]) 

Recombining filtering and clipped projection histograms produces a binary map where moving 

items are represented by white rectangles and stationary background is black.  

The next stage splits the image into tiles and calculates a four dimensional feature vector for each 

as implemented in [27]. Rather than clustering points in four-dimensional feature space, a 

Euclidian distance map is created by calculating the Euclidean distance between the feature vector 
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of a tile in the current frame and its vector in the previous one. Naturally, areas of large Euclidean 

distance are those that contain motion. Combining this with the previously calculated binary map 

allows the algorithm to calculate areas that probably contain motion of a vessel. The algorithm is 

purely pixel-based and therefore fails to segment larger maritime objects. 

Socek et al [9] present a method of combining existing object detection methods with colour 

information. It initially segments the image with background subtraction using a Bayes decision 

framework which works best for backgrounds with complex variations and that are not periodic. In 

a maritime environment, the algorithm suffers from poor segmentation results having inaccurate 

boundaries and many scattered pixels. The authors seek to solve these issues by combining results 

with that of colour-based segmentation. The colour segmentation is treated as a graph-

partitioning problem (See section 2.3.3 (Segmentation methods) above for details) and combining 

it with background subtracted output results in enhanced performance.  

Szpak and Tapamo [8] introduce an approach that uses a video tracking approach quite different 

from that of the above algorithms. Object detection is implemented using a modified method of 

single Gaussian background subtraction, the details of which can be found in Chapter 3. Where 

normal background subtraction deals with pixels in isolation, Szpak and Tapamo enforce a spatial-

smoothness constraint that deals with neighbourhoods of pixels. The constraint assumes that real-

world objects are spatially consistent entities and requires that a whole group of pixels, rather 

than single ones, exhibit motion behaviour before marking them as such. 

The output of this method is further segmented using level set methods, a derivative of active 

contour-based segmentation. This contour is used in the object tracking phase as described in by 

Bertalmio et al in [26], where the final contour from the previous frame is used as an initial 

contour in the next. 

The algorithm was tested on 17 test sequences. The algorithm was able to successfully track in all 

but three of the given sequences. The algorithm even showed good results in overcast and rainy 

conditions. It failed in sequences where there was insufficient contrast between the ocean and the 

target, and thus fails to pick up specific motion of the target; when the target moves too slowly 

and is thus considered part of the background and when there is a lot of glint in the scene. Figure 

2-8 is an example of poor contrast between ocean and target and large amounts of ocean glint. 
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Figure 2-8 - Poor contrast between ocean and target and ocean with glint [8] 

Due to its high success rate and possible avenues for improvement it was decided to base further 

work on the model proposed by Szpak and Tapamo [8]. As this is an application of both 

background subtraction and level set methods, Chapter 3 and Chapter 4 include a full discussion of 

the specifics of each technique. 

2.6 Conclusion 

This chapter discusses introductory theory to the variety of methods used in video tracking. The 

concept of a video tracker and its constituent object detector and object tracker models and some 

general theory related to the subject are introduced. Various categories of object detectors are 

reviewed, followed by a discussion of the various methods used to track detected objects through 

the video sequence. Finally, as this is the area in which this work is concerned, various previous 

techniques for applying video tracking to a maritime environment are explored. 
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Chapter 3 - Background Modelling 

3.1 Introduction 

Various methods applying video tracking to a maritime environment have been introduced. An 

emphasis has been placed on Szpak and Tapamo’s work [8] which uses background modelling as a 

method to detect objects of interest in a scene. As their model forms a basis for this work, several 

well-known techniques for background modelling are now discussed. 

Background modelling is a method of object detection that is achieved by building a 

representation or model of the background of a particular scene and finding deviations from this 

model [12]. 

Background modelling is reliant on two basic assumptions.  Firstly it assumes a number of image 

frames                 are available in the form of a video sequence of the scene. Secondly it 

assumes that objects to be detected in this sequence are moving in some way around the scene. 

By creating a model of the background of the scene from a number of frames of the input 

sequence, moving or foreground objects can be detected by finding deviations from this model in 

successive frames. This has a number of challenges as the background is itself subject to changes 

from illumination and non-stationary background objects such as swinging leaves, rain, snow and 

shadows caused by moving objects [28]. While the techniques presented in this chapter are 

designed for grayscale images, they may be extended to colour images if required.  

3.2 Single Image Modelling 

There are a number of rudimentary methods that can be used for background modelling, each 

with their own drawbacks. These methods use a model of the background that is a single image, 

the same size as a single frame. Background subtraction for this method can be generalised as 

follows: Assuming the current background model for the      frame   , the output of the 

background subtraction algorithm for the current frame     at pixel  (   ) can be calculated as: 

 
   (   )   {

     |  (   )    (   )|    
                                           

 

 

3-1 



23 
 

where    is a predetermined threshold. If    (   ) is equal to 1, this pixel is considered to be 

part of a foreground object, while it is considered to be part of the background if it is 0. This 

essentially thresholds the difference between the current and the background estimate. While this 

form of subtraction is fairly standard amongst algorithms, the method of actually modelling the 

background is what differs and is discussed further. 

The simplest form of background modelling is known as frame differencing and using the previous 

frame as the background model for the next: 

 
 

        
3-2 

While this method is easy to implement due to its simplicity it is very sensitive to the threshold    

and highly dependent on an object’s speed and the camera’s frame rate.  

More information may be incorporated into the model by using an average of the previous   

frames; however each of these frames must be stored in memory. This can be solved by using a 

running average: 
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Where     is a learning rate. Here the current background estimate is calculated as the 

weighted sum of the previous background estimate and previous input frame. Selectivity can be 

used to improve this model by only updating the previous background for a particular pixel if it is 

marked as the background in previous frames: 
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    (   )                                                             (   )   
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The background may also be estimated to be the median of the intensity of the pixel over time at 

each pixel [29]. Here a buffer of previous frames is used and the assumption is that the pixel stays 

in the background for more than half of the buffered frames. Rather than using a buffer, the 

median may also be recursively estimated as proposed by McFarlane and Schofield [30]. 
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3.3 Probabilistic Modelling 

The problem with using a single image as a background model is that each pixel in the current 

frame has only a single value to compare itself to. For a background that may have some cyclic 

information in it, for example a pixel oscillating between two values, using the mean or median of 

the cycling values may incorrectly model a particular pixel. 

Probabilistic methods model the probability of a pixel having a particular value in the current 

frame. Each pixel is assigned its own probability density function (PDF). To do this for a pixel at 

(   ) a distribution    (   ) is modelled using previous values, where    (   )( ) is the probability of 

the pixel having a particular intensity  . A pixel from the current frame is marked as the 

foreground if its value is seen as unlikely by the distribution. More formally: 

    (   )   {
             (   )(  (   ))    
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As all of the following methods deal with pixel-specific probability distributions, the notation 

   (   ) shall be shortened to     for brevity. Unless otherwise stated, all variables discussed 

belong to the same pixel at some arbitrary image coordinates. 

The concept of probabilistic modelling is best illustrated using the following example. Wren et al 

[34] propose the use of a single Gaussian to model the distribution of each pixel.  Here the 

distribution for a pixel in the     frame is modelled as: 

   ( )  
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Where the current mean    and variance    of the distribution are iteratively updated for each 

frame as: 

 
        (   )     

  
   (     )

  (   )    
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Figure 3-1 shows a possible distribution for a particular pixel. For a certain threshold, the brackets 

show a range of possible intensities that may be considered background values. If the pixel’s next 

value falls within this range, it is considered part of the background, otherwise it is considered part 

of the foreground. 
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Figure 3-1 - Classification as pixels as background or foreground for single Gaussian modelling. If the probability of a 
particular pixel value is above a certain threshold, the pixel is considered part of the background 

The problem with single Gaussian methods is that while they are able to model variations of a 

pixel around a particular value (as above in Figure 3-1), they are unable to model distributions that 

may be multi-modal (one that has multiple peaks). Stauffer and Grimson [31] present a method of 

dealing with multimodal distributions by modelling each pixel with a mixture of   Gaussians: 

  ( )  ∑       (           )
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Where   is a Gaussian PDF with mean              weighted by      evaluated at  . 

The following process is followed for each new pixel value   : 

 The Gaussians are ordered in decreasing order of    , a value that increases as the 

distribution gains more evidence and variance decreases. The top distributions are the 

most probable to be those that model the background. 

 The value is checked against each of the   distributions, where a match is a value within 

     of the distribution. 

 If none of the distributions match, the least probable distribution is replaced by a new 

one, with mean equal to    and an initial high variance and low weight. 

 The weight of each distribution is adjusted as follows:      (   )             

where   is the learning rate and      is one if there is a match and zero if not. The weights 

are then normalized.  
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 The parameters   and   of unmatched distributions stay the same. Matched distributions 

are updated as follows:    (   )         and   
  (   )  

   (     )
  where 

    (            ) is a second learning rate. 

 In determining if a pixel is foreground or background: 

o The first   distributions are chosen as the background model where   

       (∑     ) 
    and   is a measure of the minimum portion of data that 

should be accounted for by the background. 

o Pixels that do not match any of these first   distributions are deemed to be part of 

the foreground. 

While it is clear that this method is able to handle multimodal distributions it has an added 

advantage that if a pixel value is allowed to become part of the background, it doesn’t destroy the 

existing model. Only once a distribution reaches the     most probable on the above list and a 

new pixel value is observed is it allowed to be removed from the model. 

Elgammal et al [32] introduce the kernel density estimator to model the distribution. Kernel 

density estimation (KDE) is a method of estimating an unknown distribution given some 

independent samples drawn from it. A symmetric function that integrates to one (known as a 

kernel) is placed at each sample. A particular value’s probability can be calculated as the sum of all 

kernels at that point. Figure 3-2 shows an example of kernel density estimation using some single-

dimensional data points using a Normal Distribution as a kernel. 
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Figure 3-2 - Example of kernel density estimation using single dimensional data [33]. Here a normal distribution is used 
as a kernel 

For some samples               an estimation of their distribution is: 
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Where   is the kernel and     is the bandwidth of the kernel. The bandwidth is a free 

parameter that controls the width of the kernel and must be chosen carefully. In a background 

modelling context this process can be applied to the previous   pixel values                     

such that: 
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There are a number of different possible kernels that may be used; however the Normal 

Distribution is the most documented and does not require the user to arbitrarily define bandwidth 

values. While the kernel density estimator is resource intensive in that it, unlike Gaussian 
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modelling, requires a buffer of the   previous frames, the major benefit of using it is that it is able 

to model each pixel distribution very accurately. It has been shown [34] that for an infinite number 

of observations kernel density estimators converge to the distribution that they were drawn from. 

3.4 Conclusion 

This chapter introduces and details the use of background modelling for detection of objects in a 

video tracking system. It covers two common varieties of background models: those that create a 

model that consists of an image of the estimated background, and those that create a probability 

model for each pixel. Detection is achieved by comparing pixel values from the current frame with 

the pixel values of the background image in the first case or by calculating and thresholding their 

probability in the second. 
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Chapter 4 - Level Set Methods 

4.1 Introduction 

The concept of a video tracker and its application to a maritime environment has been introduced. 

As Szpak and Tapamo [8] use an application of both background subtraction and level set 

methods, Chapter 3 has covered background subtraction in detail. The concept of level set 

segmentation is now introduced. 

In Chapter 2, the method of segmentation using active contours for object detection and tracking 

was mentioned. This method uses an iteratively evolving contour in the image that separates 

different regions of interest. 

Active contours can be expressed using one of the following two approaches [35]: 

 Explicit or Lagrangian approach resulting in an interface known as snake. 

 Implicit or Eulerian approach resulting in an interface called a level set. 

Kass et al [40] initially introduced the concept of active snakes for expressing the contour in the 

image [36] in which a parameterised spline is guided in the image by a number of forces to a 

desirable position. These forces consist of internal forces that enforce intrinsic behaviour of the 

curve (such as smoothness), image forces that guide the curve towards desirable locations (such as 

edges) and external forces that may come from some user input or prior knowledge. These forces 

are imposed on the curve in the form of an energy function that measures the “fitness” of the 

snake and is minimised for desirable snake position and behaviour, for example, being on an edge 

in the image. 

The major problem with active snakes is its inability to deal with changes in topology [37].  Figure 

4-1 shows an example of this, where a snake that is designed to be attracted to edges in an image 

is used to segment two separate circles in an image. Assuming an initial position in Figure 4-1(a), 

the contour is unable to split to correctly segment both of the two circles, as shown in Figure 

4-1(b). 
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(a) (b)
 

Figure 4-1 - Inability of snakes to deal with changes in topology. (a) is the initial contour in the image and (b) is the final 
contour after evolution 

Level set methods were originally introduced by Osher and Sethian [38] as a means to evolve a 

contour with a speed proportional to its curvature. The main advantage of this method in an 

image segmentation context is that it allows for cusps, corners and automatic topological changes 

that are not allowed in active snakes [37].  

Given an image  (   ), where (   ) are image coordinates, a three-dimensional surface defined 

by a  level set function  (   ) is defined on top of it. The contour    is in the image  and implicitly 

defined as the zeroth level set (hence the name) of the level set function  : 

    (   )|  (   )     4-1 

Figure 4-2 assists visualisation of this expression where a contour in an image (Figure 4-2(a)) is 

defined as the part of the image that is cut by the level set surface at    . 

(a) (b)
 

Figure 4-2 - Example of a contour in an image (a) and the level set function that defines it (b) 
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Figure 4-3 illustrates how this method of expressing the image contour deals with changes in 

topology. Simply by shifting the level set function up and down the resultant image contour is able 

to split and join thus allowing the method to deal with images such as that in Figure 4-1. 

 

Figure 4-3 - Example of a 3D level set function intersecting with a 2D plane and its ability to handle changes in 
topology [39] 

By inspection it is easy to see that an infinite number of functions would be able to produce the 

same contour in an image. To ensure a one-to-one mapping between the level set function and its 

corresponding contour, the level set function   is constrained to a signed distance function, that 

is:  

|  |    almost everywhere with     inside the contour and     outside the contour [40].  

At each pixel inside the contour, a signed distance function is equal to the distance from that pixel 

to the zero-level contour. At each pixel outside the contour it is equal to the negative of this 

distance. Some authors [10] choose to use the inverse of this and use     inside the contour 

although this is simply a matter of preference. Unless otherwise stated, the convention of     

inside the contour is assumed. 

4.2 Level Set Evolution 

The level set function   is evolved over time in order to move its contour to regions of interest 

(i.e. around objects of interest). The level set function at any given time is expressed as    where   
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is an artificial time parameter. Evolution takes place by defining a differential equation that 

controls the evolution of  . This is of the form: 

 
  

  
   4-2 

 

Where   is dependent on the technique used. To evolve a given level set function using  , one 

can approximate 
  

  
 as: 

 

  

  
(   )  

    (   )      (   )
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Where     (   ) is the current value of the level set function at (   ),     (   ) is the new 

value and    is a time-step parameter (usually less than 1 to ensure stability). Replacing 4-3 in 4-2 

and rearranging, the new value of   can be calculated as: 

     (   )       (   )        4-4 

Evolution may occur for a fixed number of iterations or when some conditions are met, for 

example,   no longer changes with each iteration.  

