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Abstract

Third generation wireless systems have adopted Direct-Sequence/Code-Division Multiple­

Access (DS/CDMA) as the multiple access scheme of communication. This system would

typically operate in a multipath fading channel. This dissertation only deals with the task of

channel estimation at the base station where the multipath delays and attenuations for each

user are estimated. This information is used to aid the recovery of data that was transmitted

by each user.

Subspace-based algorithms are popularly used to perform the task of channel estimation

because they have the desirable property of perfectly estimating the channel in a noise-free

environment. In this dissertation a new subspace-based channel estimation algorithm for

DS/CDMA systems is presented. The proposed algorithm is based on the Parametric

Subspace algorithm by Perros-Meilhac et al. for singk-user systems. The main focus of this

dissertation is to convert the Parametric Subspace algorithm from a single-user system to a

multi-user DS/CDMA system.

It has been shown in the literature that by using information of the pulse-shaping filter in the

Channel Subspace algorithm, the variance of the channel estimates is decreased. However,

this has only been applied to a single-user system. There are several subspace algorithms that

have been proposed for DS/CDMA systems. Most of these algorithms sample the received

signal at the chip rate, making it impossible to exploit knowledge of the pulse-shaping filter

in the channel estimation algorithm. In this dissertation a new subspace-based channel

estimation algorithm is derived for a DS/CDMA system with multiple receive antennas,

where the output is oversampled with respect to the chip rate. By oversampling the received

signal, knowledge of the pulse-shaping filter is used in the channel estimation algorithm. It is

shown that the variance of the channel estimate for the proposed subspace algorithm is less

than the TorlaklXu subspace algorithm that does not exploit information of the pulse-shaping

filter. A mathematical expression of the mean square error of estimation for the new

algorithm is also derived. It was shown that the analytic expression provides a good

approximation of the actual MSE for high SNR.

The Parametric Subspace Delay Estimation (PSDE) algorithm was developed by Perros­

Meilhac et al. to estimate the multipath delays introduced by the communications channel.



The limitation of the PSDE algorithm is that the performance of the algorithm deteriorates as

the power of the multipath signals decrease with increasing delay time. This dissertation

proposes a modified version of the PSDE algorithm, called the Modified Parametric

Subspace Delay Estimation (MPSDE) algorithm, which performs better than the PSDE

algorithm in an environment where the power of the multipath signals varies.

The final part of this dissertation discusses the TorlakIXu channel estimation algorithm and

the Bensley/Aazbang delay estimation algorithm. In order to compare the performance of

these two subspace algorithms, the TorlakIXu algorithm is converted to a delay estimation

algorithm that is called the Parametric TX algorithm. The performance of the

Bensley/Aazbang delay estimation algorithm and the proposed Parametric TX algorithm are

compared and it is shown that the Parametric TX algorithm offers the better performance.
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Chapter 1

Introduction

1.1 Mobile Wireless Communications

Since the introduction of wireline technology systems, people have been able to

communicate almost instantaneously over large distances at a reasonable cost for the very

first time. This advance in technology has certainly changed the way we are able to interact

with the people in our life. The natural evolution of landline-based telephones is the "mobile

phone" or "cell phone", which has shown tremendous commercial growth over the last

decade. This growth is due to the affordable cost of mobile devices, which was made

possible by the ingenious technological advancements of the wireless communications

industry. 'The advantage of mobile phones over landline-based phones is that it is the

preferred choice of technology for both the service provider and the consumer. Wireless

technology takes away the restriction of the user only being able to communicate in a fixed

location. On the other hand, the service provider enjoys the benefit of penetrating a larger

area of consumers than landline-based systems that have inaccessible areas because they are

too remote or they have intervening inhospitable terrains.

The South African cellular communications industry is an excellent example of the

economic growth shown by service providers around the world. The South African cellular

market is currently worth twenty-three billion Rands [Cellular Online03] and it is expected

to grow to around forty-five billion Rands by 2004. The market size ofmobile users in South

Africa is currently over fourteen million and with approximately nine thousand users signing

up per day, the number ofmobile users is expected to increase to nineteen million in 2006.

With the large increase of mobile users that is expected in the near future and the need for

high data rate services, current second generation (2G) systems like Group Special Mobile

(GSM) are unable to satisfy these demands. Third generation (3G) systems were developed·
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Chapter 1: Introduction

by the ITV (International Telecommunications Union) and the ETSI (European

Telecommunications Standards Institute) to exceed the capabilities of current 2G systems by

offering high data rate services such as video on demand, video conferencing, web browsing

and e-mail retrieval and use advanced signal processing techniques to increase spectral

efficiency. 3G technologies are seen as the next step in wireless communications that will

enhance the multimedia capabilities of mobile phones.

1.2 3G Standards

The motivation for the development of third-generation wireless communication systems is

to provide current 2G and 2.5G services with wideband services. With this aim in mind, two

large standards bodies consisting of the ITV and the ETSI encouraged the evolutionary path

towards 3G technologies. The ITU is a United Nations department responsible for co­

ordinating global telecommunications standards an~ activities. The ETSI is a non-profit

European body that is made up of representatives from a diverse communications

background such as administrators, network operators, manufacturers, service providers,

research bodies and users.

The ITV's global standard for the next-generation broadba~d mobile telecommunications

systems is called IMT-2000 (International Mobile Telecommunications-2000) [Ojanpera98].

Their initiative is to define a method of accessing the global telecommunications

infrastructure using satellite and terrestrial mobile systems. IMT-2000 is a flexible standard

that allows operators around the world the freedom of choosing their preferred radio access

method and core network so that they can openly implement and evolve their systems.

Regulations and market requirements dictate how the operators are able to implement their

systems.

There are five radio interface standards that fall under the IMT-2000 standard. Three of the

radio air interface standards include CDMA and two of them encompass Time Division

Multiple Access (TDMA):

1. IMT-MC: CDMA Multi-carrier (known as cdma2000 or IS-2000) [Hara97].

2. IMT-DS: CDMA Direct Spread (known as Wideband CDMA or W-CDMA-FDD)

[MilsteinOO]. The Frequency Division Duplex (FDD) mode is used for applications

2



Chapter 1: Introduction

that require the same amount of radio resources in the uplink as in the downlink,

which is also referred to as symmetrical applications.

3. IMT-TC: CDMA TDD (known a W-CDMA-TDD). Time Division Duplex (TDD)

is optimised for symmetrical and asymmetrical applications with high data rates.

4. IMT-SC: TDMA Single Carrier (known as UWC-136 and EDGE). UWC-136

(Universal Wireless Communications) and EDGE (Enhanced Data Rates for GSM

Evolution) provided higher data rate services with no changes to the channel

structure, frequency or bandwidth.

5. IMT-FT: TDMA Multi-carrier (known as DECT, Digital Enhanced Cordless

Telecommunication).

The standards that have CDMA [prasad98] techniques have received the most amount of

attention from the communications research community since it provides a logical

evolutionary path for Interim Standard 95 (IS-95) based networks that were developed for

2G systems.

The ETSI's network solution for third-generation systems is driven by UMTS (Universal

Mobile Telecommunications System) and it is called the VTRAN (UMTS Terrestrial Radio

Access Network). The radio access technology is based on W-CDMA. A conceptual

overview of W-CDMA is provided in [MilsteinOO]. The ETSI proposed UMTS because it is

a logical upgrade path for 2G GSM networks.

A comparison between the air interface standards for IMT-2000 and UMTS is given in

[Ojanpera98] and more detailed information on the UMTS and IMT-2000 standards based

on W-CDMA can be found in [Dahlman98].

1.3 What is Channel Estimation?

This dissertation focuses on the task of channel estimation, thus it is important to fIrst defIne

what it meant by a channel. In the most general sense, a channel is the physical medium

between the transmitter and the receiver through which the signal propagates. A few

examples of physical mediums are free space, fIbre, waveguides and copper wire. The

characteristic feature of any channel is that the transmitted signal gets conupted in frequency

3



Chapter 1: Introduction

and phase before it reaches the receiver. This distortion is caused by the time dispersive

Qehaviour of the channel and thermal noise.

Channel estimation is defined as the process of characterising the effect that the physical

channel has on the input sequence. In most communications areas, the channel is assumed to

be linear. In this case, the channel estimate corresponds to the estimate of the impulse

response of the system. A channel estimation algorithm aims to estimate the mathematical

representation of the channel. The channel estimation algorithm with the best performance is

not the algorithm with the closest mean value to the actual channel but it is the algorithm that

has the smalle~t estimation variance.

The purpose of channel estimation is to allow the receiver to estimate the impulse response

of the channel that explains the behaviour of the channel. This knowledge of the channel's

behaviour is well utilised in modem wireless communication systems. Multiuser detection

(MUD) algorithms require knowledge of the channel to estimate the data that was

transmitted by a desired user. Time diversity techniques such as the Maximal Combined

Ratio (MCR) Rake receiver use channel estimates to implement a matched filter such that

the receiver is optimally matched to the received signal instead of the transmitted one.

Equalisers use the channel estimates to correct the distortion caused by the time dispersive

behaviour of the channel.

1.4 Channel Estimation Algorithms

The channel estimation algorithms that have been proposed in the literature can be classified

into three categories: training, semi-blind and blind methods. Traditional techniques for

channel estimation use training data, which is a received sequence whose transmitted data is

known. More recently, blind techniques have been researched intensively in the literature.

Blind techniques don't use training data, but instead they use certain prior information that is

inherent in the original strings of data symbols. Blind methods are preferred to training­

based methods because they save on bandwidth used for training data and this gives blind

techniques the potential to increase the data throughput in wireless systems. Semi-blind

methods are a combination of existing training and blind methods that aim to estimate the

channel using not only the known data in the transmitted signal and its corresponding

observation, but also the observation of the unknown transmitted signal. Semi-blind channel

4



Chapter 1: futroduction

estimation is motivated by the fact that in modem communication systems there are known

pilot symbols that can be used to improve the performance of the channel estimation

algorithm.

There are various different types of blind and training-based channel estimation algorithms

that have been proposed in the literature. Some of these algorithms are listed in Table 1. The

type of blind channel estimation algorithm that has received considerable research is the

subspace method. Subspace algorithms use second order statistics of the received signal to

estimate the channel. The desirable characteristic of subspace algorithms to other types of

algorithms is that subspace algorithms are near-far resistant. Thus, subspace-based channel

estimation algorithms have the ability to identify the channel of a user with a weak transmit

power whose received signal at the base station is being drowned by other users with a

stronger transmit power. A comprehensive overview of subspace algorithms can be found in

[Tong98], [Giannakis01], [Abed-Meriam99], [TugnaitOO].

Table 1 Channel estimation algorithms

Name of method Algorithm type. More details can be found in:

Subspace techniques Blind [Tong98], [GiannakisOI]

Higher Order Statistical Approaches Blind [Godard80], [Donoh081]

Expectation-Maxirnisation Blind [Weinstein90]

Maximum Likelihood Training-based [Bensley98], [StromOO]

Least Squares Training-based [Haykin84]

Neural Networks Training-based . [Arnari98]

Kalman Filter Training-based [Safaya97]

Semi-blind channel estimation has also attracted attention due to the need for fast and

efficient channel estimation algorithms. A survey of semi-blind channel estimation

algorithms is given in [de CarvalhoOO]. Semi-blind channel estimation assumes additional

knowledge of the input sequence compared to blind algorithms. This gives semi-blind

methods the ability to offer significant performance improvements to existing blind or

training-based methods as shown in the evaluation of the Cramer-Rao lower bound in [de

Carvalho97]. A popular approach of semi-blind methods is the formulation of an

optimisation function that is developed by combining the optimisation function of an

existing blind and training-based channel estimation algorithm. fu most cases, a weighted

5
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linear combination of the cost function for the blind and training-based channel estimation

algorithms are used to form the optimisation function of the semi-blind method

[Gorokhov97].

1.5 Motivation for research

Third-generation systems are required to operate in a channel that is characterised by

multiple reflections, diffractions and attenuation of the transmitted signal energy. These are

caused by natural objects such as buildings and hills that are in the communication path

between the base station and the mobile unit as shown in Figure 1-1.

Base Station

Mobile unit

Figure 1-1 Illustration of a multipath channel in an urban environment

As a result, in the downlink, the mobile receives multiple copies of the same signal that are

each scaled in amplitude and delayed in time. This leads to multipath propagation. Two

effects resulting from multipath propagation are:

6



Chapter 1: Introduction

1. The signal that is transmitted from the base station arrives at the mobile at distinct

time instants. This causes the arriving signal's transmitted energy to be distributed

across time to form a multipath delay profile.

2. When there is an object positioned close to the mobile, the transmitted signal from

the base station gets scattered into many paths that are received at virtually the same

instant when compared to the duration of a single chip period. As a result, the

scattered transmitted signal can add up constructively or destructively at the receiver

causing fast fading.

The above two points describe how multipath propagation has the effect of distorting the

signal that is transmitted by the base station. One of the countermeasures that have been

proposed to combat the adverse affects of multipath propagation in 3G systems is the use of

a Rake receiver [Holma02]. A Rake receiver is used to constructively combine the energy of

the multiple signals that are received. However, the Rake receiver requires lmowledge of the

channel estimates. In 3G UMTS systems, pilot symbols are inserted to the start and the end

of a packet to provide an estimate of the momentary channel state using a training-based

channel estimation algorithm. In a time-varying channel, the channel state at the beginning

of the received packet may be very different to the channel state at the end of the packet.

Thus, a training-based approach is unable to identify a fast changing channel. Semi-blind

methods have been proposed in [LasaulceOO] to solve the task of channel estimation for

time-varying channels. The semi-blind algorithm in [LasaulceOO] uses the TorlaklXu

subspace algorithm [Torlak97] to blindly estimate the channel from the unlmown data

symbols and a Least Squares approach to identify the channel from the training symbols, as

shown in Figure 1-2.

The channel is estimated using a weighted combination of the channel estimate from the

subspace and the Least Squares algorithms. It is shown in [LasaulceOO] that from the

training-based Least Squares algorithm, the blind subspace algorithm and the proposed semi­

blind algorithm, the semi-blind method provides the best channel estimate. The emergence

of semi-blind methods for 3G systems that use existing blind subspace algorithms has

motivated the focus of this dissertation to investigate and improve the performance of blind

subspace algorithms.

7



Chapter I: Introduction

known symbols unknown symbols known symbols

Blind Subspace algorithm

Training-based Least Squares algoritlnn

Figure 1-2 A 3G packet structure showing a semi-blind channel estimation approach

1.6 Outline of dissertation

In Chapter 2, blind subspace-based channel estimation algorithms that have been proposed in

the literatUre for single-user systems are reviewed. The Channel Subspace algorithm is

described together with the algorithms that have been proposed in the literature, which are

related to the Channel Subspace algorithm. Some of the subspace-based channel estimation

algorithms that have been developed for Direct-Sequence Code Division Multiple Access

(DS/CDMA) systems are also discussed.

Chapter 3 describes the concepts, assumptions and the mathematical formulation of the

Channel Subspace algorithm for single-user systems. The development of the Parametric

Subspace algorithm is also discussed. The Parametric Subspace algorithm extends the

Channel Subspace algorithm by incorporating pulse-shaping information into the channel

estimation algorithm. Concepts of the Parametric Subspace algorithm are used to derive a

new subspace-based channel estimation algorithm for DS/CDMA systems that incorporates

pulse-shaping information. The performance of the proposed algorithm is evaluated via

simulations. Lastly, a mathematical expression of the mean square error of estimation for the

new algorithm is derived.

8



Chapter 1: Introduction

Chapter 4 explains the Parametric Subspace Delay Estimation (PSDE) algorithm and

describes how it can be applied to multi-user DS/CDMA systems. A modified version of the

PSDE algorithm, called the Modified Parametric Subspace Delay Estimation (MPSDE)

algorithm, is proposed to improve the performance of the PSDE algorithm in an environment

where the power of the multipath signals varies. Simulation results are presented to compare

the performance of the proposed MPSDE algorithm to the PSDE algorithm. Chapter 4

concludes with simulation results that compare the performance of the new channel

estimation algorithm in Chapter 3 that uses the MPSDE algorithm to estimate the multipath

delays, to the new channel estimation algorithm that assumes all the multipath delays are

mown at the receiver.

In Chapter 5, the TorlaklXu (TX) channel estimation algorithm [Torlak97] and the

BensleylAazhang delay estimation algorithm [Bensley96] are discussed. In order to compare

the performance of these two algorithms, the TorlaklXu algorithm is converted to a delay

estimation algorithm that is called the Parametric 1;X algorithm. Simulations results are

presented at the end of Chapter 5 to compare the performance of the Bensley/Aazhang

algorithm to the proposed Parametric TX algorithm.

A summary of the dissertation and concluding remarks are made in Chapter 6. Some future

directions for further work are also discussed. In Appendix A, a numerical example of the

Channel Subspace algorithm is given to enhance the reader's understanding of the Channel

Subspace algorithm that is described in detail in Chapter 3.

