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Abstract

In South Africa, invasive black wattle treescécia mearnsii D. Wild) are a major threat to
ecosystem functionality causing widespread soe@nomic and environmental degradation.
It is important that environmental managers areviged with rapid, regular and accurate
information on the location of invasive black watttees to coordinate removal efforts. This
study investigated the potential of an automatealgenclassification algorithm to accurately
identify black wattle A. mearnsii De Wild.) trees using imaging spectroscopy. Hypecsal
data acquired by the EO-1 Hyperion sensor was tsedentify black wattle trees in two
study areas near Greytown, KwaZulu-Natal, SouthicAfr Image classifications were
performed by the classification algorithm to idgnblack wattle trees using general and age
specific spectral signatures (three to five yesesen to nine years, eleven to thirteen years).
Results showed that using the general spectralasign an overall accuracy of 86.25%
(user’s accuracy: 72.50%) and 84.50% (user’'s acyuiB0%) was achieved for study area
one and study area two respectively. Using agefspspectral signatures, black wattle trees
between three to five years of age were mapped antloverall accuracy of 62% (user’'s
accuracy: 24%) and 74.50% (user’s accuracy: 49%¥tiady area one and study area two
respectively. The low user’s accuracies for the gggific classifications could be attributed
to the use of relatively low resolution satellitmagery and not the efficacy of the
classification algorithm. It was concluded that dtassification algorithm could be used to

identify black wattle trees using imaging spectoggcwith a high degree of accuracy.
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Chapter One: Introduction

1.1. Background

Invasive alien plant (IAP) species are a growingdh in South Africa, causing widespread
social, economic and environmental degradation {eeeet al., 2007; Villamagna and
Murphy, 2010). Over the past few decades, a mdkitof IAP species have been introduced
into South Africa as wind breakers, ornamentals poténtially new species for commercial
cultivation (Enright, 2000; van Wilged al., 2001). IAP species that have been introduced
into South Africa includé€Chromolaena odorata, Eichhornia crassipes, Lantana camara and
Parthenium hysterophorus. IAP species have the potential to proliferate gmdpagate
rapidly, extensively expanding the range of th&trtbution. Their success as invaders lies in
the absence of natural enemies and the prevaldrieteyogeneous landscape conditions that
are suitable for their development (van Wilgenal., 2004). The invasion of natural
ecosystems by IAP species cause severe environingdeggadation such as the disruption of
ecosystem functionality and ecosystem services (Wdgen et al., 2004). Of major concern
are the negative environmental impacts that IARIsgenave on South Africa’s scarce water
resources and rich biodiversity. Consequentlys itmperative to remove and control I1AP
species in order to maintain the vital ecosystemices that humans depend on. In South
Africa, black wattle Acacia mearnsii De Wild.) is one of many IAP species that neethd¢o

removed and controlled in order to mitigate furtbevironmental degradation.

Currently, black wattle trees are commercially igalied extensively in non native areas
throughout South Africa (Russel, 2009). Black veattkees produce large quantities of seeds
that are often transported along river systems,atihegy impacting on environments
downstream (de Neergaaetial., 2005; Holmest al., 2008). Since its introduction, black
wattle trees cover an area of approximately 2.4ignilha of land in South Africa spanning a
range of diverse ecosystems (Enright, 2000). Iweadilack wattle trees cause severe
environmental degradation such as the loss of Wity (de Witet al., 2001; de Neergaard
et al., 2005), reduction in streamflow (Scott and Lesk¥97; Prinsloo and Scott, 1999) and
the reduction in catchment water yields (de &#l., 2001). The Working for Water (WfW)
programme, an initiative of the South African goveent is at the forefront of removing and
controlling the spread of IAP species in non nativeas (Zimmermangt al., 2004). The

WIfW programme successfully integrates a range afiako economic, political and



environmental dimensions to effectively control #gread of IAP species (Richardson and
van Wilgen, 2004). Since its inception, the WfW gnamme has spent more than R 3.2
billion (2005/06 financial year) to combat the steof IAP species in South Africa (Marais
and Wannenburgh, 2008). Invasive black wattle tfeea part of the WfW programme in an
effort to mitigate their negative environmental gwfs. In order for the WfW programme to
effectively plan management strategies for combpathre spread of invasive black wattle
trees, detailed maps of the distribution of thedrare criticafor its success (Rowlinsoet

al., 1999). Remote sensing techniques offer the pateto identify, map, monitor and
manage the distribution of IAP species over largatial scales (Rowlinsost al., 1999;
Oumar, 2008).

Remote sensing is the process of acquiring infaomadbout the Earth’s surface without
being in contact with it. Remotely sensed imagenyes a synoptic view of the Earth’'s
surface thereby allowing for complete and accunatermation to be acquired over large
sometimes inaccessible areas non-destructivelyrkBueet al., 1996; Vermaet al., 2003).
Hyperspectral imaging spectrometers, for examplehE®bserving-1 Hyperion Sensor,
capture images in narrow contiguous bands alloviimgdetailed reflectance spectra to be
collected (Vane and Goetz, 1993; Mutamgjal., 2009). This is advantageous as IAP species
can be accurately discriminated from the surroumalanse vegetation. The use of remote
sensing has been successfully applied to identifiyraap IAP species. A study conducted by
Kimothi et al. (2010) mapped the distribution @fantana camara using multispectral
imaging spectroscopy in the Rajaji National Panle$d in Uttarakhand, India. In addition, a
study by Tsaiet al. (2007) accurately detected the IAP species htas®wrind [eucaena
leucocephala) utilizing Hyperion hyperspectral imagery in soaith Taiwan. These studies
illustrate the potential of mapping the distributiof invasive black wattle trees using
hyperspectral imaging spectroscopy. However, thet and efficiency of proprietary image
processing software is a major obstacle to the spicead use of remote sensing techniques to
map IAP species.

1.2. Motivation

Traditionally, environmental managers had to viguelspect areas to identify IAP species
that can be labour intensive, costly and time consg. Remote sensing offers a quicker and
more efficient method of identifying the spatiaktibution of invasive black wattle trees.



Thematic maps produced using remote sensing taobsigill provide the spatial location
and distribution range of invasive black wattleegdo environmental managers. This will
allow for control efforts to be planned and targete areas of severe invasion. Further,
thematic maps can be incorporated into a geograbimformation system (GIS) framework
to model the distribution of invasive black wattlees over time (Ghebremicaatlal., 2004).
This information is vital for the co-ordination @fture management strategies that aim to
remove and control the spread of invasive blacklevéitees in non native areas. However,
processing the large volumes of hyperspectral reipsensed data quickly and efficiently is
a major challenge. There is a need for speciaisiote sensing applications that are easy to
use and cost effective as well as novel algoritihag can achieve greater classification
accuracies. Further, there is a need to automatel#ssification process so that processing
hyperspectral satellite imagery can be conducteckiyuand efficiently. Automation of the
classification process involves carrying out theasslfication process without user
intervention. This will allow routine and repeateldssifications to be undertaken thereby
providing regular, accurate, timeous and near tiga distribution maps of invasive black
wattle trees to environmental managers. This studlyaddress these needs through the
development of the black wattle classification aiipon and its implementation. It is also
hoped that the algorithm could be used, with sliglodification, to map other plant species
in the future. Finally, as no studies have beerduoted on the potential of a classification
algorithm to automatically identify black wattlee&s using imaging spectroscopy, this study
will add to the knowledge base of detecting blacktl® trees using hyperspectral remote

sensing.
1.3. Aim and objectives

This study aims to investigate the potential ofl@ssification algorithm to identify black
wattle (Acacia mearnsii De Wild.) trees using imaging spectroscopy. Theectibjes of this

study are:

* To develop an image classification algorithm thalt wentify black wattle Acacia
mearnsii De Wild.) trees using hyperspectral EO-1 Hyperiatad
 To assess the image classification algorithm’sitgbib automate the classification

process.



* To assess the efficacy of the image classificatilgorithm in identifying black wattle
(Acacia mearnsii De Wild.) trees using hyperspectral EO-1 Hyperiatad

» To assess the accuracy of the image classificatigorithm to identify black wattle
(Acacia mearnsii De Wild.) trees of varying age groups using hypecs@al EO-1
Hyperion data.

1.4. Study area

The study areas (study area one: 29° 0°"3,230° 42" 29E; study area two: 29° 10" 38,
30° 39" 9 E) are located near Greytown, KwaZulu-Natal, Soafinca (figure 1.1.).
Greytown forms part of the Umzinyathi district mcipiality and is approximately 70 km
north of Pietermaritzburg (figure 1.1.). Greytowndaits surrounding areas have a mean
annual temperature of 17 °C with an annual rainfaliging between 40@m and 836nm
(Babugura, 2010). The area is situated at an dditaf 1038 m above sea level. The
topography of the landscape is characterised by deer gorges, grasslands, wetlands, hills,
valleys and bush-velds (Umzinyathi municipality,12). The general slope of the land is
between 1:5 and 1:6 (Umzinyathi municipality, 201@enerally, Greytown and its
surrounding areas have great agricultural poteotiahg to a combination of high rainfalls,
moderate temperatures, good soils and moderatesslgmvoti municipality, 2008). The
land uses largely practised include livestock fagnisugarcane farming, dry land crop
production and forestry. Commercial farmlands aatdor more than 70% of the municipal
area with forestry plantations dominating the lassé (Afrispace consulting, 2009). Species
that are commercially cultivated within forestryaptations includeEucalyptus grandis,
Pinus patula and black wattle. Consequently, this study area ws&ected owing to the
possibility of the spread of black wattle trees oitommercial forestry plantations into non

native areas.
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Figure 1.1.: Location of study area one and studg &wo in KwaZulu-Natal, South Africa.




1.5. Outline of thesis

Chapter two reviews the relevant literature on pbeential of a classification algorithm to
identify black wattle trees using imaging spectapsc Firstly, the characteristics that make
black wattle trees successful invaders are reviewadther, the socio-economic and
environmental impacts associated with black watges in non native areas are discussed
and current control methods reviewed. Subsequehttypotential of identifying black wattle
trees using remote sensing techniques are expldtesl final section reviews the potential
use of automated classification algorithms to idenblack wattle trees using imaging

spectroscopy.

Chapter three provides a detailed account of ththadelogy employed to carry out this
study. The pre-processing techniques performedhefO-1 Hyperion data sets are outlined.
Subsequently, the collection of spectral signatamed ground reference data is presented.
This chapter concludes with a detailed descriptbrine classification algorithm and the

implementation of the classification algorithm.

Chapter four presents the main results of thisystidich are discussed and related to other
relevant studies. In this chapter, the automatgotcaeh employed by the classification
algorithm is assessed. The efficacy of the clasgifbn algorithm in identifying black wattle
trees are presented and discussed. This chapterludes with a discussion of the
performance of the classification algorithm in itigfng black wattle trees of varying age

groups.

Chapter five concludes this study. The aim and atiyjes initially outlined are reviewed to
establish if they were achieved by this study. Bmahe limitations of this study and

recommendations for future studies are presented.



Chapter Two: Literature Review

2.1. Introduction

The invasion of natural ecosystems by IAP spedesmajor threat to South Africa’s water
resources, rich biodiversity and ecosystem funelion(Lodge, 1993; Rose and Fairweather,
1997). Transported from Australia, the IAP spedxck wattle, forms an integral part of
South Africa’s forestry industry. Black wattle teebave been able to proliferate and spread
rapidly; successfully establishing themselves ats gfeSouth Africa’s landscape (Eldridge

al., 1993; Kull and Rangan, 2008). Invasive blacktiedtees threaten freshwater ecosystems
throughout South Africa (Poynton, 1979; Dye andnian, 2004). Black wattle trees tend to
consume large volumes of water from sensitive risgstems as they are evergreen and
maintain a high leaf area throughout the year (Byd Jarmain, 2004; du Toit and Dovey,
2005). Further, black wattle trees have been fawndlock water ways, reduce catchment
water yields, and reduce the stability and intggaf riparian ecosystems (de W4t al.,
2001). This places great strain on South Africafsted water resources (Binmsal., 2001;
van Wilgenet al., 2001). Currently, various methods are employedetnove IAP species.
These include mechanical (Holmetsal., 2008), chemical (Viljoen and Stoltsz, 2008) and
biological (Impsoret al., 2008) removal methods. However, in an efforinform removal
efforts, IAP species are manually mapped and maedtdoy field workers that survey

invaded areas to assess the extent of invasion.

The inception of remote sensing technologies has logtical in addressing the challenges
faced in obtaining information on the spatial disition of IAP species (Tesfamichaatlal.,
2010). Initially, the potential of remote sensing@smimited to multispectral sensors that
collected data in three to six broad spectral bano® the visible region (VR) and near
infrared region (NIR) of the electromagnetic spawctr(Govenderet al., 2007). However,
with the inception of hyperspectral sensors, magtaited reflectance spectra can now be
collected capable of discriminating of spectraliyifar but unique plant species (Mutanga
al., 2009). The use of hyperspectral remote sensifegsothe potential for finer temporal,
spatial and spectral resolutions that can be useacturately identify, map, monitor and
manage the spread of IAP species in a cost efeeati@nner (Rowlinsodt al., 1999; Oumar,
2008). Despite its many benefits, the regular ddeyperspectral satellite imagery is limited

by the large data volumes associated with it. Asiog large data sets are often time



consuming and limited by the hardware and softwapabilities of the computer. The use of
automated classification algorithms will facilitatee efficient processing of large volumes of

hyperspectral data for maximum feature extraction.

This chapter first reviews black wattle trees aB Bpecies and then examines the potential of
using hyperspectral satellite imagery to identifyfdamap the distribution of black wattle

trees. Further, the potential of automated clasgifin algorithms are explored.
2.2. Black wattle @cacia mearnsii De Wild.)

2.2.1. Black wattle as successful invaders

Native to Australia, black wattle trees have siteen transported by human agency for
cultivation in most countries that are suitable itsrdevelopment (Kull and Rangan, 2008;
Eldridgeet al., 1993). Countries that cultivate black wattleerénclude Brazil, China, India,
South Africa and Zimbabwe (Brown and Ko, 1997; 3meal., 2008). In South Africa, black
wattle trees, are cultivated extensively in fonegifantations throughout the country for a
variety of purposes including timber and firewo&ddfidgeet al., 1993; de Neergaased al.,
2005). It is the widespread distribution and po@nagement of forestry plantations in South
Africa that has resulted in the invasion of blackttie trees into non native areas (Enright,
2000). However, black wattle trees have many otiraracteristics that enable them to be
highly successful invaders. These include theiragpctive ability, canopy structure and

their adaptability to a wide range of diverse hatisit

Figure 2.1.: A black wattle’; mearnsii) tree. (Photograph by B. Strong)



Black wattle trees are fast growing evergreen shitbht form dense thicket in areas that are
invaded (Eldridge, 1978; Eldridg al., 1993; Searle, 1997). A relatively fast growtteré?
m/yr) ensures that black wattle trees reach matant bear seeds early in their life cycle (4-
5 years) thereby establishing themselves withiemnronment (Chaunbi, 1997; Di Stefano,
2002; Bauhust al., 2004; Christineet al., 2011). Black wattle trees have been found to
produce large quantities of seeds. As much as Q0s@@ds/M have been recorded under
mature trees (De Beer, 1986; de Witl., 2001). These seeds can lay dormant in the @oil f
up to 37 years if undisturbed, which ensures theiwal of the species in non native areas
(Maiden, 1891). Disturbances such as fire everasige instanecs for the mass germination
of seeds allowing for invasive black wattle treeeliminate all other plant species in the area

and to colonize it exclusively (Chaunbi, 1997).

Black wattle trees grow to heights of up to 20 nd &ave large crowns that dominate the
canopy of forestry plantations and natural habi(&sarle 1997; Eldridget al., 1993).
Bauhuset al. (2004) reported an average crown diameter oh8fdr black wattle trees after
9.5 years of growth. Generally, rows of black wattiees in forestry plantations are spaced
approximately two to three metres apart (Chaun®971 Khanna, 1997). The planting of
trees very close to each other limits the peneinadif light and subsequent growth of native
vegetation that may occupy the understorey. Sitgjlanvasive black wattle trees that grow
in dense thicket in natural ecosystems limit thegbeation of light and growth of native
vegetation. However, distribution patterns of invasblack wattle trees may differ when
black wattle propogules are transported throughurahtdistribution mechanisms such as
wind and water. Black wattlkeees can adapt to a wide range of soil types and the ability

to resist extended dry periods allowing them tohighly successful in a wide range of
diverse ecosystems (Eldridge al., 1993; Chaunbi, 1997). It is apparent that blagciktle
trees are well suited to the South African climatdch encourages them to propagate and
proliferate as highly successful invaders. In tbkofving section the socio-economic and
environmental impacts associated with the presefdavasive black wattle trees in non

native areas of South Africa will be discussed.
2.2.2. Socio-economic and environmental impacts

Since its introduction into the forestry industhjack wattle trees now cover an area of

approximately 2.4 million ha of land in South AfiqEnright, 2000). This widespread



distribution of black wattle trees poses a majoedh to the integrity and stability of a vast
array of different ecosystems throughout South c&fr(Poynton, 1979; Dye and Jarmain,
2004). Over the past few decades, many studiesd@uanented the negative environmental
impacts associated with the presence of invasiaekblvattle trees in non native areas (Scott
and Lesch, 1997; Prinsloo and Scott, 1999; Dye darthain, 2004; Richardson and van
Wilgen, 2004). Some of these negative environmemntglacts include a reduction in
streamflow, water yield, biodiversity and an in@ean fire hazards to indigenous vegetation
(Binnset al., 2001; de Neergaard al., 2005). However, research has been largely facuse
on the negative impacts that invasive black watdes haven South Africa’s limited water

resources so that management strategies can bel&bech to mitigate this effect.

