
Genetic Analysis of Stem Rust Resistance among Ethi opian 
Grown Wheat Lines 

 

 

 

 

By 
 

Netsanet Bacha Hei 

MSc Plant Pathology (Alemaya University of Agriculture, Ethiopia) 

BSc. Plant Science (Alemaya University of Agriculture, Ethiopia) 

 

 

 

A thesis submitted in partial fulfilment of the req uirements for the degree 

of Doctor of Philosophy (PhD) in Plant Breeding 

 

 

 

African Center for Crop Improvement 

School of Agricultural, Earth and Environmental Sciences 

College of Agriculture, Engineering and Science 

University of KwaZulu-Natal 

Republic of South Africa 

 

 

October 2014  

  



ii 
 

Thesis summary 
 
Wheat (Triticum aestivum L.) is one of the major food crops in the world. Ethiopia is 

the second largest wheat producer in sub-Saharan Africa. However, wheat 

production in Ethiopia is constrained by many biotic and abiotic factors, and socio-

economic constraints. Among the biotic stresses are the rust diseases: stem rust 

caused by Puccinia graminis f.sp. tritici, leaf rust (P. triticina Eriks) and stripe rust (P. 

striiformis Westend. f.sp. tritici)).  Stem rust is considered to be the most destructive 

disease of wheat in the main wheat growing regions of Ethiopia. Losses may reach 

100% on susceptible wheat cultivars when conditions are favorable for disease 

development. Use of resistant cultivars is the most effective, economical and 

environmentally safe control measure, especially for the resource poor farmers. Due 

to the frequent emergence of new stem rust races through mutation, migration and 

recombination of exsisting virulence genes, efforts to identify potentially new 

sources of effective resistance genes are of the highest importance followed by their 

incorporation into a desirable genetic background.  

 
The objectives of the study were  1) to identify the primary threats to wheat 

production, farmers’ selection criteria for wheat varieties, and disease management 

practices with emphasis on wheat rusts in the Arsi, Bale and West Shewa 

administrative zones of Ethiopia; 2) to identify possible sources of stem rust 

resistance among Ethiopian wheat lines; 3) to determine the levels of heterosis and 

combining ability, and to identify  the best parents and crosses for breeding to stem 

rust resistance, high grain yield and desirable agronomic traits; 4) to 

introgress durable resistance genes from known resistance sources into farmers’-

preferred and locally adapted but stem rust susceptible, improved wheat varieties.  

 
A participatory rural appraisal (PRA) research was conducted involving 270 farmers 

in six districts of three administrative zones in Ethiopia. The participating farmers 

listed and prioritized their wheat production constraints. Wheat rust diseases, the 

high costs of fertilizers, lack of access to seeds of improved varieties and high seed 

prices were the major constraints reported by the respondents. The most important 

traits that farmers sought in wheat varieties were disease resistance and high grain 
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yield. Estimated yield losses due to stem rust disease were more than 60% in all the 

surveyed areas. Fungicide application was the main disease management practice 

used by the majority of respondent farmers.  

 

Field and greenhouse experiments were conducted to identify possible sources of 

stem rust resistance among Ethiopian wheat lines. Two hundred fifty two wheat 

genotypes were evaluated for their resistance to stem rust at the seedling stage. 

Ninety one lines that exhibited intermediate and susceptible seedling reactions were 

field tested for their slow rusting characteristics. Among the 91, 38 lines that had 

high to moderate level of slow rusting were advanced to further field evaluation. Ten 

lines (H04-2, 204408-3, 214551-1, 231545-1, 7041-1, 7514-1, 226385-1, 226815-1, 

7579-1, and 222495-1) were identified as good slow rusting lines while seven 

(237886-1, 227059-1, 203763-1, 226275-1, 227068-2, 226278-1 and 7994-1) were 

identified as moderately slow rusting lines.  

 

Fifteen wheat hybrids were developed through a half diallel mating design involving 

six parents. The F1’s and their parents were field evaluated for their stem rust 

reaction and agronomic performances at the Debere-Zeit Agricultural Research 

Center in Ethiopia, which is a well known hot spot area for stem rust. The analysis 

of variance revealed that tested genotypes had considerable genetic variability for 

all characters studied. The maximum positive mid-parent (31.45%) and better-

parent heterosis (25.38%) were observed for grain yield. Plant height and days to 

maturity had maximum negative mid-parent heterosis levels of -11.01% and -8.02%, 

respectively. The majority of the crosses expressed negative heterosis over their 

mid-parent for AUDPC, indicating these crosses manifested resistance against stem 

rust. Significant general combining ability (GCA) effects were observed for all the 

characters studied. Furthermore, significant specific combining ability (SCA) effects 

were detected for most of the traits. Non-additive gene action was predominant for 

grain yield, thousand kernel weight and plant height. Additive gene action played a 

greater role in the inheritance of AUDPC, kernels per spike, number of tillers per 

plant and days to maturity. The study identified parental lines with good GCA effects 

for most of the characters, especially H04-2, Digelu and Danda’a. Crosses 231545-
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1 x H04-2, 7041-1 x H04-2, Digelu x Kubsa and Danda’a x Kubsa had significantly 

negative SCA effects for AUDPC. Progenies of these crosses will be selected in an 

ongoing stem rust resistance breeding program. In general, H04-2 and Danda’a 

were good general combiners for most of the important studied characters. Crosses 

that involved these lines performed well for most of the traits. Hence, Lines H04-2 

and Danda’a could be exploited in wheat breeding programs to develop stem rust 

resistant and high yielding wheat cultivars. 

 
Stem rust resistance genes were introgressed into locally adapted, high yielding 

susceptible wheat varieties, Kubsa (HAR1685) and Galama (HAR604), from two 

sources of adult plant resistance, Pavon 76 and Kenya Plume, using the single 

backcross-selected bulk breeding approach. The resistance sources were crossed 

with the adapted high yielding varieties and a single backcross was made with the 

recurrent parent. The resulting BC1 populations were selfed until the F3. Bulk 

selection was practiced from BC1- F3. The F3 populations, along with the recurrent 

parents, were evaluated in a replicated trial at Debre-Zeit Agricultural Research 

Center under high stem rust pressure to determine the genetic improvement 

attained in the populations for stem rust resistance and agronomic traits. All F3 

populations, except the cross of Galama x Kenya Plume, were better performing for 

stem rust resistance and most agronomic traits studied when compared to the 

recurrent parents. The F3 progenies of Kubsa x Pavon 76 had superior mean 

values and high genetic gains for most agronomic attributes and stem rust 

resistance. These progenies will be advanced and selected in subsequent 

generations to develop locally adapted pure line wheat varieties with improved stem 

rust resistance and farmers’-preferred agronomic traits.  

 
Overall, the present study attempted to understand farmers’ wheat varietal 

preferences, farmers’ wheat production constraints, identified slow rusting wheat 

lines among the Ethiopian bread wheat germplasm, identified promising lines and 

F1 hybrids with good combining ability for breeding towards stem rust resistance 

and high yields. Durable stem rust resistance genes were incorporated into locally 

adapted susceptible wheat varieties for further selection and future release to 

enhance wheat productivity in Ethiopia.     
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Introduction to thesis 

 

Importance of wheat 
 

Wheat (Triticum aestivum L.) is one of the world’s leading cereal grains used by 

more than one-third of its population as a staple food (Kumar et al., 2011). It is grown 

from below sea level to elevations exceeding 3000 m above sea level and at 

latitudes ranging from 30° and 60°N to 27° and 40°S  (Nuttonson, 1955). Globally, it 

is cultivated on approximately 218 million hectares of land (EPI, 2013). Wheat is 

used for food and many industrial purposes.  

 

Ethiopia is the second largest wheat producer country in sub-Saharan Africa after 

South Africa (GAIN, 2012). In Ethiopia, wheat is cultivated on 1.6 million hectares 

and accounts for 13.25% of the crop land, with an annual production of 3.4 million 

metric tons. Wheat contributes about 14.85% of the cereal production in the country 

(CSA, 2013). In terms of area, wheat ranks fourth after teff (Eragrostis tef (Zucc.) 

Trotter), maize (Zea mays L) and sorghum (Sorghum bicolor (L.) Moench). In terms 

of total grain production, it ranks third after teff and maize (CSA, 2013). The crop is 

widely grown by subsistent farmers and over one-third of cereal farm households are 

dependent on wheat farming (Shiferaw et al., 2013).  

 

Both bread (T. aestivum L.) and durum (T. turgidum var. durum) wheat varieties are 

grown in the wheat growing areas of the country. Bread wheat is an introduced crop 

whereas durum wheat is an indigenous crop. However, bread wheat cultivation is 

expanding due to its high yield and wide adaptability (Ashamo et al., 2012; Shiferaw 

et al., 2013). According to ECEA (2008) the major wheat producing regions in 

Ethiopia include Oromia, Amhara, Southern Nations Nationalities and Peoples’ 

Region (SNNPR) and Tigray. Almost all wheat (99%) comes from these regions. The 

Bale Zone of Oromia region is included among the wheat belts in eastern Africa. 

Bale Zone constitute about 142,415 hectares of land devoted to wheat production, 

predominantly by subsistence farmers and a few profit oriented state farms (CSA, 

2013). The mean wheat yield in the country is estimated to be 2.1 t ha-1 (CSA, 2013), 
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which is well below the world mean of 3.0 t ha-1 (Hawkesford et al., 2013). This is 

due to losses caused by biotic, abiotic and socioeconomic constraints (Abebe et al., 

2012; Haile e al., 2012). 

 

Constraints to wheat production  

 

The major biotic factors that limit wheat production in the country include diseases, 

pests and weeds (Abebe et al., 2012). Among the abiotic factors, soil fertility and 

moisture stress are the principal wheat production limiting factors in Ethiopia (Bogale 

et al., 2011a; Bogale et al., 2011b; Haile et al., 2012). Among the diseases, rusts 

(stem rust (Puccinia graminis f.sp. tritici ), leaf rust (P. triticina Eriks) and stripe rust 

(P. striiformis Westend. f.sp. tritici) are the most important diseases reducing wheat 

production in Ethiopia. Of the three rusts, stem rust has been the most important 

disease of wheat in main wheat growing regions of Ethiopia (Admassu et al., 2012; 

Denbel et al., 2013).   

 

Stem rust is caused by the fungus Puccinia graminis f.sp. tritici Ericks and Henn. The 

fungus is an obligate parasite, requiring living host tissue for growth and 

reproduction. It is heteroecious in its life cycle and heterothallic in mating type 

(Kolmer, 2013). In the absence of living host tissue, the fungus survives for only a 

short period as spores under field conditions. Symptoms of stem rust are brick red 

pustules formed on stems and to a lesser extent on leaves of susceptible plants. In 

epidemic situations, it causes yield losses reaching up to 100% on susceptible 

cultivars (Park, 2007; Hodson, 2014). Stem rust causes yield losses in several ways. 

The fungus absorbs nutrients from the plant tissues that would be used for grain 

development in a healthy plant. By the time rust pustules break through the 

epidermal tissue, the rust will have affected the plant transpiration, making the 

metabolism less efficient. Interference with the vascular tissues results in shrivelled 

grains. Stem rust also can weaken wheat stems, so plants lodge, or fall over, in 

heavy winds and rain (Craigie, 1957; Bushnell and Rowell, 1968; Roelfs, 1985). 
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P. graminis f.sp. tritici can exist in the form of many races that vary in pathogenicity, 

aggressiveness and virulence. Such physiologic specialization in wheat stem rust 

was first reported by Stakman and Piemeisal (1917). New races may develop due to 

mutation or recombination between different races within the same rust group (Singh 

and Rajaram, 2006). Existing races may spread faster, or become more virulent, if 

environmental conditions change. Consequently, specific genes that confer 

resistance can lose their effectiveness quickly. Stem rust outbreaks may occur when 

new pathogen races arise against which the existing genes for resistance are 

ineffective. East African highlands are among the global hot spots for the 

development of the new wheat stem rust races (Singh et al., 2008a). For example, 

the pathogen race Ug99 that has been called the most virulent strain of wheat stem 

rust in 50 years, was identified in Uganda in 1999 (Pretorius et al., 2000). Since then 

the race has spread to East Africa, the Middle East and South Asia (Nazari et al., 

2009; Singh et al., 2009). Ug99 was first reported in Ethiopia in 2003 (Singh et al., 

2008b) and is potentially a major threat to wheat production in the country 

(Periyannan et al., 2013).  

 

Control measures of stem rust 

 

Attempts have been made to minimize or control stem rust through fungicides, 

cultural practices and genetic control through the host. Fungicides have been widely 

investigated for stem rust control. With early disease detection and immediate 

application of fungicides economic levels of control can be achieved (Peterson, 

2001). Fungicides reduce subsequent rust severity on plant parts that were slightly 

infected at the time of fungicide application, but they can not protect plant parts that 

are already heavily infected (Beard et al., 2004) because the plant tissues are 

already damaged. Although effective, fungicides are unaffordable for small-scale 

farmers.  

 

Several cultural methods can be used to reduce the intensity of an epidemic or 

provide long term partial control (Goyal and Prasad, 2010). The use of early 

maturing cultivars, early planting and destruction of volunteer wheat and other 
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susceptible grasses, can be effective in reducing the amount of initial inoculums and 

early infections. However, early planting can lead to early heading and in some 

environments there is a risk of head frosting that can be as damaging as the rust. 

Besides, early planting may actually increase the chance of overwintering of the rust 

under milder climates (Roelfs and Bushnell, 1985). Roelfs et al. (1992) stated that 

the success of implementing cultural control method depends on the level of 

knowledge of the epidemiology of stem rust in a particular area.  

 

Breeding for stem rust resistance is the most economical and effective management 

method of stem rust (Rouse and Jin, 2011). Resistance to stem rust in wheat has 

been based mainly on race-specific resistance (Ayliffe et al., 2008). Varieties having 

such type of resistance generally show complete resistance to a specific 

physiological race (pathotype) under most environmental conditions. However, 

hybridization among pathotypes or mutations in the pathogen population may 

produce a new race that has the virulence to infect the previously resistant variety 

(Singh and Rajaram, 2006). Hence, the useful life of cultivars with resistance 

conferred by race-specific genes may be short. Consequently some recent breeding 

programs have focused on developing cultivars with more durable resistance.  

 

Rationale of the research 

 

The use of resistant cultivars, which is effective and affordable to farmers without 

extra expenses for disease management, has been the major strategy for control of 

stem rust in many countries (Broers and Denial, 1994; Singh et al., 2002; Rouse and 

Jin, 2011). Accordingly, the major efforts of the national and regional wheat 

improvement research programs of Ethiopia focus on the development of resistant 

varieties. However, the varieties so far released do not possess sufficient resistance 

to withstand the persistent challenge of stem rust pathogen because the resistance 

has not been durable (Admassu et al., 2012). The major cause of the ineffectiveness 

of wheat varieties against stem rust is the rapid evolution of new virulent pathotypes 

and the deployment of the same R gene (s) in many cultivars (Admassu et al., 2012).  
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Wheat genetic materials with related parentage and largely race-specific major gene 

resistance have been backbone of the wheat improvement programs of Ethiopia 

(Badebo, 2002; Aida, 2005). Consequently, the available diversity of local wheat 

accessions has not been well exploited as the source of parental populations for 

wheat breeding. According to Jaradat (2011), local wheat genetic materials have 

been largely displaced by high yielding cultivars in many developing countries. 

However, landraces and old cultivars may also provide valuable traits needed to 

meet the challenges of the future, such as adapting our crops to changing climatic 

conditions or outbreaks of diseases (Xepapadeas et al., 2012).  Wheat genotypes 

are genetically variable in their ability to tolerate biotic and abiotic stresses. Selection 

within local germplasm tolerant to stresses can be a useful component of breeding 

strategies for wheat improvement. Jaradat (2011) also noted that participatory plant 

breeding and variety selection are more successful in satisfying the needs of the 

farmer and the final consumer.  

 

Therefore, keeping in view the rapid evolution and spread of new virulent races of 

stem rust, the frequent failure of new varieties with major gene stem rust resistance, 

and the take off durable stem rust resistance in the Ethiopian bread wheat 

improvement programs, there is a need to identify durable sources of resistance 

from locally adapted wheat germplasm, and to understand the genetics of stem rust 

resistance in wheat.  

 

To enhance the potential for adoption of new wheat varieties by farmers, farmers’ 

constraints and their preferences need to be identified and be included in breeding of 

new cultivars.  

 

Research objectives 
 

The specific objectives of the study were: 

i) To determine wheat production constraints, farmers’ varietal preferences, and 

disease management practices, with special emphasis on wheat rusts.  
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ii) To identify slow rusting resistance to stem rust in Ethiopian wheat lines. 

iii) To determine the levels of heterosis and combining ability, and to identify  the 

best parents and crosses for breeding to stem rust resistance,  high grain 

yield and desirable agronomic traits 

iv) To introgress durable resistance genes from known resistance sources into 

farmers’-preferred and locally adapted but stem rust susceptible, improved 

wheat varieties. 

 

Research hypotheses 

 

This study was carried out to test the following hypotheses:  

i) In wheat growing areas of Ethiopia, farmers are aware of wheat disease 

problems and other constraints to wheat production, and prefer varieties that 

combine resistance to these constraints. 

ii) Many wheat lines have slow rusting resistance to stem rust in Ethiopian 

germplasm. 

iii) The selected sources of resistance to stem rust combine well for wheat stem rust 

resistance, grain yield performance and other agronomic traits.  

iv) Additive genetic effects control durable resistance to stem rust. 

v) Stem rust resistance genes from donor parents can be transferred into locally 

adapted wheat varieties, and will increase rust resistance in the progeny.   

 

Outline of the thesis 
 

This thesis consists of four distinct chapters in accordance with a number of activities 

related to the above-mentioned objectives. Chapters 2-5 are written as discrete 

research papers, each following the format of a stand-alone research paper (whether 

or not the chapter has already been published). This is the dominant thesis format 

adopted by the University of KwaZulu-Natal. Some overlap and unavoidable 
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repetition of references and some introductory information between chapters may 

exist. 

 

The referencing system used in the chapters of this thesis is based on the Harvard 

system of referencing (De Montfort University), and follows the specific style used in  

“Southern Forests: a Journal of Forest Science”. The exception to this is Chapter 3, 

which was published in the journal of “Phytopathology”. In this case, Chapter 3 has 

followed the referencing and formatting style used by “Phytopathology”. 

 

Chapter Title 

- Introduction to thesis 

1 A review of the literature 

2 Appraisal of farmers’ wheat production constraints and breeding priorities 
in stem rust prone agro-ecologies of Ethiopia 

3 Assessment of Ethiopian wheat lines for slow rusting resistance to stem 
rust of wheat caused by Puccinia graminis f.sp tritici  

4 Heterosis and combining ability analysis of stem rust resistance and grain 

yield and related traits in bread wheat  

5 Introgression of durable resistance genes into farmers’-preferred and 

locally adapted stem rust susceptible wheat varieties 

6 An overview of the research findings 
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CHAPTER 1 

A review of the literature 

 

1.1 Introduction 
 

Wheat (Triticum aestivum L.) is a staple food crop worldwide (Kumar et al., 2011). 

However, its production and productivity is limited by a number of abiotic, biotic and 

socio-economic constraints. Wheat stem rust caused by Puccinia graminis Pers. 

f.sp. tritici Eriks and Hann is one of the major production constraints of both bread 

wheat (Triticum aestivum L., 2n=6x=42, AABBDD) and durum wheat (T. turgidum 

var. turgidum L., 2n=4x=28, AABB). The use of resistant cultivars remains the most 

economical and environmentally friendly management strategy of stem rust, 

especially for resource poor farmers. However, most of the wheat varieties released 

thus far have not possessed durable resistance and became susceptible shortly after 

their deployment. In most cases, failures of resistance have been attributed to the 

emergence of new virulent pathotypes and the narrow genetic base in the cultivated 

wheat cultivars. Hence, there is a need for development of novel wheat cultivars with 

durable stem rust resistance and farmers’-preferred agronomic attributes. Novel 

sources of resistance and understanding the genetics of durable stem rust 

resistance are prerequisites for durable resistance breeding in wheat. This review 

highlights the origin, history and biology of wheat, the current state of wheat 

production, its importance, and its production constraints. It emphasises the 

importance and threat of stem rust and its control strategies, and provides 

background information on the genetics and breeding of stem rust resistance in 

wheat.  

 

1.2 Origin and genetic inter-relationships of speci es of wheat  
 

Common or bread wheat is believed to have originated in south-western Asia where 

it has been grown for more than 9000 years (Zohary and Hopf, 2000). The genetic 

relationships between wild and domesticated einkorn wheat (T. monococcum, 

2n=2x=14; AA) and emmer wheat (T. turgidum, 2n=4x=28; AABB) suggest that 
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south-eastern Turkey is the most likely site of its origin and first domestication 

(Dubcovsky and Dvorak, 2007). During the Neolithic period, the cultivation of wheat 

began to spread beyond its center of origin. Wheat spread into central Asia and 

Africa by about 3000 years ago. It reached Africa initially through Egypt (Feldman, 

2001). Today, wheat is widely grown in many parts of the world, across a wide range 

of environmental conditions, from sea level to over 3000 m above sea level (masl). 

Wheat production is most successful between the latitudes of 30° and 60°N and 27° 

and 40°S, although it can be grown beyond these lim its (Nuttonson, 1955).  

 

1.3 Biology of wheat 

 

Bread wheat is a member of the tribe Triticeae of the family Poaceae to which all the 

major cereals belong. It is an autogamous allo-hexaploid species (2n=6x=42). Three 

genomes, designated as A, B and D, were involved in its evolution (El-Twab, 2006). 

Bread wheat is evolved through wide-hybridization of diploid grass species Aegilops 

tauschii (2n=14, DD) with the cultivated tetraploid durum wheat T.turgidum 

(2n=4x=28; AABB) (Salamini et al., 2002; Dubcovsky and Dvorak, 2007).  

 

Wheat has intermediate plant height with annual growth habit. The terminal floral 

spike consists of perfect and clestogamous flowers, leading to strict self fertilisation, 

although cross fertilisation may occur up to 5% (Skymo, 1999). The vegetative state 

of the plant is characterized by formation of tillers. Tillers are lateral branches 

produced with primary stem (Setter and Carlton, 2000). Spikes are made up of two 

rows of spikelets and each spiklet consist three to four florets. Florets are enclosed 

by lemma and palea and contain three anthers supported by filaments and a 

feathery stigma (Setter and Carlton, 2000). 

  

1.4 Wheat production and its importance  

 

Wheat ranks first among cereals in total production (Al-Musa et al., 2012; Sarwar et 

al., 2013). It is cultivated on approximately 218 million hectares of land worldwide 

(EPI, 2013).The total wheat production in 2012 was more than 654 million tonnes. 
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The largest wheat producing countries are China, India, the United States and 

Russia, in that order (Table 1.1). These countries account for nearly 50% of the 

world wheat production (EPI, 2013). The remainder of the production is spread 

throughout the rest of wheat producing counties worldwide. 

Table 1.1. The leading wheat producing countries of the world during 2012 

Country Production (t) Percent contribution 

 to world production 

China 120 600 000 18.44 

India   93 900 000 14.34 

USA   61 755 000   9.44 

Russia   37 700 000   5.76 

Source: (EPI, 2013). 

 

Bread wheat is becoming an important food security crop in Africa. South Africa is 

the leading wheat producer in sub-Saharan Africa followed by Ethiopia (GAIN, 2012). 

In Ethiopia an estimated area of 1.6 million hectares is under wheat production 

(CSA, 2013). Wheat is fourth in the area of production after teff (Eragrostis tef 

(Zucc.) Trotter), maize (Zea mays L) and sorghum (Sorghum bicolor (L.) Moench), 

accounting for 13.25% of the crop area. It ranks third in total grain production after 

teff and maize, with an annual production of 3.4 million tons (Table 1.2) (CSA, 2013). 

Wheat is grown from 1500 to 3000 masl. The most suitable areas, however, fall 

between 1800 and 2500 masl (Winch, 2007). Arsi and Bale Administrative Zones of 

the Oromia Regional State in Ethiopia are among the major wheat production 

environments. The Bale Zone is recognized as one of the wheat belts of eastern 

Africa. About 142, 415 ha are devoted to wheat production in Bale Zone (CSA, 

2013). In Ethiopia wheat is produced largely under rainfed conditions.  

 

Both bread and durum wheat are important food crops in Ethiopia. Ethiopia is a 

center of diversity for durum wheat (Zohary, 1970). However, bread wheat 

production is expanding in the country, because of its higher productivity and 

broader adaptation (Ashamo, 2012; Shiferaw, et al., 2013). The mean wheat yield in 
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the country is estimated around 2.1 t ha1 (CSA, 2013), which is considerably lower 

than the potential yield of 8-10 t ha-1 (Mollah et al., 2009).  

 

Wheat is predominantly grown by subsistence farmers in Ethiopia (Alemu et al., 

2014). There are about 4.6 million farm households who are directly dependent on 

wheat farming as a major source of food and cash in Ethiopia (Shiferaw et al., 2013). 

The straw is used as animal feed during the dry season and for thatching roofs. 

Table 1.2. Area, yield and production of wheat of private peasant holdings in Ethiopia 

during the main cropping seasons of 2010 to 2013.  

Year  Area (ha) Yield (t ha-1) Production (t) 

2010 1 683 565.26 1.83 3 075 643.60 

2011 1 553 239.89 1.84 2 855 681.74 

2012 1 437 484.73 2.03 2 916 333.69 

2013 1 627 647.16 2.11 3 434 706.12 

Source: CSA (Central Statistical Agency of Ethiopia), 2010, 2011, 2012 and 2013  

 

1.5 Major production constraints of wheat in Ethiop ia 
 

Wheat production is constrained by a number of abiotic and biotic factors (Nelson, 

2013). Among the abiotic factors, drought, nutrient deficiencies, and waterlogging in 

vertisol areas are identified as major threats. Among the biotic stresses, grass weeds 

and diseases are the major constraints reducing wheat production (Yami, 2012). 

 

1.5.1 Abiotic factors 

 

Drought is one of the major abiotic constraints on wheat production in drought prone 

areas of Ethiopia (Bogale et al., 2011a). More than 50% of the total arable land in 

Ethiopia is classified as semi-arid or arid (Berhanu, 2004). In such areas, moisture 

stress is an important yield limiting factor for crop production. Moreover, because of 

degradation and poor vegetation cover, soils in semi-arid and arid areas have low 

fertility, with poor water holding capacity (Berhanu, 2004).  
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Nutrient deficiency is also one of the important abiotic stresses in wheat production 

in the country. It is probably the most widely spread problem in Africa due to the 

limited use of chemical fertilizers, lack of crop rotation or fallowing. According to 

Schneider and Anderson (2010), soil fertility related constraints such as expensive or 

limited access to nitrogen fertilizer, nitrogen deficiency, and soil fertility depletion 

were present in over 40% of wheat growing areas in sub-Saharan Africa, and 

accounted for 20% of the total yield gap. In Ethiopia, soil depletion is a widespread 

problem, which led to stagnant crop yields despite the use of modern inputs such as 

enhanced seed and some fertilizers (Bayu, 2012). 

