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ABSTRACT 

  

Persistent organic pollutants (POPs) are identified by their persistence, toxicity, bio- 

amplification and long-range transport. Organochlorine pesticides (OCPs) and polychlorinated 

biphenyls (PCBs) are among POPs that were classified by the Environmental Protection Agency 

(EPA) and the Stockholm Convention, as the “dirty dozen”. They are a global health threat since 

they can be found in any environmental compartment even where they have never been produced 

or used before. This study is focussed on the analysis and monitoring of persistent organic 

pollutants, especially OCPs and PCBs in the samples seasonally collected from the Umgeni 

River, KwaZulu-Natal, South Africa. Different environmental matrices such as water, sediment 

pore water, surface sediment and bank soil, were investigated in order to fully understand the 

occurrence, significance, distribution and seasonal variation of the above-mentioned 

contaminants in the Umgeni River. Liquid-liquid extraction was used for water and pore water 

sample preparation and soxhlet extraction was preferred for sediment and soil samples. All 

extracted samples were analysed using gas chromatography–mass spectrometry (GC-MS). The 

results obtained showed that generally the highest PCB concentrations were found in winter 

where the mean values were 1.360.39 ng/mL, 14.607.30 ng/mL, 24.318.92 ng/g and 

25.4713.21 ng/g for water, sediment pore water, surface sediment and bank soil respectively. 

The lowest concentration was found in summer with the mean concentration being, 0.710.15 

ng/mL, 4.721.80 ng/mL, 13.508.07 ng/g and 11.797.15 ng/g for water, sediment pore water, 

surface sediment and bank soil respectively. The OCP levels were also high in winter, with mean 

concentrations of 1.190.25 ng/mL, 11.015.04 ng/g, 30.877.38 ng/g, for surface water, 

sediment pore water and surface sediment respectively compared to the lowest concentrations in 

summer with values of 0.900.36 ng/mL, 5.161.38 ng/mL, 18.4111.20 ng/g in surface water, 

sediment pore water and surface sediment respectively. Note that in case of soil the highest OCP 

levels were recorded in autumn (42.6210.41 ng/g) while the lowest was noted in summer 

(13.505.33 ng/g). For all matrices, there was always a statistically significant difference 

between summer levels and other seasons (p ˂ 0.05). The difference between autumn and spring 

levels was not generally significant (p > 0.05). Generally the levels of PCBs and OCPs in 

sediment were higher than in soil, sediment pore water and surface water.  The most 

contaminated sites were those close to the Northern Waste Water Treatment Works. In general 
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the PCB180 was found to be the most abundant congener in the river and p,p´-DDE    was the 

major OCP. Levels of PCBs and OCPs in the Umgeni River were generally higher than the 

USEPA, WHO and EU guideline values. However, when compared to Ontario Sediment Quality 

Guidelines, most of the pollutants investigated were found lower than their lowest effect level 

(LEL). All the investigated PCBs and OCPs concentrations, in the Umgeni River, were far below 

their severe effect level (SEL). 
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CHAPTER ONE 

GENERAL INTRODUCTION 

 

1.1 WATER NECESSITY    

 

Water is an important commodity that plays a vital role on earth without which life is impossible. 

Water consumption by humans increases by 64 billion cubic meters every year (Worldometers, 

2013). The previous UN Secretary General Mr Kofi Annan, in his well-known declaration, when 

addressing the water issue on 22
nd

 March 2001, mentioned that "Access to safe water is a 

fundamental human need, and therefore a basic human right"(Annan, 2001). Nevertheless an 

efficient clean water supply is still out of reach for many people in remote areas of the 

developing world. This problem is severe in Africa where more than 300 million people live in 

water-scarce environments (Bureau and Strobl, 2012) of which South Africa is one of the dry 

countries around the world. The global average rainfall is 860 mm per annum but the South 

African average is only 450 mm per year and the available water per capita is 1000 m
3
 per 

person per year (CSIR, 2010). 

 

In addition, one should not only focus on quantity alone but also on the quality of the water 

supply because although water maintains life on earth, it may also be harmful and even deadly 

when it is polluted. According to the United Nations for Education, Science and Culture 

Organization (UNESCO) and Food and Agriculture Organization (FAO), about 80% of diseases 

in developing countries are connected with contaminated water. Research has shown that 

children coming into contact with contaminated water often end-up with diarrhea which kills 

5000 children every day (Worldometers, 2013). 

 

In a country like South Africa, where 12 million people do not have access to clean water and 

where safe and accessible water supply is provided to less than half of the rural population 

(Thwala, 2010), the investigation of the quality of available water resources such as lakes, rivers 

and other water bodies is very important for protection of a scarce resource to avoid a serious 

water crisis in the country. 
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1.2 THE PURPOSE OF ANALYSIS OF WATER 

 

Physical appearances of a body of water such as colour, odour, cloudiness, solid particles and 

floating foam can indicate if water is badly polluted. But several components, whether harmful 

or beneficial in water, are invisible and odourless. It is therefore imperative to further investigate 

other components in water than what is observable in order to determine the dissolved pollutants 

in water. Therefore chemical and microbiological analyses must also be conducted.   

 

Analysis of a natural body of water such as the Umgeni River helps us understand the extent of 

pollution in the river as well as the risk the contaminated water poses to wildlife or human life in 

general. The results of such an investigation help in identifying the source of pollution which 

then allows the municipality set up policies and guidelines to control the dumping of unwanted 

waste into rivers as well as allowing for remediation of polluted waters. The quality of 

discharged wastewaters by treatment plants is just as important as the portability of the water. A 

wastewater treatment plant’s discharge along a river often means that one locality’s wastewater 

may be the next vicinity’s water supply.  Therefore proper and adequate treatment processes at 

the wastewater treatment plant is also important to ensure that it allows “clean” water to be 

discharged back into the river. The seasonal factors of a region dictate the environmental 

behaviour of pollutants in water. The study of seasonal variations affecting different pollutants 

also helps to understand their trends throughout the year and the effect of changes in climate 

conditions. 

 

1.3 CHEMICAL POLLUTION IN AFRICA 

 

Chemical pollution in Africa as well as in other parts of the world is a serious threat to the health 

of humans and animals. The threat of chemical pollution becomes even more of a global problem 

when it is due to persistent organic pollutants (POPs) because they not only affect the health of 

people living in areas where it is produced or used but spreads out to almost every corner of the 

earth due to several means of transport together with the POPs resistance to degradation 

(SETAC, 1998, Lohmann et al., 2007a).    Africa produces very little to no POPs but it is 

polluted by them. It was found that some  pollutants originate  from the Organisation for 
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Economic Co-operation and Development (OECD) countries, imported as pesticides or 

hazardous waste to be dumped (Clapp, 2001). 

 

The African continent fell victim to several toxic substances in the 1980s, when it was 

unfortunate enough in being the first choice for dumping European wastes (Bernstorff and Stairs, 

2001).  Some localities such Kassa Island in Guinea, Koko in Nigeria and even South Africa, 

were well-known for serving as places of trans-shipments of hazardous substances (Bernstorff 

and Stairs, 2001). These hazardous substances contained various kinds of compounds including 

POPs such as pesticides, polychlorinated biphenyls, etc. In Rwanda, there were 451 tonnes of 

pesticides from Japan, Germany, France, Italy and Switzerland which had to be disposed. In 

South Africa, there were 603 tonnes of pesticides which were disposed and among them were 

aldrin, DDT and dieldrin (Bernstorff and Stairs, 2001).  

 



4 

 

  

Figure 1.1 Inventory of absolute and unwanted pesticides stockpiles dumped in Africa (1980-

2000) 

 (adapted from (Bernstorff and Stairs, 2001). 

 

Many other African countries had several tonnes of such hazardous unwanted substances from 

the developed world disposed on their land (Bernstorff and Stairs, 2001). Figure 1.1 shows a map 

of absolute and unwanted pesticide stockpiles in Africa. In 1992, during the Rio conference, 

Africa’s representatives suggested the ban of industrialised countries’ exports of hazardous waste 

to less industrialized nations. The dumping of hazardous waste however continued and it was 

only in 2001 when the. United Nations Environmental Protection Programme (UNEP) approved 
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the banning of  the “dirty dozen” worldwide which  included organochlorine pesticides (OCPs), 

polychlorinated biphenyls (PCBs), dioxins and furans (Athanasios and Konstantine, 2002, 

Bernstorff and Stairs, 2001) did the dumping of contaminated waste in African countries stop. 

With the support of organisations such as Gesellschaft Technische Zusammenarbeit (GTZ), 

Danish International Development Agency (DANIDA) and US Agency for International 

Development (USAID), the unwanted stocks of hazardous substances were entirely or partly 

removed from some African countries to European hazardous waste treatment facilities 

(Bernstorff and Stairs, 2001).  Since these pollutants are transboundary facilitated by 

atmospheric transportation and are found in areas where they have not been produced or used, a 

global effort from both developed and less developed countries is needed in order to reduce their 

concentrations in the environment around the world (Stroebe et al., 2004, Stroebe et al., 2006).  

 

Long range atmospheric transport has favoured the presence of these pollutants in all 

environmental compartments (Kongo et al., 2005, Castro-Jiménez et al., 2008, Zhang et al., 

2008, Zhao et al., 2010a, Wang et al., 2012, Barakat et al., 2013) and hence they are a growing 

global concern (Zhou et al., 2001, Zhang et al., 2004, Feng et al., 2011).  Many countries around 

the world proceeded by banning POP production, storage and usage, but due to POPs resistance 

to photochemical, chemical, and biochemical degradation (Bandala et al., 2002) and 

bioaccumulation through the food chain, they are still being detected in the environment today. 

In addition, some POPs such as OCPs are still being used today, for example, DDT is a powerful 

pesticide and is still used in some African countries to control vector diseases, such as malaria, 

which still kills more than one million people per year (Bouwman et al., 2006). This insecticide 

is also used in malaria endemic regions of South Africa such as Northern KwaZulu-Natal 

(Humphries, 2013, Channa et al., 2012, Bouwman et al., 2006) and Limpopo (Dalvie et al., 

2004d).  

 

1.4 SOURCE OF POLLUTION OF UMGENI RIVER CATCHMENT 

 

South Africa is one of the countries that has signed and ratified the Stockholm convention of 

persistent organic pollutants which was adopted in 2001 and whose aim was to safeguard human 

health and the environment from highly harmful chemicals which affect the well-being of 
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humans as well as wildlife (EPA, 2009). It is therefore important that the presence of organic 

pollutants in South Africa in general and in the Umgeni River catchment in particular, be fully 

delineated. The Umgeni River is one of the major rivers found in the province of KwaZulu-Natal 

in South Africa. It has a surface area of 4416 km
2
 and travels a distance of 225 km from source 

to mouth (Groundspeak, 2013). It is one of the main sources of water for many people in this 

province, especially in Durban, Pietermaritzburg and Howick, where almost the entire urban 

population depends on it for its water supply.  However, pollution along the river makes it unsafe 

to both humans and animals. There are many sources of pollution along the Umgeni River.  One 

such source is the informal human settlements along the banks of the river. Residents of these 

informal settlements use the river water for bathing, washing and irrigating due to unavailability 

of treated water. Their latrines are placed on the banks of the Umgeni River resulting in human 

faeces contaminating the water. This has caused water-borne diseases such as bacterial diarrhea, 

hepatitis A, and typhoid fever and water contact diseases such as schistosomiasis
1
 and 

leptospirosis
2
 (Indexmundi, 2013). Furthermore, the constant rise in the number of people who 

live in squatter camps around the Umgeni River has caused an increase in contamination of its 

surface water. 

 

Other sources of contamination of the Umgeni River include industrial waste that makes its way 

into the water, engine oils, the overflow of sewage, leaking pipes due to poor maintenance, the 

use of pesticides, fungicides and herbicides by farmers, which are washed away by rainwater, 

rubbish like plastic bags, bottles, paper and tins which are carelessly thrown on the ground and 

blown by the wind or washed down storm-water drains into the river, etc. Industrial chemical 

waste is one of the main sources of organic pollutants in this river. The Umgeni River passes 

through urban areas such as Howick and Durban, where industrial activities predominate. The 

effluent overflow from these chemical industries also contribute to the pollution of the Umgeni 

River, resulting in pollutants accumulating in the river sediments, bank soil or dissolving in the 

river water (DEAT, 2006). 

 

                                                 
1
 Schistosomiasis is a parasitic disease caused by blood flukes (trematodes) of the genus Schistosom. 

2
 Leptospirosis is a bacterial disease that affects humans and animals. It is caused by bacteria of the genus 

Leptospira. In humans, it can cause a wide range of symptoms. 
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Pollutants such as heavy metals and bacteria in the Umgeni River basin were reported (Pegram 

and Bath, 1995). Previous studies found this river to be contaminated with mercury, its main 

source being Thor Chemicals (a metal producing plant) which discharged it into the Mngceweni 

River, a tributary of the Umgeni River (Barratt and Combrink, 2002). Many researchers have 

been interested in metal and bacterial contamination of the Umgeni River (Barratt and Combrink, 

2002, Dikole, 2013, Olaniran et al., 2014) but up to now little is known about the organic 

pollutants that are present in the Umgeni River water and its basin. Organic chemical pollution 

causes much harm to the health of the KwaZulu-Natal population in general and particularly to 

people living in Durban, Howick and Pinetown and can at times be just as toxic as metal 

pollutants. In this project organic pollutants from the Umgeni River were investigated with 

special emphasis on persistent organic pollutants. 

  

1.5 TOXIC AND PRIORITY POLLUTANTS  

 

The Environmental Protection Agency (EPA), in its Clean Water Act (CWA) of 1977 established 

two lists of substances for water quality control. These are known as the list of toxic pollutants 

and the list of priority pollutants. The toxic pollutants list was discussed among parties and the 

agreement was referred to as the Toxics Consent Decree (Keith and Telliard, 1979a). This list 

comprised of 65 compounds such as 2,4-dichlorophenol and classes of compounds such as 

phthalate esters (EPA, 2012). The priority pollutants were chemical pollutants for which 

regulations and methods of analysis were published by EPA. Unlike the list of toxic pollutants 

which included open-ended groups of pollutants, the list of priority pollutants contained 126 

pollutants described by their individual specific names. These substances were reported to occur 

in water bodies with a frequency of at least 2.5% (EPA, 2012). These included 2-

chloronaphthalene, phenanthrene, chlorobenzene, 4-nitrophenol, etc. 

 

1.6 ENVIRONMENTAL FATE OF ORGANIC POLLUTANTS 

 

Organic pollutants such as POPs are characterized by their persistence, bioaccumulation, toxicity 

and their long-range transport (Pennington, 2001, Leip and Lammel,2004, Ilyina, 2007).  

Intentionally produced POPs such as PCBs and pesticides and accidentally formed by-products 
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including PCDDs and PCDFs are found in various environmental matrices such as soil, 

sediment, water, air and biota. Some places such coastal shelves are considered as reservoirs or 

permanent “sinks” of PCBs mainly due to accumulation of organic matter (Lohmann et al., 

2007a). 

 

POPs are partitioned in different environmental compartments (Figure 1.2) and undergo different 

environmental phenomena which transform them from one phase to another, depending on the 

environmental media in which they are transported. The environmental fate of organic pollutants 

is a result of many processes such us physical transport, multimedia partitioning and 

biogeochemical reactions (Lohmann et al., 2007a). Organic carbon plays a key role in the fate of 

POPs as well as their spatial, horizontal and vertical variability in soil (Cousins et al., 1999) 

while soot carbon is known as an important vector for POP transport and partitioning in marine 

environments (Lohmann et al., 2005, Persson et al., 2002). The reintroduction of sediment in the 

water column of a body of water was assigned to sediment resuspension (Jurado et al., 2007).  

The following figure shows an example of how pesticides are transported and distributed in the 

environment. 

 

 

Figure 1.2 Environnemental fate of POPs 

 (adapted from (HUB, 2012)) 

 



9 

 

 

1.7 HYPOTHESES OF THE STUDY 

 

This study focuses on the pollution of the Umgeni River with regard to persistent chlorinated 

organic pollutants namely polychlorinated biphenyls and organochlorine pesticides.  

The following hypotheses were set: 

 

● The Umgeni River is polluted by polychlorinated biphenyls and organochlorine pesticides. 

● The levels of polychlorinated biphenyls and organochlorine pesticides in the Umgeni 

    River are affected by spatial and seasonal variations. 

● The pollutants found in sediment are mainly in solution in its pore water  

 

1.8 SCOPE OF THE STUDY 

 

This study focused on determining the levels of persistent chlorinated organic pollutants in the 

Umgeni River and their spatial distribution and seasonality along this river in the province of 

KwaZulu-Natal, South Africa. Previous studies showed the presence of various organic 

pollutants including POPs in other South African rivers such as the Jukeskei River, Vaal River, 

Mooi River, Crocodile River and Olifants River (Sibali et al., 2008, Chokwe et al., 2015, Vosloo 

and Bouwman, 2005). The current study focused on the Umgeni River because it is one of the 

main rivers in KwaZulu-Natal which is the main source of water to the eThekweni district, 

however very little research has been conducted on it with regard to organic pollutants and any 

research that was conducted, is now outdated. Also research that has been done has focused on 

inorganic pollutants rather than organic pollutants. In addition, this is the first study involving 

pore water analysis in a South African river as well as seasonal and spatial distribution of these 

organic pollutants. The results provide new knowledge on the climatic effects on the distribution 

and concentration of organic pollutants in the environment. 

 

Sampling sites were chosen along the river based on the various surrounding activities that may 

affect the concentrations of organic pollutants. The analysis was carried out on different matrices 

including surface water, sediment pore water, surface sediment and river bank soil. The bio-
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solids from the wastewater treatment plant (Northern Wastewater Works) which discharges its 

treated water into the Umgeni River were also analysed. The detailed description of the sampling 

sites is mentioned in section 5.2.3. The PCBs monitored in this study included PCB28, PCB52, 

PCB77, PCB101, PCB105, PCB138, PCB153 and PCB180. Except PCB77 and PCB 105, the 

other PCBs were chosen for the study because they are indicator PCBs and are recommended by 

the European Union for assessing PCB pollution (EC, 1999, EFSA, 2010). PCB77 and PCB105 

were  included because they are among the most toxic dioxin-like PCBs and are recommended 

by World Health Organization (WHO) for monitoring  (Moysich, 2015, WHO, 2003b). The 

OCPs investigated were hexachlorobenzene, hexachlorocyclohexane, heptachlor, aldrin, o,p'-

DDE, p,p'-DDE, o,p'-DDD, p,p'-DDD, o,p'-DDT, endrin, dieldrin and mirex. These OCPs were 

chosen because they are recommended by the EPA and the Stockholm Convention for analysis 

and monitoring of environmental pollution (UNEP, 2005a). Apart from HCH and HCB, all the 

other assessed OCPs are included in the dirty dozen (UNEP, 2001). The seasonal variations of all 

the analytes was studied in four South African seasons’ namely winter, summer, autumn and 

spring.  

 

1.9 THE AIM OF THE RESEARCH    

  

Organic pollutants are of great concern because of their exponential increase in the 

manufacturing industry. They are potentially toxic as well as have carcinogenic, mutagenic and 

teratogenic effects (Radojevic and Bashkin, 2007). Some organic compounds are not 

biodegradable and yet their degradation and removal efficiency during water treatment is 

practically unknown (Mamabolo, 2006). People continue to use water from rivers and other 

sources without knowing its chemical composition and without any proper and suitable 

treatment, which eventually leads to poor health and sometimes even death.  The main aim of 

this project was to investigate, analyze and monitor the Umgeni River surface water, sediment 

pore water, surface sediment and bank soil with regard to selected toxic and priority organic 

pollutants, especially persistent organic pollutants known as pesticides and polychlorinated 

biphenyls (PCBs). 
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1.10 OBJECTIVES OF THE PROJECT  

 

South Africa is among many other countries that played a major role in the negotiation and 

implementation of the Stockholm Convention on POPs. In December 2000, the final text of the 

convention was successfully negotiated in Johannesburg (Vosloo and Bouwman, 2005). South 

Africa ratified it on 23
rd

 May 2001. It also played a leading role in the development of a strategic 

approach to international chemical management (SAICM) (NIP, 2011). This research 

contribution towards these South African initiatives and engagements is therefore needed; and, it 

is in this framework, the project of “Analysis and quantification of persistent organic pollutants 

in the Umgeni River” fits. The specific objectives of this study were:       

 

 To determine the existence of selected toxic and priority organic pollutants such as the dirty 

dozen in surface water, sediment pore water, surface sediment and bank soil samples collected 

from the Umgeni River. 

 To determine the distribution and fate of 8 selected PCBs and 12 OCPs in the Umgeni River 

water, pore water, sediment and river bank soil. 

 To quantify two categories of pollutants (selected pesticides and PCBs) found in the Umgeni 

River water, sediment pore water, surface sediment and river bank soil. 

 To assess the Umgeni River water quality by comparing the concentrations determined 

experimentally with international standards and concentrations detected in other parts of the 

world. 

 To monitor the seasonal variations of OCPs and PCBs in the Umgeni River for one year 
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CHAPTER TWO 

REVIEW OF PERSISTENT ORGANIC POLLUTANTS 

 

2.1 INTRODUCTION AND BACKGROUND 

 

The increasing health risk caused by persistent organic pollutants is a global problem. On the 7
th

 

of June 1978,  a court settlement known as “EPA Consent Decree” involving EPA and several 

other environmental complainants was put in place and one of its components was a list of 65 

classes of toxic chemicals known as “toxic pollutants list” (Keith and Telliard, 1979b). However, 

this toxic pollutants list had some shortcomings in that each of the 65 classes of compounds 

comprised of several individual compounds and this would make difficult the development of 

analytical methods for their analysis, since their physical and chemical properties were different. 

To avoid analytical challenges caused by the above toxic pollutants list, EPA established a more 

detailed and specific list comprised of 129 individual compounds as the “list of priority 

pollutants” (Callahan et al., 1979, Chapman et al., 1982). 

 

Later in 1981, the EPA removed three compounds from the above list of pollutants because their 

properties did not satisfy their inclusion on the list. These pollutants were 

dichlorodifluoromethane, trichlorofluoromethane and bis(chloromethyl) ether, and hence 

reduced the current list of priority pollutants to 126 specific compounds (EPA, 2012, Chapman et 

al., 1982b). The high priority given to these specific pollutants is because these compounds were 

frequently found in wastewater and hence were used to develop water quality criteria and 

establish limits for effluent guidelines (Chapman et al., 1982b). 

 

Among the compounds that made the priority pollutants list, were compounds that remained in 

the environment for long periods of time and resisted chemical, photolytic or biological 

degradation. They also bioamplifed through food chains and extended their effect to areas where 

they were not manufactured or utilized due to their long-range transport (Alegria et al., 2008, 

Park et al., 2011). These chemicals were characterized as persistent organic pollutants (POPs) 

(Buccini, 2003). 
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2.2 PERSISTENT ORGANIC POLLUTANTS  

 

Persistent organic pollutants (POPs) are organic compounds of natural or anthropogenic origin 

that are toxic and bioaccumulative. They are resistant to photolytic, chemical and biological 

degradation and may remain in the environment for long periods and can be widely distributed 

geographically since they are capable of long-range transport (SETAC, 1998). They are therefore 

found in areas where they have never been used or produced. POPs are highly hydrophobic and 

consequently can easily bio-accumulate in the fatty tissues of living organisms and can be 

integrated into the food chain by bio-magnification. POPs also cause undesirable health effects in 

humans and animals including mainly chloracne, hyperpigmentation, endocrine disruption, 

immune-nervous and reproductive system defects and even cancer (WHO, 2003a). In 2005, 

Vosloo, R. and Bouwman, H. carried out a survey of certain POPs in 22 major South African 

waters and reported that all 22 main waters contained polychlorinated biphenyls (PCBs), 

polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) at 

different concentrations. According to the above-mentioned report, the PCB-toxic equivalent 

(PCB-TEQ) of Umgeni River mouth was 0.32 ng/kg and 1.19 ng/kg for PCB and PCDD/PCDF 

respectively (Vosloo and Bouwman, 2005). These pollutants cause health risks to dwellers along 

the Umgeni River, be it humans, animals, aquatic life and microorganisms. Studies have also 

been carried out on the toxicity of halogenated aromatics which has led to the development of 

structure-activity relationships for this class of compounds (Safe, 1990). 

 

2.3 TRANSPORT OF PERSISTENT ORGANIC POLLUTANTS 

 

Since the POPs that were investigated in the Umgeni River were not necessarily produced and/or 

used in KwaZulu-Natal or in South Africa, an understanding of the means of long-range 

transport of these POPs is in order. There are many ways by which these chemicals can reach 

areas long distances from where they are produced or used. The first means of movement is air 

transportation. When these compounds are in gaseous phase they are transported by air currents 

and travel long distances since they are resistant to degradation. Once they reach cold regions, 

they tend to condense and pollute that region along with its biota. Studies by Kallenborn and co-

workers on atmospheric transport of POPs identified air transportation, as the main source of 
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contamination of Bear Island (Norway) (Kallenborn et al., 2007). Research has shown that dust 

clouds containing POPs and microorganisms can cross vast expanses such as the Atlantic and 

Pacific Oceans from Asia and North Africa and reach North America within only a few days 

(USEPA, 2002, Atlas and Giam, 1981, Oehme and Mane, 1984). 

 

The second means of movement of POPs is water transport, whereby because of their low 

solubility in water, a significant amount of organic pollutants can be transported long distances 

via oceans and even other small water bodies like rivers. The total concentration 

(dissolved+particle-bound) of a pollutant in a body of water at a fixed point, results from a 

combination of sources, sinks and mechanical transport of a flow disribution. The flow 

disribution plays a key role in determining the pollutant’s distribution in sea water systems 

(Ilyina et al., 2006).  

 

The third means of movement is transportation by migratory species of animals and bird life. 

Pollutants are transported from one place to another by harvesting or migratory species such as 

birds and fish. Many animals change their habitat for various reasons. Birds migrate between 

hunting regions due to seasonal variation of their prey and some fish like salmon reproduce in 

fresh water but the adults spend their lives in the ocean. Research has found that before 

migration, these species accumulate lipids that will be used for energy and gonad development 

during the migration journey (Ewald et al., 1998). It is during this build-up of lipids that the 

amassing of concomitant lipophilic organic pollutants, especially POPs, also occurs (Vosloo and 

Bouwman, 2005, USEPA, 2002) which is then transferred to new migratory areas. 

 

The fourth means is trading. This is an anthropogenic transport whereby pollutants are taken to 

different regions via trade of POP products such as pesticides or via POP contaminated products 

or wastes (Vosloo and Bouwman, 2005). Due to their major mode of chemical transport behavior 

on a global scale through air, transferring to higher latitudes and their movement through water 

currents, POPs were classified as flyers, multi-, single hoppers and swimmers respectively 

(Lohmann et al., 2007a, Wania, 2000). 
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2.4 THE DIRTY DOZEN 

 

The health threats caused by POPs became of global concern to the extent that the governing 

council of the United Nations Environmental programme (UNEP) decided to start an 

investigation on POPs in May 1995, beginning with a short list of twelve pollutants known as the 

“dirty dozen”. The dirty dozen is a group of twelve toxic persistent organic pollutants. These 

POPs are potentially lethal in high concentrations. It was approximated that out of 1215 cases 

registered in Ghana, 74 deaths resulted from organochlorine pesticide poisoning due to 

consumption of contaminated food and water and breathing contaminated air (GNIP, 2007). 

Investigations in the Sindhikela village of Orissa state of India in 2008, showed that out of 65 

cases of pesticide poisoning, 3% resulted in death due to contaminated water (Panda et al., 

2009).  Exposure to pesticides can cause health problems including liver and kidney diseases, 

they are disruptors of immune, endocrine, reproductive and nervous systems and most of them 

are carcinogenic (Schecter et al., 2006). Most of the compounds on the “dirty dozen” list were 

used as pesticides for protecting crops while others were used for the control of diseases such as 

malaria, and are still used in certain countries for the same purpose even today. The table below 

(Table 2.1) shows their global historical use and their current status in the United States of 

America (EPA, 2009, SCPOPs, 2014). 

 

The “dirty dozen” were among those compounds discussed during an international 

environmental treaty signed in Stockholm in Sweden, on 22
nd

 May 2001 and operational since 

May 2004, known as the Stockholm Convention on Persistent Organic pollutants (SCPOP). The 

aim of this convention was to eliminate or severely restrict the production and use of POPs 

(Miniero and Lamiceli, 2012). The provision also  allowed the identification of new POPs; hence 

during the 4
th

 conference of SCPOP parties,  held in Geneva from 4-8
th

 May 2009, in addition to 

the dirty dozen, the following contaminants were included on the list of POPs: α-HCH, β-HCH, 

γ-HCH (lindane), chlordecone, hexabromobiphenyl, hexabromodiphenyl ether, 

heptabromodiphenyl ether, pentachlorobenzene, tetrabromodiphenyl ether, pentabromodiphenyl 

ether, perfluorooctanesulfonic acid (PFOS) and its salts and perfluorooctanesulfonyl fluoride 

(PFOSF). The 5
th

 conference held in Geneva in April 2011 also included endosulfan and the 6
th
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 Table 2.1 List of the “dirty dozen” pollutants, their use and current US status (EPA, 2009, SCPOPs, 2014) 

POP Global historical use/source Overview of U.S. Status Cas No. 

Aldrin 

and  

Dieldrin 

 

Insecticides used on crops such as  

corn and cotton; also used for termite control. 

1. No U.S. registrations; most uses cancelled in 1969; all uses by 1987. 2. All 

tolerances on food crops revoked in 1986. No production, import, or export 

309-00-2 

60-57-1 

Chlordane Insecticide used on crops, such as vegetables, small 

grains, potatoes, sugarcane, sugar beets, fruits, nuts, 

citrus, and cotton. Used on home lawn and garden 

pests. Also used extensively to control termites 

 

1. No U.S. registrations; most uses cancelled in 1978; all uses by 1988. 2. All 

tolerances on food crops revoked in 1986. No production (stopped in 1997), 

import, or export. Regulated as a hazardous air pollutant. 

57-74-9 

DDT Insecticide used on agricultural crops, primarily 

cotton, and insects that carry diseases such as 

malaria and typhus. 

1. No U.S. registrations; most uses cancelled in 1972; all uses by 1989.  

2. Tolerances on food crops revoked in 1986. No U.S. production, import, or 

export. DDE (a metabolite of DDT) regulated as a hazardous air pollutant. 

Priority toxic pollutant in 1986 

 

50-29-3 

Endrin Insecticide used on crops such as cotton and grains; 

also used to control rodents. 

 

No U.S. registrations; most uses cancelled in 1979; all uses by 1984. No 

production, import, or export. Priority toxic pollutant. 

72-20-8 

Mirex Insecticide used to combat fire ants, termites, and 

mealy bugs. Also used as a fire retardant in plastics, 

rubber, and electrical products. 

 

No U.S. registrations; all uses cancelled in 1977. 

No production, import, or export 

2385-85-5 

Heptachlor Insecticide used primarily against soil insects and 

termites. Also used against some crop pests and to 

combat malaria. 

 

1. Most uses cancelled by 1978; registrant voluntarily cancelled use to control 

fire ants in underground cable boxes in early 2000. 2. All pesticide tolerances 

on food crops revoked in 1989. No production, import, or export. 

76-44-8 

Dioxins and 

Furans 

Unintentionally produced during most forms of 

combustion and, and industrial processes. Wood 

preservatives, and in PCB mixtures. 

 

Regulated as hazardous air pollutants. 

Dioxin in the form of 2, 3, 7, 8-TCDD is a priority toxic pollutant. 

various 

Toxaphene Insecticide used primarily on cotton.  

 

Most uses in the U.S. were banned in 1982, and all uses in 1990. 8001-35-2 

HCB Pesticide and fungicide used on seeds, also an 

industrial by-product 

 

Not widely used in the United States since 1965. 118-74-1 

PCBs Polychlorinated biphenyls, widely used in electrical 

equipment and other uses.  

Manufacture of PCBs banned in the United States in 1977. various 
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conference in April-May 2013, added hexabromocyclododecane to the list of POPs. All these 

modifications came into force on 26 November 2014. 

 

This project particularly focused on the following organochlorine pesticides HCH, HCB, 

heptachlor, aldrin, DDT and its metabolites (o,p’-DDD, p,p΄-DDD, o,p’-DDE and p,p’-DDE), 

dieldrin, endrin, mirex and PCBs. All the above pesticides and PCBs are recommended by the 

Stockholm Convention for environmental monitoring.  

 

2.5 ORGANOCHLORINE PESTICIDES 

 

Organochlorine pesticides (OCPs) are hydrocarbons that contain chlorine atoms in their 

structures. These compounds were mainly used in agriculture to protect crops from pests and 

also in disease control especially for malaria (Hogarh et al., 2014). Today they are globally 

banned or their use and production is restricted by SCPOPs due to their multiple health effects. 

For example, it was estimated that every year three million people are poisoned with pesticides 

worldwide and among them about 200,000 die, with most cases reported in developing countries 

(FAO/WHO, 2000, Sarkar et al., 2008a).  

 

2.5.1. Hexachlorocyclohexane (HCH) 

 

2.5.1.1. Chemical and physical properties 

HCH (C6H6Cl6) has a molar mass of 290.8 g/mol and comprises of five isomers including α, β, γ, 

δ and ε-HCH (Figure 2.1). This pesticide was not considered as a POP initially, but due to its 

characteristics such us persistence, bioaccumulation, bio-amplification, toxicity and long-range 

transport, it was, later, in May 2009, included and considered by SCPOPs and consequently was 

banned.  It was an effective insecticide for the protection of crops such as cotton, cereals, sugar 

beet and oilseed from insects such as leaf hoppers, stem borers and wireworms (INCHEM, 

2001). The technical product which appears as solid flakes or a yellow or white powder, is 

normally a mixture of the above-mentioned isomers but γ-HCH or lindane, which is the principal 

component (40-45%) is more toxic than the other isomers (Willet et al., 1998). The comparison 

of γ-HCH with other OCPs showed that it is more soluble (7.3 mg/L) in water and more volatile. 
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Figure 2.1 Chemical structures of HCH-isomers 

  

2.5.1.2. Sources of HCH 

Although its use and production were severely limited, its residues are still detected in the 

environment. It is believed that it enters the environment due to leaching from waste disposal 

sites and also from its use in controlling lice and mites in different countries (ATSDR, 2007a, 

Bhatt et al., 2009). Its use for agricultural purposes to increase crop yields is a non-point source 

through run-off, as well as atmospheric deposition and industrial wastewater also contribute to its 

presence in the environment (Mishra et al., 2013, Iwata et al., 1994). Note that technical HCH 

was globally banned before the year 2000 and China and India were its world first producers and 

users and hence the two main sources of this pesticide (Li and Macdonald, 2005).  

   

2.5.1.3. Environmental fate  

HCH persists in various matrices of the environment. In the atmosphere, HCH can exist in the 

form of vapour or bound to solid particulates such as dust. The particulate bound form is more 

persistent than the gaseous form (ATSDR, 2007a). For example, concentrations of 1000 pg/m
3 

were detected in air samples over the Bay of Bengal and the Arabian Sea, while in surface water 

its concentrations were higher than 1000 pg/L due to climatic factors (Iwata et al., 1993). Due to 

its low polarity, once released or atmospherically deposited, it tends to associate with soil and 

sediments where its half-life was approximated to 15 months (Andreu and Pico, 2004, Sarkar et 

al., 1997). HCH can also be absorbed by plants from soil or immediately absorbed though leaves. 

This pesticide has been detected in various plant materials such as tree bark, pine needles, 
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lichens, moss, and mango leaves (Willet et al., 1998) as well as animals and birds (Dhananjayan, 

2012, Charruau et al., 2013). Studies revealed that HCH was one of the most abundant 

organochlorine residues in tree bark samples collected from around the world (Simonich and 

Hites, 1995). However, algae, fungi and bacteria are able to break down HCH to less toxic 

components (Manonmani et al., 2000, Lal et al., 2010). 

2.5.1.4. Health effects 

Considering insecticidal activity, γ-HCH (CAS No. 58-89-9) is the most active of all HCH 

isomers which targets primarily the central nervous system and causes long-term psychological 

and neurological complications (Willet et al., 1998). The brutal convulsions resulting from 

stimulation of the CNS normally causes death, if not recovered within 24 hours (Smith, 1991). 

Other HCH affected organs include renal and liver function, haematology, and biochemical 

homeostasis. A study by Xu and co-workers showed that the population living in areas where 

there is high γ-HCH contaminated soil in China, were exposed to high cancer-risks (Xu et al., 

2013). 

 

 2.5.2. Hexachlorobenzene (HCB) 

 

HCB (C6Cl6) (Figure 2.2) was detected in all matrices of water, air and biota worldwide (Muir et 

al., 1992, Smonich and Hites, 1995, Fellin et al., 1996, Guzzella et al., 2005). Its historical use 

includes use as a fungicide for crops such as onion, sorghum and wheat, and in the manufacture 

of synthetic rubber. Nowadays, it is banned in most countries and is mentioned on the list of 

SCPOPs (UNEP, 2005a). 

Cl

Cl

Cl

Cl

Cl

Cl  

Figure 2.2 Chemical structure of hexachlorobenzene 
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2.5.2.1. Chemical and physical properties 

HCB is a polychlorinated aromatic hydrocarbon. At ambient temperature, it appears as a white 

crystalline solid insoluble in water (solubility: 0.0062 mg/L at 25 °C) but soluble in organic 

solvents such as ether, benzene, chloroform etc. The boiling point and melting point are 323-326 

and 231 °C respectively. Its moderately high lipophilicity (log Kow = 5.50) induces its 

bioaccumulation (MECW, 2005). The technical HCB for agricultural use is a mixture of 98% 

HCB, 1.8% pentachlorobenzene and 0.2% tetrachlorobenzene (ATSDR, 2002a). 

 

2.5.2.2. Sources  

HCB was first introduced as a fungicide in 1945, but was banned in most countries in 1960. Its 

presence in environmental compartments originated from different sources such as industrial and 

agricultural application, a by-product produced unintentionally during industrial chemical 

processes and incomplete combustion processes (Bailey, 2001). Its residue may also result from 

its historic use as a fungicide. It was reported that lindane can be biologically transformed into 

HCB in mammals and in plants during its metabolism (Gopalaswamy and Aiyar, 1984, Kohli et 

al.,1976, Steinwandter and Schulter, 1978).    

 

2.5.2.3. Environmental fate 

HCB is persistent in the environment. Its half-life was approximated to 1.9 years in air and 6.3 

years in water and sediment (MacKay et al., 1992). Its hydrophobicity results in its preferential 

partitioning from any fluid matrices, be it water or air, into sediments, soils or plants. It is also 

known for its bioconcentration in the lipid tissues of organisms, due to its lipophilicity 

(Gabrielsen et al., 1995). Finally HCB was also reported in foodstuffs such as vegetables, fruits, 

milk, eggs, meat, oils, fish and seafood which is another means of exposure for humans (Falcó et 

al., 2003, Kannan et al., 1992a, Kannan et al., 1994a, Kannan et al., 1994b, Nakata et al., 2002b). 

 

2.5.2.4. Health effects 

Animals and humans are intoxicated by HCB mostly by ingestion of contaminated food. 

Experiments carried out on animals showed that HCB caused acute toxicity, chronic toxicity, 

porphyria, genetic toxicity and carcinogenicity. The most marked effect of HCB in humans was 

shown in Turkey between 1954 and 1959, where patients ingested HCB-treated seeds. Among 
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the symptoms shown by the patients, included photosensitive skin lesions, hyperpigmentation, 

hirsutism
3
, colic, severe weakness, porphyrinuria

4
, and debilitation with a mortality rate of 14%. 

(IARC, 1979, Peters et al., 1966, Ecobichon, 1996, Glynn et al., 2003).  Research showed that if 

pregnant women and those with suckling infants swallowed the seeds, they transferred the HCB 

to their children through placental transfer and maternal milk (Ando et al., 1985, Eggesbø et al., 

2009).  

 

 2.5.3. Heptachlor (Hpchlor) 

 

Hpchlor (Figure 2.3) was, in the past, manufactured essentially as an insecticide used in homes 

and buildings and on food crops. Since 1988, it was no longer permitted for such uses in the US.  

It was used in controlling fire ants in transformers (ATSDR, 2002b).    

Cl

Cl

Cl

Cl

Cl

Cl

Cl

 

Figure 2.3 Chemical structure of heptachlor   

  

2.5.3.1. Chemical and physical properties  

Heptachlor (C10H5Cl7) also known as 3-chlorochlordene, is a white crystalline solid with a 

molecular weight of 373.32 g/mol. Its melting and boiling points are 95-96 and 145 
o
C 

respectively. Its solubility in water is 0.05 mg/L at 25 
o
C and log Kow = 5.34 (Noegrohati and 

Hammers, 1992). Heptachlor can quickly oxidise into 2,3-heptachlor epoxide and is a reaction 

that occurs photochemically and biologically in the natural environment (Davidow and 

Radomski, 1953). The heptachlor epoxide then formed is the major contaminant, is very stable 

and more persistent in the environment than heptachlor (NAS, 1977).  

 

                                                 
3
 Excessive hair growth in certain areas of woman’s face and body, such as moustache and beard that creates a 

“male appearance”.  
4
 The excretion of abnormal concentrations of porphyrins and related compounds in the urine.  It is also called 

purpurinuria. 
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2.5.3.2. Sources 

Hpchlor and hpchlor epoxide originates from different hazardous waste sites. Humans are 

exposed by consuming contaminated drinking water and contaminated food. In the US, it is still 

used to control fire ants in buried or underground electric and electronic equipment such as 

power transformers, television and telephone cable packets (USEPA, 1992).    

 

2.5.3.3. Environmental fate  

Hpchlor and its epoxide-like chlorinated pesticides are persistent and hydrophobic, and in the 

aquatic environment tend to stick to soil, sediment and plants. They also undergo bio- 

amplification through the food chain. Heptachlor can be metabolised by microorganisms such as 

rot fungi belonging to genus phlebia into its corresponding isomers such as heptachlor epoxide 

(Xiao et al., 2011) or undergo photolysis and be converted into its photoisomers such as 

photoheptachlor by exposure to long wave ultra-violet light (Hühnerfuss et al., 2005) (Figure 

2.4).  This reaction may also be catalysed by sunlight and occurs on the surface of plant leaves 

(Podowski et al., 1979). Note that the heptachlor photolysis products are more toxic than 

heptachlor; for instance photoheptachlor is 20, 47 and 264 times more toxic to rats, bluegill, and 

goldfish respectively (Podowski et al., 1979).   
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Figure 2.4 Transformation of heptachlor into heptachlor-epoxide and photoheptachlor 
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2.5.3.4. Health effects 

The toxicity of both hpchlor and its epoxide in animals and humans has been reported. The 

various effects may be due to dermal exposure, oral exposure or inhalation. Experiments done on 

laboratory animals showed that oral administration of hpchlor caused different diverse effects in 

various organs such as the liver and reproductive system. It also caused neurological and 

developmental effects (USEPA, 1992). The very likely target of hpchlor in organisms is lipid-

containing cell-membranes which favour its binding due to high hpchlor lipophilicity (Suwalsky 

et al., 1997).   

 

2.5.4. Aldrin and Dieldrin 

 

Aldrin is very closely related to dieldrin in structure (Figures 2.5 and 2.6).  Aldrin biologically 

breaks down to form dieldrin. It was widely used before 1970 in controlling pests like termites 

that can damage crops such as corn and potato, as well as for the use of timber preservation, 

termite-proofing of plastic and rubber coverings of communication cables, and electric and 

electronic equipment (ATSDR, 2002a). Dieldrin is also an effective insecticide used on fruits 

and seeds. In addition, it was also used to eradicate disease vectors such as tsetse flies in 

countries like Botswana, Cameroun, Cote d’Ivoire, Kenya, Niger and Tanzania (GPA, 2000, 

Kurugundla et al., 2009). Their uses were banned in most developed countries but aldrin is still 

used as a termicide in some African countries.   

 

Cl Cl

Cl
Cl

ClCl

aldrin  

Figure 2.5 Chemical structure of aldrin 

 

2.5.4.1. Chemical and physical properties  

Aldrin and dieldrin (C12H8Cl6 and C12H8Cl6O) are polychlorinated aromatic hydrocarbons. Their 

molar masses are 364.91 g/mol and 380.91 g/mol respectively. Both pollutants appear as white 

crystals. Aldrin and dieldrin have melting points of 104-105.5 and 175-177 
o
C, boiling points of 
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145 and 330 
o
C and their solubility in water is 0.20 mg/L and 0.1-0.195 mg/L at 25 

o
C 

respectively (EPA, 2003).  

 

2.5.4.2. Sources 

These compounds do not occur naturally in the environment but reach different environmental 

compartments through anthropogenic activities. Due to its low cost and its effectiveness in 

killing insects that damage crops, aldrin is still being used either legally or illegally in some 

developing countries (Zhang et al., 2011a). Aldrin in soil is converted to dieldrin by soil 

microorganisms such as trichoderma, fusarium and penicilium (Tu et al., 1968, Kumar et al., 

2013b). Aldrin and dieldrin may accumulate in soils due to long-term irrigation of soil with 

industrial effluent and municipal wastewater (Ansari and Malik, 2007, Graaff et al., 2002, Aleem 

et al., 2003, Aleem and Malik, 2003). Landfills and dumping sites are also among other sources. 

 

2.5.4.3.  Environmental fate 

Aldrin and dieldrin were detected in different matrices including air, water, soil and biota. 

Sunlight and microorganisms transform aldrin to dieldrin. This conversion can also occur in the 

presence of peracetic acid (Nestorovska-Krsteska and Zdravkovski, 2006), therefore dieldrin 

may be found in matrices which were rich in aldrin in the past. The insolubility of the two 

substances results in them binding to solid particles in the environment and is the reason for their 

residue being more concentrated in soil and sediment than in water and air (ATSDR, 2002c). 

Dieldrin also binds to solid particles in air and as a result may be transported for long distances. 

It can be absorbed by plants from soil. These chemicals are also known to bioaccumulate and 

bioamplify through the food chain (ATSDR, 2002c). 
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Figure 2.6 Conversion of aldrin into dieldrin in the presence of peracetic acid 
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2.5.4.4.  Health effects 

Results of animal experiments suggest that aldrin and dieldrin are possible carcinogens (Walborg 

et al., 1999). People who were poisoned with aldrin or dieldrin, showed symptoms such as 

convulsions, kidney damage, dizziness, irritability and vomiting (ATSDR, 2002c). In rats, these 

contaminants caused hemorrhagic urinary bladders, enlargement of the liver, and an increased 

incidence of nephritis
5
 while in dogs they caused loss of weight and convulsions, kidney and 

bone marrow changes and even death when the dose was increased (Fitzhugh et al., 1964). Cases 

of death in humans resulting from aldrin poisoning were reported at Madhya Pradesh in India 

(Gupta, 2004).   

 

2.5.5. Endrin 

 

Endrin is an insecticide that was used on cotton, sugarcane, rice, cereals, and grains. It can also 

be used to control mice, rodents and prevent grasshoppers in recreational fields (EPA, 2014). In 

addition to its ability to accumulate in adipose tissue, it is tremendously persistent with a half-life 

of about 12 years (UNEP/GPA, 2000).  

 

 2.5.5.1. Chemical and physical properties 

Endrin, a white and odourless substance with molecular formula C12H8Cl6O (Figure 2.7) and 

molar mass 380.91 g/mol, has melting and boiling points of 235 °C and 245 °C respectively. It is 

practically insoluble in water (0.200 mg/L at 25
 
°C) and its Log Kow = 4.56 (Noegrohati and 

Hammers, 1992); however it is soluble in organic solvents, such as hexane, benzene, 

dichloromethane, toluene, xylene and acetone (Fan and Alexeeff 1999). 

O
Cl

Cl

Cl
Cl

Cl

Cl

 

Figure 2.7 Chemical structure of endrin 

                                                 
5
 Inflammation of the kidneys which may involve the glomeruli.  
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2.5.5.2. Sources of endrin 

Endrin and endrin aldehyde, an impurity and break down product of endrin or endrin ketone 

which is a product resulting from the reaction of endrin and light, has various sources such as 

incineration of waste containing endrin, hazardous waste disposal sites, residue on imported food 

items and unused stock (ATSDR, 1996).  

 

 2.5.5.3.  Environmental fate 

Endrin and its metabolites, endrin aldehyde and endrin ketone, are very persistent, especially in 

soil onto which they adsorb strongly and tend to become immobile (Kenaga, 1980, Sharom et al., 

1980a). Endrin may also make its way into the atmosphere by binding onto air dust particles. 

Significant levels of endrin transformation products such as endrin ketone, endrin aldehyde and 

endrin alcohol, have been detected in plants grown in soil treated by endrin as long as 16 years 

prior to planting (Beal et al., 1972, Nash and Harris, 1973). When endrin reaches water systems, 

it adsorbs onto sediments and bioaccumulates in aquatic organisms (Swann et al., 1983).   

 

 2.5.5.4. Health effects 

Endrin is very toxic to aquatic animals such as fish and invertebrates. Studies showed that it 

causes both acute and chronic toxicity to various avian species as well (Blus et al., 1989). An 

overdose of endrin was reported to cause death in humans (Baron et al., 1992) and in dogs 

(Quick et al., 1989). Studies by Reuber confirmed that endrin is carcinogenic for rats (Reuber, 

1979). In humans, the target organ is the nervous system where toxic doses of endrin may lead to 

excitability, convulsions, twitching muscles, mental confusion and seizures which may be 

followed by death within 2 to 12 hours if no appropriate treatment is administered (UNEP/GPA, 

2000). 

 

2.5.6. Dichloro-diphenyl-trichloro-ethane (DDTs) 

 

DDTs include 1,1-dichloro-2,2-bis(o-chlorophenyl)ethylene (o,p’-DDE), 1,1-dichloro-2,2-bis(p-

chlorophenyl)ethylene (p,p’-DDE), 1,1-dichloro-2,2­bis(o-chlorophenyl)ethane (o,p’-DDD), 1,1-

dichloro-2,2­bis(p-chlorophenyl)ethane (p,p’-DDD), 1,1,1-trichloro-2,2-bis(o-

chlorophenyl)ethane (o,p’-DDT) and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (p,p’-DDT) 

(Figure 2.8).  DDT was first synthesized in 1874 and was widely used in the US as a pesticide. 
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The production of large amounts of DDT by the US started after the 2
nd

 World War for control of 

vector-borne diseases including typhus and malaria, and later after 1945 DDT became a popular 

pesticide due to its low cost and effectiveness as an insecticide (USEPA, 2000). Technical DDT 

is a mixture of four isomers including 75% p,p’-DDT, 15% o,p’-DDT, 5% p,p’-DDE and trace 

amounts of o,p’-DDD (Metcalf, 1973, Bopp et al., 1982). In 1983 all uses of DDT in agriculture, 

were banned but DDT is still used today by many countries (including South Africa) as an 

essential pesticide to fight malaria (NIP, 2011) because it is widely known to reduce malaria 

effectively (WHO, 2011). In South Africa, four provinces, namely KwaZulu-Natal, 

Mpumalanga, Limpopo and the North-West are affected by malaria (NDH, 2010) and in 2004, 

the SCPOPs secretariat allowed an exemption for the use of DDT, for malaria eradication in 

South Africa (NIP, 2011).   
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Figure 2.8 Structures of o,p’-DDE, p,p’-DDE, o,p’-DDD, p,p’-DDD, o,p’-DDT and p,p’-DDT 

 

2.5.6.1. Chemical and physical properties 

DDT is present as colourless to off-white needles or a powder with a slight aromatic odour at 

room temperature. The physical and chemical properties of DDT and its metabolites are 

mentioned in the table below (Table 2.2)  
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Table 2.2 Physical properties of DDT and its metabolites (HSDB, 2010, Ritter et al., 2005) 

Properties o,p’-DDE p,p’-DDE o,p'-DDD p,p'-DDD o,p’-DDT p,p’-DDT 

Molecular formula C14H8Cl4 C14H8Cl4 C14H10Cl4 C14H10Cl4 C14H9Cl5 C14H9Cl5 

Molecular weight 318.03 318.03 320.05 320.05 354.49 354.49 

Boiling point (°C), 20 mmHg † 336 † 350 † 260 

Melting point (°C) † 89 76-78 109-110 74.2 109 

Solubility in water (μg/mL) at 25 °C 0.14 0.12 0.1 0.09 0.085 0.025 

Partition coefficient (log Kow) 6 6.51 5.87 6.02 6.79 6.91 

Vapour pressure (mmHg) at 20 °C 6.00 x 10
-5

 6.00 x 10
-6

 1.94 x 10
-6

 1.35 x 10
-6

 1.10 x 10
-7

 1.60 x 10
-7

 

Henry constant (atm-m
3
/mol) at 25°C 1.80 x 10

-5
 2.10 x10

-5
 8.17 x10

-7
 4.00 x10

-6
 5.90 x10

-7
 8.30 x10

-6
 

† : data not available               
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2.5.6.2. Source of DDT 

DDT was first synthesised in 1874 by a chemist called Zeidler and in 1945, it was industrially 

produced in the United States where it was used to control malaria, typhus and body lice 

(ATSDR, 1994, HSDB, 2009, WHO, 1979). It was also used as a powerful insecticide to control 

pests against many crops such as beans, cotton, soybeans, sweet potatoes, tomatoes, corn, 

cabbage, peanuts and other crops (Casida and Quistad, 1998). Following its carcinogenicity, 

bioaccumulation and several health effects on wildlife, DDT was banned in many countries. In 

South Africa, its general use was prohibited in the 1980’s (DEAT, 2005) but it is still legally 

used in malaria endemic areas of South Africa (Kumar et al., 2008, Lee et al., 2001) including 

the northern and eastern parts of Limpopo, the north-eastern parts of Mpumalanga and northern 

KwaZulu-Natal (Bouwman et al., 1992).  

 

2.5.6.3. Environmental fate 

DDT was known as a persistent organic pollutant since 1979 and is almost immobile in soil due 

to its tendency to associate with it. It therefore tends to be more retained in soil containing much 

organic matter. DDT can be degraded by environmental phenomena such volatilisation, 

photolysis, and biodegradation (Beard et al., 2000). DDT has similar properties as its main 

breakdown products, DDE and DDD in the environment (ATSDR, 2002b). DDT and its 

metabolites adsorb onto particulate matter once introduced into the environment where sediment 

is known to be its main “sink”.  It is also known to bio-magnify through the food chain (Ford and 

Hill, 1991, Zeng et al., 1999). It also makes its way into the atmosphere due to volatilisation 

where 50% of it is adsorbed onto solid particles and 50% occurs in the vapour form. However it 

can be removed from the atmosphere by precipitation or wet and dry deposition back to soil and 

water bodies (Bidleman, 1988). 

 

2.5.6.4. Health effects  

DDT and its metabolites have been detected in water, soil, air, animal and plant tissues and in 

human blood and milk. Being omnipresent, DDT causes various health effects in animals and 

humans. The reported health effects in animals are eggshell thinning, alteration of gonad 

development in birds, it affects organs such as the liver and the nervous system and can also 

affect reproduction due to endocrine disruption in animals exposed to it (FAO/WHO, 2001, Zeng 
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et al., 1999). In humans, DDT is metabolised into DDE and DDD and excreted rapidly; however 

it can be stored in fatty tissue and can potentially cause health effects (ATSDR, 2002b). A study 

by Bouwman and his team reported that in the Limpopo province, women living in DDT sprayed 

areas gave birth to 33% more boys with urogenital birth defects than women in unsprayed areas. 

Cases of leukemia in agricultural workers exposed to DDT, were reported in Lowa and 

Minnesota (Morris-Brown et al., 1990).    

 

2.5.7. Mirex 

 

Mirex (C10H12) (Figure 2.9) is a polychlorinated hydrocarbon that was mainly used to control fire 

ants. Its use was extended to mitigation of leaf cutter ants especially in South America, 

mealybugs in Hawaii and harvester termites in South Africa (ATSDR, 1995).  It is odourless, 

inflammable and appears as solid white crystals at room temperature and does not burn easily 

(HSDB, 2009). The use of mirex was prohibited in 1976. 
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Figure 2.9 Structure of mirex 

 

2.5.7.1. Physical and chemical properties 

Mirex is almost insoluble in water (0.6 mg/L at 25 °C) (Kenaga, 1980) but highly soluble in 

organic solvents such as chloroform, dioxane, benzene, methyl ethyl ketone, and xylene 

(ATSDR, 1995). It is stable in the environment with a half-life of 10 years. Like other 

organochlorine pesticides, mirex is persistent, bioaccumulative, toxic and has long-range 

transport (ATSDR, 1995). Its low water solubility, high lipophilicity and stability allow it to bind 

to sediments. Its vapour pressure is 3 x 10
-7

 mmHg at 25 °C and its Log Kow is 5.28 

(Verschueren, 1983). 
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2.5.7.2. Sources of mirex 

The first synthesis of mirex occurred in the 1940s. It was produced by dimerization of 

hexachlorocyclopentadiene in the presence of an aluminium chloride catalyst (Sittig, 1980). Its 

technical mixture contains 95.12% mirex and 2.58% chlordecone. In addition to its insecticidal 

properties, mirex was used as a fire retardant in plastics, rubber, paint, paper and electrical goods 

(ATSDR, 1995). Nowadays, the presence of mirex in the environment is due to its historical use, 

disposal, and accidental spillages and volatilisation, or leaching from old stockpiles.  