Invasive black wattle trees are a major threatrésHwater ecosystems throughout South
Africa (Poynton, 1979; Dye and Jarmain, 2004). Blaattle stands maintain a high leaf area
throughout the year (Eldridge, 1978; Eldridgeal., 1993; Searle, 1997) with leaf area
indexes of 2-3.5 for black wattle stands been tepor(Jarmain and Everson, 2002;
Landsberget al., 2003). The high leaf area index of black wattentations allow the species
to maintain a high rate of evaporation throught# year causing them to consume large
volumes of water from groundwater and river systéyge and Jarmain, 2004; de Neergaard
et al., 2005; du Toit and Dovey, 2005). Dye and Jarm@@04) concluded that total
evaporation rates may exceed 1500 mm per yeanvasive black wattle trees along riparian
systems. This places severe strain on water res®tinat are used for recreational, domestic
and commercial uses. A study conducted by Scottlasth (1997) measured streamflow
response after the afforestation of grassland nsgieith invasiveEucalyptus grandis and
Pinus patula at the Mokobulaan research catchment. Importaatlgtatistically significant
decrease in streamflow was reported after threesyetgrowth and after nine years of
growth the stream had completely dried up (Scadtlaasch, 1997). Increased water usage by
IAP species can cause instances of extreme fluohgin physico-chemical parameters
(example salinity) of the river system having dagntal effects on the biota that occupy the
system (Enright, 2000).

IAP species affect the stability of ecosystem processeh as nutrient cycling, water
availability and soil fertility. The alteration @fcosystem processes negatively transforms the
structure and composition of indigenous biodivgrsBiodiversity is important in ensuring

the resilience of ecosystem services so that huactimities are maintained (Diag al.,

10



2006). However, the introduction of black wattlees into non native areas tends to invade
grasslands and river systems posing a threat igandus biodiversity in South Africa (de
Wit et al., 2001; Forsytlet al., 2004). There is a lack of literature on the istghat invasive
black wattle trees have on indigenous vegetatiaweéver, a study conducted by Allanal.
(1997) assessed the impact of commercial affoiestgfcacia spp., Eucalyptus spp. and
Pinus spp.) on bird populations in the Mpumalanga ProejrSouth Africa. It was found that
there was a significant negative correlation betwne diversity of all grassland birds with
the extent of forest plantation cover (Allanal., 1997). In contrast, there was a significant
positive correlation between the diversity of specihat benefit from afforestation and the
extent of forest plantation cover (Allagt al., 1997). Forestry plantations also offer the
potential for the establishment of shade tolerative forest species (Geldenhuys, 1997).
However, once invasive black wattle trees have essgfally established themselves in non
native areas, they increase the biomass of the(&re#ght, 2000). An increase in biomass
increases the amount of plant material that cam bwinich poses a fire hazard to the
indigenous vegetation (Binmsal., 2001). Within forestry plantations, this scenasi limited

by fire reducing measures that are put in placednice the frequency of fires (Geldenhuys,
1997). However, within natural habitats increaseel frequencies will eliminate indigenous
vegetation leading to the excessive loss of fettifgsoil through surface and rill erosion (de
Neergaardet al., 2005). Despite this, the presence of invasieelbivattle trees in non native
areas offer a range of socio-economic benefitheésstirrounding communities in which they

occur.

Invasive black wattle trees are felled by locabatl@ommunities for firewood, timber and are
often sold for income (de Neergaagtdal., 2005). The presence of invasive black wattlegre

in the natural environment is integral to the ugke&local communities. However, there is a
conflict of interest between maintaining invasiiadx wattle stands so that communities
may benefit from them and removing them so thatatieg environmental impacts are
mitigated. A balance needs to be struck so thah Wbmnefits are reaped. The WfW
programme can be seen as an effective solutidmsaonflict. The WfW programme creates
temporary employment for approximately 30 000 ped assist in the clearing of IAP

species (Marais and Wannenburgh, 2008). This tii@aprovides vital employment to

thousands of disadvantaged people resulting infeignt poverty alleviation (de Neergaard
et al., 2005). Providing employment to rural communitvel reduce their dependency on

invasive black wattle trees.

11



From the available literature, many studies havengited to quantify the effects that IAP
species have on a range of parameters at a rargpaiidl scales (Enright, 2000; Le Mai&te

al., 2000; van Wilgeret al., 2001; Le Maitreat al., 2002; Gorgens and van Wilgen, 2004;
Samways and Taylor, 2004; Culisal., 2007). However, the negative impacts that specif
species have within ecosystems should be quantiledearch has been focused on invasive
black wattle trees as it is ranked third (totaladed area) in the top ten invading species in
South Africa (Le Maitreet al., 2000). However, research has largely been caaduon
invasive black wattle trees within the Western Capd Mpumalanga Provinces (Scott and
Lesch, 1997; Prinsloo and Scott, 1999; Forsstthal., 2004). Future research should be
focused on the negative environmental impacts ithatsive black wattle trees have within

the KwaZulu-Natal Province.
2.2.3. Control methods

The WfW programme is active in managing, contrglland containing the proliferation of

IAP species in South Africa (Marais and Wannenbu§l98). Since its inception, the WfW

programme has cleared approximately 1.66 milliomhiand of IAP species in South Africa

(Marais and Wannenburgh, 2008). Currently, invabiaek wattle trees are manually cleared
in an attempt to control its spread (Holneesl., 2008). Manual removal is preferred as it is
perceived as being environmentally sound and ssferompared to chemical and biological
removal methods (Mathur and Singh, 2004; Greengell., 2007). The manual removal of

IAP species from non native areas have shown mankpmvements in streamflow (Prinsloo

and Scott, 1999).

A study conducted by Prinsloo and Scott (1999) regpba noticeable improvement in the
streamflow after the removal of invasive mearnsii and A. longifolia trees from riparian
zones at three sites in the Western Cape Provitesults showed that streamflow increased
by 9, 10 and 12 ftha/day in Du Toits Kloof, Oaklands and Somersesst\fparian zones
respectively (Prinsloo and Scott, 1999). Similadystudy by Scott (1997) reported increased
streamflow after one third of Binus radiata plantation in the Western Cape Province had
been cleared. In contrast, the clearfellingEofcalyptus spp. at the Mokobulaan research
catchment in the Mpumalanga Province did not imgretreamflow until five years after
being clearfelled (Scott and Lesch, 1997). Thislddoe attributed to the depletion of

groundwater storage that would need to be repledisiefore streamflow would return (Scott
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and Lesch, 1997). Further, the deep penetratingsysiem ofE. grandis trees could have
altered the flow path of water through the catchimresulting in water leaking out of the
catchment (Scott and Lesch, 1997). Therefore, titegration of manual removal with
chemical removal/biological removal is imperatie@ énsure that trees are killed in its
entirety so that subsequent negative environmantphcts are mitigated. However, the
subsequent environmental impacts of chemical remowethods should be determined.
Samways and Taylor (2004)ated that endemic dragonflies (Odonata) areylikelrecover
after the removal of dense stands of invasive blaeitle trees. Therefore, the use of
chemical removal methods should ensure that resuyeindigenous species are not
eliminated. Chemical removal methods offer the ativge that large areas of land can be
sprayed quickly and inexpensively with relative @ags. Richardsosat al. (2006) reported
the death of black wattle trees when applied witbtsulfuron-methyl and glyphosate
herbicide. Further, a study conducted by Viljeod &tolsz (2008) illustrated the control of
black wattle seedlings using Garlon 4 herbicidespite its relative success, the use of
chemical herbicides poses an ecological risk tostimeounding environment as opposed to
biological control methods.

The use of biological control agents is seen asnarpensive, effective and sustainable
method of controlling IAP species limiting the ueé other methods such as chemical
removal. In the context of South Africa, the useébimfiogical control agents has reduced the
cost of controlling IAP species by 19.80% (Zimmemmaet al., 2004). Importantly,
biological control agents are host specific to ¢arglant species preventing them from
becoming invasive themselves (Julienal., 1999). However, the success of biological
control agentdes in their ability to establish themselves ineanrvironment thereby providing
a long term management solution. Currently, theeecaly a few biological control agents
that are being tested to control invasive blacktleatrees. These includMelanterius
maculates and Dasineura rubiformis (Diptera: Cecidomyiidae) (de Neergaaetdal., 2005;
Impsonet al., 2008).These biological control agents have been showartget seedlings as
opposed to targeting the plant by damaging it mhggically and morphologically (de
Neergaardet al., 2005; Impsoret al., 2008). This is vital in maintaining the integriof
commercial forestry plantations while limiting tispread of invasive black wattle trees. A
study by Impsort al. (2008) suggested thBasineura rubiformis can be employed as a seed
reducing biological control agent for black wattlees. Despite the success of various control

methods there needs to be an effective restoragitogramme that can capitalize on the
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cleared land. Black wattle seeds lay dormant insthie therefore, effective restoration will
have to be undertaken quickly to avoid further siwa. Remote sensing techniques offer the
potential to map and monitor the spread of IAP gsebefore and after removal efforts have
been undertaken.

2.3. Remote sensing

2.3.1. Remote sensing of invasive alien plant species

Visually assessing the spatial distributionl&P species on the ground is often subjective,
time consuming, costly and spatially restrictiveveEtt et al., 2002). Remotely sensed
imagery provides a synoptic view of the Earth’sface thereby facilitating complete and
accurate information to be acquired over largesarean destructively (Vermet al., 2003).
Information over complex geographic terrains tharavonce inaccessible can now be
acquired in a cost effective and timeous manneshiJa al., 2004; Mutangaet al., 2009).
Further, remote sensing systems can store remséglged data over long periods of time
creating archival databases that can be used trndee land cover changes over time.
Therefore, the merits of remote sensing techniguasant its use in identifying and mapping
IAP species to inform management strategies anawahefforts. Initially, the potential of
remote sensing was limited to multispectral imagapgctrometers, such as the Landsat 7
Enhanced Thematic Mapper Plus (ETM+), that collezt in three to six broad spectral
bands from the VR and NIR of the electromagnetiecgpm (Govendeet al., 2007).
However, multispectral imaging spectrometers aweragflectance spectra over broad
spectral bands lack the detailed reflectance speaequired to accurately identify unique
plant species from a complex mixture of scene etesngCarsoret al., 1995). Therefore,
different land covers can only be classified intodal classes when generating thematic

maps.

Many studies have employed the use of multispeotrabte sensing to identify IAP species
(Carsonet al., 1995; Mladinichet al., 2006; Cunecet al., 2009; Kimothiet al., 2010).
However, research focused towards identifying aagping the distribution of black wattle
trees using multispectral satellite imagery hasHesited. Despite this, a study conducted
by Mladinich et al. (2006) mapped leafy spurg&uphorbia esula L.) in the Theodore
Roosevelt National Park using Landsat 7 ETM+. Lestfyrge has the potential of being
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remotely sensed owing to its distinctive yellow-arecolour which is likely to be spectrally
unique from the surrounding vegetation (Parker Mfills and Hunt, Jr. 2002). However, an
unsupervised classification algorithm was usedl&assify leafy spurge that resulted in an
overall classification accuracy of approximately®8Mladinichet al., 2006). This relatively
low overall accuracy could be attributed to thessification method used and the coarse
spectral resolution of multispectral imagery (Mladh et al., 2006). In contrast, Cunebal.
(2009) detected and mapped the invasive, AfricameQOlea europaea L. ssp.cuspidata
Wall ex G. Don Ciferri) in Sydney, Australia usihgndsat 7 Enhanced Thematic Mapper
(ETM) data and a supervised classification. It feasd that from a total area of 1907 ha of
dense African Olive infestation there was an omisgrror of 7.50% and a commission error
of 5.40% (Cuneoet al., 2009). This accurate classification could beilatted to the
classification method used as well as the phenotdgye plant even though multispectral
satellite imagery was used. In some instances pbgical stage variation in orientation of
leaves, age of leaves, variation in leaf area iratex different slopes of the locations where
the individuals are found could make the spectighature of a species difficult to define
(Cuneoet al., 2009). This creates intraspecies variation twttributes to overlapping
spectral signatures between co-occurring speciesi(ldl., 2011). In contrast, Hestét al.
(2008) reported significant spectral variation lbhsen phenology between perennial
pepperweedLepidium latifolium) and water hyacinthE{chhornia crassipes) plants. Image
acquisition at key phonological stages may assidistinguishing between different I1AP
species (Heet al., 2011). Invasive black wattle trees form densek#t in areas that are
invaded (Eldridge, 1978; Eldridge al., 1993; Searle, 1997). Dominating the stands canopy
ensures that only the reflectance spectra of imeallack wattle trees would be measured.
Further, black wattle trees are evergreen; thesefdetecting their coverage will not be

limited by seasonal variation.

Black wattle trees that form part of commercialefsiry plantations occur in large stands.
However, black wattle trees that invade naturakgstems occur in stands of variable sizes
that are dependent on the severity of the invadibe. spatial resolution of remotely sensed
data used is critical to the level of accuracyha tlassification (Het al., 2011). Carsomt

al. (1995) found that Landsat Thematic Mapper (TMJ &atellite Pour I'Observation de la

Terre (SPOT) data with a spatial resolution of B8 20 meters respectively is inadequate to
identify plant species. Unless stands are largeigimothe spectral variability within pixels

will hamper the classification process and itsigbtb classify pixels accurately (Het al.,
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2011). Further, spectral similarity of a pixel teetspectral signature may not necessarily
mean that the entire pixel is covered by a plaetigs and therefore may over estimate the
land cover of the plant species. Russel (2009) sdavatA. mearnsii can be identified and
mapped using SPOT 5 imagery. Results showed amlbaecuracy of 78.77% with a kappa
statistic of 0.7495 in the Fort Nottingham area g8al, 2009). SPOT 5 imagery has a
relatively low spectral resolution but the high tsglaresolution (10 m) which could have
positively influenced the reflectance spectra measiand the classification process. In
contrast, hyperspectral satellite imagery captungdhe EO-1 Hyperion sensor has a high
spectral resolution but a coarse spatial resolutgihm) which may limit the accuracy of
identifying plant species. A study by Cartgral. (2009) compared the effectiveness of
Landsat 5 Thematic Mapper (TM5, 30 m), QuickBirdB(@.5 m) and EO-1 Hyperion
(Hyperion, 30 m) data at different spatial resan$ in discriminating Tamariskrémarix
spp., saltcedar) stands in Colorado, USA. Resthibsved that multispectral data at a high
spatial resolution (QB, 2.5 m) was more effectivent either multispectral (TM5) or
hyperspectral (Hyperion) data at a moderate spasallution (30 m). This illustrates that the
spatial resolution of an image is as vitally impaittas the spectral resolution of the image.
Consequently, a balance needs to be struck betsyesial and spectral resolutions to ensure

maximum detection accuracy when identifying invadiack wattle trees.

With the inception of hyperspectral imaging speatieters (Airborne Visible/Infrared
Imaging Spectrometer [AVIRIS], HyMap and Hyperiompre detailed reflectance spectra
can now be collected. Hyperspectral imaging spewters capture images in narrow
contiguous bands that allow for the discriminatadrspectrally similar but unique materials
(Vane and Goetz, 1993; Mutangaal., 2009). Spectra collected by hyperspectral in@ggin
spectrometers range from 350 - 2500 nm coveringvisible, near infrared and shortwave
infrared regions of the electromagnetic spectrunypetispectral imaging spectrometers
capture detailed reflectance spectra recordingeschtinges in reflectance for different scene
elements. Differences in reflectance could belatted to differences in pigments, nutrients
and structural properties of the elements in aeagwing each element a unique spectral
signature which can be used to distinguish betwA@nspecies (Asnegt al., 2008). This is
crucial when identifying a single plant speciesiira mixture of complex scene elements that

reflect similar reflectance spectra.
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Launched in November 2000, the EO-1 Hyperion seis@n example of a hyperspectral
imaging spectrometer that can used to identify, wagh monitor the spread of IAP species
(Pearlmaret al., 2003; Last al., 2005). The Hyperion sensor is a pushbroom hpeetsal
sensor that captures data between 400 — 2500 rdZrbands (198 calibrated) at a band
width of 10 nm (Pearlmaet al., 2003; Las®t al., 2005). The Hyperion sensor operates at an
altitude of 705.0 km and captures an area of 7. akmspatial resolution of 30 m (Pearlman
et al., 2003; Last al., 2005). Hyperspectral remote sensing has beaessitl in mapping
numerous IAP species (Tsaial., 2007; Asner et al., 2008; Hestfral., 2008). However, no
studies have been carried out on identifying inkadilack wattle trees using hyperspectral

imaging spectroscopy.

A study by Lasset al. (2005) used hyperspectral images from a chargegied device
(CCD) digital camera (spatial resolution: 2 m, spEaesolution: 400 to 953 nm, band width:
12 nm) to identify locations of spotted knapweésbntaurea maculosa) and babysbreath
(Gypsophila paniculata). It was found that 57% of known spotted knapwedelstations and
97% of known babysbreath infestations were ideadifthrough the use of hyperspectral
imagery. A study by Ustirt al. (2002) detected IAP species using AVIRIS datasuRe
included the mapping drundo donax at accuracies of 90.68% and 97.79% using a spectral
angle mapper and maximum likelihood classificatrespectively in the Camp Pendleton
Marine Base in California. Studies by Lasl. (2005) and Ustirt al. (2002) illustrate the
potential of using remote sensing techniques tatifjeinvasive black wattle trees. This
study aims to fill the knowledge gap in the idanéfion of the distribution of invasive black

wattle trees using hyperspectral imaging spectimsco
2.3.2. Automated algorithms

Traditionally, the spread of IAP species was deteesh by manually counting each plant on
an aerial photograph which proved time consuminxgeasive and inefficient (Niu, 2006).

Further, IAP species propagate and proliferatedtg@ind in this manner dynamically change
the land cover of infested areas. This proved dlaesige to identifying and updating the

spatial distribution of IAP species in non nativeas (Agiera and Liu, 2009). Consequently,
image classification techniques have been impleatewithin remote sensing applications to
expedite this process. Remote sensing applicapomgide an interface through which the

classification process as well as complex mathealaéind computational algorithms can be
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performed to identify IAP species such as blacktiedtees. Currently, there is a shift in
research towards specialist remote sensing applsatGrin, 2000; Zhaet al., 2002;
Leckieet al., 2003) that offer an automated approach to incdagsification. However, there
is a lack of literature and research in applyintpmated approaches to image classification
in identifying IAP species and vegetation in gehdbaspite this, the driving force behind an
automated approach is optimizing the processintargle datasets accurately in short time

frames with little external expert knowledge inastceffective manner.