4.2.1 Reinitialisation 

While a level set function may initially be defined as a signed distance function, evolution 

generally causes it to deviate from this. The function must then be reinitialised periodically 

throughout evolution by evolving it according to: 

 
  

  
     ( )(  | |) 4-5 
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4.3 Classical vs. Variational Level Set Methods 

4.3.1 Classical Level Set Methods 

The original implementation introduced in [38] attempts to simulate Active Snake behaviour using 

a level set function’s contour.  The contour is evolved according to active-snake-like forces   in the 

normal direction to the contour (in the image) to simulate the behaviour of active snakes. To do so 

the following differential equation is used: 

 
  

  
   |  | 4-6 

This is known as the classical formulation. If   is positive at a particular point on the curve, the 

contour expands outward at this point in the image, conversely a negative   causes an inward 

expansion. 

Inspecting this formulation, it is easy to see the reason behind ensuring   is a signed distance 

function, as |  | is always equal to 1, which simplifies calculations. Like active snakes, the force   

is a function of both internal forces, which are dependent on the level set function alone and 

enforce certain characteristics on the contour; and external forces, which are dependent on the 

contour’s relation to the underlying image and pull it towards certain features. 

4.3.2 Variational Level Set Methods  

Rather than predefine a set of forces in the image, variational level set methods seek to produce a 

level set function that minimises a predefined cost-function, more-specifically known as energy 

functional. 

A functional is defined as a mapping that takes the level set function as an input and returns a 

scalar value. 

This energy functional can be thought of as the measurement of the “fitness” of a particular level 

set function by penalising undesired behaviour. Generally the functional will incorporate certain 

criteria for the level set function that, when met, will produce a minimum in its output. By 

structuring the problem this way segmentation becomes an optimisation problem for which a 

level set function   with a minimum energy is the solution. 
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Variational methods deal with the behaviour of the entire level set function [35] rather than with 

points on the level set contour alone. This is especially necessary for methods that segment the 

image using properties of the regions contained by the contour rather than edges in the image. 

While there are a number of methods of finding an optimal  , the most common is the Euler-

Lagrange equation; a differential equation whose solutions are functions for which a given 

functional is stationary.  Therefore by applying the Euler-Lagrange equation to a functional of  , 

one obtains a differential equation  that evolves   in a direction that minimises this functional. 

4.4 Common Level Set Formulations for Image Segmentation 

While level set methods can be applied to any application that requires an evolving contour, the 

following formulations are commonly-known methods of applying them to the field of image 

segmentation.  

4.4.1 Local/Edge-Based Segmentation 

In the original level set implementation by Osher and Sethian [38] introduced in section 4.1 the 

authors sought to have a contour move with a velocity dependant on its mean curvature. This is a 

classical level set formulation with a force   expressed as: 

         (
  (   )

|  (   )|
) 4-7 

The differential equation for this type of motion is: 

 
  

  
 |  |   (

  

|  |
) 4-8 

Figure 4-4 shows an example of a star-shaped contour that is undergoing purely mean curvature-

based evolution. It has been shown that any shape undergoing this type of evolution collapses to a 

circle [41]. 



35 
 

 

Figure 4-4 - Star-shaped interface undergoing curvature-driven evolution. The tips of the star move inward, while the 
gaps in between them move outward [42] 

In order to apply this to a segmentation problem Caselles et al [43] introduce the geometric active 

contour. First, an edge detector function   is introduced: 
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4-9 

Where  ̂ is a smoothed version of the image   and     or  . The term   ̂ is the gradient of the 

image which is highest at edge pixels. While   tends to 1 when there are no edges present, it 

tends to zero when there are. The differential equation 4-8 is modified with this term and defined 

as: 
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Where   is a positive constant. This differential equation can be thought of as a combination of a 

constant outward force and mean curvature force that is modulated by the edge detector function 

so that the contour evolves to sit on strong edges. When the contour lies on strong edges,   tends 

to zero thereby keeping it stationary. While the constant force acts to inflate the contour within a 

region, it is clear from Figure 4-4 that the curvature-based force helps to keep it smooth.  
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4.4.2 Regional Segmentation 

While geometric active contours work well in images with strong edges, in many real-world 

applications this is not always the case. Chan and Vese [37] introduce a regional-based variational 

formulation that is designed to work with images without strong edges by minimising the variation 

in pixel intensity inside and outside the contour. By doing so, it is expected to move the level set 

contour around an image segment that is as homogenous in pixel intensity as possible. 

The definitions of certain functions are important in defining regional variational functionals and 

thus are discussed first. The Heaviside function   is defined as: 

  ( )   {
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In a level set formulation, the Heaviside function is used to specify areas inside the contour, where 

( )    ; and outside the contour, where    ( )   .  

The Chan Vese energy consists of two internal energies         and       that penalise the length 

of the contour and the area within it respectively (therefore favouring, small, short contours) and 

two external energies             and              that penalise variation in pixel intensity inside 

the contour and outside the contour respectively: 

                                                    4-12 

Where         and    are parameters weighting importance of their respective penalty terms.  

For an image domain  ,  the inner and outer pixel-variation terms can be expressed as: 
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Note that the Heaviside function is used to control regions inside and outside the contour.    and 

   are the average pixel intensities inside and outside the level set contour respectively calculated 

as: 

   ( )   
∬   ( )    
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The resultant evolution equation that minimises the functional in equation 4-12 is as follows: 
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    (    )
 ] 4-16 

From comparison with the geometric active contour model it is clear that the first term is 

curvature dependant and seeks to enforce smoothness in the contour while the second is a 

constant contraction of the contour. Figure 4-5 shows segmentation of an image region that has 

weak edges using this equation. Eventually the variation of pixel intensities inside and outside the 

contour become equal and the contour remains stationary.  

 

Figure 4-5 - Segmentation results using the Chan-Vese functional [37] 

4.5 Shape Priors 

Active contours and specifically level set methods allow the use of other prior knowledge to aid 

segmentation results. Level sets methods with shape priors are geared toward segmenting objects 

of a predefined shape. It is fairly suitable to assume that in most applications, some knowledge of 

the shape of the objects of interest is available beforehand. The use of shape priors is especially 

useful when the segmentation target in question is corrupted, as is often the case in real-world 

applications (such as in maritime surveillance). 
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Figure 4-6 shows an original image (left) and a version that has been artificially corrupted by 

occlusion and deletion of certain parts of the object (right).  

 

Figure 4-6 - Original image (left) corrupted by artificial occlusion and deletion (right) [44] 

While normal segmentation of the corrupted image (Figure 4-7) incorrectly ignores the occluding 

pixels parts of the object, adding some prior knowledge of the rings shape to the segmentation 

(Figure 4-8) allows segmentation to obtain an output as if the corruption was not present. 

 

Figure 4-7 - Normal segmentation of corrupted image [44] 

 

Figure 4-8 - Segmentation of corrupted image with prior knowledge of shape [44] 

Currently, there are two different ways to incorporate prior information about shape into 

segmentation. The first method modifies a variational energy functional designed for 

segmentation by adding an additional term that penalises deviation from a particular shape. The 

second method incorporates shape information into the functional directly by defining it as the 

output of some parametric function. Details of these methods are discussed next. 
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4.5.1 Shape Energy Term 

The majority of techniques that incorporate shape priors use a linear combination of a variational 

segmentation functional (as discussed above in section 4.4.2) and a shape difference term [45]. 

The purpose of the shape difference term is to penalise level set contours that deviate from a 

predefined shape. This is similar to the various other penalisation terms already seen in section 

4.4.2. 

A rudimentary example of a shape difference term introduced by Paragios and Rousson [46] is the 

squared difference between the segmenting level set function   and a pre-defined level set 

function that incorporates the desired shape  : 

       (   )   ∬ ( ( )   ( ))
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This term is added to the segmentation-based functional (such as the Chan-Vese functional    ). It 

is often multiplied by a weighting factor   to control the balance between the two terms: 

  (     )     (   )         ( ) 4-18 

Chan and Zhu [45] define the shape distance as: 
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Where   is the Heaviside function. This term is symmetric to   and   and further does not 

require that either function is a signed distance function. More importantly it is not dependent on 

the size of the domain  .  

The problem with this type of method is that it requires that the level set function that encodes 

the prior shape lie directly over the object to be segmented in the image. To solve this, Chan and 

Zhu introduce a shape equivalence, which states that two objects’ shape are considered the same 

regardless of their scale, rotation or translation with respect to one another.  
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More formally, for two equivalent shapes encoded by signed distance functions    and    there 

exists a four-tuple (       ) such that: 

   (   )      
(   )      (   )    

 
 
 (   )     (   )    

 
  4-20 

Where   and   are horizontal and vertical translation parameters,   a scaling factor and   an angle 

of rotation. Therefore given a signed distance function in a particular shape, all shape-equivalent 

functions can be generated by choosing (       )   

This equivalence can be used as a transformation, where    is a scaled, translated and rotated 

version of   . Chan and Zhu introduce the original shape prior as   , where   is now a 

transformed version of    according to equation 4-20. The shape energy term then becomes: 

       (            )   ∬ [( ( )   (           )]
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This energy term combined with the original segmentation energy functional is minimised with 

respect to its input parameters. As    is constant,  ,  ,  ,   and   are all evolved according to 

their own update equations. As   evolves, its contour will move in a direction that minimizes the 

image energy while still being held in shape by  . As the pose parameters evolve, they will ensure 

that  , while still remaining in the original shape of   , keeps up with   in its efforts to minimize 

the segmentation term. 

4.5.2 Parametric Functional 

Parametric methods of incorporating shape information impose this knowledge directly into the 

level set by defining the level set as the output of some parametric function. This parametric 

function is defined by a set of parameters and segmentation energy functionals are then 

minimised with respect to these parameters rather than the level set function itself. 

Consider a toy example where it is known that the shape to be segmented is a circle. Here the 

level set can be defined as a parametric function: 

  (   )      (   )  (   )      4-22 
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Where the circle’s centre coordinates (   ) and its radius   are the only parameters required to 

define any circle at any location in the image. Rather than optimising a segmentation functional 

with respect to the entire function  , it is optimised with respect the parameters  ,   and  . 

Tsai et al [10] introduce a parametric level set function for the use of shape priors that is an affine 

transformed version of a prior-known shape, defined in a level set function  .  

The segmenting level set function   is thus controlled by the pose parameters             

where   and   control the horizontal and vertical translation of the shape prior,   controls scaling 

of the shape prior and   its rotation in the image. This mapping of the shape prior function   to 

the segmenting function   is shown in Figure 4-9. 

- Segmenting Function φ 

- Shape Prior Function ψ 

p = [a,b,h,θ]

 

Figure 4-9 - Example of a shape prior encoded in function    manipulated using   to produce a level set function   
with associated contour in the image 

Parametric models allows for a faster evolution that is less prone to getting stuck in local minima 

as the energy is minimised directly by manipulating a few parameters rather than the entire 

contour. 

The most pertinent benefit of using this type of implementation is that it does not require function 

re-initialisation as discussed in section 4.2.1. The resultant segmenting level set function is always 

a transformed version of an original signed distance function, which itself is thus a signed distance 

function.  

Additionally the limited degrees of freedom allows for more “brute force” numerical methods of 

energy optimization, which allow the contour to evolve according to any arbitrary energy 

functional without the need for explicit differentiation. Details of this will be referred to later in 

the dissertation. 
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4.5.3 Multiple Shape Priors  

The methods discussed so far assume that a single shape prior is used unconditionally in 

segmentation. While this may not be a problem if one is to segment a single known object, it is 

impossible to segment objects that are unknown or to segment other known objects. In a tracking 

example, one might want to incorporate many different views of a three dimensional object that 

one is searching for, or a set of different shapes to account for the variability in targets that one 

might want to track. 

4.5.3.1 Selective and Competing Shape Priors 

Figure 4-10 shows segmentation using a single shape prior. The original image is shown in (a) and 

the shape of the ring is used as a prior. Subfigures (b) to (e) show successful segmentation of the 

corrupted image despite occlusion. Although it is a valid target, the pen is ignored as it is not part 

of the ring-shaped prior. In order to successfully segment both objects it is desirable to have a 

selective shape prior term which turns shape prior segmentation on or off depending on the object 

to be segmented. 

 

Figure 4-10 - Segmentation with a shape prior. Sub-figure (a) is the original image without removal or occlusion [44] 

Cremers et al  [44] approach this problem by modifying a shape difference term with a labelling 

function  (   ) defined over the entire image that controls whether shape knowledge is used in 

certain sections of the image or not: 

       ( )  ∬ ( ( )   ( ))
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If     in a certain region, the coefficient (   )  is equal to 4 and the shape prior segmentation 

occurs as usual. If      , this coefficient is equal to 0 and the shape term becomes 

inconsequential. 
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Figure 4-11 shows segmentation using this new functional term. The value of   is initially 

predefined and is shown in shown in (a) to be 1 within the white circle and -1 elsewhere. Now the 

level set function successfully segments the ring with the addition of the shape prior term and the 

pen using pure segmentation without prior shape knowledge. 

 

Figure 4-11 - Segmentation with shape prior and labelling function. The labelling function has values shown in sub-
figure (a)  [44] 

Obviously the need to manually specify the labelling function before segmentation is undesirable. 

To overcome this limitation, the authors introduce a dynamic labelling function that is evolved 

concurrently with the level set function. The shape prior term becomes:  
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This is minimised with respect to both the level set function and the labelling function 

simultaneously. The first two terms enforce the shape prior in regions where the level set function 

is similar to the prior, or more specifically:   

   {
            |   |   

         |   |    
 4-25 

Where   is a predefined threshold and   is a weighting term. The last term enforces topological 

compactness of regions.  
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In order to use multiple priors, Cremers et al [47] build on their previous work in [44]. The energy 

functional in equation 4-24 can initially be extended to segment two known objects, associated 

with level set functions    and   : 
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Where   
   ∫  

    (∫    )
 

 is the variance of the respective function. The labelling function 

  is now driven by two competing shape priors; each image location will either be assigned to use 

one shape or the other. In [44] the labelling function   had two values:   in regions where the 

shape prior was to be enforced (the known object), and    in regions where it was not (the 

background or unknown objects). In this case the labelling function is    for the first object and   

for the second. 

A comparison of the segmentation with a single prior and the background (no shape prior) and 

with two competing shape priors is shown in Figure 4-12. For a single shape prior, the left statue is 

successfully segmented regardless of occlusions while the right statue is treated as an unknown 

object and is unsuccessful. With two competing shape priors, both statues are successfully 

segmented regardless of occlusions. 
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Figure 4-12 - Segmentation comparison of image with single shape prior vs. two competing priors [47] 

For the general case, where a number of competing shapes are concerned, the labelling function 

must be modified to be able to work with multiple objects. The authors introduce a vector-valued 

labelling function: 

  ( )  (  ( )    ( )) 4-27 

A polytope (an n-dimensional polygon) with      vertices of at          are used to encode 

  different regions.            are indicator functions for each region, where each indicator 

function is at its minimum when in a region that   encodes its specific shape. For four different 

shapes,   would have four different values: (     ) (    ) (    ) and (   ).  

The four indicator functions would be: 
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Or generally: 
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With          . The new shape energy becomes: 
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Where each    corresponds to a known shape with variance   .   