 

2.5.7.3. Environmental fate of mirex 

The fate of mirex in the environment is mainly governed by processes such as adsorption and 

volatilisation (ATSDR, 1995). Its presence in soil, sediment and water is due to its capacity to 

bind to organic particulates and its lipophilicity allows it to biomagnify through the food chain. It 

can be degraded by photolysis to photomirex (Carlson et al., 1976). 

 

 2.5.7.4. Health effects 

Mirex has various health effects on both plants and animals. Some plants were reported to have 

the capacity to uptake and accumulate mirex in their tissues (Mehendale et al., 1972, Rajanna 

and de la Cruz, 1975). Mirex can also reach plant tissues from the atmosphere by aerial 

deposition and from volatilisation from soil (Fries, 1995). Animal studies showed that the health 

effects caused by mirex included loss of body weight, change in liver cell shape and cataract 

formation. Malignant liver tumours were reported in rats and mice exposed to mirex (Akron, 

2009, Bloom et al., 2005). Mirex is also considered a potential human carcinogen (IARC, 1987). 

 

2.6 POLYCHLORINATED BIPHENYLS 

 

 2.6.1. Uses and Properties 

 

 

Polychlorinated biphenyls (PCBs) are a group of 209 chlorinated organic compounds that were 

artificially synthesised and have been used either as colorants or lubricants in transformers, 

capacitors and other electric devices (ATSDR, 2014). They were also used in applications such 
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as plasticizers, surface coatings, adhesives, pesticides, carbonless copy paper, inks, dyes, and 

waxes. PCBs are persistent with long half-lives (8-15 years) (ATSDR, 2000). PCBs have no 

known natural sources and can exist as oily liquids or colourless to yellowish solids (ATSDR, 

2014). Their solubility in water is very low and their relative octanol-water partition coefficients 

(Kow) allow them to adsorb to organic matter rather than dissolve in water (Table 2.3). They are 

resistant to burning and are good insulators, which is the reason for their use in many countries 

but as a result they build up in the environment causing serious health problems. 
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Figure 2.10 General structure of PCBs 

 

They consist of two benzene rings joined by a single carbon-carbon bond that allows the benzene 

ring to rotate (Figure 2.10). When the benzene rings rotate, the PCB can have a coplanar 

conformation like that of PCDDs (Schecter et al., 2006) or non-coplanar conformation. Those 

with coplanar conformation are called ‘dioxin-like PCBs’ and those with non-coplanar 

conformation are referred to as ‘non-dioxin like PCBs’ (Figure 2.11).  
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Figure 2.11 Chemical structure of dioxin-like and non-dioxin-like PCBs, with 3,3’,4,4’-

tetrachlorobiphenyl (PCB77) being representative of dioxin-like PCBs (A) and  2,2’,3,4,4’,5’-

hexachlorobiphenyl (PCB138) being representative of non-dioxin-like PCB (B) 
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Table 2.3 Chemical and physical properties of PCB congeners investigated 

PCB 

congeners 
Formula Molecular weight Mp (°C) Bp (°C) 

Water solubility 

(mg/L) 
Log Kow 

Vapour pressure 

(mm Hg at 25 °C) 

PCB28 C12H7Cl3 257.54 57-58 206-207 0.0085 5.69-5.71 2.8x10
-2

 

PCB52 C12H6Cl4 291.98 87-89 268 0.046 6.09 7.3x10
-3

 

PCB77 C12H6Cl4 291.98 173 360 0.175 6.53 4.4x10
-7

 

PCB101 C12H5Cl5 326.43 77 - 0.00012 6.31 2.9x10
-3

 

PCB105 C12H5Cl5 326.43 - - 0.0034 6.64 6.5x10
-6

 

PCB138 C12H4Cl6 360.88 78.5-80 400 0.016 7.44 4.0x10
-6

 

PCB153 C12H4Cl6 360.88 103-104 no data 0.00091 7.75 3.8x10
-7

 

PCB180 C12H3Cl7 395.32 109-110 240-280 0.31x10
-2

-0.66x10
-1

 6.82-7.37 - 

(HSDB, 2010, Ritter et al., 2005, Shiu and Mackay, 1986)
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2.6.2. Sources of PCBs in the Environment 

 

PCBs originate mostly from industries where they are formed as by-products. However, they 

can also be generated by combustion processes of PCB-containing waste such as incineration 

of municipal hazardous and medical waste as well as the release of fumes from vehicle 

exhausts (Safe, 1994, Ritter et al., 2005) (Figure 2.12).  The occurrence of PCBs in the 

environment was first observed by Jensen in 1966 by investigating wildlife and human 

samples (Jensen, 1989). 

 

PCBs can also be distributed into the environment by PCB-containing equipment such as 

railroad transformers, heat transfer systems, hydraulic systems, mining equipment, natural 

gas pipelines, scientific instruments such as oscillatory flow birefringence
6
 and 

viscoelasticity
7
, electromagnets, switches, voltage regulators, circuit, breakers, recloses and 

cables (USEPA, 2002).  

 

Figure 2.12 Sources and dissemination of OCPs and PCBs in the environment 

 (adapted from (WHO, 2008)) 

 

 

                                                 
6
 Optical property of a material having a refractive index that depends on polarization and propagation direction of light. 

7 Property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. 
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2.6.3. Environmental Fate of PCBs 

 

While in the environment, PCBs can be degraded in different ways such as biological and 

chemical transformations. In the case of such transformations, the negative environmental 

effects are minimised (Abramowicz, 1995). PCBs are decomposed into simpler compounds 

by enzymes produced by microorganisms. This biological degradation can occur either in the 

form of mineralisation, whereby the organism uses the pollutant as its source of carbon and 

energy and reduces it into its simple elements, or in the form of co-metabolism in which the 

source of carbon and energy for the microorganism is another substance, it is reduced 

together with the concerned pollutant (Dobins, 1995). PCB biodegradation may take place in 

the absence of oxygen where it is termed ‘anaerobic’ degradation or in the presence of 

oxygen where it is called ‘aerobic’ degradation.   

 

2.6.3.1. Anaerobic transformation of PCBs 

The anaerobic dehalogenation phenomena was observed for the first time on substances 

detected in Silver Lakes and the Hudson River anaerobic sediments in Massachussetts 

(Brown et al., 1987a). In anaerobic transformation, the chlorinated organic compounds are 

dehalogenated where they become electron acceptors and consequently are reduced by 

substitution of chlorine by hydrogen (Morris et al., 1992, Quensen et al., 1990). 

 

R Cl + 2e R Cl-H ++ H
 

 

Some examples of dechlorinating bacteria which can degrade PCBs in soils and sediments 

include desulfitobacterium, dehalobacter restrictus, dehalospirillum multivorans, 

desulforomonas chloroethenica and dehalococcoides ethenogenes (Mohn and Tiedje, 1992). 

It was reported that temperature has a significant effect on dechlorination because there is an 

optimum temperature at which the growth of dechlorinating bacteria and enzyme catalytic 

activity are at maximum (Wiegel and Wu, 2000). In the process of dechlorination, the PCB 

loses its chlorine one by one resulting in its degradation (Figure 2.13). 
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Figure 2.13 Potential pathway for anaerobic dechlorination of a highly chlorinated congener 

 (Fish and Principe, 1994) 

 

2.6.3.2. Aerobic transformation of PCBs 

The persistence of PCBs increases with their increasing degree of chlorination. The aerobic 

biodegradation occurs only for the low molecular weight PCBs and implicates the cleavage 

of the biphenyl ring (Fish and Principe, 1994). The responsible bacteria for PCB aerobic 

biodegradation includes achromobactor, nocardia sp, micrococcus sp and pseudomonas sp  

(Ahmed and Focht, 1972, Baxter et al., 1975). In aerobic oxidative degradation, the first step 

involves conversion of PCBs to chlorobenzoic acid (Figure 2.14) and the second step is the 

degradation of chlorobenzoic acid.  
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Figure 2.14 Major steps in the degradation of PCB into chlorobenzoic acid 

 (Sylvestre and Sandossi, 1994). 

 

2.6.4. Health Effects of PCBs 

 

PCBs cause a wide range of health effects in animals and humans and this largely depends on 

their level and position of chlorination on the biphenyl ring (Brouwer et al., 1999). Endocrine 

systems are among those which are affected by PCBs which include oestrogen and androgen 
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systems, the thyroid hormone, and retinoid and corticosteroid systems (Brouwer et al., 1999). 

Skin and hepatic problems such as skin rashes, chloracne, pigmentation of nails and skin and 

alterations in liver enzymes have been associated with PCB exposure and accidental ingestion 

of contaminated foods (Aoki, 2001). Also, some reproductive and developmental effects were 

recorded and these include menstrual disturbances in women and effects on sperm 

morphology in men which can result in difficulty in conceiving (ATSDR, 2000). Studies 

reported reproduction and fertility problems in animals such as rats, mice and monkeys 

(Sager et al., 1991, Sager and Girard, 1991). Immunological and neurological health effects 

were identified in humans. Problems of numbness, weakness and neuralgia of limbs, 

hypaesthesia, and headaches were recorded in patients exposed to the outbreak of PCBs that 

occurred in Yusho and Yu-Cheng in Japan and Taiwan (Chia and Chu, 1985). PCBs also 

showed inhibitory effects on the immune system of rhesus monkeys due to alteration of T-

cells (ATSDR, 2000, Ritter et al., 2005). Cancer problems have been linked to PCB exposure. 

This was seen in the form of liver cancer in victims of the Yusho PCB outbreak in Japan. 

Workers involved in electrical capacitor manufacturing plants in New York and 

Massachusetts also exhibited cancer-related problems where a number of deaths were 

observed which was attributed to PCB exposure (Brown and Jones, 1981, Brown, 1987b). 

 

2.7 MONITORING OF ORGANOCHLORINE PESTICIDES AND 

POLYCHLORINATED BIPHENYLS 

 

2.7.1. Introduction 

 

The monitoring and investigation of POPs in general and of OCPs and PCBs in particular, 

were attempted in South Africa as well as in many countries around the world. The status of 

OCPs and PCBs in different environmental compartments cannot however, be fully known 

since the environment is dynamic and its composition changes with time. It is for this reason 

that regular monitoring is required. 

 

2.7.2. Commonly Used Analytical Methods for Monitoring of OCPs and PCBs 

 

From sampling to the final analysis of the analyte, a certain number of steps must be strictly 

followed. The isolation and/or enrichment of the analyte is a critical step and maximum care 

must be taken in order to minimize or avoid errors that may occur such as sample 
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contamination, analyte loss, diminution of analyte concentration, etc. In the case of organic 

contaminants such as pesticides and polychlorinated biphenyls in solid phase samples, it is 

imperative to replace the solid phase matrix in which the analyte sits with a liquid one. The 

analyte is transferred from the primary matrix such as soil into the secondary one which is 

normally a solvent. The analyte concentration is then increased to a level above the detection 

limit of the analytical technique, such as GC-MS and HPLC, to be used. At the end, the 

method used needs to be validated. The following figure describes the steps involved from 

sampling to final determination of analyte.     

 

Figure 2.15. Main steps of analytical procedures used for determining organic pollutants 

(adapted from: Beyer, A and Biziuk, M., 2008). 

 

2.7.2.1. Collection of a representative sample 

The collection of a suitably representative sample is fundamental to any environmental 

analysis or monitoring. In case of samples for PCB analysis, contamination can take place on 

the field by electrical equipment and building products such as marine paints and joint 

sealants (Mohler, 2005) or by routine use of OCPs. Precautions must be taken, such as, the 

use of special clothing and disposable gloves, sealed chipping containers and field blanks 

(NOAA, 1998). PCB contamination can occur particularly in water samples due to ubiquitous 

contamination 

2.7.2.2. Sample storage  

An analytical laboratory involved in analysis of OCPs and PCBs must be equipped with a 

refrigerator and a freezer for sample storage and archiving. The basic approach is to assure 
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that the sample is kept in a room free of significant contamination as well as prevent any 

possible forms of degradation of the sample. A well-ventilated lab and air prefiltered through 

High Efficiency Particulate Air (HEPA) and carbon filters is ideal but any clean chemical 

laboratory may be acceptable for most work on OCPs and PCBs (Muir and Sverko, 2006).  

2.7.2.3. Extraction and isolation 

The extraction and isolation steps are very important in OCP and PCB analysis. Table 2.4   

provides general guidance for extraction and isolation steps. 

2.7.2.4. Final determination 

Gas chromatography-mass spectrometry or high resolution GC-high resolution MS 

(HRGC/HRMS) are nowadays the most applied methods for analysis of PCBs and OCPs. The 

main advantage of the above-mentioned techniques is a reasonable precision in determining 

the identity and concentration of pollutants such as PCBs and OCPs (Safe, 1995). Other 

methods include biological methods such as bio-markers, cell or organ based bio-assays and 

protein-binding assays (Behnisch et al., 2001). The weakness of the bioassays is their 

inability to distinguish between several individual analytes with precision. Table 2.5 provides 

a general guidance on GC analysis for PCBs and OCPs.  
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Table 2.4 Extraction techniques used for environmental samples

Technique Overview Method reference 

Conventional  Sample + desiccant mixture in glass or paper thimble is leached with warm (condensed) solvent EPA, 2000 

Soxhlet for 4–24 hrs. Examples of solvents used are diethyl ether, DCM, hexane, toluene 

 

   
Automated Soxhlet Extraction thimble is immersed in boiling solvent (30–60 min) then raised for soxhlet extraction. EPA, 200 

(e.g., “Soxtec”) Solvent can also be evaporated 

 

   
Supercritical fluid Sample (usually +desiccant) placed in high-pressure cartridge, and carbon dioxide at 150–450 atm EPA, 1996 

extraction (SFE and temp of 40–150 °C passed through. After depressurization, analytes are collected in solvent trap  

   

High-speed blending Useful for high water content samples such as plant material. Homogenizes sample with acetone and NaCl. 

USFDA, 1999 

Specht, 1995 

   
   

Column extraction Sample (+desiccant) placed in large column with filter and stopcock. Eluted with large volume of Ribick, 1982 

 

extraction solvent, e.g., hexane:DCM; hexane 

 

   
Sonication-assisted Sample in open or closed vessel immersed in solvent and vibrated with ultrasonic radiation using EPA, 2007 

extraction ultrasonic bath or probe 

 

   
Microwave-assisted Sample in open or closed vessel immersed in solvent and heated with microwave energy. EPA, 2007 

extraction (MAE) 

  

   

Pressurized liquid Sample (usually +desiccant) placed in extraction cartridge and solvent (heated, pressurized) 

EPA, 1995 

 EPA, 2000 

extraction (PLE) passed through then dispensed in extraction vial. 

 

  

 

Liquid-liquid 

extraction Sample + large volume of suitable solvent placed in separatory funnel and extracted 3 or more times with fresh solvent; eg DCM, hexane, etc EPA,1996 
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Table 2.5 General guidance on GC analysis for PCBs and OCPs (Muir and Sverko, 2006) 

GC detector Analyte Configuration Advantages/disadvantages 

Capillary GC - with All ortho-subsituted 30 or 60 m×0.25 mm id. Column Relatively inexpensive and easy to 

electron capture PCBs & all OCPs with H2 carrier gas. Dual column operate. Similar response factors 

detection on the POPs list nonpolar (DB-1) and intermediate for most OCs. Good sensitivity for all POPs. 

 

except toxaphen polarity columns (DB-5) Adequate for routine tasks. High 

   

potential for misidentification of 

   

some POPs due to coeluting peaks 

   

Moderately expensive and more 

Quadrupole mass All PCBs & all 30 m×0.25 mm i.d. low-bleed complex to operate and maintain. 

spectrometry in OCPs on the POPs columns with He carrier gas. Newer instruments (post 1997) have 

electron ionization (EI) list except Selected ion mode for target adequate sensitivity for routine POPs 

mode toxaphene POPs monitoring at low pg/μL concentrations.  

   

Much less potential for misidentification  

   

than with ECD. 

    

Quadrupole mass Toxaphene and 30 m×0.25 mm i.d. low-bleed Comparable sensitivity in ECNIMS 

spectrometry in other highly columns with He carrier gas. mode to ECD in SIM mode for 

electron capture chlorinated OCPs Selected ion mode for target some POPs. Much less potential for 

negative ionization and PCB with >4 POPs misidentification than with ECD. 

(ECNIMS) mode chlorines 

  
Ion trap mass All PCBs, All OCPs 30 m×0.25 mm i.d. low-bleed Comparable sensitivity to ECD in 

spectrometry using on the POPs list columns with He carrier gas. Same MS/MS mode for some POPs. Much 

MS/MS mode 

 

columns as quadrupole MS less potential for misidentification 

   

than with ECD. 

High-resolution All PCBs, all OCPs 30 m×0.25 mm i.d. low-bleed Comparable sensitivity to ECD in 

magnetic sector mass on the POPs list columns with He carrier gas. SIM mode. Highly reliable 

spectrometry in except toxaphen Selected ion mode for target POPs identification at low pg/μL level 

electron ionization (EI) 

 

at 10,000× resolution 
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2.7.3. Global Monitoring of OCPs and PCBs 

 

POPs are ubiquitous in the environment and may have anthropogenic origin such as industrial 

processes, waste, agriculture and traffic; but may also come from natural sources such as 

volcanic eruptions (WHO, 2008). They can even be present in areas where they have never been 

produced or used due to their worldwide distribution through air and ocean currents (WHO, 

2008). Their presence in the environment has become a global problem in the last decade. While 

polycyclic aromatic hydrocarbon (PAH) transport and deposition are mainly associated with 

solid atmospheric particles, the movement of organochlorine pollutants such as OCPs and PCBs, 

which are the major constituents of POPs, from the atmosphere to terrestrial and aquatic systems 

is governed by gas exchange (Fernández and Grimalt, 2003). The worldwide distribution of 

POPs is facilitated by certain mechanisms including “global distillation effect and cold 

condensation” whereby the pollutants in the form of a gas are transported from warm to cooler 

regions of the globe and the “grasshopper effect” in which there is exchange of contaminants 

between air and terrestrial surfaces (Wania and Mackay, 1996) (Figure 2.15). This last 

mechanism is dependent on seasonal temperature variation and this is the reason why POPs are 

trapped in Polar Regions where the temperature is very low. This phenomenon is called “cold 

finger or cold trap” (Fernández and Grimalt, 2003).  
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Figure 2.16 POP migration processes 

 (adapted from: (Wania and Mackay, 1996)) 

 

This is also the reason for their presence in arctic regions which are thousands of miles away 

from any known source (EPA, 2009). Since pollution by POPs such as OCPs and PCBs is a 

global issue, a global solution must be found in order to reduce or eradicate it. It is for this reason 

the international environmental treaty known as the Stockholm Convention was put in place in 

2001 and was effective from 2004 in order to take global action aiming to eliminate or restrict 

the production or use of POPs worldwide (UNEP, 2008 ). Although restrictions have been put in 

place, these OCPs and PCBs are still being used in developing countries in Africa and in Asian 

Pacific regions (Ueno et al., 2003). Using skipjack tuna as a bio-indicator to monitor the 

organochlorine pesticides global pollution, Ueno and his co-workers found high concentrations 

(22 to 1300 ng/g lipid weight) of some OCPs such as DDT and HCH in the South China Sea, 

East China Sea, Japan Sea and Bay of Bengal, and concluded that these pesticides were being 

used in Russia, China, India and other developing countries on the Asian continent, mostly for 
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agricultural and public health purposes (Ueno et al., 2003). A study on the global distribution of 

OCPs and PCBs in 24 countries worldwide, by analysis of butter, revealed that the total 

concentration of PCBs varied by a factor of 60. Levels of these contaminants in butter were the 

highest in European and North American countries and lower in the southern hemisphere. The 

levels of DDT were higher in India, South and Central America and those of HCH were high in 

India, China and Spain (Kalantzi et al., 2000). 

 

Africa has been a victim of POPs although it hardly produces any. This is because in the 1980s 

the African continent was chosen as a dumping site for European waste (Bernstorff and Stairs, 

2001). Africa is still vulnerable to hazardous waste trade from industrialized countries such as 

the UK, Germany, France and USA in exchange for foreign currency which is much needed in 

most developing African countries (Koné, 2010). This was clearly illustrated by the toxic waste 

disposed in Abidjan, Cote d’Ivoire in August 2006 which was termed as the largest toxic 

dumping scandal of the 21
st
 century (Koné, 2010).  In 2001, the absolute pesticide stockpiles in 

Africa were established and several tonnes of hazardous wastes were noted in 45 African 

countries. For example, Algeria (207 tonnes), Benin (421 tonnes), Botswana (18247 tonnes), 

Rwanda (451 tonnes), South Africa (603 tonnes), Sudan (666 tonnes) and Swaziland (9 tonnes) 

were identified (Bernstorff and Stairs, 2001). 

 

In recent years an effort to assess the occurrence and distribution of PCBs and OCPs in different 

locations in Africa has continued to be the focus of many research institutions and many research 

investigations where the monitoring of contaminants were carried out using various matrices 

such as water, sediment, soil, bio-solids, aquatic animals, human milk, cow milk, human blood, 

etc. A study by Benbakhta and his team, found the concentrations of OCPs along the Atlantic 

coast of Morocco  in North Africa, varying between 2.40-25.40 ng/g of dry sediment (Benbakhta 

et al., 2014). The levels of PCBs in sediment collected from the port of Tamentfoust in Algeria, 

in the North of Africa, varied from 15 to 70 ng/g d.w. (Fouial-Djebbar et al., 2010 ). An 

investigation of OCPs and PCBs in fish from Lake Tanganyika, the main water body in Burundi, 

a central African country, showed the total concentration of 12 PCBs having 166.737.4 ng/g fat 

of Oreochromis niloticus, a species of Nile tilapia. The OCPs analysed were all detected in low 

concentrations, except for HCH (288.215.5 ng/g fat) and DDTs (909.142.5 ng/g fat) 
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(Manirakiza et al., 2002). In the southern part of the African continent, environmental 

monitoring research were also interested in organic pollution. For example the analysis of 

mothers’ milk in Zimbabwe revealed that the mean total PCB levels in Kadoma mothers were 60 

ng/g fat milk while the mean level of DDTs was 25.26 ng/g milk fat (Chikuni et al., 1997). West 

African researchers also made an effort to monitor the environmental contaminants in different 

environmental matrices. A monitoring study at the cocoa producing area of Ondo state, 

Southwest of Nigeria found the following OCP concentrations: cis-chlordane 30-6990; α-

endosulfan 30-6990; p,p'-DDE 80-19040; and dieldrin 10-7620 ng/g in sediment and concluded 

that the main source of these pesticides was agricultural activities in the area (Adetutu et al., 

2013).  Analysis of OCPs and PCBs in the western part of Africa showed fish collected from 

Awassa Lake in the Ethiopian rift valley may cause a special health risk in children if that fish 

were consumed. In that study the sum ΣDDT varied from 19 to 56 ng/g wet weight, while the 

concentration of PCBs found in some fish species exceeded the reference dose (0.075 ng/g) 

indicated for 0 to 2 year old children (Ermias et al., 2014). Tables 2.4 and 2.5 show some 

worldwide monitoring studies carried out in recent years (2010-2015) for PCBs and OCPs 

respectively. 
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Table 2.6 Global monitoring studies of PCBs in recent years (2010-2015) 

Location/country Matrix No of  PCBs No of samples ∑PCB (ng/mL or ng/g) References 

Delhi, India River water 28 - 0.014-1.768  (Kumar et al., 2012) 

Liaohe, China Sediment 18 14 1853-75606 (Zhang et al., 2010) 

Daliao River estuary, China Sediment 41 39 0.83 -7.29  (Men et al., 2014) 

 Lake Qarun, Egypt Sediment 29 34 1.48 -137.2  (Barakat et al., 2013) 

Haihe River basin, China Sediment 12 17 0.018.7 -0.0500 (Li et al., 2013) 

Beijing/China Soil 25 - 47.04 -3883.77 (Yuan et al., 2014) 

United Kingdom  Soil 7 - 1.00-750  (Vane et al., 2014) 

China Soil 32 26 317.85 - 927.30  (Gao et al., 2015) 

Russia Soil 

 

- 300.00-24250.0  (Agapkina et al., 2012) 

Bulgaria Soil 6 8 7.20-17.20  (Dimitrova et al., 2013) 

Houston, US  Wastewater 209 16 0.001.01-0.008.12 (Balasubramani et al., 2014) 

Ismir, Turkey Soil 41 - 174-161000 (Elife et al., 2012) 

Mediteranean Seas, Algeria Sediment 27 30 15.00-70.00  (Fouial-Djebbar et al., 2010 ) 

Tanzania Fish (tilapia) 7 201 17 (Polder et al., 2014) 

Zheng Soil 29 - 0.036–0.679 (Zheng et al., 2014) 

Ontario, Canada Eels 44 44 384 (Byer et al., 2013) 

Western Africa (median range) 

     Cote d'Ivoire Human serum 18 21 3–85 (Luzardo et al., 2014) 

Gambia Human serum 18 22 11–309 (Luzardo et al., 2014) 

Ghana Human serum 18 106 568–2943 (Luzardo et al., 2014) 

Guinea Human serum 18 41 48–390 (Luzardo et al., 2014) 

Guinea Bissau Human serum 18 15 54–256 (Luzardo et al., 2014) 

Mali Human serum 18 34 66–229 (Luzardo et al., 2014) 

Nigeria Human serum 18 109 85–439 (Luzardo et al., 2014) 

Senegal Human serum 18 26 25–182 (Luzardo et al., 2014) 

Sierra Leone Human serum 18 79 99–374 (Luzardo et al., 2014) 

Central Africa 

     Cameroon Human serum 18 41 59–164 (Luzardo et al., 2014) 

Congo Republic Human serum 18 41 92–356 (Luzardo et al., 2014) 

Equatorial Guinea Human serum 18 385 621–1230 (Luzardo et al., 2014) 
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Table 2.7 Global monitoring studies of OCPs in recent years (2010-2015) 

Location/country Matrix N
o
 of OCPs N

o 
of samples ∑OCPs (ng/mL or ng/g) References 

North-Ouest Mediterranean sea River water 10 6 0.002 -0.016 (Sánchez-Avila et al., 2012) 

Mediterranean coastal Waters, Spain Water 12 41 0.0019–0.0083 (Martí et al., 2011) 

Lake Qarun, Egypt Sediment 25 34 1.01 -164.8 (Barakat et al., 2013) 

Lake Parishan, Iran Water 6 4 0.055 (Kafilzadeh et al., 2012) 

Lake Parishan, Iran Sediment 6 4 9.84 (Kafilzadeh et al., 2012) 

Lake Parishan, Iran Fish 6 4 4.86 (Kafilzadeh et al., 2012) 

Haihe River basin, China Sediment 10 17 1.7–35.280 (Li et al., 2013) 

India Soil 22 - 129-1001 (Manohar et al., 2014) 

Beijing,China Soil 23 - 2.38-933.12 (Yuan et al., 2014) 

Pakistan Soil 15 11 216.00-541.00 (Sultana et al., 2014a) 

Chao River,China Soil 24 - 0.8145-16.8524 (Yu et al., 2014) 

South-East Romania Soil 15 10 58.00-1662.00 (Ene et al., 2012) 

Western China Soil 10 - 0.51-181.63 (Liu et al., 2013) 

North-East Romania Soil 11 - 4.40 -95.00 (Doina et al., 2013) 

Tajikistan Soil 25 - 52.83-247.98 (Zhonghua et al., 2013) 

Poland Soil 8 15 0.35-453.20 (Maliszewsk-Kordybach et al., 2014) 

Argentina Soil 15 15 38100 - 46500 (Gonzaleza et al., 2010) 

Atlantic coast, Morocco Sediment 14 40 13.17-27.53 (Benbakhta et al., 2014) 

North-East Romania Moss 14 - 5.80-95.00 (Doina et al., 2013) 

North-East Romania Tree-bark 14 - 11.00-440.00 (Doina et al., 2013) 

Nile Delta, Egypt Water 25 - 0.07-2.1567 (El Bouraie et al., 2011) 

Nile Delta, Egypt Sediment 25 - 1.73-2.11 (El Bouraie et al., 2011) 
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 Table 2.7 continued 

Location/country Matrix N
o
 of OCPs N

o
 of samples ∑OCPs (ng/mL or ng/g) References 

Lake Awassa, Ethiopia Fish 7 - 19.00-56.00  (Ermias et al., 2014) 

Lake Koka, Ethiopia Fish 7 - 0.05-72.53  (Deribe et al., 2011) 

Densu bassin,Ghana Fish 14 - 0.30 -71.3 (Afful et al., 2010) 

Assam state, India Human milk 9 205 2720-3210  (Mishra and Sharma, 2011) 

Assendabo, Serbo and Jimma, Ethiopia Human milk 9 - 2.66-12200 (Gebremichael et al., 2013) 

Western Africa (median range) 

     Cote d'Ivoire Human serum 18 21 194–841 (Luzardo et al., 2014) 

Gambia Human serum 18 22 118–743 (Luzardo et al., 2014) 

Ghana Human serum 18 106 119–555 (Luzardo et al., 2014) 

Guinea Human serum 18 41 148–1016 (Luzardo et al., 2014) 

Guinea Bissau Human serum 18 15 56–407 (Luzardo et al., 2014) 

Mali Human serum 18 34 117–1558 (Luzardo et al., 2014) 

Nigeria Human serum 18 109 198–719 (Luzardo et al., 2014) 

Senegal Human serum 18 26 49–359 (Luzardo et al., 2014) 

Sierra Leone Human serum 18 79 247–968 (Luzardo et al., 2014) 

Central Africa 

     Cameroon Human serum 18 41 254–916 (Luzardo et al., 2014) 

Congo Republic Human serum 18 41 372–1585 (Luzardo et al., 2014) 

Equatorial Guinea Human serum 18 385 126–1351 (Luzardo et al., 2014) 
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2.7.4. Monitoring of OCPs and PCBs in South Africa 

 

Researchers have also investigated the occurrence and significance of OCPs and PCBs in the 

South African environment in various matrices such as water, sediment, aquatic life, birds and 

humans. In their study, London and his team reported varying levels of OCPs in the surface 

water of Piketburg and Grabouw Rivers of the Western Cape from 0.050 to 1.00 ng/mL (London 

et al., 2000a). Awofolu and Fatoki investigated OCPs in water and sediment systems in the 

Eastern Cape and their results showed the OCP levels in water varied from trace amount to 0.45 

ng/mL in the Buffalo River, from trace to 0.18 ng/mL in Keiskamma River and from trace to 

0.13 ng/mL in the Tyume River (Awofolu and Fatoki, 2003). The above mentioned levels of 

OCPs were not high but were, in all cases higher than the EPA guidelines (0.014 ng/mL). 

However, Sibali and co-workers found very high levels of OCPs in water (0.895±0.01-

9089±0.08 ng/mL) and sediment (0.266±0.01-22914±2.85 ng/g) of the Jukskei River catchment 

area in Gauteng (Sibali et al., 2008). The above concentration in water (0.01-9089 ng/mL) is 

significantly higher than water criteria values recommended by the USEPA (0.014 ng/mL) and 

the South African Department of Water Affairs (DWAF) for the protection of the aquatic 

environment. 

  

Table 2.8 PCB-TEQ in ng/kg in fish of major South African water bodies 

(Vosloo and Bouwman, 2005) 

 

Water body  PCB-TEQ (ng/kg) Water body  PCB-TEQ (ng/kg) 

Gariep River (mouth) 0.01 Richard's Bay (harbour) 0.01 

Saldanha Bay harbour 0.01 Thulazihleka Pan 0.04 

Berg River 0.02 Vaal Dam 0.01 

Theewaterskloof Dam 0.02 Riet Spruit 0.31 

Groot River (mouth) 0.02 Loskop Dam 0.01 

Zwartkops Estuary 0.61 Hartbeespoort Dam 0.47 

Vaal River (Douglas) 0.03 Modderfontein Spruit 1.58 

Buffalo River 0.01 Riet Spruit (diverted brook) 10.01 

Mooi River 0.02 Loch Vaal 0.65 

Umlazi River (mouth) 0.3 Crocodile River 1.74 

Umgeni River (mouth) 0.32 Olifants River 0.02 
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The report by Vosloo and Bouwman revealed that the total concentrations of PCBs (∑12PCB) in 

sediment and different species of fish collected from 22 South African major water bodies, were 

13200022000 ng/g, 170002200 ng/g, 16000031 ng/g, 410006700 ng/g in marsh sediment, 

grass shrimp, striped mullet and seatrout muscle, respectively. The same study showed that the 

PCB toxic equivalent factors (PCB-TEQ) were between 0.001 and 10.01 ng/kg. The PCB-TEQ 

values for different water bodies are tabulated in the Table 2.6 (Vosloo and Bouwman, 2005). 

The interim toxic equivalency factors for human intake of dioxin-like PCBs are, 0.0005, 0.0001 

and 0.00001 for PCB77, PCB105 and PCB180 respectively (WHO, 2000).  

 

The aquatic life in fresh waters was also investigated in some areas. The mean OCP 

concentrations in muscle samples of Clarias gariepinus collected from the Roodeplaat Dam, 

Rietvlei Dam and Hartbeespoort Dam, were found to vary from 86.45 to 288.75 ng/g, 55 to 336 

ng/g and 71 to 131 ng/g respectively (Barnhoorn et al., 2015b). 

 

A study conducted by Pieters and Focant on human serum, revealed that the mean of the total 

toxic equivalencies (ΣTEQ) of dioxin-like PCBs was 6.9±3.3 ng/kg lipid in the South African 

Tswana population,  while the mean concentration in the same population with regard to dioxin-

like PCBs was 70.1±42.8 ng/g lipid (Pieters and Focant, 2014). Birds are known as good 

transport agents of POPs and particularly OCPs and PCBs.  A study on blood tissue from 

vultures collected in different locations in South Africa showed the total levels of DDT to be 

9.63, 3.42, 7.17, and 16.18 ng/mL for vultures collected at Dronfield, Sandveld, Moholoholo and 

De Wildt respectively (van Wyk et al., 2001). Bird eggs also are known to accumulate POPs. 

Studies showed that the highest levels of OCPs were found in South African darter eggs, where 

the average concentrations were 370 ng/g and 300 ng/g for ∑OCPs and ∑PCBs (Bouwman et al., 

2008). The past monitoring and analysis studies of PCBs and OCPs in South Africa are compiled 

in Tables 2.7 and 2.8 below. 
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Table 2.9 PCB analysis and monitoring studies in South Africa 

Location Matrix N
o
 of PCBs 

N
o
 of 

samples 

∑PCB (ng/mL or 

ng/g) References 

Port Elizabeth Habour Fish 8 9 14.48–21.37 (Kampire et al., 2015) 

Cape Town and Port Elizabeth Fish 22 100 9000 (Degger et al., 2011) 

KwaZulu-Natal Surface soil  82 6 109.64 (Batterman et al., 2009) 

KwaZulu-Natal Shallow soil 82 6 19.22 (Batterman et al., 2009) 

KwaZulu-Natal Cow milk 36 - 0.022 (Batterman et al., 2009) 

Coastal endemic malaria Human blood 7 37 2.85-79.5 (Röllin et al., 2009) 

Vaal River Soil 12 - 120-2700 (Nieuwoudt et al., 2009b) 

Barberspan, Parys, Velddrif, Koppies  Eggs 34 43 1.9-720 (Bouwman et al., 2008) 

North West province, Serum 12 693 0.0191-60.604.2 (Pieters and Focant, 2014) 

Major South African waters Sediment 12 22 132000 (Vosloo and Bouwman, 2005) 

Major South African waters Fish (Grass shrimp) 12 22 17000 (Vosloo and Bouwman, 2005) 

Major South African waters Fish (Striped mullet) 12 22 160000 (Vosloo and Bouwman, 2005) 

Major South African waters Fish (Seatrout muscle) 12 22 41000 (Vosloo and Bouwman, 2005) 

 Kruger National Park (Crocodile farm) Nile crocodile eggs 18 10 97-8800 (Bouwman et al., 2014) 

 Kruger National Park (Letaba) Nile crocodile eggs 18 6 6.5-7.7 (Bouwman et al., 2014) 

 Kruger National Park (Olifants River) Nile crocodile eggs 18 9 15-20.9 (Bouwman et al., 2014) 

Hartbeespoort Dam (Crocodile River) Dam water 7 -  0.038- 150   (Bouwman et al., 2014) 

Vaal triangle and central South Africa Soil 7 13 1.48-38.32 (Quinn et al., 2009) 

Vaal triangle and central South Africa Sediment 7 13 0.46-8.55 (Quinn et al., 2009) 
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Table 2.10 OCP analysis and monitoring studies in South Africa 

Location Matrix N
o 
of OCPs N

o
 of samples ∑OCP (ng/mL or ng/g) References 

Coastal endemic malaria Human blood 17 11 2222.2-21188 (Rollin et al., 2009) 

Limpopo province Human milk 5 30 nd-1 930  (Okonkwo et al., 2008) 

Jukskei River (Gauteng) Water 13 7 0.895-9089 (Sibali et al., 2008) 

Jukskei River (Gauteng) Sediment 13 7 0.266-22 914 (Sibali et al., 2008) 

Roodeplaat Dam Fish 15 - 86.45-288.75  (Barnhoorn et al., 2015b) 

Rietvlei Dam Fish 15 - 55-336  (Barnhoorn et al., 2015a) 

Hartbeespoort Dam Fish 15 - 71-131   (Barnhoorn et al., 2015b) 

Buffalo River Fresh water 15             - nd-0.450 (Awofolu and Fatoki, 2003) 

Keiskamma River  Fresh water 15            - nd-0.180 (Awofolu and Fatoki, 2003) 

Tyume River Fresh water 15            - nd-0.130  (Awofolu and Fatoki, 2003) 

Swartkops River Fresh water 15            - 0.100  (Awofolu and Fatoki, 2003) 

Piketburg and Grabouw rivers (Western Cape) Fresh water 4            - 0.050-1.00 (Awofolu and Fatoki, 2003) 

Buffalo River Sediment 15             - nd-184.00 (Awofolu and Fatoki, 2003) 

Keiskamma River  Sediment 15 - nd-16.00 (Awofolu and Fatoki, 2003) 

Tyume River Sediment 15             - 19.00 (Awofolu and Fatoki, 2003) 

Swartkops River Sediment 15 - 30.00 (Awofolu and Fatoki, 2003) 

Hartbeespoort Dam (Crocodile River) Water 11 - 9.477-10.793 (Amdany et al., 2014) 

KwaZulu-Natal Breast milk 3 - 1000-59300 (Bouwman et al., 1990) 

 KwaZulu-Natal Human blood 3 23 29.4-316.5 (Bouwman et al., 1992) 

 Mlambongwenya (KwaZulu-Natal) Human serum 3 63 131.4-175.3 (Bouwman et al., 1994) 

Vaal triangle and central South Africa Soil 5 13 1.62-30.21 (Quinn et al., 2009) 

Vaal triangle and central South Africa Sediment 5 13 0.77-11.18 (Quinn et al., 2009) 
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Considering POP studies in past years in the South African environment, there is very limited 

or no information on the occurrence and concentrations of PCBs and OCPs in the Umgeni 

River and its catchment. Therefore this study focused on the quantification of the selected 

persistent organic pollutants in the water, sediment pore water, surface sediment and bank 

soil of the Umgeni River. In addition, the seasonal trends of the selected pollutants in the four 

above matrices were studied. To the best of our knowledge this is the first study on 

seasonality of POPs in a river system in South Africa. It adds new knowledge to the existing 

information on POPs in South Africa.              
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CHAPTER THREE 

GENERAL MATERIALS AND METHODS 

 

This chapter outlines the experimental characteristics and various techniques and methods 

used to analyse OCPs and PCBs in different matrices. The significance of each technique for 

every step was highlighted. 

3.1 DATA QUALITY CONTROL AND QUALITY ASSURANCE 

 

The appropriate methods used in different steps of analysis and monitoring and first applied 

to piloting phase were underlined. The major feautures of analytes were given.  

 

3.1.1. Analyte Recovery and Limit of Detection and Quantification 

 

3.1.1.1. Analyte recovery 

The recovery of analytes from any matrix indicates how good the extraction procedure is. 

The recovery percentages for various OCPs and PCBs in water and pore water samples 

analysed in this project were obtained using tap water (Hellar-Kihampa, 2011, Meharg  et al., 

2003) which should not contain significant amounts of these analytes.  One litre of tap water 

was spiked with 1 mL of a 4 μg/mL multi-element standard solution of OCPs or PCBs and 

made up to mark resulting in a concentration of 0.004 μg/mL. The spiked tap water solution 

was then taken through the exact same procedure that samples were subjected to.  The water 

was liquid-liquid extracted six times for a single sample using DCM (EPA, 1996a). Extracts 

were combined, concentrated, cleaned and analysed with GC-MS. The recovery percentage 

was obtained using Equation 3.1 (APHA et al., 1999). This procedure was repeated at least 3 

times and the average concentration extracted was calculated as the percentage of analyte 

recovered. Apart from HCB and heptachlor, the percent recoveries of all analytes varied from 

61.08 to 103.43%. All the values obtained for all the analytes were mentioned in chapters 4, 

5, 7 and 8. 

 

Recovery (%) =
Concentration found (ng/mL)

Concentration spiked (ng/mL)
∗ 100 … … … … … … … … (3.1)  
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The recovery of analytes from a solid matrix is a much debated procedure because it is 

difficult to obtain a clean matrix that does not contain the analytes of interest, yet still has the 

same components that affect analyte extraction.  Thus the actual real soil matrix was used but 

was divided into two subsamples where one was spiked with a known concentration of the 

analytes and the other left unspiked.  The concentration of analyte is determined for both 

spiked (𝑋𝑆 ) and un-spiked (𝑋𝑢) and the analyte percent recovery (%𝑅) is calculated as 

follows: (Doolittle, 2014, Harry et al., 2008). 

%𝑅 =  
𝑋𝑆  −  𝑋𝑢

𝑘
∗ 100 … … … … … … … … … … … … . (3.2) 

Where 𝑘 is the known concentration of analyte added to the spiked subsample. 

  

For sediment and soils samples analysed in this work, a sample was divided into two 

subsamples of 60 g (dry weight (dw)) each. One subsample was spiked with 1 mL of a 4 

μg/mL multi-element standard of OCPs or PCBs and made up to mark to obtain a 

concentration of 0.067 μg/g. The samples were taken through the same procedure that the 

samples were subjected to.  They were air dried, soxhlet extracted using DCM (EPA, 1996b) 

and concentrated to 2 mL and analysed with GC-MS. The recovery experiments were carried 

out in triplicate and mean percent recoveries were calculated using Equation 3.2 and were 

between 51.67 to 109.28%. The percent recovery values obtained for all analytes investigated 

were mentioned in chapters 4 - 9. 

3.1.1.2. Limits of detection and quantification 

IUPAC defines the limit of detection as “The smallest measure that can be detected with 

reasonable certainty for a given analytical procedure” and the ACS defines it as “The lowest 

concentration of an analyte that an analytical procedure can reliably detect” (Long and 

Winefordner, 1983). The limit of quantification was defined as the smallest concentration of 

an analyte in a sample which can be measured and reliable results obtained using a given 

analytical method (Shabir et al., 2007, Jibbons and Coleman, 2001). 

 

For a linear calibration curve, the response “𝑦” recorded by the instrument is linearly related 

to the standard concentration“𝑥”. This can be expressed by the following equation 

(Shrivastava and Gupta, 2011): 

𝑦 = 𝑚𝑥 + 𝑏 … … … … … … … … … … … … … … … … … (3.3) 
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Three calibration curves were drawn from triplicate analysis of calibration standards and the 

standard deviation and the average slope were determined.  This was then used in equations 

3.4 and 3.5 to determine the LODs and LOQs for each analyte. 

𝐿𝑂𝐷 =
3𝑆

𝑚
… … … … … … … … … … … … … … … … … . (3.4) 

LOQ =
10𝑆

𝑚
… … … … … … … … … … … … … … … … … (3.5) 

Where:  

             𝑆 = standard deviation of the response 

             𝑚 = the slope of the calibration curve       

The standard deviation can be estimated from y-intercepts of the three regression lines 

(Shrivastava and Gupta, 2011). Note that in this project, the responses were peak areas 

obtained from the GC-MS. The LODs and LOQs obtained using the above equations were 

tabulated in Chapters 4 -9. 

 

3.1.2. Determination of Analyte Sampling Variability  

 

3.1.2.1. Pilot samples 

Before the real sampling activity, pre-sample collection took place in order to determine the 

variability of the concentrations of analytes of interest (OCPs and PCBs) within the same site 

so that a suitable sampling method could be selected. This was done using sediment which 

was the less mobile matrix.  

 

Five different subsamples of sediment were collected using an auger at Albert Falls outlet: 

(GPS coordinates: 29° 26' 31.94’’S, 30° 19' 47.10''E) which is one of the designated sampling 

sites that is surrounded by mainly agricultural and recreational activity. The distance from 

one subsample to another was 1 meter (Figure 3.1).  Sixty grams of each sediment sample 

were individually treated as described in section 3.1.1.1 above and the results compared. A 

composite sample was also prepared by combining 12 g of each sample collected above and 

its result compared to the individual sediment subsample results. The 5 subsamples of 

sediment are tabulated in Table 3.1. 
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Table 3.1 Pilot subsamples analysed. 

Code of the site Full name of site 

AFOSED1 Albert Falls outlet sediment one 

AFOSED2 Albert Falls outlet sediment two 

AFOSED3 Albert Falls outlet sediment three 

AFOSED4 Albert Falls outlet sediment four 

AFOSED5 Albert Falls outlet sediment five 

AFOSED comp 
Albert Falls outlet sediment 

composite 

 

 

Figure 3.1 Distance between subsamples during collection at the sampling site. 
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Table 3.2 Parameters used for pilot samples analysis. 

Parameter Measure Parameter Measure 

 # of rinses with Presolvent:  2 Linear Velocity: 36.7 cm/sec 

 # of rinses with Solvent(post): 2 Purge Flow: 3.0 mL/min 

 # of rinses with Sample:  2 Split Ratio: 1 

 Plunger Speed(Suction):  High High Pressure Injection:  OFF 

 Viscosity Comp. Time:  0.2 sec Carrier Gas Saver:  OFF 

 Plunger Speed(Injection):  High Oven Temp. Program 

  Syringe Insertion Speed : High Rate Temperature (°C) Hold time (min)  

Injection Mode:  Normal - 120 0 

Pumping Times: 5 14 290 2 

Inj. Port Dwell Time:  0.3 sec 

   Terminal Air Gap:  No GC Program 

  Plunger Washing Speed:  High Ion Source Temp  200.00 °C 

 Washing Volume:  8 uL Interface Temp. 280.00 °C 

 Syringe Suction Position:  0.0 mm Solvent Cut Time  4.50 min 

 Syringe Injection Position:  0.0 mm Detector Gain Mode  Relative 

 Solvent Selection:  All A,B,C   
 Column Oven Temp.:  120.0 °C MS Table 

 
 Injection Temp.:  250.00 °C Start Time  5.00 min 

 Injection Mode:  Splitless End Time  14.14 min 

 Sampling Time:  1.00 min ACQ Mode  SIM 

 Flow Control Mode:  Linear Velocity Event Time  0.30 sec 

 Pressure : 76.8 kPa Sample Inlet Unit GC 

 Total Flow: 4.9 mL/min Use MS Program ON 

 Column Flow : 0.96 mL/min 
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3.1.2.2. Method of analysis of pilot samples 

The analysis of samples was carried out in triplicate using a Shimadzu GC-MS-QP2010 SE 

gas chromatograph-mass spectrometer. The GC system was fitted with a GL sciences 

capillary column, 0.25 mm i.d, 0.25 μm film thickness and 30 m length. Ultra-pure helium 

was used as the carrier gas. Samples were analysed using selected ion monitoring (SIM) 

mode. The method parameters are listed in Table 3.2. 

3.1.2.3. Results and conclusion 

The results obtained for the five subsamples and the composite subsample are shown in Table 

3.3 and Figure 3.4. 

 

Table 3.3 Variability of concentrations of OCPs in surface sediment (ng/g) within the Albert 

Falls outlet sampling site. 

Subsample Concentration of OCPs in sediment (in ng/g, dw) 

 

HCB HCH heptachlor aldrin 

o,p’-

DDE 

p,p'-

DDE 

o,p’-

DDD+dieldrin endrin 

p,p'-

DDD+o,p’-

DDT mirex 

AFOSED1 6.97 31.99 30.54 nd 25.75 31.04 29.03 63.17 21.66 17.72 

AFOSED2 5.21 30.59 33.38 nd 24.91 27.18 30.27 56.61 20.76 20.02 

AFOSED3 5.16 33.73 27.02 nd 25.14 24.20 22.21 58.68 24.28 16.78 

AFOSED4 3.40 30.06 29.25 nd 20.36 25.49 26.44 51.83 22.37 17.33 

AFOSED5 6.53 28.85 33.57 nd 17.20 25.79 26.85 59.46 24.53 16.72 

AFOSED 

comp 7.59 28.26 27.24 nd 21.10 25.46 28.57 50.03 23.97 15.98 

SD 1.53 2.03 2.88 nd 3.40 2.41 2.84 4.93 1.55 1.40 

Mean 

AFOSED 

(1-5) 

5.45 31.04 30.75 nd 22.67 26.74 26.96 57.95 22.72 17.71 
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Figure 3.2 Variability of the concentration of OCP analytes at the Albert Falls outlet 

sampling site (n=3). 

 

Table 3.3 and Figure 3.2 above show minimum variability of OCP concentrations at different 

points within the same site. The standard deviations of the concentrations of the same analyte 

at 5 different sampling points at a distance of 1 m from each another and the composite 

sample vary within 1.40 to 4.93 (Table 3.3 and Figure 3.3). The lowest variability was 

recorded for mirex (SD = 1.40) and the highest for endrin (SD = 4.93). The concentration of 

aldrin for all the 5 sampling points and the composite subsample was below the limit of 

detection.  

 

Figure 3.3 Standard deviation of OCP measured in six subsamples collected at the same site.  
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Table 3.4 Variability of concentrations of PCBs (ng/g) in surface sediment within site 

Subsample code Concentration (in ng/g, dw) 

 

PCB28 PCB77 PCB101 PCB52 PCB153 PCB105 PCB138 PCB180 

AFOSED1 19.76 11.87 8.44 6.86 28.13 12.81 17.45 47.71 

AFOSED2 20.53 10.9 10.17 5.31 29.58 14.81 17.7 45.86 

AFOSED3 21.21 11.58 7.03 5.34 31.15 14.32 17.9 49.28 

AFOSED4 21.58 11.41 9.35 5.79 33.54 15.64 18.06 45.89 

AFOSED5 18.96 11.55 8.93 6.14 30.23 14.46 18.35 46.08 

AFOSED comp 18.7 10.48 10.13 6.33 32.51 13.04 19.59 44.37 

SD 1.18 0.51 1.18 0.60 1.97 1.08 0.76 1.71 

Mean 

AFOSED(1-5) 
20.41 11.46 8.78 5.89 30.53 14.41 17.89 46.96 

 

 

 

Figure 3.4 Variability of the concentration of PCB analytes the Albert Falls outlet sampling 

site (n=3) 

 

Table 3.4 and Figure 3.4 show that the difference between concentrations of the same analyte 

in different subsamples is not high. The standard deviations of the concentrations of 

individual PCBs in the 5 subsamples and the composite sample vary from 0.51 for PCB77 to 

1.97 for PCB153 (Figure 3.5). Generally the variability of both OCPs and PCBs within the 

site investigated was low between individual samples as well as the composite sample across 

a 1 m
2
 surface area and any one of the individual samples were found to be representative of 

the sampling site. Therefore the grab sampling method was chosen to collect samples from 
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the different sampling sites along the Umgeni River and the choice of one sample per site was 

adopted. 

 

 

Figure 3.5 Standard deviation of PCBs measured in six subsamples collected at the same site. 

 

3.2. GENERAL EXPERIMENTAL 

 

This section highlights the general experimental procedure followed and the different 

techniques used as well as their significance for each phase of the research work performed in 

this project.  

3.2.1. Sampling Protocol 

 

3.2.1.1. Sampling sites 

Fifteen sampling sites were chosen based on activities in the area around them such as 

agricultural activities, industrial activities or residential area but some of the sites had a 

combination of all these activities. Apart from these activities, sites were also chosen 

considering their accessibility in order to be able to collect a representative sample. These 

sampling stations included 12 sites chosen along the river from the source at Midmar Dam to 

the mouth where the river empties into the Indian Ocean at Blue Lagoon; as well as 3 sites 

around the Northern Wastewater Treatment Works which empties its treated water into the 

Umgeni River. The map in Figure 3.6 shows the study area location. 
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Figure 3.6 Map showing the study area locations (map was generated from GPS coordinates 

using ArcGIS 10.2). 
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3.2.1.2. Water sampling 

Water samples were collected in 2.5 L amber Winchester bottles previously washed with hot 

water and detergent and rinsed three times respectively with deionised water and sulfuric 

acid. At the site, the bottles were rinsed 3 times with the river water to be sampled. The 

bottles were filled to overflowing leaving no headspace. Bottle caps were lined with 

aluminium foil to prevent contamination with phthalates and plasticisers from the lids. All the 

samples were kept in a cooler box containing ice and transported to the lab. A 1 mL aliquot 

of H2SO4 (50 %) was transferred to each water sample for the purpose of preservation and the 

samples were stored in a fridge at 4 
o
C until extraction which was carried out within 5 days.  

3.2.1.3. Sediment sampling 

Sediment samples were collected using a grab sampler and were stored in glass bottles with 

the caps lined with aluminium foil. The bottles were then kept in a coolant box containing ice 

and were transported to the laboratory and stored in the fridge at 4 
o
C. Sediment samples 

were subsequently centrifuged to extract its pore water which was also acidified and kept in a 

fridge until extraction which was carried out within 5 days. After removal of pore water, the 

sediment was immediately transferred onto aluminium foil for air drying. Note that every 

season two bio-solid samples were taken from wastewater at NWTI and from treated water at 

NWTT and treated as sediment samples. 

 

3.2.1.4. River bank soil sampling 

Soil samples were collected from the banks of the Umgeni River close to the water edge at 

each sampling site.  A metal spade or auger was used to transfer soil samples to glass bottles.  

The bottles were sealed with caps lined with aluminium foil and the samples were kept in a 

cooler box containing ice before being transported to the laboratory. At the laboratory, the 

soil samples were immediately transferred onto aluminium foil and air dried in the drying 

room. For every seasonal sampling one bio-solid sample was taken out of water at NWTT 

and was treated as river bank soil. 

 

3.2.2. Actual Sample Treatment 

 

After the samples were collected and transported to the laboratory, they underwent various 

treatment steps. Preservation, extraction, concentration and clean-up and analysis were the 
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main treatment steps for water and pore water, while drying, grinding, sieving, extraction, 

concentration and clean-up were the key steps for sediment and soil samples. The details for 

these steps for each matrix are mentioned in chapters 4, 5, 6, 7, 8 and 9.   Figure 3.7 shows a 

summary of the experimental procedures used for sample treatment for surface water, 

sediment pore water, surface sediment and river bank soil.  

 

 

Figure 3.7 Summary of experimental procedures used for water, pore water, sediment and 

river bank soil sample preparation. 

 

3.2.3. Actual Sample Analysis 

 

After the clean-up step (Figure 3.7), the extracts were concentrated to exactly 2 mL and 

analysed. Sample analyses were carried out in triplicate using an Agilent 6890 series gas 

chromatography system attached to a mass spectrometer detector (MSD5973). The GC 
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system was equipped with a ZB-5MS capillary column, 0.25 mm i.d., 0.25 μm film thickness 

and 30 m length (Hewlett Packard; Houston, TX). The MS was operated using the selective 

ion monitoring acquisition mode (SIM). The carrier gas was purified helium. Splitless mode 

was used to inject 2 μL of sample into the GC-MS with injector and detector temperatures set 

at 250 and 280 
o
C respectively.  

To enhance peak resolution and avoid confusion of analyte peak and baseline noises, before 

the GC-MS analysis, the cleaned and concentarated extract was spiked with 0.25 mL of 

standard mixture with concentration of 6 μg/mL, making a total volume of 2.25 mL and a 

spiking level of 0.67 μg/mL. A 2 μL aliquot of the above-mentioned mixture (extract + 

standard) was injected onto the GC column. At the end of the analysis, the spiked 

concentration was substracted from the total concentration (analyte + spiked) to obtain the 

actual sample concentration. 

Note that due to the hardware problems of the instrument used for analysis of pilot samples 

(Shimadzu GC-MS-QP2010 SE), the actual samples were analysed using (Agilent 6890 

series GC-MSD5973). Before any analysis was performed, the method parameters used for 

analysis of pilot samples were used to run analyte standatds on the new instrument (GC-

MSD5973) to check for any variations. The calibration curves were ploted for each analyte 

and there were no differences from the calibration graphs obtained from the first instrument 

(Shimadzu GC-MS-QP2010 SE). Therefore all the analyses for all seasons were performed 

on the Agilent 6890 series GC-MSD5973.  

Before sample analysis, a standard mixture was run through the column and the 

fragmentation pattern of each compound compared to that provided by the National Institute 

of Standards and Technology (NIST) library. This was done primarily to determine the 

fragment ions of the analyte of interest so that three of the most frequent fragment ions could 

be chosen for selected ion monitoring (SIM) in the GC-MS system. Secondly this was done 

to ensure the chromatograms and spectra of the standards agreed with the NIST library and 

allowed easy identification. Figure 3.8 shows a sample mass-spectrum for hexachlorobenzene 

standard with the three most abundant fragment ions being m/z 284, m/z 249 and m/z 142. 

