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Abstract

In this thesis, we have considered the inference aspects of sampling from a

finite population. There are significant differences between traditional

statistical inference and finite population sampling inference. In the case of

finite population sampling, the statistician is free to choose his own sampling

design and is not confined to independent and identically distributed

observations as is often the case with traditional statistical inference. We look

at the correspondence between the sampling design and the sampling

scheme. We also look at methods used for drawing samples. The non –

existence theorems (Godambe (1955), Hanurav and Basu (1971)) are also

discussed. Since the minimum variance unbiased estimator does not exist for

infinite populations, a number of estimators need to be considered for

estimating the same parameter.  We discuss the admissible properties of

estimators and the use of sufficient statistics and the Rao-Blackwell Theorem

for the improvement of inefficient inadmissible estimators.  Sampling

strategies using auxiliary information, relating to the population, need to be

used as no sampling strategy can provide an efficient estimator of the

population parameter in all situations. Finally few well known sampling

strategies are studied and compared under a super population model.
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Chapter 1
Introduction

Survey sampling is a universally accepted approach for collecting data.

Extensive resources are devoted every year for data collation by several

government, semi-government and private agencies. There are two generally

accepted options for the collection of data. The first option is a study in which

every unit of the population is surveyed, called a census. The use of a census

to study a population is time consuming, expensive, often impossible and

strangely enough, often inaccurate. The other option is to study the

characteristics of a population by examining a part of it, this is known as

sample survey. The main objective of sample survey is to draw inference on

the entire population by surveying a part (sample) of it. The theory of survey

sampling has been developed over the past several decades and has

provided us with various kinds of reasonable scientific tools for drawing

samples and making valid inference about the population parameter of

interest. The historical development of survey sampling theory is given by

Johnson and Smith (1969), Hansen et al. (1985) and Krishnaiah and Rao

(1988) among others.

This thesis presents some inferential aspects when sampling from a finite

population only, i.e. when sampling from a finite number of identifiable units.

There are significant differences between inference in the case of finite

population sampling and traditional statistical inference, i.e. inference when

sampling from the infinite, hypothetical population. In the infinite population

setup there is typically a sample of n  independent observations nxx ,...,1  on a

random variable X  with the hypothetical density function ),(xf  and the

problem is to estimate the unknown parameter .
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In finite population sampling, the focus is on the actual population of which the

sample is a part. In finite population sampling, the statistician is free to choose

his own sampling design; that is “man made randomization” is used in

selecting a sample. The sampling distribution of a given estimator is therefore

something that a statistician creates. Thus in survey sampling, statisticians

are not confined to independent and identically distributed observations, as is

often the case in traditional statistical inference. The basic concepts, such as

parameter, sample, data, estimator, are given a special meaning in survey

sampling. Traditional statistical inference and survey sampling inference are

not opposing theories, but the special nature of the latter produces some

unexpected results. Detailed discussions on this topic are given by Cassel,

Särndal and Wretman (1977) and Valliant, Dorfman and Royall (2000) among

others.

In this thesis, we discuss some inferential aspects of sampling from finite

populations which may be divided into the following categories:

(i) design based inference (ii) model based inference or prediction approach

and (iii) model assisted inference

In design based inference, the population vector ),..,( 1
~

Nyyy is considered to

be fixed. From the population U  of size N , a sample s  of n  units is selected

using a sampling design. Here only the y - values belonging to the sample s

i.e. siyi ,  are observed. The values siyi ,  are thus unknown. We make a

link between the observed values siyi ,  and unobserved values siyi ,

through the sampling design. The expected behavior of an estimator is the

long term average of the performance of an estimator through a hypothetically

repeated process of sampling governed by a sampling design chosen. In

design based inference some unexpected results may be obtained. The main

unexpected result was discussed by Godambe (1955), who proved that in the

class of linear homogeneous unbiased estimators, the minimum variance

unbiased estimator (MVUE) does not exist. Basu (1971) extended this non-

existence result to a wider class of unbiased estimators.
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The model based or prediction approach assumes that the population vector

y is random and obeys a certain model (known as a superpopulation model)

and that the model distribution leads to valid inference referring to the

particular sample s  that has been drawn, irrespective of the sampling design.

Once the sample has been drawn, a function of the unobserved random

variables generally needs to be predicted. A model of joint probability

distributions shows the relationship among the random variables. The

probability distribution of the random variables is then used to estimate the

desired function of the unobserved random variables. Thus prediction

inference is very sensitive to model misspecifications.

The model assisted approach, known as model design based inference is a

hybrid of design and model based inference. The advantage of this approach

is that it provides valid inferences under a model, enabling valid repeated

sampling inferences and at the same time protects against model

misspecification.

In both the model based and model-design based approach optimum

estimators of the finite population characteristics such as mean, variance etc

are available.

In this thesis the relationship between a sampling design and a sampling

scheme given in Hanurav’s (1966) algorithm is discussed in detail. The details

of the non-existence theorems invented by Godambe (1955) and Basu (1971)

are also considered extensively. To guard against inefficient estimators, the

concept of admissible properties of estimators is discussed. The use of

sufficient statistics and the Rao-Blackewell theorem for improving estimators

of parameters of a finite population is extensively discussed and optimal

sampling strategies under various superpopulation models are investigated.

Finally, relative efficiencies of a few well known sampling strategies that are

commonly used in practice are studied under a superpopulation model which

is frequently used in practice.
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Throughout the derivation of the above mentioned results, we assume that the

population size N is known, no observational error is present and that the

same response rate was achieved.

The thesis is structured as follows:

Chapter 2 consists of definitions and notation which are used throughout the

thesis such as population, sampling frame, parameter, sample, sampling

design, inclusion probabilities, etc. The consistency conditions of inclusion

probabilities and the concept of unbiased estimators for linear and quadratic

parametric functions are discussed in this chapter for use in further chapters.

The main methods of selection of samples as needed for this study are also

discussed viz. the cumulative total method and a sampling design. In this

chapter the details of Hanurav’s algorithm for the selection of a sample is

given along with the theorem regarding the correspondence between

sampling design and sampling scheme (Hanurav (1966)). Several examples

are provided to show how this algorithm can be used.

In Chapter 3, the concept of various types of linear unbiased estimators is

introduced along with suitable examples. The unbiasedness property of the

Horvitz-Thompson (1952) estimator is discussed, followed by the derivation of

an expression of its variance along with an unbiased estimator of this

variance. The concept of a minimum variance unbiased estimator in finite

population sampling and the non-existence theorem (Godambe (1955)) are

also discussed in this chapter. Modification of Godambe’s (1955) results by

Hanurav (1966) and the extension of Godambe’s results to a wider class of

estimators proposed by Basu (1971) make up the remainder of the content of

this chapter.

Chapter 4 introduces the concept of admissibility, which may guard against

the use of inefficient estimators. Admissibility of the Horvitz-Thompson (1952)

estimator in the linear unbiased homogeneous class of estimators is

presented. Godambe and Joshi’s (1965) results relating to the admissibility of

the Horvitz-Thompson (1952) estimator in the class of any unbiased estimator
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is then shown. The definition of an inadmissible estimator and the concept of

sufficiency in finite population sampling is extensively discussed. The Rao-

Blackwellisation technique for improving such inefficient estimators of

parameters of a finite population is given with examples. The method of

improving:

i) sample mean based on SRSWR sampling,

ii) Hansen-Hurwitz (1943) estimator based on PPSWR sampling and

iii) Raj’s (1956) estimator based on PPSWOR sampling

completes the content of this chapter.

In Chapter 5 the concept of the superpopulation model is introduced.

Definitions of design unbiased, model unbiased and model-design estimators

as well as non-informative sampling design, optimal estimators and optimal

strategies are given in this chapter. The model-design or model assisted

approach which is a hybrid of the design based and model based approach is

also presented. Optimal estimators based on a superpopulation model are

then derived. The concept of balancing and robustness as well as optimal

design and model unbiased estimators are extensively discussed in this

chapter.

Chapter 6: In this chapter we consider some specific sampling strategies and

give expressions for the estimation of the population total, its variance and

unbiased estimators of the corresponding variance. The relative efficiencies of

a few well known sampling strategies that are commonly used in practice are

studied under a superpopulation model.

Finally Chapter 7 presents an overall conclusion for this thesis.
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Chapter 2

Definitions

In this chapter we have presented some basic notation and definitions such

as population, sampling frame, parameter, sample, sampling design etc. that

are used throughout this thesis.

We also look at the selection of a sample. When making inference from a

population, we select part of the population, known as a sample s , following

some suitable sampling design. If )(sp , the probability of selection of a

particular sample, is equal to one, we call such a sampling design purposive

sampling. If 1)(0 sp , we call such a sampling design probability sampling.

A natural question that arises is how to select a sample given a sampling

design when the probabilities of selection of a sample are pre-assigned.

There are two popular methods viz. i) the cumulative total method and ii)

choosing a sample draw by draw and assigning selection probabilities with

each draw. The second method is known as a sampling design. Hanurav

(1966) first showed the relationship between the sampling design and

sampling scheme. Following Hanurav’s (1966) algorithm one can draw a

sample which can produce a required sampling design. In this section, we will

describe in detail the cumulative total method and Hanurav’s algorithm for the

selection of a sample.
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2.1 Populations

Finite, infinite and continuous populations
A finite population is a collection of a finite number of identifiable objects or

elements. The elements are called “units” of the population. The total number

of elements is known as the size of the population. The population size will be

denoted by N.

Examples of finite populations: The number of students in a class, as the

number of students is countable and the students are identifiable; similarly the

number of houses in a certain locality, etc are examples of finite populations.

Infinite Population

Consider the number of insects in a certain region or the number of bacteria in

a test tube, which are very large in number and very difficult to count. These

types of populations are referred to as infinite populations.

The size of the population N may be known or unknown before a survey. The

unknown population size N may sometimes become a subject of interest and

may be determined by conducting surveys, such as the estimation of the

number of illegal immigrants in a country or estimating the number of animals

in a game park.

The population cannot always be identified. For example, if we are selecting a

sample of air to measure air pollution, it is not possible to divide the

population into identifiable units. Such a population is called a continuous

population.

In this thesis we will consider finite identifiable populations only. The size of

the population N is assumed to be known.
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We denote the list of a finite population by

1 2, ,..., NU u u u

where iu , 1,...,i N  is the ith  unit of the population and N is the size of the

population.

2.2 Sampling Frame

A list of all the units of an identifiable population is called a sampling frame.

The sampling frame is the basic material for the selection of a sample. The

sampling frame must be complete and up to date i.e. it should not have any

omission or duplication of units.

2.3 Parameter

Characteristics of a population are known as study variables, these are

generally not known before a survey. The study variable will be denoted by .y

In a multi-characteristic survey we collect information on more than one

variable e.g. In a household survey we might wish to enquire about household

income, household expenditure, household size etc. In this case we have

several study variables viz. household income, household expenditure and

household size.
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We let iy denote the value of a study variable y  for the ith  unit iu  of a

population, then the N-dimensional vector

Ni yyyy ,...,,...,1

is known as the parameter of the population U  with respect to the

characteristic y .

The parametric space is all possible values of the vector y . Here we consider

the parameter space

Ni yyy ,...,,...,1

= NR

where NR is the N-dimensional Euclidean space (also often referred to as

RRR ... , N times).

We are generally not interested in knowing the vector y  but are interested in

a function of y . Such a function of y  is known as a parametric function.

Some commonly used parametric functions of interest are given as follows:

i)
N

i
iyY

1
, the population total,

ii)
N
YY  , the population mean,

iii)
N

i
iy Yy

N
S

1

22

1
1 , the population variance and

iv)
Y
S y  , the population coefficient of variation.
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2.4 Sample

An ordered sequence of elements

nsj iii uuus ,...,,...,
1

from a population U  is known as a sample where Uu
ji .

All the units of the sample need not be distinct.

The number of units, sn , including repetition is called the sample size.

The total number of distinct units of s  is known as the effective sample size

and is denoted by sv .

An ordered sample shows which draw selects which unit whereas an

unordered sample contains the distinct units from the ordered sample

arranged in ascending order. Thus an unordered sample can be derived from

an ordered sample, suppressing the order of selection of the units and their

repetition.

Example 2.4

Consider the selection of 4 units from a population of N=5 units

54321 ,,,, uuuuuU

where 54321 uuuuu .

Let unit 5u  be selected on the first draw, on the second draw unit 2u  is

selected, on the third draw unit 1u is selected and on the fourth draw unit 2u  is

selected.
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Then the sample 2125 ,,, uuuus  is an ordered sample.

From s  we construct an unordered sample 521 ,,~ uuus   by selecting distinct

units from s  and arranging in ascending order.

2.5 Sampling Design

Let  be the collection of all possible samples s .

A sampling design p  is a function defined on  satisfying the following

conditions:

i) 0)(sp s

ii)
s

sp 1)( .

A sampling design is said to be a:

i) Fixed effective size (FES) sampling design if vsvp )(  = 1

i.e. the number of distinct units vsv )(  is fixed for every sample s  with

0)(sp ;

ii) Fixed sample size (FSS) sampling design if nsnp )( = 1

i.e. the number of units in the sample s  is fixed as n.

Example 2.5

Consider a finite population 4321 ,,, uuuuU  of N = 4 units.

Let ),,( 2211 uuus , ),( 442 uus  , ),,( 4313 uuus
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and let
6
1)( 1sp ,

6
3)( 2sp ,

6
2)( 3sp .

Here 1 2 3( , , )s s s and 1)()()()( 321 spspspsp
s

.

Here ( , p ) forms a sampling design.

3
1s

n , 2
1s

v ;

2
2sn , 1

2sv ;

3
3sn , 3

3sv .

2.6 Sampling Scheme

A sampling scheme is a method of selection of a sample from a population

where units are selected one by one from the population using a pre-assigned

set of probabilities of selection of units in each draw.

For a fixed sample size (FSS (n)) design, we assign )(kpi  as the selection

probability of the ith  unit selected at the kth  draw.

The )(kpi ’s are subject to

i) 1)(0 kpi Ni ,...,1 nk ,...,1

ii) 1)(
1

N

i
i kp for nk ,...,1 .

Remark

Hanurav (1966) stated that any sampling scheme produces a sampling

design. There is little difference between the definition of a sampling design
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and sampling scheme. The sampling design is a statement of all possible

samples and corresponding selection probabilities whereas a sampling

scheme is a method of choosing a sample.

2.7 Methods of Selection of Samples

2.7.1 Cumulative Total Method

All possible samples in  are labelled Mi sss ,...,,...,1  where M = the total

number of samples in .

The cumulative total is then calculated:

)(...)( 1 ii spspCT for Mi ,...,1 .

A random number R (say) is then selected, using the Uniform (0,1)

Distribution, and a sample ks  is selected if

kk CTRCT 1 where 0CT  = 0.

Example 2.7

Let 4321 ,,, uuuuU , we let

1s  = ( 211 ,, uuu ), 2s  = ( 221 ,, uuu ), 3s  = ( 23 ,uu ), 4s  = ( 4u );

)( 1sp  = 0.25, )( 2sp = 0.3, )( 3sp = 0.2     and )( 4sp = 0.25.
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Table 2.1: Probabilities and cumulative totals for samples 1s  to 4s

s 1s 2s 3s 4s

)(sp 0.25 0.3 0.2 0.25

kCT 0.25 0.55 0.75 1

Let a random number R = 0.34802 be selected from a uniform population with

range (0, 1).The sample 2s  is selected since 21 CTRCT  as 1CT  = 0.25,

R = 0.34802 and 2CT  = 0.55.

2.7.2 Hanurav’s Algorithm

The most general method of selection of a sample is given by Hanurav (1966)

and is known as Hanurav’s algorithm.

The algorithm is defined as follows:

),();();( 321 ii usqsquqAA

where

i) 0 )(1 iuq  1 , 1
1

( )
N

i
i

q u  = 1 for Ni ,...,1

ii) 0 )(2 sq  1 for s , where  is the possible set of

samples that can be defined by this algorithm.

iii) ),(3 iusq  is defined when ),(2 iusq  0 and subject to

1),(0 3 iusq  ,

3
1

( , )
N

i
i

q s u  = 1 for Ni ,...,1 .
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Method of selection of a sample:

Step 1:

At the first draw a unit
1i

u is selected with probability )(
11 iuq .

