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ABSTRACT 

Urban growth, which involves Land Use and Land Cover Changes (LULCC), alters land 

surface thermal properties. Within the framework of rapid urban growth and global warming, 

land surface temperature (LST) and its elevation have potential significant socio-economic and 

environmental implications. Hence the main objectives of this study were to (i) map urban 

growth, (ii) link urban growth with indoor and outdoor thermal conditions and (iii) estimate 

implications of thermal trends on household energy consumption as well as predict future urban 

growth and temperature patterns in Harare Metropolitan, Zimbabwe. To achieve these 

objectives, broadband multi-spectral Landsat 5, 7 and 8, in-situ LULC observations, air 

temperature (Ta) and humidity data were integrated. LULC maps were obtained from multi-

spectral remote sensing data and derived indices using the Support Vector Machine Algorithm, 

while LST were derived by applying single channel and split window algorithms. To improve 

remote sensing based urban growth mapping, a method of combining multi-spectral reflective 

data with thermal data and vegetation indices was tested. Vegetation indices were also 

combined with socio-demographic data to map the spatial distribution of heat vulnerability in 

Harare. Changes in outdoor human thermal discomfort in response to seasonal LULCC were 

evaluated, using the Discomfort Index (DI) derived parsimoniously from LST retrieved from 

Landsat 8 data. Responses of LST to long term urban growth were analysed for the period from 

1984 to 2015. The implications of urban growth induced temperature changes on household 

air-conditioning energy demand were analysed using Landsat derived land surface temperature 

based Degree Days. Finally, the Cellular Automata Markov Chain (CAMC) analysis was used 

to predict future landscape transformation at 10-year time steps from 2015 to 2045.  

 

Results showed high overall accuracy of 89.33% and kappa index above 0.86 obtained, using 

Landsat 8 bands and indices. Similar results were observed when indices were used as stand-

alone dataset (above 80%). Landsat 8 derived bio-physical surface properties and socio-

demographic factors, showed that heat vulnerability was high in over 40% in densely built-up 

areas with low-income when compared to “leafy” suburbs. A strong spatial correlation (α = 

0.61) between heat vulnerability and surface temperatures in the hot season was obtained, 

implying that LST is a good indicator of heat vulnerability in the area. LST based discomfort 

assessment approach retrieved DI with high accuracy as indicated by mean percentage error of 

less than 20% for each sub-season. Outdoor thermal discomfort was high in hot dry season 

(mean DI of 31oC), while the post rainy season was the most comfortable (mean DI of 19.9oC).  

During the hot season, thermal discomfort was very low in low density residential areas, which 

are characterised by forests and well maintained parks (DI ≤27oC). Long term changes results 

showed that high density residential areas increased by 92% between 1984 and 2016 at the 

expense of cooler green-spaces, which decreased by 75.5%, translating to a 1.98oC mean 

surface temperature increase. Due to surface alterations from urban growth between 1984 and 

2015, LST increased by an average of 2.26oC and 4.10oC in the cool and hot season, 

respectively. This decreased potential indoor heating energy needed in the cool season by 1 

degree day and increased indoor cooling energy during the hot season by 3 degree days. Spatial 

analysis showed that during the hot season, actual energy consumption was low in high 

temperature zones. This coincided with areas occupied by low income strata indicating that 

they do not afford as much energy and air conditioning facilities as expected. Besides 

quantifying and strongly relating with energy requirement, degree days provided a quantitative 

measure of heat vulnerability in Harare.  

 

Testing vegetation indices for predictive power showed that the Urban Index (UI) was 

comparatively the best predictor of future urban surface temperature (r = 0.98). The mean 

absolute percentage error of the UI derived temperature was 5.27% when tested against 
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temperature derived from thermal band in October 2015. Using UI as predictor variable in 

CAMC analysis, we predicted that the low surface temperature class (18-28oC) will decrease 

in coverage, while the high temperature category (36-45oC) will increase in proportion covered 

from 42.5 to 58% of city, indicating further warming as the city continues to grow between 

2015 and 2040.  

 

Overall, the findings of this study showed that LST, human thermal comfort and air-

conditioning energy demand are strongly affected by seasonal and urban growth induced land 

cover changes. It can be observed that urban greenery and wetlands play a significant role of 

reducing LST and heat transfer between the surface and lower atmosphere and LST may 

continue unless effective mitigation strategies, such as effective vegetation cover spatial 

configuration are adopted. Limitations to the study included inadequate spatial and low 

temporal resolution of Landsat data, few in-situ observations of temperature and LULC 

classification which was area specific thus difficult for global comparison. Recommendations 

for future studies included data merging to improve spatial and temporal representation of 

remote sensing data, resource mobilization to increase urban weather station density and image 

classification into local climate zones which are of easy global interpretation and comparison.  
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1.0 Introduction 

Climate change threatens sustainable development at global and local scales. Increasing 

frequency and intensity of extreme events has potential to worsen existing natural hazards, 

especially in densely populated areas such as cities (Brown. et al., 2012). Globally, average 

temperatures are rising while the frequency and intensity of heat waves seems to be also on the 

rise (De-Simone et al., 2011; IPCC, 2007). The contribution of human activities such as land 

use and land cover (LULC) changes may also significantly modify temperatures such as by 

altering the energy and water balance of converted areas (Nayak & Mandal, 2012). These 

changes may increase public health risks such as by increasing diseases, especially where high 

levels of poverty reduce adaptation options (Dube & Phiri, 2013; McMichael & Confalonieri, 

2012; Brown., et al., 2012). According to Newland (2011), it is estimated that 200 million 

people could be displaced by harsh environmental conditions due to climate change, globally. 

Concerning is that temperature changes observed over southern Africa were found to be higher 

than those reported for other parts of the world (IPCC, 2007). Furthermore, Africa is one of the 

most vulnerable regions in the world due to widespread poverty, limited coping capacity and 

highly variable climate (Brown., et al., 2012). Therefore, understanding factors contributing to 

climate dynamics is important for establishing adaptation and mitigation mechanisms, 

especially in resource constrained regions. 

 

At a local scale, the impacts of climate change are likely to be worsened by alterations to the 

energy and water balance caused by urbanization. Ogrin and Krevs (2015) observed that 

temperature changes are faster in urbanized than other areas. High density of population and 

economic activity in urban areas lead to intense anthropogenic heat release within small spatial 

scales (Blake, Curitiba, et al., 2011). Replacement of natural soil and vegetation with 

impervious surfaces reduces latent heat cooling and increases surface and near surface 

temperatures. Preferential heating of the cities against surroundings increases convection 

currents which further trap the heat (Tursilowati, 2007). According to Tursilowati (2007), the 

effect is even worse in central business areas where tall buildings absorb large amounts of heat 

while reducing ventilation and sensible heat cooling process. The severity of warming in urban 

areas depends on city size, population density, industrialization, seasonality of climate and 

structure of roads and transport system, thus differ from city to city (Odindi et al., 2015). 

According to Gusso et al. (2014), monitoring of local environmental challenges is an important 

tool for developing policies and strategies for sustainable development. This is also important 
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for determining internal climate within buildings and energy exchanges that influence comfort 

of city dwellers (Voogt & Oke, 2003). 

 

While conditions in urban microclimate affect the health and comfort of the residents, energy 

consumption and air quality, the areas are growing in population and coverage globally. 

Growth has become remarkable in developing countries over recent decades due to pursuit for 

fast economic growth (Zhou & Wang, 2011a; Yuen & Kong, 2009).  For example, in 2008 

more than 50% of the world population were already living in cities (De-Simone, et al., 2011) 

while projections are that the population will grow to 70% by 2050 (Blake, Curitiba, et al., 

2011). In developing countries, urbanization offers increase in opportunities for employment, 

specialization, better education as well as production of goods and services, however it also 

brings a variety of environmental challenges (Acharya et al., 2015). Urban growth causes 

surface temperatures to increase, which modulates air temperature in the lower atmosphere 

(Zhou & Wang, 2011a). Warming in cities affects much large number of people due to 

concentrated populations, especially in low to medium income countries where slum dwellers 

make up about 60% of the urban population (De-Simone, et al., 2011). This increases 

vulnerability of urban dwellers to heat related risks, unless adequate adaptation and mitigation 

measures are adopted. For example, urbanization induced warming will be superimposed on 

projected increases in frequency and intensity of heat waves, globally (Reid et al., 2012). 

Therefore, the large proportion of the world’s population, economic activities and physical 

infrastructure are at increasing risk to heat and other changes associated with urban growth. 

Analysis of thermal conditions, especially in low income cities will provide quantitative 

understanding of the effect of growth patterns on temperatures and thermal comfort. This will 

help in planning for further growth, for sustainable development as well as in ensuring thermal 

comfort and reduced heat vulnerability to urban dwellers.  

 

1.1 Temperature measurement using remote sensing 

Remote sensing plays a critical role in the study of responses of land and near surface 

temperatures to land use and land cover dynamics. Conventionally, in situ temperature 

observations are used in thermal analysis. However, although they usually have high temporal 

resolution, in-situ meteorological observations are limited in spatial coverage, such that it 

becomes unviable to use them to monitor large areas (Zhou & Wang, 2011a; Mohamed et al., 

2016). Urban areas are characterised by high spatial variability in surface thermal properties, 

which require a large number of in-situ observation points (Sattari & Hashim, 2014). In 
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analysis of long term temperature changes, in-situ measurements are therefore less reliable as 

they may change in location over time or are affected by land use and land cover changes of 

the surroundings (Ogrin & Krevs, 2015). According to Ogrin and Krevs (2015), in order to 

obtain reliable analysis for long term changes, meteorological stations must have operated at 

same place all the time and conditions around them should not have significantly changed over 

time. However, this is not always the case, especially in dynamic environments such as urban 

areas. In addition, values measured at a single location are also difficult to extend to the scale 

of an area making them less representative (Cai et al., 2011). Furthermore, in-situ observations 

describe response rather than the forcing of surface energy fluxes over urbanized areas (Owen 

et al., 1998). On the other hand, remote sensing offers benefits which include wide spatial 

coverage, digital data format easy to integrate with other digital data forms as well as advances 

in sensor technology, implying improvements in data quality (Odindi, et al., 2015; Dube et al., 

2016).  Remote sensing also allows measurements to be repeated over the same area, which is 

important for detection of changes such as impacts of urban growth (Dube, et al., 2016). 

Therefore, remote sensing presents a practical approach for analysing land surface 

temperatures on wide spatial and temporal scales (Abutaleb et al., 2015). Furthermore, due to 

increased sensor resolution and low altitude flight, it has become possible to extract 

temperatures from localized regions such as urban areas (Voogt & Oke, 2003). Algorithms 

have also been developed to sharpen satellite data and improve spatial resolution (Dominguez 

et al., 2011; Tomlinson et al., 2011). 

 

Land surface temperatures are mostly derived from thermal infrared data in the 8-15μm 

window. However, passive microwave sensors are also used for monitoring temperatures, 

although they are limited due to coarse spatial resolution which is usually in the order of tens 

of kilometres (Tomlinson, et al., 2011; Sattari & Hashim, 2014). Therefore, passive 

microwaves are mostly suitable over large areas hence the common usage of thermal infrared 

sensors, which offer higher spatial resolution (Tomlinson, et al., 2011). The thermal infrared 

sensors measure radiance at the top of the atmosphere from which blackbody/brightness 

temperatures can be derived using Planck’s law (Franco et al., 2015; Dash et al., 2007). The 

main algorithms used to retrieve temperature from thermal infrared data are the radiative 

transfer equation and the split window algorithm (Tomlinson, et al., 2011; McMillin, 1975; 

Qin et al., 2001; Rozenstein et al., 2014; Yang, Cao, et al., 2014). The split window algorithms 

are only applicable to sensors such as Landsat 8, ASTER, NOAA AVHRR and MODIS which 
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have at least two thermal bands (Sattari & Hashim, 2014). With the exception of Landsat 8, 

most of these sensors with at least two thermal infrared bands suffer from low spatial 

resolution. For example, MODIS determines surface temperature using the split window 

algorithm at a spatial resolution of 1km (Odindi, et al., 2015). Since the earth’s surface is not 

a blackbody and due to variations in spectral properties between land use and land cover types, 

emissivity correction is necessary (Abutaleb, et al., 2015). According to Qiao et al. (2013), 

without emissivity correction, retrieved surface temperatures may have an error of about 1.4oC. 

There are several ways of obtaining emissivity maps which include derivation from NDVI 

maps, NDWI maps as well as assigning emissivity values to a land use and land cover map 

(Southworth, 2004; Wu et al., 2014; Yang, Cao, et al., 2014; Wang, Liu, et al., 2010). Accurate 

surface temperature is obtained from brightness temperature by correcting for differences in 

emissivity between surface types. Therefore, remote sensing offers easily accessible data 

options and great potential for monitoring effects of land cover conversion on near surface 

temperature at a wide variety of spatial and temporal scales. This is important for resource 

constrained African nations, where the distribution of in-situ stations is sparse while 

vulnerability to extreme weather events is high. 

 

The need for this study arises from rapid urban growth which threatens to magnify the warming 

effect already imposed by other natural and anthropogenic factors in the lower atmosphere. 

Temperature elevation has devastating effects, especially in developing countries where 

pressure from other socio-economic stressors is high, reducing capacity for adaptation and 

mitigation. The thermal conditions in urban areas of most developing countries such as in 

Zimbabwe are under-studied, which increases residents’ exposure and vulnerability. There is 

thus need to understand thermal conditions to enable sustainable growth and formulation of 

effective adaptation and mitigation strategies. Resource constrained countries also suffer from 

largely inadequate meteorological station network which makes it difficult to perform spatial 

thermal analysis such as in complex urban setting. On the other hand, remote sensing provides 

a cost effective data option useful at landscape scale, whose potential needs to be fully exploited 

for urban thermal analysis such as in Harare. 

 

1.2 Aim of the study 

The study aimed at analysing the impact of urban growth on the indoor and outdoor thermal 

environment of the Metropolitan City of Harare using freely accessible medium resolution 

multi-spectral data from space-borne sensors. 
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1.3 Objectives of the thesis 

The main objectives of the study were; 

1. To assess the potential of fusing thermal infrared data with vegetation indices and multi-

spectral remotely sensed data in improving urban land use/cover mapping 

2. To determine extreme heat vulnerability of Harare metropolitan city using multi-

spectral remote sensing and socio-economic data 

3. To assess seasonal and spatial daytime outdoor thermal comfort variations using 

recently launched and improved Landsat 8 data 

4. To link major dynamics in urban near-surface temperatures to long term changes in 

land use/cover 

5. To determine the link between built-up density and indoor air-conditioning energy 

demand in Harare using degree days derived from remote sensing and in-situ data 

6. To predict future land use/cover distribution and implications on near-surface 

temperatures in Harare.  
 

1.4 Scope of the study 

The study was aimed at investigating the impact of urban growth and differences in the spatial 

structure of built-up areas on the thermal conditions of Harare Metropolitan City, Zimbabwe. 

The study focuses mainly on the potential of medium resolution multi-spectral Landsat series 

to determine land use and land cover regimes as well as related responses of indoor and outdoor 

temperatures and thermal comfort. Urban growth and temperature mapping relies greatly on 

accurate land use and land cover mapping. Therefore, the study commences by assessing the 

potential of combining newly launched Landsat 8 multi-spectral data with vegetation indices 

in improving mapping accuracy. Taking advantage of archival data, seasonal and long term 

responses of urban temperatures to land use and land cover changes is also assessed. Socio-

economic impacts of temperature patterns are also investigated by ways of heat vulnerability 

mapping, outdoor thermal discomfort assessment and estimation of effects of temperatures on 

air-conditioning energy demand. In order to provide insight into the future, land cover and 

urban indices are used to predict future LULC and temperature patterns using Cellular 

Automata Markov Chain modelling. 

 

1.5 Thesis outline 

This thesis consists of seven semi-autonomous chapters which are either published or at 

different stages of publication. Six of the manuscripts have already been published while one 

is in press (published online). Each chapter can be read and considered independently but 
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contributes to the overall introduction (Chapter one) and synthesis (Chapter nine). Since the 

content of the manuscripts has been retained as submitted to journals, duplications and overlaps 

are found between them, especially in the introduction and method sections. This is of little 

consequence considering that the articles are peer reviewed and can be read separately without 

losing overall context. The thesis can be split into sections namely (i) General introduction (ii) 

Remote sensing applications for monitoring the impacts of urban growth on in-and-out door 

thermal conditions: A review of limitations and opportunities (iii) Improved urban land use and 

land cover (LULC) classification (iv) Spatial variations in extreme heat vulnerability and link 

to LULC distribution (v) Remote sensing of seasonal variations in urban outdoor thermal 

discomfort (vi) Quantification of long term effect of LULC changes on urban heat island (vii) 

Implications of urban surface changes on air conditioning energy demand (viii) Remote sensing 

based future prediction of LULC and land surface temperature distribution (ix) Synthesis and 

conclusion. 

 

1.6 Chapter 1: General introduction 

This chapter introduces and contextualizes the study. It highlights the importance of mapping 

urban growth and its implications on climate. The chapter also expresses the value and potential 

of remote sensing to detect landscape scale changes in land- and near-surface temperature, 

especially against a background of scarcity of in-situ observations in developing countries. 

Research problem, aim and objectives are also detailed in this chapter. 

 

1.7 Chapter 2: Remote sensing applications for monitoring the impacts of urban 

growth on in-and-out door thermal conditions: A review of limitations and 

opportunities 

In order to address the objectives identified in Chapter one, this chapter provides a review of 

progress made in the study of implications of urban growth on in- and out-door thermal 

conditions. The chapter identifies methods used for urban growth, temperature and human 

thermal comfort assessment. The methods and roles of remote sensing are evaluated while at 

the same time challenges, gaps and need to develop other approaches are highlighted.  

 

1.8 Chapter 3: Improved land use and land cover (LULC) classification for urban 

growth mapping 

This chapter assesses the potential of multi-spectral Landsat data and derived vegetation 

indices to improve urban land use and land cover classification. This is aimed at identifying 

data combination which produces land use and land cover (LULC) classes at higher 
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classification accuracy than the traditional methods of using multi-spectral visible and infra-

red (VIS/IR) data. Traditional methods of Landsat-based LULC classification do not combine 

reflective VIS/IR data with thermal infra-red or vegetation indices. Therefore, methods tested 

include based on a combination of reflective with vegetation indices, reflective with thermal 

data and reflective with both thermal data vegetation indices as input data to urban LULC 

classification. The indices considered include the normalized difference vegetation index 

(NDVI), normalized difference built-up index (NDBI), normalized difference bareness index 

(NDBaI) and the normalized difference water index (NDWI). The best methods with high 

accuracy identified in this chapter were be used for urban LULC classification in the other 

chapters of the thesis. 

 

1.9 Chapter 4: Spatial variations in extreme heat vulnerability and link to LULC 

distribution 

Land surface properties such as wetness, density of buildings and vegetation cover fraction 

affect surface energy balance. This chapter determines spatial distribution of heat vulnerability 

by combining surface bio-physical properties with socio-demographic factors. Indices such as 

NDBI, NDVI and NDWI are used to determine level of physical exposure at 30m resolution, 

which characterizes reflective Landsat data. This enables detailed mapping of heat 

vulnerability as opposed to the use of the spatial scale of census blocks for instance, which is 

too broad and general. The chapter provides a description of the link between urban socio-

economic patterns, land use/cover distribution (mapped in Chapter three), land surface 

temperature and heat vulnerability.   

 

1.10 Chapter 5: Remote sensing of seasonal variations in urban outdoor thermal 

discomfort 

Chapter four focuses on the link between spatial distribution of temperatures and LULC during 

the hot season, without addressing the influence of seasonality in this link. Therefore, Chapter 

five explains how seasonal changes in land cover may affect outdoor thermal discomfort. In-

situ air temperature data are commonly used to monitor outdoor thermal discomfort, such as 

for the computation of the Discomfort Index (DI). However, in-situ data are limited in spatial 

coverage and do not sufficiently cover all the land cover types in complex urban settings. In 

this chapter, the DI is mapped in different seasons by replacing air temperature with land 

surface temperature derived from Landsat data. Land surface properties are used to explain the 

differences in the spatial distribution of outdoor thermal discomfort between seasons. 
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1.11 Chapter 6: Quantification of long term effect of LULC changes on urban heat 

island  

Besides seasonal changes in land use and land cover obtained in Chapter five, city growth is 

associated with LULC conversions over long periods. Natural covers such as vegetation and 

wetlands are usually replaced by man-made impervious surfaces and buildings. Since different 

surfaces differ in interaction with electromagnetic radiation, long term changes in LULC 

distribution affects urban spatial and temporal thermal patterns. This chapter, therefore, links 

historical changes in LULC to changes in surface urban heat island. The chapter further 

separates land surface temperature changes due to LULC conversion from changes due to 

background warming using a temperature normalization approach. 

 

1.12 Chapter 7: Implications of urban surface changes on air conditioning energy 

demand  

Long term changes in land surface temperature due to urban growth (chapter six) are linked to 

near-surface air temperature changes and potential responses of air-conditioning energy 

demand in this chapter. Heating Degree Days (HDD) and Cooling Degree Days (CDD) are 

mapped using land surface temperature to represent spatial distribution of energy requirements 

for space heating and cooling, respectively.  The spatial distribution of HDD and CDD is 

analysed and linked with LULC trends over a period from 1984 to 2015. HDD and CDD are 

further linked with actual mean household energy consumption for different residential set-

ups. The chapter is relevant in linking urban growth, air-conditioning energy demand trends 

with spatial distribution in socio-economic status in an urban area. The analysis also provides 

an indication of societies at risk by linking thermal comfort, air-conditioning energy 

requirement to ensure human comfort and whether communities afford to match the costs of 

the energy needed. The study identifies, by location, communities in higher need of space 

heating and space cooling in the cool and hot seasons, respectively. The chapter also determines 

residential types that are energy efficient, important for urban planning and management. 

 

1.13 Chapter 8: Remote sensing based future prediction of LULC and land surface 

temperature distribution  

Globally, urban growth is expected to continue infinitely. Earlier chapters provided an 

understanding of the effect of LULC distribution on the urban thermal environment, without a 

predictive component. This chapter uses the understanding of historical LULC and land surface 

temperature patterns developed in preceding chapters to predict future growth and its 

implications on spatial distribution of land surface temperature. The potential of a variety of 
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land cover and vegetation indices to predict future urban growth and land surface temperature 

patterns is tested. The best predictor index is selected and used to predict future responses of 

land surface temperature to urban growth from 2015 to 2045. The Cellular Automata Markov 

Chain model is used, assuming that future growth will follow similar trends to those observed 

in historical analysis. 

 

1.14 Chapter 9: Synthesis and conclusion 

The chapter provides a synthesis of the finding and conclusions drawn in preceding chapters. 

Recommendations for future studies are made based on limitations of this study and other gaps 

identified in the review chapter but not tackled by the study. The thesis concludes by providing 

a list of references. 
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CHAPTER 2: A REVIEW OF IMPLICATIONS OF URBAN GROWTH ON 

INDOOR AND OUTDOOR THERMAL ENVIRONMENT 
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2.0 Abstract 

Urban growth and the consequent expansion of impervious surfaces influence a landscape’s 

thermal characteristics by raising Land Surface Temperatures (LST). Resultant warming may 

cause among others, thermal discomfort, high prevalence of heat related health conditions, air 

pollution, increased water usage and energy demand for air-conditioning. Recently, studies 

aimed at understanding the impacts of urbanization and subsequent landscape transformation 

on in-and-out door temperature have increased significantly. This review therefore provides 

synthesis on the progress of space-borne remote sensing in monitoring the implications of 

urban growth on thermal characteristics. It was observed that despite the relative coarse spatial 

properties; medium resolution sensors (i.e. Landsat and MODIS) have become valuable in 

characterizing urban thermal conditions, especially in data-limited areas. More importantly, 

literature shows that thermal assessments have been confined to examination of historical and 

current conditions, without considering current research studies. This work identifies low 

temporal resolution that characterizes the commonly used medium spatial resolution thermal 

sensors as a major limitation to mapping urban surface temperature. There is therefore need for 

future studies to shift towards integrating new crop of high resolution satellite data with 

existing high temporal and low spatial resolution sensors. Such techniques can lead to the 

development of robust spatial datasets suitable for improved seasonal and long term monitoring 

of urban thermal patterns.  

 

 

Keywords: Surface temperature; urban growth, thermal discomfort; land cover; land use; 

vulnerability 

 

 

 

 



13 

 

2.1 Introduction 

Studies have shown that the spatial extent and population of urban areas are increasing globally, 

and the growth is expected to continue beyond the year 2100 (De-Simone, et al., 2011; Blake, 

Curitiba, et al., 2011; Seto et al., 2012). By the year 2008 for instance, more than 50% of the 

world’s population was already living in cities and their immediate surroundings (De-Simone, 

et al., 2011). Urban population is projected to increase by a further 10% by 2030, reaching 70% 

in 2050 (Blake, Curitiba, et al., 2011; UNFPA, 2007; United Nations, 2014). According to Seto 

et al (2012), urban areas are expanding twice faster than population growth and are a major 

driver of environmental change. For instance, due to the characteristic conversion of natural 

landscapes to impervious surfaces, urbanization has been linked to an increase in size and 

intensity of the Urban Heat Island (UHI), which is associated with an increase in water and 

energy demand, high levels of air pollution and increased heat related health risk (Guhathakurta 

& Gober, 2007; Blake, Curitiba, et al., 2011; Zhang, Schaaf, et al., 2013; Saitoh et al., 1996; 

Tran et al., 2006). Other impacts include depletion of freshwater resources, uncomfortable 

sleeping nights, increase in heat related mortality and habitat loss (Seto, et al., 2012; Luber & 

McGeehin, 2008; McDonald et al., 2011b; Kusaka et al., 2012). Furthermore, elevated 

temperatures increase the exposure of the society vulnerable, due to their low coping strategies 

and mechanisms (Newland, 2011). Monitoring and forecasting urban growth patterns and their 

implication on urban thermal characteristics is therefore valuable for planning and optimization 

of physical landscapes and socio-economic services (Bhattacharjee and Ghosh (2015). 

Recently, the use of remotely sensed data has emerged as a reliable approach for assessing 

urban landscape transformation and its implication on urban climate. Remotely sensed data 

offers better prospects in providing up to date spatial and temporal data necessary for 

understanding the complex relationship between urban growth and in-and-out door thermal 

conditions. Recent studies that evaluated the utility of remotely sensed data in urban climate 

studies have shown great promise (Acharya, et al., 2015; Cai, et al., 2011; Franco, et al., 2015; 

Zhou & Wang, 2011a; Amiri et al., 2009). Zhou and Wang (2011a) for instance assessed the 

dynamics of LST in response to land cover change in rapidly urbanizing city of Kunming, 

China, while Zhang et al. (2009) investigated bi-temporal characterization of LST in relation 

to impervious surface area, Normalised Difference Vegetation Index (NDVI) and Normalised 

Difference Built Index (NDBI) using sub-pixel image analysis. They managed to map urban 

growth, using both qualitative (general Land Use and Land Cover [LULC] classes) and 

quantitaive measures (indices). The changes in vegetation spatial structure and impervious 



14 

 

areas were, therefore, monitored using change detection methods. This indicated that there is a 

wide variety of remote sensing approaches that can be used to depict LULC changes. The 

growth patterns observed in these studies managed to explain changes in surface temperature. 

Also, Amiri, et al. (2009) analyzed the spatial and temporal dynamics of LST in relation to 

fractional vegetation cover and land cover in Tabriz, Iran. In their quantitative approach, they 

found out that LST was high in areas where vegetation fractional cover was low. Recently Lin 

et al. (2016) focused on winter in-door thermal and heating demand of urban residential 

buildings in China during the hot and cold seasons in relation to LST changes. that the study 

showed that warming, due to urban growth and land surface alteration, increased energy 

demand for in-door cooling in the hot season. Other studies on the implication of urbanization 

on urban thermal properties include Voogt and Oke (2003), Rizwan et al. (2008) and 

Goshayeshi et al. (2013b). The aforementioned studies revealed that urban land cover dynamics 

modify urban thermal conditions, by elevating surface temperatures at an alarming rate.  In this 

regard, there is need to assess these impacts on a city’s specific local temperatures to ensure 

sustainable growth and adoption of relevant mitigation measures. 

Previous studies that adopted remotely sensed data indicated that the spatial structure of 

impervious surfaces, wetlands and vegetation has a direct influence on LST (Connors et al., 

2012; Hasanlou & Mostofi, 2015; Keramitsoglou et al., 2011). Green areas and water bodies 

have low temperatures and act as cool islands during the day and also alleviate heat by 

fragmenting the urban thermal island and vice-versa (Rasul et al., 2015; Zhang et al., 2012). 

Conversely, built up areas absorb high amounts of heat and are regarded as a major source of 

heat in urban zones (Sithole & Odindi, 2015). Studies have also revealed that the net effect of 

buildings and vegetation in an area depends on their density (Odindi, et al., 2015; Jalan & 

Sharma, 2014; Hu & Jia, 2010). For example, in a study conducted in South Africa, Odindi, et 

al. (2015) observed that moderately built “leafy” suburbs were slightly cooler than areas with 

sparse vegetation, while temperature increased with building density. This is also confirmed by 

the study by Jalan & Sharma (2014) who observed that expansion of built-up areas at the 

expense of green-spaces resulted in warming of the city of Jaipur in India by an average of 2.99 

oC. A number of studies (Jenerette et al., 2007; Collatz et al., 2000; Ganopolski et al., 1998) 

have demonstrated this inverse influence of vegetation on LST.  These studies indicated that, 

within a city, areas with high vegetation cover proportion experience high extent of cooling by 

evaporation, resulting in low surface temperatures. 
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Review papers on urban surface temperature have mostly focused on spatial and temporal LST 

variations and heat island retrieval, using remote sensing (Mohamed, et al., 2016; Sattari & 

Hashim, 2014; Voogt & Oke, 2003; Weng et al., 2004). For example, Mohamed, et al. (2016) 

recently reviewed methods of LST and emissivity retrieval, using low and medium spatial 

resolution satellite data. However, previous reviews did not highlight on methods to quantify 

and link the long term changes in urban thermal characteristics to urban growth and socio-

economic impacts. On the other hand, reviews on the implications of temperature on in-and-

out door thermal comfort assessment have looked at models of thermal comfort analysis, as 

well as implications on energy consumptions (Goshayeshi, et al., 2013b; Kwong et al., 2014; 

Charles, 2003; García-Frapolli et al., 2007). However, the reviews did not include the methods 

on incorporation of remote sensing thermal data in estimating thermal comfort and impacts on 

energy consumption. For example, previous studies have quantified thermal comfort and 

energy consumption, using indices, such as Thom’s Discomfort Index and Degree Days, 

respectively, which use in situ air temperature measurements. , There is therefore a need to 

identify robust remote sensing based approaches that can potentially quantify thermal comfort 

and energy consumption. To the best of our knowledge, no review to date has focused on 

approaches for predicting future LST and urban heat island patterns, using remotely sensing 

land use and land cover trends. In order for sustainable development to be achieved, it is 

necessary to consider future implications, by embracing predictive techniques that can link 

these changes with potential impacts.  

Based on the aforementioned shortcomings, this paper therefore seeks to review the progress 

in remote sensing applications in monitoring the impacts of urban growth on in-and-out door 

thermal conditions. Firstly, the study provides a brief overview of the general implications of 

urban growth on in-and-outdoor thermal conditions, highlighting the contribution of 

impervious surfaces, buildings and urban vegetation on spatial temporal LSTs. Secondly, the 

study explores the utility of remotely sensed data in assessing the impacts of urban growth on 

in-and-outdoor thermal conditions, as well as examines available analytical algorithms for 

assessing urban growth and its influence on urban thermal conditions. Also, included in this 

review are remote sensing based prediction methods for future LST distribution, which can 

also be used for estimating the impact of urbanization on outdoor thermal discomfort. Finally, 

the review discusses the impact of urban growth on air-conditioning energy demand, as well 

as possible future directions in the applications of remotely sensed data in assessing and 

monitoring the impacts of urban growth on in-and-out door thermal conditions. 
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2.2 Implications of urban growth on in-and-outdoor thermal conditions 

Urbanization is characterized by surface alterations, which mostly entails an increase in area 

covered by surfaces that absorb large amounts of heat (Sobrino et al., 2012; Amiri, et al., 2009; 

Zhang, et al., 2009). For example, vegetated areas are replaced with impervious surfaces and 

buildings, resulting in elevated surface temperatures much higher than the surrounding rural 

and undisturbed areas (Johnson et al., 2014; Steeneveld et al., 2014; Tomlinson, et al., 2011; 

Hua et al., 2013; Song & Wu, 2015; Sobrino, et al., 2012). For example, an increase in built-

up area alters the energy balance by increasing heat absorption and heat transfer between the 

earth’s surface and the lower atmosphere (Guan, 2011). According to Xian and Crane (2005), 

urbanization alters air temperature of the atmospheric boundary layer, making it a key 

component of the surface energy balance. Generally, the impact of elevated temperatures 

within cities varies spatially, as a consequence of differences in physical exposure, landscape 

characteristics  and socio-demographic factors  (Johnson, et al., 2014). Spatial variation in land 

cover distribution influences distribution of heat absorption rates and hence physical exposure 

patterns to extreme heat. Moreover, literature has revealed that the increase in surface 

temperatures have the potential to expose residents to heat related stress, especially the urban 

poor without air conditioning facilities (Parsons, 2014; Hsiang, 2010; Dokladny et al., 2006). 

 

A frequently used international standard for indoor thermal conditions is the Fanger’s predicted 

mean vote (PMV). Using PMV, comfort conditions are then assessed based on ASHRAE scale 

(Goshayeshi et al., 2013a; Madhumathi & Sundarraja, 2012). According to Goshayeshi, et al. 

(2013a), PMV was designed for indoor thermal comfort assessments and is not capable to 

explain outdoor and semi-outdoor conditions. In another approach, Humphreys (1978) 

discovered that indoor thermal comfort is linearly related to mean outdoor temperature; method 

referred to as Humphreys. In such analysis, mean outdoor temperature is computed as the 

average of maximum and minimum outdoor temperature (Humphreys, 1978; Madhumathi & 

Sundarraja, 2012). While PMV is based on complex representation of human heat balance 

Humphrey’s is based on a simpler equation relating indoor comfort with outdoor ambient 

temperature taking into account adaptability of occupants (Shastry et al., 2016). According to 

Shastry, et al. (2016), PMV is predictive model whose applicability for tropical regions has 

been widely questioned while Humphreys is an evaluative model. This clearly shows that the 

Humphreys is a simple and parsimonious method to relate outdoor thermal conditions with 

indoor comfort of the occupants. However, the approach requires up scaling from point analysis 
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using in-situ observations of maximum and minimum temperature to aerial analysis. 

Techniques to improve this may include geo-statistical approaches such as interpolation and 

adoption of remotely sensed thermal infrared datasets. This will enable establishment of the 

link between outdoor temperature, indoor comfort and LULC distribution especially in built 

environments. 

 

2.3 Remote sensing of impacts of urban growth on in-and-outdoor thermal conditions 

Traditionally, in-situ meteorological observations have been used in near-surface (usually 2m 

above the ground) temperature analysis. These measurements were used to explain temporal 

patterns and sometimes interpolated in analyzing spatial LST (Owen, et al., 1998; Mohamed, 

et al., 2016). Effective thermal monitoring however requires a high density of surface 

monitoring equipment, seldom available, even in the developed world (Stathopoulou et al., 

2006). In developing countries, especially in Africa, the coverage of meteorological stations is 

often in-adequate to effectively depict urban landscape heterogeneity (Owen, et al., 1998; 

Shahmohamadi et al., 2010; Tao et al., 2013; Zhou & Wang, 2011a). Commonly, existing 

observations focus on describing responses, rather than the partitioned surface energy fluxes 

over urbanized surface (Owen, et al., 1998). In-situ approaches are also affected by the surface 

heterogeneity, caused by non-climatic factors, such as changes in location of stations, time of 

observation, instrumentation and surrounding LULC types (Oort, 2005; Hamdi, 2010). In long 

term studies, this has potential to reduce accuracy of analysis as some of the changes may not 

be linked to climate change, but other effects, such as thestations location and instrumentation. 

Hence the reliability of results from such monitoring areas depends largely on long-term 

installations and technology uniformity (Salvati & Sabbi, 2011; Mohamed, et al., 2016; Hamdi, 

2010). Challenges as also include the cost of data acquisition from private or public 

organizations which commonly impede effective adoption of in-situ meteorological data 

(Henry et al., 1989).  

 

Conversely, due to synoptic coverage of large areas and reasonable temporal resolution, 

medium  spatial resolution satellite data sets, such as Landsat have been found to be effective 

in depicting urban LULCs and thermal characteristics (Jia et al., 2014). Remote sensing allows 

repeated image acquisitions over the same area, which is necessary for monitoring urban 

growth patterns (Dube, et al., 2016). According to Dube, et al. (2016), the provision of spatial 

data in digital format, makes it easy to integrate with ancillary data in a GIS system for further 

analysis. Owing to these capabilities, remote sensing has increasingly gained popularity in 
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mapping qualitative and quantitative land surface properties. The most common remote sensing 

based sensors that have been utilized in land surface analysis, include Landsat series (Vlassova 

et al., 2014; Weng, et al., 2004), Advanced Very High Resolution Radiometer (Streutker, 2002; 

Gallo & Owen, 1998; Gillies & Carlson, 1995), Thermal Infrared Multispectral Scanner 

(Schmugge et al., 1998; Kealy & Hook, 1993; Kahle, 1987), MODIS (Vaughan et al., 2012; 

Wan et al., 2004; Tran, et al., 2006) and Advanced Space-borne Thermal Emission and 

Reflection Radiometer (ASTER) (Lu & Weng, 2006; Gluch et al., 2006; Gillespie et al., 1998).  

 

Although LST is commonly monitored using the 8-15um thermal infrared range, using the 

radiative transfer algorithm (Tomlinson, et al., 2011; Mohamed, et al., 2016),  the application 

of passive microwave sensors is also possible (McFarland et al., 1990; Peterson et al., 2000; 

Williams et al., 2000; Chen et al., 2011). However, passive microwave space-borne sensors 

have a poor spatial resolution (tens of kilometers), hence the wide usage of medium resolution 

thermal infrared data which have improved spatial, spectral, radiometric and temporal 

characteristics (Tomlinson, et al., 2011). Despite the fact that high spatial resolution thermal 

sensors are ideal for urban surface characterization, their utility is limited by cost, especially in 

resource constrained developing countries. Whereas studies like  Lo et al. (1997) successfully 

used air-borne Advanced Thermal and Land Application Sensor (ATLAS) over Alabama, 

USA, their approach may not be viable in resource constrained areas. Hence, there is need to 

fully exploit freely available medium resolution thermal data, such as from Landsat archives.   

For example, Landsat data offers optimum spatial resolution for characterization of urban LST 

and provides archival data to enable historical analysis free of charge. On the other hand, 

MODIS is useful for monitoring general but frequent changes in LST due to daily revisit time 

step. Furthermore, data merging such as blending freely available Landsat with MODIS data 

may create dataset with high spatial and temporal resolution. This can improve spatial and 

temporal details of LST, especially in heterogeneous urban areas. 

 

2.4 Challenges in remote sensing of the impacts of urban growth on in-and-out door 

thermal conditions 

Despite the successful application of remote sensing technology in monitoring the impacts of 

urban growth on in- and outdoor temperatures of the lower atmosphere, remote sensing of the 

land surface properties are characterized by a number of limitations. For example, due to the 

requirement of clear skies, data is not always available for specific scenes and times hence 

revisit time may be affected by poor atmospheric conditions (Cai, et al., 2011; Mohamed, et 
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al., 2016). Archives may also be corrupt as in the case of Landsat 7 ETM+ images after 2003 

in which 22% of the data are lost resulting from failure of scan line corrector (Shoko et al., 

2016; Storey, 2005). According to Wu, et al. (2014), the major limitation of remote sensing is 

that high spatial resolution sensors have low temporal resolution and vice versa. For example, 

although some of the medium spatial resolution sensors provide thermal data with reasonable 

spatial resolution, they have poor temporal resolution when compared to geostationary 

satellites such as Meteosat 8 which provides data every 15 minutes (Table 1). This makes it 

challenging to use these sensors in monitoring rapid changes such short term variations. 

Despite the above limitations, remote sensing techniques remain useful for spatial analysis, 

especially where the scale of phenomena monitored is comparable with spatial and temporal 

resolution of selected sensor.  
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Table 2.1: Commonly used satellite sensors for land and near-surface thermal analysis 

Satellite Sensor Spatial resolution 

(thermal data) 

Temporal 

resolution 

Overpass Time Operational since Number of 

thermal bands 

Landsat Landsat 8 TIRS 100 m 16 days 1000 2013 2 

Landsat ETM 60 m 16 days 1000 2009 1 

Landsat TM 120 m 16 days 1000 1984 1 

Terra MODIS 1 km Twice daily 1030/2230 2000 2 

Aqua MODIS 1 km Twice daily 1330/0130 2002 2 

Terra ASTER 90 m  Twice daily Request only 1999 5 

NOAA AVHRR 1.1 km Twice daily  1979 2 

METOP AVHRR 1.1 km 29 days 0930 1979 2 

ENVISAT AATSR 1 km 35 days 1000 2004 2 

Meteosat 8 SEVIRI 3 km Geostationary Every 15 minutes 2005 2 

GOES Network GOES Imager 4 km Geostationary Every 3 hours 1974 2 
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2.5 Shift towards the use of broadband medium resolution 

The applications of broadband medium spatial resolution sensors, such as National Oceanic 

and Atmospheric Administration’s Advanced Very High Resolution Radiometer (NOAA 

AVHRR), MODIS and ASTER in urban LST analysis has significantly increased. The shift 

towards these broadband sensors can be attributed to improved sensing characteristics, such as 

high temporal resolution, strategically positioned thermal bands and wide swath width.. The 

use of sensors such as AVHRR and MODIS is only suitable for urban thermal studies, due to 

their rich archival data (since 1979), global coverage and high temporal resolution – twice daily 

(Sattari & Hashim, 2014). Specifically, NOAA AVHRR has two thermal infra-red bands useful 

for accurate retrieval of LST using the Split Window Algorithm. Moreover, AVHRR data sets 

are effective in regional scale applications due to their low spatial resolution. Similarly, 

MODIS datasets have two thermal bands and a high (twice daily) temporal resolution, thus 

suitable for both day- and night assessments of temperature patterns. They have low spatial 

resolution, slightly greater than AVHRR but comparatively limited archival data (2000 to 

present), thus limited  in analysis for historical patterns (Tao et al., 2015). According to Shi et 

al (2015), the low spatial resolution MODIS data makes it difficult to construct the relationship 

between LULC and LST. High temporal resolution in combination with low spatial resolution 

is also characteristic of Geostationary Operational Environmental Satellite (GOES) imager and 

the Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor. For example, SEVIRI 

has a 15 minutes and 3km temporal and spatial resolution, respectively.  

 

Compared to rural natural environments, the complexity of urban landscapes limit the use of 

low resolution remotely sensed data. Ideally, urban areas require high spatial resolution data 

(less than 10 m) to effectively deal with mixed pixels associated with lower spatial resolution 

data (Aplin, 2003; Salvati & Sabbi, 2011; Lo & Choi, 2004). However, high spatial resolution  

sensors are often associated with a number of challenges that include high acquisition costs, 

small swath width and low temporal resolution, which limit their value for change detection 

analysis studies, especially over large areas (Forkuor & Cofie, 2011). In urban surface 

temperature analysis, the major limitation with high resolution space-borne satellite data such 

as SPOT imagery is the absence of thermal infra-red data. Fortunately, medium resolution 

remote sensing datasets such Landsat, and ASTER allow cost effective monitoring responses 

of surface temperatures to land use and land cover changes, even in the often complex urban 

land use and land cover spatial structure (Owen, et al., 1998). Voogt and Oke (2003), pointed 

out that improvements in sensor spatial and spectral resolutions provide low cost detailed 
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surface representation. Specific advantages of Landsat include appropriate spatial resolution, 

free online access to archival data since 1972 and launch of advanced missions such as Landsat 

8 with improved data quality (Tao, et al., 2013; Liu & Weng, 2009; Sithole & Odindi, 2015).  

Earlier missions had a single thermal band hence they were incompatible with split window 

algorithm. However, the recently launched Landsat 8 has two thermal bands which enable 

retrieval of temperature using both single band and split window techniques (Yang, Lin, et al., 

2014; Rasul, et al., 2015). Landsat provides higher spatial resolution than sensors such as 

MODIS and NOAA. However it has a lower temporal resolution (16 days). ASTER is also 

widely used medium spectral (five thermal bands) and spatial (90 m) resolution sensor. 

ASTER’s thermal data- has higher spatial resolution than Landsat TM (120 m) and Landsat 8 

(100 m), but lower spatial resolution than Landsat ETM thermal data – 60 m (Mohamed, et al., 

2016). Although ASTER’s Terra platform has a twice-daily overpass, it is a commercial sensor 

and has limited archival data. Therefore, despite low temporal resolution, medium resolution 

multi-spectral data from Landsat is beneficial due to its appropriate spatial resolution, free 

access and rich historical data. 

 

2.6 Analytical algorithms for assessing urban growth and thermal conditions 

2.6.1 Land use and land cover classification for urban growth detection 

In order to relate land cover distribution to corresponding land surface- and near-surface air 

temperatures, accurate LULC maps are needed. In thermal remote sensing, LULC maps are 

also reclassified into emissivity maps that can be used to convert brightness temperatures into 

surface temperature (Stathopoulou & Cartalis, 2007). Furthermore, a national repository of 

accurate LULC maps is necessary for change detection such as monitoring urban growth over 

time (Abegunde & Adedeji, 2015; Dube et al., 2014; Yu et al., 2013). To date, several efforts 

have been made to enhance the suitability of readily available dataset for LULC mapping in 

both homogeneous and complex landscapes. In Germany, Esch et al. (2013) used 12m 

resolution TerraSAR-X data to map built-up areas. The Germany TerraSAR-X data have a 

global coverage, are weather independent, have day and night acquisition capability and low 

sensitivity to atmospheric effect. The most common methods to improve classification 

accuracy include the enhancement of spectral, spatial and radiometric data properties. For 

example, Gervin et al. (1985) observed that Landsat MSS outperformed NOAA AVHRR for 

classification of heterogeneous areas due to its superior 80m compared to 1.1km spatial 

resolution. Owing to the improvements in  radiometric resolution (8-bit to 12-bit), signal to 
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noise ratio and refined spectral range for Landsat 8 data a study by (Jia, et al., 2014) reported 

better classification performance compared to earlier missions.  

