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Abstract  

This study focused on fabrication and characterization of nanostructured metal oxide 

heterojunction solar cells for photovoltaic application. The study involved experimental 

fabrication of the device and modelling and theoretical validation of the fabricated device. The 

laboratory experiment was carried out by fabricating and characterizing nanostructured metal 

oxide thin film based solar cells using chemical spray pyrolysis and magnetron sputtering 

deposition techniques. The study included device design, materials tuning, process development, 

device characterization, device simulation, device reliability testing, and device circuit 

demonstration. The study covers the whole course of the device lithography and development.  

The spray pyrolysis method was used for depositing nickel oxide (NiO) thin films. Scanning 

electron microscope (SEM), energy dispersive X-ray powder diffraction (XRD), and Fourier 

transform infrared microscopy (FTIR) were used to characterize the films and four-point probe for 

the final device. Experimental optimization was conducted on the films with a focus on pre-

deposition, deposition and post-deposition. The optimized result was used to fabricate a metal 

oxide NiO/TiO2 P-N heterojunction solar cell using spray pyrolysis and magnetron sputtering 

techniques. The optoelectronic properties of the heterojunction were determined. The fabricated 

solar cell exhibited 16.8 mA for the short circuit current, 350 mV open circuit voltage, 0.39 fill 

factor and conversion efficiency of 2.30 % under 100 mW/cm2 illumination. 

The result obtained from the experiment was compared and evaluated with the simulated results. 

The theoretical understanding of the device was modelled and theoretically validated. Theoretical 

understanding of the solar cell was established and thereafter the fabricated device modelled using 

solar cell analysis programs (SCAPxD). The working points used for the modelling included a 

temperature of 350 oC, illumination of 100mW/cm2, the voltage range of 0 volts to 1.5 volts. The 

output gave filled factor (FF) of 0.38 % which validated the experimental results.  

This study is a boosts in the quest to develop low-cost, environmentally friendly and sustainable 

solar cells materials and deposition method especially in developing and low-income countries 

that are experiencing electricity shortage using nanostructured metal oxide. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Introduction 

There is a growing need for energy sources that are affordable, sustainable and environmentally 

benign. This arises from the fast depletion of present energy sources which are mainly fossil 

fuels. This has brought about a huge interest in alternative sources of energy. These alternate 

sources are mainly renewable energy such as wind, solar, tidal, geothermal, etc. Single or 

combined usage of such energy has been proven to be economically and socially acceptable 

worldwide. 

Solar energy stands out among these alternate energy sources because of its potential global 

availability. Solar energy is infinite in relation to human existence. Today, there is a huge 

interest in increasing solar energy efficiency. The conversion of solar energy to affordable 

useable energy is one of the most promising ways of overcoming global energy challenges. 

There has been a reduction in prices of solar technologies around the world but it is still out of 

the reach of developing and low-income countries. 

Studies are being channelled towards affordable, sustainable and environmentally benign 

methods and materials that will lead to easy availability of solar technologies. Nanostructured 

metal oxide is one such material. Studies have confirmed that p-type metal oxides exhibit better 

carrier mobility and greater stability compared to organic materials [1-3].  

Nickel Oxide (NiO) is a p-type metal oxide with great promise. It has great air stability, and 

large open circuit voltage when compared with poly (3,4-ethylenedioxythiophene) polystyrene 

sulfonate (PEDOT: PSS). It can be deposited by physical and chemical methods. However, 

research is being conducted in search of a low-cost and sustainable deposition method that 

requires little or no electricity usage. This is owing to the fact that most developing and low-

income countries have little or no constant power supply. 
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1.2 Research motivation 

Solar energy has been tipped to be a better replacement for fossil fuels owing to its renewability 

and environmental benign nature. Solar cells are the building blocks of solar energy. The 

current solar energy market is dominated by silicon based solar cells. Such solar cells are 

effective but have drawbacks that hinder full utilization in developing and low-income 

countries. Silicon based solar cells are single band gap. One of the drawbacks is heat generation 

that tends to reduce the efficiency. This is because solar radiation with less energy than the 

band gap of silicon passes straight through. Further, the solar cells are unable to utilize the extra 

energy from radiation with higher energy than silicon. Another drawback is that the production 

process is expensive since it requires the use of high power consumption equipment such as a 

furnace, vacuum pumps and so on. It also involves the use of chemicals that are 

environmentally harmful. Thus, there is a need to find a new approach to photovoltaic (PV) 

cells that will be cheap, sustainable and environmentally benign with good efficiency. In the 

course of the past decade, different approaches have been developed to compete with 

traditional silicon based PV devices by employing p-n junctions with emphasis on low-cost 

materials and manufacturing techniques [4]. This motivated this study to focus on 

nanostructured metal oxide for possible usage in heterojunction solar cell fabrication owing to 

their cheap material costs and manufacturing techniques. 

1.3 Problem statement 

As the worldwide demand for energy is becoming greater than the supply, the cost of supplying 

electricity becomes expensive. Also, it is a growing concern that global warming (greenhouse 

effect) and climate changes are being caused by usage of fossil fuels like coal, oil and gas. 

These fossil fuels are the major source for about 66% of electricity supply globally, and 

accounts for 95% of total energy demands on earth [5]. Hence it is important to find a source 

of renewable energy which is clean, efficient, and sustainable. Among the various renewable 

energy sources which include biomass, geothermal, solar, wind and mini hydro, solar energy 

stands out owing to its infinite nature and global availability. Solar energy is useful for 

generating electricity both on small and large scales. However, cost and storage are major 

drawbacks hindering its usage worldwide [6]. Therefore, the search is on for ways to reduce 

the cost of solar cells and solar panels to a competitive level with conventional ways of 

generating electricity. This can be achieved by fabrication of solar cells while maintaining 

higher efficiency. 
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Increasing solar cell efficiency can be achieved in two ways: 

1. Careful material selection with suitable energy gaps that match the solar spectrum and 

fine-tuning the material optoelectronic properties. 

2. Novel device development for charge collection and better solar spectrum utilization 

by employing single, ternary and quaternary semiconductor materials. 

Hence, this work developed a nanostructured metal oxide thin film based solar cell system for 

PV and optoelectronic device.  

1.4 Background to the study 

This work lies within the field of renewable energy and nanotechnology. The study aims to 

contribute to the achievement of global climate and energy goals. PV will have a momentous 

influence on the energy market when the energy conversion efficiency of solar cells is 

enhanced. Most types of PV cells use efficient thin films. Solar cell efficiency can be enhanced 

by modifying the properties of such films. Major challenges of solar cells are to enhance photon 

absorption, reduce electron-hole recombination and improve charge transport [7]. Metal oxide 

semiconductors are promising materials for PV applications [8]. The benign, stable and 

abundant nature of metal oxides encourage deposition even in ambient conditions [9]. Metal 

oxides are found in applications as active or passive components in a variety of commercial 

applications [10]. Metal oxides are used as transport layers or transparent conducting electrodes 

in solar cells [11]. There is currently huge interest in heterojunction metal oxide solar cells 

because of their low-cost potential due to the inexpensive materials and manufacturing 

techniques involved [12, 13]. Nanostructured oxides can play a crucial role in energy 

challenges faced by new sustainable and renewable energy resources. Their infinite varied 

structural architecture and morphological features present new hope and prospects for energy 

harvesting, conversion, and storage devices. 

1.4.1 Development of the solar cell 

Humanity has interacted with solar technology for a long time dating as far back as the 7th 

century BC [14]. Human beings started experimenting with the sun by focusing the sunlight 

with glass and mirrors to light fires and burn ants [15]. Today, this has evolved into more 

advanced technologies like solar powered vehicles and solar powered airplanes. 



4 
 

The super powers of the 3rd century (Romans and the Greeks) used sunlight focused on mirrors 

to light religious torches and this was also done by the Chinese in 20 A.D. [16]. The 1st to 4th 

Century A.D. saw the sun being used to warm water in the famous Roman bathhouses through 

the use of large windows that were designed to face south in order to let in the sun’s rays. The 

Anasazi of North America lived in houses that faced the south to capture the winter sun which 

demonstrated passive solar design in the 1200s A.D.  

The world’s first solar collector was built by Horace de Saussure. Sir John Herschel took this 

collector to South Africa in his expedition in the 1830s for his cooking [17]. A minister in the 

Church of Scotland, Robert Stirling, applied for a patent in September 27, 1816, for his heat 

engine known as the ‘eEonomizer’ at the Chancery in Edinburgh, Scotland [18, 19]. This heat 

engine was used in a solar thermal electric technology to produce power [20]. It focused the 

sun’s thermal energy in its operation to produce power.  

It was not until 1839 that the photovoltaic effect was discovered. Edmond Becquerel, a French 

scientist, discovered it while experimenting with an electrolytic cell [21]. The electrolytic cell 

comprised two metal rods placed in an electricity-conducting solution. Electricity generation 

improved when exposed to light. August Mouchet, a French mathematician, and his assistant, 

constructed the predecessor of a modern parabolic dish collector known as a solar-powered 

engine which was used for various applications in the 1860s [22]. 

Willoughby Smith in 1873 discovered selenium photoconductivity while Williams A. Grylls 

alongside Richard Evans Day discovered the electricity generation ability of selenium when 

exposed to light in 1876, thus proving that a solid material could change light into electricity 

without heat or moving parts. Although selenium solar cells failed to convert enough sunlight 

to power electrical equipment, these researchers later went on to publish a paper on the 

selenium cell entitled 'The action of light on selenium,' in Proceedings of the Royal Society, 

A25, 113. Charles Fritts was able to describe the first solar cells made from selenium wafers 

in 1883. In 1887 Heinrich Hertz discovered that ultraviolet light altered the lowest voltage 

capable of causing a spark to jump between two metal electrodes. 

In 1904, Wilhelm Hallwachs discovered that a metal oxide is photosensitive, namely, copper 

and cuprous oxide. He made a semiconductor-junction solar cell out of it. A year later, Albert 

Einstein published his paper on the photoelectric effect in relation to quantum mechanics. 

About a decade after Albert Einstein’s publication, the existence of a barrier layer in PV devices 

was discovered, while Robert Millikan in 1916 was able to experimentally prove the 



5 
 

photoelectric effect. Jan Czochralski developed a method of growing single-crystal silicon 

(Czolchraski, 1885 – 1953).  

In 1932, Audobert and Stora discovered the photovoltaic effect in cadmium selenide (CdSe), a 

PV material still used today. In 1948 Gordon Teal and John Little adapted the Czochralski 

method of crystal growth to produce single-crystalline germanium and, later, silicon [23]. On 

April 25, 1954, Bell Labs announces the invention of the first practical silicon solar cell [24, 

25]. These cells had about 6% efficiency. Western Electric licensed commercial solar cell 

technologies in 1955. That same year, Hoffman Electronics‘s Semiconductor Division created 

a 2% efficient commercial solar cell for $25/cell or $1,785/watt. Mandelkorn T of U.S. Signal 

Corps Laboratories, created n-on-p silicon solar cells in 1958. These are more resistant to 

radiation damage and are better suited for space. Hoffman Electronics created 9% efficient 

solar cells. Vanguard I, the first solar powered satellite, was launched with a 0.1 W, 100 cm² 

solar panel. 

In 1976, David Carlson and Christopher Wronski of RCA Laboratories created the first 

amorphous silicon PV cells, which had an efficiency of 1.1%. The Institute of Energy 

Conversion at University of Delaware developed the first thin film solar cell exceeding 10 % 

efficiency using Cu2S/CdS technology in 1980. In 1985, a 20% efficient silicon cell was 

achieved by the Centre for Photovoltaic Engineering at the University of New South Wales. 

The dye-sensitized solar cell was created by Michael Grätzel and Brian O'Regan (chemist) in 

1988. These photo electrochemical cells worked from an organic dye compound inside the cell 

and cost half as much as silicon solar cells. A new world record was achieved in solar cell 

technology in 2006 by breaking the “40 percent efficient” sunlight-to-electricity barrier [26]. 

2008 heralded a new record in solar cell efficiency when National Renewable Energy 

Laboratory (NREL) Scientists achieved a PV device with a 40.8 % conversion rate of the light 

that hit it into electricity. However, it was only under the concentrated energy of 326 suns that 

this was achieved. The inverted metamorphic triple-junction solar cell was designed, fabricated 

and independently measured at NREL [27]. In 2011, fast-growing factories in China pushed 

manufacturing costs down to about $1.25 per watt for silicon PV modules and installations 

doubled worldwide. 

PV research and development continues with intense interest in new materials, cell designs, 

and novel approaches to solar material and product development. It is a future where the clothes 
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you wear and your mode of transportation can produce power that is clean and safe. The price 

of PV power will be competitive with traditional sources of electricity within a few years [28]. 

1.4.2 History and origin of solar cells 

Photo is the Greek word for ‘light’ while voltaic refers to electricity (from Alessandro Volta, 

the Italian physicist who invented the electric battery). Therefore, the term ‘photovoltaic’ is 

commonly used to mean the process of transformation of light energy (or solar energy) into 

electric energy. The basic science behind the photovoltaic effect was first observed in 1839 by 

the nineteen-year-old French physicist Alexandre Edmond Becquerel. Becquerel observed a 

physical phenomenon allowing light-electricity conversion while experimenting with metal 

electrodes and electrolytes. In 1883 Charles Fritts, an American inventor described the first 

solar cells made from selenium wafers. In 1888 Edward Weston received the first US patent 

for a "solar cell". In 1901 Nikola Tesla received a US patent for a "method of utilizing, and 

apparatus for the utilization of, radiant energy" [29]. The pace of advancement increased 

dramatically after the publication of Einstein's paper entitled “On a Heuristic Viewpoint 

Concerning the Production and Transformation of Light”. This paper, published in 1905, 

proposed a theoretical explanation for the photoelectric effect [30]. Some years later, in 1916, 

Robert Millikan provided experimental proof of Einstein's theory of the photoelectric effect. 

Due to this success, Einstein received the 1922 Physics Nobel Prize for his work on the 

photoelectric effect. Approximately three decades later, a Bell Labs team discovered that 

silicon had photoelectric properties and quickly developed Si solar cells achieving efficiency 

of 6%. Early satellites were the primary use for these first solar cells. The commercial solar 

age had then begun. On the next years the advancements concentrated on space-related 

applications. In the 1970s oil crisis, also referred to as the oil shock, when the price of the oil 

quadrupled in less than half a year, alternative sources of energy gained in importance.  

More recently, global warming and climate change have become issues of ever-growing 

concern. The use of renewable sources of energy has been encouraged. The rising attention that 

global warming has gained has forced world leaders to embrace certain goals in order to 

minimize its effect. The Kyoto Protocol is an example of how the leaders decided to face the 

problem. In the Kyoto Protocol the goal was the reduction, by 2012, of at least 5.2% on the 

emissions of greenhouse gases by developed countries compared to levels recorded in 1990. 

Those conditions, together with major subsidy programs, have provided the means for an 

extraordinary growth of the PV industry for a sustained period of time. Nowadays the PV 
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industry is one of the fastest growing industries in the world and exists largely without subsidies 

[31]. 

1.4.3 Energy 

Energy is crucial for the survival of humanity. Every human interaction is linked directly or 

indirectly to energy [32]. The major sources of energy, especially in developing countries, are 

fossil fuel. These include sources like petroleum, coal, and natural gas that are non-renewable 

and harmful to the environment. Energy supply is expected to hit 30 TW by 2050 worldwide 

[33]. This will mount pressure on the fossil fuel sources that will be shared by the over 10 

billion people that are projected to be living on earth by 2050. Fossil fuels are 

consumed/produced at a rate of 5 to 1 at which rate it is expected to be depleted by 2050 [34-

36]. Bookout [37] predicted a deficit in energy supply from fossil fuels and energy demand 

unless steps are taking to remedy the situation. This problem is in addition to the challenge of 

global warming caused by the continuous usage of fossil fuel.  

This has encouraged research on diversification of energy sources. Most of such research has 

been targeted at energy sources that do not possess the disadvantages of the fossil fuels. The 

main focus is on renewability and reduction of harm to the environment [38]. Renewable 

energy has an infinite lifespan in comparison to human existence and is eco-friendly. It is an 

energy source capable of producing electricity, light and heat without adverse effects on the 

environment due to the absence of carbon dioxide emissions [39]. 

Solar energy is the largest exploitable renewable energy source capable of providing more 

energy in one hour to humankind than energy consumed by earth’s entire  populace in a year 

[40]. With about 165 000 terawatts of sunlight hitting earth, converting just 0.025 % of the 

incident solar energy is enough to solve a significant portion of human energy needs [41]. 

However, large scale integration and expensive initial costs hinder full scale usage of solar 

energy when compared to fossil fuels [42, 43]. Research is on-going to make the cost affordable 

and competitive to current fossil fuel electric grids [44].  

Nanotechnology is technology of 1 nm to 100 nm. It is capable of solving several human 

challenges. It has the potential to reduce energy usage both domestically and industrially. An 

improved solar cell is capable of saving over $1 000 a year on electricity for homeowners that 

have this technology on their roof. Nanotechnology is being projected as a potential means to 

improve efficiency, reduce solar cell cost and develop novel applications [45, 46]. 
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1.4.4 Renewable energy 

Renewable energy derived its name from the fact that it is a source of energy that can be 

replaced or renewed. It is a type of energy source that provides light, electricity and heat 

without polluting the environment [39]. The advantage of renewable energy over fossil energy 

is that it is pollution free [47]. Renewable energy includes solar, wind, biomass, hydrogen and 

geothermal energies [48]. They are good replacements for fossil fuels and nuclear energy. The 

potential of renewable energy production is shown in Figure 1.1. The solar energy potential of 

1 600 EJ exceeds the world annual energy consumption of 539 EJ. Figure 1.2 provides the total 

primary power density supply from sunlight for the world. 

 
Figure 1.1. Potential energy production per year of various types of renewable energy sources [49] 

 

Renewable energy accounts for the majority of electricity used in the European Union, 

generating 72 % in 2013 as opposed to 80 % for fossil fuels used a decade earlier [50]. 



9 
 

 

Figure 1.2. Total primary power density supplies from sunlight for the world [51] 

 

Table 1.1 shows the total solar energy, wind, biomass and human energy consumption for the 

year 2005. The table shows that the total solar energy absorbed by Earth's atmosphere, oceans 

and land masses is approximately 3 850 000 EJ (1 EJ = 1018 J) per year [52]. The absorbed 

solar energy by earth in an hour is enough for world energy needs. This exceeds that of wind 

and biomass which is 2 250 EJ and 3 000 EJ respectively.  

Table 1.1. Renewable energy forms data  

Energy type Value 

Solar 3 850,000 EJ  

Wind 2 250 EJ  

Biomass 3 000 EJ  

Primary energy use  487 EJ  

Electricity 56.7 EJ  

 

1.4.5 Barriers and issues facing renewable energy 

The barriers mitigating against renewable energy are grouped as technical and non-technical 

[53, 54]. Technical barriers include maintenance and after-sales service, design and installation 

skills, training and local technical infrastructure development, quality control and warranties. 

Non-technical barriers include lack of awareness, institution capacity-building for micro-

finance, and policy/regulatory issues [55]. Renewable energy promotion policy is now 

implemented in about 48 countries worldwide including 14 developing countries. The level of 

penetration varies according to country. Denmark had 33.2 % wind power penetration in 2013 

and Spain had 20.9 %. Italy had 7.8 % solar PV penetration in their total annual electricity 
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demand in 2013 [50]. Table 1.2 shows the top five countries’ annual investment/net capacity 

additions/production in 2013. 

Table 1.2. Top five countries (annual investment/net capacity additions/production in 2013)[50]  

 1 2 3 4 5 

Investment in 
renewable power 
and fuels 

China US Japan UK Germany 

Share of GDP 2012 
(USD) INVESTED 

Uruguay Mauritius Costa rica SA Nicaragua 

Geothermal power 
capacity 

New Zealand Turkey Us Kenya Philippines 

Hydropower 
capacity 

China Turkey Brazil Vietnam India 

Solar PV capacity China Japan US Germany UK 

CSP capacity US Spain UAE India China 

Wind power 
capacity 

China Germany UK India Canada 

Solar water heating 
capacity 

China Turkey India Brazil Germany 

Biodiesel 
production 

US Germany Brazil Argentina France 

Fuel ethanol 
production 

US Brazil China Canada France 

 

1.4.6 Solar energy 

The energy emitted from the sun is referred to as solar energy. Solar energy is emitted from the 

sun as an electromagnetic radiation in the ultraviolet to infrared and radio spectral regions (0.2 

nm to 3 nm). Solar energy can be converted to electricity using devices called solar cells 

through the photovoltaic effect. The energy is clean, sustainable and available in sufficient 

quantity with an infinite lifespan of 10 billion years [56]. The total energy from the sun in one 

hour (4.3 x 1020 J) is more than the total energy consumption of Earth for a year (4.1 x 1020 J) 

[57]. The radiation of the sun is known as insolation and about 174 petawatts (PW) of insolation 

is supplied to earth. Insolation is dependent on time, site, geographical location, relative 

position of the sun, season and reflection/diffusion/absorption by the atmosphere [58, 59]. 

About 70 % of this insolation is absorbed by the oceans, clouds and land masses with the 

absorbed solar energy being 3,850 ZJ/year and 30% is reflected back to space [60]. The incident 

energy from the sun on earth per second is equivalent to 4 trillion 100-watt light bulbs [61]. 

Despite all these, solar energy potential has not been fully utilized with global solar energy 

usage being 100 GW in 2012. Europe is the region in the world with the most installed capacity 

and Germany is the country with the highest installed capacity, with about 31% of world solar 

energy usage as shown in Figure 1.3 [62]. 
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Figure 1.3. Global solar cells cumulative installed capacity in 2012 (MW) 

 

A solar cell performs two major functions, namely, photogeneration of charge carriers in a light 

absorbing material, and separation of the charge carriers to a conductive contact that will 

transmit the electricity. This requires an electrolyte capable of transferring the charge from the 

photo-acceptor to the electrodes in polymer and dye sensitized solar cells. The particles need 

to be in close proximity to one another to be able to transfer charge directly in nanoparticle-

based solar cells. Great progress has been made in improving the overall efficiencies of solar 

cells including the incorporation of quantum dots (QDs) and nanocrystalline materials.  

Solar energy technologies are divided into solar thermal [63] and solar PV systems. Figures 

1.4 and 1.5 show the solar thermal and the solar PV systems. 

 

 
Figure 1.4. Schematic of a typical solar water heating system 
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Figure 1.5. Typical PV system 

 

Table 1.3. Examples of solar power applications and system types 

Technology type (PV/solar thermal) System Application 

PV (solar electric) Grid connected Supplementing mains supply 

PV (solar electric) Stand-alone Small home systems for lighting, radio, tv, etc. 
Small commercial/community systems, 
including health care, schools, etc. 
Telecommunication 
Navigations aids 
Water pumping 
Commercial systems 
Remote settlements 
Mini-grid systems 

Solar thermal Connected to existing water and/or space 
heating system 

Supplementing supply of hot water and/or space 
heating being provided by the electricity grid or 
gas network 

Solar thermal Stand-alone Water heating e.g. for rural clinics  
Drying (e.g. grain or other agricultural products) 
Cooking 
Distillation 
Cooling 

 

1.4.6.1 Solar cell efficiency 

Efficiency is one of the most important figures of merit for solar cells. Figure 1.6 shows the 

best research-cell efficiencies from the year 1975 to present [64]. There are four categories of 

solar cells indicated by different colours in the plot: multijunction III-V (GaAs, 

Ge/GaAs/InGaP, etc.) solar cell, crystalline Si cells, thin-film technologies, and emerging PV. 

Table 1.4 summarizes general categories of solar cell technologies [65]. 
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Figure 1.6. Timeline of solar cell energy conversion efficiencies 

 

Table 1.4. General categories of solar cell technologies 

Silicon  Monocrystalline or single crystalline silicon (mono-Si sc-Si); 
Poly- or multi-crystalline silicon (poly-Si or mc-Si): Ribbon silicon 

Thin films Amorphous Si (a-Si) 
CdTe (cadmium telluride) 
CIGS (copper-indium gallium selenide) 

III –IV Solar Cell Single-junction GaAs 
Multi-junction GaAs (Ge/GaAs/InGaP) 
Concentrating photovoltaics, CPV) 

Other emerging PV Nano-crystalline and nano-structured solar cells 
New concepts (MEG, multi-exciton-generation) 
DSSC (dye-sensitized solar cell) 
Organic/polymer solar cells 

 

1.4.6.2 Cost-efficiency map and generations of solar cells 

Cost is among the top barriers militating against full implementation of solar energy especially 

in low-income countries. Research is now tilting towards low cost yet efficient solar cells. 

Figure 1.7 shows the efficiency and cost mapping of different generations of solar cells.  
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Figure 1.7. Cost-Efficiency map for different generations of solar cell  

 

In Figure 1.7 numerals I, II and III denote Generation I, Generation II, and Generation III solar 

cells. The term “generations of solar cell” was coined by Green [66]. Table 1.5 summarizes the 

three generations of solar cells. 

Table 1.5. Generations of solar cells 

Generation Features 

First (1st) generation Crystalline silicon: medium efficiency but moderately high cost 

Second (2nd) generation Thin-film: less material, cheaper substrate, less expensive manufacturing equipment; overall low 
cost but low efficiency. 

Third (3rd) generation Still a vibrant research effort up to now: advanced concepts and material, new physics mechanism 
and breakthrough. Overall high efficiency with no compromise on low cost. Still an active research 
area. 

 

1.4.6.2.1 The first generation 

This generation dominates the solar panel market. They are larger and silicon-based solar cells. 

They account for 86 % of the solar market due to their high efficiency but with high 

manufacturing cost. Figure 1.8 shows the first generation solar cell.  

 
Figure 1.8. (a) silicon solar cell module. (b) schematic of a solar cell structure (c) Passivated emitter rear locally diffused (PERL) 

solar cell  
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1.4.6.2.2 The second generation 

This generation consists of thin-film solar cells. Their manufacturing cost is cheaper compared 

with the first generation cells but with lower efficiencies. Lower cost manufacturing methods 

are employed and less material and less expensive substrates are used. Second generation solar 

cells are flexible and easy to integrate into roofing material but their lower efficiencies are a 

major setback. Table 1.6 is a list of typical thin film solar cells and their production and best 

efficiencies: 

Table 1.6. List of typical thin film solar cells 

Solar cell Achievement 

CIGS (CuInGaSe2) World record: 19.5 % 
Production: 9%-11% 

Amorphous Si World record: 13.2 % 
not completely stable 
Production: 6-8% 

CdTe World record: 16.5 % 
Production:8%-10% 

 

1.4.6.2.3 The third generation 

This is cutting edge technology in solar cells. Although still at the research phase, research has 

moved beyond silicon-based solar cells. This generation includes multi-exciton generation 

(MEG), nano-crystalline cells and polymer solar cells. 

1.4.7 Photovoltaic (PV) technology 

These are devices that convert the rays from the sun into electricity. The sun’s intensity and 

the material of the PV devices determines the output. PV devises are equipped to produce 

output during all seasons, winter and cloudy weather inclusive, although at a reduced rate. 

PV technology has three dimensions of natural cycle. There is seasonal deviation in electricity 

output with a maximum recorded in summer, except those PV operating in the equator region 

where they have constant output all year. Secondly, PV output varies daily, with the peak 

recorded during mid-day. Lastly, weather fluctuation affects the performance of the PV 

equipment, with clouds and rainfall reducing the hourly output of such equipment [67]. 

Solar cells are the building blocks of a PV system. Solar cell aggregation gives rise to a PV 

module and connection of multiple module gives rise to a PV panel. Solar cells produce about 
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0.5 volts to 0.6 volts of open circuit voltage and 1 amp to 8 amps DC current depending on the 

range of factors but mainly related to the semiconductor used [68]. About 36 to 72 solar cells 

are stacked together in series to produce meaningful output, forming a module.  

The modular nature of PV panels account for the flexibility of PV systems. There is global 

inequality in pricing of PV systems with developed countries experiencing a decrease in price 

while the price is still unaffordable in low income countries. However, the price depends on 

system size, technical specifications, grid connection, and location, among other variables. The 

average price of a module is around $US4.5 /W [69]. 

A PV system produces direct current electricity when sunlight strikes a specialized 

semiconductor diode. Some PV cells can generate electricity from infrared or ultraviolet 

radiation. About 87 % of commercially available PV solar panels use silicon as their base 

material. However, other materials are gradually being researched and used. They are the 

traditional solar cells (monocrystalline and polycrystalline silicon solar cells), thin film solar 

cells and multiple junction solar cells [70].  

1. Monocrystalline silicon cells. These are composed of silicon wafers obtained from one 

homogenous crystal with the atoms arranged in the same direction. They have an efficiency 

of 12 % to 15 %. 

2. Polycrystalline silicon cells, also called multicrystals. These are made by cooling a crystal 

seed cast in molten silicon. They are cheaper than monocrystalline solar cells and have 

better efficiency than thin film solar cells. They use more roof space than monocrystalline 

but less space than thin film solar cells. They have efficiency of about 11 % to 14 %, 

although a record of 25 % has been achieved for traditional crystalline silicon solar cells 

[71]. 

3. Thin film solar cells. These are made by depositing a thin layer of PV materials on a 

substrate. It is much less efficient than traditional solar cells and uses more roof space. 

However, it performs better in low light conditions even in partial shading of the system 

or in extreme heat. Their efficiency is around 5 % to12 %. 

4. Multiple junction solar cells. This type of solar cell combines two or more layers of 

different semiconductor materials to improve the efficiency of the module. Each of the 

materials produce electric outputs in response to wavelengths of sunlight. This helps to 

absorb broader wavelengths thereby producing better efficiency. However, this high 
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efficiency comes at a high cost and complexity. This disadvantage has reduced their role 

in industries such as aerospace and terrestrial applications. They have achieved a record of 

about 43 % under a concentrated light source and 30 % under single illumination [26, 72].  

1.4.8 Thin film technology 

Thin film technology uses thin film semiconducting materials with active layers a few microns 

thick. This reduces the high cost associated with silicon wafer based solar cells. These layers 

are capable of absorbing significant amounts of solar radiation owing to their strong absorption 

properties. Different layers can be deposited on different substrates. The layers include 

absorber, contact, anti-reflection, buffer. The substrates can either be flexible or rigid, metal or 

non-metal. Thin films have the advantage of being tailored and engineered to improve on their 

performance. They also have the capability of being developed into a tandem-structure called 

an integrated-tandem-solar-cell (ITSC) system. 

1.4.9 Nanostructured materials 

There is currently great interest in the study of nanostructured materials which are materials 

with dimensions in the nanoscale. They have a vast range of applications in various fields of 

human endeavour [73, 74].  

The interest in nanostructured materials is due to their unique chemical and physical properties. 

They are capable of enhancing regular crystalline structures into becoming nanocrystalline 

structures. This helps to increase the amount of solar radiation absorbed by thin films or multi-

layered solar cells, which helps to increase the photon capture in solar cells by increasing the 

surface area of the cell [75]. Nanostructured materials are capable of reducing the 

manufacturing cost of solar cells and improving their efficiency [76]. Figure 1.9 shows a sketch 

of nanostructured solar cells [77]. 

 
Figure 1.9. schematic of nanostructured solar cell 
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1.4.9.1 Merits of nanostructured solar cells 

Thin film solar cells laced with nanoparticles have three vital merits, namely: 

i. They have multiple reflections. The actual film thickness is smaller than the effective 

optical path for absorption because of multiple reflections.  

ii. Recombination losses are minimized. The sunlight generated electrons and holes travel 

over a much shorter distance thus enabling the absorber layer thickness in 

nanostructured PV to be as thin as 150 nm when compared with traditional thin film 

solar cells which are several micrometers thick.  

iii. Lastly, the various layer band gaps can be adjusted to required value by optimizing the 

nanoparticles. This provides more flexibility in both absorber and window layers of the 

solar cells [78] 

 
Figure 1.10. Multijunction solar cell’s position in the classic cost-efficiency map 

 

The current III-V multijunction solar cell is far out on the right of the x-axis on the cost-

efficiency map shown in Figure 10 which means that it only has to be cost competitive with 

high solar concentration as shown in Figure 1.10. Table 1.7 sheds more light on this 

comparison. 

Table 1.7. Comparison of conventional III-V multijunction solar cell and nanostructured III-V multijunction solar cell 

Conventional III-V multijunction solar cell Proposed nano-structured III-V multijunction solar cell 

Manufacture cost: Reduced 

Expensive single-crystal Ge or III-V substrate Si or flexible low-cost substrates with nano-structured templates 

Expensive thick layers (absorber and buffer) of III-V compound 
material 

Nanostructure to thin absorption layers; reduce thickness of buffer 
layer 

Expensive multi-layer anti-reflection Coating Light trapping to eliminate the need of anti-reflection coating 

System and installation cost: Reduced 
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Heavy, bulk, need concentrators and 2 axis sun-tracking systems Light-weighted, potentially flexible, wide acceptance angle, no 
sun-tracking 

High-efficiency: Retained 

Multiple junctions for broad spectrum absorption, but the number 
of junctions limited by lattice mismatch problems 

New conditions for lattice mismatched material growth; III-V 
nano materials, favorable for multijunction configuration 

 

Nanomaterials are classified into three main categories based on dimensionality. They are 0-

dimensional, one dimensional, two and three dimensional. Nanomaterials with nanoparticles 

isolated from each other are known as 0-dimensional structures. They include individual 

molecules and quantum dots [79]. Thin nano film are a good example of one and two 

dimensional structures and are studied in nano device fabrication [80-82]. Powder, fibrous, 

multilayer and polycrystalline materials are examples of three-dimensional nanomaterials. The 

0D, 1D and 2D structural elements are in close contact with each other and form interfaces.  

1.4.10 Metal oxide 

These materials are unique functional materials with varied structural, optical, magnetic and 

electronic properties. They exhibit insulating, semiconducting, and metallic behaviour at room 

temperature, depending on the material band gap. They are used in several applications as 

sensors, piezoelectric, fuel cells, solar cells and magnetic memory. The properties of metal 

oxides are affected by their particle sizes. They tend to have unique properties in the ‘nano’ 

domain (10-9 m). This is because the surface to bulk ratio of atoms increases as the particle size 

decreases from bulk form to tens of nanometers. This gives rise to chemically active sites and 

modified density. The properties of metal oxides are of interest to physics, chemistry and 

material science [8, 83]  

1.4.10.1 Metal oxide nanomaterial 

These materials can be synthesised either through physical or chemical methods [84]. They can 

be prepared using top-down or bottom-up techniques [85, 86]. These approaches use liquid-

solid or gas-solid transformation [87, 88]. Metal oxide nanostructures are unique among 

semiconducting nanostructures. They are the most common, most diverse and richest class 

owing to their functionalities and properties. They display a wide range of fascinating 

properties [89]. Metal oxides are a highly sought after candidate for a variety of technological 

applications due to their special and tuneable properties. They are used in a wide range of 

applications including solar cells, superconductivity, gas sensors and so on [90-92]. Zinc oxide 

(ZnO), copper oxide (CuO), and nickel oxide (NiO) are some of the commonly synthesized 
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nanostructured metal oxides [93-95]. They can be prepared by various techniques, including 

thermal evaporation [96], chemical vapour deposition [97], and chemical synthesis[98], among 

others. 

1.4.10.2 Synthesis techniques of metal oxide nanomaterial 

The study of nanostructured materials comprises synthesis of the material, characterization of 

the properties and subsequent application in various fields of technology. There are various 

methods employed in synthesising of nanomaterials. These include the gas phase and the liquid 

phase. The gas phase is used for low-cost production of large quantities of nanopowders [99]. 

The liquid phase gives better flexibility in the control of the structural variation, composition 

and morphology of the end product material.   

Over the years, nanostructured metal oxides have attracted interest owing to their novel 

properties and tune ability in various applications especially optoelectronic applications. 

