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Abstract 
 

Organocatalysis has emerged as a new powerful methodology for the catalytic production of 

enantiomerically pure organic compounds.  The main aim of this work was to develop 

organocatalyzed routes to novel β-lactam derivatives.  In chapter 2, the first organocatalyzed         

C-C bond forming reactions have been performed on the carbapenem core 1, was the Aldol 

reaction, with various aldehydes to afford the corresponding products in good yields (up to 76%) 

and excellent diastereoselectivities (up to 99:1 ratios).  Next, the Mannich reaction was evaluated 

with different amines and aldehydes.  The products were obtained with modest chemical 

efficiency (up to 55%) and excellent diastereoselectivities (up to 99:1 ratios) as with the Aldol 

reaction.  The reactivity of the carbapenem core 1 was also evaluated in the Michael addition 

reaction with electrophilic olefins.  Chapter 3 includes the full substrate scope of organocatalytic 

asymmetric Michael addition transformations on the carbapenem core 1 reported.  Good yields 

(up to 67%) and some excellent diastereoselectivities (up to 92:8 ratios) were obtained with              

L-proline as the organocatalyst.  We have also demonstrated the possibility to effectively convert 

the Michael products to monobactams through a retro-Dieckmann reaction under basic 

conditions, thereby leading to another highly valued class of β-lactam antibiotics.  Chapter 4 is 

the summary of the thesis. 
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CHAPTER 1 

 

1.1 Introduction into Chirality  
 

The concept of stereochemistry as an essential attribute of molecular structure dates back to the origin of 

modern organic chemistry a century ago.1  At the heart of stereochemistry, chirality is the essence of a 

molecular structure being pioneered by the great work of scientists such as Herschel,2 Biot3 and Pasteur.4  

Chirality is a geometrical attribute.  An object is chiral when it is not superimposable upon its mirror 

image and achiral when it is superimposable.  Two commonplace examples of chiral objects are an 

individual’s right and left hands (Figure 1) and a pair of counterclockwise and clockwise-threaded 

screws. 

 

Figure 1: Example of enantiomers (left and right hand).5 

Non-superimposable molecules are called enantiomers assigned as (R)- or (S)-enantiomers, they rotate 

plane-polarised light through equal angles but in opposite directions.6  Many of the compounds found in 

living organisms are chiral, for example enzymes, DNA and hormones. Therefore, the interaction of 

chiral compounds with these important building blocks in living organisms is unique.7  An example 

illustrating the differences are the enantiomers of dichlorprop; the (R)-(+)-dichlorprop is an active 

herbicide for killing the weeds, while the other (S)-(-)-dichlorprop enantiomer is inactive (Figure 2).8  

Several other examples are found in literature.9  In conclusion, biology is very sensitive to chirality and 

the activity of the compounds also depends on which enantiomer is used. 
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mirror plane
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Cl

O H
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(R)-(+)-dichlorprop (S)-(-)-dichlorprop  

Figure 2: Enantiomers of dichlorprop 

 

 

1.2 Routes to Obtain Enantiomerically Pure Compounds 
 

There are three main synthetic approaches to obtain enantiopure compounds.  These are mainly: 

resolution of racemates, chiral pool strategy and asymmetric synthesis.  Next, the three main strategies are 

outlined. 

 

1.2.1    Resolution of Racemates 
 

The first optical resolution of a racemate mixture was performed by Pasteur, who was able to manually 

separate the two kinds of crystals from racemic tartaric acid salts.10  Resolution is the separation of an 

equimolar mixture of enantiomers.11  This is achieved in three ways; (i) formation of diastereomers which 

are subsequently separated by chromatographic techniques and then converted back to individual 

enantiomers, (ii) discrimination of enantiomers by biological molecules such as enzymes and finally there 

is (iii) chiral chromatography in which the mixture is passed through a chiral column that has different 

affinity for the two enantiomers thus resulting in separation.6, 11-13  The major drawback in this approach is 

poor yields, only 50% of the desired enantiomer can be obtained unless any of the three approaches are 

further carried out.12 

 

1.2.2   Chiral pool 
 

The chiral pool synthesis utilizes naturally occurring enantiopure starting materials such as amino acids, 

carbohydrates, terpenes and carboxylic acids.14  This methodology is more useful when the desired final 
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product resembles the enantiopure starting material.  Otherwise long synthetic routes may be required 

resulting in lower yields.  

 

1.2.3   Asymmetric Synthesis 
 

Asymmetric synthesis involves the conversion of a prochiral substrates into a single enantiomer under the 

influence of a chiral molecule.15  It is an important method since it allows the synthesis of a variety of 

optically pure compounds.  There are four basic strategies in asymmetric synthesis that will be further 

discussed.  

 

1.2.3.1   Reagent Controlled  
 

In this method, the reagent used is chiral and serves to direct the transformation of a prochiral substrate to 

an optically pure product.16  An example demonstrating the usefulness of this method was reported by 

Blakemore and co-workers in 2006, showing stereoselective conversion of ketoesters to alcohols using                            

(R, R)-tartaric acid as a chiral reagent (Scheme 1).17 

 

C11H23 O

O O
H2, Raney Ni, NaBr

(R, R)-tartaric acid C11H23 O

OH O

85% ee  

Scheme 1: Reagent controlled asymmetric synthesis (ee = enantiomeric excess) 

 

1.2.3.2   Substrate Controlled  
 

Substrate controlled asymmetric synthesis utilizes a chiral starting substrate which serves to control the 

introduction of new elements of chirality on the product.15, 16  David and co-workers were the first to 

report substrate-controlled asymmetric synthesis of α-amino acid derived from sulfinimine.18  They 

demonstrated the activating nature of the p-ST-sulfinyl group to promote ring opening of an aziridine ring 

in aqueous TFA to afford syn-β-phenylserine derivative in good selectivity (Scheme 2). 
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N

S
p-tolyl O

MeO2C Ph

50% TFA, MeCN

50 0C, 6h Ph
CO2Me

NH2

OH

86% dr  

Scheme 2: Substrate controlled asymmetric synthesis (dr = diastereoselectivity). 

 

1.2.3.3  Auxiliary-Controlled 
 

Auxiliary-controlled asymmetric synthesis is based on the temporary incorporation of a chiral moiety in 

an achiral substrate generating new stereogenic centers.  The process involves the introduction of the 

auxiliary which serves to direct the diastereoselective reaction, separation of the formed diastereoisomers 

and finally the recovery of the chiral auxiliary.15, 16  This method is not widely employed due to some 

drawbacks namely, the attachment and the recovery of the chiral reagent.19  An example illustrating this 

method is the chiral auxiliary-controlled Diels-Alder reaction which affords a single enantiomer of the 

product (Scheme 3).15 

 

Cl

O

HN O

O

+ base N O

O
O

Et2AlCl

single enantiomer derived
from (S)-valine

single enantiomer
of dienophile

achiral dien

O

N

O

O

LiOBn

O

OBn

single enantiomer only  

Scheme 3: Auxiliary controlled asymmetric synthesis. 
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1.2.3.4   Catalyst Controlled 
 

Catalyst-controlled asymmetric synthesis or asymmetric catalysis utilizes the chiral information from the 

catalyst which is transferred to an achiral substrate, converting it to an enantiopure product.11, 14  During 

the process, substiochiometric quantities of the catalyst are required to accelerate the reaction.  The 

catalyst is not consumed and can be re-used in a new catalytic cycle.11, 14, 20, 21  This method will now be 

discussed in more details in the following section. 

 

1.3   Asymmetric Catalysis 
 

There are three main classes of asymmetric catalysts employed: 

 

1.3.1   Metal-ligand Complexes as Catalysts 
 

Organometallic catalysis is one of the most successful and widely used methods in asymmetric 

synthesis.11, 16, 22, 23  The success of this area of research is mostly due to the fact that metals have higher 

affinity to complex with structurally well-defined organic ligands which results in an efficient asymmetric 

induction.  Much of what is known in this field of research has been pioneered by Knowles.24  He 

demonstrated that complexes of rhodium and phosphine ligands, with C2 symmetry, catalyzed the 

addition of hydrogen to one of the faces of a prochiral olefin to generate a stereogenic C-H center with 

high enantioselectivity.  The success of this reaction led to an industrial preparation of L-DOPA (Scheme 

4).16  As a drug, L-DOPA is used in the clinical treatment of Parkinson's disease and dopamine-responsive 

dystonia.25 

http://en.wikipedia.org/wiki/Therapy
http://en.wikipedia.org/wiki/Parkinson%27s_disease
http://en.wikipedia.org/wiki/Dopamine-responsive_dystonia
http://en.wikipedia.org/wiki/Dopamine-responsive_dystonia
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CO2HMeO

NHAc
AcO

[Rh(DiPAMP)]
CO2HMeO

NHAc
AcO

P P

O

95% ee

H3O+

L-DOPA

+ H2

O

CO2H

NH2

HO

HO

  
Scheme 4: Industrial preparation of L-DOPA using [Rh(DIPAMP)] catalyst. 

 

In spite of the success, some organometallic complexes are expensive and require strict reaction 
conditions. 

 

1.3.2   Biocatalysts 
 

Biocatalysis is the process where biomolecules such as enzymes are used to catalyze chemical 

reactions.26, 27  The advantage of using biocatalysts includes their high degree of regio-, and stereo-

specificity under mild reaction conditions.  An additional advantage of using biocatalysts includes 

reduced isomerization, racemization, epimerization and rearrangement effects that are common in organic 

synthesis.28  However, there are some drawbacks with this methodology, namely their costs, some 

biocatalysts cannot be applied to a wide range of asymmetric reactions and therefore their use is limited in 

industry.27  An example illustrating the use of biocatalysts was reported by Fruetel and co-workers on 

epoxidation of cis-β-methylstyrene using cytochrome P-450cam from Pseudomonas putida (Scheme 5).29 
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P-450cam

P.putida

O

78% ee  

Scheme 5: Stereoselective epoxidation of cis-β-methylstyrene  

 

1.3.3   Organocatalysts 
 

Asymmetric organocatalysis is defined as the acceleration of chemical reactions by small organic 

molecules in the absence of metals.30, 31  This is a new powerful method for the catalytic production of 

enantiomerically pure organic compounds and is one of the most rapidly growing research areas in 

synthetic chemistry.30-33 

This method will be discussed in further details for the purpose of this project. 

 

1.4   Asymmetric Organocatalysis 
 

The use of small organic molecules to catalyze a chemical reaction has been known for over a century.34  

In 1896, Emil Knoevenagel used a secondary amine (piperidine) to catalyze the condensation reaction 

between diethylmalonate and benzaldehyde which resulted in the reaction being named after him that is 

the Knoevenagel condensation.35  Mackwald in 1904 was the first to report asymmetric organocatalysis 

using the brucine alkaloid in a decarboxylation process.36  In 1912, Bredig and Fiske described the 

asymmetric addition of HCN to benzaldehyde catalyzed by cinchona alkaloids with an ee of less than 

10% for the reaction product (Scheme 6).37 
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H

O

N

N

OH O

< 10% ee

HCN

H

CN

OH

 

Scheme 6: Asymmetric addition of HCN to benzaldehyde catalyzed by cinchona alkaloids.  

 

During the 1960’s Pracejus published the organocatalytic methanolysis of a ketene with higher 

enantioselectivity (74 % ee) by using O-acetylquinine as the catalyst (Scheme 7).38 

 

N

N

OAc O

CO2Me

74 % ee

O

H

+ MeOH

Toluene, -111 OC

 
 

Scheme 7: Organocatalytic methanolysis of a ketene by O-acetylquinine as the catalyst. 

 

In the 1970s organocatalysis was revolutionized, when Hajos and Wiechert published the first asymmetric 

aldolization (Hajos-Parrish-Eder-Sauer-Wiechert reaction) catalyzed by L-proline with good 

enantioselectivity (Scheme 8).39 
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O
O

O

N
H

OH

O

DMF, 20 oC
OH

O

O

93% ee  
Scheme 8: Hajos-Parrish-Eder-Sauer-Wiechert reaction. 

 

In the late 1990s, things changed dramatically when Eric Jacobsen40, Elias Corey41 and their co-workers, 

published the first examples of hydrogen-bonding catalysis, in an asymmetric Strecker reaction.  