 

Furthermore, data transformation techniques such as independent component analysis (CA), 

Principal Component Analysis (PCA), Tasseled Cap Transformation and Minimum Noise 

Function have been reported to increase mapping accuracy by reducing data redundancy and 

minimizing noise caused by correlation between multi-spectral bands (Namdar et al., 2014; 

Mallick et al., 2013; Forkuor & Cofie, 2011; Seto & Kaufmann, 2005). Data enhancement 

methods employed also includes a combination of different sensors, multispectral data with 

transformed data and multi-date data. There are several examples of successes of data merging 

in improving LULC classification accuracy. Several studies have successfully used data 

merging techniques in improving LULC classification in urban studies. For instance, Witt et al 

(2004) obtained a higher overall classification accuracy of 87.66% by combining Heat Capacity 

Mapping Mission (HCMM) thermal data using Landsat Multi-Spectral Scanner (MSS) visible 

and infrared bands in Bristol  compared to 85.20% overall accuracy attained using MSS data 

alone. In another study, Lu and Weng (2005) noted that combining texture data derived from 

panchromatic image with Landsat 7 ETM multi-spectral bands significantly improved 

classification accuracy. Myint (2001) established that texture plays an important role in object 

recognition and image segmentation. Similarly, Geneletti and Gorte (2003) observed that 

combining Landsat data with high resolution data such as ortho-photos enhance classification 

results. 

 

The use of Bayesian techniques, to account for error propagating from class definition and 

positional errors, has also demonstrated its ability to improve overall classification accuracy 

(Oort, 2005). Furthermore, other physical datasets, such as elevation and slope have also been 

combined with multi-spectral bands of Landsat to increase accuracy (Heinl & Tappeiner, 

2012). The applications of spectral vegetation indices in assessing urban growth and thermal 

conditions have also significantly improved classification accuracy. Dash, et al. (2007) 

reported 73.2% accuracy using Medium Resolution Image Spectrometer (MERIS)  derived 

multi-seasonal vegetation indices compared to 61.3% using multi-spectral bands of MERIS in 

Wisconsin. Stathakis et al. (2012) introduced the Vegetation Index Built-up Index (VIBI) 

which retrieved built-up areas more accurately (91.9%) than the Index Based Built-Up Index 

– IBI (88.6%) and the continuous Built-Up index – BUC – 54.5%. Chen et al. (2006) applied 
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Boolean logics on NDWI, NDBI, NDBaI and NDVI and retrieved LULC map with an overall 

accuracy of 92%. Therefore, based on the above successes, it can be assumed that combining 

a variety of land cover indices with multi-spectral data from improved sensors like Landsat 

OLI has potential to reliably map complex landscapes that characterize urban areas. 

Apart from the data properties, both supervised and unsupervised classification accuracy 

depend on the algorithm used. Yu, et al. (2013) observed that the Support Vector Machine 

(92.99%) classifier performed better than the Artificial Neural Network with an overall 

accuracy of 91.96% using Landsat 7 ETM in Yantai, China. Seto and Kaufmann (2005) 

concluded that for general classification, the MLC outperformed a Logit model using data 

translated by tasseled cap transformation in Pearl River Delta, China. However, their study also 

proved that fewer training data improves Logit model performance. Discriminant Analysis 

(DA) has also been used in LULC analysis Lo and Choi (2004) performed a hybrid of 

ISODATA unsupervised classification with fuzzy supervised method achieving a higher 

accuracy using the hybrid method (91.5%) than using each of fuzzy supervised (77.8%), MLC 

(76.7%) or ISODATA (90.3%) separately. Kawakubo et al. (2013) showed that application of 

an unsupervised called ISOSEG classification approach on fraction imagery from multi-

spectral bands of Landsat has potential to increase accuracy by over 10% more than the MLC. 

Merging of data such as combining multi-spectral images with land cover indices as well as 

hybridization of classification techniques has potential to further increase land use and land 

cover mapping even in complex urban landscapes. Therefore, even with medium resolution 

data, high urban classification accuracy has been achieved which can still be further improved.   

 

2.6.2 Assessment techniques of urban growth induced extreme heat vulnerability 

Physical and socio-economic conditions coincide at a given location to constitute a measure of 

heat vulnerability, which can be displayed as a thematic map to inform strategies. Heat 

vulnerability mapping is done using  variables, such as heat islands, vegetation health and 

abundance and building density as contributing physical factors (Johnson, et al., 2014; 

Aubrecht & Özceylan, 2013; Uejio et al., 2011).  Heat vulnerability mapping also incorporates 

economic and socio-demographic factors, such as exposure to hazard, sensitivity and adaptive 

capacity (Johnson, et al., 2014; Aubrecht & Özceylan, 2013; Uejio, et al., 2011).  

Early heat vulnerability assessment studies mainly emphasized on the contribution of socio-

demographic factors, such as age, race, gender, education, health and economic status to 

vulnerability placing little attention on physical factors (Cutter, 2009; Cutter et al., 2003; 
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Vescovi et al., 2005; Reid et al., 2009). Developments have seen an increased incorporation of 

biophysical variables in assessing heat related risks (van-Westen; Johnson, et al., 2014; Buscail 

et al., 2012). For example, recent studies have combined socio-demographic factors with 

remote sensing derived physical heat exposure factors, such as UHI, LULC maps, and land 

cover indices (Johnson, et al., 2014; Johnson et al., 2012; Johnson et al., 2009; Aubrecht & 

Özceylan, 2013; Uejio, et al., 2011; Wolf & McGregor, 2013; Depietri et al., 2013; Hansen et 

al., 2013; Buscail, et al., 2012; Reid, et al., 2012). Although data from space-based sensors like 

Landsat offers great potential in mapping localized complex phenomena such as in 

heterogeneous urban landscapes, the spatial resolution of heat vulnerability maps have 

remained coarse and generalized. Even where higher resolution physical factors are involved, 

heat vulnerability maps are at the low spatial resolution of demographic variables, such as 

census block and district level (Johnson, et al., 2014; Heaton et al., 2014; Buscail, et al., 2012).  

Variability of heat risk within each census block is thus ignored by assuming uniformity over 

large areas, which limits usefulness and precision of the derived maps. Dewan and Corner 

(2012) highlighted that use of census blocks causes spatial averaging over large areas which 

weakens the correlation between population density and LST because of variability of land 

cover within each census tract.  

 

The use of remote sensing derived land cover indices as exposure factors in heat vulnerability 

assessments is still limited to a few studies (Johnson, et al., 2014; Johnson, et al., 2012; 

Johnson, et al., 2009; Buscail, et al., 2012; Chow et al., 2012; Harlan et al., 2006; Uejio, et al., 

2011). While inclusion of a variety of indices in a single assessment should enhance land 

surface characterization, studies have been limited to two bio-physical indices per heat 

vulnerability analysis (Johnson, et al., 2012; Johnson, et al., 2014). As such, mostly NDVI 

which indicates vegetation abundance and health is commonly combined with socio-

demographic factors in urban thermal vulnerability analysis (Uejio, et al., 2011; Buscail, et al., 

2012; Chow, et al., 2012). However, similar to other previous studies, the vulnerability maps 

produced were at the resolution of census blocks despite the capability of remotely sensed 

variables to enhance spatial details of vulnerability factors. Vulnerability maps at improved 

spatial resolution are important for area specific interventions and avoidance of generalization 

which may disadvantage underprivileged communities.  
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2.6.3 Monitoring impact of land cover changes on LST using remote sensing 

The NDVI has been proved to have strong negative relationship with temperature (Zhang, et 

al., 2012; Hung et al., 2006; Song & Wu, 2015; Jiang et al., 2005; Senanayake et al., 2013). 

However, land cover fraction indicators, such as vegetation fraction and percentage impervious 

surface area are more stable and less affected by seasons than NDVI. Generally, stronger 

relationships between temperature and other land cover indices than NDVI have also been 

reported. For example, Li and Liu (2008), using MODIS imagery, reported a stronger 

relationship between Normalized Difference Bareness Index (NDBI) and LST as indicators of 

surface urban heat island effect. Therefore, efforts to identify land cover indices which best 

quantitatively explain the effect of land cover on temperature are still growing and with 

impressive results to date. Apart from the use of indices and land cover fractions, LULC maps 

enhance the explanation of the effect of surface dynamics on the thermal environment. A 

number of studies have related LST to LULC spatial and temporal patterns using remote 

sensing (Odindi, et al., 2015; Zhou & Wang, 2011a; Jalan & Sharma, 2014; Omran, 2012). 

Spatial overlays are used to derive minimum, average and maximum temperature per LULC 

regime. Single date and multi-temporal analysis then allows understanding of diurnal, seasonal 

and long term trends in LULC and temperature. For example, in a single date analysis, Omran 

(2012) observed temperature ranges of 28.7–33oC in vegetated areas and 37.7–43.9oC in built-

up areas. In a similar analysis, Sithole and Odindi (2015) concluded that surface temperatures 

were highest in central business district and lowest in high density vegetation and water bodies. 

However, although temperatures may be very high in densely built-up areas, the net effect on 

heat for the entire study area depends on the proportion they occupy. As such, Odindi, et al. 

(2015) used a Contribution Index (CI) which takes into account the proportion covered by the 

LULC and whether the LULC mitigates or increases heat. In this case, the CI is negative for 

dense vegetation and water bodies due to their cooling effect. The CI is an important indicator 

of the impact of LULC changes as it also changes in response to changes in proportional area 

per LULC type seasonally and in the long term. One of the limitations of the CI is its 

dependence on the accuracy of LULC classification which can be subjective. Another constrain 

to the use of CI to quantify long-term changes is the inability to separate temperature changes 

due to LULC conversion from changes  caused by other factors observed within a class (Zhou 

& Wang, 2011a).   
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2.6.4 Remote sensing based prediction of future LST distribution 

Traditionally, near-surface air temperature forecasts are done using global and regional climate 

models. The models mostly consider greenhouse gas emission scenarios as the major 

anthropogenic contribution to climate change (McCarthy et al., 2010; Saitoh, et al., 1996; 

Unganai, 1996). However, these models usually consider the effect of urban growth as 

negligible and are at coarse spatial scales of at least 1km. Global and regional climatic models 

require further downscaling or coupling with other local scale models such as urban models to 

depict phenomena at city scales. For example, Smith and Roebber (2011) coupled the Weather 

Research and Forecasting (WRF) model with an urban canopy model to investigate potential 

of green roof technology to mitigate warming. Another deficiency of general circulation 

models is that they ignore the impact of LULC changes on climate especially in small areas 

such as urban micro-climates (Hoffmann et al., 2012; Smith & Roebber, 2011). Despite the 

understanding of heat exchange between the land surface and the lower atmosphere, little 

emphasis has been placed on predicting future LST. LLST modulate near-surface air 

temperatures thus predicting has potential to improve climate change prediction scenarios. On 

the other hand, models such as Markov Chain, SLEUTH, Geomod, Multi-Layer Prediction and 

Cellular Automata have also been influential in predicting future LULC distribution (Fan et 

al., 2008). Due to simplicity, parsimony, repeatability and applicability, the models have 

successfully been used to, among others, predict LULC transitions due to urbanization, assess 

the impacts of LULC changes on biodiversity as well as on the distribution of water resources 

(Araya & Cabral, 2010; Li et al., 2011; Flamenco-Sandoval et al., 2007; Fan, et al., 2008; 

Elsner et al., 2004; Crow et al., 1975; García-Frapolli, et al., 2007).  Additionally, the models 

have the capability to predict LULC changes at landscape scale using remote sensing variables 

in complex and heterogeneous urban landscapes. Therefore, future temperature predictions 

(both LST and near-surface air temperature) incorporating influence of LULC dynamics are 

needed. This will augment the available understanding of climate change and predictions which 

have mostly been based on effect of greenhouse gas concentrations. 

 

2.6.5 Estimation of impact of urbanization on outdoor thermal discomfort 

As aforementioned, the analysis of thermal comfort patterns is essential for addressing related 

problems such as health risks, global warming and increased energy demand for energy 

(Goshayeshi, et al., 2013b). Thermal discomfort is when 80 to 90% of residents express 

dissatisfaction with prevailing temperature at a given instant and location (Yilmaz, 2007). 

Several approaches such as Thom’s Discomfort Index (DI), Physiological Equivalent 
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Temperature (PET), Universal Thermal Climate Index (UTCI), Apparent Temperature (AT), 

Thermo-hygrametric Index (THI), Humphreys, Predicted Mean Vote (PMV), Standard 

Effective Temperature (SET), Wet Bulb Globe Temperature (WBGT), Wind Chill 

Temperature (WCT) are used to assess outdoor thermal discomfort (Abdel-Ghany et al., 2014; 

Mohan et al., 2014; Yilmaz, 2007; Goshayeshi, et al., 2013b). However, indices such as the 

Humpreys, THI, PET and DI have been preferred in most studies due to simplicity and 

parsimony compared to the use of empirical methods such as PMV, which are complex and 

require  significant parameterization (Mohan, et al., 2014; Roelofsen, 2015; Shastry, et al., 

2016). Simple techniques such as PET and DI only require wind speed, air temperature and 

humidity while complex approaches such as PMV use more variables including human 

metabolism and insulation provided by clothing (Goshayeshi, et al., 2013b). Discomfort 

indices are commonly used due to parsimony because thermal comfort assessment using 

models such as the Rayman, ENVI-MET or other models requires parameterization and data 

(Mohan, et al., 2014; Roelofsen, 2015; Shastry, et al., 2016).  

 

Outdoor thermal discomfort assessment have widely used in-situ meteorological measurements 

(Yousif & Tahir, 2013; Cheng et al., 2010; Abdel-Ghany, et al., 2014; Tulandi et al., 2012). 

One of the simplest indices is the Thom’s Discomfort Index (DI) computed using air 

temperature and relative humidity. However, remote sensing enables synoptic measurement of 

intensity and spatial distribution of thermal discomfort for the whole city (Sobrino et al., 2004). 

A few studies on outdoor thermal discomfort using remote sensing have employed  NOAA 

AVHRR and Multi-functional Transport Satellite (MTSAT) data  whose low spatial resolution 

is too coarse for monitoring complex urban surface properties (Okamura et al., 2014; Polydoros 

& Cartalis, 2014). Ideally, spatial resolution greater than 50m is needed for urban thermal 

analysis (Sobrino, et al., 2004). Nevertheless, readily available medium resolution data such as 

from Landsat offers a better alternate for mapping and monitoring thermal discomfort at 

landscape scale than in-situ and low resolution space-borne thermal data. 

 

2.6.6 Impact of urban growth related warming on air-conditioning energy demand 

Several approaches have been used in estimating the impact of urbanization on energy 

consumption for indoor space heating, with varying strengths and limitations. One of the 

techniques involves the use of household electricity bills to monitor the responses of air-

conditioning energy consumption to temperature elevation induced by urban growth (Hirano 

et al., 2009; Souza et al., 2009; Shahmohamadi, et al., 2010; Arifwidodo & Chandrasiri, 2015). 
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Shahmohamadi, et al. (2010) for instance established a positive correlation between urban heat 

island intensification and increased households energy consumption in the United Kingdom, 

United States of America and Sri Lanka. A major weakness of this technique is that household 

electricity usage is not restricted to air conditioning but also other purposes such as 

refrigeration, lighting and cooking (Ewing & Rong, 2008). Another popular approach involves 

the use of Degree Days derived from air temperature to quantify trends in energy for indoor 

cooling or heating (Vardoulakis et al., 2013; Arifwidodo & Chandrasiri, 2015; Ewing & Rong, 

2008). Degree Days are calculated relative to a reference temperature below or above which 

human discomfort is triggered, making them a direct measure of energy consumption 

(Bolattürk, 2008). Cooling Degree Days (CDD) provides a measure for energy for space 

cooling while Heating Degree Days (HDD) infers energy for household warming (Christenson 

et al., 2006). The HDDs are calculated by subtracting the mean temperature from a reference 

(base) while CDDs are obtained by subtracting a base temperature from the mean air 

temperature. The base temperature is defined as the outdoor temperature above which ambient 

cooling is required and below which space heating is required (Eto, 1988). The choice of base 

temperature has been widely varied, as studies have used values ranging from 8 to 26oC 

(Bolattürk, 2008; Christenson, et al., 2006; Büyükalaca et al., 2001; Durmayaz et al., 2000; 

Sarak, 2003; Dombaycı, 2009; Satman & Yalcinkaya, 1999; Papakostas & Kyriakis, 2005). 

The most widely used reference temperature is 18oC, which is also recommended for global 

comparability (Santamouris et al., 2001; Sivak, 2009; Bolattürk, 2008; Sailor & Pavlova, 2003; 

Guerra Santin et al., 2009). Degree Days were proved to have a strong positive correlation with 

household energy consumptions in resourced countries such as in European cities (Balaras et 

al., 2005). The major constraint highlighted in previous studies on Degree Days is the use of 

in-situ measurements of temperature which limited spatial coverage (Stathopoulou, et al., 

2006). Despite advantages over in-situ data in the analysis of spatially complex phenomena, to 

the best of our knowledge, only a single study has used space-borne satellite data to estimate 

degree days. Stathopoulou, et al. (2006) derived Degree Days using air temperature estimated 

from surface NOAA AVHRR’s thermal data-based temperature using a linear regression model 

(R2=0.78). Although the method showed great potential, the spatial resolution of NOAA 

AVHRR’s thermal data has low spatial resolution (1.1 km), especially for applications in 

localized heterogeneous regions such as urban landscapes. Hence, better results can be 

achieved by merging in-situ observations of near surface air temperature with medium 

resolution surface temperature, especially from the easily accessible Landsat series. Such 
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analysis can also be further enhanced by adopting high resolution thermal infrared data where 

resources are available. This can be obtained such as by mounting thermal sensors on air planes 

which can fly at low altitude to obtain LST at high spatial resolution. For example, Lo, et al. 

(1997) analyzed day- and nighttime surface temperature in  Alabama in United States of 

America using 5 m resolution remote sensing data from the air-bone Advanced Thermal and 

Land Application Sensor (ATLAS). However, this is an expensive exercise hence the popular 

use of medium resolution data such as from Landsat, ASTER and MODIS. 

 

2.6.7 Local climate zoning and the World Urban Database and Access Portal Tools  

Land use and land cover classifications discussed in this chapter so far create zones whose 

naming is culture and region specific and independent of climate. The schemes are not 

universal for example the vagueness of defining rural and urban areas in different parts of the 

globe (Stewart & Oke, 2012). The classifications were designed for other purposes not heat 

island fields which triggered the need to come up with a procedure for climate specific local 

area zoning. This can be done using Local Climate Zones (LCZ) which avoid the use of culture 

and region specific classifications (Stewart & Oke, 2012; Perera & Emmanuel, 2016). LCZ are 

inclusive of all regions, independent of culture, and quantifiable according to class properties 

that are relevant to surface thermal climate (Stewart & Oke, 2012). Oke (2004) developed nine 

urban climate zones which coincide with the first nine of the seventeen zones later developed 

by Stewart and Oke (2012). The names of zones developed by Stewart and Oke (2012) are 

local in scale, climatic in nature and zonal in presentation thus of a global standard. Thomas et 

al. (2014) linked LCZ with UHI and observed intense cooling in sparsely built regions and 

maximum intense heating in compact midrise. In another study done in Beirut, Lebanon the 

link between LCZ and modeling results from Town Energy Balance Model (TEB) was 

established (Kaloustian & Bechtel, 2016). Brousse et al. (2016) showed LCZ improves 

Weather Research and Forecasting (WRF) model output when compared with CORINE land 

cover data. There is a global call for studies which use LCZ in urban areas for input into World 

Urban Database and Access Portal Tools (WUDAPT) (Cai et al., 2016; Bechtel et al., 2015; 

Stewart & Oke, 2012). Currently, progress in urban climate science is strolled by lack of useful 

information that describes aspects of the form and function of cities at detailed spatial 

resolution hence the WUDAPT call (Bechtel, et al., 2015).  WUDAPT is being developed to 

gather and disseminate LCZ information. Bechtel, et al. (2015) developed WUDAPT protocols 

which are easy to understand, use freely available data such as medium resolution remote 

sensing imageries) and can be applied by someone with limited knowledge in spatial analysis 
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or urban climate science. Scientists in developing countries should carry out studies which feed 

into the WUDAPT to inform global sustainable urban development. 

 

2.7 Future recommendations 

Although significant progress has been achieved in remote sensing based LULC mapping, 

accuracy in mapping urban landscapes stills needs further improvement. The urban landscape 

is characterized by complex changes in LULC in space and time. Such detection usually suffers 

from the mixed pixel challenge. In order to improve LULC mapping in urban areas, studies 

should focus on algorithms, data enhancement and data merging techniques using medium and 

high resolution remote sensing data sets. Future efforts must include LULC classification using 

data from recently launched freely available medium resolution sensors such as Sentinel and 

Landsat 8.  Specifically, Landsat 8 has improvements which include improved noise-signal 

ratio, high radiometric resolution and improved spectral range. Additionally, the sensor has 

two thermal infra-red bands whose inclusion has the potential to increase mapping accuracy, 

given the strong relationship between LULC and LST (Xu et al., 2013; Larsen & Gunnarsson-

Östling, 2009; Yuan & Bauer, 2007). The options for improving urban mapping include 

merging optical bands with indices such as NDBI, NDBaI, NDWI and NDVI (Chen, et al. 

2006). Other high resolution data such as the 12m Germany TerraSAR-X with a global 

coverage also need to be tested even in mapping LULC of African and other cities. The 

potential of remote sensing based LCZ mapping to improve understanding of link between 

urban surface characteristics and near-surface temperatures needs to be tested especially in 

developing countries. 

 

Lack of high spatial resolution thermal imagery has significantly constrained surface 

temperature characterization. Previous urban surface temperature studies have relied heavily 

on medium resolution sensors such as ASTER and Landsat series with spatial resolutions of at 

least 60m. As a result, urban surface covers and land cover indices are mapped at a higher 

resolution than thermal information which strongly affects attempts for their correlation. 

Engineering solutions should involve development of thermal sensors with higher spatial 

resolution. Options may also include launching other polar orbiting satellites with thermal 

sensors at lower altitude to reduce Instantaneous Field of View (IFOV), thereby increasing 

spatial resolution. Furthermore, using the relationship between LST and higher resolution 

variables such as vegetation indices may improve spatial resolution at which thermal conditions 

are characterized. 
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Although medium resolution thermal datasets are useful for urban surface temperature analysis, 

low temporal resolution limits their applications for temporal analysis. For example, the 

number of Landsat images available per period is limited by the 16-day revisit time. This is 

further worsened by the requirement for cloud free images in order analyze surface conditions 

(Sattari & Hashim, 2014). This makes it difficult to relate satellite observations from medium 

resolution sensors with in-situ air temperature data due to comparatively few coinciding 

observations. Seasonal analysis, for instance, requires a representative number of observations 

in order to calculate average conditions and avoid errors due to basing on random single date 

imagery to represent entire season. However, due to gaps caused by limited data quantity, it is 

difficult to accurately represent seasonal and long term surface temperature properties using 

medium resolution thermal data. High temporal resolution thermal data characterize low spatial 

resolution sensors such as geostationary satellites (Sattari & Hashim, 2014). For instance, 

SEVIRI sensor has a 15 minutes temporal resolution, but due to a very coarse spatial resolution 

(3km), the thermal data are not useful for characterizing thermal conditions in urban 

landscapes. Studies should focus on integrating low and medium resolution sensors to build 

thermal datasets with improved spatial and temporal resolution. This is capable of monitoring 

spatial and temporal variations of temperature in heterogeneous urban landscapes. This will 

improve temperature analysis at seasonal and longer time scales critical also for prediction of 

future thermal conditions.  

 

Previous studies have attributed long term changes in urban surface temperature to LULC 

transitions without resolving the contribution of other factors such as global warming. 

Similarly, global and regional climate models have mostly left out urban meteorological 

stations and assumed that their contribution is negligible (Nayak & Mandal, 2012). Where 

urban areas are considered, emphasis is placed on the contribution of anthropogenic emissions 

to greenhouse gas concentration levels. However, studies like Pielke et al. (2011) have shown 

that impacts of LULC changes is superimposed on already changing temperatures due to 

among others the general global warming patterns. For example, Ogrin and Krevs (2015); 

Pielke et al. (2011) observed that long term changes in urban temperature were faster than other 

areas. Future studies need to develop methods to separate effects of LULC conversion from 

other causes of temperature increases such as changes in GHG concentrations and ozone 
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depletion in urban environments. This has potential to improve urban planning, growth policies 

and strategies as well as modeling of the urban micro-climatic changes. 

 

Impact assessments such as extreme heat vulnerability mapping should enhance use of 

remotely sensed contributing factors and improve the spatial resolution. Available literature 

such as Johnson, et al. (2014) produced heat vulnerability maps at low spatial resolution for 

instance, at district and census block scale. However, socio-economic status and physical 

exposure are not uniform within each sub-division. Hence there is need to improve spatial 

details of input factors in order to produce maps that show variations found even with census 

blocks. Remote sensing, especially using medium and high spatial resolution sensors should 

be capable of mapping heat exposure factors at higher resolution than census blocks. Studies 

need to identify heat vulnerability factors detectable using medium and high resolution dataset 

and establish methods to combine them with other data to improve the mapping of heat 

vulnerability. Due to the link between surface properties and temperature, remotely sensed 

variables such as NDVI and NDBI have been incorporated in vulnerability studies. However, 

where this was done, focus was not placed on improving the spatial resolution of the maps 

generated. Detailed heat vulnerability maps are important for tailoring interventions based on 

levels of need, which eliminates poor strategies caused by generalization at coarse resolution.  

 

Assessments of thermal discomfort and impact on air conditioning energy demand have most 

widely been executed using in-situ observations of temperature (Vardoulakis, et al., 2013). 

However, research has shown that surface temperature modulates near surface (2m) air 

temperature and there is strong correlation between the two (Pielke, et al., 2011; Marland et 

al., 2003; Cai, et al., 2011). Future studies should use this relationship to upscale temperature 

observations. In that case, the use of medium resolution thermal data will enable mapping of 

the spatial distribution of temperature as well as derivation of responses such as discomfort and 

energy consumption. For example, up-scaling temperature observation will enable analysis of 

the variations in degree days, hence air conditioning energy between urban landscapes. The 

use of medium resolution remotely sensed thermal imagery in estimating temperature has 

strong potential in mapping spatial variations with higher reliability than point data. This is 

also important for analysis of thermal conditions in resource constrained cities where stations 

are usually undesirably sparse. 
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Remote sensing based thermal studies have mostly been focused on single date, seasonal and 

long-term but historical analysis of the relationship between urban LULC patterns and LST 

(Xu, et al., 2013; Larsen & Gunnarsson-Östling, 2009; Yuan & Bauer, 2007). Land cover 

indices have also been used to show the quantitative relationship between LULC conversion 

and temperature (Weng, et al., 2004; Chen, et al., 2006; Yuan & Bauer, 2007; Tran, et al., 2006; 

Xiao et al., 2007; Zhang, et al., 2012; Hung, et al., 2006).  Thus, previous studies have mostly 

stressed on historical changes in temperature in response to urban growth and proved that 

surface alterations result in warming (Yuan & Bauer, 2007; Hu & Jia, 2010; Valsson & Bharat, 

2009; Odindi, et al., 2015). However, there is paucity of literature on future LULC and 

temperature patterns using remote sensing. Due to improvements in sensor technology, data 

availability and better spatial coverage than meteorological stations, there is need to use freely 

available medium spatial resolution remote sensing data sets such as Landsat and Sentinel-2 

Multi-Spectral Instrument (MSI) in models to predict future LULC and temperature 

distribution. This is important for planning, especially in developing countries often 

characterized by rapid urban growth and limited spatial data. 

 

Ahmed et al. (2013) used NDVI as a predictor of future LST using the Markov Chain Analysis. 

Although the approach is unique, NDVI has limitations which include saturation when 

vegetation fraction is high. The study did not test the potential of other indices, hence there is 

need to test other indices like NDBI and NDWI or a combination of various indices in multi-

variate regression to predict future temperature. In cases where more than a single index is 

used, there is need to identify a set of indices that most accurately predict LST with optimal 

errors and minimal multiple collinearity issues. This will complement efforts made by 

greenhouse gas concentration based models to predict future temperatures. This will also 

enhance understanding of the implications of urban growth patterns and associated LULC 

changes on future climate even if greenhouse gas concentration levels are to remain constant 

or be reduced in effect. 

 

2.8 Conclusion 

The current study reviewed previous studies on monitoring the impacts of urban growth on in-

and-out door thermal conditions using remote sensing tools. Specifically, the study focused on 

urban growth and changes in temperature covering topical issues of urban growth assessment 

methods such as, heat vulnerability mapping, outdoor thermal discomfort, heat island-related 

air conditioning energy consumption and prediction of future temperatures using space-borne 
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remote sensing data sets. Literature has revealed that improvements among others sensor 

properties and data quality as well as techniques such as data merging have increased accuracy 

for the determination of urban growth. Data merging techniques such as inclusion of land cover 

indices have potential to further improve LULC mapping. There is also need to improve 

temporal analysis of the urban thermal conditions such as by integrating data from polar 

orbiting with geostationary sensors. This has potential to create thermal datasets with high 

spatial and temporal resolution, useful for mapping spatial variations in urban temperatures at 

seasonal and longer timescales. Furthermore, heat vulnerability assessments still place much 

emphasis on socio-demographic factors with limited attention given to bio-physical factor. 

There is still need to enhance the use of medium and high spatial resolution data to improve 

the spatial resolution of heat vulnerability maps compared to the widely used census block 

level. The potential of medium resolution data, such as Landsat series, to map outdoor thermal 

discomfort and indoor air-conditioning energy demand still needs to be tested. To date, studies 

have dwelt on traditional methods therefore, it is necessary that thermal remote sensing be 

adopted for future temperature predictions. The potential of a variety of indices including 

NDBI to predict future temperatures needs to be assessed. 

 

2.9 Link with other chapters 

Chapter 2 highlighted remote sensing based and other techniques used to assess and quantify 

urban growth as well as its impacts on surface and near surface temperatures, thermal 

discomfort as well as other associated impacts. The chapter assessed the extent to which remote 

sensing can be and has been used to quantify urban growth and effects on temperatures. The 

next chapters build on identified strengths of remote sensing over in-situ based analysis as well 

as research gaps extracted from recommendations for future studies. For example, the review 

showed the complexity of urban LULC classification using medium resolution remotely sensed 

data and the need to improve mapping accuracy. Chapter 3 thus tests the potential of various 

combinations of optical, thermal infrared data and indices to improve urban mapping accuracy 

using recently launched Landsat 8 data. 
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CHAPTER 3: ENHANCED URBAN CLASSIFICATION USING MULTI-SPECTRAL 

MEDIUM RESOLUTION REMOTE SENSING DATASETS 

 

 

 

 

This chapter is based on: 

Mushore T. D., Mutanga O., Odindi J., Dube T. (2017). Assessing the potential of integrated 

Landsat 8 thermal bands, with the traditional reflective bands and derived vegetation indices 

in classifying urban landscapes. Geocarto International, 32:8, 886-899, 

http://dx.doi.org/10.1080/10106049.2016.1188168 
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3.0 Abstract 
Reliable and up-to-date urban land cover information is valuable in urban planning and policy 

development. Due to the increasing demand for reliable land cover information, there has been a 

growing need for robust methods and datasets to improve the classification accuracy from remotely 

sensed imagery. This study sought to assess the potential of the newly launched Landsat 8 sensor’s 

thermal bands and derived vegetation indices in improving land cover classification in a complex urban 

landscape using the Support Vector Machine (SVM) classifier. This study compared the individual and 

combined performance of Landsat 8's reflective and thermal bands and vegetation indices in classifying 

urban land use-land cover (LULC). The integration of Landsat 8 reflective bands, derived vegetation 

indices and thermal bands produced significantly higher accuracy classification results than using 

traditional bands as standalone (i.e. overall, user and producer accuracies). An overall accuracy above 

89.33% and a kappa index of 0.86, significantly higher than the one obtained with the use of the 

traditional reflective bands as a standalone dataset and other analysis stages was obtained. On average, 

the results also indicate high producer and user accuracies (i.e. above 80%) for most of  the classes with 

a McNemar’s Z score of 9.00 at 95% confidence interval, showing significant improvement compared 

with classification using reflective bands as standalone. Overall, the results of this study indicate that 

the integration of the Landsat 8’s Operational Land Imager and Thermal Infrared data presents an 

invaluable potential for accurate and robust land cover classification in a complex urban landscape, 

especially in areas were the availability of high resolution datasets remains a challenge. 

 

Keywords: Classification accuracy; complex urban landscapes; data integration; new generation 

sensor; resampled thermal bands; satellite data 
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3.1 Introduction  

Accurate and updated urban Land Use-Land cover (LULC) information is important for 

optimal and sustainable land use planning (Hashem & Balakrishnan, 2015). For instance, in 

order to improve land use planning, accurate information on current land use is essential as this 

provide details needed for planning purposes and relevant policy development at a range of 

scales (Oort, 2005). Furthermore, a national database of accurate LULC maps is needed in 

order to detect changes over time, including urban growth in order to determine impacts on the 

environment and human livelihood (Yu, et al., 2013; Dube, et al., 2014; Abegunde & Adedeji, 

2015). Besides, this information is crucial for monitoring and mitigating the impact of urban 

growth on the environment i.e. forests, agriculture and wetlands (Xian & Crane, 2005). 

Therefore, LULC mapping assists planners to project future trends of human activities, urban 

growth and land surface characteristics, in addition improving performance of ecosystem and 

atmospheric models amongst others (Hashem & Balakrishnan, 2015; Yu, et al., 2013). 

However, accuracy is affected by the scale, as well as by spatial and spectral data characteristics 

(Lo & Choi, 2004). 

 

From a social perspective, urban planning is also related to the comfort of urban dwellers as 

increasing impervious surfaces at the expense of greenery results in surface temperature 

increases (Weng, et al., 2004; Odindi, et al., 2015; Rossi et al., 2014). Increases in surface 

temperature need to be accurately quantified as this escalates related impacts, like human 

thermal discomforts. Surface temperature changes resulting from increases in impervious areas 

due to urban growth raise costs associated with restoring thermal normalcy, such as air 

conditioning and resultant electricity bills (Larsen et al., 2008). For example, literature shows 

that hard or impervious surfaces have the potential to increase local temperature resulting in 

warmer environments than in areas with high vegetation fraction and water (Forkuor & Cofie, 

2011; Deng & Wu, 2013; Zhang, Qi, et al., 2013). Accurate quantification of LULC changes 

and related changes in climate depends on the accurate mapping of the initial and final state of 

the distribution of the functional zones in an urban area, hence the need to improve LULC 

mapping (Xian & Crane, 2005; Abegunde & Adedeji, 2015; Juan-juan Li et al., 2009). If the 

derived maps are not accurate, the policy and technical measures implemented in an area based 

on them will also be very deceptive (Xian et al., 2012). However, the complexity of urban 

setups results in low accuracy maps from remotely sensed data, hence a constant need for 

improvement in classification accuracy. 
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Urban LULC mapping remains difficult due to heterogeneity of surface features and reduction 

in accuracy due to the presence of mixed pixels, especially when using images with coarse 

spatial resolutions (Lu & Weng, 2005). Whereas the adoption of higher spatial resolution data 

(less than 10 m) has been suggested as a solution to the mixed pixel problem, a number of 

studies have noted that lower classification accuracy persists as this may increase intra-and-

interclass variability resulting in unreliable LULC information derived from satellite data 

(Aplin, 2003; Salvati & Sabbi, 2011; Lo & Choi, 2004). Furthermore, higher resolution 

imagery are often costly, have a small spatial coverage and poor temporal resolution, which 

does not adequately aid change analysis (Forkuor & Cofie, 2011). It is therefore important to 

explore the extent and potential to which the readily available datasets and affordable moderate 

resolution data, such as the recently launched Landsat 8 can be fully used to improve accuracy 

of mapping in urban areas (Lu & Weng, 2005). Moreover, Landsat 8 data have proved to 

perform very well in forest biomass related studies (Dube & Mutanga, 2015a), evaporation 

mapping (Shoko et al., 2015), as well as land surface temperature mapping (Yang, Lin, et al., 

2014) when compared to the previous Landsat series data due to improved spectral and 

radiometric resolutions.  

 

Based on this background, the newly-launched Landsat 8 multispectral sensor is hypothesized 

to present numerous and invaluable opportunities required for the derivation of up-to-date and 

crucial LULC information, particularly in complex urban environments. For instance, the 

inherent Landsat 8 sensor improvements i.e. radiometric, signal to noise ratios and the 

introduction of new thermal bands, is hypothesized to have the potential of improving the 

mapping accuracy of complex urban setups - a challenging task from the previous Landsat 

series data especially using the four spectral vegetation indices. The Landsat 8 reflective bands 

have mostly been used alone for urban LULC mapping and findings from literature have shown 

that this data alone is not sufficient for that purpose (Panah et al., 2001; Tucker et al., 1985; Lu 

et al., 2015; Pengra et al., 2015; Dube, et al., 2014). Although not fully explored, previous work 

demonstrates that the coarser spatial resolution Landsat 8 thermal bands have critical 

information linked to the land surface and vegetation biochemical properties (Sun & Schulz, 

2015; Foody, 1996). The thermal information is usually left out of mapping procedures while 

landscapes, such as in urban areas, contain a variety of surfaces with contrasting properties to 

conduct and release heat during the day and night (Xian, et al., 2012).  
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In most heat island phenomena studies, surface temperatures have shown strong dependency 

on LULC types although LULC were mapped at higher spatial resolution than surface 

temperatures (Stathopoulou & Cartalis, 2007; Chen, et al., 2006; Yuan & Bauer, 2007; Klok et 

al., 2012; Wang & Zhu, 2011; Odindi, et al., 2015). The strong correlation between thermal 

capacity and LULC types can be utilized as additional information for thoroughly 

discriminating between surface cover types using low and moderate resolution satellite data 

(Ormsby, 2007). Although the thermal bands of Landsat 8 are at lower resolution than the 

optical bands, they should improve classification accuracy in this study because the classes 

considered at a broad scale are detectable at such low resolution. Rather than extracting single 

buildings that require high resolution, extraction of broad classes, such as high density 

residential, is very viable at the resolution of Landsat 8 thermal bands given that such classes 

are larger than the cell size of the thermal data. Also, in such broad scale classifications, the 

inclusion of thermal data should improve classification accuracy (Witt et al., 2007) given the 

clearly documented differences in thermal properties between LULC classes.  

 

In addition, vegetation indices contain valuable information useful for LULC mapping. Indices, 

such as the Normalized Difference Vegetation Index (NDVI), are the most widely used in 

LULC studies as they relate to a number of vegetation characteristics, which include density, 

vegetation water content and chlorophyll content (Chen, et al., 2006; Stathakis, et al., 2012; 

Sharma et al., 2012). The NDVI best separates vegetation from other surface covers by utilizing 

the unique property that vegetation has very high reflectance in the near infrared range and 

reflects low amounts of visible red radiation. NDVI is thus high over vegetated areas, low over 

bare and built areas, and negative over areas covered by water (Chen, et al., 2006). The 

Normalized Difference Built Index (NDBI) is used to extract built up areas from remotely 

sensed data although it ignores the fact that besides built up areas, bare areas also reflect higher 

in the mid-infrared (MIR) than the near-infrared (NIR) band (Hua, et al., 2013). In order to 

adequately separate bare areas from built areas, the Normalized Difference Bareness Index 

(NDBaI) can be used based on the principle that bare soils reflect more in the thermal infrared 

than the MIR part of the spectrum. The Normalized Difference Wetness Index (NDWI) 

separates water from other surface cover types utilizing the principle that water reflects more 

in the visible spectrum than in the short wave infrared (Hua, et al., 2013; Stathakis, et al., 2012). 

Combined with the NDVI, the NDWI improves identification of vegetated areas as it also 

relates to vegetation water content (VWC) (Jackson et al., 2004) and it is deemed to equate to 
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thickness of water (Sharma, et al., 2012). Evidently, the four indices contain valuable 

information that if integrated with the traditional Landsat 8 reflective bands and thermal bands 

can be used to discriminate different land cover types, particularly in complex and 

heterogeneous urban areas with plausible accuracies. 

 

This work aimed at assessing the potential of integrating Landsat 8 derived thermal bands, with 

the sensor’s traditional reflective and computed vegetation indices in discriminating complex 

and heterogeneous urban landscapes. It was hypothesized that the inclusion of the Landsat 8 

thermal bands together with the sensor’s traditional reflective bands, as well as the computed 

vegetation indices has the potential to greatly improve the image classification of complex and 

heterogeneous urban landscapes. 

 

3.2 Materials and methods 

3.2.1 Description of study area 

The study was conducted in the rural and urban districts of Harare, which form part of Harare 

Metropolitan City. Harare Metropolitan City occupies approximately 94 000 ha and, according 

to the 2012 national census, the entire city has a population of approximately 2 million (Wania 

et al., 2014) (Figure 3.1). Harare is experiencing growth as shown by increasing population 

and built-up extent. The city assumes the radial model with the central business district at the 

centre, with high built-up density. Residential setups are more spacious to the north of the city 

center where high income earners are found than in the southern areas (i.e. largely high density 

residential areas) where mostly low income earners live (Wania, et al., 2014). The period from 

mid-April to mid-September is generally cool with the major climatic hazard being frost, 

mainly on high ground. The city experiences high temperatures during the hot season between 

mid-September and mid-November with a peak in October. The month of October is the 

warmest with an average temperature of 28oC (Manatsa et al., 2012) and during this period 

most croplands are uncultivated, cleared in preparation of the intra-urban farming activities. 

During the hot season, bare and sparsely vegetated surfaces are dry, thus further exacerbating 

surface warming. Vegetation growth is seasonal as the city receives rainfall between mid-

November and April (Unganai, 1996; Manatsa, 2012; Mushore, 2013b). The city is also 

characterized by well-maintained parks located in the central business district and northern 

areas. 

.  
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3.2.2. Field data collection and processing 

Supervised image classification requires prior knowledge of LULC classes in the study area. It 

also requires coordinates of representative samples for each LULC type used for training the 

computer how to assign classes as well as to assess accuracy afterwards. In order to identify 

LULC classes in Harare and obtain coordinate of representative points per LULC class, field 

data collection was done between the 1 April and 30 April 2015. During data collection, 120 

GPS points were collected for each land cover class using a hand-held Garmin eTrex30 GPS 

with ±3m accuracy. Field data collection followed a stratified random sampling approach 

to obtain sample from several locations across Harare. For each LULC type, sub-classes were 

also identified and coordinates of samples were collected. This was done to incorporate intra-

class variability. For example, different types of vegetation were identified during field survey 

and data collection ensured that samples were taken from all possible sub-classes of 

vegetation (e.g. trees, shrubs, grassland). Although classes obtained in the field could be 

further disaggregated into several small sub classes, this study generalized them into seven 

major LULC types (Table 3.3). Seven land cover classes were used based on the 

recommendations that when using moderate to coarse resolution satellite data, such as 

Landsat series data, the generation of a large number of classes was inappropriate (Yu, et al., 

2013). 
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Figure 3.1: Location of the area under study area 
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3.2.3. Remote sensing data acquisition and pre-processing 

A cloud free 30-m Landsat 8 image covering the entire study area was downloaded for free 

using 170/72 path/row from the earth explorer website courtesy of the USGS-EROS Centre 

archive (www.earthexplorer.usgs.gov). The image was acquired on 31st October 2014. The 

Landsat 8 Thermal Infrared Sensor (TIRS) bands are acquired at 100 metre resolution, but were 

provided already resampled to 30 metre spatial resolution (Table 3.1). The acquired image was 

corrected for geometric and radiometric errors. The image was rectified to UTM Zone 36S 

using 20 ground control points collected in the field at the intersection of major roads. Also, to 

ensure accurate retrieval of spectral information, the image was atmospherically corrected 

using the FLAASH module in ENVI 4.5 software and the parameters downloaded from 

AERONET website (Dube, et al., 2014).  

 

Table 3.1: Properties of Landsat 8  data used in the study (Genc et al., 2014) 

Band Name Bandwidth (µm) GSD (m) 

1 Coastal blue 0.435–0.451 30 

2 Blue 0.452–0.512 30 

3 Green 0.533–0.590 30 

4 Red 0.636–0.673 30 

5 NIR 0.851–0.879 30 

6 SW1 1.566–1.651 30 

7 SW2 2.107–2.294 30 

8 Pan 0.503–0.676 15 

9 Cirrus 1.363–1.384 30 

10 TIRS 1 10.60-11.19 100 *(30) 

11 TIRS 2 11.50-12.51 100 *(30) 

*TIRS- Landsat 8 thermal Infra-red bands 

 

3.2.4 Landsat 8 spectral bands and vegetation indices retrieval 

Six simple spectral reflectance from the visible, near-infra-red short-wave (i.e. blue, green, red, 

nir, swir I, swir II and two thermal bands (i.e. TIR I and TIR II) were extracted from Landsat 

8 OLI and TIR images. In addition, four spectral vegetation indices were computed using 

Landsat 8 OLI spectral bands. The choice of these indices was based on previous studies that 

demonstrated their reliable applications in land cover mapping (Chen, et al., 2006; Sharma, et 

al., 2012). The computed vegetation indices are summarized in Table 3.2. The Landsat 8 OLI 

and TIRS spectral bands and the computed vegetation indices selected for this study were 

extracted at each location based on points obtained during field data collection. 120 field-

collected GPS points were first projected to the Landsat 8 OLI and TIRS image coordinate 

system for easy overlay and spectral extraction purposes. Since a point represents a single pixel, 

http://www.earthexplorer.usgs.gov/
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a land cover may occupy a pixel and its neighbours, polygons were created by digitizing around 

each point on pixels falling within the same class. These regions of interest were created using 

the Region Of Interest (ROI) tool in ENVI 4.5. This was done for both training and validation 

datasets so that polygons instead of points were prepared as ground truth regions for 

classification and validation. 

 

3.2.5 Image classification 

The extracted Landsat 8 OLI and TIRS bands and computed vegetation indices were used in 

classifying the complex and heterogeneous urban settings. The analysis was done using seven 

different sets of both spectral and vegetation indices summarised in Table 3.2.  The analysis 

procedure was done using the Support Vector Machine (SVM) classifier algorithm. The SVM 

is regarded as one of the most powerful and robust non-parametric machine learning algorithms 

in image classification studies when compared to the commonly used classification algorithms 

such as Maximum Likelihood, Random Forest, Artificial Neural Networks and Mahalanobis 

classifiers (Adelabu et al., 2013; Jia, et al., 2014). One of the major advantages of the SVM 

algorithm is that it requires comparatively low amounts of training data compared to its 

counterparts (Forkuor & Cofie, 2011; Yu, et al., 2013). The algorithm applies two classes, 

namely presence or absence of the training samples, within a multi-dimensional feature space 

to fit an optimal separating hyper-plane (i.e. in each dimension, vector component is image 

gray-level). During the process the algorithm attempts to maximize the distance between the 

closest training samples, or support vectors, and the hyper-plane.  

