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ABSTRACT 

 

Infield traffic has been understood to cause adverse field conditions for crop growth. 

Literature containing traffic induced yield responses for sugarcane was reviewed and 

synthesised to better estimate the impact of infield traffic on sugarcane yields. Approximately 

128 sugarcane yield responses to infield traffic treatments from local and international trials 

were collated and analysed. The impact of soil compaction effects on soil properties were not 

considered as there is a substantial body of knowledge on this topic. The results confirm that 

traffic on a sugarcane row is more detrimental than inter-row traffic. Soil water content at the 

time of infield traffic and infield traffic load intensity are further critical factors affecting soil 

compaction and sugarcane yield. Further aggregation of the data by soil textural groups was 

found to establish yield response trends useful for modelling of infield traffic scenarios, but 

were not statistically significant. 

 

Infield traffic paths of equipment movements were surveyed and mapped for a range of 

typical harvesting systems found commercially in the South African sugarcane industry. The 

maps were analysed to proportion the field area by row traffic, inter-row traffic and remaining 

non traffic areas for each machine component used infield. Yield losses based on vehicle 

traffic impacts were assigned to each corresponding component as determined from the 

results of the literature synthesis. The traffic induced yield loss was apportioned to the areas 

trafficked to determine a field based yield loss estimate for each of the harvesting and 

extraction systems and a corresponding economic impact reported. The ranking of system 

costs, reported off a mechanisation costing base, altered when the additional field traffic 

induced yield loss components were added, particularly when yield losses were compounded 

across multiple ratoons within a cropping cycle. Systems operating with low impact vehicles, 

of low traffic extent combined with controlled traffic practices resulted in the lowest yield 

losses on a field basis and also resulted in the lowest overall cost. Controlled traffic practices 

reduce the impact of heavy infield equipment on yields. 

 

The significance of this work is that the yield losses due to infield traffic can now be 

attributed to systems to allow for improved costing analyses and system comparisons to be 

conducted. It is proposed that this new contribution be incorporated into standard 

mechanisation costing methodologies to allow for such crop yield losses to be accounted for. 
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1. INTRODUCTION 

 

Soil compaction is recognised as a factor that can limit crop yield potential (Srivastava, 1984; 

Braunack et al., 1993; Robotham, 2003; Tullberg et al., 2003; Braunack et al., 2006). Much 

research has been conducted to investigate or model soil physical responses to compaction 

(Yang, 1977; Torres and Rodrigues, 1995; Braunack and Peatey, 1999; Van Antwerpen et al., 

2000; Marx et al., 2006). These trials generally show a negative impact of soil compaction on 

soil physical, chemical and biological attributes that may, but do not necessarily, lead to yield 

reductions. At the 2001 International Society of Sugar Cane Technologists (ISSCT) 

Agricultural Engineering Workshop, Meyer et al. (2001) noted the need for research to 

determine relationships between row spacing, mechanisation, soil compaction and cane stool 

damage in both agronomic and economic terms. The links between compaction and yield 

response have not been clearly established and much effort has been spent on detailed and 

specialised soil measurements to determine thresholds of when yield impacts are likely to 

occur. Such results are generally not practical for farming operations management or 

extension advisory services. Other studies have specifically investigated differences between 

traffic on the inter-row resulting in inter-row soil compaction and traffic on the crop row 

resulting in cane stool damage (Swinford and Boevey, 1984; Torres et al., 1990; Braunack, 

1995; McGarry et al., 1997; Braunack and Hurney, 2000; De Paula and Molin, 2013). 

Amongst a wide range of treatments and responses, the impact of traffic on the sugarcane row 

was typically found to be significantly more severe compared to inter-row traffic. These 

outcomes have led to the promotion of alternative agronomic practices, harvesting systems 

and infield management practices (Pankhurst et al., 2003; Robotham, 2003; Tullberg et al., 

2003; Garside et al., 2005; Braunack and McGarry, 2006; Lecler and Tweddle, 2010; Torres 

et al., 2010; Kingwell and Fuchsbichler, 2011).   

 

In the South African context, field trial research into the impact of compaction and stool 

damage has been conducted that similarly has produced variable results over wide range of 

treatment conditions. The difficulty in quantifying the magnitude of reductions in crop yield 

to infield traffic has led to general recommendations for control traffic systems and better 

management practices to be adopted (Van Antwerpen, 2007). The widespread use of non-

slewing loaders that cannot comply with control traffic principles and the lack of cost 

effective alternative loading options have, until recently, made the adoption of control traffic 
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difficult to achieve. Such uncertainty of translating variable research findings of infield traffic 

into economic terms, the associated risks that would accompany a full system change and the 

subsequent reintroduction of small slewing loaders into the local market has stimulated 

interest in such research again. In addition, anecdotal evidence presented at a farmer’s day in 

the Eston area in 2009 showed a distinct divergence in crop production and farming 

profitability between a top performing grower and others in the same area. One of the 

distinctions made was that this grower had remained on a particular loading operation 

compared to his peers who had all changed to higher impact loading system and had all 

experienced subsequent diminishing crop performance results (Pearce, 2009a; Pearce, 

2009b). Other anecdotal examples exists in the Northern Irrigated areas of the Southern 

African sugar industry, where interviews with farmers that had adopted controlled traffic 

practices, consistently reported of the benefits of higher yields and longer ratoons that far 

outweighed the costs associated with adoption (Van Antwerpen et al., 2013). There are also 

examples of growers elsewhere in the industry reverting from conventional cut and windrow 

systems to traditional cut and stack operations despite higher operational costs on the 

concerns that crop production has been adversely affected over time.  

 

This work investigates the overarching direct relationships that infield traffic has on yield 

thus circumventing the complexities of detailed soil compaction and complex soil 

interactions. This is a fresh and unique investigation based on a meta-analysis study of past 

research conducted across the world that links infield traffic to yield loss directly. Analysis of 

these relationships on higher and detailed levels were used to develop useful trends and also 

allow for economic impact comparisons to be estimated between systems. It is the first time 

compaction information has been presented in this way where the impact has been quantified 

for systems. Researchers have been trying to present this without success. This has now been 

achieved. This work shows that that current machinery costing techniques are not adequate 

and that the system has to be accounted for. This work will change many practices which are 

currently considered the most economical. 

 

Collating and synthesising the current body of literature for yield response trends would 

provide a basis from which harvesting best practices could be made and to guide where 

possible future changes to infield harvesting and loading systems in the industry may be 

required. In a typical commercial harvesting and extraction operation, infield traffic cannot be 
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eliminated, but rather controlled during the process of removing a high yielding crop such as 

sugarcane from the field. Yield losses are expected to vary depending on the systems used 

and management thereof and how controlled or uncontrolled the traffic is infield. 

Uncontrolled traffic is defined as the practice where infield vehicles are at liberty to travel 

anywhere in the field without restriction in a random pattern and thereby indiscriminately 

traffic both cropped (row) and non-cropped (inter-row) areas within the field.  

 

The hypothesis for this study is that there will be large differences in yield losses between the 

various systems typically used in South Africa, with the highest losses being attributed to 

systems containing the largest amount of uncontrolled traffic occurring infield.  

 

The purpose of this dissertation is:  

a) To review the typical complement of equipment and systems used infield for 

sugarcane harvesting and extraction operations within the South African industry.  

b) To review techniques, practices and systems that are being developed and promoted 

locally and internationally to minimise the impact of infield traffic.  

c) To collate and synthesise, from local and international literature, the impact that 

infield traffic has on the sugarcane plant and on crop yield. 

d) To determine, through field investigations, the extent and severity of infield traffic by 

profiling a range of sugarcane harvesting and extraction systems typically found in the 

South African sugarcane industry. 

e) To conduct overall cost comparisons between typical systems used in the South 

African sugarcane industry taking the cost of mechanisation and the cost of associated 

yield loss estimates into account. 

 

Chapter 2 contains a background to the sugar industry and a summary of various harvesting 

and loading systems typically found in South Africa. Chapter 3 contains a review of various 

row and vehicle spacing configurations and systems developed to minimise the impact of 

infield vehicle traffic. Chapter 4 contains a summary of experiments relating sugarcane yield 

response to traffic with distinctions made between soil compaction and stool damage. The 

synthesis of yield responses to infield traffic is contained in Chapter 5. The methodology 

used to gather the field data and analyse it to determine the extent of field traffic is contained 

in Chapter 6. Maps showing the extent of infield traffic for a range of sugarcane harvesting 
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and extraction systems and corresponding results from field data analyses are contained in 

Chapter 7. The mechanical field performances of equipment and the various systems are 

presented in Chapter 8. Chapter 9 contains the accumulation of economic cost components 

used to develop a holistic overall system cost comparison between systems. Discussions, 

conclusions and recommendations for future work are contained in Chapter 10.  
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2. OVERVIEW OF HARVESTING AND LOADING SYSTEMS USED 

IN SUGARCANE PRODUCTION IN SOUTH AFRICA  

 

The South African sugar industry is comprised of approximately 22 000 sugarcane growers and 

14 sugar mills (Figure 2.1) producing approximately 2.1 million tons of sugar per season. Direct 

income of over R 12 billion is generated from sugar sales to local and international markets. 

Direct employment within the sugar industry provides for approximately 79 000 jobs. Indirect 

employment is estimated at 350 000 jobs (Anon, 2016a). The total area under sugarcane 

production in South Africa is approximately 370 000 hectares. The average production of a 

large scale grower in the industry is 12 000 tons per annum and 160 tons per annum for small 

scale growers (Anon, 2016a). The industry average cane crop production is approximately 

64 tons per hectare of harvested cane (Anon, 2016a). 

 

 

Figure 2.1  Map of the South African sugar industry showing the distribution of sugarcane 

growing areas (distinguishing between rain-fed and irrigated areas) and mill 

locations (after Anon, 2005) 
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Sugarcane is a perennial crop with typically between six and eight harvesting cycles (termed 

ratoons) before being re-established. The average sugarcane crop cycle in South Africa varies 

from 12 to 24 months, depending on the bioclimatic region in which it is grown. Sugarcane row 

spacing in South Africa typically range between 0.9 meter (m) to 1.5 m. 

 

A variety of harvesting systems are employed in the South African sugarcane industry (Figure 

2.2). The choice of system depends on factors, such as labour cost and availability, growing 

conditions and topography (Meyer et al., 2005).  

 

 

Figure 2.2  Infield harvesting and haulage options (after Braithwaite, 2013) 

 

The results of a survey conducted during the 2003/04 season to determine the distributions of 

harvesting systems used in the South African sugar industry are listed in Table 2.1. The most 

prevalent system practiced is to burn the cane, manually cut and place the cane into windrows 

and then to mechanically load the cane from the windrows into extraction vehicles.  
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Table 2.1   Harvesting systems used in South Africa (after Meyer, 2005) 

System Fraction of crop (%) Total (%) 

Harvested green 6.1 
100 

Harvested burnt 93.9 

Mechanical harvest 2.2 

100 
Manual cut and load 1.3 

Manual cut and stack 30.0 

Manual cut and windrow, mechanically loaded 66.4 

 

2.1 Cane Cutting 

 

In South Africa, the majority of cane is hand cut. This typically occurs between April and 

December. Burning is practiced to enable easier manual harvesting (Meyer, 2005). In the 

process of manual harvesting, the cane from three to six cane rows is merged into a 

continuous windrow for mechanical loading or placed into stacks for bundle loading (Meyer 

et al., 2001). Manual cutting and windrowing of burnt cane is shown in Figure 2.3. 

 

 

Figure 2.3  Manual cutting of burnt cane 
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Meyer and Fenwick (2003) concluded that the harvesting of burnt cane using manual labour 

is approximately 20 % more efficient than manually cutting green cane (Table 2.2). The 

labour productivity for a cut and stack system is approximately 60 % to 65 % of that for the 

cut and bundle and approximately 50 % of the continuous windrowing system, respectively 

(Meyer and Fenwick, 2003). It is noted that cutter productivity for the cut and windrow 

system shown in Table 2.2 may have been enhanced compared to the other systems due to 

higher cane yields in that system. 

 

Table 2.2   Manual cutter performances in southern Africa (Meyer and Fenwick, 2003) 

Harvesting system 
Average cane 

yield (tons/ha) 

Cutter output 

(tons/day) 

Cutters per 

1000 tons 

Cut and stack (green) 72.50 3.45 1.79 

Cut and stack (burnt) 69.60 4.20 1.44 

Cut and bundle (green) 73.94 5.58 1.07 

Cut and bundle (burnt) 69.93 6.56 1.08 

Cut and windrow (burnt) 92.87 8.01 0.99 

 

Trends in employment in South Africa have shown a decrease of about 1 % of the labour 

force per annum for employment within the sugarcane industry between 1973 and 2003. This 

is less than the broader agricultural sector over the same time period (Murray and van 

Walbeek, 2007). In response to labour legislation and escalating costs, Murray and van 

Walbeek (2007) and Murray (2009) surveyed the downsizing of labour forces, reduction of 

working hours and an increase in training to improve worker productivity. Farmers were 

found to be streamlining labour intensive operations and investigating mechanical 

alternatives to manual operations. 

 

Various intermediate systems between manual cutting and chopper harvesters have been 

developed, but few have been successfully adopted on a large commercial scale (Meyer et al., 

2005). Examples include harvesting aids (Langton et al., 2006),  self-propelled semi-

mechanical cutters (Langton et al., 2008) and a wide range of tractor mounted mechanical 

whole stick harvesters as reviewed by Meyer (1996a).  
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2.2 Mechanical Harvesting 

 

Most chopper harvesters harvest a single row, or two closely spaced rows, per pass. Whole 

stalks entering the harvester are cut into smaller pieces, termed “billets”, and conveyed into 

adjacent infield haulage vehicles travelling alongside the harvester as shown in Figure 2.4. 

These operations result in two wheel passes from the harvester and two or more passes by the 

haulage vehicle per row being harvested. The number of passes by the haulage vehicle 

depends on the crop yield, field length and loading capacity of the haulage vehicle. Such 

traffic may cause crop yield losses, especially when harvesting under wet conditions and 

when considering the weight of harvesters (up to 20 tons) and infield equipment (Braunack et 

al., 2006; Braunack and McGarry, 2006). Harvester pour rates may affect infield extraction 

equipment requirements. Pour rates of 60 tons per hour for green cane and 100 tons per hour 

for burnt cane are achievable, depending on field condition and ancillary support systems (De 

Beer et al., 1993; Meyer, 1999). 

 

 

Figure 2.4      A chopper harvester and an accompanying tractor trailer to receive cane billets 

 

Environmental and social drivers combined with the prospect of an additional revenue stream 

through biomass harvesting of cane is likely to increase the adoption of green cane 

harvesting. Such a practice will require either a change of extraction systems or the amount of 

infield traffic for field recovery of the cane and leaves. Biomass recovery techniques and 
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systems are constantly being researched and reviewed (Mendoza et al., 2002; Hassuani et al., 

2005; Meyer et al., 2012; Rees et al., 2014; Smithers, 2014). These range from manual 

cane/biomass separation followed by separate recovery of cane and biomass infield to fully 

mechanised systems, such as chopper harvesters, where the whole crop is harvested and 

separated at the mill or at a nearby separation plant. These inevitably result in higher amounts 

of infield traffic. Chopper harvester speed and productivity is reduced when green cane is 

harvested. Meyer et al. (2005)  indicated that when harvester fans were switched off, the 

higher trash content reduced truck payloads by as much as 38 %. This would in turn result in 

an increase in field trips of a similar magnitude to recover the infield biomass.  

 

2.3 Infield Loading 

 

Manual loading, which provides the cleanest cane of all loading methods, may be employed 

where small fields, wet conditions and steep terrains are encountered (Meyer et al., 2001). 

The low productivity and cost of manual extraction of cane is offset by the scale of operation, 

inability to access the field or field damage caused by alternative mechanical means. 

 

Self-loading trailer systems are designed for the loading of infield stacks. The stacks are 

cable winched onto a trailer that is parked adjacent to it (Figure 2.5). 

  

 

Figure 2.5  A double stack self-loading trailer with one stack loaded 
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Single, double stack, side and rear loading variations are practiced. Typical stack sizes range 

from 3 tons to 6 tons. The advantage of these systems is that loading occurs independently of 

other operations. The system typically has lower infield traffic as both the loading and 

haulage operations are handled by the same vehicle. Stacks are often strategically placed at 

the field edge to help eliminate infield traffic. A disadvantage may be that lower payloads 

require a higher number of infield trips and larger fleets of vehicles to achieve sufficient 

throughput. Meyer et al. (2001) report on an example from Zimbabwe, where a fleet of 

42 tractor and self-loading trailer combinations conveyed stacks from field to trans-loading 

zones weighing on average 5.25 tons. A typical single stack self-loading trailer is capable of 

conveying 20 000 tons per annum when well utilized and can operate on slopes of up to 25 % 

(De Beer, 1989). This low cost and simple system is well suited for smaller scale commercial 

operations (De Beer et al., 1993). 

 

Mechanical loaders provide high capacity loading capabilities and usually require high 

capital investment. High fixed costs are offset through the full and efficient use of these 

machines (Anon, 2016b). Tractor mounted slew, self-propelled slew and non-slew loader 

variations are used. Slew type loaders have a grab mounted on a rotating boom that is able to 

swivel independently of the vehicle as shown in Figure 2.6. 

 

 

Figure 2.6 A slewing loader fitted with a front mounted push-piler 

 

The non-slewing loaders have a boom that can be raised and lowered on the vehicle, but not 

rotated relative to the vehicle. Their grab position is determined by the position, movement 

and orientation of the vehicle itself (Figure 2.7). 
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Figure 2.7  A non-slewing loader which is most commonly used in the South African 

sugarcane industry 

 

A non-slew loader is theoretically capable of loading approximately 80 000 tons per annum 

on a double shift operation. High capacity self-propelled grab loaders have been measured to  

load an average of 147 000 tons per annum using two 9 hour shift operations (Meyer et al., 

2001). A seasonal average loading rate of 43 tons per hour was reported for a fleet of 

11 slewing loaders operating in Swaziland (De Beer, 1989). Slewing loaders can operate on 

slopes of up to 20 %, whereas non-slew loaders can typically operate on slopes of up to 40 % 

due to their greater stability and manoeuvrability (De Beer, 1989). De Beer (1989) suggested 

that non-slew loaders may cause more field and cane stool damage compared to larger slew 

machines, especially under wet field conditions. The advantages of the non-slew loaders are 

their relatively lower capital cost, rigid construction, lower weight, high manoeuvrability, 

high productivity and versatility for use infield or for zone loading operations. 

 

2.4 Infield Haulage 

 

Haulage systems are required to transport harvested cane as quickly and economically as 

possible from the field to a trans-loading zone or directly to the mill (Meyer et al., 2001). The 

use of trans-loading zones is essential where field conditions or management preferences 

preclude the use of high capacity haulage vehicles infield or where haulage distances to the 
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mill are too far for low capacity vehicles to be operated economically. Trans-loading systems 

include whole stalk loose and bundle systems, loose and containerised billet systems, as well 

as transfer/cleaning stations to transfer cane into road or rail transport networks (Meyer et al., 

2001). Strategic placement of trans-loading zones is essential as short haulage tractor-trailer 

transportation typically incur costs of six to nine times that of truck transportation 

(Bezuidenhout and Meyer, 2005). Cane transport vehicles should have high speed and 

payload capabilities, ideally with a payload to tare weight ratio greater than 1.5 (De Beer et 

al., 1993) and fast loading and offloading times in order to be cost effective. Infield loading 

of road haulage vehicles is often practiced in order to minimise double handling costs and 

thereby eliminating the need for trans-loading operations and infrastructure. 

 

Little recent research and development of non-mechanised harvesting systems has been 

conducted. Recent research and development focus has been on how to better manage 

vehicles and equipment to sustain or improve crop performance. Such topics include farming 

systems, control traffic, minimum tillage and conservation agriculture. In the following 

chapter, developments and changes that have been made to infield equipment, field practices 

and vehicle management systems in response to improving machinery efficiencies, crop 

production economics and sustainable cropping practices are reviewed.  
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3. INFIELD VEHICLE MANAGEMENT SYSTEMS 

 

Under commercial sugarcane farming operations, especially during harvesting and loading 

operations, infield traffic is required to access and remove the crop from the field. This field 

access will typically result in crop damage and subsequent yield loss. The purpose of this 

chapter is to review agronomic and traffic practices that have been developed to reduce the 

impact of infield traffic and thereby improve and sustain crop yields. Maximising agronomic 

yield potential per unit area, i.e. optimizing row spacing, needs to be managed in conjunction 

with high amounts of infield traffic. The concept of controlled traffic to reduce the impact of 

infield traffic is described and various examples of implemented systems are reviewed. 

 

The on-farm harvesting and extraction of sugarcane is typically associated with high amounts 

and intensities of infield traffic due to the high biomass yield of the crop compared to other 

field crops (Meyer et al., 2001). Research has shown that infield traffic needs to be confined 

to the crop inter-row in order to minimise the impact of yield loss (Torres and Villegas, 1995; 

Braunack and Hurney, 2000; Meyer et al., 2001; De Paula and Molin, 2013). This demands 

the integration of: (a) a suitable crop row spacing configuration, (b) infield machinery wheel 

tracks to suit, and (c) practical machinery protocols to be adhered to during infield operations. 

Wide wheel tracks are typically preferred for improved vehicle stability and wide swaths and 

row spacing’s can improve mechanical field capacities and efficiencies. In contrast, narrow 

rows help to achieve early full crop canopy cover and to improve light interception by the 

crop. The wheel tracks of all infield equipment should ideally be matched with the ideal 

agronomic row spacing (typically by straddling multiple rows). A trade-off may be required 

to best match row and wheel track spacing’s for a system that is practical, efficient and that 

does not induce cane stool damage through unnecessary row traffic (Meyer et al., 1999; 

Meyer et al., 2001). Manual harvesting operations require accurate placement of windrows or 

stacks so that the wheels from infield loading and transport systems are able to traffic the 

inter-rows only.  

 

The concept of controlled traffic is discussed in Section 3.1 and various row spacing 

configurations that have or are being developed and implemented internationally are 

described in Section 3.2. 

 



15 

 

3.1 Controlled Traffic 

 

Controlled traffic is essentially the separation of wheel tracks from the cropping zone to 

create dedicated traffic and cropping zones. This requires the matching of wheel track widths 

and row widths with the purpose of confining infield traffic to permanent infield traffic lanes 

in conjunction with accurate and disciplined driving practices (Van Antwerpen et al., 2000; 

Braunack and McGarry, 2006). This is in contrast to “uncontrolled” traffic which is used to 

describe systems where infield vehicles are at liberty to travel anywhere in the field without 

restriction. The term “random” traffic is also used to indicate uncontrolled traffic or where a 

mismatch of cane row spacing and equipment track widths occur.  

 

The mismatch of traditional cane row spacing and typical infield equipment track widths are 

estimated in certain industries to have caused yield reductions in the order of 20 % (Norris et 

al., 2000). Field trials conducted by Braunack and McGarry (2006) showed that crop yields 

tended to be lower for random traffic than controlled traffic. Trouse (1982) motivated for a 

controlled traffic system on the basis of reducing energy usage from periodic tillage and 

subsequent wheel traffic re-compaction cycles that degrade soil properties. Fuel savings alone 

were estimated at 10 % for tracked and 20 % for tyre fitted vehicles when travelling on 

compacted traffic lanes. McGarry et al. (1997) showed improvements in the soil physical 

properties after a number of ratoons, following controlled traffic practices. These consisted of 

a lower density, lower soil strength and greater macro and micro-pores within the crop zone 

combined with a hard compacted traffic zone located in the inter-row area which would be 

suitable for better traction and wet weather access by infield vehicles. Robotham (2003) 

noted that crop yield increases of 10 % and greater have been cited following the adoption of 

Controlled Traffic Farming (CTF). Pankhurst et al. (2003), Tullberg et al. (2003), Turner et 

al. (2004), Garside et al. (2005), Braunack and McGarry (2006), Tullberg (2010) and 

Kingwell and Fuchsbichler (2011) have all promoted controlled traffic as an effective means 

to sustain soil and crop health, particularly if combined with additional practices such as 

breaking the monoculture, reduced tillage, organic matter conservation and precision farming 

techniques. The combinations of these practices also assist in conserving soil water, reducing 

soil disturbance and associated weed germination, reducing soil erosion, improving traction, 

improving machinery field efficiencies, improving the timing and flexibility, as well as 

reducing field operations and associated input costs. All these factors are expected to 
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contribute towards the potential for yield improvements and longer sustained cropping cycles 

(Braunack and McGarry, 2006). The integrated benefits of CTF were modelled by Kingwell 

and Fuchsbichler (2011) who report a 50 % increase in farming profit to a typical grain 

farming operation in south western Australia. A group of CTF adopters in southern 

Queensland, Australia, have reported crop production increases in the order of 37 % and 

machinery related cost reductions of 49 % (Tullberg, 2010). Lecler and Tweddle (2010) 

conducted an economic analysis on various sugarcane CTF system options for southern 

African conditions and indicated for different scenarios that all show significantly improved 

profits under CTF compared to conventional farming system practices. 