However, the concept of organocatalysis wasn’t fully described but it was demonstrated for the first time 

that small organocatalysts could be used effectively in chemical synthesis.  In 2000, organocatalysis was 

effectively launched by two publications: one from Lerner, Barbas and List42 on enamine catalysis and the 

other by MacMillan43 and co-workers on iminium catalysis.  List demonstrated the ability of small 

molecules to catalyze reactions that were for long thought to only be promoted by larger molecules.  The 

work by MacMillan represented the revival of the secondary amines and other small organic molecules as 

catalysts.  The rapid growth in the field of organocatalysis was due to numerous advantages that small 

organic molecules possess such as; availability from naturally occurring materials, stability in aerobic 

environments as compared to metal-ligand catalysts which are mostly unstable, inexpensiveness and 

relatively easy to prepare, non-toxic nature and user friendly experimental setups. 

The most crucial aspect in the success of organocatalysis is the development of new activation methods.  

The different activation modes can be classified into covalent and non-covalent activation. 

 

1.4.1   Covalent activation 
 

Covalent activation is the process that involves the formation of covalent adducts between the catalyst 

and substrate within the catalytic cycle.31  Aminocatalysis in which interactions are covalent, make use of 

amines as catalysts and represents an important part of organocatalysis.30, 44-46  This can further be 

classified into the following list of classes. 
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1.4.1.1   Iminium Catalysis 
 

As already mentioned, the use of chiral secondary amines as catalysts to activate carbonyl compounds via 

the iminium catalysis was reported by MacMillan and co-workers.  This was the first organocatalytic 

activation mode to be introduced as a general strategy for asymmetric synthesis.43  Iminium catalysis is an 

alternative organocatalytic pathway to conventional Lewis acid catalysis of carbonyl compounds.  The 

reactive species is an iminium ion formed by the condensation of a chiral amine with a carbonyl group 

(Scheme 9), resulting in lowering in the energy potential of the lowest unoccupied molecular orbital 

(LUMO) of the ionic intermediate and thus facilitating reactions with nucleophiles.46, 47 

 

H

O

N
H

R

H

N

R

Nu

R2

R2

Nu

N

R

R2

nucleophilic
1,2-addition

Nu

OH

R2

iminium ion

hydrolysis

 

Scheme 9: Activation via iminium ion (Nu = nucleophile) 

 

 

1.4.1.2   Enamine Catalysis 
 

Enamine catalysis involves the production of an enamine that results from the tautomerization of an 

iminium ion intermediate (Scheme 10).30, 45, 46, 48   It is essentially the activation by primary and secondary 

amines that facilitates electrophilic substitution reactions (typically) at the α-position of carbonyl 

containing compounds via highest occupied molecular orbital (HOMO) rising strategies.44, 45, 48, 49 
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R1

O

N
H

R

R1

N

R

R1

O

R1

N

R

E

R2

R2
R2

E

R2

enamine
intermediate

 

Scheme 10: Activation via enamine (E = electrophile). 

 

This strategy has been frequently used in Aldol, Mannich and Michael reactions.45, 50, 51  Enamine 

catalysis has recently been extended to dienamine catalysis,52 first introduced by Jorgensen and              

co-workers in 2006.  It is used to activate the γ-position of α,β-unsaturated compounds rather than the             

α-position.  Beyond the three strategies iminium, enamine and dienamine already mentioned, new 

pathways such as linear trienamine, cross-conjugated trienamine and vinylogous iminium-ion have been 

discovered.44  These strategies allow the transfer of chiral information from the catalyst to reaction centers 

located at five to seven bonds away, which is of great importance for construction of structurally complex 

relevant molecules. 

Apart from the above mentioned strategies, a new class of catalysis known as SOMO (single electron 

occupied molecular orbital) activation has also been developed.53, 54  In this method, a single electron 

occupied molecular orbital activation is produced allowing the introduction of different substituents in α-

carbonyl positions.  This method has merged organocatalysis with radical chemistry.  Lastly, the catalysis 

via ammonium ion also uses amines as catalysts.55, 56  The formation of ammonium enolates mostly with 

cinchona alkaloids, and the formation of acyl-ammonium with DMAP analogues, are typical examples. 

Pracejus and Sauer reported the initial work exploiting this strategy on ketene dimerization reactions.57, 58  

Since then, more groups have used this route to synthesize natural products such as siphonarienolone.59-61 

 

1.4.2   Non-Covalent Activation 
 

Non-covalent activation is basically the formation of hydrogen-bonded adducts between the substrate and 

catalyst.  Phase-transfer catalysis (PTC) by organic phase-transfer catalysts falls under this category.  It is 
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performed in a heterogeneous medium and typically uses ammonium salts to facilitate the migration of 

the reagent from one phase to the other.  The creation of chirality is based on the formation of a chiral 

ionic pair soluble in the organic phase where the stereoselective reaction occurs.30, 31, 62, 63  There are a 

range of reactions that are catalyzed by phase transfer molecules,64 α,β-unsaturated ketone epoxidation 

can proceed using the Marouka catalysts.65  Cinchona alkaloids have also shown to catalyze thiol 

conjugate addition to enones.66  Lastly, hydrogen-bonding catalysis has been introduced as a powerful 

methodology for asymmetric catalysis.  It has been known since the early 1980s,67-69 but better understood 

in the late 1990s complementary to Eric Jocabsen40, 70 and   Elias Corey41 as previously mentioned.  The 

ability to activate electrophiles with H-bonding is pivotal in hydrogen-bonding catalysis.  Chiral diols 

such as Taddol were also used as H-donors to activate carbonyl compounds for cycloaddition reactions.71  

Thiourea catalysts have been reported to selectively catalyze reactions such as the Strecker (Scheme 

11),72 Mannich70 and hydrophosphorylation.73  Various other H-bonding catalysts have been reported to 

catalyze important reactions in chemical syntheses.30 

 

R1 H

N
R2

N
H

N
H

Me2N

S

S

Me Me
Me

N

OPiv
Me

Me

Me

1 mol% catalyst

1. HCN, PhMe, -78 oC
2. TFAA

F3C N
R2

CNR1

O

< 90% ee

HO

 

Scheme 11: Thiourea-catalyzed asymmetric Strecker reaction. 

 

Asymmetric organocatalysis has been the forefront of research for a vast array of chemical 

transformations; aminocatalysis within the framework has shown to be a key pathway for the construction 



15 
 

of natural and unnatural significant molecules.  Therefore, for this project aminocatalysis will be the main 

pathway for all transformations performed. 

 

1.5   β-lactam Antibiotics 
 

In 1912, the treatment of bacterial infections was revolutionized with the discovery of penicillin74 and its 

subsequent synthesis by Sheehan and co-workers.75-77 Today, penicillin and all subclasses such as 

carbapenems bearing a β-lactam core structure (Figure 2) are the most widely used agents and represents 

about half of all antibacterial drugs.74, 78-80 

N

O  

Figure 2: β-lactam core structure 

 

Of the various β-lactams, the carbapenems subgroup possesses the broadest spectrum of activity and 

greatest potency against Gram-positive and negative bacteria.  As a result, this class is often used as 

antibiotics of last resort for critically ill patients.79, 81-83  The recent emergence of multidrug-resistance 

(MDR) pathogens has seriously threatened the use of these agents.80, 83-85 Hence, this problem has 

prompted the search and development of additional facile routes to obtain unique derivatives on this 

pharmaceutically relevant skeleton. 

There are several reported methods for the synthesis of β-lactams including named reactions as the classic 

Staudinger86 as well as the Gilman-Speeter87 and Kinugasa.88  More recently organocatalysts have been 

employed in an effort to make the Staudinger reaction more efficient.89  However, little work has been 

done in synthesizing β-lactams through organocatalysis.  To bridge the gap, we envisaged the synthesis of 

β-lactam derivatives by utilizing organocatalytic methodologies.    
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1.6   Outline of this Thesis 
 

The aim was to synthesize novel β-lactam derivatives through organocatalyzed (Aldol, Mannich and 

Michael) reactions.  The carbapenem core 1 (Figure 3) is commonly used for the preparation of clinically 

used antibiotics.90, 91  We envisaged that this intermediate could be further substituted via HOMO-rising 

aminocatalysis,44, 45, 48, 49 thereby promoting reactions with electrophilic substrates. 

 

N

O
O

O

O

O2N

OH

 

Figure 3: Carbapenem core 1  

 

Chapter 2 is the introductory results of the first amino catalyzed stereospecific C-C bond forming 

reactions on carbapenem core 1 through Aldol, Mannich and Michael reactions. 

Chapter 3 is an expansion of the mild organocatalytic asymmetric Michael addition transformation on the 

carbapenem core 1.  

Chapter 4 is a summary of the work carried out for this project. 
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Abstract 
 

Herein, we report the development of mild, organocatalyzed, routes to novel carbapenam derivatives 

through Aldol, Mannich and Michael C-C bond forming reactions.  

 

Introduction 
 

Compounds containing β-lactams (Figure 1) are amongst the most important molecules in clinical use 

today.1-3 Most notably is their wide utility as antibacterial agents and as related β-lactamase inhibitors; 

however, β-lactams are also being explored in other therapeutic areas,4 including HIV protease 

inhibition.5  Given the global challenge of antibiotic resistance,6 there is an urgent need for increased 

focus on the discovery and development of antibacterial agents.  Bacterial resistance may occur through a 

number of pathways, e.g. production of β-lactamases,7 efflux pumps, and mutations that alters expression 

and function of transpeptidase enzymes – the targets of most β-lactam antibiotics.8, 9 As β-lactams 

functions as both transpeptidase- and β-lactamase inhibitors much work is being direct to accessing novel 

mailto:per.arvidsson@scilifelab.se


22 
 

analogs of these critical molecular frameworks.10  However, the commercially viable synthesis of many β-

lactams remains challenging due to a high degree of functionalization and chirality combined with the 

reactive nature of the core bicyclic ring-structures.  Furthermore, most β-lactam antibiotics, except 

carbapenems and aztreonam, are being produced by biosynthetic routes rather than through chemical 

synthesis.  Considering the challenges associated with synthetic modifications of the β-lactam framework, 

we envisioned that the mild conditions offered by organocatalysis might help overcome some of the 

limitations of current methodologies and open en-route to hitherto unexplored β-lactams.  

N

S

N N

O

RHN

CO2H
O O

R3

CO2H

R2

R1

-lactamPenicillin
(Penam)

Carbapenem
 

Figure 1: Examples of β-lactam antibiotics: Generic structure of penicillins with a saturated penam core 

and of synthetic carbapenems (e.g. Imipenem, Thienamycin, and Panipenem). 

 

During the past decade, asymmetric organocatalysis11-13 has grown extensively as a powerful tool in the 

construction of complex molecular skeletons in synthetic chemistry.14-19 Aldol,15, 20-24 Mannich15, 25, 26 and 

Michael15, 27, 28 reactions are some of the most powerful strategies in synthetic organic chemistry, since it 

allows the formation of new C-C bonds.29  

 

We envisaged that (2S,5R,6S)-4-nitrobenzyl 6-((R)-1-hydroxyethyl)-3,7-dioxo-1-azabicyclo[3.2.0] 

heptane-2-carboxylate (1), the common intermediate for preparation of clinically used antibiotics 

Imipenem,30 Thienamycin31, 32 and Panipenem,33 could be further substituted via HOMO-rising amine 

catalysis,34 thereby promoting reactions with electrophilic substrates (Scheme 1).   
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Scheme 1: Novel HOMO rising strategies offering a mild and facile route to carbapenam derivatives. 

 

 

Results and Discussion 

 
In order to test our hypothesis, we subjected the “carbapenam ketone” intermediate 1 to a reaction with 

the benchmark substrate formaldehyde as the electrophile, and Proline as the catalyst, Table 1.  Various 

solvents such as DMF, DCM and THF were evaluated but no conversion was observed via LC-MS except 

when DMSO was employed (Table 1, entry 1).  When the reactions were conducted with reagent grade 

DMSO as the solvent we observed the presence of product and a hydrolyzed form of the starting materials 

(+18 m/z on LC-MS).  The use of dry DMSO resulted in no detection of the hydrolyzed starting material 

but also resulted in a slower and low yielding reaction.  Acid additives are common additives in the 

organocatalyzed Aldol reactions,35 so we next investigated the effect of formic and acetic acids.  It was 

observed that there was no difference in reactivity or yields when acetic acid was used (Table 1, entry 2) 

whereas formic acid enhanced the hydrolysis side reaction.  Under solvent free conditions, the rate of the 

reaction was improved significantly (Table 1, entry 3).  D-Proline gave similar results as L-Proline with 

respect to reaction times and yields (Table 1, entries 1 and 4), but also with respect to the diastereomeric 

ratio of the product formed.  This result shows that the stereochemical outcome of the reaction is dictated 

by the chiral ketone 1 rather than the catalyst, as might be expected when considering the unique bent 

conformation of the cyclobutanone ring at the bicyclic core. This prompted us to evaluate simple 

pyrrolidine as a catalyst; pyrrolidine on its own did not result in any conversion but when one equivalent 

of acetic acid was added we obtained the product at a high conversion rate (Table 1, entry 5, 6).  
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In order to prove that the reaction was indeed operating through the postulated enamine intermediate, and 

did not simply involve the enol tautomer of ketone 1, we performed the reaction with triethylamine as 

catalyst, with and without acetic acid; however no reaction was observed in any of these cases (Table 1, 

entry 7, 8), thus supporting the need for HOMO rising catalysis of the reaction.  Aromatic aldehydes, i.e. 

benzaldehyde as the electrophile, did not result in any conversion in DMSO (Table 1, entry 9, 10). 

