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Abstract

The theory of semigroups of linear operators forms an integral part of Functional
Analysis with substantial applications to many fields of the natural sciences. In
this study we are concerned with the application to equations of mathematical
physics. The theory of semigroups of bounded linear operators is closely related to
the solvability of evolution equations in Banach spaces that model time dependent
processes in nature.

Well-posed evolution problems give rise to a semigroup of bounded linear opera­
tors. However, in many important and interesting cases the problem is ill-posed
making it inaccessible to the classical semigroup theory. One way of dealing
with this problem is to generalize the theory of semigroups.

In this thesis we give an outline of the theory of two such generalizations, namely,
(-regularized semigroups and B-bounded semigroups, with the inter-relations
between them and show a number of applications to ill-posed problems.
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Chapter 1

Generation and representation

1.1 Introduction

Fluid dynamics, electricity, optics, magnetism, heat-flow, etc., just to name a few,

are physical phenomena that can be described by partial differential equations.

Most of the laws of physics such as Maxwell's equations, Navier-Stokes equations,

etc. are stated in terms of partial differential equations, i.e., these laws describe

physical phenomena by relating space and time derivatives. Derivatives occur in

these equations because they represent rate of change (like velocity, acceleration,

etc.), and th us play a vita I role in the tra nslation of a physica I problem into a

mathematica I model.
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In these models, we have equations relating partial derivatives of some unknown

quantity that we wish to find. This entails solving these equations and as these

mathematical models become more complex it is natural that the mathematical

methods needed for their solution should increase in number and complexity.

The notion of a semigroup is the most important method for describing time­

dependent processes in nature in terms of functional analysis. It is difficult to

tell when the epoch of the theory of semigroups began. The recognition of the

theory of semigroups began in the 1930's, perhaps inspired by the realization

that the theory had immediate applications to partial differential equations, [16,

p.499]. The abstract theory of semigroups of bounded linear operators now forms

an integral part of functional analysis. Since the formulation of the generation

theorem by Hille and Yosida in the year 1948, it has become an extensive math­

ematical subject with substantial applications to many fields of analysis, [16,

p.508].

The theory of semigroups of bounded linear operators is closely related to the

solution of ordinary differential equations in Banach spaces. Usually, each well­

posed initial value problem gives rise to a semigroup of bounded linear operators.

Most of the theory deals with a first order equation for the simple reason that
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linear higher order equations can be reduced to first order systems and then by

changing the underlying Banach space, obtain a first order equation.

In the theory of differential equations, one of the first differential equations one

solves is the followi ng

8tu(t) = au(t), a E <C, (1.1 )

with initial condition u(O) = UQ. It is not difficult to verify that u(t) = etauQ is

a sol ution of eq uation (1.1).

As early as in 1887, [16, p.503], G.P. Peano showed that the system of linear

ordinary differential equations with constant coefficients,

(1.2)

can be written in a matrix form as

8tu(t) = Au(t), (1.3)

where A is an n x n matrix and u is an n-vector whose components are unknown

functions, and solved it using the explicit formula

(1.4)



where the matrix exponential etA is defined by

tA t 2 A 2

etA = I + -, + -,- + ....
1. 2.

(1.5)

Taking a norm on Cn and the corresponding matrix-norm on Mn(C), the space

of all complex n x n matrices, one shows that the partial sums of the series

(1.5) form a Cauchy sequence and converge. Moreover, the map t ------+ etA is

continuous and satisfies the properties, Proposition 2.3 of [16]:

etAesA for all t s > 0, - ,
(1.6)

Thus the one-parameter family {etA h~o, satisfies the semigroup properties and

forms what is termed a semigroup.

The representation (1.5) ca n be used to obta in a sol ution of the abstract Ca uchy

problem

Au(t),
(1. 7)

u(O) Uo,

where A : X ------+ X is a bounded linear operator, as in this case the series in

(1.5) is still convergent with respect to the norm in £(X).

Unfortunately, in general, operators coming from applications, like e.g. differen-

tial operators, are not bounded and (1.5) cannot be used to obtain a solution of
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the abstract Cauchy problem (1.7). This is due to the fact that the domain of

the operator A in such cases is a proper subspace of X and since (1.5) involves

iterates of A, their common domain could shrink to the trivial subspace {O}. For

the same reason, another common representation of the exponential function

ca nnot be used.

etA = lim
n---too ( tA)n

1+- ,
n

(1.8)

It turns out that for a large class of unbounded operators a variation of the latter

makes the representation (1.4) meaningful and etA can be calculated according

to the formula

etA = lim (1 _ !A)-n
n---too ri,

hm ['!!. ('!!. _A) -1] n
n---too t t

(1.9)

For this class of operators also other possible interpretations were given eg.,

in terms of the Yosida approximations of A; see [25, Theorem 5.5]. Such a

defined one-parameter family of operators {etA h2:0 forms a semigroup of bounded

operators and could be used to solve the Cauchy problem (1.7).

In many cases, however, the natural setting of a given problem leads to it being

ill-posed, i.e., the solution may not exist for all data, or it is not unique, or else it

does not depend continuously on initial data, etc .. To deal with these problems
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the theory of semigroups was generalized in various ways leading to e.g., inte­

grated semigroups, B-bounded semigroups, etc. In this thesis we shall concern

ourselves with two of these generalizations, namely B-bounded semigroups and

C-regularized semigroups.

In recent years, the concept of aB-bounded semigroup was introduced by A.

Belleni-Morante, [11]. The original idea, prompted by a problem coming from

a transport problem with multiplying boundary conditions, was to obtain some

explicit estimates of the semigroup obtained by nonconstructive positivity meth­

ods. In subsequent papers [4-7], it was shown that B-bounded semigroups

could be used to regularize ill-posed evolution problems by embedding them in

new spaces related to some appropriately chosen operator, playing the role of a

"regularizer" , and also that they can be treated as a generalization of Showalter's

method, [30], for solving implicit evolution problems.

The other recent generalization of the theory of strongly continuous semigroups

is the theory of C-regularized semigroups, [15]. In general, the evolution of a

system may be described by a family of operators {T(t) h20 that map the initial

value to the states of the system at later times. However, contrary to the theory

of strongly continuous semigroups, such a family of operators in general may be
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unbounded. To deal with this problem a possible strategy would be to find an

operator C, such that {T(t)Ch2::o is a strongly continuous family of bounded

linear operators on X. This family is termed a C-existence family. The idea

is that C "smooths" whatever uncontrolled behavior T(t) may have; the more

ill-posed the abstract Cauchy problem is, the more smoothing is required by the

operator C, i.e., the smaller the image of C. When C commutes with A, this

family of operators may be characterized by the algebraic properties similar to

strongly continuous semigroups and is termed a C-regularized semigroup.

We discuss both of these theories with applications and show that despite some

similarities to the concept of C-regularized semigroups and evolution families,

B-bounded semigroups are completely different. Extending the quotation from

deLaubenfel's monograph, in C-regularized semigroups "a different yardstick is

used to measure the initial data, than is used to measure the solution" (the

changes in the initial values are measured in the topology of the range of the

regularizing operator C) whereas for B-bounded semigroups we use the same

yardstick, related to the regularizing operator B I both for solutions and the

initial data. Another important difference is that the operator B is not required

to commute with the operator A and it can be unbounded, non-invertible, not

even c1osable, which gives much more flexibility.
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We shall now present a summary of the thesis:

In Chapter 1, we begin by presenting the statements of pertinent definitions and

theorems used in the thesis. In particular, in Section 1.3, we give an outline of

the theory of strongly continuous semigroups.