 

In Columbia, Torres and Pantoja (2005) reported on controlled traffic being practiced on a 

new crop configuration developed to better match that of the equipment track widths. Yield 

decreases from components of a fully mechanised harvesting operation and semi-mechanised 

system were compared against yields from a zero traffic control where the cane was cut and 

extracted manually. Inter-row traffic of the harvester alone decreased yields by 1.3 %, the 

haulage vehicles by 3.3 % and in combination by 4.6 %. The semi-mechanised system 

consisting of manually cut cane placed in windrows and loaded by a slew loader into cane 

haulage vehicles resulted in a combined loss in yield of 7.4 %. By inference, the loaders 

therefore contributed approximately 4 % to the yield loss. In comparison, an adjacent field 

under the same management regime but without controlled traffic was reported to yield 27 % 

less than the zero traffic plots, and 23 % below the average of the controlled traffic plots.  

 

3.2 Cropping System Configurations 

 

In order to establish a suitable distance between the row and tyre edge to minimise crop yield 

loss, trials by Carter (1985) show only beneficial effects on a cotton crop when the wheel 

edge to plant distance was set at 0.75 m. A distance of 0.40 m was suggested by Van 

Antwerpen et al. (2000) for sugarcane, who subsequently found that on a high clay soil a 

space of 0.1 m between the cane plant and the wheels proved to be sufficient to not reduce 

cane yields. Maintaining this distance in commercial applications was, however, thought to 

be difficult to achieve since there would be little margin for operator error (Van Antwerpen et 

al., 2008), unless vehicle guidance systems were employed. 
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Meyer et al. (2001) describe the adaptation of farming practices over time in Australia, where 

row spacing’s were increased from 1.1 m to 1.5 m to better suit single row mechanical 

harvesters. In order to reduce production costs, the size of harvesters and infield equipment 

were also increased. During this transition period, the mass of harvesters were reported to 

have doubled and there was a migration towards higher capacity extraction equipment with 

large diameter and low pressure high floatation tyres or tracks. Meyer et al. (2005) however, 

reported that up to 90 % of the entire field area is compacted by the combination of 

harvesters and infield transport under the standard 1.5 m row spacing system. Soil 

compaction issues combined with a focus on improving and sustaining yields have further 

stimulated the development of alternative planting systems.  

 

There are inconsistent results when considering optimum row spacing for cane production. 

Khandagave et al. (2005) reviewed a number of publications showing a positive response to a 

wider row spacing and trials conducted in India showed a significant response (64 % yield 

increase) to increasing the row spacing from the traditional 0.9 m to 1.5 m. Singels and Smit 

(2009), in contrast, referenced a number of authors showing yield increases with a reduction 

in row spacing. Table 3.1 gives an indication of yield responses to row spacing from southern 

African literature. 

 

Table 3.1 Yield response to a change in row spacing for southern African data 

Reference 
Row spacing 

trial details (m) 

Optimum 

row 

spacing 

(m) 

Yield response to 

an increase in row 

spacing from 

optimum (%/m) 

Thompson and Du Toit (1965) 0.45; 0.9; 1.37 0.45 -11 %/m  

Boyce (1968) 0.9 to 2.15 0.9 -15 %/m 

Singels and Smit (2002) 0.7; 1.2; 1.7; 2.2; 2.7 0.7 -13 %/m 

Olivier and Singels (2003) 1.8 dual rows; 1.5 1.8 m dual 

rows 

+23% for dual rows 

Singels and Smit (2009) Radial pattern:  

0.4; 0.9; 1.3; 1.7;2.2;2.6  

0.4 -22 %/m 
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Singels (2013) used the My Canesim model (Singels, 2007) to simulate crop yields for row 

spacing’s of 0.9 m, 1.35 m and 1.8 m for three soils of different water holding capacities and 

two starting times for plant and ratoon crops. Simulations were conducted using 9 years of 

weather data from two KwaZulu-Natal south coast weather stations. The results showed that 

a row spacing of 0.9 m tended to yield the highest, although this was more apparent in the 

plant crop than ratoon crops. This supported the results from a number of studies, as per 

Table 3.1, where 0.9 m seems to be a reasonable and practical row spacing option 

corresponding to high yields under southern African conditions. It also allows commonly 

found tractor and equipment wheel tracks of 1.8 m to align with the crop inter-rows, which 

will minimise traffic induced yield losses caused from travelling on the row. However, 

constraining the traffic of wide tyres to the narrow (0.9 m row spacing) inter-row area during 

field operations is difficult to achieve in practice, with little tolerance for driver error, 

particularly if planting inaccuracies or crop regrowth were impinging on this area.  

 

In Australia, the improvement in yield at narrower row spacing’s led Norris et al. (2000) to 

test a “high density planting” system. This comprised of raised crop production bed 

consisting of four rows at 0.47 m, separated by 0.7 m traffic lanes set at a corresponding 

equipment track width of 2.1 m. A raised bed system 2.3 m wide with three rows set at 

0.55 m apart was also tested with modified harvesters. These systems were developed 

following agronomic trials that indicated yield increases of between 20 % and 50 % at the 

narrower spacing’s compared to the 1.5 m row spacing (Bull and Bull, 2000). Substantial 

modifications to planting, harvesting and extraction equipment were, however, reported to be 

required. 

 

A modified dual row planting system with a wide inter-space (3.9 m) for crop residues (and 

possible intercropping) and three sets of dual rows (0.8 m + 2.1 m spacing) to match 

harvester or loader systems (Figure 3.1) is described by Torres et al. (2010), Columbia. 

Parabolic furrows were formed in the centre of the dual row inter-rows for furrow irrigation. 

Yield results compared against conventional 1.75 m single row spacing suggested that plant 

cane yields are compromised by the lack of crop in the wide inter-row space for the first crop, 

but are matched and improve in consecutive ratoons thereafter. The cropping system was 

further adjusted by planting a single row in the wide inter-row space to improve the yields of 

the plant crop. The positions of these single rows are indicated by the arrows in Figure 3.1. 
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Figure 3.1  A modified dual row system after Torres et al. (2010) (units in mm) 

 

Dual row systems with distances between close rows ranging from 0.3 m to 0.8 m and overall 

spacing between crop zones (pairs of dual rows) ranging from 1.8 m to 2.1 m have been 

gaining popularity (Meyer et al., 2005). The choice of spacing is typically determined by the 

infield vehicle wheel tracks and management preferences. An example of a dual row system 

to cater for a wheel track spacing of 1.8 m is shown in Figure 3.2. 

 

 

Figure 3.2  Strategic spacing of wheels, sugarcane and break crops within a dual row 

system (0.5 m + 1.3 m crop spacing’s) and corresponding 1.8 m wheel track 

spacing (Lecler and Tweddle, 2010) (units in mm) 
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In Zimbabwe, a system has been developed for the integration of surface furrow irrigation 

and mechanised planting and harvesting operations. The proposed layout consists of 

irrigation furrow set between dual rows of cane spaced at 0.9 m with 2.4 m between the 

centres of each pair of dual rows (Lecler, 2015). The 2.4 m spacing is considered suitable for 

a range of locally used harvesting and loading equipment. 

 

Braunack and McGarry (2006) reported an increase in the yields from controlled traffic dual 

rows (0.3 m apart) at 1.8 m wheel spacing to match harvester and haul-out track widths 

against non-controlled traffic in a field with a crop row spacing of 1.5 m.  

 

In South Africa, McElligott et al. (2014) reported an increase in cane production of 21 t/ha 

for a commercial farming operation through the adoption of a tramline row spacing of 

0.65 x 1.15 m to match vehicle tracks, reduce infield compaction and to reduce herbicide use. 

A 30 % reduction in herbicide costs were also attributed to the change from the single row 

spacing of 1.37 m. 

 

A range of row spacing changes and corresponding yield benefits are listed in Table 3.2.  

 

Table 3.2 Yield response to a change from traditional single row to dual row spacing 

Reference 

Traditional 

row 

spacing (m) 

Dual row × 

wheel track 

spacing (m) 

Yield benefit 

Anon (1998)-Zimbabwe 1.5 0.42 × 1.8 +12% 

Olivier and Singels (2003)-Swaziland 1.5 0.4 × 1.6 Increase 

Olivier and Singels (2003)-South Africa 1.5 0.4 × 1.8 +32% 

Olivier and Singels (2003)- South Africa 1.5 0.6 × 1.8 +30% 

Olivier and Singels (2003)- South Africa 1.5 0.9 +44% 

Braunack and McGarry (2006)-Australia 1.5 0.3 × 1.8 Increase 

Bull and Bull (2000)-Australia 1.5 0.5 x 1.8 +4% to 30% 

Ismael et al. (2007)-12 trials-Mauritius 1.6 0.5 × 1.8 +3% to 28% 

Klomsa-Ard et al. (2007)-Thailand 1.0 0.5 × 1.6 +18% to 53% 

McElligott et al. (2014)- South Africa 1.37 0.65 × 1.15 +21 t/ha (+20%) 
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In addition to higher yields, other noted benefits of narrower dual rows include: Improved 

water use efficiency (Anon, 1998; Olivier and Singels, 2003; Klomsa-Ard et al., 2007), 

quicker crop canopy, improved light interception and better weed management (Ismael et al., 

2007). Mechanical harvesting of the dual rows simultaneously lead to improved field 

efficiencies, improved harvesting rates, less turning time and less field distance travelled 

(Ismael et al., 2007).  Disadvantages are the higher quantity of seedcane required during 

planting and the tendency of the tramline spaced cane to lodge (Anon, 1998). 

 

Reduced tillage was also compared against conventional intensive cultivation in the trials by 

Braunack and McGarry (2006). In both trials, the soil in the crop row remained in better 

physical condition when practicing controlled traffic and reduced tillage compared to 

conventional traffic and tillage. Yields were generally higher under controlled traffic 

compared to random traffic and generally higher under reduced tillage operations compared 

to conventional tillage production. Crop yield was not compromised by the adoption of 

controlled traffic and benefits were expected to accrue with time through sustained yields.  

 

The following chapter will focus on the response of sugarcane to infield traffic. Aspects 

include the physiological response of sugarcane to traffic and the impact of vehicle and 

loading characteristics on the crop.  
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4. SUGARCANE RESPONSE TO INFIELD TRAFFIC 

 

The aim of this chapter is to review compaction and infield traffic trials that have reported 

yield responses to various infield traffic treatments. The focus is on sugarcane unless 

otherwise stated. The chapter is introduced with general plant responses to soil compaction, 

followed by agronomic responses to variations in compaction events. A review of a model 

developed to predict sugarcane yield responses to compaction concludes this chapter.  

 

Industries that have adopted full mechanisation have reported that the higher traffic 

intensities associated with full mechanisation have increased the risk of adverse conditions 

developing infield. These include soil compaction and crop damage, especially in or 

following wet field conditions resulting in observed yield losses and, in some cases, a 

reduction in ratoon cycle lengths (Braunack et al., 1993; Pinto and Bellinaso, 2000). 

 

Soil compaction, soil sealing (or capping) and physical damage to the cane stools caused by 

harvesting and transport equipment can have a significant impact on long term sustainability. 

This damage tends to be aggravated during wet field conditions (soil water content near field 

capacity) and where traffic is uncontrolled (Maud, 1960; Meyer et al., 1996). Traffic is more 

likely to occur on the row when the traffic is uncontrolled or when the positions of rows are 

not easily visible. A field practice, such as green cane harvesting, for example, typically 

results in high levels of crop residue remaining on the field surface making it difficult to see 

where the positions of the rows and inter-rows are. Another example of where uncontrolled 

traffic is likely to occur, is where cane windrows or stacks are misaligned and thus requiring 

the loader operator to inadvertently drive over the rows during loading operations. A simple 

technique to guide traffic within dedicated traffic lanes is the construction of infield ridges or 

cropping beds and alternative traffic lanes matched to equipment wheel tracks. 

 

Row traffic (traffic on or over the crop row) has been found to have a more severe yield 

impact compared to inter-row traffic (Swinford and Boevey, 1984). This provides an 

incentive to control the position of infield vehicle traffic. Yield decline from infield traffic is 

due to physical damage to stools and a breakdown in structure and surface sealing from soil 

compaction, particularly under critical soil moisture conditions (Meyer, 1996b).  
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Soil compaction and cane stool damage are distinctly different issues, but can occur 

simultaneously. De Beer (1989) noted that previous studies typically did not distinguish 

between compaction and stool damage in the reporting of yield losses. Row traffic induced 

yield losses of as much as 50 % and a reduction in the number of crop ratoons prior to 

plough-out have been reported (Van Antwerpen et al., 2000) 

 

4.1 Crop Growth and Development Responses to Infield Traffic 

 

For sugarcane, adverse soil properties associated with compacted soils negatively affect root 

growth rates (Torres and Rodrigues, 1995). Trouse (1982) described the restraint of root 

elongation in compacted soils by as much as 12 times that of healthy roots in good soils. A 

likely consequence would be less moisture and nutrient absorption by the plant. Compaction 

may induce temporary anaerobic conditions due to slower soil water movement, especially if 

an impermeable subsoil layer is present. In addition, a reduction in porosity and slower 

infiltration rates are likely to cause surface water runoff, reduced moisture capture and water 

holding capacity in the soil. All these may lead to a loss of potential crop production. Georges 

et al. (1980) found that roots were negatively affected and distributed at shallower depths 

following mechanical harvesting under wet conditions in a high clay soil. Final yields were 

significantly lower by 20 % compared to manually harvested fields. Fernandes et al. (1983) 

found that root performance was adversely affected by conventional vehicle compaction to a 

depth of 0.4 m. 

 

Traffic directly over the cane stool has been found to cause a number of responses. Slow 

initial regrowth of cane has been measured (Johnston and Wood, 1971; Georges et al., 1985; 

Jackson et al., 2000). Short term variable cane stalk population responses have been shown to 

decrease in some instances (Jackson et al., 2000) or increase in others (Johnston and Wood, 

1971; Fernandes et al., 1983; Braunack et al., 2006). These variable stalk population 

responses tend to equalize over time. A reduction in plant heights by as much as 27 % in 

some instances has been measured following traffic over the cane stools (Johnston and Wood, 

1971; Georges et al., 1980; Braunack et al., 2006). Jackson et al. (2000) measured 

significantly slower canopy development and reduced light interception in wet traffic 

treatments, compared to a control treatment when harvesting under dry conditions. In some 

trials the final yields were not compromised, despite differences in plant measurements 
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(Georges et al., 1985). In other instances, the yield losses were significantly lower (Georges 

et al., 1980). Jackson et al. (2000) measured significantly smaller cane stalk diameters and 

lower yields in their trials. Further yield depression and lower canopy light interception were 

measured in subsequent ratoons, despite no further traffic treatments. The effect of a single 

traffic event can thus continue to negatively impact the yield of more than one successive 

ratoon. 

 

Jackson et al. (2000) tested for genetic variation in ratoon growth and cane yield after 

mechanical harvesting operations under wet conditions and post-harvest waterlogged 

conditions across a range of 26 sugarcane clones of diverse genetic composition in Australia. 

Differences in varietal and genetic background (genotype × treatment interactions), although 

significantly different in early growth, did not translate to a significantly different response to 

treatments at harvest. First ratoon yields ranged from 66 % to 75 % of the control treatment, 

while second ratoon treatments ranged from 76 % to 81 % of the control treatments.  

 

4.2 Vehicle Characteristics Affecting Soil Properties 

 

Kanali et al. (1996) indicated that at high soil water contents, high wheel slip operations can 

contribute as much to soil damage through topsoil smearing as the damage caused by loading. 

No specific records of the impact of wheel slip on sugarcane yields have, however, been 

found in literature. 

 

Load induced soil compaction is typically a function of axle load and tyre-soil contact 

pressure (Torres and Villegas, 1995). For a given axle load, a reduction in ground pressure 

will lead to an increase in tyre-soil contact area and thereby reduce the depth of compaction 

(Van Antwerpen et al., 2000). Torres and Villegas (1995) and Torres and Rodrigues (1995), 

however, indicate that as the soil-tyre contact area alters, the soil surface layer’s bulk density 

is affected, and that depth of compaction is primarily a function of axle load magnitude, not 

contact area. Braunack et al. (1993), compared conventional and high floatation equipment 

and found little difference between the soil properties, despite ground pressures for the 

conventional equipment being almost 3.5 times higher than high floatation equipment. There 

was a tendency for cumulative infiltration rates to be higher for the high floatation equipment 

and for higher bulk densities to be found nearer the surface for the conventional equipment. 
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Van Antwerpen et al. (2008) also reported no significant reductions in compaction with the 

use of high flotation tyres, compared to conventional tyres (heavy axle load treatments). The 

tyre inflation pressure of high floatation tyres, being only 20 % less than the radial tyres, 

proved ineffective in reducing soil compaction damage. Water infiltration rates in this 

instance did not differ between tyre type treatments. Van Antwerpen and Meyer (2001) 

documented that for high axle loads, greater than 5 tons, tyre pressure effects were deemed 

insignificant and compaction impact was dominated by axle load. Subsoil compaction is 

primarily a function of total load and not ground pressure. 

 

Topsoil compaction is typically a function of tyre-soil contact pressure. Pressure distribution 

on the soil surface by vehicles depends on the characteristics of the tire or track and of the 

soil surface (Torres and Rodrigues, 1995). The tyre-soil contact pressure or ground pressure 

is similar to the tyre inflation pressure (Van Antwerpen et al., 2000). At high soil water 

contents and soil contact pressures, compaction, deep rutting and lateral soil displacement 

may occur when a vehicle sinks and the soil deforms. For the same contact area, a longer 

narrower tyre footprint in the direction of travel is preferred as it provides better traction and 

less field area being compacted (Van Antwerpen et al., 2000).  

 

For low bearing capacity soils and higher pulling capabilities, tracked machines are 

advantageous compared to more versatile wheeled machines. Tracked machines theoretically 

have a lower compaction impact. In practice, tracks in some cases have been found to 

distribute loads unevenly and may cause unexpected soil damage (Torres and Rodrigues, 

1995). Particularly for high drawbar pull applications, the peak soil pressure distributions are 

highest rearward of the track centre and can be two to three times greater than expected 

(Torres and Rodrigues, 1995). 

 

The first pass of a machine causes the greatest impact on a soil compared to subsequent 

passes under the same conditions (Maud, 1960; Fernandes et al., 1983; Van Antwerpen et al., 

2008). Robotham (2003) indicated that between 60 % and 80 % of potential compaction 

occurs with the first tyre pass. Maud (1960) found that the first three passes had the greatest 

impact on compacting a soil with further passes having a low and diminishing effect. Tyre 

performance is generally improved in subsequent passes if tyres travel along the same track 

(Torres and Rodrigues, 1995). 
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It can be seen that compaction is a complex system with many interdependent factors making 

it difficult to obtain consistent responses. Attempts have been made to model the process and 

are discussed in Section 4.3. 

 

4.3 Modelling of Yield Response to Infield Traffic for Sugarcane 

 

Arvidsson and Håkansson (1991) developed a computational model for estimating crop yield 

loss caused by machinery induced soil compaction in tillage systems. The complicated 

interaction of soil and crop responses to traffic was deemed to inhibit the development of a 

mechanistic model that could practically and accurately predict such interactions. Based on 

empirical data from extensive field crop trials conducted in Sweden, the model estimates total 

costs of soil compaction on four components, namely: (a) re-compaction of a tilled topsoil, 

(b) structural damage in the topsoil, (c) subsoil compaction and (d) physical traffic damage to 

the growing crop. Re-compaction is predicted by calculating a relative yield based on the 

degree of soil compactness as related to soil water content and vehicle characteristics. The 

topsoil damage component requires the determination of traffic intensity corrected for soil 

water content and field equipment effects. The subsoil damage components are based on 

traffic intensity at two levels, namely, between 0.25 m and 0.4 m and greater than 0.4 m. The 

damage caused in the shallower depth is assumed to persist for 10 years while the deeper 

layer is deemed irreversible (permanent yield loss). The modelling of yield loss is based on 

axle load with a shallow zone affected by axle loads above 4 tons and a deeper zone by axle 

loads above 6 tons. The final component relating crop response to traffic in a growing crop is 

based on ley crops (seed crops followed by pasture rotation).  

 

The model developed by Arvidsson and Håkansson (1991) was modified by Braunack et al. 

(2006) to predict crop response to machinery traffic for the Australian sugar industry. Several 

changes were made to adapt the model from annually cultivated cropping systems to the 

perennial sugarcane crop grown in rows with no annual cultivation. The topsoil compaction 

component relates traffic position relative to the crop and is assumed to be a function of 

traffic intensity corrected for soil water content and tyre inflation pressure. Subsoil 

compaction yield loss is based on traffic intensity at two zones (above 40 cm and below 

40 cm) as per the original model. The modified model was calibrated and validated for the 
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Australian sugarcane industry using results from a set of ratoon cane crop trials. The results 

were deemed to estimate typical compaction induced yield loss with reasonable agreement 

for the Australian sugarcane industry. A database of machinery commonly used in the 

Australian industry was included in the model to allow alternative traffic scenarios to be 

tested. This model requires a range of inputs for a specific condition. The range of input 

parameters includes the following: Cropping parameters such as farm size, crop yield, cane 

quality and cane value; soil parameters such as clay content, topsoil and subsoil moisture 

conditions and vehicle parameters such as axle weights for loaded and unloaded conditions 

for each set of axle groups, tyre inflation pressures for each set of axle groups, number of 

passes, working widths and an allowance for extra driving. A further apportioning of the field 

by un-trafficked, inter-row traffic and row traffic percentages are required.  

 

Traffic intensities and traffic position parameters have not been accurately characterised for 

systems used in the South African sugar industry. The applicability of the model for the 

South African sugarcane industry was uncertain as the model was calibrated to a set of 

Australian field trials on soils, varieties and equipment systems that could differ considerably 

from the South African sugarcane industry. In preference to using an empirically based model 

for such a complex process, it was felt necessary to examine research results to establish the 

trends of yield responses to infield traffic. 

 

There are a wide range of yield responses to infield traffic. Numerous factors are stated as 

influencing the yield responses obtained. Such factors included: soil properties, soil moisture 

condition, axle loads, tyre types, tyre pressures, wheel position (row and inter-row), traffic 

frequency (wheel passes) and traffic intensity. In the chapter that follows, a synthesis of 

literature pertaining to the consequences of infield traffic on yields is detailed. The yield 

responses to traffic were compiled into a database of results. This synthesis constitutes a 

desktop study to investigate yield response trends that can be extracted from local and 

international literature for a range of field equipment and operations.  
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5. LINKING THE IMPACT OF INFIELD TRAFFIC TO 

SUGARCANE YIELD BASED ON LITERATURE SYNTHESIS 

AND META-ANALYSIS 

   

In this chapter the compilation of a database of yield responses to infield traffic is described. 