These ions/fragments were monitored using the SIM mode (Figure 3.9) for all sample 

analysis.  The same procedure was used for all analytes in this study.    
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Figure 3.8 A- Mass-spectrum of hexachlorobezene standard obtained in scan mode, B- NIST library mass spectrum of hexachlorobenzene. 



95 

 

 

 

 

Figure 3.9 A – Total ion chromatogram of standard mixture showing analyte HCB at 6.489 mins. B – 

SIM mass spectrum for HCB showing the three selected confirming ions. 

 

The oven temperature for analysis of OCPs and PCBs was initially 120 
o
C and then increased to 290 

o
C 

at a ramping rate of 14
o
C/min and held for 2 min. The total run time was 14.14 min. The MS source was 

operated at 250 
o
C and the quad at 200 

o
C. A 2 μL sample was injected in splitless mode with injection 

port set at 250 °C.  The electron ionisation energy was 70 eV.   

 

Target analytes were quantified based on peak areas and by using an external calibration technique with 

the following six calibration concentrations: 0.25; 0.5; 1; 2, 4 and 8 μg/mL. These standard 

concentrations were obtained by serial dilution of a stock solution of 32 μg/mL. The identification of 

analytes of interest was achieved by comparison of retention times of sample analytes with those of 

reference standards and by using the NIST library. Note that the analysis of OCPs was carried out 

separately from that of PCBs to avoid overlapping of peaks and to allow for good resolution. 
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Figure 3.10 Chromatogram for blank sample (extraction solvent treated and analysed using the above 

method). 

 

The above chromatogram (Figure 3.10) shows that there were no analytes of interest in the blank sample 

(solvent extracted and analysed, using all the steps used for actual samples). Therefore the 

concentrations of analyte calculated were exclusively from the samples collected and not from the 

experimental procedure or solvents used during sample treatment and analysis. Figure 3.11 shows an 

example of a PCB standard mixture chromatogram and a fortified sediment cleaned extract 

chromatogram. 
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Figure 3.11 A-Chromatogram of a 0.125 ppm mixture of 8 PCB. B: standards B- Chromatogram of a 

clean-up sediment extract spiked with 0.125 ppm of PCB standard mixture and analysed using the SIM 

mode. 

 

The analyte standards were run in triplicate and the three calibration curves obtained were combined and 

averaged to obtain an overall equation from which the anayte concentrations were calculated. The actual 

samples were run in triplicate. Each peak area from each of the triplicate analysis was used to calculate 

the concentrations of the analytes which was then averaged and the mean reported together with the 

standard deviation from the triplicate analysis (sample calculations shown in Appendix B).  Table 3.5 

shows the different analytes investigated, their retention times, correlation coefficients (R
2
) and overall 

calibration equations for winter samples. 
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Table 3.5 Retention times, overall calibration equations and R
2
 values for each analyte for winter 

samples. 

Analyte Retention time (min) Overall calibration equations R
2
 

PCB28 7.776  y = 75529x - 10772.6 0.9994 

PCB52 8.250 y = 110017x - 25568  0.9985 

PCB77 9.460 y = 1118815.3x - 16980 0.9993 

PCB101 10.005 y = 117649.7x - 22998.3  0.9987 

PCB105 10.598 y = 133702.6x - 28238.7 0.9988 

PCB138 10.681 y= 95212.6x - 20438 0.9986 

PCB153 10.966 y = 75269x - 16340 0.9985 

PCB180 11.843 y = 69561.3x - 17016.7 0.9979 

HCB 6.544 y = 101236.3x - 2089 0.9917 

HCH 6.969 y = 40349.7x - 3929.9 0.9906 

Heptachlor 8.002 y = 21733.7x - 6750.6 0.9947 

Aldrin 8.557 y = 25370.3x - 3497.5 0.9978 

o,p'-DDE 9.444 y = 83028.7x - 11718.7 0.9975 

p,p'-DDE 9.887 y = 86629.3x - 14438.7 0.9970 

o,p'-

DDD+Dieldrin 9.98 y = 170087x - 38213 0.9968 

Endrin 10.312 y = 19229x - 6331.2 0.9951 

p,p'-DDD+o,p'-

DDT 10.478 y = 266705x - 79865.3 0.9965 

Mirex 12.528 y = 82334x - 10043.2 0.9976 

           

The calculation of the concentrations of various native OCPs and PCBs in water and pore water was 

computed by using the concentration of the target analyte in the cleaned extract and the volume of water 

extracted as follows (USEPA, 2008): 

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (
𝑛𝑔

𝑚𝐿
) =  

𝐶𝑒𝑥 ∗  𝑉𝑒𝑥

𝑉𝑠
… … … … … … … … … … … . (3.6) 

  Where: 

            Cex = the concentration of the compound in the extract in ng/mL 

            Vex = the extract volume in mL. 

            Vs = the sample volume in mL. 
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The calculation of the concentrations of native OCPs and PCBs in the soil and sediment samples 

involved the use of the concentration of the compound in the cleaned extract and the weight of the dried, 

ground and sieved soil and sediment as follows (USEPA, 2008):  

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (
𝑛𝑔

𝑔
) =

𝐶𝑒𝑥  ∗ 𝑉𝑒𝑥

𝑊𝑆
… … … … … … … … … … … (3.7) 

Where: 

          𝐶𝑒𝑥   = the concentration of the compound in the extract in ng/mL 

          𝑉𝑒𝑥 = the extract volume in mL 

          𝑊𝑆 = the sample weight (dw) in g 

 

Sample calculations are shown in Appendix B.  
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ABSTRACT 

 

The Umgeni River is one of the main sources of water in KwaZulu-Natal, South Africa; however there 

is currently a lack of information on the presence and distribution of organic pollutants in its sediment, 

sediment pore water and surface water.  This study aims to determine the occurrence and significance of 

selected polychlorinated biphenyls (PCBs) in the surface water, sediment pore water and surface 

sediment samples from the Umgeni River.  Liquid-liquid and soxhlet extractions were used for water or 

pore water, and sediments respectively. Extracts were cleaned-up using a florisil column and analysed 

by gas chromatography-mass spectrometry. The total concentrations of 8 polychlorinated biphenyls 

were 6.910-21.69 ng/mL, 40.67-252.3 ng/mL and 102.6-427.8 ng/g (dw), in unfiltered surface water, 

unfiltered sediment pore water and surface sediments respectively. The percentage contributions of 

various matrices were 4, 36 and 60% for unfiltered surface water, unfiltered pore water and sediment 

respectively.   The highest concentrations of PCBs were found in water, pore water and sediment 

collected from sampling sites close to the Northern Waste Water Treatment Works. The highest 

chlorinated biphenyl, PCB180, was the most abundant at almost all sampling sites. To our knowledge, 

this is the first report on occurrence of polychlorinated biphenyls in the Umgeni River water, pore water 

mailto:Moodleyb3@ukzn.ac.za
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and sediment system and our results provide valuable information regarding the partitioning of the 

PCBs between the water and sediment systems as well as the organic chemical quality of the water.  

 

Keywords: Umgeni River, sediment, pore water, polychlorinated biphenyls, gas chromatography-mass 

spectrometry 

 

4.1 INTRODUCTION 

 

Polychlorinated biphenyls (PCBs) constitute a group of organic pollutants characterized by their 

persistence, bioaccumulation and bioamplification in biota, toxicity and long-range transport 

(Pennington, 2001, Sapozhnikova et al., 2004). PCBs are primarily industrial in origin and were 

intentionally produced and globally used in transformers and condensers; as flame resistant dielectric 

insulating fluids; in mining as hydraulic oils; in printing ink, glues, resins, plasticisers, etc. (Manz et al., 

2001, Samara et al., 2006). However,  their emission also results from domestic waste incineration 

plants and rubbish dumps; plants processing industrial waste; waste-oil incineration plants and extensive 

application in agriculture (sewage, sludge) (Manz et al., 2001). They have carcinogenic, mutagenic as 

well as teratogenic effects (Lauby-Secretan et al., 2013). PCBs have been the subject and focus of 

extensive research and monitoring in the environment, due to their potential of deleterious effects in 

development and reproduction in all biological species, fish behaviour and wild life (Daouk et al., 2011, 

Cohn et al., 2011, Katarzyńska et al., 2015). PCBs have been detected in fresh water, wastewater and 

sediments in different parts of the world (Zhang et al., 2003, Sapozhnikova et al., 2004, Katsoyiannis 

and Samara, 2004, Zhang et al., 2010). Due to their various environmental hazards, they were banned by 

the United States congress and the Stockholm convention in 2001 and are included in the list of priority 

pollutants to be regularly analysed and monitored (USEPA, 1996). Although, they were restricted, their 

residues can still be found in different environmental matrices such as water, sediment, soil, air, bio-

solids etc. due to their persistence.  

 

In South Africa less than a half of the rural population do not have access to clean and safe drinking 

water and about 12 million people who do not have access to clean water are left to access water from 

other sources such as rivers (Thwala, 2010). Therefore, investigations into the quality of available water 

resources such as lakes, rivers, and other water bodies are very important for protection of a scarce 

resource. Until now many studies have focused on the investigation of heavy metals (Binning and Baird, 

2001, Fatoki and Awofolu, 2003a, Pegram and Bath, 1995) and only a few on organic pollution (Fatoki 

and Awofolu, 2003b, Fatoki et al., 2010) in South African rivers. 
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The Umgeni River is one of the major rivers found in the province of KwaZulu-Natal in South Africa 

and is one of the main water sources, but the water is of poor quality due to dumping of domestic waste 

from informal settlements, seepage of industrial wastes, use of agricultural pesticides, etc. that make 

their way into this river. Studies showed that more than 85% of contaminants in the Umgeni River basin 

were from non-point sources (Pegram and Bath, 1995). However, some metals such as mercury have 

been found in this river; their source being identified as Thor Chemicals (mercury reprocessing plant) 

which is thought to have discharged them into the Mngceweni River which is a tributary of the Umgeni 

River (Pegram and Bath, 1995). In 2002, a survey of some persistent organic pollutants in major South 

African waters revealed the presence of some PCBs congeners such as PCB28, PCB52,  PCB 101, 

PCB138 and PCB153 in a sediment sample collected from the mouth of the Umgeni River (Vosloo and 

Bouwman, 2005). No other information about the occurrence and significance of persistent organic 

pollutants such as PCBs in the Umgeni River has been found. Therefore the aim of this work was to 

determine the occurrence, concentrations and significance of eight selected PCBs in water, pore water 

and sediment samples collected from 15 different sites along the Umgeni River.  The water and pore 

water were analysed without being filtered in order to determine the total concentration of PCBs in 

water (freely dissolved + dissolved organic carbon + total suspended solids). The Umgeni River water is 

used by informal settlements along the river for various household activities such as washing, bathing, 

cleaning and irrigating, as well as a source of drinking water for livestock. In order to determine the 

concentrations that the residents of the informal settlements and the livestock are exposed to, it was 

necessary to investigate the unfiltered water.  The structures of the 8 selected PCBs are shown in Figure 

4.1.  These particular PCBs were chosen because some of them are among the most toxic congeners and 

are recommended by World Health Organisation for monitoring (PCB77, PCB105) while other PCBs 

were chosen for the study because they are indicator PCBs (PCB28, PCB52, PCB101, PCB138, 

PCB153 and PCB180) and are recommended by the European Union for assessing PCB pollution (EC, 

1999). This work aimed to determine their presence and quantity in the Umgeni River catchment area. 
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Figure 4.1 Structures of investigated polychlorinated biphenyl (PCB) congeners. 

  

4. 2 MATERIALS AND METHODS  

 

4.2.1. Physical Parameters of the Sampling Sites 

 

Ambient and water temperature, pH of water (model IQ150, handheld pH/mv/ temperature meter), 

conductivity and total dissolved solids (TDS) (portable conductivity meter, Schott handylab LF12) were 

determined for each sample at the sampling site. Table 4.1 shows the physical parameters that were 

recorded at the different sampling sites during winter 2013. 

4.2.2. Reagents and Standards 

 

High performance liquid chromatography (HPLC) grade solvents, namely hexane, dichloromethane 

(DCM) and toluene, and florisil (MgO3Si residue analysis grade, mesh 60-100, pore size 60Å), as well 

as the following PCB standards: PCB28 (2,4,4’-trichlorobiphenyl), PCB52 (2,2’,5,5’-

tetrachlorobiphenyl), PCB77 (3,3’,4,4’-tetrachlorobiphenyl), PCB101 (2,2’,4,5,5’-pentachlorobiphenyl), 

PCB105 (2,3,3’,4,4’-pentachlorobiphenyl), PCB138 (2,2’,3,4,4’,5’–hexachlorobiphenyl), PCB153 

(2,2’,4,4’,5,5’-hexachlorobiphenyl) and PCB180 (2,2’,3,4,4’,5,5’-heptachlorobiphenyl), were purchased 

from Sigma Aldrich (South Africa).  
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Table 4.1 Physical parameters at the sampling sites during the winter 2013 sampling season. 

Sampling site (code) 
Ambient T

o 

(
°
C) 

Water T
o 

(
°
C) 

pH 
Conductivity 

(µs/cm) 

TDS 

(mg/L) 

Coordinates 

South East 

Midmar Dam inlet (MDI) 12.3 11.6 5.54 83.7 49 29° 29′16.05'' 30° 09'23.10'' 

Midmar Dam outlet (MDO) 12.3 13.2 5.69 75.5 44 29° 29'34.02'' 30° 12'09.13'' 

Howick Falls (HOF) 17.8 13.8 5.99 89.7 53 29° 29'18.18'' 30° 14'19.70'' 

Albert Falls inlet (AFI) 18.6 13.5 5.78 111.5 65 29° 26'31.94'' 30° 19 47.10'' 

Albert Falls outlet (AFO) 19.2 15.4 6.04 93.8 55 29° 26'01.81'' 30° 25'55.76'' 

Nagle Dam (NAD) 18.4 15.4 5.00 114.0 66 29° 35'08.42'' 30° 37'23.94'' 

Joining point Umgeni-Msunduzi Rivers (JUM) 15.6 15.7 5.56 367.0 214 29° 37'16.61'' 30° 40'46.59'' 

Inanda Dam inlet (IDI 17.2 16.6 4.98 278.0 160 29° 39'05.20'' 30° 48'06.24'' 

Inanda Dam outlet (IDO) 15.1 15.9 4.53 257.0 149 29° 42'55.74'' 30° 52'07.69'' 

Reservoir Hills (REH) 21.4 17.9 5.63 305.0 176 29° 47'08.05'' 30° 56'25.51'' 

Umgeni business park (UBP) 21.4 17.6 4.90 334.0 194 29° 48'19.05'' 30° 58'58.08'' 

Northern wastewater treatment works influent (NWTI) 22.8 21.9 4.70 970.0 568 29° 47'47.08'' 30° 59'50.01'' 

Northern wastewater treatment works after treatment (NWTT) 19.8 19.9 4.64 1238 719 29° 47'47.02'' 30° 59'50.06'' 

Northern wastewater treatment works effluent (NWTE) 21.0 19.8 4.94 674 392 29° 48'27.01'' 30° 59'51.05'' 

Blue Lagoon (BLA) 21.4 20.0 5.12 
8
 9 29° 48'41.03'' 31° 02'12.05'' 

 

 

                                                 
8
 Blue lagoon is at the mouth of the river close to the Indian Ocean.  Conductivity was higher than the maximum value the instrument could measure. 

9
 The TDS at blue lagoon was higher than the maximum  value the instrument could measure 
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Figure 4.2 Map of sampling sites with the sample collection locations (map was generated from GPS 

coordinates using ArcGIS 10.2). 

 

Anhydrous sodium sulfate (Na2SO4) gold line (CP) and silicon carbide boiling stones (CSi) were 

obtained from Associated Chemical Enterprises (ACE, South Africa) and sulfuric acid (98%) was 

obtained from Promark Chemicals (USA).  

 

4.2.3. Sample Collection  

 

Sampling was carried out during the winter period from 15
th 

to 17
th

 July 2013 and targeted 15 sampling 

sites including 12 sites selected along the Umgeni River and 3 sites at the Northern Wastewater 

Treatment Works and discharge point into the Umgeni River. Sampling sites were selected based on the 

close proximity of industrial, residential or agricultural activities along the river. The sampling locations 

and coordinates are shown in Table 4.1 and Figure 4.2. Water and sediment samples were collected at 

the same sites. The pore water samples were obtained from the sediment after centrifugation (DuPont 

instruments
R 

SS-automatic centrifuge).  
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Water samples were collected in 2.5 L amber Winchester bottles previously washed with hot water and 

detergent and rinsed three times respectively with deionised water and sulfuric acid. At the site, the 

sampling bottles were rinsed three times with the river water to be collected. The bottles were then filled 

to overflowing, leaving no headspace. After water collection, the bottles were closed with caps that were 

lined with aluminium foil to prevent contamination with phthalates and plasticisers from the lids. A 1 

mL aliquot of H2SO4 (50%) was transferred to each water sample to reduce microbial activity. Sediment 

was collected using a grab sampler and transferred to glass bottles that had been previously washed and 

rinsed as mentioned above. All the samples were kept in a cooler box containing ice and transported to 

the laboratory where they were kept in a fridge at 4 
o
C until extraction which was carried out within five 

days. 

 

4.2.4. Sample Preparation and Clean-up 

 

The water samples were extracted using liquid-liquid extraction (EPA method 3510-C) (EPA, 1996a). 

One litre of water was transferred to a separatory funnel and extracted with a 50 mL aliquot of HPLC-

grade DCM. This process was repeated 6 times for each sample with fresh aliquots of DCM each time to 

increase recovery. All fractions were then combined and transferred into a round-bottom flask and 

concentrated using rotary evaporation (Heidolph Instruments GmbH & Co.kG) to approximately 5 mL. 

The concentrated extract was then transferred to a florisil (activated at 130°C for 12 hours) column 

containing 5 g of anhydrous sodium sulfate as a top layer, and eluted sequentially with 5 mL of 

hexane:DCM (94:6), (85:15), (50:50) and DCM (100%) (modified EPA method 3620-C) (EPA, 2007). 

The increasing polarity of the hexane-DCM solvent system allowed elution of different PCBs having 

different polarity indexes and solubilities with respect to hexane and DCM. All fractions were combined 

and concentrated with a rotary evaporator and finally air-dried and stored in a fridge at 4 °C until 

analysis.  

 

After sampling, the sediment samples were subjected to centrifugation using 10 X 1000 rpm (revolutions 

per minute) for 15 min to separate the pore water (Zhang et al., 2003, Ankley and Schubauer-Berigan, 

1994). The pore water samples were treated as per water samples, extracting 100 mL of pore water with 

10 mL of DCM. The centrifuged sediment was transferred onto aluminium foil and air–dried before 

being ground with a mortar and pestle and sieved (laboratory test sieves: ss 200 mm  x 100 μm to ss 

200 mm  x 600 μm purchased from DLD Scientific) for homogenisation and to increase the surface 

area. The sieved sediment (60 g, dw) underwent soxhlet extraction for 24 hours with 300 mL of toluene 

(EPA method 3540-C) (EPA, 1996b). The obtained extracts were concentrated with a rotary evaporator 
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to nearly 5 mL. The clean-up and concentration procedures were carried out as mentioned above with a 

florisil column containing 10 g of anhydrous Na2SO4 as a top layer and eluting with 4 aliquots of 20 mL 

of hexane-DCM solvent system. The extracts were air-dried and made up to 2 mL with DCM for 

analysis using gas chromatography-mass spectrometry (GC-MS).  

 

4.2.5. Sample Analysis 

 

Sample analyses were carried out in triplicate using an Agilent 6890 series gas chromatography system 

attached to a mass spectrometer detector (MSD5973). The GC system was equipped with a ZB-5MS 

capillary column, 0.25 mm i.d., 0.25 μm film thickness and 30 m length (Hewlett Packard; Houston, 

TX). The MS was operated using the selective ion monitoring acquisition mode (SIM). The carrier gas 

was purified helium. A 2 μL injection volume was used on a splitless mode with injector and detector 

temperatures set at 250 and 280 
o
C respectively. The oven temperature for analysis of PCBs was 

initially 120 
o
C and then increased to 290 

o
C at a ramping rate of 14 

o
C/min and held for 2 min. The 

total run time was 14.14 min. The MS source was operated at 250 
o
C and the quad at 200 

o
C.  The 

electron ionisation energy was 70 eV.  

 

Target analytes were quantified based on peak areas and by using an external calibration technique with 

the following six calibration concentrations: 0.25, 0.5, 1, 2, 4 and 8 μg/mL. The identification of 

analytes of interest was achieved by comparison of retention times of sample analytes with those of 

reference standards and by using the NIST library mass spectral data by monitoring 3 ions for each 

analyte (See Appendix A.1).  

 

4. 3 QUALITY ASSURANCE 

 

For water and pore water samples, the extraction recoveries were obtained by spiking tap water (three 

samples) (Meharg  et al., 2003, Hellar-Kihampa et al., 2013) with known concentrations of standards 

and percentage recoveries were calculated (APHA et al., 1999, USEPA, 2008). For sediment sample 

recoveries, real sediment samples (three samples from three different sites) were subdivided into two 

subsamples whereby one was spiked with known concentrations of standards before extraction and the 

other was left unspiked.  The recoveries were obtained by subtracting non spiked subsample 

concentrations from spiked subsample concentrations (Harry et al., 2008). The recovery samples were 

analysed at the same time with the actual samples. Procedural lab blanks (3–5) were used throughout all 

extractions and analyses for all matrices.  
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Table 4.2 Ions monitored limits of detection and quantification and percentage recoveries for the analysis of PCBs in water, pore water and sediment 

by GC-MS. 

 

 

 

 

 

                                                 
10

  number = Standard deviation; this means that the recovery experiments were carried out in triplicate and the mean recovery calculated as well as the standard deviation. 
11

 The limit of detection was calculated as three times the signal-to-noise ratio using three calibration intercepts divided by the slope. 
12

 The limit of quantification was calculated as ten times the signal-to-noise ratio using three calibration intercepts divided by the slope. 

Analyte PCB28 PCB77 PCB101 PCB52 PCB153 PCB105 PCB138 PCB180 

Ions monitored 

150 

186 

256 

220 

255 

292 

254 

291 

326 

150 

220 

292 

 

145 

290 

360 

184 

254 

326 

145 

290 

360 

162 

324 

394 

LOD (ng/mL) in water 0.045 0.055 0.02 0.015 0.02 0.015 0.015 0.01 

LOQ (ng/mL) in water 0.15 0.19 0.06 0.045 0.06 0.055 0.045 0.04 

LOD (ng/mL) in pore water 0.455 0.55 0.18 0.13 0.185 0.17 0.135 0.115 

LOQ (ng/mL) in pore water 1.51 1.835 0.595 0.43 0.625 0.56 0.445 0.39 

%Recovery in water and pore 

water
10

 
74.54 0.37 79.27 0.83 71.18 0.59 76.99 0.67 77.83 0.86 73.88 0.45 74.67 0.40 82.36 0.41 

LOD (ng/g  in sediment)
11

 0.76 0.92 0.30 0.21 0.31 0.28 0.22 0.19 

LOQ (ng/g  in sediment)
12

 2.52 3.06 0.99 0.71 1.03 1.12 0.75 0.66 

%Recovery in sediment 69.53 1.75 73.67 1.22 79.77 2.03 80.74 2.94 82.87 2.50 78.46 1.27 79.39 1.05 84.39 1.15 
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There were no detectable levels of analytes of interest in the extracted blank samples.  The solvent 

blanks and standards were regularly analysed on the GC-MS to monitor the presence of interferences 

and as well as the condition of the column and instrument.  To ensure minimal variation from the initial 

calibration standards, a calibration standard (0.5 μg/mL) was analysed after each batch of sample to 

ensure consistency of results.  The identification of all analytes was possible using the base peak and 

two other confirming fragments including molecular ion. The limits of detection and quantification were 

calculated as three times and ten times respectively the signal-to-noise ratio using the standard deviation 

of the three calibration intercepts divided by the slope (Table 4.2). All data were processed using 

Microsoft excel (Version 2010).   

 

4.4 RESULTS AND DISCUSSION 

 

4.4.1. Polychlorinated Biphenyls in Surface Water 

 

The concentrations of different PCB congeners investigated are shown in Table 4.3. All investigated 

PCBs were detected in all sites. The concentration of PCB180 (Log Kow = 6.82) was highest in all sites 

while that of PCB28 (Log Kow = 5.71) was lowest (See Appendix C.1). The relatively high Log Kow 

value for PCB180 corresponds to low solubility in water and it was therefore expected to be present in 

lower concentrations in water.  However, the higher concentrations of PCB180 that were found in water 

may be explained by the strong affinity of this high molecular weight PCB with total suspended solids 

(TSS) and dissolved organic carbon (DOC) in the water.  The water samples were unfiltered in order to 

determine the concentrations that animals and humans are exposed to when they directly consume it.  

The Umgeni River water samples may possibly contain high TSS and DOC to which PCB180 would 

partition to resulting in high PCB180 concentrations in water (Aparna et al., 2014, Matyas et al., 2015, 

Zhang et al., 2011b). Furthermore, PCB180 has a higher number of chlorine atoms (7) compared to 

other investigated congeners, and consequently was more difficult to degrade, lasting longer in the 

aquatic environment (de Voogt et al., 1990, Nhan et al., 2001). This suggests that its presence in the 

environment was due to accumulation over time rather than point source entry.  This is in contrast to 

PCB28 which has 3 chlorine atoms and was found to be present in the lowest concentration.  The lowest 

concentration for PCB28 was observed at Howick Falls (HOF) (0.42 ng/mL) and the highest 

concentration of PCB180 was observed at Northern Wastewater Treatment Works influent (NWTI) 

(7.34 ng/mL).  
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Table 4.3 Concentrations of PCBs in the surface water (ng/mL) of the Umgeni River. 

    

Concentrations of Congeners (ng/mL) 

   Site PCB28  PCB77 PCB101 PCB52 PCB153 PCB105 PCB138 PCB180 ∑PCBs 

MDI 0.73 0.16 0.87 0.10 1.15 0.11 1.33 0.12 1.26 0.12 1.13  0.15 1.15 0.14 2.19 0.18 9.81 1.08 

MDO 0.74 0.13 0.90 0.11 1.15 0.09 1.35 0.09 1.26 0.09 1.15 0.09 1.17 0.10 2.21 0.20 9.92 0.91 

HOF 0.42 0.23 0.70 0.15 0.80 0.10 0.97 0.09 0.90 0.10 0.80 0.07 0.81 0.09 2.26 0.04 7.67 0.86 

AFI 0.85 0.11 0.90 0.15 1.25 0.03 1.44 0.04 1.38 0.02 1.26 0.04 1.27 0.04 2.37 0.04 10.70 0.47 

AFO 0.71 0.10 0.82 0.08 1.11 0.06 1.29 0.04 1.23 0.03 1.13 0.07 1.13 0.06 2.53 0.03 9.96 0.49 

NAD 0.83 0.05 0.96 0.06 1.26 0.04 1.46 0.03 1.37 0.06 1.26 0.03 1.28 0.04 2.53 0.01 10.95 0.29 

JUM 1.02 0.05 1.24 0.02 1.50 0.01 1.68 0.01 1.62 0.03 1.49 0.01 1.50 0.03 2.08 0.02 12.12 0.17 

IDI 0.84 0.10 1.010.11 1.24 0.07 1.41 0.07 1.36 0.02 1.25  0.05 1.25 0.06 1.54 0.04 9.89 0.55 

IDO 0.98 0.07 1.09 0.09 1.40 0.06 1.57 0.06 1.53 0.06 1.40  0.06 1.41 0.05 1.77 0.06 11.15 0.50 

REH 0.94 0.12 1.12 0.05 1.370.07 1.50 0.06 1.40 0.06 1.25 0.06 1.26 005 2.74 0.01 11.59 0.50 

UBP 0.81 0.03 0.96 0.03 1.21 0.02 1.38 0.03 1.31 0.02 1.16 0.01 1.160.01 2.48 0.07 10.47 0.22 

NWTI 1.09 0.05 2.94 0.28 4.01 0.04 1.61 0.02 1.54 0.03 1.51 0.04 1.39 0.03 7.34 0.02 21.430.50 

NWTT 0.66 0.11 1.31 0.07 1.11 0.08 1.27 0.08 1.19 0.04 1.06 0.05 1.05 0.02 1.74 0.02 9.39 0.47 

NWTE 0.72 0.12 0.92 0.09 1.15 0.05 1.39 0.06 1.26 0.03 1.14 0.06 1.13 0.04 1.510.02 9.21 0.47 

BLA 0.60 0.04 1.11 0.03 1.03 0.04 1.20 0.02 0.90 0.87 1.01 0.02 1.02 0.04 2.30 0.02 9.16 1.06 
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Figure 4.3 Trend of concentration of PCB congeners in water from the source to the 

mouth of the Umgeni River.

 

The mean concentration of individual PCBs in water was 1.36. 0.07 ng/mL. The high concentration at 

NWTI was expected because this plant receives residential and industrial waste from the surrounding 

area which may contain high levels of PCBs. The conductivity was 970.00 µs/cm (Table 4. 1) at this 

site, which is the second highest observed, and indicates content high in dissolved ions and the TDS 

value was also high at this site (568 mg/L) (Table 4.1). This suggests a highly contaminated site which 

again provides organic content in the water onto which PCB180 can adsorb resulting in its high 

concentration at this site (ter Laak Thomas et al., 2009).  In addition, oxygen is required for the 

proliferation of water-dwelling animals and microorganisms. A high TDS content interferes with 

oxygen transfer (Pophali et al., 2003), leading to a reduced growth of microbes. As a result, the 

reduction in microbial growth results in little or no microbial degradation of PCBs which may also 

contribute to the high levels of PCBs observed at this sampling site (Rein et al., 2007, Chang et al., 

2001). The total concentration of PCBs in water samples varied from 6.910 - 21.69 ng/mL with a mean 

concentration of 10.90 0.56 ng/mL (Table 4. 4).   
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Table 4.4 PCB concentrations in water (ng/mL), pore water (ng/mL) and sediment (ng/g, dw) of Umgeni River. 

Analytes 
Water Pore water Sediment 

range mean SD range mean SD range mean SD 

PCB28 0.42-1.09 0.80 

 

0.10 nd-17.73 8.36 0.55 11.41-93.74 28.54 1.76 

PCB77 0.70-2.94 1.12 

 

0.09 nd-52.30 14.64 1.03 11.09-88.73 28.28 1.93 

PCB101 0.80-4.01 1.38 

 

0.06 5.00-26.09 13.26 0.83 18.43-44.89 24.56 0.97 

PCB52 0.97-1.68 1.39 

 

0.05 5.63-29.25 15.08 0.91 14.17-39.42 22.04 0.49 

PCB153 0.90-1.62 1.30 

 

0.11 5.49-27.76 14.44 0.91 12.70-43.36 20.73 0.76 

PCB105 0.80-1.51 1.20 

 

0.05 4.83-25.09 12.74 0.79 10.16-26.67 17.95 0.55 

PCB138 0.81-1.50 1.20 

 

0.05 4.90-25.42 12.77 0.83 11.24-31.69 17.77 0.90 

PCB180 1.51-7.34 2.51 

 

0.05 8.86-48.72 25.47 0.60 13.42-59.34 34.62 1.43 

∑PCBs 6.91-21.69 10.90 

 

 40.67-252.37 116.77  102.62-427.83 194.50  
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This high level of PCBs in this river water may also be explained partly by the leaching of PCBs from 

urban activities at Durban as was demonstrated by Chevreuil and Granier who showed that the main 

cause of high levels of PCBs in the basin of river Seine in France was leaching (Chevreuil and Granier, 

1985, Kim et al., 2007). Note that the levels of PCBs in this river water were higher than the maximum 

allowed by US EPA for fresh water (0.014 ng/mL) (US EPA, 1984) and European Union Council (0.010 

ng/mL) (EU, 1998). However in this study, the water was unfiltered and contained much total 

suspended solids on which PCBs adsorb and this may have increased the PCB concentrations in water 

sample extract.  

 

The wastewater treatment process showed some reduction in the concentrations of the PCBs in the water 

when it reached the NWTT (after treatment) compared to the influent (NWTI) (Table 4.5, Figure 4.3). 

Table 4.5 shows that the treatment process was most able to reduce PCB180, PCB101 and PCB77 by 

76.29, 72.32 and 55.44% respectively of the amount received by the plant at the influent. This reduction 

may be attributed to either the actual chemical treatment used in the plant process or the hydrophobic 

PCBs partitioning itself into the phase containing the organic particles which then settle in the 

sedimentation step, during the wastewater treatment process.  In a study on activated sludge treatment 

process, Katsoyiannis and Samara found that WWTP sludge contains between 39 and 98% of POPs and 

the fraction remaining in treated water was due to adsorption of these pollutants onto non-settleable 

solids (Katsoyiannis and Samara, 2005). Concerning the Northern Wastewater Treatment Works 

(NWWTW), mentioned in this study, more investigation is needed to determine the annual loading of 

POPs, their accumulation in the sludge and their remaining fraction in treated water or if the addition of 

a chemical coagulation agent affects the partitioning of POPs between the water and bio-solids. Studies 

on wastewater treatment plants also showed that in general, persistent organic pollutants were in higher 

concentrations in the influent than effluent (Mowery and Loganathan, 2007).  
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Table 4.5 Percentage reduction of PCB concentrations in water by the Northern Wastewater Treatment 

Works. 

 

Congeners 
Concentrations (ng/mL ) 

NWTI NWTT Difference % 

PCB28 1.09 0.66 0.43 39.45 

PCB52 1.61 1.27 0.34 39.00 

PCB77 2.94 1.31 1.63 55.44 

PCB101 4.01 1.11 2.90 72.32 

PCB105 1.51 1.06 0.45 29.80 

PCB138 1.39 1.05 0.34 24.46 

PCB153 1.54 1.19 0.35 22.73 

PCB180 7.34 1.74 5.68 76.29 

 

4.4.2. Polychlorinated Biphenyls in Sediment Pore Water  

 

The concentrations of PCBs in pore water ranged from not detectable level for PCB28 at MDO to 52.30 

ng/mL for PCB77 at UBP (Table 4.6) with an average concentration of 14.60 0.81 ng/mL. The 

concentrations were generally lower towards the source of the river and increased towards the mouth 

(Table 4.6 and Figure 4.4). This may be due to the increase of industrial activities as the river flows 

down towards Howick and the city of Durban or also an accumulation effect of the PCBs as the river 

flows downstream towards the mouth carrying with it TSS and DOC with PCBs partitioned to it.  

PCB180 was again the most abundant PCB in pore water in almost all sampling sites (Table 4.6 and 

Figure 4.4) confirming its strong affinity with TSS and DOC whose concentrations were greater in 

unfiltered pore water than unfiltered surface water (Aparna et al., 2014, Matyas et al., 2015, Zhang et 

al., 2011b).  Another possible reason is its highly chlorinated structure which makes it less volatile and 

lipophilic allowing it to be preferentially retained in the sediment pore water (de Voogt et al., 1990).  

 

The total concentrations of congeners at each site (Table 4.6) showed that the levels of PCBs were 

highest at NWTT and NWTE due to the accumulation of contaminants from different sources that make 

their way to the treatment plant.  The higher levels of total PCBs at sites IDO and UBP were attributed 

to the low water flowrate at these sites, allowing time for the TSS onto which the pollutants were 

partitioned, to settle in sediment and therefore be extracted in its pore water. PCB77 was in high 

concentrations at UBP (Table 4. 6, Figure 4.4) (See appendix C.2) which suggested a possible input of 
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this congener at this site from sources such as transformer liquids, incineration of waste or from 

construction material (this site is currently under construction and is being used by heavy machinery). 

 

The total PCB levels in pore water varied from 40.67 to 252.37 ng/mL with a mean of 116.77 ng/mL 

(Table 4.4), which is higher than in water. The higher concentrations in pore water is expected because 

PCBs are hydrophobic and tend to associate with organic materials found in sediments rather than 

dissolve in water (Julia et al., 2012). However the hydrophobic PCBs, in sediment tend to re-suspend 

from sedimentary phase to the pore water (Zhang et al., 2003) which may be the case for the present 

study. Studies on sediment-pore water distribution models of POPs have also confirmed higher POP 

concentrations in pore water than in water (Perssona et al. 2005). 

 



117 

 

 

Table 4.6 Concentration of PCB congeners in the pore water of the Umgeni River. 

   

Concentrations of PCBs in pore water in ng/mLSD 

  Site PCB28 PCB77 PCB101 PCB52 PCB153 PCB105 PCB138 PCB180 ∑PCBs 

MDI 3.42 0.26 8.30 0.41 6.39 0.18 7.29 0.24 7.17 0.22 5.98 0.26 6.31 0.21 23.17 0.50 68.02 2.30 

MDO nd 8.41 4.84 5.00 2.92 5.63 3.28 5.49 3.35 4.83 2.89 4.90 2.92 22.47 0.58 59.17 21.35 

HOF 4.71 0.06 5.48 0.46 6.78 0.12 6.84 0.15 6.81 0.10 6.06 0.16 5.84 0.24 21.91 0.20 64.43 1.50 

AFI 5.20 0.07 6.24 0.19 7.72 0.19 8.78 0.13 8.47 0.13 7.47 0.28 5.62 0.11 11.10 0.15 60.60 1.25 

AFO nd nd 5.13 0.60 6.05 0.74 5.69 0.76 4.88 0.70 5.04 0.66 8.86 0.09 42.08 4.27 

NAD 8.21 1.11 8.92 1.35 12.60 1.46 14.69 1.73 13.95 1.52 12.35 1.32 12.48 1.54 15.33 0.35 98.52 10.38 

JUM 6.71 0.75 10.05 1.42 11.89 1.69 14.07 2.15 13.50 1.98 11.76 1.64 11.67 1.60 25.22 0.50 104.86 11.71 

IDI 9.30 0.50 10.09 0.33 14.67 0.34 17.31 0.48 16.27 0.43 14.56 0.34 14.57 0.18 18.98 0.45 115.75 3.06 

IDO 15.44 1.27 17.72 1.09 23.84 0.89 27.39 0.54 26.17 0.82 22.99 0.70 23.82 0.87 33.79 1.00 191.15 7.19 

REH 8.48 0.67 14.22 0.52 15.47 0.57 18.00 0.53 17.30 0.52 15.03 0.48 15.23 0.28 48.72 0.73 152.47 4.30 

UBP 10.82 0.54 52.30 1.32 17.64 0.84 19.99 0.58 18.64 0.71 16.26 0.51 16.70 0.57 35.37 0.86 187.72 5.92 

NWTT 14.38 0.99 27.92 1.32 21.73 0.94 23.61 0.66 23.32 0.68 20.77 0.71 20.70 0.64 45.26 1.05 197.69 7.00 

NWTE 17.73 0.34 20.33 0.54 26.09 0.66 29.25 1.16 27.76 1.29 25.09 0.85 25.42 1.55 32.10 1.63 203.78 8.02 

BLA 7.36 0.28 11.41 0.28 10.71 0.24 12.28 0.30 11.66 0.29 10.35 0.23 10.46 0.26 14.35 0.34 88.57 2.22 

nd = not detected 
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Figure 4.4 Trend of PCB concentrations in pore water from the source to the mouth of the Umgeni 

River. 

 

4.4.3. Polychlorinated Biphenyls in Surface Sediments 

 

The concentrations along the river ranged from 10.16 ng/g (PCB105 at IDO) to 93.74 ng/g, (PCB28 at 

NWTT) with an average of 24.31 1.10 ng/g of dry weight (dw) (Table 4.7). All the PCB congeners 

investigated were detected in all sediment samples. This may be attributed to the strong affinity that 

exists between the hydrophobic pollutants and sediment organic carbon (Kookana, 2011). As in water 

and pore water, the level of PCB180 was highest in all sediment samples (Table 4.4) due to its 

hydrophobicity in the aquatic environment which is related to its Kow value and therefore its sorption to 

the organic matter in sediment (Zhou et al., 2005). The distribution of PCB congeners in the aquatic 

systems may also be assigned to losses of less chlorinated congeners through volatilisation, 

sedimentation and degradation by microbial activity as well as thermal and UV light degradation 

(Brown et al., 1987b, Quensen et al., 1988, MacDonald et al., 1992, De et al., 2006). PCBs 28 and 77 

were in unusually high concentrations at NWTT (See appendix C.3). This suggested that apart from the 

waste received by the plant there may be another input of these two congeners at that site such as 

industrial effluent received by the plant (Gioia et al., 2014  ). The lowest total concentrations of PCBs 

were observed at IDO while the highest was recorded at NWTT. 
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Table 4.7 Concentrations of PCBs (ng/g, dw) in the sediment at each site across Umgeni River. 

 

   

Concentrations of PCBs in sediment ( ng/g SD) 

  Site PCB28 PCB77 PCB101 PCB52 PCB153 PCB105 PCB138 PCB180 ∑PCBs 

MDI 16.70 0.60 19.85 1.43 18.430.52 18.410.03  16.640.33 15.040.08 15.070.68 36.690.83 156.834.51 

MDO 30.57 3.10 24.58 1.91 22.500.59 19.930.15 18.380.03 17.320.07 15.730.36 35.642.12 184.668.02 

HOF 31.18 0.83 29.91 1.27 26.401.78 21.440.51 23.510.65 24.110.17 18.750.26 55.784.83 231.0710.30 

AFI 15.49 0.85 20.47 1.00  19.911.34 18.830.32 17.730.68 13.460.56 16.411.92 30.751.66 153.058.32 

AFO 18.09 0.95 34.45 2.35 19.821.01 19.580.20 17.300.16 15.280.13 14.380.59 43.735.14 182.6410.53 

NAD 16.40 1.22 19.61 1.14 18.510.72 18.970.55 16.590.32 15.760.62 13.700.41 34.660.43 154.205.41 

JUM 33.81 1.97 31.73 6.47 28.340.08 21.490.55 19.160.30 18.110.84 15.630.55 43.150.79 211.4212.55 

IDI 23.33 0.82 24.89 1.60 24.860.56 24.991.30 22.431.21 22.121.43 23.492.89 25.971.90 192.0911.72 

IDO 11.41 1.66 11.09 1.87 19.461.86 14.170.10 12.700.47 10.160.23 11.240.33 13.420.26 103.656.78 

REH 18.74 1.62 19.01 1.76 21.151.23 21.480.66 19.970.82 17.550.23 16.110.67 21.160.48 155.178.31 

UBP 26.23 1.43 25.47 1.35 28.480.97 27.310.93 24.750.63 22.511.06 22.210.36 27.320.82 204.286.97 

NWTI 31.86 4.74 26.37 1.78 26.840.35 24.160.30 21.120.20 18.820.48 18.480.91 27.700.78 195.359.47 

NWTT 93.74 2.79 88.73 2.11 44.891.05 39.420.69 43.363.49 26.670.41 31.691.04 59.340.33 427.8312.14 

NWTE 24.41 1.24 26.01 0.66 22.660.57 21.530.48 20.291.48 18.050.64 19.312.08 29.350.21 181.617.74 

BLA 36.17 2.56 22.01 2.21 26.191.31 18.920.60 17.020.61 14.250.48 14.400.46 34.610.83 183.589.06 



120 

 

 

The relatively low concentrations at the IDO sampling site could be because most of the PCBs had 

already been extracted from the sediment in the pore water (Table 4. 6).  

Zhao and his co-workers showed that high PCBs levels occur in the fraction of sediment with grain size 

of 31 to 63 μm (Zhao et al., 2010b). In addition, studies on sorption of hydrophobic pollutants on natural 

sediment demonstrated that the sand fraction (>50 μm) is considerably less effective in adsorption of 

hydrophobic pollutants (Karickhoff et al., 1979, Ke-xin et al., 2003, Carro et al., 2002). Therefore since 

more than 52% of IDO sediment size was higher than 300 μm (particle sizes determined during grinding 

and sieving steps of sample preparation), it could not retain much pollutant and hence pore water was 

more concentrated than the sediment itself at this site. For the NWTT, the high concentration of PCBs in 

its bio-solid was expected since this site continually receives treated water before being discharged. 

Table 4.5 shows that even the treated water still has considerable amounts of PCBs which eventually 

partition itself in the bio-solid sampled at the NWTT site resulting in its increased concentration. The 

levels of PCBs in the bio-solids of NWTI were generally lower than those in the bio-solids of NWTT. 

This was because the bio-solid at NWTI was fresh and occasional while the bio-solid at NWTT 

accumulated over time at that sampling point. Note that in all matrices the levels of PCB concentrations 

at sites close to and exiting the Northern Wastewater Treatment Works (NWWTW) were high. Other 

studies have also found that wastewater treatment plants are important point sources of POP 

contamination (Samara et al., 2006).  

 

Figure 4.5 Trend of PCB concentrations in sediment across the Umgeni River. B 
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4.4.4. Comparison of Sediment Total PCBs With Levels Found Elsewhere in the World 

 

The total concentration of PCBs congeners in sediment fluctuated between 102.62–427.83 

ng/g with a mean concentration of 194.50 8.79 ng/g, dry weight (Table 4.4). Concentrations 

of PCBs in sediment were higher than in pore water and much higher than in water (See 

appendix C.4).  This was expected because PCBs are hydrophobic and tend to be adsorbed 

onto solid organic particles and sediment (Bazzanti et al. 1997).  Compared to PCBs detected 

elsewhere, this level was higher than that detected in the sediments obtained from Yamuna 

River in Dehli in India (0.20-21.16 ng/g) with a mean of 6.63 0.69 ng/g (Kumar et al., 

2013a). The levels in this study were also found to be higher than those found in Vietnam 

(Hanoi region) (0.47-28.1 ng/g, dw) (Nhan et al., 2001) or that in Bahlui River, in Eastern 

Romania (24–158 ng/g with  mean: 59 ng/g) (Dragan et al., 2006). However, the present 

results were in the same range as those obtained in surface sediments of an industrialised 

urban river (Huveaune) in France (2.8-435 ng/g) having an average concentration of 148 64 

ng/g (Kanzan et al., 2014) and lower than PCB levels found in the Keelong River in Taiwan 

(mean: 230 ng/g, dw) (Iwata et al., 1994), Minjiang Estuary (985.2 ng/g), Pearl Estuary 

(635.7 ng/g) Jiaozhou Bay (273.3 ng/g) (Xing et al., 2005), upper Sheboygan River, 

Winsconsin in United States (1000-104000 ng/g) (Li et al., 2005). No comparison could be 

made on the temporal PCB concentration trends, as no data were available on the past PCB 

levels for the investigated river in this study. Note that the current study revealed that the 

total average PCB level in the Umgeni River sediment was very much lower than the interim 

fresh water sediment quality guidelines (ISQG) of 21 500 ng/g (dw) and probable effect level 

(PEL) of 189 000 ng/g (dw) permitted by the Canadian quality sediment guidelines  (CCME, 

2002). According to Ontario sediment quality guidelines, however, the total average of PCBs 

in the sediment of Umgeni River, was found to be higher than the lowest effect level (LEL) 

(70 ng/g, dw) and far less than the severe effect level (SEL) (530000 ng/g, dw) (Persaud et 

al., 1993). 

 

4.5 CONCLUSION 

 

The present study has provided data on the levels of PCBs in water, pore water and sediments 

from 15 sampling sites along the Umgeni River. All 8 selected PCB congeners were found in 

all 15 sites investigated and in all matrices. The concentrations of PCBs increased clearly at 
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the sites of the Wastewater Treatment Works. The total concentrations of 8 polychlorinated 

biphenyls were 6.910-21.69 ng/mL, 40.67-252.3 ng/mL and 102.6-427.8 ng/g (dw), in 

surface water, pore water and surface sediments respectively. The PCB levels were higher in 

sediment than in water and pore water. In general, PCB180 is the most abundant PCB in 

water, pore water and sediment samples which was expected because PCB 180 has the 

highest molecular weight in this study’s set of investigated analytes and has a Kow value that 

shows its preference to adsorb onto organic particles which was present in high amounts in 

the unfiltered samples. Our results suggest that the Umgeni River water quality is poor with 

regard to pollution by PCBs and may represent a risk to human health and aquatic 

environment. The findings of this study indicate that there is a need to establish a reliable 

system of monitoring polychlorinated biphenyls and other organochlorinated compounds in 

order to take appropriate action to maintain environmental water quality standards in the 

Umgeni River. Further research is needed on levels of organochlorines in aquatic biota such 

as fish and aquatic plants in the Umgeni River to allow a complete assessment of the risks 

these contaminants have on aquatic life and human health.  
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ABSTRACT 

Organochlorine pesticides (OCPs) were analysed in surface water, pore water and surface 

sediment samples collected from the Umgeni River which is one of the largest rivers in the 

province of KwaZulu-Natal, South Africa. Liquid-liquid extraction was used to extract the 

analytes from water and pore water samples and soxhlet extraction was used to extract 

sediment samples with subsequent florisil clean-up and gas chromatography-mass 

spectrometry (GC-MS) analysis. Twelve selected OCPs were analysed and their total 

concentrations were found to range between 8.04-21.06 ng/mL, 36.06-188.43 ng/mL and 

148.17-554.73 ng/g in unfiltered surface water, unfiltered pore water and surface sediment 

(dry weight) respectively. The results indicated that the concentrations of these selected 

pesticides were far higher in sediment (72%) than in pore water (25%) and water (3%). The 

most polluted sites were Northern Wastewater Treatment influent (NWTI) for water (∑
12

OCP 

= 19.41 1.43 ng/mL) and Northern Wastewater Treatment effluent (NWTE) for pore water 

(∑
12

 OCP 
=
 166.23 7.16 ng/mL) and sediment (∑

12
 OCP = 495.21 32.38 ng/g, dw). The 

most abundant individual OCPs and their average concentrations in general in the river were 

mailto:Moodleyb3@ukzn.ac.za
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p,p-DDE in unfiltered water (1.62 0.22 ng/mL) and unfiltered sediment pore water (17.09 

7.96 ng/mL) and endrin in surface sediment (55.57 19.01 ng/g, dw)   

 

 Keywords: Umgeni River, pore water, sediment, organochlorine pesticides, soxhlet 

extraction, gas chromatography-mass spectrometry 

 

5.1 INTRODUCTION 

 

Pesticides are agrochemicals extensively used in agriculture and public health sectors to 

control or mitigate pests causing crop damage and diseases. Their main properties include 

low polarity, low aqueous solubility and high lipophilicity. As a result, they bioaccumulate 

and bioamplify through the food chain and are hence a threat to the environment and to 

human health (Afful et al., 2010, Zhao et al., 2013, Zhao et al., 2009). Researchers have 

found that organochlorine pesticides and their metabolites may cause chronic toxicity to 

humans and animals through air, water and food intake (Dong-hui and Guang-xing, 2012, 

Rachid et al., 2012). Many of them are agents of reproduction and birth defects (Edwards, 

1987, Ghuman et al., 2013, Tadevosyan et al., 2012), immune system dysfunction, endocrine 

disruptions and cause cancer (Adeyemi et al., 2008, Cockburn et al., 2011, Rull and Ritz, 

2003). OCPs have been banned in many countries since the 1970s but are still detected in 

water, sediments, air and aquatic biota today, because of their persistence in the environment 

(Fox et al., 2001, Albaiges et al., 1987, Iwata et al., 1994, Hogarh et al., 2014). Even though 

only 3% of pesticides sold worldwide per year is purchased by Africa, South Africa alone 

forms about 60% of the pesticide market and is the leading agricultural power in sub-Saharan 

Africa (Naidoo and Buckley, 2003).  Therefore monitoring of the presence of OCPs in the 

South African environment is necessary. 

 

The Umgeni River has a surface area of 4416 km
2 

and spans a length of 225 km from source 

to mouth. It is the main source of water for many people in this province; both urban and 

rural and particularly for people living in squatter camps along this river who use its 

untreated water for bathing, cooking, washing etc. This river is also interrupted by many 

dams which store water for different uses such as irrigation, recreation and fish farming apart 

from its main use of drinking water. However, the quality of the Umgeni River water is poor 

due to pollution by people residing in these informal settlements and pesticides used by 
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farmers which make their way into the waterway by runoff.  In addition there is also seepage 

of untreated industrial waste into this river and its tributaries which pass through urban, 

agricultural and industrialized areas. Limited studies have been done on the qualitative and 

quantitative analysis of pesticides in this river and this study aims to provide important 

information on the levels of selected pesticides (Figure 5.1) in the Umgeni River as well 

identify the most highly contaminated sites along the river. In order to know the total 

concentrations of pesticides (freely dissolved + organic carbon + suspended solids) to which 

animals and people using this water are exposed, the water was treated unfiltered. To the best 

of our knowledge, this is the first study that has investigated the qualitative and quantitative 

levels of these selected OCPs from the source to the mouth of the Umgeni River.  The 

reported results provide much needed information on the presence of these OCPs which may 

contribute to the health risk of animals and humans who consume the water from the Umgeni 

River.   
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5.2 MATERIALS AND METHODS  

 

5.2.1. Chemicals and Apparatus 

 

The solvents including high pressure liquid chromatography (HPLC) grade solvents, namely 

hexane, dichloromethane (DCM) and toluene, and florisil (MgO3Si residue analysis grade, 

mesh 60-100, pore size 60Å), as well as OCP standards (HCB, HCH, heptachlor, aldrin, o,p-

DDE, p,p’-DDE, o,p’-DDD, p,p’-DDD, o,p’-DDT, dieldrin, endrin, and mirex) were 

purchased from Sigma Aldrich. Anhydrous sodium sulfate (Na2SO4) gold line (CP) and 

silicon carbide boiling stones (CSi) were obtained from Associated Chemical Enterprises 

(ACE) and sulfuric acid (98%) was obtained from Promark Chemicals. The test sieves (ss 

200 mm  x 100 μm to ss 200 mm  x 600 μm) were obtained from DLD Scientific in South 

Africa. Also separatory funnel, pestle and motar and a column were used. 

 

Figure 5.1 Structures of investigated organochlorine pesticides (OCPs) in the Umgeni River. 
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5.2.2. Study Area  

 

The Umgeni River is the main river in the province of KwaZulu-Natal and starts from the 

lower mountains of Spioenkop and Lionskop on either side of Nottingham (Van der Zel, 

1975) and ends at the mouth at the Blue Lagoon in Durban which empties into the Indian 

Ocean. Water and sediment samples were collected during the winter period, from 15
th

 to 17
th

 

July, 2013 from fifteen sampling stations including 12 sites selected along the Umgeni River 

and 3 sites around the Northern Wastewater Treatment Works (NWWTW), which discharges 

its treated water back into the Umgeni River a few kilometers downstream. Sampling stations 

were selected based on their location and activities around them, such as, agricultural, 

industrial or residential. The environmental physical parameters, coordinates and map of the 

sampling area are shown in Table 5.1, Figure 5.2 and Figure 5.3. 

 

5.2.3. Physical and Chemical Parameters of the Study Area  

 

The physical parameters of a given area influences the chemistry of the environment, such as 

the partition of pollutants between the various environmental matrices (water, pore water and 

surface sediment) and the concentration of pollutants.  The physical parameters of each 

sampling site were measured.  These were water temperature, ambient temperature, pH, 

conductivity and total dissolved solids (TDS).  
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Table 5.1 Physical and chemical parameters and geographical coordinates of the sampling sites along the Umgeni River during winter 2013. 

Sampling site 
Ambient T

o 

(
°
C) 

Water T
o 

(
°
C) 

pH 
Conductivity 

(µs/cm) 

TDS 

(mg/L) 

Coordinates 

South East 

Midmar Dam inlet (MDI) 12.3 11.6 5.54 83.7 49 29 29′ 16.05'' 30 09' 23.10'' 

Midmar Dam outlet (MDO) 12.3 13.2 5.69 75.5 44 29 29' 34.02'' 30 12' 09.13' 

Howick Falls (HOF) 17.8 13.8 5.99 89.7 53 29 29' 18.18'' 30 14' 19.70'' 

Albert Falls inlet (AFI) 18.6 13.5 5.78 111.5 65 29 26' 31.94'' 30 19 47.10'' 

Albert Falls outlet (AFO) 19.2 15.4 6.04 93.8 55 29 26' 01.81'' 30 25' 55.76'' 

Nagle Dam (NAD) 18.4 15.4 5.00 114.0 66 29 35' 08.42'' 30 37' 23.94'' 

Joining point Umgeni-

Msunduzi Rivers (JUM) 
15.6 15.7 5.56 367.0 214 29 37' 16.61'' 30 40' 46.59'' 

Inanda Dam inlet (IDI 17.2 16.6 4.98 278.0 160 29 39' 05.20'' 30 48' 06.24'' 

Inanda Dam outlet (IDO) 15.1 15.9 4.53 257.0 149 29 42' 55.74'' 30 52' 07.69'' 

Reservoir Hills (REH) 21.4 17.9 5.63 305.0 176 29 47' 08.05'' 30 56' 25.51'' 

Umgeni business park (UBP) 21.4 17.6 4.90 334.0 194 29 48' 19.05'' 30 58' 58.08'' 

Northern Wastewater 

Treatment works influent 

(NWTI) 

22.8 21.9 4.70 970.0 568 29° 47′ 47.08″ 30° 59′ 50.01″ 

Northern Wastewater 

Treatment works after 

treatment (NWTT) 

19.8 19.9 4.64 1238 719 29° 47′ 47.02″ 30° 59′ 50.06″ 

Northern Wastewater 

Treatment works effluent 

(NWTE) 

21.0 19.8 4.94 674 392 29° 48′ 27.01″ 30° 59′ 51.05″ 

Blue Lagoon (BLA) 21.4 20.0 5.12 -
13

 - 29 48' 41.03'' 31 02' 12.05'' 

                                                 
13

 Blue lagoon is located at the mouth of the river where it empties in Indian ocean, the conductivity and TDS were higher than the maximum the instrument could measure 
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Figure 5.2 Conductivity and TDS in the water of Umgeni River at eah site. 