However, benzaldehyde and other liquid aldehydes, (e.g. 4-Methyl and 4-Fluoro benzaldehyde) gave the 

corresponding aldol product under neat reaction conditions (Table 1, entry 11) as detected by LC-MS. 

Unfortunately, purification via chromatography for all analogs except the benzaldehyde product 3 proved 

difficult since the β-lactam ring is prone to hydrolysis during elongated exposure to silica gel.  However, 

aromatic aldehydes, i.e. 4-Nitro, 4-Methyl, 4-Methoxy, 4-Fluoro benzaldehyde and propionaldehyde, 

gave product upon changing solvent from DMSO to DMF, utilizing Pyrrolidine/AcOH as a catalyst. 

Again purification proved difficult; crude NMR yield for the reaction of these electrophiles with 

carbapenem ketone 1 were in the range 25-70 % as determined by crude NMR (Table 1, entries 12-19).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



25 
 

N *
O

O

PNBO
O

OH

R

H H

OH

**
N

O

PNBO O

OH

H H

Cat (20 mol%)
O

r.t.
2, R = H, *d.r.(c) > 99:1,
3, R = Ph, *d.r.(c) > 99:1,
**d.r.(c) = 90:10
4, R = 4-NO2 Ph, 5, R =
4-Me Ph,
6, R = 2, 4-OMe Ph, 7, R
= 4-F Ph,
8, R = Et

O

RH1

 

Table 1:  Aldol reaction of carbapenam ketone intermediate 1 with aldehyde via enamine activation 
 

Entry R Catalyst/additive Time [h] Solvent Yield (%)[b] 

1 R = H L-Proline 24 DMSO 73 

2 R = H L-Proline/AcOH 24 DMSO 74 

3 R = H L-Proline/AcOH 8 Neat 76 

4 R = H D-Proline 24 DMSO 70 

5 R = H Pyrrolidine 24 DMSO NR 

6 R = H Pyrrolidine/AcOH 2 DMSO 60 

7 R = H NEt3 24 DMSO NR 

8 R = H NEt3/AcOH 24 DMSO NR 

9 R = Ph L-Proline 24 DMSO NR 

10 R = Ph L-Proline/AcOH 24 DMSO NR 

11 R = Ph L-Proline/AcOH 6 Neat a 60 

12 R = Ph L-Proline/AcOH 24 DMF 25d 

13 R = Ph Pyrrolidine/AcOH 24 DMF 55d 

14 R = 4-NO2 Ph Pyrrolidine/AcOH 24 DMF 54d 

15 R = 4-Me Ph Pyrrolidine/AcOH 24 DMF 29d 

16 R = 4-OMe Ph Pyrrolidine/AcOH 24 DMF 51d 

17 R = 2,4-OMe Ph Pyrrolidine/AcOH 24 DMF 26d 

18 R = 4-F Ph Pyrrolidine/AcOH 24 DMF 46d 

19 R = Et Pyrrolidine/AcOH 48  70d 

 
[a]Reactions were performed at excess amount of aldehyde to be as a solvent (see Supporting Information).  
[b]Isolated yields.  [c]Diastereomeric ratio determined by 1H NMR. [d]Observed yields from NMR of crude reaction  

mixture. 
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The formation of the new C-C bond in product 2 was confirmed by observing the shift of C8 from 64.0 

ppm (1) to 131.6 ppm (2) in 13C NMR and disappearance of H8 as a singlet at 4.76 ppm (1) in H-NMR, 

Figure 2.  In addition, protons at C17 showed an HMBC correlation with C8.  The 2D NMR investigation 

proved the excellent stereoselectivity (d.r. > 99:1) seen in the crude LC-MS trace and 1D spectra, and 

through a correlation between H17 and H4 in the NOESY spectra we could establish the expected exo- 

configuration of the newly attached group in 2. Compound 3 showed similar HMBC correlations and 

excellent diastereoselectivity as observed with 2 for the formation of the C-C bond at C8.  The newly 

formed chiral centre C17 in compound 3 was determined to be created with a diastereomeric ratio of   

90:10.  
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Figure 2: Aldol Product 2, resulting from L-Proline catalyzed transformation of “carbapenam ketone” 1 

and Formaldehyde 

 

Given the high potential for using organocatalysis for accessing hitherto unexplored derivatives of 

carbapenam and carbapenem β-lactams, we decided to explore other organocatalyzed processes, i.e. 

Mannich and Michael reactions. First, we decided to perform the direct asymmetric three-component 

Mannich reaction of carbapenam intermediate 1 with different amines and aldehydes in DMSO.  In the 

presence of 30% L-Proline, aldehydes and amines were reacted with 1 to give products 9, 10 and 11 in 

moderate yields (50% to 55%) respectively.  These yields are typical of the one pot Mannich reaction and 

are attributed to the formation of the competitive aldol reaction side products as noticed by LC-MS.  

Various aromatic aldehydes were tested as electrophiles, but, similarly to the aldol reaction described 

above, only formaldehyde resulted in the formation of the Mannich adducts.  A complete NMR 

assignment of Mannich product 9 proved the exo-product was formed with complete diastereoselectivity, 

in analogy to the aldol product 2 above.  In compound 9, the absolute configuration at C8 was confirmed 

by NOE correlation (See SI).     
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Scheme 2: Mannich Reactions on Carbapenam intermediate 1 

 

Next, we explored the organocatalyzed Michael reaction to carbapenam intermediate 1. The most 

commonly studied Michael acceptors with enamine catalyzed reactions are nitrostyrenes28, 36 and 

enones;37 hence it was decided to test these substrates in this first report.  From the optimized conditions 

reported above, we initiated the study by examining the addition of the carbapenam intermediate 1 to 

trans-4-methoxy-β-nitrostyrene in DMSO catalyzed by L-Proline.  The reaction offered the product 12 in 

modest 41% yield in 24 hours.  The modest yield was due to low catalytic turnover, as confirmed through 

LC-MS analysis of the crude mixture, where we noticed a peak that corresponded to the Michael product 

still bound to the catalyst.  To release the product, the adduct had to be stirred with water and monitored 

by LC-MS until only a minor amount of trapped product could be detected.  Similarly, Michael reaction 

of carbapenam intermediate 1 with neat cyclopentenone using L-Proline as catalyst produced compound 7 

in 67% yield. 
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Scheme 3. Michael Reaction on Carbapenam intermediate 1 

 

The observed HMBC correlation between H17 and C8 in both compounds (12 and 13) proved the 

formation of the new C-C bond at this position.  From the 1H NMR shifts of H17 in compound 12 and 13, 

the diastereomeric ratio was established to be 88:12 and 90:10 respectively.  The configuration at C8 for 

12 was also established by NOE correlation as for the aldol and Mannich reactions above. 

 

Conclusions 

 
In summary, the mild reaction conditions that characterize enamine-based organocatalysis have been 

shown to offer a new route to chiral β-lactam derivatives.  The reaction scope has so far been shown to 

include aldol, Mannich and Michael reactions. High distereoselectivity was observed in all of the 

reactions, as would be expected considering the inherent chirality of the starting carbapenam 

intermediate.  This methodology has the potential to offer, a widely sought after, new synthetic route to 

novel and potentially medically useful β-lactam antibiotics.  The full substrate scope for the Mannich and 

Michael reactions reported here are ongoing in our laboratories. 
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Abstract 
 

Herein, we report the development of mild, organocatalyzed routes to novel β-lactam carbapenam 

derivatives through Michael type C–C bond forming reactions.  The same methodology, followed by a 

retro-Dieckmann reaction, provides a pathway to novel and highly functionalized monobactam 

derivatives – another class of valuable β-lactam antibiotics. 

 

Introduction 

The efficient generation of a new C-C bonds may be seen as the essence of synthetic organic chemistry, 

as it allows the preparation of valuable natural and unnatural compounds.1, 2  The Michael addition 

reaction is well known as one of the most widely used C-C bond-forming reactions in organic              

synthesis.1, 2 Similarly, an increased interest in optically active molecules has promoted a considerable 

interest in the development of more efficient catalytic stereoselective methods.3, 4 Asymmetric 

organocatalysis has emerged as a new powerful methodology for the catalytic production of 

enantiomerically pure organic compounds, and is subsequently one of the most rapidly growing research 

areas in synthetic organic chemistry.3, 5, 6  Organocatalysis through enamine activation,7 is essentially the 

use of primary and secondary amines to facilitate electrophilic substitution reactions; typically, at the         

mailto:per.arvidsson@scilifelab.se
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α-position of carbonyl compounds via HOMO-rising strategies.8-12  We recently communicated our 

introductory result on the first amino catalyzed stereospecific C-C bond forming reaction on a β-lactam 

core through Aldol, Mannich13 and Michael-type reactions.14 β-Lactams of the penicillin class (Figure 1) 

were among the first antimicrobial agents for the treatment of infectious diseases.15, 16  Various other        

β-lactam containing drugs has since been developed as powerful antibiotics, e.g. monobactams like 

Aztreonam and carbapenems like Imipenem.  The carbapenem subgroup possesses the broadest spectrum 

of activity and the greatest potency against Gram-positive and negative bacteria. 
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Figure 1: Representative antimicrobial agents bearing a β-Lactam core. 

As a result, this class is often used as antibiotics of last resort for critically ill patients.15, 17-19 The recent 

emergence of multidrug-resistance (MDR) pathogens have seriously constrained the efficiency of these 

agents.19, 20 Hence, the global threat of antimicrobial drug resistance has prompted the search and 

development of new antibacterial agents based on this pharmaceutically relevant skeleton.  Herein we 

report an expansion of the scope of the mild organocatalytic asymmetric Michael addition transformation 

on the carbapenem core 1 we previously reported.  L-Proline was used as catalyst with different 

electrophilic substrates, such as chalcones, which are precursors of flavonoids and isoflavonoids that 

possess a wide variety of biological activities.21  Similarly, cyclic enones, known to be part of a variety of 

bioactive compounds, was also employed.22-25  Most important, we, for the first time, demonstrate a new 
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transformation of the optically active Michael product into a monocyclic β-lactam structure. Such 

monobactams represent another important subclass of antibacterial agents.   

 

Results and Discussion 
 

Based on our initial report, for the reaction between carbapenem core 1 and trans-4-methoxy-β-

nitrostyrene,14 we examined the substrate scope of the asymmetric Michael addition with other 

electrophilic olefins, (Table1).  As previously reported, trans-4-methoxy-β-nitrostyrene proceeded 

smoothly to afford product 3a in modest yield (41%) and good dr (88:12) (Table 1, entry 1).  For 

nitrostyrene, yielding 3b, relatively poor dr (60:40) was obtained although yield (42%) were similar as 

compared with 3a (Table 1, entries 1 and 2, respectively).  It was found that changing to a more electron-

withdrawing substituent on the aromatic ring did not affect the selectivity as product 3c was produced in 

similar yield (45%) and dr (87:13) as compared with 3a.  To further explore the substrate scope, 

benchmark organonitriles were examined.  Unfortunately only trace amounts were observed via LC-MS 

analysis of the crude reaction mixture (Table 1, entries 4 and 5 respectively).   
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Table 1. Substrate scope for the catalytic Michael addition with electron deficient olefin. 

N

O

PNBO O

OH

H H

O N

O

O

OH

H H

O

PNBODMSO, r.t.