 

The ground truth data for classification were used to classify each of the layer combinations 

shown on Table 3.2 using the SVM classifier (Gamma in Kennel function was set at 0.091, 

Penalty parameter was 100, Pyramid level were set at 0 and the Classification Probability 

threshold was also 0). The same settings were used in all the methods to eliminate the 

contribution of the SVM parameters on the accuracy since input band combinations were the 

only variable in this study. For this work, the dataset was randomly split into 70% (85) and 

30% (36) training and testing datasets respectively (Adelabu, et al., 2013). The major land 

cover classes considered in this study are summarised in Table 3. 

 

 

 

Table 3.2: OLI, TIRS spectral bands and computed vegetation indices  
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Data type data source variables applied Analysis 

SB OLI 1-6: blue, green, red, NIR, SWIR I & II  I 

 TIRS 1-2: TIRS I & II II 

 OLI & TIRS 1-8: blue, green, red, NIR, SWIR I, SWIR II, 

TIRS I & TIRS II 

III 

Vis OLI 1-4: NDBaI, NDVI, NDBI & NDWI IV 

SB & Vis OLI & TIRS 1-6: TIRS I, TIRS II, NDBaI, NDVI, NDBI & 

NDWI 

V 

SB & Vis OLI 1-10: blue, green, red, NIR, SWIR I, SWIR II, 

NDBaI, NDVI, NDBI & NDWI 

VI 

All 

variables 

OLI & TIRS blue, green, red, NIR, SWIR I, SWIR II, TIRS 

I, TIRS II, NDBaI, NDVI, NDBI & NDWI 

VII 

*SB = spectral bands; Vis = Vegetation Indices; TIRS = Thermal Infrared Sensor; OLI = 

Operational Land Imager; NDBaI = Normalized Difference Bareness Index; NDVI = 

Normalized Difference Vegetation Index; NDWI = Normalized Difference Water Index; NDBI 

= Normalized Difference Built Index  

 

Table 3.3: Description of the major land cover classes considered for this study 

Class     Description 

Densely built (DB)   Very high built density (CBD and industrial areas)  

Low-medium density residential (LMR) Low and medium density residential areas with 

higher vegetation fraction than high density residential  

High density residential (HDR) Built-up with higher density of building and lower 

vegetation cover than low-medium residential  

Forested Areas (Fr) moderate to dense forest cover  

Development (Dv) High density residential under development; mixture 

of bare and building with very low vegetation cover  

Grasslands (Gr) Grass covered areas with little or no trees  

Water (Wt) Water bodies  

 

3.2.6 Accuracy assessment 

To evaluate the reliability of the results obtained from this study, accuracy assessment was 

performed for each land cover class. An independent test dataset of LULC data consisting of 

36 points per LULC type was used in the process. For each method, the obtained classes where 

cross tabulated on a confusion matrix against the ground truth classes for the corresponding 

pixels on a confusion matrix in order to determine classification accuracies (Yu, et al., 2013). 

The agreement between classification results and ground truth was measured using the 

producer accuracy, user’s accuracy, overall accuracy and Kappa index generated from the 

confusion matrices (Jia, et al., 2014). Producer’s accuracy is a measure of how correct the 

classification is, while user’s accuracy is a measure of the reliability of the map for each class 

(Namdar, et al., 2014). The different classification methods were primarily compared in 

performance with the traditional method, which uses reflective bands only based on the 
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coverage per class (area), producer’s accuracy, user’s accuracy, overall accuracy and 

McNemar’s tests. 

 

3.2.7 Significance of the differences in accuracy between the classification methods 

The significance of the differences in accuracy between the methods was tested based on the 

confusions tables, using the McNemar’s test. The McNemar’s test was used to compare each 

of the methods with the traditional method which uses only the reflective bands for 

classification to assess whether the other methods significantly differed in terms of accuracy. 

The McNemar’s test is a better statistic for comparing accuracies of classification methods than 

the Kappa index and it is simple to compute (Petropoulos et al., 2012; Adelabu, et al., 2013). 

The Kappa chi-squared requires that independent data are used to assess accuracies, but in this 

study, the same points are used in all methods thus the McNemar’s test was more appropriate 

as it is also more precise and sensitive (Manandhar et al., 2009). 

 

Table 3.4: Comparison of two methods using the McNemar’s test 

  Method 2 

Correctly classified Wrongly classified 

Method 1 Correctly classified f11 f12 

Wrongly classified f21 f22 

 

McNemar’s Chi squared statistic was computed using Equation 3.1 as: 

𝒁𝟐 =
(𝒇𝟏𝟐−𝒇𝟐𝟏)𝟐

𝒇𝟏𝟐+𝒇𝟐𝟏
                  Equation 3.1       

where f12 denotes the number of cases that are wrongly classified by classifier 1 but correctly 

classified by classifier 2 (Table 3.4) and f21 denotes the number of cases that are correctly 

classified by classifier 1 and wrongly classified by classifier 2 (Petropoulos, et al., 2012). The 

difference in accuracies were tested at 95% significant level and deemed different if Z > 1.96. 

By comparing error matrix of each analysis with that of Analysis I, we obtained total number 

of cases correctly classified by the analysis and wrongly classified by Analysis I (f12) and vice 

versa (f21). The values of f12 and f21 thus obtained were used in equation one to test whether the 

accuracy of each analysis was significantly different with that of analysis I at 95% confidence 

intervals.  

 

3.3 Results 

3.3.1. Analysis I: Classification results using the traditional OLI spectral bands  

Table 3.6 shows the classification accuracy results obtained using the traditional reflective 

bands of the Landsat 8 OLI sensor. The use of the Landsat 8 OLI derived reflective bands 
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produced an overall accuracy of 82.65% and Kappa index was 0.81. Further, producer 

accuracies greater than 75.0% for all the classes were obtained based on the use of reflective 

bands as independent datasets. Comparatively, the same dataset produced slightly lower user 

accuracy (65.7%) for the high density residential class and above 75.0% for the remaining 

classes. For example, densely built, forested and water classes, had significantly higher user 

and producer accuracies above 80.0%.  

 

3.3.2. Analysis II: Classification results using TIRS spectral bands 

Table 3.6 illustrates classification results (i.e. overall, producer and user accuracies) obtained 

from using Landsat 8 thermal bands. The use of thermal bands as standalone datasets overall 

yielded lower user and producer accuracies for almost all the classes considered under study 

except for the water class which had a producer accuracy of 87.5% and 86.5% user accuracy. 

For example, for grasslands, forested and high density residential classes, user accuracies were 

33.3%, 35.6% and 45.5% respectively. Similarly, the standalone use of Landsat 8 thermal 

bands yielded low producer accuracies of 28.0% and 44.6% for forested and grassland classes 

respectively. The study produced 53.40% and 0.46 kappa index value as overall accuracy, 

significantly lower (i.e. McNemar’s score was 9.98 at 95% confidence interval) when 

compared to the use of the traditional visible or reflective bands of the Landsat 8 OLI. 

Compared with the other methods, Analysis II produced areas per LULC class which were 

mostly very different from those obtained with the other methods (Table 3.5). For example, the 

development class had an area of 429.69km2 using Analysis II while the area ranged between 

287 and 300km2 with the six other analysis.  

 

3.3.3. Analysis III: Classification results using OLI & TIRS spectral bands 

Table 3.6 demonstrates the urban landscape classification results based on the integration of 

thermal and reflective bands of the Landsat 8 sensor. Based on this analysis, an overall accuracy 

(84.03% and kappa index was 0.81) comparatively similar to the one obtained in the Analysis 

I using reflective bands as a standalone dataset. For example, high producer accuracies, mostly 

greater than 80%, were obtained for most of the classes i.e. water, forested and densely built 

classes except for development class which had producer accuracy of 72.6% (Table 3.6). User 

accuracies were also mostly above 80% except for development and grassland classes which 

had 62.8% and 76.7%, respectively. 
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3.3.4. Analysis IV: Classification results using spectral vegetation indices 

The urban landscapes classification results obtained using Landsat 8 derived vegetation indices 

are shown in Table 3.6. Comparatively, the results indicate that the use of Landsat 8 derived 

vegetation indices produced slightly lower classification results (i.e. overall, user and producer 

accuracies), when compared to the use of traditional reflective bands (detail see Analysis I). 

For instance, user accuracies greater than 75% obtained for the majority of the classes, except 

for high density residential and grasslands classes where the user accuracies of 70.1% and 

72.6% were respectively observed. Similarly, good producer’s accuracy results (i.e. above 

75%) for all the classes considered in this study were observed from the use of vegetation 

indices as standalone datasets. Furthermore, high overall accuracy (81.96%) and Kappa index 

(0.79) comparable to those obtained in Analysis I were obtained (McNemar’s score was 6.93 

at 95% confidence interval).  

 

3.3.5. Analysis V: Classification results using TIRS spectral bands and VIs 

Table 3.6 provides a summary of urban landscape classification results obtained based on the 

integration of Landsat 8 derived vegetation indices and thermal bands. The integration of 

Landsat 8 derived vegetation indices and thermal bands overall produced significantly higher 

classification accuracies (i.e. overall, user and producer accuracies). For example, an overall 

accuracy 82.97% and a kappa index of 0.82 was slightly higher than the result obtained in 

Analysis I based on the use of the traditional reflective bands as standalone dataset (McNemar’s 

Z score of 20.70 at 95% confidence interval). The results also indicate high producer accuracies 

i.e. above 80% for almost all he classes except high density residential and development classes 

which had producer accuracies of 78.7% and 72.3%, respectively.  Only the high density 

residential class had user accuracy below 75%.  
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Figure 3.2: Urban landscapes lands cover classification results for obtained based on the 

classification models derived from analysis III and VII respectively. 
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Table 3.5: Areas per class obtained in the 7 analysis tested in this study  

  Area covered by class (km2) 

 Analysis I Analysis II Analysis III Analysis IV Analysis V Analysis VI Analysis VII 

Densely Built 54.63 0.25 61.94 64.82 67.91 63.85 65.26 

Low-medium residential 174.05 154.16 154.23 170.78 164.33 167.69 162.97 

High density residential 139.96 126.05 156.77 143.48 142.79 130.81 133.68 

Forested 129.80 31.78 126.39 124.04 121.17 126.39 126.75 

Development 287.20 429.69 288.74 295.88 299.00 299.57 299.87 

Grassland 53.08 107.79 54.84 49.71 50.71 55.89 55.47 

Water/wetlands 17.81 5.80 12.61 6.82 9.62 11.71 11.52 

McNemar’s Z score - 9.98 3.47 6.93 20.70 10.00 9.00 

 

 

 

Table 3.6: Accuracies obtained and used to assess the impact of the inclusion of thermal band and vegetation indices on urban mapping accuracy 

(UA=User’s accuracy, PA=Producer’s accuracy and OA is the Overall Accuracy of the classification)  

 Analysis I Analysis II Analysis III Analysis IV Analysis V Analysis VI Analysis VII 

 PA UA PA UA PA UA PA UA PA UA PA UA PA UA 

DB 84.8 87.1 0.0 0.0 88.8 88.7 80.0 77.6 83.0 79.4 88.1 87.2 90.9 88.8 

FR 90.1 86.3 28.0 35.6 86.4 88.2 87.6 89.2 90.0 89.7 96.9 89.1 96.9 89.0 

WT 89.2 90.6 87.5 86.5 82.1 98.6 89.4 91.2 96.6 90.2 92.7 98.8 97.0 98.9 

HDR 79.2 65.7 61.7 45.5 80.4 62.8 78.7 70.1 78.7 71.7 79.4 75.7 79.8 75.0 

Dv 75.9 84.4 71.3 54.9 72.6 82.7 76.2 86.7 72.3 86.4 79.3 86.4 79.1 86.4 

LMR 84.5 84.6 66.6 58.7 81.4 85.4 84.0 81.2 83.3 82.8 87.2 86.0 86.4 85.9 

GR 81.1 77.4 44.6 33.3 81.8 76.7 81.1 72.6 82.6 80.8 83.9 76.9 83.3 76.8 

OA 82.65 53.40 84.03 81.96 82.97 85.49 89.33 

Kappa 0.81 0.46 0.81 0.79 0.82 0.84 0.86 
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3.3.6. Analysis VI: Classification results using OLI spectral bands and VIs 

The use of OLI spectral bands and the derived vegetation indices yielded high and comparative 

similar results with those obtained in Analysis I (i.e. use of reflective bands as standalone 

dataset) and Analysis V (i.e. use of Landsat 8 thermal bands and the derived vegetation indices). 

For example, high overall user (85.49%) and producer accuracies greater than 78% were 

obtained for all the classes considered under this study. Moreover, an overall accuracy and 

kappa index of 0.84 was attained (Table 3.6 and Figure 3.2). Producer and user accuracies were 

greater than 75% for all the LULC classes. A comparison of the results obtained from this 

analysis (i.e. OLI spectral bands and the derived vegetation indices) and those obtained from 

Analysis I (i.e. use of the traditional reflective bands as standalone datasets) show significant 

differences with the McNemar’s Z score of 10 at 95% confidence interval.  

 

3.3.7. Analysis VII: Classification results using OLI, TIRS spectral bands and VIs 

Table 3.6 shows the urban landscape classification results obtained from running the model 

based on the integration of Landsat 8 derived OLI reflective bands, TIRS spectral bands and 

computed vegetation indices. The classification results demonstrate great improvement on the 

overall, user and producer accuracies for all the classes considered under this study. For 

example, significantly high user and producer accuracies, greater than 85% for low-medium 

density residential, water, forested and densely built classes were obtained. The results showed 

high overall accuracy of 89.33% and a kappa index of 0.86 (Table 3.6). Furthermore, when 

compared to Analyses 1, II, III, IV, V and VI, the urban landscape classification results 

obtained from the integration of Landsat 8 derived OLI reflective bands, TIRS spectral bands 

and computed vegetation indices (i.e. Analysis VII) yielded higher accuracies with McNemar’s 

Z score of 9 at 95% confidence interval. Overall, these results demonstrate that the integration 

of TIRS spectral bands from the Landsat 8 sensor with the sensor’s derived reflective bands 

and computed vegetation indices, improves the classification accuracy of urban landscapes 

compared to the use of these datasets as standalone datasets. 

 

3.4 Discussion  

Accurate and reliable information on urban land use-land cover is important for well-informed 

urban land use planning and for appropriate policy development at a range of scales. Besides, 

this information is urgently required for developing and updating the national LULC database, 

as well as assessing the current urban growth and for modeling future growth projection. This 

work thus aimed at assessing the potential of integrating Landsat 8 derived thermal bands with 
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the sensor’s traditional reflective bands and computed vegetation indices in discriminating 

complex and heterogeneous urban landscapes. 

 

The results of this study have shown that the recently-launched Landsat 8 with unique 

radiometric, as well as new thermal bands, present a strong capability of improving the 

classification of heterogeneous and complex urban landscapes; especially in areas where the 

availability of high resolution satellite datasets with strategically positioned spectral bands and 

band settings remains one of the major limiting factors. When Landsat 8 derived TIRS spectral 

bands were integrated with the traditional OLI reflective bands, as well as the computed 

vegetation indices, the classification of urban landscapes significantly improved when 

compared to the use of these variables as standalone datasets. For instance, based on the 

integrated datasets, significantly higher overall accuracy (89.33%), along with user and 

producer accuracies of about 85% were attained for the low-medium density residential, water, 

forested and densely built land cover classes. The McNemar’s Z score was 9 at 95% confidence 

interval, implying that there was significant increase in classification accuracy when compared 

with the traditional use of reflective bands alone. Overall, the use of the integrated datasets 

outperformed the use of thermal bands and vegetation indices as standalone classification 

variables. The study showed that the results were almost comparable to those attained using 

traditional reflective and thermal bands. Higher classification accuracies (i.e. overall, kappa, 

user and producer) in mapping complex urban environments indicate the high performance 

associated with the improved Landsat 8 push broom scanner (Jia, et al., 2014).  

 

Also, the performance observed from the results obtained based on the integration of the entire 

set of variables (i.e. derived thermal, traditional reflective bands, as well as the computed 

vegetation) concur with findings from the literature (Li et al., 2013; Sun & Schulz, 2015; 

Ormsby, 2007). The above studies concluded that thermal remote sensing has the capability of 

providing crucial information that can enhance robust and reliable monitoring of land cover 

dynamics. For example, Ormsby (2007) pointed out that the inclusion of thermal bands 

together with other spectral bands in remote sensing applications influences classification 

accuracies. Also, the increased performance based on the integrated datasets can be linked to 

the ability of thermal bands, despite the coarser resolution to separate or separate areas 

associated with low temperature areas (water, forests and low-medium residential) from high 

temperature areas (high density residential, grasslands, development areas and densely built 
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areas). The results of this study therefore clearly indicate the general importance of thermal 

bands from the new Landsat 8 sensor, through the provision of complementary information 

(Panah, et al., 2001), which greatly improves or aids the performance of the traditional 

reflective bands and the associated derived vegetation indices.  

 

Furthermore, this work showed that merging the traditional reflective bands, with the four 

selected vegetation indices (NDVI, NDWI, NDBaI and NDBI) derived from the Landsat 8 OLI 

sensor for urban land cover mapping slightly increased the overall classification accuracy by 

1.84% (i.e. from 82.65% to 85.49%) when compared to the use of the traditional reflective 

bands as a standalone dataset. For example, the test results showed that the inclusion of the 

four selected vegetation indices significantly (i.e. McNemar’s Z score had a value of 9.98 at 

95% confidence interval) increased the classification accuracy. These results demonstrate the 

importance of Landsat 8 computed vegetation indices. These findings are in line with findings 

from previous studies which have demonstrated and reported the unique strength and 

usefulness of the four indices in separating various land cover types (Chen, et al., 2006; Jia, et 

al., 2014). Moreover, literature shows that indices, such as the NDWI (Stathakis, et al., 2012; 

Jackson, et al., 2004; De Fries et al., 1998) and NDBI, have the capability to efficiently extract 

built up areas. The major limitation with these vegetation indices is that they do not consider 

that bare areas also exhibit similar properties with built up areas (Stathakis, et al., 2012). Thus, 

in this study, the inclusion of the NDBaI was useful in further separating bare areas from built 

up areas as it provides good contrast between bare and other surfaces (Sharma, et al., 2012). 

 

Contrastingly, the use of four selected vegetation indices as a standalone dataset proved 

comparatively weak in discriminating the LULC of the complex and heterogeneous urban 

environments. However, comparatively the use of Landsat 8 derived vegetation indices alone 

produced slightly lower classification results (i.e. overall, user and producer accuracies), when 

compared to the use of traditional reflective bands (see Analysis I). For example, for the 

majority of the land cover classes considered in this study, user and producer accuracies 

slightly above 70% on average were observed. Similarly, the use of Landsat 8 derived thermal 

bands as a standalone dataset for classifying complex and heterogeneous LULC in urban 

environments overall yielded poor results except for water bodies where the model produced 

high user and producer accuracies above 90%. Effectiveness of thermal bands is thus 

dependent on land cover type, and climatic and geographic conditions (Panah, et al., 2001). Lo 
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et al. (2010) observed that although most land covers had similar thermal radiances at night, 

water was still separable from the rest as it had lowest thermal radiance values. This study, 

similarly, observed that based on temperature water was easily distinguishable from other 

classes as it had lowest temperatures. 

 

Above all, the high overall classification accuracies obtained in this study from the integration 

of the Landsat 8 TIRs bands, the traditional reflective spectral bands, as well as the derived 

vegetation indices, although not tested, can hypothetically be largely associated with the 

sensor’s unique design. For example, the recently-launched Landsat 8 sensor, unlike its 

predecessors, provides great improvement in numerous aspects. To begin with, Landsat 8 OLI 

and TIRs applies the push broom technique during data acquisition (Dube & Mutanga, 2015a, 

2015b; Roy et al., 2014; Ke et al., 2015; Dube & Mutanga, 2015c). Sensors applying the push 

broom design in data acquisition are known to receive good and robust signals from the earth’s 

surface since they use elongated and linear arrays of detectors (Roy, et al., 2014). For example, 

the study by Dube and Mutanga (2015a) reports that the Landsat 8 makes use of a multiple 

extended collection of detectors for each spectral waveband, which in turn provides a 

comprehensive scan of the earth’s surface. Besides, the newly-launched 30m Landsat 8 sensor 

is associated with a narrower spectral range which is believed to be useful for this dataset to 

precisely detect and discriminate various land covers or earth surface features (Dube & 

Mutanga, 2015a, 2015c). The observed highly accurate land cover classification results (i.e. 

overall, kappa, user and producer accuracies) for complex and heterogeneous urban landscapes 

obtained in this study, projects the recently launched 30m Landsat 8 sensor as the best satellite 

data that can provide remarkable solutions and breakthroughs for land cover mapping, 

especially in environments where the availability of high resolution satellite data remains a 

daunting task due to cost and above all the restricted spatial coverage. 

The observed higher accuracy classification results (i.e. overall, kappa, user and producer 

accuracies), although not tested in this study, can also be attributed to the strength and 

effectiveness of the SVM algorithm. Amongst most available classification algorithms, 

literature shows that the support vector machine classification algorithm is currently one of the 

most powerful and robust non-parametric machine learning algorithms in image classification 

studies when compared to the most commonly applied image classification techniques, such 

as Artificial Neural Networks and Mahalanobis classifiers, Maximum Likelihood, Random 



56 

 

Forest, among others (Adelabu, et al., 2013; Jia, et al., 2014; Forkuor & Cofie, 2011; Yu, et 

al., 2013).  

 

3.5 Conclusion 

We tested the potential of integrating the recently-launched 30-m Landsat 8 derived thermal 

bands, with the sensor’s traditional reflective and computed vegetation indices in classifying 

complex and heterogeneous urban landscapes. The study was motivated by the need to identify 

an optimal, suitable and cheap remote sensing dataset that could improve the detection and 

classification of complex and heterogeneous urban landscapes in data-scarce environments 

with reasonable accuracy. Currently, as well as possibly in the near future, the application of 

high resolution imagery in these areas remains a challenge due to associated costs and the 

restricted availability, except for project based applications.  

 

The findings of this study have shown that the integration of Landsat 8 derived TIRS spectral 

bands, OLI reflective bands and computed vegetation indices produced high classification 

results. Comparatively, the use of TIRS spectral bands, OLI reflective bands and computed 

vegetation indices as standalone variables produced slightly weaker overall classification 

results. Thermal remote sensing has the capability of providing crucial information that can 

enhance robust and reliable classification of land cover dynamics especially in data-scarce 

environments when applied together with the traditional reflective bands, as well as robust and 

effective non-parametric algorithms (i.e. SVM, and others). Overall, the findings of this 

research highlight the potential and needs of remote sensing communities in data-scarce 

environments to immediately embrace the use of thermal remote sensing datasets. Nonetheless, 

it is advisable to stress that further assessment and/or comparative experiments are conducted 

at landscape scales amongst the recently-launched 30-m Landsat 8’s thermal and traditional 

spectral bands. 

3.6 Link between Chapter 3 with other chapters 

Chapter 3 showed that high urban LULC classification accuracy (overall accuracy above 80%) 

from Landsat data is achieved by i) the traditional method of using atmospherically corrected 

multi-spectral optical data excluding thermal data ii) combining these multi-spectral data with 

NDVI, NDBI, NDBaI and NDWI iii) combining multi-spectral optical data with thermal infra-

red data and iv) merging multi-spectral optical data with indices and thermal infra-red data 

(highest accuracy of the methods tested). The next chapters will use LULC mapping 
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approaches proved highly reliable by Chapter 1 to map urban extent as well as urban growth 

and link to the thermal environment of the lower atmosphere. As such, the next chapter 

(Chapter 4) will relate heat vulnerability to LULC spatial structure derived from classification 

of Landsat multi-spectral data in Harare. 
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CHAPTER 4: SPATIAL DISTRIBUTION OF EXTREME HEAT 

VULNERABILITY AND ITS LINK WITH LANDUSE AND COVER 

REGIMES 

 

 

 

 

 

 

 

This chapter is based on: 

Mushore T. D., Mutanga O., Odindi J., Dube T. (in press). Determining extreme heat 

vulnerability of Harare Metropolitan City using multispectral remote sensing and socio-

economic data. Journal of Spatial Science, 63(1), 173-191. 
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4.0 Abstract 

Urbanisation alters surface landscape characteristics through conversion of natural landscapes 

to impervious surfaces. Such changes alter the thermal properties of urban landscape mosaics, 

increasing the urban heat island intensity and population’s vulnerability to heat related stress.  

This study aimed at deriving detailed area specific spatial information on the distribution of 

heat vulnerability in Harare city, Zimbabwe, valuable for informed urban thermal mitigation, 

planning and decision making. Using Landsat 8 derived bio-physical surface properties and 

socio-demographic factors, findings show that vulnerability to heat related distress was high in 

over 40% of the city, mainly in densely built-up areas with low-income groups. Comparatively, 

low to moderate heat vulnerability was observed in the high income northern suburbs with low 

physical exposure and population density. Results also showed a strong spatial correlation (α 

= 0.61) between heat vulnerability and observed surface temperatures in the hot season, 

signifying that land surface temperature is a good indicator of heat vulnerability in the area. 

Furthermore, the study showed that indices derived from moderate resolution Landsat 8 data 

improve thermal risk assessment in areas of close proximity. These findings demonstrate the 

value of readily available multispectral data-sets in determining areas vulnerable to temperature 

extremes within a heterogeneous urban landscape. The findings are particularly valuable for 

designing heat mitigation strategies as well as identifying highly vulnerable areas during heat 

waves.  

 

 

 

Keywords: Land surface temperature, vegetation indices, heat island, vulnerability, heat stress. 
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4.1 Introduction 

Urbanization changes the distribution of surface land covers and alters landscape energy and 

water balance, which in turn alters surface thermal characteristics (Zhang, et al., 2009; Chen, 

et al., 2006; Sobrino, et al., 2012; Amiri, et al., 2009). Due to urban growth, natural surfaces 

such as forests are replaced with impervious surfaces that absorb and emit thermal energy, 

resulting in creation of Urban Heat Islands (UHI) (Johnson, et al., 2014; Steeneveld, et al., 

2014; Tomlinson, et al., 2011; Hua, et al., 2013; Song & Wu, 2015; Sobrino, et al., 2012). Such 

thermal elevation exposes residents to heat related health risks, especially residents without air 

conditioning systems. Studies have shown that extreme temperatures result in reduced indoor 

and outdoor comfort and performance at work and increase morbidity and mortality (Tanabe 

et al., 2015; Humphreys, 2015; Lin, et al., 2016). Within cities in developing countries, 

vulnerability to elevated temperatures varies due to heterogeneity in surface bio-physical 

properties and socio-demographic factors  (Johnson, et al., 2014). According to Wilhelmi and 

Hayden (2010), contextualizing vulnerability to local settings can influence formulation of 

successful approaches that are targeted locally using resources allocated at national level. 

Therefore, to design effective adaptation and mitigation measures for vulnerable areas, heat 

vulnerability maps are valuable in identifying high risk areas.  

 

Urban geophysical (e.g. heat islands, vegetation health and abundance and building density) 

economic and socio-demographic factors constitute exposure to hazard, sensitivity and 

adaptive capacity, which determine differences in heat vulnerability between places (Johnson, 

et al., 2014; Aubrecht & Özceylan, 2013; Uejio, et al., 2011). Whereas earlier thermal 

vulnerability studies solely stressed the role of socio-demographic factors e.g. age, race, 

gender, education, health and economic status (Cutter, 2009; Cutter, et al., 2003; Vescovi, et 

al., 2005; Reid, et al., 2009), recent studies have sought to incorporate quantitative and 

qualitative socio-demographic and biophysical variables in risks associated with elevated urban 

temperatures (van-Westen; Johnson, et al., 2014; Buscail, et al., 2012). Recent studies have 

also sought to incorporate remote sensing derived heat exposure factors such as land surface 

temperature, land use and land cover maps, and land cover indices (Johnson, et al., 2014; 

Johnson, et al., 2012; Johnson, et al., 2009; Aubrecht & Özceylan, 2013; Uejio, et al., 2011; 

Wolf & McGregor, 2013; Depietri, et al., 2013; Hansen, et al., 2013; Buscail, et al., 2012; Reid, 

et al., 2012). Hence, space-borne remote sensing has the potential to yield a variety of spatial 

information valuable for reliable heat vulnerability mapping.   
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Remote sensing has several advantages in urban thermal studies. These include synoptic view 

of large areas, availability of archival data, and effectiveness in mapping land surface 

characteristics.  In addition, medium resolution space-borne remote sensing detects localized 

variations in land surface characteristics even in complex urban areas where changes are 

observed within small distances. However, despite the reliability of space-based sensors like 

Landsat in mapping heterogeneous urban landscapes, heat vulnerability maps have remained 

largely coarse and generalized. For instance, previous studies have mapped vulnerability at the 

low spatial resolution of demographic variables, such as census block and district level 

(Johnson, et al., 2014; Heaton, et al., 2014; Buscail, et al., 2012).  This has a major disadvantage 

of assuming uniform heat exposure over large regions thus ignoring variability within each 

block/district. For example, Dewan and Corner (2012) noted that use of census blocks 

weakened the correlation between population density and land surface temperature because of 

variability of land cover within each census tract. However, mapping risk using medium 

resolution remotely sensed data has the potential to improve area specific assessment 

interventions required to curb heat related stress in cities. Therefore, there is a need to improve 

the spatial resolution of heat vulnerability maps using spatial details of variations in heat 

exposure obtained from reputable medium resolution sensors such as Landsat missions. 

 

Land cover indices such as Normalized Difference Vegetation Index (NDVI) provide 

quantitative and reliable information of surface physical characteristics. Compared to land use 

and land cover classification and retrieval of land surface temperature from thermal infra-red 

data, indices simplify heat vulnerability mapping as they are easy to compute (Sharma, et al., 

2012; Chen, et al., 2006). According to Byomkesh et al. (2012), indices help to surmount the 

mixed pixel problem affecting accuracy of land cover identification using moderate resolution 

data in heterogeneous urban environments. Indices also match the criteria by Dewan and 

Yamaguchi (2009) that each vulnerability indicator should simplify a number of properties and 

be quantifiable using existing data. For instance, Chen et al (2006) used the Normalized 

Difference Vegetation Index (NDVI), Normalized Difference Bareness Index (NDBaI), 

Normalized Difference Water Index (NDWI) and Normalized Difference Built-up Index 

(NDBI) to map land use and land cover types with high accuracy. Besides land cover mapping, 

these indices are deemed capable of determining a variety of heat exposure factors as they are 

strongly correlated with land surface temperature (Chen, et al., 2006; Song & Wu, 2015; 

Kerchove et al., 2013; Essa et al., 2013; Xu, et al., 2013).  As such, Johnson et al. (2014) 
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included surface temperature, NDVI, NDBI and socio-demographic variables among others, to 

determine urban heat vulnerability. However, the use of remote sensing derived land cover 

indices as exposure factors in heat vulnerability assessments is still limited to a few studies and 

indices hence the need to explore the utility of other indices (Johnson, et al., 2014; Johnson, et 

al., 2012; Johnson, et al., 2009; Buscail, et al., 2012; Chow, et al., 2012; Harlan, et al., 2006; 

Uejio, et al., 2011).  

 

Although previous studies for instance combined NDBI, NDVI and Soil Adjusted Vegetation 

Index (SAVI) with socio-demographic urban thermal vulnerability mapping, the value of other 

indices in vulnerability assessment, such as the NDWI, remain unexplored.  In addition, while 

inclusion of a variety of indices in a single assessment should enhance land surface 

characterization, the studies have been commonly confined to at most two indices per heat 

vulnerability analysis (Johnson, et al., 2012; Johnson, et al., 2014). Commonly, only NDVI is 

combined with socio-demographic factors in urban thermal vulnerability analysis (Uejio, et al., 

2011; Buscail, et al., 2012; Chow, et al., 2012). However, whereas NDVI has been useful in 

mapping vegetation abundance and health, it saturates at high values of vegetation fraction. 

Therefore, this study proposes inclusion of NDWI which gives a measure of surface water 

content and is critical in heat vulnerability mapping. This index is best in quantifying water 

depth in plants which strongly relates to turgidity of cells and thus combines effectively with 

NDVI to quantify vegetation health (Jackson, et al., 2004). For example, combining NDVI and 

NDWI provides a more robust measure of vegetation abundance and health, which are key 

factors in heat exposure mapping, compared to use of NDVI alone (Chen, et al., 2006; Jackson, 

et al., 2004; Stathakis, et al., 2012). Furthermore, the index provides a measure of surface 

moisture (Cao et al., 2008; Xu, et al., 2013) required for evaporative cooling, hence is valuable 

for mitigation against extreme surface temperatures. We therefore hypothesize that combining 

NDWI with NDBI and NDVI should improve delineation of spatial variations in heat exposure 

in heterogeneous and complex urban environments. 

 

In previous heat vulnerability studies researchers have mainly adopted heat exposure factors 

derived from earlier Landsat missions; Landsat 5 and Landsat 7 (Johnson, et al., 2014; 

Aubrecht & Özceylan, 2013; Harlan et al., 2013). For example, Johnson et al. (2013) derived 

NDBI and NDVI from optical information of Landsat 7 Earth Thematic Mapper Plus (ETM+). 

Unlike earlier Landsat satellite missions, Landsat 8 satellite data has several strengths, which 
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include improved radiometric and spectral resolution, signal to noise ratio, refined bandwidth 

and two thermal infra-red bands (Karlson et al., 2015; Almutairi, 2015; Dube & Mutanga, 

2015a). Furthermore, land cover classes generated from Landsat 8 have been shown to be more 

accurate than the previous Landsat series and MODIS data (Mwaniki et al., 2015; Yu, et al., 

2013; Jia, et al., 2014; Ke, et al., 2015). Due to these improvements, studies have shown that 

Landsat 8 data enhances the retrieval of surface features such as biomass estimation, land cover 

mapping, discrimination of crops, and active fire and volcano detection (Dube & Mutanga, 

2015a; Jia, et al., 2014; Banskota et al., 2014; Oumar, 2015; Han & Nelson, 2015; Kharat & 

Musande, 2015; Blackett, 2014). Therefore, in this study, we hypothesize that the indices 

retrieved from Landsat 8 contain valuable information for characterization of landscapes useful 

for reliable urban heat vulnerability mapping.  

 

The objective of this study was therefore to (i) include NDWI among the physical factors used 

for determining heat exposure, (ii) to produce a heat vulnerability map with spatial resolution 

greater than the resolution of socio-demographic vulnerability factors and (iii) use remote 

sensing physical variables obtained from the improved Landsat 8 optical and thermal data to 

map heat vulnerability of the highly heterogeneous Harare Metropolitan City during the hot 

season.  

 

4.2 Methodology 

4.2.1 Pre-processing of remote sensing datasets 

A cloud free 170/72 path/row 30 m Landsat 8 image covering the entire study area acquired on 

30 October 2014 was downloaded from the USGS-EROS Centre archive 

(www.earthexplorer.usgs.gov). The image was geo-rectified using a 1:5000 topographic map 

and 20 ground control points collected using a GPS at the intersection of major roads in the 

city.  The Landsat image was corrected for atmospheric effects using the FLAASH module in 

ENVI. 

 

4.2.2 Processing of vulnerability factors 

Socio-demographic and bio-physical vulnerability factors were considered. The socio-

economic factors were obtained from the 2012 population census data at ward resolution 

(ZIMSTAT, 2012) as well as close consultation with the Zimbabwe National Statistics Agency 

(ZIMSTAT). The socio-demographic factors included population density, extreme age 

population (below 5 and above 65 years of age), unemployed economically active population 

http://www.earthexplorer.usgs.gov/
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and average household income. Each socio-demographic vulnerability factor was scaled 

between 0 and 1 with values increasing as vulnerability increased (Buscail, et al., 2012). The 

scaled socio-demographic factors were combined into a single social vulnerability layer using 

weighted sum by assigning equal importance to all the variables (Tomlinson, et al., 2011; 

Buscail, et al., 2012). The resultant composite social vulnerability layer was converted from a 

vector to raster layer (Ho et al., 2015), resampled to the same properties as the 30 m bio-

physical properties described below and scaled between 0 and 1 for further analysis (Tomlison 

et al., 2011).  

 

Surface bio-physical exposure factors included density of buildings/imperviousness, bareness 

extent, vegetation abundance, and health as well as surface water content. The bio-physical 

factors were derived from remotely sensed 30 m NDVI, NDBI and NDWI. NDVI was used as 

a proxy for vegetation abundance and health, NDBI as a proxy for built-

up/imperviousness/bareness extent and NDWI as a proxy for surface water content. The use of 

these indices was motivated by their high quantitative performance in discriminating surface 

properties, as well as ease of computation (Chen, et al., 2006; Gottshe & Olesen, 2001; Amiri, 

et al., 2009; Ma et al., 2010; Pu et al., 2006). These properties were selected due to their high 

correlation with land surface temperature which is well documented (Zhang, et al., 2009; Chen, 

et al., 2006; Pu, et al., 2006; Ma, et al., 2010; Song & Wu, 2015; Kerchove, et al., 2013; Essa, 

et al., 2013; Xu, et al., 2013). Studies have shown strong negative correlation between NDVI 

and NDWI with temperature (Steeneveld, et al., 2014; Chun & Guldmann, 2014). On the other 

hand, temperatures have been shown to increase with increasing density of buildings and 

imperviousness/bareness, thus high where NDBI is high (Srivanit et al., 2012; Yuan & Bauer, 

2007; Essa, et al., 2013; Song & Wu, 2015; Chun & Guldmann, 2014). For example, Chen et 

al. (2006) observed that temperatures are high in areas of high building density. Combining 

NDVI and elevation has been reported to predict temperature better than each of the indices 

separately (Chen, et al., 2006; Maeda, 2015; Sobrino, et al., 2012). Therefore, combining these 

surface properties has the potential for adequately mapping risk of extreme surface 

temperatures. The land surface properties and digital to radiance conversion were obtained 

using the equations in Table 4.1 (Abegunde & Adedeji, 2015; Chen, et al., 2006; Xu, et al., 

2013).  
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Reducing vegetation fraction increases exposure of an area to high temperature except over 

water, while surface dryness and low altitude increases exposure of an area to high temperature. 

An increase in the proportion of bare and built-up areas increases exposure of an area to high 

temperature (Chen et al., 2012). Temperature also decreases with surface wetness during the 

day (Steeneveld, et al., 2014; Chen, et al., 2006; Weng & Lu, 2008), therefore a low value of 

NDWI would increase vulnerability to high temperatures. Several studies have reported a 

decrease in temperature with increasing NDVI for values between -0.1 and 1, while 

temperature decreases as NDVI becomes more negative as it approaches -1 from -0.1 (Srivanit, 

et al., 2012; Cao, et al., 2008; Song & Wu, 2015). Water bodies have very low (negative) NDVI 

values and low daytime temperatures hence vulnerability was set to zero in these areas. 

Therefore, in this study, vulnerability to high temperatures was set to decrease as NDVI 

increased from -0.1 to 1, as well as when it decreased to become more negative, from -0.1 to -

1. Each bio-physical vulnerability factor was scaled between 0 and 1 with values increasing as 

vulnerability increased.  
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Table 4.1: Selected vegetation indices  

Function   Equation                                                                  References 

Normalized difference 

built-up index 

 

Normalized difference 

bareness index 

 

  𝑁𝐷𝐵𝐼 =
𝑑𝐵𝑎𝑛𝑑6−𝑑𝐵𝑎𝑛𝑑5

𝑑𝐵𝑎𝑛𝑑6+𝑑𝐵𝑎𝑛𝑑5 
                                   (Zha et al., 2003)      

 

  𝑁𝐷𝐵𝑎𝐼 =
𝑑𝐵𝑎𝑛𝑑6−𝑑𝐵𝑎𝑛𝑑10

𝑑𝐵𝑎𝑛𝑑6+𝑑𝐵𝑎𝑛𝑑10 
                                     (Zhao & Chen, 2005) 

Digital number (DN) to 

radiance conversion 

 

  𝜌𝐵𝑎𝑛𝑑𝑛 = 𝑀𝐿𝑑𝐵𝑎𝑛𝑑𝑛 + 𝐴𝐿                       (USGS, 2016) 

Normalized difference 

vegetation index 
   𝑁𝐷𝑉𝐼 =

𝜌𝐵𝑎𝑛𝑑5−𝜌𝐵𝑎𝑛𝑑4

𝜌𝐵𝑎𝑛𝑑5+𝜌𝐵𝑎𝑛𝑑4 
                                   (Tucker, 1979) 

Normalized difference 

water/wetness index 
   𝑁𝐷𝑊𝐼 =

𝜌𝐵𝑎𝑛𝑑5−𝜌𝐵𝑎𝑛𝑑6

𝜌𝐵𝑎𝑛𝑑5+𝜌𝐵𝑎𝑛𝑑6 
                                       (McFeeters, 1996) 

dBandn represents 16 bit digital numbers of the nth band of Landsat 8, ρBandn are the radiance values, ρBandn(max) is the maximum radiance, 

ρBandn(min) is the minimum radiance and dBandn(max) is the maximum digital number (65535) for the nth band of Landsat 8.  For each band ML 

and AL for the conversion of DN to radiance are obtained from the metadata.  

 

 



67 

 

4.2.3 Vulnerability mapping 

In vulnerability analysis, the variables are combined using overlay functions which include 

weighted sum and weighted average (Tomlinson, et al., 2011; Buscail, et al., 2012; Johnson, et 

al., 2014). However, the use of different weights based on relative importance of factors results 

in subjectivity of the vulnerability map produced, thus making the maps open to manipulation 

(Tomlinson et al., 2011). Therefore, the three scaled bio-physical vulnerability factors and the 

scaled composite social vulnerability layer were combined using weighted sum with all the 

factors assigned equal importance to produce the heat vulnerability. Tomlinson et al. (2011) 

and Buscail et al. (2012) also assigned equal importance to heat vulnerability to all considered 

factors. The weighted sum overlay function in ArcMap10.2 version was used to assign each of 

the four vulnerability factors a weight of 25%. The resultant heat vulnerability index layer was 

scaled between 0 and 1 and categorized using quantiles for presentation purpose. Similar to the 

categorization of heat vulnerability by Buscail et al. (2012), the lower 20% quantile was 

categorized as “Very low” vulnerability, the three intermediate quantiles as “Low”, “Moderate” 

and “High” while the upper 20% quantile was categorized as “Very high” vulnerability. 

 

4.2.4 Derivation of LST from thermal radiances 

The Landsat 8 data contains two thermal bands, which enabled computation of temperature 

using the split window algorithm (Yang, Lin, et al., 2014; Qin, et al., 2001; McMillin, 1975; 

Rozenstein, et al., 2014). The digital numbers of thermal data, Band 10 and Band 11 of Landsat 

8, were converted to thermal radiance as described in Table 4.1. Brightness temperature (T10 

and T11) were computed using Equation 4.1 with radiances derived from Bands 10 and 11 as 

input thermal layer. 

𝑻𝑵 =
𝑲𝟐

𝑰𝒏(
𝑲𝟏
𝑳𝑵

+𝟏)
                  Equation 4.1 

Where TN is the brightness temperature computed using thermal band N (10 or 11). Thermal 

conversion coefficients, K2 and K1, are constants obtained in the metadata file which 

accompanies the Landsat 8 images. Brightness temperature layers obtained were used in the 

split window algorithm land surface temperature derivation parameters in a procedure 

described in Qin et al. (2001) and Rozenstein et al. (2014). The general split-window algorithm 

for generating surface temperature (Ts) using two thermal bands takes the form: 

𝑻𝑺 = 𝑨𝑶 + 𝑨𝟏𝟎𝑻𝟏𝟎 + 𝑨𝟐𝑻𝟏𝟏              Equation 4.2 

Parameters A0, A1 and A2 are obtained using algorithms that combine atmospheric 

transmissivity with other parameters also provided and described by Rozenstein et al. (2014). 
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Atmospheric transmissivity was derived from water vapour using an algorithm obtained from 

Qin et al (2001) and water vapour data at the time of image acquisition obtained from Aerosol 

Robotic Network (AERONET). The AERONET sun photometer data were previously 

recommended as a good source of water vapour data especially for daytime observations on 

cloud-free days (Yang, Lin, et al., 2014; Rozenstein, et al., 2014). Besides atmospheric 

transmittance, the algorithm for retrieving land surface temperature from two thermal bands of 

Landsat 8 developed by Rozenstein et al. (2014) also require land surface emissivity for each 

thermal band.  Therefore, we retrieved pixel based spectral land surface emissivity for each 

thermal band using spectral radiance and blackbody radiance as developed by Yang et al. 

(2004). Blackbody radiance was retrieved using Equation 4.3 

𝝆𝑩𝒂𝒏𝒅𝒏(𝑩𝑩) =  𝝆𝑩𝒂𝒏𝒅𝒏(𝒎𝒊𝒏) +
 [𝝆𝑩𝒂𝒏𝒅𝒏(𝒎𝒂𝒙)− 𝝆𝑩𝒂𝒏𝒅𝒏(𝐦𝐢𝐧)][𝒅𝑩𝒂𝒏𝒅𝒏(𝒎𝒆𝒂𝒏)−𝒅𝑩𝒂𝒏𝒅𝒏(𝐦𝐢𝐧)]

𝟔𝟓𝟓𝟑𝟓

                 Equation 4.3 

Yang, et al. (2004) obtained better blackbody emissivity values using dBandn(mean) than using 

65535 hence the choice for use in this study. Land surface emissivity for each thermal band 

was computed using Equation 4.4 

𝑳𝑺𝑬 =
𝒅𝑩𝒂𝒏𝒅𝒏

𝒅𝑩𝒂𝒏𝒅𝒏(𝑩𝑩)
               Equation 4.4 

Where dBandn(mean) is the average of the maximum digital number for scene and 65535 while 

the other variables are defined in Table 1.  Land surface emissivity maps were used in Equation 

together with other parameters described above to retrieve land surface temperature. Land 

surface temperature was calculated using the brightness temperature layers using Equation 2. 

Furthermore, we performed a spatial correlation between the mapped heat vulnerability and 

observed distribution of land surface temperatures.  

 

4.3 Results 

4.3.1 Variability of selected image based indices during the hot season in Harare 

Figure 4.2 shows how vegetation abundance (NDVI), built up density (NDBI) and surface 

wetness (NDWI) and socio-economic factors varied spatially in their contribution to heat 

vulnerability during the hot season in the study area. The central and western parts of Harare 

were marked by the convergence of high social vulnerability and high bio-physical 

vulnerability. In this region, the density of buildings was high (Figure 4.1a) while surface 

wetness (Figure 4.1b) and vegetation fraction were low (Figure 4.1c), as indicated by values 

close to 1 for all the vulnerability factors. However, all the vulnerability factors largely 

indicated values close to zero in the northern half of the country. Overall, the combination of 
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high vegetation abundance (NDVI > 0.6), low density of buildings (NDBI close to 0), high 

surface wetness (NDWI > 0.6) and low socio-demographic vulnerability observed in the 

northern half reduced heat vulnerability to the north. 

