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ABSTRACT 

Prediction of signal power loss between transmitter and receiver with minimal error is 

an important issue in telecommunication network planning and optimization process. Some of 

the basic available conventional models in literature for signal power loss prediction includes 

the Free space, Lee, COST 234 Hata, Hata, Walficsh- Bertoni, Walficsh-Ikegami, dominant 

path and ITU models. But, due to poor prediction accuracy and lack of computational 

efficiency of these traditional models with propagated signal data in different cellular network 

environments, many researchers have shifted their focus to the domain of Artificial Neural 

Networks (ANNs) models. Different neural network architectures and models exist in 

literature, but the most popular one among them is the Multi-Layer Perceptron (MLP) ANN 

which can be attributed to its superb architecture and comparably clear algorithm. Though 

standard MLP networks have been employed to model and predict different signal data, they 

suffer due to the following fundamental drawbacks. Firstly, conventional MLP networks 

perform poorly in handling noisy data. Also, MLP networks lack capabilities in dealing with 

incoherence datasets which contracts with smoothness.  

Firstly, in this work, an adaptive neural network predictor which combines MLP and 

Adaptive Linear Element (ADALINE) is developed for enhanced signal power prediction. 

This is followed with a resourceful predictive model, built on MLP network with vector order 

statistic filter based pre-processing technique for improved prediction of measured signal 

power loss in different micro-cellular urban environments. The prediction accuracy of the 

proposed hybrid adaptive neural network predictor has been tested and evaluated using 

experimental field strength data acquired from Long Term Evolution (LTE) radio network 

environment with mixed residential, commercial and cluttered building structures. By means 

of first order statistical performance evaluation metrics using Correlation Coefficient, Root 

Mean Squared Error, Standard Deviation and Mean Absolute Error, the proposed adaptive 

hybrid approach provides a better prediction accuracy compared to the conventional MLP 

ANN prediction approach. The superior performance of the hybrid neural predictor can be 

attributed to its capability to learn, adaptively respond and predict the fluctuating patterns of 

the reference propagation loss data during training. 
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CHAPTER 1 

GENERAL INTRODUCTION 

 

1.1. Introduction 

Propagation Path Loss (PL) prediction has been a crucial task in the designing and 

planning of mobile communication networks. This is as a result of various physical 

mechanisms such as reflection, diffraction and scattering of the signal as they propagates, as 

well as multipath phenomenon  and the constant  movement of  users of mobile 

communication [1]. Therefore, predicting electromagnetic signal power loss with minimal 

error during signal propagation from the transmitter to the receiver is an important issue in 

telecommunication network planning and optimization process. When a new mobile 

technology such as Long Term Evolution (LTE) network is to be deployed with a goal to 

increase network capacity and speed, with wider coverage and strong Quality of Service 

(QoS), it is important to identify these factors which affect the quality and capacity of the 

mobile communication network.  

A major objective of planning radio coverage is for an efficient use of the allocated 

frequency. From this perspective, network coverage is an influential factor in network 

planning as it allows the network engineers to carry out different configuration tests before 

physical implementation of the changes. However, propagation PL prediction for radio 

coverage is a complex task, hence, the need for an accurate and computational efficient 

prediction tool. Accurate and reliable models are vital for the prediction of radio channel 

parameters in the area for deployment of cellular mobile radio system. Traditional PL models 

such as empirical, deterministic and semi-empirical models have been used over the years.  

Path Loss models are generally the empirical mathematical formulation of the signal 

propagation behaviour of an environment [2, 3]. Statistically, empirical models basically 

explain the relationship between the environment and Path Loss. They do not require much 

computational effort and are easy to implement, however, they are less sensitive to the 

physical and geometrical configuration of the environment. The deterministic models on the 



2 

 

other hand, calculate the field strength using the Geometrical Theory of Diffraction (GTD) 

and it is acquired as the super-position of direct, reflected and diffracted rays at the area of 

interest. Deterministic models are very sensitive to the environmental physical configuration, 

making them accurate, however, they require detailed information on the environment under 

coverage in comparison to empirical models and thus much computational efforts are 

required. Considering that propagation signal encounter different atmospheric conditions, 

obstacles and multi-path phenomenon, it is difficult to make use of a particular model in the 

formulation of the precise loss in communication network [4].  

Therefore, for a signal propagation model that accurately reveals the characteristics of 

the communication network environment with less computational efforts using real world 

measured data from LTE network, our research work has developed an adaptive Artificial 

Neural Network (ANN) prediction modelling techniques. This caters for the stochastic signal 

attenuation phenomenon and the in-homogeneity of the spatial propagation channels in 

outdoor environments. This approach for propagation PL prediction in typical outdoor 

environments has been realized by developing a hybrid ANN model that combines an existing 

ANN model and an adaptive neural modelling capability. 

1.2. Problem Statement 

Need for an accurate and computational efficient model with minimal prediction error 

using an adaptive artificial neural network to enhance the prediction of propagation Path 

Loss during electromagnetic signal transmission from transmitter to receiver.  

A well-designed cellular network structure is essential for effective roll out of cellular 

mobile communication system. This is because a physical layer has to support the cellular 

design for every type of radio access technology [5]. The choice of the prediction tool used 

for modelling propagation PL directly relates to the prediction accuracy achieved [6]. Signal 

propagation study is majorly concerned with what happens in-between transmitter and 

receiver. Transmitter produces an electromagnetic signal that is modulated onto the carrier 

frequency and the signal reacts with several obstacles on its way to receiver where it is then 

induced on the receiver’s antenna for demodulation.  
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The environmental obstacles cause signal to be reflected, diffracted or scattered which 

in turn attenuates the signal power through absorption. The three basic propagation 

mechanisms: diffraction, reflection and scattering are essential key for the analysis of radio 

propagation modelling-based study. Therefore, signal propagation model which supports 

configurable parameters are ideal as they permit adaptation of the model to different 

environments thereby improving the calculated coverage prediction accuracy [7, 8].  

When considering propagation in outdoor environments, our interest is in three types of 

areas: rural, sub-urban and urban areas. The terrain profile of any area must be considered as 

there may be variation from a simple curved earth to high mountain regions. Presence of trees, 

buildings, moving cars and other environmental obstacles must be considered. Interference 

conditions often prevent the best use of the cellular system because simple mathematical 

models do not correspond with reality. Increasing power to conceal dead spots creates other 

problems [9, 10].  

1.3. Background to the Research Work 

There is need for an appropriate radio system design, determination of Base Station 

(BS) arrangements and appropriate operating frequency during an upgrade or deployment of 

new communication network such as LTE to ensure enhanced QoS. However, understanding 

and building these networks centre on the knowledge of signal propagation over a distance in 

pragmatic environments [11].  

Propagation PL is one of the major importance characteristics of communication 

networks. It is the local average received signal power relative to transmit power [12]. This 

fall in electromagnetic signal power density as it transmits  in the space  may be as a result of 

diffraction, reflection, scattering, etc. and it is subjective to varied environments [13]. Factors 

such as topography, town planning, population density, rainfall, vegetation, etc. contribute to 

PL. Transmitter and receiver antenna height variations also create losses [5]. As a result of 

these occurrences, the signal strength received, experiences both attenuation and fluctuation. 

Accurate estimation of PL offers a good basis for proper BS location and adequate 

determination of frequency plan. Also, there is need by network engineers on appropriate 

method for mapping the extent of coverage of both existing and planned networks [14, 15]. 
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The effectiveness of different estimation methods of PL solemnly depends on the predictive 

power of the underlying Path Loss model. 

A propagation model is a set of mathematical expressions, diagrams and algorithms that 

is used to express the radio characteristics of a given environment [16]. Propagation model 

can either be empirical, also known as statistical model or theoretical also known as 

deterministic model or a combination of these two models. The empirical models are 

established on measurements while the theoretical models are based on the fundamental 

principles of radio wave propagation phenomena. All environmental influences are wholly 

considered in empirical models; thus, the accuracy of these models is dependent not only on 

the accurateness of the measurement but also the similarities between the investigated 

environment and the environment where the measurements were carried out. The 

computational efficiency of these models is usually satisfactory. The deterministic models on 

the other hand, are based on the principles of radio wave propagation phenomena and 

therefore can be applied in any environment without effect on the accurateness. Practically, 

enormous database of the environmental characteristics is usually required, which most time 

is impractical. Also, the algorithms employed using deterministic models are quite complex 

which is not computational efficient [17]. 

Recent studies have shown the successful application of ANN models in propagation 

PL prediction in rural, sub-urban and urban areas [18-20]. They make use of the gains of 

deterministic and empirical models as they are robust, competent and proficient in showing 

changes in wireless signal performance, thereby overcoming the inaccuracies in propagation 

PL modelling using traditional methods. The ANN models can adapt to diverse environments 

as a result of their flexibility and are capable of processing large size of data due to their high 

processing speed [21]. It can also be train to act well in environments similar to where the 

training data were collected. However, there are different techniques used in creating and 

training ANNs to ensure a network that generalizes well without over-fitting and with 

minimal error prediction. The ANN architecture, the type of training sets, the type of training 

algorithms, transfer functions applied, etc. play important roles in the predictive ability of 

ANN models. 
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1.4. Aim and Objectives of the Research Work 

The aim of the research work is to develop an adaptive hybrid ANN models for outdoor 

propagation PL prediction in LTE communication network for enhanced QoS.  

The objectives are: 

i. To review baseline knowledge on traditional propagation modelling and prediction 

techniques in wireless communication networks. 

ii. To simulate and analyse propagation PL for LTE cellular network planning using 

traditional propagation PL models. 

iii. To analyse the performance of different backpropagation ANN training algorithms on 

a known feedforward backpropagation Multi-Layer Perceptron (MLP) ANN for 

outdoor propagation PL prediction using real world data from LTE communication 

network. 

iv. To compare the generalization abilities of Radial Basis Function (RBF) and MLP 

ANN models for outdoor propagation PL prediction using different training 

approaches: variation of the number of neurons in hidden layer, early stopping and 

Bayesian Regularization approaches. 

v. To evaluate the effect of learning rate parameter on two ANN models: Generalized 

Regression Neural Network (GRNN) and MLP ANN models for outdoor propagation 

PL prediction.  

vi. To evaluate the performance of two ANN models: Adaptive Linear Neural Element 

(ADALINE) and MLP ANN, examining the impact of variation of learning rate 

parameter and the effect of input delay in ADALINE. 

vii. To optimize the performance of ANN by developing an adaptive hybrid ANN that 

combines ADALINE system predictor and MLP model for enhanced prediction 

accuracy with minimal prediction error. 

viii. To develop a model that combines vector order statistics-based filter smoothing 

technique and MLP ANN model for enhanced prediction accuracy by measured signal 

(data set) smoothening prior to the ANN training.  
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1.5. Significance of the Research Work 

The significances of the research work are as follow: 

i. Developing a model for an outdoor prediction of propagation PL using adaptive 

hybrid ANN techniques with an enhanced prediction performance that is more 

accurate and computationally efficient than the traditional PL models to ensure 

reduction in losses during electromagnetic signal transmission from a transmitter to a 

receiver.  

ii. Prediction of propagation PL with real world measured data from LTE cellular 

network, employing the developed adaptive hybrid ANN models and comparison of 

their predictive performances with conventional MLP ANN models. 

iii. Optimization of prediction accuracy by ensuring decrease in the error margin between 

ANN actual output and the desired output through adequate training of the adaptive 

hybrid ANN models using proper training parameters and training techniques. 

1.6. Scope of the Research Work 

The scopes of the research work are: 

i. Extensive review of baseline knowledge on traditional propagation PL prediction 

models, simulation and analysis of propagation PL using traditional models with real 

world measured data from LTE cellular network. 

ii. Simulation and analysis of propagation PL with conventional ANN models, adopting 

different backpropagation training algorithms and different training techniques and 

comparing their predictive abilities using real world measured data from LTE cellular 

network. 

iii. Developing adaptive hybrid ANN models for enhanced prediction performances with 

less error margin between ANN actual output and desired output in comparison with 

the conventional ANN models. 
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1.7. Thesis layout 

This research work is structured and organized in seven chapters.  Chapter 1 deals with 

the introductory part of the research work. It presents the problem statement and discusses the 

background of the research work. It also presents objectives, significances and scope of the 

research work.   

Chapter 2 reviews the baseline knowledge on traditional propagation modelling 

techniques in wireless communication networks. Different empirical and deterministic 

propagation modelling techniques have been reviewed. Their characteristics, potencies and 

limitations are highlighted. Several key propagation models reviewed are the Hata model, 

Standard University Interim (SUI) model, Walfisch-Ikegami model, Walficsh-Bertoni model, 

Lee model, International Telecommunication Union (ITU) model, etc. The concepts of ANNs, 

the evolution of ANNs, their capabilities, knowledge representation in ANNs and types of 

ANN learning have been highlighted. 

Chapter 3 employs some of the traditional empirical and deterministic models for 

simulation and analysis of propagation PL using real world measured data for LTE cellular 

network planning. The effect of different parameter such as link distance between transmitter 

and receiver, transmitter antenna height, receiver antenna height, operating frequency on PL 

have been analysed.  

Chapter 4 analyses the performance of various backpropagation ANN training 

algorithms on a feedforward backpropagation MLP ANN for outdoor propagation PL 

prediction. Real world measured data from LTE cellular network has been used in training the 

ANN. The performances of ten ANN training functions of three different training algorithms: 

The Gradient descent-based algorithms, the Conjugate gradient-based algorithms and the 

Quasi-Newton based algorithms have been examined. The error prediction accuracy of the 

ANN training functions has been measured by means of four statistical performance metrics: 

The Root Mean Squared Error (RMSE), the Mean Absolute Error (MAE), the Standard 

Deviation (SD) and the Correlation Coefficient (r).   
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Part I of chapter 5 presents a comparison of the generalization capabilities of RBF and 

MLP ANN models for outdoor prediction of propagation PL by applying different ANN 

training approaches: variation of the number of neurons in hidden layer, early stopping and 

Bayesian Regularization approaches with real world measured data from LTE cellular 

network. This chapter also includes the concepts of ANN generalization ability and Bayesian 

Regularization backpropagation training algorithm. The RMSE, MAE, SD and r are used to 

measure error prediction.  

Part II of chapter 5 presents evaluation of two ANN models: ADALINE and MLP 

ANNs, examining the effect of variation of learning rate parameter, momentum parameter and 

different combination of transfer functions on the two ANNs. Also, the effect of input delay 

parameter has been examined in ADALINE. The chapter also discusses the concept of 

backpropagation technique used for ANN training. Real world measured data from LTE 

cellular network has been used to train the ANN models and RMSE, MAE, SD and r 

statistical performance metrics are used for ANN output error prediction.  

Part III of chapter 5 deals with the evaluation of the effect of learning rate parameter on 

two different ANN models: GRNN and MLP ANN models for outdoor prediction of 

propagation PL employing real world measured data from LTE cellular network. Artificial 

neural network learning, learning archetype and learning rate have been discussed. The 

prediction error has been assessed by means of statistical performance metrics: the RMSE, 

MAE, SD and r.  

Part I of chapter 6 develops an adaptive hybrid ANN that combines ADALINE system 

predictor and MLP model for an optimized performance of ANN. This enhances prediction 

accuracy with minimal prediction error. Additional resourceful predictive model built on 

MLP network with vector order statistic filter based pre-processing technique for improved 

outdoor prediction of propagation PL has been developed and presents in part II of this 

chapter. Training of the ANN has been carried out using real world measured data from LTE 

cellular network and the statistical performance metrics: RMSE, MAE, SD and r has been 

used to measure the error between actual output and desired output. 

Chapter 7 concludes the thesis research work and highlight on future research work.  
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1.8. Contribution to Knowledge 

Although many propagation prediction models are obtainable in the literature (like Free 

space, Okumura, SUI, Lee, Walficsh-Bertoni, Walficsh-Ikegami models, etc.), they are 

limited in one way or the other. For example, it is reported in [22, 23], that there is built-in-

error in the propagation models applied for macro-cell mobile systems (the standard deviation 

is as large as 7 dB-10 dB, which in signal power is a factor of ten). One basic reason of the 

large built-in-error limitation of the existing models is due to dissimilar assumptions and 

different radio propagation environmental scenarios with which many of the models were 

developed. Any reduction in the above-mentioned quantity of error will positively impact PL 

prediction accuracy and the general cellular network coverage performance. Many of the 

models need building geometry or terrain geometry, and this makes their implementation 

cumbersome during network planning.  

One robust technique that addresses the limitations of the existing models is our 

developed adaptive hybrid ANN propagation PL model that caters for stochastic signal 

attenuation phenomenon and the heterogeneity of the spatial propagation channels in different 

outdoor environments. The developed adaptive hybrid ANN model of ADALINE system 

predictor built on MLP model enhances the prediction performance of the ANN with minimal 

prediction error. Furthermore, a novel predictive model of vector order statistic filter based 

pre-processing technique built on MLP network has been developed for improved outdoor 

prediction of propagation PL. This technique employs data set pre-processing by means of 

filtering noisy signal (data set) before the ANN training. There is considerable reduction in 

performance error in comparison to training conventional ANNs without data smoothening or 

training existing traditional propagation PL models.     

1.9. Chapter Summary 

This thesis research work adopts different ANN training parameters and techniques for 

optimized prediction accuracy by ensuring a very minimal error margin between actual output 

and desired output. All ANN training has been carried out using real world measured data 

collected from different BS from LTE cellular network and statistical performance metrics 

assimilated in MATLAB program have been used as a measure for error prediction. The 



10 

 

performance metrics are RMSE, MAE, SD and r and have been utilised to measure error 

prediction accuracy between actual output and desired output. 
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CHAPTER 2 

LITERATURE REVIEW 

 

The chapter’s objective is to review the baseline knowledge of propagation Path Loss 

(PL), its models and modelling techniques. The traditional empirical and deterministic models 

as well as modelling of propagation PL using the concept of Artificial Neural Networks 

(ANNs) have been highlighted. The chapter also reviews previous works on propagation PL.  

2.1. Traditional Radio Propagation Models- An overview 

Propagation models are set of algorithms, mathematical equations and diagrams that are 

used to convey the radio properties of a given environment, which are essential in carrying 

out interference investigation in the course of deployment [16]. In general, a relationship 

exists between a propagation model and the type of environment most suitable for the 

application of such model. The traditional propagation model may be empirical, deterministic, 

or a combination of the two.  

Table 2.1.  Basic Path loss models [4, 11] 

Model Characteristics 

Deterministic Model 

 

 

Empirical Model 

It is site specific and includes massive number of geometric data of the 

site. It needs high computational effort, is highly complicated but has 

high accuracy.  

It is based on measurement data, uses statistical properties, well adapted 

to environment of any size, computational efficient and simple. 

However, it has low accuracy. 

Semi-Empirical Model It is established on combination of both empirical and deterministic 

models. 

2.2. Deterministic Models 

These are analytical models derived from electromagnetic propagation idealized theory 

that have been widely applied in network simulators due to their usefulness in the 

computation of complex tasks with minimum losses [24]. Every propagation situation 

depends on random surveillance which is described in a pre-defined method by these models. 

This gives rise to a comprehensive Path Loss prediction that has nearly all propagation 
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phenomena. The environmental properties such as obstacle positions or their materials have to 

be accurate for prediction to be accurate. Some of the deterministic models are: 

2.2.1. Free Space Model 

Electromagnetic wave signal strength loss due to Line of Sight (LOS) path through free 

space is termed as Free-Space Path Loss (FSPL). Loss by two isotropic radiators in free space 

is represented by a power ratio. It is the loss in the strength of the electromagnetic signal due 

to LOS path via free space. All radio signals are subject to FSPL i.e. the description of the 

geometric property that there is drop in energy signal as the distance from a radio 

transmission increases which is the square of the distance. In this model, the existence of 

single path between transmitter and receiver without barriers is assumed. A power ratio of 1.0 

dB or 0 dB for the antenna gain is assumed and losses related to hardware imperfections or the 

effects of antenna gains are not included.  
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where λ and f are the signal wave length (m) and the signal frequency (MHz), d and c are the 

distance from transmitter (m) and the speed of light in a vacuum (2.99792458) x 108(m/s) 

respectively.  

Path Loss in decibel (dB) are given as: 
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where distance (d) and frequency (f) are measured in (m) and (MHz) respectively for a typical 

radio application. Therefore:   

   20log10( ) 20log( ) 92.45free space dB dP fL                   (2.4)                                         



13 

 

For d (m) and f (MHz), the constant is 32.45 and  -27.55 [25, 26]. 

However, the free space model is not often used alone but as part of Friis transmission 

equation which include antenna gain [27]. A mathematical expression is proposed by Friis for 

transmission loss due to free space which defines the ratio relating to received power Prx and 

transmitted power Ptx with respect to effective area of the BS antenna Atx, mobile antenna Arx, 

distance d (m) and the carrier wavelength λ. In this model, received power is a function of 

transmitted power, antenna gain and transmitter-receiver distance [11]:  

Transmission loss = 
 

2   2

  

λ

txrx Arx

tx

AP

P d
                                               (2.5)                                                                                  

The above formula can be evaluated further for an ideal isotropic antenna: 
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For d (m), f (MHz) and from the linear domain power unit (W) to log domain power unit 

(dBm), Eq.( 2.6) gives Eq.(2.7) and Eq.(2.8) respectively [28]: 

1020log 20log 32.45rx tx dP fP                                          (2.7)                                                               

   1010logdBm mWP P
                                                    (2.8)                                                                                                     

2.2.2. Two - Ray Ground Reflection Model 

This model assumes the existence of two paths between transmitter and receiver for 

most propagation cases: (i) direct path and (ii) reflected path [29-31]. Predictions using Ray 

tracing method are good when the detailed information of the area is accessible, however the 

predicted result may not be applied to other locations. This makes the model site specific and 

mostly typical indoor channel do not have only two paths, therefore making the model just a 

theoretical model. At a point, the receive power does not oscillate round the FSPL any further, 

thereby falling of stronger, a break distance is established. 
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The break distance is calculated as [32]: 

4 tx rx
c

h h
d




                                                             (2.9)                                                                                                           

where htx and hrx are transmitting and receiving antenna height (m) respectively. Friis’s 

equation is applied when the distance is shorter than this break distance and the modified path 

loss expression  is used [33]:  

2 2
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P h h
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                                  (2.10) 

2.2.3. Ikegami Model 

  This model predicts fields’ strength at definite points by applying detailed map of 

building shapes, positions, and heights. The limitations of trace ray paths as a result of single 

reflection from the wall accounts for diffraction calculation by application of single edge 

estimation and assumption of constant value for the wall reflection. The two ray (reflected and 

diffracted) are power summed as [34]: 
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    (2.11)                                                                                                                       

where Φ and Lr are the angle amid the street-mobile direct line and the loss due to reflection 

(0.25) respectively. Losses are underrated by Ikegami model at large distance and frequency 

variation and in comparison with measurement [35]. 

2.3. Empirical Models 

The empirical models are close-fitted formulas of measurement data that give a general 

description of channel behaviour in the environment where the measurements are obtained 

[36]. They predict PL between transmitter and receiver as a function of distance, considering 

a single path. The attenuation due to dipole antennas (dB) is given as [16]:       

10 ( ) 10 log ( )dBPL d d c                                  (2.12)                                                                                        
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where α, d and c are the path loss exponent, distance (m) between transmitter and receiver, 

and a constant (speed of light in a vacuum) which is dependent on parameters such as antenna 

type and frequency, respectively. Empirical models do not compel the knowledge of the exact 

environmental geometry and as a result are simple to use, though they are not highly accurate 

[37]. Some of the empirical models are as follows:  

2.3.1. Okumura Model  

This was developed by Okumura, a Japanese radio scientist, based on the measurements 

he obtained in and around Japan on environment clutter and irregular terrain [38]. He 

discovered that simple power law is related to a good PL profile with exponent μ as a function 

of antenna gain and frequency. The model was further classified into three models: for rural, 

sub-urban and urban areas and selects different modes of computation depending on the 

complexity of the environment (in relation to population density). 

Okumura model is suitable for urban area with many structures but with few tall 

structures and valid for frequency range of 150 MHz to 1920 MHz over distance of 1km-100 

km and transmitter antenna height of 30m-100m. However, it can be extrapolated up to 3000 

MHz [10, 35, 37]. The model is stated as: 

     50%( )PL   ,    mu te re areaLF A f d G h G h GdB                (2.13)                                    

where PL50% is the 50th percentile loss in propagation (median) value, LF and Amu are the loss 

due to free space and the median attenuation relative to the free space, G(hte), G(hre) and Garea 

are the gain factor for transmitter antenna height and the gain factor for receiver antenna 

height and the environment type gain respectively. Variation of G(hte) and G(hre) with height: 

i. For height less than 3 m (variation at the rate of 20 dB/ decade):  

   1020log hte / 200 1000 30teG h m hte m    

ii. For height less than 3 m, (variation at the rate of 10 dB/decades): 

       10 10   = / 3      3  ;    10log 20lo / 3 10      3gre reG h hre m G h hre m hre m     
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Okumura’s model is known to be one of the simplest and best models when it comes to 

PL cellular radio systems predictions. It is based entirely on measured data with no analytical 

explanation.  However, its slow response to fast changes in terrain profile is a major demerit 

of this model.  

