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ABSTRACT

In recent years there have been economically important epidemics of both Stenocarpella ear

rot and grey leaf spot (GLS) in South Africa. These epidemics have adversely affected the

grain yield and quality of the maize harvested. Maize researchers and breeders have had to

re-assess the importance of maize disease in South Africa and make the necessary adjustments

to their programmes. Literature reviews were undertaken on both Stenocarpella ear rot and

GLS to provide the necessary background of technical information to conduct research under

local conditions into these disease problems, and to assist in interpretation of results of

experiments.
.IT

A novel method of inoculating milled Stenocarpella infected ears into the whorls of maize

plants (about 2 weeks before 5i% anthesis) was developed to provide consistent inoculum

pressure and increased ear rot. This inoculation method was practical, efficient, reliable,

consistent and cheap to implement. Commercial organisations could use this inoculation

method to inoculate a large number of plants per day, allowing for improved screening of

breeding material and hybrids.

Ear rot assessment methods, and researchers' ability to assess ear rot, were tested under South

African conditions. The accuracy of the different methods tested varied considerably,

particularly when there was a high level of ear rot that could not be seen without shelling the

grain. Each method could be used in a maize breeding programme, depending upon the

desired levels of accuracy and time taken using the given method. Researcher's ability to

assess ear rot varied considerably and accuracy was correlated with the number of years

experience in maize research. Grain colour affected the researcher's ability to accurately

assess ear rot severity. Yellow-grained maize was more difficult to assess for ear rot than

white-grained maize.

Hybrid response to Stenocarpella ear rot infection was difficult to interpret owing to a

significant interaction with the environment. Hybrid ear rot response was non-linear in nature.

Normal methods of presenting disease data and classifying hybrids in resistance response

categories were not successful. Non-linear regression analysis has to be used to do this.

However, it is important that ear rot data be presented in a way that farmers can utilise the

information. Pre-flower stress predisposes maize hybrids to ear rot infection. Hybrids that



normally exhibited good levels of resistance to Stenocarpella ear rot may become severely

colonised if drought stress occurs in the four weeks prior to flowering. This environmental

interaction makes ear rot resistance breeding and the interpretation of results difficult.

The incidence of maize ear rot was widely considered to increase with increased plant density.

Experiments over three seasons in South Africa have shown that is not true under certain

environmental conditions. In specific hybrids, plant densities of less than 50 000 plants ha"1

exhibited a higher incidence and severity of ear rot than plant densities greater than 50 000

plants ha"1. The hybrids that usually responded in this manner were more susceptible to ear

rot than the other hybrids. Generally, ear rot increased with increased plant densities over

50 000 plants ha"1. The mechanisms and reasons for this could not be determined.

Fungicide trials and regression analysis of hybrid yield trials over a two years period, at two

locations in KwaZulu-Natal, showed that grain yield losses due to GLS infection were at least

13%. Severity of GLS was consistently higher at Cedara than at Greytown. Economic losses

at Cedara ranged from Rl 919 - R2 278 ha1 and at Greytown from Rl 554 - Rl 726 ha"1.

Predicted hybrid losses ranged from R836 - R2 621 ha1 (13% - 37%), depending upon the

level of inherent GLS resistance.

Hybrid response to Cercospora zeae-maydis infection was linear in nature and hybrids could

be categorised into response categories. Large differences in GLS resistance could be found

between commercial hybrids. However, the current levels of GLS resistance in hybrids does

not eliminate yield loss under high GLS inoculum levels, and fungicide application was

economically justified on most hybrids. Newly released hybrids show increased levels of GLS

resistance.

The application of systemic fungicides to GLS-susceptible maize was highly effective in

controlling GLS and increasing yield substantially. The most effective fungicides belonged to

the triazole and benzimidazole group of fungicides. Protectant fungicides were not as effective

as systemic fungicides. Copper-based fungicides were phytotoxic to maize in two seasons and

at both locations. Fungicide mixtures of the two groups active against GLS are being used on

commercially. The effectiveness of fungicides did not vary over location or hybrids, but was

influenced by inoculum pressure.
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Effective control strategies have been implemented to control both Stenocarpella ear rot and

GLS in South Africa. Crop rotation, the selection of the more ear rot and GLS-resistant

hybrids, and the judicious use of fungicides has reduced the levels of both diseases to

manageable levels. An integrated control strategy is needed to control these diseases and

efforts are being made to educate farmers to this effect. Maize pathological research now

enjoys a greater emphasis than it did in the early-1980s.
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FOREWORD

This thesis has evolved over a number of years and has concentrated on the most important

maize diseases during the period in which the trials were undertaken. The thesis has been

divided into four sections: general introduction, ear rot research, grey leaf spot (GLS) research

and a general discussion. In the case of the research sections, each section is started with a

literature review for the particular disease or phase of the disease. Each chapter has been

written as a discrete paper (with the intention of publishing these data in the near future) and

this has resulted in some duplication in the introductions and references between chapters. The

advantage is that each chapter can be read independently of each other.

Local objectives and constraints shaped the structure and shape of the thesis. When maize

pathology research was initiated at Greytown in December 1981, ear rot had not yet reached

epidemic proportions but was considered a high priority. As the ear rot epidemics developed,

so the priorities and objectives of the research were changed, often in the middle of a growing

season. Some of the data on plant densities and ear rot was collected on trials intended for

yield purposes only and were established by other members of Pannar Seed (Pty) Ltd and

Pannar Research Services (Pty) Ltd. The collection of data and data analysis was undertaken

independently from these people.

The research on GLS developed after the initial identification of the pathogen in the Greytown

area, and then the subsequent rapid spread and increased severity of the pathogen. The start

of the GLS epidemics coincided with the end of the ear rot epidemics. The GLS research was

conducted in association with J.MJ. Ward (Cedara Agricultural Development Institute) at

Cedara, near Pietermaritzburg because of the diversity and magnitude of research undertaken,

and the urgent need for comprehensive solutions to the problem. The two research

programmes of Nowell and Ward were designed to run in parallel, to optimise effort, and to

ensure that the results were applicable to the region as a whole. All data from Cedara resulted

from trials conducted by Ward and have been incorporated into this thesis to add depth and

significance to the findings for KwaZulu-Natal as a whole. The collaboration on these trials

was from the planning stage to the analysis and writing up of these trials.

The research in this thesis was based on the maize industry's need for quick, practical and cost

effective solutions to the predominant maize disease in the 1982 - 1996 period. All research



I was undertaken within the Research Department of Pannar Seed (Pty) Ltd on the Greytown

research farm in KwaZulu-Natal. This region is a 'hot spot' for maize diseases due to the

favourable climate for disease, which often become epidemic in this region before they are

problematic in other parts on the maize production region.

Research within Pannar Seed (Pty) Ltd allowed for a rapid response to solve disease problems,

flexibility in research projects and the rapid feedback of practical solutions to extension,

marketing and production personnel within the company. The research results and solutions

to disease problems were immediately passed on to the farmers and farming community in

general. The research reported in this thesis is less than 10% of the research actually

conducted during this period, and only research on the two most economically important

diseases to the maize industry is reported.

Some of the information in this thesis has already been partially published or has been accepted

for publication:

Nowell, D.C. 1989. Some aspects of ear rot data collection and presentation. Pgs 68-72 in: Proc. 8th. S.Afr.

Maize Breeding Symp., Potchefstroom 1988, J.G. du Plessis (Ed.), Tech. Comm. No. 222, Dept. Agric.

and Water Supply, Pretoria, RSA.

Nowell, D.C. 1989. Maize ear rot data presentation. (Abstract). Phytophylactica 21:103.

Nowell, D.C. 1992. Modified breeding strategies for ear rot resistance in maize under reduced tillage. Pgs 53-

59 in: Proc. 9th. S.Afr. Maize Breeding Symposium, Cedara 1990, H.O. Gevers (Ed.), Tech. Comm.

No. 232, Dept. Agric. And Water Supply, Pretoria, RSA.

Nowell, D.C. 1995. Breeding, screening and evaluation strategies for maize ear rot resistance. Pgs 154-146

in: Proc. 4th Eastern and Southern Africa Regional Maize Conference, 29 March - 1 April, 1994,

CIMMYT, Mexico.

Ward, J.M.J. and Nowell, D.C. 1997. Epidemiology and management of grey leaf spot disease, a new disease

of maize in South Africa. In: Proc. 11th S. Afr. Maize Breeding Symp., Cedara 1994, H.O. Gevers

(Ed.), Grain Crops Research Institute, Dept. Agric, Pretoria, RSA. (In Press).

Ward, J.M.J., Laing, M.D. and Nowell, D.C. 1997. Chemical control of maize grey leaf spot. Crop Prot.

(Accepted for publication but due in mid-1997).

Ward, J.M.J., Birch, E.B., and Nowell, D.C. 1993. Grey leaf spot on maize. Coordinated extension: Maize

in Natal, Cedara Agricultural Development Institute, Pietermaritzburg, RSA. pp. 10.

A considerable amount of detail has now been added to the above papers and the updated

research results will be published in peer reviewed journals.
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The numbering method used for the tables and figures in the different chapters is the number

of the chapter, a full stop, followed by the sequential number of the table or figure in that

chapter. The tables and figures in the General Introduction and General Discussion are

sequential over both chapters and reflect the number of the table or figure only.
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GENERAL INTRODUCTION

The Republic of South Africa (RSA) is a country with a wide range of land types, from desert

to sub-tropical forest, that allows for a wide range of agricultural uses. Approximately 68%

of the land is natural grass, while only 11 % of the country is cultivated. White grained maize

is the staple diet of most South Africans and a considerable amount of yellow maize is

produced for animal consumptioni The area planted to maize varies considerably but is usually

between 3.5 - 4 million hectares per annum. This is 25 - 29% of the arable land usage or

approximately 3% of the total area in South Africa. Maize is the most important cereal crop

(Anonymous, 1989). From Table 1 it can be seen that the total consumption of maize in South

Africa is approximately 6 million tons.

Table 1: The breakdown of maize consumption (kilotons) in South Africa in the 1985/86 to

1994/95 marketing seasons (Anonymous, 1995)

Marketing
season

1985/86

1986/87

1987/88

1988/89

1989/90

1990/91

1991/92'

1992/93

1993/94

1994/95

Human
consumption

2594

2508

2693

2631

2560

2818

2877

2780

2750

2583

Animal
consumption

2722

2556

2523

2766

3462

3557

3775

3639

3484

3517

Industrial
consumption

163

136

161

160

212

226

219

217

237

268

Losses

-

6

6

6

g

-

-

11

-

8

Total

5479

5206

5371

5563

6242

6601

6871

6647

6471

6376

1 During the 1991/92 marketing season 89kt of imported wheat grain was used as stock feed in lieu of yellow maize.



Table 2: The area planted, mean grain yield and total pfdduetidn in specific countries that production significant quantities of maize grain for

the years 1990 to 1995 (Anonymous, 1995)

Country

USA

China

Brazil

Mexico

Argentina

South Africa

Romania

France

Italy

Hungary

India

Indonesia

Thailand

1991

27861

21649

13064

6947

1918

3487

2575

1764

859

1154

5781

2909

1399

Area ('000

1992

29203

21118

13364

7219

2367

3663

3336

1869

8554

1207

6023

3629

1236

ha)

1993

25492

20769

11868

7397

2503

3904

3066

1848

927

1121

6258

2940

1070

1994

29278

21161

13725

7000

2422

2952

2995

1682

911

1264

6000

3167

1200

1991

6.82

4.58

1.81

2.05

4.05

0.85

4.08

7.25

7.26

6.71

1.38

2.15

2.71

Yield

1992

8.25

4.53

2.28

2.34

4.52

2.48

2.05

7.96

8.66

3.65

1.69

2.20

2.97

(t/ha)

1993

6.32

4.96

2.53

2.43

4.36

3.08

2.61

8.03

8.66'

3.61

1.49

2.20

2.71

1994

8.69

4.93

2.34

2.37

4.31

1.43

3.28

7.67

8.71

3.88

1.75

2.19

3.17

1991

189885

99094

23624

14253

7768

2955

10497

12797

6238

7745

7983

6256

3793

Production

1992

240846

95722

30506

16929

10699

9077

6828

14886

7394

4405

10202

7996

3672

(kt)

1993

161146

103046

30065

17964

10901

12026

7987

14843

8029

4044

9348

6460

2900

1994

254274

104350

32136

16600

10439

, 4227

9812

12901

7937

4900

10500

6949

3800

Source: 1.

2.

FAO Quarterly Bulletin of Statistics, Vol. 8, 1995 p.20

Maize Board



Table 3: Provincial delimitation of area planted, maize production and mean yield in South Africa for the seasons 1992/93 to 1994/95 (Anonymous,

1995)

Province

Western Cape

Northern Cape

Eastern Cape

Free State

KwaZulu/Natal

North-West

Northern Province

Mpumalanga

Gauteng

Total RSA

White

1

3

12

711

28

894

36

134

62

1881

1992/3

Yellow

1

19

19

423

_58

494

8

495

89

1605

Total

2

22

31

1134

86

1387

45

629

151

3487

Area

White

1

4

12

111

22_

1008

35

113

62

1983

Planted ('000 ha)

1993/94

Yellow

1

22

17

529

61

402

12

539

95

1680

Total

2

26

30

1256

83

1410

47

652

157

3663

White

1

5

12

712

31

1027

34

150

55

2027

1994/95

Yellow

2

24

19

608

62

460

10

594

100

1877

Total

3

29

31

1319

92

1487

44

744

154

3904

Production

1992/3

Total

2

125

34

850

236

405

48

1092

162

2955

1993/4

Total

5

158

65

3316

295

2466

69

2254

450

9077

(kt)

1994/5

Total

6

178

74

4334

321

3618

95

2684

716

12026

1992/3

Total

1.102

5.757

1.101

0.750

2.759

0.292

1.072

1.735

1.076

0.847

Yield (t/ha)

1993/4

Total

1.925

6.016

2.186

2.640

3.539

1.749

1.453

3.460

2.870

2.478

1994/5

Total

1.873

6.227

2.368

3.285

3.484

2.434

2.150

3.607

4.633

3.080



In the four years of production figures presented in Table 2, South Africa could only export

grain in two years, importing grain in the other two years (Anonymous, 1995). Maize is

primarily produced in the Highveld region of South Africa, although smaller production regions

occur throughout the summer rainfall region (Table 3). White-grained maize is largely

produced in the drier western regions of the country, whereas yellow-grained maize is

predominantly produced in the eastern maize production regions. Maize farmers in

KwaZulu/Natal produce the highest and most consistent yields under dryland conditions. This

is as a result of the higher rainfall in this region. High yields realised in the Northern Cape are

as a result of irrigation (Anonymous, 1989 and 1995).

The relative importance of the South Africa maize industry on the international market varies

significantly. This is as a result of the variable climate and the large variation in the national

yield. This can be seen in Table 2 where the area planted to maize stayed similar for 1991 to

1993, but the yield per hectare varied from 0.85 to 3.08 t ha"1 and total production from 2955kt

to 12026kt. No other country has this kind of variation in grain yield. In terms of total

production, South Africa ranks from thirteenth to fifth out of thirteen of the top maize

producers (Anonymous, 1981, 1986, 1990 and 1995).

Many maize pathogens are present in South Africa, including fungi, bacteria and viruses

(Gorter, 1977 and 1982). Most of these pathogens occur every season but are seldom of

economic significance. During the 1970s and early 1980s, the leaf diseases (Gevers, 1975b;

LeRoux, 1979; van der Watt, 1979; Kaiser and Nowell, 1983), stalk rots (Le Roux, 1975a;

van der Watt, 1975a), common smut (le Roux, 1975b; van der Watt, 1975b) and head smut

(Gevers, 1975a) were of concern to the maize industry. However, during the late 1980s

Stenocarpella ear rot suddenly emerged as a pathogen of major economic importance in South

Africa. A period of intense research into ear rot diseases and controlling the epidemic was

undertaken (Rheeder, 1988; Gevers, 1989; Nowell, 1989a and 1989b; Rheeder et al., 1989;

Flett, 1990).

Losses due to ear rot, caused primarily by Stenocarpella maydis, were large in the 1986/87,

1987/88 and 1988/89 seasons. This can be see from the grading data presented in Table 4. The

increase in Grades 2 and 3 over the previous, and subsequent, seasons was attributed solely to

Stenocarpella ear rot. From Table 4 it can be seen that the problem occurred primarily in

4



yellow-grained hybrids. These hybrids are essentially planted in the higher rainfall production

regions and this is where the ear rot epidemic was most intense.

Table 4: The proportion of each grade of maize delivered to the Maize Board from 1977 to

1995 (Anonymous, 1981, 1986, 1990 and 1995)

SEASON

1976/77

1977/78

1978/79

1979/80

1980/81

1981/82

1982/83

1983/84

1984/85

1985/86

1986/87

1987/88

1988/89

1989/90

1991/92

1992/93

1993/94

1994/95

Mean

WM1

65

72

68

94

81

79

82

88

86

93

89

81

66

93

90

95

95

97

84

<Z

WM2

30

24

30

5

17

18

16

10

12

6

10

15

28

7

8

5

4

3

14

> White Maize

WM3

5.1

3.2

2.2

0.6

1.5

2.8

2.5

1.4

1.4

0.7

1.0

3.8

6.1

0.4

1.6

0.4

0.4

0.3

2.0

WM4

0.3

-

-

0

Sample

0.1

0.1

-

-

0.1

0.1

0

0

0.1

-

-

-

-

YM1

77

80

85

95

88

81

72

83

87

84

67

40

43

87

80

79

85

89

78

%

YM2

22

19

15

5

12

19

26

16

13

15

31

44

51

13

19

20

14

11

20

> Yellow Maize

YM3 YM4

1.3

0.7

0.3

0.1

0.2

0.4

1.1

0.4

0.5

0.7 0.1

1.7

15.7

6.2

0.2

0.6

1.0

0.6

0.1

1.8

Sample

-

0.1

-

-

0.1

0.2

0.1

0

0

-

-

0

-

-

The financial implications to the farmer and the maize industry as a whole were enormous.

Unfortunately, this economic loss was never officially determined, but estimates have been

placed around R200 million in 1986/87 alone (Viljoen1, pers. comm.). Significant efforts were

made to find effective control measures and to identify resistant maize hybrids by researchers

in the public and private sector. Only in recent years are the research results on ear rot being

published in more detail (Rheeder, 1988; Flett and Wehner, 1989; Gevers, 1989; Nowell,

1989a and 1989b; Flett, 1990 and 1991; Flett and Wehner, 1991; McLennan, 1991; Flett and

J.H. Viljoen, formerly Senior Manager: Product Services, Maize Board, P.O. Box 669,
Pretoria 0001, RSA.



van Rensberg, 1992; Flett etal., 1992; Gevers, et al., 1992; Nowell, 1992; Ferreira, 1994;

Flett and McLaren, 1994; Gevers and Lake, 1994; Gevers et al., 1994; Bensch and Flett,

1995;"Hohls et al., 1995). As a result, significant progress had already been made in

controlling ear rot by the early 1990s when grey leaf spot (GLS) first appeared.

Grey leaf spot (caused by Cercospora zeae-maydis Tehon & Daniels) first appeared in the

midlands of KwaZulu-Natal in the 1988/89 growing season. From this initial focus the

incidence of GLS spread rapidly, resulting in economic losses in commercial maize production

during the 1991/92 season and emerged as a major threat to a significant part of the South

African maize industry. The economic importance of this pathogen has increased in subsequent

seasons. A significant amount of research has been conducted to accurately determine the

effect the disease is having on the crop and to investigate various control measures. Initial

estimates based on a single season's fungicide trials showed yield losses to be approximately

40% of the grain yield. This led to the rapid registration of fungicides to control the disease

and the planting of less susceptible/more resistant maize hybrids (Ward et al., 1993; Ward and

Nowell, 1997).

Other maize diseases such as common rust (Puccinia sorghi Schw.) and northern leaf blight

(Exserohilum turcicum [Pass.] Leonard & Suggs) are important (Kaiser and Nowell, 1983;

Nowell, 1995). However, the importance of both Stenocarpella ear rot and GLS has increase

out of proportion to the other diseases. For this reason, maize pathology research has been

concentrated on these two diseases.
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SECTION I - EAR ROT



CHAPTER 1

A Review of Stenocarpella Ear Rot of Maize

ABSTRACT

A review of international literature shows that most research into Stenocarpella ear rot of

maize has been undertaken in the U.S.A. and South Africa. There are a number of gaps in

the understanding of the epidemiology of the two Stenocarpella pathogens and considerably

more research has been undertaken on Stenocarpella maydis than on S. macrospora. These

fungi are primarily debris and seed-borne pathogens with a limited host range. More

information is needed on pycnidium and spore production on debris and subsequent dispersal

methods. Information is limited on the adaptability of the fungi to various bioclimatic regions

and the aggressiveness of isolates under different climatic conditions. Although the infection

process of the fungi has been studied, the interaction between the infection and spread of the

pathogen in the plant, and the environment is still not well understood, especially under stress

conditions. There is considerable information on the genetics of resistance and on breeding

methodology. Research has been undertaken on the effect of Stenocarpella colonised debris

and resistance on the control of ear rot in maize but little is available on the effects of other

agronomic and cultural practices.

1.1 INTRODUCTION

Grain yield and quality losses due to maize ear rots in South Africa have never been accurately

quantified, but reports from other parts of the world have shown the losses to be very

significant (Koehler, 1959; Shurtleff, 1980). The significance of ear rot in the South African

maize industry, particularly Stenocarpella ear rot, increased significantly in the late 1980s.

The estimated loss due to maize ear rot, primarily Stenocarpella ear rot, during the 1987/88

season was R200 million (Viljoen2, pers. comm.) and the severity of ear rots was not as great

as in 1988/89 season (Table 1.1). Compared to the 1986/87 season, the disease was much

more widespread in these two seasons; i.e., the incidence of ear rots in the western maize

J.H. Viljoen, formerly Senior Manager: Product Services, Maize Board, P.O. Box 669,
Pretoria 0001, RSA.
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producing region increased significantly rather than being limited to the eastern maize

producing regions (Viljoen, pers. comm.).

An overall summary of the grain grade composition of the maize crop from 1980/81 to

1993/94 is presented in Table 1.1.

Table 1.1: Grade composition (%) of the annual South African maize crop from 1980/81

through 1993/94 (Viljoen, pers. comm.)

Marketing
Season

1980/81

1981/82

1982/83

1983/84

1984/85

1985/86

1986/87

1987/88

1988/89

1989/90

1990/91

1991/92

1992/93

1993/94

YM1

88

81"

72

83

87

84

67

40

43

87

73

81

80

85

Yellow Maize

YM2

12

19

26

16

13

15

31

44

51

13

25

19

19

14

YM3

0.2

0.4

1.1

0.4

0.5

0.7

1.7

15.7

6.2

0.2

1.2

0.6

1.0

0.5

WM1

81

79

82

88

86

93

W

81

6$

93

88

90

95

95

White Maize

WM2

17

IS

16

10

ia
6

10

IS

28

7

10

9

5

4

WM3

1.5

2.8

2.5

1,4

13

0.7

1,0

US

4,1

0.4

2.0

1,5

0 3

0.4

YM1 & WM1 = up to 4% by mass of discoloured and/or defective grain.
YM2 & WM2 = between 4 and 8 % by mass of discoloured and/or defective grain.
YM3 & WM3 = greater than 8% by mass of discoloured and/or defective grain.

\ln order to control ear rot of maize it is essential to understand the organisms involved and to

understand the large number of environmental, agronomic and genetic factors affecting this

disease complex. Maize ear rot fungi are an integral part of a complex of pathogens

responsible for the seedling, root, stalk and ear rot diseases of maize. /
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Diplodia maydis (Berk.) Sacc. and D. macrospora Earle were renamed Stenocarpella maydis

and S. macrospora, respectively, in 1980 by Sutton. However, general acceptance of this

change in name may take time since these fungi have been known as Diplodia species since

1848 (Sutton and Waterston, 1966b). Of the two Stenocarpella species that cause both stalk

and ear rots of maize, the more common is S. maydis. Although S. macrospora is less

common, the fungus is more aggressive than S. maydis and can cause severe losses (Latterell

and Rossi, 1983).

Synonyms for S. maydis are Sphaeria maydis Berk., Sphaeria zeae Schw., Diplodia zeae

(Schw.) Lev., Hendersonia zeae (Schw.) Hazsl., Macrodiplodia zeae (Schw.) Petrak and Syd.,

Phaeostagonosporopsis zeae (Schw.) Woron., Diplodia maydicola Speg., and Diplodia

zeae-maydis Mechtij (Sutton and Waterston, 1966b; McGee, 1988). The disease is commonly

known as Diplodia ear rot or dry rot (McGee, 1988). The pycnidia are immersed, spherical

to subglobose, dark brown to black, 150 - 300 ^m in diameter. The pycnidial wall is

multicellular and darker round the circular protruding papillate ostiole which is 40 /*m in

diameter. The conidia are straight, curved or irregular, 1 (0-2) septate, smooth-walled, pale

brown, apex attenuated or rounded, base truncate, 15 - 34 x 5 - 8 ^m, formed from hyaline,

aseptate, cylindrical phialides, 10 - 20 x 2 - 3 /xm. Scolecospores have been reported (Sutton

and Waterston, 1966b). On occasion pycnidia are colourless with long, narrow, scolecospores,

1 - 2 x 25 - 35 nm in size. No teleomorph is known (Shurtleff, 1980).

Synonyms for S. macrospora are Macrodiplodia macrospora (Earle) Hohnel, Macrodiplodia

zeae (Schw.) Petrak and Sydow var., Diplodia macrospora (Earle) Petrak and Sydow, and

Stenocarpella zeae Sydow. Common names for the disease, caused by this fungus, include

Diplodia ear rot and dry rot (Sutton and Waterston, 1966a; McGee, 1988). Pycnidia are

immersed or superficially embedded in agar, 180 - 360 ^m in diameter, solitary or in large,

stromatic groups up to 2 mm or more in diameter, carbonaceous, covered with white to

yellowish-brown mycelium, ostiolate, becoming erumpent at maturity to discharge conidia in

dark brown to black droplets or cirrhi. Conidiogenous cells arise from the inner cell wall

tissue of the pycnidia and are short, hyaline, aseptate, cylindrical and are 6 - 13 x 2.5 - 4.0

fim in size. Conidia are cylindrical to clavate with a rounded apex and truncate base, straight

or slightly curved, brown, 0- to 3-septate, not or slightly constricted at the septa and 55 - 106

x 6 - 11 /urn in size. Scolecospores (first reported by Hoppe, 1943) are formed in pycnidia on
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infected maize kernels and are extruded in cream-coloured droplets or cirrhi, and are filiform

or sperm-shaped, hyaline, aseptate, 20 - 40 x 1.2 - 1.0 ^m in size (Marasas and van der

Westhuizen, 1979).

S. macrospora is readily distinguishable from S. maydis by the large, 0- to 3-septate conidia,

as well as by its requirement for biotin (first reported by Wilson, 1942) when cultured on

synthetic media (Sutton and Waterston, 1966a; Morant et al., 1993).

The aim in plant pathology is to arrive at a clear understanding of each disease triangle or

quadrangle studied (Robinson, 1976). The function of each contributing component studied

is unimportant until integrated into the overall picture. This becomes difficult when a

considerable amount of information is known about the disease. The concept of an ethograph

(Putter, 1980) can be used to integrate and simplify information available on the disease

quadrangle concerned. An ethograph is a graphical integration of epidemiological information.

The ethograph starts from a central core of information and is built in a series of concentric

spheres of information covering each systems level, from the molecular system in the middle

to the population system on the outside. This concept has been taken and ethographs generated

for S. maydis (Figure 1.1) and S. macrospora (Figure 1.2).

The net value of the ethograph is that it enables one to examine all contributing factors of a

disease in one figure. The similarities and differences can be compared and identified. Based

on the understanding on the key components of an ethograph, a series of intervention points

can be identified at which disease control measures could be applied (Laing, 1987). The

importance of each intervention point is related to the quantitative contribution of each factor

in the epidemic.

This chapter follows the sequence depicted in the ethographs in Figures 1.1 and 1.2.
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IMPORTANT POINTS

1 Requires plant debris for survival.

2 Toxic to animals but no mycotoxin

isolated.

3 See<i-borne and seed-transmitted.

4 Stress prediposes plants to ear rot

infection.

5 No germplasm is completely

resistant.

Figure 1.1: Ethograph of Stenocarpella maydis on maize.



1

2

3

4

5

6

7

8

Requires plant debris for survival.

Causes a leaf blight.

A polycyclic pathogen.

Very large conidia.

Toxic to animals but no mycotoxin

isolated.

Seed-borne and seed-transmitted.

Stress prediposes plants to ear rot

infection.

No germplasm is completely

resistant.

Figure 1.2: Ethograph of Srenocarpella macmspora on maize.
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1.2 CROP RESIDUE AND TILLAGE PRACTICES

S. maydis overwinters as conidia in pycnidia on debris and as conidia or mycelium on maize

seed. Under warm, moist conditions, conidia are extruded from the pycnidia in long cirrhi and

are disseminated by rain, wind and insects (Shurtleff, 1980).

S. maydis ear rot increases significantly with increased surface debris through reduced tillage

practices (Kerr, 1965; Palti, 1981; Flett, 1990; Flett and Wehner, 1991). Field sanitation is

important in reducing maize ear rot inoculum for the following maize crop (Koehler, 1959;

Kerr, 1965; Flett, 1990; Flett and Wehner, 1991; Flett et al., 1992). Latterell and Rossi

(1983) expressed concern over the potential for a S. macrospora epidemic to develop as a

result of increased conservation tillage in the more humid regions of the U.S.A. Johansen

(1987) summarised the problem as follows: "No-till and reduced tillage offer many benefits to

the farmer. Unfortunately, these options appear to have a hidden cost in increased opportunity

for plant diseases". S. maydis overseasons in plant debris and there is no reason why it should

not survive for a number of years in this manner (Eddins, 1930). It is important to incorporate

maize debris thoroughly as conidia from pycnidia of S. maydis on stalk debris have been found

to be viable after lying in a clover field for two years (Koehler, 1959). In South Africa, Flett

(1990) and Flett et al. (1992) showed that colonised maize debris on the soil surface survived

for longer, had an increased pycnidial density with greater conidial viability, and an enhanced

re-isolation frequency of its pathogens, when compared to colonised debris buried below the

soil surface for up to 11 months. The decline in fungal survival was greatest once the summer

rains had begun. Flett (1990) showed that S. maydis and S. macrospora cannot colonise maize

debris saprophytically. Flett and Wehner (1991) found that reduced-tillage practices

significantly increased the incidence of S. maydis ear rot over two sites and two seasons in

South Africa. This can be seen in Tables 1.2 and 1.3. A further four localities showed the

same trends but they were not significantly different from the ploughed treatment. Although

only present at one site, 5. macrospora was not significantly influenced by tillage practices.

17



Table 1.2: The incidence of StenocarpeUa spp. on maize grown under different tillage

systems at Geluksburg (Flett and Wehner, 1991)

Tillage

No Tillage

Chisel

Chisel X2

Plough:Disc

% Sten

*87/88

35.4a

15.3b

13.7b

7.8c

ears

88/89

8.5a

5.8b

2.9b

% Rot

•87/88

47.0a

45.8a

37.9ab

32.b

kern.

88/89

20.8a

15.7ab

o qu

10.9b

% Smay

*87/88

53.0a

27.lab

25.8ab

11.4b

kern.

88/89

20.7a

10.9b

C AU

5.0b

* = log transformation
Means followed by the same letter are not significantly different at the 5% level (SNK test for significant differences)
% Sten ears = Percent ears infection by StenocarpeUa spp.
% Rot kern. = Percent rotten kernels determined by mass.
% Smay kern. = Percent kernels infected by 5. maydis.

= tillage treatment not included in the trial that season.

Table 1.3: The incidence of StenocarpeUa spp. on maize grown under different tillage

systems at Bloekomspruit (Flett and Wehner, 1991)

Tillage

No Tillage

Chisel

Chisel: Disc

PloughrDisc

% Sten

*87/88

47.5a

45.9a

39.5a

24.0b

ears

88/89

20.3a

16.2a

8.8b

5.0b

%Rot

*87/88

47.3a

39.6a

37.6a

23.0b

kern.

88/89

21.5a

23.2a

18.6a

7.0b

% Smay

•87/88

52.7a

47.3a

43.2a

25.3b

kern.

88/89

25.3a

25.8a

27.2a

6.3b

• = log transformation
Means followed by the same letter are not significantly different at the 5% level (SNK test for significant differences)

% Sten ears = Percent ears infection by StenocarpeUa spp.
% Rot kern. = Percent rotten kernels determined by mass.
% Smay kern. = Percent kernels infected by S. maydis.

1.3 CROP ROTATION AND SANITATION

Monoculture is not detrimental to the yield of all crops and will not always increase disease.

However, in maize it is usually detrimental to grain yield and results in increased disease levels

(Shipton, 1977; Palti, 1981). Koehler (1959) suggested that rotation, especially with soybeans,

results in increases in grain yield and decreased the prevalence of stalk and ear rot. Increases

in ear rots occurred after the second consecutive year of maize cultivation. Kerr (1965) found

that there were significant reductions in the incidence of both S. maydis and maize stalkborer
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{Busseola fusca Fuller) when a greencrop was planted between maize crops. Crop rotation not

only decreases disease, but can increase yield and hold down costs of fertilizer and herbicides

in maize (Koehler, 1959; Shipton, 1977; Palti, 1981; Sumner et ah, 1981; Reagan, 1989).

Reagan (1989) suggested not only the rotation of crops, but also the rotation of varieties, tillage

methods and pesticides. This allows the farmer to obtain maximum benefit from all factors

that can be varied. The rotation of crops is widely practised in countries with developed

economic and agricultural infrastructure; i.e., first world countries. However, South Africa

does not fall into this category (Channon and Farina, 1991).

1.4 HOSTS AND DISTRIBUTION

Both species of Stenocarpella are widely distributed. S. maydis is known to occur in Africa,

Asia, Australasia, Europe, North America and South America. S. macrospora was first noted

in 1928 during a survey undertaken in Florida, USA (Eddins, 1930) and the fungus is

widespread in Africa, Asia, Australasia, Europe, North America, Central and South America

and the Caribbean (Sutton and Waterston, 1966a). S. macrospora is of more limited

distribution than S. maydis, being confined largely to the warmer areas (Stevens and Chapman,

1942) and of less economic significance than S. maydis in the USA. S. macrospora is of more

economic importance in Central America (McGee, 1988), being more prevalent in the tropics,

because this species needs higher temperatures than S. maydis to manifest itself (Stevens and

Chapman, 1942; Sutton and Waterston, 1966a and 1966b). S. macrospora was first noted in

Zimbabwe in 1955 (Kerr, 1965). In South Africa, its distribution is limited to the provinces

of Mpumalanga, eastern Free State, Eastern Cape and KwaZulu-Natal (Marasas and van der

Westhuizen, 1979; Rheeder, 1988; Rheeder et al., 1989; Flett, 1990; McLennan, 1991;

Rheeder and Marasas, 1994).

The only known hosts of S. maydis are Zea mays L. and Arundinaria spp. (Sutton and

Waterston, 1966b; Flett, 1991).
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1.5 INFECTION OF THE HOST, SYMPTOMS AND DISEASE DEVELOPMENT

1.5.1 Infection and Symptoms

Ears are most susceptible in the period between silk emergence and approximately three weeks

after silking, and hybrids with thin pericarps are often very susceptible (Shurtleff, 1980).

However, ear infection can occur any time from silking until the grain and cob become too dry

(normally below 22% grain moisture). S. maydis infection at the base of the ear and the shank

area of the ear leads to ear infection (Durrell, 1923; Clayton, 1927; Eddins, 1930; Palm and

Calvert, 1981). Inoculation studies by Koehler (1959) suggested that the fungus may move

from the stalk into the ear. Although the fungus could not be traced during the growing

season, inoculation of both Stenocarpella species into the internode below the ear shortly after

anthesis, resulted in a significant increase in ear rot at harvest (McLennan, 1989 and 1991).

Bird and insect feeding on the ear tips increases the potential for ear rot (Koehler, 1959;

Shurtleff, 1980).

Initial infection takes place at the stalk-attached end of the ear and then ramifies through the

ear towards the tip (Manns and Adams, 1923; Clayton, 1927; Koehler, 1942; Ullstrup, 1949;

Koehler, 1959; Shurtleff, 1980; Bensch, 1994 and 1995b). Bensch (1995b) showed that

infection of the ear starts with the colonisation of the pedicel and embryo region of the kernels.

Infection takes place before black layer formation, allowing for rapid colonisation of the grain.

Pith tissue is colonised once the entire cob (sclerenchyma and placenta tissues) is heavily

infected with S. maydis. Higley et al. (1993) found it difficult to isolate S. maydis from the

core of the cob. Light and electron microscopy have shown that infection of the seed by

S. maydis takes place at the base of the seed. Then the regions between the embryo and

pericarp, and the embryo and endosperm are colonised (Achar and Rabikoosun, 1995). Eddins

(1930) suggested primary infection to be through the tip of the ear.

The husks of early-infected ears appear bleached or straw-coloured. If infection occurs within

two weeks of silk emergence, the entire ear turns greyish brown, is shrunken, lightweight and

completely rotted. These ears stand upright with the inner husks adhering tightly to one

another or the grain because of mycelial growth between them. Black pycnidia may be

scattered on the husks, floral bracts, cob tissues and the sides of kernels. When the husks of

20



colonised ears are opened, a white mould is visible which starts at the base of the ear and

spreads towards the tip. Ears infected later in the growing season show no external symptoms,

but when the ears are~t>roken and kernels removed, a white mould is commonly encountered

growing between the kernels, the embryos / tips of which are discoloured. Some isolates cause

vivipary (premature germination) (Shurtleff, 1980).

In South Africa, ear infection by S. maydis has been most closely correlated with high night

temperatures and total rainfall. Conidia were found to germinate only in the dark (McLennan,

1991). It has been shown that S. maydis conidia can be airborne and remain viable under cool

temperatures and reduced humidity (Flett and Wehner, 1989).

Infection of seeds has been shown to be as high as 66.7% in the USA and 38% in Nigeria

(Latterell and Rossi, 1983; McGee, 1988), but has not been shown to be seed-transmitted

(McGee, 1988). Seed-borne inoculum can cause seedling blight (Koehler, 1959; Shurtleff,

1980; Rheeder, 1988; McLennan, 1991) but does not appear to occur very frequently (Kerr,

1965). In tests conducted by Nwigwe (1974), it was shown that 5". maydis infection of seed

could cause a reduction in germination of between 5 - 37%. Rheeder (1988) and Rheeder et

al. (1990) showed that seed-borne infection of both S. maydis and S. macrospora had a

negative effect on germination on maize in South Africa, with S. maydis having the larger

effect.

S. macrospora is usually first apparent as a leaf blight, with the crop growth stage at initial

infection dependent on the environment. Initially lesions are grey-green, elliptical, 3-5 mm

in diameter and water-soaked in appearance. Later these necrotic lesions may be 10cm in

length, with pycnidia forming in the centre (Latterell and Rossi, 1983). In laboratory studies,

leaf infection did not take place below 15°C (McLennan, 1991). Macroscopically, the

symptoms of ear rot of both Stenocarpella species are very similar but S. macrospora is much

more aggressive than S. maydis. S. macrospora often infects the ear primordia behind the leaf,

spreading rapidly, and causing sheath necrosis that results in the progressive death of the leaf

blades (due to lack of water translocation) while the fungus spreads up the stalk.

S. macrospora usually results in the blighting of the ear leaf blade and death of the leaf, which

is not the case for S. maydis. Under high humidity, more severe and heavy mycelial growth

appears on the stalks and ear husks. S. macrospora pycnidial production on the stalks is
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greater than that of S. maydis, but it is lower on the ear husks (Latterell and Rossi, 1983).

S. macrospora conidia germinate over a temperature range of 5-39°C and germinate in water

within 16 hours at 25-32°C, with each of the cells able to produce a germtube (Eddins, 1930).

Spore germination can take place in the dark or light (McLennan, 1991), in contrast to

S. maydis (dark only).

McLennan (1991) showed that S. macrospora incidence in South Africa was most closely

associated with three environmental parameters:

a) the number of days with rain per month,

b) the number of days with mist,

c) the daily maximum temperature.

These data suggest that hot, dry weather would limit the spread of the pathogen to a large part

of the maize production region in South Africa.

At least 25 biotypes of S. maydis art known to exist (Kappelman et ah, 1965; Sutton and

Waterston, 1966b) and physiological specialisation is not known to occur in S. macrospora

(Sutton and Waterston, 1966a).

Rheeder (1988) and Rheeder et ah (1990) found that there was an inverse association between

S. maydis and S. macrospora in individual kernels in South African maize. This effect was

first reported by Hoppe and Holbert (1936) in the USA. These fungi were also inversely

associated with the Fusaria (Rheeder, 1988; Rheeder et al., 1990). Although 5. macrospora

produces fewer conidia than S. maydis per pycnidium, the polycyclic nature (production of

pycnidia on leaf lesions before ear emergence) of S. macrospora allows for repeated leaf and

ear infection to take place when climatic conditions are suitable (McLennan, 1991).

Koehler (1959) found that the stage of maturity of the crop at harvesting can be highly

significant in reducing the percentage of the crop that is rotten. Very significant reductions

in the percentage of diseased kernels occurred when the maize was harvested early in 9 of 11

years. There appeared to be no further ear rot development below 21 % grain moisture in the

field, but the relationship between kernel moisture above 21% and ear rot prevalence was low.

The reason for increased ear rots in the late harvested maize was the amount of rainfall late
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in the season.

1.5.2 Mycotoxins ~~

Initial studies by van der Bijl (1916) indicated that S. maydis-infected maize had no effect when

fed to cattle. However, in 1918 paralysis was reported in cattle (later called diplodiosis) when

they grazed in lands containing S. maydis-mfected ears (Mitchell, 1918). Diplodiosis is now

known to occur in South Africa, Zimbabwe and Zambia. Field outbreaks of diplodiosis usually

occur during late, wet seasons, when cattle and sheep graze harvested maize fields. Horses,

donkeys and mules grazing the same fields are unaffected. Diplodiosis has been reproduced

experimentally by feeding cattle and sheep either maize ears naturally infected with S. maydis,

or pure cultures grown on autoclaved maize. No response has been reported in feeding

experiments with almost identical feed material to mules, horses, goats and pigs. Sensitivity

of animals within species has been shown to vary considerably (Marasas, 1977a, 1977b and

1977c). Economic losses are readily incurred by the poultry industry should poultry feed be

contaminated with S. maydis. Broilers, ducklings and laying hens are very sensitive to maize

colonised with S. maydis, with as little as 5% infected maize in the feed resulting in

significantly poorer weight gains and egg laying. Ducklings appear to be the most sensitive

to diplodiosis (Rabie et ah, 1987; Rheeder, 1988).

In cattle, diplodiosis can occur from a few days to two weeks after they start grazing mouldy

ears. Apparently healthy cattle can become ill up to 10 days after removal from the

contaminated food source. The first symptoms are lachrymation and salivation accompanied

by quivering of the shoulder and flank muscles, and ataxia. With time the clinical signs are

more conspicuous; the back is arched, muscular tremors become general and marked ataxia

develops. Movement is restricted to a minimum and then signs of poor co-ordination are

shown as high stepping, lateral swaying and a tendency to walk with hind quarters bent to one

side. Cattle that continue to feed on infected maize will exhibit more pronounced symptoms

and muscular paralysis sets in, with death following. If the animals are removed from the

contaminated food source when clinical signs become evident, a rapid recovery is made with

signs of paralysis disappearing within a few days. Gross pathological changes are not normally

associated with diplodiosis (Marasas, 1977b; Kellerman et al, 1985).
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The toxin diplodiol (trans-6-ethyl-5-hydroxymethyl-5,6,7,8-tetrahydrochromone) was isolated

from S. macrospora, which was believed to be responsible for maladies in chicks. This

included heart and liver enlargement, effusion of major organs, rupturing of blood vessels in

the skin and premature death. A further toxic compound to chicks, chaetoglobosin K, was

found to be produced by 5. macrospora and this compound also appears to cause selective

growth responses in plants (Cutler et al., 1980a and 1980b).

1.6 HOST RESISTANCE

Resistance breeding is a complex topic that involves plant physiology, morphology, genetics,

environmental factors and specialised manipulative genetic breeding techniques. Resistance

breeding frequently has to make use of artificial inoculation techniques and subsequent

specialised rating techniques to differentiate between plant genotypes.

Pappelis et al. (1973) found that there was a relationship between pith parenchyma cell death

and infection by S. maydis in the ears of maize. Cob pith condition determined whether or not

the cob could be invaded by S. maydis. A hybrid with a slow death rate of the cob pith

restricted the growth of the fungus severely, when compared to a hybrid with a rapid cell death

rate of the cob pith.

Hooker (1956) found that there was significant variation in resistance of maize inbreds to

S. maydis. There is also great variation in the incidence of the ear rots and resistance levels

between years (Thompson et al., 1971). Koehler (1959) found that there was superior

germplasm against ear rots, but generally this material did not have the necessary yield

characteristics. Wiser et al. (1960) studied six inbreds, by artificially inoculating with

S. maydis, and found that ear rot resistance was quantitatively inherited, but partial dominance

played a role. There was apparently no inbred that was completely resistant to the ear rot

fungi, although there were high levels of resistance available (Koehler, 1959; Kerr, 1965). In

contrast, high lysine maize in the USA was found to be hyper-susceptible to S. maydis,

Gibberella zeae (Schw.) Petch. and especially Fusarium moniliforme Sheld. This trend

followed through from the inbreds to the hybrids but was dependent upon the background of

the material that the Opaque-2 gene was introduced into (Ullstrup, 1971). In South Africa,

high lysine hybrids and inbreds have been developed that have significant levels of resistance
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to S. maydis ear rot (Gevers, 1989; Gevers et al., 1992). In an analysis for S. maydis ear rot

resistance across all inbred-types, Gevers et al. (1992) found that there were significant levels

of ear rot resistance throughout their inbred nurseries. There were significant differences in

susceptibility between heterotic groups of inbreds, and between yellow grain, white grain and

opaque-2 inbreds. Of the yellow grain inbreds, the heterotic groups F and M exhibited

significantly more ear rot resistant inbreds than did other heterotic groups. The R heterotic

group (Reid) was characterised by a higher frequency of highly susceptible inbreds. The

white-grained inbreds had a greater number of inbreds resistant to ear rot than the yellow-

grained inbreds. Ear rot resistance was most frequent and highest in the F heterotic group.

The opaque-2 maize inbreds showed a range in response to ear rot, with most showing

resistance. A significant number of inbreds showed a high degree of resistance, particularly

in the F and M heterotic groups. These trends could be seen in the ear rot response of

commercial maize hybrids in South Africa. B73-type parents, and to a less extent I137Tn, are

blamed for the significant susceptibility to StenocarpeUa ear rot in specific yellow-grained

commercial hybrids (Gevers et al., 1992).

A diallel analysis of inbreds for ear rot resistance to S. macrospora by McLennan (1991),

showed resistance was mainly additive in nature, but dominance was significant at times.

D940Y exhibited a high specific combining ability for ear rot resistance. Epistasis in resistance

was also present in a number of inbreds. This meant that both recurrent selection and

backcrossing could be used to improve S. macrospora ear rot resistance of susceptible inbreds,

depending upon the resistance source (McLennan, 1991).

Significant differentiation between hybrid responses to StenocarpeUa ear rot infection (assumed

to be S. maydis) has been demonstrated in South Africa. Although there is a complex

interaction with the environment, differentiation is possible between hybrids. This allows for

reliable recommendations to be made to farmers regarding the relative susceptibility of hybrids

to S. maydis ear rot infection. In general terms, most studies have shown that white-grained

hybrids are more resistant to ear rot than yellow-grain hybrids (Rheeder, 1988; Gevers, 1989;

Nowell, 1989 and 1992; Rheeder et al., 1989; Rheeder and Marasas, 1992; Ferreira, 1994;

Flett and McLaren, 1994; McLaren and Flett, 1994; Rheeder and Marasas, 1994). Rheeder

(1988) and Rheeder and Marasas (1992) found significant differences between commercial

hybrids in South Africa in their response to S. macrospora ear rot.
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Nowell (1992) suggested that breeding strategies for ear rot resistance be modified to deal with

the increased inoculum pressure resulting from conservation tillage practices. Such

modification would include increasing the inoculum pressure in breeding nurseries, an

increased emphasis on ear rot resistance, improving the screening of inbreds and hybrids for

ear rot resistance, and improving ear rot assessment methods. Cognisance needed to be taken

that Stenocarpella ear rot is a portion of the root, stalk, ear and seedling disease complex of

maize. A range of ear rot fungi can cause stalk, root, ear and seedling diseases of maize under

ideal conditions. Some ear rot pathogens can also causes a leaf blight. Environmental

conditions and interactions with the other pathogens will largely influence the type of ear rot

and the build up in inoculum in the crop residue (Koehler, 1959; Koehler, 1960).

1.6.1 Inoculation Techniques and Selection Methods

Ullstrup (1949) was the first to inoculate maize artificially by spraying the ears with a conidial

and mycelial fragment suspension. The inoculated ears had to be covered to prevent rapid

desiccation of the suspension. This technique resulted in the successful differentiation of ear

rot resistance between genotypes. Effective inoculation required selection of isolates that were

aggressive and sporulated profusely, and the best growth stage for inoculations was found to

be from anthesis to approximately three weeks after pollination (Ullstrup, 1949; Koehler, 1959;

Ullstrup, 1970; Chambers, 1986 and 1988). Koehler (1959) found the most susceptible period

for the maize ears was from silking to between 20 and 40 days after silking. However, he also

found that inoculation can still result in more than double the natural amount of ear rot when

inoculated 60 days after silking. In Zimbabwe, Kerr (1965) tried inoculating S. maydis using

an injection method, spraying the silks and by introducing a disc of agar culture under the ear

sheath. Kerr concluded that there appeared to be a lack of correlation from year to year when

the pathogen was introduced artificially into the ear, regardless of the method employed.

Villena (1969) found that spraying inoculum on the ears to induce disease should be done

within 10 days of mid-silk. He also noted that the fungus needed 10 - 20 days from the time

of application to penetrate the ear husk. By introducing the inoculum into the tip of the ear,

the infection level was almost 100% when inoculated from mid-silk to 20 days post-silk.

Ullstrup (1971) found that the incidence and severity of S. maydis ear rot was directly

proportional to the spore concentration in the inoculum. A conidial concentration of 1.2 x 106

conidia ml'1 gave a mean of 81.5% infected ears but a dilution of 1000 resulted in only 9.1%
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infected ears. McLennan (1991) found no significant increase in ear rot when dipping the silks

in a S. maydis or S. macrospora conidial suspension or when introducing conidia into the tip

of the ear. ~

Villena (1969) found that the inoculation of S. maydis covered toothpicks (a technique

developed by Young, 1943) up to 10 days after mid-silk resulted in completely rotten ears.

The optimum time for inoculation appeared to be 10 - 30 days after mid-silk, as inoculation

later than this resulted in low levels of ear infection. Villena suggested rating the ears about

15 days after toothpick inoculation. Chambers (1988) tested the toothpick method of

introducing S. maydis into the ears in South Africa. He found the optimum time for

inoculation to be 3 - 4 weeks after mid-silk. The severity of rot was similar when the ears

were inoculated up to 16 days post mid-silk. However, there was a significant decrease in the

severity of rot when the ears were inoculated from 1 6 - 2 4 days post mid-silk and a rapid

decrease when the ears were inoculated 24 days post mid-silk. The incidence of ear rot when

the ears were inoculated 16 days after mid-silk was so severe that differences between

genotypes could not be determined. Inoculation four weeks after mid-silk resulted in the

incidence being so light that there was not enough disease to test resistance. The rate of

infection or susceptibility decreased rapidly with grain moisture levels below 66%. Rheeder

and Marasas (1992) noted that significant discrepancies arose between hybrid ear rot response

to natural infection of S1. maydis, and hybrids artificially inoculated either in the tip or shank

of the ear.

Warren and Onken (1981) showed that effective ear rot epidemics could be induced by

applying a 3ml spore suspension (40 000 conidia ml"1) of S. maydis to the leaf whorl of the

plants, 2 weeks prior to anthesis. The percent rotten ears was determined 70 days after

inoculation. This method resulted in good differentiation in ear rot resistance between 50

maize hybrids. Results obtained were comparable to field infection levels. Klapproth and

Hawk (1991) compared depositing a spore suspension of S. maydis into the sheath cavity,

placing infected popcorn in the whorl, spraying a conidial suspension on the silks, and injecting

a conidial suspension directly into the ear, using both inbreds and hybrids. The first two

techniques resulted in low levels of infection, whereas the direct placement of the inoculum

into the ear resulted in severe infection. The most suitable method was that of spraying the

silks with a conidial suspension. This method resulted in good differentiation between
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genotypes and was easy to apply. This was shown to be true under South African conditions

(McLennan, 1991).

Inoculation in the leaf whorl with milled Stenocarpella-rotted ears, from the previous growing

season, was first undertaken by Nowell (1989). Subsequent studies have refined the technique,

suggesting that 3.5 g of milled inoculum needs to be applied to the whorl of each plant, 10 -14

days before anthesis. This will result in significantly more ear rot than non-inoculated maize

(Nowell, 1992). ,A study in South Africa showed that placing a conidial suspension behind the

ear shank resulted in a significant correlation in hybrid response to ear rot with the natural

disease incidence over two seasons. However, for the evaluation of maize genotypes for

resistance to ear rot, it was recommended that milled infected maize kernels be placed in the

whorl at three growth stages. This frequency of application would be determined by the

quality and viability of the inoculum used i.e. whether infected ears from the field or pure

cultures of S. maydis produced in the laboratory were used (Bensch, 1995a). Ideally, inoculum

should be produced as pure fungal culture on maize that is milled before application (Flett and

McLaren, 1994).

Morant et al. (1993) developed a growth medium to optimise the production of conidia for both

S. maydis and S. macrospora while keeping the mycelial growth to a minimum. This allows

for the production of large numbers of conidia and easy preparation of a conidial suspension.

1.6.2 Ear Rot Assessment

Hoppe and Holbert (1936) reported ear rot as a percentage of ears colonised with S. maydis,

or the percentage of diseased grain by weight of infected kernels in a representative sample of

250 g of shelled maize from the entire plot. All three methods of ear rot assessment were

satisfactory, although the correlation between the percentage rotten ears and the percentage

diseased kernels (by weight) was not always good. This was due to the high variation in

natural infection with an experiment and the amount of concealed infection present on the ears

(ear rot not visible before shelling). After artificial inoculation, the percentage diseased ears

was a satisfactory measure, especially when the ears were categorised into the various groups

of disease severity (Hoppe and Holbert, 1936). Koehler (1959) found that ear rot

determinations could be made by expressing the number of rotted ears as a percentage in the

28



years when there was no concealed S. maydis. In years with concealed disease, it was

necessary to determine the percentage rotted kernels by weight from samples of between 200

and 500 g. One person should undertake the diseased kernels determination for a particular

experiment as there can be significant differences in the rating of samples by different people.

Some of the ear rot assessment methods are summarised in Table 1.2.

Gulya et al. (1980) showed that the ear rot rating means, when using a scale, are logarithmic

in nature and cannot easily be converted to arithmetic means. This often results in misleading

comparisons being made as can be seen from Table 1.3. This problem can be eliminated

through the use of a linear scale of 1 to 100 which is represented by the upper limit of each

category (1 = 0 - 1%, 10 = 1 - 10%, 25 = 10 - 25%, 50 = 25 - 50%, 100 = 50 - 100%).

The increments in this scale are proportional to the actual percentages they represent. In

addition, the use of the upper limits can be justified by the fact that any overestimation will

allow for symptomless infection.

Table 1.2: Summary of maize ear rot rating scales reported in the literature

Index

0

0.5

1,0

1.5

2.0

2.5

3.0

3.5

4.0

5.0

6.0

7.0

Villena (1969)

0% ear infected

25% ear infected

50% ear infected

75% ear infected

100% ear infected

100% ear infected with
heavy accumulation of
cottony mycelium

100% infected with ear
completely rotted or
premature death

Pappelis et al.
(1973)

0 to 12% of the pith
discoloured

13 to 25%

26 to 50%

51 to 75%

76 to 100%

Gulya et al. (1980)

0-1% rotten ears

1-10% rotten ears

10-25% rotten ears

26-50% rotten ears

50-100% rotten ears
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Table 1.3: Maize ear rot scores of three hypothetical rows, using a non-linear 1-5 scale with

the corresponding linear 1-100 scale ratings in parentheses (Gulya et al., 1980)

Row

1

2

3

1(1)

3(25)

4(50)

1

3

4

Individual ear

(1)

(25)

(50)

3(25)

3(25)

4(50)

scores

5(100)

3(25)

4(50)

5

3

3

(100)

(25)

(25)

Mean

3.

3.

3.

0

0

8

% Actual rot

45

25

45

The ear rot epidemics in South Africa during the 1986/87 and 1987/88 seasons caused South

African pathologists to seek more accurate methods of ear rot assessment and presentation.

Depending upon the accuracy desired and the logistics of implementing the method, various

methods of assessment have been recommended for ear rot assessment. Initial assessment of

germplasm can be undertaken by rating the overall ear rot per plot as a whole using a simple

logarithmic or linear scale. Accuracy is increased when the percentage infected ears is

determined. The ideal and most practical ear rot assessment method for field workers is to

determine the percentage infected grain, especially as this is the method used to grade grain

when it is delivered to the silos after harvest (Nowell, 1989 and 1995; Nowell and Kaiser,

1989).

Due to the non-linear response of maize hybrids to ear rot under a variety of levels of

inoculum pressure, ear rot data should be presented as a response pattern i.e. as the percentage

of the mean of the trial or the percentage time a hybrid did better or worse than the mean of

the trial. It has been suggested that this could be done using frequency tables (Nowell, 1989,

1992 and 1995; Nowell and Kaiser, 1989). These methods are discussed in detail in Chapters

3, 4 and 6. Flett and McLaren (1994) developed a non-linear regression model that was used

to predict hybrid response to ear rot accurately. This model is highly effective in categorising

hybrids into susceptible, intermediate and resistant groups. The model can also be used to

predict hybrid response to a specific inoculum level. This model showed that hybrids should

be screened when disease levels for a trial are between 10-35% infected ears (ideally between

17 - 20%). In trials with means on either side of this range, it becomes difficult to accurately

differentiate ear rot resistance levels between genotypes.
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1.7 OTHER FACTORS

There are many environmental and agronomic factors that influence ear rot (Koehler, 1959;

Shurtleff, 1980; Palti, 1981; Ferreira, 1994).

1.7.1 Stress

There are many types of stress (e.g., moisture, leaf diseases, hail, cloudy weather, high plant

densities and level of fertility) that affect the incidence of ear rots (Koehler, 1959; Pappelis et

al, 1973; Dodd, 1980a and 1980b; Berry and Mallet, 1992). Due to the climate in the RSA,

drought and temperature stresses are the more common forms of stress. Holbert et al. (1935)

reported that exposure to chilling and freezing increases both stalk and ear rot susceptibility.

Koehler (1959) noted that a period of moisture stress before or during flowering, followed by

a relatively moist period, is conducive to ear rots. This finding was supported by Berry and

Mallet (1992).

1.7.2 Soil Fertility

There have been a number of publications on the effects of plant and soil nutrition on stalk rots

of maize but little has been published on the effects of fertility on ear rots (Koehler, 1959;

Kerr, 1965; Farina et al, 1976). While discussing the elements individually, it must be borne

in mind that in the field it is an interaction of elements that determines the nutrient balance of

the plants. Furthermore, it must also be realised that there are large differences between

genotypes in their ability to take up the various nutrients (Otto and Everett, 1956; Martens and

Arny, 1967; Porter et al., 1981; Farina et al, 1983).

In South Africa, Farina et al. (1976) found that the application of limestone ammonium

sulphate significantly increased the incidence of ear rots (predominantly those caused by

S. maydis, but also by F. moniliforrne and F. graminearum) by between 40 - 100 %. The

incidence of ear rot was shown to decrease with a decrease in the level of exchangeable soil

acidity.

Koehler (1959) found that the application of additional phosphate to the soil resulted in a
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reduction in the incidence of ear rots. This work was supported by Farina et al. (1976), who

found that the degree of response depends on the initial levels of soil phosphate. Once the

phosphate levels increased above 10 ppm, there did not appear to be a further significant

reduction in ear rots. It was suggested that phosphate stress, at levels less than 10 ppm soil-

tested phosphate, is responsible for the increased ear rot incidence.

Potassium is known to generally increase plant resistance to fungal pathogens. When looking

at potassium response over crops and diseases in general, there are more positive effects than

negative effects. Literature could not be found that showed a potassium effect on the incidence

and/or severity of maize ear rot. The incidence of ear rot was not affected by soil potassium

or by negating the effect of nitrogen (Farina et al., 1976).

Kerr (1965) showed that increased nitrogen levels (0 - 30 kg ha"1) decreased the severity of

S. maydis ear rot in Zimbabwe. However, increased nitrogen resulted in more African

stalkborer damage (caused by Busseola fusca Fuller), which increased the incidence of

F. moniliforme. Farina et al. (1976) found that the ear rot incidence increased significantly

with the incremental application of nitrate nitrogen at levels from 0 - 180 kg ha"1. This effect

was consistent over three sites. They suggested the use of nitrification inhibitors as a means

of reducing the effect of nitrogen in increasing ear rot incidence.

1.7.3 Plant Architecture

Koehler (1950 and 1959) found that plant architecture was important in reducing ear rots.

There was a relationship between ear declination and the prevalence of ear rot, with maize ears

that were hanging, rather than erect in relation to the plant, having significantly less ear rot

than did the erect ears. Closely associated with the effect of ear declination on ear rots, was

the protection of the ear by the husks. Those ears which had loose husks and/or that were

open at the tips had significantly more ear rot than the well covered ears, especially in

association with the upright ears. Ears of which husks were opened by hand were found to

have increased ear rot, and the earlier the husks were opened, the greater the incidence of ear

rot. Usually the increase in ear rot was associated with the fusarial pathogens, but in some

cases, S. maydis increased significantly. Not all hybrids responded as outlined above. A

recent study in South Africa showed that ear declination and prolificacy (number of ears per
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plant) were correlated to ear rot resistance under South African conditions (Ferreira, 1994).

Lodging of maize plants is influenced by stalk rots which can result in a significantly higher

incidence of ear rots. Lodged plants, the ears of which touched the ground, were found not

to have increased S. maydis ear rot, but there was an increase in ear rot caused by a variety

of Fusarium species (Koehler, 1959).

1.7.4 Insects

Insects can cause considerable damage to maize plants and are potentially pathogen vectors or

cause damage resulting in stress that could predispose the plants to infection by the root, stalk

and ear-rotting fungi. Almost all researchers are in agreement that European cornborer

(Ostrinia nubilalis Hiiber) damage results in increased ear rot, primarily caused by

F. moniliforme and extremely seldom, if ever, caused by S. maydis (Koehler, 1959; Kerr,

1965; Jarvis et al., 1982; Keller et al., 1986). B. fiisca does not increase S. maydis ear rot

incidence or severity in South Africa (Flett and van Rensburg, 1992). Field observation by

the current author, over the past 18 years, showed a good correlation between B. fusca and

Chilo partellus Swinhoe ear infestation and Fusarium ear rot only. S. maydis ear rot plays no

role in stalkborer infestations.

1.7.5 General

General fungicide seed treatments can be used to reduce seedling blights. Captan is the most

widely used maize seed fungicide in the world, but a number of other fungicides can also

control the seed-borne fungi that are involved in the stalk and ear rot complex (Raju and Lai,

1978; Jain et al., 1981; Pedersen et al., 1986). Raju and Lai (1978) and Pedersen et al.

(1986) showed that captan is still one of the better broad-spectrum fungicides available.