Section 5.1 contains the complete set of yield results sorted by traffic position, being either 

row or inter-row from the database of yield responses to infield traffic. Section 5.2 contains a 

subset of the data excluding yield responses for traffic treatment results conducted under dry 

soil conditions. This data was further categorised by a subjective assessment of vehicle 

impact rating by taking vehicle attributes such as weight and tyre properties into 

consideration. The synthesis and sub-categorisation of yield responses in Section 5.2 are used 

as the basis for determining field based yield losses as an outcome in the results and 

economics chapters of this study (Chapter 7 and Chapter 9). Section 5.3 contains an analysis 

of the traffic yield impact database by various categories of aggregation. Aggregated analyses 

included testing the yield responses of row and inter-row traffic treatments with various 

combinations of the following factors: soil textural responses; soil moisture; vehicle axle 

loads; vehicle tyre pressures and gross vehicle mass. The objective of the analysis in Section 

5.3 was to investigate for trends to account for the high variance in yield responses in 

literature. Such trends would allow for further refinement of the effect of traffic impacts on 

yield and associated modelling thereof. Section 5.4 concludes this chapter with an exploration 

into the modelling of infield traffic impacts. The impact of the number of wheel passes as a 

proportion of total yield loss from previous studies is explored and a regression equation 

developed to define this relationship. From this relationship, the impact of a single pass yield 

impact was estimated from the measured traffic yield responses associated with multiple 

passes and reverse engineered to provide the yield loss associated with a single pass impact 

suitable for modelling purposes. The model was then validated against the raw yield loss data 

and verified against independent yield loss data. 

 

5.1 Compaction Trial Results Database: Contrasting Row and Inter-Row Traffic 

 

A wide range of yield responses to infield traffic have been measured in the past across a 

varied range of sites, soils, field conditions and field treatments. In order to estimate traffic 

induced yield losses a database of compaction field trial results have been collated from both 
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local and internationally published data. Yield responses in terms of tons cane per hectare 

were normalised into a percentage basis of the zero traffic/control treatments to allow for 

collation and comparison purposes. The lists of trials that have been conducted in southern 

Africa are contained in Appendix A and internationally are contained in Appendix B. The 

data makes use of mean values of yield responses from individual trials in order to establish 

general relationships that account for traffic induced yield losses. Trial results are listed and 

categorised by yield responses to: no traffic, inter-row traffic, row traffic and general infield 

traffic (consisting of an unspecified mix of inter-row and row traffic). Trial attributes are 

captured to allow for trend analysis at greater detail such as by country, soil attributes, 

vehicle or treatment. A preliminary high level analysis of all the data comprising yield 

responses to infield inter-row and row traffic is summarised as per Figure 5.1. 

 

 

Figure 5.1  Sugarcane yield response to inter-row and row traffic based on datasets consisting 

of 40 inter-row and 26 row samples 

 

Inter-row traffic appears to have far less impact on yields compared to row traffic. The large 

distribution and lowering of yields in response to row traffic indicates that there is a greater 

risk of excessive yield losses being caused through row traffic. Some trials actually indicated 

slight yield improvements following compaction treatments. These were typically for inter-

row traffic events or drier field conditions. Such observations can be supported by literature 
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(Van Antwerpen et al., 2000). The general indications are, however, that traffic entering a 

field typically result in a loss of crop yield. Extreme yield losses of as much as 80 % can be 

attributed to stool damage under unsuitable field conditions. These are typically for high axle 

load and high soil moisture conditions. Mean values from the inter-row and row groups were 

94.5 % and 75.9 %, respectively. The distributions of the groups differed significantly 

(Mann–Whitney U = 178, n1 = 40 n2 = 26, P < 0.001 two-tailed). 

 

5.2 Compaction Trial Results Database: Effects of Soil Moisture 

 

To further scrutinise these results, trial data consisting of traffic events that had taken place 

under high soil moisture conditions were then plotted as per Figure 5.2.  

 

 

Figure 5.2  Yield response of sugarcane to inter-row and row traffic under high soil 

moisture conditions based on datasets consisting of 27 inter-row and 18 row 

samples 

 

These results clearly indicate the risk of higher yield losses at higher soil moisture conditions 

with a considerable decrease in the mean values of both the inter-row and row traffic data. 

Mean values from the inter-row and row groups for wet conditions were 91.5 % and 69.7 % 
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respectively. The distributions of the groups differed significantly (Mann–Whitney U = 75, 

n1 = 27 n2 = 18, P < 0.001 two-tailed). 

 

Further scrutiny of the data represented in Figure 5.1 for trials where traffic events that had 

taken place specifically under low soil moisture conditions consisted of inter-row treatments 

only. These 8 inter-row treatment results indicated a mean of 100.8 % relative to no traffic 

with a standard error of the mean of 1.2 percentage points and standard deviation of the data 

of 3.3 percentage points. These results substantiate the large influence that soil moisture has 

on the impact of yields following an infield traffic event. Traffic should thus be minimised 

during periods of higher soil moisture content. 

 

In order to further interrogate the yield response dataset that was used in Figure 5.2, 

consisting of responses under high soil moisture conditions, the equipment was sub-

categorised in terms of perceived high, medium and low impact. The classifications are based 

on the gross mass of equipment used in the traffic treatments. High impact equipment would 

consist of high gross mass equipment or high axle loads combined with high tyre pressures. 

Where high floatation tyres were used, the equipment was graded into a lower impact 

category. As a guide, the following axle loads were used to distinguish between categories: 

Low impact equipment- less than 3.5 t axle load; Medium impact equipment – between 3.5 t 

and 5.5 t axle load; high impact – greater than 5.5 t axle load. The results of categorising the 

inter-row and row traffic treatments are shown in Figure 5.3. 

 

Examples of high impact treatments include infield truck rigs which typically have steering 

axle wheels of high pressures and high axle weights. Intermediate medium impact equipment 

consisted of agricultural or haulage tractors with trailers of intermediate axle loads and infield 

grab loaders. Low impact equipment consist of agricultural or haulage tractors with trailers of 

low axle loads or tracked equipment. Larger tractor trailer combinations with multiple trailers 

were classified as medium or high impact depending on the gross combination mass of the 

vehicles and corresponding mean axle load. 

 

This classification provides a third tier of management considerations, namely the type of 

equipment and equipment combinations used infield (the first being a distinction in yield 
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response between row and inter-row traffic position and the second being the moisture 

content of the soil at time of field operations). 

 

 

Figure 5.3   Yield response of sugarcane to inter-row and row traffic distinguishing 

between equipment of low (L), medium (M) and high (H) impact under high 

soil moisture conditions based on datasets consisting of 27 inter-row and 18 

row samples 

 

The results indicate a tendency of greater yield loss related to high impact equipment. 

Variances may be due to the range of equipment, soil properties and soil conditions and other 

factors such as multiple wheel passes. The yield loss trends indicate a linear decline for both 

IR and R traffic with much greater rate of decline associated with R traffic. The yield decline 

gradient trends are consistent and similar for mean or median yield values used. This is a 

useful trend as it provides a means to model yield losses for different equipment impact 

categories. Sub categories of LM and MH are proposed to cater for vehicles that could fall 

into either category of L or M (i.e. ±3.5 t) or M or H (i.e. ±5.5 t). High impact equipment 

typically also have a higher capacity to remove more of the cane stockpiles from the field and 

therefore require fewer trips infield. The management of the equipment infield should be of 

high managerial importance to constrain repeated extraction routes infield to the same paths 
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in order to minimise the potential for widespread yield loss due to uncontrolled traffic 

throughout the field. 

 

5.3 Investigating for Yield Response Trends of Sugarcane to Infield Traffic 

 

To further explore yield response trends the database was filtered for results that contain 

sufficient information to account for wheel position, soil moisture content and soil texture. 

From the literature review it was noted that the impact on yield was a function of both axle 

mass (for soil compaction at deeper layers) and tyre pressure (for compaction effects at the 

soil surface). Intuitively the product of the two could potentially account for any type of 

wheel traffic, with a 100 % yield (no yield loss) being applicable for all zero traffic treatment 

controls.  

 

The filtered data sets of yield responses to various site conditions and traffic treatments were 

tested using the Wald Confidence Interval method. Only the row traffic low clay treatments 

under high soil moisture conditions when tested against the product of axle weight and tyre 

pressure indicated a significant correlation at the 95 % confidence interval. All other data set 

comparisons did not indicate significance at the 95 % confidence interval. This is despite 

many individual data values being significantly different against control conditions 

(see Appendix A and B). The data is presented, however, to indicate the trends that were 

apparent from the datasets. The yield response graph accounting for all of the above metrics 

is shown in Figure 5.4 with all trend lines intercepting at the 100 % yield applicable to an 

untrafficked control. The classification of soil moisture is based on the treatment conditions 

of the individual trials, with dry conditions pertaining to low soil moisture conditions. Moist 

soil treatments being contrasted against dry through the addition of water prior to the soil 

compaction treatment through a rainfall or an irrigation event. Moist soil treatments apply to 

general treatments consisting of higher soil moisture contents and include those measured 

near field capacity or greater. 
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Figure 5.4  Yield response trends of sugarcane to the product of axle mass and tyre pressure 

aggregated to account for wheel position, soil water content and soil texture. 

Wheel position is designated by row (R) or inter-row (IR). Soil water content is 

designated as dry (D) or moist (M) and soil texture by clay percentage below 

20 % (LC) or above 20 % (HC) 

 

The data trends in Figure 5.4, although not statistically significant, adds value to the body of 

knowledge that exists on the subject. The trends help to translate the complex variable yield 

interactions and responses that occur in the data presented in literature and to provide a 

means to model the impact of vehicle combination that exists in practice. From the trends it 

can be seen that inter-row traffic under dry conditions is not impacted by traffic intensity. 

Row traffic data shows typically greater yield losses compared to inter-row traffic. The 

variation in yields when trafficked at low values of axle weights x tyre pressure and at high 

soil moisture content is large and unpredictable particularly for high clay soils. The yield 

response trends indicate that high clay soils will respond the best to control traffic practices. 

Lower clay soils appear susceptible to both row and inter-row traffic under high soil water 

conditions and are thus likely to be best managed by minimising overall compaction through 

the use of light equipment with low soil contact pressure and by minimising or avoiding 
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trafficking under high soil water conditions as far as possible. This is based on the premise 

for lower clay soils that the yield response for traffic under dry conditions will be more 

favourable than for wet conditions although there were no data available at this level of 

aggregation to support this statement. This is however supported by broader trends examined 

earlier, where traffic treatments at higher moisture contents resulted in higher yield losses. 

Highlighting such gaps that exist in the data also provide an indication for future research 

needs. 

 

5.4 Modelling Yield Response Trends of Sugarcane to Infield Traffic 

 

The data trends shown in Figure 5.4 represent actual yield responses to various traffic 

treatments. These treatments in some cases included multiple wheel or traffic passes which 

would thereby increase the yield loss represented relative to a single pass effect. Defining a 

single pass effect would be valuable in order to model the yield loss impact of traffic. 

Treatments that specifically show the impact of multiple passes were investigated in order to 

refine the results shown in Figure 5.4 for individual pass effects. Specific work investigating 

the impact of multiple passes were studied by Johnston and Wood (1971), Yang (1977), 

Usaborisut and Niyamapa (2010) and De Paula and Molin (2013). These responses are 

summarised in Figure 5.5. A relationship between the numbers of passes as a percentage of 

maximum yield loss was determined from this analysis. The data is presented as the 

percentage yield loss relative to the average maximum yield loss from the above three 

studies. The regression equation was represented in order to account for a zero pass yield loss 

of 0 %. In practice any passes over 20 would be deemed to cause maximum potential yield 

loss that can be attributed to the particular wheel traffic impact event. 
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Figure 5.5  Yield responses as a result of multiple pass effects 

 

Defining the most accurate representation of the impact of multiple wheel passes from the 

treatments were considered important due to the compounding effect and consequential 

amplification of yield responses. The regression equation shown in Figure 5.5 performed the 

best when tested and compared during model testing against various alternative equations that 

fitted the upper and lower envelopes and more aggressive per pass effects as reported in the 

literature study. From the database of yield responses and associated wheel passes, a model 

could be created from the relationships as defined in Figure 5.4 reverse engineered to account 

for individual wheel pass effects. The corresponding graph is presented in Figure 5.6. 
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Figure 5.6  Yield response trends of sugarcane to the product of axle mass and tyre pressure 

aggregated to account for wheel position, soil moisture content and soil texture 

and adjusted for a single pass. Wheel position is designated by row (R) or inter-

row (IR). Moisture content is designated as dry (D) or moist (M) and soil texture 

by clay percentage below 20 % (LC) or above 20 % (HC) 

 

The trends are similar to those presented in Figure 5.4, diminished to account for per pass 

effects. This is an intermediate step that provides the basis for being able to model traffic 

induced yield losses for a range of soil conditions and vehicle traffic events. The impact of 

yield losses can thus be modelled if the following input parameters are available: Axle load, 

tyre pressure, differentiation made between high or low clay soils and the number of passes 

being stipulated. The model, engineered to account for individual wheel passes using the 

regression equation y = 35ln(x+1)0.92, as described in Figure 5.5 and developed from a subset 

of the trials, was checked against the original observed trial results consisting of multiple 
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passes. The model was tested against South African and international trial data as shown in 

Figure 5.7 and Figure 5.8 respectively. 

 

  

Figure 5.7  Testing modelled versus observed yield responses to traffic from South African 

data. Trend line differences indicate when the trend line set to intersect the origin 

or not 

 

 

Figure 5.8  Testing modelled versus observed yield responses to traffic from International 

data. Trend line differences indicate when the trend line set to intersect the origin 

or not. 
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The traffic-yield response relationships were also tested against additional independent yield 

response data that were not used to create the model. The results from this validation of the 

model is shown in Figure 5.9. 

 

 

Figure 5.9  Model validation testing using independent data of yield responses to infield 

traffic with multiple axle passes, variable tyre inflation pressures and varying 

field conditions. Trend line differences indicate when the trend line set to 

intersect the origin or not 

 

The independent data validation seemed to match the trend reasonably well with a correlation 

coefficient R² of 0.53, particularly considering the complex interactions between soil, crop 

and treatment variables and associated time lags to obtain the yield responses. The model is 

relatively simple and appears to capture the main factors affecting yield responses with the 

limited data sets available to test such interactions. Additional testing of alternative 

regression equations to account for per pass effects (such as more aggressive yield losses as 

indicated by the literature review) did not give better correlation and validation results. As an 

indication of the accuracy of the model, the mean is overestimated by 1.8 % with a standard 

error of the mean of 2.1 % and standard deviation of 9.9 %. 

 

In summary, the synthesis of data relating yield response to infield traffic as presented in 

Chapter 5 contains a number of key factors that impact on sugarcane yield responses to 
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infield traffic. Firstly, it was shown that there is a significant yield difference between the 

positions of wheel tracks on the crop row compared to on the inter-row. Soil moisture at time 

of treatment was shown to greatly impact on crop yields. The influence of soil textures seems 

to have an influence on the crop response to infield traffic particularly for higher clay soils 

where, despite weak relationships within particular categories, the contrast between R and IR 

traffic under wet field conditions is greatly evident and strongly supports the need for control 

traffic practices. These results can guide management decisions, where soil texture and soil 

moisture can be accounted for when planning the timing of operations for a given farming 

activity. Other management considerations are the type of equipment used and the 

constraining of traffic to inter-row areas through the adoption of CTF practices. For fields 

with soils that may be generally susceptible to traffic under wet field conditions (e.g. lower 

clay soils), irrespective of traffic position, traffic should be limited as far as possible to drier 

seasonal periods. The use of high impact equipment should also be limited. From the general 

trends and estimated yield loss relationships presented, it is hypothesised that there will be 

large differences in estimated yield losses between systems, with the highest losses being 

attributed to systems containing the largest amount of uncontrolled traffic.  

 

The synthesis of data and yield responses to traffic as described in Chapter 5 are for an 

applicable point of impact. Not every point in the field, however, is subject to traffic. The 

impact and extent of traffic will alter depending on the compliment of infield vehicles and the 

position that those vehicles travel through a field. In a commercial harvesting and extraction 

system, only portions of the field are subjected to traffic. Determining the extent of the field 

trafficked by vehicle type was the next step of the process required to estimate field based 

yield losses for different systems. In the chapter that follows, the methodology to gather data 

for a range of commonly found systems for loading, and extraction of sugarcane in the South 

African context is described.  
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6. METHODOLOGY 

   

In this chapter, the methodical approach used to conduct field studies to measure and quantify 

the location and distribution of traffic of vehicles infield for different systems typically found 

in the South African sugarcane industry is described. Surveys were limited to the cane 

loading and extraction processes and required that all positions of infield traffic movements 

of all equipment entering the field be captured. As per the literature review and the synthesis 

of trial results, there is significantly more crop yield loss to row traffic than to inter-row 

traffic events and so distinction between row and inter-row traffic needed to be determined. 

The purpose of this chapter is to describe the techniques used to gather, assign and attribute 

field survey data representative of infield traffic to either the sugarcane crop row or inter-row 

areas. Section 6.1 provides an overview of field, crop and traffic information and surveys 

required. Various techniques used to determine the position of infield traffic movements are 

described in Section 6.2. Details of the survey information gathered are contained in Section 

6.3. Section 6.4 details the steps required to process the Global Navigation Satellite System 

(GNSS) data, create field maps showing the extent of field traffic and the Geographic 

Information System (GIS) analysis of the maps to determine the proportion of the field 

trafficked by the different equipment for each system analysed. A range of loading systems 

and loading techniques that are commonly used in the South African sugarcane industry were 

investigated. The systems that were surveyed are summarised in Section 6.5 and described 

further in Sections 6.6 to 6.11. Section 6.12 describes how equipment impact ratings were 

defined. Sections 6.13 and 6.14 describe the method used to estimate field scale yield losses 

and economics, respectively. The surveys were conducted on commercially run operations 

using equipment and systems that are typically available and used throughout the industry. 

 

6.1 Field Data to Characterise Infield Traffic During Harvesting Operations 

 

Field information was gathered prior to loading or extraction operations. At this stage of the 

harvesting process, a number of harvesting operations would have already have taken place. 

These would normally consist of the sugarcane being burnt and manually cut. During the 

manual cane cutting operation, the cutters combine several adjacent rows of cut cane into a 

continuous linear windrow (perpendicular to the cane rows) or into small bundles within a 

windrow or into a large stack depending on the loading and extraction equipment and systems 
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used. The field information was gathered by manually surveying the fields using Global 

Navigation Satellite System (GNSS) surveying. The following surveys were conducted: 

 GNSS surveying of field boundaries: to determine the field areas of each field; 

 GNSS surveying of the position of cane stacks or cane windrows: to determine 

patterns of traffic movements relative to cane stockpile positions; 

 GNSS surveying of the position of cane rows infield: to determine the position of the 

rows, row spacing’s and inter-row areas within the field. Not every line was surveyed, 

but selected rows were surveyed and used to infer an entire field’s position of rows 

and inter-row areas when processing the data in a CAD or GIS software package.  

 

6.2 Determining the Position of Infield Vehicle Movements 

 

Various techniques used to determine infield vehicle positions and traffic movements are 

described. These range from specialised surveying instruments to determine geographical 

location from the GNSS to simple mechanical devices and sketches to indicate vehicle 

movements during cane loading and extraction operations.   

 

6.2.1 The use of GNSS to identify the position of wheel tracks infield 

 

Infield vehicle traffic positions that occurred during the loading process were determined by 

the use of two survey grade GNSS receiver units (Trimble® PROXRT pathfinder with Nomad 

handset (DGPS) and a Hemisphere Crescent DGPS XF101). These GNSS receivers were 

used to survey the infield traffic movements of the loading and extraction operations. The 

accuracy of the Trimble unit is typically rated sub 30 cm accuracy with GPS post processing 

corrections of the GNSS data using the South African network of TrigNet base stations. The 

majority of positions surveyed using the Trimble unit were classified within the 5-15 cm 

accuracy range. The Hemisphere GPS unit is rated at a real time sub metre accuracy and was 

used to indicate the relative position of the tracks relative to the Trimble unit. Where the 

wheel tracks of vehicles were clearly visible through compaction, they were manually 

surveyed by following the wheel tracks produced by the vehicles as shown in Figure 6.1.  
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Figure 6.1   Infield traffic paths made clearly visible following soil compaction from 

vehicle wheel tracks 

 

Where infield loaders were employed in the loading process, the GNSS receivers were 

positioned onto the loaders to survey the actual loading operation. The receiver antennae 

were placed over the wheel tracks to capture the movement of the loader position during the 

loading operations as shown in Figure 6.2. 

 

 

Figure 6.2   GNSS receivers positioned centrally above wheels to track wheel paths 

Receiver antennae 
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Where multiple vehicles were entering the field simultaneously, the tracks of non-surveyed 

vehicles were marked using white agricultural lime, as shown in Figure 6.3 for subsequent 

manual surveying. Multiple tracks are visible in Figure 6.3 due to off-tracking of the trailer 

wheels. All of the tracks and off-tracks were subsequently marked and surveyed. 

 

 

Figure 6.3   White agricultural lime used to indicate wheel path tracks for subsequent 

surveying of the tracks after the loading operations were complete 

 

6.2.2 Field marking instrument 

 

Where wheel tracks were not easily visible, a field marking instrument was designed to fit the 

rear wheel of the cane extraction equipment. Upon wheel rotation the instrument would 

dispense a line of white agricultural lime to mark the position of the wheel track. This line 

would then be visible for subsequent manual surveying of the traffic movements that 

occurred during the loading operations. The instrument was designed to be fitted to the top 

link position of the tractor and spring loaded to press and rotate against the tractor tyre as 

indicated in Figure 6.4. It was designed to be fitted to vehicles that would travel 

predominantly through the fields in a linear course during the cane extraction operations, 

such as, the tractor trailer units that are loaded by slewing or non-slewing loaders. 
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Figure 6.4   Field marking instrument (left) as mounted on a tractor (right) used to indicate 

the position of wheel tracks infield 

 

Where the above unit was not suitable (for example multiple tractor trailer units extracting 

cane from the field), the agricultural lime was dispensed manually to indicate the centre of 

the wheel tracks. This was conducted primarily along the field entry and exit paths. The 

travel direction of the vehicles either entering or exiting at the field edges was also indicated. 

The data were further checked during data processing by, firstly, the use of field sketches 

made during the loading and extraction operations to indicate the movement and extraction of 

cane from the field and, secondly, through comparing the GNSS tracking position of the 

loader to the corresponding position of the adjacent infield tractor trailer units. These field 

and traffic positions were then manually surveyed after the loading operations had been 

completed and analysed with the vehicle survey data obtained. 

 

6.2.3 Field sketches of vehicle movements 

 

Sketches taken during the loading and extraction processes during the data collection phase 

proved valuable in describing the movement of vehicles during the data processing phase. 

The sketches included colour coding and numbering of different vehicle loads and paths. 

Additional details such as the position of wheels (relative to a referenced cane row) were 

noted. Figure 6.5 is an indication of the use of sketches to aid in the data generation and 

investigation phase.  
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Figure 6.5   Field sketches (left) to assist with GIS mapping and identifying vehicle 

movements infield (right) 

 

6.3 Surveying Procedure 

 

The field dimensions and position of cane stockpiles (stacks or linear windrows) and 

intermittent crop rows were surveyed and used to create an underlying field layer map as 

shown in Figure 6.6.  

 

 

Figure 6.6   Excerpt from a field map signifying the position of field boundaries, row and 

inter-row areas 

 

The positions of all infield traffic across each field were surveyed and superimposed over the 

field layer. The surveyed traffic layer consisted of line features to represent the positions of a 

specific wheel, either the left or right rear trailer wheel in the case of infield trailers. Multiple 
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tracks from different axles developed by trailer off-tracking were also surveyed. Both of the 

wheel positions of the loaders were surveyed simultaneously using GNSS receivers above the 

centreline of each wheel track. This was required to accurately measure the wheel positions 

of the loaders, particularly in the case of the non-slewing loader as it pivots dynamically and 

swivels during the loading process. Figure 6.7 is a sample of a map that was generated from 

the surveyed positions that had been obtained. 