Figure 4-13 shows an example of segmentation of a corrupted image using multiple shape priors. 

The top row of images shows the evolution of the segmenting contour. Even though the bottom 

three statues are corrupted in the image, they are successfully segmented due to the enforcing of 

a shape prior with each. The top statue does not have a prior and is treated as an unfamiliar 

object. This result can be compared to segmentation without a prior in the last image of the 

bottom row, which incorrectly (blindly) segments each shape. Without the shape prior, the 

occluded parts of the objects were incorrectly excluded from the segmentation. 

The labelling is shown on the bottom row of Figure 4-13. The third image of the row shows how 

each statue occupies a region that is characterised by a different value of the labelling function. 



47 
 

 

Figure 4-13 - Segmentation of corrupted image using multiple shape priors [45] 

4.5.3.2 Shape Model 

The following methods incorporate the use of multiple shape priors by defining a shape model 

rather than using a single prior known shape. In this section, the shape model may be created 

using principle component analysis, Gaussian modelling or kernel density estimation. The level set 

segmentation uses this model which reflects the shapes of an entire training set.  

i. Principle Component Analysis 

Tsai et al [10] propose parametric level set function that is a combination of principle components 

from a set of multiple training shapes. Principle component analysis (PCA) [48] is a method of 

separating observations of possible correlated variables into values of principal components which 

are uncorrelated. The first principle component accounts for the most variation in the data with 

each subsequent component accounting for the greatest possible amount of remaining variation. 

Figure 4-14 shows an example of two dimensional data that has been separated into two principle 

components    and   . It is easy to see that the majority of variation occurs along the first 

principle component   . 
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Figure 4-14 - Example of Principle Component Analysis in two dimensions [49].  The variance of the data in the original 
Cartesian space (x, y) is best captured by the basis vectors v1 and v2 in a rotated space 

The number of principal components used to express the observations is equal to or less than the 

original number of variables. PCA is commonly used as a method of dimensionality reduction 

when the observations are expressed with fewer principal components than original variables. In 

Figure 4-14 for example, if one were to express the given observations using only    as a basis 

they would not deviate very much from their original locations. 

To find principle components of a particular data set eigenvectors and eigenvalues of the data are 

extracted from its covariance matrix via Singular Value Decomposition (SVD) [49].  

In order to model a set of training shapes using this method, the shapes are aligned with one 

another such as those in Figure 4-15. These are embedded in signed distance functions that are 

sampled on a grid at fixed locations.  

 

Figure 4-15 - Example set of binary images after alignment [10] 

Notice in Figure 4-15 that training shapes exhibit similar behaviour with small deviations between 

them. This “principle-shape” is modelled by applying PCA to the set. 
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Each shape function is sampled and reduced to a single-dimensional vector representing an 

observation like those in Figure 4-14. PCA is then applied to the set of observations, the output of 

which is a “mean-shape”  ̅ and a set of “principal/Eigen-shapes”            . 

These Eigen-shapes are weighted and added to the mean shape to produce a parametric level set 

function that is capable of transforming itself into one or a combination of training shapes 

depending on the weighting parameters: 

       ̅  ∑    
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Where     can be determined empirically, depending on the accuracy required.   

             are the weights for each Eigen-shape and the variance for each weight 

   
    

      
   is equal to its corresponding eigenvalue earlier.  

Figure 4-16 shows two examples from [10] of how adding or subtracting      to the mean level 

set function can result in approximates of two of the training examples shown in Figure 4-15. 

 

Figure 4-16 - Three dimensional example of shape model for the fighter jet training set. (a) is the mean level set 
function, (b) is      , (d) is       and (c) and (e) are the results of their summations with the mean level set function 

[10] 

Similarly to the methods described in section 4.5.2, an energy functional (such Chan Vese) can be 

minimised with respect to the parameters               . 
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ii. Gaussian Modelling 

Rousson et al [49, 53] create a model of a set of prior shapes by assuming that shape priors follow 

pixel-wise Gaussian distributions. The meaning of this is as follows: 

 Given a sample set of aligned signed distance functions { ̂   ̂     ̂ }. 

 The values the functions { ̂   ̂     ̂ } at each pixel (   ) form a Gaussian distribution. 

A shape model may then be created by creating a Gaussian model at each of the pixel locations, 

similarly to single Gaussian background model in section 3.3.  

The probability    of a particular   value at (   ) can then be calculated as: 

   ( (   ))  
 

√    (   )
 

 ( (   )   (   ))
 

   
 (   )  
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Where    and   
  are the Gaussian model mean and variance values at pixel (   ). In order to 

create an energy term, unlikely level set functions must be penalised. This is achieved by using the 

negative logarithm of this function, which is greater for unlikely level set functions. The shape 

energy term becomes: 

       ( )   ∬    [  ( (   ))]
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Which may be added to a segmentation functional (such as the Chan-Vese functional) as shown in 

equation 4-18. 

iii. Kernel Density Estimation 

Cremers et al [50] identify two major disadvantages in using PCA or Gaussian modelling to encode 

the training set: 

 Previous methods assume the training shapes (for example those in Figure 4-15) are fairly 

similar and form a pixel-wise Gaussian distribution. This is not always the case in practical 

applications, especially when encoding multiple views of a complex object. 

 They assume the shapes are represented by signed distance functions; the combination 

thereof (as seen in equation 4-31) is not linear. Therefore the mean or a linear 

combination of signed distance functions isn’t necessarily a signed distance function. 
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Cremers et al decide to apply the use of a kernel density estimator (described earlier in Chapter 3) 

to produce a statistical shape model that can model fairly distinct training shapes and isn’t 

required to be linear. 

A shape difference measure that is based on Chan and Zhu’s work [45] is defined as: 

   (     )  ∬ ( (  )   (  ))
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For a set of   training shapes defined by signed distance functions             , the probability 

  of a particular segmenting level set function   can be estimated as: 
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This probability increases the closer   is to any of the pre-defined training shapes.   is the kernel 

width. Choosing the kernel width is non-trivial and the authors choose to fix it to be the mean 

squared nearest neighbour distance: 

    
 

 
∑   
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This ensures that on average the next training shape is within one standard deviation of each 

Gaussian. In similar fashion to the Gaussian model described in the previous sub-section, this 

probability is maximised by minimising its negative logarithm. So the shape energy becomes: 

       ( )       ( ( )) 4-37 

Which may be added to a segmentation functional (such as the Chan-Vese functional) as shown in 

equation 4-18. An example training set used for segmentation is shown below in Figure 4-17. 

Notice that training shapes can be quite different from one another compared with those in the 

above methods. 
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Figure 4-17 - Various samples from the training set used in Figure 4-19 [50] 

A comparison of segmentation of a partially occluded walking person using purely intensity-based 

methods is shown in Figure 4-18 while segmentation with the addition of shape-based energies 

using the above training set is shown in Figure 4-19. Notice that the purely intensity-based 

functional fails to differentiate between the occlusion and the person and segments darker 

patches cast by the person’s shadow whereas the prior based functional does not. 

 

Figure 4-18 - Final segmentation results for various frames of an occluded walking person segmented with a purely 
intensity functional [50] 

 

Figure 4-19 - Final segmentation results for various frames of an occluded walking person segmented with using a 
functional that includes the shape model [50] 

4.6 Conclusion 

This chapter introduces the concept of level set methods for segmentation. Theory behind the 

method is presented, including common variants of the method used for segmentation using 

edges in an image or regional properties within the segmenting contour. The use of prior 

knowledge of an object’s shape to aid segmentation is then explored. Various techniques of 

incorporating this knowledge into the method are discussed, followed by a number of additions to 

allow segmentation to move from using a single shape to an entire set of training shapes, or 

selectively use the knowledge depending on the context in which segmentation is used. 
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Chapter 5 - Proposed Model 

5.1 Introduction 

The object detection and object tracking methods used in Szpak and Tapamo’s work [8] have been 

introduced and extensively discussed in Chapter 3 and Chapter 4. The fundamental contribution of 

the work presented in this dissertation is a method of incorporating shape knowledge into a 

system similar to [8] and so a number of methods for doing this have also been presented in 

Chapter 4.  

This chapter covers explicit details of the system that will use this shape knowledge in a maritime 

environment. It covers an overview of the system model used with main functional units and how 

they are connected, the level set algorithm used for object detection and tracking and finally 

specifics of how these units operate individually to produce the final vide tracking system. The 

chapter also provides pseudo-code which clarifies algorithms used. This chapter does not deal 

with the actual final system model, as it presents a number of choices for each subsystem used 

and the pertinent parameters that define their behaviour. These subsystems and their parameters 

are rather chosen optimally in Chapter 6. 

5.2 Model Overview 

There are two main types of video tracker architecture. These include architectures that apply 

detection and tracking separately, and those that perform them jointly [12]. 

In the first case, possible object regions are produced by the object detector, and the object 

tracker makes correspondences between these regions from frame to frame. This concept is 

illustrated in an example in Figure 5-1 where an object detector finds objects in two separate 

frames, while the object tracker is required to separately decide which of the detected objects 

match up from frame to frame. 
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1 2 Object Detector

Object Tracker

 

Figure 5-1 - Separate object detector and tracker architecture 

In the second case the object regions and their correspondences are jointly estimated by keeping 

object and region information from previous frames, and simply updating them for the current 

one. This is illustrated in an example in Figure 5-2 where the detected boundary for a particular 

object in the first frame is kept in the second. This boundary is then updated to its new location in 

the image. 

1 2 Object Detector 
and Tracker

Model Update

 

Figure 5-2 - Joint object detector and tracker architecture 

Level set tracking falls into the latter architecture of the above examples. Here the level set 

segmentation is run on each frame where the starting contour for each particular frame is the final 

contour of its predecessor [55, 56]. 

As the proposed system uses a level set method for tracking it is based largely around the second 

architecture. There is, however, a single difference in that the level set contour used is unable to 

detect objects by itself and must rely on a separate sub-system to initialise it. While this sub-

system mainly serves as a tracker initialisation stage, it is theoretically a form of object detection 

and will thus be labelled as such. It should be emphasised that unlike the object detection stage of 

the separate detector/tracker architecture, this sub-system does not operate on every frame. 
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An example of the system functionality is shown in Figure 5-3. Here the object detector is required 

to place the boundary around an object of interest in the first frame. Thereafter, tracking 

continues as it would in a joint tracker and detector architecture. 

1 2

Object Tracker

1
Object Detector

Model Update

 

Figure 5-3 - Example of system functionality 

While level set segmentation forms an integral part of the object tracking system, it also forms a 

part of the object detector, the details of which are discussed later. An overview of the entire 

proposed system is shown in Figure 5-4. 

Object Detector

Object Tracker
Input Image 

Frame
Object Positions

Frame to be used for 
Object Detection?

Yes

Ignore 
Frame

No

 

Figure 5-4 - Proposed system 
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The input to the system is a sequence of grey scale image frames from a video of a maritime 

scene. The output of the system is ideally the same set of image frames with various maritime 

objects of interest highlighted by a level set contour as illustrated in red by Figure 5-5. 

 

Figure 5-5 - Example output of the system 

An overview of how the system functions is as follows: 

 The object tracker does not run until it has received a set of initial object positions from 

the object detector. 

 The object detector uses a background subtraction algorithm that only uses input frames 

periodically at a fixed spacing. Only once it has filled a buffer of frames is it able to 

produce an output and so until then the tracker, and thus the system, has no output. 

 Once the buffer is full, the detector is able to output a set of objects to the tracker.  

 Once it has obtained a set of initial object positions, the object tracker continues to track 

these objects. 

The object detector (Figure 5-6) consists of a pre-filtering stage, followed by a background 

subtraction algorithm. The resultant binary images are then filtered again (called post-filtering in 

this dissertation) to remove unwanted binary pixels in the image. 

It is possible to use the binary output of this stage directly as the input to the object tracker. 

However, if it is desired by the user to find a particular shape that is known beforehand, binary 

level set shape prior segmentation can further be applied (called level set filtering in this 

dissertation) before the input to the object tracker. This attempts to find the shape in question in 

the noisy binary image and outputs its estimated position and pose in the frame.  
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Figure 5-6 – Details of object detector 

The object tracker (Figure 5-7) extracts features of the detected objects in the first frame after 

detection to create a model for each object. For each subsequent frame the level set tracking 

algorithm uses this model, combined with its shape, to track the object. This information is fed 

back into the tracker for use in tracking the object in the next frame. 

Input: 
Image Frame

Object 
Positions

Object Tracker

Initial set of 
objects and 

positions 

Model 
Generation

Level Set Shape 
Prior Tracking

 

Figure 5-7 - Details of object tracker 

The rest of the chapter is structured as follows: The level set shape prior framework that forms the 

basis of the system is first covered in detail. This is followed by the modifications that allow the 

use of the custom energy functionals required to be used with the framework. The manner with 
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which the modified level set segmentation algorithm is used in the object detector and tracker 

stages is then covered. 

5.3 Level Set Segmentation Algorithm  

While Szpak and Tapamo [8] used a general level set segmentation algorithm based around the 

work of Chan and Vese [37], the work presented here deals with incorporating shape knowledge 

into the system and so a different method is selected. 

5.3.1 Tsai et al’s Level Set Algorithm 

The work by Tsai et al [10] was chosen as the basis for the level set segmentation algorithms in the 

system. Tsai et al’s work uses a parametric functional, the benefits of which are discussed in 

section 4.5.2. 

As discussed in section 4.5.3.2, part of Tsai et al’s work [10] deals with the incorporation of 

multiple shape priors in segmentation. For simplicity, however, the system described in this 

dissertation has been designed to use a single shape prior. For each sequence that is tested, the 

desired shape prior is manually set to the shape of an object that appears in that sequence. 

The original work manipulates the level set function   using two sets of parameters: Parameters 

controlling its shape (see section 4.5.3) and parameters controlling its pose in the image.  

Simplification to a single shape prior allows the level set function to only be manipulated using the 

latter set of pose parameters (i.e. the one shape is known in advance and is given by the shape 

prior).  

The set of pose parameters               is first introduced, where   and   control horizontal 

and vertical translation respectively ,   the scaling and   the rotation. The level set function can be 

parameterised in terms of these pose parameters and this is now explained. 

Consider a level set function   that has a contour in the form of the desired shape prior, the level 

set function   can be defined as a translated, scaled and rotated version of this original function: 

     (   )   ( ̃  ̃) 5-1 
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Where  ̃ and  ̃ are calculated according to: 
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As a single shape prior is used, the surface   remains static throughout segmentation. This means 

that the final level set function   is merely a translated, scaled and rotated version of some static 

shape and no longer able to move freely in the image as it does in other methods (see Chapter 4). 

An illustration of this definition is shown in Figure 5-8, where the contour in the image is 

dependent on   (the shape prior) and the pose parameters  .  

- Level Set Function φ 

- Shape Prior Function ψ 

p = [a,b,h,θ]

 

Figure 5-8 - Example of a shape prior encoded in function    manipulated using   to produce a level set function   
that produces a contour in the image 

It can thus be seen that the level set function   can be completely described using the parameters 

              given the shape prior (hence the “parametric” in the method’s name). 