1.7 Original contributions in this dissertation

The original contributions made in this dissertation include:

1. In Chapter 3, a new subspace-based channel estimation algorit~ is derived for

DS/CDMA systems. The proposed algorithm is based on the Parametric Subspace

algorithm for single-user systems. Simulations are performed comparing the new

algorithm that uses pulse-shaping information to the Torlak/Xu algorithm that does

not use mowledge of the pulse-shaping filter. It is shown that the proposed

algorithm performs better than the TorlaklXu algorithm. A mathematical expression

of the mean square error of estimation. for the proposed algorithm is also derived. It

9



Chapter I: Introduction

is shown that the analytic expression provides a good approximation of the actual

MSE for high SNR.

2. In Chapter 4, a new delay estimation algorithm, called the Modified Parametric

Subspace Delay Estimation Algorithm (MPSDE), is proposed. The MPSDE

algorithm is based on the Parametric Subspace Delay Estimation (PSDE) algorithm

in [Perros-MeilhacOI]. It is shown by simulations that the MPSDE algorithm

performs better than the PSDE algorithm in a communications channel where the

power of the multipath signal varies.

3. In Chapter 5, the TorlakIXu channel estimation algorithm is converted into a delay

estimation algorithm that is called the Parametric TX algorithm. This was done to

compare the performance of the Parametric TX algorithm to the Bensley/Aazhang

delay estimation algorithm. Simulation results show that the proposed Parametric

TX algorithm performs better than the Bensley/Aazhang delay estimation algorithm.

Parts of this research have been presented by the author at two local conferences and

submitted for publication at an international journal:

•

•

•

M. Y. Abdul Gaffar, A D. Broadhurst, F. Takawira, "Performance analysis of a

subspace-based channel estimation algorithm for CDMA systems", in Proc.

SA TNA C 2002, Champagne Sports, Drakensberg, South Africa, Sept. 2002.

M. Y. Abdul Gaffar, A D. Broadhurst, F. Takawira, "A comparison of parametric

subspace delay estimation algorithms for DS/CDMA systems", in Proc. SATNAC

2003, Fancourt Hotel and Country Club Estate, George, South Africa, Sept. 2003.

M. Y. Abdul Gaffar, AD Broadhurst, F. Takawira, "An improved subspace-based

channel estimation algorithm for DS/CDMA systems exploiting pulse-shaping

information", submitted to lEE Proceedings Communications.
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Chapter 2

Subspace-based Blind Channel
Estimation Algorithms

2.1 Introduction

In recent years there has been considerable interest from both the signal processing and

communications communities in the so-called "blind" problem. The motivation for the

increased research activities in blind techniques is their potential applications in wireless

communications, which have been experiencing explosive growth. The blind channel

estimation problem involves a system model shown in Figure 2-1, where only the

observation signal x is used to identify the channel h. This is in contrast to the classical

channel estimation problem where both the input signal s and the observation signal x are

used.

n

ladditiveno;,e

_s .~1 Cha;el 1~--~~~8 x ~
input signal· . observation signal

Inaccessible ----....;)~I~ Accessible 1
Figure 2-1 System model for blind channel estimation algorithms

In typical wireless communication systems, the distortion caused by multipath interference

affects both transmission quality and efficiency in wireless communications. In order to

11



Chapter 2: Subspace-based Blind Channel Estimation Algorithms

mitigate such distortions, knowledge of the channel needs to be known. The current cellular

communication system used in South Africa and Europe, which is known as GSM, uses

"training" signals to perform the task of channel estimation. The transmission of training

signals has the effect of decreasing the time available for transmitting information. For time­

invariant channels, the loss in throughput is neglible because training is only done once.

However, for time-varying channels, the loss of throughput becomes significant since

training needs to be done periodically.

At first glance, the task of blind channel estimation illustrated in Figure 2-1 may not seem

tractable. From the observation signal, how is it possible to distinguish the transmitted signal

from the channel when neither is known? The main concepts used in blind channel

estimation algorithms lies in the exploitation of the structure of the channel, when it is

written in a matrix form, and the known properties of the input signal such as the

probabilistic distributions and moments. Using these concepts, the problem of estimating the

channel using the output statistics is related to the output's time series analysis. In

communications systems, for example, the input signals may have a finite alphabet property

that exhibits cyclostationarity. This property of the input signal was used in [Tong91], which

was the first paper that showed the possibility of estimating a non-minimum phase channel

using only the second-order statistics of the observation signal. The algorithm in [Tong91]

led to the development ofmany blind subspace-based channel estimation algorithms.

Blind channel estimation algorithms can be classified into two categories: statistical and

deterministic methods. These two categories are clearly explained in Section 2.2. It has been

shown in the literature that deterministic methods offer better performance than statistical

methods. For this reason, only blind deterministic methods are discussed in Section 2.3. The

most extensively researched blind deterministic algorithm is the Channel Subspace algorithm

[Moulines95]. For this reason, Section 2.4 describes the algorithms that have been proposed

in the literature, which are related to the Channel Subspace algorithm. A brief comparison of

three deterministic subspace-based algorithms: the Channel Subspace algorithm, the Cross

Relation algorithm and the Two Step Maximum Likelihood algorithm can be found in

Section 2.5. Lastly, Section 2.6 discusses some of the subspace-based channel estimation

algorithms for DS/CDMA systems.

12
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2.2 Classification of Blind Channel Estimation
Algorithms

The blind channel estimation algorithms that have been proposed in the literature can be

classified into statistical and deterministic methods.

Blind Channel Estimation Algorithms (SIMO)

I
~ ~

I Statistical Methods Deterministic Methods

I
~

Maximum Likelihood Maximum Likelihood
• EM Approach • TSML - [Hua96]

- [Dempster97] • IQML - [Bresler86]

Moment Moment Methods
Methods • Cross Relation - [Xu95]

• Channel Subspace - [Moulines95]
• LSS - [Zhao99]

SubSJ?ace Methods
• Cyclic spectra - [Giannakis94] ,

• Filtering transform - [Tong91]
JOSC algorithm

[Zeng97b]

• Linear Prediction - [Abed-Meraim97c]

Moment Matching
• Cyclic spectra - [Tong94a]

CMC algorithm

- [Gazzah02]

Figure 2-2 Classification of blind channel estimation algorithms
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If the input s is assumed to be random with a lmown statistical distribution that is used by the

blind channel estimation algorithm, the method is considered to be statistical. However, if

the source does not have a statistical description, or although the source is random but the

statistical properties of the input signal are not used by the blind channel estimation

algorithm, the corresponding algorithm is classified as a deterministic method. Figure 2-2

shows a map of the different classes of subspace methods along with a few algorithms that

have been proposed in each class.

Since Chapters 3, 4 and 5 are involved with improving the performance of deterministic

subspace algorithms, the focus of this chapter is on deterministic methods that have been

proposed in the literature.

2.3 Blind Deterministic Channel Estimation
Algorithms

The algorithm proposed by Tong, Xu and Kailath [Tong9l] was the first method to show

that a channel could be identified using only the second order statistics of the received

signal. This result was an important breakthrough since the performance of the algorithm in

[Tong9l] was better than previous higher-order statistical blind channel estimation

algorithms [Godard80], [Donoh08l] and [Benveniste80] that exhibited high variances. The

key to this breakthrough was the consideration of a system model with multiple channels,

corresponding to the user of an array of antennas possibly combined with fractional sampling

reception teclmiques [Tong98]. Soon afterwards, similar algorithms that used only the

second order statistics of the received signal, also referred to as subspace algorithms, were

developed by Moulines et al. [Moulines95], Gurelli and Nikias [Gurelli95] and Slock

[Slock94]. These algorithms showed that under mild assumptions, which can be found in

[Hua96a], an unknown single input single output (SISO) polynomial transfer function

representing the unknown channel can be identified using the eigenvector decomposition of

the matrix obtained from the covariance of the received signal.

The Channel Subspace algorithm that was proposed by Moulines et al. in [Moulines95] was

shown to be better than the TXK. (Tong, Xu, Kailath) algorithm [Tong9l] because it has a

lower computational complexity and estimation variance. The Channel Subspace algorithm

performs better than the TXK. algorithm because the Channel Subspace al¥orithm works on

14
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the orthogonal property of the noise subspace and the column space of the channel matrix,

whereas the TXK algorithm works on the matrix pencil property [MoonOO]. The advantage

of the orthogonal property is that in the presence of temporally correlated symbols, the

orthogonal property is preserved, but the matrix property is lost.

Since the development of the Channel Subspace algorithm, there has been a lot of work done

in improving the performance of this algorithm. The assumptions that are made for the

Channel Subspace algorithm to give reliable channel estimates [Moulines95], [Hua96a],

[Zeng97a] and [Abed-Meraim97d] are the following:

• The multiple channels arising from fractionally sampling the received signal or the

use of an antenna array do not share commOn zeros.

• The order of the channel Lneeds to be known exactly.

• The input sequence should be complex enough to excite all the modes [Abed­

Meraim99] of the channel.

• The number of samples from the received signal that is used by the channel

estimation algoritluh needs to be sufficient in order for the left nullspace of the

channel matrix exists.

In [Abed-Meraim97a], the concept of minimum polynomial basis of a rational subspace is

used to understand subspace methods. The rational subspace concept was also used in

[Abed-Meraim97d] to show that the Channel Subspace algorithm leads to inconsistent

channel estimates if the channel order is over-determined. It was not long before Liavas et al.

proposed a channel order estimation algorithm for the Channel Subspace algorithm

[Liavas99]. It was shown in [Liavas99] that the impulse response of real communication

channels has terms that are "large" and a lot of terms that are "small". If the channel length is

overestimated, the subspace algorithm estimates the "small" terms of the channel impulse

response, which leads to a dramatically degraded quality of estimation. To avoid estimating

the "small" terms, a channel length estimation algorithm is presented in [Liavas99] chooses

the channel length from the ratio of two consecutively decreasing eigenvalues of the

correlation matrix.
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2.4 Algorithms Related to the Channel Subspace
Algorithm

Subspace methods traditionally use the received signal to form the correlation matrix that is

used to estimate the signal and noise subspaces. In a noiseless system, the received signal

lies only in the signal subspace. The noise subspace is the subspace that is orthogonal to the

signal subspace. The Channel Subspace algorithm uses the vectors that span the complete

noise subspace to estimate the channel. The Minimum Noise Subspace (MNS) algorithm

[Hua97] showed that in a noiseless system, only M-I vectors from the complete noise

subspace is sufficient to identify the channel to within a scalar factor, where M denotes the

number of multi-channels. The advantage of the MNS algorithm is that it is computationally

less expensive than the Channel Subspace algorithm but the estimation variance is greater.

Hence, the MNS algorithm offers a trade off between complexity and performance. Soon

afterwards, the MNS algorithm was extended to multiple input multiple output (MIMO)

systems [Abed-Meraim97b] where it was also showri that the performance of the algorithm

was not as superior in performance to the algorithm that uses the full noise subspace to

perform the task of channel estimation.

Novel work by Zeng and Tong in [Zeng97a] lead to the development of analytical

expressions for the performance of statistical and deterministic subspace methods. The

following important limitations of these two subspace methods were found:

•

•

For moment-based statistical methods, the condition number of the Jacobian matrix

limits the performance of the channel estimation algorithms. The Jacobian matrix

becomes ill-conditioned when any of the multi-channe1s share common conjugate

reciprocal zeros. When the Jacobian matrix is ill-conditioned, the channel estimation

algorithm does not always converge to the global minimum because the search space

given to the algorithm is so large that it covers the local minimums as well.

The condition number of the channel matrix limits the performance of deterministic

subspace algorithms such' as the Channel Subspace algorithm. The channel matrix

becomes ill-conditioned when any of the multi-channels share common zeros. The

exact value of the channel order is needed for the algorithm to give reliable channel

estimates. If an overestimate of the channel order is used, the Channel Subspace

algorithm provides channel estimates that are inconsistent.
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Noting the limitations of the deterministic and statistical algorithms, the Joint Optimisation

with Subspace Constraints (JOSe) algorithm [Zeng97b] was proposed to solve the

limitations of the two types of subspace algorithms. The characteristics of the JOSC

algorithm are as follows:

• An overestimate of the channel order need only be known.

• The algorithm is robust with respect to ill-conditioned channels that share common

zeros.

• The final optimisation equation involves a search ofparameters in a low dimensional

space that uses techniques of statistical algorithms to search for the global minimum

that identifies the channel.

The JOSC algorithm uses two deterministic subspace constraints that are derived from the

principle component analysis and the noise subspace to reduce the search space of the final

statistical-based optimisation equation. By reducing the search space, the convergence of the

JOSC algorithm to the global minimum is improved.

Recognising that in many communication applications, the pulse-shaping information of the

transmitted waveform is often known, Schell et al. proposed a subchannel response matching

approach [Sche1l94]. Ding used the same idea as Schell and presented a Modified Channel

Subspace (MCS) algorithm [Ding95] that incorporated knowledge of the pulse-shaping filter

into the Channel Subspace algorithm. However, the performance of the MCS algorithm is

dependent on the condition number of the matrix that contains pulse-shaping information.

The Parametric Subspace algorithm [perros-MeilhacOI] solved the condition number

limitation of the MCS algorithm by presenting a unique delay estimation algorithm that also

uses pulse-shaping information.

Figure 2-3 shows a map that summarises the algorithms that are related to the Channel

Subspace algorithm. ID Chapter 3 the Parametric Subspace algorithm is discussed in detail

and a new algorithm is proposed that converts the Parametric Subspace algorithm from

single-user system to a to multi-user DS/CDMA system.

17



()
::r

:,g
ff
N

eng.
l.gj
~
~er
~
~

0..
to
~
0..

r
~
>-'

trJ
~

~.

g.
?::
.~
::1.

~en

I [Abed-Meraim97d] I

I [Tong91] J I [Tong94b] J

I [Hua96a] JI [Hua96b] I
Lower complexity and estimation variance,

Compared the performance of the Channel Subspace
algorithm to the CR and the ML method

: [Moulines95] :
Conditions under which SIMO channels can be estimated

Algorithm for estimating the channel lengthI [Liavas99] I
I~

Analysed limitationsIncorporated Minimum Noise Minimum polynomialpulse-shaping ofdeterministic and Subspace algorithm basis of a rational subspaceinformation statistical algorithms for SIMO systems
~ ~ ~

I [Abed-Meraim97a] II [Ding95] I I [Zeng97a] I I [Abed-Meraim97a] I
mation rithm Noise Anal: nellength
that used algorithm limit, e Channel
ling

0) systems SubSI :ithm
n

[Abed-Meraim97b] I I [Abed-Meraim97d]I [Perros-MeilhacO 1] I I [Zeng97b] I

~
IJCl
I::..,
ID
N
~

~
~

't:l
Q....
t')

::r
~

='='
~
ID

'"l:t.a
~

l:t.
Q

='
~

~ IJCl
Q

IJCl ::3.Q ..........
::3. ::r00 ..... a::ra '".....::r

~.....
~..,
ID..,
ID
r;.....
ID
Co
.....
Q

~
ID

("')
::r
~

='='
~
r.t:J

6-
'"'t:l
~

~



Chapter 2: Subspace-based Blind Channel Estimation Algorithms

2.5 Comparison of Deterministic Subspace-based
Algorithms

A few other deterministic subspace-based algorithms that have been presented in the

literature are the Cross Relation (CR) algorithm [Xu95] and the Two Step Maximum

Likelihood (TSML) algorithm [Hua96b]. It was shown in [Zeng96] that the CR and the

Channel Subspace algorithms are exactly the same when the number of multi-channels is

equal to two. When the number of multi-channels is greater than two, the CR method only

uses a portion of the complete noise subspace to estimate the unknown channel, whereas the

Channel Subspace algorithm uses the complete noise subspace. The CR method was also

shown to be the algorithm used in the fIrst step of the TSML algorithm [Hua96b].

The performance of the TSML, CR and the Channel Subspace algorithms were compared in

[Hua96b]. The following was found:

• When the channel matrix is well conditioned, the channel estimation variance of the

TSML, CR and the Channel Subspace algorithms attains the Cramer-Rao Bound

(CRB) at high signal-to-noise ratios (SNRs).

• For an ill-conditioned channel matrix, the TSML method outperforms the CR and

the Channel Subspace methods. At a high SNR, the estimation variance of the

TSML algorithm approaches the CRB.

2.6 Subspace-based Algorithms for DS/CDMA

Code-Division Multiple-Access (CDMA) is a technique whereby many users simultaneously

access a communication channel. The users of the system are identified at the base station by

their unique spreading code. The signal that is transmitted by any user consists of the user's

data that modulates its spreading code, which in turn modulates a carrier. An example of

such a modulation scheme is binary phase shift keying (BPSK). In a typical environment, the

signal that is transmitted by a user is reflected by objects before it reaches the base station.

Hence the receiver receives multiple copies of the same signal that are each delayed and

attenuated by different amounts. The purpose of channel estimation is to find these unknown

parameters to aid the recovery of the data transmitted by each user.
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In the early practical implementation of DS/CDMA systems, such as IS-95, the

computationally simple matched filter solved the task of estimating the' multipath delays

introduced by the channel. However, the simple matched filter was found to be non-resistant

to multiple access interference [Simon85] and the optimal maximum likelihood solution

[Verdu86] is too complex for practical purposes. Subspace-based methods are a desirable

way of solving the delay and channel estimation problem because they offer near-far

resistant algorithms that exhibit adequate performance with reasonable computational

complexity.