Hyperspectral remotely sensed data is charactebgddrge volumes of data which is time
consuming to process when identifying IAP specids. automated approach to image
classification offers a possible solution to pracdarge volumes of data quickly and
efficiently (Leckie et al., 2003). Hyperspectral imaging spectrometers sagththe EO-1
Hyperion sensor has a high temporal resolution8ofldys ensuring that regular and reliable
data over areas of interest is available. Automatedje classification can ensure routine and
repeated image classifications to be performed aveas of interest with consistent results
(Higgins and Harris, 1997). Consequently, a timeeseanalysis can be undertaken to
monitor and model the spread of invasive black ledtees over short and long periods of
time. The ability to conduct rapid and routine ireggocessing is instrumental in providing
near real time information to inform managemenatstyies and removal efforts of invasive

black wattle trees.

There is a growing trend in the development of ghst automated image classification

applications. These applications are tailored andige a few key tools that are required for
particular applications. They are inexpensive amgared to comprehensive software
packages that offer a range of tools that areqaired on a day to day basis. This allows for
remote sensing applications to be accessible aaitbble to a wide range of environmental
managers and practitioners. Previously, the claasibn process required well trained

personnel to conduct the classification and intgrgs results. However, through the use of
automated image classification applications, exgerowledge can be packaged and
distributed widely. This allows for image class#ions to be undertaken by less skilled
personnel that have a basic understanding of remsetsing concepts. This ensures that
environmental managers and decision makers cars fpamarily on the results without

having to worry about technical details behindclzessification.
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Research has been focused on automated featumctextr such as roads and buildings
(Gruin, 2008; Zhaet al., 2002; Leckieat al., 2003). This is because these features are larger
than one pixel in size. However, with plant spedieis may not be the case depending on the
size of the stand. Because the spatial resoluticatellite images are still relatively low an
object based approach may not be practical. A piesled approach is still necessary to
conduct accurate image classification. This inveltiee comparison of all the bands for a

single pixel to a spectral signature collectechmfield or under laboratory conditions.

2.3.3. Classification algorithms

Classification algorithms compare spectral sigregupf a feature to each pixel in a
multispectral or hyperspectral satellite imagedenitify features. Spectral signatures can be
collected using field spectrometerssitu or under laboratory conditions. Spectral signaure
can also be collected from the image itself throdigh use of training sites which are
homogenous areas that represent the land coverempixels. An example of a classification
algorithm is the spectral angle mapper algorithrine Epectral angle mapper compares the
spectral angles between the reflectance spectrura pfxel and the spectral signature
obtained from training sites or captured usinge&dfspectrometer (Kruoet al., 1993). Each
pixel is assigned to a class according to the lossctral angle value (Kruekal., 1993).

Internationally, many studies have employed theaigbe spectral angle mapper algorithm,
to identify IAP species (Lasat al., 2002; Lawrencet al., 2005). However, there are no
studies that have applied the use of the spectgdéanapper to identify invasive black wattle
trees. Despite this, a study conducted by Narumatah. (2006) detected saltceddia(marix
sp.) using the spectral angle mapper algorithmassdy airborne hyperspectral imagery. It
was found that saltcedar, cottonwood and other wosgecies can be spectrally
discriminated. Further, the images were classifigth an overall accuracy of 83%. In
contrast, a study conducted by Lawrescal. (2005), mapped leafy spurgeéuphorbia esula

L.) and spotted knapweeddntaurea maculosa Lam.) using the spectral angle mapper
algorithm. From this study overall accuracies o¥e4@nd 66% for the spotted knapweed and
leafy spurge sites, were found respectively. This ¢lear that there is still some variability
in accuracy with regard to spectral matching. Hhigly uses a different approach to spectral
matching by using statistical techniques to mafobctal signatures to spectral profiles of

single pixels.
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2.4. Conclusion

The propagation and proliferation of invasive blaghkttle trees in non native areas is
detrimental to ecosystem functionality. Therefares imperative that invasive black wattle
trees are mapped so that removal efforts are &dgatareas of severe invasion. However,
mapping and monitoring the spatial distributionirofasive black wattle trees is a challenge
because it is costly, time consuming and labouensive. Remote sensing offers the
technology to map and monitor the spread of inveabiack wattle trees. Many studies have
employed the use of hyperspectral remote sensingap IAP species. However, future
studies should focus on identifying invasive blagkitle trees using hyperspectral imaging
spectroscopy in KwaZulu-Natal, South Africa. Cuthgnthere is an urgent need to provide
near real time information on the spatial distnbuatof invasive black wattle trees to inform
removal efforts. Various factors such as time aemsts, large data sets and the cost of
remote sensing specialists are hindering this gc& possible solution involves the use of
automated image classification algorithms that glewquick, efficient, routine and repeated
image classification. In general, this review hihssirated the potential of an automated
classification algorithm to identify black wattl&dacia mearnsii De Wild.) trees using
imaging spectroscopy.
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Chapter Three: Materials and Methods

3.1. Introduction

This study assesses a novel classification alguoritthh automatically identify black wattle

trees using imaging spectroscopy. This chaptemastithe methodology followed to achieve
the aim of the study. A detailed explanation of thmage acquisition and pre-processing
techniqgues employed is provided. Subsequently,ntieéhodology used to collect spectral
signatures of black wattle trees and ground reteretata is outlined. The chapter concludes

with a detailed description of the classificatidgasithm and its implementation.
3.2. Image acquisition and pre-processing

The EO-1 Hyperion sensor captures images in 242tspebands in the 400-2400 nm
spectral range at a spectral resolution of 10 nchaaspatial resolution of 30 m (Pearlnein
al., 2003). A single Hyperion image was captured {pEZ5/82) on the ®March 2006
covering the entire study area (study area one029%2' S, 30° 42" 29 E; study area two:
29° 10" 34 S, 30° 39" 9E). The image was provided as Hyperion level 1& déich was
calibrated to at-sensor radiance (W isr* um™); only 196 out of 242 spectral bands were
calibrated. The radiance image was spectrally stdeseemoving un-calibrated (1-7, 58-78,
225-242) and bad spectral bands (80-82, 120-13&18@, 185-187, 220-225). The subsetted
radiance image was atmospherically corrected aartsformed to canopy reflectance using
the FLAASH (Fast Line-of-Sight Atmospheric AnalysiESpectral Hypercubes) atmospheric
correction algorithm which is built into the ENVEivironment for Visualising Images:
ENVI, 2006) software package. The reflectance images then ortho-rectified and
georeferenced (Universal Transverse Mercator, Zfeéouth) according to a Landsat 7
ETM+ image (8 March 2006). An overall total root mean square{RMSE) of less than
one pixel was used as an indication of a good gé&wrmrrection. The resultant image was

re-sampled to the new grid system using a cubiga@ation algorithm.
3.3. Collection of spectral signatures and groundeference data

Spectral signatures of healthy black wattle tregeméral signature, three to five years, seven
to nine years, eleven to thirteen years) were ctkfrom the Hyperion images within ENVI

for each study area. Homogenous areas that reprbtssk wattle trees of varying age
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groups were identified within each study area. Bhlaattle trees of varying age groups were
identified from rasterized polygons of commerciaielstry plantations of known ages that are
maintained by the Mondi group within each studyaaiEhe general signature was generated
through the combination of spectral profiles ofgopixels that represent black wattle trees of
varying age groups. To generate age dependentrajpsiginatures, the spectral profiles of
four samples each of more than thirty pure piXedd tepresent black wattle trees (three, four,
five, seven, eight, nine, eleven, twelve, and deint years) were averaged. The spectral
profiles of black wattle trees between three te fiseven to nine and eleven to thirteen years
of age were averaged to generate three age depesmbantral signatures. For each spectral
signature ground reference data was collected.tl®rgeneral spectral signature, ground
reference data was collected from a land cover ofabe study areas. In ENVI, a set of
random points were generated from the land cover imdicating the presence (400 points)
and absence (400 points) of black wattle trees. damh age group, reference data was
collected from rasterized polygons of commerciaésiry plantations of known ages that are
maintained by the Mondi group. In ENVI, a set ohdam points were generated from the
polygons indicating the presence (100 points) dwkace (100 points) of black wattle trees.
The four spectral signatures (general signaturegtto five years, seven to nine years, eleven
to thirteen years) together with its associatedigdoreference data were used as input to the

classification algorithm.
3.4. The classification algorithm

The classification algorithm developed is basedhenconcept of spectral matching. Spectral
matching involves comparing the spectral profileadfingle pixel to a reference spectrum to
determine if the reference object is present (Kets®., 1993). The classification algorithm
implements a novel statistically based comparisahriique to determine the presence or
absence of black wattle trees within areas of @serFigure 3.1. illustrates a flowchart
representing the black wattle classification algon. The subsetted EO-1 Hyperion image
and the reference spectrum of healthy black watdes are input to the classification
algorithm (figure 3.1.). The classification algbnt compares the reference spectrum to the
spectral profile of every single pixel in the Hyjper image. At each band a statistical
measure, the z-score is calculated using the teflee value, the mean and standard
deviation values from the reference spectrum atctireesponding band (figure 3.1.). A z-

score is calculated using the following formula:
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z score = ((A-B)/C)

Where:
A = reflectance value for a single pixel for a $engand (image)
B = mean reflectance value for a single band (esfeg spectrum)

C = standard deviation of B

From the z-score, two probability values within 9%%nfidence intervals are determined
from a z-table at each band. The final probabidtyeach band is calculated using the

following formula:

probability = (A-B)

Where:
A = probability value from the positive half of tlzetable
B = probability value from the negative half of theéable

However, if the probability values do not lie withB5% confidence intervals, the final
probability is assigned a zero for that band (&gGtl.). The above procedure is repeated
until probability values are determined for all barfor a single pixel. If the probabilities of
more than 90% of the total number of bands fornglsi pixel fall within 95% confidence
intervals, the probabilities are averaged and teamstored (figure 3.1.). If this is not the
case the pixel is assigned a zero. The above punoeesirepeated for each pixel for the entire
Hyperion image resulting in a two dimensional rasté stored probability values. The
classified image is generated from the stored fmtibavalues indicating the probability of
presence of black wattle trees for each pixel (BgB8.1.). The higher the probability the
greater the chance that black wattle will be presathin that pixel area.
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3.5. The implementation of the classification algathm

The application was written in the Java programmarguage and was designed using an
object orientated approach. The application coms$tfour independent classes namely the
BlackWattle classHyperionImage class,StatisticalTests class andkasterImage class.
Each class consists of many methods that provige nticessary functionality. In the
following sections, each class is described andudsed in greater detail outlining its role

within the application. The complete source codeafbclasses is provided in Appendix A.
3.5.1. BlackWattle class

The BlackWattle class manages the graphical user interfaces (@) an end user
interacts with. The main methods that constitute #lackWattle class are the
blackWattleHome, displayClassifiedImage, exportClassifiedImage and
blackWattleClassification methods. ThélackWattleHome method creates and displays
the main user interface through which the variauscfions may be accessed (figure 3.2.).
ThedisplayClassifiedImage method creates an interface through which claskifnages
may be viewed. ThexportClassifiedImage method creates an interface through which
classified images can be exported from .png to iifé data format. Further, the
exportClassifiedImage method reads the classified image in .png datadbrand writes
the classified image in .tiff data format to the esfied disk location. The
blackWattleClassification method creates and displays an interface througbhathe

relevant files for input into the classificatiorgatithm may be selected.
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Thank you for choosing the Black watlle classification algorithrn. The Black wattle
classification algorithm allow s you to accurately identify black wattle trees throughout your
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your Hyperion imagery, spectral signature and ground truth data files. To get started select:
Classification > Black wattle classification from the menu bar.
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[ Hyperien Image Header File ] | ChUsers\Naeem\Deskiop\Final data analysis\Hyperion data 1\Output\BIPWarpStudyarea_1.hdr
. Hyperion Image Data File : | CAUsers\Naeem\Desktop'Final data analysis'\Hyperion data 1\0utput\BIPWarpStudyArea_1

[ Spectral Signature File

] | CAUsers\Naeem\DesktiopiFinal data analysis\Spectral signatures\BlackWattleSpectralSignature. bet

[7] Image File

| Ground Truth Data File

] | CiUzers\Naeem\DeskiopiFinal data analysisvGround truth data\StudyArea\GroundTruthDataFile.txt

[¥] waligation

CAUsers\NasemiDesktop\StudyAreal. png

Figure 3.2.: Implementation of the classificatidgoaithm.
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3.5.2. HyperionImage class

TheHyperionImage class processes the Hyperion image header fileran#lyperion image
data file. The two main methods within this classe @he readHeaderFile and
readDataFile methods. ThereadHeaderFile method reads each line of the Hyperion
header file and stores essential information reguduring the processing. This information
includes samples, lines, bands, header offsetjleatee and map info. TheeadDataFile
method reads a single pixel from the Hyperion dé¢agiven the row and column values.
This method calculates the position of the pixethimi the file and reads, stores and returns

the reflectance values for each band for that pixel
3.5.3. StatisticalTests class

The StatisticalTests class implements the classification algorithm. Tiweo main
functions performed by the&tatisticalTests class are the image classification and

assessing the accuracy of the classified image.

The pixel based classification process is undentdke comparing the spectral signature of
black wattle trees to the spectral profile of agerpixel. ThesetImgval method reads each
line of the spectral signature file and stores thean reflectance values and standard
deviation values in separate one dimensional ar@gaversely, theeadDataFile method
returns reflectance values for a single pixel fibittee bands from the Hyperion image file.
The zTable method reads and stores z-score values from aasthrz-table into a two
dimensional array. TheTest method implements the classification algorithme($:4.,
Chapter 3) by comparing the spectral profile ofirgle pixel to the spectral signature of

black wattle trees to determine if black wattleer@re present or absent.

The accuracy assessment is performed by compdrintand cover (presence or absence) of
ground reference data with the land cover (presenabsence) at corresponding locations
within the classified image. TheetObservedExpectedval method sets the observed and
expected values for the chi-squared test. FEheéObservedExpectedvVal method reads

through the file and at each record the geograph@ardinates are read. The corresponding
row and column values within the image for the gapgical co-ordinates are calculated and
returned by thgetRCval method. If the row and column values fall withire tboundary of

the study area the observed value (presence on@dses stored; otherwise the record is
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discarded and the next record is processed. Ulmgaw and column values the expected
values (presence or absence) are retrieved aretisibine frequency of expected (presence or
absence) and observed (presence or absence) aatieslculated. From the observed and
expected values an error matrix is created asagethe overall accuracy, kappa statistic and
chi-squaredp values calculated. ThgetErrorMatrix method creates and returns an error
matrix for the classification including the userand producer's accuracies. The
getOverallAccuracy method returns the calculated overall accuracyevalvhilst the
getKappaStatistic method returns the calculated kappa statistic. dlhieSquaredTest
method calculates the chi-square probability far ¢thassified image based on the observed

and expected values.

3.5.4. RasterImage class

TheRasterImage class creates and displays the classified imagjeating the presence or
absence of black wattle trees. Further, this alasates and displays the accuracy assessment
of the classification. Theasterval method returns the probability value given the wovd
column co-ordinates for a single pixel. TheeateRaster method stores the probability
values returned from therasterval method in a two dimensional array. The
createClassifiedImage method reads the probability values from the tvimeshsional
array and creates the final classified image. dieateClassifiedImage method creates a
buffered image instance. Thereafter, using thelgcapAPI each pixel is colour coded based
on the probability value (white [0], blue [0.01-B]2green [0.25-0.50], yellow [0.50-0.75],
red [0.75-0.99]). The classified image file is thertten in .png data format to the hard disk.
On completing the classification process, tiessifiedImageFrame method displays the
final classified image (figure 3.3.). This methddoadisplays the co-ordinates and associated
probability value of a pixel selected by the endru3he co-ordinates are calculated by the
coOrdinates method while the associated probability valueeimimed by thesetRaster
method. TheccuracyAsessmentFrame method creates a frame and displays the errobmatr
and contingency table as well as the overall acyiteappa statistic and chi-squagedalues
(figure 3.3.).
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& Black wattle classification |iléj % Accuracy assessment lil_léj

Classified Image Error matrix
Black watte Mo Black wattle Total Users accuracy (%)
Black wattle 145.0 55.0 200.0 725
No Black wattle 0.0 200.0 200.0 100.0
Total 145.0 255.0 400.0
Producers accuracy 100 78.43137

Overall accuracy 86.25

Kappa statistic  0.725

Contingency table

Observed Expected Total
Presence 200 145.0 345.0
Absence 200 255.0 455.0
Total 400 400.0

Chi-square p value 1.0617312584670913E-8

277035E , 6794035 N

2Z-test probability value = 0.93106

Figure 3.3.: Results generated from the classiinadlgorithm: a) Classified image; b) Accuracyesssnent.

In the following chapter an assessment of the aatedthapproach to image classification is
presented. Additionally, the results of the clasations using the general signature and age
dependent signatures are presented and criticaltyissed.
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Chapter Four: Results and Discussion
4.1. Introduction

This chapter presents the results and a detaisclsiion thereof in light of the aim and
objectives of this study. An assessment of theraated approach to image classification
employed by the application and the implementatidnthe classification algorithm is
presented. Subsequently, the efficacy of the dleason algorithm in correctly identifying
black wattle tress in general are presented armaised. Finally, this chapter concludes with

the results of the classification algorithm to itiigrblack wattle trees of varying age groups.
4.2. Automated approach to image classification

A cost effective and easy to use specialist rensatiesing application that provides an
automated approach to image classification wasldpeegd for this study. The application is a
stand alone program with specialist functionaligy the implementation of the classification
algorithm (figure 3.2.). The application automallicgrocesses the large volumes of data
associated with EO-1 Hyperion satellite imageryueing the classification process is
undertaken quickly and efficiently. Importantly, ethautomated approach to image
classification provides access to vital informatmm the spatial distribution of black wattle
trees quickly that would otherwise not have beeailable. This enables the application to be
used as a monitoring tool performing routine angkated classifications quickly. Routinely
mapping and monitoring the spatial distributiorbtEck wattle trees is essential in providing
environmental managers with near real time inforomabn the spatial distribution of black
wattle trees. This information is critical in infomg environmental managers where removal

efforts should be targeted and how effective previeemoval efforts were.