 

 
Figure 4.1: Distribution of heat vulnerability as a function of (a) built-up/bareness extent, (b) 

surface water content, (c) vegetation abundance and health and (d) socio-economic pressure in 

Harare. (a) to (d) are vulnerability factors scaled between 0 and 1 

 

4.3.2 The vulnerability of the city of Harare to extreme surface temperature 

Figure 4.2 shows the heat vulnerability of the city during the hot season as predicted by the 

factors derived from bio-physical indices obtained from Landsat 8 and socio-demographic 

variables. Heat vulnerability was found to be very high (index values ranged from 0.49 to 1) in 

the city core and south western areas. Heat vulnerability was also in the moderate to high (index 

value range from 0.41 to 0.49) category over most of the southern areas making the southern 

half of the city more vulnerable than the northern areas. The land use and land cover (LULC) 

map (Figure 4.2b) was obtained from another study at an overall accuracy of 87.59% and kappa 

statistic of 0.82  (Mushore et al., 2016). The LULC map shows that the southern half of the city 

is mostly occupied by high density residential areas and industrial sites. The north-eastern half 

of the city had heat vulnerability index values below 0.41, which implied very low to low 

vulnerability categories. The northeastern half of the city is mostly covered by low-medium 

density residential areas. Furthermore, medium density residential areas were found to have 

higher heat vulnerability values than low density residential areas. Heat vulnerability was in 

the low to moderate range (0.34 – 0.45) over medium density residential areas while it was 

largely in the very low to low range (below 0.41) over low density residential areas. Low heat 

vulnerability values were also noted in wetlands and their surroundings as well as in urban 

parks.  
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Figure 4.2: Distribution of (a) Heat vulnerability and (b) land use and land cover (LULC) types 

in Harare.  

Table 4.2 shows that due to urbanization and socio-demographic pressures, heat vulnerability 

was high to very high over more than 40% of the metropolitan city of Harare during the hot 

season. 

 
Table 4.2: Coverage of mapped vulnerability to high surface temperatures and its link to observed 

surface temperatures. 

Vulnerability Observed mean 

temperature (oC) 

Area covered (km2) Proportion covered 

(%) 

Very Low 28.1 165.7 19.4 

Low 32.4 168.4 19.7 

Moderate 35.3 162.2 18.9 

High 38.6 183.5 21.5 

Very high 40.2 174.9 20.5 

 

4.3.3 Spatial correlation between estimated vulnerability and remotely sensed 

temperature 

Figure 4.3 shows that areas where heat vulnerability was high are also at high risk, as high 

surface temperatures were also recorded in these areas. The spatial correlation between heat 

vulnerability and temperatures during the hot season was high (α=0.61). High temperatures 

(greater than 35oC) were observed in the southern and western parts where heat vulnerability 

was moderate to very high. Temperatures were observed to be low in the north eastern half of 

the city with values mostly ranging from 17-25oC observed, heat vulnerability was also mapped 

to be low. Low temperatures and vulnerability were also observed in the extreme south eastern 

areas where large water bodies are located. 
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Figure 4.3: Mapped vulnerability of Harare to high surface temperatures (a) and its link to 

Surface temperature observed on 30 October 2015 (b).  

There was a convincing agreement between the distribution of vulnerability and temperature. 

The average temperature was low (32.2oC) where vulnerability was very low compared to very 

high average temperature (42.2oC) where vulnerability was very high (Table 4.2).  

 

4.4 Discussion 

Urbanization causes surface temperatures to increase due to replacement of surfaces that favor 

evaporation with those that absorb energy during the day. Such surfaces trap energy and release 

large amounts of heat during both day and night. Surface physical properties such as density 

of buildings and vegetation fraction are highly correlated with land surface temperatures such 

that increases in land surface temperatures also increase environmental temperatures. This 

affects human comfort, especially those under socio-economic stress, such as low income 

strata, when it results in excessive temperatures that may cause heat related diseases and 

increase energy and water demands. The study hypothesized that land surface properties 

derived quantitatively using vegetation indices; vegetation abundance (NDVI), surface wetness 

(NDWI), built-up extent and bareness (NDBI) derived from recently launched Landsat 8 data, 

together with socio-demographic factors, combine to reduce or increase vulnerability of an area 

to high surface temperatures. In order to inform response and mitigation strategies, there is a 

need to assess vulnerability of an urban area to high surface temperatures. Therefore, compared 

to previous studies such as by Johnson, et al. (2012) which produced heat vulnerability maps 

at census blocks level, this study mapped vulnerability at 30 m resolution that characterize 

Landsat 8 imagery. This provided detailed heat vulnerability distribution information which, 
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according to Wilhelmi and Hayden (2010) and Dewan and Corner (2012) ensures effective 

implementation of localized adaptation and mitigation strategies. Congruently, Johnson, et al. 

(2009) pointed out that supplementing socio-demographic data with remotely sensed bio-

physical data improves delineation of intra-urban variations in risk from extreme heat events 

although they mapped vulnerability at census block level. 

 

Heat vulnerability to high surface temperatures was found to be high in the southern areas 

characterized by a combination of low vegetation fraction, dry surfaces and highly built-up 

areas occupied by low income residents. Observations along a southwest to northeast direction 

showed that heat vulnerability was high where high NDBI, low NDVI, low NDWI and high 

social vulnerability co-existed. This aligns with previous studies which showed that surface 

temperatures increase with increasing density of buildings, and decrease with increasing 

surface wetness and vegetation cover (Yuan & Bauer, 2007; Maeda, 2015; Spronken-Smith & 

Oke, 1998). In Greater Dhaka, Bangladesh, Dewan and Yamaguchi (2009) also noted that 

clearing of vegetation resulted in a wide range of environmental impacts including reduction 

in habitat quality. This study observed that the biophysical properties combine additively to 

give a measure of vulnerability to high surface temperatures. As such, Maeda (2015) observed 

that the correlation between surface temperature with a combination of NDVI and elevation 

was higher than with each of the factors alone. Southern areas of Harare, where heat 

vulnerability is very high, are mainly occupied by high density residential areas with a low 

income demographic, thus compromised capacity to cope with heat related pressures during 

the hot season (Mushore et al., 2016, Kamusoko et al., 2013). According to Brenkert and 

Malone (2005), the Indian state of Orissa recorded very high vulnerability level due to 

significant poverty, low level of industrialization and low human development. This is 

consistent with previous studies which showed that low household income increases heat 

vulnerability by reducing capacity to adapt (Harlan, et al., 2013; Aubrecht & Özceylan, 2013; 

Uejio, et al., 2011; Coates et al., 2014).  Harlan et al (2013) observed that deaths from heat 

exposure in Maricopa County, Arizona were high among people who lack access to cool 

environments and air conditioning facilities. Coates, et al. (2014) observed that, in Australia, 

most vulnerable groups live in houses that are poorly adapted to extreme heat. 

 

Differences in levels of heat vulnerability were observed between high density residential areas 

in the southwest and those in the south. Besides low household income, southwestern suburbs 
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have larger populations aged below 15 and above 65 years. This is in tandem which earlier 

studies that recorded a huge impact of heat stress on the elderly and very young ages (Klein 

Rosenthal et al., 2014; Scherer et al., 2013). For example, Rosenthal et al. (2014) observed that 

heat related mortality was high in places where the ratio of people aged above 65 years to the 

total population was high. The buildings are also more densely packed and older in the 

southwestern suburbs than elsewhere, hence the very high vulnerability. The old buildings may 

not be designed to enable effective heat removal by natural ventilation in view of changes in 

climate since their period of construction and low household income levels. The wide disparity 

in quality of residential areas between the northern and the southern areas can be linked to the 

colonial past (Potts, 2011). According to Potts (2011), the southern suburbs have small plots 

that were meant to host an influx of poor people moving to the city as a labour force. In 

agreement with Dewan and Corner (2012), packed buildings in the high density residential 

areas absorb large amounts of heat as indicated by large surface temperatures thus requiring 

indoor air-conditioning. In Australia, the most vulnerable groups were also found to live in low 

quality housing units (Coates, et al., 2014). In London, thermo-insulation of homes and high 

population density were also observed to increase vulnerability (Wolf & McGregor, 2013). In 

agreement of our finding, lack of wealth was also found to reduce the capacity of a society to 

access markets, technology and other resources that can be used to adapt to climate change 

(Brenkert & Malone, 2005). In urban Georgia, low income was also found to combine with 

physical exposure to increase heat vulnerability in low quality residents (Maier et al., 2014). 

 

In this study, low vegetation cover (NDVI<0.5) and low surface wetness (NDWI<0.5) in the 

southern suburbs can be linked to resource constraints that prohibit high density residential 

dwellers from watering and maintaining urban greenery as well as from affording spacious 

settlements with abundant greenery. Surface wetness and greenery favor evapo-transpiration 

rather than absorption of heat. Such cooling effect is thus retarded in the southern areas. This 

agrees with Spronken-Smith and Oke (1998) who observed that during the day, there is a 

negative correlation between NDWI and surface temperature. Water has high heat capacity 

such that a lot of energy is required to raise its temperature compared to other surfaces during 

the day. Open water and high surface wetness favor latent heat transfer thereby lowering 

surface radiant heat, while surface wetness provides moisture for latent heat transfer thereby 

reducing amount absorbed by surfaces, thus lowering surface temperatures (Weng & Lu, 2008). 

Fanham et al. (2015) observed that daytime temperatures of a city can be reduced using a mist 
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fan, which blows moisture on to surfaces, thereby increasing their wetness. Therefore, low 

level of cooling by latent heat transfer together with limited resources for air conditioning 

increased heat vulnerability in high density residential areas. Although it was moderate to very 

high in all high density residential areas, vulnerability was not uniform. Similar to our findings, 

previous studies also observed that buildings were older while population density, socio-

economic pressure and density of buildings were higher in high density areas to the southwest 

than to the south in Harare (Mlambo, 2008; Zinyama et al., 1993; Wania, et al., 2014). This 

combination of old buildings and inadequate resources to cope with extreme heat was also 

labeled as increasing vulnerability in another study (Tomlinson, et al., 2011).  

 

There was a strong spatial correlation between the spatial distribution of vulnerability to 

extreme temperature and observed surface temperatures (α=0.61). High surface temperatures 

(40 – 45oC) were observed where vulnerability was in the high to very high categories in 

southern residential areas. The agreement between observed surface temperature and extent of 

vulnerability indicate the success of vegetation indices derived from Landsat 8 to accurately 

measure surface bio-physical properties which in turn strongly correlate with temperature. 

Generally, land surface temperature was high where vulnerability was high and vice versa. It 

has been observed that combining two or more surface properties improves the prediction of 

surface temperatures by increasing correlation (Maeda, 2015). Maeda (2015) observed that 

during daytime, the correlation between temperature and elevation alone was 0.68 (R2) but 

increased to 0.94 when NDVI was included. Therefore, in this study, combining NDVI, NDWI, 

and NDBI improved vulnerability mapping as evidenced by strong agreement between the 

mapped vulnerability and observed surface temperatures. The daytime land surface 

temperature distribution can thus be used to indicate areas where heat vulnerability is high. 

Harlan et al (2013) also demonstrated that surface temperature might also be used to indicate 

heat vulnerability in Maricopa County, Arizona (Xu, et al., 2013). In the western areas of 

Arizona, high heat vulnerability and high surface temperature were also found to coincide due 

to physical exposure (Chow, et al., 2012). However, this alone is not sufficient as vulnerability 

was moderate in some of the southern areas of Harare where temperature was high. 

 

Vulnerability was found to be in the high to very high category in 42% of the total areas of the 

Metropolitan City of Harare. The large proportion of areas with high vulnerability to extreme 

surface temperature is due to the extent of built up areas, especially high density dwellings for 
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low income groups, that has increased over the years (Kamusoko et al., 2013). This agrees with 

previous studies that have shown that as a result of urbanization, most of the areas in a city 

experience high surface temperatures especially when compared with surrounding rural areas 

where the density of buildings is low (Qiao, et al., 2013). Zhang et al. (2008) also asserted that 

urbanized surfaces modify the energy and water balance and influence dynamics of air 

movement, making urbanized areas warmer than the surroundings. It was also observed that 

population growth and residential developments result in increased temperatures of emerging 

cities (Zhang, Qi, et al., 2013). Increased density and spatial extent of buildings due to city 

growth results in elevated  temperatures, increased thermal risk and energy consumption 

through air conditioning (Polydoros & Cartalis, 2014). However, in agreement with Souza, et 

al. (2009) this makes the low income strata highly vulnerable by raising energy requirements 

and related costs beyond their reach. Furthermore, Batih and Sorapipatana (2016) observed that 

the ratio of heat intensity to household income is a strong indicator of vulnerability. 

 

In this study, vulnerability to high surface temperatures in the hot season was observed to be 

decreasing northwards due to increasing vegetation abundance and reduction in socio-

demographic pressures. Except for water bodies which have both low vegetation fraction and 

low vulnerability, very low to moderate vulnerability were observed north of the CBD where 

vegetation fraction was greater than 40% and NDVI was between 0.5 and 1. This agrees with 

Chen et al. (2006) that there is an inverse relation between surface temperature and vegetation 

abundance represented by high NDVI values. Even in areas where there are buildings, 

vegetation cover lowers temperature due to latent heat transfer by increasing the surface-air 

vapour gradient (Chun & Guldmann, 2014). High NDBI values in the CBD implied that the 

density of buildings was high thus reducing extent of cooling by evaporation as there were few 

spaces available for vegetation cover and water bodies (Chen, et al., 2006; Yuan & Bauer, 

2007). Vegetation lowers surface radiant temperatures as most of the energy received from the 

sun is used to evaporate water from vegetation surfaces instead of heating the ground and the 

surrounding (Amiri, et al., 2009; Gottshe & Olesen, 2001; Zhang, et al., 2009). A study by 

Amiri et al. (2009) showed that human surface alterations can create cool green edges by 

irrigated plantations due to high thermal capacity and increased latent heat transfer. Zhang et 

al. (2009) also revealed that urban greenery plays a role in mitigating the heat island effect. 

Therefore, a combination of generally high income which increases capacity to adapt and 

vegetation abundance which enhances coping with extreme temperatures reduces heat 
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vulnerability in the northern areas. Abundance of green space was found to reduce heat 

vulnerability by reducing ambient temperature and providing shelter in Michigan, USA 

(Gronlund et al., 2015). Vegetation within the urban fabric, such as trees, lowers temperatures 

and visiting green areas is a good coping strategy during periods of heat stress (Depietri, et al., 

2013). 

 

Low to medium density residential areas which occupy the north and eastern parts of the city 

had moderate vulnerability to extreme surface heating. In these areas, buildings are spaced out, 

allowing for urban greenery as indicated by vegetation fraction between 40% and 60%, thus 

higher surface wetness. A study in the same area also revealed that the northern parts of the 

city are largely occupied by high income strata (Wania, et al., 2014). Therefore, residents of 

low to medium density residential areas in Harare largely afford to sufficiently maintain urban 

greenery such as lawns and orchards as indicated by high NDWI and high NDVI compared to 

the southern suburbs. Increased surface wetness increases heat capacity, increasing latent heat 

transfer and suppresses temperature of a surface (Cao, et al., 2008; Steeneveld, et al., 2014). 

Therefore, surface wetness and greenery reduces vulnerability which supports observations 

that NDWI and NDVI have an inverse relationship with surface temperature (Chen, et al., 

2006). Similarly, Chow, et al. (2012); (Batih & Sorapipatana, 2016) observed that eastern areas 

of Phoenix had low heat vulnerability due to high income of residents and increased surface 

greenness due to landscape modification. The significant value of urban greenery in mitigating 

against extreme surface temperatures was also observed in a recent study (Odindi, et al., 2015). 

Odindi et al., (2015) observed that in all seasons, dense vegetation lowers surface temperatures 

and there was a strong correlation between NDVI and land surface temperature (R2=0.7653). 

 

Surface properties were observed to expose the central business district and industrial areas of 

the city to high risk of extreme temperatures. In these areas, there was a combination of low 

NDVI, low NDWI and high NDBI. The NDVI and NDWI ranged between 0.1 and 0.4 while 

NDBI was generally above 0.5. Thus high vulnerability to extreme temperatures results from 

high NDBI values, low NDVI and low NDWI, which agrees with several previous works which 

showed that daytime temperatures are bound to be high where NDBI is high, vegetation 

fraction is low and the surface is dry (Chen, et al., 2006; Farnham et al., 2015; Spronken-Smith 

& Oke, 1998; Chun-ye & Wei-ping, 2011; Steeneveld, et al., 2014). Among densely built areas, 

high vulnerability was also observed in the CBD and industrial areas. This is due to high 
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imperviousness (low NDVI, low NDWI and high NDBI) as well as effects of high rise 

buildings which characterize the CBD. These buildings increase temperatures by reducing sky 

view factor, reducing heat removal by wind and by storing large amounts of energy absorbed 

by the walls of the buildings (Chun & Guldmann, 2014). This agrees with Aubrecht and 

Ozceylan (2013) who obtained higher levels of heat vulnerability in urbanized areas than in 

non-urbanized surroundings in the USA. Consistent with our findings, concentration of high 

rise buildings was also identified as a heterogeneous indicator of potential heat exposure 

(Rinner et al., 2010). The vulnerability in industrial areas is consistent with Harlan et al (2013) 

who stressed that people who are physically active in hot environments are highly likely to 

suffer from heat distress, especially in non- air-conditioned settings.  

 

4.5 Conclusion 

This study assessed the potential vulnerability of Harare residents to extreme heat based on a 

heat vulnerability index which used normalized indices of physical exposure to heat (NDVI, 

NDBI and NDWI) and socio-demographic factors. Together with NDBI and NDVI which were 

employed for vulnerability mapping by previous studies, we further included the NDWI for 

surface water content and exhaustive vegetation health quantification. The indices were 

retrieved using data from the recently launched Landsat 8 mission taking advantage of 

improvements such as in radiometric and spectral resolution compared to earlier Landsat 

missions. We demonstrated that vulnerability varied significantly over space in a manner which 

cannot be adequately displayed at census block spatial scale. Therefore, a heat vulnerability 

map produced at the 30m resolution of derived indices improved spatial detail and is thus 

important for area specific interventions within the city of Harare. Based on findings of this 

study, we concluded that heat vulnerability was high in the densely built-up and highly 

impervious areas of Harare which included the CBD and high density residential areas. The 

major contributions to heat vulnerability in the CBD and industrial areas were physical 

exposure (high heat absorption and impeded heat removal by wind due to compact buildings) 

and population density. High heat vulnerability in the high density residential areas mostly in 

the southern areas of the city was due to physical exposure (such as low vegetation cover 

fraction) and compromised capacity to adapt to and mitigate against extreme heat due to 

poverty. In addition, very high heat vulnerability in the southern areas was due to low income 

as residents largely occupy low quality housing and cannot afford air conditioning and related 

costs. Population of the vulnerable groups below 15 and above 65 years of age was also higher 

in the high density residential areas which also contributed to the high heat vulnerability. On 
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the contrary, the northern areas had low heat vulnerability due to low physical exposure 

evidenced by high NDVI and NDWI, low population density and high income. In these areas 

we concluded that abundance of healthy vegetation has high heat mitigation value. Overall, the 

heat vulnerability map produced provides a strong basis to guide policy formulation and 

interventions especially in order enhance the capacity of the urban poor to combat heat 

extremes. 

 

4.6 Link between Chapter 4 with other chapters 

Chapter mapped the spatial distribution of heat vulnerability of Harare using remote sensing 

and socio-demographic data. The study went on to link the heat vulnerability with the spatial 

distribution of LULC mapped in Chapter 3. LULC in this study was mapped using multi-

spectral reflective data since Chapter 3 showed that classification based on these also results in 

high accuracy of urban mapping. Indices (NDVI, NDWI, NDBaI and NDBI) and thermal 

infrared data were not used for LULC mapping because they were used among the inputs to 

the heat vulnerability map which was to be related to LULC in Harare. The study also showed 

the association between heat vulnerability and land surface temperature intensities of the hot 

season. However, the study only mapped land surface temperature for the hot season making 

way for Chapter 5 to analyze seasonal patterns of heat intensity in the lower atmosphere.
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CHAPTER 5: IMPLICATIONS OF LAND USE AND LAND COVER 

DISTRIBUTION ON SPATIO-SEASONAL VARIATIONS IN URBAN OUTDOOR 

THERMAL DISCOMFORT 
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5.0 Abstract 

This study investigated the impact of seasonal land cover changes on human thermal outdoor 

comfort in Harare, Zimbabwe. A method was developed for estimating seasonal outdoor 

thermal discomfort using moderate resolution thermal data from Landsat 8. Multi-temporal 

thermal infrared and in situ air temperature data were used to develop simple linear regression 

model for retrieving air temperature from land surface temperature (r2=0.6897). Season 

specific simple linear regression models for deriving relative humidity from land surface 

temperature were also developed (r2 greater than 0.78). The developed models were tested for 

computation of Discomfort Index (DI) as a function of land surface temperature (LST) only. 

When tested against in situ observations, the LST based approach retrieved DI with high 

accuracy for each sub-season (mean percentage error less than 20%).  The models were further 

used to map seasonal variations in outdoor thermal conditions. The findings showed that 

vegetation fraction was higher (0.60) in the most comfortable post rainy season than in the 

most thermally uncomfortable season (0.43), hot season. Outdoor thermal discomfort was high 

in hot season (mean DI of 31oC) while the post rainy season was the most thermally 

comfortable (mean DI of 19.9oC).  During the hot season, thermal discomfort was higher in 

densely built-up areas (DI greater than 27oC) than in the northern areas where low density 

residential areas, forests and most well maintained parks are located (DI less than 27oC).  It 

was concluded that Landsat 8 data detects seasonal land use/cover and thermal discomfort 

changes with high accuracy. It was also concluded that that reduction in vegetation fraction 

and surface wetness coupled with increase in density of buildings/impervious areas reduces 

outdoor thermal comfort especially during the hot periods. Overall, outdoor thermal discomfort 

can be mapped parsimoniously with high accuracy using Landsat thermal infrared data. 

 

 

 

Keywords: Surface temperature, vegetation fraction, discomfort index, heat island, Landsat 

8, land cover classification, remote sensing 
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5.1 Introduction 

Understanding thermal comfort patterns is important for solving related health, global warming 

and wasted energy problems (Goshayeshi, et al., 2013b). Thermal discomfort is when 80 to 

90% express dissatisfaction with prevailing temperature at a given instant and location 

(Yilmaz, 2007). Heterogeneity in urban surface properties exposes citizens to spatially variable 

levels of thermal comfort as it is mainly affected by surface conditions (Zhang, et al., 2009). 

Thermal discomfort causes fatigue, malaise, reduced ability to perform intellectual activities, 

health problems and even death (Buscail, et al., 2012; de-Azevedo et al., 2015; Roelofsen, 

2015; Haruna et al., 2014). Studies have revealed that thermal discomfort affects physical and 

psychological performance. For example attention and performance in the classroom are 

compromised by thermal discomfort (Mazon, 2013). Furthermore, the usage of a location for 

activities is affected by thermal discomfort while urban citizens enjoy leisure in thermally 

comfortable outdoor locations such as parks and lakes (Setaih et al., 2014; Goshayeshi, et al., 

2013b). Outdoor thermal discomfort also affects thermal conditions indoors; in developed 

countries people spend 10% of time outdoor during hot season and less than 5% in winter 

(Setaih, et al., 2014). Therefore, there is need for mapping the seasonal and spatial distribution 

of thermal comfort in order to assist citizen in making informed decisions in selecting places 

with thermal comforts within their preferred ranges for various activities across seasons. 

Indices such at the Physiological Equivalent Temperature (PET) and Discomfort Index (DI) 

have been preferred by recent studies due to simplicity and parsimony compared to empirical 

methods such as Predicted Mean Vote  (PMV) which involve significant parameterization 

(Mohan, et al., 2014; Roelofsen, 2015; Shastry, et al., 2016). PET requires temperature, 

humidity and wind speed only and DI requires air temperature and humidity, compared to more 

variables including human metabolism and insulation provided by clothing required in the 

computation of PMV (Goshayeshi, et al., 2013b). Also while other studies utilize point 

meteorological data to measure outdoor thermal discomfort (Yousif & Tahir, 2013; Cheng, et 

al., 2010; Abdel-Ghany, et al., 2014; Tulandi, et al., 2012), remote sensing enables synoptic 

measurement of intensity and spatial distribution of thermal discomfort for the whole city 

(Sobrino, et al., 2004). While low resolution National Oceanic and Atmospheric 

Administration’s Advanced Very High Resolution Radiometer (NOAA AVHRR) and Multi-

functional transport Satellite (MTSAT) data have been used in thermal discomfort studies 

(Polydoros & Cartalis, 2014; Okamura, et al., 2014), the spatial resolution is not adequate in 

monitoring urban climates as vast changes are observed within short distances. Although 
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resolution greater than 50m was recommended for urban thermal analysis (Sobrino, et al., 

2004), data in this range is not readily available. There is thus need to utilize freely available 

medium resolution datasets such as from Landsat to understand thermal comfort patterns 

especially in urban areas in developing countries. 

Landsat series offers freely available data for urban studies such as 30m resolution for VIS/IR 

bands and 100m thermal data from recently launched Landsat 8. Previously, Landsat TM and 

ETM have been used in thermal discomfort analysis (Wei-wu et al., 2004). However, the 

improved Landsat 8 have not yet been used in outdoor thermal comfort studies despite high 

sensitivity, improved signal to noise ratio and improved spectral range (Jia, et al., 2014; Dube 

& Mutanga, 2015a). Landsat 8 data was found to improve land cover mapping, heat island 

analysis, monitoring of active volcanoes and identification of hydro-chemical rock alterations 

(Dube & Mutanga, 2015a; Jia, et al., 2014; Banskota, et al., 2014; Oumar, 2015; Kharat & 

Musande, 2015; Blackett, 2014; Han & Nelson, 2015). This study thus hypothesizes that 

Landsat 8’s multi-spectral and multi-temporal data should effectively and parsimoniously 

detect and map seasonal variations in thermal discomfort in a complex urban environment. 

Outdoor thermal discomfort should vary with seasons as well as between locations due to 

spatial and temporal variations of land cover in urban areas.  Land surface temperature retrieved 

using remote sensing is highly correlated with air temperature, enabling estimation of air 

temperature from space-borne remote sensing observations of surface temperature 

(Widyasamratri et al., 2013; Cheng & Ng, 2006; Polydoros & Cartalis, 2014). This relationship 

could be useful in retrieving seasonal urban outdoor thermal discomfort using medium 

resolution Landsat data for the first time. Previous studies by Okamura, et al. (2014) and 

(Polydoros & Cartalis, 2014) used coarse spatial resolution which is not sufficient, given the 

heterogeneity of urban landscapes. Medium resolution data have been successfully used to link 

land surface temperature with land use and land cover despite their complex configuration in 

urban areas (Amiri, et al., 2009; Connors, et al., 2012; Chen, et al., 2006).  However, adoption 

of medium resolution data such as Landsat data for outdoor thermal discomfort analysis has 

remained limited only to a study by Wei-wu, et al. (2004). Given the success of medium 

resolution dataset in mapping urban thermal variations, there is need to further test their 

potential in mapping spatial and seasonal patterns in outdoor thermal discomfort.  

As aforementioned, a detailed understanding of spatial and seasonal thermal discomfort 

patterns is important for identifying spatial variations in thermal risk levels within an urban 
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area. Wei-wu, et al. (2004) measured outdoor thermal discomfort using air temperature derived 

from land surface temperature and relative humidity derived from Normalized Difference 

Vegetation Index (NDVI). Their procedure was tedious as it required land surface temperature 

and NDVI obtained using Landsat 5 multi-spectral data. In this study, it is hypothesized that 

data requirements for retrieval of DI can be reduced by developing models for obtaining both 

relative humidity and air temperature from land surface temperature.  Fortunately, there is also 

a strong inverse correlation between air temperature and relative humidity (de-Azevedo, et al., 

2015) and this may also be useful in reducing data requirements for discomfort analysis using 

the Discomfort Index (DI). Therefore, there is need to retrieved relative humidity as a function 

of land surface temperature derived from medium resolution such as the recently launched and 

improved Landsat 8 multi-spectral data. As a result, outdoor thermal discomfort can be 

modelled as a function of air temperature and relative humidity both derived from surface 

temperatures retrieved from thermal bands of Landsat 8. This will reduce data requirement by 

making land surface temperature the only input in DI computation, important in data scarce 

cities such as Harare, Zimbabwe. This has potential to effectively map spatial variations of DI 

and promote thermal discomfort assessments in urban areas of developing countries where 

scarcity of in-situ observations may hinder such analysis. This is important for deriving area 

and season specific heat mitigation policies and strategies especially in cities of developing 

countries such as Harare city where the poorest are usually the most vulnerable (Mushore, 

Mutanga, et al., 2017a). Therefore, this study will develop analysis techniques which aid urban 

areas plan and develop sustainably. 

The objective of this study was thus to use air temperature retrieved from Landsat 8’s thermal 

data for mapping seasonal variations in thermal discomfort in Harare, Zimbabwe as well as to 

investigate how the relationship between relative humidity and air temperature can be useful 

in reducing data requirements for thermal discomfort mapping using DI.  The link between 

outdoor thermal discomfort and land cover types across four sub-seasons in Harare, Zimbabwe 

was also investigated. The aim was mainly to understand extent to which distribution of 

buildings and vegetation influences thermal discomfort across sub-seasons in Harare. This was 

important for the identification of potentially uncomfortable places for temperature related 

disaster management purposes as no similar study has been previously done. This was also 

necessary for identification of comfortable places in different sub-seasons to inform 

temperature sensitive outdoor activities as well as city planning and management. The 

hypothesis was that seasonal changes in land cover patterns could trigger significant 
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differences in intensity and spatial distribution of outdoor thermal discomfort between seasons 

in Harare. The study was mainly driven by the paucity in literature on use of medium resolution 

satellite data such as from Landsat series for outdoor thermal discomfort analysis and the need 

for such assessment in Zimbabwe in view of the observed and expected climatic changes. The 

study also aimed at expressing the potential of freely available Landsat datasets for use in 

thermal discomfort analysis in cities of resource constrained developing countries in view of 

the common in-situ observation network inadequacy. 

 

5.2 Methodology 

5.2.1 Description of the study area 

The study was done in Harare, the Capital City of Zimbabwe found in Southern Africa (Figure 

5.1). The city experience two major seasons (summer from mid-September to mid-March and 

winter from mid-March to mid-September). The seasons are further subdivided into 4 sub-

seasons which are the rainy (mid-November to mid-March), post rainy (mid-March to mid-

May), cool (mid-May to mid-September) and hot sub-seasons (mid-September to mid-

November) (Unganai, 1996; Manatsa, 2012; Torrance, 1981; Mushore, 2013a). Generally 

summers are warmer and wetter than winters, thus vegetation abundance should also be 

seasonal.  

 
Figure 5.1: Location of the study area. 
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5.2.2 Meteorological data collection and processing 

Meteorological field data were obtained from Kutsaga Research Station located near Harare 

International Airport in the southeast of the city (Figure 5.1). These were relative humidity and 

dry bulb temperature collected at hourly resolution using an automatic weather station for the 

period from 1 January 2013 to 31 December 2015. The data period was selected in order to 

capture the variations between and within sub-seasons while at the same enabling obtaining of 

data coinciding with cloud free Landsat images. In the computation of thermal discomfort using 

Discomfort Index (DI) relative humidity data are required (Yilmaz, 2007; de-Azevedo, et al., 

2015; Abdel-Ghany, et al., 2014; Polydoros & Cartalis, 2014; Tulandi, et al., 2012). Humidity 

varies in space within a city such that Meteorological field measurements from a single site are 

not sufficient. There was need to upscale relative humidity measurements from point 

observation in order to obtain representative and accurate spatially variable relative humidity 

measurements. Regression analysis was, therefore, used to model the relationship between air 

temperature and relative humidity for each sub-season. The regression models were validated 

by comparing observed with modelled relative humidity for each of the four sub-seasons. 

 

5.2.3 Remote sensing data collection and pre-processing 

The properties and functions of the 11 bands of Landsat 8 have been extensively described in 

several recent studies (Dube & Mutanga, 2015a; Jia, et al., 2014; Banskota, et al., 2014; Oumar, 

2015; Kharat & Musande, 2015; Blackett, 2014; Han & Nelson, 2015). Cloud free daytime 

Landsat data acquired on dates corresponding to the four sub-seasons (Table 5.1) and covering 

the entire study area were freely downloaded from the USGS earth explorer website. It is 

difficult to obtain cloud-free images during the December to February period as this coincides 

with the peak of rainfall in Zimbabwe 

Table 5.1: Landsat data (Path/row 170/72) used in this study 

Image date Season Image date Season 

24 March 2015 Rainy season 6 June 2013 Cool season 

19 April 2013 Post rainy season 25 August 2013 Cool season 

25 April 2015 Post rainy season 25 June 2014 Cool season 

11 May 2015 Post rainy season 11 July 2014 Cool season 

26 September 2013 Hot season 27 July 2014 Cool season 

28 October 2013 Hot season 12 August 2014 Cool season 

13 November 2013 Hot season 28 August 2014 Cool season 

31 October 2014 Hot season 13 September 2014 Cool season 

Coordinates on an image must agree with those on the ground in order to accurately relate 

remote sensing retrievals with ground reality. The process of geo-referencing makes use of 



86 

 

ground control points whose coordinates to correct the coordinates on an image. The images 

were geo-referenced using 30 ground control points obtained at intersection of major roads. 

The points were collected from 30 different and far-spaced locations in Harare where major 

roads were meeting. Intersections of major roads were sampled because they are easy to 

identify on an image when locating ground control points during geo-referencing. Atmospheric 

correction was done using the FLAASH module in the ENVI Version 4.7 software (Dube & 

Mutanga, 2015a). Emissivity correction is necessary in the conversion from at-satellite 

brightness temperature to surface temperature (Wu, et al., 2014). For each season, the 

reflectance of near infrared and Red bands were used to retrieve the normalized difference 

vegetation index, vegetation fraction and surface emissivity as describe by Wu et al., (2014). 

The thermals band 10 for each date was used to compute the brightness temperature which was 

then converted to surface temperature through emissivity correction. Since each sub-season 

spans for about 3 months, there was need to cater for intra-season variability in surface 

property. Therefore, instead of using a single date as representative for each season, average 

temperature was derived from the available data for further analysis. 

 

5.2.4 Relative humidity retrieval from satellite and field observation 

Relative humidity was determined using a linear regression model relating relative humidity 

with air temperature obtained using data from Kutsaga Research Station.  Another linear 

regression model was developed for obtaining air temperature from land surface temperature 

derived from Landsat 8 for each sub-season. In order to obtain relative humidity map for each 

sub-season, we applied the relationship between air temperature and relative humidity obtained 

from field observations to the air temperatures retrieved from thermal data. A two-step 

approach was thus taken involving i) estimation of air temperature from land surface 

temperature and ii) further estimating spatial distribution of relative humidity using linear 

regression models aforementioned.  

 

5.2.5 Retrieval of seasonal thermal discomfort patterns 

Discomfort indices are commonly used due to parsimony while derivation of comfort indices 

such as by PMV using the Rayman, ENVI-MET or other models requires parameterization 

(Mohan, et al., 2014; Roelofsen, 2015; Shastry, et al., 2016). Furthermore, thermal indices are 

simple to compute; for example the ET only requires outdoor temperature to compute indoor 

thermal comfort and the Discomfort Index (DI [oC]) requires temperature (oC) and humidity 

(%) data only. For this reason the Discomfort Index was used in this study for analyzing 
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outdoor thermal discomfort and was computed using mean air temperature (Ta [
oC]) and mean 

relative humidity (RH [%]) derived from land surface temperature as described above. The 

equation for computing DI from air temperature and relative humidity (Equation 5.1) and the 

criteria for categorizing discomfort were obtained from Polydoros and Catalis (2014). 

𝑫𝑰(℃) = 𝑻𝒂 − 𝟎. 𝟓𝟓(𝟏 − 𝟎. 𝟎𝟏𝑹𝑯)(𝑻𝒂 − 𝟏𝟒. 𝟓)             Equation 5.1 

In this study equation one was further adjusted using regression models so that discomfort was 

computed as a function of air temperature only for each of the four sub-seasons. This thus 

further reduced the data requirements for the computation of thermal discomfort.  

 

5.2.6 Linkage between land cover fraction and thermal discomfort patterns 

The link between spatial distribution of thermal discomfort and land cover types as well as land 

cover fractions per sub season was investigated. Land cover fraction provides a quantitative 

analysis of distribution of surface covers while land cover classification provides qualitative 

classes.  The vegetation fraction was used to represent land cover fraction with high values 

(close to 1) representing abundant vegetation cover while low values (close to zero) 

representing impervious, bare and built-up areas. Vegetation fraction (Fc) was retrieved from 

NDVI map for each sub-season according to dimidiate pixel model using Equation 5.2 (Cao, 

et al., 2008). 

𝑭𝒄 =
𝑵𝑫𝑽𝑰−𝑵𝑫𝑽𝑰𝒔𝒐𝒊𝒍

𝑵𝑫𝑽𝑰𝒗𝒆𝒈−𝑵𝑫𝑽𝑰𝒔𝒐𝒊𝒍
                 Equation 5.2 

Where NDVIsoil is NDVI for a pure soil pixel and NDVIveg is for a pure vegetation pixel. In 

this study NDVIsoil of 0.05 and NDVIveg of 0.7 (Hu & Jia, 2010) were used. 

 

For qualitative land cover classification, the Support Vector Machine (SVM) algorithm 

(Petropoulos, et al., 2012; Adelabu, et al., 2013; Jia, et al., 2014; Yang, Lin, et al., 2014; 

Forkuor & Cofie, 2011) was used in supervised classification to map Harare into seven classes 

described in Table 5.2. The advantages of the Support Vector Algorithm and high performance 

in land cover mapping are explained by Yu et al., (2014) and Forkuor and Cofie (2011). A 

cloud free image obtained on 13 September 2013 was used together with 100 ground control 

points per class obtained from locations evenly distributed across cover type and study area to 

capture variability within and between classes. The points were split into 70% for 

training/classification and 30% for accuracy assessment as recommended by Adelabu, et al. 

(2013). The 30m resolution visible/infrared bands, except for the cirrus clouds band (band 9) 

and sea coastal water monitoring band (band 1) and the 15m resolution panchromatic band 
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(band 8) were used for land cover classification. Thermal infra-red bands (Band 10 and 11) 

were not included for image classification due to their relative low resolution (100m) which 

may not effectively map heterogeneous urban landscapes. The accuracy of the classification 

was assessed using independent ground control points for each land cover type obtained in field 

survey described already in Chapter 3. In order to increase number of control points per LULC 

type, the points were superimposed on an RGB composite image of the study area and polygons 

were digitized around them creating regions of interest (ROI) in ENVI software. ROI instead 

of points were then used for both classification and accuracy assessment. This was following 

recommendation that use of ROI instead of direct (Global Position System) GPS based points 

from field survey increases classification accuracy (Acharya, et al., 2015). A confusion matrix 

was obtained by cross validating the classified map with field observations. Further, accuracy 

was quantified using Producer’s accuracy (PA), User’s accuracy (UA), Overall accuracy (OA) 

and kappa. Several studies on image classification explain the extraction of classification 

accuracy indicators from the confusion matrix (Southworth, 2004; Panah, et al., 2001; Witt, et 

al., 2007; Sun & Schulz, 2015; Liu et al., 2003). 

 

Table 5.2: Description of the major land cover classes considered for this study 

Class     Description 

Densely built (DB)   Very high built density (CBD and industrial areas)  

Low-medium density residential Low and medium density residential areas with higher 

(LMR)                                                 vegetation fraction than high density residential  

High density residential (HDR) Built-up with higher density of building and lower 

vegetation cover than low-medium residential  

Forested Areas (Fr) moderate to dense forest cover  

Development (Dv) High density residential under development; mixture 

of bare and building with very low vegetation cover  

Grasslands (Gr) Grass covered areas with little or no trees  

Water (Wt) Water bodies  

 

We further investigated the link between thermal discomfort and land cover quantitatively and 

qualitatively. Quantitatively, we analysed the responses of average temperature and discomfort 

to average land cover fraction (vegetation fraction) across the four sub-seasons. Qualitatively, 

we analysed the link between the spatial distribution of thermal discomfort and land cover 

themes in Harare per sub-season. 
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5.3 Results 

5.3.1 Relationship between air temperature and land surface temperature 

Figure 5.2 shows that there was a positive correlation between air temperature obtained from a 

meteorological station at a height of 2m and land surface temperature retrieved from thermal 

infra-red data of Landsat 8. The R2 value was 0.69 implying an acceptable correlation.  

 

Figure 5.2: Relationship between land surface temperature and air temperature 

 

5.3.2 Relationship between relative humidity and air temperature for different sub-

seasons in Harare 

Table 5.3 shows that there was a [negative] correlation between relative humidity and air 

temperature. However, the correlation was weak (R2= [-]0.328) when all sub-seasons were 

considered in a single regression analysis. However, strong correlations were observed when 

regression analysis was done for each sub-season separately (R2>0.79). Of the four sub-

seasons, the correlation between relative humidity and air temperature was strongest in the post 

rainy sub-season (0.8731) and weakest in the hot sub-season (0.7947). 

 

Table 5.3: Relationship between relative humidity and air temperature across seasons 

Season Regression model R-squared Percentage Error (%) 

All seasons 𝑅𝐻 = [−]2.29𝑇𝑎 + 102 0.3278 28.1 

Rainy 𝑅𝐻 = [−]5.65𝑇𝑎 + 189.75 0.8292 9.3 

Post rainy 𝑅𝐻 = [−]4.35𝑇𝑎 + 138.25 0.8731 16.7 

Cool 𝑅𝐻 = [−]2.98𝑇𝑎 + 94.71 0.8694 10.4 

Hot 𝑅𝐻 = [−]3.09𝑇𝑎 + 122.15 0.7947 15.2 
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5.3.3 Performance of the regression models 

The validity of the regression models using independent field observations on a randomly 

selected day in each season was tested. Figure 5.3 and Table 5.3 show that there was a strong 

agreement between observed and modelled relative humidity patterns evidenced by percentage 

errors below 20% for all sub-seasons. Table 1 shows that regression model for the rainy season 

had the highest accuracy (90.7%), while the model for the post rainy season had the least 

accuracy (83.3%).  

 
Figure 5.3: Verification of regression models for seasonal relative humidity 

Figure 5.3 shows that the models closely resembled the trend that was obtained using field 

observations in all sub-seasons.  

 

5.3.4 Spatial and temporal patterns of thermal discomfort in Harare 

Based on discomfort index analysis, the proportion of the study area where less than 50% of 

the subjects would feel uncomfortable was largest during the post rainy sub-season (59%) and 

smallest in the hot sub-season (2.1%). Coverage of areas where everyone would feel thermally 

uncomfortable was largest during the hot sub-season (49.9%) and smallest in the cool and post 

rainy sub-seasons, where the proportion was 0%.  

Table 5.4: Areal coverage of thermal discomfort conditions per sub-season 

 Coverage of discomfort category per season (% of total area) 

 Rainy Post rainy Cool Hot 

No discomfort 3.0 59.0 53.1 2.1 

<50% feel discomfort 19.3 40.1 46.2 13.1 

50% feel discomfort 29.0 0.6 0.5 15.2 

Most feel discomfort 29.6 0.3 0.1 19.7 

Everyone feels discomfort 19.1 0 0 49.9 
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State of emergency 0 0 0 0 

Although the post rainy sub-season had more areas, where less than 50% would feel discomfort 

than the cool sub-season, the coverage was not very different (Table 5.4). Both sub-seasons 

were almost equally very comfortable evidenced by small coverage of areas were most or all 

people would feel uncomfortable. Although discomfort is felt in more than 70% of the city 

during the hot and in 50% of the city during the rainy sub-season, a significant proportion was 

thermally comfortable (more than 30% of the city). 

 
Figure 5.4: Seasonal and spatial variations in outdoor thermal discomfort in Harare in (a) rainy, 

(b) post rainy, (c) cool and (d) hot sub-seasons 

Figure 5.4 shows that thermal discomfort is not uniform across the urban area and that the 

intensities as well as their spatial distributions vary seasonally. Discomfort indices below 24oC 

are experienced across the country in the cool (Figure 5.4c) and post rainy sub-seasons (Figure 

5.4b). During these sub-seasons, very low discomfort indices (below 21oC) were observed in 

the northern and eastern areas. During the hot sub-season (Figure 5.4d) the Discomfort Indices 

took values greater than 24oC in much of the country. However, values were generally higher 

in the southern and western parts (DI was greater than 27oC) than in the northern and eastern 

parts of the city (DI was less than 27oC).  
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5.4 Urban land cover classification and link with observed thermal discomfort 

5.4.1 Distribution of land use/cover types in Harare 

We also performed a qualitative land cover classification using the SVM algorithm. Results 

are presented in Figure 5.5 and Table 5.5. Figure 5.5 shows that high density residential areas 

and areas under development occupy the southern parts of the study area. The northern areas 

are occupied mostly by low-medium residential areas.  

 
Figure 5.5: Distribution of land use/cover types in Harare, Zimbabwe in Southern Africa 

Table 5.5: Accuracy assessment of the land use/cover classification 
 Ground truth 

Classified DB LMR HDR Fr Cr Gr Wr 

Densely built-up (DB) 956 0 5 10 91 0 0 

Low-medium density (LMR) 0 755 14 0 37 20 29 

High Density residential (HDR)  13 0 1181 0 2 1 5 

Forests (Fr) 83 5 0 667 119 40 4 

Cropland (Cr) 9 7 2 123 1667 104 49 

Grasslands (Gr) 22 7 14 7 26 840 45 

Water (Wt) 0 4 0 0 183 11 621 

Producer’s Accuracy (PA) 83.8 88.5 81.4 95.0 73.5 88.3 92.9 

User’s Accuracy (UA) 77.9 88.0 72.5 87.7 89.3 74.0 99.8 

Overall accuracy (OA)=84.3%     Kappa=0.81 

The User’s accuracy was high ranging, from 73% to 99.8%. User’s accuracy was highest for 

the water class (99.8%) and lowest for the high density residential class (72.5%). Producer’s 



93 

 

accuracy was also high for all classes (ranged from 74% to 93%); highest for the water bodies 

class and lowest for the croplands class. Besides the croplands class, producer’s accuracy was 

greater than 80% for the other classes.  Overall accuracy was 84.3% and kappa statistic was 

0.81, hence significantly high accuracy of classification in an urban landscape. 