Channel estimation algorithms are concerned with estimating the tap coefficients of the

Finite Impulse Response (FIR) filter representing the channel. On the other hand, delay

estimation algorithms obtain an estimate of the multipath delays introduced by the channel.

Channel and delay estimation algorithms are also referred to as non-parametric and

parametric methods respectively. The rest of this section discusses subspace-based delay and

channel estimation algorithms that have been proposed in the literature.

The algorithm in [Strom96a] was the first subspace-based algorithm that estimated the

multipath delays of a desired user in a DS/CDMA system. The algorithm was later modified

for a multipath time-variant channel [Strom96b]. However, this algorithm for time-variant

channels was not suitable for a channel that had several paths with time-variant path gains

[StromOO]. A subspace method that solved this problem was proposed by Bensley and

Aazhang in [Bensley96]. The limitation of the Bensley/Aazhang algorithm was the

potentially complicated fmal optimisation equation, which was later solved to some extent

by the same authors in [Bensley98].

,A subspace channel estimation algorithm that extended the Channel Subspace algorithm

from a single-user system to a multi-user DS/CDMA system can be found in the paper by

Torlak and Xu [Torlak97]. One of the impractical assumptions made by the TorlakIXu

algorithm was the algorithm's knowledge of the exact channel length. A channel length

estimation algorithm for the TorlakIXu method was proposed in [Tugnait02]. Other subspace

algorithms that have been developed to be computationally less expensive than the

TorlakIXu algorithm can be foundin [AktasOO] and [PiOl].
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2.7 Summary

Subspace techniques are a desirable way of solving the task of channel or delay estimation

since they offer algorithms that are near-far resistant with sub optimal complexity. Subspace­

based channel estimation algorithms can be classified into two categories, depending on

whether or not they use statistical information. Deterministic methods that do not use

statistical information were discussed in this chapter. From the literature it was seen that

since the Channel Subspace algorithm was proposed by Moulines et al. in 1995, the research

in deterministic subspace-based channel estimation algorithms was focused on improving the

performance of the Channel Subspace algorithm. This chapter explained the development of

many new improved channel estimation algorithms that were based on the Channel Subspace

algorithm. Lastly, subspace-based channel estimation algorithms for DS/CDMA systems

were discussed.
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Chapter 3

A New Subspace-based Channel
Estimation Algorithm for DS/CDMA
Systems

3.1 Introduction

Ever since Tong demonstrated the feasibility of identifying non-minimum phase channels

using second-order statistics (SOS) [Tong91], there has been considerable research in the

area of blind identification of multiple FIR channels in SIMO systems. Over the hist twelve

years maIJ.y blind SOS-SIMO channel estimation algorithms have been developed [Tong98],

namely the Channel Subspace algorithm [Moulines95]. It has been shown that when the

Channel Subspace algorithm takes into account knowledge of the pulse-shaping filter, it

reduces the overall channel estimation variance [Ding95] and provides reliable channel

estimates for a system with an overestimated channel length [Perros-Meilhac01], [perros­

Meilhac99].

In 1997, the Channel Subspace channel estimation algorithm was extended from a single­

user system to a multi-user DS/CDMA system [Torlak97]. However, this multi-user method

sampled the received signal at the chip rate, making it impossible to exploit knowledge of

the pulse-shaping filter in the channel estimation algorithm. In this chapter a new subspace­

based channel estimation algorithm is derived by extending the algorithm in [Perros­

Meilhac01] from a single-user system to a multi-user DS/CDMA system. In the proposed

system, the received signal is oversampled with respect to the chip rate and lmowledge of the

pulse-shaping filter is incorporated into the channel estimation algorithm with the aim of

lowering the variance of the channel estimates compared to the algorithm that does not use

information of the pulse-shaping filter.
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The system model for a single-user system and the assumptions that are made about the

system in [Perros-MeilhacOl] are described in Section 3.2. Subspace algorithms use linear

algebraic concepts to estimate the channel. These concepts are discussed in Section 3.3. The

Channel Subspace algorithm and the way the algorithm is extended to incorporate pulse­

shaping information to form the Parametric Subspace algorithm is described in Sections 3.4

and 3.5 respectively. A new subspace-based channel estimation algorithm for DS/CDMA

systems that incorporates pulse-shaping information is derived and the performance of the

new algorithm is analysed and conftrmed via simulations in Section 3.6.

3.2 Single-user System Model and Assumptions

Consider a continuous-time single-user communication system with linear modulation over a

linear time-invariant channel. The baseband representation of the continuous signal that is

received on q antennas (Figure 3-1) may be expresse~ as:

00

x(t) = I het -IT)s(l) + e(t)
l=-m

(3.1)

where {s(l)} are the transmitted symbols and T is the symbol period. The observation vector

x(t) , the channel impulse response het) and the noise vector e(t) are all q x 1 column

vectors that are deftned as :

x(t) = [Xl (t),

het) = [~(t),

e(t) = [E; (t),

,xq(t)f

,h/t)f

,eq(t)f

set)

Figure 3-1 System model of a single-user system with one transmit and q receive antennas
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The channel impulse response vector h(t) is a function of the pulse-shaping filter g(t) and

the propagation channel associated with each antenna. The channel is assumed to be the sum

of a small number of paths. Each path is characterised by a delay and a spatial attenuation

factor. The assumptions that are made on the multipath channel [perros-MeilhacO I] are as

follows:

AI) The number of multipaths and the delay spread are known.

A2) The signal is narrowband with respect to the array aperture.

A3) The pulse-shaping filter g(t) is known and has finite support g(t) = °for

t e [0, LgT] , where Lg is the truncated length of the filter in symbol periods.

A4) Doppler shift and residual carriers are neglected. Hence the channel is assumed

to be stationary over the observation period.

Under the above assumptions, the channel impulse response vector can be expressed as:

d

h(t) = I akg(t - 'k)
k;l

(3.2)

where d is the number of multipaths,

'k is the delay of the kth path,

a k is a q x 1 vector which is the spatial signature associated with the kth path.

The spatial signature of the kth path ak is dependent on the array response ak (B) to a point

source for direction Bk and the fading factor ak:

(3.3)

To mathematically formulate the observation vector x(t) that is sampled at the rate of T / P ,

where p is the oversampling factor, the following equations are defined for 1~ i ~ P :

h(i)(n) =h«i -1)T / p + nT)

x(i)(n) = x«i -1)T / p + nT)
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The spatial and temporal diversity can be combined to fonn a SIMO linear system with

r =pg outputs:

h(n) =[h(l) (n/,

x(n) =[x(l)(n)T,

e(n) =[e(l) (n)T ,

h(p)(n)T]T
, rx 1

x(P)(n)T]T
, r x.l

e(p) (n)T]T
, r x 1

Under the ass:urnptions Al and A3, the channel impulse response can be considered to be

causal with duration LT, where L =Lg +r(rd - t"t)ITl [perros-MeilhacOl]. By defining

H=[h(O), ... ,h(L)]rx(L+!)

the oversampled observation vector from q antennas for one symbol duration may be

expressed as :

x(n) = Hs(n) +e(n) (3.4)

where s(n) = [s(n), ,s(n -L)]i+!xt. By stacking K succeSSIve samples of the

observation vector, the Toeplitz structure of the multi-channel system can be seen

[GiannakisO1]:

x(n) h(l) h(2) h(L) s(n) e(n)

x(n-l) h(l) h(2) h(L) s(n -1) e(n-l)
= +

x(n-K+ 1) h(l) h(2) h(L) s(n-K-L+l) e(n-K +1)
"-----v-' v ~

xK(n) J{K sK+L(n) eK(n)

Kr x 1 KrxK+L K+Lxl Krxl

(3.5)

By writing the observation vector in terms of the Toeplitz structure of the channel matrix

:J{K' an important structural relation that was developed in [Moulines95] can be used to

fonnulate the simplified channel identification equation in the Channel Subspace algorithm.

This is explained in detailin Section 3.4.
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3.3 The Subspace Concept

Subspace-based algorithms [Moulines95], [Perros-MeilhacOl] exploit the low rank of the

Toeplitz matrix J{K to identify the unknown channel. The low rank structure of a matrix

exists when the number of its rows is greater than the number of its columns. A matrix with

low rank ensures that its left nullspace exists. This property is discussed below:

For a matrix A (m x n where m> n) with full column rank exhibiting a low rank structure:

• The rank equals to the number of its columns: rank =min(m,n) =n

• The dimension of the left nullspace equals to m - rank = m - n > 0

Since the dimension of the left nullspace is greater than zero it will exist.

It is the left nullspace of the Toeplitz channel matrix J{K that is used to identify the channel.

This is described in great detail in Section 3.4. To explain the concept of how subspace­

based algorithms work, the noiseless model of a stacked system model is studied. Ignoring

the additive noise term in (3.5), it gives:

(3.6)

From (3.6) it can be seen that the received vector xK (n) is an exact linear combination of

the columns ofJ{K' Thus, the received vector lies in the same subspace as the column space

ofJ{K . The column space of J{K is popularly called the signal subspace. The left nullspace

ofJ{K' that is orthogonal to the column space ofJ{K' is popularly called the noise subspace.

The Channel Subspace channel estimation algorithm uses the following algorithm to identify

the channel:

1. The received vector xK(n) is used to form a correlation matrix.

2. The correlation matrix is used to obtain an estimate of the noise subspace.

3. The noise subspace is used to form an optimisation equation that identifies the channel.

The algorithm given above describes the main concepts that are used in the Channel

Subspace algorithm. The assumptions and equations that are developed to identify the

channel are discussed in Section 3.4.
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3.4 Identifying the Channel without Pulse-shaping
Filter Information

The Channel Subspace algorithm was originally proposed without using any a priori

knowledge of the pulse-shaping filter. This section describes the assumptions, concepts and

equations that 'were derived to develop the Channel Subspace channel estimation algorithm.

3.4.1 Assumptions

Assuming the following:

• The data sequence is zero mean and E{sK+L (n)sK+L (nl} = 1 .

• The noise is white with zero mean and E{eK(n)eK(nl} = 0"
21.

• The noise and data sequences are statistically uncorrelated.

Then the correlation matrix of the observation vector for Kbit durations can be written as:

(3.7)

For the left nullspace of J{K to exist, the number of its rows must be greater than the .

number of columns:

Kr>L+K

L
K>-­

r-l

(3.8)

Thus, for the channel to be identifiable in the Channel Subspace algorithm, the stacking

factor K needs to be chosen to satisfy (3.8) so that the left nullspace of J{K exists.

3.4.2 Eigenvectors of the Correlation Matrix

It has been shown that the eigenvectors of the correlation matrix that have eigenvalues equal

to the noise variance correspond to the vectors that span the left nullspace of the Toeplitz
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channel matrix J{K [GiannakisO l]. It is the vectors that span the nullspace of J{K that are

used to form the channel identification equation [Moulines95].

The eigenvector decomposition (EVD) is a matrix factorisation tool that is used to compute

all the eigenvectors and eigenvalues of a matrix. The EVD is performed on the correlation

matrix to find all the eigenvectors that have eigenvalues equal to the noise variance. These

eigenvectors correspond to the vectors that span the nullspace of J{K . Performing the EVD

operation on the correlation matrix:

(3.9)

where Vs (Kr x K + L) is commonly called the signal subspace and it contains the

eigenvectors that correspond to the K + L largest eigenvalues of :Ls .

V n ( Kr x Kr - K + L) is commonly called the noise subspace and it contains

eigenvectors that correspond to the Kr - K + L smallest eigenvalues of :Ln •

The number of vectors that span the left nullspace of J{K gives the number of columns of

Vn . The vectors that span the estimated noise subspace are used by the Channel Subspace

algorithm to identify the channel.

3.4.3 The Channel Subspace Algorithm

This section describes the mathematical formulation of the Channel Subspace algorithm. It is

shown how the vectors that span the estimated noise subspace are used to identify the

unknown channel.

Let W(k) (Kr + l) be the kth vector of the nullspace of the J{KJ{: matrix. By multiplying

both sides of (3.7) by W(k) the following expressions can be formulated for a noiseless

system:

Rxx(O)W(k) = J{KJf:W(k)

J{KJ{:W(k) = 0

28
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. -

If the columns of J{K are linearly independent, (3.11) can be written as:

J{J!W(k) =0

=> [w(k)r J{K =0

(3.12)

(3.13)

In [Moulines95] an important structural relation is developed that is crucial in the

fonnulation of the final channel identifying equation. Partitioning the noise subspace vector

W(k) into K subvectors each of length T, the following commutative identity holds:

h(l) h(2) h(L)

[ [ W~k) r [W~k) r ... [w~) r] h(l) h(2) h(L)

, [wC;)t . h(1) h(2)
:JlK

W(k) W(k) W(k)
I 2 K

=[ hH (1) hH (2) ... hH (L)]
W(k) W(k) W(k)

1 2 K

\ I

v

iiH
W(k) W(k)

1 2
v

W(k)

h(L)

(3.14)

But the dimension of the left nullspace of J{K or the nOIse subspace is equal to

Kr x Kr - (K + L). Let the number of eigenvectors that span the noise subspace be z. Thus

(3.14) can be written as:

(3.15)

[w(Z)r

The identity in Equation (3.15) is important to understanding the concept of the subspace

channel identification algorithm. The expression on the right hand side of (3.15) states that

the unknown channel ii lies in the left nullspace of the [W(l) W(2) ... W(Z)] matrix.

To state this in another way: if the eigenvectors that span the noise subspace are calculated
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and the matrix [W(l) W(2) . .. W(z) ] formulated, the vector corresponding to the left

nullspace of this matrix would yield a perfect estimate of the unlmown channel h in a

noiseless system. However, in a practical system, noise is present and the channel is

estimated by finding the eigenvector corresponding to the smallest normalised eigenvalue of

Q, under the constraint that 11 ii 11= 1:

(3.16)

v

Q

A A

Since any scalar multiple of ii would also lie in the noise subspace, any pii (/3 is a scalar)

is also a solution. For this reason the unlmown channel is only identifiable to within a scalar

factor.

3.4.4 Summary of the Channel Subspace Algorithm

The Channel Subspace algorithm for a SIMO system that is described by the system model:

x(n) =Hs(n) + e(n) (3.4)

with q receive antennas and an oversampling factor ofp, is summarised as follows:

1. Assume that the following information about the system is known:

• The exact channel length (L)
• The number ofreceive antennas (q)
• The oversampling factor (P)

Concatenate K successive observations of the received vector each of a bit period to

form xK(n):

(3.5)

x(n)

x(n -1)

x(n-K +1)
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Choose the stacking factor
L

K >-- to ensure that the left nullspace of the
r-l

Toeplitz channel matrix ']{K exists.

2. Estimate the correlation matrix:

x~(N)

where N is the total bit duration ofthe received signal that is used to perform the task

of channel estimation. The eigenvectors that span the noise subspace are obtained

by:

• Performing the EVD on R xx .

• Choosing the last z =Kr - (L + K) eigenvectors, w(J) W(2) '" w(z) ,

that correspond to the smallest z eigenvalues of the correlation

matrix.

3. Partition the kID vector of the noise into K sub-vectors and form the Toeplitz matrix

W(k). Estimate the channel by fmding the left nullspace of the matrix

[w(J) W(2) . .• W(z) J. Equivalently, the channel is estimated by finding the

eigenvector corresponding to the smallest eigenvalue of Q:

h=arg min iiB t W(k) [ W(k)r ii
I~!=I '-,k=_I ..----

Q

A numerical example of the Channel Subspace algorithm is given in Appendix A.

3.5 Identifying the Channel using Pulse-shaping
Information

(3.16)

The first algorithm that incorporated knowledge of the pulse-shaping filter in the Channel

Subspace algorithm was presented in [Ding95]. The key to this breakthrough was noting that

the unknown channel can be written in terms of the known pulse-shaping filter and the
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unlmown spatial signature. The limitation of [Ding95] was that the algorithm assumed that

the delays of a multipath channel are close together in time. When the multipath delays are

separated far apart in time, the performance of the algorithm degrades drastically. This is

because the condition number of the matrix that contains information of the pulse-shaping

filter increases [Perros-MeilhacOl], causing a loss in the number of reliable decimal digits of

the estimated channel compared to when pulse-shaping information is not used.

The Parametric Subspace algorithm [Perros-MeilhacOl] solved the increasing condition

number limitation in [Ding95] by presenting a delay estimation algorithm. Information of the

delay estimate~ are used to form a matrix that contains knowledge of the pulse-shaping filter

in such a way, that the matrix's condition number does not increase as the separation of the

multipath delay increases.

3.5.1 The Unknown Channel and the Known Pulse­
shaping fIlter

That Parametric Subspace algorithm showed that by writing the oversampled channel as a

function of the pulse-shaping filter, the Channel Subspace algorithm could easily be

extended to include pulse-shaping information. This section describes how the vector form

ofthe channel can be written in terms of the known pulse-shaping filter.