2.3.2. Electronic Communication Committee (ECC)-33 Model 

This is an extension of Okumura model formulated by Electronic Communication 

Committee in the European Conference of Postal and Telecommunications Administrations 

(CEPT) [39] and the most widely used model based on Okumura model [40]. Originally, the 

experimental data for Okumura model was obtained from the outskirts of Tokyo, the 

developers segmented urban area into large and medium size cities and correction factors 

given for rural and sub-urban areas [26, 41]. Given that a highly built up area like Tokyo is 

relatively different from what is obtainable in a standard European sub-urban area, the 

segmented urban area model for medium size city was suggested for European cities. 

Although the Hata-Okumura model is broadly used for Ultra High Frequency (UHF) bands, it 

is uncertainly accurate for higher frequencies [40, 42, 43]. Hence, the COST-231 Hata model 

extends the frequency range up to 2000 MHz, however, it was designed for mobile systems 

with Omni-directional receiver antennas sited less than 3 m above ground level. A different 

approach was considered in ECC-33 model which extrapolated the novel measurements by 

Okumura and modified the assumptions to represent a closely wireless system. It is 

extensively used for urban settings, large and medium size cities. ECC-33 PL model is 

expressed as follows [4]:  

       fs bm t rPL A A G G   
                              (2.14) 

where Afs and Abm are the attenuation due to free space and the media Path Loss, Gt and Gr are 

transmitter antenna height gain factor and receiver antenna height gain factor respectively.  

These are independently defined as:  

 10 1092.4 201 201 ( )fsA og d og f  
                                            (2.15)                               
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For medium environment,  

  10  10    42.57 13.71 1  0.5( ) 85r rG hog og  
                               (2.18)                                                         

For large city,  

   0.759  1  .862r rG h 
                                                 (2.19)                                                                                                     

where f and d are the frequency (GHz) and the distance between transmitting and receiving 

antenna (m), ht and hr are the transmitter antenna height (m) and receiver antenna height (m).  

2.3.3. Stanford University Interim (SUI) Model 

The SUI Model formulated by IEEE 802.16 broadband wireless access working group 

in Stanford University, is proposed for frequency band below 11 GHz containing the channel 

model. It is an expansion of Hata model with frequency greater than 1900 MHz used for PL 

prediction in rural, sub-urban and urban environments. The model is categorized into three 

different groups: A, B and C, with each group having its own characteristics. 

i. Group A is associated with a hilly environment that has moderate-to-heavy foliage 

densities and has the maximum PL. It is suitable for compact populated urban area.  

ii. Group B is associated with hilly environment with rare trees or flat environment with 

heavy or moderate tree densities. It is suitable for sub-urban area.  

iii. Group C is associated with flat environment with light tree densities and has the 

minimum PL [44]. It is suitable for rural area.  

Typically, the different groups are generally described as:  
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Cells10 km in radius, receiver antenna height is 2 m -10 m, BS antenna height is 

15 m- 40 m and high coverage requirement (80-90%).  

The median path for the basic SUI model is expressed as [33]: 
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            (2.20)                                                                                                                                 
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where d and λ are the distance between transmitter and receiver antenna (m) and the wave 

length (m), ( 2000f MHz , λ is path loss exponent) ht,,   and S are the height of transmitter 

antenna (m), free space PL and a long normally distributed factor respectively. a, b, c are 

constants and ht determines the path loss exponent for environment type.  

Table 2.2. Geometric values for SUI Model Parameters [4, 45] 

Parameters Environment 

A 

Environment 

B 

Environment 

C 

A 4.6 4 3.6 

b(m-1) 0.0075 0.0065 0.005 

c(m) 12.6 17.1 20 

In-use frequency correction factors and transmitter antenna height are stated as follows:  
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A is 5.2 for type A and B environment and 6.6 dB for type C environment. 
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2.3.4. Flat-Edge Model 

This model as proposed by Saunders and Bonar computes estimated knife-edge 

diffraction losses as a result of uniformly spaced buildings. This proffers a way out of the 

concept of propagation in built-up areas by assumption of equal building height and spacing 

[29, 30]. The model assumes transmitter above or beneath series of obstacles that are of stable 

size and spacing and receiver underneath the building top. Average values for the area under 

consideration are used or the values computed separately when there is significant variation in 

urbanization. The total PL for flat-edge model is expressed as: 

          n FS EPL L t L L                                                (2.25)                                                                                             

where LE Ln and LFS are the single edge diffraction above the last building, multiple 

diffraction above the remaining (n-1) buildings and the free space loss respectively. Ln is a 

function of t expressed as:  

      
b

t





                                                       (2.26)                                                                                                             

where α is in (radians), b and λ are (meters) 

If 1 1000n   and 1    0t   , then Ln can be calculated by following the approximate 

formula [46].  
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          (2.27) 

where C1, C2, C3, and C4 are 3.29, 9.9, 0.7  and 0.26, respectively.   

Diffraction for final building is computed from Ikegami model [47].  
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where ϕ is the transmitter-receiver street-direct line angle and Lr is loss due to reflection 

(0.25). 

For large buildings in flat-edge model, there is approximately the same PL exponent 

with measurements [48].  

2.3.5. Erceg-Greenstein Model 

Path Loss model for frequencies around 1.9 GHz was presented by Erceg et. al.[39] 

based on measurement using substantial set of data gathered by AT&T in the sub-urban areas 

of New Jersey. This model combines both median PL and randomly distributed variation at 

some distance. It is expressed as:  
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where A is marginal PL due to free space at some reference distance, x, y and z are random 

variables positioned between -2 and 2 (x lies between -1.5- 1.5). The parameters for a, b, c, μσ, 

σσ are fitted for the three type of environments: type A is suitable for hilly environment with 

in-substantial tree densities, type B is suitable for flat environment with moderate-to-intense 

tree densities and type C is suitable for flat environment with insubstantial tree densities.  

2.3.6. Lee Model 

Lee model as proposed by Lee [11] in 1982 is one the extensively used PL models due 

to its simplicity and reasonable prediction accuracy. The model was originally derived for 

frequency in the region of 900 MHz, but was later extended to 2 GHz for distance ranges 

greater than 1.6 km [49]. Lee model is used in prediction of area to area PL and it specifies 

different parameters for varying type of environments. The model gives PL relative to 

reference condition and is expressed as [50]:  
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where:   
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α5 is the receiver antenna gain correction factors n, and ζ are based on empirical data with the 

values: 

n is 2.0 for fc<450MHz (for urban areas), ζ is 2 for transmitter antenna height >10m and 3 for 

transmitter antenna height < 3m. 

Table 2. 3. Parameters for Lee path loss for various environments at 900MHz [26, 51] 

Environment  
oL    

Free space  80 20 

New American Sub-urban 89 4.35 

North American sub-urban 101.7 3.85 

North American Urban 104 4.31 

Japanese Urban 124 3.05 

2.4. Semi-Empirical Models 

Semi-empirical models are based on the combination of (i) empirical and (ii) 

deterministic models. It has the characteristics of both types of models [33]. One of the 

commonly used semi-empirical models is: 

2.4.1. Walfisch-Bertoni Model  

This model was developed by Walfisch-Bertoni and takes into account the effect of 

diffraction from the top of roof and building [52]. It is suitable for an environment with 

uniform buildings height and spacing and assumes an elevated transmitter antenna realized by 

vertical plane wave approximation to compute buildings influence on the signal by elevated 
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antenna [51, 53]. Average signal strength using diffraction is predicted at street level using 

Walfisch–Bertoni model. The model considered PL resulting from the following three factors:  

i. Free space loss is given as [44]:  
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ii. Diffraction and scatter loss from the roof top down the street are given as:  
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iii. Diffraction from the roof tops is given as: 
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The total loss can then be expressed as [33]: 
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where ρ1 is

2

2

    (    )
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 
  

 
, f, ht, Hb and hr are frequency (MHz), height of transmitter 

antenna (m), building height and receiver antenna height (m) respectively. d and R are the 

buildings space (m) and the distance between transmitter and receiver.  

2.5. Terrain Models 

Terrain is described as natural geographical characteristics of the land where 

electromagnetic signal propagates. Terrain models compute losses due to diffraction along 

LOS path as a result of obstruction such as buildings or the terrain itself [54]. The terrain 

features drastically affects the propagation of electromagnetic waves, even over moderate 

distances. Different terrain produces diffuse multi-path, diffraction loss, shadowing and 

blockage. Median PL is provided as a function of distance and terrain roughness by these 

models. Variations in media as a result of other effects are treated separately [55].   

2.5.1. International Telecommunication Union (ITU) Terrain Model 

The model is simple and computes PL as a product of free space with a single 

diffraction due to terrain [40, 41]. Developed on the basis of theory of diffraction, PL is 

predicted using ITU terrain model as a function of the blockage height and the first Fresnel 

zone. The model describes any impediment in-between telecommunication link and thus is fit 

to be used in cities and in rural areas and valid in any terrain. Coverage frequency and 

distance are expressed as [38]: 

10 20  NA C                                                 (2.37)                                                                                                         
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where A and CN are the additional loss due to diffraction (in excess of free space loss) 

(dB) and the normalized terrain clearance. h, hL, h0, and F1 are the difference in height (m) (it 

is negative in the case of LOS path being completely obscured), the line-of–sight link height 

(m), the obstruction height (m) and the first Fresnel zone radius. d1, d2, f and d are the 
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obstruction distance from one terminal (m), the obstruction distance from the other terminal 

(m), the transmission frequency (GHz) and the distance between the transmitter and receiver 

(m).  

The ITU terrain model calculate extra losses in every obstructed path, these are added 

together to the predicted PL for LOS and then computed using Friis transmission equation or 

an equivalent empirical or theoretical model. The model is considered suitable for losses 

above 15 dB and could be suitable for losses as low as 6 dB. It recommends the discard of a 

negative loss as a result of the blockage (which in reality is a gain) or any loss that is less than 

6 dB. To correct the loss due to assumption of free space, the additional maximum loss is 

utilized.   

2.5.2. Egli Model 

The model predicts point-to-point link total PL and is applied in outdoor LOS 

propagation while presenting PL as a single quantity [56]. It is typically appropriate for 

cellular settings that have a fixed and a mobile antenna and applicable to settings where the 

propagation goes over an irregular terrain. Nevertheless, it does not consider travel through 

vegetative obstruction like shrubbery. Egli model is usually appropriate for UHF and Very 

High Frequency (VHF) spectrum transmissions. The model is given as [57]:  
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where PR50 is the 50th percentile receive power (w), PT GT and GR, are the transmit 

power, the total gain of transmitter antenna (dB) and the total gain of receiver antenna (dB) 

respectively, ht, hr d and f are the height of transmitter antenna (m), the height of receiver 

antenna (m), the distance from transmitter antenna (m) and the frequency of transmission 

(MHz) respectively.  

Path Loss however, is predicted as a whole using Egli model and there is no further 

division of the loss into losses due to free space and other losses [55].  
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2.5.3. Longley-Rice (LR) Model / Irregular Terrain Model (ITM) 

This model predicts radio signal attenuation at 20 MHz to 20 GHz frequency range [37]. 

It is implemented in two configurations: (i) prediction over an area and (ii) point-to-point link 

prediction. It offers a simplification of the received signal power, however, there is no 

detailed channel characterization. Statistical resources are used to recompense for the channel 

characterization, this is dependent on the variable from each environment and situation. 

Signal variation is ascertained using the model in accordance to free space, atmospheric and 

topographical changes. Statistical estimates are used to describe these variations that 

contribute to the overall signal attenuation. The statistical estimates variables of the prediction 

model vary with situation, time and location. The reference attenuation is determined as a 

function of distance, urban area factor and attenuation variables [55]. 

2.6. Artificial Neural Network (ANN) Models 

To determine the loss in signal power during electromagnetic signal propagation from 

one point to another point or to multiple points in wireless communication environment as 

seen in most cases, there is need to comprehend the pattern of Radio Frequency (RF) 

propagation in that environment. The prediction of signal power loss during propagation in 

outdoor environment is a difficult and complex task as a result of different physical 

mechanisms such as reflection, refraction, scattering and multipath phenomenon [1, 34]. 

Apart from the traditional empirical and deterministic prediction models, ANN models 

have successfully been used as better prediction alternatives [58]. Artificial neural networks 

can be defined as adaptive statistical tools which models almost the same way as the 

biological nervous system. Like human, ANNs are capable of learning by examples such as 

representation of a given process by mimicking related examples. This is as a result of its 

accurateness, simplicity and litheness in adapting to different environments, with 

distinguished characteristics such as ability to learn from data, generalization of patterns in 

data and ability to model non-linear functions [59, 60]. Employing ANN algorithms for 

problem solving is on the basis of their stochastic and evolutionary methods in finding out the 

relationship among physical parameters of problems [61, 62]. They fundamentally find out 
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the impact of different mechanisms of propagation phenomenon on the signal power without 

any necessary and complex mathematical calculations. 

Artificial neural networks are made up of neurons arranged in layers with weighted 

connections. The ANN architecture can be linear or non-linear with an input layer, hidden 

layer (one or more) and an output layer. The data sets are fed to the ANN through input layer 

which transfers it to hidden layer for non-linear ANNs and an output is received through 

output layer. The input data are combined using suitable weights and are passed through 

defined transfer functions [63]. Training of the ANN is conducted using data sets and the 

ability of ANN to predict an unknown situation depends on the type of ANN architecture, 

type of training sets, training parameters and training processes [64]. The task of ANN is to 

ascertain the most exceptional functional fit for a set of input-output pairs. It also interpolates 

and extrapolates unknown data sets. Different ANN learning algorithms are employed for 

different purposes; thus, the choice of a given learning algorithm is dependent on the job 

required of the ANN to carry out. Artificial neural network can be applied for different task 

such as function approximation, pattern association, control, pattern recognition, filtering, etc. 

[65].  

2.6.1. Evolution of Artificial Neural Networks 

Artificial neural networks started in the early 1940’s with McCulloch and Pitts’s 

introduction of models of neurological networks [66]. In 1947, a practical area of application 

in recognition of spatial patterns by neural networks was shown by McCulloch and Pitts 

which was omitted in their 1943 work. The classical Hebbian rule was formulated by Hebb 

[67] in 1949 which generally represents the basis of almost all neural learning procedures. 

The rule connotes that connection between two neurons is reinforced when the two neurons 

are active at same time. However, Hebb [67] was not able to verify this rule as a result of 

absence of neurological research and this necessitated the neuropsychologist, Lashley [68] in 

1950 to defend the study that brain information storage is comprehended as a distribution 

system. Marvin [69] in 1951 developed and practically implemented in his study the neuro-

computer Snark which previously has the capability to automatically adjust weight. 

The first supporters of Artificial Intelligence (AI) desired that simulation of capabilities 

should be by means of software while the Neural Network (NN) supporters desired to realize 
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systems behaviour by means of the imitation of the smallest part of the  brain system such as 

the neurons [70]. Rosenblatt et.al. [69] at Massachusetts Institute of Technology (MIT) 

developed the earliest successful neuro-computer known as the Mark I perceptron that is 

capable of recognizing simple numeric. In 1959, they formulated and demonstrated 

perceptron convergence theorem and among other things, a learning rule by adjusting the 

connecting weights [69]. In 1960, Widrow and Hoff [71] launched the adaptive linear neuron 

which is a fast and accurate adaptive learning system and has advantage over original 

perceptron because of its adaptivity. It becomes the first extensive saleable used neural 

network.  Steinbunch [72] in 1961 launched and described the concepts for neural techniques 

with analysis of their possibilities and limitations. A precise mathematical analysis was 

published by Marvin and Seymour [66] in 1969 showing the incapability of the perceptron 

model to represent various important problems, therefore bringing to an end the over-

estimation and the popularity of perceptron model. In 1972 a model of linear associator was 

introduced by Kohonen [71] after a long silence and slow reconstruction as a result of prove 

of incapability of the perceptron model in representing many important problems. However, 

such model as linear associator was represented independently and from the neuro- 

physiological point of view. 

Malsburg [71] in 1974 made use of neurons which are non-linear and more motivated 

biologically, where he developed a learning procedure known as backpropagation of error. 

Between 1976 and 1980, Grossberg [73] made presentation of various papers where several 

models were analysed mathematically with dedication of keeping a neural network that is 

capable of learning without the destruction of already learned association. This led to the 

model of adaptive resonance theory under the co-operation of Carpenter [73] in 1982. The 

field of neural networks also slowly regained importance as a result of the invention of 

Hopfields networks by Hopfield [63] which are motivated by the laws of magnetism in 

physics. 1983 witnessed the introduction of neural model of the neo-cognitron by Fukushima 

[68] which was capable of recognizing handwritten characters. The backpropagation of error 

learning procedure as a generalization of the delta rule was developed separately in 1986 and 

published widely by parallel distributed MLP, whereas the Marvin’s negative evaluations 

were disproven.  

http://www.google.co.za/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwj-h-LDjvbYAhUDLMAKHWtTCA8QFggkMAA&url=http%3A%2F%2Fweb.mit.edu%2F&usg=AOvVaw3uxzffl3-t5OE_zPz7UTWi
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2.6.2. Concept of Artificial Neural Networks 

Artificial neural networks are generally defined as interconnected neurons which are 

pre-arranged in various layers. These neurons are simple processor which operates on the 

inputs they are fed through the connections. The processors are vast parallel-spread out and 

comprises of simple processing units with natural tendency of storing and making available 

exponential knowledge. The correlations between ANNs and human brain are summarized as 

[67]:  

i. Artificial neural networks acquire knowledge from the environment by means of 

learning process. 

ii. The acquired knowledge is stored in the network by inter-neuron connection strength 

called synaptic weights.  

The method employed to carry out the process of learning by ANNs is known as 

learning algorithm. This learning algorithm logically modifies the network synaptic weight to 

achieve the desired objective. The synaptic weight modification presents a conventional 

technique for ANNs design [74].  

Artificial neural networks have assorted family of networks with the functionality of 

each type of network determined by the architecture, training algorithm adopted, neuron 

characteristics etc. It derives its computing power from its architecture and its learning ability 

to generalize [75]. The use of ANNs offer the following capabilities and properties: 

i. Non-linearity- Artificial neural network can either be linear or non-linear network. 

ii. Input-Output mapping- When input data which is desired output is presented to the 

ANN, there is modification of network synaptic weight to reduce the difference 

between desired and actual output to minimal according to the appropriate statistical 

principles. The network training is repeatedly carried out until a steady state where no 

observed changes in the synaptic weight adjustment are seen. Thus, the network learns 

by constructing input-output mapping for the considered problem.    

iii. Adaptivity- Artificial neural networks possess in-built capacity of their synaptic 

weight adaptation to changes in proximate environments. However, its adaptive 

capability may not always result to robustness.  
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iv. Contextual information- The architectural design and ANNs activation state is used in 

knowledge representation. Each neuron in network architecture is probably affected by 

global activities of other network neurons.  

v. Fault tolerance- Artificial neural network which is implemented in hardware form has 

the capability of robust computation.  

vi. Analysis design and uniformity- The universality of the ANNs processing unit i.e. the 

neuron, permit it to share theories and training algorithm in various ANNs 

applications.  

2.6.3. Components of Artificial Neural Networks 

The major component of ANN is the neuron. The neuron model is made up of three 

major parts [74]: 

i.  A set of connecting links known as synapses with each characterize by having a 

weight.  

ii.  A summer for summation of input signal weighted by the neuron individual synapses. 

iii.  An activation function used for limiting the neuron output amplitude. It defines the 

neuron output in terms of induced local field. There are different types of activation 

which ranges from linear to non-linear activation function, these include:  

a. Threshold activation Function-Neurons that have a threshold activation function is 

describe as McCulloch-Pits model where the neuron output takes the value of 1 if the 

local field of the neuron that is induced is not negative and the value of 0 for the 

reverse with its function being non-differentiable.  

b. Piece-wise linear activation function-A linear combiner results in cases where linear 

region of operation is kept without proceeding into saturation.  

c. Sigmoid transfer Function-These are non-linear transfer functions which are known 

for their severely increasing functions, smoothness and are asymptotically limited. 

They are of two different types; the logistic functions and the hyperbolic tangent 

function.  
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2.6.4. Representation of knowledge by Artificial Neural networks 

Knowledge is known as information or model stored by a person or a machine to 

translate, predict and adequately respond to the real world. Artificial Neural Networks have 

the task of learning the environmental model in which they operate and to maintain the model 

satisfactorily, independent of any changes in the environment. Knowledge can be in form of a 

leading knowledge of the operating environment or measurement from the real world. These 

measurements are used to train the ANNs, however, most time, the measurements are noisy 

because of measurement system imperfections. Knowledge representation in different 

architectural design of ANN is defined by the values of the network weights and biases [76].    

2.6.5. Process of Learning by Artificial Neural Networks 

The ANNs learn about their environmental behaviour by interactively adjusting their 

synaptic weights and biases based on the measurement from the environment. Artificial neural 

network learning is a process at which the network free parameters are adapted via a process 

of environmental stimulation at which the network is embedded [77]. The learning type is 

determined by the way a parameter change. A defined rule that offers solution to learning 

problem is known as learning/training algorithm. The different learning algorithms vary from 

each other based on their weight adjustment formulation. Also, during learning, the way the 

inter-connected neurons of ANN relate to the environment is considered. There are different 

learning processes adopted by ANNs. 

i. Error correction learning - The cost function minimization using this method results to 

a learning rule usually referred as delta rule. The delta rule state that the adjustment 

carried out by the neuron synaptic weight is proportional to the error signal product 

and the inputs of the considered synapses [78].                  

ii. Memory based learning - Most of the previous learning experiences by the ANNs are 

overtly stored in huge memory of correctly classified input-output instances [79]. 

iii. Hebbian learning - The application of the input signal repeatedly results to increase in 

output and thus, an exponential growth which finally drives the weight connections to 

saturation. Then, information is stored in the synapses and there is lost in selectivity 

[80]. 
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iv. Competitive learning - The neurons output of the ANN competes for activeness 

among them. However, only a single neuron is active at a particular time unlike in 

Hebbian learning where many neurons output may be active at the same time [79].  

The learning process can either be supervised or unsupervised learning. 

Supervised Learning - In supervised learning, a training set that consists of training 

patterns and a corresponding correct (desired) output values are known while expecting an 

actual output after training of ANN. The output value generated by network while it is still 

training is known as teaching input. 

Unsupervised learning - There is no teaching input with unsupervised learning, thus, 

no desired output is provided to the ANN for training vector. Alternatively, there is a 

provision made for identifying a measure of the representation quality required by ANN to 

learn and the network free parameters are optimized based on the measure [63]. A grouping of 

the provided training input to the network is achieved at the end of network training based on 

similarity measure imposed by network. 

2.6.6. Artificial Neural Network Architectures 

Artificial neural networks like human brain, learn by example, by means of a learning 

process and are designed for specific uses such as system prediction, pattern recognition, 

function approximation, etc. The ANNs helps in cases where the formulation of exact 

algorithm solution to a problem is difficult. Different ANN architectures have been used as 

alternative models for the prediction of propagation losses. The ANN architecture is made up 

of many processing elements known as artificial neurons. The processing element is made up 

of inputs, transfer function and output [81, 82]. There are different types of ANNs with 

different architectures; however, they are all described via a transfer function which is used by 

processing element by method of training with a learning rule known as algorithms. Artificial 

neural network architectures comprise of either a single layer or multiple layer neurons. 

Different ANN architectures such as Perceptron model, Adaptive Linear Element 

(ADALINE), Multi-Layer Percepton (MLP) network, Radial Basis Function (RBF) network, 

Generalized Regression Neural Network (GRRNN), analysed in course of this research work 

have been discussed in the proceeding chapters. 
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2.7. Evolution of Cellular Technology justifying the use of LTE Data 

          Mobile phone networks are dependent on evolving cellular technology which is subject 

to change with time. It comprises the evolution of cellular technology in the field of 1G, 2G, 

3G, 4G, and upcoming mobile network 5G. As time changes, latest network technologies 

have been designed for an increase in cellular networks as this increase speed capabilities 

[83].  Radio access technology selection is of great important in the global market as each 

cellular operator struggle to take dominant position to provide excellent services to their 

various users.  

          Electromagnetic spectrum is being used by mobile operators in the provision of their 

services. This spectrum is usually shared between the broadcasting cellular communication 

and other purposes such as armed forces. Sequel to the inception of mobile network, capacity 

is increased by the division of frequency over channels. Thus, there is reduction in the overall 

availability of bandwidth which directly have influence on the mobile network [84]. In 1970, 

geographical area division instead of frequency division offers the use of more efficient 

electromagnetic spectrum. Over the years, there has been evolution of the cellular network 

based on factors such as quality, cost, quantity, availability etc.  

