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Abstract

In this thesis, we have considered the inference aspects of sampling from a
finite population. There are significant differences between traditional
statistical inference and finite population sampling inference. In the case of
finite population sampling, the statistician is free to choose his own sampling
design and is not confined to independent and identically distributed
observations as is often the case with traditional statistical inference. We look
at the correspondence between the sampling design and the sampling
scheme. We also look at methods used for drawing samples. The non —
existence theorems (Godambe (1955), Hanurav and Basu (1971)) are also
discussed. Since the minimum variance unbiased estimator does not exist for
infinite populations, a number of estimators need to be considered for
estimating the same parameter. We discuss the admissible properties of
estimators and the use of sufficient statistics and the Rao-Blackwell Theorem
for the improvement of inefficient inadmissible estimators.  Sampling
strategies using auxiliary information, relating to the population, need to be
used as no sampling strategy can provide an efficient estimator of the
population parameter in all situations. Finally few well known sampling

strategies are studied and compared under a super population model.
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Chapter 1

Introduction

Survey sampling is a universally accepted approach for collecting data.
Extensive resources are devoted every year for data collation by several
government, semi-government and private agencies. There are two generally
accepted options for the collection of data. The first option is a study in which
every unit of the population is surveyed, called a census. The use of a census
to study a population is time consuming, expensive, often impossible and
strangely enough, often inaccurate. The other option is to study the
characteristics of a population by examining a part of it, this is known as
sample survey. The main objective of sample survey is to draw inference on
the entire population by surveying a part (sample) of it. The theory of survey
sampling has been developed over the past several decades and has
provided us with various kinds of reasonable scientific tools for drawing
samples and making valid inference about the population parameter of
interest. The historical development of survey sampling theory is given by
Johnson and Smith (1969), Hansen et al. (1985) and Krishnaiah and Rao
(1988) among others.

This thesis presents some inferential aspects when sampling from a finite

population only, i.e. when sampling from a finite number of identifiable units.

There are significant differences between inference in the case of finite
population sampling and traditional statistical inference, i.e. inference when
sampling from the infinite, hypothetical population. In the infinite population
setup there is typically a sample of n independent observations x,,...,X, on a
random variable X with the hypothetical density function f(x,0) and the

problem is to estimate the unknown parameter 6.



In finite population sampling, the focus is on the actual population of which the
sample is a part. In finite population sampling, the statistician is free to choose
his own sampling design; that is “man made randomization” is used in
selecting a sample. The sampling distribution of a given estimator is therefore
something that a statistician creates. Thus in survey sampling, statisticians
are not confined to independent and identically distributed observations, as is
often the case in traditional statistical inference. The basic concepts, such as
parameter, sample, data, estimator, are given a special meaning in survey
sampling. Traditional statistical inference and survey sampling inference are
not opposing theories, but the special nature of the latter produces some
unexpected results. Detailed discussions on this topic are given by Cassel,
Sarndal and Wretman (1977) and Valliant, Dorfman and Royall (2000) among
others.

In this thesis, we discuss some inferential aspects of sampling from finite
populations which may be divided into the following categories:

(i) design based inference (ii) model based inference or prediction approach
and (iii) model assisted inference

In design based inference, the population vector y = (y,,.., Y, ) iS considered to

be fixed. From the population U of size N, a sample s of n units is selected

using a sampling design. Here only the y - values belonging to the sample s
i.e. y;,ies are observed. The values y,;,i ¢s are thus unknown. We make a
link between the observed values vy,,ies and unobserved values vy,,i¢s

through the sampling design. The expected behavior of an estimator is the
long term average of the performance of an estimator through a hypothetically
repeated process of sampling governed by a sampling design chosen. In
design based inference some unexpected results may be obtained. The main
unexpected result was discussed by Godambe (1955), who proved that in the
class of linear homogeneous unbiased estimators, the minimum variance
unbiased estimator (MVUE) does not exist. Basu (1971) extended this non-

existence result to a wider class of unbiased estimators.



The model based or prediction approach assumes that the population vector

y is random and obeys a certain model (known as a superpopulation model)

and that the model distribution leads to valid inference referring to the
particular sample s that has been drawn, irrespective of the sampling design.
Once the sample has been drawn, a function of the unobserved random
variables generally needs to be predicted. A model of joint probability
distributions shows the relationship among the random variables. The
probability distribution of the random variables is then used to estimate the
desired function of the unobserved random variables. Thus prediction

inference is very sensitive to model misspecifications.

The model assisted approach, known as model design based inference is a
hybrid of design and model based inference. The advantage of this approach
is that it provides valid inferences under a model, enabling valid repeated
sampling inferences and at the same time protects against model

misspecification.

In both the model based and model-design based approach optimum
estimators of the finite population characteristics such as mean, variance etc

are available.

In this thesis the relationship between a sampling design and a sampling
scheme given in Hanurav’s (1966) algorithm is discussed in detail. The details
of the non-existence theorems invented by Godambe (1955) and Basu (1971)
are also considered extensively. To guard against inefficient estimators, the
concept of admissible properties of estimators is discussed. The use of
sufficient statistics and the Rao-Blackewell theorem for improving estimators
of parameters of a finite population is extensively discussed and optimal
sampling strategies under various superpopulation models are investigated.
Finally, relative efficiencies of a few well known sampling strategies that are
commonly used in practice are studied under a superpopulation model which

is frequently used in practice.



Throughout the derivation of the above mentioned results, we assume that the
population size N is known, no observational error is present and that the

same response rate was achieved.

The thesis is structured as follows:

Chapter 2 consists of definitions and notation which are used throughout the
thesis such as population, sampling frame, parameter, sample, sampling
design, inclusion probabilities, etc. The consistency conditions of inclusion
probabilities and the concept of unbiased estimators for linear and quadratic
parametric functions are discussed in this chapter for use in further chapters.
The main methods of selection of samples as needed for this study are also
discussed viz. the cumulative total method and a sampling design. In this
chapter the details of Hanurav’'s algorithm for the selection of a sample is
given along with the theorem regarding the correspondence between
sampling design and sampling scheme (Hanurav (1966)). Several examples
are provided to show how this algorithm can be used.

In Chapter 3, the concept of various types of linear unbiased estimators is
introduced along with suitable examples. The unbiasedness property of the
Horvitz-Thompson (1952) estimator is discussed, followed by the derivation of
an expression of its variance along with an unbiased estimator of this
variance. The concept of a minimum variance unbiased estimator in finite
population sampling and the non-existence theorem (Godambe (1955)) are
also discussed in this chapter. Modification of Godambe’s (1955) results by
Hanurav (1966) and the extension of Godambe’s results to a wider class of
estimators proposed by Basu (1971) make up the remainder of the content of

this chapter.

Chapter 4 introduces the concept of admissibility, which may guard against
the use of inefficient estimators. Admissibility of the Horvitz-Thompson (1952)
estimator in the linear unbiased homogeneous class of estimators is
presented. Godambe and Joshi’'s (1965) results relating to the admissibility of

the Horvitz-Thompson (1952) estimator in the class of any unbiased estimator



is then shown. The definition of an inadmissible estimator and the concept of
sufficiency in finite population sampling is extensively discussed. The Rao-
Blackwellisation technique for improving such inefficient estimators of
parameters of a finite population is given with examples. The method of
improving:

i) sample mean based on SRSWR sampling,

i) Hansen-Hurwitz (1943) estimator based on PPSWR sampling and

i) Raj's (1956) estimator based on PPSWOR sampling

completes the content of this chapter.

In Chapter 5 the concept of the superpopulation model is introduced.
Definitions of design unbiased, model unbiased and model-design estimators
as well as non-informative sampling design, optimal estimators and optimal
strategies are given in this chapter. The model-design or model assisted
approach which is a hybrid of the design based and model based approach is
also presented. Optimal estimators based on a superpopulation model are
then derived. The concept of balancing and robustness as well as optimal
design and model unbiased estimators are extensively discussed in this

chapter.

Chapter 6: In this chapter we consider some specific sampling strategies and
give expressions for the estimation of the population total, its variance and
unbiased estimators of the corresponding variance. The relative efficiencies of
a few well known sampling strategies that are commonly used in practice are

studied under a superpopulation model.

Finally Chapter 7 presents an overall conclusion for this thesis.



Chapter 2

Definitions

In this chapter we have presented some basic notation and definitions such
as population, sampling frame, parameter, sample, sampling design etc. that

are used throughout this thesis.

We also look at the selection of a sample. When making inference from a
population, we select part of the population, known as a sample s, following

some suitable sampling design. If p(s), the probability of selection of a

particular sample, is equal to one, we call such a sampling design purposive
sampling. If 0 < p(s) <1, we call such a sampling design probability sampling.

A natural question that arises is how to select a sample given a sampling
design when the probabilities of selection of a sample are pre-assigned.
There are two popular methods viz. i) the cumulative total method and ii)
choosing a sample draw by draw and assigning selection probabilities with
each draw. The second method is known as a sampling design. Hanurav
(1966) first showed the relationship between the sampling design and
sampling scheme. Following Hanurav’s (1966) algorithm one can draw a
sample which can produce a required sampling design. In this section, we will
describe in detail the cumulative total method and Hanurav’s algorithm for the
selection of a sample.



2.1 Populations

Finite, infinite and continuous populations

A finite population is a collection of a finite number of identifiable objects or
elements. The elements are called “units” of the population. The total number
of elements is known as the size of the population. The population size will be
denoted by N.

Examples of finite populations: The number of students in a class, as the

number of students is countable and the students are identifiable; similarly the
number of houses in a certain locality, etc are examples of finite populations.

Infinite Population

Consider the number of insects in a certain region or the number of bacteria in
a test tube, which are very large in number and very difficult to count. These
types of populations are referred to as infinite populations.

The size of the population N may be known or unknown before a survey. The
unknown population size N may sometimes become a subject of interest and
may be determined by conducting surveys, such as the estimation of the
number of illegal immigrants in a country or estimating the number of animals

in a game park.

The population cannot always be identified. For example, if we are selecting a
sample of air to measure air pollution, it is not possible to divide the
population into identifiable units. Such a population is called a continuous

population.

In this thesis we will consider finite identifiable populations only. The size of
the population N is assumed to be known.



We denote the list of a finite population by

U ={u,U,,.. Uy}

where u;, i€(1,..,N) is the ith unit of the population and N is the size of the

population.

2.2 Sampling Frame

A list of all the units of an identifiable population is called a sampling frame.

The sampling frame is the basic material for the selection of a sample. The
sampling frame must be complete and up to date i.e. it should not have any

omission or duplication of units.

2.3 Parameter

Characteristics of a population are known as study variables, these are
generally not known before a survey. The study variable will be denoted by .

In a multi-characteristic survey we collect information on more than one
variable e.g. In a household survey we might wish to enquire about household
income, household expenditure, household size etc. In this case we have
several study variables viz. household income, household expenditure and
household size.



We let y, denote the value of a study variable y for the ith unit u, of a

population, then the N-dimensional vector

Y=Yy Vi Yoy )

is known as the parameter of the population U with respect to the

characteristic vy .

The parametric space is all possible values of the vector y . Here we consider

the parameter space

Q=(-0< Yy, <0,..,~0< Y, <0,..,~0< Y, <o)

:RN

where R, is the N-dimensional Euclidean space (also often referred to as

RxRx..xR, N times).

We are generally not interested in knowing the vector y but are interested in

a function of y . Such a function of y is known as a parametric function.

Some commonly used parametric functions of interest are given as follows:

N
i) Y =>y,,the population total,

i=1
.. -~ Y .
i Y :W , the population mean,

1 N

i)y S} :WZ(yi —\7)2 , the population variance and
4=

_ S, _ » -

iv) 7 the population coefficient of variation.



2.4 Sample

An ordered sequence of elements

from a population U is known as a sample where u, eu.

All the units of the sample need not be distinct.

The number of units, n

1 llg s

including repetition is called the sample size.

The total number of distinct units of s is known as the effective sample size

and is denoted by v(s).

An ordered sample shows which draw selects which unit whereas an
unordered sample contains the distinct units from the ordered sample
arranged in ascending order. Thus an unordered sample can be derived from
an ordered sample, suppressing the order of selection of the units and their
repetition.

Example 2.4

Consider the selection of 4 units from a population of N=5 units
U =(U1,U2,U3,U4,U5)

where u, <u, <u, <u, <Uu,.

Let unit u, be selected on the first draw, on the second draw unit u, is

selected, on the third draw unit u, is selected and on the fourth draw unit u, is

selected.

10



Then the sample s = (u;,u,,u,,u, ) is an ordered sample.

From S we construct an unordered sample § = (u,,u,,u;) by selecting distinct

units from S and arranging in ascending order.

2.5 Sampling Design

Let ¢ be the collection of all possible samples S.
A sampling design p is a function defined on ¢ satisfying the following

conditions:
i) p(s)=>0 Vsegp

i) > p(s)=1.

Sep
A sampling design is said to be a:

i) Fixed effective size (FES) sampling design if p{v(s)=v} =1
i.e. the number of distinct units v(s) =v is fixed for every sample S with

p(s) >0;

i) Fixed sample size (FSS) sampling design if p{n(s)=n}=1

i.e. the number of units in the sample S is fixed as n.

Example 2.5

Consider a finite population U = (u,,u,,us,u, ) of N = 4 units.

Let s, =(u,u,,u,), s, =(u,,u,) , s; =(u;,u,,u,)

11



and let

_1 _3
p@n—6,p@ﬁ—6,p@ﬁ

2
2

Here ¢ =(S,,S,,8;)and Y p(s) = p(s,) + p(s,) + p(s;) =1.

Se@p

Here (¢, p) forms a sampling design.

n, =3, v, =2;
n,=2,v, =1,
n =3,v, =3

2.6 Sampling Scheme

A sampling scheme is a method of selection of a sample from a population

where units are selected one by one from the population using a pre-assigned

set of probabilities of selection of units in each draw.

For a fixed sample size (FSS (n)) design, we assign p,(k) as the selection

probability of the ith unit selected at the kth draw.

The p,(k)’s are subject to

i) 0< p,(k)<1
ii) Zpi(k)=1

Remark

for k=1,...,n.

Hanurav (1966) stated that any sampling scheme produces a sampling

design. There is little difference between the definition of a sampling design



and sampling scheme. The sampling design is a statement of all possible
samples and corresponding selection probabilities whereas a sampling
scheme is a method of choosing a sample.

2.7 Methods of Selection of Samples

2.7.1 Cumulative Total Method

All possible samples in ¢ are labelled s,,...,s,,...,s,, where M = the total

number of samplesin ¢.
The cumulative total is then calculated:
CT, = p(sy) +...+ p(s;) fori=1..,M.

A random number R (say) is then selected, using the Uniform (0,1)

Distribution, and a samples, is selected if

CT,, <R<CT, where CT, = 0.

Example 2.7

Let U = {u,,u,,u,,u,}, we let

S = (u17u1’u2)’ S; = (u11u21u2)’ S3 = (usvuz)’ Sq = (U4);

p(s,) =0.25, p(s,)=0.3, p(s;)=0.2 and p(s,)=0.25.

13



Table 2.1: Probabilities and cumulative totals for samples s, to s,

s S, S, S, s,
p(s) | 0.25 0.3 0.2 0.25
CT, | 025 0.55 0.75 1

Let a random number R = 0.34802 be selected from a uniform population with

range (0, 1).The sample s, is selected since CT, <R <CT, as CT, = 0.25,

R =0.34802 and CT, = 0.55.

2.7.2 Hanurav’s Algorithm

The most general method of selection of a sample is given by Hanurav (1966)

and is known as Hanurav's algorithm.