In [Perros-MeilhacOI] the z-transform of the oversampled channel is given by:

0:>

hT1p(z) = L h(kT/p)Z-k
k=-<1:J

0:>

Defining H(i)(z) = L h(i)(k)z-k ,(3.18) can be written as:
k=-o:>

P

hT1p(z) =LH(i)(zP)z-;
;=1

From (3.2), hT1p(z) can be expressed in terms of the known pulse-shaping filter as:

d

hT1p(z) =:~:>kg('Z'"k'Z)
k=1
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'"
where G("z)~ I g(nT/ p_,)z-n is the z-transform of the pulse-shaping filter. The

n=-oo

pulse-shaping filter that is commonly used in communication systems is the raised cosine

pulse. The time domain representation of the raised cosine pulse is given by:

cos (f31rt/p) sin (1rt /p)
get)

1- (2f3t / P)2 (1rt / p)
(3.21)

where f3 is the roll-off factor. Equation (3.20) can be written in matrix form as follows:

•
(3.22)

path of a linear uniform receive array and a = [a; . . . a~ JT ,G Ld(T) = (q(T) @Iq) , Q9 is
qdxl '

the Kronecker product, T =['I . . . 'd] is the vector of the d multipath delays and q(T) is

a p(L+1) x d matrix that contains information of the pulse-shaping filter:

g(O-'I) g(O - 'd)

q(T) =
g(: -'I) g(: -'d)

(3.23)

g((L+1)T-: -'I) g((L+l)T-: -Td )

Equation (3.22) shows that the vector form of the unknown channel ii can be written in

terms of the known pulse-shaping filter GL,d (T) and the unknown spatial attenuation a.

This equation is used to develop the Parametric Subspace algorithm and the new channel

estimation algorithm proposed in this chapter.
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3.5.2 The Parametric Subspace Channel Estimation
Algorithm

This section describes how the Parametric Subspace algorithm was developed by

incorporating knowledge of the pulse-shaping filter in the Channel Subspace algorithm. The

Parametric Subspace algorithm estimates the unknown part of the channel a that is given in

(3.22). Recalling the channel identification equation of the Channel Subspace method:

v

Q

(3.16)

Assuming that the exact channel order L and the number of multipaths d are known in the

Parametric Subspace algorithm, the unknown part of the channel a is identifiable under the

following conditions [Perros-MeilhacO1]:

• The number of receive antennas are greater than or equal to the number of

multipaths (q ~ d) .

• The angles of arrival for each path are distinct.

The Parametric Subspace method uses (3.22) and (3.16) to estimate the unknown part of the

channel as follows

(3.24)

Under the constraint that Tj :;: t j for i:;: j . The estimate of a, for a fixed T, is the nonnalised

eigenvector corresponding to the minimum eigenvector of the matrix

aHGL,A-r)HQGL,d(-r)a. The delay estimation algorithm for estimating all the multipath

delays -r in (3.24) is discussed in Chapter 4.

34



Chapter 3: A New Subspace-based Channel Estimation Algorithm for DS/CDMA Systems

3.6 A New Subspace-based Channel Estimation
Algorithm for Multi-user DS/CDMA Systems

There are several subspace-based channel estimation algorithms that have been developed

for DS/CDMA systems, as discussed in Section 2.6. All these algorithms use the second

order statistics of the received signal and the user's known spreading code to estimate the

channel of the user. However, the limitation of all these subspace methods for DS/CDMA

systems is that the received signal is sampled at the chip rate. This makes it impossible to

exploit knowledge of the pulse-shaping filter in subspace-based. channel estimation

algorithms for DS/CDMA systems, which has been shown in single-user subspace-based

channel estimation algorithms to decrease the overall estimation variance [Perros­

MeilhacO 1], [Ding95].

In this section a new subspace-based channel estimation algorithm for DS/CDMA is derived.

A system model for a DS/CDMA system is presented in Section 3.6.1 where the received

signal is oversampled with respect to the chip rate. By oversampling the received signal,

knowledge of the pulse-shaping filter is exploited in the proposed channel estimation

algorithm. The proposed algorithm is an extension of the Parametric Subspace algorithm for

single-user systems [Perros-MeilhacOl] to multi-user DS/CDMA systems. The development

of the new algorithm with respect to algorithms that are proposed in the literature is shown in

Figure 3-2.

-Reduced complexity I~----'I

- Decreased estimation variance I Tong9l

-Used pulse-shaping informationIMoulines95t-1----------+1'1 Perros-MeilhacOI I
-Extended from a single-user system

to a multi-user DS/CDMA system.

ITorlak97 I

-Extended from a single-user system

to a multi-user DS/CDMA system.

I Proposed I
algorithm

Figure 3-2 Development of the proposed channel estimation algorithm for DS/CDMA systems
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3.6.1 Multi-user DS/CDMA System Model and
Assumptions

In order to simplify notation, the contribution of noise to the received signal will initially be

ignored. Noisy data is considered at the end of this section. The DS/CDMA system model

that is presented in this section is similar to the multi-user data model in [Ghauri99]. Both

models assume a system with a single transmit antenna, multiple receive antennas and

oversampling of the received signal at each receive antenna. The only difference between the

two system models is way the received signal is expressed. This difference is clearly

explained after the complete system model is mathematically formulated.

The DS/CDMA system that is considered (Figure 3-3) assumes that P users transmit linearly

modulated BPSK signals over a linear multipath channel with additive white Gaussian noise.

Tjp

~~---7

parallel y
to serial 1----4

Figure 3-3 System model of the DS/CDMA system
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The receiver is assumed to have q antennas in order to exploit the spatial diversity of the

received signaL The noiseless continuous baseband signal that is received at the Zth antenna is

given by:

p

y'(t) =LLs/n)v~(t-n~)
j=! n

(3.25)

where s/n) is the transmitted symbols from user j, ~ is the symbol period, v~(t) is the

overall channel impulse response for the /1 user's signal at the zth antenna which is

given by the convolution of the spreading code c/n) and actual channel h~(t)

(assumed to be FIR) representing the multipath fading environment.

The overall channel impulse response for the/11 user can be expressed as:

(3.26)

where 1;; is the chip duration, L is the channel length and 'fj is the delay ofthelh user's

signal that arrives at the receiver. The symbol and chip duration are related by the processing

gain Le : ~ =Le~' It is assumed that the delays of the j~ user's signal are an integer

multiple of the chip period. Thus 'fj = kj1;; where k j is an integer.

In order to write (3.26) in vector form, it is assumed that the channel length is smaller than

the processing gain (L < Le) . By sampling the overall channel impulse response of the jth

user at a rate of 1;, / P and concatenating the contribution from q receive antennas, the

discrete vector of length 2pqLe can be expressed as:

(3.27)

where 01 is a lxkj vector of zeros and On is a lx(Lc -L)pq-k
j

+l vector of zeros.

Equation (3.26) can be expressed in matrix form as:

/,

V j ={c j ®Ipq)h j
'-----v---'

c·
j,I",}
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where h'.(n) =[h1.(n) h~(n) ... h~(n)]H isthecontributionfromallqreceive
.I .1.1 .I qxl

[
H H H]H

antennas, h~= [hj(O)] [hj(T"lp)] ... [hj((L+l)T"-T,,lp)]
pq(L+l)

is the channel from q receive antennas that is sampled at the rate of 1;, I p for a length of

(L + 1) 1;" Cj is a 2Le xL Toeplitz matrix whose fIrst kj rows are zero:

For the mathematical development of the system model, it is useful to break up the v j

vector into two vectors 'each of length pqLe vectors as v j =[v j (1)H V j (2)H JH. With this

defInition, the received vector due to the JoIll user for a stacking factor of K bit durations can

be written as:

y/n) v j (2) V/I) s(n)
y/n-l) v j (2) v/I) s(n-l)

(3.30)=

Yj(n-K +1) v j (2) V/I) s(n-K)
v ''"-v----'

y j,K(n) 'V; Si

pqKLc xl pqKLc x (K +1) (K +1) x 1
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where y'.(n) =[/(n) ... yq (n)]H is the received signal from all q receive antennas for
J qxl .

the same time instant n,

from all q receive antennas that is sampled at ~ Ip for a duration of Lc~ .

Partitioning c· I (2pqL x pqL) (3.28) into two matrices each of length pqLc x pqL as
J, P'I c

C· = [c. Cl)H c· (2)H JH , the received vector due to the l' user's signal can be
.1,1[HI J,l[HI J,lpq

expressed in terms of the spreading code, the channel matrix and the data vector of the lh
user:

=

cj ,1pq(2) cj ,1pq(1)

cj,l[HI (2) c j ,1pq (1)

h.
J

c·J
pqKLc x pqL(K + 1)

y .(n-K +1)
J

v

Yj,K(n)

pqKLc xl

'=-- --v__C_J_·,l_[HI_(_2)__CJ_·,l_P'I_(~I), .\:... vv- h.~i,~
J{j sin)

pqL(K +1) x (K +1) (K + 1) xl

(3.31)

Including the contribution of additive white Gaussian noise E(n) (pqKLc xl) and the signal

from P users to the received signal, the observation vector is given by:

YK (n) = ['Vi .... o/p] [SI (~)1+E(n)

Vp sp(n)

pqKLcxP(K + 1)

(3.32)

The difference between the system model presented in this section and the one in [Ghauri99]

is the way the received signal is expressed. In [Ghauri99] the oversampled signal from each

antenna is concatenated to form the received vector. In the system model that is presented in

this section, the signal from all the receive antennas at the same time instant are concatenated

to form an 'antenna vector'. The 'antenna vector' is then obtained for different time

instances which are successively concatenated to form the receive vector.
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3.6.2 Derivation of the New Channel Estimation
Algorithm for DS/CDMA Systems

Subspace-based channel estimation algorithms [Moulines95], [Torlak97], [Perros­

MeilhacOl] use the concepts described in Section 3.3 to estimate the channel. The new

subspace algorithm for DS/CDMA systems that is derived in this section is no different. The

proposed algorithm uses the orthogonal property of the signal and noise subspace to estimate

the channel. It also uses the commutative property [Moulines95] between a Toeplitz matrix

and a vector to simplify the formula that identifies the unknown channel.

The derivation of the channel estimation algorithm that is presented in this section is similar

to the algorithm in [Torlak97]. Both algorithms assume a DS/CDMA system with multiple

receive antennas. The difference between the two system models is that the new algorithm

considers a system where the received signal at each receive antenna is oversampled with

respect to the chip rate. By oversampling the received signal, it gives the new algorithm the

advantage of exploiting information of the pulse-shaping filter in the channel estimation

algorithm, which has been shown in single-user systems to decrease the estimation variance

[Ding95], [Perros-MeilhacOl], [Sche1l94], [Cederva1l97].

3.6.2.1 Assumptions

In the same way that assumptions were made about the s.ingle-user system model in Section

3.4.1, so that the Channel Subspace algorithm could be derived, similar assumptions are

made about the DS/CDMA system model for the derivation of the proposed channel

estimation algorithm. The following are assumed:

•

•

•

The data sequence of the/' user has zero mean and E {s/ n)8j (nl} =1 .

The noise is white with zero mean andE{e(n)e(n)T} =0-21.

The noise and data sequences are statistically uncorrelated.

Under the above assumptions, the correlation matrix of the received vector over K bit

durations can be written as:

(3.33)
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The correlation matrix in (3.33) is used in the next section to derive the proposed channel

estimation algorithm.

It was shown in (3.24) that the Parametric Subspace algorithm for single-user systems

[Perros-MeilhacO1] uses the vectors that span the estimated noise subspace to estimate the

channel. For the noise subspace to exist, certain constraints are made on the stacking factor

(3.8). The proposed channel estimation algorithm also requires the noise subspace to be

estimated. The vectors that span the estimated noise subspace are used to identify the

channel. The constraint that was made on the stacking factor for the noise subspace to exist

in the DS/CDMA system model that is presented in Section 3.6.1 is explained below.

In the single-user system model that is described in Section 3.2, the received signal is given

by:

xK(n) =J{KSK+L (n) +eK(n) (3.34)

For the noise subspace to exist, the number of rows of the channel matrix J{K needs to be

greater than the number of columns. The number of vectors that span the noise subspace in a

single-user system is given by the number of rows of J{K (Kr x K + L) subtracted by the

number of columns: Kr - K - L . In the multi-user DS/CDMA system that was described in

Section 3.6.1, the received signal is given by:

(3.35)

Similar to the single-user system, the number of vectors that span the noise subspace in a

DS/CDMA system zm is given by the number of rows of Vp (pqKLc x P(K + 1») subtracted

by the number of its columns.

Zm =pqKLc - P(K + 1) (3.36)

Hence, for the noise subspace to exist, the following constraint on the stacking factor K

needs to be satisfied:

pqKLc > P(K +1)

K> P
pqLc -P

41
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3.6.2.2 Derivation of the Channel Identification
Equation

Assuming that all the conditions in Section 3.6.2.1 are satisfied, the first step in the proposed

channel estimation algorithm is to find an estimate of the signal and noise subspace. This is

obtained by performing the EVD to the estimated correlation matrix Ryy = YK (n)y K (nl :

(3.38)

where Vs (pqKLc x P (K + l)) is the estimated signal subspace. It contains the

eigenvectors that correspond to the P(K + 1) largest eigenvalues of L s •

Vn (pqKLc - (pqKLc - P (K +1))) is the estimated noise subspace. It contains the

eigenvectors that correspond to the pqKLc - P (K + l) smallest eigenvalues of L n •

The proposed channel estimation algorithm that is derived follows the same concepts as the

derivation of the Channel Subspace algorithm described in Section 3.4.3. Let

W(k) (pqKLc x 1) be the kth vector that spans the nullspace ofthe VpV: matrix:

Assuming that the columns of Vp are linearly independent, (3.39) can be written as:

V:W(k) =0

=> [W(k)]H Vp =0

(3.39)

(3.40)

(3.41)

For the DS/CDMA system without noise, multiplying W(k) to both sides of (3.33) gives:

Ryy(O)W(k) = Vp V:W(k)

R yy (O)W(k) = 0

(3.42)

(3.43)

From (3.41) and (3.43) it can be seen that the W(k) is also the vector that spans the left

nullspace of Vp and the nullspace of the correlation matrix, which is also called the noise
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subspace. Hence W(k) is estimated from selecting the kill column vector of the estimated

noise subspace matrix Vn •

Equation (3.41) describes the relationship between the k1h vector from the noise subspace and

the overall channel matrix from all the users. The overall channel matrix Vp does not exhibit

a Toeplitz structure and the commutative identity involving a row vector and a Toeplitz

matrix in [Moulines95] cannot directly be used to help identify the channel in a simplified

way. The key to being able to use the commutative identity is noting that the matrices that

make up the overall channel matrix Vp does exhibit a Toeplitz structure:

(3.44)

Since the row vector W(k) is orthogonal to the columns of the overall channel matrix of all

the users V p , it follows that W(k) would also be orthogonal to the lh user's overall channel

matrix ~:

[ W(k)r'V'j = 0

=:> 'V'!iW(k) =0
J

(3.45)

(3.46)

The advantage of (3.45) compared to (3.41) is that the channel matrix 'V'. does have a
J

Toeplitz structure. Thus, the commutative identity in [Moulines95] can be used to simplify

the channel identification equation for the /1 user. Partitioning W(k) into K subvectors each

of length pqLc the following commutative identity holds:

[w~k)r
[ w~k)r

[w~k)r
[ w~k)r

[w~k)r
[w~k)r

v~ (1)

v~ (2)

v~ (2)

v~ (1)

v H (2)
j (k)w

v~(1) ~
'--------v-----~, w(k)

'V'!i
J

v

[ W(k)r

(3.47)
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Combining (3.47) and (3.46) gives:

[ W(k)rv j =0 (3.48)

For the DS/CDMA system model that is considered in this section, the number of vectors

that span the noise subspace is given by Equation (3.36). Therefore (3.48) becomes:

(3.49)

Performing the Hermitian operation ofboth sides of Equation (3.49):

Substituting (3.28) into (3.50):

h H [c " JH [W(I) .... W(zm) ] =0
} .l,lpt/

,

(3.50)

(3.51)

From (3.51) it can be clearly seen that in a noiseless system the channel of the j'b user lies in

the left nullspace of the Q~..i matrix. For practical DS/CDMA systems additive white

Gaussian noise is present and the channel of the l' user is estimated by finding the

normalised eigenvector corresponding to the smallest eigenvalue of Q~.jQtx,j

hj =arg min
~hj=li

(3.52)

However, the channel that is estimated in (3.52) has a phase ambiguity that is present in all

blind channel estimation algorithms. Equations (3.53) and (3.54) are used to correct the

phase ambiguity of the estimated channel.

(Jj,h = phase(iiJh j )

~ "O-
h "= e'·.1.11 h "

} }
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The channel identification equation in (3.52) does not use information of the pulse-shaping

filter and it becomes the same optimisation equation given in [Torlak97] for an oversampling

factor p of one. The channel estimation algorithm that does not use pulse-shaping

information is easily extended to exploit knowledge of the pulse-shaping filter by using

(3.55) that relates the unknown channel ofthe/' user to the known pulse-shaping filter:

h· =GL(T)a..I , .I
(3.55)

Therefore (3.52) and (3.55) can be combined to develop an algorithm that only estimates the

unknown part of the channel for the /' user by finding the eigenvector corresponding to the

smallest eigenvalue of the matrix [ GL(T)r Q~,jQtx,jGL (T) :

a} =arg min
I~A=I

(3.56)

Equations (3.57) and (3.58) are used to correct the phase ambiguity present in (3.56).