In Chapter 2, we present the transport problem with multiplying boundary con­

ditions and show that generation results, obtained in [10-11], could be extended

to accommodate the case when one part of the boundary is multiplying and the

other absorbing.

In Chapter 3, we present the main generation results for B-bounded semigroups,

originally found in [5], however, under much weaker assumptions imposed on the

operators A and B, as developed in [3], [6] and [8].

In Chapter 4, we present an outline of the basic theory of C-regularized semi­

groups and, in particular, discuss the relations between various concepts of the

generators. Furthermore, we discuss the inhomogeneous Cauchy problem in the

case when A is a generator of a C-regularized semigroup and provide conditions

that should be satisfied by the inhomogeneity in order for this problem to have

mild and strict solutions. This part can be regarded as a translation of Section

4.2 of [25] into the context of C-regularized semigroups.
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Finally, in Chapter 5, we discuss in detail the relationship between B-bounded

and C-regularized semigroups, as presented in [8].

1.2 Preliminaries

In this section, we wish to present the notation and terminology used throughout

the thesis.

Unless otherwise stated, let (X, 11·11) denote a Banach space over the field IK.

Definition 2.1 An operator A : D(A) ----+ X, D(A) c X is linear iff

A(au + ,Bv) = aAu + ,BAv, (1.10)

for all a, ,B E IK and u, v E D(A).

Unless otherwise stated, it shall be assumed that A is a linear operator from

D(A) into X.

Definition 2.2 A linear operator A is bounded iff there exists a positive con­

stant, a such that

for all u E D(A).

IIAul1 ~ a lIull '

11

(1.11)



Denote the set of all bounded linear operators on X by £(X).

Definition 2.3 A linear operator A is closed iff

Un -----+ U and AUn -----+ v, (1.12)

implies U E D(A) and Au = v.

Denote the set of all closed linear operators in X by C(X).

Definition 2.4 A linear operator B : D(B) -----+ X, D(B) c X, is an extension

of a linear operator A, written as A cB, iff

Au = Bu for all u E D(A) c D(B).

Definition 2.5 An operator A Is: S -----+ X, defined as follows

A Is u = Au, u E S c D(A),

is a restriction of the operator A to a subspace S.

(1.13)

(1.14)

Definition 2.6 If a linear operator A has a closed linear extension

B : D(B) -----+ X, D(B) c X, then A is called a closable operator. The closure

operator, denoted by A, is the smallest closed extension of A, i.e. I if there exists

a closed linear operator C : D(C) -----+ X, D(C) c X, such that C C B then

AcC.
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In applications, we are usually interested in the properties of the family of oper­

ators {AA} AEC defined as

AAX = (AI - A)x, x E D(A). (1.15)

Definition 2.7 Any point A E C, for which there is a continuous inverse of AA

defi ned on X, is sa id to belong to the resolvent set of A and the inverse A ~
1 is

called the resolvent of A and denoted by RA(A). The resolvent set is denoted

by p(A) and thus

p(A) = {A E C, RA(A) E £(X)} . (1.16)

Definition 2.8 The complement of the resolvent is called the spectrum of A,

denoted by O"(A).

To distinguish different cases for which AA is not invertible, the spectrum is sub­

divided into three disjoint sets: the point spectrum of A, O"p(A) , the continuous

spectrum of A, O"c(A) and the residual spectrum of A, O"r(A).

Definition 2.9 A complex number AQ belongs to the point spectrum of A iff

the equation Ax = Aax has a non-trivial solution XQ. The complex number Aa is

called an eigenvalue of A and Xa is called the eigenvector.

It is important to develop a theory of evolution equations in spaces with some

partial order, since in many cases the only physically reasonable data and solutions

13



for (1.7) are non-negative quantities e.g., density. Fortunately, most function

spaces have a natural order which is compatible with the norm.

Definition 2.10 Let X be a linear space over the field JK, with partial relation

::; between its elements. The space X is a lattice with respect to ::;, if for all

u,v E X there exists a least upper bound, uVv and a greater lower bound, ul\v.

Definition 2.11 Let X be a lattice. Then X is a Banach lattice if the follow-

ing relations among the linear structure, its norm and the order relation ::; are

satisfied:

i) if u ::; v,

ii) if u ::; v,

then u + w ::; v + w for w EX,

then au ::; av for a ~ 0,

iii) if lul ::; lvi, then Ilull ::; IIvll,

where lul, the modulus of u, is the element defined by lul = u V (-u).

It follows that if we define the positive and negative parts of each element

u E X by u+ = u V 0 and u- = (-u) V 0, respectively, then any u E X can

be represented as follows u = u+ - u- and the modulus by lul = u+ + U-.

Furthermore, we have that for any u EX, Ilull = IIu+ 11 + IIu- 11 .

The space L1 (lR), of all integrable functions on lR, is an example of a Banach

lattice that carries the almost everywhere pointwise ordering.
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Definition 2.12 Let X be a Banach lattice, with partial order:::;. Then the

closed subset X+ I

is called a positive cone.

X+ = {u E X; u ~ O}, (1.17)

Definition 2.13 A bounded linear operator A on a Banach lattice X is positive

if u~ 0 implies Au ~ O.

It now makes sense to compare positive operators: we say A :::; B I if B - A is

positive. For the positive operator A, since u :::; lul I we get that for any u E X

IAul :::; Alul,

so that if A :::; B

IIAul1 = IIIAull1 :::; IIA lulll :::; liB lulll :::; IIBII IlIulll = IIBII IIull

and this implies

IIAII := sup IIAull :::; IIBII·
Ilull:Sl

(1.18)

Definition 2.14 Let X be a Banach lattice, then an operator A is resolvent

positive, if there is a constant w E JR. such that (w, 00) c p(A) and for all A > w

(1.19)
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Definition 2.15 Let A : D(A) ---+ X be a densely defined operator. The

adjoint of A is the operator A* : D(A*) c X ---+ X given by the formula

(Au, v) = (u,A*v),

for all u E D(A) and v E D(A*), where D(A*) is defined by

D(A*) = {v E X; there exists w E X such that (Au,v)

u E D(A)}.

Let the interval (a, b), for a,b E IR be denoted by 1.

(1.20)

(u, w) for all

Definition 2.16 A function u : 1 ---+ X is strongly continuous on 1, if for

every to E 1,

lim Ilu(t) - u(t) 11 = o.
t---Tto

(1.21)

Denote the space of all continuous function on 1 by C(1). Unless otherwise

stated, it shall be assumed that u is a function from the interval 1 into the

Banach space X.

Definition 2.17 A function u : 1 ---+ X is strongly differentiable on 1 if for

every to E 1, there is an element ut (to) E X such that

~~ IIU(io + h~ - u(iol - ul(iolll = o. (1.22)

Definition 2.18 Denote by C k (1) the space of k-times continuously differen-
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tiable functions u : I ---+ X and

COO (I) := n C k (I) .
kEN

(1.23)

Definition 2.19 A function u has a compact support if there exists a compact

set 0 c I such that u(t) = 0 whenever t E 1\0. The closure of the set

{t E I I u(t) i- O} is the smallest of such sets 0 and is called the support of u.

Definition 2.20 The space of infinitely differentiable functions on I having

compact support contained in I is denoted by Ca (I) .

Definition 2.21 A function u is Lipschitz continuous iff there is a constant

L > 0 such that

Ilu(t) - u(s)II ::; L It - si for all t,s E I. (1.24)

Definition 2.22 For 0 ::; ex < I, a function u : I ---+ X is Holder continuous

of exponent ex if the qua ntity

sup {" u(t) - u(to) 11 t t Elt --L t }It - to 10' ,,0 'I 0 ,

is finite.