Various techniques have been reported for synthesis of nanostructured metal oxides. These 

include evaporation [100-102], metal organic chemical vapour deposition [103, 104], and 

hydrothermal [105, 106], among others. These techniques are grouped into physical and 

chemical processes using the nature of deposition [107] as shown in Figure 1.11. Chemical 

methods comprise the gas-phase and the solution deposition method. This is further sub-

grouped. The gas-phase methods are chemical vapour deposition (CVD) [108], atomic layer 

epitaxy [109], and atomic layer deposition (ALD) [110]. Solution deposition methods are: 

spray pyrolysis [111], sol-gel [112], spin [113] and dip-coating [114]. Physical deposition 

methods include: pulsed laser deposition [115], physical vapour deposition (PVD) [116], 

molecular beam epitaxy [117], and magnetron sputtering [118]. Other techniques include: 

chemical bath deposition [119], advanced reactive gas deposition [120], electron beam 

evaporation [121], vacuum evaporation [122], and anodic oxidation [123]. 
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Figure 1.11. Classifications of Thin films deposition methods 

 

1.5 Aim of the study 

To fabricate and characterize a nanostructured metal oxide thin film based solar cell system for 

Photovoltaic and optoelectronic devices.  

1.6 Objectives of the study 

The objectives of the research are summarized below: 

[1] Deposit nanostructured metal oxide film such as TiO2, NiO, on both conducting indium 

tin oxide (ITO) and soda lime substrates suitable for solar cell fabrication using the 

spray pyrolysis technique; 

[2] Characterize the deposited film using X-ray diffractometer, ultraviolet visible near 

spectroscopy, elemental and the scanning electron microscopy for possible areas of 

application in fabricating solar cells; 

[3] Fabricate a metal oxide/metal contact thin film solar cell by depositing each of the 

layers on commercially available transparent conducting substrates;  

[4] Characterize the solar cell fabricated using the I-V characterization technique both in 

dark and under illumination (100 mW/cm2). Determine the solar cell parameters such 
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as short circuit current (Isc), open circuit voltage (Voc), series resistance (Is), saturation 

current (Io), fill factor (FF), maximum power output (Pm) and conversion efficiency (η) 

from the I-V measurement; and 

[5] Computational modeling of the metal oxide solar cell device using the solar cell 

analysis program SCAPxD. 

1.7 Significance of the study 

Metal oxide based solar cells have hardly been studied compared to other technologies despite 

the fact that PV effects exist in this type of semiconductor [124]. Metal oxides’ merits of being 

abundant, chemically stable, and easily processed make them an ideal material for affordable 

PV modules [125]. Studies have been conducted on the properties of NiO for thin film usage 

but none have used it for solar cell fabrication despite such studies pointing out its potential for 

solar cell usage.  

1.8 Scope of the study 

The scope of this work is the fabrication of nanostructured metal oxide heterojunctions for 

solar cell fabrication in developing and low income countries.  

1.9 Main contributions to the field 

The main contribution to the field arising from this thesis are here presented. 

i. A complete review of NiO thin films deposited using spray pyrolysis.  

ii. A new set of concentrations were optimized for NiO thin films. 

iii. A new aged optimization (192 hours) was used.  

iv. A new set of values were recorded for the optical band gap of NiO thin films. An optical 

band gap of 3.94 eV to 3.38 eV was recorded for the concentration while 3.60 eV to 

3.70 eV was recorded for freshly prepared and aged (192 hours) respectively. 

v. A cell efficiency of 2.3 % was achieved for NiO thin film heterojunction solar cells.  

vi. This work was able to fabricate a NiO/TiO2 P-N heterojunction solar cell for the first 

time. 
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vii. Successful modeling of NiO/TiO2 heterojunction solar cells. This opened a new 

opportunity for massive research and fine tuning of the properties of the solar cells and 

other metal oxide solar cells.  

viii. This boosts the quest to develop affordable and sustainable energy by encouraging more 

research in solar cells technologies in low-income countries. 

1.10 Thesis layout  

Chapter 1 is the introductory part of this study and provides the rationale, problem statement, 

and background of the study. It also presents the aim, overall objectives, significance, scope, 

and highlights of the study contribution. This thesis is a product of research publications and 

conference papers as required by the University of KwaZulu-Natal for awarding of a doctoral 

degree. The thesis produced a total of Seventeen (16) publications and/or conference papers.  

Chapter 2 provides a comprehensive review of the need for solar energy in developing and low 

income countries especially Africa. Chapter 3 is a comprehensive review of nanostructured 

NiO thin films deposition using the spray pyrolysis method.  

Chapter 4 gives the deposition and optimization of the nanostructured NiO thin films. This is 

divided into four parts. Part 1 discussed the optimization of the NiO under different 

concentration. Part 2 discussed the optimization of the NiO under different annealing condition. 

Part 3 looked at the effect of ageing on nanostructured NiO thin films for solar cells fabrication. 

Lastly, part 4 studied the combined effect of temperature and ageing on nanostructured NiO 

thin films for solar cell fabrication. 

Chapter 5 looked at the final device fabrication of the solar cells.  

Chapter 6 focused on the modeling and theoretical validation of the fabricated device of the 

study. It also contains the application of solar cells in global warming reduction 

Chapter 7 presents the conclusions and recommendations for future work.  
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CHAPTER 2: REVIEW OF SOLAR ENERGY 

INCLUSION IN AFRICA: CASE STUDY OF 

NIGERIA 

 

This chapter looks at the need for solar energy inclusion in developing and low income 

countries, using Nigeria as a case study.  
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Abstract 

This work reviews solar energy inclusion in Africa using Nigeria as a case study. It reviewed studies made on 
viability, challenges and solutions associated with making solar energy a viable energy option in Nigeria. The 
study highlighted data on current industry capacity of solar energy, installed PV capacity, and solar energy 
application distribution. It sheds light on solar energy initiatives and projects in Nigeria and solar energy capacity 
development in Nigeria. Success stories of solar energy and solar cell fabrication in Nigeria are presented. Existing 
government policies and legislation are discussed. The authors consider the challenges faced and the current and 
future prospects of solar power in Nigeria, and make recommendations regarding the speedy and seamless 
inclusion of solar energy in Nigeria and Africa as a whole.  

KEYWORDS: solar, domestication, Nigeria, energy, Africa  

1. Introduction 

Sub-Sahara Africa is home to about 85 % of the 1.3 billion people in developing countries without access to 
electricity [1], with an estimated electrification rate of 64 % in urban and 13 % in rural areas [2]. Sub-Sahara 
Africa has many of the world’s least electrified nations [3, 4]. A total of 70 % of such those without access to 
electricity reside in countries like Nigeria where the rural populace is mostly affected [5]. Nigeria is ranked 
seventh in world population and cannot provide electricity access to her populace both in the urban and rural areas 
[6, 7]. Nigeria’s rural population is estimated to be about 42 % of the total population [8]. Over 60 % of the 
Nigerian population does not have power supply, with 40 % not on the nation’s grid [9, 10]. The Nigerian grid 
supply of electricity is on average six hours per day rationed among inhabitants of the cities [11]. Almost all rural 
dwellers in Nigeria have little or no access to electricity. The majority of the electricity supply in Nigeria is 
generated by Kainji dam which produces about 3.2 x 108 W and 9.6 x 108 W at its peak [12, 13]. This is due to 
underperforming hydro dams in the country. Another factor is the high cost of distribution across the country 
which covers an area of 924 000 km2 [14]. There is no uniformity in distribution of grid connection and electricity 
in Nigeria. About 61.2 % of households in Lagos in South-West are without access to electricity. The figure is 
different in Taraba in North-East where 81.3 % lack access to electricity [15]. Similarly, South-South have 61.2 
% and South-East has 60 %. About 38.1 % of the rural population, 12.1% of the rural poor and 29.8% of the urban 
poor in Nigeria have access to electricity [16].  

Erratic power supply has caused many of the inhabitants and companies in Nigeria to generate their own power. 
Nigeria has about 32 outages in a month with over 35 hours outage of electricity supply [17]. Figure 2.1 shows 
the electrical outages per month and average duration in Africa [18]. Erratic supply is due to high energy losses 
caused by physical deterioration of the facilities for transmission and distribution, and theft of power equipment. 
Other causes are vandalism, the high cost of electricity production, insufficient metering system and ease of by-
passing of the metering system by the consumers, poor billing system and low available capacity (only 40 % of 
the installed capacity of 6 000 MW) [19].  
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Figure 2.1. Electrical outages per month and average duration in Africa [18] 

 

Individuals have resorted to using generators powered by petroleum fuel or diesel. This accounts for the increase 
in the price of petroleum products price by 70 % in 2012 [20]. The cost of generators has risen on a regular basis 
from 5.8 % in 2007 to 7.6 % in 2009 [21]. Generators also increase environmental pollution [22].  

Electricity access has direct links to clean drinking water, good health and agricultural activities for rural dwellers 
[23, 24]. The lack of electricity has created, and is still responsible for, high levels of underdevelopment and 
poverty in the rural areas [25, 26]. Several studies attest to the fact that stable and affordable electricity contributes 
to higher levels of economic development [27-33].  

Renewable energy is a tool that can end global electricity problems because supply exceeds world electricity 
demand [34]. It is an energy source that can be renewed indefinitely. Renewable energy sources include solar, 
ocean tides, geothermal, wind, hydro, and biomass [35-37]. They are used as electricity, thermal energy, fuels, 
mechanical force and hydrogen. These energy sources are obtained from non-fossil and non-nuclear sources [38]. 
They are sustainable and not harmful to the environment. Table 1 shows the vast potential of solar energy inclusion 
in Nigeria, shedding light on Nigeria’s solar energy resources. From the data in Table 2.1 one can see that Nigeria 
only needs 0.1 % of the total solar radiation converted at 1 % efficiency to be able to meet her energy demand 
[39]. On average, Nigeria gets solar radiation of 20 MJ/m2/day with minimal variation all year.  

Table 2.1. Nigeria’s solar energy resources [39] 

Resource type Reserves Production Domestic 
utilization 

Natural units Energy  units Energy units (BTOE)   

Solar Radiation 3.5 KWh/m2/day to 7.0 
KWh/m2/day  
(4.2 million MWh/day 
using 0.1% Nigeria land 
area) 

5.2 (40 years and 0.1% Nigeria 
land area) 

Approximately 6 
MWh/day solar 
Photovoltaic 

Approximately 6 
MWh/day solar 
Photovoltaic 
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Power generation involves the conversion of energy from an available source (sun in this case) to electrical energy 
in a form that is suitable for distribution, consumption and storage [40]. Solar PV is capable of powering off-grid 
single homes, and mini-grids incorporating from several kW to many MW [18]. Power generation using solar 
energy can be done in two ways, namely, solar-thermal conversion [41] and solar electric (photovoltaic) 
conversion [42]. Solar energy is one of the renewable energy endowments of Nigeria [43]. It can be used for 
powering remote villages disconnected from the nation’s grid and its power can also be fed into the national grid 
[44]. Solar energy is used in rural clinics, powering of schools, vaccine refrigeration, street lighting, traffic lights, 
kiosks, among others. Solar technology is gradually being implemented in Nigeria. It is already implemented for 
solar crop drying, solar incubators, solar chick brooding, solar evaporative cooling and so on.   

Renewable energy is capable of solving Nigeria’s energy challenges [45, 46]. Several studies have looked at the 
viability and challenges of implementing solar energy in Nigeria. These are reviewed below.  

Chilakpu [47] examined renewable energy sources benefits, potentials and challenges in Nigeria. The study stated 
that renewable energy improves the security of a country, and reduces greenhouse gases. The study aligned with 
Körbitz [48] in stating that renewable energy reduces greenhouse gases by at least 3.2 kg carbon dioxide 
equivalents per one kilogram of biodiesel. The study observed that the challenges working against the full-scale 
implementation of solar energy in Nigeria include available technology, the political climate, and the weather 
conditions of the country. Körbitz study dwells most on hydropower and fails to shed light on other renewable 
energy sources, especially solar energy.  

Olaoye et al. [49] studied the energy crisis in Nigeria and suggested a renewable energy mix as a solution. 
Attention was given to the installed capacity and licensing of on-grid power generation companies. The study 
provided two tables which summarized the renewable energy potential of Nigeria. The data provided is limited to 
the capacity of solar PV panels in Nigeria.  

Ajayi and Ajanaku [50] examined the energy challenge and power development in Nigeria and proposed a way 
forward. The study suggested that 80 % of hydropower in the country is untapped, and 5.5 KW-hr/m2/day of solar 
radiation is not being utilized as well as unexploited wind energy resources and the gases being flared. The study 
believes that utilizing these resources will put an end to the energy challenge of Nigeria.  

Akinboro et al. [51] studied solar energy installations in Nigeria in terms of their prospects, problems and 
solutions. The study set out to study the use of solar energy as an alternative energy source in Nigeria. Emphasis 
was on stand-alone and hybrid installations and the problems encountered during domestic and industrial solar 
installation. In the end, the study was only able to enumerate the challenges confronting the implementation of 
solar energy, its prospects and possible solutions. However, the study shed light on waste generated from gas 
turbines, diesel plants, solar plants, biogas plants, nuclear and small hydropower plants. There was no mention of 
solar installations as stated in the beginning of the study.  

Ezugwu [52] discussed renewable energy in Nigeria with a focus on their sources, problems and prospects. The 
study was able to theoretically discuss the key renewable energy sources but lacked relevant data regarding 
Nigeria.  

Emodi and Yusuf [53] discussed the need for standardization of renewable energy technologies in Nigeria. They 
opined that renewable energy technologies are imported into Nigeria and there are no existing local standards. 
The study recommended standardization as a solution to check the influx of renewable energy technologies into 
Nigeria.  

Ikem et al. [54] studied integration of renewable energy sources into the Nigerian national grid as being a way out 
of the power crisis. It suggested a way forward for Nigeria’s government to improve the current power supply of 
the country by investing in renewable energy. The study encouraged the government to review the power sector.  

Ozoegwu et al. [43] studied the status of solar energy integration and policy in Nigeria. It did a good job in 
reviewing the past, the current and future status of solar integration in Nigeria. It was able to combine several data 
related to solar energy in Nigeria. This provided a firm basis for the case of giving solar energy a high priority in 
mitigating the energy problem of Nigeria. Figure 2.2 shows the relationship between electricity usage and Gross 
Domestic Product (GDP) while Table 2.2 grouped the different categories of solar PV applications under different 
headings. 
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Table 2.2. Categories of Solar PV applications (adapted from [18])  

Item  Stand-alone   Grids   

DC  AC  AC/DC  AC  

System  Solar lighting DC Solar kits or 
system lanterns  

AC solar 
system: single-
facility AC 
systems  

Nano-grid Micro-grid Pico- 
Mini-grid grid  

National/regional 
grid  

 
Application  

Off-grid   Off-grid or on-grid  On-grid  

Lighting  Lighting and 
appliances  

Lighting and 
appliances  

Lighting and 
appliances,  
emergency 
power  

All uses 
(including 
industrial)  

All uses (including 
industrial)  

Key component  Generation, 
storage, lighting, 
phone charger  

Generation, 
storage, DC 
special 
appliances  

Generation, 
storage, lighting, 
AC appliances, 
building wiring  

Generation 
plus single 
phase 
distribution  

Generation plus 
three phase 
distribution  

Generation plus 
three-phase 
distribution plus 
transmission  

Typical size  0.10 W  11 W to   5 kW  100 W to  
< 5 kW  

5 kW to 1 MW  Residential (100 W 
to < 5 kW)  
Mini grid (5 kW to 
< 1 MW) and 
Utility scale (> 1 
MW)  

  

 

 
Figure 2.2. Relationship between electricity usage and Gross Domestic Product 2012 [18] 
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Figure 2.3. Small solar system (<1 kW) cost breakdown by cost component, 2012-2015 [18] 

 

Figure 2.3 presents the cost breakdown for sub-1 kW where the data are available. Battery costs account for the 
largest single share of these Small Household Solar Supply (SHS), with a simple average of 29 % of the total 
costs (USD 2.7 /W). The PV modules themselves, as well as the lighting fixtures and wiring, average around 20 
% (USD 2.2 /W) of the total installed costs together, soft costs 22% (USD 2 /W), other hardware 21% (USD 2 
/W) and the charge controller 7% (USD 0.7 /W).  

Several researchers have proposed various ways in which the technology of solar can be used in Nigeria. This 
includes but is not limited to the following:  

Cota et al. [55] proposed the use of solar energy for street lighting and water pumping in the rural community of 
Igbelaba and Jigawa state.  

Kumar et al. [56] presented suggestion for replacing the usage of fossil fuel energy with solar energy for street 
lighting of Fugar city in Edo state of Nigeria.  

Ike Chinelo et al. [57] suggested the use of solar to power security lights in school hostels in Nigeria.   

1.1 Data on solar energy capacity in Nigeria  

The industry capacity of solar energy was a total of 33 active companies by 1999. There are no vendors or 
contractors for the supply and installation of solar equipment. Nigeria cannot boast of a company that 
manufactures the major components of solar systems, not even the basic solar cells [58]. However, NASENI 
assembles PV panels in Karachi, close to Abuja. Nevertheless, the country can boast about 200 installed solar PV 
installations with a capacity of about 3.5 kW to 7.2 kW [59]. This is insignificant when compared with the 
population of Nigeria and installed capacity in other Africa countries like South Africa. Figure 2.4 provides a 
vivid picture of installed solar PV capacity in watts per capita in Africa in 2015. 

A survey was conducted in the northern part of Nigeria to show the application distribution [58]. It shows that 
domestic water pumping accounts for 57%, domestic lighting and rural for 8%, experimental room air 
conditioning for 1%, rural clinic refrigeration of clinic items like vaccines and lighting of the clinic and 
surrounding for 24%, and communications (TV and radio) for 10% (see Table 2.3). 

In terms of installed PV in regions of Nigeria, Lagos has the highest with 23.6% closely followed by Yobe state 
with 16.3%. Kano and Akwa Ibom have 8.6%. 
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Figure 2.4. Map of installed solar PV capacity in watts per capita, 2015  

 

Table 2.3. Installed capacity of PV technology in Nigeria [59]  

S/N  APPLICATIONS  PV CAPACITY (%) 

1.  Residential (mostly lighting)  6.9 

2.  Rural electrification and Television 3.9 

3.  Commercial lighting and equipment  3.1 

4.  Street, Billboard and other lighting  1.2 

5.  All lighting  15.1 

6.  Industrial  0.4 

7.  Health centre/clinic  8.7 

8.  Telecom and radio  23.6 

9.  Water pumping  52.2 

  10.  Total  100 

  

The funding of such installations is principally by the federal government, state, local government, and 
international donors like the European union, Mobil and in some states like Lagos by private individuals. There 
are about one or two PV installations working or moribund in the 26 states out of the 36 states in Nigeria including 
the capital Abuja [59].  

2. Solar project initiatives in Nigeria 

Some striking projects on solar energy have been executed in Nigeria. The Jigawa state government embarked on 
a project of rural electrification of the state [60]. This was funded 60 % by the United States government through 
USAID and department of Energy (DOE) and 40 % by the Jigawa state government. This project demonstrated 
inclusive solar usage for electricity generation in rural communities. The project targeted water supply, education, 
health, agriculture, security, opportunities for trade and commerce [61]. Several PV water pumping, 
electrification, and solar thermal installations have been executed by Sokoto Energy Research Center (SERC) and 
the National Center for Energy Research and Development (NCERD) under the supervision of the Energy 
Commission of Nigeria (ECN) [62]. Some of the solar energy related pilot and demonstration projects of the ECN 
are shown in Table 2.4  
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Table 2.4. Solar Energy pilot and demonstration projects of the ECN [14]  

S/N  TECHNOLOGY  APPLICATIONS  CAPACITY  
RANGE  

NO  

1.  Solar-PV Village electrification 
Village TV 

Health centre power 
Water pumping 

Telecommunications 

0.88 kWp to 7.2 
kWp 

11 

2.  Solar dryer Rice and forage drying 1.5 tonnes to 2 
tonnes 

4 

 

Breakdown of the pilot projects by ECN include the 7.2 kWp solar-PV village electrification in Kwalkwalawa in 
Sokoto state, 1.87 kWp village electrification and TV viewing centre in Iheakpu, 1.5 kWp water pumping scheme 
in Nangere, Sokoto state. Solar dryer projects in Nigeria include: 2-tonnes solar rice dryer in Adani, Enugu state 
and 1.5 tonnes solar forage dryer in Yauri, Kebbi state.  

The World Solar Programme designed for promotion of solar energy penetration worldwide has also provided 
about five high priority projects in Nigeria. They are:  

i. The solar village.  
ii. The upgrading of facilities and personnel of renewable energy R & D establishments, and development 

of renewable energy curricula.  
iii. Training workshops and colleges in renewable energy technologies (solar-PV and solar-thermal) 
iv. Rural health delivery and potable water supply using solar-PV  
v. International Solar Energy Institute. The projects are threatened by inadequate funding. As a result, only 

projects (i) and (iv) have made significant progress.  

2.1 Solar energy capacity development in Nigeria 

The federal government of Nigeria has mandated the ECN with the responsibility to carry out research and 
development of the nation’s energy needs. ECN has two centers dedicated to renewable energy spread evenly in 
the north and south of the country, namely, the National Centre for Energy Research and Development (NCERD) 
at Nsukka, in the south of Nigeria, and the Sokoto Energy Research centre (SERC) in Sokoto state, in the north 
of Nigeria. Apart from the research and development mandate of the centres, they are also responsible for 
personnel development, dissemination and promotion of renewable and alternative energy technologies. The other 
government agencies that have renewable energy components in their mandates are: Federal Department of 
Meteorological Services (FDMS), Power Holding Corporation of Nigeria (PHCN). Others are Project 
Development Institute (PRODA) Enugu, Nigerian Building and Road Research Institute (NBRRI), Federal and 
state owned Universities and Polytechnics, and the Federal Institute of Industrial Research, Oshodi (FIIRO), 
National Centre for Energy Research and Development (NCERD), Nsukka, Centre for Energy Research and 
Training (CERT), located in Ahmadu Bello University, Zaria, Centre for Energy Research and Development 
(CERD), located in Obafemi Awolowo University, Ile-Ife.  

Some successes have been achieved in solar energy technology development in the country. These include, but 
are not limited to, solar crop dryers of various capacities. Worthy of note is the 2-tonne capacity rice dryer 
developed at the NCERD and a 2-tonne capacity forage dryer constructed by the SERC. Also, a solar manure 
dryer for poultry waste developed by NCERD, Nsukka. The dryer was able to reduce moisture content of manure 
from 71 % to 35 % in 22 hours of peak solar intensity of 600 W/m2. Flat and concentrated solar cookers have been 
constructed and tested at NCERD and SERC. The flat plate cooker attained a record cooking time of 4.5 minutes 
at solar intensities of 850 W/m2. Solar water heaters comprizing horizontal and vertical tanks with natural 
circulation have also been constructed and are available at Usman Danfodiyo University, Sokoto, and solar chick 
brooders at NCERD, Nsukka.  

Licenses for solar energy projects in the country have been awarded by the Nigerian Electricity Regulatory 
Commission as shown in Figure 2.5. As at 2014, seven companies have been awarded licenses in different states 
of Nigeria. Bauchi has the highest capacity with 100 MW awarded to Nigeria Solar Capital Partners. 
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Figure 2.5. Nigerian Electricity Regulatory Commission licensed solar power projects in Nigeria  

 

Kaduna have two licenses awarded to Quaint Global Nigeria Ltd and Anjeed Kafanchan Solar Ltd with a capacity 
of 50 MW and 10 MW respectively. Others are Lloyd and Baxter LP in Abuja, KVK Power Pvt Limited in Sokoto 
state, Pan African Solar in Katsina and Rock Solar Investment Company in Osun state. Due to fluctuation in 
generation capacity caused by water shortages in the dry season, Shiroro Hydroelectric Power Station in Niger 
State of Nigeria plans to construct a 300 MW PV solar power plant. 

Some memorandums of understanding have been signed for solar projects in Nigeria. New Horizon Energy 
Resources proposed the building of a 100 MW solar plant in Nasarawa (Aniweta, 2015). Delta state government 
signed an MoU with Yutal Li Ltd for a 100 MW solar power plant in 2016 in addition to a 300 MW power plant 
signed for in 2014 with SkyPower FAS Energy (Thisday, 2016). The federal government of Nigeria also signed 
a 300 MW solar power with Super Solar. 

2.1.1 Solar cell fabrication and research in Nigeria  

Limited work has been done on materials for solar cell fabrication and thin film growth in Nigeria at Obafemi 
Awolowo University (OAU, Ile Ife) and NCERD, Nsukka respectively and in some laboratories in the country. 
Soboyejo and Kana have led some research studies at Africa University of Science and Technology (AUST, 
Abuja) and Sheda Science and Technology Complex (SHESTCO, Sheda), on organic solar cell materials 
fabrication. Fabian Ezema has worked extensively on Chemical Bath Deposition (CBD) for solar cell deposition 
at the University of Nigeria, Nsukka. The National Agency for Science and Engineering Infrastructure (NASENI) 
is also worthy of mention in terms of solar cells research and development and solar panels. NASENI, in Nigeria 
is leading the effort to make solar panels available at a reduced cost. It has a dedicated solar panel assembly plant 
in Karachi, Nigeria. Most of the solar PV studies conducted in Nigeria are on solar PV components and system 
testing, pilot plants and other application projects. The KwalkwalaWa 7.2 kW village electrification in Sokoto 
state is the largest single pilot plant established by the Energy Commission. It is used for pumping water, powering 
health centres and rural lighting and entertainment. Other developments include solar air heaters, solar stills for 
water purification, solar absorption and absorption refrigerators.  

2.1.2 Solar data collection in Nigeria  

Efforts are being intensified in solar energy data collection in Nigeria. Data such as solar radiation intensities 
(such as global, direct and diffuse), relative humidity, precipitation and ambient temperatures have been collected 
for over 64 towns by the Meteorological Services Department. About 33 % of these stations have been in existence 
for over 50 years. About twelve research institutes and centres located in and outside universities in the country 
are also involved in solar data collection and analysis. The Energy Commission is currently developing an Energy 
Data Bank for renewable energy data.  

3. Existing government policies and legislation 

A National Energy Policy was developed in 2003 by the Nigerian government, primarily for efficient management 
of the country’s energy resources. It focuses on conventional and renewable energy sources for sustainable 
development of the country with full private sector participation.  
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The policy is summarized as:  
 Extensive crude oil and natural gas exploration and development shall be pursued with the view to 

increasing their reserves base to the highest level possible.  
 The nation shall continue to engage extensively in the development of electric power with the view to 

making reliable electricity available to 75 % of the population by 2020; as well as to broaden the energy 
options for generating electricity.  

The Nigerian Electricity Regulatory Commission and the Rural Electrification Agency were established in 2005 
with in order to liberate the electricity sector.  

The Nigeria Renewable Energy Master Plan (REMP) is a policy aimed at making electricity more available 
through renewable energy. It envisions renewable energy providing a minimum of 10 % of total energy 
consumption in Nigeria by 2025 [63]. It was produced in 2006 with United Nations Development Programme 
support, and outlined the road map for more renewable energy usage in Nigeria’s quest to meet her energy 
demands and improve grid reliability and security [64]. The policy hopes to meet this goal by providing an 
enabling platform for renewable energy, legal instruments, technical-know-how, manpower, infrastructure and 
the markets.  

The objectives are:  
• Expanding access to energy services and raising the standard of living, especially in the rural areas;  
• Stimulating economic growth, employment and empowerment;  
• Increasing the scope and quality of rural services, including schools, health services, water supply, 

information, entertainment and stemming the migration to urban areas;  
• Reducing environmental degradation and health risks, particularly to vulnerable groups such as women 

and children;  
• Improving learning, capacity-building, research and development on various renewable energy 

technologies in the country; and  
• Providing a road map for achieving a substantial share of the national energy supply mix through 

renewable energy.  

4. Challenges 

The high cost of implementation of renewable energy technologies, particularly solar, is the major impediment 
militating against their widespread use [65]. High cost is not unconnected to the fact that nearly all the parts are 
imported from overseas at a very high cost. Most of the personnel and technologies are sourced abroad [58]. The 
key challenges facing the successful deployment of solar energy technologies can be grouped into cost, policy, 
technical, people and environment.  

Some of the key challenges of solar energy in Nigeria are discussed below.  
1. Cost: Cost plays a major role in the life of people and the success or failure of a technology. Nigeria is a 

developing country home to both rich and poor, living in rural and urban areas. Initial investment in the 
cost of solar energy infrastructure is one of those factors militating against penetration of solar energy in 
Nigeria. The lack of adequate funding for solar energy development poses a high risk to the success of 
solar energy in Nigeria.    

2. Policy: The general absence of comprehensive national energy policy. Nigeria has never formulated a 
comprehensive energy policy; only sub-sectoral policies have been formulated. Since such a policy is 
pivotal to using energy efficiently and solar energy, the lack of such a policy has, to a large extent, 
contributed to the lack of attention to solar energy.  

3. Technical: Lack of technological capability is an issue in penetration of solar energy in Nigeria. The bulk 
of the technologies for solar energy are imported thereby increasing the high investment cost of solar 
energy.  

4. Cultural and low level of public awareness: The cultural inclination in some parts of Nigeria coupled 
with public awareness of renewable energy sources and technologies in Nigeria and their benefits, both 
economically and environmentally, are generally low. Consequently, the public is not well-equipped to 
influence the government to begin to take more decisive initiatives in enhancing the development, 
application, dissemination and diffusion of renewable energy resources and technologies in the national 
energy market.  
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5. Prospects for solar energy in Nigeria 

Geographically, Nigeria lies within a high sunshine belt on longitude 3o and 14o East of Greenwich and latitude 
4º and 14° north of equator [66] and thus has enormous solar energy potential [67]. The country has an annual 
average daily solar radiation of about 5.535 KW/m2 /day [68]. The minimum average is about 3.55 kW/m2/day in 
Katsina in January. It is 3.4 kW/m2/day for Calabar in August. And the maximum average is 8.0 kW/m2/day for 
Nguru in May [69]. This puts the solar radiation figure at an average of 19.8 MJ/m2/day and is fairly distributed.  

The country’s annual average daily sunshine is 6.25 hours per day, the coastal areas are 3.5 hours and 9.0 hours 
at the far northern boundary [70]. Nigeria receives about 4.851 x 1012 KWh of energy per day from the sun [71]. 
This is equivalent to about 1.082 million tons of oil equivalent (mtoe) per day, and is about 4 000 times the current 
daily crude oil reduction, and about 13 000 times that of natural gas daily production based on energy units. This 
huge energy resource from the sun is available for only about 26 % of the day. This data couple with the prevailing 
efficiencies of commercial solar-electric generators and if solar collectors or modules were used to cover 1% of 
Nigeria’s land area of 923 773km2, it is possible to generate 1.804 x 1015 kWh of solar electricity per year. This 
is over one hundred times the current grid electricity consumption level in the country [72]. The annual solar 
energy insolation is 27 times the nation total conventional energy resources in energy units. This is over 117 000 
of the electric power generated in 1998 in Nigeria [40]. Only about 3.7 % of Nigeria’s land area is required for 
solar energy to meet the electricity demand of the country. 

5.1 Future prospects  

Though the bulk of the prospects for solar energy in Nigeria are in the off-grid areas and rural electrification, some 
areas on the grid and in urban areas also hold some prospects. Areas that provide opportunities for application 
include, but are not limited to: power plants, non-thermal electricity generation, large scale and family scale 
cooking, heating, drying of farm produce, water purification, clean water provision for humans and animals, 
aerospace development of the country, provision of light arms and ammunition for the Nigeria Army especially 
as they combat Boko haram terrorism and militants in the Niger Delta of the country. The future prospects of solar 
PV are shown in Figures 2.6 and 2.7.  

 

 
Figure 2.6. Solar PV application in Nigeria for year 2020 and 2030 

 

The major focus on renewable energy in Nigeria is on transportation and electricity generation. Electricity 
generation from renewable energy in Nigeria is estimated to be 9.74 % for 2015, 18 % for 2020 and 20 % for 
2030. 
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Figure 2.7. Targets for solar thermal energy application in Nigeria for year 2015, 2020 and 2030 

 

However, electricity generation using solar is projected to be 1.26 % for 2015, 6.92 % for 2020 and 15.27 % for 
2030. The targets of renewable electricity from solar alone is projected to be 12.96 %, 38.43 % and 76.36 % for 
these years. This shows that solar progressively dominates in the long-term. Figure 6 shows the targets for solar 
PV application in Nigeria for year 2020 and 2030. Figure 7 shows the targets for solar thermal energy application 
in Nigeria for year 2015, 2020 and 2030. This is too dismal to be commended even in the long-term. For example, 
consider the targets for solar cookers. Suppose each solar cooker is constructed to cook for five people as proposed 
by Saxena et al. [73]. With a population growth rate of 3.2 % per annum, the population in 2015, 2020 and 2030 
population becomes 186 458 723, 218 263 539 and 299 073 660 respectively. The penetration level which 
represent the percentage of the population supplied with solar cooking energy becomes 0.0054 %, 0.1145 % and 
0.2508 % respectively. Although this figure indicates a rising trend into the future, the penetration level is minor 
and does not reflect the energy crisis in Nigeria. This is because in 2014 about 80 % of the population were 
exposed to health issues. Many of these health issues arose from the heating and cooking used in the rural setting, 
using mainly biomass and waste resources. The maintenance-free and cheap nature of solar box cookers makes 
them well suited to developing countries.  

 
Figure 2.8. Africa annual off-grid household expenditure on lighting and mobile phone charging compared to solar home system (< 

1 kW) annualized costs, by country in 2015 [18] 

 

Figure 2.8 gives the annual expenditure for off-grid lighting and mobile phone charging in Africa in 2015. The 
blue band represents the range of annualized solar system costs. Circles represent the high and low annual 
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expenditures of off-grid households for lighting (e.g., kerosene, batteries, candles, etc.) and mobile phone 
charging. Expenditure in Nigeria is USD 140 per year. The lowest expenditure in Africa is in Ethiopia (USD 84) 
and the highest is Mauritania (USD 270). Therefore, solar systems can be a very economical solution for powering 
homes in Africa  

6. Conclusion 

Nigeria has the capacity to use solar energy to end the problem of an erratic power supply facing her. This work 
has been able to shed light on solar energy domestication in Nigeria, reviewing work that has been done relating 
to solar energy in Nigeria, and the prospects and challenges of the technology. A lot of brilliant studies have been 
conducted. Well-articulated policies have been made and signed with memorandums of understanding on the part 
of the government but well monitored implementation seems to be an issue working against the full success story 
of solar energy utilization in Nigeria. Research into in-country fabrication of solar cells, thin films and solar panels 
is highly recommended for both public and private partnership in Nigeria. The windows of opportunities for solar 
energy inclusion in Nigeria are enormous. These are: solar power generation, increased internally generated 
revenue through manufacture of solar panels, capacity building in the field of solar energy technologies, supply 
of renewable energy equipment and accessories, and contracts in solar energy projects. The rest of Africa can 
benefit from the success story of Nigeria if well implemented.  

7. Recommendation 

More education should be conducted to sensitize the populace on the benefits of solar energy and the government 
should encourage more research on solar energy, especially the setting up of and/or funding of solar cells research 
centres.  

Acknowledgements 

The financial assistance of the National Research Foundation and The World Academy of Science (NRF-TWAS) 
of South Africa is acknowledged.  

References 

[1] Kaygusuz, K., Energy for sustainable development: A case of developing countries. Renewable and 
Sustainable Energy Reviews, 2012. 16(2): p. 1116-1126. 

[2] Scarlat, N., et al., Evaluation of energy potential of municipal solid waste from African urban areas. 
Renewable and Sustainable Energy Reviews, 2015. 50: p. 1269-1286. 

[3] Karekezi, S., Poverty and energy in Africa—a brief review. Energy Policy, 2002. 30(11-12): p. 915-919. 
[4] Wolde-Rufael, Y., Energy demand and economic growth: the African experience. Journal of Policy 

Modeling, 2005. 27(8): p. 891-903. 
[5] Bazilian, M., et al., Energy access scenarios to 2030 for the power sector in sub-Saharan Africa. Utilities 

Policy, 2012. 20(1): p. 1-16. 
[6. Bongaarts, J., Human population growth and the demographic transition. Philosophical Transactions of 

the Royal Society B: Biological Sciences, 2009. 364(1532): p. 2985-2990. 
[7] Apulu, I., A. Latham, and R. Moreton, Factors affecting the effective utilisation and adoption of 

sophisticated ICT solutions: Case studies of SMEs in Lagos, Nigeria. Journal of Systems and Information 
Technology, 2011. 13(2): p. 125-143. 