Pedersen et al. (1986) claimed that not all hybrids will have the same benefits from the use of

a fungicidal seed treatment, and that the main benefits are apparent when maize is planted

early, while the soil temperatures are still relatively low, and seedling blight incidence is high.

A potential control measure of seedling blight is biological control. Kommedahl and Mew

(1975) found that by applying Bacillus subtilis (Cohn) Prazmowski, Chaetomium globosum
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Kunze ex. Fr. and Captan as a seed treatment, they were able to improve seedling emergence

and yield, and reduce lodging and stalk breakage, primarily caused by G. zeae. B. subtilis

had the weakest and most variable response, but the"C. globosum treatment was comparable

to Captan in every respect. They concluded that biocontrol through seed treatment was in its

infancy and needed further attention to evaluate its economic feasibility. Kommedahl et al.

(1987) confirmed the earlier results. C. globosum proved to be superior to B. subtilis in

increasing yield, and to Captan in both grain yield and emergence.

According to Koehler (1959) it is generally accepted that increases in plant density result in

an increase in the incidence of ear rot. No literature could be found to substantiate this

information. Maize plant density trials conducted during the past 40 years did not measure ear

rot incidence or severity.
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CHAPTER 2

Reaction of Maize Hybrids to a Non-invasive Stenocarpella Ear Rot

Inoculation Technique in KwaZuIu-Natal

ABSTRACT

Primary inoculum for maize ear rot epidemics is Stenocarpella-contzminated plant debris from

the previous season. Ideally, an ear rot inoculation technique would generate inoculum from

colonised plant debris, resalting in infection without resorting to artificial physical damage to

host plants. In most cases of Stenocarpella maydis ear infection, the ear becomes completely

rotten and can produce a very significant number of spores the following season, if left in the

field. A technique was developed to inoculate maize plants with this colonised material so that

an abundance of Stenocarpella conidia would be present from the an thesis growth stage onwards.

The optimum method of inoculation is to apply 5 - 10 g of finely milled inoculum in the whorl

of plants at the 12 - 14 leaf growth stage. This growth stage apparently provides an ideal

microclimate for fungal development from this inoculum. Further, the inoculum is ideally

placed above the ear, allowing for easy infection of the ear once the stage of ear development

and environmental conditions are conducive to infection. This technique was shown to increase

ear rot infection consistently. It is ideal for large-scale inoculation as inoculum can be collected

and stored easily, and large numbers of plants can be inoculated in a short period with minimal

labour requirements. Further, no physical damage to the maize plants occurs.

2.1 INTRODUCTION

Ullstrup (1949) was the first to inoculate maize (Zea mays L.) ears in significant numbers with

Stenocarpella maydis (Berk.) Sutton, to screen for ear rot resistance. He sprayed the ears with

conidial and mycelial fragments, and then covered the ears to avoid desiccation of the spores and

mycelium. Subsequent to this, a number of researchers have tested a variety of ear rot

inoculation methods (Hooker, 1956; Koehler, 1959; Kerr, 1965; Villena, 1969; Ullstrup, 1970

and 1971; Thompson et al., 1971; Chambers, 1988; Rheeder, 1988). However, as early as

1965, Kerr found that introducing mycelium under the ear leaf sheath or physically injecting

conidia into the tips of the ears did not give consistent results over seasons, and hybrid ear rot
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responses after inoculation were at times poorly correlated with their field responses to ear rot.

Warren and Onken (1981) and Warren and von Qualen (1984) developed a technique of

introducing S. maydis and / or S. macrospora Sutton as a spore suspension into the whorl of

maize plants 1 0 - 2 1 days before anthesis. This produced consistent ear rot expression and

results which were consistent with field reactions. Their inoculation technique relied on a

natural infection process under suitable environmental conditions, with no wounding.

During 1981, plant breeders at PANNAR (Pty.) Ltd. identified maize ear rot resistance as needing

improvement in commercial maize hybrids in South Africa. To achieve this, an effective

inoculation technique was needed for use under local conditions. The technique had to be

reliable, quick, easy to use and practical. A series of experiments was therefore initiated with

the objective of developing an ear rot inoculation method, based on the introduction of infected

plant material onto the plants, that could be practically and efficiently- employed on a large scale.

2.2 MATERIALS AND METHODS

These trials were planted at Greytown, KwaZulu-Natal, at 29°02'S and 30°31'E at an elevation

of 1100 m above sea level and on a gently sloping land of the Hutton form and Doveton series

(MacVicar, 1991). The land was prepared by ploughing the fields in September and then

discing immediately before planting, to allow for the incorporation of the herbicide Eptam (6 I

ha"1)- Nitrogen at 110 kg ha"1 was incorporated during this process. Rows were made by the

planter while band-placing 2:3:2(32)+Zn fertilizer at the rates recommended by the Cedara

Agricultural Development Institute (CADI) for a maize grain crop of 8 tonnes ha"1. The maize

was hand planted with two kernels per planting hill and then thinned by hand at the five leaf

growth stage (LGS) to the correct plant density. Plot size was two rows of 4.4 m long and

0.9 m apart, at a plant density of 50 000 plants ha"1. Plots were separated by a single border

row. The complete plot was harvested at the end of the season.

Inoculation was undertaken using milled SrenocarpeUa-colonised ears collected during the

previous season. A tractor-powered hammermill was used to mill the colonised ears to the

required texture, approximately two months before inoculation took place. Storage of the

inoculum was at room temperature in 50 kg bags. Laboratory tests had shown that more than

99% of the Stenocarpella-'mfect&i ears used for inoculation were co-colonised by S. maydis and

the balance by S. macrospora.
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2.2.1 1988/89 Experiments

Two trials were planted in the 1988/89 season. Each trial was planted as a randomised" complete

block design, with seven inoculation methods replicated four times on the hybrid PNF 6552.

The early trial was planted on 7 October 1988 and harvested on 14 May 1989. The late trial was

planted on 18 November 1988 and harvested on 21 May 1989. The percentage lodging,

prolificacy, the percentage plants that died prematurely, the percentage rotten ears with greater

than 10% diseased grain and the percentage prematurely rotten first and second ears were

determined before harvest. All assessments were undertaken on an individual plant basis. Grain

yield was adjusted to 12.5% grain moisture. Diseased grain was determined by shelling the

whole plot, drawing a representative 250 g sample and determining the percentage visually

diseased grain based on mass. Only those factors that showed significant differences are

presented.

To produce a fine inoculum, the colonised ears were milled into a fine meal, whereas for a

coarse inoculum the ears were milled to particles of approximately 2 - 4 mm in diameter. The

basic rate of inoculum applied was approximately 2 g plant"1. It was applied into the whorl of

the plant approximately 14 days before anthesis, using a commercial coffee dispenser (Nestle

[SA] [Pty] Ltd, Durban, South Africa). The rate of 2N (twice the normal rate of 2 g planf1)

was approximately 4 g plant"1 and the 3N (three times the normal rate of 2 g plant"1) inoculum

was about 6 g inoculum plant"1.

2.2.2 1989/90 Experiments

In 1989 a single factorial experiment was planted on 4 October 1989 and harvested on 6 May

1990. The trial was replicated four times on the hybrid PNF 6552. The trial consisted of four

rates of inoculum applied at six different growth stages (8 LGS, 10 LGS, 12 LGS, 14 LGS,

50% anthesis and 50% anthesis plus 2 weeks). The rates of inoculum applied were 0 g, 5 g,

10 g and 20 g plant"1. The inoculum was placed in the whorl of the plant with a commercial

coffee dispenser at the required growth stage. The days to physiological maturity (50% dry

husks), percentage lodged plants, prolificacy, grain moisture, 100 kernel weight and grain yield

were determined. Days to physiological maturity were taken as an indirect measure of the

premature death of the plants (in this case, usually as a result of stalk rot). Grain yield was

adjusted to 12.5% grain moisture. Diseased grain was determined by shelling the whole plot,
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drawing a representative 250 g sample and determining the percentage visually diseased grain

based on mass.

These data were analyzed using GENSTAT Version 5.31 (Rothamstead Experiment Station,

United Kingdom) and were not transformed because their high co-efficient of variation was

expected and the gain in efficiency from transformation was small. Fischer's L.S.D. test of

significance was used to test for significant differences between treatment means.

2.3 RESULTS

2.3.1' 1988/89 Experiments

Table 2.1 summarises the results of the early-planted trial. The only factors to show significant

differences were the percentage prematurely killed plants and the percentage diseased grain. The

differences in the percentage prematurely dead plants were only significant at the 10% level of

significance. However, the differences between inoculation methods were highly significant (2%

level of significance). Although there were large increases in diseased grain between the non-

treated control and the IN Fine and IN Coarse methods, the differences were not significant.

All other treatments resulted in highly significant increases in diseased grain when compared to

the non-treated control. These inoculation methods were not significantly different amongst

themselves. The most diseased grain resulted from the 3N Coarse method of inoculation. The

coefficient of variation was 35.6%, which is high but still acceptable when measuring a disease

of this nature.
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Table 2.1 : Summary of the early planted Stenocarpella maydis ear rot inoculation trial on

PNF 6552 in 1988/89

Treatment

Control

IN Fine

2N Fine

3N Fine

IN Coarse

2N Coarse

3N Coarse

Mean

SE

F

P

LSD,,,,

%CV

Key

RE1

2.5

2.1

0.8

4.2

2.2

0.7

1.5

2.0

2.27

1.11

n.s.

4.77

113.3

RE1
RE2
%RE
%PD
%DisGr
%Moist
Yield

RE2

17.6

13.5

17.8

16.2

14.5

16.7

20.3

16.7

6.65

046

n.s.

14.0

39.9
II 

II 
II 

II 
II 

II 
II

%RE

12.8

14.1

25.7

16.1

21.9

16.6

26.8

19.1

941

1.4$

n.s.

19.8

49.1

%PD

6.3

2.2

4.3

5.1

2.6

9.2

6.7

5.2

3.28

2.23

0.087

6.88

63.3

%DisGr

5.1 a

15.5 ab

21.1 b

18.8 b

16.6 ab

18.2 b

24.3 b

17.1

6.08

3.92

0.01

12.8

35.6

%Moist

15.0

15.2

14.9

15.1

.15.0

15.2

15.0

15.0

0.60

0.37

n.s.

1.25

4.0

percentage rotten first ears at 130 days after planting,
percentage rotten second ears at 130 days after planting,
percentage visually infected ears at harvest,
percentage prematurely dead plants,
percentage visually diseased grain,
percentage grain moisture,
grain yield (t ha"1)

Yield

4.812

5.374

5.046

5.299

4.781

4.642

5.262

5.031

0.465

1.56

n.s.

0.976

9.2

The following trends were apparent in the early planted experiment:

i) early ear infection was not affected by inoculation (Figures 2.1 and 2.2)

ii) the percentage colonised ears at harvest increased with increased ear rot inoculum

concentrations (Figure 2.3)

ii}) the percentage plants dying pre-maturely appeared to decrease with the application of the

Fine inoculum treatments (Figure 2.4)

iv) a large increase in diseased grain resulted from all inoculum rates and growth stage of

inoculation (Figure 2.5)

v) there was clear effect on grain yield (Figure 2.6).
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Control -IN Fine 2N Fine 3H Fine 1H Coarse
Inoculation Treatment

2N Coarse 3H Coarse

Figure 2.1: The percentage first ears rotten resulting from ear rot inoculations in the whorl
of early planted maize in the 1988/89 season.

Control 1H Fine 2HFine 3H Fine 1H Coarse 2H Coarse
Inoculation Treatment

3H Coarse

Figure 2.2: The percentage second ears rotten resulting from ear rot inoculations in the
whorl of early planted maize in the 1988/89 season.
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Control INFine 2H Fine - 3H Fine -IN Coarse

Inoculation Treatment
2H Coarse 3H Coarse

Figure 2.3: The percentage rotten ears at harvest resulting from ear rot inoculations in the
whorl of early planted maize in the 1988/89 season.

Control INFine 2H Fine 3H Fine 1N Coarse

Inoculation Treatment
2H Coarse 3N Coarse

Figure 2.4: The percentage pre-mature dead plants resulting from ear rot inoculations in
the whorl of early planted maize in the 1988/89 season.
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Control INFine 2H Fine 3H Fine 1N Coarse

Inoculation Treatment
2H Coarse 3H Coarse

Figure 2.5: The percentage diseased grain resulting from ear rot inoculations in the whorl
of early planted maize in the 1988/89 season.

Control INFine 2M Fine 3H Fine 1H Coarse

Inoculation Treatment
2H Coarse 3H Coarse

Figure 2.6: The grain yield after ear rot inoculations in the whorl of early planted maize
in the 1988/89 season.
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Table 2.2 : Summary of the late planted Stenocarpella maydis ear rot inoculation trial on

PNF 6552 in 1988/89

Treatment

Control

IN Fine

2N Fine

3N Fine

IN Coarse

2N Coarse

3N Coarse

Mean

SE

F

P

LSD0M

%CV

Key

RBI
RE2
%PD
%DisGr
%Moist
Yield

RE1

5.6

6.2

9.1

4.1

4.7

2.8

4.4

5.3

RE2

3.1

3.1

4.4

1.9

3.4

2.5

3.4

3.1

4.02 2.18

0.99 0.52

n.s

8.4

76.3

= percentage
= percentage
= percentage
= percentage
= percentage
= grain yield

n.s.

4.6

69.6

rotten first ears at
rotten second ears
prematurely dead
visually diseased
grain moisture,
(t ha1)

%PD

2.8

5.0

7.2

3.4

2.2

6.6

5.3

4.6

5.51

0.47

n.s.

11.6

118.6

%DisGr

3.8 a

6.0 a

8.0 a

13.8 b

4.1 a

4.2 a

8.1 a

6.9

3.23

4.79

0.004™

6.8

47.0

130 days after planting,
i at 130 days after planting,
plants,
grain.

%Moist

12.3

12.2

12.0

12.2

12.2

12.4

12.3

12.2

0.21

1.49

n.s.

0.4

1.7

Yield

4.817

4.631

4.480

4.568

4.230

5.086

4.463

4.611

0.415

1.76

li.*.

0.87

9.0

Table 2.2 summarises the results from the late-planted trial. Only the differences between

treatments for the percentage diseased grain were significantly different (1% level of

significance). Treatment 3N Fine resulted in a greater amount of diseased grain than the non-

treated control. The following trends were apparent, but not significantly different, from the

late planted experiment in 1988/89:

i) the IN and 2N Fine treatments resulted in increased first ears being rotted, but the

Coarse treatments all reduced the number of first ears diseased when compared

to the non-treated control (Figure 2.7)

ii) no trend emerged with the number of diseased second ears (Figure 2.8)

iii) 5. maydis inoculation resulted in an increase in the number of pre-maturely dead plants

(Figure 2.9)
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Control INFine 2H Fine 3H Fine 1H Coarse 2N Coarse 3H Coarse
Inoculation Treatment

Figure 2.7: The percentage first ears rotten resulting from ear rot inoculations in the whorl
of late planted maize in the 1988/89 season.

Control -INFine 2HFine 3N Fine 1H Coarse 2M Coarse 3H Coarse
Inoculation Treatment

Figure 2.8: The percentage second ears rotten resulting from ear rot inoculations in the
whorl of late planted maize in the 1988/89 season.
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Control -INFine 2M Fine 3H Fine 1N Coarse

Inoculation Treatment
2H Coarse 3N Coarse

Figure 2.9: The percentage pre-maturely dead plants resulting from ear rot inoculations in
the whorl of late planted maize in the 1988/89 season.

Control 1H Fine 2H Fine 3H Fine 1H Coarse

Inoculation Treatment
2H Coarse 3N Coarse

Figure 2.10: The percentage diseased grain at harvest resulting from ear rot inoculations
in the whorl of late planted maize in the 1988/89 season.
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Control INFine 2H Fine 3H Fine 1H Coarse 2N Coarse 3H Coarse

Inoculation Treatment

Figure 2.11: The grain yield after ear rot inoculations in the whorl of late planted maize
in the 1988/89 season.

51



iv) the Fine inoculum treatments consistently resulted in increases in the percentage diseased

grain. The coarse inoculum treatments only increased the percentage diseased grain at

the 3N rate (Figure 2.10)

v) grain yield decreased for all coarse inoculum treatments (Figure 2.11).

2.3.2 1989/90 Experiments

Results are presented in Tables 2.3 - 2.9 and Figure 2.1. The rates of inoculum (P<0.05)

reduced the number of days to physiological maturity (an indirect measure of stalk rot and / or

disease effect on the plant), as shown in Table 2.3 and Figures 2.12 and 2.13. From these data

it can be seen that the rate of lOg of inoculum per plant reduced the number of days to maturity

significantly, particularly when inoculated at the 10 LGS and 12 LGS. The results of the lOg

inoculum rate were not different from the 5g or 20g inoculum rate.
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Table 2.3 : Summary of the days to physiological maturity for the ear rot inoculation trial on

PNF 6552 in 1989/90

Maize Growth
Stage

8 Leaves

10 Leaves

12 Leaves

14 Leaves

50% Anthesis

50% Anth. & 2 weeks

Mean

SUMMARY OF THE ANOVA

Main effects

Interaction effects

LSD005

LSD005

LSD,.,,

%cv

0

146.0

149.3

147.7

146.7

145.0

147.0

146.9 a

RESULTS

Stage of inoculation

Rate of inoculum

Stage x Rate

Stage

Rate

Stage x Rate

5

147

149

147

145

147

143

146

Rate

.7

.7

.7

.0

.3

.3

.8ab

of Inoculum

10

143.3

144.7

145.0

146.3

145.0

143.7

144.7 b

Applied

F =

F =

F =

3.3

2.1

5.1

2.0

20

146.

147.

141.

145.

145.

144.

145.

1.63

2.06

0.92

0

7

7

3

0

3

Oab

Mean

145.8

147.8

145.5

145.8

145.6

144.6

145.8

P = n.s.

P = 0.042'

P = n.s.

Figure 2.12 shows the decrease in days to physiological maturity with increased inoculum

pressure. Figure 2.13 shows that the least effect on days to physiological maturity was when

maize was inoculated at the 10 LGS.
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5 10
Rate of Inoculum (g)

Figure 2.12: The days to physiological maturity after ear rot inoculations in the whorl
of the maize plants at different inoculum concentrations in the 1989/90 season.
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Figure 2.13: The days to maturity after ear rot inoculations in the whorl of the maize
plants at different growth stages during the 1989/90 season.
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Table 2.4 : Summary of the total lodging for the ear rot inoculation trial on PNF 6552 in

1989/90

Maize Growth
Stage

8 Leaves

10 Leaves

12 Leaves

14 Leaves

50% Anthesis

50% Anth. & 2 weeks

Mean

SUMMARY OF THE ANOVA

Main effects

Interaction effects

LSD605

LSD00S

LSD0 .0 5

%CV

0

31.2

25.0

37.5

22.1

38.7

30.6

30.8 a

RESULTS

Stage of inoculation

Rate of inoculum

Stage x Rate

Stage

Rate

Stage x Rate

Rate

5

15.4

20.2

21.6

36.4

18.4

20.0

22.0 ab

of Inoculum

10

13.4

22.1

12.3

23.7

26.3

23.5

20.2 b

Applied

F =

F =

F =

10.2

9.8

26.4

38.8

20

21.6

18.1

22.5

39.2

19.3

20.5

23.5 ab

1.73

4.47

1.63

Mean

20.4

21.4

23.5

30.3

25.7

23.6

24.1

P = n.s.

P = 0.008"

P = n.s.

An increase in ear rot inoculum reduced the amount of lodging (Table 2.4 and Figure 2.14).

The percentage lodging was reduced by the 10 g inoculum rate when compared to the non-

treated control. The percentage lodged plants resulting from the different rates of inoculum

were not different from each other. Figure 2.15 shows that inoculation reduced the percentage

lodged plants compared to the non-treated control.
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5 10
Rate of Inoculum (g)

15

Figure 2.14: The percentage lodged plants after ear rot inoculations in the whorl of the
maize plants at different inoculum concentrations during the 1989/90 season.
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Figure 2.15: The percentage lodged plants after ear rot inoculations in the whorl of the
maize plants at different growth stages during the 1989/90 season.

56



Table 2.5 : Summary of the prolificacy for the ear rot inoculation trial on PNF 6552 in

1989/90

Maize Growth
Stage

8 Leaves

10 Leaves

12 Leaves

14 Leaves

50% Anthesis

50% Anth. & 2 weeks

Mean

SUMMARY1 OF THE ANOVA

Main effects

Interaction effects

LSD,.,,

LSDMS

LSD,.,,

% cv

0

0.974

0.893

0.960

0.908

0.887

0.949

0.928

RESULTS

Stage of inoculation

Rate of inoculum

Stage x Rate

Stage

Rate

Stage x Rate

Rate

5

0.959

0.936

1.022

0.950

0.878

0.942

0.948

of Inoculum Applied

10

0.935

0.929

0.958

0.905

0.924

0.983

0.939

(g plant1)

20

1.029

0.964

0.983

0.976

0.873

0.943

0.961

F = 2.73

F = 0.71

F = 0.53

0.060

0.049

0.161

7.4

Mean

0.974 a

0.930 ab

0.981 a

0.935 ab

0.891 b

0.954 a

0.944

p = o.o3r

P = n.s.

P = n.s.

Prolificacy was not affected by the rate of inoculum applied but was influenced by the growth

stage at which the inoculum was applied (see Table 2.5 and Figure 2.16). When inoculum was

applied at 50% anthesis, prolificacy was reduced when compared to the non-treated control. All

other treatments did not differ from each other, although the trend was for reduction in

prolificacy (Figure 2.17).

57



5 10
Rate of Inoculum (g)

Figure 2.16: Prolificacy after ear rot inoculations in the whorl of the maize plants at
different inoculum concentrations during the 1989/90 season.
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Figure 2.17: Prolificacy after ear rot inoculations in the whorl of the maize plants at
different growth stages during the 1989/90 season.
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Table 2.6 : Summary of the percentage diseased grain for the ear rot inoculation trial on

PNF 6552 in 1989/90

Maize Growth
Stage

8 Leaves

10 Leaves

12 Leaves

14 Leaves

50% Anthesis

50% Anth. & 2 weeks

Mean

0

9.80

11.07

12.20

12.57

11.90

11.13

11.44 a

SUMMARY OF THE ANOVA RESULTS

Main effects

Iuteractiou effects

LSD005

LSDO.W

LSD,,.,,

% CV

Stage of inoculation

Rate of inoculum

Stage x Rate

Stage

Rate

Stage x Rate

Rate of

5

15.57

11.97

19.33

17.00

14.70

* 15.90

15.74 b

Inoculum Applied

10

11.30

11.17

21.57

19.87

16.37

15.23

15.92 b

(g plant1)

20

13.

18.

21.

17.

21.

22.

19.

F = 1.07

F = 5.08

F = 1.73

6.89

3.99

9.78

37.0

63

37

77

30

53

67

21 b

Mean

12.58

13.14

18.72

16.68

16.12

16.23

15.20

P = n.s.

p = 0.004"

P = 0.079

The percentage diseased grain increased for all rates of inoculum applied (Table 2.6 and Figure

2.18) when compared to the non-treated control. There were no differences between the

different rates of inoculum applied. Although the growth stage at inoculation did not result in

any significant differences in diseased grain, there was a definite trend for inoculations at the

12 LGS to result in more ear rot, especially at the 12 LGS (Figure 2.19). The 10 g or 20 g

inoculum rate resulted in significantly more diseased grain when inoculation took place at the

12 LGS than at either the 8 or 10 LGS. The non-treated control at the 0 g inoculum rate, had

an unexpectedly low percentage diseased grain.
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Rate of Inoculum (g)

Figure 2.18: The percentage diseased grain after ear rot inoculations in the whorl of the
maize plants at different inoculum concentrations during the 1989/90 season.
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Figure 2.19: The percentage diseased grain after ear rot inoculations in the whorl of the
maize plants at different growth stages during the 1989/90 season.
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Table 2.7 : Summary of the percentage grain moisture for the ear rot inoculation trial

PNF 6552 in 1989/90

on

Maize Growth
Stage

8 Leaves

10 Leaves

12 Leaves

14 Leaves

50% Anthesis

50% Anth. & 2 weeks

Mean

0

12.40

12.13

12.73

12.83

13.07

12.60

12.63

SUMMARY OF THE ANOVA RESULTS

Main effects

Interaction effects

LSD,.,,

LSD.*

LSD005

%CV

Stage of inoculation

Rate of inoculum

Stage x Rate

Stage

Rate

Stage x Rate

Rate

5

12.77

12.43

12.70

13.57

12.33

12.67

12.74

of Inoculum Applied

10

12.17

12.40

12.80

13.37

12.40

13.13

12.71

(g plant1)

20

12.67

12.07

12.77

12.83

13.13

13.03

12.75

F = 4.58

F = 0.23

F = 1.18

0.43

0.35

1.56

3.9

Mean

12.50 ab

12.26 a

12.75 be

13.15 c

12.73 be

12.86 be *

12.71

P = 0.002"

P = n.s.

P = n.s.

The effects of inoculations on grain moisture are presented in Table 2.7 and Figures 2.20 and

2.21. Grain moisture was not significantly influenced by the rate of inoculum applied.

Inoculation at the 12 LGS resulted in an increase in grain moisture. Ear rot inoculations from

the 10 LGS onwards were not different from each other. The trend was for a decrease in grain

moisture at harvest when inoculation took place at the 8 LGS and 10 LGS. Inoculation at the

14 LGS appeared to increase grain moisture at harvest.
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Figure 2.20: The percentage grain moisture after ear rot inoculations in the whorl of the
maize plants using different inoculum concentrations during the 1989/90 season.
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Figure 2.21: The percentage grain moisture after ear rot inoculations in the whorl of the
maize plants at different growth stages during the 1989/90 season.
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Table 2.8 : Summary of the 100-kernel weight (g) for the ear rot inoculation trial on

PNF 6552 in 1989/90

Maize Growth
Stage

8 Leaves

10 Leaves

12 Leaves

14 Leaves

50% Anthesis

50% Anth. & 2 weeks

Mean

SUMMARY OF THE ANOVA

Maiu effects

Iiiteractiou effects

LSD005

LSD005

LSD,..,

% CV

0

37.83

37.37

36.90

36.40

37.07

38.60

37.36

RESULTS

Stage of inoculation

Rate of inoculum

Stage x Rate

Stage

Rate

Stage x Rate

Rate

5

35.37

36.23

38.20

36.50

35.67

37.63

36.60

of Inoculum Applied

10

36.83

35.80

39.00

38.50

36.93

36.87

37.32

(g plant1)

20

35.53

35.67

39.00

38.43 '

37.93

37.70 .

37.38

F = 3.75

F = 1.30

F = 1.46

1.22

1.00

3.59

3.8

Mean

36.39 a

36.27 a

38.28 c

37.46 abc

36.90 ab

37.70 be

37.17

P = 0.006"

P = n.s.

P = n.s.

The rate of inoculum applied did not influence the 100-kernel weight (Figure 2.22) but was

influenced by the growth stage at which the inoculum was applied (Table 2.8 and Figure 2.23).

Inoculation at the 12 LGS and 50% anthesis plus 2 weeks growth stages resulted in increased

100-kernel weight. Results from the inoculation at the 10 LGS, 14 LGS and 50% anthesis were

not different from each other. The trend was for an increase in 100-kernel weight with later

inoculation.
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Figure 2.22: The 100-kernel weight after ear rot inoculations in the whorl of the maize
plants using different inoculum concentrations during the 1989/90 season.
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Figure 2.23: The 100-kernel weight after ear rot inoculations in the whorl of the maize
plants at different growth stages during the 1989/90 season.
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Table 2.9 : Summary of the grain yield (t ha"1) for the ear rot inoculation trial on PNF 6552

in 1989/90

Maize Growth
Stage

8 Leaves

10 Leaves

12 Leaves

14 Leaves

50% Anthesis

50% Anth. & 2 weeks

Mean

SUMMARY OF THE ANOVA

Main effects

Interaction effects

LSD005

LSD005

LSD005

%CV

0

6.667

6.700

6.867

6.800

6.633

6.500

6.694 a

RESULTS

Stage of inoculation

Rate of inoculum

Stage x Rate

Stage

Rate

Stage x Rate

Rate

#

4.933

5.967

6.233

7.067

5.167

5.967

5.889 b

of Inoculum Applied

11

5.967

6.367

6.433

5.900

5.833

5.533

6.006 ab

(g plant1)

20

5.900

5.667

5.867

6.067 .

5.367

4.733

5.600 b

F = 2.56

F =7.78

F = 1.08

0.741

0.748

1.228

11.7

Mean

5.867 ab

6.175 ab

6.350 ab

6.458 a

5.750 ab

5.683 b

6.047

p = 0.040"

P =<0.001~

P =n.s.

The application of S. maydis inoculum reduced grain yield (Table 2.9 and Figure 2.24). The

growth stage at which inoculum was applied was important. The lowest grain yield resulted

from inoculation at the 50% Anthesis plus 2 Weeks growth stage (Figure 2.25). The overall

trend was for grain yield to be least affected when inoculation took place at the 14 LGS. Grain

yield reductions were largest when inoculation took place from anthesis onwards.
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Figure 2.24: The grain yield after ear rot inoculations in the whorl of the maize plants at
different inoculum concentrations during the 1989/90 season.
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Figure 2.25: The grain yield after ear rot inoculations in the whorl of the maize plants at
different growth stages during the 1989/90 season.
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2.4 DISCUSSION

The application of milled Stenocarpella-infected ears to the whorl of maize plants is highly

effective in increasing the incidence and severity of ear rot. The increased levels of ear rot,

after the application of ear rot inoculum, were consistent over seasons, although the planting date

did influence the severity of ear rot. This was expected as the maize in the late planted

experiment, pollinated and matured during a period that was drier and less conducive to ear rot

infection and development (Table 2.2). Under conditions less than ideal for ear rot, it is still

possible to induce an ear rot epidemic by increasing the amount of inoculum applied plant1.

Ideally, screening for ear rot resistance should take place early in the season when conditions

are conducive to ear rot infection and development. The careful use of irrigation would likely

increase the effectiveness of inoculating late planted maize and increase ear rot incidence and

•severity.

The 1988/89 experiments showed that the application of ear rot inoculum reduced the number

of days to maturity; i.e., the rate of plant senescence was increased. This increased rate of

senescence was supported by a reduction in grain moisture of some treatments and the increase

in the percentage premature dead plants. This is likely to be as a result of increased stalk rot,

as reported by Warren and von Qualen (1984).

The decrease in the percentage lodged plants associated with the early and late S. maydis

inoculation growth stages, correlated well with the associated grain yield decreases. The

1989/90 growing season was not ideal for ear rot development or maize production, as the latter

half of the season had a reduced rainfall. Optimum maize production conditions would have

resulted in larger grain yields and this would have influenced lodging significantly. The

magnitude of the effect depended on the environmental conditions under which the trial

developed from the time of inoculation. This research needs to be repeated under a number of

different climatic conditions in order to determine factors that affect ear rot development.

Effects are likely to be larger in more moist seasons than in drier seasons.

The prolificacy of the plants was reduced if inoculation took place during an thesis and silk

emergence. The soft tissue of the emerging ears is likely to be the infection site for

Stenocarpella species. Severe infection would result in the death of the ear. This would lead

to a reduction in prolificacy. Climatic conditions during this stage of plant growth were also
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ideal for infection to take place. The development of stalk rot after inoculation after these stages

of plant development was minimal. Early and late ear rot inoculations resulted in the greatest

amount of stalk rot and had the largest affect in reducing yield.

The differences in the visually early diseased first and / or the second ears were not significant

between treatments. There was a greater number of diseased second ears than first ears in the

early planted experiment in 1988/89. This trend was not apparent in the late planted

experiment. This shows that under ideal ear rot conditions, ear rot infection starts on the

smaller and less developed second ears.

The rate and type of ear rot inoculum applied generally had more effect on the severity of ear

rot, as measured by the percentage visually diseased grain, than the growth stage at which

inoculation took place. • In 1988/89, there were no differences between the type and rate of

inoculum applied on the early experiment. However, the only effective treatment of the late trial

was the 3N Fine treatment that was applied. During 1989/90, inoculation after the 12 LGS

resulted in an increase in the percentage diseased grain (but differences were not significant).

The percentage grain moisture and 100-kernel weight was significantly affected by the stage at

which the plants were inoculated. Overall, 100-kernel weight increased from the 8 LGS to the

12 LGS when the plants were inoculated with ear rot inoculum. However, at these early growth

stages, the 100-kernel weight was lower than the non-treated control. This was as a result of

the effect of stalk rot on the development of the ears resulting from the prolonged exposure to

Stenocarpella. Inoculation from the 14 LGS stage onwards had no effect on the 100-kernel

weight.

Grain yield is a measure of the effectiveness of the application of S. maydis inoculum to the

plants. Reduced yields before and after the 14 LGS and anthesis suggested a significant stalk

rot influence on yield. This was supported by the prolificacy, lodging, grain moisture and days

to physiological maturity results. This technique can therefore be used to screen germplasm for

stalk rot resistance by inoculating the maize before LGS 10 and/or after 50% anthesis.

Overall, the optimum growth stage for inoculation was not consistent but the 12 - 14 LGS

appeared to be the optimum period for inoculation to take place. Inoculation at 50% anthesis

also resulted in a significant increase in diseased grain and affected a number of other agronomic
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traits. Overall, the best inoculation technique was the use of 5 - 10 g fine inoculum applied at

the 12 - 14 LGS.

The principle of inoculating maize in the whorl is not new but has primarily been used to

introduce foliar pathogens onto the maize plants (Ayers et al., 1970; Burnette and White, 1985;

Bowen and Pedersen, 1988; Pataky, 1994). Most of these techniques were based on the use of

conidial suspension but some researchers used infected plant material to induce leaf disease

epidemics. Warren and Onken (1981) and Warren and von Qualen (1984) used conidial

suspensions in the leaf whorl of maize plants to increase ear and stalk rot infection. The method

developed in South Africa of inoculating plants with S. maydis inoculum, derived from colonised

ears of the previous season, was a breakthrough for seed companies seeking to conduct large

scale screening of maize germplasm. The advantages are:

i) the easy collection of inoculum

ii) it is cost effective

iii) allows for easy storage of inoculum

iv) is easy to apply and a simple process

v) large numbers of plants can be inoculated in a short space of time

vi) no laboratory facilities or highly trained staff are needed during the process of

inoculum collection, processing and inoculation

vii) the stage of inoculation can be varied to induce ear rot and/or stalk rot.

Further, the inoculum is in a form that is not greatly influenced by the environment and will

produce conidia as soon as the environment is suitable. Desiccation is not a problem, as it is

with conidial suspensions, because the fungus can re-grow from the inoculum when conditions

are suitable for sporulation and infection.

An improvement that would be desirable for accurate pathological studies is the production of

pure S. maydis inoculum on sterilized maize or sorghum kernels in the laboratory to improve

the consistency of application (concentration) and reduce the possibility of interaction of this

pathogen with other organisms present in naturally infected ears. Flett and McLaren (1994)

used pure S. maydis inoculum produced on maize kernels to inoculate maize hybrids to

specifically determine their response to S. maydis ear rot. McLennan (1991) and Bensch (1995)

have successfully used the technique developed in this study for ear rot inoculation.
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CHAPTER 3

Assessment of Maize Hybrids for Ear Rot Infection in South Africa3

ABSTRACT

The assessment of a maize hybrid's resistance to ear pathogens had largely been ignored in

South Africa until significant ear rot epidemics occurred, starting in the 1985/86 growing season.

These epidemics suddenly resulted in intensive research being initiated on hybrid response to ear

pathogens. The object of this study was to compare a variety of methods for ear rot assessment,

looking for one which was accurate, practical and efficient. The results showed that different

methods of ear rot assessment could be used, depending upon the degree of accuracy and

reliability of the information needed. There was significant variation in a person's ability to

visually assess ear rot consistently and accurately (maize research experience was very

important). Maize grain colour affected a person's ability to accurately visually assess the

amount of diseased grain present.

3.1 INTRODUCTION

Maize ear rot epidemics in South Africa during the 1980's resulted in considerable research on

maize ear rot being initiated in South Africa (Rheeder, 1988; Flett, 1990; McLennan, 1991;

Viljoen4, pers. comm.). Although a significant amount of research has been undertaken on

maize ear rot in other regions of the world (Hooker, 1956; Koehler, 1959; Wiser et al., 1960;

Villena, 1969; Thompson et al., 1971; Warren and Shepherd, 1976; Sivasankar et al., 1976;

Warren, 1978; King and Scott, 1981; Mesterhazy and Kovacs, 1986) it was necessary to

investigate the detail of the epidemic in South Africa. One of the main differences between

maize ear rot research in South Africa and the Northern Hemisphere countries, is that in the

Northern Hemisphere the pathogens involved are usually Fusarium rather than Stenocarpella

species.

3 Partly published in the Proc. 8th S. Afr. Maize Breeding Symp. (1989), Potchefstroom 1988,
J.G. du Plessis (Ed.), Tech. Comm. No. 222, Dept. Agric. Tech. Services, Pretoria,
RSA.

* J.H. Viljoen, formerly Senior Manager: Product Services, Maize Board, P.O. Box 669,
Pretoria 0001, RSA.
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Recent epidemics, which started in 1985/86, emphasised the need to collect and present ear rot

data as accurately as possible. Since then, the South African maize industry has become

extremely aware of differences in resistance levels of commercial hybrids in the market.

However, a problem at the time was that little scientifically and statistically valid ear rot data

was available to researchers. This led to the investigation of more efficient and effective ways

of collecting data on hybrid ear rot resistance by Nowell (1989a and 1989b). The objective of

this study was to determine the most practical, efficient and accurate method of ear rot data

collection.

3.2 MATERIAL AND METHODS

3.2.1 Ear Rot Assessment

In 1986/87, a triple lattice trial of 36 hybrids replicated three timesat Greytown, KwaZulu-

Natal, was planted on 8 October 1986 by hand with two kernels per planting hill. The plots

were hand thinned to 49 950 plants ha'1 at the 5 leaf growth stage. The plot size was two rows

of 4.4 m long, 0.9 m apart and with 20 plants per row. The trial was inoculated with

StenocarpeUa inoculum in order to increase the severity of the ear rot infection. Ears naturally

colonised by StenocarpeUa spp. during the previous season (laboratory tests showed that at least

98% of the StenocarpeUa infection was S. maydis (Berk.) Sutton and the balance was

S. macrospora Earle) were milled into a coarse meal. Approximately 3.5 g of this meal was

placed in the whorl of each plant about ten days before anthesis.

Table 3.1: Outline of the experience and the principal duties of each researcher

Researcher

1

2

3

4

5

6

7

8

9

Years Service

>20

>15

>10

6

3

1

5

5

4

Function

Breeder

Breeder

Breeder/Entomologist

Production Research

Breeder

Breeder

Plant Pathologist

Breeder

Botanist

Four different methods of collecting ear rot data were investigated.
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3.2.1.1 Raring method

At PANNAR SEED (PTY) LTD, Greytown, in excess of 30 000 plots are assessed for ear rot each

season and the most common method of assessment is to rate each plot visually on a non-linear

0 - 5 scale (with 0 = no visual disease, 1 = 3 - 6 % visually rotten ears, 2 = 6 - 12.5% visually

rotten ears, 3 = 12.5 - 25% visually rotten ears, 4 = 25 - 50% visually rotten ears and 5 =

>50% visually rotten ears). Only rotten ears with > 10% of the ear rotten were counted. This

method was usually used in the initial testing phase of maize inbreds and hybrids.

3.2.1.2 Percentage diseased ears method

The percentage diseased ears were determined by counting the number of maize ears with

greater than 10% of the ear rotted and determined as a percentage of the total number of ears.

This method is more time consuming than the rating method and relies on a visual assessment

of the degree of infection of each ear without shelling the grain or breaking the ears in half.

This method was usually used to access the degree of infection in the advanced testing phase of

maize inbreds and hybrids.

3.2.1.3 Percentage diseased kernels method

The whole plot was shelled, mixed well, a sub-sample of 250 g drawn and then the diseased

kernels visually separated from the healthy kernels. The diseased kernels were then weighed

and the percentage diseased kernels determined. This was the most accurate method as it gave

the actual disease as seen by the grain inspectors on delivery to the storage silos, the millers and

the farmers, and there was no hidden disease factor.

3.2.1.4 Separate fungi method

A slightly less accurate method of visual determination of the causal organism was to categorise

the infected ears into the following categories:

Stenocarpella {Stenocarpella maydis and S. macrospora) - a white rot usually

starting at the base of the ear

Fusarium (Fusarium moniliforme Sheldon and F. subglutinans (Wollenw. & Reinking)

Nelson, Tousson & Marasas) - a pink/salmon rot of individual kernels spread

randomly over the ear

Gibberella (Fusarium graminearum Schawbe.) - a red rot usually starting from the tip of

the ear

Stalkborer (fungal infection due to stalkborer damage - usually Fusarium species) and
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Others - any other fungal disease, e.g. PenicUliwn species.

Each ear was visually inspected by shelling two complete rows by hand while inspecting the

kernels for signs of hidden fungal infection. These categories were further divided into groups

based on the percentage of the ear that was infected as follows:

% Stenocarpella % Fusarium % Gibberella % Stalkborer % Others

100 75 50 25 10 100 75 50 25 10 100 75 50 25 10 50 25 10 50 20

It was important to determine the amount of stalkborer damage as this significantly influences

the incidence and severity of Fusarium due to secondary infection of the insect damaged grain.

Rots caused by the fungi other than those mentioned above are important as they are also

responsible for discoloured grain and disintegration of the cobs. The proportion rotten grain,

as a percentage, in each category was determined.

At harvest the ears were placed at the beginning of each plot and nine maize researchers (Table

3.1) visually rated the trial before any of the other ear rot determination methods were

undertaken.

All data was compared to the percentage diseased kernels as this is the official method of

grading maize in South Africa and is also the most practical, accurate method of visually

assessing the amount of ear rot. Laboratory analysis of the diseased grain was not undertaken

due to costs, time, labour requirements and logistical problems associated with such an exercise.

These data were analysed by correlating, using GENSTAT v. 5.31, all the different methods of

ear rot assessment with each other. Tables 3.3 - 3.5 were divided into essentially three groups

of correlations :

Group 1 - Researcher vs Researcher (top left section of Tables). This allows

comparisons between researchers ratings to determine their consistency.

Group 2 - Researcher vs assessment methods (bottom left section of Tables). This is

used to determine the accuracy of the researchers ratings and to identify which

attribute is most closely correlated with the researchers ratings.

Group 3 - assessment methods vs assessment methods (bottom right section of Tables).

This is used to identify to most important assessment method and the accuracy

associated with the various methods.

This format will be used to discuss the results. The hybrids were all analysed together and then
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the analysis was repeated for the yellow- and white-grained hybrids separately.

3.3 RESULTS

3.3.1 All hybrids

In Table 3.3, all correlations between the researchers was highly significant (all correlation

coefficients >0.190 were significant at the 5% level of significant; 107 degrees of freedom).

However, there was variation between individual's ratings, with Researcher 6 consistently

showing the least correlation with other researchers. Researcher 8 showed variation in

correlation with other breeders and had the lowest correlations of the balance of the researchers.

All researchers, except Researcher 6, had good correlations with the calculated rating (RT) for

ear rot. However, when the means of the researchers are compared to the mean calculated rating

(RT), all researchers consistently underestimated the amount of ear rot present, particularly

Researchers 1, 5, 6 and 9.

Stenocarpella-inftcieA ears correlated well with the researchers' ear rot ratings. The mean for

Stenocarpella-infected ears was far higher than for all the other categories of ear rot.

Researcher 6 showed no correlation with Stenocarpella-infected ears. Most researchers showed

a negative correlation between ratings and Fusarium-infecled ears and stalkborer damaged ears.
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Table 3.3: Correlation matrix for various methods of ear rot assessment for all hybrids during 1986/87

Category

1*

2

3

4

5

6

7

8

9

RT

Steno

Fus

Gibb

Other

Total

Borer

RE

DG

Mean

I*

1.000

0.703

0.738

0.657

0.620

0.446

0.706

0.570

0.891

0.705

0.731

-0.154

0.340

0.320

0.591

0.122

0.440

0.779

2.194

2

1.000

0.756

0.617

0.667

0.424

0.740

0.652

0.679

0.760

0.706

-0.046

0.146

0.265

0.437

•0.056

0.428

0.791

3.806

3

1.000

0.636

0.656

0.561

0.774

0.599

0.789

0.558

0.592

4.271

0.070

0.007

0.204

0.024

0.346

0.706

3.611

4

1.000

0.627

0.388

0.668

0.636

0.747

0.527

0.547

0.216

0.168

0.275

0.444

-0.089

0.473

0.655

3.796

5

1.000

0.368

0.600

0.757

0.684

0.611

0.467

0.022

0.204

•0.011

0.297

0.034

0.242

0.724

2.630

6

1.000

0.400

0.458

0.372

0.281

0.138

-0.092

0.227

0.067

0.222

-0.087

0.365

0.409

2.824

7

1.000

0.643

0.724

0.562

0.585

4.034

0.134

0.172

0.353

-0.164

0.176

0.694

3.546

8

1.000

0.622

0.591

0.501

4.056

0.274

0.133

0.406

-0.155

0.409

0.695

3.852

Method of Assessment

9

1.000

0.573

0.676

-0.099

0.316

0.194

0.512

0.030

0.379

0.722

2.713

RT

1.000

0.721

0.021

0.377

0.100

0.549

-0.024

0.462

0.902

4.519

Stcno

1.000

-0.094

0.178

0.334

0.577

0.015

0.425

0.633

17.17

Fus

1.000

0.007

0.230

0.219

4.096

0.116

-0.014

0.11

Gibb

1.000

-0.018

0.770

0.078

0.270

0.459

2.17

Other

1.000

0.546

4.240

0.395

0.136

' 0.51

Total

1.000

4.053

0.514

0.590

19.96

Borer RE DG

1.000

0.041 1.000

4.091 0.493 1.00

0.33 35.57 42.12

*l-9 = the 9 Researchers that rated the trial. RT =
Steno = Infection by Slenocarpella Fus =
Other = Infection by fungi other than those mentioned above Total

Calculated rating as determined from the number of rotten ears RE = % rotten ears
: Infection by F. moniliforme and F. subglutinans Gibb = Infection by F. graminearum
= Total of all ear rot (except stalkborer) Borer = Damage to ears by B. Jusca.

DG = % diseased grain
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The researcher's ratings and the percentage diseased ears did not correlate well and there was

considerable variation between researchers. There was no correlation between Researcher 7

ratings and the percentage diseased ears. However, good correlation occurred between

researcher's ratings and the percentage diseased grain, except Researcher 6 (although

significant).

There was a close correlation between Stenocarpella-infected ears and the calculated rating (RT).

"Other" ear rots also correlated with Stenocarpella-infected ears. Gibberella-infected ears

correlated with the calculated rating.

The percentage rotten ears primarily correlated with Stenocarpella-infected ears but also with

Gibberella-infected ears. The percentage diseased grain correlated with Stenocarpella-infected

ears, Gibberella-infected ears and the percentage rotten ears.

3.3.2 Yellow hybrids only

In Table 3.4, Researcher 6 is the only person that showed poor correlations with other

researchers (all correlation coefficients > 0.237 were significant at the 5% level of significance;

68 degrees of freedom). The most consistent of the researchers was Researcher 4.

All correlations between researchers' ratings and the calculated rating were significant, but all

researchers consistently underestimated the amount of ear rot on the yellow-grained maize. The

highest correlations was obtained by Researcher 6. The lowest correlations were obtained by

Researchers 4 and 5.

The Stenocarpella-infected ears showed the highest correlation with the researcher's ratings.

The lowest correlations were obtained by Researchers 3, 4, 5, 7 and 9. The correlations

between "Other" ear rots and researchers' ratings were often important. Stalkborer damage

showed a negative correlation with researchers' ratings.

Researchers 3, 5, 7 and 9 ratings did not correlate with the percentage rotten ears. All

researchers' ratings had a good correlation with the percentage diseased grain. The highest

correlation with the percentage diseased grain was obtained by Researcher 6.
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Table 3.4: The correlation matrix for various methods of ear rot assessment for the yellow-grained hybrids only (1986/87)

Category

1*

2

3

4

5

6

7

8

9

RT

Slcno

Fus

Gibb

Other

Total

Borer

RE

DG

Mean

1*

1.000

0.654

0.639

0.728

0.704

0.735

0.643

0.668

0.859

0.736

0.634

0.100

0.511

0.565

0.799

-0.191

0.416

0.836

3.159

2

1.000

0.736

0.689

0.714

0.740

0.706

0.708

0.652

0.770

0.669

0.168

0.203

0.617

0.598

-0.349

0.530

0.749

3.870

3

1.000

0.708

0.729

0.746

0.716

0.613

0.718

0.608

0.596

-0.022

0.247

0.311

0.480

-0.318

0.381

0.770

3.536

4

1.000

0.700

0.720

0.740

0.722

0.776

0.554

0.563

0.225

0.5O6

0.416

0.729

-0.143

0.406

0.710

3.696

5

1.000

0.529

0.789

0.758

0.804

0.536

0.501

0.218

0.315

0.366

0.545

-0.119

0.286

0.742

2.696

6

1.000

0.592

0.495

0.595

0.832

0.602

0.193

0.444

0.386

0.678

-0.260

0.621

0.841

2.710

7

1.000

0.783

0.672

0.672

0.561

0.025

0.357

0.344

0.570

-0.554

0.187

0.780

3.406

8

1.000

0.698

0.698

0.660

0.121

0.476

0.476

0.748

-0.211

0.487

0.749

3.870

Method of Assessment

9

1.000

0.600

0.567

0.189

0.620

0.307

0.772

-0.142

0.272

0.785

2.681

RT

1.000

0.665

0.189

0.518

0.375

0.749

-0.423

0.592

0.886

4.551

Stcno

1.000

-0.028

0.202

0.411

0.600

•0.168-

0.381

0.525

18.27

Fus

1.000

0.369

-0.226

0.274

0.237

0.495

0.177

0.11

Gibb

1.000

-0.061

0.833

'0.112

0.398

0.622

2.13

Other

1.000

0.432

•0.156

0.429

0.407

' 0.50

Total

1.000

-0.173

0.621

0.799

21.01

Borer RE DG

I

1.000

0.096 1.000

-0.351 0.567 1.00

0.31 36.50 44.27

+ l-9 = the 9 Researchers that rated the trial.
Steno = Infection by Stenocarpella
Other = Infection by fungi other than those mentioned ibove

RT = Calculated rating as determined from the number of rotten ears RE = % rotten cars
Fus = Infection by F. moniliforme and F. subglutinans Gibb = Infection by F. graminearum
Total = Total of all ear rot (except stalkborer) Borer = Damage to ears by B. Jusca.

DG — % diseased grain
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Stenocarpella ear rot was the predominant ear rot disease in the yellow-grained hybrids.

Although, the incidence of Gibberella and Other ear rot was low, these diseases correlated with

the calculated rating, Stenocarpella ear rot and the Total ear rot. Stalkborer damage was

negatively correlated with most assessment methods and diseases.

The percentage rotten ears was closely correlated with all assessment methods and diseases,

except with damage due to Stalkborer. Only Fusarium ear rot and Stalkborer damage were not

correlated with the percentage diseased grain.

3.3.3 White hybrids only

Ear rot ratings of researchers in Table 3.5 showed considerable variation (all correlation

coefficients >0.317 were significant at the 5% level of significance; 38 degrees of freedom).

The ear rot ratings of Researcher 6 only correlated with Researcher 8 ratings and showed a

tendency to be negatively correlated with other researchers ratings. The ear rot ratings of

Researchers 4 and 8 had poor and variable correlation with the other researchers.

All researchers tended to underestimate the amount of ear rot when compared to the calculated

ratings (RT in the Tables). The ear rot ratings of Researcher 6 and Researcher 8 had no

correlation and poor correlation with the calculated ear rot rating, respectively. Researcher 6

was the only person not to have a good correlation with Stenocarpella-infocted ears and the

ratings of Researcher 8 were not well correlated with Stenocarpella-infected ears. The ear rot

ratings of Researcher 6 showed a negative correlation with Stenocarpella, Fusarium, Other ear

rot and Total ear rot assessments.

The percentage rotten ears did not correlate well with researchers' ear rot ratings in the white-

grained maize. Only Researchers 1 and 4 had a good correlation, and Researcher 8 a poor

correlation, with the percentage rotten ears.

The only disease to correlate with the calculated rating was Stenocarpella ear rot. Gibberella

ear rot was correlated with the total ear rot and the damage due to stalkborer.
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Table 3.5: The correlation matrix for various methods of ear rot assessment for the white-grained hybrids only (1986/87)

Category "

1*

2

3

4

5

6

7

8

9

RT

Steno

Fus

Gibb

Other

Total

Borer

RE

DG

Mean

1*

1.000

0.848

0.866

0.545

0.623

-0.022

0.848

0.460

0.935

0.855

0.883

-0.357

0.165

-0.006

0.338

0.529

0.524

0.869

3.256

2

1.000

0.882

0.518

0.622

-0.144

1.000

0.484

0.812

0.848

0.799

-0.204

-0.091

-0.249

0.093

0.480

0.152

0.934

3.692

3

1.000

0.509

0.727

0.222

0.882

0.701

0.874

0.730

0.652

-0.524

-0.133

-0.463

-0.152

0.482

0.298

0.837

3.744

4

1.000

0.667

-0.277

0.518

0.518

0.696

0.701

0.584

0.218

-0.516

0.028

0.008

-0.014

0.657

0.738

3.974

5

1.000

0.370

0.622

0.830

0.696

0.623

0.406

0.000

-0.237

-0.331

-0.125

0.250

0.218

0.665

2.513

6

1.000

-0.144

0.546

-0.048

-0.194

-0.434

-0.424

0.064

-0.558

-0.478

0.166

-0.251

-0.206

3.026

7

1.000

0.484

0.812

0.848

0.799

-0.204

-0.091

-0.249

-0.093

0.480

0.152

0.934

3.795

8

1.000

0.596

0.460

0.237

-0.204

-0.530

-0.454

-0.444

-0.039

0.164

0.545

3.821

Method of Assessment

9

1.000

0.772

0.874

-0.342

-0.092

-0.014

0.198

0.254

0.636

0.856

2.769

RT

1.000

0.806

0.051

-0.099

•0.006

0.258

0.477

0.378

0.962

4.462

Steno

1.000

-0.107

0.076

0.326

0.542

0.239

0.570

0.839

15.24

Fiw

1.000

-0.190

0.451

0.284

-0.318

-0.198

-0.063

0.09

Gibb

1.000

0.312

0.657

0.546

-0.077

-0.228

2.25

Other

1.000

0.845

-0.373

0.380

-0.120

0.54

Total

1.000

0.137

0.305

0.126

18.12

Borer RE DG

1.000

-0.073 1.000

0.392 0.377 1.00

0.36 33.94 38.32

*l-9 = the 9 Researcher) that rated the trial. RT =
Steno = Infection by Slenocarpella Fus -
Other = Infection by fiingi other than those mentioned above Total

Calculated rating as determined from the number of rotten ears RE = % rotten ears
• Infection by F. moniUforme and F. subgluunans Gibb = Infection by F. gramineanun
= Total of all ear rot (except stalkborer) Borer = Damage to ears by B. Jusca.

DG = % diseased grain



Only Stenocarpella ear rot correlated with the percentage rotten ears and the percentage diseased

grain.

3.4 DISCUSSION

Researchers' ear rot ratings generally showed good correlation amongst themselves, the

exception being Researcher 6. The ear rot ratings of Researcher 6 (with the least experience

on maize) showed poor correlation with other researchers with the hybrids overall, acceptable

correlation with the yellow-grained hybrids and no correlation with the white-grained hybrids.

With the white-grained hybrids, ear rot ratings of Researchers 4 and 8 showed poor correlation

at times to other researchers ear rot ratings.

•Generally, researchers' ear rot ratings correlated well with the calculated ear rot rating (RT),

although the severity of disease was consistently underestimated. Researchers 5, 6 and 9

consistently underestimated ear rot more than the other researchers. Correlation between

researchers and the calculated ear rot rating was best with the white-grained hybrids.

There was good correlation between researchers' ratings, the calculated rating and Stenocarpella

ear rot. This correlation was to be expected as this was the predominant type of ear rot,

regardless of grain colour. With the hybrids overall and the white-grained hybrids, Gibberella

ear rot was seldom correlated with researchers' ratings. However, with the yellow-grained

hybrids there was a correlation between Gibberella ear rot and researchers' ratings. "Other"

ear rot was correlated with the Stenocarpella ear rot, especially with the yellow-grained hybrids.

It is possible that this ear rot was atypical Stenocarpella infection resulting from late infection

of the ear.

For the hybrids overall, the total rotten ears were correlated with all methods of assessment and

Researcher's ratings. This pattern was also true for the yellow-grained hybrids but was not true

for the white-grained hybrids. There was good correlation between the percentage diseased

grain (taken as the absolute method, with everything else being compared to these data) with all

methods of assessment. These results suggest that a significant proportion of the diseased grain

is in fact "Hidden" ear rot. "Hidden" ear rot can be defined as kernel colonisation

(discolouration of the embryo) which is not visible to the eye without removing the grain from

the cob. The method of determining the percentage diseased grain is relatively time consuming
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but most importantly, it detects the amount of "Hidden" ear rot present (not considered with the

other assessment methods).

Most maize ears colonised by F. moniliforme in KwaZulu-Natal is as a result of stalkborer

damage. In the case of this experiment, this correlation was not expected as ears with stalkborer

damage, with or without Fusarium colonisation, were classed as Stalkborer-damaged ears. The

reason for a negative correlation between Fusarium ear rot and Stalkborer-damaged ears and

"Other" ear rot with the white-grained hybrids is not clear. It may mean that larvae do not feed

on ears already infected by ear rot fungi.

Generally, the accuracy of the ratings and various methods of ear rot assessment was good but

it was disconcerting to find a significant difference in accuracy between researchers' ratings and

the white-grained and yellow-grained hybrids. However, this discrepancy is believed to be

largely due to the type of colonisation, as the yellow-grained hybrids are more prone to

"Hidden" Stenocarpella infection. This accounts for the lower correlation between Stenocarpella

ear rot and the percentage rotted ears for the yellow-grained hybrids than for the white-grained

hybrids.

The method of determining the percentage rotten ears is the most practical, yet accurate, method

of ear rot assessment and was highly correlated with most breeders and methods of ear rot

assessment. The lack of consistent correlation between the visual ratings of researchers suggests

that accurate assessment of the percentage rotten ears can only be undertaken by examining each

ear in turn. Grain would have to be removed from the base and tip of each ear to determine

the presence of absence of "Hidden" ear rot.

A factor which played an important part in the accuracy of the individual researcher's ratings,

was that of experience (see Table 3.1). Generally, accuracy was correlated with years of

experience in maize research and hence ear rot assessment. Researchers 1 to 3 had more than

10 years of experience in maize breeding and tended to have higher correlation coefficients

overall, especially with the calculated rating. Researchers 5, 6 and 9 showed the greatest

variation in their rating and had 4 years or less experience in maize research. Researcher 6 only

had one year of maize research experience and consistently showed the lowest correlation

coefficients. Whenever possible, maize researchers with less than 4 years experience should be

prevented from assessing important experiments or assisted by a person with greater maize
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research experience. There was no correlation with the researchers' research function; eg.,

maize breeder, pathologist or entomologist (see Table 3.1).

In general, the white-grained hybrids in South Africa are significantly more resistant to ear rot

than are the yellow-grained hybrids (Rheeder, 1988; Gevers et al, 1992). This was supported

by the lower mean Stenocarpella ear rot for the white-grained hybrids compared to that for the

yellow-grained hybrids.

The different methods of assessment all served a specific purpose and "were relevant under

certain circumstances. When general accuracy is required and large numbers of assessments have

to be undertaken is a short space of time, then a visual rating of ear rot is acceptable. This

method of assessment can be used for preliminary trials. If a more accurate method of

assessment is required, then the number of ears with-greater than 10% of the ear rotted can be

counted and then converted to a percentage of the total number of ears. This method of

assessment can be used for relatively advanced trials where more accurate data is required. The

most accurate method directly applicable to the maize industry is that of determining the

percentage diseased grain by shelling the ears and then undertaking a visual assessment of the

grain. As this method is labour intensive and time consuming, so it should only be used on

trials where ear rot levels and importance of the trials warrant this type of intensive effort. The

separate-fungi assessment method indicates the proportions of causal fungi and the primary

pathogen resulting in diseased kernels but is extremely time consuming. This method would

only be used in pathological studies and on a limited number of trials.

Koehler (1959) stated that it was necessary for one researcher to complete ear rot assessments

in a whole trial, due to variation in assessment scores between researchers. However, a more

desirable way is to have a different researcher assess each replication in order to reduce any

error or discrepancies between researchers. This trial has shown that training researchers to

undertake accurate ear rot assessment is important, especially to improve correlation between

researchers and improve their accuracy and consistency. This training would involve

identification of the causal fungi, the different methods of assessment and correct any natural

bias. It would be necessary to refresh the researchers in ear rot assessment at the beginning of

each harvest season to improve uniformity in assessment and should be undertaken once a month

during harvest (usually over a four month period).
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Further research is required to determine whether these trends are consistent over seasons and

to establish the underlying causes of these patterns in ear rot assessment. There is a need to

determine the influence of maize ear rot incidence, severity, causal pathogen, planting date,

symptom expression/resistance and consistency of individuals on the accuracy and method of ear

rot assessment.
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CHAPTER 4

Responses of Maize Hybrids to Ear Rot Infection in South Africa

ABSTRACT

Following the ear rot epidemics of 1986 onwards, accurate and reliable determination of hybrid

response to maize ear pathogens was required. Initial research showed that a single assessment

did not give an accurate assessment of the response of each hybrid, when grown under a wide

variety of environmental conditions. The object of this research was to develop methods of

presenting multi-locational ear rot information in an accurate and effective way that could be

understood by farmers and researchers alike. This study showed that hybrid response to ear rot,

primarily caused by Stenocarpella maydis, was not linear in nature under increased inoculum

pressure and that many factors affected the expected response. Frequency tables were employed

to indicate the frequency of an expected response for a given hybrid. This was an effective

technique for the examination of hybrid response at various locations and over seasons.

Non-linear regression and the Z-score methods of analysis were also tested on the same set of

data. The overall result was that hybrid response to ear rot can now be accurately and reliably

evaluated from a relatively small set of trials.

4.1 INTRODUCTION

Maize ear rot became a major problem in South Africa in recent years, resulting in a

considerable amount of research being initiated in South Africa (Rheeder, 1988; McLennan,

1991; Flett, 1992; Flett and McLaren, 1994; Farwell5, unpublished; Cronje6, pers. comm.;

Nowell, unpublished). Although a significant amount of research has been undertaken on maize

ear rot in other regions of the world (Hooker, 1956; Koehler, 1959; Wiser et al., 1960; Villena,

1969; Thompson et al, 1971; Sivasankar et al., 1976; Warren and Shepherd, 1976; Warren,

1978; King and Scott, 1981; Mesterhazy and Kovacs, 1986), it was also necessary to investigate

the epidemic in South Africa as climatic conditions and maize germplasm are different. One of

5 A.J. Farwell, Parent Seed Production Manager, Pannar Seed (Pty) Ltd, P.O. Box 19, Greytown
3250, RSA.

6 D . Cronje, formerly of the Maize Board, P.O. Box 667, Pretoria 0001, RSA.
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the main differences between research in South Africa and the countries in the Northern

Hemisphere, is that the dominant ear rot pathogens in the Northern Hemisphere are Fusarium

spp., whereas they are Stenocarpella spp. in South Africa.