(1.25)

It follows that the function u is locally Holder continuous if every t E I has a

neighborhood in which u is Holder continuous.
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In the definitions that follows, we shall use Lebesgue measure m on the interval

I.

Definition 2.23 Let {Ii}~l be a finite collection of mutually disjoint, measur-

m

able subsets of I, such that I = U Ii and {Xd~l be a collection of points of
i=l

X. A fu nction u : I ----7 X I defi ned by

(1.26)

where Xli' is the characteristic function of I i (i.e., Xli = 1 on I i and Xli = 0

otherwise), is called a simple function.

Definition 2.24 A function u : I ----7 X, defined almost everywhere on I is

called measurable on I if there exist a sequence (Un)nEN of simple functions such

that

lim Ilun(t) - u(t) 11 = 0,
n---too

almost everywhere on I.

Definition 2.25 If u is a simple function then we define its integral by

(1.27)

(1.28)

Definition 2.26 If for a function u we can choose a sequence of simple functions

18



(Un)nEN in such a way that

lim 1Ilun(t) - u(t) 11 dt = 0,
n~oo I

(1.29)

then we say that u is (Bochner) integrable on I and define the Bochner integral

by

1u(t)dt = lim 1un(t)dt.
I n~oo I

It follows that a measurable function u is Bochner integrable on I iff

t ----t lIu(t)11 is Lebesgue integrable on I and we have

II{u(t)dtll ~ {llu(t)11 dt.

(1.30)

(1.31)

(1.32)

If A is a closed linear operator and u(t), Au(t) are continuous on the interval I,

then 11 u(t)dt E D(A) and

A 11 u(t)dt = 1[Au(t)dt.

Definition 2.27 For 1 ::; p < 00, let Lp (I) denote the classical Banach space

of equivalence classes consisting of measurable functions u that are p-integrable

and differ only on a subset of Lebesgue measure zero.

The norm on Lp (I) is defi ned by

19
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In particular, if X = JR., we can define the generalized derivative of real-valued

functions belonging to Lp (1) as follows:

Definition 2.28 Let 1 ::; p < 00, u E Lp(1) and if there exists u' E Lp (1)

such that

JI v(t)u' (t)dt = - rv'(t)u(t)dt, (1.34)

for all v E Co (1) then u' is referred to as the generalized derivative of u.

Denote the space of all functions for which the generalized derivative exists on

1 by W l (1) .

Definition 2.29 For 1 ::; p < 00, let

A norm is introd uced by

1

11 U III ,p = (11 u II~ + 11 u'll~) p .

(1.35)

(1.36)

For real-valued functions every Lipschitz continuous function is differentiable

almost everywhere, however, the same cannot be said for X-valued functions.

A class of Banach spaces for which this is true are spaces having the Radon-

Nikodym property.
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Theorem 2.30 [2] A Banach space X has the Radon-Nikodym property iff

every Lipschitz continuous function u : [0, 1] -----+ X is differentiable almost

everywhere.

1.3 Strongly continuous semigroups

The key to solving an abstract Cauchy problem is to obtain a family of operators

that mimic the properties of the exponential function of a single variable. One

particularly useful definition of such a family is that of a strongly continuous

semlgroup.

Definition 3.1 A family of bounded linear operators on X, {T(t)h~o is called

a strongly continuous semigroup, denoted by Co-semigroup, if it satisfies the

following conditions

i) T(t + s) T(t)T(s) for all t,s ~ 0,

ii) T(O) I,

iii) t -----+ T (t )x E C ([0, 00 ), X) for a11 x EX.

By the application of the Uniform boundedness principle, it can be shown; see

[25, Theorem 2.2], that the family {T(t)h~o is exponentially bounded ie., there

exist constants M ~ 1 and W E 1R such that for any t ~ 0,

21



11 T (t ) 11 ::; M ewt
.

(1.37)

The semigroup {T(t) h~o is called a uniformly bounded semigroup if w ::; 0, and

if, in addition, M = 1, then the semigroup is called a contractive semigroup.

Definition 3.2 A linear operator A : D(A) -----+ X, D(A) c X, defined by

for x E D(A), with

1
Ax := lirn - (T(t)x - x) ,

t~O+ t
(1.38)

D(A) = {x E X; Hrn ~ (T(t)x - x) eXists} , (1.39)
t~O+ t

is called the infinitesimal generator of the semigroup {T(t) h~o.

If A generates a semigroup satisfying estimate (1.37), then we write

A E Q(M,w,X).

Theorem 3.3 (Theorem 2.4 of [25]) Let A be the infinitesimal generator of a

strongly continuous semigroup {T(t) h~o. Then

i) D(A) is dense in X,

ii) A is a closed linear operator,
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iii) for any x E X,

1 Jt+h
lim - T(s)xds = T(t)x,
h-tO h t

iv) for any x E X, J: T(s)xds E D(A) and

A (J: T(S)XdS) = T(t)x - x,

v) for any x E D(A), T(t)x E D(A) and

(1.40)

(1.41)

8tT(t)x = AT(t)x

vi) for any x E D(A)

T(t)Ax, (1.42)

1: T(r)Axdr = T(t)x - T(s)x.

For A E Q(M, w, X) and for an arbitrary x E D(A), the function

t ----t u(t,x) = T(t)x solves the abstract Cauchy problem (1.7).

(1.43)

Definition 3.4 A classical (or strict) solution of the abstract Cauchy problem

is a function u : [0,00) ----t X that satisfies the following:

i) u(t) is strongly continuous, for all t E [0,00),

ii) u(t) is strongly differentiable, for all t E (0,00),

iii) u(t) E D(A),

iv) u(t) satisfies (1.7).

23
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The semigroup is uniquely determined by the generator A, Theorem 2.6 of [25],

and it follows that T(t)x is a unique solution of the Cauchy problem (1.7).

In general, for x E X\D(A), T(t)x is continuous but it is neither differentiable

nor belongs to D(A) and therefore it is not a solution of (1.7).

Therefore, it follows that the existence of a solution of the abstract Cauchy

problem (1.7) is guaranteed, provided we restrict the initial data to a dense

subspace, namely to the domain of the generator A.

For A E (](M,w,X), the resolvent R>,(A) , isthe Laplacetransform of {T(t)h~o

le.,

R,\(A) = J~ e-,\tT(t)dt, (1.44)

for).. E p(A). We conclude this section by stating the Hille-Yosida theorem,

which addresses a fundamental problem in the theory of strongly continuous

semigroups to characterize properties of the semigroup in terms of the its gen­

erator and resolvent.

Theorem 3.5 (Theorem 5.3 of [25]) An operator A is the infinitesimal generator

of a strongly continuous semigroup {T(t)h~o iff

i) A is closed and D(A) is dense in X,
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ii) the resolvent set p(A) ~ (w, (0) and for every A > w

M
< (A - w)n ,

(1.45)

for a11 A > w, n EN.

The condition that every real A > W is in the resolvent set of A, together

with estimate (1.45), imply that every complex A satisfying Re A > W is in the

resolvent set of A and

(1.46)

for all Re A > w, n E N. One major disadvantage of the above characterization

is that a direct verification of estimate (1.45) in most cases is tedious, if not

impossible.

In the following section we shall discuss a class of semigroups for which it is

sufficient to verify (1.45) once, but for complex values of A.

1.4 Analytic semigroups

In this section, we present the conditions imposed on the resolvent and the resol-

vent set of the generator of a uniformly bounded strongly continuous semigroup
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that ensures the extension of the semigroup and the parameter domain to an

analytic semigroup in some sector containing the positive real axis.