To evolve the level set function,   is manipulated in a manner that decreases a predetermined 

energy functional. This is done using a gradient decent method: 

               5-3 

Where    and      are the current and new values of   respectively.     is the gradient of the 

energy with respect to   and    is a step-size parameter controlling the speed of evolution.  
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This evolution minimises the energy functional   by moving   (i.e.        ) in a direction of 

decreasing energy. This is made clearer by expanding   into its various parameters: 

 

              

              

              

              

5-4 

Where               are step-size parameters for each of the parameters, and 

                  are the gradients of the energy with respect to each of the parameters. As 

this is a gradient decent method, with each iteration the value of the pose parameters are 

adjusted in a direction of decreasing energy gradient. This moves them (and thus  ) towards 

values where the functional is minimised. These equations are used iteratively until a 

predetermined number of iterations have been reached, or the energy no longer decreases with 

each new iteration. 

5.3.2 Modifications to Tsai et al’s Work  

The gradient terms                   in equation 5-4 are derived in [10] by symbolically 

differentiating the energy functional with respect to each of the parameters. This process is 

mathematically complex and undesirable. The modification to Tsai et al’s work is a way to estimate 

these gradient terms thus avoiding the difficult derivation. 

Provided the energy functional is differentiable with respect to its input parameters, it is possible 

to estimate the gradient with respect to each parameter using a numerical method known as the 

central difference approximation thereby avoiding mathematically complex differentiation. 

Generally, the central difference approximation [51] of a function  ’s gradient is: 

   ( )  
 (   )   (   )

  
 5-5 

Where   is a small change in the input  . For level set evolution, the following notation is 

introduced: 

          is the level set function defined by        . 

  (        ) is the output of energy functional calculated using         . 
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The gradient term    , for example, can then be approximated using the central difference 

approximation as: 

 
      

 (          )   (          )

  
 

 

5-6 

In this case the numerator is calculated by displacing the original contour defined by          to the 

left and right in the frame by distance   and finding the difference in energies associated with each 

contour. Thinking of the process this way may assist the reader in visualising the process of 

minimising the energy functional with respect to the horizontal displacement pose parameter  . 

This can similarly be repeated for the remaining gradient terms              . These are then 

used to evolve the pose parameters normally according to equation 5-4. 

Gradient estimation schemes are in fact more resource intensive than calculation from 

symbolically derived gradients as they require recalculation of two new level set functions and 

associated energy functionals every time gradient is estimated. That being said, their main benefit 

is that any arbitrary energy functional can be plugged into the algorithm without the need for 

complex symbolic derivations.  

5.3.3 Implementation Details  

To give the insight into the specifics of how the level set segmentation is implemented in code, 

details are presented in Algorithm 1 which shows the function that controls evolution of the 

abovementioned parameters. 
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function [energy, outPhi, outP] = LSEvolution(Im,inPhi,inP,nIter,alpha,eps) 
    P = inP 
 

    for i = 1 to nIter 
            P = OptimParameter(Im,inPhi,P,1, alpha(1), eps(1)) 
            P = OptimParameter(Im,inPhi,P,2, alpha(2), eps(2)) 
            P = OptimParameter(Im,inPhi,P,3, alpha(3), eps(3)) 
            P = OptimParameter(Im,inPhi,P,4, alpha(4), eps(4)) 
    end 
    outPhi = TransformPhi(inPhi,P) 
    energy = EvalEnergy(Im,outPhi) 
    outP = P 
end 

 

Algorithm 1 - Optimisation of transformation parameters for level set evolution. The LSEvolution function takes input 
variables Im (the image), inPhi (the starting level set function), inP (the starting pose parameter vector), nIter (the 

number of evolution iterations) and alpha and eps vectors (step size vectors for gradient decent and gradient 
estimation). It returns the final level set energy, outPhi (the final level set function) and outP (the final pose parameter 

vector) 

The function LSEvolution has an input image (Im), an initial level set function   (inPhi) and pose 

parameter vector   (inP) and the number of iterations (nIter) required as arguments.  

Additionally alpha ( ) and epsilon/eps ( ) are vectors of parameters that control the step size for 

evolution and gradient estimation respectively. The individual parameters of these vectors are 

step-sizes for each individual pose-parameter; the first being for  , the second for   and so on. 

For every iteration, each component of   is evolved individually using the OptimParameter 

function (detailed in Algorithm 2). Once the iterations have stopped, the output   (outPhi) is 

calculated using the transformation from equation 5-2 in TransformPhi and outputted along with 

its associated energy (energy) from energy functional (calculated using EvalEnergy) and parameter 

vector   (outP). 
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function newP = OptimParameter(Im,Phi,oldP,i,alpha,epsilon) 
    oldParam = oldP(i)  
    paramPlus = oldParam+epsilon 
    paramMinus = oldParam-epsilon 
    P_Plus = oldP 
    P_Minus = oldP 
    P_Plus(i) = paramPlus 
    P_Minus(i) = paramMinus 
     

    Phi_Plus = TransformPhi(Phi,P_Plus) 
    Phi_Minus = TransformPhi(Phi,P_Minus) 
    Energy_Plus = EvalEnergy(Im,Phi_Plus) 
    Energy_Minus = EvalEnergy(Im,Phi_Minus) 
    paramGradient = (Energy_Plus-Energy_Minus)/(2*epsilon) 
     

    newParam = oldParam – alpha*paramGradient 
    newP = oldP 
    newP(i) = newParam 
end 

 

Algorithm 2 – Pseudo-code for the OptimParameter function. This function serves to optimise an individual component 
of the parameter vector p. The function takes input variables Im (the input image), Phi (the level set function), oldP (the 

starting pose parameter vector), i (the number of the parameter to be optimised) and alpha and epsilon values for 
gradient decent and gradient estimation techniques. The output newP is a new optimised parameter vector 

The OptimParameter function optimises the ith parameter component of the vector   where   

contains parameters          . For example, when       ( ) is equivalent to  .  

A small increment (epsilon/ ) is added and subtracted from the original value of the parameter, 

which is used to transform   to Phi_Plus (  ) and Phi_Minus (  ) respectively using equation 5-2 

in TransformPhi. The energy associated with these functions are then obtained using the 

EvalEnergy function and used to calculate an energy gradient using the central difference scheme 

shown in equation 5-1. This gradient is subsequently used to evolve the parameter (according one 

of the equations from 5-4) which is passed back to the LSEvolution function in a new parameter 

vector   (newP).  

The details of how this modified level set method is used in both the object detector and tracker 

stages are shown in the next two sections. 

5.4 Object Detector 

Before the system is able to track respective objects of interest in the image, they first must be 

detected. This section covers explicit details of each of the subsystems that object detection stage 
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is comprised of. These include the pre-filtering stage, the background subtraction stage, the post-

filtering stage and finally the level set filtering stage. 

5.4.1 Pre-Filter 

To remove possible noise in the image before it is sent to the background subtraction stage, a pre-

filter may be used. Two well-known pre-filters known to reduce noise have been proposed: The 

3x3 Gaussian filter and the 3x3 Median filter. The final choice of pre-filter is addressed in Chapter 

6. 

5.4.1.1 Gaussian Filter 

Gaussian blurring convolves the image with a kernel that represents the shape of a Gaussian hump 

(shown in Figure 5-9). Convolution involves moving the kernel over pixels in the image, multiplying 

underlying pixel values with corresponding kernel values and replacing the central-pixel’s value 

with the sum of these products. 

This filter is used to reduce noise and detail in the image, but more importantly it is able to 

enhance image structures at various scales. A 3x3 pixel kernel was chosen with Gaussian variance 

     to remove detail of smaller objects in the image. 

0.1019 0.1154 0.1019

0.1154 0.1308 0.1154

0.1019 0.1154 0.1019

 

Figure 5-9 - 3x3 Gaussian kernel with       

5.4.1.2 Median Filter 

For each pixel in the image the median filter replaces its value with the median of a 

neighbourhood of pixels around it. Median filters are popular as they are able filter out certain 

types of noise (impulse noise to be precise) with less blurring than smoothing filters such as the 

Gaussian filter [17]. A 3x3 median filter is proposed as a possible pre-filter for the system. 
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5.4.2 Background Subtraction 

Once the image has been filtered, the system detects objects using a background modelling and 

subtraction algorithm. By producing a model of the background and subtracting it from the image, 

it is expected that what remains will be objects of interest. As stated previously in Chapter 3, this 

requires the objects to be moving in the sequence as stationary ones will become part of the 

background model. 

The background model used is based on Elgammal and Duraiswami’s work [32] that use KDE to 

model the background. Using the previous   values of a particular pixel values 

                    the probability that the next pixel value    has a value   is estimated as: 
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Where   is the kernel with bandwidth   and can be one of a number of different functions. The 

Gaussian kernel was used:  

  ( )  
 

√  
   (

   

 
) 5-8 

While Silverman [34] shows that the best choice for   for a Gaussians Kernel is: 
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where  ̂ is the standard deviation of the data, in this case the previous   values of the pixel. When 

a new pixel value    is observed, the probability of its value is calculated from this density 

estimate.  
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A high probability of observation would indicate that the given pixel is likely a part of the 

background whereas a low probability would indicate a foreground pixel as described in section 

3.3. The background subtraction output     is thus: 

    (   )   {
             (   )(  (   ))    
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Where    is a predefined threshold.  

This model can be modified in a number of ways to better suit the application of background 

subtraction. It is obvious that more recent pixel values of the pixel are more relevant to the 

density estimation. For kernel density estimation with time-series data, Harvey and Oryshchenko 

[52] suggest using a weighting scheme such that: 
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where    is the weight for the     kernel. Here ∑   
 
     . In order to weigh more recently 

viewed pixel values higher, the following weighting scheme was chosen: 
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Such that the weighting increases linearly with  . This will ensure that the most recent pixel value 

will have the highest weight.   

A further modification to the system is the use of frame spacing. Rather than using the entire set 

of previous   pixel values, a buffer of   values is created from pixels spaced   frames apart: 

                      {         (   )              }      
5-13 

Take the example of a sequence of a fairly slowly moving object (such as a ship) captured using a 

high frame-rate camera. Suppose a buffer of 50 previous frames is used to build a background 

model. The slow speed of the object combined with the high frame rate of the camera would 

probably result in very little object movement for these frames, resulting in most of the object 
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becoming part of the background model. By using frames that are spaced apart, the resultant 

background model is less likely to include the object because it will have moved over these frames. 

The disadvantage of this method is that this places an upper limit on how fast an object may be 

moving so that it is not missed by the spaced frames. 

This is implemented in the decision block in Figure 5-4, where frames are only sent to the object 

detection stage at fixed intervals. Obviously this also means the background subtraction stage is 

not able to provide a corresponding output for every input frame. This, however, is acceptable as 

the object tracker stage keeps track of objects for every frame after detection. 

Pseudo-code of the background subtraction system is shown in Algorithm 3.  
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function outputFrame = KDEBacksub(currentFrame,threshold) 
    for each pixel in currentFrame 
        pixelPast = buffer(PixelCoordinate); 
        probability = KDE(pixelPast,pixelValue) 
        if probability < threshold 
            outputFrame(pixelCoordinates) = 1 
        else 
            outputFrame(pixelCoordinates) = 0 
        end 
    end  
    Delete oldest frame in buffer 

    Add currentFrame as most previous frame in buffer 

end  
 

function probability = KDE(pixelPast, pixelValue) 
    probability = 0; 
    sigma = Standard Deviation of pixelPast 
    h = calculated from equation 5-9 
    n = bufferSize 
    Weights = Linear space from 1 to n 
    Weights = Weights / Sum(Weights) %Normalise Weights 
     

    for i = 1 to n 
        y = Kernel((pixelValue-pixelPast(i))/h)*Weights(i) 
        probability = probability + y 
    end 
    probability = probability / h 
end  
 

function [y] = Kernel(x) 
    y = 1/sqrt(2*pi) 
    y = y*exp((-(x.^2))/2) 
end 
 

 

Algorithm 3 – Pseudo-code for KDE-Based Background Subtraction. The KDEBacksub function takes the current frame 
and the threshold from equation 5-10 as inputs and returns the background subtracted frame in outputFrame. The KDE 
function takes in a pixel’s past values and its present value and returns a probability. The Kernel function is a Gaussian 

kernel as in equation 5-8 

The KDEBacksub function applies this background subtraction to each pixel in the image. For each 

pixel in a new frame, the KDE function produces an estimate of a probability using its past 

(obtained from the buffer) and its current value. It does this using the above formula shown in 

equation 5-11 which uses the kernel from equation 5-8 (in the Kernel function). The output is 

produced by thresholding the calculated probability as shown in equation 5-10. Once the output 

has been calculated the oldest frame in the buffer is deleted and the input frame is added to it. 

This keeps the buffer at a constant size of   frames. 
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5.4.3 Post-Filtering 

Post-filtering is used in this dissertation to describe filtering of the output image of background 

subtraction. A major problem with the use of background subtraction algorithms alone for 

maritime surveillance is the motion of the sea. Although kernel density estimation would be able 

to filter out pixels which oscillate between two values, it still would classify a wave moving across 

the image, for example, as legitimate motion.  

This is illustrated for an example image shown in Figure 5-10. Figure 5-11 is the raw output from a 

background subtraction algorithm on this sequence. Aside from the red blobs in the image, the 

majority of detected pixels are considered false positives from waves. 

 

Figure 5-10 – Example frame from an image sequence 

 

Figure 5-11 - Example raw output of background subtraction. Pixels resulting from motion of objects of interest have 
been highlighted in red 
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It is for this reason that the binary image is filtered after background subtraction.  This subsection 

details a number of different filters that can be used to remove these unwanted white pixels while 

keeping the desired ones. The decision of which post-filter to use is addressed in Chapter 6. 

5.4.3.1 Motion Persistence Filtering 

Motion persistence filtering is a novel method introduced by this work that attempts to remove 

white pixels that only appear in a few background subtracted frames. The logic behind motion 

persistence filtering is that while waves will produce legitimate motion pixels in a background 

subtraction algorithm, unlike those of ships, this motion is short-lived and may last merely over a 

few frames. The motion of ships, however, is more “persistent” and thus present in more frames. 

Assuming an input set of background-subtracted images             , this filter operates in a 

similar fashion to a two dimensional kernel density estimator: 

For every white pixel in an image, a two-dimensional Gaussian kernel (such as the one in Figure 

5-12) is placed (centred) over the pixel and its surrounding neighbours. The Gaussian kernel is the 

same is that described for KDE background subtraction, except projected into two dimensions. The 

bandwidth of each Gaussian is set to be the distance to the nearest white pixel in the image. 

 

Figure 5-12 – Two-dimensional Gaussian kernel 

The Gaussian kernels across all pixels in all   motion images are added up to produce a two-

dimensional distribution or heat-map as in the example shown in Figure 5-13. This heat map 

shows areas of high persistent motion in blue and violet, while green, yellow and red areas 

represent low densities. The assumption is that areas which consistently contain motion pixels 

across all frames will have much higher densities than those that contain fleeting motion.  
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Figure 5-13 -  Example motion persistence heat-map.  This heat-map shows areas of high persistent motion in blue and 
violet, while green, yellow and red areas represent low densities 

This image is thresholded to produce a binary image. Figure 5-14  shows the result of thresholding 

the motion persistence image in Figure 5-13. 