 

5.4.2 Link between LULC types in seasonal thermal discomfort patterns in Harare 

Figure 5.4 shows that in all seasons the northern areas, which in Figure 5.5 are occupied mostly 

by parks and low density residential areas thermal discomfort was generally lower than in the 

southern areas. For example, in the hot sub-season, almost all occupants feel thermally 

uncomfortable (DI greater than 27oC) in the bulk of the southern areas while more than 50% 

would feel comfortable (DI less 27oC) in most of the areas in the north. The densely built up 

areas, which correspond to the central business district and industrial areas have all occupants 

in discomfort (DI between 29 oC and 32oC) during the rainy and the hot sub-seasons. In all sub-

seasons, the state of medical emergence thermal discomfort category (DI above 32oC) was not 

recorded. 

Figure 5.6: Seasonal variations in mean thermal discomfort and vegetation fraction 

 

Figure 5.6 shows that the average discomfort was very high in the hot sub-season (DI=31oC) 

while it was low in the cool sub-season (20oC) and even lower in the post rainy sub-season 

(20oC). There was higher vegetation fraction and lower mean discomfort in the post rainy (0.6) 

than the cool (0.43) season. The hot season was characterized by low vegetation fraction (0.46) 
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and high thermal discomfort (average of 30oC). Therefore, there was a general negative 

relationship between thermal discomfort and vegetation fraction.  

 

5.5 Discussion 

The potential of recently launched Landsat 8 and improved relative humidity observations in 

improving thermal discomfort mapping was tested. Thermal discomfort was computed for four 

sub-seasons using air temperature retrieved from Landsat 8. In addition, regression analysis 

resulted in strong correlation between relative humidity and air temperature. The correlation 

was stronger when seasons were considered separately (R2 greater 0.79) than when a single 

model was used for all sub-seasons (R2=0.33). The regression models were also verified using 

independent observations and their accuracy was high (relative errors below 20%) for all sub-

seasons. The correlation between air temperature and relative humidity is known to be strongly 

negative (de-Azevedo et al., 2015). A strong correlation between air temperature and land 

surface temperatures (R2=0.69) was also observed. The relationship between temperature and 

humidity was used to retrieve relative humidity such that discomfort index was computed as a 

function of air temperature only, thus reducing the data requirement.  

The hot and the rainy sub-seasons were observed to be more thermally uncomfortable (mean 

discomfort index was 31oC) than the post rainy and the cool seasons (mean DI was less than 

24oC). This was because the hot and post rainy sub-seasons comprise the summer season when 

generally a lot of insolation is received compared to winter season (post rainy and cool sub-

seasons). Further, vegetation abundance and surface wetness had a significant cooling effect 

on the rainy and post rainy sub-seasons. Similarly, the cool sub-season was on average more 

thermally uncomfortable (DI of 21.4oC) than the post rainy sub-season (mean DI of 19.9oC), 

although the latter receives more insolation (not quantified in this study) due to low vegetation 

fraction and low surface wetness. Vegetation is mostly dry in the cool sub-season while some 

trees even shed their leaves during the period in Harare. Vegetation cover reduces radiant heat 

transfer by increasing latent heat transfer thereby increased cooling effect as vegetation fraction 

increases between hot and the rainy sub-seasons (Odindi, et al., 2015; Cao, et al., 2008; Zhang, 

et al., 2012). Plants convert a lot of energy from the sun to potential energy weakening heating 

effect of solar energy (Klok, et al., 2012) 

In order to link the distribution of land cover types to the seasonality of thermal discomfort, a 

supervised classification of Landsat 8’s visible/infrared bands was performed. Seven classes 

were observed at an overall accuracy of 84.5% and kappa of 0.81. The user’s and producer’s 
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accuracy were higher than 73% for all the land use/cover types implying strong agreement 

between the mapped classes and field observations. The accuracy was higher than previously 

achieved, when Harare was classified into built and non-built using high resolution SPOT 

image (Wania, et al., 2014). Wania et al., (2014) obtained an overall accuracy of 83.5 and kappa 

of 0.64. The high accuracy of LULC mapping was attributed to the support vector machine 

algorithm as well as quality of Landsat 8 data, which improve land surface property retrievals; 

the quality attributes include improvements in radiometric resolution, spectral range and noise 

to signal ratio which has been found to improve land use/cover mapping (Jia, et al., 2014; 

Mwaniki, et al., 2015; Ke, et al., 2015). Landsat 8 has outperformed earlier Landsat versions 

as well as moderate resolution datasets such as MODIS in mapping land surface characteristics, 

especially in heterogeneous urban landscapes (Mwaniki, et al., 2015; Ke, et al., 2015; Yu, et 

al., 2013; Jia, et al., 2014).  

During the post rainy sub-season, most of the city including all residential areas had no 

discomfort (DI less than 21oC) except for the densely built-up areas (CBD and industrial areas) 

where less than 50% of subjects would feel uncomfortable (DI between 21oC and 24oC). The 

slight thermal discomfort (DI between 21oC and 24oC) observed in the CBD in the post rainy 

and cool sub-seasons when other areas were more comfortable can be supported by findings 

that inner cities are exposed to increased health risk and intense temperatures (Tomlinson, et 

al., 2011). The high density of buildings here impedes wind movement hence removal of heat 

(Qiao, et al., 2013). The large size of the thermally comfortable proportion (59% of the city) 

was because during the post rainy sub-season, the ground will be relatively wet while 

vegetation fraction be will high (including intra-urban farming) hence high evapo-

transpiration. Further, compared to the rainy sub-season, the sun will be on its northward 

transition making way for the cool sub-season, thereby reducing intensity of radiation received 

during this period. However, the densely built-up areas, although not very uncomfortable 

thermally, were slightly more uncomfortable (DI between 21oC and 24oC) than the bulk of the 

city during the same period. This was due to high absorption of radiation as well as presence 

of surfaces which store and release heat, thus increasing temperatures during the day (Srivanit, 

et al., 2012). This agrees with the observation that built-up areas have large heat storage fraction 

due to changes in characteristics of the ground by lowering vegetation cover and surface 

reflectance (Setaih, et al., 2014). 
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In the hot, rainy and cool sub-seasons the southern and western areas are thermally more 

uncomfortable than the northern and eastern areas. For example in the southern and western 

areas, during the hot season, DI ranged from 27oC to 32oC while it was mostly less than 27oC 

in the rest of the city. The southern and south eastern areas are mostly occupied by high density 

residential areas and areas under residential development. Increased density of buildings results 

in high absorption and storage heat resulting in high surface temperatures, especially in the hot 

season (Qiao, et al., 2013; Chun & Guldmann, 2014). Due to large coverage of impervious 

surfaces, buildings and bare areas, evidenced also by small coverage of grasslands and forests 

in the southern areas, heat loss by evapo-transpiration is reduced during the hot season. Densely 

built-up and bare areas show similar thermal characteristics during the hot sub-season hence 

almost equal and high discomfort in high-density residential, densely built-up area and areas 

under development. 

Even in the hot sub-season, fewer people would feel uncomfortable in the low-medium density 

residential areas (DI mostly below 27oC) than in the CBD and high density residential areas 

(DI mostly greater than 27oC). In these areas, vegetation fraction is high while density of 

buildings is low due to spacious settlement hence space for greenery. In all sub-seasons, 

greenery is generally healthy in the low-medium residential because even during the dry 

seasons, the citizens here afford to manage and irrigate the green spaces due to high income. 

Furthermore large park and vast grasslands are also found in the north of the city thus 

contributing to low thermal discomfort across all sub-seasons in Harare. Even in areas where 

there are buildings, vegetation reduces temperatures and hence increases thermal comfort of an 

area. Residential areas with high vegetation cover have low irradiance during the day (Lo, et 

al., 1997; Lo & Choi, 2004; Weng, et al., 2004). 

In all seasons there was no thermal discomfort at daytime in water covered areas (DI less than 

21oC). The large water body in the extreme southeast is characterized by low discomfort index 

values in all seasons. Water has high heat capacity thus takes long to heat up during the day 

resulting in low skin temperatures (Wang & Zhu, 2011; Amiri, et al., 2009). Spraying surfaces 

with water mist was also found to significantly reduce temperatures and discomfort during 

daytime in summer (Farnham, et al., 2015). Covering a surface with water also reducing 

daytime temperature of an area by increasing heat loss by evaporation thus reduced daytime 

temperatures towards water bodies (Steeneveld et al., 2013). Surface irradiance was found, in 

another study, to be least in water, followed by vegetation while higher than this in residential 
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areas where there was mixture of vegetation and buildings (Lo, et al., 1997; Steeneveld, et al., 

2013). 

 

5.5 Conclusion 

The following conclusions were drawn from this study 

 there is a negative correlation between air temperature and humidity which is stronger 

when different sub-seasons are considered separately 

 Landsat 8 produces land cover and thermal discomfort maps of high accuracy in 

heterogeneous and complex urban landscapes 

 The post rainy sub-season is the most thermally comfortable in Harare due to reduction 

in incoming radiation when approaching winter and high vegetation fraction. 

 In all sub-seasons, the low-medium density residential areas are more comfortable than 

the high density residential areas. 

 Intra-urban farming contributes in reducing thermal discomfort especially in high 

density residential and development areas during the rainy and post rainy sub-seasons. 

5.6 Link between Chapter 5 and other chapters 

Chapter 4 showed the spatial structure of heat vulnerability in Harare. The chapter also mapped 

the spatial structure of land surface temperature intensities but only for the hot season. The 

chapter demonstrated that heat vulnerability was high in the southern and south western areas 

occupied mainly by the low-income strata. Due to temporal variations in the in incoming 

radiation, need remained to establish the link between LULC mapped in Chapter 3 with land 

surface temperature intensities across seasons. Therefore, Chapter 5 established the link 

between LULC and heat island intensities in four sub-seasons experienced in Harare (cool, hot, 

rainy and post rain sub-seasons). Since Chapter 5 investigated LULC-LST relationship at 

seasonal time scales, Chapter 6 will look at a longer time scale (1984 to 2015).



98 

 

CHAPTER 6: RESPONSES OF URBAN LAND SURFACE 

TEMPERATURES TO LONG TERM CHANGES IN LAND USE AND 

LAND COVER SPATIAL STRUCTURE 

 

  

 

 

 

 

This chapter is based on: 

Mushore T. D., Mutanga O., Odindi J., Dube T. (2017). Linking major shifts in land surface 

temperatures to long term land use and land cover changes in Harare, Zimbabwe. Urban 

Climate, 20, 120–134, http://dx.doi.org/10.1016/j.uclim.2017.04.005 
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6.0 Abstract 

Rapid urban development is known to increase a landscape's thermal values, exposing residents 

to among others adverse heat related health impacts, discomfort as well as energy and water 

demand. Therefore, there is need to determine the implication of the transforming urban 

landscapes on urban micro-climate to optimise urban land uses and to effectively mitigate 

adverse impacts. In this study, we aimed at assessing dynamics of micro-climate caused by 

Land Use and Land Cover (LULC) changes in the heterogeneous Harare Metropolitan City, 

Zimbabwe, between 1984 and 2015. To achieve this objective, the transformation of major 

LULCs within the city was determined and relative brightness temperature used to assess long-

term thermal changes in the city. Results show that coverage of high density residential areas 

increased by 92% between 1984 and 2016 at the expense of cooler green-spaces, which 

decreased by 75.5%. This translated to a 0.98oC and 1.98oC temperature increase, attributed to 

LULC changes alone and to all factors that include greenhouse effect and ozone depletion 

respectively. Results also show that converting bare areas to water bodies reduced surface 

temperatures by 4.5oC, while the construction of low-to-medium density residential areas 

reduced bare surface temperatures by 3.78oC. Conversion of green-spaces to low-medium 

residential areas increased temperatures by 0.16oC. Overall, conversion of LULC types 

contributed more than 0.5oC thermal elevation within the city, largely attributed to increases in 

built-up areas and reduction in heat mitigating green-spaces. These findings offer insight into 

landscape surface energy balance changes arising from urbanization, critical for urban 

planning, environmental governance as well and climate change management in cities.  

 

Keywords: climate change, urbanization, land-use-land-cover, urban heat island, temperature 

increases, green-spaces, remote sensing 
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6.1 Introduction 

Rising temperature and climate change have become a concern in the recent decades (Nayak 

& Mandal, 2012; Simone et al., 2011; Zvigadza et al., 2010; Hartmann et al., 2013; Chagutah, 

2010). Rising temperatures lead to heat stress and increase in vector-borne diseases such as 

malaria and cholera, which may cause morbidity and mortality to vulnerable persons in society 

(Cuculeanu et al., 2002; Newland, 2011; McMichael & Confalonieri, 2012; Tanser et al., 2003; 

Simone, et al., 2011). Furthermore, an increase in urban temperatures causes accumulation of 

smog and deterioration of air quality, increases discomfort, affect work performance as well as 

outdoor and indoor activities and increase  energy and water demands (Simone, et al., 2011; 

Goshayeshi, et al., 2013b; Yilmaz, 2007; Mazon, 2013; Mohan, et al., 2014; de-Azevedo, et 

al., 2015; Akbari, 2005). Therefore, understanding the implication of urban transformation on 

urban thermal change is necessary for mitigation of adverse impacts, urban planning, policy 

formulation and sustainable urban growth. 

The observed and projected temperature intensity in Urban Heat Islands (UHI) can be attributed 

to natural phenomena that include the 60 year solar and thermohaline circulation. Such 

intensity can also be attributed to anthropogenic activities that include rise in atmospheric 

greenhouse gases and landscape transformations (Loehle, 2011; Hartmann, et al., 2013). 

Urbanization alters energy and water balance, resulting in higher temperatures at the city core 

and lower temperatures towards the urban fringe and rural areas (Nayak & Mandal, 2012; Ward 

et al., 2014; Dirmeyer et al., 2010; Sertel et al., 2011). Hence, there is need to determine the 

implication of urban growth on urban temperatures, particularly in developing countries where 

resources for adaptation and mitigation are largely limited. Whereas in situ observations offer 

accurate data for analysis of temperature trends, they have limited spatial coverage, making it 

expensive to achieve desired coverage especially in developing countries. These countries 

often have low station density, inadequate for interpolation to map thermal distribution in 

heterogeneous urban landscapes (Barrett et al., 2007). Conversely, remote sensing offers low 

cost archival data at relevant spatial resolution valuable for understanding the relationship 

between LULC and their respective thermal characteristics (Sithole & Odindi, 2015; Owen, et 

al., 1998). Landsat imagery data series for instance offers thermal and optical data dating back 

to 1972 free of charge (Gusso, et al., 2014; Tao, et al., 2013). However, despite availability of 

such datasets, their adoption in understanding the nexus between urbanization and climate 

change, particularly in African cities remains limited. Consequently, urban thermal elevation 

has mainly been associated with greenhouse gases and ozone depletion. Optical and thermal 
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remotely sensed data therefore provide a unique opportunity for understanding the implication 

of LULC transformation on urban thermal characteristics.  

Generally, previous studies that have analysed the relationship between long term changes in 

surface UHI and land cover changes have mostly used the difference between rural and urban 

temperature as a measure of UHI effect (Feng et al., 2014; Ogashawara & Bastos, 2012; Zhang, 

et al., 2012). However, literature shows that comparing land surface temperature between rural 

and urban areas is not an effective method of quantifying UHI effect as rural areas around urban 

areas keep changing (Weng et al., 2007). Furthermore, long-term determination of rural/urban 

temperature differentiation for instance, considers combined thermal values for the entire urban 

landscape, dis-regarding the contribution of the changing LULC matrix and their thermal 

contribution to the UHI.  

Feng (2014) recently suggested the use of different UHI indicators in determining long term 

effect of urban LULC transformation. As such, the relative brightness temperature has been 

proposed as an effective measure of UHI intensity, useful for monitoring shift in average 

temperature due to urbanization (Xu et al., 2013).  The approach has numerous advantages 

which include computational simplicity and efficiency, as it is applied on brightness 

temperatures without emissivity correction. Hence this approach has been useful in 

determining the implication of LULC types on heat island intensities as well as their variations 

between season (Wu et al., 2012; Zhang, et al., 2012). Zhang, et al., (2012) for instance applied 

this approach to show the link between Normalized Difference Vegetation Index (NDVI) and 

urban heat island based on single date imagery in Wuhan city, China. The unique potential and 

strength of the of the relative brightness temperature has also been demonstrated by Xu et al 

(2013) who determined the responses of heat island intensity to seasonal changes in land 

surface properties derived from vegetation indices in Beijing, China. Despite the successful 

application of the relative brightness temperature approach in understanding multi-temporal 

relationship surface UHI and land cover changes, its link with long terms changes is necessary 

for urban landscape management needs to be further explored. Specifically, this will provide 

insight on the significance of urban LULC modification and how it combines with other factors 

such as increases in greenhouse gas concentrations to alter climate over time, useful for 

improving future climate prediction (Dirmeyer, et al., 2010; Ward, et al., 2014) 

This study thus hypothesizes that changes in relative brightness temperature intensities can be 

reliably used to determine the impacts of urban LULC transformation on urban heat patterns 
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over a 30 year period (i.e. from 1984 to 2015). Differences in the distribution of relative heat 

island intensities between images obtained in different decades may be valuable in quantifying 

shift in temperature as the city grows between the periods. Hence the study sought to quantify 

long term changes in temperature due to urban growth using changes in the relative brightness 

temperature as an indicator of changes in the UHI intensity and distribution. Since urban 

temperature changes can be attributed to myriad factors, the study also attempted to isolate the 

impact LULC conversion on urban thermal values from other causes like rise in greenhouse, 

ozone depletion and solar cycles. 

 

6.2 Materials and methods 

6.2.1 Description of the study area 

This study was conducted in Harare, the capital city of Zimbabwe (Figure 6.1). The city is 

experiencing growth as evidenced by increase in population and built up area (Kamusoko et 

al., 2013; ZIMSTAT, 2012). The urban core and industries are found at the centre while major 

roads radiate from the city centre. Settlements are more spacious in the north where mostly low 

and medium density residential suburbs are found (Wania, et al., 2014). The month of October 

is the hottest and driest while the summer season is noted to be warming and experiencing 

prolonged hot spells (Manatsa et al., 2013), hence the selection of the period. 

 
Figure 6.1: Location of the study area and general variations in spectral properties of land-

cover regimes. 
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6.2.2 Pre-processing of remotely sensed data 

Landsat Thematic Mapper TM 5, Landsat ETM+7 and Landsat 8 OLI and TIRS images with 

Path/Row of 170/72 were acquired from the United States Global Survey Earth Resources 

Observation System (USGS-EROS) website. Landsat data were selected due to adequate 

archival data, ease of access and previous performance in land cover classification and 

temperature analysis (Odindi et al., 2015). The 30 year time-span was selected in line with 

World Meteorological Organization’s recommended length for climate change analysis (World 

Meteorological Organization, 2000, 2007). The image reflective bands were corrected for 

atmospheric effects using the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes 

(FLAASH) module in the ENVI software (Dube & Mutanga, 2015a; Mushore, et al., 2016). 

The images were geometrically corrected using a 1:50 000 topo-sheet and 30 ground control 

points collected at intersection of major roads and invariant features recognisable on satellite 

images. The Landsat imagery used, as well as the meteorological condition at Harare Airport 

Meteorological Office during the time of Landsat acquisition are shown in Table 6.1. 

Table 6.1: Landsat path/row 170/72 images used for temperature analysis in this study. 

Meteorological conditions at Harare Airport Meteorological Station are also presented. 

Image Date Temperature (oC) Humidity (%) 

Landsat 5 17 October 1984 28.4 37.0 

Landsat 5 21 October 1993 28.7 33.0 

Landsat 7 19 October 2001 28.6 36.3 

Landsat 8 18 October 2015 29.0 42.0 

 

6.2.3 Land use and cover classification, accuracy assessment and change detection 

Land use land cover maps for the year 1984, 1993, 2001 and 2015 were derived using the 30m 

reflective bands of Landsat 5, 7 and 8 images. Ground truth data per LULC type for 

classification and accuracy assessment were obtained during a field survey as already described 

in Chapter 3. In order to improve accuracy classes with spectral similarities were merged 

following a separability test before classification using the Transformed Divergence 

Separability Index (TDSI) (Chemura & Mutanga, 2017; Matongera et al., 2017). According to 

Matongera, et al. (2017), the closer the TDSI to 2 the higher the separability of two LULC 

classes from each other using a specific remote sensing dataset. Value less than 1 implies that 

two LULC types are difficult to separate such that trying to do so will reduce classification 

accuracy. Separability test was thus done because high accurate classification is obtained when 

LULC classes are adequately separable for a given spatial resolution of remote sensing data. 
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This also enabled merging of classes that have similar spectral properties. As a result, contrary 

to Chapter 3 where seven general classes were used, in this Chapter the LULC were reduced 

to six major classes described in Table 6.2 after separability test. Supervised classification 

using the Support Vector Machine (SVM) algorithm was implemented to generate LULC maps 

for each of the years under investigation. The SVM algorithm places no assumption to the 

probability distribution of the data and has low training data requirements. The classifier was 

found in previous studies to be better than commonly used algorithms like Maximum 

Likelihood Classifier (MLC), Parallelepiped, Minimum Distance, Mahalanobis Distance and 

the Artificial Neural Network classifiers (Omran, 2012; Adelabu, et al., 2013).  

Table 6.2: Description of LULC classes observed in Harare during field survey 

LULC class Description 

CBD/Industrial 

(CBDI) 

Areas with very high density of buildings and a very high 

proportion of impervious surface that include central business 

district and industrial areas. 

High density 

residential (HDR) 

High density residential areas and areas under residential 

development (bare or impervious) with low vegetation fraction. 

Low-medium 

density residential 

(LMR) 

Established low and medium density residential areas with high 

vegetation fraction. 

Croplands (Cr) Areas where intra-urban agriculture is practised including 

research sites which could be bare in the dry season 

Green spaces (Gr) Areas covered by grasslands and clusters of tree characterised by 

high vegetation fraction even during the dry season. 

Water (Wt) Areas covered by water bodies or wetlands. 

 

Supervised classification requires field observation for training and accuracy assessment, 

therefore, 120 points per class were obtained from a field survey using a GPS between the 1st 

and 30th of April 2015. The points were split into training (80%) and validation (20%) based 

on recommendation by Adelabu et al. (2013). Regions of interest (polygons created around 

ground truth points) were used instead of points to increase the number of sample points upon 

which to base classification and validation. Acharya et al., (2015) showed that higher accuracy 

is achieved using regions of interest than points. Accuracy was assessed using the kappa 

coefficient by comparing mapped LULC classes with field observations, expert knowledge and 

auxiliary LULC data from topo-sheets and aerial photographs. LULC changes were analysed 

using visual inspection and calculation of changes in spatial coverage. 
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6.2.4 Derivation of thermal characteristics  

We adopted stages of retrieving temperature from Landsat data series which include the 

conversion of digital numbers of thermal bands to thermal radiances, calculation of brightness 

temperature and emissivity correction (Sobrino, et al., 2004). We used thermal Band 6 of 

Landsat 5 for 1984 and 1993, Band 6 of Landsat 7 for 2001 and Band 10 of Landsat 8 for 2015 

for analysis. The surface emissivity maps used to compute surface temperature from brightness 

temperature were derived using Normalized Difference Vegetation Index (NDVI) for each 

period (Jiang & Tian, 2010). The land surface temperatures were used to derive the relative 

radiative temperature with respect to the average of 1984 using equation 1 (Zhang, et al., 2012; 

Xu, et al., 2013). 

𝑻𝑹,𝒏 =
𝑻𝒏−𝑻𝒎𝒆𝒂𝒏,𝟏𝟗𝟖𝟒

𝑻𝒎𝒆𝒂𝒏,𝟏𝟗𝟖𝟒
                   Equation 6.1 

Where Tn is the temperature at a point year n, TR,n is the relative temperature in year n and n is 

the year for example 2015. The average temperature of 1984 was used as a reference when 

LULC distribution had not been significantly modified by urbanization. In order to compare 

heat island distribution of a year with that of 1984, we computed the spatial distribution of 

relative radiative temperatures for four periods in different decades. For ease of comparison, 

the relative temperatures were further classified into categories described in Table 6.3 as 

recommended by Zhang, et al., (2012).  

 

Table 6.3: Description of relative temperature level  

UHI level Description 

Less than 0 Green Island 

0 – 0.005 Weak heat island 

0.005 – 0.010 Strong heat island 

0.010 – 0.015 Stronger heat island 

0.015 – 0.020 Strongest heat island 

Greater than 0.020 Violent heat island 

 

6.2.5 Responses of temperature to LULC changes  

We calculated average temperature of each class for each year collected from points evenly 

distributed across the study area to capture all possible inter- and intra-class variations. We 

further calculated the difference between the average temperature in 1984 and 2015 for each 

land cover. The differences were attributed to other anthropogenic factors than land cover 

changes. In order to determine the change in average temperature, due to change from LULC 

changes, we used the normalized difference in temperature to correct for influence of other 
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anthropogenic factors. This was computed using the equations adapted from Zhou & Wang 

(2010) and expressed as; 

𝒅𝑻𝒊𝒋 = 𝑻𝒋𝟐𝟎𝟏𝟓 − 𝑻𝒊𝟏𝟗𝟖𝟒                Equation 6.2 

∆𝑻𝒊 = 𝑻𝒊𝟐𝟎𝟏𝟓 − 𝑻𝒊𝟏𝟗𝟖𝟒                Equation 6.3 

𝒅𝑻𝒏 = 𝒅𝑻𝒊𝒋 − ∆𝑻𝒊                    Equation 6.4 

Where dTn is the change in temperature cause by replacement of i by land cover j, ∆𝑇𝑖 is the 

change due to other anthropogenic factors than LULC change and 𝑑𝑇𝑖𝑗 is the change in 

temperature before normalization. 

  

6.2.6 Changes in the contribution of land cover to the thermal environment in the city   

The proportional contribution of land covers to the thermal characteristics was expressed using 

the contribution index (CI) based on Equation 6.5 (Odindi, et al., 2015; Chen, et al., 2006). 

𝑪𝑰 = 𝑫𝒕 × 𝑺                  Equation 6.5 

Where 𝐷𝑡 is the difference between the average temperature of the entire study area and the 

average of the LULC class type. Variable 𝑆 is the proportional area of the LULC type, which 

is the ratio of the area covered by the class to the total area of the study. Positive values of CI 

indicate how much the LULC type contributes to raising the surface temperatures of an area 

while negative values indicate heat mitigation value. The CI was computed from the year 1984 

to 2015 using the same value of 𝐷𝑡 but varying for each land cover. The assumption was that 

the changes in the contribution of LULC were not due to changes in average temperatures, but 

as a result of changes in proportional areas covered. The assumption was made in order to 

eliminate the contribution of other external factors, such as ozone depletion and greenhouse 

gas concentrations.  

 

6.2.7 Normalized change in average temperature due to land cover changes 

We proposed a technique to derive changes in average temperature solely due to LULC 

changes that excludes changes in other contributing factors to surface temperature rises. In this 

technique, we assumed that contribution of LULC changes was due to changes in proportional 

area covered between the year 1986 and 2015. The proposed normalized average temperature 

of the study area was computed using the Equation 6.6 (Feng, et al., 2014). 

𝑳𝑺𝑻𝒂𝒗𝒆𝒓𝒂𝒈𝒆,𝒌 =
∑ 𝑺𝒊,𝒌×𝑻𝒊,𝒋𝒊

∑ 𝑺𝒊,𝒌𝒊
                Equation 6.6 
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Where 𝐿𝑆𝑇𝑎𝑣𝑒𝑟𝑎𝑔𝑒,𝑘 is the average temperature of the study area in year k. 𝑇𝑖,𝑗 is the average 

temperature of the land cover type i in year j before land cover changes took place and 𝑆𝑖,𝑘 is 

the proportional area of land cover type i in year k. We compared the change in temperature of 

the study area from the year 1984 to 2015 with and without normalization. This provided both 

a measure of how LULC alone and how a composite of contributing factors changed the 

average temperature of the study area. 

 

6.3 Results and discussion 

6.3.1 Changes in LULC distribution between 1984 and 2015 

The city's LULC maps for 1984, 1993, 2001 and 2015 were produced at high accuracy using 

the SVM algorithm (Figure 6.2). Validation showed an overall accuracy of 88.55%, while the 

kappa was 0.85 for the year 1984 image. Table 6.4 shows the accuracy of remote sensing based 

urban LULC mapping in 1993, 2001 and 2015 classifications, respectively. The overall LULC 

classification accuracies for all the years under study were higher than the recommended 80% 

threshold (Omran, 2012). High LULC classification accuracy can be attributed to the superior 

performance of the SVM classifier, in comparison to other existing methods like the Maximum 

Likelihood, Artificial Neural Network and Parallelepiped classier (Adelabu, et al., 2013; 

Omran, 2012). The high accuracy can further be attributed to use of regions of interest for 

training the classification, an approach known to increase mapping accuracy (Acharya, et al., 

2015). 

Table 6.4: Accuracy of multi-temporal remote sensing based land use/cover classification  

Year Overall Accuracy (%) Kappa coefficient 

1984 88.55 0.85 

1993 87.70 0.83 

2001 90.86 0.87 

2015 87.59 0.82 

 

Producer accuracies were greater than 75%, except for the croplands class, which had producer 

accuracies less than 50% in 1993, 2001 and 2015. User accuracies were greater than 80% for 

most LULC classes except in the year 1993 and 2001, when croplands had overall accuracies 

of 69.13% and 72.66%, respectively. These accuracies are comparable with the 85 and 95% 

achieved by Kamusoko et al (2014) in classifying the city's built-up and non-built areas. Their 

slightly higher classification accuracy can be attributed to a two class LULC generation. Harare 

has seen expansion of built-up areas at the expense of water/wetlands, green-spaces and 

croplands. In this study we also managed to separate built-up areas into densely built 



108 

 

(CBD/Industrial), high density residential and low-medium density residential. Visual 

inspection of the LULC maps showed a decline in green spaces and expansion of residential 

areas in the study area between 1984 and 2015. Most of the areas which were occupied by 

croplands and green spaces in the year 1984 had been converted to residential developments. 

 
Figure 6.2: The distribution of LULC types in the year (a) 1984, (b) 1993, (c) 2001 and (d) 

2015 in Harare, Zimbabwe.  

 

Table 6.5 shows that built up areas increased in coverage, while the proportion of land area 

occupied by croplands, green-spaces and water decreased during the study. For example, 

between 1984 and 1993, high density residential areas increased from 385.48 to 244.24km2, 

while green-spaces decreased from 234.38 to 105.09km2. Cropland decreased from 110.54 to 

30.27km2 between the same periods. The observed growth is consistent with Wania et al., 

(2014) and Kamusoko et al., (2013) who noted that the built up proportion has increased in 

Harare since independence. The LULC maps are also consistent with Kamusoko et al (2014) 

who note that low density residential areas mostly cover the northern while high density 

residential southern parts of the city. Water bodies decreased from 6.98 to 4.15km2 during the 

same time while impervious surfaces under commercial use (CBD/Industrial areas) grew from 

23 to 48.92km2 over the thirty year period. The decrease in coverage of the water class may 
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signify intrusion into wetlands by built-up and impervious areas as the city continues to grow. 

The decrease in the water class coverage may also be due to water contamination by among 

others algal bloom, common in urban areas that changes spectral properties on water bodies, 

thus reducing proportion of water pixels (Dube, et al., 2014).  

 

Table 6.5: Changes in proportion of LULC types between 1984 and 2015. 

 Coverage (km2) 

UHI level 1984 1993 2001 2015 

CBD/Industrial 23.00 25.64 24.74 48.92 

High density residential 244.24 385.48 441.84 470.02 

Low-medium density residential 235.68 253.52 255.11 244.05 

Green-spaces 234.38 105.09 94.73 57.42 

Croplands 110.54 80.92 33.17 30.27 

Water 6.98 4.18 5.24 4.15 

 

6.3.2 Changes in Land surface temperatures between 1984 and 2015 

Table 6.6 shows that surface temperatures increased between 1984 and 2015, with larger 

increases observed over built up areas than in areas covered by vegetation and water. Land 

surface temperature increased by 3.29oC in the CBD/Industrial areas and 1.51oC over green-

spaces during the study period. Lowest increases in temperature were observed over water 

surfaces (0.74oC) croplands (0.86oC) and green spaces (1.51oC). Magnitude of temperature 

rises also differed between residential types, with high and low density residential areas 

experiencing a rise by 2.55oC and 1.7oC respectively. Temperature changes were also found to 

be faster in built-up than in other areas (Ogrin & Krevs, 2015). Built-up and impervious areas 

have high Bowen’s ratio (close to I), thus favouring sensible heat transfer and absorption of 

high proportion of incident radiation (Gusso, et al., 2014).  

High temperatures were observed in the CBD and industrial areas compared to other LULC 

types in 1984 (38.19oC) and 2015 (41.48oC). As aforementioned, areas with a higher density 

of buildings have high Bowen’s ratio (above 1) implying high radiant heat transfer, due to very 

low latent heat transfer (Zhou & Wang, 2011a; Jalan & Sharma, 2014; Owen, et al., 1998). 

Furthermore, tall buildings increase surface roughness and reduce ventilation thereby reducing 

heat removal by advection and radiative cooling, thus increasing temperature (Tursilowati, 

2007; Sithole & Odindi, 2015; Cinar, 2015).  

Low temperatures were observed on areas covered by water (32.54 in 1984 and 33.28 2015) 

and over green spaces (33.47oC in 1984 and 34.93oC in 2015). Green-spaces tend to be porous 
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and assimilate heat, hence act as heat sinks (Odindi, et al., 2015; Sithole & Odindi, 2015). In 

this study, thermal difference between water and green-spaces was smaller than other LULCs. 

This finding concurs with other studies which observed small differences in temperature 

between dense vegetation and wetlands (Adebowale & Kayode, 2015). Both have cooling 

effect as they promote heat removal by latent heat transfer, thus reducing sensible and ground 

heat flux (Adebowale & Kayode, 2015). The evaporation cooling effect was also observed in 

low density residential areas as they have higher vegetation fraction than densely built-up areas 

(Mushore, et al., 2016). During the hot season, croplands are largely bare resulting in high 

temperatures compared to vegetation surfaces. This is because their surface temperature 

increases, approaching that of bare areas due to reduced vegetation (Xiao, et al., 2007). 

 

Table 6.6: Observed increases in land surface temperature between the year 1984 and 2015. 

 Temperature (oC) Temperature 

Landuse and land cover 1984 2015 change (oC) 

CBD/Industrial 38.19 41.48 3.29 

High density residential 37.09 39.64 2.55 

Low-medium density residential 34.31 36.01 1.70 

Croplands 37.34 38.20 0.86 

Green-spaces 33.47 34.98 1.51 

Water 32.54 33.28 0.74 

 

6.3.3 Changes in distribution of relative temperatures (surface heat island intensities) 

between the year 1984 and 2015 

The heat island effect became more intense in 2001 and 2015 than 1984 and 1993 as indicated 

by the relative temperature in Figure 6.3. Figure 6.3(a) shows a larger spatial extent covered 

by green islands (relative temperatures below 0), than in Figure 6.3(b). There were fewer 

violent heat islands (relative brightness temperature above 0.02) in 1984 (Figure 6.3(a)), 1993 

(Figure 6.3(b)), 2001 (Figure 6.3(c)) than in 2015 (Figure 6.3(d)). In 2015, the heat islands 

became high (at least 0.01), stretching from the core to the south-western part of the city. 

However, the northern half of the city generally had more green islands extents than the rest of 

the city, especially in 2001 and 2015. Generally, in 1984, the relative radiant temperatures were 

generally higher in the south-western areas (mostly between 0.005 and 0.015), than in the 

northern areas (below mostly 0.05). The northern areas are mostly occupied by middle and 

high income earners (Kamusoko, et al., 2013) who can afford to protect and maintain greenery, 

thus benefiting from its cooling effect. A study by (Cai, et al., 2011) observed high urban heat 

island intensities in areas of high building density and other impervious surfaces and low heat 

intensities on grasslands, trees and water bodies.  
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Figure 6.3: Distribution of relative heat intensities in the year (a) 1984, (b) 1993, (c) 2001 and 

(d) 2015. 

The green island proportion decreased from 54.95 to 5.57%, while the violent level of UHI 

(relative radiant temperature above 0.02) increased from 0.01% to 26.18% from 1984 to 2015 

(Table 6.7). In 1984 and 1993, green and weak heat islands (relative radiant temperatures below 

0.005) covered more than 50% of the total area while stronger to violent heat islands occupied 

less than 20%. Strong to violent UHI levels increased in coverage from below 20% in 1984 to 

above 70% of the total area in the year 2015, implying that a significant proportion of Harare 

warmed significantly between 1984 and 2015. This finding is in agreement with the known 

increase in heating island coverage due to effect of impervious surfaces as urbanized area 

expands (Li et al., 2012; Zhang, Qi, et al., 2013). Expansion of surface urban heat island as the 

city expands is also in tandem with observation in the expanding Lahore District, Pakistan 

between 2000 and 2011 (Sha & Ghauri, 2015).  

 

Table 6.7: Proportion covered by UHI levels in 1984 and 2015 in Harare. 

 Proportion (%) 

UHI level 1984 1993 2001 2015 

Green Island 54.95 23.94 13.41 5.57 

Weak 24.82 29.05 7.84 8.13 

Strong 12.48 26.18 19.39 11.58 

Stronger 7.31 16.49 28.90 15.31 

Strongest 0.44 3.44 18.74 33.23 
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Violent 0.01 0.90 11.72 26.18 

 

6.3.4 Changes in the contribution of LULC types to thermal characteristics of Harare 

The major contribution to warming in the city comes from high density residential areas, due 

to their larger coverage, than CBD/industrial areas (Figure 6.4). The warming is explained for 

example by the contribution index for high density residential areas which increased from 

0.457 in 1984 to 0.879 in 2015. In 1984, green-spaces had the largest cooling effect which has 

been replaced by residential areas. The cooling contribution of green-spaces in the city has 

reduced from -0.553 in 1984 to -0.133 in 2015 (Figure 6.4). On the contrary, the cooling 

contribution of low-medium density residential areas increased slightly between the periods as 

evidenced by a negative contribution index of -0.324 in 1984 to -0.337 in 2015. During the hot 

season, surrounding croplands are mostly left bare, warming the city as indicated by positive 

CI values in 1984, 1993, 2001 and 2015. Most of the croplands have been converted to built-

up areas, mainly high density residential areas, resulting in a reduction of the contribution to 

summer warming from CI value of 0.239 in 1984 to 0.066 in 2015. The contribution of 

water/wetlands to cooling was more in 1984 (-0.242) than in 1993 (-0.144), 2001 (-0.167) and 

2015 (-0.145). Consistent with previous studies, CI was negative in vegetation and water 

covered areas and positive in areas with high building density (Xu, et al., 2013). However, CI 

was also negative in low-medium density residential areas, due to cooling effect of vegetation 

as these areas have high vegetation fraction (Mushore, et al., 2016). This observation agrees 

with decreases in the cooling effect of vegetation as their coverage was reduced by replacement 

with buildings between 1984 and 2015.  

 

 
Figure 6.4: Contribution of LULC types and their changes to heating in Harare. *HDR: high 

density residential areas and *LMR: low-medium density residential areas 
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6.3.5 Normalized effect of land cover transformation on temperature of a location 

Results in Table 6.8 show that changing from cropland to low-medium density residential 

reduces temperature of the converted area by 4.03oC while conversions of low-medium to high 

density residential areas raise temperature by 3.78oC. The constructions of CBD/Industrial 

areas within low-medium density residential areas raise temperature of the area by 2.88oC. A 

very large reduction of 4.88oC would be experienced by converting a high density residential 

area portion to a water body. On the contrary, very small changes in temperature occur when 

industries are constructed in high density residential areas (0.90oC) as well as when green-

spaces are converted to low-medium density residential areas (-0.16oC). The small change is 

consistent with  Adebowale and Kayode (2015) who observed that the thermal characteristics 

of high vegetation density closely resemble those of water bodies. Similarly, conversion of bare 

to industrial areas also resulted in small change in temperature (0.90oC) during the hot season. 

Bare areas, which include land cleared for construction, are often dry during the hot season, 

resulting in high radiant heat transfer which almost equates that of areas with high building 

density. Rasul et al., (2015) observed that bare areas are as warm as built up areas with low 

vegetation cover. Other studies (Grossman-Clarke et al., 2010; Weng et al., 2007) also 

observed large changes in temperature when natural surfaces were replaced with buildings and 

impervious material. For example, Grossman-Clarke et al. (2010) observed that conversion of 

vegetated areas to built-up and impervious surfaces increases daytime temperatures by 2-4oC. 

Table 6.8: The matrix for normalised changes in average temperature per LULC conversion 

scenario. 

 Initial land use and land cover class 

Converted to CBD/ 

Industrial 

High 

density 

Low-

medium 

Croplands Green-

spaces 

Water 

CDB/Industrial 0 -0.9 2.88 -1.15 2.72 3.65 

High density 0.9 0 3.78 -0.25 3.62 4.55 

Low-medium -2.88 -3.78 0 -4.03 -0.16 0.77 

Croplands 1.15 0.25 4.03 0 3.87 4.80 

Green-spaces -2.72 -3.62 0.16 -3.87 0 0.93 

Water -3.65 -4.55 -0.77 -4.80 -0.93 0 

*Low-medium: low-medium density residential areas   *High density: High density 

residential areas 

 

6.3.6 Normalized change in average temperature of Harare in response to LULC 

changes 

Results in Figure 6.5 show that in absence of other anthropogenic and natural effects, LULC 

would still have increased the average land surface temperature of Harare by 0.98oC. However, 
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due to a combination of LULC changes and other factors, the temperature increased by close 

to 1.9oC during the entire study period. It should however be noted that the implication of other 

factors were not measured in this study, which made it difficult to further isolate natural effects 

from other anthropogenic effects, such as changes in greenhouse gas concentrations. The 

temperature increase due to LULC conversion is consistent with literature, for instance 

Grossman-Clarke, et al. (2010) noted that urbanization can raise daytime surface temperatures 

by 2 to 4oC. Sweden for instance experienced a 1.6oC increase in temperature between 1951 

and 2000, while Turkey experienced a rise of 0.5-1.5oC between 1975 and 2005 due to 

population growth, urbanization and LULC changes (Elmhagen et al., 2015; Sertel, et al., 

2011). Similarly, eastern Australia recorded summer warming of 0.4-2oC from 1951 to 2003 

(Mcalpine et al., 2007). Findings in this study are also consistent with existing literature which 

suggest that anthropogenic influences account for a larger proportion (above 90%) of causes 

of temperature rises than natural causes (Loehle, 2011; Hartmann, et al., 2013).  

When all climate forcing factors are considered, the temperature increased by approximately 

1.9oC between 1984 and 2015. In consistency with Ahmed et al., (2013) and Zhou & Wang, 

(2011), temperature changes were observed even in areas with no LULC conversion, implying 

that modification of urban land surface is not the only cause of temperature increase. However, 

modification of surface characteristics may enhance the background effect of global warming. 

This is based on the notion that anthropogenic heat emissions increase with built extent and 

that heat island raises temperature and induces global warming (Blake, Curitiba, et al., 2011). 

Our findings concur with the view that LULC changes significantly modify temperature of an 

area and also magnify warming due to increases in long wave radiation in the lower atmosphere 

(Nayak & Mandal, 2012). 
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Figure 6.5: Normalized link between LULC changes and changes in temperature. 

Overall, increase in proportion of an urban area occupied by buildings, dry bare areas and 

impervious surfaces caused and increase in temperature within Harare. Urban LULC changes 

in the form of expansion of built-up and impervious area significantly changes the temperature 

of a city. This influence exchange of energy and modifies the transfer of energy and moisture 

between the land surface and the atmosphere (Nayak & Mandal, 2012). The transformation 

also exposes the area to further rises in temperature. Moisture and surface wetness play 

significant role in reducing temperature. The overall value of green-spaces and wetlands to 

mitigate temperature rises depends on the proportion of the city which they occupy (Rasul, et 

al., 2015).  

 

6.4 Conclusions 

Utilizing the benefit of archival Landsat series data, the following conclusions can be drawn 

from the study; 

1. Land cover conversion accounts for a significant proportion of changes in temperature 

due to urban growth,  

2. The observed intra-class increases in temperature are indicative of the influence of the 

effect of other factors, than LULC conversion, such as ozone depletion, 

3. Larger rises in temperature over a thirty-year period were observed in built than in non-

built environments, and 

4. Residential built densification influenced temperature changes i.e. larger changes were 

observed in high density than low-medium density residential areas.  
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6.5 Link between Chapter 6 and other chapters 

Chapter 5 established the responses heat island intensities to seasonal LULC changes in Harare 

and obtained that other seasons have tolerable heat island intensities than the hot season. This 

is in the background of long term rising temperatures hence the need to investigate impact of 

global warming on heat island intensities. Chapter 6 thus investigated the long term 

implications of historical changes in LULC on land surface temperatures. The findings showed 

that urban growth results in expansion of areas which experience high land surface 

temperatures in the hot season. Growth of high density residential areas with high built-up 

proportion has resulted in intense heat islands in these areas which are also expanding with 

time.  The study paved way for the need to understand the potential socio-economic 

implications leading to Chapter 7 which assessed the potential effect of these changes on air 

conditioning energy demand.  
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CHAPTER 7: ASSESSMENT OF IMPACT OF URBAN LAND SURFACE 

TEMPERATURE CHANGES ON INDOOR AIR-CONDITIONING ENERGY 

DEMAND IN A RESOURCE 

 

 

 

 

 

 

 

 

 

 

This chapter is based on: 

Mushore T. D., Odindi J., Dube T., Mutanga O. (2017). Understanding the relationship 

between urban outdoor temperatures and indoor air-conditioning energy demand in Zimbabwe. 

Sustainable Cities and Society Journal, 34, 97-108, 

http://dx.doi.org/10.1016/j.scs.2017.06.007 
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7.0 Abstract 

Urbanization causes thermal elevation which increase household energy consumption through 

air conditioning to reduce human heat stress. The objective of this study was thus to quantify 

the long term changes in potential energy requirements for indoor space warming and cooling 

in the built environment of Harare using remotely sensed satellite data. Landsat and in-situ 

temperature data were used to determine land use and land cover distribution, as well as to 

estimate trends in air conditioning energy requirements between 1984 and 2015. Daytime 

Heating Degree Days (HDD) and the Cooling Degree Days (CDD) derived from Landsat 

thermal data and in situ temperature measurements were used as a measure of indoor heating 

and cooling energy in the cool and hot season, respectively. Due to surface alterations from 

urban growth between 1984 and 2015, surface temperature increased on average by 2.26oC and 

by 4.10oC in the cool and hot season, respectively. This decreased potential indoor heating 

energy needed in the cool season by 1 degree day and increased indoor cooling energy during 

the hot season by 3 degree days. In-situ observations revealed that energy consumption in 

residential areas of Harare increases with temperature in summer and the opposite in winter. 