1 2 3a-c

R1

R2

R1

R2

**

*

NH

O
OH

(20 mol%)

 
Entry  R1 R2 Time [h] Product  Yield [%][b] dr[c] 

1  
NO2 

 

 
4-MeOC6H4 

 
24 

 
3a 

 
41 

 
88:12 

2  
NO2 

 
 

 
C6H5 

 
20 

 
3b 

 
42 

 
60:40 

3  
NO2 

 

 
4-ClC6H4 

 
17 

 
3c 

 
46 

 
87:13 

4  
CN 

 
H 

 
72 

 
trace 

  

5  
(CN)2 

 
H 

 
72 

 
trace 

  

 
[a] The reaction was carried out with carbapenem 1 (0.574 mmol ) and 2 (2 eq.) in DMSO (0.5 mL).  [b] Yield of 

isolated product. [c] Diastereomeric ratio determined by 1H NMR. 

 

Having explored electron deficient olefins, we next evaluated the asymmetric Michael additions of 

various α,β-unsaturated ketones and β,γ-unsaturated α-ketoesters on the carbapenam intermediate 1 by 

using 20 mol% of  L-proline as a catalyst, Table 2.  The reactions were complete within 15-35h and gave 

products in moderate yields (55- 67%) and good dr (88:12–92:8).  Reactions were general for both 5 and 

6- membered α,β-unsaturated cyclic enones with good yields of products 5a and 5b (67 and 63%) and dr 

(90:10) (Table 2, entries 1 and 2 respectively).  Olefins substituted at the α or β positions, did not give any 

conversion after 40h (Table 2, entries 3 and 4).  Methylvinylketone and vinylester also proved to be 

inefficient Michael acceptors (Table 2, entries 5 and 6) for the carbapenem donor 1.  Acyclic α,β-

unsaturated ketone furnished product 5c in good yields  (63%) and dr (91:9)  (Table 2, entry 7), while the 

α,β-unsaturated ester analogue was non-reactive (Table 2, entry 8).  β,γ-Unsaturated α-ketoesters bearing 

either electron-withdrawing or electron-donating substituents, worked well and give the desired products 

5d-5f in moderate yields ( 55-60%) and good dr (88:12-92:8). 
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Table 2. Substrate scope for the catalytic Michael addition reaction with α,β-unsaturated ketones and 

various β,γ-unsaturated α-ketoesters. 

N

O

PNBO O

OH

H H

O N

O

O

OH

H H

O

PNBO

O

O

r.t.

1 4 5a-f

*

**

NH

O
OH

(20 mol%)

 
Entry Substrate Time [h] Product Yield [%][b] dr[c] 

 

1 

 
O

 
 

 
 

24 

 
 

5a 

 
 

67 

 
 

90:10 
 

2 

 
O

 
 

 
 

24 

 
 

5b 

 
 

63 

 
 

90:10 
 

3 

 
O

 
 
 

 
 

40 

 
 

NR 
 

 
 

 
 
 
  

4 

 
O

 

 
 

40 

 
 

NR 

 
 
 
 

 
 
 
  

5 

 
O

 

 
 

40 

 
 

NR 

  

 

6 

 
 
O

O  

 
 

40 

 
 

NR 

  

 

7 

O

 

 
 

15 

 
 

5c 

 
 

63 

 
 

91:9 
 

8 
O

O

 

 
 

55 

 
 

NR 

  

 

9 

O

O

O

 

 
 

31 

 
 

5d 

 
 

60 

 
 

90:10 
 

10 

O

O

O

F  

 
 

24 

 
 

5e 

 
 

62 

 
 

88:12 
 

11 

O

O

OO

O  
 

 
 

35 

 
 

5f 

 
 

55 

 
 

92:8 
 

[a] The reaction was carried out with carbapenem 1 (0.574 mmol) and 4 (2 eq) in DMSO (0.5 mL).  [b] Yield of 

isolated product. [c] Diastereomeric ratio determined by 1H NMR 
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Formation of the new C-C bond in product 3a was confirmed by observing the shift of C8 from 64.0 ppm 

for 1 to 76.4 ppm for 3a in 13C NMR spectrum and disappearance of H8 as a singlet at 4.76 ppm for 1 in 
1H NMR spectrum (Figure 2).  In addition H17 showed HMBC correlation  with C8.  From elucidation of 

the 2D spectra we established a NOESY correlation between H4 and H19 which confirmed the exo 

configuration of the newly attached group in 3a. The newly formed chiral centers at C8 and C17 in 

compound 3a was determined to be created with a diastereomeric ratio of 88:12.  
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Figure 2: Numbering used for the NMR assignmet of carbapenem intermediate 1 and Michael product 3a 

 

Next we found that treatment of the Michael products, e.g. 5a, with potassium carbonate in aqueous THF 

(Scheme 1) led to ring-opening of the 5-membered ketone ring through a retro-Dieckmann 

condensation.26 The monocylic β-lactam thereby obtained, i.e. 6, represent another important class of 

antibacterial agents – a monobactam.  From the 13C NMR spectrum we observed the shift of C9 at 208.0 

ppm for 5a to 173.3 ppm for 6 (indicative of an acid group) and C8 at 76.6 ppm for 5a to 59.9 ppm for 6.  

In addition C9 showed the same HMBC correlation with H10 protons as in 5a.  In 1H NMR spectrum, a 

new H8 signal appeared at 4.09 ppm for 6 which showed HMBC correlation with C17 and C11.  From the 

NOESY spectra, we observed a correlation between H8 and H4 thus confirming the configuration of the 

newly attached H8 proton.  
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Scheme 1: Synthesis of product 6 

 

There are several reported methods for the synthesis of monocyclic β-lactams including named reactions 

as the classic Staudinger,27 Reformatsky28 and Kinugasa.29 More recently, organocatalysts have been 

employed in an effort to make the Staudinger reaction more efficient.30 However,  to the best of our 

knowledge this is the first report where a sequential use of an organocatalytic Michael reaction followed 

by a retro-Dieckmann reaction transforms a bicyclic-β-lactam, i.e. carbapenem, into a monocyclic-β-

lactam, i.e. monobactam, with the addition of two chiral centers. 

 

Conclusions 

 

In summary, we have demonstrated the possibility to synthesize novel β-lactam derivatives by utilizing 

the organocatalysed Michael addition reaction on the carbapenem intermediate 1 with various 

electrophilic olefins i.e. α,β-unsaturated ketones and β,γ-unsaturated α-ketoesters.  Good yields and some 

excellent diastereoselectivities were obtained with L-proline as the organocatalyst. The obtained Michael 

products could be smoothly interconverted to monobactams through a retro-Dieckmann reaction, thereby 

leading to another highly valued class of β-lactam antibiotics. 
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Experimental  
 

General methods 

 

Reagents and solvents were purchased from Sigma Aldrich and Merck. All NMR spectra were recorded 

on Bruker AVANCE III 400 MHz or 600 MHz instruments at room temperature.  Chemical shifts are 

expressed in ppm downfield from TMS as an internal standard, and coupling constants are reported in Hz. 

Thin layer chromatography (TLC) was performed using Merck Kieselgel 60 F254. Crude compounds 

were purified with column chromatography using silica gel (60–200 mesh unless other wise stated).  All 

solvents were dried using standard procedures. Optical rotations were recorded on a Perkin-Elmer 

Polarimeter (Model 341).  High-resolution mass spectrometric data were obtained using a Bruker micrO 

TOF-Q II instrument operating at ambient temperatures and a sample concentration of approximately 1 

ppm. 

Representative procedure for the Michael addition reaction of olefins, α,β-unsaturated  ketones and 

β,γ-unsaturated α-keto-ester with carbapenem: 

To a stirred solution of compound 1 (0.574 mmol) and catalyst (0.115 mmol) in DMSO (0.5 mL) at room 

temperature, was added Michael acceptor (2.0 eq.).  The mixture was stirred at ambient temperature for 

24 h while being monitored by TLC.  The reaction mixture was then quenched by adding water (5 mL) 

and the aqueous layer was extracted three times with DCM (30 mL).  The combined organic layers were 

dried with MgSO4, which was subsequently removed by filtration.  The concentrated extract was 

subjected to silica gel for purification to afford the desired product. 

Representative procedure for the synthesis of product 6 

To a stirred solution of compound 5a (500 mg) at room temperature was added K2CO3 (20 mg) in 2:1 

THF and H2O respectively.  The mixture was stirred at ambient temperature for 12h while being 

monitored by TLC.  The reaction mixture was then quenched by adding 30 % acetic acid and the aqueous 

layer was extracted five times with ethyl acetate (30 mL).  The combined organic layers were dried with 

MgSO4, which was subsequently removed by filtration.  The concentrated extract was dried vacuum to 

afford the desired product. 

(2S,5R,6S)-4-Nitrobenzyl 6-((R)-1-hydroxyethyl)-2-((S)-1-(4-methoxyphenyl)-2-nitroethyl)-3,7-

dioxo-1-azabicyclo [3.2.0] heptane-2-carboxylate (3a) 

The crude product was purified by column chromatography (ethylacetate/hexane, 50:50; Rf = 0.2) to 

afford the product (124 mg, 41%) as a semi solid. [α]20
D = +156.7 (c = 0.1, CHCl3) 1H NMR (400 MHz, 
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CDCl3):           δ 8.24 (d, J = 8.60 Hz, 2H), 7.48 (d, J = 8.60 Hz, 2H), 7.21 (d, J = 8.68 Hz, 2H), 6.82 (d, J 

= 8.72 Hz, 2H), 5.32 (m, 2H ), 5.00 (dd, J = 13.17, 11.17 Hz, 2H), 4.36 (dd, J = 11.11, 4.10 Hz, 1H), 4.10 

(m, 1H), 3.56 (m, 1H), 3.12 (dd, J = 5.20, 2.56 Hz, 1H), 2.43 (dd, J = 8.80, 8.72 Hz, 1H), 2.27 (dd, J = 

6.88, 6.96 Hz, 1Hz) 1.29 (d, J = 6.28 Hz, 3H) ppm. 13C NMR (100 MHz CDCl3): δ 207.3, 171.5, 164.9, 

160.9, 141.7, 131.7, 129.1, 124.1, 114.5, 94.5, 74.3, 67.3, 67.1, 55.4, 55.0, 51.1, 44.1, 40.5, 21.2 ppm.  

HRMS (ESI+) m/z calcd. for C25H25N3O10: 527.1612; found [M+H] 528.3160 

(2S,5R,6S)-4-Nitrobenzyl 6-((R)-1-hydroxyethyl)-2-((R)-2-nitro-1-phenylethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate (3b) 

The crude product was purified by column chromatography (ethylacetate /hexane, 50:50; Rf = 0.2) to 

afford the product (120 mg, 42%) as a semi solid [α]20
D = +90.6 (c = 0.1, CHCl3) 1H NMR (400 MHz, 

CDCl3):          δ 8.12 (d, J = 8.28 Hz, 2H), 7.41 (d, J = 8.08 Hz, 2H), 7.20 (m, 5H), 5.10 (m, 3H), 4.91 (dd, 

J = 13.91, 6.22 Hz, 2H) 4.35 (m, 1H), 4.03 (m, 1H), 3.35 (m, 1H), 2.99 (m, 1H), 2.34 (dd, J = 9.12, 8.60, 

1H), 2.17 (dd, J = 7.63, 6.78 Hz, 1H), 1.21 (d, J = 5.96 Hz, 3H) ppm. 13C NMR (100 MHz CDCl3): δ 

207.1, 172.0, 165.0, 141.7, 135.4, 132.7, 129.9, 129.0, 128.9, 128.8, 124.0, 76.2, 74.8, 67.6, 67.4, 64.4, 

50.9, 44.2, 40.2, 21.9 ppm. HRMS (ESI+) m/z calcd. for C24H23N3O9: 497.1410; found [M+H] 498.1483 

(2S,5R,6S)-4-Nitrobenzyl 2-((R)-1-(4-chlorophenyl)-2-nitroethyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-

1-azabicyclo[3.2.0]heptane-2-carboxylate (3c) 

The crude product was purified by column chromatography (ethylacetate /hexane, 50:50; Rf = 0.2) to 

afford the product (140 mg, 46%) as a semi solid [α]20
D =, +101.0 (c = 0.1, CHCl3) 1H NMR (400 MHz, 

CDCl3): δ 8.18 (d, J = 8.18 Hz, 2H), 7.41 (d, J = 8.64 Hz, 2H), 7.21 (m, 4H), 5.25 (m, 2H), 4.84 (dd, J = 

13.50, 11.19 Hz, 2H), 4.33 ( dd, J = 11.11, 3.98 Hz, 1 H), 4.20 (m, 1H), 3.41 (m, 1H), 3.06 (dd, J = 4.78, 