 

Figure 5-14 - Thresholded version of Figure 5-13. 

The algorithm proceeds to find pixels in the most recent background-subtracted frame    that are 

in these high persistence areas. The result of filtering Figure 5-11 (the raw output of background 

subtraction) with this method is shown in Figure 5-15. Of the five remaining blobs that are left, 

only two belong to that of waves. 
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Figure 5-15 – Superposition of motion image (red contours) on original frame 

Algorithm 4 shows pseudo-code of the motion persistence algorithm. For every white pixel in the 

binary output of the background subtraction stage, the FilterMotion function places a kernel in 

the neighbourhood around the location of this pixel in the densityFrame. After all the frames have 

been processed, the density frame is normalised to ensure the maximum probability at any given 

pixel is 1. As detailed above, the system then finds components in the input binary image that are 

connected to high density areas of densityFrame. 
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function outputFrame = FilterMotion(inputFrame,buffer,threshold) 
    densityFrame = 0 
     

    Shift buffer 

    Add inputFrame to buffer 

    K = Two dimensional Gaussian kernel matrix (Fig. 5-12) 
    kernelCount = 0 
     

    for each frame in buffer 
        currentFrame = current buffer frame 
        for each pixel in currentFrame 
            if currentFrame (pixelCoordinates) == 1 
                kernelCount = kernelCount + 1 
                For pixels in square around pixelCoordinates  
                    densityFrame = densityFrame + K 
                end 
            end 
        end 
    end 
    densityFrame = densityFrame / kernelCount 
    threshDensity = densityFrame > threshold 
    outputFrame = Pixels in inputFrame connected to those in threshDensity 
end 

 

Algorithm 4 - Pseudocode for Motion Persistence Algorithm. The FilterMotion function takes the input frame, a buffer 
of previous frames and a threshold as inputs. The threshold is used as described to determine if pixels consist of 

persistent motion or not. The densityFrame variable is a 2D kernel density estimate which is thresholded using the 
threshold input. Pixels of the input frame that are connected to the thresholded areas of threshDensity are output in 

outputFrame 

5.4.3.2 Fixed Threshold Connected-Component Filtering 

Connected-component filtering is a low-level image processing technique that removes connected 

regions (or blobs) from a binary image depending on some criteria.  

In a binary image, two pixels are said to be connected if they are neighbours and have the same 

value (0 or 1) [17]. There are numerous criteria that determine if pixels are neighbours (or 

adjacent). The most common types of adjacency are 4-adjaceny or 8-adjacency as illustrated in 

Figure 5-16. 
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4-adjacency 8-adjacency  

Figure 5-16 – Meaning of 4- or 8-adjacency. For a particular pixel (shown in red) 4- adjacent pixels lie above, below, left 
or right (shown in green), while 8-adjacent pixels lie in all surrounding pixels 

Pixels that are 4-adjacent to a particular pixel lie directly above, below, to the left and to the right 

of it while 8-adjacent pixels lie in all surrounding pixels. Connected regions in an image may be 

defined using the following description: 

“Let   represent a subset of pixels in an image. Two pixels   and   are said to be connected in   if 

there exists a path between them consisting entirely of pixels in  . For any pixel   in  , the set of 

pixels that are connected to it in   is called a connected component of  . If it has only one 

connected component, then set   is called a connected set. 

Let    be a subset of pixels in an image. We call   a region of the image if   is a connected set.” 

[17] 

From inspection of Figure 5-11, one may note that the majority of unwanted binary pixels are part 

of regions that are smaller in size than those that belong to objects of interest. Thus the first 

connected-component filtering algorithm that is proposed simply removes regions whose size is 

below a pre-set threshold (       ). The algorithm uses 8-adjacency to determine if pixels are part 

of regions or not. 

5.4.3.3 Variable Threshold Connected-Component Filtering 

Voles and Teal [27] note that because a maritime scene is an outdoor one with considerable depth 

of field, objects close to the camera are projected near the bottom of the image and thus appear 

larger than those further away from the camera. The second connected-component filtering 

algorithm is based around this idea. Here, the threshold for blob-size is no longer a pre-set 

constant, but a linear function of a region’s y-coordinates: 

             ( ) 5-14 
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Algorithm 5 shows a snippet of pseudo-code for the filter, where for each component; a y-

coordinate of its centroid is calculated. This is normalised with respect to the image height to 

allow for various image sizes. The threshold is then calculated from a function whose argument is 

the normalised coordinate and used to filter that specific component. 

function outputFrame = FilterCCVar(inputFrame) 
    outputFrame = Empty Frame 
 

    for each connected region in inputFrame 
        Cy = y-coordinate of centroid of region %Zero is top of image 
        SizeY = Height of Frame 
        Cy = Cy/SizeY %Normalise the y-coordinate 
        threshold = ThreshFunc(Cy) 
        if size(currentRegion) > threshold 
            outputFrame(regionPixels) = 1 
        end 
    end 
end 

 

Algorithm 5 – Pseudo-code from the variable threshold connected-component filter. The FilterCCVar function takes the 
input frame as an input. The normalised vertical position (Cy) is calculated for each connected region and evaluated using 
the ThreshFunc function to produce a threshold. If the region size is over the given threshold it is kept in the outputFrame 

Finally, a closing operation is applied to the output of each of the connected-component filters 

using a small 2-pixel wide structuring element. This will hopefully fuse two components that may 

be part of a single object and fill in any holes left by the background subtraction algorithm. 

5.4.3.4 Spatial-Smoothness Filtering 

Szpak and Tapamo [8] suggest that methods based on thresholding the area of connected regions 

as described above are not suitable as targets may be smaller than some waves in the image and 

thus erroneously removed. While a variable threshold should solve this problem, their suggested 

method of spatial-smoothness filtering is implemented for comparison.  
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This technique is built into the proposed single Gaussian background subtraction before pixels are 

thresholded and thus requires some modification; however the expected behaviour is the same. 

For a pixel at (   ) with probability     ( (   )),   is calculated for a window of        pixels 

around it as: 

    ∑ ∑         

    

     

    

     

     ( (       )) 5-15 

  is thus the weighted sum of the input pixel (   ) and its neighbours probabilities. This effectively 

is a smoothing operation before the probability estimates are converted into a binary image in the 

background subtraction algorithm. 

 The output of the background subtraction    for this pixel is then modified as follows: 

   (   )   {
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Where    is the background subtraction threshold normally used. It is multiplied by    and    to 

adjust for the sum in equation 5-15. Szpak and Tapamo use a 3x3 filter with constant weights with 

values of 1 and so these parameters will be used for testing. 

5.4.4 Level Set Filtering 

If the shape of a particular object is known beforehand, it is possible (if the user wishes) to filter 

the binary image further after post-filtering and detect only a region/blob that matches its shape.  

While the motion image can be segmented by a level set function minimizing the Chan-Vese 

energy as shown in [8], this is an inefficient use of resources for the following reasons: 

Firstly, the image is binary rather than consisting of grey-scale regions with poor edges for which 

the Chan-Vese energy is designed.  It would be more fitting to use a model that deals with binary 

images such as the binary mean model proposed by Yezzi  and Tsai [53]: 

           
 

 
(     )

   5-17 
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Where    and    are the mean values for the pixels inside and outside  . It is shown in section 

4.4.2 that    and    are calculated as: 

   ( )   
∬   ( )    

 

∬  ( )
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This energy tries to separate the image into two regions of homogeneous pixel intensity by 

maximizing the difference between    and   . 

Secondly it is known that in an ideal case the level set contour sits tightly around a white blob. In 

this case, the ideal values for    and    are known. Specifically ideally      and     . The 

binary mean model in equation 5-17 is thus modified accordingly: 

     
 

 
 (    )     
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The first term of this energy penalises inner mean values (  ) that are not equal to 1, while the 

second term penalises outer mean values    that are not equal to 0. 

This energy is minimised using the modified version of Tsai et al’s level set scheme [10] detailed in 

section 5.3. The segmentation is applied for every connected region or blob in the image in 

isolation. Naturally the blob most likely to be the object sought is that with the lowest energy.   

Algorithm 6 shows pseudo-code for this filtering method, where each component in the image is 

isolated and segmented using a level set with a single shape prior. 



78 
 

function outputFrame = FilterLevelSet(inputFrame,shapePrior,nIter) 
    outputFrame = 0 
     

    for i = each connected component in inputFrame 
        a = 0 
        b = 0 
        h = 1 
        theta = 0 
        Get bounding box of component 

        SubInput = Empty image with size equal to a scaled-up bounding box 
        SubShape = SubInput 
        Place component at centre of SubInput 

        Resize ShapePrior till same area of component  

        Place ShapePrior at centre of SubShape 

        Convert SubShape into SDF 

        P = [a, b, h, theta] 
        [Energy(i), Phi(i) outP] = LSEvolution(SubInput,SubShape,nIter,P) 
    end 
     

    minE = Index of minimum element in Energy 
    minPhi = Phi(minE) 
    Add minPhi to outputFrame at coordinates of its relevant component 

end 

 

Algorithm 6 – Pseudo-code for the binary image filtering using a level set with shape prior. The FilterLevelSet function 
takes the input frame, the shape of the object sought (shapePrior) and the number of iterations (nIter) as inputs. It goes 

through each blob in inputFrame and returns a level set function centred on the probable location of the object in 
outputFrame 

The FilterLevelSet function isolates each component by creating a sub-image whose centre is 

aligned with the centroid of its respective component. A shape prior function is created that 

matches the size of this image and is used to segment it using the LSEvolution function. The 

EvalEnergy function discussed in section 5.3.3 now uses the energy in equation 5-20. The 

segmenting contour for each blob is saved and that with the lowest energy is placed over its 

respective blob in the original image. 

5.5 Object Tracker 

Once an object has been detected, its shape and position are known for a single frame. It is 

necessary to track the object for every frame thereafter. To do this, the object tracker makes use 

of a single level set function that evolves itself to sit around the object in each frame. The level set 

function is initialised in the image using the object detector and can come directly from the level 

set shape filtering stage of the object detector in the form of a single shape (if a prior shape is 

known and the user wishes), or the binary image at the output of the post-filtering stage in the 

form of a binary image. 
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Assuming the level set contour surrounds the object correctly in the first frame after detection, 

the tracker makes use of pixel information that is within the contour. The initial contour and its 

inner pixel information in the first frame are henceforth known as the target contour and target 

model respectively. For every subsequent frame, the current level set contour (which now 

probably will not lie around the object) and the information about its inner pixels are known as the 

candidate contour and candidate model respectively. By creating an energy functional that 

penalises deviations of the candidate model from the target model, one is able to force the 

candidate contour around objects appearing similar to those surrounded by the target contour in 

the original frame. This is illustrated in Figure 5-17, where energy associated with the contour in 

(b) will be less than that of the contour in (c) and so (b) is favoured. 

Candidate Contour

Target Contour
Frame: 1 Frame:  > 1 Frame:  >1

(a) (b) (c)

 

Figure 5-17 - Example of tracking by comparing inner pixel models of contours. As the target contour sits around the 
blue object in the first frame (a), the energy associated with the contour in (b) will be lower than that in (c) 

This method draws its inspiration from Comaniciu et al’s method of tracking using a Gaussian 

Kernel [24], where an elliptical kernel is used and the internal pixels’ histogram is used as a model. 

Different energy functionals may be created by comparing the target and candidate models in 

various ways. The various possible functionals are discussed next. 

5.5.1 Energy Functionals for Tracking 

5.5.1.1 Histogram 

One of the simplest features that can be drawn from the pixels is the histogram. Pixels are put into 

  bins where   
  is the number of pixels that fall into the  th bin for the target  , and   

  for the 

candidate  . The energy is the sum of squared differences of the bins: 

    ∑(  
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 5-21 



80 
 

5.5.1.2 Fast Fourier Transform 

Frequency information may be utilized to make the feature more invariant to changes in lighting. 

Given a bounding box around the contour      pixels in size, a modified FFT is used to only 

extract frequency information from pixels within the contour: 

   (   )   ∑ ∑  ( (   )) (   ) 
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 5-22 

The energy function is then defined as the difference in target and candidate spectra: 
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5.5.1.3 Statistical Descriptors  

Statistical descriptors of the target pixels can be calculated. This approach has been used 

previously in maritime tracking work by Voles and Teal [27]. The following descriptors in Table 5-1 

have been modified to suit a level set case, once again for a bounding box around the contour 

     pixels in size: 

Table 5-1 - Statistical descriptors for pixels within a level set 

Energy: 
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Entropy: 
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Homogeneity: 
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After normalizing with respect to a maximum value, these descriptors can be thought of as vectors 

that form a basis for a 4D space. The target contour’s pixel distribution is then represented as a 

point within this space       
    

    
    

   and similarly so for a candidate contour    

   
    

    
    

  . The Euclidean distance between these two points can then be used as the energy 

functional: 
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5.5.2 Implementation Details  

Algorithm 7  shows details of the level set tracking method. For the first frame of detection, the 

pose parameters a, b, h and theta ( ) are initialised and the target contour PhiT (  ) is obtained. 

The pixels within this contour in the first frame are saved for later use in the energy functionals. 

function OutputFrame = LevelSetTrack(InputFrame,ShapePrior,nIter) 
    OutputFrame = 0; 
    if tracking has just started  
        a = 0 
        b = 0 
        h = 1 
        theta = 0 
        PhiT = Target Phi obtained from object detector 
        Save internal pixels of target Phi for energy functionals 
    else 
        a, b, h and theta take their values from previous frame 
    end 
 

    for i = each connected component in InputFrame   
        P = [a b h theta] 
        [E, PhiC, P] = LSEvolution(InputFrame,PhiTarget,P,nIter) 
    end 
    Save a,b, h and theta values for use in next frame 
    OutputFrame = Draw candidate Phi's (PhiC) contour on InputFrame 
end 
 

 

Algorithm 7 – Pseudo-code for the level set tracking algorithm. The LevelSetTrack function takes the input frame, the 
shape of the object tracked (shapePrior) and the number of iterations (nIter). It returns an outputFrame that is the 

original image with the shape drawn around the object 

For every frame thereafter, level set evolution is applied using the LSEvolution function described 

in Algorithm 1. The OptimParameter function and specifically the EvalEnergy function in 
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Algorithm 2 now uses one of the above functionals, combined with the previously saved PhiT and 

its internal pixels to evaluate the energy at various candidate contours.  

The best candidate contour after evolution is output and drawn on the input frame and the pose 

parameters are saved for the next frame. This step is important: subsequent frames do not start 

evolution from the initial position of the target contour   , but rather from where the contour of 

the previous frame left off. 

5.5.3 Normalisation for Rotation/Scale Invariance 

Apart from energy functionals for tracking, the second pertinent issue in object tracking is 

consideration of possible rotation or scale changes of the object being tracked. Evolution using the 

abovementioned functionals may become erroneous for large differences in scale and rotation 

between the candidate and target level set functionals. Consider the example case of an object 

tracked using the histogram-based energy becoming increasingly large as tracking continues. 

While the distance between target and candidate histograms may initially be small, as the object 

(and thus candidate contour) grows the size of each of its bins increases which causes an increase 

in the distance from the target histogram. This distance may be lower than its surrounding pixels, 

however this increase is undesirable. 