Definition 4.1 Let ~8 = {z; larg zl < O'} for some 0' > 0 and {T(z)} zE~6 be a

family of bounded linear operators on X. The family {T(z) }ZE~6 is an analytic

semigroup in the sector ~8 if

i)

ii)

Z ---t T(z)

lim T(z)x = X,
Z----70,
zE~6

is analytic in ~8,

for every x E X,

iii) T(O) = 1, T(z + w) = T(z)T(w) z, w E ~8.

Let A : D(A) ---t X be a densely defined operator,

p(A) => ~~+8 = {A; largAI < i + O'} U {O}, (1.47)

7f
for some 0 < 0' < - and

2

M
11 R>,(A) 11 ~ ~' (1.48)

for all 0 f A E ~~+8. Then A is the infinitesimal generator of a uniformly

bounded, Co-semigroup {T(t) h~o; see [25, Theorem 7.7]. The family of oper-

ators {T(t) h~o is given by the Dunford type integral
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where r is the path composed from the two rays peh and pe-h , 0 < p < 00

7r 7r
and - < r < - + fJ.

2 2

Furthermore, the semigroup {T(t)h~o generated by the operator A satisfying

(1.47) and (1.48) can be extended to an analytic semigroup in the sector ~8;

see [25, Theorem 5.2].

If A is the generator of an analytic semigroup {T(Z)}ZEll8' then t -----+ T(t) has

derivatives of arbitrary orders on (0,00) in the uniform operator topology and

T(t) E £(X, [[D(An)]]) for any t > 0 and n E N.

Moreover, arT(t) = AnT(t) for t > 0, n ~ 0 and so in particular it follows

that t -----+ T(t)x solves (1.7) for an arbitrary x E X. This is a significant

improvement on that of a Co-semigroup, for which x E D(A) was a requirement.
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Chapter 2

An evolution system

In this chapter, we consider a particle transport problem in a slab under the

assumption that particles are reflected and either multiplied by both boundary

planes, absorbed by both boundary planes or multiplied by one boundary plane

and absorbed by the other. As in [10, Section 3] we show that the abstract version

of the problem has a unique positive strict solution and derive an inequality of

physical interest. A part of this chapter contains an extension of the results

of Belleni-Morante, who considered only the transport with purely multiplying

boundary conditions (the case with purely absorbing boundary conditions being

standard). It should be emphasized that to avoid going into physical details

we confined ourselves to the simplest geometry of a homogeneous slab, whereas
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Belleni examined the problem in a general convex region V C ffi.3 bounded by a

closed Cl surface.

2.1 A particle transport problem

In this section we shall briefly examine how a linear problem of particle transport

in a slab can be transformed into an abstract evolution problem.

Consider a mathematical model of particles, e.g., electrons, photons, particles of

a contaminant etc., moving in a homogeneous slab S bounded by the boundary

planes x = -a and x = a, (0 < a < 00). The particles on contact with

the boundary planes are either absorbed by both boundaries, multiplied by both

boundaries or multiplied by one boundary plane and absorbed by the other (the

latter referred to as mixed boundary planes), under the assumption of plane

symmetry. This boundary behaviour at x = a and x = -a can be modeled by

the equations:

yu( -a, y, t)

Iyl u(a, y, t)

Cl' J~l ly'l u( -a, y', t)dy', Y E (0, 1),

fJ J: y'u(a, y', t)dy', Y E (~1, 0),
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where the positive constants a, {3 are either the absorption coefficients, i.e., a,

{3 < I, the multiplication coefficients, i.e., a, {3 > 1 or one is the absorption

coefficient and the other the multiplication coefficient. In conditions (2.1) we

denote by u(x,y,t) the (numerical) density of the particles which at time tare

at location x E [-a, a] and have a velocity v such that y = v.il lvi, where i is

a unit vector in the positive direction of the x-axis.

The transport problem in the homogeneous slab leads to the following integro-

differential system:

a
at u(x, y, t)

u(x,y,O)

a
-vy ax u(x, y, t) - vau(x, y, t) +

1 J1 ( /) /-vas u x, y ,t dy , t > °
2 -1

u(O)(x, y), x E (-a, a), y E (-1,1),

(2.1a)

supplemented by the boundary conditions (2.1). The positive constant v is the

speed of the particles in the slab S, u(O)(x,y) is a non-negative function and

a = a C + as I where aCl as> 0 are the macroscopic cross-sections for the

capture and scattering respectively.
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Since u(x, y, t) is the particle density at (x, y), it follows that [u(x, y, t)dxdy] is

the expected number of particles that at time t are between x and x + dx and

have velocities v such that the cosine of the angle between v and the x axis is

between y and y + dy. The transport equation is a balance equation for the

particles characterized by the the state variables x and y and shows that during

the infinitesimal time interval dt, the change [(:tu) dXdYdt] of the number

of such particles is due to four processes that are represented by:

a) The free streaming term [(vy:xU ) dXdYdt] that gives the number of

(x, y) particles which enter or leave the region between x and x + dx during the

time interval dt, without interacting with the material of the slab S.

b) The attenuation term [(vO"cu) dxdydt] that refers to (x, y) particles that

are removed during the time interval dt because they are captured and disappear

for good. Note that [(vO"cu) dxdydt] is the expected number of captures during

the time interval dt because (vO"cu) dt is the probability of a capture event during

the time interval dt.

c) The loss term [(vusu) dxdydt] that gives the number of (x, y) particles

that are scattered and re-appear with a different speed.

d) The gain term [(~VlTs J~l u(x, y', t)dY') dXdYdt] that gives the con­

tribution to the family of (x, y) particles of the scattering phenomenon. In other
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words, (x, y') particles with y' E (-1,1) are scattered and reappear as (x, y) par-

ticles. Since the number of (x, y') particles is u(x, y', t)dxdy' and since (vG"s) dt

is the probability of a scattering event during the interval dt, [(vG"sU) dxdy'dt]

is the number of (x, y') particles scattered during the time interval dt and by

integration we get the contribution of all (x, y') classes to the class (x, y).

Following [10], we write the particles density u(x, y, t) as follows:

U(x, y, t) = ~~ Uj(x, y, t),
LJ=o

where Uj(x, y, t) is the density of particles which at time t, "remember" just

j reflections from the boundary surface. To explain the definition of Uj(x, y, t),

we shall call "mother" a particle just before undergoing a reflection and "daugh-

ters" the particles generated in the reflection. Assume that the daughter "remem-

bers" both the reflection during which they were generated and all the reflection

events remembered by the their mother. Then, Uj(x, y, t) is the density of the

particles which remember just j reflections.

The partial densities Uj(x, y, t) satisfy the following system
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~v(}s J1 Uj(X, y', t)dy', t > 0
2 -1

= u)O)(x,y), x E (-a,a), yE (-1,1).

Cl< J~l ly'l Uj-l( -a, y', t)dy', Y E (0,1),

(2.2)

(2.3)

IYluj(a,y,t) = (J J>'Uj-l(a,y" t)dy', y E (-1,0),

where j = 0,1,2,.... The boundary conditions (2.3) become the non re-entry

boundary conditions for Uo if j = 0, because U-1 = 0 by assumption. The

initial condition at the instant when t = 0 is chosen so that u)O) (x, y) = 0 for all

j = 0,1,2,3, ....

In order to apply the theory of semigroups, the physical system must be trans-

formed into an evolution problem in a suitable Banach space. The choice of the

space X often depends on which quantity is considered to be the most relevant

from a physical viewpoint (in this case the density of particles). For the above
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model, we consider the Banach space

X= U=

Uo

, Uj E £1 ((-a, a) x (-1,1)) I L:o IIujl11 is finite

(2.4)

with norm defi ned as follows

(2.5)

In what follows we shall focus only on the part of (2.2) corresponding to the free

streaming phenomenon. The free streaming operator A is defined as follows

8u·
A·u· = -vy_J

, J J 8x (2.6)

for j = 0,1,2, ... , with domain

D(A) = {u E X: Au E X; u satisfies (2.3)},

where ~; is the generalized derivative. Using (2.6) this part can be written as
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atU ( t ) AU ( t ),

Uoo (2.7)

U(O) U(O) = E D(A),

where u(t) is a function from IR into X and atu(t) is the strong derivative.