[8] Oseni, M.O., An analysis of the power sector performance in Nigeria. Renewable and Sustainable 
Energy Reviews, 2011. 15(9): p. 4765-4774. 

[9] Obadote, D. Energy crisis in Nigeria: technical issues and solutions. In Power sector prayer conference. 
June 27-29, 2009. 

[10] Aliyu, A.S., A.T. Ramli, and M.A. Saleh, Nigeria electricity crisis: Power generation capacity expansion 
and environmental ramifications. Energy, 2013. 61: p. 354-367. 

[11] Oyedepo, S.O., On energy for sustainable development in Nigeria. Renewable and Sustainable Energy 
Reviews, 2012. 16(5): p. 2583-2598. 

[12] Ohunakin, O.S., Energy utilization and renewable energy sources in Nigeria. Journal of Engineering and 
Applied Sciences, 2010. 5(2): p. 171-177. 

[13] Mohammed, Y., et al., Renewable energy resources for distributed power generation in Nigeria: a review 
of the potential. Renewable and Sustainable Energy Reviews, 2013. 22: p. 257-268. 

[14] Sambo, A.S., Strategic developments in renewable energy in Nigeria. International Association for 
Energy Economics, 2009. 16(3): p. 15-19. 

[15] Ohiare, S., Expanding electricity access to all in Nigeria: a spatial planning and cost analysis. Energy, 
Sustainability and Society, 2015. 5(1): p. 8. 



43 
 

[16] Usman, Z.G. and S. Abbasoglu, An overview of power sector laws, policies and reforms in Nigeria. 
Asian Transactions on Engineering, 2014. 4(2): p. 6-12. 

[17] Oseni, M.O., Power outages and the costs of unsupplied electricity: evidence from backup generation 
among firms in Africa.  In Proceedings USAEE/IAEE Conference, Austin Texas. 2012. 

[18] IRENA, Solar PV in Africa: Costs and Markets. 2016. 
[19] Sambo, A., Nigeria’s long term energy demand outlook to 2030. Journal of Energy, 2012. 
[20] Onakoya, A.B., et al., Energy consumption and Nigerian economic growth: An empirical analysis. 

European Scientific Journal, 2013. 9(4). 
[21] Ohiare, S., Financing rural energy projects in developing countries: a case study of Nigeria. PhD thesis, 

De Montfort University, Leicester, UK, 2014. 
[22] Guttikunda, S.K. and R. Goel, Health impacts of particulate pollution in a megacity—Delhi, India. 

Environmental Development, 2013. 6: p. 8-20. 
[23] Zhang, J., et al., Environmental health in China: progress towards clean air and safe water. The Lancet, 

2010. 375(9720): p. 1110-1119. 
[24] Epstein, T.S. and D. Jezeph, Development—there is another way: a rural–urban partnership development 

paradigm. World Development, 2001. 29(8): p. 1443-1454. 
[25] Kanagawa, M. and T. Nakata, Assessment of access to electricity and the socio-economic impacts in 

rural areas of developing countries. Energy Policy, 2008. 36(6): p. 2016-2029. 
[26] Kaygusuz, K., Energy services and energy poverty for sustainable rural development. Renewable and 

Sustainable Energy Reviews, 2011. 15(2): p. 936-947. 
[27] Iyke, B.N., Electricity consumption and economic growth in Nigeria: A revisit of the energy-growth 

debate. Energy Economics, 2015. 51: p. 166-176. 
[28] Jaunky, C.V., Income elasticities of electric power consumption: Evidence from African countries. 

Regional and Sectoral Economic Studies, 2006. 7: p. 25-50. 
[29] Akinlo, A.E., Electricity consumption and economic growth in Nigeria: evidence from cointegration and 

co-feature analysis. Journal of Policy Modeling, 2009. 31(5): p. 681-693. 
[30] Ogundipe, A.A. and A. Apata, Electricity consumption and economic growth in Nigeria. Journal of 

Business Management and Applied Economics, 2013. 11(4). 
[31] Aliero, H.M., S.S. Ibrahim, and M. Shuaibu, An empirical investigation into the relationship between 

financial sector development and unemployment in Nigeria. Asian Economic and Financial Review, 
2013. 3(10): p. 1361. 

[32] Okoligwe, N. and O.A. Ihugba, Relationship between electricity consumption and economic growth: 
Evidence from Nigeria (1971-2012). Academic Journal of Interdisciplinary Studies, 2014. 3(5): p. 137. 

[33] Dantama, Y.U., Y.Z. Abdullahi, and N. Inuwa, Energy consumption-economic growth nexus in Nigeria: 
an empirical assessment based on ARDL bound test approach. European Scientific Journal, 2012. 8(12). 

[34] Ellabban, O., H. Abu-Rub, and F. Blaabjerg, Renewable energy resources: Current status, future 
prospects and their enabling technology. Renewable and Sustainable Energy Reviews, 2014. 39: p. 748-
764. 

[35] Ibidapo-Obe, O., and Ajibola, Towards a renewable energy development for rural power sufficiency. In 
Proceeedings International Conference on Innovations in Engineering and Technology (IET 2011), 
August 8th – 10th, University of Lagos. 2011. 

[36] Panwar, N., S. Kaushik, and S. Kothari, Role of renewable energy sources in environmental protection: 
a review. Renewable and Sustainable Energy Reviews, 2011. 15(3): p. 1513-1524. 

[37] Johnstone, N., I. Haščič, and D. Popp, Renewable energy policies and technological innovation: evidence 
based on patent counts. Environmental and Resource Economics, 2010. 45(1): p. 133-155. 

[38] Twidell, J. and T. Weir, Renewable energy resources. 2015: Routledge. 
[39] Ojosu, J., The iso-radiation map for Nigeria.. Solar & Wind Technology, 1990. 7: p. 563-75. 
[40] Emodi, N.V. and K.-J. Boo, Sustainable energy development in Nigeria: Overcoming energy poverty. 

International Journal of Energy Economics and Policy, 2015. 5(2). 
[41] Reif, J.H. and W. Alhalabi, Solar-thermal powered desalination: Its significant challenges and potential. 

Renewable and Sustainable Energy Reviews, 2015. 48: p. 152-165. 
[42] Archer, M.D. and M.A. Green, Clean electricity from photovoltaics. 2015: Imperial College Press. 
[43] Ozoegwu, C., C. Mgbemene, and P. Ozor, The status of solar energy integration and policy in Nigeria. 

Renewable and Sustainable Energy Reviews, 2017. 70: p. 457-471. 
[44] Milosavljević, D.D., T.M. Pavlović, and D.S. Piršl, Performance analysis of A grid-connected solar PV 

plant in Niš, republic of Serbia. Renewable and Sustainable Energy Reviews, 2015. 44: p. 423-435. 
[45] Nwofor, O. and V. Dike. Objective criteria ranking framework for renewable energy policy decisions in 

Nigeria. in IOP Conference Series: Earth and Environmental Science. 2016. IOP Publishing. 
[46] Sambo, A., Enhancing renewable energy access for sustainable socio-economic development in sub-

Saharan Africa. Journal of Renewable & Alternative Energy Technologies, 2016. 1(1). 



44 
 

[47] Chilapku, K.O., Renewable energy sources: its benefits, potentials and challenges in Nigeria. Journal of 
Energy Technologies and Policy, 2015. 5: p. 21-24. 

[48] Körbitz, W.,Biodiesel production in Europe and North America, an encouraging prospect. Renewable 
Energy, 1999. 16: p. 1078-1083. 

[49] Olaoye, T., et al., Energy crisis in Nigeria: Need for renewable energy mix. American Journal of 
Electrical and Electronic Engineering, 2016. 4(1): p. 1-8. 

[50] Ajayi, O.O. and K.O. Ajanaku, Nigeria's energy challenge and power development: the way forward. 
Energy & environment, 2009. 20(3): p. 411-413. 

[51] Akinboro, F., L. Adejumobi, and V. Makinde, Solar energy installation in Nigeria: Observations, 
Prospect, problems, and solution. Transnational Journal of Science and Technology, 2012. 2(4): p. 73-
84. 

[52] Ezugwu, C., Renewable energy resources in Nigeria: Sources, Problems and prospects. Journal of Clean 
Energy Technologies, 2015. 3(1): p. 68-71. 

[53] Dike, V., et al., solar pv system utilization in Nigeria: Failures and possible solutions. Pacific Journal of 
Science and Technology, 2017. 18(1): p. 51-61. 

[54] Ikem, I., et al., Integration of Renewable Energy Sources to the Nigerian National Grid-Way out of Power 
Crisis. International Journal of Engineering Research, 2016. 5(8): p. 694-700. 

[55] Cota, O.D. and N.M. Kumar. Solar energy: a solution for street lighting and water pumping in rural areas 
of Nigeria. In Proceedings of International Conference on Modelling, Simulation and Control (ICMSC-
2015). 2015. 

[56] Kumar, N.M., A.K. Singh, and K.V.K. Reddy, Fossil fuel to solar power: A sustainable technical design 
for street lighting in Fugar City, Nigeria. Procedia Computer Science, 2016. 93: p. 956-966. 

[57] Ike Chinelo, U., C.C. Okeke, and S. Okeke, Technical Report on The Design and Installation of a 1KVA 
Solar Energy Powered Security Light in The Dora Akunyili and Stella Okoli Female Hostels of Nnamdi 
Azikiwe University, Awka, Using Monocrystalline Panels. International Refereed Journal of 
Engineering and Science, 2013. 2(8): p. 47-50. 

[58] Bala, E., J. Ojosu, and I. Umar, Government policies and programmes on the development of solar-PV 
Sub-sector in Nigeria. Nigerian Journal of Renewable Energy, 2000. 8(1&2): p. 1-6. 

[59] Iloeje, O. Renewable energy development in Nigeria: status & prospects. In Proceedings of a National 
workshop on energizing rural transformation in Nigeria: scaling up electricity access and renewable 
energy. 2002. 

[60] Oparaku, O., Photovoltaic systems for distributed power supply in Nigeria. Renewable Energy, 2002. 
25(1): p. 31-40. 

[61] Nwofe, P., Utilization of solar and biomass energy-A panacea to energy sustainability in a developing 
economy. International Journal of Energy and Environmental Research, 2014. 2(3): p. 10-19. 

[62] Charles, A., How is 100% renewable energy possible for Nigeria. Global Energy Network Institute 
(GENI), California, 2014. 

[63] Scenario, N., M. East, and P. Cedex, World energy outlook 2014 factsheet. Paris: International Energy 
Agency, 2015. 

[64] Akuru, U.B. and O.I. Okoro. Renewable energy investment in Nigeria: a review of the renewable energy 
master plan. In Energy Conference and Exhibition (EnergyCon), 2010 IEEE International. 2010. IEEE. 

[65] Bridgwater, A.V., Renewable fuels and chemicals by thermal processing of biomass. Chemical 
Engineering Journal, 2003. 91(2-3): p. 87-102. 

[66] Simeon, P.O., H.E. Jijingi, and S.A. Ngabea, Conscientious management of soil humus and water: a 
major condition for purposeful mechanisation of field crop husbandry in tropical rain forest of Nigeria. 
Management, Economic Engineering in Agriculture and Rural Development, 2016. 16(4): p. 317-326. 

[67] Adeyemo, S., Estimation of direct solar radiation intensities. Nigerian Society of Engineers (NSE) 
Technical Transactions, 1997. 32(1): p. 1-9. 

[68] Fadare, D., Modelling of solar energy potential in Nigeria using an artificial neural network model. 
Applied Energy, 2009. 86(9): p. 1410-1422. 

[69] Medugu D.W,. and D. Yakubu, Estimation of mean monthly global solar radiation in Yola-Nigeria using 
angstrom model. Advances in Applied Science Research, 2011. 2(2): p. 414-421. 

[70] Adaramola, M.S., Estimating global solar radiation using common meteorological data in Akure, 
Nigeria. Renewable Energy, 2012. 47: p. 38-44. 

[71] Ani, V.A., Optimal sizing and application of renewable energy sources at GSM Base station site. 
International Journal of Renewable Energy Research, 2013. 3(3): p. 579-585. 

[72] Ikuponisi, F.S. Status of renewable energy in Nigeria. In A background brief for an International 
Conference on Making Renewable Energy a Reality. 2004. 

[73] Saxena, A., S. Pandey, and G. Srivastav, A thermodynamic review on solar box type cookers. Renewable 
and Sustainable Energy Reviews, 2011. 15(6): p. 3301-3318. 



45 
 

 

CHAPTER 3: REVIEW OF NANOSTRUCTURED 

NiO THIN FILM DEPOSITION USING THE 

SPRAY PYROLYSIS TECHNIQUE  

 

This chapter critically reviews the deposition of nanostructured NiO thin film using chemical 

spray pyrolysis technique.  

To cite this article: Ukoba, O.K., Eloka-Eboka, A.C. and Inambao F.L. (2018). “Review of nanostructured NiO 

thin film deposition using spray pyrolysis technique,” Renewable and Sustainable Energy Reviews, vol 82, pp. 

2900-2915. DOI: 10.1016/j.rser.2017.10.041 

 

 

 



Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

Review of nanostructured NiO thin film deposition using the spray pyrolysis
technique

K.O. Ukoba⁎, A.C. Eloka-Eboka, F.L. Inambao
Discipline of Mechanical Engineering, University of KwaZulu-Natal, Durban, South Africa

A R T I C L E I N F O

Keywords:
Nickel oxide
Nanostructured
Solar cells
Spray pyrolysis technique
Thin film deposition
Metal oxide

A B S T R A C T

This study reviews NiO film deposition using the Spray Pyrolysis Technique (SPT). Physical and chemical
methods can be used to deposit NiO film. This review looks at different precursors and their characterization
methods for spray deposition of NiO thin film. The usefulness of SPT emanates from this method being simple,
low cost, and viable for mass production. It gives high product purity for metallic and non-metallic material
deposition. Nickel chloride, nickel acetate, nickel nitrate, nickel hydroxide, nickel sulfate, and nickel formate are
the major precursors for NiO thin film deposition. Nickel chloride and nickel acetate are the most used and
highly available precursors. Unlike nickel acetate, nickel chloride precursors corrode the deposition equipment
(spray gun). These precursors are relatively cheap compared to current materials used for solar panels (cells).
SPT equipment consumes negligible power during deposition and none after usage. Various authors have in-
vestigated the physical, chemical, optical, structural characterization and properties of nanostructured NiO thin
film. NiO films are p-type semiconductors and as such possesses direct band gap suitable for various applications.
The film has been categorized as an excellent material for optoelectronic applications because of its tune-ability
for optimization. The wide band gap is in the range of 3.25–4.0 eV. This review will be useful to researchers
exploring solar photovoltaic potentials for solving electricity problems of developing countries.

1. Introduction

About one-fourth of earth's inhabitants lack access to electricity
with little or no change of outlook since over forty year now [1]. Sev-
eral developing countries in Africa and elsewhere are still struggling to
deliver affordable and stable electricity [2]. Renewable energy is a vi-
able solution to ending the global electricity problem as it exceeds
world electricity demand [3]. Renewable energy includes solar, wind,
geothermal, oceanic, hydro, biomass and other energy sources. Solar
energy can be converted to useful direct current electricity using solar
cells [4]. A major breakthrough in solar cell fabrication would be large
scale production at affordable cost [5]. Currently, there is difficulty in
scaling up existing method of solar cell fabrication. The major obstacles
are the expensive nature of materials and the complexities involved in
fabricating solar cells. The Spray Pyrolysis Technique (SPT) is widely
used because of its simplicity and affordability [6]. The properties of
spray deposited film depend on the substrate, substrate temperatures,
spray rate and droplet sizes [7]. Droplet size depends on spray rate,
nozzle diameter and carrier gas / carrier gas pressure [8]. Inorganic
semiconducting materials are inexpensive, environmentally friendly
and viable sources for solar cell fabrication [9]. Fabrication of

nanostructure metal oxide films has generated interest over the years
due to their wide application [10–16]. They are used in radiation de-
tectors, solar cells, semiconducting devices, laser materials, thermo-
electric devices, and optoelectronic devices [17–20]. Nanostructured
metal oxide is a promising option for thin film solar cells [21]. NiO is
one such metal oxide with many suitable properties. Despite the pro-
mising properties of NiO, limited studies have been conducted on it
when compared with ZnO and CuO.

1.1. NiO structural properties and applications

Nickel oxide adopts the rock salt form of NaCl, having octahedral Ni
(II) and O2- sites (Figs. 1 and 2). As a binary metal oxide, the ratio of
Ni:O deviates from 1:1 making it non-stoichiometric most times. NiO
stoichiometry is shown by the colour variation [22]. NiO can either be a
black or green crystalline powder. Density of NiO is 6.67 g/cm3 and the
melting point is 1955 °C [23]. Nickel chemical composition of NiO is
78.55% while oxygen is 21.40%. It has a molar mass of 74.6928 g/mol.
It has magnetic susceptibility of +660.0·10−6 cm3/mol. The refractive
index of NiO is 2.1818. The toxicity of nickel oxide depends on the
quantity inhaled [24]. It exists in various oxidation states. The states
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are nickel trioxide or sesquioxide (Ni2O3), nickelous oxide (NiO), nickel
dioxide (NiO2), nickelosic oxide (Ni3O4), and nickel peroxide (NiO4).
NiO has rhombohedral or cubic structure referred to as Bunsenite. NiO
is a p-type semiconductor with a wide band gap between 3.5 and 4.0 eV
[25]. NiO finds useful application in solar cells [26] and UV photo-
detectors [27] due to its high durability and excellent chemical stabi-
lity. Other applications include electrochromic devices [28], anti-fer-
romagnetic layers [29], and chemical sensors [30].

Thin film deposition is divided into three groups by means of its
nature of deposition as depicted in Fig. 3 [31]. However, this classifi-
cation was done considering the physical or chemical processes in-
volved. Chemical processes include gas-phase and solution deposition
methods. Gas-phase methods include: chemical vapour deposition
(CVD) [32], atomic layer epitaxy [33], and atomic layer deposition
(ALD) [34]. Solution deposition methods include: spray pyrolysis [35],
sol-gel [36], spin [37], and dip-coating [38]. Physical processes in-
clude: pulsed laser deposition [39], physical vapour deposition (PVD)
[40], molecular beam epitaxy [41], and magnetron sputtering [42].
Other techniques include: chemical bath deposition [43], advanced
reactive gas deposition [44], electron beam evaporation [45], vacuum
evaporation [46], and anodic oxidation [47]. Different techniques have
been employed to deposit nickel oxide thin films. The techniques are RF
sputtering [48], electron beam evaporation [49], DC magnetron sput-
tering [50], and anodic electrodeposition [51]. Cathodic electro-
deposition [52] and chemical vapour [53] can also be used for NiO
deposition. This study will review NiO films deposited using SPT.

1.2. Spray pyrolysis technique

SPT is classified as a solution based chemistry based on the nature of
the deposition. Solution based methods for films deposition are be-
coming more popular [54]. Solution based methods provide high purity
products at low cost, starting from easily available materials. SPT is
useful for depositing varieties of thin film. Using SPT, films of very thin

Fig. 1. Crystal structure of NiO [23].

Fig. 2. Pictorial view of NiO.

Fig. 3. Classification of thin film deposition methods.

Fig. 4. Experimental set-up of spray pyrolysis technique.

Fig. 5. Deposition processes initiated with increasing substrate temperature [67].
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layers with uniform thickness can be coated on a large area [55]. It can
be used to deposit thin and thick films, dense films, porous films,
multilayered films, ceramic and powders [56]. It is good for preparing
films of any composition [57]. It is also useful in the control of target
compositions for high quality products. It allows for fewer precursor

Fig. 6. Schematics of spray pyrolysis droplet modification [74].

Table 1
Effect of volume sprayed on film thickness and properties of NiO thin-films prepared by
spray pyrolysis technique [82].

Serial
number

Volume
of
sprayed
solution
(ml)

Thickness
(µm)

Grain
size
(nm)

Energy
Band-
gap Eg
(eV)

Electrical
resistivity
at 300k (x
104Ωcm)

Activation
energy Ea
(eV)

1 30 0.028 14 3.58 1.0 0.35
2 40 0.048 14.5 3.55 1.9 0.36
3 60 0.10 15 3.49 3.0 0.38
4 75 0.23 17 3.40 9.0 0.39

Fig. 7. AFM 3D images of nanostructured NiO thin films a = 0.1 M, b = 0.075 M and c = 0.05 M [84].

Table 2
Values of the grain size (GS) calculated from XRD and AFM investigations [84].

Molar concentration
(M)

Grain Size (XRD
measurement) (nm)

Average Grain Size (AFM
measurement) (nm)

0.05 110.7 115.1
0.075 76 84
0.1 78 80

K.O. Ukoba et al. Renewable and Sustainable Energy Reviews 82 (2018) 2900–2915

2902



usages for large surface deposition [58]. Optimization of preparative
conditions is the main requirement for obtaining high quality films.
Such preparatory conditions include spray rate, substrate temperature,
concentration, etc. [59].

SPT involves spraying solutions of the film on a heated surface [60].
Thereafter, the film constituents react to form a chemical compound.
The chemical reactants are selected so that unwanted products pyr-
olytically decompose at the deposition temperature [61]. The experi-
mental set-up of a SPT is illustrated in Fig. 4. SPT equipment consists of
precursor solution, an atomizer, substrate heat source, and temperature
controller. The commonly used atomizers are ultrasonic [62], electro-
static [63], and air blast [64]. Ultrasonic atomizers use ultrasonic fre-
quencies to produce a short wavelength for fine atomization. Electro-
static atomizers expose the liquid to a high electric field for atomization
to take place. Air blast atomizers expose the liquid to a stream of air.

SPT is a useful method for the deposition of metal oxides because it
is a simple technique with low equipment cost, and requires little
maintenance. It does not consume much power compared to vacuum
equipment. Also, electricity is not required after using SPT for deposi-
tion. The quality and properties of the deposited films depend largely
on the process parameters. The substrate surface temperature affects
the output of the films. Higher substrate temperatures produce rougher
and porous film; but low temperatures give cracked film. Deposition
temperature also influences the crystallinity, texture, and other physical
properties of deposited film [65]. Precursor solution also affects mor-
phology and properties of deposited film [66]. SPT is grouped into four
processes by means of reaction type [67]. Process 1 involves the droplet
residing on the surface as the solvent evaporates thereby making the
solid react when dry. In Process 2 the solvent evaporates just before the
droplet makes contact with the surface. Dry solid impinges on it al-
lowing for decomposition. Process 3 is known as true chemical vapour
deposition. Solvent vaporizes as the droplet approaches the substrate.
The solid melts and vaporizes. Thereafter, the vapour diffuses to the
substrate to undergo heterogeneous reaction. Process 4 occurs in the
vapour state. A detailed description of all processes is shown in Figs. 5
and 6.

The droplet has four potential paths before hitting the substrate
irrespective of temperature or initial droplet size [68]. This is re-
presented as (A-D) in Figs. 5 and 6. Point (A) is the lowest temperature
region. The highest is D while B and C are in-between A and D.

Table 3
Structural and optical parameters of NiO thin films [86].

Parameter Value

Crystalline size (D) 51 nm
Dislocation density 0.038 × 1016 lines/m2

Strain 0.0405
Thickness 161 nm
Refractive index (n) at 550 nm 1.871
Dielectric constant (Ɛ) at 550 nm 3.49
Transmittance (T) at 550 nm 83%
Reflectance (R) at 550 nm 7%
Direct band gap (Eg) 3.25 eV

Fig. 8. Variation of film thickness versus substrate temperature [80].

Fig. 9. X-ray diffractograms of samples prepared at: (a) 275 °C to 425 °C (b) 225 °C [80].
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Processes A and D give rough or non-adherent films. Adherent films are
rarely obtained in process C if spray pyrolysis is used. It is caused by
low deposition temperature for the precursor vaporization. It can also
be caused when the precursor salt decomposes without melting and
vaporization.

Chamberlin and Skarman [69] performed the first spray pyrolysis
experiment involving CdS films. This paved the way for more studies on
SPT [70–73]. Spray pyrolysis has the merit of cost effectiveness and
high quality coating. Also, complex geometries can be coated using
spray pyrolysis. SPT requires low temperatures during processing [74].
Most of the equipment used for thin film deposition is expensive [75]
and is vacuum-based [76]. The equipment requires steady and high
usage of power which is a major challenge in most developing countries
especially Africa which are target beneficiaries/end users. This has
hindered research in solar cell development, discouraging low cost
production of solar devices.

SPT equipment requires low capital investment, and requires little
or no maintenance. Power supply does not affect equipment storage.
These advantages make SPT a good deposition method in thin film
development. A comprehensive review of SPT deposition of NiO film is
unavailable in the literature despite NiO's promising properties [77].

This study reviews nanostructured NiO film deposited using SPT. The
different precursors used for depositing NiO films will be examined.
This study will help to identify viable precursor(s) for NiO films de-
position. The aim is to identify a deposition method and material sui-
table for solar cell research in developing countries. The emphasis is on
efficiency, cost, durability and chemical stability.

2. Literature survey

Deposition of nanostructured NiO can be achieved in two major
procedures. The bottom-up procedure is a chemical method. This in-
cludes sol-gel, spray pyrolysis, thermolysis, and micro emulsion. The
top-down procedure is a physical method. This includes pulsed laser
ablation, chemical vapour deposition, and electro-deposition [78]. NiO
has been successfully deposited using various precursors which are
discussed below.

2.1. Nickel chloride precursors

Nickel chloride salts are commonly used as precursors in deposition
and preparation of NiO thin film [79]. The pyrolytic decomposition for
NiO film formation for a chloride precursor is given in Eqs. (1)–(3):

+ → + →Ni Cl NH OH Ni OH NH Cl NiO( ) 2 ( ) 22 4
Δ

2 4 2 (1)

⎯ →⎯⎯ + ↑ + ↑
⏐⏐⏐NiCl H O NiO HCl H O: 6 2 5

heat
2 2 2 (2)

+ ⎯ →⎯⎯ +NiCl H O HCl Ni OH2 2 ( )
heat

2 2 2 (3)

Uniform nickel oxide NiO with good adherence is formed when
aqueous nickel chloride is sprayed on a preheated substrate. Formation
of fine droplets occurs because of pyrolytic decomposition when dro-
plets make contact with the hot surface. The major merit of this

Table 4
Dispersion parameters of NiO films at different substrate temperature [92].

Ts°C ƐL ∞Ɛ N/m* ×1040(cm−3 g−1) p(HZ) × 108 λo So ×10–13 (m)−2 Eo (eV) Ed (eV) Eg (eV) Eo/ Eg M−1 M−3 (eV)

350 3.165 3.825 2.309 0.817 263 4.095 5.184 15.748 3.54 1.46 3.04 0.113
400 5.399 4.578 5.823 1.298 279 4.599 5.133 19.619 3.43 1.49 3.82 0.145
450 5.916 4.662 6.129 1.772 286 4.470 5.074 19.946 3.37 1.50 3.93 0.153

Table 5
Variation of substrate temperature with film thickness and bandgap energy [95].

Substrate temperature (°C) Thickness (nm) Bandgap Energy, Eg (eV)

425 280 3.25
450 350 3.04
475 310 3.16
500 275 3.28

Fig. 10. X-ray diffraction pattern of nickel oxide thin film onto (a) glass substrate (b) FTO [96].
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precursor is the availability of the precursor. The demerit is incomplete
pyrolytic decomposition, producing HCl in the final product [80].

Patil and Kadam [81] studied the effect of volume of sprayed so-
lution on the properties of NiO. This was achieved by depositing 0.05 M
solution of nickel chloride precursor. An amorphous glass substrate was
used at 350 °C at 8 ml/min spray rate. The sprayed volumes were 30 ml,
45 ml, 60 ml and 75 ml. The study revealed that film thickness grew
from 0.028 to 0.23 µm as volume of sprayed solution increased. This
was not directly proportional as a result of the variation in deposition
efficiency. The study attributed this to the diminished mass transport of
substrate and gas convection which pushed the droplets off the pre-
cursor. The optical band gap was found to decrease from 3.58 to 3.4 eV
as film thickness increased. The grain size varied from 14 nm to 17 nm
as sprayed solution volume grew from 30 ml to 75 ml. This is depicted
in Table 1. The study also observed that the absorption coefficient de-
creased with reduction in photon energy. A sharp decrease was noticed
around the band edge in the visible region as the absorption coefficient
for the sample is of the order of 104 cm−1. Infrared spectroscopy (IR
spectroscopy) of the film indicated the presence of a NiO phase with
some amount of hydration and chloride ions. The thermo-emf mea-
surement showed that NiO films were of p-type.

Kadam and Patil [83] studied the electrochromic properties of

Fig. 11. Scanning electron micrographs of nickel oxide thin film using (a) glass and (b) FTO substrates [96].

Fig. 12. X-Ray diffractograms of 24 h aged and freshly prepared NiO thin films [98].

Fig. 13. SEM images of aged and freshly prepared NiO thin films [98].

Fig. 14. Transmission spectra of aged and freshly prepared NiO thin films [98].
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nickel oxide thin films prepared by SPT. A mixture of 0.05 M, 50 ml of
nickel chloride in distilled water was sprayed at a rate of 10 ml/min.
Fluorine-doped tin oxide (FTO) glass substrate with sheet resistance of
10 Ωcm−2 was deposited at a temperature of 350 °C. The study re-
corded a cubic NiO film with orientation of (1 1 1). The surface mor-
phology revealed complete covering of substrate with non-uniform thin
film. The study attributed micro-cracks, developed in the film, to be as a
result of evaporation of water from the film. Infrared spectroscopy
confirmed free hydroxyl ion and water presence in NiO thin film.

Ismail et al. [84] studied the effect of varying molarity and de-
position temperature on NiO film properties. Molarity was varied from
0.025 M, 0.05 M, 0.075 M and 0.1 M while the deposition temperature
was from 280 °C, 320 °C, 360 °C and 400 °C. This was achieved by de-
positing AR grade (NiCl2.6H20) using SPT. The substrates used were
single crystal silicon and corning glass. The study attributed the uni-
form thin film achieved to well optimized deposition parameters. It
kept the spray nozzle at a height of 35 cm, rate of spray of 15 cm3/min
and period between spray of 1 min. The study recorded a cubic crys-
talline peak at 400 °C. However, amorphous films were achieved at
0.025 M and a temperature of 280 °C. There was complete dis-
appearance of the (2 0 0) plane at 350 °C. A single diffracted peak along
the (1 1 1) plane was obtained at 360 °C. The substrate temperature
grew from 350 °C to 400 °C with increased plane intensity (1 1 1). A
weak reflection plane was noticed along the (200) plane at 2θ = 43°.
The lattice constant was 0.417 nm in the (111) plane. This agrees with
the data from JCPDS file #04–0835 for bulk silicon substrate. The films
were polycrystalline with preferential orientation along the (2 0 0)
plane. The film's thickness varied between 0.215–0.91 µm. The Atomic
Force Microscope (AFM) 3D images shown in Fig. 7 gave a homo-
geneous and smooth morphology of the deposited NiO film. Root mean
square (RMS) roughness and the crystallite size of the film decreased
with increasing molarity. The study attributed this to columnar grain
growth in the structure.

There is no marked difference between the results obtained for
crystallite size from the AFM and the XRD. This is tabulated in Table 2.

In Ismail et al.'s [84] study, FT-IR spectrum was conducted at 400 °C
and 0.075 M in the range of 400 cm−1 to 2000 cm−1. Bands were ob-
tained at 611.43 cm−1, 875.65 cm−1, 1422 cm−1, 1745 cm−1,
3776 cm−1. Other bands revealed that the sample contains water mo-
lecules and/or hydroxide ions. Their presence in the IR spectrum was
attributed to water absorption. Other molar concentrations showed the
same absorption peaks but with lower intensities with the band at
1300 cm−1. This was attributed to the bending vibration of water
molecules caused by absorbed moisture. Transmittance showed that the
films have high transparency in visible and near IR regions. There was
insignificant difference in optical transparency at different molarities.
The optical confinement effect was around 325 nm at 0.075 M. Molarity
changed from 0.1 to 0.05 M as the optical band gap changed from 3.4 to
3.8 eV. This was attributed to a decrease in molarity of the film with
increasing crystallite size. This shows dependence on the film stoi-
chiometry [85]. The study attributed the large optical band gap value to
quantum size effect. Electrical resistivity of the deposited NiO films
grew as concentration increased.

Vigneshkumar et al. [86] focused on the antireflection coating of
NiO thin films in solar cells. NiO films were deposited on glass substrate
using a 0.5 M aqueous solution of nickel chloride at a temperature of
350 °C. Spray rate of 1 ml/min, substrate to nozzle distance of 18 cm

and filtered compressed air as the carrier gas at a pressure of 1 bar were
maintained. The samples were annealed at 500 °C for one hour using a
muffle furnace. The XRD pattern gave two dominant peaks at 2θ =
31.74° and 37.27° assigned to the (3 1 1) and (1 1 1) crystal planes
respectively. Less intense peaks were recorded at 43.32°, 62.93° and
79.45° assigned to (2 0 0), (2 2 0) and (2 2 2) crystal planes respec-
tively. These peaks are similar to standard Bunsenite (NiO) peaks
identified by JCPDS with file No. 78–0643. Strong peak intensity shows
a high degree of crystallinity of the phase. Other structural and optical
parameters obtained are shown in Table 3.

A reflectance of 7% was obtained at 550 nm. This low value gives an
indication that it can be used as an anti-reflection coating material in
solar cells. The refractive index was recorded to be 1.871 at 550 nm.
Calculated optical direct band gap energy of the prepared NiO thin film
was found to be 3.25 eV, which agrees with the reported band gap
values of 3.15–3.80 eV for NiO films [87]. Photoluminescence (PL)
spectrum was obtained at room temperature with an excitation wave-
length of 325 nm. Two emission peaks were observed at 445 nm and
490 nm. The emission peaks were recorded at an energy band gap of
2.78 eV and 2.53 eV respectively. The peak of 445 nm was attributed to
oxygen related defects as previously reported by Wang et al. [88]. This
was observed in the visible region and also originates from the elec-
tronic transition of Ni2+ and O2- ions. The study was able to demon-
strate that p-type NiO thin film deposited using nickel chloride pre-
cursor by SPT is suitable for anti-reflection coating in solar cells.

Kamal et al. [80] focused on substrate temperature as it affects the
properties of SPT deposited NiO thin films. This was achieved by de-
positing NiO films using 0.1 M aqueous solution of nickel chloride by
SPT. A glass substrate was used. The deposition temperatures were
225 °C, 250 °C, 275 °C, 300 °C, 350 °C, 375 °C and 420 °C. The substrate
to nozzle distance was 40 cm; a deposition time of 40 s, and flow rate of
15 cm3/min were maintained to achieve uniform films. An increment in
substrate temperature gave reduction in film thickness as shown in
Fig. 8. This was attributed to possible re-evaporation of the film after
deposition. Thermal convection of the sprayed droplets during the de-
position was also thought to be responsible for this phenomenon. Film
thickness reduction was attributed to water loss or interlayer removal.
This resulted in formation of compact NiO film as reported by Mah-
moud et al. [89].

Fig. 9 shows diffractograms for the substrate temperatures of 275 °C
to 425 °C and 225 °C. There was no peak diffraction at a substrate
temperature of 275 °C for the amorphous structure. The study observed
that the NiO film turned white when it was in contact with air. This was
attributed to absorption of moisture. The analysis of the dried samples
confirmed the presence of hydrated nickel chloride NiCl2·6H2O which
tallies with card number ICDD 25–1044. Further analysis showed that
the pyrolytic reaction was not favourable at the temperature of 225 °C.