          First Generation Network (1G) – The advancement of 1G started in the 1970’s by Japan 

who took the first step in the cellular technology development followed by Normadic Mobile 

Telephones (NMT) in Europe and in America where it was developed as Advanced Mobile 

Phone Services (AMPS) [85]. The 1G also known as first generation of analogue cellular 

network has various cells that permits the same frequency usage severally resulting in system 

capacity increment. Its limitations include unreliable handoff, low capacity, poor voice link 

and no data security as analogue signal does not permit advance method of encryption.  

          In 1990’s, an improvement on the 1G network known as Second Generation Network 

(2G) was introduced by the European Commission, set by standard made by the cellular 

telecommunication that are functioned and maintained by International Telecommunication 

Union (ITU). The 2G cellular Network include Global System for Mobile Communication 

(GSM) and Code Division Multiple Access (CDMA). It has advantage of increased coverage 

capacity, improved version of security system and quality [86]. Though the 2G Network can 
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handle more calls per amount of given bandwidth and provide services such as emails and 

SMS, its limitations include weaker digital signal and reduced sound range, since GSM has a 

fixed range of 35km after which there occurs technical limitations. 

          The Third Generation Network known as the Generation Mobile Telecommunication 

(3G) introduced in 2001 was established for faster and easier wireless communication from 

standard set by International Telecommunication Union (ITU) known as International Mobile 

Telecommunication-2000 (IMT-2000). The improvement permits high network quality that 

supports improved services such as video streaming, speed browsing and video calling. It 

makes use of W-CDMA as a crucial standard [87].  However, its limitations include high 

power consumption, increased cost of cellular data among others.  

          The Fourth Generation Network (4G) also known as Long Term Evolution Network 

(LTE) rolled out in 2010 but still significantly inaccessible in many cities has the capacity to 

offer safe and secure internet protocol solution at which multi-media, voice and data can be 

accessible to users at each time and anywhere. The major aim of LTE network is to offer high 

data quality services with high data transfer speed of about 100mbps. It has speed greater than 

20mbps and has possibility of roaming around different network and technology [88]. 

2.8. Review of Past Works on Prediction of Propagation Path Loss 

A lot of research works have been carried out on the effectiveness of different PL 

models using traditional empirical and deterministic models. The authors usually make an 

assessment based on the theoretical analysis using electromagnetic propagation idealized 

theories or by assessing the model that fits in through measurement data collected from 

environment of interest or the combination of the two traditional models. Practical, [89, 90] 

presented lower bounds on the PL prediction accuracy using thirty propagation models. 

Measurement was carried out in different urban and rural environments; however, it was 

concluded at the end that there is no considered PL model that consistently predicted PL. A 

comparative evaluation of five different PL models using collected data from urban and sub-

urban area at 910 MHz was presented [46] with no conclusion on the particular model that 

offers the best result. Different PL models for fixed wireless access system were compared 

[46]. This was based on the measurement carried out in Cambridge with the COST-231 
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model, ECC-33 model and the SUI model showing the most guaranteed result. Studies on PL 

at UHF/VHF bands were carried out in Southern India where field strength measurement was 

taken at 200 MHz, 400 MHz and 450 MHz and Hata model showed superiority over other 

considered models in all cases [47]. Propagation models for Global System for Mobile 

communication (GSM) 900MHz and 1800 MHz using modified Okumura and COST 231 

Hata models were developed for Enugu and Port Harcourt in Nigeria, with the models fully 

adapted in the cities among other considerations and also made provision for rain attenuation 

and distinct features of the cities [15].  

Models representing the propagation characteristics in NLOS situations with up to three 

intermediate vehicles were considered [91]. The effectiveness of the models was verified by 

comparison of results from calculations made with the measured received power as a function 

of the height of the receiving antenna. In [38], five propagation scenarios representing rural, 

sub-urban and urban environments were investigated comparing the radio propagation 

characteristics at 700 MHz and 2500 MHz relating to macro-cellular coverage.  The result 

shows the mean PL with advantage at 700 MHz against 2500 MHz and ranges approximately 

from 11 dB-14 dB except for forested hilly terrain with the difference of about 18 dB. 

Optimized PL empirical model by means of proposed least squared method was introduced in 

[12]. The outdoor measurement taken in Cyberjaya, Malaysia was used in PL comparison 

with other considered models. The optimized Hata model offered a better performance as its 

relative error is lowest in comparison to other models. Three propagation models were 

presented for sub-urban area revealing the least PL with Okumura model and the highest PL 

with COST-231 model for a particular transmission distance [92]. The SUI model was used in 

PL calculation in three different terrains (rural, sub-urban and urban areas) and parameters 

from different terrain analysed [27].  

The PL behaviour of propagation models was presented in [93], proposing a better 

prediction using semi-empirical model (Walfisch-Ikegami). Path loss was estimated using five 

different models: Hata Okumura model, ECC-33 model, COST-231 Hata model, SUI model 

and the Ericsson model [94]. ECC-33 shows a better prediction result for sub-urban area over 

other models. Analysis of the performance of various PL models were carried out in different 

environments for wireless network [17]. It suggested the use of SUI model as a preferred 

model because of lesser PL value with 10% difference at reduced receiver antenna height for 
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rural and sub-urban areas when compared to other model reviewed in the work with reference 

to free space estimated value. However, the author concluded that the use of a particular 

model for PL estimation at various antenna heights in all areas is not ideal.  The efficiency of 

Okumura-Hata model was investigated using GSM base station operating at 900 MHz in a 

sub-urban area of the Northern part of Nigeria [95]. On comparison of the measured results 

from the field with the Okumura-Hata model for rural and sub-urban area, the result obtained 

shows the least variation with Okumura-Hata model for sub-urban areas. Okumura Hata 

model was optimized for outdoor propagation coverage in urban southern part of Nigeria 

using Code Division Multiple Access system (CDMA) at 800 MHz operating frequency [14]. 

This was developed by comparison of calculated PL and collected measurements data using 

Hata, SUI, Egli and Lee models within applicable CDMA frequency range. Based on small 

mean error and closest PL exponent, Hata model have a preference as a reference for PL 

optimization when the measured path losses were compared. The application of the optimized 

model in Nigeria CDMA system shows more reliability for urban PL calculation at 800 MHz 

frequency band. A novel PL model to tackle propagation delay in Long Term Evolution 

(LTE) network was introduced [96].  

Different correlation factors were considered using the propagation algorithm for both 

transmitter and receiver antenna heights. On comparison with the Friis model, simulation 

result of the proposed propagation model for both uplink and downlink shows a decrease in 

propagation delay. Artificial neural network models for the prediction of PL in urban area was 

employed in [1] while a hybrid model that combines a traditional model, COST Walfisch-

Ikegami model with adaptive neural component was used in [62]. The influence of training set 

selection in ANN based PL propagation predictions was presented in [97] and a GRNN model 

for the prediction of PL at 900 MHz for Jos city in Nigeria was presented in [98].  

A novel ANN model for PL prediction in different environment of propagation medium 

was presented in [60] while [99] used ANN for macro-cell prediction. A new micro-cell 

prediction model was introduced using a feedforward ANN to overcome the limitations of the 

traditional models [34]. Measurements of electric field strength were obtained in Belgrade 

from four separate transmitter locations in [100] and the mathematical computing models for 

supporting decision of instalment of new base station and the selection of their configuration 

in order to obtain the trade-off between coverage maximization and cost minimization was 
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investigated. A GRNN model for path loss prediction at 900 MHz in Jos, Nigeria was studied 

in [98]. A single neuron ANN model and MLP ANN models was evaluated for macro-cell PL 

prediction via measurement data from a CDMA mobile network in a rural Australia for the 

neural network training [101]. A hybrid model that combines a MLP ANN and an empirical 

based log-distance model was studied in [62]. A learning rate of 0.01 was employed to predict 

the accuracy of a system, however the major drawback of the work was poorly trained data 

and high complex system with only a 37.5% accuracy obtained [102]. A learning rate of 0.2% 

was used in a hybridized ANN of linear regression and ANN with a prediction accuracy of 

90.3% [103]. The major drawback of the work is too many features and use of polynomial 

data [104]. The effect of learning rate between 0.1 to 0.8 was investigated on the prediction 

vector on ANN. The fluctuations gave a low prediction of 80.65% with 0.1% learning rate 

and high prediction of 90.3% with 0.8% learning rate.  

2.9. Present Research Work 

An adaptive neural network predictor that combines MLP ANN and Adaptive Linear 

Element (ADALINE) is developed for enhanced signal power prediction. This is followed by 

a resourceful predictive model, built on MLP network with a vector order statistic filter based 

pre-processing technique for improved prediction of measured signal power loss in different 

micro-cellular urban environments using real world measure data from LTE cellular network. 

2.10. Chapter Summary 

Propagation models are valuable tools and algorithms for the prediction of signal 

propagation loss between transmitter and receiver in locations where the wireless 

communication systems network is to be deployed. This chapter presents a theoretical 

background of our research work and a detailed baseline survey of different types of 

propagation models in cellular communication networks. Traditional modelling techniques 

using empirical and deterministic models have been discussed. Each of the models has its 

own peculiar characteristics and limitations and suitable for use in various radio propagation 

environment. This study would be of help to Radio Frequency (RF) engineers in choosing the 

right propagation model suitable for a given environment.  
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Artificial neural networks, which are alternative to prediction of propagation PL have 

been introduced. The evolution and concept of ANN and the components of ANN have been 

discussed. The chapter also includes a comprehensive review of past works on prediction of 

PL using different traditional empirical and deterministic models as well as ANN models and 

brief evolution of cellular technology justifying the use of LTE data. Finally, our present 

research work and the novelty are introduced.  
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CHAPTER 3 

PROPAGATION PATH LOSS MODELLING USING 

TRADITIONAL EMPIRICAL AND 

DETERMINISTIC MODELS 

 

This chapter demonstrates the influence of link distance, operating frequency, 

transmitter antenna height and receiver antenna height on Path Loss (PL) using four different 

traditional propagation PL models: (i) Hata model, (ii) COST 231 model, (iii) Walfisch-

Ikegami model and (iv) Comité Consultatif International des Radiocommunications (CCIR) 

model. The performances of these models have been assessed via a written program used for 

model simulation using real world measured data from a micro-cellular urban area. Different 

traditional empirical and deterministic propagation models have been used over the years with 

emphasis on their characteristics, potencies and limitations. The main objective of this chapter 

is performance assessment of some traditional models using real world measured data for 

Long Term Evolution (LTE) network planning. The network parameters considered during 

simulations are: operating frequency, transmitter antenna height, receiver antenna height, 

building height, building separation, street width, street orientation angle, LTE cell link 

distance. 

3.1. Introduction 

According to report, the number of mobile connected devices are expected to exceed 

the population of the world by the year 2020 [105]. The Fourth Generation (4G) mobile 

systems based on LTE radio access technology are currently being deployed by mobile 

network operators to meet the ever increasing subscriber traffic growth and demand for higher 

data rates [106]. It  offers  high speed for mobile phones data access and may increase the 

speed and network capacity by the use of different radio interface.  

Long term evolution technology  is developed to provide access to wider range of 

communication services, which include advanced mobile services that is supported by mobile 

and fixed networks [107]. Radio Frequency (RF) network engineers are often confronted with 
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the difficulties that come with deployment of new technology. A new radio network interface 

technology like the LTE needs different set of distinctive planning tools and algorithm for its 

effective operation in different propagation terrains. Of vital importance to the  LTE system 

network deployment is the ability to predict accurate strength of radio signals from different 

transmitters in the system. The coverage planning of a cell is imperative in finding the best 

locations for Base Stations (BS) to build continous coverage according to the planning 

requirements.  

Path Loss models are specific mathematical algorithms and models for appraising the 

radio signal path attenuation loss and coverage area of a BS transmitter [108]. A reliable and 

accurate prediction model helps in optimizing the coverage area, transmitter power and also 

gets rid of interference problems of the radio transmitters. Appropriate models must therefore 

be selected for performance assessment of the field strength and PL as well as other 

parameters. This helps the network engineers and planners in optimizing the coverage area 

and in using the correct transmitting powers. Path Loss is also calculated to analyse the link 

establishment in the telecommunication system.  

Some of the basic propagation PL models: (i) Hata model, (ii) COST 231 Hata model, 

(iii) Walfisch-Ikegami model and (iv) CCIR Model have been analysed to re-assess their 

performances in the prediction of propagation PL for proper planning of LTE networks in 

different radio signal outdoor propagation environments.  

The models have been analysed and compared at variation of transmitter-receiver (T-R) 

distance, heights of Mobile Station (MS) and BS antennas and transmitting frequency via 

computer simulations using real world measured data. 

3.2. Propagation Loss Modelling 

In the course of radio wave propagation, signal undergoes various losses as a result of 

obstacles between transmitter and reciever. Considering transmitter and reciever seperation, 

received transmitted power is given as [33]: 
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where Pt, Gt , and Gr are transmitter power, transmitter antenna gain, and receiver antenna 

gain respectively. The L and d are the system loss factor and link distance between transmitter 

and reciever (m), respectively.  

In logarithm form, the expression in Eq. (3.1) can be rewritten as [46]: 
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                          (3.2) 

In more general form, Eq. (3.2) can be expressed as [14]: 

10PL( ) ( ) 101
o

d
dB PL d og

d

 
   

 
                                  (3.3) 

where PL(dB), d and do are path loss exponent, link distance between transmitter and receiver, 

and the close-in-reference distance, respectively. These are standard formulas used to derive 

the power gain, transmitter-receiver separation and PL exponent that are embedded in the 

wireless technologies [12]. The traditional empirical and deterministic models employed in 

this work are described in the following sections.  

3.3. Propagation Path Loss Models 

These are different mathematical expressions or algorithms employ in expression of  

different environmental radio characteristics [16]. They are either established on 

measurements from an area or on fundamental principles of radio wave phenomenon. The 

four different propagation PL models employed in this work are as follows:  

3.3.1. Hata Model 

This model is an advanced version of Okumura model, also known as Okumura-Hata 

model and commonly applied for PL prediction for cellular transmission in built-up areas. It 

integrates data from Okumura model and advances it to capture the impact of scattering, 

reflection, and diffraction caused by structures in urban, sub-urban and rural areas. The model 

is suitable for frequencies from 150 MHz to 1500 MHz; distance of 1 Km to 20 Km from 
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transmitter to receiver; transmitter antenna height of 30 m to 200 m and receiver antenna 

height of 1 m to 10 m. The PL models for urban, sub-urban and rural areas are expressed as 

[50, 109]: 

Urban area; 

         10 10 10 1069.55 26.16log ( ) 13.82log  44.9 6.55log logU t r tPL Urban f h a h h d     
  

                                 
(3.4)      

where PLU, ht, hr and a(hr) are urban areas PL (dB), height of transmitter antenna (m), height 

of receiver antenna, and correction factor for receiver antenna height, respectively.  

Sub-urban area [50]:  

     
2

50 50 10  2 log  /28 5.4cPL dB PL urban f                            (3.5) 

Rural area [11]: 

     
2

50 50 10 10  4.78 log 18.33 40.o 98l gc cPL dB PL urban f f                     (3.6) 

The correction factor for receiver antenna height [17]: 

     10 10  1.1log 1.56log 0.80.7r c r ca h f h f dB                          (3.7) 

For large city, the receiver antenna correction factor is [17]: 

   
2

108.29 log 1.54 1.1,     300r ra h h f MHz                                     (3.8) 

   
2

10 3.2 log 11.75  4.97,  300   r ra h h f MHz                                  (3.9) 

Hata model is not suitable for frequencies from 1800 MHz to 1920 MHz micro cell 

planning when antenna is below the height of the roof and does not offer coverage outside 

1500 MHz frequencies [110].  
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3.3.2. COST 231 Hata model 

This model also known as Hata model PCS extension was formulated by the 

EUROpean Co-Operative for Scientific and Technical Research (EUROCOSTR). It is an off-

shoot of Hata model that has its origin from Okumura model, covers frequency from 1500 

MHz to 2000 MHz and is suitable for urban areas with the following characteristics: receiver 

antenna height of 1 m to 10 m; transmitter antenna height of 30 m to 200 m; and link distance 

of 1 km to 20 km. The COST231 Hata Model for PL is stated as follows [17]: 

         50  10 10 10 10   46.3 33.9log 13.82log  44.9 6.55log logc t r t mPL urban f h a h h d C     
    

                              (3.10) 

where fc ht and d are transmission frequency (MHz), transmitter antenna height (m), link 

distance between base and mobile station (km), respectively. Cm is 0 dB for sub-urban and 

rural environment and 3 dB for urban environment and a(hr) is receiver antenna height 

correction factor, a function of the size of the area of coverage.  

For small and medium sized environment, a(hr) (dB) is given as [91]:   

     10 100.7 0.1.1 1.561 8r c r ca h og f h og f                                       (3.11)  

For urban environment;  ra h (dB) is given as [17]: 

    
2

103.2 1 11.75 4.97;   400ra h og MHz                       (3.12)                                     

hr is receiver antenna height (m).  

3.3.3. CCIR MODEL 

This is an empirical model which combines the effects of PL due to free space and path 

loss generated by terrain. It is made available by Comité Consultatif International des 

Radiocommunications (CCIR), also known as ITU-R. The CCIR PL is expressed as [111]: 

10 10 10 10( ) 69.55 26.161 ( ) 13.821 ( ) ( ) (44.9 6.551 )1t r tPL dB og f og h a h og h og d B      
    

                    (3.13) 
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where ht and hr are the height of transmitter antenna and height of the receiver antenna (m), d 

is the link distance (km) and f is the frequency (MHz) respectively 

     10 101.11 ( ) 0.7 1.561 ( ) 0.8r ra h og f h og f               (3.14) 

1030 251B og    % area of building coverage         (3.15) 

Eq. (3.13) is for Hata model’s sub-urban and rural area propagation conditions, 

supplemented by correction factor B . B is 0 for urban area with building coverage of up to 

15%. 

1030 25log 20 2.5B dB    for 20% building coverage in urban area        (3.16) 

The CCIR differs from Hata model in two ways: (i) the effect of coverage area and (ii)  

receiver antenna height [33]. 

3.3.4 Walfisch-Ikegami Model 

Walfisch-Ikegami model also known as COST Walfisch-Ikegami, is a combination of 

Walfisch-Bertoni and Ikegami models developed by COST-231 project [55]. It considers only 

buildings in the vertical plane between transmitter and receiver and differentiates between two 

states; (i) Line of sight (LOS) and (ii) Non-Line of Sight (NLOS) and each of them are 

calculated differently. The model formulation defining the PL equation for LOS situation is 

expressed as [15]:  

10 1042.6 261 201 ;     20losPL og R og f for R m                                 (3.17) 

The path loss for NLOS is defined as [50]: 
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where LFS, Lrt, and Lmsd are loss due to free space, roof top to street diffraction, and loss due 

to multi-screen diffraction respectively.  
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The grouping of propagating signal along the multi-screen path into the street of mobile 

location is designated by Lrts [50]: 

  10 10 10  16.9 101 101 20log  rts r oriL og w og f h L                          (3.19) 

where    ;   0roof r rtsh h if L  and t t roofh h h    and r roof rh h h    (where ht and hr are 

transmitter antenna height and receiver antenna height respectively).  

Lori is defined as [33]: 
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                              (3.20)  

The multi-screen diffraction loss Lmsd is an integral, approximated by Walfisch-Betoni   

model and an answer to cases where transmitter antenna height is taller than the average roof 

top [33]. This was then extended by COST 231 to cases where transmitter antenna height is 

shorter than the average roof top by the inclusion of empirical formula. The model 

formulations are expressed as [9, 33]: 

10  10 10 101 9 1  1  9  1msd bs a b fkL L K og R K og f og b og fk                          (3.21) 
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ka is increase in path loss for transmitter antenna shorter than the roof top of adjacent 

building [33]. 
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where kd and kf are control multi-screen diffraction loss against distance and frequency, 

respectively. 

kf for sub-urban with moderate-tree density and urban area are given as [17]: 
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where d, f, R, w, and ϕ are the distance between transmitter and receiver (km), frequency 

(MHz), distance between buildings (m), street width (m), and direct path street incidence angle 

(degrees), respectively. 

Walfisch-Ikegami model is limited to urban environment and only inserts a 

characteristic value [48].  

Real world measured data used for the research work has been collected from a micro-

cellular outdoor environment with built-up terrain, clusters of residential, heavy industrial and 

moderate commercial buildings. The map of the metropolitan area, Port-Harcourt, Nigeria is 

presented in appendix I. Data collection are done between JAN-DEC 2017 via a drive test and 

from different sectors of BS transmitting at 1900 MHz operating frequency. A total of one 

thousand, nine hundred and seventy (1970) sample data has been collected at different 

distances between the transmitter and the receiver. The setup for data measurement includes a 

laptop installed with appropriate interface: Test Mobile System (TEMS) software, Sonny 

Ericson mobile handset equipped with TEMS software, Global Positioning System (GPS), 

compass, power inverter, test cables, vehicle, and digital maps of the area.  
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3.4. Graphical Results and Discussions 

Programs are written for the different propagation models used for simulations to 

ascertain their performances at the variation of link distance between transmitter (Tx) and 

receiver (Rx), operating frequency, transmitter antenna height and receiver antenna height. 

The simulation parameters applied in the analysis are presented in Table 3.1. 

 

Table 3.1. Simulation parameters 

S/N Parameter  Value 

1. Operating frequency(MHz) 1800, 1900, 2600 

2. Transmitter antenna height (Tx)(m) 30, 40, 50, 60, 70 

3. Receiver antenna height (Rx) (m) 1.5, 3, 5 

4. Building height (HB)(m)  15 

5.  Building separation (m) 5 

6. Street width (m) 20 

7. Street orientation angle (degree) 30 for urban area, 40 for suburban area 

8.  LTE cell link distance (km) 1, 2, 3, 4, 5 

   

 

Based on these programs, we have done the following analysis: 

i. Influence of link distance on Path loss 

ii. Influence of operating frequencies on Path loss 

iii. Influence of transmitter antenna height on Path loss 

iv. Influence of receiver antenna height on Path loss 

These details are given on following pages: 
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3.4.1. Influence of link distance on Path loss 

Propagation PL increases as link distance between transmitter and receiver increases. 

This is as a result of electromagnetic energy spreading in the free space which is explained by 

the inverse square law [34]. 

 
(a) 

 
(b) 

Figure 3.1. Path loss model performance at 1 km and 4 km link distances, 1800 MHz 

operating frequency, 1.5 m receiver antenna height for the transmitter antenna height of (a) 30 

m and (b) 50 m.  



48 

 

3.4.2. Influence of operating frequencies on Path loss 

Path loss dependency on operating frequency is because of frequency dependency of 

the receiver antenna’s aperture with fixed antenna gain. The extent electromagnetic power is 

picked up by antenna is determined by the antenna aperture [112].  

 
(a) 

 
(b) 

Figure 3.2. Performance of Path loss models at different operating frequencies, 1 km 

link distance for (a) 30 m & 1.5 m and (b) 50 m & 3 m of transmitter & receiver antenna 

height respectively. 
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3.4.3. Influence of transmitter antenna height on Path loss 

Transmitter antenna height is the foundation of BS coverage area and increase of 

transmitter antenna height result to progressive extension of the distance at which the 

propagation path loss starts. Plane earth model has demonstrated that when the antenna height 

is doubled, it results to 6 dB gain [113]. 

 
(a) 

 
(b) 

Figure 3.3. Performance of Path loss models at different transmitter antenna height, 

1km link distance, 1.5 m receiver antenna height and operating frequency of (a) 1800 MHz 

and (b) 2600 MHz 
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3.4.4. Influence of receiver antenna height on Path loss  

Loss as a result of rooftop to street diffraction is expected to reduce at higher receiving 

antenna height resulting to decrease in PL [91]. 

 

 
(a) 

 
(b) 

Figure 3.4. Performance of Path loss models at different receiver antenna heights, 30 m 

transmitter antenna height     and 1800 MHz operating frequency (a) 1 km link distance and 

(b) 4 km link 
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3.5. Discussions 

The simulation results of the different parameters variation to ascertain their effects on 

propagation path loss during electromagnetic signal propagation have been analysed in the 

following section:  

3.5.1. Influence of link distance between the transmitter and the receiver 

The graphs presented in figure 3.1 show an increase in PL as the distance between 

transmitter and receiver increases. The CCIR model in both link distances of 1 km and 4 km 

for varied operating frequency and transmitter antenna height gives the lowest PL prediction 

values and Walfisch-Ikegami model gives the highest PL prediction values. This is because 

CCIR model addresses the effect of free space and PL generated by terrain while Walfisch-

Ikegami model considers only buildings in the vertical plane between the transmitter and 

receiver, thus the high PL prediction value in outdoor environment that encounters different 

propagation phenomenon. This trend was also recorded at increase of transmitter antenna 

height to 40 m, 50 m and 60 m respectively.   