 

 

Figure 6.7   Excerpt from a map overlaid with survey data representing infield traffic 

movements 

 

6.4 Field Data Processing and Analysis 

 

The GNSS field survey from the Trimble® GNSS receiver were processed and corrected to 

enhance positional accuracy of the surveyed positions using Pathfinder Office® software and 

TrigNet GNSS base station data. The data output from Pathfinder Office® consisted of the 

corrected positions of the manually surveyed lines. These lines were used to indicate the 

position of field edges, intermittent crop rows and vehicle wheel positions. This information 

was exported into ESRI® ArcView® GIS software and multiple GIS shape file layers for each 

data type created for further processing and analysis in the Quantum® GIS software package. 

Interim processing and generation of CAD related data were conducted on the AutoCAD® 

Civil3D® software package. This interim CAD processing included the generation of lines to 

represent the centreline position of all crop rows for the entire field and all infield traffic 

movements. This consisted of generating and distributing line entities evenly between the 

intermittently surveyed crop rows to match and represent each row within the field. Surveyed 
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lines representing the traffic of a single wheel through the field also needed to be offset for 

the corresponding alternative wheel. The wheelbase of the equipment was used as the 

distance offset to create the corresponding parallel track. Such functions are easily conducted 

using CAD drafting software. The set of completed CAD files consisting of line entities 

representing field, crop and separate vehicle traffic layers were then exported for analysis in 

the GIS software.  

 

Within GIS, a polyline enclosing an area is able to be converted into a polygon area. This 

conversion was required where a polyline was used to represent, for example, a field edge or 

boundary and then be converted into a polygon area to represent the field area. This polygon 

area is required for field based queries and analyses to be conducted. The importing of field 

boundary lines and generation of field areas would typically be the first step in the GIS 

process. 

 

The next step would typically consist of importing the line entities representing field and crop 

attributes and vehicle movements. These imported polylines from CAD, however, would 

need to be widened to account for the width of the rows and width of wheels for the range of 

equipment represented. A GIS processing technique termed “Buffering” allows for the 

propagation of areas surrounding drawing entities. This buffering process was used to 

generate an area of set distance (half of the width of a crop row or wheel width) from the 

polylines within an entire layer. For the purpose of this study, a width of 0.4 m for a typical 

sugarcane crop row was assumed to contain the majority of cane stools, although this may 

vary in practice depending on crop age, plant populations and row spacing configurations. 

Figure 6.8 gives an indication of the width of cane rows typically found infield. The lines 

representing crop row centrelines were thus buffered by 0.2 m to represent a crop row width 

of 0.4 m, for example. 
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Figure 6.8  Determining the typical width of cane rows. The variance in crop row width is 

visible along the cane row (left) and can be as wide as 600 mm in places 

(right). A crop row width of 400 mm was assumed for analysis purposes 

 

To create the crop inter-row areas, the row areas were subtracted from the polygon area 

representing the entire field. The entire field area was thus separated into two sub areas 

consisting of the rows and inter-rows, thereby allowing for row and inter-row area queries 

and analyses to be conducted. 

 

The position of infield traffic movements had also been represented as line entities. In a 

similar way, these lines representing the position of wheel tracks and infield traffic also 

needed to be buffered to correspond to the width of the equipment tyres. The width of the 

tyre, as displayed in Figure 6.9, is required to determine the areas affected by traffic and 

further analyses to be conducted.  
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Figure 6.9   Excerpt from a map of infield traffic areas generated by the buffering of 

surveyed polylines to match the tyre widths of equipment used infield 

 

The traffic layer needed to be further separated by position of either row or inter-row traffic 

components. In GIS there are data processing tools that allow for the intersection of vector 

based layers. By intersecting the traffic layer with the crop row layer, a new layer was created 

that consists only of traffic that occurred over the rows in the field. Similarly, the traffic layer 

was intersected with the crop inter-row layer. This allowed for the entire field to be 

categorised into areas where row traffic, inter-row traffic or no traffic had occurred. Various 

integration and intersections of layers were required to finally produce a map as shown in 

Figure 6.10 that distinguishes between areas of row traffic, inter-row traffic or where no 

traffic had occurred for the range of equipment used in each system.  
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Figure 6.10  Traffic positions for a single stack self-loading trailer system further classified 

into row or inter-row traffic components, where the darker colours represent 

row traffic and the lighter colours represent inter-row traffic areas within a 

field 

 

GIS software allows each layer to be analysed separately. The total area of all polygons that 

exist in a particular layer can be determined. In this way, each layer representing vehicle 

traffic within a particular system was analysed to determine the total area of row traffic, inter-

row traffic and where traffic did not occur within the field. Having determined the total row 

and inter-row area of a field, the proportion of rows where traffic had occurred and the 

proportion of inter-rows that had been trafficked were determined. An estimated field based 

yield loss for each vehicle in the system was determined by multiplying the ‘point of impact 

yield losses’, as determined from the synthesis of literature in Chapter 5, by the proportion of 

row and inter-row trafficked within the field. 

 

6.5 Summary of Systems Surveyed, Mapped and Analysed 

 

Six field surveys labelled ‘A’ to ‘F’, covering six commercial sugarcane harvesting and 

extraction operations were conducted. Table 6.1 and Table 6.2 provides a summary of 

random and controlled traffic systems respectively that were compared. 

 

Row traffic 

Inter-row traffic 
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Table 6.1 Infield random traffic harvesting and haulage systems surveyed, mapped and 

analysed 

System: A1: A2: A3: B: C: 

System and Equipment: Cut and 

stack: 

Self- 

loading 

trailers 

(SLT’s) 

Cut and 

stack: 

Self- 

loading 

trailers 

(SLT’s) 

Cut and 

windrow: 

Non-slew 

loader and 

box 

trailers 

Cut and 

windrow: 

Non-slew 

loader and 

box 

trailers 

Cut and 

windrow: 

Non-slew 

loader and 

high 

capacity 

trailer 

Traffic Management: Random 

traffic 

Random 

traffic 

Random 

traffic 

Random 

traffic 

Random 

traffic 

Row Spacing: 1-1.2 m 1-1.2 m 1 m 0.95 m 1 m 

Wheel Track Loader: 
2.0 m 2.1 m 

1.9 m 2.3 m 2 m 

Wheel Track Trailers: 2.1 m 2.1 m 2.1 m 

Field Area: 2.5 ha 1.1 ha 1.0 ha 1.5 ha 0.25 ha 

Cane Yield: 89 t/ha 89 t/ha 130 t/ha 76 t/ha 91 t/ha 

Observed Field Status: Moist  Moist  Moist  Dry Dry  

Relative Slopes 

(Mechanisation): 

Steep 

midslope 

Steep 

midslope 

Footslope 

& valleys 

Gentle 

midslope 

Gentle 

midslope 

Field Harvest 

Management: 

Burnt Burnt Burnt Burnt Burnt 

Cutting: Manual Manual Manual Manual Manual 

Cane Stockpile 

Presentation: 

Stacks Stacks Windrow 

5 rows : 1  

Windrow 

6 rows : 1 

Windrow 

6 rows : 1 

Infield Loading: Single 

stack 

SLT’s 

Double 

stack  

SLT’s 

Non-slew 

loader: 

loading 2 

windrows  

Non-slew 

loader: 

loading 1 

windrow 

Non-slew 

loader: 

loading 3 

windrows 

Infield Haulage: 

(Field to zone = FZ 

Field to mill = FM) 

As above, 

FZ 

As above, 

FZ 

One low 

capacity 

box trailer, 

FZ 

One low 

capacity 

box trailer, 

FZ 

One high 

capacity 

tri-axle 

trailer, FM 
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Table 6.2 Infield controlled traffic harvesting and haulage systems surveyed, mapped and 

analysed 

System: D: E: F: 

System and Equipment: Cut and windrow: 

Slew loader and 

high capacity 

trailers 

Chopper harvester 

loading into low 

capacity trailers 

Cut and windrow: 

Slew loader and 

low capacity trailer 

Traffic Management: Control traffic Control traffic Control traffic 

Row Spacing:  Tram 0.4 x 1.25 m  Tram 0.4 x 1.45 m   Tram 0.5 x 1.45 m  

Wheel track 

(loader/harvester): 

3.6 m  1.88 m 2.1 m 

Wheel track (infield 

trailers): 

2.15 m  1.9 m 2.2 m 

Field Area: 3.1 ha 1.5 ha 1.7 ha 

Cane Yield: 55 t/ha 70 t/ha 123 t/ha 

Observed Field Status: Dry Dry Dry 

Relative Slopes 

(Mechanisation): 

Flat Gentle midslope Flat 

Field Harvest 

Management: 

Burnt Burnt Burnt 

Cutting: Manual Mechanical 

chopper harvester 

Manual 

Cane Stockpile 

Presentation: 

Windrow 

3 tramlines : 1 

(6 rows : 1) 

Windrow 

1 tramline (2 rows) 

per pass 

Windrow 

4 tramlines : 1 

(8 rows : 1) 

Infield Loading: 

Swath per pass 

Slewing loader:  

Loading 1 windrow 

Chopper harvester:  

1 tramline per pass 

Slewing loader: 

Loading 1 windrow 

Infield Haulage: 

(Field to zone = FZ 

Field to mill = FM) 

loading 1 windrow 

into high capacity 

trailers for direct 

haulage to the mill 

FM 

loading 2 rows per 

harvester pass into 

low capacity tip 

trailers to a zone 

FZ 

loading 1 windrow 

into low capacity 

tip trailer to a zone 

FZ 
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Burnt cane fields were chosen for this study as it is by far the most prevalent practice in the 

industry. Cane rows are typically easier observed following burning than when a mulch layer 

is present. Burnt cane harvesting would thus minimise the likelihood of inadvertent row 

traffic due to inability to see the cane rows. No instructions were given to the drivers of the 

infield equipment to ensure that all operations were conducted as close to normal 

management and operating practices as possible. Furthermore, the surveying of cane rows, 

wheel tracks and white lime field markings following infield traffic were easily observed 

following a burnt cane harvesting operation.  

 

Fields of similar row spacing’s were chosen to remove any variations that row spacing may 

have on system comparisons when defining and relating traffic to row and inter-row areas. 

This excludes surveys D, E and F that practice CT on altered row spacing configurations 

consisting of dual rows (also termed tramlines) and wider inter-rows that have been adopted 

to better accommodate infield traffic. 

 

No further field restrictions were specified when requesting assistance from the commercial 

farming operators when selecting fields and systems to be surveyed. Slopes were not 

considered restrictive when gathering infield traffic patterns and survey data, although the 

choice of systems and equipment access and appropriateness would become increasingly 

restrictive as slopes increase. 

 

6.6 Description of Systems and Equipment Investigated in Survey A 

 

In the first field survey conducted (Survey A), the area of the fields totalled 4.6 ha. Cane 

extraction operations consisted of approximately 2.5 ha of single stack self-loading trailers 

(Survey A1), 1.1 ha of double stack self-loading trailers (Survey A2) and 1.0 ha of cut and 

windrow loading operations (Survey A3). All of the cane was burnt and then manually cut. 

The row spacing of the sugarcane was measured to be approximately 1 m. On the steeper 

slopes the cane stockpiles were manually gathered into stacks positioned infield for removal 

by self-loading trailers. On the gentler slopes, the cut cane was placed in windrows for 

loading by non-slew loader into box trailers. Five rows of cane were formed into a single 

windrow. The yields of the cane, harvested at an age of 17 months, were calculated following 

the gathering of stack weights at the trans-loading zone where each stack was individually 
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weighed during the offloading process. The cut and stack area yielded approximately 98 t/ha 

and the cut and windrow areas had yields of about 130 t/ha. 

 

A typical tractor drawn single stack self-loading trailer used to extract sugarcane from the 

fields is shown in Figure 6.11. A total of 54 loads of an average payload of 4.7 t comprising 

93 stacks from approximately 2.5 ha of the field were removed using a fleet of three of these 

tractor trailer units to a nearby loading zone. 

 

 

Figure 6.11  Field Survey “A1”: Tractor drawn single stack self-loading trailers 

 

An example of the tractor drawn double stack self-loading trailers is shown in Figure 6.12. A 

total of 10 loads of 6.5 t average payload comprising 23 stacks from approximately 1.1 ha of 

the field were removed to the nearby loading zone.  
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Figure 6.12  Field Survey “A2”: Tractor drawn double stack self-loading trailers 

 

In the cut and windrow system, a non-slewing grab loader was employed to gather and load 

sugarcane from two windrows into an adjacent box trailer that progressed alongside the 

loader. In an initial test, a single GNSS receiver was placed on the loader to track its 

movement infield as it loaded approximately 0.08 ha of sugarcane. This test, however, could 

not be used to specifically identify individual wheel tracks and so the results obtained are 

rather conservative in measurement as they are simply a buffering of the wheel widths from 

the single surveyed line representing the centre of the loader. An example of the grab loader 

and box trailer used to extract sugarcane from the field from Survey A3 is shown in Figure 

6.13. 
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Figure 6.13  Field Survey “A3”: Low capacity tractor drawn box trailer being loaded by a 

non-slew loader 

 

6.7 Description of Systems and Equipment Investigated in Survey B 

 

The field area surveyed totalled approximately 1.5 ha. The sugarcane was burnt, cut and 

gathered manually into windrows. Six rows of cane were joined into a single windrow. The 

row spacing of the sugarcane was measured to be approximately 0.95 m. The yield was 

116.3 t of sugarcane for the field which approximates to a yield of 76 t/ha. The field 

equipment consisted of a non-slew loader gathering sugarcane from a single windrow and 

loading this into adjacent low capacity tractor drawn box trailers. The loader and tractor 

drawn box trailers are shown in Figure 6.14 and Figure 6.15 respectively. For the purpose of 

this study the weight transferred by the rear jockey wheel of the loader onto the soil was 

assumed to be negligible and not taken into account. The reason for this assumption is that 

the laden grab on the front boom results in a load transfer off the rear jockey wheel and onto 

the front drive wheels. During loading operations, the rear jockey wheel is often observed in 

the air or lightly touching the ground. The effect of smearing from the rear wheel during 

turning manoeuvres has not been taken into account, nor has the effect of high levels of 

wheel slip from the drive wheels. Both of which are dependent on operator behaviour and 

more likely to occur at higher soil moisture field conditions. 
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Figure 6.14  Survey “B”: Non-slewing grab loader fitted with GNSS receivers above each 

wheel to indicate the position of the wheel tracks of the loader about to load 

sugarcane into an accompanying tractor drawn low capacity box trailer 

 

Three tractor trailer units were used to transport the sugarcane from the field to a nearby 

trans-loading zone. A total of 28 trips averaging a payload of 4.2 t of sugarcane per trip were 

removed from the field. 

 

 

Figure 6.15  Survey “B”: Low capacity tractor drawn box trailers 
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6.8 Description of Systems and Equipment Investigated in Survey C 

 

Field survey C was a variation of the cut and windrow operation. The difference between this 

survey and the previous was to compare a different loading technique and the use of high 

capacity trailers infield. In this survey, the burnt sugarcane was loaded from a portion of the 

larger field area until the trailer had reached full capacity. A non-slew loader was used to load 

sugarcane from three windrows into a high capacity trailer that followed alongside the area 

being loaded. Sugarcane from six adjacent rows was joined to form a single windrow. The 

portion of the field loaded was measured to be 0.25 ha and the payload of the trailer was 

23.1 t. This equates to a yield of about 91 t/ha. The sugarcane row spacing was measured to 

be approximately 1 m. 

 

The movements of the non-slew grab loader while loading the tractor drawn high capacity tri-

axle trailer, was to progressively load sugarcane from each of the adjacent windrows working 

away from the windrow closest to the trailer. The tractor trailer unit would only move 

forward when the area from all three windrows adjacent to the trailer had been cleared. The 

loader and high capacity tractor trailer unit is shown in Figure 6.16.  

 

 

Figure 6.16  Field Survey “C”: A non-slew grab loader loading sugarcane into a tractor 

drawn high capacity tri-axle trailer 
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6.9 Description of Systems and Equipment Investigated in Survey D 

 

For the next field study (Survey “D”), a unique system incorporating controlled traffic was 

investigated. This system consisted of a large slewing loader and high capacity tractor drawn 

double-axle trailers loading from a field configured to match infield traffic wheel tracks. The 

field area surveyed totalled approximately 3.1 ha. The sugarcane was burnt, cut and manually 

placed into windrows. Six pairs of dual rows of sugarcane were joined to form a single 

windrow.  

 

The field consists of a tramline planting configuration of 0.4 m dual rows and 1.25 m inter-

rows. The wheel track of the loader is set at 3.6 m to straddle two sets of tramlines. The high 

capacity trailers are set to straddle one set of tramlines at a wheel track spacing of 2.15 m. 

The wide inter-row traffic zones and slightly raised crop production areas assist drivers in 

keeping wheel traffic away from the rows. The tramline and vehicle track positions are 

shown in Figure 6.17. 

 

 

Figure 6.17  Field Survey “D”: Slewing loader and trailer wheel track configurations to 

straddle dual row tramlines of sugarcane 
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A non-slew loader was employed to clear and stockpile cane windrows approximately 15 m 

infield from the field edges to improve headland turning prior to loading. The wheel track 

positions associated with the non-slew loader stockpiling operation were represented on CAD 

following repeated observations of this stockpiling operation. The equipment used during the 

loading operation is shown in Figure 6.18. 

 

 

Figure 6.18  Field survey “D”: A slewing loader loading two high capacity tractor drawn 

double-axle trailers 

 

A total of six trips were required to extract the cane from the field. The average payload of 

the trips was measured at 28.3 t. A total of 170 t of sugarcane was removed from the field, 

equating to a yield of approximately 55 t/ha. 

 

6.10 Description of Systems and Equipment Investigated in Survey E 

 

System “E” consisted of a John Deere (2254) tracked chopper harvester, harvesting a single 

tramline consisting of 2 rows of sugarcane into accompanying low capacity tip trailers as 

shown in Figure 6.19. The tractor trailers conveyed and tipped the billeted cane onto a trans-

loading zone for subsequent and independent loading into road haulage vehicles for 

conveyance to the mill. Three sets of similar trailers were used to transport the billets from 
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field to zone. The tracking of multiple loading operations were used to identify repeated 

patterns associated with headland turning. These were used to replicate associated traffic 

paths in accordance with the GPS positions measured from both the harvester and single 

trailer GPS in order to get a representative field traffic associated with the harvesting and 

cane extraction system. The field area was approximately 3.8 ha although the area used in the 

analysis was approximately 1.5 ha. Short row lengths as the field narrowed were excluded 

from the analysis as the traffic patterns measured were not consistent with the longer 

harvester runs typically measured. On these shorter runs the harvester did not turn around at 

field edge but reversed and harvested in the same direction as the previous row. This decision 

was aggravated by the need to avoid a powerline along the field edge. The field consists of a 

tramline planting configuration of 0.4 m dual rows and 1.45 m inter-rows. The wheel track of 

the harvester tracks from each centreline is 1.88 m to straddle one set of tramlines. The 

trailers also straddle one set of tramlines at a wheel track spacing of 1.9 m. Although not 

much sugarcane is harvested in such a manner in South Africa, it was deemed an important 

system to investigate for the following reasons: 

a) To place this research in the context of other industries where conditions led to the 

wide adoption of mechanized harvesting over manual harvesting practices; 

b) To investigate the field impact of a mechanised chopper harvesting system for local 

conditions while operating on a better management principle in comparison to 

alternative manual harvesting systems; 

c) Investigations into mechanized harvesting through large scale field trails are taking 

place in the northern irrigated parts of the South African industry particularly with the 

possibility and interest in biomass harvesting and co-generation opportunities. 

Estimating associated field based yield losses would be essential for quantifying such 

operational changes.   
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Figure 6.19  Field Survey “E”: Chopper harvester and accompanying low capacity tip 

trailers 

 

6.11 Description of Systems and Equipment Investigated in Survey F 

 

This system is similar to that of System “D” but uses a relatively new locally built design of a 

smaller slewing loader available to the South African market. Evaluating system “F” would 

thus provide an alternative system operating under better management controlled traffic 

principles as it consists of a smaller type of slewing loader loading into small capacity tip 

trailers as shown in Figure 6.20. This is contrasted with the large slewing loader and high 

capacity tractor drawn double-axle trailers of survey “D”. This system was deemed necessary 

to be evaluated as it is considered to be a more suitable entry-point into controlled traffic 

practices by merit of the lower capital costs for the system and thus easier accessibility for 

smaller farming operations. It may also, however, be suitable for large scale growers 

particularly concerned with large heavy equipment entering infield. 

 

The field consists of a tramline planting configuration of 0.5 m dual rows and 1.45 m inter-

rows. The wheel track of the loader is set at 2.1 m to straddle one set of tramlines. The low 

capacity double-axle tip trailers are set to straddle one set of tramlines at a wheel track 

spacing of 2.2 m. The wide inter-row traffic zones and slightly raised crop production areas 
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assist drivers in keeping wheel traffic away from the rows. Three sets of tramlines are 

manually cut and placed into a single windrow centrally over a raised tramline to facilitate 

push-piling loading operations. The tramline, vehicle and windrow positions are shown in 

Figure 6.20. 

 

 

Figure 6.20  Field survey “F”: Small slewing loader and accompanying low capacity trailer 

configured to straddle raised dual row tramlines of sugarcane 

 

6.12 Defining Equipment Impact Ratings 

 

Equipment travelling infield have been separated into 5 impact categories namely, low (L), 

low-medium (LM), medium (M), medium-high (MH) and high (H). These ratings are based 

subjectively on the size and typical weight of the equipment to correspond with the yield loss 

impact categories as described in the literature synthesis of Chapter 5 (Figure 5.3, Page 32) 

where the categories of low, medium and high were defined. The 3 categories showed large 

increments between the 3 categories that followed a linear decline based on the mean values 

for each category. The introduction of sub categories of LM and MH were introduced to 

lower the magnitude of the incremental steps of between categories and thus better allocate 

equipment to respective categories (i.e. LM = 3.5 t ± 0.5 t and MH = 5.5 t ± 0.5 t). Yield 
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losses for the intermediate categories were linearly interpolated between the respective yield 

losses of the primary categories for both R and IR traffic events respectively. 

 

In order to determine the impact of equipment with respect to the systems surveyed, load 

transfer calculations were conducted. A sample of the load transfer calculations are provided 

in Figure 6.21. 

 

 

Figure 6.21  Sample load transfer diagrams and calculations relating to System C used to 

derive vehicle impact ratings based on axle load 

 



66 

 

The category derivations for different equipment are shown in Table 6.3. This categorisation 

was required for estimating individual vehicle based yield loss components into account. 

 

Table 6.3  Defining vehicle impact categories relative to estimated axle loading 

parameters 

System: 

Empty 

mass 

(Tons) 

Load 

(Tons) 

Part load- 

maximum 

axle mass 

(Tons) 

Category 

(L to H) 

Single stack self-loading trailers 5.8 4.8 3.4 LM* 

Double stack self-loading trailers 7.9 6.5 3.6 LM* 

Non-slew loader* and 

Tractor drawn box trailers 

4.5 

6.3 

0.3 

4.2–7.9 

3.8 

3.7 

LM* 

LM* 

Non-slew loader* and 

Tractor drawn tri-axle trailer 

4.5 

12.3 

0.3 

24.0 

3.8 

7.4 

LM* 

H* 

Non-slew loader*, 

Large Slew loader* and 

Tractor drawn 2x 2 axle trailers 

4.5 

5.9 

17.0 

0.3 

0.4 

28.0 

3.8 

5.5 

6.1 

LM* 

MH* 

H* 

Chopper harvester (tracked)* and 

Tractor & 1 axle trailers (duals) 

19.0 

5.6 

0.5 

7.0 

- 

5.3 

M* 

MH 

Small Slew loader* and 

Tractor & 2 axle trailers* 

5.9 

8.8 

0.6 

9.0 

5.6 

6.3 

MH* 

H* 

* High floatation / low inflation pressure tyres / large soil contact area 

 

Tyre inflation pressures typically ranged between 140-240 kPa for tractors; 160-300 kPa for 

loaders; 280-560 kPa for infield trailers and in the region of 600 kPa for road haulage 

vehicles and trailer tyres. 