 

Water logging is another important abiotic factor that threatens wheat production in 

the vertisol areas, mostly in the highlands above 1500 masl in Ethiopia (Kebede and 

Bekele, 2008). It impedes the performances of cereal crops during the main rainy 

season in the highlands of Ethiopia. In such areas, early planting is not possible, 

which in turn reduces the length of the growing cycle and consequently the yield 

(Kebede and Bekele, 2008). 

 
1.5.2 Biotic factors 

 
Diseases are among the most important yield limiting factors in wheat production. 

Wheat in Ethiopia is attacked by a number of diseases that reduce the quality and 

quantity of grain. Among the major wheat diseases are the wheat rusts: stem rust 

(Puccinia graminis f.sp. tritici), leaf rust (P. triticina Eriks), and stripe rust (P. 

striiformis Westend. f.sp. tritici). Of the three rusts, stem rust is widely distributed 

throughout the major wheat growing regions of Ethiopia, and may cause severe food 

shortages when it occurs in epidemic proportions (Admassu et al., 2012; Denbel et 

al., 2013). Yield losses from stem rust can reach up to 100% on susceptible cultivars 

(Park, 2007; Hodson, 2013).  

 
In addition to diseases, grass weeds are among major wheat production constraints 

in Ethiopia. Continuous production of wheat especially in south-eastern highlands 

and repeated application of broad-leaf herbicides have increased the problem of 

grass weeds (Rezene and Yohannes, 2003; Bogale et al., 2011b). Reports indicated 
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yield reduction up to 86%, depending upon weed type and density, crop variety and 

environmental conditions (Tessema and Tanner, 1997).  

 
1.6 Stem rust of wheat  

 

Wheat stem rust is caused by the fungal pathogen Puccinia graminis f.sp tritici. The 

fungus is an obligate parasite (Schumann and Leonard, 2000). The stem rust infects 

wheat, oats (Avena sativa L.), barley (Hordihum vulgare L.) and rye (Secale cereale 

L.), as well as wild grasses, but wheat is the only economic host (Leonard and 

Szabo, 2005). In Ethiopia, grass weed species such as Lolium temolentum and 

Setaria pumila were identified to be secondary hosts for wheat stem rust (Zerihun 

and Abdalla, 2000). The main alternate host for P. graminis is Barberis vulgaris 

(Roelfs et al., 1992). It is a major source of new combinations of genes for virulence 

and aggressiveness in the pathogen (McIntosh et al., 1995). Rust spores are wind-

blown and can be spread over large areas in a short time. The pathogen is favoured 

by humid conditions and temperatures of 15 to 30°C (Hollaway, 2011). 

 
1.6.1 Life cycle of Puccinia graminis  

 

The rust pathogen is heteroecious, requiring two unrelated host plants, wheat and 

barberry, to complete its life cycle (Singh et al., 2002). It is heterothallic, which 

involves both sexual and asexual stages (Kolmer, 2013). The sexual cycle of the 

pathogen needs alternate hosts. The fungus survives entirely in the asexual stage 

when there is no alternate host. 

 
The stem rust pathogen produces five types of spores; teliospores, basidiospores, 

and urediniospores on cereal hosts, and pycniospores and aeciospores on the 

alternate hosts (Figure 1.1) (Singh et al., 2002). The disease cycle of wheat stem 

rust starts with the exposure of each new wheat crop to aeciospores or 

urediniospores of P. graminis f.sp. tritici (Xue et al., 2012). Urediniospore is the most 

important spore form because it is capable of cycling continuously on the cereal 

hosts and enables the disease to spread from field to field and survive from year to 

year. When the crop reaches maturity, teliospores develop. Teliospores usually 
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remain covered by the epidermis of the host plant. Under favourable environment 

teliospores germinate and produce the basidiospores that are able to infect the 

alternate host. Once on the leaves of the alternate host, basidiospores give rise to 

the pycnial structures within which pycniospores will be produced (Kolmer, 2013). 

The production of pycniospores is important becouse it allows cross-fertilization. The 

pycniospores produce aeciospores, and establish primary inoculum for the new crop 

cycle.  

 

 

Figure 1.1. Life cycle of P. graminis f. sp tritici 

Source: Courtesy V. Brewster. 

 

1.6.2 Physiological races of stem rust 

 

The wheat stem rust pathogen is known for its various physiologic specializations or 

races. Physiologic specializations of stem rust were first reported by Stakman and 

Piemeisal (1917). These races varied in their ability to infect different wheat varieties 

or differential hosts that carry distinct resistance genes or combinations. They 

develop by mutation, recombination, and selection for virulence against rust 

resistance genes in wheat (Singh and Rajaram, 2006). Since the discovery of 
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pathogenic variability within stem rust, seasonal race surveys have been carried out 

to determine the range of variability gobally within the rust. Race surveys detect new 

and highly virulent pathogen phenotypes as they appear. The surveys also provide 

essential information to determine the gene combinations to be considered by 

breeding programs using major gene resistance (Huerta-Spino, 1994; Park et al., 

2011).  

 

Variable races of stem rust pathogen have been identified in wheat production areas 

in different continents. These new races have reduced the number of major rust 

resistance genes that are available for use (Kolmer, 2005). For example, Ug99, a 

virulent strain of stem rust, was first found in Uganda in 1999. The race Ug99 carries 

virulence to gene Sr31, which was known for its durability. Stem rust resistance in 

wheat cultivars with Sr31 remained effective for more than thirty years (Wanyera et 

al., 2006). This race has evolved even further, accumulating additional virulence to 

important Sr genes, notably Sr24 and Sr36 (Jin et al., 2008, 2009). Currently, eight 

closely related variants of Ug99 are reported but slightly different in their 

avirulence/virulence patterns. The variants have spread to various wheat growing 

countries and their occurrence is known in eleven countries including Tanzania, 

Zambia, South Africa, Ethiopia, Kenya, Uganda, Zimbabwe,  Eritrea, Yemen, Iran 

and Sudan (Mukoyi et al., 2011; Singh et al; 2011). Two variants of Ug99, PTKSK 

and PTKST, have been identified in Ethiopia (Hodson, 2014).  

 

1.6.3 Symptoms and effects of P. graminis f.sp. tritici on wheat growth 

 

Stem rust is marked by an eruption of elongated brown pustules on the leaves, 

stems, leaf sheaths, spikes, glumes, awns and occasionally grains of hosts. The 

wheat stem and leaf sheaths are the main tissues affected (Marsalis and Goldberg, 

2006). The disease reduces foliage and root development and hence infected plants 

usually produce fewer tillers, set fewer seeds per head, and the kernels are 

shrivelled and smaller in size, with poor milling quality and food value (AFRD, 2014). 
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Severe infections under favourable environmental conditions can also result in death 

of tillers or entire plants. Under heavy infection the lesions of rust can occupy a 

significant portion of the host tissue and reduces the photosynthetic area, causing a 

loss of nutrient and water and disturbs the plant transport system (Berghaus and 

Reisener, 1985). The rupture of the plant epidermal cells by the fungus also results 

in a loss of water from the plant and disrupts transport of nutrients to the roots and 

cause premature death of the roots (Bushnell and Rowell, 1968). Hence, the disease 

hinders plants from expression of their full yield potential and causes poor crop 

performance and low wheat yields in many wheat growing areas. The fungus also 

absorbs the nutrients from the plant tissues that would be used for grain 

development and hence significantly affects grain filling and grain quality (Xue et al., 

2012). 

 

1.6.4 Economic importance of stem rust 

 

The widespread nature of stem rust pathogen and its ability to mutate for virulence 

makes the disease important worldwide (Park, 2007). Under favourable conditions, 

yield losses up to 100% have been reported with susceptible cultivars (Leonard and 

Szabo, 2005; Park, 2007; Hodson, 2013). Ug99 has been reported to cause yield 

losses of more than 71% in experimental fields (CIMMYT, 2005). It is estimated that 

a one percent increase in stem rust severity results in approximately a one percent 

increase in yield loss (CIMMYT, 2005). 

In Ethiopia, wheat stem rust is a significant problem in major wheat producing areas. 

Yield losses are estimated to reach up to 100% on susceptible cultivars in the 

country (Hodson, 2013). Severe epidemics of stem rust have been reported over the 

past 20 years in major wheat growing regions of Ethopia. In1993/94, a stem rust 

outbreak attacked the previously resistant bread wheat cultivar Enkoy, and resulted 

in yields losses of 65-100% (Shank, 1994). A 1998 epidemic attacked the high 

yielding variety Kubsa. Shina, released in 1999 for north western Ethiopia, 

succumbed to a stem rust epidemic in 2001. Since then there have been no severe 

stem rust epidemics. However, during the 2013 cropping season the disease caused 
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100% yield losses in cultivar Digelu, which is reportedly resistant to stem rust, in 

south-eastern Ethiopia (Hodson, 2013). The outbreak was recorded in high altitude 

areas (> 2200 masl), although it mainly occured in the low altitude areas of 1800 

masl, extending rust incidence to low, medium and high altitudes production areas.   

 

1.6.5 Management of the wheat stem rust 

 

A number of methods are available to control stem rust, which include the use of 

fungicides, cultural practices and resistant cultivars. 

 

1.6.5.1 Fungicides 

 

Fungicides can play a vital role in stem rust management until new cultivars with 

genetic resistance are available (Loughman et al., 2005). They are usually 

considered where losses are expected to be very high, where grain prices are highly 

subsidized, and yield potential is high. Fungicides will give better control of stem rust 

when applied at the early stages of the epidemic (Hollaway, 2011). Thus, early 

disease detection and immediate application of fungicides should be considered in 

the control of stem rust with fungicides. A number of fungicides are highly effective 

against stem rust and have been used to successfully control the disease (Hollaway, 

2011). However, the high costs of application, a lack of knowledge of the use of 

appropriate fungicides, and the unavailability of the fungicides are their main 

limitations, particularly for small-scale and resource poor farmers (Bishaw et al., 

2010). 

 

1.6.5.2 Cultural practices 

 

Cultural methods largely depend on early planting and growing early maturing 

cultivars. These help to reduce the time of exposure of the crop to the pathogen and 

hence reduce yield loss. According to Schumann and Leonard (2000), use of early 

maturing wheat varieties reduce the threat of stem rust epidemics by limiting the 

length of time for stem rust epidemics to develop, as well as the numbers of 
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urediniospores that can contribute to the spread of the disease to other areas. The 

date of disease onset is directly related to the development of an epidemic (Hamilton 

and Stakman, 1967) and is probably the single most important factor in determining 

the severity of the epidemic (Roelfs, 1985). The success of implementing this 

method depends on sufficient knowledge of the epidemiology of stem rust in a 

particular area (Roelfs et al., 1992). Moreover, early planting can lead to early 

heading and, in some environments, there is risk of head frosting that can be as 

damaging as the rust.   

 

Eradication of alternate hosts and green bridges carrying inoculum from one crop to 

the next is a useful cultural practice. Eradication of the alternate hosts has a 

significant effect in reducing stem rust epidemics. It removes an early source of 

inoculum and eliminates the sexual cycle of the fungus, limiting the development of 

new races of the pathogen (Schumann and Leonard, 2000). Removing the green 

bridge, including volunteer cereals or wild accessory hosts, is essential to reduce the 

carryover of P. graminis f.sp. tritici to the next season wheat crop (Schumann and 

Leonard, 2000).  

 

1.6.5.3 Use and development of resistant cultivars  

 

Host plant resistance is the principal management strategy for the control of stem 

rust (Rouse and Jin, 2011). An ongoing struggle has been reported on identifying 

sources of resistance and developing resistant varieties against wheat stem rust for 

over 50 years (Singh et al., 2008a). The most successful control of stem rust 

appears to be when stem rust resistance genes from tetraploid sources, durum and 

emmer, were transferred into hexaploid wheat, which gave rise to the varieties 

Thatcher and Hope (Kolmer 2001). Thatcher and Hope have maintained some 

resistance to stem rust for many years. The most effective component of the 

resistance in these varieties is adult plant resistance conditioned by the Sr2 gene 

(Singh et al., 2008b).  
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Two types of resistance to stem rust can be recognized, namely race-specific and 

race-non-specific resistance. Race-specific resistance is controlled by a few genes 

having major effects. Race non-specific resistance is governed by several to many 

genes each with a minor effect (Van der Plank, 1963). Resistance to stem rust in 

wheat has been largely based on race-specific resistance (Ayliffe et al., 2008). Many 

varieties with race-specific resistance have been released but they became 

susceptible shortly after their deployment, because virulent races that could 

overcome their resistance were found to be prevalent in the fungus population. 

Hence, for the long term, the main objective of the wheat breeder is to develop 

cultivars in which many additive genes are accumulated to express strong 

quantitative resistance to stem rust (Herrera-Fossel et al., 2007). 

 

In wheat at least 50 Sr genes which confer resistance to different races of stem rust 

have been identified (McIntosh et al., 2011). Most of the designated Sr genes have 

proved to be qualitative and race-specific (Singh et al., 2011). According to Yu et al. 

(2014), five of the stem rust resistance genes, Sr2, Sr55, Sr56, Sr57 and Sr 58, 

confer quantitative adult plant resistance. Of these, Sr2 has proved to be durable in 

many parts of the world (Singh et al., 2010). It has remained effective against P. 

graminis f. sp tritici worldwide for more than 50 years (Hayden e al., 2004). The 

effectiveness of Sr2 is that it forms a gene complex with other, unknown additive 

genes of a complementary nature (Singh and Rajaram, 2006). The resistance 

conferred by Sr2 is characterized by a slow rusting response, and the resistance 

phenotype is expressed only at adult plant stage (Roelfs, 1988). According to 

McIntosh (1988) and Singh and Rajaram (2006) this resistance, in combination with 

other major or minor genes, provides a desirable genetic background for the 

deployment of other effective but less durable stem rust resistance genes. Thus, the 

use of Sr2 remains important in the control of wheat stem rust in wheat breeding 

programs.  
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1.7 Slow rusting 
 

Slow rusting is characterized by slow disease progress in the field, despite a 

compatible host-pathogen interaction (Caldwell, 1968; Parlevliet, 1975; Singh et al., 

2005). Therefore, a cultivar that only has slow rusting resistance will display 

susceptible infection types both at the seedling and adult stages (Navabi et al., 2004; 

Singh et al., 2009). Slow rusting resistance is often described as partial resistance or 

adult plant resistance. According to Ahamed et al. (2004), slow rusting is a useful 

measure of resistance because it is the result of all factors that influence disease 

development such as differences in environment, cultivars and populations of the 

pathogen. This type of resistance is characterized by low infection frequency, 

increased latent period, reduced spore production, shorter sporulation period and 

reduced pustule expansion (Wilcoxson, 1981; Singh and Rajaram, 2006). These 

characteristics are known as slow rusting components and may act independently or 

complementarily to reduce fungal infection. The genetic control of slow rusting is 

predominantly additive and mostly inherited polygenically (Skovmand et al., 1978; 

Ahamed et al., 2004; Kumar et al., 2013). Slow rusting has been a stable trait over a 

relatively long period. This has been observed in wheat cultivars which rusted slowly 

when attacked by P. garminis spp. (Ahamed et al., 2004; Singh et al., 2008b).  

 

1.8 Measurements of slow rusting 
 

To select effectively for slow rusting resistance in the field, adequate disease 

epidemic and good disease measurements are necessary in order to distinguish 

susceptible lines from the slow rusting lines. In the field, slow rusting resistance have 

been described and estimated by means of final disease severity, the area under 

disease progress curve (AUDPC), apparent infection rate (inf-rate) and coefficient of 

infection (CI) (Pathan and Park, 2006; Ali et al., 2009; Shah et al., 2010; Tabassum, 

2011; Safavi, 2012).  

 

Wilcoxson et al. (1975) used the AUDPC and the inf-rate values to evaluate slow 

rusting resistance in wheat cultivars to stem rust. In 1978, Gavinlertvatana and 
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Wilcoxson found that AUDPC was a convenient and reliable parameter for 

comparing slow rusting capabilities, whereas inf-rates were limited in their utility to 

tag slow rusting because such estimates were made accurately only during the early 

phases of disease development. Shaner and Finney (1980), Wilcoxson (1981), 

Sawhney (1995), Shah et al. (2010), Tabassum (2011), Safavi (2012) and Safavi et 

al. (2013) also used AUDPC to identify slow rusting genotypes under field conditions. 

Harjit-Singh and Rao (1989) discussed AUDPC and inf-rate values, using theoretical 

models on the development of leaf rust. Their findings suggested that the AUDPC 

and the inf-rate measure different aspects of resistance and therefore the 

combination provide greater discrimination to evaluate the resistance of genotypes. 

They concluded that slow rusting is determined by comparing AUDPC values.  

 

According to Singh et al. (2007), field selection of slow rusting resistance is 

preferable made by screening for using low AUDPC and terminal ratings, along with 

low CI. They argued this to be the most efficient approach in situations where 

greenhouse facilities are inadequate. Qamar et al. (2007) proposed that AUDPC and 

terminal disease ratings are reliable estimators for slow rusting resistance in wheat. 

Terminal rating was reported to be preferable because it is more economical, less 

labour-intensive and less time-consuming than measuring the AUDPC. Safavi (2012) 

also concluded that FRS and CI are the most appropriate and economical 

parameters for selection of slow rusting genotypes. Ali et al. (2008) suggested using 

CI for field based assessment of partial resistance. 

 

In greenhouse experiments, latent period (days from inoculation until the first pustule 

erupted) and pustule size are important and widely used components for identifying 

slow rusting genotypes. Latent period, in particular, has been identified as an 

important component of partial resistance because it is measured and analysed 

easily and with the least possible error (Shaner and Finney, 1980; Ghannadha et al., 

2005; Zahravi and Bihamta, 2010). Variation for latent period has been reported for 

rust diseases in various studies (Kolmer and Liub, 2001; Ghannadha et al., 2005; 

Zahravi and Bihamta, 2010). Pustule size is often used to measure spore production. 

Since measuring spore production is difficult, it can be estimated by pustule size, 
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assuming a dose association between spore production and pustule size (Bakhshi et 

al., 2012).  

 

1.9 Genetics of rust resistance 
 

Understanding the nature and magnitude of genetic effects of resistance, and 

knowing the available resistance genes in the germplasm help wheat breeders to 

formulate an efficient breeding program for the achievement of durable resistance 

breeding (Hussain et al., 2011). Genetic procedures are used to obtain basic genetic 

information (Hussain et al., 2011). Griffing (1956) postulated a diallel technique for 

estimating the general combining ability (GCA) and specific combining ability (SCA) 

of lines and to characterize the nature and extent of gene action. GCA describes 

additive gene effects and SCA describe all the non-additive genetic effects. Usually 

only additive and dominance effects are assumed to be present and genetic analysis 

largely involves the use of F1 progeny means from a set of crosses. However, to 

maximize genetic information regarding the presence of different kinds of genetic 

effects and the relative importance of these gene effects, means from other 

generations may be required. Generation mean analysis involves six basic 

generations (P1, P2, F1, F2, BC1 and BC2) and detects the presence or absence of 

epistasis, and when it is present, it measures it appropriately (Bernardo, 2002). 

  

Considerable research has been conducted on the inheritance of rust resistance in 

wheat, and both diallel and generation mean analyses have been used to examine 

inheritance of rust resistance in wheat. Studies using combining ability analysis have 

reported both additive and non-additive gene effects for resistance to rusts in wheat 

(Navabi et al., 2003; Ahmed et al., 2004; Hasabnis and Kulkarni, 2004; Zahravi and 

Bihamta, 2010). Epistatic gene action have been reported for wheat when two or 

more race-specific resistance genes are effective against a race of stem rust, i.e., 

genes conditioning the highest level of resistance are epistatic to the gene(s) 

conditioning lower levels of resistance (Roelfs, 1988; Bhatiya et al., 2009; Irfaq etal., 

2009; Zahravi and Bihamta, 2010). In durum wheat, however, several resistance 

genes interact additively. Combinations of two or more of these resistance genes 
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resulted in a level of resistance greater than either resistance gene singly (Kurt and 

Les, 2005).  

 

1.10 Farmers’ preferences and their implications in  wheat breeding  
 

High yields and disease resistance have been the key objectives of most plant 

breeding programs. Accordingly, many high yielding and disease resistant varieties 

have been released. However, studies have showed that adoption of new varieties is 

often limited because the specific needs and preferences of farmers were not 

adequately considered by breeding programs (Weltzien et al., 2003; Witcombe et al., 

2005). In Ethiopia, the national wheat improvement program has released more than 

30 wheat varieties since 2003, when Ug99 was detected in the country. However, 

only a few varieties are being planted by farmers in the country (DRRW, 2010). One 

of the reasons for the poor adoption rate by farmers is the lack of preferred traits 

within the “improved” cultivars (Nelson, 2013; Shiferaw et al., 2013). 

 

It is well known that development and transfer of modern varieties is not an end in 

itself. The goal of increased productivity and production of wheat will be realized if 

farmers adopt the varieties that are released by the plant breeders. Breeders must 

therefore consider farmers’ preferences, the agronomic attributes of wheat varieties 

and the constraints reducing wheat production, and incorporat as criteria for 

developing, testing, and releasing varieties (Ceccarelli and Grando, 2009). This will 

enhance the level of adoption of a released variety, which takes a long time, and a 

high cost to develop. When farmers reject a newly released variety, this 

reprepersents a major waste of research resources. 

 

1.11 Summary 
 

Wheat is among the most important staple crops in Ethiopia. However, its production 

and productivity is low because of various yield limiting factors, including stem rust. 

This is the most prevalent and devastating wheat disease in nearly all wheat growing 

areas of the country. Attempts have been made to minimize or control stem rust 
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losses through fungicides applications and different cultural methods. However, 

breeding for stem rust resistance remains the most economical, effective and 

practical method of stem rust management.  

 

In recent times stem rust has been controlled by growing resistant varieties. 

However, the varieties succumbed to stem rust disease shortly after their 

introduction. In most cases, the failures have been due to the virulence present in 

the pathogen population and deployment of qualitative type of resistance in wide 

array of wheat cultivars. In view of this, it is important to identify and introduce 

resistant types that can be intrinsically durable like partial or slow rusting resistance. 

These types of resistances are characterized by slow epidemic build up despite a 

high infection type indicating a compatible host-pathogen interaction. Thus slow 

rusting resistance can be an alternative approach useful in developing wheat 

cultivars with durable resistance. 
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CHAPTER 2 
 

Appraisal of farmers’ wheat production constraints and breeding priorities in 

rust prone agro-ecologies of Ethiopia 

 

Abstract 
 

Ethiopia is the second largest producer of wheat in sub-Saharan Africa although 

yields remain considerably below the global average due to several production 

constraints. The aim of the study was to identify the primary threats to wheat 

production, farmers’ selection criteria for wheat varieties, and disease management 

practices with emphasis on wheat rusts in the Arsi, Bale and West Shewa 

administrative zones of Ethiopia.  A total of 270 wheat growing households were 

surveyed in six districts of three administrative zones. Participatory rural appraisal 

tools, a semi-structured questionnaire and focus group discussions were used to 

engage with the farmers. Wheat rust diseases, the high costs of fertilizers, a 

shortage of improved seeds and high seed prices were the major constraints 

reported by 96%, 93%, 85% and 81% of respondents, respectively. The most 

important traits that farmers sought in wheat varieties were disease resistance 

(27.8%) and high grain yield (24.8%). Farmers estimated that in the Arsi, Bale and 

West Shewa zones losses due to stem rust disease were 70, 60 and 60%, 

respectively. Owing to the limited availability of stem rust resistant varieties, and the 

emergence of virulent pathotypes, fungicide application was the main disease 

management practice used by 60% of respondent farmers. To enhance wheat 

production and productivity, and to meet food security in Ethiopia, it is important to 1) 

develop stem rust resistant varieties considering farmers’ preferences; 2) promote 

access to wheat production inputs; 3) strengthen seed multiplication and 

dissemination of improved varieties.    

 

Key words: Ethiopia, participatory rural appraisal, seed source, stem rust, wheat 
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2.1 Introduction  

 
Wheat (Triticum aestivum L.) is one of the world’s leading cereal grains serving as a 

staple food for more than one-third of the global population. Globally, it is cultivated 

on approximately 218 million hectares of land (HGCA, 2014). Ethiopia is the second 

largest wheat producer in sub-Saharan Africa, after South Africa (GAIN, 2012). In 

Ethiopia wheat is cultivated on 1.6 million hectares of land, accounting for 13.25% of 

the total cropland, with an annual production of 3.4 million tons, contributing about 

14.85% of the total cereal production (CSA, 2013). In terms of area of production, 

wheat ranks fourth after teff (Eragrostis tef Zucc.), maize (Zea mays L.) and 

Sorghum (Sorghum bicolor L.). In total grain production, wheat ranks third after teff 

and maize in the country.  

 

Wheat is largely grown in the mid and highland areas of Ethiopia spanning at 

altitudes of 1500 to 3000 m above sea level (masl). However, it is mainly grown 

between 1800 to 2500 masl in the country (Winch, 2007). Arsi, Bale and Shewa 

administrative zones of the Oromia Regional State of Ethiopia are among the major 

wheat areas with 56% of the wheat produced in Ethiopia coming from these zones 

(CSA, 2013). The Arsi and Bale zones are included among the highest potential 

agro-ecologies in Eastern Africa for wheat production with 479, 290 ha under wheat 

(Jobie, 2007; CSA, 2013). 

 

In Ethiopia wheat is predominantly grown by small scale farmers at a subsistence 

level, and these farmers experience a wide range of biotic, abiotic and socio-

economic constraints. Wheat rusts, stem rust (Puccinia graminis Pers. f.sp. tritici Eriks 

and Hann), leaf rust (P. triticina Eriks) and stripe or yellow rust (P. striiformis 

Westend. f. sp. tritici) are the major biotic constraints in all wheat growing regions of 

the country. To combat yield losses due to wheat rusts and other abiotic constraints, 

the National Wheat Improvement Program has released more than 30 wheat 

varieties since 2003. However, only a few rust resistant wheat varieties are being 

planted by farmers in the country (DRRW, 2010). Poor adoption of varieties has 

mostly risen from the weak integration of variety requirements between breeders and 
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farmers (Nelson, 2013). Therefore integration of farmers’ perceptions and 

preferences will contribute greatly in improving wheat productivity.  