The NiO film formed crystallite at temperatures of 275 °C at 2θ =
37.5 °C. However, at a temperature above 275 °C, it was 2θ =42.8 °C.
This conforms to standard card number ICDD 78–0643 of the NiO
structure. The peaks were attributed to a cubic crystalline structure
with preferred orientation along the (1 1 1) plane. The study calculated
lattice parameters of average a = b = c = 0.417 nm agreed with the
bulk value of NiO [90]. This revealed that annealing of Ni2O3-like films
above 300 °C gives transformation to NiO. XRD analysis of the de-
posited 3Ni(OH)2·2H2O prepared by solution growth turned to nickel
oxide, NiO.xH2O, after annealing from 300 °C to 400 °C for 48 h [91].

Table 6
Electrical properties of aged and freshly prepared NiO thin films [98].

Solution Thickness (nm) Mobility, µ (cm2/Vs) Conductivity, σ (1/Ωcm) Resistivity, ρ (Ωcm) Hall coefficient, RH (cm3/C) Type

Non-aged 631 14.73 4.409 ×10−3 2.271 ×102 3.342 ×103 p
Aged 676 11.715 3.669 ×10−3 2.725 ×102 3.193 ×103 p
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Optical constants were calculated from 300 nm to 2500 nm. Refractive
index was affected slightly by the substrate temperature. The substrate
temperature influenced the deducted direct and indirect energy gaps
obtained in the thin films. Dark electrical resistivity ρ dropped greatly
(two orders) for 250≤ Ts ≤ 300 °C. It also decreased (one order) in the
range of 300 ≤ Ts ≤ 400 °C to attain a bulk value of 10 Ωm. This was
attributed to improvement in crystallinity. Temperature of 275 °C gave
excellent and reversible electrochromic behaviour at ΔTv ≈ 35%
showing formation of nickel oxide. At a temperature above 275 °C
lower visible modulation of ΔTv ≈ 20% was observed. The study
drawback was the presence of HCl as confirmed by the infrared spectral
reflectance representing incomplete pyrolytic reaction of the films.

Gowthami et al. [92] deposited a 0.3 M aqueous solution of nickel
chloride on a glass slide using SPT. The aim was to evaluate the oscil-
lator parameters (optical dispersions) of the NiO thin film. The sub-
strate temperatures were varied from 350 °C, 400 °C and 450 °C. The
emphasis was on optoelectronic devices which make use of semi-
conductor thin films and interference devices. Optical dispersion was
considered because it reveals information useful in determining mi-
croscopic characteristics. Nozzle to substrate distance of 7 cm, volume
of 0.5 ml per min and an optimized airflow of 1.2 kg/cm2 were main-
tained. Optical transmittance spectra for the NiO films were recorded
from 300 nm to 1100 nm wavelength. The film thickness grew as the
transmittance decreased. Variation of transmittance was from 30% to
90% as the film thickness decreased. Direct band gap was found to be
3.54 eV, 3.43 eV and 3.37 eV. This agreed with the reported band gap
of 3.15–3.80 eV for NiO by Sato et al. [93]. A vital factor in optical
materials design is the refractive index (η*). It shows higher efficiency
optical materials because of similarity with the electronic polarization
of ions and the local field in the materials. This is shown in Eq. (4) [94].

=η η ik* – (4)

The complex shown in Eq. (4) can be computed using Eqs. (5) and
(6)
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Where, R is reflectance of the film and λ is the wavelength of the in-
cident beam. All samples had maximum value of refractive index (n ≈
2.8 at Ts = 450 °C) at very low wavelength of 300 nm (strong ab-
sorption region). The refractive index had a higher value at very low
wavelength (strong absorption). This was as a result of the quality be-
tween the frequency of incident electromagnetic radiation and the
plasma frequency of electrons, causing coupling of electrons in NiO
films to the oscillating electric field. A better surface homogeneity of
deposited NiO films was seen in the visible region. Increased substrate
temperature resulted in increased refractive index (imaginary part, k).
This was attributed to roughness of the film surface. This enhanced the
scattering losses that resulted in reduction of the transmitting ability of
the films. Optical transmittance spectra decreased as the substrate
temperature grew. In general, the index of refraction is higher for
shorter wavelengths of light and decreases monotonically with in-
creasing wavelength. The crystalline material experienced a higher
refractive index than the amorphous film. This was due to the lower
atomic density of each element in the amorphous state caused by the
higher average interatomic distance. Therefore, optical constants of
NiO thin films were influenced by the substrate temperature (Ts). Op-
tical absorption parameters, such as optical dispersion energies were
calculated under the effect of substrate temperature. These optical
constants correlated between obtained data and reported values. They
are shown in Table 4.

Yadav and Chavan [95] studied the influence of substrate tem-
perature on various physical and electrochemical properties of NiO thinTa
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films. This was achieved by spray depositing NiO thin films using nickel
chloride precursor. The thin films were deposited at temperatures of
425 °C, 450 °C, 475 °C and 500 °C. The structural analysis confirmed
cubic polycrystalline nickel oxide. The surface morphology revealed a
porous surface with inhomogeneous randomly shaped heaps. Optical
band gap energy was found to be in the range of 3.04–3.28 eV. The
electrical resistivity confirms the semiconducting behaviour of NiO
with room temperature activation energies of 0.30–0.38 eV. Other ob-
served results are tabulated in Table 5. From the study, it was seen that
substrate temperature has an effect on the physical and electrochemical
properties of NiO thin film.

Devasthali and Kandalkar [96] used NiO thin film electrodes for a
super capacitor. This was achieved by using two different substrates
(glass and fluorine-doped Tin Oxide FTO). A nickel chloride precursor
of 0.05 M was deposited at 623 K. The substrates were cleaned by first
boiling in chromic acid for 10 min and then cleaned ultrasonically. The
spray rate was 4 cm3/min and nozzle to substrate distance was 28 cm.
The XRD pattern is shown in Fig. 10. The film deposited on glass sub-
strate was amorphous in nature while FTO film was polycrystalline. The

Fig. 15. SEM pictures at a magnification of 5000 of the NiO films
sprayed for 30 min onto glass substrates heated to 350 °C (top)
and 450 °C (bottom) for the situations of 20 ml/h (left) and
60 ml/h (right) precursor solution flux [102].

Fig. 16. NiO band gap values for both substrate temperatures versus film thickness for
increasing precursor solution flux at a fixed spray time of 30 min and for increasing spray
time at a fixed precursor solution flux of 20 ml/h [102].

Fig. 17. XRD pattern of NiO films with (a) nickel acetate (b) nickel chloride precursor [104].
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major XRD peak reflection was along the (1 1 1) plane and the other
peak corresponding to the (2 0 0) plane was observed at lower scat-
tering intensity.

Fig. 11 shows the SEM images of spray deposited NiO thin film on
glass and FTO substrate respectively. Overgrown clusters were observed
in the smaller grains. The average grain size of the NiO was found to be
120 nm from the SEM micrograph. The surface of the film was evenly
covered with no cracks and pinholes.

2.2. Nickel acetate precursors

Nickel acetate tetrahydrate precursors have been reported to de-
compose in a two-step process [97]. The first step is by dehydration
from 95 °C to 150 °C as shown in Eq. (7). Secondly, through decom-
position of the acetate between 300 °C and 350 °C as shown in Eq. (8).
The overall reaction process is expressed as decomposition of nickel
acetate to clusters of nickel oxide in the presence of water and air
oxygen.

⎯ →⎯⎯C H O H Ni C H ONi( ) . 4 0 ( )
heat

2 3 2 2 2 2 3 2 2 (7)

⎯ →⎯⎯ + ↑ + ↑
⏐⏐⏐⏐C H O NiO H O CONi( ) 3 4

heat
2 3 2 2 2 2 (8)

Sriram and Thayumanavan [98] studied the effect of ageing on NiO
thin films. The study compared a freshly prepared NiO film with a 24 h
aged thin film. The films were prepared using a 0.1 M solution of nickel
acetate tetrahydrate. This was mixed in a mixture of ethanol and
deionized water. The freshly prepared sample was sprayed immediately
after preparation onto a glass substrate. The aged solution was left for
24 h after preparing before depositing. A volume of 50 ml was used for
both films. The films were deposited at a temperature of 330 °C using
air as a carrier gas. The temperature was selected since it is within the
decomposition temperature of acetate. X-ray diffractograms of the
freshly prepared and aged solutions of the deposited NiO thin films are
shown in Fig. 12. The peaks were recorded at 2θ = 35.94, 42.67 and
62.18 for the freshly prepared solution (shown in blue). The aged so-
lution (shown in red) were recorded at 2θ = 36.362, 43.43 and 62.58,
which correspond to the (111), (200) and (220) crystal planes respec-
tively. The XRD corresponds with the bunsenite structure of standard
NiO cubic structure depicted with JCPDS card no. 89-7130.

The average particle size was 21 nm for the freshly prepared and
60.3 nm for the 24 h aged solution. The surface morphology is shown in
Fig. 13. The films were well formed, adhered properly with the sub-
strate and were devoid of cracks. The aged solution had greater grain
size than the freshly prepared films.

The freshly prepared and 24 h aged absorption edge was found to be
350 nm. The transmission spectrum is shown in Fig. 14. It was observed
that the freshly prepared (sample 1) transmittance is greater than the
aged solution. The optical band gap for freshly prepared solution was
3.6 eV and for aged was 3.5 eV. This optical band gap decrease resulted
in grain size increment. The study attributed this to ageing of the pre-
cursor solution. The calculated refractive index (η) was done using
PUMA software created by Birgin et al. [99]. The freshly prepared so-
lution had an equal refractive index in the visible region of 1.95. This
value is lesser than the 2.12 obtained using the electron beam physical
vapour technique [100]. However, the aged solution refractive index
decreased up to 400 nm and remained constant at 1.77. Extinction
coefficient varied in the UV region for both films. It was almost constant
in the visible and near infrared (NIR) region for both aged and freshly
prepared solutions. The electrical properties of the aged and freshly
prepared NiO thin films are shown in Table 6. The NiO films were
confirmed as p-type by Hall effect measurement. Therefore, ageing has
an effect on NiO thin films properties.

Mahmoud et al. [101] investigated the effect of varying substrate
temperatures on the structural and optical dispersion properties of NiO
films. Nickel acetate of 0.05 M solution in ethanol was deposited using
SPT. This was done at a substrate temperature of 225 °C to 350 °C on an
ultrasonically cleaned glass substrate. The nozzle diameter was 0.7 mm,
deposition time was 15 s and spraying period was 3 min. The height of
the spraying nozzle was maintained at 35 cm. In addition, the rate of
spraying was kept at 15 cm3/min in order to achieve a homogeneous
film. A thermocouple was used for measuring the temperature. The XRD
pattern gave amorphous films at low substrate temperature of 225 °C. A
cubic single phase structure was formed at above 275 °C with pre-
ferential growth along the (1 1 1) plane. The AFM 3D images gave fine
surface of 45 nm thickness with mean grain size of 3.9 µm2. Refractive
index is dependent on substrate temperature and film thickness. The
highest refractive index was recorded at λ>400 nm for all the sam-
ples. The optical band gap was 3.83 eV for 225 °C and 3.14 eV for
350 °C. The film thickness reduced with increasing substrate

Fig. 18. SEM micrograph of NiO films (a) Nickel acetate (b) Nickel chloride precursors [104].
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temperature. The film thickness was 200 nm at substrate temperature of
225 °C and at 350 °C it was 40 nm. Other dispersion parameters are
shown in Table 7. The dielectric constants of ε∞ and ε∞, increased with
increasing substrate temperature, Ts. The dispersion energy, Eo reduced
with increasing substrate temperature Ts. NiO thin films properties are
influenced by the substrate temperature.

Romero et al. [102] investigated the effect of substrate temperature
and precursor solution flux on the properties of NiO films. The pre-
cursor solutions flux was 20 ml/h, 40 ml/h and 60 ml/h. The substrate
temperatures were 350 °C and 450 °C. Nickel acetate was deposited in
an open atmosphere with air as carrier gas on glass substrate. Reticular
tissue-like film morphology was obtained at 350 °C. Film got thicker
with increasing precursor solution flux. The surface morphology is
shown in Fig. 15. The film became 4 times slower in growth at substrate

temperature of 450 °C. Also, there was a highly symmetric self-ordering
of the material at nanometer length scale at a temperature of 450 °C.
The films consist of interconnected grains separated by pores, both of
about 100 nm in size. A cubic crystallite size of 10 nm was obtained for
the NiO thin films. There was a reduction in optical band gap as the film
thickness increased from 4.3 to 3.65 eV. This is shown in Fig. 16.

Desai et al. [103] researched large area NiOx thin films with a focus
on optimization of the preparative parameters. Preparative parameters
were substrate temperature, solution concentration, spray-nozzle dis-
tance to substrate. The study used a temperature range of 330 °C to
420 °C. Nickel acetate was deposited using spray pyrolysis technique
using Sn doped In2O3 (ITO) coated glass as substrate. The structural
studies showed formation of cubic NiO. The XRD gave a bunsenite
phase of NiO. The optical absorption studies gave direct band gap of

Fig. 19. XRD diffractograms of NiO films deposited with different precursors: (a) NiCl2·6H2O 0.1 M (b) Ni(NO3)2·6H2O 0.1 M (c) NiCl2·6H2O 0.3 M (d) Ni(NO3)2·6H2O 0.3 M (e) Ni
(OH)2·6H2O 0.3 M (f) NiSO4·4H2O molarity 0.3 M (Cattin et al., 2008) [105].
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3.61 eV. The compositional analysis indicated formation of non-stoi-
chiometric nickel oxide thin films.

2.3. Other precursors

This session reviewed studies with other precursors and/or mixture
of different precursors. Mathiyan et al. [104] studied effects of varying
precursors and temperature on NiO thin films. Nickel acetate and nickel
chloride precursors were deposited on a cleaned glass substrate. Tem-
peratures were 473 K and 523 K. Fig. 17 shows the XRD patterns for the
NiO films. Both precursors gave polycrystalline FCC structure with a
strong diffraction along the (1 1 1) direction. Surface morphology in-
dicated inhomogeneous nanostructured grains with spherical mor-
phology. The grain size is the same for both precursors. The surface
morphology of the films is represented in Fig. 18. There was an incre-
ment in grain size and size particle as spray solution increased.

A study was conducted using four different precursors of NiO films
by Cattin et al. [105]. The study also varied the concentrations of the
precursor between 0.2 M and 0.3 M. The four precursors were deposited
using modified SPT. A perfume atomizer was used to grow the aerosol
for the spray pyrolysis. The films were deposited at a substrate tem-
perature of 350 °C. The precursors were nickel chloride hexahydrate
(NiCl2·6H2O), nickel nitrate hexahydrate (Ni(NO3)2·6H2O), nickel hy-
droxide hexahydrate (Ni(OH)2·6H2O), and nickel sulfate tetrahydrate
(NiSO4·4H2O). Post annealing was performed on the films at 425 °C for
3 h at both room atmosphere and vacuum. All precursors gave p-type
conductivity. Conductivity and optical transmittance of NiO films de-
pended on the annealing process. The properties of films annealed at
room temperature were not significantly modified. This is because the
temperature and the environment of annealing were the same as the
spray deposition experimental conditions. It was observed that an-
nealing conducted in vacuum were more efficient. The conductivity and

Fig. 20. SEM images of NiO films deposited with different precursors: (a) NiCl2·6H2O 0.1 M (b) Ni(NO3)2·6H2O 0.1 M (c) NiCl2·6H2O 0.3 M (d) Ni(NO3)2·6H2O 0.3 M (e) Ni(OH)2·6H2O
0.3 M (f) NiSO4·4H2O molarity 0.3 M (Cattin et al., 2008) [105].
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optical transmission modifications were related to interaction between
residual oxygen. The structure and morphology of the films are re-
presented in Figs. 19 and 20 respectively. Nickel chloride and nickel
nitrate precursors produced pure NiO films crystal in the cubic phase,
while precursors of Ni(OH)2 and NiSO4 did not encourage growth of
pure NiO films. However, Ni(OH)2 and NiSO4 precursors can be useful
as original electrode in electrochromic devices and solar cells.

Xia et al. [106] worked on nickel formate as a precursor. The ex-
perimental set-up of the equipment is shown in Fig. 21. The obtained
XRD patterns are shown in Fig. 22. The absence of HCOOH in the so-
lution gives very weak nickel peaks at 300 °C. Nickel coexisted with
NiO at 350 °C (and also at 400 °C), and the Ni(HCOO)2 was completely
decomposed.

A comparative study of NiO films prepared using two deposition
methods was conducted by Chtouki et al. [107]. The study made use of
spin coating and the spray pyrolysis deposition method. The structural,
morphological, linear and nonlinear optical properties of NiO thin films
were compared. The spray pyrolysis deposited solution was a mixture of
0.5 M and 0.75 M nickel chloride dissolved in 30 ml deionized water.
The spray time was 3 min on a pre-heated glass substrate at 350 °C. The
resultant films were then annealed at 350 °C for 45 mins. Also, the spin
coating was deposited using a mixture of 0.5 M and 0.75 M nickel
acetate dissolved in 10 ml of 2-Methoxy-ethanol (C3H8O2). This was
mixed with 0.30 ml for the 0.5 M/L and 0.45 ml for the 0.75 M/L of
monoethanolamine (C2H7NO) (MEA). The MEA was used as a stabilizer
and 2-Methoxyethanol as solvent. This was stirred at 60 °C for an hour.
The filtered solution was then rotated at 3600 rpm for 30 s in a spin-
coater. The films experienced reduction in band gap for both methods
as precursor concentration increased. The spin coating method gave an
optical band gap of 3.70–3.65 eV for 0.5 M and 0.75 M respectively.
The spray pyrolysis technique gave 3.56–3.50 eV for 0.5 M and 0.75 M
respectively. NiO film transmittance decreased as the concentration
increased for both deposition methods. Spray pyrolysis deposited film
experienced 60% transparency in visible and near infrared regions for
0.75 M and 70% for 0.5 M. Spin coated NiO films had 80% transpar-
ency in visible and near infrared regions for 0.5 M. The structural
properties for both methods revealed intense manifestation of the XRD
peaks as precursor concentration increased. This was attributed to
growth of film thickness. NiO films had cubic structures in both

methods with no unwanted phases. The spin coated method had two
peaks. The major peak was at 2θ = 43° for the (2 0 0) plane with
preferential orientation. The other is at 2θ = 63° for the (2 2 0) plane.
The sprayed deposited NiO films had three distinct peaks: firstly, at 2θ
= 37° for the (1 1 1) plane; secondly at 2θ = 43° for the (2 0 0) plane;
and thirdly at 2θ = 63° for the (2 2 0) plane. The most intense peak was
along the (1 1 1) plane. Table 8 shows the major parameters that have
been reviewed.

3. Conclusion

It has been shown that both physical and chemical deposition
techniques can be used to deposit NiO film on different substrates. This
paper successfully reviewed different works on NiO films deposited
with SPT. SPT was examined because of its simplicity, low cost, feasi-
bility for mass production and high purity of deposited products. Nickel
chloride, nickel acetate, nickel hydroxide, nickel sulfate and nickel
formate have been used as precursors for spray depositing NiO thin
film.

The properties of NiO thin film has been studied using XRD, SEM,
AFM, FTIR and UV spectrometer respectively. Precursors of nickel ni-
trate, nickel chloride, and nickel acetate support growth of pure NiO
thin film. However, Ni(OH)2 and NiSO4 precursors do not support
growth of pure NiO film. Nickel chloride and nickel acetate were the
most used and highly available precursors, although the end product of
both precursors is different. The nickel chloride precursor contains an
acid (HCl) as a final product that corrodes the spraying gun. The acid
also causes reduction in the durability of the final film. However, nickel
acetate precursor contains no acid making it a better option in terms of
durability. The deposition parameters of NiO film have an effect on the
surface texture and grain size of the film.

NiO thin film is an excellent material for optoelectronic applica-
tions. It is efficient, low cost, durable and with a wide band gap of
3.25–4.0 eV.

Fig. 21. Spray pyrolysis apparatus for nickel formate deposition (B. Xia et al., 2001)
[106].

Fig. 22. XRD patterns of the powders formed in a N2 atmosphere using 0.11 M of Ni
(HCOO)2 solution (a) without formic acid and (b) with formic acid 6 M of HCOOH [106].
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Further studies are encouraged on nanostructured nickel oxide thin
film. SPT is encouraged for depositing the film. Precursors of nickel
acetate and nickel chloride are viable for pure NiO films. SPT NiO film
is recommended to stakeholders interested in solving electricity pro-
blems in low income and developing countries.
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CHAPTER 4: DEPOSITION AND 

OPTIMIZATION OF NANOSTRUCTURED NiO 

THIN FILM DEPOSITION USING THE SPRAY 

PYROLYSIS TECHNIQUE 

 

This chapter gives the deposition and optimization of the nanostructured NiO thin films. This 

is divided into four parts.  

Part 1 gives the optimization of NiO using concentration and published in Energy Procedia, 

Elsevier publishers: 

Ukoba, O.K., Eloka-Eboka, A.C. and Inambao F.L. “Influence of concentration on properties of spray 

deposited nickel oxide films for solar cells,” Energy Procedia, volume 142, December 2017, pp. 236–243 

Part 2 discussed the optimization from the angle of annealing and published in Energy 

Procedia, Elsevier publishers: 

Ukoba, O.K., Inambao F. L. and Eloka-Eboka, A.C. “Influence of annealing on properties of spray 

deposited nickel oxide films for solar cells,” Energy Procedia, volume 142, December 2017, pp. 244–252.  

Part 3 looked at effect of ageing on nanostructured NiO thin films for solar cells fabrication 

published in Journal of Physical Science (JPS):  

Ukoba, O.K., Eloka-Eboka, A.C. and Inambao F. L. “Optimizing Aged Nanostructured nickel oxide thin 

films for solar cells,” Journal of Physical Science (JPS), 2018 (Accepted) 

Lastly, part 4 studied the combine effect of temperature and ageing on nanostructured nickel 

oxide for solar cells published in International Journal of Renewable Energy Research (IJRER): 

Ukoba, O.K., Inambao F.L. and Eloka-Eboka, A.C. “Study of deposition temperature on properties of aged 
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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.

© 2017 The Authors. Published by Elsevier Ltd.
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Abstract

Spray pyrolysis technique was used to deposit various concentration of nickel oxide films on glass substrate. The Effect of varying 
precursor concentration on elemental, morphological and structural properties was investigated on the deposited NiO films. Nickel
(II) acetate tetrahydrate precursor was used at substrate temperature of 350 oC. Precursor concentrations were 0.025, 0.05, 0.075 
and 0.1 M. Scanning Electron Microscope (SEM) surface morphology revealed nanostructured films with particles densely 
distributed across substrates surface. Increased in surface grains was observed as the precursor solution increased. Elemental 
composition of NiO films revealed presence of Ni and O element. There was reduction in oxygen concentration as precursor 
solution increases. Amorphous structure was observed at concentration of 0.025 M while polycrystalline with cubic structure was 
observed at higher concentrations. Preferred orientation was along (1 1 1) peak with small intensity along (2 0 0) peak. XRD 
patterns have peak diffraction at (2θ = 37 o and 43 o) for (1 1 1) and (2 0 0) planes respectively and 64 o for (2 2 0) plane for 0.1 M. 
Film thickness grew with increase in precursor concentration. Film micro strain was observed to have compression for all precursor 
solution conspicuously revealing the effect of varied concentration on NiO films properties.

© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the scientific committee of the 9th International Conference on Applied Energy.

Keywords: NiO; solar cells material; annealing, low income

1. Introduction

About one-fourth of earth’s inhabitants lacks access to electricity with little or no changes in absolute terms since 
1970s (Ahuja & Tatsutani, 2009). Most developing countries still struggle with affordable stable electricity (Ebhota, 

* Corresponding author. Tel.: +27640827616; fax: +0-000-000-0000 .
E-mail address: ukobaking@yahoo.com

2 Author name / Energy Procedia 00 (2017) 000–000

Eloka-Eboka, & Inambao, 2014). Renewable energy especially solar energy is one of envisaged solution. Solar energy 
is one of the best sources of renewable energy. Hourly solar influx on earth surface surpasses annual human energy 
needs (Lewis, 2007). Solar energy is environmentally benign. About 40 % million tons of CO2 emissions is saved per 
year when 1 % of world electricity demand is supplied by solar grid (Gardner, 2008). However, cost is militating 
against successful deployment of solar technology worldwide because, converting solar energy into electricity occurs 
at a price comparable with fossil fuel. Solar cells are integral part of solar energy (Green, 1982). Large scale production 
and affordable cost is still researched into in fabrications of solar cells (Eslamian, 2014). This is attributed to difficulty 
in scaling up existing methods or expensive nature and complexities associated with vacuum environment fabrication. 
However, nanostructure metal oxide offers promises. Nanostructures materials offers potential improvement on 
efficiency of photovoltaic (PV) solar cells, reduction in manufacturing and electricity production costs (Serrano, Rus, 
& Garcia-Martinez, 2009). It is achievable by increased surface area to volume ratio of nanoparticles. This enhances 
solar energy collection and efficiency by exposing more conducting surfaces to sunlight. Nanostructures materials 
have unique characteristics that cannot be obtained from conventional macroscopic materials (Hussein, 2015).
Conventional materials have weaknesses in the absorption properties of the conventional fluids which can lead to 
reduced efficiency of solar cells devices. Inorganic semiconducting materials are economical, environmentally
friendly and viable sources for solar cells (Joshi, Mudigere, Krishnamurthy, & Shekar, 2014). In recent years, 
fabrication of nanostructured metal oxide films is attracting interest in terms of technological applications (Drevet et 
al., 2015; Rahal, Benhaoua, Jlassi, & Benhaoua, 2015; Shaikh, Inamdar, Ganbavle, & Rajpure, 2016; Zhang et al., 
2006). They have been studied due to their vast usage (Soonmin, 2016). They have found applications in solar cells, 
UV detectors, electrochromic devices, anti-ferromagnetic layers, p-type transparent conductive thin films and
chemical sensors (Li & Zhao, 2010; Magaña, Acosta, Martínez, & Ortega, 2006; Nam et al., 2015; Park, Sun, Sun, 
Jing, & Wang, 2013; Wu & Yang, 2015; Zhu et al., 2014). Nanostructured metal oxides often express n-type 
conductivity with few displaying p-type. Nickel Oxide (NiO) is a p-type semiconductor with wide band gap from 3.5 
to 4.0 eV (Boschloo & Hagfeldt, 2001). Nickel oxides exist in various oxidation states (Subramanian et al., 2008).
NiO has rhombohedral or cubic structure and possesses pale green color. NiO have excellent durability and 
electrochemical stability with a large range of optical densities. It is a promising material for various applications 
because of its better optical, electrical and magnetic properties. Nickel oxide thin films have been deposited using 
different methods; sputtering (Keraudy et al., 2015), sol–gel (Jlassi, Sta, Hajji, & Ezzaouia, 2014), electron beam 
deposition (El-Nahass, Emam-Ismail, & El-Hagary, 2015), laser ablation (Wang, Wang, & Wang, 2012), chemical 
bath deposition (Vidales-Hurtado & Mendoza-Galván, 2008). Spray Pyrolysis Technique is simple, low cost and 
feasible for mass production (Ismail, Ghafori, & Kadhim, 2013). Spray Pyrolysis is method that allows coating on 
large area by films of very thin layers with uniform thickness (Gowthami, Perumal, Sivakumar, & Sanjeeviraja, 2014).
This study aims to optimize the precursor concentration of NiO films with motivation for efficient and affordable 
application in solar cells development. The scope involves: the preparation of a nanostructured NiO thin films on a 
glass substrate using SPT for deposition of aqueous solution of nickel (II) acetate tetrahydrate and determine the effect 
of varying the concentration on different properties of NiO films.

2. Experimental Procedure

2.1. Spray Pyrolysis set up

Experimental setup for spray pyrolysis used is shown in Figure 1. The set up consists of heater, air compressor, 
temperature controller, exhaust fan and pipe, spray gun with attached container. The container was used to hold the 
precursor solution. Spray gun was connected to the air compressor using hose or pipe. Temperature of 350 oC was 
attained and read by thermocouple attached to the heater before commencing deposition. The carrier gas is compressed 
air at pressure of 1bar.
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friendly and viable sources for solar cells (Joshi, Mudigere, Krishnamurthy, & Shekar, 2014). In recent years, 
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al., 2015; Rahal, Benhaoua, Jlassi, & Benhaoua, 2015; Shaikh, Inamdar, Ganbavle, & Rajpure, 2016; Zhang et al., 
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to 4.0 eV (Boschloo & Hagfeldt, 2001). Nickel oxides exist in various oxidation states (Subramanian et al., 2008).
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deposition (El-Nahass, Emam-Ismail, & El-Hagary, 2015), laser ablation (Wang, Wang, & Wang, 2012), chemical 
bath deposition (Vidales-Hurtado & Mendoza-Galván, 2008). Spray Pyrolysis Technique is simple, low cost and 
feasible for mass production (Ismail, Ghafori, & Kadhim, 2013). Spray Pyrolysis is method that allows coating on 
large area by films of very thin layers with uniform thickness (Gowthami, Perumal, Sivakumar, & Sanjeeviraja, 2014).
This study aims to optimize the precursor concentration of NiO films with motivation for efficient and affordable 
application in solar cells development. The scope involves: the preparation of a nanostructured NiO thin films on a 
glass substrate using SPT for deposition of aqueous solution of nickel (II) acetate tetrahydrate and determine the effect 
of varying the concentration on different properties of NiO films.

2. Experimental Procedure

2.1. Spray Pyrolysis set up

Experimental setup for spray pyrolysis used is shown in Figure 1. The set up consists of heater, air compressor, 
temperature controller, exhaust fan and pipe, spray gun with attached container. The container was used to hold the 
precursor solution. Spray gun was connected to the air compressor using hose or pipe. Temperature of 350 oC was 
attained and read by thermocouple attached to the heater before commencing deposition. The carrier gas is compressed 
air at pressure of 1bar.
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Fig 1: Experimental set-up of spray pyrolysis technique

2.2. Precursor preparation and deposition 

Concentration of 0.025, 0.05, 0.075 and 0.1 M of nickel (II) acetate tetrahydrate (Ni(𝐶𝐶𝐶𝐶2𝐻𝐻𝐻𝐻3𝑂𝑂𝑂𝑂2)2. 4𝐻𝐻𝐻𝐻2𝑂𝑂𝑂𝑂) (Medicine, 
2007) were used as precursor solution. It was dissolved in 50 mL distilled water and stirred for 10 minutes. The 
precursor solution was poured into spray gun container. Glass substrate was chemically and ultrasonically cleaned
and thereafter heated at constant temperature of 350 oC on a heater. Other deposition parameters were maintained to 
obtain uniform film thickness. Optimum deposition parameters of spray deposited NiO films are shown in Table 1. 
Each droplet from the spray gun was less than micro sized particles. Sprayed solution on the preheated substrate glass 
undergoes evaporation. Solute precipitation and pyrolytic decomposition are as shown in Equation (1). The major end 
product is nickel oxide thin films.

Ni(𝐶𝐶𝐶𝐶2𝐻𝐻𝐻𝐻3𝑂𝑂𝑂𝑂2)2. 4𝐻𝐻𝐻𝐻2𝑂𝑂𝑂𝑂
ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
�⎯�𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑂𝑂𝑂𝑂 + 7𝐻𝐻𝐻𝐻2𝑂𝑂𝑂𝑂 ↑ +4𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂2 ↑ (1)

Colour of prepared thin films was observed to be gray, uniform and strongly adhered to glass substrate. 
Thermocouple was fixed to substrate’s surface to record the temperature.

Table 1. Optimum deposition parameter of SPT NiO films

Deposition parameter Value
Substrate temperature 350 oC
Height of spraying nozzle to substrate distance 20 cm
Spray rate 1 ml/min
Spray time 1 minute
Time between sprays 30 seconds
Carrier gas Filled compressed air 

of 1bar

2.3. Characterization

Morphology of deposited NiO film was studied using ZEISS ULTRA PLUS Field Emission Gun Scanning Electron 
Microscope (FEGSEM). Elemental composition was done with Energy Dispersive X-ray Spectrometer (EDS or EDX: 
“AZTEC OXFORD DETECTOR”). Structural properties of deposited NiO films were investigated using 
EMPYREAN (PANalytical) X-ray powder diffractometer for a range of 5 º to 90 º 2θ angles.

3. Results and Discussion

3.1. Morphological studies 

Figures 2 and 3 show the FEG SEM micrographs. It reveals homogeneous, smooth, well adherent films devoid 
of pinholes and cracks. It becomes grainier with bigger flakes as precursor concentration increased from 0.025 M to 
0.1 M. This is an improvement on results observed by (Bari, Patil, & Bari, 2013; Saadati, Grayeli, & Savaloni, 2010).
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This confirms that varying the concentration of the precursors affects the NiO films morphology.

a (b)
Fig 2: SEM micrographs of nickel oxide (NiO) film on glass substrate at (a) 0.025 M and (b) 0.05 M

(c)               (c)
Fig 3: SEM micrographs of nickel oxide (NiO) film on glass substrate at (a) 0.075 M and (b) 0.1 M

3.2. Elemental composition Analysis

     Figure 4 shows the EDX for the different concentration of the NiO thin films thereby confirming presence of Ni 
and O elements in NiO thin films. There was reduction in oxygen concentration in the deposited NiO films as precursor 
concentration increased as seen in Figure 4. This may be due to increase in film growth on the glass substrate thereby 
making less of the glass (oxygen) to be seen. Reguig et al. (Reguig et al., 2006) also reported presence of Ni and O 
elements. Additional Si element was also observed. This is because Silicon (Si) is present in soda-lime glass or soda-
lime-silica glass substrate (de Jong, 1989).

Fig 4: Elemental composition of deposited NiO films

3.3. Variation of the film thicknesses with precursor solution concentration 

Films thickness was investigated as a function of the precursor concentration ranging between 0.025 M and 0.1 M. 
The measured data are graphically represented in Figure 5. Using the weight difference method, film thickness was 
calculated using the relationship in Equation (2) (Godse et al., 2011):
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𝑡𝑡𝑡𝑡 = 𝑚𝑚𝑚𝑚/𝐴𝐴𝐴𝐴 (2)

Where t denotes the film thickness while m is the actual mass deposited onto the substrate, A is the area of the film 
and ρ is the density of material.

The calculated film thickness is shown in Figure 6. From Figures 5 and 6, it was seen that the measured and calculated 
values are in good agreement. It was found that film thickness grew with increasing precursor concentration except 
for 0.025 M. This is an improvement of results by Boyraz and Urfa (Boyraz & Urfa, 2015). This is as result of 
accumulation of deposited NiO on substrate. This was collaborated by EDX results in Figure 4. The kinetics of the 
NiO forming reaction increased with precursor concentration. During the deposition, nozzle to substrate height and 
the deposition time were kept constant to control the thickness of NiO thin films. Average thickness range of the NiO 
thin films was found between 6.277 and 11.57 µm.

(a)  (b)  (c)

(d)

Fig. 5. Measured NiO film thickness at (a) 0.025 M; (b) 0.05 M; (c) 0.075M; (d) 0.1M

Figure 6: Calculated film thickness of NiO films

3.4. Structural studies

The phase present and preferred orientation of deposited nanostructured NiO films was determined using X-ray 
diffractometer (XRD). Figure 7 shows the XRD patterns of deposited nanostructured NiO films at different precursor 
concentration. The patterns have peak diffraction at (2θ = 37 o, and 43 o) for (1 1 1) and (2 0 0) planes respectively 
and 64 o for (2 2 0) plane for 0.1 M. This agrees with Joint Committee on Powder Diffraction Standards—International 
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Centre for Diffraction Data, JCPDS 04- 0835 for Bunsenite (NiO) (Gabal, 2003). Highest intensity was recorded for 
(1 1 1) having a strong peak when 2θ = 37 o for precursor solution of 0.05 M, 0.075 M and 0.1 M which is equal to 
(Bakr, Salman, & Shano, 2015). This maybe as a result of increase in grain growth caused by larger film thickness. It
can also be due to increase in crystallinity as precursor solution concentration increases; thereby confirming 
polycrystalline with cubic crystalline structures of deposited NiO films similar to reported structure by Fadheela 
(2015). Lower intensity peak of (2 0 0) increases gradually as precursor solution increased from 0.05 M to 0.1 M with 
emergence of third peak (2 2 0) for 0.1 M. Average crystallite size was obtained using Debye Scherer formula (Barrett 
& Massalski, 1980; Scherrer & Nachr, 1918) in Equation (3) as shown in the following section.