We shall now consider the resolvent equation

(AI - A)u = w,

where W E X, u E D(A). Using equation (2.6), we obtain

for all j = 0,1,2, ... and solving for Uj, we get for y E (0,1)

1 >.(a+x) 1 JX >.(x-x')
Uj(x, y) = -cte- vy + - e- vy Wj(x', y)dx'

vy vy -a

and for y E (-1, 0)

1 >.(a-x) 1 Ja _ >.(x-x')

Uj(x,y) = v ly,Cje vy + v Iyl x e vy Wj(x',y)dx',

35

(2.8)

(2.9)

(2.10a)

(2.10b)



where C+ C-: are constants and are determined from the boundary conditions
J' ]

as follows:

J
o )'2a

ct aCj_1 e-:;;:;; dy' +
-1

(2.11a)

J
o Ja ),(a+x')

a -1 dy' -a e~Wj-1(X', y')dx',

C-:
] J

1 )'2a

(3Ct-1 0 e- vY' dy' +

J
1 Ja ),(a-x')

(3 dy' e-~Wj-1(X', y')dx',
o -a

(2.11b)

where j = 0,1,2, ... and C2"l' C=l = 0, W-1 = 0, [11]. Relations (2.11) give

ct, Cj explicitly in terms of Wj-1, for j = 0,1,2, ... , and thus in particular, if

W E X+ then ct ~ 0, Cj ~ 0 for j = 0,1,2, ....

Next, following [10], we show that the resolvent R), (A), belongs to the space

£(X), for all A > Aa, where Aa is a constant depending on a and (3.

Setting X = max {a,(3}, we obtain

(2.12)
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and so, we get

(2.13)

(2.14)

where

X
~(A) = 2a>. '

1 - Xe---;-

2a>. V
provided 1 - Xe---;-is positive i.e., A > AQ = 2a Inx· From (2.10) we obtain

(2.15)

and this implies

Ilull <::: ~(A~+ 1 Ilwll '

for all w E X, A > AQ. Since (AI - A)-lW = u, it follows that

(AI - A)-l E £(X) with

(2.16)

(2.17)

provided A > AQ. Estimate (2.17) is not sufficient to show that A generates a

strongly continuous semigroup, because ~(A) + 1 > 1. But, if we take
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w E X+, then equation (2.8) has a unique solution Uj E (£1)+' and so we have

-v [J>Uj(a, y)dy + J~l Iyl Uj( -a, y)dY] + II Wjlll .

Since U E D(A), from the boundary conditions we obtain

(2.18)

- v[J>Uj(a, y)dy + J~l Iyl Uj( -a, y)dY] .

Thus, we get

AIlull = Ilwll + v((3 - 1) '2:.:
0
J>Uj(a, y)dy +

(2.20)

00 fa
v(ex - 1) '2:.

j
=O -1 Iyl Uj( -a, y)dy,

because U-1 = o.

In the subsections that follow, equation (2.20) is used to show that A generates

a semigroup in all three cases: purely absorbing boundaries (ex ~ 1, f3 ~ 1),
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purely multiplying boundaries (a > I, j3 > I), and mixed (one of the parameters

greater and the other smaller that 1). We note that the analysis of the first two

cases is based on [10] but the last one is new.

Before we proceed we introduce the following notation: a coefficient "Y appears

as a subscript to A if "Y ~ 1, i.e., A, and as a superscript to A if "Y > 1, i.e.,

2.1.1 Generation for non-multiplying boundary conditions

In this subsection, we show that the free streaming operator A generates a

semigroup of contractions, provided the coefficients a, j3 ~ 1.

Since X = max{a, j3} ~ I, Aa ~ 0 and from equation (2.20), it follows that

(2.21)

for all w E X+, A > O. Now from inequality (2.21) for all w E X

(2.22)
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Wo

Next we shall show that D(A) is dense in X. Let W = W1 E X. Then for

each j, Wj E £1 ((-a, a) x (-1,1)). If we denote by

Uo
00

Co = U= , Uj E Cgo (( -a, a) x (-1,1)), L IIujl11 is finite ,
j=O

then for E > 0 fixed and for each Wj E £1 ((-a, a) x (-1,1)) there exists

Uj E Co (( -a, a) x (-1,1)) such that Ilwj - ujl11 < 2j: 1' From the triangle
00

inequality for each j, IIUj 111 :::; IIWj 111 + 2j:1' thus L IIUj 111 :::; Ilw 1I + E and
j=O

Uo

so U = E X. Thus Co is dense in X. As for functions from Co they

vanish on the boundaries. Thus the boundary conditions are satisfied and so

Co C D(A). Thus D(A) is dense in X. By the Hille-Yosida theorem, it follows

that A E 9(1,0, X).
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2.1.2 Generation for multiplying boundary conditions

In this subsection, we show that if the coefficients (x, (3 > I, then A generates a

(positive) semigroup.

By the use of equation (2.20), and the assumption (x, (3 > 1, we get

(2.23)

for all w+ E X+, A > Aa. By [I, Theorem 2.5]' it follows that A generates a

(positive) semigroup {etA h20 such that

(2.24)

for all w E X, t 2: O. The constants M and J.L are positive constants and

v
from [1] I we obta in that J.L ::; 2a In X' but as far as the positive consta nt M is

concerned one can only state that it exists and if required it has be evaluated by

some suitable technique.

2.1.3 Generation for mixed boundary conditions

In this subsection, we show that for the mixed boundary surfaces we still obtain

the generation of a semigroup.
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Let us assume that a > 1, /3 < 1 and W E X+. Then it follows that

ct 2 0 and C; 2 0, for j = 0,1.2, ... and that, if (RA (Ap)) j represents the jth

component of the resolvent, then for y E (0,1)

x
1 A(a+x) 1 J A(X-X')

(RA(Ap)) .Wj = -cte- vy + - e- vy Wj(x', y)dx' 2 0,
J vy vy

-a

(2.25)

and for y E (-1, 0)

a
1 A(a-x) 1 J _A(X-X')

(RA(Ap))jWj=vlyICie vy +vly! e vy Wj(x',y)dx'~O, (2.26)
x

for j = 0,1,2, ... and thus we get

(2.27)

For simplicity, we shall compare componentwise the resolvent of RA(Ap) with

that of the resolvent RA (Acd ): for y E (0,1)

(2.28)

and

and for the third component from equation (2.25) we obtain

(2.29)

1 _ A(a+x) 1 JX A(X-X')-cte vy + - e- vy W2(X' y)dx'
vy vy -a '
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and from equation (2.11)

1 ( JO >'2a JO Ja >'(a+x') )
= - aG! eVY' dy' + a dy' e VY' W1(x',y')dx'

vy -1 -l-a

>,(a+x) 1 JX >'(x-x')
X e- vy + - e- vy W2(X', y)dx'.

vy -a

Now writing (R>,(A3))2 W2 in terms of Gt, we get

1 ([ J1 >'2a
= vy a {jGt °e- VY' dy' +

J

1 Ja >,(a-x') ] JO >'2a
(j °dy' -a e-~Wo(x', y')dx' X -1 e vY' dy'

J

o Ja >'(a+x') ) >,(a+x)
+ a -1 dy' -ae~Wl(x',y')dx' X e---;:Y-

1 JX >'(x-x')
+ - e- vy W2(X', y)dx'.

vy -a
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Since et = 0 it follows that (R.\(A3))2w2 can be written as