3.5.2. Influence of operating frequency 

As frequency increases, the need to ensure that receiver antenna gain is intact leads to 

less energy capture by receiver antenna which results to increase in PL. Graphs of figure 3.2 

show lowest PL prediction values by the four considered models at 1800 MHz operating 

frequency and the highest PL at 2600 MHz operating frequency. The CCIR model gives the 

lowest PL prediction values while Walfisch-Ikegami model gives the highest PL prediction 

values.  

3.5.3. Influence of transmitter antenna height 

At the increase of transmitter antenna height, there is decrease in PL as shown in graphs 

of figure 3.3. There is minimal PL as the signal propagates for all the models at 70 m 

transmitter antenna height and maximum loss at 30 m transmitter antenna height. The CCIR 

model gives minimal PL prediction values while Walfisch-Ikegami model gives highest PL 

prediction values.  
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3.5.4. Influence of receiver antenna height 

Path loss decreased with increase in receiver antenna height as shown in graphs of 

figure 3.4 with the various considered models. The lowest PL prediction value are recorded 

by CCIR model while Walfisch-Ikegami gives the highest PL prediction value.  

3.6. Chapter Summary 

This chapter demonstrates through simulation using real world measured data, the 

performance of four traditional propagation PL models: (i) Hata model, (ii) COST 231 Hata 

model, (iii) Walfisch-Ikegami model and (iv) CCIR model. The influence of link distance, 

operating frequency, transmitter antenna height and receiver antenna height on path loss have 

been analysed. Programs has been written for the simulation of the various models using the 

data set. The lowest PL prediction values are recorded using CCIR model at different link 

distance while Walfisch-Ikegami model gives the highest PL prediction values. This is 

because CCIR model considers the effect of free space and generated PL by terrain while 

Walfisch-Ikegami model only considers buildings in the vertical plane between transmitter 

and receiver operating frequency.  

As the operating frequency increases from 1800 MHz to 2600 MHz, there is increase in 

PL because of less energy capture by receiver antenna to ensure that receiver antenna gain is 

intact. Increase in transmitter antenna height results to decrease in Path Loss. This is because 

it results to advancement in the distance of commencement of propagation PL as transmitter 

antenna height is the foundation of BS coverage area. As receiver antenna height increases, 

there is decrease in PL because of expected reduction in the loss due to rooftop to street 

diffraction. The obtained simulation results are in line with what are obtainable in literature.  
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CHAPTER 4 

ARTIFICIAL NEURAL NETWORKS AND  

TRAINING ALGORITHMS 

 

The major objectives of this chapter are to understand the architectural complexity of 

the simplest attainable Artificial Neural Network (ANN) model (the perceptron network) and 

further, the Multi-Layer Perceptron (MLP) network. The concept of backpropagation in 

feedforward ANNs are discussed and the performance of different backpropagation ANN 

training algorithms assessed on MLP ANN using real world measured data from a Long Term 

Evolution (LTE) cellular network in a sub-urban and urban areas. The predictive abilities of 

various ANN training algorithms are measured in terms of Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), Standard Deviation (SD) and Correlation Coefficient 

(r). These performance metrics for the prediction of propagation Path Loss (PL) measures and 

offers quantitative calculated information to calculate the error difference between actual 

output and desired output.  

4.1. Introduction  

This chapter introduces ANN models: the perceptron ANN model, its characteristics 

and limitations, and the MLP ANN model, its characteristics, potencies and limitations. Other 

theories of ANN models have been discussed. The training of the MLP ANN with different 

training algorithms is organized in two parts: 

Part I trained the MLP ANN using nine training functions of five different training 

algorithms with measured data from an outdoor micro-cellular sub-urban area that lies within 

latitude of 4o45'N and 4o 60'N and longitudes of 6o50’E and 8o00'E of the area.The area covers 

260km2 with a population of four hundred and sixty-four thousand, seven hundred and eighty-

nine and a tropical wet climate.  

Part II re-assesses further the performance of ten training functions of different training 

algorithms on MLP ANN using data (measured) from a micro-cellular outdoor environment 
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with the experimental location lying within the latitude of 4049'27'' N and longitude of 702'1'' 

E of the urban area. The area is a built-up terrain with clusters of residential, heavy industrial 

and commercial buildings with a population of over two million. It has a tropical wet climate 

characterize by heavy and lengthy rainy seasons, short dry season, a land mass of 360 km2 and 

water of 9 km2.  

The predictive abilities of these training functions have been assessed in terms of 

different performance metrics. Electromagnetic signal propagation is strongly affected by 

obstacles such as buildings and propagation phenomenon. Thus, there is need for adequate 

planning of communication network to provide reliable service by optimizing the network 

performance through dynamic analysis, prediction and regulation of transmission signal 

behaviour over the network.  

4.1.1. Perceptron Network 

Perceptron is the simplest possible neural network with computational model of single 

neuron invented in 1957 by Rosenblatt [114]. It is a unit that has weighted inputs which 

produces binary output based on threshold. Perceptron networks are trained by simple 

learning algorithms known as least square method or delta rule. This calculates error between 

the output of sample data and the network output and makes use of it to create an adjustment 

to the weights thereby implementing sort of gradient descent. The most fundamental type of 

an activation function is a binary function with only two possible results.  

                     ( ) 1 0f x ifw x b                              (4.1) 

Otherwise, w is a vector of the weights which is real value, w x is the point product 

1

n

i i

i

x w


 , where n is the inputs number and b is the bias. The function from Eq. (4.1) returns 1 

if the input is 0 or positive and returns 0 for an input that is negative. 

A neuron with the above type of activation function is known as perceptron. The 

perceptron network is also known as the single layer perceptron network and the simplest of 

the feedforward neural network. It is able to learn only linearly separable patterns as shown 

by Minsky and Papert in 1969 [63]. Its algorithm is summarized as follows: 
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i. For every input, it is multiplied by its weight 

ii. All the weighted inputs are summed 

iii. The output of the perceptron is computed based on the sum that is passed through an 

activation function.  

However, single layer perceptron network are not capable of solving problems that are 

not linearly separable [115]. Also, because a perceptron network is linear, it will not be able to 

reach a state with all the input vectors appropriately trained with non-linearly separable 

training set i.e. if a hyper plane cannot be used to separate positive examples from negative 

examples. This will lead to non-convergence of the perceptron network. By connection of 

network neurons in multi-layers with non-linear activation function, non-linear decision 

boundaries which permit the solving of problems that are more complicated and non-linearly 

separable are created [71].  

 

Figure 4.1. Simple neuron model [54] 

The input signals are given as:   

 1 2      .  1
T

nX x x x                                                       (4.2)                                                                                            

Output of Eq. (4.2) gives:  

( )Tu W X                                                                (4.3) 

where (.)T represents the transpose and the weights of neuron W and is given as: 

 1   2   . 
T

nW w w w                                                     (4.4)  



56 

 

From figure 4.1, the output error of the neuron (e) is computed by subtraction of the transfer 

function f(u) from the target value(t),  e t y  , where y is = f(u).                                                                                 

To present the possibility for shifting the activation function f(.), a scalar bias parameter 

θ is added to the weight to either right or left. Generally used transfer function can be referred 

as the activation function and is defined as [63]:  

1
(u)

1 exp u
f





                                                               (4.5)    

4.1.2. Multi-Layer Perceptron (MLP) Network  

 Multilayer-layer perceptron neural network is a system of inter-connected neurons that 

models a system of non-linear mapping between input and output vector [71]. It is a 

feedforward ANN created by Rosenblatt [114] in 1958 using the perceptron as the building 

blocks for a bigger and more practical network structure to cater for the limitations of the 

mapping ability of the single perceptron network. A standard MLP network structure is made 

up of source neurons which form the input layer, one or more hidden layers which are the 

computational neurons and an output layer. The input signal propagates layer by layer through 

the network. Each of the neurons in network contains a differentiable non-linear activation 

function and weights and output signal that are function of the input neurons modified by a 

non-linear activation function, fed through synaptic connection to subsequent layers. By the 

selection of an appropriate connection weights and activation functions, MLP network has 

been shown to approximate a smooth and measurable function between input and output 

vectors [116].  

The network learns by means of training using sets of data made-up of input with an 

associated output vector. During the MLP network training, the network is trained repeatedly 

with the data using backpropagation algorithm while adjusting network weights to achieve 

expected input-output mapping. The expected MLP network output after training may not be 

equivalent to a known output thereby resulting in error signal (the difference between real 

output and expected output). The error magnitude is utilized during the training for further 

adjustment of the weight to ensure reduction in the global error of the network.  
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Different backpropagation training algorithms are employed in the training of a MLP 

network. Once the network is trained with an appropriate representative training data using a 

suitable training algorithm, the MLP can generalize well to a new input data. One of the 

problems associated with the use of MLP network is to determine the architecture of network, 

i.e. adequate number of layers and neurons [116]. No specific rule is in existence on the 

method of layer and neuron selection for solving a problem. Instead, the selection depends on 

the existing problem and its complexity. Importantly, the reason of training a MLP network is 

to attain a good generalization on input data such as in prediction applications. Too many 

neurons in hidden layer of MLP network may result to poor generalization while few neurons 

may lead to non-convergence of the network.  

Multi-layer perceptron networks use different learning techniques, the most common 

being supervised learning backpropagation technique [80]. In supervised learning                 

backpropagation technique, output values are compared with expected results by calculating 

the value of some error function that is pre-defined. The error is feedback through the network 

while the weight of each connection is adjusted by the algorithm to reduce error function 

value by certain amount. After sufficient training cycles, the network converges at a certain 

state with small calculation error. By this, the network has learned a clear target function. 

Therefore, learning occurs by varying of connection weights after processing of each data 

based on the output error in comparison to the expected result. This is referred as 

backpropagation of error.  

 

Figure 4.2. Architecture of a multi-layer neural network with n-hidden layer [117]. 



58 

 

Assuming input layer with in neurons, i= (i0, i1,i2,…in) as shown in figure 4.2, the 

network output at first hidden layer  k is computed as: 

1 1

1

n
n n

ik

k

k f w i


 
  

 
                                                          (4.6) 

where n=1,2,3… and n

ikw is the weight between the i and k neurons 

This becomes the input to the second hidden layer p and the network output at the 

second hidden layer becomes: 

1 1

1

n
n n n

kp

p

wp f k


 
  

 
                                                         (4.7) 

This becomes an input to the Q hidden layer and the output of the Q hidden layer 

becomes: 

1 1

1

n
n n n

q

pq pwq f


 
  

 
                                                        (4.8) 

Assuming a sigmoid activation function is used, thus: 

1
( )

1 x
f x

e



                                                   (4.9) 

The network overall output yM is computed as: 

1

1

n
n n

M qy

y

y f w q


 
  

 
                                             (4.10) 

where   1 2.......     ,M ny y y y f w i    and f and w are the transfer function and the matrix 

weight defined as:  

 0 ,... ,.... ,.... ,....n n n n

ik kp pq qyw w w w w w                                (4.11) 
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Using multiple layers of hidden neurons in the hidden layer facilitates better processing 

power and flexibility of the system [65]. However, too many hidden neurons normally result 

to over specification of the system thereby making it incapable of generalization, while few 

hidden neurons result to improper fitting of the input data by the system thereby reducing 

system robustness.  

Architectural definitions of MLP networks are very important as lack of adequate 

choice of layers and neurons for connection can prevent the network from solving problems 

by inadequate adjustment of weight parameters. Architectural optimization of the connection 

of hidden layers and neurons for establishing ANN that effectively solve a given problem 

remains one of the tasks yet to be solved in many research areas[118].   

4.2. Concept of Back Propagation (BP) 

Backpropagation determines the gradient of loss function and is applied in gradient 

descent optimization algorithm for weight adjustment of every neuron that contributed to the 

process of training [119, 120]. For every supervised learning algorithm, the aim is to discover 

function which maps appropriately set of inputs to the corresponding right output. The 

essence of backpropagation is to train network for adequate learning of internal 

representations that permit learning of any random input to output mapping [121].  

Before the network training commences, the weights are randomly selected, and 

neurons learn from the training examples. If xi1….xin, ot are the training examples with 

xi1….xin, being the network inputs and ot being the correct output which is expected from the 

network given the inputs, then xi1….xin will likely compute an output yM different from the 

expected or desired output ot considering random weights. To measure the discrepancy of the 

desired output ot and the actual output yM, squared error measure is applied as: 

 
2

0t ME y                                                          (4.12) 

where E is the error or discrepancy. The difficulty of inputs to outputs mapping can therefore 

be cut down to an optimization problem by locating a function which will give minimal error 

as shown in figure 4.3.   
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1,.......M i iny w w                                                       (4.13) 

 

Figure 4.3. A sketch of a function with local minima and local maxima [69]. 

 

The error is also dependent on the neuron weights which eventually need to be modified 

in the network to permit learning. A conventional algorithm used in finding weights set which 

minimizes the error is the gradient descent algorithm while backpropagation is applied in the 

calculation of the direction of the steepest descent [122].  

 4.2.1. Gradient Descent  

Neuron weight permits ANNs to learn by updating after the forward passes of data 

through the network. The reason for weight adjustment is to ensure reconciliation of the 

difference between desired value and actual value ensuing forward passes [65]. Error is an 

important measure to ascertain the differences, and the respective error of each neuron send 

backward through the network to aid the process of update, i.e. backpropagation of error.  

Cost function for error determination based on neuron weights as shown in figure 4.4 

can be applied and the lowest point on the cost function known as the optimal value i.e. local 

minima where rate of function change equals zero can be ascertain. Conceptual use of slope 

of the angle of the cost function at the present location reveals the direction of the slope [123]. 

Algebraically, a negative slope indicates a downward movement while a positive slope 

indicates an overshoot i.e. movement beyond the optimal. The slope is determined using 

gradient descent.  
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Gradient is the rate at which a function changes while descent implies exploring at the 

base of the cost function with changing gradient. It takes into account a total of forward pass 

data set and calculates cost and thereafter propagates the errors backward to the neurons 

through the network [78]. There are two type of gradient descents: (i) vanilla plain and (ii) 

stochastic gradient descents [124]. All data weights are repeatedly adjusted when applying 

Vanilla Plain Gradient Descent (VGD) while Stochastic Gradient Descent (SGD) samples 

data randomly. Learning can be speed up by data random sampling for an improve prediction 

result. Gradient descent shows vulnerability to local minima if all data instance is applied in 

weight adjustment determination and may be made less vulnerable to extremes and outliers by 

considering the data en bloc; however, this is undesirable when in search for global minima.  

 

Figure 4.4. A sketch of cost function [125]. 

 

The method of gradient descent comprises the calculation of derivative of squared error 

function with respect to network weights. This is achieved using backpropagation. Squared 

error function is expressed (considering an output neuron) as: 

 
21

0
2

t ME y                                                      (4.14) 
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where E and ot are squared error and expected output respectively, yM is actual output and ½ 

cancels the exponent during differentiating. For each neuron i, the output ok is defined as: 

 
1k

k

n

i ik knet w oo  


 
  





                                           (4.15) 

The input neti is the weighted sum ok of output preceding neurons, if 
inet is in first 

hidden layer, then ok is inputs xi to the network. n is the neuron input units number, wik is the 

weights between i and k neurons and φ is the activation function which is non-linear and 

differentiable such as logistic function [126]: 

 
1

1 z
z

e






                                                       (4.16) 

The calculation of partial derivative of the error E with respect to the weights between 

neurons wik is performed using chain rule twice as: 

k i

ik k i ik

o netE E

w o net w

  


   
                                   (4.17) 

where a single term in the sum neti is dependent on wik, therefore: 

1

n
i

ik k ik i i

kik ik ik

net
w o w o o

w w w

   
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   
                          (4.18) 

oi = xi for first layer neurons.  

Assuming the use of a logistic function, output derivative of neuron k w.r.t.to input is 

described as: 

    1k
i i

i i

o
net net

net net
 

 
 

 
                        (4.19) 

For this purpose, backpropagation requires an activation function to be differentiable. 

For output layer neuron, then the evaluation is straightforward as:  
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                      (4.20) 

However, if k  is inner layer of the network, it is less obvious finding the derivative E 

with respect to ok. In view of E being function of inputs of all neurons N=p, q,…r  receiving 

input from the neuron k, then: 

   , ,....p q rk

k k

E net net netE o

o o




 
                      (4.21) 

Taking the sum derivative in light of ok, recursive example is obtained for the derivative 

as [118]: 

i i
ik

i N I Nk i k i i

net oE E E
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o net o o net 

      
    

       
                                   (4.22) 

This can be a calculation of derivative w.r.t.to ok if every derivative with respect to the 

next layer output oi, the derivative nearer to the output neuron is known. Their summation 

gives [124]: 
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However, gradient descent algorithm with backpropagation is not a guarantee to 

achieving the global minimum, it merely guarantees a local minimum and display problem of 

crossing plateau in the scenery of error function [125]. These problems of non-convergence of 

error function might limits the performance of gradient descent with backpropagation 

including its non-requirement of input vector normalization because normalization improves 

network performance [127, 128]. 
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4.3. Learning Algorithms 

The key attribute of artificial neural network is their ability to get familiar to problems 

by means of training and thereafter be able to solve an unknown problem of similar class 

[125]. Learning rules are known as algorithms. There are various algorithms, so to select the 

appropriate learning algorithm for ANN training is critical as the selection of the learning 

algorithm is dependent on many factors. The aim of training (using different ANN 

algorithms) is to establish a weight combination that gives the smallest error.  

A neural network learns from different phenomenon and a learning system changes to 

adapt to the situation e.g. environmental changes [79]. It certainly requires initial questions 

such as: where the learning input will come from and in what form, how to modify weights to 

ensure fast and reliable learning, how to measure objectively the success of learning and 

determine the best learning procedure, how to ensure that a learning procedure reaches 

optimal state, how to store the learned pattern in a network etc [23, 129]. They are used in 

finding appropriate weights or other required network parameters.  

The algorithms that have been used in training the ANN comprise of both first order 

and second order approximation algorithms. The algorithm with the least prediction error has 

been studied and employed for further ANN training in this research work. The basic 

objective of training pattern is for global error reduction by weight and bias adjustments. 

Some of the examined training functions under different training algorithms are described. 

They have been re-examined to ascertain their prediction capabilities and to check their 

correlation with what is obtainable in literature.  

4.3.1. Gradient descent algorithm 

This training algorithm updates weight and bias values in the negative direction of 

gradient for performance function  [130].The different gradient descent algorithm training 

functions employed are:  

i. Gradient descent(traingd)- The training function updates values of weight and bias in 

the direction of negative gradient of the performance function, shows instability with 

large learning rate and delay in convergence with small learning rate [130]. 
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ii. Gradient descent with momentum (traingdm)- Momentum makes ANN network 

ignore small feature in error and slide through small local minimum. It trains network 

as long as the weight, net input, and transfer functions contains derivative functions 

[131]. 

iii. Gradient descent  with adaptive learning (traingda)- This is the optimization of the 

method of gradient descent with the aim of minimizing network error using gradient 

of function and network parameters [68].  

4.3.2. Conjugate gradient algorithm 

The search direction in conjugate gradient algorithms is carried out along the conjugate 

direction for fast convergence [132]. Standard re-set point occurs when the number of weights 

and biases are equal. However, the efficiency of training is improved using different re-set 

methods. The various conjugate gradient algorithm training functions used are: 

i. Scaled conjugate gradient algorithm (trainscg)- Scaled conjugate gradient algorithm 

eliminates the line search at every learning iteration using step size scaling mechanism 

[133, 134]. The direction of new search is described as: 

   ' '

'' k k k k
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
 



 
     (4.24) 

ii. Conjugate gradient with Powell-Beale restarts (traincgb)- This method of rest uses the 

technique of restarting in case of little orthogonality between previous and current 

gradient [132]. 

iii. Conjugate gradient with Fletcher-Reeves updates (traincgf)- This training function is 

the ratio of the norm squared of present gradient with respect to the norm squared of 

previous gradient [131]. 

iv. Conjugate gradient with Polak-Ribiére updates (traincgp)- This training function is the 

inner product of previous change in gradient with present gradient divided by the 

norm squared of previous gradient [135]. 
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4.3.3. Resilient backpropagation algorithm (trainrp)  

This is a first order backpropagation algorithm that eliminates the negative effects of 

magnitude of partial derivative. The learning rate is given as [136]: 
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    (4.25) 

where 0<η-<1<η+. wij and ∆ij are the weight and change in weight, respectively, η and 

E are the learning rate factor and the partial derivative of error function respectively.   

4.3.4. Quasi-Newton algorithm 

Quasi-Newton algorithm (based on Newton’s method) does not require the calculation 

of second derivative, and they update an approximate Hessian matrix in every iteration of the 

algorithm [65]. This algorithm is used for better and fast optimization  and approximates the 

inverse Hessian by a different matrix G, applying the first partial derivatives of loss function 

[137, 138]. The algorithm is defined as:  

 1 . . 0,1,....i i i i iW W G g                 (4.26) 

where η and G are the learning rate and inverse Hessian approximation respectively. 

The applied Quasi-Newton training function is described as Broyden–Fletcher–Goldfarb–

Shanno (BFGS) (trainbfg). The training function updates weights and biases according to 

Newton’s method, a group of optimization method that searches for a stationary point of 

function. A required condition for optimality is at zero gradient. The algorithm converges in 

less iteration; however, it requires more computation and storage than using the conjugate 

gradient method. It has effective training function for smaller network and good performance 

for smooth optimization [139]. 
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4.3.5. Levenberg-Marquardt algorithm (trainlm) 

Levenberg-Marquardt method was designed to enhance the second order training speed 

without the need of calculating or approximating the Hessian matrix as in Newton algorithm 

or Quasi-Newton algorithm [140]. It is an iterative method that ensures the reduction of 

performance function in each iteration. Because of this feature, it is a fast training algorithm 

for moderate size networks. However, because of gradient and approximated Hessian matrix 

calculations, it has a problem of memory and computational overhead. The parameter 

improvement using Levenberg-Marquardt algorithm is updated as [141]: 

   
1

1 . . 2 . , 0,1...T T

i i i i i i iW W J J I J e i


                                           (4.27) 

where λ and I are the damping factor and the identity matrix, e and J are the vector of 

error terms and the Jacobian matrix, respectively. 

4.3.6. Bayesian Regularization algorithm (trainbr) 

Bayesian regularization minimizes squared errors and weight combination and 

determines accurate combination to ensure a generalize network [142]. This algorithm 

updates the values of weight and bias according to Levenberg-Marquardt optimization. It 

reduces the squared error and weights and determines the right combination to produce a well 

generalized network. The modified performance function is defined as [143]:  

mpF SSE SSW        (4.28) 

where  
1

n
n

q

q

SSE e x


 ,
1

n
n

j

j

SSW w


 ,n, α and β are the total number of weights and 

biases wj in the network, training rate and decay rate, respectively. 

Learning by Bayesian Regularization (BR) backpropagation algorithm 

Bayesian Regularization (BR) backpropagation algorithm  updates weight and bias 

variables in accordance with Levenberg-Marquardt (LM) optimization [144, 145]. The 

algorithm determines the right combination to give a proper generalized network by 
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minimizing linear permutation of squared error and weight variables. It adjusts the linear 

combination to ensure network with good generalization qualities at the end of network 

training. The algorithm occurs within the LM algorithm and makes use of Jacobian for 

computations. However, Jacobian assumes a performance that is mean otherwise sum of 

squared errors, therefore network trained employing Bayesian Regularization ought to use 

Mean Squared Error (MSE) or Sum of Squared Error (SSE) performance function. Jacobian is 

computed using backpropagation and all the variables modified in accordance with a simple 

and robust LM algorithm function approximation technique as: 

 t tJ J I J E        (4.29) 

where J, δ and E are Jacobian matrix, unknown weight update vector, and error, λ and JtJ are 

the damping factor of Levenberg and the approximated Hessian, respectively. The 

modification of the damping factor for process optimization is at all iteration. 

The first order partial derivative matrix of Jacobian is established by taking all output 

partial derivatives of all the weights as expressed [146]: 
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    (4.30)                                                                         

F(xi,w) is the network function, wj is jth of the weight vector w of the network.  

The Hessian in general does not require to be computed for least square problems, 

instead an approximation can be done using Jacobian matrix as:  

tH J J        (4.31) 

However, this is an excellent Hessian approximation with small solution residual error, 

without which the approach may give rise to slow convergence with residual error that is not 

sufficiently small.    
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The LM algorithm is extremely receptive to the initial weights and the data outliers are 

not considered, thus may result to poor generalization. Also, LM algorithm enormously 

depends on parameters preliminary guess, based on network’s preliminary weight values, 

there may be a convergence of the algorithm at the local minimal or no convergence at all.  