The algorithm is defined as follows:

where

ii)

A= A{ql(ui); d,(s);9;(s,u; )}

N
0<q,u)<1, > () =1 fori=1..,N
i=1
0<q,(s) <1 for s e ¢, where ¢ is the possible set of

samples that can be defined by this algorithm.

d;(s,u,) is defined when q,(s,u,) > 0 and subject to

0<q,(s,u;) <1,

N
Yos,u) =1 fori=1..,N.
i=1

14



Method of selection of a sample:

Step 1:
At the first draw a unit u, is selected with probability g, (u; ).

Step 2:
Here we decide whether the sampling procedure will be terminated or

continued. We let s, =u; be the sample selected in the first draw. A Bernoulli
trial with success probability q,(s,,) is performed. If the trial results in a

failure, the sampling procedure is terminated and the selected sample is

Sq=U; - However if the trial results in a success, we proceed to step 3.

Step 3:
Here we select a second unit u; with probability q,(s,,u; ) . The selected

sample is s, =(u; ,u; ) . We then go back to step 2 and perform a Bernoulli
trial with success probability q, (s, ) . If the trial results in a failure, the
sampling procedure is terminated and the selected sample is s, =(u; ,u; ).
However if the trial results in a success, a third unit u; is selected with
probability g,(s,,u; ) and we let s, = (u; ,u; ,u; ). The procedure is continued

until the process is terminated.

Example 2.8

Let U ={1,2,3}. An example of a sampling algorithm is

A=AMa,(1)=0,(2)=0.5,9,(2) =0.7,9,(2,3) =0.2,9,(s) =0
for the remaining samples in S, q,(1/2)=0.2,q,(3/2)=0.8,q,(1/(2,3)) = 13.

15



Hanurav (1966) proved one to one correspondence of a sampling design and

a sampling scheme as follows:
Theorem

i) Sampling according to Hanurav’s algorithm A (in section 2.7.2) results

in a sampling design.

i) For a given sampling design p, there exists an algorithm A which
results in the design p.

Proof:

i) Here we have to show ) p(s) =1.

Seqp

Let S, be a collection of all samples whose size is K,

No

then Q= U Sy

k=1

where n, is the maximum sample size that is required

and S )= p(s).

sep k=1 seS;

Now

S p(s) = p,) =Y ) €-0u)3= 1- Y o)) 2.2.1)

seS; i =1 i=1 i=1

S pE=3> p,.0) =3 6, W,) 6, b,) -0, u,)}

seS, i=1 ip=1 ip=1i,=1

= Y aU)L0) - Y a0,) o) 6o.)  (2.2.2)

i =1 i, =1 iy=1

16



Z p(s)= zz Z p(u,, U, ..., uinrl)

Z_Z_ Z Ch(u ) G, (U, )--qz(uil’ui2 ----- uinofl){l' qs(uiliuiz ----- uinofl)}
:Z_Z_ Z ql(u ) qz(u ) qz(u U ----- uino,z)
2 T ) Bt ) (22

and
N N
DpS)=2. D D, Py Ul )
S€Sn W=Lip=l iy =l °
N
=> .. qu(uh) 0l (U, )0l (U1 Uy )0l (U U ).y (U U Uy )
i=1
x{1-g5(u; Uy Uy )} where g,(u;,u; ,...,u, )=0 (2.2.4)
Finally adding > p(s), Y. p(s)...., D" p(s) the first part of the theorem
seS; seS, SeSnok
is proved.
i) Here we are given a sampling design p where ¢ = all possible

samples and p(s) is the probability of selection of a sample s (€ ¢).

We need to show that q,,q, and g, can be found so that sampling

according to the algorithm A(q,,q,,0,) implements the design.

17



Let ¢, ={s/u; =u;}= a collection of samples whose first element is u, ;
@; ={s/u; =u;,u; =u,}= collection of samples whose first element is

u; and second elementis u;; The ¢, ;'s are similarly defined.

Let B(i,,iy,....0,) = p(u,u; ..., U; )

a(j) =D p(s)

SE(pJ‘l

a(jpn j)= D P(S) are defined similarly.

SEP . ji

N N
Here we check o=eo o =Jo,Ju etc.
i-1 =1

and ia(i)=l : Za(i,j)+,8(i)=a(i)etc.

Now following Hanurav (1966), we define:

G (uil) = a(i)

(1 P i
AUILAEELY) if a(iy,iy,....i ) =1
qz(uil,ui2 ..... uik) = oy dy,.ly) _
0 otherwise
_ oy, dyy ey )
Gg ( (Ug s Uy oo Uy ) U, | = SER A
3(( b ) ) aliy iy, i) = By iy )

_ Bl oy, ) By, 1y
() (1 a(il)J iy )= Blisri ) @iyl )
= B, ..00,)

18



2.7.2.1 Examples using the Algorithm

a) Fixed Sample Size Design

For this sampling scheme, p{n, =n}=1. So using the algorithm we get:

q,(u; ) >0
d, (uil) =1

q;(u; ,u;,) =0

continue this process

d, (U o0l ) =1

n-1

d(U; .o U; )20 continue this until g, (u; ,...,u; ) =0.

n-1 [

b) Simple Random Sampling With Replacement (SRSWR)

In this sampling scheme, p, (k) = % which is the probability of

selecting the ith unit at the kth draw.

So  q,(uy) =%= p; (D)

d, (uil) =1
qs(uil7ui2) =p;@)-p;(2)

11
N N
q,(u;,u;,) =1

19



Q3(ui11ui2’ui3) =p@-pi(2)-piB3)

continue this process

q2(uil,ui2,...,u- ):l

I

As (U Uy vty )= P @) P (2) o Py (M)

R
_ 1
Nn

d, (U U U ) =0

So the process stops here.

Example 2.7.2.1

Consider a population of size 20 from which a sample of size 4 is to be
selected by the SRSWR method.

Here we associate
Unit 1 with the number 01,
Unit 2 with the number 02,

Unit 20 with the number 20.

To select a sample of size four, we select a two digit random number
from a random number table. If the random number selected is
between 01 and 20 inclusive, the corresponding unit is selected. If the

random number is greater than 20, no unit is selected.
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Using the random number table (Cochran (1977), p19), we get

Random Number Unit Selected
65 -
18 18
82 -
11 11
10 10
87 -
20 20

So the selected sample is s ={18, 11, 10, 20}.

Where

1 1
q,(u;,) N0 p; (D)
Q2(uil):1

11 1
-, U =D. l - D. 2 i
(U5 05) = Py (D) P D) ==
q,(u; b, ) =1
11

qS(uil7ui27ui3) =pi@®-pi(2)-p;i(3) :_'W

N
q, (Ui ,u;,,0;) =1

qs(uil7ui27ui37ui4) =pi@)-pi(2) p(3)-pi(4)

9, (u; ,u;,,u; .U, ) =0,

21
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c) Simple Random Sampling Without Replacement (SRSWOR)

For this sampling scheme,

p, (k)= L if kth unit is not selected in first k —1 draws,
N —(k-1)
k=1...,n
= 0 if kth unitis selected in first k —1draws.

So using the algorithm we get:
1
q,(u;) N = p@

QZ(uil) =1

qs(uil7ui2) =pi@)-pi(2)
1 1

N N-1
q,(u;,u;,) =1

qZ(uil’uiz""lu' ):l

1

Qe (U Uy veos Uy ) = ;D) P;(2) .- pi(N)

-+t 1
N N-1 ~ N-n+1

d, (Ui U 4o U; ) =0 therefore the process stops here.

Example 2.7.2.2

Consider a population of size 20 from which a sample of size 4 is to be
selected by the SRSWOR method.
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Referring to Example 2.7.2.1, we again use a random number table
(Cochran (1977), p19) to select units as follows:

Random Number Unit Selected

26 -

70 -

15 15

20 20

57 -

76 -

40 -

03 3

20 - not selected as sampling without replacement.
43 -

93 -

48 -

79 -

72 -

12 12

So the selected sample is s={ 15, 20, 3,12 }.

Where

1 1_
ql(uil) :WZZ_O_ p; (D

Q2(uil) =1

1 1 _11
iU = il- i2 - — = — . —
0 (U, Ui) = PP =1 17 T30 19

q,(u; b, ) =1

1 1 1 1 1 1
U ) = il' i2' i3 = .- - = ..
qs (U, U U ) = pi (D) pi(2)-pi(3) N NI N_2 2019 18

g, (u; ,u;,,u;) =1
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bt 1
N N-1 N-2 N-3

da (U, g, U U ) = pi(D) - pi(2) - pi(3) - pi(4) =

9, (u;,u;,, Uy, 4, ) =0,

d) Probability Proportional To Size Sampling With Replacement
(PPSWR)

For PPSWR sampling the probability of selecting the ith unit at any

draw is p;.

So  q(u)=p;
q,(u; ) =1
ds (U, U ) =Py - P,
q,(u;,u; ) =1

q3(ui1’uiz’ui3) =P, - P, - P,

(Ui Ui ey ) =1

AUy s Uy yees Uy ) =P - Py et P

d, (U U U ) =0 so the process stops here.

Example 2.7.2.3

Consider the following data (Cochran (1977), p35), relating to the

family income and family size of 10 families:
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Table 2.2: Family income and family size of 10 families

Family |1 2 3 4 5 6 7 8 9 10
Income | 62 62 87 65 58 92 88 79 83 62
Size 2 3 3 5 4 7 2 4 2 5
We can select a sample of 4 families using PPSWR as follows:
First we need to compute the cumulative totals:
Cum Total |2 5 8 13 17 24 26 30 32 37

We then use a random number table (Cochran (1977), p19) to select

units.

Random Number

40
18
94
44
34
13
11

Unit

6

10

So the selected sample is s={6, 10, 4, 4 }.

e) Probability Proportional To Size Sampling Without Replacement

(PPSWOR)

In this sampling scheme:

0= p,, pi(2)=%, o pi(K)=

h

25
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So
q.(u;) = pi@) = p;
d; (uil) =1

P,

G(U, U )= p@- p@ =1 1-p,

q,(u;,u;,) =1

qZ(uil’uiz""lu' ):l

1

0

Qe (U Uy veos Uy ) = ;D) P;(2) .- pi(N)

P,

P

n

p; -
= 1-p, 1-p——Di,

0

d, (U U U ) =0

Example 2.7.2.4

therefore the process stops here.

Referring to example 2.7.2.3 and Table 2.2, we get

fori, #1,
otherwise

fori, 1, #...#1,
otherwise

Family

4

5

6

7

8

9

10

Cum Total 2 5 8

13

17

24

26

30

32

37

Once again we use random numbers obtained from a random number
table (Cochran (1977), p19) to select a sample using PPSWOR.
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Random Number Unit
20 6
05 2
62 -
62 -
96 -
23 -not selected as sampling without replacement.
22 -not selected as sampling without replacement.
48 -
73 -
54 -
73 -
71 -
53 -
32 9
41 -
47 -
60 -
01 1

So the selected sampleis s ={6,2,9,1}.

f) Midzune-Sen (Midzuno 1952; Sen 1953) Sampling (MS)

The first unit is selected with probability p,, the remaining n—1 units

are selected by the SRSWOR method so that:

P = p;

1
N —1).(N —k+1)

p; (k) =( for k=2,....n.
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So Q1(uil) =P
d, (uil) =1

d3 (U, U, ) =pi@-pi(2)=p, - ﬁ

g, (u;,u;,) =1

12

(Ui U ey ) =1
(U Uy o) = D4 (2) - Py (1)

11
N-1 ~ N-n+1

:pil.

Ay (Ui Ui, ey u)=0 therefore the process stops here.

2.8 Inclusion Probability

The inclusion probability of the unit u, with respect to the sampling design p is

denoted by
T = z p(s)
= z Isi p(S)
se
1 .
where I :{ if !ES.
0 I¢s

The inclusion probability for the ith and jth units (i = j) is denoted by

TTij zzlsilsj p(s) -

For simplicity, we write T =TT;.
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2.9 The consistency conditions of inclusion

probabilities (Hanurav (1966))

2.9.1 For any sampling design:

>, E,(v(s)) and

i)

'MZ

i

i) ii = Var(v(s))+ v(v-1).

Proof:

(#1)sep

zoff{zon
= Zroibo-1)

i=1

i) ii :i(ZZISJqp(S)}

= ¥ {v<s>z|s. zus.}
2 p(s)V(5)? —V(s)]
= > V(s)?p(s) = D v(s)p(s)

= Var(v(s) )+ v(v -1).

29

(2.9.1.1)

(2.9.1.2)



2.9.2 For a fixed effective size n sampling design:

iy Yz =n,

iv) Z”‘i =(n-1r, and

J#1

V) ZZ”U =n(n-1).

i#]
Proof:

i) Using result (1.9.1.1) above,
E[v(s)]=> v(s)p(s)

=n> p(s)=n.
So we get
Zni = E[v(s)]=n. (2.9.2.1)

iv) zﬂij =ZZ p(s)lsilsj

j#i j#l s

=>p(s)lg DNy
s j(#1)

=Y ) (n-1,)

=nY p(s)l - p(S)l
=nrm, -,

= (n-1r, (2.9.2.2)

V) For a fixed effective size n sampling design, P{vS = n}:l, hence

V(v,)=0.

So using (1.9.1.2) above, we get
> >y =n(n-1). (2.9.2.3)
iz ]
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2.10 Data

The information related to units selected in a sample and its y -value obtained

from the survey is known as data and is denoted by d = {(i,y, )i € s}.

2.11 Estimator

An estimator T (s, y) is a real-valued function t(d), which is free of y, for i¢gs

but may involve y; fories.

The numerical value of an estimator for a given sample is called an estimate.

2.11.1 Unbiased Estimators

An estimator T =T (s, y)is said to be a design unbiased estimator or simply

unbiased for a population parameter 6 if and only if

E,(T) = D T(s,y)p(s)=16 vy eR,
SE(D

where E denotes the expectation with respectto p and p(s)is the probability

of selection of the sample s.
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2.11.1.1 Types of unbiased estimators of Y = population total

1. Linear Unbiased Estimator

U'=1t'(s,y) =a,+) byy,

ies

= as +zbsiyi|si

> denotes the sum over all distinct units in s
ies

i) a, is a constant depending on the sample s and not on

where )]

the y;'s
i)  the by's are constants that may depend on the selected

sample and the unit i, but is independent of the y;'s.

2. Linear Homogeneous Unbiased Estimator

t=1t(s,y) :zbsiyi = zbsilsiyi

ies ies

where )} z denotes the sum over all distinct units in s

ies

ii) the b, 's are constants that may depend on the selected

sample and the unit i, but is independent of the y;'s.

3. Horvitz-Thompson (1952) Estimator

tre :z%

ies

The estimator t, . , called the Horvitz-Thompson Estimator, is defined if 7, is

positive for every i =1,...,N .
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Note:
Examples of different estimators are given in section 3.1.2.

2.11.1.2 Necessary and sufficient condition for existence of an

unbiased estimator:

Theorem 2.11.1 (Hanurav (1966))

A set of necessary and sufficient conditions for the estimability of Y in a given

design pis that
;>0 vi=1..,N.

Theorem 2.11.2 (Hanurav (1966))

A set of necessary and sufficient conditions for the estimability of the

guadratic parametric function

N
Q:|0 +Z‘,IiYi +zqiiyi2 +quijyiyj
i-1 i i

iz
in a design p is given by
i) . >0 if 1>+95 >0

or

i) m; >0 if q; +9d; #0.
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Corollary

The variance of an estimator is in general in a quadratic formin y;'s,
i=1...,N . For the estimation of the variance, the necessary and sufficient

condition of estimability is

mr: 20.