1 ([ J1 Ja '\(a-x') ]
=vy aj3 ody' _a e- VY' wo(x',y')dx'

J

o .\2a JO Ja '\(a+x') )
X -1 e vY' dy' + a -1 dy' -a e~W1(X', y')dx'

.\(a+x) 1 JX '\(x-x')
xe vy + - e- vy W2(X', y)dx'.

vy -a

Now since j3 < 1, it follows that

1 ([ J1 Ja - '\(a-x') ] JO .\2a::; - a dy' e vy' wo(x', y')dx' e VY' dy'
vy 0 -a -1

J

o Ja .\(a+x') ) .\(a+x)
+ a -1 dy' -a e~W1(X', y')dx' e------:;;y
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Proceeding in this manner we obtain that for y E (0,1)

(2.35)

for j = 0,1,2 .... A similar result holds for y E (-1,0). Thus we conclude that

(2.36)

where RA (A3) and RA (AQI) are positive operators. From the relation (2.36)

and inequality (1.18), we obtain that

(2.37)

It follows that

(2.38)

Now, if we assume that the following relation holds for kEN, that is

(2.39)

45



then for u E X+, we obtain that

Thus, by induction, we conclude that the relation

(2.41)

holds for all n E N, and therefore

(2.42)

It follows from Subsection 2.1.2 and the Hille-Yosida theorem that there exists a

positive constant M such that

(2.43)

v
A > Ao = 2a = Inx, where X = max{a,l} = a. Thus by (2.42) also R.x(A3)

satisfies Hille-Yosida estimates and it follows that A generates a (positive) semi-
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group {etA h2:o such that

(2.44)

for all U E X, t ~ 0, where J.-l and M are positive constants.

2.2 A control of the evolution process

We observe, in the cases of multiplying and mixed boundary conditions, that while

the constant J.-l can be estimated by Ao, the constant M is completely unknown.

As a result of this it is of interest for applications to derive some other inequality

involving the semigroup. The following calculations for the case of multiplying

boundary conditions can be found in [10]; for the sake of completeness we provide

them here for the mixed case.

As in Subsection 2.1.3, we assume that a > 1 and f3 < 1. For Uj E (L1)+ nD(Aj )

it follows from equations (2.6) and (2.7) that

(2.45)
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Integrating with respect to x and y gives

J+1 [J+a 8 ]
-v -1 dy Y -a 8x Uj(X, y)dx

-v [1>Uj(a, y)dy + J~l Iyl Uj( -a, y)dY]

and since U E D(A), we can use the boundary conditions to obtain

= v [,6 J: y'Uj-l (a, y')dy' + Cl< J~l ly'l Uj-l (-a, y')dY'] (2.47)

Since X > 1,

< vx [1: y'Uj-l (a, y')dy' + J~l ly'l Uj-l (-a, y')dY'] (2.48)

- v [1: YUj(a, y)dy + J~l Iyl Uj( -a, y)dY] .
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Now, multiplying inequality (2.48) by X- j
, we obtain

< VX-H1 [J: y'Uj-l (a, y')dy' + J~l ly'l Uj-l (-a, y')dY'] (2.49)

Finally, summing over j and using the assumption U-1 = 0, we get

n J1 J1< v L" X-
j
+1 y'Uj-1(a, y')dy' - v L~ X-

j YUj(a, y)dy
J=O 0 J=O 0

n "JO n JO+ v L"- X- J+
1 ly'l Uj-1( -a, y')dy' - v L"- X-

j Iyl Uj( -a, y)dy
J-O -1 J-O -1

(2.50)

for all n = 0,1,2, .... Thus we have

49

(2.51)



Letting n approach infinity, the above leads to

Since X > 1, it follows that

It follows that inequality (2.52) can be put in the form

IIBu(t)11 ::; IIBu(O)11 '

for all u(O) E D(A) nX+, where

1 0 0

0 X-I 0
B=

0 0 X- 2

The operator B has the following properties:

i) D(B) = X,

ii) B E £(X) with IIBII = I,

iii) B- l exists, B-1 tf- £(X),

iv) B does not commute with A,
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v) B (X+) c X+.

From Subsection 2.1.3, it follows that A generates a semigroup and thus inequal­

ity (2.54) can be written as follows

(2.56)

We shall now show that inequality (2.56) can be extend to the whole space.

Firstly we note that from the proof of the density of COO in L1 , positive functions

of L1 are approximated by positive differentiable functions. Thus the positive

cone (COO)+ is dense in X+. Hence, (COO)+ C D(A) nX+ and D(A) nX+ is

dense in X+. We conclude that we can extend inequality (2.56) to the whole

space X+

IIBetAul1 ::; IIBul1 ' for all uE X+.

Now, from inequality (2.57), we have

(2.57)

(2.58)

for all u E X.

The operator B multiplies Uj(t) by X- j and thus in some sense annihilates

the multiplying effect of the boundary surfaces. In this sense it provides the
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additional information about the evolution that, in some instances, can be used

to replace the missing estimates of the constant M, discussed at the beginning

of this section.

It turns out that evolutions obeying the estimate (2.57) can be of independent

interest and that is the reason as to why an abstract definition of evolution

families satisfying (2.57) has been introduced in [11]. The next chapter is devoted

to them.
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Chapter 3

A generalization: B-bounded

•semlgroups

3.1 An overview of the development of

B -bounded semigroups

The notion of aB-bounded semigroup was originally introduced to provide a

tool for estimating the growth rate of solutions to abstract Cauchy problems.

However, in further developments, it turned out that B-bounded semigroups

can be used to regularize ill-posed problems and in this way can be seen as a
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complement to B-evolution families. Also, they proved to be an efficient tool

for solving some implicit evolution equations and in this context complement the

theories of B-evolutions and empathy introduced by N. Sauer in [28-29] and

the Showalter approach [30]. This shows how important it is to obtain a full

characterization of the generators of aB-bounded semigroup.

The original definition of aB-bounded semigroup has been modified several times

and we shall not discuss all the intermediate steps. One of the most used recent

versions reads as follows:

Definition 1.1 Let (Z, 11.llz) be a Banach space and A : D(A) ~ X,

D(A) c X and B : D(B) ~ Z, D(B) c X be a pair of linear operators with

i) D(A) c D(B),

ii) for some wEIR the resolvent set of A satisfies, p(A) ~ (w,oo).

The one-parameter family {Y(t) h~o of operators from the Banach space X into

the Banach space Z which satisfies the following conditions:

a) D(Y(t)) =: n ~ D(B), and for t ~ 0 and any x E D(B)

11 Y(t)x Ilz :::; M exp(wt) IIBxllz,

where M is a constant that may depend on the operators A and B,

b) t~ Y(t)x E C([O, 00), Z),
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c) For any x E Dn(A) = {x E D(A) nD(B); Ax E n} and t 2: 0

Y(t)x = Ex +l'Y(s)Ax ds, (3.2)

is called a B-quasi bounded semigroup generated by the pair A and B.

In the case when B is bounded, D(B) = X = Z, M = 1, W = 0 one obtains the

original definition in [11], while the case X = Z gives Belleni's generalization,

[35]. To shorten notation, if A and B generate aB-bounded semigroup satisfying

the above conditions, then we write A E B - Q(M, w, X, Z).