𝐷𝐷𝐷𝐷 =  𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝛽𝛽𝛽𝛽 cos 𝜃𝜃𝜃𝜃

(3)

Where; Β denotes full width at half maximum (FWHM) intensity of the peak (in Radian), λ is wavelength, θ is 
Bragg’s diffraction angle and k is 0.89 respectively. Grain size for (1 1 1) and (2 0 0) planes are found to be 22 nm 
and 63.77 nm. Lattice constant was found to be 4.1905, 4.1856, 4.1852, 4.1850 Å for 0.025 M to 0.1 M respectively. 
This agrees with standard lattice constant of NiO film value of 4.176 Å (Pistorius, 1963).

Fig 7: XRD patterns of nanostructured NiO films at different precursor concentration

Micro strain was produced through growth of thin films and was calculated using the formula in Equation (4) (AL-
Jabiry, 2006).

𝛿𝛿𝛿𝛿 =   (𝑑𝑑𝑑𝑑_(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ) −  𝑑𝑑𝑑𝑑_𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝐷𝐷𝐷𝐷)/𝑑𝑑𝑑𝑑_𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴   × 100 (4)

Where “d” is the lattice constant and 𝛿𝛿𝛿𝛿 is micro strain.

A plot of NiO film micro strain against precursor solution is shown in Figure 8. It shows that there is an increase 
in micro strain as precursor concentration increases. Micro strain represents compression as seen in Table 2 which 
gives detail result of micro strain, lattice constants and 2θ values for deposited NiO films for precursor solution 
concentration of 0.025 M to 0.1 M. 

Table 2: Calculated parameters from XRD data

Parameter
0.025 M 0.05 M 0.075 M 0.1 M

2θ
hkl 37 37 37
(1 1 1)
( 2 0 0) x 43 43 43
( 2 2 0) x X x 63

Lattice 
constant 
d  (Ả)

recorde
d XRD 

4.1905 4.1855 4.1852 4.1850

ASTM 4.1684 4.1684 4.1684 4.1684
Micro strain (𝛿𝛿𝛿𝛿) % -0.5301 -0.4102 -0.4030 -0.3982
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Fig. 8. Plot of Micro strain against precursor solution concentration for NiO films

4. Conclusion

In this study, nanostructured nickel oxide films were successfully deposited by spray pyrolysis of nickel (II) acetate 
tetrahydrate on glass substrate. The effect of varying precursor concentration of NiO films on elemental, 
morphological and structural properties were studied with a view to optimizing the material for solar cells application.
This study contributed new results relating to surface morphology, structural, film thickness and micro strain of NiO 

films using SPT. The results clearly showed that varying the precursor solution concentration has effect on the 
morphological and elemental properties of nickel oxide thin films. The surface morphology is improved by increasing 
precursor solution concentration. Film thickness is improved as precursor solution concentration increases. Oxygen 
concentration reduces as precursor concentration decreases.
There is mark improvement on crystallinity with increasing precursor solution concentration. Leading to higher peak 

intensity and diffraction. New Peak diffraction was recorded at (2θ = 37 o, and 43 o) for (1 1 1) and (2 0 0) planes for 
0.05 M concentration and above and 64 o for (2 2 0) plane for 0.1 M. Lattice constant decreases from 4.1905 to 4.1850
Å for 0.025 M to 0.1 M which correlate 4.176 Å standard lattice constant of NiO. Micro strain of films shows 
compression and increases with precursor concentration.
Varying concentration of precursor solution has effect on overall properties of nanostructured nickel oxide thin films. 
Precursor solution 0.1 M outperformed others by showing good crystallinity and good film thickness. Therefore, NiO 
films from 0.1 M concentration can be further explored for solar cells application.
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Fig. 8. Plot of Micro strain against precursor solution concentration for NiO films

4. Conclusion

In this study, nanostructured nickel oxide films were successfully deposited by spray pyrolysis of nickel (II) acetate 
tetrahydrate on glass substrate. The effect of varying precursor concentration of NiO films on elemental, 
morphological and structural properties were studied with a view to optimizing the material for solar cells application.
This study contributed new results relating to surface morphology, structural, film thickness and micro strain of NiO 

films using SPT. The results clearly showed that varying the precursor solution concentration has effect on the 
morphological and elemental properties of nickel oxide thin films. The surface morphology is improved by increasing 
precursor solution concentration. Film thickness is improved as precursor solution concentration increases. Oxygen 
concentration reduces as precursor concentration decreases.
There is mark improvement on crystallinity with increasing precursor solution concentration. Leading to higher peak 

intensity and diffraction. New Peak diffraction was recorded at (2θ = 37 o, and 43 o) for (1 1 1) and (2 0 0) planes for 
0.05 M concentration and above and 64 o for (2 2 0) plane for 0.1 M. Lattice constant decreases from 4.1905 to 4.1850
Å for 0.025 M to 0.1 M which correlate 4.176 Å standard lattice constant of NiO. Micro strain of films shows 
compression and increases with precursor concentration.
Varying concentration of precursor solution has effect on overall properties of nanostructured nickel oxide thin films. 
Precursor solution 0.1 M outperformed others by showing good crystallinity and good film thickness. Therefore, NiO 
films from 0.1 M concentration can be further explored for solar cells application.
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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

Nickel oxide thin films were deposited on soda lime glass substrates by spray pyrolysis technique (SPT). Post-deposition annealing 
was carried out at 450 oC. Effects of annealing on the structural, elemental and surface morphological properties of the thin NiO 
films were investigated. XRD confirms polycrystalline with cubic crystalline structures of deposited and annealed NiO films. 
Preferred orientation was along (1 1 1) peak with intensity along (2 0 0) peak improved by annealing. The annealing process 
improved on formation of crystalline phases. XRD patterns have peak diffraction at (2θ = 37 o, and 43 o) for (1 1 1) for deposited 
and annealed.  Peak diffraction at (2θ = 64 o, and 79 o) for (2 0 0) planes for 0.1 M and annealed respectively. Annealing improved 
on the film thickness by over 10 %. Surface morphology of deposited and annealed NiO films reveals nanocrystalline grains with 
uniform coverage of the substrate surface with randomly oriented morphology. Larger flakes are formed as a result of the annealing 
process. EDX elemental NiO films composition revealed presence of Ni and O elements in NiO films. A decrease in oxygen 
concentration was also observed confirming positive effect of annealing as an optimization process. Optimization of nickel oxide 
deposition process parameters offers opportunities for efficient and affordable solar cells. 
© 2017 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

Population growth geometrically increases the need for more demand for energy [1]. Solar energy is a viable source 
of sustainable energy. Present solar panels are still not affordable to low income earners. This is caused by the 
expensive nature of silicon. Current solar photovoltaics market is dominated by silicon. Silicon is an abundant element 
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but large production of it for photovoltaic is expensive. Key Materials selection for future solar cells are abundance 
and inexpensive elements for large scale production [2]. Nanostructured metal oxides fit this description. Metal Oxide 
thin films have promising technological potentials in solar cells. They require both vast area electrical contact and 
optical access in visible region of light spectrum [3]. Fabrication of nanostructure metal oxide films has generated 
interests over the years [4-8]. There are wide range of applications in radiation detector, solar cells, semiconducting 
devices, laser materials and thermoelectric devices optoelectronic devices [9-12]. 

Nanostructured metal oxides with p-type conductivity are rare. Nickel Oxide (NiO) is a one of few p-type 
semiconductors [13] with wide band gap from 3.5 eV to 4.0 eV [14]. It offers great prospect for large scale production 
of efficient low cost solar energy. NiO has rhombohedral or cubic structure and possesses pale green color. It has 
excellent durability and electrochemical stability [15]. It possesses large range of optical densities due to better optical, 
electrical and magnetic properties. It is a promising material for various applications which includes: solar cells, UV 
detectors, electrochromic devices, anti-ferromagnetic layers, p-type transparent conductive thin films, chemical 
sensors [16-20]. 

 Nickel oxide thin films have been deposited using different methods; laser ablation [21], sputtering [22], sol–gel 
[23], chemical bath deposition [24] among others. Spray pyrolysis has the advantages of easy, quick, economic and 
large area deposition [25]. Spray pyrolysis is a process for depositing films. Solutions are sprayed on a heated surface 
and constituents react to form chemical compounds [26]. Chemical reactants are chosen to enable unwanted product 
to be decompose at the deposition temperature [27]. 

Optimization of NiO deposition process parameters offers opportunities for its usage in varied applications 
especially solar cells [28]. This study is on the influence of annealing temperature on resultant properties of spray 
pyrolysis deposited nickel oxide thin films for possible solar cells application.  

Several studies have used Nickel chloride over nickel acetate as precursor [29, 30]. Nickel acetate precursor is used 
in this study. It does not react with the spraying gun unlike the Nickel chloride which also leaves traces of chlorine 
[31]. This study is an improvement to existing approach of depositing NiO films for solar cells application. 

2. Experimental Procedure 

2.1. Substrate selection and Cleaning 

Soda lime glass was used as substrate. It was first washed with detergent and cotton wool. Thereafter it was cleaned 
chemically using acetone, methanol and isopropanol for 15 minutes each in ultrasonic bath. It was finally washed with 
deionized water and dried by flow of nitrogen gas.  

2.2. Preparation of the solution for spray pyrolysis 

Analytical grade nickel (II) acetate tetrahydrate was used. Precursor solutions were sprayed on glass substrates 
with air as carrier gas by spray pyrolysis technique (SPT). Pure nickel oxide thin films were deposited with 
concentrations of 0.05 M and 0.1 M using nickel (II) acetate Ni(C2H3O2)2.4H2O as precursor. Each precursor 
concentration was dissolved in 50 ml of distilled water. Solution mixtures were stirred thoroughly with a magnetic 
stirrer for 15 minutes leading to the formation of a pale green solution. Solution was sprayed manually on the pre-
heated glass substrate kept at 350 oC. The sprayed 0.1 M films was annealed for 60 minutes at 450 oC in a furnace. 
This became the annealed samples. Sprayed solution on the preheated substrate glass undergoes evaporation, solute 
precipitation and pyrolytic decomposition according to Equations (1) [32]. The end product is nickel oxide thin films. 

 
Ni���������� ���� ���������� � ���� ↑ ����� ↑       (1) 

 
Optimum deposition parameters of the spray deposited NiO films are shown in table 1. Thermocouple was fixed 

to substrate’s surface to record substrate temperature. Prepared NiO films were observed to be gray in colour, uniform 
and strongly adhered to the glass substrate. 
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1. Introduction 

Population growth geometrically increases the need for more demand for energy [1]. Solar energy is a viable source 
of sustainable energy. Present solar panels are still not affordable to low income earners. This is caused by the 
expensive nature of silicon. Current solar photovoltaics market is dominated by silicon. Silicon is an abundant element 
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and constituents react to form chemical compounds [26]. Chemical reactants are chosen to enable unwanted product 
to be decompose at the deposition temperature [27]. 

Optimization of NiO deposition process parameters offers opportunities for its usage in varied applications 
especially solar cells [28]. This study is on the influence of annealing temperature on resultant properties of spray 
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Several studies have used Nickel chloride over nickel acetate as precursor [29, 30]. Nickel acetate precursor is used 
in this study. It does not react with the spraying gun unlike the Nickel chloride which also leaves traces of chlorine 
[31]. This study is an improvement to existing approach of depositing NiO films for solar cells application. 
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Soda lime glass was used as substrate. It was first washed with detergent and cotton wool. Thereafter it was cleaned 
chemically using acetone, methanol and isopropanol for 15 minutes each in ultrasonic bath. It was finally washed with 
deionized water and dried by flow of nitrogen gas.  

2.2. Preparation of the solution for spray pyrolysis 

Analytical grade nickel (II) acetate tetrahydrate was used. Precursor solutions were sprayed on glass substrates 
with air as carrier gas by spray pyrolysis technique (SPT). Pure nickel oxide thin films were deposited with 
concentrations of 0.05 M and 0.1 M using nickel (II) acetate Ni(C2H3O2)2.4H2O as precursor. Each precursor 
concentration was dissolved in 50 ml of distilled water. Solution mixtures were stirred thoroughly with a magnetic 
stirrer for 15 minutes leading to the formation of a pale green solution. Solution was sprayed manually on the pre-
heated glass substrate kept at 350 oC. The sprayed 0.1 M films was annealed for 60 minutes at 450 oC in a furnace. 
This became the annealed samples. Sprayed solution on the preheated substrate glass undergoes evaporation, solute 
precipitation and pyrolytic decomposition according to Equations (1) [32]. The end product is nickel oxide thin films. 
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Table 1. Optimum deposition parameter of SPT NiO films 

Deposition parameter Value 
Substrate temperature 350 oC 
Height of spraying nozzle to substrate distance 20 cm 
Spray rate 1 ml/min 
Spray time 1 minute 
Time between sprays 30 seconds 
Carrier gas Filled compressed 

air of 1  bar 

2.3. Characterization 

Morphological property of deposited and annealed NiO film was studied using ZEISS ULTRA PLUS Field 
Emission Gun Scanning Electron Microscope (FEGSEM). Elemental composition was done with Energy Dispersive 
X-ray Spectrometer (EDS or EDX: “AZTEC OXFORD DETECTOR”). Structural properties of deposited NiO film 
were investigated using EMPYREAN (PANalytical) X-ray powder diffractometer for a range of 5 º to 90 º 2θ angles. 
Results of characterized annealed and un-annealed samples are hereby compared. 

3. Results and Discussion 

3.1. Morphological studies  

Figure 1 shows the SEM micrographs for both annealed and not annealed deposited NiO films. The SEM 
micrographs reveal homogeneous, smooth, well adherent films devoid of pinholes and cracks. Bigger flakes of grain 
were observed as a result of annealing. It is as a result of accelerated inter-diffusion between the deposited atoms and 
the glass substrates. The annealed samples show more concentration of particles, closely parked and bigger flakes 
compared with the un-annealed. This is due to the rearrangement and alignment caused by application of heat to the 
films. This agrees with previous report of Godse, et al. [33]. This confirms that annealing affects NiO films 
morphology. 

a      b    c  
Fig. 1. SEM micrographs of nickel oxide (NiO) film on glass substrate at (a) 0.05M un-annealed; (b) 0.1M un-annealed (c) 0.1M annealed 

3.2. Elemental composition analysis 

EDX spectra in Figure 2 confirm presence of Ni and O elements in deposited and annealed NiO thin films. This is 
in agreement with previous report of Hakim, et al. [34]. Additional Si element was also observed. This is because 
Silicon (Si) is present in soda-lime glass or soda-lime-silica glass substrate [35]. A decrease was observed for Si peak 
intensity due to increase surface roughness from annealing process. 

 

4 Author name / Energy Procedia 00 (2017) 000–000 

(a)    (b)   

 (c)  
Fig. 2. EDX spectra of deposited and annealed NiO thin films (a) 0.05M (b) 0.1M (c) Annealed 

3.3. Variation of the Film Thicknesses with precursor solution concentration  

Films thickness was investigated as a function of deposited and annealed NiO films. Measured data are graphically 
represented in Figure 3.  

Using the weight difference method, film thickness was calculated using the relationship in Equation (2) [33]: 
 

     (2) 
Where t is the thickness of the film while m is the actual mass deposited onto the substrate, A is the area of the film 

and ρ is the density of material. This is represented in Figure 4. 
 It was observed that measured and calculated values are in good agreement. It was found that film thickness was 

improved with annealing and agrees with previous report of Madhavi, et al. [36]. This is as a result of accumulation 
of deposited NiO on substrate. This was collaborated by EDX results in Figure 2. During deposition, nozzle to 
substrate height and deposition time were kept constant to control thickness of NiO thin films. Average thickness 
range of NiO thin films was found between 6.277 and 11.85 µm. 

 

(a)     (b)     (c)  
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Fig. 3. Measured NiO film thickness at (a) 0.05 M; (b) 0.1 M; (c) annealed  
 

 

Fig. 4. Calculated film thickness of NiO films with green for deposited and red for annealed films 

3.4. Structural studies 

Structural properties of the NiO sprayed films were examined by X-Ray diffraction technique. Figure 5 shows 
XRD of the thin films with concentrations of 0.05 M, 0.1 M and annealed pattern. XRD patterns have peak diffraction 
at (2θ = 37 o, and 43 o) for (1 1 1) and (2 0 0) planes for all samples. Peak diffraction occurs at (2θ = 64 o, and 79 o) 
for (2 2 0) plane for 0.1 M and annealed respectively. Annealed samples have higher intensity for all planes compared 
with the un-annealed. This corresponds to JCPDS 04- 0835 for Bunsenite which is NiO [37]. Highest intensity was 
recorded for (1 1 1) having a strong peak when 2θ = 37 o for precursor solution of anneal and the un-annealed samples 
which agrees with previous report of Gomaa, et al. [38]. This is as result of increase in grain growth caused by larger 
thicknesses. It can also be due to the increase in crystallinity caused by thermal treatment. It is a confirmation of the 
polycrystalline with cubic crystalline structures of deposited NiO films which is in agreement with previous report 
[39, 40]. There was increase at intensity peak of (2 0 0) for all samples with emergence of third peak (2 2 0) for 0.1 
M and the annealed samples.  

 

(a)  

    

0

5

10

15

1 2 3
Fi
lm

 th
ic
kn

es
s (
μM

)
Deposited and Annealed NiO films 

6 Author name / Energy Procedia 00 (2017) 000–000 

(b)  

Fig. 5. XRD patterns of nanostructured NiO films (a) un-annealed; (b) un-annealed at one hour 
 
The average crystallite size was obtained using Debye Scherer formula [41, 42] in Equation (3). 
 

    (3) 
Where; Β is full width at half maximum (FWHM) intensity of the peak (in Radian), λ is wavelength, θ is Bragg’s 

diffraction angle and k is 0.89 respectively. 
Lattice constant was found to be 4.1855, 4.1850 Å and 4.19 Å for 0.05 M, 0.1 M and annealed respectively. This 

is an improvement on standard lattice constant of NiO film value of 4.176 Å reported by Pistorius [43].  
 Micro strain was produced through growth of thin films and was calculated using the formula in equation (4)  
[44] 

   (4) 
 
Where “d” is the lattice constant and  is micro strain. 
 
A plot of NiO film micro strain against deposited and annealed NiO films is shown in Figure 6. It shows that 

annealing process affects micro strain. Micro strain represents compression as seen in Table 2 which gives detail result 
of micro strain, lattice constants and 2θ values for deposited and annealed NiO films. 

Table 2: Calculated parameters from XRD data 

Parameter    
0.05 M 0.1 M Annealed 

 
2θ 

hkl 37 37 37 
(1 1 1) 
( 2 0 0) 43 43 43 
( 2 2 0) X 63 79 

Lattice 
constant 
d  (Ả) 

recorded 
XRD  

4.1855 4.1850 4.190 

ASTM 4.1684 4.1684 4.1684 
Micro strain ( ) % -0.4102 -0.3982 -0.5280 
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Fig. 6. Plot of micro strain against deposited and annealed NiO films. 

4. Conclusion 

In this study, nanostructured nickel oxide films were successfully deposited by spray pyrolysis of nickel acetate on 
glass substrate. The effect of annealing of NiO films on elemental, morphological and structural properties were 
studied with a view to optimizing it for solar cells application.  

Annealing helps to improve on surface morphology of NiO films and also improves the film thickness of nickel 
oxide films from 6.277 to 11.851 µm. 

Crystalline structure of NiO films are improved by application of thermal conditioning (annealing). Intensity of 
NiO films increased with annealing. Peak diffraction obtained at (2θ = 37 o and 43 o) for (1 1 1) and (2 0 0) planes 
respectively. Peak diffraction at (2θ = 64 o and 79 o) for (2 2 0) plane for 0.1 M and annealed sample. Lattice constant 
decreased with annealing.  Film strain was improved upon by annealing. Micro strain of films shows compression and 
increased with annealing. 

Annealing of deposited NiO films has effect on overall properties of nanostructured nickel oxide thin films. 
Therefore, annealed NiO films can be further explored for solar cells application. 
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Fig. 6. Plot of micro strain against deposited and annealed NiO films. 

4. Conclusion 

In this study, nanostructured nickel oxide films were successfully deposited by spray pyrolysis of nickel acetate on 
glass substrate. The effect of annealing of NiO films on elemental, morphological and structural properties were 
studied with a view to optimizing it for solar cells application.  

Annealing helps to improve on surface morphology of NiO films and also improves the film thickness of nickel 
oxide films from 6.277 to 11.851 µm. 

Crystalline structure of NiO films are improved by application of thermal conditioning (annealing). Intensity of 
NiO films increased with annealing. Peak diffraction obtained at (2θ = 37 o and 43 o) for (1 1 1) and (2 0 0) planes 
respectively. Peak diffraction at (2θ = 64 o and 79 o) for (2 2 0) plane for 0.1 M and annealed sample. Lattice constant 
decreased with annealing.  Film strain was improved upon by annealing. Micro strain of films shows compression and 
increased with annealing. 

Annealing of deposited NiO films has effect on overall properties of nanostructured nickel oxide thin films. 
Therefore, annealed NiO films can be further explored for solar cells application. 
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Abstract 

The effect of ageing on properties of nickel oxide thin films deposited using spray pyrolysis technique was the focus of this 
study. Freshly prepared and aged nickel oxide films were successfully deposited by spray pyrolysis technique on glass substrate 
at 350 °C. The morphological, elemental, structural and optical properties of two different films were studied. The surface 
morphology was studied using Field Emission Gun Scanning Electron Microscope. The X-ray diffraction shows that both 
freshly prepared and aged films have a polycrystalline cubic structure with preferred orientation along the (1 1 1) and (2 0 0) 
planes. Optical studies show a high transparency in the visible and NIR regions. The band gap grew with ageing from 3.60 eV 
to 3.70 eV. The optical constant including the refractive index and extinction coefficient reduced with ageing. Based on the 
result obtained, the prepared sample can be used as the absorber layer of a solar cells. The findings may open new frontiers in 
affordable and efficient solar cell fabrication in developing countries.  

Keywords: Aged; NiO; Spray Pyrolysis Technique; optical properties; solar cells 

1. Introduction 

Over 20 % of world population still struggles with access to electricity,1 with the majority of those affected being 
from sub-Sahara Africa and south Asia.2 The solution to such electricity woes may be found in nanostructured 
metal oxide.3 This is due to the low cost of processing and the simplicity of deposition of metal oxides. Nickel 
oxide (NiO) holds great promise being a p-type metal oxide with vast range of applications.4-6 Several methods 
have been used to deposit NiO with a view to optimizing it for various applications. The deposition methods are 
hydrothermal growth,7 laser ablation,8 sol-gel,9 sputtering,10 and atomic layer deposition,11 among others. 
However, Spray Pyrolysis Technique (SPT) is preferred for films because it allows coatings on large areas in thin 
layers with uniform thickness.12 SPT’s simplicity, affordability and the possibilities for mass production13, 14 
singled it out for this study. 

The optical properties of a metal oxide play a vital role in its usage in the fabrication of optoelectronic devices.15 
The optical properties reveal information relating to the microscopic behavior of the material. Very few works 
have studied the effect of ageing on NiO films despite the promise it holds.16 The objectives of this study were to 
prepare and deposit nanostructured NiO thin films on a glass substrate using SPT, then to determine the effect of 
ageing on the properties of the NiO films. 

2. Methodology 

Soda lime glass substrate was chemically and ultrasonically cleaned before usage for deposition. The precursor 
was a mixture of analytical grade nickel acetate tetrahydrate Ni(CH3COO)2.4H2O of 0.05 M mixed and stirred in 
50 ml distilled water. The freshly prepared sample was spray deposited immediately after preparation. The aged 
sample was left for 192 hours (one week and one day) after mixing to age before deposition. The samples were 
spray deposited using the set-up17 in Figure 4.15.  

The sprayed solution on the preheated substrate glass undergoes evaporation, solute precipitation and pyrolytic 
decomposition according to Equation (1).18 The end product is a nickel oxide thin film.  

Ni(𝐶𝐶𝐶𝐶3𝐶𝐶𝐶𝐶𝐶𝐶)2. 4𝐻𝐻2𝑂𝑂
ℎ𝑒𝑒𝑒𝑒𝑒𝑒
�⎯�𝑁𝑁𝑁𝑁𝑁𝑁 + 7𝐻𝐻2𝑂𝑂 ↑ +4𝐶𝐶𝑂𝑂2 ↑   (1) 
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Figure 4.1. experimental set-up of Spray Pyrolysis Technique 

 

The pictorial representation of the experimental set up is shown in Figure 4.16. It shows the various component 
of the equipment 

 

 
Figure 4.2. Experimental set up of the spray pyrolysis 

 

Optimum deposition parameters of the spray deposited NiO films are shown in Table 4.5. A thermocouple was 
fixed to the substrate’s surface to record substrate temperature. 

Table 4.1. Optimum deposition parameter of SPT NiO films 

Deposition parameter Value 

Substrate temperature 350 ºC 
Height of spraying nozzle to substrate distance 20 cm 
Spray rate 1 ml/min 
Spray time 1 min 
Time between sprays 30 sec 
Carrier gas Filled compressed 

air of 1 bar 

 

The prepared NiO films were observed to be gray in colour, uniform and strongly adherent to the glass substrate. 

3. Characterization 

The morphology of deposited NiO film was studied using a Scanning Electron Microscope (ZEISS EVO 
MA15VP). An Energy Dispersive X-ray Spectrometer (EDS or EDX: “GENESIS XM2”) was used for assessing 
elemental composition. An Empyrean (PANalytical) X-ray powder diffractometer was used for structural 
properties of deposited NiO films from 5º to 90º 2Ɵ angles. The absorption of the film was conducted using a 
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Perkin Elmer Spectrum 100 Fourier Transform Infrared Spectrometer (FTIR). The measured film thickness was 
compared with the weight difference method. Optical properties were studied in wavelength range of 300 nm to 
1000 nm with a SHIMADZU UV-3600UV-VIS Spectrometer. The results of characterized freshly prepared and 
aged samples were compared and are reported on below. 

4. Results and discussion 

4.1 Morphological studies  

The surface morphology of the freshly prepared and the aged NiO films are represented in Figure 4.17. The freshly 
prepared micrograph reveals scattered distribution of the tiny particles across the surface of the film. The aged 
films however reveal broader flake-like particles across the surface of the film. Both films have even distribution, 
are adherent to the film surface, and are devoid of cracks. This may be attributed to proper optimization of the 
deposition parameters. This is an improvement on the 24-hour aged NiO films reported by Sriram and 
Thayumanavan.16 

 (a)  (b)  

Figure 4.3. SEM micrographs of (NiO) film on glass substrate (a) freshly prepared (b) aged for one week and one day 
 

4.2 Elemental composition analysis 

The elemental composition analysis of freshly prepared and aged NiO thin films are presented in Figure 4.18. 
Both spectra confirm the presence of Ni and O elements in the NiO thin films. Oxygen concentration decreased 
with ageing. Similarly, nickel weight percent grew for the aged sample in comparison with the freshly prepared 
film. This may be due to increment in film grown on the glass substrate causing reduction in oxygen concentration 
of the aged films. This observation was also reported by Lu and Hwang.19 Apart from the nickel and oxygen, 
silicon (SI) was also observed. The existence of the Si is as a result of the elemental composition of the soda-lime 
glass used as substrate20 and the EDX of the empty soda-lime glass is shown in the Figure 4.18c. 

(a)     (b)  



86 
 

(c)  

Figure 4.4. EDX spectra of (NiO) film on glass substrate (a) Freshly prepared (b) Aged for one week and one day (c) EDX of empty 
glass 

 

4.3 Structural studies 

 
Figure 4.5. XRD of aged and freshly prepared NiO films 

 

The phase present and the preferred orientation of deposited nanostructured NiO films was determined using an 
x-ray diffractometer. The XRD patterns of the aged and freshly deposited films are shown in Figure 4.19. The 
films were observed to be polycrystalline with cubic structures. The peaks for the freshly prepared films were 
observed at 2Ɵ values of 37º and 43º for (1 1 1) and (2 0 0) planes respectively. However, the aged films were 
observed at 2Ɵ values of 36.38º, 43.47º and 62.01º for (1 1 1), (2 0 0) and (2 2 0) respectively. The XRD analysis 
confirms Bunsenite which corresponds to JCPDS card number 89-7130 for NiO films. The slight difference in the 
diffraction angle (2ϴ) of the freshly prepared and aged sample may be attributed to the ageing effect of the 
precursor. The diffraction angle (2Ɵ) for the aged obtained for this study gives an improvement on earlier reported 
value of on 2Ɵ = 36.362º, 2Ɵ = 43.43º and 2Ɵ = 62.58º obtained for 24-hour aged NiO films earlier reported by 
Sriram and Thayumanavan.16  

The films’ average particle size was obtained from the Scherrer expression21, 22 in Equation (2)  

𝐷𝐷 =  𝑘𝑘𝑘𝑘
𝛽𝛽 cos𝜃𝜃

      (2) 

Where: Β is full width at half maximum (FWHM), λ is wavelength, θ represent Bragg’s diffraction angle and k is 
0.89 respectively. The values are 22 nm and 60.4 nm. 

4.4 NiO films absorption (FTIR) 

Figure 4.20 gives the FT-IR spectra used to identify molecular components and the structure of the NiO films. It 
is done in the range of 400 cm-1 and 4000 cm-1. The Ni-O stretching vibration mode was recorded in the broad 
absorption band region of 432 cm-1 to 698 cm-1. This was also earlier reported as the range of absorption for NiO 
films.23 The broadness confirms that the NiO are nanocrystalline. The NiO film FTIR absorption is blue-shifted 
due to their nanostructure size. Other significant absorption bands were also recorded. There is no band indicating 
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the presence of other groups. This confirms that there is no impurity in the film and that the sample was washed 
and well cleaned. This result agrees with standard FTIR data for NiO films as reported by Qiao et al.24  

 
Figure 4.6. FTIR spectrum of of aged and freshly prepared NiO films 

 

4.5 Optical properties 

4.5.1 Film thickness 

The film thickness was considered for both freshly prepared and aged films. The film thickness was obtained 
using SEM cross sectional profiling as shown in Figure 4.21 and also using the weight difference method 
expressed in Equation (3)25 and shown in Figure 4.22. There is no marked difference between both values. 

𝑡𝑡 = 𝑚𝑚
𝐴𝐴𝐴𝐴

     (3) 

Where: t denotes film thickness, m represents the actual mass deposited, A denotes thin film area while ρ represents 
the density of material. The film thickness grew with ageing. The thickness of the films was controlled by keeping 
deposition parameters constant. The NiO thin films average thickness was between 6.277 µm and 8.627 µm for 
freshly prepared and aged respectively. 

(a)  
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(b)  

Figure 4.7. Film thickness of (NiO) film on soda lime glass substrate (a) freshly prepared (b) aged for one week and one day using 
SEM 

 

 
Figure 4.8. Calculated Film thickness of of freshly prepared and aged NiO films 

 

4.5.2 Transmittance 

The transmission spectra of the freshly prepared and aged NiO films is shown in Figure 4.23. The absorption edge 
occurred for both samples at 360 nm which compares favorably with 350 nm obtained by Sriram and 
Thayumanavan.16 The aged film has more transparency than the freshly prepared films occurring at approximately 
83 % and 78 % respectively. The aged films showed high transparency in both visible and NIR regions.  
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Figure 4.9. Transmission spectra of freshly prepared and aged NiO films 

 

4.5.8 Optical band gap  

Figure 4.24 shows a graph of (αhυ)2 against hυ for aged and freshly prepared spray deposited NiO films. The 
optical band gap is obtained from extrapolation of Figure 4.24 to the hυ axis when (αhυ)2 = 0. The optical band 
gap grew with the aged NiO films. A shift towards lower energy was observed for the value of the optical band 
gap. This may be attributed to the Moss-Burstein shift.26, 27 The recorded optical energy band gaps are 3.60 eV for 
freshly prepared and 3.70 eV for aged NiO films. This gives a better optical band gap compared to the existing 
reported value of 3.50 eV by Boschloo and Hagfeldt.28 This may be ascribed to crystallite size increment.29 
Quantum size effect may be responsible for the large value of the band gap of NiO films.30 Careful and well 
optimized deposition parameters also helped in obtaining better optical band gap values. 

 

 
Figure 4.10. Graph of (αhυ)2 against hυ of freshly prepared and aged NiO films 

 

4.5.3 Optical constant 

The optical constant can be termed as the “fingerprint of an optical material”. The optical constant alongside the 
thickness of the film are useful for allowing repeatable manufacturing. Refractive index and extinction coefficients 
are jointly termed optical constants. They are actually not a constant because their values are influenced by photon 
energy. They both describe how photons of different energies interact with the films.31 The interface between a 
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film and incident ray which is associated with refraction and absorption gives the refractive index (η) and the 
extinction coefficient (k) respectively.32  

 

 
Figure 4.11. Extinction coefficient of freshly prepared and aged NiO films 

 

The films extinction coefficients were computed over the visible and near infrared wavelength from the absorption 
coefficient using Equation (4) by Lee and Lai.33 

𝑘𝑘 =  𝛼𝛼𝛼𝛼
4𝜋𝜋

       (4) 

Where: 𝑘𝑘 denotes the extinction coefficient, α represent the absorption coefficient while λ is wavelength. Figure 
4.25 gives the extinction coefficient for the freshly prepared and aged NiO films. It shows that the extinction 
coefficients of both films varies within the UV region and are almost constant for both visible and near infrared 
regions. 

 
Figure 4.12. Refractive index of freshly prepared and aged NiO films 

 

Figure 4.26 shows the refractive index of for both samples. Refractive index is a major property of an optical 
material which gives the electronic polarization of ions and the local field inside the material.34 The refractive 
index of deposited films was calculated using the refractive index and optical band gap expression shown in 
Equation (5) by Reddy et al.35 

𝜂𝜂 =  √(12.417 ⁄ (𝐸𝐸𝐸𝐸 − 0.365))     (5) 

Where: η denotes refractive index while Eg represents optical band gap. The refractive indices were found to be 
1.9592 and 1.9295 for freshly prepared and aged respectively. This is an improvement on reported values of 1.95 
and 1.99 by Sriram and Thayumanavan.16 
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5. Conclusion 

This study was able to advance research on NiO films for solar cells fabrication by spray depositing freshly and 
192 hours aged NiO films. The surface morphology of the deposited NiO films showed broader flakes with ageing. 
Nickel weight percent grew for the aged sample in comparison with the freshly prepared film. Film thickness 
grew with ageing. An improved absorption edge was recorded for both freshly prepared and 192 hours aged NiO 
films at 360 nm. The aged film had more transparency than the freshly prepared films, with aged film having 
approximately 83 % and freshly prepared 78 % transparency. An improved value for optical band gaps for NiO 
films were recorded at 3.60 eV and 3.70 eV for freshly prepared and aged NiO films respectively. The “fingerprint 
of an optical material” for NiO films was reduced for the aged film. The extinction coefficients of both films 
varied within the UV region and were almost constant for both visible and near infrared regions. The refractive 
indices were found to be 1.9592 and 1.9295 for freshly prepared and aged films respectively. Based on the result 
obtained, the prepared sample can be used as the absorber layer of a solar cell. These improved results were as a 
result of careful and well optimized deposition parameters.  
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Chapter 4 Part 4 

This part studied the combined effect of temperature and ageing on nanostructured nickel oxide 

for solar cells published in International Journal of Renewable Energy Research (IJRER): 

To cite this article: Ukoba, O.K., Inambao F.L. and Eloka-Eboka, A.C. “Study of deposition temperature 

on properties of aged nanostructured nickel oxide for solar cells” International Journal of Renewable 

Energy Research, vol 8, No 2, June 2018, pp 724 – 732. 
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Abstract- Nanostructured nickel oxide (NiO) films were deposited on preheated glass substrate using spray pyrolysis 

technique. This study examined the influence of deposition temperature on properties of aged nickel oxide thin films. A 

preferred orientation along the (1 1 1) plane was observed with a polycrystalline cubic structure. Films were formed with a 

stoichiometric ratio at higher deposition temperatures. It was revealed that the surface morphology and elemental composition 

of NiO films can be optimized by deposition temperature. The optical band gap grew as deposition temperature increased. 