Step 2:

Here we decide whether the sampling procedure will be terminated or

continued. We let )1(s =
1i

u  be the sample selected in the first draw. A Bernoulli

trial with success probability )( )1(2 sq  is performed. If the trial results in a

failure, the sampling procedure is terminated and the selected sample is

)1(s =
1i

u . However if the trial results in a success, we proceed to step 3.

Step 3:

Here we select a second unit
2i

u  with probability ),(
2)1(3 iusq . The selected

sample is ),(
21)2( ii uus . We then go back to step 2 and perform a Bernoulli

trial with success probability )( )2(2 sq . If the trial results in a failure, the

sampling procedure is terminated and the selected sample is ),(
21)2( ii uus .

However if the trial results in a success, a third unit
3i

u  is selected with

probability ),(
3)2(3 iusq and we let ),,(

321)3( iii uuus . The procedure is continued

until the process is terminated.

Example 2.8

Let 1, 2,3U .   An example of a sampling algorithm is

0)(,2.0)3,2(,7.0)2(,5.0)2()1({ 22211 sqqqqqAA

for the remaining samples in S, }1)3,2/(1,8.02/3,2.02/1 333 qqq .
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Hanurav (1966) proved one to one correspondence of a sampling design and

a sampling scheme as follows:

Theorem

i) Sampling according to Hanurav’s algorithm A (in section 2.7.2) results

in a sampling design.

ii) For a given sampling design p, there exists an algorithm A which

results in the design p.

Proof:

i) Here we have to show ( ) 1
s

p s .

Let kS be a collection of all samples whose size is k,

then
1

on

k
k

S

where on  is the maximum sample size that is required

and
1

( ) ( )
o

k

n

s k s S

p s p s .

Now

1

( )
s S

p s =
N

i
iup

11

1
)( =

1
1

1
1

( )
N

i
i

q u
12{1 ( )}iq u = 1-

1 1
1

1 2
1

( ) ( )
N

i i
i

q u q u  (2.2.1)

2

( )
s S

p s =
1 2

1 21 1

( , )
N N

i i
i i

p u u =
N

i

N

i
iuq

1 1
1

1 2

1
)(

1 22 ( , )i iq u u
1 23{1 ( , )}i iq u u

=
1 1

1

1 2
1

( ) ( )
N

i i
i

q u q u -
N

i

N

i
iuq

1 1
1

1 2

1
)(

1 22 ( , )i iq u u
1 23 ( , )i iq u u (2.2.2)

.

.
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.

1

( )
no

s S
p s =

1 21 1

...
N N

i i
1 2 1

1
1

( , ,..., )
no

no

i i i
i

p u u u

=
1 21 1

...
N N

i i
1

1

1
1

( )
no

i
i

q u
1 1 2 12 2( )... ( , ,..., )

no
i i i iq u q u u u {1-

1 2 13( , ,..., )
no

i i iq u u u }

=
1 21 1

...
N N

i i
1

2

1
1

( )
no

i
i

q u
1 1 2 22 2( )... ( , ,..., )

no
i i i iq u q u u u

   -
1 21 1

...
N N

i i
1

1

1
1

( )
no

i
i

q u ),...,,(),...,,()...(
1211211 322 onon iiiiiii uuuquuuquq      (2.2.3)

and

( )
n ko

s S
p s =

1 21 1

...
N N

i i
1 2

1
( , ,..., )

no
n ko

i i i
i

p u u u

=
1 1

...
N

i
11( )

no

i
i

q u
1 1 2 1 2 1 22 3 2 2( ) ( , ) ( , )... ( , ,.., )

no
i i i i i i i iq u q u u q u u q u u u

{1-
1 23( , ,.., )

no
i i iq u u u } where

1 23( , ,..., )
no

i i iq u u u =0    (2.2.4)

Finally adding
1

( )
s S

p s ,
2

( )
s S

p s ,…, ( )
n ko

s S
p s  the first part of the theorem

is proved.

ii) Here we are given a sampling design p  where = all possible

samples and )(sp  is the probability of selection of a sample s  ( ).

We need to show that 21, qq and 3q can be found so that sampling

according to the algorithm ),,( 321 qqqA  implements the design.
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Let }/{
1 iii uus = a collection of samples whose first element is

1i
u ;

},/{
21 jiiiij uuuus = collection of samples whose first element is

iu  and second element is ju ; The sjj '..1
 are similarly defined.

Let
1 21 2( , ,..., ) ( , ,..., )

nn i i ii i i p u u u

1

)()( 1
js

spj

...1

1( ,..., ) ( )
j jk

k
s

j j p s are defined similarly.

Here we check
N

i
i

1

, i

N

j
iji u

1

 etc.

and
N

i
i

1
1)(  ,

j
iiji )()(),( etc.

Now following Hanurav (1966), we define:

11( )iq u = 1( )i

1 22 , ,...,
ki i iq u u u   =

0
),...,,(
),...,,(

1
21

21

k

k

iii
iii

otherwise
1),...,,(if 21 kiii

1 2 13 , ,..., ,
k ki i i iq u u u u = 1 2 1

1 2 1 1 2 1

( , ,..., )
( , ,..., ) ( , ,..., )

k

k k

i i i
i i i i i i

if
1 22 , ,..., 0

ki i iq u u u .

So the probability of drawing a sample
1 2
, ,...,

ni i iu u u using the algorithm

is ),...,,(
21 niii uuup =

1 1 1 2 1 2 11 2 3 2 3( ) ( ) ( , ) ( , ) ... ( ,..., )
ni i i i i i i iq u q u q u u q u u q u u

121 ( ,..., )
ni iq u u

= 1( )i
)(
)(

1
1

1

i
i …

1111

1

,...,,...,
,...,

nn

n

iiii
ii 1 2

1 2

( , ,.., )
( , ,.., )

n

n

i i i
i i i

.

= 1 2( , ,.., )ni i i
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2.7.2.1 Examples using the Algorithm

a) Fixed Sample Size Design

For this sampling scheme, }{ nnp s =1. So using the algorithm we get:

0)(
11 iuq

1)(
12 iuq

0),(
213 ii uuq

.

. continue this process

.

1),...,(
112 nii uuq

0),...,(
113 nii uuq continue this until 0),...,(

12 nii uuq .

b) Simple Random Sampling With Replacement (SRSWR)

In this sampling scheme, )(kpi  = 1
N

 which is the probability of

selecting the ith  unit at the kth  draw.

So
N

uq i
1)(

11 = )1(ip

1)(
12 iuq

)2()1(),(
213 iiii ppuuq

      = 1 1
N N

1),(
212 ii uuq
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)3()2()1(),,(
3213 iiiiii pppuuuq

 = 1 1 1
N N N

.

. continue this process

.

1),...,,(
1212 niii uuuq

)(...)2()1(,...,,
213 npppuuuq iiiiii n

    = 1
N

… 1
N

           = 1
nN

0),...,,(
212 niii uuuq

So the process stops here.

Example 2.7.2.1

Consider a population of size 20 from which a sample of size 4 is to be

selected by the SRSWR method.

Here we associate

Unit 1 with the number 01,

Unit 2 with the number 02,

.

.

Unit 20 with the number 20.

To select a sample of size four, we select a two digit random number

from a random number table. If the random number selected is

between 01 and 20 inclusive, the corresponding unit is selected. If the

random number is greater than 20, no unit is selected.
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Using the random number table (Cochran (1977), p19), we get

Random Number Unit Selected

65 -

18 18

82 -

11 11

10 10

87 -

20 20

So the selected sample is s  = {18, 11, 10, 20}.

Where

20
11)(

11 N
uq i = )1(ip

1)(
12 iuq

)2()1(),(
213 iiii ppuuq = 1 1

N N 220
1

1),(
212 ii uuq

)3()2()1(),,(
3213 iiiiii pppuuuq  = 1 1 1

N N N 320
1

1),,(
2212 iii uuuq

)4()3()2()1(),,,(
43213 iiiiiiii ppppuuuuq  =

NNNN
1111

420
1

0),,,(
42212 iiii uuuuq .
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c) Simple Random Sampling Without Replacement (SRSWOR)

For this sampling scheme,

)(kpi = 1
( 1)N k

 if kth  unit is not selected in first 1k  draws,

nk ,...,1

        =       0 if kth  unit is selected in first 1k draws.

So using the algorithm we get:

N
uq i

1)(
11 = )1(ip

1)(
12 iuq

)2()1(),(
213 iiii ppuuq

      = 1
N 1

1
N

1),(
212 ii uuq

.

.

.

1),...,,(
1212 niii uuuq

1 23( , ,..., ) (1) (2) ... ( )
Ni i i i i iq u u u p p p n

            = 1
N

1
1N

… 1
1N n

0),...,,(
212 niii uuuq therefore the process stops here.

Example 2.7.2.2

Consider a population of size 20 from which a sample of size 4 is to be

selected by the SRSWOR method.
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Referring to Example 2.7.2.1, we again use a random number table

(Cochran (1977), p19) to select units as follows:

Random Number Unit Selected

26 -

70 -

15 15

20 20

57 -

76 -

40 -

03 3

20 - not selected as sampling without replacement.

43 -

93 -

48 -

79 -

72 -

12 12

So the selected sample is s = { 15, 20, 3, 12 }.

Where

20
11)(

11 N
uq i = )1(ip

1)(
12 iuq

)2()1(),(
213 iiii ppuuq  =

N
1 1

1N
 =

19
1

20
1

1),(
212 ii uuq

)3()2()1(),,(
3213 iiiiii pppuuuq  =

N
1 1

1N 2
1

N
 =

18
1

19
1

20
1

1),,(
3212 iii uuuq
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)4()3()2()1(),,,(
43213 iiiiiiii ppppuuuuq  =

N
1 1

1N 3
1

2
1

NN

=
17
1

18
1

19
1

20
1

0),,,(
43212 iiii uuuuq .

d) Probability Proportional To Size Sampling With Replacement

(PPSWR)

For PPSWR sampling the probability of selecting the ith  unit at any

draw is ip .

So
11

)(1 ii puq

1)(
12 iuq

2121
),(3 iiii ppuuq

1),(
212 ii uuq

321321
),,(3 iiiiii pppuuuq

.

.

1),...,,(
1212 niii uuuq

1 2 1 23( , ,..., ) ...
N ni i i i i iq u u u p p p

0),...,,(
212 niii uuuq so the process stops here.

Example 2.7.2.3

Consider the following data (Cochran (1977), p35), relating to the

family income and family size of 10 families:
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Table 2.2: Family income and family size of 10 families

Family  1 2 3 4 5 6 7 8 9 10

Income 62 62 87 65 58 92 88 79 83 62

Size 2 3 3 5 4 7 2 4 2 5

We can select a sample of 4 families using PPSWR as follows:

First we need to compute the cumulative totals:

Cum Total 2 5 8 13 17 24 26 30 32 37

We then use a random number table (Cochran (1977), p19) to select

units.

Random Number Unit

40 -

18 6

94 -

44 -

34 10

13 4

11 4

So the selected sample is s = { 6, 10, 4, 4 }.

e) Probability Proportional To Size Sampling Without Replacement

(PPSWOR)

In this sampling scheme:

)1(ip =
1i

p , )2(ip = 2

1
1

i

i

p
p

, …, )(kpi =
1 1

1 ...
k

k

i

i i

p
p p

.
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So

)(
11 iuq =

1
)1( ii pp

1)(
12 iuq

)2()1(),(
213 iiii ppuuq =

0

1
1

2

1
i

i
i p

p
p

otherwise
for 21 ii

1),(
212 ii uuq

.

.

.

1),...,,(
1212 niii uuuq

1 23( , ,..., ) (1) (2) ... ( )
Ni i i i i iq u u u p p p n

     =
0

...1
...

1
111

2

1

n

n

ii

i

i

i
i pp

p
p

p
p

otherwise
...for 21 niii

0),...,,(
212 niii uuuq therefore the process stops here.

Example 2.7.2.4

Referring to example 2.7.2.3 and Table 2.2, we get

Family 1 2 3 4 5 6 7 8 9 10
Cum Total 2 5 8 13 17 24 26 30 32 37

Once again we use random numbers obtained from a random number

table (Cochran (1977), p19) to select a sample using PPSWOR.
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Random Number Unit

20 6

05 2

62 -

62 -

96 -

23 -not selected as sampling without replacement.

22 -not selected as sampling without replacement.

48 -

73 -

54 -

73 -

71 -

53 -

32 9

41 -

47 -

60 -

01 1

So the selected sample is s  = { 6, 2, 9, 1 }.

f) Midzune-Sen (Midzuno 1952; Sen 1953) Sampling (MS)

The first unit is selected with probability ip , the remaining 1n  units

are selected by the SRSWOR method so that:

)1(ip  = ip

)(kpi  =
1...1

1
kNN

for nk ,...,2 .
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So ii puq )(
11

1)(
12 iuq

)2()1(),(
213 iiii ppuuq =

1i
p 1

1N

1),(
212 ii uuq

.

.

.

1),...,,(
1212 niii uuuq

1 23( , ,..., ) (1) (2) ... ( )
Ni i i i i iq u u u p p p n

      =
1i

p 1
1N

… 1
1N n

0),...,,(
212 niii uuuq therefore the process stops here.

2.8 Inclusion Probability

The inclusion probability of the unit iu with respect to the sampling design p  is

denoted by

is
i sp )(

         = ( )si
s

I p s

where
0
1

siI if
si
si

.

The inclusion probability for the ith  and jth  units ( ji ) is denoted by

)(spII sjsiij .

For simplicity, we write ii i .
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2.9 The consistency conditions of inclusion
      probabilities (Hanurav (1966))

2.9.1 For any sampling design:

i)
N

i
i

1
= v  = )(svE p and

ii)
N

i

N

j
ij = )(svVar + 1vv .

Proof:

i)
N

i

N

i s
sii spI

1 1
)(

=
N

i
si

s
Isp

1

)(

=
s

svsp )()(

= v (2.9.1.1)

ii)
N

i

N

j
ij =

N

i ij s
sjsi spII

1 )(
)(

= si
j

sj

N

i
si

s
IIIsp

1
)(

= si

N

i
si

s
IsvIsp )()(

1

=
i

si

N

i
si

s
IIsvsp 2

1
)()(

=
s

svsvsp )()()( 2

=
s

spsvspsv )()()()( 2

= )1()( vvsvVar . (2.9.1.2)
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2.9.2 For a fixed effective size n sampling design:
iii) n

i
i ,

iv) ( 1)ij i
j i

n and

v) ( 1)ij
i j

n n .

Proof:

iii) Using result (1.9.1.1) above,

s
spsvsvE )()()(

=
s

nspn )( .

So we get

nsvE
i

i )( . (2.9.2.1)

iv) ( )ij si sj
j i j i s

p s I I

=
s j

sjsi IIsp
)1(

)(

= sisi
s

InIsp )(

= si
s

si
s

IspIspn )()(

= iin

= in )1(   (2.9.2.2)

v) For a fixed effective size n  sampling design, 1nvP s , hence

0)( svV .

So using (1.9.1.2) above, we get

i j
ij nn )1( . (2.9.2.3)
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2.10 Data

The information related to units selected in a sample and its y -value obtained

from the survey is known as data and is denoted by siyid i ,, .

2.11 Estimator

An estimator ),( ysT  is a real-valued function )(dt , which is free of iy  for si

but may involve iy  for si .

The numerical value of an estimator for a given sample is called an estimate.

2.11.1 Unbiased Estimators

An estimator ),( ysTT is said to be a design unbiased estimator or simply

unbiased for a population parameter  if and only if

)(TE p  = ( , ) ( )
s

T s y p s = NRy

where pE denotes the expectation with respect to p  and )(sp is the probability

of selection of the sample s .
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2.11.1.1 Types of unbiased estimators of Y = population total

1. Linear Unbiased Estimator

*t = ),(* yst  = i
si

sis yba

         = sii
i

sis Iyba

where  i)
si

denotes the sum over all distinct units in s

 ii) sa  is a constant depending on the sample s  and not on

the syi '

iii) the sbsi '  are constants that may depend on the selected

sample and the unit i, but is independent of the syi ' .