 

Understanding farmers’ preferences, attributes of wheat varieties and wheat 

production constraints enables breeders to set wheat breeding priorities (Weltzien 

and Christinck, 2009). Hence, the aim of the study was to identify wheat production 

threats, farmers’ variety selection criteria, and disease management practices with 

special emphasis on wheat rusts in Arsi, Bale and West Shewa administrative zones 

of Ethiopia. 

 

2.2 Research methodology  

 
2.2.1 Description of the study areas  

 

The study was carried out in three selected administrative zones: Arsi, Bale and 

West Shewa (Figure 2.1). The zones are situated in the Oromia Regional State of 

Ethiopia. The zones are all major wheat growing areas but differ in terms of agro-

ecological diversity, and in the use of modern wheat production technologies. The 

Arsi and Bale Zones are situated in the south-eastern of Ethiopia while the West 

Shewa Zone is in the Central highlands of Ethiopia (Figure 2.1).  

 

The Arsi Zone has three climatic zones, namely highlands (43.4%), midlands 

(27.5%) and lowlands (29.1%). Bale Zone has highlands, midlands and lowlands at 

15%, 21% and 64% of the total land area, respectively. Likewise, three agro-

ecological zones are distinguishable in West Shewa: highlands (57%), midlands 

(25%) and lowlands (18%) (CSA, 2013). Highlands are defined as those areas with 

altitudes of 2300-3200 masl, midlands with altitudes of 1500-2300 masl and lowlands 

with altitudes of 500-1500 masl.  
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Figure 2.1 Map of Ethiopia showing the three study areas: Arsi, Bale and West 
Shewa zones.  
 

2.2.2 Data source 

 

Both qualitative and quantitative data were collected from primary and secondary 

sources. Primary data were collected through semi-structured interviews and focus 

group discussions. The secondary data were obtained from the zonal and district 

agricultural offices of the respective districts included in the study. 

 

2.2.3 Sampling  
 

A multi-stage sampling procedure was used involving the selection of zones, 

districts, villages and wheat farmers. A non-random purposive selection method was 

used to select from the zonal through the districts, villages and farmers levels. 

Fifteen farmers from each village were interviewed, providing a total of 270 farmers 

for the study. Individual farmers were selected from each village representing various 
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socio-economic backgrounds (data not shown) and both gender (Table 2.1). Zone 

level agricultural experts and district agricultural development offices assisted with 

the identification of the sampled districts, villages and respondents. 

 

Table 2.1. Study zones, districts and villages and number of sampled wheat farmers in 
Arsi, Bale and West Shewa administrative zones of the Oromia Regional State of 
Ethiopia 
Zone District Village Male Female Total 

 

Arsi 

 

Tiyo 

Ketar-Genet 13 2 15 

Abusera 11 4 15 

Hamsa-Gasha  12 3 15 

 

Munisa 

Gerenbo-Talole 12 3 15 

Didibe Yadola 13 2 15 

Gumguma 14 1 15 

Bale 

 

Sinana 

Sambitu 13 2 15 

Nano-Robe 14 1 15 

Obora 15 0 15 

 

Gasera 

Danbel 13 2 15 

Awsencho 14 1 15 

Naqe 14 1 15 

 

 

West Shewa 

 

Jeldu 

Kolu-Gelan 12 3 15 

Seriti-Denko 13 2 15 

Tulu- Bultuma 14 1 15 

Dandi Boda- Boseka 14 1 15 

Cheleleka- Bobe 13 2 15 

Serewa-Debisa 14 1 15 

Total  270 
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2.2.4 Data collection  

 

Semi-structured questionnaire was designed on topics related to the general socio-

economic characteristics of the household, wheat varieties grown, production 

constraints, wheat rust diseases and their management. Enumerators were recruited 

for data collection who lives in the area, fluent speakers of local language (Oromifa), 

well acquainted with local and cultural contexts, and working within the selected 

districts. They were trained on the contents of the interview schedule and data 

collection techniques. Pre-test on non-sample respondents was also made under 

supervision of the researcher. Finally, the formal survey was conducted on 270 

households after necessary modification and adjustments were accommodated as 

per the result obtained from the pre-test. At the end of each day all questionnaires 

were checked with the enumerators and clarifications were made.  

 

Focus group discussions were held in each district to understand farmers’ varietal 

preferences and the specific traits that influence a farmer’s decision to grow a wheat 

variety, and the major constraints affecting wheat production. Each group was 

composed of 10-15 wheat farmers (both male and female). Checklists were 

developed and used to guide focused group discussions with farmer groups and 

individual key informants. The farmers were encouraged to use their local language 

that they were most familiar with. The development agents most familiar with the 

local language facilitated the group discussions. During the discussion, the farmers 

were asked to list wheat varieties they grow and to identify the traits that they used in 

selection of the varieties, and list the main constraints limiting wheat production. 

 

2.2.5 Data analysis 

 

Data (both qualitative and quantitative) obtained from sample respondents were 

sorted, coded and subjected for statistical analyses using the Statistical Package for 

Social Sciences computer software (SPSS Inc., 2005). Both descriptive and 

inferential statistical procedures were used to analyze the data obtained from farm 

households.   
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2.3 Results   
 

2.3.1 Demographic characteristics and socio-economi c factors 

 

The sample population contained 88.2% males and 11.8% females. Almost all the 

respondents (99%) who participated in the study were farmers in agricultural 

production. The mean family size of the sampled population was 5.1 and about 85% 

of interviewed farmers had family sizes greater than 3 persons per household. In the 

study areas, children were contributing to farm labour significantly. Farmers who 

were illiterate constituted 21%. Farmers educated up to primary and secondary level 

constituted 62% and 17%, respectively.  

 

2.3.2. Farming system  

 

Household total crop land in the study areas ranged from 0.5 to 15 hectares, with 

mean farm size of 2.5 ha (SD 2.43). The majority of the interviewed farmers allocate 

most of their land for wheat as the number one crop. Of the 2.5 hectares of mean 

farm size owned by individual farmers, a mean of 1.85 ha were dedicated to wheat 

production in the study areas. Farmers in the surveyed areas grow different 

assemblage of crops. These include cereals, pulses and oilseed crops. In addition to 

wheat, other major crops grown by majority of farmers in the Arsi Zone were barley 

(Hordium vulgare L.) (71%), maize (Zea mays L.) (51%), teff (Eragrostis tef (Zucc.) 

Trotter) (41%), faba bean (Vicia faba L.) (46%) and linseed (Linum usitatissimum L.) 

(18%). The three major cereal crops widely grown after wheat were barley (58%), 

maize (40%), and teff (39%) in the Bale Zone. In West Shewa most farmers grow 

maize (67%), teff (63%), barley (41%), faba bean (38%), grass pea (Lathyrus sativus 

L.) (24%), and noug (Guzotia abysinica Cass.) (15%).   

 

Wheat is grown both in the main and short rainy seasons in the Sinana and Gasera 

Districts of Bale Zone. The main rainy season has long rains which start in June and 

end in September. It is the period when the largest wheat area is cultivated.  In the 

short rainy season, the rain starts in February and ends in April. Seventy three 
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percent of farmers in these districts grow wheat in both the main and the short rainy 

seasons, while 27% of them only utilize the main season to produce wheat. On the 

other hand, farmers in the Arsi and West Shewa Zones only grow wheat during the 

main rainy season. In the study areas, wheat is produced solely under rain fed 

conditions. 

 

2.3.3. Wheat seed source 

 

The sources of seed for farmers are presented in Table 2.1. The informal sector was 

the source of seed for 84.4% of the farmers in the area, where 68.1% respondents 

used farm-saved seeds, and 8.9% and 7.4% of respondents used seeds from other 

farmers and local markets, respectively. The formal sector provided for only 15.5%, 

where 12.2% of farm households sourced their seed from Agricultural Offices (AO) in 

the respective districts and 2.2% from producers’ cooperatives (Table 2.1).  

  

Table 2.1. Farmers’ sources of wheat seed in the Arsi, Bale and West Shewa 

administrative Zones of the Oromia Regional State of Ethiopia 

 

 

 

 

 

 

 

 

 
 
 

 
  

Seed source Seed source  in 2011 cropping season 

Frequency % response 

Other farmers 24 8.9 

Agricultural Offices 33 12.2 

Research centers   3 1.1 

Producer cooperatives   6 2.2 

Local markets 20 7.4 

Own stock 184 68.1 

Total 270 100 
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2.3.4. Wheat varieties grown by farmers and genetic  diversity  

 

Table 2.2 shows the different wheat varieties grown by farmers in the study areas. 

Most farmers grow more than one variety, making the proportions above 100%. The 

most commonly grown wheat varieties in the Aris Zone were Digelu, Kubsa and 

Tusie at 88.75%, 53.35% and 39.75%, respectively. In the Bale Zone, Tusie (77.2%), 

Digelu (70.75%) and Madawalabu (46.2%) were the dominant wheat varieties grown 

by the majority of farm households. Digelu (40.2%) and Kubsa (38.9%) were popular 

varieties in West Shewa Zone. Variety Digelu was grown by 88.8%, 70.8% and 40% 

respondents in Arsi, Bale and West Shewa zones, respectively. This variety is still in 

high demand and is being rapidly multiplied. Fifty five percent of respondents in Arsi 

and 38% in West Shewa grow Kubsa on their farms.  

 

The new bread wheat varieties, Kakaba and Danda’a that were released in 2010 

were grown in Arsi by 15% and 10% of the farmers, respectively. Danda’a was 

grown only by 3.4% of farmers interviewed in Bale. None of the respondents in West 

Shewa grew these varieties, while 10.7% of farm household used local wheat 

varieties. In all surveyed areas farmers grew only bread wheat type.  
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Table 2.2. Wheat varieties grown, year of release and proportion of wheat farmers in 

Arsi, Bale and West Shewa administrative zones of Ethiopia 

Variety Year of  

release 

Arsi Bale West Shewa 

% response % response % response 

Kubsa 1995 53.35 10.15 38.90 

Digelu 2005 88.75 70.75 40.20 

Galama 1995   - 3.35 30.55 

Dashen 1984   -   - 31.75 

Kakaba 2010 15.85 3.40   1.10 

Madawalabu 2000 6.80 46.20   1.15 

Pavon 76 1982 11.10 1.15   - 

Tusie 1997 39.75 77.20   - 

Hawi 2000 1.10   -   - 

Sofumer 2000 9.10 20.35   - 

Danda’a 2010 10.25   -   - 

Local   -   - 6.75 10.70 

 

2.3.5. Farmers’-preferred traits   

 

In all the study sites, farmers use a combination of criteria in selecting wheat 

varieties. The major and common reasons behind varietal preferences are given in 

Table 2.3. The most important criteria across the sites were disease resistance 

(27.8%), high yield (24.8%) and a combination of the two (27%). In Arsi 31.1% of 

respondents prefer a combined high yield and disease resistance as the key criteria 

for selecting wheat varieties. Disease resistance was a key criterion for 27.8% and 

37.8% farmers in Bale and West Shewa, respectively.  

 

Environmental adaptability was a criterion for 7.8% of farmers in Arsi and 8.9% in 

Bale and 2.2% of respondents in West Shewa. High market value in combination 
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with other traits was also a major selection criterion in the study sites because wheat 

is a major source of income in the areas.  

 

Table 2.3. Farmers’-preferred traits required of improved wheat varieties in the Arsi, 

Bale and West Shewa zones of Ethiopia  

 
Farmers’-preferred traits 

Zones  

All survey Arsi  Bale West Shewa 

Freq % Freq % Freq % Freq % 

Grain yield 25 27.8 15 16.7 27 30 67 24.8 

Disease resistance 16 17.8 25 27.8 34 37.8 75 27.8 

Grain yield and disease resistance 28 31.1 22 24.4 23 25.6 73 27.0 

Environmental adaptability  7 7.8 8  8.9  2 2.2 6 6.3 

Disease resistance and food quality 4 4.4 3 3.3 0 0 12 2.6 

Grain yield and high market value 3 3.3 2 2.2 1 1 10 2.2 

Grain yield, food quality and high 
market value 

2 2.2 5 5.6 0 0 9 2.6 

Grain yield, early maturity, 
disease resistance and food quality 

1 1.1 4 4.4 2 2.2 7 2.6 

Grain yield, disease resistance, 
high market value and food quality 

4 4.4 6 6.7 1 1.1 11 4.1 

Total 90 100 90 100 90 100 270 100 

†Freq=frequency of respondents 

 

Farmers in group discussions were also asked to associate a particular wheat variety 

they currently grow with its preferred and non-preferred traits. The most commonly 

grown varieties, along with their preferred traits, are summarized in Table 2.4. 

Farmers in the study areas selected wheat varieties Madawalabu, Sofumer, Danda’a 

and Kakaba for their disease resistance. Tusie is tolerant of rust and is preferred for 

its market value. Kubsa and Galama are disease susceptible varieties but are still 

grown for their high grain yield and biomass which is used for animal fodder, fuel and 
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house roofing material. White seeded varieties such as Kubsa, Dashen, Digelu, 

Kakaba, Danda’a, Tusie and Pavon 76 are largely grown by farmers for sale 

because they are preferred by urban consumers.  

 

Farmers in group discussions stated that Kakaba is tolerant to lodging because of its 

semi-dwarf nature. It is early maturing variety and was preferred by farmers who 

practiced double cropping. Kakaba was also preferred for its soft straw which makes 

it suitable for animal fodder. In contrast, Digelu has hard straw, making it little use for 

animal fodder. Farmers raised that variety Digelu is late maturing. However, they 

were convinced that this variety is high yielding and better in areas that receive 

extended rainfall. Danda’a was preferred by the farmers for its tillering capacity, 

resistance to disease and long spike. The farmers who grew Danad’a considered it 

as a substitute for the old susceptible wheat variety, Galama. The female famers 

who participated in the group discussions also stated that the variety has good bread 

making quality. However, the farmers indicated that Denda’a has less threshability 

and difficult to thresh using conventional harvesting. Hence, farmers obliged to use 

combine harvesting.  
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Table 2.4. Wheat varieties currently grown by farmers in the Arsi, Bale and West 

Shewa zones and their outstanding traits 

Wheat varieties Preferred traits Non- Preferred traits 

Kubsa High grain yield, high biomass, multiple 

use at home, white seed, adaptable  

to environment 

Susceptible to disease  

Digelu High grain yield, multiple use at home, 

white seed 

Late maturity, hard straw 

Galama High biomass, multiple use at 

 home, adaptable to environment 

Susceptible to disease, 

late maturity 

Dashen White seed Susceptible to disease 

Kakaba High grain yield, disease resistant,  

early maturity, white seed, tolerant 

 to lodging, soft straw for animal fodder 

- 

Madawalabu High grain yield, disease resistant,  

early maturity 

- 

Pavon 76 White seed, early maturity  Susceptible to disease 

Tusie White seed, tolerant to rust - 

Sofumer High grain yield, disease resistant Purple seed color 

Danda’a High grain yield, disease resistant,  

white seed, tillering capacity, bread  

making quality, long spike 

Late maturing 

 

2.3.6. Wheat production constraints 

 
Almost all sampled farmers (96%) considered the wheat rusts as the most important 

production constraint.  High input prices, especially of fertilizers (93%) and improved 

seeds (81%), were identified as important limiting factors of wheat production after 

rusts. Lack of access to seeds of improved wheat varieties followed by low market 
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prices of wheat were also identified as important factors by 85% and 66% of the 

farmers, respectively (Table 2.5).  

 

The farmers’ perceptions of wheat production constraints and their ranks between 

locations are summarized in Table 2.5. There was a marked agreement in the 

identified constraints in the three survey zones, with some variation in the ranking 

between the zones. High seed prices were ranked fourth following a lack of access 

to seeds of varieties in the Arsi and West Shewa zones, whereas farmers in the Bale 

Zone perceived high seed prices as equally important to the lack of access to seeds 

of improved varieties and both ranked third.  Lack of credit access was perceived as 

an important constraint in West Shewa while it ranked lower in the Arsi and Bale 

zones.  
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Table 2.5. Major wheat production constraints and their ranks in Arsi, Bale and West Shewa zones of Ethiopia.  

 
Constraints 

Zones   

All Surveyed Arsi  Bale  West Shewa  

†Freq. % Rank  Freq. % Rank  Freq. % Rank  Freq. % Rank 

Rusts (yellow rust and stem rust) 87 96.7 1  86 95.6 1  86 95.6 1  259 96 1 

Lack of seed of improved varieties 81 90.0 3  77 85.6 3  71 78.9 3  229 85 3 

High seed price 78 86.7 4  77 85.6 3  65 72.2 4  220 81 4 

High fertilizer price 85 94.4 2  82 91.1 2  84 93.3 2  251 93 2 

Shortage of fertilizer 15 16.7 9  17 18.9 9  21 23.3 9  53 20 9 

Low producer price 61 67.8 5  62 68.9 5  54 60.0 5  177 66 5 

Weeds (grass weeds) 37 41.1 7  32 35.6 6  25 27.8 8  94 35 7 

Poor soil fertility 11 12.2 10  10 11.1 11  12 13.3 11  33 12 11 

Other diseases and pests 42 46.7 6  29 32.2 7  39 43.3 7  110 41 6 

Unpredictable rain 18 20.0 8  13 14.4 10  16 17.8 10  61 17 10 

Lack of  access to credit 7 7.8 11  24 26.7 8  54 60.0 5  85 31 8 

†Freq=frequency of respondents 
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2.3.7 Wheat stem rust and farmers’ rust management methods 

 

In the present study, yield losses were estimated based on the difference between 

yield from stem rust free wheat farms and diseased wheat farms in study areas 

(Table 2.6). Accordingly, yield losses of 70.7%, 60.5% and 60.0% were reported in 

the Arsi, Bale and West Shewa zones, respectively (Table 2.6).  

 

Table 2.6. Yield losses due to stem rust in Arsi, Bale and West Shewa, Ethiopia 

 

Zone 
Mean wheat productivity 

 

Under low/no rust 

infestation (t ha-1) 

Under high rust 

 infestation (t ha-1) 

Loss (%) 

Arsi 4.1 1.2 70.7 

Bale 3.8 1.5 60.5 

West Shewa 2.0 0.8 60.0 

 

To reduce losses from rust infestations, fungicides are being used by most 

producers. More than 60% of interviewed farmers used fungicides for rust 

management (Table 2.7). Tilt@ (Propiconazol), Bayfidan@ (triadimenol), and 

Mancozeb were the major fungicides used by the farmers for rust control. Only 15% 

of the respondents had adopted new varieties for the control of rusts. Kakaba, 

Danda’a and Digelu were widely adopted resistant wheat varieties. On the other 

hand, a few farmers in Bale (6.7%) were planting early to avoid rust damage. In 

contrast, almost 20% of the farmers did not use any control measure to protect their 

wheat farms from rust infection. 
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Table 2.7. Wheat rust control measures practiced in the study areas 

Control measures 
 

Zone   

All surveyed Arsi  Bale  West Shewa  

†Freq %  Freq %  Freq %  Freq % 

None 14 15.6  15 16.7  24 26.7  53 19.6 

Chemical 62 68.9  60 66.7  57 63.3  179 66.3 

Resistant variety 14 15.6  9 10.0  8 8.9  31 11.5 

Cultural practice 
(early planting) 

0 0  6 6.7  1 1.1  7 2.6 

Total 90 100  90 100  90 100  270 100 

†Freq= frequency of respondents 

 

2.4 Discussion 
  

In Ethiopia wheat research programs to develop improved wheat varieties were 

initiated during the 1950s. Despite 60 years of wheat breeding in the country, most of 

the released cultivars had been poorly adopted by small-scale farmers (Zegeye et 

al., 2001; DRRW, 2010). Majority of farmers in the study areas continue to grow 

older varieties such as Kubsa and Galama that are often susceptible to diseases. 

The reseaons for the persistence of older varieties were lack of farmers’ preferred 

traits in the new cultivars, unavailability of sufficient quantity of new seed or its poor 

distribution in the study areas and the risk avoidance adopted by farmers who grow a 

mixture of varieties to spread their risks. 

 

In the past, durum wheat was the most widely grown wheat type in the major wheat 

growing areas of Ethiopia. Ethiopian durum wheat land races are valuable sources of 

resistance to rust diseases (Denbel and Badebo, 2012). To date bread wheat has 

become predominant in most wheat areas of the country. Farmers in the study areas 

shifted to bread wheat production owing to its productivity per unit area relative to 

durum wheat. However, this may seriously threaten the existence of local durum 

wheat land races in the country if strategic seed conservation is not undertaken on a 

national scale.  
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Wheat rusts have been major threats to wheat production in Ethiopia. In recent 

years, novel pathotypes of the rusts have overcome resistant wheat varieties 

(ICARDA, 2011).  The study sites are among the most rust prone areas of Ethiopia 

and the wheat farmers in these areas frequently suffer serious losses from rusts 

epidemics (Hodson et al., 2013; Periyannan et al., 2013). The yellow rust outbreak in 

2010 significantly reduced the national wheat annual production. The major wheat 

producing regions including the study zones were seriously affected of the epidemics 

with losses up to 70% (Hunde et al., 2012; Yami et al., 2013). Hence, farmers in all 

the study areas were in agreement that wheat rusts are the most important 

production constraints. High prices of chemical fertilizers and improved seeds were 

also important production limiting factors in the study areas. An increase in fertilizer 

prices due to the removal of government subsidies has decreased fertilizer use in the 

study areas. Consequently, farmers apply chemical fertilizers below the 

recommended rates. Under such circumstance, it is difficult to increase the wheat 

yields on small scale farms. Bishaw et al. (2010) reported a serious gap between the 

recommended rate and the actual amount applied by the farmers. 

 

Farmers in the study areas were well aware of the benefit of resistant varieties for 

the control of rust diseases. However, majority of the respondents grow old varieties 

for the reasons described earlier and due to high prices of seeds of improved 

varieties, and doubts about the level of resistance provided by these new varieties to 

rust diseases. Hence, farmers use fungicides for the control of the rusts. The 

producers applied fungicides at early growth stages but the application rates were 

below the optimum rates to get the desired level of benefits. Reasons given for the 

use of lower fungicide rates included a lack of awareness of the recommended rates, 

and the shortage and high price of chemicals. Early planting is another important rust 

control measure. It reduces the time of exposure of the crop to the pathogen and 

hence reduces yield loss (Tolessa et al., 2014). However, early planting is not a 

widely adopted disease control measure by the farmers in the PRA zones. 

 

Although farmers in the study zones had a range of preferences regarding wheat 

varieties and specific traits, they were in agreement that disease resistance is the 

most important trait compared to all other traits. This indicated that farmers were 

concerned about the susceptibility of the existing varieties to rust diseases. The 
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farmers in the study areas also indicated grain yield as a key criterion for selecting 

wheat varieties after rust resistance. In general, to ensure a high level of variety 

adoption and therefore the high productivity of the crop, the wheat breeding 

programme in the country should put more emphasis on solving the problems of 

wheat farmers, increase the frequency with which it releases new varieties that resist 

diseases and yield well. Besides, the seeds of newly developed varieties must be 

produced in sufficient quantities in the study areas to make the research efforts more 

successful.   

 
2.5 Conclusions 
  

Records from the current survey revealed that bread wheat was the most widely 

grown wheat type, and indigenous durum wheat varieties had been completely 

replaced with modern bread wheat varieties in the study areas. The main constraints 

identified were diseases (wheat rusts) (96%), the high cost of fertilizers (93%), lack 

of access to seeds of new improved varieties (85%) and high seed prices (81%).  

Based on the findings of the survey and discussions with farmers, disease resistance 

and high grain yield appeared to be the most farmers’-preferred traits of new wheat 

varieties. Yield losses reaching up to 70% were recorded due to wheat stem rust in 

the study areas. The majority of farmers in the study areas grow rust susceptible 

wheat varieties. The study also revealed that fungicides were widely used to control 

wheat rusts, although application rates were mostly lower than optimal.  

 

Given the strong demand for high yielding and disease resistant wheat varieties, 

future research should be directed to develop new varieties with high yields, 

acceptable agronomic characters and disease resistance. In addition, the current 

seed multiplication and dissemination pathways should be speeded up and seeds 

should be delivered to farmers at affordable prices, to ensure adoption of modern 

wheat varieties and increase wheat productivity. Efforts should also be made to 

conserve the indigenous durum wheat landraces and make use of them in 

developing modern wheat varieties.  
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CHAPTER 3 

 

Assessment of Ethiopian wheat lines for slow rustin g resistance to stem rust 

of wheat caused by Puccinia graminis f.sp. tritici 

 
 

Abstract 
 

The emergence and rapid spread of virulent races of wheat stem rust has driven a 

search for sources of resistance for durable resistance breeding. This study was 

carried out to identify possible sources of stem rust resistance among Ethiopian 

wheat lines. Two hundred fifty two wheat accessions and a universal suscept, 

cultivar Morocco were evaluated for their resistance at the seedling stage to the stem 

rust isolate Ug99 in a controlled environment. Ninety one lines that exhibited 

intermediate and susceptible seedling reactions were further field tested in 2012 

main season for their slow rusting characteristics. Among the ninety one, thirty eight 

genotypes that had high to moderate level of slow rusting were advanced to a 2013 

off-season field evaluation. Slow rusting resistance at the adult plant stage was 

assessed through the determination of final disease severity (FRS), coefficient of 

infection (CI), and relative area under disease progressive curve (rAUDPC).  The 

results revealed that wheat lines H04-2, 204408-3, 214551-1, 231545-1, 7041-1, 

7514-1, 226385-1, 226815-1, 7579-1, and 222495-1 had low values of FRS, CI, and 

rAUDPC and were regarded as good slow rusting lines. Of these 231545-1, 7041-1, 

226815-1 and 7579-1 exhibited complete susceptibility at the seedling stage, with 

infection types ranging from 3- to 3+, which suggests that they possess true slow 

rusting resistance. Lines 237886-1, 227059-1, 203763-1, 226275-1, 227068-2, 

226278-1 and 7994-1 had moderate values for the stem rust resistance parameters 

and were identified as possessing a moderate level of slow rusting. High correlation 

coeficients were observed between different parameters of slow rusting. Among the 

slow rusting lines 231545-1, H04-2 and 222495-1 had high yields and kernel weight 

in both seasons. The slow rusting lines identified from this study can be used to 

breed for stem rust resistance in wheat. 

 
Keywords: durable resistance, resistance breeding, slow rusting, stem rust, wheat  
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3.1 Introduction 
 

Wheat (Triticum aestivum L.) is the most important food grain for billions of people 

worldwide, being cultivated on 15.4% of the arable land. It accounts for around 30% 

of global grain production and 44% of cereals used as food (Khanzada et al., 2012). 