 

6.13 Estimating Field Production Yield Losses 

 

Yield losses have been defined in terms of traffic position by row or inter-row. The synthesis 

of yield responses from literature indicated a significant difference between row and inter-

row traffic yield loss for a ‘point of impact’. The ‘point of impact’ yield losses by row were 
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applied to the proportions of the field row areas that had incurred row traffic as derived from 

the field surveys. Similarly, the ‘point of impact’ yield losses for inter-row traffic was applied 

to the proportion of the field inter-row areas that had incurred inter-row traffic. Field based 

yield loss estimates were calculated by attributing the row yield loss and inter-row yield loss 

contributions for each vehicle that entered the field. These contributions were summed up for 

each vehicle entering the field to determine an estimated system yield loss. The surveyed 

traffic ‘footprint’ does not account for multiple passes over the same area and the additional 

yield loss that can be expected from multiple passes. Where traffic from different vehicle 

categories overlapped, then the highest impact equipment was deemed to dominate in the 

overlapped area and the yield impact based on the traffic of the higher impact vehicle alone. 

 

6.14 Estimating Field Production Yield Loss Economics 

 

Machinery costing analyses are typically reported on a cost per ton basis and these include 

machinery ownership and operating costs. Standard techniques such as the “Classic 

Machinery Costing Method” as described by Meyer (2006) are used to determine these costs 

and to conduct cost comparisons between systems to determine the most cost effective 

operation. Costings have not considered the penalty of infield traffic on yields. The value of 

unprocessed sugarcane is worth approximately R 475.89 /t (Anon, 2016a). The value of a loss 

of 1 % of sugarcane yield is therefore worth about R 4.76 /t or in other words R 4.76 /t per % 

loss of crop yield. The traffic induced crop yield loss can then be added to the costs of 

machinery to get a holistic system cost to account for both compaction and stool damage. 

Such comparative system costings are provided in Chapter 9. 

 

6.15 Mechanisation performances and costings 

 

In order to accurately attribute costs to machinery operations, performance data for the 

different machinery components are required to determine the utilization of the equipment 

and thereby account for both fixed and variable costs. The Classic Machinery Costing 

Method takes these factors into account when deriving a cost per ton that is based on a life 

cycle costing protocol. The annual SASRI mechanisation costing reports (Anon, 2016b), the 

SASRI machinery management, performance and utilization report (Meyer, 2000) and the 

ISSCT agricultural machinery costing method and standards protocol report (Meyer et al., 
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2004) provide guideline performance standards for use in the absence of specifically 

measured data. Time and motion studies is an established method used to determine 

machinery performance standards, to measure and to predict machinery productivity and 

provide useful machinery management information (Murray and Meyer, 1982). It involves 

the direct observation and recording of activities typically against cumulative time while 

work operations are being conducted. Subsequent analysis can provide specific equipment 

performance on elements of work through to instantaneous and general productivity 

performances of the entire system. Other useful information can be gathered in such 

observation trials particularly when combined with yield data. During the field surveys, 

systems that had GNSS units mounted on the equipment were set to log at 1 s intervals. In 

essence these data points provide the cumulative timestamps that can be used for time and 

motion analyses. Data logging at the 1 s frequency combined with positional information 

provides detailed traffic movements and movement pattern records. Subsequent analysis of 

the GNSS point data in the GIS and CAD software has led to the generation of system linked 

performance data. This data has been particularly useful for determining both instantaneous 

loader performances and a range of overall productivities for the various systems. When 

combining the loader and associated trailer traffic movements, useful data such as the number 

of grab loads per trailer; grab loader capacity; push-piling speeds or average forward speeds 

of the loading systems, to name a few, can be determined. The system and equipment 

performance results are presented in Chapter 8. 

 

The following chapter focuses on the results obtained from the GIS analysis of the field 

surveys. This includes maps showing the extent of the traffic that occurs for each system 

surveyed followed by the extent and proportions of row and inter-row traffic for each vehicle 

used in the system. Estimated yield losses for the different systems are also presented for a 

range of scenarios linking the literature synthesis and field analysis results.  
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7. FIELD SURVEYS AND MAPPING RESULTS 

 

The extent of infield traffic surveyed for different cane extraction systems are reported in this 

chapter. The results are compared in terms of the proportion of row traffic, inter-row traffic 

and untrafficked areas within a field for each vehicle in the system. These results are 

integrated with the findings from the synthesis of yield responses to infield traffic based on 

traffic position (row or inter-row) from Chapter 5 in order to estimate field based yield losses 

for each system. Section 7.1 contains maps to indicate the extent of traffic for the various 

systems surveyed. The results of analyses conducted to quantify field traffic attributes of 

different harvesting and extraction systems are contained in Section 7.2. The integration of 

yield response results applied to the field attributes for different systems provides an estimate 

of traffic induced yield losses for each of the different harvesting systems. This allows for 

different systems to be compared in terms of their estimated impact on yield. Sections 7.3, 

7.4 and 7.5 contain scenarios linking the yield losses derived in the literature synthesis 

conducted and described in Chapter 5 where yield losses due to row traffic were shown to be 

approximately 3.6 times more than inter-row yield loss. The scenario in Section 7.3 is based 

on the mean yield loss derived from the full database; for a partial set of the data for high soil 

moisture conditions in Section 7.4 and further subdivision to account for vehicle impact 

ratings in Section 7.5. Economics relating field based yield loss to loss of revenue are 

contained in Section 7.6. 

 

7.1 Infield Traffic System Maps 

 

Survey “A” comprised the mapping of infield traffic for a cut and stack and cut and windrow 

system. A map showing the distribution of cane stacks and wheel tracks for three different 

infield loading operations is presented in Figure 7.1.  
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Figure 7.1  Field survey map “A” compiled to indicate vehicle movements for different 

types of equipment extracting sugarcane from cut and windrow operations and 

cut and stack harvesting systems 

 

The cut and stack operations consisting of single stack self-loading trailers is defined as 

system A1. The cut and stack operations consisting of double stack self-loading trailers is 

defined as system A2. The cut and windrow operations consisting of a non-slew loader 

gathering cane from two windrows and loading into the adjacent infield box trailers is defined 

as system A3. Considerable amounts of off-tracking of the double stack self-loading trailer 

wheels from the tractor path were noticed during the infield loading operations. 

 

Survey B entailed the mapping of loading operations for a cut and windrow system, where 

the non-slew grab loader loaded sugarcane from a single windrow into adjacent low capacity 

tractor drawn box trailers as shown in Figure 7.2.  

 

A3 

A1 

A2 
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Figure 7.2  Field survey map “B” mapped to indicate the traffic of a non-slew grab loader 

loading sugarcane from a cut and windrow operation into adjacent low 

capacity tractor drawn box trailers 

 

Large amounts of uncontrolled tractor trailer traffic are evident particularly at intermittent 

entry and exit positions through the field. 

 

Survey C consisted of a variation of the cut and windrow operation, where a non-slew loader 

loaded sugarcane from three windrows into an adjacent high capacity trailer that followed 

alongside the area being loaded. The vehicle movements and area trafficked by the loader is 

shown in Figure 7.3. Nearly the entire field area had been trafficked by the non-slew loader 

by the end of the loading process. 
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Figure 7.3  Field survey map “C” of a cut and windrow operation where three windrows 

of sugarcane were loaded into an accompanying high capacity tractor drawn 

tri-axle trailer 

 

Survey D consisted of the mapping of a control traffic system where high capacity tractor 

drawn double-axle trailers are loaded by a slewing loader and where the field is configured to 

allow the matching of infield traffic wheel tracks to dedicated inter-row traffic zones. The 

field and traffic movements for the system are shown in Figure 7.4. The length of the tractor 

trailer combination resulted in considerable off-tracking of the high capacity trailer wheels 

from the tractor wheels. This combined with the poor turning ability of the wide slew loader 

resulted in substantial amounts of row traffic at the entry and exits of the headlands of the 

field. 
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Figure 7.4  Field survey map “D” to indicate the traffic movements associated with a 

slewing loader loading into adjacent set of two high capacity tractor drawn 

tandem axle trailers 

 

Survey E consisted of the mapping of a chopper harvesting system consisting of a tracked 

harvester loading into a team of three accompanying low capacity tractor drawn tip trailers. 

The system was operated under controlled traffic principles, by travelling on the wide inter-

row dedicated traffic zones. The field and traffic movements for the system are shown in 

Figure 7.5. The harvester was noted to have a sharp turning circle that had resulted in 

minimal row traffic damage at the field edges. The tractor trailer combination although being 

highly manoeuvrable as opposed to longer configurations did appear to result in row traffic at 

the field edges when turning around to realign to the harvester. A three point turning 
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manoeuvre at the field exit had less row traffic than a turning manoeuvre parallel to the 

harvester. 

 

 

Figure 7.5  Field survey map “E” to indicate the traffic movements associated with a 

chopper harvester loading into adjacent set of three low capacity tractor drawn 

single axle trailers fitted with dual wheels 

 

Survey F consisted of the mapping of a cut and windrow system operating on control traffic 

principles. The system consisted of a small slew loader and set of two low capacity tractor 

drawn tip trailers. The system was operated under control traffic principles, by travelling on 

wide inter-row dedicated traffic zones and untrafficked crop zone consisting of dual 

sugarcane rows. The field and traffic movements for the system are shown in Figure 7.6. 
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Figure 7.6  Field survey map “F” to indicate the traffic movements associated with a slew 

loader loading into adjacent set of two low capacity tractor drawn double axle 

trailers with high floatation single tyres. The untrafficked area within the field 

was due to a portion of the field that had not yet been fully harvested at the 

time of loading 

 

7.2 Summary of the Extents of Infield Traffic for the Different Systems Surveyed 

 

A summary of the extents of infield traffic for the range of systems that were surveyed is 

presented in Table 7.1. Field survey A consisting of the survey of 3 different systems were 

subcategorised into system A1, A2 and A3, as described earlier. Where multiple vehicles enter 

the field for a particular system, then the combination of all traffic is included to account for 

the overlapping of different equipment traffic over the same paths in the field. 
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Table 7.1 Extent of infield traffic as a percentage of the entire field area 

System: Equipment: 

Extent of traffic on a field basis (%) 

Row traffic 

(%) 

Inter-row 

traffic (%) 

No traffic 

(%) 

A1 Single stack self-loading trailers 4.8 7.7 87.5 

A2 Double stack self-loading trailers 5.5 10.8 83.7 

A3 Non-slewing loaders 24.0 34.4 41.6 

Single box trailers 4.8 8.8 86.4 

A3 All equipment traffic: System A3 26.2 39.0 34.8 

B Non-slewing loaders 17.3 23.7 59.0 

Single box trailers 5.5 8.9 85.6 

B All equipment traffic: System B 20.4 29.2 50.3 

C Non-slewing loaders 37.3 56.4 6.3 

Tri-axle trailer 1.6 5.1 93.3 

C All equipment traffic: System C 37.7 58.4 3.9 

D Non-slewing loaders 1.2 1.0 97.8 

Slewing loader (large) 5.7 9.0 85.2 

Two tandem axle trailers 2.5 4.7 92.8 

D All equipment traffic: System D 8.8 13.9 77.4 

E Chopper harvester (tracked) 0.4 38.9 60.7 

Single 1 axle, dual wheel trailer 4.8 37.0 58.2 

E All equipment traffic: System E 5.0 45.7 49.4 

F Slewing loader (small) 0.7 14.5 84.8 

Single tandem axle trailer 0.4 10.7 88.9 

F All equipment traffic: System F 1.1 23.6 75.3 

 

7.3 Comparison of Estimated Yield Losses Between Systems: General Analysis 

 

In the literature review component, the synthesis of yield responses indicated a significant 

difference between row and inter-row traffic yield loss. The mean yield loss at the ‘point of 

impact’ indicated that for a high level analysis, row traffic incurred a mean yield loss of 

24.1 % and inter-row traffic incurred a mean yield loss of 5.5 % (Refer to Figure 5.1, 
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page 29). These specific losses were allocated at a general high level analysis where 

differences in soil moisture, soil physical properties and vehicle attributes were not taken into 

account. Vehicle differences are based solely on the traffic ‘footprint’ in the field and further 

vehicle attributes such as vehicle mass have not been taken into account. The various systems 

were compared based on the amount and position of vehicle traffic infield. The results are 

presented in Table 7.2. 

 

Table 7.2 Field production yield loss estimates based on the extent of infield traffic 

System: System description: 

Estimated field 

production yield 

loss (%) 

A1 Single stack self-loading trailers 1.6 

A2 Double stack self-loading trailers 1.9 

A3 Non-slew loader (2 windrows)a, box trailers 8.5 

B Non-slew loader (1 windrow)a, box trailers 6.5 

C Non-slew loader (3 windrows)a, tri-axle trailer 12.3 

D Large slew loader, 2x tandem-axle trailers 2.9 

E Chopper harvester, single axle tip trailers 3.7 

F Small slew loader, tandem-axle tip trailer 1.6 

a  describes the number of windrows loaded into the accompanying trailers 

 

The yield loss estimates for this general analysis are proportional to the extent of infield 

traffic that occurs through the field. The lowest impact systems are the cut and stack systems 

(A1 and A2) that have much less traffic infield compared to other systems. The control traffic 

systems with dedicated traffic lanes (D, E and F) and reduced row traffic showed lower crop 

impact than all the other cut and windrow systems with non-slew loaders (A3, B and C) 

irrespective of associated extraction vehicles and systems. 

 

7.4 Comparison of Estimated Yield Losses Between Systems for High Soil Moisture 

Conditions 

 

An analysis on the effect of traffic on yields, based on the synthesis of yield responses for 

traffic operated infield at higher soil moisture content was conducted. Vehicle differences are 



78 

 

based solely on traffic ‘footprint’ in the field. Traffic induced yield loss at the ‘point of 

impact’ for high soil moisture conditions indicated that row traffic incurred a mean yield loss 

of 30.3 % and inter-row traffic incurred a mean yield loss of 8.5 % (Refer to Figure 5.2, page 

30). Using these yield loss values, a comparison of various systems in terms of an estimated 

field production yield loss on a percentage basis under higher moisture conditions are 

presented in Table 7.3. 

 

Table 7.3  Field production yield loss estimates based on the extent of infield traffic and 

under high soil moisture conditions 

System: System description: 

Estimated field 

production yield 

loss (%) 

A1 Single stack self-loading trailers 2.1 

A2 Double stack self-loading trailers 2.6 

A3 Non-slew loader- 2 windrows, box trailers 11.3 

B Non-slew loader- 1 windrow, box trailers 8.7 

C Non-slew loader- 3 windrows, tri-axle trailer 16.4 

D Slew loader, 2x tandem-axle trailers 3.8 

E Chopper harvester, single axle tip trailers 5.4 

F Small slew loader, tandem-axle tip trailer 2.3 

 

The yield loss estimates for high soil moisture conditions are similar in trend to those of the 

general analysis, but exacerbated through higher yield losses due to poor field conditions for 

traffic operations. This provides an indication of the risk of mechanised operations and the 

systems that are particularly vulnerable to significant yield losses. The systems with the 

highest proportions of infield traffic and in particular, row traffic are most vulnerable, namely 

the cut and windrow systems with non-slew loaders (A3, B and C). The systems that have the 

lowest modelled yield loss are those with the lowest extent of infield traffic or those with 

traffic primarily constrained to the inter-rows and dedicated traffic lanes. This analysis is 

based solely on the extent of traffic footprint of systems where vehicle attributes and vehicle 

differences have not been taken into account. 
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7.5 Comparison of Estimated Yield Losses Between Systems for High Soil Moisture 

Conditions Based on Vehicle Impact Ratings 

 

In order to further distinguish between differences between infield vehicles, vehicle impact 

ratings were taken into account. Where traffic areas from different vehicle categories 

overlapped, then the highest impact equipment was deemed to dominate in this overlapped 

area and the yield impact based on the traffic of the higher impact vehicle alone. The 

synthesis of literature indicated that yield losses for row traffic were typically about 3.6 times 

more than inter-row yield loss. The exception for this was for low impact equipment where 

the data were variable and the mean value obtained indicated a yield increase following inter-

row traffic despite the majority of yield responses indicating a yield decrease. A response of 

3.6 times less than the row traffic mean value (2.6 % loss) would intuitively be more 

appropriate and congruent with the larger dataset trends. This would indicate an approximate 

yield loss of 0.7 % for an inter-row traffic event for low vehicle category. This value would 

be more conservative than using the median value of 2.1 % yield loss for the inter row 

response dataset for low impact equipment. The synthesis of literature for high soil moisture 

conditions distinguishing between the characteristics of the equipment entering the field 

provided the following yield loss trend as shown in Table 7.4 (Refer to Figure 5.3, page 32). 

 

Table 7.4  Point of impact yield losses attributed to row and inter-row traffic for high soil 

moisture conditions and low (L), medium (M) and high (H) equipment impact 

ratings 

 
Row traffic 

 

Inter-row 

traffic 

No traffic 

 

Mean yield loss (%): L 2.6 -0.3a,b,c 0 

Mean yield loss (%): M 27.2 7.2 0 

Mean yield loss (%): H 48.2 13.1 0 

a  Mean value from the dataset:    -0.3 % 
b  If a value of 3.6 times less than the row mean value were used: 0.7 % 
c  The median value from the dataset:    2.1 % 

 

Comparing the various systems in terms of an estimated yield loss under higher moisture 

conditions are presented in Table 7.5. It must be noted that these results are expected to be 

much lower under dry field conditions. The results show the implication of using the mean 
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inter-row low impact equipment yield loss value of -0.3 % (a) versus a value based on a 

0.7 % yield loss (b). The results indicated little difference in the estimated field production 

yield loss between the two values. 

 

Table 7.5  Field production yield loss estimates based on the extent of infield traffic and 

under high soil moisture conditions taking vehicle impact ratings into account 

System: 

System description: 

(subjective impact rating - refer to:  

Table 6.3, page 66) 

Estimated field 

production yield 

loss (%) a,b 

% a % b 

A1 Single stack self-loading trailers (L/M) 1.0 1.0 

A2 Double stack self-loading trailers (L/M) 1.2 1.2 

A3 Non-slew loader- 2 windrows (L/M), box trailers (L/M) 5.8 6.0 

B Non-slew loader- 1 windrow (L/M), box trailers (L/M) 4.5 4.7 

C Non-slew loader- 3 windrows (L/M), tri-axle trailer (H) 8.9 9.2 

D Slew loader (M/H), 2x tandem-axle trailers (H) 5.1  5.1 

E Chopper harvester (M), single axle tip trailers (M/H) 8.5 8.5 

F Small slew loader (M/H), tandem-axle tip trailer (H) 3.3 3.3 

a  Inter-row traffic, low impact equipment category yield loss of -0.3 % 
b  Inter-row traffic, low impact equipment category yield loss of 0.7 % 

 

The yield loss estimates for the various systems under high soil moisture conditions and 

taking perceived vehicle impacts into account, indicate that the systems with the lowest 

extent of infield traffic appear to have the lowest yield losses. The cut and windrow system 

with slew loader, despite having the heaviest infield equipment seemed to be able to mitigate 

yield losses through the practicing of control traffic principles by endeavouring to constrain 

much of the infield traffic to dedicated inter-row traffic lanes. 

 

7.6 Comparison of Estimated Economic Losses Between Systems 

Table 7.6 indicates the estimated costs associated with a loss of cane yield. These costs do not 

include the compounding losses that row traffic has on successive ratoons or losses that are 

expected with uncontrolled traffic practices or the accrued effect of trafficking over 

previously un-trafficked areas in subsequent ratoon crops or seasons. The minimum and 
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maximum yield loss values are a summary from the previous analyses to indicate the range of 

cost estimates that may be likely under the various scenarios presented. 

 

Table 7.6  Estimated costs of decreased field production yield losses (2015/2016 costs) 

System: System description: 

Estimated 

minimum 

yield loss 

(%) 

Estimated 

maximum 

yield loss 

(%) 

Estimated 

minimum 

loss  

(R/t) 

Estimated 

maximum 

loss  

(R/t) 

A1 Single stack self-loading 

trailers 

1.0 2.1 4.75 9.99 

A2 Double stack self-loading 

trailers 

1.2 2.6 5.71 12.37 

A3 Non-slew loader- 2 

windrows, box trailers 

5.8 11.3 27.60 53.77 

B Non-slew loader- 1 

windrow, box trailers 

4.5 8.7 21.41 41.40 

C Non-slew loader- 3 

windrows, tri-axle trailer 

8.9 16.4 42.35 78.05 

D Slew loader, 2x tandem-

axle trailers 

2.9 5.1 13.81 24.27 

E Chopper harvester, single 

axle tip trailers 

3.7 8.5 17.61 40.45 

F Small slew loader, 

tandem-axle tip trailer 

1.6 3.3 7.61 15.70 

 

In the following chapter a synopsis of the performance data gathered during the field studies 

for each of the systems are presented. This provides a basis upon which to conduct economic 

analyses for the various systems investigated. 
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8. SYSTEMS PERFORMANCE ANALYSES 

Geospatial analysis of the GNSS data, GIS maps and CAD features has provided the results 

as contained in Table 8.1. Field and cane stockpile presentation data are provided to 

contextualise the results. 

 

Table 8.1  System performance measurements determined from field survey data 

System: A1 A2  A3 B C D E  F 

Test area (ha) 2.5 1.1 0.1 1.5 0.25 3.1 1.5 1.7 

Yield (t/ha) 89 115 76 91 55 70 123 

Row length (m) 180 135 90 160 140 200 250 225 

Stockpile 

presentation 

2.8 t in field 

stacks 

5 m 

swath 

5.6 m 

swath 

6 m 

swath 

10 m 

swath 

1.85 m 

swath 

7.8 m 

swath 

Stockpile swath 

mass (kg/m) 

N/A - 116 

stacks 

59 42 54 54 13 95 

Loads or trips 

measured 

54 10 1 28 1 6 36 

rows 

27 

Payload (t) 4.7 6.5 7.9 4.2 23.1 28.3 7 9 

Loaders (no.) 
3 2 

1 1 1 1 1 1 

Trailers (no.) 1 3 1 2 3 2 

Lead dist. (km) 1.7 1.7 1.5 0.85 F-M F-M 0.5 1.25 

Productivity per 

load (t/h) 

43 41 47 44 39 64 46 

pour 

120 

Overall loader 

performance  

(t/h/vehicle) 

11.7 12.6 - * 31 - * 39 32 76 

Average loading 

speed (km/h) 

N/A N/A 0.8 0.9 0.7 1.0 3.5 

harvest 

1.3 

Overall system 

performance (t/h) 

30.8 25.3 - * 31 - * 22** 32 52 

Support equipment 

performance (t/h)  

N/A N/A - *** - *** - *** - *** 20 31 

* only 1 load measured  ** mill delays *** not measured 
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The data presented forms the basis for the assumptions used to conduct the mechanisation 

cost analyses. The performances of the various equipment compared against those stated in 

the literature study of Chapter 2 are as follows: the overall performance rates for the self-

loading trailers (A1 and A2) and the large slewing loader (D) appear to be well matched; the 

small slewing loader (F) and the non-slewing loaders (A3, B and C) performed better and the 

chopper harvester (E) performed at a lower pour rate. Chopper harvester pour rates were 

noted to be highly dependent on influencing factors such as cane presentation, field 

conditions and associated ancillary support system performance. 

 

In the following chapter, results from an economic analysis are presented. The first analysis 

that is presented is for the direct cost of machinery operations. These are conducted on a life 

cycle costing protocol. Issues pertaining to cash flows or tax implications that are considered 

as unique and specific to a particular business operation are thus not taken into consideration. 

Subsequent analyses attribute differing yield loss cost scenarios to match earlier annual yield 

loss estimates as described in Chapter 6. The impact that such losses would have when 

compounded through to subsequent ratoon cutting cycles on a whole cycle basis are included. 

An analysis is also presented where yield losses under adverse soil conditions pertaining to 

wet periods are discounted by the proportion of time across the milling season where adverse 

soil moisture conditions may occur. This is based on modelled soil moisture content linked to 

long term seasonal climatic conditions.  
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9. ECONOMIC ANALYSIS: CASE SUDY 

Machinery costing analyses are typically reported on a cost per ton basis and these include 

machinery ownership and operating costs. Standard techniques such as the “Classic 

Machinery Costing Method” as described by Meyer (2006) are used to determine these costs 

and to conduct cost comparisons between systems to determine the most cost effective 

operation. Costings in the past have not considered the penalty of infield traffic on yields as 

this is an undefined and highly variable factor which are affected by variability in soils, soil 

moisture and vehicle interactions.  