To prevent poor generalization, a technique known as regularization is employed. 

Bayesian regularization framework allows the approximation of the effective number of 

network weights that are really required in solving a specific problem [144]. There is 

expansion of cost function to search for smallest error making use of the smallest weights. 

This works by the introduction of two Bayesian hyper-parameters: (i) alpha and (ii) beta, to 

notify the direction the learning process must seek (minimal error or minimal weights).  The 

cost function becomes [146]: 

d sF E E          (4.32) 

where Ed and Es are sum of squared error and sum of squared weights, respectively.  

By adding BR to LM, small overhead is added up to the process as a Hessian 

approximation already existing.  

4.4. Performance Metrics   

The Mean Absolute Error, Root Mean Squared Error, Standard Deviation, and 

Correlation Coefficient have been steadily used in model assessment and research studies 

[147]. The RMSE is a measure of how far residuals (prediction data) are from the regression 

data points i.e. extent the residual data concentrate just about the line of best fit. It measures 

the difference between measured data values and predicted values by the model [148]. The 

MAE is a measure of the average magnitude of error in a prediction set. It averages the test 

samples of the differences between measured data values and prediction data values without 

the consideration of their directions. Standard deviation measures the dispersion of data set 

from its mean. It is used to calculate the amount of dispersion of data set values. Data points 

that are further from the mean show a high deviation within the set of data while data points 

closer to the mean indicates a low standard deviation [149]. Correlation coefficient measure 
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the linear relationship in terms of strength and direction between measured data values and 

predicted data values. It ranges from +1 to -1, which indicates a positive or negative 

correlation coefficient. A correlation coefficient of +1 indicates a relationship with a perfect 

positive fit while a correlation of -1 indicates a relationship with a perfect negative fit [150]. 

In summary, the computation of the performance metrics are given as: 

The RMSE measures the differnce between measured data and predicted data values 

[148]: 

   
exp

2

0

1exp

1
N

d

RMSE l d y d
N 

         (4.33) 

The MAE measures closeness of predicted values to measured data values[147]: 

   
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1exp
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N 

             (4.34) 

The SD measures the amount of variation between measured data and predicted data 

values. Low standard deviation shows closeness of the data points while high standard 

deviation shows the reverse [151]. 
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The Correlation Coeffient (r) measures the statistical relationship between measured 

data and predicted data values. It returns a value between -1 and 1.  +1 signifying a strong 

positive connection and -1 signifying a negative connection between measured and prediction 

data values  [152]. 
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   (4.36) 
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where Nexp and  l(p) are the number of the measured data and values of measured signal power 

respectively, pth is the input pattern and y0(p) is the neural network output. 

4.5. Results and Discussions  

The simulation results obtained using different ANN learning algorithms in training a 

MLP ANN are discussed.  

4.5.1. Assessment of the Performance of Different Artificial Nural Network 

Training Algorithms 

Real world measured data was collected via a drive test during JAN-DEC 2017 from a 

sub-urban area that has moderate commercial bulidings and foliages. Data measurement setup 

are: a laptop and two Samsung Galaxy Mobile Handsets (Model-SY 4) installed with Test 

Mobile System (TEMS, 15.1 version) software, network scanner and other acessories such as 

Global Positioning  System (GPS), power inverters, test cables,compass, digital map of the 

area and a vehicle for the test drive. Drive test started from choosen Base Station (BS) 

transmitting at 1900 MHz operating frequency while capturing the signal power at various 

distances from the LTE cellular network. The training set considered are 1,970 measured 

signal power across different distances from the BS.  

A MATLAB program for one hidden layer MLP ANN model is written with measured 

data and serves as inputs to the ANN. For the learning process, 90% of data are used for 

training while remaining 10% are used for validation. Training of MLP ANN are done using 

five training algorithms comprising of nine training functions which are run in ANN training 

tool box (nntraintool) in MATLAB 2013a and the performance of the training algorithms are 

assessed in terms of RMSE, MAE, SD and r.     

The processes of training are made more efficient and the speed increased by 

normalizing the input and desired output values to lie about zero mean and unity standard 

deviation. The measured data is normalized using excel spread sheet with the expression 

[153]: 
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where vn, and vi, are the normalize value and the initial parameter value, vmin is the 

minimum parameter value and vmax is the maximum parameter value, respectively. 

The task of an accurate assessment of the different training algorithms that mostly 

predict the signal power with minimal error has been a demanding task as a result of different 

factors such as complexity of environment of data collection, number of training data, quality 

of training data, network weights and biases etc.   

Sigmoid transfer function is used in the MLP ANN hidden layer and the basic training 

parameters are fixed for all the training functions. The ANN network has been trained with 

each of the training function for an average of ten runs to ensure the network learns the 

pattern that signal propagates after several passes on training set. The training values with the 

least errors are taken for each of training function. The parameters for comparison are the 

number of epochs at the end of training (E), time of training, regression on training, 

regression on validation, RMSE, MAE, SD and r. All these parameters are checked for 10, 20 

and 30 neuron numbers in the hidden layer. The results are grouped in three different tables 

for three different algorithms used. 

Table 4.1. Comparison of 3 training functions of Gradient descent algorithm 

 

Training 

functions 

                                     Parameters for comparison 

No of 

neurons 

Epoch 

(E)  

(1000) 

Training 

time (s) 

 

RMSE 

 

MAE 

 

SD 

  

R 

Regressi

on on  

training  

Regression 

on validation 

traingd 10 

20 

30 

6 

6 

6 

0 

0 

0 

17.3494 

14.4900 

18.0274 

13.5048 

12.2472 

14.1806 

10.8914 

7.74900 

11.1309 

0.4202 

0.4570 

0.3129 

0.4429 

0.4840 

0.3372 

0.2108 

0.3444 

0.1504 

traingdm 10 

20 

30 

6 

6 

6 

0 

0 

0 

15.9239 

14.0825 

15.2804 

13.1845 

11.4637 

12.1649 

8.9295 

8.1792 

9.2470 

0.5042 

0.4631 

0.4561 

0.5060 

0.5155 

0.4381 

0.4756 

0.4517 

0.5850 

traingda 10 

20 

30 

125 

207 

353 

0 

0 

0 

3.2579 

3.4851 

3.9701 

2.5661 

2.7775 

3.0643 

2.0072 

2.1051 

2.5241 

0.9046 

0.8911 

0.8576 

0.9161 

0.9019 

0.8566 

0.8928 

0.8630 

0.8387 
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Table 4.2. Comparison of 3 training functions of Conjugate gradient algorithm 

Training 

functions  

              Parameters for comparison 

No of 

neurons 

Epoch 

(E)  

(1000) 

Training 

time (s) 

RMSE MAE SD r Regression 

on  

training  

Regression 

on validation 

traincgb 10 

20 

30 

36 

27 

117 

0 

0 

0 

3.0902 

2.9898 

2.7519 

2.4603 

2.3553 

2.0341 

1.8699 

1.8416 

1.8535 

0.9114 

0.9171 

0.9309 

0.8965 

0.9109 

0.9466 

0.9525 

0.9292 

0.9240 

traincgf 10 

20 

30 

23 

96 

41 

0 

0 

0 

3.0866 

2.9332 

3.0849 

2.4662 

2.2853 

2.4543 

1.8560 

1.8387 

1.8190 

0.9114 

0.9204 

0.0147 

0.9065 

0.9427 

0.9255 

0.9023 

0.8832 

0.7962 

traincgp 10 

20 

30 

31 

35 

80 

0 

0 

0 

3.0984 

2.9806 

2.9948 

2.4400 

2.3663 

2.2799 

1.9096 

1.8124 

1.9418 

0.9112 

0.9278 

0.9177 

0.9272 

0.9105 

0.9366 

0.9033 

0.9436 

0.8829 

Table 4.3. Comparison of Quasi-Newton, Levenberg-Marquardt and Bayesian regularization 

algorithms 

Training 

functions  

                                     Parameters for comparison 

No of 

neurons 

Epoch 

(E)  

(1000) 

Training 

time (s) 

RMSE MAE SD R Regression 

on  

training  

Regression 

on validation 

trainbfg 10 

20 

30 

24 

722 

950 

0 

0.5 

0.8 

3.0694 

3.0255 

3.2859 

2.4610 

2.3980 

2.5207 

1.8342 

1.8447 

2.1079 

0.9132 

0.9160 

0.9009 

0.9171 

0.9275 

0.9260 

0.9373 

0.9414 

0.8214 

trainlm 10 

20 

30 

28 

28 

14 

0 

0 

0 

2.9920 

2.6044 

2.7626 

2.3014 

2.0031 

2.0790 

1.9120 

1.6645 

1.8193 

0.9173 

0.9384 

0.9305 

0.9180 

0.9426 

0.9428 

0.9354 

0.9399 

0.9366 

trainbr 10 

20 

30 

1000 

1000 

1000 

22 

22 

22 

3.0485 

2.4904 

2.3928 

2.3687 

1.8546 

1.8002 

1.9191 

1.6620 

1.5764 

0.9146 

0.9435 

0.9477 

0.9272 

0.9465 

0.9596 

0.8881 

0.9381 

0.8946 

 

The results of the MLP ANN training using nine different training functions from five 

different training algorithms are shown in Tables 4.1, 4.2 and 4.3. The input to the ANN is 

signal power over range of distances. The performance of the nine training functions are 

measured in terms of RMSE, SD, MAE, and r. Regression on training and regression on 

validation have also been examined. There is variation of the neuron number in MLP hidden 

layer from 10, 20 and 30 during the training of network to ascertain their impact in network 

predictive abilities. 
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From Table 4.3, using BR algorithm (trainbr) gives minimal errors in comparison with 

other training algorithms considered. However, it requires more training epoch and time to 

converge. The LM algorithm (trainlm) converges with less iteration compared to BR 

algorithm (trainbr) and within lesser time. However, the two algorithms have slight 

differences in their prediction errors with LM algorithm showing higher error than the BR 

algorithm. In terms of speed, LM algorithm (trainlm) demonstrates the fastest prediction 

algorithm with minimal error while BR algorithm (trainbr) demonstrates the most accurate 

prediction algorithm with minimal error. Effort to train the ANN for further error reduction 

results in network over-fitting for all training functions.   

This is in-line with previous studies carried out on comparison of backpropagation 

algorithm in ANN based identification of power system [154],comparison of neural network 

training functions for Hematoma classification in brain Computed Tomography (CT) images 

[131],and in [155] where trainbr showed more accurate predictive abilities in a comparative 

empirical study on social data. However, relative studies of the performance abilities of 

different ANN training functions in prediction of signal power loss as electromagnetic signal 

propagates using measured data from LTE cellular network is analysed in this research work. 

In terms of neuron variation in the hidden layer, two gradient descent algorithm training 

functions show better prediction abilities with 20 neurons in the hidden layer. Only gradient 

descent with adaptive learning rate (traingda) shows better performance with 10 neurons in 

the hidden layer. Further, increase in the number of neurons leads to increase in prediction 

error.  

The Conjugate gradient algorithm training functions demonstrate better predictive 

abilities with 20 neurons in the hidden layer while the Quasi-Newton algorithm training 

functions also gives better prediction with 20 neurons in the hidden layer. The BR algorithm 

(trainbr) gives least error with 30 neurons in the hidden layer showing its ability to train a 

complex network. 

The graphical representations showing the prediction abilities of best performed 

training function in terms of accuracy with minimal errors and worst performed training 

function with the highest prediction errors are shown. figure 4.5 and figure 4.6 show the 
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prediction performance of the lowest and the highest number of hidden layer neurons for the 

BR algorithm and figure 4.7 shows the prediction performance of gradient descent algorithm 

with 30 neurons in the hidden layer.  
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Figure 4.5. Training performance of Bayesian regularization algorithm with 10 neurons 

in hidden layer 

0 200 400 600 800 1000 1200 1400 1600 1800
-120

-115

-110

-105

-100

-95

-90

-85

-80

-75

Distance (m)

S
ig

n
a
l 
p
o
w

e
r 

lo
s
s
 (

d
B

m
)

 

 

Measured data 

Prediction with br

 

Figure 4.6. Training performance of Bayesian regularization algorithm with 30 neurons 

in hidden layer  
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Figure 4.7. Training performance of Gradient descent algorithm with 30 neurons in 

hidden layer 

The regression analysis compares MLP ANN actual outputs and equivalent desired 

output i.e. the target. Figures 4.8 and 4.9 show regression analysis for worst and best training 

functions i.e. gradient descent (traingd) and BR (trainbr) algorithms. The regression analysis 

returns the correlation coefficient between measured and prediction data, and slope and 

intercept of the equation with the best linear fit.  

Figures 4.5 to 4.7 demonstrate a decrease in signal power as distance increases i.e. the 

fall in the power density of an electromagnetic signal as it transmits in the space [13]. This is 

because of refraction, reflection, scattering etc. as it is particular to different environment. 

4.5.2. Performance Analysis of Different MLP-ANN Training Functions 

Real world measured data from LTE cellular network in a built-up urban area with with 

clusters of residential, heavy industrail and commercial buildings are collected via a drive test. 

The area has a triopical wet climate characterize by heavy lengthy rainy season and short dry 

season.The data measurement setup are a laptop and two Samsung Galaxy mobile handsets 

(Model-SY 4) installed with TEMS software (15.1 version), network scanner, digital map of 

the area and other assessories as employed for data collection in part I. All measurements are 

conducted at different sectors of the BS which transmits at 1900 MHz frequency band.  
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Figure 4.8. Regression analysis for Gradient descent algorithm with 30 neurons in 

hidden layer 
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Figure 4.9. Regression analysis for Bayesian regularization algorithm with 30 neurons 

in the hidden layer 
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The signal power computed at various range of distances are used as an input to MLP 

ANN. A total of 1,051  measured signal power over range of distances are recoreded and used 

as input to MLP ANN. 100% of measured data has been used as training set and ten different 

training functions from various algorithms applied in network training using ANN training 

tool box (nntraintool) in MATLAB 2013a. The performances of ten different training 

algorithms used for network training are analysed in terms of RMSE, MAE, SD and r. The 

measured data are normalized using excel spread sheet as described in Eqn. (4.37) of part I.  

The basic training parameters are fixed for all training functions and sigmoid transfer 

function used in hidden layer of MLP ANN. Training of network is repeatedly carried out for 

three runs and an average result considered. The list of considered training functions and the 

training results are shown. 

The overall results of Table 4.5 and Table 4.6 show that training with BR algorithm 

(trainbr) give a minimal RMSE of 2.5664, MAE of 1.9360, SD of 1.6667, and the highest r of 

0.9398. The LM algorithm (trainlm) gives RMSE of 2.7532, MAE of 2.0954, SD of 1.7851 

and r of 0.9303. Training with gradient descent algorithm (traingd) gives the highest error 

with RMSE of 24.0963, MAE of 21.8294, SD error of 10.1327 and the least r of 0.6099. This 

validates the performances of training functions of various training algorithms assessed in part 

I. The training performance of the BR, LM and gradient descent algorithms measured in terms 

of mean squared error (MSE) are shown in figure 4.10, figure 4.11 and figure 4.12 

respectively.  

   Table 4.4. List of assesed training functions 

S/NO Algorithm 

Abbreviation 

Algorithm Description 

1 BFG trainbfg BFG-Quasi-Newton 

2 RP trainrp Resilient Back propagation 

3 LM trainlm Laverberg-Marquardt 

4 SCG trainscg Scaled Conjugate Gradient 

5 BR trainbr Bayesian Regularization 

6 GD traingd  Gradient descent 

7 OSS trainoss One step secant 

8 GDX traingdx Variable learning Rate Back propagation 

9 CGF traincgf Fletcher-Powell Conjugate Gradient 

10 CGP traincgp Polak-Ribiere Conjugate Gradient 
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Table 4.5. Performance results with five training functions  

Performance 

metrics 

Error 

measurement 

Training algorithms 

trainbfg trainrp trainlm trainscg trainbr 

   RMSE 

 

Run 1 

Run 2 

Run3 

3.0885 

3.0537 

3.0847 

3.0929 

3.2578 

3.3375 

2.7424 

2.7542 

2.7630 

3.2706 

3.1921 

3.1664 

2.5004 

2.6319 

2.5669 

Average 3.0756 3.2294 2.7532 3.2097 2.5664 

 

 

   MAE 

 

Run 1 

Run 2 

Run 3 

2.4492 

2.3539 

2.4651 

2.5040 

2.6015 

2.6296 

2.0892 

2.0582 

2.1389 

2.5978 

2.5543 

2.5159 

1.8940 

1.9852 

1.9288 

Average 2.4227 2.5784 2.0954 2.5560 1.9360 

 

 

   SD 

 

Run 1 

Run2 

Run 3 

1.8814 

1.9453 

1.8545 

1.8156 

1.9610 

2.0552 

1.7765 

1.8300 

1.7490 

1.9871 

1.9144 

1.9226 

1.6324 

1.7280 

1.6398 

Average 1.8937 1.9439 1.7851 1.9414 1.6667 

   

 

   r 

 

Run 1 

Run 2 

Run 3 

0.9119 

0.9138 

0.9117 

0.9110 

0.9017 

0.8976 

0.9307 

0.9303 

0.9301 

0.9005 

0.9056 

0.9066 

0.9429 

0.9369 

0.9398 

Average 0.9126 0.9034 0.9303 0.9042 0.9398 

Table 4.6. Performance results with five training functions 

Performance 

metrics 

Error 

measurement 

Training algorithms 

trainbfg trainrp trainlm Trainscg trainbr 
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Run 3 

 

1.8814 

1.9453 

1.8545 

 

1.8156 

1.9610 

2.0552 

 

1.7765 

1.8300 

1.7490 

 

1.9871 

1.9144 

1.9226 

 

1.6324 

1.7280 

1.6398 

Average 1.8937 1.9439 1.7851 1.9414 1.6667 

 

 

   r 

   

Run 1 

Run 2 

Run 3 

 

0.9119 

0.9138 

0.9117 

 

0.9110 

0.9017 

0.8976 

 

0.9307 

0.9303 

0.9301 

 

0.9005 

0.9056 

0.9066 

 

0.9429 

0.9369 

0.9398 

Average 0.9126 0.9034 0.9303 0.9042 0.9398 
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The training performances of BR, LM and gradient descent algorithms measured in 

terms of MSE are shown in figure 4.10, figure 4.11 and figure 4.12 respectively, with a near 

zero horizontal slope for BR algorithm which is close to the local minima where minimum 

error is obtained. At epoch 1000, the best training performance has approximately 6.26 MSE 

which is very minimal in comparison with LM and gradient descent algorithms. The LM 

algorithm trained at 36 epochs and validates the training set with 13.56 MSE while gradient 

descent algorithm shows positive uphill slope far from the local minima and at zero epoch 

validates the training performance at 672.32 MSE.  
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Figure 4.10. Training performance of Bayesian regularization algorithm 
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Figure 4.11. Training performance of Levenberg-Marquardt algorithm 
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Figure 4.12. Training performance of Gradient descent algorithm 
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4.6. Chapter Summary 

This chapter analyses the prediction performances of different ANN training algorithms 

used in training MLP ANN with real world measured data from a LTE micro-cellular sub-

urban and urban areas. The architectural composition of a simple possible ANN model, 

perceptron network, MLP network and concept of backpropagation feedforward ANNs are 

discussed. The performances of the ANN algorithms have been measured in terms of RMSE, 

MAE, SD and r. These are statistical performance metrics applied in calculation of the error 

difference between actual output from the ANN model and desired output.  

The chapter is divided into two parts- Part I deals with training MLP ANN with nine 

training functions of five different ANN algorithms using real world measured data from LTE 

network in a sub-urban area. The performance result of the ANN training algorithms 

measured in terms of RMSE, MAE, SD and r demonstrates least error prediction using BR 

algorithm in comparison with other ANN algorithms employed in MLP ANN training. 

However, the BR algorithm requires longer training time in comparison with LM algorithm 

which has closer prediction values. It is ascertained that in terms of accuracy in prediction, 

BR demonstrates a better prediction algorithm while LM demonstrates fastness in prediction 

i.e. in learning and prediction of the pattern the signal propagates and with considerable 

minimal error very close to that of the BR algorithm.  

The neuron numbers in the hidden layer of MLP ANN has been varied from 10, 20, and 

30 during network training to ascertain their effect in prediction abilities of the ANN training 

algorithms. Most of the algorithms give the least error with 20 neurons in MLP ANN hidden 

layer but gradient descent with adaptive learning rate training function gives the least error 

with 10 neurons in the hidden layer, thus, its ability to adapt fast during the network training 

in comparison with two other Gradient descent training functions that show very high 

prediction errors i.e. they were incapable of learning the pattern the signal used as input data 

to MLP ANN propagates. The BR algorithm shows better performance with 30 neurons in 

hidden layer which demonstrates its capability in training a complex network with expected 

minimal error.  
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Part II of the chapter employs ten different training functions of different ANN training 

algorithms to re-examine the performance of the training algorithms in prediction of signal 

power loss using real world data from LTE network in an urban area. Their performances are 

also analysed in terms of RMSE, MAE, SD and r. The result validates prediction with BR 

algorithm as it gives minimal prediction error of RMSE, MAE, SD and r. The closest training 

algorithm with prediction error closer to BR algorithm is also LM algorithm.  

         Lastly, the current work of this chapter is in-line with previous studies on ANN 

presented in [34, 60, 98-101] in terms of trend in PL, however, their prediction accuracies are 

different as LTE network offers data when trained, has error prediction advantage over data 

from previous generations of telecommunication networks.  
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CHAPTER 5 

APPLICATION OF DIFFERENT ANN ARCHITECTURES IN 

MODELLING OF PROPAGATION PATH LOSS 

 

The chapter’s objectives centres on modelling of propagation Path Loss (PL) using 

three different Artificial Neural Network (ANN) architectures: (i) Adaptive Linear Element 

(ADALINE), (ii) Radial Basis Function (RBF), and (iii) Generalized Regression Neural 

Network (GRNN). The performances of each of the ANN models in prediction of signal 

power loss using real world measured data from different Long Term Evolution (LTE) micro-

cellular environments has been analysed in comparison with the performance of Multi-Layer 

Perceptron (MLP) ANN.  

This is to realistically ascertain the peculiarities and limitations of these models in 

training and prediction of signal power loss. Their prediction performances are computed in 

terms of Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Standard 

Deviation (SD) and Correlation Coefficient (r). Bayesian Regularization (BR) algorithm has 

been employed as the training algorithm. The different techniques for training ANN, the 

effect of learning rate parameter, and the generalization abilities of these ANN architectures 

in harmony with the underlying physical complexity of the problem of signal power loss 

prediction with the data sets has been analysed.  

5.1. Introduction  

Different approaches to avoid poor generalization and overcome the tendencies of over-

fitting during ANN training have been analysed in RBF and MLP ANNs, the performance of 

ADALINE with input delay of 1:5 in comparison to MLP ANN with different variation of 

learning rate has been studied and the effect of learning rate in GRNN and MLP ANNs 

analysed. The concept of ANN learning and other parameters of learning during network 

training have been highlighted. The chapter is organized in three parts.  
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Part I analyses and presents three different approaches to avoid poor generalization and 

overcome the tendencies of over-fitting in RBF ANN and MLP ANN. The essence is for an 

enhanced prediction accuracy of signal power loss during electromagnetic signal propagation 

in a metropolitan area. Real world measured data from LTE cellular network are used as a 

training set to the ANNs. The different approaches adopted are variation of hidden layer 

neurons, early stopping and Bayesian regularization techniques. The data set is from a 

metropolitan area with a population of one hundred and ninety thousand, eight hundred and 

eighty four thausand covering an area of 138 km2 and lies within the latitde 4047'31.2''N and 

longitude of 707'12''E of the area. The area has a tropical wet climate with two major seasons: 

the rain and the dry season with networks of creeks that span the rivers stretching into the 

altlantic ocean. The vegetation is characterized by mangrove and thick  forest with arable 

land.  

The effect of learning rate parameter on the performance of two ANN architectures is 

examined in Part II using ADALINE and MLP network in predicting the signal power loss 

using measured data from LTE cellular network. Learning rate parameter is utilized to check 

the prediction effectiveness of the two network models while considering prediction error 

between actual measurement and prediction values. The gradient and momentum parameters 

of the two networks are also analysed at different variation of learning rate. The data set is 

from an Island that covers 645.60km2 with a population of two hundred and fourteen 

thousand, nine hundred and eighty-three thousand and has coordinates of 4o 26’N 7o 10'E. It 

comprises territorial areas, virgin lands and water taxis.  