2. Linear Homogeneous Unbiased Estimator

t = ),( yst  = i
si

si yb  = isi
si

si yIb

where  i)
si

denotes the sum over all distinct units in s

ii)  the sbsi '  are constants that may depend on the selected

sample and the unit i, but is independent of the syi ' .

3. Horvitz-Thompson (1952) Estimator

HTEt =
si i

iy

The estimator HTEt , called the Horvitz-Thompson Estimator, is defined if i  is

positive for every Ni ,...,1 .
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Note:

Examples of different estimators are given in section 3.1.2.

2.11.1.2 Necessary and sufficient condition for existence of an

unbiased estimator:

Theorem 2.11.1 (Hanurav (1966))

A set of necessary and sufficient conditions for the estimability of Y in a given

design p is that

i > 0 Ni ,...,1 .

Theorem 2.11.2 (Hanurav (1966))

A set of necessary and sufficient conditions for the estimability of the

quadratic parametric function

N

i i i j
jiijiiiii yyqyqyllQ

1

2
0

in a design p  is given by

i) 0i if 022
iii ql

or

ii) 0ij if 0jiij qq .
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Corollary

The variance of an estimator is in general in a quadratic form in syi ' ,

Ni ,...,1 . For the estimation of the variance, the necessary and sufficient

condition of estimability is

0ij .

For a systematic sampling scheme, 0ij  for some ji . Here the elements

are grouped into clusters and a selection is made where a cluster is chosen to

become the sample, the result is that the variance of the sample mean cannot

be unbiasedly estimated by using a single systematic sampling design.

Example 2.11

Let N = 9 and n = 3, then the possible systematic samples are:

1 (1, 4,7)s , 2 (2,5,8)s  and 3 (3,6,9)s .

Here 1 2 3 4 5 6 7 8 9
1
3

and 14 17 47 25 28 58 36 39 69
1
3

.

The rest of the 'ij s  viz:

1612 ,  etc are equal to zero as element 1 and 2 cannot both be in a sample,

similarly neither can element 1 and 6, etc.

Hence from the systematic sampling design, the population mean can be

estimated but the variance of the sample mean cannot be estimated because

some of the sij '  viz. 1612 , etc are equal to zero.
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2.11.1.3 Uniformly Minimum Variance Unbiased Estimator

(UMVUE)

oT , an unbiased estimator of parametric function , is called an UMVUE for

estimating parametric function , if for any other unbiased estimator
~
T ( oT ),

the following conditions are satisfied:

i) ( ) ( )p o pV T V T NRy

ii) ( ) ( )p o pV T V T for at least one NRy .

2.11.1.4 Unicluster Sampling Design (Hanurav (1966))

A design p~  is a unicluster design if any two samples *, ss  with

)(~ sp , )(~ *sp   > 0 imply either

i) *ss

or

ii) the samples s  and *s  are equivalent,

where  is a null set.

2.11.2 Admissible Estimators

An estimator T  is said to be admissible in a class C   of estimators if there

does not exist any other estimator in the class C  that is better than T .
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i.e. there does not exist an alternate estimator )(* TT  for which the following

inequalities hold:

i) )()( * TVTV pp )(* TT and NRy

ii) )()( * TVTV pp for at least one NRy .

By using the Rao-Blackwell theorem one can improve an inadmissible

estimator using a sufficient statistic. Such a technique is known as Rao-

Blackwellization.

2.12 Sampling Strategy

This is a combination of sampling design p  and an estimator based on a

sample selected using the design p .

2.13 List of Abbreviations used

FES fixed effective size

FSS fixed sample size

UMVUE Uniformly minimum variance unbiased estimator

MVUE Minimum variance unbiased estimator

SRSWR  Simple random sampling with replacement

SRSWOR  Simple random sampling without replacement

PPSWR Probability proportional to size sampling with replacement

PPSWOR  Probability proportional to size sampling without replacement

IPPS or PS  Inclusion probability proportional to size sampling design

BLUP Best linear unbiased predictor

HTEt Horvitz-Thompson estimator
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RHCt Rao-Hartley-Cochran estimator

MSt Midzuno-Sen estimator

2.14 Conclusion

In this chapter we looked at some definitions and results which will be used in

later chapter. Some of these definitions may be repeated in later chapters if

they are needed.

We also looked at the selection of samples using the cumulative total method.

It should be noted in this method we need to list all possible samples along

with their probabilities. In practice it is very difficult to use the cumulative total

method if N and n are quite large. If for example N=20 and n=5, we have to

list 15504
5
20

 samples with their probabilities which is very difficult.

Hanurav’s algorithm can be used easily and be terminated after a finite

number of steps. There are several other popular sampling designs such as

the Inclusion Probability Proportional to Size (IPPS or PS ) sampling design

and the Rao-Hartley-Cochran sampling design which is available in the

literature and which will be discussed in Chapter 6. The natural question to

ask is, among all the sampling designs (schemes), which is better or which

should ideally be used. The answer to this question will be given in Chapter 3.
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Chapter 3

Methods of Estimation

In Chapter 2, we have discussed different methods of sample selection. In this

chapter we consider design based inference where the vector Nyyy ,...,1  is

fixed. We assume that if unit i  belongs to a sample s , then iy  can be

observed without error. In this approach the stochastic element upon which

inference can be based, is the one introduced through sampling design.

Details are given by Cassel, Särndal and Wretman (1977) and Chaudhuri

(1988). In design based inference, expectation is the long term average of the

performance of an estimator t  through a hypothetically repeated process of

sampling.

We present expressions for the Horvitz-Thompson estimator, its variance and

an unbiased estimator for its variance.

The concept of unbiasedness and minimum variance unbiased estimators are

presented through a design based approach. The celebrated non-existence

theorems of Godambe (1955) and Basu (1971) are also discussed in detail. In

particular Godambe (1955) showed that the MVUE does not exist in the class

of linear homogeneous unbiased estimators. Hanurav (1966) modified

Godambe’s result by showing that the MVUE does not exist for non-unicluster

design. Basu (1971) generalised Godambe’s result by proving that the MVUE

does not exist in the class of unbiased estimators.
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3.1 Definitions

3.1.1 Data

Data is the information collected on one or more characters of interest from

selected units in a sample. It is denoted by .d

If a single characteristic y  is of interest then iy  is the value of the character

obtained for the ith  unit.

The data corresponding to an ordered sample
nsk iii uuus

11
,...,,...,  will be

denoted by

),(),...,,(),...,,()(
11 nsk insiki yiyiyisd .

3.1.2 Linear Unbiased Estimator

A real valued function of d , ),( ysT = )(dT  is called an estimator when it is

used as a calculated approximation for a certain parametric function of

interest, )(t .

3.1.2.1 Linear Homogeneous Estimator

A linear homogeneous estimator is a real valued function

),( ystt =
is i

i s
b y

where
si

denotes the sum over the distinct units in s  and the
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isb ’s are constant and equal to zero for si . The constant
isb  may depend on

the selected sample and the unit i , but are independent of the iy ’s.

The class of linear homogeneous unbiased estimators will be denoted by lhC .

Examples

The sample mean based on  unit repetition

s

si
i

n n

y
y

s

is an example of a linear homogeneous estimator,

where ( )
i

i
s

s

n sb
n

for )(sni  the number of times the ith  unit appears in s .

Another example of a linear homogeneous estimator is the

sample mean based on distinct  units

s

si
i

s n

y
y ,

where 1
is

s

b
n

.

3.1.2.2 Linear Estimator

A linear estimator is defined as

),(** ystt = sa +
is i

i s
b y

where sa is a constant depending on the sample s  but not on the iy ’s.
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The class of linear unbiased estimators will be denoted by C .

Examples

The Difference Estimator is an example of a linear unbiased

estimator. We let

1
is

i

b  and
si i

i
s

xXa ,

where i = inclusion probability for the ith  unit so the difference

estimator is defined as

si i

i

si i

i X
xy

t .

The Regression Estimator is another example of a linear unbiased

estimator where if we let

1
is

i

b  and
si i

i
s

x
Xa

where  is a known constant,  then

si i

i

si i

i X
xy

t

is the Regression estimator.
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3.1.3 Unbiased Estimator

3.1.3.1 Definition

An estimator ),( ysTT  is said to be an unbiased estimator for a population

parameter  if and only if

)(tE p = ( , ) ( )
s

T s y p s NRy

where pE is the expectation with respect to the sampling design p and )(sp is

the probability of the selection of a sample s  according to design p .

3.1.3.2 Condition of Unbiasedness

A linear homogeneous unbiased estimator

si
is ybyst

i
),(

will be unbiased for the population total Y  if and only if

N

i
iyystE

1
),( NRy

i.e.
s

N

i
iyspyst

1
)(),(

i.e.
i

N

i
i

is
si yspby

i
1

)( NRy .



43

Now equating the coefficients of iy , we find that the necessary and sufficient

condition of unbiasedness for ),( yst  is

is
s spb

i
1)( for Ni ,...,1 (3.1.3.1)

i.e. ( ) 1
i is s

s
b p s I for Ni ,...,1 .

For a linear non-homogeneous unbiased estimator *t , the necessary and

sufficient condition for unbiasedness of the population total Y  is

i)
s

s spa 0)(

ii)
is

s spb
i

1)( for Ni ,...,1 .

Examples

We can construct infinitely many unbiased estimators for a given parametric

function. For estimation of the population total Y , we choose a
isb satisfying

condition (3.1.3.1) viz.
is

s spb
i

1)(  in various ways as follows:

i) is cb
i

constant

In this case
is

s spb
i

1)( 1)(spc
is

So that 1ic

which leads to
i

c 1

and finally
i

si
b 1
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so the estimator is thus

si i

iyyst ),( . (3.1.3.2)

The above estimator (3.1.3.2) is known as the Horvitz-Thompson (1952)

estimator.

ii) Noting that
s

ss spbbE
ii

1)(  because 0
isb  for si .

We may choose

i

i

i
s

s
s cE

c
b 0

isc for si

as an unbiased estimator of Y.

In particular if we choose ssi
c , then

s

s
s E

b
i

 and the

corresponding estimator is

s

i
s

si si s

s
is E

y
E

yb
i

.

iii) Let )(sni  be the number of times the ith  unit appears in sample s ,

for a with replacement sampling scheme.

Then we can find an infinite number of unbiased estimators as

follows:

si
j

i

i
j y

jsnE
snyst ,  for ,...2,1j

      In this case,
jsnE

snb
i

i
si

for ,...2,1j
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3.1.3.3 Horvitz-Thompson (1952) estimator ( HTEt )

HTEt  =
si i

iy

=
i

i
s

i i

y I

where
1
0isI

if
if

.si
si

Clearly HTEt is defined when 0i  for every Ni ,...,1 .

The Horvitz-Thompson (1952) estimator is an unbiased estimator of the

population total Y , to show this we first need the following theorem:

Theorem 3.1

i) ( )
is iE I for Ni ,...,1 ,

ii) ( ) (1 )
is i iV I for Ni ,...,1  and

iii) ( , )
i js s i j ijCov I I for Nji ,...,1 .

Proof:

i) ( ) ( )
i is s

i
E I I p s

= i (3.1.3.1)

ii) 2 2( ) ( ) ( )
i i is s sV I E I E I

= 2( )
is iE I   = 2

ii

= )1( ii (3.1.3.2)
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iii) ( , ) ( , ) ( ) ( )
i j i j i js s s s s sCov I I E I I E I E I

        = ( )
i js s i jI I p s

        = jiij (3.1.3.3)

Theorem 3.2

i) YtE HTE )( and

ii) )( HTEtV =
i j ji

ij
ji

i
i yyy 1112

Proof:

Using Theorem 3.1 above, we find

i) )( HTEtE = ( )
i

i
s

i i

y E I

 =
i

i
i

iy           using (3.1.3.1)

 =
i

i Yy

and

ii) )( HTEtV =
i

i
s

i i

yV I

 = ( )
i

i
s

i i

y V I + ( , )
i j

ji
s s

i j i j

yy Cov I I

using (3.1.3.2) and (3.1.3.3)

 =
i

i
i

iy
)1(

2

+
i j

jiij
j

j

i

i yy
)( .
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Theorem 3.3

For a fixed effective size n design with number of distinct units in a sample is

fixed as n  i.e. 1}{ snP , the variance of the Horvitz-Thomson (1952)

estimator is given by

)( HTEtV =
i j j

j

i

i
ijji

yy
2

2
1 .

Proof:

i j j

j

i

i
ijji

yy
2

2
1

=
i j j

j

ji

ji

i

i
ijji

yyyy
2

2

2

2 2
2
1

=
i j

ijji
ji

ji

i j
ijji

i

i yyy 2

=
i j

ijji
ji

ji

ij
ij

ij
j

i

i yyy 2

Now for a fixed effective size sampling design 1}{ snP , we have

shown (Chapter 2 equations (2.9.2.1) and (2.9.2.2)) that

ni  and
ij

iij n )1( ,

so we have

i)
j

ij
ij

j

= in and
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ii)
ij

iij n )1( .

We thus get that

i j j

j

i

i
ijji

yy
2

2
1

=
i

i
i

iy
)1(

2

+
i j

jiij
j

j

i

i yy
)(

= )( HTEtV .

3.1.3.3.1 Inclusion Probability Proportional to size Sampling Design ( IPPS or

PS )

Let us put ii cy  (where ic  is a constant) in the Horvitz Thompson (1952)

estimator expression

HTEt  =
si i

iy

si
HTE ct

Now if
si

number of distinct units  which is a constant, then

HTEt = cv  which is also a constant.

So the variance of HTEt  becomes zero for fixed effective sample size design

when i iy .

So if we choose a sampling design for which i iy  then the Horvitz-

Thompson (1952) estimator becomes the most efficient in the sense of having

the smallest possible variance of zero.
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In practice the syi '  are unknown, so we cannot choose i ’s proportional to

syi ' . However in some situations we may find an auxiliary variable x  which is

approximately proportional to y . In such a situation we choose i  to be

proportional to ix .

A sampling design for which inclusion probabilities are proportional to the

measure of size (auxiliary) is known as IPPS or PS  sampling design.

Obviously PS  sampling design can be implemented if all ix ’s are known and

positive. Several PS  sampling designs are available in literature. Some of

these are discussed in Chapter 6.

3.1.3.4 Minimum Variance Unbiased Estimator (MVUE)

Definitions:

Better Estimator

Let 1T  and )( 12 TT  be two unbiased estimators belonging to the class

C .

The estimator 1T  is said to be better than 2T  if

i) )()( 21 TVTV pp NRy

and

ii) The inequality

)()( 21 TVTV pp holds for some NRy .
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MVUE

An estimator oT  which belongs to C , the class of linear unbiased

estimators of  is called an MVUE for estimating the parametric

function  if oT  is better than any other unbiased estimators belonging

to the class C .

i.e. any CTT o )(~ satisfies

i) )~()( 0 TVTV pp NRy

and

ii) )~()( 0 TVTV pp for at least one NRy .

3.1.3.4.1 Non Existence of MVUE

i) Godambe (1955)
In the class of linear homogeneous unbiased estimators lhC , the MVUE

(minimum variance unbiased estimator) does not exist.

Proof:

Let ),( yst  = si i
i s

b y  be a homogeneous linear unbiased estimator for Y .

Then the constants '
is

b s  satisfy the unbiasedness condition

( )
is

s i
b p s = 1 for every Ni ,...,1 . (3.1.3.1)
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Here the objective is to find the constants,
is

b ’s that minimize

)(tV p  = 2 2( ) ( )
is i

s i s

b y p s Y (3.1.3.2)

subject to the unbiasedness condition (3.1.3.1).

For minimization we consider

2 2( ) ( )
is i

s i s

b y p s Y -
1

( ( ) 1)
i

N

i s
i s i

b p s (3.1.3.3)

where i ’s are the undetermined Lagrange multipliers.

Differentiating  with respect
is

b  and equating to zero, we get

sib
= 2 ( ) ( )

ii s i
i s

y b y p s - ( )i p s = 0 (3.1.3.4)

this is equivalent to

( )t s = ( )
is i

i s
b y =

2
i

iy
i s , 0iy . (3.1.3.5)

The equation above says that if a sample s  contains units i  and j  ( i j  )

we must have

( , )t s y  = ( )
is i

i s
b y =

2
i

iy
=

2
j

jy
for , 0i jy y . (3.1.3.6)

The equation (3.1.3.6) implies that the estimator ),( yst  is independent of the

syi '  for si . This is impossible. Hence there does not exist a MVUE.
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ii) Hanurav (1966)
Hanurav pointed out that Godambe’s (1955) result does not relate to

unicluster sampling.