(). =phase(aHa).I.a .I .I

" iOj::a-a· =e . a·
] .I

(3.57)

(3.58)

Assuming that all users have the same number of multipaths and channel order. In typical

urban channels, the number of multipaths d is less than the channel order 1.

d<L (3.59)

Under the above assumption, there is a complexity reduction advantage in estimating the

unknown part of the channel a} (qd xl) compared to the actual channel h} (q(L + 1) xl)

because fewer parameters are estimated. The EVD is considered to be the most

computationally complex operation to perform in subspace algorithms. The complexity of

performing the EVD operation on a matrix is dependant on the size of the matrix. The new

channel estimation algorithm offers a complexity reduction when performing the last EVD

operation when the Torlak/Xu algorithm that does not used pulse-shaping information. This

can be seen by comparing the dimensions of the final matrix of the Torlak/Xu algorithm that
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is used to estimate the actual channel h. to the final matrix of the proposed algorithm that is
J

used to estimate the spatial attenuation a j of the jth user:

• Estimating h j(3.52): [Cj.,~r[tw'·)[w''']" }jJ~ ~q(L+l)xq(L+l)

• Estimating aj (3.56): [GLd(T)r Q~.jQtx.jGLd(T)=qdxqd

Under the assumption made in (3.59), it is clearly seen that the EVD operation that is

performed on the matrix that is used to estimate the actual channel h j has a greater size than

the matrix used to fmd the unlmown part of the channel aj . Thus, when the unlmown part of

the channel is estimated, it results in the reduction of the computational complexity of the

final EVD operation compared to when the actual channel is estimated.

3.6.3 Simulation Results

In this section simulation results are presented to compare the performance of the TorlaklXu

algorithm [Torlak97] that does not use knowledge of the pulse-shaping filter to the proposed

channel estimation algorithm in Section 3.6 that does incorporate pulse-shaping information.

The BPSK signal from each user is modulated by a raised-cosine waveform with a roll-off

factor f3 =0.25, truncated to a length of Lg =10 symbol periods. One of the assumptions

made in the Parametric Subspace algorithm for the unlmown part of the channel to be

identifiable (Section 3.5.2), is that the number of receive antennas q needs to be greater than

or equal to the number of multipaths d. For the simulations q =d . The receive antennas are

considered to be omnidirectional, spaced apart by half a wavelength and standard far-field

propagation conditions are assumed. The oversampling factor is p =2 .

In all the results, the spreading codes were generated randomly in the same way as

[Torlak97] and [AktasOO]. The elements of the spreading sequence are selected from

{±l/.JL:} with equal probability. The length of the stacking factor is K =3. The number of

multipaths and the multipath delays for each user is assumed to be known. Delay estimation

algorithms for estimating the multipath delays are presented in Chapter 4.
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In the channel that is considered, it is assumed that the multipath delays change so slowly

that they remain constant during the observation period. The channel is also assumed to have

quasi-static fading: the attenuation of each path is fixed for the observation period. A linear

multipath intensity profile channel similar to the channel used in [Perros-MeilhacOl] IS

considered. The attenuation ak,j of the kth path for theII user is given by

(3.60)

where mk · is the complex fading variable that is generated usmg a normal random
,./

distribution with a mean of zero and a standard deviation of one,

P (l'k .) is the power of the kth path for the /h user that varies linearly with ther ,./

multipath delay in such a way that Pr (0) =1 and Pr (97;,) =0.1.

The delays for thejth user are chosen from a uniform distribution. Hence the delay'of the kth

path l'k,j - U[O, Tc 12, 1;;, ... ,97;,], where the multipath spread of the channel is set

to 9T . In the literature [Torlak97], [AktasOO], [Bensley96] the multipath delays are assumedc .

to be an integer multiple of the chip period. In this simulation, the multipath delays are

assumed to be an integer multiple of the oversampling rate 7;, 1P with the constraint of the

minimum delay separation between two paths being greater than a chip period.

A channel with three paths is chosen. Therefore the number of receive antennas that is used

is also set to three. The angles of arrival are set to 0'= (0, 20°, 40°). The number of

Monte Carlo trials used in all the simulations is 100. Lastly, the asynchronous delay denoted

as k j for the jth user is known. An asynchronous delay estimation algorithm is presented in

[Torlak97]. fu the simulation results presented the performance of new channel estimation is

compared to the algorithm that does not use pulse-shaping information [Torlak97] by

varying one of the following system parameters: SNR, length of observation window,

number of users and power difference between five strong users and one weak user, and

keeping the others constant. Table 2 gives the values of the system parameters when they are

kept constant.
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Table 2 Values ofthe simulation parameters used

Simulation Parameter Value

Number of users 6

Length of observation window 200 bits

SNR 15dB

Power difference between the strongest and OdB

weakest user

The performance criteria that is used is the mean square error (MSE) which is the cumulative

MSE for all the channel coefficients for all the users [AktasOO]

p

MSE= Illbj -hjll
j:)

where hj = G{d ('T)a j for the new channel estimation algorithm.

(3.61)

The MSE as a function of the SNR is shown in Figure 3-4. The performance of the new

channel estimation algorithm is clearly shown to be better than the algorithm that does not

use pulse-shaping information [Torlak97].
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Figure 3-4 MSE as a function of SNR
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It can be seen that performance gain achieved when knowledge of the pulse-shaping filter is

used is approximately IldB.
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Figure 3-5 MSE as a function of the observation length

In Figure 3-5 the effect of the observation length as a function of the MSE is investigated. As

the observation length increases, the channel estimates for both the algorithms become more

accurate. The improved accuracy of the channel estimates is because a more accurate

estimate of the correlation matrix is obtained as the observation length is increased. Since the

noise subspace is obtained from the estimated correlation matrix (3.38), a more accurate

estimate of the correlation matrix leads to a more accurate estimate of the vectors that span

the noise subspace. Since the channel identification equations are a function of the vectors

that span the noise subspace (3.56) and (3.52), a more accurate estimate of the noise

subspace gives rise to a more accurate estimate of the channel.

The effect of the number of users as a function ofMSE is shown in Figure 3-6. The MSE for

both algorithms is expected to increase as the number of users in the system increase since

the MSE expression is the cumulative MSE for all the channel coefficients for all the users.

It is interesting to note that the new algorithm is able to accomodate many more users than
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the algorithm that does not use pulse-shaping information for both algorithms to offer the

same performance.
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In Figure 3-7 the channel estimation algorithms' ability to combat the near-far effect is

investigated. A system with five users with equal strong power and one user with weak

power is considered. The near-far ratio is defined as the ratio of the power of one of the

strong users to the power of the weak user [AktasOO]. The SNR of the weak user is set to

15dB and the power of the strong users is varied. It is seen that the MSE of the weak user

remains fairly constant as the near-far ratio is increased. Therefore it can be concluded that

the channel estimates are resistant to the near-far effect. It should also be noted that the new

algorithm that uses pulse-shaping information offers better performance.

3.6.4 Analysis of the Proposed Subspace Algorithm

Simulation results in the previous section show that the new subspace algorithm that uses

pulse-shaping information has a better performance than the TorlaklXu algorithm that does

not use knowledge of the pulse-shaping filter. In, this section, the performance of the

proposed subspace algorithm is investigated analytically. A mathematical representation of

the means square error of estimation is obtained using the results in [AktasOO].

An analytical expression for the MSE of the TorlaklXu algorithm was presented in

[Torlak97]. However, the MSE was for the estimation of the signature vector, which is the

convolution of the channel with the spreading code of the desired user. Later, an analytical

expression for the channel's MSE for the TorlaklXu algorithm was derived [AktasOO]. It was

shown that the MSE for the channel estimation ofthe/h user can be expressed as:

(3.62)

where tr (A) denotes the trace of the matrix A, (y represents the pseud6:.inverse operation

and Us is the energy of the transmitted signal.

Recalling that the unknown channel can be written in terms of the known pulse-shaping filter

and the unknown part of the channel:

(3.63)
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the analytical expression for the MSE of the known part of the channel can be expressed as :

t

(3.64)

Equation (3.64) shows that the MSE is inversely proportional to the signal-to-noise ratio and

the length of the observation window. A detailed derivation of Equation (3.64), starting from

the DS/CDMA system model in Section 3.6.1 can be found in Appendix B. Since the pulse­

shaping filter is known exactly, the MSE of the estimated channel can be expressed as:

(3.65)

Figure 3-8 compares the channel's MSE of the proposed subspace algorithm that is derived

via simulation in Section 3.6.2.2 and analysis in Equation (3.65) using simulation values

given in Section 3.6.3.
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It is observed that the analytic expression that is derived provides a good approximation of

the actual MSE for high SNR. This result is expected because the analytical expression is

based on theory on the perturbed subspace approximation [Li93], which is only valid under

the assumption of high SNR.

3.7 Summary

This chapter presented a new subspace-based channel estimation algorithm for DS/CDMA

systems that ~ed information of the pulse-shaping filter. A DS/CDMA system model with

multiple receive antennas, where each antenna is oversampled with respect to the chip rate,

was given. The new algorithm was based on the Parametric Subspace algorithm for single­

user systems that also incorporated lmowledge of the pulse-shaping filter. The DS/CDMA

system model that was given was written in terms of the overall channel for each user that is

in a Toeplitz matrix form so that the useful commutative property involvi~g a Toeplitz

matrix and a vector [Moulines95] could be used to simplify the channel identification

equation.

The performance of the new algorithm was compared to a similar subspace-based channel

estimation algorithm [Torlak97] that did not use pulse-shaping information, in a quasi-static

linear multipath intensity profile channel. Simulation results showed that the new channel

estimation algorithm offered better performance under all conditions (SNR, observation

length, number of users and the near-far situation). It was observed that the new algorithm

could operate at a SNR of IldB lower than the TorlaklXu algorithm for both algorithms to

offer the same performance. Lastly, a mathematical expression of the mean square error of

estimation for the new algorithm was derived. It was shown that the analytic expression

provided a good approximation ofthe actual MSE for high SNR.
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Chapter 4

A Modified Multipath Delay Estimation
Algorithm

4.1 Introduction

In typical wireless communication systems, the digital data that is transmitted by a.user gets

reflected, scattered and diffracted by objects before it reaches the receiver. Therefore, the

receiver obtains multiple copies of the same signal that are each scaled in amplitude and

delayed in time. These multipath components distort the transmitted signal. The use of a

Rake receiver has been proposed in next generation communication systems to combat the

adverse effects caused by inter-symbol interference. The Rake receiver requires knowledge

of the multipath delays to constructively combine the signal energy from multipath

components. In communication systems, a delay estimation algorithm is performed at the

receiver to estimate the multipath delays introduced by the channel.

In Chapter 3.6, a new channel estimation algorithm is proposed for DS/CDMA systems that

estimates the unknown spatial attenuation that is introduced by the channel. However, an

assumption is made in the proposed algorithm that all the multipath delays are known at the

receiver. In this chapter a new delay estimation algorithm is presented to estimate the

multipath delays for the new subspace algorithm in Chapter 3.6.

There have been many delay estimation algorithms that have been proposed in the literature,

as discussed in Section 2.6. The only subspace algorithm, as far as the author is aware of,

that incorporates knowledge of the pulse-shaping filter in the delay estimation procedure is

the Parametric Subspace method [perros-MeilhacOl], which is referred to as the Parametric

Subspace Delay Estimation (PSDE) algorithm. In [Perros-MeilhacOl], the delay estimation

variance of the PSDE algorithm is shown to be efficient enough to approach the CRB, which
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provides a theoretical bound of the rrummum estimation vanance for all estimation

procedures based on second order moments [Abed-Meraim97]. For this reason, the PSDE

algorithm is chosen as the method to estimate the multipath delays for each user in the

DS/CDMA system proposed in Section 3.6.1.

The PSDE algorithm and its application to multi-user DS/CDMA systems are explained in

Section 4.2. It is shown by simulations that the performance of the PSDE algorithm degrades

when it operates in a DS/CDMA environment where the power of the multipath signals

decrease with increasing delay. Thus, the Modified Parametric Subspace Delay Estimation

algorithm is proposed in Section 4.3 to improve the performance of the PSDE algorithm in

an environment where the power of the multipath signals varies. Lastly, simulation results

are presented in Section 4.4 to compare the performance of the new channel estimation

algorithm in Section 3.6 which uses the MPSDE algorithm to estimate the multipath delays,

to the new channel estimation algorithm that assumes all the multipath delays are known at

the receiver.

4.2 The PSDE Algorithm for Single-user Systems

In Section 3.5.2, the Parametric Subspace algorithm for single-user systems is discussed. The

Parametric Subspace algorithm uses pulse-shaping information to estimate the unknown

spatial attenuation of the channel. The equation that identifies the unknown part of the

channel is given by:

(3.23)

It should be noted that the unknown part of the channel is only identified by Equation (3.23)

if the multipath delays 't are known. This section describes the PSDE algorithm that is

proposed in [perros-MeilhacOI] to estimate the multipath delays.

4.2.1 Concept of the PSDE Algorithm

Pseudocode for the PSDE algorithm is given in [Perros-MeilhacOl]. However, no detailed

explanation is given about how and why the algorithm works. This section explains the
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concepts of the PSDE algorithm, which gives understanding into the operation of the PSDE

algorithm.

Stating Equation (3.23) in words, the unknown part of the channel is identified by the

normalised eigenvector corresponding to the smallest eigenvalue of the matrix

GL,d(T)H QGL,AT). In a noise-free environment, the smallest eigenvalue of the matrix

G L,d (T)H QGLod (T) would only correspond to the noise power of zero if the multipath delay

vector T is correctly estimated. If the incorrect estimate of the multipath delays i e is used,

the smallest eigenvalue of the matrix GL,d (ie)H QG L,d (ie) would correspond to a

numerical value which is higher than the noise power of zero.

The PSDE algorithm uses the following algorithm to estimate the delay in a single path

environment where noise is present:

• Each possible value of the delay 'p E [0, 1;; / p, "', Tm ] is used to obtain the

smallest eigenvalue of the matrix GLod (,p)H QGL,d (,p)' which is denoted by

J(,p) .

• The estimate of the delay f is obtained by minimising J (,p) .

The next section explains how the PSDE algorithm estimates delays In a multipath

environment.

4.2.2 The PSDE Algorithm

The following equation is defined so that the PSDE algorithm could be easily formulated:

J (T) =Amin ( G Lod (T)H QGL,d (T))

where Amin (A) denotes the minimum eigenvalue ofthe matrix A.

(4.1)

The flow chart of the PSDE algorithm for a two-path channel is shown in Figure 4-1.

Assuming that the number of paths d is known, the PSDE algorithm uses the following

iterative process to estimate the multipath delays assuming that, *, ...:t=, .
1 2 • d'
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• Assume that d =1 and obtain 71,1' which is the first estimate of T] , by minimising

No Yes

Figure 4-1 Flow chart ofthe PSDE algorithm for a two-path channel

• Assume that d =2 and obtain 72,1' which is the first estimate of T2 , by minimising

J (71,1' T2 ), which is only a function of T2 with 71,1 fixed. Next obtain 7
1
,2' which is

the second estimate of TI , by minimising J (TI , 72,1)' which is only a function of T
I

with f l ,2 fixed.
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If the first and second estimate of "\ are not equal, then f1,2 is made equal to f1,J

and fi,l is replaced by the value that minimises J(iI,1'"2)' This method is repeated

• The process above is repeated until the number ofpaths d is reached.

4.3 The PSDE Algorithm Applied to DS/CDMA
Systems

The PSDE algorithm was originally developed for a single-user system. In this section, the

PSDE algorithm is extended to operate in DS/CDMA systems by modifying the

minimisation equation J(T). In a single-user system, the minimisation equation J(T) is a

function of the matrix GL,d(T)H QGL,d(T) that is also used to identify the unlmown part of

the channel in Equation 3.23. In the DS/CDMA system that is mathematically formulated in

Section 3.6.1, the unlmown part of the channel for the jth user is identified by the matrix

[GL (T)r Q~QmGf,d (T) . Thus, for DS/CDMA systems the minimisation equation J j (T)

of the PSDE algorithm is modified to:

(4.2)

For a single-user system of two paths, it is shown in [perros-MeilhacOl] that the

performance of the PSDE algorithm degrades when the power of the second path decreases

with respect to the first path. Simulation results provided in this section show that the same

performance degradation occurs when the PSDE algorithm is applied to DS/CDMA systems.

The simulation parameters that are used to obtain results are shown in Table 3. The system

consists of six users, each having a two path quasi-static fading channel. The channel is

assumed to change so slowly that the multipath delays are considered to remain the same

within the observation period.

58



Chapter 4: A Modified Multipath Delay Estimation Algorithm

Table 3 Simulation parameters

Simulation Parameter Value

Chip and data modulation BPSK

Code sequence Random code of length 32 where each element is

chosen from {±1/.JL:} with equal probability.

Chip pulse shape Raised cosine pulse with a roll-off factor of 0.25

and truncated to 10 symbol periods.