The effect of spread factor in GRNN is explored in Part III using data set from Base 

Station (BS)1 while the effect of learning rate parameter in GRNN and MLP ANNs are re-

examined using data set from BS2 in the prediction of signal power loss in a rural area with 

data set from LTE cellular network. The area is a low land topography with land mass of 

376.5 m2 and an estimated population of around six hundred thousand and lies between the 

latitude of 4.990833oN and longitude of 7.054444oE with a tropical wet climate. 

5.1.1. Adaptive Linear Element (ADALINE) 

Adaptive linear element is a linear single layer ANN based on McCulloch Pitts neurons 

that makes use of linear activation function [156]. It comprises of a neuron weight, a bias and 
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a summation function with multiple nodes and each of the nodes takes multiple inputs and 

gives an output. If x  is an input vector to the neural network and n is the number of inputs, w  

and   are the weight vector and a constant respectively and y is the model output, then, the 

output of ADALINE neural network is given as [68]: 

 

Figure 5.1. Architecture of an ADALINE [69]. 

1

n

i i

i

y x w 


                                                    (5.1) 

If x0 and w0 are 1 and θ respectively, then, the output will reduce to: 

0

n

i i

i

y x w


                                                                   (5.2) 

If the learning rate η is a positive constant, y and 0T is the output of the model and the 

target output respectively, the weight is then updated as: 

 Tw w o y x                                            (5.3) 

The ADALINE converges at   
2

0TE y   which is the least square error. The 

supervised learning of ADALINE has some similarities with the multi-layer perceptron 

learning algorithm. However, they have significant differences as shown in Table 5.1.  
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    Table 5.1. Differences between ADALINE and Multi-Layer Perceptron Artificial Neural 

Network [114, 157, 158]. 

Differences ADALINE neural network Multi-layer perceptron (MLP) 

Learning algorithm 

 

Based on the adjustment of the neuron 

weight for each weighted summation of the 

network inputs. The neuron in the network 

takes more than a single input but generates 

one output. 

Uses perceptron rule as the 

learning algorithm where the 

neuron weights and biases are 

trained in a way that a correct 

target is produced on entering of 

the inputs. 

Checks during 

network training 

After every iteration, there are checks if the 

weight works for all the input patterns. 

Weight update after every new 

input pattern, no further checks are 

carried out. 

Accuracy 

It gives information on the suitability of the 

neuron for a given set of input pattern as the 

weights are continuously updated. 

Does not give information on the 

suitability of the neuron as the 

neurons are trained and there is no 

continuous update. 

Learning method 

Does not use derivative of transfer function. 

Instead, it makes use of continuous values 

predicted from the network input to learn 

model coefficient.  This notifies the degree 

of correctness or incorrectness. 

Uses derivative of transfer 

functions in the computation of 

changes in weight or class labels in 

the learning of model coefficient. 

Transfer function Uses linear transfer function like purelin. 

Uses non-linear transfer function 

like logistic sigmoid or hyperbolic 

tangent. 

Network architecture 

A single layer of artificial neurons with 

linear decision boundaries, solves problems 

that are linearly separable. 

 

Network of multiple artificial 

neurons over multiple layer which 

creates complex non-linear 

decision boundaries that permits 

solving of problems that are not 

linearly separable. 

5.1.2. Radial Basis Function (RBF) Network  

Radial basis function networks are generally made up of fixed three-layer architecture 

[159]. These are the input layer which have one or more predictor variables with each variable 

associated with a separate neuron, hidden layer which contain many numbers of neurons, and 

output layer. The input layer supplies the network with inputs, the input data is re-mapped by 

the hidden layer to ensure that they are linearly divisible, and output layer carries out the 

linear division [24]. This unique architecture of RBF network establishes that the design is 

organized in three stages: (i) finding the proper size of the network, (ii) finding the proper 

initial parameters, and (iii) finally training the network. Each of the hidden layer neuron has a 

radial basis function centred at a point. This depends on the dimensionality of the input-output 

predictor variables [160]. Also, each of the neuron has a weight, hidden layer values are 

multiplied by associated weight and transmits to the summation that sums the weighted 

values, thereafter hands it over to the network output.  
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Figure 5.2 .Architecture of a Radial Basis Function Network [161]. 

 

On the input to the hidden unit N, input weights wh is weighted by input vector i  [162]: 

1 1 2 2 1 1, 1 ,, , .. ..h h h h

N N N m m N m m NS i w i w i w i w  
                     (5.4) 

where m and N are the input index and the hidden units index respectively, im is the mth 

input, wh
m,N  is the input weight between m and the hidden unit N.   

The hidden unit output is computed as [68]:  

N

2
|| S | ||

exp N
N N

N

C
S



  
   

  


              (5.5) 

where φN, CN and σN are the activation function of hidden unit N (usually selected as 

Gaussian function), the centre of hidden unit N and the width of hidden unit N, respectively. 

The output unit or index M is given as: 

  0 0

, 0,

1

N

M N N N M M

n

O S W W


 
              (5.6) 

where W0
N,M and  W0

0,M are the output index, the output weight between hidden and output 

unit and the bias weight of output unit, respectively.  



89 

 

From the Eq.(5.6), the key parameters are: input weight matrix Wh, output weight 

matrixW0, centre matrix c and the vector width σ. The input weights are usually set as 1. The 

weights of output can be adjusted using simple linear least square technique which also works 

for non-linear cases. The non-linear performance of output unit is iteratively improved by the 

use of linear square method [163].The output weights, the widths and the centres can be 

adjusted during the training process using first order gradient methods. However, they require 

longer  convergence time with limited search ability [161].  

5.1.3 Generalized Regression Neural Network (GRNN) 

Generalized regression neural network is a distinctive case of RBN with two hidden 

layers: (i) radial basis layer and (ii) unique linear layer [164]. These are known as the pattern 

and the summation layers. There is no specific requirement for iterative training as required 

by backpropagation ANN models, every arbitrary function between input and output vector is 

approximated, thereby estimating the function directly from training data [165, 166]. The 

GRNN neural network is a representation of an improvement on the technique in neural 

networks based on non-parametric regression. The essence is to have all training samples 

represent a mean to the radial basis neuron [164]. The architecture of GRNN is made up of 

input, pattern, summation and output layer as shown in figure 5.3.  

 

Figure 5.3. Architecture of a Generalized Regression Neural Network [98]. 
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The neurons are fed to pattern layer through input layer where the Euclidean distance 

and activation function are calculated. These are fed to summation layer which is made up of 

two sub-divisions: (i) denominator and (ii) numerator. The numerator controls the summation 

of the multiplication of output training data while the denominator sums all activation 

functions [167]. The summation layer feeds output layer which computes network output by 

division of numerator of summation layer by the denominator. The GRNN also has a 

parameter known as “spread factor” which is input vector distance from the neuron weight 

[98].  
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                                                     (5.7) 

   2 T

i i id x x x x                                                              (5.8) 

where x, xi yi and n are input sample, training sample, output of training sample and 

number of training data, di
2, e-(di2/2σ2) and Y(x) are Euclidean distance, activation function 

(which is theoretically the weight of input) and prediction value of input samples, 

respectively.  

5.2. Artificial Neural Network Learning 

Artificial neural networks usually learn by recognizing the pattern or trend of data set 

during the training phase. Once it learns, it proceeds to production phase where it gives an 

independent output result. They learn by means of different learning paradigms such as 

learning algorithms and learning guidelines. When the learning and production phases are 

discrete, ANN is known as discrete network but network with continuous learning to 

production phase is known as dynamic network system [168]. 

Also, in all node of a constructed neural network model, a transfer function is required. 

There are different types of transfer functions and the choice of an appropriate transfer 

function for a given model is essential, however, there are no strict rules to the choice of a 
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transfer function. The neural network architecture, the task to be performed by the neural 

network and the learning paradigm are crucial in the choice of a good transfer function [169] .  

5.2.1. Learning archetypes 

Artificial neural network learning can be supervised, unsupervised or combination of 

the two (hybrid learning) [170]. A learning rule known as model that addresses the type of 

technique to be applied during network training of the system to achieve expected output is 

adopted during neural network training. Every learning rule provides diversity of possible 

learning algorithm to be adopted. Learning algorithm is a mathematical method applied in 

updating weights during the training iteration. The process of creating a learning algorithm 

requires a well described training and validation protocol so as to ensure an accurate and 

robust system prediction [104, 171]. The rate of learning during network training known as 

learning rate caters for the problem that arises because of excess training samples which 

causes neural network’s inability to give a valuable generalization. This also occurs when 

neural network architecture is made up of too many neurons that lead to tedious volume of 

computation which exceeds the vector space dimensionality. 

Learning rate is parameter for neural network training that controls size of weight and 

bias changes during training. It is simply the fastness of network in abandoning old belief for 

a new one. Generally, there is need for a learning rate that is small enough for useful 

convergence of network and high enough that training of network doesn’t take so long [172].  

Therefore, in updating the weight wik by gradient descent, a learning rate η must be 

selected. The change in weight added to the old weight is equivalent to the product of the 

learning rate and the gradient descent multiply by -1.    

   kk

ik

i k

E
O

w
w   




                                          (5.9) 

The essence of the -1 is for updating in the minimum direction of error function and not 

the maximum. Hence, to prevent oscillation such as connection weight alternation inside the 

network and improve convergence rate, an adaptive learning rate is used as a modification of 

gradient descent backpropagation [173].   
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5.2.2. Momentum Parameter 

The momentum parameter is applied in preventing a neural network system from 

converging to a saddle point or local minima. It simply adds a fraction of previous weight to 

the present weight. High momentum parameter helps to increase the convergence speed of the 

network system, however, momentum that is too high, creates the risk of system overshooting 

the minima thereby causing instability of the system. On the other hand, very low momentum 

slows down the training of the network system and cannot dependable prevent local minima 

[174].  

In applying momentum (also known as a variable inertia term), gradient descent and 

last changes in weight can be weighted in a way that the adjustment of the weight in addition 

is dependent on the preceding change. A ‘0’ momentum results from alteration of the gradient 

while a momentum of ‘1’depends on the last weight change.  

     1 1ik ikw wt t                                              (5.10) 

where wik (t+1) is the connection of k and i neurons at time (t+1), ∆wik (t+1) is the 

change in weight, η, δk, 0i and α are learning rate, error signal of neuron k, neuron i output and 

the inertial term. 

Momentum is dependent on present weight change (t+1), together with present gradient 

of error function and changes in weight from the previous point in time. It resolves the 

problem of getting stuck in steep ravines and flat plateau by deceleration of gradient descent 

as it gets small in flat plateau to ensure quicker escape.  

5.2.3. Delay Parameter 

The delay parameter enhances the recognition of pattern place i.e. the time invariant by 

storing older activation and connection values of feature elements [175]. This is carried out by 

re-copying of feature elements with every out going connection in every time step before the 

update of the original elements. The totality of the number of time-steps saved by the 

procedure is known as delay.  
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5.2.4. Activation Functions 

The input data set to the ANN are transformed using activation functions to ensure that 

data are within a controllable range [176]. Activation functions are located only in hidden and 

output neurons as inputs are already scaled, thus no transformation is required in the layer. 

Once input data are transferred to hidden layers, multiplied and summed by weights, they tend 

to be off the initial scale. The activation function ensures they are within acceptable and 

useful range to be transferred to the neurons of the next layer. There are linear and non-linear 

activation functions, however, non-linearity of activation function permits a universal 

approximation of neural network as the function becomes continuously differentiable which is 

vital for optimization methods based on gradient descent [177]. This permits an effective 

backpropagation of errors all through the network. Different types of activation functions are 

available; however, this research work examines the performance of two common non-linear 

and one linear activation functions: the hyperbolic tangent, logistic sigmoid and purelin 

activation functions. 

5.3. Precept of Artificial Neural Network 

The ability of ANN weights to converge at a point for an adequate operation on a data 

sets is known as generalization [74]. The training instances, network configuration and 

complexity of the problem to be solved usually determine the ability of network to generalize 

well. The architecture and the size of network training set also contribute to network 

generalization performance. The network architecture is expected to be in harmony with 

underlying physical complexity of the problem to impact on the training procedure. In view of 

a given training set size, the neuron numbers for realization of the training data should be 

equivalent to training instances. An over-sized network results to memorization of training 

data and poor generalization as network must be complex enough to draw decision boundaries 

to solve the problem. Hence, keeping the network size as low as possible reduces transmission 

overhead. Over learning in course of network training also give rise to poor generalization, 

however, this can be minimize by the use of different training techniques [67, 178], such as 

early stopping mechanism, choosing the appropriate hidden layer neurons and Bayesian 

regularization approach.  
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In application of early stopping technique, the data is divided into three sets: training, 

testing and validation  sets and the course of training is stopped as soon as there is emergence 

of over-training signs which starts the worsening of network prediction accuracy. In utilizing 

the method of selection of appropriate hidden layer neurons, cross validation scheme are used 

while observing the ANN mapping accuracy as the number of neurons are varied [74]. 

Bayesian regularization approach reduces the problem of poor generalization or over-fitting 

by considering network architecture as well as goodness-of-fit. It entails modification 

function of network which caters for better network generalization. While early stopping 

method reduces the variance, it leads to increase in bias. However, both the variance and the 

bias can be reduced using Bayesian regularization approach [179]. This is as a result of 

expansion of the objective function by adding Es with the sum squares of neuron weights in 

the network to penalize huge weight that might be introduce so as  to get an even mapping. 

d sF E E  
     (5.11) 

where β and α are enhanced in the framework of Bayesian regularization [180]. α is the 

decay rate, α << β results to algorithm yielding smaller error while α >> β emphasizes 

reduction in size of the weight at the cost of the network error thereby giving rise to network 

with an even response [155, 181]. Ed is  a decisive factor. 

5.4. Results and Discussions of this Work 

The simulation results of this work obtained from training the different ANN 

architectures in comparison to MLP architectural network are discussed: 

5.4.1. Analysis of Different Training Approaches 

The measured data are collected through a drive test from a metropolitan area. The 

measurement setups are a laptop and two Samsung Galaxy mobile handsets (Model-SY 4) 

installed with Test Mobile System (TEMS, 15.1 version) software, network scanner, Global 

Positioning  System (GPS), power inverters, test cables,compass, digital map of the area and a 

vehicle for the drive test. Drive test started from choosen base station transmitting at 1900 

MHz operating frequency and captures the signal power at various distances from LTE 
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cellular network. Transmitter antenna and reciever antenna parameters used for the 

experiments are as follows: transmitter power (43 dB), transmitter antenna height(34 m) 

reciever antenna height(1.5 m) reciever antenna gain(18 dBi). Training set are made up of 

1,176 data which are collected at various measurement of signal power across different 

distances from the choosen BS.  

MATLAB programs are written and run in ANN training tool box (nntraintool) in 

MATLAB 2013a for RBF ANN and MLP ANN with one hidden layer using the measured 

data as input to the ANNs. In course of network training, using the approach of variation of 

neuron number in hidden layer, 100% of the data are used for training and the neurons varied 

from 10, 20, 30, 40, 50, 60 and 70. Applying early stopping approach, 80% of the data are 

used for training, 10% are used for testing and 10% are used for validation and the neuron 

number with the smallest error during variation of neuron in hidden layer used. Employing 

the third approach of Bayesian regularization, 90% of the data are used for training and 10% 

for validation. The neural network is trained  for an average of ten  runs and the result with 

the least error taken. This is to ensure the network  has learnt the pattern the signal propagates 

after many runs on training set and a predictive ability developed.  

Sigmoid transfer function is used with Bayesian regularization training algorithm and 

the training process made more effective by normalizing the input i.e. data set to lie about 

zero mean and unity standard deviation using excel spread sheet as state in Eq. (4.37) of 

chapter 4. The results from the three different ANN training techniques are measured and 

analysed in terms of RMSE, MAE, SD and r. The results are presented in Table 5.1, 5.2 5.3 

and 5.4 respectively. The values with the highest prediction accuracy are highlighted in bold 

and black colour in Table 5.1 and 5.2. 

From the network performance results in Table 5.1, 40 neurons in hidden layer of MLP 

network shows the least RMSE, MAE, SD and the highest r.As the neurons increases above 

40, there is re-occurrence and increase in prediction error as observed with neurons fewer than 

40 in hidden layer. Therefore, MLP network performs more effectively with moderate hidden 

layer neurons, fewer and many neurons result to poor network generalization. Different 

observation are made with RBF network as presented in Table 5.2. 
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Table 5.1. Results of neuron variation in MLP hidden layer 

Training 

function 

 

 

 

 

 

(trainbr) 

Parameters for comparison 

No of 

neurons 

Epoch 

(E) 

(1000) 

Training 

time (s) 

RMSE MAE SD r 

 

10 429 10 2.7988 2.2255 1.6972 0.9783 

20 892 23 2.3202 1.8514 1.3984 0.9854 

30 1000 30 2.2010 1.7291 1.3618 0.9867 

40 1000 34 1.9148 1.4875 1.2058 0.9900 

50 1000 41 2.1490 1.3584 1.4798 0.9873 

60 1000 49 2.1957 1.3833 1.7060 0.9867 

70 1000 145 2.3580 1.4607 1.8511 0.9849 

Table 5.2. Results of neuron variation in RBF hidden layer 

Training 

function 

 

 

 

 

 

(trainbr) 

Parameters for comparison 

No of 

neurons 

Epoch 

(E) (1000) 

Training 

time (s) 

RMSE MAE SD r 

 

10 644 12 7.4142 5.8336 4.5760 0.8356 

20 1000 22 4.6320 3.6137 2.8976 0.9393 

30 1000 25 2.7550 2.2073 1.6486 0.9789 

40 1000 29 2.3878 1.9169 1.4237 0.9842 

50 1000 33 2.1454 1.7002 1.3085 0.9873 

60 1000 38 1.9095 1.4920 1.1917 0.9899 

70 1000 44 1.6921 1.3059 1.0760 0.9921 

Table 5.3. Results MLP and RBF network training using early stopping approach 

Parameters for comparison Training function (trainbr) 

MLP RBF 

Neuron number  in the hidden layer 

with best prediction 

40 70 

Epoch (E) (1000) 1000 1000 

Training time (s) 28 44 

RMSE 1.7868 1.6921 

MAE 1.3658 1.3059 

SD 1.1520 1.0760 

r 0.9912 0.9921 
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Table 5.4. Results of MLP and RBF network training using Bayesian Regularization approach 

Parameters for comparison Training Function (trainbr) 

MLP RBF 

Neuron number  in the hidden layer with 

best prediction 

40 70 

Epoch (E) (1000) 1000 1000 

Training time (s) 28 44 

RMSE 1.8027 1.6921 

MAE 1.4196 1.3059 

SD 1.1111 1.0760 

r 0.9911 0.9921 

 

The RBF network predicted the system effectively with large number of hidden layer 

neurons. As the network gets complex, the prediction accuracy increases and RMSE, MAE, 

SD reduces while r increases. The best prediction are recorded at 70 neurons in hidden layer 

and RBF network also demostrates faster learning of the pattern the signal propagates without 

several runs before the stabilization of such learning. However, there is significant increase in 

training time to train network as the number of neurons in hidden layer increases in 

comparison to MLP ANN. Figures 5.4(a,b&c) show MLP training output results of 10, 40 and 

70 neurons in hidden layer which are the best and worst prediction performances while 

figures 5.5(a,b&c) show the RBF network training with 10, 40 and 70 neurons in hidden 

layer.  
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(c) 

Figure 5.4. Prediction with Bayesian regularization algorithm in MLP network (a) 10; 

(b) 40; and (c) 70 neurons in hidden layer 
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 Measured data

Prediction using RBF network with 70 neurons in the hidden layer

 
(c) 

Figure 5.5. Prediction with Bayesian regularization algorithm in RBF network (a) 10; 

(b); and 40 (c) 70 neurons in the hidden layer 

In applying the early stopping approach during the network training, the neuron with 

the least prediction errors during neuron variation in hidden layers of MLP and RBF ANN are 

used: 40 and 70 neurons in hidden layer of MLP and RBF networks respectively. Radial basis 

function network gives the best prediction output with the least RMSE, MAE, SD and highesr 

r than the MLP network. However, it took significantly longer training time than the MLP 

network. Figures 5.6 and 5.7 show the  graphical results obtained using early stopping 

approach. 

Application Bayesian regularization approach shows no clear difference in the errors 

seen from the RBF network in comparison to that obtained using early stopping approach. 

However, there is slight error difference in comparison to early stopping approach in MLP 

network.   
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Figure 5.6. Prediction using early stopping approach in RBF network 
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Figure 5.7. Prediction using early stopping approach in MLP network 



102 

 

5.4.2. Analysis of Effect of Learning Rate  

The data set are collected via a drive test from an Island comprising of territorial areas, 

virgin lands and water taxis. The measurement setups are as stated in first section of this 

chapter. The training set are made up of 1,036 data collected at various measurement of signal 

power across different distances from the choosen BS. The neural network architecture of 

ADALINE and MLP networks has been trained using Bayesian regularization algorithm with 

written MATLAB programs of ADALINE and MLP and implemented using ANN toolbox 

(nntraintool) in MATLAB 2013a. To ensure there is no bias in the order of presentation of 

data pattern to ANNs, measured data has been normalized in excel spread sheet. Applying 

Bayesian regularization approach, 90% of the data are used for training while the remaining 

10% are used for validation. The performance of the ADALINE and MLP models in the 

prediction of the signal power has been measured in terms of RMSE, SD, MAE and r. These 

performance metrics are used to measure error between measured values and predicted values 

using different values of learning rate on the MLP and ADALINE network with ADALINE 

having an input delay of 1:5. The gradient and momentum parameter for ADALINE and MLP 

ANNs have also been analysed at different learning rate. Finally, the performance of different 

combination of linear and non-linear transfer function in hidden and output layers of 

ADALINE and MLP ANNs are analysed. The results are presented in Table 5.5 to Table 5.8.  

A small learning rate of 0.1% with ADALINE network gives minimal error than the 

MLP network as shown in Table 5.5, however, the gradient is 0.66707 with momentum of 

0.05 as shown in Table 5.6, this is slope movement beyond the optimal that may result to 

network overshoot. These are graphically shown in figures 5.8 and 5.9 respectively. At 0.1% 

learning rate, the gradient of MLP network is 0.31436 with a momentum of 0.005 which is a 

slope movement towards the optimal i.e. the local minima. Better momentum value as seen 

with MLP network helps to increase convergence speed of the network. Increased learning 

rate to 0.9% leads to a better prediction ability of MLP network than that of ADALINE. 

However, the gradient increases to 0.44194 with a momentum of 0.05 while the gradient of 

ADALINE reduces to 0.074406 with a momentum of 0.05. These are graphically shown in 

figures 5.10 and 5.11 respectively. Therefore, with increase in learning rate, high gradient 

parameter as seen will result to fast network convergence, however, this may also lead to 
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system overshoot. Gradient descent shows an effective use in determining optimal weights by 

assisting in search of optimal value of a cost function.   

Table 5.5. Training Result of MLP Network and ADALINE with 1:5 input delay 

Artificial 

neural 

networks 

parameters for 

comparison 

ADALINE with input delay 

(Learning rate %) 

Multi-Layer Perceptron  

with no input delay 

 (Learning rate %) 

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 

Correlation co-

efficient (r) 
0.9905 0.9910 0.9894 0.9883 0.9877 0.9884 0.9896 0.9907 0.9911 0.9915 

RMSE 1.8610 1.8121 1.9660 2.0610 2.1184 2.0537 1.9399 1.8627 1.8055 1.7525 

MAE 1.4746 1.3771 1.5270 1.5868 1.6771 1.4473 1.5197 1.3946 1.3722 1.3900 

SD 1.1354 1.1778 1.2383 1.3152 1.2941 1.4571 1.2057 1.2348 1.1733 1.0673 

Training Time 28 28 30 30 28 29 28 28 28 28 

Epoch Iteration 

(1000) 
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Table 5.6. Gradient and Momentum parameters for ADALINE and MLP at different learning 

rate 

 

Learning rate 

(%) 

                      Gradient     Momentum Parameter 

     ADALINE Multi-Layer 

Perceptron 

ADALINE Multi-Layer 

Perceptron 

0.1 0.66807 0.31436 0.050 0.005 

0.3 0.06772 0.38942 0.050 0.005 

0.5 0.69185 0.40904 0.050 0.050 

0.7 0.05764 0.42981 0.050 0.050 

0.9 0.07441 0.44194 0.050 0.050 

Table 5.7. Performance of the MLP network with different combination of transfer functions 

The first term denotes hidden layer transfer function while the second term denotes 

output layer transfer function.  