Definition: Unicluster Sampling Design

Hanurav defined a design p~  as a unicluster design if any two samples
*, ss  with 0)(~),(~ *spsp  imply either

i) *ss  or

ii) *~ ss .

i.e. either s  and *s  are disjoint  or they contain the same set of units.

Hanurav (1966) modified Godambe’s result as follows:

For a non-census sampling design p with 0i  for all Ni ,...,1 ,  a

MVUE does not and does exist in the class lhC  of linear unbiased estimators

of the population total Y, if p  is a non-unicluster and unicluster design

respectively.

Proof:

Let p  be a non-unicluster design.

Then we must have two samples 1s and 2s  with )( 1sp , )( 2sp  > 0 and such that

1s  contains units i  and j but not k )( kji and 2s contains i  and k  but not

j . In this case ),(),(),( 121 ystystyst  for all non zero values of iy , jy  and ky

which is impossible because the magnitude of )( 1st  depends on iy  and jy  but
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is independent of ky  while )( 2st  depends on iy  and ky and is independent of

jy . Hence we cannot find constants, sib `s which minimize )(tV p and satisfy

the unbiasedness condition (3.1.3.1).

Now suppose that p  is a non-census unicluster design, then )( 1sp , )( 2sp  > 0

implies that 21 ss =  but not 21 ~ ss 21, ss  because 21 ~ ss 21, ss

and 0i  imply that the design p  is a census one. So, for a unicluster

design p , all the samples must be disjoint and hence a unit can occur only in

one sample. Hence the unbiasedness condition ( )
is

s i
b p s =1 implies ( ) 1

isb p s

for every si , Ni ,...,1 .

We thus conclude that for a unicluster, only one unbiased estimator exists,

viz. ),( yst =
( )

i
i s

y

p s

and hence it is trivially the best.

Example of a unicluster sampling design

Systematic sampling is a unicluster sampling design.

Consider a systematic sampling scheme of 3 units selected from 12 units. For

a systematic sampling scheme, 4 possible samples are as thus

(1, 5, 9), (2, 6, 10), (3, 7, 11) and (4, 8, 12).

The probability of selection in each case is 1
4

, and

4
1

i for 1,...,12i .
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For this systematic sample, the only linear unbiased estimator for population

total
12

1
iyY is

)(sp
y

e s  for 4,3,2,1s

       =
si

iy4 .

iii) Basu (1971)
Basu generalized the non existence theorem. He proved that the MVUE does

not exist in the class of unbiased estimators.

Theorem

For a non-census design, there does not exist a UMVUE of )(y  in the class

of any unbiased estimators C .

Proof:

If possible let ),( ysTo  be the UMVUE of the population parameter )(y . Since

the design p  is non-census and the value of ),( ysTo depends on iy ’s for

si , we can find a vector )(ay = ( 1,..., ,...,i Na a a ) for which )(),( a
o yysT  with

0)(sp .

Consider the following estimator

),(* ysT  = ),( ysTo - ),( )(a
o ysT  + )(ay .

),(* ysT  is unbiased for )(y because

),( )(* a
p ysTE = )(y  - )(ay  + )(ay = )(y
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Since ),( ysT is the UMVUE for )(y , we must have

),(),( * ysTVysTV pp NRy .

Now for )(ayy

0),(),( )()(** a
p

a
pp yVysTVysTV ,

while 0),( )(* a
p ysTV  since we assume ),( )(a

o ysT )(ay  with 0)(sp .

Hence the inequality is violated at )(ayy and the non-existence of a UMVUE

for )(y is proved.

3.2 Conclusion

We have seen that an unbiased estimator is not unique, we can derive

several unbiased estimators for a fixed sampling design. A natural question is

to identify the estimator which is the best. Godambe (1955) first proved that

the best estimator does not exist for almost all sampling designs. Therefore

one should use his own experience and/or situation to find a suitable

estimator. For example, one should construct a PS  sampling design if it is

known that the syi ' are approximately equal to the sxi ' .
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Chapter 4

Admissibility

In Chapter 3, we discussed the concepts of unbiasedness and minimum

variance unbiased estimators. Following the work by Godambe (1955),

Hanurav (1966) and Basu (1971), we noted that there does not exist a

minimum variance unbiased estimator when estimating finite population totals

except for a unicluster sampling design.

In this chapter, we introduce the concept of admissibility which may guard

against an inefficient estimator. Godambe (1960) proved that the Horvitz-

Thompson (1952) estimator is found to be admissible in the class of linear

unbiased estimators. Godambe and Joshi (1965) extended Godambe’s result

and proved that the Horvitz-Thompson (1952) estimator is admissible in the

class of unbiased estimators. We also discuss the concept of sufficient

statistics and explain how one can improve an inadmissible estimator using

sufficient statistics and the Rao-Blackwell Theorem.

4.1 Admissible Estimator

An estimator T  is said to be admissible in a class C  of unbiased estimators

under a given sampling design p  if there does not exist any other estimator in

the class C  better than T .
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i.e. there does not exist an alternate estimator *( )T T C for which the

following inequalities hold:

i) )( *TV p )(TV p CTT )(*
NRy

ii) )( *TV p < )(TV p for at least one NRy .

4.2 Admissibility of Horvitz-Thompson (1952)
Estimator

4.2.1 Admissibility in the class of linear homogeneous

estimators

Godambe (1960) proved that the Horvitz-Thompson (1952) estimator ( HTEt ) is

admissible in the class of linear homogeneous unbiased estimators.

Theorem 4.1

In the class of linear homogeneous unbiased estimators ( lhC ), HTEt  based on

a sampling design p  (with 0i Ni ,...,1 ), is admissible for a population

total Y .

Proof:

The class lhC  consists of estimators of the form

),( yst =
is i lh

i s

b y C                                             (4.1.1)
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where the constants sb
is '  are free from syi '  and subject to satisfying the

unbiasedness condition:

is
s spb

i
1)( Ni ,...,1 .      (4.1.2)

Now )],([ ystV p  =
2

2( )
is i

s i s

b y p s Y

 = 2 2 ( )
i i js i s s i j

s i s i j s
b y b b y y p s 2Y

 = 2 2

1
( ) 1

i

N

i s
i s i

y b p s  -
,

( ) 1
i ji j s s

s i j
y y b b p s .

Let ( )y i = vector y  whose co-ordinates 0iy  for Nji ,...,1 and 0jy .

Then

)],([ )( j
p ystV =

js
sjj spby 1)(22 1

)(

)(
2

2

js

js
sj

j sp

spb
y = 112

i
jy

                                                                                                       (4.1.3)

(Noting the unbiasedness condition ( ) 1
is

s j

b p s ).

The equality in (4.1.3) holds if and only if 1
js

j

b , so that

)],([ ystV p
si i

i
p

y
V ( )y y j , Nj ,...,1 .                 (4.1.4)

The inequality in (4.1.4) above is strict if and only if HTEtyst ),( .
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There thus cannot be any estimator in lhC  better than HTEt  when

vector )(iyy .

Hence HTEt  is admissible in lhC .

4.2.2 Admisibility in the class of unbiased estimators

Godambe and Joshi (1965) extended Godambe’s (1960) result further and

proved the admissibility of HTEt  in the class of unbiased estimators.

Theorem 4.2

Estimator HTEt  is admissible in the class uC of unbiased estimators for a finite

population total Y  under a sampling design p  with 0i Ni ,...,1 .

Proof:

Suppose HTEt  is not admissible in the class uC  and there exists an estimator

),( yse uHTE Ct   which is better than HTEt . In this case

i) )],([ yseV p )( HTEp tV NRy   (4.2.1)

and

ii) )],([ yseV p < )( HTEp tV         for at least one NRy .    (4.2.2)

The estimator ),( yse can be written as

),( yse = HTEt  + ),( ysh       (4.2.3)

where ),( ysh  = ),( yse - HTEt .
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Since ),( yse and uHTE Ct  , (4.2.3) yields

)],([ yshE p =
s

spysh 0)(),( .

Further (4.2.1) implies that

[ )],([ yshV p  + )],(,[2 yshtC HTEp  0                            (4.2.4)

where pC denotes covariance with respect to the sampling design p .

Equation (4.2.4) yields

s
spysh )(),( 2 + 0)(),(2

s si i

i sp
y

ysh NRy . (4.2.5)

Let us define ( )y j  = collection of all vectors 1,...., ,...,k Ny y y y  having j

nonzero co-ordinates and jN  zero co-ordinates.

Also )( j  is a collection of samples consisting of units with y  values

that are non - zero for exactly j  units.

Clearly ( ) ( )y j y k for Nkj ,...,1 ;

( ) ( )f g  for ngf ,...,1 ;

N

j

jy
1

)( = NR  and
n

j

j
1

)( .

Now when 0,...,0,...,0)0(yy ,

0
si i

iy  for every s



61

then equation (4.2.5) yields

( , ) 0h s y s .      (4.2.6)

Now if ( , ) 0h s y s  and )( jyy , then for any )1( jyy  the

equations (4.2.4) and (4.2.5) yield

( 1)

( , ) ( ) 0
s j

h s y p s      (4.2.7)

and

2

( 1)

( , ) ( )
s j

h s y p s +
( 1)

2 ( , ) ( ) 0i

s j i s i

yh s y p s .       (4.2.8)

Now
si i

iy =
N

i i

iy
1

                       for every )1( js

and hence (4.2.7) and (4.2.8) give

2

( 1)

( , ) ( )
s j

h s y p s +
N

i i

iy
1

2
( 1)

( , ) ( ) 0
s j

h s y p s )1( js

    and )1( jyy

i.e. ( , ) 0h s y )1( js  and )1( jyy .             (4.2.9)

Now from (4.2.6) and (4.2.9) we see that

( , ) 0h s y s  and NRy .

Thus there does not exist an estimator, ),( yse ( HTEt ) uC which is better

than HTEt . We thus conclude that HTEt  is an admissible estimator in the class

uC .
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4.3 Inadmissible Estimators

4.3.1 Definition

An estimator ),( yse is said to be inadmissible in a class C  if there exists an

estimator ),(* yse  ( C ) better than ),( yse .

We can always improve an inadmissible estimator by applying the

Rao-Blackwell theorem using sufficient statistics. Such an improvement of an

inadmissible estimator is known as Rao-Blackwellization. The technique of

Rao-Blackwellization is described as follows:

4.3.2 Sufficient Statistics in Finite Population Sampling

Let ),...,(
1 nii uus   be an ordered sample of size n  selected from a population

U with probability )(sp  using a sampling design p , then );,( siyid kikk  is

the ordered data. Let d~ =( siyi kikk
~;, ) be the unordered data obtained from

the ordered data d . The unordered sample s~ , is obtained by taking the set of

distinct units in s  and ignoring repetition of units in s .

The values of the parameter Nyyy ,...,1  are not known before the survey,

so Ny R  = N dimensional Euclidean space is considered as the parametric

space.

After surveying the sample s , the data d  = ( siyi kikk ;, )  is collected. From

this we get d~ , the unordered data. The data d~  is said to be consistent with

the parameter 0y  = ( 0010 ,...,,..., Ni yyy ) if 0kk jj yy  for sjk
~

.i.e if 001
,...,

1 vjvjjj yyyy ,  is the number of distinct units in s .
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Once the data d  is collected, the values of the syi '  belonging to the
unordered sample s~  are known. Hence the parametric space is now

dy~ ,
which consists of the vectors y  with 0jj yy  for sj ~ .

Example 4.3.1

Consider a population of size N = 4 and ),,,( 4321 yyyyy .

The parametric space is the four dimensional Euclidean space y .

Suppose an ordered sample s  = (1, 3, 3) is selected.

Surveying s  yields 1y  = 5 and 3y = 10.

Then s~ =(1, 3)  and
dy~ = (5, -  < 2y  <  , 10, -  < 4y  < ).

NOTE: The details are given by Arnab (2006)

Definition

Let nyy ,...,1 be a random sample with unknown parameter ),...,( 1 nYY =  (say).

The statistic ),...,( 1 nYYgu is sufficient for  if the conditional distribution of

nyy ,...,1  given u  is not dependent on .

Theorem 4.3

The unordered data d~  is a sufficient statistic for y .

The detailed proof can be obtained from Cassel, Särndal and Wretman (1977)
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4.3.3 Rao-Blackwellization in Finite Population Sampling

An ordered sample s  is selected with probability )(sp from a population, d  is

the corresponding ordered data.

Let )(dt  be an unbiased estimator for a parametric function ( )y   and

*( )t d  = )([ dtE p d~ ] where d~  is the unordered data obtained from d .

Theorem 4.4

Estimator *( )t d  is an unbiased estimator of  with )]~([ * dtVp )]([ dtV p

Proof:

( )pE t d = ( )p pE E t d d = )]~([ * dtE p

and

)]([ dtV p = ( )p pE V t d d  + )([( dtEV pp d~ ])

 = ( )p pE V t d d  + )]~([ * dtVp

)]~([ * dtVp since )([( dtVE pp d~ ])  0.

4.3.3.1 Examples

i) SRSWR

In the SRSWR sampling scheme the probability of selection of an

ordered sample ),....,,(
21 niii uuus is )(sp = nN

1 .

Let )(ry  be the value of the character under study y  for the

population, selected on the rth  draw.
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Let )(sy =
n

y
n

r
r

1
)(

, then )(sy is an unbiased estimator for the

population mean Y . This estimator is inadmissible since it is based

on ordered data, possible repetition. This estimator is not based on

a sufficient statistic.

Let ),....,,(~
21 vjjj uuus  denote the unordered sample obtained by

taking v  the set of distinct units vjj ,....,1  ( vjj ....1 ) in s.

Theorem 4.5

Let )~(sy  =
v

y
si

i
~  =

v

y
v

k
jk

1 be the sample mean based on the

distinct units of s . Then

i) )]~([ syE  = YsyE )]([

and

ii) )]~([ syV )]([ syV .

Proof:

Let )(sni  denote the number of times the ith  unit appears in s .

If

)(sy =
n

r
ry

n 1
)(

1 =
N

i
ii ysn

n 1
)(1

      then

i) )(syE  = ssyE ~/)(  = i

n

i
i ysnE

n 1
)([1

s~ ] =
si

i

n
y

v
n

~

1
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Since for a given s~ , )(sni  follows a multinomial distribution

with ssnE i
~/)( =

v
n 1 .

ii) )(syV  = ssyEV ~/)( + ssyVE ~/)(

ssyEV ~/)(

= )~(syV

which shows that the sample mean based on distinct units is

uniformly better than y (s) based on all the units.

ii) PPSWR

Hansen-Hurwitz (1943) Estimator

Let a sample ),...,,(
21 niii uuus  of size n  be selected from a

population by PPSWR method of sampling with ip  denoting the

normed size measure ( 0ip ) for the ith  unit. Let )(ru  be the unit

selected at the rth  draw and )(rp  be the corresponding normed size

measure. If the ith  draw produces the rth  unit then

ir uu )(  and ir pp )( .

Then the estimator

hhŶ  =
n

i r

r

p
y

n 1 )(

)(1

is unbiased for the population total Y .

The estimator hhŶ  is known as the Hansen-Hurwitz (1943)

estimator.
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hhŶ is an ordered estimator since it depends on the multiplicity of the

units selected and the order of the selection of the units in the

sample s , hence hhŶ is inadmissible.

Now writing

hhŶ =
i

i

si
i p

ysn
n ~

)(1

where )(sni = number of times the ith  unit occurs in s .

sYE hh
~/ˆ  =

i

i

si
i p

yssnE
n ~

~/)(1

=

si
i

si
i

p

y

~

~ .

Clearly

si
i

si
i

p

y

~

~  has a smaller variance than hhŶ .

Let s~  be the unordered sample obtained by taking distinct units of

the selected ordered sample s , then applying the Rao-Blackwell

Theorem, one can find an improved estimator as shown in the next

example.