Refractive index decreased with increasing deposition temperature. Optical band gap varied from 3.31 eV to 3.69 eV as 

deposition temperature increased. The deposition temperature has an influence on properties of aged NiO films. These results 

may be of interest in the development of affordable and efficient solar cell fabrication especially in developing countries.  

Keywords- NiO; solar cell material; deposition temperature, developing countries, aged. 

1. Introduction 

Provision of affordable and efficient energy is a major 

human challenge [1]. Electricity is nonexistent for 20 % of 

the world’s population with developing countries 

comprising 99.8 % of that figure [2]. Several developing 

countries lack access to electricity [3] while many others 

have highly disrupted supply with less than four hours of 

power supply per day [4]. Optimized techniques and 

materials are being researched to solve this energy 

problem. Interest is on development of renewable energy 

due to their vast advantage [5-7]. Energy from the sun has 

been proposed as a viable solution for power supply [8-9]. 

Photovoltaic is one way of using the solar energy [10-14]. 

Solar energy can be converted to useful direct current 

electricity using solar cells [15]. The focus of current solar 

cell research is on affordability and efficiency. Most of the 

equipment used for thin film deposition is expensive [16] 

and vacuum-based [17]. This has caused researchers in 

developing countries look for in-country resources, 

resulting in research on inexpensive materials and methods 

requiring only a small power supply.  

Nanostructure metal oxides are reported to offer 

improvement for solar cells [18]. Nickel oxide (NiO) is a 

unique metal oxide with several uses [19-24]. It is a p-type 

metal oxide and is an inexpensive material. It can be 

manufactured by several techniques such as sputtering 

[25], sol-gel [26], laser ablation [27], electron beam 

deposition [28] and chemical bath deposition [29]. Studies 

have been conducted on the effect of ageing and the effect 

of deposition temperature on NiO films [30-32], showing 

that ageing and deposition temperature improved NiO film 

properties. However, most of the studies focused on the 

influence of substrate temperature on sensing properties, 

electrochromic properties [33] and photovoltaic cells [34]. 

There is little or no systematic study of the influence of 

deposition temperature on aged NiO film properties. 

Therefore, there is a need to study their combined effect on 

NiO films. 

This research will help to ascertain if deposition of 

nickel oxide at either low temperatures or temperatures 

above 350 oC give the same optimal properties. This 

temperature was reported to be the optimal range for 

pyrotic decomposition of NiO [35]. Therefore, this 

research will study the influence of deposition temperature 

below 350 oC and above 350 oC on properties of aged NiO 

films. Morphological, structural, elemental, and optical 

properties will be examined with a view to optimizing NiO 

film for efficient and affordable solar cells application. 

mailto:ukobaking@yahoo.com
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2. Experimental Procedure 

2.1 Deposition 

Pure nickel (II) acetate tetrahydrate 

Ni(CH3CO2)2.4H2O of 0.05 M was mixed and stirred in 50 

mL distilled water. The solution was left for one week 

after mixing to age before deposition. This was spray 

deposited using the set-up in Fig. 1. Thereafter, it was 

deposited at different temperatures Td (< 350 oC and ≥ 350 
oC). The samples were sprayed from 270 oC to 325 oC for 

Td< 350 oC samples and done at 350 oC to 400 oC for Td ≥ 

350 oC. The glass substrate was chemically and 

ultrasonically cleaned before usage for deposition of the 

solution. Other deposition parameters were maintained to 

obtain uniform film thickness.  

 

Fig. 1.  Experimental set-up of Spray pyrolysis technique. 

 

The optimum deposition parameters of spray 

deposited NiO films are shown in Table 1. Each droplet 

was found to be smaller than micro sized particles. The 

sprayed solution on the preheated substrate glass 

experiences evaporation and solute precipitation before 

pyrolytic decomposition as shown in equation (1). Nickel 

oxide was obtained as a final product [36]. 

          (1) 

The colour of prepared thin films was observed to be gray, 

uniform and strongly adherent to the glass. 

Table 1. Optimum deposition parameter of SPT NiO film. 

Deposition parameter Value 

Height of spraying nozzle to substrate 

distance 

20 cm 

Spray rate 1 ml/min 

Spray time 1 min 

Time between sprays 30 sec 

Carrier gas Filled 

compressed air 

of 1 bar 

 

2.2 Characterization 

The morphology of deposited NiO film was studied 

using Scanning Electron Microscope ZEISS EVO 

MA15VP. An Energy Dispersive X-ray Spectrometer 

(EDS or EDX: “GENESIS XM2”) was used for elemental 

composition. An EMPYREAN (PANalytical) X-ray 

powder diffractometer model was used for structural 

properties of deposited NiO films from 5 º to 90 º 2θ 

angles. The absorption of the film was measured with a 

Perkin Elmer Spectrum 100 Fourier Transform Infrared 

Spectrometer (FTIR). The measured film thickness was 

compared with the calculated values obtained using the 

weight difference method. Optical properties were studied 

in wavelengths of 300 nm to 1000 nm with a SHIMADZU 

UV-3600UV-VIS Spectrometer.  

3. Results and Discussion  

3.1 Morphological studies 

SEM micrographs are represented in Fig. 2. These 

micrographs reveal homogeneous, smooth, well adherent 

films devoid of pinholes and cracks. The film of Td ≥ 350 
oC has better distribution of grains than Td < 350 oC, 

although it has almost the same particle size and shape as 

Td < 350oC. This may be ascribed to the ageing of the 

films and optimized deposition parameters. This shows 

that deposition temperature influences structural properties 

of aged NiO films by increasing grain on the film. These 

micrographs are an improvement on earlier results 

reported by Chen et al. [37] using radio-frequency (RF) 

magnetron sputtering. 

(a)  

(b)  

Fig. 2. SEM micrographs of aged (one week) nickel oxide 

(NiO) film on glass substrate at (a) Td < 350 oC and (b) Td 

≥ 350 oC 

 

3.2 Elemental composition analysis 

Fig. 3 shows the EDX for the different deposition 

temperatures for NiO thin films. Both spectra confirm 

presence of Ni and O elements in NiO thin films. Oxygen 

concentration in deposited NiO films decreases as 

deposition temperature increases. This may be due to 

increased film growth on the glass substrate as seen from 

Fig. 2 thereby making less of the glass (oxygen) visible. 
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Related results were reported by Lu et al. [38]. An 

additional Si element was also observed from the EDX. 

This is because Silicon (Si) is a major material in the soda-

lime glass substrate used [39]. 

(a)  

 

 

(b)  

Fig. 3. EDX spectra for one week aged nickel oxide (NiO) 

film on glass substrate at (a) Td < 350 oC and (b) Td ≥ 350 
oC 

 

3.3 Structural studies 

The phase and preferred orientation of deposited 

nanostructured NiO films was determined using an x-ray 

diffractometer. Fig. 4 gives XRD patterns of deposited 

nanostructured NiO films at Td < 350 oC and Td ≥3 50 oC.  

The peak diffraction for Td < 350 oC is at (2θ = 43.36o and 

50.54o) for the (1 1 1) and (2 0 0) planes respectively. At 

Td ≥ 350 oC, peak diffraction is (2θ = 36.96o and 43.14o) 

for the (1 1 1) and (2 0 0) planes respectively. The XRD 

analysis confirms Bunsenite which correspond to JCPDS 

card: 04- 0835 for NiO [40]. A high intensity was recorded 

for Td ≥ 350 oC in both planes, which may be due to better 

alignment of the grains. This led to increased grain growth 

at higher deposition temperature. It can also be ascribed to 

increased crystallinity as deposition temperature increased. 

This is related to the reported value of 37.3o for the (1 1 1) 

plane by Sharma et al. [30]. 

The XRD spectra shows that films prepared at Td < 350 oC 

have weak and broadened (1 1 1) diffraction peaks, which 

implies poor crystallinity. However, those at Td ≥ 350 oC 

have good crystallinity and the (1 1 1) preferred 

orientation. These are pointers that the microstructure of 

NiO films are influenced by deposition temperature as 

evidence from the grain growth at higher deposition 

temperature. NiO films with either a (1 1 1) or (2 0 0) 

preferred orientation are recommended for optoelectronic 

applications [41]. 

There is separate colliding of Ni2+ and O2- on the growing 

aged NiO films surface at lower deposition temperature, 

thereby making it difficult for Ni2+ and O2- to recombine 

due to insufficient energy or oxygen. There is a tendency 

for non-stoichiometric ratio films to be formed which are 

electrostatically polar. Ni2+ and O2- strike, simultaneously, 

on the growing aged NiO films at higher deposition 

temperature, producing film formation with stoichiometric 

ratios that are electrostatically neutral [42]. This is 

corroborated with a higher intensity for the (1 1 1) 

preferential orientation for low deposition temperature 

[43].  

 

Fig. 4. XRD patterns of one week aged nanostructured 

NiO films at different deposition temperature 

The Debye-Scherer relationship [44]; [45] in equation (2) 

was used to obtain the average crystallite size. 

 

           (2) 

 

Where Β represents the Full Width at Half Maximum 

(FWHM) peak intensity (in Radian), λ denotes 

wavelength, θ represent Bragg’s diffraction angle and k is 

0.89.  

Other structural parameters are shown in Table 2. 

 

Table 2. Parameters from XRD data 

Deposition 

Temperature 

hkl Diffract

ion 

angle 

2theta 

FWH

M 

Relati

ve 

intensi

ty 

d-

spacing 

Td < 350 oC (1 1 1) 43.3641 0.5038 100 2.42290 

(2 0 0) 50.5425 0.7557 81.78 2.09685 

Td ≥ 350 oC (1 1 1) 36.9621 0.5510 62.14 2.43190 

(2 0 0) 43.1404 0.3149 100 2.09688 

 

The average crystallite size of NiO film index for the (1 1 
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1) and (2 0 0) planes for Td ≥ 350 oC as observed from 

XRD are 26 nm and 47 nm respectively. Those of Td < 350 
oC are 34 nm and 23 nm for the (1 1 1) and (2 0 0) planes 

respectively. 

3.4 Optical properties 

The film thickness was considered for the NiO films at 

deposition temperatures below (Td < 350 oC) and above 

(Td ≥ 350 oC). The measured data is depicted in Fig. 6. 

This was compared with the calculated value. The 

calculated value was obtained using the weight difference 

method expressed in Equation (3) [46]: 

                      (3) 

Where t denotes film thickness, m represents the actual 

mass deposited, A denotes thin film area while ρ represents 

the density of material.  

Fig. 7 shows the calculated values. Both measured and 

calculated values are in good agreement. Film thickness 

grew as deposition temperature increased. The NiO film 

thickness was controlled by keeping deposition parameters 

constant. NiO thin film average thickness was between 

11.85 µm and 12.55 µm.  

 

 (a)    

 

(b)      

Fig. 6. Measured film thickness for aged (one week) nickel 

oxide (NiO) film on glass substrate at (a) Td < 350 oC and 

(b) Td ≥ 350 oC 

 

 

 

Fig. 7. Calculated film thickness of the aged (one week) 

NiO films at different deposition temperature. 

Fig. 8 gives FTIR spectra used to identify molecular 

components and the structure of NiO films. It gives the 

spectrum of aged (one week) 0.05 M NiO films at Td ≥ 350 
oC alone, in the range of 400 cm-1 and 4000 cm-1. The NiO 

stretching vibration mode was recorded in the broad 

absorption band region of 432 cm-1 to 698 cm-1. This is 

similar to the earlier reported NiO absorption range [47]. 

The broadness confirms that the NiO are nanocrystalline. 

The NiO film FTIR absorption is blue-shifted due to their 

nanostructure size. Other significant absorption bands 

were also recorded. The band at 3475 cm-1 reveals an O-H 

(hydroxyl group or hydroxide ion) stretching vibration. 

This is the natural portion of water due to a self-ionization 

reaction [48]. An H-O-H bending vibration mode was 

observed at 1630 cm-1. This shows that there is a 

negligible quantity of water in the NiO film. This may be 

attributed to adsorption of water from the air since the 

experiment was conducted in open air [49]. This is 

corroborated by the EDX result in Fig 3. The region 

between 1000 cm-1 to 1500 cm-1 with band centre at 1210 

is assigned O-C=O symmetric and non-symmetric 

stretching vibration. This accounts for the traces of H2O 

and CO2 in the reaction of Equation (1) which were burnt 

off. There is no band indicating the presence of other 

groups, confirming that there is no impurity in the film and 

that the sample was washed and well cleaned. This result 

agrees with the standard FTIR data for NiO films as 

reported by [50]. The NiO film deposited at Td < 350 oC 

did not give FTIR. This may be due to non-absorption of 

the film. 
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Fig. 8. FTIR spectrum of aged (one week) 0.05 M NiO 

films at Td ≥ 350 oC. 
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Fig. 9 represents measurement of transmittance and 

wavelength for deposited NiO films at the deposition 

temperatures. Transmittance grew from 70.70 % to 76.41 

% as deposition temperature increased. However, both 

films exhibited high transparency in visible and near IR 

regions. This occurred at wavelengths of 1000 nm and 611 

nm respectively. This may be due to an increase in film 

thickness and absorbance (shown in Fig. 10) as deposition 

temperature increases, making the scattered radiation more 

pronounced because of surface roughness [51]. These 

results exceed previously reported values of less than 70 % 

by Ismail et al. [52].  

 

Absorption coefficient, α was obtained using Equation (4) 

[53]:  

                    (4) 

Where t is film thickness and A is absorbance. The 

relationship between optical absorption and optical energy 

band gap is expressed in Equation (5) [54]; [55]: 

                    (5) 

Where C has constant value, h denotes Planck’s constant, 

υ represent incidence light frequency, and Eg denotes 

optical energy band gap.  

 

 

Fig. 9. Plot of transmittance against wavelength of 

deposition temperature of NiO films 

 

 

 

Fig. 10. Plot of absorbance against wavelength of 

deposition temperature of NiO films 

 

 

Fig. 11. Graph of (αhυ)2 against hυ for NiO films 

 

Fig. 11 shows a graph of (αhυ)2 against hυ for aged NiO 

films spray deposited at both deposition temperatures. 

Extrapolation of Fig. 11 to hυ axis for (αhυ)2 = 0 gives the 

optical band gap. A decrease in slope of the plot is 

observed as deposition temperature increases. A shift 

towards lower energy is observed for value optical band 

gap. The reduction is attributed to the Moss-Burstein shift 

[56, 57]. Optical energy band gaps are 3.31 eV and 3.69 

eV for Td <350 oC and Td ≥ 350 oC respectively. This gives 

a better optical band gap compared to the existing reported 

value of 3.5 eV [58]. This may be ascribed to crystallite 

size increment [59]. The quantum size effect may be 

responsible for the large value of the band gap of NiO 

films [60]. Careful and well optimized deposition 

parameters also help in obtaining a better optical band gap. 
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Fig. 12. Refractive index plot against deposition 

temperature of aged NiO films 

 

Fig. 12 shows the refractive index of the NiO films. The 

refractive index of deposited films was calculated using 

refractive index and optical band gap expression as shown 

in Equation 6 [61]: 

                   (6) 

 

Where η denotes refractive index while Eg represents 

optical band gap.  

Refractive indices were found to be 2.0533 and 1.9324 for 

Td < 350 oC and Td≥350 oC respectively. This is an 

improvement on reported values of 1.99 by Sriram and 

Thayumanavan [32]. 

4.  Conclusion 

This study reported spray pyrolysis deposition of aged 

nanostructured NiO films on glass substrate. The influence 

of deposition temperature on aged NiO films on elemental, 

morphological, structural and optical properties was 

studied with a view to optimizing deposition temperature 

for solar cell application.  

This study contributed new results relating to surface 

morphology, structural, film thickness and optical of NiO 

films using spray pyrolysis. 

Deposition temperature only affected the surface 

morphology of aged NiO films by producing a grainier 

surface. It does not affect the shape and size. Elemental 

composition using EDX confirmed the presence of Ni and 

O elements in NiO films. It was observed that the film 

thickness grew as deposition temperature increased. 

NiO films are formed with a non-stoichiometric ratio 

at lower deposition temperatures, but are electrostatically 

neutral at higher deposition temperatures. 

Transmittance grew from 70.70 % to 76.41 % as 

deposition temperature increased. This resulted in a 

reduction in the refractive index of the aged NiO films as 

deposition temperatures increased. Optical band gap varied 

from 3.31 eV to 3.69 eV as deposition temperature 

increased. This study produced better optical band gaps 

than existing reported values. The new findings were a 

result of well optimized deposition parameters. Therefore, 

deposition temperature does affect the properties of aged 

nanostructured NiO thin films. This optimized result may 

be explored further for affordable, durable and efficient 

solar cell fabrication and research in developing countries 

by ageing the precursor for longer period and at different 

concentrations, it can also be doped with another material 

or this result used directly to fabricate a solar device using 

a pn heterojunction technology. This optimized results will 

help in affordable and sustainable solar cells fabrication as 

it will be useful as p-type material in a pn heterojunction 

solar cells 
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Abstract 

This study focused on the experimental optimization of 

nanostructured nickel oxide (NiO) for solar cell applications. 

The optimization procedure involved the variation of the 

precursor concentrations of nickel acetate with attendant 

measurement of the properties of nickel oxide films. The films 

were spray deposited on glass substrate. Nickel acetate 

precursor was used at a substrate temperature of 350 oC. 

Precursor concentrations were: 0.025 M, 0.05 M, 0.075 M and 

0.1 M respectively. The surface morphology revealed 

nanostructured film with particles densely distributed across 

the substrate’s surface. The films are homogeneous, smooth, 

well adherent and devoid of pinholes and cracks. The 

morphology became grainier as the precursor solution 

increased. Elemental composition exposes the presence of Ni 

and O elements in NiO film. Oxygen concentration decreases 

as precursor solution increases. The film structural property 

reveals that deposited NiO film has an amorphous structure at 

0.025 M while the other concentrations are polycrystalline in 

nature with cubic structure. X-ray diffractometry (XRD) 

further reveals that the intensity of NiO films increases with 

increased molarity. Preferred orientation was along the (1 1 1) 

peak with minor intensity along the (2 0 0) peak. XRD patterns 

have peak diffraction at (2θ = 37 o and 43 o) for the (1 1 1) and 

(2 0 0) planes respectively, and 64 o for the (2 2 0) plane for 0.1 

M. Crystallite size was obtained at 63.77 nm maximum. Film 

thickness increased with increasing precursor concentration 

from 6.277 μm to 11.57 μm. Film micro strain was observed to 

have compression for all precursor solutions. Optical studies 

showed that transmittance decreased with increasing 

concentration from 80 % to 71 %. Optical band gap energy was 

between 3.94 eV to 3.38 eV as precursor concentration 

increased, revealing the effect of varied concentrations on NiO 

film properties. Optimized results obtained are precursors in the 

development of low cost, efficient, durable solar cell 

fabrication for developing countries. 

Keywords: NiO; solar cell material; annealing, low income 

 

INTRODUCTION 

The provision of affordable and efficient energy is among the 

top 50 grand challenges facing humankind in the 21st century 

[1-2]. Electricity is non-existent for over 20 % of the world’s 

population with developing countries comprising 99.8 % of that 

number [3]. Sub-Sahara Africa is home to nearly 85 % of the 

1.3 billion people living in developing countries without access 

to electricity [4], with an estimated electrification rate of 

                                                            
*Corresponding author’s email id: ukobaking@yahoo.com  

around 32 % [5]. Several countries in Africa and south Asia 

lack access to electricity [6], while many countries on those 

continents have a high degree of electricity supply disruption 

with an average of less than four hours of power supply daily 

[7]. However, developed countries like in Europe, America and 

Asia have turned their fortunes around in terms of electricity 

generation by harnessing power from renewable energy 

sources.  

Apart from the stable supply of electricity, other attendant 

challenges still loom in such regions. They include the 

relatively high cost of electricity, underdeveloped 

infrastructure especially in remote areas, uneven billing of 

electricity, high tariffs, and unfavorable policies to mention but 

a few. This has caused many citizens to resort to alternate 

sources of electricity supply. Renewable energy has been 

confirmed as a viable solution to ending global electricity 

problems as it exceeds world energy demand [8]. Renewable 

energy is sustainable and not harmful to the environment. Solar 

energy is a good source of renewable energy [9]. The hourly 

solar influx on the surface of the earth surpasses annual human 

energy needs [10]. Solar energy is environmentally benign [11-

12]. About 40 % of CO2 emissions is saved per year for each 1 

% of world electricity demand supplied by solar grid [13]. 

However, high costs are militating against the successful 

deployment of solar technology worldwide. Solar cells are an 

integral aspect of solar energy [14].  

Large scale production at affordable cost is being studied for 

the purpose of fabrication of solar cells [15]. Existing methods 

are not suitable for scaling up due to the expensive nature and 

complexities associated with the vacuum environment required 

for fabrication. Nanostructured metal oxide, however, is 

promising. Nanostructured materials offer potential 

improvement in solar cells efficiency and reduction in 

manufacturing and electricity production costs [16] due to the 

increased surface area to volume ratio of nanoparticles. This 

makes nanostructured materials more efficient and better 

energy collectors [17]. Nanostructured materials have unique 

characteristics that cannot be obtained from conventional 

macroscopic materials [9]. The drawback of conventional 

materials is low absorption properties resulting in low 

efficiency in solar cell devices. Inorganic semiconducting 

materials are economical, environmentally friendly and viable 

sources for solar cells [18]. 

Fabrication of nanostructured metal oxide films is attracting 

interest in terms of technological applications [19-22]. They 

have been studied due to their vast range of use [23], including 

in applications such as solar cells, UV detectors, 

mailto:ukobaking@yahoo.com
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electrochromic devices, anti-ferromagnetic layers, p-type 

transparent conductive thin films, and chemical sensors [24-

29]. The properties of metal oxides can be experimentally 

optimized for better results in a specific application. The 

properties of the metal oxides are affected by the control of the 

desired morphology, structure, size and other properties of the 

material for specific applications [30- 31]. Metal oxides often 

show n-type conductivity with a few displaying p-type. NiO 

has p-type conductivity [32]. NiO exists in various oxidation 

states [33]. It is pale green with a cubic structure. It is durable 

with stable chemical properties and optical densities. NiO has 

been prepared using sputtering [34], sol-gel [35], electron beam 

deposition [36], laser ablation [37], and chemical bath 

deposition [38]. The spray pyrolysis technique (SPT) allows 

coating of large areas by films of very thin layers with uniform 

thickness [39]. SPT has low material cost, is easy to set up and 

economical for mass production [40-41]. These features 

informed the application of SPT in this study. Some of the 

relevant literature has highlighted the potential of SPT in NiO 

fabrication of solar cells.  

A recent review by Ukoba et al. [42] presented the different 

precursors and their characterization methods for spray 

deposition of NiO thin film and concluded that the usefulness 

of SPT as a simple but efficient method cannot be over-

emphasized for mass production of solar cells. The review 

advocated for the exploration of different optimization 

approaches [42]. The present study is therefore tilted towards 

the optimization of the precursor concentrations of NiO films 

and the properties of NiO films as an alternate solar energy 

material with emphasis on efficiency and affordability. The 

objectives include: preparing a nanostructured NiO thin film on 

glass substrate using SPT to deposit an aqueous solution of 

nickel acetate, and subsequently determining the effects of 

varying the concentrations of nickel acetate on the properties of 

NiO films. 

 

EXPERIMENTAL PROCEDURE 

Spray Pyrolysis Setup 

The experimental configuration used is shown in Fig. 1, 

comprising air compressor, temperature controller, heater, 

exhaust fan and pipe, and spray gun with attached container. 

The container houses the precursor solution. A hose connects 

the air compressor to the spray gun. A temperature of 350 oC 

was attained and read by a thermocouple attached to the heater 

before commencing deposition.  

 

Figure 1: Experimental set-up of Spray pyrolysis technique 

Precursor Preparation and Deposition  

Precursor solution was nickel acetate tetrahydrate of 

concentration 0.025 M, 0.05 M, 0.075 M and 0.1 M. This was 

mixed and stirred in 50 mL distilled water for 10 min. 

Thereafter the solution was poured into the spray gun container. 

The glass substrate was chemically and ultrasonically cleaned 

before usage. The glass substrate was heated at a constant 

temperature of 350 oC on a heater. Other deposition parameters 

were maintained to obtain uniform film thickness. The 

optimum deposition parameters of spray deposited NiO film 

are shown in Table 1. Each droplet is found to be smaller than 

micro-sized particles. The sprayed solution on the preheated 

substrate glass experiences evaporation and solute precipitation 

before pyrolytic decomposition as shown in Equation (1). 

Nickel oxide is given off as a final product. 

Ni(𝐶𝐻3𝐶𝑂𝑂)2. 4𝐻2𝑂
ℎ𝑒𝑎𝑡
→  𝑁𝑖𝑂 + 7𝐻2𝑂 ↑ +4𝐶𝑂2 ↑ (1) 

The color of prepared thin film was observed to be gray, 

uniform and strongly adherent to the glass. 

Table 1. Optimum deposition parameter of SPT NiO film 

Deposition parameter Value 

Substrate temperature 350 oC 

Distance of spray nozzle to substrate 

distance 

20 cm 

Spray rate 1 ml/min 

Spray time 1 min 

Time between sprays 30 s 

Carrier gas Filled compressed air 

of 1 bar 

 

Characterization 

The morphology of deposited NiO film was studied using a 

ZEISS ULTRA PLUS Field Emission Gun Scanning Electron 

Microscope (FEGSEM). Elemental analysis was performed 

using an Energy Dispersive X-ray Spectrometer (EDX: 

“AZTEC OXFORD DETECTOR”). Structural properties of 

the deposited NiO films were investigated using an 

EMPYREAN (PANalytical) X-ray powder diffractometer for a 

range of 5 º to 90 º 2θ angles. Measured film thickness was 

compared with calculated film thickness obtained using the 

weight difference method. Optical properties were studied in 

wavelengths of 300 nm to 1000 nm with a SHIMADZU UV-

3600UV-VIS Spectrometer model. 

 

RESULTS AND DISCUSSION 

Morphological Studies  

FEGSEM micrographs are represented in Fig. 2. These 

micrographs reveal homogeneous, smooth, well adherent film 

devoid of pinholes and cracks. The morphology becomes 

grainier with bigger flakes with increasing concentration. This 

is an improvement on results observed by Bari et al. [43] and 

Sadaati et al.[44]. This confirms that varying the concentration 

of the precursors affects NiO film morphology. 
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     (a)    (b)   

 (c)     (d)  

Figure 2: SEM micrographs of nickel oxide (NiO) film on glass substrate at (a) 0.025M and (b) 0.05Mgreen (c) 0.075M and  

(d) 0.1M 

 

Elemental Composition Analysis 

Figure 3 shows the EDX for the different concentrations for the 

NiO thin films thereby confirming the presence of Ni and O 

elements in the NiO thin films. Oxygen concentration in 

deposited NiO films decreases as the precursor concentration 

increases as seen in the EDX result. This may be due to 

increased film growth on the glass substrate thereby making 

less of the glass (oxygen) visible. This gives better distribution 

of Ni and O compared with a previous reported distribution 

[45]. An additional silicon (Si) element was also observed. This 

is because Si is present in soda-lime glass or soda-lime-silica 

glass substrate [46]. 

Film Thicknesses and Precursor Solution Concentration  

Film thicknesses were considered with precursors of 

concentration 0.025 M and 0.1 M. The film thickness was 

obtained using SEM cross sectional profiling as shown in Fig. 

4 and the weight difference method expressed in Equation (2) 

[47] and plotted in Fig. 5. 

𝑡 =
𝑚

𝐴𝜌
     (2) 

Where t is film thickness, m is actual mass deposited, A is thin 

film area and ρ is density of material.  

 

 

Figure 3: Elemental composition of deposited NiO films 
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 (a)   (b)   

 (c)    (d)    

Figure 4. Film thickness obtained from SEM cross-sectional profiling for (a) 0.025M; (b) 0.05M; (c) 0.075M; (d) 0.1M  

 

 

Figure 5. Film thickness of NiO thin films using weight difference method 

 

There was no disparity between the SEM cross sectional 

profiling and the film thickness obtained using the weight 

difference. Film thickness increases as precursor concentration 

increases. This is an improvement on previous study results 

[48]. This improvement may be as a result of accumulation of 

deposited NiO on the substrate. This was collaborated by the 

EDX results. The thickness of the NiO film was controlled by 

keeping the deposition parameters constant. The NiO thin film 

average thickness was between 6.277 µm and 11.57 µm.  

Structural Studies 

The phase and the preferred orientation of the deposited 

nanostructured NiO films were determined using an x-ray 

diffractometer. Figure 6 gives the XRD patterns of the 

deposited nanostructured NiO films at different precursor 

concentrations. The patterns have peak diffractions at (2θ = 37 
o and 43 o) for the (1 1 1) and (2 0 0) planes respectively and 64 
o for the (2 2 0) plane for 0.1 M. The XRD analysis confirms 

Bunsenite which corresponds to the JCPDS card: 04- 0835 for 
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Nickel oxide [49]. The highest intensity was recorded for the (1 

1 1) plane with a strong peak of 2θ = 37 o for precursor solutions 

of 0.05 M, 0.075 M and 0.1 M which is an improvement on 

Bakr et al. [50]. This could be due to an increase in grain growth 

caused by greater thickness. It can also be due to an increase in 

crystallinity as the concentration of the precursor solution 

increases. These results confirm the polycrystalline with cubic 

crystalline structures of deposited NiO film. Balu et al. [51] also 

observed polycrystalline with cubic structures when they varied 

concentrations of NiO films using SPT with a perfume atomizer 

but this seemed to have more intensity. The lower intensity 

peak of (2 0 0) increased gradually as the precursor solution 

increased from 0.05 M to 0.1 M with emergence of a third peak 

of (2 2 0) for 0.1 M. The average crystallite size was obtained 

using the Debye-Scherrer formula [52-53] in Equation (3).  

 

Figure 6. XRD patterns of nanostructured NiO films for 

various precursor concentrations 

 

𝐷 = 
𝑘𝜆

𝛽 cos𝜃
    (3) 

Where Β is full width at half maximum (FWHM) peak intensity 

(in Radian), λ is wavelength, θ represent Bragg’s diffraction 

angle and k is 0.89 respectively. 

The lattice constant was found to be 4.1905 Å, 4.1856 Å, 

4.1852 Å, 4.1850 Å for 0.025 M to 0.1 M respectively. This 

agrees with the standard lattice constant of NiO film value of 

4.176 Å [54].  

Micro strain was produced through growth of thin film and was 

calculated using the formula in Equation (4) [55].  

𝛿 =  
𝑑𝐴𝑆𝑇𝑀 − 𝑑𝑋𝑅𝐷

𝑑𝐴𝑆𝑇𝑀
 × 100   (4) 

Where d is the lattice constant and 𝛿 is the micro strain. 

A plot of NiO film micro strain against precursor solution is 

shown in Fig. 7. It shows that there is an increase in micro strain 

as precursor concentration increases. Micro strain represents 

compression as seen in Table 2 which gives detailed results of 

micro strain, lattice constants and 2θ values for deposited NiO 

films for precursor solution concentrations of 0.025 M to 0.1 

M.  

 

 

Table 2. Calculated parameters from XRD data 

Parameter     

0.025 0.05M 0.075 0.1M 

 

2θ 

hkl  37 37 37 

(1 1 1)   

( 2 0 0) x 43 43 43 

( 2 2 0) x X X 63 

Lattice  

constant d (Ả) 

recorded XRD 4.1905 4.1855 4.1852 4.1850 

ASTM 4.1684 4.1684 4.1684 4.1684 

Micro strain (𝛿) % -0.5301 -0.4102 -0.4030 -0.3982 

 

 

Figure 7. Graph of micro strain against precursor solution 

concentration for NiO films 

 

Optical properties 

Figure 8 represents measurements of transmittance and 

wavelength for deposited NiO films at various precursor 

solution concentrations. Transmittance decreases from 80 % to 

71 % as precursor solution concentration increases (0.025 M to 

0.1 M). This may be ascribed to the increased value of NiO 

thickness and absorbance. The absorption edge in thicker films 

was less sharp. This occurred because as precursor 

concentration increases there is bigger cluster of deposited 

films causing the scattered radiation to be more pronounced 

because of surface roughness [56]. These results exceeded 

previous reported values [57-58].  

 

Figure 8. Plot of transmittance against wavelength of varied 

NiO film molarity 
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Absorption coefficient, α was obtained using Equation (5) [59].  

𝛼 =  (2.303 × 𝐴) ⁄ 𝑡    (5) 

Where t is film thickness and A is absorbance. Optical 

absorption is related with optical energy band gap as expressed 

in Equation (6) [60-61]. 

α2= C (hυ- Eg)    (6) 

Where C has constant value, h denotes Planck’s constant, υ 

represent incidence light frequency, and Eg denotes optical 

energy band gap.  

 

Figure 9. Graph of (αhυ)2 against hυ for NiO films 

 

Figure 9 shows a graph of (αhυ)2 against hυ for NiO film spray 

deposited at different precursor concentrations. Extrapolation 

of the linear line of the graph to hυ axis for (αhυ)2 = 0 gives the 

optical band gap. A decrease in slope of the plot is also 

observed as precursor concentration increases. A shift towards 

lower energy is observed according to the value of the optical 

band gap. This reduction is attributed to the Moss-Burstein shift 

[62-63]. Optical energy band gaps are: 3.94 eV, 3.56 eV, 3.44 

eV and 3.38 eV for 0.025 M, 0.05 M, 0.075 M and 0.1 M 

respectively. This gives a better optical band gap than existing 

reported values [64]. This may be ascribed to crystallite size 

increment as precursor concentration decreases [65]. A 

quantum size effect may be responsible for the large value of 

the band gap of NiO film [66]. Careful and well optimized 

deposition parameters also helped in obtaining better optical 

band gaps. 

 

Figure 10. Variation of refractive index with precursor 

solution concentration of NiO films 

 

The refractive index of deposited films, shown in Fig. 10, was 

calculated using the relation between the refractive index and 

the optical band gap as shown in Equation 7 [67]. 

𝜂 =  √(12.417 ⁄ (𝐸𝑔 − 0.365)   (7) 

Where η is refractive index and Eg is optical band gap. The 

refractive indices were found to be 1.86, 1.97, 2.01 and 2.03 for 

precursor solutions of 0.025 M, 0.05 M, 0.075 M and 0.1 M 

respectively. This is an improvement on reported values by 

Sriram and Thayumanavan [68]. 

 

CONCLUSION 

This study showed successful spray deposition of 

nanostructured NiO films using nickel acetate on glass 

substrate. The effect of varying precursor concentrations of 

NiO films in terms of elemental, morphological and structural 

properties were studied. In terms of Elemental and morphology 

properties, surface morphology showed an increasingly 

grainier surface as the molarity increased. Elemental 

composition confirmed the presence of the Ni and O elements 

in NiO films. Oxygen concentration decreased as precursor 

concentration increased. It was observed that the film thickness 

increased as the precursor solution increased from 0.025 M to 

0.1 M with an average thickness range of 10 µm and 21µm 

respectively.  

XRD patterns showed that the 0.025 M concentration has an 

amorphous structure while the 0.05 M to 0.1 M concentrations 

have a polycrystalline cubic structure. Intensity of NiO films 

increased with increased molarity. Preferred orientation was 

along the (1 1 1) peak. The patterns had peak diffraction at (2θ 

= 37 o, and 43 o) for the (1 1 1) and (2 0 0) planes respectively 

and 64 o for the (2 2 0) plane for 0.1 M. The lattice constant 

decreased from 4.1905 Å to 4.1850 Å for 0.025 M to 0.1 M 

which correlated with the 4.176 Å standard lattice constant of 

NiO. Micro strain of films showed compression and increases 

with precursor concentration.  