Special care was taken to ensure that the applicgirovides simple and easy to use
interfaces. Each of the interface elements weregded to be clear ensuring that user
interaction with the application was kept to thenimum. This enables new end users and
less skilled personnel to operate the applicatidmlsiv still producing highly accurate

classification maps. The application was desigreedllow end users to input predefined
spectral signatures of black wattle trees rathan tdefining training sites. This design

decision obviates the need for using well trainedspnnel to identify training sites for
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generating spectral signatures during the classifio process which is time consuming and

expensive to conduct.
4.3. Image classification

Through visual interpretation of the classificagont is apparent that the classification
algorithm is effective in mapping the spatial dition of black wattle trees using imaging
spectroscopy (figure 4.1.). The overall spatiatribation of black wattle trees is apparent
with black wattle trees identified and disperserbtighout both study areas indicating the
extent of the invasions (figure 4.1.). The classitfions illustrate clearly defined homogenous
areas which are the same as black wattle foretntaiions which are found throughout the
study areas (figure 4.1.). Outside of the definedinaaries of forestry plantations, black
wattle trees which exhibit a fragmented spatiatrgigtion were mapped within complex land
uses (figure 4.1.). A fragmented distribution ilmm&oareas was expected owing to the pixel
based approach to classification employed by thassdication algorithm and the
unpredictable natural dispersal mechanisms théaitllise black wattle trees into non native
areas. Particularly, smaller pockets of black \eattees were mapped near commercial
forestry plantations indicating possible invasiarioi non native areas from commercial
forestry plantations. Further, black wattle treesevmapped with co-occurring vegetation in
regions known to be dense bush land cover in attysareas. These regions are particularly
vulnerable because of the accessibility from foyegtantations and ideal growth conditions
of the region. These smaller areas of invasion idethe location of invasive black wattle
trees and the severity of invasion at a local apatiale so that removal and control efforts

can be targeted.

The classification algorithm was able to accuratelgntify and map black wattle trees
throughout both study areas. An overall accuracg®P5% and 84.50% was achieved for
study area one and study area two respectivelyl€T4li.). The kappa co-efficient was
0.72% and 0.69% for study area one and study areadspectively, which is a moderate
agreement between the classification and referdata (Table 4.1.). This level of accuracy
could be attributed to the stringent conditionscpthupon by the classification algorithm.
The statistical test was carried out within 95% fience intervals as well as pixels with
only greater than 95% of the bands per pixel beainglar to the spectral signature were
classified as black wattle being present. Simieuits were seen by Russel (2009) in which
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black wattle trees were identified and mapped uSB@T 5 imagery. An overall accuracy of
78.77% with a kappa statistic of 0.7495 was aclidewethe Fort Nottingham area (Russel,
2009). Further, a study by Ustmt al. (2002) detected IAP species using AVIRIS data.
Results included the mapping Afundo donax at accuracies of 90.68% and 97.79% using a
spectral angle mapper and maximum likelihood di&ssion respectively in the Camp
Pendleton Marine Base in California. The high lewd#l accuracy achieved by the
classification algorithm could be due to large earications of black wattle trees ensuring
their detection. Further, the use of detailed speésignatures and high spectral resolution
Hyperion imagery provides more rigorous spectralcmag. Smaller spectral variations are
considered thereby discriminating invasive blacktiatrees from complex co-occurring
land uses. Within image classification, there isoastant motivation to achieve the highest
level of accuracy possible. The level of accuratyclassifications can be improved by
identifying invasive black wattle trees using uregqumorphological or physiological
properties or at key phenological stages. Hestal. (2008) identified invasive vegetation
(Perennial pepperweed, Water hyacinth, submergedtiaqvegetation) using hyperspectral
remote sensing in the California Delta ecosysterasuRs showed that both Perennial
pepperweed and Water hyacinth exhibited significgypéctral variation related to plant
phenology. Despite this, the high overall accura@rrants the use of the black wattle
classification algorithm to identify invasive blagkattle trees using hyperspectral satellite
imagery.

A user’s accuracy indicates the probability thatixel classified on the map represents that
category on the ground (Story and Congalton, 1986producer’'s accuracy indicates the
probability of a reference pixel being correctlpsdified (Congalton, 1991). Both, the user’s
and producer’s accuracy are critical in ensurirgg the extent of invasive black wattle trees
are not under or over estimated. Results fromdtudy have shown that the user’s accuracy
for black wattle trees were 72.50% and 69.00% tady area one and study area two
respectively (Table 4.1.). The classification aitjon has underestimated the presence of
black wattle trees. The producer’'s accuracy for btatk wattle trees were 78.43% and
76.33% for study area one and study area two réspic(Table 4.1.). Results from the chi-
squared test showed that there was a significdfereince (p < 0.05) between the observed
and expected values for study area one and stuady taro (Table 4.1.). The discrepancy
between the classification and reference data coeldttributed to spectral confusion when

classifying certain pixels. The EO-1 Hyperion senkas a low spatial resolution. Black
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wattle trees may not occupy the full extent of xeptherefore incorporating spectra from a
range of land covers into a single spectral prafésulting in spectral confusion. To detect
smaller patches of invasive black wattle treesubke of higher spatial resolution may be
advantageous. Using high spatial resolution imadand covers can be spatially separated
limiting the extent of spectral confusion betweand covers. Despite this, the black wattle

classification algorithm provides the probabilityat black wattle is present within a pixel.

Results from the classification show that generélg probabilities of black wattle trees
being present are moderate (0.25-0.50) to very Kigh5-0.99) within areas of potential
invasion. Probabilities are very high at the centfepotential stands of invasion with
probabilities decreasing from very high to modettateards the outside of these areas. As
black wattle trees become sparsely distributed tdsvdhe edges of dense clumps the
probability decreases. This is due to possible tsgleconfusion as the land cover changes
from predominantly black wattle to other land cevefhe black wattle trees that have
invaded non native regions occur in sparsely digteéd patches of a few pixels. These
regions particularly in study area two have a matemprobability. Moderate and high
probability values can be misleading. Probabiliglues could be influenced by spectral
confusion resulting in lower probability values thiat the probability of black wattle trees
being present is actually low. Environmental manageill need to assess if valuable
resources can be utilized in these areas to rerandecontrol invasive black wattle trees.
However, these areas provide insight into aredasntiag be experiencing the early stages of
invasions. Therefore environmental managers carbabihe propagation of invasive black

wattle trees at the inception of the invasion.

It is concluded that the classification algorithenadequate in identifying and mapping the

spatial distribution of invasive black wattle traesng Hyperion data.
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Table 4.1.:Results of the accuracy assessment for blackenagtbs for study area one and study area two

Study area one

Overall

Kappa User’s Producer’s Users Producer$ Chi
accuracy(%) statistic accuracy(%) | accuracy(%) | accuracy(%) | accuracy(%) square
86.25 0.72 72.50 100 100 78.43 <0.05
Study area two
Overall Kappa User’s Producer’s Users Producer’$ Chi
accuracy(%) statistic accuracy(%) | accuracy(%) | accuracy(%) | accuracy(%) square
84.50 0.69 69.00 100 100 76.33 <0.05

"~ indicates black wattleA{ mearnsii) presence

*_ indicates black wattleX{ mearnsii) absence
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Figure 4.1.: Classified images indicating the pneseand absence of black wattke ihearnsii) trees: a) Study

area one; b) Study area two.
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4.4. Age dependent image classification

Invasive black wattle trees are a major threatatumal ecosystems therefore removing them
at a young age is critical to mitigating future atge environmental impacts. However, it is
a challenge to identify young black wattle treethmi non native areas using remote sensing
techniques. Young black wattle trees are smallize and lack the spatial dominance at a
micro spatial scale to ensure its detection. Ther@piate satellite imagery (high spatial
resolution, high spectral resolution) and clasatfan algorithm must be utilized to ensure
that classifications are undertaken accurately.rQwee, the ageing of a tree changes its
morphology, physiological status and presence wiéim environment; positively influencing
its spectral reflectance and ability to be detectessentially, there is a need to assess the
accuracy of age specific classifications to endina the youngest black wattle tree is

identified with the highest of accuracies.

The classification algorithm was able to identifydamap age specific black wattle trees in
both study areas (figure 4.2. and 4.3.). Resutis fthe accuracy assessment are illustrated in
Table 4.2. Results show that the overall accurddylack wattle trees between three to five
years of age was 62% (kappa statistic: 0.24) fodystirea one and 74.50% (kappa statistic:
0.49) for study area two (Table 4.2.). Young invasblack wattle trees have small crowns
that do not cover a large area which exposes tbangr and surrounding vegetation to
detection. EO-1 Hyperion data has a low spatialu®n (30 m) capturing reflectance from

a range of scene elements within a complex envieminTherefore, the spectral profiles of
pixels are not pure which could have resulted iecspl confusion. However, the high
spectral resolution of collected spectral profilwsuld assist in discriminating between
different co-occurring vegetation species. Desthite, the moderately high overall accuracy
is a positive indication that young black wattleets between three to five years of age can be
identified and mapped. The overall accuracy inaddsr trees of three to five and seven to
nine years of age which could be attributed togiteevth of the plant. Results showed that the
overall accuracy achieved when identifying blacktiearees between seven to nine years of
age for study area one was 78.50% (kappa statis8@) (Table 4.2.). Older invasive black
wattle trees proliferate and propagate rapidlyl#istiaing themselves within an environment.
Black wattle trees cover a much larger area andirogt dense clumps within natural
ecosystems. Their large coverage tends to elimmaenative vegetation through shade and

competition. This allows them to be the dominanéngc element within a pixel scene
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ensuring its detection using low resolution satelimagery. Invasive black wattle trees
(seven to nine years) were detected with a modgraigh accuracy; however, it is detection
of emerging invasive black trees that are requit@€dnversely, young black wattle trees were
detected with relatively lower accuracy. A balamaauld need to be struck between the age
of the trees and an acceptable level of accuraser @me, invasive black wattle trees
completely dominate an area which should resutteitection with the highest of accuracies.
However, results from this study showed that theral accuracies and kappa statistics
decreased from seven to nine years (overall acgur&c50%, kappa statistic: 0.57) to eleven
to thirteen years (overall accuracy: 69.50%, kagfadistic: 0.39) of age for study area one
(Table 4.2.). Similarly, overall accuracies and pastatistics decreased from seven to nine
years (overall accuracy: 75%, kappa statistic: 0#0eleven to thirteen years (overall
accuracy: 72.50%, kappa statistic: 0.45) of agestiody area two (Table 4.2.). Older trees are
more susceptible to environmental stress such @s d& water availability and nutrients
supply at a local scale. These physiological st®sgould alter the spectral profile of the
trees even though they may appear healthy, constguegatively influencing its detection.
Despite this, the overall accuracy of black watitéees between eleven to thirteen years age
was still higher than the overall accuracy achiebgdthe three to five years age group
classification. Generally, the relatively high cakkraccuracies are a positive indication that

the classification algorithm can identify black Wlatrees of varying age groups.

Although the overall accuracy of the classificatiomere relatively high the user’s accuracy
were very low (20%) to moderately (60%) high for @je groups for both study areas. A
user’s accuracy of 24%, 56.99% and 39% was achiéwedlack wattle presence for the
three to five, seven to nine and eleven to thirt@ga groups respectively for study area one
(Table 4.2.). Further, a user’s accuracy of 49%p%Mhd 49% was achieved for black wattle
presence for the three to five, seven to nine #&wka to thirteen age groups respectively for
study area two (Table 4.2.). Results from the cjiased test showed that there was a
significant difference (p < 0.05) between the obedrand expected values for both study
areas for all age groups (Table 4.2.). The low’ssmcuracy for black wattle trees between
three to five years of age could be attributed gectral confusion. Young invasive black
wattle trees are small in size which exposes tlmurgt and surrounding vegetation to
detection. EO-1 Hyperion data has a low spatialue®n (30 m) capturing reflectance from
a range of scene elements within a complex envieminTherefore, the spectral profiles of

pixels are not pure which could have resulted iactpl confusion. However, the user’s
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accuracy should have been higher for black wattlestbetween seven to nine and eleven to
thirteen years of age. Variability in the spatistdbution, density and percentage cover that
black wattle trees occupy within a pixel could haegatively influenced its detection. The
use of higher spatial resolution satellite imageould be better suited to limit the variability
of scene elements within a pixel thus enhancingl#tection of black wattle trees. Therefore,
the moderate results achieved by this study ardatiéd to inappropriate satellite imagery
used for age specific classifications and not ttieaey of the classification algorithm. A
producer’s accuracy of 56.81%, 69.93% and 62.11% achieved for black wattle absence
for the three to five, seven to nine and elevethideen age groups respectively for study
area one (Table 4.2.). Further, a producer's acguoh 66.22%, 66.66% and 64.51% was
achieved for black wattle absence for the threévi®y seven to nine and eleven to thirteen
age groups respectively for study area two (Tabk).4Indirectly, this level of accuracy
could be attributed to the stringent conditionscpthupon by the classification algorithm.
Pixels may not have been classified owing to tgerdus spectral matching employed by the
classification algorithm leading to a great numbgepixels being classified as black wattle
absence.

In summary, the classification algorithm can idignéind map age specific black wattle trees
with a relatively high overall accuracy. Howevdre tuser’'s accuracy for age specific black
wattle classifications was poor. The low spatigltation of EO-1 Hyperion data could have
resulted in spectral confusion and increased viitialwithin pixels. Therefore, the low
user’s accuracies could be attributed to the uselafively low resolution satellite imagery
and not the efficacy of the classification alganthHowever, the high producer’s accuracies
for black wattle absence could be attributed todtmengent conditions of the classification
algorithm resulting in the misclassification of thawattle trees. It is concluded that the
classification algorithm is adequate in identifyiaigd mapping the spatial distribution of age

specific black wattle trees using imaging specipgc
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Table 4.2.:Results of the accuracy assessment for all ageogrou study area one and study area two

Study area one

Age Overall Kappa User’s Producer’s User's Producer’$ Chi
group  accuracy(%) statistic  accuracy(%) accuracy(%) accuracy(%) accuracy(%) square

3-5 62.00 0.24 24.00 100 100 56.81 <0.05
7-9 78.50 0.57 56.99 100 100 69.93 <0.05
11-13 69.50 0.39 39.00 100 100 62.11 <0.05

Study area two

Age Overall Kappa User's Producers  Userd Producer'$ Chi
group accuracy(%)  statistic accuracy(%) accuracy(%) accuracy(%) accuracy(%) square

3-5 74.50 0.49 49.00 100 100 66.20 <0.05
7-9 75.00 0.50 50.00 100 100 66.66 <0.05
11-13 72.50 0.45 49.00 100 100 64.51 <0.05

"~ indicates black wattleX{ mearnsii) presence

*_ indicates black wattleX{ mearnsii) absence
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Figure 4.2.: Classified images indicating the pneseand absence of black watte ihearnsii) trees at three to five, seven

to nine and eleven to thirteen years of age falysurea one: a) Three to five; b) Seven to nin&leyen to thirteen.

40



& Black wattle classification

[E=N

Classified Image

276555 E, 6771175N

2-test probability value = 0.85148

4 Black wattle classification

fl o ]

G Black wattle classification

Classified Image

274725E , 6766345 N

Z-test probability value = 0.73454

a

Legend
B oo
050-075
025-0.50
I oo

W e w W

0.00 R ey

Classified Image

Legend
B o700
050-0.75
0.25-0.50
I oo N
P R T WJr*L
0.00 S5 T

276555 E , 6771775 N

2-test probabiity value = 0,91984

b

c

Figure 4.3.: Classified images indicating the pneseand absence of black watte ihearnsii) trees at three to five, seven

to nine and eleven to thirteen years of age fatysturea two: a) Three to five; b) Seven to nineEleven to thirteen.
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Chapter Five: Conclusions and Recommendations

5.1. Introduction

This study aimed to determine the potential of assification algorithm to identify black
wattle (Acacia mearnsii De Wild.) trees using imaging spectroscopy. Thiaptar assesses
the aim and related objectives to determine if thveye achieved within the framework of
this study. Subsequently, the limitations of thiady are presented and evaluated. This

chapter concludes with the recommendations foréustudies.
5.2. Aim and objectives reviewed

This study aims to investigate the potential ofl@ssification algorithm to identify black
wattle (Acacia mearnsii De Wild.) trees using imaging spectroscopy. In otdeachieve this

aim the following objectives were identified:

* To develop an image classification algorithm thalt wentify black wattle Acacia

mearnsii De Wild.) trees using hyperspectral EO-1 Hyperiatad

This was achieved by developing a specialist renssrsing application in the Java
programming language. The application was progragntogrocess EO-1 Hyperion header
files, EO-1 Hyperion data files, spectral signatfiles (.txt) and ground reference data files
(.txt). A pixel based classification algorithm wa@esveloped based on the z test statistical test.
The classification algorithm was a pixel based sifees for hyperspectral EO-1 Hyperion
data. The classification algorithm was implementeihin the application to produce
classified images that indicate the presence ceraigsof black wattle trees over the area of

interest.

» To assess the image classification algorithm’sitgbib automate the classification

process.
This was achieved by creating a simple, clear asy-60-use user interface that facilitated

the input of data into the classifier quickly. Tahghout this process, the user interface
ensured that user interaction was kept to the mimm Importantly, the application
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implemented the classification algorithm which awédically conducted the classification
process quickly and efficiently. Further, the cifisation algorithm automatically creates a
map indicating the presence and absence of blatkewtaees with associated accuracy
assessment for users to interpret. It was conclutat the classification algorithm can

automatically identify and map black wattle tresghng EO-1 Hyperion data.