Example 4.3.2

Let ),,(1 jiis  be an ordered sample of size n=3 selected by PPSWR

method. The Hansen-Hurwitz (1943) estimator based on 1s  is given by

)(ˆ
1sYhh  =

j

j

i

i

p
y

p
y

2
3
1 .
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From the ordered sample 1s , we get the unordered sample s~  = ( ji, )

with ji .

The unordered sample s~  could be realized from any of the following

ordered samples s :

),,(1 jiis , ),,(2 ijis , ),,(3 iijs

),,(4 jjis , ),,(5 jijs , ),,(6 ijjs .

Now since

)(ˆ
1sYhh = )(ˆ

2sYhh  = )(ˆ
3sYhh =

j

j

i

i

p
y

p
y

2
3
1 ,

)(ˆ
4sYhh = )(ˆ

5sYhh = )(ˆ
6sYhh =

j

j

i

i

p
y

p
y

2
3
1 ,

ji ppspspsp 2
321 )()()(   and

2
654 )()()( ji ppspspsp .

We get the following unordered estimator

*t = sYE hh
~/ˆ = 6

1

6

1

)(

)()(ˆ

k
k

k
khh

sp

spsY

=
ji

ji

j

j

i

i

pp
yy

p
y

p
y

3
1 .
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iii) PPSWOR

Suppose on the first draw the ith  unit is selected with probability

ip . At the second draw )( ijth  unit is selected with probability

jp =
i

j

p
p

1
.

Raj’s (1956) Estimator

RAJŶ =
n

i
rit

n 1
)(1

The above estimator is ordered since it depends on the order of

selection of units in the ordered sample.

Consider an ordered sample ),( jis of size 2n .

Then

i

i

p
yit )( and )1()( i

j

j
i p

p
y

yjt .

      So Raj’s estimator based on the ordered sample ),( jis is

),(),(
2
1),(ˆ

21 jitjitjiYRAJ

= )1()1(
2
1

i
j

j
i

i

i p
p
y

p
p
y .

      However Raj’s estimator based on the ordered sample ),(* ijs is

),(),(
2
1),(ˆ

21 ijtijtijYRAJ

= )1()1(
2
1

j
i

i
j

j

j p
p
yp

p
y

.

      So ),(ˆ),(ˆ ijYjiY RAJRAJ .
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Modification of Raj’s (1956) Estimator – Murthy (1957)

Murthy’s unordered estimator is obtained by taking the weighted

average of Raj’s estimator with weights proportional to the selection

probability of the ordered sample.

So Murthy’s estimator based on the ordered samples ),( jis  or

),(* ijs  is given by:

MURŶ   =
*)()(

*)(*)(ˆ)()(ˆ

spsp
spsYspsY RAJRAJ

= jij
j

j
i

i

i ppp
p
y

p
p
y

2)1()1( .

This is an unordered estimator since it is independent of selection

of the order of the sample.

Hence we get the following theorem which states that both Raj’s

estimator and Murthy’s estimator are unbiased estimators of the

population total Y  and that Murthy’s estimator is better than Raj’s

estimator since it has a smaller variance:

Theorem 4.6

(1) YtEtE MURRAJ ][][

and

(2) ][][ RAJMUR tVtV .

The proof of the above result can be found in Murthy (1957).
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4.2 Conclusion

The criterion of admissibility, like sufficiency, does not single out a unique

estimator. Many traditional estimators in survey sampling have been shown to

be admissible. Hanurav (1965, 68) proposed the criteria of hyperadmissibility,

a stronger form of admissibility. The proposed criteria of hyperadmissibility

singles out one estimator, the Horvitz-Thompson (1952) estimator, as the

unique hyperadmissible estimator in the class of linear homogeneous

unbiased estimators and also in the class of unbiased estimators. We have

not discussed the concept of hyperadmissibility in this thesis.

We should try to avoid the use of inadmissible estimators. As a rule of thumb,

to find an admissible estimator, we must not choose an estimator which is:

i) based on the order of selection of units and/or repetition and

ii) not based on a sufficient statistic.

However, we use inadmissible estimators in various situations for their

simplicity and elegant expressions of variance. For example, sample mean

based on SRSWR and the Hansen-Hurwitz (1943) estimator based on

PPSWR sampling.

It is also important to note that the Rao-Hartley-Cochran estimator (discussed

in Chapter 6) is used extensively for its simplicity even though it is known to

be inadmissible.
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Chapter 5

Superpopulation Model

In the model based approach, also known as the prediction approach, it is

assumed that the population y -values are random and obey a model (known

as superpopulation model) and that the model distribution leads to valid

inference referring to a particular sample that has been drawn irrespective of

the sampling design. Model based inference, in large samples however, are

sensitive to model misspecifications as illustrated by Hansen, Madow and

Tepping (1983).

We also describe the model-design or model assisted approach which is a

hybrid of the design based and model based approach. In this approach,

inference is based on the sampling design as well as superpopulation models.

Details are given by Rao (1994) as well as in Cassel, Särndal and Wretman

(1977).

In this chapter, we present optimum estimators of finite population

characteristics using model based and design based approaches. It is found

that the Horvitz-Thompson (1952) estimator becomes optimal under various

superpopulation models providing an appropriate sampling design is used.
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5.1 Superpopulation Model

In the previous chapters we discussed design based inference where the

population vector y  = ( Nyy ,...,1 ) was a fixed point in the N-dimensional

Euclidean space. In that case, we found that there does not exist a uniformly

minimum variance unbiased estimator in the class of unbiased estimators for

estimating the population total Y .

In this chapter we consider the population vector y  as a realization of a

random variable Y  = ( NYY ,...,1 ) and its distribution will be denoted by .

The probability distribution  may depend on a parameter , which is

generally unknown and belongs to a certain known parameter space .

Such a probability distribution  is known as a superpopulation model. In most

situations, the distribution  is related to a fixed auxiliary variable x = ( Nxx ,...,1 )

whose elements are assumed to be known and positive.

Example 5.1

Let us consider the exam marks of 125 first year statistics students at a

certain university in 2006.

The vector y  = ( 12521 ,...,, yyy ) is the exam mark for the students, i.e.

1y = exam mark for student 1, 2y  = exam mark for student 2,... etc.

If we consider the students for different years, then the vector y  will take on

different values. Here we consider a distribution of y , which will be called a

superpopulation model.
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5.2 Definitions

For a superpopulation model  and sampling design p , the expectation,

variance and co-variance operators are denoted by CVE ,,  and ppp CVE ,,

respectively.

5.2.1 Design Unbiased (p - unbiased) Estimator

An estimator t  is said to be design unbiased for total Y  if and only if

( )pE t Y NRy .

The class of p-unbiased estimators will be denoted by pC .

5.2.2 Model Unbiased (  - unbiased) Estimator

An estimator t  is said to be model unbiased if and only if

)(tE  = )(YE .

The class of -unbiased estimators will be denoted by C .

5.2.3 Model-Design Unbiased (p  - unbiased) Estimator

An estimator t  is said to be a model-design unbiased estimator if and only if

)(tEE p  = )(YE .

The class of p -unbiased estimators will be denoted by pC .
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If an estimator is design and model unbiased then it is model-design unbiased

i.e. the class of model-design unbiased estimators contains both the class of

design unbiased estimators pC and the class of model unbiased estimatorsC .

5.2.4 Non-informative Sampling Design

A sampling design is said to be a non-informative sampling design if and only

if the selection of a sample does not depend on the study variable syi '  i.e. the

sampling design is non-sequential.

For a non-informative sampling design E  and pE  are commutative i.e.

)(tEE p = )(tEE p .

5.2.5 Optimal Estimator

An estimator 0t  belonging to a certain class of estimators C , is said to be an

optimal estimator (or optimal) for estimating Y  under a given superpopulation

model  and a sampling design p  if

2
0 )( YtEE p

2)( YtEE p ,)( 0 Ctt

and the inequality is strict for some .
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5.2.6 Optimal Strategies

A sampling strategy ),( tph  with ,p P t C , is a combination of sampling

design p  and estimator t , based on a sample selected using the design .p

Let H  be a class of strategies ),( tph  with CtPp ,  , then the strategy

Htph ),( 000  is said to be optimal in H

if
2

0 )(
0

YtEE p
2)( YtEE p ,)( 0 Hhh

and the inequality is strict for some .

5.3 Inference under Model-based approach

Suppose we have collected the data siyid i ,,  where the values of iy  in

the sample s  have been recorded. In the prediction approach, the statistician

is to predict the unobserved values of iy  for si i.e. sUi , U  being the

finite population. This is done by assuming a superpopulation model where

the actual values Nyyy ,...,1  are one of the realizations of the random

variables NYYY ,...,1 . The joint probability distribution of Y supplies the link

between the observed syi ' si and the unobserved syi ' si .

The details are given by Royall (1970), Cassel, Särndal and Wretman (1977),

Chaudhuri and Stenger (1992), Lohr (1999) and Valliant, Dorfman and Royall

(2000) amongst others.
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5.3.1 Estimation of Population Total Y

Here we assume the following superpopulation model

Model : ii xYE , 2
iiYV  and 0, ji YYC     (5.3.1)

where VE ,  and C  denote the expectation, variance and covariance

with respect to the model ,

sxi '  are known, positive auxiliary variable,

 is a model parameter and

)(22
ii x particular function of ix  only.

The population total Y  can be written as

si
i

si
i yyY . (5.3.2)

The quantity
si

iy  is known because iy , si has been observed. We need to

predict the unobserved quantity
si

iy  using the superpopulation model .

Consider the conditional expectation given data siyid i ,,  viz.

si
i

si
i xdyE / . (5.3.3)

Now the quantity
si

ix  in (5.3.3) is known and we predict  through the data

d  collected.
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We may use the following linear function for prediction of  viz.

si
ii yd

s
ˆ

where sd
si
'  are known constants independent of syi ' .

Now replacing
si

iy by its predicted value
si

ixˆ  in (5.3.2), we get the

estimator

si si
ii xyt ˆ    (5.3.4)

where
si

ii yd
s

ˆ .

The estimator t  in equation (5.3.4) is called a predictor for Y .

Definition 1: The predictor t  is called a linear model unbiased predictor for Y if

XYEyE (5.3.5)

where
N

i
ixX

1

i.e.
si si

ii XxEx )ˆ( . (5.3.6)

The equation (5.3.6) gives the condition for model unbiasedness of t  as

follows:

ˆE . (5.3.7)

For the linear model unbiased predictor t  given in equation (5.3.4), we may

choose a loss function

2)()( YtEYtEYtVtM .
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Definition 2: Best linear optimum predictor

Let C be the class of all linear model unbiased predictors
si

is ydt
i

satisfying

XYEyE .

The predictor 0t  will be called the best linear unbiased predictor (BLUP) for Y

if

2
0 YtVYtV Ctt 0 .

Theorem

Under the superpopulation model

iii xY (5.3.8)

where

0iYE , 2
iiYV  and 0, ji YYC ,

the optimum linear predictor is

si si
iiBLUP xyt 0

ˆ (5.3.9)

for
si

i

si i

i

si i

ii

x
x

xy

2

2

2

0
ˆ .
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Proof:

YtCYVtVYtV ,2

Now
si

ii
si

ii ss
dydVtV 22 ,

N

i
iYV

1

2  and

si
ii

N

i
i

si
ii ss

dyydCYtC 2

1
,, .

To minimize YtV  subject to the condition XYEtE , we

construct

YEtEYtV

si

N

i si si
iiiiii

r
i Xxddd

sss
1

222 2 .

Now 0
si

d

022 22
iiii xd

s

i.e. 22
1

i

i
i

xd
s

si
ii Xxd

s

si si i

i
i

si
ii

x
xxdX

s 2

2

2

i.e.

si i

i

si
i

si i

i

si
i

x

x

x

xX

2

2

2

22
 .
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Here sd
x

x

x
d i

i

i

si i

i

si
i

is 02

2

21  (say)

Here the BLUP is

si
iiBLUP ysdt )(

0
=

si
i

si i

i

si i

ii

si
i x

x

yx

y

2

2

2

si
i

si
i xy 0

ˆ .

Corollary 1

If 222
ii x , then

i

i

x
y

n
1ˆ

0  and the BLUP is

si
i

si i

i

si
i x

x
y

n
yt 1

0 .

Corollary 2

Let ii x22 , then

si
i

si
i

x

y
0

ˆ  and the optimum BLUP reduces to the ratio

estimator as follows

si
i

si
i

si
i

si
iR xX

x

y
yt = X

x
yX

x

y
t

s

s

si
i

si
i

where
si

is yy  and
si

is xx .
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5.3.2 Purposive Sampling

The best linear unbiased predictor for the model  with ii x22  is given by

X
x
yt

s

s
R .

The magnitude of

si
i

s

s
R y

x
y

XVYtVtM

si
i

s

s
s x

x
y

xV ' =
si

i
si

i
s

s

x
x 22

2

2' .

Now noting ii x22 , we get

1
2

s
R x

XXtM .

The value RtM  attains a minimum when
si

is xx  is the maximum. So the

value of RtM  attains a minimum value for the sample s  if we choose the

units with the largest sxi '  to constitute the sample.

Now if we choose the optimum sampling design as one which minimizes

YtEE Rp ,

then we find the optimal strategy constitutes the estimator Rt  and sampling

design 0p  which selects the sample 0s  with probability 1. The sampling

design 0p  is clearly a purposive sampling design which selects the sample 0s

with probability 1.
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5.3.3 Balancing and Robustness

In practice we will never be sure as to which model is appropriate in a given

situation. Suppose that model  given in equation (5.5.1) is considered

adequate and one thinks of adopting the optimal strategy Rtp ,0  for which

x
yXtR

and

2

2

0

1

x
xX

n
n
NN

MYtV R
R .

We want to examine what happens to the performance of the strategy if the

correct model is given by

Model * : ixE * .

Under this model Xx
XNtE R*  and thus Rt  has the following bias

1* x
XNYtEtB RR .

This bias disappears if and only if Xx . Therefore instead of using the

design 0p  which is optimal under model , one would use the design *p

where Xx , then Rt  which is model unbiased under model  is also model

unbiased under model * . A sample for which Xx is called a balanced

sample and a design which prescribes choosing a balanced sample with

probability 1 is called a balanced design. So, based on a balanced sample, Rt

is robust in respect of model bias.

A balanced design may however not be available if for example there exists

no sample of a given size with Xx .
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5.4 Optimal Design-unbiased estimators

Here we will show the existence of an optimal estimator in the class of

unbiased estimators pC  with the following superpopulation model M1 as

defined below.

5.4.1 Model M1

The syi '  are independently distributed with mean iiM yE )(1 and variance

2
1 )( iiM yV  for Ni ,...,1 , where the si '  are known and the si '  are

unknown.

Theorem 5.4.1 (Godambe & Joshi (1965))

Under the model M1 and a given sampling design p  with 0i Ni ,...,1 ,

the expected variance of an unbiased estimator t  ( pC ) of Y  satisfies the

following inequality:

)(1 tVE pM

N

i i
i

1

2 11 = )(1 tVE pM (5.4.1)

where t  =
N

i i

iiy
1

with
N

i
i

1
.

Proof:

)(1 tVE pM = 22
1 )( YtEE pM

 = 2
11

2
1 )()()( YEYVtEE MMMp

 = 2
11

2
11 )()()()( YEYVtEEtVE MMMpMp

 = )()()()( 1
2

111 YVYEtEEtVE MMMpMp (5.4.2)
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We let )(st  be the value of the estimator t  based on the sample s, selected

with probability )(sp .

Let us write

),(),(),( yshystyst HTE

where
N

i
si

i

i
HTE Iyyst

1

),(  is the Horvitz-Thompson estimator.(Horvitz-

Thompson (1952))

and ),( ysh  is a function of the syi '  for si  only.

Since ),( yst  is unbiased for Y , we get

s s
HTE Yspyshspystspyst )(),()(),()(),(

which implies that 0)(),( spysh
s

. (5.4.3)

Further 0)(),( spysh
s

 yields

0)(),()(),( spyshspysh
isis

(5.4.4)

where
is

is the sum over those samples which do not contain the unit i .

Then we have

s
HTEMMHTEMMp spyshystCyshVystVtVE )()},(),,({2)},({)},({)( 1111 .    (5.4.5)
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Now
s

HTEM spystV )()},({1 =
s

N

i
si

i

i spI
1

2

2

)( =
N

i i

i

1

2

.