 

In this chapter, a series of economic analyses are presented. The first analysis provides an 

overview of typical mechanisation base costs for each of the systems, not taking yield losses 

into account. This indicates the economic driver for typical decision making when yield 

impacts of mechanisation are not considered. Over and above this base cost, the costs relating 

to a loss of productive income due to yield loss estimates for each of the systems from 

Chapter 7, pertaining to treatments under high soil moisture contents, are presented. These 

yield loss estimates were discounted to account for the fraction of operations where low risk 

of yield loss would be applicable, namely for treatments occurring on compaction resistant 

soils during drier periods of the season. Details pertaining to how this discounting was 

conducted are described in more details in the analyses that follow. The discounted yield loss 

estimates represent only a single traffic system treatment event. The impact of repeated 

harvest operations over an entire cropping cycle would result in a compounding yield loss 

effect being carried through into successive ratoon cycles. To account for this, a whole 

cropping cycle simulation was conducted to compare the revenue differences between a 

hypothetical system against another of higher rate of yield loss in order to determine a 

“compounding effect” factor. The compounding factor was used to determine a final yield 

loss estimate for each system. This was converted to a cost per ton based on the current cane 

price and summed to the base mechanisation cost to determine the real system cost. Regional 

or farm specific analyses can be conducted in a similar manner. 

 

9.1 Machinery system costs 

 

In order to conduct an economic comparison between systems a number of assumptions must 

be made as the costs are dependent on both overhead (fixed) costs and variable costs. In order 
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to not penalise a system due to poor utilization, a large scale operation was chosen, namely 

100 000 t of cane harvested per annum. The purposes of this study are focused on the impact 

of infield operations on cane yields and sustainability. The choice of system, however, does 

impact on equipment requirements. For instance, the use of heavy infield equipment infield is 

offset by cost savings of not requiring further trans-shipment operations into higher capacity 

road haulage vehicles as per Systems “C” and “D”. Thus the economic impacts of trans-

shipment and road haulage operations need to be taken into account when comparing systems 

holistically. Similarly, the use of the chopper harvester System “E” does not require manual 

cutting and thus, for comparative purposes, the cost component of manual cutting was 

included for all systems. The manual cutters also have a drop in productivity when forming 

stacks infield for Systems “A1”and “A2” and so this was also accounted for. In order to 

standardise the costings a field to zone distance of 1 km was chosen. All associated 

mechanisation system costing assumptions are provided in Appendix C. These are based on 

the measured performance of the systems and in accordance with data contained in the annual 

SASRI mechanisation costing reports (Anon, 2016b).  

 

A System “G” has been included for costing purposes, which is essentially a duplicate of 

System “C” with a non-slewing loader but loading into a high impact road haulage truck 

direct infield as opposed to the haulage tractor with spiller trailers for System “C”. The field 

impact is assumed to be similar to System “C” in the absence of such a system being 

surveyed. In practice the impact would remain the same but the distribution of field traffic 

would likely be greater than System “C” due to greater wheel track off-tracking. For the 

purposes of the analyses, the impact and distribution of traffic was deemed the same as 

System “C”. The reason for including the operation is that the use of road haulage systems 

are popular in many areas of the industry. The use of a road haulage truck is generally more 

suited to longer road haulage operations compared to the high capacity haulage tractor 

systems (System “C”) which are governed to travel at a maximum speed of 40 km/h.  

 

Table 9.1 is used to depict the mechanisation cost comparisons for a range of haulage 

distances based on well utilised system of 100 000 t. Cell colours range from green to red 

indicating the lowest to highest cost respectively. 
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Table 9.1  Estimated costs (R/t) for harvesting to mill delivery for the various systems for 

a well utilized scenario (100 000 t) 

 SYSTEMS: 

Lead 

distance: 

A1 A2  A3 B C D E  F G 

5 km  61.68 59.74 51.69 54.36 58.27 64.58 86.06 43.08 34.79 

15 km 67.41 69.74 57.42 60.09 64.12 73.93 91.79 48.81 45.04 

25 km 73.49 75.82 63.50 66.17 74.87 86.05 97.87 54.89 51.11 

 

Figure 9.1 provides a graphical representations of the mechanisation costs based on a 15 km 

haulage distance as system operation size varies. 

 

 

Figure 9.1  The full system mechanisation costs associated with the supply chain from 

burning to mill facility delivery based on a 15 km transport lead distance 

excluding the effect of yield losses 
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Typical costing analyses derive the direct costs relating to individual equipment and 

operational components summed to derive particular system costs for a particular operation 

size as can be extracted from Figure 9.1. For smaller sized operations that do not employ 

harvesting contractors, it appears that the best systems are those with a direct haulage route to 

the mill (Systems C and G). For operations between 30 000 t and 40 000 t the small slewing 

loader with trans-loading operation (System F) becomes cost competitive comparable to the 

direct haulage route using infield truck haulage rigs (System G). Concerns relating to yield 

loss through compaction and stool damage are often raised by farmers but the means to 

estimate such costs are not readily available, leaving much speculation when comparing 

systems as to which is the most optimal solution for their particular scenario. In the next 

section, the costs attributed to yield losses in order to further determine a cost penalty relating 

to compaction and stool damage are investigated. 

 

9.2 The value of a loss in cane production for a single harvesting event 

 

The value of unprocessed sugarcane is worth approximately R 475,89 /t (Anon, 2016a). The 

value of a loss of 1 % of sugarcane yield is therefore worth about R 4.76 /t. The traffic 

induced crop yield loss can then be added to the costs of machinery to get a holistic system 

cost (for both compaction and stool damage). The costs of the Estimated Field Yield Loss 

(EFYL) carried through from Table 7.5b (Page 80) are presented in Table 9.2 colour coded 

from low (green) to high (red). 

 

Table 9.2  Costs of estimated single harvesting event field based yield losses for high risk 

periods (R/t) 

SYSTEMS: A1 A2 A3 B C D E F G 

EFYL: (%) 1.0 1.2 6.0 4.7 9.2 5.1 8.5 3.3 9.2 

Cost: (R/t) 4.76 5.71 28.56 22.37 43.79 24.28 40.46 15.71 43.79 

 

This cost is only applicable to a single period harvesting event related to the system 

employed. The impact of this yield loss being repeated year on year through the crop cycle is 

investigated in the next section. 
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9.3 The compounding influence of annual yield losses on a whole crop cycle 

 

The yield losses presented thus far are reported for a single harvesting event. In a commercial 

farming operation there are a range of fields with varying degrees of historical trafficking. 

Typically poorer yielding fields are replanted when a yield based economic threshold has 

been reached (Hoekstra, 1976). Industry data for crop cycle lengths are highly variable. 

Henry and Ellis (1996) showed that in Swaziland, fields could be replaced as early as after 

5 ratoons or last as long as 18 ratoons before being replanted. Industry norms suggest that 

10 % of the farming area is typically targeted for replant. In order to examine this further, a 

simple modelling of yield loss compounded over multiple ratoons over a 10 period crop cycle 

is presented. The cumulative impact of yield loss through a crop cycle is shown to be in the 

order of a magnitude of about 4 times greater than that of a single season. This compounding 

factor (CF) does vary based on the percentage yield loss per season. In order to best illustrate 

this effect the range of scenarios are presented with varying rates of yield loss decline from a 

base of 100 units (Table 9.3).  

 

Table 9.3  The compounding effect of a consistent seasonal decline through a ten season 

cycle from a normalised base of 100 % 

 Percentage seasonal yield loss decline (a): 

Season: 0 % 0.5 % 1 % 2 % 3 % 5 % 10 % 

1 (No traffic) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

2 (1st ratoon crop) 100.00 99.50 99.00 98.00 97.00 95.00 90.00 

3 100.00 99.00 98.01 96.04 94.09 90.25 81.00 

4 100.00 98.51 97.03 94.12 91.27 85.74 72.90 

5 100.00 98.01 96.06 92.24 88.53 81.45 65.61 

6 100.00 97.52 95.10 90.39 85.87 77.38 59.05 

7 100.00 97.04 94.15 88.58 83.30 73.51 53.14 

8 100.00 96.55 93.21 86.81 80.80 69.83 47.83 

9 100.00 96.07 92.27 85.08 78.37 66.34 43.05 

10 100.00 95.59 91.35 83.37 76.02 63.02 38.74 

Average: 100.00 97.78 95.62 91.46 87.53 80.25 65.13 

% loss (b): 0.00 2.22 4.38 8.54 12.47 19.75 34.87 

CF: (c) = (b) ÷ (a) - 4.44 4.38 4.27 4.16 3.95 3.49 
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A graphical illustration of the above for two scenarios, namely one with a 5 % period on 

period yield reduction and the second with a 10 % yield reduction is presented in Figure 9.2. 

 

 

Figure 9.2  The compounding effect of yield loss over multiple ratoons 
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use of the CF is to account for the % decline year on year yield loss that compounds over the 

entire crop cycle.  These results of the Estimated Cropping Cycle Yield Loss (ECCYL) and 

appropriate compounding factors (CF) are presented in Table 9.4 for the harvesting systems 

investigated. 

 

Table 9.4  Estimated cropping cycle yield loss percentage for high risk periods of high 

soil moisture conditions 

SYSTEMS: A1 A2 A3 B C D E F G 

EFYL% 1.0 1.2 6.0 4.7 9.2 5.1 8.5  3.3 9.2 

CF: 4.38 4.36 3.85 3.98 3.56 3.94 3.62 4.13 3.56 

ECCYL% 4.38 5.23 23.10 18.71 32.71 20.09 30.77 13.62 32.71 

0

10

20

30

40

50

60

70

80

90

100

Plant R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 9

Y
ie

ld
 (

%
)

Crop cycle

Yield decline compounded across a cropping cycle

5% 10%

Average: 80.25 

Average: 65.13 



90 

 

Note that this would represent the percentage loss reflected in the average yield of the system 

relative to the plant crop yield loss if the entire crop were repeatedly harvested and extracted 

from the field under constantly wet field conditions for the entire cropping cycle. The 

cropping cycle is assumed to be in system equilibrium with 10 % of the crop being 

proportionally harvested through each ratoon life stage of production. The position of the 

traffic in subsequent ratoons and associated yield losses are assumed to perform at the same 

yield loss rate as per the single crop cycle loss. This is suitable for controlled traffic scenarios 

where the losses will remain consistent. In the case of uncontrolled traffic, a further stool 

damage memory effect, as described in Section 4.1, page 22, has been reported which is 

particularly applicable to areas which received traffic in the previous season but not in the 

current season. Such subsequent repeated field surveys were not conducted and thus are not 

taken into account. It is expected that the systems practicing controlled traffic would thus 

perform better than uncontrolled traffic although the extent of this additional yield loss 

component was not estimated. The ECCYL% described does not take seasonal soil moisture 

variations into account, but these are investigated in the next section. 

 

9.4 Yield loss cost taking seasonal factors into account 

 

The yield loss values presented in Section 9.3 would only be applicable for the proportion of 

fields trafficked during harvesting periods of high soil moisture where fields are the most 

vulnerable to traffic induced yield losses.  

 

Bezuidenhout et al. (2006) developed a reference traffic season for the South African 

industry to account for when the risk of soil compaction would result in a high risk status for 

in-field sugarcane mechanisation operations. This was based on over 50 years of daily soil 

moisture content simulations to account where soil deformation would be likely to occur to a 

depth sufficient to cause severe compaction and cane stool damage based on a reference 

sandy clay loam soil and reference radial tyre with an inflation pressure of 200 kPa and a load 

of 2 000 kg. This work was used by Mthembu (2011) to provide regional GIS maps for the 

industry showing the proportion of time where the field would be within high risk periods 

where the soil moisture exceeded a critical value of 80 % of field capacity. The crop in South 

Africa is harvested predominantly in the drier winter months where the risk of field damage 

is lowest, but may start and end in periods of high risk. A regional overview of the high risk 
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periods are contained in Appendix D and summarised to an industry level based on area 

weighted deliveries for the regions for the 2013/14 milling season (Table 9.5). The 2013/14 

data was chosen as more representative in order to remove data distortions due to the 

subsequent drought periods since 2014. 

 

Table 9.5  Number of days of risk of adverse soil moisture conditions occurring during 

the year and during a typical milling season of 220 days 

 INDUSTRY:  

Annual cycle 

INDUSTRY:  

Milling season of 220 days 

January 13.7 0.0 

February 12.0 0.0 

March 12.3 0.0 

April 8.2 4.1 

May 3.9 3.9 

June 3.1 3.1 

July 3.2 3.2 

Aug 2.9 2.9 

September 4.4 4.4 

October 9.1 9.1 

November 11.4 8.0 

December 13.0 0.0 

TOTAL: 97.1 38.6 

 

This data indicates that during the milling season harvesting operations are likely to be at risk 

for 38.6 days out of a typical season length of 220 days. Over the course of the milling season 

17.5 % of the crop is thus prone to harvesting under high risk field conditions and associated 

yield loss due to adverse soil moisture conditions. This provides a dilution factor applicable 

to the EFYL based on yield loss applicable to wet periods. Data on trafficking clay soils 

under dry conditions, indicate negligible yield losses for IR traffic (Figure 5.4, page 34) 

irrespective of the axle mass or tyre inflation pressures used. For the balance of the season 

and due to the absence of sufficient trial data, the dry period yield losses were conservatively 

assumed to be negligible. In practice, however, the presence of row traffic would be 

anticipated to cause some degree of yield loss less than the magnitude of row traffic under 
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wet field conditions, although this research has yet to be conducted. The value of the 

modelling approach does allow for incremental yield loss scenarios and sensitivities to be 

tested. Based on the abovementioned conservative approach, the ECCYL accounting for 

general South African sugar industry weather variability and associated high risk soil 

moisture conditions are presented in Table 9.6. Cell colours range from green to red 

indicating the lowest to highest cost respectively. 

 

Table 9.6  Estimated yield losses and cost taking seasonal risks and crop cycle 

compounding effects into account 

SYSTEMS: A1 A2 A3 B C D E F G 

EFYL% paw 1.0 1.2 6.0 4.7 9.2 5.1 8.5 3.3 9.2 

EFYL% pas 0.18 0.21 1.05 0.83 1.62 0.90 1.49 0.58 1.62 

ECCYL% s 0.77 0.92 4.06 3.28 5.74 3.53 5.40 2.39 5.74 

ECCYL Cost: 

(R/t) 
3.66 4.37 19.31 15.63 27.34 16.79 25.70 11.38 27.34 

w Wet field conditions s Seasonal field conditions 

 

9.5 Overall system costs  

 

The summation of direct machinery system costs and the hidden costs associated with the 

loss of cane production provides the means to estimate the real costs associates with a 

mechanisation practice or a particular system. This is particularly useful when comparing 

systems relative to another, where the methodology is consistent and the assumptions are 

relatively unbiased and practically achievable.  

 

Table 9.7 contains a list of the overall system costs that account for both the direct machinery 

costs and the costs associated with a yield loss. The list compares the system costs for a range 

of haulage distances based on well utilised system of 100 000 t. In practical application these 

economic analyses can be tailored for a particular farming enterprise with specific equipment 

utilizations and haulage distances to determine the most cost effective or sustainable practices 

available at that particular time. Cell colours range from green to red indicating the lowest to 

highest cost respectively.  
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Table 9.7  Estimated sugar industry based cost comparisons between systems (R/t) 

including the cost of yield loss compounded through successive ratoon crops 

based on a 100 000 t scenario 

 SYSTEMS: 

Lead 

distance: 

A1 A2 A3 B C D E F G 

5 km  65.34 64.11 71.00 69.99 85.61 81.37 111.76 54.46 62.13 

15 km 71.07 74.11 76.73 75.72 91.46 90.72 117.49 60.19 72.38 

25 km 77.15 80.19 82.81 81.80 102.21 102.84 123.57 66.27 78.45 

 

Figure 9.3 illustrates the mechanisation cost comparisons for different enterprise sizes based 

on an intermediate cane delivery distance of 15 km. 

 

 

Figure 9.3  The full mechanisation costs associated with the supply chain from burning to 

mill facility delivery based on a 15 km transport lead distance including the 

effect of yield losses compounded through the cropping cycle 
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In the chapter that follows, the results of the field trials and economics studies are discussed 

and conclusions drawn from the studies conducted. A recommendation containing future 

research and furthering or enhancement of the current work conclude this dissertation.  
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10. DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS 

   

Compaction has been understood to cause adverse field conditions for crop growth. Research 

trials on this topic have changed over time to include distinguishing between traffic over the 

inter-row (resulting in soil compaction) and traffic over the row (resulting in stool damage) of 

the sugarcane crop. High variances in yield response to treatments have led to broad 

recommendations and vague estimates of crop response. Much of the variance is due to 

complex soil properties, compaction treatment and crop response interactions. Soil water 

content alone has a significant influence and can be variable and dynamic in both the short 

and long term, as well as spatially within a field. The impact of systems on long term 

sustainability and yield is often questioned, but little data are available to validate or alleviate 

these concerns. 

 

High amounts of infield traffic typically occur during the harvesting, loading and extraction 

of agricultural commodities under commercial operations. This is of particular interest where 

high biomass yields are removed from the fields as is the case for sugarcane. Mechanisation 

systems used to remove the crop are likely to cause crop yield losses as a result of infield 

traffic. Traffic induced crop losses are expected to compound into successive ratoons in 

conjunction with subsequent traffic induced losses. This study was conducted to develop 

yield loss estimates based on a range of typical harvesting operations in South Africa. This 

work is important to provide an understanding of potential yield loss risks that are associated 

with infield traffic and to provide a means to quantify and compare a variety of typical 

mechanisation systems that are found in the South African sugarcane industry.  

 

Quantification of traffic induced yield loss at a particular point of impact within a field was 

derived from a synthesis of local and international literature, where differentiation was made 

between row and inter-row traffic position. Typical systems used infield for sugarcane 

harvesting and extraction operations within the South African industry were reviewed. Field 

studies were conducted to measure and quantify the location and distribution of infield traffic 

to determine a field scale productivity loss for different systems. This allows for systems to 

be compared against each other. 
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An economics analysis was conducted to complete the study to show the mechanisation cost 

component and the additional yield loss cost comparisons for each of the systems. This work 

provides a holistic framework and new approach to costing of infield sugarcane 

mechanisation systems into the future. Researchers have been attempting to present this 

without success. This has now been achieved. This work shows that that current machinery 

costing techniques are not adequate and that the impact of infield traffic systems needs to be 

considered. 

 

10.1 Discussion and Conclusions 

 

The purpose of this study was to address the impact of loading systems, which are common 

to South Africa, on long-term sustainable production. Both the desktop literature study 

findings and subsequent field work results are discussed. 

 

The synthesis of crop yield responses to compaction treatments has provided a means to 

improve yield response estimates to infield traffic and yield response trends that dominate 

these complex interactions. These include the quantification of typical yield responses to row 

and inter-row traffic for all treatments. The analysis of yield responses to infield traffic 

indicated significant susceptibility of the crop to row traffic compared to inter-row traffic 

treatments. The impact of traffic at high soil moisture on yields was expected. Further 

aggregation of the data was useful in providing yield response trends. Aggregation by soil 

texture (based on clay content) and vehicle characteristics were developed. Although not 

statistically significant, these trends indicate a number of interesting responses. Generally, as 

traffic intensity is increased, yields correspondingly decrease. Yields seem to be the least 

affected by inter-row traffic under dry conditions for high clay soils even over a range of 

traffic intensities. Row traffic under moist conditions seems to be the least resilient with large 

yield losses even at low traffic intensities. The variation in yields at low axle weights and tyre 

pressures is large and unpredictable. The yield response trends suggest that high clay soils 

will respond the best to control traffic practices under wet field conditions. Lower clay soils 

are generally highly susceptible to infield traffic and should be best managed by minimising 

overall compaction through the use of light equipment and by minimising infield traffic as far 

as practically and economically viable. An example of achieving this could be by placing 

cane stockpiles adjacent to the field edge to minimise infield traffic operations. 
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The cut and stack system (A1 and A2) is a well-established system that is widely practiced 

and especially suitable for the steeper slopes of the industry. It has the advantage of low 

amounts of infield traffic by virtue that the loading and extraction operations are combined. 

The tractor trailer combinations are relatively light weight, durable and low maintenance. 

Disadvantages of the system are the higher labour requirement to form stacks infield and the 

low capacity of trailers that would therefore require higher traffic volumes infield. Results 

from the field studies indicate that the system of self-loading trailers had the least amounts of 

traffic in the field. The operations did not practice controlled traffic principles and with some 

effort in training staff and drivers, further gains in reducing the field impact could be made. 

This would require that stacks were aligned during preparation, that tractor trailer and row 

spacing’s are matched and where traffic are constrained to travel along predetermined infield 

extraction routes through the cane field, both in the current and successive ratoon cycles. The 

cut and stack system does require numerous operational considerations but does provides an 

effective low impact, low yield loss system that is generally cost effective and suitable for a 

wide range of slopes and scale of operations. 

 

The majority of the sugarcane crop in South Africa is cut and windrowed and then 

mechanically loaded infield. A general advantage of typical systems used in South Africa is 

the low amount of infield traffic compared to fully mechanised systems that need to harvest 

each row in a field. The predominant means of loading is through the use of non-slew loaders 

(A3, B, C and G). These loaders are a popular choice of equipment because they are 

productive, robust and relatively cost effective. By not being able to slew, these loaders do 

however incur much wheel traffic over the sugarcane rows during loading operations. 

Controlled traffic farming recommendations as promoted in literature, as a means to sustain 

yields within highly mechanised systems, cannot therefore be practiced. Increasing the 

capacity of windrows by increasing the number of rows to make an individual windrow may 

be used as a means to reduce infield traffic, but the cost and benefit of this practice was not 

examined in this study. Very little data on the impact of non-slewing loaders on yield are 

available. From the literature collated, it appears that the yield impact of the cut and windrow 

system using non-slewing loaders may be low and comparable to other systems under 

suitable field conditions, but are likely to be severe under unsuitable field conditions due to 

the high amounts of uncontrolled traffic in the field. Furthermore, the effects of wheel slip 
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and associated smearing at the soil surface under adverse field conditions, and the impact of 

the rear jockey wheel have not been taken into account in these analyses. The extent and 

impact of multiple passes, as would be particularly applicable to non-slew loaders by virtue 

of their infield manoeuvrings, were also not derived or taken into account in the yield loss 

estimates reported in this study. The results indicated that by virtue of the high level of traffic 

of the non-slewing loader the risk of high yield losses when operated under unfavourable 

conditions may be severe. Assuming that the loaders are less damaging than heavier 

equipment, systems making use of the non-slew loaders still appear to be worse than many of 

the other systems. This would be further exacerbated through smearing damage caused by 

wheel slip, the impact of the jockey wheel and where multiple wheel passes occur over the 

same position in the field. The inability of the loader to be able to practice controlled traffic 

principles during loading or through to subsequent ratoons increases the risk for further 

damage particularly when field conditions are not suitable for infield traffic. The estimated 

field productivity yield losses still appear to be less than those reported in other industries 

also employing semi-mechanical operations, such as Columbia, although those industries are 

reported to have severe field conditions for longer periods of the cane harvesting season. The 

hypothesis that high yield differences are attributed to systems of high levels of uncontrolled 

traffic did seem evident from the results obtained, however, of primary importance was to 

examine systems in their entirety, namely the combination of extent, position and impact of 

the equipment. The yield loss estimates, when comparing different windrow gathering 

practices for the non-slew loader although not conclusive, did seem to suggest that the use of 

smaller infield trailers and fetching from fewer windrows appeared better from a yield loss 

perspective, but not necessarily from a system costing perspective. From a yield loss aspect, 

it would be recommended that infield trailers follow consistent traffic paths for multiple 

windrow passes. It appeared that practices should be determined and matched to the choice of 

extraction vehicle. Gathering individual windrows adjacent to low capacity trailers appeared 

advantageous in reduced impact compared to the practice of gathering multiple windrows 

into high capacity trailers. It would not be recommended, for example, that individual 

windrows be loaded into adjacent high capacity trailers. There is a trade-off between loader 

and extraction vehicle traffic, where the heavier the extraction equipment, the more 

‘tolerable’ it is for loader traffic to fetch cane from a further distance away from the 

extraction vehicle. This would be less applicable if heavy infield extraction equipment were 

constrained to dedicated infield traffic paths and controlled traffic principles applied. In all 
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cases, there was evidence that field compaction and cane stool damage could have been 

reduced by simply restraining extraction vehicles (particularly repeat passes) to dedicated 

extraction routes through the field. These routes should ideally also be used repeatedly for 

future harvesting cycles. Cut and windrow systems involving direct haulage operations (C 

and G) generally appear cost competitive for smaller scale operations but less suited for 

larger scale operations after taking anticipated yield losses into account. 