* To assess the efficacy of the image classificagiigorithm in identifying black wattle

(Acaciamearnsii De Wild.) trees using hyperspectral EO-1 Hyperiatad

This was achieved by applying the classificatiggoathm to EO-1 Hyperion data (study area
one, study area two) using a general spectral gigmaf black wattle trees. The application
produced a classified image with an associatedracguassessment of the classification.
Results showed an overall accuracy of 86.25% (usecaracy: 72.50%; kappa 0.725) and
84.50% (users accuracy: 69%; kappa: 0.69) for stadsa one and study area two
respectively. It was concluded that the classiicagalgorithm is adequate in identifying and
mapping the spatial distribution of invasive blacéttle trees using imaging spectroscopy in

KwaZulu-Natal, South Africa.

* To assess the accuracy of the image classificatigorithm to identify black wattle
(Acacia mearnsii De Wild.) trees of varying age groups using hypecs@al EO-1
Hyperion data.

This was achieved by applying the classificatiggoathm to EO-1 Hyperion data (study area
one, study area two) using age specific spectgalasures of black wattle trees. Black wattle
trees between three to five years of age wereitiabsvith the lowest overall accuracy and
user's accuracy. The highest overall accuracy asel’'si accuracy was achieved when
identifying black wattle trees between seven tenyrars of age. It was concluded that the
classification algorithm is adequate in identifyiaigd mapping the spatial distribution of age
specific black wattle trees using imaging specwpsgc It was also concluded that black
wattle trees between seven and nine years of agepsimal for remote sensing with a high

accuracy.
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5.3. A synthesis

This study has illustrated the potential of a dfasgion algorithm to identify black wattle
trees using imaging spectroscopy. The applicatroviges an automated approach to image
classification, through the implemention of thesslfication algorithm. This study has shown
that the classification algorithm can identify Mawattle trees with a very high overall
accuracy (>84%) using a general spectral signdturboth study areas. Further, this study
has shown that the classification algorithm camtidfie black wattle trees of varying age
groups using age specific spectral signatures atkblattle trees for both study areas.
However, black wattle trees between three to fary of age were classified with the lowest
overall accuracy and user’s accuracy. The low gsmrturacies could be attributed to the use
of relatively low resolution satellite imagery amobt the efficacy of the classification
algorithm. This is disadvantageous as it prevemsng black wattle trees from being
detected and removed before causing significantithey environmental impacts in non
native areas. However, the highest overall accuamtyuser’'s accuracy was achieved when
identifying black wattle trees between seven tenjears of age. Black wattle trees between
seven and nine years of age are optimal for res®teing with a high accuradynportantly,
this study has illustrated that invasive black lgattees can be identified accurately using
remote sensing techniques. There is also greanpaltéor using this developed algorithm for
the identification and mapping of other plant spsciThis may require the capture of the

spectral signature of those plants and their irm@pon into the algorithm.
5.4. Limitations of this study

One of the limitations of this study was that tipplacation and classification algorithm was
developed to process EO1-Hyperion data only. Furth®-1 Hyperion data has a relatively
low spatial resolution and invasive black wattkees may not occur in large enough clumps
to be detected thus resulting in spectral confusiime classification algorithm did not
incorporate subpixel spectral un-mixing to ensuassifications of the highest of accuracies.
During the classification process, ground referestett@ was collected from thematic maps of
the study areas. Inherent errors that were presghin the thematic map could have
propagated through the classification process negjaiaffecting the accuracy assessment of

the classification.
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5.5. Recommendations for future studies

This study has illustrated the potential of a dfasgion algorithm to identify black wattle
tress using EO1-Hyperion data. However, the apiphicashould be developed further to
process a range of satellite images from diffepéatforms. The application should be able to
process multi-spectral data as it is freely andelyicavailable. The application should also
incorporate subpixel spectral un-mixing ensuriragsifications of the highest of accuracies.
Future studies should focus on assessing the fitasigin algorithms performance classifying
different satellite images from different sens@tudies should focus on detecting invasive
black wattle trees using hyperspectral imagery bfgher spatial resolution so that spectral
confusion can be minimized. This study employedu$e of general and age specific spectral
signatures for black wattle trees. Future studiesiksl identify unique spectral signatures to
identify black wattle trees at key morphological daphenological stages of plant
development thus enhancing its detection. Furfinéure studies should focus on developing
predictive models to model the spread of invasileck wattle trees. This would allow
environmental managers to target and implementabefforts in areas before they become
severely invaded. This study has taken the fiegpssin achieving this goal as black wattle

trees can be identified and mapped using imagiegtspscopy.
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Appendix A

Source code implementing the black wattle classifation algorithm

Al.1.BlackWattle. java

package bw2;

import
import
import
import
import
import
import
import

import
import
import
import
import
import

/**

java.awt.x;

java.awt.event.x;
java.awt.geom.Rectangle2D;
java.awt.image.BufferedImage;
java.awt.image.ImageObserver;
java.awt.print.x*;

java.io.x*;
java.util.Iterator;

javax.imageio.ImagelO;
javax.imageio.ImageWriter;
javax.imageio.stream.ImageOutputStream;
javax.swing.*;

javax.swing.border.x*;
org.apache.commons.math.MathException;

* A class that creates and displays the graphical user interface

* for
*/
public

the application.
class BlackWattle implements Printable {
private static final ImageObserver observer = null;

VEXS

* Main method

* @throws IOException

*/

public static void main (String[] args)
throws IOException {

try {

UIManager.setlLookAndFeel (UIManager.getSystemLookAndFeelClassName());
} catch (Exception e) {
e.printStackTrace();

}
BlackWattle gui = new BlackWattle();
gui.blackWattleHome();

3

private JMenultem jmibwclass, jmiopen, jmiexport, jmiclose, jmiprint;

private JButton jbtih, jbtid, jbts, jbto, jbtr, jbtc, jbtv, jbtci;

private JTextField directl, direct2, direct3, direct4, direct5;

private String pathifh = null, pathifd = null, pathis = null, pathiv = null, pathio = null;
static String path;
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/**

* Creates a new BlackWattle instance.
*/

public BlackWattle() {

3

/**

Creates and displays the first graphical user interface
that is seen on startup. This graphical user interface
comprises of a frame with two menu items that is

"File" and "Classification” menu items. It is the
classification menu item that leads to the "Black
wattle classification” graphical user interface.
@throws IOException

* % % X % ¥ oF

*/
public void blackWattleHome()
throws IOException {

final Imagelcon leaf = new ImagelIcon("resources/leaf.png");
Font font = new Font ("ArialNarrow"”, @, 12);

/**Creates a frame*x/

JFrame frame = new JFrame("ESDA");

frame.setSize(744, 365);

frame.setResizable(false);
frame.setlLocationRelativeTo(null);
frame.setIconImage(leaf.getImage());
frame.setVisible(true);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

/**Creates and adds a menu bar to the frame*x/
JMenuBar jmb = new JMenuBar();
frame.setJMenuBar(jmb);

/**Adds a "File" menu to the menu barxx/
JMenu filemenu = new JMenu("File");
filemenu.setFont(font);
jmb.add(filemenu);

/**xAdds a "Classification” menu to the menu barxx/
JMenu classificationmenu = new JMenu("Classification”);
classificationmenu.setFont(font);
jmb.add(classificationmenu);

/**xAdds menu items to the "File" menuxx*/
filemenu.add(jmiopen = new JMenuItem ("Open file"));
jmiopen.setFont(font);

filemenu.add(jmiexport = new JMenultem ("Export"));
jmiexport.setFont(font);

filemenu.addSeparator();

filemenu.add(jmiclose = new JMenultem ("Exit"));
jmiclose.setFont(font);

filemenu.add(new JSeparator(JSeparator.VERTICAL));
classificationmenu.add(jmibwclass = new JMenultem("Black wattle classification”));
jmibwclass.setFont(font);

/*xAdds the startup image to the framexx*/

BufferedImage intro = ImagelO.read(new File("resources/intro.png"));
JLabel introlabel = new JLabel(new ImageIcon(intro));
frame.add(introlabel);
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/**Register listeners*x/
jmiopen.addActionListener(new ActionListener() {
public void actionPerformed (ActionEvent e) {

path = chooseFiles();

try {
displayClassifiedImage(path);

} catch (NullPointerException el) {
JOptionPane.showMessageDialog(null, "ERROR select a classified
image(.png) to display.”, "Error”, JOptionPane.ERROR_MESSAGE);

} catch (FileNotFoundException el) {
JOptionPane.showMessageDialog(null, "ERROR classified image not
found."”, "Error", JOptionPane.ERROR_MESSAGE);

} catch (IOException el) {

JOptionPane.showMessageDialog(null, "ERROR reading classified
image file."”, "Error", JOptionPane.ERROR_MESSAGE);

1

jmiexport.addActionListener(new ActionListener() {
public void actionPerformed (ActionEvent e) {
try {
exportClassifiedImage();
} catch (IOException el) {
JOptionPane.showMessageDialog(null, "ERROR creating exported
image.", "Error", JOptionPane.ERROR_MESSAGE);

1

jmiclose.addActionListener(new ActionListener() {
public void actionPerformed (ActionEvent e) {
System.exit(@);
}

s
jmibwclass.addActionListener(new ActionListener() {

public void actionPerformed (ActionEvent e) {
blackWattleClassification();
}

s

Creates and displays the classification algorithm graphical user
interface. The user is prompted to select the relevant files

each field.

> Hyperion Image Header File: Select the Hyperion image header file(.HDR).

> Hyperion Image Data File: Select the Hyperion image data file.

> Spectral Signature File: Select the spectral signature file(.txt) captured
from the image.
Select the "Image" checkbox.

> Ground Truth Data File: Select the ground truth data file(.txt).
Select the "Validation” checkbox.

> Save Classified Image As: Select the location where the classified image
will be save be to.



public void blackWattleClassification() {

Imagelcon leaf = new Imagelcon("resources/leaf.png");
Font font = new Font ("ArialNarrow”, @, 11);
Border loweredetched = BorderFactory.createEtchedBorder (EtchedBorder.LOWERED);

/**Panel to hold the Hyperion image header and data filexx/
final JPanel pla = new JPanel(new FlowLayout(FlowLayout.LEFT, 10, 5));

pla.add(jbtih = new JButton("Hyperion Image Header File"));
jbtih.setPreferredSize(new Dimension(166, 20));
jbtih.setFont(font);

jbtih.setHorizontalAlignment (SwingConstants.LEFT);
pla.add(directl = new JTextField());
directl.setPreferredSize(new Dimension(518, 21));
directl.setFont(font);

final JPanel plb = new JPanel(new FlowLayout(FlowLayout.LEFT, 10, 5));
plb.add(jbtid = new JButton("Hyperion Image Data File"));
jbtid.setPreferredSize(new Dimension(166, 20));

jbtid.setFont(font);

jbtid.setHorizontalAlignment (SwingConstants.LEFT);

plb.add(direct2 = new JTextField());

direct2.setPreferredSize(new Dimension(518, 21));
direct2.setFont(font);

final JPanel pl = new JPanel(new GridLayout(2, 2, 0, 0));
pl.add(pla);

pl.add(plb);

pl.setBorder(loweredetched);

/**Creates the checkboxes*x/

final JCheckBox jimg = new JCheckBox("Image File");
jimg.setFont(font);

final JCheckBox jval = new JCheckBox("Validation");
jval.setFont(font);

/**Panel to hold the spectral signature and ground truth data filesxx/
final JPanel p2a = new JPanel(new FlowLayout(FlowLayout.LEFT, 10, 5));

p2a.add(jbts = new JButton("Spectral Signature File "));
jbts.setPreferredSize(new Dimension(166, 20));
jbts.setFont(font);

jbts.setHorizontalAlignment (SwingConstants.LEFT);
p2a.add(direct3 = new JTextField());
direct3.setPreferredSize(new Dimension(518, 21));
direct3.setFont(font);

JPanel p2b = new JPanel(new FlowLayout(FlowLayout.RIGHT, 130, 5));
p2b.add(jimg);

final JPanel p2c = new JPanel(new FlowLayout(FlowLayout.LEFT, 10, 5));
p2c.add(jbtv = new JButton(”Ground Truth Data File "));
jbtv.setPreferredSize(new Dimension(166, 20));

jbtv.setFont(font);

jbtv.setHorizontalAlignment (SwingConstants.LEFT);
jbtv.setEnabled(false);

p2c.add(direct4 = new JTextField());

direct4.setPreferredSize(new Dimension(518, 21));
direct4.setFont(font);

direct4.setEditable(false);
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JPanel p2d = new JPanel(new FlowLayout(FlowLayout.RIGHT, 128, 5));
p2d.add(jval);

final JPanel p2 = new JPanel(new GridLayout(4, 2, 0, 0));
p2.add(p2a);

p2.add(p2b);

p2.add(p2c);

p2.add(p2d);

p2.setBorder(loweredetched);

/**Panel to hold the output classified image filexx/
final JPanel p3 = new JPanel(new FlowLayout(FlowLayout.LEFT, 10, 5));

p3.add(jbto = new JButton("Save Classified Image As"));
jbto.setPreferredSize(new Dimension(166, 20));
jbto.setFont(font);

p3.add(direct5 = new JTextField());
direct5.setPreferredSize(new Dimension(518, 21));
direct5.setFont(font);

p3.setBorder(loweredetched);

/**Panel to hold the apply and cancel buttonsxx/
final JPanel p4 = new JPanel(new FlowLayout(FlowLayout.LEFT, 10, 5));

p4.add(jbtr = new JButton("Apply"));
jbtr.setPreferredSize(new Dimension(70, 20));
jbtr.setFont(font);

p4.add(jbtc = new JButton("Cancel”));
jbtc.setPreferredSize(new Dimension(70, 20));
jbtc.setFont(font);
p4.setBorder(loweredetched);

/**xPanel to hold all created panels*x/

final JPanel p5 = new JPanel(new FlowLayout(FlowLayout.RIGHT, 10, 14));
p5.add(pl);

p5.add(p2);

p5.add(p3);

p5.add(p4);

/**xCreates the Black wattle classification framexx/

final JFrame bwframe = new JFrame("Black wattle classification”);
bwframe.setSize(744, 365);

bwframe.setResizable(false);

bwframe.setlLocationRelativeTo(null);
bwframe.setIconImage(leaf.getImage());

bwframe.setVisible(true);
bwframe.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
bwframe.add(p5);

/**Register listenersxx/
jbtih.addActionListener(new ActionListener() {
public void actionPerformed (ActionEvent e) {
if (e.getSource() == jbtih) {
pathifh = chooseFiles();
directl.setText(pathifh);
directl.setCaretPosition(0);

1

jbtid.addActionListener(new ActionListener() {
public void actionPerformed (ActionEvent e) {



if (e.getSource() == jbtid) {
pathifd = chooseFiles();
direct2.setText(pathifd);
direct2.setCaretPosition(0);

1

jbts.addActionListener(new ActionListener() {
public void actionPerformed (ActionEvent e) {
if (e.getSource() == jbts) {
pathis = chooseFiles();
direct3.setText(pathis);
direct3.setCaretPosition(0);

s

jimg.addActionListener(new ActionListener() {
public void actionPerformed (ActionEvent e) {
}

s

jval.addActionListener(new ActionListener() {
public void actionPerformed (ActionEvent e) {

if (jval.isSelected() == true) {
direct4.setEditable(true);
jbtv.setEnabled(true);

} else if (jval.isSelected() == false) {
direct4.setEditable(false);
jbtv.setEnabled(false);

s

jbtv.addActionListener(new ActionListener() {
public void actionPerformed (ActionEvent e) {
if (e.getSource() == jbtv) {
pathiv = chooseFiles();
direct4.setText(pathiv);
direct4.setCaretPosition(0);

s

jbto.addActionListener(new ActionListener() {
public void actionPerformed (ActionEvent e) {
if (e.getSource() == jbto) {

JFileChooser jc = new JFileChooser();

jc.showSaveDialog(null);

try {
pathio = jc.getSelectedFile().getCanonicalPath() + ".png";

} catch (NullPointerException el) {
JOptionPane.showMessageDialog(null, "Input classified
image file name."”, "Error", JOptionPane.ERROR_MESSAGE);

} catch (IOException el) {
JOptionPane.showMessageDialog(null, "ERROR creating
classified image.", "Error", JOptionPane.ERROR_MESSAGE);

}

direct5.setText(pathio);

direct5.setCaretPosition(0);
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jbtr.addActionListener(new ActionListener() {
public void actionPerformed (ActionEvent e) {
if (e.getSource() == jbtr) {

1

try {
HyperionImage hyperionimage = new HyperionImage(pathifh,

pathifd);
StatisticalTests spectralsignature = new
StatisticalTests(pathis, hyperionimage);
if (jimg.isSelected() == false) {
throw new IllegalArgumentException();
} else if (jimg.isSelected() == true) {
spectralsignature.setImgVal();
3

spectralsignature.zTable();

if (jval.isSelected() == true) {
StatisticalTests validation = new
StatisticalTests(pathiv, hyperionimage);
validation.setObservedExpectedVal();
validation.chiSquaredTest();

3
if (pathio == null) {

throw new NullPointerException();
}

RasterImage rasterimage2 = new RasterImage(pathio,

hyperionimage);

rasterimage2.createRaster();;

rasterimage2.classifiedImageFrame();

if (jval.isSelected() == true) {
rasterimage2.accuracyAssessmentFrame();

}
catch (IllegalArgumentException el) {
JOptionPane.showMessageDialog(null, "Select spectral
signature file.” + "\nSelect either ASD file or Image
file checkbox."”, "Error", JOptionPane.ERROR_MESSAGE);
catch (NullPointerException el) {
JOptionPane.showMessageDialog(null, "Select spectral

signature file.” + "\nInput classified image file name.