Channel Two-path quasi-static fading

Oversampling factor 2

Number of receive antennas 2

Number ofusers 6

Observation window 200 symbols

Stacking factor 3

SNRratio 15dB

Power difference between the strongest OdB

and weakest user

Number ofMonte Carlo trials 100

The multipath delays of the first user is fixed to T 1 = [1.5Tc , 3Tc ], whereas the delays for the

other five users are chosen from a uniform distribution. For example, the delay of the kth path

for the jth user is r k ,J - U [0, Tc /2, 1;;, "', 9Tc ]. The performance criteria used is the

probability of acquisition for the first user:

p _ number ofcorrectly estimated delays for user 1
Qc,1 - total number of delays for user 1 (4.3)

The multipath delays for the first user are estimated using the two-path PSDE algorithm

described in Section 4.2.2, where the minimisation function is modified to Equation (4.2). In

Figure 4-2, the power gradient between the two paths is varied. The power gradient is

defined as 1010glo(J32 / PI)' where P2 and PI are the power of the first and second path

respectively. It can be clearly seen that as the power gradient increases, the probability of

acquisition for both paths decrease.
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Figure 4-2 Probability of acquisition for the first and second paths as the power gradient

increases

In order to understand why the performance ofthe PSDE algorithm deteriorates as the power

gradient deceases, the graphical representation of the cost function JI (T) is investigated for

power gradients of -3dB and -lldB. The power gradient is first set to -3dB. Following the

flow chart in Figure 4-1, the function JI ("I) is plotted for varying delays " in Figure 4-3. It

is clearly seen that when JI ("I) is minimised, the first estimate of the first path's delay ill is

identified as 1.51;, .

Figure 4-4 shows that the delay for the second path i l ,2 is correctly estimated as 31;, by

minimising the function JI (il,I'"2)' Note that although the function JI (il,I' "2) has a global

minimum at 1.51;" this is not chosen as the estimate for the second path because it

corresponds to the estimate of the first path's delay.
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Finally, the first path's delay is correctly re-estimated as the first estimate value of 1ST" in

Figure 4-5, thus the PSDE algorithm stops. Figure 4-6 illustrates the cost function J1(r1)

when the power gradient is set to -lldB. It can be seen that the first estimate of the first

path's delay is correctly identified as 1ST" .

The limitation of the PSDE algorithm is seen in Figure 4-7, where the function J(fl.!' £2) is

used to obtain the first estimate of the second path's delay. Ignoring the minimum at 1.51;,

because it corresponds to the first path's delay estimate, the delay value £z = 2~ gives the

minimum value of J(fl.l' £2)' Thus, the second path's delay is incorrectly estimated by the

PSDE algorithm. It can be seen from Figure 4-7 that the correct value for the second path's

delay Z'z =3~ can be found by choosing the second global minimum of J(f1.!'£2) if the

smallest eigenvalue corresponding to the first delay estimate is ignored.

The function J(f1.l'£2) that is used to estimate the second path's delay gives a false global

minimum that is positioned at a time of ~ /2 away from the first path's estimated delay

when the power gradient is decreased to -lldB. From Figure 4-2, it can be seen that the

probability of acquisition for the second path is non-zero. Thus, the likelihood of the PSDE

algorithm locking onto the false global minimum has to depend on the phase difference

between the two paths because it is the only parameter that changes in the simulation used to

obtain Figure 4-2.

Using the same simulation parameters in Table 3, Figure 4-8 shows the probability of

acquisition for the first user as the phase difference between the two paths in varied from

zero to three hundred and sixty degrees. It can clearly be seen that the performance of the

PSDE algorithm depends on the phase difference betweens the two paths and it performs the

worst when the phase difference between the two paths is 180:

The PSDE algorithm can be improved by decreasing the delay estimate resolution between

two paths. This is done in the proposed Modified Parametric Subspace Delay Estimation

algorithm that is discussed in the next section. The MPSDE algorithm makes the constraint

that the minimum separation between any two paths must be greater than a chip period in

order for the delays to be resolved by the MPSDE algorithm. Using this constraint, the PSDE

algorithm overcomes the false global minimum problem that occurs in the ~SDE algorithm.
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4.4 The MPSDE Algorithm for DS/CDMA Systems

The MPSDE algorithm solves the limitation of the PSDE algorithm by making a trade off

between the delay estimate resolution and the performance of the delay estimation algorithm.

Yes
Ir1,l - rl,21 =T/2 >----+1 rZ,l =second global min J( TU ' 'Z"z)

>---+1 rl,2 =second global min J( 'Z"I ,;.1)

Yes

Figure 4-9 Flow chart of the MPSDE algorithm for a two-path channel
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The MPSDE algorithm places greater emphasis on improving the performance of the PSDE

algorithm when the power gradient between any two delays decreases to values less than

-lOdB. However, the delay estimation resolution between any two paths of the MPSDE

algorithm is one chip period which is larger than the PSDE algorithm, which is half of a chip

period.

The flow chart of the MPSDE algorithm for a two path channel that is shown in Figure 4-9,

is very similar to the flow chart of the PSDE algorithm in Figure 4-1. In both algorithms, the

same optimisation function that is given in Equation (4.2) is evaluated. The difference with

the MPSDE algorithm is that if the delay estimate corresponding to the global minimum of

the optimisation function is 1;, /2 away from the other path's estimated delay, then the

second global minimum of the optimisation function is chosen as the delay estimate. For

example, if the MPSDE algorithm is estimating the second path's delay and it finds the

global minimum of J(fl.!' '(2) to be 1;, /2 away from the first path's estimated delay, then

the second global minimum of J(TI .!, rJ is chosen to be the second path's estimated delay.
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Figure 4-10 Probability of acquisition for the first and second paths of the PSDE and MPSDE

algorithms as the power gradient decreases
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The performance of the MPSDE and the PSDE algorithm is compared in Figure 4-10, using

the simulation parameters in Table 3. The results show that the performance of the MPSDE

is better than the PSDE algorithm when the power gradient between the two paths is lower

than -8dB.

4.5 Results

In this section, simulation results are presented that compare the performance of the

following bl~d subspace-based channel estimation algorithms:

• The TorlaklXu algorithm [Torlak97] that does not use knowledge of the pulse­

shaping filter.

• The proposed algorithm in Section 3.6 that incorporates knowledge of the pulse­

shaping filter and assumes perfect delay estimation.

• The proposed algorithm in Section 3.6 that incorporates knowledge of the pulse­

shaping filter and performs delay estimation using the MPSDE algorithm.

The simulation setup and parameter values that are used to obtain results are exactly the

same as discussed in Section 3.6.3. The only difference is that in this section, results for a

two path and a three path channel are presented. One of the performance criteria used in the

results is the average probability of acquisition for all the users Pac, which is defmed as:

where P is the number ofusers.

p

Pac =L~C,i
i=l

(4.4)

Figure 4-11 shows the performance of the three subspace algorithms for a two path channel,

when the SNR is varied. It can be seen that the subspace algorithm that uses the MPSDE

algorithm to estimate the two delays has exactly the same performance as the algorithm that

assumes perfect delay for a SNR greater than 15dB. Therefore, it can be concluded that the

MSPDE algorithm correctly estimates the two delays for all the users at a SNR greater than

15dB.
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Figure 4-12 compares the performance of the three algorithms for a three path channel as the

SNR varies. The graph shows that the performance of the proposed subspace algorithm that

uses the MPSDE algorithm to estimate the three multipath delays is better than the

Torlak/Xu algorithm, which does not use pulse-shaping information. Similar trends can be

seen in Figures 4-14,4-16 and 4-18. The average probability of acquisition is computed as

one of the following simulation parameters is varied:

• Length of the observation window

• Number of users

• Power difference between the strongest and weakest user

while keeping the rest of the simulation parameters constant to the values given in Table 3.

These are shown in Figures 4-13, 4-15, 4-17 and 4-19. It is shown that as the SNR or the

length of the observation window increases, the MPSDE algorithm tends to correctly

estimate all three delays because the average probability of acquisition approaches one. The

MPSDE algorithm's ability to combat the near-far effect is shown in Figures 4-18 and 4-19.

Since the probability of acquisition for the weakest user remains fairly constant as the power

difference between the strongest and weakest user is increased, it can be concluded that the

MPSDE algorithm is near-far resistant.
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4.6 Summary

This chapter presented a new delay estimation algorithm called the Modified Parametric

Subspace Delay Estimation (MPSDE) algorithm. The MPSDE algorithm was based on the

PSDE algorithm [Perros-MeilhacOl] that uses pulse-shaping information to estimate the

multipath delays introduced by the channel. It was shown by simulations that the

performance of the PSDE algorithm degrades when it operates in a DS/CDMA environment

where the power of the multipath signals decrease with increasing delay. This was seen as a

limitation of the PSDE algorithm. The MPSDE algorithm was proposed to improve the

performance of the PSDE algorithm in an environment where the powers of the multipath

signals vary.

It was also shown by simulation that the performance of the proposed blind channel

estimation algorithm in Chapter 3 that uses the MPSDE algorithm to estimate the multipath

delays is better than the TorlaklXu algorithm, which does not use pulse-shaping information.

It was noted that for a high SNR that is greater than 30dB and a large observation window

that is greater than 300 bits, the average probability of acquisition of the MPSDE algorithm

approaches one. Lastly, the MPSE algorithm was seen to be near-far resistant, which is a

traditional property of subspace algorithms.
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Chapter 5

A Comparison of Subspace Delay
Estimation Algorithms for DS/CDMA
Syste~s

5.1 Introduction

In the early practical implementation of DS/CDMA systems, such as 1S-95, the

computationally simple matched filter solved the task of delay estimation. However, the

simple matched filter was found to be non-resistant to multiple access interference

[Simon85] and the optimal maximum likelihood solution [Verdu86] is too complex for

practical purposes. Subspace-based methods are a desirable way of solving the delay

estimation problem because they offer near-far resistant algorithms that exhibit adequate

performance with reasonable computational complexity [Bensley96], [Strom96],

[Luukkanen97]. There are many subspace-based delay and channel estimation algorithms

that have been proposed for DS/CDMA systems some ofwhich are discussed in Section 2.3.

Channel estimation algorithms typically model the multipath communication channel as a

FIR filter and the objective of the algorithm is to estimate the tap coeffici~nts of the filter

representing the channel. For this reason channel estimation algorithms are called non­

parametric methods. Delay estimation algorithms on the other hand are concerned with

estimating the multipath delays introduced by the channel and thus they are referred to as

parametric methods.

An example of a subspace-based channel estimation algorithm is the Torlak/Xu (TX)

algorithm [Torlak97] that was proposed as an extension of the Channel Subspace algorithm

[Moulines95] from a single-user system to multi-user DS/CDMA systems. The first
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subspace-based channel estimation algorithm was proposed by Bensley/Aazhang

[Bensley96] and soon afterwards other subspace-based algorithms were developed

[Strom96], [Luukkanen97]. The algorithm by Bensley/Aazhang is not a typical channel

estimation algorithm that estimates the tap coefficients of the FIR filter representing the

channel. However, the Bensley/Aazhang algorithm estimates the delay and attenuation of

each path. Thus the algorithm can be called a parametric method since it is a delay

estimation algorithm.

In communication systems, delay information is needed to achieve synchronisation and

attenuation information is used in a maximal combining Rake receiver that is used to

estimate the transmitted bits of the desired user. This chapter focuses on the task of

synchronisation or delay estimation, therefore only the delay estimation portion of the

Bensley/Aazhang algorithm is discussed. For this reason, the Bensley/Aazhang algorithm is

referred to as a delay estimation algorithm.

Since the Torlak/Xu algorithm is a channel estimation algorithm and the Bensley/Aazhang

algorithm is a delay estimation algorithm, the performances of the two algorithms have not

been compared in the literature. The Torlak/Xu and the Bensley/Aazhang subspace

algorithms are of special interest because they both exploit the orthogonal property of the

signal and the noise subspace. However, the difference between these two algorithms is that

the TorlakIXu algorithm uses the Toeplitz commutative property developed in [Moulines95]

to identify the channel whereas the Bensley/Aazhang algorithm does not. In this chapter the

TorlakIXu algorithm is converted from a non-parametric method to the proposed Parametric

TX method. A quasi-static fading channel with a linear multipath intensity profile (MIP) is

chosen to compare the performance of the Bensley/Aazhang delay estimation algorithm to

the proposed TX algorithm. By comparing these two parametric subspace methods, the

algorithm with the best performance is found.

5.2 DS/CDMA System Models

The delay estimation algorithm that was proposed by Bensley/Aazhang and the channel

estimation algorithm developed by Torlak/Xu are discussed in this chapter. Both algorithms

were developed for DS/CDMA systems. However, in [Bensley96] where the delay

estimation algorithm is presented, the mathematical formulation of the DS/CDMA model is
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different to [Torlak97] where the TX channel estimation algorithm is discussed. The

different mathematical descriptions of the system model are used to derive the channel

estimation and delay estimation algorithms. For this reason the two system models in

[Torlak97] and [Bensley96] are described in this section so that Bensley/Aazhang delay

estimation algorithm and the TorlaklXu channel estimation algorithm are able to be

formulated in. Section 5.4.

The model of the DS/CDMA system that is considered in this section is shown in Figure 5-1.

In this system P users transmit data simultaneously over the same bandwidth. Each user

employs BPSK modulation for data transmission, where a transmitted bit of duration 1;,

consists of Le chips with duration ~ =~ / Le .

Cl cj cp

j= {l, ,P}
p={l, ,L"J}

/\..-:------, t;,J

Figure 5-1 DS/CDMA system model
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The following are defined for the jlla user:

C j =[C j ( 0) . .. C j ((Le - 1)Te)] is the discrete spreading code sequence,

s, is the sequence of the transmitted BPSK symbols,
./

h, is the channel that represents the multipath fading environment,
./

T, is the asynchronous delay that arrives at the receiver.
./

It is assumed that the asynchronous delay T j is an integer multiple of the chip period, thus

T, = d.T where d, is an integer. In [Proakis95], it is shown that h./, (t) can be written as:
./ ./ C ./

where

Ld•./

h/t)= Laq,ju(t-Tq.)
q=1

Ld ' is the total number ofpaths for thejlh user,
,J

Tq,j is the delay of the qlh path for thelh user,

. h 'f h th th fi th ·thaq,j IS t e attenuatIon 0 t e q pa or e; user,

u(t) is a rectangular pulse of amplitude one and duration T;, .

(5.1) .

5.2.1 The Torlak/Xu Mathematical System Model

In order to simplify notation, the contribu~on of noise to the received signal is initially

ignored. Noisy data is considered at the end of this section. The continuous baseband signal

that is received due to the;4:h user is given by:

<Xl L-I

x/t)= L s/n) 'Ic/mTcJh/t-Tj -my;' -nJ;,)
n=-o:> m=O

(5.2)

Sampling the continuous signal at the chip rate, we obtain the discrete-time observation of

the received signal due to userj:
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00

xj(k) = L s/n)g/k-nLe -d)
n=-<:o

where the global channel response is given by:

L-l

g/k) =Lh/ITJc/(k-I)Tc>
/=0

The constant L is defined as the channel length.

(5.3)

(5.4)

Adding the contribution due to noise and the received signals from all P users, the discrete

time observation at the receiver is given by:

p

x(k) = LXj(k)+e(k)
j=l

where e(k) is a white Gaussian, random sequence with zero mean and variance er/.

(5.5)

To write (5.3) in vector form, we assume that the channel length is smaller than the

spreading- gain (L < Le). In [AktasOO], the global response vector of length 2Leis given by:

(5.6)

where 01 is a 1x dj vector of zeros and On is a 1x Le - dj - L +1 vector of zeros. Equation

(5.4) can be written in matrix form as:

(5.7)

hj«L-l)J;,)r and Cjis a 2Le xL Toeplitz matrix whose

first column is given by:

(5.8)

where Om is a 1x Le - dj vector of zeros. In [Torlak97], the gj vector is broken up into two

vectors each oflength Le as gj =[gj(1)H gj(2)Hr. The observation vector due to userj

can then be written as:
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g/2) g/l)

g/2) g/l)

s/n)

sj(n + 1)
(5.9)

g/2) g/l) s/n+K)
v ' '--v----'

q.,KL x(K+l) sJ.(n),(K+l)xl
.I C

The observation vector xln) of dimension KLe x 1corresponds to an observation window for

K bit durations (bits from n to n + K - 1), sampled at the chip rate. The factor K is called the

smoothing factor in [Todak97]. When the smoothing factor is chosen to be greater than one,

it aids the channel estimation algorithm to mitigate the effects of intersymbol interference

[AktasOO].

Breaking up the Cjmatrix into two Le X L matrices as C j =[C/l)H Cj (2)Hr, the global

channel matrix ofuserj can be related to the spreading code matrix; qj =C/{j

Cj (2) C/l)

C/2) C/l)

. h .
.I

(5.10)

The matrix formulation of the observation vector is given by:

y

G

where e is a white Gaussian noise vector.

+e(n) (5.11)

5.2.2 The Bensley/Aazhang Mathematical System
Model

The signal that is transmitted by theJ.fll user i~ given by:
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b/t) =~2Pj c/t)s/t)cos(cvJ +0) (5.12)

where Ij is the transmitted power, cve is the carrier frequency and OJ is the carrier phase

relative to the local oscillator at the receiver.

The spreading waveform and the transmitted symbols of the/' user are given by:

(Lo-I)T"

ck(t) = L uJ;(t-n)c;Cn)
n=O

(Lo-I)Th

Sj(t) = L UTh (t -n)sj(n)
n=O

(5.13)

(5.14)

where uT" and u1j, are rectangular pulses of amplitude one with duration 1;, and Tb

respectively.