2.50, 1H), 2.38 ( dd, J =  8.92, 8.96 Hz, 1H), 2.23 (dd, J = 6.84, 6.88 Hz, 1H), 1.21 (d, J = 6.32 Hz, 3H) 

ppm. 13C NMR (100 MHz CDCl3): δ206.2, 171.6, 164.3, 140.6, 135.1, 131.3, 131.1, 129.2, 129.1, 124.1, 

76.0, 74.2, 67.7, 67.5, 64.3, 50.6, 43.8, 40.2, 21.7 ppm. HRMS (ESI+) m/z calcd. for C24H22N3O9: 

531.1023; found [M+H] 532.1073 

(2S,5R,6S)-4-Nitrobenzyl 6-((R)-1-hydroxyethyl)-3,7-dioxo-2-((R)-3-oxocyclopentyl)-1-

azabicyclo[3.2.0]heptane-2-carboxylate (5a) 

The crude product was purified by column chromatography (ethylacetate /hexane, 50:50; Rf = 0.2) to 

afford the product (165 mg, 67%) as a semi solid. [α]20
D = +215.0 (c = 0.1, CHCl3) 1H NMR (400 MHz, 

CDCl3): δ 8.22 (d, J = 7.16 Hz, 2H), 7.45 (d, J = 8.56 Hz, 2H), 5.27 (s,2H), 4.25 (s, 1H), 4.03 (s, 1H), 

3.29 (t, 1H), 3.17 (d, 1H), 2.97- 2.95 (d, J = 11.05 Hz, 1H ), 2.55- 2.39 (dd, J = 17.91, 8.58 Hz, 2H), 2.19 
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(d, J = 9.49 Hz, 2H), 2.04 (d, J = 7.08 Hz, 1H), 1.80 (d, J = 19.61 Hz, 1H), 1.34 (d, J = 4.80 Hz, 3H) ppm. 
13C NMR (100 MHz CDCl3): δ 215.3, 208.0, 164.9, 161.0, 140.8, 128.7, 124.5, 76.6, 66.5, 66.2, 64.9, 

50.2, 42.1, 40.9, 38.4, 38.0, 23.6, 21.9 ppm. HRMS (ESI-) m/z calcd. for C21H22N2O8: 429.1292; found 

[M-H] 429.1440 

(2S,5R,6S)-4-Nitrobenzyl 6-((R)-1-hydroxyethyl)-3,7-dioxo-2-((R)-3-oxocyclohexyl)-1-

azabicyclo[3.2.0]heptane-2-carboxylate (5b) 

The crude product was purified by column chromatography (ethylacetate /hexane, 50:50; Rf = 0.2) to 

afford the product (161 mg, 63%) as a semi solid. [α]20
D = +43.2 (c = 0.1, CHCl3) 1H NMR (400 MHz, 

CDCl3): δ 8.22 (d, J = 8.64 Hz, 2H), 7.45 (d, J = 8.46 Hz, 2H), 5.24 (d, J = 11.34 Hz ,2H), 4.33 (m, 1H), 

3.96 (m, 1H), 3.27 (m, 1H), 2.89 (m, 1H), 2.76 (m, 2H), 2.68 (m, 2H), 2.40 (m, 2H), 2.25 (m, 2H), 2.04 

(m, 2H), 1.29 (d, J = 5.10 Hz, 3H) ppm. 13C NMR (100 MHz CDCl3): δ 209.2, 208.6, 170.8, 164.1, 147.9, 

141.8, 128.4, 124.0, 67.6, 67.0, 64,6, 50.7, 42.9, 41.4, 41.0, 40.9, 25.7, 24.3, 21.7 ppm. HRMS (ESI+) m/z 

calcd. for C22H24N2O8: 444.1292; found [M+Na] 467.144 

(2S,5R,6S)-4-Nitrobenzyl 6-((R)-1-hydroxyethyl)-3,7-dioxo-2-((S)-3-oxo-1-phenylbutyl)-1-

azabicyclo[3.2.0]heptane-2-carboxylate (5c) 

The crude product was purified by column chromatography (ethylacetate /hexane, 60:40; Rf = 0.2) to 

afford the product (179 mg, 63%) as a semi solid [α]20
D = +80 (c = 0.1, CHCl3) 1H NMR (400 MHz, 

CDCl3): δ 8.23 (d, J = 8.64 Hz, 2H), 7.48 (d, J = 8.64 Hz, 2H), 7.22 (m, 5H), 5.32 (dd, J = 12.96, 12.93 

Hz, 2H), 4.19 (m, 1H), 4.14 (dd, J = 5.44, 5.48 Hz, 2H), 3.39 (m, 1H), 3.18 (m, 2H), 3.12 (dd, J = 2.48, 

2.52 Hz, 1H), 2.38 (dd, J = 8.84, 8.80 Hz, 1H), 2.17 (dd, J = 6.88, 6.88 Hz, 1H), 2.05 (s, 3H), 1.30 (d, J = 

6.32 Hz, 3H) ppm13C NMR (100 MHz CDCl3): δ 208.3, 205.6, 171.4, 165.1, 148.0, 141.4, 136.8, 129.9, 

128.8, 128.6, 127.8, 123.9, 76.8, 67.2, 67.0, 64.8, 50.9, 45.4, 41.7, 40.5, 30.4, 21.6 ppm. HRMS (ESI+) 

m/z calcd. For C26H26N2O8: 494.1712; found [M+H] 495.1797 

 (2S,5R,6S)-4-Nitrobenzyl 6-((R)-1-hydroxyethyl)-2-((S)-4-methoxy-3,4-dioxo-1-phenylbutyl)-3,7-

dioxo-1-azabicyclo[3.2.0]heptane-2-carboxylate (5d) 

The crude product was purified by column chromatography (ethylacetate /hexane, 60:40; Rf = 0.2) to 

afford the product (189 mg, 60%) as a semi solid [α]20
D = +40.1 (c = 0.1, CHCl3) 1H NMR (400 MHz, 

CDCl3): δ 8.23 (d, J = 8.36 Hz, 2H), 7.48 (d, J = 8.40 Hz, 2H), 7.23 (m, 5H), 5.17 (dd, J = 12.88, 12.88 

Hz, 2H), 4.29 (M, 1H), 4.20 (dd, J = 4.01, 4.01 Hz, 1H), 3.78 (s, 3H), 3.61 (m, 2H), 3.40 (m, 1H), 3.12 

(dd, J = 2.51, 2.50 Hz, 1H), 2.42 (dd, J = 8.79, 8.76 Hz, 1H), 2.21 (dd, J = 6.82, 6.79 Hz, 1H), 1.30 (d, J = 

6.12 Hz, 3H) ppm. 13C NMR (100 MHz CDCl3): δ 208.4, 191.5, 171.2, 165.6, 161.0, 148.4, 141.7, 136.4, 
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130.0, 128.9, 128.6, 128.0, 123.9, 76.4, 67.4, 67.1, 64.7, 53.0, 50.7, 41.5, 40.6, 21.6 ppm. HRMS (ESI+) 

m/z calcd. for C27H26N2O10: 538.5011; found [M+H] 539.1694 

 (2S,5R,6S)-4-Nitrobenzyl 2-((S)-1-(4-fluorophenyl)-4-methoxy-3,4-dioxobutyl)-6-((R)-1-

hydroxyethyl)-3,7-dioxo-1-azabicyclo[3.2.0]heptane-2-carboxylate (5e) 

The crude product was purified by column chromatography (ethylacetate /hexane, 60:40; Rf = 0.2) to 

afford the product (198 mg, 62%) as a semi solid [α]20
D = +50.2 (c = 0.1, CHCl3) 1H NMR (400 MHz, 

CDCl3): δ 8.15 (d, J = 8.60 Hz, 2H), 7.40 (d, J = 8.60 Hz, 2H), 7.21 (d, J = 5.68 Hz, 2H), 6.88 (d, J = 8.50 

Hz, 2H), 5.09 ( dd, J = 12.88, 12.88 Hz, 2H), 4.21 (m, 1H), 4.13 (dd, J = 5.04, 5.04 Hz, 1H), 3.71 (s, 3H), 

3.50 (m, 2H), 3.31 (m, 1H), 3.06 (dd, J = 2.36, 2.34 Hz, 1H), 2.35 (dd, J =  8.88, 8.79 Hz, 1H), 2.18 (dd, J 

= 6.86, 6.69 Hz, 1H), 1.22 (d, J = 6.28 Hz, 3H) ppm. 13C NMR (100 MHz CDCl3): δ 208.4, 191.3, 172.2, 

165.2, 163.5, 161.0, 148.0, 141.2, 132.0, 131.6, 128.9, 123.9, 115.4, 76.3, 67.4, 67.1, 64.5, 53.0, 50.7, 

41.7, 40.6, 40.5, 21.6 ppm. HRMS (ESI+) m/z calcd. for C27H25N2O10: 556.1345; found [M+H] 557.1023 

(2S,5R,6S)-4-Nitrobenzyl 2-((S)-1-(benzo[d][1,3]dioxol-5-yl)-4-methoxy-3,4-dioxobutyl)-6-((R)-1-

hydroxyethyl)-3,7-dioxo-1-azabicyclo[3.2.0]heptane-2-carboxylate (5f) 

The crude product was purified by column chromatography (ethylacetate /hexane, 60:40; Rf = 0.2) to 

afford the product (184 mg, 55%) as a semi solid [α]20
D = +97.3 (c = 0.1, CHCl3) 1H NMR (400 MHz, 

CDCl3): δ 8.15 (d, J = 8.52 Hz, 2H), 7.40 (d, J = 8.56 Hz, 2H), 6.64 (m, 3H), 5.84 (d, J = 7.08, 2H), 5.10 

(dd, J = 12.88, 12.84 Hz, 2H), 4.22 (m, 1H), 4.05 (dd, J = 4.64, 4.32 Hz, 1H), 3.71 (s, 3H), 3.46 (m, 2H), 

3.05 (dd, J = 2.24, 2.36 Hz, 1H), 2.35 (dd, J = 8.88, 8.88 Hz, 1H), 2.16 (dd, J = 6.88, 6.88 Hz), 1.22 (d, J 

= 6.28 Hz, 3H) ppm. 13C NMR (100 MHz CDCl3): δ 208.4, 191.2, 171.5, 165.2, 161.3, 148.0, 147.2, 

141.2, 129.8, 128.9, 123.9, 123.3, 110.3, 108.3, 101.2, 76.4, 67.1, 64.8, 53.0, 50.9, 41.9, 40.9, 40.6, 21.5 

ppm. HRMS (ESI+) m/z calcd. For C28H26N2O12: 582.1542; found [M+H] 583.1534 

2-((2R,3S)-3-(1-Hydroxyethyl)-1-(2-(4-nitrobenzyloxy)-2-oxo-1-(3-oxocyclopentyl)ethyl)-4-

oxoazetidin-2-yl)acetic acid (6) 

Product was afforded as a semi solid, yield (474 mg, 91%), [α]20
D = -17.4 (c = 0.1,CHCl3) 1H NMR (400 

MHz, CDCl3): δ 8.16 (d, J = 8.60 Hz, 2H), 7.48 (d, J = 8.32 Hz, 2H), 5.16 (d, J = 5.24 Hz ,2H), 4.09 (m, 

1H), 3.98 (m, 1H), 3.88 (m, 1H), 2.87 (m, 1H), 2.81 (m, 1H), 2.76 (m, 2H), 2.58 (m, 2H), 2.17 (m, 2H) 

1.99 (m, 2H), 1.21 (d, J = 6.36 Hz, 3H) ppm. 13C NMR (100 MHz CDCl3): δ 217.1, 173.3, 168.5, 167.4, 

147.9, 141.7, 128.9, 123.8, 66.1, 65.8, 63.0, 59.9, 53.5, 52.1, 42.7, 38.3, 37.9, 37.2, 36.6, 27.2, 21.0 ppm. 