For a systematic sampling scheme, r; =0 for some i# j. Here the elements

are grouped into clusters and a selection is made where a cluster is chosen to
become the sample, the result is that the variance of the sample mean cannot
be unbiasedly estimated by using a single systematic sampling design.

Example 2.11

Let N =9 and n = 3, then the possible systematic samples are:
s, =01,47),s,=(2,58) and s, =(3,6,9).

Here 7r1=7r2=7r3=7r4=7r5=7r6=7r7=7r8=7r9=§

1

and 7, =7, STy =My = Myg = Mg = Mgg = Mag = Mg zé .

The rest of the 7;;'s viz:

7., M, €tc are equal to zero as element 1 and 2 cannot both be in a sample,

similarly neither can element 1 and 6, etc.
Hence from the systematic sampling design, the population mean can be

estimated but the variance of the sample mean cannot be estimated because

some of the z;;'s viz. r,,, 7, etc are equal to zero.
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2.11.1.3 Uniformly Minimum Variance Unbiased Estimator

(UMVUE)

T, , an unbiased estimator of parametric function 6, is called an UMVUE for

estimating parametric function 4, if for any other unbiased estimator T (= T,),

the following conditions are satisfied:

i) Vo (T) <V (T) vy e R,

i) V,(T,) <V, (T) for at least one yeR,,.

2.11.1.4 Unicluster Sampling Design (Hanurav (1966))

A design p is a unicluster design if any two samples s,s™ € ¢ with

p(s), p(s’) >0 imply either
i) sNS =¢

or

i) the samples s and s are equivalent,

where ¢ is a null set.

2.11.2 Admissible Estimators

An estimator T is said to be admissible in a class C of estimators if there

does not exist any other estimator in the class C that is better than T .
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i.e. there does not exist an alternate estimator T (= T) for which the following

inequalities hold:
)V, (T)<V,(T) YT*(#T)and yeR,
ii) V,(T7) <V, (T) for at least one y e R, .

By using the Rao-Blackwell theorem one can improve an inadmissible
estimator using a sufficient statistic. Such a technique is known as Rao-
Blackwellization.

2.12 Sampling Strategy

This is a combination of sampling design p and an estimator based on a

sample selected using the design p.

2.13 List of Abbreviations used

FES fixed effective size

FSS fixed sample size

UMVUE Uniformly minimum variance unbiased estimator
MVUE Minimum variance unbiased estimator

SRSWR Simple random sampling with replacement

SRSWOR  Simple random sampling without replacement

PPSWR Probability proportional to size sampling with replacement
PPSWOR  Probability proportional to size sampling without replacement
IPPS or #PS Inclusion probability proportional to size sampling design
BLUP Best linear unbiased predictor

tre Horvitz-Thompson estimator
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tance Rao-Hartley-Cochran estimator

tys Midzuno-Sen estimator

2.14 Conclusion

In this chapter we looked at some definitions and results which will be used in
later chapter. Some of these definitions may be repeated in later chapters if

they are needed.

We also looked at the selection of samples using the cumulative total method.
It should be noted in this method we need to list all possible samples along
with their probabilities. In practice it is very difficult to use the cumulative total
method if N and n are quite large. If for example N=20 and n=5, we have to

20
list (5 j =15504 samples with their probabilities which is very difficult.

Hanurav’s algorithm can be used easily and be terminated after a finite
number of steps. There are several other popular sampling designs such as
the Inclusion Probability Proportional to Size (IPPS or #PS ) sampling design
and the Rao-Hartley-Cochran sampling design which is available in the
literature and which will be discussed in Chapter 6. The natural question to
ask is, among all the sampling designs (schemes), which is better or which
should ideally be used. The answer to this question will be given in Chapter 3.
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Chapter 3

Methods of Estimation

In Chapter 2, we have discussed different methods of sample selection. In this

chapter we consider design based inference where the vector y = (y,,...,yy ) is

fixed. We assume that if unit i belongs to a sample s, then y, can be

observed without error. In this approach the stochastic element upon which
inference can be based, is the one introduced through sampling design.
Details are given by Cassel, Sarndal and Wretman (1977) and Chaudhuri
(1988). In design based inference, expectation is the long term average of the
performance of an estimator t through a hypothetically repeated process of

sampling.

We present expressions for the Horvitz-Thompson estimator, its variance and

an unbiased estimator for its variance.

The concept of unbiasedness and minimum variance unbiased estimators are
presented through a design based approach. The celebrated non-existence
theorems of Godambe (1955) and Basu (1971) are also discussed in detail. In
particular Godambe (1955) showed that the MVUE does not exist in the class
of linear homogeneous unbiased estimators. Hanurav (1966) modified
Godambe’s result by showing that the MVUE does not exist for non-unicluster
design. Basu (1971) generalised Godambe’s result by proving that the MVUE

does not exist in the class of unbiased estimators.
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3.1 Definitions

3.1.1 Data

Data is the information collected on one or more characters of interest from

selected units in a sample. It is denoted by d.

If a single characteristic y is of interest then vy, is the value of the character

obtained for the ith unit.

The data corresponding to an ordered sample s = (u, ,...,u; ,...,u, ) will be

denoted by
d(S) = iz Vi s (s Vi oo (g Vi )

3.1.2 Linear Unbiased Estimator

A real valued function of d, T(s,y)= T(d) is called an estimator when itis

used as a calculated approximation for a certain parametric function of

interest, O(t) .

3.1.2.1 Linear Homogeneous Estimator

A linear homogeneous estimator is a real valued function

t=t(s,y)= D by,

ies

where Z denotes the sum over the distinct units in s and the

ies
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b, 's are constant and equal to zero for i ¢ s. The constant b, may depend on

the selected sample and the unit i, but are independent of the y,’s.
The class of linear homogeneous unbiased estimators will be denoted by C,, .

Examples

e The sample mean based on unit repetition

2

y — ies
ng ns

is an example of a linear homogeneous estimator,

' n

where

S

for n,(s) the number of times the ith unit appearsins.

Another example of a linear homogeneous estimator is the

e sample mean based on distinct units

o Z Yi
yS — 1es ,
nS

where b, =i.
N

S

3.1.2.2 Linear Estimator

A linear estimator is defined as

t=t"(s,y)= a,+ > by,

ies

where a_is a constant depending on the sample s but not on the y,’s.
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The class of linear unbiased estimators will be denoted by C, .

Examples

The Difference Estimator is an example of a linear unbiased

estimator. We let

b, -1 and a, = X —zﬁ,

oo ies 7T

where 7z, = inclusion probability for the ith unit so the difference

estimator is defined as

The Regression Estimator is another example of a linear unbiased

estimator where if we let

b, -1 and a, =,B(X —~ —'J

T

where g is a known constant, then

t:zﬁ_ﬁ(zﬁ_xj

ies /i ies ‘b

is the Regression estimator.
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3.1.3 Unbiased Estimator

3.1.3.1 Definition

An estimator T =T (s, y) is said to be an unbiased estimator for a population

parameter 6 if and only if

E, ()= D.T(s,y)p(s) =6 vy e Ry

Se@p

where E is the expectation with respect to the sampling design p and p(s)is

the probability of the selection of a sample s according to design p.

3.1.3.2 Condition of Unbiasedness

A linear homogeneous unbiased estimator

t(s,y)=>_b.

ies

will be unbiased for the population total Y if and only if

E['[(S, Y)] = Z Yi Vy e Ry
ie. 2.t Y)P(s) =2y,
ie. 2. Y 2b, p(s)=2 Y, VyeR,.

ssi i=1
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Now equating the coefficients of y,, we find that the necessary and sufficient

condition of unbiasedness for t(s,y) is

Db, p(s)=1 fori=1..,N (3.1.3.1)

ssi

ie. Db p@e)l =1 fori=1..N.

For a linear non-homogeneous unbiased estimator t*, the necessary and

sufficient condition for unbiasedness of the population total Y is

i) 2.2,p(s)=0

i) Db, p(s)=1 fori=1..N.

ssi

Examples

We can construct infinitely many unbiased estimators for a given parametric

function. For estimation of the population total Y , we choose a b, satisfying

condition (3.1.3.1) viz. D_b, p(s) =1 in various ways as follows:

ssi

) b, =c, =constant

In this case » b, p(s)=1 = ¢>_ p(s) =1

ssi ssi

So that cr =1
which leads to c= 7
and finally b, = 7,
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so the estimator is thus

t(s,y) = Zz— (3.1.3.2)

ies i

The above estimator (3.1.3.2) is known as the Horvitz-Thompson (1952)

estimator.
i) Noting that E[bsi ]:sti p(s) =1 because b, =0 for ig¢s.

We may choose

=0 fories

as an unbiased estimator of Y.

. . v
In particular if we choose ¢, =v, then b, =—=—~ and the

corresponding estimator is

by, =3 Yooy, 20

ics ics E(Vs) ) E(Vs)

i) Let n,(s) be the number of times the ith unit appears in sample s,

for a with replacement sampling scheme.

Then we can find an infinite number of unbiased estimators as

follows:
'[j( 1Y)_§ E[{ni(S)}j]yj for j=12,...
In this case, b, :—{n‘ (S)} for j=12,...
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3.1.3.3 Horvitz-Thompson (1952) estimator (t,.)

tHTE = ZL

ies ﬂi

y.
= ARy
Zﬂi )

lifies
where I, =4 .
' Oif i es.

Clearly t,;. is defined when =, >0 for every i=1...,N.

The Horvitz-Thompson (1952) estimator is an unbiased estimator of the
population total Y , to show this we first need the following theorem:

Theorem 3.1
) E()=r fori=1..,N,
iy V(l,)=m7Q-m) fori=1..,N and
i)y Cov(ly,1,)=mm;—m fori=j=1..N.
Proof:

) E()=1,p()

=, (3.1.3.1)

i) V(I,)=E(I2)-E(,)
:E(lsi)_”i2 = 7 -

=r,(1-x,) (3.1.3.2)
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i) Cov(l,,1,)=E(,.1,)~E(I,)E(,)

= Z Isi Isj p(s)_ﬂiﬂj

Theorem 3.2

i) E(t.)=Y and

i)V (te) = 2V (—_—%ZZH

1= ]

Proof:

Using Theorem 3.1 above, we find

) Elte) =X 2E()

_~ Vi

_Zﬂ_. .

:ZYi:Y
and

- Y
i) V(te) V[Z”'j

(3.1.3.3)

Fa

using (3.1.3.1)

- zy'vu )+Zzy' i 00v(|5 L)

i# j

using (3.1.3.2) and (3.1.3.3)

_zy. l-7 )+Zzy. Y (ﬂ —y).

i# j
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Theorem 3.3

For a fixed effective size n design with number of distinct units in a sample is

fixed as v =n i.e. P{n, =v}=1, the variance of the Horvitz-Thomson (1952)

estimator is given by

V)3Tl -2 ).

iz ] TT; 7Z'j

Proof:

S V)

= ] T, T,

iz ] TT; ﬂ'iﬂ'j 7Z'j

2Pl | 2o 20
=S e, )3 T, -

i~ 17[7[

=32 5n, 55, |- £ 52, -5,

j#i j#i iz ] 7[7[

Now for a fixed effective size sampling design P{n, =v}=1, we have

shown (Chapter 2 equations (2.9.2.1) and (2.9.2.2)) that

dm=nand > z; =(n-Dr,,

j#i
so we have

)} ZH —Zﬂ — T

j#i
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i) ZHij =(n-Dx, .

j#i

We thus get that

o |

T, T,

:Z%(l_ﬂi)+zz%%(ﬂij _ﬂiﬂj)

=V (e ) -

3.1.3.3.1 Inclusion Probability Proportional to size Sampling Design ( IPPS or
aPS)

Let us put y, =cx; (where c; is a constant) in the Horvitz Thompson (1952)

estimator expression

tie = ZL

ies ﬂi

tre = Cz

ies

Now if Z: number of distinct units =v which is a constant, then

ies

t,7e =Cv which is also a constant.

So the variance of t,,,. becomes zero for fixed effective sample size design

when 7, o ;.
So if we choose a sampling design for which z, « y, then the Horvitz-

Thompson (1952) estimator becomes the most efficient in the sense of having
the smallest possible variance of zero.
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In practice the y,'s are unknown, so we cannot choose r,’s proportional to
y,'s. However in some situations we may find an auxiliary variable x which is
approximately proportional to y . In such a situation we choose 7, to be

proportional to X;.

A sampling design for which inclusion probabilities are proportional to the
measure of size (auxiliary) is known as IPPS or zPS sampling design.
Obviously zPS sampling design can be implemented if all x,’s are known and
positive. Several zPS sampling designs are available in literature. Some of

these are discussed in Chapter 6.

3.1.3.4 Minimum Variance Unbiased Estimator (MVUE)

Definitions:

e Better Estimator

Let T, and T,(#T,) be two unbiased estimators belonging to the class

C,.
The estimator T, is said to be better than T, if

i) V,(T,) <V, (T,) vy e R,
and

i) The inequality
vV, (M) <V, (T,) holds for some yeR,,.
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e MVUE

An estimator T, which belongs to C,, the class of linear unbiased

estimators of @ is called an MVUE for estimating the parametric

function 6 if T, is better than any other unbiased estimators belonging

to the class C, .

i.e.any T (#T,) e C, satisfies

I) Vp(TO)SVp(-I-:) vye RN
and

i) V,(Ty) <Vp(i:) for at least one yeR,,.

3.1.3.4.1 Non Existence of MVUE

1) Godambe (1955)

In the class of linear homogeneous unbiased estimatorsC,, , the MVUE

(minimum variance unbiased estimator) does not exist.

Proof:

Let t(s,y) = sti y, be a homogeneous linear unbiased estimator for Y .

ies

Then the constants b, 's satisfy the unbiasedness condition

Db ps)=1 for every i=1,...,N . (3.1.3.1)

]
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Here the objective is to find the constants, b, 's that minimize

V,() = X(b,y)?p(s) -2 (31.3.2)

sep ies
subject to the unbiasedness condition (3.1.3.1).

For minimization we consider

v =3 (b, y)p(s)-Y2- Z&(Zb p(s)-1) (3133)

se ies soi
where A, ’s are the undetermined Lagrange multipliers.

Differentiating w with respect b, and equating to zero, we get

. 2y,(2_b, ¥,)p(s)- 2 p(s)= 0 (3.1.3.4)
this is equivalent to
t(s)= (Zb y,)——y Vies, y #0. (3.1.3.5)

The equation above says that if a sample s contains units i and j (i#])

we must have

t(s,y) =(sti yi) =%=ﬁ for y,,y, #0. (3.1.3.6)
1€s i j

The equation (3.1.3.6) implies that the estimator t(s, y) is independent of the

y,'s for i e s. This is impossible. Hence there does not exist a MVUE.
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i) Hanurav (1966)

Hanurav pointed out that Godambe’s (1955) result does not relate to

unicluster sampling.

Definition: Unicluster Sampling Design

Hanurav defined a design p as a unicluster design if any two samples

s,s" e with p(s), p(s”) >0 imply either

i) sNs =¢ or

i.e. either s and s™ are disjoint or they contain the same set of units.

Hanurav (1966) modified Godambe’s result as follows:

For a non-census sampling design p with 7, >0 forall i=1..,N, a

MVUE does not and does exist in the class C, of linear unbiased estimators

of the population total Y, if p is a non-unicluster and unicluster design

respectively.

Proof:

Let p be a non-unicluster design.