Findings in this are important for implementation of mechanisms to rationalize power supply 

based on spatial differences in levels of need for air conditioning. The findings are also relevant 

for authorities to devise measures to capacitate the most vulnerable societies, such as by 

subsidizing electricity for the urban poor, and ensure that they are protected from stress due to 

low or high temperature.      

     

Keywords:  Urbanization, heat island, climate change, thermal, heating degree day, cooling 

degree days
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7.1 Introduction 

Urbanization-induced land use and land cover (LULC) distribution and change alter the energy 

and water balances, causing thermal elevation as natural covers are replaced by impervious 

surfaces (Nayak & Mandal, 2012). Built up areas absorb and radiate high amounts of heat 

energy while green-spaces act as heat sinks as they are porous and assimilate local heat (Sithole 

& Odindi, 2015). Furthermore, preferential heating of the city, in comparison to the  

surrounding creates convectional currents which further trap heat (Tursilowati, 2007). 

Generally, elevated temperatures increase resident’s thermal discomfort as well as heat related 

diseases and mortality (Guhathakurta & Gober, 2007; McDonald et al., 2011a; Hallegatte & 

Corfee-Morlot, 2010). Urbanization also increases economic strain, particularly in developing 

countries,  as necessary interventions are required to cope with thermal change related impacts 

(Brown., et al., 2012). Depending on the season, urban thermal characteristics influence energy 

demand for indoor heating and cooling to ensure human comfort. Thermal elevation arising 

from urbanization may therefore alter energy requirements due to increased built-up density. 

Increased energy requirements to mitigate household thermal elevation like air-conditioning 

have been associated with rise in greenhouse gas concentration which further raised 

temperature and household cooling energy demand. Hence there is need to monitor responses 

of energy demand to localized warming for sustainable urban growth and management of risks 

associated with indoor thermal discomfort. 

 

Several studies have attempted to estimate the impact of urbanization on energy consumption 

for heating and cooling, however, each approach has its own limitation. Among others, studies 

have utilized household electricity bills to determine impact of urban growth on energy 

consumption through air conditioning (Hirano, et al., 2009; Souza, et al., 2009; Shahmohamadi, 

et al., 2010; Arifwidodo & Chandrasiri, 2015). Shahmohamadi et al. (2010) for instance 

established that energy consumption in the United Kingdom, United States of America and Sri 

Lanka household energy consumption increased with land surface temperature and 

intensification of urban heat island (UHI). However, the major limitation of this approach is 

that household electricity usage is not restricted to air conditioning but include other usage like 

refrigeration, lighting and cooking (Ewing & Rong, 2008). Degree Days derived from 

temperature have also been as a proxy for energy requirement for indoor cooling or heating 

(Vardoulakis, et al., 2013; Arifwidodo & Chandrasiri, 2015; Ewing & Rong, 2008). Degree 

Days are based on a base temperature below or above which human discomfort is triggered, 

thus a direct measure of need for space heating and cooling (Bolattürk, 2008). Cooling Degree 
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Days (CDD) provide a measure for energy for space cooling while Heating Degree Days 

(HDD) infer energy for household warming (Christenson, et al., 2006). Degree Days strongly 

relate with energy consumptions. (Balaras, et al., 2005) for instance found a strong positive 

correlation between CDD and energy in European cities. However, a major limitation in the 

adoption of Degree Days in previous studies is the use of in-situ measurements of temperature, 

characterized by limited spatial coverage (Stathopoulou, et al., 2006). (Stathopoulou, et al., 

2006) for instance, noted that even in developed countries multiple meteorological stations 

within 1km2 are rare. Hence in-situ observations are commonly unrepresentative and unable to 

capture temperature variation, especially in urban landscapes characterized by heterogeneous 

land-use-land-cover types with high thermal variability (Ogrin & Krevs, 2015). This limitation 

is even worse in most developing countries, especially in Africa, often characterized by limited 

meteorological stations coverage, in-adequate to effectively depict urban landscape 

heterogeneity (Owen, et al., 1998; Shahmohamadi, et al., 2010; Tao, et al., 2013; Zhou & 

Wang, 2011a).  

 

The emergence of thermal space-borne remotely sensed data offer great potential in 

determining intra-urban thermal characteristics, hence spatial characterization of space heating 

requirements. Furthermore remotely sensed data offer a cost effective means for spatio-

temporal analysis and a rich archival data, spanning over 30 years, valuable for climate change 

analysis (Senanayake, et al., 2013; Tao, et al., 2013; Owen, et al., 1998). However, despite the 

proliferation of remotely sensed data, its spatial coverage and improvements in data quality 

such as in radiometric resolution, its adoption to estimate trends in cooling and heating energy 

has remained limited. To the best of our knowledge, only a single study (Stathopoulou, et al., 

2006) has used satellite data to estimate energy consumption in space cooling using Degree 

Days. In their study, Stathopoulou, et al. (2006) used National Oceanic and Atmospheric 

Administration’s (NOAA) Advanced Very High Resolution Radiometer (AVHRR) thermal 

data and estimated Cooling Degree Days (CDD) with an error of 2.2 degree cooling days when 

compared to retrievals from in-situ temperature data. Furthermore, they obtained a strong 

correlation (R2=0.78) between estimated and observed CDD for a base temperature of 25 oC. 

However, NOAA AVHRR has low spatial resolution of 1.1 km, which may cause errors due 

to an assumption of uniform temperature over a relatively large and heterogeneous area that 

often, characterize urban landscapes. Therefore, medium resolution Landsat series data offer 

great potential to improve estimation of energy requirements for indoor cooling and heating.  
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Although not yet used to estimate Degree Days, Landsat data has been instrumental in the 

estimation of spatial and temporal variations of temperature even in complex urban 

environments. Landsat has long history of freely-downloadable archival data dating back to 

1972, making the series suitable for temperature estimation at single day, seasonal and long 

term temporal scales (Gusso, et al., 2014; Tao, et al., 2013). In comparison to in-situ 

observations, surface temperatures estimated from Landsat are on cloud-free days enabling 

estimation of extreme energy consumption levels. The spatial resolution of the thermal data 

enables mapping of variations in energy demands between built-up regimes. This is important 

for identifying the most vulnerable strata and communities, power supply rationalization and 

in designing of future housing. Furthermore, at the spatial resolution of thermal data from 

Landsat missions, temperature is estimated over comparatively smaller units than using NOAA 

AVHRR thus capable of improving accuracy of measurement of Degree Days satellites in 

urban areas. This is made possible by the capability of Landsat data to produce detailed maps 

of both LULC and potential thermal stress. At the spatial resolution of multi-spectral data from 

Landsat, it is possible not only to extract built-up areas but also to further zone them based on 

characteristics such as density of buildings and vegetation cover fraction. This is important in 

accurately mapping the complex urban thermal characteristics as well as their impacts which 

vary within short space. We therefore hypothesize that Landsat data with lower spatial 

resolution can quantify Degree Days and air-conditioning energy demand in complex urban 

settings better than in-situ observations. 

 

The objective of this study was thus to quantify the impact of urbanization on energy 

consumption for indoor heating and cooling energy in Harare, an emerging African city, using 

remotely sensed data. Specifically, the study adopts LULC changes between 1984 and 2015 to 

quantify the city’s growth and monitors subsequent response of energy consumption. The study 

achieves this by quantifying differences in heating and cooling energy requirements based on 

built-up categories, i.e. Central Business District, high, medium and low density residential 

areas. The study thus presents a novel approach of estimating Heating and Cooling Degree 

Days as well as their link with actual energy consumption using medium resolution space-

borne satellite remote sensing datasets.  
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7.2 Materials and methods 

7.2.1 Description of the study area 

The study was conducted in Harare, the capital city of Zimbabwe (Figure 7.1). Settlement 

regimes in the city are closely linked with income and the northern half of the city is mainly 

occupied by moderate to high income earners (Wania, et al., 2014). The city has a humid sub-

tropical climate with an average temperature of 18oC and mean rainfall of 850mm (Iied, 2011). 

It experiences four sub-seasons namely, the rainy season, post-rainy season, cool season and 

the hot season (Torrance, 1981). The city experiences temperature extremes i.e. lowest during 

cool season and highest during summer.  

 

 
Figure 7.1: Location of the study  

 

7.3 Remote sensing data processing 

7.3.1 Acquisition and pre-processing 

For the purpose of analyzing trends in Degree Days between 1984 and 2015, cloud-free 

summer and winter Landsat images acquired described in Table 7.1 were used. An independent 

set of cloud free images obtained between 1 January and 31 December 2015 was used to build 

and assess a model for estimating air temperature from Land surface temperature. We used 

Level-1 images corrected for geometric and radiometric distortion, currently available on the 

United States Geological Survey website (www.earthexplorer.usgs.gov). However, we further 

verified and corrected the images for positional errors using 30 control points obtained in the 
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field using a GPS as well as from auxiliary data points from easily identifiable features on the 

satellite images such as intersection of major roads. There were no cloud-free images for the 

month of June in 2001, hence the use of the 2002 image, assuming negligible differences. The 

same month was used in all years and each season to eliminate monthly differences in 

temperature. 

 

Table 7.1: Medium resolution Landsat data utilized in this study for long term analysis 

1984 (Landsat 5) 1993 (Landsat 5) 2001 (Landsat 7) 2015 (Landsat 8) 

11 May*  30 May* 26 April* 27 May* 

27 May* 2 August* 16 August* 12 June* 

4 September* 3 September* 1 September* 14 July* 

20 September# 19 September# 17 September# 16 September# 

6 October# 5 October# 19 October# 2 October# 

22 October# 21 October# 4 November# 18 October# 

*Cool season, #Hot season 

 

7.3.2 In-situ meteorological data 

In-situ minimum and maximum temperature data at monthly resolution were obtained from the 

Meteorological Services Department of Zimbabwe as well as from Kutsaga Research Station. 

Monthly maximum and minimum temperature data covering period from 1950 to 2010 were 

obtained the Meteorological Services Department of Zimbabwe’s Belvedere Weather Station 

in Harare (Latitude -17.83 and Longitude 31.02). Other datasets included temperature data for 

time and dates corresponding to cloud-free Landsat 8 images between 1 January and 31 

December 2015 were obtained from Kutsaga Research Station (Latitude -17.92 and Longitude 

31.13) and Harare Airport Meteorological Office (Latitude -17.93 and Longitude 31.01). The 

three are the only collection sites for weather data in Harare hence the station density is sparse. 

 

7.3.3 Energy consumption data 

Historical energy consumption data was obtained from the Zimbabwe Electricity Transmission 

and Distribution Company covering a period from 2009 to 2016 at monthly resolution. In order 

to obtain the data, the researcher negotiated with the Tariffs Department of the organization 

who facilitated the requested and later provided that data. The data was in two categories 

namely residential and industrial thus generalized and could not provide a picture of the 

differences in energy consumption between residential types. In order to obtain information 

about consumption for different residential types, we conducted a field survey for acquiring 

the information from household energy bills. However, using this technique, we only managed 

to get average monthly household consumption for high density, medium density and low 
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density residential areas for recent months. Due to recording keeping constraints, residents 

could not provide historical data hence seasonal and long term analysis could not be done at 

residential type. 

 

7.3.4 Urban growth detection between 1984 and 2015  

To determine the city’s LULC classes, field identification and collection of representative GPS 

points were done from 1 to 30 of April 2015. Six major classes (described in Table 7.2) were 

identified.  To capture intra- and inter-class variability, well distributed 120 GPS points per 

class collected across the city were captured (Mushore, et al., 2016). Using Support Vector 

Machines (SVM) algorithm, a supervised classification was done to map LULC distribution in 

1984, 1993, 2001 and 2015. The SVM algorithm was selected due to its superior classification 

accuracy, in comparison to other commonly used schemes like Maximum Likelihood Classifier 

and Artificial Neural Networks and low ground truth data requirement for training (Adelabu, 

et al., 2013). Field generated points, auxiliary data and expert knowledge of LULC classes 

were used to create ground truth polygons (Regions of Interest - ROI) for training the 

classification and accuracy assessment in the ENVI Version 4.7 software. Classification using 

ROIs has been found to yield higher accuracy than points (Acharya, et al., 2015). Accuracy 

assessment was done using the kappa index, Overall Accuracy (OA), User Accuracy (UA) and 

Producer Accuracy (PA) for each year. LULC maps were used to determine the area covered 

by each LULC type in 1984, 1993, 2001 and 2015. The city growth was determined as the 

difference between the areas covered by each LULC class over the study period. 

 

Table 7.2: Description of general land use and land cover types identified in Harare 

LULC class Description 

Central Business 

District (CBD) 

Areas with very high density of buildings and a very high 

proportion of impervious surface that include central business 

district and industrial areas. 

High density residential 

(HDR) 

High density of buildings and also including low vegetation cover 

fraction. 

Medium density 

residential (MDR) 

Moderate to high income residential areas with moderately spaced 

out buildings and high vegetation cover fraction. 

Low density residential 

(LDR) 

High income residential areas with spaced out buildings and high 

vegetation cover fraction. 

Croplands (Cr) Areas where intra-urban agriculture is practised including 

research sites which could be bare in the dry season 

Green-spaces (Gr) Areas covered by grasslands and clusters of tree characterised by 

high vegetation fraction even during the dry season. 

Water (Wt) Areas covered by water bodies or wetlands. 
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7.3.5 Link between LULC and seasonal LST changes  

Land surface temperatures for summer and winter were computed using corresponding thermal 

infra-red bands for 1984, 1993, 2001 and 2015 obtained from Landsat missions on dates 

presented in Table 7.1. In order to minimize effect of randomness due to variations in weather 

conditions associated with single date analysis, at least three cloud free thermal images were 

used per season for each year. Therefore, for each seasonal analysis an average land surface 

temperature was retrieved from multi-date thermal data. A number of studies including 

Sobrino, et al. (2004) have describe the method for retrieval of land surface temperature from 

a single thermal infra-red channel of Landsat, which was also followed in this study. The 

procedure involves the use of raw digital numbers (DN) of thermal bands to derive thermal 

spectral radiances (Lλ) for each season which are further utilized to compute brightness 

temperature (Tb). Band 6 of Landsat 5, high gain Band 6 of Landsat 7 and Band 10 of Landsat 

8 were used for this retrieval of land surface temperature (Jalan & Sharma, 2014; Chen, et al., 

2006; Abutaleb, et al., 2015). Initially, spectral radiances were derived from each thermal band 

using Equation 7.1 where Gain and Offset are supplied with the data and differ for Landsat 5, 

7 and 8  

𝑳𝝀 = 𝑮𝒂𝒊𝒏 ∗ 𝑫𝑵 + 𝑶𝒇𝒇𝒔𝒆𝒕                Equation 7.1 

The thermal radiances were used to calculate brightness temperature by implementing Equation 

7.2 

𝑻𝒃 =
𝑲𝟐

𝐥𝐧(
𝑲𝟏
𝑳𝝀

+𝟏)
                  Equation 7.2 

The calibration coefficients, K1 and K2 were obtained from metadata files as they vary for 

different Landsat missions. Brightness temperature assumes uniform emissivity and that all 

landscapes are blackbodies, hence the need for emissivity correction (Wang, et al., 2010). For 

each season and year, land surface emissivity (ɛ) was derived from Normalized Difference 

Vegetation Index (NDVI) in each year as described in Sobrino and Raissouni (2000). Land 

surface temperature was derived by correcting brightness temperature layers of surface 

emissivity differences using Equation 7.3: 

𝑻𝒔 =
𝑻𝒃

{𝟏+(
𝝀𝑻𝒃

𝝆
𝐥𝐧 𝜺)}

                 Equation 7.3 

Where λ represents the wavelength of the emitted radiance while ρ=1.438X10-2m 

(Stathopoulou et al., 2004; Sobrino & Raissouni, 2000; Sobrino, et al., 2004). The temperatures 

were re-classified into similar classes for each season and coverage of corresponding classes 

tabulated against each other for comparison of values in different years. The changes in the 
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coverage of temperature classes were used to indicate the extent and direction of the cool and 

hot season temperatures between 1985 and 2015. The changes were also used to compare the 

extent of temperature changes between the cool and hot seasons. In order to test for statistical 

significance of the land surface temperature changes, the Shapiro Wilk test showed that 

temperature distributions were non-parametric (p>0.05). Therefore, we log-transformed the 

temperature data and performed repeated measures Analysis of Variance (ANOVA) with initial 

hypothesis, Ho: µ1= µ2= µ3= µ4 and alternative, H1: the mean temperatures for 1984, 1993, 

2001 and 2015 are not equal. 

 

7.3.6 Estimation of impact of urbanization on energy consumption in buildings 

We proposed and utilized a method of assessing the impact of urbanization induced changes in 

temperature on energy demand for air conditioning using Landsat imagery. We used the 

daytime Degree Days to estimate the impact of temperature changes on energy consumption. 

Computation of Degree Days requires outdoor air temperature measurements which are usually 

obtained from in-situ observations. However, in-situ observations have limited spatial coverage 

thus inadequate to represent temperature variations in an urban landscape. Therefore, in order 

to improve the spatial representation of temperature distribution, we estimated air temperature 

from Landsat’s mean daytime land surface temperature retrievals for each year. This estimation 

requires a regression model which accurately transfers from remotely sensed surface 

temperature to a map of air temperature at the same resolution as thermal imagery of Landsat. 

Linear regression model can be used to estimate air temperature (Tair) from land surface 

temperature (Ts) where measurements coincided in time if the correlation is strong. For 

example, in order to calculate Degree Days from NOAA AVHRR satellite data, Stathopoulou, 

et al. (2006) developed a model to retrieve air temperature from midday land surface 

temperature. We therefore used in-situ observations coinciding with surface temperature 

measurements during overpass times of Landsat 8 obtained between 1 January and 31 

December 2015 (cloud free only) to develop and test a  simple linear regression function in 

order to estimate air temperature at the time of Landsat’s overpass.  

 

 The retrieved estimates of a temperature were used to derive Degree Days using Eq. (3) and 

(4). The trends in energy consumption for space heating were estimated using the mean daytime 

Heating Degree Days (HDD) retrieved from surface temperatures of the cool season in 1984, 

1993, 2002 and 2015. The mean daytime HDD were calculated by subtracting the mean 

daytime temperature from a base temperature of 18oC, widely proposed in literature 
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(Santamouris, et al., 2001; Sivak, 2009; Bolattürk, 2008; Sailor & Pavlova, 2003; Guerra 

Santin, et al., 2009). Mean daytime HDD for the cool season for each year was retrieved using 

Equation 7.4: 

𝑯𝑫𝑫 = 𝑵(𝑻𝒃𝒂𝒔𝒆 − 𝑻𝒂𝒊𝒓)                Equation 7.4 

N is the number of days and the term in brackets is a daily average difference between base 

and air temperature. In this study we focused on an average cloud-free day in the cool and hot 

season, therefore N was 1 day. We also estimated trends for energy demand for space cooling 

in the hot seasons using the mean daytime Cooling Degree Days (CDD) on cloud-free days in 

1984, 1993, 2001 and 2015. The CDD was computed relative to a base temperature (Tbase) of 

18oC (65oF) using Equation 7.5:  

𝑪𝑫𝑫 = 𝑵(𝑻𝒂𝒊𝒓 − 𝑻𝒃𝒂𝒔𝒆)                           Equation 7.5 

The base temperature was defined as the outdoor temperature above which ambient cooling is 

required and below which space heating is required (Eto, 1988). Whereas the choice of base 

temperature has been widely varied, as studies have used values ranging from 8 to 26oC 

(Bolattürk, 2008; Christenson, et al., 2006; Büyükalaca, et al., 2001; Durmayaz, et al., 2000; 

Sarak, 2003; Dombaycı, 2009; Satman & Yalcinkaya, 1999; Papakostas & Kyriakis, 2005). 

The 18oC was selected in this study due to its apparent popularity in literature (Santamouris et 

al., 2001; Sivak, 2009; Bolattürk, 2008; Sailor & Pavlova, 2003; Guerra Santin et al., 2009). 

According to Bolattürk (2008) the use of a base temperature of 18oC makes an analysis standard 

and comparable to other studies globally by assuming that the temperature where energy is 

demanded for heating and cooling is the same everywhere. For this reason, a base temperature 

of 18oC was chosen in this study. 

 

7.3.7 Estimation of mean CDD and HDD using in-situ temperature observations 

Average minimum temperature was used to estimate the average HDD for the cool season with 

a base temperature 18oC. The average maximum temperature in the hot season of each year 

and the same base temperature were used to estimate CDD for the entire period. Typically, 

hourly and daily average dry bulb temperature is used, however, use of maximum and 

minimum temperature has grown in popularity e.g. (Dombaycı, 2009) used maximum and 

minimum to determine degree days for 79 city centers in Turkey. Time series for HDD and 

CDD were plotted in order to determine their trend and significance assessed using the p-value 

at 95% significance level. The temporal patterns in HDD and CDD from in-situ observations 

were compared with respective remotely sensed distributions. 
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7.3.8 Accuracy assessment of degree days’ estimation 

Cloud-free Landsat 8 data obtained in the period between January and December 2015 were 

used to assess accuracy of degree days estimated from Landsat series. The period was chosen 

due to availability of in-situ observations at overpass time. For coincident observations, CDD 

was computed using both in-situ and satellite temperature observations. The same procedure 

and base temperature as described above were used. Therefore, in-situ observations produced 

Observed CDD while Estimated CDD was obtained from satellite thermal data. Accuracy of 

Estimated CDD against Observed CDD was measured using Mean Absolute Error and 

Percentage Error. 

 

7.4 Results and discussion  

7.4.1 Urban growth and LULC changes between 1984 and 2015  

Figure 7.2 shows changes in land use and land cover distribution in Harare between 1984 and 

2015 (overall accuracy>80% and kappa>0.75 for all classifications). The overall classification 

accuracy were higher in 2015 (84.4%) and 2001 (89.4%) than in 1993 (83.9%) and 1984 (82.6). 

All the classification accuracies were above the 80% threshold recommended by Omran 

(2012).  
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Figure 7.2: Land use and land cover maps for Harare in 1984 and 2015. 

 

The Producer and User Accuracies (PA and UA) were greater than 70% for all the LULC 

classifications performed (Table 7.3). Furthermore, high PA and UA for all classes indicate 

that Landsat could be effectively used to distinguish between complex urban LULC classes, 

categorizing areas according to built-up densification. As such, four built-up density categories 

found in Harare were easily separated using the 30 m multi-spectral Landsat data. Based on 

visual inspection of Figure 7.2 the area covered by green-spaces and croplands decreased 

between 1984 and 2015. These were replaced by built-up areas, mostly the high density 

residential areas which increased in coverage between the periods. 

 

Table 7.3: Classification accuracies per LULC class for different years 

LULC 1984 1993 2001 2015 

 OA UA OA UA OA UA OA UA 

DB 86.06 93.70 88.37 97.67 84.12 94.25 87.96 91.65 

HDR 83.14 75.66 94.28 79.79 94.50 86.22 94.49 81.97 
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MDR 84.88 82.54 78.60 99.76 82.49 90.02 75.55 73.21 

LDR 88.10 80.91 87.30 83.67 94.75 89.62 88.25 80.96 

GR 93.45 86.98 92.80 91.94 96.65 96.15 94.66 89.90 

CR 79.74 73.28 37.67 65.53 70.75 73.57 77.64 82.93 

Wt 96.54 99.13 70.74 82.61 97.96 100.00 97.48 99.79 

 

High density residential areas increased in coverage from 234.15 km2 to 334.50 km2 while the 

CBD class also increased from 29.49km2 to 53.21 km2. Significant decreases were noted in 

green spaces which reduced in coverage from 216.45 km2 in 1984 to 72.53 km2 in 2015. 

Expansion of built up areas has also led to a reduction in remnant cropland within the city from 

193.53 to 81.91 km2 between 1991 and 2015. The area covered by low-medium density built-

up category increased from 257.57 km2 to 310.70 km2 during the same period, a finding 

consistent with Kamusoko, et al. (2013)  who showed an increasing built up trend within the 

city.  Kamusoko et al. (2013) also showed that settlements are more spacious in the northern 

than the southern and southwestern suburbs.  

 

7.4.2 LST changes between 1984 and 2015 

Visual inspection of Figure 7.3 shows an upward temperature shift within the city, indicating 

warming of the cool season. The coverage of warm temperature categories (22-30oC) increased 

in the southern and western parts of the city. Figure 7 shows that the northern and eastern areas 

were dominated by lower (12-20oC) temperatures. However, in 2015, most of these areas had 

shifted to the 18-22oC temperature range in winter. The high temperature (24-30oC) category 

was prevalent within the city’s CBD in 2015. Other winter temperature hotspots were observed 

in the southwestern area, where highest density of residential areas and in the southeastern area 

around the city’s major airport. Generally northern and eastern areas have remained cooler over 

time with daytime surface temperatures mostly below 22oC. 
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Figure 7.3: Long term changes in cool season land surface temperature distribution in Harare 

 

There was decrease in areal coverage of the 12 to 22oC category and increase in the 22 to 30oC 

category in the cool season between 1984 and 2015. For example, the 22 to 30oC temperature 

range covered less than 330km2 in 1984, which increased to more than 600 km2 in 2015. 

Daytime surface temperature in the 12 to 18oC range occupied 157.47 km2 in 1984 but declined 

to 30.50 km2 in 2015. 

 

Daytime temperatures also shifted towards high temperature ranges between 1984 and 2015 in 

summer (Figure 7.4). Temperature values greater than 36oC were not common in 1984 while 

they were covering a significant proportion of the city in 2015. Although land surface 
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temperature increased in all areas, greater warming was observed in the southwestern parts 

than in the northern areas.  

 

 
Figure 7.4: Long term changes in summer-time land surface temperature distribution in Harare 

 

Temperatures in the 23-32oC category were experienced in more than 600 km2 of the area in 

1984, which decreased to 7.89 km2 in 2015. This implies that more areas were experiencing 

high daytime surface temperature (greater 36oC) during in the hot season in 2015 than in 1984. 

For example, the coverage of places experiencing temperatures greater than 36oC increased 

from 0.27 km2 to over 580 km2. Daytime summer warming was more pronounced in the central, 

southern and western parts than the rest of the city. Therefore, in response to increases in the 

coverage of built-up and impervious areas, daytime temperature increased, making the hot 

season even hotter on an average cloud-free day.  
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The observed increase in temperature over time due to urbanization is in agreement with 

existing literature (Adebowale & Kayode, 2015; Cinar, 2015; Grossman-Clarke, et al., 2010). 

For example, Grossman-Clarke et al. (2010) noted an increase in daytime temperatures 

between 2-4oC from 1973 to 2005 in Phoenix Metropolitan Area. Such increases are mainly 

caused by reduction in evaporation and increase in sensible and ground heat flux due to 

conversion from natural to impervious surfaces (Weng, et al., 2007; Jalan & Sharma, 2014; 

Zhou & Wang, 2011a). Furthermore, human activities increase with city growth, resulting in 

increased pollution and enhanced warming due to release of anthropogenic heat (Flanner, 

2009). Flanner (2009), for instance noted that anthropogenic activities have potential to 

increase temperatures by 0.4 to 0.9oC. Temperature and warming were greater in summer than 

in winter between 1984 and 2015, which is attributed to differences in insolation received 

between the two seasons as a large amount is received during the hot season. The ANOVA 

showed that the changes in surface temperature of the cool and hot seasons between 1984 and 

2015 were statistically significant (p<0.05).  

 

7.4.3 Link between LULC and seasonal changes in LST between 1984 and 2015 

Built-up areas showed generally higher values and increases in winter temperature than non-

built LULC types in all the periods between 1984 and 2015. As indicated on Table 7.4, the 

effect of high built-up density in all the years was characterized by comparatively higher 

temperature in CBD and high density residential areas. The high temperatures in the CBD can 

be attributed to large coverage of impervious surfaces, which absorb heat reduced sky view 

that impedes radiation loss and heat removal by wind (Blake, Curitiba, et al., 2011). However, 

differences in temperature between the built-up areas were not significantly pronounced during 

the cool season. For example, in 2015, the average temperature for the CBD was 24.17oC while 

it was 23.96oC in medium density residential areas. This is consistent with (Gusso, et al., 2014) 

who noted that the amount of heat absorbed by buildings increases with amount of radiation 

received in the lower atmosphere. On average, the daytime surface temperatures for the cool 

season increased by 2.26oC as the city grew between 1984 and 2015. 

 

 

 

 

 

 

Table 7.4: Average long-term changes in winter surface temperature due to urbanisation 

LULC Average temperature (oC) 
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 1984 1993 2001 2015 Change 

CBD/Industrial 21.50 21.42 22.39 24.17 2.67 

High density 21.30 21.39 22.59 23.96 2.66 

Medium density 20.87 20.34 21.08 23.19 2.32 

Low density 19.93 19.41 19.65 22.13 2.20 

Green space 19.80 19.90 19.97 22.01 2.21 

Cropland 20.70 21.22 22.41 24.11 3.41 

Water 18.48 20.08 19.26 18.16 0.32 

Average 20.37 20.53 21.05 21.40 2.26 

Although temperature of the hot season increased in all areas within the city, lower values and 

increases in temperature were recorded in green-spaces and wetlands (Table 7.5). This finding 

is in agreement with Zhou and Wang (2011a) who detected lower changes in temperature in 

wetlands (-0.7oC) and in areas covered by vegetation (1.3oC).  Temperature was also low in 

low-medium density residential areas where vegetation fraction is generally high. However, 

temperature increased with an increase in built-up density (Table 8). Generally, vegetation 

within built-up areas and surface moisture offers mitigation against extreme temperature 

elevation by reducing temperatures through latent heat transfer (Rasul, et al., 2015; Tao, et al., 

2013). The findings are consistent with other studies (Sertel, et al., 2011) who attributed a 0.5 

to 1.5oC increase to urbanization in Marmara Region, Turkey between 1975 and 2005 and a 

0.4 to 2oC in eastern Australia attributed to LULC change (Mcalpine, et al., 2007). Similarly, 

the dependence of temperature change on LULC type agrees with Zhou and Wang (2011a) 

who observed changes as large as 5.1oC in agricultural areas while forests recorded a 

temperature change of 1.3oC. Besides the changes in temperature which occurred due to 

conversion from one LULC to another, the average temperature for each LULC type also 

increased between 1984 and 2015. This agrees with other studies which suggested that, 

globally, there is a background warming due to factors such as increase in greenhouse gas 

concentration, ozone depletion induced increase in long-wave radiation in the lower 

atmosphere and heat intensification due to solar cycles (Nayak & Mandal, 2012; Manatsa, et 

al., 2013). Therefore, urbanization-induced warming is superimposed on already rising 

temperature thus intensifying heat related extremes as well as elevating demand for adaptation 

and mitigation efforts in cities.  

 

 

 

Table 7.5: Average changes in summer surface temperature for different LULC types in Harare 

LULC Average temperature (oC) 

 1984 1993 2001 2015 Change 
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CBD/Industrial 30.98 32.86 34.21 37.04 6.06 

High density 30.83 30.91 32.98 35.76 4.93 

Medium density 30.18 30.33 31.29 33.87 3.69 

Low density 28.83 29.09 29.23 31.79 2.96 

Green space 28.64 29.57 30.12 31.10 2.46 

Cropland 29.37 31.52 33.23 35.81 6.44 

Water 21.03 22.15 22.94 23.20 2.17 

Average 28.55 29.49 30.57 32.65 4.10 

 

7.4.4 Relationship between in-situ and remotely sensed observation of mean Cooling 

Degree Days 

We developed a simple linear regression model for estimating air temperature from land 

surface temperature derived from Landsat thermal data (r-squared=0.68). The agreement 

between Degree Days modelled from Landsat thermal data with those from in-situ data at the 

time of overpass is displayed in Figure 7.5. The Degree Days estimated based on model closely 

compared with in-situ data based computation with relatively high accuracy as indicated by a 

mean percentage error of 21.2 % and Mean Absolute Error of 1.06 degree days. This was higher 

than accuracy attained in Athens, Greece using NOAA AVHRR land surface temperature with 

a base temperature of 25oC (Stathopoulou, et al., 2006). Stathopoulou, et al. (2006) obtained a 

Mean Absolute Error of 2.2oC, which could be due to generalization of temperature caused by 

the low spatial resolution of NOAH AVHRR compared to Landsat data. 

 

Figure 7.5: Scatter-plot of Observed against CDD estimated from Landsat data 

 

7.4.5 Effect of urban heat island on energy demand in Harare 

Figure 7.6 shows that mean energy consumption in residential areas of Harare increased as 

minimum and maximum temperature decreased during the winter season (May to September). 

During the summer season (October to March of the next year) energy consumption increased 
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as temperatures rose. Highest energy consumption in residential areas in the summer season 

(above 1.05X106KWh) corresponded with highest maximum temperature in October and in 

January. However, energy consumption was higher in winter than in summer. This suggests 

that during the winter season consumption is increased due to use of heaters as well as warm 

water for bathing in all residential areas. Even the urban poor who mostly characterize the high 

density residential areas who do not afford air conditioning facilities can warm water for 

bathing. The slightly lower energy consumption during the summer season suggests that some 

parts of the season are comfortable or residents especially in low income residential areas use 

natural ventilation to remove heat. This may also imply that, although maximum temperatures 

will cause discomfort, a large proportion of the residents do not afford air conditioning facilities 

and hence are vulnerable. This concurs with Mushore, et al. (2017a) who observed that heat 

vulnerability in Harare is high in high density residential areas due to factors which included 

low household income levels, high population density and physical exposure. Energy 

consumption in industrial areas was also higher in winter than in summer although responses 

to maximum temperature in summer were not as pronounced as in residential areas. 

 

Figure 7.6: Response of energy consumption to monthly temperature changes in Harare 

The mean daytime HDD values for the cool season were decreasing with time regardless of 

built-up density between 1984 and 2015. The decline in heat requirements for space heating 

increased with built-up density; largest in the CBD and high density residential areas where 

there was a decrease by 1 degree day and smallest in the low density residential areas where 

the decrease was about 0.5 degree days (Table 7.6). The general decrease in winter heating 

energy requirement concurs with observation of reduction in the number of cold days in 
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Zimbabwe (Chagutah, 2010). Mean HDD values were higher in low and medium density 

residential areas than in high density residential areas and the CBD in all years. This was 

because low and medium density residential areas have lower temperatures than other 

residential with higher built-up density. According to Kamusoko, et al. (2013), low density 

high income residential areas are characterized by high vegetation cover fraction. The 

vegetation which includes trees and lawns reduce the temperatures in these areas by 

evaporation cooling (Odindi, et al., 2015). Furthermore, the buildings are also spaced out, 

allowing cooling by advection due to low resistance to wind flow. Therefore, the low 

temperatures result in higher requirement of energy for indoor heating in the low density than 

other built-up areas during the cool season. 

On the contrary, energy demand for cooling during daytime in summer increased between 1984 

and 2015 as indicated by rising CDD in all residential types. For example, CDD increased from 

7.71 to 9.43 degree days in the CBD and industrial areas while it increased from 5.73 to 9.28 

in the low density residential areas. This was in tandem with (Blake, Curitiba, et al., 2011) who 

showed an increase in temperature since 1978 based on in-situ observations in the city. In 

consistence with Vardoulakis, et al. (2013) we also found that elevation of temperatures 

resulted in increases in CDD values hence leading to a rising trend in energy requirement for 

indoor cooling in the hot season. Throughout summer, daytime cooling energy requirements 

were larger in the CBD and high density residential areas than in the low-medium density 

residential areas. For example, in 2015, the CDD was 8.90 degree days in high density 

residential areas while it was 7.27 degree days in low density residential areas. This was 

because of the UHI effect which causes higher temperatures in areas within the CBD and high 

density of buildings (Guan, 2011; Salvati, 2015). Salvati (2015) noted that increases in 

temperature leads to increase in energy demand, which vary with urban density. Hirano, et al. 

(2009) also reported that energy consumption increased with total floor area such that it was 

high in densely built up areas, with buildings with more than two floors, hence very high 

daytime HDD in the CBD. Consistent with UHI spatial distribution, low-medium density 

residential areas have larger heating and lower cooling energy requirements. Mushore, et al. 

(2016) and Kamusoko, et al. (2013) established a high vegetation fraction, which increase 

cooling by latent heat transfer in these areas. The range of CDD values was consistent with 

mean midday CDD obtained using data from NOAA Advanced Very High Resolution 

Radiometer (AVHRR) in Athens, Greece (Stathopoulou, et al., 2006).  
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Table 7.6: Changes in energy requirement for air conditioning  

 Energy 

(KWh) 

Average daytime HDD Average daytime CDD 

 1984 1993 2001 2015 1986 1993 2001 2015 

CBD/Industrial - -3.04 -3.01 -3.40 -4.14 6.94 7.71 8.26 9.43 

High density 480 -2.97 -2.99 -3.49 -4.05 6.87 6.91 7.76 8.90 

Medium density 768 -2.79 -2.56 -2.87 -3.73 6.61 6.67 7.06 8.12 

Low density 1440 -2.39 -2.18 -2.18 -3.30 6.05 6.16 6.26 7.27 

*Energy=current mean monthly energy consumption per residential type 

However, although the CDD values showed that higher cooling energy requirements were in 

the high density residential than in the low-medium density residential areas, household income 

seemed to influence actual energy consumption differences. For example, Table 7.6 shows that 

mean energy consumption per household was inversely related to population density. As such 

low density residential areas had the highest mean monthly energy usage (1440KWh) while 

the lowest was in high density residential areas (480KWh). This is in tandem with Arifwidodo 

and Chandrasiri (2015) who observed a strong positive correlation between income, number of 

air-conditioning units in a house and energy consumption in Bangkok. Therefore, in Harare, 

the CDD can also be linked to heat health risks because heating requirement is high in the high 

density residential areas where the majority of residents are low-income earners (Wania, et al., 

2014). Similarly, in Indonesia the ratio of electricity need to income was a measure of 

vulnerability to temperature extremes (Batih & Sorapipatana, 2016). Therefore, residents in 

low CDD low-medium density residential areas have the potential to utilize larger amounts of 

energy in air conditioning due to high income. Although this was not determined as it fell 

outside the scope of the study, houses in low-medium density residential areas are generally 

more spacious and have wealthier occupants than in the high density residential areas. The high 

consumption of energy by residents with large houses and high income was associated with the 

capacity to own sophisticated air conditioning facilities (Ewing & Rong, 2008; Batih & 

Sorapipatana, 2016). 

 

Figure 7.7 shows that warming has reduced daytime requirements for space heating in the cool 

season and increased heat requirements for space cooling in buildings. Therefore, relative to 

the 18oC threshold for human comfort, urban warming has increased household requirement of 

energy for cooling in summer in Harare. The increase in requirement for space heating was 

larger than the decrease in energy requirement for space cooling, implying a net increase in 

energy requirement for air conditioning. The summer CDD trends are in agreement with 

projections that household energy consumption in Zimbabwe would increase from 133221TJ 
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in 1994 to 147190TJ in 2010 and further increase to 313045 in 2050 (Ministry of mines 

environment and tourism., 1998). In Rome and Barcelona, temperature elevation increased 

energy demand from 10 to 33% (Salvati, 2015).  

 

 
Figure 7.7: Estimated impact of urban warming on daytime household energy consumption 

 

7.4.6 In-situ observed long-term changes in space cooling and heating requirements 

In agreement with estimations from remotely sensed data, the city is warming as indicated by 

significant decrease in HDD derived from mean annual minimum temperature since 1950 

(p<0.05 at 95% confidence interval). The mean HDD are decreasing at an average rate of 

0.02oC per annum (Figure 7.8). The HDD values were positive; close to 3 degree days in the 

1950s, decreasing over time and approaching zero over time. Implying a trend towards 

reduction in indoor discomfort associated with low temperatures in the area over time. Both in-

situ based and remotely sensed HDD retrievals showed a trend of declining values indicating 

that indoor heating requirements are decreasing with time in Harare.  
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Figure 7.8: Changes in mean early morning space heating energy requirement in Harare 

Analysis of in-situ data between 1950 and 2010 also showed that mean annual maximum 

temperatures have also increased, leading to significant increase in daytime CDD (p<0.05). 

The CDD are rising at a rate of 0.02 degree days per annum as displayed in Figure 7.9. The 

values of CDD ranged between 6.5 and 10 degree days and increased by close to four between 

1950 and 2010, which is closely comparable to changes observed using Landsat thermal data. 

However, contrary to remote sensing retrievals, the CDD from in-situ temperature data showed 

variations with time. The difference is attributed to the fact that, contrary to remote sensing 

retrievals, in-situ average temperature includes observations on days that are not cloud-free. 

 

 

Figure 7.9: Changes in mean daytime space heating energy requirement in Harare 
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7.5 Conclusion 

Climate change induced by urbanization such as raising local temperature has potential to 

increase energy demand for space heating during the hot season. In the absence of air-

conditioning and other indoor heat removal technologies, urban communities are exposed to 

heat related distress. We investigated variations in indoor heating and cooling needs between 

residential types in a complex urban setting utilizing medium resolution Landsat thermal data. 

Previous studies relied mostly on in-situ meteorological data which are limited in spatial 

coverage especially in resource constrained developing countries such as in Africa. We used 

Cooling Degree Days (CDD) and Heating Degree Days (HDD) as proxy for air-conditioning 

energy for indoor cooling and heating, respectively. We investigated over a period from 1984 

to 2015 in Harare and drew the following;  

 Energy consumption in residential areas increased as maximum temperature rose in 

summer and as minimum temperature decreased in winter. Therefore, Degree Days 

derived from minimum and maximum temperature are a good indicator of responses of 

energy consumption to temperature changes in Harare. 

 Medium resolution Landsat thermal data estimates daytime HDD and CDD and their 

variations across residential types in a complex urban setting with high accuracy  

 Due to warming induced by urban growth, energy requirements for space heating in the 

cool season in Harare are decreasing 

 Cloud-free days in the hot season are becoming increasingly uncomfortable, raising 

energy demand for space cooling especially in low-income high density residential 

areas 

 The heat mitigation value of urban greenery remains significant as indicated by low 

CDD in low-medium density residential areas where buildings are spaced out and 

vegetation cover fraction is high. 

During the hot season, actual energy consumption was low in low-income residential areas 

despite high air-conditioning energy needs. This indicated that low-income residents lack air-

conditioning facilities hence are vulnerable to heat extremes.   
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7.6 Link between Chapter 7 and other chapters 

Surface temperature modulates ambient outdoor temperatures. This also elevates indoor 

temperatures with potential to increase air conditioning energy demand. Since LULC was 

shown to affect surface temperature distribution in Chapters 4 to 6 this may also influence air-

conditioning needs in different residential areas. Chapter 6 showed that long term LULC 

changes elevate land surface temperature. This together with background warming has 

potential to increase indoor temperatures.  Chapter 7 established the possible link between 

urban growth, surface temperature changes and potential air-conditioning energy consumption. 

Urban growth closely associated with observed rising trends in energy consumption as well as 

potential air conditioning energy demand. Demand was found to be high in densely built-up 

areas which, as was established in Chapter 4, are occupied by low income strata indicating 

increasing vulnerability. All previous chapters looked at historical LULC and LST patterns as 

well as their socio-economic implications. Based on these historical patterns, Chapter 8 

predicts the state of LULC and LST spatial patterns. 
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CHAPTER 8: REMOTE SENSING BASED PREDICTION OF URBAN GROWTH 

AND IMPACT ON LAND SURFACE TEMPERATURE PATTERNS 

 

 

 

 

 

This chapter is based on: 

Mushore T. D. Odindi J., Dube T., Mutanga O. (2017). Prediction of future urban surface 

temperatures using medium resolution satellite data in Harare Metropolitan City, Zimbabwe. 

Building and Environment, 122, 397-410, 

http://dx.doi.org/doi.org/10.1016/j.buildenv.2017.06.033 
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8.0 Abstract 

The objective of the study was to determine the impact of urban growth on future micro-climate 

of Harare by predicting future distribution of land use and land cover (LULC), as well as land 

surface temperature using. Landsat series data was used to map Land Use and Land Cover and 

land surface temperature distribution during the month of October for the year 1984, 1993, 

2001 and 2015. The Cellular Automata Markov Chain analysis was used to determine long 

term landscape transformation at 10-year time steps from 2015 to 2045. We further tested the 

potential of a variety of vegetation and non-vegetation indices to predict land surface 

temperature. Results show that the Urban Index (UI), a non-vegetation index was the best 

predictor of surface temperature, since it had the highest correlation with retrieved surface 

temperature (r=0.9831). When tested against temperature derived from thermal band in 

October 2015, the mean absolute percentage error of the UI derived temperature was 5.27%. 

Based on changes which occurred between 1984 and 2015, the Cellular Automata Markov 

Chain analysis predicted that high density built-up areas will increase monotonically from 

470.02 in 2015 to 490.36km2 in 2045. Green spaces were predicted as decreasing from 57.42 

to 27.85km2, while croplands also decrease from 30.27 to 16.93km2 between 2015 and 2040. 

Using UI as predictor of land surface temperature, we predicted that the 18-28oC class will 

decrease in coverage between 2015 and 2040, while the 36-45oC category will increase in 

proportion covered from 42.5 to 58% of city. We concluded that continued urban growth will 

increase warming and result in high future temperatures unless mitigation efforts are 

strengthened. The findings of this study are important in informing future development of cities 

to consider growth implications on future temperatures and thermal comfort of urban residents.  

 

Keywords: Land surface temperature, Cellular Automata Markov, Markov Chain analysis, 

urban growth, urban growth, vegetation indices, Harare  
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8.1 Introduction 

Urban growth, which is characterised by replacement of natural surfaces with heat absorbing 

impervious surfaces (artificial structures such as pavements covered by asphalt, concrete, brick, 

stone and roof tops) and buildings, results in elevated surface temperatures in cities compared 

to surrounding rural areas (Rao, 1972). Typically, high thermal values are obtained where 

density of buildings is high, proportion of impervious surfaces is high, as well as in areas where 

heat removal by advection and radiation loss is retarded, such as at city core with tall buildings 

(Hu & Jia, 2010; Zhang, Schaaf, et al., 2013; Amiri, et al., 2009). Such increase in temperature 

may have adverse socio-economic and environmental impacts on urban residents that include 

increased water use, energy cost for air conditioning and health risk, due to pollution 

(McCarthy, et al., 2010; Tonnang et al., 2010; McDonald, et al., 2011a; Hung, et al., 2006; 

Guhathakurta & Gober, 2007). Furthermore, the influence of urban growth on urban micro-

climate is projected to continue increasing as urban population continue to rise globally 

(McCarthy, et al., 2010; Seto, et al., 2012; Zhang, Schaaf, et al., 2013; Valsson & Bharat, 

2009). Natural landscapes, particularly vegetation and wetlands favour latent heat transfer and 

play a significant role in mitigating against urban heat (Odindi, et al., 2015). However, their 

coverage and mitigation is reduced, due to replacement by impervious surfaces and buildings 

as cities grow. For the purpose of sustainable urban growth and planning, the link between 

Land Use and Land Cover (LULC) transitions and future climate projections need to be 

understood. Specifically, there is need to predict the implication of long term localized LULC 

transformation on surface temperatures in order to enhance area specific adaptation, mitigation, 

as well as policy formulation and implementation. 