Due to the relatively low incidence of ear rot in South Africa in the past, research on maize ear

rot fungi was not of primary concern to the South African maize breeders and research

personnel. The recent epidemics which started in 1986/87 emphasised the need to determine

maize hybrid response to ear rot pathogens as accurately as possible. Subsequently, members

of the South African maize industry have become extremely aware of differences in ear rot

resistance levels of commercial hybrids in the market. A major problem initially was that there

was very little scientifically and statistically valid ear rot data for South Africa was available.

When such data was available, it was often in a form that was neither meaningful or of practical

benefit to the maize industry because of the difficulty in interpreting them. This problem led

to the development of more efficient and effective ways of collecting and presenting data on

hybrid ear rot resistance by Nowell (1989a and 1989b) and subsequently Flett and McLaren

(1994).

The objective of this study was to investigate accurate and practical methods of ear rot data

presentation that can be easily understood by farmers.

4.2 MATERIAL AND METHODS

In 1986/87 and 1987/88, thirty trials from the PANNAR SEED (Pty) Ltd national trials were used

to study hybrid responses across seasons and geographical regions. All trials had the percentage

colonised grain determined in at least one replication and had mean disease levels greater than

8.0% diseased grain. Trials with mean disease less than 7.0% were excluded due to the

probability of late stalkborer infestations (caused by Busseola fusca Fuller and Chilo partellus

Swinhoe) resulting in Fusarium moniliforme. Sheldon being the main cause of ear rot, especially

in the Western part of the maize producing area. In 1987/88, due to logistical limitations as a

result of the relatively large number of trials infected by ear rotting fungi, only one replication

of off-station trials were brought in for diseased kernel determinations. On the research stations

at least two replications were used in both seasons.
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In 1991 a trial for the purpose of screening hybrids for ear rot resistance was initiated by the

Agricultural Research Council (ARC) and the Maize Industry at three localities in South Africa.

This trial was an extension of the Phase II commercial hybrid series co-ordinated by the ARC

throughout the maize producing region. Each site contained 49 entries replicated three times.

The sites were at Greytown (KwaZulu-Natal), Petit/Delmas (Mpumalanga) and Potchefstroom

(North West Province). Table 4.1 summarises the trial information at these locations.

Table 4.1: A summary of the ARC trials planted for ear rot screening between 1991 and

1994

Location Company / Institute Year Plot Size

Greytown

Petit

Delmas

Potchefstroom

PANNAR (Pty) Ltd

Cargill (Pty) Ltd

SENSAKO (Pty) Ltd

ARC

1991/92 4 X 4.4m X 0.9m

2 X 10m X 0.84m

2 X 10m X 0.9m

1 X 20m X 2.15m

Greytown

Petit

Delmas

Potchefstroom

Greytown

Petit

Delmas

Potchefstroom

PANNAR (Pty) Ltd

Cargill (Pty) Ltd

SENSAKO (Pty) Ltd

ARC

PANNAR (Pty) Ltd

Cargill (Pty) Ltd

SENSAKO (Pty) Ltd

ARC

1992/93

1993/94

4 X

2 X

2 X

1 X

4 X

2 X

2 X

1 X

4.4m X 0.9m

10m X 0.84m

10m X 0.9m

20m X 2.15m

4.4m X 0.9m

10m X 0.84m

10m X 0.9m

20m X 2.15m

Each whole plot was subdivided into two sub-plots, one for inoculation with Stenocarpella

maydis (Berk.) Sutton and the other as the non-treated control. Inoculum was produced by the

ARC by inoculating sterilised maize whole kernels with pathovars of S. maydis, from the regions

that trials were to be planted, and allowing the fungus to grow at 26°C for 9 weeks. The

colonised kernels were then air dried and milled into a relatively fine meal. Approximately 3.5

g of inoculum was placed in the whorl of each plant to be infected, using a coffee dispenser

(Nestle [SA] [Pty] Ltd, Durban, South Africa), approximately 14 days before 50% anthesis.

At harvest the percentage S. maydis-infected ears was determined by physically examining each

ear and counting ears with greater than 10% rotten grain, and then determining the number of

infected ears of the total number of ears as a percentage. The percentage diseased grain were

determined by shelling the whole plot sample, drawing a 500 g sample, visually separating the

diseased grain from the healthy grain and then calculating the percentage rotten grain based on
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the mass of the two fractions.

Four methods were employed to "find the most effective and practical method of presentation of

hybrid response to ear rot. These were:

i) Data expressed as a percentage of the mean infection for the trial

ii) Data presented as frequency tables

iii) The standardised Z variate method

iv) Regression analysis of hybrid response to Stenocarpella ear rot infection.

The standardised Z variate (Z-score) is determined by dividing the ear rot value by the standard

error for the trial (Steel and Torrie, 1981; Gomez and Gomez, 1984; Fowler and Cohen, 1990;

Pataky and Eastburn, 1993). The Z-scores are then used to categorise hybrid response into

resistance/susceptibility groups. This is subjective and the range in the Z-scores was slightly

different each season. However, in general those hybrids with a Z-score > 1.1 were categorised

as ear rot susceptible, and those with Z-scores < - l . l were classed as ear rot resistant. The

Bayesian least significant difference test was not available in Genstat 5.32 or Statsgraphics 4.0

as an additional tool as used by Pataky and Eastburn (1993) to further improve the classification

of hybrids into resistance/susceptibility categories.

The Z-score was used to divide the hybrids into the following resistance categories:

R Resistant to S. maydis ear rot

MR Moderately resistant to 5". maydis ear rot

M Intermediate in S. maydis ear rot response

MS Moderately susceptible to S. maydis ear rot

S Susceptible to S. maydis ear rot.

As there are no maize hybrids in South Africa that are considered highly resistant to S. maydis

ear rot, Z-scores were divided in such a way as to give few R responses.

4.3 RESULTS

The data from the PANNAR SEED trials are presented in Section 4.3.1 and 4.3.2 as a greater

number of seasons and number of locations were available. Tables are based on the percentage

infected grain as a measure of the amount of ear rot. The data from the ARC Phase II

commercial hybrid trials was used in Section 4.3.3 and 4.3.4.
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4.3.1 Hybrid response relative to the trial mean

Due to natural variations of hybrid response to ear rot over locations and seasons, it is desirable

that the poorest and best performing hybrids can be identified easily. This method is a non-

statistical method that was employed to allow trends to emerge from trial data over locations and

years. By standardising the data, using the trial mean, greater differentiation between hybrids

occurs and the extremes in hybrid response to ear rot are more marked.

Table 4.2: The incidence of diseased grain, expressed as a percentage of the mean percentage

kernel colonisation for the trial, of seven selected hybrids at five localities during the

1986/87 season

Hybrid

CRN 4502

PAN 6549

PAN 473

PAN 6514

PAN 6528

RS 5206

SNK 2244

Rel. Mean1

Mean

Bergville

189.4

76.8

65.4

42.2

88.2

58.9

162.6

100.0

24.6

Utrecht

155.8

57.8

73.8

38.8

155.8

240.8

240.8

100.0

14.7

Grey town

159.0

77.1

75.4

45.9

86.1

69.7

92.6

100.0

12.2

Normandien

263.6

64.8

45.5

30.7

102.3

121.6

280.7

100.0

8.8

Carolina

145.7

48.0

139.4

78.9

166.3

72.6

162.3

100.0

17.5

Mean

182.7

64.9

79.9

47.3

119.7

76.3

187.8

100.0

15.6

1 The mean percentage infected kernels for the trial is taken as being 100% and all data is determined as

a percentage of the mean.
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Table 4.3: The response of seven maize hybrids to ear rot infection at a single locality for four

seasons, expressed as a percentage of the trial mean for 1985/86 to 1989/90

Hybrid

CRN 4502

PAN 6549

PAN 473

PAN 6514

PAN 6528

RS 5206

SNK 2244

Rel. Mean1

Mean

1985/86

144

81

125

81

62

62

81

100

11.7

1986/87

159

77

75

45

86

70

93

100

12.2

1987/88

106

83

127

146

130

98

101

100

18.2

1988/89

122

58

101

60

145

58

-

100

9.2

1989/90

125

76

-

134

47

-

100

8.4

1 The mean percentage infected kernels for the trial is taken as being 100% and all data is determined as

a percentage of the mean.
2 The hybrid was not in the trial during the given growing season.

Table 4.2 shows the response of seven maize hybrids to ear rot colonisation over seven different

environments. Although the response of some hybrids is consistent over locations, hybrids such

as PAN 6528 and RS 5205 exhibited a large variation in ear rot response. The largest variation

in hybrid response to ear rot between hybrids, occurred at the site with the lowest mean disease

level (Normandien). From Table 4.2, it is possible to identify those hybrids that will always

have less ear rot than most other hybrids, and those hybrids likely to have severe ear rot

problems should the environment be conducive to infection. A number of the hybrids do not

fit into either category.

Table 4.3 shows that hybrid response to ear rot colonisation at one location (Greytown) is not

consistent over seasons. Only RS 5206 had consistently less ear rot and CRN 4502 had

consistently more ear rot than the mean of the trial over 5 seasons. In Table 4.2, SNK 2244

appeared to be one of the most susceptible hybrids to ear rot, whereas Table 4.3 shows this

hybrid to have better-than-average ear rot resistance. Most hybrids performed poorly or well

in at least one seasons out of five.
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4.3.2 Frequency table analysis

Due to the variation in response of hybrids to ear rot infection reflected in Tables 4.2 and 4.3,

it was decided to determine the frequency of hybrid response to ear rot infection. By using this

method, it is possible to compare hybrids against each other, in geographical regions and over

seasons. Table 4.4 gives the ear rot response of PAN 6549 in different geographical regions.

This can be compared to the same information for PAN 6528 in Table 4.5 and for CRN 4502

in Table 4.6. Table 4.4 shows that overall PAN 6549 gets less ear rot than the trial mean but

there is considerable variation in response between regions.

Table 4.4: The proportion of trials (%) in ear rot disease classes from different regions for

PAN 6549 during 1986/87 and 1987/88

1986/87 & 1987/88

Relative percentage disease No.
Region

Overall

KwaZulu-Natal

Mpumalanga

North West

<50

10

10

25

50-70

23

33

70-90

33

38

40

90-110

10

5

40

110-130

17

10

75

130-150

3

5

>150

3

20

trials

30

21

4

5

Table 4.5: The proportion of trials (%) in ear rot disease classes from different regions for

PAN 6528 during 1986/87 and 1987/88

Region

Overall

KwaZulu-Natal

Mpumalanga

North West

<50

10

3

40

50-70

7

3

20

1986/87 & 1987/88

Relative percentage disease

70-90

23

24

25

20

90-110 110-130

20 10

24 3

25

20

130-150

17

24

>150

17

14

50

No.
trials

30

21

4

5

Overall, PAN 6528 displayed an average to an above average amount of ear rot, but appears to

get considerably less ear rot in the North West Province than in the Mpumalanga and KwaZulu-

Natal Provinces (Table 4.5). From Table 4.6 it can be seen that CRN 4502 is highly susceptible

to ear rot and had more ear rot than the trials mean in at least 40% of the plantings regardless
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of which region it was planted. Hybrids such as CRN 4502 should be avoided in regions that

have a high probability of ear rot.

Table 4.6: The proportion of trials (%) in ear rot disease classes from different regions for

CRN 4502 during 1986/87 and 1987/88

Region

Overall

KwaZuIu-Natal

Mpumalanga

North West

<50

3

5

1986/87 & 1

50-70

13

14

' 25

20

1987/88 Combined

Relative percentage disease

70-90

17

10

25

40

90-110

10

14

110-130

10

10

20

130-150

13

14

50

>150

30

33

20

No.
trials

30

21

4

5

Tables 4.7 and 4.8 show the difference in response to ear rot infection by CRN 4502 in

consecutive seasons. In 1986/87 (when the ear rot incidence was highest), the level of ear rot

in CRN 4502 was always much higher than the mean of all hybrids. This was independent of

which province the hybrid was planted (Table 4.7). In 1987/88 the ear rot inoculum pressure

was lower and CRN 4502 did not always do worse than the mean, although this was often the

case. During this season there appeared to be a tendency for the hybrid to have less ear rot than

other hybrids in the Mpumalanga and North West Provinces (Table 4.8).

Table 4.7: The proportion of trials (%) in ear rot disease classes from different regions for

CRN 4502 during 1986/87

Region

Overall

KwaZulu-Natal

Mpumalanga

North West

<50 50-70

1986/87

Relative percentage disease

70-90 90-110 110-130 130-150

14

17

100

>150

86

83

No.
trials

7

6

1

0
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Table 4.8: The proportion of trials (%) in different ear rot disease classes from different regions

for CRN 4502 during 1987/88

Region

Overall

KwaZulu-Natal

Mpumalanga

North West

<50

4

7

50-70

17

20

33

20

1987/88

Relative percentage disease

70-90

22

13

33

40

90-110

13

20

110-130

13

13

20

130-150

13

13

33

>150

13

13

20

No.
trials

23

15

3

5

4.3.3 Z-score analysis

Z-scores were determined for the mean percentage rotted ears and the mean percentage diseased

grain for 1991/92, 1992/93 and 1993/94. Table 4.9 shows selected hybrids and the ear rot

resistance categories allocated to the Z-score. The resistance categories of Pataky and Eastburn

(1993) are similar to those allocated in South Africa, except that they allowed for greater

differentiation between hybrids. The category of "ear rot resistant (R)" was not allowed for in

South Africa, as even the least ear rot susceptible hybrid could still exhibit significant levels of

ear rot infection. However, of the hybrids shown, PAN 6479, PAN 6480, RS 5206, NS 9100

and SNK 2665 rated consistently better than the other hybrids (regardless whether the

categorisation was based on percentage colonised ears or percentage diseased grain), and

consistently fell into the moderately resistant class. According to the classification of Z-scores

used by Pataky and Eastburn (1993), most of these hybrids should be classed as ear rot resistant.

CRN 4502 was consistently classed as susceptible.

When the data from the percentage diseased ears is examined (Table 4.9), HL 8 (present in two

out of three seasons) was found to be moderately resistant in 1991/92 but moderately susceptible

to ear rot in 1992/93. PAN 6364 was more resistant to ear rot in 1991/92 than in either

1992/93 or 1993/94. SNK 2950 was more susceptible to ear rot in 1991/92 than in either

1992/93 or 1993/94. PAN 473 showed considerable variation in the Z-score although the hybrid

still maintained the same resistance category. PAN 6528 appeared to become more resistant (a

smaller Z-score) each season and moved up a resistance category.
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Table 4.9: Categorisation into ear rot resistance groups of selected hybrids for the percentage

diseased ears and the percentage diseased grain during the 1991/92, 1992/93 and 1993/94

seasons based on Z-scores

Hybrid

% Diseased

CRN 3414

CRN 4502

HL8

NS 9100

PAN 473

PAN 6364

PAN 6479

PAN 6480

PAN 6528

PAN 6578

RS 5206

SNK 2665

SNK 2950

% Diseased

CRN 3414

CRN 4502

HL8

NS 9100

PAN 473

PAN 6364

PAN 6479

PAN 6480

PAN 6528

PAN 6578

RS 5206

SNK 2665

SNK 2950

Z-
score

Ears

0.576

2.409

-1.569

-1.500

0.519

0.169

-0.826

-1.662

1.381

-0.756

-1.236

-0.967

1.191

Grain

0.005

1.503

-1.147

-1.133

-0.125

0.056

-0.766

-1.103

1.053

-0.094

-0.847

-1.076

0.931

1991/92

A

M

S

MR

MR

M

M

MR

MR

MS

MR/M

MR

MR

MS

M

S

MR

MR

M

M

MR

MR

MS

M

MR

MR

MS

B

MS

S

R

R

MS

M

MR

R

S

MR

R

MR

S

M

S

R

R

M

M

MR

R

MS/S

M

MR

R

MS

Z-
score

0.858

1.817

0.798

-1.062

-0.401

0.875

-0.814

-0.491

0.948

-0.132

-0.933

-0.920

0.057

0.711

1.111

0.503

-1.012

-0.668

0.738

-0.742

-0.320

0.840

0.312

-0.483

-1.041

0.295

1992/93

A

MS

S

MS

MR

M

MS

MR

M

MS

M

MR

MR

M

MS

S

MS

MR

M

MS

MR

M

MS

MS

M

MR

MS

B

MS

S

MS

R

MR

S

R/MR

MR

S

M

R

R

M

MS

S

MS

R

MR

MS

MR

MR

S

MS/M

MR

R/MR

MS/M

Z-
score

-0.134

1.767.
—

-0.806

-0.231

1.361

-0.429

-0.820

0.272

-0.360

-0.914

-0.747

0.133

0.153

1.286
—

-0.549

-0.274

0.946

-0.139

-0.735

0.471

-0.550

-0.839

-0.850

-0.068

1993/94

A

M

S
—

MR

M

MS

M

MR

M

MR

MR

MR

M

M

S
—

MR

M

MS

M

MR

M

MR

MR

MR

M

B

M

S
—

R/MR

M

S

MR

R

M

MR

R

MR

M

M

S
—

MR

M

S

M

MR

MS

MR

R

R

M

A = resistance category as determined by hybrid response in South Africa
B = resistance category based on the method used by Pataky and Eastburn (1993).

Z-scores and resistance classes based on the percentage diseased grain were similar to those

based on the percentage diseased ears. However, SNK 2950 responded differently as the hybrid
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was more resistant to ear rot infection in 1993/94 than in either 1991/92 or 1992/93. The

variation in Z-score for PAN 473 was considerably smaller when based on the percentage

diseased grain. In general, there was less variation in Z-scores when based on the percentage

diseased grain rather than the percentage diseased ears.

These data are based on the overall means of the hybrids for all locations. Further analysis

based on individual seasons, locations (Table 4.10) and various combinations, resulted in a high

variation in Z-scores and resistance/susceptibility categories. This variation can be clearly seen

in the incidence of ear rot in CRN 3414, CRN 4502, PAN 6479, SNK 2665 and RS 5206. For

this reason it was decided not to use this technique to analyse the data further.

Table 4.10: Categorisation into ear rot resistance groups of selected hybrids for the percentage

colonised ears during the 1993/94 season based on Z-scores

Hybrid

CRN 3414

CRN 4502

NS 9100
PAN 473

PAN 6364

PAN 6479
PAN 6480

PAN 6528

PAN 6578

RS 5206

SNK 2665

SNK 2950

Petit

Z-
score

-0.584

-0.669
-0.617

-0.407

0.568

0.289

-0.649
-0.152

0.028

0.282

0.377

0.430

Cat.

MR

MR

MR

MR

MS

MS

MR

M

M

MS

MS

MS

Delmas

Z-
score

0.640

2.227

-1.229
-0.147

1.328
-0.954

-1.339

-0.342

-0.514

-1.894

-0.653

-0.356

Cat.

MS

S

MR

MR

S

MR

MR

M

M

R

MR

M

Greytown

Z-
score

-0.324

1.036

-0.159

-0.053

0.611

-0.182

-0.264

0.043

-0.106

-0.497

-0.607

-0.015

Cat.

MR

S

MR

MR

MS

MR

MR

MR

MR

MR

R

MR

Potchefstroom

Z-
score

0.057

4.580

-1.776
-0.542

3.357

-0.983

A.211

2.166
-1.154

-1.398

-1.988

0.780

Cat.

M

S

R

MR

S

MR

MR

S

MR

MR

R

MS

Cat = resistance category as determined by hybrid response in South Africa.
Those hybrids in bold italics showed large variation in ear rot resistance response.

4.3.4 Regression analysis

Flett and McLaren (1994) found maize hybrid response to ear rot to be non-linear in nature and

described these responses statistically. The mean percentage infection for the trial at a specific
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site was taken as the ear rot or inoculum potential. This was then plotted against the mean

infection for a specific hybrid at a particular location. Non-linear regression was then applied

to each hybrid using the formula Y=AXb, where Y = mean ear rot incidence within each hybrid

and X = ear rot potential. By applying non-linear regression analysis, many of the anomalies

of hybrids not fitting expected responses could be accurately explained.

Hybrid response could be divided into three categories:

i) Hybrids which showed a linear response to ear rot with increased inoculum pressure.

ii) Highly ear rot susceptible hybrids despite a low inoculum potential.

iii) Hybrids of varying degrees of ear rot resistance despite an increase in inoculum

potential (Flett and McLaren, 1994).

Table 4.11: Relative response of hybrids (1992/93 and 1993/94 combined) to StenocarpeUa ear

rot at different inoculum potentials compared to the ear rot resistance groupings based

on the Z-score for diseased ears for 1992/93 and 1993/94 (Anonymous, 1995)

Hybrid

CRN 3414

CRN 4502

NS9100

PAN 473

PAN 6364

PAN 6479

PAN 6480

PAN 6528

PAN 6578

RS 5206

SNK 2665

SNK 2950

PAN 60342

PAN 61402

PAN61412

PHB 34272

5

5.1

13.5

2.3

5.0

10.2

2.2

3.2

7,0

4.5

2.8

3.8

4.6

5.0

6.1

1.6

2.3

10

10.7

22.3

5.3

9.5

17.7

5,4

6.8

13.5

9.1

6,0

7.4

9.5

10.3

14.6

4.3

7.0

Inoculum

15

16.6

30.0

8.7

13.9

24.4

9.0

10.7

19.8

13.8

9.4

10.9

1.7

15.8

24.2

7.7

13.3

potentials

20

22.6

37.0

12.4

18.2

30.6

13.0

14.7

25.9

18.6

13.0

14.4

19.9

21.4

34.7

11.6

21.1

25

28.9

43.6

16.2

22.4

36.2

17.3

18.9

31.9

23.4

16.6

17.8

25.2

27.0

45.8

16.0

30.1

30

35.0

49.8

20.3

26.5

42.2

21.8

23.1

37.9

28.2

20.2

21.2

30.5

32.7

57.8

20.7

40.2

Z-score

92/93

MS

S

MR

M

MS

MR

M

MS

M

MR

MR

M

class *

93/94

M

S

MR

M

MS

M

MR

M

MR

MR

MR

M

1 Z-score classes are from Table 4.9 and are used for comparative purposes.
2 data based on 1993/94 season only and no Z-scores were determined.
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Flett and McLaren (1994) showed that by fitting confidence limits to the ear rot disease curves,

the optimum disease potential for screening hybrids to ensure maximum differentiation between

genotypes was 17 - 20%. The differentiation between genotypes at very low or very high

disease potentials was not sufficient to result in detectable differences.

This technique has been further developed to allow prediction of hybrid ear rot response at

specific disease potential levels (Anonymous, 1995). This allows for the easy identification of

hybrids that are susceptible at all inoculum potentials. In addition, should maize be planted in

an area of high ear rot risk, the hybrids that are highly susceptible under high disease pressure

can also be identified. In Table 4.11, CRN 4502 is shown to be highly susceptible to ear rot

at all disease potentials. CRN 3414 exhibits more ear rot with increases ear rot inoculum. PAN

6480 has below average ear rot colonisation regardless of the inoculum potential. PHB 3427

and PAN 6140 were moderately ear rot resistant at the 5% inoculum potential but were more

susceptible as inoculum levels increased, particularly PAN 6140 (one season's data only).

However, other hybrids such as PAN 6141 and PAN 6034 exhibited normal response patterns.

4.4 DISCUSSION

The most important fact to emerge from this study was that hybrid response to S. maydis ear

rot was not consistent over locations and/or seasons, and even the most ear rot resistant hybrids

showed severe 5. maydis ear rot at times. The variation found was too large to be explained

as experimental error, and hybrids with similar pedigrees usually responded in a similar way to

ear rot. This meant that new strategies for determining hybrid response to ear rot and data

presentation had to be developed. These strategies had to be easy to practical, accurate, simple

enough to be used in large scale screening and understandable to the various role players within

the maize industry. For this reason, the most simple techniques were started with and then

developed further, or substituted, as necessary.

Expressing data as a percentage of the mean of the trial allows for easy assessment of a hybrids

response to ear rot in previous seasons compared to the other hybrids. An advantage is that data

are easily comparable over seasons as trends are being compared rather than actual data.

However, the problem associated with this is that the inoculum pressure is unknown and

therefore the specific performance of a hybrid cannot be predicted in a given area. This type

of information will help researchers, marketing personnel and farmers alike, identify the

97



extremes of good and bad performers. This reduces the risk of a farmer planting an inherently

ear rot susceptible hybrid and/ or can be used to identify hybrids that are more suited to areas

where ear rot is endemic. If the relative mean of the hybrid over locations is used as a measure

of ear rot resistance, then the variation exhibited by some hybrids is missed completely. It is

for this reason that the response over as wide a range of locations as possible should be

examined and not data means.

An improvement on this method of data collection and presentation is to present the information

as a frequency of ear rot response category. This highlights the risk of-planting a particular

hybrid in a high risk ear rot area. This allows for more detailed analysis and is easier to

interpret. However, hybrids with an unstable response pattern are still difficult to accurately

classify for a specific location. An additional problem is that of not having an equal number of

trials in each category that the trials are divided. This, can be seen in Tables 4.4 - 4.8, where

KwaZulu-Natal had 21 trials, North West 5 trials and Mpumalanga 4 trials. Although it is

possible to get a response pattern with a low number of trials, the accuracy of the data can be

questioned. This type of analysis does not have a statistical method of testing for significant

differences. Such a method could be developed but would be complicated and time consuming.

The limitations of this technique should be recognised, but it does provide a reasonably accurate

and practical method of ear rot assessment and interpretation of the data to people who do not

have access to methods of statistical analysis. It is easy to identify consistent ear rot susceptible

and more ear rot resistant hybrids but is difficult to interpret hybrid ear rot responses that vary

considerably. For this reason a more accurate statistical method of analysis is desirable.

Z-scores are effective in classifying disease hybrids into response categories but in the case of

ear rot, variation was high for some hybrids. This means that although the overall classification

can be made, some hybrids cannot be accurately classified. In addition, the technique showed

that detailed analysis for each site and season resulted in increased variation in the disease

response pattern of hybrids. For those hybrids that responded linearly with increased inoculum

pressure, the Z-score analysis worked well.

The ear rot response patterns (based on Z-scores) were similar for data collected as either

percentage diseased ears or percentage diseased grain. Although the variation in Z-scores

between seasons was higher when based on the percentage diseased ears, the increased work

required to determine the percentage diseased grain does not justify the small improvement in
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consistency of these data.

Table 4.10 showed the high degree of variation found in the Z-scores and resistance categories

when detailed ear rot responses were examined. This method is more suited to generally

classifying resistance categories based on the mean of data. Another method of ear rot data

analysis is needed to explain this variation in data.

In the above studies it became apparent that there were certain ear rot inoculum threshold levels

above which the resistance of most hybrids rapidly becomes less effective; This indicated that

hybrid response to ear rot colonisation was not linear. Flett and McLaren (1994) explained these

non-linear responses using non-linear regression analysis. This is the only technique to account

for ear rot response accurately for all hybrids over seasons and locations. Many of the

discrepancies in other methods of ear rot data presentation are accounted for by this method.

Flett and McLaren have developed their model and they can now predict a hybrid's response to

ear rot disease at various inoculum pressures, which can be seen in Anonymous (1995). This

allows advisors and farmers to more accurately select hybrids for an anticipated ear rot situation.

A possible shortcoming of this system at present is the overall response of a hybrid to ear rot

is determined and a regional or geographic effect is ignored or assumed to be non-significant.

Tables 4.4 - 4.8 suggest that there is variation in hybrid response to ear rot between regions.

This was not investigated further in this study as this is being done at present by Flett (Flett7,

pers. comm.).

A problem with this technique is that considerable statistical knowledge is required to analyse

these data. For this reason the technique cannot be easily transferred to other data sets and uses,

especially if statisticians and sophisticated software are not available. Some farmers have also

expressed difficulty in following the concept and interpreting the information. Should the

programme be made user friendly, significant use can be made of this technique. Education of

the farmers is required to ensure these data generated are understood and therefore used

correctly and effectively.

B.C. Flett, Pathology Section, Summer Grain Centre, Grain Crops Institute, Private Bag
XI251, Potchefstroom 2520, RSA.

99



4.5 LITERATURE CITED

Anonymous. 1995. Mielie-inligtingsgids 1995. Summer Grain Centre, Grain Crops Institute, Agricultural Research

Council, Potchefstroom, RSA. pp. 78.

Flett, B.C. 1992. Stubble management effects on the incidence and survival of maize cob rot pathogens. M.Sc.

Thesis, Faculty of Agriculture, University of Pretoria, Pretoria, RSA.

Flett, B.C. and McLaren, N.W. 1994. Optimum disease potential for evaluating resistance to Stenocarpella maydis

ear rot in com hybrids. Plant Dis. 78:587-589.

Fowler, J. and Cohen, L. 1990. Practical statistics for field biology. Open University Press, Manchester, United

Kingdom, pp. 227.

Gomez, K.A. and Gomez, A. A. 1984. Statistical procedures for agricultural research. Second Edition. John Wiley

and Sons, New York, USA. pp. 680.

Hooker, A.L. 1956. Association of resistance to several seedling, root, stalk, and ear diseases in corn.

Phytopathology 46:379-384.

King, S.B. and Scott, G.E. 1981. Genotypic differences in maize to kernel infection by Fusarium moniliforme.

Phytopathology 71:1245-1247.

Koehler, B. 1959. Com ear rot in Illinois. University of Illinois Agric. Exp. Sta. Bull. No. 658, Champaign, Illinois,

USA.

Mesterhazy, A. and Kovacs, K. 1986. Breeding corn against Fusarial stalk rot, ear rot and seedling blight. Acta

Phytopathol. Ento. Hungarica 21:231-249.

McLennan, S.R. 1991. Stenocarpella infection studies on maize. M.Sc. Thesis, Faculty of Agriculture, University

of Natal, Pietermaritzburg, RSA.

Nowell, D.C. 1989a. Some aspects of ear rot data collection and presentation. Pgs 68-72 in: Proc. 8th. S.Afr. Maize

Breeding Symp., Potchefstroom 1988, J.G. du Plessis (Ed.), Tech. Comm. No. 222, Dept. Agric and

Water Supply, Pretoria, RSA.

Nowell, D.C. 1989b. Maize ear rot data presentation. (Abstr.) Phytophylactica 21:103.

Pataky, J.K. and Eastbum, D.M. 1993. Using hybrid disease nurseries and yield loss studies to evaluate levels of

resistance. Plant Dis. 77:760-765.

Rheeder, J.P. 1988. Incidence of Fusariwn and Diplodia species and other fungi in commercial South African maize

cultivars. M.Sc. Thesis, Faculty of Agriculture, University of the Orange Free State, Bloemfontein, RSA.

Sivasankar, D., Asnani, V.L., Lai, S. and Agarwal, B.D. 1976. Dosage effects of opaque-2 gene on the susceptibility

in maize to seed rots by Cephalosporium acrewoniwn and Fusarium moniliforme. Ind. Phytopathol. 28:235-

237.

Steel, R.D.G. and Torrie, J.H. 1981. Principles and procedures of statistics. A biometrical approach. Second

Edition. McGraw-Hill Book Company, Singapore, pp. 633.

Thompson, D.L., Villena, W.L. and Maxwell, J.D. 1971. Correlation between Diplodia stalk and ear rot of corn.

Plant Dis. Rep. 55:158-162.

Warren, H. L. 1978. Comparison of normal and high-Iysine maize inbreds for resistance to kernel rot caused by

Fusarium moniliforme. Phytopathology 63:1288-1290.

100



Warren, H.L. and Shepherd, P.L. 1976. Relationship of Colletotrichuin graniinicola to foliar and kernel infection.

Plant Dis. Rep. 60:1084-1086.

Villena, W. L. 1969. Studies of inoculation methods and inheritance of resistance to Diplodia ear rot. Ph.D. Thesis,

Dept. Crop Science, North Carolina State University, Raleigh, North Carolina, USA.

Wiser, W.J., Kramer, H.H. and Ullstrup, A.J. 1960. Evaluating inbred lines of corn for resistance to Diplodia

maydis ear rot. Agron. J. 52:624-626.

101



CHAPTER 5

Ear Rot Incidence in Maize Hybrids at Various Plant Densities In

KwaZulu-Natal, South Africa

ABSTRACT

No prior published evidence existed for a relationship between maize plant density and ear rot

incidence. As there is a very large range in plant densities employed in South Africa (from

9 000 to over 75 000 plants ha"1), trials were conducted to measure ear rot incidence at plant

densities that were being routinely deployed on farms. In the first trial in 1986/87, some

hybrids showed a very significant increase in ear rot at 36 000 plants ha"1, from 18 000 plants

ha'1 and then a significant decrease in ear rot incidence at 40 000 - 50 000 plants ha'1, before

again showing an increase in ear rot incidence with a further increase in plant density. The

relationship between ear rot severity and plant density was not linear, except possibly above

60 000 plants ha"1. The second trial was conducted in 1987/88 during an abnormally dry season

and expected patterns in ear rot severity did not materialise. However, the initial trends were

repeated in the trial in the 1989/90 season, although less clearly than in 1987/88. Ear rot

incidence did not correlate with tiller production per plant, prolificacy, lodging or grain

moisture.

5.1 INTRODUCTION

During the 1985/86 growing season in KwaZulu-Natal, South Africa, there was an unexpected

rise in the incidence of ear rots in maize (Zea mays L.). This was the first indication in South

Africa that there was an increasing ear rot problem, primarily caused by Stenocarpella maydis

(Berk.) Sutton. It was not until the 1986/87 growing season that the maize-producing area as

a whole suffered severe losses in yield and quality as a result of an ear rot epidemic (Nowell,

1992). This maize ear rot epidemic resulted in a considerable amount of research on maize ear

rot being initiated in South Africa (McLennan, 1991; Flett, 1992; Flett and McLaren, 1994;

Rheeder, 1988; Farwell8, unpublished; Nowell, unpublished).

8 AJ . Farwell, Parent Seed Manager, Pannar Seed (Pty) Ltd, P.O. Box 19, Greytown 3250, RSA.
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There was no information available in the literature on the response of maize hybrids to ear rot

under different plant densities, other than Koehler (1959) mentioning that ear rot incidence and

severity increases with increased plant density. Plant densities in South Africa vary considerably

and are determined by the mean average or distribution of the annual rainfall or the availability

of water for irrigation. In the lower rainfall areas of the maize production region the plant

densities are usually between 9 000 and 25 000 plants ha'1. In the maize producing regions of

higher rainfall, the plant populations vary from 36 000 - 50 000 plants ha'1. Plant density under

irrigation can be up to 90 000 plants ha"1.

The only published information on the relationship between a maize disease and plant density,

involved the pathogen Cercospora zeae-maydis Tenon and Daniels, which causes Grey Leaf Spot

(GLS). Initial research on GLS on maize indicated that high plant densities were conducive in

creating high humidity microclimates favourable for disease (Payne and Waldron, 1983; Ayers

et al., 1985). However, recent work by Smith (1989) and de Nazareno et al. (1993) found that

less disease per plant occurred under high plant densities because of a "shielding" effect from

spore interception in the more dense canopies than in plots in which canopies were more open.

Rivera-Canales (1993) found that GLS was more severe in seed crops in which there was

significant removal of leaf tissue during detasselling, and the removal of male rows opened up

the canopy. These results showed that plant density does effect the incidence of a disease and

a plant density effect on the incidence of ear rot was possible.

The objective of this study was to determine whether or not plant density influenced the

incidence of maize ear rot under natural conditions.

5.2 MATERIALS AND METHODS

Maize plant density trials were conducted in 1986/87, 1987/88 and 1988/89 at Greytown,

KwaZulu-Natal, to assess maize hybrid grain yield and ear rot response. No inoculum was

applied because ear rot naturally and consistently occurred at this site The experimental plots

had been under maize monoculture for at least six years and were prepared by mouldboard

ploughing and discing the seedbed. Fertilizers were applied at a rate sufficient for a 10 t ha"1

grain crop based on the recommendations of the Cedara Fertilizer Advisory Service. Urea was

broadcast before planting and disced into the soil and the other fertilizer was band placed before

hand planting took place. During soil preparation EPTC (720 g t l , Zeneca SA (Pty) Ltd) was
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incorporated at a rate of four i ha"1 to control grass weeds. Shortly after planting, a

combination of atrazine and terbuthylazine (both at 250 g active ingredient, Kombat Chemicals

[Pty] Ltd) at a rate of six t ha'1 was applied to control broadleafed weeds. Stalkborer granules

(25 g kg"1 carbaryl, Kombat Chemicals (Pty) Ltd) were applied by hand at the first signs of

African stalkborer leaf damage caused by Busseola fusca Fuller.

1986/87 Experiment

This trial consisted of nine commercial maize hybrids planted as a factorial design with plant

densities of 18 000, 36 000, 54 000 and 72 000 plants ha"1. The plot size was two rows 6 m

long, 0.9 m apart and the experiment was replicated three times. Two"kernels per planting hill

were planted. Plants were thinned by hand to the required plant density at the seven-leaf growth

stage. The trial was planted on 10 November 1986 and 50% silk emergence was on 07

February 1987. The trial was harvested on 25 June 1987.

Although December, 1986 was a relatively dry month, the months of January, February and

April, 1987 had a significantly higher rainfall than the 10-year average for these months.

March, 1987 was a relatively dry month that resulted in some drought stress of the maize.

1987/88 Experiment

This trial consisted of twelve commercial maize hybrids planted as a factorial design with eight

plant densities of 18 000, 26 000, 34 000, 42 000, 50 000, 58 000, 66 000 and 74 000 plants

ha1. The plot size was two rows of 6 m long, 0.9 m apart and the experiment was replicated

three times. Two kernels per planting hill were planted. Plants were thinned by hand to the

required plant density at the seven-leaf growth stage. The trial was planted on 16 November

1987 and 50% silk emergence was on 08 February 1988. The trial was harvested on 20 May

1988.

The rainfall during January, 1988 was relatively low, resulting in moisture stress in the maize.

The months of February and March were near average relative to the 10-year rainfall average.
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1988/89 Experiments

A trial was monitored in which four hybrids (four single-cross female parents of four-way cross

hybrids) were compared at five different plant densities of 34 000, 42 000, 50 000, 58 000 and

66 000 plants ha"1. The trial was planted as a factorial design on 8 October, 1989, and the plot

size was two rows of 6 m long, 0.9 m apart and the experiment was replicated twice. Two

kernels per planting hill were planted. Plants were thinned by hand to the required plant density

at the seven-leaf growth stage. The maize reached 50% silk emergence on 2 January, 1989 and

was harvested on 14 May, 1989.

During 1989, the months of January and March had rainfal which was ideal for ear rot infection

and development. However, February and April were relatively dry months, resulting in some

moisture stress of the maize.

Although the primary objective was grain yield assessment, ear rot assessment was undertaken

by shelling the whole plot, and visually separating out diseased grain, from a 500 g sample in

1986/87 and from a 250 g sample (sample size was reduced for logistical purposes) in 1987/88

and 1988/89. The percentage diseased grain was determined based on the mass of diseased

kernels in the whole sample. In all seasons, laboratory analysis showed that the primary

pathogens were Stenocarpella species, mainly 5". maydis (Berk.) Sutton, which was responsible

for more than 98% of the ear rot. The method of visually assessing the amount of diseased

grain is used to grade maize on delivery from farmers to maize storage silos, and determines

the price per tonne for the farmers.

These data were analysed using GENSTAT 5.31 (Lawes Agricultural Trust, Rothamsted

Experimental Station, United Kingdom). No transformation of data was undertaken. Tests of

significance were determined using Fischer's L.S.D. test of significance.

5.3 RESULTS

White-grained hybrids are indicated by hybrid codes that end in an uneven digit, e.g. PAN 6549.

Yellow-grained hybrids are indicated by hybrid codes that end in an even digit, e.g. PAN 6552.

For illustrative purposes, four representative hybrids were selected from these data in each Table

and graphed to show trends. During the 1986/87 and 1987/88 seasons, the four hybrids
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(PAN 6330, PAN 6528, PAN 6549 and PAN 6552) were common to the trials. Unfortunately,

a set of four hybrids (PNF 6429, PAN 6459, PNF 6549 and PNF 6552) which were different

from these tested in 1988/89 had to be used.

1986/87 Experiments

Results for the 1986/87 season are presented in Table 5.1 - 5.3 and Figures 5.1 - 5.2.

Table 5.1: Percentage Stenocarpella-disoa.sed grain for the maize hybrids at plant densities

during 1986/87

Hybrid 18 000

PAN 6549 9.6

PAN 6429 18.3

PAN 6557 13.3

PAN 6334 27.9

PAN 6330 16.5

PAN 6528 20.8

PAN 6434 29.9

PAN 6552 29.5

PAN 394 40.3

Mean 22.9 a

A summary of the ANOVA results.

Main Effect

Hybrids

Plant Density

Interaction Effect

Hybrids X Plant Density

LSD0025 Hybrid

LSD002S Plant Density

L S D ^ Hybrid X Plant Density

%CV

36 000

10.6

10.5

21.9

30.7

29.8

39.8

24.2

36.0

40.3

27.1 b

Plant density

54 000

11.0

15.4

25.3

22.3

30.9

26.1

26.4

29.9

24.6

23.6 a

F = 66.38

F = 23.97

F = 7.54

72 000

17.1

13.4

25.7

30.4

35.3

30.7

41.8

30.8

45.7

30.1 b

P =

P =

P =

3.5

3.2

5.4

13.7

Mean

12.1

14.4

21.6

27.8

28.1

29.4

30.6

31.6

37.7

25.9

<0.001

<0.001

<0.001

a

a

b

c

cd

cd

cd

d

e
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There was considerable variation in hybrid response to ear rot under different plant densities as

shown in Table 5.1 and Figure 5.1. The differences between hybrids and plant densities, and

the interaction between these two factors were all highly'significant for the percentage diseased

grain. From Table 5.1 it was apparent that few hybrids responded in the same way to ear rot

colonisation under different plant densities. A hybrid such as PAN 6549 showed an increase in

diseased grain with an increase in plant density. Most hybrids, such as PAN 6528, showed a

bimodal increase in diseased grain at 36 000 and at 72 000 plants ha1. With these hybrids, the

percentage diseased grain decreased at plant densities of 36 000 to 54 000 plants ha"1. Other

hybrids, such as PAN 6330, showed a rapid increase in diseased grain'at plant densities of

18 000 to 36 000 plants ha'1, and then a more gradual increase in diseased grain with increased

plant density. Figure 5.1 showed the different types of hybrid responses to ear rot under

different plant densities for the four selected hybrids.

From Table 5.1, it can be seen that there was considerable variation in the levels of diseased

grain between hybrids. PAN 6549 and PAN 6429 had less ear rot overall than all other hybrids

and PAN 394 had more diseased grain than all other hybrids. Overall, there was an increase

in diseased grain at 36 000 plants ha"1 from 18 000 plants ha'1, a reduction in diseased grain at

54 000 plants ha"1 from 36 000 plants ha"1, and another increase in diseased grain from 54 000

to 72 000 plants ha"1. However, the increase in diseased grain from 54 000 to 72 000 plants ha"1

was much smaller than the corresponding increase in diseased grain from 18 000 to 36 000

plants ha"1.

All hybrids showed an increase in grain yield with a corresponding increase in plant density

(Table 5.2 and Figure 5.2). However, not all hybrids responded in a similar manner to plant

density. Some hybrids, such as PAN 6552, showed large increases in yield with increase plant

density. Other hybrids, such as PAN 6528, showed a smaller gain in yield with increased plant

density. These differences in grain yield response between hybrids resulted in a signifcant

interaction response. Grain yield response at different plant densities can be seen for the

selected hybrids in Figure 5.2.
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Table 5.2: Grain yield (t ha'1) for the various hybrids and plant densities during the 1986/87

season

Hybrid 18 000

PAN 6330 5.99

PAN 394 6.30

PAN 6429 6.80

PAN 6434 6.74

PAN 6334 7.18

PAN 6528 8.02

PAN 6549 6.90

PAN 6557 7.45

PAN 6552 8.18

Mean 7.06 a

A summary of the ANOVA results.

Main Effect

Hybrids

Plant Density

Interaction Effect

Hybrids X Plant Density

LSD002S Hybrid

LSDO.OM Plant Density

LSD0 015 Hybrid X Plant Density

%CV

36

8

8

9

9

10

9

9

10

11

9

000

.00

.97

.34

.12

.00

.72

.93

.16

.69

.66 b

Plant density

54 000

8.94

9.25

9.46

9.72

10.57

9.92

10.66

11.00

12.51

10.23 c

F = 33.0

F = 171.85

F = 1.85

72

9

9

9

10

9

9

10

10

13

10

000

.06

.29

.48

.19 -

.72

.84

.96

.67

.67

.32 c

P =

P =

P =

0.59

0.55

0.92

6.5

Mean

8.00

8.45

8.77

8.94

9.37

9.37

9.61

9.82

11.51

9.32

< 0.001

<0.001

0.025

a

ab

b

be

cd

cd -

d

d

e

Overall, there was a increase in grain yield from 18 000 to 36 000 plants ha'1, and again from

36 000 to 54 000 plants ha1. Most hybrids showed a grain yield plateau at 54 000 plants ha'1.

There was considearable variation in the mean yield over all plant densities. PAN 6330 (short

season hybrid) had the lowest grain yield, whereas PAN 6552 had the highest mean grain yield.
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18 000 36 000 54 000
Plant Density (plants / ha)

72000

- PAN 6528 -©- PAN 6552 -*- PAN 6330 S- PAN 6549

Figure 5.1: Percentage diseased grain for four hybrids at four different plant densities
during the 1986/87 season.

14

1 2 -•

^ 10 -

8 -

18 000
1 1

36 000 54 000
Plant Density (plants / ha)

1—
72000

PAN 6552 PAN 6549 -m- PAN 6528 PAN 6330

Figure 5.2: Grain yield for four hybrids at four different plant densities during the
1986/87 season.
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Table 5.3: Correlation coefficients for prolificacy, shelling percentage, percentage grain

moisture, percentage diseased grain and grain yield during the 1986/87

season

Prol

Shell %

%Moist

DisGr

Yield

Prol

1.000

-0.220

-0.101

-0.169

-0.499 '

Shell %

1.000

0.290 *

-0.267 *

-0.114

%Moist

1.000

-0.364 '

0.126

DisGr

1.000

0.087"

Yield

1.000

"" = significant at the 99% level of significance. DisGr = percentage diseased grain.

Shell% = grain shelling percentage Prol = prolificacy

% Moist = percentage grain moisture Yield = grain yield

The correlation matrix presented in Table 5.3 (r2 > 0.254 is significant at the 99% level of

significance) shows that the percentage diseased grain was negatively correlated with the shelling

percentage and the grain moisture. Yield was negatively correlated with prolificacy.

1987/88 Experiments

Results for are presented in Tables 5.4 - 5.6 and Figure 5.3 and 5.4.

In this trial the number of plant densities was doubled and the number of hybrids increased from

nine to twelve. Eight of the hybrids were common between the first two trials. From Table 5.4

it can be seen that the severity of infection in 1987/88 was lower than in 1986/87 and the

variation in disease levels was higher. The variation in diseased grain between plant densities

within a hybrid was also reduced compared to the previous season. Although not significant,

the general trend across plant densities was for diseased grain to increase with increased plant

density (Figure 5.3). Overall the mean percentage diseased grain for the densities of 18 000,

26 000, 34 000, 42 000 and 50 000 plants ha1 were not significantly different from each other.

Plant densities of 58 000 and 74 000 plants ha'1 had more diseased grain than all other plant

densities but were not significantly different from the diseased grain at 42 000 and 66 000 plants

ha"1.

There was considerable variation between genotypes in the amount of diseased grain across all
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plant densities. PAN 6549 had consistently less diseased grain over all plant densities, whereas

PAN 6552 had more diseased grain over all plant densities. No interactions between plant

density and hybrids were evident.

PAN 6552 had significantly more diseased grain than all other hybrids across all plant densities.

Table 5.4: Percentage diseased grain for the various hybrids and plant densities during the

1987/88 season

Hybrid

PAN 6429

PAN 6549

PAN 6363

PAN 6514

PAN 6428

PAN 6434

PAN
473

PAN 6334

PAN 6528

PAN
394

PAN 6330

PAN 6552

Mean

18 000

9.1

8.3

7.7

11.1

13.1

15.2

8.7

10.2

16.9

20.2

20.1

20.6

13.4 a

A summary of the ANOVA

Maiii Effect

Hybrids

26 000

9.1

8.4

12.5

16.1

13.9

12.5

9.6

14.4

22.7

18.9

14.7

16.7

14.1 a

, results.

Plant Density

Interaction Effect

LSD0.025

LSD 0 0 1 J

%cv

Hybrids '.

Hybrid

34 000

5.6

12.0

12.8

12.2

13.3

13.8

25.7

11.8

14.0

13.1

19.3

21.5

14.6 a

K Plant Density

Plant Density

42 000

5.7

7.6

9.5

9.6

9.1

17.0

14.5

14.8

19.8

22.6

25.5

27.5

15.3 abc

Plaut density

50 000

8.1

9,9

10.7

10.2

11.4

11.6

10,7

17.8

20.3

24.9

17.3

25.4

14.8 ab

58 000 •

10.7

13.3

13.8

13.6

18.0

15.5

14,2

20.0

16.7

24.2

25.7

31.1

18.1 c

F = 20.15

F = 4.36

F = 0.304

66 000

5.3

10.4

15.1

16.2

16.2

14.1

18.2

16.2

16.4

19.0

26.1

37.7

17.6 be

74 000 Mean

9.5

13.4

12.3

14.9

16.5

17.0

17.4

23.1

21.4

17.8

28.2

33.5

18.8

P =

P =

P = i

3.1

2.8

36.4

7.9 a

10.4 ab

11.8 be

13.0 bed

13.9 cd

14.6 cd

14.9 cd

16.0 de

18.5 ef

20.1 fg

22.1 g

26.8 h

c 15.8

<0.001

<0.001

n.s.
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Table 5.5: Grain yield (t ha"1) for the various hybrids and plant densities during the 1987/88

season

Hybrid

PAN 6330

PAN 394

PAN 473

PAN 6434

PAN 6334

PAN 6429

PAN 6528

PAN 6363

PAN 6514

PAN 6549

PAN 6428

PAN 6552

Mean

18 000

5.97

5.33

5.97

6.67

7.23

6.80

6.77

6.70

6.77

7.73

6.80

8.27

6.75 a

26 000

6.57

6.93

7.67

7.30

8.07

7.90

7.63

8.63

7.67

8.90

7.70

8.80

7.81 b

A summary of the ANOVA results.

Maia Effect

Hybrid

Plant Density

Interaction Effect

LSDo.025

%CV

Hybrids X Plant Density

Hybrid

Plant Density

34 000

7.43

8.00

8.33

8.43

8.55

8.83

8.67

9.00

8.30

9.60

9.03

9.13

8.61 c

42 000

7.97

8.10

8.87

8.37

8.47

9.30

9.53

9.00

9.33

9.20

10.17

10.03

9.03 d

Plant deasity

50 000

7.73

7.90

8.97

9.23

8.70

8.80

9.17

9.77

10.70

9.50

10.43

10.00

9.24 de

F =

F =

F =

58 000

7.83

8.23

8.27

9.63

9.13

9.27

10.17-

10.10

10.17

9.90-

10.70

10.40

9.48 e

21.00

76.63

1.05

66 000

8.43

9.37

9.10

9.33

9.73

9.97

9.87

9.53

10.87

10.07

10.60

11.53

9.87 f

74 000

7.73

9.73

9.17

9.87

- 9.57

9.77

10.07

10.43

10.77

9.73

11.50

11.10

9.95 f

P = <0.001

P = <0.001

P = n.s.

0.40

0.36

8.5

Mean

7.46 a

7.95 b

8.29 be

8.60 cd

8.68 cd

8.83 de

8.98 def

9.15 efg

9.32 fgh

9.33 fgh

9.62 hi

9.91 i

8.84

The grain yield data in Table 5.5 show highly significant differences between hybrids and plant

densities but no interaction effects. From these data it is clear that increased plant densities

resulted in increased yields, with significant differences between plant densities at almost every

plant density. The grain yield response resulting from increasing lower plant densities was

highly significant for all hybrids. However, in this season a yield plateau effect was reached

at 66 000 plants ha"1. PAN 6330 and PAN 6552 showed a reduction in yield when plant density

was increased from 66000 to 74000 plants ha"1.
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18000 26000 34000 42000 50000 58000
Plant Density (plants / ha)

66000 74000

PAN 6552 PAN 6330 -m- PAN 6528 PAN 6549

Figure 5.3: Percentage diseased grain for four hybrids at eight different plant densities
during the 1987/88 season.

18000 26000 34000 42000 50000 58000
Plant Density (plants / ha)

66000 74000

PAN 6552 PAN 6549 -m- PAN 6528 PAN 6330

Figure 5.4: Grain yield for four hybrids at eight different plant densities during the
1987/88 season.
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In Table 5.6 the significant correlations were the negative correlations between grain yield and

prolificacy and the positive correlation between grain yield and percentage grain moisture.

There was no correlation between the percentage diseased grain and any other factors.

Table 5.6: Correlation coefficients for percentage lodging, prolificacy, percentage diseased

grain, percentage grain moisture and grain yield during the 1987/88

season

Lodg

Prol

%Moist

DisGr

Yield

Lodg
%Moist =
Yield

Lodg

1.000

-0.249

0.092

-0.249

0.156

Prol

1.000

-0.196

-0.171

-0.463*

percentage diseased grain,
percentage grain moisture
grain yield

%Moist

1.000

-0.096

0.370*

Prol
DisGr

DisGr Yield

1.000

0.030 1.000

prolificacy
grain shelling percentage
significant at the 99% level of significance

1988/89 Experiments

Results are presented in Tables 5.7 and 5.8, and Figures 5.5 and 5.6.

Only differences in diseased grain between hybrids were significant. The interactions between

hybrids and plant density were not significant. Table 5.7 shows that PNF 6459 was significantly

more susceptible to ear rot than the other hybrids. Although there was variation in the levels

of infection and colonisation between the other hybrids, the differences were not significant.

No significant differences could be found between ear rot severity at the five different plant

densities due to the high degree of variation. Figure 5.5 shows that the hybrid response to ear

rot at the different plant densities was definitely not linear. The pattern of responses of the three

hybrids with similar colonisation levels were not similar, especially at plant densities above

42 000 plant ha1. PNF 6459 had the highest percentage diseased grain when grown at 42 000

plants ha"1.
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Table 5.7: Percentage diseased grain for maize hybrids at various plant densities during the

1988/89 season

% Diseased Grain
Hybrid

PNF 6459

PNF 6429

PNF 6552

PNF 6549

34000

19.35

2.90

6.30

3.20

42000

22.65

3.95

2.65

4.80

50000

13.50

2.20

4.80

7.50

58000

14.75

4.45

7.90

3.70

66000

16.80

1.05

5.55

3.60

Mean

17.41 b

2.91 a

5.44 a

4.56 a

Mean 7.94 8.51 7.00 7.70 6.75 7.58

A summary of the ANOVA results.

Main Effect

Hybrids

Plant Density

Interaction Effect

Hybrids X Plant Density

LSD005 Hybrid

LSD0001 Plant Density

LSDooj Hybrid X Plant Density

%CV

F = 146.68

F = 3.56

F = 2.90

P = < 0.001

P = n.s.

P = 0.085

5.573

4.559

9.119

57.47
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Table 5.8: Grain yield (t ha"1) for maize hybrids at various plant densities during the 1988/89

season

Yield ( Tonnes / ha)
Hybrid

PNF 6459

PNF 6429

PNF 6552

PNF 6549

34000

8.490

8.115

4.170

5.635

42000

9.130

7.815

4.745

5.630

50000

9.330

8.395

4.770

5.880

58000

9.275

9.675

5.290

5.965

66000

9.795

8.230

5.060

5.845

Mean

9.204 d

8.446 c

4.807 a

5.791 b

Mean 6.602 a 6.830 ab 7.094 abc 7.551 be 7.233 be 7.062

A summary of the ANOVA results.

Main Effeci

Interaction

LSDQ.05

LSD0001

LSD005

%cv

t

Hybrids

Plant Density

Effect

Hybrids X Plant Density

Hybrid

Plant Density

Hybrid X Plant Density

F = 23.21

F = 2.10

F = 0.71

P = <0.001

P = 0.010

P = n.s.

0.701

0.573

1.147

7.76

Table 5.8 shows that grain yield generally increased with increased plant density for all hybrids.

There was a plateau effect in the grain yield at plant densities above 50 000 plant ha"1. There

were differences in yield potential between all hybrids. Based on the pedigree of PNF 6552,

it would be expected to have the lowest yield potential due to a significant relationship between

the two inbreds.

116



25

20 -

15 -•

1
2

S 1 0 +

5 - •

— 1 —
34000

1 1 1 1
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PNF 6459 -«- PNF 6552 - s - PNF 6549 -EB- PNF 6429

Figure 5.5: Percentage diseased grain for four hybrids at five different plant densities
during the 1988/89 season.

O 6 4-

5 -

34000 42000 50000 58000
Hant Density X1000 (plants / ha)

66000

PNF 6459 PNF 6429 -*- PNF 6549 PNF 6552

Figure 5.6: Grain yield for four hybrids at five different plant densities during the
1988/89 season.
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5.4 DISCUSSION

In two out of three seasons there were highly significant differences between hybrids in their"

overall levels of diseased grain. This would be expected as there is considerable variation in

the genetic composition of these hybrids. In all seasons the effect of plant density on the

percentage diseased grain was highly significant. However, the interactions between hybrids and

plant density were only significant in 1986/87 when the level of the percentage diseased grain

was very high. The most likely reason is the very high co-efficient of variation in this trial.

When it came to the final analysis of these data, it was not possible to re-analyse this trial with

transformed data as the raw data had been lost due to computer failure.

The grain yield showed a similar response to that obtained for the percentage diseased grain.

However, the major difference was that in all seasons the co-efficient of variation was very low.

This difference between the co-efficients of variation for the percentage diseased grain and grain

yield is usually the norm rather than the exception. A possible explanation for this is that

disease, especially ear rot, is far more sensitive to variation in the environmental conditions and

more likely to give variation within a trial than is grain yield. Experience has shown that

conditions have to be near-ideal before an acceptable co-efficient of variation is obtained for

accurate ear rot determination. As a result, the relative differences between hybrids are usually

larger for grain yield than for the corresponding differences for the diseased grain.

From the above data it is clear that, for percentage diseased grain, the hybrids responded

differently to the various plant densities in the three seasons. In 1986/87, hybrid responses fell

into three distinct response group. There was an increase in diseased grain in a number of the

yellow-grained hybrids at 36 000 plants ha"1 compared to 18 000 and 54 000 plants ha"1. If

these data are linearised, then the trend is for an increase in diseased grain with a corresponding

increase in plant density. However, information is lost this way. Although the data in 1987/88

showed more variability, the overall trend is for an increase in diseased grain with an increase

in plant density, especially above 50 000 plants ha"1. Below 50 000 plants ha"1 the response was

very variable. The white-grained hybrid, PAN 6429 and PAN 6549, was much more resistant

to ear rot than the other hybrids. PAN 6528 showed a sharp peak in diseased grain at 26 000

plants ha"1. PAN 6330 showed a significant increase in diseased grain at 42 000 plants ha"1 in

1987/88, which contrasts with the lack of correlation between these two factors in the 1986/87

season.
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The trend for an increase in diseased grain for maize planted at densities greater than 50 000

plants ha'1 correlates with information from the USA (Koehler, 1959), where the majority of the

maize is planted at plant densities of above 48 000 plants ha"1 (Aldrich et ah, 1975).

In contrast to the diseased grain information, the grain yield data showed little variance between

hybrids. There was a sharp increase in grain yield when plant densities increased from 18 000

to 36 000 plants ha1 (1986/87) and from 36 000 to 42 000 plants ha"1 (1987/88), before reaching

a period of more gradual grain yield increases with increasing plant densities. Finally, a plateau

in grain yield increase was usually experienced at around 54 000 plants ha"1. A yield decrease

was shown by PAN 6330, PAN 6549 and PAN 6552 when plant densities were increased from

58 000 plants ha"1 to 66 000 plants ha"1 in 1987/88. This would be expected as 1987/88 was a

season a lower than expected rainfall, especially later in the growing season.

The type and range of hybrid response to ear rot exhibited by PNF 6459 (Figure 5.5) in 1988/89

was very similar to those exhibited by PAN 6528 and PAN 6552 in 1986/87 (Figure 5.1). The

other hybrids in 1988/89 had a relatively low ear rot severity and their ear rot response were

distinct from PNF 6459. PNF 6429 and PNF 6552 appeared to have two peaks in ear rot

severity as measured by percentage diseased grain. PNF 6429 had higher levels of ear rot at

42 000 and 58 000 plants ha"1 than at 50 000 plants ha1. PNF 6552 had higher levels of ear

rot at 34 000 and 58 000 plants ha"1 than at 50 000 plants ha"1. Although this trend is small, a

similar trend is evident in Figure 5.3 for PAN 6552 and PAN 6528 in 1987/88.

The increase in prolificacy of hybrids at low plant populations, compared to high plant

populations, is significant. It was expected that there could be a correlation between the

prolificacy index and the percentage disease grain due to the increased assimilate sink that was

created with an increase in the number of ears per plant and hence grain yield. The greater sink

could have predisposed the plants to ear rot pathogens (Dodd, 1980a and 1980b). This was not

borne out in the correlations in Table 5.3 or Table 5.6. In fact, there was little correlation

between any of the factors measured.

The rainfall distribution played a significant role in ear rot development during these three

seasons. During the 1986/87 season, the rainfall during February was relatively high (the maize

flowered in early February) followed by a some moisture stress in March and then good rains

in April. The combination of periods of good rain with a little moisture stress at the start of
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grain fill provided ideal conditions for ear rot infection and development. The weather during

flowering and grain fill in 1987/88 was considerably drier and less conducive to ear rot than the

previous season. Although the total rainfall for 1988/89 was significantly less than that of the

previous two seasons, the rainfall for January and March was relatively high. However, the dry

months of February and April resulted in conditions being less than ideal for ear rot

development, and ear rot only developed on the most susceptible hybrid. It was this variation

in climate that affected hybrid response to ear rot at different plant densities and resulted in an

inconsistent response over seasons.

The parallel trends of ear rot severity, as measured by percentage diseased grain, as a function

of plant density and hybrids observed in the first and third seasons suggest that there are distinct

factors playing a role in ear rot development. Furthermore, this relationship cannot be explained

solely by S. maydis infection and colonisation being a result of a source / sink relationship

(Dodd, 1980a and 1980b). It would be easier to explain the response in terms of interactions

between microclimate, conidium concentration in the atmosphere (Flett and Wehner [1989]

showed that S. maydis conidia could be airborne) and canopy density. Low plant densities

would allow easy spore penetration of the crop canopy (airborne of splash dispersal) for

deposition onto maize leaves for infection, but the microclimate would not necessarily be ideal

for infection and subsequent disease development. High ear rot incidences at low populations

would tend to occur during seasons of higher rainfall at anthesis, grain fill and maturity. The

effect of dry weather post-anthesis would have a marked effect on the incidence and severity of

ear rot at these lower plant densities. At approximately 50 000 plants ha'1, neither the

microclimate nor the canopy cover is ideal for the pathogen, in terms of spore penetration of the

canopy, and subsequent infection and disease development. At higher plant densities, the

microclimate is ideal for infection but the plant canopy is dense and does not allow sufficient

spore penetration into the canopy to result in severe epidemics. This would be similar to the

effect found for grey leaf spot of maize (de Nazareno et al., 1993; Rivera-Canales, 1993). A

source / sink relationship could play a further confounding role.

Given the complexity of the interacting causes, it is proposed that further research under

different environmental conditions, planting dates and inoculum pressure is needed to obtain a

better understanding of hybrid responses to ear rot pathogens under different plant densities.
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CHAPTER 6

Breeding Strategies for Ear Rot Resistance in Maize Under Conservation

Tillage 9

ABSTRACT

The severe maize ear rot epidemics of 1986/87, 1987/88 and 1988/89 cropping seasons in South

Africa forced maize breeders to reassess the importance of ear rot resistance, especially in the

light of the prior lack of emphasis placed on this disease complex in their breeding programmes.