Then we must have two samples s, and s, with p(s,), p(s,) > 0 and such that

s, contains units i and jbut not k (i # j #k)ands, contains i and k but not

j- Inthis case t(s;, y) =t(s,, )t(s,, y) for all non zero values of y;, y, andy,

which is impossible because the magnitude of t(s;) depends on y;, andy; but
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is independent of y, while t(s,) depends on y, and y, and is independent of
y,- Hence we cannot find constants, b; s which minimize V,, (t) and satisfy

the unbiasedness condition (3.1.3.1).

Now suppose that p is a non-census unicluster design, then p(s,), p(s,) >0
implies that s, ns,= ¢ butnot s, ~s, Vs,,s, € ¢ because s, ~s, Vs,,s, e
and z; >0 imply that the design p is a census one. So, for a unicluster
design p, all the samples must be disjoint and hence a unit can occur only in

one sample. Hence the unbiasedness condition sti p(s)=1 implies b, p(s) =1

=]

foreveryies, i=1..,N.

We thus conclude that for a unicluster, only one unbiased estimator exists,

Z Yi
viz. t(s,y)=-"=—
p(s)

and hence it is trivially the best.

Example of a unicluster sampling design

Systematic sampling is a unicluster sampling design.

Consider a systematic sampling scheme of 3 units selected from 12 units. For

a systematic sampling scheme, 4 possible samples are as thus

(1,5, 9), (2, 6, 10), (3, 7, 11) and (4, 8, 12).

The probability of selection in each case is % and

T =£ fori1=1,..,12.
4
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For this systematic sample, the only linear unbiased estimator for population

12
total Y =) y; is
1

A
p(s)

:4ZYi -

ies

for s=1,2,34

iii) Basu (1971)

Basu generalized the non existence theorem. He proved that the MVUE does

not exist in the class of unbiased estimators.

Theorem

For a non-census design, there does not exist a UMVUE of 8(y) in the class

of any unbiased estimators C.

Proof:

If possible let T, (s,y) be the UMVUE of the population parameter 6(y) . Since
the design p is non-census and the value of T, (s, y) depends on vy,’s for
i es,we can find a vector y®=(a,,...,a,..,a,) for which T, (s, y) # H(y‘a)) with

p(s) >0.

Consider the following estimator
T (s,y) = T,(s,9)- To(s,y®) +0(y®).
T7(s,y) is unbiased for (y) because

E [T y®)|= 6(y) - 6(y®) + 6(y®)=6(y)
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Since T (s, y)is the UMVUE for 9(y), we must have

V[T (s, <V, [T )] vy eR,.

Now for y = y®

V[ s )=V, T 6y ®)]=v,lo(y@)] =0,
while Vp[T*(s, y‘a))]> 0 since we assume T,(s,y®) ¢0(y‘a)) with p(s) >0.

Hence the inequality is violated aty = y® and the non-existence of a UMVUE

for 6(y)is proved.

3.2 Conclusion

We have seen that an unbiased estimator is not unique, we can derive
several unbiased estimators for a fixed sampling design. A natural question is
to identify the estimator which is the best. Godambe (1955) first proved that
the best estimator does not exist for almost all sampling designs. Therefore
one should use his own experience and/or situation to find a suitable
estimator. For example, one should construct a zPS sampling design if it is

known that the y,'s are approximately equal to the x;'s.
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Chapter 4

Admissibility

In Chapter 3, we discussed the concepts of unbiasedness and minimum
variance unbiased estimators. Following the work by Godambe (1955),
Hanurav (1966) and Basu (1971), we noted that there does not exist a
minimum variance unbiased estimator when estimating finite population totals

except for a unicluster sampling design.

In this chapter, we introduce the concept of admissibility which may guard
against an inefficient estimator. Godambe (1960) proved that the Horvitz-
Thompson (1952) estimator is found to be admissible in the class of linear
unbiased estimators. Godambe and Joshi (1965) extended Godambe’s result
and proved that the Horvitz-Thompson (1952) estimator is admissible in the
class of unbiased estimators. We also discuss the concept of sufficient
statistics and explain how one can improve an inadmissible estimator using

sufficient statistics and the Rao-Blackwell Theorem.

4.1 Admissible Estimator

An estimator T is said to be admissible in a class C of unbiased estimators

under a given sampling design p if there does not exist any other estimator in

the class C betterthan T.
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i.e. there does not exist an alternate estimator T*(;t T)e C, for which the

following inequalities hold:

) V() <V (T) VT (#T)eC, VyeR,

ii) V,(T7) <V, (T) for at least one y e R, .

4.2 Admissibility of Horvitz-Thompson (1952)

Estimator

4.2.1 Admissibility in the class of linear homogeneous

estimators

Godambe (1960) proved that the Horvitz-Thompson (1952) estimator (t,,. ) is

admissible in the class of linear homogeneous unbiased estimators.
Theorem 4.1

In the class of linear homogeneous unbiased estimators (C,, ), t,,, based on
a sampling design p (with 7z, >0 Vi=1,...,N), is admissible for a population

total Y .

Proof:

The class C,, consists of estimators of the form

t(s,y)= Y by, €C, (4.1.1)

ies
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where the constants b, 's are free from y;'s and subject to satisfying the

unbiasedness condition:

sti p(s) =1 Vi=1..,N. (4.1.2)
Now Vo [t(s, y)] = Z(sti yij p(s)-Y?’
56(/) ies

Z[stfyf +2,2.bb, yiy,}p(s) -Y?

se \ ies iz jes

iZ:,yf [2 b, 2p(s) —1j S Sy, [ > b,b, p(s) —1} |

soi soi, j

Let y(i)= vector y whose co-ordinates y, =0 for i j=1..,Nand y; =#0.

Then

(st,- p(s)j .
V, [ty )= vf[stfms)‘lijf BXCEEN y"{ j

sOj
SO

(4.1.3)

(Noting the unbiasedness conditioansi p(s) =1).

sOj
The equality in (4.1.3) holds if and only if b, :i, so that

j T

J
VIt Iz v, | 32 v y=vy(j),j=1..N. (4.1.4)

ies ﬂ-i

The inequality in (4.1.4) above is strict if and only if t(s,y) #t .
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There thus cannot be any estimator in C, better than t, ;. when

vectory = y(i).

Hence t,. is admissible in C .

4.2.2 Admisibility in the class of unbiased estimators

Godambe and Joshi (1965) extended Godambe’s (1960) result further and

proved the admissibility of t,. in the class of unbiased estimators.

Theorem 4.2

Estimator t,,. is admissible in the class C, of unbiased estimators for a finite

population total Y under a sampling design p with 7, >0 Vi=1...,N.

Proof:

Suppose t,; is not admissible in the class C, and there exists an estimator

e(s,y) (£t )eC, which is better than t, . . In this case

i) Vo[e(s, Yl <V, (tre) VyeR, (4.2.1)
and

i) Vo [e(s, V1<V, (tre) for atleastone yeR,. (4.2.2)

The estimator e(s, y) can be written as

e(s,y) = tye + h(s,y) (4.2.3)

where h(s,y) = e(s,y)- t, e -
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Since e(s,y)and t,,. €C, , (4.2.3) yields

E,[h(s,y)]= D h(s,y)p(s) = 0.

Sep
Further (4.2.1) implies that

[VoIn(s,y)I + 2C [t,7e . N(s,y)] <O (4.2.4)
where C denotes covariance with respect to the sampling design p.

Equation (4.2.4) yields

> ih(s, Y1 p(s)+ 2> (s, y){Z%}p(s) <0 vy eR, . (4.2.5)

sep sep ies /tj

Let us define y(]) = collection of all vectors y :(yl,...., Yirer Y ) having j

nonzero co-ordinates and N — j zero co-ordinates.

Also ¢(j) (c (p) is a collection of samples consisting of units with y values

that are non - zero for exactly j units.

Clearly y(j))nyKk)=9 forjzk=1...,N;
o(f)ne(g)= for f #g=1..,n;

Uy()=R" and  Uo(i)=0.

Now when y = y(0) = (0....,0,...,0),

ZL:O for every se ¢

ies ﬂi
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then equation (4.2.5) yields

h(s,y)=0 Vsep. (4.2.6)

Now if h(s,y)=0 Vseqe and Vyey(j), then for any yey(j+1) the
equations (4.2.4) and (4.2.5) yield

> h(s,y)p(s)=0 (4.2.7)
se(d(j+1)
and
> dhs ) pe)+2 Y h(s,y){zﬁ} p(s)<0. (4.2.8)
se(j+1) seP(j+1) ies 7T
Now zlzil for every s e o(j+1)

ies 70i i<l 7T

and hence (4.2.7) and (4.2.8) give

> {h(s, ) |o(s)+2iL > h(s,y)p(s)<0 vsep(j+1)

se(D(j+1) i=L 7T se(j+1)

and Vyey(j+1)
ie. h(s,y)=0 Vsep(j+1) and Yy e y(j+1). (4.2.9)
Now from (4.2.6) and (4.2.9) we see that
h(s,y)=0 Vsep and Vy e R, .

Thus there does not exist an estimator, e(s,y) (=t ) € C,which is better
than t. ;. . We thus conclude that t,,. is an admissible estimator in the class

C

u-
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4.3 Inadmissible Estimators

4.3.1 Definition

An estimator e(s, y) is said to be inadmissible in a class C if there exists an

estimator e (s,y) (e C) better than e(s, y).

We can always improve an inadmissible estimator by applying the
Rao-Blackwell theorem using sufficient statistics. Such an improvement of an
inadmissible estimator is known as Rao-Blackwellization. The technique of
Rao-Blackwellization is described as follows:

4 .3.2 Sufficient Statistics in Finite Population Sampling

Let s=(u,,...,u; ) be an ordered sample of size n selected from a population
U with probability p(s) using a sampling design p, then d =(i,,y,:i, €5S) IS
the ordered data. Let d =( i,,Y,i, €5) be the unordered data obtained from

the ordered data d . The unordered sample s , is obtained by taking the set of

distinct units in s and ignoring repetition of unitsin s .

The values of the parameter y = (yl,..., Y ) are not known before the survey,
so Q, =R, =N dimensional Euclidean space is considered as the parametric

space.

After surveying the sample s, the data d = (i,,y, i, €S) is collected. From

this we get d , the unordered data. The data d is said to be consistent with

the parameter Y, = (y,;,..., Vigseos Yno) If Vi, = Yjo fOr j €8

peify; =VY0..¥;, =VYj0, Vvisthe number of distinct unitsin s .
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Once the data d is collected, the values of the y,'s belonging to the
unordered sample s are known. Hence the parametric space is now Qg

which consists of the vectors y with y; =y, for je S.

Example 4.3.1

Consider a population of size N=4 andy = (y,,¥,,Y,, Y,) -

The parametric space is the four dimensional Euclidean spaceQ, .

Suppose an ordered sample s = (1, 3, 3) is selected.

Surveying S yields y, =5and y,= 10.
Then s =(1, 3) and Q ;= (5,-0<y, <o, 10,-0< Yy, <o).
NOTE: The details are given by Arnab (2006)

Definition

Let y,,...,y, be a random sample with unknown parameter 6(Y,,...,Y,) = 6 (say).
The statistic u = g(Y,,...,Y, ) is sufficient for 6 if the conditional distribution of

Y. Y, given u is not dependent on 6.

Theorem 4.3

The unordered data d is a sufficient statistic for y.

The detailed proof can be obtained from Cassel, Sarndal and Wretman (1977)
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4.3.3 Rao-Blackwellization in Finite Population Sampling

An ordered sample S is selected with probability p(s)from a population, d is

the corresponding ordered data.
Let t(d) be an unbiased estimator for a parametric function 8(y)=6 and

t"(d) = E,[t(d) | J] where d is the unordered data obtained from d .

Theorem 4.4

Estimator t"(d) is an unbiased estimator of 6 with Vp[t*(a)] <V, [t(d)]

Proof:
0 =E,[t(d)]=E, (E,[t(@) | d])= E,[t"(d)]
and

V,It(d)]= E, (v, [t(d) | d]) +V, (B, [t | d D)
= £, (V,[t@) | d]) +V,It'@)]

> V[t (d)] since E, (V,[t(d) | d])=0.

4.3.3.1 Examples

) SRSWR
In the SRSWR sampling scheme the probability of selection of an
ordered sample s =(u; ,U; ,....u; )is p(s)= Nln :

Let y,, be the value of the character under study y for the

population, selected on the rth draw.
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2V

Let y(s)= f=1n

, then y(s)is an unbiased estimator for the

population mean Y . This estimator is inadmissible since it is based
on ordered data, possible repetition. This estimator is not based on

a sufficient statistic.

Let S =(u i»Uj,»-U; ) denote the unordered sample obtained by

taking v the set of distinct units j,,....,J, (], <...<]j,)Ins.

Theorem 4.5
_ Zyi D
Let y(s) = 'ESV = XL__pe the sample mean based on the
v

distinct units of S. Then

i) E[yGS)] = E[y(s)]=Y
and

i) VIy(E)]< VIy(s)l.
Proof:

Let n,(s) denote the number of times the ith unit appearsin S.

If

— 1 13
y(s)= _z Y __zni (9)Y;
N NI

then

) Ebo]=Eleis]= 2 EmEy 1510l y

i
ies N
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Since for a given s, n,(s) follows a multinomial distribution

with E(n,(s)/§)= nt.
\'

which shows that the sample mean based on distinct units is

uniformly better than § (s) based on all the units.

i)  PPSWR

Hansen-Hurwitz (1943) Estimator

Let a sample s =(u; ,u; ,..,u; ) of size n be selected from a

population by PPSWR method of sampling with p, denoting the
normed size measure ( p; > 0) for the ith unit. Let u,, be the unit
selected at the rth draw and p,,, be the corresponding normed size

measure. If the ith draw produces the rth unit then
Uy =u; and  pg =p;.

Then the estimator

> 1Yo
vy o==y2Jo
hh n;p(r)

is unbiased for the population total Y .

The estimator \fhh is known as the Hansen-Hurwitz (1943)

estimator.
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A

Y, 1S an ordered estimator since it depends on the multiplicity of the
units selected and the order of the selection of the units in the

sample s, hence Y, is inadmissible.

Now writing

o 1 y.
Yn=—) N(s)—
hh n; |()pi

where n, (s)= number of times the ith unit occursin s.

IWHEESS E(ni(s)/é”)%

n ies i

ZYi

— €S

-5

ies

z Yi
Clearly <£— has a smaller variance than Y, .

zpi

ies

Let s be the unordered sample obtained by taking distinct units of
the selected ordered sample S, then applying the Rao-Blackwell
Theorem, one can find an improved estimator as shown in the next

example.

Example 4.3.2

Let s, =(i,i, J) be an ordered sample of size n=3 selected by PPSWR

method. The Hansen-Hurwitz (1943) estimator based on s, is given by

~ 1 i Y
Yhh(Sl) 25{2%4‘?}}
i i
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From the ordered sample s,, we get the unordered sample 5 = (i, j)

with i< j.

The unordered sample s could be realized from any of the following

ordered samples s:

s, =0.11), s, =@, 11, s;3=(J,1i)
S, =0, 1,1), ss=(11,1), sg=(J,}.0).

Now since

1 / ; 1,y Y
Yin (81) = Y (S5) =Yy (33)25(254_?1},

[ / ; Uy LY
Yin (34):Yhh (35) =Y (Se)zé{ﬁ+ Zp_Jjj )

p(s)) = P(s,) = p(s;) = p;°p; and

P(s4) = P(ss) = p(ss) = p; piz'

We get the following unordered estimator

) > Y (5 ) P(5)
t'= ElY,, /5]= T
> p(s,)

by Y Yty
== 2+ —=+—.
3lp Py P+ P
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i)

PPSWOR

Suppose on the first draw the ith unit is selected with probability

p,. At the second draw jth(= 1) unitis selected with probability
P;

1-p; .

p;=

Raj's (1956) Estimator

Yens = zt(l

The above estimator is ordered since it depends on the order of

selection of units in the ordered sample.