 

A number of studies have analysed the relationship between urban LULC patterns and land 

surface temperatures, using remotely sensed imagery without making future projections 

(Larsen & Gunnarsson-Östling, 2009; Yuan & Bauer, 2007; Xu, et al., 2013; Wilson & 

Brandes, 1979; Hu & Jia, 2010). These studies have shown that impervious surfaces within 

urban areas are characterised by high temperatures, due to a combination of high heat 

absorption rate, low thermal emissivity and low latent heat transfer. Conversely, natural 

landscapes like wetlands and vegetated areas have also been characterised by low temperatures 

(Jiang & Tian, 2010; Sung, 2013; Mushore, et al., 2016). Several studies also explored seasonal 

and long term historical changes in temperature with urban growth (Yuan & Bauer, 2007; Hu 

& Jia, 2010; Valsson & Bharat, 2009; Odindi, et al., 2015). Other studies have  used urban and 

vegetation indices to show the quantitative relationship between LULC and temperatures but 
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placing little focus on future temperature patterns (Weng, et al., 2004; Chen, et al., 2006; Yuan 

& Bauer, 2007; Tran, et al., 2006; Xiao, et al., 2007; Wilson & Brandes, 1979; Yang Zhang et 

al., 2012; Senanayake, et al., 2013; Hung, et al., 2006). For example, Chen et al. (2006) showed 

that temperatures decrease with normalized difference vegetation index, normalized difference 

bareness index and normalized difference wetness index while increasing with normalized 

difference built up index. The relationship between land surface temperature and a variety of 

land cover indices are known to be strong. Therefore, trends in land cover indices such as 

vegetation fraction (FVG) and normalized difference built-up index (NDBI) have potential to 

accurately project future temperature. However, there is paucity of literature on the use of land 

cover indices to project localized future distribution of urban LULC and temperature patterns. 

 

Despite their strength to forecast urban growth patterns, only a single study used land cover 

indices to predict future distribution of land surface temperature (Ahmed, et al., 2013). Whereas 

Ahmed et al. (2013) used Normalised Difference Vegetation Index (NDVI) to project remnant 

urban natural landscape and future land surface temperature values, NDVI is known to saturate 

at high vegetation fraction, thus offering a limited temperature range. Studies have also shown 

that NDVI is a weaker predictor of land surface temperature than other indices like the 

Normalised Difference Built Index (NDBI), vegetation fraction and the percentage Impervious 

Surface Area (ISA) (Li & Liu, 2008; Chen, et al., 2006; Yuan & Bauer, 2007; Deng & Wu, 

2013); Chen et al 2006). Furthermore, Ahmed et al. (2013) used single date images to compute 

NDVI to represent entire season; a method which is subject to randomness given that land 

cover may vary significantly with a season. There is thus need to improve the approach such 

as by using seasonal averages of land cover indices. In another study, Hasanlou & Mostofi, 

(2015) estimated LST based on a linear function of a combination of indices which included 

NDVI, NDBI, Normalized Difference Bareness Index (NDBaI), Normalized Difference Water 

Index (NDWI), Soil Adjusted Vegetation Index (SAVI), Enhanced Built-up and Bareness 

Index (EBBI), Urban Index (UI), and Built Up Index (BUI) (Hasanlou & Mostofi, 2015). 

However, Ahmed et al. (2013) notes that when several factors are used in a linear regression 

model, accuracy of retrieved dependent variable may be compromised, due to noise caused by 

collinearity between the factors. Climate forecasts are as useful as they are accurate thus there 

is need to identify indices that best predict LST accurately without errors due to collinearity. 
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The Markov Chain Model has been widely used among others to predict LULC changes and 

urban expansion (Ahmed & Ahmed, 2012; Fan, et al., 2008; Hashem & Balakrishnan, 2015; 

Araya & Cabral, 2010).  For example, Hashem and Balakrishnan (2015) used Markov Chain 

analysis and predicted a 20% increase of built-up areas for Doha, Qatar in 2020. Fan, et al. 

(2008) predicted farmland loss due to urban expansion between 2003 and 2013 in Pearl river 

delta using Cellular Automata Markov Chain analysis. However, there is paucity in literature 

on extending the adoption of Markov Chain analysis to further determine effect of LULC 

transformation on urban surface temperature change. Temperature predictions have widely 

been done using global and regional models which usually exclude urban trends and consider 

their impact as negligible (McCarthy, et al., 2010; Saitoh, et al., 1996; Unganai, 1996). Such 

models are often at coarse resolution, require further downscaling and therefore not very 

suitable for understanding localized phenomena (Hoffmann, et al., 2012; Smith & Roebber, 

2011). Furthermore, global and regional models commonly emphasize on greenhouse induced 

temperature changes, disregarding the implication of LULC transformation on temperature 

change, particularly in urban areas. Analysis based on Markov Chain offer an opportunity for 

projecting landscape transformation, providing insight into future surface thermal 

characteristics, due to landscape change (Ahmed et al 2013). The analysis is suitable for 

predicting temperature changes at the same spatial and temporal resolution with LULC 

changes, thus capable of mapping localized phenomena such as urban surface dynamics. Due 

to previous successes in mapping LULC changes related impacts, accessibility, simplicity and 

parsimony, the Markov Chain model offers great potential to predict future temperature, hence 

needs to be further explored. The analysis is important for providing guidance and impression 

about how future urban thermal environment may be affected if historical urban growth 

patterns persist. 

 

Despite the growing evidence from other parts of the world that urban growth leads to surface 

temperature changes, there is still a paucity of literature on the subject in Zimbabwe. Climate 

studies in the country have largely used in situ meteorological data and large scale climate 

models, concentrated on rainfall and mostly focused on impacts on agriculture (Manatsa et al., 

2017; Mushore, Manatsa, et al., 2017; Mazvimavi, 2010; Moyo et al., 2012; Charles et al., 

2014). Remote sensing based analysis of climate, especially at much localized scale such as 

the urban microclimate has remained scarce in the country. On the other hand, remote sensing 

based assessments of urban growth have only focussed on quantifying long term historical 
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LULC changes (Wania, et al., 2014; Kamusoko, et al., 2013). For example, Wania, et al. (2014) 

used high resolution SPOT data to map expansion of built-up areas in Harare between 2004 

and 2010 without providing further insight into the expected future patterns and impacts. 

Similarly, using medium resolution Landsat multi-spectral data, Kamusoko, et al. (2013) 

delimited expansion of built-up areas in Harare between 1984 and 2013 but did not extend 

focus to implications on observed and future land surface temperature patterns. Recently, 

Mushore, Mutanga, et al. (2017b) linked urban growth to historical land surface temperature 

trends using multi-spectral Landsat datasets but did not predict future trends as well as their 

implication on micro-climate of Harare. Attempts to predict future urban growth patterns and 

their implications on surface temperature using remote sensing in Zimbabwe have thus not yet 

been made, to the best of our knowledge. Therefore, there is need to predict future urban growth 

and implications on the thermal environment of Zimbabwean cities with high level of detail 

using medium resolution remote sensing datasets. This has potential to enhance local level 

adaptation practices, improve temperature related decision making and encourage sustainable 

urban growth which incorporates future implications of LULC conversions on micro-climates. 

 

This study sought to identify optimal land cover indices derived from medium resolution 

Landsat data that best represents a correlation between urban surface temperature and LULC 

changes in Harare, Zimbabwe. The study further sought to adopt the selected indices to predict 

future distribution of LULC and surface temperatures using the coupled Cellular Automata and 

Markov Chain analysis. The study also aims at quantitatively using seasonally averaged land 

cover indices rather than single date states used in previous studies to represent land cover 

patterns of a season as input in the Cellular Automata Markov model.   

 

8.2 Methods 

8.2.1 Description of the study area 

This study was conducted in Harare, the largest and capital city of Zimbabwe located in 

Southern Africa (Figure 8.1). The city is located between 17o40’ and 18o00’ south and between 

30o55’ and 31o15’ east,  lies approximately 1500m above mean sea level occupies 

approximately 94 000ha (Kamusoko, et al., 2013; Wania, et al., 2014). According to 

Kamusoko, et al. (2013), the geology to the north is dominated by gabbro and dolerite, the 

centre by an intrusion of metagreywacke and phylite while granites are popular to the east and 

south. The city has experienced rapid population growth, hence built-up densification since 

independence in 1980 (Kamusoko, et al., 2013; Wania, et al., 2014; ZIMSTAT, 2012). 
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Kamusoko, et al. (2013) outlined that the population of Harare increased from 642191 (1982) 

to 1435784 (2012). High density built-up areas dominate the south-western half of the city, 

which include the CBD, industrial areas and high density settlements, while low and medium 

density built-up areas dominate the north-eastern low and medium density residential suburbs 

(Wania, et al., 2014; Mushore, et al., 2016). According to Wania, et al. (2014), high income 

strata mainly occupy ‘leafy’ suburbs in the north while low income strata are concentrated in 

the high density residential areas in the south.  Generally, the climate of Harare is humid with 

an average temperature of 18oC and mean annual rainfall of 850mm (Iied, 2011; Torrance, 

1981). The city experiences rainy (mid-November to mid-March), post rainy (mid-March to 

mid-May), cool (mid-May to mid-September) and hot (mid-September to mid-November) sub-

seasons (Torrance, 1981). The hot season (mid-September to mid-November) was chosen 

because it is the warmest, hence ideal for understanding extreme seasonal thermal elevation 

during the year (Manatsa, et al., 2013). The peak temperature of the hot sub-season is recorded 

in October with an average of 28oC. During the hot sub-season, grasslands are mainly dry while 

croplands are bare due to field preparation ahead of rainy sub-season thus worsening warming 

in lower atmosphere. Therefore, it is important to understand how urban growth will impact on 

temperature of the hot season as this has potential to adversely affect the thermal comfort of 

the growing population of Harare. 
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Figure 8.1: Location of the study area showing distribution of points used in modelling the 

relationship between indices and temperature. 

 

8.2.2 Radiometric and geometric correction of remote sensing data 

Landsat Thematic Mapper TM 5, Landsat ETM+7 and Landsat 8 OLI and TIRS images with 

Path/Row of 170/72 were acquired from the United States Global Survey Earth Resources 

Observation System (USGS-EROS) website (https://eros.usgs.gov/). Landsat data were 

selected due to adequate archival data, ease of access and performance in land cover 

classification and temperature analysis demonstrated in previous studies. Cloud-free images 

detailed in Table 8.1 and Table 8.2 were used for the study. The reflective bands were corrected 

for atmospheric effects using the Fast Line-of-sight Atmospheric Analysis of Spectral 

Hypercubes (FLAASH) module in the ENVI software. The images were then geometrically 

corrected using aerial photos, a 1:50 000 topo-sheet and 30 ground control points collected at 

intersection of major roads and invariant features recognisable on satellite images. In order to 

ensure independence between datasets, images in Table 8.1 were used to build the model and 

assess its performance for predicting land surface changes while data in Table 8.2 were used 

for making actual future predictions. 

 

 

 

Table 8.1: Landsat path/row 170/72 images used for land use/cover classification and training 

of model to predict temperature. 

Image Date Air temperature (oC) Relative humidity (%) 

Landsat 5 22 October 1984 28.4 37.0 

Landsat 7 19 October 2001 28.6 36.3 

Landsat 8 18 October 2015 29.0 42.0 

 

Table 8.2 shows an independent set of images obtained on cloud free days during the hot 

seasons (mid-September to mid-November) in 1984, 1993, 2001 and 2015. Three images were 

used per year in order to enable computation of average temperature and land cover indices for 

the prediction of future land cover and land surface temperature distribution. The use of 

seasonal averages was done for the purpose of eliminating the influence of randomness 

associated with single date images on predictions. 

 

Table 8.2: Landsat images obtained in the hot season used for historical analysis and future 

prediction of land surface temperature 

1984 (Landsat 5) 1993 (Landsat 5) 2001 (Landsat 7) 2015 (Landsat 8) 
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20 September 19 September 17 September 16 September 

6 October 5 October 3 October 2 October 

7 November 6 November 4 November 3 November 

 

8.2.3 Qualitative LULC mapping and accuracy assessment 

Land use and land cover maps for the year 1984, 1993, 2001 and 2015 were derived from 30m 

reflective bands of Landsat 5, 7 and 8 images using a supervised Support Vector Machine 

(SVM) algorithm. Each of the images was classified into the six major classes; i.e. 

CBD/industrial, high density residential, low-medium density residential, green spaces, 

croplands and water/wetlands (see Table 8.3). The SVM algorithm was chosen because it 

places no assumption to the probability distribution of the data and has low training data 

requirements. Furthermore the SVM classifier has demonstrated high performance in LULC 

classification than other classifiers like Maximum Likelihood Classifier (MLC), 

Parallelepiped, Minimum Distance, Mahalanobis Distance and the Artificial Neural Network 

classifiers (Omran, 2012; Adelabu, et al., 2013).  

 

 

 

 

 

Table 8.3: Description of LULC classes observed in Harare during field survey  

LULC class Description 

CBD/Industrial  Areas with very high density of buildings and a very high 

proportion of impervious surface that include central business 

district and industrial areas. 

High density residential  High density residential areas and areas under residential 

development (bare or impervious) with low vegetation fraction. 

Low-medium density 

residential  

Established low and medium density residential areas with high 

vegetation fraction. 

Croplands  Areas where intra-urban agriculture is practised including 

research sites which could be bare in the dry season 

Green-spaces  Areas covered by grasslands and clusters of tree characterised by 

high vegetation fraction even during the dry season. 

Water  Areas covered by water bodies or wetlands. 

 

Since supervised classification requires field observation for training and accuracy assessment, 

120 representative GPS points per class were obtained from a field survey between the 1st and 

30th of April 2015. The points were split into training (80%) and validation (20%) based on 

recommendation by Adelabu et al. (2013). Regions of interest were used instead of points to 
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increase the number of sample points upon which to base classification and validation. Acharya 

et al., (2015) showed that higher accuracy is obtained using regions of interest than points. For 

1984, 1993 and 2001 expert knowledge and auxiliary LULC data from topo-sheets and aerial 

photographs were used to create ground truth regions of interest for classification and accuracy 

assessment. The overall accuracy and the kappa coefficient were used to assess accuracy of the 

LULC classifications. Post classification (Yu, et al., 2013; Jensen, 1983) derived changes in 

area per land cover class between 1984 and 2015 were used quantify urban growth patterns in 

Harare. 

 

8.2.4 Computation of urban and vegetation indices 

Table 8.4 shows the description of indices whose potential to predict future land surface 

temperature was tested. The table consists of urban indices which were computed using digital 

numbers of indicated bands and vegetation indices which were computed using reflectance of 

indicated bands as described by Hasanlou & Mostofi (2015). As aforementioned, several 

indices were tested in order to compare the differences in the strengths of relationships with 

surface temperature and to identify indices with strongest capability to predict urban surface 

temperature. 

 

 

Table 8.4: Derivation of urban and vegetation indices from Landsat data  

Index Computation Reference 

1. Normalized 

Difference Bareness 

Index (NDBaI) 

𝑁𝐷𝐵𝑎𝐼 =
𝑆𝑊𝐼𝑅1−𝑇𝐼𝑅𝑆1

𝑆𝑊𝐼𝑅1+𝑇𝐼𝑅𝑆1
  

 

(Zhao & Chen, 2005) 

2. Normalized 

Difference Built-up 

Index (NDBI) 

𝑁𝐷𝐵𝐼 =
𝑆𝑊𝐼𝑅1−𝑁𝐼𝑅

𝑆𝑊𝐼𝑅+𝑁𝐼𝑅
  

 

(Zha, et al., 2003) 

3. Bare Soil Index (BI) 𝐵𝐼 =
(𝑆𝑊𝐼𝑅1+𝑅𝐸𝐷)−(𝑁𝐼𝑅+𝐵𝐿𝑈𝐸)

(𝑆𝑊𝐼𝑅+𝑅𝐸𝐷)+(𝑁𝐼𝑅+𝐵𝐿𝑈𝐸)
  (Chen et al., 2004) 

4. Urban Index (UI) 𝑈𝐼 =
𝑆𝑊𝐼𝑅2−𝑁𝐼𝑅

𝑆𝑊𝐼𝑅2+𝑁𝐼𝑅
  (Kawamura et al., 

1996) 

5. Index-based Built-up 

Index (IBI) 𝐼𝐵𝐼 =
2×𝑆𝑊𝐼𝑅1

𝑆𝑊𝐼𝑅1+𝑁𝐼𝑅
−

𝑁𝐼𝑅

𝑁𝐼𝑅+𝑅𝐸𝐷

𝐺𝑅𝐸𝐸𝑁

𝐺𝑅𝐸𝐸𝑁+𝑆𝑊𝐼𝑅1
2×𝑆𝑊𝐼𝑅1

𝑆𝑊𝐼𝑅1+𝑁𝐼𝑅
+

𝑁𝐼𝑅

𝑁𝐼𝑅+𝑅𝐸𝐷

𝐺𝑅𝐸𝐸𝑁

𝐺𝑅𝐸𝐸𝑁+𝑆𝑊𝐼𝑅1

  
(Xu, 2008) 

6. Enhanced Built-up 

and Bareness Index 

(EBBI) 

𝐸𝐵𝐵𝐼 =
𝑆𝑊𝐼𝑅1−𝑁𝐼𝑅

10×√(𝑆𝑊𝐼𝑅1+𝑇𝐼𝑅𝑆1)
   

 

(As-syakur et al., 

2012) 

7. Normalized Built 

Index (NBI) 
𝑁𝐵𝐼 =

𝑅𝐸𝐷×𝑆𝑊𝐼𝑅1

𝑁𝐼𝑅
  (Chen, et al., 2006) 
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8. Normalized 

Difference Vegetation 

Index (NDVI) 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
   

 

(Tucker, 1979) 

9. Enhanced Vegetation 

Index (EVI) 
𝐸𝑉𝐼 =

𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+6×𝑅𝐸𝐷−7.5×𝐵𝐿𝑈𝐸+1
  (Liu & Huete, 1995) 

10. Soil Adjusted 

Vegetation Index 

(SAVI) 

𝑆𝐴𝑉𝐼 =
(𝑁𝐼𝑅−𝑅𝐸𝐷)

𝑁𝐼𝑅+𝑅𝐸𝐷+𝐿
× (𝐿 + 1) , 0<L<1 (Huete, 1988) 

11. Normalized 

Difference Water 

Index (NDWI) 

𝑁𝐷𝑊𝐼 =
𝑁𝐼𝑅−𝑆𝑊𝐼𝑅1

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅1
  (McFeeters, 1996) 

 

12. Modified Normalized 

Difference Water 

Index (MNDWI) 

𝑀𝑁𝐷𝑊𝐼 =
𝐺𝑅𝐸𝐸𝑁−𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁+𝑁𝐼𝑅
  (Xu, 2006) 

13. Vegetation fraction 

(FVG) 
𝐹𝑉𝐺 =

𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑆𝑜𝑖𝑙

𝑁𝐷𝑉𝐼𝑉𝑒𝑔−𝑁𝐷𝑉𝐼𝑆𝑜𝑖𝑙
  (Gutman & Ignatov, 

1998) 

*1 to 7 are urban indices computed from digital numbers of indicated images while 8-13 are 

vegetation indices computed using radiances of indicated Landsat bands (Hasanlou & Mostofi, 

2015).   

 

8.2.5 Derivation of land surface temperature 

Land surface temperatures for each year were derived from thermal bands of Landsat 5 (Band 

6), Landsat 7 (Band 6) and Landsat 8 (Band 10) acquired on dates indicated in Table 8.1 and 

Table 8.2. In order to avoid the effect of seasonality, images obtained in the month of October 

were used. Although Landsat 8 has two thermal bands (Bands 10 and Band 11) retrievals from 

Band 10 were used as they have been found to be less affected by atmospheric carbon dioxide 

and therefore more accurate than from Band 11 (Yang, Lin, et al., 2014; Reddy et al., 2014). 

Retrieval of land surface temperature involved conversion of digital numbers to radiances, 

computation of brightness temperatures from radiance and emissivity correction to obtain 

surface temperatures from brightness temperature maps (Sobrino, et al., 2004; Xiao, et al., 

2007; Avdan & Jovanovska, 2016). Conversion of digital numbers (DN) to radiances (Lλ) was 

done using the Reflectance Toolbox an extension added to ArcMap 10. The tool extracts 

parameters from metadata files and applies them together with corresponding thermal data. 

Brightness temperature (Tb) was derived from thermal radiance using Equation 8.1 which is 

the single channel Landsat specific estimate of Planck’s blackbody temperature (Srivanit, et 

al., 2012; Stathopoulou, et al., 2006; Chen, et al., 2006).  

𝑻𝒃 =
𝑲𝟐

𝐥𝐧(
𝑲𝟏
𝑳𝝀

+𝟏)
                  Equation 8.1 
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In this study Landsat 5, 7 and 8 thermal data were used to retrieve land surface temperature in 

1986, 1993, 2001 and 2015. Therefore, values of K1 and K2 for each Landsat mission are shown 

in Table 8.5 (Srivanit, et al., 2012; Weng & Lu, 2008; Weng, et al., 2007). 

 

Table 8.5: K1 and K2 coefficient values for Landsat 5, 7 and 8 thermal data 

Mission K1 [W/(m2 srμm)] K2 [W/(m2 srμm)] 

Landsat 5 607.76 1260.56 

Landsat 7 666.09 1282.71 

Landsat 8 774.89 1321.08 

 

For each thermal band, we retrieved pixel-based land surface emissivity map (𝜀) from spectral 

radiance and blackbody as developed and described by Yang, et al. (2004) and also applied 

recently by (Mushore, et al., 2017a). Finally, actual land surface temperature was obtained after 

applying emissivity correction on brightness temperature using Equation 8.2 (Weng, et al., 

2007). 

𝑻𝒔 =
𝑻𝑩

𝟏+(
𝝀𝑻𝑩

𝝆
) 𝐥𝐧 𝜺

                 Equation 8.2 

The symbol 𝜆 represents the wavelength of emitted thermal radiance (11.5μm) while 𝜌 is equal 

to 1.438x10-2mK. This procedure was used to retrieve land surface temperature (LST) for all 

the date corresponding to images described in Tables 8.1 and 8.2 above.  The LST were used 

to explain long term changes in temperature for the hot season as well as in training model to 

predict future temperatures as will be described in sections to follow. Using thermal data for 

the dates shown in Table 8.2, the average land surface temperature for 1984, 1993, 2001 and 

2015 was computed. This was done in order to check if the land surface temperatures were 

indeed changing in response to urban growth and ascertain if it was necessary to predict future 

changes.  

 

8.2.6 Variable selection for the prediction of temperature 

Estimation of surface temperatures using several variables requires that correlation between 

the predictor variables and surface temperature should be high, with no collinearity between 

the variables. The indices described in Table 3 were tested for strength of correlation with land 

surface temperature, as well as with each other. The indices with highest correlation with land 

surface temperature were selected for use in linear regression model to predict future land 

surface temperatures. Correlation between these indices was also assessed to avoid use of 

highly correlated predictors which can cause errors due to collinearity.  Therefore, a multi-
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variate linear model was developed using indices which are weakly correlated with each other 

but strongly correlated with land surface temperature. In order to assess the performance of the 

model, we used it to predict the known land surface temperature of 2015 and accuracy was 

quantified using Mean Absolute Percentage error [MAPE] -Equation 8.3- (Lam et al., 2001).  

𝑴𝑨𝑷𝑬 (%) =
𝟏

𝑵
∑ (|

𝑻𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅− 𝑻𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅

𝑻𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅
|)

𝒊
𝑿𝟏𝟎𝟎𝑵

𝒊=𝟏              Equation 8.3 

Where Tpredicted is the modeled surface temperature and Tobserved is the actual land surface 

temperature recorded from Landsat data for the ith pixel. The mean absolute percentage is a 

measure of prediction accuracy which expresses error as a percentage. Accuracy of the model 

in predicting temperature was also assessed using Nash Sutcliff efficiency, Root Mean Square 

Error, Mean Bias Error and Index of Agreement. After accuracy assessment, the model was 

then used to predict land surface temperature distribution for the period from 2025 to 2045 at 

10 year intervals. The 10 year intervals were chosen given that historical analysis had shown 

significant changes at similar time steps. 

 

8.2.7 Prediction of future LULC and LST using Markov and Cellular Automata analysis 

The flowchart in Figure 8.2 summarizes the procedure from remote sensing data collection to 

prediction of future LULC and LST distribution using Cellular Automata Markov Chain 

analysis. Araya and Cabral (2010) compared results of simulation for 2006 with a real map for 

2006. In this study the simulation of the 2015 state was done for validation purposes so that the 

predicted would be compared with the actual land surface temperature distribution. The details 

of the summarized steps are elaborated in section 8.2.8 and 8.2.9. 
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Figure 8.2: Summary of procedure up to prediction of future LULC and LST 

 

8.2.8 Prediction of urban growth in Harare using CA Markov analysis 

IDRISI is an integrated Geographical Information and image processing licensed software 

providing close to 300 modules for analysis and display of digital spatial information (Eastman, 

2012b). Environmental monitoring, decision support, risk analysis, modeling and surface 

characterization tools are found in the software. Among the modules in IDRISI is the Markov 

Chain analysis which is a non-deterministic method for determining land use changes between 

periods using a series of values the next of which depends on the current (Aaviksoo 1995; 

Elsner et al 2003; Bayes Ahmed 2012; Araya and Cabal 2010). The Markov model gives the 

probability that the system develops from initial state i to a state j over a time interval T 

(Aaviksoo, 1995). Markov Chain produces (i) transition matrix which indicates the number of 

pixels that are expected to change from one state to another, (ii) transition probability matrix 
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showing probability that each land use category will change to every other and (iii) conditional 

probability maps which display the probability that each land use type might be found at each 

pixel (Hashem & Balakrishnan, 2015). For an extended description of prediction of future 

LULC using Markov Chain see Araya & Cabral (2010) and Ahmed et al (2013). The Markov 

Chain model was chosen due to its proven capabilities in predicting LULC changes in time as 

well as its simplicity of implementation (Araya & Cabral, 2010; García-Frapolli, et al., 2007). 

Furthermore, Markov Chain is effective in predicting changes of a complex system (Li, et al., 

2011), hence the need to test its capability for estimating changes in heterogeneous urban 

systems. However, the Markov Chain model only derives changes over time but does not map 

their spatial distribution. In order to produce a map of the future states, the Markov Chain 

model is coupled with other models such as the Stochastic Choice, Multi-Layer prediction 

system and Cellular Automata (Eastman, 2012b). Therefore, the outputs of the Markov Chain 

model are used as input in other models to produce maps of future land use distribution. In this 

study the Cellular Automata (CA) was selected to map the spatial distribution of projected 

urban growth and impact on land surface temperature due to its simplicity and parsimony 

(García-Frapolli, et al., 2007). The CA allows the transition of several classes of pixels using 

a Markov transition matrix, suitability map and a neighborhood filter (Araya & Cabral, 2010). 

According to Fan, et al. (2008), the CA can be used to simulate complex dynamic spatial 

patterns through a set of simple rules. In CA the state of pixel at the next time step is computed 

based on the states of all cells in its neighborhood at the current time. The suitability of a pixel 

for a given transition is determined by pixel values within a defined kernel. The more the pixels 

of the same category of land cover in the neighborhood the more the suitability of that particular 

type increases, else the pixel remain unchanged (Ahmed & Ahmed, 2012).   

 

Prediction of LULC distribution for 2015, 2025, 2035 and 2045 was done using the coupled 

Markov Chain and the Cellular Automata models (also called Cellular Automata Markov Chain 

Analysis) in IDRISI software. In summary, the transition probability matrices obtained from 

Markov Chain analysis were used as input to the Cellular Automata model which produces 

maps of predicted LULC distributions. Therefore, combining Markov Chain with Cellular 

Automata produced spatial and temporal changes in LULC. Before we employed the Cellular 

Automata Markov Chain analysis in actual prediction, we tested its potential to predict future 

LULC patterns in a complex urban setting. In order to achieve this, we used LULC transitions 

that occurred between 1986 and 2001 to predict LULC distribution for 2015. The predicted 
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LULC were compared with the pattern obtained using SVM classification in 2015. The 

accuracy of the prediction for 2015 was assessed using the Kappa Index of Agreement (KIA) 

which tests the level of agreement between two maps of the same event (Sayemuzzaman & 

Jha, 2014; Eastman, 2012a). According to Sayemuzzaman and Jha (2014), KIA compares two 

maps to statistically check for the agreement between the classes. An overall KIA as well as 

KIA per class are obtained with values ranging between 0 and 1 (the closer to 1 the values, the 

higher the agreement between the spatial distribution of classes on compared maps). Therefore, 

the KIA was thus used to assess performance of CA Markov in predicting LULC changes by 

comparing the LULC map form supervised SVM classification with the modeled map for 2015.  

After assessing model accuracy, we used LULC patterns of 1986 and 2015 in Cellular 

Automata Markov Chain analysis to predict future distribution of landscapes for 2025, 2035 

and 2045.  

 

8.2.9 Prediction of land surface temperature distribution in Harare using land cover 

indices in CA Markov analysis 

The Urban Index (UI) was selected as described in section 8.2.6 as the best predictor variable 

of land surface temperature distribution in the Cellular Automata Markov Chain analysis. 

Details of performance of different land cover indices in predicting land surface temperature 

leading to the selection of UI are explained in Table 8.8 under section 8.3.3 below. In order to 

avoid the limitation of randomness associated with single date images, in each of 1984, 2001 

and 2015 an average UI for the hot season was calculated using images obtained in September, 

October and November as described in Table 8.2. The average UI for 1984 and 2001 were 

input into the Markov Chain model to generate transition probability matrices which were used 

to map future state of the index for 2015 in the CA model. Similarly, the average UI for 1984 

and 2015 was used to in CA Markov analysis to predict the state of the UI in 2025, 2035 and 

2045. A simple linear regression function (see section 8.3.4) was used to convert UI predictions 

into land surface temperature distributions for 2015, 2025, 2035 and 2045. Since Cellular 

Automata Markov Chain analysis predicts classes, the maps UI maps were reclassified before 

input into model so that they could predict 18-28oC, 28-32oC, 32-36oC and 36-45oC surface 

temperature classes. The categories were chosen solely to enable comparison of land surface 

temperature distributions in different years since the same ranges were used to map surface 

temperature classes observed both in 1984 and 2015. Therefore, the major outcomes of this 

step were land surface temperature predictions for Harare for 2025, 2035 and 2045. 
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8.2.10 Statistical significance of the forecast urban growth and land surface temperature 

We tested the statistical significance of the predicted changes in LULC and temperature 

distribution between 2015 and 2045. We applied the test on coded LULC and temperature class 

values extracted from 522 points. The temperature categories for each period were coded 1 to 

5 while LULC classes were coded 1 to 6 based on requirements and output of Markov analysis. 

Initially, we used the Shapiro-Wilk statistic to test for normality (Shapiro & Wilk, 1965). The 

changes in LULC and temperature were tested for significance using the Mann Whitney 

statistic (Mann & Whitney, 1947; Birnbaum, 1956) following normality test of the data 

(p>0.05). We tested the hypothesis Ho: that spatial distributions of LULC and land surface 

temperature were different versus the alternative hypothesis Ha: the LULC and land surface 

temperature pairs were not the same in 2015 and 2045. 

 

8.3 Results 

8.3.1 Observed LULC and transitions from 1986 to 2015 

Table 8.6 shows changes in land use and land cover distribution between 1984 and 2015 

obtained at high accuracy using the Support Vector Machines Algorithm.  Overall accuracy and 

kappa were 88.55% and 0.85, 87.70% and 0.83, 90.86% and 0.87 and 87.59% and 0.82 for the 

years 1984, 1993, 2001 and 2015, respectively. Table 4 displays LULC transitions that were 

observed between 1984 and 2015 as the city was growing. Built-up areas increased at the 

expense of green-spaces and croplands from 1984 to 2015 in Harare (Table 8.6). For example, 

high density residential areas increased in coverage from 244.24km2 in 1984 to 470.02km2 in 

2015 while green-spaces, such as grasslands and forests decreased from 234.38km2 to 

57.42km2. 

 

Table 8.6: Changes in proportion of LULC types between 1984 and 2015 

 Coverage (km2) and percentage (%) of total area is in brackets 

UHI level 1984 1993 2001 2015 

CBD/Industrial 23.00 (2.7) 25.64 (3.0) 24.74 (2.9) 48.92 (5.7) 

High density res 244.24 (28.6) 385.48 (45.0) 441.84 (51.7) 470.02 (55.0) 

Low density res 235.68 (27.6) 253.52 (29.7) 255.11 (29.8) 244.05 (28.6) 

Green-spaces 234.38 (27.4) 105.09 (12.3) 94.73 (11.1) 57.42 (6.7) 

Croplands 110.54 (12.9) 80.92 (9.5) 33.17 (3.9) 30.27 (3.5) 

Water 6.98 (0.8) 4.18 (0.5) 5.24 (0.6) 4.15 (0.5) 

*res: residential areas 

8.3.2 Observed satellite based temperature transitions from 1984 to 2015 

Land surface temperatures have increased in response to urban growth in Harare metropolitan 

city between 1984 and 2015. Visual inspection of Figure 8.3 shows that in 1984, the area was 
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dominantly covered by temperatures in the 18 to 28oC category, compared to other later 

periods. In 2015, the 36 to 45oC category became dominant although lower surface temperature 

categories still remained in some areas to the northeast. Larger rises in temperature were 

observed in the southwestern half with high density built-up areas than in the northeastern areas 

with spaced out buildings. Although, land surface temperatures are markedly warming over 

time, temperatures below 30oC are still common in the northern half where ‘leafy’ low and 

medium density residential areas are found. However, even in cooler periods, such as 1984 and 

1993, higher surface temperatures were observed in the central business district and industrial 

areas than in other areas. Of great concern is that temperatures have shifted to the 36-45oC 

range in the southern half which may cause heat transfers in the lower atmosphere causing 

elevation of temperatures where the vulnerable low income strata reside. 
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Figure 8.3: Observed changes in the distribution of mean surface temperatures during the hot 

season in a) 1984, b) 1993, c) 2001 and d) 2015. 
 

Table 8.7 provides a detailed analysis of changes in land surface temperature observed in 

Harare between 1984 and 2015. As the city grew between the periods the proportion of land 

surface experiencing temperature in the 18-28oC categories decreased by about 7%. During the 

same period the coverage of high land surface temperatures (36-45oC) in the hot sub-season 

increased by at least 40% indicating a strong land surface warming bias in Harare. 

 

Table 8.7: Average land surface temperature responses to urban growth in Harare  

 Coverage (km2) and percentage (%) of total area is in brackets 

Temperature (oC) 1984 1993 2001 2015 

18 – 28 151.69 (17.7) 84.38 (9.9) 85.68 (10.0) 86.23 (10.1) 

28 – 32  444.25 (51.9) 520.99 (60.9) 264.68 (30.9) 166.26 (19.4) 

32 – 36  248.06 (29.0) 242.02 (28.2) 288.90 (33.8) 239.56 (28.0) 

36 – 45  11.83 (1.4) 8.44 (1.0) 216.57 (25.3) 363.78 (42.5) 

 

8.3.3 Variable selection: correlation between urban indices and temperature 

Table 8.8 shows that there was strong correlation between surface temperature and BI, EBBI, 

FVG, IBI, NDBI, SAVI and UI indicated by magnitudes of correlation coefficients greater than 

0.5. The other indices displayed weaker correlation with temperature; for example, the EVI 

had the weakest correlation with surface temperature (correlation coefficient was less than 

0.001). Although BI, EBBI, IBI, NDBI and SAVI had strong correlation with land surface 

temperature, they were also strongly correlated with each other and with FVG. However, FVG 

had a stronger correlation with temperature (0.8836) than BI, EBBI, IBI, NDBI and SAVI. UI 

had the strongest correlation with temperature (r=0.9381) and also had a strong negative 

correlation with FVG (r=-0.9089). UI was found to be the best predictor of urban surface 

temperature in comparison to other indices due to highest correlation with land surface 

temperature. This is why UI was used to predict future surface temperature patterns as 

described in Section 8.2.9 above.    
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 Table 8.8: Correlation between temperature and urban as well as vegetation indices 

 BI EBBI EVI FVG IBI MNDWI NBI NDBaI NDBI SAVI UI TS 

BI 1.0000 0.9804 0.0009 -0.8876 0.9742 0.4408 0.9089 0.6576 0.9749 -0.5895 0.9548 0.7783 

EBBI 0.9804 1.0000 0.0008 -0.8485 0.9924 0.3188 0.8634 0.6101 0.9902 -0.5958 0.9584 0.7639 

EVI 0.0009 0.0008 1.0000 -0.0001 0.0010 -0.0008 0.0002 -0.0000 0.0010 -0.0001 -0.0008 0.0033 

%GF -0.8876 -0.8485 -0.0001 1.0000 -0.8572 -0.3758 -0.8186 -0.4186 -0.8522 0.7600 -0.9089 -0.8836 

IBI 0.9742 0.9924 0.0010 -0.8572 1.0000 0.2599 0.8215 0.5491 0.9976 -0.4247 0.9650 0.5015 

MNDWI 0.4408 0.3188 -0.0008 -0.3758 0.2599 1.0000 0.6542 0.7754 0.2632 0.0436 0.2710 -0.0797 

NBI 0.9089 0.8634 0.0002 -0.8186 0.8215 0.6542 1.000 0.8035 -0.4037 0.8302 0.8399 0.4550 

NDBaI 0.6576 0.6101 -0.0000 -0.4186 0.5491 0.7754 0.8035 1.0000 0.5541 -0.0867 0.4866 0.0634 

NDBI 0.9749 0.9902 0.0010 -0.8522 0.9976 0.2632 -0.4037 0.5541 1.0000 -0.6232 0.9683 0.8357 

SAVI -0.5895 -0.5958 -0.0001 0.7600 -0.4247 0.0436 0.8302 -0.0867 -0.6232 1.0000 -0.7089 -0.6062 

UI 0.9548 0.9584 -0.0008 -0.9089 0.9650 0.2710 0.8399 0.4866 0.9683 -0.7089 1.0000 0.9381 

TS 0.7783 0.7639 0.0033 -0.8836 0.5015 -0.0797 0.4550 0.0634 0.8357 -0.6062 0.9381 1.0000 
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8.3.4 Retrieval of surface temperature from the urban index 

Figure 8.4 shows the regression model for predicting surface temperature based on UI. Land 

surface temperature increase as UI increased and the relationship between the two was strong 

(R2 = 0.88) and significant at 95% significant level (p<0.05). The relationship did not suffer 

from saturation which affects indices such as NDVI as UI continued to increase with 

temperature unbound. 

 

 
Figure 8.4: Linear model for the prediction of surface temperature from UI. 

 

8.3.5 Accuracy of temperature retrievals using the urban index 

The regression model was tested on an independent Landsat data obtained in October 2015 and 

the model closely resembled the observed temperature trends (Figure 8.5). Temperature 

retrieved from UI was compared with that retrieved directly from thermal infrared data (Band 

10) of Landsat 8. Based on 200 points sampled across the study area (indicated in Figure 8.1), 

the UI predicted surface temperature with high accuracy (mean relative percentage 

error=5.27%, Nash Sutcliff efficiency=0.74, root mean square error=1.26oC, mean bias error=-

0.0002oC and index of agreement=0.80).  
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Figure 8.5: Comparison of surface temperature derived from thermal band with surface 

temperature derived from the UI. 

 

8.4 Future LULC and LST for 2025, 2035 and 2045 

8.4.1 Accuracy assessment of Cellular Automata Markov Chain LULC prediction 

Visual inspection showed agreement between LULC distribution mapped from supervised 

image classification using the Support Vector Machine classifier and LULC distribution for 

2015 predicted using the Cellular Automata Markov Chain analysis (Figure 8.6). The model 

managed to closely mimic the spatial distribution of LULC types as classified by the SVM 

guided by in-situ observations.  

 

 
Figure 8.6: LULC distribution for 2015 mapped using a) supervised classification and b) 

Cellular Automata Markov Chain analysis prediction.  
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The overall Kappa Index of Agreement (KIA) between the LULC predicted using Cellular 

Automata Markov and the distribution mapped using SVM classifier was 0.91 (Table 8.9). The 

agreement was strongest (KIA=0.88) between the CBD/Industrial and weakest (KIA=0.63) 

between the green-space classes in the two maps. The maps matched with an overall high 

accuracy of 89.29% using the SVM supervised classification LULC map for 2015 as a 

reference. 

 

Table 8.9: Statistical measurement of agreement between supervised classification and Cellular 

Automata Markov Chain based prediction for 2015. 

LULC class Kappa Index of Agreement 

CBD/Industrial 0.88 

High density residential areas 0.86 

Low-medium density residential areas 0.86 

Green-spaces 0.63 

Croplands 0.65 

Water/wetlands 0.77 

 

8.4.2 Future LULC distribution in Harare 

Figure 8.7 shows that the coupled Cellular Automata Markov Chain model predicted growth 

of low-medium and high density residential areas at the expense of green-spaces and wetlands 

in 2025, 2035 and 2045. Furthermore, the model predicted that if patterns observed between 

1984 and 2015 would persist built-up areas may encroach into parks.  

 



166 

 

 
Figure 8.7: Predicted distribution of LULC in a) 2025, b) 2035, and c) 2045 

 

Built up areas are predicted to continue increasing from their current extent through to 2045 as 

indicated by Table 8.10. For example CBD and industrial areas are predicted to grow from 

48.92 to 79.32km2 between 2025 and 2045. High density residential areas are predicted to 

increase in coverage from 470.02 to 490.36km2. As the city grows, green-spaces would be 

expected to decrease in area from 57.42 to 27.85km2 while croplands would to decrease from 

30.27 to 16.93km2 during the same time interval. Low-medium density residential areas are 

predicted to slightly decrease in coverage from 244.05 to 237.08km2 during the same period. 

Therefore, based on model predictions and assumptions, future growth may be characterized 

mainly by expansion of densely built-up areas at the expense of wetlands, croplands and green 

spaces.  
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Table 8.10: Markov and Stochastic chain based future coverage of LULC classes in Harare 

 Coverage (km2) and percentage (%) of total area is in brackets 

LULC type 2015 2025 2035 2045 

CBD/Industrial 48.92 (5.7) 66.32 (7.75) 73.43 (8.58) 79.32 (9.27) 

High density res 470.02 (54.9) 476.23 (55.7) 482.09 (56.3) 490.36 (57.3) 

Low density res 244.05 (28.5) 237.10 (27.7) 236.73 (27.7) 237.08 (27.7) 

Green space 57.42 (6.7) 43.39 (5.1) 38.33 (4.5) 27.85 (3.3) 

Croplands 30.27 (3.5) 28.04 (3.3) 20.76 (2.4) 16.93 (2.0) 

Water/wetlands 4.15 (0.5) 3.73 (0.4) 3.48 (0.4) 2.70 (0.3) 

*res: residential areas 

 

8.4.3 Predicted temperature distribution in Harare up to year 2045 

The rising temperature trends observed between 1984 and 2015 may continue through to 2045 

(Figure 8.8). The coverage of high temperature category (greater than 38oC) was predicted to 

increase at the expense of low temperature categories. However, in all the predictions i.e. 2025, 

2035 and 2045 north-eastern areas where low density residential areas are located were 

relatively cooler than southern-western areas where high density residential areas are found. 

Predictions show that land surface temperatures below 32oC will potentially remain common 

in the northern half where low and medium density residential areas are located. Furthermore, 

assuming that growth patterns observed between 1984 and 2015 persist, expansion of high 

density built-up areas would result in high surface temperatures (above 40oC) is southern areas 

such as in high density residential areas. 
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Figure 8.8: Predicted temperature distribution for Harare in a) 2025, b) 2035, and c) 2045. 

 

Table 8.11 shows that coverage of low temperature classes (18-28oC and 28-32oC) may 

decrease while most areas, especially in the south, could shift towards high temperature (greater 

than 36oC). The model predicted that the 18-28oC temperature range could decrease in 

coverage from 86.23km2 to 55.97km2 while the 36-45oC category is expected to increase from 

363.78 to 498.45km2 between 2015 and 2045. Spatial distributions land surface temperature 

classes significantly changed between 2015 and 2045 (p<0.05). 
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Table 8.11: Projected changes in surface temperature due to urban growth 

 Coverage in each (km2 and % of total area) 

Temperature (oC) 2015 2025 2035 2045 

18 - 28 86.23 (10.1) 65.43 (7.7) 60.08 (7.0) 55.97 (6.3) 

28 - 32 166.26 (19.4) 122.64 (14.3) 115.22 (13.5) 107.68 (12.7) 

32 - 36 239.56 (28.0) 209.34 (26.5) 203.10 (23.7) 197.74 (23.1) 

36 - 45 363.78 (42.5) 458.43 (53.6) 477.43 (55.8) 498.45 (58.0) 

 

8.5 Discussion  

Urban growth is expected to continue across the globe hence the need to understand its 

implications on urban landscapes and climate. In this study, we used the coupled Markov Chain 

and Cellular Automata models to predict future LULC and surface temperature distribution in 

Harare. In order to predict the responses of temperature to urban transformation, we tested the 

potential of a variety of land cover indices to predict changes in the spatial distribution of 

temperature. The UI was found to be the best index for predicting future land surface 

temperature distribution when compared to a variety of other indices such as NDVI, FVG and 

NDBI. Therefore, a simple linear regression model was preferred and used to forecast urban 

growth as well as associated changes in temperature distribution. The use of a simple linear 

regression model is supported by Ahmed et al (2013) who observed that utilization of 

multivariate regression is only suitable where predictor variables are not strongly correlated 

with each other. In this study, all predictors of strength were collinear hence the selection of 

UI which had the strongest correlation with temperature to avoid errors.  