The rapid and significant increase in the area of maize planted under conservation tillage, in

association with maize monoculture, created an increased potential for ear rot epidemics.

Breeders realised a need for increasing the inoculum pressure in their breeding programmes and

to screen germplasm for ear rot resistance. It was no longer adequate to rely on natural ear rot

inoculum to provide a satisfactory level of infection in order to select ear rot resistant material.

Methods for artificial inoculation of breeding and screening nurseries were needed. The

application of milled Stenocarpella infected ears, from the previous growing season, to the

whorl of the plants about two weeks before anthesis, could be used to induce an ear rot epidemic

(provided environmental conditions are conducive to ear rot infection and development).

Breeding material which was very susceptible to the ear rot fungi needed to be either improved

or eliminated from breeding programmes. The use of very susceptible inbreds in the production

of commercial hybrids creates a risk to commercial crops being downgraded after harvest due

to ear rot disease. The stability and level of ear rot resistance of commercial hybrids have

received a relatively high priority in maize breeding programmes in South Africa.

6.1 INTRODUCTION

An increasing ear rot problem in maize (Zea ways L.) in South Africa, primarily caused by

Stenocarpella maydis (Berk.) Sutton, was first recognised in the 1985/86 growing season in

KwaZulu-Natal when there was an unexpected rise in the incidence of ear rots. Table 6.1 shows

9 This was an invited paper that has been rewritten since being published in the Proceedings of the 9th. S.AJr.
Maize Breeding Symp. (1990), Tech. Comm. No. 232, Cedara 1988, H.O. Gevers (Ed.), Dept. Agric.
and Water Supply, Pretoria, RSA. pp. 53-59.
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the effects thereof on the downgrading of maize due to ear rot infection, primarily during the

1986/87, 1987/88 and 1988/89 growing seasons. This sudden and significant ear rot problem

provided the incentive for maize breeders to re-assess the importance of resistance to the ear

rotting fungi in their breeding programmes.

Contributing to this epidemic were a number of important factors such as climatic variation,

conservation tillage, hybrid ear rot resistance and monoculture (Koster10, pers. comm.;

Farwell11, unpublished; Nowell, unpublished). Correcting cultural practices and improving

sanitation are short- to medium-term solutions to an ear rot problem, whereas breeding for ear

rot resistance provides a medium- to long-term solution.

Table 6.1: Grade composition (%) of the annual South African maize crop from 1980/81 to

1993/94 (Viljoen12, pers. comm.)

Marketing
Season

1984/85

1985/86

1986/87

1987/88

1988/89

1989/90

1990/91

1991/92

YM1

87

84

67

40

43

87

73

81

Yellow Maize

YM2

13

15

31

44

51

13

25

19

YM3

0.5

0.7

1.7

15.7

6.2

0.2

1.2

0.6

WM1

86

93

89

81

66

93

88

90

White Maize

WM2

12

6

10

15

28

7

10

9

WM3

1.5

0.7

1.0

3.8

6.1

0.4

2.0

1.5
YMl & WM1 = up to 4% by mass of discoloured and/or defective grain.
YM2 & WM2 = between 4 and 8% by mass of discoloured and/or defective grain.
YM3 & WM3 = greater than 8% by mass of discoloured and/or defective grain.

6.2 CONSERVATION TILLAGE

Conservation tillage practices cause significant increases in the incidence of ear rot in South

Africa and elsewhere (Kerr, 1965; Palti, 1981; Flett, 1990; Flett and Wehner, 1991; Flett et al.,

1992). Tables 6.2 and 6.3 show the significant increase in ear rots associated with reduced

10 Koster, S., Extension Department, Eastern Transvaal Agricultural Co-operative, Bethal 2310, RSA.

11 Farwell, A.J., Parent Seed Production Manager, Pannar Seed (Pty) Ltd, P.O. Box 19, Greytown 3250, RSA.

12 Viljoen, J.H., formerly Senior Manager: Product Services, Maize Board, P.O. Box 669, Pretoria 0001, RSA.
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tillage at two sites in South Africa. The Geluksburg site is located in north-western KwaZulu-

Natal and is in a relatively low rainfall region, while the Bloekomspruit site is about 40

kilometres east of Johannesburg in Mpumalanga (typical highveld region of South Africa).

Table 6.2 : The incidence of Stenocarpella spp. under different tillage systems at Geluksburg

(Flett and Wehner, 1991)

Tillage

No Tillage

Chisel X2

ChisehDisc

PIough:Disc

% Sten

•87/88

35.4a

1S 1h

13.7b

7.8c

ears

88/89

8.5a

5.8b

4,1b

2.9b

%Rot

•87/88

47.0a

45 8a

37.9ab

32.4b

kern.

88/89

20.8a

15.7ab

8.9b

10.9b

% Smay

•87/88

53.0a

97 lah

25.8ab

11.4b

kern.

88/89

20.7a

10.9b

5.4b

5.0b

* = log transformation
Means followed by the same letter are not significantly different at the 5% level (SNK lest for significant differences)
% Sten ears — Percentage ears colonised by Stenocarpella spp.
% Rot kem. = Percentage rotten kernels determined by mass.
% Smay kern. = Percentage kernels colonised by S. maydis as determined in the laboratory.

The tillage treatments were as follows :

i) No tillage - the stalks were cut but the soil was left completely undisturbed.

ii) Chisel - the stalks were cut and then the soil was tilled using chisel tines.

iii) Chisel X2 - the above chisel process was repeated twice.

iv) Chisel:Disc - once the field had been chisel-tined, the field was disced to increase the

incorporation of the maize debris in the top layer of soil,

v) Plough:Disc - after the stalks were cut, the field was ploughed to a depth of at least

700mm to ensure burial of the maize debris. The field was then disced to ensure

a good seedbed for planting.

These tillage treatments gave a range in quantity of maize debris lying on the soil surface.

From Tables 6.2 and 6.3 it can be seen that the more debris that was left on the soil surface,

the greater the prevalence of ear rots. It can also be seen that there were significant differences

in the incidence of Stenocarpella spp. between the two sites. Visual assessment of the

percentage diseased ears does not necessarily give a true reflection of the amount of diseased

grain. This is due to concealed fungal infection that cannot be seen on the unshelled ear. Of

concern was that the higher the colonisation rate, the greater the number of symptomless
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colonised kernels, especially at Geluksburg.

Table 6.3 : The incidence of Stenocarpella spp. under different tillage systems at

Bloekomspruit (Flett and Wehner, 1991)

Tillage

No Tillage

Chisel

ChisehDisc

Plough:Disc

% Sten

*87/88

47.5a

45.9a

39.5a

24.0b

ears

88/89

20.3a

16.2a

8.8b

5.0b

%Rot

•87/88

47.3a

39.6a

37.6a

23.0b

kern.

88/89

21.5a

23.2a

18.6a

7.0b

% Smay

•87/88

52.7a

47.3a

43.2a

25.3b

kern.

88/89

25.3a

25.8a

27.2a

6.3b

* = log transformation
Means followed by the same letter are not significantly different at the 5% level (SNK test for significant differences)
% Sten ears = Percentage ears colonised by Stenocarpella spp.
% Rot kern. = Percentage rotten kernels determined by mass.
% Smay kern. = Percentage kernels colonised by S. maydis as determined in the laboratory.

The area under conservation tillage is increasing rapidly in South Africa (Berry13, pers. comm.)

and in the light of the ear rot epidemic in the late 1980s, the importance of ear rot in maize

breeding programmes had to be reconsidered. In order to do this, it was necessary to ensure

high ear disease levels as well as good selection and breeding methods.

6.3 ARTIFICIAL EPIDEMICS

Given the effect of reduced tillage on increasing ear rots, inoculum pressure has to be considered

in maize-breeding programmes. As the South African climate is so variable, natural epidemics

do not occur with sufficient consistency or the infection levels are not high enough to ensure

good selection pressure and to make accurate assessments of ear rot resistance of lines and

hybrids over or within seasons. For this reason it is important that artificial epidemics be

created to ensure adequate and uniform selection pressure. There are several ways that this can

be done:

i) Improve conditions for infection and disease development through the use of irrigation

ii) Artificially introduce the pathogen into the plant to promote infection

iii) Artificially increase inoculum in the field and on the plant to increase opportunity

for natural infection.

13 W. Berry, Cedara Agricultural Development Institute, Private Bag X9059, Pietermaritzburg 3200,
RSA.

125



The first method does not guarantee adequate infection, as the natural level of the inoculum in

the environment may be very low, although conditions for infection may in other respects be

ideal. The second method does not take mechanical "resistance" barriers into account, which

can be significant (Koehler, 1959; Kerr, 1965), and some useful forms of resistance and/or

avoidance may be discarded. The second method does not always give results that correlate well

with resistance under natural epidemics (Rheeder and Marasas, 1994; Nowell, unpublished).

Inoculum can be introduced onto the plant and/or on the soil surface in a number of ways :

1) Practice monoculture, retaining as much plant debris on the soil surface as possible.

Irrigation should also be available to ensure ideal conditions for infection and

subsequent disease development.

2) Introduce colonised plant material (stalks or ears) into fields. Irrigation should also

be available to ensure conditions are ideal for infection and subsequent disease

development.

3) Introduce colonised plant material onto plants to promote infection. This can be done

by introducing the fungi by means of naturally colonised material (such as milled

Stenocarpella-\nitc\&d ears from the previous season) or pure cultures grown on

maize kernels specifically for this purpose. This material can then be placed in

the whorl of the plant or at the base of the ear, although the latter may give rise

to levels of infection that are too severe (Bensch, 1995; Nowell, unpublished).

The most natural and practical method of inoculation is (3), and hence it is the most suitable

method for screening maize for ear rot resistance. Using this method, in association with

irrigation, it is possible to control the quantity of inoculum (inoculum pressure), time of

application, fungal species/biotype inoculated and free moisture once the inoculum has been

applied (McLennan, 1989; Nowell, 1989; Flett and McLaren, 1994; Bensch, 1995; Farwell,

unpublished; Nowell, unpublished). By applying inoculum to the soil surface and/or to the

whorl of the plant at an early stage of plant growth, it is also possible to increase the amount

of stalk rot (Warren and Shepherd, 1976; Nowell, 1989; Farwell, unpublished; Nowell,

unpublished). Using this method, it is easy to apply inoculum rapidly to a relatively large

number of plants in a short space of time, especially when compared to earlier methods. This

allows for inoculation in the nurseries, at relatively low inoculum pressures, and for extensive

screening of hybrids at higher inoculum pressures. Early inoculations using this method would

allow all phases of the disease to be evaluated; e.g., the leaf / stalk / ear rot phases of
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S. maydis, S. macrospora (Earle) Sutton and anthracnose (caused by Colletotrichwn graminicola

(Ces.) G. W. Wils).

Breeding for stable ear rot resistance should be advised by using durable or horizontal resistance.

Horizontal resistance is a collective term for many resistance mechanisms that are continuously

variable, and its inheritance is usually controlled by oligogenes. Breeding for horizontal

resistance requires changes in the gene frequency of a population. In a horizontal resistance

breeding programme:

a) There is no single good source of resistance but the breeding programme should be

based upon a broad genetic base of relatively susceptible parents.

b) Vertical resistance must be eliminated initially from the parent populations as this

form of resistance will mask horizontal resistance selection.

c) Population breeding techniques are used to increase the level of resistance.

d) The same single biotype of the pathogen should be used for screening for resistance,

to help reduce the likelihood of vertical resistance selection.

e) Selection is for individuals that show low levels of disease (Robinson, 1987). This

is difficult for ear rot resistance but the principles still apply.

Inoculum pressure should not be too high as this will mask many of the individual plants with

useful levels of horizontal resistance. Once resistance levels have been built up to significant

levels, inoculum pressure can be increased to test for ear rot resistance more thoroughly.

Ultimately, it is important to test this resistance in as many locations and environments as

possible in order to confirm the adequacy of the horizontal resistance developed.

6.4 RESISTANCE

A change in philosophy in maize disease resistance breeding was necessary in South Africa. In

the past, resistance to tassel smut and northern corn leaf blight were bred into the commercial

maize hybrids (Gevers, 1975a and 1975b; Gevers et al., 1992). Once this task had been

completed, commercial maize breeders placed less emphasis on diseases. A phenotypically

balanced hybrid with a high grain yield potential and grain yield stability became the primary

objective. During this period, maize ear rot become problematic as a result of an S. maydis

inoculum build-up and favourable climatic conditions. The planting of highly ear rot susceptible

maize on a large scale, and the increased use of reduced tillage, contributed greatly to the ear

rot epidemics. Although grain yield potential and stability is of primary importance, selection
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for disease resistance or the elimination of highly susceptible germplasm should continue

unabated. Failure to do this will result in the introduction of ear rot susceptible hybrids on a

large scale which would enhance the development of ear rot epidemics, should environmental

conditions be conducive to ear rot.

Selecting for ear rot resistance is difficult for most commercial breeding programmes in South

Africa, as these programmes are largely based in region were ear rot seldom is epidemic due

to the hot and dry climatic conditions. For these reason, maize breeders, and their managers,

need to develop effective strategies to breed for ear rot resistance or a least effectively screen

their germplasm under local conditions.

Table 6.4 : Summary of ear rot incidence in six commercial hybrids from 1983 - 1986,

expressed as a percentage of the mean percentage diseased grain for the trial

Hybrids

PAN 432

PAN 482

PAN 496

PAN 542

PAN 6514

PAN 6528

Mean Dis. Rating

No. Trials

1985/86

77.4

—_

114.8

105.7

93.3

117.7

1.5

9

Season

1984/85

113.0

77.4

113.0

115.6

89.5

109.1

1.3

7

1983/84

113.7

80.4

132.3

176.5

81.0

120.3

1.4

7

Mean Dis. Rating = mean ear rot rating (1-9 linear scale) for the trial.

When breeding for ear rot resistance, it is usually found that resistance to the three main causal

fungi, namely S. maydis, S. macrospora and Fusarium graminearum (Schwabe), is inherited

independently (Koehler, 1959). There is also no correlation between stalk rot and ear rot

resistance (Thompson et al., 1971; Ooka and Kommedahl, 1977a and 1977b). However,

Mesterhazy (1982) and Mesterhazy and Kovacs (1986) suggested that there may be correlation

between the ear rot resistance to different ear rot fungal pathogens. There are large and

consistent differences between genotypes (Hooker, 1956; Koehler, 1959; Sivasankar et al., 1976;

Jain etal, 1981; King and Scott, 1981; Odiemah and Manninger, 1982; Gendloff et al, 1986;
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Ochor et al., 1987). However, great variation in the incidence of the ear rots and resistance

levels between years of specific germplasm has been found to occur in the USA (Thompson et

al., 1971). This is shown to be true for South Africa in Tables 6.4 (based an ear rot rating of

diseased ears on a 0 - 5 scale, before ear rot became epidemic and a relatively low inoculum

pressure) and Table 6.5 (based on the percentage diseased grain determined by mass during the

seasons of ear rot epidemics and a relatively high inoculum pressure). These data for these

tables was collected from a national series of yield trials and the ear rot was as the result of

natural ear rot infection. These data showed that some South African commercial hybrids were

highly susceptible to ear rot but hybrids with good ear rot resistance were also available.

Table 6.5 : Summary of ear rot incidence in nine commercial hybrids expressed as a

percentage of the mean percentage diseased grain for the trial (1986-1989)

Hybrids

PAN 6462

PAN 6463

PAN 6549

PAN 6514

PAN 6528

AX 305 W

CRN 4502

RS 5206

SNK 2147

Mean Dis Rating

No. Trials

1988/89

82.2

74.6

106.9

88.0

100.7

206.3

115.4

54.1

103.5

15.9

3

Season

1987/88

77.0

83.9

77.1

72.0

119.8

142.2

122.2

85.3

81.3

18.0

21

1986/87

92.3

72.3

80.4

52.0

107.0

176.8

181.6

75.7

73.8

15.0

6

Mean Dis. Rating = mean diseased kernels for Ihe trial, based on mass.

Koehler (1959) found that there was germplasm with superior ear rot resistance but this

germplasm often did not have the necessary yield characteristics. Wiser et al. (1960) studied

six inbreds, by artificially inoculating them with S. maydis, and found that ear rot resistance was

quantitatively inherited, but partial dominance played a role. There was apparently no inbred

that was completely resistant to the ear rot fungi, although there were high levels of resistance

available (Koehler, 1959; Kerr, 1965). High-lysine maize was found to be hyper-susceptible

to S. maydis, G. zeae and especially F. moniliforme. This trend could be traced from the
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inbreds to the hybrids, but was dependent on the background of the material that the opaque-2

gene was introduced into (Ullstrup, 1971). In South Africa, high-lysine hybrids and inbreds

have been developed that have effective levels of resistance to 5. maydis ear rot (Gevers, 1989;

Gevers et al., 1992). In an analysis of Stenocarpella ear rot resistance, Gevers et al. (1992)

found that there was effective levels of ear rot resistance throughout the inbred nurseries. There

were significant differences in susceptibility between heterotic groups of inbreds, and between

yellow grain, white grain and opaque-2 inbreds. Of the yellow grain inbreds, the heterotic

groups F and M exhibited significantly more ear rot resistant inbreds than did other heterotic

groups. The R heterotic group (Reid) showed a higher frequency of highly susceptible inbreds.

The white grained inbreds exhibited a greater number of ear rot resistant inbreds than the yellow

grained inbreds. The ear rot resistance was most frequent and highest in the F heterotic group.

The opaque-2 maize inbreds showed a range in response to ear rot disease, with most showing

resistance. A significant number of inbreds showed a high degree of resistance, particularly for

the F and M heterotic groups. These trends could be seen in the ear rot severity of commercial

maize hybrids in South Africa. B73-type parents, and to a lesser extent I137Tn, was blamed

for the significant susceptibility to Stenocarpella ear rot in specific yellow grained commercial

hybrids (Gevers et al., 1992).

A diallel analysis of inbreds for ear rot resistance to S. macrospora by McLennan (1991),

showed resistance to be mainly additive in nature, but dominance was significant at times.

D940Y exhibited a high specific combining ability for ear rot resistance. Epistasis in resistance

was also present in a number of inbreds. This meant that both recurrent selection and

backcrossing could be used to improve S. macrospora ear rot resistance of susceptible inbreds,

depending upon the resistance source (McLennan, 1991).

Heriditability of ear rot resistance is very complex, with many types of inheritance mechanism

having been reported, which include additive resistance, dominance, modifier genes, epistasis

and recessive resistance (Hooker, 1956; Wiser et al., 1960; Boling and Grogan, 1965;

Thompson et al., 1971; Sivasankar et al., 1976; Ooka and Kommendahl, 1977a and 1977b;

Warren, 1978; McLennan, 1991; Gevers et al., 1992). Most resistance mechanisms are additive

in nature and that large genetic gains in resistance can be made in a relatively short period. The

rate of progress in developing resistance to the ear rot complex and the heritability of the

resistance will be significantly influenced by the base level of resistance of the germplasm and

the intensity of the selection pressure (both inoculum pressure and quantitative or qualitative
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selection), i.e. low levels of resistance can be masked by high disease pressure, particularly if

selecting a small number of plants with the highest level of resistance in the given breeding

source. The mode of inheritance of the ear rot resistance will determine the breeding

methodology employed. It is important that breeders continue looking for new sources of ear

rot resistant germplasm (usually in tropical germplasm) that can be adapted for local conditions

and/or incorporated into locally adapted germplasm. Once the level of resistance in a breeding

programme has reached adequate levels, it is important that screening pressure is maintained as

quantitative resistance can easily be lost to stabilizing selection in the absence of ear rot selection

pressure (Vanderplank, 1984).

When testers for ear rot resistance are selected, yield potential should be assessed too. Russell

(1961) evaluated and discussed the various options available when testing maize for stalk rot

resistance, and concluded that the tester should be able to reveal maximum genetic diversity and

be a true test for stalk rot resistance. Russell concluded that testers with dominant or partially

dominant resistance are not suitable testers for resistance as oligogenic resistance will be

masked. A suitable tester would be an inbred, single cross or double cross, with strong additive

resistance to ear rot while also being a suitable tester for yield. The same prinicples apply to

ear rot resistance.

Significant differentiation between the response of hybrids to Stenocarpella ear rot infection and

development, essentially that caused by S. maydis, has been demonstrated in South Africa.

Although there is a complex interaction with the environment, differentiation is possible between

hybrids. This allows for reliable recommendations to farmers regarding the relative

susceptibility of hybrids to Stenocarpella ear rot infection. In general terms, most studies have

shown that white-grained hybrids are more resistant to ear rot than yellow-grain hybrids

(Rheeder, 1988; Gevers, 1989; Nowell, 1989 and 1992; Rheeder et al, 1989; McLennan, 1991;

Rheeder and Marasas, 1992 and 1994; Ferreira, 1994; Flett and McLaren, 1994; McLaren and

Flett, 1994).

Rheeder (1988) and Rheeder and Marasas (1992) found significant differences between

commercial hybrids in South Africa in their response to S. macrospora.

The ear rot fungi are only part of the whole stalk, root and ear rot complex (Koehler 1959 and

1960). Therefore, it is essential that the root and stalk rot phases are not ignored in breeding
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programmes. The inoculation technique described above for ear rot, can also be used to induce

stalk rot by inoculating the plants two to six weeks earlier.

6.5 DISEASE ASSESSMENT

Ear rot evaluation by differential apparent infection rates (Enerson and Hunter, 1980), is usually

used for genetic studies and is very time consuming. Other ear rot assessment methods having

been described (Hoppe and Holbert, 1936; Koehler, 1959; Pappellis et al, 1973, Gulya et ah,

1980). Nowell (1989) and Nowell and Kaiser (1989) suggested that hybrid ear rot data be

collected as the percentage visibly rotted kernels (by mass) and presented as a percentage rot

relative to the mean of the trial.

Collection of ear rot data over several seasons and with multiple planting dates assists in making

final evaluations of the relative susceptibility of hybrids. Ear rot data collected from multiple

sites and seasons can be presented as a frequency table (the frequency being the number of times

a hybrid was resistant or susceptible to ear rot), which will reflect the stability of the hybrid's

resistance (Nowell, 1989). Due to the non-linear response of maize hybrids to ear rot disease

under a variety of levels of inoculum pressure, ear rot data should be presented as a hybrid ear

rot response pattern, also by using frequency tables (Nowell, 1989, 1992 and 1995; Nowell and

Kaiser, 1989).

When making single ear selections, a few kernels can be removed from the base of the ear by

hand in order to check whether or not there is any hidden S. maydis. In order to optimise

accuracy and workload, the following system could be employed:

i) Preliminary ear rot screening could be undertaken by using a simple 0 - 5 rating scale

based on the visual assessment of the ears.

ii) Ear rot data from the intermediate testing phase could be collected as the percentage

of ears which have greater than 10 percentage of the ear rotted,

iii) The advanced testing phase usually needs to be accurate and could be based on the

percentage of diseased grain.

The use of the different systems would be influenced by the need for accuracy, the amount of

work involved and the practicality of the exercise (Nowell, 1989).

These methods are discussed in detail in Chapters 3 and 4. Flett and McLaren (1994) developed

132



a non-linear regression model to predict hybrid response to ear rot pathogens effectively,

categorising hybrids into resistant / susceptible groups. The model can also be used to predict

hybrid response under specific inoculum pressures. The model predicts that hybrids should be

screened when disease levels for a trial are between 10 and 35% infected ears, and ideally

between 17 and 20%. In trials with means either side of this range, it becomes difficult to

accurately differentiate ear rot resistance levels between genotypes.
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SECTION II - GREY LEAF SPOT



CHAPTER 7

A Review of Grey Leaf Spot of Maize

ABSTRACT

Grey leaf spot (GLS) is caused by Cercospora zeae-maydis Tehon & Daniels. It is an aggressive

fungal pathogen that is widely adapted and can severely damage maize foliage, reduce grain

yield and increase the incidence of lodging, only recently has it been considered to be one of the

most destructive maize diseases. The pathogen is associated with reduced tillage practices and,

therefore, it has the potential to increase in importance worldwide, as reduced tillage becomes

more widely implemented. The pathogen has been reported in the USA since 1924 and has

occurred in epidemic proportions since 1974. Its control in the USA is based on rotation, tillage

practices and planting of resistant hybrids. Although the pathogen has been studied for many

years in the USA, much remains unknown about the fungus and the disease. Substantial

research efforts are therefore needed in South Africa to understand the disease in the local

context.

7.1 INTRODUCTION

Grey leaf spot (GLS), caused by Cercospora zeae-maydis Tehon & Daniels has become

increasingly economically important in South Africa since 1992. This relatively new pathogen

to South Africa has established itself primarily in theprovince of KwaZulu-Natal, and now

causes significant yield losses each season (Ward et al., 1993; Ward and Nowell, 1997). GLS

was first identified by Tehon and Daniels (1925) in southern Illinois in the USA. Since the mid-

1970s, this disease has become increasingly important in the USA and the distribution of C. „

zeae-maydis has increased significantly (Leonard, 1974; Roane et al., 1974; Latterell and Rossi,

1983; Smith, 19*88; Thorson and Martinson, 1993; Perkins et al., 1995). Recent epidemics of

GLS in both the USA and South Africa have resulted in C. zeae-maydis being recognised as a

yield-reducing pathogen (Lipps, 1987; Smith, 1989; Lipps and Pratt, 1991; Rivera-Canales,

1993; Ward et al, 1993; Gevers and Lake, 1994; Wegulo, 1994; Jenco, 1995; Ringer and

Grybauskas, 1995; Ward and Nowell, 1997).
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The aim in plant pathology is to arrive at a clear understanding the elements of each disease

triangle or quadrangle studied (Robinson, 1976). The function of each contributing component

studied is unimportant until integrated into the overall picture. This becomes difficult when a

considerable amount of information is known about the disease. The concept of an ethograph

(Putter, 1980) can be used to integrate and simplify information available on the disease

quadrangle concerned. An ethograph is a graphical integration of epidemiological information.

The ethograph starts from a central core of information and is built in a series of concentric

spheres of information covering each systems level, from the molecular system in the middle

to the population system on the outside. This concept has been taken and" ethograph generated

for C. zeae-maydis (Figure 7.1).

The net value of the ethograph is that it enables one to examine all contributing factors of a

disease in one figure. The similarities and differences can be compared and identified. Based

on the understanding on the key components of an ethograph, a series of intervention points can

be identified at which disease control measures could be applied (Laing, 1987). The importance

of each intervention point is related to the quantitative contribution of each factor in the

epidemic.

This chapter follows the sequence as depicted in the ethograph in Figure 7.1.
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Figure 7.1 : Ethograph of Cercospera zeae-maydis on maize.
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Since the first description of C. zeae-maydis by Tehon and Daniels (1925), a variety of

descriptions of the fungus have appeared in the literature (Table 7.1).

Table 7.1: Summary of the morphological description of C. zeae-maydis

Length

(

50

30-

28 -

70-

/xm)

-85

- 90

• 80

• 180

5 -

5 -

4 -

5-6

2-3

Conidium

Width

(lim)

9

9

8

base &

tip

Shape

hyaline,

obclavate, 4- to

10-septa

hyaline,

obclavate, 3- to

10-septa

3- to 9-septa

hyaline, 4 - 1 0

septa

Colour

olive -

brown

•

olive -

brown

brown

dark

Conidiophore

Description

single apical

geniscar, 70 - 90 x

4/xm, 3 - 8 septa

occasionally 1 -3

geniculate, 40 - 165

x 4 - 6/um, 3 - 8

septa

1 - 3 geniculate, 40

- 102 x 4/xm,

sparingly septate

geniculate

Author

Tehon and Daniels,

1925.

Chupp, 1953.

Kingsland, 1963.

Latterell and Rossi,

1983.

The teleomorph of C. zeae-maydis is a Mycosphaerella sp., which was found in overwintering

field specimens by Latterell and Rossi (1983). The rarity of its occurrence suggested that it was

not a significant source of inoculum in spring. There have also been no subsequent reports of

the teleomorph.

Reports of Cercospora sorghi Ell. & Ev. being a causal agent of GLS of maize have not been

substantiated as the descriptions published on C. zeae-maydis from maize are significantly

different from those of C. sorghi. It is doubtful, therefore, that C. sorghi causes GLS on maize

(Hyre, 1943; Mulder and Holliday, 1974; Shurtleff, 1980; Frederiksen, 1986).

In culture, C. zeae-maydis grows slowly and does not sporulate well. However, sporulation is

improved by growing the fungus on V-8 juice agar or on decoction media made from green or

senescent maize leaves (Beckman and Payne, 1983). Conidiophores are produced in both light

and dark but a dark period is essential for the production of conidia (Latterell and Rossi, 1983).
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Constant light inhibits germination, mycelial growth and sporulation. The optimum temperature

range for growth was 22 - 30°C. Cultures can be stored for at least 24 months at 4°C on

several different media (Beckfnan and Payne, 1983).

7.2 CROP RESIDUE AND TILLAGE PRACTICES

'. zeae-maydis is a polycyclic, facultative pathogen (Chupp, 1953; Stromberg and Donahue,

1986) that overwinters in colonised maize debris (Beckman and Payne, 1982; Latterell and

Rossi, 1983; Payne and Waldron, 1983; de Nazareno et al, 1992). "The increase in the

incidence and severity of GLS over the last two decades has been linked with continuous maize

production (Latterell and Rossi, 1983; Thorson and Martinson, 1993) and conservation tillage

practices that leave substantial quantities of maize residue on the soil surface (Kingsland, 1963;

Roane et al, 1974; Hilty et al, 1979; Beckman and Payne, 1982; Rupe et al, 1982; Stromberg

and Donahue, 1986; Payne et al, 1987; de Nazareno et al, 1992). Conservation tillage is

described as any form of tillage that leaves at least 30% of the soil surface covered with crop

debris, de Nazareno et al (1993a and 1993b) found that the incidence of GLS increased with

the amount of crop residue left on the soil surface, and that if crop residue covered more than

35% of the soil surface, GLS increased significantly. The influence of stubble has been

demonstrated by Payne et al (1987), who showed that colonised debris on the soil surface left

by minimum tillage provided an earlier and more extensive source of inoculum than other tillage

treatments. Grain yield from the no-till plots was significantly less than from the other plots.

However, this trend could not be reproduced by de Nazareno et al. (1993a and 1993b). de

Nazareno et al. (1993b) showed that a significant disease gradient occurred when inoculum

sources were introduced into a field. The gradients were longer in the direction of the

prevailing winds. Maximum infection or disease took place within six metres of the inoculum

source. In the USA, government policies and economics favouring conservation tillage have led

farmers to increase crop areas under such maize production practices, with the result that the

incidence of GLS will probably remain high (Anderson, 1995). Whilst stubble tillage is

recognised as a valuable tool for conserving soil moisture and reducing wind and water erosion,

its beneficial effects may be offset by the increased primary inoculum levels of fungal pathogens

such as C. zeae-maydis overwintering in the previous season's crop debris (de Nazareno et al,

1990, 1992, 1993a and 1993b; Anderson, 1995).

Once established in a region, GLS often becomes a problem, even when conventional tillage is
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used. The disease has become a problem in maize/soybean rotations in the USA where

conventional tillage was practised (Perkins et al., 1995). Similarly, Beckman and Payne (1983)

found that in areas where inoculum had become abundant, this factor was more critical than

other factors such as high humidity. In the USA, the disease is no longer limited to stubble

tillage situations and the fungus has adapted to a wide range of cultural and environmental

conditions. In most situations, the incidence of GLS will probably not greatly reduce yields, but

given ideal environmental conditions, severe losses can result (Perkins et al., 1995).

Smith (1989) found that there was an interaction between location and tillage effect. At one site,

more severe GLS consistently occurred on the conventionally tilled areas than on reduced-till

plots. However, at a second site, precisely the reverse occurred. Smith suggested that moisture

stress had predisposed plants to infection by GLS, and plant stress levels were higher on the

conventionally tilled plots than on reduced-till plots when moisture was in short supply. This

tillage effect on the incidence of GLS was significant for GLS-susceptible hybrids but not for

GLS-resistant hybrids. This finding has significant implications in the RSA, where drought

stress is common.

Inoculum does not survive in leaf pieces for more than five months when buried 10 cm below

the soil surface, whereas inoculum above the ground survives for at least six months (Ureta,

1985; de Nazareno et al., 1992). Payne and Waldron (1983) found that the period of survival

of buried inoculum varied between locations. Tillage operations resulting in the complete burial

of debris have been demonstrated to be a means of managing GLS (Latterell and Rossi, 1983;

Payne and Waldron, 1983; Stromberg, 1986; Spink and Lipps, 1987; Huff et al, 1988; Ward

et al., 1993; Perkins et al., 1995; Ward and Nowell, 1997). Discing provides insufficient burial

of residues (Stromberg, 1986) and ploughing can leave as much as 10% crop residue on the land

surface (de Nazareno et al., 1993a and 1993b). This could provide sufficient inoculum to

initiate an epidemic. Farmers cannot expect to control the disease by ploughing and burying

infected debris in areas where there are abundant regional and external sources of inoculum

(Smith, 1989). Such conditions are frequently encountered in South Africa (Ward et ah, 1993).

7.3 CROP ROTATION AND SANITATION

I

The pathogen does not survive much beyond a season in colonised debris and, because it is host-

specific, rotation with other crops such as soybeans, dry beans and cereals is an alternative to
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ploughing (Latterell and Rossi, 1983; Stromberg, 1986; Huff et al, 1988). Sowing non-host

crops for two years has been recommended where reduced tillage is practised in areas favourable

for disease, or one year under clean ploughing (Spink and Lipps, 1987). Other pests and

diseases of maize such as eyespot, ear- and root-rots are also increased under reduced tillage,

making rotation an attractive option (Latterell and Rossi, 1983). However, Payne et al. (1987)

pointed out that rotations are not always economically attractive and historically this has been

the case in South Africa (Channon and Farina, 1991; Ward et al., 1993).

Harvesting maize for silage reduces the inoculum carry-over to the next crop since most of the

foliage is removed before GLS becomes severe (Stromberg, 1986). Payne et al. (1987) found

that lands where maize was cut for silage should be planted under conservation tillage practices,

whilst lands that were harvested for grain could be ploughed to reduce the large quantities of

infected debris left.

,7.4 HOSTS AND DISTRIBUTION

Stromberg and Donahue (1986) considered C. zeae-maydis's host range to be limited to Zea

mays L. However, McGee (1988) listed alternate hosts as being Barnyardgrass (Echinochloa

crus-galli (L.) Beauv.), Johsongrass (Sorghum halepense (L.) Pers.) and Sorghum spp. These

are also considered to be alternate hosts of C. sorghi (Frederiksen, 1986). This is possibly due

to C. zeae-maydis being confused with C. sorghi. JC. zeae-maydis has not been recorded as

being seed-borne and, therefore, is not considered to be seed-transmitted (McGee, 1988;

Richardson, 1990). This is surprising as a number of Cercospora spp. are seedborne (Chupp,

1953; Neergaard, 1977; Richardson, 1990).

Grey leaf spot of maize remained obscure in the USA until the 1970s (Arnt, 1943; Hyre, 1943;

Lehman, 1944; Graydon, 1963; Kingsland, 1963; Leonard, 1974; Roanee/'tf/., 1974). The

disease subsequently increased in the eastern states of the USA, especially in the more humid,

mountainous areas, where it is associated with monoculture maize under reduced tillage practices

(Leonard, 1974; Roaneef a/., 1974; Hilty eta!., 1979; Latterell and Rossi, 1983; Lipps, 1987).

The disease has since moved westward from the eastern states, and is now widespread in the

mid-Atlantic and Midwest regions and continues to move westward into new ecological niches

in the USA (Smith, 1988; Perkins et al., 1995).
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In his Cercospora monograph, Chupp (1953) identified those countries outside the USA where

GLS occurred as Brazil, Colombia, Peru and Trinidad and has subsequently has been reported

to occur in Brazil, Central America, China, Colombia, Mexico, South Africa, Trinidad, and

Venezuela (Boothroyd, 1964; Latterell and Rossi, 1983; Ward et al, 1993; Coates and White,

1994). In South Africa, GLS is well established in the province of KwaZulu-Natal and has been

reported from other neighbouring provinces (Bensch and Flett, 1995; Ward and Nowell, 1997;

Ward*/a/. , 1997).

) 7.5 INFECTION OF THE HOST AND DISEASE DEVELOPMENT

High humidity, suitable air temperature, host susceptibility and the presence of a source of

inoculum are conditions necessary for a GLS epidemic (de Nazareno et al., 1993b). Conidia

are produced on colonised maize debris from the previous maize crop and in spring are carried

by wind to infect a newly planted maize crop during moist periods.

! Payne and Waldron (1983) found spore dispersal was at a maximum in the late afternoon. Leaf

wetness of nine hours resulted in more than 90% conidial germination, j A minimum of six hours

was required for a significant proportion of the conidia to germinate. Non-germinated conidia

were unable to survive wetting and drying but germinating conidia survived short dry periods

without adverse effects on the germ tube. (Optimum conditions for germination were reported

to be 19 - 25°C and more than 95% relative humidity (Rupe et al., 1982). Beckman and Payne

(1982) induced conidia to germinate on plants after 24 hours at temperatures of 22 - 30 °C, after

the plants were exposed to high relative humidity by intermittent misting for a 12 hour period.

Outside this temperature range, germination decreased. Optimal germination was recorded to

occur under diurnal light. Germ tube growth occurred up to five days after inoculation. ^It was

more extensive on the upper leaf surface in the presence of free moisture than in the absence of

free moisture. Germ tubes may emerge from each cell of a conidium and grew for seven days

or more on the lower leaf surface, where little or no free moisture accumulated. There was a

positive tropism towards stomata under high relative humidity (Thorson, 1989; Thorson and

Martinson, 1993). When the relative humidity was below 95%, germ tubes stopped growing

but did not die. The germlings survived for at least six hours when the relative humidity was

reduced to as low as 65%. When the relative humidity was increased to 95% again, the germ

tubes resumed elongation. Numerous appressoria formed over stomata four to five days after

germination, provided the relative humidity was high. A single conidium could give rise to as
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many as eight appressoria over different stomata. In the presence of free water on the leaf

surface, stomatal tropism was reduced and appressorial formation was rare which resulted in no

penetration of the host tissue (Rupe et al., 1982; Thorson and Martinson, 1993).

Unlike Beckman and Payne (1982), Gwinn et al. (1987) found that stomatal penetration (defined

as the total stomatal penetration and not only those with appressorial formation) increased with

plant age and there were small differences between genotypes. An infection peg penetrated the

stoma 6 - 7 days after inoculation. Penetration only occurred from appressoria over stomata.

At least 5% of the appressoria had resulted in penetration into the substomatal cavities 6 - 8 days

after inoculation. An infection hypha usually develops a slightly enlarged, generally one-celled,

sometimes two-celled, vesicle immediately after penetration. A robust primary hypha with septa

grows from the vesicle until it encounters the parenchyma or mesophyll tissues (Beckman and

Payne, 1982).

[Stromberg (1986) also observed that colonisation of the leaf tissue was confined to the mesophyll

and was intercellular. Delimitation of the hyphal growth lateral to the vascular system is by the

sclerenchyma tissue surrounding major veins. This results in the typical long, narrow, parallel

lesions.

Fungal stromata, which are formed in substomatal cavities, in the necrotic tissue, give rise to

numerous conidiophores and conidia. The production of conidia usually commences 1-3 days

after the lesion becomes necrotic. Necrosis of the cells is considered to be associated with toxin

production and C. zeae-maydis only colonises cells once the tissue starts to deteriorate.

Latterell and Rossi (1983) found that a notable feature of C. zeae-maydis was its ability to

survive adverse conditions once infection had taken place. Stromata in the substomatal cavities

are able to survive dry periods and commence activity again to produce conidia after a brief

exposure to moisture. Should the environmental conditions not be favourable for disease

development, the fungus may remain dormant in the plant until conditions are favourable for

further development (Stromberg, 1986).

Except for the need for high relative humidity, the environmental conditions required for GLS

development remain vague. Ringer and Grybauskas (1995), in studies on infection cycle

components of GLS disease progress, found that high levels of rainfall between planting and
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infection, or rainfall during the primary sporulating period, may be more important than total

seasonal rainfall. They concluded that rain in these early infection cycles may result in the

generation of large quantities of inoculumrresulting in high disease levels in susceptible hybrids.

Conversely, high levels of disease did not occur until late in the season when there were low

levels of initial inoculum or a lack of rainfall during the period of early infection cycles. This

appeared to be due to longer latent periods and a reduced number of infection cycles. Beckman

et al. (1981) suggested high temperatures and lack of rainfall were not range- limiting factors

for this fungus. Latterell and Rossi (1983) found that high levels of rainfall in spring did not

ensure early and severe outbreaks of GLS, nor did a dry summer ensure low levels of damage.

They concluded that a scarcity of rainfall and high temperatures (averaging 28°C) did not limit

the development of GLS. Beckman and Payne (1982) suggested that the typical late-season

appearance of GLS in the field is probably due to extended periods of high relative humidity,

enhanced by the canopy effect of mature plants. Jenco (1995) suggested cumulative hours of

relative humidity >90% could explain the GLS conidial concentration in the maize canopy air.

Field studies have shown that GLS frequently occurs after 12-13 hours of RH >90% and/or 11-

13 hours of leaf wetness and such conditions usually occur two weeks prior to sharp increases

in GLS incidence (Rupe et al., 1982). In general, the pathogen requires periods of high relative

humidity, ample free moisture, and cool, cloudy days for infection and disease development

(Anderson, 1995). Such conditions frequently occur in mountain valleys and "river-bottoms"

(Payne et al., 19§7), during overcast days, when mists extend the dew period (Latterell and

Rossi, 1983), in close proximity to water bodies (Ayres et al., 1985) and under overhead

irrigation (Hawk et al, 1985). These observations are supported by the finding that GLS

increases in low lying areas (Spink and Lipps, 1987) and under overhead irrigation (Ward et al.,

1993). Furthermore, this pathogen can occur at relatively high elevations, which may be

associated with mist belts in these regions (Latterell and Rossi, 1983).

v 1.6 SYMPTOMS AND TOXIN ACTIVITY

Early signs of infection and colonisation are pin-point sized yellow flecks halo which are easily

observed when the leaf is held to light. Chlorotic flecks are observed nine days after inoculation,

and these elongate to form narrow lesion initials at 12 days. Characteristic mature lesions show

after 14 - 21 days (Beckman and Payne, 1982; Ringer and Grybauskas, 1995). Ringer and

Grybauskas (1995) established that latent periods (from inoculation to 50% sporulation) range
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from 14 - 19 days for susceptible hybrids and 16 - 22 days for moderately resistant hybrids.

Beckman and Payne (1982) found that young maize plants developed mature sporulating lesions

3 - 4 days earlier than did mature plants. On susceptible genotypes mature lesions are distinctly

rectangular in shape, 10 - 70 mm long and 2 - 4 mm wide and are delineated by the veins on

both sides of the lesion. They are tan to pale brown in colour and assume a grey caste during

sporulation (Tehon and Daniels, 1925; Chupp, 1953; Latterell and Rossi, 1983; Ayres et ah,

1985; Stromberg, 1986). The diagnostic features of GLS lesions are the clear edges along major

veins and the opacity of the mature lesion (Coates and White, 1994). The silhouette of the

lesion, when held up to the light, is due to the formation of stromatic*tissue and the dark,

hardened mycelium of the fungus in the sub-stomatal cavities (Latterell and Rossi, 1983). This

also allows for the detection of GLS, even when the host tissue has died, stomata showing on

senesced leaf tissue as dark silhouettes (Latterell and Rossi, 1983; Coates and White, 1995).

Primary infections usually develop on the lower leaves and, when lesions mature, produce

conidia that are able to germinate and infect adjacent leaves. As more lesions form, they may

coalesce, and blighting occurs (Stromberg and Donahue, 1986). Extensive leaf blighting may

develop until all leaves are killed (Stromberg and Donahue, 1986; Ward et al., 1993; Ward and

Nowell, 1997). Leaf sheath lesions occur in severely infected fields. Damage to stalks occurs

when leaf blighting is severe and results in a high percentage of lodged plants (Stromberg and

Donahue, 1986; Shurtleff and Pedersen, 1991). When leaf blighting by GLS is initiated early,

resulting in significant blighting of the leaves during grain fill, stalk deterioration and increased

lodging results (Roanee^tf/., 1974; Latterell and Rossi, 1983; Stromberg and Donahue, 1986).

When there is greater demand for carbohydrates from stalks and root tissue by developing

kernels as a result of decreased photosynthesis in diseased leaves, this pre-disposes the maize

plants to stem- and root-rotting fungi and leads to increased lodging (Dodd, 1980a and 1980b).

Severe lodging can adversely affect mechanical harvesting and results in further losses in grain

yield due to a reduction in harvestable yield.

Cercosporin, a red pigment, is a non-host-specific toxin produced by several species of the genus

Cercospora and has been implicated in disease development (Daub, 1982). The toxin is

extremely toxic to plant cells, causing oxidation of fatty acids, sugars, cellulosic materials and

amino acids, resulting in the destruction of cell membranes. Cercosporin acts as a

photosensitising agent in the plant and is only able to kill plant cells in the light (Daub, 1982;

Daub and Hangarter, 1983; Gwinn et a!., 1987). C. zeae-rnaydis has been shown to produce

147



cercosporin (Duvick, 1987). Tissue from older corn plants was less sensitive to cercosporin but

varietal differences have not been observed (Gwinn et al., 1987). There is considerable

variation in the amount of cercosporin produced by various isolates of Cercospora which would

result in different amounts of damage to the host cells (Jenns et al., 1989).

7.7 HOST RESISTANCE

In the 1970s, when GLS was recognised as being a threat to maize production, efforts were

made to find host resistance to the pathogen. Initially, all maize hybrids' were reported to be

susceptible (Roane et al., 1974). Hilty et al. (1979) found little resistance in hybrids and only

one inbred was found to have a high degree of resistance to GLS in Tennessee. Other

researchers have reported that although the widely used inbreds B73, Pa91, Mol7 and A632

were found to be susceptible to GLS, the commercial inbreds B68, NC250, Pa875, Val4, Val7

and Va85 had high levels of resistance. More recent evaluations of commercial hybrids have

shown that high yielding hybrids with good levels of resistance are available (Ayres et al., 1985;

Ureta, 1985; Roane and Donahue, 1986; Stromberg, 1986; Stuckey et al., 1986; Hartman et al.,

1987; Johnson and Ayres, 1988; Stuckey et al., 1988; Goodman et al., 1989; Graham et al.,

1989; Johnson, 1989; Lipps and Pratt, 1989; Hartman et al., 1990a and 1990b; Stromberg,

1990a and 1990b; Stromberg and Carter, 1991a and 1991b; Vincelli et al., 1991 and 1994;

Carter and Stromberg, 1992b and 1992c; Hawk and Weldekidan, 1992a and 1992b; Johnson,

1992; Saghai Maroof et al., 1993 and 1996; Stromberg and Flinchum, 1993a, 1993c, 1994a,

1994b, 1995a, 1995b, 1996a and 1996b; Ward et al., 1993; Coates and White, 1994; Gevers

and Lake, 1994; Hohls et al, 1995; Perkins et al. 1995; Lipps and Johnston, 1996; Ward and

Nowell, 1997).

Host-resistance is now considered one of the best options for managing GLS, because there are

good sources of resistance, and utilising resistance is simple for the farmer (Graham et al.,

1993; Coates and White, 1995). Hartman et al. (1990a) observed that a significant number of

farmers in eastern Kentucky had moved from yellow- to white-grained maize because the white

hybrids were more resistant to GLS. Donahue et al. (1991) found that existing commercial

inbreds could be used to develop hybrids of acceptable yield and agronomic attributes with high

levds of resistance to GLS. However, selection of a hybrid should not be based on GLS

resistance alone, as the grain yield performance and standability of the hybrid are the most

important factors (Smith, 1989; Ward et al., 1993).
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Maize breeding programmes aim, in addition to advances in grain yield and other agronomic

traits, to increase the level of resistance to GLS in new hybrids. GLS resistance, as an

additional criterion in breeding programmes, will reduce the amount of breeding material that

meets the minimum performance level for yield and other traits in the programme, especially

if selection pressure for GLS resistance is high (Anderson, 1995). The time-to-maturity of a

hybrid is an important parameter to consider when breeding for GLS resistance. Long-season

hybrids have potentially higher yields, but are at greater risk from GLS as they are subjected

to blighting for a longer period during the grain-filling period (Stromberg and Donahue, 1986).

Most GLS resistance has been found to be quantitative in nature, with five or more genes

involved (Ayres etal, 1985; Thompson et al., 1987; Huff et al., 1988; Smith, 1989; Elwinger

et al, 1990; Ulrich et al, 1990; Bubeck et al, 1993; Anderson, 1995; Coates and White, 1995;

Saghai Maroof et al., 1996). However, there have been reports of resistance being inherited

dominantly (Elwinger et al, 1990; Gevers and Lake, 1994; Gevers et al, 1994; Coates and

White, 1995). Results of a diallel trial of twelve inbreds in South Africa suggested that

resistance could best be defined by the additive-dominance model (Hohls et al, 1995). Huff

et al (1988) undertook a complete diallel analysis of five inbreds and concluded that the inbreds

Pa875, Va59 and B68Ht contributed significant levels of additive resistance to hybrids and that

general combining ability (GCA) effects were 18 times higher than specific combining ability

(SGA) effects. They also found an interaction between GCA effects and environment but the

relative ranking of the inbreds changed only slightly.

In general, rate-reducing polygenic resistance acts by adding small increments of resistance

which lead to an improvement in the level and stability of resistance. Conversely, major gene

resistance, depending on a single gene, could be overcome by a single gene mutation in the

pathogen and for this reason breeding for resistance on a polygenic basis is preferred (Latterell

and Rossi, 1983; Ayres et al, 1985). The variability of the fungus suggests that virulent strains

would develop rapidly to overcome vertical resistance (VR) in maize if VR was introduced

widely (Bair and Ayres, 1986). Ayres et al. (1985) suggested that resistance should be tested

using more than one isolate of the pathogen through artificial inoculation in the field, in order

to eliminate any differential interactions that many be present between the inbreds and isolates.

At least two pathotypes should be sufficient to eliminate the differential interactions.

Interplot interference (or the cryptic error) in field experimentation can be problematic when

149



evaluating for resistance, resulting in an inaccurate measurement of a line or hybrid's resistance

(Vanderplank, 1963; Robinson, 1976; Zadoks and Schein, 1979; Robinson, 1987). GLS is a

pathogen that produces an abundance of airborne spores and there are large differences in

susceptibility to the pathogen between hybrids and inbreds. Such material placed in a single,

small plot trial could be significantly affected by interplot interference.

Coates and White (1994) undertook an extensive study of inbred resistance per se and found that

of 396 inbreds tested, 343 inbreds showed lower levels of GLS than the susceptible check

FR1141 and no inbreds were immune to GLS. It appeared that B68, B68Ht, T212, Val7 and

Va59 did not have the same levels of resistance in Illinois as reported elsewhere (Coates and

White, 1994). Gevers et al (1994) found the inbreds KO54W and SO507W to have high levels

of GLS resistance in South Africa. KO54W, in particular, was recommended because the

resistance exhibited major dominance effects and could be used very successfully in backcrossing

programmes. Even those inbreds with major additive effects showed some degree of dominance

effects.

In a backcrossing programme for GLS resistance, Elwinger et al. (1990) found that the

correlation between resistance in the source inbred and backcrossed inbreds was good. The best

way of selecting material for such a programme was rather on the inbred per se than on the

resistance of the inbred in test crosses. In specific cases, the resistance of the backcrosses

differed significantly from the source line. Conflicting information regarding the dominance of

GLS resistance in Va59, and some Pennsylvania inbreds, was evident but not all inbreds were

common in all trials. Ulrich et al. (1990) showed that some inbreds (T222 and M0I8W) confer

more resistance in crosses than they exhibit as lines per se and suggested both backcrossing and

recurrent selection would be useful in improving GLS resistance levels in susceptible material.

Using restriction fragment length polymorphisms (RFLPs) and advanced statistical techniques,

Bubeck et al. (1993) showed that specific quantitative trait loci (QTL) could be linked to GLS-

resistance. However, these QTLs identifying GLS resistance were not consistent over locations.

QTLs for GLS resistance differed for the three populations tested and only one region on

Chromosome 2 in maize was associated with resistance in all populations. Saghai Maroof et al.

(1996) have shown that certain QTLs are stable over locations and environments. This study

showed that GLS resistance genes were present on Chromosomes 1,4 and 8 which explained 35-

60%, 9-14% and 8-11% of the variance, respectively. Smaller QTL effects were noted on
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Chromosomes 2 and 5 (although the Chromosome 5 gene effect was only present once). Except

for Chromosome 4 (from the inbred B73), all resistance genes were derived from the GLS-

resistant inbred Val4. Significant interaction occurred between Chromosomes 1 and 4. The fact

that some of these QTLs are closely linked to other genes governing resistance to Exserohilum

turcicum (Pass.) Leonard & Suggs, Cochliobolus carbonum Nelson and Gibberella zeae (Schw.)

Petch., is important when using this technique in a breeding programme. Combining this

technique with conventional breeding, it could be possible to pyramid the different genes in a

specific background.

Hartman et al. (1990a) showed that composites and synthetics are available that show significant

levels of GLS resistance. Graham et al. (1993) examined various selections of Iowa Stiff Stalk

Synthetic and improved resistance through recurrent selection. They found that inbreds with

acceptable agronomic qualities and significantly improved GLS resistance could be developed

from this background. An elite group of lines showed increased GLS resistance, improved yield

and improved standability. Further random mating of these elite lines and selection during

inbreeding would further improve the GLS resistance and agronomic characteristics.

Moderately resistant hybrids were found to display chlorotic lesions (Roane et al., 1974) and

Ayres et al. (1985) found that resistance can be expressed as an initial chlorotic fleck, which

later develops into a typical GLS lesion. However, some forms of rate-reducing resistance did

not show chlorotic flecking. Susceptible inbreds generally display necrotic lesions (Huff et al.,

1988; Lipps and Pratt, 1989; Freppon et al, 1994). Smith (1989) found a significant correlation

between lesion length and final disease severity. Ringer and Grybauskas (1995) found that small

differences in the number of lesions, latent period and sporulation contributed to significant, and

sometimes large, differences between moderately resistant and susceptible hybrids.

A interesting phenomenon reported by Coates and White (1994) was that of variable lesion type

within and between seasons. In this study, lesion types were divided into A = small chlorotic

lesion, B = small restricted necrotic lesions with chlorotic halo, C = small rectangular lesion

and D = large rectangular lesion. Some inbreds exhibited lesion types B and D, B and C, and

C and D. Most of the variation occurred between seasons but it was possible to have different

lesions types on the same plant.

Freppon et al. (1994) found a wide range of lesions types associated with inbreds, per se, or in
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combination with other lines, with variable degrees of resistance. Pa875 possessed rate-reducing

necrotic fleck resistance and was studied in combination with other inbreds of varying degrees

of susceptibility. However, by the end of a season, these chlorotic flecks had developed into

normal necrotic lesions. NC262A was found to have bright orange borders to the lesions, as

had NC288. NC250A, on the other hand, had lesions surrounded by a yellow halo. The onset

of necrotic lesions was either absent or delayed on both NC250A and NC288 and both produced

restricted chlorotic lesions. Susceptible genotypes were characterised by the absence of chlorosis

around lesions at all stages of development.

There is considerable variation in the rating methodology used to evaluate maize for the severity

of GLS (Roane et al, 1974; Hilty et al, 1979; Rupe et al, 1982; Ayres et al, 1985;

Stromberg and Donahue, 1986; Thompson et al., 1987; Huff etal, 1988; Lipps and Pratt, 1989

and 1991; Elwinger et al, 1990; Ulrich et al, 1990; Donahue et al.s 1991; Lipps and Johnston,

1996; Ward et al, 1997). Thompson et al. (1987) and Elwinger et al. (1990) found that the

assessment of GLS at any stage of the plant development, depending on onset of disease and

hence disease severity, would result in similar relative rankings of the inbreds. The optimum

time for a single disease assessment was shortly before the onset of natural senescence. Lipps

and Pratt (1991) suggested rating the ear leaf only because this was found to give an accurate

assessment of GLS response. In general, there is good correlation between the different rating

methods. The growth stage at which a single GLS reading is taken can be very important

because the later the reading is undertaken, the less chance there is of differentiation between

certain genotypes. Saghai Maroof et al. (1993) proposed a simplified disease index rating

system for its ease of use. The area under the disease progress curve (AUDPC - Berger, 1981)

was readily calculated from the ratings over time. This method is sufficiently accurate to be

used in association with restriction fragment length polymorphism (RFLP) resistance studies

(Saghai Maroof et al., 1993). Ward et al. (1997) showed that a whole plant, visual rating scale,

was accurate in determining GLS severity in the RSA. This method was used extensively in

evaluating GLS in fungicide and hybrid trials.

Thompson et al. (1987) and Elwinger et al. (1990) found that the assessment of GLS at any

stage of the plant development, depending on onset of disease and hence disease severity, would

result in similar relative rankings of the inbreds. The optimum time for a single disease

assessment was shortly before the onset of natural senescence.
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Natural infection is widely used to screen maize for resistance to GLS because an effective and

efficient artificial inoculation technique is difficult to manage. However, it is possible to induce

sporulation of the fungus on V8-juice agar, suspend the conidia in water and spray them onto

the plants to create an epidemic. The major constraint is that environmental conditions have to

be near-perfect for infection to take place (Thorson and Martinson, 1988; Jenco, 1995). Lipps

and Johnston (1995 and 1996) showed that field inoculation with 20 - 50 C. zeae-maydis

colonised oat kernels per whorl of each plant could result in an epidemic, provided a sufficient

wet or high relative humidity period was provided through irrigation after inoculation.

Conditions that simulated a dew chamber gave rise to significantly increased infections of maize

leaves in the laboratory.

Greenhouse inoculations can be undertaken by spraying a conidial suspension (2x10* conidia ml'1

water) onto maize plants. A mister (a steamer can be used) must be run for a minimum of 12

hours to ensure optimum conditions for conidial germination and subsequent penetration of the

stomata (Latterell and Rossi, 1983).

7.8 CHEMICAL CONTROL

Research has been undertaken in the USA to determine the efficacy of fungicides and their

economic feasibility in controlling GLS. Both protectant and systemic fungicides have been

tested extensively (Hilty et al, 1979; Ayres et al., 1985; Smith, 1989; Lipps and Pratt, 1991;

Stromberg and Carter, 1991c; Carter, 1992; Carter and Stromberg, 1992a and 1992d; Rivera-

Canales, 1993; Ward et al., 1993; Martinson et al., 1994; Wegulo, 1994; Martinson and

Munkvold, 1995; Ward and Nowell, 1997; Wegulo et al., 1997). A summary of these results

and comments is presented in Tables 6.1 and 6.3. These data show considerable variation.

The protectant fungicides mancozeb, maneb-zinc, chlorothalonil and copper thallate are only

partially effective, especially under high inoculum pressure (Hilty et al., 1979; Ayres et al.,

1985; Rivera-Canales, 1993; Martinson et al., 1994; Wegulo, 1994; Martinson and Munkvold,

1995; Ward and Nowell, 1997; Wegulo et al., 1997). The application of protectant fungicides,

chlorothalonil and mancozeb, on a regular basis resulted in a significant reduction in the severity

and incidence of GLS but often there was no corresponding significant increase in grain yield

(Ayers et al., 1985; Martinson and Munkvold, 1994; Wegulo, 1994; Wegulo et al, 1997). In

some trials, chlorothalonil was more effective in controlling GLS than propiconazole and
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significantly increased the proportion of saleable seed in seed production fields (Rivera-Canales,

1993). When cost effectiveness was examined, the protectant fungicides were very competitive

on nett profit per hectare. This was primarily due to the low cost of the protectant fungicides

when compared to the systemic fungicides (Wegulo, 1994; Martinson and Munkvold, 1995;

Wegulo et al., 1997). Copper thallate, mancozeb and chlorothalonil are three protectant

fungicides registered to control foliar pathogens of maize in the USA (Martinson and Munkvold,

1995).

Under conditions of drought stress it was found that chlorothalonil, at 5.03 kg a.i. ha'1, could

induce phytotoxicity. Copper thallate consistently resulted in phytotoxicity in the presence or

absence of GLS, usually when more than one application per season were undertaken. The

toxicity response was not hybrid-specific (Rivera-Canales, 1993; Martinson and Munkvold,

1995).

Trials in South Africa have shown benomyl to be highly effective in controlling GLS, with a

single application delaying disease development for up to 40 days. The fungicide can also be

applied aerially at 88 g ha"1 in a minimum of 40£ water ha"1 for maximum control. The first

fungicide application should be when the lower leaves have not more than 5 % leaf area loss due

to GLS. The second application, if necessary, should be applied 21 - 30 days after the first

application (Ward et ah, 1993; Ward and Nowell, 1997). These results confirmed extensive

tests conducted in the USA with benomyl. Under light GLS pressure, no significant yield

benefits could be found by applying benomyl (Smith, 1989). However, under high GLS

pressure, yield increases ranged from 24 - 222% over the non-treated control. Associated with

this was usually an increase in grain moisture at harvest as the plants stayed alive for longer.

However, based on nett profit per hectare, benomyl was often less competitive than the

protectant fungicides (Wegulo, 1994; Martinson and Munkvold, 1995; Wegulo et al., 1997).

Benomyl in combination with mancozeb was usually more effective than benomyl alone. When

applied alone, neither benomyl or mancozeb had a significant effect on the growth or growth

components of maize. However, together they significantly reduced the number of nodes (by

one) per plant but did not have any negative effect on yield or other agronomic characteristics

(Smith, 1989). Maneb-zinc also combined well with benomyl (Ayres et al., 1985; Lipps and

Pratt, 1991).
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Table 7.1: A summary of yield increases (%) and comments associated with the research into the ability and economic feasibility of protectant

fungicides to control GLS

FUNGICIDE: APPLICATION FREQUENCIES AND RESULTS
REFERENCE

MANCOZEB MANEB-ZINC ClILOROTHALONIL COPPER THALLATE

Hilty et al., 1979

Ayres et al., 1985

Smith, 1989

Rivera-Canales, 1993

Martinson et al., 1994

Wegulo, 1994

Martinson and Munkvold, 1995

Wegulo et al., 1997

Martinson, pers. comm.

27%

2%

3 appl. = good control

Crawfordville 1 appl. = 6 %
Crawfordville 2 appl. = 10%
Conrad 1 appl. = 0 %
Conrad 2 appl. = 8 %

Good cost benefit ratio for 3
applications = high returns

11 % more saleable seed (high
disease)

Every 7 days = 20%
Every 14 days = 8%

Every 7 days = 9%
Every 14 days = 7%

12% yield increase
20% increase in proportion

of all seed sizes (17% in
small seed only)

5 appl. = good control

Good cost benefit ratio for 5
applications = high returns

Phytotoxic
(4% - 10% lower yield)

1 appl. = significant increase
but variable

2 appl. = phytotoxic

Not economically viable
Phytotoxic

appl. = application/s
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Table 7.2: A summary of yield increases (%) and comments associated with the research into the ability and economic feasibility of benzimidazole

fungicides, alone and in combination with other fungicides, to control GLS

FUNGICIDE: APPLICATION FREQUENCIES AND RESULTS

REFERENCE

B & M-Z B&M C&FZ C&FT

Ayres el al., 1985

Smith, 1989

Lipps and Pratt, 1991

Stromberg and Carter, 1991

Carter, 1992

Carter and Stromberg, 1992a

Stromberg and Flinchum, 1993

Ward el al., 1993

Ward and Nowell, 1997

2%

2 appl. = 32%
4 appl. = 3 6 %

4 appl. = most effective

2 appl. = 114%
4 appl. = 122%

2 appl. = 210%
4 appl. = 222%

1 application = up to 40 days
control

Cedara 1992/93 = 73%
1993/94 = 44%

Greytown 1992/93 = 24%
1993/94 = 60%

7 days = 12%

14 days = 10%

Wooster = 1 1 %

Warsaw = 9%
Not all hybrids equal

6%
Reduced nodes < 1 %

Cedara 1992/93 = 83%
1993/94 = 53%

Greytown 1992/93 = 32%
1993/94 = 81%

Cedara 1992/93 = 79%
1993/94 = 61%

Greytown 1992/93 = 1 5 %
1993/94 = 76%

B = Benomyl B & M-Z = Benomyl and maneb-zinc
C & FZ = Carbendazim and flusilazole C & FT = Carbendazim and flulriafol appl.