A first characterization of the generation theorem, under the assumption that

operators A and B satisfy all the conditions of Definition 1.1, was obtained in

[5]. The author introduced there the extrapolation space X B , which represents

the completion of the space X with respect to the seminorm IIB·II. In [3], in­

dependently the characterization theorem for B-quasi bounded semigroups was

proved directly using a constructive procedure which can be seen as a general­

ization of Yosida 's method for constructing a strongly continuous semigroup. It

was proved that the pair of operators A and B generates the B-quasi bounded

semigroup {Y(t)h2:o with Y(O) = B, iff by putting for each y E B(DB(A)),

A(y) = {z E rmB, Z = BAx for x E DB(A) with Bx = y}
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where DB(A) := {u E D(A) nD(B); Au E D(B)}, we obtain a single-valued

mapping A: B(DB(A)) -----+ 1mB; such an operator is linear and c10sable in

Im B and its closure generates a Co-semigroup.

In this dissertation we shall focus on the development of the theory as presented

in [5-8] without going into details of Arlotti's approach that is to some extent

parallel.

Next we shall present the definition of the extrapolation space and provide a

number of examples in which the extrapolation space can be identified with a

subspace of X.

Let us note that most of the theory presented below has been developed for both

invertible and not invertible operators B. However, practical applications of the

non-invertible results are rather limited at this stage and thus we shall focus on

the case when B is invertible (but unbounded).

Definition 1.2 Let us consider the set X of all sequences (Xn)nEN such that

Xn E D(B) for all n E Nand (BXn)nEN is convergent in (Z, 11.llz). Partition the

sequence space X into disjoint subsets with the aid of the following equivalence

relation

56



Define X B to be the set of all equivalence classes in X. The space X B IS a

complete normed space; see [21, Theorem 2.3-2], with norm

(3.4)

If B is an invertible operator, then X B coincides with the completion of D(B)

in the norm IIB·llz' By construction (D(B),IIB·llz) is isometric to a dense

subspace of X B , denoted by D(B).

Definition 1.3 Denote by i the isometry from D(B) into D(B) defined by

i[(x, x, ... )] := x. (3.5)

The operator B is shifted to the space X B by the formula 13 = B 0 i. From

equation (3.4) it follows that on D(B) we get 11[(x,x, ... )]llxB = IIBxllz. The

operator 13 E £(D(B), Z) is an isometry, since we have

11 [(x, x, ... )] IIxB = II Bx llz = 1113[(x, x, ... )] 11, and has a unique extension by

continuity to an operator ~ E £(XB , Z) that is defined through the formula:

(3.6)

Furthermore, the operator ~ is an isometric isomorphism of X B onto lID B , [5,

Lemma 2.1].

In a similar way we shall shift the operator A to X B .
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Definition 1.4 The shift of A, denoted by A , is defined as follows:

A[(x, x, ... )] = i-IAi[(x, x, .. )]

(3.7)

= [(Ax, Ax, ... )] for all [(x, x, ... )] E DB(A)

where DB(A) := i-IDB(A).

It can be also proved from [5] that if A E B - (M, w, X, Z), then the operator

A is c1osable. Denoting the closure by 2l, we also have that the resolvent set

p(2l) ~ (w,oo).

The main result of [5, Theorem 4.1] reads as follows.

Theorem 1.5 If A E B - Q(M, w, X, Z) and B(DB(A)) is dense in lm B, then

the operator 2l generates a semigroup on X B , ie., 2l E Q(M, w, X B ). Conversely,

if there is an extension A of A such that A E Q(M,w, X B ) then A = 2l and

A E B - Q(M, w, X, Z). Furthermore, the B-bounded semigroup {Y(t) h~o for

x E D(B) is given by

(3.8)

The assumption that B(DB(A)) is dense in Im(B) can be discarded if Z (and

consequently Im(B)) are reflexive spaces; see [5, Corollary 4.1]. Recently Arlotti,
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[3, Theorem 2.1], proved that if the B-bounded semigroup satisfies the additional

condition

Y(O)x = Bx (3.9)

for all x E D(B), then B(DB(A)) is dense in Im(B) (or equivalently, DB(A) is

dense in X B ). Therefore if (3.9) holds, then the density assumption in Theorem

1.5 can be omitted.

Since the space X B is in many cases rather difficult to handle, Theorem 1.5 is

most often used in the followi ng version.

Theorem 1.6 Let the operators A and B satisfy the conditions of Definition

1.1. Then A is the generator of a B-quasi bounded semigroup satisfying (3.9)

iff the following conditions hold:

i) B(DB(A)) is dense in Im(B),

ii) there exist M > 0 and w E lR such that for any x E D(B), A > wand n E N

(3.10)

The main point in the proof of the Theorem 1.6, is the observation that (3.10)

can be extended to hold on the entire space X B . This allows a useful corollary.
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Corollary 1.7 Let the operators A and B satisfy the conditions of Definition

1.1 and let us assume in addition that conditions i) and ii) of Theorem 1.6 are

satisfied.

i) If the estimate (3.10) is satisfied for n = 1 with M = 1 and w = 0, then Qt

generates a semigroup of contractions in X B and consequently

AEB-Q(l,O,X,Z).

ii) If the estimate

M
IIB(AI - A)-l X ll z :::; lA _wl"Bxllz, (3.11 )

1f
holds for A E Se = {A E CC; larg AI :::; 2" + 8, 8 > O}, then Qt generates an

analytic semigroup in X B and consequently A E B - Q(M',w,X,Z) for some

constant M'.

The extrapolation space

Next we shall discuss some cases when X B can be identified with a subspace of

X.

Example 1.8 Let B be a bounded linear operator from X into a Banach space

Z that is bijective. Then X is isometrically isomorphic to X B .

Example 1.9 Let (Z, 11.llz) be a Banach space and B : D(B) ----t Z,

D(B) c X, be an unbounded linear operator with the domain of B contained
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in the domain of an injective bounded linear operator A : D(A) ~ X, and the

image of B is contained in the domain of an injective bounded linear operator C,

C : D(C) ~ Z, D(C) c Z, such that CB E £(D(B), Z) and

AB-1 E £(Im B, X). Then B is c10sable and X B can be identified with a

subspace of X, namely D(B).

Proof The operator B is c1osable: Let lim Xn = 0, Xn E D(B) and
n---tCX)

lim BXn = y. Then since CB is bounded, lim (CB)xn = O. But, we also
n---tCX) n---tCX)

have that Hm C(Bxn) = Cy, since C is bounded, and by the uniqueness of
n---tCX)

limits we conclude that Cy = O. Since C is injective, this implies that y = O.

Furthermore, the closure of B, B IS injective: If Bx = 0, then there is a

sequence (Xn)nEN in D(B) such that lim Xn = x and lim BXn = O. Now,
n---tCX) n---tCX)

Hm B-1(Bxn) = x and since A is bounded, lim AB-1(Bxn) = Ax. Also,
n---tCX) n---tCX)

since AB-1 is bounded, lim (AB- 1 )(Bxn) = 0 and it follows that x = O.
n---tCX)

Each element of

D(B) := {x E X; x = lim Xn, Xn E D(B), (BXn)nEN is Cauchy in z} ,
n---tCX)

determines a unique class consisting of sequences (Xn)nEN converging to x such

that (BXn)nEN is convergent in Z. Conversely, each class [(Xn)nEN] can be

identified with x = B-
1

(Hm BXn) , where y = lim BXn is independent of the
n---tCX) n---tCX)
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choice of sequence (Xn)nEN in the class. D

D

For the case when the operator B is closed or c1osable, we can identify X B with

the subspace D(B), [6 , Theorem 2.8].