 

 

Figure 5.3 Map of sampling sites with the sample collection locations along the Umgeni 

River (map was generated from GPS coordinates using ArcGIS 10.2). 
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5.2.4. Sampling 

 

Water samples were collected in 2.5 L Winchester amber bottles previously washed with hot 

water and detergent and rinsed three times with sulfuric acid and deionized water 

respectively. At the site, the bottles were washed three times with the river water to be 

sampled. After sample collection, the bottles were sealed with caps lined with aluminium foil. 

Sediment samples were collected at the same sites as the water samples using a grab sampler 

and stored in glass bottles washed and capped as aforementioned. Water and sediment sample 

bottles were kept in a cooler box containing ice while they were transported to the laboratory. 

Water samples were acidified with 1 mL of H2SO4 (50% v/v) to prevent microbiological 

degradation and stored in a refrigerator at 4 
o
C until extraction which followed within three 

days. The sediment samples were centrifuged (Du pont instruments
R 

SS-automatic centrifuge) 

using 10 x 1000 rpm for 15 min to separate it from the pore water (Ankley and Schubauer-

Berigan, 1994, Zhang et al., 2003) and thereafter transferred onto aluminium foil for air 

drying. The pore water obtained was treated as per surface water samples. 

 

5.2.5. Sample Extraction and Clean-up 

 

Water samples were extracted using liquid-liquid extraction as per EPA method 3510C (EPA, 

1996a). A 1 L aliquot of the water sample was transferred to a separatory funnel and 

extracted with 50 mL of DCM. The organic layer was removed and the process repeated six 

times for the same sample using fresh DCM aliquots each time in order to increase recovery. 

The six fractions of extracts were combined and concentrated to approximately 5 mL using a 

rotavap (Heidolph Instruments GmbH & Co.kG). The concentrated extract was quantitatively 

transferred onto a florisil (activated at 130 °C for 12 hours) column containing anhydrous 

Na2SO4 (5 g) on top for clean-up. The column was eluted with increasing polarity mixtures of 

hexane:DCM (5 mL each)  (94:6), (85:15), (50:50) and 100% DCM (modified EPA method 

3620-C) (EPA, 2007) in order to elute different OCPs with varying polarity indices. The four 

fractions were combined and concentrated using rotary evaporation to nearly 5 mL, then air-

dried and reconstituted to 2 mL (concentration factor = 1000 mL/2mL = 500) and analysed 

using GC-MS.  The pore water obtained after centrifugation of the sediment was treated as 

the water samples above using 100 mL of the sample and 10 mL of DCM. The sediment 

samples were air-dried, ground and sieved for homogenization and to increase the surface 

area. A 60 g (dw) sample of dry sediment was extracted with 300 mL of toluene in a soxhlet 
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extraction unit for 24 hours. Toluene is a suitable solvent for aromatic compounds such as 

organochlorine pesticides because of its similar polarity and research has shown it to be one 

of the most efficient solvents for extraction of these compounds (Oleszek-Kudlak et al., 

2007). The resulting extract was concentrated using a rotavap for subsequent clean-up. The 

clean-up procedure was carried out as described for the water and pore water samples using a 

20 mL mixture of hexane and DCM.  The sediment extract was concentrated to 2 mL and 

analysed with GC-MS. 

 

5.2.6. Sample Analysis 

 

Sample analyses were carried out in triplicate using an Agilent 6890 series gas 

chromatography system attached to a mass spectrometer detector (MSD5973). The GC 

system was equipped with a ZB-5MS capillary column, 0.25 mm i.d., 0.25 μm film thickness 

and 30 m length (Hewlett Packard; Houston, TX). The MS was operated using the selective 

ion monitoring acquisition mode (SIM). The carrier gas was purified helium. Splitless mode 

was used to inject 2 μL of sample onto the GC column with injector and detector 

temperatures set at 250 and 280 
o
C respectively. The oven temperature was programmed 

from 120 
o
C, increased to 290 

o
C with a ramping rate of 14

 o
C/min and held for 2 min. The 

MS source was operated at 250 
o
C and quad at 200 

o
C.  The electro energy was 70 eV.  

 

Target analytes were quantified based on peak areas and by using an external calibration 

technique with the following six calibration standards: 0.25; 0.5; 1; 2; 4; 8 μg/mL. The 

identification of the analytes of interest was achieved by using mass spectral data compared 

to that found in the National Institute of Standard (NIST) library and comparison of retention 

times of analytes with those of reference standards. The identification was also carried out 

using the base peak and two other confirming ions (Table 5.2). 

 

5.3 QUALITY CONTROL 

 

The extraction recoveries (R) and limits of detection (LOD) and quantification (LOQ) for 

each analyte in each matrix were calculated (Table 5.2). Recoveries (R1) were obtained by 

spiking tap water (Agunbiade and Moodley, 2014, Meharg  et al., 2003) with pesticide 

standards which were extracted using the method described above for water and pore water 
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samples, and percent recoveries (%𝑅1) were obtained by calculating the ratio between the 

concentration found (𝐶𝑓) and the concentration spiked (𝐶𝑆), multiplied by 100 (Equation 5.1) 

(APHA et al., 1999, USEPA, 2008). For sediment sample analyte recoveries (R2), real 

sediment samples were subdivided into two subsamples whereby one was spiked with OCP 

standards before extraction, while the other was left unspiked and both extracted and 

analysed. The %R2 was obtained by subtracting the concentration of unspiked subsample 

(𝐶𝑢) from the concentration of the spiked subsample (𝐶𝑆), divided by the known 

concentration spiked (𝐶𝑘) and the result was multiplied by 100 (Equation 5.2) (Harry et al., 

2008). The recovery studies were carried out in triplicate and the mean recovery and the 

standard deviation were calculated for each analyte. The actual samples were also analysed in 

triplicate to measure the reproducibility and precision of the method used. The limit of 

detection and quantification were calculated as three times and ten times respectively the 

signal-to-noise ratio, using the standard deviation of three calibration intercepts divided by 

the slope. Procedural blanks were used through all phases of extraction and analysis. The 

analytes of interest were not detected in the blank samples. The solvent blanks and pesticide 

standards were regularly run on the GC-MS to ensure that there were no interferences in the 

GC system. A check was done, by running a calibration standard of 0.5 mg/mL after each 

batch of sample, to ensure that the variation from the initial calibration standards was 

minimal. All data were processed using Microsoft excel (version 2010). 

 

%𝑅1 =  
𝐶𝑓

𝐶𝑆
∗ 100 … … … … … … … … … … … … (5.1) 

 

%𝑅2 =  
𝐶𝑆 −  𝐶𝑢

𝐶𝑘
∗ 100 … … … … … … … … … (5.2) 
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Table 5.2 Ions monitored, limits of detection and quantification and percentage recoveries (%R) in the analysis of OCPs in water pore water and 

sediment by GC-MS. 

          

                                                 
14

 o,p-DDD and dieldrin could not be resolved on the GC and were reported as a single peak. 
15

 p,p-DDD and o,p-DDT could not be resolved on the GC and were reported as a single peak.  
16

 Heptachlor was in contact with tap water for some days to allow its contact with matrix before extraction. It may have degraded into heptachlor epoxide by oxidation, 

photolysis and can also volatilise in air (Callahan, M. A., 1979) and consequently its recovery was low during extraction. 

Analyte HCB HCH heptachlor aldrin o,p’-DDE p,p’-DDE o,p’-

DDD/dieldrin
14

 

endrin p,p’-DDD/o,p-

DDT
15

 

mirex 

Ions monitored (m/z) 284 

249 

142 

219 

183 

147 

374 

272 

237 

327 

293 

263 

318 

284 

246 

318 

281 

246 

320/380 

235/263 

165/147 

317 

263 

207 

320/235 

235/199 

165/165 

402 

272 

237 

LOD (ng/mL) in water 0.025 0.06 0.03 0.045 0.06 0.07 0.035 0.06 0.075 0.07 

LOQ (ng/mL) in water 0.58 0.10 0.10 0.155 0.19 0.125 0.205 0.205 0.245 0.23 

LOD (ng/mL) in pore water 0.24 0.295 0.295 0.465 0.06 0.37 0.06 0.615 0.74 0.69 

LOQ (ng/mL) in pore water 0.795 0.35 0.975 1.55 0.19 1.24 0.205 2.05 2.47 0.235 

%R in water and pore water 51.900.47 64.380.28 32.660.6716 

 

69.660.36 

 

84.361.39 

 

87.420.68 

 

103.430.97 

 

61.080.87 

 

75.270.19 

 

65.310.33 

 

LOD (ng/g)  in sediment 0.50 0.50 0.50 0.78 0.96 0.62 1.04 1.02 1.23 1.15 

LOQ (ng/g)  in sediment 1.66 1.66 1.62 2.59 3.20 2.07 3.45 3.41 4.11 3.83 

%R in sediment  

79.143.64 

 

98.223.81 

 

99.1510.0.3 

 

 

116.975.36 

 

95.6012.15 

 

 

52.731.35 

 

 

90.023.59 

 

 

94.1914.81 

 

 

96.682.71 

 

 

109.286.19 
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5.4 RESULTS AND DISCUSSION 

  

The present paper reports results obtained from a comprehensive study of the Umgeni River 

situated in the province of KwaZulu-Natal in South Africa, This work aims to report on levels 

of selected persistent organic pollutants, and serves to provide an understanding of these 

pollutants from non-point sources. The results presented are for twelve selected 

organochlorine pesticides in surface water, sediment pore water and surface sediment. 

 

5.4.1. Levels of Organochlorine Pesticide Residues in Surface Water 

 

The distribution of the OCPs in water from the fifteen sampling sites revealed a broad and 

diverse range of fluctuations (Table 5.3). The concentrations of individual pesticides ranged 

from a non-detectable level for aldrin at Reservoir Hills (REH) to 3.48 ng/mL for endrin at 

Northern Wastewater Treatment works influent (NWTI). The levels of pesticides were higher 

at the sites surrounding the wastewater treatment works and the point of discharge into the 

Umgeni River. This was expected because the wastewater treatment plant receives  

residential waste which may contain residues of pesticides from food sold in supermarkets, 

such as fish, fruits and vegetables in which they are known to accumulate (Gómez-Pérez et 

al., 2015, Asensio-Ramos et al., 2014, Vuković et al., 2012, Barnhoorn et al., 2015a). 

Researchers have found that wastewater treatment plants can be considered as a source point 

of persistent organic pollutants (Samara et al., 2006). 

 

The results showed that o,p-DDE and p,p’-DDE were among the main OCPs in the Umgeni 

River water with average concentrations of 1.50 and 1.62 ng/mL, respectively.  The presence 

of these DDT degradation products suggest that DDT was the common pesticide in use 

before it was banned in 1983 in South Africa. Thereafter, DDT was allowed to be used in a 

controlled manner only by government, for the purpose of malaria control (Rother and 

Jacobs, 2008) and therefore may be present in food stuff such as meat, fish, vegetables 

transported from DDT-affected areas (McHugh et al., 2011) such as Limpopo and 

Mpumalanga (Dalvie et al., 2004c, Dalvie et al., 2004b, Naudé and Rohwer, 2012a, Van Dyk  

et al., 2010 ) to the area investigated in this study. A study by Batterman and coworkers 

found that many of the OCPs investigated in this study were also found in air samples 

collected in the Durban city area close to where the Umgeni River passes before it reaches the 
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mouth at the Indian Ocean (Batterman, 2008)  Their study confirmed that these OCPs had 

local as well as regional or even global sources and may travel from far areas of input 

because of trans boundary effects. Furthermore, during cooler temperatures they have the 

ability to re-condense from air and enter water ways especially during the winter period when 

these samples were collected (Scheringer et al., 2004, Lohmann et al., 2007b, Valle et al., 

2007). 

 

The present study found no significant difference in total concentrations of pesticides at each 

site (Figure 5.4), from the source of the river at MDI (10.99 ng/mL) downstream to NAD 

(9.73 ng/mL),  however JUM, the joining point of the Msunduzi River (tributary) with the 

Umgeni River, showed a slightly higher concentration (12.69 ng/mL) compared to upstream 

sites. This could be due to an added effect of the pollutants from the Msunduzi River now 

mixing with the Umgeni River thus increasing the total concentration. After JUM, the total 

concentration of OCPs decreased to 10.31 ng/mL at IDI (Table 5.3, Figure 5.4). The decrease 

in concentration of OCPS in water was attributed to low flow rates of the dam water, 

allowing contaminants partitioned to the organic matter to settle down into the sediment 

instead of being transported in the water column via suspended particles.  Similarly, the high 

flow rates observed at the JUM sampling site also meant that the organic matter with the 

partitioned OCPs did not have sufficient time to settle into the pore water and sediment and 

hence were present in higher concentrations in the unfiltered water matrix (Figure 5.5B) 

(Voice and Walter J. Weber, 1983). 
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Table 5.3 Concentration of OCPs in Umgeni River surface water. 

      
Concentration (ng/mL SD) 

    

site code HCB HCH heptachlor aldrin o,p-DDE p,p’-DDE o,p-DDD/dieldrin endrin 
p,p’-DDD/o,p-

DDT 
mirex ∑OCPs 

MDI 0.410.12 0.650.21 0.480.11 1.210.21 1.370.11 1.520.11 1.640.04 1.520.28 1.410.14 0.790.06 10.991.39 

MDO 0.480.17 0.690.29 0.470.17 1.160.12 1.370.13 1.480.07 1.610.12 1.280.26 1.360.09 0.900.15 10.801.56 

HOF 0.700.09 0.530.23 0.360.10 1.020.19 1.210.13 1.340.08 1.410.11 1.420.25 1.250.10 0.740.13 9.971.41 

AFI 0.53017 0.730.24 0.430.10 1.170.11 1.400.15 1.530.11 1.640.12 1.140.18 1.360.09 0.940.13 10.871.40 

AFO 0.740.06 0.500.13 0.340.06 1.020.16 1.210.13 1.350.13 1.430.08 0.880.08 1.230.13 0.780.19 9.471.13 

NAD 0.430.16 0.590.20 0.350.11 1.050.18 1.310.15 1.410.15 1.470.10 1.060.11 1.250.10 0.790.07 9.731.31 

JUM 0.690.16 0.810.21 0.530.11 1.430.21 1.670.19 1.840.05 1.840.11 1.300.08 1.520.04 1.060.07 12.691.34 

IDI 0.500.05 0.600.05 0.400.03 1.200.16 1.370.05 1.550.05 1.540.21 0.920.04 1.310.04 0.900.03 10.310.62 

IDO 0.560.04 0.690.05 0.410.1 1.200.03 1.480.03 1.640.07 1.650.17 1.060.02 1.460.01 0.980.02 11.120.45 

REH 0.530.03 1.570.40 0.810.21 nd 1.610.01 1.800.06 1.870.10 1.000.02 1.440.16 1.060.02 11.691.03 

UBP 0.730.08 1.970.43 0.710.20 0.670.02 1.820.06 1.970.04 1.990.05 1.110.02 1.560.16 1.240.10 13.761.18 

NWTI 1.040.21 1.260.29 1.910.42 2.730.08 2.320.09 2.010.04 1.920.07 3.480.07 1.720.09 1.020.06 19.411.43 

NWTT 0.490.11 0.640.10 2.070.13 1.370.11 1.580.03 1.810.02 1.820.08 1.530.10 1.320.06 1.740.07 14.360.80 

NWTE 0.770.06 0.530.13 0.320.08 1.350.02 1.370.08 1.490.04 1.790.11 1.90017 1.350.07 1.380.05 12.260.81 

BLA 0.800.03 0.530.05 0.350.08 1.400.10 1.410.10 1.540.03 1.780.09 1.240.18 1.360.14 0.960.06 11.380.85 

∑OCPs 9.400.55 12.273.00 9.951.92 17.981.60 22.511.43 24.291.11 25.411.57 20.831.86 20.881.45 15.291.21 178.8016.71 

min 0.410.12 0.500.13 0.320.08 nd 1.210.13 1.340.08 1.410.11 0.880.08 1.230.13 0.740.13 9.471.13 

mean 0.630.10 0.820.20 0.660.13 1.200.11 1.500.10 1.620.07 1.690.04 1.390.12 1.390.10 1.020.08 11.921.11 

max 1.040.21 1.970.43 2.070.13 2.730.08 2.320.09 2.010.04 1.990.05 3.480.07 1.720.09 1.740.07 19.411.43 

nd= not detected
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Figure 5.4 Trend of total concentration of OCPs in surface water across the sampling sites 

(n= 3).  

 

As the river flowed from IDI towards the mouth of the river, the concentration rose to 19.41 

ng/mL at NWTI.  The high concentration at NWTI was expected because it receives 

untreated wastewater and has a content high in organic matter to which the OCPs partition 

which results in high OCP concentrations (Kile et al., 1995). The Northern Wastewater 

Treatment works (NWWTW) does reduce the concentrations of the analysed pesticides to 

some extent as relatively lower concentrations were found for the water sample collected 

after treatment (NWTT). Table 5.4 shows the extent to which the individual OCPs were 

removed from wastewater during the treatment process. Another phenomenon which may 

have reduced the concentrations of OCPs in water at NWTT is their settling into the bio-

solids. This was probably due to a very low flow rate of water in the collecting well area, 

before being sent to the point of discharge to the river allowing the organic matter to settle 

into the sediment, thus the reason for the high total concentrations in sediment pore water 

(Figure 5.6B) and sediment than in water. After NWTT the concentration decreases due to 

dilution of OCPs as they are discharged into the river. 
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Figure 5.5 A- Individual OCP concentrations and B- Total concentration of OCPs in surface 

water samples at each site of the Umgeni River (n=3). 

 

The increase in total concentration of OCPs may also be explained by the physical parameters 

that were recorded during the sampling trip. The higher concentration in total suspended 

solids and total dissolved solids is an indication of pollution (Mahananda et al., 2010) and the 

higher the conductivity, the higher the TDS. Figures 5.2 and 5.4 and Tables 5.1 and 5.3, 

showed very little increase in total dissolved solids and conductivity from the source at MDI 

(TDS = 49 mg/L, conductivity = 83.7 μs/cm) to NAD (66 mg/L, 114.0 μs/cm), with the 

corresponding total OCP concentrations ranging from 9.47±1.13 to 10.99±1.39 ng/mL.   

However, at JUM, the values of TDS and conductivity increased considerably to 214.0 mg/L 

and 367.0 μs/cm respectively. The significant increase in TDS and conductivity corresponded 

to the large increase in OCP concentration at that site (12.69 ng/L) which could be explained 

by the high preference of the OCPs to adsorb onto the dissolved organic matter (high TDS) at 

this site. Furthermore, the total OCP concentration at this site was increased by the joining of 

the tributary (Msunduzi river) and may be contributing to the pollution load at that site. The 

second portion of the river from IDI to NWTI had the highest values in TDS (568.0 mg/L) 

A 
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and conductivity (970.0 μs/cm) and corresponded to the highest total OCP concentrations 

(19.41 ng/mL) at NWTI. Figures 5.4 and 5.5B showed a decrease in total concentration of 

OCPs in the NWTI to BLA which is attributed to dilution effects because the treated water is 

discharged into the Umgeni River at NWTE.  Moreover, Waziri and Ogugubuaja 

demonstrated a positive correlation between levels of pollution indicators in River Yobe-

Nigeria, such as total organic carbon (TOC) and biochemical oxygen demand (BOD) on one 

hand and between BOD and TDS on the other hand; therefore there was a positive correlation 

between levels of  TOC and TDS in the river (Waziri and Ogugbuaja, 2010). Samples with 

high TDS values (Figure 5.2) are therefore expected to have corresponding high TOC values 

as shown by Waziri and Ogugbuaja (Waziri and Ogugbuaja, 2010). Research has also shown 

that there is a strong affinity between organic carbon and hydrophobic compounds that have 

high Log Kow values such as organochlorine pesticides (Luo et al., 2009).  Since the present 

study analysed water samples that were unfiltered in order to determine the concentrations of 

OCPs that humans and animals were exposed to by direct consumption, it was expected to 

contain high levels of organic carbon and hence the reason for the presence of high 

concentrations of total OCPs observed at AFI, JUM and NWTI (Figure 5.4).  
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Table 5.4 Reduction of OCP concentrations in wastewater by the treatment process in the 

NWWTW (Northern Wastewater Treatment Works). 

OCPs 

Influent 

conc. 

(ng/mL) 

conc. after treatment 

(ng/mL) 
difference 

% 

reduction 

HCB 1.04 0.49 0.55 52.88 

HCH 1.26 0.64 0.62 49.21 

heptachlor 1.94 2.07 -0.13 -6.70 

aldrin 2.73 1.37 1.36 49.82 

o,p-DDE 2.32 1.58 0.74 31.90 

p,p'-DDE 2.01 1.81 0.2 9.95 

o,p-DDD/Dieldrin 1.92 1.82 0.1 5.21 

endrin 3.48 1.53 1.95 56.03 

p,p'-DDD/o,p-DDT 1.73 1.32 0.41 23.70 

mirex 1.02 1.74 -0.72 -70.59 

 

Table 5.4 showed that most OCP concentrations were reduced, with the highest reduction 

observed for endrin at 56.03% and the lowest reduction for DDD/dieldrin at 5.21%.  The 

concentrations of heptachlor and mirex were not reduced at all but instead their 

concentrations were increased through the water treatment process (6.70% increase for 

heptachlor and up to 70.59% for mirex). This may also suggest that the NWWTW pollutant 

concentrations vary considerably throughout the day depending on the type of effluent 

received. A further detailed investigation is needed of the NWWTW water purification 

process in order to understand how, why and to what extent the treatment procedure 

selectively reduces some OCP concentrations and not others. Previous studies on wastewater 

treatment plants have shown that POPs are generally present in higher concentrations in the 

influent than effluent (Mowery and Loganathan, 2007). Also, it was confirmed that WWTP 

sludge contains between 39 to 98% of POPs, and the remaining portion in water after 

treatment is due to their adsorption onto non-settleable solids (Katsoyiannis and Samara, 

2005). 
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5.4.2. Levels of Organochlorine Pesticide Residues in Pore Water 

 

The results obtained for OCP concentrations in pore water are shown in Table 5.5 and 

Figures 5.6 and 5.7. The levels of individual OCPs varied from 0.76 0.01 to 34.92 4.01 

ng/mL. The total concentration of OCPs in pore water was ten times higher than in surface 

water. This may be explained by the low solubility of these OCPs in surface water and 

preference for adsorption onto organic matter because of the strong affinity that exists 

between OCPs and colloids in sediment pore water.  The high Log Kow values for these 

selected OCPs range from (5.46-6.89) (shen and Wania, 2005) which also indicates its 

preference to partition itself to organic matter rather than dissolve in water and hence is the 

reason for the higher concentrations of OCPs in pore water than in surface water. As a result 

these OCPs tend to have long-term deposition and accumulation in sediment (Josefsson, 

2011 ). 

 

Figure 5.6 A-Concentrations of individual OCPs in pore water.  B-Total concentrations of 

OCPs at each site of the Umgeni River (n=3). 
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There was a general increase in concentration of OCPs in pore water from the source to the 

mouth of the river. This corresponded to an increase in TDS and conductivity in water in the 

same direction (Mahananda et al., 2010). Once again the increase of TDS downstream 

implies an increase of TOC (Waziri and Ogugbuaja, 2010) which allowed the pesticides to 

partition to it and hence resulted in their increased concentrations downstream as well. In 

addition, there is also an increase in urban and residential activities towards the mouth of the 

river which could possibly be a source for solid particles including plastics, paints, plastic 

packets etc. OCPs could possibly suspend themselves on these types of solid particles in 

water and may sink down to the sediment and re-suspended themselves in sediment pore 

water (Zhang et al., 2003). Research has shown that solid particles such as plastic resin 

pellets and broken bits of plastics from consumers are good carriers of persistent organic 

pollutants which are sorbed onto them in waterways (Moore et al., 2004, Mato  et al., 2001). 

The downstream organic pollutant accumulation effect observed in pore water in this study 

resembles that reported by Marie-Jeanne and her team, who found the same effect for organic 

contaminants such as PCBs, PBDs and phthalates in sediment of the Seine River in France. 

The downstream Seine River concentrations increased 69-fold, 25-fold and 11-fold 

respectively for BDE 209, ∑ tri-hexa BDE and ∑ 7 PCBs, compared to upstream 

concentrations (Marie-Jeanne et al., 2014). 
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Figure 5.7 A- Trend of total concentrations of OCPs in pore water across the sites B- Percent 

contribution of total concentration for sites for sediment pore water samples.  
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Table 5.5 Concentrations of OCPs (ng/mL) in sediment pore water of the Umgeni River. 

 

 

    

Concentration (ng/mL + SD) of OCPs in winter  pore  water 

   site 

code HCB HCH heptachlor aldrin o,p-DDE p,p-DDE 

o,p-

DDD+dieldrin endrin 

p,p-DDD+o,p-

DDT mirex ∑OCPs 

MDI 1.900.41 1.920.07 3.810.33 6.990.16 8.520.16 9.880.21 9.020.64 6.100.90 7.500.34 3.990.12 55.633.34 

MDO 1.780.08 0.760.11 2.191.13 4.112.32 5.183.22 5.733.28 7.154.01 4.172.71 5.374.16 2.471.33 34.3222.36 

HOF 2.930.19 1.620.12 5.041.26 11.87048 8.470.19 9.300.43 8.910.28 5.410.70 7.730.19 6.712.66 61.286.53 

AFI 1.690.10 2.610.43 4.070.35 7.910.78 8.450.60 9.410.05 11.420.48 8.222.10 7.570.19 3.540.20 61.355.29 

AFO 1.600.25 1.240.01 3.130.29 5.790.71 6.671.27 7.440.83 9.301.09 4.610.72 6.060.58 2.740.35 45.296.24 

NAD 2.940.49 3.560.62 7.080.84 11.561.17 13.891.18 16.071.29 19.641.95 6.860.88 12.791.53 6.280.82 94.4010.78 

JUM 3.080.89 2.970.51 7.690.32 11.311.37 13.871.41 17.202.01 20.693.01 13.680.63 13.111.97 6.971.12 103.6113.24 

IDI 1.590.19 5.930.61 8.920.17 15.690.58 18.610.41 21.530.67 26.531.28 13.011.10 16.820.12 9.220.55 128.305.64 

IDO 4.610.20 5.550.27 11.430.93 18.890.85 24.390.51 27.760.76 34.921.05 13.001.93 22.340.71 10.590.24 162.887.47 

REH 4.241.13 5.880.14 10.411.79 16.330.87 20.320.70 23.500.55 29.270.83 11.980.72 18.261.16 10.030.37 140.188.27 

UBP 3.840.30 4.250.41 9.720.86 16.650.81 19.430.82 22.870.23 27.961.66 19.210.60 17.280.62 10.271.19 141.227.50 

NWTT 6.080.94 6.801.11 11.351.97 21.960.37 23.270.49 26.751.31 32.540.30 13.100.29 21.020.96 12.180.90 162.888.65 

NWTE 5.280.37 5.200.69 12.631.37 17.900.10 24.160.87 27.930.57 33.380.71 19.081.30 20.660.86 11.110.34 166.237.16 

BLA 2.910.39 3.430.55 5.710.21 9.530.16 11.890.49 13.930.69 16.700.26 6.950.61 10.640.48 5.840.58 81.694.41 

∑OCPs 43.616.04 51.725.64 103.1811.84 176.4910.74 207.1212.33 239.2912.89 287.4417.54 145.2715.21 185.1413.88 101.9510.76 1541.22116.89 

min 1.590.19 0.760.11 2.191.13 4.112.32 5.183.22 5.733.28 7.154.01 4.172.71 5.374.16 2.471.33 34.3222.36 

mean 3.110.43 3.690.40 7.370.85 12.610.77 14.790.88 17.090.92 20.531.25 10.381.09 13.220.99 7.280.77 102.808.35 

max 6.080.94 6.801.11 12.631.37 21.960.37 24.390.51 27.930.57 34.921.05 19.210.60 22.340.71 12.180.90 166.237.16 
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The highest mean concentration of individual contaminants across all sampling sites include 

o,p-DDE (14.79 0.88 ng/mL), p,p’-DDE (17.09 0.92 ng/mL), endrin (10.38 1.09 ng/mL) 

and aldrin (12.61 0.77 ng/mL) in pore water samples.  

 

It was observed that the concentration of OCPs decreased at Blue Lagoon (mouth of the 

river) which may be attributed to dilution effects because of the close proximity of the Indian 

Ocean at that site. The highest total concentration of OCPs was observed at NWTE (166.23 

ng/mL, 12%), NWTT (162.88 ng/mL, 11%), IDO (162.88 ng/mL, 11%), UBP (141.22 

ng/mL, 10%), REH (140.18 ng/mL, 10%) and IDI (128.30 ng/mL, 9%) (Figures 5.7A and B).  

The high OCP concentrations at the REH site is of concern as this sampling site is a few 

kilometres upstream of an informal settlement whose residences may be exposed to these 

OCPs if they collect their drinking water too close to the sediment, as the OCPs can re-

suspend into the water column (Chau, 2006, Elena et al., 2011).  

 

5.4.3. Levels of Organochlorine Pesticide Residues in Sediments 

 

The OCPs investigated were detected in the sediment samples from all sites. The total 

concentrations of pesticides at each site are shown in Table 5.6 and Figure 5.8B and varied 

from 183.63-495.21 ng/g, with an average concentration of 308.70 ng/g, dw. The highest 

concentrations of pesticides were obtained at NWTT (495.21 32.38 ng/g, 11%), BLA 

(417.49 23.58 ng/g, 9%) and HOF (353.39 41.71 ng/g, 8%).The highest individual mean 

concentration in sediment was obtained for indrin (55.577.11ng/g) probably due to its High 

octanol-water coefficient (Log Kow = 5.6) and its persistence since it can persist up to 14 

years or more (USEPA,2009). The analysis of bio-solids collected from NWTT (post-

chlorination) (11%) showed a higher concentration than that collected from NWTI (before 

process treatment) (7%).  A possible explanation could be that at NWTT, the pollutants from 

the WWTW accumulated over years in the bio-solid at the bottom of the pit where treated 

water is held before being discharged, while at NWTI, the bio-solid collected was not 

allowed to accumulate over long periods but were occasional since it is periodically removed 

from influent water. The levels of OCPs in sediments were higher than in water and in pore 

water. This was expected since POPs are known to prefer partitioning to organic material in 

sediment rather than dissolving in water (Zhou and Rowland, 1997).  
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Table 5.6 Concentrations of OCPs in sediment (ng/g, dw) of the Umgeni River. 

 

    

Concentration (ng/g, dw) of OCPs in sediments 

    

Site code HCB HCH heptachlor aldrin o,p-DDE p,p'-DDE 

o,p-

DDD/dieldrin endrin 

p,p'-DDD/o,p-

DDT mirex ∑OCPs 

MDI 6.230.93 4.340.91 26.672.85 21.520.04 17.780.11 20.610.13 23.601.14 36.862.23 19.170.01 6.830.52 183.638.87 

MDO 4.511.24 30.364.02 26.702.93 22.702.29 26.382.11 26.452.50 23.960.46 44.436.61 27.580.64 48.862.28 281.9325.07 

HOF 10.751.69 37.495.06 30.062.22 19.597.55 25.564.12 34.404.50 29.941.16 73.848.69 33.443.77 58.312.94 353.3941.71 

AFI 6.811.32 23.493.17 26.388.10 17.457.90 22.342.08 27.232.69 29.932.54 63.707.76 21.980.77 61.221.38 300.5334.93 

AFO 7.411019 34.816.84 30.064.54 8.274.94 24.331.60 27.602.37 29.801.22 60.509.06 22.780.98 22.006.58 267.5839.25 

NAD 9.061.23 8.682.16 30.307.71 23.480.29 27.071.03 29.251.19 32.571.65 38.778.33 24.780.90 70.507.35 294.4531.45 

JUM 14.123.99 4.401.23 34.608.26 30.965.71 27.132.50 32.450.76 30.491.05 59.256.47 27.560.52 31.070.79 292.0432.55 

IDI 7.302.38 39.524.05 32.356.50 13.812.61 23.202.92 29.123.36 24.063.08 78.512.99 24.051.77 45.131.39 317.0630.13 

IDO 2.290.57 25.041.82 18.503.08 19.187.01 25.806.31 23.435.52 23.460.48 67.2010.67 20.670.85 44.341.03 269.9139.64 

REH 5.491.58 16.833.83 18.463.67 23.977.68 18.521.19 20.951.56 23.790.94 32.749.38 19.183.14 56.354.83 236.2835.37 

UBP 11.350.48 41.944.31 43.311.68 13.802.34 23.781.43 21.200.20 22.970.97 28.101.05 18.510.71 50.322.82 275.3015.55 

NWTI 7.071.15 87.874.25 37.159.15 14.326.63 27.332.07 28.680.77 25.641.68 33.903.72 20.470.27 22.297.45 304.7437.04 

NWTT 49.442.45 82.963.13 26.833.78 37.806.91 50.701.40 38.722.44 26.401.81 75.849.60 27.840.18 78.660.20 495.2132.38 

NWTE 10.570.49 93.023.50 24.253.66 36.421.29 19.100.87 25.801.22 34.461.07 52.117.02 18.910.67 26.383.04 341.0123.58 

BLA 45.262.24 83.472.73 50.773.32 31.122.84 35.101.09 27.591.36 24.980.75 87.7213.14 20.220.92 11.271.44 417.4930.07 

∑OCPs 197.6823.32 614.2451.02 456.3871.44 334.4064.04 394.1230.82 413.4929.57 406.0620.01 833.51106.72 347.1416.51 633.5244.03 4630.55457.57 

min 2.290.57 4.340.91 18.463.67 8.274.94 17.780.11 20.610.13 22.970.97 28.101.05 18.510.71 6.830.52 183.638.87 

mean 13.181.56 40.953.40 30.434.76 22.294.27 26.272.05 27.571.97 27.071.33 55.577.11 23.141.10 42.232.94 308.7030.50 

max 49.442.45 93.023.50 50.773.32 37.806.91 50.701.40 38.722.44 34.461.07 87.7213.14 33.443.77 78.660.20   495.2132.38 
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Figure 5.8 A- Individual OCP concentrations in sediment at different sites along the Umgeni 

River. B-Total concentrations (ng/g,dw) of OCPs in sediments (n=3).  

 

The sediment pore water distribution model of POPs has shown that they occur in high 

concentrations in sediment than in pore water (Perssona et al., 2005). As the treated water 

flows towards the point of discharge (NWTE), the total concentration of pesticides decreased 

from NWTT to NWTE. This can be attributed to the increased volume of water at the 

discharge point into the river resulting in dilution of the pesticide concentration (Figure 

5.9A). The concentration of HCH in the sediment of the Umgeni River (4.34-93.02 ng/g, dw) 

was higher than levels of HCH observed in the sediments of Qinhe River (nd-13.72 ng/g) in 

China (Fei et al., 2013) and in the sediment samples collected from the Old Yellow River 

estuary in China (0.001-14.85 ng/g,dw) (Da et al., 2014). However, the individual levels of 

OCPs in Umgeni River sediment (2.29–93.02 ng/g), were comparable to individual levels in 

four rivers running through an intensive agricultural area in Kilimanjaro in Tanzania (nd–132 

ng/g) (Hellar-Kihampa, 2011). The levels in this study were below the results obtained from 
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water (0.1-48.6 ng/mL) and sediment (0.10-163.00 ng/g) collected from the Densu River 

basin in Ghana (Kuranchie-Mensah et al., 2012). 

 

 

Figure 5.9 A- Trend of the total concentration across sites for sediment samples B- 

Percentage contribution of the total concentrations in sediment at each site. 

 

5.4.4. Total Mean Concentration of OCPs in Water, Pore Water and Sediment 

 

The total concentrations and mean values of 12 pesticides investigated in surface water, 

sediment pore water and surface sediment are shown in Table 5.7. The total concentrations 

ranged from 8.04 to 21.06 ng/mL with a mean of 11.92 1.12 ng/mL for water and 36.06 to 

188.43 ng/mL with a mean of 110.09 8.35 ng/mL for sediment pore water. The overall 

concentration of the pesticides in surface sediment varied from 148.17 to 554.73 ng/g, with a 
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mean concentration of 308.07 3.05 ng/g, dw (Table 5.7). These total concentrations of OCPs 

observed in the sediment of Umgeni River were higher than those found in in surface 

sediment from River Yamuna in Dehli, India (∑
20

 OCPs 157.71-307.66 ng/g) in pre-monsoon 

season (Pandey et al., 2011), however results of the present study were similar to those 

obtained by Pandey for sediment of the Yamuna River (195.86-577.74 ng/g) in monsoon 

season and lower than those obtained during post monsoon (306.9-844.45 ng/g,dw) (Pandey 

et al., 2011). The Umgeni River sediment was also more polluted with OCPs than sediment 

collected from Nanshan underground river in China (51-3 842.0 ng/g) (Jahangir et al., 2014). 

The comparison of the results of the present study with other results obtained elsewhere in 

South Africa showed that the levels of OCPs in the Umgeni River sediment were higher than 

the levels detected in sediment (trace-184 ng/g) of fresh water systems in the Eastern Cape 

(Fatoki and Awofolu, 2003b). However, the Umgeni River was much less polluted by OCPs 

than the Jukskei River catchment area in Gauteng, where the OCPs levels varied from 0.895 

to 9089 ng/mL in unfiltered water and from 0.266 to 22 914 ng/g, dw in sediment (Sibali et 

al., 2008).   

 

Figure 5.10 Percent contribution of each matrix to the total average levels of OCPs analysed 

in the Umgeni River. 

3% 

25% 

72% 

water pore water sediment
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Table 5.7 Total concentrations of OCPs in water, pore water and sediment of the Umgeni River. 

 

 

 

Analyte 

 

water 

(ng/mL) 

  

porewater 

(ng/mL) 

  

sediment 

(ng/g,dw) 

 

 

range mean SD range mean SD range mean SD 

HCB 0.41-1.04 0.63 0.1 1.06-6.08 3.11 0.43 2.29-49.44 13.18 1.56 

HCH 0.50-1.97 0.82 0.2 0.76-6.80 3.69 0.4 4.34-93.02 40.95 3.4 

heptachlor 0.32-2.07 0.66 0.13 2.19-12.63 7.37 0.85 18.46-50.77 30.43 4.76 

aldrin 0.01-2.73 1.2 0.11 4.11-21.96 12.61 0.77 8.27-37.80 22.29 4.27 

o,p'-DDE 1.21-2.32 1.5 0.1 5.18-24.39 14.79 0.88 17.78-50.70 26.27 2.05 

p,p'-DDE 1.34-2.01 1.62 0.07 5.73-27.93 17.09 0.92 20.61-38.72 27.57 1.97 

o,p-

DDD/dieldrin 1.41-1.99 1.69 0.1 7.15-34.92 20.53 1.25 22.97-34.46 27.07 1.33 

endrin 0.88-3.48 1.39 0.12 4.07-19.21 10.38 1.09 28.10-87.72 55.57 4.27 

p,p'-DDD/o,p'-

DDT 1.23-1.72 1.39 0.1 3.37-22.34 13.22 0.99 18.51-33.44 23.14 1.1 

mirex 0.74-1.74 1.02 0.08 2.47-12.18 7.28 0.77 6.83-78.66 42.23 2.94 

∑OCPs 8.04-21.06 11.92 1.12 36.06-188.43 110.09 8.35 148.17-554.73 308.7 3.05 
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Figure 5.11 Trend of the total concentrations in water, pore water and sediment (n =3). 

 

Figures 5.10 and 5.11 show that the concentrations of OCPs in water were less than in pore 

water and much less than in sediment. The total mean concentrations of OCPs in sediment 

pore water and in surface sediment were 9 times and 25 times respectively higher than in 

surface water (Table 5.7). This was expected because the organochlorine pesticides are non-

polar and hydrophobic and may only dissolve partially in water while sediment is considered 

as a sink for them (Noegrohati et al., 2008, Houde et al., 2008, Miglioranza et al., 2004). 

Currently, there are no South African guidelines or regulations to direct the environmental 

POPs levels in South Africa. Compared to Canadian Sediment Quality guidelines, the levels 

of HCB (2.29-49.44 ng/g), HCH (4.34-93.02 ng/g), o,p-DDE (17.78-50.70 ng/g), p,p´-DDE 

(20.61-38.72), in this study of the Umgeni River, they were higher than the interim 

freshwater sediment quality guidelines (ISQG) (HCB: 0.940 ng/g), (HCH: 0.600 ng/g), (o,p-

DDE and p,p´-DDE: 1.420 ng/g) and Probable Effect Level (PEL) (HCB:1.380 ng/g), (HCH: 

2.740 ng/g), (o,p-DDE and p,p´-DDE: 6.750 ng/g) (CCME, 2002). Compared to Ontario 

Sediment Quality Guidelines, the HCB level in this study was lower than its Lowest Effect 

Levels (LEL) (20 ng/g) except at NWTT (49.44 ng/g) and BLA (45.26 ng/g) sites. The other 

above-mentioned OCPs levels were higher than their LEL values (HCB: 20 ng/g). However, 

the levels of the aforesaid OCPs at all sites, in the current study, were far below their severe 

effect level (SEL) (HCB: 24000 ng/g), HCH (12000 ng/g), (o,p-DDE and p,p´-DDE: 19.000 

ng/g) according to Ontario Sediment Quality Guidelines (Persaud et al., 1993). A review 

done by Borton on the sediment guidelines in use around the world showed that PEL in 
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sediment for p,p-DDE, p,p’-DDD and  endrin are 6.8. 8.51 and 1.38 ng/g (Burton, 2002) 

which are lower than results obtained in this study. 

 

5.5 CONCLUSION 

 

The present study has provided data on levels of organochlorine pesticides in surface water, 

sediment pore water and sediment of the Umgeni River in KwaZulu-Natal, South Africa. All 

12 selected pesticides investigated were detected in all sites, in water, pore water and 

sediment, except aldrin which was below the limit of detection in water at the Reservoir Hills 

sampling site. The levels of organochlorine pesticides in sediment were higher than in pore 

water and much higher than in surface water. The present study showed that the discharge 

from the wastewater treatment plant increased the concentrations of organochlorine pesticides 

in the river, for water, pore water and sediment samples collected at the sites close to the 

NWWTW. Hence discharges from this WWTP may be considered as one of the sources of 

pollutants such as OCPs into the Umgeni River. p,p´-DDE  was found to be the pollutant in 

highest concentration in water and pore water and endrin the highest in sediment of the 

Umgeni River. In the future, studies on POPs in the sediment of this river should focus on 

their distribution according to particle sizes of the sediment and comparison of depth and 

surface sediment concentrations.  
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ABSTRACT  

 

This study investigated the presence and distribution of organochlorine pesticides (OCPs) and 

polychlorinated biphenyls (PCBs) in soil collected along the banks of the Umgeni River, 

which is one of the largest rivers in South Africa, situated in the province of KwaZulu-Natal. 

The extraction of contaminants was performed using soxhlet extraction with toluene, and 

subsequent clean-up with florisil. The analysis was performed on gas chromatography-mass 

spectrometry (GC-MS). The results showed that levels of OCPs in this river bank soil ranged 

between 3.58 0.09 ng/g for HCB and 82.65 2.82 ng/g for HCH, with an individual mean 

concentration of 24.33 2.00 ng/g, dw. The levels of PCBs were in the range 10.46 ng/g for 

PCB105 to 89.46 ng/g for PCB180, with an average value of 25.47 ±1.26 ng/g, dw. The 

highest levels of OCPs and PCBs were found at Howick Falls (mean OCP: 28.41 3.02 ng/g 

and mean PCB: 34.39 1.85 ng/g) and at Northern Wastewater Treatment plant (NWTT) 

(mean OCP: 32.39 3.97 ng/g and PCB: 67.87 1.67 ng/g). The two most abundant 

mailto:Moodleyb3@ukzn.ac.za
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contaminants in the river, compared to other investigated pollutants, were found to be endrin 

and PCB180. 

 

Key words: Umgeni River bank soil, OCP, PCB, soxhlet extraction, florisil clean-up, gas 

chromatography-mass spectrometry  

 

6.1 INTRODUCTION 

 

Many organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) are among 

environmental contaminants that have been included on the list of persistent organic 

pollutants (POPs) developed at the Stockholm convention and signed in 2001. Most countries 

have restricted or eliminated  their use, storage and manufacture since the 1970s (Voldner 

and Li, 1995, Zhu et al., 2014). Extensive use of OCPs for pest and disease control and 

mitigation started in the 1940s which explains their widespread presence in the environment 

(Woodwell et al., 1971, Barrie et al., 192, Bidleman et al., 1995, Dimond and Owen, 1996, Li 

et al., 1996, Li, 1999, Li et al., 2006). However, these pollutants are sources of various 

environmental and human health hazards due to their biomagnification through the food 

chain (Li and Macdonald, 2005, Jones and de Voogt, 1999). 

 

PCBs were widely used in different applications such as industrial and commercial as 

dielectric and coolant fluids in transformers and capacitors, or in plasticisers. Even though the 

termination of their production and usage was implemented since the 1970s (Zhu et al., 

2014), research has shown that the primeval dismantling of electronic and electric waste still 

remains a significant source of PCBs in developing countries of Africa and Asia (Wang et al., 

2011, Wong et al., 2007, Breivik et al., 2011). 

 

Although the use and production of many OCPs and PCBs were restricted or banned in many 

countries, their residues are still being detected in different environmental matrices such as 

water, soil, air and biota and still are a threat to human health in particular, and the 

environment in general (Woodwell et al., 1971, Aigner et al., 1998, Li et al., 1996, Falandysz 

et al., 2001, Nakata et al., 2002a, Ribes and Grimalt, 2002, Miglioranza et al., 2003b, Gong et 

al., 2004, Barriada-Pereira et al., 2005, Concha-Grana et al., 2006). These POPs are able to 

partition between different matrices. They can volatilize from soil to the atmosphere and 
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hence, contaminated soils can be considered as a substantial source of POPs into the 

atmosphere (Meijer et al., 2002, Wild and Jones, 1995, Harner et al.,  2001 ).   

 

Even though DDT is on the list of priority pollutants, it is still being used today in a restricted 

form, for malaria control in certain parts of South Africa, due to its effectiveness in vector 

control. Research showed that during the period of 2000-2004 the indoor results spraying 

(IRS) with DDT reduced the number  of confirmed malaria cases  by 83% in South Africa in 

general and by 90% in KwaZulu-Natal in particular, while the number of confirmed malaria 

deaths were reduced by 65% in the country as a whole, compared to results obtained during 

the period of  1996-1999 (WHO, 2010, Naud and Rohwer, 2012, Sadasivaiah et al., 2007). 

However, studies showed that this powerful pesticide and its metabolites, DDD and DDE, 

were detected in blood samples taken from individuals exposed to DDT as a result of IRS 

(Bouwman et al., 1991a). A study by Rollin also revealed the presence of high levels of DDT 

and its metabolites particularly in the Indian ocean coastal malaria sites and detectable levels 

of PCBs in the plasma of delivering women in seven geographical regions of South Africa 

(Rollin et al., 2009). 

The Umgeni River is a main source of water supply in the province of KwaZulu-Natal in 

South Africa which many animals and informal settlements use in its untreated form. Its level 

of pollution with regard to OCPs and PCBs is presently limited.  Furthermore, work has been 

carried out on the water and sediment of the Umgeni River but there is limited or outdated 

information on the presence of OCPs and PCBs in the soil along the banks of the river which 

can leach into the waterways.  Vegetable plantations along the banks of the river have been 

observed and any pesticides applied to those vegetations could remain in the soil for long 

periods of time as well as make its way into the river due to runoff thus leading to further 

contamination of the surface water or evaporate into the atmosphere during warmer seasons 

thus adding to the atmospheric contamination.  The aim of this project was therefore to 

evaluate the status of OCP and PCB contamination of this river by analysing its bank soil. 

The result of this work adds knowledge to the presence and quantification of OCPs and PCBs 

in the Umgeni River soil.  The structures of all the analytes investigated in this study are 

given in Figure 6.1 below.   



170 

 

 

Cl

Cl

Cl

Cl

Cl

Cl
HCB

Cl

Cl

Cl

Cl

Cl

Cl

HCH

Cl Cl

Cl
Cl

ClClCl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl Cl

Cl

o,p'-DDE

Cl Cl

Cl Cl

p,p'-DDE

Cl Cl

Cl

heptachlor
aldrin

Cl

o,p'-DDD

O
Cl

Cl

Cl
Cl

Cl

Cl

endrin

Cl Cl

Cl
o,p'-DDT

Cl

Cl Cl
Cl
Cl

Cl

Cl

Cl

Cl

Cl

ClCl
Cl

Cl

mirex

Cl Cl

Cl
Cl

ClCl

O
dieldrin

Cl Cl

ClCl
p.p'-DDD

ClCl

Cl

Cl

Cl

Cl

Cl

PCB77

Cl

Cl

Cl

Cl

Cl

PCB101

Cl

Cl

Cl

Cl

PCB52

Cl

Cl

Cl

Cl
Cl

Cl

PCB153

Cl

Cl

Cl

Cl
Cl

PCB105

Cl

Cl

Cl

Cl

Cl

Cl

PCB138

Cl

Cl

Cl

Cl

Cl

Cl

Cl

PCB180

PCB28

 

Figure 6.1 Structures of OCPs and PCBs investigated. 

 

6.2 MATERIALS AND METHODS 

 

6.2.1. Chemicals, Standards and Apparatus 

 

HPLC-grade hexane, dichloromethane (DCM) and toluene, florisil (MgO3Si residue analysis 

grade, mesh 60-100, pore size 60Å) organochlorine pesticides and polychlorinated biphenyl 

standards, were all purchased from Sigma Aldrich in South Africa. Anhydrous sodium 

sulfate, (Na2SO4) gold line (CP) and silicon carbide boiling stones (CSi), were obtained from 

Associated Chemical Enterprises, (ACE, South Africa) and sulfuric acid (98%) was obtained 
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from Promark Chemicals (UK). The test sieves (ss 200 mm  x 100 μm to ss 200 mm  x 600 

μm) were obtained from DLD Scientific in South Africa. Also separatory funnel, motor and 

pestle and column of different sises were used. 

 

6.2.2. Sample Collection 

 

Soil samples were collected on 15 to 17
th

 July 2013 from the banks of the Umgeni River in 

the province of KwaZulu-Natal in South Africa. The samples were collected from 14 sites; 

which include 12 sites selected along the river, from the source at Midmar Dam to the mouth 

at Blue Lagoon, where the Umgeni River empties into the Indian Ocean, (Figure 6.2) and two 

sites at the Northern Wastewater Treatment Works which treats residential and industrial 

wastewater from the surrounding Durban city. The sampling site names and geographical 

coordinates are shown in Table 6.1.  

 

Soil was collected using an auger and stored in 150 mL glass bottles previously washed with 

hot water and detergent and thereafter rinsed with sulfuric acid, deionized water and river 

water from the site to be sampled. The bottle caps were lined with aluminium foil. Once the 

samples were collected, they were kept in a cooler box containing ice and transported to the 

analytical research laboratory. 
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Table 6.1 List of sampling sites along the Umgeni River, in the downstream direction. 

Sample 

code 
Sample name Coordinates Site description 

  
South East 

 

MDI Midmar Dam inlet 29°29′16.05'' 30° 09' 23.10'' dam for water supply inlet 

MDO Midmar Dam outlet 29°29'34.02'' 30° 12' 09.13'' dam for water supply outlet 

HOF Howick Falls 29°29'18.18'' 30° 14' 19.70'' water falls 

AFI Albert Falls inlet 29°26'31.94'' 30° 19 47.10'' dam for water supply inlet 

AFO Albert Falls outlet 29°26'01.81'' 30° 25' 55.76'' dam for water supply outlet 

NAD Nagle Dam 29°35'08.42'' 30° 37' 23.94'' dam water 

JUM Joining point Umgeni/Msunduzi 29°37'16.61'' 30° 40' 46.59'' river banks 

IDI Inanda Dam inlet 29°39'05.20'' 30° 48' 06.24'' dam for water supply inlet 

IDO Inanda Dam outlet 29°42'55.74'' 30° 52' 07.69'' dam for water supply outlet 

REH Reservoir Hills 29°47'08.05'' 30° 56' 25.51'' river banks 

UBP Umgeni business park 29°48'19.05'' 30° 58' 58.08'' river banks 

NWTT Northern Wastewater Treatment after treatment 29°47'47.02'' 30° 59' 50.06'' pond containing treated water 

NWTE Northern Wastewater Treatment effluent 29°48'27.01'' 30° 59' 51.05'' discharge of treated water to the river 

BLA Blue Lagoon 29°48'41.03'' 31° 02' 12.05'' discharge of the river water to the Indian ocean 
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Figure 6.2 Map of sampling sites with the sample collection locations (map was generated 

from GPS coordinates using ArcGIS 10.2). 

 

6.2.3. Sample Preparation and Treatment 

 

The soil samples were air dried in the laboratory for several days before being ground using a 

pestle and mortar and thereafter sieved. Portions of soil (60 g) were accurately measured and 

transferred into a cellulose extraction thimble which was inserted into a soxhlet assembly 

fitted with a 500 mL round bottom flask. The extraction was carried out with a 300 mL 

aliquot of HPLC-grade toluene for 24 hours (EPA method 3540c) (EPA, 1996b). Toluene 

was identified as the most suitable solvent for extraction of aromatic ring bearing compounds 

such as organochlorine pesticides and PCBs investigated in this study (Oleszek-Kudlak et al., 

2007). The obtained extract was concentrated using a rotary evaporator to about 5 mL and 

subsequently cleaned-up. 

 

The extract was cleaned-up by loading it onto a column packed with florisil (activated at 

130 °C
 
for 12 hours) containing a top layer of anhydrous Na2SO4 (10 g). Sequential elution 

was carried out with a solvent system consisting of hexane-DCM (20 mL) (94:6), (85:15), 
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(50:50) and 100% DCM (modified EPA method 3620-C) (EPA, 2007). The obtained 

fractions were combined and concentrated with a rotavap to 5 mL, air-dried and reconstituted 

to 2 mL and analysed using GC-MS. Sample extraction, preparation and clean-up was carried 

out within 5 days of sampling. 

 

6.2.4. Instrumental Analysis 

 

The sample analyses for OCPs and PCBs were carried out separately to avoid overlapping of 

peaks. The gas chromatography system (Agilent 6890 series) was attached to a mass 

spectrometer detector (MSD5973) and equipped with a ZB-5MS (Hewlett Packard; Houston, 

TX) capillary column (30 m, 0.25 mm, 0.25 μm). Helium was used as the carrier gas, using a 

constant flow mode (1 mL/min). The oven temperature started at 120 °C and increased to 

290 °C at a ramping rate of 14 °C/min and held for 2 min. A 2 µL injection volume was used 

in splitless mode with a 4 min solvent delay. The MS source and Quad were operated at 

250 °C and 200 °C respectively.  The electro energy was 70 eV. The MS was operated in 

selective ion monitoring (SIM) mode and three ions were monitored for each target analyte. 

 

Target analytes were quantified using an external calibration method based on peak areas. 

The six calibration levels used for both OCPs and PCBs were 0.25; 0.5; 1; 2; 4 and 8 ng/mL. 

The identification of specific target compounds was achieved by analysis of mass spectra 

against that found in the NIST library as well as comparison of retention times of sample 

analytes with those of reference standards. 

 

6.3 QUALITY CONTROL AND ASSURANCE 

 

The procedures used for analysis of selected OCPs and PCBs were monitored with 

appropriate quality control and assurance measures. Procedural blanks were used in all 

extraction, clean-up and analysis steps along with sample preparation and analysis to 

determine if there was any possible input from external sources during analysis. There were 

no detectable levels of target contaminants in blank samples. Solvent blanks were regularly 

run after each batch of 10 injections through the GC-MS column. A 0.5 ng/mL reference 

standard of OCPs and PCBs was run intermittently to ensure that variation from the initial 

calibration standards were as minimal as possible. Three ions were monitored on GC-MS in 

order to identify the analytes of interest (Table 6.2). All the data were processed using 
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Microsoft excel 2010. Target analyte recoveries were performed by spiking real soil 

subsamples with separate OCP and PCB standards before extraction, as well as leaving one 

subsample unspiked. The difference between the concentrations of spiked subsamples (𝑋𝑆 ) 

and non-spiked subsamples (𝑋𝑢) was divided by the known concentration of the spike in the 

sample (𝑋𝑘) and multiplied by 100 to obtain the percentage recoveries (%𝑅) (Equation 6.1) 

(Harry et al., 2008). The recovery and actual sample analyses were carried out in triplicate to 

ensure the reproducibility and precision of the method used.  

 

Table 6.2 Ions monitored, % recovery, limits of detection (LOD) and quantification (LOQ). 