"Error"”, JOptionPane.ERROR_MESSAGE);

catch (FileNotFoundException el) {
JOptionPane.showMessageDialog(null, "ERROR spectral
signature file not found."”, "Error",
JOptionPane.ERROR_MESSAGE) ;

catch (IOException el) {
el.printStackTrace();
JOptionPane.showMessageDialog(null, "ERROR reading
spectral signature file.”, "Error”,
JOptionPane.ERROR_MESSAGE) ;

catch (MathException el) {
el.printStackTrace();

jbtc.addActionListener(new ActionListener() {
public void actionPerformed (ActionEvent e) {
if (e.getSource() == jbtc) {

}

bwframe.setVisible(false);

n
)
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/**
* Creates and displays the graphical user interface to display the
* classified image.
* @param pathio Pathname of the classified image
* @throws FileNotFoundException
* @throws IOException
*/

public void displayClassifiedImage(String pathio)
throws FileNotFoundException, IOException {

try {
Imagelcon leaf = new Imagelcon("resources/leaf.png");
Font font = new Font ("ArialNarrow”, @, 11);
Font font2 = new Font ("ArialNarrow”, Font.BOLD, 13);
BufferedImage image = null;
String pathci = pathio;

/**Reads the classified imagex*/

image = ImagelO.read(new File(pathci));

JLabel classifiedimage = new JLabel(new Imagelcon(image));
int height = image.getWidth();

int width = image.getHeight();

/**Panel to hold the titlexx/

final JPanel pl = new JPanel(new FlowLayout(FlowLayout.CENTER, height / 2 -
25, 5));

JLabel classifiedimagel = new JLabel("Classified Image");
classifiedimagel.setFont(font2);

pl.add(classifiedimagel);

/**Panel to hold the classified imagexx/
final JPanel p2 = new JPanel(new FlowLayout(FlowLayout.CENTER, 0, 0));
p2.add(classifiedimage);

/**Panel to hold the legendxx/
final JPanel p3 = new JPanel(new GridLayout(5, 2, 10, 5));
p3.setBorder(new TitledBorder("Legend"));

final JTextField red = new JTextField();
red.setBackground(Color.RED);
red.setEditable(false);

p3.add(red);

JLabel legendl = new JLabel("0.75 - 0.99");
legendl.setFont(font);

p3.add(legendl);

final JTextField yellow = new JTextField();
yellow. setBackground(Color.YELLOW);
yellow.setEditable(false);

p3.add(yellow);

JLabel legend2 = new JLabel("0.50 - 0.75");
legend2.setFont(font);

p3.add(legend2);

final JTextField green = new JTextField();
green.setBackground(Color.GREEN);
green.setEditable(false);

p3.add(green);
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JLabel legend3 = new JLabel("0.25 - 0.50");
legend3.setFont(font);
p3.add(legend3);

final JTextField blue = new JTextField();
blue.setBackground(Color.BLUE);
blue.setEditable(false);

p3.add(blue);

JLabel legend4 = new JLabel("0.00 - 0.25");
legend4.setFont(font);

p3.add(legend4);

final JTextField wht = new JTextField(1);
wht.setBackground(Color .WHITE);
wht.setEditable(false);

p3.add(wht);

JLabel legend5 = new JLabel("0.00");
legend5.setFont(font);

p3.add(legend5);

/**Panel to hold the scale bar and north arrowxx/
final JPanel p4a = new JPanel(new BorderLayout(10, 10));

BufferedImage scale = ImagelO.read(new File("resources/scalebar2.jpg"));
JLabel scalelabel = new JLabel(new ImageIcon(scale));
p4a.add(scalelabel, BorderLayout.WEST);

BufferedImage northarrow = ImagelO.read(new File("resources/northarrow.jpg"));
JLabel northarrowlabel = new JLabel(new ImageIcon(northarrow ));
p4a.add(northarrowlabel, BorderLayout.EAST);

final JPanel p4 = new JPanel(new BorderLayout(10, 10));
p4.add(p4a, BorderLayout.SOUTH);

/**Panel to hold the panels containing the legend, scale bar, north arrow, co-
ordinate and statistical informationxx/

final JPanel p8 = new JPanel(new BorderLayout(10, 10));

p8.add(p3, BorderLayout.WEST);

p8.add(p4, BorderLayout.EAST);

/**xPanel to hold all created panels*x/

final JPanel p9 = new JPanel(new FlowLayout(FlowLayout.CENTER, 10, 10));
p9.add(pl);

p9.add(p2);

p9.add(p8);

/**Creates a frame for the the classified imagexx/
final JFrame frame = new JFrame("Classified image");
frame.setSize(height + 60, width + 270);
frame.setResizable(true);
frame.setlLocationRelativeTo(null);
frame.setIconImage(leaf.getImage());
frame.setVisible(true);
frame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
frame.add(p9);

/**Creates and adds a menu bar to the framexx/
JMenuBar jmb = new JMenuBar();
frame.setJIMenuBar(jmb);

/**Adds a menu "File" to the menu barxx/
JMenu filemenu = new JMenu("File");
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filemenu.setFont(font);
jmb.add(filemenu);

/**Adds menu items to the "File" menuxx/
filemenu.add(jmiprint = new JMenultem ("Print"));
jmiprint.setFont(font);

filemenu.addSeparator();

filemenu.add(jmiclose = new JMenultem ("Close"));
jmiclose.setFont(font);

/**Register listeners*x/
jmiprint.addActionListener(new ActionListener() {
public void actionPerformed (ActionEvent e) {
PrinterJob printJob = PrinterJob.getPrinterJob();
printJob.setPrintable(new BlackWattle());
boolean doPrint = printJob.printDialog();
if (doPrint) {
try {
printJob.print();
} catch (PrinterException el) {
/* The job did not successfully completex/
}

s
jmiclose.addActionListener(new ActionListener() {

public void actionPerformed (ActionEvent e) {
frame.setVisible(false);
}

s
} catch (IllegalArgumentException el) {

JOptionPane.showMessageDialog(null, "ERROR displaying the classified image."”,

"Error", JOptionPane.ERROR_MESSAGE);

3

/**
* Converts the classified image from .png to .tiff data format.
* @throws IOException
*/
public void exportClassifiedImage()
throws IOException {

ImageIcon leaf = new Imagelcon("resources/leaf.png”);
Font font = new Font ("ArialNarrow”, @, 11);
Border loweredetched = BorderFactory.createEtchedBorder (EtchedBorder.LOWERED);

/**Panel to hold the Hyperion image header and data filexx/
final JPanel pla = new JPanel(new FlowLayout(FlowLayout.LEFT, 10, 5));

pla.add(jbtci = new JButton(”"Classified Image"));
jbtci.setPreferredSize(new Dimension(166, 20));
jbtci.setFont(font);

jbtci.setHorizontalAlignment (SwingConstants.LEFT);
pla.add(directl = new JTextField());
directl.setPreferredSize(new Dimension(500, 21));
directl.setFont(font);

final JPanel plb = new JPanel(new FlowLayout(FlowLayout.LEFT, 10, 5));
plb.add(jbto = new JButton(”Save File As"));
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jbto.setPreferredSize(new Dimension(166, 20));
jbto.setFont(font);

jbto.setHorizontalAlignment (SwingConstants.LEFT);
plb.add(direct2 = new JTextField());
direct2.setPreferredSize(new Dimension(500, 21));
direct2.setFont(font);

final JPanel pl = new JPanel(new GridlLayout(2, 2, 0, 0));
pl.add(pla);

pl.add(plb);

pl.setBorder(loweredetched);

/**Panel to hold the apply and cancel buttons**/

final JPanel p2 = new JPanel(new FlowLayout(FlowLayout.LEFT, 10, 5));

p2.add(jbtr = new JButton("Apply"));
jbtr.setPreferredSize(new Dimension(70, 20));
jbtr.setFont(font);

p2.add(jbtc = new JButton("Cancel”));
jbtc.setPreferredSize(new Dimension(70, 20));
jbtc.setFont(font);
p2.setBorder(loweredetched);

final JPanel p5 = new JPanel(new FlowLayout(FlowLayout.RIGHT, 10, 10));

p5.add(pl);
p5.add(p2);

/**Creates a frame for the the classified imagexx/

final JFrame frame = new JFrame("Export classified image");
frame.setSize(744, 170);

frame.setResizable(false);
frame.setLocationRelativeTo(null);
frame.setIconImage(leaf.getImage());
frame.setVisible(true);
frame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
frame.add(p5);

/**Register listeners*x/
jbtci.addActionListener(new ActionListener() {
public void actionPerformed (ActionEvent e) {
if (e.getSource() == jbtci) {
pathifd = chooseFiles();
directl.setText(pathifd);
directl.setCaretPosition(0);

s

jbto.addActionListener(new ActionListener() {
public void actionPerformed (ActionEvent e) {
if (e.getSource() == jbto) {
JFileChooser jc = new JFileChooser();
jc.showSaveDialog(null);

try {

pathio = jc.getSelectedFile().getCanonicalPath() +

"otiff"
} catch (NullPointerException el) {

JOptionPane.showMessageDialog(null, "ERROR input exported
image file name."”, "Error", JOptionPane.ERROR_MESSAGE);

} catch (IOException el) {

JOptionPane.showMessageDialog(null, "ERROR reading
classified image."”, "Error"”, JOptionPane.ERROR_MESSAGE);
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}
direct2.setText(pathio);
direct2.setCaretPosition(0);

s

jbtr.addActionListener(new ActionListener() {
public void actionPerformed (ActionEvent e) {
if (e.getSource() == jbtr) {
try {

final BufferedImage png = ImagelO.read(new File(pathifd));

Iterator writers =
ImagelO.getImageWritersByFormatName("png");
ImageWriter writer = (ImageWriter) writers.next();
if (writer == null) {
throw new RuntimeException(”"PNG not supported?!");

}

File file = new File(pathio);
ImageOutputStream out =
ImagelO.createImageOutputStream(file);
writer.setOutput(out);
writer.write(png);

out.close();
displayClassifiedImage(pathio);

} catch (NullPointerException el) {
JOptionPane.showMessageDialog(null, "ERROR select a
classified image(.png) to export or \ninput a file name
for the exported image"”, "Error",
JOptionPane.ERROR_MESSAGE) ;

} catch (IOException el) {
JOptionPane.showMessageDialog(null, "ERROR classified
image file not found.”, "Error”,
JOptionPane.ERROR_MESSAGE) ;

1

jbtc.addActionListener(new ActionListener() {
public void actionPerformed (ActionEvent e) {
if (e.getSource() == jbtc) {
frame.setVisible(false);
}

s
}

VEXS

* Creates a file chooser dialog and returns the pathname of a selected file.
* @return path: The pathname of the selected file.

*/

public String chooseFiles() {

String path = null;
JFileChooser jfilechooser = new JFileChooser();
jfilechooser.setVisible(true);
if (jfilechooser.showOpenDialog(null) == JFileChooser.APPROVE_OPTION) {
java.io.File file = jfilechooser.getSelectedFile();
path = (file.getPath());
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3

return path;

3

/**

* ok kX X X

*/

Prints a map layout of the classified image.

@param graphics The context into which the page is drawn

@param pageformat The size and orientation of the page being drawn
@param pageindex The zero based index of the page to be drawn
@return PAGE_EXISTS: If the page is rendered successfully

@throws PrinterException

public int print(Graphics graphics, PageFormat pageformat, int pageindex)
throws PrinterException {

if (pageindex > @) {

}

return NO_SUCH_PAGE;

Graphics2D g2d = (Graphics2D)graphics;
g2d.translate(pageformat.getImageableX(), pageformat.getImageableY());
BufferedImage image;

try {

Rectangle2D.Double border = new Rectangle2D.Double(0, 0,
pageformat.getImageableWidth(), pageformat.getImageableHeight());
g2d.draw(border);

image = ImagelO.read(new File(path));

int x = ((int) pageformat.getWidth() / 2) - (image.getWidth() / 2 );
String title = new String(”"Classified Image");

graphics.drawString(title, 20 + x + image.getWidth() / 4, 50);
graphics.drawlmage(image, x, (int) pageformat.getHeight() / 8 , observer);

} catch (IOException e) {

e.printStackTrace();

}
return PAGE_EXISTS;
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Al.2.HyperionImage. java

package bw2;

import java.io.*;

import java.util.x;

import java.util.logging.lLevel;
import java.util.logging.Logger;
import javax.swing.JOptionPane;

/**

* A class that reads the Hyperion image header file (.HDR)
* and the Hyperion image data file which is in band
* interleaved pixel(BIP) interleaving.

*/

public class HyperionImage {

private
private
private
private
private
private
private
private

VEXS

int bandsnumber, columnsnumber, rowsnumber;

double latitude, longitude, pixelsize;

String interleave;

RandomAccessFile file;

int headeroffset = 0;

long position = 0;

final Logger logger = Logger.getlLogger (HyperionImage.class.getCanonicalName());
final int TYPESIZE = 2;

* Creates a new HyperionImage instance.

*/

public HyperionImage() {

}

VEXS

* Creates a new HyperionImage instance given the header file(.HDR) pathname and data file
pathname.

* @param headerfile Pathname of the header file

* @param datafile Pathname of the data file

* @throws FileNotFoundException

* @throws IOException

*/

public HyperionImage(String headerfile, String datafile)
throws FileNotFoundException, IOException {

try {

this.readHeaderFile(headerfile);
this.file = new RandomAccessFile(datafile, "r");

} catch (NullPointerException el) {

JOptionPane.showMessageDialog(null, "Select Hyperion image header/data file.”,
"Error", JOptionPane.ERROR_MESSAGE);

} catch (FileNotFoundException el) {

JOptionPane.showMessageDialog(null, "ERROR Hyperion image header/data file not
found."”, "Error", JOptionPane.ERROR_MESSAGE);

} catch (IOException el) {

JOptionPane.showMessageDialog(null, "ERROR reading Hyperion image header/data
file.”, "Error"”, JOptionPane.ERROR_MESSAGE);
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/**
* Gets the number of bands in the Hyperion image.
* @return bandsnumber: Number of bands
*/
public int getBandsNumber() {
return bandsnumber;
3

VEXS
* Gets the number of columns in the Hyperion image.
* @return columnsnumber: Number of columns
*/
public int getColumnsNumber() {
return columnsnumber;
3

VEXS
* Gets the number of rows in the Hyperion image.
* @return rowsnumber: Number of rows
*/
public int getRowsNumber() {
return rowsnumber;
3

/**

* Gets the Hyperion image data file.

* @return file: Hyperion image data file

*/

public RandomAccessFile getFile() {
return file;

}

VEXS
* Gets the position of the file pointer in the Hyperion image data file.
* @return position: Position in the data file
*/
public long getPosition() {
return position;
}

VEXS
* Sets the position of the file pointer after reading
* a single digital number value of type short.
*/
public long setPosition() {
return getPosition() + TYPESIZE;
}

/**
* Iterator method that checks if there's any pixel left to read.
* @return True if there's an unread pixel in the data file, false otherwise.
*/
public boolean hasNext() {
return position < getRowsNumber() * getColumnsNumber();
}

VEXS

* Gets the latitude of pixel 0,0.

* @return latitude

*/

public double getLatitude() {
return latitude;
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VEXS

* Gets the longitude of pixel 0,0.

* @return longitude

*/

public double getlLongitude() {
return longitude;

3

/**
* Gets the offset between lines of latitude and longitude.
* @return pixelsize
*/
public double getPixelSize() {
return pixelsize;
3

VEXS
* Converts digital number values from small endian to big endian.
* @param s: Small endian value
* @return big endian value
*/
public short toBigEndian(short s) {
return (short) ((short) ((s >>> 8) & oxff) | ((s << 8) & 0xff00));
3

/**
* Reads the Hyperion image attribute information(dimensions of the image, data format
etc.) from the Hyperion image header file.
* @param headerfile Pathname of the header file
* @throws NullpointerException
* @throws IOException
*/
public void readHeaderFile(String headerfile)
throws IOException {

String line;
logger.log(Level .INFO, "Processing ENVI header file " + headerfile + ".");
try {
final BufferedReader header = new BufferedReader(new FileReader(headerfile));
int setValues = 0x0;
line = header.readLine().trim();
if (!line.equals("ENVI")) {
throw new IllegalArgumentException();
}

header.readlLine();
header.readlLine();
header.readlLine();
while ((line = header.readLine()) !'= null) {

final String[] pair = line.split("=");

pair[@] = pair[@].trim();

pair[1] = pair[1l].trim();

if (pair[@].equals("samples”)) {
columnsnumber = Integer.parselnt(pair[1]);
setValues |= 0x1;

} else if (pair[@].equals(”lines")) {
rowsnumber = Integer.parselnt(pair[1]);
setValues |= 0x2;

} else if (pair[@].equals(”"bands")) {
bandsnumber = Integer.parselnt(pairl[1]);
setValues |= 0x4;
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} else if (pair[@].equals("header offset”)) {
headeroffset = Integer.parselnt(pair[1]);
setValues |= 0x8;

} else if (pair[@].equals("interleave”)) {
interleave = pair[1];
setValues |= 0x12;

} else if (pair[@].equals("map info")) {

String[] mapinfo = pair[1].split(",");
longitude = Double.parseDouble(mapinfo[3]);
latitude = Double.parseDouble(mapinfol[4]);
pixelsize = Double.parseDouble(mapinfo[5]);
setValues |= 0x14;

break;

3

}
if (setValues != 31) {
throw new IllegalArgumentException();

header.close();
logger.log(Level .INFO, "ENVI header file " + headerfile + " processed
successfully.");

} catch (IllegalArgumentException el) {
JOptionPane.showMessageDialog(null, "ERROR Invalid Hyperion image header
file."”, "Error"”, JOptionPane.ERROR_MESSAGE);

3

/**
* Returns digital number values from the Hyperion image data file
* for a single pixel at a given time given the row and column values.
* @param r Row number
* @param ¢ Column number
* @return value: Array of digital number values
* @throws IOException
*/
public double[] readDataFile(int r, int c)
throws IOException {

double[] value = new double[getBandsNumber()];
if (!hasNext()) {

throw new NoSuchElementException();
}

RandomAccessFile file = this.getFile();
short value0;
int i = (r *x getColumnsNumber() + c);
file.seek(headeroffset + (long) (TYPESIZE * getBandsNumber()) * i);
for (int j = @; j < getBandsNumber(); j++) {
valued = file.readShort();
setPosition();
value® = toBigEndian(value®);
value[j] = ((double)value®);
}

return value;
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Al.3. StatisticalTests. java

package bw2;

import java.io.*;

import javax.swing.JOptionPane;

import org.apache.commons.math.x;

import org.apache.commons.math.stat.inference.ChiSquareTestImpl;

VEXS

A class that carries out a novel statistically based comparison technique and Chi-squared test.
A novel statistically based comparison technique is carried out between the

spectral signature inputed by the user and digital number values for a single pixel

from the Hyperion image data file. A Chi-squared test is carried out between the

ground truth data and the outputted classified image. This class also creates an

error matrix and contingency table.