Consider an ordered sample s = (i, j) of size n=2.

Then

t(i)=% and  t(j)=y, +L(1-p,).

i i

So Raj's estimator based on the ordered sample s=(i, j)is

Yeu (0, 1) = [t G, i) +1, G, j)]

2{y'(l o)+ (- p)}
p

1 i

However Raj’s estimator based on the ordered sample s™ = (j,i)is
Yeu (001) = [t (3.0 +t, (3. )]
1 y i
== 2-a-p)+2a-p) .
2| p; P;

SO Yep (i, §) # Yeuy (i01) -
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Modification of Raj's (1956) Estimator — Murthy (1957)

Murthy’s unordered estimator is obtained by taking the weighted
average of Raj’'s estimator with weights proportional to the selection
probability of the ordered sample.

So Murthy’s estimator based on the ordered samples s =(i, j) or

s" =(j,i) is given by:

7 - YARAJ (5) p(s) + YARAJ (S*) p(S*)
Mo p(s) + p(s*)

[ 2 me 2 anfon o)
P J

1 ]

This is an unordered estimator since it is independent of selection

of the order of the sample.

Hence we get the following theorem which states that both Raj's
estimator and Murthy’s estimator are unbiased estimators of the
population total Y and that Murthy’s estimator is better than Raj’s

estimator since it has a smaller variance:

Theorem 4.6

1) Eltea 1= Eltyr] =Y
and

2) VItyur] < VItes 1.

The proof of the above result can be found in Murthy (1957).
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4.2 Conclusion

The criterion of admissibility, like sufficiency, does not single out a unique
estimator. Many traditional estimators in survey sampling have been shown to
be admissible. Hanurav (1965, 68) proposed the criteria of hyperadmissibility,
a stronger form of admissibility. The proposed criteria of hyperadmissibility
singles out one estimator, the Horvitz-Thompson (1952) estimator, as the
unique hyperadmissible estimator in the class of linear homogeneous
unbiased estimators and also in the class of unbiased estimators. We have
not discussed the concept of hyperadmissibility in this thesis.

We should try to avoid the use of inadmissible estimators. As a rule of thumb,
to find an admissible estimator, we must not choose an estimator which is:

) based on the order of selection of units and/or repetition and

i) not based on a sufficient statistic.
However, we use inadmissible estimators in various situations for their
simplicity and elegant expressions of variance. For example, sample mean
based on SRSWR and the Hansen-Hurwitz (1943) estimator based on
PPSWR sampling.

It is also important to note that the Rao-Hartley-Cochran estimator (discussed

in Chapter 6) is used extensively for its simplicity even though it is known to
be inadmissible.
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Chapter 5

Superpopulation Model

In the model based approach, also known as the prediction approach, it is
assumed that the population y -values are random and obey a model (known

as superpopulation model) and that the model distribution leads to valid
inference referring to a particular sample that has been drawn irrespective of
the sampling design. Model based inference, in large samples however, are
sensitive to model misspecifications as illustrated by Hansen, Madow and
Tepping (1983).

We also describe the model-design or model assisted approach which is a
hybrid of the design based and model based approach. In this approach,
inference is based on the sampling design as well as superpopulation models.
Details are given by Rao (1994) as well as in Cassel, Sarndal and Wretman
(1977).

In this chapter, we present optimum estimators of finite population
characteristics using model based and design based approaches. It is found
that the Horvitz-Thompson (1952) estimator becomes optimal under various
superpopulation models providing an appropriate sampling design is used.
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5.1 Superpopulation Model

In the previous chapters we discussed design based inference where the

population vector y = (y;,.., Yy ) was a fixed point in the N-dimensional

Euclidean space. In that case, we found that there does not exist a uniformly
minimum variance unbiased estimator in the class of unbiased estimators for

estimating the population total Y .

In this chapter we consider the population vector y as a realization of a

random variable Y = (Y,,...,Y, ) and its distribution will be denoted by &.

The probability distribution & may depend on a parameter 6, which is

generally unknown and belongs to a certain known parameter space €, .

Such a probability distribution & is known as a superpopulation model. In most

situations, the distribution & is related to a fixed auxiliary variable x= (x,...,Xy )

whose elements are assumed to be known and positive.

Example 5.1

Let us consider the exam marks of 125 first year statistics students at a
certain university in 2006.

The vector y = (V,,Y,,..., Vi) IS the exam mark for the students, i.e.

y, = exam mark for student 1, y, = exam mark for student 2,... etc.

If we consider the students for different years, then the vector y will take on
different values. Here we consider a distribution of Y, which will be called a

superpopulation model.
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5.2 Definitions

For a superpopulation model ¢ and sampling design p, the expectation,
variance and co-variance operators are denoted by E,,V,,C, and E_,V,C,

respectively.

5.2.1 Design Unbiased (p - unbiased) Estimator

An estimator t is said to be design unbiased for total Y if and only if

E,()=Y VyeR,.

The class of p-unbiased estimators will be denoted by C,,.

5.2.2 Model Unbiased (& - unbiased) Estimator

An estimator t is said to be model unbiased if and only if

E.(t) = E.(Y) VheQ,.

The class of &-unbiased estimators will be denoted by C, .

5.2.3 Model-Design Unbiased (pé& - unbiased) Estimator

An estimator t is said to be a model-design unbiased estimator if and only if

E.E,(t) = E.(Y) VOeQ,.

The class of p& -unbiased estimators will be denoted by C,..
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If an estimator is design and model unbiased then it is model-design unbiased
i.e. the class of model-design unbiased estimators contains both the class of

design unbiased estimators C jand the class of model unbiased estimatorsC, .

5.2.4 Non-informative Sampling Design

A sampling design is said to be a non-informative sampling design if and only

if the selection of a sample does not depend on the study variable y;'s i.e. the

sampling design is non-sequential.

For a non-informative sampling design E, and E, are commutative i.e.

E.E,(1)= E,E.(1).

5.2.5 Optimal Estimator

An estimator t, belonging to a certain class of estimators C, is said to be an

optimal estimator (or optimal) for estimating Y under a given superpopulation

model & and a sampling design p if

E.E,(t,—Y)’< E.E,(t-Y)’ vt(zt,)eC,0eQ,

and the inequality is strict for some 6 €Q, .
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5.2.6 Optimal Strategies

A sampling strategy h(p,t) with pe P,t eC, is a combination of sampling

design p and estimator t, based on a sample selected using the design p.

Let H be a class of strategies h=(p,t) with pe P,t € C , then the strategy
h, = (p,.t,) € H is said to be optimal in H
if

E.E, (t,-Y)’ < E.E (t-Y)* vh(=h,)eH,0€Q,

and the inequality is strict for some 6 €Q, .

5.3 Inference under Model-based approach

Suppose we have collected the data d = {(i, y, ),i € s} where the values of y, in

the sample s have been recorded. In the prediction approach, the statistician

is to predict the unobserved values of y, forigsi.e. ieU —s, U being the

finite population. This is done by assuming a superpopulation model where

the actual values y = (Y,,.., Yy ) are one of the realizations of the random
variables Y =(Y,,...,Y, ). The joint probability distribution of Y supplies the link

between the observed y;'s i sand the unobserved y,'s i¢s.

The details are given by Royall (1970), Cassel, Sarndal and Wretman (1977),
Chaudhuri and Stenger (1992), Lohr (1999) and Valliant, Dorfman and Royall
(2000) amongst others.
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5.3.1 Estimation of Population Total Y

Here we assume the following superpopulation model
Model &:  E.(Y,)= B, V.(Y,)=0? and C.(Y,,Y;)=0 (5.3.1)

where E..V, and C, denote the expectation, variance and covariance
with respect to the model &,
X;'s are known, positive auxiliary variable,
S is a model parameter and

o’ =o*(x;) =particular function of x, only.
The population total Y can be written as

Y=y 0y (5.3.2)

ies igs

The quantity z y; is known because Yy;, i € s has been observed. We need to

ies

predict the unobserved quantity z Yy, using the superpopulation model & .

igs

Consider the conditional expectation given data d = {(i,y, )i € s} viz.

E{Zyi/djz,Bin. (5.3.3)

igs igs

Now the quantity ZXi in (5.3.3) is known and we predict g through the data

igs

d collected.
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We may use the following linear function for prediction of g viz.

,é = zdis Yi

ies

where d; 's are known constants independent of y;'s.

Now replacing >y, by its predicted value ,éz x, in (5.3.2), we get the

igs igs

estimator

t=>y, +/§’in (5.3.4)

where f=>d, v .

The estimator t in equation (5.3.4) is called a predictor for Y .

Definition 1: The predictor t is called a linear model unbiased predictor for Y if

E.(y)=E.(Y)=pX (5.3.5)
where X = ixi
ie. pY X +(E, (/?))in - BX . (5.3.6)

The equation (5.3.6) gives the condition for model unbiasedness of t as

follows:

E. (ﬁ):ﬁ, (5.3.7)

For the linear model unbiased predictor t given in equation (5.3.4), we may

choose a loss function
M) =V.(t-Y) = E.[t-Y)-E.(t-Y)}.
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Definition 2: Best linear optimum predictor

Let C, be the class of all linear model unbiased predictors t =>"d, y;

satisfying

ies

The predictor t, will be called the best linear unbiased predictor (BLUP) for Y

if

Vo (t, -Y)<V.(t-Y)

Theorem

Under the superpopulation model

Y, = BX+ €

where

E.(Y,)=0, V,(Y,)=c2 and C,(Y,,Y,)=0,

the optimum linear predictor is

tep = z Yi +Bozxi

YiXi
; o

for B, = 2 in :
z |2 igs

ies O-i

ies igs
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Proof:

Vo (t-Y) =V, (t)+V.(Y)-2C.(tY)
Now V. ( [Zd yJ ;dfof,

:gof and
[Zd v, zyj S o?

ies ies

To minimize V, (t-Y ) subject to the condition E,(t)=E.(Y)= 8X , we

construct
¢ =V (t-Y)-A|E.(t)-E.(Y))
=34, 0%+ 307 250,07 - [Zdisxi—xj.
Now % 0
od,
= 2d, 07 ~207 X, =0
i.e d =1+—%
Zdisxl
= X =>dx 2x+ Z—
. X =% DX
ie E ies _ ies
> E?
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>x

Here d, =1+| = A d, (s) (say)

2 2

in O;

2
ies O-i

Here the BLUP is

X Yi
Z 6_2
taup =Zdi0 (9)Y; :ZYi + Igs—xlg in
les les Z# 1¢S

ies 0-'2
=z3’i +,éozxi .

ies igs

Corollary 1

If 02 =o%x?, then §, :EZL and the BLUP is
N x

o)t

ies n ies Xi igs

Corollary 2

ZYi

ies

Let 6% = o2x,, then B, = and the optimum BLUP reduces to the ratio

>

ies

estimator as follows

X-x |=t| =— |x =L x

igs z Xi Xs

ies ies

ies

J=t Dy,

where y, =y, and x, = > X; .

ies ies
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5.3.2 Purposive Sampling

The best linear unbiased predictor for the model & with o/ = o, is given by

The magnitude of

The value M(t,) attains a minimum when x, = »"x; is the maximum. So the

ies
value of M(t,) attains a minimum value for the sample s if we choose the

units with the largest x;'s to constitute the sample.

Now if we choose the optimum sampling design as one which minimizes

E,E.(t —Y),
then we find the optimal strategy constitutes the estimator t, and sampling
design p, which selects the sample s, with probability 1. The sampling
design p, is clearly a purposive sampling design which selects the sample s,

with probability 1.
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5.3.3 Balancing and Robustness

In practice we will never be sure as to which model is appropriate in a given

situation. Suppose that model & given in equation (5.5.1) is considered

adequate and one thinks of adopting the optimal strategy (po,tR) for which

and

We want to examine what happens to the performance of the strategy if the

correct model is given by

Model &7: E. =a+p.

Under this model E..(t;) = Na %+ﬁx and thus t, has the following bias

B, (t:)= E. (t, ~Y) = Na(%—l).

This bias disappears if and only if X = X . Therefore instead of using the

design p, which is optimal under model &, one would use the design p”
where X = X , then t, which is model unbiased under model & is also model

unbiased under model £". A sample for which X = X is called a balanced

sample and a design which prescribes choosing a balanced sample with

probability 1 is called a balanced design. So, based on a balanced sample, t,

is robust in respect of model bias.
A balanced design may however not be available if for example there exists

no sample of a given size with X = X .
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5.4 Optimal Design-unbiased estimators

Here we will show the existence of an optimal estimator in the class of

unbiased estimators C, with the following superpopulation model M1 as

defined below.

5.4.1 Model M1

They,'s are independently distributed with mean E,,,(y;) = i and variance
V,,,(y;) =cf for i=1..,N, where the y;'s are known and the o,'s are

unknown.

Theorem 5.4.1 (Godambe & Joshi (1965))

Under the model M1 and a given sampling design p with 7, >0 Vi=1..,N,
the expected variance of an unbiased estimator t ( €eC,) of Y satisfies the

following inequality:

N 1
EvlV,(t) = Zaf(”——lj: EwiV,(t,) (5.4.1)
i=1 i
N y — N
where t, IZ ! ‘u'+/,t with /,t=2/,ti.
i-L 7 i=1

Proof:

EwiV, ()= EMl[Ep(tz)_Yz]
EpEMl(tZ) _VMl(Y) _[EMI(Y)]Z
E, Vo O]+ E, [Es OF —Vis (Y) = [Epa (V)]

E, Vs 0]+ E,[Enia(©) = Eya(Y)F — Vi (Y) (5.4.2)
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We let t(s) be the value of the estimator t based on the sample s, selected

with probability p(s).

Let us write

t(s,y) =ty (s,y) +h(s,y)

N
where te(Sy)= zﬁlsi is the Horvitz-Thompson estimator.(Horvitz-
i=1 7T

Thompson (1952))

and h(s,y) is afunction of the y,'s for i es only.

Since t(s,y) is unbiased for Y , we get

D (S, Y)P(S) = D _ture (5, V) P(s) + h(s,y) p(s) =Y
which implies that ) h(s,y)p(s)=0. (5.4.3)
Further D h(s,y)p(s) =0 yields

D h(s,y)p(s)+ D h(s,y)p(s) =0 (5.4.4)

soi sei

where z is the sum over those samples which do not contain the unit i .

sei

Then we have

E Vs () = > Murftine (5 )F+Vyudh (s, ¥)3 + 2C ftie (5,Y),0(s, y)3p(s) . (5.4.5)
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Now ZVMl{tHTE (s,y)}p(s) = Zi% I p(s) = io__l

s i=1 /Y i=1 /¢

And 3 Curlie (5N = 3 p&)3 1, 2=, y)

= Z Eu: @Z I$h(s,y) p(s)}

i=1 i

= > B Y S, y)p(s)}

i=l L i soi

= —iEM{MZh(S,y)p(S)} (using 5.4.3)
IT-

=1 i sei

_ _Z{EMl (Vi —#4) EMl(Z h(s,y) p(S)ﬂ

i TT; sgi

=0 (5.4.6)
(as y,'s are independent).

Finally putting (5.4.5) and (5.4.6) into (5.4.2), we get
N 2

EyVp(®) = D 2+ B, Myylh(s, yIH+ By [Eyy(0) — By (V)F =Vypa(Y)

i=1 ﬂi

Eu.V,(t) attains its lower bound (5.4.2) when

) E,Mudh(s,y)}]=0 and

iy E,,(t)-E,,(Y)=0. (5.4.7)
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These conditions (5.3.7) are satisfied as per Chaudhuri and Stenger (1992)

when

The estimator

is known as the generalized difference estimator.