Analytes Ions monitored % recovery LOD (ng/g) LOQ (ng/g) 

OCPs 
    

HCB 284, 249, 142 68.1 0.058 0.50 1.66 

HCH 219, 183, 147 108.4 3.81 0.50 1.66 

heptachlor 374, 272, 237 103.7 7.24 0.50 1.62 

aldrin 327, 293, 263 53.16 10.37 0.78 2.59 

o,p-DDE 318, 284, 246 87.66 4.77 0.96 3.20 

p,p'-DDE 318, 281, 246 51.67 1.62
17

 0.62 2.07 

o,p'-DDD/dieldrin 320/380, 235/263, 165/147 87.37 2.08 1.04 3.45 

endrin 317, 263, 207 84.69 6.04 1.02 3.41 

p,p'-DDD/o,p-DDT 320/235, 235/199, 165/165 89.13 2.61 1.23 4.11 

mirex 402, 272, 237 111.9 12.84 0.63 2.07 

PCBs 
    

PCB28 256, 186, 150 60.68 0.97 0.76 2.52 

PCB52 292, 220, 150 78.73 0.58 0.21 0.71 

PCB77 292, 255, 220 64.74 1.47 0.92 3.06 

PCB101 326, 291, 254 72.63 0.86 0.30 0.99 

PCB105 326, 254, 184 71.88 0.74 0.28 1.12 

PCB138 360, 290, 145 72.69 1.38 0.22 0.75 

PCB153 360,290, 145 74.741.95 0.31 1.03 

PCB180 394, 324, 162 77.802.55 0.19 0.66 

 

 

 

                                                 
17

 The p,p’-DDE standard chromatogram showed the presence of DDMU which suggested that some of p,p’-DDE may have 

degraded into this compound which is its break down product    (Thomas et al., 2008) and consequently contributed to its 

low recovery. 
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The limits of detection (LOD) were calculated as being three times the signal-to-noise ratio 

using the standard deviation of six calibration intercepts divided by the slope, whereas the 

limit of quantification (LOQ) was ten times this ratio (refer to Equations 3.2- 3.5 in section 

3.1.1.2  and 3.6 in section 3.2.3 of the Chapter three) (Shrivastava and Gupta, 2011). 

 

6.4 RESULTS AND DISCUSSION  

 

Soil samples were analysed for OCPs and PCBs. The sampling points were located along the 

banks of the Umgeni River except one site (NWTT) located in the area of the Northern 

Wastewater Treatment Works which empties treated water back into the Umgeni River. The 

concentrations of various analytes (Ca) were calculated using the following equation 6.5 

(USEPA, 2007, USEPA, 2008): 

𝐶𝑎  =
𝐶𝑒𝑥     ∗ 𝑉𝑒𝑥

𝑊𝑠
… … … … … … … … … … (6.5)   

𝐶𝑎 = concentration of analyte in ng/g 

𝐶𝑒𝑥     = the concentration of the analyte in the extract in ng/mL 

𝑉𝑒𝑥 = the extract volume in mL 

𝑊𝑠 = the sample weight (dry weight) in g  

 

6.4.1. Organochlorine Pesticides (OCPs) in Soil 

 

Levels of OCPs were determined in the soil collected from the banks of the Umgeni River 

and the results obtained are shown in Table 6.3. All the OCPs investigated were detected in 

all sampling sites and their concentrations ranged from 3.58 to 82.65 ng/g. Endrin (37.08–

70.18 ng/g) was the most abundant OCP in all sites investigated, except NWTE where the 

OCP in highest concentration was HCH (Figure 6.3). This was attributed to endrin’s low 

mobility in soil and its long half-life, where once released in soil, it remains for a long period 

of time up to more than 14 years (USEPA, 2009). Its leaching into ground water and 

evaporation to air is very limited due to its very strong adsorption to soil particles (Log Kow = 

5.6) and low vapour pressure respectively (USEPA, 2009). Other OCPs such as DDDs and 

DDEs were also detected in substantial amounts.  The high concentrations of residues of 

these break-down products of DDT may be an indication of its extensive use in past years. 

DDT is still in use in certain areas of South Africa for malaria control, especially in high-risk 

areas such as northern KwaZulu-Natal, Limpopo and Mpumalanga where its use is monitored 
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by the government to avoid its widespread and uncontrolled use (Rother and Jacobs, 2008, 

Naud and Rohwer, 2012, Van Dyk  et al., 2010 ).  

 

Figure 6.3 Distribution of OCPs in bank soil, throughout the various sampling sites. 
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Table 6.3 Concentration of OCPs in bank soil of Umgeni River. 

Concentration (ng/g + SD) of OCPs in river bank soil 
   

Site HCB HCH Heptachlor Aldrin o,p’-DDE p,p'-DDE 
o,p’-

DDD/Dieldrin 
Endrin 

p,p'-

DDD/o,p’-

DDT 

Mirex ∑OCPs    

MDI 10.420.10 16.350.42 21.953.06 15.721.24 16.150.33 19.170.10 22.710.33 64.901.42 20.020.30 4.432.86 211.8210.15    

MDO 11.973.38 21.171.20 26.001.37 26.020.70 23.711.28 27.170.60 25.901.62 46.363.52 25.201.27 2.522.05 236.0116.97    

HOF 15.081.10 23.734.32 28.752.35 24.484.62 27.911.42 37.570.23 29.174.95 65.333.53 23.700.44 8.367.20 284.0930.18    

AFI 14.790.98 30.696.53 33.512.11 18.141.95 16.84067 23.331.82 23.660.97 59.713.00 20.910.82 12.812.77 254.4021.62    

AFO 7.451.70 10.070.48 17.430.10 15.752.07 19.750.75 22.530.86 26.870.57 53.771.12 20.890.75 5.933.35 200.4411.76    

NAD 18.630.86 7.510.33 24.781.08 15.201.49 26.660.63 21.260.59 19.830.89 56.304.99 27.700.76 19.612.35 237.4813.97    

JUM 5.810.50 19.210.77 12.900.73 15.311.56 14.220.45 16.770.57 24.130.72 37.087.72 16.410.40 21.540.37 183.3813.79    

IDI 11.820.56 18.180.79 19.843.07 24.291.91 23.750.84 23.151.24 38.460.70 53.872.52 48.000.75 23.462.69 284.8215.09    

IDO 4.240.38 7.410.61 13.120.63 15.991.07 16.610.85 18.050.70 25.560.81 39.102.37 19.400.72 28.294.13 187.7612.27    

REH 3.580.09 23.272.07 14.880.85 18.302.81 14.430.87 16.450.80 25.601.10 49.414.20 22.502.00 25.853.90 214.2718.68    

UBP 18.190.87 34.241.24 16.021.09 14.964.39 14.941.24 19.610.52 21.290.14 38.975.98 15.860.38 27.123.12 221.2118.97    

NWTT 13.000.68 17.263.14 33.352.47 26.486.76 25.766.23 45.783.85 30.530.97 70.1811.54 26.761.78 34.822.24 323.9239.66    

NWTE 15.550.86 82.652.82 34.937.77 23.525.63 16.670.72 19.281.33 23.720.71 53.659.12 22.981.34 27.653.15 320.6033.45    

BLA 12.320.63 54.150.99 16.873.41 13.093.11 15.860.72 16.441.11 19.621.45 60.818.43 17.371.81 20.061.98 246.5823.65    

∑OCPs 162.8412.69 365.9125.71 314.3330.08 267.2739.32 273.2517.01 326.5514.32 357.0415.94 749.4269.46 327.7013.50 262.473.01 3406.7828.20    

Min 3.580.09 7.410.61 12.900.73 13.093.11 14.220.45 16.441.11 19.621.45 37.087.72 15.860.38 2.522.05 183.3813.79    

Mean 11.630.91 26.141.84 22.452.15 19.092.81 19.521.21 23.331.02 25.501.14 53.534.96 23.410.96 18.753.01 243.3420.01    

Max 18.630.86 82.652.82 34.937.77 26.486.76 27.911.42 45.783.85 38.460.70 70.1811.54 48.000.75 34.822.24 323.9239.66    
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The total concentrations of OCPs were higher at Howick Falls (HOF) (284.09 ng/g), Inanda 

Dam inlet (IDI) (284.82 ng/g) and at NWTT (323.92 ng/g) and NWTE (320.60 ng/g) (Figures 

6.4 A and B and Table 6.3). The high concentrations at HOF were probably because HOF is 

in an urban environment and may be influenced by urban activities. There may also be 

leaching or long range transportation of agricultural pesticides from surrounding farms 

mainly sugar cane and wood plantations around Howick. In the case of IDI, the high 

concentration in soil may be due to agricultural runoff and regular spraying of a mixture of 

herbicides to avoid weed growth around the dam. This spraying was observed during 

sampling. The high levels of contaminants at NWTT and NWTE were expected since the 

wastewater treatment works receives residential and industrial waste which may contain 

Figure 6.4 A-Total concentration of OCPs and B- Trend of OCP total concentration in bank soil 

along the Umgeni River. 
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many of these pollutants. The samples collected from these sites were mainly made of bio-

solids which may have accumulated more pollutant than soils obtained from the banks of the 

river. 

 

6.4.2. Polychlorinated Biphenyls (PCBs) in Soil 

 

Selected PCBs were investigated in soil obtained from the banks of the Umgeni River and 

their concentrations varied from 10.46 to 89.46 ng/g (Table 6.4). Figure 6.5 revealed that 

HOF had high levels of total concentration of PCBs (275.09 ng/g). This could be attributed to 

this site being situated in Howick town and pollution by industrial wastes is likely which may 

contain substantial amounts of contaminants, including PCBs. A high total PCB 

concentration was also observed in the bio-solids collected from the NWTT (542.95 ng/g) 

due to industrial and residential waste. The most abundant PCB congener in the river bank 

soil was found to be PCB180 (17.08-89.46 ng/g) with a mean concentration of 39.17 ng/g 

(Table 6.4 and Figure 6.5). This is probably due to its strong affinity with organic matter 

(Log Kow = 6.70 –7.21) in soil to which it strongly adsorbs (Preda et al., 2010).  Furthermore, 

its complexity having 7 chlorine atoms in its structure makes it relatively stable and resistant 

to degradation and volatilisation from soil to air, compared to other investigated congeners 

(de Voogt et al., 1990, Vesna et al., 2006). The second most abundant congener was PCB52 

(21.64-73.66 ng/g). This PCB is of lower complexity having only four chlorine atoms and 

together with its relatively lower LogKow (5.79-6.09) value, it tends to adsorb less strongly to 

soil and would therefore mean relatively lower concentrations in the soil.  Therefore the 

higher than expected concentrations suggest a possible input of this congener into the river. 

The other congeners were also present in significant amounts: PCB28 (12.02-64.56 ng/g), 

PCB77 (12.20-59.36 ng/g), PCB101 (13.64-83.59 ng/g), PCB105 (10.46-36.73 ng/g), 

PCB153 (12.48-81.11 ng/g) and PCB138 (11.05-54.49 ng/g) (Table 6.4).
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Table 6.4 Concentrations of PCBs in Umgeni River bank soil. 

Concentrations of PCBs in bank soil in ng/g,dw 

Site PCB28 PCB52 PCB77 PCB101 PCB105 PCB138 PCB153 PCB180 ∑PCB 

MDI 26.131.28 39.833.14 15.270.25 26.962.31 22.241.96 21.651.60 23.682.59 35.032.01 210.7815.12 

MDO 25.701.49 37.552.30 15.760.20 26.171.19 21.691.73 19.261.38 22.761.65 35.253.17 204.1513.83 

HOF 36.091.61 49.952.90 17.521.25 37.601.87 31.691.58 26.491.63 30.491.71 45.271.23 275.0914.77 

AFI 21.981.81 33.982.40 19.091.88 20.008.00 18.531.79 18.900.61 20.872.11 29.791.33 183.1319.93 

AFO 12.021.00 22.501.57 13.431.28 13.641.34 10.600.84 11.051.84 12.481.01 17.082.24 112.7911.12 

NAD 18.661.20 31.491.46 28.610.14 20.541.28 17.251.10 15.350.60 18.021.12 20.430.23 170.358.14 

JUM 19.090.05 31.310.32 22.580.26 21.050.22 16.670.24 16.020.12 18.450.40 30.620.07 175.791.67 

IDI 13.590.31 36.590.13 12.200.42 15.090.21 10.790.29 11.620.34 17.700.15 27.150.90 144.732.76 

IDO 13.990.97 25.351.04 18.560.69 15.930.58 11.850.53 11.850.25 14.080.41 33.680.55 145.295.03 

REH 13.900.72 26.540.70 18.380.91 15.350.51 11.960.32 11.680.38 14.110.39 29.010.38 140.934.62 

UBP 15.701.41 25.100.89 19.870.91 16.951.15 12.640.60 14.190.87 15.220.59 26.670.85 146.346.58 

NWTT 64.560.72 73.662.96 59.360.86 83.590.82 36.731.18 54.491.81 81.112.52 89.461.78 542.9513.36 

NWTE 12.541.41 21.641.02 41.251.63 15.871.01 15.231.57 12.821.27 14.380.48 55.192.57 188.9110.03 

BLA 12.320.46 21.752.25 49.313.11 17.793.28 10.461.11 11.410.31 14.231.16 73.772.46 211.0314.09 

∑PCB 306.260.42 477.2323.09 351.1914.80 346.5124.50 248.3414.85 256.7613.01 317.5816.27 548.4020.77 2852.28141.04 

Min 12.021.00 21.641.02 12.200.42 13.641.34 10.461.11 11.051.84 12.481.01 17.082.24 112.7911.12 

Mean 21.880.98 34.091.65 25.080.06 24.751.75 17.741.06 18.340.93 22.681.16 39.171.48 203.7310.07 

Max 64.560.72 73.662.96 59.360.86 83.590.82 36.731.18 54.491.81 81.112.52 89.461.78 542.9513.36 
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Figure 6.5 Distribution of PCB congeners at different sites. 
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The most contaminated site was NWTT (Figure 6.5). This was attributed to the accumulation 

of pollutants from wastewater since this site stores wastewater before being discharged back 

into the river. Being a store of wastewater and having an excess of plant life as a result of 

eutrophication, this site (NWTT) may contain more organic carbon than other sites. This may 

allow for partitioning of more PCBs and may be the reason for the high concentrations found 

at this site. A study of fate and persistence of PCBs in soil revealed that their persistence was 

greater in soil with higher organic carbon content (Ayris and Harrad, 1999). 

 

6.4.3. Comparison of Levels of PCBs and OCPs in Soil from Various Locations 

Globally. 

 

The levels of PCBs obtained in the present study, were compared to levels of PCBs obtained 

in various locations around the world. The present PCB results (total concentration 

range :112.79 to 542.95 ng/g, mean: 203.73 ng/g) (Table 6.4) were lower than the results 

obtained by Yuan and co-workers who found total PCB concentrations in topsoils of Beijing 

in China in the range 47.04 to 3883.77 ng/g, mean: 679.62 ng/g (Yuan et al., 2014). Levels of 

PCBs in eastern Romania were determined by Dragan and co-workers who found it to be 

between 34 and 1132 ng/g, mean: 278 ng/g  (Dragan et al., 2006). The total concentrations of 

OCPs in topsoil of Beijing in China were found to vary from 2.38 to 933.12 ng/g, mean: 

68.76 ng/g (Yuan et al., 2014). Table 6.5 summarizes the results obtained from different 

regions of the globe. The results obtained in this study were far below those reported by Yuan 

and co-workers in the topsoil of a topical urban area in Beijing, China where the levels of 

OCPs ranged from 2.4 to 3883.8 ng/g (Yuan et al., 2014); those detected in South East 

Romanian soil (58–1662 ng/g) (Ene et al., 2012) and those detected at Patagonia in 

Argentinian soil (38100-46500 ng/g) (Gonzaleza et al., 2010). However, the Umgeni River 

OCP levels were higher than the levels investigated in the Chao River soil in China (0.8145-

16.8524 ng/g) (Yu et al., 2014). 

 

Being ubiquitous, the organochlorine pesticides occur everywhere in any environmental 

compartment in different parts of the globe. Table 6.6 shows the comparison of the results of 

the present study with other investigations carried out in the world.  
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Table 6.5 Comparison of results of this study and PCB concentrations in soil reported in different locations in the world. 

Country/location Site descriptions 
No. of 

congeners 
∑PCBs (ng/g) Sampling date References 

South-Africa 
bank of the river, industrial, 

urban residential, agricultural 
8 112.79 -542.95 July-13 This study 

China/Beijing urban 25 47.04 -3883.77 July-11 (Yuan et al., 2014) 

United Kingdom urban 7 1.00-750.00 April-2009 (Vane et al., 2014) 

China contaminated area 32 317.85-927.30 February-2012 (Gao et al., 2015) 

Russia/Moscow background 33 5.50-79.00 1996-2003 (Wilcke et al., 2006) 

Russia Arboretum of botanical garden - 300.00-24250.0 2012 (Agapkina et al., 2012) 

Eastern Romania vicinity of waste disposal site 21 34.00-1132.00 2002 (Dragan et al., 2006) 

Bulgaria urban 6 7.20-17.20 2013 (Dimitrova et al., 2013) 

 

 

 

 

 

 

 

 

 

 



185 

 

 

Table 6.6 Comparison of results of this study and OCP concentrations in soil reported in different locations in the world. 

Country/location Site descriptions 
No. of 

OCPs 
∑OCPs (ng/g) Sampling date References 

South Africa bank river, urban, residential, 12 183.38-323.92 15-17 July 2013 This study 

India 
industrial, agricultural, 

residential 
22 129-1001 - (Manohar et al., 2014) 

China/Beijing urban 23 2.38-933.12 July 2011 (Yuan et al., 2014) 

China paddy soil 14 35–3669 2014 (Wang et al., 2007) 

Pakistan surface soil - 216-541 
September-

October 2013 
(Sultana et al., 2014a) 

China along the Chao River 24 0.8145-16.8524 2013 (Yu et al., 2014) 

South East 

Romania 
Agriculture, industrial 15 58–1662 April 2009 (Ene et al., 2012) 

Western China surface soil 10 0.51–181.63 March-July 2011 (Liu et al., 2013) 

North-Eastern 

Romania 
surface soil - 4.4-95 

August-

September 2005 
(Doina et al., 2013) 

Tajikistan high mountain soil - 52.83-247.98 2012 (Zhonghua et al., 2013) 

Poland 
arable, agricultural and 

industrial 
8 0.35-453.20 2005 

(Maliszewsk-Kordybach et al., 

2014) 

Argentina Agricultural area 15 38100-46500 - (Gonzaleza et al., 2010) 
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6.5 CONCLUSION 

 

In this study, the assessment of the levels and distribution of OCPs and PCBs in soil 

collected from the different sampling sites on the banks of the Umgeni River were carried 

out. The distribution of OCPs and PCBs in the soil from the banks of the Umgeni River 

banks was ubiquitous because of different potential sources such as agricultural runoff, 

industries, wastewater treatment plants and non-point sources. All the contaminants 

investigated were detected in all sites. Considering the levels of OCPs and PCBs shown in 

this study, the bank soil from the Umgeni River is contaminated, compared to other places 

in the world.  Therefore, serious measures must be taken by the local government to reduce 

its contamination effects of the river water and protect the environment. This is the first 

study on the presence of organic pollutants in the soil of the Umgeni River which has 

added to the present limited or non-existent knowledge of their environmental distribution 

in bank river soils from KwaZulu-Natal in South Africa. Our qualitative analysis also 

found significant amounts of other pollutants and therefore further studies on the levels of 

other organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) and 

polybrominated diphenyls (PBDs) would provide additional knowledge on the levels of 

contamination of the soil along the banks of the Umgeni River.  
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ABSTRACT 

 

In this study, the seasonality of polychlorinated biphenyls (PCBs) was investigated in 

surface water, sediment pore water and surface sediment of the Umgeni River, one of the 

main rivers in South Africa located in the Province of KwaZulu-Natal, from 2013 to 

2014. The samples for all the above matrices were collected concurrently except pore 

water which was obtained after centrifugation of sediment. The samples were treated 

using liquid-liquid or soxhlet extraction and cleaned-up using a florisil column. The 

analysis was done using gas chromatography-mass spectrometry. The mean 

concentrations of PCBs were 1.36 0.39 ng/mL in winter, 0.71 0.15 ng/mL in summer, 

0.66 0.22 ng/mL in autumn and 0.56 0.08 ng/mL in spring, for water samples; 14.60 

7.30 ng/mL in winter, 4.72 1.80 ng/mL in summer, 5.53 2.25 ng/mL in autumn and 

10.73 6.00 ng/mL in spring, for pore water samples; 24.31 8.92 ng/g in winter, 13.50 
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8.07 ng/g in summer, 19.16 6.93 ng/g in autumn and 23.67 16.39 ng/g in spring for 

sediment samples. Higher levels of PCBs were found in winter and low levels were 

generally noted in summer. 

 

Key words: PCBs, seasonal variations, pore-water, sediment, soxhlet extraction, Umgeni 

River 

 

7.1 INTRODUCTION 

 

Polychlorinated biphenyls (PCBs) are well known and widespread environmental 

pollutants of global concern and were previously used in several industrial and 

commercial applications. Research showed that PCBs and their metabolites can cause 

numerous health risks including carcinogenicity and endocrine, reproductive, 

immunologic and neurologic disruption (Safe, 1989, Robertson and Ludewig, 2011, Boas 

et al., 2012, Hallgren et al., 2001). Due to their persistence, biomagnification and toxicity 

(Diamond et al., 2010, Schecter and Gasiewicz, 2003), they have been analysed in all 

environmental matrices in order to monitor the level of contamination in water, soil, air 

and biota. Based on the health risks posed by their production, use and storage, PCBs 

were included on the list of persistent organic pollutants (POPs) by the Stockholm 

convention and on the priority pollutant list by the United States Environmental 

Protection Agency (US EPA) (EPA, 1999, ATSDR, 2005).  

 

Studies have confirmed that the seasonal variations of concentrations of PCBs observed 

in various environmental compartments are dependent on a number of factors including 

temperature variation, precipitation, physical and chemical properties of individual 

congeners, etc. The variations depending on temperature difference were encountered in 

water (Blemle and Larsson, 1997, Bruhn and McLachlan, 2002), soil (Wilcke and 

Amelung, 2000) and atmosphere (Manchester-Neesvig and Andren, 1989, Haugen et al., 

1999, Kiss et al., 2001). Seasonal precipitations also influence the distribution of 

concentration of PCBs because it results in transferring airborne PCBs down to surface 

water which affects the concentrations and normal background levels in river systems 

(Blemle and Larsson, 1997). The precipitation, either episodic or seasonal, causes intense 

surface runoff from soil into water bodies and consequently results in diluting the native 
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bed sediments or burying the native bed sediments with sediment brought in from the 

surrounding areas containing different contaminants (Barber and Writer, 1998). The 

factors governing the seasonal variations also depend on location, for instance in tropical 

areas, temperature is not a dominating factor because temperature difference between 

seasons is not as significant as in temperate regions; instead runoff may be the 

influencing factor for variation of pollutant concentrations and distribution during 

different seasons. 

 

In their PCB seasonal variation study in the East Lake in China, Jong and co-workers 

found higher concentrations in winter than in summer (Ge et al., 2014) while Fu and Wu, 

in their study realised the change in PCB distribution from wet peak season to dry valley 

season for light PCBs in sediment of Er-Jen River estuary in Taiwan was due to 

precipitations (Fu and Wu, 2006). Other factors such as volatilisation and atmospheric 

deposition may also have a great influence on the distribution and concentrations of 

PCBs in the environment. You and his team reported atmospheric deposition impacted 

the concentrations of PCBs and the dilution of PCB concentration in summer, and 

increased volatilisation in warmer seasons in water and sediments of Songhua River in 

China (You et al., 2011). 

 

In South Africa, few studies have reported the occurrence and distribution of PCBs in 

water bodies and soils. Ryan and co-workers, observed that the concentrations of HCH 

and DDT were decreasing in South African coastal waters but underlined that it was not 

clear in the case of PCBs (Ryan et al., 2012). High concentrations of PCBs were reported 

in urban soils and sediment of KwaZulu-Natal spring and winter (Batterman et al., 2009, 

Nieuwoudt et al., 2009a, Grobler et al., 1996). Literature also showed the occurrence of 

PCBs in serum of the Tswana population, in the North West province, who were 

regularly exposed to combustion of biofuels, and in maternal plasma of delivering 

women from the seven geographical regions of South Africa  (Pieters and Focant, 2014, 

Röllin et al., 2009, van Dyk et al., 1987).  

 

The Umgeni River is one of the major rivers in KwaZulu-Natal, South Africa. The level 

of pollution in the Umgeni River with regards to several contaminants is not known. 

However, some research has revealed the presence of heavy metals with non-point 

sources (Pegram and Bath, 1995). A recent study by Agunbiade and Moodley also 



197 

 

 

showed that the Umgeni River is contaminated by emerging organic contaminants such 

as different classes of pharmaceuticals (Agunbiade and Moodley, 2014); but there is little 

or lack of information about the levels of contamination of this river with respect to 

persistent organic pollutants (POPs) such as PCBs, OCPs and PAHs and their seasonal 

impact on the environment. This study therefore focussed on the chemical analysis of 

water, sediment pore water and surface sediment with the aim to evaluate the current 

status of contamination with 8 selected PCBs and also to determine the effects of 

seasonal variations on the distribution and concentrations of these pollutants. 

 

7.2 EXPERIMENTAL 

 

7.2.1. Study Area and Sampling Sites 

 

This research was carried out on the Umgeni River, one of the main rivers in the province 

of KwaZulu-Natal, between May 2013 and May 2014. The Umgeni River catchment area 

is 4,418 km
2 

and travels a distance of 257 km from source to the mouth (Van der Zel, 

1975). It transverses rural and urban areas such as Howick and Durban towns and 

comprises four dams including Midmar Dam, Albert Falls Dam, Nagle Dam and Inanda 

Dam. Different activities observed around the river include agricultural, recreational, 

commercial, industrial and domestic activities. 

 

A total of 15 sampling sites were selected that cover 12 sites along the river and 3 sites 

chosen at Northern Wastewater Treatment Works (NWWTW) including the influent, 

after treatment and effluent (point of discharge of treated water back into the river) 

sampling sites. The sampling sites and their geographical coordinates are listed in Table 

7.1 and Figure 7.1. 
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Figure 7.1 Map of sampling sites with the sample collection locations (map was generated 

from GPS coordinates using ArcGIS 10.2). 

 

Table 7.1 List of sampling sites and geographical coordinates along the Umgeni River 

Sampling site (code) 
Coordinates 

Site description 
South East 

Midmar Dam inlet (MDI) 29° 29′ 16.05'' 30° 09' 23.10'' Dam for water supply (inlet) 

Midmar Dam outlet (MDO) 29° 29' 34.02'' 30° 12' 09.13'' Dam for water supply (outlet) 

Howick Falls (HOF) 29° 29' 18.18'' 30° 14' 19.70'' Water falls 

Albert Falls inlet (AFI) 29° 26' 31.94'' 30° 19 47.10'' Dam for water supply 

Albert Falls outlet (AFO) 29° 26' 01.81'' 30° 25' 55.76'' Dam for water supply 

Nagle Dam (NAD) 29° 35' 08.42'' 30° 37' 23.94'' Dam for water supply 

Joining point Umgeni-Msunduzi 

rivers (JUM) 
29° 37' 16.61'' 30° 40' 46.59'' River surface water 

Inanda Dam inlet (IDI 29° 39' 05.20'' 30° 48' 06.24'' Dam for water supply (inlet) 

Inanda Dam outlet (IDO) 29° 42' 55.74'' 30° 52' 07.69'' Dam for water supply (outlet) 

Reservoir Hills (REH) 29° 47' 08.05'' 30° 56' 25.51'' River surface water 

Umgeni business park (UBP) 29° 48' 19.05'' 30° 58' 58.08'' River surface water 

Northern Wastewater Treatment 

Works influent (NWTI) 
29° 47' 27.08'' 30° 59' 50.01'' 

Domestic and industrial waste water  

(influent) 

Northern Wastewater Treatment 

Works after treatment (NWTT) 
29° 47' 47.02'' 30° 59' 50.06'' 

Treated water from the plant (after water 

chlorination) 

Northern Wastewater Treatment 

Works effluent (NWTE) 
29° 48' 27.01'' 30° 59' 51.05'' Discharge  of treated water to the river 

Blue Lagoon (BLA) 29° 48' 41.03'' 31° 02' 12.05'' Discharge of the water into the Indian ocean 
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7.2.2. Physical Parameters of Sampling Sites 

 

The levels and distribution of contaminants in a given environmental compartment may 

be influenced by several factors including chemical and physical characteristics of the 

environment.  Physical parameters such as ambient temperature, water temperature and 

pH were measured at the site for each sampling site and during each season. Some of 

these parameters are shown in Table 7.2.  
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Table 7.2 Seasonal physical parameters at sampling sites along the Umgeni River. 

 
winter 

 
summer 

 
autumn 

 
spring 

site 

code 

ambient 

T° (°C) 

water T° 

(°C) 

water 

pH  

ambient 

T° (°C) 

water T° 

(°C) 

water 

pH  

ambient 

T° (°C) 

water T° 

(°C) 

water 

pH  

ambient 

T° (°C) 

water T° 

(°C) 

water 

pH 

MDI 12.3 11.6 5.54 
 

34.1 24.2 6.39 
 

23.3 23.3 6.39 
 

24.0 19.0 7.80 

MDO 12.3 13.2 5.69 
 

34.6 24.1 6.83 
 

25.6 17.8 5.94 
 

23.0 16.0 7.33 

HOF 17.8 13.8 5.99 
 

28.8 25.0 6.99 
 

26.1 16.6 6.10 
 

24.0 20.0 7.66 

AFI 18.6 13.5 5.78 
 

37.3 24.7 6.60 
 

28.2 14.1 5.94 
 

28.0 22.0 7.65 

AFO 19.2 15.4 6.04 
 

38.6 21.8 5.46 
 

25.5 20.4 5.95 
 

29.0 18.0 7.58 

NAD 18.4 15.4 5.00 
 

33.6 30.6 6.10 
 

33.3 22.8 6.07 
 

22.0 21.0 8.87 

JUM 15.6 15.7 5.56 
 

33.1 30.1 6.36 
 

23.9 19.8 6.70 
 

26.0 25.0 7.60 

IDI 17.2 16.6 4.98 
 

32.1 29.4 5.16 
 

18.8 19.2 6.62 
 

23.0 24.0 9.55 

IDO 15.1 15.9 4.53 
 

34.6 28.5 5.24 
 

17.9 19.7 6.07 
 

23.0 21.0 8.37 

REH 21.4 17.9 5.63 
 

36.4 29.8 5.70 
 

18.8 19.1 5.93 
 

32.8 23.8 9.61 

UBP 21.4 17.6 4.90 
 

33.3 29.8 5.11 
 

18.2 19.1 5.46 
 

28.0 23.7 9.63 

NWTI 22.8 21.9 4.70 
 

35.6 27.7 5.40 
 

19.2 23.2 5.30 
 

26.4 23.2 7.47 

NWTT 19.8 19.9 4.64 
 

34.8 26.0 5.24 
 

18.7 18.5 5.08 
 

26.1 19.6 9.30 

NWTE 21.0 19.8 4.94 
 

34.0 29.6 5.23 
 

19.4 19.1 5.47 
 

26.4 22.8 10.2 

BLA 21.4 20.0 5.12 
 

29.9 25.6 5.73 
 

22.0 17.2 6.19 
 

22.9 23.0 9.61 
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7.2.3. Sample Collection 

 

Samples were collected during the four seasons of South Africa.  Autumn samples were 

collected from 08-10
th

 May 2013 and winter samples on 15-17
th

 July 2013. Spring and 

summer samples were collected on 25-27
th 

September 2013 and 11-13
th

 February 2014 

respectively. Water samples were collected in 2.5 L amber glass bottles previously washed 

with hot water and detergent and rinsed three times with H2SO4 and deionized water 

respectively. At the sampling site, the bottles were again rinsed three times with river water 

before collecting the sample. The bottles were then filled to the top leaving no head space 

and closed with caps that were lined with aluminium foil. Bottles were kept in a coolant box 

containing ice and transported to the analytical research laboratory. The samples were fixed 

with 50% H2SO4 and stored at 4 °C until extraction which was carried out within five days. 

 

Sediment was collected from the bed of the Umgeni River, using a grab sampler and stored 

in glass bottles washed and rinsed as specified above. The bottles were filled to the top with 

sediment and sealed with caps lined with aluminium foil. They were also kept in a coolant 

box containing ice and conveyed to the laboratory where the sediment was centrifuged to 

separate it from its pore water before being air dried several days before sample pre-

treatment. The map of sampling location and sampling points is shown in Figure 7.1 

 

7.2.4. Reagents and Standards 

 

High pressure liquid chromatography (HPLC) grade solvents used wer hexane, 

dichloromethane (DCM) and toluene, and florisil (MgO3Si residue analysis grade, mesh 60-

100, pore size 60Å), as well as PCB standards (PCB28, PCB52, PCB77, PCB101, PCB105, 

PCB138, PCB153, and PCB180) were purchased from Sigma Aldrich. Anhydrous sodium 

sulfate (Na2SO4) gold line (CP) and silicon carbide boiling stones (CSi) were obtained from 

Associated Chemical Enterprises (ACE) and sulfuric acid (98%) was obtained from 

Promark Chemicals. The test sieves (ss 200 mm  x 100 μm to ss 200 mm  x 600 μm) 

were obtained from DLD Scientific in South Africa. 
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7.2.5. Sample Treatment and Preparation 

 

7.2.5.1. Water samples 

One litre of water sample was transferred to a separating funnel and extracted using 50 mL 

of DCM (EPA, 1996a). The organic layer was transferred into a beaker. This process was 

repeated 6 times using fresh aliquots of DCM each time for the same sample of water. The 

six fractions of organic layers obtained were combined in a 500 mL round bottom flask and 

concentrated using a rotary evaporator (Heidolph Instruments GmbH & Co.kG) to roughly 

5 mL. The concentrated extract was then quantitatively transferred onto a column packed 

with 5 g of florisil (activated at 130 °C for 12 hours) and comprising 5 g of anhydrous 

sodium sulfate on top, previously pre-eluted with 10 mL of hexane (EPA, 2007). The 

column was eluted sequentially with 5 mL aliquots of solvent system made of 94% 

hexane:6% DCM, 85% hexane:15% DCM, 50% hexane:50% DCM and 100% DCM 

respectively (EPA method 3620-C) (EPA, 2007). The four fractions obtained were 

combined and concentrated to about 3 mL with rotary evaporation and quantitatively 

transferred into a sample vial and air-dried. The cleaned and dry extract was reconstituted 

with exactly 2 mL of DCM and analysed by GC-MS. 

7.2.5.2. Sediment pore water samples 

The pore water samples were obtained by centrifugation of fresh sediment samples using a 

centrifuge (Du Pont instruments 
R
SS-automatic centrifuge) at 10 x 1000 rpm for 15 min. 

The pore water was treated using the same method as that used for water above, using 100 

mL of pore water and 10 mL of DCM. 

7.2.5.3. Sediment samples 

The sediment samples were air-dried, ground with a mortar and pestle and sieved to 

homogenise and increase the surface area. A 60 g portion of sieved sediment or soil was 

transferred into an extraction thimble which was subsequently placed into a soxhlet 

extractor and extracted with 300 mL of  toluene for 24 hours (EPA method 3540) (EPA, 

1996b). The extract was concentrated using rotary evaporation to almost 5 mL. The 

concentrated extract was then loaded onto a column packed with 10 g of florisil, previously 

pre-eluted with 20 mL of hexane. The column was then sequentially eluted with 20 mL 

aliquots of a solvent system of 94% hexane:6% DCM, 85% hexane:15% DCM, 50% 

hexane:50% DCM and 100% DCM respectively. The fractions were combined in a 500 mL 

round bottom flask and concentrated using a rotary evaporator to nearly 3 mL and 
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quantitatively transferred into a sample vial, air-dried and reconstituted using exactly 2 mL 

of DCM and analysed with GC-MS. 

  

7.2.6. Instrumental Analysis 

 

The reconstituted samples were analysed using an Agilent 6890 series gas chromatography 

system attached to a mass spectrometer detector (MSD5973). The GC system was equipped 

with a ZB-5MS column having the following parameters: 0.25 mm of internal diameter, 

0.25 μm of film thickness and 30 m in length (Hewlett Packard; Houston, TX). An injection 

volume of 2 μL and a flowrate of 1 mL/min were used. The MS was operated using the 

selective ion monitoring acquisition mode (SIM). The oven temperature was programmed 

as follows: initial temperature was 120 °C which was increased to 290 °C at a ramping rate 

of 14 °C/min and held for 2 min. The total run time was 14.14 min. The front inlet 

temperature was 250 °C and was operated in splitless mode. The pressure was 106 kPa and 

the carrier gas was ultra-purified helium. The MSD line heater temperature was 280 °C.  

 

The identification of targeted analytes was achieved by analysis of mass spectra and use of 

the National Institute of Standard (NIST) library together with a comparison of retention 

times of analytes of interest to those of PCB standards. The quantification of analytes was 

attained using an external calibration method based on analyte peak area. 

 

7.3 QUALITY ASSURANCE 

 

The recovery of each analyte in water, pore water and sediment, was obtained by target 

analyte spiking method. For water and pore water samples, tap water was spiked with a 

PCB and OCP multi-standard solution which was kept overnight before extraction, in order 

to allow contact and homogenisation of matrix and standards (Agunbiade and Moodley, 

2014, Meharg  et al., 2003). Tap water being clean do not contain any of analytes of interest 

and when spiked, it is sure that the obtained recovery is accurate.  The spiked tap water was 

then extracted and the extract obtained was concentrated, cleaned, dried and analysed, using 

the method described above. The percentage recovery for water and pore water (%Rw) was 

then calculated using  Equation 7.1 below (APHA et al., 1999, USEPA, 2008). 
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Table 7.3 Ions monitored, limits of detection (LOD) and quantification (LOQ) and percentage recoveries (%R) for the analysis of PCBs in 

water, pore water, sediment by GC-MS. 

Analyte PC28 PC52 PC77 PCB101 PCB105 PCB138 PCB153 PCB180 

Ions monitored (m/z) 

150 

186 

256 

150 

220 

292 

 

220 

255 

292 

254 

291 

326 

184 

254 

326 

145 

290 

360 

145 

290 

360 

162 

324 

394 

LOD (ng/mL) in water 0.045 0.015 0.055 0.02 0.015 0.015 0.02 0.01 

LOQ (ng/mL) in water 0.15 0.045 0.19 0.06 0.055 0.045 0.06 0.04 

LOD (ng/mL) in pore water 0.455 0.13 0.55 0.18 0.17 0.135 0.185 0.115 

LOQ (ng/mL) in pore water 1.51 0.43 1.835 0.595 0.56 0.445 0.625 0.39 

%Recovery in water and pore 

water 

74.54 

0.37 

76.99 

0.67 

79.27 

0.83 

71.18 

0.59 

73.88 

0.45 

74.67 

0.40 

77.83 

0.86 

82.36 

0.41 

LOD (ng/g  in sediment) 0.76 0.21 0.92 0.30 0.28 0.22 0.31 0.19 

LOQ (ng/g  in sediment) 2.52 0.71 3.06 0.99 1.12 0.75 1.03 0.66 

%Recovery in sediment 
69.53 

1.75 

80.74 

2.94 

73.67 

1.22 

79.77 

2.03 

78.46 

1.27 

79.39 

1.05 

82.87 

2.50 

84.39 

1.15 



205 

 

 

The calibration standards concentrations were 0.25, 0.5, 1, 2, 4 and 8 μg/mL. 

 

For sediment samples, real samples were used where the sample was divided into two 

subsamples of the same mass (60 g each). The first subsample was spiked and the second 

left unspiked. The percent recoveries (%Rs) of PCBs and OCPs were obtained by 

calculating the difference between the concentrations of spiked subsample (Cs) and 

unspiked subsample (Cu), dividing it by the known spiked concentration (Ck) and 

multiplying by 100 (equation 7.2) (Harry et al., 2008). The limit of detection and limit of 

quantification were also calculated as three times and ten times, respectively, signal-to-

noise ratio divided by the slope, using six calibration intercepts (Shrivastava and Gupta, 

2011) (Table 7.3). Procedural blanks were used throughout all steps of sample preparation 

and showed no detectable levels of OCPs and PCBs. The GC column was cleaned properly 

before analysis and a regular check for interferences was done by running solvent blanks 

after every fifteen injections. To monitor the variation from the initial calibration standard 

and ensure it remained minimal, a 0.5 μg/mL multi-standard was run after each batch of 

samples. All recovery and actual sample analyses were carried out at least three times in 

order to check the reproducibility and or precision of the method. 

%𝑅𝑊 =  
𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑢𝑛𝑑(

𝑛𝑔
𝑚𝐿)

𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑖𝑘𝑒𝑑 (
𝑛𝑔
𝑚𝐿)

∗ 100 … … … … (7.1) 

%𝑅𝑠 =
𝐶𝑠 − 𝐶𝑢

𝐶𝑘
… … … … … … … … … … . (7.2) 

 

Where: Rw = recovery of analyte from water or pore water samples 

             Rs = recovery of analyte from sediment samples 

 

7.4 RESULTS AND DISCUSSION 

 

Eight selected PCB congeners were analysed in this study. The discussion is focussed on 

the results obtained in the monitoring of the variation of the levels of these congeners in 

surface water, sediment pore water and surface sediment of the Umgeni River during the 

four South African seasons namely, winter, summer, autumn and spring.  
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7.4.1. Seasonal Variation of PCBs in Water 

 

The concentration ranges and the mean PCB concentrations for each sampling station, in 

winter, summer, autumn and spring are presented in Table 7.4 and Figure 7.2. The general 

PCB concentrations in the river water ranged from 0.30–7.34 ng/mL with a mean of 1.36 

0.39 ng/mL for winter; 0.19–2.44 ng/mL with a mean of 0.71 0.15 ng/mL for summer; 

not detectable–5.50 ng/mL with a mean of 0.66 0.22 ng/mL for autumn and 0.29–1.26 

ng/mL with a mean of 0.56 0.08 ng/mL for spring. The highest mean concentrations were 

found in winter for all sites (Table 7.4 and Figure 7.2). This was attributed to a number of 

factors. The ambient and water temperatures (12.3-22.8 °C and 11.6-21.9 °C) were low 

during winter (Table 7.2) and the level of vaporisation of pollutants from water to air is also 

expected to be low due to the cooler temperatures.  The PCB solubility in water was also 

very low because, for organic compounds, PCB solubility is directly proportional to the 

temperature (Delle Site, 2001). Wiegel and Wu showed that the microbial degradation of 

PCBs is temperature-dependent because there are optimum temperatures that have a 

significant effect on the growth of microorganisms and catalytic activities of enzymes for 

microbial reductive dechlorination of PCBs (Wiegel and Wu, 2000). For example, the 

optimal temperature for complete dechlorination of 2,3,4,6-tetrachlorobiphenyl was 20–

27 °C (Wiegel and Wu, 2000). Therefore, the degradation of PCBs was minimal in winter 

when temperatures were at their lowest values.  This together with the low vaporisation 

contributed to their high concentrations in water. Another factor which would have 

influenced the concentrations of PCBs in water was precipitation. The South African winter 

is a dry season with very little precipitation and therefore there was no dilution of the 

concentration of various pollutants in water; instead the concentration tends to increase as 

the volume of water decreased. This resulted in the river water being concentrated in 

contaminants since there was no rain and consequently no runoff to dilute the river water.  

 

PCBs may also be deposited from the atmosphere through diffusive air-water exchange 

(Meijer et al., 2006).  Unlike in winter, the summer ambient and water temperatures were 

high (28.8-38.6 °C and 21.8-30.6 °C) at all sites (Table 7.2 and Figure 7.1) favouring the 

evaporation and dissolution processes. Volatilisation was found to be a major phenomenon 

through which PCBs are lost by the water column in some regions during summer while 

deposition increased the PCB concentration during cool seasons (Hornbuckle et al., 1994). 

Furthermore, the volatilisation from contaminated waters during warmer seasons was 
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confirmed to be an important source of organic pollutants into ambient air (Rowe et al., 

2007, Totten et al., 2001). The winter pH values for water were acidic (4.53-6.04). This was 

due to the high levels of CO2 dissolved in water which could not easily vaporise due to low 

water temperatures. It was found that Kdoc, (association constant DOC (dissolved organic 

carbon)-organic chemical) for PCBs, decreases with increasing pH of the medium due to 

increased ionization of humic acid with increased pH (Dell, 2001). Therefore, since winter 

pH values were lower, this phenomenon could not happen and the binding interaction 

between PCBs and DOC was strong, resulting in high winter concentrations.  The South 

African summer is a wet season and high precipitation leads to diluted concentrations in the 

water. All these weather conditions may be possible causes of lower PCB concentrations in 

summer than in winter (Figure 7.2). Note that the individual PCB concentrations for all 

seasons (winter, summer, autumn and spring) were given in appendix D.
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Table 7.4 Concentration ranges and mean of PCBs in water at each selected site along the Umgeni River. 

 
Winter (ng/mL) 

 
Summer  (ng/mL) 

 
Autumn (ng/mL) 

 
Spring (ng/mL) 

Site code range mean ∑PCBs 
 

range mean ∑PCBs 
 

range mean ∑PCBs 
 

range mean ∑PCBs 

MDI 0.73-2.19 1.23 9.81 
 

0.19-0.83 0.42 3.34 
 

nd-1.82 0.75 5.98 
 

0.46-0.81 0.61 11.09 

MDO 0.74-2.21 1.24 9.92 
 

0.57-1.36 0.85 6.80 
 

0.13-3.20 0.79 6.35 
 

0.41-0.68 0.54 15.33 

HOF 0.42-2.26 0.96 7.67 
 

0.26-2.44 0.77 6.16 
 

nd-1.56 0.64 5.11 
 

0.39-0.67 0.52 13.20 

AFI 0.85-2.37 1.34 10.70 
 

0.53-1.18 0.78 6.26 
 

nd-1.32 0.45 3.58 
 

0.37-0.61 0.49 11.57 

AFO 0.71-2.53 1.24 9.96 
 

0.33-0.84 0.55 4.38 
 

nd-0.76 0.33 2.64 
 

0.37-0.63 0.50 8.39 

NAD 0.83-2.53 1.37 10.95 
 

0.41-1.03 0.69 5.52 
 

nd-1.16 0.51 4.07 
 

0.62-0.87 0.75 11.54 

JUM 1.02-2.08 1.51 12.12 
 

0.64-1.11 0.85 6.84 
 

nd-2.65 0.69 5.52 
 

0.48-0.69 0.60 14.50 

IDI 0.84-1.54 1.24 9.89 
 

0.56-1.12 0.81 6.50 
 

nd-1.57 0.48 3.82 
 

0.45-0.66 0.57 12.18 

IDO 0.98-1.77 1.39 11.15 
 

0.63-1.25 0.90 7.18 
 

nd-1.12 0.30 2.43 
 

0.48-0.71 0.61 11.42 

REH 0.94-2.74 1.45 11.59 
 

0.33-1.12 0.68 5.45 
 

nd-3.02 0.84 6.68 
 

0.43-0.84 0.59 14.23 

UBP 0.81-2.48 1.31 10.47 
 

0.32-0.84 0.55 4.38 
 

nd-1.65 0.62 4.94 
 

0.37-0.64 0.51 11.00 

NWTI 1.09-7.34 2.68 21.43 
 

0.39-1.03 0.59 4.71 
 

0.52-2.46 1.09 8.73 
 

0.38-1.26 0.63 15.75 

NWTT 0.66-1.74 1.17 9.39 
 

0.44-0.66 0.55 4.42 
 

0.08-5.50 0.92 7.35 
 

0.34-0.67 0.48 13.72 

NWTE 0.72-1.51 1.15 9.21 
 

0.61-1.08 0.76 6.06 
 

0.15-1.98 0.67 5.36 
 

0.38-0.76 0.52 13.37 

BLA 0.30-2.30 1.15 9.16 
 

0.67-1.15 0.90 7.18 
 

0.08-2.80 0.90 7.21 
 

0.29-0.59 0.42 16.60 

Range 0.30-7.34 0.96-2.68 7.67-21.43 0.19-2.44 0.42-0.90 3.34-7.18 
 

nd-5.50 0.33-1.09 2.43-7.35 
 

0.29-1.26 
0.42-

0.75 
8.39-16.60 

mean 
 

1.36 10.90 
  

0.71 5.68 
  

0.66 5.32 
  

0.56 12.93 

SD 
 

0.39 3.11 
  

0.15 1.19 
  

0.22 1.80 
  

0.08 2.00 

nd = not detected



209 

 

 

 

The mean concentrations of PCBs at each site in winter were statistically different from 

mean concentrations in summer. The calculated p-value was less than 0.0001 (p ˂ 0.0001). 

The confidence interval was 95%. According to conventional criteria, such a p-value 

indicates that the difference is statistically significant (GraphPad, 2014). The mean 

concentrations of PCBs in autumn and spring were below the mean winter concentrations. 

The t-test showed that the calculated p-values between mean concentrations in winter and 

autumn and winter and spring were less than 0.0001 (p ˂ 0.0001) which confirmed that the 

difference was statistically significant between winter PCB levels and autumn or spring 

levels. The autumn and spring seasons have generally mild weather conditions. The mean 

concentrations in autumn were slightly higher than in spring (Table 7.4 and Figure 7.2).   

However, although at many sites, the autumn concentrations were slightly higher than the 

mean concentrations in spring, statistical results showed that the difference between the two 

seasons was not statistically significant (p = 0.0867). The concentrations of some congeners 

were below the limit of detection at some sampling stations. These were PCB52 at IDO, 

PCB105 at JUM and IDO and PCB138 at AFI, NAD, IDI and IDO. Figure 7.2 shows the 

trends of mean concentrations across sites in winter, summer, autumn and spring. The 

trends were quite similar. The concentrations at NWTI were higher especially in winter. 

This was expected because the industrial and residential wastewater which arrives at the 

inlet of the treatment plant, is still concentrated since it has not yet undergone any kind of 

treatment, be it physical or chemical.  

 

Figure 7.2 Trend of mean concentrations of PCBS in water across the sites in each season. 
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7.4.2. Seasonal Variations of PCBs in Sediment Pore Water and Sediment 

 

Table 7.5 and Figure 7.3A display the ranges and averages of concentrations of different 

congeners of PCBs in sediment pore water at each site during winter, summer, autumn and 

spring. The general concentration ranges and mean concentrations in the pore water were 

nd-52.30 ng/mL with a mean concentration of 14.60 7.30 ng/mL in winter, 0.11-15.70 

ng/mL with a mean of 4.72 1.80 ng/mL in summer, 0.03-19.52 ng/mL, with a mean of 

5.53 2.25 ng/mL in autumn and 2.29-62.24 ng/mL with a mean of 10.73  6.00 ng/mL in 

spring. Note that the individual PCB concentrations for all seasons (winter, summer, 

autumn and spring) were given in appendix D. 
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Table 7.5 Concentration of PCB congeners in the Umgeni River pore water in winter, summer, autumn and spring. 

 
Winter (ng/mL) 

 
Summer (ng/mL)  Autumn (ng/mL) 

 

Spring (ng/mL) 

Site code range mean ∑PCBs 
 

range mean ∑PCBs  range mean ∑PCBs 
 

range mean ∑PCBs 

MDI 3.42-23.17 8.50 68.02 
 

2.84-7.04 3.98 31.85  0.03-12.83 4.44 35.51 
 

4.34-7.19 5.58 44.64 

MDO 2.44-22.47 7.09 56.73 
 

1.32-8.06 2.46 19.65  0.35-10.88 3.50 27.99 
 

5.07-8.70 6.50 52.02 

HOF 4.71-21.91 8.05 64.43 
 

nd-9.78 2.50 19.99  0.50-6.71 2.92 23.32 
 

2.29-7.07 3.51 28.04 

AFI 5.20-11.10 7.57 60.60 
 

2.09-9.64 4.08 32.65  0.20-6.78 3.19 25.51 
 

7.37-9.76 8.68 69.41 

AFO 2.90-8.86 4.46 35.65 
 

0.86-3.87 1.78 14.23  0.28-7.09 2.93 23.45 
 

5.59-12.02 7.74 61.95 

NAD 8.21-15.33 12.32 98.52 
 

3.24-6.94 4.83 38.67  0.66-14.32 5.24 41.95 
 

5.23-8.28 6.57 52.57 

JUM 6.71-22.22 13.11 104.86 
 

4.57-12.66 6.87 54.92  0.09-14.53 3.13 25.03 
 

6.60-10.94 8.14 65.08 

IDI 9.30-18.98 14.47 115.75 
 

2.74-15.70 6.43 51.41  1.27-16.10 7.33 58.67 
 

8.79-12.72 10.78 86.25 

IDO 15.44-33.79 23.89 191.15 
 

1.78-13.36 6.30 50.43  0.43-19.52 9.58 76.65 
 

5.67-9.98 7.66 61.25 

REH 8.48-48.72 19.06 152.47 
 

3.82-12.87 7.52 60.14  0.96-16.31 7.36 58.89 
 

6.01-16.54 9.05 72.37 

UBP 10.82-52.30 23.46 187.72 
 

2.20-11.45 5.75 46.04  1.33-17.90 7.54 60.31 
 

5.26-44.13 15.17 121.37 

NWTT 14.38-45.26 24.71 197.69 
 

2.10-13.46 5.56 44.51  3.14-13.38 7.86 62.91 
 

8.40-62.24 22.63 181.06 

NWTE 17.73-32.10 25.47 203.78 
 

0.93-14.93 5.00 39.97  1.88-11.92 7.31 58.45 
 

9.50-58.87 22.31 178.46 

BLA 7.36-14.35 11.07 88.57 
 

1.48-7.11 3.06 24.51  2.10-12.44 5.12 40.96 
 

2.83-45.93 15.92 127.39 

Range 2.44-52.30 4.46-25.47 35.65-203.78 
 

0.11-15.70 1.78-7.52 14.23-60.14  0.03-19.52 2.92-9.58 23.32-76.65 
 

2.29-62.24 3.51-22.63 28.04-181.06 

mean 
 

14.52 116.14 
  

4.72 37.78  
 

5.53 44.26 
  

10.73 85.85 

SD18 
 

7.41 59.28 
  

1.80 14.40  
 

2.25 18.03 
  

6.00 48.02 

nd = not detected

                                                 
18

 This is the standard deviation of total concentrations of analytes in pore water across different sampling sites and is high because some sites were much more polluted while others were only slightly polluted.  
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The highest concentration of PCBs in pore water was recorded in winter. This may be 

assigned to contaminant sorption on suspended solids which is then transferred to the 

sediment layer by settling (Bao-Feng et al., 2004); and the fact that in general the sorption 

coefficients of organic pollutants on natural sorbent (soil and sediment) in water systems, 

increases with decreases in temperature (Delle Site, 2001). These phenomena were favoured 

during winter due to low water temperature. Furthermore, the winter season had very little 

to no precipitation together with low temperature.  This further added to an environment 

which discouraged the dissolution of the hydrophobic contaminants and as a result they 

preferred to settle down towards the sediment and were extracted with winter sediment pore 

water.  

 

The mean concentrations of PCB congeners in sediment showed the same pattern as in pore 

water. Table 7.6 and Figure 7.3B present the mean concentrations in winter, summer, 

autumn and spring in sediment for each investigated site. The seasonal general ranges and 

mean concentrations were 10.16-93.74 ng/g with a mean of 24.31 8.92 ng/g in winter, nd-

73.58 ng/g with an average of 13.50 8.07 ng/g in summer, nd-97.40 ng/g with an average 

of 19.16 6.93 ng/g in autumn and 4.26–89.26 ng/g with an average of 23.67 16.39 ng/g in 

spring. Again high concentrations were observed in winter. This can be explained by the 

low winter temperatures that encourage pollutants to accumulate in the sediment instead of 

dissolving in the water or volatilisation (Table 7.2). In other words, the high levels of PCBs 

in winter were due to fast dynamics of water-to-sediment transport (Meijer et al., 2009).  

The second highest levels of PCBs were recorded in spring which is characterised by mild 

weather conditions. The temperatures and pH values were medium. Under these mild 

conditions for a short period of time (September & October), we assume that the high 

concentrations that were observed in winter did not have an opportunity to change 

significantly and therefore resulted in the second highest concentrations observed. The bio-

solid collected at the Northern Wastewater Treatment Works sites (NWTI, NWTT) and the 

sediment at NWTE in spring, showed even higher concentrations than in winter. This may 

be because the bio-solid at NWTI was collected, into a large skip, from water before 

treatment, and therefore was not exposed to weather conditions as sediment in the river. At 

the NWTT, macrophytic growth was observed and acted as a blanket between air and water 

disturbing the partitioning of pollutants between air and water to achieve equilibrium and 

therefore pollutants were less exposed to air and their concentrations were not much 



213 

 

 

influenced by climatic factors.  At the NWTE, the treated water carrying pollutants from the 

wastewater treatment plant arrives at this point through an underground pipeline and was 

not really influenced by weather conditions and as a result, concentrations of pollutants did 

not depend on climatic factors but on the concentrations in wastewater received at the inlet. 

 

The t-test results showed p-values that indicated there was no statistical significant 

difference between mean PCB concentrations in winter and spring sediment concentrations 

(p = 0.8872) and no significant change between PCB levels in winter and spring pore water 

(p = 0.1000) (GraphPad, 2014). 
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Table 7.6 Concentration of PCB congeners in the Umgeni River sediment for winter, summer, autumn and spring. 