Wheat is one of the most important cereal crops produced in Ethiopia. It ranks fourth 

in area under cultivation after teff (Eragrostis tef (Zucc.) Trotter), maize (Zea mays 

L.) and sorghum (Sorghum bicolar (L.) Moench). In total grain production, wheat 

ranks third after teff and maize (CSA, 2013). However, its production and productivity 

is severely constrained by the wheat rust diseases namely stem rust, leaf rust and 

stripe rust caused by the fungi Puccinia graminis Pers. f.sp. tritici Eriks and Hann, P. 

triticina Eriks and P. striiformis Westend. f.sp. tritici, respectively. Stem rust is the 

major production constraint in most wheat growing areas of the country (Denbel et 

al., 2013) which often causes yield losses reaching up to 100% on susceptible 

cultivars (Park, 2007).  

 

The stem rust pathogen is known to rapidly develop new virulence to resistance 

genes owing to mutation events and genetic recombination. In recent years, new 

races of P. graminis f.sp. tritici (Pgt) have been reported in wheat production areas 

globally (Singh et al., 2008). Wheat growing environments such as the East African 

highlands, with continual wheat production and favorable microclimates, are known 

hot spots for the rapid evolution and spread of new rust races. The occurrence and 

spread of virulent stem rust races in and out of the region have threatened wheat 

production globally (Periyannan et al., 2013).   

 

In 1999 a new virulent race of Pgt known as Ug99 was found in Uganda (Pretorius et 

al., 2000). The race carries virulence to stem rust resistance gene Sr31, which was 

derived from rye and remained effective for more than thirty years (Wanyera et al., 

2006). Ug99 has since spread through this region and to Middle East and South Asia 

(Nazari et al., 2009; Singh et al., 2009). Ug99 was first reported in Ethiopia in 2003 

(Singh et al., 2008). Globally Ug99 has evolved even further, accumulating additional 

virulence to important Sr genes, notably Sr24 and Sr36 (Jin et al., 2008, 2009). 
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Various control options are available to minimize losses caused by stem rust. The 

cheapest and most environmentally friendly management strategy to reduce losses 

to stem rust disease would be the use of resistant wheat cultivars. To date more than 

50 Sr genes that confer resistance to different races of stem rust have been 

identified (McIntosh et al., 2011). Several of the designated genes are qualitative and 

race-specific (Singh et al., 2011). Of these genes and alleles, at least 27 are 

effective or partially effective to the Ug99 race group including Sr33, introgressed 

from the wild relatives Aegilops tauschii and Sr35, transferred from Triticum 

monococcum  to bread wheat (Periyannan et al., 2013; Saintenac et al., 2013; Yu et 

al., 2014). A major risk associated with the utilization of such race-specific genes is 

the ability of pathogens to defeat the genes when they are deployed alone in wheat 

cultivars as has been demonstrated by the Ug99 defeating Sr24, Sr36 (Jin et 

al. 2008, 2009). Therefore, efforts to identify and incorporate genes that confer 

durable resistance are crucial (McDonald and Linde 2002; Ayliffe et al., 2008).  

 

Slow rusting resistance is a type of resistance that is both race non-specific and 

durable (Sawhney, 1995). Slow rusting resistance is often described as partial 

resistance or adult plant resistance. Such slow rusting resistances are polygenic and 

reduce the infection efficiency and retard growth and development of the pathogen, 

especially in adult plants. According to Yu et al. (2014) a total of five designated 

wheat stem rust resistance genes confer quantitative adult plant resistance: Sr2, 

Sr55, Sr56, Sr57 and Sr58. The effects of race non-specific genes are pronounced 

post seedling growth stages (Nzuve et al., 2012). These genes are also 

characterized by non-hypersensitive responses (Navabi et al., 2004; Singh et al., 

2009).  

 

Wheat varieties resistant to rusts have been developed through the national wheat 

improvement research program and in collaboration with the International Maize and 

Wheat Improvement Center (CIMMYT) in Ethiopia. However, most of the varieties do 

not possess durable resistance and became susceptible shortly after their 

introduction. In most cases, the failures were due to new virulent pathotypes and 

deployment of the same R-gene(s) in wide array of wheat cultivars (Admassu et al., 

2012). According to Admassu et al. (2012) most stem rust resistance genes present 

in wheat cultivars and breeding lines of Ethiopia are race-specific and ineffective to 
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most of the prevalent races of Pgt. The epidemic proportion of stem rust on wheat 

variety Digelu (HAR 3116) in Bale Zone during the 2013 cropping season is a 

classical example. Digelu is a recently promoted bread wheat variety with major 

gene resistance. It was resistant to stem rust at the time of its release, but new 

virulent races were present in 2013, even before its cultivation was in substantial 

areas. Digelu developed extremely high levels of stem rust, which led to 100% yield 

losses during the season (Hodson, 2013). The failures of many promising cultivars 

such as Digelu, which were reportedly resistant to stem rust, indicate the importance 

of breeding for durable resistance using polygenes.  

 

In view of the rapid evolution and spread of new virulent races of stem rust, the 

frequent failure of new varieties with stem rust resistance and the limited availability 

of sources of durable resistance, it is imperative to develop new wheat cultivars 

using different sources of resistance. The objective of this study was to identify adult 

plant, slow rusting resistance in Ethiopian wheat lines.  

 

3.2 Materials and methods 
 

The study was subdivided into two experiments: seedling reaction test conducted in 

a controlled greenhouse; and a field test to identify adult plant resistance in the 

wheat lines.   

 

3.2.1 Seedling infection response 

 

The goal of this experiment was to eliminate lines with major gene resistance, which 

is expressed in seedlings. Two hundred fifty two wheat lines were tested in a 

greenhouse for their stem rust resistance at the seedling stage. Accessions used in 

this study were bread wheat (T. aestivum) lines obtained from the Institute of 

Biodiversity Conservation and Research (IBCR) in Ethiopia. True-to-type lines were 

identified over two selection cycles, in the 2011 off-season (January to May) and the 

2011 main season (June to October). These lines, along with a standard set of 20 

differential varieties and the susceptible check cultivar Morocco were raised in 10 cm 

plastic pots in environmentally controlled greenhouse at the Ambo Plant Protection 

Research Center, Ambo, Ethiopia.  
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Five to six seeds per line were sown in each pot. Each pot was filled with compost, 

light soil and sand at a 1:1:1 ratio (v/v/v). The wheat lines were tested against race 

TTKSK (Ug99). Race TTKSK represents a broad spectrum of virulence in the 

Ethiopian stem rust population. The isolate was derived from single pustules, 

increased in isolation, and maintained on cultivar, Morocco, during the off-season of 

2012. Seedlings were inoculated at the 2-3 leaf stage using spore suspension 

adjusted to 4 X 106 spores ml-1 using spore inoculators. Spores were suspended in a 

light mineral oil, Soltrol 170 (Chevron Phillips Chemical company, The woodlands, 

Texsas, United States). 

 

Inoculated seedlings were placed in a dew chamber in darkness for 18 hours at 18-

22oC and 98-100% relative humidity. Upon removal from chamber, plants were 

exposed to 3 h of fluorescent light to dry dew on the leaves. Inoculated plants were 

then transferred to greenhouse benches where the temperatures were kept between 

18 and 25oC and the relative humidity at 60-70% (Stubbs et al., 1986).  

 

Seedling infection types were scored 14 days after inoculation using a 0 to 4 scale 

(Stakman et al., 1962). The IT readings of 3 (medium-size uredia with/without 

chlorosis) and 4 (large uredia without chlorosis or necrosis) were regarded as 

compatible reactions. Other readings, i.e. 0 (immune or fleck), 1 (small uredia with 

necrosis), and 2 (small to medium uredia with chlorosis or necrosis) were 

incompatible. The variations were refined by modifying characters as follows: -, 

uredinia somewhat smaller than normal for the infection type; +, uredinia somewhat 

larger than normal for the infection type.  

 

3.2.2 Field evaluation 

 

For the field experiment the test materials comprised 91 wheat lines which showed 

susceptible and mixed (intermediate and susceptible) infection types in the seedling 

test. In order to evaluate the lines for their slow rusting resistance, a field evaluation 

was conducted during the 2012 cropping season at the Debre-Zeit Agricultural 

Research Center which is an internationally known hot spot for stem rust and is 

therefore suitable for screening of wheat for resistance to stem rust. Thirty eight lines 

were then selected for their good slow rusting characteristics and planted at the 
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Debre-Zeit Agricultural Research Center during the 2013 off-season for verification 

of the initial results. The Debre-Zeit Agricultural Research Center is found at altitude 

of 1900 m above sea level. The center receives mean annual rainfall of 851 mm. The 

average annual minimum and maximum temperatures are 8.9oC and 28.3oC, 

respectively (Denbel et al, 2013). A susceptible check, Morocco, was used as a 

comparative control in the experiments. 

 

The lines were planted in plots consisting of double rows of 1 m long with 20 cm row 

spacing. Each line was planted manually at a rate of 2 g of seed per two rows. 

Experiments were established using an alpha lattice design of 10 x 9 with two 

replicates during the 2012 main season and 8 x 5 with two replicates during the 2013 

off-season. The spacing between plots was 40 cm. A mixture of two susceptible 

checks, Morocco and a standard cultivar PBW343, were planted perpendicular to the 

experimental blocks one week before the experimental plots to serve as spreader 

rows.  

 

Epidemics of stem rust were initiated by the inoculation of spreader rows with Pgt 

race TTKSK using urediniospores maintained at the Ambo Plant Protection 

Research Center. A water suspension of these urediniospores of the stem rust race 

was inoculated onto spreader rows using an ultra low volume sprayer to generate 

fine mist. This took place twice when most plants were at the stem elongation. 

Fertilizers and other agronomic practices were applied according to the 

recommended practices for wheat production in the area. 

 

Slow rusting behaviour among the wheat genotypes was assessed through host 

response and epidemiological parameters: final rust severity (FRS), coefficient of 

infection (CI), area under disease progress curve (AUDPC) and infection rate (r). 

Stem rust severity, estimated visually as a proportion of the plant stem affected, was 

recorded according to the modified Cobb scale (Peterson et al., 1948). Severity was 

assessed three times at twenty days interval from ten randomly pre-tagged plants of 

each entry, starting when stem rust levels on Morocco reached 50% severity. The 

host plant response to infection was also scored using the description of Roelfs et al. 

(1992). If a line displayed multiple infection responses to stem rust, they were all 
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recorded (example: MR-MS, MS-S). The coefficient of infection (CI) was calculated 

by multiplying the level of disease severity and the constant value of infection type. 

The constant values for infection types were used based on; R=0.2, MR=0.4, MR-

MS =0.6, MS=0.8, MS-S= 0.9, S=1 (Stubbs et al., 1986). 

 

Estimation of the area under disease progress curve (AUDPC), which is a better 

indicator of disease expression over time (Vanderplank, 1963), was performed for 

each experimental unit with the formula of Wilcoxson et al. (1975): 

AUDPC = ∑
=

n

i 1

[0.5 (xi +xi+1)] [t i+1 - ti].   

Where xi = stem rust severity on the ith date, ti = the time in days after appearance of 

the disease, and n = number of dates on which stem rust was recorded. The 

infection rate (inf-rate), was also estimated in terms of disease severities recorded 

on wheat lines in different times (Vanderplank, 1968). The infection rate (inf-rate) per 

time unit (t) for each line was calculated as the regression coefficient of ln [X/(100 – 

X)], where X is average coefficient infection plotted against time in days 

(Vanderplank, 1968). 

 

A thousand kernel weight was taken from randomly sampled kernels and recorded in 

grams for each plot. The two rows of each entry were harvested and their grains 

weighed using an electronic balance and for conversion to tonnes per hectare. 

 

3.2.3 Data analysis 

 

Relative forms of the epidemiological parameters were generated by comparing the 

respective values of each entry with the susceptible variety Morocco. A standard 

analysis of variance was conducted to identify significance differences among the 

wheat lines for grain yield and thousand kernel weight. Fisher’s least significant 

differences test (P = 0.05) was used to compare the means. Correlation analysis was 

used to determine the relationships among slow rusting parameters. The spearman’s 

rank correlation coefficients were estimated to test the change in ranking of wheat 

lines over the two seasons in terms of disease parameters, grain yield and thousand 
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kernel weight. The data were analysed using SAS and SPSS softwares (SAS, 2002; 

SPSS, 2005). 

 

3.3 Results 

 
3.3.1Seedling reaction 

 

The greenhouse experiment revealed that the bread wheat lines differed in their 

reaction to the stem rust isolate TTKSK. Out of 252 wheat lines tested in a 

greenhouse 161 showed resistance reactions (0; to 2), 72 had susceptible reactions 

(3- to 3) and 19 had mixed reactions (2+ and 3-) at the seedling stage (data not 

shown). The susceptible check, Morocco, displayed infection type 3+ at the seedling 

stage. Among the 91 entries that showed susceptible and mixed reactions, 38 were 

advanced and evaluated for slow rusting resistance. The result of seedling 

assessment for 38 selected lines is presented in Table 3.1. 

 

3.3.2 Field assessment  

 

The selected lines were evaluated in the field using parameters such as disease 

severity, area under disease progress curve or the measurement of apparent 

infection rates and coefficients of infection values.  

 

3.3.2.1 Final rust severity (FRS) 

 

There was wide variation in the stem rust severities ranging from 1 to 70% during the 

2012 cropping season, and from 1 to 85% during the 2013 off-season at the Debre-

Zeit Agricultural Research Center. Diverse field reactions ranging from moderately 

resistant and moderately susceptible (MR-MS) to susceptible (S) responses were 

observed at the Debre-Zeit trials.  

 

Among the 91 accessions evaluated during the 2012 main season, 13 accessions 

(14%) showed disease severities of up to 30%, with field responses varying from 

MR-MS to MS-S. Twenty five lines had severities ranging from 31 to 50% while the 
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remaining 53 accessions displayed more than 50% final rust severities. Out of the 13 

accessions in the first group, seven: H04-2, 204408-3, 214551-1, 7514-1, 226385-1, 

222495-1 and 237886-1, had mixed seedling reactions (2+ and 3-) while six: 

231545-1, 7315-1, 7041-1, 7516-1, 226815-1 and 7579-1, showed susceptible (3- to 

3) infection types. The susceptible check, Morocco, displayed the highest disease 

severity of 70% with a completely susceptible (S) response. The final rust severities 

and their infection types of the lines in the first and second group are presented in 

Table 3.1. 

 

Thirty eight genotypes, 13 in the first group and 25 in the second group, together 

with the susceptible check Morocco, were planted at the Debre-Zeit Agricultural 

Research Center during the 2013 off-season for further tests. Despite the heavy 

stem rust disease pressure in the field during the season (Figure 3.1), 10 wheat lines 

remained in the first group, exhibiting final rust severities ranging from 1 to 30%, with 

moderately resistant to moderately susceptible (MR-MS) to moderately susceptible 

to susceptible (MS-S) resistance responses. On the other hand, the remaining 3 

accessions 7315-1, 7516-1, and 237886-1 showed above 40% disease severities, 

with MS or MS-S field responses (Table 3.1). The few resistant lines identified could 

serve as potential sources of new resistance for introgression into currently grown 

susceptible cultivars. Among the 25 wheat genotypes which displayed disease 

severities between 31 to 50% during main season, only six: 227059-1, 203763-1, 

226275-1, 227068-2, 226278-1 and 7994-1, showed disease severities between 31 

to 50% during the off-season of 2013. In the remaining 19 lines the final disease 

severities observed were more than 50%. Cultivar Morocco developed disease 

severity of 85% during the season.  
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 Figure 3.1. Wheat stem rust epidemics at Debre-Zeit Agricultural Research Center, 

Ethiopia, during the 2013 off-season 

 

Although disease pressure during the off-season was higher compared to the main 

season, some genotypes such as 7041-1, 7579-1, 227059-1, 203763-1, 227068-1, 

226275-1, 227068-2 and 7994-1 showed lower disease severities during the off-

season than during the main season. Since these lines were surrounded by 

susceptible lines during the main season, the conditions for spread of the disease 

would have been more favorable and the disease severities observed for these 

genotypes would have been higher during the main season. 
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Table 3.1. Seedling reaction, adult plant infection type, CI and final rust sverity in 
wheat lines to stem rust at the Debre-Zeit Agriculture Research Center, Ethiopia 

Lines 
Seedling 
reaction  

Main season (2012)  Off-season (2013) 
FRS CI  FRS CI 

H04-2 2+3-a 1 MR-MSb 0.6  2 MR-MS 1.2 
204408-3 2+ 3- 1 MR-MS 0.6  5 MS 4.0 
231545-1 3 3.5 MS 2.8  10 MS 4.0 
214551-1 2+ 3- 5 MR-MS 2..0  20 MS 16.0 
7315-1 3- 19 MS 15.2  60 MS 48.0 
7514-1 2+ 3- 21 MS 16.8  30 MS 24.0 
7041-1 3- 24 MS 19.2  20 MS 16.0 
7516-1 3- 24.5 MS-S 22.1  40 MSS 36.0 
226385-1 2+ 3- 25.2 MS-S 22.7  30 MSS 27.0 
226815-1 3- 28.2 MS  22.6  30 MS 24.0 
7579-1 3- 30 MS-S 27.0  20 MSS 18.0 
222495-1 2+ 3- 30 MS-S 27.0  30 MSS 27.0 
237886-1 2+3- 30 MS-S 27.0  42 MSS 33.6 
204408-2 3- 31 MS 24.8  60 MS 48.0 
7312-1 2+ 3- 31.5 MS 25.2  70 MS 56.0 
226899-1 3- 32 MS 25.6  70 S 70.0 
204408-1 3 34 MS 27.2  70 MS 56.0 
214520-1 3- 34.6 MS 27.7  60 MS 48.0 
203881-2 3- 37 MS-S 33.3  60 MSS 54.0 
227067-1 3- 40 MS 32.0  70 MS 56.0 
226925-1 3- 40.2 MS 32.2  70 S 70.0 
227059-1 3- 40.5 MS 32.4  40 MS 32.0 
230084-1 3- 42 MS 33.6  70 MS 56.0 
203763-1 3+ 42 MS-S 37.8  40 MSS 36.0 
227068-1 2+ 3- 42.5 MS 34.0  20 S 20.0 
7489 2+ 3- 43 MS 34.4  60 MS 48.0 
7491-1 3- 43 MS-S 38.7  60 MSS 54.0 
5397-1 3- 45 MS 36.0  70 MS 56.0 
7312-1 3- 46 MS 36.8  60 MSS 54.0 
7502-1 3- 47 MS 37.6  70 MS 56.0 
226275-1 3- 49 MS 39.2  40 S 32.0 
227068-2 3- 49 MS 39.2  40 MS 32.0 
203881-1 3- 49 MS 39.2  70 S 70.0 
226278-1 3- 50 MS 40.0  50 MS 40.0 
7994-1 3- 50 MS 40.0  40 MS 32.0 
7487-1 3- 50 MS 40.0  70 MS 56.0 
226278-2 3- 50 MS 40.0  60 S 60.0 
7847-1 3- 2+ 50 MS 40.0  60 MS 48.0 
Morocco 3+ 70 S 70.0  85 S 85.0 

a Segregating for reaction, the commonest infection type is placed first. 
b MR = moderately resistant, MS = moderately susceptible, MR-MS = moderately 
resistant to moderately susceptible, MS-S = moderately susceptible to susceptible 
and S= susceptible; FRS = final rust severity; CI = coefficient of infection 
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3.3.2.2 Coefficient of infection (CI)  

 

The data on disease severity and host reaction was combined to calculate a 

coefficient of infection (CI). In the present study, during the main season of 2012, 

seven wheat genotypes: H04-2, 204408-3, 231545-1, 214551-1, 7315-1, 7514-1 and 

7041-1, showed CI values between 0-20.  Thirty one lines had CI values of 21-40 

(Table 3.1). The remaining 53 wheat genotypes had CI values above 40, designated 

as having low levels of slow rusting (data not shown). In the main season only the 

susceptible check had a CI value of more than 60. 

 

Table 3.1 shows that disease pressure was extremely high during the off-season as 

indicated by the CI of 85 of the susceptible check. However, seven wheat lines (H04-

2, 204408-3, 231545-1, 214551-1, 7041-1, 7579-1 and 227068-1) responded with 

the CI values of less than 20 during the season and were therefore designated as 

having high level of slow rusting.  Twelve wheat lines displayed CI value between 21 

and 40 in the season while 19 genotypes had CI values more than 40.   

 

3.3.2.3 Area under disease progress curve (AUDPC) a nd apparent infection 

rate (inf-rate) 

 

During the main season, the highest AUDPC (1050) and inf-rate (0.160) were 

generated by the susceptible check variety, Morocco. Similarly, Morocco had the 

highest AUDPC value (1150) and inf-rate (0.229) during the 2013 off-season. In 

contrast, Lines H04-2, 204408-3, 214551-1, and 231545-1 had the lowest AUDPC 

and inf-rates in both seasons.  

 

Among the 91 lines tested during the main season, nine accessions (H04-2, 204408-

3, 214551-1, 231545-1, 7041-1, 237886-1, 226385-1, 7315-1 and 7514-1), showed 

rAUDPC values up to 30% of the check (Table 3.2). These lines showed MR-MS to 

MS-S types of infection in the field and were considered to have good levels of 

partial resistance. Twenty nine genotypes exhibited rAUDPC values up to 70% of 

Morocco while the remaining 53 had rAUDPC greater than 70%. Data for wheat lines 

showing AUDPC values up to 70% of the check are presented in Table 3.2. 
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During the 2013 off-season, 10 wheat genotypes: H04-2, 204408-3, 214551-1, 

231545-1, 7041-1, 226385-1, 7514-1, 227068-1, 203763-1 and 7579-1, exhibited 

rAUDPC values less than 30% of Morocco. These lines had variable responses: MR-

MS to S in the field evaluation. On the other hand, 28 lines showed relative AUDPC 

values up to 70% of the susceptible check with MS to S field responses. Despite 

high infection types (MS and S) exhibited on moderately slow rusting lines, stem rust 

developed slowly as indicated by their AUDPC values. Seven lines: H04-2, 204408-

3, 214551-1, 231545-1, 7041-1, 226385-1 and 7514-1, showed low levels of disease 

severity (1-30%) with lower rAUDPC values (1-30%) in both seasons and these lines 

are considered as the best slow rusting lines under test (Table 3.2). 

 

Infection rates of all genotypes were less than Morocco in both seasons (data not 

shown). Most of the wheat lines were observed to have lower apparent infection 

rates during the 2012 cropping season than in the 2013 off-season. The highest 

mean inf-rate value of 0.164 was recorded for Line 226899-1 followed by Line 7487-

1 (Inf-rate=0.161) during the off-season. Lines H04-2 and 204408-3 showed a 

constant disease severity, thus showing no increase per unit time with an inf-rate of 

0 in both seasons (Table 3.2).  
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Table 3.2. Area under disease progress curve (AUDPC), relative area under disease progress 
curve (rAUDPC) and infection rate (Inf-rate) of wheat lines when infected by stem rust. 

a AUDPC = area under disease progress curve; r-audpc = relative area under disease 
progress curve; Inf-rate = infection rate 
 

Main season (2012) 
 

Off-season (2013) 

Lines AUDPC r-audpc Inf-rate 
 

AUDPC r-audpc  Inf-rate 

H04-2 1.0 0.10 0  7.0 0.61 0 
204408-3 26.6 2.53 0  37.5 3.26 0 
214551-1 39.0 3.71 0  84.0 7.30 0.063 
231545-1 59.1 5.63 0.001  57.5 5.00 0.002 
7041-1 168.0 16.00 0.056  132.0 11.48 0.060 
237886-1 282.5 26.90 0.020  355.5 30.91 0.027 
226385-1 299.1 28.49 0.038  300.0 26.09 0.003 
7315-1 302.0 28.76 0.037  371.4 32.30 0.072 
7514-1 304.6 29.01 0.092  329.4 28.64 0.034 
7516-1 325.8 31.02 0.115  349.0 30.35 0.142 
227068-1 353.0 33.62 0.081  100.0 8.70 0.030 
222495-1 355.4 33.85 0.044  367.4 31.95 0.047 
203881-2 359.0 34.19 0.065  400.0 34.78 0.097 
203763-1 365.0 34.76 0.087  255.0 22.17 0.087 
226815-1 370.6 35.30 0.078  375.0 32.61 0.056 
7579-1 379.5 36.14 0.035  120.0 10.43 0.004 
226899-1 388.6 37.01 0.090  499.6 43.44 0.164 
204408-2 412.6 39.30 0.083  600.0 52.17 0.084 
7312-1 441.4 42.04 0.051  764.0 66.43 0.103 
204408-1 456.0 43.43 0.033  758.0 65.91 0.096 
226278-2 476.0 45.33 0.057  490.0 42.61 0.095 
227068-2 503.0 47.90 0.088  470.0 40.87 0.020 
214520-1 507.9 48.37 0.090  538.0 46.78 0.084 
203881-1 516.0 49.14 0.073  580.0 50.43 0.127 
226275-1 518.0 49.33 0.075  444.0 38.61 0.069 
226925-1 556.2 52.97 0.102  700.0 60.87 0.100 
227059-1 568.0 54.10 0.084  385.2 33.50 0.082 
226278-1 570.0 54.29 0.123  560.0 48.70 0.095 
7491-1 580.4 55.28 0.087  584.6 50.83 0.094 
7312-1 586.0 55.81 0.060  557.5 48.48 0.037 
7489 598.0 56.95 0.036  532.0 46.26 0.054 
230084-1 602.0 57.33 0.117  770.6 67.01 0.138 
7847-1 603.0 57.43 0.061  480.0 41.74 0.118 
227067-1 612.8 58.36 0.106  624.6 54.31 0.109 
5397-1 622.8 59.31 0.092  728.0 65.30 0.096 
7502-1 656.9 62.56 0.091  762.2 66.28 0.101 
7994-1 686.5 65.38 0.073  500.0 43.48 0.055 
7487-1 714.6 68.06 0.114  790.0 68.75 0.161 
Morocco 1050.0 100.00 0.160  1150.0 100.00 0.229 
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3.3.2.4 Correlation between slow rusting parameters  of wheat stem rust  

 

The correlations among the field based slow rusting parameters were significant 

(Table 3.3). A positive and highly significant correlation of CI with final rust severity (r 

= 0.983) and AUDPC (r = 0.919) was found during the main season. Strong 

correlation coefficients of 0.985 and 0.925 were also observed between CI with FRS 

and AUDPC during the off-season, respectively.   

 

The high correlation coefficient was also observed between AUDPC and final rust 

severity in both seasons; r = 0.923 during the 2012 main season and r = 0.928 

during the off-season of 2013. Relatively low correlations were observed during the 

off-season between infection rate and the other slow rusting parameters (Table 3.3). 

This indicated that although severity or the AUDPC was increasing, the rate of 

infection slowed down over time because as the epidemic progressed less plant 

tissue was available for further infection and the rate of epidemic development 

reduced (Freedman and Mackenzie, 1992).  