Consider the model M1 with w, = Bx;, where B is an unknown positive quantity
and x; is the value of the auxiliary characteristics x for the ith unit which is

known and positive for every i =1,...,N..

Let P denote the class of fixed effective size (n) sampling designs and

p, (e P,) be a zps design satisfying

T, =np, forevery i=1,...,N

N
with  p=x/X, X=)Xx

i=1

Then E.V,(t) attains the lower bound of (5.3.1) when

>
t=t = —'|i.
HTE “p, s

The following theorems were obtained from Godambe and Joshi (1965) and
Cassel, Sardal and Wretman (1977).
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Theorem 5.4.2

Under the model M1 with g, = x, and p e P,

N 1
EulV,(t) = D of (W—lJ = EnV, (ture) VteC,. (5.4.8)
i=1 i

i=1 TT; i=1

N N
Minimizing Zof (i—lj, the right hand side of (5.4.1) subject to ZHi =n,

yields

7, =No, /i:ai =r,(o)

i=l

and the corresponding minimum value of

i=1

Let p, , be a fixed effective size sampling design with

N N
m=m(c) and By = > for every s with p(s) > 0,
i=1 7T; (o) i—1

N
L| as

i (o) "

t, reduces to

N
_ Ly
g =S Hy
g ;ﬂi(d) i T H
N
— yi I

- i (o) o
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Then the expected variance of the Horvitz-Thompson estimator (t,,. ) based

on sampling design p, , attains the lower bound given above. The following
theorem shows how a sampling strategy based on the design p, , and the

Horvitz-Thompson estimator is optimal.

Theorem 5.4.3

N N
Under the model M1, h, =(p, ,.tue) , Where t, :ZL I, = XZi , is
' i=1 7T i=1 NX;

optimal in the class of strategies H = (p,t) with peP,,teC, i.e.

N 2N
E.V,(t) > %(Zo-ij - > 0l = EV, (ture) VpeP,teC,. (5.4.9)

“ v
i=1

i=1

Another optimal strategy can be found if i, = px. and o’ =o*x’ (o >0), as

P, , reduces to a p, design, with

X. Ny
mo=n—L=np and t . =x> —1I_ ,
i X i HTE ;nxi si

So we get the following theorem which states that the new strategy based on

the design p, and the estimator t, ;. is an optimal strategy.

Theorem 5.4.4

Under the model M1, with y, = Bx, and o} =c°x’, h, =(p,,t,) is the optimal

strategy in the class of strategies H =(p,t) with peP,,teC,.i.e

P u

2 N
EV, (1) > GZ(XT—Z x?j = EV, () VpeP,teC,. (5.4.10)
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Finally, the last case that we consider for model M1 is when x;, =1 for

i=1..,N.Weget 4 =px and o/ =c° so that design p, reduces to a
sampling design p, with =, =% =7, and t,. =Ny, where y_ = Zyi In. So

using the new design we get the following optimal strategy:

Theorem 5.4.5

Under the model M1, with x4, =8 and ¢} =c°, h, =(p,,V,) is the optimal

strategy in the class of strategies H = (p,t) with peP,,teC,.i.e

E.V, (1) > GZN[N

__]_j = EV, (V) VpeP,teC,. (5.4.11)
n o

5.4.2 Model M2

The next model that we consider is model M2 where

Eva(Yi) =1 (0 < <), Vi, (Y;) :O-iz (>0)
and

Cuz(YinY;) =poio; (-1<p<]).

This model was considered by Cassel, Sardal and Wretman (1977) and
Chaudhuri and Stenger (1992) amongst others.

We will first find an optimal estimator and then a few optimal strategies.

90



Let C,, be the class of linear p-unbiased estimators of the population total Y

consisting of estimators of the form

t=as +zbsiyi

ies

where a, and the b,'s are constants free of the y,'s and satisfy the p-

unbiasedness conditions

) 2.2,p(s)=0

and
i) D b p(s) =1 Vi=1..N. (5.4.12)

SOl

Now we will find an optimal estimator t,.

Using equation (5.4.2)

EMZVp(t): E [VMZ(t)]+Ep[EMZ(t)_EMZ(Y)]Z ~V(Y)
Vo (0] Vao (Y) (5.4.13)
EMZVp(t): {z Mo +pZZbS,bSJO'IO'J}

|(ghe] 4 %@m o) (el

—Z p(S)(st. j - (5.4.14)

les

les les

where A= zp(s){zbs, j [me j}
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Now let us maximize A subiject to the following condition

i b, p(s) ZO' (5.4.15)

i=1 SoI

Whenever the b,'s satisfy condition (ii) of equation (5.4.12), they satisfy the

condition (5.4.15) above. The converse is not true.

To maximize A subject to the condition (5.4.15), consider the following

function ¢ with A as a Lagrange multiplier:

les les I il

b= zp(s){zbs. j [st. j} Zﬁ{iast.p(S) ZG}

Differentiating the above function with respect to b, and setting it to equal zero

99 =01, we get
ob

D bo—ob;=2. (5.4.16)

ies

Summing equation (5.4.15) over i € sand noting that Z: n, the sample size,

ies

we get

zbm O = (5417)

ies

Multiplying equation (5.4.16) by p(s)and summing over all possible samples

yields

Z p(s)> byo, =—— (5.4.18)

ies
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Using equation (5.3.15), we get

Substituting equation (5.4.19) into equation (5.4.16) and using equation

(5.4.17), we get the optimum values of b,'swhich maximize A as

by; =bsi0=npl( ) with p;(c) =—-—"—. (5.4.20)
(o
I o-i
Hence
n-1(& Y
A<——= - 5.4.21
23] (5.4.20
The condition (5.4.15) yields,
2
) {Z p(s)(zbsio-ij } N 2
p(s)[ bsiaij > L = aij . (5.4.22)
Zs: Z > p(s) le
The equality of equation (5.4.22) holds whenb; =b,= npl( %
i\O
Further with b, =by,, E,,,(t) is equal to E,,,(Y) if
N
S sO ;/’ll ; S|0:u| ‘Ll ; npi (O') ( )
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Thus under condition (5.4.15) for any design p € P,, from equations (5.4.13),
(5.4.14), (5.4.21), (5.4.22) and (5.4.23), we get

EM 2Vp (t) 2 Ep[\/MZ(t)]_VMZ(Y)

ol (5

i=1

EwaVp (t) (5.4.24)

where t, = z Y (”‘) + p and it is an optimal estimator.
ies p|

The estimator t, becomes p -unbiased if stiop(s) =1,ie. 7, =np,.

soi

Cassel, Sarndal and Wretman (1977) showed that if we let p__ be the fixed
sampling design with inclusion probability 7, = np,, a strategy based on this
design and the estimator t,, will be the optimal strategy. So we have the

following theorem:

Theorem 5.4.6

Under the model M2, h, =(p,,.t,)is optimal in the class of strategies

H =(p,t)with peP and teC,.i.e.

)

EMZVp(t) 2 Ep[VMZ(t)]_VMZ(Y): 1-p)

[io-lJ = EM 2Vp (tlo)

i=1
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The optimum estimator t, cannot be used in practice since in most situations,

w, and o's are unknown for i=1...,N .

Cassel, Sarndal and Wretman (1977) also considered the model M,, which is

the model M2 with
w=a +px and o’ =%’

N
where a;and x; are positive and known (in = Njfor i=1..,N

i=1

but 8,c°and p are unknown

and

<p<l.
lP

So under this model, the estimator t, reduces to

ies

Yi—&
tlo:l = NZT+ a

N
where a=> a; .
i=1

Thus we have the following optimal strategy using Theorem 5.4.6.
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Corollary

Under the model M., h, =(p,,.t,) is optimal in the class of strategies

H =(p,t) in the sense that

>

[N T
= 2
B, Vo2 (- pIN 12220 = BV, (1) peP, teC

n

where p__ (e P,)is a sampling design with inclusion probability of the ith unit

X;
7 = NP, P; :Y-

5.5 Optimal Model-unbiased estimators

A linear model unbiased (&-unbiased) estimator

g=@+2%m (5.5.1)

for a finite population total Y satisfies E,(t;) =E.(Y).
The class of linear &-unbiased estimators will be denoted by C, .

The estimator t can be written as

to=Y yi+a,+ Y (b —Dy; = Dy +t;

ies ies ies

where t.=a, + Z(bSi -1y, and w, =b, —1.

ies
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The estimator t_ is a linear &-unbiased estimator for the unobserved total

YS =D V=Y

igs ies
since E, (t)= E.(Ys) where s consists of the units that do not belong to s.

Here we will find an optimal estimator t_ in the class C, for which
E.E,(t,—Y)* = E,E.(t,—Y)? attains a minimum for a given design p under

various superpopulation models.

Now E.E,(t —Y)’

E.E,(t; -Y5)°

= E [V, (t;) +V(¥s) - 2C. (t;,YS)]. (5.5.2)
Also if C(¥iy;) =0 for i j,
then C.(t;,Ys)=0

so that equation (5.4.2) becomes

E.E,(t —Y)'= E IV, () +V,(¥5)] = V() +V.(V)Ip(s).  (5.5.3)

We thus conclude that for a given sampling design p, t. becomes optimal by
a suitable choice of by if for each s with p(s) >0, V. (t.) attains a minimum

value among all linear &-unbiased estimators of Y; .

The details of the model unbiased estimators are given by Cassel, Sarndal
and Wretman (1977).
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5.6 Conclusion

We have seen in the earlier chapters that the design based approach often
leads to no definite optimal strategy. To combat this problem, we have

introduced the concept of superpopulation models in this chapter.

Inference under the model based approach allowed us to find best linear
unbiased predictors. These predictors were then combined with suitable
sampling designs to obtain an optimal strategy. This optimal strategy became

a purposive sampling design.

We have also noted that a balanced sampling design should be used to
ensure that we choose an appropriate model as model misspecification leads

to inefficient estimators.

For design-unbiased estimators, we have shown the existence of an optimal
estimator and have also presented several optimal strategies under two
models. We have also seen that the Horvitz-Thompson (1952) estimator
based on an appropriate sampling design becomes an optimal sampling
strategy for various superpopulation models.

Finally we presented an optimal model-unbiased estimator.
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Chapter 6

Some Specific Sampling Strategies

A sampling strategy is a combination of an estimator t and a sampling design

p . The population under consideration is composed of N units from which a

sample of size n is selected. We will denote the value of the study variable

(y) and the auxiliary variable (x) for the units y, and x; respectively. Here it

is assumed that the x 's are true for every i=1,...,N .

In this chapter we will consider strategies which are commonly used in
practice. This includes the Hansen-Hurwitz (1943) estimator based on
PPSWR sampling scheme, Horvitz-Thompson (1952) estimator based on an
arbitrary sampling scheme, the Midzuno-Sen sampling scheme and the Rao-
Hartley- Cochran sampling strategy. The expressions of the variance and
unbiased estimator of the variance have been provided.

Inclusion probability proportional to size sampling designs proposed by
Brewer (1963), Durbin (1967) and Goodman and Kish (1950) have been also
been presented.

We also compare performances of Rao-Hartley-Cochran sampling strategy,

Midzuno-Sen sampling scheme and the Horvitz-Thompson estimator under a

superpopulation models. Some numerical examples are also provided.
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6.1 Probability Proportional to size with

Replacement (PPSWR) Sampling Scheme

The units are selected independently at each draw. The probability of
. ] . . X. n
selecting the ith unit at any draw is p, = A (X =in , p, >0, Z P, :1},
i i=1

which is called the normed size measure for the ith uniti.e. p,(k) = p,. So,

the probability of selection of an ordered sample s = (u; ,u; ,...,U; ) = P ...p; -

6.1.1 Estimation of the population total and its variance

Let y,, be the value of the study variabley, x,, the value of the auxiliary
variable x and p, = X,/ X be the normed size measure for the unit that is

selected at the rth draw, r=1...,n.

If the rth draw produces the ith unit then

pllo _Y%l_, r=1..nand i=1,..,
p(r) pi
Theorem 6.1
The estimator
~ 1 y(r)
Y, ==
" n ; p(r)

is known as the Hansen-Hurwitz estimator (Hansen-Hurwitz (1943)).
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It follows that

A

N
i) Y,, IS an unbiased estimator of the population total Y = Zyi :
i=1

i) The variance of Y, is V (\fhh) = Vpp%

N ' 2 1o | 2
where Vo, = Zpi {L_ j = Ezz pipj{L{_Lj .

iy An unbiased estimator of V (\?hh) is

50y 1 sdo vy
V(Y) = (—=Yum)"-
" n(n _l) ; p(r) "

Proof:

. , y
The expectation and variance of 20 are computed as follows:
P

Yo |-V, -
E =Y Zp =Y and (6.1.1)
p(r) i=1 pi

2
V{&j _ E[m_YJ
) )

= > (L_ JZ (6.1.2)

= z Pi %(1_ p;) — (Yz _i fj (6.1.3)
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So we get:

i) E(Yhh) = —Z E[ j Y.
P

ri=1

i) V()= %V{Z Y

N (= P

since V{ Yo j =V,ps and Cov{ Yoo Y0 | _ofor r «t as the draws are
Py Py

i(h - n(YAhh)z}

=N

__ 1 Vel Yo 2_ 5 \2
TG ZE[ ”E(Yhh)}

_ 1 2 o ,

- n(n—1) _n(VPPS +Y ) =V (Y,,)+Y }J

_ 1 o v e
n(n D [nVPPS nV(Yhh)J — [n V(Y,) nV(Yhh)J

=V(,,).
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6.2 Horvitz-Thompson (1952) Estimator based

on an Arbitrary Sampling Scheme

The estimator of Horvitz-Thompson (1952) (t,,; ) is defined in section 3.1.3.3

as follows:

HTE_zY. zy.l

ies Ti T
Using Theorem 3.1, 3.2 and 3.3 from Chapter 3, we find

i) E(t,.)=Y and

) V()= zy.(——l}zzy.{ }

7T 1= )

For a fixed effective size sampling design

I") V HTE)_ ZZ(ﬂlﬂj 7T {__LJ :V(tYG)'
T

i# j

6.2.1 An unbiased estimator for the variance v (t)

An unbiased estimator of V (t,,.) was proposed by Horvitz and Thompson

(1952)

\A(tHTE)—zy—'(—_—lj zzy-yl[ﬂ _1}

I T [EI | T 7T
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An unbiased estimator forV (t,,;c) is given by

V(t,e) = ZZM{L_LJ =V,

This estimator is called the Yates-Grundy (1953) estimator.

Remark:

The unbiased estimator \7(tHTE) can be used for any sampling design with
m; >0 fori= j. The demerit of this estimator is that V(t,.)can take on

negative values. No simple sufficient condition for the non-negativity of the

estimator \7(tHTE) is known.

The estimator \7YG can be used only for a fixed effective size sampling design

with 7; >0 for i= j. Sufficient conditions of non-negativity of the estimator

Vie Is mz; > for i j. Various sampling designs are available for which

V., is found to be non-negative.

6.3 Midzuno-Sen Sampling Scheme
(Midzuno (1952), Sen (1953))

In this sampling scheme at the first draw, the ith unitis selected with

probability p, then the remaining n—-1 units are selected by SRSWOR method

from the N —1 units which were not chosen in the first draw.
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The probability of selecting an unordered sample s = ( Ui s Uy ) IS

1
Ml

> |22

pGs) = X2 (N 1}

n-1

where x_Zxr,x ZXI,M Z|S,_(N 1}

res

| _{1 if ies
10 if i¢5.