B & M = Benomyl and mancozeb
application
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Table 7.3: A summary of yield increases (%) and comments associated with the research into the ability and economic feasibility of the triazole

fungicides to control GLS

REFERENCE

Stromberg and Carter, 1991

Carter and Stromberg, 1992a

Rivera-Canalcs, 1993

Stromberg and Flinchum, 1993

Martinson, per. comm.

Martinson and Munkvold, 1994

Martinson et al., 1994

Wegulo, 1994

PROPICONAZOLE

2 appl. = 17%

4 appl. = 37%

2 appl. = 4 2 %
4 appl. = 70%

n.s. but increased

2 appl. = 114%

4 appl. = 168%

High dis. pressure = 18%

increased saleable seed
(seed size)

Crawf. 1 appl. = 28%
2 appl. = 14%

Conrad 1 appl. = 13%
2 appl. = 14%

Best = 2 appl. + 1
mancozeb

Best = 2 appl. + 1
mancozeb

TEBUCONAZOLE

2 appl.
4 appl. =

reduced

2 appl.
4 appl.

. IN 2 appl.
4 appl. =

2N 2 appl.
4 appl. =

= 25%
24% &
lodging

= 48%
= 74%

= 77%
= 133%
= 96%

= 142%

FUNGICIDE: APPLICATION FREQUENCIES AND RESULTS

FLUSILAZOLE FLUTRIAFOL

2 appl. :

4 a p p l . ••

2 appl. :

4 appl. '

2 appl. =
4 appl. =

= 23%
= 30%

= 81%
= 83%

•• 1 6 8 %

• 215%

• • *

DIFENOCONOZOLE RH7592

2 appl. = 30%
4 appl. = 28%

2 appl. = 88%
4 appl. = 119%

2 appl. = 170%
4 appl. = 204% & grain

moisture increase from
!18% to 27%

Ward and Nowell, 1997

Wegulo et al., 1996

Cedara 1992/93 = 83%
1993/94 = 44%

Greytown 92/93 = 43%
93/94 = 92%

Cedara 1992/93 = 83%
1993/94 = 48%

Gre'ytown 92/93 = 17%
93/94 = 74%

Good cost benefit ratio -
variable. Generally one

appl. most profitable

appl. = application n.s. = non-significant Crawf. = Crawfordville IN = normal concentration 2N - double normal concentration
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One application of propiconazole usually results in an increased yield but there have been

exceptions, when final GLS levels were over 20% (Martinson and Munkvold, 1995). From

Table 6.3 it can be seen that the application of propiconazole usually increases yields between

13 - 168%. In addition, the amount of saleable seed was also increased in seed production

fields. In some cases, the nett profit from a single application of propiconazole competed with

the protectant fungicides (Stromberg and Carter, 1991c; Carter and Stromberg, 1992a; Rivera-

Canales, 1993; Stromberg and Flinchum, 1993b; Martinson et al., 1994; Wegulo, 1994;

Martinson and Munkvold, 1995; Wegulo et al., 1996; Martinson14, pers. comm.). There are

a number of other triazole fungicides that are very effective in reducing" GLS and increasing

yield from 17 - 170%. The cost effectiveness of all these products has not yet been determined

(Stromberg and Carter, 1991c; Carter and Stromberg, 1992a and 1992d; Stromberg and

Flinchum, 1993b; Ward and Nowell, 1997). Of the systemic fungicides tested, the triazole

fungicides mixed with carbendazim resulted in the most effective control of GLS in South

Africa. These products have now been registered for controlling GLS in both commercial and

seed production maize fields in South Africa (Krause et al., 1996; Ward and Nowell, 1997).

Chemical control measures in the USA are not widely recommended as these are usually

uneconomical, except for seed producers (Ringer and Grybauskas, 1995). Many factors affect

a decision to apply a fungicide to control GLS, the most important ones being:

i) the growth stage that the epidemic starts

ii) the germplasm planted (resistance level)

iii) the prevailing weather conditions.

Before using fungicides to control GLS, it is important to determine the economic feasibility of

such an applications. In a USA study, net returns varied within and between seasons, being

affected by climatic conditions, timing of fungicide application and the number of applications

(Martinson et al., 1994; Wegulo, 1994; Martinson and Munkvold, 1995; Wegulo et al., 1997).

In the USA, propiconazole is the only systemic fungicide that is registered on maize (seed

maize) for foliar disease control, including GLS control. Propiconazole cannot be applied after

silking but mancozeb can be applied up to 40 days from harvest. In trials in Iowa in seed

production fields, the application of propiconazole was of consistent economic benefit (Martinson

and Munkvold, 1995). In order to maximise seed yields in Iowa, it is necessary to apply

vZ.A. Martinson, Dept. Plant Pathology, Iowa State University, Ames, Iowa, USA.

158



fungicides to control foliar diseases. The timing of the application of the fungicides is critical.

The most cost-effective fungicide treatments tested for the control of GLS were five applications

of chlorothalonil, three applications of mancozeb or two applications of propiconazole followed

by one application of mancozeb. Both total grain and seed yield were improved significantly.

As few as two applications of chlorothalonil resulted in significantly higher seed yields.

Increased net returns were influenced by GLS severity, time of fungicide application, frequency

of application and the genotype (Wegulo, 1994). Detasseled maize showed increased levels of

GLS when compared to male sterile inbreds that were not detasseled, suggesting that detasseled

maize may need extra protection (a fungicide application) to limit the effect on grain yield

(Martinson et at., 1994).

Martinson et al. (1994) reported trials in Iowa which were abandoned because of an interaction

between fungicides and 2,4-D herbicide damage. This interaction resulted in damage to plants

in these trials, confounding the results.

Bair and Ayres (1986) noted significant variability in the natural C. zeae-maydis isolates

collected in the fields and speculated that this could mean that resistance to single—site systemic

fungicides would arise relatively rapidly. This means that other control measures should be used

whenever possible and if fungicides are used, then they should be applied judiciously. In

particular, established fungicide-resistance management strategies should be implemented (Delp,

1988).

7.9 OTHER FACTORS

Many foliar diseases of maize develop when the crop moves into the reproductive phase of

development, suggesting that they are low sugar diseases (Vanderplank, 1984; Robinson, 1987).

Rupe et al. (1982) suggested plant maturity to be an important factor in GLS development as

initial symptoms often appeared at anthesis. However, earlier research by Hilty et al. (1979)

found that GLS was not necessarily associated with senescence as they produced GLS symptoms

in the greenhouse on two- to three-week old seedlings. Beckman and Payne (1982) also

discounted maturity as a factor and found that neither plant age nor leaf age influenced plant

susceptibility to GLS as the latent period for infection was shorter on younger than older leaves.

Overhead irrigation, usually through a centre pivot, can be a significant factor in increasing the
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incidence and severity of GLS. This should be taken into account when considering a

management strategy to control GLS (Ward et al., 1993).

Earlier findings suggested that high plant populations created high relative humidity

microclimates favourable for disease (Beckman and Payne, 1983; Payne and Waldron, 1983;

Ayers et al. 1985). However, Smith (1989), de Nazareno et al. (1991) and de Nazareno et al.

(1993a and 1993b) proposed that less disease per plant occurs under high populations because

of a "shielding" effect from spore interception in the denser canopies than in plots where

canopies were open. Rivera-Canales (1993) supported this proposal, finding" that GLS developed

in seed crops when there was significant removal of leaf tissue during detasselling, and when

the removal of male rows opened the canopy. Similar findings were reported by Carrera and

Grybauskas (1992) but they found an interaction between planting date and plant density. Under

conditions of high inoculum levels, the lower plant densities had significantly higher disease

levels. No nitrogen effect was found in this trial but the less the shading, the more severe the

disease. It was suggested that this may be directly linked to the effects of cercosporin in the

light (Smith, 1989; Carrera and Grybauskas, 1992). Smith (1989) suggested that the relative

conidial deposition rate may be increased at the lower plant densities due to reduced leaf area

per unit ground area. If GLS is measured as disease per unit ground area, then there is more

GLS at the higher plant densities. However, GLS measured per plant shows the opposite to be

true.

Smith (1989) found that GLS increased significantly in severity with increasing levels of nitrogen

fertilization in the ammonium nitrate form. In contrast, Carrera and Grybauskas (1992) tested

various nitrogen levels at different plant densities, but observed no nitrogen effects on GLS

severity. Smith (1989) found no significant reduction in GLS severity was observed in response

to potassium fertilization but potassium fertilisation did result in increased total and green leaf

area, and grain and silage yields. There was no GLS response to phosphate fertilization.

Unknown variables were the original potassium and phosphate levels in the soil.

Weed control is important to increase air flow within the canopy, thereby reducing the relative

humidity, to reduce the length of time conditions are favourable for infection (Spink and Lipps,

1987).

160



7.10 YIELD LOSS

Yield losses are correlated with the length of time that leaf-blighting is present during grain-fill:

the longer the period of blighting before physiological maturity, the greater the yield losses.

Early infection of GLS resulting in leaf blighting and premature death of the maize plant can

seriously affect yield (Stromberg and Donahue, 1986; Nutter et al, 1995). Hilty et al. (1979),

Latterell and Rossi (1983), Ayres et al. (1985), Smith (1989) and Jenco (1995) showed that this

disease can cause grain yield losses of up to 79%. However, grain yield losses are usually from

0 - 30% (Hilty et al; 1979; Latterell and Rossi, 1983; Ayres et al, 1985; Donahue et al.,

1991; Lipps and Pratt, 1991; Martinson et al, 1994; Wegulo, 1994; Jenco, 1995). Stromberg

and Donahue (1986) showed that for each one unit change in a 1 - 5 disease index, late maturing

hybrids lost 1.06 tonnes ha"1 and lodging increased by 12.4%, whereas mid-season hybrids lost

0.70 tonnes/ha and lodging increased by 4.0%, and early maturing hybrids decreased in yield

by 0.10 tonnes ha'1 and lodging increased by 7.5%. Shurtleff and Pedersen (1991) reported

losses due to stalk deterioration after severe C. zeae-maydis infection of up to 100% of the leaf

area in 1973 and 1974 in Virginia. Similar losses have been found by other researchers (Roane

et al, 1974; Latterell and Rossi, 1983; Smith, 1989). In South Africa, grain yield losses range

from 0-50% (Ward et al, 1993; Ward and Nowell, 1997).

In hybrid seed production in Iowa, USA, it was found that the total grain yield and the saleable

seed fraction was significantly reduced by C. zeae-maydis infection (Rivera-Canales, 1993;

Jenco, 1995). Jenco (1995) found that the most reliable estimate of yield loss incurred by GLS

was a critical point estimate of GLS at the soft dough stage but that the AUDPC values could

be used in epidemics that were severe or early. For AUDPC values, it is necessary for precise

and reliable measurements of GLS to be taken regularly. When GLS was measured in the

middle and upper canopy, the results were closely correlated with the yield losses measured.
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CHAPTER 8

Economic Losses as a Result of Grey Leaf Spot on Maize in KwaZuIu-

Natal, South Africa

ABSTRACT

Grey leaf spot (GLS) is a disease of increasing importance on maize in some of the major maize-

producing regions of the world. It is highly aggressive pathogen, adaptable and severely affects

maize foliage, reducing grain -yield and increasing the incidence of lodging. It is therefore

considered one of the most destructive of the maize diseases. Although the pathogen has been

studied for a number of years by researchers in the USA, there are still many unknowns about

the fungus and the disease in South Africa. Significant research efforts are therefore needed in

South Africa to understand the disease in the local context. This study was initiated to

accurately determine the grain yield loss due to GLS in the KwaZulu-Natal region.

In trials conducted at Cedara and Greytown during the 1992/93 and 1993/94 seasons, GLS

severity was greater at Cedara than at Greytown in both seasons. Variation in grain yield loss

was as high between locations within a season as between locations over two seasons. Grain

yield losses in fungicide trials at Cedara and Greytown were 38 - 45% and 30 - 48%,

respectively. Economic losses were Rl 919 - R2 278 ha"1 at Cedara and Rl 554 - Rl 726 ha'1

at Greytown. The increase in GLS on reduced tillage treatments did not reduce yield when

compared to conventional tillage. During the dry 1992/93 season, the reduced till treatments

yielded significantly higher than the conventionally tilled treatments. The trial conducted on 49

hybrids confirmed that there was a larger yield loss due to GLS at Cedara than at Greytown

(conventional tillage at both sites) but seasonal variation was larger than variation between sites.

Hybrids were grouped into a susceptible group and a more resistant group based on GLS

severity over both seasons. Overall, susceptible hybrids lost 37% (3.840 t ha"1) in grain yield

and resistant hybrids lost 5% (0.517 t ha"1) in grain yield. Predicted hybrid grain yield losses

ranged from 13% - 37% (1.286 - 4.032 t ha1) or R836 - R2 621 ha1, depending upon the level

of inherent GLS resistance.
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8.1 INTRODUCTION

Grey leaf spot (GLS), caused by Cercospora" zeae-maydis Tehon & Daniels, has become

increasingly important in South Africa since 1989. This relatively new pathogen to South Africa

has since 1989 established itself, primarily in the province of KwaZulu-Natal, and now causes

significant yield losses each season (Ward et al., 1993; Ward and Nowell, 1997). Cercospora

zeae-maydis was first identified and named by Tehon and Daniels (1925) in southern Illinois in

the USA. More recent reports by Hilty et al. (1979) and Latterell and Rossi (1983) have shown

that this fungus can cause yield losses of up to 27.7%. Yield losses are correlated with the

length of time that leaf-blighting is present during grain-fill: the longer the period of blighting

before physiological maturity, the greater the yield losses. Hilty et al. (1979), Latterell and

Rossi (1983), Ayres et al. (1985), Smith (1989) and Jenco (1995) showed that this fungus can

cause grain yield losses of up to 79%. However, grain yield losses are usually from 0 - 3 0 %

(Hilty et al.; 1979; Latterell and Rossi, 1983; Ayres et al., 1985; Stromberg and Donahue,

1986; Donahue et al, 1991; Lipps and Pratt, 1991; Martinson et al., 1994; Wegulo, 1994;

Nutter et al., 1995; Jenco, 1995). Stromberg and Donahue (1986), using a disease index of 1 -

5, showed that for each one unit change in the disease index, longer maturing hybrids lost

1.06 t ha"1 and lodging increased by 12.4%, average maturing season hybrids lost 0.7 t ha "knd

lodging increased by 4.0%, and early maturing hybrids decreased in yield by 0.1 t ha"1 and

lodging increased by 7.5%. Shurtleff and Pedersen (1991) reported losses of up to 100% due

to stalk deterioration (could not be mechanically harvested) following severe GLS infection in

1973 and 1974 in Virginia. This has been substantiated by other researchers (Roane et al.,

1974; Latterell and Rossi, 1983; Smith, 1989).

In seed crops in Iowa, USA, it was found that the total grain yield and the saleable seed fraction

were significantly reduced by C. zeae-maydis infection. Seed losses of between 7.7% and

25.1% occurred in two trials in Iowa. The application of fungicides increased all categories of

seed size, although the increases were greatest in the smaller seed size categories, and the total

grain yield increased significantly (Rivera-Canales, 1993).

The economic losses in grain yield due to GLS have not been well quantified in South Africa,

although preliminary trials by Ward et al. (1993) and Ward and Nowell (1997) suggested losses

ranged between 0 and 60%. The research described below was undertaken to more accurately

determine the scale of losses sustained under South African conditions.
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8.2 MATERIALS AND METHODS

The trials were conducted at Pannar Seed (Pty.) Ltd near Greytown (29°02'S, 30°31'E and an

altitude of 1100 m), and at the Cedara Agricultural Development Institute at Cedara, (29°31'S,

30°17'E and an altitude of 1070 m), in KwaZulu-Natal, South Africa.

8.2.1 Fungicide trials

The trial at Cedara had conducted been on a sandy clay loam of the Hutton form and Doveton

series soil (MacVicar, 1991) which was previously under monoculture no-till maize. A

GLS-susceptible hybrid, RS 5206, was direct-drilled on 26 November 1992 into land that had

been chisel ploughed twice (surface stubble was assessed to be >60%, using the sighting frame

described by Lang and Mallet [1982]). Fertilizer for an 8 t ha"1 grain crop was applied

according to the soil analysis. A top dressing of 98 kg N ha"1 was applied when the maize was

knee high. A pre-plant application of 2.0 £ ha"1 of Sting SL (glyphosate, 180 g tl) and 200 £

ha'1 of Decis EC (deltamethrin, 25 g I'1), and a post emergence treatment of 2.0 £ ha'1 of Dual

930S EC (metolachlor, 930 g I'1) were applied to control cutworm and weeds. Each plot

consisted of eight 9m rows, spaced 750mm apart. The trial was planted as a randomised blocks

design of 10 treatments (the common fungicides at Cedara and Greytown were difenoconazole

[87g ha"1], flutriafol [156.25g ha"1], carbendazim/flusilazole [187.5g/93.8g ha"1],

carbendazim/flutriafol [187.5g/117.5g ha"1] and benomyl [375g ha"1]), replicated three times.

The first experiment was planted on 26/11/92 and the central four rows of each plot were

sprayed three times every 21 days with the fungicides, with the first fungicide application being

seven days before tassel emergence and 14 days after the first GLS lesions were observed. The

fungicides common to Cedara and Greytown were difenoconazole (87.5g a.i. ha"1), flutriafol

(156.25g a.i. ha"1), carbendazim / flusilazole (187.5g/93.8g a.i. ha"1), carbendazim / flutriafol

(187.5g/117.5g a.i. ha"1) and benomyl (375g a.i. ha1). The second fungicide experiment was

planted on 17 November 1992 and the central four rows were sprayed four times every 21 days,

with the first application being ten days before pollen shed when GLS lesions were observed on

the lower four to five leaves. In this experiment, the fungicides common to Cedara and

Greytown were difenoconazole (87.5g a.i. ha'1), flutriafol (156.25g a.i. ha"1), carbendazim /

flusilazole (187.5g/93.8g a.i. ha'1), carbendazim / flutriafol (187.5g/117.5g a.i. ha"1) and

benomyl (375g a.i. ha1). Fungicides were applied in 450 £ ha"1 of water. Leaf assessments
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were done as a percentage leaf area loss due to GLS. The trial was hand harvested on 11 June

1993 and the yield was adjusted to 12.5% grain moisture.

In Greytown, the trial was conducted on a Hutton soil which had previously been ploughed and

monocropped to maize. The GLS-susceptible hybrids, PAN 6528 and PNF 6552, were

hand-planted on 20 November 1992 and 23 November 1993, respectively. Fertilizer sufficient

for an 8 t ha1 grain crop was applied. A top dressing of 89 kg N ha"1 was applied when the

maize was knee high. A pre-plant herbicide of 4 I ha"1 of Eptam Super (EPTC, 720 g l~l), a

pre-emergence insecticide of 140 mt ha"1 of Tralate (tralomethrin, 36 g t1), and a post

emergence herbicide of 1.2 £ ha"1 of Galleon (atrazine and sulcotrione, 300 g t "!and 125 g I "J

respectively) were applied to control cutworm and weeds. The trial design was a randomised

complete blocks design of 20 treatments (6 fungicides were common to Cedara and Greytown

over seasons), replicated three times and each plot consisted of two rows of 4.4 m, spaced 910

mm apart. Spacing between plants in the row was 22cm. Each plot was separated with a single

border row to reduce fungicide drift between plots. The experiments were first sprayed on 10

December 1992 and 10 January 1993, respectively. The common fungicides used in the trial

at Greytown were flutriafol (125g a.i. ha"1), carbendazim / flusilazole (250g/125g a.i. ha"1),

benomyl (250g a.i. ha"1), difenoconazole (75g a.i. ha"1) and carbendazim / flutriafol (150g/90g

a.i. ha1). The first fungicide application was seven days after the first GLS lesions were

observed, which was approximately a week before tassel emergence. Fungicides were applied

three times at 14 day intervals in 400 I ha'1 of water by Matabi* knapsack sprayer at 2 bars

pressure.

Whole-plant standard area diagrams described by Ward et al. (1996) were used as a guide in

estimating disease severity. The trial was hand-harvested on 16 May 1994 and 08 June 1994,

and the yields adjusted to 12.5% grain moisture. Grain yield loss was determined by comparing

the non-sprayed control to the most effective fungicide (representing the expected yield without

GLS present).

8.2.2 Hybrid trials

Maize hybrids submitted to the South African National Maize Cultivar Phase II Trial series were

evaluated for their susceptibility to GLS disease during the 1991/92, 1992/93 and 1993/94

growing seasons. The experiments comprised 49 hybrids each season, laid out in a 7 x 7 triple
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lattice design of 3 replicates. The trials at Cedara were repeated under both conventional- and

stubble-tillage systems. At Greytown, the trial site was conventionally tilled only. The

conventional-tillage treatment was disced in the winter, mouldboard ploughed in September and

finally disced immediately before planting to incorporate the previous season's crop residue.

The stubble treatment was chisel-ploughed to a depth of 120mm in the winter and again prior

to planting. Chisel-plough tines were spaced 310mm apart and fitted with sweeps. After tillage

the residue cover on stubble treatments was 31 %. Planting lines were drawn immediately prior

to planting when fertilizer sufficient for an 8 t ha"1 grain crop was band applied. A topdressing

of 100 kg N ha"1 was broadcast when maize was between the eight- and ten-leaf stage. Normal

weed and pest control practices (as described in section 8.2.1) were followed as for the fungicide

trials. Hybrids were planted in plots of two 6.6 m rows spaced 0.75 m apart at Cedara. In-row

plant spacings were 0.30 m. The trials were jab-planted by hand in early November each season

and two seeds per planting station were planted. Thirty days after planting, the seedlings were

thinned to 44 400 plants ha"1. The harvested area of two, 6.0 m rows, was hand-harvested. At

Greytown, plots were two rows 4.4 m long and 0.9 m apart, were hand-planted in early

October, and hand-thinned to 50 000 plants ha1. The whole plots were hand-harvested.

Whole-plant standard area diagrams described by Ward at al. (1997a) were used as a guide in

estimating disease severity as a percentage leaf area infected. The single point model (% disease

severity near physiological maturity) was used as the disease index in the linear regression

analysis. Grain yields were determined and were expressed in kg ha"1 at 12.5% moisture. The

percentage lodged plants were also determined.

8.2.3 Economic analysis

Ninety five percentage confidence limits were calculated for the loss in grain yield in order to

establish upper and lower confidence limits for grain yield loss due to GLS, for both the

fungicide trials and individual hybrids. The economic loss, and the upper and lower economic

loss limits were determined by multiplying the yield loss / limits by the estimated average maize

price of R650 f1 (Saville, 1983).
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8.2.4 Statistical analysis

The percentage GLS, percentage stem lodging and grain yield data from the fungicide trials were

analysed by analysis of variance (ANOVA). Fischer's least significant differences were based

on the 5% level of probability. The analysis was conducted using Genstat 5.31.

A linear regression model, as described by Stromberg and Donahue (1986), was used to

determine the effect of GLS disease on grain yield, which was:

Y = B0+B,X, + Ei

where Y is the response variable (yield), Bo is the intercept (yield when disease is zero), 5, is

the slope of the regression line (regression coefficient or change in yield per unit change in

disease), Xt is the regressor variable (disease intensity at a particular stage) and Et is the

unexplained variation (error or residual). Regression lines were fitted for locations, seasons,

tillage practices GLS resistance groupings and selected individual hybrids. The regression

analysis was conducted on Genstat 5.31 and Statsgraphics 4.0. Bartlett's x2 test was used to test

for homogeneity of variance.

8.3 RESULTS

The growing conditions in 1991/92 were excellent during the vegetative growth stages of the

maize, but rainfall declined after anthesis and it was dry during grain-fill. However, heavy dews

were frequent during this period, which ensured disease development. The 1992/93 season was

dry, with only 50% of the mean rainfall recorded during the growing season. In contrast, the

rainfall during the 1993/94 season was above average and well distributed throughout the

growing season. Mists were abundant, especially during January and February.

8.3.1 Fungicide trials

Results are presented in Tables 8.1 - 8.4. From these data it can be seen that there was

significant variation in efficacy between fungicides in controlling GLS, although this was seldom

significant when grain yield was determined. However, the overall trend between sites and over

seasons was similar.
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Table 8.1: Grain yield (t ha"1), grain yield loss (t ha1), economic loss, percentage stem lodging, and the percentage leaf area loss due to GLS for

the fungicide trial in 1992/93 at Cedara

Active Ingredient

Difenoconazole

Flutriafol

Carbendazim / flusilazole

Carbendazim / flutriafol

Benomyl

Non-sprayed control

Mean

%C.V.

LSD 005

Rate Active
ha'1

87.5g

156.25g

187.5g/93.8g

187.5g/117.5g

375g

Yield (Y)
t h a 1

7.731 b

7.723 b

7.723 b

7.568 b

7.319 b

4.227 a

7.062

8.8

0.901

% Yield
Loss

0.0

1.0

1.0

2.1

5.3

45.3

% Stem
Lodging

6.0

5.7

6.8

8.3

6.1

5.6

6.7

8.8

N.S.

% GLS*

32.5 c

12.8 def

4.2 f

7.6 ef

18.1 dc

83.7 a

25.6

32.4

12.1

Yield loss

Actual

0

0.008

0.008

0.163

0.412

3.504

over best
t h a 1

Lower
limit"

0.909

0.909

1.064

1.313

4.405

treatment

Upper
limitc

-0.893

-0.893

-0.738

-0.489

2.603

Economic loss
R h a 1

Actual

0

5.20

5.20

105.92

267.80

2277.60

Lower
limit

590.85

590.85

691.60

853.45

2863.25

i

Upper
limit

-580.45

-580.45

-479.70

-317.85
l

1691.95

Assessment undertaken 131 days after planting as a % leaf area loss.
Lower-gain was calculated from the 95% confidence limit.
Upper-gain was calculated from the 95% confidence limit.
Economic loss equals the loss in grain yield multiplied by the maize price of R650 tonne1.
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Table 8.2: Grain yield (t ha"1), grain yield loss (t ha'1), economic loss, percentage lodging, and the percentage leaf area loss due to GLS for the
fungicide trial in 1993/94 at Cedara

Active Ingredient

Carbendazim / flutriafol

Carbendazim / flusilazole

Difenoconazole

Flutriafol

Benomyl

Non-sprayed control

Mean

%C.V.

LSD M

Rate Active
ha"1

187.5g/117.5g

187.5g/93.8g

87.5g

156.25g

375g

Yield (Y)
t ha"1

7.810 b

7.411 b

7.205 b

6.994 b

6.964 b

4.858 a

6.779

9.7

0.953

%
Yield
Loss

0.0

5.1

7.8

10.4

10.8

37.8

%
Stem

Lodging

6.9 b

7.3 ab

8.4 ab

7.0 b

10.1 ab

15.2 a

10.5

58.4

7.9

%
GLS1

33.1 c

26.3 c

53.8 b

34.4 c

28.1 c

90.0 a

44.3

14.6

9.4

Yield loss

Actual

0

0.399

0.605

0.816

0.846

2.952

over best
t h a 1

Lower
limit b

1.352

1.558

1.769

1.799

3.905

treatment

Upper
limitc

-0.554

-0.348

-0.137

-0.107

1.999

Actual

0

259.35

393.25

530.40

549.90

1918.80

Economic loss
R h a 1

Lower
limit

878.80

1012.70

1149.85

1169.35

2538.25

d

Upper
limit

-360.10

-226.20

-89.05

-69.55

1299.35

Assessment undertaken 131 days after planting as a % leaf area loss.
Lower-gain was calculated from the 95% confidence limit.
Upper-gain was calculated from the 95 % confidence limit.
Economic loss equals the loss in grain yield multiplied by the maize price of R6S0 tonne"1.
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Table 8.3: Grain yield (t ha"1), grain yield loss (t ha1), economic loss, percentage lodging, and the percentage leaf area loss due to GLS for the

early fungicide trial in 1992/93 at Grey town

Active Ingredient

Flutriafol

Carbendazim / flusilazolc

Benomyl

Difenoconazole

Carbendazim / flutriafol

Non-sprayed control

Mean

%C.V.

LSD w

Rate
Active

ha1

125g

250g/125g

250g

75g

150g/90g

Yield (Y)
tha 1

7.94 d

7.30 bed

6.87 bed

6.48 abc

6.40 ab

5.55 a

6.13

13.9

1.20

%
Yield
Loss

0.0

8.1

13.5

18.4

19.4

30.1

%
Stem

Lodging

28.0

21.2

23.5

14.3

21.9

28.0

28.4

58.2

N.S.

%
GLS*

1.5 b

0.8 b

3.0 b

2.5 b

1.2 b

41.2 a

10.8

40.9

6.3

Yield loss

Actual

0

0.64

1.07

1.46

1.54

2.39

over best
t h a 1

Lower
limit b

1.84

2.27

2.66

2.74

3.59

treatment

Upper
limit'

-0.56

-0.13

0.26

0.34

1.19

Economic loss
R h a 1

Actual

0

416.00

695.50

949.00

1001.00

1553.50

Lower
limit

1196.00

1475.50

1729.00

1781.00

2333.50

d

Upper
limit

-364.00

-84.50

169.00

221.00

773.50

Assessment undertaken 131 days after planting as a % leaf area loss.
Lower-gain was calculated from the 95% confidence limit.
Upper-gain was calculated from the 95% confidence limit.
Economic loss equals the loss in grain yield multiplied by the maize price of R650 tonne"1.
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Table 8.4: Grain yield (t ha"1), grain yield loss (t ha'1), economic loss, percentage lodging, and the percentage leaf area loss due to GLS for the

late fungicide trial in 1993/94 at Grey town

Active Ingredient

Flutriafol

Carbendazim / flusilazole

Carbendazim / flutriafol

Difenoconazole

Benomyl

Non-sprayed control

Mean

%C.V.

LSD ,.„

Rate Active
ha1

250g

15Og/9Og

250g/125g

75g

125g

Yield (Y)
t ha'1

5.540 b

5.225 b

5.080 b

5.005 b

4.630 b

2.885 a

4.085

13.6

0.785

%
Yield
Loss

0.0

5.1

8.3

9.7

16.4

47.9

%
Lodging

46.8 c

48.0 c

50.7 be

69.3 be

72.5 b

98.6 a

74.8

22.2

23.4

%
GLS'

8.5 be

6.8 be

7.2 be

13.0 b

2.8 c

38.2 a

19.6

23.2

6.4

Yield loss

Actual

0

0.315

0.460

0.535

0.910

2.655

over best
t h a 1

Lower
limitb

1.100

1.245

1.320

1.695

3.440

treatment

Upper
limitc

-0.470

-0.325

-0.250

0.125

1.870

Economic loss
Rha 1

Actual

0

204.75

299.00

347.75

591.50

1725.75

Lower
limit

715.00

809.25

858.00

1101.75

2236.00

d

Upper
limit

-305.50

-211.25

-162.50

81.25

1215.50

I

Assessment undertaken 131 days after planting as a % leaf area loss.
Lower-gain was calculated from the 95% confidence limit.
Upper-gain was calculated from the 95% confidence limit.
Economic loss equals the loss in grain yield multiplied by the maize price of R650 tonne"1.

178



All fungicides, in both seasons, significantly reduced the severity of GLS. Table 8.1 shows that

the grain yield loss at Cedara was 45.3% (3.504 t ha"1) associated with a GLS severity of 83.7%

for 1992/93. This is equivalent to a loss of R2 277.60 ha1, with a lower limit of Rl 691.95 ha"1

and an upper limit of R2 863.25 ha"1. The GLS severity of the non-sprayed control was 150%

higher than the worst fungicide treatment (difenoconazole). However, it is of interest to note

that although GLS severity ranged from 4-33% for the various fungicide treatments, there were

no significant differences in grain yield between treatments. There were no significant

differences in stem lodging between treatments.

Even with the use of fungicides, the severity of GLS was high in 1993/94 at Cedara. Table 8.2

shows that the grain yield loss at Cedara was 37.8% (2.952 t ha"1) associated with a GLS

severity of 90% for 1993/94. This is equivalent to a loss of Rl 918.80 t ha1, with a lower limit

of Rl 299.35 and an upper limit of R2 538.25 ha"1. The GLS severity of the non-sprayed

control was about 90% higher than the least effective fungicide treatment. Grey leaf spot

severity ranged from 26-54% but there were no significant differences in grain yield between

treatments.

Difenoconazole and flutriafol significantly reduced stem lodging when compared to the non-

sprayed control despite a high coefficient of variation. These treatments had over 50% fewer

lodged plants than the non-sprayed control.

Table 8.3 showed that grain yield loss at Greytown was 30.1% (2.390 t ha"1) associated with a

GLS severity of 41.2% in 1992/93. This is equivalent to a loss of Rl 533.50 ha1, with a lower

limit of R771.50 and a higher limit of R2 333.50 ha"1. The non-sprayed control was not lower-

yielding than the carbendazim/flutriafol and difenoconazole treatments. Benomyl,

carbendazim/flusilazole and flutriafol had higher grain yields than the non-sprayed control. The

highest yield was obtained by the flutriafol treatment. In this case these differences in grain

yield occurred with GLS severity levels of 0.8 - 3.0%.

No differences in lodging were found between fungicide treatments and the non-sprayed control

in 1992/93.

The yield potential of PNF 6552, which was planted in 1993/94 at Greytown, was lower than

of PAN 6528, which was planted in 1992/93. Grain yield loss at Greytown was 47.9% (2.655

179



t ha1 in total) with an associated GLS severity of 38.2% in 1993/94 (Table 8.4). This is

equivalent to a loss of Rl 725.75 ha1, with a lower limit of Rl 215.50 and an upper limit of

R2 1236.00 ha"1. There were no differences in grain yield between the different fungicide

treatments but they ranged from 2.8 - 13.0% in GLS severity.

All fungicide treatments resulted in fewer lodged plants than the non-sprayed control in the

1993/94 season. The most effective fungicide treatments, flutriafol and carbendazim /

flusilazole, reduced the percentage lodged plants by more than 50%.

8.3.2 Regression

By regressing the percentage GLS severity against grain yield for hybrids, seasons, location and

tillage systems, 66.9% of the variance was accounted for. The mean grain yield loss was 55.85

+2.27 kg ha"1 for each percentage increase in GLS severity. Results are presented in Tables

8.5-8.8 .

The effect of tillage was determined only at Cedara, as Greytown was conventionally-tilled. The

1992/93 season showed significant heterogeneity of variance (x2=47.9, P<0.01) for GLS

severity. For this reason 1992/93 data was not used in determining yield loss due to GLS.

Stubble-tillage resulted in a significantly higher grain yield in 1991/92 and 1992/93, but with

well distributed rainfall in 1993/94, there were no differences in grain yield between tillage

treatments (Table 8.5). Under stubble-tillage (Table 8.6) there was a decrease of 32.3 kg ha"1

in grain yield for each percentage increase in disease severity (a total grain loss of 1.778 t ha"1).

Under conventional-tillage there was a higher yield decrease of 34.8 kg ha"1 for each percentage

increase in leaf blighting (a total grain loss of 1.734 t ha1). The lower yield decrease under

stubble-tillage was in contrast to a higher mean GLS severity of 55.0%, compared to 49.8%

GLS under conventional tillage (Table 8.5). Under conventional tillage, grain yields over both

locations were 1266 kg ha"1 higher in the 1991/92 than the 1993/94 season. The difference was

highly significant (P<0.001). Yield loss in 1991/92 was 11.0 kg ha"1 for each percentage

increase in GLS severity in contrast with 40.2 kg ha"1 during the 1993/94 season (Table 8.6).
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Table 8.5: Effect of conventional and stubble-tillage treatments on grey leaf spot severity and

grain yield at Cedara and Greytown over 1991/92 and 1993/94 seasons (Ward et al.,

1997c)

SOURCE EFFECT

Disease Severity (%)'

Tillage

Location

Grain Yield

Tillage

Location

Conventional

Stubble

F-test

Standard Error

% C.V.

Cedara

Greytown

F-probability

Standard Error

% C.V.

(t ha1)

Conventional

Stubble

F-test

Standard Error

% C.V.

Cedara

Greytown

F-test

Standard Error

% C.V.

1991/92

32.08

26.42

N.S.2

1.55

37.1

32.08

14.69

*

3.50

33.4

7.557

8.161

*

0.078

6.8

7.557

9.389

**

0.096

8.0

SEASON

1993/94

67.57

83.58

N.S.

7.44

15.4

67.57

59.01

N.S.

8.90

14.9

4.798

4.480

N.S.

0.158

11.6

4.798

6.922

**

0.085

8.9

MEAN

49.83

55.05

N.S.

3.80

21.5

49.83

36.85

*

3.80

11.9

6.177

6.321

N.S.

0.326

8.6

6.177

8.156

**

0.064

8.4

Disease severity is the percentage leaf blighting assessed approximately 25 days before physiological maturity.

N.S. = non-significant., * = 5% level of significance, and " ~ 1% level of significance.
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Table 8.6: Predicted yield and yield loss of all hybrids with grey leaf spot during the 1991/92

and 1993/94 seasons

Category Yield potential (t ha1) Yield loss" (kg ha1) R2

Tillage (Cedara only)

Conventional tillage

Stubble tillage

Location

Greytown

Cedara

Season

1991/92

1993/94

6177

6321

9721

7632

7813

6547

-34.8

-32.3

-30.4

-37.1

-11.0

-40.2

84

88

65

83

71

80

* Yield loss in kg ha'1 for each percentage increase in GLS seventy.

Over locations, the variance of GLS severity was heterogeneous (x2=65.45, P<0.01) and a

weighted analysis showed that GLS severity was consistently higher at Cedara (49.8%) than at

Greytown (36.8%). Variance in grain yield was homogeneous (x2=4.94, N.S.), which indicated

that the effect of GLS on grain yield was similar at both locations. Grain yield at Greytown

(8.516 t ha"1) was consistently higher than at Cedara (6.177 t ha1). This is not surprising, in

view of the lower disease levels at Greytown. At Cedara, there was a larger yield decrease of

37.1 kg ha"1 for each percentage increase in leaf blighting, whilst at Greytown the yield decrease

was 30.4 kg ha"1 for each percentage increase in leaf blighting (Table 8.6).
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Table 8.7: Predicted yield and yield loss for two grey leaf spot susceptibility categories at

Greytown and Cedara in 1991/92 and 1993/94 under conventional tillage only

Category

Over locations

Susceptible '

More resistant b

Overall

Greytown only

Susceptible '

More resistant b

Overall

Cedara only

Susceptible *

More resistantb

Overall

Yield potential
t tia-i

10.272

10.188

7.935

10.571

10.144

9.721

9.876

9.643

7.632

Yield loss c

kg ha1

-66.2

-19.9

-34.8

-57.4

-16.7

-30.4

-68.9

-26.7

-37.1

R2

90

88

84

78

66

65

87

74

83

%GLSd

58

26

37

51

23

39

64

34

50

Total Loss '
tha 1

3.840

0.517

1.288

2.927

0.384

1.186

4.410

0.908

1.855

%
Yield Loss

37

5

16

> 28

4

12

45

9

24

Susceptible - The hybrids CRN 4523, PAN 6364, PAN 6528, PAN 6552, RO 430, RS 5206, SC 5232, SC 5240, SNK 2340, SNK

2888 and SNK 2950 which were assessed as being most susceptible to GLS (based on leaf area loss over the whole plant).

More resistant - The hybrids CRN 3584, NS 9100. PAN 6363, PAN 6364, PAN 6479, PAN 6480, PAN 6549, PAN 6578, SNK

2147 and SNK 2665, which were assessed as being most resistant to GLS (based on leaf area loss over the whole plant).

Yield loss for each percentage increase in GLS severity.

Mean percentage GLS infection, based on whole plant assessments, for the 1991/92 and 1993/94 seasons.

Total grain yield losses in t ha"1 and percentage loss in brackets.
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Table 8.8: Regression coefficients, for individual hybrids, for grain yield against grey leaf spot for a range of hybrids, ranked according to

percentage grain yield loss, at Cedara and Greytown in 1991/92 and 1993/94, and the estimated economic losses (individual hybrid data

from Table 8.7)

Hybrid

PAN 6480

PAN 6479

CRN 3584

N9I00

PAN 6549

PAN 6578

PAN 6364

SNK 2888

A 1849

SNK 2950

CRN 4605

PAN 6528

RS5206

PAN 6552

Yield potential'

t ha '

10.081

9.693

10.123

8.825

9.413

9.594

9.564

10.006

9.993

9.131

9.370

9.628

11.033

10.960

Yield loss b

kg ha'

-53.6

-81.1

-56.3

-47.3

-56.6

-62.6

-49.7

-50.3

-67.6

-53.4

-56.4

-64.8

-73.6

-66.1

R1

52

69

79

48

81

69

74

77

65

66

77

83

82

70

%GLS"

24

17

28

30

32

30

40

50

46

54

57

52

53

61

% Yield loss

13

14

16

16

19

20

21

25

31

32

34

35

35

37

Predicted

Actual

1.286

1.379

1.576

1.419

1.811

1.878

1.988

2.515

3.110

2.884

3.215

3.370

3.901

4.032

yield loss in tonnes ha"1

Lower limit * Upper

0.730

0.958

0.995

0.751

1.410

1.294

1.435

1.885

2.054

2.313

2.397

2.669

3.055

2.818

limit *

1.841

1.799

1.998

2.089

2.209

2.459

2.538

3.143

4.163

3.765

4.026

4.075

4.742

5.248

Predicted economic loss ' in

Actual

835.90

896.35

1024.40

922.35

1177.15

1220.70

1292.20

1634.75

2021.50

1874.60

2089.75

2190.50

2535.65

2620.80

Lower limit

474.50

623.00

646.65

488.28

916.24

841.23

932.62

1225.25

1335.33

1503.68

1558.33

1734.62

1986.04

1831.43

Rand ha*1

Upper limit

1196.65

1169.09

1298.57

1357.98

1436.03

1598.61

1649.44

2042.95

2706.25

2447.52

2617.21

2648.91

3082.24

3411.09

Potential yield in tonnes ha'1.
Predicted yield loss.
Assessment undertaken 131 days after planting as a % leaf area loss.
Lower-gain was calculated from the 95% confidence limit.
Upper-gain was calculated from the 95 % confidence limit.
Economic loss equals the loss in grain yield multiplied by the maize price of R650 tonne1.
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Hybrids were grouped into either susceptible or more resistant categories (using Gupta's Bestest

[Gupta, 1965; Calitz, 1991; van Aarde, 1993 and 1994]) based on GLS severity over the two

seasons. Large differences in grain yield loss between the two groups were obvious (Table 8.7).

Overall, the susceptible group lost 66.2 kg ha"1 for each percentage increase in GLS severity

(3.840 t ha"1 in total) and the more resistant group lost only 19.9 kg ha"1 for each percentage

increase in GLS severity (0.517 t ha'1 in total). Grain yield losses at Grey town are consistently

smaller than those at Cedara but the grain yield trends were similar (Table 8.7).

There were differences in individual hybrid responses to GLS (Table 8.8). The more

GLS-susceptible hybrids, PAN 6552 and RS 5206, lost 66.1 kg ha"1 and 73.6 kg ha"1 for each

percentage increase in GLS severity or 4.032 t ha"1 and 3.901 t ha"1 in total, respectively.

PAN 6364 and SNK 2950 only lost 49.7 kg ha'1 and 53.4 kg ha'1 for each percentage increase

in GLS severity or 1.988 t ha'1 and 2.884 t ha"1 in total, respectively. PAN 6479, with the least

GLS, had a yield loss of 81.1 kg ha"1 (1.379 t ha"1 in total) for each percentage increase in GLS

severity. The more GLS-resistant hybrids such as PAN 6480 and CRN 3584 lost 53.6 kg ha'1

and 56.3 kg ha"1 for each percentage increase in GLS severity or 1.286 t ha"1 and 1.576 t ha"1

in total, respectively. NS 9100 lost 47.3 kg ha"1 for each percentage increase in GLS severity

(1.419 t ha"1 in total) but only 48% of the variance in yield was accounted for.

When converted into economic terms, the least GLS-susceptible hybrid, PAN 6480, showed a

loss of R835.90 ha"1 (with a range of R474.50 - R 1 196.65 ha'1). The most GLS-susceptible

hybrid PAN 6552, showed a loss of R2 620.80 ha'1 (with a lower limit of Rl 831.43 and an

upper limit of R3 411.09 ha1). The losses of the other hybrids were dispersed within this range.

8.4 DISCUSSION

The fungicide trials showed grain yield losses to be slightly less than those initially reported by

Ward et al. (1993), Ward and Nowell (1997) and Ward et al. (1997a and 1997b). Losses over

the two seasons, including the drought season in 1992/93, ranged from 30 -48% of the potential

yield (as determined by the application of fungicides) at both sites (see Table 8.9).
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Table 8.9: Summary of fungicide yield loss data, based on Tables 8.1 - 8.4

GLS (%) Yield
" Location Season —- — ~ — —— Loss (%)

Fungicides Control Difference

Cedara 1992/93 4 - 3 3 84 51 45

90 36 38

Greytown 1992/93 1 - 3 41 38 30

38 25 48

Table 8.10:- A summary of the economic losses as determined from the grain yield of non-

sprayed control plots for the 1992/93 and 1993/94 seasons at Greytown and Cedara,

based on Tables 8 .1 -8 .4

1992/93

1993/94

1992/93

1993/94

4 -

26-

1 -

3 -

33

54

3

13

Season

1992/93

1993/94

Mean

Greytown

1554

1726

1640

Economic loss (R ha1)

Cedara

2278

1919

2098

Mean

1916

1822

1869

Table 8.10 summarises the estimated economic losses, based on the fungicide trials, over

locations and seasons. These losses were determined using the average maize price obtained by

the farmer in KwaZulu-Natal for the 1996. It is assumed that the maize grain price will be

similar in 1997. The economic value of the grain yield losses ranged from Rl 554 to R2 278

ha'1 over locations and seasons. The average economic loss at Greytown was Rl 640 ha"1 and

at Cedara was R2 098 ha"1. It was surprising to note that the mean grain yield loss during

1992/93 was 90 kg ha4 (R58 ha'1) more than during the 1993/94 season. This was largely due

to the lower yield loss at Cedara than at Greytown during the 1993/94 season. This is likely

to be the result of the fungicide treatments not completely controlling GLS (Table 8.2 and 8.4).

The mean loss, over both locations and seasons, to the farmer was Rl 869 ha"1 (2.875 t ha"1).

On farms growing 100 ha of maize (many commercial farmers in KwaZulu-Natal produce in

excess of this) this translates into a loss of R186 900 per annum. Such losses could be

financially disastrous.

The cost of each fungicide application is R195.09 ha'1 or equivalent to 300 kg ha"1 of grain yield
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at the current producers price of maize at R650 ha'1 (Table 8.11). Should a farmer have to

apply fungicide three times during the season, the cost would be R585.27 ha'1 or 900 kg ha"1 of

grain. Based on the estimated value of grain losses due to GLS in Table 8.9, controlling GLS

on susceptible hybrids with fungicides is of economic benefit to the maize farmer. The risks

and timing of fungicide application are dealt with in detail by Ward et al. (1997b).

Table 8.11: Application costs of registered fungicides to maize in the Winterton and Karkloof

regions of KwaZulu-Natal in 1995/96

Fungicide

Carbendazim/difenoconazole

Carbendazim/fiusiiazole

Carbendazim/flutriafol

Mean

Harvesting '
(R f )

28.73

28.73

28.73

28.73

Fungicide
(R ha1)

128.18

97.47

91.92

105.86

Application b

(R ha1)

60.50

60.50

60.50

60.50

Total

217.41

186.70

181.15

195.09

* Harvesting costs include labour and mechanical costs of R26.12 for 1995/96 plus an estimate of 10%
inflation for 1995/96.

* Application costs includes labour and mechanical costs of R55.00 for 1995/96 plus an estimate of 10%
inflation for 1995/96.

Grain yield losses do vary between locations and seasons, but such variation is not as large as

expected (the range is from 30.1 - 47.9%). A further factor to note is that not all fungicides

were consistently effective in controlling GLS over locations and seasons, although grain yield

was always significantly better than the non-sprayed control. However, this is likely as a result

of the differences in concentration of active ingredients used at the two locations.

Carbendazim/flutriafol, difenoconazole, flutriafol and benomyl were applied at higher rates of

active ingredients at Cedara than at Grey town. These fungicides were more effective at Cedara

than at Greytown. Benomyl and difenoconazole were less effective with a higher inoculum

pressure at Cedara during 1993/94 than in 1992/93. Difenoconazole and carbendazim/flutriafol

were more effective in controlling GLS under a higher inoculum pressure during 1993/94 than

during 1992/93 at Greytown. Carbendazim/flusilazole was applied at a lower rate of active

ingredients at Cedara than at Greytown and was the most consistently effective fungicide

(regardless of concentration) with a grain yield loss range between 1.0-8.1%.

Grain yield losses for individual hybrids, as determined by regressions analysis, ranged from

13% - 37% (Table 8.7). However, when the hybrids were grouped into either susceptible or
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more resistant groups overall, the susceptible group had a mean grain yield loss of 37% and the

more resistant hybrids a mean grain yield loss of 5%. Although there are differences in yield

loss between the two methods of determining yield losses through regression analysis, the results

are not dissimilar. Differences in grain yield losses existed between Grey town with 12% overall

(28% and 4% yield loss for the susceptible and more resistant groups, respectively) and Cedara

with 24% overall (45% and 9% for the susceptible and more resistant groups, respectively).

Such large differences were not apparent in the fungicide trials. It is possible that other

diseases, such as Puccinia sorghi Schw., Exserohilwn turcicum (Pass.) Leonard & Suggs and

a Phaeosphaeha sp., that were more prevalent and severe at Greytown than at Cedara, could

have had a confounding effect. However, at the time it was thought that the incidence and

severity of these diseases did not warrant separate assessment.

When each hybrid's grain yield loss was determined, the losses were very similar in ranking to

that of the percentage leaf area lost due to GLS. If the individual percentage yield losses for

each percentage increase in GLS are examined in isolation, some of the highest yield losses

appear to be from the more resistant hybrids, e.g. PAN 6479. However, when this factor is

used in conjunction with the total leaf area lost due to GLS, grain yield loss is then the second

lowest at 14%. PAN 6364, SNK 2950 and CRN 4605 showed lower yield loss per percentage

increase in disease, but had a high yield loss due to the severity of GLS. This is an indication

of tolerance by some hybrids to GLS, showing that it is important to look at all information

before drawing conclusions about grain yield loss.

The variation in the estimate of grain yield loss for hybrids is from 1.286 t ha'1 (with a range

of 0.730 - 1.841 t ha'1) to 4.032 t ha"1 (with a range of 2.818 - 5.248 t ha"1). This converts to

R835.90 ha1 (with a range of R474.50 - Rl 196.65 ha1) to R 2 620.80 (with a range of

Rl 831.43 - R3 411.09 ha'1). The range in economic losses for these hybrids indicates that:

i) there is a large amount of variation in the levels of resistance to GLS,

ii) the hybrids with the greatest level of resistance to GLS can still show economic

losses,

iii) the use of fungicides to control GLS may not always be economically viable, with

the inherent level of GLS resistance being a critical factor, and

iv) there is no doubt about the economic viability of controlling GLS through the use

of fungicides on susceptible hybrids. Multiple applications of fungicides can also

be economically justified.
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The hybrids with a high level of GLS resistance should only be sprayed if the inoculum pressure

is high and infection takes place near anthesis or earlier (each fungicide application costs the

equivalent of a minimum grain yield increase of 300 kg ha1). Given ideal conditions for GLS

development, it is unlikely that multiple applications of fungicide are economically justified.

It is not possible to provide clear GLS fungicide control guidelines to farmers due to the large

number of variables involved. Based upon the above information, it can be recommended that

GLS-resistant hybrids, adapted to the given region, be utilized in conjunction with other

agronomic practices that reduce the severity or duration of a GLS epidemic. This includes the

stringent use of fungicides. If a susceptible hybrid is planted in a high risk GLS region, then

at least two fungicide applications will have to be made during the course of the season.

The decision to apply fungicides will have to be made by each farmer after considering:

i) the risk of a GLS epidemic on the farm

ii) the level of GLS resistance of the hybrid/s planted

iii) the growth stage at which GLS is first observed

iv) the amount of time left to physiological maturity

v) the prevailing weather conditions and the risk of the epidemic continuing.

Due to the large number of variables involved when applying fungicides, genetic resistance to

GLS is the preferred and more simple management practice that should be followed.

It is apparent from these trials that if GLS is not adequately controlled there will be a large

increase in lodging adding to the grain yield losses sustained. The fungicide trial showed that

lodging increases of 100% can occur in susceptible hybrids grown without any GLS control.

This would have a significant impact on the harvestable yield should mechanical harvesting be

practised. Having to pick up the remaining unharvested grain by hand would impact on the

profitability of the operation.

Grain yield losses in the USA were usually up to 30%, but yield losses as high as 79% have

been reported (Hilty et al., 1979; Latterell and Rossi, 1983; Ayres et al., 1985; Stromberg and

Donahue, 1986; Smith, 1989; Nutter et al., 1995; Jenco, 1995). The grain yield losses found

in KwaZulu-Natal, South Africa, are larger than the yield losses usually reported from the USA

as a whole but were similar to those found in Virginia (Stromberg and Donahue, 1986). This

shows that maize in South Africa is currently more severely affected by GLS than maize in the
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USA. Yield losses in excess of those reported in these trials have been found in South Africa

(Ward et al., 1993; Ward and Nowell, 1997; Ward et al., 1997b). This is an economically

important disease in South Africa and new management practices will have to be introduced to

minimise the effect GLS has on local maize production.
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CHAPTER 9

The Use of Fungicides to Control Grey Leaf Spot on Maize in South Africa 15

ABSTRACT

Grey leaf spot (GLS) disease has caused significant annual grain yield losses in the maize

industry in KwaZulu-Natal, South Africa, in the relatively short period that the disease has been

present. As there are no commercial hybrids immune or highly resistant to the disease and

alternative measures such as crop rotations and tillage practices have limited effects, fungicides

are currently the main option available for the control of the disease. This study was to

determine which fungicides and fungicide mixtures most effectively controlled GLS. Separate

trials were conducted at Greytown and Cedara in the 1992/93 and 1993/94 seasons. The range

of fungicides tested at Greytown was more extensive and these trials were also assessed for

GLS, northern corn leaf blight (NCLB) and common rust incidence. In 1992/93, a trial was

conducted at Cedara to determine the effect of different fungicides rates on the efficacy of GLS

control. In both seasons and sites, most fungicides were able to reduce the incidence of GLS

significantly. Protectant fungicides were generally less effective than systemic fungicides.

Copper fungicides were phytotoxic to maize. Fungicides of the triazole group and mixtures of

the benzimidazoles and triazole fungicides were highly effective. These provided superior

disease control, longer duration of control and higher grain yield responses. The combination

of these two fungicide groups, with their different modes of action, not only provides excellent

control of GLS but offers the theoretical benefit of slowing down the probable development of

resistance to the fungicides by the pathogen. The recommended rates of fungicides tested

resulted in the optimum control of GLS and significantly higher grain yields. Lower rates

resulted in significantly more disease and lower grain yields.

13 The data from the Cedara trials only (co-operative trials conducted by J.M.J. Ward) has been accepted for
publication and will be published as: Ward, J.M.J., Laing, M.D. and Nowell, D.C. 1997. Chemical
control of maize grey leaf spot. Crop Protection 16 (In Press).
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9.1 INTRODUCTION

Grey leaf spot (GLS) is caused by the fungus Cercospora zeae-maydis Tehon and Daniels. The

disease, first observed in 1988 in KwaZulu-Natal, has since spread rapidly throughout the

province and to neighbouring provinces. According to Smith (1989), there can be few diseases

of major crops that have become a major threat to economical crop production as rapidly as has

GLS of maize (Zea mays L.). In 1990/91, severe economic damage to maize was reported for

the first time in KwaZulu-Natal (Ward and Nowell, 1997).

Early infection of maize by C. zeae-maydis results in significant leaf blighting and premature

death of the maize plant which significantly affects yield (Stromberg and Donahue, 1986; Nutter

et al, 1995). Hilty et al. (1979), Latterell and Rossi (1983), Ayres et al. (1985), Smith (1989)

and Jenco (1995) reported that GLS can cause grain yield losses of up to 79%. However, grain

yield losses are usually from 0 - 30% (Hilty et al; 1979; Latterell and Rossi, 1983; Ayres et

al., 1985; Donahue et al., 1991; Lipps and Pratt, 1991; Martinson et al., 1994; Wegulo, 1994;

Jenco, 1995). Stromberg and Donahue (1986), using a disease index of 1 - 5, showed that for

each unit change in a disease index, losses can range from 0.10 - 1.06 t ha"1, depending on the

time to maturity of the hybrid. In addition, lodging ranged from 4.0 - 12.4%. Grain yield

losses in South Africa range from 0 - 60% (Ward et al., 1993; Ward and Nowell, 1997).

The only known host of C. zeae-maydis is maize and the pathogen overwinters in colonised

maize residues (Beckman and Payne, 1982; Latterell and Rossi, 1983). Not surprisingly, the

increased incidence and prevalence of GLS has been linked to monoculture maize and

conservation tillage practices that leave colonised maize residues on the soil surface (Rupe et al.,

1982; Stromberg and Donahue, 1986; Payne et al., 1987; de Nazareno et al., 1993; Anderson,

1995; Perkins et al., 1995). Tillage practices aimed at the complete burial of colonised maize

residues have been demonstrated to be a means of controlling GLS (Payne and Waldron, 1983;

Huff et al., 1988). However, more recently in the United States, the disease has been observed

to have moved from reduced tillage situations to become a problem in fields where traditional

conventional tillage is practised (Perkins et al., 1995). Rotations with non-host crops is an

alternative solution to ploughing, as the pathogen does not survive beyond a year in infected

debris (Latterell and Rossi, 1983; Stromberg, 1986). In South Africa, few farmers practise any

form of rotational cropping with maize (Channon and Farina, 1991) and rotations are unlikely

to be used as an effective means of managing GLS. Genetic resistance, a highly efficient and
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cost-effective method of control, is likely to provide the long-term solution to the problem (Lipps

and Pratt, 1989), but no high yielding commercial hybrids completely resistant to GLS are

presently available in South Africa. Chemical control measures, therefore, offer an interim

solution (Ward and Nowell, 1997). Fungicide trials in the 1991/92 season, conducted at the

Cedara Agricultural Development Institute (CADI) near Pietermaritzburg, South Africa, showed

that GLS is capable of reducing grain yields by 20 - 60%. Some systemic fungicides were

found to provide excellent control (Ward at al., 1993).

Due to the lack of effective controls measures and the significant yield losses being experienced

in Natal KwaZulu-Natal, this investigation was undertaken to establish which fungicides and

mixtures of fungicides were most effective for the control of GLS over seasons and locations.

9.2 MATERIALS AND METHODS

Greytown

The trials were conducted near Greytown (29° 02'S, 30° 37'E at an altitude of 1100m), in South

Africa. The site was conventionally tilled (mouldboard ploughed and disced) and soils were

well-drained, sandy-clay loams of the Hutton form and Doveton series (MacVicar, 1991).

Maize had been grown in this field for the past 8 years. Planting lines were drawn immediately

prior to planting when fertilizer sufficient for an eight-ton grain crop ha"1 was band applied. A

topdressing of 90 kg N ha'1 was broadcast when maize was between the eight- and ten-leaf stage.

Normal weed- and pest-control practices were followed for the two growing regions. The trials

were jab-planted by hand on 15 October 1992 and 21 October 1993 with two seeds per planting

station to PAN 6528 and PNF 6552, respectively. Both trials were planted as randomised

blocks, replicated three times. Plots were two rows, 4.4 m long and 0.9 m apart and thinned

by hand 30 days after planting to 50 000 plants ha"1. The trials were hand harvested.

Temperature and rainfall were measured during the two seasons (Tables 9.1 and 9.2).
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Table 9.1: Rainfall and temperature at Greytown for the 1992/93 and 1993/94 growing seasons

Total Rainfall (uiiu)

1992/93

1993/94

Long Term1 Total

Mean Temperature ('

1992/93 Maximum

Minimum

1993/94 Maximum

Minimum

Long Term' Mean (°

Maximum

Minimum

Jul

0.5

0

10.0

'O

21.1

3.1

21.2

5.4

C)

18.0

3.3

Aug

14.2

25.3

28.6

19.7

5.3

21.0

6.3

19.5

5.8

Sept

14.2

30.3

54.9

23.4

10.9

24.5

10.3

21.1

8.9

Oct

39.6

123.6

85.7

24.7

12.5

23.0

12.9

21.2

10.5

Nov

52.0

63.3

77.5

25.3

13.5

24.5

12.9

22.5

12.1

Dec

52.2

144.6

121.8

27.7

16.2

25.7

15.0

23.8

13.7

JiUl

114.0

115.0

124.1

27.7

15.6

25.7

15.6

24.2

14.5

Feb

97.3

75.6

99.6

25.2

15.2

IS.2

14.8

24.1

14.3

Mar

174.8

110.1

97.6

25.4

13.6

25.5

14.2

23.2

13.0

Apr

33.2

40.9

26.4

24.4

11,3

23.7

11.4

22.1

10.1

May

38.6

3.9

20.9

22.3

7.7

22.7

6.3

20.2

5.8

Jun

0.0

5.9

14.3

19.6

3.2

19.6

3.7

17.4

2.9

Total/
- M e a n

630.6

738.5

761.4

23.9

10.7

23.5

10.7

21.4

9.6

Mean of data from 1974 to 1996.

Table 9.2: Rainfall and temperature at Cedara for the 1992/93 and 1993/94 growing seasons

Total Rainfall (mm)

1992/93

1993/94

Long Term1 Total

Mean Temperature (°

1992/93 Maximum

Minimum

1993/94 Maximum

Minimum

Long Term2 Mean (°

Maximum

Minimum

Jul

4.3

0.1

15.3

O

21.4

3.5

21.1

5.3

C)

19.2

3.7

Aug

17.4

27.5

26.0

19.9

5.4

21.0

6.0

20.9

5.8

Sept

16.9

31.66

48.4

22.7

10.3

24.1

9.9

22.3

8.7

Oct

34.2

132.7

85.2

" 24.2

11.1

21.5

12.5

22.6

10.7

Nov

82.6

68.1

109.9

24.5

12.4

23.9

12.6

23.5

12.3

Dec

68.7

161.5

128.8

26.1

15.3

24.5

14.3

24.7

13.7

Jan

69.2

206.3

133.5

26.7

15.3

24.9

14.8

25.0

14.8

Feb

108.1

126.8

123.7

25.1

14.9

24.4

14.4

25.0

14.8

Mar

11.9

112.8

112.9

25.0

13.7

24.5

13.4

24.3

13.6

Apr

25.0

37.2

50.5

23.8

10.7

22.7

11.4

22.7

10.6

May

7.6

15.6

27.4

23.1

7.5

22.0

6.7

20.8

6.7

Jun

0

3.5

15.1

19.8

3.1

18.8

2.9

19.0

3.7

Total/
Mean

548.9

923.7

876.7

23.5

10.3

22.8

10.4

22.5

9.9

Mean of data from 1914 to 1996.

Mean of data from 1917 to 1996.
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Fungicides were first applied two weeks before flowering. Systemic fungicides were applied

three times at 14 day intervals. Protectant fungicides were applied five times at 7 day intervals.