Multi-Layer Perceptron Network 

Transfer Function RMSE SD MAE r 

logsig,logsig 2.0244 1.4199 1.4430 0.9887 

logsig,tansig 1.9760 1.2377 1.5402 0.9892 

tansig, logsig 1.8671 1.1275 1.4882 0.9904 

logsig,purelin 2.2009 1.5020 1.6087 0.9866 

tansig,purelin 2.1007 1.4353 1.5340 0.9878 
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Table 5.8. Performance of ADALINE with linear and non-linear transfer functions 

ADALINE 

Transfer Function RMSE SD MAE r 

logsig 2.1457 1.3746 1.6475 0.9874 

tansig 2.3167 1.5182 1.7499 0.9853 

purelin 1.8846 1.2139 1.4416 0.9903 

 

The performance of ADALINE and MLP network with different non-linear and linear 

transfer functions during network training has been shown in Tables 5.8 and 5.9. Purelin 

transfer function in ADALINE shows the least errors because it is a linear transfer function 

which is most appropriate for a linear neural network such as ADALINE. The combination of 

different transfer functions in hidden and output layer of MLP network show the least 

performance error with combination of hyperbolic tangent and logistic sigmoid in hidden and 

output layers respectively.  

    

 

Figure 5.8. Prediction graph and training state of ADALINE at 0.1% learning rate 
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Figure 5.9. Prediction graph and training state of MLP Network at 0.1% learning rate. 

 

  

Figure 5.10. Prediction and training state of ADALINE at 0.9% learning rate 
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Figure 5.11. Prediction and training state of MLP Network at 0.9% learning rate. 

 

5.4.3. Analysis of Effect of Spread Factor in GRNN and Effect of Learning 

Rate in GRNN and MLP ANN 

Data are collected from two base stations, BS1 and BS2 from a micro-cell LTE cellular 

network in a sub-urban environment with a low land topography that has a land mass of 376.5 

m2 and an estimated population of around two million. The area has a tropical wet climate and 

lies between the latitude of 4.990833oN and longitude of 7.054444oE. Data are collected via a 

drive test and the measurement setup is as described in first section of this chapter with a 

digital map of the area used during the drive test. All the measurements are conducted from 

different sector of BS that transmits at 1900 MHz. The information on the cell file is provided 

by the mobile network provider. The measured signal power gotten at different distances 

serves as data set and input to the GRNN and MLP network during the network training.  

A MATLAB program for GRNN and MLP ANNs are written and implemented in 

MATLAB 2013a using ANN toolbox (nntraintool) with seven 1,020 and 1,541 real world 

measured data from BS1 and BS2 respectively. Early stopping approach has been used during 

the learning process with 80% of the data set used for training, 10% for testing and the 

remaining 10% for validation. The GRNN and MLP neural networks are trained using 

Bayesian regularization training algorithm. The performance metrics: RMSE, MAE, SD and r 
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are used to analyse the prediction performance of GRNN and MLP ANN at different variation 

of learning rate parameter. The effect of spread factor in GRNN is also analysed using 

measured data from BS1 while the effect of learning rate on ANNs are re-examined on 

GRNN and MLP ANNs using measured data from BS2. The results are presented in Tables 

5.9, 5.10 and 5.11 respectively. 

Table 5.9. GRNN results using different spread factor 

Spread 

factor 

variation in 

GRNN 

RMSE SD MAE r 

0.5 0.1559 0.1500 0.0426 0.9997 

1.0 0.6302 0.5954 0.2064 0.9954 

2.0 1.2179 1.0468 0.6226 0.9829 

3.0 1.6684 1.2343 1.1225 0.9678 

4.0 2.0104 1.4042 1.4388 0.9528 

5.0 2.2459 1.5413 1.6336 0.9406 

6.0 2.4328 1.6541 1.7840 0.9299 

7.0 2.5980 1.7670 1.9045 0.9196 

8.0 2.7458 1.8686 2.0119 0.9096 

9.0 2.8745 1.9544 2.1079 0.9003 

10.0 2.9833 2.0272 2.1887 0.8918 

11.0 3.0732 2.0816 2.2608 0.8848 

12.0 3.1465 2.1267 2.3289 0.8787 

13.0 3.2059 2.1647 2.3647 0.8736 

14.0 3.2542 2.1929 2.4048 0.8694 

Table 5.10. Variation effect of learning rate  parameter in GRNN                                                                 

Generalized regression neural network (GRNN) 

Learning 

rate (%) 

RMSE MAE SD r 

0.2 0.5187 0.2234 0.4681 0.9993 

 0.4 0.9770 0.6463 0.7326 0.9974 

0.6 1.4187 1.0890 0.9093 0.9945 

0.8 1.7306 1.3534 1.0786 0.9918 

1.0 1.9489 1.5329 1.2036 0.9895 

1.2 2.1171 1.6714 1.2995 0.9876 

1.4 2.2511 1.7876 1.3682 0.9860 
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Table 5.11. Variation of learning rate parameter in MLP network 

                                   

 

 

 

 

Table 5.9 shows prediction results using different values of spread factor. Large spread 

factors result in high prediction error even when a small learning rate is correspondingly 

applied, while a small spread factor results to minimal error. However, small spread factor 

leads to a steep radial basis function, but with increase in the spread factor, the slope of the 

radial basis function becomes smoother thereby making many neurons respond to an input 

vector as shown in the error histogram with 20 bins of figures 5.12 (b) and 5.13 (b). The 

prediction performance of 0.5% spread factor and 14% spread factor which give the minimal 

and the highest prediction performance errors are shown in figures 5.12 (a) and 5.13 (a) 

respectively.  

Training GRNN with a small learning rate results to minimal prediction errors which 

eventually result to good network convergence and generalization as shown in Table 5.10. 

Measuring network performance in terms of performance metrics used, the least prediction 

errors with the highest correlation coefficient is seen at learning rate of 0.2%. The prediction 

errors increase as learning rate increases with learning rate of 1.4% giving the highest 

prediction error. These are graphically represented in figures 5.14 (a & b), 5.15 (a& b) 

respectively. 

Multi-layer perceptron (MLP)neural network 

Learning rate 

(%) 

RMSE MAE SD r 

0.2 2.0222 1.5465 1.3029 0.9888 

0.4 1.9374 1.5303 1.1883 0.9897 

0.6 1.8844 1.4668 1.1830 0.9902 

0.8 1.8654 1.4538 1.1687 0.9904 

1.0 1.8267 1.4206 1.1485 0.9908 

1.2 1.9231 1.4685 1.2417 0.9899 

1.4 2.0248 1.5274 1.3292 0.9887 
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(b) 

Figure 5.12. (a) Effect of spread factor of 0.5, (b) Error Histogram with 20 bins for 

spread factor of 0.5 in GRNN 
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(b) 

Figure 5.13. (a) Effect of spread factor of 14, (b) Error Histogram with 20 bins for 

spread factor of 14 in GRNN 
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(b) 

Figure 5.14. (a) Prediction at 0.2% learning rate, (b) Error Histogram of at 0.2% 

learning rate in GRNN 
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(b) 

Figure 5.15. (a) Prediction at 1.4 % learning rate, (b) Error Histogram at 1.4% learning 

rate in GRNN 
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Figure 5.16. (a) Prediction at 1.0 % learning rate, (b) Error Histogram at 1.0% learning 

rate in MLP neural network 
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Figure 5.14 (a) shows a well-trained network at 0.2% learning rate which effectively 

predicted the measured data in comparison to figure 5.15 (a) which is trained with a learning 

rate of 1.4%. Thus, the GRNN gives minimal prediction error with learning rate of 0.2%, 

training 17 out of 20 data in error histogram with 20 bins as shown in figure 5.14 (b). Only 3 

out of the 17 trained data in the error histogram are not tested. Error histogram graph of figure 

5.15 (b) shows trained and tested 9 out of 20 data in the error histogram with 20 bins at 

learning rate of 1.4%. The remaining data are either not trained or only tested. 

However, the results are different with MLP neural network as very small learning rates 

result to poor network generalization with high prediction errors and low correlation 

coefficient. Learning rate of 1.0% gives best generalized network with a minimal prediction 

errors and high correlation coefficient. This is shown in figures 5.16 (a). As the learning rate 

increases above 1.0%, the prediction error starts to increase with display of poor network 

generalization just as observed with small learning rate.  

Figure 5.16 (b) is the error histogram of MLP neural network at 1.0% learning rate 

which gives minimal errors with highest correlation coefficient as learning rate are varied 

from 0.2% to 1.4%. The error histogram shows that out of data in the error histogram with 20 

bins, 14 measurement data are trained and tested while the remaining data are either not 

trained or only tested.  

5.5. Chapter Summary 

The performance of three different ANN architectures: (i) RBF, (ii) ADALINE and (iii) 

GRNN has been analysed in comparison with MLP ANN in the prediction of signal power 

loss using real world measured data from LTE cellular environment from metropolitan, Island 

and sub-urban areas. Three different training approaches to avoid poor generalization and 

overcome the tendencies of over-fitting during network training are analysed in RBF ANN 

and MLP ANN respectively. The learning rate parameter is varied during the ANN training, 

while analysing the effect of the different values on ADALINE and MLP ANN architectures. 

Also, the effects of different values of spread factor are analysed in GRNN using data set 

from BS1, and data from BS 2 are used in re-training GRNN and MLP ANN while analysing 
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the effect of different values of learning rate parameters on the network architectures. The 

performance results are measured in terms of RMSE, MAE, SD and r.  

The performance of RBF ANN and MLP ANN using different techniques during 

network training are analysed in the first section. These are variation of neuron numbers in 

hidden layer, early stopping technique and Bayesian regularization approach. The MLP ANN 

shows an effective prediction performance with 40 neurons in hidden layer while further 

increase in the number of neurons leads to poor network generalization. Thus, MLP network 

shows capability of modelling a moderate size propagation network and for more complex 

networks, intermediary layers or network modifications are required.  

For RBF ANN, the generalization ability of the network increases as network gets more 

complex with 70 neurons in hidden layer giving the best prediction with minimal error. 

Training RBF network using early stopping approach gives better prediction with minimal 

errors in comparison to neuron variation in hidden layer and Bayesian regularization in MLP 

ANN. However, in RBF network training, there is no difference in errors obtained using early 

stopping approach and Bayesian regularization approach. RBF ANN models appropriately a 

complex network without signs of over-fitting, and, because of its fixed three-layer 

architecture, there is no poor generalization resulting from architectural complexity which 

Bayesian regularization approach tackles. 

ADALINE and MLP ANN models are analysed in section two considering prediction 

error between actual measurement and prediction values. The gradient and momentum 

parameters of the two networks are checked at different variation of learning rate. The 

ADALINE shows minimal prediction error at 0.1% learning rate but has the best gradient of 

0.074406 which approximates to local minima at 0.9% learning rate. The reverse is seen in 

MLP ANN as its minimal prediction error is at learning rate of 0.9% but the gradient is farther 

from the local minima at 0.9% learning rate. Therefore, there is need for appropriate choice of 

learning rate that will be high enough to increase network convergence, but not too high to 

result to over-fitting. Furthermore, training the two ANN network with different combination 

of linear and non-linear transfer functions shows effective performance of hyperbolic tangent 

and logistic sigmoid in hidden and output layers of MLP ANN. Purelin transfer function 

performs best with ADALINE network. 
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Finally, section three analysed the effect of spread parameter in GRNN and effect of 

learning rate parameter in GRNN and MLP network. The GRNN and the MLP neural network 

are trained using Bayesian regularization training algorithm and 40 neurons in hidden layer. 

The data set from BS1 are used to analyse the effect of spread factors in GRNN model during 

network training. The data from BS2 are used to re-examine the performance of learning rate 

variation in GRNN and MLP ANN considering their prediction accuracy. The results show a 

good performance of GRNN with a small spread factor of 0.5, however many neurons did not 

respond to the input vector at small spread factor of 0.5, resulting to a steep radial basis 

function. The GRNN also demonstrates good prediction ability with small learning rate of 

0.2% which results in good network convergence that shows good generalization ability by 

training and testing 85% of data in the error histogram with 20 bins, leaving only 15% 

untrained, however, it took longer training time in comparison with MLP neural network. The 

MLP network trained 70% of data in the error histogram with 20 bins while leaving 30% 

untrained at a learning rate of 1.0%. Nevertheless, the training time required for MLP network 

is very short which even shows drastic reduction as the learning rate increases.  

This study reveals the need for proper optimization techniques and strategies in training 

ANN as it has great influence in prediction output. The different ANN architectures and 

parameters play vital roles in effective prediction of training set and appropriate selection of 

these parameters in line with the complexity of the problem ensures an improved output 

result.   
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CHAPTER 6 

DEVELOPMENT OF ENHANCED ADAPTIVE ANN 

MODELS FOR THE PREDICTION OF        

ROPAGATION PATH LOSS 

 

The need for proper optimization techniques to ensure error minimization using 

Artificial Neural Network (ANN) models for the prediction of signal power loss during 

electromagnetic signal transmission from transmitter to receiver has been established in the 

previous chapters. In this chapter, two different ANN models have been proposed, developed 

and analysed for predicting signal power loss between transmitter and receiver with minimal 

error. 

Firstly, an adaptive neural network predictor that combines Multi-Layer Perceptron 

(MLP) and Adaptive Linear Element (ADALINE) ANNs is proposed for enhanced signal 

power prediction in micro-cellular outdoor environments. The prediction accuracy of the 

proposed hybrid adaptive neural network predictor has been tested and evaluated using real 

life measured data acquired from Long Term Evolution (LTE) radio network environment 

with mixed residential, commercial and cluttered building structures. The prediction accuracy 

of the model in comparison to standard MLP ANN is measured in terms of Root Mean 

Squared Error (RMSE), Mean Absolute Error (MAE), Standard Deviation (SD) and 

Correlation Coefficient (r). 

Secondly, a resourceful predictive model, built on MLP network with vector order 

statistic filter based pre-processing technique for improved prediction of measured signal 

power loss in micro-cellular LTE network environments is proposed and developed. The 

predictive model is termed Vector Median Filters Multi-Layer perceptron (VMF-MLP). The 

prediction performances of the standard MLP network and Vector L filters built on MLP 

(VLF-MLP) in comparison to the VMF-MLP are measured in terms of RMSE, MAE, SD and 

r.  
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6.1. Introduction 

In the design and placement of radio Base Station (BS) transmitters, accurate field 

signal power prediction and modelling is of critical importance. Efficient coverage planning 

plays an important role in reducing both OPerational EXpenditure (OPEX) and CApital 

EXpenditure (CAPEX) when deploying and expanding existing cellular communication 

systems. Particularly, it assists in providing good link and service quality at the receiving User 

Equipment (UE) mobile terminals. A vital phase in coverage planning concerns accurate 

prediction of signal coverage or signal propagation Path Loss (PL) between transmitter and 

receiving UE mobile terminals [182].  

Consequently, the provision of an adaptive modelling tools and algorithms which could 

emulate the real characteristics of radio cellular network environment and predict radio signal 

coverage loss with less error could be of enormous assistance to radio frequency cellular 

network planners and network service providers as well. Given the above context, good 

number researchers in the field wireless cellular communication have turned their focus to the 

use of Machine Learning (ML) architecture and algorithms. This is with the goal of exploring 

the enhanced training and learning capability of ML tools to automatically examine the 

properties of systems under study and adapt to them. 

One of this ML tools is ANNs, which possess mapping and generalization capabilities 

that enable it to predict new results from past outcomes. There exist many ANN architectures 

for solving various functional approximation problems. These include the Multi-Layer 

Perceptron (MLP) ANN, Radial Basis Function (RBF) ANN, Adaptive Linear Element 

(ADALINE), Generalized Regression Neural Network (GRNN), etc. as discussed in chapter 

5. However, one of the most popular and common used neural network architecture for 

functional approximation problems in literature as contain in many research works is the MLP 

[183-186]. 

The MLP ANN belongs to a well-known group of neural networks structure known as 

the feedforward neural networks. The MLP ANN possess many advantages such as scalability 

and simple design, thus it has been employed in solving problems in many research areas like 

radio wave propagation modelling and optimization problems. However, despite possessing 
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these advantages, employing standard MLP ANN poses some key challenges, among which 

are choice of suitable number of hidden neurons and layers for learning, choice of suitable 

learning parameters versus learning rate and choice of training technique, algorithm and 

training time. Also, conventional MLP networks perform poorly in handling noisy data [187-

189], and lack capabilities in dealing with incoherence datasets which contracts with 

smoothness [189]. 

The ADALINE is another suitable type of ANN employed for modelling, adaptive 

prediction, system selection and noise cancellation [190, 191]. Some of the notable 

advantages of ADALINE are fast learning and simple usage. However, ADALINE is a single 

layer of artificial neurons with linear decision boundaries that can solve problems that are 

only linearly separable [114, 157, 158].   

This chapter is organized in two parts: Part I presents the proposed adaptive neural 

predictor that combines ADALINE and MLP ANN while Part II presents the proposed 

combination of non-linear data filtering-based denoising method and MLP neural network 

model termed VMF-MLP for improved prediction of measured micro-cellular signal power 

dataset.   

6.2. Proposed Adaptive Neural Predictor 

In this part of research work, a hybrid neural predictor which combines the ADALINE 

with MLP ANN is employed for optimal signal power prediction in micro-cellular LTE radio 

networks. Related approach has been employed in [191], but for signal noise filtering, 

reduction and prediction in Rayleigh fading channel. Particularly, while Gao et.al. [191] 

concentrated on effective noise reduction in simulated temporal signal data, our focus is 

combining the faster learning capability of ADALINE with MLP for optimal training and 

improved prediction accuracy of realistic spatial signal data. Unlike in [191], the Minimum 

Mean Square Error (MMSE) is considered to solve the neural network structure complexity 

for optimal prediction.   

This research drive is to find an efficient predictive model that combines a linear 

predictor and a non-linear predictor for adaptive prediction of large scale signal power. Also, 
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to find equivalently signal propagation loss with minimal error in any radio propagation 

environment. 

6.2.1. Proposed Artificial Neural Network Architecture 

The respective feedforward neural network architecture of ADALINE (the linear 

predictor) and MLP (the non-linear predictor) are shown in figures 6.1 and 6.2 respectively. 

The z−1 designates the structural delay element to enable the afore-mentioned scale and re-

sample the reference input data at different rate. Assuming that the ADALINE has n input 

nodes x1, x2, x3,.xn which are the signal power sample number to be predicted, the ADALINE 

prediction output can be expressed as:  

 

Figure 6.1. ADALINE neural-network [73]. 
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n
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                            (6.1) 

where xn and wjx are the expected value and weights sum of the linear neural predictor. 

To enhance the neural training structure, the Minimum Mean Square Error (MMSE) 

technique is employed at the input nodes as [192]:  
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where y


 is the nth desired output prediction response. 
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Figure 6.2. Multi-layer perceptron neural-network with one Hidden Layer [65]. 

 

The input data are transmitted through the layers in a forward direction. Figure 6.2 is a 

single (i.e. one) hidden layer MLP neural network architecture and output can be expressed as: 
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where wiq and wjq indicate the respective connection weight and synaptic weight vectors 

in relation to hidden layer neuron-inputs, and from hidden layer-output neuron. xi stands for 

the input vector elements, i =1…. n, fo and fh are the respective output layer and hidden layer 

activation function. The MLP learning and training process entails minimizing the error 

function (i.e. cost function), which can be expressed as:                                         
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where eq = yq – dq, yq and dq indicate desired target output value and actual network value, 

respectively. 
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The set-up of the proposed adaptive hybrid predictor (figure 6.3) is such that the 

measured signal power values are first trained with ADALINE system predictor and the 

resultant output fed into the MLP predictor for further training to deliver optimal prediction 

accuracy. The adaptive hybrid predictor is trained using three different fast backpropagation 

algorithms discussed in chapter 4: (i) Resilient propagation (RP), (ii) Leverberg-Marquardt 

(LM), and (iii) Bayesian regularization algorithms to establish the algorithm that best train the 

hybrid predictor and predict the behaviour of the signal strength with most favourable 

convergence results and performance.   

                                                                     

Figure 6.3. The Proposed Hybrid Adaptive Neural structure. 

 

The field measurements are piloted using LTE cellular networks that operate at 1900 

MHz frequency band between JAN-DEC 2017. A drive-test tools and measurement technique 

as described in chapter 5 are used and some key computer software such as MapInfo, 

MATLAB 2013a and excel spread utilized for post-processing of acquired signal testing log 

files and data analysis. The LTE mobile phones and the HP laptop are both engrained with 

Test Mobile Software (TEMS) which enables it to access, record and extract the signal data 

along the measurement test routes. The Global Positioning System (GPS) and compass are 

used for matching up the Mobile Station (MS) (i.e. user equipment) measurement locations in 

correspondent to field test environment and the Base Station (BS) transmitter. The main LTE 

signal parameter extracted from the drive test log file for ANN prediction analysis is the 

Reference Signal Receive Power (RSRP dB m). This provides signal strength information at 

the UE receiver terminal. The field signal power measurements are carried out in 5 selected 
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locations with special concentration on built-up busy urban streets, roads and open areas with 

mixed residential and commercial building structures. The first 4 locations, i.e. locations 1-4 

are built-up urban terrains with mixed residential and cluttered building structures. The 

remaining 1 location is an uncluttered open urban terrain with many commercial buildings, 

few residential buildings, country motor parks, petrol filling stations and among others. The  

All the written neural network program, simulations and computations are achieved 

using the MATLAB2013a software. To avoid over-fitting, which often reduces ANN 

predictive and modelling capability, the early-stopping technique has been employed. In view 

of that, the data-set are shared into three parts using ratio 75%: 15%: 15% for training, testing 

and validation respectively. The input data-sets are normalized to enhance the generalization 

of ANNs  as expressed [193]. 

       

 
 minmax

min

VV

VV
V o

n




                                                      (6.6) 

where Vo, Vn, Vmax and  Vmin are original value of the parameter, normalized value, 

maximum parameter value and minimum parameter value respectively.  

The results of ANNs prediction accuracy are measured in terms of four statistical 

performance indicators: RMSE, MAE, SD and r. Both MAE and RMSE express the mean 

error magnitude between actual observation and prediction result. The SD articulates the 

measure of dispersion between actual observation and prediction result while r measures the 

strength of relationship between actual observation and prediction result.  

6.3. Results and Discussions of this Work 

To analyse the signal prediction efficiency of the proposed neural adaptive model, five 

different study locations as earlier mentioned are considered. The respective results obtained 

for locations 1 to 5 after employing the various ANN prediction approaches are presented on 

the plotted graphs in figures 6.4 (a, b, c, d & e).  
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(e) 

Figure 6.4.  Proposed ANN prediction output with measurement signal data versus 

distance in location (a) 1; (b) 2; (c) 3; (d) 4; and (e) 5. 

 

In the graphs, blue colour indicates measured signal power data, red and green colours 

indicate prediction made by the proposed ANN model and conventional MLP model 

respectively. The graphs show fluctuation and decreasing signal power as function of the 

measurement distance between UE terminal and BS transceiver, especially in locations 1 and 

3. The phenomenon can be credited to different cluttered environmental factors and multipath 

radio wave propagation mechanisms that act on transmitted signal power, thus resulting to 

huge signal path losses. More importantly, from the displayed plotted graphs in figure 6.4 (a, 

b, c, d & e) it is clear that the proposed adaptive ANN model yielded a better signal prediction 

accuracy with minimal MAE, SD, RMSE and increased r in comparison to the accustomed 

MLP prediction approach. Also, the tabulated result shows prediction with minimal errors 

using Lenvenberg-Marquardt algorithm on ANN architecture in comparison to Resilient 

backpropagation and Bayesian regularization algorithms. 
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The overall performance results are summarized in Tables 6.1 (a, b, c, d & e). For 

clarity and conciseness, only the prediction results using Lenvenberg-Marquardt algorithm are 

represented in the graphs for performance comparison between proposed adaptive hybrid 

neural network predictor and the standard MLP prediction approach. Other results using 

Resilient backpropagation and Bayesian regularization algorithms are all summarized in 

Tables 6.1 (a, b, c, d, & e). 

Table 6.1. Computed performance metrics with MAE, RSME, SD and r for Location (a) 1, (b) 

2, (c) 3, (d) 4, (e) 5.                      