 

Cut and windrow operations using high cost slewing type loaders (D and F) are typically 

found in larger operations. Their higher productivity requires large throughput to ensure high 

utilization to make them suitably cost effective. The larger slew loader and heavy infield 

trailers (D) despite being operated under controlled traffic showed high yield losses compared 

to other perceived lower impact systems not practicing controlled traffic. Had this system not 

practiced controlled traffic then the yield losses would have been anticipated to be much 

greater. This particular controlled traffic system showed room for improvement through 

better matching of traffic wheel tracks to dedicated inter-row traffic lanes. The lower impact 

slew loading system (F) also operating under controlled traffic principles performed much 

better. This system had a smaller slew loader and small infield tractor trailers extracting the 

cane to a trans-loading zone. The wheel tracks were well matched to the inter-row spacing of 

the field. This system, particularly for larger operation sizes, was shown to be both cost 

effective and relatively low impact through the practice of controlled traffic principles. This 

should provide reassurance to larger farmers or estates investigating the adoption of control 

traffic systems, that low yield losses are possible for larger commercial operations. This is 

possible through the choice of low impact equipment combined with appropriate field 

configurations and strict adherence to controlled traffic principles. The general yield loss 

estimates on a field basis under moist field conditions ranged from 1.6% to 3.3 % for the 

smaller slew loading system to 2.9 % to 5.1 % for the larger slew loading system. These seem 

to be conservatively lower compared to CT studies conducted in Columbia, by Torres and 

Pantoja (2005), where the yield losses were measured on a field basis for traffic consisting of 

slew loader and infield tractor-trailers under wet field conditions for a clay loam soil at 7.4 %. 

 

From the analyses conducted, mechanical harvesting using chopper harvesters (E) seem to 

have both severe impact and poor economic viability despite the practicing of controlled 

traffic principles. The larger contributor to the high yield loss estimate was attributed to the 
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low capacity infield trailers that had severe impact through poor weight transfer 

characteristics. This highlights the need to consider vehicle design characteristics. The 

combination of high operational costs, particularly attributed to underutilization of the 

mechanical harvester, and high yield loss estimates caused the mechanical harvesting system 

to perform poorly compared to any of the other systems. These factors may partially account 

for the higher estimated yield loss range of between 3.7 % and 8.5 % when compared to CT 

studies conducted in Columbia, by Torres and Pantoja (2005), where the tracked harvester 

and infield haulage system resulted in a 4.6 % yield loss. Yang (1977), however, measured an 

8 % relative yield loss when comparing a 2 pass mechanical harvesting operation on high 

clay soils against a comparable adjacent hand cut field operation consisting of no infield 

traffic. Robotham (2003) also detailed a 12 % yield loss due to infield cane harvester traffic. 

Trouse Jr and Humbert (1961) showed an average field yield loss of 32 % over 2 mechanised 

harvests compared to hand cut fields. Given the range of results, the yield loss estimates seem 

to be reasonable compared against actual field losses measured in practice. 

 

Variations of accompanying infield haulage for crop extraction range from small tractor-

trailers to large capacity road haulage vehicles. The choice and selection of haulage vehicle 

depends greatly on costs, productivity and utilization of equipment. The risks of higher yield 

losses appear greater as the capacity and gross mass of the equipment increases. This is 

however offset by the reduced number of trips required infield. Lower impact, lower capacity 

vehicles require more trips infield. Dedicated extraction routes constraining infield traffic to 

the inter-rows should be considered especially when fields are likely to be trafficked under 

high soil moisture conditions. The design of particular equipment has a large influence on the 

axle loading when weight transfer is considered. In the case of the self-loading and tip 

trailers, the axles are typically located at the rear of the trailers resulting in the load being 

transferred onto the rear axle of the tractor unit. In the case of loaders, high axle loads are 

placed the front axle, exacerbated during push-piling and loading operations.  In many cases 

the load was not evenly distributed across the axles of the equipment. This may be an area 

where considerable improvements can be made to lower the axle loads and resulting impact 

ratings of the equipment. 

 

A primary outcome was to confirm that infield traffic should be constrained to the inter-rows 

to minimise the loss of potential yield. It should also be noted that row traffic on a perennial 
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sugarcane crop would likely result in a compounding loss of yield into subsequent ratoons. 

These results strongly support the recommendation of control traffic practices. From a timing 

perspective, infield traffic should be managed to periods of lowest soil moisture content 

where practically possible. 

 

The positioning of cane stockpiles (stacks or windrows) is important to ensure that loading 

and extraction vehicles are able to abide to control traffic principles where possible. These 

should ideally be placed in the same position year on year and aligned and positioned to 

minimise as much infield traffic as possible and to minimise unnecessary row traffic. 

 

The combination of equipment and the management of the equipment infield should be 

carefully considered. Dedicated extraction paths (controlled traffic routes) are recommended 

particularly for high clay soils trafficked frequently under moist soil conditions. Lower clay 

soils appear to be susceptible to both soil compaction and stool damage under high soil 

moisture conditions and thus infield traffic should be minimised during these times where 

possible. Adoption of controlled traffic practices may require changes to be made to either 

the wheel track spacing of equipment (to allow for all axle groups of all equipment to match 

the same wheel track paths corresponding to the crop inter-rows) and/or to change the crop 

row spacing to widen the inter-row areas where traffic is anticipated. Dedicated routes should 

be used for repeated or multiple passes of extraction vehicles. These routes should remain in 

the same position from season to season to thereby minimise and constrain compaction and 

stool damage to a minimum within a field. 

 

The use of high accuracy Global Navigation Satellite System (GNSS) steering would help to 

ensure that controlled traffic practices are adhered to especially if field conditions or field 

practices make the inter-rows difficult to see by drivers during infield operations, or where 

the inter-row wheel traffic area is narrow and difficult to keep to. The construction of slightly 

raised crop production areas or cropping beds and alternative widened inter-row traffic lanes 

matched to equipment wheel tracks can also be used to assist drivers to keep wheel traffic 

away from the crop rows where GNSS systems are not used. 

 

The hypothesis that large differences in estimated yield losses would be found between the 

various systems typically used in South Africa was validated. The hypothesis that the highest 
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losses would be attributed to systems containing the largest amount of uncontrolled traffic 

was generally correct if one excludes the mechanical harvester (E) that had higher impact 

equipment and high amounts of infield traffic despite practicing CT. The findings highlight 

the need to consider systems in their entirety, namely the combination of extent, position and 

impact of the equipment. From the field studies, the cut and stack system with single stack 

self-loading trailers (A1 and A2) had the lowest impact on yields despite not practicing 

controlled traffic. This was due to the low amounts of infield traffic and that the equipment is 

relatively low in mass. Good harvesting practices as mentioned above and the adoption of 

control traffic principles may further enhance the cut and stack system in general. 

Improvements within the cut and windrow systems (A3, B, C, D, F and G) to reduce yield 

losses can be achieved through widening the swath between windrows. The benefits would 

however need to be offset against the costs of doing so. Improvements relating to 

management of the cut and windrow systems with slewing loaders (D and F) is possible 

through the use of lower impact slewing loaders operating strictly under controlled traffic 

principles. Improvements in the cut and windrow systems employing non-slew loaders (A3, B 

and C) would be primarily governed by the choice of extraction equipment. The results 

indicated that the cut and windrow systems using non-slew loaders were the most variable 

and generally the highest impact systems. The non-slew loader collecting from multiple 

windrows into high capacity trailers (C) have greater impact compared to loading light low 

capacity trailers from a single windrow (B). The impact of multiple passes over the same 

area, the impact of smearing or jockey wheel traffic by the non-slew loader was not taken 

into account. The principle of confining multiple extraction paths to similar routes for the 

extraction trailers would have reduced the yield impact from the low capacity trailer study 

(B). Despite such improvements, it is not possible for the non-slew loader to practice control 

traffic principles. The compounding impact of traffic induced stool damage into successive 

ratoon yields is further reason to promote controlled traffic principles. This is particularly 

applicable for high impact vehicles entering the field. 

 

10.2 Recommendations 

 

A simple spreadsheet decision support programme was developed to model existing 

knowledge and to cater for specific vehicle characteristics, soils and soil moisture condition 

scenarios. There were a number of gaps that were evident from the literature study, yield 
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response database and associated modelling. Such research would enhance understanding in 

this field of work. Gaps and recommendations for future research include trials to determine 

the yield response of row and inter-row traffic treatments on low clay soils under dry 

conditions and row traffic treatments for high clay soils under dry conditions. It is expected 

that these yield responses will be minimal however, as traffic induced yield loss under drier 

conditions tend to be far less than under moist or wet soil moisture conditions. Such trials 

would improve the modelling of yield responses to infield traffic and better quantify expected 

losses. Minimal data are available to determine the sugarcane yield response to soil surface 

smearing caused by infield equipment. Such events are more prevalent in particular 

equipment systems and aggravated by poor driver behaviour. The existing perceptions are 

based on field observances and anecdotal evidence with no research data conducted to 

substantiate. Ideally, future traffic induced, soil compaction and yield loss studies should 

include detailed traits such as: 

 Crop information: Crop yield, field layout, crop row and inter-row spacing’s, specific 

management conditions (e.g. irrigated/dryland, burnt/green), ratoon, varieties; 

 Soil information: Soil constituents, clay content, soil moisture content, clay type; 

organic matter content, bulk density (pre and post treatment), water infiltration rates 

(pre and post treatment), soil depth, effective rooting depth; 

 Mechanisation and transport: Machinery and equipment or compaction treatment 

scenarios, position of tyres/wheel tracks relative to the crop, axle masses (empty and 

laden or treatment condition), tyre inflation pressures, number of wheel passes, track 

width, tyre type, tyre size, tyre width;  

 General observances: Comparative crop regrowth and vigour, growing season 

conditions. 

 

Taking a critical look at the field work component of the study, it is possible to improve the 

surveying component for future trials, particularly as access to multiple high accuracy GNSS 

receivers (sub 30 cm accuracy) become more readily available and as their costs reduce. 

Possible studies include the fitting of GNSS receivers above all wheels of all vehicles 

entering a field to map the entire loading and transport operations. Complimenting GNSS 

logging with other infield measurements such as equipment load cells data to provide maps 

indicating the spatial variability of loading across the field and thus estimate the yield impact 

variability and yield losses at a spatial level. 
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The field survey component of the study gave an overview of six typical operations to cover a 

range of equipment and practices that exist in practice. These surveys were conducted for 

particular harvesting methods on the row spacing’s for that particular operation. Scope exists 

for further analysis of the data gathered from the study, such as:  

 Estimating the severity of yield loss caused at portions of the field such as the 

headlands of fields where widespread compaction and stool damage is likely due to 

off tracking of long tractor-trailer configurations with multiple trailers. This would 

provide a useful economic value against which to justify whether remedial actions or 

resources would be warranted. 

 To repeat the analyses on a ‘better managed’ scenario for each of the systems where 

row traffic is minimised and traffic confined to the inter-rows for systems where this 

is possible. This allows the value that is available for the adoption of a particular 

technology such as GNSS steering or for field layout and configuration changes, for 

example, to be determined. 

 Further GIS analysis of the field surveys to examine the magnitude and extent of 

multiple passes by different equipment, distinguishing between areas of the field 

containing 2, 3 or more passes per equipment type. 

 To investigate system hybridization using alternative combinations of loaders and 

extraction vehicles. This would require the examination of the field maps and typical 

extraction patterns to guide the estimation of row and inter-row traffic extents and 

position in order to determine an estimated yield loss for the defined system. 

 

A useful economics study would be to determine the cost of employing manual labourers to 

increasing windrow widths (during or subsequent to harvesting), thereby constraining the 

infield traffic to more confined swaths through the field. 

 

In general, the surveys performed in this study do not cater for within system variations but 

do provided detailed equipment traffic movement patterns for a particular operation. System 

variations that occur in practice include: alternative row spacing configurations, sugarcane 

yields, sugarcane densities, cane stockpile positions and alignment, loading techniques, driver 

behaviour patterns or combinations of the aforementioned items. Further enhancement to the 

current work may be to investigate and develop modelling tools and/or simulations to account 
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for such system alternatives. Such modelling would build upon the data from the existing 

surveys and traffic patterns for particular equipment. The modelling output would need to 

provide estimates of row, inter-row and no traffic areas as a percentage of field area for yield 

loss comparisons for alternative practices. The use of the time and motion and performance 

studies may be used to model anticipated equipment operating times and equipment 

performance could be used to adapt economic machinery costing comparisons for each 

system. Thus, a holistic costing approach including both machinery costings and crop yield 

loss estimates could be integrated for overall machinery cost comparisons for a range of 

scenarios. Further modelling and simulation studies may be ideally suited to support this 

current study.  

 

The work conducted in this study has resulted in the development of yield loss estimation 

models and an accompanying costing framework that considers base economic costs of 

systems and additional yield loss impact cost components. Such work allows for numerous 

additional costing and break-even analyses to be conducted. The yield loss models consist of 

a detailed yield estimation model that considers case specific inputs pertaining to vehicle 

parameters, soil type, number of passes and soil moisture status and a generalised model 

developed for higher level analyses and system comparisons that takes vehicle impact ratings 

and generalised yield responses into account. The framework to quantify seasonal periods of 

high risk where field conditions are more susceptible to yield loss has been reported and can 

be customised for areas within the industry. The compounding effect of infield traffic impacts 

through into successive ratoons has been investigated to allow for various analyses to be 

conducted.  

 

This dissertation has fully achieved the stated objectives of the study by:  

a) Reviewing the typical complement of equipment and systems used infield for 

sugarcane harvesting and extraction operations within the South African industry.  

b) Reviewing techniques, practices and systems that are being developed and promoted 

locally and internationally to minimise the impact of infield traffic.  

c) Derived infield traffic induced sugarcane yield loss estimation models based on 

collated and synthesised local and international literature. 
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d) Determined through field investigations, the extent and severity of infield traffic 

across a range of sugarcane harvesting and extraction systems typically found in the 

South African sugarcane industry. 

e) Provided a set of results and the framework to conduct overall cost comparisons 

between typical systems used in the South African sugarcane industry taking the cost 

of mechanisation and the cost of associated yield loss estimates into account. 

 

The application of this work is not only essential in the identification of overall and system 

costs for comparing existing systems but also for future strategic analyses. Determining the 

impact of adopting green cane harvesting systems or determining cost benefit analyses for 

effective infield biomass recovery systems for electricity cogeneration are two examples of 

where this work would provide significant value to the sugar industry. 
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12. APPENDIX A: SOUTHERN AFRICAN DATA 

SUMMARY OF SOIL COMPACTION TRIALS CONDUCTED IN SOUTHERN AFRICA: * 

 

Reference: Location: Soil Type: Treatment: Yield as % of control: 

Anon (1985) SA- Komatipoort Shortlands 52%clay;13%silt Trucks + Poclan loader-3R- IR 77% Significant 

Cleasby (1964) SA- Mt Edgecombe 28% clay; 15% silt Tractor & trailer + 2½  tons cane 77% TV 

Cleasby (1964) SA- ? -Mr Chance ? Multiple tractor passes 64% 

Johnston and Wood (1971) SA- Mt Edgecombe ? ? Compaction trial 78% 

Johnston and Wood (1971) SA- Tongaat Windermere clay loam ? 91% NS- high variability 

Johnston and Wood (1971) SA- Chaka's Kraal Waldene sandy clay loam ? 86% NS- site variability 

Johnston and Wood (1971)  SA- Pongola Makatini sandy clay Tr & trailer +5t R1: 2P-IR- wet 101% NS T 

Johnston and Wood (1971)  SA- Pongola Makatini sandy clay Tr & trailer +5t R1: 2P-IR- dry 103% NS CT 

Johnston and Wood (1971)  SA- Pongola Makatini sandy clay Tr & trailer +5t R2: 5P-IR- wet 97% NS CT 

Johnston and Wood (1971)  SA- Pongola Makatini sandy clay Tr & tr +5t R2: 5P-IR+R- wet 96% NS-early growth slowCT 

Swinford and Boevey (1984)  SA- La Mercy Longlands 20% clay; 8% silt 3.7t tyre load-R1–5 passes IR 86% Significant CT 

Swinford and Boevey (1984)  SA- La Mercy Longlands 20% clay; 8% silt 3.7t tyre load-R1–7 passes R+IR 73% Significant CT 

Swinford and Boevey (1984)  SA- La Mercy Longlands 20% clay; 8% silt 5.7t tyre load-R1–5 passes IR 79% Significant CT 

Swinford and Boevey (1984)  SA- La Mercy Longlands 20% clay; 8% silt 5.7t tyre load-R1–7 passes R+IR 76% Significant CT 

Swinford and Boevey (1984)  SA- La Mercy Longlands 20% clay; 8% silt 3.7t tyre load-R2–5 passes IR 74% Significant CT 

* Abbreviations: Not significant (NS); Inter-Row (IR); Row (R); Zero Traffic (Z) First ratoon (R1); Tractor trailer with twelve ton payload (12t 

tr/tr); High floatation (HF); Roll on – Roll off (ro/ro); Passes (P); Create model (C); Test model (T); Validate model (M) 
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APPENDIX A: SOUTHERN AFRICAN DATA 

SUMMARY OF SOIL COMPACTION TRIALS CONDUCTED IN SOUTHERN AFRICA: * 

 

Reference: Location: Soil Type: Treatment: Yield as % of control: 

Swinford and Boevey (1984)  SA- La Mercy Longlands 20% clay; 8% silt 3.7t tyre load-R2–7 passes R+IR 59% Significant CT 

Swinford and Boevey (1984)  SA- La Mercy Longlands 20% clay; 8% silt 5.7t tyre load-R2–5 passes IR 65% Significant CT 

Swinford and Boevey (1984)  SA- La Mercy Longlands 20% clay; 8% silt 5.7t tyre load-R2–7 passes R+IR 53% Significant CT 

Van Antwerpen and Meyer (2001)  SA- Malelane Hutton 63% clay;10% silt; 

2.9-3.4% OM 

57t truck +dual radials - IR dry 99% NS CT 

Van Antwerpen and Meyer (2001) SA- Malelane Hutton 63% clay;10% silt 57t truck +dual radials - IR moist 85% NS CT 

Van Antwerpen and Meyer (2001) SA- Malelane Hutton 63% clay;10% silt 57t truck +dual radials - IR wet 92% NS CT 

Van Antwerpen and Meyer (2001) SA- Malelane Hutton 63% clay;10% silt 48t truck + HF singles – IR dry 103% NS CT 

Van Antwerpen and Meyer (2001) SA- Malelane Hutton 63% clay;10% silt 48t truck + HF singles – IR moist 88% NS CT 

Van Antwerpen and Meyer (2001) SA- Malelane Hutton 63% clay;10% silt 48t truck + HF singles – IR wet 99% NS CT 

Van Antwerpen and Meyer (2001) SA- Malelane Hutton 63% clay;10% silt 12t tractor trailer+radials–IR dry 94% NS T 

Van Antwerpen and Meyer (2001) SA- Malelane Hutton 63% clay;10% silt 12t tr/tr +radials – IR moist 93% NS T 

Van Antwerpen and Meyer (2001) SA- Malelane Hutton 63% clay;10% silt 12t tr/tr +radials – IR wet 95% NS T 

Van Antwerpen et al. (2008) SA- Komatipoort Hutton 44% clay;3.8% OM 57t truck +radials –R2 - IR dry 102% NS CT 

Van Antwerpen et al. (2008) SA- Komatipoort Hutton 44% clay;3.8% OM 57t truck +HF -R2- IR dry 103% NS CT 

* Abbreviations: Not significant (NS); Inter-Row (IR); Row (R); Zero Traffic (Z) First ratoon (R1); Tractor trailer with twelve ton payload (12t 

tr/tr); High floatation (HF); Roll on – Roll off (ro/ro); Passes (P); Create model (C); Test model (T); Validate model (M)  
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APPENDIX A: SOUTHERN AFRICAN DATA 

SUMMARY OF SOIL COMPACTION TRIALS CONDUCTED IN SOUTHERN AFRICA: * 

 

Reference: Location: Soil Type: Treatment: Yield as % of control: 

Van Antwerpen et al. (2008) SA- Komatipoort Hutton 44% clay;3.8% OM 57t truck +radials –R2- IR wet 98% NS CT 

Van Antwerpen et al. (2008) SA- Komatipoort Hutton 44% clay;3.8% OM 57t truck +HF -R2- IR wet 101% NS CT 

Van Antwerpen et al. (2008) SA- Komatipoort Hutton 44% clay;3.8% OM 57t truck +radials –R3- IR dry 99% NS CT 

Van Antwerpen et al. (2008) SA- Komatipoort Hutton 44% clay;3.8% OM 57t truck +HF -R3- IR dry 104% NS CT 

Van Antwerpen et al. (2008) SA- Komatipoort Hutton 44% clay;3.8% OM 57t truck +radials –R3- IR wet 97% NS CT 

Van Antwerpen et al. (2008) SA- Komatipoort Hutton 44% clay;3.8% OM 57t truck +HF -R3- IR wet 106% NS CT 

* Abbreviations: Not significant (NS); Inter-Row (IR); Row (R); Zero Traffic (Z) First ratoon (R1); Tractor trailer with twelve ton payload (12t 

tr/tr); High floatation (HF); Roll on – Roll off (ro/ro); Passes (P); Create model (C); Test model (T); Validate model (M) 
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13. APPENDIX B: INTERNATIONAL DATA 

SUMMARY OF SOIL COMPACTION TRIALS CONDUCTED INTERNATIONALLY: * 

 

Reference: Location: Soil Type: Treatment: Yield as % of control: 

Bellinaso and Donzelli unpublished Brazil Clay Tractor and 2×Trailers? 96% 

Bellinaso and Donzelli unpublished Brazil Clay Truck? 89% 

Bellinaso and Donzelli unpublished Brazil Sand Tractor and 2×Trailers? 98% 

Bellinaso and Donzelli unpublished Brazil Sand Truck? 95% 

Braunack (1995) Australia- Tully ? 4t tr/tr –R1- R vs IR 98% TV 

Braunack (1995) Australia- Tully ? 4t tr/tr -R2- R vs IR 92% TV 

Braunack (1995) Australia- Ingham ? 8t tr/tr –R1- R vs IR 86% TV 

Braunack (1997) – Hurney 1975 Australia-? ? Tr/tr+4t cane bin 96% NS 

Braunack (1997) – Hurney 1975 Australia-? ? Tr/tr+10t cane bin 105% NS 

Braunack (1997) – Hurney 1975 Australia-? ? Tr/tr+10t cane bin 109% NS 

Braunack and Peatey (1999) Australia- Macknade Loam to Silty clay 9t ro/ro haulout- R1- R vs Z 73% Significant TV 

Braunack and Peatey (1999) Australia- Macknade Loam to Silty clay 9t ro/ro haulout- R2- R vs Z 68% Significant TV 

Braunack and Peatey (1999) Australia- Macknade Loam to Silty clay 9t ro/ro haulout- R1+wet- R vs Z 60% Significant TV 

Braunack and Peatey (1999) Australia- Macknade Loam to Silty clay 9t ro/ro haulout- R2+wet- R vs Z 66% Significant TV 

Braunack and Hurney (2000) Australia- Ingham Grey clay Tr/tr+2×4t ro/ro bins–R1 R vs IR 86% NS T 