The number and concentrations of fungicides applied are shown in Table 9.3. Fungicides were

applied at 2 bar pressure in 400£ ha'1 by knapsack sprayer. Carboxin was a granulated fungicide

(Vitavax 4G) which was applied to the soil at planting in 1993/94.

Table 9.3 Fungicide application rates as grams active ingredient ha'1 per application for all

trials in 1992/93 and 1993/94 seasons

Treatment

Benomyl

Carbendazim

Carbendazim/difenoconazole

Carbendazim/flutriafol

Carbendazim/flusilazole

Carboxin

Chlorothalon.il

Copper Exp.

Cupric hydroxide

Difenoconazole

Exp. I1

Exp. 21

Exp. 3'

Fluazinam

Flusilazole/carbendazim

Flusilazole

Flutriafol

Iprodione SC

Iprodione WP

Mancozeb

Oxycarboxin

Propiconazole

Tebuconazole

Thiophanate methyl

Vinclozolin

1992/93
Rates

250

250/125

75

125

125

Cedara

1992/93 &
1993/94

375

382.5

125/62.5

187.5/117.5

187.5/93.8

85.4

87.5

Unknown

250/125

156.25

250

250

Greytown

1992/93

250

250

150/90

250/125

1000

75

250/125

125

500

1600

250

250

250

1993/94

250

250

150/90

250/125

80

1000

85.4

1540

75

Unknown

Unknown

175

250/125

125

125

500
500

1600

400

250

250

480

250

1 These were experimental fungicides and the chemical companies did not release the names of the active ingredients.
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In 1992/93, the trial was assessed for GLS and common rust (caused by Puccinia sorghi Schw.)

90 and 125 days after planting, and the days from planting to 80% dry husks was determined.

In 1993/94, the trial was assessed 95, 113 and 133 days after planting for GLS and northern

corn leaf blight (NCLB - caused by Exserohilum turcicum [Pass.] Leonard & Suggs), and the

percentage prematurely dead plants determined 145 days after planting. In both years, the trials

were assessed for prolificacy and grain yield at harvest.

Cedara

Three trials were conducted at the CADI (29° 31'S, 30° 17'E at an altitude of 1070 m) near

Pietermaritzburg. Trials to evaluate various fungicides (Fungicide Evaluation 92/93 and 93/94)

were conducted in 1992/93 and 1993/94. A third trial studying the rates of application of

selected fungicides (Fungicide Rates 92/93) was conducted in 1992/93. Maize had previously

been grown on the sites before the first trials were undertaken in 1992/93. The trials were no-

till planted with a John Deere 7000 four-row, Max-Emerge planter at a rate of 50 000 seeds ha'1,

to RS 5206 (a GLS-susceptible hybrid). Final plant density was 47 500 plants ha"1 in both

seasons. Fertilizer sufficient for an eight-ton grain crop ha'1 was band-applied at planting. A

top-dressing of 100 kg N ha"1 was broadcast when maize was knee-high. Normal pest- and

weed-control practices for the area were followed. Plots comprised eight, 9.0 m rows spaced

0.75 m apart. The Fungicide Evaluation 92/93 and 93/94 trials were planted in randomised

complete blocks designs, replicated three times in 1992/93 and four times in 1993/94. The

Fungicide Rates 92/93 trial comprised four replications in a factorial design. The central four-

rows of each plot were sprayed with the fungicides, and the central two, 8.0 m rows were hand-

harvested.

The Fungicide Rate 92/93 trial was planted on 26 November 1992, and fungicide applications

were made 64 and 83 days after planting (DAP). The Fungicide Evaluation 92/93 trial was

planted on 26 November 1992 and fungicides applied 76 and 104 DAP. The Fungicide

Evaluation 93/94 trial was planted on 17 November 1993 and fungicides applied 72 and 98

DAP. The concentrations of fungicides applied are shown in Table 9.3. The fungicides were

applied with a CO2-pressurised knapsack sprayer fitted with a vertically-mounted spray-boom

with three Whirlrain 14" WRW2-200 nozzles spaced one metre apart. Full cover sprays of 450£

ha"1 were applied to each maize row.

Percentage leaf area loss due to GLS, based on whole plant standard area diagrams described
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Ward et al. (1997), were used as a guide in estimating disease severity. Assessments were made

regularly on plants in the centre of the two middle-rows of each plot, commencing at first signs

of disease until the crop was physiologically mature. Disease was first observed in the trials 69

DAP in 1992/93 and 59 DAP in 1993/94. One thousand kernel weights were made for the rate

of fungicide application trial by weighing 1 000 kernels taken from grain samples at 12.5%

moisture and were expressed in grams.

At both locations, these data were used in calculating the area under the disease progress curve

(AUDPC) using a trapezoidal integration program (Berger, 1981). " The AUDPC was

standardised (SAUDPC) by dividing the AUDPC by the number of days over which the

assessments were under taken. This allowed for more meaningful comparison over locations

and between seasons.

In addition, these data were transformed to fit the logistic model (used to estimate the duration

of fungicide control). Infection rates were calculated using the formula (Vanderplank, 1963):

1 , , x ,
r = - l n ( - )

t 1-x

From the logistic models, the effective periods of fungicide were calculated. The effective

period was determined from the time of fungicide application until the fungicide was no longer

effective in controlling the spread of the pathogen.

Grain yields were expressed in t ha"1 at 12.5% kernel moisture. The data was analysed using

Genstat Version 5.31 (Rothamstead Experimental Station) and data was transformed when

appropriate. Statistical analysis of trial data were conducted using an analysis of variance

(ANOVA) and mean separations were based on LSD at the 5% level of probability (Greytown)

or Duncan's Multiple Range tests (Cedara) of significance. In order to make meaningful

comparisons between fungicide groups or types, orthogonal contrasts were made.

A wide range of fungicides were selected for testing at Greytown with the primary objective

primarily determining their efficacy against C. zeae-maydis, but also against P. sorghi, E.

turdcum and Stenocarpella ear rot. At Cedara the number of fungicides per trial were limited,

and the fungicide entries were determined by their commercial availability to the farmer for GLS

control. In some cases pre-registration products were also included.
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9.3 RESULTS

Results are presented in Tables 9.4 - 9.9 and Figures 9.1.

1992/93

Grey town

From Table 9.4 it can be seen there were highly significant differences between infection rates

(r) for the different fungicides. Only chlorothalonil and benomyl did not differ significantly from

the non-sprayed control. The carbendazim/flutriafol fungicide resulted in the lowest infection

rate but ten fungicides were in the same significance group. The carbendazim/triazole

combination fungicides had the lowest infection rates. Carbendazim alone was significantly

different from the non-sprayed control but not as effective as the triazole and

triazole/carbendazim fungicides.

When SAUDPC was used to measure differences in response to fungicide application, all

fungicide treatments resulted in significantly less GLS than the non-sprayed control. A number

of fungicides, including mancozeb, chlorothalonil and benomyl, were in a least effective group.

All triazole fungicides and the carbendazim/triazole combination fungicides were in a most

effective group.

All fungicides, except benomyl, resulted in significantly less GLS than the non-sprayed control

at Greytown. Chlorothalonil, mancozeb and carbendazim resulted in significantly less GLS than

the non-sprayed control but not significantly less than benomyl. Iprodione, benomyl 2N and

tebuconazole resulted in significantly less GLS than both the non-sprayed control and benomyl

but were not significantly different from the previously mentioned group. Propiconazole,

vinclozolin, difenoconazole, difenoconazole 2N, propiconazole 2N and carbendazim/flusilazole

resulted in significantly less GLS than the non-sprayed control, benomyl and chlorothalonil, but

not significantly different from the other fungicides mentioned previously. The most effective

fungicides were those belonging to the triazole and benzimidazole/triazole fungicide groups.
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Table 9.4: Grey leaf spot (GLS) (r values, AUDPC and final percentage severity), northern corn

leaf blight (NCLB), days to 80% dry husks, prolificacy and grain yield (t ha"1) results

for various fungicides applied to PAN 6528 planted in Greytown during 1992/93

Treatment

Tebuconazole 2N

Tebuconazole

non-sprayed control

Propiconazole 2N

Difenoconazole 2N

Chlorothalonil

Vinclozolin

Mancozeb

Benomyl

Propiconazole

Difenoconazole

Carbendazim/flusilazole

Benomyl 2N

Flutriafol

Iprodione

Carbendazim

Flusilazole/carbendazim

Carbendazim/flutriafol

Flusilazole/carbendazim 2N

Flusilazole

Mean

L.S.D.O05

%C.V.

Infection
rate (xlOO)

3.93 gh

8.20 cde

13.53 a

6.50 efg

7.03 defg

10.70 abc

8.63 cde

9.47 bcde

12.30 ab

7.13 defg

7.87 cdef

7.10 defg

9.77 bed

4.40 gh

9.50 bcde

10.07 bed

5.03 fgh

2.93 h

4.80 fgh

4.40 gh

7.67

3.44

27.1

GLS

SAUDPC

1.09 e

3.85 cde

19.14 a

2.12 e

2.12 e

7.55 c

4.09 cde

7.55 c

11.99 b

2.37 e

2.86 de

2.12 e

6.81 cd

0.90 e

5.08 cd

6.81 cd

1.13 e

0.59 e

1.09 e

0.89 e

4.51

4.33

58.1

%GLS

1.27 fgh

2.23 cdefgh

5.10 a

1.72 efgh

1.77 efgh

3.20 be

2.35 def

3.08 bed

4.06 ab

1.84 efgh

2.03 defgh

1.72 efgh

2.92 cd

1.15 gh

2.64 cde

2.98 bed

1.34 fgh

1.05 h

1.29 fgh

1.22 gh

2.24

1.08

29.1

%
NCLB

0.71 e

0.71 e

2.39 a

0.71 e

0.71 e

0.80 de

1.45 b

1.08 cd

0.73 e

0.71 e

0.71 e

0.71 e

0.71 e

0.71 e

1.56 b

0.71 e

0.71 e

0.73 e

0.71 e

0.71 e

0.90

0.30

20.5

Prol

0.526 a

0.767 b

0.953 cd

0.956 cd

0.930 cd

0.951 cd

0.950 cd

0.984 cd

1.016 cd

0.983 cd

0.953 cd

0.933 cd

0.950 cd

0.886 bed

1.017 cd

0.982 cd

1.070 d

0.900 be

0.929 cd

1.018 cd

0.933

0.150

9.8

Yield

4.09 a

6.89 b

7.04 b

7.64 be

8.24 bed

8.35 bed

8.49 bed

8.56 bed

8.66 bed

8.75 bed

8.75 bed

8.84 bed

8.96 cd

8.98 cd

9.04 cd

9.16 cd

9.36 cd

9.37 cd

9.46 cd

9.65 d

8.41

1.98

14.1

AUDPC - area under the disease progress curve
%GLS - percentage leaf area lost due to C. zeae-maydis (/(x+0.5) transformation).
%NCLB - percentage leaf area lost due to northern corn leaf blight - E. turcicum C^(x+0.5) transformation).
Prol - number of ears per plant.
Yield - grain yield in t ha'1

Means separation by L.S.D.. Means with the same letter do not differ at the p£0.05 level.
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Table 9.5: Grey leaf spot disease severity, infection rate, AUDPC values, effective period of control and grain yield (t ha1) for various fungicides during the
1992/93 and 1993/94 seasons at Cedara

Treatment

non-sprayed control

Bcnomyl

Di fenoconazole

Flutriafol

Carbendazim/flutriafol

Carbendazim/flusilazoie

Flusilazole/carbendazim

Propiconazole

Tebuconazole

Flusilazole

Exp. 3

Copper exp.

Carbendazim/difenoconazole

Carbendazim

Mean

L.S.D. (0.05)

%CV

%GLS'

92/934

83.7 a

18.1 cde

32.5 c

12.5 de

7.6 de

4.2 e

8.9 de

23.1 cd

53.7 b

11.9 cde

25.6

17.1

32.4

i

93/94

90.0 a

28.1 c

53.8 b

34.7 c

33.1 c

26.2 c

35.0 c

87.5 a

25.6 c

28.8 c

44.2

13.3

14.6

Grey

Infection
rate (r x 100)

92/93

16.52 a

6.90 be

7.37 be

6.87 be

6.35 be

4.30 c

5.57 cc

7.20 be

9.70 b

6.37 be

7.72

3.26

29.1

93/94

10.90 a

5.87 d

7.45 b

6.57 bed

7.25 be

6.07 cd

7.20 be

11.50 a

6.32 bed

6.65 bed

7.58

1.24

11.3

leaf spot

SAUDPC1

92/93

41.78 a

8.34 de

15.79 c

8.11 def

6.50 ef

4.74 f

6.90 ef

11.10 d

25.29 b

8.64 de

13.72

3.57

17.9

93/94

51.71 a

9.15 e

18.51 c

12.27 de

9.00 e

9.72 e

12.38 de

39.39 b

10.13 e

7.18 e

17.94

5.87

22.6

Effective period of
control'

(days)

92/93

0.00 a

21.00 cd

10.00 b

13.50 be

28.25 de

30.75 e

22.75 de

20.50 cd

3.00 ab

25.25 de

17.50

9.10

35.8

93/94

0.00 a

18.00 be

14.00 b

18.50 bed

21.00 bed

26.00 de

14.50 b

5.75 a

25.25 cde

29.75 e

17.27

7.55

30.1

% Crude
Protein

92/93

9.995 a

9.313 c

9.775 ab

9.620 abc

9.485 be

9.502 be

9.575 be

9.743 ab

9.788 ab

9.438 be

9.623

0.411

2.1

Grain yield

Grain

92/93

4.227 a

7.319 c

7.731 c

7.723 c

7.568 c

7.727 c

6.882 be

7.580 c

5.913 b

7.948 c

7.062

1.274

8.8

yield

93/94

4.858 a

6.964 b

7.205 b

6.995 b

7.810 b

7.411 b

7.050 b

4.482 a

7.561 b

7.456 b

6.874

1.348

9.7
' Final disease severity is percentage leaf-blighting near physiological maturity.
3 Duration of fungicide control, calculated from the logistic model.
Means separation by L.S.D.. Means with the same letter do not differ at the p 50.05 level.

SAUDPC - standardised area under disease progress curve.
Values followed by the same letter in the same column are not significantly different (P = 0.05).
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Table 9.6: The infection rate (r values), AUDPC values, effective period of control and grain yield (t ha1) for different rates of application for
different fungicides during the 1992/93 season at Cedara

Treatment

non-sprayed control

Benomyl

Difenoconazole

Flutriafol

Carbendazim/flusilazole

Flusilazole/carbendazim

Mean

L.S.D.OO5 between fungicides

L.S.D.o.os between rates

L.S.D.OO5 within rates and fungicides

%C.V.

Notes:

1 Rates at which fungicides

Infection '.

0.5

9.07

5.67

5.67

5.93

5.57

6.37

6.38 a

1.05

0.69

2.05

17.7

were applied

1

9.07

5.63

3.77

5.27

4.13

4.80

5.44 b

Rate (r

2 "

8.73

4.30

4.80

3.53

4.13

3.57

4.84

xlOO)

' Mean

8.96 a

5.20 b

4.74 b

4.91 b

4.61 b

4.91 b

b 5.56

(see Table 9.3): 0.5
1
2

0.5

2113

692

619

642

567

761

899 a

197

129

384

23

=

AUDPC

1

2193

602

408

512

357

458

755 b

.7

2 '*'

2061

432

450

335

359

345

664 b

Mean

2122 a

575 b

493 b

496 b

428 b

521 b

773

half the recommended rate
the recommended rate
double the recommended rate

0.5

75.2

20.0

20.8

9.3

16.5

12.5

25.7 a

7.9

5.2

15.0

36.6

1

75.0

9.3

15.0

3.3

4.7

9.0

19.4

GLS

2 ''*

66.7

2.3

7.3

4.8

8.3

3.3

b 15.5 b

Mean

72.3 a

10.6 be

14.4 b

5.8 c

9.8 be

8.3 be

20.2

2 r values = logistic rate of increase in GLS xlOO.

Means separation by L.S.D.. Means with the same letter do not differ at the p<^0.05 level.
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Table 9.7: The effective period of control and grain yield (t ha"1) for different rates of application for different fungicides during the 1992/93

season at Cedara

Treatment

non-sprayed control

Benomyl

Di fenoconazole

Flutriafol

Carbendazim/flusilazole

Flusilazole/carbendazim

Mean

L.S.D.ooj between fungicides

L.S.D.OO5 between rates

L.S.D.005 within rates and
fungicides

%C.V.

Effective Period

0.5

0.00

55.67

64.67

58.33

63.33

52.33

49.06 a

5.55

3.64

10.83

9.9

1

0.00

58.67

63.67

62.67

68.33

62.33

52.61 ab

of Control (days)

2<»

0.00

66.00

63.00

69.00

66.67

69.67

55.72 b

Mean

0.00 a

60.11b

63.78 be

63.33 be

66.11 c

61.44 be

52.46

0.5

5.889

7.022

8.096

7.521

8.156

7.575

7.374 a

0.771

0.506

1.504

9.1

Grain

1

5.659

8.229

9.137

9.309

8.672

8.424

8.238 b

Yield

2 ^

6.159

8.033

9.024

8.610

8.684

9.059

8.261 b

Mean

5.903 a

7.762 b

8.752 c

8.480 be

8.504 be

8.353 be

7.959

Notes:

1 Rates at which fungicides were applied (see Table 9.3): 0.5 = half the recommended rate
1 = the recommended rate
2 = double the recommended rate

Means separation by L.S.D.. Means with the same letter do not differ at the p ^0.05 level.
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Figure 9.1: The effect of rate of application of different fungicides on disease severity { ) and grain yield (kg ha1)
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Although the levels of northern corn leaf blight (NCLB) were not as high as the GLS, all

fungicides significantly reduced the %NCLB when compared to the non-sprayed control. Of

the fungicides, iprodione and vinclozolin (dicarboximide group of fungicides) were the least

effective in controlling NCLB. Benomyl, chlorothalonil, mancozeb and carbendazim/

flutriafol controlled NCLB significantly better than the dicarboximides. Only mancozeb was

significantly less effective in controlling NCLB than all the remaining fungicides, which were

not significantly different from each other.

Maize treated with tebuconazole 2N was significantly less prolific than all* other treatments.

Tebuconazole-treated maize only had 0.767 ears plant"1 but was not significantly different

from the flutriafol and carbendazim/flutriafol treatments.

Tebuconazole 2N resulted a significantly lower grain yield than all other treatments. The

non-sprayed control did have a low grain yield but was not significantly different from a

large number of fungicide treatments, including tebuconazole. Benomyl 2N, flutriafol,

iprodione, carbendazim, carbendazim/flutriafol, flusilazole/carbendazim, flusilazole and

flusilazole/ carbendazim 2N resulted in a significantly greater grain yield than the non-

sprayed control. The trend was clear that systemic fungicide treatments, except for

tebuconazole, resulted in a higher grain yield than the non-sprayed control. Although

application of protectant fungicides to maize resulted in increase in grain yields, they were

not significantly different from the non-sprayed control.

Cedara

Comparison of the infection rates (Table 9.5) show that all fungicides significantly reduced

the rate of increase of the epidemic. However, there were no significant differences between

the fungicides.

From the SAUDPC values (Table 9.5), it is apparent that all fungicides resulted in

significantly less GLS than the non-sprayed control, the least effective being tebuconazole.

The most effective treatments were flutriafol and the triazole/benzimidazole combination

fungicides.

From Table 9.5 it can be seen that all fungicide treatments significantly reduced the severity

of GLS. Of these fungicides, the least effective were tebuconazole and difenoconazole. The
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most effective treatments were the triazole/benzimidazole combination fungicides.

The percentage crude protein was determined (Table 9.5) and benomyl, flusilazole and the

triazole/carbendazim fungicides were found to significantly reduce the amount of crude

protein compared to the non-sprayed control. The lowest percentage crude protein was

recorded for the benomyl treatment, which did not differ significantly from flusilazole and

the triazole/benzimidazole combination fungicide treatments.

All fungicides resulted in a significant increase in grain yield (Table 9.5) when compared to

the non-sprayed control. The least effective treatments were the flusilazole/carbendazim and

tebuconazole treatments. Only the tebuconazole treatment had significantly less grain yield

than the other fungicides, except for flusilazole/carbendazim.

Infection rates in the Fungicide Rates 92/93 trial were all significantly lower for all

fungicides compared to the non-sprayed control (Table 9.6 and Figure 9.1). There were no

significant differences between fungicides. However, both the mean for the IN and 2N rates

of fungicides had significantly lower infection rates than did the mean for the 0.5N rates.

There were significant differences in infection rates between the 0.5N and IN rates for the

fungicides, but not for benomyl and flutriafol. There were no significant differences in

control between the means for the IN and 2N rates, with the flutriafol and

flusilazole/carbendazim treatments being most effective at the 2N rates.

The AUDPC values resulted in similar trends as for the infection rates (Tables 9.6).

The GLS readings (Table 9.6) showed all fungicides to significantly reduce GLS to levels

below that of the non-sprayed control. The least effective fungicide in controlling the GLS

was difenoconazole, which was significantly worse than flutriafol only. The other fungicides

did not show significant differences amongst themselves. In all cases, except

flusilazole/carbendazim, the increase in fungicide rates from 0.5N to IN resulted in

significantly less GLS. Benomyl, flusilazole/carbendazim and difenoconazole were

significantly more effective at the 2N rates.

The effective period of control showed that there are significant differences in efficacy

between fungicides (Table 9.7). The longest period of control was obtained by the
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application of carbendazim/flusilazole, and this treatment was significantly better than the

benomyl treatment. A common trend was that increased rates of fungicides resulted in

increased periods of control, especially for flusilazole/carbendazim. The effective period of

control for the 0.5N rate was significantly smaller than for the IN rate at the 7% level of

significance. The 2N rate resulted in significantly less GLS than the 0.5N rate. The rate

at which difenoconazole and carbendazim/flusilazole was applied did not have a significant

effect on the duration of control.

All the fungicides applied, and at all rates, resulted in a highly significant increase in grain

yield (Table 9.7). The least effective of the fungicides was benomyl but the grain yield

differed significantly only from difenoconazole. Grain yield increased from 31.3% - 48.3%

for the various fungicides when compared to the non-sprayed control. There was a

significant increase in grain yield when the rates were increase from 0.5N to IN but no

further increase occurred when the rates were increased to 2N.

1993/94

Greytown

The more conducive weather conditions resulted in higher infection rates than for the

1992/93 season (Table 9.8). The infection rate for the carboxin treatments was not

significantly different than that for the non-sprayed control. Although the copper fungicides

had significantly lower infection rates than the non-sprayed control, the infection rates were

significantly higher than for all other treatments, except iprodione WP and oxycarboxin. All

the treatments containing either a triazole or benzimidazole, or the combination, resulted in

a significantly lower infection rate than the other treatments. The triazole/benzimidazole

combination fungicides resulted in the lowest infection rates. The protectant fungicides,

chlorothalonil and mancozeb, resulted in a significantly lower infection rate than the non-

sprayed control and some of the more systemic fungicides. Iprodione SC resulted in a

significantly lower infection rate than did the iprodione WP treatment.
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Table 9.8: Grey leaf spot (GLS) (r values, AUDPC and final percentage severity), common

rust, percentage prematurely dead plants, prolificacy and grain yield (t ha"1) results

for various fungicides applied to PNF 6552 planted in Greytown during 1993/94"

Treatment

Cupric hydroxide

Copper Exp.

Fluazinam

Chlorothalonil

Iprodione SC

Carboxin

non-sprayed control

Vinclozolin

Oxycarboxin

Mancozeb

Propiconazole

Exp. 2

Thiophanate methyl

Flusilazole/carbendazim

Carbendazim/flutriafol

Difenoconazole

Tebuconazole

Iprodione WP

Exp.l

Flusilazole

Carbendazim

Benomyl

Carbendazim/ flusilazole

Flutriafol

Mean

L.S.D.MJ

%c.v.

Infection
rate (xlOO)

13.25 b

13.33 b

11.52 cde

10.83 de

10.18 e

15.33 a

15.28 a

11.15 d

12.10 bed

10.65 cde

6.57 gh

5.82 ghij

5.57 ghij

4.65 jk

4.65 jk

6.55 gh

8.27 f

12.83 be

4.70 ijk

6.32 ghi

6.10 ghij

7.03 fg

3.52 k

4.93 hijk

8.80

1.65

13.0

GLS

SAUDPC

11.67 be

13.73 b

4.62 fg

7.33 de

4.09 fgh

18.08 a

17.50 a

6.19 ef

7.20 de

7.37 de

1.68 hij

1.30 ij

1.17 ij

0.98 ij

0.98 ij

1.81 hij

3.15 ghi

9.45 cd

0.91 ij

1.64 hij

1.62 hij

2.19 ghij

0.5«j

1.04 ij

5.26

2.54

34.3

%GLS

6.254 ab

6.063 abc

5.155 defg

5.607 bede

4.991 efgh

6.519 a

6.485 a

5.441 cdef

5.578 bede

5.441 cdef

4.126 ijkl

3.859 jkl

3.727 jklm

3.582 klm

3.582 klm

4.223 ijk

4.779 fghi

5.854 abed

3.380 lm

3.994 jkl

4.055 ijkl

4.409 ghij

3.060 m

3.651 jklm

4.741

0.766

8.1

%?s

6.212 a

5.372 be

4.736 cd

4.943 bed

5.109 bed

5.304 bed

5.480 b

4.973 bed

4.963 bed

4.772 cd

4.740 ed

5.047 cd

4.879 bed

4.804 cd

4.802 cd

4.846 cd

4.927 bed

5.078 bed

4.922 bed

4.966 bed

5.017 bed

4.859 bed

4.695 cd

4.677 d

5.005

0.617

6.3

PreD

8.23 a

6.13 ab

3.34 de

3.65 cde

4.03 bede

5.98 ab

5.87 be

4.51 bed

4.24 bed

2.87 de

2.30 de

3.38 de

4.01 bede

3.91 bede

1.75 e

2.49 de

3.45 de

3.64 cde

1.80 e

1.92 e

2.79 de

3.15 de

2.57 de

3.91 bede

3.75

2.30

30.8

Prol

1.035

0.996

1.1101

0.992

0.992

1.099

1.090

1.136

l.oyi

1.070

1.063

1.007

1.140

1.111

1.097

1.100

1.233

1.086

1.155

1.086

1.128

1.039

1.128

1.262

1.093

n.s.

12.5

Yield

3.940 a

5.002 ab

5.473 be

5.498 be

5.581 be

5.630 be

5.653 be

5.719 be

6.029 be

6.061 be

6.099 be

6.100 be

6.296 be

6.344 be

6.429 bed

6.506 cd

6.536 cd

6.564 cd

6.632 cd

6.646 cd

6.724 cd

6.815 cd

6.939 cd

7.848 d

6.128

1.480

12.1

AUDPC - area under the disease progress curve
%GLS - AUDPC for C. zeae-maydis (log(x+0.5) transformation).
%Ps - AUDPC for common rust -P. sorghi (log(x+0.5) transformation).
PreD - percentage plants pre-maturely dead at 140 after planting (/(x + 0.5) transformation).
Prol - number of ears per plant.
Yield - grain yield in t ha ' (corrected for plant stand).
Means separation by L.S.D.. Means with the same letter do not differ at the P<0.05 level.

208



The SAUDPC values showed that the non-sprayed control and carboxin treatments were not

significantly different from each other but had significantly more GLS than did all other

treatments. The copper fungicides were the least effective of the foliar fungicide treatments.

All the treatments containing either a triazole or benzimidazole, or the combination resulted

in a significantly lower infection rate than the other treatments. The triazole/benzimidazole

combination fungicides resulted in the lowest infection rates. Iprodione SC resulted in a

significantly lower SAUDPC value than did the iprodione WP treatment.

When GLS severity is examined, the non-sprayed control, carboxin, cupric hydroxide,

copper exp. and iprodione WP were not significantly different from each other.

Chlorothalonil, oxycarboxin, vinclozolin and mancozeb reduced the GLS significantly when'

compared to the non-sprayed control. However, these treatments were not different from the

copper exp. and iprodione WP treatments. Iprodione SC resulted in significantly less GLS

than iprodione WP. The most effective fungicides, which were not significantly more

effective than each other, were thiophanate methyl, flutriafol, carbendazim/flutriafol,

flusilazole/carbendazim, exp. 1, and carbendazim/flusilazole. The most effective of these

treatment was carbendazim/ flusilazole.

The application of cupric hydroxide significantly increased the incidence of common rust

when compared to the non-sprayed control. Most of the protectants and some of the

systemic fungicides were not significantly different from the non-sprayed control. Mancozeb,

fluazinam, difenoconazole, propiconazole, Exp. 2, flutriafol, carbendazim/flutriafol,

flusilazole/carbendazim and carbendazim/flusilazole all resulted in significantly less common

rust than the non-sprayed control. The most effective treatment in controlling common rust

was flutriafol, although it was not significantly different from a number of the other triazole

and triazole/carbendazim combinations.

Both copper fungicides increased the number of prematurely dead plants when compared to

the non-sprayed control, although only cupric hydroxide caused significantly more. The most

effective treatments in reducing premature death were flusilazole, carbendazim/flutriafol and

exp. 1. However, these treatments were not significantly better than a number of other

fungicides, including mancozeb and chlorothalonil.

The prolificacy of the hybrids was not significantly affected by the application of fungicides.
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Although there were significant differences in grain yield, the differences between fungicide

treatments and the non-sprayed control were seldom significant (Table 9.5). The application

of copper fungicides to PNF 6552 resulted in a significantly reduced grain yield, particularly

when cupric hydroxide was applied. Difenoconazole, tebuconazole, iprodione WP, exp. 1,

flusilazole, carbendazim, benomyl, carbendazim/flusilazole and flutriafol all resulted in

significant increased grain yield when compared to the non-sprayed control, flutriafol being

the most effective.

Cedara

The infection rates of the fungicide treatments were all significantly lower than for the non-

sprayed control and the copper fungicide (Figure 9.2 and Table 9.6). The least effective

treatments in reducing the infection rate were difenoconazole and Exp. 3.

The SAUDPC values (Table 9.5) showed that all treatments significantly reduced the amount

of GLS present over time. The copper exp. fungicide controlled GLS significantly less than

all the other fungicide treatments. Of the triazole and benzimidazole fungicides,

difenoconazole was the least effective.

Table 9.5 shows that most fungicides significantly reduced GLS levels when compared to the

non-sprayed control. The copper exp. fungicide did not differ significantly from the non-

sprayed control. The least effective of the fungicides was difenoconazole, which resulted in

significantly more GLS than did all other treatments. The remainder of the fungicides were

equally effective.

The effective period of control differed significantly between fungicide treatments. The

copper exp. fungicide was not significantly different from the non-sprayed control.

Difenoconazole only resulted in 14 days of GLS control. The three most effective fungicides

were carbendazim/difenoconazole, carbendazim/flusilazole and carbendazim with 25, 26 and

30 days control, respectively.

All fungicides, except copper exp., resulted in significantly increased grain yields compared

to the non-sprayed control. Differences in grain yield between the remainder of the

fungicides were non-significant.
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9.3 DISCUSSION

The 1992/93 growing seasons was characterised by unusually low rainfall, with hot days

(Tables 9.1 and 9.2). It was only in mid- to late grainfill that rainfall normalised. Greytown

received significantly more rainfall in 1992/93 than did Cedara. However, the GLS epidemic

was still very late in materialising. In contrast, rainfall during the 1993/94 season was

normal at Cedara, above average in the early season at Greytown and well distributed

throughout the growing season. Cedara in 1993/94 received 185.2mm more rain than did

Greytown. Mists were abundant, especially in January and February. Temperatures were

lower than average at Cedara. The overall disease severity in the drier 1992/93 season was

significantly lower than in 1993/94. From the maximum and minimum temperatures in

Tables 9.1 and 9.2, Cedara is generally slightly cooler than Greytown. This could account

for the fact that the GLS epidemics usually start earlier and are more severe at Cedara than

Greytown.

Most fungicide treatments across both sites and seasons significantly reduced levels of GLS

leaf-blighting when compared to the non-sprayed control (Tables 9.4 - 9.5 and 9.8), the main

exceptions being copper fungicides and a carboxin granular fungicide applied at planting.

Overall, the fungicide mixtures of carbendazim and triazole fungicides provided significantly

better control of GLS leaf-blighting than single-product triazole or benzimidazole fungicides.

However, this trend was not consistent in all seasons and at both sites (Table 9.9), although

it was more consistent at Greytown. It is noteworthy that the combination fungicides resulted

in less GLS than the single product fungicides, but this benefit was not translated into

significant grain yield increases. Therefore, there is no benefit to the farmer in using

fungicide mixtures, other than to reduce the likelihood of resistance building up to the

fungicides in the pathogen. In general, the triazole fungicides were more effective in

controlling GLS than the benzimidazole fungicides (Table 9.4 - 9.8).
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Table 9.9: Significance levels of orthogonal contrasts for the comparison of various fungicide

classes at both Greytown and Cedara during 1992/93 and 1993/94

Comparison

Greytown 1992/93

Benz vs Comb

Triazoles vs Comb

Single vs Comb

IN vs 2N

V/I vs M/C

Prot vs Systemic

Cedara 1992/93

Single vs Comb

Benz vs Comb

Triazoles vs Comb

Greytown 1993/94

Benz vs Comb

Triazoles vs Comb

Single vs Comb

Cu vs O Prot

V/I vs M/C

Prot vs Systemic

Cedara 1993/94

Single vs Comb

Benz vs Comb

Triazoles vs Comb

r

£0.001

n.s.

0.002

0.068

n.s.

n.s.

0.018

n.s.

0.017

£0.001

SO.001

£0.001

£0.001

n.s.

£0.001

n.s.

n.s.

n.s.

SAUDPC

£0.001

n.s.

0.007

0.031

0.057

0.057

£0.001

n.s.

£0.001

n.s.

n.s.

n.s.

£0.001

n.s.

£0.001

n.s.

n.s.

0.007

%GLS Control

n.s.

n.s.

n.s.

n.s.

£0.001

£0.001

£0.001

n.s.

£0.001

£0.001

£0.001

£0.001

<0.001

n.s.

£0.001

n.s.

n.s,

0.023

Variate

%Et %Ps

£0.001

n.s.

0.002

0.041

n.s.

£0.001

n.s.

n.s.

n.s.

£0.001

n.s.

£0.001

Prol

n.s.

n.s.

n.s.

0.005

n.s.

n.s.

n.s.

n.s.

n.s.

n.s.

n.s.

0.025

PreD

n.s.

n.s.

n.s.

£0.001

n.s.

£0.001

Yield

n.s.

n.s.

n.s.

0.058

n.s.

n.s.

n.s.

n.s.

n.s.

£0.001

n.s.

£0.001

r = rale of increase of GLS

%GLS = % leaf area loss due to GLS

%Et = % leaf area loss due to E. lurcicum

Prol = number of ears per plant

Benz = benzimidazole fungicides

IN = the normal recommended rate of fungicide

V/I = vinclozolin and iprodione

Cu = copper fungicides

O Prot = protectant fungicides other than copper

SAUDPC = standardised area under the disease progress curve

Control = days control resulting from fungicide application

%Ps = % leaf area loss due to P. sorghi

Yield = grain yield

Comb = fungicides with more than one active ingredient

2N = twice the normal recommended concentration

M/C = mancozeb and chlorothalonil

Prot = protectant fungicides

In general, the protectant fungicides did not give as good control of GLS leaf-blighting as

systemic fungicides (Table 9.9), but did significantly reduce the amount of GLS compared

to the non-sprayed control at Greytown. This difference was also translated into a grain
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yield benefit during the 1993/94 season. In the USA, it was found that chlorothalonil, at

5.03kg a.i. ha'1, could induce phytotoxicity under conditions of drought stress, and copper

thallate consistently resulted in phytotoxicity both in the presence and absence of GLS. The

toxicity response was not hybrid specific (Rivera-Canales, 1993; Martinson and Munkvold,

1995). In contrast, phytotoxicity caused by chlorothalonil was not observed under drought

conditions in South Africa, but severe phytotoxicity due to the application of copper

fungicides was observed consistently. Not only did copper fungicides have little effect upon

the incidence of GLS, but also significantly increased the incidence of common rust. This

was possibly occurred as a result of the stress the plants experienced. The proportion of

premature dead plants also increased significantly upon the application of copper fungicides,

primarily the copper exp. fungicide.

In 1993/94, there was a significant difference between the efficacy of iprodione SC and

iprodione WP, with the former giving better GLS control but a lower yield increase. It is

possible that the SC formulation results in better uptake of the fungicide, resulting in

improved GLS control but also has a slight phytotoxic effect on the plant. A good

combination fungicide could be carbendazim and iprodione formulated as an SC. When the

efficacy of the dicarboximide fungicides were compared to that of mancozeb and

chlorothalonil at Greytown (see Table 9.9), it was only in the 1992/93 season that the

dicarboximides controlled the incidence of GLS significantly better, but with no yield benefit.

SAUDPC, AUDPC and final-disease severity were excellent parameters for evaluating

fungicide performance. These values, however, did not always relate directly to the grain

yields harvested. In this respect, the infection rate, with less definitive differences between

treatments, correlated more closely with the grain yield. However, there were cases were

the GLS blight was poorly controlled but yields were very good. Difenoconazole-treated

maize, for instance, had the worst GLS leaf-blighting of the triazole-treated plots, yet

surprisingly, produced among the highest grain yields. Benomyl, on the other hand,

provided among the best control of GLS (except Greytown in 1992/93 - Table 9.4), but

generally had the lowest grain yield. It is possible that these anomalies may be due to the

different growth-regulating properties of the fungicides evaluated. The triazole fungicides

act by sterol-inhibition and have plant-growth regulating properties (Lonsdale and Kotze,

1993). In contrast, benomyl has been shown to have no effect on maize growth when

applied alone, but in combination with chlorothalonil, reduced the number of internodes
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(Smith, 1989). A more likely explanation, however, is that triazoles control a broader

spectrum of diseases, such as common rust and NCLB, than do benzimidazoles. Common

rust was present at varying levels in all the trials conducted over both sites and seasons. It

would be of interest to determine the effects of the various fungicides on stalk rotting fungi.

In the absence of leaf diseases, the application of triazole and dicarboximide fungicides can

result in plants staying greener for up to 21 days longer than the non-sprayed controls

(Nowell, unpublished). This is referred to as the "tonic effect" by Zadoks and Schein

(1979).

At Cedara, the response of GLS to the three rates of fungicides applied was significant, with

the 0.5N rate being less effective than the higher rates applied. Figure 9.1 shows a trend for

yields to "flatten" with the application of recommended rates and double rates, except for

flusilazole/carbendazim and carbendazim/flusilazole. Flusilazole/carbendazim provided

maximum GLS control and grain yield at the highest rate. In 1992/93 at Greytown, some

fungicides were applied at both the recommended rate and at double the concentration (2N).

Although, all 2N treatments resulted in less GLS, propiconazole and difenoconazole at 2N

resulted in significantly less grain yield than the recommended rates of fungicide treatments.

In addition, tebuconazole, at both IN and 2N, resulted in less grain yield than the non-

sprayed control. This suggests that under drought conditions, these products can result in

phytotoxicity, particularly tebuconazole. This needs to be investigated further before definite

conclusions can be made.

The longest-duration of control was achieved in the drier 1992/93 season, which was less

favourable for disease. Overall, fungicide mixtures provided the longest periods of control

of all the fungicides evaluated. This parameter emphasised the poor control difenoconazole

alone provided, with GLS control lasting only 10 - 14 days. However, when combined with

carbendazim, this product gave the longest effective control of GLS.

Analysis of yield results indicate the GLS may cause yield decreases of greater than 50%.

In 1993/94 at Greytown, yield increases of 41.1% (significantly different treatment only)

resulted when fungicides were applied to a susceptible commercial hybrid. In 1992/93, the

yield increases were 68.5 - 135.9% but this was on a sister line single hybrid used in seed

production. This also partially accounts for the lower yield potential compared to the

previous season. Only three applications of systemic fungicides, starting two weeks before
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flowering, were applied at Greytown, regardless of the severity of the epidemic. This was

to simulate the actual maximum spray programmes in seed production fields. For this

reason, the fungicides did not adequately control the late epidemic and yield differences were

minimised. At Cedara, the yield increase due to fungicide application was 43.4 - 60.7% in

1993/94 and 62.8 to 88.0% in 1992/93 (significantly different treatments only).

When fungicides were applied to maize with GLS, the total crude protein yield ha"1 was

increased significantly. However, the proportion per unit mass decreased compared to an

non-sprayed control. For example, the benomyl treatment resulted in" the lowest crude

protein content at Cedara in 1992/93, 6.82% less than the non-sprayed control. This change

may be significant in determining a balanced feed mix for animals and needs to be

investigated in more detail, as will the effect of fungicide residues in animal feeds, especially

with the long life / persistent triazole group of fungicides.

There was a good correlation between sites with respect to fungicide response, control of

GLS and grain yield. The exceptions to this were benomyl, carbendazim and flutriafol.

However, this can be explained when the concentrations used are examined in Table 9.3.

The rate of both benomyl and carbendazim was higher at Cedara in both seasons compared

to that at Greytown. Flutriafol and carbendazim/flutriafol were applied at a rate about 30%

higher at Cedara than at Greytown. This would account for the slightly better performance

at Cedara than Greytown. The rate of carbendazim/flusilazole was 25% lower at Cedara

than at Greytown. However, this did not apparently significantly affect the results (Tables

9.6 and 9.7).

In the USA, much research has been undertaken to determine the efficacy of fungicides in

controlling GLS. The most effective fungicides in USA trials, when severe GLS epidemics

occurred, were benomyl, propiconazole, flusilazole and tebuconazole. For effective control

of GLS, at least two application of systemic fungicides were applied. The protectant

fungicides mancozeb, maneb-zinc, chlorothalonil and copper thallate were less effective,

particularly under high inoculum pressure (Hilty et al., 1979; Ayres et al., 1985; Smith,

1989; Stromberg, 1990; Lipps and Pratt, 1991; Stromberg and Carter, 1991; Carter, 1992;

Carter and Stromberg, 1992a and 1992b; Rivera-Canales, 1993; Stromberg and Flinchum,

1993; Ward et al., 1993; Martinson et al., 1994; Wegulo, 1994; Martinson and Munkvold,

1995; Ward and Nowell, 1997). Protectant fungicides have been associated with a significant
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reduction in GLS-blighted leaf area but frequently there has been no corresponding significant

increase in grain yield (Hilty et al., 1979; Ayres et a!., 1985; Martinson and Munkvold,

1995). These results are in close agreement with the general trends found in South Africa.

Where chlorothalonil was applied before quantifiable amounts of GLS was present, it was

able to effectively control GLS and resulted in a significant grain yield and seed increase.

In these trials, chlorothalonil was more effective in controlling GLS than propiconazole

(Rivera-Canales, 1993). This is an option that needs further investigation under South

African conditions as fungicides are normally applied once the lower five leaves are showing

GLS lesions. An early application of a protectant fungicide may save one application of a

systemic fungicide. This would translate into a significant economic benefit. These results

are similar to the results of fungicide trials to control Ascochyta pinodes (Berk. & Blox.)

Vestergr. on peas in South Africa, where preventative sprays of chlorothalonil were more

effective and far more cost effective than any systemic fungicide (van Schoor, 1990).

Chemical control measures in the USA are not widely recommended as these are usually

uneconomical except for seed producers (Ringer and Grybauskas, 1995). Many factors affect

a decision to apply a fungicide to control GLS, with the most important ones being:

i) the growth stage that the epidemic starts,

ii) the germplasm planted (resistance level), and

iii) the prevailing weather conditions.

Before using fungicides to control GLS, it is important to determine the economic feasibility

of such applications. Net returns vary within and between seasons, affected by climatic

conditions, timing of fungicide application and the number of applications. Greatest

economic benefit resulted from the application of fungicides when high levels of GLS were

present. The cost:benefit ratio needs to be investigated under South African conditions over

a number of seasons and sites. These data from KwaZulu-Natal should not be extrapolated

into the main maize production regions of South Africa where production costs, yield

potential and climate are significantly different. Only registered fungicides should be applied

at the recommended rates.

Bair and Ayres (1986) noted significant variability in the natural C. zeae-maydis isolates

collected in the fields and suggested that this could mean that resistance to single site

systemic fungicides could arise relatively rapidly. Cases of pathogen populations developing

resistance to fungicides, especially to the benzimidazole group of fungicides, have become
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common in many crops, and in some cases they have developed rapidly. It was decided that

a dual active ingredient policy would be followed with commercial products to reduce the

risks of resistance building up in the fungus to any single active ingredient. This is in line

with proposals for resistance strategies (Delp, 1980; Delp, 1984; Staub and Sozzi, 1984).

The current fungicides have already been used on a commercial scale over most of KwaZulu-

Natal for four growing seasons. To preserve the effective lifespan of the systemic fungicides

in controlling GLS, resistance management strategies should be followed. The use of

mixtures of unrelated fungicides with different modes of action is a ba"sic component of

fungicide resistance management. Rotations of fungicides with different modes of action is

an alternative strategy (Delp, 1980 and 1984; Staub and Sozzi, 1984; Georgopoulos, 1986;

Wolfe and Barret, 1986; Dekker, 1986; Delp, 1988; Scheinpflug, 1988; Wade, 1988). The

availability of a range of fungicides would offer the option of delaying the development of

fungicide-resistant strains of C. zeae-maydis if deployed wisely. As only two groups of

fungicides, the triazoles and benzimidazoles, are currently registered and commercially

available in South Africa, other fungicides with different modes of action are needed to

control GLS.
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CHAPTER 10

Maize Hybrid Response to Grey Leaf Spot Under Two Tillage Systems In

South Africa16

ABSTRACT

Grey leaf spot (GLS) of maize has seriously decreased grain yields in the province of KwaZulu-

Natal, South Africa, and has been identified in neighbouring provinces and countries. The

response of commercial hybrids to the disease was assessed under conventional and stubble

tillage systems. The hybrids that were most susceptible to GLS had lowest yields under both

tillage practices. Linear regression of relative yield against relative disease severity identified

high yielding maize hybrids that were more resistant or tolerant to the disease. The development

of Gupta's Bestest, ranking hybrids in subsets for disease susceptibility and yield performance

supported results obtained from linear regression analysis. There were no differences in grain

yields between tillage systems, indicating that the beneficial practice of stubble tillage can be

used in areas where GLS is present. Although GLS appeared on plants under reduced-tillage

up to three weeks earlier than on the ploughed field under specific environmental conditions, a

lower decrease in yield per unit increase in disease was observed under stubble tillage than under

conventional tillage.

10.1 INTRODUCTION

Grey leaf spot (GLS) is a foliar disease of maize (Zea mays L.) caused by the fungus Cercospora

zeae-maydis (Tehon and Daniels, 1925) which was first observed near Greytown, South Africa,

during the 1988/89 season, and at Cedara in 1992. It has since spread throughout the province

of KwaZulu-Natal and has been identified in neighbouring provinces and countries. GLS is

capable of reducing grain yields by as much as 50 to 60% in the more humid, high potential

mist-belt bioclimate of KwaZulu-Natal (Ward and Nowell, 1997). It also reduces the yield and

The data from the Cedara site were from co-operative trials conducted by J.M.J. Ward. The
chapter has been accepted and will be published as: Ward, J.M.J., Nowell, D.C., Laing,
M.D. and Whitwell, M.I. 1997. Maize hybrid response to grey leaf spot under two
tillage systems in South Africa. European J. Plant Pathol. (In Press).
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quality of maize grown for silage. Nutter17 (pers. comm., 1994), following a visit to South

Africa, concluded that GLS has a higher potential for reducing maize yields in South Africa than

in the USA.

Stubble tillage offers maize farmers and the environment many advantages by reducing soil

erosion and water loss, and enabling a lower cost of production. However, increases in the

severity and distribution of GLS in the USA has been associated with no-tillage maize (Leonard,

1974; Roane et al., 1974; Hilty et al, 1979; Latterell and Rossi, 1983; Stromberg, 1986).

Recently, the disease has been observed to move from reduced tillage situations to fields where

traditional conventional tillage practices were used (Perkins et al., 1995). Yield losses are most

severe under monoculture maize and crop rotations have been found to offer an attractive means

of control (Latterell and Rossi, 1983, Stromberg, 1986; Huff, et a!., 1988). However, in South

Africa maize has traditionally been grown under a system of monoculture and few farmers

practice any form of rotational cropping (Channon and Farina, 1991). Rotations are unlikely,

therefore, to be used as a means of control since farmers are reluctant to change cropping

practices. Genetic resistance provided a highly efficient and cost-effective method of GLS

control (Lipps and Pratt, 1989) and is the long-term solution to the problem. Sources of genetic

resistance have been identified in the United States (Huff et al., 1988), but the germplasm is not

well adapted in South Africa. Detailed genetic investigations have identified GLS-resistant

genotypes in South Africa (Gevers et al., 1994, Hohls et a!., 1995). However, no commercially

available hybrids highly resistant to GLS have so far been released in South Africa, and

chemical control methods are being used as an interim solution (Ward and Nowell, 1997).

The purpose of this study was to evaluate and identify high yielding maize hybrids that were

resistant or tolerant to GLS. Hybrids were evaluated under stubble and conventionally ploughed

systems of tillage, to identify those hybrids best suited to each form of tillage.

10.2 MATERIALS AND METHODS

Trial data

The trials were conducted at the Cedara Agricultural Development Institute at Cedara, (29°31'S,

30°17'E and an altitude of 1070 m), and at Pannar (Pty) Ltd., near Greytown (29°02'S,

17 F.W. Nutter, Dept. Plant Pathology, Iowa State University, Ames, Iowa, USA.
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30°31'E and an altitude of 1100 m), in South Africa. Maize had previously been grown on the

sites before the National Maize Hybrid Cultivar Trial commenced in 1982. Hybrids were

evaluated for susceptibility to GLS during the 1991/92, 1992/93 and 1993/94 growing seasons.

The trial at Cedara included conventional and stubble tillage systems laid out as whole plot

treatments which were split for 49 hybrid sub-plot treatments in a 7 x 7 triple lattice design.

The treatments were replicated three times. At Greytown, the trial was conventionally tilled

only. The sites at both locations were gently sloping and soils were well-drained sandy-clay

loams of the Hutton form and Doveton series (MacVicar, 1991). The conventional-ploughed

treatment was disced in the winter, mouldboard ploughed in September and finally disced

immediately before planting to incorporate the previous season's maize residue. The stubble

treatment was chisel-ploughed to a depth 120-mm in the winter and again prior to planting.

Chisel-plough tines were spaced 310-mm apart and fitted with sweeps. Stubble residue on the

soil surface prior to planting was calculated using a siting frame described by Lang and Mallett

(1982). Residue cover on stubble treatment was 31%. Planting lines were drawn immediately

prior to planting when fertilizer sufficient for an eight-ton grain crop was band applied. A

topdressing of 100 kg N ha"1 was broadcast when maize was knee-high. Normal weed and pest

control practices were followed for the two growing regions. Hybrids were planted in plots of

two, 6.6 m rows spaced 0.75 m apart at Cedara. In-row plant spacings were 0.30 m. The trials

were jab-planted by hand in early November each season and two seeds per planting station were

planted. Thirty days after planting, the seedlings were thinned to 44 400 plants ha"1. Two, 6.0

m rows, was hand-harvested to estimate yield. At Greytown, plots were two rows, 6.0 m long

and 0.9 m apart, and hand-planted in early October, and thinned to 50 000 plants ha1. Two,

5.4 m rows were hand-harvested to estimate yield.

Weather

Weather conditions differed markedly over the seasons in which the experiments were

conducted. Rainfall and temperature in 1991/92 were favourable for vegetative growth of maize

until anthesis, after which, at the end of February and during grain-fill, rainfall declined.

However, heavy dews were frequent during grain-fill, which favoured disease development. The

1992/93 season was dry, with only 50% of the mean expected rainfall being recorded during the

growing season. In contrast, the rainfall during the 1993/94 season was above average and well

distributed throughout the growing season. Mists were abundant, especially during grainfill in

January and February.
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Cultivars

Commercially available hybrids tested in the South African National Cultivar Phase II series of

trials were studied during the seasons of 1991/92, 1992/93 and 1993/94. The results of the

evaluations made for conventional tillage treatments in 1992/93 were discarded because of low

disease levels induced by the prevailing drought and the resultant heteroscedacity of variance.

Disease and grain yield assessments

Whole-plant standard area diagrams described by Ward et al. (1997) were used as a guide in

estimating disease severity (%). Assessments were made regularly on plants in the centre of

each plot. In 1991/92, plots were assessed three times for GLS: at 60, 102 and 127 days after

planting (DAP). In the following seasons, plots were assessed at first signs of disease and

thereafter at approximately 14 days intervals. In 1992/93, five assessments were made and in

1993/94 there were four assessments. These data were used for calculating the area under the

disease progress curve (AUDPC), which provides a summary of the disease epidemic. The

AUDPC was calculated using a trapezoidal integration program (Berger, 1981). The AUDPC

parameter was standardised by dividing the AUDPC value by the duration of the epidemic to

enable comparisons between epidemics of different durations. The standardised AUDPC was

compared to single point model of disease severity rated between 120 and 130 DAP.

Correlations between these two methods, were highly significant and varied from 0.994 in

1991/92 to 0.889 in 1993/94. The single point model (% disease severity) was used as the

disease index in the linear regression analysis. Disease severity data for nine hybrids,

representative of different GLS susceptibility groups under conventional and stubble tillage at

Cedara and Greytown were transformed to fit the logistic model described by Vanderplank

(1963). The fitted regression functions of the transformed values were used to estimate the

number of days between planting and 1 % leaf blighting. Relative disease severities were

calculated by dividing disease severities by the trial mean, expressed as a percentage. Grain

yields were expressed in kg ha'1 at 12.5% moisture. Relative yields were calculated by dividing

grain yields by the trial mean, expressed as a percentage. Disease severities and yields have

been presented on a relative basis to remove effects of season and location.
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Statistical analysis

Eighty-five hybrids were evaluated at Cedara and Greytown over the three rowing seasons.

However, only data from 24 of the hybrids (Table 10.1), common to the three years of study,

were used in the analysis of variance.

Analysis of Variance

Bartlett's x2 test was used to establish homogeneity of variances (Gomez and Gomez, 1984).

The combined analysis of disease data from Cedara and Greytown was weighted by the inverse

of the error mean square as disease heterogeneity of variance was present. Hybrid standard

error of a mean was calculated using hybrid season interaction mean square for the analysis of

different seasons (Gomez and Gomez, 1984). Analysis of variance was conducted using Genstat

5 Version 2.2.

The Bestest analysis (Gupta, 1965), further developed by Calitz (1991), and van Aarde (1993

and 1994), was used to rank hybrids into highest yielding subsets. By using the inverse of the

data, hybrids were also ranked into lowest yielding subsets. Combining the analyses, hybrids

were grouped in highest-, intermediate- and lowest yielding subsets. The hybrids were similarly

grouped for high-, intermediate- and least severities for disease. Both groupings were based on

an oc-level of significance ( « >0.05).

Regression analysis

A linear regression model described by Stromberg and Donahue (1986) was used to determine

the effect of GLS on relative disease on grain yield and relative yield.

The effect of GLS on grain yield and relative yield was estimated by the linear regression

model:

Y^B.+B^ + E,

where Y is the response variable (yield), Bo is the intercept (yield when disease is zero), B, is

the slope of the regression line (regression coefficient or change in yield per unit change in

disease), X, is the regressor variable (disease intensity at a particular stage) and E( is the

unexplained variation (error or residual). Regression lines were fitted for stubble-, and

conventional-tilled treatments. Confidence limits (95%) were calculated for each regression line.

The regression analysis was conducted on Genstat 5.2 and Statgraphics 4.0.
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Correlation analysis

Phenotypic and genotypic correlations were calculated to gain further insight into the relationship

between GLS and yield. The appropriate variance and covariance components were determined

through residual maximum likelihood analysis of the data.

10.3 RESULTS

10.3.1 Disease severity

Disease levels were relatively low in the 1992/93 season due to the prevailing drought, being

3.80 and 32.92% (+0.67%) for conventional and stubble tillage respectively. Tests for

homogeneity of variance using Bartlett's x2 test over the three seasons, indicated variance to be

heterogeneous (x2 = 47.9, P<0.001). The same test over the 1991/92 and 1993/94 seasons

showed the variances to be homogeneous (x2 = 0.462, N.S.), and the results of 1992/93 are

therefore excluded from the analysis (only where stubble treatments were considered on their

own were the 1992/93 data included).

Effects of tillage at Cedara

There was no interaction between tillage and season, indicating that tillage treatments affected

disease levels consistently over the 1991/92 and 1993/94 seasons. There were no significant

differences in disease levels between conventional and stubble treatments (Table 10.1 - 10.3).

Effects of location

A weighted analysis was used to compare average disease levels over the two seasons because

of heterogeneous variances (x2 = 65.45, P<0.001). There was consistently more disease at

Cedara (49.83%) than Greytown (36.85%) (Table 10.2).
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Table 10.1: Actual and relative disease and yield of 24 maize hybrids under stubble and

conventional tillage systems

Hybrid

C R N 3584'°

PAN 6479

PAN 6480

PAN 6578

SNK 2665

PAN 6363

NS 9100

TX 24

PAN 6549

SNK 2021

CRN 4502

PAN 6364

R O 413

SNK 2888

CRN 3414

RO 430

SNK 2950

PAN 6528

CRN 4523

A 1849

CRN 4605

RS 5206

RS 5232

PAN 6552

Stubble

Disease'

Actual 7

%

24

25

35

37

37

38

38

39

43

44

46

47

51

52

53

55

57

57

57

58

61

63

63

66

Relative *

%

44

47

66

66

66

77

77

78

82

86

91

93

112

113

113

127

131

131

131

142

150

152

153

166

Tillage"1

Yield '

Actual

kg ha•'

6970

7037

7242

6579

6162

6707

6094

6761

6182

5381

5809

6121

5642

6550

5934

5203

6145

5236

5488

6088

5473

5704

5338

5492

Relative '

%

116

116

121

108

101

111

100

112

101

89

95

101

93

108

95

85

101

85

90

100

89

93

85

91

Conventional

Disease5

Actual

%

28

17

24

30

35

40

30

37

32

47

48

40

39

50

45

50

54

52

56

46

57

53

65

61

Relative

%

113

33

49

66

73

81

67

74

63

108

118

92

79

121

110

121

126

120

137

96

139

91

169

164

Tillage01

Yield •

Actual

kg ha1

7754

8108

8947

7396

7139

8387

7372

7590

7428

7023

6977

7381

6706

7587

6883

6271

7307

6505

6633

6220

6148

7148

5868

7220

Relative

%

111

115

128

104

100

118

104

107

104

99

98

104

95

108

96

87

102

89

92

103

85

99

81

100

1

t

9

10

Mean performance of 24 hybrids evaluated at Cedara over 3 seasons 1991/92, 1992/93 and 1993/94.

Mean performance of 24 hybrids evaluated at Cedara and Greytown over two seasons 1991/92 and 1993/94.

Relative yield is calculated by dividing the yield by the trial mean and multiplying by 100.

Least susceptible hybrid subset ranked by Bestest analysis have 235% disease and most susceptible hybrids have >56% disease.

Highest yielding hybrids ranked by Bestest analysis have >6580 kg ha'1 and lowest yielding hybrids have <6000 kg ha"'.

Least susceptible hybrids ranked by Bestest analysis have <35% disease and most susceptible hybrids have >47% disease.

Highest yielding hybrids/ranked by Bestest analysis have >7600 kg ha1 and lowest yielding hybrids have <7030 kg ha ' .

Actual disease is percentage leaf-blighting assessed approximately 21 days before physiological maturity.

Relative disease is calculated by dividing disease percentage by the trial mean and multiplying by 100.

The 9 hybrids used for further analyses are in bold.
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10.3.2 Grain yield

Effects of tillage

Table 10.2: Effect of conventional and stubble tillage treatments on grey leaf spot disease

severity and yield of 24 maize hybrids at Cedara and Greytown over 1991/92 and

1993/94 seasons.

TILLAGE/LOCATION

DISEASE SEVERITY (%)(1)

Tillage

Conventional
Stubble

F-test
Standard error
CV%

Location

Cedara
Greytown

F-test (P<0.05)
Standard error
CV%

GRAIN YIELD (KG HA' )

Tillage

Conventional
Stubble

F-test (P<0.05)
Standard error
CV%

Location

Cedara
Greytown

F-test (P<0.001)
Standard error
CV%

1991/92

32.08
26,42

NS
1.55
37.1

32.08
14.69

*
3.50
33.4

1991/92

7557
8161

*

78.35
6.8

7557
9389

**
95.80

8.0

SEASON

1993/94

67.57
83.68

NS
7.44
15.4

67.57
59.01

NS
8.90
14.9

1993/94

4798
4480

NS
157.15

11.6

4798
6922

**
85.10

8.9

Mean

49.83
55.05

NS
3.80
21.5

49.83
36.85

*
3.80
11.9

Mean

6177
6321

NS
326.07

8.6

6177
8156

**
64.10

8.4

(1) Disease severity is percentage leaf-blighting of whole plants, assessed approximately 25
days before crop physiological maturity
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Grain yields for 1991/92 and 1993/94 are presented (Table 10.2). The yields of conventional

tilled plots in 1992/93 were 4648 kg ha"1 for stubble plots. Stubble tillage practices in the

1991/92 and 1992/93 seasons had higher grain yields than conventional tillage (P<0.05). In

1993/94, with above average and well distributed rainfall and higher disease levels, there were

no significant differences in yields of stubble and conventional tillage systems (Table 10.2).

Tests for heterogeneity of variance over the three seasons were homogeneous (x = 1.378 N.S.).

Over all seasons there were no differences between tillage practices.

Table 10.3: Response of relative (a) grey leaf spot severity of maize and relative (a) grain yield

representing 24 hybrids under conventional stubble tillage at Cedara and Greytown

during two to three seasons

Regression parameters
Location

Cedara

Greytown

Cedara

Tillage

Conventional

Conventional

Stubble

% variance
accounted for (R2)

50.7 **

11.9 *

59.0 +*"1*

Slope Intercept

-0.2082 ** -3.087 ± 0.622** 131.26 ± 6.59

-0.0662 * -0.0961 ± 0.074 NS 110.45 ± 5.08

-0.1729 ** -0.2268 ± 0.0388** 122.97 ± 4.28

(*> Values expressed as a percentage of the trial mean
m ** highly significant (P<0.001)

* significant (P<0.05)

Effect of location

Variances over the two locations for 1991/92 and 1993/94 seasons were homogeneous (x2 =

4.94, N.S.). There was no interaction between locations and seasons, indicating that yields were

affected similarly by GLS at both locations over seasons. The overall grain yield at Greytown

was 8156 kg ha"1 which was higher than at Cedara 6177 kg ha"1 (Table 10.2).

10.3.3 Effect of grey leaf spot on grain yield

Grain yield of 79 hybrids was regressed against disease severity for 1991/92 and 1993/94

seasons and locations under stubble and conventional tillage treatments. The model accounted

for 66.9% of the overall variation (significant P<0.001), an intercept of 9466 ± 123 kg ha"1

and a slope of -55.85 + 2.27. There was no interaction between GLS and tillage treatments,

indicating that the effect of GLS on yield is similar under both tillage treatments. There was
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no interaction between GLS and locations, indicating that GLS affected yields similarly at both

locations. There was also no tillage X season interaction, reflecting that the effect of tillage

practices on GLS affected yields consistently over seasons in the regression model. There was,

however, a significant interaction of location X season, and disease severity X season. The final

model including differences in location, tillage season and the interaction of disease and season

accounted for 80.3% of variation.

10.3.4 Hybrid response to GLS

Disease severity and yield of 24 maize hybrids are presented on a relative basis (Table 10.1).