 

Table 3.3 Linear correlation coefficients of pair-wise relationships between slow 
rusting parameters for stem rust of wheat evaluated over two seasons at Debre-Zeit 
Agricultural Research Center, Ethiopia 

a FRS = final rust severity;  rAUDPC = relative area under disease progress curve; 
Inf-rate = infection rate; CI - coefficients of infection; **Correlation is significant at 
p=0.01 
 

Therefore, selection of lines having low rAUDPC values (below 30% of the check), 

final disease scores of less than 30 MS and CI between 0-20 provides a sound basis 

for identifying slow rusting resistance, which is one of the durable resistance 

breeding strategies. Accordingly, wheat lines H04-2, 204408-3, 214551-1, 231545-1 

 Main season (2012)a  Off-season (2013) 

Parameters Inf-rate AUDPC FRS  Inf-rate AUDPC FRS 

 Inf-rate -    -   

AUDPC 0.760** -   0.516** -  

FRS 0.725** 0.923** -  0.598** 0.928** - 

CI 0.726** 0.919** 0.983**  0.580** 0.925** 0.985** 
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and 7041-1, with highly slow rusting resistance characteristics AUDPC < 30%, CI 0-

20 and FRS 0-30% in both seasons were selected for further resistance breeding. 

Five lines 7514-1, 226385-1, 226815-1, 7579-1 and 222495-1 had FRS score 

between 20 MS and 30 MS, CI value between 15 and 30 with rAUDPC value ranging 

from 10 to 35% of the check in both seasons and were regarded slow rusting. Of the 

above listed partial resistant lines, 231545-1, 7041-1, 226815-1 and 7579-1 showed 

characteristics of true race non-specific slow rusting resistance as they exhibited low 

level of slow rusting parameters during both seasons and complete susceptibility (3- 

to 3) at the seedling stage (Tables 3.1 and 3.2).  

 

The spearman’s rank correlation coefficients for slow rusting parameters over the 

two seasons were highly significant (Table 3.4). A high spearman correlation would 

mean that the genotypes ranked fairly similar in both seasons, and the effects due to 

the environment were minimal. The two season data had greater correlations of 

0.649, 0.570, 0.835 and 0.642 for FRS, CI, AUDPC and inf-rate, respectively.  

 

Table 3.4 Spearman’s rank correlation coefficients of slow rusting and yield variables 

over two seasons at Debre-Zeit Agricultural Research Center, Ethiopia 

Parameters$ Inf-rate AUDPC FRS CI GY TKW 

Correlation coefficients 0.642** 0.835** 0.649** 0.570* 0.702** 0.746** 
$ Inf-rate = infection rate; FRS = final rust severity; AUDPC = area under disease 
progress curve; CI = coefficients of infection; GY = grain yield; TKW = thousand 
kernel weight; 
 **Correlation is significant at p=0.01; *Correlation is significant at p=0.05; n=38 
 

3.3.2.5 Grain yield and thousand kernel weight 

 

There was a highly significant difference (P < 0.001) between entries for grain yield 

(Table 3.5). From the outset, it should be emphasized that the differences in grain 

yield among the entries could be explained not only by differences in the levels of 

disease attack but also in the yield potential of the varieties.  

 
During 2012, the highest grain yield, 4.73 t ha-1, was obtained from Line 7502-1 

whereas the lowest, 1.18 t ha-1, was displayed by Line 227068-1. In the off-season, 

the highest yield was displayed by Line 231545-1 (3.81 t ha-1) while the lowest (1.24 
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t ha-1) was from Line 226385-1. The disease severity recorded on Line 7502-1 was 

47% during the main season but the yield obtained from the line was higher than 

some lines that had low disease severities, such as H04-2 (1%) and 231545-1 

(3.5%). The ranking of the genotypes for yield changed when exposed to higher 

disease pressure during 2013 off-season. For example, Line 7489 had greater yield 

(3.52 t. ha-1) as compared to Line 7491-1 (3.23 t ha-1) during the main season, under 

low disease pressure. However, the yield obtained from Line 7491-1 (2.79 t ha-1) 

was higher than the yield of Line 7489 (2.50 t ha-1) under higher disease pressure 

during 2013. This can be due to varying levels of tolerance expressed by different 

lines. 

 
Among the slow rusting lines identified, 231545-1, H04-2 and 222495-1 had the 

highest yields in both seasons (>3 t ha-1). Their comparatively better yields make 

them superior candidates as donor parent for the incorporation of durable resistance 

in the bread wheat improvement program. The yields obtained from some of local 

wheat lines such as 227068-1, 226385-1 and 7847-1 were below the yield of the 

susceptible variety Morocco. This would be due to their lower genetic potential for 

yield.   

 
Although there were variations in grain yields among the entries, there was no 

protected check plot established for each genotype to obtain information to calculate 

yield loss. Nevertheless, when the means and ranges obtained from 2012 main 

season are compared with the mean yields and ranges of 2013 off-season, these 

statistics were higher for both grain yield and thousand kernel weight (TKW), 

suggesting that the rust disease reduced the grain yield and TKW as the disease 

pressure increased in the season.  

 
The wheat lines also showed variation in thousand kernel weight (p< 0.01). The 

highest TKW was recorded from Line H04-2 in the main and off-seasons at 38.5 g 

and 35.0 g, respectively. The lowest was obtained from 7994-1 (10 g) in the main 

season and from 7312-1 (9 g) in the off-season. Among the slow rusting genotypes 

identified 231545-1, H04-2, and 222495-1 had high TKW values in both seasons.  
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The spearman’s rank correlation coefficients for yield variables over the two seasons 

were highly significant (Table 3.4). Grain yield and TKW had correlations of 0.702** 

and 0.746**, respectively.  

 
Table 3.5 Grain yield and thousand kernel weights (TKW) of 38 wheat lines  

Lines 
Main season (2012) Off-season (2013) 

Grain yield (t ha-1)a TKW (g) Grain yield (t ha-1) TKW (g) 
H04-2 3.30efgh 38.5a 3.31b 35.0a 
204408-3 2.75ijkl 31.0bcd 2.75c 26.0cde 
231545-1 3.82bcd 30.0cd  3.81a 31.0b  
214551-1 2.64klmno 23.0ghijk 2.43de 23.0efg 
7315-1 4.06b 22.0hijk 2.05ghij 16.0ijkl 
7514-1 2.38lmnop 22.0hijk 1.55mnop 18.0hij 
7041-1 2.34lmnop 25.0efghi 2.43de 25.0def 
7516-1 4.03bc 22.0hijk 3.54b 12.0mno 
226385-1 1.31tu 28.0cdef 1.24q 27.0cd 
226815-1 2.21opq 28.5cde 2.18fghi 22.0fg 
7579-1 1.61rstu 26.5defgh 1.95ijk 28.0bcd 
222495-1 3.13fghi 31.0bcd  3.44b 28.0bcd  
237886-1 2.47klmno 28.0cdef 2.45de 19.5ghi 
204408-2 2.30lmnop 23.0ghijk 2.03hij 18.0hij 
7312-1 3.41defg 32.0bc 2.35def 22.0fg 
226899-1 3.03ghij 28.0cdef 2.02hij 27.5bcd  
204408-1 2.95hij 27.0defg 2.23efgh 18.0hij 
214520-1 2.20opq 27.5cdefg 1.51nop 14.0klm 
203881-2 2.69ijklmn 28.5cde 2.30def 17.0hijk 
227067-1 4.70a 22.0hijk 2.39def 16.0ijkl 
226925-1 3.62bcde 25.0efghi 2.02hij 23.0efg 
227059-1 2.33lmnop 23.5fghij 2.28defg 18.0hij 
230084-1 2.29mnop 14.5opq 1.46opq 10.0no 
203763-1 1.70rst 20.0jklm 1.82jkl 16.0ijkl 
227068-1 1.18u 14.0opq 1.43opq 20.5gh 
7489 3.52def 17.0lmnop 2.50d 15.0jklm 
7491-1  3.23efgh 18.5klmno 2.79c 14.0klm  
5397-1 2.27nopq 18.5klmno 1.50nop 12.0mno 
7312-1 3.58cdef 16.5mnop 1.95ijk 9.0o 
7502-1 4.73a 14.0opq 3.38b 10.0no 
226275-1 2.86hijk 20.0jklm 2.92c 23.0efg 
227068-2 1.82qrs 17.0lmnop 1.84jkl 17.0hijk 
203881-1 2.73ijklm 21.5ijkl 1.63lmno 13.0lmn 
226278-1 1.81qrs 15.0nop 1.61lmnop 20.0gh 
7994-1 1.94pqr 10.0q 2.37def 15.0jklm 
7487-1 2.68jklmno 22.0hijk 1.75klm 17.0hijk 
226278-2 1.94pqr 19.5jklmn 1.42opq 15.0jklm 
7847-1 1.37stu 12.5pq 1.37pq 12.0mno 
226899-1 3.03ghij 28.0cdef 2.02hij 27.5bcd  
Morocco 2.00pqr 35.0ab 1.72klmn 29.0bc 
CV (%) 8.38 10.47 5.32 9.54 
LSD.01 4.56 4.88 2.35 3.72 
a Means within a column followed by the same letter are not significantly different at p=0.01.; 

TKW= thousand kernels weights 
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3.4 Discussion 

 

Field assessment for slow rusting resistance was carried out using 91 wheat lines 

exhibiting intermediate and susceptible reactions at seedling stage.  Wheat lines that 

exhibit intermediate (2+) and/or susceptible (>3- ) infection types may possess race 

non-specific resistance (Parlevliet, 1988; Sawhney, 1995) and these lines may 

provide durable resistance when their field assessment results confirm their slow 

rusting character. Hence, candidates for source of slow rusting resistance were 

those lines that exhibited susceptible and mixed (2+ and 3-) reaction types.  

 

Slow rusting resistance was assessed through the infection type, final rust severity 

(FRS), coefficient of infection (CI) and relative area under rust progress curve 

(rAUDPC). In many cereal rust pathosystems, slow rusting characteristics of cultivars 

have been described and estimated by means of disease severity at a certain crop 

development stage, the area under disease progress curve or the measurement of 

the apparent infection rates and coefficients of infection values (Broers et al., 1996; 

Pathan and Park, 2006).  

 

The present study found considerable variation in the final rust severities of the 

accessions tested that could be attributed to differences in the number of resistance 

genes present and mode of gene action. Safavi (2012) proposed that wheat lines 

with FRS values of 1-30%, 31-50% and 51-70% were regarded as possessing high, 

moderate, and low levels of slow rusting resistance, respectively. Lines with a low 

final disease severity under high disease pressure may possess more additive genes 

(Singh et al., 2005).  FRS represents the cumulative result of all resistance factors 

during the progress of epidemics. Many earlier researchers such as Ali et al. (2009), 

Shah et al. (2010), Tabassum (2011) and Safavi and Afshari (2012) also used final 

severity as a parameter to assess slow rusting behaviour of wheat lines. Previously 

Ali et al. (2009) considered that lines with CI values of 0-20, 21-40, 41-60 could 

possess high, moderate and low levels of slow rusting resistance, respectively. 

Based on the AUDPC values, Ali et al. (2009) categorised the wheat lines into two 

distinct groups. One group included lines exhibiting AUDPC values up to 30% of the 

check and the second group included lines showing AUDPC values up to 70% of the 

check. The genotypes in group I were regarded as expressing good levels of slow 
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rusting, and that of group II were expressing moderate slow rusting resistance. 

According to Parlevliet (1988) wheat lines with variable field infection responses of 

MR-MS to S are expected to possess genes that confer partial resistance.  

 

Infection rate in the present study showed more variation among the tested lines 

than disease severity and AUDPC, and it did not distinguish lines displaying different 

level of slow rusting resistance with regard to other parameters. For example, Line 

7041-1 has FRS, CI, and rAUDPC less than Line 226385-1 but its infection rate is 

higher in both seasons. Similar results were found for stem rust and leaf rust of 

wheat (Ali et al., 2009; Safavi, 2012; Safavi and Afshari, 2012).  

 

This study established the presence of strong correlation between slow rusting 

parameters (Table 3.3). The positive correlations between the parameters observed 

were in agreement with the results of other researchers on cereal rust pathosystems 

(Safavi, 2012; Shah et al. 2010). All disease parameters were highly correlated in the 

present study, suggesting that FRS and CI are considered as preferable selection 

parameters. Qamar et al. (2007) and Safavi et al. (2013) reported higher selection 

gains of slow rusting reistance using low final ratings and CI under field condition. 

Further, the present study found high Spearman’s rank correlations for infection 

parameters and yield variables suggesting that the ranking of the wheat lines for 

these variables did not change significantly over the seasons (Table 3.4). 

 

Wheat lines H04-2, 204408-3, 214551-1, 231545-1, 7041-1, 226385-1, 7514-1, 

226815-1, 7579-1 and 222495-1 had high slow rusting resistance with low levels of 

disease severity (1-30%) while Lines 237886-1, 227059-1, 203763-1, 226275-1, 

227068-2, 226278-1 and 7994-1 had moderate levels of slow rusting resistance with 

FRS of 30-50% and CI values ranging from 21-40. According to Singh et al. (2004) 

genotypes in both group I and II could have durable resistance which can serve as 

good parents for breeding. Hence, lines in both groups could be utilized in wheat 

improvement programs.  

 

Both grain yield and kernel weight of the tested lines were significantly affected 

during 2013 off-season.  The difference in yields between the two seasons could be 

attributed to either difference in environmental conditions or due to differences in 
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stem rust infection. Environmental conditions such as temperature and moisture 

considerably affect disease expressions and consequently of yield. Several 

researchers have reported stem rust reducing grain yields of wheat cultivars 

(Pretorius et al., 2007; Singh et al., 2008). The effect of rust on grain yield is due to 

the great injury to the photosynthetic surface of the plant (Berghaus and Reisener, 

1985) and the energy expenditure in plant defence mechanisms rather than for 

growth and grain formation (Smedegaard-Petersen and Tolstrup, 1985). According 

to Craigie (1957) and Bushnell and Rowell (1968) the fungus also reduces the food 

and water supply within the plants. The fungus needs food and water for spore 

production that would otherwise be used in the formation of well developed kernels. 

Further, there is a loss of water by evaporation through the numerous ruptures 

caused by the fungal pustules. The yield from heavily rusted plants is, therefore, 

much reduced and the quality of the grain is lowered. 

 

It is worth noting that stem rust caused kernel weight reduction in the genotypes 

(Table 3.5). Nzuve et al. (2012) also reported that stem rust significantly reduce TKW 

in wheat. It is well-established that the significant effect of stem rust on TKW is 

brought about by its effect on photosynthesis and subsequent grain filling. According 

to Agrios (1987) the competition of rust fungi for photosynthate at grain filling would 

have increased importance in reduction of number and size of seeds on plants. 

  

3.5 Conclusions 

 
In this study, the Lines H04-2, 204408-3, 214551-1, 231545-1, 7041-1, 7514-1, 

226385-1, 226815-1, 7579-1, and 222495-1 exhibited lower levels of FRS (< 30 MS-

S) and coefficient of infection (< 27), indicating a high level of partial resistance. Of 

these 231545-1, 7041-1, 226815-1 and 7579-1 were identified to have true slow 

rusting resistance because they had seedling reactions that ranged from 3- to 3. 

Seven lines: 237886-1, 227059-1, 203763-1, 226275-1, 227068-2, 226278-1 and 

7994-1, expressed moderate level of slow rusting resistance in both seasons while 

the remaining 21 lines were susceptible. The correlations among the field based 

slow rusting parameters were highly significant. Among the slow rusting lines 

comparatively better TKW and grain yields were produced by 231545-1, H04-2 and 
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222495-1. The slow rusting lines identified from this study can be used for durable 

stem rust resistance breeding. 
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CHAPTER 4 

Heterosis and combining ability analysis of stem ru st resistance and grain 

yield and related traits in bread wheat 

 
Abstract 

 

Six selected bread wheat (Triticum aestivum L.) genotypes were crossed in a half 
diallel mating design to identify the best parents and crosses for breeding for stem 
rust reistance, high grain yield and desirable agronomic traits. The 15 F1’s and their 
parents were evaluated under field inoculation of the stem rust pathogen using a 
randomized complete block design with two replications at the Debre-Zeit 
Agricultural Research Center of Ethiopia during the 2014 off-season. The results 
indicated that sufficient genetic variability was observed among tested genotypes for 
all characters studied. Grain yield revealed maximum heterosis over the mid-parent 
(31.45%) followed by thousand kernel weight (28.85%) and tillers per plant (15.40%). 
The maximum negative heterosis values of -11.01% and -8.02% were observed for 
plant height and days to maturity, respectively, which were in the desired direction. 
The majority of the crosses expressed negative heterosis over the mid-parent for 
area under disease progress curve (AUDPC), indicating these crosses manifested 
tolerance against stem rust. The maximum better-parent heterosis was recorded for 
grain yield (25.38%). The significance of general combining ability (GCA) effects for 
all characters and specific combining ability (SCA) effects for most of the traits 
indicated that the contribution of additive and non-additive genes to the genetic 
factors controlling these traits, respectively. However, the ratio of σ2gca/σ2sca  were 
less than unity for grain yield, thousand kernel weight and plant height, suggesting 
the preponderance of non-additive gene action at the F1 for these traits. Additive 
gene action was predominant in the inheritance of AUDPC, kernels per spike, 
number of tillers per plant and days to maturity. Wheat genotypes 231545-1, 7041-1, 
H04-2 and Danda’a had significantly negative GCA effects for AUDPC, suggesting 
their suitability for use in wheat breeding programs to improve resistance to stem 
rust. Lines H04-2, Digelu and Danda’a showed good GCA effects for most of the 
characters investigated. Kubsa was good general combiner for kernels per spike, 
tillers per plant and plant height. Crosses 231545-1 x H04-2, 7041-1 x H04-2, Digelu 
x Kubsa and Danda’a x Kubsa were good combinations for AUDPC. H04-2 x 
Danda’a, Digelu x Kubsa and Danda’a x Kubsa were good combinations for grain 
yield and thousand kernel weight. Crosses Digelu x Kubsa and H04-2 x Danda’a 
also showed significant SCA effects for tillers per plant. The maximum negative SCA 
effects for plant height and days to maturity were exhibited by the crosses Digelu x 
Kubsa and 7041-1 x H04-2, respectively. Overall, H04-2 and Danda’a were good 
general combiners, and crosses involved these lines performed well for most of the 
traits. Hence, lines H04-2 and Danda’a may be used in breeding programs to 
develop stem rust resistant and high yielding wheat cultivars. 
 

Key words: diallel analysis, heterosis, general combining ability, specific combining 
ability, wheat 
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4.1 Introduction 

 

Wheat (Triticum aestivum L.) is an important food grain for billions of people 

worldwide, being cultivated on approximately 218 million hectares of land (HGCA, 

2014). It accounts for around 30% of global grain production and 44% of cereals 

used as food (Khanzada et al., 2012). Ethiopia is the second largest wheat producer 

in sub-Saharan Africa, after South Africa (GAIN, 2012). In Ethiopia wheat is 

cultivated on 1.6 million hectares of land, with a mean yield of 2.1 t ha-1, far less than 

potential yields of 8-10 t ha-1, (CSA, 2013).  The low productivity is partially attributed 

to the prevalence of wheat rust diseases and lack of durable resistant variety. Stem 

rust caused by the fungi Puccinia graminis Pers. f.sp. tritici Eriks and Hann 

(designated as pgt here after), is the major production constraint in most wheat 

growing areas of the country (Denbel et al., 2013). It is the most devastating type of 

rust, which causes yield losses up to 100% on susceptible cultivars (Park, 2007; 

Hodson, 2013). Various control options are available to minimize yield losses caused 

by stem rust, including the use of resistance cultivars. Breeding for stem rust 

resistance requires knowledge on the genetics of resistance in wheat genotypes.   

 

The major emphasis in wheat breeding is on the development of disease resistant 

and high yielding varieties. This requires information on combining ability of parents 

available for use in a hybridization program, and also the nature of gene action 

involved in the expression of desirable traits in their progenies. In a breeding 

program, selection of parents showing good general combining ability (GCA) effects 

and their progenies with high specific combining ability (SCA) effects for desirable 

traits are essential (Desale et al., 2014). The GCA and SCA estimates will help in 

formulating efficient and effective breeding procedure to bring about rapid 

improvement in a crop (Desale et al., 2014).  

 

Estimation of heterosis is an important aspect in hybrid breeding programs (Seboka 

et al., 2011). Heterosis breeding provides a way to overcome the yield barriers. It 

has been largely used in cross-pollinated crops. In self-pollinated crops there is 

some evidence reflecting the value of breeding for increased heterosis such as in 

wheat (Haq and Laila, 1991). Several studies also indicated the presence of 

considerable heterosis in bread wheat cultivars of diverse genetic bases. Rasul et al. 
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(2002) reported maximum heterosis over the mid-parent at 31.65% for grain yield. 

Akbar et al. (2010) reported heterosis values of 29.70% for grain yield per plant, 

26.17% for thousand kernel weight and 12.95% for tillers per plant. Zaazaa et al. 

(2012) found heterosis over mid- and better-parents for grain yield ranging from 

28.15 to 50.14% and -5.38 to 42.07%, respectively. Effective use of heterosis largely 

depends on its direction and magnitude (Kumar et al., 2011; Zaazaa et al., 2012). 

Two types of heterosis are distinguished: mid-parent or better-parent heterosis. The 

mid-parent heterosis is an increase in a given character of the hybrid compared to 

the mean of the parents. Better-parent heterosis is an increase in the character of 

the hybrid compared to that of the better-parent for the character (Falconer and 

Mackay, 1996). 

 

Several researchers (Griffing, 1956; Hayman, 1954; Mather and Jinks, 1982) have 

developed techniques to analyse for the GCA effects of parents and the SCA effects 

of their crosses. Combining ability analysis through diallel crosses were developed 

by Griffing (1956), an approach that has been widely used to study the ability of 

parents to transfer their desirable traits to their progenies and to compare the 

performance of lines in hybrid combinations. Diallel analysis helps to identify the 

gene actions that control different traits and combinations of different genotypes with 

respect to their general and specific combining ability effects (Zeeshan et al., 2013).  

 

Information on GCA and SCA effects for the desired traits among the wheat 

genotypes is important to identify the best combiners for successful wheat 

hybridization. General combining ability is defined as the mean performance of a line 

in hybrid combinations. Specific combining ability is referred to as the deviation in 

performance of a particular cross from its theoretical performance predicted on the 

basis of general combining ability (Schlegel, 2010). General combining ability is 

attributed to additive gene effects while specific combining ability is attributed to non-

additive gene actions (Nazim-Uddin et al., 2009). During pure line or pedigree 

breeding of self-fertilizing crops such as wheat, individual plant selection commences 

at the F2 followed by line selection at the F3 and later generations to exploit the 

additive genetic effects. In wheat continued selfing and selection after crosses will 

enssure success in isolating superior genotypes. Selection is less effective in 

isolating and fixing superior genotypes if there are dominance and epistasis genetic 
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effects. The dominance gene action would favour the production of hybrids; additive 

gene action would indicate that standard selection procedures would be effective 

(Girma, 2006).  

 

The present study was undertaken:  i) to quantify the magnitude and direction of 

heterosis in wheat hybrids for stem rust resistance and yield and yield components; 

ii) to identify the best combining parents and their hybrids on the basis of their 

general and specific combining ability effects, respectively, for stem rust resistance, 

and yield and yield related traits.  

 

4.2 Materials and methods  

 

4.2.1. Plant materials 

 

The experimental materials consisted of 21 wheat genotypes, which comprised of six 

parents and their 15 F1’s obtained from a 6 x 6 half diallel. Table 4.1 presents details 

of the selected parents. Three parents, 231545-1, 7041-1 and H04-2, were identified 

as being slow rusting wheat lines against Pgt among local wheat accessions in 

previous evaluation studies (Chapter 3). The remaining three genotypes, Digelu, 

Danda’a and Kubsa, originated from the International Wheat and Maize 

Improvement Center (CIMMYT)/Ethiopia and which were released as high yielding 

wheat varieties (Table 4.1). Of these Danda’a is an improved variety with slow 

rusting resistance. All the wheat lines used in the cross are stable and homozygous, 

descended from controlled selfing and selection. The six wheat genotypes have 

genetic variability for yield, disease resistance as well as for various yield 

components.   

 
  



93 
 

Table 4.1 Wheat parents used for a half diallel cross 
No Parent  Pedigree  Resistanc e  

to stem rust  

Farmers’ - preferred 

agronomic features 

1 231545-1 Local Resistant Adaptable to environment 

2 7041-1 Local Resistant ’’ 

3 H04-2 Local Resistant ’’ 

4 HAR 3116 (Digelu) SHA7/KAUZ Susceptible High yield, white seed 

5 Danphe #1 

(Danda’a) 

Kiritati//2*PBW65/2*Seri.1B Moderately 

Resistant 

High grain yield, high 
biomass, long spike, white 
seed, high bread making 
quality   

6 HAR 1685 (Kubsa) ND G9144//KAL/BB/3 

/YACO’’S’’/4VEE#5’’S’’ 

Susceptible High grain yield, high 

biomass, white seed 

 

4.2.2 Crosses and mating design  

 
The six parental lines (Table 4.1) were grown and crossed in a field during the 2013 

main season at the Ambo Plant Protection Research Center in Ethiopia using a half-

diallel mating design to produce 15 F1 populations. Parental lines were planted at 

three different dates with one week intervals inorder to synchronize floral anthesis for 

crosses.  

 
4.2.3 Experimental design, stem rust inoculation an d field management 

 
The 15 F1 populations together with the six parental lines were planted at the Debre-

Zeit Agricultural Research Center during the 2014 off-season to evaluate their stem 

rust reaction, and yield and yield related traits. The Debre-Zeit Research Center is 

situated at an altitude of 1900 m above sea level. The center receives a mean 

annual rainfall of 851 mm. The mean annual minimum and maximum temperatures 

are 8.9oC and 28.3oC, respectively (Denbel et al., 2013).  

 

The lines were planted in plots consisting of double rows of 1 m long with 20 cm row 

spacing, in a randomized complete blocks arrangement with two replications. The 

border spacing between plots was 40 cm. Experimental blocks were bordered with 

two rows of a susceptible check wheat variety, Morocco, as a spreader of stem rust. 

An artificial stem rust epidemic was created in the field by inoculation of the spreader 

rows at stem elongation stage by uniformly spraying a spore suspension containing 
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urediospores of pgt race TTKSK, using an ultra-low volume sprayer. Urediospores of 

Pgt race TTKSK were obtained from the Ambo Plant Protection Research Center, 

Ethiopia. Fertilizers and other agronomic practices were applied according to the 

recommended practices for wheat production in the area. 