* % ok Kk ¥ X

*/

public class StatisticalTests {

private HyperionImage hyperionimage = null;

private double[] value = null, z = null, pval = null;

private static double[] expectedvalues = new double[2];

private static double[][] ztable = new double[83][11];

private String path;

private double zscore, zscorel;

private static double chipval;

static long[] observedvalues = new long[2];

private static double[] specmean = new double[250], specstdev = new double[250];

private double errormatrix[] = new double[12];
/**

* Creates a new StatisticalTests instance.

*/

public StatisticalTests() {

3

VEXS

* Creates a new StatisticalTests instance given the pathname and the HyperionImage object.
* @param path Pathname of file used by statistical test
* @param hyperionimage HyperionImage object
*/
public StatisticalTests(String path, HyperionImage hyperionimage) {
this.path = path;
this.hyperionimage = hyperionimage;

3

VEXS
* Creates a new StatisticalTests instance given the digital number values
* for a single pixel from the Hyperion image data file and the HyperionImage
* object. This instance should be used when carrying out a novel statistically
* based comparison technique.
* @param value Digital number values for a single pixel
* @param hyperionimage HyperionImage object
*/
public StatisticalTests(double[] value, HyperionImage hyperionimage) {
this.hyperionimage = hyperionimage;
this.value = new double[hyperionimage.getBandsNumber()1;
this.value = value;
z = new double[hyperionimage.getBandsNumber()];
pval = new double[hyperionimage.getBandsNumber()];
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/**
* Sets the mean and standard deviation values for the spectral signature;
* values are read and stored from the spectral signature file inputed by
* the user that was obtained from the image.
* @throws IOException
*/
public void setImgVal()
throws IOException {

int j = 0, mean = @, std = 9;
String strread = null;
String[] splitarray = new String[2];
BufferedReader rb = new BufferedReader(new FileReader(path));
try {
strread = rb.readLine().trim();
if (!strread.startsWith("Spectral”)) {
throw new IllegalArgumentException();
3
strread = rb.readLine();
splitarray = strread.split(”"\t");
if (((splitarray[@].startsWith("mean")) ||
(splitarray[@].startsWith("Mean")))) {

mean = 0;
std = 1;
}
else {
mean = 1;
std = 0;

}

while ((strread = rb.readLine())!= null) {
strread = strread.trim();
splitarray = strread.split(”\t");
specmean[j] = Double.parseDouble(splitarray[mean]);
specstdev[j] = Double.parseDouble(splitarray[std]);
Jt+;

}

rb.close();

} catch (IllegalArgumentException el) {

JOptionPane.showMessageDialog(null, "ERROR Invalid spectral signature file.”,

"Error"”, JOptionPane.ERROR_MESSAGE);

}

VEXS

* Carries out a novel statistically based comparison technique between the

* spectral signature inputed by the user and digital number values for a single
* pixel from the Hyperion image data file.

* @return zprobability: z probability for a single pixel

*/

public double zTest() {

int percent = 0, sum = 0;

double sumprob = @, zprobability = 0;

for (int i = 0; i < hyperionimage.getBandsNumber(); i++) {
sum += value[il];

}
if (sum != 0) {
for (int i = 0; i < hyperionimage.getBandsNumber(); i++) {

z[i] = ((((this.value[i]) / 10000) - specmean[i]) / specstdev[il);
double a = z[i] * 100;

int al = (int) Math.round(a);

double b = al / 10;



double x1 = b / 10;
double x2 = -1 * x1;
double b2 = al % 10;

double y = Math.abs(b2 / 100);
if (x1 <1.9 & x2>-1.9) {
for (int k = 0; k < 83; k++) {
if (x1 == ztable[k][0]) {
int yl = (int) (y * 100) + 1;
for (int j = 0; j < 11; j++) {
if (y1 == 3 {
zscore = ztablel[k]1[j1;
3

3

)

if (x2 == ztable[k][0]) {
int y2 = (int) (y * 100) + 1;
for (int j = 0; j < 11; j++) {

if (y2 == 3) {
zscorel = ztable[k][j];

3
3
}

pval[i] = (zscore - zscorel) * -1;
}
else {

pval[i] = 0.0;
}

3

for (int k = @; k < hyperionimage.getBandsNumber() -1; k++) {
if (pvallk] < 0.0) {
pval[lk] = pvall[k] * -1;

3
if (pvallk]l > 0.0) {
percent += 1;
sumprob = sumprob + pvallk];

3

double bn = ((double)hyperionimage.getBandsNumber());
double result = (percent / bn) * 100;
if (result > 90) {

zprobability = sumprob / percent;

else {
zprobability = 0;
}
}
else {
zprobability = 1;
}
return zprobability;
}
/**

* Reads and stores z-score values from a standard Z Table.
* @throws IOException
*/
public void zTable()
throws IOException {



String strRead = null;
BufferedReader rb = new BufferedReader(new FileReader("resources/ztable.txt"));
rb.readLine();
int i = 9;
while ((strRead = rb.readLine())!= null && i < 83) {
String splitarray2[] = strRead.split(”"\t");
1++;
for (int j = 0; j < 11; j++) {
double val = Double.parseDouble(splitarray2[j]);
ztable[i][j] = val;

3

3
3
/**
* Sets the observed and expected values for the Chi-squared test.
* Observed presence or non presence values for specific geographical locations
* are read and stored from the ground truth data file inputed by the user.
* Expected presence or non presence values are extracted from the classified
* image based on the specific geographical locations read from the ground
* truth file inputed by the user.
* @throws MathException
* @throws IOException
*/

public void setObservedExpectedval()
throws MathException, IOException{

String strread = null;
String[] splitarray = new String[3];
BufferedReader rb = new BufferedReader(new FileReader(path));
int j =0, x =0, y =0, z =0, ovfregpres = 0, ovfregnonpres = @, evfreqpres = 0,
evfregnonpres = 0;
int[] XYcoordinates = new int[2];
try {
strread = rb.readLine().trim();
if (!strread.startsWith("Validation”)) {
throw new IllegalArgumentException();
3
strread = rb.readLine();
splitarray = strread.split(”"\t");
if ((splitarray[@].startsWith("Latitude") &&
splitarray[1].startsWith("Longitude”))) {

X = 0;
y =1
z = 2;

} else if ((splitarray[@].startsWith("Longitude") &&
splitarray[1].startsWith("Latitude"))){

1;

2;

} else if ((splitarray[@].startsWith("Observed") &&
splitarray[1].startsWith("Latitude"))){
z = 0;
X 1;

y = 2;

} else if ((splitarray[@].startsWith("Observed") &&
splitarray[1].startsWith("Longitude"))){

y
X
z

z = 0;
y =1
X = 2;

} else if (Esplitarray[@].startsWith(”Latitude”) &&
splitarray[1].startsWith("Observed"))){
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X
z

NP S

y_
} else if

’
’
’

((splitarray[@].startsWith("Longitude") &&

splitarray[1].startsWith("Observed"))){

y
z

X

0;
1;
2;

3
while ((strread = rb.readLine())!= null) {

strread = strread.trim();

splitarray = strread.split(”\t");

double lati = Double.parseDouble(splitarray[x]);
double longi = Double.parseDouble(splitarrayly]l);

long ov = Long.parselLong(splitarray[z]);

XYcoordinates = getRCVal(lati, longi);

if ((XYcoordinates[@] < hyperionimage.getRowsNumber())
(XYcoordinates[1] < hyperionimage.getColumnsNumber()))

if (ov == 0) {

ovfregnonpres++;
}
else {

ovfreqpres++;
}

&&
{

RasterImage rasterimage = new RasterImage(hyperionimage);
double ev = rasterimage.rasterVal(XYcoordinates[@],

XYcoordinates[1]);
if (ev == 0) {
evfregnonpres++;

}
else if (ev < 1 && ev > 0){

evfreqpres++;
}
jtt;
}

observedvalues[@] = ovfreqgpres;
observedvalues[1] = ovfregnonpres;
expectedvalues[@] = evfreqpres;
expectedvalues[1] = evfregnonpres;

rb.close();

} catch (IllegalArgumentException el) {
JOptionPane.showMessageDialog(null, "ERROR Invalid ground truth data file.",
"Error", JOptionPane.ERROR_MESSAGE);

3

/**

@param lati Latitude
@param longi Longitud
*%x/

R O

Returns the row and column values for the expected pixel location
given the latitude and longitude co-ordinates of the observed
geographical location.

@return rc: Row and column values

co-ordinate
e co-ordinate

public int[] getRCVal(double lati, double longi) {

int[] rc = new int[2];
rc[@0] = (int) ((lati - hyperionimage.getlLatitude()) /
(hyperionimage.getPixelSize()));

if (rcfo] < 0) {
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rc[@] = rc[0] * -1;

3
rc[1] = (int) ((longi - hyperionimage.getlLongitude()) /
(hyperionimage.getPixelSize()));
if (rcf1] < 0) {
rcf1] = rc[1] *x -1;
3

return rc;

3

/**
* Carries out a Chi-square test between the observed (ground truth data) and expected
(classified image) values.
* @return chipval: Chi-square probability for the output classified image.
* @throws MathException
* @throws IOException
*/
public double chiSquaredTest()
throws IOException, MathException {

ChiSquareTestImpl chi = new ChiSquareTestImpl();
chipval = chi.chiSquareTest(expectedvalues, observedvalues);
if (chipval < 0) {
chipval = chipval * -1;
}

return chipval;

3

/**

* Returns the error matrix for the accuracy assessment.
* @return errormatrix: 1D array of error matrix values
*/

public double[] getErrorMatrix() {

if (expectedvalues[0@] < observedvalues[0]) {
errormatrix[0] = expectedvalues[0];
errormatrix[1] = observedvalues[@] - expectedvalues[0];

if (expectedvalues[@] > observedvalues[0]) {
double a = expectedvalues[@] - observedvalues[0];
a = expectedvalues[0] - a;
errormatrix[Q] = 0;
errormatrix[1] = a;

if (expectedvalues[1] < observedvalues[1]) {
errormatrix[2] = expectedvalues[1];
errormatrix[3] = expectedvalues[1] - observedvalues[1];

if (expectedvalues[1] > observedvalues[1]) {
double a = expectedvalues[1] - observedvalues[1];
a = expectedvalues[1] - a;
errormatrix[2] = 0;
errormatrix[3] = a;

}

errormatrix[6] = ((errormatrix[@]) / (errormatrix[@] + errormatrix[1])) * 100;
errormatrix[7] = ((errormatrix[@]) / (errormatrix[@] + errormatrix[2])) * 100;
errormatrix[10] = ((errormatrix[3]) / (errormatrix[3] + errormatrix[2])) * 100;
errormatrix[11] = ((errormatrix[3]) / (errormatrix[1] + errormatrix[3])) * 100;

return errormatrix;
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/**

* Gets the overall accuracy of the classified image.

* @return calculated overall accuracy

*/

public double getOverallAccuracy() {
return (((errormatrix[@] + errormatrix[3]))/(errormatrix[@] + errormatrix[1] +
errormatrix[2] + errormatrix[3])) * 100;

}

VEXS

* Gets the calculated kappa statistic for the classified image.
* @return calculated kappa statistic

*/

public double getKappaStatistic() {

double a = errormatrix[@] + errormatrix[3];

double b = ((errormatrix[@] + errormatrix[1]) * (errormatrix[@] + errormatrix[2])) +
((errormatrix[2] + errormatrix[3]) * (errormatrix[1] + errormatrix[3]));

double n = ((errormatrix[@] + errormatrix[1]) + (errormatrix[2] + errormatrix[3]));

return ((n * a) - b) / ((n * n) - b);
}

/**
* Gets the frequency of the observed black wattle trees.
* @return observed present and observed absent black wattle trees
*/
public long[] getObservedValues() {
return observedvalues;
}

VEXS
* Gets the frequency of the expected black wattle trees.
* @return expected present and expected absent black wattle trees
*/
public double[] getExpectedValues() {
return expectedvalues;
}

VEXS
* Gets the Chi-squared probability for the classified image.
* @return chipval
*/
public double getChiPVal() {
return chipval;
}
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Al.4.RasterImage. java

package bw2;

import java.awt.=x;

import java.awt.event.*;

import java.awt.image.BufferedImage;
import java.io.*;

import java.text.DecimalFormat;

import java.util.Iterator;

import javax.imageio.*;

import javax.imageio.stream.ImageOutputStream;
import javax.swing.x;

import javax.swing.border.Border;
import javax.swing.border.EtchedBorder;
import javax.swing.border.TitledBorder;

/**

* A class that creates and displays the output classified image
* displaying the presence and absence of Black wattle trees.

*/

public class RasterImage {

private HyperionImage hyperionimage = null;
private double[] value = null;

private double[][] raster = null;

private int height = @, width =0, x = 0, y = 0;
private String pathio = null;

private double zvalue;

/**

* Creates a new RasterImage instance.
*/

public RasterImage() {

}

VEXS
* Creates a new RasterImage instance given the hyperionimage object.
* @param hyperionimage HyperionImage object
*/
public RasterImage(HyperionImage hyperionimage) {
this.hyperionimage = hyperionimage;
this.value = new double[hyperionimage.getBandsNumber()1;
this.raster = new
double[hyperionimage.getColumnsNumber () J[hyperionimage.getRowsNumber()];
height = hyperionimage.getColumnsNumber();
width = hyperionimage.getRowsNumber();

3

VEXS

* Creates a new RasterImage instance given the pathname of the classified image and

hyperionimage object.

* @param pathio Pathname of the classified image

* @param hyperionimage HyperionImage object

*/

public RasterImage(String pathio, HyperionImage hyperionimage) {
this.hyperionimage = hyperionimage;
this.value = new double[hyperionimage.getBandsNumber()1;
this.raster = new
double[hyperionimage.getColumnsNumber () J[hyperionimage.getRowsNumber()];
height = hyperionimage.getColumnsNumber();



width = hyperionimage.getRowsNumber();
this.pathio = pathio;

3

/**

* Returns the z probability for a single pixel for the classified image.
* @param r Row number

* @param ¢ Column number

* @return zprobability: z probability for a single pixel

* @throws IOException

*/

public double rasterVal(int r, int c)
throws IOException {

this.value = this.hyperionimage.readDataFile(r, c);

StatisticalTests ztest = new StatisticalTests(this.value, this.hyperionimage);
double zprobability = ztest.zTest();

return zprobability;

3

/**
* Stores the z probabilities for the classified image in a two dimensional array.
* @throws IOException
*/
public void createRaster()
throws IOException {

for(int r = @; r < hyperionimage.getRowsNumber(); r++) {
for(int ¢ = @; c < hyperionimage.getColumnsNumber(); c++) {
this.raster[c][r] = rasterVal(r,c);
}

3

/**
* Gets a 2D array of z probabilities for the classified image.
* @return raster: 2D array of z probabilities
*/
public double[][] getRaster() {
return this.raster;
3

VEXS

* Returns the co-ordinates of the pixel that is clicked on.
* @param x X co-ordinate

* @param y Y co-ordinate

* @return xy: Longitude and latitude of the pixel

*/

public String[] coOrdinates(int x, int y) {

String[] xy = new String[2];

DecimalFormat formatter = new DecimalFormat ("#.######");

xy[@] = String.valueOf(formatter.format((hyperionimage.getPixelSize() * x) +
hyperionimage.getlLongitude()));

xy[1] = String.valueOf(formatter.format(((hyperionimage.getPixelSize() * y) -
hyperionimage.getlLatitude()) * -1));

return xy;
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/**
* Creates a frame and adds the classified image to the frame.
* @throws IllegalArgumentException
* @throws IOException
*/
public void classifiedImageFrame()
throws FileNotFoundException, IOException {

try {

ImageIcon leaf = new Imagelcon("resources/leaf.png”);
Font font = new Font ("ArialNarrow”, @, 11);
Font font2 = new Font ("ArialNarrow”, Font.BOLD, 13);

/**Panel to hold the titlexx/

final JPanel pl = new JPanel(new FlowLayout(FlowLayout.CENTER, height / 2 -
25, 5));

JLabel classifiedimage = new JLabel("”Classified Image");
classifiedimage.setFont(font2);

pl.add(classifiedimage);

/**Panel to hold the classified imagexx/

final JPanel p2 = new JPanel(new FlowLayout(FlowLayout.CENTER, @, 0));
createClassifiedImage(getRaster());
p2.add(getClassifiedImage(pathio));

/**xPanel to hold the legend*x/
final JPanel p3 = new JPanel(new GridLayout(5, 2, 10, 5));
p3.setBorder(new TitledBorder("Legend"));

final JTextField red = new JTextField();
red. setBackground(Color.RED);
red.setEditable(false);

p3.add(red);

JLabel legendl = new JLabel("@.75 - ©0.99");
legendl.setFont(font);

p3.add(legendl);

final JTextField yellow = new JTextField();
yellow. setBackground(Color.YELLOW);
yellow.setEditable(false);

p3.add(yellow);

JLabel legend2 = new JLabel("0.50 - 0.75");
legend2.setFont(font);

p3.add(legend2);

final JTextField green = new JTextField();
green.setBackground(Color.GREEN);
green.setEditable(false);

p3.add(green);

JLabel legend3 = new JLabel("0.25 - 0.50");
legend3.setFont(font);

p3.add(legend3);

final JTextField blue = new JTextField();
blue.setBackground(Color.BLUE);
blue.setEditable(false);

p3.add(blue);

JLabel legend4 = new JLabel("0.00 - 0.25");
legend4.setFont(font);

p3.add(legend4);



final JTextField wht = new JTextField(1);
wht.setBackground(Color .WHITE);
wht.setEditable(false);

p3.add(wht);

JLabel legend5 = new JLabel("0.00");
legend5.setFont(font);

p3.add(legend5);