Transmittance reduced as precursor concentration increased. 

Transmittance decreased from about 80 % to 71 % as 

concentration increased. Optical band gap varied from 3.94 eV 
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to 3.38 eV as concentration increased. This study produced 

better optical band gaps than existing literature. These new 

results were as a result of optimization of the deposition 

parameters. Therefore, varying precursor solution 

concentration has an effect on properties of nanostructured NiO 

thin film. Based on the result obtained, the prepared NiO thin 

film sample can be used as an absorber layer of a solar cell. 

This optimized result may be the answer to low cost, durable 

yet efficient solar cell fabrication and research in developing 

countries.  
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The need for affordable, clean, efficient, and sustainable solar cells informed this study. Metal oxide TiO2/NiO heterojunction solar
cells were fabricated using the spray pyrolysis technique. The optoelectronic properties of the heterojunction were determined. The
fabricated solar cells exhibit a short-circuit current of 16.8mA, open-circuit voltage of 350mV, fill factor of 0.39, and conversion
efficiency of 2.30% under 100mW/cm2 illumination. This study will help advance the course for the development of low-cost,
environmentally friendly, and sustainable solar cell materials from metal oxides.

1. Introduction

The need for affordable and sustainable electricity in devel-
oping nations has been an issue of concern to all stake-
holders. Renewable energy has been identified as a viable
solution to ending global electricity problems as its availabil-
ity exceeds world energy demand [1]. Solar energy is a good
source of renewable energy [2]. The hourly solar influx on
the surface of the earth surpasses annual human energy needs
[3]. Photovoltaic energy has received increasing interest
caused by a decrease in module prices in countries like China
[4]. Interest in these devices is due to improved reliability,
efficiency, and costs in generating electricity [5]. Solar cells
of high efficiency have been achieved with inorganic mate-
rials [6], but they require expensive materials of high purity
and a technique that is energy intensive. There is, therefore,
a need to explore ways of manufacturing solar cells that can
scale-up to large volumes at low cost.

Metal oxide solar cells offer a good replacement for
conventional silicon solar cells. This is because metal
oxides are low-cost materials, have flexible optical proper-
ties, can be deposited using low-cost techniques, and are
simple to scale-up to large volume production. They also dis-
play quantum confinement effects in two dimensions [7].

Nanostructured metal oxides are used in a wide range of
device applications because of their broad composition and
band structures [8–14]. The widely used oxides are ZnO
[15], CuO [16], In2O3 [17], and TiO2 [18], to mention but
a few. They are widely applied in optoelectronic devices such
as humidity sensors [19], photodiodes [20], solar cells [21],
and photocatalysts [22].

NiO is a P-type semiconductor with a wide bandgap
between 3.5 eV and 4.0 eV [23]. The excellent properties of
NiO make it a promising material for solar cells [24]. Simi-
larly, TiO2 is a desirable material for harvesting solar energy
because of its optoelectronic properties, high resistance to
photocorrosion, affordability, stability in a wide range of
pH, and nonpoisonous nature [25]. Various techniques are
available for depositing metal oxides [26–31]. Low cost of
equipment, ease of control of deposited film structure, and
the ability to coat large areas in thin layers with uniform
thickness [32–35] influenced the choice of the technique used
in this study.

Heterojunctions are known to be the most competitive
method of solar cell fabrication on account of being the sim-
plest [36]. A P-N junction is created when P-type (NiO) and
N-type (TiO2) semiconductor materials are placed in contact
with one another. A solar cell is basically a P-N junction with
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a large surface area. Figure 1 depicts generation of electricity
by a solar cell using a P-N junction.

The overall aim of this research is the provision of
affordable and sustainable solar panels for developing
and low-income countries. This was achieved by fabricating
nanostructured TiO2/NiO heterojunction thin-film solar
cells using the spray pyrolysis technique.

2. Methodology

2.1. Deposition. The chemicals used are of analytical reagent
grade and were used without further purification. Distilled
and deionized pure water were used during the course of
the experiment.

The solar cell was fabricated using a modified spray
pyrolysis technique (SPT) as reported by Ukoba et al. [37]
and represented pictorially in Figure 2. Prior to sample prep-
aration, the indium tin oxide- (ITO-) coated glass and soda
lime glass used as substrate were clean ultrasonically as
reported by Adeoye Abiodun and Salau [38]. The precursor
for the window layer titanium oxide (TiO2) nanostructure
thin film was prepared by mixing 3ml of titanium ethoxide
with 30ml of distilled water and ethanol mixture, and three
droplets of acetic acid. This was stirred for one hour before
spraying on cleaned indium tin oxide- (ITO-) coated glass
substrates and soda lime glass substrates maintained at about
350°C. Also, deposition parameters such as substrate temper-
ature, carrier gas flow rate, and pressure were optimized to
obtain quality films.

The nanostructured nickel oxide (NiO) absorber layer
was deposited on the prepared ITO/TiO2 layers and empty
soda lime glass using SPT, as shown in Figure 3. The precur-
sor for NiO was obtained by preparing 0.05M nickel acetate
tetrahydrate in double distilled water.

The precursors were thoroughly stirred for several
minutes prior to spraying onto preheated substrates main-
tained at about 350°C. Other deposition parameters were
maintained to obtain good quality thin films. The opti-
mized parameters used in the deposition of the NiO films
are tabulated in Table 1. To complete the TiO2/NiO het-
erojunction solar cell illustrated in Figure 4, gold (Au)

metal contact was deposited as a back contact using DC
magnetron sputtering.

2.2. Testing. The TiO2 and NiO prepared on soda lime glass
were used to study the elemental, morphological, and struc-
tural characteristics of TiO2 and NiO using energy dispersive
X-ray spectrometer (EDS or EDX: “AZtec Oxford Detector”),
a ZEISS Ultra Plus field emission gun scanning electron
microscope (FEGSEM), and Bruker AXS D8 Advance X-ray
diffractometer (XRD) with Cu-Kα radiation, respectively.
The J-V characteristics of the fabricated TiO2/NiO hetero-
junction cell in dark and under illumination were done using
the Keithley SourceMeter 2400, coupled with a two-point
probe. Newport solar simulator of intensity (100mW/cm2)
was used as the source of illumination.

3. Results and Discussion

3.1. Morphological Studies. Figures 5(a) and 5(b) show the
scanning electron micrograph of the NiO thin film at
lower and higher magnification, respectively. The micro-
graph reveals scattered distribution of the NiO particles
across the surface of the film. The film has even distribu-
tion, is adherent to the film surface, and has no cracks.
This represents a better surface morphology compared to
that of NiO films reported by Sriram and Thayumanavan
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Figure 1: Solar cell generation of electricity using a P-N junction.

Figure 2: Pictorial representation of the experimental set-up of the
spray pyrolysis technique.
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[39]. The SEM shows the potential of NiO as an absorber
layer in solar cell fabrication. Figures 5(c) and 5(d) show
the scanning electron micrograph of the heterojunction
of NiO/TiO2. This micrograph was obtained by the SEM
at the junction or point of interaction between the TiO2
and NiO. It shows a polycrystalline structure. The micro-
graph shows the P-type NiO and N-type TiO2 of the thin
film with their polycrystalline structures. It shows com-
plete penetration at the heterojunction.

3.2. Elemental Composition. Figure 6 shows the elemental
composition of the NiO/TiO2 heterojunction solar cell
deposited on the ITO-coated glass substrate. Figure 6 shows
the presence of Ti, O, and Ni for the TiO2 and NiO, respec-
tively, and the indium (In) representing the ITO-coated glass
substrate. This confirms the presence of the metal oxides in
the heterojunction.

3.3. Structural Analysis. Figure 7 shows the X-ray diffraction
patterns of the fabricated ITO/TiO2/NiO heterojunction
solar cell. The peaks corresponding to NiO and TiO2 were
determined with JCPDS patterns. The XRD spectrum indi-
cates strong NiO peaks with (1 1 1), (2 0 0), and (2 2 0) pref-
erential orientation. The patterns of the NiO thin film have
peak diffractions at (2θ=37°, 43°, and 64°) for the (1 1 1),
(2 0 0), and (2 2 0) plane. The XRD analysis confirms
Bunsenite, which corresponds to the JCPDS card: 04-0835
for nickel oxide [40] confirming it as a good absorber
layer of solar cells [41]. The TiO2 spectrum also shows
strong spectrum and polycrystalline structures typical of
N-type in heterojunction solar cells. The structure of the
heterojunction indicates that the film is polycrystalline and
chemically pure.

3.4. Current Density-Voltage (J-V) Characterization. The J-V
characteristic curve of the prepared TiO2/NiO heterojunc-
tion thin-film solar cell under illumination and in the dark
is depicted in Figure 8. The J-V characteristic at room tem-
perature in the dark shows that the forward current of the
cells increases slowly with increasing voltage. The solar cell
has rectification properties since the dark J-V plots were
similar to the Shockley diode characteristics, which can be
expressed by the standard diode equation

J = JO exp qV
AkT

− 1 , 1

where q is the electronic charge, A is the diode quality factor
(ideality factor), k is Boltzmann’s constant, T is the absolute
temperature, and Jo is the reverse saturation current.

The solar cell parameters evaluated from the J-V curve
are presented in Table 2. The fabricated solar cell exhibits
the short-circuit current (Jsc) of 16.8mA, the open-circuit
voltage (Voc) of 350mV, the fill factor (FF) of 0.39, and the
conversion efficiency (η) of 2.30%. This is a marked improve-
ment on the values of 0.33V and 0.29 recorded by Georgieva
and Tanusevski [42] for the open-circuit voltage and fill fac-
tor, respectively. It also showed improvement in the fill factor
of 0.28 reported by Noda et al. [43].

4. Solar Cell Parameters

The primary parameters that describe the performance of a
photovoltaic device are discussed below.

350ºC Heater
Compressor tank

Exhaust pipe

Temperature
controller

Substrate

Fume chamber

Spraying gun with
precursor beaker

Sprayed films

Figure 3: Experimental set-up of spray pyrolysis technique.

Table 1: Optimum deposition parameters of SPT NiO film.

Deposition parameter Value

Substrate to nozzle height 20 cm

Rate of spray 1ml/min

Spray time 1min

Sprays interval 30 sec

Carrier gas 1 bar of filled compressed air

NiO

Au

ITO

TiO2

L
o
a
d

Contact material: gold

P-type material

N-type material

Positive electrode: indium 
tin oxide 

Figure 4: Schematic of the fabricated NiO/TiO2 heterojunction
solar cells.
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4.1. Open-Circuit Voltage (Voc). Open-circuit voltage is the
applied voltage relative to an open circuit where no current
flows through the device (i.e., the voltage across the device
at zero current). Voc is obtained at the point of intersection
of the I-V curve under illumination at the voltage axis.
Under open-circuit conditions, the structure has to bias itself
to some voltage Voc in order to counter the light-beam-
induced current. The open-circuit voltage Voc arises as a

result of the built-in electric field present in the materials
system and can be expressed as

VOC = AkT
q

ln JL
Jo

+ 1 2

This quantity is left unaffected by series resistance losses
in the cell but is sensitive to shunt losses.

(a) (b)

(c) (d)

Figure 5: SEM of (a) NiO thin film at lower magnification, (b) NiO thin film at higher magnification, (c) fabricated NiO/TiO2 heterojunction
solar cell at lower magnification, and (d) fabricated NiO/TiO2 heterojunction solar cell at higher magnification.
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Figure 6: EDX of fabricated ITO/TiO2/NiO heterojunction
solar cell.
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4.2. Short-Circuit Current Density (Jsc). Jsc is the current that
flows through the junction under illumination at zero applied
voltage, that is, Jsc = J V = 0 . In the ideal case, it equals the
photogenerated current density (JL) and is proportional to
the incident number of photons or alternatively the intensity
of illumination.

Jsc is represented as the intersection of the J-V curve
under illumination at the current axis. For an ideal solar cell
(RS = 0 and RSH=∞), the short-circuit current is given by

Jsc = Jo exp q 0
AkT

− 1 − JL, V = 0 3

4.3. Fill Factor (FF). The fill factor is defined as the inverse of
the ratio of the ideal power to the maximum power in oper-
ating conditions. It can be defined also as the area of the max-
imum power rectangle to the product of the short-circuit
current and the open-circuit voltage. This is shown as

FF = Vmax Jmax
Voc Jsc

4

4.4. Efficiency (η). The most important parameter of a solar
cell in terms of its ultimate function is the photovoltaic con-
version efficiency. This is defined as the ratio of the output
power (electricity) to the input power (light) and can be
calculated as

η = Pmax
Pin

= FF Voc Jsc
Pin

5

5. Conclusion

In this study, TiO2 and NiO thin films were used to fabricate
ITO/TiO2/NiO heterojunction solar cells. It shows that NiO
can be used in thin-film solar cells. The conversion efficiency,
open-circuit voltage, short-circuit current, and fill factor
were 2.30%, 350mV, 16.8mA, and 0.39 under 100mW/cm2

illumination, respectively. This is an improvement on
existing values. This will open up frontiers in affordable
and sustainable solar cell fabrication in developing and
low-income countries.

Nomenclature

NiO: Nickel oxide
Ni: Nickel
Ti: Titanium
O: Oxygen
TiO2: Titanium oxide
ZnO: Zinc oxide
CuO: Copper oxide
In2O3: Indium oxide
ITO: Indium tin oxide
Au: Gold
SPT: Spray pyrolysis technique
FEGSEM: Field emission gun scanning electron microscope
EDX: Energy dispersive X-ray spectrometer
XRD: X-ray diffractometer
J-V: Current density-voltage
I-V: Current-voltage
Voc: Open-circuit voltage
Jsc: Short-circuit current density
FF: Fill factor
Pin: Power in
Pmax: Maximum power.
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CHAPTER 6: MODELING OF THE FABRICATED 

NiO/TiO2 P-N HETEROJUNCTION SOLAR CELLS 

 

Chapter 6 focused on the modeling and theoretical validation of the developed solar cells. This is 

divided into three parts. Part 1 did an overview of modeling tools used for solar cells and part 2 

modelled the fabricated solar cells of this study. Part 3 studied the application of solar cells in 

combating global warming. 

Part 1: Ukoba, O.K; Inambao, F. L and Adeoye A. E. “Modeling and Simulation of Metal Oxide Solar Cells: 

An Overview” ICUE 2018. 

 

Part 2: Ukoba, O.K., and Inambao F.L. (2018) “Modeling of properties of fabricated NiO/TiO2 heterojunction 

solar cells,” International Journal of Applied Engineering Research, vol. 13, No 11, pp. 9701 - 9705  

 

Part 3: Ukoba, O.K., and Inambao F.L. (2018). “Solar cells and global warming reduction,” International 

Journal of Applied Engineering, ISSN 09734562 Volume 13, Number 10, pp. 8303-8310 
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Chapter 6 Part 1: Modeling and Simulation of Metal Oxide Solar 

Cells: An Overview 

Ukoba, O.K; Inambao, F. L and Adeoye A. E. “Modeling and Simulation of Metal Oxide Solar Cells: An 

Overview” ICUE, 2018. 
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Abstract 

This study provides a brief overview of device modeling and simulation of metal oxide thin film solar cells. Modeling 
tools have been used for solar cells but mainly traditional solar cells. Modeling tools are used to study and predict 
fabrication of devices. This is done with a view to improving on solar cell properties and gaining a better understanding 
of the device data. This study examined different tools used for modeling and simulation of metal oxide solar cells 
and some studies where they were used. It also highlights the steps for solar cell modeling, and the classification of 
modeling tools. 

KEYWORDS Metal oxide; modeling; simulation; solar cells; overview 

1. Introduction 

Solar technologies still lack full implementation globally despite the well-known potential of solar energy. This is 
caused by the challenge of device performance and costs associated with solar technologies [1, 2]. Thinner solar cells 
are envisaged to be capable of cutting costs while retaining optimum performance. Nano-structuring of metal oxide 
thin film is one such approach. Despite the increase in experimental fabrication of metal oxide solar cells [3-5], 
insufficient consideration is being given to understanding the device principles by means of modeling. 

Nanostructured metal oxide thin film solar cells are attracting wide interest due to their potential for affordable and 
sustainable optoelectronic applications [6-11]. These materials offer a number of significant advantages compared to 
traditional solar cells that are large and costly to fabricate [12-18]. However, their efficiencies are still far from those 
of traditional silicon solar cells [19]. A different approach has been developed to improve on their efficiency with low-
cost and sustainability kept in view.  

Modeling is an effective way of tuning the properties of solar cells in order to achieve better efficiency at a reduced 
cost with reduced resources. Modeling of solar has become a vital tool for development of effective solar cells. 
Modeling tools help to demystify solar cell operation and are needed in the improvement of the efficiency of solar 
cells [20, 21]. Solar modeling is also capable of producing new types of brightly colored and transparent solar cells. 
These colored solar cells can be used in integrated photovoltaics systems. However, the photovoltaic industry, 
compared to the electronic industry, has not leveraged the merits of solar cell modeling.  

Before the advent of solar cell modeling, understanding of solar cells was by intuition and empirical studies without 
quantitative analysis. This was due to the fact that the solar cell industry, before 2008, was more interested in scaling 
up device over performance improvement [22, 23]. Since 2008, solar cell modeling has garnered more attention mainly 
due to interest in the better efficiency of solar cells [24]. The major reason for the increase in demand for solar cell 
modeling is that better device performance can be achieved when the whole solar cell device is included in the 
optimization process. 

This study provides a brief overview of metal oxide solar cell modeling and simulation. It highlights the steps for 
device modeling and simulation, classification of the modeling and simulation tools, and examples of modelled and 
simulated metal oxides.  

mailto:ukobaking@yahoo.com
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2. Principle of metal oxide solar cells simulations 

Metal oxide thin film solar cells are basically P-N heterojunctions as seen in the equivalent circuit model of the cells 
shown in Figure 6.1. They exhibit nonlinear I-V characteristics that vary with the temperature of the solar cells and 
the radiant intensity.  

 
Figure 6.1. Solar cells model equivalent circuit 

 

Under ideal conditions, a solar cell can be theoretically modelled as a current source under a diode. The I-V 
characteristic equation of a solar cell can be expressed in Equation (1): 

𝐼𝐼 =  𝐼𝐼𝑝𝑝ℎ −  𝐼𝐼𝑠𝑠 �𝑒𝑒
�
𝑞𝑞�𝑉𝑉+ 𝑅𝑅𝑠𝑠𝐼𝐼𝑝𝑝𝑝𝑝�

𝐴𝐴𝐴𝐴𝑇𝑇𝑐𝑐
�
− 1� −  𝑉𝑉+ 𝑅𝑅𝑠𝑠𝐼𝐼𝑝𝑝𝑝𝑝

𝑅𝑅𝑠𝑠ℎ
      (1) 

where; Iph is photocurrent, Is is reverse saturation current, RS and Rsh are inherent resistances in series and parallel 
associated with the cell, q is the electron charge, K is Boltzmann’s constant and A, the modified ideality factor.  

Three special parameters influence the performance of solar cells, namely, fill factor, open-circuit voltage, and short 
circuit current. Short circuit current and open circuit voltage are the major determinant factors of solar cell efficiency 
because the fill factor is a function of both parameters. Electron flow in the external circuit when the energy of incident 
photons is greater than the band gap of cells.  

Figure 6.2 shows typical characteristics of solar cells. It shows the behavior of the voltage and current with irradiation 
and temperature of solar cells. 

 
Figure 6.2. Typical characteristics of a solar cells 
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Most solar cells comprise different layers of semiconductor materials stacked to form a one-dimensional sequence. 
Most metal oxide thin film solar cells can be modeled as one-dimensional cells because of the one direction of flow 
of the electron/hole current [25]. Most silicon wafer solar cells can also be modelled in a similar manner. This is 
feasible provided the series connection is not clearly modelled. Two dimensional modeling is applied in solar cells 
which have metal contacts embedded in a passivation layer that helps reduce recombination. In such two-dimensional 
modeling, the internal electron and hole current flows in two dimensions, or three dimensions in some cases. 

2.1 Steps for device modeling 

The steps for modeling and simulating metal oxide solar cells involve derivation of the basic equations. This is 
followed by normalization of the derived equations. Thereafter, the equations are linearized. Finally, a solution of the 
linearized equation is obtained. A partial understanding of device input parameters is needed for successful device 
modeling and simulation. A starting baseline is needed for all types of metal oxide solar cell modeling.  

2.2 History of solar cell modeling 

A lot of materials and methods have been studied with a view to developing improved solar cells with regard to cost 
and efficiency. Experimental and modeling/simulation have also been employed for the purpose of device fabrication 
and tuning. Numerical analysis gives a better understanding of the operation of metal oxide solar cell devices. The 
pioneer solar cell modeling tool was developed in 1980 by a PhD student named Mark S. Lundstrom [26]. Gray [27] 
in 1989 developed the Thin-Film Semiconductor Simulation Program (TFSSP). Lundstrom also worked on the Solar 
Cell Analysis Program (SCAP) in 1985 [28]. SCAP is said to have been developed at Ghent University, Belgium [29, 
30]. In 1989 a PhD student used the SCAP in one-dimension and two-dimensions for a doctoral dissertation in an 
engineering faculty [31]. Purdue University also developed one- and two-dimensional modeling tools called PUSH 
[32, 33].  

3. Classifications of solar cell device modeling 

Solar cell device modeling/simulation can be used to calculate current densities and the carrier. This is achieved by 
solving the transport and Poisson’s equation [34]. The general solution to the current densities and carrier is derived 
by applying the essential boundary conditions at the junctions (P-N). However, the non-linear recombination makes 
it difficult to solve the current densities and carrier with ease. Device modeling of metal oxide solar cells can be 
classified into three broad categories, based on: the solver approach; the modeling tool used; and the dimension (one-
dimensional, two-dimensional or three-dimensional). 

3.1 The solver approach 

This is divided into the analytical and numerical solver approach as shown in Figure 6.3. 

 
Figure 6.3. Schematic representation of the analytical and numerical approach to solar cell modeling 
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3.1.1 Analytical solver approach 

This involves analytical modeling of the solar cell device. It is sub-grouped into analytical and semi-analytical. 

The analytical approach solves the semiconductor equations. The equations include the diffusion-drift current, 
equation of carriers’ continuity, and Poisson's equations. This approach is capable of calculating the key parameters 
of solar cell efficiency. It is not sufficient to give the cell’s detailed parameters but it can give the fill factor, short 
circuit current and the open circuit voltage. It is capable of modeling and simulating the effects of diameter and length 
on the optical absorption of the cell. It allows for comparison of the planar cell geometry and the solar cell performance 
in relation to the material properties. A good example is the work of Kayes and Atwater [35]. That study was able to 
achieve 11% efficiency from an initial efficiency of 1.5 %. It employed the analytical model to solve diffusion-drift 
equations for minority carriers, the continuity equations, and Poisson's equation. The study compared analytically the 
performance of (c-Si) and gallium arsenide (GaAs), using a 100 mW/cm2 Air Mass 1.5 spectrum. Petrosyan, Yesayan 
and Neryesayan [36] solved the semiconductor equations using the analytical approach. Ali et al. [37] used the 
analytical model but employed the Green’s function method. Green’s function method eliminates the uniform 
generation assumption made by other models. This method gained prominence in 2014. It calculates the current 
density, fill factor, open circuit and conversion efficiency. 

The semi-analytical approach is used to optimize the device absorption. It does not involve massive calculations yet 
is efficient. This method permits the assessment of the ideal design parameters for optimum charge generation over a 
shorter time and material thickness [38]. This approach depends only on the refractive indices of the device parent 
materials. The theoretical framework links the reflection, transmission and absorption of solar cells to geometric 
parameters. It focuses on abridged parameters that enable the device to achieve optimum short circuit currents. This 
reduces the time and resources associated with comprehensive study of the geometry yet gives a better and faster 
optimized device. 

Although analytical models are not voluminous in simulation results they are easier to implement compared to 
numerical models. They also give a better view of the variables that influence the model. 

3.1.2 Numerical solver approach 

This involves numerical simulation techniques of modeling solar cell devices. Poisson’s equation connects the hole 
density and the electron. The complex nature of Poisson’s equation makes it difficult for mathematical tools to be used 
to solve it but it can be solved with the numerical approach. The merit of this approach is that it permits inclusion of 
key physical effects which ordinarily may not be considered. These include such parameters as band-gaps, lifetime, 
doping, among others. This helps to prevent closed form solutions. The key numerical tools used for solving the 
differential equations are the finite element [39], finite difference [40], and finite volume methods [41]. Others include 
transfer matrix method, rigorous couple wave analysis, and finite difference time domain. The finite element is the 
most flexible of the three methods in solving complex geometry involving complicated boundary conditions. This is 
because it makes room for arbitrary geometries and consists of several physics parameters of the solar cells. It is more 
effective when the incident light is absorbed along the axis. This method has attracted several studies that employ 
Technology Computer-Aided Design (TCAD) [42] and COMSOL multiphysics [43]. The Transfer Matrix Method is 
the most effective in devices involving small diameters and periodic structures [44]. In such a case, one side of the 
unit cell is represented by the end of a transfer matrix. 

3.2 The modeling tool used 

The second classification of solar cells modeling is based on the modeling tool used, mainly software tools. Almost 
all modeling tools base their design on basic solar cell equations (Poisson and continuity equations for electron and 
holes) [45]. Any modeling tool that is able to solve basic semiconductor equations can be used for modeling/simulation 
of metal oxide solar cells. The continuity equation is non-linear due to the presence of recombination terms. 

A standard thin film tool, and by extension metal oxide solar cell modeling/simulation tool, should be able to satisfy 
the conditions enumerated in Table 6.1 for it to be considered for usage. 

Table 6.1. Criteria for metal oxide thin film modeling tools 
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S/N CRITERIA VALUE 

1. LAYERS Multiple layers (5 layers minimum) 

2. BAND GAP Eg Eg > 2 – 3.7 eV 

3. BAND DISCONTINUITY EC & EV: ∆EC & ∆EV 

4. INTERFACE (GUI) SIMPLE, FAST AND FRIENDLY 

5. NON-ROUTINE MEASUREMENTS 
(current-density, capacitance, surface photo 
voltage, kelvin probe, transient measurement of 
current, voltage and capacitance) 

ABLE TO SIMULATE: 
J-V, C-V, C-f, QE(λ), as a function of ambient 
Temperature (T) 

6. GRADED BAND GAPS  Eg, ᵡ(x), NC(X), NV(X), α(x),  

7. RECOMBINATION ABILITY RECOMBINATION EVEN IN DEEP 
INTERFACE STATES 

8. RECOMBINATION IN BULK STATE RECOMBINATION EVEN IN BULK STATE 

 

3.2.1 Solar Cells Analysis Program (SCAPS)  

SCAPS stands for Solar Cell Analysis Program in one and two dimensions (SCAP1D and SCAP2D) developed at 
Ghent University. Its solar cell simulation program is used for opto-electrical simulation of the 1-D or 2-D structures 
of semiconductor layers [46-49]. SCAPS was originally developed for cell structures of the CuInSe2 and the CdTe 
family. However, there has been improvement thereby making room for other types of solar cells. SCAPS uses finite 
difference methods to solve the differential equations which, along with several relations from the physics of 
semiconductors, describe mathematically the performance of a solar cell. SCAPS performs a complete simultaneous 
numerical solution of the two continuity equations and Poisson's equation conditional on the boundary conditions 
appropriate to one and two-dimensional cells [28]. The equations are expressed as shown in Equations (2) to (4).  

∇2𝑣𝑣 = −  𝑞𝑞
∈

(𝑝𝑝 − 𝑛𝑛 + 𝑁𝑁𝐷𝐷 − 𝑁𝑁𝐴𝐴)         (2) 

∇. 𝐽𝐽𝑝𝑝 = 𝑞𝑞(𝐺𝐺 − 𝑅𝑅)           (3) 

∇. 𝐽𝐽𝑛𝑛 = 𝑞𝑞(𝑅𝑅 − 𝐺𝐺)           (4) 

The general terms of 3 and 4 can be represented as: 

𝐺𝐺(𝑥𝑥) =  ∫ 𝜙𝜙𝜙𝜙𝑒𝑒−𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑∞
0           (5) 

The hole and electron current densities which appear in Equations 3 and 4 are given by: 

𝐽𝐽𝑝𝑝 = −𝑞𝑞𝜇𝜇𝑝𝑝𝑝𝑝∇𝑉𝑉𝑝𝑝 − 𝑘𝑘𝑘𝑘𝜇𝜇𝑝𝑝∇𝑝𝑝         (6) 

𝐽𝐽𝑛𝑛 = −𝑞𝑞𝜇𝜇𝑛𝑛𝑛𝑛∇𝑉𝑉𝑛𝑛 + 𝑘𝑘𝑘𝑘𝜇𝜇𝑛𝑛∇𝑛𝑛         (7) 

𝑉𝑉𝑝𝑝 = 𝑉𝑉 − (1 − 𝛾𝛾) ∆𝐺𝐺
𝑞𝑞

          (8) 

𝑉𝑉𝑛𝑛 = 𝑉𝑉 + 𝛾𝛾 ∆𝐺𝐺
𝑞𝑞

           (9) 

where vp and vn represent the effective potentials expressed in Equations (8) and (9). ∆G and γ account for variations 
in the band structure, such as density of states and band gap, and account for Fermi-Dirac statistics. 
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Figure 6.4 depicts the structure of the SCAPS programme, summarizing its work. The operator inputs the information 
about the materials parameters, a description of the device to be analyzed, the type of analysis to be performed and 
the spectrum (optional). The results are printed in summary form and the detailed results of the calculation are stored. 
A separate plotting routine is used to access the information and to display the appropriate parameters. The plotting 
capability is one of the most valuable features of the code because it allows one to effectively have a microscopic view 
of most of the parameters of interest in the interior of the cell under operating conditions.  

 
Figure 6.4. Block diagram of the structure of SCAP1D and SCAP2D 

 

Figure 6.5 shows the SCAP interface with the major input parameters used for solar cell modeling. Some studies have 
successfully used it for modeling thin film solar cells [50-55].  
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Figure 6.5. Defined parameters used for the modeling the solar cells 

 

3.2.2 PC1D 

This was written for personal computers to solve non-linear equations of one-dimensional electron and hole transport 
in semiconductor devices with a focus on photovoltaic devices. It was written by a team at Sandia National Laboratory 
led by Basore. It was later improved at the University of New South Wales, Australia. PC1D is generally used for 
interpreting experimental data to define the structure of a device. It is used to determine several device parameters by 
matching an experimental curve to a simulated Internal Quantum Efficiency (IQE) curve as shown in Figure 6.6. The 
latest version (ver. 5) provides the ability to display experimental data and simulation results on the same graph within 
PC1D, enabling rapid comparison.  

 
Figure 6.6. PC1D schematic display and output display 
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The schematic display of common parameters in PC1D is shown in Figure 6.7. The displayed parameters include 
dopant, front-surface charge, contacts, texturing, shunt and series element.  

 

Figure 6.7. PC1D Schematic display of common parameters 
 

This modeling tool has a user-friendly interface. The layer and contact can easily be adjusted by a click on the graphic 
user interface. The parameters can also be changed by a menu system. Five layers are permitted per device. These 
layers are sufficient for certain devices that have little or no doping. It implements the most common recombination 
mechanisms. Band to band, Auger, and trap assisted tunneling are all implemented [56]. 

PC1D is capable of simulating spectral response measurements, transients and the J-V characteristics of solar cells 
[57, 58]. The output of the simulation can be manipulated in other programs (including spreadsheets). Although, it 
has been heavily used in traditional types of solar cell modeling and simulation [59], it can be deployed in metal oxide 
solar cell modeling as well [60-67]. These resources shed more light on PC1D [68-71]. 

 

3.2.3 MatLab/Simulink 

Some works have used Simulink for device modeling and simulation. Tsai, Tu and Su [72] developed a generalized 
photovoltaic model using Simulink. The model enabled the dynamic of a photovoltaic power system to be simulated, 
analyzed and optimized. Simulink is a versatile modeling and simulation tool. It has been deployed in modeling and 
simulating photovoltaic system including solar cells [73-77]. 

3.2.4 Analysis of Microelectronic and Photonic Structures (AMPS) 

This model was developed for modeling and simulation for the purpose of understanding solar cell device physics and 
design. It was developed by a team from Pennsylvania State University led by Fonash [78]. It is a one-dimensional 
modeling tool that uses finite difference and the Newton-Raphson method to solve the Poisson and continuity 
equations of solar cells. It has the ability to work on several models simultaneously. It refers to device as case. The 
clean and user-friendly interface makes it easy to describe the model. Each case or device is capable of being assigned 
about 30 layers with each having separate defined parameters. These layers can be assigned about 50 deep donor and 
acceptor levels capable of creating arbitrary density of states distribution. And the deep levels can be distributed in 
the uniform, discrete and Gaussian. Electron/hole mobility, bandgap and other parameters are independent of 
temperature. It can simulate a graded junction because of the ability to add different layers with varying parameters, 
and is capable of simulating both in illumination and dark. Figure 6.8 gives the major parameters defined for modeling 
of devices in AMPS [79]. 
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Figure 6.8. AMPS-1D parameter definition for simulating heterojunction solar cells 

 

 

Figure 6.9 shows the graphic user interface of the AMPS with an open model known as case. 

The disadvantages of AMPS include the limited number of discretization nodes with the latest version capable of 
handling 3 000 nodes. Another disadvantage is manual input of the wavelength, spectrum intensity and absorption 
coefficients into AMPs. Also, there is difficulty in explicit definition of interface recombination. It encourages batch 
mode processing due to the slow pace of processing compared to other modeling tools. It however has an excellent 
plotting facility for analyzing and designing of two terminal structures results. AMPS is capable of modeling p–n, 
single or heterojunction p–i–n, Schottky barrier devices and the likes. It can simulate several optoelectronic devices 
including solar cells and diodes due to the ability to function both under illumination and dark. 

 

 
Figure 6.9. The graphic user interface of AMPS showing case 

 



137 
 

3.2.5 wxAMPS 

This is an improvement on AMPS and is very stable. The improvements are tunneling currents, improved 
visualization, better speed and convergence [80]. This is due to the improved algorithm solved by the Newton and 
Gummel technique. It was developed by a team from University of Illinois and Nankai University [81]. The user 
interface of wxAMPS deploys a cross-platform library. It also provides better data entry [82]. It is an open source 
program, comparing favorably with SCAP and other tools. However, it offers better modeling capability for materials 
with high defect densities and band tails. It can be used for tandem and graded solar cells. The WIKI feature enables 
device parameters sharing. Figure 6.10 shows the interface. Some studies have deployed it in modeling of solar cell 
devices [83, 84]. 

 

 
Figure 6.10. Interface of wxAMPS 

3.2.6 TCAD 

The drift-diffusion equation, Poisson equation, Klassen’s low field mobility model, Auger model, and Klaassen’s 
concentration dependent SHR model were used in the development of this tool. The absorption of light, transmission, 
reflection and refraction at the interface are modelled using a photo-generation model. It uses AM 1.5 G solar 
spectrum, incident power density of 100 mW/cm2. The commonly used optoelectronic device parameters are shown 
in Figure 6.11 [85]. 
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Figure 6.11. TCAD optoelectronic device parameters 

 

3.3 Based on dimension 

This is divided into one-, two- and three-dimensional. Solar cells with conventional geometry and low solar intensities 
can be modelled using the one-dimension (1D) modeling tool. However, at high intensity, the two-dimension (2D) 
effect is considered even in some conventional geometry devices. For a high efficiency solar cell design, a two-
dimension or three-dimension (3D) modeling tool is required.  

The interdigitated back contact solar cell is an example of 2D geometry and the point contact solar cell is an example 
of an inherently 3D geometry. Although the basic modeling approach is the same for all solar cell devices, a unique 
algorithm has been developed for each class of solar cells. Most of the modeling tools distinguish the capability of the 
tool with 1D, 2D and 3D. Examples are SCAP1D, SCAP2D, PUSH1D, PUSH2D, among others. 

The Numerical Solar Cell Simulation Program (NSSP) is a 1-D modeling program for solar cells. Amin, Sopianand 
Konagai [19] used this program for modeling CdTe solar cell structures from different perspectives. It focused on 
reduction of CdTe absorber thickness using theoretical analysis.  