(a) 

Training pattern       MAE RMSE SD r 

MLP with LM 2.427 3.079 1.900 0.930 

MLP with BR 1.937 2.546 1.653 0.941 

MLP with RP 4.382 5.381 3.123 0.791 

Hybrid with LM 2.022 2.730 1.835 0.952 

Hybrid with BR 1.847 2.463 1.623 0.945 

Hybrid with RP 2.550 3.215 1.956 0.906 

 

(b) 

Training pattern       MAE RMSE SD r 

MLP with LM 2.347 3.052 1.951 0.914 

MLP with BR 2.306 2.945 1.832 0.918 

MLP with RP 2.583 3.403 2.216 0.892 

Hybrid with LM 2.031 2.724 1.812 0.932 

Hybrid with BR 2.121 2.742 1.738 0.930 

Hybrid with RP 2.128 2.844 1.886 0.924 

 

(c) 

Training pattern MAE RMSE STD R 

MLP with LM 4.107 6.632 3.414 0.744 

MLP with BR 3.902 5.265 3.522 0.775 

MLP with RP 3.584 5.366 3.144 0.804 

Hybrid with LM 2.493 3.598 2.593 0.909 

Hybrid with BR 3.512 4.986 3.594 0.811 

Hybrid with RP 3.512 4.867 3.428 0.811 
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(d) 

Training pattern MAE RMSE SD r 

MLP with LM 1.850 2.640 1.890 0.933 

MLP with BR 2.410 2.983 1.756 0.914 

MLP with RP 3.193 4.010 2.401 0.853 

Hybrid with LM 1.379 1.993 1.439 0.962 

Hybrid with BR 1.953 2.455 1.488 0.942 

Hybrid with RP 1.889 2.840 2.120 0.926 

 

(e) 

Training pattern       MAE RMSE SD r 

MLP with LM 1.801 2.687 1.995 0.980 

MLP with BR 2.792 3.392 1.925 0.967 

MLP with RP 3.683 4.701 2.921 0.939 

Hybrid with LM 1.815 2.597 1.857 0.981 

Hybrid with BR 2.640 2.909 1.857 0.976 

Hybrid with RP 2.156 2.898 1.936 0.977 

 

Presented in figures 6.5 and 6.6 are plotted regression graphs using the proposed 

adaptive MLP and the conventional MLP prediction approach after network training, 

validation and testing for location 1. The dashed line and the solid line in the two figures 

denote the perfect result and best linear regression fit between targets and outputs.  Noticeably 

from the graphs, a closer value of all r to 1 (i.e. All: r = 0.9506) indicates how better the 

predicted output correlate with the targets using proposed ANN approach over the 

conventional MLP prediction (with All: r = 0.9477). The results summary in Tables 6.1 (a, b, 

c, d & e) for all r also confirm that the proposed approach delivered better prediction accuracy 

in the other 5 study locations. 
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Figure 6.5. Regression coefficient outputs versus targets using the proposed adaptive 

MLP prediction approach in location 1 
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Figure 6.6. Regression coefficient outputs versus targets using the conventional MLP 

prediction approach in location 1. 
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6.4. Review of Vector Order Statistics Filters based pre-processing 

technique 

Recently, some attentions have been drawn to the area of data pre-processing in 

boosting the training effectiveness and prediction fastness of neural network-based 

algorithms. Some of the key data pre-processing techniques includes: sampling (which opt for 

a subset representation of a bulky datasets), normalization (which standardizes data for a 

better access), denoising (which succors in removing noise from datasets) and transformation 

(which helps in manipulating raw datasets to produce a single input). 

In data denoising, smoothing and transformation, different techniques such as match 

filtering, singular spectrum analysis, moving average smoothing, factor analysis, wavelet 

multi-resolution analysis, etc. have been examined in previous works [194-203]. Specifically, 

a combination of wavelet denoising method and neural network model were applied for trend 

prediction in rainfall time series dataset [195, 196, 204]. It was found that the combined 

wavelet neural network modelling-based prediction is more efficient than using only the ANN 

models. The same approach was also used in [197] and [198], but for enhanced prediction of 

underground water levels and earthquake data respectively. 

A study by Wu et.al [199], presented three data pre-processing approaches involving 

Moving Average (MA), filtering-based Singular Spectrum Analysis (SSA) and Principal 

Component Analysis (PCA) with modular neural networks for improved rainfall data 

predictions in China and Indian. The effectiveness of dynamic filtering and convolution on 

accurate prediction of video and stereo data was proposed and demonstrated [200]. In [201], a 

data pre-processing based modelling technique was applied to examine the daily reservoir 

inflow and they discovered that model-driven prediction accuracy of the uneven inflow of the 

reservoir only improved when the pre-processed seasonal datasets were used. Nithya et.al. in 

[202] explored the combination of dynamic linear model and Kalman filters to predict missing 

occurrences in time series sensor data stream and they concluded that the application of the 

filter with linear model is a viable methodology for boosting the prediction efficiency of 

sensor data. A similar linear data filtering approach has been employed to analyse and predict 

cellular network coverage, but using CDMA2000 signal data [203]. 
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The results and conclusion from the previous works above showed that the exploration 

of the information content in a dataset through pre-processing plays a major role in enhancing 

the model training and the prediction precision. However, the concentration was majorly on 

time series datasets with linear smoothing-based data filtering and standardization approach 

which does not capture the stochastic non-linearity in some multifaceted spatial datasets.  

This part of research work proposes and employs vector order statistics filters based 

pre-processing technique to enhance adaptive trend prediction of stochastic noisy signal 

power data using ANN model. The proposed predictive approach is termed Vector Median 

Filters Multi-Layer Perceptron (VMF-MLP).  

6.5. Order Statistics Filters   

Noise is undesirable information that contaminates desired signal. Every measured data 

or signal contains some amount of noise which may have been added to the desired signal 

owing to thermal or natural environmental phenomena and other physical accoutrements 

associated with the signal generation structure and data sampling process. Filtering in the 

utmost universal term is a method of noise detection and extraction in dataset, to moderate the 

influence of errors on the succeeding input data analysis. It also helps to enhance or reveal the 

actual information about a quantity of interest in any given dataset.  

Different filtering methods are presented in the literature for denoising signal data. 

Typically, the techniques can be group into two, namely: (i) linear filtering and (ii) non-linear 

filtering techniques. The performance of each filtering technique hinges on its ability to detect 

and remove the presence of noise from desired signal data. Linear filters (e.g. mean filter, 

wiener filter, and Gaussian filter) are known to perform poorly in the presence of non-additive 

or non-Gaussian signal dependent noise [205, 206]. The concept of non-linear filtering is 

centred on the theory of non-linearity. This research work analyses two non-linear order 

statistics filters namely, VMF and Vector L Filters (VLF), where L symbolizes the typical 

parameter. 
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6.5.1. Vector Median Filters (VMF) 

The use of median filter was first proposed in 1974 by Tukey [207], as time series-based 

data smoothing method. The VMF is a robust ranked order filters for signal data smoothing 

and are well suitable when the noise sorts and characteristics are unknown [208-210]. Given 

the N observations of xi, i = 1, 2, 3, ……N, the median xmed of the dataset of xi can be 

expressed as:  

 
N

i

i xxxf )(                                                       (6.5) 

 Nixxxxfxf imediimed ,...1,,)()(   

where xi defines the k dimensional vectors  Tikii xxxx i ,...,, 32  

6.5.2. Vector L Filters (VLF) 

The VLF is a generalization of median filters which was first introduced by Bovik et.al. 

[210] utilizing combined linear order statistics. The covariance matrix with respect to the 

ordered samples are approximated using Taylor expansion  defines as [211]: 

 

N

i i
i

Tn a x , where   
N

i

ia 1                                    (6.6) 

where ais expresses the set of weights which describes the performance of the 

estimators. 

6.6. Gradient Descent Back Propagation (BP) Algorithm  

The gradient descent backpropagation algorithm is one of the well-known neural 

network algorithms that employs the gradient descent method to minimize the cost function 

expressed in Eq. (6.4) and to accomplish this, we must have: 
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The gradient descent BP algorithm update rule as: 
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and η designates learning rate parameter. 

6.7. Levenberg-Marquardt (LM) Algorithm  

Levenberg-Marquardt algorithm is applied to minimize error function problems and it is 

adapted from Gauss–Newton and gradient descent methods [212]. In correspondence to cost 

function, Newton’s method weight update is given as: 

  )()(
1

wgwHw


                                               (6.9) 

where, g(w) and H(w) denote the gradient vector and Hessian matrix expressed in Eq. 

(6.10) and Eq. (6.11) respectively. 

)()()( wewJwg T                                            (6.10)      

)()()()( wQwJwJwH T                                           (6.11) 

with J(w) being the Jacobian matrix 

T
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If Q(w) = 0 for the Gauss- Newton method, then, Eq. (6.9) with the gradient method 

would become: 
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The expression in Eq. (6.13) is the LM weight update, with I being the identity matrix 

and μ the damping parameter. 

6.8. Proposed Model: Combination of Vector Order Statistic Filters with 

MLP Network Model 

The set-up of the proposed predictive model VMF-MLP is illustrated in figure 6.11. 

The prediction process is such that the measured signal power datasets are first pre-processed 

with order statistic filters, and then standardized, before feeding desired resultant output 

components to MLP network model to enable it deliver training, testing and validation 

effectively. 

 

Figure 6.7. Proposed prediction approach based on Combined Vector Order Filtering 

and MLP neural architecture. 

The field test measurements are carried out around 4 operational LTE cellular networks 

BS sites operating at 1900 MHz band with concentration on built-up busy urban streets, and 

roads between JAN-DEC 2017. The area is a flat topography with mixed commercial and 

residential building edifices. The BS antenna heights range from 28 m to 45 m, elevated above 

the ground level to broadcast signals in three sectors configuration.   
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With the aid of drive test equipment which include the GPS, HP Laptop, two Samsung 

Galaxy Mobile Handsets (Model-SY 4) and network scanner, signal power measurement was 

conducted round the cell sites, in active mode. Both the Samsung handsets and the HP laptop 

are enhanced with TEMS, 15.1 version, which enable us to access, acquire and extract signal 

data including serving BS information after measurement. A total of 1,502 signal data points 

was extracted for further analysis using MapInfo and Microsoft Excel spreadsheet.  

The measured signal power, which is Reference Signal Receive Power (RSRP), is 

related to propagation path loss by: 

( ) tx t r t rRSRP dBm P G G L L PL          (6.4) 

where Lr, Lt and PL are the received feeder loss, transmitter loss and path loss, Gr,Gt 

and Ptx are receiver gain, transmitter gain and BS transmit power respectively. 

A 2013a MATLAB software platform has been utilized to implement the models. For 

optimal neural networks learning and training with the three analysed models, the measured 

signal dataset was shared into three subsets as follows: a training set (75% of the data), testing 

set (15% of the data) and validation set (15% of the data). The early stopping method has 

been employed to cater for over-fitting during training. The training embroils the connection 

weights adjustments such that the network can predict the assigned value from the member 

training set. Levenberg–Marquardt training algorithm was utilized to ascertain the training 

capabilities of the investigated MLP, VMF-MLP and VLF-MLP schemes.  

As the measured signal power data contains different values with different scales, 

adjusting and normalizing the dataset to improve the network training phase is very important. 

Thus, the vector normalization technique is considered and the normalizing equation given by 

[153]:  
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                                       (6.15) 

where xv and xi indicate normalized and original data values respectively. 
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Four statistical performance indices: RMSE, MAE, SD and r have been utilized to 

analyse the prediction accuracy of each scheme.  

6.9. Results and Discussion of this Work 

The results of MLP, VMF-MLP and VLF-MLP network models utilized to learn and 

predict the measured LTE signal power are presented and discussed. Figures 6.8 (a, b, & c) to 

6.11 (a, b, & c) show the measured signal power and their predictions in locations I to IV, 

using MLP, VLF-MLP and VMF-MLP models. Table 6.2 shows the summarized 

performance results of the three neural network models employed to predict measured signal 

power, using MAE, RSME, SD, and r indices. A closer value of r to 1 indicates better 

performance in predicting or fitting the actual data. On the other hand, the lower the values of 

MAE, SD and RMSE are, the better the neural network model prediction performance. From 

Table 6.2, it is established that VMF-MLP and VLF-MLP models attained the lowest MAE, 

RSME, SD values in the 4 study locations, when compared to MLP model. Similarly, VMF-

MLP and VLF-MLP models also attained the highest prediction accuracy in terms of 

correlation coefficient as compared to other models in the 4 study locations. 

Table 6.2. Computed first order statistics with MAE, RSME, SD and r for Locations 1 to IV 

                     MLP Model Prediction 

Location MAE RMSE SD r 

I 2.071 2.777 1.849 0.931 

II 1.992 2.529 1.557 0.982 

III 2.677 2.642 2.642 0.872 

IV 1.967 1.779 1.779 0.934 

               VMF-MLP Model Prediction 

I 0.696 1.079 0.825 0.988 

II 0.867 1.229 0.870 0.995 

III 0.784 1.271 1.001 0.982 

IV 0.734 1.071 0.780 0.986 

                  VLF-MLP Model Prediction 

I 1.464 1.947 1.284 0.957 

II 1.587 2.129 1.459 0.987 

III 1.663 2.285 1.567 0.941 

IV 1.504 2.343 1.796 0.946 
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(a)                                               (b)                                            (c) 

Figure 6.8. Signal power loss predictions with(a) MLP; (b) VLF-MLP; and (c) VMF-

MLP models versus covered distance in BS site I 
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       (a)                                      (b)                                           (c) 

Figure 6.9. Signal power loss predictions with (a) MLP, (b) VLF-MLP, (c) VMF-MLP 

models versus covered distance in BS site II 
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(a)                                              (b)                                      (c) 

Figure 6.10. Signal power loss predictions with (a) MLP, (b) VLF-MLP, (c) VMF-MLP 

models versus covered distance in BS site III 
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      (a)                                      ( b)                                              (c) 

Figure 6.11. Signal power loss predictions with (a) MLP; (b) VLF-MLP; and (c) VMF-

MLP models versus covered distance in BS site IV 

The spreading and distribution of the mean signal prediction error along the 

measurement routes using MLP, VLF-MLP and VMF-MLP models during training, testing 

and validation period are presented in figures 6.12 to 6.15 respectively. From the graphs, 

minimum error spreads with VMF-MLP and VLF-MLP models along the measurement 

distance indicates excellent signal prediction accuracy in comparison to standard MLP model. 

The plotted graphs show that the prediction values from VLF-MLP and VMF-MLP models 

matched properly and better with measured signal values, compared to MLP model prediction 

with measured values.  
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          (a)                                  (b)                                          (c) 

Figure 6.12 Signal power loss prediction error with (a) MLP, (b) VLF-MLP, (c) VMF-

MLP models versus covered distance, in BS site I 
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          (a)                                  (b)                                               (c) 

Figure 6.13. Signal power loss prediction error with (a) MLP, (b) VLF-MLP, (c) VMF-

MLP models versus covered distance, in BS site II 

 

Graphical results of the 3 analysed ANN models trained with LM algorithm at varied 

hidden layer sizes for comparative study in locations 1 and II are shown in figure 6.16 (a & b) 

while comparison of LM algorithm and the gradient descent BP algorithms performances at 

varied hidden layer sizes if MLP ANN is presented in figure 6.17. The results clearly 

demonstrate that the prediction in terms of RMSE of VMF-MLP model trained with LM 

algorithm was lower in comparison to that trained with gradient descent BP algorithm and the 
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LM algorithm has lower RMSE than the gradient descent BP algorithm in all the variation of 

the hidden layer sizes.   
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                  (a)                             (b)                                             (c) 

Figure 6.14. Signal power loss prediction error with (a) MLP, (b) VLF-MLP, (c) 

VMF-MLP model versus covered distance, in BS site III 
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     (a)                                      (b)                                               (c) 

Figure 6.15. Signal power loss prediction error with (a) MLP, VLF-MLP. VMF-MLP 

models versus covered distance, in BS site IV 
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(a)                                                            (b) 

Figure 6.16. Signal power loss  prediction, RMSE error using the three investigated 

models trained with LM algorithms at different Hidden layer size, in (a) BS site I (b) BS site 

II. 

 

Figure 6.17. Signal power loss prediction in terms of RMSE, in MLP at different hidden 

layers size from comaprison of LM and gradient descent BP algorithms, in BS site  III 
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6.4. Chapter Summary 

This chapter analyses and utilizes the proposed adaptive hybrid neural network 

predictor that combines MLP ANN and ADALINE ANN for enhanced propagation PL 

prediction in a micro-cellular urban environment. The prediction accuracy of the hybrid 

predictor has been assessed using field test-based propagation loss data collected from 5 

selected locations from LTE cellular networks environment with built-up busy urban streets, 

roads and open areas with mixed residential and commercial building structures. By means 

statistical performance evaluation metrics: RMSE, MAE, SD and r, the proposed adaptive 

hybrid approach provides a better prediction accuracy in comparison to the standard MLP 

ANN prediction approach. The superior performance of the hybrid neural network predictor 

can be attributed to its capability to learn, adaptively respond and predict the fluctuating 

patterns of the reference propagation loss data during network training. 

Furthermore, a vector order statistics filter which is termed VMF-MLP that is based on 

the technique of pre-processing was tested, evaluated and utilized for an enhanced adaptive 

trend prediction of signal power loss using MLP ANN.  The performance of the proposed 

model was compared with VLF-MLP built on MLP ANN and standard MLP ANN. By means 

of statistical performance indices: RMSE, MAE, DS and r, the adaptive prediction results on 

LTE signal power data collected from 4 study locations in urban terrain demonstrates that 

VMF-MLP model performs considerably better compared to VLF-MLP and standard MLP 

prediction approach. This rightly validates that the pre-processing of the information content 

in datasets enhances its training and prediction accuracy with neural network models. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORKS 

 

7.1. Conclusion 

The aim of this research work is to analyse and identify the limitations of traditional 

propagation Path Loss (PL) models as well as different Artificial Neural Network (ANN) 

models and proffer an improve hybrid adaptive ANN models that will cater for the limitations 

of (i) traditional PL models and (ii) conventional ANN models in modelling a micro-cellular 

outdoor environment using real world data from Long Term Evolution (LTE) cellular 

networks. The research objectives have been set to reflect the aim and to guarantee achieved 

set goals. As a result, this research work considered traditional propagation PL modelling 

techniques: the empirical and the deterministic models, prediction of PL with different 

traditional models and conventional ANN models: Multi-Layer Perceptron (MLP) neural 

network, Radial Basis Function (RBF) neural network, Generalized Regression Neural 

Network (GRNN) and Adaptive Linear Element (ADALINE) neural network. Different ANN 

training algorithms and training techniques have been analysed to ascertain their 

performances during the network training.  

A hybrid adaptive neural network model that combines ADALINE model and MLP 

ANN has been developed to cater for the stochastic signal attenuation phenomenon and the 

heterogeneity of the spatial propagation channels in various LTE environments. Furthermore, 

another improved PL prediction model that combines vector order statistics based smoothing 

technique and a MLP ANN has been developed.  These works have been successfully 

executed in different submitted, accepted journal and conference papers presented in this 

thesis. 

 Chapter 2 of this thesis deals with a detailed review of baseline knowledge on 

traditional propagation modelling techniques in wireless cellular networks. It considered and 

studied key empirical and deterministic models. The analysed models have their own 

distinctiveness and limitations. They are affected by factors such as reflection, refraction, 
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diffraction and multi-path phenomenon. Also, terrain profile, Base Station (BS) operating 

frequency, transmitter antenna height, and receiver antenna height all affects the performances 

of these models. Furthermore, review of some of the conventional ANN such as MLP ANN, 

RBF ANN, GRNN, ADALINE network has been done considering their peculiarities, 

characteristics and limitations. Finally, literature review of some past works on the modelling 

of propagation PL using different traditional empirical and deterministic models as well as 

conventional ANN models has been done.  

Simulation and analysis of propagation PL using traditional models were carried out in 

chapter 3 with real world data from LTE cellular network to ascertain the effects of 

propagation parameters on PL. Each of the considered models has been studied and compared 

under the variation of different parameters such as transmitter-receiver distance, base and 

mobile station antenna heights and different transmitting frequencies. The simulation results 

validate increase in PL as the link distance between transmitter and receiver increases because 

of spreading and attenuation of electromagnetic energy by various propagation mechanisms. 

There is also increase in PL as the operating frequency increases as a result of decrease in 

both antenna aperture and wavelength of the radio signal. However, at the increase of both the 

transmitting and the receiving antenna heights, there was a drastic reduction in PL as the 

losses due to building roof tops to street diffraction are reduced. The research work in this 

chapter concludes with the need for an improved PL model that will be adaptive to any 

environment while combining the benefits of both the empirical and the deterministic models.    

The predictions of propagation PL in different areas has been analysed in Chapter 4 

using conventional ANN model: the MLP ANN. The focus was on the prediction 

performance of different ANN training algorithms during the network training using real 

world data from LTE cellular network. First order statistical performance indices: Root Mean 

Square Error (RMSE), Mean Absolute Error (MAE), Standard Deviation (SD) and 

Correlation Coefficient (r) has been used for error measurement during network training. 

Comparisons of the training results show an outstanding performance with Bayesian 

Regularization (BR) algorithm with the least measurement errors and the highest correlation 

coefficients, thus the best in terms of accuracy, but require longer training time. Lavenberg-

Marquardt (LM) algorithm performs best in terms of training speed. However, the error 

margins between Bayesian regularization algorithm and Lavenberg-Marquardt algorithm is 
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very minimal. Also, Bayesian regularization algorithm is an improvement on Lavenberg-

Marquardt to address poor network generalization by addition of a small overhead to the 

Hessian approximation already in existence in Lavenberg-Marquardt algorithm.   

In part I of chapter 5, different ANN training techniques to overcome the tendencies of 

over-fitting thereby avoiding poor network generalization during network training has been 

investigated and the results compared using two neural network models: the RBF ANN and 

the MLP ANN. These techniques include neuron variation in the hidden layer of neural 

network architecture, Bayesian regularization approach and early stopping approach. For 

MLP ANN, the network demonstrates an excellent capability of modelling a moderate size 

network with 40 neurons in hidden layer. Subsequent increase in neuron results to over-fitting 

showing the need for intermediary layers to improve network generalization. However, with 

RBF ANN, network generalization ability increases with increase in the number of neurons in 

the hidden layer. This is because of its fixed three-layer architecture, hence there is no poor 

network generalization resulting from architectural intricacy. Training the RBF ANN using 

early stopping approach shows a better PL prediction with lesser measurement errors using 

first order statistical performance indices in comparison to MLP ANN. Finally, training the 

RBF ANN shows no changes during the network training using Bayesian regularization 

approach. This is because of it fixed three-layer structure, hence, there is no poor 

generalization as a result of architectural complexity which Bayesian regularization approach 

addresses. 

Part II of chapter 5 presented an evaluation of the effect of learning rate on two ANN 

models: the GRNN model and the MLP ANN model while also analysing the effect of spread 

factor in GRNN and the effect of different combination of non-linear and linear transfer 

functions in hidden layer of MLP ANN. Small spread factor leads to good network 

generalization in GRNN while hyperbolic tangent and logistic transfer function in hidden and 

output layer of MLP ANN out-performed other combination of transfer functions. Also, small 

spread factor in GRNN requires small learning rate for an excellent prediction with minimal 

errors while MLP ANN requires higher learning rate.   

In part III of chapter 5, the prediction effectiveness of ADALINE and MLP ANN have 

been analysed using data from two base stations. Data from BS 1 is used to analyse the effect 
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of learning rate on the two different ANN models while data from BS 2 is used to validate the 

results of analysis from base station 1. The gradient and the momentum parameter of the two 

ANN models have been analysed at different variation of learning rates. Adaptive linear 

element neural network shows good prediction capability using small learning rate but at 

higher learning rate, the gradient is approximately zero which approximate to the local 

minima. The reverse was the case for MLP ANN model. However, there is need for an 

adequate learning rate to be selected to ensure increase convergence but not too high learning 

rate that will lead to over-fitting during network training.  Hyperbolic tangent and logistic 

sigmoid perform excellently in hidden and output layers of MLP ANN while purelin transfer 

function performs well with ADALINE neural network.     

A hybrid adaptive neural network predictor that combines ADALINE neural network 

and MLP ANN has been developed and presents in part I of chapter 6. The prediction 

accuracy of the developed model has been tested and analysed using real world data from 

LTE cellular network environment with varied residential, commercial and clustered 

buildings. Comparison of the prediction accuracy of the hybrid adaptive neural model using 

first order statistical performance evaluation indicators give better PL prediction accuracy 

than the analysed conventional ANNs.  The superior performance of the hybrid adaptive 

neural network is a result of its adaptive response and ability to predict the fluctuating patterns 

of the cited propagation loss data in course of network training. Furthermore, in part II of 

chapter 6, a second model has been developed where a vector order filters based pre-

processing method built on MLP ANN is used to enhance adaptive prediction trend of the 

stochastic noisy data.  The developed model shows that pre-processing of signals enhances 

the training and prediction accuracy.  

7.2. Future work 

In the course of this research work, different areas which are worthwhile for further 

studies and development has been encountered. The best training technique that will be 

adaptive to all neural network models while enhancing the network performance still require 

further investigation. Details of the synergies the new developed hybrid model draws from 

ADALINE and MLP ANN will be further studied. Furthermore, studies and development of 

other probable hybrid ANN models and comparison of their characteristics and performances 
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with hybrid network such as Adaptive Neuro-Fuzzy Inference System (ANFIS) and the 

developed hybrid ANN in this work will be exploited. Also, there is need to utilize other 

machine learning techniques in prediction of propagation PL for prediction performance 

comparison between them and the developed adaptive hybrid neural network model. Further 

work will be built on 5G cellular network and the impact of the atmospheric and 

environmental influences on data samples will be critically studied and analysed.   
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