 

Therefore, we used the UI as a proxy for urban growth and its future spatial distribution to map 

future distribution of land surface temperature categories. Comparison of LST derived from 

thermal band with that derived from linear model using UI showed that the model predicted 

temperature with a mean absolute error of 1.85oC. The high performance of UI in predicting 

urban growth induced warming can be explained by previous studies which showed that it is 

strongly correlated with a variety of indicators of urban growth (Kawamura et al., 1997; 

Katayama et al., 2000). For example, Katayama et al. (2000) observed that UI increases with 

density of buildings and decreases with NDVI in Tokyo Bay. Although the correlation between 

UI and temperature was not tested in previous studies, the high predictive power observed in 

this study is because areas with high density of buildings and low vegetation fraction are known 

to have high temperatures (Senanayake, et al., 2013; Zuvela-aloise et al., 2015). Kawamura et 

al. (1997) also observed that UI was high in areas where residential energy and water 

consumption were high in Colombo, Sri Lanka. Studies have also shown that domestic energy 
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and water consumption increases with urban heat intensity, hence the high correlation between 

UI and temperature (Rawal & Shukla, 2014; Wang, Chen, et al., 2010). The UI was also found 

to be high in bare areas thus enhances its potential to predict temperature since bare and built-

up areas are comparatively hot during the day (Srivanit, et al., 2012; Pu, et al., 2006). Therefore, 

the comparative strength of the relationship between UI and land cover properties enhanced its 

potential to map urban growth and corresponding responses of temperature. 

 

The SVM is a classifier of repute hence high classification accuracies obtained both in 1984 

and 2015 despite the complexity of urban LULC distribution. This is consistent with previous 

studies such as by Adelabu et al (2013) which showed that SVM classifier results in high 

accuracy maps. The high quality of maps is also linked to the use of digitized regions of interest 

instead of points as ground-truth data for classification hence accuracies above the 80% 

requirement (Omran, 2012). The derived LULC maps showed that built up areas increased 

while wetlands and vegetation cover decreased between 1984 and 2015 which agrees with 

previous studies in the same area (Wania, et al., 2014; Kamusoko, et al., 2013). The Cellular 

Automata Markov Chain analysis reliably predicts LULC patterns as indicated by strong 

agreement between the predicted 2015 map and the one derived from supervised classification. 

The KIA was close to 1, implying close similarity and strong agreement between the modeled 

and observed LULC distribution for 2015. Due to high accuracy and strong agreement with the 

known LULC distribution for 2015, the Cellular Automata Markov Chain model was deemed 

reliable for future predictions. Based on LULC changes between 1984 and 2015, the Cellular 

Automata Markov Chain model projected that unless other interventions are employed and 

similar patterns persist, coverage of built up area will continue increasing at the expense of 

natural covers through to 2040. This finding is consistent with global predictions that urban 

population will continue to rise resulting in expansion of built-up areas at the expense of green-

space (Araya & Cabral, 2010; Ahmed & Ahmed, 2012; Seto, et al., 2012; McCarthy, et al., 

2010; Nayak & Mandal, 2012).  

 

Based on Cellular Automata Markov model, temperatures may increase due to urban growth 

between 2015 and 2040, which agrees with already observed warming trends in Zimbabwe 

(Dube & Phiri, 2013; Chagutah, 2010; Unganai, 1996; Zvigadza, et al., 2010; Mushore, 2013a; 

Brown., et al., 2012). In this study, area covered by 18-28, 28-32 and 32-34 oC temperature 

categories are projected to decrease while area covered by warmer categories such as the 40-
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46oC are expected increase. The warming patterns are in response to LULC distribution 

changes which will see built up areas increase in coverage at the expense of wetlands and 

green-spaces. The future rises in temperature due to urban growth induced LULC changes are 

also consistent with other previous studies (McCarthy, et al., 2010; Larsen & Gunnarsson-

Östling, 2009; Omran, 2012; Sithole & Odindi, 2015; Odindi, et al., 2015; Nayak & Mandal, 

2012; Zhang, Qi, et al., 2013; Hung, et al., 2006; Amiri, et al., 2009). For example, Hung et al 

(2006) and Senanayake, et al., (2013 observed that as urban population increases, urban growth 

increase, commensurate with the urban heat island effect.  

 

Wetlands and green-spaces have high thermal capacity enabling them to serve as heat sinks, 

hence replacing them with impervious surface will raise temperature of an area (Sithole & 

Odindi, 2015; Zemba, 2010). This is why northern areas with low density residential areas and 

characterized by high vegetation fraction are projected to potentially remain cooler than high 

density residential areas. Buildings absorb heat, furthermore high building density areas like 

the CBD impede heat removal by wind, further elevating temperatures (Sertel, et al., 2011; 

Pielke, et al., 2011; Zhou & Wang, 2011a; Blake, Grimm, et al., 2011). The removal of 

vegetation and emission of waste heat also leads to accumulation of heat energy (Owen, et al., 

1998; Senanayake, et al., 2013; Blake, Grimm, et al., 2011). According to Owen et al (1998), 

this increases sensible heat flux at the expense latent heat flux, hence high urban surface 

temperatures.  

 

The projected rises in temperature between 2015 and 2040 is consistent with predictions from 

regional and global models (Ahmed, et al., 2013; McCarthy, et al., 2010; Unganai, 1996; 

Simone, et al., 2011; Brown., et al., 2012; Newland, 2011; Blake, Grimm, et al., 2011). Blake 

et al (2011) projected that urban population will grow to 70% by 2050, causing surface 

alterations and anthropogenic heat emissions that will increase temperatures while Newland 

(2011) estimated that by 2050, 200 million people will be displaced by warming. According to 

Brown et al (2012) such increase will result in degradation of air quality and increased energy 

demand for cooling. Using an urban land surface model in the HadAM3 Global Circulation 

Model, high population growth was found to coincide with high heat island areas. These 

findings are also consistent with predictions for cities in other countries for example Bahrain, 

Tokyo in Japan and Dhaka in Bangladesh (Hassan Radhi et al., 2013; Saitoh, et al., 1996; 

Ahmed, et al., 2013). 
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Findings in this study show that temperature may increase even in areas where LULC types 

may remain unchanged. The rise in temperature is due to a combination of factors including 

change in surface characteristics and background of already warming temperatures global 

temperatures as a result of greenhouse effect and global warming. The increase can be 

attributed to background global warming, which will affect all areas even in the absence of 

increased urban growth (Argueso et al., 2014; Terando et al., 2014; Kahn, 2009; Dereczynski 

et al., 2013; Grimmond, 2007). This concurs with Terando et al (2014) who note that 

temperature rises due to urban growth are superimposed on rising global temperatures. Lauwet 

at al. (2015) also observed that due to increases in greenhouse gas concentrations, there is an 

increase in incoming long wave radiation towards the lower atmosphere. However, although 

low-medium density residential areas and other vegetated areas are expected to warm, their 

extent is smaller than in high density residential areas in the southwest. This is because the 

vegetation cover around the buildings mitigates the impact of global warming (Weng, et al., 

2004; Hu & Jia, 2010; Zhou & Wang, 2011b; Amiri, et al., 2009; Dousset & Gourmelon, 2003; 

Smith & Roebber, 2011; Odindi, et al., 2015; Senanayake, et al., 2013). Hence, maintenance 

of urban greenery remains a significant mitigation measure against extreme temperature 

elevation, even when greenhouse gas emissions and ozone depletion continue uncontrolled.  

 

The predicted possible increases in temperature due to increased continued urban growth could 

concur with a variety of global and regional models which predict continuation of ‘business as 

usual’ approach to urban growth (Dholakia et al., 2015; Pilli-Sihvola et al., 2010; Isaac & van 

Vuuren, 2009; Flanner, 2009; Satterthwaite, 2008). This is primarily a consequence of high 

energy demands caused by increase in the middle income class as cities grow, as well as a 

result of economic and political reasons which make it difficult to implement policies to reduce 

emissions or manage urban growth. For example Kahn (2008) and Flanner (2009) observe that 

anthropogenic heat emissions and greenhouse gas concentration will increase in response to 

urban growth as the population of the middle class will increase. Middle level income earners 

raise the consumption of electricity from use of gadgets such as heaters, air conditioners, 

cooking stoves and fridges (Kahn, 2009). Satterthwaite (2008) observed that urban areas are 

important political and economic hubs as they also provide over 50% of national GDPs even 

in mostly rural nations thus difficult to implement strict emission reduction policies. Although 
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difficult to implement effectively, McMichael et al (2006) stressed that forecasts will 

strengthen policies and guide priorities for planned adaptation strategies.  

 

8.6 Conclusion 

The study aimed at assessing and comparing the potential of a variety of land cover indices to 

predict future distribution of land surface temperatures in Harare using the Cellular Automata 

Markov Chain analysis. Based on findings, we conclude that implementing the support vector 

machines algorithm on multispectral Landsat data classified urban areas with very high overall 

accuracies above 80%. The Urban Index (UI) was found to predict land surface temperature 

better than other land cover indices (spatial correlation of 0.9381). The Cellular Automata 

Markov Chain analysis predicted urban growth with high accuracy (kappa index of agreement 

was 0.88 between the predicted and SVM classification for 2015). Based on CA Markov, urban 

growth predicted to continue with CBD/industrial areas potentially increasing in proportion by 

4% while high density residential areas may increase in proportion by 3% between 2015 and 

2045. Growth will be accompanied by surface temperature increases especially in the southern 

half of Harare. The 36-45oC temperature class which dominates the southern half may increase 

in proportion from 42.5% to cover 58% of the city between 2015 and 2045. However, the 

model is limited by not accounting for the effects of other factors than urban growth on 

temperature changes. Other factors such as effective mitigation strategies and changes in city 

growth policies have potential to influence surface temperature patterns. Overall, the findings 

of this study underscore the importance of medium resolution satellite data in predicting future 

surface temperatures in urban settings. There is however, need for future studies to explore the 

feasibility of these methods and techniques at national or regional spatial scales.  

 

8.7 Link between Chapter 8 and other chapters 

Chapter 6 showed that Harare is growing evidenced by expansion of built-up areas modifying 

the spatial structure of temperatures in the lower atmosphere. Chapter 7 showed that energy 

demand was also increasing especially in the hot season over the years since 1984. Chapter 7 

also showed that the need for air conditioning was higher in areas occupied by low income 

residents indicating increasing risk. Globally, urban growth is expected to continue which 

triggered the need to investigate possible implications of urban expansion on temperature in 

Harare. This was fulfilled in Chapter 8 where LULC and LST changes between 1984 and 2017 

obtained in Chapter 7 where used to predict future urban growth and LST spatial structure up 

to year 2045. Throughout the study classification methods developed in Chapter 3 were used 
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to map LULC as well as urban growth whose links with the indoor and outdoor thermal 

environment were evaluated. 

 

Finally, all procedures and results from Chapter 3 to 8 are summarized in Chapter 9. 
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CHAPTER 9: REMOTE SENSING OF THE RESPONSES OF INDOOR AND 

OUTDOOR THERMAL CONDITIONS TO URBAN GROWTH: A SYNTHESIS 

 

9.1 Introduction 

According to the IPCC (2007), mean temperatures are rising while the frequency and intensity 

of heat waves are also increasing. Recently, there has been an improved understanding of the 

nexus between the rising temperatures and climate change. However, existing global models 

stress on the impact of greenhouse gases and largely ignore the contribution of land covers, 

clouds, water vapor and ocean circulations (Loehle, 2011; IPCC, 2007). Specifically, the 

irreversible nature of urbanization implies that related changes in temperature could be a major 

contributor to long term changes in temperature at local, regional and global scales (Owen, et 

al., 1998). According to Cinar (2015) land cover changes may result in a 4oC temperature 

increase by 2100. In urban areas, this can be attributed to among others replacement of natural 

with impervious surfaces, changes in radiative transfer due to complex buildings and streets 

geometry and increase anthropogenic heating (Rasul, et al., 2015; Dousset & Gourmelon, 2003; 

Xiao, et al., 2007). Studies have indicated that this may cause extreme temperatures which 

significantly reduce indoor and outdoor comfort while at the same time compromising 

productivity by reducing performance at work and increasing morbidity and mortality (Tanabe, 

et al., 2015; Humphreys, 2015; Lin, et al., 2016). Therefore, sustainable development requires 

in-depth understanding of impact of urban growth patterns on temperature, hence the need to 

review previous studies to identify strength and gaps in the subject area.   

 

Urbanization is characterized by surface alterations which mostly entail increase in area 

covered by surfaces which absorb heat (Zhang, et al., 2009; Sobrino, et al., 2012; Amiri, et al., 

2009). For example,  vegetated areas are replaced with impervious surfaces and buildings, 

resulting in elevated surface temperatures, much higher than the surrounding rural and 

undisturbed areas (Johnson, et al., 2014; Steeneveld, et al., 2014; Tomlinson, et al., 2011; Hua, 

et al., 2013; Song & Wu, 2015; Sobrino, et al., 2012). Furthermore, surface temperatures are 

closely linked  to near surface air temperatures, which affects human comfort inside and outside 

buildings (Guan, 2011). According to Xian and Crane (2005), urbanization alters air 

temperature of the atmospheric boundary and is a key component of the surface energy balance. 

Generally, the impact of elevated temperatures within cities differs from place to place due to 

differences in physical exposure, landscape characteristics  and socio-demographic factors  
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(Johnson, et al., 2014). Moreover, literature has revealed that increase in surface temperatures 

have the potential to expose residents to heat related stress, especially the urban poor without 

air conditioning facilities (Parsons, 2014; Hsiang, 2010; Dokladny, et al., 2006).  Additionally 

previous studies have also indicated that extreme temperatures significantly reduce indoor and 

outdoor comfort while at the same time compromising productivity by reducing performance 

at work and increasing morbidity and mortality (Tanabe, et al., 2015; Humphreys, 2015; Lin, 

et al., 2016). 

 

Thermal analysis and forecasting enables assessment and prediction of impacts of heat island 

on temperature sensitive organisms, processes and activities useful for planning, policy 

formulation as well as for identifying adaptation and mitigation priorities. For example, Brune 

(2016) used temperature predictions and projected that a variety of urban tree species within 

built up areas may not tolerate the urban heat projected in 2050. In Japan heat island projection 

was used to project energy demand for air conditioning (Hirano, et al., 2009). In Australia 

thermal forecasts are used to influence heat adaptation and mitigation strategies such as use of 

green infrastructure to reduce greenhouse gas emissions (Block et al., 2012). In Kunming China 

understanding of the influence of urban growth on thermal characteristics of a city led to a 

decade of grass recovery to mitigate the heat (Zhou & Wang, 2011a). In Chicago Illinois 

thermal forecasts were used to model the impact of green roof on urban heating by simulating 

under variable roof types important for climate change adaptation (Smith & Roebber, 2011). 

Using future projections of temperature enabled assessment of value of external shading which 

was found to be significantly valuable in mitigating future overheating risks (McLeod et al., 

2013). The benefits also include reduction in energy wastage and pollution, thermal comfort in 

buildings and outdoor as well as sustainable growth of urban areas. This is important especially 

for growing cities in developing countries where vulnerability to climate change is already high 

while resources for adaptation and mitigation to further changes in climate may not be adequate 

in future. 

 

In situ meteorological data is useful in quantifying the responses of near surface temperature 

to changes in land use and land cover. Studies have used in-situ air temperature data to monitor 

seasonal and long term climatic changes, to assess human thermal discomfort as well as to 

quantify the effect of temperature changes on household air conditioning energy consumption. 

However, in-situ observations are limited in spatial coverage thus inadequate to for monitoring 
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spatial variations in temperature such as in heterogeneous and complex urban landscapes. This 

inadequacy is pronounced in developing countries where financial constraints make it difficult 

to establish a high weather station density. Further, even in well-resourced developed nations, 

it is economically impractical to establish a desired network of meteorological stations. On the 

other hand, space-borne remote sensing has capability to simultaneously monitor both land use 

land cover changes and responses of the thermal environment. Using medium resolution space-

borne multi-spectral data allow mapping of complex landscapes such as urban areas as well as 

the complex spatial structure of surface temperature. Due to exchange of heat between the land 

surface and the lower atmosphere, there is a strong link between land surface temperatures and 

near-surface air temperatures. This linkage enables spatial up scaling of thermal analysis by 

combining or replacing in-situ observations of air temperature with land surface temperature 

maps retrieved from remote sensing dataset. Therefore, combining in situ meteorological data 

with multi-spectral medium resolution remote sensing data has potential to improve 

understanding of the implications of urban growth on the thermal environment especially in 

data scarce countries. 

 

In view of urban growth and potential implications on the thermal environment, inadequacy of 

situ data, availability and ease of access of medium resolution space-borne multispectral data 

and paucity of literature especially in the study area, the objectives of the study were; 

1. To assess the potential of merging thermal data and vegetation indices with multi-

spectral medium resolution remote sensing data in improving urban land use/cover 

mapping 

2. To determine extreme heat vulnerability of Harare metropolitan city using multi-

spectral remote sensing and socio-economic data 

3. To assess seasonal and spatial daytime outdoor thermal comfort variations using 

recently launched and improved Landsat 8 data 

4. To link major dynamics in urban near-surface temperatures to long term changes in 

land use/cover 

5. To understand the link between built-up density and indoor air-conditioning energy 

demand in Harare using degree days derived from remote sensing and in-situ data 

6. To predict future land use/cover distribution and implications on near-surface 

temperatures in Harare using land cover indices retrieved from remote sensing data in 

CA-Markov modelling 
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9.2 Chapter 3: Potential of merging thermal data and vegetation indices with multi-

spectral medium resolution remote sensing data in improving urban land use/cover 

mapping 

Accurate land use and land cover (LULC) mapping is important for planning and urban growth 

monitoring. In land surface temperatures analysis, land use and land cover maps can also be 

used for assigning emissivity values in order to enable conversion of blackbody to actual and 

accurate land surface temperatures. Due to heterogeneity, urban mapping requires high spatial 

resolution remote sensing data to minimize the effect of mixed pixels on classification 

accuracy. However, high resolution space-borne remote sensing data is usually expensive to 

acquire, especially for non-funded projects in resource constrained countries. Fortunately, 

medium resolution datasets such as Landsat series have proven capabilities for urban LULC 

classification. In this study the potential to further improve accuracy of urban LULC mapping 

using medium resolution multi-spectral Landsat data was tested. The study also took advantage 

of the recently launched Landsat 8’s datasets given the improved radiometric resolution, signal 

to noise ratio and spectral range. In order to identify the best method for improving 

classification accuracy, land use and land cover maps for Harare Metropolitan city were 

produced using i) traditional reflective (visible/infrared) bands alone, ii) vegetation indices 

(NDBI, NDVI, NDBaI and NDWI) alone, iii) thermal infra-red bands, iv) combined reflective 

and thermal data, v) combined thermal infrared data and vegetation indices, vi) combined 

reflective bands and indices vii) combined reflective bands, thermal data and vegetation 

indices. The accuracies of other methods were compared with the traditional method of 

classification using multi-spectral reflective bands alone based on the overall accuracies and 

kappa indices. The statistical significance of the differences in accuracy between the methods 

was tested using the McNemar Z score. Results showed that higher accuracy was achieved by 

combining all the datasets (i.e. reflective bands, thermal infrared data and vegetation indices) 

than when using each dataset as standalone. For example, the overall accuracy was 89.33% 

(kappa=0.86) when all datasets were combined in one classification compared to 82.65% 

(kappa=0.81) when traditional reflective bands are used. Lowest accuracy of 53.4% was 

attained when thermal infrared data was used as standalone in classification attributed to their 

low spatial resolution (100m). However, the contribution of thermal data is better when they 

are combined with indices (overall accuracy of 83.97 and kappa=0.82) or with reflective bands 

(overall accuracy of 84.03 and kappa=0.81). The McNemar Z scores greater than zero showed 

that the differences in accuracy between the tested methods and the traditional method were 



179 

 

statistically significant. Except using thermal bands as standalone, other classifications 

managed to extract land use and land cover classes in the complex urban landscapes of Harare 

with high User’s and Producer’s accuracies per class (mostly above 75%). 

 

9.3 Chapter 4: Determining extreme heat vulnerability of Harare metropolitan city 

using multi-spectral remote sensing and socio-economic data 

Land surface alterations due to replacement of natural covers such as vegetation and wetlands 

with buildings and impervious surfaces change thermal characteristics of urban areas. This may 

result in thermal elevations in areas where materials with high heat absorption are concentrated 

such as in densely built-up areas. Chapter three provided methods for accurate land use and 

land cover classification, which also help in mapping the built-up areas where urban residents 

live and work. This chapter related the distribution of land use and land cover types to heat 

vulnerability in Harare. The study was driven by the need for detailed extreme heat 

vulnerability maps given that temperatures are increasing due to background global warming. 

Partitioning of atmospheric energy is affected by differences in energy balance between land 

covers within the city. Previous studies mapped heat vulnerability at course resolution such as 

census block level while variations may exist even within each block. Although indices such 

as NDVI and NDBI were incorporated in heat vulnerability mapping, the maps produced were 

not at the resolution of remote sensing data. In this study heat vulnerability was mapped by 

combining NDVI, NDBI and NDWI retrieved from Landsat 8 with socio-demographic data 

from the 2012 Zimbabwe national census data. Inclusion of NDWI was found to significantly 

aid vulnerability mapping since the index relates both to surface water content and combine 

with NDVI to indicate vegetation health both of which strongly relate with surface and near-

surface temperature. The input vulnerability factors were normalized based on how each related 

with temperature and a composite vulnerability map was produced using equal-weighted sum. 

The heat vulnerability map was scaled between 0 and 1 and reclassified using quantiles such 

that the lower 20% was classified as “Very low vulnerability”, the three intermediate quantiles 

as “Low”, “Moderate” and “High” while the upper 20% quantile was categorized as “Very 

high” vulnerability. This was based on an adopted reclassification of heat vulnerability 

approach of using quantiles (Buscail, et al., 2012). Due to physical exposure and socio-

demographic pressures, results showed that heat vulnerability was high to very high in more 

than 40% of the metropolitan city during the hot season. Extreme heat vulnerability was found 

to be very high in the densely built-up city core and south western areas (index values ranged 

from 0.49 to 1). The southern half of the city which is characterized by high density of 
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population and buildings, very low vegetation fraction as well as low income residents had heat 

vulnerability in the moderate to high (index value range from 0.41 to 0.49). The northern parts 

where vegetation is abundant, density of buildings is low and the moderate to high income 

strata reside had low heat vulnerability level (index values below 0.41). Results also indicated 

a high spatial correlation (r=0.61) between land surface temperature and extreme heat 

vulnerability in Harare. This implied that medium resolution land surface temperature derived 

from Landsat thermal data is a good indicator of heat vulnerability in Harare. Overall, the heat 

vulnerability map produced was more detailed than could be produced using census blocks. 

 

9.4 Chapter 5: Assessment of seasonal and spatial daytime outdoor thermal comfort 

variations using recently launched and improved Landsat 8 data 

Chapter four showed the spatial distribution of heat vulnerability in case extreme temperature 

affect Harare, especially during the hot season, in view of projected continued global 

temperature rises. The chapter also found that heat vulnerability is closely related to land 

surface temperature which also depend on land use and land cover spatial structure. However, 

effect of temporal LULC changes such as seasonal variations which may also affect heat 

distribution were not considered in Chapter four. In this chapter, changes in the spatial 

distribution of outdoor thermal discomfort in response to seasonal LULC changes were 

investigated. The Thom’s Discomfort Index (DI) was used, using air temperature and relative 

humidity retrieved from land surface temperature using simple linear regression models. 

Thermal discomfort patterns were investigated in four sub-seasons namely the rainy-, post 

rainy-, cool- and hot sub-seasons. Landsat 8’s data and meteorological observations of 

temperature and humidity were used i) to develop models for estimating temperature and 

humidity from land surface temperature and ii) to produce seasonal maps of outdoor thermal 

discomfort for Harare and iii) to relate thermal discomfort with land use and land cover spatial 

patterns. Results showed that there was strong correlation (R-squared=0.69) between land 

surface temperature and air temperature. Season specific linear models were developed for 

retrieving relative humidity from land surface temperature. When compared with in-situ 

relative humidity, the model retrievals were at high accuracy (percentage errors less than 20% 

in all seasons). Results also showed that due to variations in humidity ranges between seasons, 

using a single model in all seasons would result in less accurate retrievals (percentage error of 

28.1%) than when seasons are analysed separately. The proportion of the study area where less 

than 50% of the subjects would feel uncomfortable was largest during the post rainy sub-season 

(59%) and smallest in the hot sub-season (2.1%). DI values 24oC were recorded indicating 
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comfortable thermal conditions across the country in the cool (Figure 5.4c) and post rainy sub-

seasons (Figure 5.4b). During these comfortable sub-seasons, very low discomfort indices 

(below 21oC) were also observed in the northern and eastern areas. The city was thermally 

uncomfortable outdoors during the hot sub-season (Figure 5.4d) when DI values greater than 

24oC were recorded with high values of DI (above 27oC) in the southern and western than the 

rest of the city. Figure 5.4 and Figure 5.5 showed that in all sub-seasons, outdoor thermal 

discomfort was less in northern areas occupied by parks and low density residential areas than 

in densely built-up central and southern areas. For example, results showed that during hot sub-

season, almost all occupants feel thermally uncomfortable (DI greater than 27oC) in the bulk 

of the southern areas while more than 50% would feel comfortable (DI less 27oC) in most of 

the areas in the north. Thermal discomfort for all occupants (DI between 29oC and 32oC) was 

recorded in densely built up areas, which correspond to the central business district and 

industrial areas during the rainy and the hot sub-seasons. Figure 5.6 showed outdoor thermal 

discomfort was strongly affected by vegetation as low DI values were recorded in seasons with 

high vegetation cover fraction. As such the average discomfort was very high in the hot sub-

season (DI=31oC), which was characterized by low vegetation fraction (0.46) and high thermal 

discomfort (average of 30oC). Therefore, there was a general inverse relationship between thermal 

discomfort and vegetation fraction. 

 

9.4 Chapter 6: To link major dynamics in urban near-surface temperatures to long 

term changes in land use/cover 

It was observed in Chapter 5 that seasonal changes in land use and land cover affect outdoor 

thermal comfort. Findings of the chapter also showed that the hot sub-season (mid-September 

to mid-November) is the most thermally uncomfortable in Harare. However, the impacts of 

long-term land use and land cover changes, which characterize urban growth also need to be 

quantified. Therefore, Chapter 6 further aimed at establishing the link between long-term 

changes in land use and land cover distribution and dynamics of the spatial configuration of 

land surface temperatures. LULC and land surface temperature patterns for 1984, 1993, 2001 

and 2015 were retrieved from Landsat multi-spectral data. Urban surface temperatures are not 

only affected by surface properties but also by intensity of incoming radiation received. 

Therefore, the study also aimed at separating effects of LULC changes from the contribution 

of background warming. In order to achieve this, a temperature difference normalization 

approach which assumes that intra-class changes in average temperature are due to background 

warming was used. Average land surface temperatures were considered to only change 
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significantly when there is a change from one land cover to another, else they would remain 

almost the same when no conversion occurs. Changes in the contribution of individual LULC 

to the heating in Harare were assessed using the Contribution Index (CI). On the other hand, 

changes in the spatial structure of land surface temperature were analysed using the relative 

radiant temperature. The relative radiant temperature was chosen to indicate changes in urban 

heat island as it eliminates subjective procedure of selecting a representative rural pixel 

associated with other methods. The quality of LULC maps produced was high as indicated by 

overall accuracies greater than 80% for all the periods. Findings of this chapter showed that 

Harare experienced growth evidenced by increase in extent of built-up area between 1984 and 

2015. For example, the coverage of high density residential areas increased by 92% at the 

expense of cooler green-spaces which decreased by 75.5% between 1984 and 2016 (Figure 

6.2). Average land surface temperature for the whole area as well as per LULC type increased 

during the studied period. During the period, average land surface temperature in the 

CBD/Industrial areas increased by 3.29oC and by 1.51oC over green-spaces during the study 

period. Lowest increases in temperature were observed over water surfaces (0.74oC) croplands 

(0.86oC) and green spaces (1.51oC). Surface temperature rises were found to be in higher 

density residential areas when an increase by 2.55oC was recorded than in “leafy” low density 

residential areas which experienced a rise by 1.7oC. The normalized temperatures differencing 

procedure yielded that LULC changes alone caused an increase in surface temperatures of 

0.98oC while combined with background warming the surface temperatures rose by 1.98oC. 

The trend in CI displayed on Figure 6.4 indicated that warming was contributed by increase in 

warming contribution due to expansion of densely built-up areas. Conversely, the cooling 

contribution of vegetation and wetlands decreased as their proportional coverage decreased 

between 1984 and 2015. Overall, effect of growth induced long-term changes in LULC 

distribution was significant as this contributed more than 0.5oC thermal elevation within the 

city. 

 

9.5 Chapter 7: Understanding the link between built-up density and indoor air-

conditioning energy demand in Harare using degree days derived from remote sensing 

and in-situ data 

In Chapter 5 and Chapter 6, it was shown how seasonal and long-term changes in LULC spatial 

structure affect distribution of land surface temperature and thermal discomfort. It was shown 

that thermal discomfort is immense during the hot season and the intensity and spatial coverage 

of extreme surface temperatures were increasing as the city of Harare was growing. Chapter 7 
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analysed the potential responses of air-conditioning energy demand to the seasonal and long 

term changes in LULC and land surface temperature. Cloud-free Landsat images acquired in 

the cool and hot sub-seasons on dates indicated on Table 7.1 in 1984, 1993, 2001 and 2015 

were used. In-situ temperature data for the period from 1950 to 2010 were obtained from the 

Meteorological Services Department of Zimbabwe. Energy consumption data covering period 

from 2009 to 2016 were obtained from Zimbabwe Electricity Transmission and Distribution 

Company (ZETDC). Household energy consumption data in different residential types where 

retrieved from samples of electricity bills since data obtained from ZETDC was not resolved 

to the scale of residential types found in the area. Cooling and Heating Degree Days (CDD and 

HDD) are used as a proxy for energy requirement for indoor space cooling and heating. The 

Degree Days have most widely been computed using in-situ measurements of temperature but 

no attempt has been made to employ medium resolution thermal data for this purpose. In this 

study a simple linear model developed in Chapter 5 was used to estimate the spatial distribution 

of near surface air temperature from land surface temperature. The retrieved air temperatures 

were used to compute trends in the spatial distribution of CDD and HDD from 1984 to 2015. 

In order to verify the trends CDD and HDD were also computed using in-situ observations 

maximum and minimum temperatures, respectively. CDD were used to detect potential trends 

in cooling energy during the hot sub-season while HDD were used to determine potential space 

heating energy demand in the cool season. The link between actual energy consumption and 

CDD/HDD patterns was also investigated. LULC maps derived in Chapter 6 were used to 

establish the link between residential types/built-up spatial structure and energy demand as 

well as actual energy consumption in Harare. Results in Figure 7.3 and 7.4 showed that land 

surface temperature rises between 1984 and 2015 were more pronounced for the hot than the 

cool sub-season. Between 1984 and 2015, there was decrease in the proportion of the city 

experiencing on average the 12 to 22oC category and increase in those affected by the 22 to 30oC 

category during the cool season. As such, the 22 to 30oC temperature range covered less than 

330km2 in 1984 but this increased to cover more than 600 km2 in 2015. During the hot season, 

average land surface temperature values greater than 36oC were not common in 1984 (0.27km2) but 

were covering a significant proportion of the city (above 580km2) in 2015. Land surface 

temperature based Degree Days closely compared with retrievals based on in-situ temperature data 

as indicated by a mean percentage error of 21.2 % and Mean Absolute Error of 1.06 degree days. 

Results in Figure 7.6 showed that mean household energy consumption increased as minimum 

temperatures decreased and as maximum temperatures increased in the cool and wet season, 

respectively. Highest energy consumption in residential areas in the summer season (above 
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1.05X106KWh) corresponded with highest maximum temperature in October and in January. In 

the hot season, daytime cooling energy requirements were larger in densely built-up areas than in 

the low-medium density residential areas. As such, in 2015, the CDD was 8.90 degree days in high 

density residential areas while it was 7.27 degree days in low density residential areas. The results 

also revealed a mismatch between cooling energy demand (CDD) and actual mean household 

energy consumption. Although low density residential areas had lowest CDD values, they had the 

highest mean monthly energy usage (1440KWh). Similarly, actual energy consumption was the 

lowest in high density residential areas (480KWh) where demand based on temperatures should be 

high. Since Chapter 3 showed that high density residential areas are occupied by low-income strata, 

results indicated that household income seemed to influence actual energy consumption 

differences. The disparity between cooling energy requirement and actual energy consumption also 

confirms why residential areas in the southern half of the city were categorized as highly vulnerable 

to heat extremes in Chapter 2. 

 

9.6 Chapter 8: To predict future land use/cover distribution and implications on near-

surface temperatures in Harare using land cover indices retrieved from remote sensing 

data in CA-Markov modelling 

Previous chapters focused on current, short-term as well as long term historical patterns of 

LULC and land surface temperature spatial structure in Harare. Chapter 2 revealed that there 

is paucity of remote sensing based predictive studies while urban growth and its impacts are 

expected to continue. Therefore, the objective of Chapter 8 was to use historical patterns 

observed between 1984 and 2015 to predict future LULC and land surface temperature trends. 

Since Chapter 5 showed that extreme heat events are prevalent during the hot, sub-season, 

focus was placed on forecast for this period. Table 8.2 and 8.3 show the Landsat images used 

in the study to analyse temperature patterns for the hot season in 1984, 2001 and 2015. The 

LULC maps obtained in Chapter 6 were also used to link urban growth with surface 

temperature trends for the hot season. In this chapter the Cellular Automata Markov Chain 

analysis was used to predict future urban growth and surface temperature. Initially, LULC 

changes between 1984 and 2001 were used to predict LULC for 2015. This was done to test 

the performance of the model in predicting future growth before its use in further predictions. 

After assessing the accuracy of the model, the CA Markov was then used to predict LULC for 

2025, 2035 and 2045 based on transition matrix, transition probabilities and transitions areas 

generated based on changes between 1984 and 2015. Secondly, the potential of a variety of 

land cover and vegetation indices shown on Tables 8.4 in predicting future land surface 

temperature was tested. Correlation analysis was performed in order to find an index with the 
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highest spatial correlation with land surface temperature. The selected predictor index was 

computed for 1984 and 2015 and used to generate transition areas, transition probabilities and 

transition matrix for 2025, 2035 and 2045 in Markov Chain Analysis. The future states of the 

predictor index were mapped using the Cellular Automata module in IDRISI and reclassified 

into future land surface temperature maps based on the model in Figure 8.4. Due to highest 

spatial correlation with land surface temperature (r=0.9381), Urban Index (UI) was found to be 

the best predictor of urban surface temperature in comparison to other indices. Based on Figure 

8.5, UI was also found to predict land surface temperature with high accuracy (mean relative 

percentage error=5.27%, Nash Sutcliff efficiency=0.74, root mean square error=1.26oC, mean 

bias error=-0.0002oC and index of agreement=0.80). Based on CA Markov analysis, the rising 

temperature trends observed between 1984 and 2015 may continue through to 2045 (Figure 

8.8). In Figure 8.6, the CA Markov model was found reliable in predicting future LULC 

distribution due to strong agreement between the predicted and the SVM classification based 

map for 2015 (overall Kappa Index of Agreement was 0.91). Figure 8.7 showed that the model 

predicted built-up areas at the expense of green-spaces and wetlands in 2025, 2035 and 2045. 

High density residential areas are predicted to expand from 470.02 to 490.36km2 between 2015 

and 2045. As the city grows, green-spaces would be expected to decrease in area from 57.42 

to 27.85km2 during the same time interval. The proportion of the study area to experience the 

high temperature category (greater than 38oC) was predicted to increase as the city will 

continue to grow. The model predictions in Table 8.11 that the 18-28oC temperature range 

could decrease in coverage from 86.23km2 to 55.97km2 while the 36-45oC category is expected 

to increase from 363.78 to 498.45km2 between 2015 and 2045.   

 

9.7 Objectives revisited 

The potential of integrated Landsat data and derived indices in mapping urban landscapes was 

successfully tested when it was obtained that combining reflective bands with thermal infrared 

data and indices results in higher accuracy than using reflective bands alone. Remotely sensed 

vegetation indices were also successfully combined with socio-demographic data to map heat 

vulnerability in Harare. The study managed to accurately map urban growth and its 

implications on the spatial structure of surface temperatures between 1984 and 2015. Spatial 

and temporal analyses of surface temperatures using medium resolution remote sensing 

datasets were done successfully. As such the link between thermal discomfort and LULC 

distribution was mapped in four sub-seasons. In this analysis, the study managed to show that 

the hot sub-season is the most thermally uncomfortable with higher stress levels in densely 
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built than other areas.  Temporal analysis also convincingly showed that surface temperatures 

are increasing due to expansion of urban fabric as the city of Harare is growing.  

 

The study also met the objective to link urban growth with potential indoor energy consumption 

using CDD and HDD as a measure. Using actual energy consumption data the study observed 

that household energy use is increasing in Harare which also agreed with findings based on 

CDD and HDD. Actual energy consumption was also found to be high in leafy areas occupied 

by middle and high income strata where temperatures and heat stress are generally low. This 

agreed with Chapter 2 which showed that heat vulnerability is high in southern areas occupied 

by low income strata. Low energy use may signify that the occupants do not afford air-

conditioning facilities hence subjected to high heat stress levels during hot periods. Since the 

city of Harare is still growing, based on historical patterns the study predicted future growth 

and implications on the thermal environment of Harare using multi-spectral and multi-temporal 

Landsat data. Therefore, the objectives of the study were largely met although cognisant of 

limitations which are highlighted below. 

 

9.8 Limitations 

In this study, limitations were encountered some of which need to be addressed in future 

studies. The following limitations were identified; 

 Landsat thermal infrared data were the most easily accessible but not at the most desired 

spatial and temporal resolution. Due to low temporal resolution of Landsat data (16 

days), the study could not analyse the diurnal cycles of land surface temperature per 

LULC type. This also limited the extent to which remote sensing retrievals of LST 

could be matched with in-situ observations of temperature for correlation analysis. This 

also affected seasonal analysis as only a few imageries could be found per season 

 The cloud-free imagery requirement for space-borne visible and infrared remote 

sensing based land surface analysis was limited due to small number of such imageries 

during the rainy and post-rain sub-seasons.  

 The study depended on only three weather stations in Harare which had different 

observation times and instrumentation. Harare Airport Meteorological Office (HAMO) 

and Kutsaga Research Stations are automated such that hourly data could be obtained. 

The station at Belvedere is operated manually with observations taken at synoptic times 

based on World Meteorology Organization (WMO) recommendations. Access to the 

data was also not uniform during the study period. As a result, earlier analyses were 
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done using data only from Kutsaga Research Station. Furthermore, besides being few 

the observation points were also not adequately representative to capture variability in 

temperature due to LULC spatial patterns in Harare. 

 No attempt was made to merge Landsat data with sensors such as Meteosat to improve 

temporal resolution. Although such sensors have very low spatial resolution, there was 

need to test if merging could create a new dataset with medium spatial resolution and 

high temporal resolution. 

 LULC classifications produced schemes which may not be easily related to climate. 

The classes produced are named into region specific schemes whose interpretation may 

differ from one part of the world to another. The study did not classify Harare into 

standard Local Climate Zones (LCZ) which are of easy global communication and 

comparison. If so done, the study would have directly contributed to the WUDAPT 

project’s effort of creating a global database of urban LCZs. 

 Household energy consumption data could not separate contribution of air-condition 

from other uses such as cooking and lighting. This made it difficult to single out the 

effect of urban growth on indoor cooling and heating energy 

In order to address these limitations, recommendations and suggestions for future studies 

are highlighted in the next section 

 

9.9 Recommendations and suggestions for future studies 

This study has displayed the unique value of multi-spectral remote sensing data in analyzing 

the link between urban growth and the thermal environment. The study showed that thermal 

data from space-borne sensors can replace or combine with in-situ air temperature data to 

provide detailed spatial and temporal analysis not viable with in-situ data alone. However, the 

challenge of inadequate spatial and temporal resolutions associated with medium resolution 

sensors such as Landsat remains a major setback. For example, although high accuracy of urban 

LULC mapping is achieved using Landsat data, the mixed pixel problem still needs to be 

minimized. Furthermore, the spatial resolution of space-borne thermal infrared sensors has not 

yet matched the resolution higher than 50m for urban thermal analysis as recommended by 

Sobrino, et al. (2004). There is thus a mismatch in spatial resolution between thermal data and 

that of LULC maps and land cover indices derived from visible and infrared data. For example, 

the thermal data of Landsat 8 are at a spatial resolution of 100m while the optical bands are at 

30m resolution. The challenge of spatial resolution is further worsened given that current high 

resolution space-borne sensors such as SPOT have no thermal infrared data. The other 



188 

 

limitation of using medium resolution datasets such as Landsat is that of low temporal 

resolution which, for example, is 16 days for Landsat series. Desired temporal resolution is 

obtained with geo-stationary satellites but characterized by very low spatial resolution. 

However, the medium resolution datasets remain valued especially in non-funded projects and 

resource constrained regions where access to high resolution data such as air-borne sensors is 

rare. In order to improve monitoring of urban growth and its impacts on land- and near-surface 

temperature, future studies should consider the following recommendations; 

 There is need to develop algorithms for temporal up scaling of medium resolution 

space-borne remote sensing data. For, example, blending low temporal resolution with 

geostationary sensors’ datasets has potential to create datasets with acceptable spatial 

and temporal resolution. This will improve both spatial and temporal details of urban 

growth and temperature analysis.  

 Recently, the European Space Agent (ESA) launched Sentinel-2 satellite providing as 

high spatial resolution as 10 and 20m for visible and short wave infrared data. 

Application of this data has potential to improve urban LULC and growth monitoring. 

There is need to compare Sentinel-2 with widely used sensors such as Landsat and 

ASTER to assess if there are significant differences in mapping accuracy. Other 

datasets such as the high resolution German TerraSAR-X need to be tested for mapping 

urban areas in developing countries especially in Africa. 

 Engineers should develop high resolution low earth orbiting space-borne sensors. This 

will improve characterization of urban land surface temperatures given the complex 

landscapes and heterogeneity in urban areas. This will also improve spatial correlation 

between land surface temperature and LULC maps as well as land cover indices derived 

from visible and infrared data from medium and high resolution sensors 

 Clouds block solar radiation from reaching the earth’s surface. Due to this, land surface 

temperatures are only determined on cloud-free days while in-situ measurements of air 

temperature are done under all conditions. However, thermal comfort assessments need 

to be done for both the hot and cold extremes while the readily available in-situ data 

have limited spatial coverage. There is thus need to develop algorithms for retrieving 

land surface temperatures even under a cloud. Studies should thus analyze the 

relationship between cloud properties (e.g. amount and thickness) and land surface 

temperatures for different LULC type in an urban setting. 
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 Access to urban climate research products by policy makers must be increased such as 

by creating global and local portals for sharing information. As such, scientists in 

developing countries need to contribute to the already existing efforts such as the 

WUDAPT. Clauses on urban climate need to be included in climate policies of many 

developing countries which currently place much emphasis on agriculture. 

 Urban development has potential to elevate temperature in urban areas. Urban planners 

should spearhead sustainable development with climate implications in mind. 

 There is great need to increase the weather station network in developing countries 

through government support and partnerships. In Harare, the study would not have been 

possible if there were no space-borne remote sensing datasets. The spatial variations in 

urban temperatures cannot be adequately mapped using few stations due to 

heterogeneity and complexity of landscape. Increasing station density will improve 

capability to relate remote sensing with observed temperature. 

 Future studies should develop methods of separating energy use due to air-conditioning 

from other household uses. This will make it easier to relate heat island intensities with 

air-conditioning energy demand over time. 

 



190 

 

9.10 Conclusion 

The responses of land surface temperature and related socio-economic impacts to spatial and 

temporal land use and land cover (LULC) dynamics were investigated in Harare, Zimbabwe. 

In view of meteorological observational network which does not match complex urban 

structure, Landsat multi-spectral were used. A method was developed to improve accuracy of 

urban LULC classification by combining the full spectral range of Landsat with vegetation 

indices (NDVI, NDWI, NDBaI and NDBI) in a single classification. The link between the 

LULC types and extreme heat vulnerability was also investigated. Extreme heat vulnerability 

index map was derived by combining NDBI, NDVI and NDWI with socio-demographic factors 

extracted from the latest census data in Harare. The responses of outdoor thermal discomfort 

to seasonal variations in LULC were also assessed. The Discomfort Index (DI) was retrieved 

based on simple linear models developed to replace relative humidity and air temperature with 

land surface temperature derived from Landsat thermal infrared data. In this study, the long 

term impact of urban growth (1986 to 2015) on land surface temperature was quantified and 

separated from effect of other factors using normalized temperature difference approach. The 

implications of long-term LULC and surface temperature changes on potential indoor air-

conditioning demand for human comfort assurance was also analyzed. Heating and Cooling 

Degree Days were used as a proxy for air-conditioning energy in the cool and hot season, 

respectively. The Degree Days were derived from Landsat thermal infrared data based on linear 

models developed and linked with i) growth patterns, ii) Degree Days from in-situ 

meteorological data and iii) actual energy consumption. In order to inform future growth LULC 

and land surface temperature were predicted up to year 2045 using the Cellular Automata 

Markov Chain analysis. Based on findings of the study in Harare, the following conclusions 

were drawn; 

 Urban LULC mapping using medium resolution remote sensing datasets is improved 

significantly by merging reflective bands, thermal data and derived vegetation indices 

in a single classification.  

 Extreme heat vulnerability was high in densely built-up areas where there was a 

combination of low-income strata, high population density, large population in the 

extreme age ranges (0-15 and above 65) and physical exposure due to highly heat 

absorbing LULC types. 

 Outdoor thermal discomfort has its peak in the hot sub-season due to high incoming 

radiation, low surface temperature and sparse or dry vegetation cover. Outdoor thermal 

discomfort was higher in densely built-up than other LULC types all year round 
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 Although background warming is also causing surface temperatures to increase, long 

term LULC changes due to urban growth had a significant contribution 

 LULC change induced warming is reducing energy consumption for indoor warming 

during the cool season and increase space heating energy demand during the hot season 

in Harare especially in densely built-up areas. There was a mismatch between energy 

requirement for space cooling and actual household energy consumption due to 

affordability. Low income strata in high density residential areas required more energy 

and cooling facility than they afford thus rendering them vulnerable. 

 Assuming growth patterns experienced between 1984 and 2015 would continue through 

to 2045 with no heat mitigation strategies implemented, urban surface temperatures will 

continue to shift towards extreme values especially as densely built-up areas expand. 

Overall, remote sensing offers great capabilities to accurately monitor urban growth and its 

impacts on the thermal environment essential in data scarce regions. Removal of green spaces 

and wetland replacing them with buildings and impervious areas significantly alters the thermal 

characteristics of the lower atmosphere in urban areas. At the spatial resolution of Landsat 

thermal data, in-situ air temperature data can be replaced in a variety of analysis to map the 

spatial and temporal temperature patterns. 
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