Other modeling tools that have gained usage include Silvaco [86-90], AFORS-HET (Automat For Simulation of 
Hetero-structures) [25, 91-94], Crosslight [95, 96], Sunshine [97], Synopsis [98], and Advanced Semiconductor 
Analysis (ASA) [99], among others. Silvaco uses a sophisticated technology called TFT for simulation. This uses both 
physical models and numerical methods for simulation of thin film solar cells and transistors. Crosslight uses a 
technology called Advanced Physical Models of Semiconductor Devices (APSYS). This employs the finite element 
technique for modeling optoelectronic properties of two-dimension thin film solar cells devices. AFORS-HET exists 
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as 1D and 2D. The ASA is used widely to study the effect of a nano-textured interface on solar cell performance [100]. 
Figure 6.12 gives an overview of commonly used modeling/simulation tools [45]. 

 

 
Figure 6.12. Some modeling tools used for thin film solar cells 

 

Conclusion 

This study was able to give an overview of modeling and simulation tools used for metal oxide thin film solar cells. 
A mathematical modeling and theoretical validation of solar cells can help a great deal to encourage research and 
development of solar technology in developing countries. There are numerous solar cell modeling tools which have 
been developed and are used commercially and at laboratory scale worldwide today. The fundamental challenge is to 
find a balance and adapt the tool that satisfies the required criteria. 
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Chapter 6 Part 2: Modeling of properties of fabricated NiO/TiO2 

heterojunction solar cells 

This chapter reports the modelling of the experimentally fabricated NiO/TiO2 heterojunction solar cells using 

SCAPxD. 

To cite this article: Ukoba, O.K., and Inambao F.L. (2018) “Modeling of properties of fabricated NiO/TiO2 

heterojunction solar cells” International Journal of Applied Engineering Research, Vol. 13, No. 11, pp. 9701 – 
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Abstract 

This paper reports modelling and theoretical validation of a 

fabricated NiO/TiO2 P-N heterojunction solar cell. The solar 

cell equations were modelled and thereafter theoretical 

validation of the fabricated solar cells was performed. 

Modelling tools were used to validate the influence of NiO 

material features such as deposition temperature, voltage and 

defect densities on the performances of an ITO/TiO2/NiO 

heterojunction solar cell structure. The working points used 

included a temperature of 350 oC, illumination of 1000 W/m2 

using an AM1.5 lamp, with voltage range of 0 to 1.5 volts. The 

output gave Voc of 0.1445 V, Jsc of 247.959195E-6 mA/cm2 and 

FF of 37.87 % and Voc 0.7056 and Jsc 28.366911 mA/cm2 

when both contacts were added. This opens a new frontier for 

modelling of metal oxide based thin film solar cells especially 

NiO thin film solar cells. These findings enhance the quest to 

develop affordable and sustainable energy and encourage 

further research in solar cell technologies in low-income 

countries. 

Keyword: NiO; solar cells; modelling; simulation 

 

INTRODUCTION 

Despite the potential that solar energy holds for being an 

environmentally benign and sustainable energy source [1], 

large-scale production and costs still hinder the usage, 

especially in low-income countries [2]. This may be attributed 

to the difficulty in scaling up existing methods or the expense 

and complexities associated with vacuum environment 

fabrication [3]. The way forward is to develop materials and 

techniques that will encourage low cost or focus on a few 

experimental techniques [4]. The latter can be achieved with 

more success when combined with modelling. The modelling 

of result improves the planning and implementation of the 

experiment. 

Solar cells produce about 0.5 volts to 0.6 volts of open circuit 

voltage and 1 to 8 amps DC current depending on a range of 

factors but mainly related to the semiconductor used [5]. About 

36 to 72 solar cells are stacked together in series to form a 

module which can produce meaningful output. A solar panel is 

an arrangement of solar modules either in series or parallel. 

When the solar modules are connected in parallel the currents 

are added while the voltage is the same, while for series the 

voltages are added and the current produced remains the same 

[6]. 

Solar cells can be grouped into monocrystalline, 

polycrystalline, and thin film technology [7]. Both 

monocrystalline and polycrystalline are referred to as 

traditional technologies of solar cells and collectively grouped 

as crystalline silicon. Solar cells can also be grouped by 

generations of the solar cells [8, 9]. The traditional technologies 

of solar cell manufacture use microelectronic manufacturing 

with an efficiency ranging from 10 % to 15 % and 9 % to 12 % 

for monocrystalline and polycrystalline respectively. Thin 

films’ efficiency varies depending on the fabrication techniques 

and materials used. The monocrystalline solar cells tend to have 

the highest efficiency and are also very expensive. 

Metal oxide heterojunction solar cells are currently attracting 

attention due to their potential [10]. Metal oxides offer great 

promise for being a solution to affordable, environmentally 

friendly, sustainable and viable energy, so ending the world 

energy problem, especially in developing and low-income 

countries [11, 12]. Metal oxides, especially NiO thin film, are 

the most promising materials to be used as solar cell absorber 

layers due to their excellent optical properties They have good 

band gaps, low cost and great absorption coefficients as well as 

constituents that are nontoxic and abundant naturally [13].  

However, most of them still exhibit weak conversion 

efficiencies resulting in several experiments in the laboratory 

in an attempt to obtain the optimum power conversion 

efficiency with current levels being about 8.4 % [14] compared 

to those of other technological paths in the photovoltaic field 

like CIGS-based solar cells which reach record efficiencies of 

over 20 % [10]. However, despite the development of several 

physical and chemical fabrication techniques for PV [15-17], 

several reasons could explain this situation, such as various loss 

mechanisms due to absorber features.  

Modelling has been used in other fields to reduce the amount 

of person-hours and resources spent performing experiments 

[18]. Modelling of solar energy spans many decades, with most 

models focusing on photovoltaic panels and modules. The few 

studies on solar cells are mainly on silicon and related solar 

cells [19-21]. There is, therefore, a need to explore ways of 

modelling metal oxide cells due to the increasing interest in 

them. 

This study attempts to model metal oxides heterojunctions 

(NiO/TiO2) using modelling tools (including SCAPS) which 

were successfully deployed in previous generations of solar cell 

research. SCAPs stands for Solar Cell Capacitance Simulator 

and is used for one or two-dimensional solar cell simulation. 

Therefore, a detailed analysis of the effect of deposition 

temperature, thickness, and defects densities of a NiO layer is 

necessary and has been presented in this work using the 

numerical simulation package SCAPS [22]. The results 

proposed in this study are a useful guideline for design of high 

performances NiO based solar cells. 
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METHODOLOGY 

The Mathematical Model 

A solar cell is basically a P-N heterojunction. Photovoltaic 

systems exhibit nonlinear I-V characteristics that vary with the 

temperature of the solar cell and the radiant intensity. Under 

ideal conditions, a solar cell can be theoretically modelled as a 

current source under a diode. A direct current is produced when 

the solar cell is exposed to light and this current varies linearly 

with the solar radiation. This is represented in Figure 1. 

 

 

Figure 1. Solar cell model equivalent circuit 

 

From the aforementioned, the characteristic equations are given 

as: 

𝐼𝑝ℎ =
𝐼𝑟× 𝐼𝑠𝑐

𝐼𝑟0
      (1) 

Equation (1) shows that the photocurrent depends on the 

temperature of the solar cell and solar insolation. 

𝑉𝑡 =  
𝑘𝑇

𝑞
      (2) 

𝐼𝑠 = 𝐼𝑠𝑐  ×  (𝑒
(

𝑉𝑜𝑐
𝑛.𝑉𝑡

)
 − 1)    (3) 

It can be seen from Equation (3) that the cell’s saturation 

current varies with the cell temperature, 

𝐼𝑑 =  𝐼𝑠 ×  (𝑒
(

𝑉 +𝐼.𝑅𝑠
𝑛.𝑉𝑡.𝑁𝑠

)
− 1)   (4) 

Equation (4) gives the Shockley equation. 

𝐼 =  𝐼𝑝ℎ  − 𝐼𝑑  − 𝐼𝑠ℎ    (5) 

The output current of the solar cell is represented in Equation 

(5). 

Equations (1) to (5) give the electrical behaviour and 

relationship between the current supplied and voltage, where; 

Iph is photocurrent, Isc is reverse saturation current, RS and Rsh 

are inherent resistances in series and parallel associated with 

the cell, Ns is number of cells in series, q is the electron charge, 

K is Boltzmann’s constant and A, the modified ideality factor. 

Table 1 shows the ideality factor of some of the solar cells.  

 

 

 

Table 1. Ideality factor of some solar cells 

S/N Technology Ideality factor 

(A) 

1. Monocrystalline silicon (Si 

Mono) 

1.2 

2. Polycrystalline silicon (Si 

Poly) 

1.3 

3. AsGa 1.3 

4. CIS 1.5 

5. CdTe 1.5 

6. a-Si:H 1.8 

7. a-Si: H tandem 3.3 

8. a-Si: H triple 5 

 

The solar cell is not an active device in darkness but behaves as 

a diode in such an environment i.e. as a P-N junction. During 

this phase it does not produce current and voltage. Conversely, 

a current is generated when an external load is connected to the 

solar cells. This current is called diode current or dark current 

and the diode defines the I-V characteristics of the cell. 

Therefore, from Figure 1 and from equation (5), the I-V 

characteristic equation of a solar cell can be expressed in 

Equation (6): 

𝐼 =  𝐼𝑝ℎ −  𝐼𝑠 [𝑒
(

𝑞(𝑉+ 𝑅𝑠𝐼𝑝𝑣)

𝐴𝑘𝑇𝑐
)

− 1] −  
𝑉+ 𝑅𝑠𝐼𝑝𝑣

𝑅𝑠ℎ
  (6) 

 

Theoretical validation 

SCAPS is a one-dimensional solar cell simulation program 

used for Opto-electrical simulation of the 1-D or 2-D structures 

of semiconductor layers [23-26]. SCAPS was originally 

developed for cell structures of the CuInSe2 and the CdTe 

family. However, there have been improvements since then 

making room for other types of solar cells. SCAPS uses finite 

difference methods to solve the differential equations which, 

along with several relations from the physics of 

semiconductors, describe mathematically the performance of a 

solar cell. SCAPS performs a complete simultaneous numerical 

solution of the two continuity equations and Poisson's equation, 

conditional on the boundary conditions appropriate to one and 

two-dimensional cells [27]. The equations are expressed as 

shown in Equations (7-9).  

∇2𝑣 = − 
𝑞

∈
(𝑝 − 𝑛 + 𝑁𝐷 − 𝑁𝐴)   (7) 

∇. 𝐽𝑝 = 𝑞(𝐺 − 𝑅)     (8) 

∇. 𝐽𝑛 = 𝑞(𝑅 − 𝐺)     (9) 

The general terms of Equations (8) and (9) can be represented 

as: 

𝐺(𝑥) =  ∫ 𝜙𝑎𝑒−𝑎𝑥𝑑𝜆
∞

0
    (10) 

The hole and electron current densities which appear in 

Equations (8) and (9) are given by: 

𝐽𝑝 = −𝑞𝜇𝑝𝑝∇𝑉𝑝 − 𝑘𝑇𝜇𝑝∇𝑝   (11) 
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𝐽𝑛 = −𝑞𝜇𝑛𝑛∇𝑉𝑛 + 𝑘𝑇𝜇𝑛∇𝑛   (12) 

𝑉𝑝 = 𝑉 − (1 − 𝛾)
∆𝐺

𝑞
    (13) 

𝑉𝑛 = 𝑉 + 𝛾
∆𝐺

𝑞
     (14) 

where vp and vn represent the effective potentials expressed in 

Equations (13) and (14), and ∆G and γ account for variations in 

the band structure, such as density of states and band gap, and 

account for Fermi-Dirac statistics. 

 

 

Figure. 2. Block Diagram of the structure of SCAP1D and 

SCAP2D 

 

Figure 2 depicts the structure of the SCAPS programme, and 

summarizes the working of the programme. The operator inputs 

the information related to the materials’ parameters, a 

description of the device to be analyzed, the type of analysis to 

be performed and the spectrum (optional). The results are 

printed in summary form and the detailed results of the 

calculation are stored. A separate plotting routine is used to 

access the information and to display the appropriate 

parameters. The plotting capability is one of the most valuable 

features of the code because it allows one to effectively have a 

microscopic view of most of the parameters of interest in the 

interior of the cell under operating conditions. 

 

Figure 3. Typical characteristics of a solar cells 

Figure 3 shows typical characteristics of solar cells. It shows 

the behaviour of the voltage and current with irradiation and the 

temperature of solar cells. The maximum power is obtained by 

computing the Vmax and Imax. The maximum power point (MPP) 

technique is mainly used in computing the maximum power of 

solar module. The fundamental parameters related to the solar 

cell are short circuit current (Isc), open circuit voltage (Voc), and 

MPP [28, 29]. 

In this study, a temperature of 350 oC (623.15 K) was used as 

the working temperature. This was the temperature at which the 

experimental NiO/TiO2 P-N heterojunction was spray pyrolysis 

deposited, while the illumination was done with AM1.5 using 

a lamp of 1000 W/m2 with a voltage range of 0 volts to 1.5 volts 

as shown in Figure 4. 

 

 

Figure 4. Defined parameters used for the modelling the solar 

cells 

 

Figures 5 and 6 give the output of the I-V characteristics using 

SCAP-1D. Figure 5 varies the voltage from 0 volts to 1 volt 

while Figure 6 varies it from 0 volts to 1.5 volts. The generated 

plot of current density versus voltage corresponds to the typical 

I-V characteristic curve. The fill factor (FF) obtained was 37.87 

% while the output voltage (Voc) was 0.1445 volts. These 

parameters agree with the fabricated NiO/TiO2 solar cells with 

FF of 39 % [4].  

 

Figure 5. SCAP-1D generated I–V characteristic curve for the 

solar cells 
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Figure 6. SCAP-1D generated I–V characteristic curve for the 

solar cells 0 to 1.5 v 

 

 

Figure 7. SCAP-1D generated I–V characteristic curve for the 

solar cells with gold and ITO added to 0 to 1.5V 

 

Figure 7 shows the SCAP-1D generated I-V characteristic 

curve for the solar cells with gold and ITO added to 0 V to 1.5 

V. 

 

CONCLUSION 

This paper was able to give the mathematical model and 

theoretical validation of a sprayed deposited NiO/TiO2 

heterojunction solar cell at 350 oC. The model used the 

deposition parameters of the fabricated solar cell and generated 

the I-V characteristics of the solar cell. The results show 

excellent correspondence to reported experimental fabrication. 

The experimental fill factor obtained was 39 % while this study 

reported 37.87 %. This shows that this can be used to model 

another metal oxides especially NiO related solar cells. This 

will help to reduce several person-hours and resources spent on 

trying different optimization parameters in the laboratory. 

These findings enhance the quest to develop affordable and 

sustainable energy and encourages further research in solar 

cells technologies in low-income countries.  
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CHAPTER 6 PART 3: SOLAR CELLS AND 

GLOBAL WARMING REDUCTION 

 

This chapter proposes one way of addressing the issue of climate change and pollution using 

solar cells. 

To cite this article: Ukoba, O.K. and Inambao F.L. (2018). “Solar cells and global warming reduction” 

International Journal of Applied Engineering Research ISSN 09734562 Volume 13, Number 10 (2018) pp. 8303-

8310. 

 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 10 (2018) pp. 8303-8310 

© Research India Publications.  http://www.ripublication.com 

8303 

Solar Cells and Global Warming Reduction 

 

1Ukoba, O. Kingsley and 2Inambao, L. Freddie 

1,2 Mechanical Engineering, University of KwaZulu-Natal, Durban. South Africa. 

inambaof@ukzn.ac.za,     ukobaking@yahoo.com  

 

Abstract 

This study proposes one way of addressing the issue of climate 

change and pollution using solar cells. The quality of life in 

developing and low-income countries is on the decline because 

of air pollution. Energy has a role to play in the quality of life 

and reduction of air pollution especially in those countries. A 

reduction in the usage of fossil fuels and biomass in these 

countries will help decrease the air pollution and emissions 

generated by such energy sources. About 1 million solar 

lanterns are capable of reducing greenhouse gas emissions by 

over 30 000 tons. The role of eco-friendly solar cells in 

elimination of air pollution cannot be overstated. 

Keywords: Solar; air pollution; developing countries; fossil 

fuels 

 

INTRODUCTION 

The quality of human life is affected by several factors of which 

access to a clean and reliable source of energy is at the forefront 

[1]. About one-fourth of earth's inhabitants lack access to 

electricity with little or no change of outlook over the last 40 

years [2]. Several developing countries in Africa and elsewhere 

are struggling to deliver affordable and stable electricity [3]. 

These countries still use fossil fuels (Premium Motor Spirit, 

kerosene) and biomass (charcoal and wood) as their major 

sources of energy [4]. Although some of these are cheap and 

easily accessible, regular exposure to their usage poses health 

and social risks [5]. Energy insecurity and other human 

interaction have created a major challenge of climate change 

and pollution.  

Pollution, especially air pollution, is ranked the sixth-leading 

cause of death world-side, responsible for about 2.4 million 

premature deaths annually [6]. Air pollution is a leading cause 

of respiratory illness, cardiovascular disease, cancer, 

hospitalization, work-days lost, and school-days lost [7, 8]. 

This is because climate change boosts disease, heat, glacier 

melting, and ocean acidity [9]. It also causes an imbalance in 

ecosystems, agriculture, and water supply. Carbon dioxide gas, 

fossil fuel [10], soot particles from biofuel [11], methane gas, 

halocarbons and nitrous oxide gas are the leading causes of 

global warming [12, 13]. Cooling aerosol particles mask more 

than half of the actual global warming as shown in Figure 1. 

Particles containing sulphates, chloride, ammonium, 

potassium, nitrates, certain organic carbons, and water, 

primarily, are called cooling aerosol particles. Although, their 

sources differ they are mainly from fossil-fuel and biofuel soot. 

Thus, removal of aerosol particles is critical for air pollution 

reduction. 

 

 

Figure 1. Primary contributions to observed global warming 

from 1750 to today from global model calculations 

 

Apart from the seasonal scarcity of these fuels, they are 

expensive and prolonged exposure to them has adverse 

economic and health consequence. Kerosene is affordable and 

accessible in many countries due to the subsidization of the 

product by such countries [14]. However, kerosene lanterns 

emit both black carbon and carbon dioxide. Kerosene lamps 

emit 20 times more of these pollutants than previous estimates. 

They convert 7 % to 9 % of the fuel burned into black carbon 

particles. Black carbon particles are a major source of climate 

warming, second to CO2 [15]. They do this by absorbing 

sunlight and heating the atmosphere. Black carbon combines 

with other pollutants to form ‘short-lived climate pollutants’ 

(SLCP). Table 1 illustrates the annual kerosene carbon 

emission in some Africa countries. 
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Table 1. Annual kerosene use and black carbon emissions by country 

Country Kerosene lamp-glass cover installed stock 

estimates (Million) 

Kerosene lamp-simple wick installed 

stock estimates (Million) 

Annual black 

carbon savings 

(tons) 

Households Commercial Total Households Commercial Total  

Nigeria 39.8 3.8 43.6 17.8 0.3 18.1 52,680 

Sudan 12.7 1.2 13.9 5.7 0.1 5.8 16,862 

Kenya 14.0 1.3 15.3 6.3 0.1 6.4 19,629 

Tanzania 11.7 1.6 13.3 5.9 0.2 6.1 18,335 

Democratic 

Republic of 

Congo 

4.1 1.3 5.4 20.3 1.2 21.5 49,964 

Ethiopia 5.0 1.6 6.6 24.5 1.5 26 59,950 

 

Fossil fuels are still being used for cooking and lighting in most 

developing countries as shown in Figures 2 and 3. Carbon is 

released when they are burnt thereby causing air pollution in 

the process.  

 

 

      

                                  (a)                                                                       (b)                                                        (c) 

Figure 2. Cooking with wood (a) Subsistence garri frying (b) Commercial garri frying (c) Food cooking (starch)  

 

     

                                                            (a)                                                                                         (b) 

Figure 3. Fossil fuel lightening (a) Reading with kerosene lamp (b) Suya meat vendor 

 

At least 270 000 tons of black carbon per year is estimated to 

be emitted from kerosene lamps worldwide. Figure 4 shows the 

black carbon radiative forcing from kerosene lighting in 

residential. having a climate warming equivalent close to 240 

million tons of CO2, or roughly 4.5 % of the United States’ CO2 

emissions. The warming impact of black carbon emissions 

from kerosene lamps is highest around source regions, reaching 

0.5 W per square meter. Solar lanterns improve the quality of 

life for the people in Africa and Asia by reducing greenhouse 

gas emissions and providing greater access to energy. 
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Panasonic Electronics estimated that replacing kerosene lamps 

with 1 million solar lanterns will reduce greenhouse gas 

emissions by over 30 000 tons [16]. 

 

Figure 4. Black carbon radiative forcing from kerosene 

lighting in residential building (W/m2) 

 

The usage of renewable energy does not require the burning of 

fuels that emit carbon. This will help combat air pollution 

caused by fossil fuels and biomass. Sunlight has the most 

extensive range of applications for green households. The 

emerging range of materials for solar energy generation is 

environmentally friendly. This range includes metal oxide 

materials. Successful development and deployment in 

developing countries will help reduce the air pollution facing 

such countries. The impact is so noticeable that even a single 

household that has switched to solar energy can make a 

difference. 

This study proposes one way of addressing the issue of climate 

change and pollution using solar technology. 

 

SOLAR AND POLLUTION 

Solar photovoltaics (PV) 

These are arrays of cells containing a material that converts 

solar radiation into direct current (DC) electricity [17]. 

Different materials and methods are in use today. The materials 

include silicon (amorphous silicon, polycrystalline silicon, 

micro-crystalline silicon), cadmium telluride, and copper 

indium selenide/sulphide, metal oxides (plain or 

nanostructured), among others. These materials can also be 

doped to increase the number of positive (p-type) or negative 

(n-type) charge carriers. The resulting p- and n-type 

semiconductors are then joined to form a p–n junction that 

allows the generation of electricity when illuminated. 

Photovoltaics can be mounted on roofs or combined into farms 

[18].  

Normalized distribution of radiation intensities for the sun and 

for a kerosene flame according to Planck's Law is shown in 

Figure 5. The non-normalized peak intensity of the Sun is a 

little over two orders of magnitude larger than that of kerosene 

[4]. Kerosene flame and sun estimated luminous efficacy 

values are 0.65 lm/W and 99 lm/W, respectively.  

 

Figure 5. Normalized distribution of radiation intensities for 

the sun and kerosene flame according to Planck's Law, 

compared to the photopic spectral sensitivity of the eye  

 

Lifecycle emissions from energy sources 

Table 2 gives the ranges of the lifecycle CO2e emission per 

kWh of electricity generated from most commonly used 

electricity sources. For the renewable electricity sources (wind, 

solar PV, CSP, tidal, wave, hydroelectric), climate-relevant 

lifecycle emissions take place only during the construction, 

installation, maintenance, and decommissioning of the 

technology. Emissions are caused by evaporation of dissolved 

CO2 from hot water in geothermal flash- or dry-steam plants, 

but not in binary plants. Although, in the case of coal-carbon 

capture and storage (coal-CCS), nuclear, corn ethanol, and 

cellulosic ethanol additional emissions occur during the mining 

and production of the fuel. For biofuels and coal-CCS, 

emissions also occur as an exhaust component during 

combustion[18]. 

 

Table 2. Lifecycle emission of energy sources [18] 

Technology Lifecycle Opportunity 

cost emissions 

due to delays 

War/terror

ism 

(nuclear) 

or CCS 

Total 

Solar 

Photovoltaic 

19-59 0 0 19-59 

Wind 2.8–7.4 0 0 2.8–7.4 

Geothermal 15.1–55 1–6 0 16.1–61 

Hydroelectric 17–22 31–49 0 48–71 

Wave 21.7 20–41 0 41.7–62.7 

Tidal  14 20–41 0 34–55 

Nuclear 9–70 59–106 0–4.1 68–180.1 

Coal-CCS 255–442 51–87 1.8–42 307.8–571 
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ENVIRONMENTAL BENEFITS OF SOLAR ENERGY 

i. SOLAR ENERGY REDUCES AIR POLLUTION. 

Traditional electricity generation accounts for 31 % of 

greenhouse gas emissions in the United States [19]. Coal is 

used for electricity generation in some countries because it is a 

cheap form of electricity generation [20]. However, coal 

contains the most CO2 per British thermal unit (BTU), and is 

the largest contributor to global warming [21]. Coal mining 

also has a severe impact on the environment and health of the 

workers and inhabitants around the mine. This contributes to 

air and water pollution. Metal oxide solar cells contain little or 

no toxic substance that causes air pollution. Electricity 

generation using solar will drastically reduce CO2 emissions 

that pollute the air. 

 

ii. SOLAR ENERGY REDUCES WATER POLLUTION 

AND CONSUMPTION. This is because water is not required 

for solar-based electricity generation, unlike natural gas and 

coal. A coal-fired power plant produces 72 % of water 

pollution. Most materials and methods used for solar cells 

contain little or no toxic materials. This helps to reduce water 

pollution. 

 

iii. SOLAR REDUCES TOXIC WASTE. About 400 million 

tons of hazardous waste are produced every year mainly from 

fossil fuels. Coal-fired power plants release trace elements that 

are toxic [22]. Coal residues make up 90 % of all fossil fuel 

combustion wastes in the USA. However, only 20 % of those 

wastes are used with the rest deposited into landfills [23]. This 

constitutes a toxic waste. Solar eliminates this because fuel is 

not used and there is no need for waste disposal. 

 

iv. SOLAR ENERGY HAS INFINITE USAGE. The solar 

system produces about 173 000 terawatts of solar energy per 

second. This value is 10 000 terawatts more than the total world 

energy needed. 

 

 

 

Ways solar energy can reduce pollution 

i. Vehicular emission reduction: Pollution from cars comes 

from by-products of the combustion process of fossil fuel 

(exhaust) and from evaporation of the fuel as shown in Figure 

6.  

 

 

Figure 6. Sources of vehicle pollutants 

 

The huge emission caused by fossil fuel powered cars, tricycles 

and motorcycles can be reduced with solar technology. Fossil 

fuel vehicles are sources of major air pollutants (such as carbon 

monoxide, nitrogen oxides, and other pollution) as shown in 

Table 3 [24]. Vehicles contribute about half of the carbon 

monoxide and nitrogen oxides emitted into the air [25, 26]. 

They also contribute about 25 % of the emitted hydrocarbons 

into the air [27, 28]. Particulate matter (soot and metals), 

nitrogen oxides, carbon monoxide, sulphur dioxide, 

hydrocarbons are the major air pollutants released by fossil fuel 

powered vehicles. Solar powered vehicles have little or no 

emissions. This will help reduced emission of the major 

pollutants causing global warming. Figure 7 illustrates t source 

of pollutants from a fossil fuel car and a solar car. 

     

Figure 7. Vehicular emission (a) fossil fuel car emission (b) Solar car (zero emission) 
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Table 3. Vehicles pollutant emission factor  

Pollutant Bus Motorcycle Tricycle Passenger Luxury (car 

and SUV) 

Commercial 

(Taxi) 

Truck and 

Lorries 

Goods 

Delivery 

Heavy 

duty 

Carbon dioxide (CO2) 515.20 26.60 343.87 60.3 223.6 208.3 515.2 515.20 515.20 

Carbon Monoxide 

(CO) 

3.60 2.20 3.86 5.10 1.98 0.90 3.60 5.10 5.10 

Nitrogen oxides (NOx) 12.00 0.19 3.89 1.28 0.20 0.50 6.30 1.28 1.28 

Methane (CH4) 0.09 0.18 0.11 0.18 0.17 0.01 0.09 0.09 0.09 

Sulphur dioxide (SO2) 1.42 0.01 1.94 0.03 0.05 10.30 1.42 1.42 1.42 

Particulate matter 0.56 0.05 0.24 0.20 0.03 0.07 0.28 0.20 0.20 

Hydrocarbons (HC) 0.87 1.42 0.54 0.14 0.25 0.13 0.87 0.14 0.14 

 

ii. Solar lantern to replace a kerosene lantern. Quality of life 

will be improved by replacing kerosene lamps with solar 

lanterns. Kerosene lamps emit toxic fumes and pose a fire 

hazard, although the initial investment cost is more for solar 

lanterns compared to kerosene lamps. Figure 8 gives the cost 

obtained in 2005 by Mills [29]. 

 

 

 

 

Figure 8. Accumulated costs of a solar lantern, kerosene wick lamp, hurricane wick lamp,  

and pressurized hurricane lamp with mantle 

 

The health benefit of a solar lantern outweighs the costs when 

compared with a kerosene wick lamp. Subsidizing solar 

lanterns can encourage usage, and research into affordable yet 

efficient solar cells can help lower the cost. 

iii. Cooking emission reduction: Solar cooking to replace 

biomass and other traditional cooking fuels. Air pollution can 

be reduced drastically when biomass and traditional cooking 

fuels are replaced with solar cookers. Solar cookers leverage on 

the sunlight to cook and boil water. This is achieved by using 

reflectors to heat an enclosed area that is different from the 

oven. This helps rural and low income communities that spend 

many hours each day searching for wood and other traditional 

fuels for cooking. It also encourages children to focus on 

studies and spend less time foraging for fuel [30]. This help 

saves resources, prevents health issues caused by fumes from 

fuels, saves money and encourages sustainable cooking. Figure 

9 shows an annual solar cooking festival where people display 

and cook with different designs of solar cooker. 
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Figure 9. Solar cooking at a solar cooking festival 

 

Solar water boiling will help reduce child mortality. It is 

estimated, by water.org, that a child dies every minute from 

disease related to water contamination [31]. Solar ovens help 

purify water polluted with microbes. These microbes are killed 

when the water is heated to certain temperatures. Water does 

not need to boil to eliminate dangerous microbes. Hepatitis A 

is killed at 65 °C, worms at 55 °C and E. coli, Vibrio cholerae 

(cholera) and Salmonella typhi (typhoid) bacteria at 60 °C. A 

water pasteurization indicator can be used to indicate the safety 

of the water. It consists of a small, less than 2-inch cylinder 

filled with wax. The water is safe for drinking when the wax 

melts. Although the water might still be brown, it will be safe 

to drink. Figure 10 gives an example of water boiling using 

solar energy. 

  

  

Figure 10. Solar water boiling and solar cooking panel 

 

iv. Solar heating and cooling to replace traditional heating 

and cooling gas used for air conditioning: Most rural 

dwellers heat their water using wood collected from the farm. 

Urban residents heat up their home with coal during winter. 

These contribute to global warming. Demand for air 

conditioning is increasing due to the increase in global 

temperatures [32]. Agricultural produce and food items are 

stored and preserved using refrigerators and deep freezers. Air 

conditioners and refrigerator uses refrigerants. Refrigerants 

deplete the ozone and cause global warming. Refrigerants such 

as chlorofluorocarbons and hydrochlorofluorocarbons 

(HCFCS) have been replaced by hydrofluorocarbons (HFCS) 

in developed countries. Although HFCS do not deplete 

stratospheric ozone they have global warming potential [33]. 

 

 

Figure 11. Hydrofluorocarbons (HFCS) from 2007 to 2012 

 

Figure 11 shows the combined emissions of five 

hydrofluorocarbons from 2007 to 2012. The blue lines 

represent the world, green for developed countries, and a red 

line for developing countries. The dashed black lines and dotted 

gives the emissions reported to the UNFCCC (for developed 

countries only). The estimates from other studies are 

represented by grey, orange and purple lines [33]. The use of 

solar technology for heating and cooling will eliminate ozone 

depletion and greenhouse gas. Figure 12 shows solar heating 

for a swimming pool and for residential water heating. 

  

(a)                                                           (b) 

Figure 12. Solar heating (a) water heating for swimming pool 

(b) residential water heating 

 

CONCLUSION 

Air pollution threatens the very existence of humanity. Solar 

cells, and solar technology in general, are capable of reducing 

air pollution. Direct replacement of fossil powered cooking and 
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lightening by solar powered cooking and lighting can mitigate 

this pollution. Solar cells and solar energy have a great role in 

reduction and even elimination of air pollution and water 

pollution. The emerging generation of solar cells, especially 

nanostructured metal oxides, can help combat global warming. 
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CHAPTER 7: CONCLUSION AND FUTURE 

WORK 

 

7.1 Conclusion 

The aims and objectives of this study which were to fabricate, characterize and model a 

nanostructured metal oxide thin film based solar cell with emphasis on NiO/TiO2 p-n 

heterojunction have been explored. This has been with a view to providing affordable and 

sustainable energy to developing and low-income countries. The objective of the study focused 

on deposition of metal oxide thin films using NiO, characterizing the thin films and thereafter 

optimize the parameters. Experimental optimization was done on the films with focus on pre-

deposition, deposition and post-deposition. These optimized results were then used to fabricate 

the metal oxide heterojunction device. The experimental results validated the theoretical 

model/result. These were achieved successfully as reflected in the peer-reviewed journal 

publications and conferences presentations documented in this thesis.  

Chapter 2 did a comprehensive literature review on solar energy inclusion in developing and 

low-income countries with a focus on Africa. This laid the basis for the need for more 

affordable and sustainable energy to replace existing unstable energy in these countries. It 

established that developing countries can latch on the technology of solar energy to meet their 

energy needs. However, more research is needed to reduce the current cost, efficiency and 

sustainability of current solar technology in the market.  

Chapter 3 did an extensive review of an alternate material (NiO) to existing silicon wafers solar 

cells and low-power consuming technique (SPT). This is because nanostructured metal oxides 

hold promise for a better replacement to silicon wafer solar cells. They are cheap, easy to 

optimize, sustainable and can be efficient. The chapter was able to establish that NiO deposited 

using spray pyrolysis technique can be used for development of affordable, efficient and 

sustainable solar cells in developing countries. 

Chapter 4 did comprehensive optimization of NiO using spray pyrolysis technique with a view 

of using it for fabrication of the final solar cells device. The optimization covers pre-deposition, 

deposition and post-deposition. 
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Chapter 5 capitalized on the gains achieved in the optimization of the nanostructured NiO thin 

films to fabricate the solar cells. The fabricated solar cell exhibited 16.8 mA for the short circuit 

current, 350 mV open circuit voltage, 0.39 fill factor and conversion efficiency of 2.30 % under 

100 mW/cm2 illumination 

Chapter 6 modelled the fabricate solar cells using SCAPs and also looked at using solar cells 

to reduce global warming.  

The study has shown that affordable, sustainable and efficient solar cells can be developed in 

laboratories of developing and low-income countries with ease and without adverse effects on 

the environment and without incurring a huge cost due to use of low budget equipment and 

materials.  

7.2 Future work 

Photovoltaic solar cells is an evolving and dynamic area with huge potentials and opportunities. 

There is a great promise from this study for metal oxide heterojunction solar cells.  

7.2.1 Experimental: more optimization can be done on the concentration and on combining 

with other low-cost deposition techniques. Ageing and other substrates can also be explored. 

More parameters can be explored during the course of the modelling and then validated via 

experimental results. Other metal oxides can also be investigated. There is also the possibility 

of doping with other materials. A different but cheap technique can also be studied or a possible 

development of hybrid technique can also be explored. 

7.2.2 Theoretical: tuning can be done by varying simulation parameters. Other modelling 

tools and software can also be explored for formulating and validating results. 
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APPENDICES 

 

APPENDIX A: SCHEMATIC OF THE DISSERTATION 
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APPENDIX B: EQUIPMENT USED 
 

   

FIG 1. FEGSEM     FIG 2. SAMPLE PREPARATION 

      

FIG 3. FUME CHAMBER WITH CHEMICALS   FIG 4. EXPERIMENTAL SET UP 

 

            

FIG 5. X-RAY DIFFRACTOMETER             FIG 6. UV-VIS-NIR SPECTROMETER 
 
 

   
Fig. 7. Pictorial view of the Material (Metal Oxide) used 
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Fig 8. Overall schematic of the experimental 
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