This has been done to remove the effects of season and location to allow comparisons of hybrids

across seasons and locations. Nine high yielding hybrids, representative of the different GLS

susceptibility groups were selected for ease of presentation. The yields of these hybrids were

similarly high and over 8.0 ton ha"1 in the absence of GLS in fungicide sprayed studies and

all exceeded the trial mean over the 1992/93 and 1993/94 seasons except for PAN 6364, which

produced 98% of the trial mean (Ward et al. 1996). PAN 6479, PAN 6480 and CRN 3584

were least susceptible to GLS, PAN 6528, PAN 6552 and RS 5206 were most susceptible,

whilst PAN 6364, SNK 2888 and SNK 2950 were of intermediate susceptibility. This was

confirmed by Bestest ranking of hybrids for disease severity and grain yields (Table 10.1).

Overall, hybrids with low GLS levels had higher grain yields under both conventional and

stubble treatments than hybrids with high GLS levels. Except for Greytown, where disease

levels were lower than Cedara, the percentage variance accounted for was highly significant in

the regression of relative disease against relative yield for hybrids and seasons under both tillage

treatments (Table 10.3). Under conventional tillage, the less susceptible hybrids had lower than

the trial mean relative disease and the hybrids yielded as predicted by the model, except PAN

6480 which yielded higher than predicted (Figures 10.1a and c). Of the susceptible hybrids with

more GLS than the trial mean hybrids, RS 5206 yielded as predicted, PAN 6552 yielded higher

than predicted, and PAN 6528 had lower than the predicted yield. The hybrids with

intermediate susceptibility to GLS, SNK 2888 and SNK 2950 had higher than predicted yields

whilst PAN 6364 had yields close to that predicted by the model (Figures 10.1a and c).

230



The pattern of hybrid response under stubble tillage was similar to that under conventional

tillage, with PAN 6480, SNK 2888, SNK 2950 and PAN 6552 having higher relative yields than

predicted, whilst PAN 6528 had lower than predicted relative yields (Figure 10.1b).

Data of the nine selected hybrids was grouped in less susceptible, intermediate and highly

susceptible disease categories. Yield was regressed against log-transformed disease, for seasons

and locations under stubble and conventional tillage. When the effect of hybrid group was

included in the model, there were differences between disease severity and hybrid group (R2 =

53.3, P<0.001) (Figure 10.2). Genstat pair wise test confirmed the presence of these

differences (P<0.05).
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Figure 10.1: Regression analyses of relative grain yield against relative grey leaf spot severity at Cedara and Greytown under two tillage systems:
(A) Cedara conventional tillage; (B) Cedara stubble tillage and (C) Greytown conventional tillage. Confidence limits of 95% are shown.
The mean of only nine hybrids regressed are shown: PAN 6479, PAN 6480 and CRN 3584 are least susceptible, PAN 6528 and RS 5206
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spot.
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10.3.5 Effect of hybrid susceptibility to GLS on the onset of disease (1%) disease

(standardised AUDPC) and grain yields

With less susceptible hybrids, disease development took longer to reach 1 % leaf-blighting than

the group of hybrids susceptible to GLS. The mean number of days to 1 % disease for resistant

hybrids in 1991/92 was 77 days and for susceptible hybrids was 58 days. In 1992/93, this was

107 days for resistant and 99 days for susceptible hybrids and in 1993/94 this was 79 days for

resistant and 76 days for susceptible hybrids (Table 10.4, 10.5 and 10.6).

Less susceptible hybrids had significantly lower disease (AUDPC) in all seasons than susceptible

hybrids, except for the drought season of 1992/93, and these lower disease levels were reflected

in higher grain yields than susceptible hybrids (Table 10.4, 10.5 and 10.6).

There were no differences in days to 1 % disease between hybrids under stubble and conventional

tillage in the wet seasons. But in the dry season of 1992/93, disease reached 1 % disease earlier

in the stubble treatments (94 DAP) than in conventional tillage (119 DAP) (P< 0.001). There

were no differences in yields obtained under stubble or conventional tillage in the three seasons

of study.

All correlations that were significant reflected a negative correlation existed between GLS and

grain yield, and confirmed that the most susceptible genotypes had the lowest grain yields (Table

10.7).
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Table 10.4: Days after planting (DAP) to 1 % disease, standardised AUDPC and grain yields

for nine maize hybrids under two tillage systems at Cedara during 1991/92

Hybrid

PAN 6552

RS5206

PAN 6528

MEAN

SNK 2950

PAN 6364

PAN 2888

MEAN

PAN 6479

PAN 6480

CRN 3584

MEAN

TRIAL MEAN

LSD (P< 0.05)

DAP

Conv

58

60

58

59

65

65

70

67

84

65

81

77

68

NS

to 1%

Stub

64

52

57

58

53

70

59

61

87

72

70

76

65

NS

disease

Mean

61

56

57

58

59

68

65

64

86

69

76

77

66

9

Conv

33.0

26.5

28.6

29.4

24.8

11.8

18.3

18.3

3.9

7.7

3.6

5.1

17.6

NS

AUDPCR)

TMl. C

Stub

30.0

25.0

19.8

24.9

21.1

10.0

13.8

15.0

4.1

6.6

3.0

4.6

14.8

NS

Mean

31.5

25.8

24.2

27.2

23.0

10..9

16.1

16.7

4.0

7.2

3.3

4.8

16.2

6.5

Yield (Kg

Conv

7431

8073

7253

7586

7662

8183

7515

7787

8044

8961

8254

8420

7931

743

Stub

6934

8433

7183

7517

8463

8123

8517

8368

9617

9100

8565

9094

8326

743

ha1)

Mean

7182

8254

7218

7555

8062

8153

8016

8077

8830

9031

8410

8757

8129

525

1 DAP is days after planting; estimated from logistic model (Vanderplank, 1963).
2 Area under disease progress curve (AUDPC), standardised by dividing AUDPC value by time duration

of epidemic.
3 Tillage - "Conv" is clean cultivation and "Stub" is stubble tillage.
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Table 10.5: Days after planting (DAP) to 1% disease, standardised AUDPC and grain yields

for nine maize hybrids under two tillage systems at Cedara during 1992/93

Hybrid

PAN 6552

RS 5206

PAN 6528

MEAN

SNK 2950

PAN 6364

SNK 2888

MEAN

PAN 6479

PAN 6480

CRN 3584

MEAN

TRIAL MEAN

LSD (P<0.05)

DAP

Conv

109

110

108

109
108

104

107

106

124

US

115

119

112

NS

to 1%

Stub

90

90

98

89

90

86

88

88

94

93

94

94

90

NS

disease

Mean

100

100

98

99

99

95

98

97

109

106

105

107

101

4.9

Conv

1.9

2.2

1.8

2.0

2.0

2.2

1.9

2.0

0.6

0.9

0.9

0.8

1.6

3.4

AUDPC121

Stub

19.7

19.8

18.3

19.3

17.3

16.7

19.0

17.7

7.5

10.0

7.4

8.3

15.1

3.4

5)

Mean

10.8

11.0

10.1

10.6

9.6

• 9.4

10.4

9.8

4.1

5.4

4.2

4.6

8.3

2.4

Yield (Kg

Conv

4271

4380

4684

4445

4756

4603

5113

4824

4679

5435

5042

5052

4774

NS

Stub

5239

5113

5491

5281

5309

5212

6020

5514

5931

6704

6656

6430

5742

NS

ha1)

Mean

4755

4747

5089

4864

5033

4908

5567

5169

5305

6069

5849

5741

5258

650

1 DAP is days after planting; estimated from logistic model (Vanderplank, 1963).
2Area under disease progress curve (AUDPC), standardised by dividing AUDPC value by time duration

of epidemic.
3 Tillage - "Conv" is clean cultivation and "Stub" is stubble tillage.
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Table 10.6: Days after planting (DAP) to 1 % disease, standardised AUDPC and grain yields

for nine maize hybrids under two tillage systems at Cedara during 1993/94

Hybrid

PAN 6552

RS 5206

PAN 6528

MEAN

PAN 2950

PAN 6364

PAN 2888

MEAN

PAN 6479

PAN 6480

CRN 3584

MEAN

TRIAL MEAN

LSD (P^0.05)

DAP

Conv

75

73

80

76

75

76

74

75

84

79

83

82

78

4.3

to 1%

Stub

74

80

n
77

70

74

73

72

79

74

73

75

75

4.3

disease

Mean

74

76

79

76

73

75

73

74

81

77

78

79

76

3.1

Conv

28.3

39.4

24.5

30.7

30.0

31.7

33.4

31.7

11.9

11.0

13.6

12.2

23.2

N S

AUDPC12'

T " H < <•

Stub

36.4

39.4

28.9

34.9

32.9

31.7-

33.4

32.7

19.5.

21.0

15.1

18.5

28.7

N S

»

Mean

32.4

35.5

26.7

31.5

31.5

31.2

30.1

30.9

15.7

16.0

14.3

15.3

25.2

8.2

Yield (Kg

Conv

4656

4257

3816

42'43

4824

4985

5854

5221

6003

6620

5647

6090

5185

N S

Stub

4303

3566

3031

3633

4661

5027

5112

4933

5563

5924

5687

5725

4764

N S

ha1)

Mean

4479

3912

3423

3938

4743

5006

5483

5077

5783

6272

5667

5907

4974

720

1 DAP is days after planting; estimated from logistic model (Vanderplank, 1963).
2 Area under disease progress curve (AUDPC), standardised by dividing AUDPC value by time duration

of epidemic.
3 Tillage - "Conv" is clean cultivation and "Stub" is stubble tillage.
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Table 10.7: Phenotypic and genotypic correlations among grey leaf spot disease ratings and

grain yield at different locations, seasons and tillage systems

Location

Cedara
Cedara
Cedara
Cedara
Cedara
Cedara
Greytown
Grey town
Greytown

Season

1991/92
1991/92
1992/93
1992/93
1993/94
1993/94
1991/92
1992/93
1993/94

Correlation

Tillage

Conventional
Stubble
Conventional
Stubble
Conventional
Stubble
Conventional
Conventional
Conventional

Analysis

Correlation (r)

Phenotypic

0.1239
-0.6361**(1)

-0.1922
-0.3435*
-0.6452
-0.6859**
0.0730
0.0278

-0.5236**

Genotypic

0.1369
-1.0000**

.-0.4775**
-0.6161**
-0.7072**
-0.6902**
0.0000
0.1119

-0.6354**

( 1 ) * * Correlation highly significant (P^0.001)

Correlation significant (P<0.05)

10.4 DISCUSSION

v/Grey leaf spot is the most yield limiting disease of maize in KwaZulu-Natal. No commercial

hybrids are highly resistant to the disease in South Africa, but groups of hybrids were found to

have different levels of susceptibility.

Disease severity is expected to be higher under stubble than conventional tillage, and in the USA

GLS is often associated with stubble tillage systems. In contrast, no differences were found in

this study in disease levels between stubble and conventional tillage treatments in seasons with

normal or above average rainfall. Where GLS is established in areas, the disease is a problem

under favourable weather conditions in both stubble and conventional tillage. In a dry season,

the pathogen may infect maize earlier under stubble, but subsequent slow disease development

and its effect on yield is offset by improved yield from the beneficial effects of increased soil

moisture retention. This is important in South Africa, which frequently experiences low and

erratic rainfall and where soil and moisture conservation are the key to sustainable crop

production. In all seasons, hybrid groups resistant to GLS will have an advantage, as disease

develops in these groups later than hybrids more susceptible to GLS (Table 10.4, 10.5 and
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10.6).

Linear regression models used in this study consistently showed that hybrid groups resistant to

GLS, with lower GLS levels, had higher grain yields than hybrids more susceptible to GLS.

This suggests that less-resistant hybrid groups may have some form of tolerance to GLS.

Tolerance is defined as the ability of plants to produce a good crop even when they are infected

with a pathogen (Agrios, 1988). This is illustrated by PAN 6480 which yielded consistently

higher than predicted by its GLS score (Figure 10.1). The hybrid groups, susceptible to GLS

and with higher than average GLS levels, varied in their predicted yield responses. PAN 6552

had relative yields higher than predicted, indicating it to have some degree of tolerance, but its

relatively low yields in the presence of GLS precludes its use in areas where the disease is a

problem. PAN 6528, on the other hand, had lower than predicted yields, indicating that this

hybrid is inherently susceptible to GLS. Hybrid groups with intermediate susceptibility and

average GLS levels, had predicted or higher than predicted relative yield responses. SNK 2888,

with relative yields higher than the trial mean, had higher than predicted yield responses,

indicating this hybrid has tolerance to GLS. The ability of linear regression models to

differentiate maize hybrids by relative yields and disease levels into resistant, susceptible and

tolerant categories, shows this approach to be a useful technique in the selection of hybrids for

areas where GLS is a problem. These results support the approach of Stromberg and Donahue

(1986).

The development of Gupta's Bestest method of ranking hybrids into subsets for disease

susceptibility and yield performance (Table 10.1), supported results obtained from linear

regression analysis. This is a useful method to establish groups of hybrids that are least

susceptible to disease and subsets that have the highest grain yields. The method, however, is

unable to distinguish hybrids that may be tolerant of disease. Gupta's test was favoured over

other multiple comparisons such as Tukey's test which is conservative when more than 20

treatments are present.

The logistic model (Vanderplank, 1963) was used to calculate DAP to 1 % leaf-blighting. Grey

leaf spot reached 1% blighting earlier in susceptible than resistant hybrids. The earlier

appearance of GLS with correspondingly higher levels of disease (AUDPC) in susceptible
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hybrids renders this group to greater risk from GLS, as they are subjected to blighting over a

longer period than hybrids that are resistant to GLS. This may be of importance in areas where

fungicides are needed for the control of GLS. The earlier appearance of disease in susceptible

hybrids may necessitate more spray applications for control than resistant hybrids. The model

may be useful in providing added data for selection of hybrids in areas subject to GLS, and

making decisions about spraying requirements of each cultivar.

Grey leaf spot, previously restricted to the province of KwaZulu-Natal, is increasing in its

distribution and severity in South Africa and neighbouring countries. Its increase in prevalence

and severity indicates the disease to have the potential to be a limiting factor in these important

maize-prodiicing areas of Southern Africa. The selection of resistant or tolerant hybrids in these

areas will reduce the risk from the disease and ensure more consistent grain and silage

production.
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SECTION III - GENERAL DISCUSSION



GENERAL DISCUSSION

For the purposes of this discussion the Stenocarpella ear rot and grey leaf spot (GLS) will be

discussed separately. Common points will be dealt with under management strategies at the end

of the General Discussion.

1 EAR ROT

1.1 Significance of problem

The last ten years have seen changes in the emphasis placed on Stenocarpella maydis (Berk.)

Sutton ear rot of maize by agronomists and researchers alike in South Africa. The reason for

this was the severe ear rot epidemics experienced in South Africa during the late 1980s (Table

4 - General Introduction). During the 1970s and early 1980s, research emphasis was placed on

stalk rots as a result of the increased incidence of this disease during the severe droughts in

South Africa during this period. The objective was to identify stalk rot resistance and/or

management techniques to reduce the incidence and severity of this disease. During this period

there was a build-up of S. maydis inoculum which causes both stalk and ear rot (Koehler, 1959

and 1960). This ultimately resulted in the ear rot epidemics during the late 1980s when climatic

conditions were more suitable for ear rot infection and development in South Africa. This has

lead to a change in emphasis placed on Stenocarpella ear rot research by both agronomists and

researchers in South Africa over the past decade.

The ear rot epidemic started in 1985/86 in KwaZulu-Natal province before becoming a

significant problem and spreading throughout the country. The greatest effect of this epidemic

was in the eastern maize production regions of the country where yellow-grained maize is

primarily produced. The disease had a marked impact on the grading of maize on delivery to

the storage silos from the 1986/87 season to the end of the 1988/89 season (Table 4 - General

Introduction). White-grained maize is primarily produced in the western maize production

regions of South Africa where the climate is not normally conducive to ear rot infection and

development. Consequently the ear rot epidemic lagged behind in these areas until the inoculum

levels and climatic conditions were conducive for ear rot. The ear rot epidemics did not

materialise again once the drier seasons of the late 1980s and early 1990s arrived.
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The incidence of ear rots was particularly severe in Mpumalanga and KwaZulu-Natal. Of the

maize delivered to the silos, over 90 percentage of the rotten kernels yielded Stenocarpella

(Visser18, pers. comm.)- Discussions with maize farmers leave the impression that although the

majority of "Diplodia" infections are evident, the severity of disease is not apparent until the

field is harvested. This "hidden" ear rot was often not taken into account when estimates were

made. This is supported by the estimates of ear rot undertaken by researchers in Greytown,

KwaZulu-Natal (Chapter 3) where ear rot severity was consistently underestimated. Many

farmers had to mix their diseased and healthy maize before delivery to the silos so that a

reasonable quality and price could be obtained.

1.2 Distribution of Stenocarpella species

Stenocarpella macrospora (Earle) Sutton is limited in distribution to southern / central

Mpumalanga and KwaZulu-Natal, which are the higher rainfall regions of South Africa (Marasas

and van der Westhuizen, 1979; Rheeder, 1988; Flett, 1990; Rheeder et al, 1990; Rheeder and

Marasas, 1992 and 1994). In 1987 in the Midlands of the KwaZulu-Natal province, a seed

production field was determined to have approximately 40% leaf area loss due to S. macrospora.

Approximately 25% of the ears were rotten with >95% of the infection caused by

S. macrospora. During the mid- to late-1980s, a number of fields with >25% leaf area loss

caused by S. macrospora were observed in this region. These infections occurred on a variety

of hybrids with varying degrees of resistance.

S. maydis was found to occur throughout the maize productions regions of South Africa and this

pathogen was usually the predominant species, particularly in the Highveld and western

production regions (Rheeder, 1988; Flett, 1990; Rheeder et al, 1990; Rheeder and Marasas,

1992 and 1994). This distribution is expected, based on the information provided by Latterell

and Rossi (1983a) for its climatic requirements in other parts of the world.

1.3 Quantification of yield loss and quality loss

Although there have been large losses due to ear rot in the recent past, no information is

1 Q

S. Visser, formerly of the Summer Grain Centre, Grain Crops Institute, Agricultural
Research Council, Private Bag X1251, Potchefstroom 2520, RSA.
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available on the economic losses or the exact quality problems associated with these losses.

Without this type of information, it is difficult to justify extensive and costly research

programmes. This information should have been readily available from various bodies

controlling the maize industry in the past; e.g., Cronje et al. (1994) who discussed maize quality

concerns from a marketing perspective. Not only is poor grade maize more difficult to sell, but

grain protein content appears to be reduced. However, less nitrogen was applied to the maize

during this period to try and reduce production costs (Cronje et al., 1994), confounding the

interaction of ear rot and grain protein content. Exact effects of ear rot on various grain quality

aspects remain unknown and need to be established.

1.4 Rotation

Crop rotation is widely practised in countries with developed economic and agricultural

infrastructures; i.e., first world countries. However, South Africa does not fall into this

category and crop rotation is not practised widely (Channon and Farina, 1991). It is clear from

many papers that crop rotation not only decreases ear rot/disease, but can increase yield and

hold down costs of fertilizer and herbicides in maize (Koehler, 1959; Wilcoxson and Covey,

1963; Williams and Schnitterhenner, 1963; Kerr, 1965; Shipton, 1977; Palti, 1981; Sumner et

al, 1981; Sumner and Bell, 1986; Jamil and Nicholson, 1987; Windels et al., 1988; Reagan,

1989). Reagan (1989) suggested not only rotating crops but also hybrids, tillage practices and

pesticides. This would allow farmers to obtain maximum benefits from all variable factors. The

benefits of a fallow period in a rotation system were apparent and a three-year ecofallow system

introduced in Nebraska, USA, had become popular (Sumner et al, 1981).

Crop rotation is the single most important factor that could be used to reduce the incidence of

ear rot in maize in South Africa. Unfortunately, there is a lack of literature on the effects of

rotation on S. maydis ear rot, particularly under local conditions. Early unpublished research

in South Africa in 1986/87 (Table 5), showed that crop rotation benefits with regards both grain

yield and ear rot severity could be large. This trial was planted late in the season and the trends

obtained can be expected to be the minimum for earlier planted maize, as ear rot incidence and

severity is usually greater in early planted maize.
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Table 5: Effect of crop rotation on maize grain yield and grain disease at Greytown, KwaZulu-

Natal (Farwell19, unpublished)

Type*

S

s
s
I

* s

Rotation Crop

Wheat, peas and beans

Virgin soil

Silage

3 Seasons vegetables
= single cross

Yidd(T/Ha)

Monoculture

6.49

5,22

6.94

1.20

Rotation

7.43

6.93

7.69

2.46

% Yield
Benefit

15

33

11

105
I = inbred

% Dis

Monoculture

<6

27

38

85

Grain

Rotation

<6

19

20

31

% Ear Rot
Benefit

0

30

47

64

A rotation trial conducted by the Oos Transvaal Kooperasie (O.T.K.), near Bethal in

Mpumalanga (Table 6), clearly showed an ear rot reduction after crop rotation. It is interesting

to note that a season of fallow resulted in the greatest reduction in disease, suggesting rapid

reduction in inoculum viability and supporting Sumner et al. (1981). The grading figures in

Table 6 were those received by the farmer at the grain silo on delivery of his crop. With this

kind of reduction in maize ear rot due to crop rotation, it should become a common practice in

maize production in South Africa.

Table 6: Effect of rotation on the incidence of ear rots in the Mpumalanga province during the

1986/87 season (Koster20, unpublished)

Rotation System % S. maydis % Ear Rot Grading of

Diseased Ears Benefit commercial farmer

Maize / maize

Maize / wheat

Maize / beans

Maize / fallow

9.8

4.6

4.1

2.7

Q

53.1

58.2

72.4

Third

First

First

First

Klemme et al. (1995) showed that the gross margin per hectare for maize monoculture was

lower than either maize-soybean or maize-soybean-wheat rotations at two sites in the USA. Not

only can disease affect crop grain yield but it can also significantly influence the quality of the

product. Where this occurs the value of the grain would be reduced further. There is no

information available in South Africa on the economic value of crop rotation in maize production

1 9 A.J. Farwell, Parent Seed Production Manager, Pannar Seed (Pty) Ltd, P.O. Box 19,

Greytown 3250, RSA.

2 0 S. Koster, O.T.K. Extension Service, Operating Co., P.O. Box 100, Bethal 2310, RSA.
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systems.

For a pathogen such as S. macrospora there would be theradded advantage of a reduction in the

leaf blight phase, as well as a reduction and/or elimination of primary inoculum. It is important

to consider rotation in conjunction with tillage practices, as this would influence the duration of

the rotation cycle, type of crop/s used in rotation and equipment needed. Ideally, rotation

should be practised with the no-till tillage system, as this allows for maximum utilisation of

moisture and keeps production costs to a minimum. However, the problem is that with maize

the plant debris is left on the soil surface, so the duration between the same crops would have

to be longer if compared to a plough-tillage system as the colonised maize debris would need

longer to breakdown with zero-till. A rotation period of three maize growing seasons is usually

considered sufficient.

A current development in parts of South Africa is the installation of irrigation systems and the

planting of winter crops which could reduce the period between maize crops. An additional

factor that would influence the rotation period is that of animals grazing the stalks after the crop

is harvested. Animals are allowed to graze on the colonised maize debris after the crop is

harvested and before the fields are tilled. This reduces the need for alternate feed, and the costs

associated with this practice, and reduces the amount of colonised maize debris on the soil

surface.

1.5 Tillage

When South Africa entered a cycle of very dry years in the early-1980s, the emphasis in the

extension service turned towards conservation of soil moisture, yield stability and a reduction

of production costs. The emphasis on soil moisture conservation through conservation tillage,

resulted in crop debris being left on the soil surface to reduce erosion and moisture evaporation.

When the environment became more moist, particularly when two moist seasons occurred in a

row, then a series of S. maydis ear rot epidemics arose as a result of the increased inoculum on

the debris in the field.

The basic plant pathological practice of sanitation (Vanderplank, 1963 and 1975; Zadoks and

Schein, 1979) is very important in maize ear rot (Koehler, 1959; Kerr, 1965; Palti, 1981), yet

in 1986 (at the start of the ear rot epidemic in South Africa), there was no literature published

on the effect of tillage practices on ear rot in South Africa.
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Disc Only Y77A No-Til l

Figure 1: The effect of two tillage systems on the incidence of ear rot in the Greytown
area in 1985/86 (Nowell, unpublished).

Table 7: The effect of tillage practices on the incidence of Stenocarpella spp. (Koster,

unpublished)

Tillage Practice

No-Till

Minimum Till

Rip and Disc

Disc X 2

Summer Plough

Winter Plough

Percentage

1985/86

% DisGr

4.0

3.5

1.7

1.5

1.5

2.3

Rel. %

173.9

152.2

73.9

65.2

65.2

100.0

Colonised Ears

1986/87

% DisGr

29.3

23.0

12.7

12.3

11.5

10.5

Rel. %

279.0

219.0

121.0

117.1

109.5

100.0

% DisGr - actual percentage diseased rotten ears.
Rel. % - percentage disease relative to the Winter Plough treatment which is taken as the control as this is the most

common period of ploughing.

An initial survey undertaken near Greytown in KwaZulu-Natal in 1986, showed that no-till

increased S. maydis ear rot incidence in a seed production field when compared to chisel-tillage

practices (Figure 1). Unfortunately this field did not have an area that had been ploughed.
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This trend was supported by Koster (unpublished) who showed an increase in Stenocarpella ear

rot with an increase in maize debris on the soil surface (Table 7). The effects of tillage were

more pronounced in the 1986/87 season when climatic conditions were ideal for ear rot

development and ear rot became a regional problem. No-till increased ear rot regardless of the

prevailing environmental conditions.

Table 8: Selected data from the Grain Crops Research Institute's tillage trials conducted in

KwaZulu-Natal during the 1986/87 season (Mallet and Berry21, unpublished)

Site

Hybrid

Planting Date

Cedara

PAN 6549

16/10/86

Dundee

PAN 394

04/11/86

Winterton

PAN 6549

11/1186

Geluksburg

RS 5206

10/11/86

Tillace Treatments
Disc, mouldboard, disc

Yield (kg/ha)

% Diseased ears

Disc, chisel plough, disc

Yield (kg/ha)

% Diseased ears

Chisel, chisel

Yield (kg/ha)

% Diseased ears

7052

17.7

7051

15.1

7283

21.8

4895

18.7

5362

21.8

5921

24.8

5853

9.3

6640

9.5

6747

1 O

2138

32.5

2002

37.4

5202

28.5

No-till

Yield (kg/ha)

% Diseased ears

Significance

Grain yield

Diseased grain

7265

20.1

NS

NS

5757

31.5

NS

**

6451

30.8

NS
**

3947

56.1

*

**

**
- significant at the 5% level.
- significant at the 1% level.

Trial results released by Mallet and Berry (unpublished) in 1987 again showed the high increase

in ear rot associated with the zero-tillage system at various locations in KwaZulu-Natal (Table

8). The trial at Cedara did not give rise to any differences in ear rot incidence but the other

three locations all showed differences between treatments. The hybrids PAN 6549, PAN 394,

PAN 6549 and RS 5206 were planted at Cedara, Dundee, Winterton and Geluksburg,

21 J.B. Mallet and W. Berry, Summer Grain Centre, Agricultural Research Council, Private Bag
X01, Pietcmiaritzburg 3201, RSA.
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respectively, but PAN 394 is the only hybrid that was considered susceptible to ear rot in

commercial maize production. There was significant mid-season stress at the Winterton and

Geluksburg locations, which predisposed these hybrids to infections leading to ear rot with the

late rains. It is revealing to see the increases in the percentage rotten ears of 68.4%, 231.4%

and 72.6%, at Dundee, Winterton and Geluksburg, respectively, under zero-tillage when

compared to the mouldboard plough treatment. Whether the trend at Cedara was a single season

effect or representative of previous seasons was of concern as this was one of the sites where

initial research in tillage methods and maize was conducted. This may be the reason why ear

rot had not been observed to increase with reduced tillage earlier in South" Africa. The Cedara

site has also shown to have the highest incidence of S. macrospora ear rot (Rheeder, 1988; Flett,

1990; Rheeder et al., 1990; Rheeder and Marasas, 1992 and 1994).

The benefits in moisture conservation under conservation tillage methods are obvious from these

yield data. It is for this reason that farmers must be encouraged to practice conservation tillage

but should be made aware of the potential disease problems, particularly ear rot, associated with

this practice and make alternate plans to reduce the risk of ear rot.

Many farmers have expressed the view that if they plough their fields they will reduce the

incidence of ear rot. The effectiveness of ploughing is largely dependant on how effectively the

colonised maize debris is buried. Often ploughs are not adjusted correctly and a significant

portion of the debris is either not buried or only half-buried. It is important to bury as much

debris as is practically possible, otherwise it will readily provide inoculum for infection the

following season (Lipps, 1983; Flett, 1990), and there is an increased risk of moisture stress due

to the reduced conservation of moisture with ploughing. This in turn can predispose the maize

to increased levels of ear rot.

1.6 Burning

Burning of Stenocarpella-infecled maize debris should only be considered as a last resort due

to the negative impact this practice could have on the organic matter content of the soil and the

potential for soil erosion during rain. It is unlikely that a completely clean burn can be

obtained; i.e., 100% of the maize debris is destroyed. This means that ear rot inoculum would

not be completely eliminated, especially in the colonised root and basal stem debris which is still

in the soil. Burning may therefore substantially reduce the amount of inoculum, but will not
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eliminate it.

1.7 Silage

Table 5 shows that the removal of plant material for silage purposes can reduce the incidence

of ear rot and increase grain yield in the subsequent season. This is in effect of the removal of

most of the inoculum, which reduces the likelihood of ear rot the following season. Although

removal of maize for silage is unlikely to be practised over large areas, the practice will be

beneficial as one of the control measures in overall integrated disease management. The areas

used to produce silage on a given farm can be rotated to spread the benefit of this practice over

the farm as a whole.

1.8 Seed-borne aspects

The influence of StenocarpeUa seedborne inoculum is likely to be insignificant in terms of the

epidemiology of the root, stalk and ear rot complex under South African conditions. There are

so many potential sources of inoculum, particularly Stenocarpella-lnfected maize plant debris,

that seed-borne inoculum is not significant. Research in the USA suggests that seed-borne

pathogens of maize under USA conditions do not increase root and stalk rot (Ooka and

Kommendahl, 1977; El-Meleigi et al., 1983). No research has been undertaken on

Stenocarpella ear rot of maize and the importance of seed-borne inoculum in the disease life

cycle. It is likely to have even less effect than on root and stalk rots. This could be a very

interesting but extremely difficult study to undertake.

Little information is available of the effect of Stenocarpella spp. on germination, seedling

vigour, seedling blight and systemic infection. Seed companies remove Stenocarpella-infected

seed because of the pathogen's effect on germination but little detailed information is available

on this effect under local conditions. This is also true for seedling vigour and damping-off.

Ooka and Kommendahl (1977) and El-Meleigi et al. (1983) suggested that seed-borne inoculum

has no effect in increasing root or stalk rot. The possibility of S. maydis infecting stalks from

colonised seed has not been investigated under local conditions. This may be possible in South

Africa due to relatively high levels of moisture stress experienced that may predispose the plants

to ear rot infection. This infection process could be complex and would need to be investigated

under a number of different environmental conditions.
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Chemical control has been investigated overseas and found to be effective in increasing

germination and seedling emergence, and reducing seedling blight caused by S. maydis (Hoppe,

1943; Crosier, 1946; Kruger, 1968). There are a wide variety of fungicides available for the

seed treatment of maize but little is known about their effect on S. maydis-infected seed (Jeffs,

1986). Even less is known about the effectiveness of fungicides on seed-borne S. maydis

infection under South African conditions. Captan is widely used as a seed treatment for maize

in South Africa but little research has been done to determine its effectiveness, especially against

S. maydis-infecied seed. Due to the climatic conditions in South Africa, seedling diseases are

likely to be less important than in regions with more moist environments. However, seed

treatments are employed, and are most effective, for the exceptional conditions rather than the

routine. Local research should be undertaken to determine efficacy and cost effectiveness of the

various fungicide products available.

1.9 Planting Date

The effect of planting date on Stenocarpella spp. is marked, especially in the eastern part of the

country. Research in the KwaZulu-Natal Midlands has shown that maize planted after 15

November have a substantially reduced risk of ear rot. The earlier the maize is planted, the

greater the risk of Stenocarpella ear rot. However, the later maize is planted in this region, the

less heat units and rainfall are received during active growth and the lower the grain yield

potential is. A compromise would be to plant between 5 and 20 November in order to balance

the risks (Farwell, unpublished; Nowell, unpublished). This effect will vary between locations

depending upon the seasonal rainfall distribution. It is important to reduce the risk of ear rot

by reducing the likelihood of rainfall during grainfill and grain maturity, in order to reduce

favourable conditions for the infection and subsequent spread of the ear rot fungi. A balance

is necessary between potential grain yield and ear rot risk.

1.10 Infection

Flett and Wehner (1989) found that S. maydis conidia could be airborne. The spore type is a

slime spore and they are not usually airborne. Slime spores are essentially splash dispersed,

which means dispersal cannot take place over more than a few metres. The fact that S. maydis

conidia can be airborne under certain environmental conditions, and remain viable, means that

dispersal is not limited to an area immediately around the inoculum source. More detail is
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needed on the distances the conidia can travel and the effect the environment has on conidial

dispersal and viability.

Most researchers agree that infection takes place at the base of the ear or through the shank

region of the ear (Durrell, 1923; Clayton, 1927; Shurtleff, 1980; Palm and Calvert, 1981; Achar

and Rabikoosun, 1995). However, the optimum time for infection varies considerably. Early

studies suggested that maximum infection takes place between 0 - 2 weeks after anthesis but

inoculation studies have shown infection can takes place up to 6 weeks after anthesis (Koehler,

1959; Kerr, 1965; Villena, 1969; Ullstrup, 1970; Chambers, 1986). Warren and Onken (1981)

and Nowell (1992) found that inoculation with a conidial suspension or dry, milled ear rot

inoculum was 10 - 14 days before anthesis resulted an ear rot epidemic. These results suggest

that environmental conditions at the time of infection are most important and may interact with

the method of introducing the pathogen into or onto the plant. The afore mentioned studies

suggest that Stenocarpella spp. can infect maize ears from anthesis to at least 8 weeks after

anthesis, provided environmental conditions are suitable during the infection process.

Eddins (1930) suggested that infection took place through the tip of the ear. Koehler (1959)

mentioned that S. maydis tip infection had been observed in the field but was infrequent. This

form of infection has been observed on a number of occasions in KwaZulu-Natal and is usually

associated with moist conditions during the final period of grain fill. Ear rot severity with tip

infection or colonisation is usually not as high as when the ear is infected from the base. This

suggests infection taking place late resulting in the pathogen having less time or less favourable

conditions to develop. Tip infection is invariably caused by 5. mgydis in Kwa7niii-N^ji

An area that needs further investigation is to understand the conditions required before

Stenocarpella spp. will move into the ear from the stalk and cause ear rot. It is likely that this

is influenced largely by cultivar resistance and the environment. McLennan (1991) could not

show that Stenocarpella spp. moved from the stalk below the ear into the ear, but was able to

increase ear rot by inoculating the internode below the ear shank. In the 1987/88 season,

Nowell (unpublished) found that in maize stalks naturally infected by S. macrospora below the

ear, the fungus moved through the stalk below the ear and then colonised the ear during the

1987/88 season. During this season there was moisture stress at flowering which probably

enhanced the spread of the fungus.
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1.11 Symptoms

Where both Stenocarpella spp. are prevalent, it is not possible to tell the species apart on

colonised ears without examining the conidia under a microscope. If a field of maize is

regularly monitored over the whole growing season, then a better indication of the species

involved can be obtained. The first indication that S. macrospora is involved will be either

leaves infected with the fungus (resulting in a blight), or the appearance of relatively large

lesions on the leaf sheath which engulfs the whole sheath in 2 - 3 days. This results in the leaf

wilting within 1 - 2 days, due to the inability of water to move info the leaf (Nowell,

unpublished). This type of infection is frequently seen in fields that had a high incidence of leaf

blight caused by S. macrospora. S. maydis apparently does not attack the leaf sheath readily

(Chambers22, pers. comm.). S. macrospora sporuiates readily on these lesions and the

progression of the fungus up the plant (from the site of infection) is rapid and may spread

through four internodes within ten days. The Stenocarpella infection seldom moves down a

plant from the site of infection, especially if the site of infection is above the ear (Nowell,

unpublished). S. maydis is not known to move rapidly through the plant (Chambers, pers.

comm.). This was similar to the finding of Latterell and Rossi (1983a) who found

S. macrospora to be more aggressive than S. maydis. They suggested a possible reason for this

rapid movement of S. macrospora through the plant is that S. macrospora is able to grow

through the vessel elements within the xylem more readily than S. maydis.

A problem that arose in the late 1980's was the effect of seed-borne fungi (primarily

Stenocarpella spp.) on the germination of the seed (Chambers, pers. comm.). Apparently the

problem arose as a result of high levels of infection and colonisation during seed production,

especially with hybrids susceptible to Stenocarpella ear rot. However, it would be thought that

good quality controls measures would be sufficient to reduce this problem to a manageable level.

A problem can arise when the severity of ear rot increases when the environmental conditions

are favourable for the fungus to grow on the ear when the grain moisture is below 28%.

"Hidden Diplodia" is late infection and colonisation of the grain by Stenocarpella spp. which

move up primarily from the shank, cob and the stalk into the grain (Koehler, 1959). As a result

of the low kernel moisture during this stage of growth, infection is limited to the more moist

K.R. Chambers, formerly of the Summer Grain Centre, Agricultural Research Council,
Private Bag XI251, Potchefstroom 2520, RSA.
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area of the kernel, i.e., the embryos. This type of colonisation results in visually healthy ears

with a high percentage of rotten grain when the ear is shelled. Disease of this nature can easily

result in a seed lot having unacceptably high levels of rotted kernels which could reduce

germination and seedling vigour or result in seedling blight. The only solution is to break each

ear in half (by hand) when cleaning the crop and check for rotten kernels. Certain genetic

backgrounds appear to be more susceptible to this type of infection.

1.12 Stress

Dodd (1980a and 1980b) summarised this work with his photosynthetic stress-translocation

balance (PS-TB) concept of predisposition of maize to stalk rots. Any form of stress usually

results in significantly more stalk rots which he showed was as a result of reduced carbohydrates

in the stalk, allowing fungi to infect and/or spread rapidly. This effect occurred regardless of

the causal fungus. It has been shown that up to 20 percentage of the grain weight originates

from the stalk carbohydrates under normal environmental conditions and this proportion can

increase rapidly under stress (Jurgens et al., 1978), resulting in reduced metabolic defence

mechanisms and the initiation of senescence which is apparently ideal for fungal proliferation.

According to Dodd (1980a and 1980b), this holds for both the roots and lower basal portion of

the stalk, with the other plant parts being less affected. According to Schneider and Pendery

(1983) the growth stage at which the crop is stressed is important. Their research suggested that

mild water stress pre-anthesis resulted in the largest increase in stalk rots. However, this may

vary depending on the severity of the stress. It is interesting to note a paper on calorific energy

distribution within a maize plant and the redistribution of this energy after pollination (Girardin,

1985) which clarifies the partitioning of carbohydrates in the maize plant, before and after

pollination. Field experience in South Africa has shown the same types of moisture stress

predispose maize to S. maydis ear rot should environmental conditions be favourable for

infection during ear development and grain fill.

The exact mechanisms involved are not clearly understood. Pappelis et al. (1973) showed that

ear rot was related to the number of senescent cells in the cob tissue during grain fill. Pre-

anthesis stress would reduce the plant's capacity to produce sufficient carbohydrate to completely

satisfy the sink (ear) after pollination has taken place. All carbohydrate would go to the grain

leaving little to satisfy the needs of the expanding cob. This would increase the number of

senescing cob cells and increase the likelihood of S. maydis ear colonisation. Essentially the
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difference is that under ideal environmental conditions the amount of surplus or free

carbohydrates would be high. However, in plants that have experienced pre-anthesis stress, the

amount of surplus or free carbohydrate would be low or negligible and the number of senescent

cells would increase. Early and significant colonisation of the cob tissue would result in the

rapid colonisation of the ear as a whole. S. maydis ear rot is essentially a "high sugar" disease,

whereas S. maydis stalk rot is a "low sugar disease" as defined by Vanderplank (1984).

1.13 Plant density

Although no detailed information could be found in the literature regarding plant density and

S. maydis ear rot, it has been accepted in the maize industry that increases in plant densities

result in an increase in the incidence of ear rot (Koehier, 1959). Results from experiments near

Greytown (Chapter 5) show that a linear relationship does not occur under local conditions. One

reason for this is that plant densities used by farmers in southern Africa are different to those

used in the first world countries. This is essentially due to the variable climate under which

maize is produced locally. Many of the regions in South Africa where maize is produced would

in most other countries be considered completely unsuitable for maize production due to their

low and variable rainfall. For this reason, local maize breeders have developed highly prolific

hybrids that can be planted at low plant densities (as low as 9 000 plants ha"1) that will produce

many ears per plant should the climatic conditions be suitable for maize production. In this way

the effect of low plant density is compensated for under favourable climatic conditions. The

same hybrids must also be able to produce high and stable yields at plant densities over 50 000

plants ha"1. Plant densities in the USA are usually well in excess of 45 000 plants ha"1. When

S. maydis ear rot is examined in plant densities of 50 000 plants ha"1 and higher, there is a

definite increase in S. maydis ear rot with increased plant density. This supports information

from the USA. At plant densities lower than 50 000 plants ha"1, there are two distinct hybrid

response patterns. In the one group (usually the more S. maydis ear rot resistant group),

S. maydis ear rot incidence and severity increases with increased plant density. The second

group (usually the more S. maydis ear rot susceptible group), S. maydis ear rot incidence and

severity is highest at 35 000 - 40 000 plants ha1, gets significantly less ear rot around 50 000

plants ha"1 and then ear rot generally increases with increased plant density.

This research showed that this pattern is most obvious when conditions are ideal for S. maydis

ear rot infection and development. This may be the main reason why these response patterns
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have not been noted under local conditions before. Initially it was thought that prolificacy may

have been responsible or involved in these response patterns, as the hybrids usually become

prolific in plant densities less than 50 000 plants ha'1. This theory would have tied in with

Dodd's sink/source theory (Dodd, 1980a and 1980b). However, prolificacy was not correlated

with ear rot response. In fact, ear rot severity showed very little correlation with any of the

factors measured (grain yield, prolificacy, grain moisture and the grain shelling percentage).

The effect of plant density on ear rot needs to be investigated further as the implications for the

maize farmers and maize seed producers are large. Most yellow-grained maize produced in the

eastern part of the country is produced at plant densities of 35000 - 45000 plants ha'1. A high

proportion of the seed maize is produced at these plant densities as well. Trials should include

ear rot susceptible and resistant hybrids that are prolific and others that produce single ears

only. A wide range of agronomic factors need to be measured. Trials need to be undertaken at

plant densities ranging from 15 000 - 90 000 plants ha'1 and in at three or more geographically

distinct locations (KwaZulu-Natal, Mpumalanga and North West provinces) over two or more

growing seasons. In the study undertaken (Chapter 5), the agronomic factors were examined

individually in relation to plant density and ear rot response. Future studies should use multiple

regression analysis as the relationships involved in these response patterns are likely to be

complex. Climatic factors should also be closely monitored during these trials.

Although the trial was relatively small in size, plant density experiments are inherently difficult

in practice.

A second option would be to undertake these trials using a small diallel (5 inbreds crossed in

all possible combinations) to study the inheritance of S. maydis ear rot resistance at different

plant densities, instead of known hybrids. Inbreds could be selected to give a range of ear rot

responses and prolificacy.

1.14 Irrigation

The effects of irrigation are very important to seed maize producers in South Africa, as a

significant proportion of maize seed is produced on farms that have irrigation. This ensures the

seed industry can obtain a seed crop even under harsh and variable weather conditions. El-

Meleigi et al. (1983) showed that irrigation could substantially reduce the amount of stalk rot
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by reducing moisture drought stress on the plant. This is generally considered to be one of the

benefits of irrigation but no one has apparently looked at the possibility of an increase in ear rot

due to irrigation. From data collected in the 1986/87 season in the Greytown area, it was shown

that the incidence in Stenocarpella ear rot could double under centre pivot irrigation. Late

plantings, when the risk of ear rot is lowest, that were irrigated also increased in the incidence

of Stenocarpella ear rot beyond what is normally expected (Nowell, unpublished). This means

that centre pivot irrigation should not be used in seed production fields unless absolutely

necessary, or applied in such a way as not to increase the leaf wetness period or increase fungal

spore production. It is likely that other forms of irrigation (i.e. flood and drip irrigation) may

not have as marked an effect in increasing ear rots, as the plant surface is not moistened and

there is no splashing of the S. maydis conidia.

1.15 Herbicides

There are some reports that certain herbicides can increase the prevalence of ear rot fungi

(Nelson23, pers. comm.). There were also indications that some of the herbicides used when

planting maize may also increase stalk and ear rots in the Greytown area (Nowell, unpublished).

The trends observed were small but need to be investigated further. Such trials would have to

be well designed and include a wide range of herbicides, and herbicide mixes, that are used

commercially. The trials would have to cover a wide range of environmental conditions to cover

any eventuality, including soil type and climate.

1.16 Hybrid response

Probably the single most important environmental factor influencing S. maydis ear rot in South

Africa, is that of moisture (drought) stress before or near anthesis. The majority of the maize

producing areas in South Africa are classified as marginal crop farming lands from the point of

view of rainfall, and usually experience at least one period of drought stress during any given

growing season (Cronje24, pers. comm.). There are many areas, especially in the drier western

maize producing regions of South Africa, which during the late 1980's and early 1990's

experienced more crop failures than successes due solely to drought. In the sporadic wet periods

2 3 S.D. Nelson, SENSAKO (Pty) Ltd, P.O. Box 337, Delmas 2210, RSA.

2tt D.E. Cronje, formerly of the Maize Board, P.O. Box 669, Pretoria 0001, RSA.
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in some regions during the late-1980s, maize that had been subjected to stress and then moist

conditions after flowering, was predisposed to infection by S. maydis and subsequent

development of ear rot (Berry and Mallett, 1992; Koster, pers. comm.; Nowell, unpublished).

The alarming observation was that this was regardless of the inherent levels of resistance to

S. maydis in the hybrids. This means that resistance to S. maydis cannot be completely effective

in eliminating ear rot because periods of moisture stress occur before anthesis could negate any

ear rot resistance effect.

The stress effect has resulted in maize researchers in South Africa being highly cautious when

classifying resistance to S. maydis ear rot. The South African Agricultural Research Council

has opted to classify hybrid response to S. maydis ear rot ranging from highly susceptible to

least susceptible. They are of the option that resistance to S. maydis ear rot cannot be used as

all resistance could be negated by the stress effect. This form of categorisation will not give rise

to the false impression that certain hybrids are ear rot resistant and will not be severely affected

by S. maydis ear rot (Flett25, pers. comm.). The problem with this philosophy is that farmers,

and the maize industry in general, are not necessarily made fully aware of the large differences

in S. maydis ear rot response between current commercial hybrids. There are a number of

hybrids that can be classified as being resistant to S. maydis ear rot. Education is needed to deal

with the problem of stress predisposing maize to ear rot infection.

The non-linear S. maydis ear rot response model proposed by Flett and McLaren (1994) largely

explains the variation in hybrid response to ear rot. This has led to a far greater understanding

of the commercial hybrid response to S. maydis ear rot and allowed for sound recommendations

to the farmers in high risk ear rot areas. However, there are still some hybrids that do not seem

to completely fit into this model. A further refinement could be to investigate location or

geographic effects, which may explain some of the variation still present in some hybrids. An

additional problem is that of availability of the software to other researchers in the maize

industry. Currently the software is complex and not user-friendly. If such a programme was

available to others it could be used to further ear rot screening and breeding at other

organisations. It is also likely that this model could be used for other maize diseases as well;

e.g., GLS.

2 5 B .C. Flett, Summer Grain Centre, Agricultural Research Council, Private Bag XI251,
Potchefstroom 2520, RSA.
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Currently S. maydis ear rot screening, and non-linear regression analysis, is only conducted on

the commercial hybrid series (49 hybrids annum1). Ideally for ear rot screening this should be

extended to include the pre-commercial hybrid series (Phase I) so that when hybrids are released

to the farmers on a commercial scale the ear rot information is already available. Currently

there is a delay of at least one season from the time a hybrid is commercialised until the farmer

can get accurate and reliable S. maydis ear rot response information. Instead of being screened

at 3 - 4 locations a season, each hybrid series should be screened at two locations only. This

preliminary information could then be expanded in subsequent seasons. This approach would

reduce the risk of crop failure due to S. maydis ear rot in the first year or two of

commercialisation.

1.17 Resistance / Genetics

In maize breeding programmes, the emphasis turned towards hybrid adaptability and yield

stability in the early-1980s, to reduce the effects of the variable weather. The emphasis on

disease resistance was reduced due to the lack of natural disease pressure (in the RSA, maize

breeders had relied on natural infection to screen their germplasm for disease resistance) as it

is not possible to select for resistance in the field in the absence of the pathogen. This resulted

in the disease resistance of new hybrids either remaining constant or being more susceptible

when compared to existing hybrids on the market.

Tester selection is important and could, if not correct, nullify much of the work conducted in

selecting ear rot resistant material. Usually, the tester selected will be a proven inbred or single

cross with good general combining ability that is likely to identify any quantitative variation in

the material being tested. However, there may be cases when specific types of testers or testers

of known backgrounds need to be used. The inbreeding stage of initial testing for yield will

depend on the objectives of the programme and may also be governed by personal preference.

S. maydis ear rot resistance in South Africa is primarily quantitatively inherited but a wide range

of genetic resistance is available. The range of resistant material and the type of resistance

available provides adequate material for ear rot resistance breeding. This supports Boling and

Grogan (1965) who found that the best method for selection for ear rot resistance was through

reciprocal recurrent selection, although backcrossing could be used in the specific case they

studied.
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S. maydis is a necrotroph when causing a stalk rot (low sugar disease). However, the maize

ears are large sinks for carbohydrates and S. maydis infecting ears is either a biotroph or

hemibiotroph (high sugar disease). It is unlikely that a pathogen can be both a necro- and

biotroph is the same plant and at the same time, causing two different diseases. Once S. maydis

has infected the ear, in senescing cells of the shank and cob, the sink is severely affected as

carbohydrates cannot get to the kernels as easily due to the colonisation of the shank and cob

tissue. After this the ear is stressed and S. maydis becomes an efficient necrophytic feeder. The

stage of infection, and tissue that is colonised, will determine the severity of ear rot at harvest;

i.e., the time the pathogen has to develop and the site on the ear that the'pathogen infects.

1.18 Screening

There is not necessarily a good correlation between ear resistance expression in artificially

inoculated and naturally infected maize; only specific material correlates well, with majority of

germplasm showing little to no correlation. This is due to the circumvention of the mechanical

resistance mechanisms (Koehler, 1959; Kerr, 1965; Gulya et al., 1980). It is of concern that

artificial inoculation techniques are used as the rule, rather than the exception, in most of the

research/breeding organisations in the USA and Europe. This is often because researchers using

these inoculation techniques either do not test this material under natural conditions or not have

the resources to undertake this work. An attitude that appears to be particularly strong in the

USA is that there is so much useful resistance available after artificial inoculation, that the

argument of the so-called "lost resistance" is not valid. However, with a severe selection

pressure these researchers may in fact be selecting for highly heriditable vertical resistance (VR),

which is not desirable in the long term. Unfortunately, the problem with natural infection is

usually inconsistent inoculum levels within an experiment. Therefore, any method of naturally

increasing the inoculum level to a higher, more consistent level, is beneficial.

Other than the lack of correlation between natural and artificial inoculation techniques, there

appear to be a few other complicating factors associated with artificial inoculation. Biotypes are

important in that there can be interactions between biotype and genotype in anthracnose and

G. zeae stalk rot (Mesterhazy and Kovacs, 1986; White et al., 1987). According to Chambers

(pers. comm.) and Flett (pers. comm.), there is much variation between biotypes of S. maydis

in South Africa. This immediately introduces the problems of which biotype to use, multiple

inoculations, mixing biotypes in suspension and how to interpret the results. The combinations
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are also likely to vary for each geographical area, or screening has to take place over a number

of locations. There is presumably no cost effective means of doing this without error. Koehler

(1959) stated that there can also be differences in aggressiveness in abiotype depending upon

the age of the culture used.

If screening for ear rot resistance under natural epidemics is not possible, then essentially two

methods are well accepted internationally. The first method is to inject a conidial suspension

into the ear, and the second method is to inoculate with Stenocarpella colonised toothpicks, the

latter technique being favoured for ear rot.

The method developed of naturally increasing S. maydis inoculum pressure in South Africa

(Chapter 2) worked well and shows good correlation with the hybrid response to ear rot in the

field. The effectiveness of this method has been verified by Bensch (1995) and-is used as the

standard method to screen germplasm by the Agricultural Research Council (Flett and McLaren,

1994). The only modification made is to inoculate with grain colonised by a pure culture of

S. maydis instead of the milled S. Mffyc/w-infected ears from the previous season. This is

desirable if the time, effort and cost in producing this pure inoculum can be justified. The

method is ideally suited for use by a commercial organisation for screening large numbers of

plants for ear rot resistance as it is simple to undertake, efficient, effective and in-expensive.

The method of Warren and Onken (1981) of applying a conidial suspension would be effective

but the inoculum is more difficult to produce and regulate, is sensitive to environmental

conditions, culture age and subject to loss of virulence in culture.

Irrigation can play an important role in screening programmes in ensuring that S. maydis

inoculations are effective and ear rot develops after inoculation. In most cases irrigation would

be supplementary to rainfall to ensure the maize does not get too dry.

i.19 Assessment

A number of different methods of ear rot assessment have been employed in the past (Hoppe and

Holbert, 1936; Koehler, 1959; Villena, 1969; Pappelis et al., 1973; Gulya et al., 1980;

Rheeder, 1988). However, many of the methods used are labour intensive and slow in

deployment. Results presented in Chapter 3 show that the assessment method used will largely

depend on the desired accuracy and time available to undertake the assessment. The accuracy
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would be determined by the testing phase of the germplasm being screened for ear rot response.

Initial or preliminary trials could be visually assessed using a simple rating scale or index. More

advanced trials would require an increase in the accuracy and the percentage of S. maydis

infected ears would be determined. In commercial hybrid trials and trials where accuracy is

important, the percentage of diseased grain would be determined. This is a time-consuming

method of ear rot assessment but reflects the actual disease levels in the field as determined upon

delivery of a grain crop to the storage silos. More detailed analysis of ear rot would be used

for pathological studies only.

When using a rating scale it is important to realise that the rating gives an estimate of ear rot

only and that this scale is often not linear in nature. This can give rise to incorrect information

if these data are meaned arithmetically (Gulya et a!., 1980). This is an additional reason why

actual percentage of ear rot should be used when trying to accurately determine the level of ear

rot or germplasm response to ear rot.

In Chapter 3, experience in maize research is important when assessing ear rot. Researchers

with less than 3 years field experience were inaccurate when assessing ear rot. This emphasises

the need for training of inexperienced researchers in ear rot assessment. It is also important that

researchers should "standardise" their ear rot assessments at the beginning of each harvest

season. This should ensure more uniformity between researcher's assessments.

A factor that needs close attention is that of "hidden" ear rot. This form of ear rot is easy to

underestimate and can make up a large proportion of the total kernels rotted. The only way to

accurately determine the amount of "hidden" ear rot is to individually examine each ear. This

can be very time consuming. "Hidden" ear rot is particularly important when infection and

colonisation presumably takes place late in the season.

Although S. maydis ear rot is the most important ear rot in South Africa, a number of other

fungi also cause ear rot. This is all taken into account when the percentage diseased grain is

determined. When determining the resistance levels to S. maydis only, this would be

undesirable. In this case, the most accurate assessment method would be to accurately determine

the percentage of S. maydis-infecied ears.
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1.20 Fungicides

Considerable research has been done in Greytown, KwaZulu-Natal, to find fungicides that can

be used to control Stenocarpella ear rots in seed production fields. Initial research with benomyl

proved that ear rots could be controlled effectively with one or two fungicide applications,

provided the fungicides were not applied by aircraft (Nowell, unpublished). Subsequent research

proved that large reductions in the incidence of ear rot, and significant grain yield increases,

could be obtained through the application of benomyl from 10 days before anthesis to

approximately 3 weeks after anthesis. This work showed that fungicide application in seed crops

is economically viable but would not necessarily be viable for commercial maize producers.

Although the most consistent and effective fungicide was benomyl, the triazole group of

fungicides also showed promise for Stenocarpella ear rot control. Although both knapsack and

tractor application of the fungicides were effective, aerial application was not. This is likely due

to the volume of water being applied as water volumes of less than 150f ha"1 resulted in reduced

efficacy of the fungicide. In addition, not all genotypes responded to fungicide application.

Many factors can influence the efficacy and economic viability of fungicide application. These

are:

i) the natural resistance level of the host,

ii) prevailing weather,

iii) growth stage at application,

iv) duration between applications,

v) method of application, and

vi) rate of fungicide applied.

Not only did the use of fungicides increase yields, but it also increased the fraction of the crop

that could be sold as seed. This increased the profitability of fungicide use substantially for seed

companies (Farwell, unpublished; Nowell, unpublished).

The use of fungicides to improve seed yield and quality needs to be developed further. In

general, seed quality would improve substantially if fungicides were used to control diseases on

susceptible seed parents. The profitability would consequently improve. The judious use of

fungicides would allow normally high risk disease regions to be utilised for seed production.

These high risk regions are usually regions of higher and more stable rainfall, which would

reduce the chances of crop losses.
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The use of fungicides on maize to control S. maytlis ear rot would be limited to seed crops only.

This means that these products would have to get minor use registration with the relevant

authorities, a process easier than registration for a food crop.

Resistance by S. maydis to the fungicides employed to control ear rot is a potential problem.

However, the fungicide is usually only applied once or twice a season and the chances of

resistance building up to these products are low (Dekker, 1986; Delp, 1988; Wade, 1988).

1.21 Fertility

The practice in South Africa, particularly in the Highveld and KwaZulu-Natal, to let cattle graze

on the maize stalks after the ears have been harvested has become a common practise. This

reduces feeding costs- and adds another dimension to the mixed farming enterprises. However,

there may be a problem associated with this. Allowing cattle to graze on the stalks means that

the farmers cannot till their fields until the cattle have finished grazing. Therefore, either the

maize debris gets buried very late in the season, reducing the time available for breakdown of

the debris, or the farmers introduce reduced tillage practices. Both methods increase the

likelihood of increased ear rot the following season. A further interesting phenomenon is that

the application of cattle manure to a field may influence the incidence of ear rot. A survey in

a field near Greytown, KwaZulu-Natal, that had received two different rates of cattle manure

during the 1987/88 season, revealed an increase in Stenocarpella ear rot with increased manure

levels. However, there was also an increase in the number of healthy ears. This means that the

increase in ear rot was not in the number of diseased ears, but rather in the severity of disease

(Nowell, unpublished). This raises the issue of high yielding maize (those fields that received

manure had a higher yield than those that did not) being less able to withstand the spread of ear

rot once infection has taken place. This is theoretically possible on the basis that ear rot is a

high sugar disease. These are further aspects that need investigation in association with fertility

trials.

Jones and Duncan (1981) found that maize produced with nitrogen stress (low nitrogen) had

significantly higher levels of aflatoxin B, (<240 times higher) than maize grown without

nitrogen stress. Warren et al. (1975) found that there was a significant reduction in the

incidence of F. moniliforme in the kernels with the addition of anhydrous ammonia alone or

anhydrous ammonia with nitrapyrin to the soil. However, no information is available on
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mycotoxins in Stenocarpella-'mf&cicd ears that have been stressed through inadequate nitrogen

stress. This needs to be investigated and would also be relevant to the Fusarium mycotoxins.

1.22 Biological control

An area that does warrant further research is that of biological control of seedborne fungi and

subsequent root, crown and stalk rot. Promising results have been published at times

(Kommedahl and Mew, 1975; Vakili, 1985) and commercial biological seed treatments are now

becoming available; e.g. Kodiak* from Gustafson. No research has been "undertaken on maize

in South Africa. Soil additives and adding stalk rot mycoparasites to the whorl of the plants also

warrant further research. Vakili26 (pers. comm.) found that by adding mycoparasites from the

stalks of the previous crop to the whorls of the maize plant at approximately the 10 leaf stage,

there was a reduction in the incidence of stalk rot. Unfortunately, this project was terminated

before final results could be obtained and no ear rot determinations were obtained.

1.23 Early drying

Artificial drying after early harvesting of maize can have a large effect on the incidence and /

or severity of Stenocarpella ear rot. Research by Farwell (unpublished) showed that the

optimum time to harvest seed maize is at physiological maturity (±40% grain moisture).

However, there appeared to be differences between genotypes. These data are based on the

visual assessment of diseased grain. The resistant genotype tended to reach maximum

Stenocarpella ear rot approximately 28 days after physiological maturity, but a more susceptible

genotype reached maximum ear rot about 24 days after physiological maturity. The rapid

increase in diseased grain between 47% grain moisture and 29% grain moisture is significant

to the seed industry. To get the benefit of early drying it is then important to harvest the crop

as early as possible. Artificial drying of maize grain is not necessarily a viable proposition to

the commercial producer, unless there is an additional bonus for early delivery or the delivery

of superior quality grain. A further interesting phenomenon, is that of the differences between

plant densities for the prevalence of ear rot with early harvesting. Lower plant densities resulted

in a greater increase in ear rot with later harvesting in most seed parents tested. Plant densities

above 44 000 plants ha'1 have almost a linear increase in disease with time. It is important that

26 J. Vakili, Department of Plant Pathology, Iowa State University, Ames, Iowa, USA.
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the relationship between internal seedbome fungi and the effects on seed germination, vigour

and viability over time be studied further. It would be of interest to seed companies if early

harvested maize stores better due to fewer internal seedborne fungi. Such studies would also

allow the optimisation of seed treatments.

1.24 Mycotoxins

The effects of mycotoxins on animals are worrying, since in excess of 40% yellow grain

delivered to storage silos had greater than 4% rotten grain during the 1987/88 and 1988/89

seasons. At least 15% of the yellow grain delivered in 1988 had >8% rotten grain and there

are no records of the amount of sample graded yellow maize that was delivered or utilized as

animal feed. There was significantly less rotten white grain during the same period. However,

it is primarily the yellow grain that is used for animal feed. Although Stenocarpella ear rot does

not affect cattle once shelled, the pig, poultry and duck industry cannot maximise utilisation of

the yellow grain without significant effects on the animals. If the S. maydis and S. macrospora

mycotoxins were identified, rapid and accurate means of determining feed value could be

developed.

A further point touched on by Rheeder (1988) and Rheeder et al. (1990) was that of the effect

of S. maydis infection on plant / seedling growth. Cutler et al. (1980a and 1980b) found that

diplodiol, isolated from S. macrospora, caused selective growth responses in maize plants. This

needs to be investigated further, but the problem is that the toxin produced by S. maydis has still

not been characterised. Viljoen et al. (1994) showed that normally S. maydis infected maize is

in the minority and the major effect of S. maydis would be in the second and third grade maize.

This means that the mycotoxins produced by the various Fusarium spp. are more important in

maize overall.

2 GREY LEAF SPOT

Grey leaf spot was first noted by South African scientists when it appeared in South Africa in

the late 1980s. However, it now transpires that the disease has been present in other African

countries for about the same period of time. According to Pixley27, GLS has been present in

2 7 K.V. Pixley, CIMMYT, P.O. Box MP163, Mount Pleasant, Harare, Zimbabwe.
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Uganda for at least four years and is causing severe yield losses. Farmers and extension

personnel in Cameroon maintain the disease has been present in their countries for at least six

years and is also causing large economic losses. Zimbabwe officially reported the pathogen for

the first time during 1996. This pathogen has become a problem in Africa and is fast becoming

an international problem. Research on GLS in South Africa, under African conditions, can be

used effectively by other African countries to find solutions to GLS in maize.