Winter (ng/g) 
 

Summer (ng/g) 
 

Autumn (ng/g) 
 

Spring (ng/g) 

Site code range mean ∑PCBs 
 

range mean ∑PCBs 
 

range mean ∑PCBs 
 

range mean ∑PCBs 

MDI 15.04-36.69 19.60 156.83 
 

6.57-29.41 13.05 104.44 
 

4.64-52.44 18.72 149.77 
 

10.67-33.46 20.48 163.83 

MDO 15.73-35.64 23.08 184.66 
 

5.42-30.53 11.07 88.60 
 

7.51-55.33 19.05 152.41 
 

13.84-39.56 18.79 150.34 

HOF 1875-55.78 28.88 231.07 
 

3.16-37.92 11.27 90.13 
 

7.31-50.77 17.26 138.06 
 

15.50-45.07 21.94 175.55 

AFI 13.46-30.75 19.13 153.05 
 

6.72-59.21 18.14 145.14 
 

6.07-72.62 24.68 197.46 
 

7.24-42.09 17.16 137.32 

AFO 14.38-43.73 22.83 182.64 
 

4.99-26.56 15.37 122.98 
 

nd-42.18 13.26 106.09 
 

8.09-43.23 15.09 120.70 

NAD 13.70-34.66 19.28 154.20 
 

2.07-13.96 5.85 46.83 
 

2.78-42.79 12.91 103.27 
 

8.87-24.99 11.83 94.61 

JUM 15.63-43.15 26.43 211.42 
 

1.30-13.24 5.60 44.79 
 

2.25-45.95 15.02 120.17 
 

8.71-16.50 12.17 97.33 

IDI 22.12-25.97 24.01 192.09 
 

0.74-13.68 5.04 40.32 
 

1.53-44.13 13.56 108.45 
 

12.57-21.79 15.86 126.91 

IDO 10.16-19.46 12.96 103.65 
 

3.45-19.34 8.44 67.52 
 

1.92-41.05 14.80 118.40 
 

5.12-13.59 7.71 61.72 

REH 16.11-21.48 19.40 155.17 
 

2.42-15.69 7.35 58.83 
 

2.01-42.88 13.03 104.28 
 

13.03-23.13 18.19 145.54 

UBP 22.21-28.48 25.54 204.28 
 

1.28-18.00 8.03 64.27 
 

nd-49.17 16.35 130.79 
 

9.55-45.17 18.06 144.49 

NWTI 18.48-31.86 24.42 195.35 
 

nd-73.58 26.64 213.10 
 

9.72-72.07 23.82 190.54 
 

18.03-65.32 33.92 271.40 

NWTT 26.67-93.74 53.48 427.83 
 

13.73-71.95 32.28 258.22 
 

3.34-90.25 25.34 202.74 
 

49.08-84.46 65.91 527.29 

NWTE 18.05-29.35 22.70 181.61 
 

11.68-48.58 21.50 172.03 
 

1.19-63.04 20.72 165.79 
 

36.80-89.26 56.29 450.35 

BLA 14.25-36.17 22.95 183.58 
 

2.89-35.62 12.84 102.70 
 

7.23-97.40 38.86 310.89 
 

4.26-77.03 21.67 173.38 

Range 10.16-93.74 12.69-53.48 
103.65-

427.83  
nd-73.58 5.04-32.28 

40.32-

258.22  
nd-97.40 12.91-38.86 

103.27-

310.89  
4.26-89.26 7.71-65.91 61.72-527.29 

Mean 
 

24.31 194.50 
  

13.50 107.99 
  

19.16 153.27 
  

23.67 189.38 

SD19 
 

8.92 71.34 
  

8.07 64.55 
  

6.93 55.41 
  

16.39 131.11 

nd = not detected

                                                 
19

 This is the standard deviation of total concentrations of analytes in sediment at different sampling sites and is high because some sites are much more polluted while others are only slightly polluted.  
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The lowest concentrations in sediment pore water and sediment were detected in summer. 

This was attributed to the climatic factors in summer that were opposite to those in winter.  

 

The water and ambient temperatures were high (Table 7.2 and Figure 7.1) which resulted in 

maximum dissolution and vaporisation. A study by Meijer and co-workers found that there is 

strong temperature dependence for less volatile PCBs in sediment (Meijer et al., 2009). 

 

For the more volatile PCBs, their fluxes between water and air was due to diffusive air-water 

exchange (Meijer et al., 2006). The movement effected by contaminants in summer, was in 

the opposite direction compared to that of winter. Instead of settling down from water into the 

sediment, they tend to dissolve in water from the sediment and continue to make their way 

into the atmosphere by evaporation. 

 

The t-test results gave a p-value confirming that the difference between the PCB winter and 

summer levels was statistically significant (p = 0.0016) in sediment, while for pore water, 

the difference between PCB levels of the two seasons was very significant (p ˂ 0.0001) 

(GraphPad, 2014). The levels of PCBs in autumn were the third highest after winter and 

spring levels. The South African autumn is a short season that starts in mid-March to May. 

It is characterised by average rainfall, warm but not hot and gets cooler as time progresses. 

Since the temperatures were not high, the water-air pollutant fluxes were minimal and were 

dominated by the accumulation of pollutants in the river due to runoff from industrial areas.  
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Figure 7.3 Seasonal trend of PCB levels across sites A: in pore water B: in sediment. 

 

The t-test p-value showed a significant difference between the concentrations of PCBs in 

autumn and spring for pore water (p = 0.0054) but for sediment samples the difference was 

not statistically significant (p = 0.3343). The trend of seasonal mean concentrations of PCBs 

in water and pore water from the source to the mouth of the river is similar (Figure 7.3). 

This suggests that the effects of the climatic factors and environmental physical chemical 

parameters on the PCBs in sediment pore water and surface sediment may be considered as 

the same. In other words the the above-mentionned factors have similar influence on water 

and pore water pollutants in terms of increase or decreases of their levels. At IDO, the 
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concentrations are higher in pore water than sediment, especially in winter which is 

attributed to a low flow rate at this dam outlet. It was observed in the dry winter season, the 

water level was low and there was less water exiting the dam to carry the PCBs away thus 

resulting in them accumulating. Any organic matter from upstream ends up in the dam and 

this site consequently contain much of organic carbon. (DOC) which establishes a strong 

pollutant (PCB)-DOC association (high Kdoc) that enhances PCB solubility in pore water. 

This has been confirmed by research that has shown pollutant solubility increases linearly 

with DOC concentration (Dell, 2001).      

 

7.5 CONCLUSION 

 

An investigation of seasonal variations of polychlorinated biphenyls in water, pore water 

and sediment of Umgeni River was undertaken. The results showed significant variation 

between seasons. The seasonal variation of PCB levels have been discussed taking into 

account the physical-chemical parameters observed during seasonal sampling such as 

temperature, precipitation, pH and organic matter which induced phenomena such as 

volatilisation, atmospheric deposition, vaporisation, run-off and partitioning, The highest 

levels were recorded in winter due to the low water temperature which discourages 

solubility, the low ambient temperature which reduces vaporisation and the low 

precipitation which reduces runoff and the dilution effect.  The lowest concentrations were 

generally observed in summer due to the high water temperatures which encouraged 

solubility, the high ambient temperatures which increased volatilisation and increased 

precipitation which led to dilution of the pollutants in the river systems. Further studies are 

needed in order to analyse the occurrence and seasonal variation of these contaminants in 

aquatic life in the Umgeni River catchment.  These are the first results reported on the 

seasonal variation of PCBs in the Umgeni River and provide much needed knowledge on 

the levels of PCBs that animals and people, who consume its untreated water, are exposed 

to during the year. 
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ABSTRACT 

 

This study focussed on monitoring and assessment of seasonal distribution and variations of 

twelve organochlorine pesticides (OCPs) for a period of one year. Liquid-liquid extraction 

was used for liquid samples and soxhlet for sediment samples. Analysis was performed on 

gas chromatography-mass spectrometry. The results obtained from unfiltered water analysis 

showed higher concentrations in winter (not detectable (nd) levels-3.48 ng/mL, mean: 1.19 

0.25 ng/mL) than in summer (nd-3.02 ng/mL, mean: 0.90 0.36 ng/mL), autumn (nd-4.76 

ng/mL, mean: 0.76 0.32 ng/mL) and the lowest levels in spring (nd-4.86 ng/mL, mean: 0.67 

0.16 ng/mL). The same trend was also observed in unfiltered pore water where winter 

concentrations were the highest (0.76-34.92 ng/mL, mean: 11.01 5.04 ng/g) compared to the 

lowest levels in summer (nd-22.42 ng/mL, mean: 5.16 1.38 ng/mL), autumn (nd-48.27 

ng/mL, mean: 9.68 5.34 ng/g) and spring (nd-26.59 ng/mL, mean 6.39 3.20 ng/mL). For 
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sediment samples winter also showed higher concentrations (2.29-93.02 ng/g, mean: 30.87 

7.38 ng/g, dry weight) as compared to the lower concentrations in summer (nd-146.82 ng/g, 

mean: 18.41 11.20 ng/g). There was no substantial difference between autumn (nd-186.55 

ng/g, mean: 31.78 8.85 ng/g) and spring (nd-276.39 ng/g, mean: 31.50 14.83 ng/g) 

concentrations. However there was a statistically significant difference between summer 

levels and other seasons (p ˂ 0.05) for all matrices and all seasons. 

 

Key words: Umgeni River, OCPs, seasonal variation, surface water, pore water, sediment 

 

8.1 INTRODUCTION 
 

Organochlorine pesticides (OCPs) are a group of ubiquitous persistent organic pollutants 

(POPs) that are well-known as environmental (Assem et al., 2013, Cafer et al., 2012, 

Miglioranza et al., 2003a). They were extensively used worldwide in agriculture and public 

health sectors before the 1970s (Wong et al., 2005, Bolognesi and Merlo, 2013, Thomas et 

al., 2008). The total pesticide global market is estimated to be 31 billion US dollars of which 

Africa accounts only 2-4%  (Agrow, 2006) without including donations from developed 

countries, which is a substantial source of pesticides for agriculture in Africa (Fleischer and 

Waibel, 2003, Tobin, 1996). In sub-Saharan Africa, South Africa is the leading user of 

pesticides (Dalvie et al., 2009). Indoor spraying, runoff and leaching allows pesticides to 

reach non-target areas (Dalvie et al., 2003) and consequently numerous studies reported the 

occurrence of these pesticides in various water ways (Dabrowski et al., 2002a, London et al., 

2000b, Villaverdea et al., 2008). The exposure to pesticides such as OCPs causes numerous 

health effects such as carcinogenesis, genotoxicity, immune impacts, chronic neurotoxicity, 

disruption of endocrine system and mutagenicity (Bolognesi and Merlo, 2013, Hallenbeck 

and Cunningham-Burns, 2011).  

 

There are many poor and rural South Africans who make direct use of surface water from 

rivers and lakes or ground water,  due to lack of  treated water (STATSSA, 2012).  As a result 

these individuals may have direct exposure to these pesticides and long term use of 

contaminated water may result in health disorders. The OCPs investigated in this project were 

banned in most countries due to their toxicity (Mrema et al., 2013, Appenzeller and Tsatsakis, 

2012, Rhouma et al., 2001, Bornman et al., 2010, Campbell et al., 1983, Gourounti et al., 
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2008), but due to their persistence their residues are still detected in all environmental 

compartments such as air (Cindoruk, 2011, Sultana et al., 2014b), water (Lin et al., 2012, 

Yuan et al., 2013), soil (Gai et al., 2014, Xing et al., 2010) and biota (Zhou et al., 2008, 

Santhi et al., 2012) many years after their banning. In addition, some pesticides, such as 

DDT, are currently still used in South Africa today for malaria control (Bouwman et al., 

1991b, Eskenazi et al., 2014, Dalvie et al., 2004d, Channa et al., 2012, Dalvie et al., 2004a, 

Naudé and Rohwer, 2012b). 

 

The seasonal variations of POPs depend largely on the type of climate of a region. Most 

studies on POP temporal trends have been conducted in Northern hemisphere countries which 

are characterised by moderate climatic conditions unlike South Africa which experiences 

high temperatures, little precipitation during winter and long summers (Quinn et al., 2009). 

Therefore, the comparison and use of Northern hemisphere seasonal data is not suitable for 

explaining seasonal data from Southern hemisphere countries such as South Africa. However, 

the fate of toxic pollutants, such as organochlorine pesticides, in the environment is governed 

by various chemical, physical and biological processes (Callahan et al., 1979, Plimmer and 

Klingebiel, 1976). Limited studies on seasonal distribution of POPs in the South African 

environment, such as in water of the Hartbeespoort Dam, has found that generally the 

concentrations of OCPs were higher in winter than in other seasons and suggested it was due 

to seasonality of their atmospheric deposition (Amdany et al., 2014).   

 

The occurrence of OCPs and especially their variations due to seasonal climatic factors in 

KwaZulu-Natal water ways in particular, and in South Africa in general, is not well known. 

Therefore, the present study is aimed at investigating the occurrence and evaluation of 

seasonal distribution of 12 organochlorine pesticides in the water, sediment pore water and 

sediment in the Umgeni River in KwaZulu-Natal, South Africa. The Umgeni River water 

(unfiltered) is used directly by people for several activities and is the reason unfiltered surface 

and sediment pore water were analysed in order to evaluate the total concentration of 

pollutants (freely dissolved + dissolved organic carbon + suspended matter) to which they are 

exposed. 
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 8.2 MATERIALS AND METHODS 
 

8.2.1. Study Area and Physical Chemical Parameters  

  

This study was conducted between February 2013 and February 2014 and focused on the 

analysis of OCPs in different matrices in the Umgeni River which is one of the major rivers 

in the province of KwaZulu-Natal in South Africa.  The Umgeni River catchment (area of 

4387 km
2
)
 
is home to 3.5 million people and is one of the most developed catchments 

producing nearly 20% of South Africa’s gross national product (Shand, 1996). It is a source 

of potable water to more than two million people (Howard et al., 1995). The river houses four 

dams namely Midmar Dam, Albert Falls Dam, Nagle Dam, and Inanda Dam, all used for 

water supplies. It empties into the Indian Ocean in Durban. A brief description of the 

sampling sites investigated and the geographical coordinates are tabulated in Table 8.1.  

Figure 8.1 shows the different locations for the sampling sites. 

 

The physical and chemical parameters of a particular area influence the occurrence and 

distribution of environmental pollutants. These were recorded at the site at each sampling 

station during sampling trips and included ambient temperature, water temperature and water 

pH.  Table 8.2 shows the values of the environmental physical and chemical parameters 

recorded at each sampling station of the Umgeni River. 

 

8.2.2. Sample Collection 

 

Four sampling campaigns corresponding to the four South African seasons were organised 

for sample collection. Autumn samples were collected from 08-10
th

 May 2013 and winter   

samples from 15-17
th

 July 2013. Spring and summer samples were collected on 25-27
th 

September 2013 and 11-13
th

 February 2014 respectively.  
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Figure 8.1 Map of sampling sites with the sample collection locations identified as red dots (maps were generated from GPS 

coordinates using an online tool—GPS visualizer). 
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Table 8.1 List of Umgeni River sampling sites and GPS coordinates in the downstream direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sampling site (code) Coordinates Description of site 

 
South East 

 
Midmar Dam inlet (MDI) 29° 29′16.05'' 30° 09'23.10'' Dam for water supply (inlet) 

Midmar Dam outlet (MDO) 29° 29'34.02'' 30° 12'09.13'' Dam for water supply (outlet) 

Howick Falls (HOF) 29° 29'18.18'' 30° 14'19.70'' Water fall 

Albert Falls inlet (AFI) 29° 26'31.94'' 30° 19 47.10'' Dam for water supply 

Albert Falls outlet (AFO) 29° 26'01.81'' 30° 25'55.76'' Dam for water supply 

Nagle Dam (NAD) 29° 35'08.42'' 30° 37'23.94'' Dam for water supply 

Joining point Umgeni-Msunduzi rivers (JUM) 29° 37'16.61'' 30° 40'46.59'' River surface water 

Inanda Dam inlet (IDI 29° 39'05.20'' 30° 48'06.24'' Dam for water supply (inlet) 

Inanda Dam outlet (IDO) 29° 42'55.74'' 30° 52'07.69'' Dam for water supply (outlet) 

Reservoir Hills (REH) 29° 47'08.05'' 30° 56'25.51'' River surface water 

Umgeni Business park (UBP) 29° 48'19.05'' 30° 58'58.08'' River surface water 

Northern wastewater treatment works influent (NWTI) 29° 47′47.08″ 30° 59′50.01″ Domestic and industrial waste water  

(influent) Northern wastewater treatment works after treatment 

(NWTT) 

29° 47'47.02'' 30° 59′50.06″ Treated water from the plant 

Northern wastewater treatment works effluent (NWTE) 29° 48′27.01″ 30° 59′51.05″ Discharge  of treated water to the river 

Blue Lagoon (BLA) 29° 48'41.03'' 31° 02'12.05'' Discharge of the water into the Indian 

ocean 
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Table 8.2 Seasonal physical and chemical parameters of the Umgeni River. 

  
winter 

   
summer 

   
autumn 

   
spring 

 

site code 
ambient 

T° (°C) 

water 

T° (°C) 

water 

pH  

ambient 

T° (°C) 

water 

T° (°C) 
water pH 

 

ambient 

T° (°C) 

water 

T°(°C) 

water 

pH  

ambient 

T° (°C) 

water 

T°(°C) 
water pH 

MDI 12.3 11.6 5.54 
 

34.1 24.2 6.39 
 

23.3 23.3 6.39 
 

24.0 19.0 7.80 

MDO 12.3 13.2 5.69 
 

34.6 24.1 6.83 
 

25.6 17.8 5.94 
 

23.0 16.0 7.33 

HOF 17.8 13.8 5.99 
 

28.8 25.0 6.99 
 

26.1 16.6 6.1 
 

24.0 20.0 7.66 

AFI 18.6 13.5 5.78 
 

37.3 24.7 6.6 
 

28.2 14.1 5.94 
 

28.0 22.0 7.65 

AFO 19.2 15.4 6.04 
 

38.6 21.8 5.46 
 

25.5 20.4 5.95 
 

29.0 18.0 7.58 

NAD 18.4 15.4 5.00 
 

33.6 30.60 6.10 
 

33.3 22.8 6.07 
 

22.0 21.0 8.87 

JUM 15.6 15.7 5.56 
 

33.1 30.13 6.36 
 

23.9 19.8 6.7 
 

26.0 25.0 7.60 

IDI 17.2 16.6 4.98 
 

32.1 29.4 5.16 
 

18.8 19.2 6.62 
 

23.0 24.0 9.55 

IDO 15.1 15.9 4.53 
 

34.6 28.5 5.24 
 

17.9 19.7 6.07 
 

23.0 21.0 8.37 

REH 21.4 17.9 5.63 
 

36.4 29.8 5.70 
 

18.8 19.1 5.93 
 

32.8 23.8 9.61 

UBP 21.4 17.6 4.90 
 

33.3 29.8 5.11 
 

18.2 19.1 5.46 
 

28.0 23.7 9.63 

NWTI 22.8 21.9 4.70 
 

35.6 27.7 5.4 
 

19.2 23.2 5.3 
 

26.4 23.2 7.47 

NWTT 19.8 19.9 4.64 
 

34.8 26.0 5.24 
 

18.7 18.5 5.08 
 

26.1 19.6 9.30 

NWTE 21.0 19.8 4.94 
 

34.0 29.6 5.23 
 

19.4 19.1 5.47 
 

26.4 22.8 10.21 

BLA 21.4 20.0 5.12 
 

29.9 25.6 5.73 
 

22.0 17.2 6.19 
 

22.9 23.0 9.61 

 

 



230 

 

 

Water samples were collected in 2.5 L amber Winchester glass bottles previously washed 

with hot water and detergent and rinsed three times with H2SO4 and deionized water 

respectively. The bottles were again rinsed three times with river water to be sampled, before 

water collection at each sampling site. The bottles were then filled to the top leaving no head 

space and closed with caps lined with aluminium foil. The bottles were kept in a coolant box 

containing ice and transported to the analytical research laboratory. They were fixed with 

50% H2SO4 and stored at 4 °C until extraction, which followed within five  days. Surface 

sediment was collected from the river bed of the Umgeni River, using a grab sampler and 

stainless steel spade respectively. The sediment samples were stored in glass bottles washed 

and rinsed as specified above. The bottles were filled to the top with sediment and closed 

with caps lined with aluminium foil. They were also kept in a coolant box containing ice and 

conveyed to the laboratory. Soil samples were immediately transferred onto aluminium foil 

and air-dried for several days before treatment. The sediment samples were centrifuged to 

separate pore water, before being dried and treated.  

 

8.2.3. Reagent, Standards and Apparatus 

 

High pressure liquid chromatography (HPLC) grade solvents such as hexane, 

dichloromethane (DCM) and toluene, and florisil (MgO3Si residue analysis grade, mesh 60-

100, pore size 60Å), as well as OCP standards (HCB, HCH, heptachlor, aldrin, o,p-DDE, 

p,p’-DDE, o,p’-DDD, dieldrin, endrin, p,p’-DDD, o,p’-DDT and mirex) were purchased from 

Sigma Aldrich, South Africa. Anhydrous sodium sulfate (Na2SO4) gold line (CP) and silicon 

carbide boiling stones (CSi) were obtained from Associated Chemical Enterprises (ACE, 

South Africa) and sulfuric acid (98%) was obtained from Promark Chemicals. The test sieves 

(ss 200 mm  x 100 μm to ss 200 mm  x 600 μm) were obtained from DLD Scientific, South 

Africa. A mortar and pestle and separatory funnel were also used. 

 

8.2.4. Sample Treatment 

 

A 1 L portion of water sample was accurately transferred to a separatory funnel and extracted 

using 50 mL of DCM. The mixture was left to stand for 5 min to allow the two phases to 

separate. The organic phase was then separated from the aqueous phase and transferred to a 

round bottomed flask. This process was repeated six times using fresh aliquots of DCM each 
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time for the same water sample, to increase recovery of pollutants (EPA, 1996a). The six 

fractions obtained were combined and the extract concentrated using a rotavap (Heidolph 

Instruments GmbH & Co.kG) at 45 °C to approximately 5 mL. The concentrated extract was 

quantitatively transferred onto a hexane conditioned florisil column (activated at 130 °C for 

12 hours) containing anhydrous Na2SO4 (5 g) on top for clean-up. It was eluted with an 

increasing polarity solvent system of hexane:DCM (5 mL) (94:6), (85:15), (50:50) and 100% 

DCM (modified EPA method 3620-C) (EPA, 2007) in order to allow elution of different 

OCPs with various polarity indexes. 

 

The four fractions obtained were combined and concentrated with a rotary evaporator to 

about 5 mL and transferred to a vial. The extract was air evaporated to dryness and was 

reconstituted using exactly 2.00 mL of DCM and analysed using GC-MS. The pore water 

obtained after centrifugation of sediment using 10 x 1000 rpm (Du Pont instruments
R 

SS-

automatic centrifuge) (Ankley and Schubauer-Berigan, 1994, Zhang et al., 2003) was treated 

as per surface water using 100 mL sample aliquots.  

 

The remaining sediment as well as soil samples were transferred onto aluminium foil and air-

dried. The dried sediment and soil samples were ground using a mortar and pestle and sieved 

using test sieves (ss 200 mm  x 100 μm to ss 200 mm  x 600 μm). A portion of 60 g of 

dried sediment was transferred into an extraction thimble and placed in a soxhlet extractor 

and extracted for 24 hours using 300 mL of toluene (modified EPA method) (EPA, 1996b).  

The extract was concentrated with a rotavap to about 5 mL. It was loaded onto a florisil 

column and cleaned-up following the same procedure as the water extract mentioned above 

using 20 mL of a solvent system of hexane and DCM (EPA, 2007). The sediment and soil 

extracts were concentrated to about 5 mL which were subsequently evaporated to dryness and 

reconstituted in exactly 2.00 mL of DCM and analysed with GC-MS. 

 

8.2.5. Instrumental Analysis 

 

Samples from all matrices were analysed in triplicate using an Agilent 6890 series gas 

chromatography system attached to a mass spectrometer detector (MSD5973). The GC 

system was equipped with a ZB-5MS capillary column, 0.25 mm internal diameter, 0.25 μm 

film thickness and 30 m length (Hewlett Packard; Houston, TX). The MS was operated using 
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the selective ion monitoring (SIM) acquisition mode. The carrier gas was ultrapure helium. A 

2 μL sample was injected in splitless mode onto the GC-MS column with injector and 

detector temperatures set at 250 and 280 
o
C respectively. The oven temperature for analysis 

of OCPs was programmed as follows: the initial temperature was 120 
o
C increased to 290 

o
C 

with a ramping rate of 14
 o

C/min and held for 2 min. The MS source was operated at 250 
o
C 

and Quad at 200 
o
C.  The electro energy was 70 eV.  

 

Targeted OCPs were quantified based on peak areas and by using an external calibration 

technique with the following six calibration standards: 0.25; 0.5; 1; 2; 4 and 8 μg/mL. The 

identification of OCPs of interest was achieved by analysis of mass spectra, comparison of 

the analyte mass spectrum to that obtained in the National Institute of Standard and 

Technology (NIST) library and comparison of retention times of analytes with those of 

reference OCP standards.  

 

8.3 QUALITY CONTROL 

 

Quality assurance and control parameters were measured. The extraction recovery as well as 

limits of detection (LOD) and limits of quantification (LOQ) were calculated (Table 8.3). The 

recoveries of OCPs in water and pore water were obtained by spiking tap water with 

standards (Agunbiade and Moodley, 2014, Meharg  et al., 2003) and extraction using the 

method described in section 8.2.4. The recoveries were calculated using Equation 8.1 below 

(APHA et al., 1999).  For sediment and soil samples, real samples were used where one 

portion (60 g) of the sample was spiked and the other subsample of the same sample left 

unspiked and both extracted, cleaned and analysed using the methods described in sections 

8.2.4 and 8.2.5. The recoveries were obtained using Equation 8.2 below (Harry et al., 2008).  

Procedural blanks were included in all phases from extraction to analysis and no OCPs of 

interest were detected in the blank samples. The solvent blanks were periodically run through 

the column of the GC-MS to determine the presence of interferences that may be in the GC 

system. The variation of initial calibration must be kept to a minimum and this was confirmed 

by running a calibration standard of 0.5 μg/mL after each batch of samples. The identification 

of OCPs of interest was performed by analysis of MS spectra, comparison of retention times 

with those of reference standards and the NIST library within the instrument. In addition, the 
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base peak and two other confirming ions were used in selected ion monitoring (SIM) mode. 

All data were processed using Microsoft excel 2010. 

 

Recovery (%) =
Concentration found (ng/mL )

Concentration spiked (ng/mL )
∗ 100 … … … … … (8.1) 

 

Recovery (%) =
(conc.  for spiked sample − conc.  for unspiked sample)(ng/mL)

known value for the spike in the sample (ng/mL )
∗ 100 … (8.2)  

 

8.4 RESULTS AND DISCUSSION 
 

Twelve selected OCPs were analysed in this study. This discussion focusses on the results 

obtained in the monitoring of the variations and distribution of these pesticides in surface 

water, sediment pore water and surface sediment from the Umgeni River during the four 

South African seasons namely, winter, summer, autumn and spring.  

 

8.4.1. Seasonal Variations of OCPs in Surface Water 

 

The concentrations of OCPs in extracts obtained from sixty water samples collected during 

the four seasons (15 samples each season) were calculated using the concentration of the 

analyte in the extract and the volume of water extracted (USEPA, 2008). The individual 

concentrations of OCPs in each season were mentioned in appendix E) 
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Table 8.3 Ions monitored, LOD, LOQ and percent recoveries (%R) in the analysis of OCPs in water, pore water and sediment of Umgeni River. 

                                                 
20 

o,p-DDD and dieldrin could not be separated on the GC and were reported as a single peak. The exact EPA method and changes like temperature program, injection volume did not separate 

them in the GC column 
21 p,p-DDD and o,p-DDT could not be separated on the GC and were reported as a single peak . Also the above mentioned changes did not separate the in the GC column 
22HCB stock solution was prepared in hexane and it was found that in hexane, it easily undergoes reductive dechlorination with light of wavelength more than 260 nm and forms 

pentachlorobenzene and tetrachlorobenzene (Plimmer and Klingebiel, 1976). These compounds were observed in the gas chromatograms and may be the reason for its low recovery. 
23Heptachlor was in contact with tap water for some days to allow it to partition with the matrix before extraction. It may have degraded into heptachlor epoxide by oxidation, photolysis and can 

also volatilise in air (Callahan et al, 1979) which was observed in some of the chromatograms, and consequently this may have led to its low recovery during extraction. 
24The p,p’-DDE standard chromatogram showed the presence of DDMU which suggested that some of p,p’-DDE may have degraded into this compound which is its break down product    

(Thomas et al., 2008) and consequently contributed to its low recovery.  

Analyte HCB HCH heptachlor aldrin o,p’-DDE p,p’-DDE 
o,p-DDD/ 

dieldrin20 
endrin 

p,p’-DDD/ 

o,p-DDT21 
mirex 

Ions monitored (m/z) 

284 

249 

142 

219 

183 

147 

374 

272 

237 

327 

293 

263 

318 

284 

246 

318 

281 

246 

320/380 

235/263 

165/147 

317 

263 

207 

320/235 

235/199 

165/165 

402 

272 

237 

LOD (ng/mL) in water 0.025 0.06 0.03 0.045 0.06 0.07 0.035 0.06 0.075 0.07 

LOQ (ng/mL) in water 0.58 0.10 0.10 0.155 0.19 0.125 0.205 0.205 0.245 0.23 

LOD (ng/mL) in pore water 0.24 0.295 0.295 0.465 0.06 0.37 0.06 0.615 0.74 0.69 

LOQ (ng/mL) in pore water 0.795 0.35 0.975 1.55 0.19 1.24 0.205 2.05 2.47 0.235 

%R in water and pore water 51.900.4722 64.380.28 32.660.6723 69.660.36 84.361.39 87.420.68 103.430.97 61.080.87 75.270.19 65.310.33 

LOD (ng/g)  in sediment 0.50 0.50 0.50 0.78 0.96 0.62 1.04 1.02 1.23 1.15 

LOQ (ng/g)  in sediment 1.66 1.66 1.62 2.59 3.20 2.07 3.45 3.41 4.11 3.83 

%R in sediment 79.143.64 98.223.81 99.1510.0.3 116.975.36 95.6012.15 52.731.3524 90.023.59 94.1914.81 96.682.71 109.286.19 
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The concentration ranges, the mean and total concentrations for each sampling site in winter, 

summer, autumn and spring seasons were tabulated in Table 8.4 and shown in Figure 8.2 A. 

The concentrations ranged from non-detectable (nd) level-3.48 ng/mL with a mean of 1.19 

0.25 ng/mL in winter, nd-3.02 ng/mL with a mean of 0.90 0.36 ng/mL in summer, nd-4.76 

ng/mL with a mean of 0.76 0.32 ng/mL in autumn, nd-4.86 ng/mL with a mean of 0.67 

0.16 ng/mL in spring. The highest mean concentration (1.19 0.25 ng/mL) and mean total 

concentration (19.92 2.50 ng/mL) (Table 8.4) were found in winter. This could be a result of 

several climatic factors. Using the Clausius–Clapeyron equation to examine gas-phase partial 

pressure and temperature, Gioia and his team found that all OCPs were dependent on 

temperature and concluded that the gas-phase of OCPs increased with an increase in 

temperature, which has an effect on environmental processes such as air-water exchange and 

volatilisation (Gioia et al., 2005). The ambient and water temperature values in winter were 

the lowest (12.3–22.8 °C and 11.6-21.9 °C respectively) (Table 8.2) which may result in 

cold-trapping and therefore atmospheric deposition of OCPs in the water column (Odabasi et 

al., 2008, Lin et al., 2012, Siddik and Yucel, 2014b, Lam et al., 2004). Note, that the 

pesticides investigated in this study were also found in Durban ambient air (Batterman, 

2008). On the contrary in summer, which showed a lower mean concentration (0.90 0.36 

ng/mL) and mean total concentration (9.01 3.65 ng/mL), the ambient and water 

temperatures were high (28.8-38.6 °C and 24.2–30.6 °C) (Table 8.2) which may suggest 

volatilisation of OCPs from the water column to air (Xinghua et al., 2008, Mohammed et al., 

2014, Nelson et al., 1998).  The calculated t-test results showed a p-value of 0.0163 (p = 

0.0163). By conventional criteria, this value shows a statistically significant difference 

between winter and summer mean concentrations (GraphPad, 2014).  The concentrations at 

all sites were the highest in winter except at MDO and JUM (Figures 8.2 A and B) where the 

summer concentrations were slightly higher but the difference was not significant and cannot 

be considered as seasonal.  Another factor was precipitation. The South African summer is a 

rainy season and much water from runoff makes its way into the river, and hence, the 

pollutant concentrations were reduced by dilution. On the contrary during winter, a cold a dry 

season, the volume of water diminished which led to an increase in the concentrations of 

pollutants. The spring season showed the lowest concentration.  

 

http://www.sciencedirect.com/science/article/pii/S1352231005000282
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winter (ng/mL) summer (ng/mL) 
 

autumn (ng/mL) 
 

spring (ng/mL) 

Site code range mean ∑OCPs 
 

range mean ∑OCPs 
 

range mean ∑OCPs 
 

range mean ∑OCPs 

MDI 0.41-1.64 1.10 10.99 
 

nd-0.99 0.41 4.10 
 

nd-2.22 0.54 5.42 
 

nd-1.40 0.68 6.76 

MDO 0.47-1.61 1.08 10.80 
 

nd-2.22 1.28 12.81 
 

nd-2.08 0.62 6.15 
 

nd-1.29 0.54 5.38 

HOF 0.36-1.42 1.00 9.97 
 

nd-2.07 0.56 5.58 
 

nd-1.81 0.56 5.55 
 

nd-1.44 0.63 6.26 

AFI 0.43-1.64 1.09 10.87 
 

nd-0.73 0.64 6.42 
 

nd-2.78 0.58 5.79 
 

nd-1.38 0.55 5.53 

AFO 0.34-1.43 0.95 9.47 
 

nd-1.53 0.54 5.44 
 

nd-1.90 0.48 4.75 
 

nd-1.34 0.55 5.47 

NAD 0.35-1.47 0.97 9.73 
 

nd-1.75 0.77 7.70 
 

nd-2.45 0.53 5.27 
 

nd-1.39 0.55 5.47 

JUM 0.53-1.84 1.27 12.69 
 

0.70-2.27 1.38 13.77 
 

nd-2.38 0.53 5.35 
 

nd-1.59 0.65 6.53 

IDI 0.40-1.55 1.03 10.31 
 

nd-2.62 0.66 6.61 
 

nd-2.75 0.63 6.34 
 

nd-1.47 0.57 5.69 

IDO 0.41-1.65 1.11 11.12 
 

nd-1.46 0.50 5.04 
 

nd-2.52 0.67 6.70 
 

nd-1.37 0.60 6.04 

REH nd-1.87 1.17 11.69 
 

nd-2.08 0.98 9.79 
 

nd-2.35 0.67 6.70 
 

nd-1.69 0.75 7.53 

UBP 0.67-1.99 1.38 13.76 
 

nd-2.65 1.18 11.76 
 

nd-3.37 0.77 7.73 
 

nd-1.52 0.67 6.72 

NWTI 1.02-3.48 1.94 19.41 
 

nd-3.02 1.63 16.26 
 

nd-4.70 1.53 15.28 
 

nd-1.50 0.68 6.84 

NWTT 0.49-2.07 1.44 14.36 
 

nd-2.75 1.18 11.80 
 

nd-4.76 1.15 11.50 
 

nd-2.63 0.78 7.82 

NWTE 0.32-1.90 1.23 12.26 
 

nd-2.45 1.00 9.98 
 

nd-2.80 0.80 7.99 
 

nd-4.86 1.19 11.92 

BLA 0.35-1.78 1.14 11.38 
 

nd-1.88 0.80 8.05 
 

nd-4.05 1.37 13.68 
 

nd-1.35 0.65 6.47 

Range nd-3.48 0.95-1.94 9.47-19.41 
 

nd-3.02 0.41-1.63 4.10-16.26 
 

nd-4.76 0.48-1.53 4.75-15.28 
 

nd-4.86 0.54-1.19 5.38-11.92 

Mean 
 

1.19 11.92 
  

0.90 9.01 
  

0.76 7.61 
  

0.67 6.70 

SD 
 

0.25 2.50 
  

0.36 3.65 
  

0.32 3.25 
  

0.16 1.63 

 Table 8.4 Seasonal concentrations of OCPs (ng/mL) in Umgeni River surface water.
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Figure 8.2 A: Seasonal concentrations of OCPs in water, B: seasonal trend of OCPs across 

sites (n = 3). 

 

The differences between winter mean concentrations and autumn and spring mean 

concentrations were statistically very significant with p-values less than 0.0001 (p ˂ 0.0001). 

The autumn mean concentration 0.76 0.32 ng/mL and mean total concentration (7.61 3.25 

ng/mL) were slightly different from the spring mean concentration (0.67 1.16 ng/mL) and 

mean total concentration (6.70 1.63 ng/mL). The climatic factors for the two short seasons 

were not significantly different and therefore, the seasonal variation in pollutant distribution 
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was not so pronounced. The calculated t-test between mean concentrations of these two short 

seasons gave a p-value of 0.3554 (p = 0.3554). Such a value shows that the mean 

concentrations of the two seasons were not statistically different (GraphPad, 2014). 

 

8.4.2. Seasonal Variation of OCPs in Sediment Pore Water and Sediment 

 

The concentrations of analytes in pore water were calculated as per in surface water, and for   

sediment were calculated using the concentration of the compound in the extract and the 

weight of the dry sediment (USEPA, 2007).  

 

The levels of OCPs were obtained from 52 surface sediment and 8 bio-solids samples (13 

surface sediment and 2 bio-solid samples each season). The seasonal variations in sediment 

pore water and in surface sediment followed the same pattern. Table 8.5 and Figure 8.3 A 

show results obtained from pore water samples. The pore water concentrations ranged from 

0.76–34.92 ng/mL with a mean concentration of 11.01 5.04 ng/mL in winter, nd–22.44 ng/g 

with a mean of 5.16 1.48 ng/mL in summer, nd–48.27 ng/mL with a mean of 9.68 5.34 

ng/mL in autumn and nd–26.59 ng/mL with a mean concentration of 6.39 3.20 ng/mL in 

spring. The concentrations obtained in analysis of sediment are summarised in Table 8.6 and 

Figure 8.3 B. The levels of OCPs in sediment fluctuated from 2.29–93.02 ng/g with a mean 

concentration of 30.877.38 ng/g in winter, nd–146.82 ng/g with a mean of 18.41 11.20 

ng/mL in summer, nd– 186.52 ng/g with a mean of 31.78 8.85 ng/g in autumn and nd–

276.39 ng/g with mean concentration of 31.50 14.83 ng/g in spring. The above-mentioned 

results are mean concentrations calculated based on the concentrations obtained from all 

sampling sites and all analytes. The high standard deviations from the mean concentrations 

and from the total mean concentrations indicate high variations of concentrations between 

sites and high variations of concentrations between analytes and sampling sites respectively. 

The individual concentrations of OCPs in each season were mentioned in appendix E) 
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Table 8.5 Seasonal concentrations of OCPs in the Umgeni River sediment pore water. 

 
winter (ng/mL) 

 
summer  (ng/mL) 

 
autumn (ng/mL) 

 
spring (ng/mL) 

Site code range mean ∑OCPs 
 

range mean ∑OCPs 
 

range mean ∑OCPs 
 

range mean ∑OCPs 

MDI 1.90-9.98 5.96 55.63 
 

nd-9.00 3.41 34.14 
 

nd-16.58 5.89 58.91 
 

nd-8.96 3.16 31.56 

MDO 0.76-7.15 3.68 34.32 
 

nd-10.26 4.48 44.83 
 

nd-14.18 4.45 44.54 
 

nd-5.44 1.61 16.12 

HOF 1.62-11.87 6.80 61.28 
 

nd-6.01 2.75 27.50 
 

nd-7.55 3.25 32.49 
 

nd-7.43 4.61 46.12 

AFI 1.69-11.42 6.49 61.35 
 

nd-9.66 3.61 36.14 
 

nd-12.71 3.90 38.97 
 

nd-8.91 3.59 35.89 

AFO 1.06-9.30 4.80 45.29 
 

nd-13.96 4.78 47.76 
 

nd-15.40 4.69 46.88 
 

nd-7.03 2.06 20.60 

NAD 2.94-19.64 10.07 94.40 
 

nd-13.70 4.91 49.09 
 

nd-15.43 4.71 47.09 
 

nd-15.14 5.71 57.08 

JUM 2.97-20.69 11.06 103.61 
 

nd-17.25 6.19 61.85 
 

nd-48.27 10.62 106.25 
 

nd-15.43 6.25 62.46 

IDI 1.27-26.53 13.75 128.30 
 

nd-19.03 6.69 66.94 
 

nd-30.44 11.93 119.33 
 

nd-20.65 8.62 86.23 

IDO 4.31-34.92 17.35 162.88 
 

nd-22.42 7.59 75.86 
 

nd-42.07 15.66 156.59 
 

nd-26.59 9.76 97.60 

REH 4.24-29.27 15.02 140.18 
 

nd-16.61 5.91 59.10 
 

nd-41.96 13.86 138.64 
 

nd-22.49 8.78 87.81 

UBP 3.84-27.96 15.15 141.22 
 

nd-14.50 5.19 51.89 
 

nd-39.35 19.33 193.26 
 

nd-21.71 9.42 94.16 

NWTT 6.08-32.54 17.51 162.88 
 

nd-17.91 6.14 61.43 
 

nd-33.37 14.64 146.40 
 

nd-25.40 10.98 109.77 

NWTE 5.20-33.38 17.73 166.23 
 

nd-16.83 6.28 62.78 
 

nd-33.39 14.68 146.79 
 

nd-25.22 10.24 102.35 

BLA 2.91-16.70 8.75 81.69 
 

nd-12.28 4.35 43.46 
 

nd-17.59 7.97 79.70 
 

nd-12.85 4.71 47.09 

Range 0.76-34.92 3.68-17.73 34.32-166.23 
 

nd-22.42 2.75-7.59 27.50-75.86 
 

nd-48.27 3.25-19.33 32.49-193.26 
 

nd-26.59 1.61-10.98 16.12-109.77 

Mean 
 

11.01 102.80 
  

5.16 51.63 
  

9.68 96.85 
  

6.39 63.92 

SD 
 

5.04 47.19 
  

1.38 13.77 
  

5.34 53.41 
  

3.20 32.03 

   
             

nd = not detected
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Figure 8.3 Seasonal concentrations of OCPs at each site: (A) in pore water, (B) in sediment 

(n=3).

 

The highest mean concentration (11.01 5.04 ng/mL) and mean total concentration (102.80 

47.19 ng/mL) in sediment pore water were recorded in winter. This may be due to the 

partitioning of hydrophobic OCPs from water to solid particles and to sediment by settling 

(Bao-Feng et al., 2004), as well as the sorption of OCPs on sediment since research has found 

that the sorptive capacities of organic pollutants on sediment and soil, increases with a 

decrease in temperature (Delle Site, 2001).  
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The high winter concentrations may also be explained by low photochemical degradation due 

to less winter sunlight which in turn may cause accumulation of pollutants on the organic 

particulate matter in the aquatic environment (Brunciak  et al., 2001).  

 

The lowest mean concentration (5.16 1.38 ng/mL) and mean total concentration (51.63 

13.77 ng/mL) were obtained in summer. This could be explained by two main 

environmental factors which are vaporisation and runoff. During summer the ambient and 

water temperatures were high (Table 8.2) and hence the pollutants tended to leave the bed 

sediment, re-dissolve in water and volatilise to the atmosphere and hence their concentration 

was lowered in pore water and sediment (Meijer et al., 2006). Research has also found that 

OCPs can be transported from pore water to surface water by diffusion which is enhanced in 

summer due to high temperatures (Zhang, 2003). The sediment thus may became a source of 

OCPs for water and indirectly for the atmosphere (Hui et al., 2007). In addition, the South 

African summer is a rainy season with high levels of precipitation. This caused much runoff 

in the Umgeni River catchment area. Due to excess rain water, the pollutants were diluted 

and their concentrations reduced.  

 

The second highest mean concentration (9.68 5.34 ng/mL) and mean total concentration 

(96.85 53.41 ng/mL) (Table 8.5) was obtained in autumn followed by spring with a mean 

concentration of 6.39 3.20 ng/mL and mean total concentration of 63.92 32.03 ng/mL. The 

environmental conditions for the two short seasons were not very different. These two 

seasons had warmer temperatures and mild precipitation. The t-test showed a p-value of 

0.0587, indicating that the difference between the concentrations obtained in autumn and 

spring pore water was not statistically significant (GraphPad, 2014). Considering the four 

seasons, the lowest concentration in pore water was obtained at MDO in spring (nd–5.44 

ng/mL) with a mean concentration of 1.61 ng/mL and the highest was found at UBP in 

autumn (nd–39.35 ng/mL) with a mean concentration of 19.33 ng/mL (Table 8.5 and Figure 3 

A). 

        

The analysis of sediment samples revealed lower concentrations in summer (Figure 8.3 B)   

with a mean concentration (18.41 11.41 ng/g) and mean total concentration (184.12 112.03 

ng/g) lower than those in winter (30.87 7.38 ng/g and 308.70 73.78 ng/g), in autumn 

(31.78 8.85 ng/g and 317.84 88.45 ng/g) and in spring (31.50 14.83 ng/g and 314.99 
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148.29 ng/g) (Table 8.6). This was probably due to re-suspension of sediment OCPs into the 

water column (Chau, 2006, Elena et al., 2011) due to higher water temperatures of summer 

(Table 8.2) and then vaporisation to air. The lowest concentration in sediment was found at 

IDI in summer (nd–18.10 ng/g) with a mean concentration of 9.09 ng/g and the highest 

concentration was obtained at NWTT in spring (24.25–276.39 ng/g) and mean of 68.47 ng/g 

(Table 8.6 and Figure 8.3B).    

 

In general for both pore water and sediment and in all seasons, the sites NWTT and NWTE 

showed high concentrations. These were bio-solids, and sediment and their pore water 

samples, collected at Northern Wastewater Treatment after treatment and at the effluent 

(point of discharge to the river) respectively. In both cases the trends of concentrations 

throughout the river are similar except for the spring season (Figures 8.4 A and B). 
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Table 8.6 Seasonal concentrations of OCPs in the Umgeni River sediment. 

 
winter (ng/g) 

 
summer  (ng/g) 

 
autumn (ng/g) 

 
spring (ng/g) 

Site code range mean ∑OCPs 
 

range mean ∑OCPs 
 

range mean ∑OCPs 
 

range mean ∑OCPs 

MDI 4.34-36.86 18.36 183.63 
 

nd-20.87 10.93 109.27 
 

nd-72.47 27.06 270.58 
 

nd-37.20 23.88 238.78 

MDO 4.51-48.56 28.19 281.93 
 

nd-16.18 10.13 101.35 
 

nd-73.41 26.74 267.39 
 

2.38-56.57 24.41 244.14 

HOF 10.75-73.84 35.34 353.39 
 

nd-32.05 16.21 162.05 
 

nd-95.67 29.07 290.66 
 

4.40-87.31 31.39 313.89 

AFI 6.81-63.70 30.05 300.53 
 

4.40-21.90 13.39 133.88 
 

nd-96.61 32.21 322.11 
 

8.83-63.53 27.07 270.66 

AFO 7.41-60.50 26.76 267.58 
 

nd-31.55 13.08 130.79 
 

nd-62.69 24.56 245.58 
 

15.60-52.92 24.62 246.17 

NAD 8.68-70.50 29.45 294.45 
 

2.15-29.55 14.96 149.56 
 

nd-88.54 28.09 280.92 
 

3.72-27.29 16.89 168.92 

JUM 4.40-59.25 29.20 292.04 
 

2.26-17.97 9.10 90.96 
 

nd-90.11 28.89 288.94 
 

6.60-31.67 19.34 193.45 

IDI 7.30-78.51 31.71 317.06 
 

nd-18.10 9.09 90.93 
 

nd-84.06 29.77 297.67 
 

nd-99.90 25.25 252.49 

IDO 2.29-67.20 26.99 269.91 
 

nd-19.92 10.41 104.05 
 

nd-75.32 24.93 249.26 
 

7.68-31.14 19.08 190.83 

REH 5.49-56.36 23.63 236.28 
 

3.82-23.90 11.83 118.26 
 

nd-66.17 24.06 240.61 
 

13.85-34.36 20.54 205.38 

UBP 11.35-50.32 27.53 275.30 
 

6.62-33.61 16.39 163.90 
 

4.88-69.45 25.60 256.02 
 

25.52-66.78 36.66 366.62 

NWTI 7.07-87.87 30.47 304.74 
 

9.53-130.19 35.77 357.67 
 

2.20-176.34 46.36 463.59 
 

19.77-159.02 51.84 518.35 

NWTT 26.40-82.96 49.52 495.21 
 

15.09-146.82 44.50 444.99 
 

6.97-186.55 54.74 547.42 
 

24.25-276.39 68.47 684.68 

NWTE 10.57-93.02 34.10 341.01 
 

12.61-98.36 33.10 330.98 
 

3.09-95.92 34.56 345.63 
 

19.29-176.79 52.03 520.32 

BLA 11.27-87.72 41.75 417.49 
 

6.14-52.71 27.32 273.22 
 

6.30-108.38 40.12 401.23 
 

13.11-59.82 31.01 310.12 

Range 2.29-93.02 18.36-49.52 183.63-495.21 
 

nd-146.82 9.09-44.50 90.93-444.99 
 

nd-186.55 24.06-54.74 240.61-547.42 
 

nd-276.39 16.86-68.47 168.92-684.68 

Mean 
 

30.87 308.70 
  

18.41 184.12 
  

31.78 317.84 
 

 31.50 314.99 

SD 
 

7.38 73.78 
  

11.20 112.03 
  

8.85 88.45 
 

 14.83 148.29 

nd = not detected 
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Figure 8.4 A: Seasonal trend of OCPs in pore water, B: seasonal trend of OCPs in sediment 

(n=3). 

 

8.4.3. Seasonal Mean Levels of OCPs in Water, Pore Water and Sediment 

 

The general seasonal average levels of OCPs were lower in water than in pore water and 

sediment. The sediment averages for all seasons were higher than in water and pore water. 

This was not unexpected because sediment are known to be both a pollutant sink and carrier 

and source of contaminants in the aquatic environment (Chee et al., 1996, Chau, 2006, Usha, 

2013, Hongwen and Wen, 2011).  
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Figure 8.5 Mean seasonal concentrations: A- in water, B- in pore water, C- in sediment. 
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The highest mean concentration was generally found in winter for all matrices. The winter, 

autumn and spring mean concentrations did not differ significantly for sediment because, 

being less mobile, its concentration in OCPs will take a relatively longer time to change 

significantly, except in the presence of extreme conditions like those in summer. The 

seasonal climatic mild conditions like those in autumn and spring may not change the 

sediment concentrations immediately. A monitoring study which covers more than one year 

is needed to know their temporal change in sediment.  The lowest mean concentration was 

obtained in spring for water samples and in summer for pore water and sediment samples 

(Figure 8.5). The mean concentrations of water in summer were a bit high due to increase in 

concentration at wastewater treatment sites (NWTI, NWTO and NWTE) during that period 

probably due to continued release of household wastewater which was not much influenced 

by climatic conditions. 

 

8.5 CONCLUSION 
 

Based on a year monitoring, we present the first comprehensive assessment and seasonal 

variations of levels of OCPs in the Umgeni River. The concentrations of selected OCPs were 

generally higher in the following order of increasing concentrations: unfiltered water, 

unfiltered pore water and sediment during the winter sampling season. However, for 

sediment, the autumn and spring seasons also presented higher concentrations as in winter. In 

all matrices, the difference between winter and summer concentrations was statistically 

significant. In most cases the difference of concentrations between autumn and spring was 

not statistically significant. Seasonal variation of OCPs in the river may be governed by 

certain phenomena such as precipitation, volatilisation, atmospheric deposition and 

biogeochemical degradation among others. Our investigation focussed on surface water and 

surface sediment and further investigations are needed to understand seasonal distributions in 

deep water and sediment depth. 
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ABSTRACT 

 

The assessment and seasonal variation of organochlorine pesticides (OCPs) and 

polychlorinated biphenyls (PCBs) in the Umgeni River bank soil was investigated. Soxhlet 

extraction and gas chromatography-mass spectrometry were used for sample treatment and 

analysis respectively. The seasonal OCP total levels ranged between 2.52-82.65 ng/g,dw) 

with a mean of 24.33 4.55 ng/g, dw in winter, not detected (nd)-76.54 ng/g with a mean of 

13.50 5.33 ng/g, dw in summer, nd-158.51 ng/g with a mean of 42.62 10.41 ng/g, dw in 

autumn and nd-91.96 ng/g with a mean concentration of 21.38 6.42 ng/g, dw in spring. The 

PCB total concentrations varied between 10.46-89.46 ng/g with a mean of 25.47 13.21 ng/g, 

dw in winter, nd-77.32 ng/g with a mean of 11.79 7.15 ng/g, dw in summer, nd-80.40 ng/g 

with a mean of 26.79 6.98 ng/g, dw in autumn and 4.64-85.35 ng/g with a mean of 19.61 

8.11ng/g, dw in spring. The highest mean concentrations were observed in autumn and the 
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lowest in summer for both OCPs and PCBs. The difference between these two seasons’ 

concentrations was statistically significant. The second highest mean concentrations were 

recorded in winter. The winter and spring mean concentrations were not statistically 

significant.  

 

Keywords: Umgeni River, OCPs, PCBs, seasonal variation, river bank soil 

 

9.1 INTRODUCTION 

 

The occurrence and seasonal distribution of persistent organic pollutants (POPs) in the 

environment is not static but highly dynamic. The temporal and seasonal trends of 

concentrations of organic pollutants in various environmental matrices have been extensively 

documented (Hornbuckle et al., 1994, Yenisoy-Karakasx et al., 2012, Di Leo et al., 2014, 

You et al., 2011, Salihoglu et al., 2013, Kaya et al., 2012). The changes of concentrations of 

POPs such as organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in 

time and space are dependent on seasonality or seasonal variations which determine their fate 

and behaviour in all biotic and abiotic environments (Noegrohati et al., 2008). The seasonal 

variation of patterns of both OCPs and PCBs in soil is governed by their physical-chemical 

properties on one hand and mostly by regional geographic conditions on the other hand. The 

leading factors in seasonal variation include temperature differences, precipitation, specificity 

of congener properties, physiological behaviour of biota, etc. which induce the six major 

ways of dissipation including volatilization, photo-oxidation, chemical oxidation, sorption, 

leaching and biodegradation (Quantin et al., 2005).  These phenomena occur more speedily in 

tropical conditions than in temperate conditions or arctic/sub-arctic regions  (Hassan, 1994, 

Larsson et al., 1995). Both OCPs and PCBs have a tendency to volatilise from soil, water and 

vegetation to air due to high summer temperatures (Halsall et al., 1999). The water solubility 

and the vapour pressure of individual OCPs and PCBs play an important role in its 

volatilization (Walker et al., 1996). 

 

Both soil and air temperatures have a fundamental effect on partitioning of OCPs and PCBs 

and therefore on their deposition (Jury et al., 1987). Lower temperatures increase deposition 

rates and decrease re-volatilization processes.  Temperature-dependent seasonal variations 

have been observed in soil and research has shown that in some regions, the concentrations of 
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PCBs decreased in soil with an increase in annual temperatures (Wilcke and Amelung, 2000). 

Ma and his team reported lower concentrations of PCBs in soil during summer than in winter 

which they attributed to temperature increase (Ma et al., 2007). Seasonal precipitations also 

play a role in OCP and PCB seasonal distribution.  It not only transfers the airborne OCPs 

and PCBs to water bodies but also induces surface runoff to the aquatic environment thus 

leading to higher concentrations in the water matrix (Blemle and Larsson, 1997, Barber and 

Writer, 1998).  

 

Extensive research has been carried out to study the occurrence of OCPs and PCBs in 

different environmental matrices in South Africa such as freshwater dwelling animals 

(Barnhoorn et al., 2015a), in birds (van Wyk et al., 2001, Bouwman et al., 2008), in human 

milk (van Dyk et al., 1987), in air (Batterman, 2008), in lakes (Greichus et al., 1977) and 

rivers (Sibali et al., 2008) but none of these studies have considered the seasonality of these 

contaminants in these matrices. Seasonality studies are important as they allow researchers to 

determine the movement and partitioning of pollutants between different matrices based on 

climate conditions. 

 

To our knowledge, there is no study of the status of seasonal variation of persistent organic 

pollutants (POPs) such as organochlorine pesticides and polychlorinated biphenyls in this 

river or its bank soil. Therefore, the aim of this study was to assess and evaluate the seasonal 

fluctuations of the levels of OCPs and PCBs in the bank soil system of the Umgeni River 

catchment in KwaZulu-Natal Province of South Africa.  This river water is consumed by 

people and livestock and in addition the river banks, in some locations, are used to grow 

crops such as, vegetables which are known to take up these pollutants thus resulting in human 

exposure based on consumption of these contaminated vegetables.  It is the first seasonal 

study on the river bank soil which will provide much needed information to other researchers 

in this field and in the South African context. The structures of all monitored analytes were 

given in figure 9.1. 
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 Figure 9.1 Structures of OCPs and PCBs monitored. 

 

9.2 MATERIALS AND METHODS 

 

9.2.1. Reagents, Standards and Apparatus 

 

Solvents used for extraction were high pressure liquid chromatography (HPLC) grade. 

Dichloromethane (DCM), hexane and toluene were obtained from Sigma Aldrich, South 

Africa. The florisil (MgO3Si residue analysis grade, mesh 60-100, pore size 60Å) used for 
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clean-up and OCP and PCB standards were also purchased from Sigma Aldrich. Anhydrous 

sodium sulfate (Na2SO4) gold line (CP) used as a drying agent and silicon carbide boiling 

stones (CSi) were bought from Associated Chemical Enterprises (ACE, South Africa) and 

sulfuric acid (98%) was obtained from Promark Chemicals (USA).  The test sieves (ss 200 

mm  x 100 μm to ss 200 mm  x 600 μm) used for sieving, were obtained from DLD 

Scientific, South Africa. 