Theorem 6.3

Let t, = 25X with Ve =D ;.

3 ieS

Then

i) t,s IS an unbiased estimator of the population total Y ,

N N

i) V(tys) = iyf(ri ~1)+ Yy, -1) (6.3.1)

iz j=1
X~

si X Isils'
where T; ZVZ Tj :M_lgx—gj

iii) an unbiased estimator for V (t,,;) IS

V(tMS)_ ZISIyI i 7[ + ZZISIISjy y (T _1)/

iz =1
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Proof:

I

Z‘H

1N
o=

1
2|
M
gk

[
p=4

RONE

1 i=1 3

= Zyi=

.. )2 y7e y
||) (MS) (M p( z j

=1

:M%E(péf@“ WLl ny H
) p(S){Z'S'y' +2. 2 Lilgyy }

i# J

ML{ZY.Z ORI RIDD (S)}

! i# J

) Zyiz{(Mll) Yo } ZZy.y,{ oy z' g 1}

o e pEs)
= Zin(ri —1) + iiyiy,—(ﬁ,— —1)
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iii) EN(tMS)J = E{i I in(Ti -0/m + ii Il yiyj(Tij _l)/”ij

iz =1

= V(tys),

which follows since E(lg) =7 and E(l4l ) =7;.

Note:

The estimator \7(tMS) can take on negative values. Sufficient conditions for

non-negativity of \7(tMS) were proposed by Hanurav (1966), Rao (1967), and

Chaudhuri & Arnab (1979). The details of the sufficient conditions are in a

complex form.

Example 6.1

Consider the following data (Cochran (1977), p35) relating to family income

(y) and family size (x) for N=6 families.

Table 6.1: Family income and size for 6 families

Family 1 2 3 4 5 6
Income(y) | 62 62 87 65 58 92
Size(x) 2 3 3 5 4 7
Cum Total |2 5 8 13 17 24

We can select a sample of n=3 families using the Midzuno-Sen sampling

scheme as follows:
The first unit is chosen using probability proportional to size sampling. We

select a random number from a random number table (Cochran (1977), p19).
The random number is 17, so the first unit chosen is 5.
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We then have to select the remaining 2 units by the SRSWOR method from

the Qunits 1, 2, 3, 4,5, 7, 8, 9, 10 that were not selected in the first draw.

Using the random number table once again, the selected units are unit 5 and

unit 1.

So the selected sampleis s ={6,5,1}.

_ Y
tMS - X_§XX
_ 92+58+62><24
7T+4+2
= 391.38 and

N N

V(tys) :iZI:,YiZ(Ti _1) + ZZYiyJ'(Tij _1)-

iz =1

N -1 6-1
Here M, =) I = (n—l} = (3—1}210

and the total of X =24
so X =24,
M

1

Now =Lzh we thus obtain:

15 X5

1 1 1 1
T, = 2.4( + + +
Xp+X X3 X +X,+X, X +X, +Xg X+ X, + X

1 1 1 1
+ + +
X+ Xg+ Xy X FX,FXs X X X X+ X+ Xg

+

= 2.287559,

108

1 1
+
X, + X3+ X, X+ Xy + Xg



1 1 1 1 1 1
7, =24 + + + + +
X, # X + X3 Xyo +X +X, X+ X + X Xy +X + X X, + Xy +X, X, + Xy + X

1 1 1 1
+ + +
Xy +Xg+Xs X+ X +Xs Xo+ X, X5 Ko+ Xg + X

+

= 2.180892,

1 1 1 1 1 1
7, =24 + + + + +
Xg+ X +X,  Xg+X +X, Xy +X +X  Xg+X +Xg Xg+X, +X,  Xg+ X, + X

1 1 1 1
+ + + +

Xy + X, + Xy Xg+ X+ X Xg+X,+Xg X+ X+ Xg

= 2.180892,

1 1 1 1 1 1
T4=2.4 + + + + +
Xg X +X, X+ X +X X, +X+X X, +X +X, X, +X,+X; X, + X, + X

1 1 1 1
+ + + +

X+ X +X X +X+X X, +X+X X, + X + X5

=1.957792,

1 1 1 1 1 1
7. =24 + + + + +
Xg + X, + X, Xs +X +X3 Xg+X +X, Xg+X +Xg X +X, +X3 X + X, + X,

1 1 1 1
+ + +
Xg+X, + Xy X +Xg+ X, Xg+Xg+Xg X+ X, + X

+

=2.068988 and

1 1 1 1 1 1
Ty =24 + + + + +
Xg + X +X, Xg+X +Xg  Xg+X +X, Xg+X +X5 Xg+X,+Xg X +X, +X,

1 1 1 1
+ + + +

Xg X, X Xg+X+X, Xg+X+X Xg+X,+X5

=1.753516.
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Now

X Isilsj
v
1 s 5

=24 — 1 ! ! ! }: 1.006667
[ Xp X+ X3 X+ X +X, X+ X, + X X+ X, + X

S p— ! ! ! }: 1.006667,
| X X3+ X, X+ X3 +X, X +X3+Xg X+ X5+ X,

v, =24 — 1 ! ! ! }: 0.86961,
| Xp X+ X X+ X+ X X+ X, + X X+ X, + X

=24 1 1 1 1 }: 0.936131,
| Xp X+ X, X+ X+ X3 X+ Xg + X, X+ X+ X

Tig = 2.4 1 ! 1 ! }: 0.756044,
| Xp tXg + X, X +Xg + X3 X+ X+ X, X+ X+ Xg

e =24 — 1 ! 1 } 1.006667,
[ X X+ X3 Xy + X + X, X, +X + X X +X +X

T, = 2.4 ! 1 ! } 0.942797,
| X T X3+ X Xy +X3+X, Xy, X3+ X X +X;+ X

e, =24 — 1 ! ! } 0.818182,
| X + X+ X X+ X, X3 Xy + X, + X X + X, +X

=24 — 1 ! ! ! = 0.878095,
| Xp ¥ Xg + X Xy + X+ X3 X+ X+ X, Xy, X5+ Xg |

T, = 2.4 1 ! ! ! = 0.716044,
| X T X+ X Xy +Xg X3 Xy +Xg +X, X, + X5 + X5 |

=24 — 1 ! ! ! = 1.006667,
X+ X +X, Xg+X +X, X+X +X Xg+X +X;
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Ty, =24

Ty =24

T =24

Ty =24

T, =24

T, =24

Ty =24

To, =2.4

Ty = 2.4

Tg =2.4
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! ! ! ! =0.942797,
| Xg X X X+ X, X, Xg+X,+ X5 Xy + X, + X |

! ! ! ! =0.818182,
| Xg + X+ X X+ X, +X,  Xg+X,+ X5 Xy + X, + X |

! 1 ! 1 = 0.878095,
| Xg + X5+ X, Xg+Xg+X,  Xg+Xg+X, Xy +Xg + X |

! ! ! ! =0.716044,
| Xy +Xg + X Xg+Xg+X,  Xg+Xg+X, Xy +Xg +Xg |

! ! ! ! =0.86961,
| X, + X+ X, Xy X F Xy X, H X Xy X X+ X

! ! 1 ! }2 0.818182,
| X, + X X Xy X+ X X, X, Xy X+ Xy + X

1 ! ! 1 =0.818182,
| X, + X+ X X+ X+ X, Xy +Xg+Xg Xy + X+ X |

1 ! ! 1 =0.768182,
| X, + X5+ X X+ X+ X, Xy +Xg Xy Xy +Xg+ X |

1 ! ! ! =0.641429,
| X, + Xg X Xy +Xg+ X, X, +Xg + X5 X, +Xg +Xg |

! ! ! ! =0.936131,
| X +X + X, Xg+X +Xg  Xg+X +X, X5+ X + X

! 1 1 } 0.878095,
| Xs +X, £ X Xg+X, +X3 X5+ X, + X, x+x + X

! ! 1 }: 0.878095,
| X + X3+ X X+ X3+ X, Xg + X3 +X, x+x + X

! ! ! } 0.768182,
| Xs + Xy + X Xg+X, +X,  Xg + X, + X, x + X, +X



Teg = 2.4 ! + 1 + ! + ! }: 0.677473,

Xs +Xg + X Xg+Xg+X, Xg+Xg+Xy X+ Xg+X,

Toy = 2.4 t .t , 1! }20.756044,

| Xg + X + X,  Xg X Xy Xg+X +X, X+ X +Xg

1 1 1 1
+ + +
| Xg + X X Xg+X,+ X5 Xg +X, + X, Xg + X, +Xg

=0.716044,

| Xe + X3+ X Xg+Xg+X,  Xg+Xg+X,  Xg + X5+ Xg

1 1 1 1
+ + +
| Xg + X, X Xg+ X, +X,  Xg+ X, +X3 Xg+ X, + Xg

1 1 1 1
+ + +
| Xg+ X5+ X Xg+ X +X,  Xg+Xg+Xg  Xg + X5 + X,

Te = 2.4 t .+ . 1 }: 0.716044,

So V(tys) = Zyiz(fi _1) + zz yiyj(Tij _1)

= | (62°x(2.28756 1)) +...+(92°  (1.75352-1)) |

+ [(62x62x (L.00B67 1) +...+(58x 92 (0.67747 -1) |

= 32447.41 + (-27679.5) = 4767.91.

6.4 Rao-Hartley-Cochran (1962) Sampling

Scheme

In this sampling scheme, the population is first divided at random into n

disjoint groups so that the number of units belonging to the jth group G; is

N
N; (j=1...,n), a pre-assigned number with N = ZNJ. :

i=1
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One unit is then selected from each of the groups with probability proportional

to its measure of size.

So if the unit u;, belongs to the jth group G, , itis selected with probability

X, P,

g, = =
oY% P

keG;

where p, = % and P, = 2 p, = the sum of the p,'s for the group G;.

keG

If the units v, ,...,u; ,...,u; are selected from the groups G, ,...,.G;,...,G,

1
respectively, then an estimator based on the above sampling scheme is given
by

nYi
tRHC = z_ i
j=1 pij
Theorem 6.4.1
i) t.c IS an unbiased estimator for the population total Y ,
2 sz -N 2
i i=1 : Yi d
) (RHC) N(N _1) ;pl pi

iii) an unbiased estimator for V (t,,.) is

ZNJ-Z—N ) y 2
V(tRHC): Jl—nzp{#tmc} :
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Let G=G,,...,.G,,...G, and E;, V;, E(./G) and V(./G) denote the

unconditional expectation over G, unconditional variance over G, conditional
expectation for a given G and conditional variance for a given G

respectively.

1) Etec) = E G{iE{ ’ P/G}} EGZH:YJ:Y

j=1

where Y, = >y, .
i) V (tae) = Eg {v {ZZ—'P /Gﬂ {EZ—P /G} (6.4.1)
Now
{EZ —ip /G} V. (Y)=0 (6.4.2)
and
{VZ—P /G}

fifionppiefine

P;,
EG Zn:v {ﬁ pl J

=1 Ij
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yi. i
Since Cov| —P, il
Pi, P

1

/ G}: 0 as samples are selected independently

from each other.

j=1 k=] teG

= YE, {ZZpt Z)k ykyt} (6.4.3)

Now noting that G; is a random sample of size N; selected from the

population of N units by SRSWOR, we obtain

S

k#jteG

N, (N, 1)

DL (S Y

j [E2

N, (N, -1) & ?
=y IO z ( : j (6.4.4)

i i=1

Substituting (6.4.2) and (6.4.4) in to (6.4.1) we prove part (ii).

ii) Ez P { RHCT

—EZP Z ~E(e)
=1

Ij

= EZP :)’ V(tgl)-Y? . (6.4.5)
=1

Ij

115



n y2
Now E> P,
=l Pi.

1

n 2
E. Y ECLP/G)
j=l pij

|
-
m
@
~—
]
|

= iy—z (6.4.6)

= zpi L_ j _V(tRHC)

i-1 P;

N(N -1)

> N7 -N
j

“1V (tae) - (6.4.7)

So from (6.4.7), we get E[V (tge )=V (o) -

By Cauchy’s inequality
n>NZ> (SN, f =N?
2

hence DN >—

and > N7 minimum when N, _N
n
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Theorem 6.4.2

. N . :
Assuming N, =— Is an integer, we get
n

DV (tric) = Mz P; L_Y
n(N -1)

and

DV () = NG ”Dip.(y' j .

Proof:

The theorem can be proved by putting N; = N in the above theorem.
n

i) V(tae) = A z Pi
N(N-1) =

N2 - N :
AR
n N2
_,—Zﬂ:[nj_NN Vi )
TP L ey
N2

= o 1)Zp(y'— j

_ _N-n Vi o)
- n(N—1)zp{H Yj
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i\ n
2
Ni_N N V. 2
=1 N 2 zpi p_J_tRHC
N2_7 i=1 ij
n

Remark:

i)  The variance \7(tRHC) is always non-negative.

i)  The Rao-Hartley-Cochran estimator t, . is inadmissible because it is

based on the order of the selection of units.

iif)  The Rao-Hartley-Cochran estimator t,. is more efficient than the

Horvitz-Thomson estimator t, ;. because V (tz,c) <V (t,e)-

Example 6.2

Referring to Example 6.1, we have the following data relating to family income

(in 1000s) and family. We want to select a sample of size n=3 from a

population of size N=10 using the Rao-Hartley-Cochran sampling strategy.
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Table 6.2a: Family income and size of 6 families

Family 1 |2 [3 |4 [5 |6 |7 [8 |9 J10

Income(y) |62 |62 |87 |65 |58 |92 |88 |79 |83 |62

Size(x) |2 [3 [3 |5 |4 |7 |2 |4 |2 s

The first step is to randomly divide the population into n=3 groups. Using the

random number table (Cochran (1977), p19), we get the following groups

Table 6.2b: Families grouped into 3 groups

Group G, G, G,

Family 3 |4 |6 |1 |5 J7 |9 |2 [8 10

Income(y) |87 |65 |92 |62 |58 |88 |83 |62 |79 |62

Size(x) |3 [5 |7 |2 |4 ]2 |2 |3 |4 s

Cum Total | 3 8 15 2 6 8 10 3 7 12

We now select one unit from each of the groups with probability proportional

to its measure of size.

Using 2 columns in the random number table (Cochran (1977), p19) we select

the units as follows:

Random number Unit
02 3
13 -
78 -
16 -
65 -
01 1
15 -
11 10

So the selected sampleis s={1, 3, 10 }.
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n yI X
So t = P where p, ="/, and P, = p
RHC ; p, A j k; Kk
_ [2 QHS_? EH& EJ
2/ 3/ " 5/ °
A7 37 A? 37 A? 37
= 893.8,

n Yi 2
V(tric) = mzp(F YJ

_ 10-3
3(10-1)
2 2 2 2
3/ | 87 _ 5/ | 65 _ 4/ | 19 5/ | 62 _
A7 5138 +A7 g~ 738| .+l - T38 +A7 738
4
37 37 37 37
= 34024.14.

and

-N g Yi i
(RHC) N(n 1);‘,':){_ tRHCj

10-3
=300-0 237[%7 8938} /7[/7 893.84} /7[/7 893.84}

=23778.22.

6.5 Inclusion Probability Proportional to

Measure of Size Sampling Scheme (IPPS or zps)

The Horvitz-Thompson estimator, t,,;. , based on a fixed sample size design
becomes constant if the y,'s are proportional to the inclusion probabilities

r;'s and in this case the variance becomes zero.
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The values of the y,'s are unknown before the survey so one cannot construct
a sampling design with inclusion probabilities that are proportional to vy,

values.