HRMS (ESI-) m/z calcd. for C21H24N2O9: 448.1510; found [M-H] 447.012 
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CHAPTER 4 

 

Summary  
 

In summary, the mild reaction conditions that characterize enamine-based organocatalysis have been 

shown to offer new routes to novel chiral β-lactam derivatives.  The first organocatalysed C-C bond 

forming reactions have been performed on the carbapenem intermediate 1, was the Aldol reaction, with 

various aldehydes to afford the corresponding products in good yields (up to 76%) and excellent 

diastereoselectivities (up to 99:1 ratios).  Next, the Mannich reaction was evaluated with different amines 

and aldehydes.  The products were obtained with modest chemical efficiency (up to 55%) and excellent 

diastereoselectivities (up to 99:1 ratios) as with the Aldol reaction.  The reactivity of the carbapenem 

intermediate 1 was also evaluated in the Michael addition reaction with electrophilic olefins such as α,β-

unsaturated ketones and β,γ-unsaturated α-ketoesters.  Good yields (up to 67%) and some excellent 

diastereoselectivities (up to 92:8 ratios) were obtained with L-proline as the organocatalyst.  We have also 

demonstrated the possibility to effectively interconvert the Michael products to monobactams through a 

retro-Dieckmann reaction under basic conditions, thereby leading to another highly valued class of β-

lactam antibiotics. 
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 NMR  
 

The observed NOE interaction between H4 and H18 in Mannich compound 9 that confirms the absolute 

configuration at C8 is presented in Figure 1.  This long range interaction (black arrow) supports the 

presence of similar configuration at C8 like Aldol reaction (See Figure 1).   
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Figure 1: Long range interaction in compound 9  

 

Experimental 
 

Reagents and solvents were purchased from Sigma Aldrich and Fluka Chemicals.  All NMR spectra were 

recorded on Bruker AVANCE III 400 MHz instrument.  The chemical shifts are expressed in ppm 

downfield from TMS as the internal standard and the coupling constants are reported in Hertz.  Thin layer 

chromatography was performed using Merck Kieselgel 60 F254.  Compounds were purified by column 

chromatography packed with 60-200 mesh Silica gel and Shimadzu C18 column prep HPLC.  Optical 

rotations were recorded on a Perkin-Elmer Polarimeter (Model 341).  High resolution spectrometric data 

were obtained using Bruker maxis 4G instrument operating at ambient temperatures. 

General Procedure for Aldol reaction 
 

A mixture of compound 1 (1.0 eq) and aldehyde (10.0 eq) was stirred in the presence of catalyst (0.2 eq) 

and acetic acid (0.2 eq) at room temperature.  Pyrrolidine, L-proline and D-proline were used in turns as 

catalysts in the reactions for all the substrates that were tested.  The reaction progress was monitored 

using TLC and LCMS, on completion the reactions were quenched using water and extracted with DCM 

(30 mL x 3).  The extracts were dried with Mg2SO4, which was subsequently removed by filtration.  The 
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solvent was removed under reduced pressure, and the crude product mixture was purified by column 

chromatography.  The structure was confirmed using NMR and Mass.   

 

(2S,5R,6S)-4-nitrobenzyl 6-((R)-1-hydroxyethyl)-2-(hydroxymethyl)-3,7-dioxo-1-azabicyclo 
[3.2.0]heptane-2-carboxylate (2) 

The crude product was purified by column chromatography (ethylacetate/hexane, 70:30; Rf = 0.3) to 

afford the product (76%) as a colorless oil. [α]20
D = -26.6 (c = 0.1, CHCl3)  1H NMR (400 MHz, DMSO): 

δ 8.26 (d, J = 8.56 Hz, 2H), 7.69 (d, J = 8.56 Hz, 2H), 5.86 (s, 1H), 5.37 (s, 1H), 5.32 (dd, J = 9.37 Hz, 

2H), 4.48 – 4.49 (m, 1H), 4.17 (p, 1H), 2.95 – 3.04 (m, 2H), 2.58 (q, J = 16.87, J = 9.62, 1H), 1.33 (d, J = 

6.28 Hz, 3H); 13C NMR (100 MHz DMSO): δ 171.9, 166.1, 161.9, 148.1, 143.8, 131.6, 128.3, 124.3, 

114.1, 65.5, 63.5, 62.6, 52.9, 37.4, 21.6; HRMS (ESI-) m/z calcd. for C17H18N2O8: 377.0979; found [M-H] 

377.1391 

(2S,5R,6S)-4-nitrobenzyl 2-((R)-hydroxy(phenyl)methyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate (3) 

The crude product was purified by column chromatography (ethylacetate /hexane, 70:30; Rf = 0.2) to 

afford the product (60%) as a semisolid. [α]20
D = +20.0 (c = 0.1, CHCl3)  1H NMR (600 MHz, DMSO): δ 

8.25 (d, J = 8.52 Hz, 2H), 7.74 (d, J =8.52 Hz, 2H), 7.69 (m, 2H), 7.53 (s, 1H), 7.42 (m, 3H),, 5.41 (s, 

2H), 4.35 (m, 1H), 3.96 (m, 1H), 3.02 (d.d, J = 2.58, 6.3 Hz, 1H), 2.61 (m, 2H), 1.13 (d, J = 8.52 Hz, 

3H); 13C NMR (150 MHz DMSO): δ 172.5, 167.2, 163.3, 147.2,143.6, 136.4, 132.3,130.3, 128.6, 128.6, 

128.3, 122.6, 65.5, 63.9, 62.3, 53.5, 38.0, 22.3; HRMS (ESI-) m/z calcd. for C23H22N2O8: 453.1292; found 

[M-H] 453.1694 

General Procedure for Mannich reaction 
 

To a stirred solution of formaldehyde (2.0 eq, 36% aqueous solution) in DMSO (3 mL), substituted amine 

(2.0 eq) was added at ambient temperature.  After 2 h, the compound 1 (1.0 eq) and catalyst (0.3 eq) were 

added and the reaction mixture was stirred for 20 h while being monitored using TLC.  The reaction 

mixture was then quenched by addition of PBS buffer (1 mL), water (3 mL) and the aqueous phase was 

extracted three times with EtOAc.  The combined organic layers were dried with Mg2SO4, which was 

subsequently removed by filtration.  Next, the solvent was removed under reduced pressure, and the crude 

product mixture was purified by column chromatography. 
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(2S,5R,6S)-4-nitrobenzyl 6-((R)-1-hydroxyethyl)-3,7-dioxo-2-((phenylamino)methyl)-1-azabicyclo 

[3.2.0]heptane-2-carboxylate (9) 

The crude product was purified by column chromatography (ethylacetate/hexane, 80:20; Rf = 0.4) to 

afford the product (55%) as a semisolid. [α]20
D = -30.0 (c = 0.1, CHCl3)  1H NMR (400 MHz, CDCl3):δ = 

8.21 (d, J = 8.64 Hz, 2 H), 7.70 (s, 1 H), 7.51 (d, J = 8.60 Hz, 2H), 7.45 (d, J = 7.88 Hz, 2 H), 7.30 (t, J = 

7.82 Hz, 2 H), 7.12 (t, J = 7.38 Hz, 1 H), 6.14 (s, 1 H), 6.04 (s, 1 H), 5.29 (d, J = 9.72 Hz, 2 H), 4.60 (m, 1 

H), 4.17 (m, 1 H), 3.06 (m, 1 H), 3.04 (m, 1 H), 2.66 (d.d,  J = 15.84 and 9.52 Hz, 1 H), 1.37 (d, J = 6.16 

Hz, 3 H) ppm.  13C NMR (100 MHz, CDCl3): δ = 168.3, 165.5, 162.1, 148.0, 142.2, 137.2, 130.8, 129.2, 

128.6, 125.1, 124.0, 120.2, 115.7, 66.9, 66.0, 64.8, 55.7, 40.2, 21.6 ppm.  HRMS (ESI+) m/z calcd. for 

C23H23N3O7: 454.1608; found [M+H] 454.2985 

 

(2S,5R,6S)-4-nitrobenzyl 6-((R)-1-hydroxyethyl)-2-((4-methoxyphenylamino)methyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate (10) 

The crude product was purified by column chromatography (EtOAc/hexane, 80:20; Rf = 0.4) to afford the 

product (52%) as a semisolid. [α]20
D = -50.0 (c = 0.1, CHCl3)  1H NMR (400 MHz, DMSO):δ = 9.87 (s, 1 

H), 8.20 (d, J = 8.72 Hz, 2 H), 7.66 (d, J = 8.72 Hz, 2 H), 7.40 (d, J = 9.00 Hz, 2 H), 6.83 (d, J = 9.00 Hz, 

2H), 5.83 (d, J = 9.96 Hz, 2 H), 5.31 (s, 2 H), 5.03 (d, J = 4.40 Hz, 2 H)), 4.53-4.49 (m, 1 H), 3.97 (q, J = 

16.24, and 5.44 Hz, 1 H) 1 H), 3.69 (s, 3 H), 3.11 (dd, J = 5.30 and 2.38 Hz, 1 H), 2.77-2.69 (m, 2H), 1.10 

(d, J = 6.32 Hz, 3 H) ppm.  13C NMR (100 MHz, DMSO): δ = 167.5, 166.0, 161.8, 155.2, 147.1, 143.2, 

131.9, 131.5, 128.5, 123.5, 120.7, 113.7, 113.5, 65.4, 63.4, 62.7, 55.0, 40.1, 21.6 ppm.  HRMS (ESI+) 

m/z calcd. for C24H25N3O8: 484.1714; found [M+H] 484.1712  

 

(2S,5R,6S)-4-nitrobenzyl 2-((4-bromophenylamino)methyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate (11) 

The crude product was purified by column chromatography (ethylacetate /hexane, 80:20; Rf = 0.4) to 

afford the product (50%) as a semisolid. [α]20
D = -70.0 (c = 0.1, CHCl3)  1H NMR (400 MHz, CDCl3):δ = 

8.23 (d, J = 8.52 Hz, 2 H), 7.78 (s, 1 H), 7.52 (d, J = 8.52 Hz, 2 H),7.41-7.35(m, 4H), 6.17 (s,1H), 6.06 

(s,1H), 5.29 (q, J = 19.74 and 47.06 Hz, 2 H), 4.61-4.59 (m, 1 H), 4.20-4.16 (m, 1 H), 3.06 (dd, J = 19.26 

and 11.34 Hz, 1 H), 2.68-2.64 (m, 2H), 1.37 (d, J = 6.12 Hz, 3 H) ppm.  13C NMR (100 MHz, CDCl3): δ = 
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168.2, 165.4, 162.1, 148.0, 142.1, 136.3, 132.2, 130.7, 128.6, 124.1, 121.7, 117.7, 115.8, 66.9, 64.7, 55.6, 

40.4, 21.6 ppm.  HRMS (ESI-) m/z calcd. for C23H22BrN3O7: 530.0557; found [M-H] 530.0612 

 

 

 

General Procedure for Michael reaction 
 

To a stirred solution of compound 1 (1.0 eq) and catalyst (0.2 eq) in DMSO (0.5 mL) at room 

temperature, was added Michael acceptor (2.0 eq).  The mixture was stirred at ambient temperature for          

24 h while being monitored by TLC.  The reaction mixture was then quenched by adding water (5 mL) 

and the aqueous layer was extracted three times with DCM (30 mL).  The combined organic layers were 

dried with Mg2SO4 which was subsequently removed by filtration. The concentrated extract was 

subjected to silica gel for purification to afford the desired product. 

 

 (2S,5R,6S)-4-Nitrobenzyl 6-((R)-1-hydroxyethyl)-2-((S)-1-(4-methoxyphenyl)-2-nitroethyl)-3,7-

dioxo-1-azabicyclo [3.2.0] heptane-2-carboxylate (12) 

The crude product was purified by column chromatography (ethylacetate /hexane, 50:50; Rf = 0.2) to 

afford the product (124 mg, 41%) as a semi solid. [α]20
D = +156.7 (c = 0.1, CHCl3) 1H NMR (400 MHz, 

CDCl3): δ 8.24 (d, J = 8.60 Hz, 2H), 7.48 (d, J = 8.60 Hz, 2H), 7.21 (d, J = 8.68 Hz, 2H), 6.82 (d, J = 

8.72 Hz, 2H), 5.32 (m, 2H ), 5.00 (dd, J = 13.17, 11.17 Hz, 2H), 4.36 (dd, J = 11.11, 4.10 Hz, 1H), 4.10 

(m, 1H), 3.56 (m, 1H), 3.12 (dd, J = 5.20, 2.56 Hz, 1H), 2.43 (dd, J = 8.80, 8.72 Hz, 1H), 2.27 (dd, J = 

6.88, 6.96 Hz, 1Hz) 1.29 (d, J = 6.28 Hz, 3H) ppm. 13C NMR (100 MHz CDCl3): δ 207.3, 171.5, 164.9, 

160.9, 141.7, 131.7, 129.1, 124.1, 114.5, 94.5, 74.3, 67.3, 67.1, 55.4, 55.0, 51.1, 44.1, 40.5, 21.2 ppm.  