 
4.2.4 Disease assessment 

 
Stem rust severity was estimated visually as a proportion of the plant stem affected 

following a modified Cobb scale (Peterson et al., 1948). Severity was assessed three 

times at twenty days interval from ten randomly pre-tagged plants of each entry, 

starting when stem rust levels on Morocco reached 50% severity. The host plant 

response to infection was also scored using the description of Roelfs et al. (1992) as, 

R = resistant (flecks and small uredinia), MR = moderately resistant (flecks and small 

to moderate uredinia), MS = moderately susceptible (moderate to large uredinia), S 

= susceptible (large uredinia). 

 
Genetic effects controlling stem rust resistance were determined using Area Under 

Disease Progress Curve (AUDPC) as a measure of stem rust resistance. Estimation 

of AUDPC was performed for each experimental unit from the rust severity data 

using the formula of Wilcoxson et al. (1975): 

AUDPC = ∑
=

n

i 1

[0.5 (xi +xi+1)] [t i+1 - ti] 

 
Where xi = stem rust severity on the ith date, ti = the time in days after appearance of 

the disease, and n = number of dates on which stem rust was recorded.  

 
4.2.5. Data collection for yield and yield related traits 

 
Days to maturity (DM) was recorded as the number of days from emergence to when 

95% of the plants in a plot were physiologically mature. Plant height (PHT) was 

measured (in centimetres) from five randomly selected plants in a plot, measuring 

from the base to the tip of the panicle after flowering. The number of kernels per 

spike (KPS) was counted from ten randomly selected spikes per genotype. Grain 

yield (GY) was determined from the two rows of each entry and later converted to 
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tonnes per hectare (t ha-1). Thousand kernel weight (TKW) (in grams) was measured 

using a randomly sampled thousand kernels adjusted to 12% moisture content.  

 
4.2.6 Data analysis 
 
The data from the F1 crosses and parents were subjected to analysis of variance to 

determine significant differences between genotypes. Genetic analyses were carried 

out for characters that showed significant differences among the genotypes using 

SAS computer software (SAS, 2002). 

 
4.2.7 Estimation of heterosis 

 
The percent increase or decrease of F1 hybrids over mid-parent, as well as better-

parent, was calculated to estimate possible heterotic effects using the method of 

Falconer and Mackay (1996): 

MPH= (F1-MP)/MP X 100 

Where MPH is mid-parent heterosis; MP is mid-parent value; F1 is the mean value of 

F1 progenies, MP = (P1+P2)/2 in which P1 and P2 are the means of Parents 1 and 

2, respectively 

BPH = (F1-BP)/BP x 100 

Where, BPH is better-parent heterosis, BP is the better-parent value and F1 is the 

mean value of F1 progenies. The minimum values were considered as better parent 

in the case of AUDPC, plant height and days to maturity. Significance of mid- and 

better-parent heterosis values were tested with t-test as suggested by Wynne et al. 

(1970). 

 
4.2.8 Estimation of combining ability effects 

 
General combining ability (GCA) and specific combining ability (SCA) effects were 

estimated according to the Model I, Method II of Griffing (1956) using SAS computer 

software (SAS, 2002). This model involves parents and one set of F1 hybrids, 

excluding the reciprocals, providing P(P+1)/2 cross combinations. Data were 

analysed using the general linear model:  
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Y��� �  µ � g�  �  g�  �  s�� � e��� 
 

where Y��� is the observed measurement for the ij
� cross grown in the k
� replication 

or environment; µ is the population mean; g�, and g� are the GCA effects; s�� the SCA 

effect; and e��� the error term associated with the ij
� cross evaluated in the k
� 

replication. The restrictions imposed on the combining ability effects are ∑g� �  0, 

and ∑s�� �  0 for each j  (Griffing, 1956).  

 
The ratio of additive versus non-additive gene action in the expression of the 

character was compared from the ratio of components of GCA variance to SCA 

variance. When the ratio is greater than unity it indicates the predominance of 

additive gene action, while a value less than unity indicates the predominance of 

non-additive gene action for the trait (Singh and Chaudhary, 1985). 

 

4.3 Results and discussion 

 
4.3.1 Analysis of variance and mean performance of genotypes 

 
The analysis of variance revealed highly significant (P<0.01) differences among the 

21 genotypes for all traits studied (data not shown), wich indicated the presence of 

inherent variation among the materials. The mean performance of parents and F1 

crosses for stem rust reaction, yield and yield related traits is presented in Table 4.2. 

Kubsa with an AUDPC value of 582.0 showed the highest susceptible response. 

H04-2 developed the lowest AUDPC value (1.0) followed by Lines 231545-1 (48.0), 

7041-1 (148.0), Danda’a (204.0) and Digelu (287.0) in ascending order. The AUDPC 

values in crosses involving slow rusting parents 231545-1 and 7041-1 were less than 

their respective mid-parental values. This indicated the partial dominant nature of 

AUDPC in these crosses. Different levels of intermediate disease reaction in most of 

slow ruster x slow ruster, and slow ruster x susceptible crosses, suggested a 

polygenic mode of inheritance of rust resistance, which is in agreement with reports 

on the genetic analysis of rust resistance (Ahamed et al., 2004; Irfaq et al., 2009). 

The AUDPC value of 625.0 in fast ruster x fast ruster was higher than the AUDPC 

value of 582.0 in its susceptible parent. Among the crosses 231545-1 x H04-2 had 

the lowest AUDPC value (12.0) (Table 4.2).  
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In this study, both the crosses and the parents showed high levels of variation in 

their mean performances for most yield related traits (Table 4.2). Among parental 

genotypes, Danda’a yielded the highest at 3.9 t ha-1 while 7041-1 had the lowest 

grain yield (2.5 t ha-1). Kubsa grew more tillers per plant and took a longer time to 

mature. It provided higher mean values in kernels per spike but the lowest thousand 

kernel weight. Line 7041-1 expressed the lowest mean values for most of the traits 

recorded (Table 4.2).  

 
Among crosses, H04-2 x Danda’a gave the highest mean grain yield and thousand 

kernel weight of 4.89 t ha-1 and 42.0 g, respectively. This cross also showed 

moderate to good performances in most of the traits. Most of the hybrids involving 

Danda’a or Digelu as one parent recorded high mean values for grain yield, 

thousand kernel weight and kernels per spike. Similarly, H04-2 contributed earliness 

to maturity in most of its progeny and negatively contributed for plant height. The 

shortest plant height of 88.5 cm was recorded in cross 7041-1 x H04-2. Most crosses 

involving H04-2 recorded short plant height and higher productive tillers; while 

231545-1 x 7041-1 produced the tallest plant height of 110.0 cm, which is an 

undesirable trait for wheat improvement. This cross also exhibited poor performance 

for most of the traits except for AUDPC. 

 
Generally, progenies from crosses involving Danda’a or Digelu performed better in 

most of the agronomic traits, followed by crosses that involved H04-2. The overall 

mean of the crosses exceeded that of the parental genotypes for grain yield and 

TKW. Whereas for kernels per spike, tillers per plant, plant height and days to 

maturity, the overall mean of crosses were lower. Thus, most F1 hybrids were 

shorter in plant height and earlier in maturity than parental genotypes. The per se 

performance of parents were better in the kernels per spike and tillers per plant when 

compared to their F1 hybrid progeny.  

 
Considering individual crosses, all of the 15 hybrids, except crosses 231545-1 x 

7041-1 and 231545-1 x Kubsa, performed as well or better than their respective best 

parents for one to three of the traits studied. Those crosses that had mean values 

equal or better than the best parents for the traits under study clearly showed the 
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potential to generate good F1 hybrids combining many desirable traits, and would 

allow selection of superior transgressive segregants at the F2. In agreement with the 

present results, a number of studies have reported that at least one hybrid 

performing better than the best parent for most of the yield and related characters 

they selected (Joshi et al., 2004; Seboka et al., 2011). Even though crosses 

exhibited significant differences, none of the hybrids had mean values greater or 

equal to the best performing parents for number of kernels per spike.  

 
  Table 4.2. Mean performance of parents and their hybrids for AUDPC, grain yield and yield 

related traits 

Genotypesa 
Traits‡ 

AUDPC GY (t ha-1) TKW (g) KPS TPP PLH (cm) DM 
P1 48.00 3.42 28.00 36.80 17.68 110.50 112.00 
P2 148.00 2.50 24.00 27.50 17.64   90.36 115.00 
P3    1.00 3.54 39.00 34.25 20.00   96.50   97.00 
P4 287.00 3.72 29.00 49.00 18.33   98.80 109.00 
P5 204.00 3.90 28.00 49.25 13.50 102.50 109.00 
P6 582.00 2.93 24.00 52.82 22.00   99.60 130.00 
P1XP2 81.10 2.29 26.50 28.50 12.70 110.00 118.50 
P1XP3 12.00 2.99 31.00 36.50 18.00   92.10   99.50 
P1XP4 137.50 4.10 33.00 44.00 16.70   98.00 110.00 
P1XP5 117.90 3.51 29.00 38.50 16.33 101.65 110.50 
P1XP6 291.70 1.99 21.00 36.00 16.67 105.50 126.00 
P2XP3 59.00 2.10 31.00 24.50 18.00   88.50   97.50 
P2XP4 214.00 3.80 31.50 30.00 16.50   98.04 107.50 
P2XP5 96.30 4.07 29.00 33.75 14.70   99.40 111.00 
P2XP6 362.00 2.74 26.00 25.00 15.64 100.50 120.50 
P3XP4 157.00 3.88 31.00 38.00 20.64   95.02 100.50 
P3XP5 197.00 4.89 42.00 42.00 19.33   94.60   99.50 
P3XP6 625.00 3.04 29.00 32.00 19.33   91.03 117.50 
P4XP5 219.00 4.60 32.50 48.50 16.67 104.75 107.50 
P4XP6 625.00 4.10 32.50 50.00 22.33   91.60 122.50 
P5XP6 201.00 4.30 33.50 50.00 17.00 101.00 115.00 
Parents’ Mean 211.67 3.34 28.67 41.60 18.19   99.71 112.00 
Crosses’ mean 226.37       3.49 30.57 37.15 17.37   98.11 110.90 
Grand mean 222.17 3.45 30.02 38.42 17.60   98.57 111.21 
R2  0.96 0.81   0.78   0.92   0.82     0.97 0.96 
CV (%)     17.44      14.44 13.55   9.65   9.86     1.49 2.84 
a See Table 4.1 for codes of genotypes  
‡AUDPC = area under disease progress curve, GY= grain yield, TKW = thousand kernel 
weight, KPS = number of kernels per spike, TPP = number of tillers per plant, PLH = plant 
height, DM = days to maturity 
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4.3.2. Magnitude of heterosis 

 
The estimates of heterosis of F1 hybrids over mid- and better-parent were computed 

for all characters studied as they showed significant differences between genotypes 

(Table 4.3). In the case of stem rust disease reaction, the majority of the crosses 

expressed negative heterosis over the mid-parent, of which only 7041-1 x Danda’a 

and Danda’a x Kubsa revealed significantly negative mid-parent heterosis for the 

trait, indicating these crosses manifested tolerance against stem rust disease as 

compared to their parents. The mid-parent heterosis values ranged from -51.02% for 

231545-1 x H04-2 to 114.41% for H04-2 x Kubsa. The better- parent heterosis 

values ranged from -34.93% for 7041-1 x Danda’a to 62400% for H04-2 x Kubsa.  

 

Significant positive mid-parent heterosis values for grain yield were obtained from six 

of the 15 cross combinations (Table 4.3). H04-2 x Danda’a was the best cross which 

showed significantly positive heterosis values over mid-and better-parent. Yield 

heterosis relative to mid- and better-parent ranged from -37.32 (231545-1 x Kubsa) 

to 31.45% (H04-2 x Danda’a) and -41.81% (231545-1 x Kubsa) to 25.38% (H04-2 x 

Danda’a), respectively. In this study, the lowest and highest levels of heterosis over 

better-parent were recorded on the same hybrids that showed similar trend in case 

of mid-parent heterosis for grain yield. The results indicated that high yielding 

varieties, Digelu and Danda’a, when involved in the crosses were predominantly 

responsible for enhancing yield potential. Similar findings were reported by Saini and 

Prakash (2005), Kumar et al. (2011) and Jain and Sastry (2012). The expression of 

grain yield heterosis above the mid- and better-parent was reported by several 

investigators in bread wheat (Sharma et al., 2003; Hussain et al., 2007; Jatoi et al., 

2014).  

 

For thousand kernel weight, an important yield component, 60% of the hybrids 

showed positive heterosis over mid- and better-parent, indicating that majority of the 

hybrids showed better performance than their respective parents in the desirable 

direction. Three hybrids Danda’a x Kubsa, H04-2 x Danda’a and Digelu x Kubsa 

showed significant positive mid-parent heterosis values of 28.85%, 25.37% and 

22.64% for the trait, respectively. In the present study the best mid-parent heterosis 

was observed in grain yield followed by thousand kernel weight. These results were 
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in agreement with those of Singh et al. (2004), Inamullah et al. (2006), Ilker et al. 

(2010) and Seboka et al. (2011), who all reported a considerable degree of positive 

heterosis over mid- and better-parent for thousand kernel weight.  

 

Number of kernels per spike is an essential component of grain yield in wheat. 

Spikes with more seeds contribute to higher grain yield of the crop. However, in the 

present study, most of the hybrids, except three, showed negative heterosis over 

mid-parent for the trait. All hybrids showed negative heterosis over better-parent. 

The cross 231545-1 x H04-2 recorded the highest mid-parent heterosis value of 

2.74% while the lowest heterosis of -37.75% was found in 7041-1 x Kubsa. Results 

of the study conducted by Baric et al., (2004) and Ullah et al. (2011) are in 

agreement with the present results. Contrary to these findings, Inamullah et al. 

(2006), Ilker et al. (2010), Khan and Ali (2011), Seboka et al. (2011) and Jatoi et al. 

(2014) observed positive mid- and better-parent heterosis for number of kernels per 

spike in wheat. 

 

The number of tillers per plant is another important yield component. Plants with 

more tillers contribute positively to grain yield per plant and its positive heterosis is 

useful in a wheat breeding program. However, in this study, 11 and 13 crosses 

exhibited negative mid- and better-parent heterosis, respectively. Significant positive 

mid-parent heterosis was obtained only from H04-2 x Danda’a (15.40%), while none 

exhibited significant better-parent heterosis for this trait. These indicated that most 

crosses failed to produce more tillers than their respective parents with higher tillers. 

This is in agreement with Farooq and Khaliq (2004), Inamullah et al. (2006) and 

Seboka et al. (2011) who reported negative heterosis in most of the crosses for the 

number of productive tillers per plant. Rasul et al. (2002) also reported negative 

estimates for hetrosis for number of tillers per plant in all the crosses they studied. 

Conversely, Hussian et al. (2004), and Khan and Ali (2011) reported many hybrids 

that had positive mid- and better-parent heterosis. Akbar et al. (2010) also reported 

positive mid-parent heterosis in all the crosses they studied. 

 

Plant height is important yield trait, directly affecting yield. Tall varieties have low 

harvest indices and low grain yields (Ahmad et al. 2013). The negative estimates of 

mid- and better-parent heterosis for plant height are preferred in varietal 
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development, because short plant height is desirable for high harvest index, 

resistance to lodging and more responsive to fertilizer (Hammad et al. 2013). In this 

study 6 and 7 crosses showed positive heterosis over mid- and better-parent for 

plant height, respectively (Table 4.3). The remaining 9 and 8 crosses exhibited 

negative heterosis over the mid- and better-parent, respectively, indicating reduced 

plant height in these crosses. Of these, 8 and 3 crosses showed significantly 

negative mid- and better-parent heterosis for plant height. The cross 231545-1 x 

7041-1 had the highest mid- and better-parent heterosis of 9.53 and 21.74%, 

respectively, while 231545-1 x H04-2 and Digelu x Kubsa exhibited the lowest mid- 

and better-parent heterosis of -11.01 and -7.29%, respectively. These results were in 

agreement with earlier research findings in which negative mid- and better-parent 

heterosis for plant height was reported in most of the hybrids (Akbar et al., 2010; 

Khan and Ali, 2011). The result showed that heterotic interaction improves genetic 

diversity and provides ample chances to select for the desired genetic combinations 

(Inamullah et al., 2006; Khan and Ali, 2011). Contrary to these results, Singh et al. 

(2004) and Seboka et al. (2011) reported positive heterosis for plant height, which 

conflicted with the general breeding objective of reducing the straw length of wheat.   

 

Early maturing genotypes are desirable for breeding (Hammad et al. 2013). In the 

present study 10 and 2 crosses showed negative mid- and better-parent heterosis 

for days to maturity, respectively. This suggested that heterosis resulted in early 

maturity. Crosses 7041-1 x H04-2 (-8.02%), 231545-1 x H04-2 (-4.78%), 7041-1 x 

Digelu (-4.02%) and Danda’a x Kubsa (-3.77%) exhibited significant negative mid-

parent heterosis for this trait. This indicated that these hybrids were earlier than their 

respective late parents. Akbar et al. (2010) also observed that heterosis studies 

could be effectively used for incorporating early maturity in wheat. This result was 

also in agreement with Inamullah et al. (2006), Akbar et al. (2010) and Seboka et al. 

(2011) who reported negative mid-parent heterosis for maturity in some crosses they 

studied.  
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Table 4.3. Percentage heterosis over the mid-parent (MPH) and better-parent (BPH) for AUDPC of stem rust, yield and yield 
related traits in 6 x 6 half diallel cross of bread wheat at Debre-Zeit Agricultural Research Center during 2014. 

 

Crossa 

AUDPCb GY (t ha-1) TKW (g/1000 seed) KPS TPP PLH (cm) DM 

MPHc BPH MPH BPH MPH BPH MPH BPH MPH BPH MPH BPH MPH BPH 

P1XP2 -17.24 68.96 -22.64* -33.04** 1.92 -5.36 -11.35 -22.55** -28.09** -28.17** 9.53** 21.74** 4.41* 5.80** 

P1XP3 -51.02 1100.00 -14.08 -15.54 -7.46 -20.51* 2.74 -0.82 -4.46 -10.00 -11.01** -4.56** -4.78* 2.58 

P1XP4 -17.91 186.46** 14.85 10.22 15.79 13.79 2.56 -10.20 -7.25 -8.89 -6.35** -0.81 -0.45 0.92 

P1XP5 -6.43 145.63* -4.10 -10.00 3.57 3.57 -10.52 -21.83** 4.75 -7.64 -4.55** -0.83 0.00 1.38 

P1XP6 -7.40 507.71** -37.32** -41.81** -19.23 -25.00* -19.66** -31.84** -15.98** -24.23** 0.43 5.92** 4.13* 12.50** 

P2XP3 -20.81 5800.00* -30.46** -40.68** -1.59 -20.51* -20.65* -28.47** -4.36 -10.00 -5.28** -2.06 -8.02** 0.52 

P2XP4 -1.61 44.59** 22.19** 2.15 18.87 8.62 -21.57** -38.78** -8.26 -9.98 3.66** 8.50** -4.02* -1.38 

P2XP5 -45.28** -34.93 27.19** 4.36 11.54 3.57 -12.05** -31.47** -5.59 -16.67* 3.08** 10.00** -0.89 1.83 

P2XP6 -0.82 144.59** 0.92 -6.48 8.33 8.33 -37.75** -52.67** -21.09** -28.91** 5.81** 11.22** -1.63 4.78* 

P3XP4 9.03 15600.00** 6.89 4.30 -8.82 -20.51* -8.71 -22.45** 7.70 3.20 -2.69** -1.53 -2.43 3.61 

P3XP5 92.20* 19600.00** 31.45** 25.38* 25.37** 7.69 0.60 -14.72* 15.40* -3.35 -4.92** -1.97 -3.40 2.58 

P3XP6 114.41** 62400.00** -6.03 -14.12 -7.94 -25.64** -26.50** -39.42** -7.95 -12.14* -7.16** -5.67** 3.52 21.13** 

P4XP5 -10.79 7.35 20.73* 17.95 14.04 12.07 -1.27 -1.52 4.74 -9.06 4.07**   6.02** -1.38 -1.38 

P4XP6 43.84** 117.77** 23.31* 10.22 22.64* 12.07 -1.79 -5.34 10.74 1.50 -7.66** -7.29** 2.51 12.39** 

P5XP6 -48.85** -1.47 25.92** 10.26 28.85** 19.64 -2.03 -5.34 -4.23 -22.73** -0.05  1.41 -3.77* 5.50* 
a See Table 4.1 for codes of genotypes 
bAUDPC = area under disease progress curve, GY= grain yield, TKW = thousand kernel weight, KPS = number of kernels per 
spike, TPP = number of tillers per plant, PLH = plant height, DM = days to maturity 
c MPH = percent mid-parent heterosis, BHP = percent better-parent heterosis,  
* = significant at 0.05 and **= Significant at 0.01  
 
 



103 
 

4.3.3. Combining ability analysis 

 

Analysis of variance for combining ability revealed that GCA mean squares were 

highly significant for all the traits. SCA mean squares were also significant for all the 

characters except for number of tillers per plant (Table 4.4). This indicates the 

involvement of both additive and non-additive gene actions in determining the 

inheritance of studied characters.  Results of this study are in accordance with the 

findings of Ahamed et al. (2004), Kumar et al. (2011), Jain and Sastry (2012), Adel 

and Ali (2013) and Fellah et al. (2013), who reported significant differences for both 

GCA and SCA for these traits. The components of variance indicated more GCA 

variance (1051.82) than SCA variance (139.45) for AUDPC of stem rust (Table 4.4). 

The higher values for the GCA variance over the SCA variance indicated 

predominance of the additive component over the non-additive component for this 

trait. Additive gene effects have also been reported by Ahamed et al. (2004) and 

Lohithaswa et al. (2013) for leaf rust resistance and Irfaq et al. (2009) for stripe rust 

resistance in wheat. A greater portion of the variance in the crosses could be 

attributed to the differences in the parental genotypes, which resulted from the 

diverse breeding history of the varieties. In this study, genes with additive effects 

largely determined the inheritance of resistance to stem rust, which is useful in a 

durable resistance breeding programs in wheat. 

 

On the other hand, further variance ratio analysis showed that non-additive gene 

action was primarly responsible for the inheritance of grain yield, thousand kernel 

weight and plant height as the ratios were less than unity (Table 4.4). The present 

findings thus supported the results of Jain and Sastry (2012), Fellahi et al. (2013) 

and Zeeshan et al. (2013), who reported non-additive genetic variance as the main 

component of genetic variance of these traits. However, a predominance of additive 

gene effects was reported by Houshmand and Vanda (2008), El-Awady and Abo-El-

Ela (2011) and Kamaluddin et al (2011) for the yield contributing characters in wheat. 

Kamaluddin et al. (2007), Rashid et al. (2012), Aslam et al. (2014), Zare-Kohan and 

Heidari (2014) reported the importance of both additive and non-additive gene 

actions for grain yield and its components. The difference in the results of various 

studies may be attributed to differences of the breeding materials and to genotype x 

environment interactions. In the present study the preponderance of non-additive 
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gene action indicated the possibility of hybrid breeding, and selection for superior 

homozygous individuals for grain yield, thousand kernel weight and plant height 

should be delayed to advanced selfing generations.  

 

Table 4.4 Analysis of variance and components of genetic variance for GCA and 
SCA and σ²gca /σ²sca ratio for AUDPC of stem rust, yield and yield related traits from 6 
x 6 half diallel cross of bread wheat.  
 
Traits‡ 

Mean squares  Variance components 

GCA† SCA  σ²gca σ²sca σ²gca /σ²sca 

AUDPC 147283.04** 21174.77**  1051.82  139.45 7.54 

GY 0.75* 3.96**  0.02 0.12 0.17 

TKW 42.04* 88.62**  0.86 6.45 0.13 

KPS 539.53** 31.54*  0.54  0.35 1.54 

TPP 33.28** 5.50ns  0.16 1.18 0.14 

PLH 41.10** 182.53**  0.10 0.78 0.13 

DM 712.43** 52.04**  0.67 0.47 1.43 
†**= Significant at 0.01, * = significant at 0.05 and ns= non-significant, GCA= general 
combining ability, SCA= specific combining ability, σ²gca = variance of general 
combining ability, σ²sca = variance of specific combining ability, σ²gca /σ²sca = ratio of 
variance of general combining ability to variance of specific combining ability 
‡AUDPC = area under disease progress curve, GY = grain yield (t ha-1), TKW = 
thousand kernel weight (g), KPS = number of kernels per spike, TPP = number of 
tillers per plant, PLH = plant height (cm), DM = days to maturity 
 

In the case of number of tillers per plant, the mean squares for GCA were highly 

significant while SCA mean squares were non-significant, indicating the greater 

importance of additive gene action in controlling the inheritance of this character. As 

indicated by various authors (Kamaluddin et al., 2007; El-Awady and Abo-El-Ela, 

2011; Yao et al., 2012; Zare-Kohan and Heidar, 2014), when GCA is important, 

especially in self-pollinated crops, pure line selection is the best method of breeding 

to improve the character in question. This is because additive effects are readily 

transmissible from one generation to another. Chowdhry et al. (2005) and Hammad 

et al. (2013) also reported that the number of tillers per plant is controlled by additive 

genes. Contrary to the present observations, Rashid et al. (2012) reported the 

importance of both additive and non-additive gene action for tillers per plant, while 
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Khan et al. (2007) and Fellahi et al. (2013) detected the predominant effect of non-

additive variances in tillers per plant.  

 

For days to maturity and kernels per spike additive gene action was found to be 

more important than non-additive gene actions. Iqbal et al. (2006) and Sener (2009) 

also reported the importance of additive gene action for days to maturity and kernels 

per spike, respectively. However, Rashid et al. (2012) and Ahmad et al. (2013) 

indicated that non-additive gene action was important for the inheritance of days to 

maturity.  

 

4.3.4. General combining ability (GCA) effects 

 

To identify parents with good GCA it is necessary to determine the GCA effects of 

parents for the traits of interest. Following analysis of variance for combining ability, 

the GCA effects for all the characters were estimated (Table 4.5). For AUDPC, 

negative values for GCA or SCA effects indicate a contribution towards stem rust 

resistance while positive values represent that of susceptibility. Five parents 

revealed significant GCA effects, out of which the slow rusting parents, 231545-1, 

7041-1, H04-2 and Danda’a, gave desirable significant negative GCA effects and 

were the best general combiners for AUDPC. This indicated that the parents 

contributed resistance genes in their respective cross combinations, reflecting their 

potential in the development of slow rusting genotypes or varieties. Among the slow 

rusting parents, 231545-1 expressed the highest negative GCA effects for AUDPC (-

69.31) followed by 7041-1 (-52.12), H04-2 (-46.6) and Danda’a (-39.0). Digelu (7.18) 

and Kubsa (199.71) had positive GCA effects. Kubsa had the highest positive GCA 

effect (199.17), which indicated that it was a poor combiner for stem rust resistance. 