And
s

HTEM spyshystC )()},(),,({1 =
s

N

i i

iiM
si yshyEIsp

1

1 ),()()(

=
N

i s
si

i

ii
M spyshIyE

1
1 )(),()(

=
N

i isi

ii
M spyshyE

1
1 )(),()(

=
N

i isi

ii
M spyshyE

1
1 )(),()(         (using 5.4.3)

= 1 1
1

( ) ( , ) ( )
N

i i
M M

i s ii

yE E h s y p s

= 0 (5.4.6)

(as 'iy s  are independent).

Finally putting (5.4.5) and (5.4.6) into (5.4.2), we get
N

i
MMMpMp

i

i
pM YVYEtEEyshVEtVE

1
1

2
111

2

1 )()()()},({)(

N

i i
i

1

2 11 .

Note:

)(1 tVE pM  attains its lower bound (5.4.2) when

i) 0)},({1 yshVE Mp  and

ii) 0)()( 11 YEtE MM . (5.4.7)
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These conditions (5.3.7) are satisfied as per Chaudhuri and Stenger (1992)

when

N

i
si

i

ii Iytt
1

with
N

i
i

1
.

The estimator

N

i
si

i

ii Iyt
1

is known as the generalized difference estimator.

Consider the model M1 with ii x , where  is an unknown positive quantity

and ix  is the value of the auxiliary characteristics x  for the ith  unit which is

known and positive for every Ni ,...,1 .

Let P  denote the class of fixed effective size ( n ) sampling designs and

)( nx Pp  be a ps  design satisfying

ii np for every Ni ,...,1

with Xxp ii / ,
N

i
ixX

1
.

Then )(tVE p  attains the lower bound of (5.3.1) when

N

i
si

i

i
HTE I

np
ytt

1

.

The following theorems were obtained from Godambe and Joshi (1965) and

Cassel, Särdal and Wretman (1977).



88

Theorem 5.4.2

Under the model M1 with ii x  and nPp

)(1 tVE pM

N

i i
i np1

2 11  = )(1 HTEpM tVE uCt . (5.4.8)

Minimizing
N

i i
i

1

2 11 , the right hand side of (5.4.1) subject to n
N

i
i

1
,

yields

1
/ ( )

N

i i i i
i

n

and the corresponding minimum value of

N

i i
i

1

2 11  =
2

1

1 N

i
in

-
N

i
i

1

2 .

Let ,p be a fixed effective size sampling design with

)(ii   and
1 ( )

N
i

si
i i

I =
N

i
i

1
        for every s with )(sp  > 0,

t  reduces to
1 ( )

N
i

si
i i

y I   as

t  =
1 ( )

N
i i

si
i i

y I

    =
1 ( )

N
i

si
i i

y I .
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Then the expected variance of the Horvitz-Thompson estimator ( HTEt ) based

on sampling design ,p attains the lower bound given above. The following

theorem shows how a sampling strategy based on the design ,p  and the

Horvitz-Thompson estimator is optimal.

Theorem 5.4.3

Under the model M1, ),( , HTEo tph , where
1 1

N N
i i

HTE si
i ii i

y yt I x
nx

 , is

optimal in the class of strategies ),( tpH  with un CtPp ,  i.e.

)(tVE p

2

1

1 N

i
in

-
N

i
i

1

2  = )(
, HTEp tVE un CtPp , . (5.4.9)

Another optimal strategy can be found if ii x  and 222
ii x  ( 0 ), as

,p reduces to a xp  design, with

i
i

i np
x
xn  and

1

N
i

HTE si
i i

yt x I
nx

 ,

So we get the following theorem which states that the new strategy based on

the design xp  and the estimator HTEt  is an optimal strategy.

Theorem 5.4.4

Under the model M1, with ii x  and 222
ii x , ),( HTExx tph  is the optimal

strategy in the class of strategies ),( tpH with un CtPp , . i.e

)(tVE p

N

i
ix

n
X

1

2
2

2  = )(
, HTEp tVE un CtPp , . (5.4.10)
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Finally, the last case that we consider for model M1 is when ix  = 1 for

Ni ,...,1 . We get ii x  and 22
i  so that design xp  reduces to a

sampling design 0p  with 0N
n

i  and sHTE yNt , where
si

is nyy / . So

using the new design we get the following optimal strategy:

Theorem 5.4.5

Under the model M1, with i  and 22
i , ),( 00 syph  is the optimal

strategy in the class of strategies ),( tpH with un CtPp , . i.e

)(tVE p 12

n
NN  = )(

, sp yVE un CtPp , . (5.4.11)

5.4.2 Model M2

The next model that we consider is model M2 where

iiM yE )(2 )( i , 2
2 )( iiM yV  (>0)

and

jijiM yyC ),(2 )11( .

This model was considered by Cassel, Särdal and Wretman (1977) and

Chaudhuri and Stenger (1992) amongst others.

We will first find an optimal estimator and then a few optimal strategies.
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Let luC  be the class of linear p-unbiased estimators of the population total Y

consisting of estimators of the form

si
isis ybat

where sa  and the sbsi '  are constants free of the syi '  and satisfy the p-

unbiasedness conditions

i)
s

s spa 0)(

and

ii)
is

si spb 1)( Ni ,...,1 . (5.4.12)

Now we will find an optimal estimator lot .

Using equation (5.4.2)

)(2 tVE pM = )()()()( 2
2

222 YVYEtEEtVE MMMpMp

)()( 22 YVtVE MMp (5.4.13)

)(2 tVE pM =
si i sj

jisjsiisip bbbE 22

   =
si

isi
si

isi
si

isip bbbE 22
22

1

= Absp
s si

isi 1)(
2

(5.4.14)

where
si

isi
si

isi
s

bbspA 22
2

)( .
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Now let us maximize A  subject to the following condition

N

i
i

N

i is
sii spb

11
)( . (5.4.15)

Whenever the sbsi '  satisfy condition (ii) of equation (5.4.12), they satisfy the

condition (5.4.15) above. The converse is not true.

To maximize A  subject to the condition (5.4.15), consider the following

function  with as a Lagrange multiplier:

N

i
i

N

i is
sii

s si
isi

si
isi spbbbsp

11

22
2

)(2)( .

Differentiating the above function with respect to sib and setting it to equal zero

0
sib

, we get

si
siiisi bb . (5.4.16)

Summing equation (5.4.15) over si and noting that
si

n , the sample size,

we get

si
isi n

nb
1

. (5.4.17)

Multiplying equation (5.4.16) by )(sp and summing over all possible samples

yields

s si
isi n

nbsp
1

)( . (5.4.18)
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Using equation (5.3.15), we get

N

i
in

n
1

1 . (5.4.19)

Substituting equation (5.4.19) into equation (5.4.16) and using equation

(5.4.17), we get the optimum values of sbsi ' which maximize A  as

0sisi bb =
)(

1

inp
 with N

i
i

i
ip

1

)( .               (5.4.20)

Hence
2

1

1 N

i
in

nA .               (5.4.21)

The condition (5.4.15) yields,

2

)(
s si

isibsp

s

s si
isi

sp

bsp

)(

)(
2

2

1

N

i
i .     (5.4.22)

The equality of equation (5.4.22) holds when 0sisi bb =
)(

1

inp
.

Further with 0sisi bb , )(2 tEM  is equal to )(2 YEM  if

N

i si i

i
i

si
siiss np

baa
1

00 )(
.     (5.4.23)
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Thus under condition (5.4.15) for any design nPp , from equations (5.4.13),

(5.4.14), (5.4.21), (5.4.22) and (5.4.23), we get

)()()( 222 YVtVEtVE MMppM

=
2

1

2

1)1(
N

i
i

N

i
i

n

= )(2 lopM tVE (5.4.24)

where
si i

ii
lo np

yt
)(

 and it is an optimal estimator.

The estimator lot  becomes p -unbiased if
is

si spb 1)(0  , i.e. ii np .

Cassel, Särndal and Wretman (1977) showed that if we let p  be the fixed

sampling design with inclusion probability ii np , a strategy based on this

design and the estimator lot  will be the optimal strategy. So we have the

following theorem:

Theorem 5.4.6

Under the model M2, ),( lolo tph is optimal in the class of strategies

),( tpH with nPp and luCt .i.e.

)()()( 222 YVtVEtVE MMppM =
2

1

2

1)1(
N

i
i

N

i
i

n
= )(2 lopM tVE
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The optimum estimator lot  cannot be used in practice since in most situations,

i  and si'  are unknown for Ni ,...,1 .

Cassel, Särndal and Wretman (1977) also considered the model 1:2M  which is

the model M2 with

iii xa  and 222
ii x

where ia and ix  are positive and known
N

i
i Nx

1

for Ni ,...,1

but 2, and are unknown

and 1
1

1
N

.

So under this model, the estimator lot reduces to

si i

ii
lo a

nx
ayNt 1:

where
N

i
iaa

1
.

Thus we have the following optimal strategy using Theorem 5.4.6.
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Corollary

Under the model 1:2M , ),( lolo tph  is optimal in the class of strategies

),( tpH  in the sense that

)(
1:2

tVE pM nN

x
N

N

i
i

2

2

12 1)1( = )( 1:1:2 lopM tVE nPp , luCt

where )( nPp is a sampling design with inclusion probability of the ith  unit

X
xpnp i

iii , .

5.5 Optimal Model-unbiased estimators

A linear model unbiased ( -unbiased) estimator

si
isiss ybat (5.5.1)

for a finite population total Y  satisfies )()( YEtE s .

The class of linear -unbiased estimators will be denoted by lC .

The estimator t  can be written as

si si
isisis ybayt )1(  = *

s
si

i ty

where
si

isiss ybat 1*  and 1sisi bw .
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The estimator *
st  is a linear -unbiased estimator for the unobserved total

sY  =
si

i
si

i yy

since )()( * sYEtE s  where s  consists of the units that do not belong to s.

Here we will find an optimal estimator 0
st  in the class lC for which

2)( YtEE sp  = 2)( YtEE sp  attains a minimum for a given design p under

various superpopulation models.

Now 2)( YtEE sp  = 2* )( sYtEE sp

= )],(2)()([ ** sYtCsYVtVE ssp .  (5.5.2)

Also if 0),( ji yyC  for ji ,

then 0),( * sYtC s

so that equation (5.4.2) becomes

2)( YtEE sp = )]()([ * sYVtVE sp  = )()]()([ * spYVtV s
s

s .      (5.5.3)

We thus conclude that for a given sampling design p , st becomes optimal by

a suitable choice of sib  if for each s with 0)(sp , )( *
stV  attains a minimum

value among all linear -unbiased estimators of sY  .

The details of the model unbiased estimators are given by Cassel, Särndal

and Wretman (1977).
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5.6 Conclusion

We have seen in the earlier chapters that the design based approach often

leads to no definite optimal strategy. To combat this problem, we have

introduced the concept of superpopulation models in this chapter.

Inference under the model based approach allowed us to find best linear

unbiased predictors. These predictors were then combined with suitable

sampling designs to obtain an optimal strategy. This optimal strategy became

a purposive sampling design.

We have also noted that a balanced sampling design should be used to

ensure that we choose an appropriate model as model misspecification leads

to inefficient estimators.

For design-unbiased estimators, we have shown the existence of an optimal

estimator and have also presented several optimal strategies under two

models. We have also seen that the Horvitz-Thompson (1952) estimator

based on an appropriate sampling design becomes an optimal sampling

strategy for various superpopulation models.

Finally we presented an optimal model-unbiased estimator.
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Chapter 6

Some Specific Sampling Strategies

A sampling strategy is a combination of an estimator t  and a sampling design

p . The population under consideration is composed of N units from which a

sample of size n  is selected. We will denote the value of the study variable

( y ) and the auxiliary variable ( x ) for the units iy  and ix  respectively. Here it

is assumed that the 'ix s are true for every 1,...,i N .

In this chapter we will consider strategies which are commonly used in

practice. This includes the Hansen-Hurwitz (1943) estimator based on

PPSWR sampling scheme, Horvitz-Thompson (1952) estimator based on an

arbitrary sampling scheme, the Midzuno-Sen sampling scheme and the Rao-

Hartley- Cochran sampling strategy. The expressions of the variance and

unbiased estimator of the variance have been provided.

Inclusion probability proportional to size sampling designs proposed by

Brewer (1963), Durbin (1967) and Goodman and Kish (1950) have been also

been presented.

We also compare performances of Rao-Hartley-Cochran sampling strategy,

Midzuno-Sen sampling scheme and the Horvitz-Thompson estimator under a

superpopulation models. Some numerical examples are also provided.
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6.1 Probability Proportional to size with
      Replacement (PPSWR) Sampling Scheme

The units are selected independently at each draw. The probability of

selecting the ith  unit at any draw is i
i

xp X i
i

X x , 0ip ,
1

1
n

i
i

p ,

which is called the normed size measure for the ith  unit i.e. ii pkp )( . So,

the probability of selection of an ordered sample ),...,,(
21 niii uuus  =

kii pp ...
1

.

6.1.1 Estimation of the population total and its variance

Let )(ry  be the value of the study variable y , )(rx  the value of the auxiliary

variable x  and Xxp rr /)()( be the normed size measure for the unit that is

selected at the rth  draw, nr ,...,1 .

If the rth  draw produces the ith  unit then

( )

( )

r i
i

r i

y yP p
p p

1,...,r n  and 1,...,i N

Theorem 6.1

The estimator

hhŶ =
n

r r

r

p
y

n 1 )(

)(1

is known as the Hansen-Hurwitz estimator (Hansen-Hurwitz (1943)).
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It follows that

i) hhŶ  is an unbiased estimator of the population total
1

N

i
i

Y y .

ii) The variance of hhŶ  is ĥhV Y  = PPSV
n

where PPSV  =
N

i
ip

1

2

i

i

y Y
p

 = j

N

i

N

j
i pp

12
1

2

ji

i j

yy
p p

.

iii) An unbiased estimator of ĥhV Y  is

V̂ ( hhŶ ) = 2

1 )(

)( )ˆ(
)1(

1
hh

n

r r

r Y
p
y

nn
.

Proof:

The expectation and variance of
)(

)(

r

r

p
y

 are computed as follows:

)(

)(

r

r

p
y

E  =
1

N
i

i
i i

y p Y
p

and (6.1.1)

)(

)(

r

r

p
y

V =
2

)(

)( Y
p
y

E
r

r

=
N

i
ip

1

2

Y
p
y

i

i (6.1.2)

= j

N

i

N

j
i pp

12
1

2

j

j

i

i

p
y

p
y

=
i

i
N

i

N

j
i p

y
p

2

12
1  -

N

i

N

j
ji yy

1

=
N

i
ip

1
)1(

2

i
i

i p
p
y  –

N

i
iyY

1

22 (6.1.3)

= PPSV .
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So we get:

i) )ˆ( hhYE  =
n

ri r

r

p
y

E
n 1 )(

)(1 = Y .

ii) )ˆ( hhYV  =
n

r r

r

p
y

V
n 1 )(

)(
2

1

= ( ) ( ) ( )
2

1 ( ) ( ) ( )

1 ,
n n n

r r t

r r tr r t

y y y
V Cov

n p p p

= PPSV
n

since PPS
r

r V
p
y

V
)(

)(  and 0,
)(

)(

)(

)(

t

t

r

r

p
y

p
y

Cov for tr  as the draws are

independent.

iii) hhYVE ˆˆ =
)1(

1
nn

2

1

2

)(

)( )ˆ( hh

n

r r

r Yn
p
y

E

=
)1(

1
nn

2

1

2

)(

)( )ˆ( hh

n

r r

r YnE
p
y

E

=
)1(

1
nn

})ˆ({)( 22 YYVnYVn hhPPS

=
)1(

1
nn

)ˆ( hhPPS YnVnV  =
)1(

1
nn

)ˆ()ˆ(2
hhhh YnVYVn

= )ˆ( hhYV .
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6.2 Horvitz-Thompson (1952) Estimator based
on an Arbitrary Sampling Scheme

The estimator of Horvitz-Thompson (1952) ( HTEt ) is defined in section 3.1.3.3

as follows:

HTEt  =
si i

iy
= i

si
i i

y I .