While an obvious solution may be to normalise the histogram with respect the size of its 

associated contour, one may apply a generalised normalisation that would apply for any arbitrary 

functional. This normalisation would also eradicate error associated with changes in rotation for 

other functionals. Assuming an arbitrary scale parameter   and rotation parameter   that 

produces the candidate function   , both the current image frame   and the candidate function 

   are transformed according to: 

  ̃ (   )    ( ̃  ̃) 5-25 
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Where  ̃ and  ̃ are calculated as: 
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This transforms both the candidate function and the pixels it contains to the same scale and 

rotation as the target function. The transformed function  ̃  and image  ̃ are then used in the 

evaluation of the energy functional. It should be emphasised that the values of   and   do not 

change and that the original candidate contour and image remain intact: their transformed values 

are used exclusively for evaluating energy functionals.  

5.6 Conclusion 

This chapter presents details of the system proposed. An overview of the system is initially 

presented, where each subsystem and its relationship with its surroundings are briefly covered. 

The incorporation of shape knowledge is based around a level set segmentation method proposed 

by Tsai et al [10] and so explicit details of this work are presented. Furthermore, Tsai et al’s work is 

modified to fit into the system model and these modifications are explained in this chapter. The 

full details of how this modified level set method fits into the video tracking system and details of 

its surrounding subsystems are finally presented. The choices of the final sub-systems and their 

parameters are discussed in Chapter 6. 
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Chapter 6 - Experimentation and Results  

The details of the video tracking system have been extensively discussed; in particular the details 

of the object detection and object tracking algorithms have been explained. A specification of each 

of the pertinent modules of functionality has been provided. There are a number of different 

choices that have to be made regarding each of the various sub-systems which have been 

described in Chapter 5. For the object detector subsystems: the choice of pre-filter; background 

subtraction buffer size, spacing and threshold; and post-filter must all be selected. For the object 

tracker, the optimal energy functional and number of iterations must be considered. 

This chapter considers more closely the relevant factors in choosing system’s parameters 

reasonably. In order to justify whether a sub-system has any merit, it is important to measure 

performance. With the chosen parameters implemented in the video tracker, the system 

performance is measured and commented upon.  

6.1 Experimental Conditions 

The system was implemented in MATLAB and tested using a set of 10 maritime sequences 

obtained from CSIR Defence, Peace, Safety and Security1. These sequences include a variety of 

scenes, weather conditions and maritime objects of interest. A specific target object was chosen 

for each of the sequences and was used to test both object detection and tracking. The target 

objects for each of the sequences are shown in Figure 6-1. 

 

                                                           
1
 Council for Scientific and Industrial Research (CSIR) Defence, Peace, Safety and Security - 

http://www.csir.co.za/dpss/ 
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Figure 6-1 – Target objects as they appear in their original image sequences. The sequence from which the object comes 
is labelled below its respective window 

Table 6-1 details qualitative and comparative descriptions of the target object size and the 

weather conditions present for each sequence. It is clear that a variety of object sizes and weather 

conditions are present and so these sequences are a good representative sample to be used in 
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experimentation. Since the sequences are from a reputable source it is assumed that they are a 

good representation of scenes likely to be encountered in an active environment. 

Table 6-1 - Qualitative descriptions of target object size and weather for each sequence 

Sequence Object Size Weather 

1 Medium Overcast 

2 Medium Glint 

3 Medium Glint 

4 Medium Glint 

5 Medium Overcast 

6 Small Clear 

7 Large Overcast 

8 Small Clear 

9 Large Clear 

10 Large Clear 

 

The object detection stage was tested using sequences 2, 6, 7 and 10 (highlighted in Table 6-1); 

while the object tracking stage was tested using the entire set. Details of sequence selection are 

described in their relevant subsections.  

6.2 Ground Truth Estimation 

Ground truth in an image processing context is loosely defined as a reference image that shows 

objective reality about a particular situation [54]. In the context of object detection or tracking, 

this refers to the identification of the pixels in the image that are known with absolute certainty to 

belong to objects of interest and those that don’t. This is inherently important for performance 

measurement where the system’s estimates of these pixels are compared to the actual data. 

Unfortunately the sample image sequences used for testing did not have ground truth available 

and plans to overcome this challenge had to be devised. Obviously labelling a sequence of three-

hundred frames or so by hand would not be viable and ground truth had to be estimated.  
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While Szpak and Tapamo chose to simply hand-label a bounding box around the object in each 

frame of these sequences [8], ground truth was estimated using the following technique: 

For a particular image sequence, the ground truth of the first frame was labelled by hand. 

For each frame thereafter, the bounding box was hand-labelled around the object. The 

ground truth from the first frame was then translated and resized in order to fit the 

bounding box for the current frame.  

This is a valid estimation provided the object in question does not rotate with respect to the 

camera. This is a valid assumption as most objects consist of ships on the ocean. Qualitative 

inspection of this estimate compared with the image shows it provides a sufficiently accurate 

estimate of the actual ground truth.  

6.3 Performance Metrics 

In order to measure performance a set of metrics must be devised. While the majority of metrics 

detailed here are standard measures of performance, some have been devised or modified in 

order to measure behaviour unique to the system.  These metrics are now described and where 

they are applied during performance measurement is explained. 

6.3.1 Object Detection 

The object detection algorithm is a form of a classification task, where pixels are either classified 

as belonging to a maritime object or not. The detector’s output is a binary image with pixels that 

are classified as objects being labelled as 1. 

Given the actual classification of pixels (ground truth) and the output of the system, four 

outcomes are possible as detailed in Figure 6-2. Outcomes where the system agrees with the 

actual data are labelled true positives (TP) or true negatives (TN) depending on whether the pixel 

belongs to an object or not. If the system incorrectly labels a pixel as an object when in actuality 

there isn’t one there this is called a false positive (FP), while a false negative (FN) is a case where 

an object is present but the system fails to detect it. 
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Figure 6-2 - Table of relations between actual and predicted output 

For a classification task, Precision is defined as, given the actual classifications of particular 

subjects, the proportion of cases where the subject was classified as positive and were actually the 

case [55]. Precision is calculated as:  
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Where    and    are true positive and false positive totals for the entire image. Recall is defined 

as the proportion of subjects which were actually positive and were classified as such [55]. Recall is 

calculated as: 
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Where    and    are true positive and false negative totals for the entire image. Hripcsak and 

Rothschild [55] define the F-score, which is a harmonic mean of the two metrics: 

    
(    )                  
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Where   is a parameter that allows one to weight Precision or Recall more heavily. Szpak and 

Tapamo [8] note that for a surveillance system the reduction of false negatives is top priority. It is 

preferable to have a system give false alarms than falsely ignore incoming vessels which may 

potentially pose a threat. For this reason Recall was weighted twice as much as Precision by 

setting    . This F2-score can be used to test both the output of the background subtraction 

algorithm and the post-filter. 
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To test the accuracy of level set filtering, the output of the post-filtering stage was segmented 

using binary level set shape prior segmentation for each sequence. For an input binary image with 

  blobs, and assuming energy is positive at all times the segmentation proficiency score is defined 

as: 

    

      ⏟    
       

 ( )

 ( )
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Where  ( ) is the final energy obtained from the level set segmentation of blob   in the image 

and    is the index of the blob belonging to the object that is to be found. This score has been 

devised specifically to measure performance of the level set filtering algorithm and does not 

feature in any previous literature. It essentially measures the contrast between the energy 

associated with segmentation of the actual object and the blob with the lowest energy of the 

remaining blobs. The significance of this score can be illustrated with an example shown in Figure 

6-3 where blob 3 corresponds to the blob of the desired object. Each of the blobs has its own 

associated energy and so the numerator in equation 6-4 will consist of the lowest energy of blobs 

1, 2 and 4. The denominator will consist of the energy associated with blob 3. 

1 2

4
3

 

Figure 6-3 - Example image consisting of n different blobs 

If blob 3 has the lowest energy of all blobs in the image,   will be greater than 1 indicating a 

correct classification, however if another blob has a lower energy than 3, the level set filtering 

algorithm will incorrectly classify this as the object and   will be less than 1. In this way,   is used 

to measure the success of the level set filtering algorithm. 
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If the object is successfully detected, the quality of its segmentation is measured. Krishnaveni and 

Radha [56] suggest using Dice’s coefficient [57] as a method of performance evaluation for level 

set methods: 

   
  (   )

   
  6-5 

Where   and   are the ground truth and resultant segmentation regions respectively and   varies 

from 0 to 1 depending on the proportion of pixels shared between the ground truth and the 

segmenting contour. While this measure is a good rule of thumb, it lacks the measure of separate 

error types. Type I error is defined as the proportion of ground truth pixels not covered by the 

segmenting contour: 

    
  (   )

 
 6-6 

And Type II error is defined as the portion of segmentation region pixels that cover regions that 

are not part of the ground truth: 

      
  (   )

 
 6-7 

A physical analogy of each metric is shown Figure 6-4. Error I is derived from region A, which 

consists of the portion of the ground truth object not covered the level set contour. Dice’s 

coefficient is derived from the intersection of the level set contour and the ground truth object, 

and error II is derived from the portion of the inside of the level set contour that does not segment 

the ground truth object. 
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1 2 3

1 – Error I
2 - Dice’s Coefficient

3 – Error II

- Ground Truth (A)

- Level Set Contour (B)
 

Figure 6-4 - Physical analogy of segmentation metrics. For two intersecting regions, sub regions can be classified as 
contributions to one of three possible metrics 

6.3.2 Object Tracking 

In order to evaluate the performance of an object tracker for a particular sequence of images two 

basic metrics are commonly used: 

 Of all the frames in the sequence, for how many was tracking considered to be successful? 

 For those frames that it was considered successful, how accurate was the tracking? 

The tracker detection rate (TRDR) is the average number of frames an object is successfully 

tracked and is defined by Porikli and Bashir [58], as: 

      
   

  
 6-8 

Where     is the number of frames the system contour overlaps the ground truth object. TG is 

the number of frames in which the ground truth object is present. There are different strategies to 

test if object overlap occurs, the simplest of which is to test if the system contour’s centroid lies 

within the ground truth object’s bounding box.  

To measure the degree of success for a tracked object, the object tracking error (OTE) [58] is 

defined as: 

      
 

   
∑    (  

     
   

)   (        )

  

   

 6-9 
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Where     ( ) measures the distance between are the centroids for the ground truth object   
   

and system contour   
   

 in the  th frame respectively.  (      ) is an overlap function defined 

as: 

  (      )   {
                       
                                       

 6-10 

Unlike most other trackers level set-based methods provide an estimate of the ground truth 

objects outline for each frame. Figure 6-5 shows the problem of evaluating level set trackers’ 

performance simply by object tracking errors. Here two potential tracking outputs might have a 

similar object tracking error as the distance between the two regions’ centroids remains the same, 

yet the contour in (i) is clearly a better fit than in (ii). 

XX XX

- Ground Truth (A)

- Level Set Contour (B)

X - Centroid of Ground Truth Object
X - Centroid of Level Set Contour Region

(i) (ii)

 

Figure 6-5 – Comparison of two situations that would give a similar object tracking error. Despite having similar errors, 
(i) would be a more desirable output. 

For this reason the contour tracking error (CTE) is used in conjunction with the OTE and defined as: 

      
 

  
∑

 

(   )
    (        )     (        ) 

  

   

  (        ) 6-11 

Where    and     are the segmentation errors described in equation 6-6 and equation 6-7 

respectively and  (      ) is the overlap function defined above. For the same reasons as the 

choice of   for the    score,   is set to 2. The contour tracking error simply is thus the mean 

contour error (defined as a weighted sum    and    ) over frames that were successfully tracked. 
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6.4 Optimisation 

The methods described in the previous chapter are dependent on a number of user-given 

parameters. The choice of these parameters is not always clear from inspection and so algorithms 

were devised to find an optimal parameter value. This is achieved by setting up a fitness or cost 

function and varying parameters until an optimum of this function is found. The function is 

designed to penalise undesirable behaviour and reward desirable characteristics in each 

algorithm.  

This chapter derives optimal user-input parameters where they are required in the modules 

described in the previous chapter. These parameters are then implemented in the video tracking 

system and performance of this system is measured in the next section. 

Realistically, a large number of datasets must be used to find optimal parameters. Since only a 

small dataset is available for testing, the word optimal is used rather loosely. Therefore, while the 

same optimisation processes that are executed in this work could be applied to a larger dataset, it 

is recognised that the derivation of the parameters here is in no way rigorous. Future work may 

pursue a more thorough optimisation but for the purposes of this work it is sufficient to present 

the concept and some sample parameter values. 

6.4.1 Object Detection 

Figure 6-1 shows the windows taken from the 10 original image sequences, each containing their 

respective objects. While the common strategy of splitting a dataset into 2/3 for training and 1/3 

for testing is shown to work well for reasonably sized datasets (over 100 cases [59]), this was used 

for the system dataset despite its small size. Sequences 2, 6, 7 and 10 were chosen as a test set 

while the remaining sequences were used for training. The test sequences are a good 

representative sample of the entire set as they present a variety of object sizes and weather 

conditions as shown in Table 6-1. 

The optimisation for each subsystem of the object detector is discussed. 

6.4.1.1 Pre-Filtering 

Neither of the two pre-filters described previously have input parameters that need to be derived 

– the filters are simply applied in a standard way. Therefore the topic of pre-filters is not discussed 

again until the next section where the performance of each pre-filter is presented and discussed. 
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6.4.1.2 Background Subtraction 

In order to achieve a more satisfactory result, the background subtraction algorithm must be 

optimized with respect to: 

 The number of frames used for kernel density estimation ( ). 

 The spacing between each frame ( ). 

 The probability threshold used (  ).  

These variables were adjusted to minimise a cost function that is calculated for a small window 

around the ground truth object: 

  (      )       (           )      (           )  
6-12 

Where    is the output of the background subtraction algorithm and   is a mixing parameter to 

allow more emphasis on minimisation of Type I and Type II error. As reduction of false negatives is 

more important,   was set to 2. 

A brute force search was run to find optimal parameters for each of the above-mentioned training 

sequences. For every sequence, the values of  ,   and    were varied and the cost function was 

measured. Those that resulted in the lowest cost function were considered optimal for each 

sequence and are shown in Table 6-2. 

Table 6-2 - Optimal background subtraction parameters for various sequences 

Sequence Number Optimal   Optimal   Optimal    

1 19 10 0.015 

3 19 15 0.005 

4 18 14 0.01 

5 14 13 0.015 

8 8 8 0.01 

9 18 5 0.015 

The result of using background subtraction using these individual parameters is shown in Figure 

6-6. 
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(1) 

 

 

(3) 

 

 

(4) 

 

(5) 

 

(8) 

 

(9) 

Figure 6-6 - Background subtraction results for optimal individual parameters 

The averages of these parameters were used in the final algorithm in anticipation that these would 

give fairly decent results for across most of the sequences.  

Therefore the optimally chosen parameters are: 

      

       

           

6.4.1.3 Post-Filtering 

Out of the possible post-filters listed, the fixed threshold connected-component algorithm has an 

optimal threshold based on region/blob size, the variable threshold algorithm has an optimal 

threshold function that may be used and the motion persistence filtering algorithm has an optimal 

number of frames that may be used. The values of these parameters are now determined. 