This result is in accordance with Ahamed et al. (2004), Irfaq et al. (2009) and 

Lohithaswa et al. (20013), who reported significant negative GCA effects for wheat 

rust resistance. 

 

For yield, three parents, H04-2, Digelu and Danda’a, exhibited positive and 

significant GCA effects while the parents 231545-1, 7041-1 and Kubsa showed 

significant and negative effects, indicating their poor combining ability for the trait. 

Danda’a was the best general combiner while 7041-1 was the poorest for grain yield. 
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Therefore, from this study, H04-2, Digelu and Danda’a could be utilized in bread 

wheat grain yield improvement programs. Cultivars with positive GCA could be used 

in hybridization programs in order to accelerate the pace of genetic improvement of 

wheat grain yield (Zare-Kohan and Heidari, 2014). This outcome was in agreement 

with the findings of Anwar et al. (2011) and Zare-Kohan and Heidari (2014) who 

reported greater and positive GCA effects for grain yield. In this study parents with 

higher GCA effects generated higher SCA effects for grain yield. 

 

Table 4.5. Estimates of general combining ability for AUDPC of stem rust, grain yield 
and related traits of six parental genotypes of bread wheat  

Parent 
Traits‡ 

AUDPC† GY(t ha-1) TKW (g) KPS TPP PLH (cm) DM 

231545-1 -69.31** -0.35* -2.74* -2.37* -0.94* 6.54** 0.39ns 

7041-1 -52.12** -0.70** -1.99ns -8.38** -1.86** -1.19** 0.22ns 

H04-2 -46.50** 0.07* 3.18** -4.55** 1.49** -5.46** -10.23** 

Digelu 7.18ns 0.55** 0.76ns 7.30** 1.02* -1.57** -1.19ns 

Danda’a -39.0** 0.73** 2.43* 5.66** -1.25** 2.59** -1.36* 

Kubsa 199.71** -0.30* -1.65ns 2.33* 1.54** -0.92* 11.97** 

SE (gj) 16.70 0.18 1.31 1.21 0.56 0.46 0.98 
†*= Significant at P < 0.05, **= significant at P< 0.01, ns=non-significant 
‡AUDPC = area under disease progress curve, GY= grain yield, TKW = thousand 
kernel weight, KPS = number of kernels per spike, TPP = number of tillers per plant, 
PLH = plant height, DM = days to maturity 
 

For thousand kernel weight three parents, H04-2, Digelu and Danda’a, showed 

positive GCA effects. The crosses involving the two parents with high GCA effect 

were among the crosses with higher mean value for thousand kernel weight. Three 

other parents, 231545-1, 7041-1 and Kubsa, showed negative GCA effects for the 

same trait. Parent H04-2 was the best general combiner, while 231545-1 was the 

poorest general combiner for this trait. This result was in conformity with the findings 

of Nazir et al. (2005), Zeeshan et al. (2013) and Desale et al. (2014) who found both 

positive and negative GCA effects for thousand kernel weight of parents involved in 

their studies.  
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Parents including Digelu, Danda’a and Kubsa had significant positive GCA effects for 

kernels per spike while the remaining parents showed significant negative GCA 

effects for the trait. The highest positive GCA effect of 7.3 was observed from Digelu 

while the lowest was from 7041-1 (-8.38). In the present study, even though H04-2 

exhibited highly significant negative GCA effects for kernels per spike, it was the best 

general combiner for increased thousand kernel weight and tillers per plant, which 

would contribute to positive GCA effect for grain yield. 

 

Three parents, H04-2, Digelu and Kubsa, had positive and significant GCA effects 

for number of tillers per plant. The remaining parents showed negatively significant 

GCA effects, indicating their poor combining ability. Similar findings were reported by 

Hammad et al. (2013).   

 

All six parents were observed to have significant GCA effects for plant height, of 

which four (7041-1, H04-2, Digelu and Kubsa) had negative and two (231545-1 and 

Danda’a) had positive effects. These parents with significant positive GCA effects 

were good combiners for increased tallness, while those with significant negative 

GCA effects were good combiners for decreased plant height. The latter is an 

important requirement in wheat breeding. The result showed that there is a direct 

relationship between GCA effects of parents and mean plant height of parents and 

crosses. This result corroborated with that Javaid et al. (2001), Nazir et al. (2005) 

and Hammad et al., (2013), who reported significant negative GCA effects for plant 

height.  

 

Two parents, H04-2 and Danda’a, had negative and significant GCA effects for days 

to maturity, refelecting the contribution of these parents for earliness in crosses 

which they were involved. A positive and significant GCA effect was observed in 

Kubsa (11.97) for the same trait. This parent increased lateness in its crosses. 

Ahmad et al. (2013) also reported considerable levels of negative GCA effects for 

days to maturity. 
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4.3.5. Specific combining ability (SCA) effects  

 

The magnitude of SCA effects is important in selecting cross combinations with a 

higher probability of generating transgressive segregants. The results of the specific 

combining ability analysis are presented in Table 4.6.  

 

Crosses with negative and significant SCA effects for AUDPC were: 231545-1 x 

H04-2, 7041-1 x H04-2, Digelu x Kubsa and Danda’a x Kubsa. Four crosses: 

231545-1 x Digelu, 7041-1 x Danda’a, 7041-1 x Kubsa and H04-2 x Digelu, exhibited 

negative but non-significant SCA effects for the stem rust resistance reaction. These 

crosses reduced the disease severity but non-significantly. The GCA effects of the 

slow rusting parents involved in these crosses were significant in the desirable 

direction. One slow ruster x susceptible cross, Danda’a x Kubsa, showed significant 

negative SCA effects, indicating their ability to transmit the characters in the 

progenies though in varying degree. Seven crosses showed positive SCA effects for 

AUDPC, of which four crosses: 231545-1 x 7041-1, 7041-1 x Digelu, H04-2 x 

Danda’a and Digelu x Danda’a, were non-significant, indicating their moderate 

combining ability for rust resistance.  

 

Six crosses exhibited significant and positive SCA effects for grain yield. Danda’a x 

Kubsa (1.43) recorded the highest SCA effect, followed by Digelu x Kubsa (1.23) and 

H04-2 x Danda’a (0.75). These hybrids were rated as good specific cross 

combinations for grain yield. Significant yield performances in the specific crosses 

were due to the involvement of best general combiners in the crosses. Similar results 

were also reported by Desale and Mehta (2013). Good SCA effects for grain yield 

were observed in only a few crosses because the slow rusting parents used in this 

experiment were local lines with low yield potential. However, Jain and Sastry 

(2012), Lohithaswa et al. (2013) and Yao et al. (2014) reported the significance of 

SCA effects in considerable number of crosses for yield in bread wheat. 

 

Positive SCA effects for thousand kernel weight were found for eight of the 15 

crosses, out of which four, 231545-1 x Digelu, H04-2 x Danda’a, Digelu x Kubsa and 

Danda’a x Kubsa, showed highly significant SCA effects. The cross Danda’a x 



109 
 

Kubsa had the highest SCA effect (13.08) among all 15 crosses, while the lowest 

estimate of SCA was found in cross 231545-1 x Kubsa (-10.08) (Table 4.6). This 

indicated that Danda’a x Kubsa could be selected for its specific combining ability to 

improve thousand kernel weight. Moreover, it was observed that actual thousand 

kernel weights recorded for the crosses with significant positive SCA effects were 

superior to other crosses (Table 4.2). Thus, there was a close agreement between 

crosses selected on the basis of their SCA effects and per se performance for 

thousand kernel weight in the present study. Similarly, positive significant value of 

SCA effects for thousand and hundred kernel weight in considerable number of 

crosses were reported by Kumar et al. (2011) and Desale et al. (2014), respectively. 

 

Specific combining ability analysis revealed that six crosses (231545-1 x 7041-1, 

231545-1 x Digelu, 7041-1 x Digelu, H04-2 x Danda’a, Digelu x Kubsa and Danda’a 

x Kubsa) showed positive but non-significant SCA effects for the number of kernels 

per spike. Crosses of these parents contributed for higher kernel number per spike 

but not significant. The remaining nine crosses had negative SCA for the trait, of 

which two crosses 7041-1 x Kubsa and H04-2 x Kubsa exhibited significant effects. 

Except for the cross Digelu x Danda’a, these crosses involved poor combiners for 

the trait.  

 

For number of tillers per plant, six crosses showed positive SCA effects, of which 

only Digelu x Kubsa revealed a significant positive SCA effect (4.48) for the trait, 

indicating hybrid combinations of these parents contributed to more number of tillers 

per plant. Desale et al. (2014) also found that only a few crosses exhibiting 

significant and positive SCA effects among the hybrids they studied, for tiller 

numbers. 

 

Crosses including 231545-1 x H04-2 (-5.56), 231545-1 x Danda’a (-4.68), 7041-1 x 

H04-2 (-3.27), H04-2 x Kubsa (-7.86) and Digelu x Kubsa (-8.38) that had significant 

negative SCA effects for plant height were identified as good cross combinations to 

decrease this trait (Table 4.4). Most of the crosses with negative SCA effects for 

plant height had at least one parent with a significant negative GCA effect for this 

trait. Four crosses, 231545-1 x 7041-1 (9.41), 7041-1 x Kubsa (9.39), Digelu x 

Danda’a (6.65) and Danda’a x Kubsa (3.73), had significant positive SCA effects for 
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plant height (Table 4.6). It can be concluded that combinations of these parents 

resulted in taller plants. Furthermore, there was a close agreement between crosses 

selected on the basis of their SCA effects and per se performance for dwarfness. 

Similarly, considerable negative and significant SCA effects for plant height and its 

importance for wheat improvement were reported by Ahmad et al. (2013) and Aslam 

et al. (2014). 

 

Table 4.6. Estimates of specific combining ability effects for AUDPC of stem rust, 
yield and its related traits of 15 crosses of bread wheat  
 

Crossa 

Traits‡ 

AUDPC† GY (t ha-1) TKW (g) KPS TPP PLH (cm) DM 

P1XP2 17.77ns -0.28ns 0.24ns 4.25ns -2.00ns 9.41** 4.61* 

P1XP3 -93.85** -0.06ns -1.43ns -1.09ns -0.05ns -5.56** -7.35* 

P1XP4 -22.03ns 0.42ns 4.99* 4.06ns -0.88ns 0.79ns 0.03ns 

P1XP5 61.52* -0.35ns -3.18ns -1.80ns 2.02ns -4.68** 1.19ns 

P1XP6 101.67* -1.97** -10.08* -3.50ns -2.13ns 1.54ns 2.32ns 

P2XP3 -64.05* -0.75* -2.18ns -0.58ns -0.47ns -3.27** -8.99** 

P2XP4 57.27ns 0.33ns 2.24ns 4.57ns -0.17ns -1.02 5.09** 

P2XP5 -34.28ns 0.42ns 1.07ns -1.54ns 0.30ns -0.43 1.76ns 

P2XP6 -37.83ns -0.03ns 0.67ns -11.21** -5.44** 9.39** -5.16ns 

P3XP4 -25.35ns -0.08 ns -5.45ns -1.76ns 0.62ns -0.36ns -1.56ns 

P3XP5 60.8ns 0.75* 7.40** 5.13ns 2.59ns -0.95ns -2.39ns 

P3XP6 332.78** -0.27ns -7.17ns -7.13* -0.73ns -7.86** 8.50* 

P4XP5 29.12ns -0.17ns -7.18ns -2.47ns -0.61ns 6.65** -0.22ns 

P4XP6 -140.93* 1.23* 7.92** 5.88ns 4.48* -8.38** 0.33ns 

P5XP6 -241.68** 1.43* 13.08** 7.08ns 1.51ns 3.73* 2.57ns 

SE (Sij) 45.87 0.49 3.59 3.33 1.54 1.25 2.70 
a See Table 4.1 for codes of genotypes 
Significant at P < 0.05, **= significant at P< 0.01, ns=non-significant 
‡AUDPC = area under disease progress curve, GY= grain yield, TKW = thousand 
kernel weight, KPS = number of kernels per spike, TPP = number of tillers per plant, 
PLH = plant height, DM = days to maturity 
 

Three crosses, 231545-1 x 7041-1 (4.61), 7041-1 x Digelu (5.09), H04-2 x Kubsa 

(8.50), had significant positive SCA effects for days to maturity, indicating their later 
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maturity than what would have been predicted based on their parental performances. 

Crosses that recorded maximum negative SCA effects for maturity, such as 231545-

1 x H04-2 (-7.35) and 7041-1 x H04-2 (-8.99), were good specific combiners and 

may be used as good sources for earliness. Most of the crosses involving H04-2 as 

a parent exhibited negative SCA effect for the days to maturity (Table 4.6). Some 

crosses showed desirable SCA effects for more than one characters. Cross 

combination Danda’a x Kubsa showed significant and desirable SCA effects for 

AUDPC, grain yield and thousand kernel weight. Digelu x Kubsa recorded significant 

and desirable SCA effects for AUDPC, grain yield, thousand kernel weight, tillers per 

plant and plant height.  

 

In this study, the GCA effects of the parents and SCA effect of their crosses 

indicated that the crosses between two strong general combiners were not 

necessarily the best specific combiners. The best specific combinations for different 

traits were either good x good, poor x good, poor x average and vise versa for 

general combiners. The genetic interaction involved in the crosses of good general 

combiners might be additive x additive, which is fixable in further selection 

generations (Gorjanovia and Kraljevia-Balalia, 2007) and can be exploited by using 

pedigree selection in early generations for improvement of the characters (Jadoon, 

2011). Crosses that exhibited strong SCA effects as a result of poor x good or good 

x poor general combiners indicated dominance x additive or additive x dominance 

genetic effects.  Kamaluddin et al. (2007), Joshi and Sharma (1984) and Singh et al. 

(1986) proposed that intermating between F1’s, followed by selection, is a useful 

strategy for obtaining desirable segregants in crosses from good x poor GCA 

parents. Significant SCA effects from crosses between parents with poor x average 

GCA effects indicated the predominance of non-additive gene effects in the 

combinations. It would be worthwhile to resort to other breeding methodologies, such 

as bi-parental mating, recurrent selection and modified diallel mating for the 

exploitation of non-additive gene actions (Jadoon, 2011; Desale et al., 2014). The 

importance of non-additive variances implies that postponing selection of superior 

plants to advanced selfed generations is more effective (Fellahi et al., 2013, Farooq 

et al., 2014). 
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Most of the crosses identified as desirable, with high SCA effects on the basis of 

their grain yield and thousand kernel weight, had at least one of the parents with 

strong GCA effects for the trait. Hence selection from the transgressive segregating 

generations of these crosses is expected to lead to substantial genetic improvement 

for AUDPC, grain yield and thousand kernel weight in bread wheat. It is therefore 

suggested that information on GCA effects should be supplemented by SCA effects 

and hybrid performance of cross combinations to predict and exploit the 

transgressive nature of segregation (Desale et al., 2014).  

 

4.4 Conclusions 

 

In this study, significantly negative mid-parent heterosis values for AUDPC were -

48.85 (Danda’a x Kubsa) and -45.28 (7041-1 x Danda’a). The cross H04-2 x 

Danda’a generated the significant mid-parent (31.45%) and better-parent (25.38%) 

heterosis for grain yield. The highest mid-parent (28.85%) and better-parent 

(19.64%) heterosis for thousand kernel weight were obtained from the cross Danda’a 

x Kubsa. Significant mid-parent heterosis value (15.5%) for tillers per plant was 

recorded by H04-2 x Danda’a.  231545-1 x H04-2 (-11.01%) and Digelu x Kubsa (-

7.29%) gave the highest negative mid- and better-parent heterosis for plant height, 

respectively and 7041-1 x H04-2 gave the highest negative mid-parent heterosis 

value of -8.02% for days to maturity. These crosses may provide transgressive 

segregants for selection to develop a wheat variety with superior agronomic 

performances and stem rust resistance.  

 

The mean squares due to GCA were significant for all the traits and SCA mean 

squares were significant for all the traits except for number of tillers per plant. This 

indicated that both additive and non-additive genetic variances roles in the 

inheritance of these traits. The GCA and SCA ratio (σ2GCA/σ2SCA) was less than 

unity for grain yield, thousand kernel weight and plant height indicating that the non-

additive component played a relatively greater role in the inheritance of these traits. 

The preponderance of non-additive type of gene actions in these traits clearly 

indicated that selection of superior homozygous true breeding individuals should be 

postponed to advanced selfed generation. Additive gene action was predominant in 

the inheritance of AUDPC, kernels per spike, tillers per plant and days to maturity. 
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The greater magnitude of additive gene effects for these traits suggested that 

selection after continued selfing would enable fixing desirable genotypes.  

 

Parents 231545-1, 7041-1, H04-2 and Danda’a were identified as the best general 

combiners for slow rusting. Lines H04-2, Digelu and Danda’a appeared to be good 

general combiners for most of the traits, including grain yield. Kubsa was a good 

general combiner for kernels per spike, tillers per plant and plant height. Crosses 

231545-1 x H04-2, 7041-1 x H04-2, Digelu x Kubsa and Danda’a x Kubsa were good 

specific combiners with reduced AUDPC. Danda’a x Kubsa, Digelu x Kubsa and 

H04-2 x Danda’a were good specific cross combinations for grain yield, while the 

crosses H04-2 x Danda’a, Digelu x Kubsa and Danda’a x Kubsa were good for TKW; 

231545-1 x H04-2, 231545-1 x Danda’a, 7041-1 x H04-2, H04-2 x Kubsa and Digelu 

x Kubsa for reduced plant height and 231545-1 x H04-2 and 7041-1 x H04-2 for 

reduced days to maturity. The parents H04-2 and Danda’a were good general 

combiners for reduced AUDPC and most of the important yield contributing traits in 

this study. Crosses involving H04-2 and Danda’a proved to have better SCA effects 

and mean performances for most of the characters. Hence these parents may be 

used in breeding programs to develop stem rust resistant and high yielding wheat 

cultivars. The study also revealed the potential to exploit heterosis breeding to 

improve yield and related traits in bread wheat in Ethiopia. 
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CHAPTER 5 
 

Introgression of durable resistance genes into farm ers’-preferred and locally 

adapted stem rust susceptible wheat varieties 

 

Abstract 
 

Wheat (Triticum aestivum L) suffers significant yield losses due to stem rust disease 
caused by Puccinia graminis Pers. f. sp. tritici Eriks. and Henn owing to the 
susceptibility of farmers’-preferred and popular wheat varieties in Ethiopia. 
Incorporation of durable resistance genes from known sources into these varieties 
could boost stem rust resistance and productivity. The objective of the study was to 
transfer adult plant resistance genes from two donor parents, Pavon 76 and Kenya 
Plume, into two Ethiopian grown and high yielding but stem rust susceptible wheat 
varieties, Kubsa (HAR1685) and Galama (HAR604). The single backcross-selected 
bulk approach was employed to introgress candidate genes. Crosses and 
backcrosses were performed at the Ambo Plant Protection Research Center to 
obtain F1 and BC1 seeds. The BC1 populations were selfed until the F3 generation. 
Selections were made during the BC1 through F3 for stem rust resistance and 
agronomic traits under stem rust epidemics at the Debre-Zeit Agricultural Research 
Center in Ethiopia. Selections of the BC1 and F2 populations were carried out from 
un-replicated plots while the F3 populations were established and selected using a 
randomized complete block design with three replications to determine genetic gain. 
Results showed reduced stem rust severities of 4.0-20.8% in F3 progenies. The 
maximum reduction (20.8%) in stem rust severity was obtained from the cross Kubsa 
x Pavon 76. All F3 populations except the cross of Galama x Kenya Plume had 
increased spike length (1.5-3.7%), number of kernels per spike (3.4-6.5%), thousand 
kernel weight (2.9-9.7%) and grain weights per spike (2.1-5.9%) compared to their 
respective recurrent parents. Days to heading and maturity were lower than the 
recurrent parents at the F3 populations by up to 7.8% and 9.2%, respectively. 
Among the F3 populations, progenies derived from the cross Kubsa x Pavon 76 had 
better mean performances with the best genetic gains in most of the characters 
studied. These progenies will be advanced and selected in subsequent generations 
to develop locally adapted pure line wheat varieties with improved stem rust 
resistance and farmers’-preferred agronomic traits.  

 
Key words : adult plant resistance, genetic gain, single backcross, stem rust, wheat  
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5.1 Introduction 

 
Wheat (Triticum aestivum L) is the most widely grown cereal crop in the world, 

encompassing approximately 218 million hectares of land (HGCA, 2014). It is the 

second most important food crop in the developing world after rice (ICARDA, 2014). 

Ethiopia is the second largest wheat producer in sub-Saharan Africa, following South 

Africa (GAIN, 2012). Wheat is an important staple food used in a wide variety of 

products in the country. However, its productivity is threatened by various biotic and 

abiotic constraints. Stem rust disease caused by Puccinia graminis Pers. f. sp. tritici 

Eriks and Henn (Pgt) is one of the widespread biotic factors that severely affect 

wheat productivity in the country (Abebe et al., 2012). Disease control is possible 

with fungicides but they are unaffordable for resource poor farmers in developing 

countries like Ethiopia (Rehman et al., 2013). Use of wheat cultivars with durable 

resistance genes is the most economic, effective and ecologically sustainable 

method of stem rust control. 

 

More than 50 resistance genes have been described for stem rust (McIntosh et al. 

2011). Most of these genes are race-specific and function in a gene-for-gene fashion 

(Singh et al., 2006). Virulence in the pathogen population has been evolving rapidly 

following the deployment of race-specific resistance genes, often associated with a 

boom and bust cycle (Burdon et al., 2014). Use of race non-specific resistance 

genes is the best strategy for breeding towards durable stem rust resistance. Race 

non-specific resistance is governed by polygenes each with minor effect. This form 

of resistance is considered to be durable and effective against a broad range of stem 

rust races with an optimal level of expression at the adult plant stages (Parlevliet, 

1985; McIntosh et al., 1995). 

 

The stem rust resistance gene Sr2 is considered to be one example of a gene 

contributing to adult plant resistance, based up on partial resistance (McIntosh et al., 

1995; Bansal et al., 2008). The gene is recessive and is closely linked to pseudo-

black chaff (‘pbc’), characterized by stem and head melanism in wheat. It has 

provided durable resistance against stem rust worldwide for more than 50 years 

(Bhardwaj et al.,  2014). Development and deployment of wheat cultivars with the Sr2 

gene could provide a long term genetic solution to rust control. Accordingly 
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incorporating adult plant resistance genes into locally adapted but disease 

susceptible germplasm is a major goal in most wheat breeding programs (Vanzetti et 

al., 2011).  

 

Several widely adapted wheat varieties grown in Ethiopia have succumbed to stem 

rust disease and dropped out of production despite desirable agronomic attributes. 

According to Admassu et al. (2012), most stem rust resistance genes present in 

these varieties are race-specific. To reduce the susceptibility of adapted wheat 

varieties it is essential to incorporate resistance genes from known and diverse 

sources through crosses or repeated backcrosses (Singh et al., 2008). Backcross 

breeding is an effective method to transfer few resistance genes into locally adapted 

but susceptible wheat varieties from selected donor parents (Robbins, 2012). The 

donor parent provides resistance gene and may not possess all the desirable 

agronomic traits found in the recurrent parent. Agronomically superior variety which 

lacks resistance gene(s) serves as the recipient or recurrent parent. The goal of 

backcrossing in wheat is to obtain a pure line as close as possible to the recurrent 

parent with the addition of the resistance gene (Ye et al., 2009).  

 

A single backcross-selected bulk method is one approach to breed for adult plant 

resistance (APR) (Singh et al. 2006). It is believed that selecting for resistance based 

on additively inherited minor genes is difficult (Singh et al., 2005). However, single 

backcross-selected bulk method allows incorporating resistance to rust diseases 

based on multiple additive or minor genes into well-adapted but susceptible wheat 

cultivars (Singh and Huerta-Espino, 2004). A single backcross approach also favours 

selection of genotypes with increased yield potential and other agronomic traits 

(Wang et al., 2009). Wang et al. (2009) noted that a single backcrossing shifted the 

progeny mean towards the higher side by favouring retention of most of the desired 

additive genes from the recurrent parent while simultaneously allowing for the 

incorporation and selection of additional useful genes with small effects from the 

donor parent.  

 

The process followed in a single backcross-selected bulk method are: backcross 

sources of APR to elite lines for one generation, then bulk phenotypically desirable 

backcross progeny in the F2, F3 and F4, select individual stem rust resistant lines 
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from the F5 generation, and continue selections for desirable traits and disease 

resistance until the F6 generation (Velu and Singh, 2013). Wang et al. (2009) 

investigated the efficiency of this breeding strategy compared to other crossing and 

selection strategies through computer simulations for many parameters, such as the 

number of genes to be transferred and frequency of favorable alleles in donor and 

recurrent parents. Previous reports indicated that this breeding strategy has 

advantages in improving the adaptation of the recurrent parents and transferring 

most (more than 60%) of the desired genes. Todorovska et al. (2013) supported the 

computer simulated data of Wang et al. (2009) showing that the single backcrossing 

breeding strategy allows a considerable amount of favorable genes from donor 

parents to be transferred, and simultaneously, the local adaptation of the recurrent 

cultivars could be improved. Studies at the International Maize and Wheat 

Improvement Center (CIMMYT) have also proved that minor genes can be 

incorporated successfully into a cultivar by using a single backcross-selected bulk 

breeding scheme (Singh et al., 2004). In addition, with the single backcross-bulk 

selection method there are significant savings in time, labor, and costs such as 

during nursery preparation and planting (Van Ginkel et al. 2002). According to Wang 

et al. (2003), the savings in resources did not result in a penalty in genetic gains for 

yield. 

 

The objective of this study was to introgress durable stem rust resistance genes from 

known resistance sources into farmers’-preferred and locally adapted but stem rust 

susceptible, improved wheat varieties using a single backcross-selected bulk 

method. 

 
5.2 Materials and methods  

 
5.2.1 Plant material  

 
Two stem rust susceptible wheat varieties, Kubsa (HAR1685) and Galama 

(HAR604), were used as recurrent parents to transfer adult plant resistance gene 

into their genetic background (Table 5.1). Both are semi-dwarf bread wheat types 

that are widely adapted, high yielding and farmers’-preferred varieties in Ethiopia 

(Yami et al., 2013). The two varieties originated from the International Wheat and 
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Maize Improvement Center (CIMMYT) and were released for cultivation in Ethiopia 

during 1994 and 1995, respectively (Hussein and Pretorius. 2005). Kubsa is early 

maturing whereas Galama is late maturing.  