Using Theorem 3.1, 3.2 and 3.3 from Chapter 3, we find

i) ( )HTEE t = Y  and

ii) ( )HTEV t =
i i

iy 112 + 1ij
i j

i j i j

y y .

For a fixed effective size sampling design

iii) ( )HTEV t =
2

1 ( )
2

ji
i j ij

i j i j

yy = YGtV .

6.2.1 An unbiased estimator for the variance ( )HTEV t

An unbiased estimator of ( )HTEV t was proposed by Horvitz and Thompson

(1952)

1̂( )HTEV t =
i ii

iy
112

+
i j ji

ij

ij

ji yy
1 .
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An unbiased estimator for ( )HTEV t  is given by

ˆ( )HTEV t  =
2

i j j

j

i

i

ij

ijji yy
= ŶGV .

This estimator is called the Yates-Grundy (1953) estimator.

Remark:

The unbiased estimator ˆ( )HTEV t  can be used for any sampling design with

0ij  for i j . The demerit of this estimator is that ˆ( )HTEV t can take on

negative values. No simple sufficient condition for the non-negativity of the

estimator ˆ( )HTEV t  is known.

The estimator ŶGV  can be used only for a fixed effective size sampling design

with 0ij  for i j . Sufficient conditions of non-negativity of the estimator

ŶGV  is i j ij  for i j . Various sampling designs are available for which

ŶGV  is found to be non-negative.

6.3 Midzuno-Sen Sampling Scheme
(Midzuno (1952), Sen (1953))

In this sampling scheme at the first draw, the ith  unit is selected with

probability ip  then the remaining 1n  units are selected by SRSWOR method

from the 1N  units which were not chosen in the first draw.
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The probability of selecting an unordered sample s~ = (
nii uu ,...,

1
) is

)~(sp  = 1
1

1

i
i s

p
N
n

=
1

1sx
X M

where
sr

rs xx
~

~ ,
N

i
ixX

1
,

s
siIM

~
1 =

1
1

n
N

0
1

siI
.~

~

siif
siif

Theorem 6.3

Let MSt  = X
x
y

s

s

~

~  with
si

is yy
~

~ .

Then

i) MSt  is an unbiased estimator of the population total Y ,

ii) ( )MSV t  =
N

i
iiy

1

2 1  +
N

i

N

j
ijji yy

1

1 (6.3.1)

where
s s

si
i x

I
M
X

~ ~1

,
s s

sjsi
ij x

II
M
X

~ ~1

  and

iii) an unbiased estimator for ( )MSV t is

ˆ( )MSV t =
N

i
iiisi yI

1

2 /1 +
N

i

N

j
ijijjisjsi yyII

1

/1 .
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Proof:

i) )( MStE  = .s

s

yE X
x

  = ( )s

s s

yX p s
x

  =
1

1
s

s

y
M

  =
s

N

i
iis yI

M ~ 1
~

1

1

  =
s

is

N

i
i Iy

M ~
~

11

1

  = i
i

y Y .

ii) 22)( YtE MS =
2

2

11

1 1
( )

N

si i
i

E I y Y
M p s

= 2 2 2
2 2
1

1 1
( ) si i si sj i j

i i j

E I y I I y y Y
M p s

= 2 2
2
1

1 1
( ) si i si sj i j

s i i j
I y I I y y Y

M p s

= 2 2
2
1

1
( ) ( )

si sjsi
i i j

i s i j s

I IIy y y Y
M p s p s

= 2
2

1

1 1
( ) ( )

si
i

i s

Iy
M p s

 + 2
1

1 1
( ) ( )

N N
si sj

i j
i j s

I I
y y

M p s

=
N

i
iiy

1

2 1  +
N

i

N

j
ijji yy

1

1

since 2
1

1
( )
si

s

I
M p s

 = 1
2

1

si

s s

IXM
M x

 =
1

si

s s

IX
M x

and 2
1

1
( )

si sj

s

I I
M p s

 = 1
2
1

si sj

s s

I IXM
M x

 =
1

si sj

s s

I IX
M x

.
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iii) )(ˆ
MStVE  =

N

i
iiisi yIE

1

2 /)1(
N

i

N

j
ijijjisjsi yyII

1
/)1(

     = ( )MSV t ,

which follows since ( )si iE I  and ( )si sj ijE I I .

Note:

The estimator ˆ( )MSV t can take on negative values. Sufficient conditions for

non-negativity of ˆ( )MSV t  were proposed by Hanurav (1966), Rao (1967), and

Chaudhuri & Arnab (1979). The details of the sufficient conditions are in a

complex form.

Example 6.1

Consider the following data (Cochran (1977), p35) relating to family income

( y ) and family size ( x ) for N=6 families.

Table 6.1: Family income and size for 6 families

Family 1 2 3 4 5 6

Income( y ) 62 62 87 65 58 92

Size( x ) 2 3 3 5 4 7

Cum Total 2 5 8 13 17 24

We can select a sample of n =3 families using the Midzuno-Sen sampling

scheme as follows:

The first unit is chosen using probability proportional to size sampling. We

select a random number from a random number table (Cochran (1977), p19).

The random number is 17, so the first unit chosen is 5.
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We then have to select the remaining 2 units by the SRSWOR method from

the 9 units 1, 2, 3, 4, 5, 7, 8, 9, 10 that were not selected in the first draw.

Using the random number table once again, the selected units are unit 5 and

unit 1.

So the selected sample is s  = { 6, 5, 1 }.

MSt  = s

s

y X
x

      = 92 58 62 24
7 4 2

      = 391.38 and

( )MSV t  =
N

i
iiy

1

2 1  +
N

i

N

j
ijji yy

1

1 .

Here
s

siIM
~

1 =
1
1

n
N

 =
13
16

=10

and the total of X = 24

so
1M

X = 2.4.

 Now
s s

si
i x

I
M
X

~ ~1

, we thus obtain:

531431621521421321
1

1111114.2
xxxxxxxxxxxxxxxxxx

1 3 6 1 4 5 1 4 6 1 5 6

1 1 1 1
x x x x x x x x x x x x

= 2.287559,
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532432612512412312
2

1111114.2
xxxxxxxxxxxxxxxxxx

2 3 6 2 4 5 2 4 6 2 5 6

1 1 1 1
x x x x x x x x x x x x

= 2.180892,

523423613513413213
3

1111114.2
xxxxxxxxxxxxxxxxxx

3 2 6 3 4 5 3 4 6 3 5 6

1 1 1 1
x x x x x x x x x x x x

= 2.180892,

524324614514314214
4

1111114.2
xxxxxxxxxxxxxxxxxx

4 2 6 4 3 5 4 3 6 4 5 6

1 1 1 1
x x x x x x x x x x x x

= 1.957792,

425325615415315215
5

1111114.2
xxxxxxxxxxxxxxxxxx

5 2 6 5 3 4 5 3 6 5 4 6

1 1 1 1
x x x x x x x x x x x x

= 2.068988    and

426326516416316216
6

1111114.2
xxxxxxxxxxxxxxxxxx

6 2 5 6 3 4 6 3 5 6 4 5

1 1 1 1
x x x x x x x x x x x x

= 1.753516.
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Now

s s

sjsi
ij x

II
M
X

~ ~1

  so

621521421321
12

11114.2
xxxxxxxxxxxx

= 1.006667,

631531431231
13

11114.2
xxxxxxxxxxxx

= 1.006667,

641541341241
14

11114.2
xxxxxxxxxxxx

= 0.86961,

651451351251
15

11114.2
xxxxxxxxxxxx

= 0.936131,

561461361261
16

11114.2
xxxxxxxxxxxx

= 0.756044,

612512412312
21

11114.2
xxxxxxxxxxxx

= 1.006667,

632532432132
23

11114.2
xxxxxxxxxxxx

= 0.942797,

642542342142
24

11114.2
xxxxxxxxxxxx

= 0.818182,

652452352152
25

11114.2
xxxxxxxxxxxx

= 0.878095,

562462362162
26

11114.2
xxxxxxxxxxxx

= 0.716044,

613513413213
31

11114.2
xxxxxxxxxxxx

= 1.006667,
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623523423123
32

11114.2
xxxxxxxxxxxx

= 0.942797,

643543243143
34

11114.2
xxxxxxxxxxxx

= 0.818182,

653453253153
35

11114.2
xxxxxxxxxxxx

= 0.878095,

563463263163
36

11114.2
xxxxxxxxxxxx

= 0.716044,

614514314214
41

11114.2
xxxxxxxxxxxx

= 0.86961,

624524324124
42

11114.2
xxxxxxxxxxxx

= 0.818182,

634534234134
43

11114.2
xxxxxxxxxxxx

= 0.818182,

654354254154
45

11114.2
xxxxxxxxxxxx

= 0.768182,

564364264164
46

11114.2
xxxxxxxxxxxx

= 0.641429,

615415315215
51

11114.2
xxxxxxxxxxxx

= 0.936131,

625425325125
52

11114.2
xxxxxxxxxxxx

= 0.878095,

635435235135
53

11114.2
xxxxxxxxxxxx

= 0.878095,

645345245145
54

11114.2
xxxxxxxxxxxx

= 0.768182,
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465365265165
56

11114.2
xxxxxxxxxxxx

= 0.677473,

516416316216
61

11114.2
xxxxxxxxxxxx

= 0.756044,

526426326126
62

11114.2
xxxxxxxxxxxx

= 0.716044,

536436236136
63

11114.2
xxxxxxxxxxxx

= 0.716044,

546346246146
64

11114.2
xxxxxxxxxxxx

= 0.641429 and

456356256156
65

11114.2
xxxxxxxxxxxx

= 0.677473.

So ( )MSV t  =
N

i
iiy

1

2 1  +
N

i

N

j
ijji yy

1

1

= 2 262 (2.28756 1) ... 92 (1.75352 1)

  + 62 62 (1.00667 1 ... 58 92 (0.67747 1

= 32447.41 + (-27679.5) = 4767.91.

6.4 Rao-Hartley-Cochran (1962) Sampling
Scheme

In this sampling scheme, the population is first divided at random into n

disjoint groups so that the number of units belonging to the jth  group jG  is

jN  ( nj ,...,1 ), a pre-assigned number with
N

j
jNN

1

.
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One unit is then selected from each of the groups with probability proportional

to its measure of size.

So if the unit
jiu  belongs to the jth  group jG , it is selected with probability

j

i

Gk
k

i
i P

p

x

x
q j

j

j

j

where X
xp i

i  and
Gk

kj pP = the sum of the spk ' for the group jG .

If the units
nj iii uuu ,...,,...,

1
 are selected from the groups nj GGG ,...,,...,1

respectively, then an estimator based on the above sampling scheme is given

by

RHCt  = j

n

j i

i
P

p

y

j

j

1

.

Theorem 6.4.1

i) RHCt  is an unbiased estimator for the population total Y ,

ii) ( )RHCV t  =
)1(

1

2

NN

NN
n

j
j 2

1

N

i i

i
i Y

p
y

p  and

iii) an unbiased estimator for ( )RHCV t  is

ˆ( )RHCV t = n

j
j

n

j
j

NN

NN

1

22

1

2 2

1

n

i
RHC

i

i
i t

p

y
P

j

j .
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Proof:

Let nj GGGG ,...,,...,1  and GE , GV , )/(. GE  and )/(. GV  denote the

unconditional expectation over G , unconditional variance over G , conditional

expectation for a given G  and conditional variance for a given G

respectively.

i) )( RHCtE =
1̀

/j

j

n
i

G j
j i

y
E E P G

p
 =

1

n

G j
j

E Y Y

where
kGk

kj yY .

ii) ( )RHCV t =
1̀

/j

j

n
i

G j
j i

y
E V P G

p
 +

1̀
/j

j

n
i

G j
j i

y
V E P G

p
. (6.4.1)

Now

1̀
/ ( ) 0j

j

n
i

G j G
j i

y
V E P G V Y

p
(6.4.2)

and

1̀
/j

j

n
i

G j
j i

y
E V P G

p

=

n

j

n

k i

i
i

i

in

j
j

i

i
G G

p
y

P
p

y
CovGP

p

y
VE

k

k

j

j

j

j /,/
1

=
1̀

/
n

ij
G i

j ij

y
E V p G

p
.
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Since G
p
y

P
p

y
Cov

k

k

j

j

i

i
i

i

i /, = 0 as samples are selected independently

from each other.

=
n

j jk Gt
tk

k

k
tG

j

yy
p
y

pE
1

2

(6.4.3)

Now noting that jG  is a random sample of size jN  selected from the

population of N units by SRSWOR, we obtain

2

1 j

n
k

G t k t
j k j t G k

yE p y y
p

=
2

1

( 1)
( 1)

N N
j j k

t k t
j i k k

N N yp y y
N N p

=
2

1

( 1)
( 1)

N
j j i

i
j i i

N N yp Y
N N p

. (6.4.4)

Substituting (6.4.2) and (6.4.4) in to (6.4.1) we prove part (ii).

iii)
2

1
RHC

i

iN

j
j t

p

y
PE

j

j

=
n

j
RHC

i

i
j tE

p
y

PE
j1

2
2

2

)(

= 2

1
2

2

)( YtV
p
y

PE
n

j
RHC

i

i
j

j

 . (6.4.5)
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Now
n

j i

i
j

j
p
y

PE
1

2

2

=
2

2
1

( . / )
j

n
i

G j
j i

yE E P G
p

=
n

j Gi i

i
G

j p
y

E
1

2

2

)(

=
2

2
1 1

n N
j i

j i i

N y
N p

=
2

2
1

N
i

i i

y
p

. (6.4.6)

So substituting (6.4.6) into (6.4.5) we get
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So from (6.4.7), we get )()](ˆ[ RHCRHC tVtVE .

By Cauchy’s inequality
222 NNNn ii

hence
N

i
i n

NN
1

2
2

and 2
iN minimum when

n
NN i .
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Theorem 6.4.2

Assuming
n
NN i  is an integer, we get

i) ( )RHCV t =
2

)1(
Y

p
yp

Nn
nN

i

i
i

and

ii) ˆ( )RHCV t =
n

i
RHC

i

i
i t

p
yp

nN
nN

1

2

)1(
.

Proof:

The theorem can be proved by putting
n
NN j  in the above theorem.
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ii) ˆ( )RHCV t = n
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Remark:

i) The variance ˆ( )RHCV t is always non-negative.

ii) The Rao-Hartley-Cochran estimator RHCt  is inadmissible because it is

based on the order of the selection of units.

iii) The Rao-Hartley-Cochran estimator RHCt  is more efficient than the

Horvitz-Thomson estimator HTEt  because )()( HTERHC tVtV .

Example 6.2

Referring to Example 6.1, we have the following data relating to family income

(in 1000’s) and family.  We want to select a sample of size n =3 from a

population of size N=10 using the Rao-Hartley-Cochran sampling strategy.
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Table 6.2a: Family income and size of 6 families

Family 1 2 3 4 5 6 7 8 9 10

Income( y ) 62 62 87 65 58 92 88 79 83 62

Size( x ) 2 3 3 5 4 7 2 4 2 5

The first step is to randomly divide the population into n =3 groups. Using the

random number table (Cochran (1977), p19), we get the following groups

Table 6.2b: Families grouped into 3 groups

Group 1G 2G 3G

Family 3 4 6 1 5 7 9 2 8 10

Income( y ) 87 65 92 62 58 88 83 62 79 62

Size( x ) 3 5 7 2 4 2 2 3 4 5

Cum Total 3 8 15  2 6 8 10  3 7 12

We now select one unit from each of the groups with probability proportional

to its measure of size.

Using 2 columns in the random number table (Cochran (1977), p19) we select

the units as follows:

Random number         Unit

02 3

13 -

78 -

16 -

65 -

01 1

15 -

11 10

So the selected sample is s = { 1, 3, 10 }.
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So RHCt  = j

n

j i

i
P

p
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j

j

1
where X

xp i
i  and

Gk
kj pP

       =
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5
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37
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62

       = 893.8,

( )RHCV t =
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)1(
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p
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Nn
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     = 10 3
3(10 1)
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     = 34024.14.

and

ˆ( )RHCV t =
n

i
RHC

i

i
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p
yP

nN
nN

1

2

)1(

     =
)110(3

310
222

84.893
37

5
62

37
584.893

37
3
87

37
38.893

37
2
62

37
2

     = 23778.22.