Motion-Persistence Filtering 

It was empirically decided to use 3 previous background subtracted frames for motion persistence 

filtering. If background subtraction with frame-spacing is used there should be considerable 

changes in sea motion across these frames. 

Fixed Threshold Connected Component Filtering 
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To find an optimal fixed threshold for fixed threshold connected-component filtering, the area of 

the smallest ground truth object in each sequence was measured. The algorithm has to filter out 

regions which are superfluous but still keep those that belong to actual maritime objects. To do 

this, a lower threshold for blob-size must be selected. Table 6-3 shows the area of the smallest 

ground truth object in each sequence. 

Table 6-3 - Area of smallest ground truth object in each sequence 

Sequence Object Area (Total number of pixels) 

1 458 

3 1047 

4 696 

5 677 

8 70 

9 1468 

The smallest object, observed in sequence 8, has an area of 70 pixels. To ensure that objects above 

this size are kept, and allowing 10 pixels for safety: the threshold set at: 

          = 60 

Variable Threshold Connected Component Filtering 

For a variable threshold connected-component algorithm, the optimal threshold function must be 

obtained. Figure 6-7 shows the area of each of the training objects plotted vs. their normalised 

vertical position. Here 0 represents the top of the image while 1 represents the bottom. The 

following area threshold function was chosen: 

  ( )         6-13 

Where   is the normalised vertical position. This function (plotted in red in Figure 6-7) ensures 

that blobs near the top of the image need only be over 10 pixels in size to be kept in the image, 

while blobs at the bottom of the image need to have an area over 100 pixels to be kept. 
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Figure 6-7 - Plot of ground truth area vs. vertical position in image. The chosen threshold function is shown in red 

The large variation in pixel area for each of the objects can be attributed to the various scenes in 

which they appear. Some sequences are filmed quite far away from to the ocean and so objects 

appear to be very small, while others are filmed very close and produce large objects in the image.  

If a large amount of data were available from a single static scene a large number of points could 

be plotted onto Figure 6-7, which would reveal a more specific trend in the increase in object’s 

area with vertical position.  

6.4.2 Object Tracking  

Section 5.5 explained that the important parameters that need to be selected for object tracking 

are energy functional and the number of iterations used during evolution of these energy 

functionals towards the desired minimum point. In this section optimal values for both of these 

parameters are derived. While the choices of various object detection stages are highly dependent 

on the sequence target object in question, various object tracking energies described in section 

5.5.1 were found to exhibit identical behaviour across all sequences. It is for this reason that the 

10 sequences (shown in Figure 6-1 and Table 6-1) were not split into training and testing sets. The 

tracking algorithm was optimised for a few sequences and tested on all of them.  
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For each energy term, the algorithm was run on a hundred frames for various iterations per frame. 

Three randomly-selected sequences were used as a source of these frames. The average Dice’s 

coefficient vs. the number of iterations per frame for each energy term is shown in Figure 6-8. 

 

Figure 6-8 - Average error vs. Number of Iterations for various energy terms 

Although it has fairly poor results at low iteration counts, the FFT-based energy gives the best 

results after 30 iterations per frame. Naturally one wishes to keep the number of iterations low to 

ensure efficiency while keeping them high enough to ensure proper segmentation. When 

iterations reach 30 the average Dice’s coefficient tapers off and so, adding 10 iterations for safety, 

40 iterations per frame was chosen. The final parameters of the tracking algorithm are thus: 

 Energy used: FFT difference 

 Number of iterations per frame: 40 

A possible reason for the low performance of the statistical-feature energy functional is most likely 

due to a lack of functional smoothness with respect to each of the transformation parameters. If 

the functional does not decrease as the contour gets close to the object, the gradient would not 

necessarily produce evolution in a favourable direction. This would make finding a global minimum 

very difficult and cause the candidate contour to deviate from the object. 
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6.5 Object Detection Results 

Given the parameters deduced in section 6.4.1, the object detection performance using these 

parameters can now be investigated. The optimised object detection algorithm was run on the 

test set of sequences: Sequences 2, 6, 7 and 10. The entire system has been broken into its 

individual sub-systems which have been tested individually. Sub-systems that have a number of 

different algorithms at their disposal have been tested using each of these techniques and 

compared. 

6.5.1 Pre-Filter and Background Subtraction  

The choice of pre-filter has been postponed until now. Figure 6-9 shows F2-scores for the output of 

the background subtraction stage with and without various pre-filtering algorithms. Recall, F2 

refers to the F-score where    . The comparatively low scores for sequences 2 and 6 can be 

explained by the large amount of glint in sequence 2 (see Figure 6-11) and the small object size in 

sequence 6 (see Figure 6-12). Despite these low scores, pre-filtering was able to improve scores 

for every sequence. 

 

Figure 6-9 - F2-Scores for various pre-filtering algorithms 

Table 6-4 shows the background subtraction results using each of these pre-filters on the test 

sequences. Attention is drawn to the outputs for the median and Gaussian pre-filters which show 

a removal of small erroneous pixels and a reduction in size of larger ones. One may also note that 

Gaussian pre-filtering is able to remove some of the smudging effects shown in sequence 10.  
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These smudging effects trailing the objects are simply artefacts of the threshold selection for the 

sequences. As the ship in sequence 10, for example, moves from right to left, its pixel values 

become part of the density estimate for pixels trailing it. This decreases the probability of seeing a 

sea pixel, and so when one is seen, this is may be marked as the foreground if the threshold is not 

set low enough.  

It is clear that the use of a 3x3 Gaussian filter provides the best results and so this was used for 

testing in the next stages of the algorithm: 

 Pre-filter choice: 3x3 Gaussian 
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Table 6-4 - Outputs for various pre-filters 

 No Filter Median Gaussian 

Sequence 2 
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6.5.2 Post-Filtering 

Figure 6-10 shows the F2-scores of various post-filtering methods. These have been applied to the 

output of the background subtraction used with a Gaussian pre-filter and so F2-scores for the raw 

background subtracted output have been included for comparison. Every filtering method was 

able to improve the score for every sequence. F2-scores for sequences with large objects are less 

sensitive to false positives as they do not compare much proportionally to the number of pixels in 
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the object. The converse is true for smaller objects such as sequence 6 where the largest 

improvement from filtering is shown. 

As they are the most aggressive filtering methods, it comes as no surprise that the connected-

component filters (both fixed and variable threshold) gave the biggest improvement in scores. One 

should bear in mind the possibility that if a target were too small, these filtering algorithms would 

remove it from the image and so there is an associated risk with using them. Due to its increasing 

threshold at the bottom of the image, the variable threshold connected-component algorithm was 

able to remove more false positives than the fixed threshold, producing the highest F-scores of all 

the filters. This algorithm yielded an average increase of 78% in F2-scores for all test sequences. 

 

Figure 6-10 - Comparison of various F2-scores for various filtering algorithms 

From Table 6-1 it is clear that detection results are highly dependent on the weather and size of 

the target object. If the object is too small (sequence 6), or the scene has too much glint (sequence 

2) the results are poor. While post-filtering methods are able to remove some false positives in 

sequence 6, thereby increasing its score, glint results in large numbers of false positives in the 

image that are hard to remove (Figure 6-11). 

Table 6-5 shows the actual outputs of the various filters for each of the sequences. These are again 

compared to the raw output of the background subtraction algorithm. 
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Visually it is easy to see in Table 6-5 why the connected-component filters have the highest scores, 

as there are very little false positives left in the image, while the closing operation was able to fill 

in a few false negative pixels in the objects. One is unable to differentiate between the output of 

the fixed and variable threshold filters as the majority of removed false positives are removed in 

the rest of the image. 
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Table 6-5 - Results of filtering for various sequences and filters 

 Sequence 2 Sequence 6 Sequence 7 Sequence 10 
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Figure 6-11 to Figure 6-14 show the output of the background subtraction superimposed on the 

entire image for each of the sequences. The large amount of glint and ocean movement illustrate 

why filtering methods are unable to improve F2-scores in sequence 2 (Figure 6-11). Despite being 

considered false positives in the context of ship-tracking, the positives in the image do in fact 

correspond to actual motion in the sea; such as the wake from the ship. 

 

Figure 6-11 - Output from background subtraction overlaid on original image for sequence 2 

 

Figure 6-12 - Output from background subtraction overlaid on original image for sequence 6 

The background subtraction algorithm’s effectiveness is illustrated in sequence 7 (Figure 6-13) 

where the guide-line from the yacht (to the right of the top of the sail) is picked up by the 

background subtraction algorithm despite being almost invisible to the naked eye. Thanks to the 

variable threshold in this image, the majority of false positives were removed at the bottom of the 
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image, while still preserving the motion from the boat in the far off distance (to the right of the 

yacht). 

 

Figure 6-13 - Output from background subtraction overlaid on original image for sequence 7 

Simple inspection of the results for sequence 10 (Figure 6-14) shows that almost all the false 

positives were due to genuine motion from the sea in the image. The supposed false positive 

pixels at the bottom of the actual ship blob were again genuine motion due to its reflection in the 

water. 

 

Figure 6-14 - Output from background subtraction overlaid on original image for sequence 10 
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6.5.3 Level Set Filtering 

To test the level set segmentation technique, the output from the variable threshold connected-

component algorithm was used as input data as it had the best results out of all the filtering 

methods. The energy functional used and details of its evolution are discussed in section 5.4.4.  

Table 6-6 shows P-scores for each sequence and indicates which passed or failed at classification 

(recall, a pass is a P-score greater than 1 while a fail is a P-score less than or equal to 1). Apart from 

sequence 6, all the sequences were correctly classified with very good P-scores. A likely reason for 

sequence 6’s failure is the similarity in shape of the blob around the ship with false positive blobs 

in the image (see Figure 6-12). 

Table 6-6 - P-scores for various image sequences using Chan-Vese Energy as classification criteria 

Sequence P-Score Classification Pass/Fail? 

2 6.9316 Pass 

6 0.4642 Fail 

7 4.2569 Pass 

10 13.1468 Pass 

Table 6-7 shows actual segmentation results for the sequences that were correctly classified. 

While the green contour shows the ground truth for these objects, the red contour shows the 

resultant contour from segmentation. While sequence 2 can be considered a good segmentation, 

the smudging effects discussed above have caused poor segmentation results for sequences 7 and 

10. The segmenting contours have tried to position themselves to include as many of these pixels 

as possible resulting in offsets from the ground truth.  
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Table 6-7 - Segmentation results from image sequences that passed level set filtering. The boundary of the ground 
truth object is highlighted in green while the segmenting contour is highlighted in red 

 Segmentation Result Dice’s Coefficient 

Sequence 2 

 

0.8698 

Sequence 7 

 

0.6113 

Sequence 10 

 

0.6667 

Figure 6-15 shows F2-scores for the output of the object detector using level set filtering compared 

to the output without it.  
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Figure 6-15 - F2-Scores for object detector with and without level set filtering with shape priors on its output 

Despite the incorrect classification for sequence 6, the level set filtering extensively improved F2-

scores for every other sequence. These scores may be compared with Szpak and Tapamo’s system 

[8] whose highest F2-scores were slightly less than 0.5. Sequence 2 was able to obtain the highest 

score despite having a large amount of glint in the image (Figure 6-11), a situation where Szpak 

and Tapamo’s system failed. 

6.6 Object Tracking Results 

Given the parameters deduced in section 6.4.2, the object tracking performance using these 

parameters (namely, the FFT energy functional at 40 iterations per frame) can now be 

investigated. The tracking algorithm was run on the first 300 frames of each sequence using an 

initial contour derived from the ground truth object in the first frame as a target contour. This 

eliminates the dependency of the tracking algorithm on the object detection algorithm and allows 

its performance to be measured in isolation. Table 6-8 shows the tracker detection rate (TRDR), 

object tracking error (OTE) and contour tracking error (CTE) for each sequence. 
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Table 6-8 – Performance metrics for each sequence. The sequences have been calculated using sequences of 300 frames 

Sequence TRDR OTE CTE 

1 1 1.8795 0.098 

2 1 3.7144 0.225 

3 1 1.4506 0.091 

4 0.85 10.799 0.337 

5 0.71 4.8505 0.206 

6 0.38 7.2204 0.408 

7 1 20.62 0.349 

8 1 2.7759 0.331 

9 0.7933 1.5088 0.075 

10 1 2.6944 0.082 

Detailed analysis of some of the sequences uncovers reasons for some of the above scores. 

The reason for poor performance in sequence 4 can be attributed to change in frequency 

characteristics of the pixels of the tracked object as the sequence is run. Figure 6-16 shows the 

target contour in the first frame (above in yellow) and the tracking contour in the frame where it 

starts to drift away from the object. Attention is drawn to the bottom image in which glint from 

the suns reflection in the object’s window and a dark patch may have caused frequency 

components similar to the surrounding ocean, rendering the tracker unable to differentiate 

between the object and its surroundings. 



111 
 

 

 

Figure 6-16 - Comparison of target contour from sequence 4 (yellow) and the frame in which the contour started to 
drift from the object (red) 

While the contour tracking error (CTE) is normally calculated as the average error over the frames 

that tracking was successful, Figure 6-17 shows the instantaneous CTE calculated for each 

particular frame regardless of success of tracking. This shows an increase in CTE as the contour 

starts to lose its object, however, it also shows a dip in error starting around frame 200. This was 

due to panning of the camera to the left (starting at frame 216) which was able to “save” the 

tracking by moving the object back into its contour. This explains the comparatively high tracking 

detection rate in Table 6-8. 
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Figure 6-17 - Instantaneous Contour Tracking Error vs. frame number for sequence 4 

For sequence 5, Figure 6-18 shows the target contour in the first frame (above in yellow) and the 

tracking contour in the frame where it starts to drift away from the object (bottom in red). Again, 

a change in object appearance can be attributed to error. In this case, glint from the sun strongly 

defines the borders of the object in the target frame, while the contour starts to drift when this 

glint is no longer present, making the target almost indistinguishable to the human eye. 
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Figure 6-18 - Comparison of target contour from sequence 4 (yellow) and the frame in which the contour started to 
drift from the object (red) 

Probable reasons for the error in sequence 6 include its small size and homogeneous appearance. 

Larger objects are able to incorporate more frequency information than their smaller 

counterparts, which in sequence 6’s case has an object only about 80 pixels in size. This is made 

worse by the homogeneous nature of its pixels and the homogeneous nature of its surroundings 

as shown in Figure 6-19. 

 

Figure 6-19 - Homogeneous nature of pixels inside object for sequence 6 and surroundings 

This causes the tracking contour to start to drift almost immediately as tracking starts, as shown in 

the contour tracking error in Figure 6-20. 
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Figure 6-20 - Instantaneous Contour Tracking Error vs. frame number for sequence 6 

Although the tracking contour successfully overlapped the object in every frame of sequence 7, 

the sequence has a comparatively high object tracking error of 20.62. A plot of the instantaneous 

object tracking error is shown in Figure 6-21. Around frame 100 the error jumps up and remains 

over 25 for the rest of the sequence.  