 

Pavon 76 and Kenya Plume, which carry high levels of adult plant resistance to stem 

rust (Singh and McIntosh, 1986; Singh et al., 2013), were selected as the pollen or 

donor parents. Pavon 76 is a semi-dwarf CIMMYT derived bread wheat variety 

released in Ethiopia during 1982 (Khan et al., 2013). It also carries a slow-rusting 

resistance gene (Lr46) to leaf rust (Singh et al., 1998). Kenya Plume is an early 

maturing, old and tall Kenyan wheat cultivar released in 1965 that has maintained its 

resistance over fifty years (Singh and McIntosh, 1986) (Table 5.1). 

 
Table 5.1 Name, year of release, origin, and pedigree of donor and recurrent wheat 
parents used in the study.   
Parents Year of 

release 

Origin Pedigree 

  

Sr genes 

Recurrent parent      

Kubsa (HAR1685) 1994 CIMMYT NDG9144//KAL/BB/3/ 

YACO’’S’’/4VEE#5’’S’’ 

- 

Galama (HAR604) 1995 CIMMYT 4777(2)//FKN/GB/3 

/PVN"S" 

Sr9e, Sr11  
(Admassu et al., 2012)  

Donor parent      

Pavon 76 1982 CIMMYT VCM/CNO "S"/ 

7C/3/KAL/BB 

Sr2, Sr8a, Sr9g,Sr30  
(McIntosh et al., 1995) 

Sr9e, Sr11  
(Admassu et al., 2012) 

Kenya Plume 1965 Kenya Mida/McMurachy//Exc
hange/3/Kenya 184p 

Sr2, Sr5, Sr6, Sr7a, 
Sr8a, Sr9b, Sr12, Sr17  
(McIntosh et al., 1995) 

 
 
5.2.2 Population development  

 

The study used a single backcross-selected bulk approach to transfer resistance 

genes and develop superior progenies. The breeding scheme is outlined in Figure 

5.1. Pavon 76 and Kenya Plume were crossed with Kubsa and Galama to obtain F1 

seeds. The resultant F1 seeds were planted and 40-50 spikes from each F1 

populations were backcrossed to their recurrent parents to obtain 400 BC1 seeds. 
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The BC1 seeds were planted and 80 plants per cross showing intermediate stem 

rust resistance with close resemblance to their recurrent parents were selected. One 

spike from each selected plant was harvested and the seeds bulked. The bulked 

seeds represented the F2 generation. One thousand five hundred plants per cross 

were planted in the F2 and 300 plants were selected for showing desirable 

agronomic features and good to intermediate stem rust resistance levels. A single 

spike was harvested from each selected F2 plant and the seeds were bulked. Five 

hundred F3 plants from each cross were then evaluated in the field and 200 plants 

per cross were retained to establish the F4. The bulked plants in the BC1 and F2 

generations were sown in fields in non-replicated field trials. The F3 progenies and 

their recurrent parents were established in plots consisting of 6 rows of 1.5 m long 

with 20 cm inter-row spacing, using a randomised complete block design with three 

replications. Evaluation and selection at the F4 and later generations will be carried 

out in the next selection cycles following the scheme described in Section 5.5. 

 

 

Figure 5.1. Schematic presentation of single backcross-selected bulk scheme 
showing the procedure of progeny selection  
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5.2.3. Experimental sites  

 

Crosses and backcrosses were conducted during the off- and main seasons, 

respectively, in 2012 at Ambo Plant Protection Research Center in Ethiopia. The 

center is located at an altitude of 2200 m above sea level (masl) and receives a 

mean annual rainfall of 1100 mm. The mean annual minimum and maximum 

temperatures are 10.3oC and 25.6oC, respectively (Setotaw et al., 2014). Selections 

for resistance and other agronomic features in the BC1, F2 and F3 generations were 

carried out during the off- and main seasons of 2013, and off-season of 2014 at the 

Debre-Zeit Agricultural Research Center, where epidemics of pgt are prevalent. The 

Debre-Zeit Agricultural Research Center is found at an altitude of 1900 (masl). The 

center receives a mean annual rainfall of 851 mm. The mean annual minimum and 

maximum temperatures are 8.9oC and 28.3oC, respectively (Denbel et al, 2013).  

 

5.2.4. Disease assessment 

 

Terminal stem rust severity, estimated visually as a proportion of the plant stem 

affected, was recorded according to a modified Cobb scale (Peterson et al., 1948). 

Severity was assessed from twenty randomly taken plants of each plot when 

the plants were in the mid-dough stage and the mean of all stems was considered as 

the value for a plot. The host plant response to infection was also scored using the 

description of Roelfs et al. (1992) as R = resistant (flecks and small uredinia), MR = 

moderately resistant (flecks and small to moderate uredinia), MS = moderately 

susceptible (moderate to large uredinia), S = susceptible (large uredinia). The 

constant values for infection types were used based on; R=0.2, MR=0.4, MS=0.8, 

S=1 (Stubbs et al., 1986). 

 

5.2.5. Data collection for agronomic traits  

 

Spike length (SL) was measured in centimetres from the base of the rachis to the tip 

of the upper most spikelet from twenty randomly selected plants per cross. Twenty 

randomly sampled spikes per cross were threshed individually to determine the 

number of kernels per spike (KPS). Thousand kernel weight (TKW) (in gram) was 

measured using a random sample of thousand kernels adjusted to 12% moisture 
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content. Grain weight per spike (GWPS) was determined from twenty random spikes 

per cross in gram. Plant height (PHT) was measured (in centimetres) from ten 

randomly selected plants in a plot measured from the base to tip of the panicle after 

flowering. Days to heading (DH) was recorded as the number of days from planting 

to 50% heading in each plot. Days to maturity (DM) was recorded as the number of 

days from emergence to when 95% of the plants in a plot were physiologically 

matured.  

 

5.2.6. Statistical analysis 

 

Disease severity and the agronomic data were subjected to analysis of variance to 

determine significant differences between single backcross derived F3 crosses and 

recurrent parents for disease resistance and agronomic traits. Data were analysed 

using the GLM procedure of SAS computer software (SAS, 2002). Genetic gains for 

all traits were calculated following Nyquist (1991) and expressed in percentage: 

 

GG = [(�1 � �0�/�0�� 100 

 

where, GG = genetic gain; µ0 is mean of initial population (recurrent parents) 

and µ1 is mean of F3 population. 

 

5.3. Results and discussion 

 

5.3.1. Phenotypic evaluation  

 

The field evaluation of single backcross derived F3 progenies showed significant (P< 

0.05) variation for the agronomic traits and stem rust resistance (data not shown). 

This indicated the existence of genetic variability among the genotypes for the 

studied characters. Similarly, Menon et al. (2007) and Azam et al. (2013) evaluated 

F3 wheat progenies along with their parental lines and found significant differences 

at P< 0.01 for all the characters studied, including plant height, number of grains per 

spike, and grain yield per plant. The results of the phenotypic evaluations of F3 

generations and their recurrent bread wheat parents are presented in Table 5.2.  

 



128 
 

Development of crop cultivars with disease resistance and superior agronomic 

performance has been the prime objectives of many plant breeding programs. Lower 

mean final rust severities were identified in all F3 populations in comparison with 

their recurrent parents (Table 5.2). F3 progenies derived from the cross Kubsa x 

Pavon 76 had the lowest mean terminal rust severity of 38% followed by Kubsa x 

Kenya Plume (42%). The rust severity of the cross Kubsa x Pavo 76 was 

significantly lower than that of the recurrent parent Kubsa. However, the final rust 

severities of the F3 progenies of the remaining crosses were not significantly 

different from their recurrent parents.  

 

Table 5.2. Mean terminal stem rust severities and agronomic performances of the F3 
populations and their recurrent parents at Debre-Zeit Agricultural Research Center, Ethiopia 
during 2014 offseason 
F3 

populations 

FRS† SL 

(cm) 

KPS  TKW 

(g) 

GWPS 

(g) 

PLH 

(cm) 

DH DM 

Gal x Pav‡ 46.0ab* 9.25a 49.0a 32.0bc 1.98ab 85.3d 87.6a 123.0bc 

Gal x K. plu  46.0ab 9.0b 37.5 b 31.5bc 1.79b 91.0bc 92.0a 129.0ab 

K x Pav 38.0c 8.5c 50.0a 37.3a 2.15a 88.8bcd 59.0b 117.0c 

K x K. plu 42.0bc 8.2d 45.0ab 35.0ab 1.96ab 95.5a 61.0b 120.5bc 

Galama 50.0a 9.11ab 46.0a 31.0c 1.87b 87.35cd 95.0a 135.5a 

Kubsa 48.0ab 8.2d 43.5ab 34.0abc 1.92b 92.75ab 64.0b 126.5abc 

CV 6.44 0.80 7.05 4.20 3.95 1.90 5.42   3.13 

R2 0.83 0.98 0.84 0.93 0.85 0.90 0.97   0.85 

LSD 7.51 0.18 8.18 3.61 0.20 4.40 10.64 10.10 

†Gal x Pav= Galama x Pavon 76, Gal x K.pl = Galama x Kenya Plume, K x Pav =   Kubsa x 
Pavon 76, K x K.pl = Kubsa x Kenya Plume 
* Means in a column followed by the same letter are not significantly different 
†FRS= final rust severity, SL= spike length, KPS = number of kernels per spike, TKW = 
thousand kernel weight, GWPS = grain weight per spike, PLH = plant height, DH = days to 
heading, DM = days to maturity 
 

Spike related traits are important for grain yield formation. The F3 plants from the 

crosses Galama x Pavon 76 and Kubsa x Pavon 76 developed longer spikes than 

their corresponding recurrent parents. Individuals of the cross Galama x Kenya 

Plume had shorter spike lengths than the recurrent parent Galama. However, only 

the cross Kubsa x Pavon 76 had a significantly longer spike length than its recurrent 

parent Kubsa. The F2 plants from the cross Kubsa x Kenya Plume had mean spike 
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length equal to the recurrent parent Kubsa (Table 5.2). The number of kernels per 

spike ranged from 37-50 in the F3 populations, while the variation in this parameter 

was lower in the recurrent wheat parents (46 for Galama and 43 for Kubsa) (Table 

5.2). The number of kernels per spike was higher in F3 plants of the cross Kubsa x 

Pavon 76 (50), but not significantly different from its recurrent parent. Galama x 

Kenya Plume had a significantly lower number of kernels per spike than its recurrent 

parent.  

 

All F3 populations had higher thousand kernel weights than their recurrent parents 

However, none of the crosses differed significantly from their corresponding 

recurrent parents (Table 5.2). The highest mean thousand grain weight (37.3 g) was 

recorded from the F3 population derived from the cross Kubsa x Pavon 76. The grain 

weight per spike was observed to vary within a narrow range in recurrent cultivars 

(1.87-1.92g) while the range was relatively wider for F3 populations (1.79-2.15). 

Among the F3 populations of the crosses, the F3 population from the cross Kubsa x 

Pavon 76 was distinguished by a significantly greater mean grain weight per spike 

than its recurrent parent, whereas none of the other populations differed significantly 

from their recurrent parents (Tables 5.2). F3 progenies of Kubsa x Pavon 76 had the 

mean value of 2.15 g for this trait (Table 5.2). 

 

None of the F3 populations differed significantly from their recurrent parents for plant 

height and days to heading. However, F3 progenies of the crosses Galama x Pavon 

76 and Kubsa x Pavon 76 had shorter plant heights than the corresponding recurrent 

parents.  Days to heading for the F3 populations were 3 to 8 days earlier than their 

respective recurrent parents. The cross Galama x Pavon 76 matured significantly 

earlier than its recurrent parent, but none of the other three populations had 

significantly different maturity than their corresponding recurrent parents (Tables 

5.2). 

 

The study showed that all the F3 progenies of the crosses except Galama x Kenya 

Plume exhibited better performances in most of the desired characters in 

comparison to the recurrent parents: better stem rust resistance; higher kernel 

number per spike; higher thousand kernel weight and shorter plant height. This 

indicated that the single backcross-selected bulk method was effective way to 
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improve stem rust resistance and other desirable traits in commercial wheat 

cultivars. This was in agreement with the findings of Singh et al. (2004) and Wang et 

al. (2009). Progenies from the cross Kubsa x Pavon 76 possessed the best 

combination of agronomic traits and disease resistance. Hence, progenies of this 

cross could be exploited in advanced segregating generations and yield trials.  

 

5.3.2 Genetic gains in stem rust resistance and agr onomic traits at the F3 

 

Stem rust severity decreased in all the F3 populations of the crosses. The most 

resistant F3 progenies were the ones derived from the cross Kubsa x Pavon 76 

followed by Kubsa x Kenya Plume. Genetic gains for stem rust resistance for these 

populations were 20.83 and 12.50%, respectively (Table 5.3).  

 

The genetic gain for spike length was 3.66% of the initial population mean for Kubsa 

x Pavon 76 while the mean spike length in the F3 progenies of Kubsa x Kenya 

Plume did not differ from the original population mean. Mean number of kernels per 

spike ranged from 43.5 for the source population of the crosses Kubsa x Pavon 76 to 

50 for F3 of the cross with a corresponding genetic gain of 14.96%, which was the 

maximum genetic gain obtained among the populations (Table 5.3). There was a 

clear response to selection for thousand kernel weights exhibited by the populations. 

The maximum genetic gain in thousand kernel weight was 9.71% at the F3 of Kubsa 

x Pavon 76. There was an improvement in the grain weight per spike from the initial 

generation to F3, with the genetic gains ranging from 2.08% for Kubsa x Kenya 

Plume plants to 11.98% for Kubsa x Pavon 76 plants (Table 5.3). The present 

findings corroborated with those of Memon et al. (2007), Ajmal et al. (2009) and 

Bilgin et al. (2011), who also observed good genetic advances for quantitative traits 

such as thousand kernel weight, kernels per spike and plant height. According to 

Memon et al. (2005), high genetic advances for major quantitative traits in wheat 

offers better scope for selection of genotypes in early segregating generations. The 

low genetic advance as observed for some of the characters in some of the 

progenies was also similar to the findings of Eid (2009) and Bilgin et al. (2011). 

The F3 populations improved for stem rust resistance through selection were also 

equally good for spike related traits. This indicated that improvements in these traits 

from the source to F3 populations were associated with the decreases in the stem 
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rust severities (Table 5.3). Many researchers have suggested that grain yield was 

significantly associated with stem rust resistance (CIMMYT, 2005; Wanyera et al., 

2009; Macharia et al., 2013). 

 

Days to heading and maturity decreased in all the F3 populations in response to 

selection. The high genetic gain observed for stem rust resistance, number of 

kernels per spike, thousand kernel weight and kernel weigh per spike indicated that 

there is good scope for improvement of adapted wheat cultivars by using a single 

backcross selection scheme.  

 

Table 5.3. Genetic gains of stem rust resistance and agronomic traits of single 
backcross derived F3 populations evaluated under high stem rust pressure at the 
Debre-Zeit Agricultural Research Center, Ethiopia during the 2014 off-season. 
Traits  Populations  

Galama x  

Pavon 76 

Galama x 

Kenya Plume 

Kubsa x  

Pavon 76 

Kubsa x  

Kenya Plume 

FRS† -8.00 -4.00 -20.83 -12.50 

SL 1.54 -1.21 3.66 0.00 

KPS 6.52 -18.48 14.94 3.45 

TKW 3.23 1.61 9.71 2.94 

GWPS 5.88 -4.28 11.98 2.08 

PLH -2.35 4.18 -4.26 2.96 

DH -7.79 -3.16 -7.81 -4.69 

DM -9.22 -5.53 -5.53 -7.51 
†FRS= Final rust severity, KPS = Number of kernels per spike,  

TKW = thousand kernel weight, GWPS = grain weight per spike 

 

5.4 Conclusions 

 
The single backcross-selected bulk approach was applied in order to incorporate 

durable stem rust resistance genes from resistance sources, Pavon 76 and Kenya 

Plume, into locally adapted, high yielding but stem rust susceptible wheat varieties, 

Kubsa and Galama. Single backcross derived F3 generations of the crosses were 

evaluated at the Debre-Zeit Agricultural Research Center under high disease 
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pressure to determine genetic advances for stem rust resistance and agronomic 

traits. The most resistant plants were the F3 progenies of the cross Kubsa x Pavon 

76, with terminal stem rust severity of 38% and a genetic gain of 20.83% over the 

recurrent parent, Kubsa. The F3 progenies of this cross also showed high genetic 

gains for most of the agronomic traits including number of kernels per spike 

(14.96%), thousand kernel weight (9.71) and grain weight per spike (11.98). The 

progenies of Kubsa x Pavon 76 will be advanced and selected in subsequent 

generations to develop locally adapted, pure line wheat varieties with improved stem 

rust resistance and farmers’-preferred agronomic traits. The improved performance 

of F3 progenies of the crosses for stem rust resistance and most of the agronomic 

traits over the recurrent cultivars indicated that the single backcross-selected bulk 

method can be used to incorporate durable resistance into adapted wheat cultivars 

to improve their resistance to stem rust and agronomic traits.  

 

5.5. Future research direction  

 

Bulk selection will be repeated through the production of the F5 generation.  By this 

stage, a high level of homozygosity will be established for the desired traits. 

Consequently 100 plants per cross with a high resistance level and good agronomic 

features will be selected and harvested individually. The selected plants will then be 

promoted to the F6 generation and grown in small plots (3-4 rows) to evaluate 

agronomic features and resistance. Plants with good grains are likely to be the ones 

possessing better genes for resistance, because stem rust will not have interfered 

with their development. Shrivelled seeds would suggest insufficient stem rust 

resistance. Finally the resistant F6 plots will be harvested for conducting multi-

location yield trials in the following cropping season. The F4 to F7 generations will be 

planted as replicated trials. Inheritance studies will be conducted to understand the 

number and type of resistance genes involved in these lines. This could be followed 

by molecular mapping to determine genomic locations of minor, additive resistance 

genes contributing to adult plant resistance. Such information will be useful to 

establish and enhance genetic diversity for minor genes. At the end of the program 

superior wheat lines will be released that will provide farmers an option to grow 

durably resistant versions of their favourite wheat cultivars. 
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An overview of the research findings 

 

Introduction and objectives of the study  
 

Wheat (Triticum aestivum L.) is the most widely grown crop around the world, 

serving as a staple food for one-third of the human population. Ethiopia is the second 

largest wheat producer in sub-Saharan Africa after South Africa. Wheat stem rust 

caused by the fungus Puccinia graminis f.sp. tritici is a major production constraint in 

most wheat growing regions in Ethiopia. It causes yield losses of up to 100% in 

epidemic situations. It is important to minimize losses incurred by the disease so that 

the yield potentials of improved wheat varieties can be realized. The available 

options for controlling stem rust, such as chemical and cultural controls, have not 

been effective in reducing yield losses. The principal management strategy for stem 

rust control has been resistant cultivars, which are effective and affordable to small-

scale farmers. However, most of the currently grown, locally adapted and farmers’-

preferred wheat varieties are susceptible to the disease. The major cause of the 

susceptibility of wheat varieties to stem rust is the narrow genetic base used in 

wheat lines that have been included in the wheat breeding programs of Ethiopia, and 

emergence of new and virulent races of the pathogen. Hence, there is a need for 

durable resistance that can withstand different races of the pathogen. The objectives 

of this study were initially established as: 

 

• To determine the wheat production constraints, farmers’ varietal preferences, 

and disease management practices, with special emphasis on wheat rusts  

• To identify slow rusting resistance to stem rust in Ethiopian wheat lines 

• To determine the levels of heterosis and combining ability, and to identify  the 

best parents and crosses for breeding to stem rust resistance, high grain yield 

and desirable agronomic traits 

• To introgress durable resistance genes from known durable resistance 

sources into farmers’-preferred and locally adapted but stem rust susceptible, 

improved wheat varieties  
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Research findings in brief 

 

Appraisal of farmers’ wheat production constraints and breeding priorities in 

stem rust prone agro-ecologies of Ethiopia 

 

• A participatory rural appraisal (PRA) research was conducted involving 270 

farmers in six districts of three administrative zones in Ethiopia. 

• Important wheat production constraints were identified and prioritized, of 

which wheat rust diseases, the high costs of fertilizers, a shortage of improved 

seeds and high seed prices were the most significant factors limiting wheat 

production and productivity.  

• The most important traits that farmers sought in wheat varieties were disease 

resistance and high grain yield. 

• Estimated yield losses due to stem rust disease were more than 60% in all the 

surveyed areas.  

• Fungicide application was the main disease management practice used by 

the majority of respondent farmers but they realised that this method was not 

affordable for stem rust management and that they needed a better control 

option. 

• Indigenous durum wheat varieties were being completely replaced with 

modern bread wheat varieties in the study areas. 

 

Assessment of Ethiopian wheat lines for slow rustin g resistance to stem rust 

of wheat caused by Puccinia graminis f.sp. tritici 

 

• Two hundred fifty two wheat genotypes were evaluated for their slow rusting 

resistance to stem rust under greenhouse and field experiments at Ambo and 

Debre-Zeit Agricultural Research Centers, Ethiopia, respectively.   

• Wheat genotypes such as H04-2, 204408-3, 214551-1, 231545-1, 7041-1, 

7514-1, 226385-1, 226815-1, 7579-1, and 222495-1 were identified as good 

slow rusting lines. Of these 231545-1, 7041-1, 226815-1 and 7579-1 exhibited 
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complete susceptibility at the seedling stage (3- to 3+) and were regarded as 

true slow rusting lines. 

• Wheat genotypes including 237886-1, 227059-1, 203763-1, 226275-1, 

227068-2, 226278-1 and 7994-1 were identified as moderately slow rusting 

lines. 

• Both highly slow rusting and moderately slow rusting lines identified from this 

study can be used for future manipulation in durable resistance breeding. 

 
Heterosis and combining ability analysis of stem ru st resistance and grain 

yield and related traits in bread wheat  

 

• Fifteen F1 wheat genotypes were developed using a half diallel mating 

design, involving six parents. The 15 hybrids and 6 parents were used to 

estimate heterosis and combining ability at the Debrezeit-Agricultural 

Research Center, a known hot spot for stem rust disease, in Ethiopia.  

• The maximum positive mid-parent (31.45%) and better-parent heterosis 

(25.38%) were observed for grain yield. The maximum negative heterosis 

were observed for plant height (-11.01%) and days to maturity (-8.02%).  

• The majority of the crosses expressed negative heterosis over the mid-parent 

for AUDPC, indicating these crosses manifested enhanced resistance to the 

disease. Significantly negative mid-parent heterosis values for AUDPC were -

48.85 (Danda’a x Kubsa) and -45.28 (7041-1 x Danda’a). The maximum 

better-parent heterosis value for the trait was -34.93. 

• Significant (p<0.05) general combining ability (GCA) effects were detected for 

all the characters studied and specific combining ability (SCA) effects were 

significant (p<0.05) for all the traits except for the number of tillers per plant, 

indicating the contribution of additive and non-additive genes to total genetic 

effects controlling the traits.   

• The relative magnitude of GCA and SCA variances, however, revealed that 

non-additive gene actions were more important for grain yield, thousand 
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kernel weight and plant height while additive gene action played a greater role 

in the inheritance of AUDPC, kernels per spike, tillers per plant and days to 

maturity. 

• The study identified parental lines H04-2, Digelu and Danda’a as good 

general combiners for most of the characters studied. 

 
• Wheat lines 231545-1, 7041-1, H04-2 and Danda’a expressed significant 

negative GCA effects for AUDPC, suggesting these lines can be used as 

parents in wheat breeding for stem rust resistance.  

• Crosses 231545-1 x H04-2, 7041-1 x H04-2, Digelu x Kubsa and Danda’a x 

Kubsa had significantly negative SCA effects for AUDPC. These crosses will 

be selected in the stem rust resistance breeding program.  

• In this study, wheat lines: H04-2 and Danda’a were good general combiners 

for most of the important studied characters and crosses involved these lines 

performed well for most of the traits. Hence, selection from the transgressive 

segregating generations of crosses of H04-2 and Danda’a could be expected 

to lead to substantial genetic improvement for these traits. 

 

Introgression of durable resistance genes into farm ers’-preferred and locally 

adapted stem rust susceptible wheat varieties  

 

• Introgression of durable resistance genes from resistance sources, Pavon 76 

and Kenya Plume, into two locally adapted wheat varieties, Kubsa (HAR 

1685) and Galama (HAR 604), was conducted using a single backcross-

selected bulk breeding approach. 

• Single backcross derived F3 populations, along with the recurrent parents, 

were evaluated under high disease pressure at Debre-Zeit Agricultural 

Reasrch Center to determine the genetic gains for stem rust resistance and 

agronomic traits. 



142 
 

• The F3 progenies in all crosses except Galama x Kenya Plume were better 

performing for stem rust resistance and most agronomic traits than the 

recurrent parents.  

• The F3 progenies of Kubsa x Pavon 76 displayed exceptional performances 

with high genetic gains for most of the characters studied. These progenies 

will be advanced and selected in subsequent generations to develop locally 

adapted pure line wheat varieties with improved stem rust resistance and 

farmers’-preferred agronomic traits. 

 

Implications of the research findings to breeding w heat for stem rust 

resistance and higher yield  

 

• Farmers’ participation in wheat breeding programs is important for better 

adoption, acceptance and impact of improved varieties.  Moreover, 

participatory research increases the job efficiency of the scientists and 

reduces research costs. The results of the participatory rural appraisal study 

were useful to identify the existing wheat production constraints and farmers’ 

preferred traits in wheat genotypes. Their views and priorities will be 

considered by the wheat breeding program in Ethiopia. 

• Wheat genotypes with slow rusting resistance were identified among the 

wheat accessions of Ethiopia, using greenhouse and field evaluations. They 

provide potential for breeding towards stem rust resistance. The 10 genotypes 

that displayed high levels of slow rusting resistance and 7 genotypes with 

moderate levels of slow rusting resistance are of great importance to 

achieving effective breeding for durable resistance to stem rust. 

• The levels of mid-parent and better-parent heterosis detected in the present 

study showed the potential to commercially exploitate heterosis among the 

progenies of F1 for improvement of grain yield and stem rust resistance in 

bread wheat. 

• Best parents and cross combinations for stem rust resistance and yield traits 

were identified that could be effectively utilized in wheat breeding for the 
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improvement of stem rust resistance and yield components, and therefore 

their incorporation in a future wheat breeding program is recommended.  

• Both additive and non-additive variances were found to be important in the 

genetic control of stem rust resistance and agronomic traits, which suggests 

use of integrated breeding strategies to efficiently utilize the additive as well 

as non-additive genetic variability. Thus, the use of diallel mating with 

recurrent selection could provide the better conditions for recombination and 

accumulation of desirable genes.  

• Incorporating durable polygenic resistance into the widely adapted wheat 

varieties, Kubsa and Galama, by using a single backcross-selected bulk 

method will improve the resistance and yield potential of the cultivars while 

maintaining their original characteristics. These could enhance wheat 

productivity and profitability of resource poor farmers in Ethiopia.  

 

 