If an auxiliary variable with values that are positive, known and approximately

proportional to the study variable y is available, the variance of t . is

expected to be small for a sampling design whose inclusion probability is

proportional to the measure of size i.e.
n np as p X
I I X
A sampling design is said to be an IPPS or 7 ps sampling design if
. . 1 .
i) r=np, <1 ie p, <= for every i eU
n

i) 7. >0 for i,jeU.

Several IPPS sampling schemes are available in literature, but most of them

are very complex.

6.5.1 Brewer’'s (1963) Sampling Design (n=2)

In this method, the ith unit is selected at the first draw with probability

o.(1) = 2Pl=P)

Al-2p,)
< 2p-p) ~p@+1-2p) P
where AS2 o) & asepy WZapy OV
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The conditional probability of selecting the jth unit in the second draw given

that the ith unit is selected at the first draw is

(- p)

(2)

p for j#ieU

jli
and

pi\i (2)=0.

The inclusion probability of the ith unitis

7 =p @0+ p,®p,,(2)

j#i

2pi 1- Pi pi
= +
A {1—2pi ,-Z;‘l—ij}

=2p;.

The inclusion probability for the ith and jth unit (i= j)is
=P 0P, 2+ p, My, (2)

_2ppf 1t
A \1-2p, 1-2p,)

So the difference is given by

2p.p.
T~ T _ZRP; 2A—- ! + !
b A 1-2p;, 1-2p,

_2pip; 5 P
A anl-2p,

>0.

122



6.5.2 Durbin’s (1967) Sampling Design (n=2)

In this sampling scheme, the probability of selecting the ith unit at the first
draw is

P, =p forieuy .

The conditional probability of selecting the jth unit given that the ith unit was

selected at the first draw is

1 1 .
pji(2)=p{l_2pi+1_2pjj/A for j#i

pi\i (2)=0

and

where A is given in (6.5.1) above and z Py =1.

jeu
The probability of selecting an unordered sample (i, j) is

my = PP, A+ p;Dp;(2)

1 1
=2p.p. A
plpj {1_2p| +1_2pj j/

which is the inclusion probability of the ith and jth unit for Brewer’'s (1963)

sampling scheme.

The inclusion probability for the ith unitis

So the difference T, —7m: >0.
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6.5.3 Goodman and Kish (1950)

In this sampling procedure, we assume np, <1 for every ieU .

Let L, =n)p, for i=1,..,n

and I, =0.

A random start d is selected from a uniform distribution over (0,1). The

random start selects sample units whose index “j” satisfies

[, <d+k<T, fork =0,...,n-1.

This sampling procedure can be used for the selection of an IPPS sample for

any value of n.

No simple expression for r; is available. Hartley and Rao (1978) gave an

expression for z;; . An approximate expression for the variance of the Horvitz-
Thompson estimator, t, . = Z— is provided by Ashok and Sukhatme

ies 7T

(1976).

~(n- 1)Zp. .j——(ZZp. .—Zp Zp. .—Z(Zp j

= Vg (6.5.2)

=
/ﬁ\

Yi v and V is called the Goodman-Kish estimator.

Where z;, =
P;
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An unbiased estimator of V, is

2
A 1 T —m( Yy Y,
Uy - Lyy J{L___Jj

i jes qa

2 2
:122 PP )Y Y
2795 qa np;  np; .

ij

The expression (6.5.2) above indicates that the variance of t,,,. based on the

Goodman and Kish sampling design provides a smaller variance than the

Hansen-Hurwitz estimator based on PPSWR sampling.

6.6 Comparison of Strategies under Super

Population Models

Here we compare the Horvitz-Thompson estimator with IPPS sampling
design, the Rao-Hartley—Cochran strategy and the Midzuno-Sen strategy.
These strategies are most commonly used in practice. This comparison is

done using the following superpopulation model.

Superpopulation model M:

EM (Yi) = IBXi 1
Vi (¥i) = o_ZXig and
Covy, (yi,y;) =0 fori= j (6.6.1)

where B,0%(>0) are unknown constants, gis unknown but anticipated to lie
in the interval (0, 2). Here the x;'s are positive known constants.
E. .V, and Cov,, denote respectively, the expected value, variance and

covariance with respect to the model M.
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The model (6.6.1) was used by Cochran (1963), Cassel, Sarndal and
Wretman (1977), Rao (1967), Hanurav (1967), Chaudhuri & Arnab (1979)
among others.

The variance of the Horvitz-Thompson estimator, t,. = Z— is given by

ies

Yi
T

V()= Zyiz(i_lj+ZZYiYi (ﬂﬂ; _1}

T il

The expected variance of the t,,. is given by

iz ﬂiﬂj

BV (tire) = ZEM (in)(%_lijzzEM (yiyj){ - _J

_1)
7T

= Z( 2x2 +02xig{ﬂi—lJ+,BZZinx{
i iz ]
. X;
For a zpssampling scheme 7, =np, =n A :

EMV(tHTE):ZO_ZXig(i_ J (6.6.2)

T

= E,.

The variance of the Rao-Hartley-Cochran estimator with ’\% as an integer is

given by

_ N-n v o)
V(tRHC)_ n(N—l)zp{_ Yj

_ N-n yi2 2
~n(N —1){ZE_Y }
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And the expected variance of t.,. is given by

N-n %} + 0%
EV (truc) = n(N —1) {ZIB D, —o'x! x|,

Now putting p, = X%( , we get

E,V(ty.) = n?'N__”l) (XD xg = x| (6.6.3)

= E,.

The variance for the estimator t,,; based on the Midzuno-Sen sampling

scheme is given by

Vi(tys) = ZYiz(Ti _l)"‘ZZYiyJ'(Tij -1

X 1
where P =
7; N -1 in+xi2+...+xin
n-1
and Ti = X z : '
N -1 7 X +xj +Xi3 +...+Xin
n-1

If Z and z denote the summation over n-1 distinct numbers (i,,...,i,)
i ij

other than i and the summation over n—2 distinct numbers (i,,...,i,) other

than i and j respectively.

Also, it is known know that » 7, X; Ny
n
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The expected variance for t,, is given by

EgV(tys)= B2 %2 -0+ 33 xx, @y -0+ 02> x¢ (7, - 1)
o? > x(r; -1) (6.6.4)

= E,.

Since > x’(z; =)+ >.> xx;(r; —1) =0.

6.6.1 Comparison between the Horvitz-Thompson
Estimator and the Rao-Hartley-Cochran Strateqy

Following Hanurav (1967), we get

,—E,= n(N l) {N;xg Xng }

T ZN@X [X __H

- _n-t oZNZCov[xig’l,xi].
n(N -1)
So E,-E, >0 if g-1>0ie.g>1,
E,-E =0 if g-1=0ie.g=1and
E,-E <0 if g-1<0ie. g<l1. (6.6.5)

Thus the Horvitz-Thompson estimator is superior to the Rao-Hartley-Cochran

strategy under the superpopulation model M when g >1. For g <1, the Rao-
Hartley-Cochran strategy is better than the Horvitz-Thompson estimator.

The two strategies are equally efficient for g =1.
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6.6.2 Comparison between the Horvitz-Thompson

estimator and the Midzuno-Sen strateqy

Following Rao (1967), we get

N N
E,-E,= O'ZZXig{TiXi —%Zrixi}
i=1 i=1

=o’ NCov[ri X, x.g’l].

Rao (1967) showed that 7;x; is an increasing function of x; and x¢™
increases when g >1 so in this case E, - E,>0.
On the other hand for g <1, x?"decreases as ¥, increases but as x

increases, 7,X, decreases.

Hence for g <1 E, - E, <0 and for g =1, x"=1 so we have E, - E, = 0.i.e.

E,-E, >0 for g >1,
E;,-E=0 for g=1 and
E,-E <0 for g <1. (6.6.6)

Thus the Horvitz-Thompson estimator is better than the Midzuno-Sen strategy
for g >1. For g <1, the Midzuno-Sen strategy is better than the Horvitz-

Thompson strategy. For g =1 both strategies are equally efficient.
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6.6.3 Comparison between the Midzuno-Sen Strateqgy and

the Rao-Hartley-Cochran Strategy

Following Chaudhuri and Arnab (1979), we get

E,-E;= 0> x¥'z,

N —n N —n
where Z, = X —1,X + X; .
n(N -1) n(N -1)
So that > z7,=0.
Hence

E,-E,= azNCov[xig’l, z.].

It follows that

Now

X; (xi +X, +...+xin)+(xi2 ot X )X

:(Nllj.z FRT——y

X; (X; + X, et xin)+(xi2 ot X x +X, +...+xin)

> (Nlljz.: (Xi X et X )2
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This implies that % <0, i.e. z; is a decreasing function of x;.
X .

So clearly

E,-E;<O if g>1,
E,-E;=0 if g=1 and
E,-E;>0 if g<1. (6.6.7)

Thus the Midzuno-Sen strategy is better than the Rao-Hartley-Cochran

strategy if g >1.If g <1, then the Rao-Hartley-Cochran strategy is more

efficient. Both strategies are equally efficientif g =1.

Now combining (6.7.5), (6.7.6) and (6.7.7), we get the following theorem.

Theorem 6.6.1

For the superpopulation model M

E, <E, <E, if g>1,
E,>E, >E, if g <1 and
E,=E, =E, if g=1.

6.7 Conclusion

The probability proportional to size with replacement sampling scheme
(PPSWR) is easy to execute. The expressions of the Hansen-Hurwitz
estimator, its variance and the unbiased estimator of its variance are very
elegant and easy to compute. The main drawback of the Hansen-Hurwitz
estimator based on PPSWR sampling is that it is inadmissible. Rao-
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Blackwellization of the Hansen-Hurwitz estimator does not yield any elegant

expression in general and hence cannot be used.

The Rao-Hartley-Cochran sampling scheme is also easy to execute the
expression of its variance and unbiased estimator of variance are elegant. It is
more efficient than the Hansen-Hurwitz estimator based on PPSWR sampling.
The main drawback of Rao-Hartley-Cochran estimator it is that it is
inadmissible. Rao-Blackwellization of the Rao-Hartley-Cochran estimator
does not yield any elegant result.

The Midzuno-Sen sampling scheme is very easy to use, expressions of the
unbiased estimator, variance and unbiased estimator of variance are easily
available. The main drawback is that we may get non-negative variance

estimates in all situations.

IPPS sampling scheme for a sample size n greater than 2 is in general very
difficult to execute. The easiest is the Goodman Kish sampling procedure
(section 6.5.3). The main demerit of this is the complexity of the expression of
the second order inclusion probabilities.

The comparison between Rao-Hartley-Cochran, Horvitz-Thompson and
Midzuno- Sen sampling strategies reveals that one should use the Horvitz
Thompson estimator if g >1 and the Rao-Hartley-Cochran estimator if g <1.
Obviously one needs to test the suitability of the model before using the

estimator.
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Chapter 7

Conclusion

The aim of this thesis was to present some inferential aspects when sampling
from a finite population. The first step before any inference can be done is the
selection of the sample. The methods of selection that were considered in this
thesis were the cumulative total method, a sampling design and Hanurav’'s
algorithm. Hanurav (1966) first established the relationship between a sampling
scheme and a sampling design. His findings are very useful in the selection of a

sample according to a sampling design.

After the selection of the sample we collect data d = (y,,i € s) and make inference
of the population parameter. Here vy, is the value of the character (y) under
study for the ith (i=1,..,N)unit of the population. Our objective is to estimate
some parametric function of the population. After collecting the data, we only
know vy;,ies but we do not know vy,,i ¢s. So in making inference from a finite
population, we establish a link between y,,ies and y,,i¢s. There is no unique

method to establish a link for a finite population. We normally use three methods.
They are (i) design based approach, (i) model based approach and (iii) model-

design based approach.

In design based inference the link is established through a sampling design.
Godambe (1955) established the non-existence theorem. Godambe’s result was
extended by Basu (1971).The unexpected non-existence theorem has
tremendous implications for the inferential aspects of finite population sampling

as for a given sampling design, we can construct infinitely many unbiased
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estimators but we cannot choose any of them having the lowest variance in all

the situations.

To eliminate inefficient estimators, the concept of admissible estimators has been
introduced. Various admissible estimators exist for estimating a finite population
total for a given sampling design. The concept of hyper admissibility was
proposed by Hanurav (1965, 1968) to choose among other admissible
estimators. However, some estimators are inadmissible. These estimators may
be improved using the concept of sufficiency in finite population sampling and the
“Rao-Blackwell” theorem.

In model based inference, the finite population vector y = (y;,..,yy) is assumed to
be the realized outcome of a random variable Y = (Y,,..,Y,,) . The joint distribution
of Y has been denoted by &. The unknown and unobserved values of the y,'s is
predicted by using the observed d = (y,,i € s) through the superpopulation model

E. In this model based approach an optimum estimator for some of the

population parametric functions exist, this optimum estimator however is highly
dependent on the model chosen. If an inappropriate model is chosen, the
optimum estimator may not perform well. This problem may be overcome by
using a balanced sampling design. However a balanced sampling design may
not always be available.

The model-design based approach is a hybrid of the design based and the model
based approach. In this approach inference is based on the assumed
superpopulation model and sampling design. It is expected that model design
based inference also protects against model misspecification. In this approach
optimum sampling strategies for estimating finite population total under various

superpopulation models exists.
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We then consider a few sampling strategies that are commonly used in practice
and provide expressions for estimators of the population total, the variance and
an unbiased estimator of the variance. We also compare the performances of the

Rao-Hartley-Cochran, Horvitz-Thompson and Midzuno-Sen sampling strategies.

Finally it should be noted that this thesis only discusses the theory of point
estimation. The problem of interval estimation of the parametric functions such as
the population mean, variance etc. was not discussed. The problem of optimum
estimation of the sample size has also not been discussed. In interval estimation
and optimum sample size determination, one is required to estimate the variance
of the concerned estimator. The choice of an estimator with minimum variance is
thus not enough. The variance of the chosen estimator should have additional
properties such as (i) an elegant expression of variance, which can be used in
practice; (ii) the unbiasedness property and (iii) the non-negativity property of the
variance estimators. The nonnegative property is essential for the determination

of a confidence interval as well as sample size.

So to sum up, this thesis has presented some inferential aspects when sampling
from a finite population. The first thing that we looked at was the selection of a
sample using the cumulative total method, a sampling design and Hanurav’s
algorithm. Once the sample is selected we wish to estimate a parametric function
of interest. To do this we need to find a link between known observed data and
unknown unobserved data. The following three methods were considered in this
thesis:

i) the design based approach — here the link is established through a
sampling design. A problem with this approach is the non-existence of
an MVUE (Godambe (1955) and Basu (1971)). Admissibility of
estimators can be used to eliminate inefficient estimators. However
some estimators are inadmissible. These estimators may be improved

using the concept of sufficiency and Rao-Blackwellisation.
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i) the model based approach — here a superpopulation model is used
to predict unknown values. Many optimal estimators can be found but
they are highly dependent on the model that was chosen so an
incorrect model can lead to an inefficient estimator. Balanced sampling
can be used to overcome this problem.

i) the model-design based approach- inference is based on a
superpopulation model and a sampling design. This type of inference
protects against model misspecification. Many optimal strategies for
estimating the finite population total exist.

Finally we looked at the estimation of the population total, the variance and an
unbiased estimator of the variance for some specific sampling strategies. We
also compared the efficiency of three commonly used strategies by calculating
and comparing the expected variance of their estimators. The comparison
between the Rao-Hartley-Cochran, Horvitz-Thompson and Midzuno- Sen
sampling strategies reveals which estimator might be suitable for different values

of g (equation 6.1).
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