The impact of GLS on the farming community in the early 1990s in KwaZulu-Natal, South

Africa was large and the continued production of maize in this region was threatened. A feature

of GLS is the rate at which it spreads and establishes itself. Consistent yield losses in excess

of 30% (Tables 8.1 - 8.4 and Table 8.9) in South Africa, on susceptible hybrids, cannot be

absorbed in commercial farming enterprises. Grain yield losses of 2.390 - 3.504 t ha"1 or a

financial loss of Rl 554 - R2 278 ha'1 were reported for the 1992/93 and 1993/94 seasons. Such

economic losses justify urgent and significant research efforts to determine the most cost-

effective control measures under South African conditions.

2.1 The pathogen

Although the life cycle of Cercospora zeae-maydis Tehon & Daniels has been studied, there are

a number of areas that need further research, particularly under southern African conditions.

In the literature there is some confusion as to the species of Cercospora that causes GLS on

maize (Hyre, 1943; Mulder and Holliday, 1974; Shurtleff, 1980; McGee, 1988). A study is

needed using a number of different biotypes of C. zeae-maydis to determine whether maize is

the only host. It is also important to determine whether Cercospora sorghi can infect maize.

A wide range of the Gramineae should be tested as possible hosts as this would be important in

the life cycle of the pathogen.

Considerable variation in the size of the conidia has been reported (Tehon and Daniels, 1925;

Chupp, 1953; Kingsland, 1963; Latterell and Rossi, 1983b; Levy28, pers. comm.). This needs

to be clarified, particularly if it were true that different species are involved or alternate hosts

are available. Bair and Ayres (1986) noted considerable natural variability in the pathogen in

the field. This suggests that much of this variation may in fact be natural. No comparative

28 C. Levy, Plant Pathologist, Commercial Farmers Union, P.O. Box 592, Harare, Zimbabwe.
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studies have been undertaken to compare biotypes and / or pathotypes from the Americas, Asia

and Africa. These studies should be based on pathogen morphology, isozyme patterns, DNA

fingerprints and host response to the biotypes. A collaborative programme on this is planned for

early 1997 and will involve pathologists from South Africa, the USA and Zimbabwe. Other

scientists and countries will be drawn into this programme. This would also give insight into

where the pathogen originated and how it spread around the world.

The teleomorph of C. zeae-maydis, a Mycosphaerella sp., was briefly mentioned by Latterell

and Rossi (1983b) and was said to be insignificant in the initiation of epidemics. This may well

be the case in North America, but in the sub-tropical and tropical environments the teleomorph

could play a significant'role in the life cycle of the pathogen. The teleomorph would play an

important role in long-term survival of the pathogen, initial infection, long distance dispersal,

rapid spread of the pathogen and result in a significant amount of genetic variability in the

pathogen population. This would have significant impact on GLS resistance breeding and

fungicide usage strategies. As an example of the different sexual phases being prominent in

different crops and regions, the anamorph of Leptosphaeria maculam (Desm.) Ces. & deNot.

is central in blackleg of cabbage. However, the teleomorph of L. maculam is predominant in

canola in causing blackleg (Laing, 1996).

2.1 Distribution

Figure 2 shows the worldwide distribution of GLS as of January, 1996, and is based on

Boothroyd (1964), Latterell and Rossi (1983b), Ward et al. (1993), Coates and White (1994)

and Nowell (unpublished). Initially the GLS epidemics in South Africa were localised to the

KwaZulu-Natal region but with the increased distribution of the disease in the Mpumalanga

province, GLS has now becoming a national problem. Bensch and Flett29 (pers. comm.)

reported that GLS has now spread to the Amsterdam, Amersfoort and Wakkerstroom regions,

and have also found it in the Brandfort, Vrede, Reitz, Harrismith, and Bethlehem areas of the

maize production region during the 1995/96 growing season. The disease has also been noted

at Jozini, northern KwaZulu-Natal, and Komatipoort, eastern Mpumalanga. Unconfirmed

reports have been received from an even wider area than this. This is highly significant, as a

29 M.J. Bensch and B.C. Flett, Pathology Section, Summer Grain Centre, Grain Crops Institute,
Private Bag X1251, Potchefstroom 2520, RSA.
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major portion of the maize production region in South Africa in now threatened should

environmental conditions be conducive for infection and disease development. It is expected that

with time, GLS will be endemic throughout the South African maize production region.

However, GLS epidemics will be limited to the eastern maize production regions with a higher

rainfall and cooler summers. Certain areas in the eastern Highveld region (from Piet Retief to

Carolina and Lydenburg) can expect to experience economic losses during years of normal

rainfall, once inoculum has built up in this region. The area of Boons and Caltonville region

(west of Gauteng) could be a hot spot for GLS as the rainfall in this region is slightly higher

than surrounding areas. However, should wet seasons follow each other, the likelihood of a

GLS epidemic in other regions is much higher, particularly in the low-lying valleys. This would

be very similar to the GLS disease pattern in the USA- (Stromberg, 1986; Anderson, 1995).

Grey leaf spot has been positively identified (Figure 3) in Zimbabwe, Cameroon, Uganda,

Malawi (southern Malawi and Mzuzu), Zambia (from the Mkushi Block to Kasama), Zaire

(Lubumbashi region), Kenya (Eastern Highlands), Mozambique (southern region), Swaziland and

Tanzania (Mbeya). The severity of GLS in Cameroon, Uganda and Zimbabwe is of concern to

both maize farmers and researchers. Figure 4 shows the known distribution within Africa as

of December 1996. GLS has been noted in specific regions of the above countries and is likely

to be present throughout the countries to a greater or lesser degree. Based on the known

distribution of the pathogen in Africa, meteorological data and topography of the region, it is

likely that the pathogen is also present in, or will be in the near future, Angola, Burundi,

Central African Republic (western region), Chad (southern region), Congo, Ethiopia (highlands),

Gabon, Nigeria, Rwanda and Sudan (southern region). The distribution in West Africa is

unknown but the environment in the region is favourable for GLS epidemics.
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Figure 2: Worldwide distribution of grey leaf spot as of early 1996.

Figure 3: Present distribution (December
1996) of grey leaf spot in Africa.

Figure 4: Proposed distribution of grey leaf
spot in Africa.
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The development of GLS in Zimbabwe this past season was similar to the disease pattern

experienced in South Africa during the first few seasons of its occurrence. Similarly, in South

Africa, GLS took three seasons after it was first identified before significant yield losses

occurred regularly. A number of Zimbabwean researchers and farmers are adamant that

C. zeae-maydis has been present in Zimbabwe for at least three seasons. A local seed company

first noticed the disease in their breeding nurseries during February 1995. GLS became

problematic in the Marondera and Mwurwi areas in January and February 1996 and grain yield

losses in isolated cases were over 50%. Once researchers and agronomists became aware of the

symptoms, many reports were received from around the country. A large proportion of the

maize last season was lightly diseased or disease occurred late in the season. However, the

pathogen has now established itself and should environmental conditions be favourable for the

disease, significant epidemics can be expected in previously unaffected areas from 1997

onwards. Climatology maps for Zimbabwe show that much of the country has temperature and

moisture conditions favourable for the occurrence of GLS during the summer months. Early

indications are that GLS is more widespread and has started to develop about one month earlier

than it was in 1996 (Cowley30, pers. comm.). Only a limited number of areas in Zambia have

been examined for GLS, but it appears to be following a similar pattern to Zimbabwe.

During a visit to Cameroon and Kenya in October 1996, the GLS epidemics observed were

severe. However, little was known by the maize researchers or agronomists about the disease

or the effect it had on grain yield. Often people thought the maize was just drying off earlier

than expected. Great concern was expressed when estimated grain yield losses were given. It

is suggested that GLS is either already present in any of the African countries or will arrive in

the near future (Figure 4), yet they are badly prepared for this eventuality. This is usually due

to a lack of expertise, knowledge and resources to do anything about such a disease. South

African knowledge will have to be drawn on heavily to help combat the effects of GLS.

The sudden appearance of the pathogen in South Africa in 1988 gave rise to many theories as

to where the pathogen originated and how it arrived in South Africa. As the pathogen is not

considered to be either seed-borne or seed-transmitted (McGee, 1988), these possibilities were

not considered options in the pathogen being introduced into the country. The most common

and plausible theory, is that the pathogen arrived on imported C. zeae-maydis surface

3 0 B.S. Cowley, Research Manager, Pannar Seed (Pty) Ltd, P.O. Box 99, Ruwa, Zimbabwe.
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contaminated maize grain intended for human consumption and animal feed, and/or C. zeae-

maydis infected maize debris in grain from the U.S.A. in the mid-1980's (Cronje, pers. comm.).

The fact that the pathogen is relatively widespread in southern / central Africa, suggests that the

pathogen in South Africa may have originated from this region rather than being the source of

infection for the sub-continent. The mass of warm, moisture air called the Inter-Tropical

Convergence Zone (ITCZ), which moves from the central, tropical African region to the

southern African region in the southern hemisphere's summer months, and back again in winter,

could have aided the dispersal of the pathogen to South Africa from southern / central Africa.

It has been suggested by others that the ITCZ could be responsible for the spread of pathogens

(Robinson, 1976; Vanderplank, 1984). The long distance spread of wheat rusts in North

America and India (Zadoks and Schein, 1979), and the dispersal of blue mould of tobacco

(caused by Peronospora tabacina Adam) from the Caribbean region through North America

show that long distance dispersal within a continent and within a season is possible (Davis and

Main, 1986). The spread of Hemileia vastatrix Berk. & Br. of coffee and Puccinia

melanocephalia H. & P. Sydow of sugarcane to continents previously free of these diseases, was

suggested to be via trans-Atlantic wind currents (Purdy et al., 1983; Schreiber and Zentmeyer,

1984).

Little research has been undertaken on the dispersal of C. zeae-maydis. Comparative studies are

needed under a number of different types of weather systems. Observations in KwaZulu-Natal,

where the disease was first observed, showed that the pathogen could spread over 300 kilometres

in a single growing season and cause a significant number of lesions in the same season.

Research on dispersal should include both conidial and ascospore (possible teleomorph) dispersal

on a micro and macro scale. Epidemics regularly occur on maize fields that have not been

cropped to maize for more than five years. Many farmers (particularly in Zimbabwe) have

reported most of the disease in the canopy above the ear in the first season. This suggests wind

dispersal from outside the diseased crop.

There is likely to be a high atmospheric concentration of conidia in the region of C. zeae-

maydis-wfected maize due to wind-borne dispersal of the pathogen. The question then arises of

whether aircraft can play a role in long distance dispersal of C. zeae-maydis conidia. Conidia

could be present in the air within the aircraft or the air, or mechanisms, within the

undercarriage. Should this be possible, this is a way of dispersing new biotypes or introducing
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GLS to regions previously free of the disease. The chances of this happening are small but

tangible.

2.4 Rotation

As this pathogen does not survive much beyond a season on debris colonised by C. zeae-maydis,

rotation has been recommended as a control measure or an alternative to ploughing (Latterell

and Rossi, 1983b; Stromberg, 1986; Spink and Lipps and 1987; Huff et al., 1988; Ward et al.,

1993). Although rotation is likely to have significant agronomic benefits (Palti, 1981), the

specific benefits of a rotation system to control GLS have not been quantified. Due to the

windborne nature of this pathogen, it is unlikely that maximum benefits will be obtained from

a rotation system. The main benefits are likely to be a delay in the onset of the disease (as the

inoculum source is outside the field) improved nutrient status and a reduction in maize soilborne

pathogens. The duration of this delay in onset of disease will be largely influenced by the

prevailing climatic conditions. A rotation trial, that had originally been designed to determine

the effect of rotation on ear rot, was examined for GLS differences. Unfortunately, the plots

were too small for a windborne pathogen and as a result there was significant interplot

interference, minimising benefits (Nowell, unpublished). Trials are currently underway to

determine the effect in the KwaZulu-Natal Midlands and in the south east Mpumalanga province.

2.5 Tillage

Plant debris from the previous season is the only source of inoculum for subsequent maize crops.

This means that any form of debris reduction or elimination is a desirable practice that will

reduce the inoculum level for subsequent maize crops. For this reason, tillage practices that

bury debris and crop rotation are the most important cultural control measures. However, it is

important to realise that this will not eliminate the disease but only delay the onset of GLS. Due

to the windborne nature of this pathogen, conidia can originate from a considerable distance

from a maize crop and cause an epidemic that would result in yield loss. For maximum effect,

rotation and incorporation of debris has to be practised over as larger an area as possible. The

type of tillage practised is also very important as ideally all debris should be buried at least

10 cm below the soil surface. It has been shown for S. maydis that partially buried debris is

able to produce a large number of conidia as the plant material is in close contact with the soil

moisture (Flett, 1990).
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Research on the survival rate of C. zeae-maydis-'mfecled plant debris has been conducted in the

USA (temperate climate). It is important that this research be repeated under local conditions

as the climatic conditions are different, especially in winter. The research by Payne and

Waldron (1983) suggested that the survival rate of debris in the mountainous and plain regions

of North Carolina are significantly different. Differences in climate between the USA and

Southern Africa would be even greater. This information is necessary to optimise tillage and

rotation practices under local conditions. It would be useful to repeat this research under

tropical conditions too.

Different tillage practices need investigation under local conditions. The differences between

autumn and spring ploughing is likely to be greater under sub-tropical conditions compared to

temperate conditions, as the winter months are relatively mild and microorganisms would be

active in debris breakdown. Reduced tillage methods needs to be studied and possible methods

of enhancing debris breakdown investigated.

The advantages and disadvantages of the various tillage methods need to be balanced against

benefits to the farmer of the common practice in South Africa of allowing animals to graze plant

debris during winter. Grazing of the maize debris by animals alone needs to be investigated to

determine whether or not this has an effect on the GLS inoculum the next summer season.

2.6 Burning

Burning of plant debris is generally an undesirable practice that reduces organic matter of the

soil and allows excessive water runoff and erosion during rainfall. As C. zeae-maydis is a

windborne pathogen, an external inoculum source is adequate to cause a GLS epidemic.

Burning would have limited effect in reducing GLS. The negative factors associated with

burning far outweigh the potential benefits.

2.7 Silage

Harvesting of maize for silage is essentially removing infected debris or inoculum from the field.

The affect on GLS incidence the following season will be similar to practising rotation and/or

ploughing the field. The benefits of removing maize stover as silage need to be quantified.

However, the use of maize as silage raises a number of questions:
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i) Do fungicides applied during the growing season continue to breakdown once silage

has been cut, and are the normal withholding periods adequate?

ii) At what stage does GLS begin to affect the quality of the silage?

iii) Are any quality factors, such as protein content, affected?

iv) Is the silage yield affected significantly?

These questions need to be investigated as a number of farmers in KwaZulu-Natal are cutting

fungicide-treated and C. zeae-maydis-infecled maize for silage. This information would allow

farmers to optimize the use of silage.

2.8 Seed treatments / germination / vigour / seedling diseases

McGee (1988) states that there is no evidence or records of C. zeae-maydis being seed-borne or

seed-transmitted. This may be true but a number of factors suggest this information needs to

be checked. There are many of other Cercospora spp. that are seed-borne (Richardson, 1990)

and C. zeae-maydis may not be an exception. This fungus grows slowly on artificial media and

can be difficult to isolate or obtain a pure culture (Beckman and Payne, 1983; Latterell and

Rossi, 1983b). Therefore, conventional methods of isolation may not be adequate as the fungus

would not be a good competitor with other organisms found in or on seed. Either selective

media or the new DNA technology could be used to confirm that this pathogen is not seed-

borne.

As C. zeae-maydis is not considered to be seed-borne or seed transmitted (McGee, 1988), no

phytosanitary regulations regulate this pathogen. Should this have been a factor, such measures

would be ineffectual due to wind dispersal of this disease.

Maize grain has a significant amount of plant debris present on the seed surface after harvest.

C. zeae-maydis conidia may be on the seed surface as contaminants or on the little bits of plant

debris in with the grain. The pathogen could easily be transmitted to a disease free region in

this way (as postulated to be the method of introduction into South Africa). The presence and

viability of such inoculum should be investigated, particularly on imported maize grain.

During the droughts in the early 1990s, the farmers from the Free State, North West, Gauteng

and Mpumalanga provinces baled and transported C. zeae-maydis-infected debris to these areas

to feed their animals. Fortunately the next season was not unduly wet and GLS did not appear
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establish itself. Subsequently two consecutive wet seasons have seen the disease moving into

these regions. The significance of the infected debris taken to these regions cannot be accurately

determined. It has also been hypothesised by the Maize Board that this is in fact how GLS first

arrived in South Africa (Cronje, pers. comm.).

2.9 Planting date

The effect of planting date will vary between regions. In general, the period of the season with

the highest rainfall will result in the highest incidence of GLS. Therefore, planting to avoid this

presumed peak infection period would be beneficial, provided yield potential and yield reliability

are not compromised. In KwaZulu-Natal, the earlier maize is planted, the better as the months

of December, January and February are most favourable for C. zeae-maydis infection and

development. Planting very late will result in lower yields as the rainfall is not as reliable as

earlier in the season. However, planting too early is likely to result in cold / frost damage to

the crop.

2.10 Infection

It is unusual for a germinated fungal spore to survive dry periods and for infection to take place

in the absence of free moisture. The powdery mildew fungi are the only fungi, other than

C. zeae-maydis, that do not require free water on the leaf surface to successfully germinate and

penetrate the leaf surface, either directly or via stomata (Boothroyd and Roberts, 1984). Since

high humidity occurs more often than free water (usually dew), this adaption by C. zeae-maydis

represents a very significant environmental adaptation, with important epidemiological

implications. Studies on germination, the infection process and subsequent development of

C. zeae-maydis have shown that the fungus is able to withstand considerable variation in the

climatic conditions over this period. Once germination of the conidium has been initiated, the

germtube is able to withstand periods of relatively dry weather without dying (Rupe et al., 1982;

Thorson and Martinson, 1993). This means that the cumulative hours of high humidity are

important, rather than a specific continuous period of high humidity. Penetration and infection

can then take place over a longer period of time under conditions that are less than ideal. In this

respect, the pathogen is unique amongst the maize fungal pathogens.

Once the fungus has established itself in the leaf tissue, it is able to enter a dormant phase
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should conditions be unfavourable for disease development (Latterell and Rossi, 1983b;

Stromberg, 1986). The fact that infection and colonisation is apparently a lengthy process,

taking 7 - 9 days, is in some ways in conflict with the fact that this disease can increase from

5% to over 75% leaf area loss in approximately three weeks. The first signs of sporulation

usually appear about 9 -11 days after infection has taken place. The various parameters in these

processes need to be determined under local conditions, both in the field and under laboratory

conditions. The quantity of conidia produced per unit area of lesion and duration for which each

lesion can produce viable conidia need to be determined on very susceptible, moderately

susceptible and resistant germplasm. The early dynamics of the epidemic "would then be better

understood, allowing for a better understanding of the interaction between climatic conditions,

early disease establishment and development of the disease. This would allow for the

optimisation of possible control measures early in the disease cycle and any mathematical models

that may be developed for GLS. An added complication is that there may be significant

differences between biotypes of C. zeae-maydis, particularly between the tropics, sub-tropics and

temperate regions.

Temperature appears to be more important than moisture in C. zeae-maydis infection and

subsequent development of the fungus. During the 1992/93 season, rainfall was limited at

Greytown in KwaZulu-Natal, although dews were frequent, but a GLS epidemic still occurred.

During the 1995/96 season, some areas of KwaZulu-Natal had adequate moisture but unusually

low temperatures (maximum of 20°C or less) and GLS was slow to develop. An in-depth study

is needed to determine the exact climatic factors affecting C. zeae-maydis under local conditions.

A number of weather stations are situated in the areas where GLS is endemic that record

rainfall, maximum and minimum temperature, evaporation, sunshine hours and wind distance

(and sometimes wind direction) which could be used for this purpose. The emphasis would have

to on collecting accurate field data on the incidence and severity of GLS.

Rupe et al. (1982) found that free moisture on the leaf surface reduced stomatal tropism, that

appressorium formation was rare and host tissue was not penetrated. This could play a role in

the sub-tropical and tropical region where GLS occurs as the fungus may not be able to establish

itself effectively during periods of prolonged and frequent rainfall. This needs investigation in

these regions.
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2.11 Symptoms

There is concern about the variation in symptom expression on maize hybrids in the USA

(Coates and White, 1995; Pataky 31, pers. comm.) and in South Africa (Ward32, pers. comm.;

Nowell, unpublished). An example of this in South Africa are the lesions which develop on the

hybrid PAN 6480 which are normally small, severely restricted lesions, but which can become

normal large lesions towards plant maturity. The reason for this is not known. Often both

lesion types have occurred next to each other on the same leaf. There is apparently a large

variation between the frequency of these large lesions on this widely planted and resistant

hybrid. Maize breeders need an explanation for this so that changes can be made to assessment

and breeding strategies if necessary. Possible reasons for this, which would have to be

investigated, are:

i) That different species of the pathogen result in the different lesion types

ii) Different biotypes of the pathogen exist resulting in a range of symptoms

iii) The different lesions types are the result of the anamorph and teleomorph stages of

the fungus

iv) Plant maturity influences symptom expression and / or different resistance

mechanisms at different growth stages or physiological development result in

different types of lesions

v) A pathogen and temperature interaction occur (this is known to occur in other crops

such as wheat [Vanderplank, 1982; Vanderplank, 1984]) resulting in such hybrids

being susceptible at certain temperatures when the resistance is no longer effective

vi) The concentration of sugars / carbohydrate present in the leaf at the stage of

infection and subsequent disease development could influence resistance

expression.

Ascochyta pinodes (Berk. & Blox.) Vestergr. on peas (Pisum sativum L.) also causes two

distinct symptoms on the leaves, a fleck or a zonate lesion. Although both lesions can occur on

the same leaf, the fleck lesions are usually limited to the more resistant, upper portion of the

plant canopy, and the zonate lesions to the more susceptible lower portion of the canopy. The

31 J.K. Pataky, Dept. Plant Pathology, N519 Turner Hall, University of Illinois at Urbana-
Champaign, Urbana, IL 61801, USA.

Vard, Cedara.
3209, RSA.

3 2 J.M.J. Ward, Cedara Agricultural Development Centre, Private Bag X9059, Pietermaritzburg
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exact reasons for the differences in lesion type are not known but resistance appears to play a

role (van Schoor, 1990).

2.12 Stress

Moisture stress, as observed during the 1992/93 season at Greytown and Cedara, does not

appear to significantly influence the host susceptibility to the pathogen. It gave rise to a greater

amount of variation within the ratings of hybrids, but the relative ranking appeared to be similar.

Fertility stress is considered to play a role in reducing the amount and severity of GLS (Farina33,

per. comm.; personal observations). The exact effects of the various elements and soil acidity

is not known, but are in the process of being determined by Farina and colleagues at Cedara

Agricultural Development Institute (CADI).

2.13 Plant density

High plant densities apparently reduce the severity of GLS (Smith, 1989; de Nazareno et al.,

1991; Carrera and Grybauskas, 1992; de Nazareno et al., 1993a and 1993b; Rivera-Canales,

1993). This may be one of the reasons GLS is so severe in KwaZulu-Natal. There are large

difference between the plant densities of commercial maize in South Africa and that in the USA.

For this reason it is important to establish the effects of plant densities from 12 000 - 80 000

plants ha"1 as planted under conditions in South Africa. Plant densities of less than 35 000 -

45 000 plants ha1 are those employed in the high risk GLS areas by South African farmers.

Spore deposition rates and light penetration could be determined at the different plant densities.

To get a better understanding of the effect of light on GLS development, a simple experiment

could be designed. Uniform, artificial inoculation of plants in pots in the glasshouse would

ensure uniform infection of plants. They could then be transferred to maize plots at different

plant densities in the field, where disease development and light penetration could be determined.

This would indicate the effect that light concentration has on cercosporin and the development

of the disease at the different plant densities. This could be supported by research in growth

33 M.P.W. Farina, Agricultural Research Council, Private Bag X9059, Pietermaritzburg 3209,
RSA.
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chambers at various light concentrations.

2.14 Irrigation

Ward et al. (1993) were the first to cite irrigation as a factor in GLS epidemics. The present

author has seen maize fields irrigated by a centre pivot and drag line irrigation systems that have

experienced major GLS epidemics, whereas maize not reached by the irrigation water in the

same fields, had less severe GLS. This was particularly true during the drought of 1992/93.

Rotem and Palti (1969) found that irrigated crops have more shade (due to fuller shoot

development), lower temperatures, and longer periods of high moisture in the lower foliosphere

and the upper soil layers. McLaren34 (pers. comm.) has found that centre pivot irrigation, in

a warm environment in South Africa, can reduce atmospheric temperatures in the crop by as

much as 5°C at the centre of the pivot, when compared to the ambient temperatures outside the

irrigated area. In maize, this would provide moisture for infection and reduce the temperature

to levels more suitable for infection and disease development. This was apparent in the

Grey town area in 1992/93, when the maize on the outside of a centre pivot irrigation scheme

had 30% leaf area loss due to GLS, whereas maize in the centre had in excess of 70% leaf area

loss.

2.15 Herbicides

Martinson et al. (1994) mentioned that trials had to be abandoned in Iowa because of an

interaction between fungicides and a hormonal herbicide causing damage. The exact details of

the circumstances are not known. The hormone herbicides (2,4-dichloroxyacetic acid in

particular) have been studied intensively. However, there is much that is not understood about

these herbicides which act as artificial auxins (Que Hee and Sutherland, 1981), which are plant

hormones. Auxins interact with two other groups of plant hormones, the gibberellins and

cytokinins. There is both synergism and competition among these hormones in the control of

the physiology and development of plants (Raven et al., 1981), including disease resistance

responses (Haberlach, 1978).

N.W. McLaren, Pathology Section, Summer Grain Centre, Agricultural Research Council,
Private Bag X1251, Potchefstroom 2520, RSA.
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The effects of 2,4-D include:

i) increased disease susceptibility (Aberg and Stecko, 1976; Haberlach et al., 1978;

Hodges, 1978, 1980 and 1984)

ii) increased insect susceptibility (Maxwell and Harwood, 1958; Aberg and Stecko,

1976)

iii) increased incidence of nematode infestation of treated plant roots (Webster, 1967)

There are frequent cases of farmers reporting herbicide damage to maize crops in South Africa,

but nobody has tried to find out if there is any subsequent effect on disease development.

Although this type of research would likely receive a low priority rating, this type of information

could be beneficial to farmers.

2.16 Resistance

Resistance is going to provide the long term, and hopefully permanent, control measure of GLS.

For this reason, it is vital that the correct options are selected in identifying resistance, breeding

methodology, screening germplasm and making this germplasm available to the farmers.

Although much research has been undertaken on GLS resistance in the USA, many questions

are as yet unanswered, particularly with regard to local conditions. It is presumed that

resistance to GLS will be equally effective throughout South Africa as there appears to be a

single pathotype of C. zeae-maydis that originated in KwaZulu-Natal and is now spreading

throughout the maize production region. It is not known whether resistance to GLS varies

between African countries or regions. Studies are underway to test the same set of hybrids in

South Africa, Zimbabwe, Zambia, Kenya, Tanzania, Cameroon and Nigeria. Unfortunately,

sending maize seed to the USA is prohibited unless as a quarantine phase in containment

glasshouses is possible. This rules out sending hybrid seed to the USA. A possible solution is

to obtain a set of hybrids from the USA for testing for GLS response under local conditions.

Ideally, only horizontal resistance (HR) to GLS should be released into the market place. This

is unlikely, as Gevers and Lake (1994) and Gevers et al. (1994) have already identified a major

gene for GLS resistance which is highly effective under local conditions. However, single or

major genes for resistance do not necessarily imply that resistance will be VR in nature. Gene

action is more important than gene number (Vanderplank, 1978 and 1984; Robinson, 1987).

Most of the resistance employed against C. zeae-maydis in the USA is additive in nature but
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there have been reports of major and single genes conferring resistance to the pathogen

(Elwinger et al., 1990; Coates and White, 1995). To ensure that resistance is HR, a single

pathotype should be used for screening purposes and all immune material should be discarded.

Testing with multiple pathotypes can lead to VR developing as there may be quantitative

differences in the levels of parasitism even although all the hosts are matched. This is known

as the Parlevleit effect and should be avoided (Robinson, 1987).

A recurrent selection programme is then necessary to ensure levels of GLS resistance are

improved with each breeding cycle. Yield potential should be tested at each cycle of selection

to ensure GLS resistance is not selected in lower yielding germplasm. During the selection

process, agronomic factors must be taken into account to ensure the end product is acceptable

to the farmer.

Some resistance sources are more complex than originally thought. Ulrich et al. (1990) found

that certain inbreds conferred more resistance than expected when crossed to certain other

inbreds. This made the prediction of resistance levels difficult but is of benefit in the ensuing

hybrid. Such resistance will not respond well to a backcrossing breeding programme. Gevers35

(per. comm.) has suggested that when some major genes are backcrossed into susceptible

germplasm, they apparently do not always behave as a single gene. This makes GLS resistance

breeding more complex than expected. It is interesting to note that in the traditional dent

germplasm from the USA and Europe, little highly resistant germplasm is available. Studies to

date have shown that South African GLS-resistant germplasm is generally more resistant to GLS

than GLS-resistant germplasm from the USA (Nowell, unpublished).

A considerable proportion of the germplasm originating from the tropical maize production

regions has useful levels of resistance to GLS. This resistance needs to be incorporated into

high yielding commercial hybrids. This process will be slow as a small pool of germplasm that

is GLS-resistant, high yielding, stable in different environments and agronomically acceptable.

A good source of resistance needs definition as good usually implies high levels of resistance

(= VR?) and may not be desirable in the long term. Inclusion of some of these resistance

sources have already started to take place. However, it is important that research be continued

H.O. Gevers, formerly of the Summer Grain Centre, Agricultural Research Council,
c/oUniversity of Natal, Private Bag X01, Scottsville 3209, RSA.
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to identify sources of horizontal resistance to GLS that can be used in conventional commercial

breeding programmes.

The introduction of GLS-susceptible hybrids into regions that currently do not have GLS would

enhance and aid the establishment of GLS and development of epidemics. Such a region is the

North West province of South Africa. Although this region would usually not be

environmentally friendly to C. zeae-maydis, certain areas are likely to eventually have GLS

endemic. A major advantage at present is the fact that this region predominantly produces white

maize which has acceptable levels of GLS resistance. Should GLS-sirsceptible hybrids be

introduced on a large scale, GLS will establish itself sooner and be more severe than currently

expected'.

The same principle applies when replacing open pollinated varieties, traditionally grown by

small-scale farmers, with high yielding maize hybrids in Africa where GLS occurs. A number

of local African varieties and land races have high levels of resistance to GLS, but poor yields.

Any hybrid or open pollinated variety that replaces these low yielding land races should have

GLS resistance levels that are the same or better than those varieties being replaced. If this is

not done, they could enhance a GLS epidemic in the long-term. This would essentially be as

a result of an inoculum buildup. Grain yields would then decrease from the original highs when

the hybrids were first introduced.

2.17 Inoculation methods / screening

The method employed for screening for resistance in a breeding programme can determine the

long term success of such a programme. Firstly, it is important to have a consistent GLS

epidemic (natural or artificial) that will allow good differentiation within and between

germplasm. However, the severity of the epidemic must be such that a good range of

quantitative resistance is identified. Consistent, severe epidemics will mask useful sources of

resistance and favour the selection of highly resistant material. The danger in this is that it will

skew the selection towards qualitative resistance. Vertical or quantitative vertical resistance is

not durable and would only provide a short term solution.

For screening purposes, a GLS epidemic can be enhanced by irrigating the crop (wetting is

sufficient) in the evening and early morning in order to extend the period that the leaves are
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moist and the relative humidity is high within the canopy. GLS will develop rapidly if the

disease is endemic. Artificial inoculation could be undertaken immediately after the plants are

irrigated. The application of a conidial suspension (Latterell and Rossi, 1983b; Jenco, 1995)

or C. zeae-maydis-infected plant debris should enhance a GLS epidemic.

2.18 Genetics

New molecular techniques allow for rapid inclusion of GLS resistance into previously susceptible

germplasm (Bubeck et al., 1993; Saghai Maroof et al., 1996). This technology can be used to

trace any number of genes with a great degree of accuracy. The above authors have determined

multiple quantitative trait loci (QTL) which results in a broad degree of resistance, hopefully

HR, to GLS. They have also shown that by combining backcrossing methodology with marker-

assisted selection or specific random fragment length polymorphism's (RFLP's) technology, it

is possible to transfer these resistance genes into susceptible inbreds. They also found that these

QTLs appeared to be closely linked to resistance to other maize diseases. This may lead to

unintentional associated benefits for the plant breeders. A problem with this technology is that

some QTL's appear to have limited expression across environments (Bubeck et al., 1993; Bohn

etal, 1996; Miklas et al., 1996; Tuinstra et al., 1996; Veldboom and Lee, 1996a and 1996b)

and that these markers are not necessarily transferable across genetic backgrounds (Hookstra and

Walton36, per. comm.; Stuber37, per. comm.). Only those markers stable across environments

could then be used and each time a new genetic background is studied, the process of identifying

QTL's has to start again. This type of research and technology is suited to maize breeding

programme based on narrow genetic backgrounds, as is the case in the USA. This technology

would be less suited to African maize breeding programmes, as very little high yielding

germplasm is common between the two continents.

Saghai Maroof et al (1996) found GLS quantitative trait resistance loci in chromosome regions

that are known to have a concentrations of other disease resistance genes, particularly to

Exserohilum turcicum (Pass.) Leonard & Suggs and Cochliobolus carbonum Nelson. Studies in

South Africa, have shown that although there does not appear to be a direct linkage between

3 6 G. Hookstra and M. Watson, Linkage Genetics, Inc., 2411 South 1170 West, Salt Lake City,
Utah 84119, USA.

tuber, Profess
7614, USA.

3 7 C.W. Stuber, Professor of Genetics, North Carolina State University, Raleigh, NC 27695-
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GLS and E. turcicum resistance, germplasm highly resistant to E. turcicum has a higher

frequency of resistance to GLS. This is particularly noticeable in tropical germplasm. Possible

linkages and interactions" need to be investigated further. Genetic mapping provides a good tool

to undertake this work.

2.19 Hybrid response

Considerable variation in hybrid response exists in South Africa. In general, the white-grained

hybrids have higher levels of resistance to GLS than the yellow-grained hybrids, although both

resistant and highly susceptible germplasm is present in both types of grain. Fortunately,

approximately half of South African maize is white-grained and of this, a large proportion is

planted to GLS-resistant hybrids. Most of this grain is produced in the lower yielding, western

regions of the maize production area. Yellow-grained maize is largely produced in the eastern

regions of the maize production region, where GLS is already endemic or expected to be

endemic in the near future. A large proportion of this maize is susceptible to GLS.

When GLS first became epidemic in KwaZulu-Natal, the highly susceptible yellow hybrids

RS 5206 and PAN 6552 accounted for the bulk of the plantings in this region. Within three

seasons, these hybrids had been completely replaced with PAN 6480 (yellow-grained) and

PAN 6479 (white-grained). Although their levels of GLS resistance were not high enough to

eliminate grain yield losses, yields under GLS were higher than the old hybrids and the use of

fungicides greatly reduced.

From ongoing hybrid evaluation trials, it is apparent that a significant proportion of newly

released hybrids have improved levels of GLS resistance, particularly in the white-grained

hybrids. This improvement should continue until there are hybrids available that will no longer

exhibit grain yield losses due to GLS. Due to the nature of the climate in South Africa, not all

hybrids released will have to be resistant or immune to GLS, as a large portion of the maize

production region has a low rainfall (< 500mm annum"1) and has a hot climate. The climate is

likely to limit the spread and severity of GLS in these regions, and susceptible or partially

GLS-resistant hybrids can be cultivated in these regions. From a plant breeding perspective, it

does not make sense to discard a large proportion of the germplasm that is high yielding, highly

stable and adaptable but susceptible to GLS. The use of this germplasm will have to be

monitored carefully within each breeding programme.
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2.20 Assessment

Another factor which has not been quantified for GLS, is that of inter-plot interference (cryptic

error) in small plot experiments (Vanderplank, 1963; Robinson, 1976; Zadoks and Schein, 1979;

Robinson, 1987). As C. zeae-maydis is wind dispersed and produces vast quantities of spores

on diseased plants, movement onto adjacent plants is rapid. In experiments where there are big

differences is resistance or disease levels between the various entries or treatments, inter-plot

interference is likely to be a significant factor. Research is needed to quantify this effect should

adjustments need to be made to screening programmes or the composition of hybrid trial entries.

2.21 Fungicides

Fungicides are now used extensively in KwaZulu-Natal, the northern Eastern Cape and southern

Mpumalanga to control GLS, particularly on farms where GLS-susceptible or partially

GLS-resistant hybrids are planted. The basic factors governing fungicide usage and application

have been established for local conditions (Ward et al., 1993; Ward et al., 1996; Ward and

Nowell; 1997; Ward et al, 1997a, 1997b, and 1997c; Chapter 9). Essentially the benzimidazole

and triazole fungicides control GLS effectively. Duration between fungicide applications can

be between 21-28 days. However, not all fungicides from these groups are equally effective.

Protectant fungicides controlled GLS (Tables 9.4 and 9.5) but were not nearly as effective as

the systemic fungicides from the above mentioned chemical groups.

It was decided that a dual active ingredient policy would be followed with commercial products

to reduce the risks of resistance build-up in the fungus to any single active ingredient. This is

in line with proposals for resistance strategies (Delp, 1980; Delp, 1984; Staub and Sozzi, 1984;

Georgopoulos, 1986; Dekker, 1986; Wolfe and Barret, 1986; Delp, 1988; Scheinpflug, 1988;

Wade, 1988). South African maize farmers are unlikely to follow a strict policy of voluntary

fungicide rotation to reduce the risks of fungal resistance. For this reason it was decided that

the safest option would be to ensure that dual active products only are marketed. Initially,

benomyl and difenoconazole as single active products were registered for GLS control but these

products were withdrawn as soon as combination products were registered.

Another factor that mitigates against resistance developing rapidly in C. zeae-maydis in South

Africa is that only one or two applications are normally applied each season. In isolated cases,
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three applications are undertaken. This will reduce the selection pressure on the fungus to

develop resistance (Staub and Sozzi, 1984; Dekker, 1986; Wade, 1988). However, new

products with different modes of action are tested every season. As yet none of the alternate

products have been as effective as the above mentioned groups. This will continue to be an

ongoing process until alternative products are found that effectively control GLS.

Of concern is the fact that no monitoring of C. zeae-maydis biotypes is taking place to check for

resistance to the fungicides. A number of cases have been reported of fungicides not effectively

controlling GLS, but to date these have all been application problems. Monitoring should be

a co-operative effort between the Department of Agriculture and the suppliers of fungicides to

control GLS on maize.

The GLS severity, likelihood of continued favourable conditions for GLS development,- timing

of application, choice of fungicide, frequency of application and the growth stage of the crop

at application are all important when determining the economic viability of applying fungicides

to control GLS on maize (Rivera-Canales, 1993; Martinson et al., 1994; Wegulo, 1994; Jenco,

1995; Ward et al., 1996; Ward and Nowell, 1997; Ward et al., 1997a, 1997b, and 1997c).

According to Ward et al. (1997b), the most practical way of determining the cost effectiveness

of applying fungicide to control GLS, is by looking at the added profit from the process. This

takes all factors into account and gives the net profit to the farmer which is likely from each

hectare of maize. Under low inoculum pressure, the application of a third application is not

justified financially. However, under high inoculum pressure, the highest added profit was from

the treatments involving two or three fungicide applications. The increased profit from two to

three fungicide applications was marginal and does not warrant the effort. The reduced efficacy

of a fungicide treatment could be clearly seen when the disease was allowed to spread to the

leaves at ear height before fungicide was applied. At this stage, a second fungicide application

was not economically warranted due to the small increase in added profit.

The possible role of protectant fungicides alone and in combination with systemic fungicides has

not been adequately researched. Initial tests have shown that the addition of protectant

fungicides, such as chlorothalonil and mancozeb, to single or mixtures of systemic fungicides

can be more effective in controlling GLS and at times, increasing grain yield (Nowell,

unpublished). Their introduction into a spray programme would significantly reduce the

fungicide costs. This may be particularly useful when GLS appears very early in a crop.
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Chlorothalonil is also the only fungicide that is effective against Phaeosphearia sp. that can be

problematic in some years. The use of protectants may have additional use in seed parent seed

production fields, where some inbreds are particularly sensitive to several leaf diseases,

including GLS.

Ward et al. (1997c) have determined the response of different hybrids to fungicide application.

Such information is vital to farmers when trying to decide whether fungicide application is

financially beneficial. This will also have to be done with the new hybrids when they are

released. As GLS resistance levels increase, so the economic benefits of applying fungicides

will decrease. Such information should also be available for hybrid parents for the use of seed

companies in planning spray programmes. As this exercise is in progress, all diseases should

be assessed and their effect on yield determined. E. turcicum (Nowell, unpublished) and

Puccinia sorghi Schw. (Nowell and Rijkenberg, 1983) also cause yield losses in certain years

in South Africa.

An additional benefit of fungicide application to control GLS is that other maize pathogens will

be controlled at the same time. These diseases would include northern leaf blight, common rust,

stalk rot and ear rot. Control of these pathogens could have significant economic benefits.

Only the copper-based fungicides have showed any degree of phytotoxicity (Chapter 9). This

problem was consistent across products, locations and seasons. The data presented in this thesis

did not show any interaction between fungicides and the environment. It is possible that certain

triazole fungicides may have phytotoxic effects during periods of drought stress.

2.22 Fertility

Little research has been conducted with regards the effect of fertility on the incidence or severity

of GLS. Smith (1989) found increased levels of GLS in response to increased nitrogen. This

has been observed on some farms in the KwaZulu-Natal province. However, quantification of

this response is currently taking place. At the same time, the effect of phosphate, potassium and

soil acidity levels will be determined in the near future. It is important that fertility effects are

determined under local conditions, as soils are very different in South Africa to those found in

the U.S.A. This should be established under a number of divergent farming practices, including

subsistence farming.
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When conducting fertility trials, it is as important to get results from the low fertility plots as

it is from the high fertility plots. Products such as cattle manure and chicken litter should be

used to determine their effect on plant growth, C. zeae-maydis infection and subsequent GLS

severity.

2.23 Effects on seed production

Although the effects on the profitability of commercial farmers is high (Chapter 8), the effect

on a seed producer is greater as a number of additional factors are affected "by GLS. Martinson

et al. (1994) showed that detasseled maize had a higher incidence of GLS compared to male

sterile inbreds. For this reason, it was suggested that fungicide applications should be used to

counter this effect. This effect needs to be determined under local conditions. If GLS is a high

sugar pathogen, then the removal of the tassel would reduce a carbohydrate sink and increase

the level of carbohydrates in the upper canopy. An increase in GLS incidence or severity would

be linked to the tassel size, or the amount of pollen produced (energy used) by the tassel, of a

particular genotype. The effect on single cross parents may be greater as they usually have a

proportionately larger tassel than inbred parents.

A study by Rivera-Canales (1993) showed that GLS not only affected the total grain yield of

maize but also the saleable seed fraction and a lower weight for a specific number of seeds in

seed production fields. Production costs are far higher than for commercial maize as the crop

has to be detasseled by hand and management is far more intense. The value of the seed crop

delivered to the seed producer is about 3 - 1 0 times greater in value than commercial maize,

depending upon the type of maize seed produced. Any effect on yield or saleable fraction of

seed has a major impact on profitability.

A reduction in the saleable seed fraction can have a major effect on both the seed producer and

seed grower. In some cases, the growers are paid for the mass of saleable seed produced. A

reduction in this fraction will affect profitability. For the seed producer, the reduced fraction

will require having to produce a larger area to obtain the desired volume of seed. Where the

grower is paid for the total seed delivered, the seed producer loses due to the reduced saleable

fraction as a smaller proportion of the costs are recovered through seed sales to the farmer.

In South Africa, seed is sold per 25 or 50 kg bag of seed. The lighter grain mass means the
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number of seeds per bag of seed will increase. This can be a significant loss to the seed

producer, but of benefit to the farmer as he is able to plant a larger area for the same mass of

seed purchased. This is one of the reasons South African seed producers are hoping to change

to selling seed by the kernel number. In the USA a bag of maize seed normally contains 80 000

seeds.

Lighter seed implies the endosperm has not developed to its full potential. Table 9.6 showed

that crude protein could be affected by GLS and the application of fungicides. This may affect

germination, seedling vigour, plant establishment and the ability of the seed "to store for a period

of time (seed can be stored up to three years). The reduced seed health could predispose the

seedling to agrochemical toxicity problems. No information is available on these issues. With

the large effect GLS can have on grain yield and quality, it is desirable that these issues be

tested locally. All variables need to be monitored to determine the effects of GLS on seed health.

The susceptibility of hybrid parents to GLS will largely influence the decision as to where to

produce the hybrid. This would mean a change in the logistics associated with certain hybrids

and may limit the volume of seed which can be produced in areas that GLS is problematic. This

impacts on the farmers who rely on producing seed for a living. Fortunately, maize hybrids in

South Africa seldom have pure inbred lines as the parents as single cross hybrids are presently

not cost effective for the farmer. However, the parent seed of the parents is produced on

inbreds because the cost of this operation has increased dramatically through the use of

fungicides to control GLS. The costs of harvesting the seed crop have also increased as seed

is essentially hand harvested in South Africa and increased lodging has slowed down the process.

The increased costs of these operations has ultimately been borne by the commercial farmer.

2.24 Weeds

Spink and Lipps (1987) mentioned that weed control is important to increase airflow within the

canopy and thereby reducing favourable conditions for infection. This is particularly relevant

to Africa, as subsistence farmers seldom practice adequate weed control. The "weed effect"

would be greatest in the more humid and warm environments. Weeds will also compete for

nutrients and affect plant health. A small effect like this could be important for subsistence

farmers.
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2.25 Effect on other pathogens

No literature is available regarding the interaction of C. zeae-maydis and other pathogens. The

fact that GLS has received so much attention due to its effect of the grain yield, does not mean

that other previously problematic diseases have reduced in importance. There are still

E. turcicum and P. sorghi epidemics in the eastern maize production regions of South Africa.

Those farmers that are applying fungicides will be controlling a range of fungal pathogens,

although not all equally well. The interaction of these pathogens with GLS is not known and

needs investigation. Since GLS causes crops to dry off earlier than normally expected, a

reduction in ear rot has been observed.

2.26 IPM in localised areas / farms

Prior to GLS arriving in South Africa, maize was a crop that only required monitoring for weeds

and stalkborer once it had been planted and established. In areas where GLS is endemic, the

management level required of maize farmers has increased dramatically. At present there are

no agronomic practices that can be changed that will eliminate GLS or reduce its effects to sub-

economic levels. The farmer now has to design an integrated programme that will reduce the

risks of GLS at all stages. This starts with land preparation, planning which crops to plant,

selecting GLS-resistant hybrids that are suitable for the farm and the objectives of growing

maize, monitoring the field for GLS and subsequent development of the disease, and ensuring

the correct application and usage of fungicides when necessary. Once hybrids become available

that will reduce GLS to negligible levels, management of a maize crop will again become a

relatively simple process.

The requirement of increased management from maize farmers has also resulted in these farmers

becoming more aware of other details within the crop. There has been a large increase in

queries about other diseases and their effects on the yield and quality of the crop. Many other

previously unnoticed agronomic problems are now being observed and corrected. It has also

ensured considerable improved communication between the farmers and their input suppliers.

Farmers' days and farmers' work groups have helped considerably in finding and promoting

solutions to the GLS problem. From this point of view, the occurrence of GLS has had a

beneficial effect on maize farming.
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2.27 Prediction model / forecasting

Computer based prediction systems have been discussed and some are in the process of being

tested in KwaZulu-Natal (Ward and Berry38, pers. comm.). A prototype model was run during

1995/96 and the model was able to closely predict the onset of GLS in a number of areas.

However, the predictions are not equally accurate for all regions. A limiting factor is that the

exact temperature requirements of the pathogen under local conditions have not been established,

particularly the effect of temperatures lower than 20°C. This system could be used to warn

farmers when to start monitoring their crops closely. For maximum benefit when planning a

fungicide programme, each farm would have to have their own weather monitoring system, and

hybrid resistance would have to be built into the model. Considerable work is still needed

before this type of model could be used for anything more than an early warning system for the

start of a GLS epidemic or warning of favourable conditions for infection.

2.28 Communal farmers

Commercial or large scale farmers in South Africa have overcome the effects of GLS in the

short term through the use of fungicides to control GLS (Ward et al., 1993; Ward and Nowell,

1997). This is economically viable for commercial farmers (Ward et al., 1996), but is not an

option for subsistence farmers who do not have the capital, and often the knowledge, to purchase

the fungicides or equipment to apply the chemicals. This would apply to the majority of farmers

in South Africa and in the rest of Africa. For the subsistence farmers, enhanced levels of GLS

resistance with improved cultural practices or alternate crops are the only solutions. Farmers

will need highly GLS-resistant hybrids to successfully and permanently control the disease.

Subsistence farmer can afford minimal inputs, if any at all, and as a result the crops usually

suffer from nutrient deficiencies. From the authors observations in the subsistence and small

scale farmers' fields in Cameroon, Kenya, South Africa and Zimbabwe (and the little

information that is available on fertility), indications are that the less healthy a crop, the less

likely it is to be infected by C. zeae-maydis and that disease development will be slow. It will

be the crops of the more progressive subsistence farmers that improve plant health that will have

3 8 J.M.J. Ward and W. Berry, Cedara Agricultural Development Institute, Private Bag X9059,
Pietermaritzburg 3200, RSA.
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the highest incidence of GLS.

Another fact is that if ears are removed from a healthy plant, GLS increases rapidly on this plant

compared to those plants where the remains intact on the plant. This is apparent in fields

harvested for fresh maize consumption. GLS is a high sugar disease and will be more severe

in healthy plants than plants that are stressed or have limiting growth factors. This is

circumstantial evidence suggesting that subsistence farmers in general should not have as severe

GLS epidemics as farmers that have high inputs and a healthy crop.

The effect of a GLS epidemic is felt more by subsistence farmers as not only is the grain yield

important for their existence, but the remaining diseased plant material is fed to animals. There

will be less plant material and the quality of this material will be lower than that from a healthy

crop. An advantage of feeding the plants to animals after harvesting the grain, is the reduced

GLS inoculum level the following season. However, it needs to be determined whether C. zeae-

maydis conidia are viable after passage through animals and if they can then still infect maize.

The breakdown of VR would have large implications for commercial farmers but alternate

strategies can be introduced rapidly and the effect of the disease on the crop can be reduced

rapidly. The survival of subsistence farmers' depends on the success of their maize crops and

they cannot afford a crop failure. Nor can these farmers afford fungicides or the equipment that

is required to apply to them. Further, change takes place very slowly, especially to new

cultivars even if they can obtain seed. From a food security point of view, VR should not be

introduced into areas were people are absolutely reliant on their own maize crops to feed their

families. With a disease as severe as GLS, famine could be the result of a major breakdown

ofVR.

Most of the open pollinated cultivars currently grown by small scale farmers in South Africa are

highly susceptible to GLS (Nowell, unpublished). Should GLS become a problem in specific

cases, more resistant hybrids are readily available locally. However, the farmers will have to

be educated into buying fresh seed each year, due to the inbreeding depression experienced when

using F2 seed. Many small scale farmers have started changing to the use of higher yielding

and stable hybrids. As these farmers plant almost exclusively white-grained hybrids, the level

of GLS resistance in usually already high.
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Many small scale farmers and subsistence farmers practice intercropping of a variety of crop

species. The effects of intercropping maize and legumes could result in healthier maize plants

due to the increased nitrogen made available by the legumes, which will probably result in GLS

having a larger effect on the maize crop. Intercropping trials throughout KwaZulu-Natal should

be monitored for this effect.

3 MANAGEMENT STRATEGIES

The recent epidemics of GLS and ear rot on maize in South Africa have had" a large impact upon

the maize industry and resulted in changes in long term planning of maize research and breeding

programmes. It has also improved co-operation between researchers, particularly plant

pathologists, and extension personnel working in the maize industry. This has allowed for the

rapid response to unexpected and urgent maize disease problems, with a minimum of

restructuring and financial input.

Ideally, there should be a clear strategy to combat new maize diseases or epidemics. Response

to such threats should be structured and co-ordinated. This would allow the optimum use of the

expertise and facilities available in South Africa to counter any maize disease threat. Such a

response would ensure that the necessary research is conducted in the shortest time possible.

Farmers would benefit by getting reliable disease control information as soon as practically

possible. Had such a policy being in place in the mid-1980s, the extent and effect of the ear rot

epidemics could have been substantially reduced. However, such a strategy did not exist in

South Africa and there is still a lack of clear overall policy regarding the monitoring of maize

diseases and the implementation of a disease control strategy. There are a number of reasons

for this:

i) There are few plant pathologists working solely on maize

ii) Most of the government or quasi-government research institutes where maize plant

pathologists are based in areas of low maize disease risk, making pathology

research difficult or limited to a narrow range of diseases

iii) Other researchers working on maize diseases are scattered around the country,

seldom being based at sites where disease problems are endemic and important

iv) Policy cannot be made by any one person or body due to the many stake holders

involved in the maize research

v) In the past, the internal politics of the maize industry has played a significant role in
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leading to conflicting agendas and poor overall planning

vi) Due to the fragmentary nature of research in the maize industry, funding for maize

pathology research is difficult to co-ordinate and often difficult to obtain.

Following deregulation, resulting in the South African Maize Board playing a smaller role in

determining industry priorities and policy in future, it may now be possible to introduce a more

structured and planned national maize pathology strategy. However, considerably closer co-

operation is needed between commercial organisations within the maize industry, the various

Agricultural Research Council Institutes and the Universities in South Africa. A problem will

be to find the organisation / person with maize pathology experience that is" capable of fulfilling

this role.

If the maize industry is not capable of becoming more organised, maize disease epidemics will

continue to catch the maize industry "unexpectedly" in years to come. As an example, maize

eyespot (caused by Aureobasidium zeae [Narita & Hiratsuka] Dingley) is already beginning to

concern farmers and some maize pathologists (Flett and Nowell, 1995), yet little is being done

to combat or understand this disease. Yield losses have been substantial in localised areas in

the Midlands of KwaZulu-Natal and the disease is known to be severe in localised areas of the

eastern Free State and Mpumalanga provinces of South Africa.

The epidemiology of GLS and Stenocarpella ear rot are dissimilar in many aspects but some

factors are common. Both pathogens are essentially reliant on maize debris for their continued

survival and the production of inoculum to incite disease in the subsequent crop. This means

that crop residues should be an important control measure. Resistance is an effective means of

controlling these pathogens, although stress can predispose maize to ear rot infection.

Fungicides can effectively control both diseases but ear rot could not be controlled by fungicides

applied by aircraft (Farwell, unpublished). Low plant densities appear to enhance both diseases,

but further research is needed to clarify this point. Irrigation has been shown to be an important

factor in increasing the incidence and severity of both these diseases in maize.

The major difference is that GLS is a polycyclic pathogen that is easily wind dispersed over

considerable distances, whereas Stenocarpella ear rot is a mono-cyclic pathogen, except for the

leaf blight phase of S. macrospora, that is primarily splash dispersed. Conidia of the

Stenocarpella species are primarily splash dispersed, which means crop rotation and tillage has

a large effect in controlling the disease. In contrast, C. zeae-maydis is wind dispersed and crop
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rotation and tillage have a minimal impact in controlling GLS.

The benefits of conservation tillage under South Africa's the variable climate are enormous. For

this reason strategies have to be developed that ensure conservation tillage can be practised

without major disease problems and consequent economic losses. The long-term objective

should be to increase inoculum pressure during selection in maize breeding programmes and

testing of hybrids, to ensure hybrids of improved disease resistance are marketed in future. In

the interim, supplementary/alternative strategies, such as rotation, plant health and the judicious

use of fungicides, should be promoted.

Since GLS became epidemic in KwaZulu-Natal, there have not been any Stenocarpella ear rot

epidemics. GLS makes the plants mature sooner than would normally be expected. This may

limit the ability of Stenocarpella species to develop fully in the ears. Research is needed to

determine whether this effect interaction occurs or is merely an artifact of environmental

conditions.

The use of ethographs is a very useful way of understanding the disease overall and can be used

effectively to make comparisons between pathogens. Their use as a management tool should not

be underestimated as the weaknesses in the disease cycle are easy to identify as intervention

points to improve disease control. Ethographs can also be used to identify areas where research

is needed for a better understanding of the pathogen.

The education of farmers and personnel in the maize industry with regard to maize diseases

should be an ongoing process. In the past, little has been done to adequately inform people

involved in the maize industry of the details of a given problem. Education is needed to correct

erroneous perceptions, introduce new concepts and improve existing knowledge on maize

diseases. This should not be a one way process. Considerable feedback from people in the field

can be obtained while the education process is in progress. There is a need for overall co-

ordination of this education process. It would be desirable to emphasise plant health as a whole,

rather than concentrating on problems in isolation. Specific programmes need to be devised for

the end user; e.g., small scale farmers cannot be treated in the same way as large commercial

farmers, and researchers have different priorities compared to farmers. When training people,

maximum interaction can be obtained while discussing the programme in the field with

examples. This allows for feedback from the audience to the trainer and practical problems can
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be discussed in the fields. The education process should make use of all types of facilities and

media available, although direct interaction would be the best method. As an example, many

of the people involved in the maize industry are of the opinion that resistance means that the host

will not be infected or colonised by the pathogen, and quantitative infection is a viewed as a

degree of susceptibility. However, pseudo-immunity is usually high level qualitative resistance,

a form of VR, which has inherent stability problems. Quantitative resistance is a desirable trait

as it is usually more stable in nature (Vanderplank, 1984; Robinson, 1987). It is the level of

resistance under a given inoculum pressure that is important. This perception needs to be

changed so that farmers and researchers can understand the mechanisms and utilise resistance

to its maximum, and not only opt for pseudo-immunity. Vertical resistance should in fact be

avoided, particularly when the cultivar with VR is marketed to subsistence farmers.

A frustrating aspect of current maize pathology research in South Africa is that the public maize

pathologists are based in an area of low disease risk, especially leaf diseases. It is vital that

pathology research be conducted in areas of disease occurrence, so that the results are applicable

to the problem. This also cuts down considerably on the costs of transport to areas of high

inoculum pressure. Being based in areas of high disease risk, trends is diseases and problems

can be seen long before they become problematic to the maize industry as a whole. However,

this would require a shift from Potchefstroom in the North West province to Cedara in

KwaZulu-Natal of staff, equipment and budgets.

The seed companies should be a partners in pathological research and disease problem solving,

and not be expected to undertake their own basic pathology research. Their primary objective

should be to provide solutions to disease problems through new and improved hybrids or

varieties. They can also be used to educate farmers and the relevant agricultural personnel.

Funding or partial funding of research projects of common interest could come from the maize

industry. A problem is that many of the people involved in the maize industry still believe that

the government should provide the finance for this type of research. A change in attitude in the

short term is unlikely.

Biotechnology is likely to play an important role in agriculture, and in maize in particular, in

the future. The ability to introduce exotic genes into maize and the use of marker-assisted

breeding techniques are just two of the techniques that could be of enormous benefit to maize
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breeding and maize production. After many years of basic and applied research, maize hybrids

developed with the help of biotechnology are being commercialised for the first time. This has

given rise to many regulatory and marketing problems that now need to be finalised before

maximum benefits can be obtained from these products. Many new forms of disease resistance

are nearing commercialisation to a range of pathogens (Walker39, pers. comm.; Ziegler40, pers.

comm.).

However, the practice of introducing single genes for resistance in to maize could give rise to

disease epidemics in future. These disease resistance genes that are likely to confer VR to maize.

Vertical resistance will not be a stable form of resistance (Vanderplank, 1984; Robinson, 1987)

and will give rise to epidemics in future when the pathogen's virulence gene matches the

resistance gene. Management of this resistance will be complex as new forms of these genes

will have to be continuously available. This is apparently the strategy being followed for the

Bt-gene that is being released in maize for insect resistance (Walker, pers. comm.).

Management of VR, introduced by the transformation of maize, will have to be managed

carefully. Hopefully, as transformation techniques improve, and other techniques become

available, HR genes will replace the use of VR genes.

The use of quantitative trait loci (QTLs) in breeding programmes gives maize breeders a

valuable tool to breed more complex disease resistance, and hopefully HR, into maize. The first

tentative steps in this direction are already in progress for GLS with the research of Bubeck et

al. (1993) and Saghai Maroof et al. (1996). Hopefully this technology will be developed further

and there are plans to use it locally in the near future. Due to the distribution and severity of

GLS in Africa, HR would be the ideal form of resistance to GLS, particularly as small scale /

subsistence farmers will be the main recipients of the GLS-resistant maize.

Grey leaf spot was a new disease to occur in South Africa that expanded in distribution and

severity rapidly once it had established itself. C. zeae-maydis is not seed-borne or seed

transmitted (McGee, 1988) and the use of phytosanitary regulations would not have helped to

keep the pathogen out of the country or limited its spread in the country. This epidemic has
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jegler, Business Director, Corn and Soybean New Products I
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made South Africans aware of the risks of new diseases if the local environmental conditions

are suitable for the pathogen. In the past South African phytosanitary regulations have not

always been based on sound pathological principles and thorough risk analysis. This now needs

to be reviewed for all crops, particularly on maize due to its economic importance to the

agricultural sector of the South African economy.

All phytosanitary regulations are based on the diseases that are known to occur in the country.

However, there are a number of maize diseases that have not been officially reported or

identified in South Africa. Most of these pathogens are in the KwaZulu-Natal and Mpumalanga

provinces and this needs to undertaken as a matter of urgency. Other crops are in an equally

poor state with respect to the identification of diseases already occurring in South Africa.

There is considerable political pressure at present to develop a Southern Africa trade zone.

Should this materialise, it will have significant implications for management of plant diseases

in the region. At present each country is autonomous with respect to phytosanitary matters, but

the creation of the Southern African trade zone would necessitate considerable co-operation

between the relevant authorities. As the staple crop in the region, maize would be the major

crop. An overall strategy governing phytosanitary regulations and disease control, particularly

of economically important diseases, would have to be negotiated. Hopefully, the experience

gleaned over the past few years (and the next few seasons) on downy mildew on sunflower, GLS

on maize and frogeye on soybeans will form the framework for future co-operation.

The Stenocarpella spp. and C. zeae-maydis are pathogens that are part of the overall maize

pathogen complex. The fungi causing ear rot are particularly complex (Koehler, 1959 and 1960)

but each pathogen should not be viewed to the exclusion of the others. Management of maize

disease resistance is vital to minimise the impact of disease in maize production. When releasing

new germplasm into the market it is important to ensure that this material is not highly

susceptible to a pathogen that is usually of minor importance. If this should take place, a minor

disease could establish itself and the inoculum pressure would increase substantially with the

increased planting of this susceptible hybrid. In this way man can create his own epidemics.

It is suspected that this is what is currently happening with eyespot of maize in the KwaZulu-

Natal and Mpumalanga provinces. A susceptible hybrid is now widely grown and farmers are

experiencing economic losses under specific environmental conditions.

300



The interaction of host, pathogen, environment and man is a dynamic process that needs careful

and close monitoring. Any changes in this balance need to be noted quickly and strategies to

combat any imbalances developed. If these changes are not observed timeously and countered,

damaging epidemics can and will occur periodically. Hopefully, people in the maize industry

in South Africa have learnt a number of lessons from the ear rot and GLS epidemics in the

recent past, and the necessary adjustments will be made so the effects of maize diseases in future

will be minimised.
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