 

9.2.2. Sample Collection 

 

The sampling activities were organised in four periods for four South African seasons. The 

autumn samples were collected from 08-10
th

 May 2013; the winter samples were collected 

from 15-17
th

 July 2013, the spring samples from 25-27
th 

September 2013 and summer from 

11-13
th

 February 2014. Fifty six samples (fourteen samples each season) were collected from 

14 sampling sites, including 52 river bank soil samples and 4 bio-solid samples, using an 

auger. The samples were stored in 150 mL glass bottles previously washed with hot water 

and detergent and rinsed with sulfuric acid and deionised water respectively. Before sampling 

the sample bottles were rinsed three times with river water at the site. The bottles filled with 

river bank soil were capped with caps lined with aluminium foil and kept in an ice chest at 

4 °C and transported to the laboratory. Sites were selected in agricultural, industrial and 

residential areas to show the effects of the various activities along the river on the soil. The 

sampling sites and their geographical coordinates are shown in Table 9.1 and Figure 9.2. 
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Figure 9.2 Map of sampling sites with the sample collection locations identified in red dots 

(maps were generated from GPS coordinates using an online tool—GPS visualizer). 
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Table 9.1 List of Umgeni River sampling sites and GPS coordinates in the downstream direction. 

sample code sample name coordinates site description 

  
South East 

 
MDI Midmar Dam inlet 29° 29′ 16.05'' 30° 09' 23.10'' Dam for water supply inlet 

MDO Midmar Dam outlet 29° 29' 34.02'' 30° 12' 09.13'' Dam for water supply outlet 

HOF Howick Falls 29° 29' 18.18'' 30° 14' 19.70'' Water falls 

AFI Albert Falls inlet 29° 26' 31.94'' 30° 19' 47.10'' Dam for water supply inlet 

AFO Albert Falls outlet 29° 26' 01.81'' 30° 25' 55.76'' Dam for water supply outlet 

NAD Nagle Dam 29° 35' 08.42'' 30° 37' 23.94'' Dam water 

JUM Joining point Umgeni/Msunduzi 29° 37' 16.61'' 30° 40' 46.59'' River bank surface soil 

IDI Inanda Dam inlet 29° 39' 05.20'' 30° 48' 06.24'' Dam for water supply inlet 

IDO Inanda Dam outlet 29° 42' 55.74'' 30° 52' 07.69'' Dam for water supply outlet 

REH Reservoir Hills 29° 47' 08.05'' 30° 56' 25.51'' River bank surface soil 

UBP Umgeni Business park 29° 48' 19.05'' 30° 58' 58.08'' River bank surface soil 

NWTT 
Northern wastewater treatment after 

treatment 
29° 47' 47.02'' 30° 59' 50.06'' 

Pond containing treated water from the 

treatment plant 

NWTE Northern wastewater treatment effluent 29° 47' 47.08'' 30° 59' 51.05'' 
Discharge point of treated water to the 

river 

BLA Blue Lagoon 29° 48' 41.03'' 31° 02' 12.05'' 
Discharge point of the river water to the 

Indian ocean 
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9.2.3. Sample Treatment 

 

9.2.3.1. Drying and extraction 

On arrival at the laboratory, the samples were transferred onto aluminium foil and air dried 

for 5 days in an isolated drying room. After drying, the stones and other objects such as 

plastics, glass and wood, were hand-picked. The dried soil was ground using a mortar and 

pestle and sieved using test sieves (ss 200 mm  x 100 μm to ss 200 mm  x 600 μm). A 

sample of dried and sieved soil (60 g) was transferred into a cellulose extraction thimble and 

placed in the soxhlet extractor fitted with a 500 mL round bottom flask seated in a heating 

mantle. The samples (EPA, 1996b) were extracted with 300 mL of toluene for 24 hours 

(modified EPA method 3540C). Toluene was found to be the best solvent to extract 

compounds having aromatic rings in their chemical structure (Oleszek-Kudlak et al., 2007).   

 

9.2.3.2. Concentration and clean-up 

The extract obtained from soxhlet extraction was concentrated using a rotary evaporator 

(Heidolph Instruments GmbH & Co.kG) to about 5 mL. The concentrated extract was loaded 

onto a hexane pre-eluted florisil column containing 10 g of anhydrous sodium sulfate on top 

and cleaned-up. The column was eluted using increasing polarity fractions of hexane:DCM 

solvent system composed of 94% hexane: 6% DCM, 85% hexane: 15% DCM, 50% 

hexane:50% DCM and 100% DCM respectively. The four fractions obtained were combined 

in a round bottom flask and concentrated using a rotary evaporator to about 5 mL. The extract 

was then quantitatively transferred to a poly top vial and air dried. The dried extract was 

reconstituted with DCM to exactly 2.00 mL and analyzed for OCPs and PCBs using gas 

chromatography-mass spectrometry (GC-MS). 

 

9.2.4. Instrumental analysis        

 

The samples were analysed using an Agilent 6890 series gas chromatography with mass 

spectrometer (MSD5973). The GC was equipped with a ZB-5MS capillary column, 0.25 mm 

internal diameter, 0.25 μm film thickness and 30 m length (Hewlett Packard; Houston, TX). 

Aliquots of 2 μL were injected onto the GC column using a splitless mode and the MS was 

operated using the selective ion monitoring (SIM) acquisition mode. The carrier gas was 

ultra-purified helium gas. The injector and detector were set at 250 and 280 
o
C respectively. 
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The MS source was operated at 250 °C. The analysis of OCPs and PCBs were done 

separately in order to avoid co-elution of analytes and overlapping of peaks. The oven 

programme was initially set at 120 °C and increased to 290 °C with a ramping rate of 

14 °C/min and held for 2 min. The scan mode of the mass spectrometer was used to identify 

the target OCPs and PCBs, together with the National Institute of Standards (NIST) library 

and a comparison of the retention times of reference standards with the retention times of the 

analyte peaks. The analyte quantification was carried out using peak areas of the compound 

of interest and by the use of external calibration standards at the following calibration levels: 

0.25, 0.5, 1, 2, 4 and 8 μg/mL. All samples were analysed in triplicate and the mean was 

calculated. 

 

9.3 QUALITY ASSURANCE  

 

All the experimental steps were subjected to quality control and assurance measures. The 

percent recoveries of targeted OCPs and PCBs were obtained using real soil samples. Two 

subsamples of the same mass and from the same sample were chosen. The first subsample 

was spiked and the second left unspiked, and both were extracted and analysed. The percent 

recoveries (%𝑅) were obtained by calculating the ratio of the difference obtained by 

subtracting the concentration of unspiked subsample (𝑋𝑢) from that of spiked subsample (𝑋𝑠) 

and known spiked concentration of standard (𝐾), multiplied by 100 (Equation 9.1) (Harry et 

al., 2008). Recoveries varied from 51.67 to 116.97% (Table 9.2). The limits of detection 

(LOD) and quantification (LOQ) were determined as three and ten times respectively of the 

standard deviation of three calibration intercepts (𝑠) divided by the average slope (𝑚) 

(Equations 9.2 and 9.3) (Shrivastava and Gupta, 2011). Solvent blanks were run regularly 

through the GC system to determine the presence of interferences. In order to determine the 

variation of the initial calibration curve and ensure it was minimal, the 0.5 μg/mL multi-

element standard for OCPs and PCBs were run after each batch of samples. Procedural 

blanks were used through all stages of sample treatment and analysis and no OCPs and PCBs 

were detected in the blank samples. The analysis of mass spectra, the comparison of retention 

times with those of reference standards and National Institute of Standards (NIST) library 

were used for identification of analytes. In addition, the base peaks together with other two 

confirming ions for each compound of interest (Table 9.2) were used in selective ion 

monitoring (SIM) mode. 
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%𝑅 =  
𝑋𝑠 −  𝑋𝑢

𝐾
 ∗ 100 … … … … … … … … (9.1) 

LOD =
3𝑠

𝑚
… … … … … … … … … … … … . . . (9.2) 

LOQ =
10𝑠

𝑚
… … … … … … … … … … … … . (9.3) 

 

Table 9.2 Ions monitored, % recoveries, limits of detection (LOD) and quantification (LOQ). 

analytes ions monitored % recovery LOD (ng/g) LOQ (ng/g) 

OCPs 

    HCB 284, 249, 142 68.10.058 0.50 1.66 

HCH 219, 183, 147 108.43.81 0.50 1.66 

heptachlor 374, 272, 237 103.77.24 0.50 1.62 

aldrin 327, 293, 263 53.1610.37
25

 0.78 2.59 

o,p-DDE 318, 284, 246 87.664.77 0.96 3.20 

p,p'-DDE 318, 281, 246 51.671.62
26

 0.62 2.07 

o,p'-DDD/dieldrin
27

 320/380, 235/263, 165/147 87.372.08 1.04 3.45 

endrin 317, 263, 207 84.696.04 1.02 3.41 

p,p'-DDD/o,p-DDT
28

 320/235, 235/199, 165/165 89.132.61 1.23 4.11 

mirex 402, 272, 237 103.225.84 1.15 3.83 

PCBs 

    PCB28 256, 186, 150 60.680.97 0.76 2.52 

PCB52 292, 220, 150 78.730.58 0.21 0.71 

PCB77 292, 255, 220 64.741.47 0.92 3.06 

PCB101 326, 291, 254 72.630.86 0.30 0.99 

PCB105 326, 254, 184 71.880.74 0.28 1.12 

PCB138 360, 290, 145 72.691.38 0.22 0.75 

PCB153 360,290, 145 74.741.95 0.31 1.03 

PCB180 394, 324, 162 77.82.55 0.19 0.66 

 

 

                                                 
25 When scanned, the mixture of OCPs investigated showed the presence of chlordene. This compound may have been 

produced by photocatalytic degradation of aldrin (Bandala., et al. 2002). This may have resulted in aldrin’s low recovery. 
26 The p,p’-DDE standard chromatogram showed the presence of DDMU which suggests that some of the p,p’-DDE may 

have been degraded into this compound which is its breakdown product (Thomas et al., 2008) and consequently contributed 

to its low recovery. 
27   o,p’-DDD and dieldrin could not be resolved on the GC and were reported as a single peak. 
28 p,p’-DDD and o,p-DDT could not be resolved on the GC and were reported as a single peak. 
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9.4 RESULTS AND DISCUSSION  

 

The 12 selected OCPs and 8 selected PCBs were investigated in this study. The discussion 

focuses on the monitoring of the seasonal variations of the 20 analytes above-mentioned by 

analysing their distribution in Umgeni River bank soil during the South African winter, 

summer, autumn and spring seasons. 

 

9.4.1. Seasonal Variation of OCPs in River Bank Soil  

 

In total, 52 river bank soil samples (13 each season) and 4 bio-solid samples (1 each season) 

from the wastewater treatment outlet were analysed. The concentrations (𝐶) in the soil and 

bio-solid samples were calculated using Equation 9.4 below (USEPA, 2008, USEPA, 2007). 

𝐶 =
𝐶𝑒𝑥 ∗  𝑉𝑒𝑥

𝑊𝑠
… … … … … … … … … … … (9.4) 

Where: 𝐶𝑒𝑥 = the concentration of the compound in the extract in ng/mL 

            𝑉𝑒𝑥= the extract volume in mL 

            𝑊𝑠 = sample weight (dw) in g  

 

The concentrations of different OCPs at various sampling sites for all seasons are presented 

in Table 9.3. The OCP levels varied from 2.52–82.65 ng/g with a mean of 24.33 4.55 ng/g 

in winter, non-detected (nd)–76.54 ng/g with a mean of 13.50 5.33 ng/g in summer, nd-

158.51 ng/g with a mean of 42.62 10.41 ng/g in autumn and nd–91.96 ng/g with a mean of 

21.38 6.42 ng/g in spring. The highest mean concentration (42.62 10.41 ng/g) and mean 

total levels (∑12 
OCPs = 426.16 104.10 ng/g) were obtained in autumn. This was because the 

weather conditions in this season were mild. Autumn is known to have mild precipitations 

(autumn average monthly rainfall in KwaZulu-Natal: 40.4-96.7 mm) (DWO, 2011) and the 

runoff would have favoured the accumulation of the OCPs from the surrounding environment 

into the river bank soil. Research by Qi and his team found that during the wet season, the 

runoff contributes much to the accumulation of contaminants in bank soil (Qi et al., 2014, Fu 

and Wu, 2006). In addition, the lower temperatures also may have contributed much to the 

atmospheric deposition of the OCPs into the river bank soil all contributing to the 

accumulation of OCPs in the soil during this season (Siddik and Yucel, 2014b). The 

combined contribution of both phenomena mentioned-above increased autumn concentrations 

more than in winter season which has only atmospheric deposition as the contributing factor.    
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On the contrary the lowest mean concentration and mean total levels were recorded in 

summer. Among others, there are actually two factors that may have contributed significantly 

to the distribution of the OCPs in soil, namely runoff and vaporisation. Since the 

precipitations were actually high in summer (average monthly rainfall in KwaZulu-Natal: 

96.7-126.6 mm), there should have been an increase in concentration of the pollutants in bank 

soil due to runoff from soil that is higher up. However, this was not the case, probably 

because the runoff effect of gathering OCPs in bank soil was dominated by vaporization of 

the pollutants to the atmosphere since the summer ambient temperatures were high (28.8–

38.6 °C). Huang and co-workers found that evaporation of pollutants from soil is the major 

source of the phasing out of OCP pollutants from soil to the air (Huang et al., 2014). As the 

temperature rises, vaporisation of pollutants occurs which results in a decrease in its 

concentration in soil and an increase in their levels in air (Sofuoglu et al., 2004, Hillery et al., 

1997). The p-value (p ˂ 0.0001) obtained by the t-test method indicated a statistically 

significant difference between OCP mean levels in the river bank soil in autumn and in 

summer. 

 

The second highest levels were obtained in winter (Table 9.3). This is a dry and cold season. 

The precipitation was little to none (winter average monthly rainfall in KwaZulu-Natal: 28.6-

37.4 mm) (DWO, 2011) which meant there was no runoff. The ambient temperatures were 

very low (12.3-19.2 °C) which would have resulted in little to no evaporation of pollutants to 

the air. However, due to low air temperatures, there may have been OCP deposition from 

atmosphere to soil. The persistent organic pollutants are known to re-condense in the 

atmospheric air and deposit to land and therefore increase their normal level in soil (Siddik 

and Yucel, 2014a, Huang et al., 2014).  
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Table 9.3 Seasonal concentrations of OCPs in Umgeni River bank soil. 

  
winter (ng/g) 

   
summer(ng/g) 

   
autumn(ng/g) 

   
spring (ng/g) 

 

Site code range mean ∑OCPs 
 

range mean ∑OCPs 
 

range mean ∑OCPs 
 

range mean ∑OCPs 

MDI 4.43-64.90 21.18 211.82 
 

nd-21.53 11.35 113.54 
 

nd-88.74 30.76 307.61 
 

5.68-31.26 18.70 186.96 

MDO 2.52-43.36 23.60 236.01 
 

nd-18.64 10.08 100.82 
 

1.41-79.78 30.79 307.89 
 

2.88-50.41 18.60 185.96 

HOF 8.36-65.33 28.41 284.09 
 

nd-24.00 12.28 122.84 
 

5.07-99.01 39.69 396.94 
 

3.43-91.96 30.65 306.47 

AFI 12.81-59.71 25.44 254.40 
 

nd-38.96 14.18 141.82 
 

8.62-104.22 46.42 464.22 
 

nd-62.33 24.72 247.25 

AFO 5.93-53.77 20.04 200.44 
 

nd-29.96 10.81 108.11 
 

3.87-102.61 42.42 424.23 
 

nd-39.59 16.57 165.72 

NAD 7.51-56.30 23.75 237.48 
 

nd-27.79 12.56 125.59 
 

4.06-100.98 38.68 386.83 
 

4.21-48.82 22.67 226.70 

JUM 5.81-37.08 18.34 183.38 
 

nd-25.81 9.19 91.94 
 

nd-123.64 37.87 378.70 
 

3.57-31.10 14.39 143.94 

IDI 11.82-53.87 28.48 284.82 
 

nd-27.15 9.64 96.38 
 

nd-142.83 35.78 357.79 
 

nd-32.41 13.07 130.67 

IDO 4.24-39.10 18.78 187.76 
 

nd-27.71 9.23 92.29 
 

11.61-151.40 47.93 479.27 
 

nd-27.92 13.64 136.43 

REH 3.58-49.41 21.43 214.27 
 

nd-21.36 10.33 103.32 
 

nd-122.26 41.80 418.02 
 

nd-24.97 17.04 170.39 

UBP 14.94-38.97 22.12 221.21 
 

nd-43.10 15.87 158.72 
 

11.24-158.51 60.78 607.80 
 

5.58-32.71 20.97 209.67 

NWTT 13.00-70.18 32.39 323.92 
 

nd-76.54 27.44 274.38 
 

16.07-147.35 67.14 671.45 
 

14.61-91.04 31.67 316.65 

NWTE 15.55-82.65 32.06 320.60 
 

nd-62.19 22.55 225.50 
 

11.94-80.44 34.93 349.27 
 

8.95-84.31 28.64 286.43 

BLA 12.32-60.81 24.66 246.58 
 

nd-27.49 13.44 134.41 
 

14.60-84.59 41.62 416.17 
 

10.56-47.27 27.95 279.51 

Range 2.52-82.65 18.34-32.39 183.38 
 

nd-76.54 9.19-27.44 91.94-274.38 
 

nd-158.51 30.76-67.14 307.61-671.45 
 

nd-91.96 130.67-316.65 13.07-31.67 

Mean 
 

24.33 243.34 
  

13.50 134.98 
  

42.62 426.16 
  

21.38 213.77 

SD 
 

4.55 45.50 
  

5.33 53.34 
  

10.41 104.10 
  

6.42 64.17 

nd = not detected 
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Figure 9.3 A-Seasonal mean OCP concentrations at each site, B- Trend of seasonal mean 

concentrations. 

 

The mixture of bio-solid and soil collected from NWTT was the most concentrated in OCPs 

in all seasons compared to river bank soil samples (Table 9.3 and Figure 9.3). This was 

expected since wastewater treatment plants were found to be sources of organic contaminants 

(Samara et al., 2006). The p-value indicated a pronounced statistically significant difference 

between winter and summer concentrations (p ˂ 0.0001) and winter and autumn 
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concentrations (p ˂ 0.0001). There was no statistically significant difference between winter 

and spring OCP levels (p = 0.1714) although winter seemed to show higher concentrations. 

The following figure shows the levels of OCPs in Umgeni River bank soil which varied in the 

order: autumn > winter > spring > summer (Figure 9.4). 

 

 

Figure 9.4 Radar chart showing OCP seasonal spatial distribution in the Umgeni river bank 

soil. 

 

9.4.2. Seasonal Variation of PCBs in River Bank Soil 

 

The bank soil from the Umgeni River was investigated for the PCB congeners. The results 

obtained are tabulated in Table 9.4 and Figure 9.5. The seasonal overall ranges and means of 

concentrations of congeners, were 10.46-89.46 ng/g with a mean of 25.47 13.21 ng/g in 

winter, nd-77.32 with a mean of 11.79 7.15 ng/g in summer, nd-80.40 ng/g with a mean of 

26.79 6.98 ng/g in autumn and 4.64–85.35 ng/g with a mean of 19.61 8.11 ng/g in spring. 

The lowest mean concentrations were found in summer. This may be explained by 

instantaneous air-soil exchange. During summer the ambient temperature was high (29.9-38.6 

°C) (Table 9.2) which encouraged volatilisation of the PCBs from soil into air. This was 

confirmed by Tasdemir and co-workers and Cabrerizo and his team from experiments on air-

soil exchange of PCBs where flux levels were positive and indicated volatility of PCBs from 

soil to air (Tasdemir et al., 2012, Cabrerizo et al., 2011). During the hot summer months, the 

soil raises its strength as a source of PCBs to the atmosphere (Cabrerizo et al., 2011, Elife et 

al., 2012, Salihoglu et al., 2013). The highest concentrations were noted in winter and 
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autumn. Studies found that the exchange of PCBs between soil and atmosphere tends to attain 

equilibrium but there is net deposition during winter combined with a decrease in fugacity
29

 

during the colder seasons (Ckover et al., 2008). This resulted in increased concentrations in 

the soil during winter. The high levels in autumn may be assigned to the deposition of PCBs 

onto the Umgeni River catchment area that occurs during autumn due to the low ambient 

temperatures together with runoff from surrounding industrial activities due to some low 

rainfall. The calculated probability using the t-test showed a statistically very significant 

difference between winter and summer levels (p = 0.0020) and extremely significant 

difference between summer and autumn levels (p ˂ 0.0001). However, the differences 

between winter and spring (p = 0.1691) and winter and autumn (p = 0.7425) concentrations 

were not statistically significant  (GraphPad, 2014).  

 

 

 

 

 

 

 

                                                 
29

 Fugacity can be defined as the escaping tendency or propensity to migrate. According to Harner et al. (2001), 

fugacities of a compound in soil (fs)  and air (fa)  can be calculated as follows: fs = CsRT ⁄ 0.41ΦOMKOA, where C: 

the concentration of the compound in the medium (mol m
-3

); R: gas constant (8.314 J mol
-1

 K
-1

); T: absolute 

temperature(K) , ΦOM:  the fraction of the organic matter in the soil and KOA: the octanol-air partitioning 

coefficient of the compound. 
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Table 9.4. Seasonal concentrations of PCBs in Umgeni River bank soil. 

 
winter (ng/g) 

 
summer (ng/g) 

 
autumn (ng/g) 

 
spring (ng/g) 

Site code range mean ∑PCBs 
 

range mean ∑PCBs 
 

range mean ∑PCBs 
 

range mean ∑PCBs 

MDI 15.27-39.83 26.35 210.78 
 

0.81-15.16 7.43 59.45 
 

0.75-46.51 16.00 127.97 
 

14.26-29.48 21.16 169.26 

MDO 15.76-37.55 25.52 204.15 
 

2.41-18.04 8.85 70.77 
 

2.55-58.16 23.72 189.76 
 

8.28-24.80 14.69 117.50 

HOF 17.52-49.95 34.39 275.09 
 

3.86-19.90 10.78 86.20 
 

12.53-59.55 27.69 221.54 
 

14.87-83.48 28.93 231.42 

AFI 18.53-33.98 22.89 183.13 
 

nd-13.04 5.62 44.95 
 

11.03-66.96 30.32 242.56 
 

10.40-63.36 27.11 216.90 

AFO 10.60-22.50 14.10 112.79 
 

3.41-16.93 9.07 72.58 
 

5.58-69.87 29.23 233.85 
 

8.71-51.07 18.60 148.83 

NAD 15.35-31.49 21.29 170.35 
 

3.34-16.52 9.22 73.77 
 

nd-67.45 21.81 174.47 
 

13.25-29.38 18.79 150.31 

JUM 16.02-31.31 21.97 175.79 
 

2.47-19.16 9.08 72.63 
 

7.80-51.57 22.57 180.52 
 

6.10-18.65 10.78 86.21 

IDI 10.79-36.59 18.09 144.73 
 

1.80-18.85 7.94 63.54 
 

5.39-67.07 25.63 205.03 
 

6.23-20.46 11.40 91.23 

IDO 11.85-33.68 18.16 145.29 
 

5.97-25.25 12.92 103.36 
 

0.77-67.10 19.89 159.09 
 

4.64-17.71 9.87 79.00 

REH 11.68-29.01 17.62 140.93 
 

nd-26.53 7.32 58.53 
 

4.01-65.08 24.46 195.72 
 

9.51-77.78 19.66 157.26 

UBP 12.64-26.67 18.29 146.34 
 

5.15-29.16 13.86 110.85 
 

14.88-79.37 38.98 311.83 
 

5.63-44.61 15.71 125.65 

NWTT 36.73-89.46 67.87 542.95 
 

7.03-77.32 34.47 275.74 
 

5.49-58.26 25.56 204.47 
 

21.61-85.35 40.17 321.33 

NWTE 12.54-55.19 23.61 188.91 
 

nd-74.66 16.43 131.47 
 

7.29-77.08 26.91 215.30 
 

6.81-73.31 20.44 163.51 

BLA 10.46-73.77 26.38 211.03 
 

nd-56.18 12.06 96.50 
 

7.20-80.40 42.33 338.61 
 

5.45-59.21 17.17 137.40 

Range 10.46-89.46 14.10-67.87 112.79-542.95 
 

nd-77.32 5.62-34.47 44.95-275.74 
 

nd-80.40 16.00-38.98 127.97-338.61 
 

4.64-85.35 9.87-40.17 79.00-321.33 

Mean 
 

25.47 203.73 
  

11.79 94.31 
  

26.79 214.34 
  

19.61 156.84 

SD 
 

13.21 105.69 
  

7.15 57.19 
  

6.98 55.86 
  

8.11 64.92 
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Figure 9.5 Mean concentrations of PCBs in river bank soil at each site (n =3). 

 

Figures 9.6 and 9.7 show the trends of levels of PCBs across the Umgeni River from the 

source to the mouth. The general trend for all four seasons is that the concentrations of 

pollutants increased from the source at Midmar Dam inlet (MDI) to Howick Falls (HOF). 

The increase in concentrations at HOF could be due to industrial activities taking place at 

Howick town (an industrial plant is situated close to the Howick Falls sampling site). From 

Howick, the concentrations decreased up to Albert Falls outlet (AFO) and then did not vary 

much downstream until Reservoir Hills (REH). From REH, the concentration increased to a 

maximum at NWTT. Note that the NWTT is a wastewater treatment site where the bio-solid 

constituted of mainly decomposed plant material (as a result of eutrophication) which was 

removed from treated water and thrown aside. The increase of concentration in autumn at 

UBP was mainly due to the heavy machinery and other equipments that were used for road 

construction at that site, which may be the source of PCBs. (The road construction activities 

were high in autumn during sampling time). 
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Figure 9.6 Trend of seasonal PCB mean concentrations across sites (n = 3). 

 

            The dried bio-solid was treated as soil samples. There is a need for further research to 

investigate which and how much pollutants are up-taken by which species of  plants growing 

at that site of treated water before discharge into the river. After NWTT, the concentrations 

revert to levels as before. 

 

 

 

Figure 9.7 Radar chart showing PCB seasonal spatial distribution in the Umgeni river bank 

soil. 
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9.5 CONCLUSIONS 

 

In this study, soil samples were collected from the banks of the Umgeni River, in KwaZulu-

Natal in four South African seasons during 2013-2014 and were analysed for OCPs and 

PCBs. The highest mean concentrations were observed in autumn and winter for both OCPs 

and PCBs. This increase in concentration may be mainly due to runoff from neighbouring 

environments and atmospheric deposition which allows accumulation of pollutants at the 

bank of the river. The lowest mean levels were observed in summer where the runoff effect 

may have been dominated by the vaporisation of contaminants from soil to air due to high 

temperatures. Although the winter concentrations seem to be higher than spring 

concentrations for both OCPs and PCBs in bank soil samples, the difference of levels 

between the two seasons was not statistically significant. The calculated probability showed a 

statistically significant difference between summer and autumn and summer and winter levels 

for both OCPs and PCBs. 
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CHAPTER TEN 

 

GENERAL CONCLUSIONS AND RECOMMENDATIONS  

 

10.1 CONCLUSIONS 

 

The analysis and monitoring of persistent organic pollutants in the Umgeni River revealed 

that this river is polluted by OCPs and PCBs in substantial amount. The EPA method of 

extraction and analysis was modified and developed to fit the analysis of our various 

matrices. The different matrices investigated accumulate the organic pollutants in the 

following increasing order: surface water, sediment pore water, river bank soil and surface 

sediment. Generally, the levels of contaminants were found to be higher in winter that in 

other seasons. The lowest concentration was found in the summer season for all investigated 

matrices. Note that the t-test showed that there was always a statistically significant 

difference between summer and other seasons with respect to pollutant concentrations for all 

environmental matrices studied.  Generally the Northern wastewater treatment works may be 

considered as the source of these pollutants at the point of discharge back into the river close 

to its mouth situated at the Indian Ocean in Durban. However, some levels of the studied 

OCPs and PCBs were reduced as shown in chapters 4 to 9. 

 

The sediment had the highest levels of OCPs and PCBs confirming it as a sink for these 

pollutants. A relatively high portion of these organic pollutants was also found to be present 

in sediment pore water.   

 

Compared to some of the international standards such as Canadian Quality Guidelines, the 

results of this study were generally higher than the interim freshwater sediment quality 

guidelines (ISQG) but when compared to Ontario Sediment Quality Guidelines, the level of 

some investigated pollutants were lower than their Lowest Effect levels (LEL). All the 

pollutant concentrations were far below their severe effect levels (SEL). The Umgeni River 

water PCB and OCPs levels were higher than the EPA maximum recommended levels in 

fresh water.  
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10.2 RECOMMENDATIONS FOR FUTURE WORK 

 

 

The following are recommended for future studies on OCPs and PCBs in the Umgeni River 

environment: 

 The surface water was analysed in combined form (freely dissolved + dissolved 

organic carbon + total suspended solids) because this is the form of the water that 

humans and animals are exposed to. For future research, separation of different phases 

should be carried out and, compared. In the case of soil and sediment, the organic 

matter content may be determined for each sampling station in order to compare 

organic matter contents versus concentrations of pollutants.    

 The screening of extracts obtained from the studied matrices from the Umgeni River 

showed the presence of other various micro-pollutants in the river such as polycyclic 

aromatic hydrocarbons, steroids, polycyclic musks, long chain hydrocarbons, 

polyphenols, phthalates, pharmaceuticals, chlorinated pesticides such as 

chlorothalonil and chloroxylenol etc. Future research should focus on the analysis and 

monitoring of the above-mentioned micro-contaminants in the Umgeni River as well 

to provide knowledge on other organic pollutants in this river.  

 Particle size of sediment and soil is an important phenomenon that affects POP 

partitioning between sediment and water.  Future research on the effect of particle size 

on partitioning would provide important information in understanding why some 

organic pollutants partition more to some types of soils and would help to explain the 

possible high levels in some matrices. 

 Some other environmental compartments in the river were not investigated. In the 

future a research project on analysis of POPs in aquatic life such as fish or plant life 

along the Umgeni River would provide information on how these pollutatns in the 

Umgeni River affect the aquatic life.  

 Results obtained from this study allow us to confirm that the Umgeni River is 

chemically polluted; therefore, we recommend the local government of the province 

of KwaZulu-Natal, in collaboration with the water research commission (WRC) of 

South Africa, to put in place an adequate mechanism to regularly monitor organic 

pollutants in the Umgeni River. This will allow the stakeholders to take action and 

develop methods to reduce pollution in this river. 
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APPENDICES 

 

APPENDIX A: CHROMATOGRAMS 

 

A.1 PCB Chromatograms: A- mixture of 8 PCB standards, B-clean sediment extract 

fortified with 0.125 ppm of PCB standard mixture  
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A.2 OCP chromatograms: A-mixture of 12 OCP standards, B- clean water extract 

fortified with 0.125 ppm of OCP standard mixture 
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APPENDIX B: EXAMPLES OF CALIBRATION CURVES AND CALCULATIONS 

 

B.1 Example of PCB calibration curves: PCB180 and calculation of its concentration in 

water/pore water samples. 

 

 

conc.(µg/mL) peak area 

0.25 9022 

0.5 25496 

1 50956 

2 111010 

4 251902 

8 547255 

  

 

 

 
 

conc. (µg/mL) peak area 
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conc. (µg/mL) peak area 

0.25 
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Run  slope intercept R
2
 

1 69596 -16751 0.9981 

2 69570 -17009 0.9981 

3 69518 -17290 0.9979 

Mean 69561.33 -17016.67 0.9980 

 

Overall equation: y = 69561.33x - 17016.67 

 

Solving equation by replacing “y” by three peak areas of PCB180 obtained by running, for 

example, Inanda Dam inlet winter water extract three times in the GC-MS system, we obtain:  

 x1 = 0.76243525 μg/mL        x2 =  0.76301028 μg/mL                  x3 = 0.78310765 μg/mL     

     

Since 1 L (1000 mL) of water was extracted and the extract concentrated to 2 mL, if we 

consider: 𝐶𝑒𝑥 = the concentration of PCB180 in the Inanda Dam inlet winter water extract in 

ng/mL. 

                𝑉𝑒𝑥   = The Inanda Dam inlet concentrated extract volume in mL. 

                𝑉𝑠 = The Inanda Dam inlet water sample volume in mL. 

                𝐶𝑃𝐶𝐵180,𝑤𝑎𝑡𝑒𝑟= Concentration of PCB180 in water of Inanda Dam inlet in ng/mL 

 

Therefore: 𝐶1𝑃𝐶𝐵180,𝑤𝑎𝑡𝑒𝑟 =  
𝐶𝑒𝑥 ∗ 𝑉𝑒𝑥 

𝑉𝑠
 

                                        = 

(𝟎.𝟕𝟔𝟐𝟒𝟑𝟓𝟐𝟓 ∗ 𝟏𝟎𝟎𝟎)𝒏𝒈

𝒎𝑳
 ∗ 𝟐𝒎𝑳

𝟏𝟎𝟎𝟎 𝒎𝑳
 

                                        = 1.5248705 𝑛𝑔/𝑚𝐿 

               𝐶2𝑃𝐶𝐵180,𝑤𝑎𝑡𝑒𝑟 =  
𝐶𝑒𝑥 ∗ 𝑉𝑒𝑥 

𝑉𝑠
  

                                        =  

(0.76301028 ∗ 1000)𝑛𝑔

𝑚𝐿
∗2𝑚𝐿

1000 𝑚𝐿
 

                                        = 1.52602056 ng/mL 

                  𝑪𝟑𝑷𝑪𝑩𝟏𝟖𝟎,𝒘𝒂𝒕𝒆𝒓 =  
𝐶𝑒𝑥 ∗ 𝑉𝑒𝑥 

𝑉𝑠
  

                                           =  

(0.78310765∗1000)𝑛𝑔

𝑚𝐿
∗2𝑚𝐿

1000 𝑚𝐿
 

                                     = 1.5662153 ng/mL 
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The standard deviation of the three concentrations was calculated, using Microsoft excel and 

was found to be 0.02. 

 

The final concentration was given by calculation of the mean of 𝐶1𝑃𝐶𝐵180,𝑤𝑎𝑡𝑒𝑟, 

 𝐶2𝑃𝐶𝐵180,𝑤𝑎𝑡𝑒𝑟 and  𝑪𝟑𝑷𝑪𝑩𝟏𝟖𝟎,𝒘𝒂𝒕𝒆𝒓. 

 𝐶𝑃𝐶𝐵180,𝑤𝑎𝑡𝑒𝑟 =  
𝐶1𝑃𝐶𝐵180,𝑤𝑎𝑡𝑒𝑟  + 𝐶2𝑃𝐶𝐵180,𝑤𝑎𝑡𝑒𝑟 +  𝐶3𝑃𝐶𝐵180,𝑤𝑎𝑡𝑒𝑟

3
 

                                        =
1.5248705

𝑛𝑔

𝑚𝐿
 + 1.52602056 

𝑛𝑔

𝑚𝐿
 +  1.5662153

𝑛𝑔

𝑚𝐿
 

3
        

                                     = 1.53903545 𝑛𝑔/𝑚𝐿 

Finally the concentration of the congener PCB180 in Inanda Dam inlet water, during winter, 

was 1.54 0.02 ng/mL. 

 

 

B.2 Example of OCP calibration curves: o,p’-DDE and calculation of its concentration 

in soil/sediment  samples. 

conc. (µg/mL) peak area 

0.25 9807 

0.5 34813 
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conc. (µg/mL) peak area 

0.25 9719 

0.5 33621 

1 75400 

2 133030 

4 332102 

8 636256 

  

 

 

 

conc. (µg/mL) peak area 
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run slope intercept R 
2
 

1 83985 -13339 0.9974 

2 81338 -10157 0.9976 

3 83763 -11660 0.9976 

Mean 83028.67 -11718.67 0.9975 

 

Overall equation: y = 83028.67x - 11718.67 

 

Solving equation by replacing “y” by three peak areas of o,p-DDE obtained by running, for 

example, Midmar Dam inlet spring river bank soil extract three times in the GC-MS system, 

we obtain:  

 

 x1 = 0.66054778 μg/mL        x2 =  0.56058231 μg/mL                  x3 = 0.75516570 μg/mL 

 

Since 60 g of soil was extracted and the extract concentrated to 2 mL, if we consider: 

          𝐶𝑒𝑥 = the concentration of o,p-DDE in the Midmar Dam outlet spring river bank soil 

           concentrated extract in ng/mL, 

          𝑉𝑒𝑥 = the extract volume in mL, 

          𝑊𝑆 = the sample weight (dry weight) in g, 

  𝐶𝑜,𝑝′−𝐷𝐷𝐸,𝑠𝑜𝑖𝑙= Concentration of o,p’-DDE in soil of Midmar Dam outlet in ng/mL,  

Therefore: Therefore: 𝐶1𝑜,𝑝−𝐷𝐷𝐸,𝑠𝑜𝑖𝑙 =  
𝐶𝑒𝑥∗𝑉𝑒𝑥 

𝑊𝑠
 

y = 83763x - 11660 
R² = 0.9976 
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                                        = 

(𝟎.𝟔𝟔𝟎𝟓𝟒𝟕𝟕𝟖 ∗ 𝟏𝟎𝟎𝟎)𝒏𝒈

𝒎𝑳
 ∗ 𝟐𝒎𝑳

𝟔𝟎 𝒈
 

                                        = 22.0182593 𝑛𝑔/𝑔 

                                    𝐶2𝑜,𝑝−𝐷𝐷𝐸,𝑠𝑜𝑖𝑙 =  
𝐶𝑒𝑥∗𝑉𝑒𝑥 

𝑊𝑠
 

                                        = 

(𝟎.𝟓𝟔𝟎𝟓𝟖𝟐𝟑𝟏 ∗ 𝟏𝟎𝟎𝟎)𝒏𝒈

𝒎𝑳
 ∗ 𝟐𝒎𝑳

𝟔𝟎 𝒈
 

                                                       = 18.686077 𝑛𝑔/𝑔 

 

                                     𝐶3𝑜,𝑝−𝐷𝐷𝐸,𝑠𝑜𝑖𝑙 =  
𝐶𝑒𝑥∗𝑉𝑒𝑥 

𝑊𝑠
 

                                        

                                                      = 

(𝟎.𝟕𝟓𝟓𝟏𝟔𝟓𝟕𝟎 ∗ 𝟏𝟎𝟎𝟎)𝒏𝒈

𝒎𝑳
 ∗ 𝟐𝒎𝑳

𝟔𝟎 𝒈
 

                                                       

                                                      = 25.17219 𝑛𝑔/𝑔 

 

The standard deviation of the three concentrations was calculated using Microsoft excel and 

was obtained to be 3.24 

 

The mean of the three different concentrations, 𝐶1𝑜,𝑝−𝐷𝐷𝐸,𝑠𝑜𝑖𝑙  , 𝐶2𝑜,𝑝−𝐷𝐷𝐸,𝑠𝑜𝑖𝑙 and 

𝐶3𝑜,𝑝−𝐷𝐷𝐸,𝑠𝑜𝑖𝑙, were calculated to obtain the final concentration:  

𝐶𝑜,𝑝−𝐷𝐷𝐸,𝑠𝑜𝑖𝑙 =  
𝐶1𝑜,𝑝−𝐷𝐷𝐸,𝑠𝑜𝑖𝑙  + 𝐶2𝑜,𝑝−𝐷𝐷𝐸,𝑠𝑜𝑖𝑙 +  𝐶3𝑜,𝑝−𝐷𝐷𝐸,𝑠𝑜𝑖𝑙

3
 

                                        =
22.0182593

𝑛𝑔

𝑔
 + 18.686077 

𝑛𝑔

𝑔
 +  25.17219

𝑛𝑔

𝑔
 

3
        

                                     = 21.9588421 𝑛𝑔/𝑔 

 

Finally the concentration of the o,p’-DDE in Midmar Dam outlet river bank soil, during 

spring, was 21.96 3.24 ng/g, dw. 
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APPENDIX C: GRAPHS OF CONCENTRATIONS OF ANALYTES 

 

C.1. A-Concentrations of individual PCB congeners in water at each site for winter 

water samples. B- Total concentrations of PCBs at each site in winter water samples 
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C.2. A- Concentrations of individual PCB congeners in pore water at each site for 

winter water samples. B- Total concentrations of PCBs at each site in winter pore water 

samples 
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C.3. A-Concentrations of individual PCB sediment at each site for winter water 

samples. B- Total concentrations of PCBs at each site in winter pore water samples 
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C.4 Total average concentrations in each matrix for winter samples 
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APPENDIX D: INDIVIDUAL PCB CONCENTRATIONS IN SUMMER, AUTUMN AND SPRING 

D.1 Individual PCB concentrations in summer surface water samples 

     
concentration (ng/mL) 

  
 

Site PCB28 PCB77 PCB101 PCB52 PCB153 PCB105 PCB138 PCB180 ∑PCB  

MDI 0.190.19 0.220.02 0.420.03 0.480.03 0.490.07 0.340.03 0.370.02 0.830.14 3.340.37  

MDO 0.580.58 0.570.02 0.760.06 1.090.04 0.960.04 0.740.06 0.750.04 1.360.10 6.800.42  

HOF 0.390.39 0.470.11 0.260.27 0.840.12 0.700.07 0.510.03 0.550.02 2.440.04 6.160.69  

AFI 0.530.53 0.630.03 0.790.02 0.930.10 0.820.02 0.680.03 0.710.02 1.180.04 6.260.30  

AFO 0.330.33 0.390.02 0.560.02 0.630.02 0.610.01 0.480.02 0.540.02 0.840.03 4.380.18  

NAD 0.410.41 0.550.14 0.680.13 0.740.09 0.900.11 0.580.10 0.630.10 1.030.04 5.520.86  

JUM 0.640.64 0.720.02 0.870.04 1.040.14 0.900.03 0.750.04 0.800.03 1.110.06 6.840.42  

IDI 0.560.56 0.660.06 0.820.13 0.87012 0.980.02 0.710.09 0.770.11 1.120.11 6.500.81  

IDO 0.630.63 0.710.25 0.88017 1.250.41 0.960.15 0.760.13 0.800.15 1.180.12 7.181.59  

REH 0.330.33 0.510.13 0.590.10 1.030.14 0.830.08 0.500.07 0.540.09 1.120.03 5.450.77  

UBP 0.320.32 0.390.05 0.550.04 0.730.12 0.610.04 0.460.05 0.480.02 0.840.06 4.380.41  

NWTI 0.390.39 0.450.03 0.560.02 0.620.03 0.630.07 0.510.07 0.520.07 1.030.04 4.710.38  

NWTT 0.440.44 0.510.14 0.640.07 0.660.03 0.550.15 0.500.08 0.560.09 0.560.12 4.420.82  

NWTE 0.610.61 0.650.08 0.770.04 0.830.04 0.830.06 0.630.02 0.660.03 1.080.05 6.060.41  

BLA 0.670.67 0.840.20 0.900.18 0.930.15 1.100.15 0.770.14 0.820.15 1.150.18 7.181.36  

∑PCB 7.001.40 8.261.34 10.041.32 12.691.58 11.890.07 8.920.96 9.490.97 16.881.15 85.189.79  

min 0.190.03 0.220.02 0.260.02 0.480.02 0.490.01 0.340.02 0.370.02 0.560.03 3.34018  

mean 0.470.09 0.550.09 0.670.09 0.850.11 0.790.07 0.590.06 0.630.06 1.130.08 5.680.65  

max 0.670.21 0.840.26 0.900.27 1.250.41 1.100.15 0.770.14 0.820.15 2.440.18 7.181.59  
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D.2 Individual PCB concentrations in summer surface pore water samples 

 
Concentration (ng/mL) 

     
Site PCB28 PCB77 PCB101 PCB52 PCB153 PCB105 PCB138 PCB180 ∑PCB 

MDI 2.840.17 3.300.08 4.190.15 3.850.21 3.970.11 3.070.11 3.590.26 7.041.84 31.852.94 

MDO 1.320.67 1.550.86 1.971.08 1.911.09 1.911.09 1.410.76 1.540.84 8.060.15 19.656.55 

HOF 0.950.11 0.110.06 2.340.47 2.040.30 2.040.34 1.240.24 1.480.16 9.780.59 19.992.27 

AFI 2.090.02 3.110.38 4.320.35 3.400.19 3.240.08 2.330.05 4.530.22 9.640.12 32.651.40 

AFO 0.860.09 1.040.17 1.830.22 2.060.16 1.880.23 1.180.08 1.510.18 3.870.14 14.231.26 

NAD 3.240.55 3.770.74 5.410.77 5.510.91 5.240.66 4.010.65 4.550.65 6.940.15 38.675.08 

JUM 4.570.42 5.130.76 7.250.81 7.030.93 6.900.76 5.400.55 5.960.59 12.660.69 54.925.49 

IDI 2.740.36 3.230.50 6.450.55 6.800.66 6.460.52 4.740.37 5.300.46 15.700.49 51.413.91 

IDO 1.780.43 3.900.32 6.530.17 7.830.42 6.990.35 4.550.35 5.500.34 13.360.34 50.432.72 

REH 3.820.40 5.900.58 7.890.38 8.590.62 8.190.44 6.170.37 6.700.38 12.870.51 60.143.69 

UBP 2.200.13 3.830.11 6.090.17 6.550.28 6.450.18 4.400.17 5.060.05 11.450.18 46.041.26 

NWTT 2.100.14 2.110.43 5.990.14 6.610.16 5.950.07 3.810.16 4.470.30 13.460.18 44.511.59 

NWTE 0.930.16 0.990.73 5.160.48 5.850.27 5.130.33 2.990.26 3.990.34 14.930.30 39.972.87 

BLA 1.640.43 1.480.13 3.180.36 3.550.27 3.180.22 1.930.26 2.440.37 7.110.36 24.512.40 

∑PCB 31.094.06 39.465.86 68.61 71.566.47 67.555.39 47.234.37 56.615.13 146.866.02 528.9743.44 

min 0.860.02 0.110.06 1.83 1.910.16 1.880.07 1.180.05 1.480.05 3.870.12 14.231.26 

mean 2.220.29 2.820.42 4.90 5.110.46 4.820.39 3.370.31 4.040.37 10.490.43 37.783.10 

max 4.570.67 5.900.86 7.89 8.591.09 8.191.09 6.170.76 6.700.84 15.701.84 60.146.55 
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D.3 Individual PCB concentrations in summer surface sediment samples 

   
Concentration (ng/g) 

     
Site PCB28 PCB77 PCB101 PCB52 PCB153 PCB105 PCB138 PCB180 ∑PCB 

MDI 8.751.35 6.572.26 7.660.30 13.502.26 18.053.63 7.451.80 13.051.23 29.412.55 104.4415.39 

MDO 5.740.43 5.420.73 5.580.40 11.220.98 12.251.33 9.020.66 8.820.37 30.532.14 88.607.04 

HOF 5.080.84 3.160.60 4.120.72 9.931.18 12.030.76 9.540.24 8.331.15 37.921.09 90.136.57 

AFI 9.500.74 6.721.24 8.112.75 13.610.97 18.333.55 15.020.44 14.641.72 59.213.23 145.1414.65 

AFO 14.393.77 4.991.47 9.692.18 18.092.05 19.032.75 15.362.36 14.862.10 26.561.27 122.9817.95 

NAD 2.070.52 3.300.52 2.690.22 7.300.23 8.170.44 4.460.17 4.880.55 13.960.49 46.833.15 

JUM 1.300.52 5.620.72 3.460.68 6.310.17 6.950.54 3.820.58 4.090.47 13.243.18 44.797.34 

IDI 0.741.11 5.320.56 3.030.53 6.050.57 5.240.55 2.990.31 3.280.56 13.682.50 40.326.19 

IDO 5.000.63 3.450.86 4.221.05 9.760.99 10.861.05 7.370.88 7.520.96 19.341.85 67.528.78 

REH 5.051.15 2.420.23 3.740.47 5.800.58 15.691.63 6.190.48 6.090.72 13.851.87 58.836.44 

UBP 4.460.46 1.280.28 2.870.48 9.381.50 13.242.08 7.490.76 7.530.46 18.000.16 64.276.28 

NWTI 27.650.57 4.670.24 16.163.76 2.201.15 54.133.78 0.570.48 34.162.00 73.582.20 213.1014.98 

NWTT 25.380.38 16.120.38 20.750.60 27.970.13 34.612.55 13.731.92 47.712.25 71.953.20 258.2212.18 

NWTE 18.311.15 14.011.22 16.161.49 17.412.19 14.801.27 11.680.58 31.073.70 48.580.47 172.0312.45 

BLA 5.511.53 2.890.20 4.203.98 15.643.52 9.962.54 9.702.68 19.192.27 35.622.93 102.7020.70 

∑PCB 138.9416.20 85.9611.50 112.4519.62 174.1718.48 253.3328.45 124.4114.34 225.2122.50 505.4429.12 1619.91160.20 

min 0.740.43 1.280.20 2.690.22 2.200.13 5.240.44 0.570.17 3.280.37 13.240.16 40.323.15 

mean 9.261.08 5.730.77 7.501.31 11.611.23 16.891.90 8.290.96 15.011.50 33.701.94 107.9910.68 

max 27.653.77 16.122.26 20.753.98 27.973.52 54.133.78 15.362.68 47.714.27 73.583.23 258.2220.70 
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D.4 Individual PCB concentrations in summer surface soil samples 

 
Concentration (ng/mL) 

   
Site PCB28 PCB77 PCB101 PCB52 PCB153 PCB105 PCB138 PCB180 ∑PCB 

MDI 1.390.57 0.811.16 6.720.95 14.400.81 9.731.09 5.871.16 5.361.18 15.162.18 59.459.09 

MDO 2.411.44 3.131.30 8.451.02 18.041.89 9.721.25 7.361.31 7.091.66 14.581.72 70.7711.58 

HOF 5.072.31 3.862.34 9.832.22 19.903.36 11.382.50 8.752.18 8.772.44 18.642.15 86.2019.51 

AFI nd nd 5.580.75 13.040.91 6.750.91 4.160.49 3.430.80 11.990.98 44.956.61 

AFO 4.112.21 3.411.75 8.201.76 16.931.73 10.411.66 7.271.49 6.921.29 15.332.27 72.5814.14 

NAD 3.741.75 3.341.32 9.301.55 16.522.44 10.361.67 7.871.36 7.841.72 14.801.82 73.7713.63 

JUM 3.721.40 2.471.44 7.941.67 15.721.71 9.491.94 7.061.81 7.051.33 19.160.89 72.6312.18 

IDI 2.151.27 1.801.47 6.791.41 14.511.25 7.981.54 5.931.37 5.541.15 18.851.79 63.5411.24 

IDO 5.972.61 6.212.26 11.502.28 21.142.87 12.752.25 10.081.83 10.462.03 25.252.71 103.3618.84 

REH 1.941.60 nd 4.741.02 11.931.44 6.181.25 3.741.21 3.461.02 26.532.35 58.5311.21 

UBP 5.151.79 5.702.11 12.582.54 22.142.86 15.032.50 10.342.71 10.762.61 29.163.81 110.8520.93 

NWTT 7.332.24 7.030.47 11.920.60 55.292.57 59.532.32 23.070.17 34.231.90 77.321.18 275.7411.45 

NWTE nd 0.082.35 3.132.46 16.901.02 2.811.20 12.081.02 21.814.82 74.669.59 131.4723.95 

BLA nd nd 4.881.33 18.613.47 6.610.88 6.761.43 3.461.30 56.184.82 96.5015.39 

∑PCB 42.9822.69 37.8421.20 111.5721.57 275.0828.32 178.7122.94 120.3519.53 136.1825.25 417.6238.26 1320.33199.76 

min nd nd 3.130.60 11.930.81 2.810.88 3.740.17 3.430.80 11.990.89 44.956.61 

mean 3.071.62 2.701.51 7.971.54 19.652.02 12.771.64 8.601.40 9.731.80 29.832.73 94.3114.27 

max 7.332.61 7.032.35 12.582.54 55.293.47 59.532.50 23.072.71 34.234.82 77.329.59 275.7423.95 

         nd = not detected 
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D.5 Individual PCB concentrations in autumn surface water samples 

   
Concentrations of PCBs in water  (ng/mL) 

  
Site PCB28 PCB77 PCB101 PCB52 PCB153 PCB105 PCB138 PCB180 ∑PCB 

MDI 1.820.02 0.930.06 0.810.03 0.250.06 0.420.30 0.230.02 0.010.03 1.510.24 5.980.76 

MDO 0.760.11 0.410.02 0.780.02 0.320.05 0.390.03 0.350.02 0.130.02 3.200.04 6.350.31 

HOF 1.560.06 0.650.13 0.870.05 0.130.27 0.310.01 0.330.05 0.110.02 1.140.13 5.110.73 

AFI 1.320.02 0.620.05 0.620.02 0.100.04 0.160.04 0.150.02 nd 0.600.04 3.580.28 

AFO 0.450.06 0.230.04 0.600.03 0.180.04 0.210.02 0.220.03 0.010.03 0.760.03 2.640.29 

NAD 1.160.04 0.560.04 0.650.01 0.150.01 0.210.03 0.180.03 nd 1.160.04 4.070.20 

JUM 2.650.02 0.960.44 0.870.02 0.220.05 0.320.08 nd 0.010.02 0.490.13 5.520.95 

IDI 1.570.03 0.450.03 0.700.02 0.110.01 0.150.02 0.150.18 nd 0.690.17 3.820.32 

IDO 1.120.04 0.550.02 0.480.00 nd 0.020.01 nd nd 0.240.12 2.430.27 

REH 1.440.03 0.670.02 0.760.02 0.230.02 0.280.02 0.260.02 0.020.03 3.020.04 6.680.21 

UBP 1.650.02 0.740.04 0.740.03 0.190.04 0.180.03 0.210.03 0.010.03 1.220.06 4.940.28 

NWTI 2.460.09 1.200.15 1.190.09 0.730.43 0.590.14 0.520.10 0.540.09 1.510.08 8.731.18 

NWTT 2.890.17 0.510.22 0.920.07 0.750.01 0.520.08 0.220.09 0.080.05 1.450.44 7.351.14 

NWTE 1.980.07 0.590.02 0.830.07 0.220.07 0.330.03 0.380.11 0.150.09 0.880.13 5.360.59 

BLA 2.800.07 0.930.17 0.980.05 0.250.02 0.350.03 0.300.24 0.080.05 1.520.02 7.210.66 

∑PCB 25.640.84 10.001.47 11.810.54 3.841.15 4.450.89 3.490.99 1.170.57 19.371.72 79.778.16 

min 0.450.02 0.230.02 0.480.00 nd 0.020.01 nd nd 0.240.02 2.430.20 

mean 1.710.06 0.670.10 0.790.04 0.260.08 0.300.06 0.230.07 0.080.04 1.290.11 5.320.54 

max 2.890.17 1.200.44 1.190.09 0.750.43 0.590.30 0.520.24 0.540.09 3.200.44 8.731.18 

                           nd = not detected 
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D.6 Individual PCB concentrations in autumn pore water samples 

   
Concentrations of PCBs in pore water ( ng/mL) 

  
Site PCB28 PCB77 PCB101 PCB52 PCB153 PCB105 PCB138 PCB180 ∑PCB 

MDI 12.831.04 6.931.17 5.490.99 1.291.30 1.890.92 1.250.99 0.030.16 5.801.37 35.517.95 

MDO 10.881.04 4.671.65 3.500.98 1.280.22 1.120.16 0.990.30 0.350.22 5.210.57 27.995.14 

HOF 6.710.83 2.950.87 3.680.88 1.080.88 1.490.12 1.020.74 0.500.36 5.881.27 23.325.95 

AFI 6.780.63 3.700.49 4.120.89 1.070.64 1.710.45 1.321.05 0.200.21 6.612.30 25.516.65 

AFO 6.640.53 2.960.41 3.240.22 0.990.68 1.200.09 1.050.97 0.280.21 7.090.98 23.454.09 

NAD 14.322.27 4.350.90 5.280.79 0.660.47 4.961.31 1.001.37 1.060.69 10.311.09 41.958.90 

JUM 14.531.07 1.891.02 3.421.05 0.631.34 2.130.13 1.231.50 0.090.65 1.114.48 25.0311.24 

IDI 16.101.66 7.621.27 10.392.02 3.021.66 3.340.89 3.172.11 1.270.39 13.771.65 58.6711.65 

IDO 19.521.63 11.702.16 13.542.57 2.742.52 6.975.28 4.053.02 0.430.12 17.712.52 76.6519.83 

REH 13.861.51 5.951.61 11.382.39 3.131.72 4.030.22 3.262.32 0.960.40 16.315.02 58.8915.19 

UBP 12.431.59 5.660.67 11.141.53 3.551.80 4.580.68 3.711.93 1.331.23 17.901.91 60.3111.34 

NWTT 9.831.11 9.341.06 13.382.22 5.542.31 6.400.09 5.211.66 3.140.57 10.070.78 62.919.80 

NWTE 10.461.12 10.881.25 11.923.42 1.880.78 6.370.56 3.390.97 2.860.68 10.682.28 58.4511.06 

BLA 6.101.98 4.340.59 6.570.72 2.651.00 3.540.25 3.211.42 2.100.42 12.441.28 40.967.65 

∑PCB 160.9918.01 82.9515.11 107.0620.66 29.5117.33 49.7511.17 33.8520.34 14.606.30 140.8927.51 619.61136.44 

min 6.100.53 1.890.41 3.240.22 0.630.22 1.120.09 0.990.30 0.030.12 1.110.57 23.324.09 

mean 11.501.29 5.921.08 7.651.48 2.111.24 3.550.80 2.421.45 1.040.45 10.061.97 44.269.75 

max 19.522.27 11.702.16 13.543.42 5.542.52 6.971.28 5.211.02 3.141.23 17.905.02 76.6519.83 
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D.7 Individual PCB concentrations in autumn sediment samples 