6.5 Inclusion Probability Proportional to

Measure of Size Sampling Scheme (IPPS or ps )

The Horvitz-Thompson estimator, HTEt , based on a fixed sample size design

becomes constant if the syi '  are proportional to the inclusion probabilities

si '  and in this case the variance becomes zero.
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The values of the syi ' are unknown before the survey so one cannot construct

a sampling design with inclusion probabilities that are proportional to iy

values.

If an auxiliary variable with values that are positive, known and approximately

proportional to the study variable y  is available, the variance of HTEt  is

expected to be small for a sampling design whose inclusion probability is

proportional to the measure of size i.e.

i
i

i np
X
x

n as
X
x

p i
i .

A sampling design is said to be an IPPS or ps  sampling design if

i) ii np  < 1 i.e.
n

pi
1 for every Ui

ii) 0ij for Uji, .

Several IPPS sampling schemes are available in literature, but most of them

are very complex.

6.5.1 Brewer’s (1963) Sampling Design (n=2)

In this method, the ith  unit is selected at the first draw with probability

2 (1 )(1)
(1 2 )

i i
i

i

p pp
A p

where 2 (1 ) (1 1 2 )
(1 2 ) (1 2 )

i i i i

i U i Ui i

p p p pA
p p

1
(1 2 )

i

i U i

p
p

. (6.5.1)
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The conditional probability of selecting the jth  unit in the second draw given

that the ith  unit is selected at the first draw is

(2)
(1 )

j
j i

i

p
p

p
for j i U

and

(2) 0
i i

p .

The inclusion probability of the ith  unit is

(1) (1) (2)i i j i j
j i

p p p

1

2 1
1 2 1 2

ji i

ji j

pp p
A p p

2 ip .

The inclusion probability for the ith  and jth  unit ( i j ) is

(1) (2) (1) (2)ij i jj i i j
p p p p

2 1 1
1 2 1 2

i j

i j

p p
A p p

.

So the difference is given by

2 1 12
1 2 1 2

i j
i j ij

i j

p p
A

A p p

( , )

2
1 2

i j k

k i j k

p p p
A p

0 .
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6.5.2 Durbin’s (1967) Sampling Design (n=2)

In this sampling scheme, the probability of selecting the ith  unit at the first

draw is

(1)i ip p for i U .

The conditional probability of selecting the jth  unit given that the ith  unit was

selected at the first draw is

1 1(2)
1 2 1 2jj i

i j

p p A
p p

for j i

and

(2) 0
i i

p

where A  is given in (6.5.1) above and 1
j i

j U

p .

The probability of selecting an unordered sample ( , )i j  is

(1) (2) (1) (2)ij i jj i i j
p p p p

1 12
1 2 1 2i j

i j

p p A
p p

which is the inclusion probability of the ith  and jth  unit  for Brewer’s (1963)

sampling scheme.

The inclusion probability for the ith  unit is

( )

2i ij i
j i

p .

So the difference 0i j ij .
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6.5.3 Goodman and Kish (1950)

In this sampling procedure, we assume inp  1 for every i U .

Let
n

j
ji pn

1

for ni ,...,1

and 00 .

A random start d  is selected from a uniform distribution over (0,1). The

random start selects sample units whose index “j” satisfies

jj kd1 for 1,...,0 nk .

This sampling procedure can be used for the selection of an IPPS sample for

any value of n.

No simple expression for ij  is available. Hartley and Rao (1978) gave an

expression for ij . An approximate expression for the variance of the Horvitz-

Thompson estimator, HTEt  =
si i

iy
 is provided by Ashok and Sukhatme

(1976).

i
iii

i
i zpnzp

n
222 )1(1

i i i i
iiiiiii zpzppzp

n
n 23222223 )(221

= GKV . (6.5.2)

Where Y
p
y

z
i

i
i  and GKV  is called the Goodman-Kish estimator.
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An unbiased estimator of GKV is

2

2
1ˆ

j

j

i

i

i sj ij

ijji
GK

yyV

       =
22

1
2
1

j

j

i

i

i sj ij

ji

np
y

np
yppn

.

The expression (6.5.2) above indicates that the variance of HTEt  based on the

Goodman and Kish sampling design provides a smaller variance than the

Hansen-Hurwitz estimator based on PPSWR sampling.

6.6 Comparison of Strategies under Super

     Population Models

Here we compare the Horvitz-Thompson estimator with IPPS sampling

design, the Rao-Hartley–Cochran strategy and the Midzuno-Sen strategy.

These strategies are most commonly used in practice. This comparison is

done using the following superpopulation model.

Superpopulation model M:

iiM xyE )( ,

g
iiM xyV 2)(  and

0),( jiM yyCov  for ji (6.6.1)

where )0(, 2  are unknown constants, g is unknown but anticipated to lie

in the interval (0, 2). Here the sxi '  are positive known constants.

MM VE ,  and MCov  denote respectively, the expected value, variance and

covariance with respect to the model M.
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The model (6.6.1) was used by Cochran (1963), Cassel, Särndal and

Wretman (1977), Rao (1967), Hanurav (1967), Chaudhuri & Arnab (1979)

among others.

The variance of the Horvitz-Thompson estimator, HTEt  =
si i

iy
 is given by

( )HTEV t =
i i

iy 112 + 1ij
i j

i j i j

y y .

The expected variance of the HTEt  is given by

)( HTEM tVE = 1)(11)( 2

ji

ij
ji

i j
M

i
iM yyEyE

     =
i j ji

ij
ji

i

g
ii xxxx 111 2222 .

For a ps sampling scheme X
xnnp i

ii .

11)( 2

i

g
iHTEM xtVE (6.6.2)

    = 1E .

The variance of the Rao-Hartley-Cochran estimator with n
N  as an integer is

given by

)( RHCtV =
2

)1(
Y

p
yp

Nn
nN

i

i
i

         = 2
2

)1(
Y

p
y

Nn
nN

i

i .
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And the expected variance of RHCt  is given by

222
222

)1(
)( i

g
i

i

g
ii

RHC xx
p

xx
Nn

nNtEV .

Now putting X
xp i

i , we get

)( RHCM tVE    = g
i

g
i xxX

Nn
nN 12

)1(
(6.6.3)

= 2E .

The variance for the estimator MSt  based on the Midzuno-Sen sampling

scheme is given by

)1()1()( 2
ijjiiiMS yyytV

where
i iii

i
n

xxx
n
N

X
...

1

1
1

2

and
ji iiji

ij
n

xxxx
n
N

X
, ...

1

1
1

3

.

If
i

and
ji,

denote the summation over 1n  distinct numbers ( nii ,...,2 )

other than i  and the summation over 2n  distinct numbers ( nii ,...,3 ) other

than i  and j  respectively.

Also, it is known know that X
n
NX ii .
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The expected variance for MSt  is given by

)( MSM tVE = )1()1()1( 222
i

g
iijjiii xxxx

      = )1(2
i

g
ix            (6.6.4)

      = 3E .

Since 0)1()1(2
ijjiii xxx .

6.6.1 Comparison between the Horvitz-Thompson

         Estimator and the Rao-Hartley-Cochran Strategy

Following Hanurav (1967), we get

12 EE =
N

i

g
i

N

i

g
i xXxN

Nn
n

1

1

1

2

)1(
1

=
N

i
i

g
i n

XxxN
Nn
n

1

2

)1(
1

= i
g
i xxCovN

Nn
n ,

)1(
1 122 .

So 12 EE 0 if 01g  i.e. 1g ,

12 EE  = 0 if 01g  i.e. 1g  and

12 EE 0 if 01g  i.e. 1g .       (6.6.5)

Thus the Horvitz-Thompson estimator is superior to the Rao-Hartley-Cochran

strategy under the superpopulation model M when 1g . For 1g , the Rao-

Hartley-Cochran strategy is better than the Horvitz-Thompson estimator.

The two strategies are equally efficient for 1g .
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6.6.2 Comparison between the Horvitz-Thompson

estimator and the Midzuno-Sen strategy

Following Rao (1967), we get

13 EE =
N

i

N

i
iiii

g
i x

N
xx

1 1

12 1

            = 12 , g
iii xxNCov .

Rao (1967) showed that ii x  is an increasing function of ix  and 1g
ix

increases when 1g  so in this case 13 EE >0.

On the other hand for 1g , 1g
ix decreases as ix  increases but as ix

increases, ii x  decreases.

Hence for 1g 13 EE <0 and for 1g , 1g
ix =1 so we have 13 EE = 0.i.e.

13 EE >0 for 1g ,

13 EE = 0 for 1g  and

13 EE <0 for 1g . (6.6.6)

Thus the Horvitz-Thompson estimator is better than the Midzuno-Sen strategy

for 1g . For 1g , the Midzuno-Sen strategy is better than the Horvitz-

Thompson strategy. For 1g  both strategies are equally efficient.
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6.6.3 Comparison between the Midzuno-Sen Strategy and

         the Rao-Hartley-Cochran Strategy

Following Chaudhuri and Arnab (1979), we get

32 EE = i
g
i zx 12

where iiii x
Nn

nNxX
Nn

nNz
)1()1(

.

So that 0iz .

Hence

32 EE = i
g
i zxNCov ,12 .

It follows that

i

i
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i

i

x
x

x
z

1 .

Now

i

i
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i iiii iii
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i iii nnn
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Xxxxxxx
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This implies that 0
i

i

x
z , i.e. iz  is a decreasing function of ix .

So clearly

32 EE < 0 if 1g ,

32 EE = 0 if 1g  and

32 EE > 0 if 1g . (6.6.7)

Thus the Midzuno-Sen strategy is better than the Rao-Hartley-Cochran

strategy if 1g . If 1g , then the Rao-Hartley-Cochran strategy is more

efficient. Both strategies are equally efficient if 1g .

Now combining (6.7.5), (6.7.6) and (6.7.7), we get the following theorem.

Theorem 6.6.1

For the superpopulation model M

321 EEE if 1g ,

321 EEE if 1g  and

321 EEE if 1g .

6.7 Conclusion

The probability proportional to size with replacement sampling scheme

(PPSWR) is easy to execute. The expressions of the Hansen-Hurwitz

estimator, its variance and the unbiased estimator of its variance are very

elegant and easy to compute. The main drawback of the Hansen-Hurwitz

estimator based on PPSWR sampling is that it is inadmissible. Rao-
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Blackwellization of the Hansen-Hurwitz estimator does not yield any elegant

expression in general and hence cannot be used.

The Rao-Hartley-Cochran sampling scheme is also easy to execute the

expression of its variance and unbiased estimator of variance are elegant. It is

more efficient than the Hansen-Hurwitz estimator based on PPSWR sampling.

The main drawback of Rao-Hartley-Cochran estimator it is that it is

inadmissible. Rao-Blackwellization of the Rao-Hartley-Cochran estimator

does not yield any elegant result.

The Midzuno-Sen sampling scheme is very easy to use, expressions of the

unbiased estimator, variance and unbiased estimator of variance are easily

available. The main drawback is that we may get non-negative variance

estimates in all situations.

IPPS sampling scheme for a sample size n  greater than 2 is in general very

difficult to execute. The easiest is the Goodman Kish sampling procedure

(section 6.5.3). The main demerit of this is the complexity of the expression of

the second order inclusion probabilities.

The comparison between Rao-Hartley-Cochran, Horvitz-Thompson and

Midzuno- Sen sampling strategies reveals that one should use the Horvitz

Thompson estimator if 1g  and the Rao-Hartley-Cochran estimator if 1g .

Obviously one needs to test the suitability of the model before using the

estimator.
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Chapter 7
Conclusion

The aim of this thesis was to present some inferential aspects when sampling

from a finite population. The first step before any inference can be done is the

selection of the sample. The methods of selection that were considered in this

thesis were the cumulative total method, a sampling design and Hanurav’s

algorithm. Hanurav (1966) first established the relationship between a sampling

scheme and a sampling design. His findings are very useful in the selection of a

sample according to a sampling design.

After the selection of the sample we collect data ),( siyd i and make inference

of the population parameter. Here iy  is the value of the character ( y ) under

study for the ith ),..,1( Ni unit of the population. Our objective is to estimate

some parametric function of the population. After collecting the data, we only

know siyi ,  but we do not know siyi , . So in making inference from a finite

population, we establish a link between siyi ,  and siyi , . There is no unique

method to establish a link for a finite population. We normally use three methods.

They are (i) design based approach, (ii) model based approach and (iii) model-

design based approach.

In design based inference the link is established through a sampling design.

Godambe (1955) established the non-existence theorem. Godambe’s result was

extended by Basu (1971).The unexpected non-existence theorem has

tremendous implications for the inferential aspects of finite population sampling

as for a given sampling design, we can construct infinitely many unbiased
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estimators but we cannot choose any of them having the lowest variance in all

the situations.

To eliminate inefficient estimators, the concept of admissible estimators has been

introduced. Various admissible estimators exist for estimating a finite population

total for a given sampling design. The concept of hyper admissibility was

proposed by Hanurav (1965, 1968) to choose among other admissible

estimators. However, some estimators are inadmissible. These estimators may

be improved using the concept of sufficiency in finite population sampling and the

“Rao-Blackwell” theorem.

In model based inference, the finite population vector ),..,( 1 Nyyy is assumed to

be the realized outcome of a random variable ),..,( 1 NYYY . The joint distribution

of Y  has been denoted by . The unknown and unobserved values of the syi '  is

predicted by using the observed ),( siyd i  through the superpopulation model

.  In this model based approach an optimum estimator for some of the

population parametric functions exist, this optimum estimator however is highly

dependent on the model chosen. If an inappropriate model is chosen, the

optimum estimator may not perform well. This problem may be overcome by

using a balanced sampling design. However a balanced sampling design may

not always be available.

The model-design based approach is a hybrid of the design based and the model

based approach. In this approach inference is based on the assumed

superpopulation model and sampling design. It is expected that model design

based inference also protects against model misspecification. In this approach

optimum sampling strategies for estimating finite population total under various

superpopulation models exists.
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We then consider a few sampling strategies that are commonly used in practice

and provide expressions for estimators of the population total, the variance and

an unbiased estimator of the variance. We also compare the performances of the

Rao-Hartley-Cochran, Horvitz-Thompson and Midzuno-Sen sampling strategies.

Finally it should be noted that this thesis only discusses the theory of point

estimation. The problem of interval estimation of the parametric functions such as

the population mean, variance etc. was not discussed. The problem of optimum

estimation of the sample size has also not been discussed. In interval estimation

and optimum sample size determination, one is required to estimate the variance

of the concerned estimator. The choice of an estimator with minimum variance is

thus not enough. The variance of the chosen estimator should have additional

properties such as (i) an elegant expression of variance, which can be used in

practice; (ii) the unbiasedness property and (iii) the non-negativity property of the

variance estimators. The nonnegative property is essential for the determination

of a confidence interval as well as sample size.

So to sum up, this thesis has presented some inferential aspects when sampling

from a finite population. The first thing that we looked at was the selection of a

sample using the cumulative total method, a sampling design and Hanurav’s

algorithm. Once the sample is selected we wish to estimate a parametric function

of interest. To do this we need to find a link between known observed data and

unknown unobserved data. The following three methods were considered in this

thesis:

i) the design based approach – here the link is established through a

sampling design.  A problem with this approach is the non-existence of

an MVUE (Godambe (1955) and Basu (1971)). Admissibility of

estimators can be used to eliminate inefficient estimators.  However

some estimators are inadmissible. These estimators may be improved

using the concept of sufficiency and Rao-Blackwellisation.
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ii) the model based approach – here a superpopulation model is used

to predict unknown values. Many optimal estimators can be found but

they are highly dependent on the model that was chosen so an

incorrect model can lead to an inefficient estimator. Balanced sampling

can be used to overcome this problem.

iii) the model-design based approach- inference is based on a

superpopulation model and a sampling design. This type of inference

protects against model misspecification. Many optimal strategies for

estimating the finite population total exist.

Finally we looked at the estimation of the population total, the variance and an

unbiased estimator of the variance for some specific sampling strategies. We

also compared the efficiency of three commonly used strategies by calculating

and comparing the expected variance of their estimators. The comparison

between the Rao-Hartley-Cochran, Horvitz-Thompson and Midzuno- Sen

sampling strategies reveals which estimator might be suitable for different values

of g (equation 6.1).
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