The signal that is transmitted by each user is reflected off objects in the channel before it

reaches the receiver. As a result, the receiver obtains different versions of the same signal

that are each delayed and attenuated by arbitrary amounts. In this section a channel with

three multipaths is considered. The signal that is received at the receiver from the jth user is

given by:

<Xl

x/t) = fh/t - T)b/T)dT

=l[Iap,jb"(t-Tp,)b/T)}T
-«l p=1

Ld •j

=~2Ij Lap,jCj(t-Tp,j)S/t-Tp,)COS(cvct +0)
p=1

(5.15)

where hj (t) is the impulse response of the channel and Tp,j is the delay of the pth path for

the ~ user. When there are P active, users transmitting at the same time, the total received

signal at the receiver is given by: , '

p

x(t) = :L>j(t) + net)
j=1

(5.16)

where net) is assumed to be white Gaussian noise with zero mean and a two-sided power

spectral density of No /2 .
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Sampling the continuous received signal at the chip rate, the discrete-time signal x(k) is

obtained. The discrete-time signal is buffered into blocks of -length Le to obtain the

observation vector x(k) , which is given by:

x(k) =[x(k) x(k+l) ... x(N -l+k)] (5.17)

The observation vector has a covariance function that has the desirable property of being

invariant to a shift by Le in both its arguments. Thus, it can be used in many traditional

signal-processing techniques that are suited towards wide sense stationary processes.

Although the length of observation vector corresponds to one symbol period, it was obtained

without regard to the actual symbol intervals of the users. Thus, the observation vector

would contain more than one symbol for each user. If the multipath delay spread of the

channel is less than half the symbol period, the observation vector would contain the linear

combination of 2P signal components plus noise.

The subspace-based delay estimation algorithm [Bensley96] is concerned with using the

observation vector x(k) to estimate the channel impulse response h/t). Let u~ be a

function of the unknown channel impulse response and the !mown spreading code for the /11
user, where y denotes the l' symbol that is contained in the observation vector. Let z; be a

function of the power and the wth transmitted symbol of the jth user. Since the observation

vector will contain two symbols, let r denote the end of the previous symbol and m the

beginning of the current symbol. The observation vector can be written in terms of the signal

vector u~, which is estimated by the delay estimation algorithm and the un!mown variable

z; that is not estimated by the algorithm, in the following way:

p

x(k) = "'[Z(.W-l)U~ + z~w)u'? ] + n
L..JJ J JJ
j,.l

=Az+n

(5.18)

where zj is a constant times ~2Ijs/t) and n=[n(O) ... n«Le -1)Te )] is the additive

noise vector whose elements are chosen from a Gaussian distribution that has a mean of zero

and a variance of (J"2 =No /2~ . Matrices A and z are given by the following expressions:

(5.19)
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(w-l)
zp (w) JTzp (5.20)

The signal vectors uj and uj depend only on the l user's spreading waveforms for the rlh

and mill symbols respectively and the channel impulse response. Two symbols are contained

in the observation vector because the symbol period that is used to make up the observation

vector is selected without regard to the symbol period of the users.

The r th symbol's spreading code that is contained in the observation vector corresponds to

the end of the previous symbol and the mtlJ symbol's spreading code corresponds to the

beginning of the current symbol. This is illustrated in Figure 5-2.

symbol period used to obtain x

...
rt1J symbol from}h user

v

mill symbol from}1l1 user

Figure 5-2 Diagram showing that the observation vector is made up of two signal vectors from

thelh user, where 'r' and 'm' represent the end of the previous symbol and the beginning of the

current symbol respectively.

The symbol v represents the integer multiple of chip periods that are needed to achieve

synchronisation between the start oftheJ-th user's symbol period and the symbol period used

to obtain the observation vector.

The subspace-based delay estimation algorithm that is presented in [Bensley96] states that

"it is possible to gain insight from a simple channel model where the vectors u r
. and u'? are

J J

the right side of theII user's code vector followed by zeros, and zeros followed by the left

side of the jth user's code vector respectively". From Figure 5-2 it can be seen that the

observation vector x(k) contains [rcfc-1 rcfc-2
••• rcfc-vJ from the rill symbol and

[mcJ mc~ ... mcfc-1J from the mth symbol.
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For a simple channel model where each user's signal travels through a single path with no

attenuation and a propagation delay v~, the signal vectors are defined in [Bensley96] as

follows:

UT. = cr(v)
.I .I

[
L-v

= c·'.I
C~,-l 0 ... OJT

.I

(5.21)

uj =cj(v)

= [ 0 0 cJ ... cj,-I-Vr
The propagation delay "I,j can be expressed as:

"I' =vT,.I c

where v E { 0, 1, . . . Tm } and Tm is the multipath spread of the channel.

(5.22)

In a multipath transmission channel, the delays are likely to be different. As a result, the

signal vectors will be a weighted sum of the combinations corresponding to each path:

Ld .}

uj = Lap,jcj(vp,j)
p=1

Ld .}

uj = Lap,jcj(vp,)
p=l

(5.23)

From the observation vector, the signal vectors are not known. However, the set of vectors

. that span the subspace of all the possible signal vectors is known. The signal vectors u~ and
J

uj lie in the colwnn space of the matrices Vi and Vj respectively.

0 C~c-I C~c-2 Cl
J .I J

0 C~c-I c~
J J

Vi= 0 (5.24)

C~c-I
J

0 0 0 0
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CO 0 0
}

1 ° 0c· cj.I

Vm = Cl. (5.25)
} .I

0
L -I CLc - 2 °C .c cj.I .I

5.3 The Subspace Approach

Subspace-based algorithms use second order statistics to estimate the parameter of interest.

Subspace-based delay and channel estimation algorithms are no different. They use the

second order statistics of the received signal, called the correlation matrix. The correlation

matrix is used to obtain an estimate of the signal and the noise subspaces. Finally, either the

signal or noise subspace is used to estimate the channel or the multipath delays of the desired

user.

In the TorlakIXu channel estimation algorithm and the Bensley/Aazhang delay estimation

algorithm different approaches are used to determine the dimension of the signal and noise

subspaces that are derived from the mathematical description of the system model. Thus,

both approaches are discussed in this section and it is shown later in the section that the

dimension of the noise subspace in [Torlak97]~and [Bensley96] are the same for a stacking

factor of one.

5.3.1 Estimating the Signal and Noise Snbspaces­
Bensley/Aazhang

The observation vector x(k) that is given in (5.17) consists of2P signal vectors. The column

space of the signal matrix A given in (5.18) is the subspace for all signal vectors. Thus, in the

absence of noise, the observation vector is a linear combination of the columns of the signal

matrix A. In practise the observation vectors are corrupted with noise. Thus, the observation

space may be broken up into the signal subspace and the noise subspace. The

Bensley/Aazhang delay estimation algorithm estimates the signal subspace and the noise

subspace and then determines the impulse response of the channel by minimising the

84 ,I



Chapter 5: A Comparison of Subspace Delay Estimation Algorithms for DS/CDMA Systems

projection of the user's signal vectors into the estimated noise subspace. The algorithm has

the desirable property that the impulse response of the channel for each user can be obtained

independently of the others. This breaks down the channel estimation task into I-D problems

for each user, which drastically decreases complexity.

The column space of matrix A spans the true signal subspace. A matrix whose column space

projects onto the signal subspace is the correlation matrix R xx ' When the observation

vectors are not corrupted by noise, the correlation matrix R xx projects perfectly onto the true

signal subspace. In the presence of noise, the correlation matrix R xx projects onto the signal

and noise subspace:

(5.26)

where Rss = E[b(t)b(t)H ] is the signal correlation matrix and Rnn = E[n(t)n(t)H ] is the

noise correlation matrix.

In this way the observation space can be divided into a signal subspace and a noise.subspace.

When there are P users in the system, the observation vector contains 2P signal components.

Thus, the' signal subspace has dimension 2P. An estimate for the signal subspace is given by

the span of the eigenvectors of the signal covariance matrix R ss ' The estimate for the signal

subspace is given by the eigenvectors corresponding to the 2P largest eigenvalues of the

correlation matrix Rxx ' The correlation matrix is estimated using N observation vectors:

1 N
Rxx =-IX(k)x(kf

N k=\

(5.27)

The estimate for the signal and noise subspace can be obtained by performing the

eigenvector decomposition on the estimated correlation matrix R
xx

:

(5.28)

where Us and Un correspond to the estimated signal and noise subspaces respectively, Ls

and Ln denote the eigenvalues corresponding to the eigenvectors of Us and Un respectively.
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The estimated signal subspace Us is obtained by choosing the eigenvectors corresponding to

the largest 2P eigenva1ues and the remaining Le - 2P eigenvectors span the estimated noise

subspace Un'

5.3.2 Estimating the Signal and Noise Subspaces­
TorlakIXu

In the TorlakIXu algorithm, the orthogona1 property of the signal and the noise subspaces is

used to fonn an optimisation fonnu1a to estimate the channel. The received vector is used to

fonn a data matrix [Torlak97] by concatenating the observation vectors in the following

way:

X=[x(n) x(n+1) ... x(n+N-K-1)] (5.29)

where N is the total number of received bits used to perfonn the task of channel estimation.

The estimates of the signal and noise subspaces are obtained by applying the EVD to the

estimated correlation matrix Rn = XXH
:

(5.30)

The columns of Us and U0 correspond to the estimated signal subspace and noise subspace

respectively, Is and L correspond to the eigenva1ues of Us and Uo' The dimension of

U0 is KLe x KLc - P(K + 1) and it is given by the left nu11space of the matrix G (5.11).

Since the dimension of the estimated correlation matrix is KLc x KLc ' the remaining

eigenvectors are used to fonn the estimate for the signal subspace Us which has dimensions

KLe xP(K +1).

Lastly, the number of vectors that span the noise subspace for the TorlaklXu and the

Bens1ey/Aazhang system models are compared below:

Torlak/Xu system model: number of columns of U0 =KL
e

- P(K +1)

Bens1ey/Aazhang system model: number of columns of U = L - 2P
o e

86

(5.31)

(5.32)

1j



Chapter 5: A Comparison of Subspace Delay Estimation Algorithms for DS/CDMA Systems

It is clearly seen that for a stacking factor K of one, the number of vectors that span the

noise subspace for both system models are the same.

5.4 Channel and Delay Estimation Algorithms

In this section the TorlakIXu channel estimation algorithm and the Bensley/Aazhang delay

estimation algorithm are discussed. The proposed parametric TorlakIXu algorithm is also

formulated so that the performance of the new algorithm can be compared to the

BensleylAazhang algorithm.

5.4.1 The Bensley/Aazhang Delay Estimation
Algorithm

The BensleylAazhang delay estimation algorithm determines the multipath delays for the/'

user by projecting the user's signal vectors (5.23) into the estimated noise subspace:

e~ =((u~t Unr
e; =((u;t Unr (5.33)

When there is no noise present in the system, the signal vectors u~ and u; lie within the

signal subspace, thus e~ and e; are zero. The channel parameter h j is estimated using the

property that the signal vectors lie in the nullspace of the noise subspace, which is the signal

subspace.

However, the noise subspace Un that is obtained from the eigenvector decomposition of the

estimated correlation matrix defined in (5.28) is only an estimate of the true noise subspace.

Thus, BensleylAazhang algorithm aims to determine the channel impulse response by

minimising the Euclidean distance of the projection of the signal vectors into the estimated

noise subspace:

(5.34)
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Substituting the matrices given in (5.24) and (5.25), whose colunms span the subspace of the

signal vectors, into (5.34) gives:

h j =arg min
~hj=lll

h5[(v;f UnU~V; +(V;f UnU~V; ]h j

, v '

M

(5.35)

The minimisation equation given in (5.35) contains the channel's impulse response h j that

is unknown. By introducing the constraint Ilh j 11 = 1, the solution to (5.35) is found by

choosing the normalised eigenvector corresponding to the smallest eigenvalue of M. ID this

way hj is chosen so that that the projection of the user's signal vectors into the noise

subspace is minimised.

The Bensley/Aazhang algorithm uses hj to determine the /' user's delays for each path by

performing a least-squares fit of a single path to each pair of adjacent coefficients. The

solution to the least-squares problem is given in [Bensley96]:

a/v)=h/v) (5.36)

where v E {0, 1, . .. ,Tm }. The estimated delay for the strongest path is obtained by the

index of the strongest value of a j :

v= max la/v)1

Hence the delay for the strongest path is given by:

f 1 . =vT,J C

(5.37)

(5.38)

ID order to estimate the second strongest path, the largest value of hj is set to zero and

Equations (5.37) and (5.38) are repeated to find the next strongest path. This is done until an

estimate for the given number of paths has been determined.
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5.4.2 The TorlaklXu Channel Estimation Algorithm

The TorlaklXu algorithm uses the following properties to estimate the channel for the II

user:

• .The orthogonal property of the noise subspace and the global channel

matrix 9j'

• The commutative property [Moulines95] between a Toeplitz matrix and a

vector.

In [Torlak97], it is noted that the columns of 9j are orthogonal to any vector in the noise

subspace:

Uo ..lqj => U:qj =0

:. Uf9j =0

where I denotes the f' column of the matrix U0 •

j =1,

1=1,

,P (5.39)

,KLe - P(K +1i (5,40)

Since 9j is a Toeplitz matrix, the commutative identity developed in [Moulines95] can be

used to simply the optimisation formula that identifies the unlmown channel h j . Therefore,

the left hand side of Equation (5,40) can be written as:

(5,41)

where

(5,42)

ui1) is Le X 1, k =1, ... ,K

Using (5,41) and (5.7), Equation (5,40) can be written as:
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g~V, =0

hflcflV, =0
} }

(5.43)

It can be seen from Equation (5.43) that the channel is identified by the left nullspace of the

matrix c~V,. Since there is a total of KLc - P(K + 1) vectors that span the noise subspace,

the minimisation equation used to identify the channel (Torlak97] is given by:

ii j = arg mio

[lhi~=l

(5.44)

M
A -He· = phase(h. h.)} } .I

h. = eiliii.
J J

(5.45)

(5.46)

The unlmown channel of the /' user is identified by the eigenvector corresponding to the

smallest eigenvalue of the matrix M. However, the estimated channel in Equation (5.44) has

a phase ambiguity that is present in all blind channel estimation algorithms. Equations (5.45)

and (5.46) is used to correct the phase ambiguity of the estimated channel.

The task of the non-parametric TX algorithm is to estimate the tap coefficients of the FIR

filter representing the unlmown multipath channel. In the next section it is shown how the

non-parametric TX channel estimation algorithm is converted to the proposed Parametric TX

algorithm that is concerned with the estimating the multipath delays of the desired user.

5.4.3 The Proposed Parametric Torlak/Xu
Algorithm.

The Parametric TX method estimates the delay of each path that is introduced by the

channel. The multipath delays for the lh user T . (q = 1, ... Ld ·) are estimated by theq,} , .}

proposed Parametric TX method by using the estimated channel h. obtained from the non­
}

parametric TX method.

The delay of the qth path for thelh user is estimated using the following equations:
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Vg.} = arg max jh/v)1
ve{O.r" .. ··.Tm}

i =v .g.} q.}

where Tm is the multipath spread of the channel.

j E {1,. .. ,P}

q E{I, ... ,Ld.}}

(5.47)

(5.48)

The delay of the path with the strongest energy is obtained using Equations (5.47) and

setting q to one.

To find the next strongest path, the maximum value of estimated channel h/il ,) IS

subtracted from h} and Equation (5.47) is evaluated, with q set to 2. This process is repeated

until a delay estimate for each path has been obtained.

5.5 Simulation Results

Simulation results are presented in this section that compare the performance of the proposed

Parametric TX algorithm to the Bensley/Aazhang delay estimation algorithm in a quasi-static

fading channel. In all the results, each user has a Gold code with a spreading code length of

31. A linear MIP channel is chosen such that the power of the multipaths decrease linearly

with the delay in such a way that jp(T = 0)1 = 1 andlp(T = lST)1 = 0.1. The fading variable r is

generated using a nonnal random distribution with a mean of zero and standard deviation of

one. The attenuation of the qthpath is given by the expression

(5.49)

The channel is assumed to change so slowly that the delays and the attenuations are fixed

during the observation period. The Bensley/Aazhang delay estimation algorithm was

formulated using a smoothing factor K of one. For this reason, the smoothing factor in the

simulations is set to a value of one. In [Bensley96], the multipath spread of the channel is

assumed to be less than half of a bit duration. Therefore, in the simulations the multipath

spread Tm of the channel is set to 15Tc. The channel of three paths is chosen, where the

delays ofthel' user is chosen from a uniform distribution with t' . E U[O T ... 1ST]
q,j 'c' 'c

and q E { 1, 2, 3}.
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The number of Monte Carlo trials used in all the simulations is 500. In both the parametric

subspace algorithms the asynchronous delay 0 for the /h user is known. A delay estimation

algorithm for 0 is presented in [AktasOO]. In the simulation results shown in this section, the

performance of the proposed parametric Torlak/Xu algorithm is compared to the

Bensley/Aazhang algorithm by varying one of the system parameters: SNR, length of the

observation window, number of users and the power difference between five strong users

and one weak user, while keeping the other parameters constant. Table 4 gives the values of

the system parameters that are kept constant in the simulations when it is not the parameter

being varied.