HRMS (ESI+) m/z calcd. for C25H25N3O10: 528.1612; found [M+H] 528.3154 

 

(2S,5R,6S)-4-Nitrobenzyl 6-((R)-1-hydroxyethyl)-3,7-dioxo-2-((R)-3-oxocyclopentyl)-1-

azabicyclo[3.2.0]heptane-2-carboxylate (13) 

The crude product was purified by column chromatography (ethylacetate /hexane, 50:50; Rf = 0.2) to 

afford the product (165 mg, 67%) as a semi solid. [α]20
D = +215.0 (c = 0.1, CHCl3) 1H NMR (400 MHz, 

CDCl3): δ 8.22 (d, J = 7.16 Hz, 2H), 7.45 (d, J = 8.56 Hz, 2H), 5.27 (s,2H), 4.25 (s, 1H), 4.03 (s, 1H), 
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3.29 (t, 1H), 3.17 (d, 1H), 2.97- 2.95 (d, J = 11.05 Hz, 1H ), 2.55- 2.39 (dd, J = 17.91, 8.58 Hz, 2H), 2.19 

(d, J = 9.49 Hz, 2H), 2.04 (d, J = 7.08 Hz, 1H), 1.80 (d, J = 19.61 Hz, 1H), 1.34 (d, J = 4.80 Hz, 3H) ppm. 
13C NMR (100 MHz CDCl3): δ 215.3, 208.0, 164.9, 161.0, 140.8, 128.7, 124.5, 76.6, 66.5, 66.2, 64.9, 

50.2, 42.1, 40.9, 38.4, 38.0, 23.6, 21.9  ppm. HRMS (ESI-) m/z calcd. for C21H22N2O8: 429.1292; found 

[M-H] 429.1440 
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1H, 13C NMR and HRMS spectra 
 

1H-NMR spectra of ((2S)-4-nitrobenzyl-6-((R)-1-hydroxyerthyl)-2-(hydroxymethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate) (2) 
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13C-NMR spectra of ((2S)-4-nitrobenzyl-6-((R)-1-hydroxyerthyl)-2-(hydroxymethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate (2) 
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COSY of ((2S)-4-nitrobenzyl-6-((R)-1-hydroxyerthyl)-2-(hydroxymethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate (2) 
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NOESY of ((2S)-4-nitrobenzyl-6-((R)-1-hydroxyerthyl)-2-(hydroxymethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate (2) 
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HSQC of ((2S)-4-nitrobenzyl-6-((R)-1-hydroxyerthyl)-2-(hydroxymethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate (2) 
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HMBC of ((2S)-4-nitrobenzyl-6-((R)-1-hydroxyerthyl)-2-(hydroxymethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate (2) 
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1H-NMR spectra of (2S)-nitrobenzyl2-((R)-hydroxy(phenyl)methyl)-6-(1-hydroxyethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate (3) 
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13C-NMR spectra of (2S)-nitrobenzyl2-((R)-hydroxy(phenyl)methyl)-6-(1-hydroxyethyl)-3,7-dioxo-

1-azabicyclo[3.2.0]heptane-2-carboxylate (3) 
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Crude 1H-NMR spectra of (2S)-nitrobenzyl2-((R)-hydroxy(phenyl)methyl)-6-(1-hydroxyethyl)-3,7-dioxo-1-azabicyclo[3.2.0]heptane-2-

carboxylate (3) 
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Crude 1H-NMR spectra of (2S)-nitrobenzyl2-((R)-hydroxy(phenyl)methyl)-6-(1-hydroxyethyl)-3,7-dioxo-1-azabicyclo[3.2.0]heptane-2-

carboxylate (3) 
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Crude 1H-NMR spectra of 4-nitrobenzyl (2S,5R,6S)-2-((S)-hydroxy(4-nitrophenyl)methyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate (4) 
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Crude 1H-NMR spectra of 4-nitrobenzyl (2S,5R,6S)-2-((S)-hydroxy(p-tolyl)methyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate (5) 
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Crude 1H-NMR spectra of 4-nitrobenzyl (2S,5R,6S)-2-((S)-hydroxy(4-methoxyphenyl)methyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate (6) 

 

1H-NMR spectra of 4-nitrobenzyl (2S,5R,6S)-2-((S)-hydroxy(4-methoxyphenyl)methyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate 

1H-NMR spectra of 4-nitrobenzyl (2S,5R,6S)-2-((S)-hydroxy(4-methoxyphenyl)methyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate 

1H-NMR spectra of 4-nitrobenzyl (2S,5R,6S)-2-((S)-hydroxy(4-methoxyphenyl)methyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate 

1H-NMR spectra of 4-nitrobenzyl (2S,5R,6S)-2-((S)-hydroxy(4-methoxyphenyl)methyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate 

1H-NMR spectra of 4-nitrobenzyl (2S,5R,6S)-2-((S)-hydroxy(4-methoxyphenyl)methyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate 
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Crude 1H-NMR spectra of 4-nitrobenzyl (2S,5R,6S)-2-((S)-(2,4-dimethoxyphenyl)(hydroxy)methyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate (6) 

 

1H-NMR spectra of 4-nitrobenzyl (2S,5R,6S)-2-((S)-hydroxy(4-methoxyphenyl)methyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate 

1H-NMR spectra of 4-nitrobenzyl (2S,5R,6S)-2-((S)-hydroxy(4-methoxyphenyl)methyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate 

1H-NMR spectra of 4-nitrobenzyl (2S,5R,6S)-2-((S)-hydroxy(4-methoxyphenyl)methyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate 

1H-NMR spectra of 4-nitrobenzyl (2S,5R,6S)-2-((S)-hydroxy(4-methoxyphenyl)methyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate 

1H-NMR spectra of 4-nitrobenzyl (2S,5R,6S)-2-((S)-hydroxy(4-methoxyphenyl)methyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate 
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Crude 1H-NMR spectra of 4-nitrobenzyl (2S,5R,6S)-2-((S)-(4-fluorophenyl)(hydroxy)methyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate (7) 

 

1H-NMR spectra of 4-nitrobenzyl (2S,5R,6S)-2-((S)-hydroxy(4-methoxyphenyl)methyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate 

1H-NMR spectra of 4-nitrobenzyl (2S,5R,6S)-2-((S)-hydroxy(4-methoxyphenyl)methyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate 

1H-NMR spectra of 4-nitrobenzyl (2S,5R,6S)-2-((S)-hydroxy(4-methoxyphenyl)methyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate 

1H-NMR spectra of 4-nitrobenzyl (2S,5R,6S)-2-((S)-hydroxy(4-methoxyphenyl)methyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate 

1H-NMR spectra of 4-nitrobenzyl (2S,5R,6S)-2-((S)-hydroxy(4-methoxyphenyl)methyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate 

 

 

Crude 1H-NMR spectra of 4-nitrobenzyl (2S,5R,6S)-2-((S)-1-hydroxybutyl)-6-((R)-1-hydroxyethyl)- 
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Crude 1H-NMR spectra of 4-nitrobenzyl (2S,5R,6S)-2-((S)-1-hydroxybutyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-azabicyclo[3.2.0]heptane-2-

carboxylate (8) 

 

 

carboxylateazabicyclo[3.2.0]heptane-2-carboxylate 

1H-NMR spectra of 4-nitrobenzyl (2S,5R,6S)-2-((S)-hydroxy(4-methoxyphenyl)methyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate 

1H-NMR spectra of 4-nitrobenzyl (2S,5R,6S)-2-((S)-hydroxy(4-methoxyphenyl)methyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate 

1H-NMR spectra of 4-nitrobenzyl (2S,5R,6S)-2-((S)-hydroxy(4-methoxyphenyl)methyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate 

1H-NMR spectra of 4-nitrobenzyl (2S,5R,6S)-2-((S)-hydroxy(4-methoxyphenyl)methyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate 

1H-NMR spectra of 4-nitrobenzyl (2S,5R,6S)-2-((S)-hydroxy(4-methoxyphenyl)methyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate 
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1H-NMR spectra of (2S,5R,6S)-4-nitrobenzyl 6-((R)-1-hydroxyethyl)-3,7-dioxo-2-((phenylamino)methyl)-1-azabicyclo[3.2.0]heptane-2-
carboxylate (9) 
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13C-NMR spectra of (2S,5R,6S)-4-nitrobenzyl 6-((R)-1-hydroxyethyl)-3,7-dioxo-2-((phenylamino)methyl)-1-azabicyclo[3.2.0]heptane-2-

carboxylate (9) 
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COSY of (2S,5R,6S)-4-nitrobenzyl 6-((R)-1-hydroxyethyl)-3,7-dioxo-2-((phenylamino)methyl)-1-azabicyclo[3.2.0]heptane-2-carboxylate 

(9) 
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NOESY of (2S,5R,6S)-4-nitrobenzyl 6-((R)-1-hydroxyethyl)-3,7-dioxo-2-((phenylamino)methyl)-1-azabicyclo[3.2.0]heptane-2-carboxylate 
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HSQC of (2S,5R,6S)-4-nitrobenzyl 6-((R)-1-hydroxyethyl)-3,7-dioxo-2-((phenylamino)methyl)-1-azabicyclo[3.2.0]heptane-2-carboxylate 

(9) 
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HMBC of (2S,5R,6S)-4-nitrobenzyl 6-((R)-1-hydroxyethyl)-3,7-dioxo-2-((phenylamino)methyl)-1-azabicyclo[3.2.0]heptane-2-carboxylate 

(9) 
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1H-NMR spectra of (2S,5R,6S)-4-nitrobenzyl 6-((R)-1-hydroxyethyl)-2-((4-methoxyphenylamino)methyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate (10) 
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13C-NMR spectra of (2S,5R,6S)-4-nitrobenzyl 6-((R)-1-hydroxyethyl)-2-((4-methoxyphenylamino)methyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate (10) 
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13C-NMR spectra of (2S,5R,6S)-4-nitrobenzyl 2-((4-bromophenylamino)methyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate (11) 
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13C-NMR spectra of (2S,5R,6S)-4-nitrobenzyl 2-((4-bromophenylamino)methyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate (11) 
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1H-NMR spectra of (2S,5R,6S)-4-nitrobenzyl 6-((R)-1-hydroxyethyl)-2-((S)-1-(4-methoxyphenyl)-2-nitroethyl)-3,7-dioxo-1-azabicyclo 

[3.2.0] heptane-2-carboxylate (3a) 
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13C NMR spectra of (2S, 5R, 6S)-4-nitrobenzyl 6-((R)-1-hydroxyethyl)-2-((S)-1-(4-methoxyphenyl)-2-nitroethyl)-3,7-dioxo-1-azabicyclo 

[3.2.0] heptane-2-carboxylate (3a) 
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Cosy spectra of (2S ,5R ,6S)-4-nitrobenzyl 6-((R)-1-hydroxyethyl)-2-((S)-1-(4-methoxyphenyl)-2-nitroethyl)-3,7-dioxo-1-azabicyclo [3.2.0] 

heptane-2-carboxylate (3a) 
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HSQC spectra of (2S,5R,6S)-4-nitrobenzyl 6-((R)-1-hydroxyethyl)-2-((S)-1-(4-methoxyphenyl)-2-nitroethyl)-3,7-dioxo-1-azabicyclo [3.2.0] 

heptane-2-carboxylate (3a) 
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HMBC spectra of (2S,5R,6S)-4-nitrobenzyl 6-((R)-1-hydroxyethyl)-2-((S)-1-(4-methoxyphenyl)-2-nitroethyl)-3,7-dioxo-1-azabicyclo [3.2.0] 

heptane-2-carboxylate (3a) 
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NOESY spectra of (2 S,5R, 6S)-4-nitrobenzyl 6-((R)-1-hydroxyethyl)-2-((S)-1-(4-methoxyphenyl)-2-nitroethyl)-3,7-dioxo-1-azabicyclo 

[3.2.0] heptane-2-carboxylate (3a) 
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HRMS of ((2S)-4-nitrobenzyl-6-((R)-1-hydroxyerthyl)-2-(hydroxymethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate)  (1) 
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HRMS of (2S)-nitrobenzyl2-((R)-hydroxy(phenyl)methyl)-6-(1-hydroxyethyl)-3,7-dioxo-1-

azabicyclo[3.2.0]heptane-2-carboxylate (2) 
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HRMS of (2S,5R,6S)-4-nitrobenzyl 6-((R)-1-hydroxyethyl)-3,7-dioxo-2-((phenylamino) methyl)-1-
azabicyclo[3.2.0]heptane-2-carboxylate (9) 
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HRMS of (2S,5R,6S)-4-nitrobenzyl 6-((R)-1-hydroxyethyl)-2-((4-methoxyphenylamino)methyl)-3,7-

dioxo-1-azabicyclo[3.2.0]heptane-2-carboxylate (10) 
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HRMS of (2S,5R,6S)-4-nitrobenzyl 2-((4-bromophenylamino)methyl)-6-((R)-1-hydroxyethyl)-3,7-

dioxo-1-azabicyclo[3.2.0]heptane-2-carboxylate (11) 