/**Panel to hold the scale bar and north arrowxx/
final JPanel p4a = new JPanel(new BorderLayout(10, 10));

BufferedImage scale = ImagelO.read(new File("resources/scalebar2.jpg"));
JLabel scalelabel = new JLabel(new ImageIcon(scale));
p4a.add(scalelabel, BorderLayout.WEST);

BufferedImage northarrow = ImagelO.read(new File("resources/northarrow. jpg"));

JLabel northarrowlabel = new JLabel(new Imagelcon(northarrow ));
p4a.add(northarrowlabel, BorderLayout.EAST);

final JPanel p4 = new JPanel(new BorderLayout(10, 10));
p4.add(p4a, BorderLayout.SOUTH);

/**Panel to hold the co-ordinates*x/

final JPanel p5 = new JPanel(new FlowLayout(FlowLayout.LEFT, @, 5));
final JTextField coord = new JTextField();
coord.setPreferredSize(new Dimension(height, 21));
coord.setEditable(false);

p5.add(coord);

/**Panel to hold the Z-test and Chi-square test probabilitiesxx/
final JPanel p6 = new JPanel(new FlowLayout(FlowLayout.LEFT, @, 5));
final JTextField statistics = new JTextField();
statistics.setPreferredSize(new Dimension(height, 21));
statistics.setEditable(false);

p6.add(statistics);

final JPanel p7 = new JPanel(new BorderlLayout(10, 0));
p7.add(p5, BorderLayout.NORTH);
p7.add(p6, BorderLayout.SOUTH);

/**Panel to hold the panels containing the legend, scale bar, north arrow, co-

ordinate and statistical informationxx/

final JPanel p8 = new JPanel(new BorderLayout(10, 10));
p8.add(p3, BorderLayout.WEST);

p8.add(p4, BorderLayout.EAST);

p8.add(p7, BorderLayout.SOUTH);

/**xPanel to hold all created panels*x/

final JPanel p9 = new JPanel(new FlowLayout(FlowLayout.CENTER, 10, 10));
p9.add(pl);

p9.add(p2);

p9.add(p8);

/**Creates a frame for the the classified imagexx/

final JFrame frame = new JFrame("Black wattle classification”);
frame.setSize(height + 60, width + 330);
frame.setResizable(false);

frame.setlLocationRelativeTo(null);
frame.setIconImage(leaf.getImage());

frame.setVisible(true);
frame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
frame.add(p9);
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/**Register listeners*x/
p2.addMouseMotionListener(new MouseMotionAdapter() {
public void mouseDragged(MouseEvent e) {

}
/

p

String[] xyl = new String[2];
x = e.getX();

y = e.getY();
i

f ((x >0 & x < height) & (y > 0 && y < width)) {

xyl = coOrdinates(x, y);

DecimalFormat formatter =

new DecimalFormat ("#.#####");

coord.setText(xyl[@] + " E” + " , " + xyl[1] + " N");

if (raster[x]1ly] == 1) {
zvalue = 0;
} else {

zvalue = raster[x][y];

3

statistics.setText("Z-test probability value
formatter.format(zvalue));

else {

coord.setText("@E" + " , " + "@S" + "

=0");

s
} catch (IllegalArgumentException el) {

n

_”+

+ "Probaility

JOptionPane.showMessageDialog(null, "ERROR displaying the classified image."”,

"Error", JOptionPane.ERROR_MESSAGE);
} catch (FileNotFoundException el) {

JOptionPane.showMessageDialog(null, "ERROR classified image not
found/created.”, "Error", JOptionPane.ERROR_MESSAGE);

} catch (IOException el) {

JOptionPane.showMessageDialog(null, "ERROR writing classified image file to

disk.", "Error", JOptionPane.ERROR_MESSAGE);

**

* Creates a frame that displays the accuracy assessment.
*/

ublic void accuracyAssessmentFrame() {

Imagelcon leaf = new Imagelcon("resources/leaf.png");
Font font = new Font ("ArialNarrow”, Font.BOLD, 12);

Border loweredetched = BorderFactory.createEtchedBorder (EtchedBorder.LOWERED);

DecimalFormat formatter = new DecimalFormat ("#.#####");
StatisticalTests statisticaltests = new StatisticalTests();
long[] observedvalues = statisticaltests.getObservedValues();
double[] expectedvalues = statisticaltests.getExpectedValues();
double[] errormatrix = statisticaltests.getErrorMatrix();

/**Panel to hold the error matrixxx/

final JPanel pla = new JPanel(new FlowLayout(FlowLayout.LEFT, 10, 5));

JLabel headingem = new JLabel ("Error matrix");
headingem.setFont(font);
pla.add(headingem);

final JPanel plb = new JPanel(new GridLayout(5, 5, 10, 0));

JLabel blankll = new JLabel("");
plb.add(blankll);
JLabel bwll = new JLabel("Black wattle”);
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plb.add(bwll);

JLabel nbwll = new JLabel("No Black wattle");
plb.add(nbwll);

JLabel totalll = new JLabel("Total");
plb.add(totalll);

JLabel ual = new JLabel("Users accuracy (%)");
plb.add(ual);

JLabel bwl2 = new JLabel(" Black wattle");

plb.add(bwl2);

JLabel eml@ = new JLabel("" + errormatrix[0]);

plb.add(eml@);

JLabel emll = new JLabel("" + errormatrix[1]);

plb.add(emll);

JLabel totalvalll = new JLabel("" + (errormatrix[@] + errormatrix[1]));
plb.add(totalvalll);

JLabel eml6 = new JLabel("" + (errormatrix[6]));

plb.add(eml6);

JLabel nwl2 = new JLabel(" No Black wattle");

plb.add(nwl2);

JLabel eml2 = new JLabel("" + errormatrix[2]);

plb.add(eml2);

JLabel eml3 = new JLabel("" + errormatrix[3]);

plb.add(eml3);

JLabel totalvall2 = new JLabel("" + (errormatrix[2] + errormatrix[3]));
plb.add(totalvall2);

JLabel eml11@ = new JLabel("" + (errormatrix[10]));

plb.add(eml10);

JLabel totall2 = new JLabel(” Total");

plb.add(totall2);

JLabel totalvall3 = new JLabel("" + (errormatrix[@] + errormatrix[2]));
plb.add(totalvall3);

JLabel totalvall4 = new JLabel("" + (errormatrix[1] + errormatrix[3]));
plb.add(totalvall4);

JLabel totalvall5 = new JLabel("" + (errormatrix[@] + errormatrix[1] +
errormatrix[2] + errormatrix[3]));

plb.add(totalvalls);

JLabel blankl2 = new JLabel("");

plb.add(blank12);

JLabel pa = new JLabel(" Producers accuracy”);

plb.add(pa);

JLabel eml7 = new JLabel("" + formatter.format(errormatrix[7]));
plb.add(eml7);

JLabel eml1ll = new JLabel("" + formatter.format(errormatrix[11]));
plb.add(emlll);

/**Panel to hold the overall accuracy value and kappa statisticxx/

final JPanel pld = new JPanel(new FlowLayout(FlowLayout.LEFT, 10, 5));
JLabel overallaccuracy = new JLabel("Overall accuracy " +

statisticaltests.getOverallAccuracy());

overallaccuracy.setFont(font);

pld.add(overallaccuracy);

final JPanel ple = new JPanel(new FlowLayout(FlowLayout. LEFT 19, 8));
JLabel kappastatistic = new JLabel("Kappa statistic "
statisticaltests.getKappaStatistic());

kappastatistic.setFont(font);

ple.add(kappastatistic);
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final JPanel plc = new JPanel(new BorderLayout(@, 0));
plc.add(pld, BorderLayout.NORTH);
plc.add(ple, BorderLayout.SOUTH);

final JPanel pl = new JPanel(new BorderLayout(@, 0));
pl.add(pla, BorderLayout.NORTH);

pl.add(plb, BorderLayout.CENTER);

pl.add(plc, BorderLayout.SOUTH);
pl.setBorder(loweredetched);

/**Panel to hold the contingency tablexx/

final JPanel p2a = new JPanel(new FlowLayout(FlowLayout.LEFT, 10, 5));
JLabel headingct = new JLabel("Contingency table”);
headingct.setFont(font);

p2a.add(headingct);

final JPanel p2b = new JPanel(new GridlLayout(4, 4, 10, 0));
JLabel blank2l = new JLabel("");

p2b.add(blank21);

JLabel observed = new JLabel("Observed");
p2b.add(observed);

JLabel expected = new JLabel ("Expected”);
p2b.add(expected);

JLabel total2l = new JLabel("Total");

p2b.add(total2l);

JLabel presence = new JLabel(" Presence");

p2b.add(presence);

JLabel obpresence = new JLabel("" + observedvalues[0]);

p2b.add(obpresence);

JLabel expresence = new JLabel("" + expectedvalues[0]);

p2b.add(expresence);

JLabel totalval2l = new JLabel("" + (observedvalues[@] + expectedvalues[@]));
p2b.add(totalval2l);

JLabel absence = new JLabel(”  Absence"”);

p2b.add(absence);

JLabel obabsence= new JLabel("" + observedvalues[1]);

p2b.add(obabsence);

JLabel exabsence = new JLabel("" + expectedvalues[1]);

p2b.add(exabsence);

JLabel totalval22 = new JLabel("" + (observedvalues[1] + expectedvalues[1]));
p2b.add(totalval22);

JLabel total22 = new JLabel(" Total”);

p2b.add(total22);

JLabel totalval23 = new JLabel("" + (observedvalues[@] + observedvalues[1]));
p2b.add(totalval23);

JLabel totalval24 = new JLabel("" + (expectedvalues[0] + expectedvalues[1]));
p2b.add(totalval24);

/**Panel to hold the chi-square valuexx*/

final JPanel p2d = new JPanel(new FlowLayout(FlowLayout.LEFT, 10, 5));
JLabel chisquare = new JLabel("Chi-square p value " +
statisticaltests.getChiPVal());

chisquare.setFont(font);

p2d.add(chisquare);

final JPanel p2c = new JPanel(new BorderLayout(@, 0));
p2c.add(p2d, BorderLayout.NORTH);

final JPanel p2 = new JPanel(new BorderLayout(@, 0));



p2.add(p2a, BorderLayout.NORTH);
p2.add(p2b, BorderLayout.CENTER);
p2.add(p2c, BorderLayout.SOUTH);
p2.setBorder(loweredetched);

final JPanel p3 = new JPanel(new GridLayout(2, 1, 5, 5));
p3.add(pl);
p3.add(p2);

/**Creates a frame for the accuracy assessment*x*/

final JFrame frame = new JFrame("Accuracy assessment”);
frame.setSize (580, 450);

frame.setResizable(false);
frame.setLocationRelativeTo(frame);
frame.setIconImage(leaf.getImage());
frame.setVisible(true);
frame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
frame.add(p3);

3

/**
* Creates and stores the classified image(.png).
* @param raster 2D array of z probabilities
* @throws IOException
*/
@SuppressWarnings("rawtypes”)
public void createClassifiedImage(double[][] raster)
throws IOException {

BufferedImage img = new BufferedImage(height, width, BufferedImage.TYPE_INT_RGB);
Graphics2D g = img.createGraphics();
g.setColor(Color.BLACK);
g.setBackground(Color .WHITE);
g.clearRect(@, @, height, width);
for (int r = @; r < height; r++) {
for (int ¢ = 0; ¢ < width; c++) {
if (raster[r][lc] == 0.0000) {
g.setColor(Color.WHITE);
g.fillRect(r, c, 1, 1);
} else if (raster[r]lc] >= 0.01 & raster[r]lc] <= 0.25) {
g.setColor(Color.BLUE);
g.fillRect(r, c, 1, 1);
} else if (raster[r]lc] >= 0.25 & raster[r]lc] <= 0.50) {
g.setColor(Color.GREEN);
g.fillRect(r, c, 1, 1);
} else if (raster[r]lc] >= 0.50 & raster[r]lc] <= 0.75) {
g.setColor(Color.YELLOW);
g.fillRect(r, c, 1, 1);
} else if (raster[r]lc] >= 0.75 & raster[r]lc] <= 0.99) {
g.setColor(Color.RED);
g.fillRect(r, c, 1, 1);
} else if (raster[rllc] == 1) {
g.setColor(Color.BLACK);
g.fillRect(r, c, 1, 1);

3

}

g.dispose();

Iterator writers = ImagelO.getImageWritersByFormatName("png");
ImageWriter writer = (ImageWriter) writers.next();

if (writer == null) {
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throw new RuntimeException(”PNG not supported?!");
}
File file = new File(pathio);
ImageOutputStream out = ImagelO.createImageOutputStream(file);
writer.setOutput(out);
writer.write(img);
out.close();

}

VEXS

* Gets the classified image.

* @param pathio Pathname of classified imae

* @return classifiedimage: Classified image

* @throws IOException

*/

public Component getClassifiedImage(String pathio)
throws IOException {

BufferedImage image = ImagelO.read(new File(pathio));
JLabel classifiedimage = new JLabel(new Imagelcon(image));
return classifiedimage;
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Appendix B
The black wattle classification algorithm: user mamial

1. Introduction

1.1. About

The back wattle classification algorithm is a reskanitiative that aimed to determine the
potential of a classification algorithm to identifyvasive black wattle tress using imaging
spectroscopy. The algorithm allows the user to tifleimvasive black wattle trees that are
present within an area of interest using hypersaksatellite imagery. Hyperspectral satellite
imagery collected by the EO-1 Hyperion sensor ofter high spectral resolution.
Consequently, invasive black wattle trees can bscraoinated from the surrounding
vegetation accurately. The algorithm allows ther useutilize a spectral signature for the
classification process. Based on the spectral sigmainputted into the algorithm, the
algorithm can be used to identify invasive blacktlearees of any age group or any invasive
alien plant species. Classified images producethbyalgorithm can be exported into other
data formats for incorporation into geographicalfoimation systems or printed.
Consequently, the algorithm can be used as arumstital tool to inform and target removal

efforts of invasive black wattle trees so that niegaenvironmental impacts can be mitigated.
1.2. System requirements
The minimum system requirements:

» 3.02 gigahertz (GHZ) processor or higher
* 4 gigabyte (GB) RAM or higher

* 100 megabytes (MB) hard drive space

* Windows 7 32bit operating system

2. Installation

Intall the Java Runtime Environment found on thevpted disk if you have not already done
so. Thereafter, copy the file blackwattleclassijée to a location on the local hard disk. To

begin the application, double click on the blackieatassifier.jar file.
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3. Interfaces

The home screen is the first interface that appearshe screen after the end user has
successfully installed and initialized the progrdrhe home screen contains a menu bar with

two menu items that ifFile’ and “Classification” menu items.

3.1. File

3.1.1. Openfile

Open file prompts the user to select a previously classifieage (.png) that is found on the
hard disk for display on to the screen. After sitgcthe classified image, a classified image
frame containing the classified image, legend,esbar and north arrow will be displayed on
to the screen. To print the displayed classifiedgmselect File > Print from the menu bar in

the classified image frame.

3.1.2. Export

Export allows the user to export the classified imagenfr@ .png data format to a .tiff data
format. On selectingexport, the export classified image frame is displayedathe screen
with two fields for input that i€lassified Image andSave File As. Classified Image prompts
the user to select a previously classified imagag) that is found on the hard disk for
exporting Save File As prompts the user to select a location and inmrae for the exported
file. After clicking Apply, the converted classified image in .tiff formatlwe displayed on to

the screen.

3.1.3. Exit

Exit allows the user to exit the black wattle classtfmaalgorithm.

3.2. Classification

3.2.1. Black wattle classification

Black wattle classification allows the user to conduct an image classificationdentify
invasive black wattle trees based on the data teguiy the user. On selectiBfack wattle
classification, the black wattle classification frame is displdyen to the screen with the

following fields for input:
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Hyperion Image Header File

The Hyperion image header file (HDR) contains #tieibutes of the associated Hyperion
image data file. It is essential that the correxzder file is used with the appropriate data file.
Hyperion Image Header File prompts the user to select a Hyperion image hefddahat is
found on the hard disk.

Hyperion Image Data File

Only Hyperion image data files can be processetheyalgorithm. The Hyperion image data
file (.File) contains the spectral information. THgperion image must be spatially subsetted,
spectrally subsetted, atmospherically corrected aridorectified prior to input into the
algorithm. The Hyperion image must be in band Iatared pixel data formatyperion
Image Data File prompts the user to select a Hyperion image d&ahat is found on the
hard disk.

Spectral Signature File

The spectral signature file (.txt) should contdia spectral signature of a black wattle tree or
invasive alien plant species. The spectral sigeatan be captured from the image itself. The
spectral signature should be derived by taking eraae of more than three reflectance
curves with an associated standard deviation. Ppleetsal signature file must be formatted
appropriately to be processed by the algorithm. firseline of the file must contaiSpectral
signature. The second line must contdifean and Sandard deviation in two columns with
the relevant values in each colunfpectral Sgnature File prompts the user to select a

spectral signature file that is found on disk. Tiser must select tHenage File checkbox.

Ground Truth Data File

The ground truth data file (.txt) should containreth columns:Latitude, Longitude and
Observed value. The latitude and longitude values should either il geographical or
projected co-ordinate system corresponding to therdinate system of the Hyperion image
data file. The observed value should be a booleduoevof either 1 or O indicating the
presence or absence of black wattle trees respéctiVhe user must select tMalidation
checkbox first in order to select the ground trd#ta file.Ground Truth Data File prompts
the user to select a ground truth data file th&gusid on the hard disk.

93



Save File As

Save File As prompts the user to select a location and inpwtrae for the classified image.

After clicking Apply, the classification process will begin. Once tlassification has ended, a
classified image frame containing the classifiedge legend, scale bar and north arrow will
be displayed on to the screen. There are two figldise bottom of the classified image frame
which are only activated if the user clicks ancbfsrover the classified image. The first field
displays the co-ordinates of the pixel on the gburhe second field displays the probability
that black wattle trees are present as well asChiesquare probability if validation was

conducted.

Thank you for choosing the black wattle classifmatalgorithm as your choice of remote

sensing software. For further information and suppontact agjee@cybersmart.co.za.
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