 

Figure 6-21 - Instantaneous Object Tracking Error vs. frame number for sequence 7 
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Investigation of the output of the system (Figure 6-22) shows why this is the case: While frames 

proceeding 100 correctly track the object like the contour shown in frame 88, for all frames 

thereafter the contour is stuck below the object like that in frame 100. This gives the almost 

constant object tracking error seen in Figure 6-21. The most likely explanation for this anomaly is a 

local minimum in the energy functional below the object in which the level set contour gets stuck. 

 

Frame 88 

 

Frame 100 

Figure 6-22 - Comparison of system output at frame 88 and at frame 100 

The large contour error present in sequence 8 compared to other trackers can be explained by the 

object’s small size. Even small variation of the contour around the object (which is evident from its 

small object tracking error) would result in large portions of the object to be incorrectly 

segmented. 

Sequence 9 is an example of error produced by camera panning. At frame 235 the camera begins 

panning and the system contour is unable to keep up. For this reason the distance between the 

system contour’s centroid and the object centroid continues to rise, thereby increasing the object 

tracking error. This doesn’t necessary show in Table 6-8 as the ODE is calculated for frames where 

the two overlap, however a plot of instantaneous object tracking error in Figure 6-23 shows the 

gradual increase as panning occurs.  
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Figure 6-23 -Instantaneous Object Tracking Error for sequence 9 

It is expected that if panning is slow enough and given more iterations per frame, the system 

would be able keep up with camera panning despite poor results presented here.  

Unfortunately little comparison can be made with the object tracking performance of Szpak and 

Tapamo’s work [8] as it only includes qualitative results for each sequence. It may be noted; 

however, that Szpak and Tapamo’s system performs poorly in sequences with glint. The system 

presented is able to successfully track its target in every frame when tested on 2 of the 3 

sequences containing glint. 

6.7 Speed of Algorithm 

Although speed of execution of a video tracking algorithm was discussed in the introductory 

chapter, it has not been mentioned since. In a realistic system, video tracking algorithms are 

required to run at about 30 frames per second. This gives a processing time of 33 milliseconds for 

each frame. The concept of execution speed of the video tracker developed has purposefully been 

ignored in order to focus on development of concepts and methodology. Since this work is 

focused on development or new algorithms it is appropriate to focus on these fundamental issues 

rather than address supplementary practical issues such as algorithm speed. These practical 

concerns may be optimised in future work for real-time computing. 
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6.8 Conclusion 

This chapter presents and discusses the performance of the system. Details of the various 

performance metrics that have been devised to quantitatively measure performance of various 

parts of the system are presented. These include metrics to measure object detection, namely the 

F-score, the P-score and Dice’s coefficient and metrics for object tracking, namely the tracking 

detection rates, object tracking error and contour tracking error. These are optimised for a very 

small data set and in no way can be considered completely optimal, nevertheless sample 

parameter values are found experimentally.  

For the object detection: the background subtraction algorithm was found to have an optimal 

buffer size of 16 frames, frame spacing of 11 frames, and a threshold of 0.0117. The connected-

component algorithms were found to have an optimal fixed threshold of 60 pixels and a variable 

threshold function of  ( )         respectively. The object tracking the frequency-based 

energy functional was shown to be optimal at 40 iterations per frame. 

Finally the object detector and object tracker of the system are tested in isolation using these 

optimised parameters, and the results from each module are presented and discussed extensively. 

The pre-filters were initially tested and the Gaussian filter was shown to be the best across every 

sequence. Using the output from the background subtraction using a Gaussian filter, each of the 

post-background subtraction filters was tested. The best filtering algorithm was shown to be the 

variable threshold connected-component filtering algorithm, where F2-scores were showed an 

average improvement of about 78% for all of the test sequences. The filtered sequences (using the 

variable threshold) were tested using the level set filtering algorithm. Of the 4 tested sequences, 

the filtering stage was about to successfully find correct objects in 3 of them. The F2-scores of 

these sequences with level set filtering with shape priors can be compared to a system without 

this knowledge such as Szpak and Tapamo’s [8]. Every sequence tested by this system where 

classification was successful showed a higher score than that obtained by Szpak and Tapamo’s.  

 Segmentation accuracy for these sequences varied, and was largely influenced by the shape of the 

blob made by the object in the background subtracted frame. The object tracker was tested in 

isolation for all 10 of the sequences. Of these, 6 had 100% tracking detection rates. This system 

obtained 100% tracking detection rates in 2 of the 3 sequences containing glint: a situation in 

which Szpak and Tapamo’s system performed poorly.   
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Chapter 7 - Conclusion 

This dissertation has investigated the use of prior knowledge to aid level set segmentation in video 

tracking for a maritime surveillance problem. Returning to the problem definition in Chapter 1, it 

can be stated that the research presented here successfully achieved solutions to the problems 

specified.  

This chapter gives an overview of the dissertation, discussing important parts of each chapter. 

Finally it covers future areas of research that may be used to improve the system discussed and 

make it more robust for use in a real-life maritime surveillance scenario. 

7.1 Summary of Dissertation 

Chapter 1 includes a brief background of the automation of surveillance systems in maritime 

environments. A particular problem that these systems seek to solve is that of the ever-increasing 

amounts of piracy on today’s waters. An increased awareness of a ship’s surroundings is 

imperative to evade potential attacks. Compared to the use of multiple crew members on guard 

duty, automated surveillance systems do not grow tired and do not require the human resources 

that manual observation does. That being said, these video tracking systems are faced with a 

number of challenges, especially in a maritime environment, such as a moving background from a 

bobbing ship or confusion with moving waves for actual objects of interest. The motivation for this 

work is thus the use of prior knowledge of a ship’s shape to differentiate between parts of the 

image that belong to waves and those that belong to actual objects of interest. The problem is 

defined in steps to be as follows: Investigation of various methods that allow the shape knowledge 

to be incorporated, a production of a model that uses one of these methods in a maritime 

environment, followed by testing of this video tracking system on real maritime data. Finally an 

outline of the dissertation is presented. 

Chapter 2 initially explores the overall theory that is associated with the production of a video 

tracker. The choice of both object detection and object tracking is shown to form an integral part 

of the video tracker and various methods of achieving each step are reviewed. Object detectors 

can be grouped into those that detect single points of interest in the image, those that model the 

background to find moving objects in a video sequence, those that segment the image into regions 

of interest in expectation that objects form part of these regions and those that create intelligent 

agents that learn the views of an object and are able to find similar ones in an image. Object 
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trackers are highly dependent on the object detectors used: Point trackers are designed to match 

points detected in two consecutive video frames, kernel trackers are designed to track regions 

within simple geometric shapes while silhouette tracking (including level set segmentation) is used 

to track objects with complex outlines. A discussion on how these methods have been applied to 

video tracking in the maritime environment is presented. This includes the various basic methods 

presented in the past that attempt to characterise the ocean in some way and then remove it from 

the image in expectation that what remains are objects of interest. The various techniques to do 

this include characterising the ocean using frequency analysis, its grey-level histogram, and 

statistical features drawn from ocean tiles. While some methods have users indicate tiles 

belonging to the ocean prior to working, some surpass user intervention by transforming an image 

into points in feature-space and removing the largest cluster assuming that this belongs to ocean. 

This chapter concludes with a discussion on Szpak and Tapamo’s implementation of level sets for 

tracking in [8] which forms a basis for the work presented in this dissertation.  

As the object detector used in [8] is based upon a background modelling algorithm, a review of the 

various methods to achieve this are presented in full detail in Chapter 3. These can be grouped 

into techniques that produce a background model consisting of a single image and those that 

model pixels with a probability distribution. The single image model assumes foreground pixels are 

those that deviate from model-values while the probability model assumes they are those that are 

calculated to be unlikely. 

As level set segmentation forms the basis for the object tracker in [8], Chapter 4 includes an in-

depth analysis of the history and implementation of this method and how it has grown to be used 

today. A precursor to level set segmentation is active snakes. These methods express a curve in 

the image as a parametric spline and use forces to push it towards objects of interest. Level set 

segmentation solves a shortcoming of this method: its inability to handle changes in topography 

such as region splitting. Level set segmentation expresses a contour in the image as the zeroth 

level set of a higher dimensional function that is able to move around in 3D space allowing its 

contour in 2D to merge and split accordingly. Initially this function was evolved in an image to 

imitate the behaviour of active snakes. Variational methods, in contrast, define an energy function 

that is dependent on the level set function and is minimised if some pre-defined conditions are 

met. A differential equation is derived that evolves the level set function in a direction that 

minimises this energy thus moving the contour to desirable points in the image. 
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Since the focus of this dissertation is the incorporation of prior knowledge of an object’s shape 

into the level set segmentation, Chapter 4 follows with a full review of the various methods used 

to achieve this. These can be grouped into methods that generate an additional term to a 

variational energy functional that penalises deviation from a known shape or methods that embed 

shape directly in the level set function by defining it as a function of some parameters. In addition, 

various works in literature present methods for incorporation of multiple shapes into the 

segmentation as well as methods to selectively use this knowledge in segmentation. Methods that 

incorporate multiple shapes create a shape model from a set of training shapes using a number of 

modelling methods while selective shape priors incorporate a labelling function that controls 

whether shape-knowledge is to be used. This labelling is dependent on how similar a contour is to 

a particular training shape and evolves in parallel with the level set function. 

Chapter 5 includes explicit detail of the model used by the system. It moves from a high level 

overview of the system and then moves into finer aspects of both the object detector and object 

tracker, providing pseudo-code algorithms to clarify the details of the implementation. The object 

detector is a cascade of a pre-filter, background subtraction stage, a binary post-filtering stage and 

finally (if the user wishes) a level set shape prior filtering stage. The object tracker is composed of 

a model generation stage that receives its input from the object detector, and a tracking stage that 

achieves tracking by comparing objects in current frames with the model generated. 

The level set segmentation formulation presented by Tsai et al [10] is the method used to 

incorporate prior knowledge of shape in the system and thus is discussed in detail. This is followed 

by a novel modification to this work that estimates energy gradient using a central difference 

scheme which allows the use of any arbitrary energy functional to be used with this formulation 

and avoid complex symbolic derivation. 

The details of how this new model fits into both the object detector and object tracker are 

discussed. Image pre-filters may consist of a Gaussian filter or a Median filter. The background 

subtraction stage is of a probability modelling type and composed of a pixel-wise kernel density 

estimator, followed by a binary filtering stage that consists of one of a number of methods 

including filtering based on motion persistence, connected-component size filtering with a fixed 

and variable threshold and a spatial smoothness constraint proposed by Szpak and Tapamo [8]. 

The shape filtering stage uses a novel energy functional that is tailored to segment binary image 

outputs from the background modelling and filtering stages. The object tracker achieves tracking 
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using one of a number of novel energy functionals designed to compare candidate contours in 

current image frames with a target contour in the first frame of detection. These include 

functionals that compare a target and candidate contour using their histograms, frequency 

information, and statistical features. 

Chapter 6 presents the results obtained from applying this system to a set of image sequences 

from a maritime environment. Various metrics used to measure the performance of the system 

and their meanings are covered. Object detection metrics include the F2-score, used for measuring 

raw object detection accuracy; a novel P-score, used to measure effectiveness of shape filtering 

and Dice’s coefficient, which measures level set segmentation accuracy. Object tracking metrics 

include the tracker detection rate, which measures the proportion of frames successfully tracked; 

object tracking error, which measures a rough estimation of how well these frames are tracked 

using a difference in centroids and a contour tracking error, which measures tracking error more 

accurately as average segmentation error for tracked frames. 

Optimisation of the system and details of optimal parameters are discussed. These are optimised 

for a very small data set and in no way can be considered completely rigorous, however, the 

concepts used to determine them warrant presentation and could easily be used with a larger 

data set in future work. Parameters for the background subtraction and filtering stages were 

chosen to minimise segmentation error for a sample window around objects in sequences. For the 

background subtraction algorithm, these include a buffer size of 16 frames, frame spacing of 11 

frames, and a threshold of 0.0117. The connected-component algorithms were found to have an 

optimal fixed threshold of 60 pixels and a variable threshold function of  ( )         

respectively. In order to optimise the tracking algorithm the average Dice’s coefficient for a single 

sequence was maximised with respect to tracking energy and iterations per frame. The frequency-

based energy functional was shown to be optimal at 40 iterations per frame. 

Finally the object detector and object tracker of the system are tested in isolation using these 

optimised parameters, and the results from each module are presented and discussed extensively.  

Each of the pre-filters was tested in isolation and compared to the output of the optimised 

background subtraction algorithm without a pre-filter. Each pre-filter yielded an improvement in 

F2-scores (at most about 0.9) for every test sequence. The Gaussian filter was shown to be the best 

pre-filter across every sequence.  
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Using the output from the background subtraction implemented with a Gaussian filter, each of the 

post-background subtraction filters was tested. Although a single test sequence only slightly 

increased its F2-scores due to filtering (due to large false-positives in the image) the other test 

sequences showed drastic improvements in F-scores from all of the filtering algorithms.  The best 

filtering algorithm was shown to be the variable threshold connected-component filtering 

algorithm, where F2-scores were shown to have an average improvement of about 78% for all of 

the test sequences. The filtered sequences (using the variable threshold) were tested using the 

level set filtering algorithm. Of the 4 tested sequences, the filtering stage was able to successfully 

find correct objects in 3 of them. Segmentation accuracy for these sequences varied, and was 

largely influenced by the shape of the blob made by the object in the background subtracted 

frame.  

The object tracker was tested in isolation for all 10 of the sequences. Of these, 6 had 100% 

tracking detection rates. Errors in tracking were attributed to the change in objects from their 

target models as the sequences progressed, camera panning, and the small size of objects in 

certain sequences. 

The system was shown to perform better than one without prior shape knowledge such as that of 

Szpak and Tapamo [8] in both object detection and object tracking. In particular, the system 

continued to perform well even in situations where Szpak and Tapamo’s system would fail. 

7.2 Future Work 

While the system is able to successfully detect and track maritime objects, it still requires some 

assumptions that would not be true in a real-life situation. Future work on this system would allow 

for relaxation of these assumptions.  

Firstly, the use of a background modelling algorithm to achieve object detection relies on a 

stationary camera to function. This is not the case in a real-life situation where a camera would 

most likely be mounted on the mast of a moving ship. An edge-based level set segmentation with 

shape priors for object detection rather than a filtered background subtraction algorithm could be 

used in the future. This would segment the raw image directly using a level set and would 

hopefully alleviate the requirement for a stationary background and allow cameras to be mounted 

on a bobbing ship. As background subtraction would not be used, the number of false positives 

from movement of waves would be reduced.  
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Secondly this system only uses a single shape prior that must be manually pre-set for every 

sequence that would not be feasible in a real-life system. To remove the reliance on the user a 

bank of multiple training shapes could be modelled using a method such as kernel density 

estimation in [50]. This model would then be used in replace of a fixed shape prior for 

segmentation. 

It has already been noted that the system would be far more optimal given a larger training set. 

The concepts and methodology developed in this dissertation can be effortlessly implemented 

with a larger dataset and so future work could include further incorporation of training data into 

the various subsystems discussed to produce more optimal parameters. 

Finally, the system runs on a single-threaded MATLAB implementation and is thus quite slow. 

Future work can entail optimising this algorithm for parallel processing, and implementing it in a 

faster framework such as C++. 
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