 

 

N
O

O

O
O

OH

O2N

H H

H
N

Br



91 
 

HRMS of (2S,5R,6S)-4-nitrobenzyl 6-((R)-1-hydroxyethyl)-2-((S)-1-(4-methoxy phenyl)-2-

nitroethyl)-3,7-dioxo-1-azabicyclo [3.2.0] heptane-2-carboxylate (12) 
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HRMS of (2S,5R,6S)-4-nitrobenzyl 6-((R)-1-hydroxyethyl)-3,7-dioxo-2-((R)-3-oxocy clopentyl)-1-

azabicyclo[3.2.0]heptane-2-carboxylate (13) 
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1H-NMR spectra of (2S,5R,6S)-4-nitrobenzyl 6-((R)-1-hydroxyethyl)-2-((S)-1-(4-methoxyphenyl)-2-

nitroethyl)-3,7-dioxo-1-azabicyclo [3.2.0] heptane-2-carboxylate (3a) 
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13C NMR spectra of (2S, 5R, 6S)-4-nitrobenzyl 6-((R)-1-hydroxyethyl)-2-((S)-1-(4-methoxyphenyl)-

2-nitroethyl)-3,7-dioxo-1-azabicyclo [3.2.0] heptane-2-carboxylate (3a) 
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Cosy spectra of (2S ,5R ,6S)-4-nitrobenzyl 6-((R)-1-hydroxyethyl)-2-((S)-1-(4-methoxyphenyl)-2-

nitroethyl)-3,7-dioxo-1-azabicyclo [3.2.0] heptane-2-carboxylate (3a) 
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HSQC spectra of (2S,5R,6S)-4-nitrobenzyl 6-((R)-1-hydroxyethyl)-2-((S)-1-(4-methoxyphenyl)-2-

nitroethyl)-3,7-dioxo-1-azabicyclo [3.2.0] heptane-2-carboxylate (3a) 
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HMBC spectra of (2S,5R,6S)-4-nitrobenzyl 6-((R)-1-hydroxyethyl)-2-((S)-1-(4-methoxyphenyl)-2-

nitroethyl)-3,7-dioxo-1-azabicyclo [3.2.0] heptane-2-carboxylate (3a) 
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NOESY spectra of (2 S,5R, 6S)-4-nitrobenzyl 6-((R)-1-hydroxyethyl)-2-((S)-1-(4-methoxyphenyl)-2-

nitroethyl)-3,7-dioxo-1-azabicyclo [3.2.0] heptane-2-carboxylate (3a) 
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1H NMR spectra of (2S,5R,6S)-4-Nitrobenzyl 6-((R)-1-hydroxyethyl)-2-((R)-2-nitro-1-phenylethyl)-
3,7-dioxo-1-azabicyclo[3.2.0]heptane-2-carboxylate (3b) 
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13C NMR spectra of (2S,5R,6S)-4-Nitrobenzyl 6-((R)-1-hydroxyethyl)-2-((R)-2-nitro-1-phenylethyl)-
3,7-dioxo-1-azabicyclo[3.2.0]heptane-2-carboxylate (3b) 
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1H NMR spectra of (2S,5R,6S)-4-Nitrobenzyl 2-((R)-1-(4-chlorophenyl)-2-nitroethyl)-6-((R)-1-
hydroxyethyl)-3,7-dioxo-1-azabicyclo[3.2.0]heptane-2-carboxylate (3c) 
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13C NMR spectra of (2S,5R,6S)-4-Nitrobenzyl 2-((R)-1-(4-chlorophenyl)-2-nitroethyl)-6-((R)-1-
hydroxyethyl)-3,7-dioxo-1-azabicyclo[3.2.0]heptane-2-carboxylate (3c) 
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1H NMR spectra of (2S, 5R, 6S)-4-nitrobenzyl 6-((R)-1-hydroxyethyl)-3,7-dioxo-2-((R)-3-
oxocyclopentyl)-1-azabicyclo[3.2.0]heptane-2-carboxylate (5a) 
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13C NMR for (2S, 5R, 6S)-4-nitrobenzyl 6-((R)-1-hydroxyethyl)-3,7-dioxo-2-((R)-3-oxocyclopentyl)-
1-azabicyclo[3.2.0]heptane-2-carboxylate (5a) 
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1H NMR spectra of (2S,5R,6S)-4-Nitrobenzyl 6-((R)-1-hydroxyethyl)-3,7-dioxo-2-((R)-3-
oxocyclohexyl)-1-azabicyclo[3.2.0]heptane-2-carboxylate (5b) 
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13C NMR spectra of (2S,5R,6S)-4-Nitrobenzyl 6-((R)-1-hydroxyethyl)-3,7-dioxo-2-((R)-3-
oxocyclohexyl)-1-azabicyclo[3.2.0]heptane-2-carboxylate (5b) 
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1H NMR spectra of (2S,5R,6S)-4-Nitrobenzyl 6-((R)-1-hydroxyethyl)-3,7-dioxo-2-((S)-3-oxo-1-

phenylbutyl)-1-azabicyclo[3.2.0]heptane-2-carboxylate (5c) 
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13C NMR spectra of (2S,5R,6S)-4-Nitrobenzyl 6-((R)-1-hydroxyethyl)-3,7-dioxo-2-((S)-3-oxo-1-

phenylbutyl)-1-azabicyclo[3.2.0]heptane-2-carboxylate (5c) 
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1H NMR spectra of (2S,5R,6S)-4-Nitrobenzyl 6-((R)-1-hydroxyethyl)-2-((S)-4-methoxy-3,4-dioxo-1-
phenylbutyl)-3,7-dioxo-1-azabicyclo[3.2.0]heptane-2-carboxylate (5d) 
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13C NMR spectra of (2S,5R,6S)-4-Nitrobenzyl 6-((R)-1-hydroxyethyl)-2-((S)-4-methoxy-3,4-dioxo-1-
phenylbutyl)-3,7-dioxo-1-azabicyclo[3.2.0]heptane-2-carboxylate (5d) 
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1H NMR spectra of  (2S,5R,6S)-4-Nitrobenzyl 2-((S)-1-(4-fluorophenyl)-4-methoxy-3,4-dioxobutyl)-
6-((R)-1-hydroxyethyl)-3,7-dioxo-1-azabicyclo[3.2.0]heptane-2-carboxylate (5e) 
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13C NMR spectra of  (2S,5R,6S)-4-Nitrobenzyl 2-((S)-1-(4-fluorophenyl)-4-methoxy-3,4-dioxobutyl)-
6-((R)-1-hydroxyethyl)-3,7-dioxo-1-azabicyclo[3.2.0]heptane-2-carboxylate (5e) 
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1H NMR spectra of (2S,5R,6S)-4-Nitrobenzyl 2-((S)-1-(benzo[d][1,3]dioxol-5-yl)-4-methoxy-3,4-
dioxobutyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-azabicyclo[3.2.0]heptane-2-carboxylate (5f) 
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13C NMR spectra of (2S,5R,6S)-4-Nitrobenzyl 2-((S)-1-(benzo[d][1,3]dioxol-5-yl)-4-methoxy-3,4-
dioxobutyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-azabicyclo[3.2.0]heptane-2-carboxylate (5f) 
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1H NMR spectra of 2-((2R, 3S)-3-(1-Hydroxyethyl)-1-(2-(4-nitrobenzyloxy)-2-oxo-1-(3-
oxocyclopentyl)ethyl)-4-oxoazetidin-2-yl) acetic acid (6) 
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13C NMR spectra of 2-((2R, 3S)-3-(1-Hydroxyethyl)-1-(2-(4-nitrobenzyloxy)-2-oxo-1-(3-
oxocyclopentyl)ethyl)-4-oxoazetidin-2-yl)acetic acid (6) 
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Cosy spectra of 2-((2R,3S)-3-(1-Hydroxyethyl)-1-(2-(4-nitrobenzyloxy)-2-oxo-1-(3-
oxocyclopentyl)ethyl)-4-oxoazetidin-2-yl)acetic acid (6) 

 

 

 

 

 

 

 

 

 

 

 

N
O

OH
H H

O
O

O

NO2

H

O OH



120 
 

HSQC spectra of 2-((2R,3S)-3-(1-Hydroxyethyl)-1-(2-(4-nitrobenzyloxy)-2-oxo-1-(3-
oxocyclopentyl)ethyl)-4-oxoazetidin-2-yl)acetic acid (6) 

 

 

 

 

 

 

 

 

 

 

N
O

OH
H H

O
O

O

NO2

H

O OH



121 
 

HMBC spectra for 2-((2R, 3S)-3-(1-Hydroxyethyl)-1-(2-(4-nitrobenzyloxy)-2-oxo-1-(3-
oxocyclopentyl)ethyl)-4-oxoazetidin-2-yl)acetic acid (6) 
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NOESY spectra of 2-((2R,3S)-3-(1-Hydroxyethyl)-1-(2-(4-nitrobenzyloxy)-2-oxo-1-(3-
oxocyclopentyl)ethyl)-4-oxoazetidin-2-yl)acetic acid (6) 
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HRMS of (2S,5R,6S)-4-nitrobenzyl 6-((R)-1-hydroxyethyl)-2-((S)-1-(4-methoxy phenyl)-2-

nitroethyl)-3,7-dioxo-1-azabicyclo [3.2.0] heptane-2-carboxylate (3a) 
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HRMS spectra of (2S,5R,6S)-4-Nitrobenzyl 6-((R)-1-hydroxyethyl)-2-((R)-2-nitro-1-phenylethyl)-
3,7-dioxo-1-azabicyclo[3.2.0]heptane-2-carboxylate (3b) 
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HRMS spectra of (2S,5R,6S)-4-Nitrobenzyl 2-((R)-1-(4-chlorophenyl)-2-nitroethyl)-6-((R)-1-
hydroxyethyl)-3,7-dioxo-1-azabicyclo[3.2.0]heptane-2-carboxylate (3c) 
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HRMS of (2S,5R,6S)-4-nitrobenzyl 6-((R)-1-hydroxyethyl)-3,7-dioxo-2-((R)-3-oxocy clopentyl)-1-

azabicyclo[3.2.0]heptane-2-carboxylate (5a) 
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HRMS spectra of (2S,5R,6S)-4-Nitrobenzyl 6-((R)-1-hydroxyethyl)-3,7-dioxo-2-((R)-3-
oxocyclohexyl)-1-azabicyclo[3.2.0]heptane-2-carboxylate (5b) 
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HRMS spectra of  (2S,5R,6S)-4-Nitrobenzyl 6-((R)-1-hydroxyethyl)-2-((S)-4-methoxy-3,4-dioxo-1-
phenylbutyl)-3,7-dioxo-1-azabicyclo[3.2.0]heptane-2-carboxylate (5c) 
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HRMS spectra of  (2S,5R,6S)-4-Nitrobenzyl 6-((R)-1-hydroxyethyl)-2-((S)-4-methoxy-3,4-dioxo-1-
phenylbutyl)-3,7-dioxo-1-azabicyclo[3.2.0]heptane-2-carboxylate (5d) 
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(2S,5R,6S)-4-Nitrobenzyl 2-((S)-1-(4-fluorophenyl)-4-methoxy-3,4-dioxobutyl)-6-((R)-1-

hydroxyethyl)-3,7-dioxo-1-azabicyclo[3.2.0]heptane-2-carboxylate (5e) 
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HRSM spectra of (2S,5R,6S)-4-Nitrobenzyl 2-((S)-1-(benzo[d][1,3]dioxol-5-yl)-4-methoxy-3,4-
dioxobutyl)-6-((R)-1-hydroxyethyl)-3,7-dioxo-1-azabicyclo[3.2.0]heptane-2-carboxylate (5f) 
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HRMS spectra of 2-((2R,3S)-3-(1-Hydroxyethyl)-1-(2-(4-nitrobenzyloxy)-2-oxo-1-(3-
oxocyclopentyl)ethyl)-4-oxoazetidin-2-yl)acetic acid (6) 

 

 

N
O

OH
H H

O
O

O

NO2

H

O OH