*Abbreviations: Not significant (NS); Inter-Row (IR); Row (R); Zero Traffic (Z) First ratoon (R1); Tractor trailer with twelve ton payload (12t 

tr/tr); High floatation (HF); Roll on – Roll off (ro/ro); Passes (P); Clay (Cl); Variety (Var); Create model (C); Test model (T); Validate model (M) 
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APPENDIX B: INTERNATIONAL DATA 

SUMMARY OF SOIL COMPACTION TRIALS CONDUCTED INTERNATIONALLY: * 

 

Reference: Location: Soil Type: Treatment: Yield as % of control: 

Braunack and Hurney (2000) Australia- Ingham Grey clay Tr/tr+2×4t ro/ro bins–R2 R vs IR 96% NS T 

Braunack and Hurney (2000) Australia- Ingham Grey clay Tr/tr+2×4t ro/ro bins–R3 R vs IR 84% NS 

Braunack and Hurney (2000) Australia- Ingham Grey clay Tr/tr+2×4t ro/ro bins–R4 R vs IR 100% NS 

Braunack and Hurney (2000) Australia- Ingham Grey clay Tr/tr+2×4t ro/ro bins–R5 R vs IR 82% NS 

Braunack and Hurney (2000) Australia- Tully Brown silty clay Tr/tr+4t tip+HF tyres–R1 R vs IR 100% NS T 

Braunack and Hurney (2000) Australia- Tully Brown silty clay Tr/tr+4t tip+HF tyres–R2 R vs IR 91% NS 

Braunack and Hurney (2000) Australia- Tully Brown silty clay Tr/tr+4t tip+HF tyres–R3 R vs IR 91% Significant (Var: Q138) 

Braunack and Hurney (2000) Australia- Tully Brown silty clay Tr/tr+4t tip+HF tyres–R4 R vs IR 107% Significant (All) 

Cleasby (1964) Hawaii ? Manual vs 2 Mechanical harvests 68% Significant 

Cleasby (1964) Hawaii ? Manual vs 3 Mechanical harvests 42% Significant 

De Paula and Molin (2013) Brazil- Itapira Sandy Tractor 3.8t- 2P –R vs Z 96% NS CT 

De Paula and Molin (2013) Brazil- Itapira Sandy Tractor 3.8t- 4P –R vs Z 89% NS CT 

De Paula and Molin (2013) Brazil- Itapira Sandy Tractor 3.8t- 9P –IR vs Z 97% NS CT 

De Paula and Molin (2013) Brazil- Itapira Sandy Tractor 3.8t- 9P –R vs Z 86% NS CT 

De Paula and Molin (2013) Brazil- Itapira Clay Tractor 3.8t- 2P -R vs Z 93% NS CT 

*Abbreviations: Not significant (NS); Inter-Row (IR); Row (R); Zero Traffic (Z) First ratoon (R1); Tractor trailer with twelve ton payload (12t 

tr/tr); High floatation (HF); Roll on – Roll off (ro/ro); Passes (P); Clay (Cl); Variety (Var); Create model (C); Test model (T); Validate model (M)  
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APPENDIX B: INTERNATIONAL DATA 

SUMMARY OF SOIL COMPACTION TRIALS CONDUCTED INTERNATIONALLY: * 

 

Reference: Location: Soil Type: Treatment: Yield as % of control: 

De Paula and Molin (2013) Brazil- Itapira Clay Tractor 3.8t- 4P –R vs Z 84% NS; Significant RvsIR CT 

De Paula and Molin (2013) Brazil- Itapira Clay Tractor 3.8t- 9P –IR vs Z 114% NS; Significant IRvsR CT 

De Paula and Molin (2013) Brazil- Itapira Clay Tractor 3.8t- 9P –R vs Z 88% NS; Significant RvsIR CT 

Dinardo-Miranda et al. (2008) Brazil- ? Red latosol- Clay Manual harvest +infield haulage 73% TV 

Dinardo-Miranda et al. (2008) Brazil- ? Red latosol- Clay Harvester only 79% 

Dinardo-Miranda et al. (2008) Brazil- ? Red latosol- Clay Harvester +infield haulage 70% 

Dinardo-Miranda et al. (2008) Brazil- ? Red latosol- Clay Harvester +infield truck 64% 

Georges et al. (1985) W. Indies- Trinidad Clay Harvester (10t) + Tr/tr 10-15t 100% NS – Shrink swell Cl 

Georges et al. (1985) W. Indies- Trinidad Silty clay loam Harvester (10t) + Tr/tr 10-15t 100% NS – Shrink swell Cl 

Jackson et al. (2000) Australia- Macknade Alluvial soil Tr/tr+ro/ro bin+1.5t – R1 74% Significant TV 

Jackson et al. (2000) Australia- Macknade Alluvial soil Tr/tr+ro/ro bin+4t – R2 81% Significant 

Jackson et al. (2000) Australia- Macknade Alluvial soil Tr/tr+ro/ro bin+1.5t – R1 + irrn. 75% Significant TV 

Jackson et al. (2000) Australia- Macknade Alluvial soil Tr/tr+ro/ro bin+4t – R2 + irrn. 77% Significant 

Jackson et al. (2000) Australia- Macknade Alluvial soil Tr/tr+ro/ro bin+1.5t – R1 66% Significant 

Jackson et al. (2000) Australia- Macknade Alluvial soil No treatment (R1 memory) – R2 76% Significant 

*Abbreviations: Not significant (NS); Inter-Row (IR); Row (R); Zero Traffic (Z) First ratoon (R1); Tractor trailer with twelve ton payload (12t 

tr/tr); High floatation (HF); Roll on – Roll off (ro/ro); Passes (P); Clay (Cl); Variety (Var); Create model (C); Test model (T); Validate model (M) 
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APPENDIX B: INTERNATIONAL DATA 

SUMMARY OF SOIL COMPACTION TRIALS CONDUCTED INTERNATIONALLY: * 

 

Reference: Location: Soil Type: Treatment: Yield as % of control: 

Maud (1960) Hawaii ? reconditioned road ? reconditioned road 73% of uncompacted - 

Maud (1960) Hawaii ? reconditioned road ? reconditioned road 76% of uncompacted - 

Norris et al. (2000) Australia Industry wide ? 80% 

Pinto and Bellinaso (2000) Brazil- Sao Paulo Red latosol- Clay Tr/tr+container bins- R1- IR 98% 

Pinto and Bellinaso (2000) Brazil- Sao Paulo Red latosol- Clay Tr/tr+container bins- R1- R 94% 

Pinto and Bellinaso (2000) Brazil- Sao Paulo Red latosol- Clay Truck- R1- IR 93% 

Pinto and Bellinaso (2000) Brazil- Sao Paulo Red latosol- Clay Truck- R1- R 89% 

Robotham (2003) Australia ? Harvester traffic 88% TV 

Srivastava (1984) India- Lucknow Clay loam ? 69% Significant 

Srivastava (1984) India- Lucknow Clay loam Soil BD increased 1.32-1.51t/m³ 79% 

Srivastava (1984) India- Lucknow Clay loam Soil BD increased 1.32-1.70t/m³ 62% 

Torres et al. (1990) Columbia- Cauca Mollisol- Clay loam Grab loader (8.4-9t) vs ZT – IR 110% CT 

Torres et al. (1990) Columbia- Cauca Mollisol- Clay loam Grab loader (8.4-9t) vs ZT – R 93% CT 

Torres et al. (1990) Columbia- Cauca Mollisol- Clay loam Tractor+4t trailer (8t-12.5t)- IR 85% CT 

Torres et al. (1990) Columbia- Cauca Mollisol- Clay loam Tractor+4t trailer (8t-12.5t)- R 72% CT 

*Abbreviations: Not significant (NS); Inter-Row (IR); Row (R); Zero Traffic (Z) First ratoon (R1); Tractor trailer with twelve ton payload (12t 

tr/tr); High floatation (HF); Roll on – Roll off (ro/ro); Passes (P); Clay (Cl); Variety (Var); Create model (C); Test model (T); Validate model (M)  
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APPENDIX B: INTERNATIONAL DATA 

SUMMARY OF SOIL COMPACTION TRIALS CONDUCTED INTERNATIONALLY: * 

 

Reference: Location: Soil Type: Treatment: Yield as % of control: 

Torres et al. (1990) Columbia- Cauca Mollisol- Clay loam Tractor+2×7t tip- (29-44t)- IR 84% CT 

Torres et al. (1990) Columbia- Cauca Mollisol- Clay loam Tractor+2x7t tip- (29-44t)- R 51% CT 

Torres et al. (1990) Columbia- Cauca Mollisol- Clay loam Tractor+2x7t tip- (29-44t)- IR 84% CT 

Torres et al. (1990) Columbia- Cauca Mollisol- Clay loam Tractor+2x7t tip- (29-44t)- R 42% CT 

Torres et al. (1990) Columbia- Cauca Mollisol- Clay loam Dumper+4x7t trailer (43-85t)- IR 109% CT 

Torres et al. (1990) Columbia- Cauca Mollisol- Clay loam Dumper+4x7t trailer (43-85t)- R 24% CT 

Torres et al. (1990) Columbia- Cauca Mollisol- Clay loam Grab loader (8.4-9t) 104% 

Torres et al. (1990) Columbia- Cauca Mollisol- Clay loam Tractor+4t trailer (8t-12.5t) 79% 

Torres et al. (1990) Columbia- Cauca Mollisol- Clay loam Tractor+2x7t tip- (29-44t) 67% 

Torres et al. (1990) Columbia- Cauca Mollisol- Clay loam Tractor+2x7t tip- (29-44t) 94% 

Torres et al. (1990) Columbia- Cauca Mollisol- Clay loam Dumper+20t trailer (20-40t) 82% 

Torres and Villegas (1995) Columbia-Castilla Mollisol- Clay loam Grab loader (8.4-9t) IR 96% CT 

Torres and Villegas (1995) Columbia-Castilla Mollisol- Clay loam Grab loader (8.4-9t) R 102% C 

Torres and Villegas (1995) Columbia-Castilla Mollisol- Clay loam Tractor+2x4t trailer (10-18t)- IR  96% CT 

Torres and Villegas (1995) Columbia-Castilla Mollisol- Clay loam Tractor+2x4t trailer (10-18t)- R 86% CT 

*Abbreviations: Not significant (NS); Inter-Row (IR); Row (R); Zero Traffic (Z) First ratoon (R1); Tractor trailer with twelve ton payload (12t 

tr/tr); High floatation (HF); Roll on – Roll off (ro/ro); Passes (P); Clay (Cl); Variety (Var); Create model (C); Test model (T); Validate model (M)  
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APPENDIX B: INTERNATIONAL DATA 

SUMMARY OF SOIL COMPACTION TRIALS CONDUCTED INTERNATIONALLY: * 

 

Reference: Location: Soil Type: Treatment: Yield as % of control: 

Torres and Villegas (1995) Columbia-Castilla Mollisol- Clay loam Dumper+2x7t trailer (28-55t)- IR 83% CT 

Torres and Villegas (1995) Columbia-Castilla Mollisol- Clay loam Dumper+2x7t trailer (28-55t)- R 55% CT 

Torres and Pantoja (2005) Columbia- Cauca Mollisol- Clay loam Grab loader (13-13.8t) IR 96% CT 

Torres and Pantoja (2005) Columbia- Cauca Mollisol- Clay loam Tracked harvester (18-18.5t)- IR 99% T 

Torres and Pantoja (2005) Columbia- Cauca Mollisol- Clay loam Tr+ 8t Tip trailer (16.5-24.5t)- IR 97% CT 

Torres and Pantoja (2005) Columbia- Cauca Mollisol- Clay loam Full mech: Harvester + Tr/tr-IR 95% T 

Torres and Pantoja (2005) Columbia- Cauca Mollisol- Clay loam Semi mech: loader + Tr/tr- IR 93% T 

Torres and Pantoja (2005) Columbia- Cauca Mollisol- Clay loam Uncontrolled traffic system 88% 

Trouse (1982) Hawaii ? Compacted soil? 50% 

Trouse Jr and Humbert (1961) Hawaii Hydrol humic latosol Mechanical vs Hand harvested 84% 

Trouse Jr and Humbert (1961) Hawaii Hydrol humic latosol Mechanical vs Hand harvested 81% 

Usaborisut and Niyamapa (2010) Thailand Loam Tractor weighing 3.5t – 5P 94% NS TV 

Usaborisut and Niyamapa (2010) Thailand Loam Tractor weighing 3.5t - 15P 77% Significant TV 

Usaborisut and Niyamapa (2010) Thailand Loam Tractor weighing 3.5t - 20P 80% Significant TV 

Yang (1977) Taiwan- Tainan Clay loam Mechanical (all) vs Hand cut 85% 

*Abbreviations: Not significant (NS); Inter-Row (IR); Row (R); Zero Traffic (Z) First ratoon (R1); Tractor trailer with twelve ton payload (12t 

tr/tr); High floatation (HF); Roll on – Roll off (ro/ro); Passes (P); Clay (Cl); Variety (Var); Create model (C); Test model (T); Validate model (M)  
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APPENDIX B: INTERNATIONAL DATA 

SUMMARY OF SOIL COMPACTION TRIALS CONDUCTED INTERNATIONALLY: * 

 

Reference: Location: Soil Type: Treatment: Yield as % of control: 

Yang (1977) Taiwan- Tainan Clay loam Mechanical (2 pass) vs Hand cut 92% 

Yang (1977) Taiwan- Tainan Silty loam Harvester+6t truck-dry-4P vs 2P 94% TV 

Yang (1977) Taiwan- Tainan Silty loam Harvester+6t truck-wet-4P vs 2P 88% TV 

Yang (1977) Taiwan- Tainan Silty loam Harvester+6t truck-dry-6P vs 2P 83% TV 

Yang (1977) Taiwan- Tainan Silty loam Harvester+6t truck-wet-6P vs 2P 77% TV 

Yang (1977) Taiwan- Tainan Clay loam Harvester+6t truck-dry-4P vs 2P 96% TV 

Yang (1977) Taiwan- Tainan Clay loam Harvester+6t truck-wet-4P vs 2P 92% TV 

Yang (1977) Taiwan- Tainan Clay loam Harvester+6t truck-dry-6P vs 2P 92% TV 

Yang (1977) Taiwan- Tainan Clay loam Harvester+6t truck-wet-6P vs 2P 81% TV 

*Abbreviations: Not significant (NS); Inter-Row (IR); Row (R); Zero Traffic (Z) First ratoon (R1); Tractor trailer with twelve ton payload (12t 

tr/tr); High floatation (HF); Roll on – Roll off (ro/ro); Passes (P); Clay (Cl); Variety (Var); Create model (C); Test model (T); Validate model (M) 
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14. APPENDIX C: MECHANISATION SYSTEM COSTING ASSUMPTIONS 

Item: A1: A2: A3: B: C: D: E: F: G: 

Row Spacing (m) 1.0-1.2 m 1.0-1.2 m 1.0 m 0.95 m 1.0 m 0.4x1.25 m 0.5x1.45 m 0.4x1.45 m 1.0 m 

Loader Wheel Track (m) 
2.0 m 2.1 m 

1.9 m 2.3 m 2.0 m 3.6 m 1.88 m 2.1 m 2.0 m 

Trailer Wheel Track (m) 2.1 m 2.1 m 2.1 m 2.1 m 1.9 m 2.2 m 2.1 m 

Field preparation: Burnt Burnt Burnt Burnt Burnt Burnt Burnt Burnt Burnt 

Harvesting method: 

 

Manual: 

cut, stack 

Manual: 

cut, stack 

Manual: 

cut, windrow 

Manual: 

cut, windrow 

Manual: 

cut, windrow 

Manual: 

cut, windrow 

Mechanical: 

CH 

Manual: 

cut, windrow 

Manual: 

cut, windrow 

Harvesting rate (t/period) 4.2 t/md 4.2 t/md 8 t/md 8 t/md 8 t/md 8 t/md 46 t/h pour 8 t/md 8 t/md 

Harvester cost (R/unit) R128/md R128/md R128/md R128/md R128/md R128/md R6 500 000 R128/md R128/md 

Infield loading equipment: 1 stack SLT 2 stack SLT Non-slew L Non-slew L Non-slew L Slew-large As above CH Slew-small Non-slew L 

Infield loading rate (t/h) 11.7 t/h 12.7 t/h 33 t/h 31 t/h 27 t/h 39 t/h 32 t/h 76 t/h 27 t/h 

Infield loader cost (R/unit) R480 000 R675 000 R730 000 R730 000 R730 000 R2 500 000 R6 500 000 R1 250 000 R730 000 

Infield haulage equipment: As above 

1 stack SLT 

As above 

2 stack SLT 

Box trailers Box trailers 1 x Triaxle 

spiller trailer 

2 x Tandem 

axle spillers 

Tip trailers Tip trailers Rigid truck + 

trailer 

Infield haulage payloads (t) 4.7 t 6.5 t 7.9 t 4.2 t 23.1 t 28.3 t 7 t 9 t 32 t 

Infield haulage vehicle costs R480 000 R675 000 R620 000 R455 000 R1 690 000 R2 190 000 R610 000 R670 000 R2 030 000 

Trans-loading equipment: Crane Crane Crane Crane N/A N/A Non-slew L Non-slew L N/A 

Trans-loading rate (t/h) 60 t/h 60 t/h 60 t/h 60 t/h - - 40 t/h 40 t/h - 

Trans-loading cost (R/unit) R845 000 R845 000 R845 000 R845 000 - - R760 000 R760 000 - 

Road haulage equipment: Truck tractor 

Interlink 

Truck tractor 

Interlink 

Truck tractor 

Interlink 

Truck tractor 

Interlink 

N/A N/A Truck tractor 

Interlink 

Truck tractor 

Interlink 

N/A 

Road haulage payloads (t) 32 t 32 t 32 t 32 t - - 32 t 32 t - 

Road haulage cost (R/unit) R2 065 000 R2 065 000 R2 065 000 R2 065 000 - - R2 065 000 R2 065 000 - 

Key:  CH = Chopper harvester; SLT’s = Self-loading trailers; 
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15. APPENDIX D: RISK OF ADVERSE SOIL MOISTURE CONDITIONS BY REGION 

Days suitable for mechanisation (Soil moisture content < 80% of Field capacity) after Mthembu (2011) 

Season length assumed to start from middle of April and 220 days in length. 

REGION: ML,K PG Umf Fx Am Dn Gl Ms Nb, Uc Es Sz,Uk Industry 

January 18.0 19.9 20.3 20.3 20.8 15.4 14.3 15.2 14.3 15.4 17.1 17.3 

February 18.0 18.5 18.5 17.6 18.1 15.4 13.0 12.5 17.0 13.0 14.5 16.0 

March 21.0 21.8 20.3 19.9 20.8 18.5 17.2 17.0 16.3 16.4 17.1 18.7 

April 24.2 26.2 21.5 22.5 22.1 22.1 20.3 21.7 20.8 20.3 19.4 21.8 

May 29.0 28.0 25.5 24.8 25.4 28.0 27.0 26.0 29.0 27.5 26.8 27.1 

June 28.0 28.0 25.5 24.8 25.4 27.5 27.5 26.0 27.0 27.5 27.8 26.9 

July 29.0 28.5 25.5 27.0 28.0 28.0 28.0 26.0 28.0 28.0 28.3 27.8 

Aug 29.0 28.5 28.0 28.0 28.0 28.0 28.0 26.0 28.0 28.0 28.3 28.1 

September 28.0 28.0 28.0 24.8 25.1 23.6 25.1 25.4 25.7 25.1 23.4 25.6 

October 26.2 21.5 22.1 21.8 22.6 20.6 20.6 20.0 21.4 22.1 20.0 21.9 

November 20.8 17.6 18.5 20.3 18.5 18.5 17.2 18.5 16.5 19.0 17.8 18.6 

December 19.9 18.5 18.5 20.3 20.8 17.0 16.1 18.1 14.9 16.3 16.6 18.0 

 

Key:  Ml = Malelane; K = Komati; Umf = Umfolozi; Fx = Felixton; Am = Amatikulu; Dn = Darnall; Gl = Gledhow; Ms = Maidstone;  

Nb = Noodsberg; Uc = Union Co; Es = Eston; Sz = Sezela; Uk = Umzimkulu 
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16. APPENDIX E: QUICK REFERENCE GUIDE TO MECHANISATION SYSTEMS 

Survey: A1: A2: A3: B: C: D: E: F: G: 
System and 

Equipment: 

Cut and stack: 

Self- loading 

trailers (SLT’s) 

Cut and stack: 

Self- loading 

trailers (SLT’s) 

Cut and windrow: 

Non-slew loader 

and box trailers 

Cut and windrow: 

Non-slew loader 

and box trailers 

Cut and windrow: 

Non-slew loader 

and high capacity 

trailer 

Cut and windrow: 

Slew loader and 

high capacity 

trailer 

Chopper harvester 

loading into low 

capacity trailers 

Cut and windrow: 

Slew loader and 

low capacity 

trailer 

Cut and windrow: 

Non-slew loader 

and rigid truck 

Traffic Management: Random traffic Random traffic Random traffic Random traffic Random traffic Control traffic Control traffic Control traffic Random traffic 

Row Spacing: 1-1.2 m 1-1.2 m 1 m 0.95 m 1 m Tram 0.4x1.25 m Tram 0.4x1.45 m Tram 0.5x1.45 m 1 m 

Wheel Track Loader: 
2.0 m 2.1 m 

1.9 m 2.3 m 2 m 3.6 m 1.88 m 2.1 m 2 m 

Wheel Track Trailers: 2.1 m 2.1 m 2.1 m 2.15 m 1.9 m 2.2 m 2.1 m 

Field Area: 2.5 ha 1.1 ha 1.0 ha 1.5 ha 0.25 ha 3.1 ha 1.5 ha 1.7 ha 0.25 ha 

Cane Yield: 89 t/ha 89 t/ha 130 t/ha 76 t/ha 91 t/ha 55 t/ha 70 t/ha 123 t/ha 91 t/ha 

Harvest Preparation: Burnt Burnt Burnt Burnt Burnt Burnt Burnt Burnt Burnt 

Cutting: Manual Manual Manual Manual Manual Manual Mechanical Manual Manual 

Cane Stockpile 

Presentation:  

Stacks Stacks Windrow 

5 rows : 1 

Windrow 

6 rows : 1 

Windrow 

6 rows : 1 

Windrow 

3 tram (6 rows) : 1 

1 tramline 

(2 rows) per pass 

Windrow 

4 tram (8 rows) : 1 

Windrow 

6 rows : 1 

Infield Loading: Single stack 

SLT’s 

Double stack 

SLT’s 

Non-slew loader: 

load 2 windrows 

Non-slew loader: 

load 1 windrow 

Non-slew loader: 

load 3 windrows 

Slewing loader: 

load 1 windrow 

Chopper harvester 

1 tramline per pass 

Slewing loader: 

load 1 windrow 

Non-slew loader: 

load 3 windrows 

Infield Haulage: 

(Field to zone = FZ 

Field to mill = FM) 

4.7 t  

as above, 

FZ 

6.5 t  

as above, 

FZ 

7.9 t  

low capacity  

box trailers, FZ 

4.2 t  

low capacity box 

trailer, FZ 

23.1 t  

high capacity   

3-axle trailer, FM 

28.3 t  

high capacity 2 x  

2-axle trailers, FM 

7 t  

single axle tip 

trailer, FZ 

9 t  

double axle tip 

trailer FZ 

32 t 

rigid truck, 

FM 

Trans-loading: Crane Crane Crane Crane N/A (see above) N/A (see above) Non-slew loader Non-slew loader N/A (see above) 

Road Haulage: 32 t interlink truck 32 t interlink truck 32 t interlink truck 32 t interlink truck N/A N/A 32 t interlink truck 32 t interlink truck N/A 

Loaders: 

  
       

Infield haulage 

vehicles: 
       

Trans-loading 

operations: 
    

N/A N/A 

  

N/A 

Road haulage vehicles: 

    

N/A N/A 

  

N/A 

Survey: A1: A2: A3: B: C: D: E: F: G: 
 