Table 4 Values of simulation parameters used

Simulation Parameter Value

SNR lOdB

Length of observation window 200 bits

Power difference between the strongest and weakest user OdB

Number of users 6

The performance criteria used is the probability of acquisition, Pac, which is defined as the

average of all the users' probability of acquisition:

p . = number of correctly identified delays for user j

ac.} number of delays for user j

1 P
~c =-L~c,j

P j=!

where the number of users P equals to six.

(5.50)

(5.51)

The probability of acquisition as a function of SNR is shown in Figure 5-3. The performance

of the proposed Parametric TX method is clearly shown to be better than the

Bensley/Aazhang delay estimation algorithm. It is interesting to note that despite fading, the

probability of acquisition for both algorithms approach unity when thermal noise is reduced.
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Figure 5-3 Probability of acquisition as a function of SNR

In Figure 5-4, the effect of the observation length is investigated. It is shown that the

probability of acquisition of both methods increase as the length of the observation window

increases. Thi·s result can be expected because as the length of the observation window is

increased, the estimate of the correlation matrix Rxx becomes more accurate. A more

accurate estimate of the correlation matrix leads to a more accurate estimate of the noise

subspace. Since the optimisation equations that identify the channel in (5.44) and (5.35) are a

function of the vectors that span the estimated noise subspace, a more accurate

representation of the noise subspace will result in a more accurate delay estimation

algorithm.

In Figure 5-5, the influence of the number of users on the performance of both subspace

algorithms is studied. As the number of users increase, the performance of the algorithms

decreases. This can be explained by inspecting the dimension of the estimated noise

subspace in Equations (5.31) and (5.32) as the number of users increase. It can be seen that

as the number of users increase, the number of vectors that span the estimated noise

subspace decreases. An inaccurate estimate of the noise subspace leads to a degraded delay

estimation algorithm.
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Figure 5-4 Probability of acquisition as a function of the observation window length
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Figure 5-5 Probability of acquisition as a function of the number of users
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In Figure 5-6, the near far-effect is investigated. A system with five strong users with equal

power and one weak user is considered. The user with the weakest power is the first user

whose power is denoted by ~' The strong users' power is denoted by Pj , where

j E {2, ... ,5}. The probability of acquisition for the weak user is plotted against the

power difference between the strong users and the weak user Ij I ~' Since the probability of

acquisition of the weak user remains fairly constant as the power of the strong users are

increased, both subspace algorithms are resistant to the near-far effect. However, the

proposed Parametric TX algorithm offers the better performance.

0.95 r-----,-----...,...-----,-----r-------,

.§ 0.8 .
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Figure 5-6 Probability of acquisition of the weakest user as a function of the power difference

between the strongest and weakest user.

5.6 Summary

In this chapter the subspace-based channel estimation algorithm proposed by TorlaklXu was

converted from a non-parametric method to a parametric method. The performance of the

proposed Parametric TX method was compared to the Bensley/Aazhang algorithm. This was

done to find which subspace algorithm offered the better performance.
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The performance of the two algorithms was compared by varying one of the system's

parameters: SNR, number of users, length of the observation window and the power

difference between the strongest and weakest user, while keeping the others constant. It was

shown that the proposed Parametric TX algorithm offered the better performance under all

conditions.
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Chapter 6

Conclusion

Third-generation cellular communication systems have been proposed to increase the

capabilities of 2G systems by providing high data rate services such as video on demand,

video conferencing, web browsing and e-mail retrieval. These 3G systems are required to

operate in a multipath channel that distorts the transmitted signal. One of the

countermeasures that have been proposed to combat the adverse effects of multipath

propagation in 3G systems is the use of a Rake receiver. However, the Rake receiver requires

knowledge of the channel estimates.

Recently, semi-blind algorithms have been developed to estimate the channel in 3G systems

using a combination of a blind subspace algorithm and a training-based algorithm. It is

shown in the literature that the performance of the semi-blind method is better than the'

performance ofthe blind or the training-based algorithms alone. For this reason, the focus of

this dissertation is to investigate and improve the performance of blind subspace algorithms.

The new algorithms that are presented in this dissertation can be used in one of the WCDMA

radio air interface standards for 3G systems.

6.1 Dissertation Summary

A broad overview of 3G systems and motivation for blind channel estimation algorithms was

provided in Chapter 1.

In Chapter 2, a review ofblind subspace-based channel estimation algorithms for single-user

systems was presented. It was found from the literature that the subspace algorithm that

attracted the most amount of research was the Channel Subspace algorithm. For this reason,
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Chapter 6: Conclusion

Chapter 2 placed emphasis on the Channel Subspace algorithm together with the algorithms

that were proposed to improve the performance of the Channel Subspace algorithm. Some of

the subspace-based channel estimation algorithms that have been developed for DS/CDMA

systems were also discussed.

Chapter 3 described the concepts, assumptions and the mathematical formulation of the

Channel Subspace algorithm for single-user systems. It was shown how the Channel

Subspace algorithm was made to incorporate pulse-shaping information to form the

Parametric Subspace algorithm. Concepts of the Parametric Subspace algorithm were used to

derive a new channel estimation algorithm for DS/CDMA systems that also incorporated

pulse-shaping information. The new algorithm extended the Parametric Subspace algorithm

from single-user systems to multi-user DS/CDMA systems. It was shown by simulations that

the performance of the proposed channel estimation algorithm is better than the TorlaklXu

algorithm that does not use pulse-shaping information. It was also observed that the new

algorithm could operate at a SNR of IldB lower than the TorlaklXu algorithm for both·

algorithms to offer the same performance. Lastly, a mathematical expression of the mean

square error of estimation for the proposed algorithm was derived. It was shown that the

analytic expression provided a good approximation of the actual MSE for high SNR.

In Chapter 4, a new delay estimation algorithm called the Modified Parametric Subspace

Delay Estimation (MPSDE) algorithm was presented. The MPSDE algorithm was based on

the PSDE algorithm that uses pulse-shaping information to estimate the multipath delays

introduced by the channel. It was shown by simulations that the performance of the PSDE

algorithm degrades when it operates in a DS/CDMA environment where the power of the

multipath signals decrease with increasing delay. This was seen as a limitation of the PSDE

algorithm. The MPSDE algorithm was proposed to improve the performance of the PSDE

algorithm in an environment where the power of the multipath signals varies.

It was also shown by simulations that the performance of the proposed blind channel

estimation algorithm in Chapter 3 that uses the MPSDE algorithm to estimate the multipath

delays is better than the TorlaklXu algorithm that does not use pulse-shaping information. It

was noted that for high SNR that is greater than 30dB and a large observation window that is

greater than 300 bits, the average probability of acquisition of the MPSDE algorithm

approaches one. The MPSDE algorithm was also shown to be near-far resistant, which is a

traditional property of subspace algorithms.
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Chapter 6: Conclusion

The TorlaklXu channel estimation algorithm and the Bensley/Aazhang delay estimation

algorithm are discussed in detail in Chapter 5. In order to compare the performance of the

two subspace algorithms, the Torlak/Xu algorithm was converted to a delay estimation

algorithm that is called the Parametric TX algorithm. The performance of the

Bensly/Aazhang and the proposed Parametric TX algorithm was compared by varying one of

the system's parameters: SNR, number of users, length of the observation window and the

power difference between the strongest and weakest user, while keeping the others constant.

It was shown that the proposed Parametric TX offered the better performance under all

conditions.

6.2 Future Directions

There are some future research topics to build on the work presented in this dissertation:

• The new channel estimation algorithm proposed in Chapter 3 has a high

computational complexity due to the final EVD operation used to identify the

channel. One method that could be used to reduce the complexity of the new

algorithm is to use a subspace-tracking algorithm [Attallah02] to adaptively estimate

the time-changing noise subspace. A subspace-tracking algorithm would also be

advantageous for the new channel estimation algorithm to easily track a fast

changing channel.

• The semi-blind algorithm in [LasaulceOO] combines the blind TorlaklXu subspace

algorithm and the training-based Least Squares algorithm to estimate the channel. It

would be interesting to propose a semi-blind algorithm that uses the new channel

estimation algorithm proposed in Chapter 3 to blindly estimate the channel. The

proposed semi-blind method is expected to have a better performance than the

algorithm in [LasaulceOO] because in Chapter 3, the new blind channel estimation

algorithm was shown to have a far superior performance to the TorlaklXu algorithm.
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Appendix A

The Channel Subspace Algorithm: A
Numerical Example

In this section an example of a single-user SIMO system is presented and the channel is

estimated using the Channel Subspace algorithm. This example is intended to enhance the

reader's understanding of the Channel Subspace algorithm by putting numerical numbers

into the equations that were formulated in Section 3.4.4.

1. A system model with the following properties is considered:

• Channel length L = 1

• Number of receive antennas q =1

• Oversampling factor p = 2

As a numerical example, the oversampled observation vector from q antennas for one

symbol duration (3.4) is given by:

(A. 1)

Choosing a stacking factor K of two, the observation vector from two successive bit

durations may be expressed as:

1 0 0

x2 (n) =
0 1 0

0 1 0
S3 (n) +e2 (n) (A.2)

0 0 1
'---v---'

H 3
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Appendix A: The Channel Subspace Algorithm: A Numerical Example

Note that the value of K was chosen to satisfy the constraints in Equation (3.8) for the left

nullspace of H3 to exist. The dimension of the left nullspace of H3 is given by the number

of rows subtracted by the number of columns: 4 - 3 =1. Thus, the number of vectors that

span the noise subspace is one.

2. The noise component in (A.2) is ignored to show that the Channel Subspace algorithm

obtains perfect channel estimated in a noise-free environment. The correlation matrix is

estimated by choosing data symbols s(n) randomly from the set {-I,+I}. Choosing the total

bit duration N =200 of the received signal to perform the task of channel estimation, the

correlation matrix has numerical values:

1.0000 0.0099 0.0099 -0.1881
N 0.0099 1.0000 1.0000 -0.0297

A 1 2: HRxx(O) =- x2 (k)x2 (k)=
0.0099 . 1.0000 1.0000 -0.0297

(A.3)
N kzl

-0.1881 -0.0297 -0.0297 1.0000

To find the eigenvectors that span the noise subspace, the eigenvector decomposition was

performed on the estimated correlation matrix:

=

A A H [ ] [2:1 ]EVD(RxxRxx ) = DI D2 . 2:
2

-0.0413 0.7011 -0.7118

0.7065 0.0145 -0.0267

0.7065 0.0145 -0.0267

0.0119 0.7128 0.7013

0.0000

0.7071

-0.7071

0.0000

4.0076

o
o
o

o
1.1006

o
o

o 0
o 0

0.9006 0

o 0

(AA)

From the EVD of the correlation matrix it can be seen that the vector that spans the one

dimensional noise subspace is given by the eigenvector that corresponds to the smallest

eigenvalue of zero: w(l) =[0 0.701 -0.7071 Or.

3. The vector that spans the noise subspace is partitioned into K = 2 sub-vectors and the

Toeplitz matrix W(1) is formed:
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Appendix A: The Channel Subspace Algorithm: A Numerical Example

0 -0.7071 0

'W(1) = 0.7071 0 O·
(A.5)

0 0 -0.7071

0 0.7071 0

The channel is identified by finding the left nullspace of W(I) . Equivalently, the channel is

found by perfonning the EVD operation on 'W(I) [ 'W(1)r:
EVD(W(I) [ W(l)r) = [VI U'l[I' IJ

-0.7071 0.0000 -0.0000 -0.7071 1 0 0 0
(A.6)

0.0000 1.0000 0.0000 0.0000 0 0.5 0 0
=

-0.0000 0.0000 -1.0000 0.0000 0 0 0.5 0

0.7071 0.0000 -0.000 -0.7071 0 0 0 0

and finding the eigenvector corresponding to the smallest eigenvalue. Thus the unknown

channel estimated as:

ii =[-0.7071 0 0 -0.7071t (A.7)

~

4. Partitioning ii into K =2 sub-vectors, the channel impulse response matrix is identified

as:

~ [-0.7071H=
0.000

.=[~ ~]

0.0000 ]
-0.7071 / fJ

(A.8)

where fJ =-1/0.7071. Thus the Channel Subspace algorithm correctly estimates the channel

up to a scalar multiple, since the estimated channel H(A.8) and the actual channel H (A.1)

are exactly the same for fJ =-1/0.7071.
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AppendixB

Mathematical Analysis of the Mean
Square Error

This section describes the mathematical derivation of the mean square error of the spatial

attenuation estimation for the proposed algorithm in Chapter 3. The analysis that follows is

based on the mathematical formulation of the mean error for the Torlak/Xu algorithm that

can be found in [AktasOO] and [Aktas98]. It was shown in Chapter 3 that the spatial

attenuation ofthe/h user was found from the nullvector of QPS,j' where:

Q .=[Gj ('T)JH [c . JH [W(1) ... W(zm) J
PS,) L,d ),Ipq

(RI)

In the mathematical derivations that follow, the kIll vector that spans the true noise subspace,

which is obtained from the observation without noise, is denoted by W(k) (pqKLc xl) and

the ktl1 vector that spans the estimated noise subspace, which is obtained from noise

observations, is given by W(k) . It is important to note that the spatial attenuation a
i
for the/'

user is the null vector of Qps )' , and the estimate a. is the null vector of Q~ .. The matrices, ) PS,)

and their estimates are related by:

W(k) = W(k) + .1W(k)

QPS,j =Qps,j +.1QPS,j

a. =a· +.1a.
) ) )

The following matrices are defmed to simply the derivations that follow:

v =[0/. ... ~]piP

[ H H JHs= s)(n) ... sp(n)
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Appendix B: Mathematical Analysis of the Mean Square Error

p

Thus Vps= l:>vjs/n)
j=l

The first order approximation of the perturbed subspace, which is given by Equation (11) in

[Li93], is used to obtain the error in the spatial attenuation as:

(B.7)

where t represents the pseudo inverse operation. The matrix AQ:s,j can be expressed in

terms of AW(k) as follows:

By defining Z =VpS, the first order perturbation equation can be applied once more to

evaluate AW(k) :

(B.9)

Defining the following variables:

zt (1)

zt=
Zt(2)

zt(K)

AW(k)(1)

AW(k) =
AW(k) (2)

AW(k)(K)

(B.IO)

(B. 11)

makes it possible to express

(B.l2)
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Appendix B: Mathematical Analysis of the Mean Square Error

where zt(m) is the (pqLc x N -K) submatrix of zt (pqKLc x N -K), and w(k)(m) is the

(pqLc xl) subvector of W(k) (pqKLc xl) .

Substituting (B.12}into (B.8) gives:

zt(K):HW(k']

(B. 13)

After substituting (B.13) into (B.7), the following expression for ila j is obtained:

o

[ W(k)r EZt
H

(1)

ilaj =Q~s.j [w(k)r EZ tH (2)

[ W(k)r EZ tH (1)

[ W(k)r EZ~ (2)

C' I G}L' d('t')a.
}. pq' }

[ W(k)r EZtH (K)

[ W(k)rEZt
H

(K) 0
v

ilQ~..i

Using Equation (3.28), (B. 14) can be simplified to

(B. 14)

0 [ W(k)rEZt
H

(1)

[ W(k)rEZt
H

(1) [ W(k)rEZt
H

(2)

At
[ W(k)r EZt

H
(2) [Vj(J)]ila.=Q . (B.15)} ps.}

v j (2)

[ W(k)rEZt
H

(K)

[ W(k)r EZ~ (K) 0

. At [At At ]
By letting Qps.j = Q ps./1) ... Qps./K + 1) , a compact form of ila j can be obtained by

expanding out the brackets in (B.15):
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~aj =Q~s,/l)[w(k)r EZt
H

(1)v j (2)

+Q~s,/2)[ wCk)r EZt
H

(1)vj(l)+Q~s,j(2)[w(k)r EZ
tH

(2)v/2)

+ ...

+Q~s,/K)[w(k)r EZt
H

(K -l)v/l)+Q~s,.i(K)[w(k)r EZt
H

(K)v/2) (B.16)

+Q~s,/K +1)[w(k)r EZ
tH

(K)v/l)

K+l H

= LQ~s,j(i)[wCk)] EZ
tH

1J/i)
i=1

In the above expression ~a j is expressed in terms of the nOIse E. In order to

mathematically express the mean square error, the expectation operation is performed

E (lI~a j 11

2
) and evaluated. Let em be the m

th unit vector of length d . The mean square error

for the mth element of a.i is found as follows:

Assuming that the noise is white E {EEH
} = 0';1 and the data is uncorrelated with energy

0';, it has been shown in [Aktas98] that the above expectation simplifies to:

(B.18)

Substituting (B.18) into (B.17) and using the fact that [W(k) r w Ck) = I:
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Appendix B: Mathematical Analysis of the Mean Square Error

(B.19)

where IIJ denotes the Frebenious norm. Finally, a simple expression is obtained for the

mean square error of the spatial attenuation estimation

E{IILiajln =IE{IILiaj(m)W}
m=)

2

= (N _er;) er.; 1161S,jlr

er2
(( ~ ~ H )t) (B.20)

=(N -;)er; tr QPS,jQpS,f

~ (N j)a; 'r[[[Gfe/(T)nCj"J"[tw(1) [ W(1)r ]cj""Gf.d J]
where tr ( A) denotes the trace of the matrix A.
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