   
Concentrations of PCBs in sediment (ng/g) 

  
Site PCB28 PCB77 PCB101 PCB52 PCB153 PCB105 PCB138 PCB180 ∑PCB 

MDI 52.440.71 17.370.56 23.520.93 11.760.89 4.641.45 13.822.93 6.981.36 19.233.36 149.7712.20 

MDO 55.332.12 20.890.81 20.912.12 8.361.40 7.513.82 10.310.86 7.760.90 21.341.39 152.4113.43 

HOF 50.771.02 15.592.34 18.612.83 7.312.22 7.733.16 10.342.02 7.932.23 19.780.73 138.0616.54 

AFI 50.941.99 14.031.13 22.041.50 11.090.41 6.991.61 13.681.23 6.070.50 72.623.55 197.4611.92 

AFO 42.180.26 11.451.91 16.430.29 5.050.45 7.251.17 6.341.41 0.100.03 17.293.98 106.099.84 

NAD 42.790.84 8.215.30 14.720.27 3.070.38 5.371.06 4.410.29 2.780.41 21.892.50 103.2711.05 

JUM 45.951.49 14.530.84 15.580.83 5.961.51 5.641.88 5.620.10 2.250.03 24.646.99 120.1713.67 

IDI 44.132.39 13.594.19 14.810.25 3.960.84 5.390.93 5.050.56 1.530.04 19.993.72 108.4512.92 

IDO 41.050.73 30.823.10 12.121.79 2.531.48 3.340.89 3.440.30 1.920.66 23.170.42 118.409.37 

REH 42.880.13 14.322.28 14.460.51 4.091.26 3.481.25 4.050.24 2.010.34 19.002.78 104.288.79 

UBP 49.170.59 18.612.97 16.121.03 7.111.27 5.911.54 6.891.25 0.511.02 26.487.08 130.7916.76 

NWTI 72.072.42 17.825.59 22.010.45 11.610.48 13.022.38 11.680.30 9.721.58 32.600.48 190.5413.68 

NWTT 61.132.71 9.701.02 17.130.55 5.440.06 8.132.12 7.630.99 3.341.05 90.250.88 202.749.39 

NWTE 50.691.36 13.192.44 18.200.38 5.940.83 7.070.59 6.480.49 1.190.58 63.0411.38 165.7918.05 

BLA 82.159.11 97.403.48 23.550.55 7.230.93 10.062.33 14.771.63 8.683.33 67.060.87 310.8922.23 

∑PCB 783.6627.88 317.5237.97 270.2414.28 100.5214.42 101.5126.16 124.5014.59 62.7714.40 538.3650.12 2299.09199.83 

min 41.050.13 8.210.56 12.120.25 2.530.06 3.340.59 3.440.10 0.100.03 17.290.42 103.278.79 

mean 52.241.86 21.172.53 18.020.95 6.700.96 6.771.74 8.300.97 4.181.67 35.893.34 153.2713.32 

max 82.159.11 97.405.59 23.552.83 11.762.22 13.023.82 14.772.93 9.721.58 90.2511.38 310.8922.23 
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D.8 Individual PCB concentrations in autumn soil samples 

   
Concentrations of PCBs in soil (ng/g) 

   
Site PCB28 PCB77 PCB101 PCB52 PCB153 PCB105 PCB138 PCB180 ∑PCB 

MDI 46.511.54 7.103.96 18.602.24 5.762.35 2.383.60 6.801.04 0.751.66 40.070.39 127.9716.79 

MDO 55.031.94 20.011.16 22.261.75 10.604.64 9.803.49 11.353.20 2.552.30 58.165.43 189.7623.91 

HOF 59.550.56 22.301.26 26.931.15 12.602.02 13.091.03 18.441.70 12.534.74 56.090.84 221.5413.30 

AFI 57.612.12 29.730.44 29.102.21 15.681.28 14.893.26 17.571.76 11.030.63 66.964.10 242.5615.81 

AFO 69.871.14 34.726.87 25.302.07 11.752.17 11.523.55 10.182.00 5.581.72 64.932.93 233.8522.45 

NAD 46.370.74 19.690.45 17.891.46 6.300.12 8.420.93 7.860.55 0.491.01 67.458.99 174.4714.25 

JUM 44.852.23 17.920.33 22.531.65 10.781.67 13.620.19 11.461.35 7.801.17 51.572.69 180.5211.28 

IDI 51.730.34 15.740.94 24.431.24 13.050.64 13.770.41 13.841.24 5.390.81 67.072.96 205.038.58 

IDO 37.881.31 18.300.67 16.411.00 5.930.06 6.750.35 5.950.61 0.770.73 67.100.22 159.094.95 

REH 52.100.62 21.740.34 24.020.81 9.502.58 9.901.61 9.371.24 4.011.18 65.084.33 195.7212.70 

UBP 79.371.81 36.120.60 38.081.69 22.631.63 20.881.74 21.462.24 14.882.48 78.439.73 311.8321.93 

NWTT 57.230.60 16.771.01 27.401.07 11.151.13 13.961.86 14.200.70 5.491.24 58.266.40 204.4714.01 

NWTE 50.143.68 16.191.40 26.311.25 10.851.12 14.221.47 13.221.06 7.290.97 77.086.17 215.3017.12 

BLA 80.407.93 28.171.90 60.617.18 24.433.37 40.735.87 28.926.95 7.200.74 68.1410.64 338.6144.57 

∑PCB 788.6526.57 304.4921.35 379.8826.76 170.9924.76 193.9229.36 190.6325.63 85.7721.37 886.4065.83 3000.73241.64 

min 37.880.34 7.100.33 16.410.81 5.760.06 2.380.19 5.950.55 0.490.63 40.070.22 127.974.95 

mean 56.331.90 21.751.53 27.131.91 12.211.77 13.852.10 13.621.83 6.131.53 63.314.70 214.3417.26 

max 80.407.93 36.126.87 60.617.18 24.434.64 40.735.87 28.926.95 14.884.74 78.4310.64 338.6144.57 
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D.9 Individual PCB concentrations in spring surface water samples 

    
Concentration (ng/mL) 

   
Site PCB28 PCB77 PCB101 PCB52 PCB153 PCB105 PCB138 PCB180 ∑PCB 

MDI 0.530.06 0.610.07 0.670.07 0.680.06 0.590.05 0.460.05 0.510.06 0.810.11 4.840.51 

MDO 0.480.06 0.550.07 0.600.06 0.620.05 0.530.04 0.410.03 0.430.03 0.680.05 4.310.39 

HOF 0.440.06 0.540.06 0.590.06 0.610.06 0.530.04 0.390.05 0.430.05 0.670.05 4.200.44 

AFI 0.450.06 0.520.03 0.560.02 0.570.01 0.490.01 0.370.03 0.390.02 0.610.01 3.960.19 

AFO 0.440.05 0.510.03 0.560.03 0.580.02 0.490.02 0.370.01 0.400.03 0.630.03 3.980.23 

NAD 0.700.05 0.780.04 0.830.04 0.840.04 0.730.03 0.620.03 0.620.03 0.870.03 5.990.29 

JUM 0.550.04 0.630.03 0.670.04 0.690.05 0.600.05 0.480.03 0.510.03 0.680.04 4.800.30 

IDI 0.530.04 0.580.02 0.640.03 0.660.02 0.570.03 0.450.02 0.470.03 0.650.03 4.560.22 

IDO 0.570.03 0.710.03 0.680.03 0.690.02 0.600.03 0.480.02 0.500.02 0.690.02 4.910.20 

REH 0.500.02 0.620.02 0.620.04 0.650.02 0.560.03 0.430.02 0.460.02 0.840.02 4.680.20 

UBP 0.440.04 0.540.04 0.560.04 0.580.04 0.510.04 0.370.03 0.400.04 0.640.04 4.050.31 

NWTI 0.440.05 0.980.07 0.540.04 0.570.02 0.490.04 0.380.04 0.390.04 1.260.03 5.030.34 

NWTT 0.390.04 0.530.05 0.540.04 0.540.04 0.470.04 0.340.04 0.380.04 0.670.05 3.870.33 

NWTE 0.440.04 0.550.05 0.550.05 0.570.04 0.550.02 0.380.04 0.390.04 0.760.05 4.190.33 

BLA 0.310.05 0.420.06 0.460.05 0.480.03 0.410.05 0.290.04 0.360.02 0.590.04 3.320.34 

∑PCB 7.210.70 9.060.67 9.050.64 9.330.53 8.120.52 6.240.48 6.650.49 11.040.59 66.694.63 

min 0.310.02 0.420.02 0.460.02 0.480.01 0.410.01 0.290.01 0.360.02 0.590.01 3.320.19 

mean 0.480.05 0.600.04 0.600.04 0.620.04 0.540.03 0.420.03 0.440.03 0.740.04 4.450.31 

max 0.700.06 0.980.07 0.830.07 0.840.06 0.730.05 0.620.05 0.620.06 1.260.11 5.990.51 
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D.10 Individual PCB concentrations in spring pore water samples 

   
Concentration (ng/mL) 

    
Site PCB28 PCB77 PCB101 PCB52 PCB153 PCB105 PCB138 PCB180 ∑PCB 

MDI 4.750.39 7.190.28 5.880.33 5.890.43 5.350.38 4.340.32 4.640.23 6.610.30 44.642.66 

MDO 5.570.59 8.700.57 6.740.56 6.610.47 6.140.45 5.070.48 5.310.48 7.870.42 52.024.02 

HOF 2.490.28 4.100.38 3.310.34 3.290.27 2.980.31 2.290.27 2.520.25 7.070.33 28.042.42 

AFI 8.440.71 9.760.75 9.190.63 9.000.62 8.480.58 7.370.52 7.540.52 9.650.48 69.414.83 

AFO 6.090.85 12.021.26 7.500.75 7.530.59 6.900.66 5.590.54 5.900.51 10.430.54 61.955.70 

NAD 5.680.82 6.830.76 7.170.81 7.340.67 6.570.71 5.230.57 5.460.63 8.280.62 52.575.59 

JUM 6.641.42 8.131.27 8.911.17 9.020.88 8.000.84 6.600.98 6.850.95 10.940.79 65.088.31 

IDI 9.861.38 11.201.26 11.851.23 11.831.24 10.811.14 8.790.99 9.181.04 12.721.08 86.259.36 

IDO 6.031.03 7.431.07 8.780.84 9.210.63 7.920.74 5.670.75 6.210.80 9.980.54 61.256.39 

REH 6.360.76 16.541.25 8.470.67 8.230.55 7.540.67 6.010.57 6.280.48 12.930.52 72.375.48 

UBP 5.530.89 38.442.50 7.760.62 7.730.62 6.930.57 5.260.51 5.580.42 44.131.36 121.377.48 

NWTT 9.070.81 59.403.85 11.590.63 11.150.71 10.560.69 8.400.45 8.650.45 62.242.15 181.069.74 

NWTE 11.210.90 58.875.38 13.300.77 11.930.47 9.504.70 9.740.65 9.840.69 54.074.39 178.4617.96 

BLA 6.120.38 45.934.72 8.080.35 7.380.17 7.240.46 2.830.15 5.860.36 43.953.40 127.399.99 

∑PCB 11.2111.22 59.4025.31 13.309.70 11.938.31 10.8112.91 9.747.75 9.847.82 62.2416.90 181.0699.92 

min 2.490.28 4.100.28 3.310.33 3.290.17 2.980.31 2.290.15 2.520.23 6.610.30 28.042.42 

mean 6.700.80 21.041.81 8.470.69 8.300.59 7.490.92 5.940.55 6.420.56 21.491.21 85.857.14 

max 11.211.42 59.405.38 13.301.23 11.931.24 10.814.70 9.740.99 9.841.04 62.244.39 181.0617.96 
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D.11 Individual PCB concentrations in spring sediment samples 

   
Concentration (ng/g) 

    
Site PCB28 PCB77 PCB101 PCB52 PCB153 PCB105 PCB138 PCB180 ∑PCB 

MDI 19.735.17 17.961.76 21.491.72 10.673.74 20.661.93 23.362.81 16.513.99 33.460.24 163.8321.35 

MDO 17.412.41 16.742.04 16.191.80 16.161.34 16.142.02 14.301.86 13.841.59 39.564.58 150.3417.65 

HOF 18.534.24 21.743.63 20.382.02 15.950.65 19.402.10 18.970.37 15.500.31 45.070.46 175.5513.79 

AFI 12.810.82 7.242.29 13.232.93 14.550.68 14.411.29 15.598.07 17.404.91 42.090.70 137.3221.68 

AFO 10.271.94 8.523.03 11.721.57 12.172.66 12.573.69 14.150.71 8.090.75 43.230.43 120.7014.79 

NAD 9.571.50 9.151.68 9.861.48 11.681.50 11.020.72 8.872.06 9.460.50 24.993.19 94.6112.64 

JUM 14.284.31 9.950.06 12.351.51 11.790.16 11.370.11 8.710.10 12.382.63 16.500.33 97.339.20 

IDI 18.490.17 13.700.72 15.550.81 16.440.79 14.800.81 12.570.73 13.560.92 21.790.51 126.915.47 

IDO 6.921.56 5.121.60 7.401.12 8.470.69 7.971.26 5.890.91 6.360.84 13.590.58 61.728.55 

REH 13.032.40 14.530.48 20.912.59 23.132.88 15.541.61 21.181.05 14.161.81 23.040.67 145.5413.48 

UBP 12.393.78 16.034.62 14.731.38 14.732.38 9.551.51 12.822.25 19.097.66 45.170.53 144.4924.10 

NWTI 27.780.79 65.323.47 36.371.37 18.031.33 19.732.66 18.646.06 29.602.09 55.934.08 271.4021.86 

NWTT 84.464.43 57.687.31 75.2415.92 60.8111.32 76.768.40 49.089.14 51.674.39 71.605.02 527.2965.92 

NWTE 89.268.96 57.682.41 50.713.25 55.390.73 55.132.67 36.803.55 46.332.72 59.057.57 450.3531.85 

BLA 11.842.15 4.262.06 22.310.83 12.880.97 11.004.13 17.028.55 17.054.77 77.036.70 173.3830.14 

∑PCB 366.7644.63 325.6137.16 348.4240.30 302.8631.81 316.0434.93 277.9548.20 291.0039.88 612.1135.59 2840.75312.49 

min 6.920.17 4.260.06 7.400.81 8.470.16 7.970.11 5.890.10 6.360.31 13.590.24 61.725.47 

mean 24.452.98 21.712.48 23.232.69 20.192.12 21.072.33 18.533.21 19.402.66 40.812.37 189.3820.83 

max 89.268.96 65.327.31 75.2415.92 60.8111.32 76.768.40 49.089.14 51.677.66 77.037.57 527.2965.92 
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D.12 Individual PCB concentrations in spring soil samples 

   
Concentration (ng/g) 

    
Site PCB28 PCB77 PCB101 PCB52 PCB153 PCB105 PCB138 PCB180 ∑PCB 

MDI 14.261.02 19.510.92 18.530.97 29.480.07 19.891.10 18.050.80 21.892.01 27.651.33 169.268.22 

MDO 8.280.51 12.010.45 13.090.45 21.880.04 13.690.52 12.080.48 11.660.28 24.801.89 117.504.62 

HOF 14.870.09 16.652.98 22.830.23 31.082.00 21.910.25 21.810.71 18.802.38 83.482.55 231.4211.14 

AFI 10.851.05 10.400.93 21.003.01 34.630.08 14.482.32 17.514.26 44.677.69 63.361.03 216.9020.37 

AFO 8.710.40 10.861.03 14.370.27 23.190.45 14.691.28 12.560.61 13.391.06 51.074.13 148.839.24 

NAD 13.250.71 16.090.81 17.560.56 29.380.07 18.491.42 16.291.21 17.001.22 22.261.63 150.317.62 

JUM 6.100.33 7.690.74 10.170.33 18.650.29 10.950.31 8.810.20 8.800.42 15.041.51 86.214.14 

IDI 6.230.29 8.570.23 10.150.41 19.030.04 9.970.47 8.300.53 8.520.44 20.460.73 91.233.12 

IDO 4.640.56 7.240.20 8.810.20 16.370.25 9.270.21 7.280.29 7.670.45 17.711.15 79.003.32 

REH 11.730.47 9.531.59 11.160.48 17.680.79 9.510.38 9.600.86 10.270.38 77.781.94 157.266.89 

UBP 5.630.27 7.470.25 13.732.11 20.180.01 12.041.49 9.310.43 12.671.94 44.614.61 125.6511.11 

NWTT 28.741.40 51.046.07 37.601.49 26.653.30 39.852.57 21.610.68 30.500.73 85.351.94 321.3318.17 

NWTE 6.811.30 10.261.06 14.500.83 20.900.16 12.590.72 11.070.87 14.082.68 73.314.31 163.5111.94 

BLA 6.180.16 5.451.79 9.830.30 22.131.15 15.022.02 9.730.73 9.841.12 59.213.39 137.4010.66 

∑PCB 146.288.55 192.7819.00 223.3211.62 331.228.72 222.3415.07 184.0112.66 229.7622.81 666.0832.14 2195.80130.58 

min 4.640.09 5.450.20 8.810.20 16.370.01 9.270.21 7.280.20 7.670.28 15.040.73 79.003.12 

mean 10.450.61 13.771.36 15.950.83 23.660.62 15.881.08 13.140.90 16.411.63 47.582.30 156.849.33 

max 28.741.40 51.046.07 37.603.01 34.633.30 39.852.57 21.814.26 44.677.69 85.354.61 321.3320.37 

 

 



306 

 

 

 

APPENDIX E: INDIVIDUAL CONCENTRATIONS OF OCPs IN SUMMER, AUTUMN AND SPRING 

E.1 Individual OCP concentrations in summer surface water samples 

Concentration (ng/mL) 

Site HCB HCH heptachlor aldrin o,p'-DDE p,p'-DDE o,p'-DDD/Dieldrin endrin p,p'-DDD/o,p'-DDT mirex ∑OCP 

MDI nd nd nd 0.610.09 0.530.05 0.700.05 0.990.42 0.560.01 0.720.06 nd 4.100.68 

MDO nd 1.000.03 0.580.06 1.450.15 2.140.04 1.580.06 2.230.03 0.710.04 2.200.13 0.920.04 12.810.58 

HOF nd nd nd 0.640.05 nd 1.080.10 2.070.12 0.550.09 0.760.05 0.490.54 5.580.95 

AFI nd nd 0.210.02 0.900.03 0.840.06 1.070.03 1.730.10 0.720.04 0.950.03 nd 6.420.30 

AFO nd nd nd 0.740.02 0.770.02 0.900.03 1.530.06 0.620.04 0.880.03 nd 5.440.20 

NAD nd nd 0.200.04 0.960.10 0.930.10 1.090.11 1.750.10 0.980.07 1.030.06 0.760.47 7.701.03 

TUM 1.570.03 2.160.08 1.470.03 1.250.14 0.890.05 1.070.04 2.270.06 1.390.08 0.990.02 0.700.05 13.770.56 

IDI nd nd nd 0.650.04 0.630.01 1.450.09 2.620.09 0.490.05 0.780.03 nd 6.610.31 

IDO nd nd nd 0.700.05 0.700.01 0.840.04 1.460.02 0.530.04 0.810.01 nd 5.040.18 

REH nd 0.510.17 0.310.10 1.130.17 1.130.21 1.340.22 2.080.25 0.840.19 1.140.16 1.310.26 9.791.73 

UBP nd 0.550.34 0.320.14 1.440.36 1.440.31 1.361.16 2.654.62 1.150.36 1.180.10 1.680.91 11.768.29 

NWTI nd 1.660.08 1.020.02 1.560.01 2.010.07 2.680.04 3.020.04 1.920.06 2.390.03 nd 16.260.34 

NWTT nd 0.240.70 nd 0.890.12 2.060.67 2.170.69 2.750.69 1.300.55 1.350.18 1.040.40 11.804.01 

NWTE nd nd 0.400.11 1.381.33 0.740.11 1.990.17 2.451.49 1.231.24 0.720.03 1.080.62 9.985.10 

BLA nd nd 0.460.16 1.010.25 1.010.24 1.230.23 1.880.32 0.900.14 1.030.20 0.520.16 8.051.71 

∑OCP 1.570.03 6.131.40 4.960.68 15.312.93 15.821.93 20.553.06 31.468.40 13.903.00 16.921.10 8.493.45 135.1125.98 

min nd nd nd 0.610.09 nd 0.700.05 0.990.42 0.490.05 0.720.03 nd 4.100.68 

mean 0.100.01 0.410.09 0.330.05 1.020.20 1.050.13 1.370.20 2.100.56 0.930.20 1.130.07 0.570.23 9.011.73 

max 1.570.03 2.160.08 1.470.03 1.560.01 2.140.04 2.680.04 3.020.04 1.920.06 2.390.03 1.680.91 16.260.34 

nd= not detected 
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E.2 Individual OCP concentrations in summer pore water samples 

Concentration (ng/mL) 

Site HCB HCH Heptachlor aldrin o,p'-DDE p,p'-DDE o,p'DDD/Dieldrin endrin p,p'DDD/o,p'DDT mirex ∑OCPs 

MDI nd nd 2.020.66 5.760.19 4.920.11 5.390.50 9.000.32 5.660.56 nd 1.401.46 34.143.81 

MDO 1.791.46 3.661.32 3.670.09 7.780.92 4.960.62 6.200.45 10.260.58 nd 5.230.15 1.270.45 44.836.96 

HOF nd nd nd 4.160.48 2.280.38 3.380.18 5.880.14 6.010.81 nd 5.791.45 27.503.42 

AFI nd 0.941.51 3.650.24 8.151.32 4.300.36 4.550.18 9.660.35 4.371.04 nd 0.520.16 36.145.15 

AFO nd nd 2.021.01 6.420.17 4.432.82 7.580.46 13.960.45 4.631.22 7.000.47 1.720.40 47.767.00 

NAD nd nd nd 6.750.20 6.490.47 7.460.44 13.700.48 6.430.70 7.250.29 1.010.11 49.092.70 

TUM nd nd nd 10.871.04 7.660.47 9.570.35 17.251.22 5.871.98 9.450.20 1.180.35 61.855.62 

IDI nd nd nd 9.270.88 9.160.46 10.710.38 19.030.40 5.951.43 10.230.28 2.570.25 66.944.08 

IDO nd nd nd 10.270.41 9.650.14 11.920.12 22.421.31 8.210.23 11.940.51 1.450.18 75.862.90 

REH nd nd nd 8.600.34 8.130.85 9.360.52 16.610.51 5.510.21 9.130.40 1.760.18 59.102.99 

UBP nd nd nd 7.981.16 6.740.27 7.960.27 14.501.09 6.401.22 8.290.23 nd 51.894.24 

NWTT nd nd nd 7.880.61 8.230.49 10.130.41 17.911.45 6.821.11 9.570.49 0.890.36 61.434.91 

NWTE nd nd nd 9.660.95 8.370.20 9.540.19 16.830.49 6.981.17 9.490.29 1.910.38 62.783.68 

BLA nd nd nd 7.751.27 5.360.37 6.490.17 12.281.25 4.600.68 6.980.13 nd 43.463.86 

∑OCPs 1.791.46 4.602.84 11.352.00 111.309.94 90.708.01 110.244.62 199.3010.02 77.4512.34 94.563.45 21.485.73 722.7861.31 

min nd nd nd 4.1600.48 2.280.38 3.3800.18 5.8820.14 nd nd nd 27.503.42 

mean 0.1280.20 0.3290.38 0.8110.27 7.9501.32 6.4791.07 7.870.62 14.2361.34 5.5321.65 6.750.46 1.5340.76 51.638.17 

max 1.7921.46 3.6611.32 3.670.09 10.8731.04 9.650.14 11.920.12 22.421.31 8.210.23 11.940.51 5.791.45 75.862.90 

nd= not detected 
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E.3 Individual OCP concentrations in summer sediment samples 

Concentration (ng/g) 

Site HCB HCH Heptachlor aldrin o,p'-DDE p,p'-DDE o,p'-DDD/Dieldrin endrin p,p'-DDD/o,p'-DDT mirex ∑OCP 

MDI 2.081.59 nd 12.732.08 18.293.48 10.172.43 12.120.29 18.533.01 20.873.92 14.502.06 nd 109.2718.85 

MDO nd 2.152.61 14.353.11 10.284.67 9.412.93 14.110.79 16.182.17 15.083.40 12.890.63 6.911.05 101.3520.32 

HOF nd 9.584.73 27.353.14 29.682.77 9.001.79 19.840.97 14.772.34 32.053.45 19.771.69 nd 162.0520.89 

AFI 4.402.83 4.881.64 21.902.55 17.501.89 10.460.70 14.760.32 21.142.17 16.524.35 16.860.84 5.470.55 133.8817.28 

AFO nd nd 16.971.82 31.552.67 11.960.36 11.790.23 15.061.29 24.124.00 12.240.33 7.092.54 130.7910.70 

NAD 2.841.40 2.151.43 29.552.99 19.651.93 13.351.08 16.520.91 22.423.26 18.680.89 16.110.01 8.302.36 149.5613.91 

TUM 2.390.93 4.201.88 17.373.74 7.610.04 6.091.51 8.770.46 13.702.43 17.972.55 10.590.72 2.263.36 90.9614.25 

IDI 2.031.00 8.151.55 17.992.79 nd 8.141.99 11.100.79 14.131.61 18.103.97 11.300.89 nd 90.9313.69 

IDO 3.530.88 4.141.85 19.920.54 8.091.76 9.292.35 12.000.21 16.903.62 18.503.03 11.691.03 nd 104.0515.26 

REH 3.990.53 10.411.27 23.904.37 3.820.95 10.412.44 14.030.75 15.081.00 17.023.36 12.321.38 7.291.95 118.2616.05 

UBP 8.000.12 23.821.78 33.614.28 7.991.73 11.251.76 16.711.78 16.650.43 24.463.58 14.792.65 6.623.71 163.9018.11 

NWTI 12.021.40 55.544.93 130.194.34 15.000.86 9.531.13 23.620.45 26.750.65 24.542.05 44.974.00 15.513.01 357.6719.80 

NWTT 21.380.84 72.785.93 146.823.77 58.332.73 15.093.12 27.182.46 21.713.27 24.494.52 30.792.91 26.413.00 444.9929.55 

NWTE 15.581.25 58.542.44 98.366.67 34.720.74 12.610.48 15.493.09 19.423.59 17.932.42 17.431.92 40.900.22 330.9822.61 

BLA 6.141.97 52.712.08 51.057.01 33.613.12 16.893.95 12.242.21 19.020.70 32.874.12 15.453.85 33.233.19 273.2229.02 

∑OCP 84.3814.72 309.0434.13 662.0653.19 296.1229.34 163.6428.03 230.2915.70 271.4531.55 323.2049.60 261.6924.91 159.9926.13 2761.86280.29 

min nd nd 12.732.08 nd 6.091.51 8.770.46 13.702.43 15.083.40 10.590.72 nd 90.9313.69 

mean 5.630.98 20.602.28 44.143.55 19.741.96 10.911.87 15.351.05 18.102.10 21.553.31 17.451.66 10.671.74 184.1218.69 

max 21.380.84 72.785.93 146.823.77 58.332.73 16.893.95 27.182.46 26.750.65 32.874.12 44.974.00 40.900.22 444.9929.55 

nd= not detected 
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E.4 Individual OCP concentrations in summer soil samples 

Concentration (ng/g) 

Site HCB HCH Heptachlor aldrin o,p'-DDE p,p'-DDE o,p'-DDD/Dieldrin endrin p,p'-DDD/o,p'-DDT mirex ∑OCPs 

MDI nd nd 8.902.63 12.850.86 21.533.00 16.593.61 19.580.91 21.403.58 12.690.57 nd 113.5415.16 

MDO nd nd 8.752.84 13.950.98 12.320.71 16.040.84 18.642.76 16.711.48 14.410.50 nd 100.8210.11 

HOF 6.630.58 nd 6.853.70 24.003.03 10.271.18 17.020.97 23.370.54 16.030.18 14.671.03 4.001.32 122.8412.53 

AFI 0.870.79 nd 4.330.83 22.551.31 11.020.99 17.811.15 25.801.28 38.963.68 14.980.38 5.502.64 141.8213.05 

AFO nd nd 7.980.72 12.940.22 10.060.56 14.001.49 21.310.30 29.963.01 11.860.86 nd 108.117.16 

NAD nd nd 7.511.27 17.972.93 13.291.82 19.592.68 27.792.43 24.103.60 15.331.96 nd 125.5916.69 

TUM nd nd 7.420.28 8.372.86 8.090.70 13.040.62 25.811.27 11.300.60 17.911.65 nd 91.947.98 

IDI nd nd 8.621.47 3.540.88 7.160.45 11.590.59 27.150.82 26.963.22 11.360.23 nd 96.387.66 

IDO nd nd 6.921.32 8.480.43 8.040.63 13.610.49 27.710.59 14.752.74 12.770.51 nd 92.296.73 

REH nd nd 10.830.07 9.541.39 7.871.71 14.800.64 20.920.89 21.361.52 12.650.21 5.340.41 103.326.83 

UBP 8.082.70 nd 13.322.78 9.912.44 13.150.71 30.543.82 25.400.87 43.102.98 15.210.24 nd 158.7216.53 

NWTT 32.230.37 nd 12.972.89 76.541.32 29.890.62 33.093.30 21.983.09 45.493.70 15.830.34 6.361.31 274.3816.95 

NWTE 14.461.65 nd 19.723.28 62.192.02 27.633.68 21.311.76 32.252.08 34.381.05 13.562.12 nd 225.5017.64 

BLA 8.490.80 nd 6.081.87 19.044.00 16.321.29 14.102.92 27.493.45 19.912.09 12.821.53 10.151.15 134.4119.11 

∑OCPs 70.776.90 nd 130.2225.95 301.8824.69 196.6318.06 253.1224.87 345.2021.27 364.4237.43 196.0512.13 31.366.83 1889.66174.12 

min nd nd 4.330.83 3.540.88 7.160.45 11.590.59 18.642.76 11.300.60 11.360.23 nd 91.947.98 

mean 5.060.92 nd 9.303.46 21.563.29 14.052.41 18.083.32 24.662.84 26.034.99 14.001.62 2.241.31 134.9823.22 

max 32.230.37 nd 19.723.28 76.541.32 29.890.62 33.093.30 32.252.08 45.493.70 17.911.65 10.15 274.3816.95 

nd= not detected 
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E.5 Individual OCP concentrations in autumn surface water samples 

Concentration (ng/mL) 

Site HCB HCH Hpchlor Aldrin o, p'-DDE p,p'-DDE o, p'-DDD/Dieldrin Endrin p,p'-DDD/o,p-DDT Mirex ∑OCPs 

MDI nd 2.220.15 0.600.58 nd 0.990.27 0.320.06 0.770.05 0.530.01 nd nd 5.421.13 

MDO nd 2.080.17 0.870.02 nd 0.920.10 0.540.01 0.740.15 0.490.45 0.510.12 nd 6.151.03 

HOF nd 1.810.22 1.060.16 nd 0.820.11 0.520.04 0.670.12 0.670.23 nd nd 5.550.88 

AFI nd 2.780.21 nd nd 0.980.13 0.840.17 0.690.26 nd 0.500.10 nd 5.790.88 

AFO nd 1.900.04 nd nd 0.960.13 0.620.06 0.780.12 nd 0.490.14 nd 4.750.49 

NAD nd 2.450.27 nd nd 0.900.20 0.850.23 0.800.35 nd 0.270.26 nd 5.271.30 

JUM nd 2.380.13 nd nd 1.020.04 0.580.07 0.820.15 nd 0.540.12 nd 5.350.51 

IDI nd 2.750.19 0.980.21 nd 1.080.03 0.660.01 0.870.07 nd nd nd 6.340.51 

IDO nd 1.920.01 2.520.33 nd 0.950.11 0.520.05 0.800.02 nd nd nd 6.700.51 

REH nd 2.350.10 0.790.19 nd 0.950.06 0.670.03 0.920.13 1.010.01 nd nd 6.701.51 

NWTI nd 3.370.08 1.950.17 nd 1.010.07 0.540.04 0.860.05 0.000.36 nd nd 7.730.77 

UBP 2.900.30 4.700.32 2.650.03 1.090.24 1.380.02 0.450.36 0.760.17 0.700.00 0.640.08 nd 15.281.52 

NWTT 2.130.08 4.760.58 1.920.92 0.060.32 0.781.22 0.420.30 0.760.36 0.680.43 nd nd 11.504.21 

NWTE nd 2.800.23 1.110.06 0.611.00 1.060.03 0.740.06 1.120.16 0.560.40 nd nd 7.991.94 

BLA 3.090.21 4.050.91 2.150.13 0.400.11 1.010.10 0.850.30 1.060.08 0.640.28 0.440.01 nd 13.682.14 

∑OCPs 8.120.58 42.323.60 16.602.80 2.161.67 14.802.63 9.111.79 12.432.23 5.292.18 3.390.84 nd 114.2219.32 

min nd 1.810.22 nd nd 0.781.22 0.320.06 0.670.12 nd nd nd 4.750.49 

Mean 0.540.04 2.820.24 1.110.19 0.140.11 0.990.18 0.610.12 0.830.15 0.350.15 0.230.06 nd 7.611.29 

max 3.090.21 4.760.58 2.650.03 1.090.24 1.380.02 0.850.23 1.120.16 1.010.01 0.640.08 nd 15.281.52 

nd= not detected 
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E.6 Individual OCP concentrations in autumn pore water samples 

Concentration (ng/mL) 

Site HCB HCH Heptachlor Aldrin o,p'-DDE p,p'-DDE o, p'-DDD/Dieldrin Endrin p,p'-DDD/o,p-DDT Mirex ∑OCPs 

MDI 5.940.07 16.581.17 4.770.47 nd 9.66 0.95 4.230.47 8.570.40 0.770.44 4.000.63 4.392.73 58.917.33 

MDO 6.383.78 14.183.34 3.241.79 nd 5.68 3.27 4.262.51 5.413.19 0.570.15 2.040.94 2.792.13 44.5421.09 

HOF 3.071.02 7.552.86 2.690.79 nd 3.95 1.62 4.171.94 4.211.45 0.190.22 1.650.53 5.022.05 32.4912.49 

AFI 5.090.14 12.710.17 1.420.52 nd 5.70 0.70 5.530.38 6.380.44 0.570.73 1.580.39 nd 38.973.48 

AFO 4.680.86 15.401.69 2.430.58 nd 7.43 0.80 5.670.52 7.550.65 0.190.25 3.530.57 nd 46.885.91 

NAD 4.700.86 15.431.69 2.450.58 nd 7.48 0.80 5.710.52 7.570.65 0.210.31 3.540.57 nd 47.095.98 

JUM 14.622.75 48.272.35 8.971.64 0.040.28 8.39 0.94 7.040.79 11.550.46 1.492.19 5.870.92 nd 106.2512.31 

IDI 11.150.16 30.441.18 7.681.12 nd 15.831.11 17.310.30 29.051.00 1.501.24 6.370.48 nd 119.336.60 

IDO 17.390.82 42.072.00 9.180.67 nd 25.71 1.68 19.583.31 26.962.59 3.880.97 11.811.89 nd 156.5913.94 

REH 13.450.20 41.962.02 11.520.71 nd 19.81 2.18 18.451.93 22.011.37 2.381.82 9.061.58 nd 138.6411.80 

UBP 19.332.66 36.432.47 7.111.47 nd 39.35 3.00 21.674.63 34.372.21 6.493.79 14.861.19 13.653.01 193.2624.44 

NWTT 14.400.71 33.371.59 12.051.05 nd 19.04 1.73 15.852.72 28.571.98 1.581.35 7.891.36 13.661.01 146.4013.50 

NWTE 14.410.28 33.390.58 12.090.34 nd 19.08 0.90 15.981.07 28.612.04 1.611.03 7.931.69 13.692.03 146.799.96 

BLA 10.100.43 17.590.04 3.250.32 nd 9.53 1.32 11.700.72 12.761.13 1.580.16 4.741.14 8.460.54 79.705.80 

∑OCPs 144.7114.75 365.38 88.8412.05 0.040.28 196.6320.98 157.1621.82 233.5619.54 23.0214.66 84.8513.88 61.6513.51 1355.84154.63 

min 3.071.02 7.552.86 1.420.52 nd 3.951.62 4.171.94 4.211.45 0.190.22 1.580.53 nd 32.4912.49 

Mean 10.341.05 26.101.65 6.350.86 0.00 14.051.50 11.231.56 16.681.40 1.641.05 6.060.99 4.400.97 96.8511.04 

max 19.332.66 48.272.35 12.090.34 0.040.02 39.353.00 21.674.63 34.37 6.493.79 14.861.19 13.692.03 193.2624.44 

nd= not detected 
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E.7 Individual OCP concentrations in autumn sediment samples 

Concentration  (ng/g) 

Site HCB HCH Hpchlor Aldrin o,p'-DDE p,p'-DDE o, p'-DDD/Dieldrin Endrin 
p,p'-DDD/o,p-

DDT 
Mirex ∑OCPs 

MDI 33.971.91 60.193.37 24.101.20 nd 22.312.66 12.502.14 29.921.96 72.473.42 15.112.30 nd 270.5818.97 

MDO 37.540.97 73.415.19 12.410.92 nd 20.690.21 11.490.81 33.681.39 62.462.80 15.721.77 nd 267.3914.07 

HOF 33.813.02 95.674.38 11.771.84 nd 16.682.25 16.716.54 33.352.79 62.133.39 20.530.54 nd 290.6624.76 

AFI 33.953.17 96.612.58 11.191.06 nd 23.850.93 18.432.96 32.081.28 74.962.63 21.663.35 9.382.38 322.1120.35 

AFO 20.541.88 62.693.73 9.872.49 nd 21.170.80 14.111.25 34.201.69 53.642.26 12.453.70 16.902.84 245.5820.65 

NAD 41.703.01 88.544.49 6.981.27 nd 31.323.91 17.235.23 34.491.72 22.882.11 15.091.37 22.684.25 280.9227.35 

JUM 32.013.47 90.113.23 12.862.51 nd 25.204.90 26.430.41 39.532.01 37.502.27 14.051.17 11.242.75 288.9422.73 

IDI 37.671.36 84.063.36 18.082.58 nd 20.171.25 10.271.89 27.560.45 73.314.25 15.182.08 11.361.75 297.6718.97 

IDO 39.913.94 75.323.26 22.471.26 nd 20.540.99 12.131.09 30.851.87 34.613.04 13.431.55 nd 249.2617.00 

REH 39.381.59 66.173.17 7.412.16 nd 21.511.67 11.820.38 29.401.12 36.603.28 13.071.52 15.253.04 240.6117.93 

NWTI 53.380.77 69.452.41 11.954.01 4.880.30 22.414.67 11.540.78 31.020.71 31.622.58 12.071.25 7.680.84 256.0218.32 

UBP 55.851.61 116.613.47 13.553.34 2.201.52 20.321.76 15.500.46 35.691.54 176.341.05 12.491.55 15.060.30 463.5916.60 

NWTT 84.493.78 110.103.25 21.292.10 6.971.58 38.914.29 17.602.02 41.172.74 186.550.91 24.321.68 16.011.10 547.4223.46 

NWTE 63.582.44 95.923.98 11.033.96 3.091.54 18.512.58 15.371.86 30.022.02 77.263.13 13.981.88 16.873.00 345.6326.37 

BLA 52.663.37 108.384.27 16.364.06 6.300.52 23.033.97 22.456.46 41.244.99 81.6911.79 30.410.09 18.723.01 401.2342.53 

∑OCPs 660.4636.29 1293.2054.15 211.3134.76 23.445.46 346.6436.85 233.5734.29 504.2128.28 1084.0348.90 249.5725.80 161.1625.26 4767.58330.06 

min 20.541.88 60.193.37 6.981.27 nd 16.682.25 10.271.89 27.560.45 22.882.11 12.071.25 nd 240.6117.93 

Mean 44.032.42 86.213.61 14.092.32 1.560.36 23.112.46 15.572.29 33.611.89 72.273.26 16.641.72 10.741.68 317.8422.00 

max 84.493.78 116.61 24.101.20 6.971.58 38.914.29 26.430.41 41.244.99 186.550.91 30.410.09 22.684.25 547.4223.46 

nd= not detected 
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 E.8 Individual OCP concentrations in autumn soil samples 

Concentration  (ng/g) 

Site HCB HCH Hpchlor Aldrin o, p'-DDE p,p'-DDE o, p'-DDD/Dieldrin Endrin p,p'-DDD/o,p-DDT Mirex ∑OCPs 

MDI 40.571.95 72.064.69 9.684.69 nd 23.864.64 11.112.89 34.525.25 88.743.29 18.374.99 8.702.54 307.6133.73 

MDO 48.913.02 79.781.64 13.551.64 1.414.12 23.573.45 12.401.20 33.124.42 53.345.20 15.471.87 26.343.01 307.8930.54 

HOF 72.142.29 99.011.37 20.121.37 5.072.80 29.973.06 18.720.36 37.462.14 73.751.46 18.521.31 22.225.87 396.9423.91 

AFI 74.163.87 104.223.31 25.513.31 8.622.56 46.832.21 20.322.98 53.375.02 84.701.59 25.633.14 20.862.59 464.2229.86 

AFO 61.984.25 102.613.23 26.713.23 3.875.11 32.486.32 24.771.54 61.931.71 74.524.02 24.843.12 10.531.49 424.2337.96 

NAD 35.164.01 100.982.47 17.792.47 4.063.87 23.561.30 30.501.05 48.541.29 81.573.38 16.591.45 28.073.63 386.8328.69 

JUM 26.771.63 66.894.37 6.374.37 nd 24.882.85 20.732.61 46.623.05 123.693.96 28.200.58 34.554.87 378.7029.67 

IDI 29.033.44 73.712.02 6.302.02 nd 22.510.67 16.380.93 35.173.70 142.832.11 16.581.34 15.285.90 357.7921.34 

IDO 32.272.92 78.854.56 11.614.56 12.812.29 44.124.90 31.294.25 64.281.58 151.404.00 21.051.53 31.582.29 479.2732.35 

REH 39.052.52 90.425.64 5.915.64 nd 32.883.28 36.661.16 52.524.05 122.265.04 12.441.91 25.882.98 418.0229.56 

UBP 80.384.91 129.522.09 31.842.09 11.243.36 60.902.21 28.863.27 53.384.86 158.512.31 25.524.33 27.657.09 607.8037.48 

NWTT 84.994.95 139.736.08 24.336.08 16.071.01 68.071.97 51.525.13 56.693.98 147.355.28 32.583.59 50.112.98 671.4540.04 

NWTE 50.601.85 80.443.08 17.193.08 11.941.71 27.424.43 15.483.35 38.875.44 58.753.98 16.554.51 32.043.45 349.2736.69 

BLA 33.421.10 55.172.87 14.602.87 14.990.85 84.593.91 37.863.20 50.841.58 59.590.22 20.870.14 44.241.18 416.1715.73 

∑OCPs 709.4242.71 1273.3847.43 231.5147.43 90.0927.69 545.6545.21 356.6033.92 667.3148.06 1421.0045.84 293.2133.81 378.0349.87 5966.20427.55 

min 26.771.63 55.172.87 5.915.64 nd 22.510.67 11.112.89 33.124.42 53.345.20 12.441.91 8.702.54 307.6130.54 

Mean 50.673.05 90.963.39 16.543.39 6.431.98 38.973.23 25.472.42 47.673.43 101.503.27 20.942.41 27.003.56 426.1630.54 

max 84.994.95 139.736.08 31.842.09 16.071.01 84.593.91 51.525.13 64.281.58 158.512.31 32.583.59 50.112.98 671.4540.04 

nd = not detected 
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E.9 Individual OCP concentrations in spring surface water samples 

Concentration (ng/mL) 

Site HCB HCH Hpchlor aldrin o,p'-DDE p,p'-DDE o,p'-DDD/Dieldrin endrin p,p'-DDD/o,p'-DDT mirex ∑OCPs 

MDI nd nd 0.370.15 0.620.10 0.680.06 0.780.02 1.400.10 1.360.64 1.080.51 0.470.02 6.761.60 

MDO nd nd 0.270.12 0.630.03 0.600.06 0.700.04 1.290.11 1.130.50 0.760.05 nd 5.380.91 

HOF nd nd 0.330.07 0.760.01 0.780.03 0.870.04 1.440.07 1.260.08 0.820.02 nd 6.260.32 

AFI nd nd 0.250.05 0.670.04 0.700.04 0.760.04 1.380.13 1.020.09 0.750.02 nd 5.530.41 

AFO nd nd 0.230.05 0.670.03 0.670.06 0.760.05 1.340.08 1.080.04 0.730.04 nd 5.470.35 

NAD nd nd 0.230.01 0.700.07 0.680.04 0.770.03 1.390.06 0.930.11 0.760.04 nd 5.470.36 

JUM 0.020.00 nd 0.320.03 0.850.02 0.880.07 0.920.02 1.590.08 1.080.08 0.860.03 nd 6.530.33 

IDI nd nd 0.230.02 0.720.05 0.730.04 0.820.01 1.470.06 0.940.01 0.790.04 nd 5.690.23 

IDO nd nd 0.290.02 0.820.05 0.840.03 0.910.01 1.370.42 0.980.05 0.840.03 nd 6.040.61 

REH nd nd 0.280.03 1.610.04 0.930.06 1.010.05 1.690.06 1.080.11 0.920.03 nd 7.530.38 

UBP nd nd 0.230.03 1.520.03 0.770.05 0.830.01 1.470.06 1.130.12 0.780.02 nd 6.720.32 

NWTI nd nd 0.300.02 1.500.07 0.820.03 0.870.04 1.440.07 1.090.09 0.820.02 nd 6.840.35 

NWTT nd nd 0.240.02 0.910.04 0.580.03 0.700.03 1.220.04 0.840.11 0.700.02 2.630.31 7.820.61 

NWTE 4.860.06 nd 0.360.01 0.800.06 0.730.04 0.910.03 1.370.02 1.930.33 0.970.05 nd 11.920.60 

BLA 0.580.02 nd 0.270.03 1.110.05 0.660.01 0.770.02 1.350.04 0.950.11 0.770.02 nd 6.470.30 

∑OCPs 5.46 nd 4.200.67 13.890.68 11.040.66 12.390.46 21.211.39 16.812.48 12.340.96 3.090.33 100.447.69 

min nd nd 0.230.05 0.620.10 0.580.03 0.700.04 1.220.04 0.840.11 0.700.02 nd 5.380.91 

mean 0.360.07 nd 0.280.04 0.930.05 0.740.04 0.830.03 1.410.09 1.120.17 0.820.06 0.470.02 6.700.51 

max 4.860.00 nd 0.370.15 1.610.04 0.930.06 1.010.05 1.690.06 1.930.33 1.080.51 2.630.31 11.920.60 

nd= not detected 
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E.10 Individual OCP concentrations in spring pore water samples 

nd= not detected 

 

 

 

 

Concentration (ng/mL) 

Site HCB HCH Hpchlor aldrin o,p'-DDE p,p'-DDE o,p'-DDD/Dieldrin Endrin p,p'-DDD/o,p'-DDT mirex ∑OCPs 

MDI nd nd nd 4.130.06 5.660.05 7.020.05 8.960.06 nd 4.640.12 1.130.17 31.560.51 

MDO nd nd nd 2.410.88 3.471.02 4.020.91 5.440.89 nd nd 0.770.70 16.124.39 

HOF 2.000.20 1.470.56 3.770.32 7.100.11 6.600.05 7.430.09 7.050.06 nd 5.860.05 4.840.88 46.122.31 

AFI nd 1.130.72 1.550.36 5.390.23 5.940.16 6.890.01 8.910.09 nd 5.060.06 1.020.31 35.891.34 

AFO nd nd nd 3.530.18 4.400.35 5.170.16 7.030.18 nd nd 0.470.23 20.601.10 

NAD nd 1.310.75 2.580.36 7.050.17 9.380.13 11.560.12 15.140.16 nd 8.280.21 1.770.43 57.082.34 

TUM nd nd 2.440.44 6.050.14 8.610.11 11.940.15 15.430.22 8.420.28 7.850.23 1.721.16 62.462.74 

IDI nd 2.960.25 3.030.09 9.810.09 12.730.05 15.650.07 20.650.10 7.130.25 10.930.02 3.340.26 86.231.18 

IDO nd 0.950.11 3.090.48 10.560.13 16.060.05 19.430.06 26.590.06 4.670.66 14.000.08 2.260.17 97.602.45 

REH nd 1.960.65 3.630.79 9.550.15 13.540.08 16.720.05 22.490.06 5.200.22 11.480.16 3.250.18 87.812.34 

UBP nd 0.760.02 3.470.39 10.400.12 13.180.10 16.620.02 21.710.12 12.960.07 11.030.09 4.020.47 94.161.42 

NWTT 2.200.89 2.530.09 4.210.75 14.820.04 16.120.05 19.610.11 25.400.02 5.960.08 13.880.11 5.040.29 109.772.42 

NWTE nd 0.800.01 4.460.49 9.740.02 15.990.09 19.770.05 25.220.04 10.920.19 12.500.11 2.950.18 102.351.27 

BLA nd 1.630.49 nd 5.690.05 8.050.10 10.080.11 12.850.03 nd 6.800.11 2.000.46 47.091.35 

∑OCPs 4.211.09 15.513.76 32.244.48 106.222.38 139.752.38 171.921.96 222.872.10 55.251.75 112.311.35 34.585.92 894.8427.17 

min nd nd nd 2.410.88 3.471.02 4.020.91 5.440.89 nd nd 0.470.70 16.124.39 

mean 0.300.08 1.110.27 2.300.32 7.590.17 9.980.17 12.280.14 15.920.15 3.950.13 8.020.10 2.470.42 63.921.94 

max 2.200.89 2.960.65 4.460.49 14.820.04 16.120.05 19.770.05 26.590.06 12.960.07 14.000.08 5.040.29 109.772.42 
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E.11 Individual OCP concentrations in spring sediment samples 

nd = not detected 

 

 

 

Concentration (ng/g) 

Site HCB HCH Hpchlor aldrin o,p'-DDE p,p'-DDE o,p'-DDD/Dieldrin endrin p,p'-DDD/o,p'-DDT mirex ∑OCPs 

MDI 21.132.16 33.883.51 37.202.68 nd 26.704.43 30.860.96 35.464.82 18.071.63 25.011.60 10.472.61 238.7824.40 

MDO 14.672.21 56.573.17 45.853.28 2.381.30 19.213.07 20.714.24 30.403.63 27.323.61 20.712.99 6.310.41 244.1427.91 

HOF 23.520.53 87.312.27 11.982.05 15.661.53 37.296.85 55.475.36 37.764.98 23.193.76 17.302.56 4.401.09 313.8930.97 

AFI 5.021.97 63.533.66 32.262.58 12.561.60 39.122.02 26.182.20 44.326.54 14.551.25 24.283.22 8.831.32 270.6626.36 

AFO 4.525.29 51.203.12 52.924.26 15.603.68 22.315.30 22.234.34 22.453.00 17.694.05 17.856.42 19.412.37 246.1741.83 

NAD nd 3.721.60 17.104.27 17.694.11 17.301.18 18.351.71 24.102.01 27.292.09 19.681.79 23.682.21 168.9220.98 

TUM 10.012.22 24.102.29 24.801.71 6.602.84 19.210.45 20.981.13 25.211.05 31.675.01 21.040.68 9.812.44 193.4519.82 

IDI 9.881.41 99.902.52 28.315.98 nd 19.891.17 21.050.24 23.501.01 23.324.91 18.522.51 8.133.05 252.4922.79 

IDO 6.301.34 12.391.91 31.146.32 16.651.99 20.351.79 21.471.44 26.600.88 28.075.11 20.182.83 7.680.57 190.8324.19 

REH 6.020.60 13.850.71 34.364.40 19.362.73 18.585.06 30.195.88 23.734.55 19.442.03 21.214.77 18.631.63 205.3832.35 

UBP 24.151.88 26.663.29 46.822.81 66.782.67 33.392.65 42.073.25 42.463.21 32.406.75 26.365.05 25.522.48 366.6234.04 

NWTI 38.974.05 159.022.02 41.390.32 80.734.21 51.744.91 37.193.09 33.330.62 19.771.52 28.692.18 27.520.45 518.3523.38 

NWTT 37.850.92 276.392.98 58.632.89 93.044.22 67.240.48 32.111.13 24.251.50 32.961.53 34.342.54 27.890.59 684.6818.76 

NWTE 29.750.79 176.792.53 44.221.51 71.133.28 63.565.84 33.502.64 23.511.33 19.991.11 38.590.54 19.290.59 520.3220.16 

BLA 7.100.37 59.820.83 32.471.49 40.963.49 29.162.39 26.520.83 38.536.84 26.261.35 36.192.47 13.111.20 310.1221.27 

∑OCPs 238.8925.73 1145.1236.42 539.4646.55 459.1237.66 485.0747.59 438.9038.45 455.6145.98 362.0045.71 369.9542.12 230.6823.02 4724.80389.22 

min nd 3.721.60 11.982.05 nd 17.30 18.351.71 22.453.00 14.551.25 17.30 4.401.09 168.9220.98 

mean 15.931.72 76.342.43 35.963.10 30.612.51 32.343.17 29.262.56 30.373.07 24.133.05 24.662.81 15.381.53 314.9925.95 

max 38.974.05 276.392.98 58.632.89 93.044.22 67.240.48 55.475.36 44.326.54 32.961.53 38.590.54 27.890.59 684.6818.76 
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E.12 Individual OCP concentrations in spring soil samples 

 

Concentration(ng/g) 

Site HCB HCH Hpchlor aldrin o,p'-DDE p,p'-DDE 
o,p'-

DDD/Dieldrin 
endrin 

p,p'-

DDD/o,p'DDT 
mirex ∑OCPs 

MDI 5.681.60 31.260.45 17.992.11 10.260.84 16.774.36 22.092.80 25.963.39 20.716.21 29.733.83 6.501.54 186.9627.13 

MDO 2.881.52 18.781.28 18.721.53 7.585.52 21.963.24 17.272.49 23.271.34 50.412.01 16.152.91 8.952.61 185.9624.45 

HOF 3.430.26 91.964.60 16.120.57 16.103.31 59.162.94 29.452.67 22.670.06 37.302.58 26.310.71 3.973.68 306.4721.38 

AFI 0.540.59 28.936.96 24.682.20 13.023.44 26.906.02 22.863.14 25.101.67 62.333.68 20.881.67 22.012.90 247.2532.27 

AFO nd 6.940.51 13.371.94 11.612.54 15.672.70 15.584.64 21.951.12 39.592.01 17.052.44 23.962.07 165.722.07 

NAD 6.572.86 4.210.35 17.410.53 19.992.66 23.114.33 25.133.60 32.042.67 48.824.87 23.493.02 25.940.62 226.7025.51 

TUM 3.571.91 16.690.82 9.561.51 5.482.13 14.852.10 17.811.94 23.391.15 31.102.30 17.471.69 4.021.00 143.9416.57 

IDI nd 15.590.85 9.720.63 8.773.05 12.042.40 14.503.11 18.150.90 32.413.62 14.221.72 5.281.27 130.6717.55 

IDO nd 4.110.65 10.730.31 13.471.74 13.502.13 16.772.65 23.742.50 27.926.45 17.981.62 8.222.17 136.4320.22 

REH nd 21.022.21 22.791.58 15.631.58 15.023.78 24.976.09 21.501.46 19.262.07 18.773.58 11.425.26 170.3927.61 

UBP 5.582.64 32.711.32 22.732.23 17.924.44 16.712.92 17.334.10 26.704.01 29.034.03 15.162.47 25.806.09 209.6734.25 

NWTT 15.511.35 14.613.35 26.440.78 26.211.69 24.030.73 30.563.45 22.222.40 91.042.98 25.981.91 40.066.55 316.6525.18 

NWTE 8.952.34 84.313.00 14.795.81 21.599.48 12.251.12 15.731.40 25.720.52 60.692.24 18.953.29 23.445.97 286.4335.17 

BLA 10.563.99 47.271.06 22.585.25 21.485.37 23.623.69 15.141.97 28.650.39 35.646.68 45.903.69 28.692.98 279.5135.05 

∑OCPs 63.2719.07 418.3927.41 247.6426.98 209.1047.76 295.5942.47 285.1844.06 341.0523.59 586.2451.72 308.0434.54 238.2544.71 2992.75344.42 

min nd 4.110.65 9.561.51 5.482.13 12.042.40 14.503.11 18.150.90 19.262.07 14.221.72 3.973.68 130.6717.55 

mean 4.521.73 29.881.96 17.691.93 14.943.41 21.113.03 20.373.15 24.361.69 41.873.69 22.002.47 17.023.19 213.7724.60 

max 15.511.35 91.964.60 26.440.78 26.211.69 59.162.94 30.563.45 32.042.67 91.042.98 45.902.47 40.066.55 316.6525.18 



318 

 

 

APPENDIX F: MASS SPECTRUM SHOWING MONITORED IONS 

F.1 Example of PCB (PCB28) ions monitored in SIM mode 
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F. 2 Example of OCP (HCH) ions monitored in SIM mode 

 

 