Theorem 1.10 Let (Z, 11.llz) be a Banach space and B : D(B) ---t Z,

D(B) c X, be an injective operator. Then the following statements are equiv­

alent:

1) X B has the following properties:

(i) each coset ~ E X B contains a sequence (Xn)nEN converging in norm of X

to some x EX, and x is the limit of any other X -Cauchy sequence belonging

to ~,

(ii) if (Xn)nEN E ~ E X B , (Yn)nEN satisfy Ilxn - Ynllx ---t 0 as n ~ 00, and

(Yn)nEN E lL for some lL E X B , then ~ = lL·

2) The operator B is c10sable and B-1 is bounded.

3) There exists an isometric isomorphism i : X B ---t Xk, where Xk IS a

subspace of X such that Xk '---* X and satisfies the following

i ID(ii) = identity.
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The final generation theorem

We shall present the final form of the definition of aB-bounded semigroup and

the generation theorem based on this definition. Firstly, however, we shall discuss

two examples showing the need for such generalizations.

In [3] and [6], it was proved that the characterization theorem holds even if the

assumption ii) of Definition 1.1 is replaced by the weaker assumption:

iii) for A > w the operator

(3.12)

where we recall that

DB(A) = {u E D(A) nD(B); Au E D(B)},

is bijective.

The need for such a generalization is demonstrated in the example below, where

we show that there is an evolution family {Y(t)h~o satisfying a)-c) of Definition

1.1 but the associated operators A and B satisfy neither i) nor ii). However,

(3.12) is satisfied.

Example 1.11 Let v(x) = e-x2 and X = L2(JR, vdx) be the space of all

Lebesgue square-integrable functions on the real line with weight v. Then define
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the operator A,

Au:= 8x u, (3.13)

on the maximal domain D(A) c X, and define the operator B : D(B) ---+ X,

D(B) c X, as follows:

(3.14)

The operator B : D(B) ---+ X, is an unbounded operator and since

(3.15)

we obtain that D(B) = L2(IR). Since B(D(B)) = X, we obtain that

(3.16)

by Theorem 1.10. Then

DB(A) = {x E D(A) nD(B); Ax E D(B)} = Wi(IR). (3.17)

Moreover A generates a contraction semigroup {etA h~o in L2(IR) and

A x
2

(Y(t)u) (x) = Bet u(x) = eTu(t + x)

is a family satisfying a)-c) of Definition 1.1.
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In the example that follows we shall show that the assumption (3.12) is still too

restrictive, that is, there are evolution families satisfying a)-c) of Definition 1.1

but for which the operator A,\ : DB(A) -----t D(B) is not a bijective operator.

This example furthermore indicates that we should be able to replace (3.12) by

a weaker condition that would require only the bijectivity of a suitable extension

of A.

Example 1.12 Let v(x) = ex2 and X = L2 (JR,vdx) bethe space of all Lebesgue

square-integrable functions on the real line with weight v. Let A : D(A) -----t X,

D(A) c X, be the differential operator,

(3.18)

on its maximal domain and let B : D(B) -----t X, D(B) c X, be the operator

(3.19)

with D(B) = X. For any u E X,

(3.20)

and so the operator B E £(X).
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The space (X, 11·11) is continuously imbedded in (L2 (lR.) , 11·II L2(lR)). If we denote

the inclusion map by i : X ~ L2 (lR.) , then for any U E X,

Furthermore, since B is invertible, (X, liB· 11) is a normed space and if

id : X ~ X, denotes the identity map, then for any U E X

(3.22)

Thus we have that the normed space (X, IIB·II) is isometrically isomorphic to the

normed space (X, 11.II L 2(lR))' Since the space of infinitely differentiable functions

with compact support, Co(lR.) , is dense in L2(IR) and Co(IR) ~ X, we conclude

that (X, IIB·II) is isometrically isomorphic to a dense subspace of L2 (IR) and so

we have that (L2 (IR), 1I.II L 2(lR)) is a completion for (X,IIB·II). Since we have

that (XB , 11.llxB) is also a completion, we conclude that we can identify X B with

Let us now consider the closure Q{. of A ie" we take all sequences (Un)nEN

of elements of D(A) such that Un ~ U and 8x un ~ w as n ~ 00 in

L2 (IR). However, this is the same as the closure of D(A) in Wi(IR) and as
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Co(lR) c D(A) is dense in Wi (lR), we obtain that 2tu = 8x u for u E Wi (lR).

Thus 2t generates a semigroup of contractions in XB and therefore

2

(Y(t)u)(x) = e-
x
2 u(t + x) satisfies conditions a)-c) of Definition 1.1.

We shall now show that AA : D(A) ~ X is not bijective. We begin by finding

the formal adjoint of A in X. For any w E Co(lR) and using integration by

parts, we find a formula for the formal adjoint, A#

(Au,w) := J~ooAu(x)w(x)eX'dx

J~oo u'(x)w(x)eX' dx

(3.23)

u(x)w(x)eX' 1'="00 - J~oo u(x)ox(w(x)eX')dx

-J~oo u(x)[2xw(x) + w'(x)]eX'dx = (u, A#w).

Therefore A#w = -[2xw(x) +w'(x)] is the formal adjoint of A. Let us consider

the equdtion

(AI - A#)w(x) = AW(X) + 2xw(x) + w'(x) = 0, (3.24)

in X. We find that

w(x) = e-Ax-
x2

,
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is a solution. We shall prove that W E D(A*): let cPn E Co(lR) , n = 1,2,3, ...

be such that

for Ixl :::; n

for Ixl ~ n + 1,

(3.26)

and that IcP~(x)1 :::; M for n:::; Ixl :::; n+1. Then we have that for any U E D(A)

-J u(x)8x cPn(x)e-AXdx
n~lxl~n+l

(3.27)

It follows that u, 8x u E L 1 (lR). Hence passing to the limit with n -+ 00, we

obtain
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This shows that w E D(A*) and therefore AA : D(A) ~ X is not a bijective

operator, moreover, it is not a surjection onto any dense subspace of X. 0

In the proof of the main generation result, [5, Theorem 4.1]' the resolvent set,

p(A) ~ (w,oo), was used to show that p(2t) ~ (w,oo), where 2t is the closure

of A. Thus what we really need is that the Hille-Yosida estimate holds on some

dense subspace, X of X B . Moreover, as we are using the pseudoresolvent identity,

we need that f) A := (AI - A)-IX c X for A > w. As our starting point is the

space X and the operators defined in it, the space X must be accessible from

X in the sense of the operator closure of X B . Before we formulate the suitable

assumption, we note that the above requirements make our choice limited to a

certain extent. We have the following proposition.

Proposition 1.13 Let X be a dense subspace of X B such that

f)A := (AI - A)-IX c X, where (AI - A) : DB(A) ~ X B for all A > w.

Then

f)A = f) ifff)A eX. (3.29)

Proof For A #- A' > wand any x' E f) A' there exists ~ E f) A such that for
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some JL E X

(3.30)

)/I x' - Ax' JL.

This can be written as

(3.31)

Now assume that 1) A' C 1) A' Then;f - x' E 1) A' and therefore

AI(;f - x') - A(;f - x') E X. Thus, x' E X. Since x' is arbitrary, 1) A' C X.

Clearly the converse is also true. Since the argument is symmetric with respect

to primed and un-primed objects we conclude the proof. o

These considerations lead to the following new assumption on A.

iv) The shifted operator A is c10sable in X B ie., if the sequence (Xn)nEN of

elements of DB(A) is such that BXn -t 0 and BAxn -t y in Z as n -t 00,

then y = O. Denoting 2( = A, we assume further that there exist subspaces

x, satisfying D(B) ~ x ~ X B, and DB(A) ~ 1) ~ xnD(Q{.) such that

(AI - 2( 11)) : 1) -t X is bijective for all A > w.

As a result of the assumption iv), the main result of [6, Theorem 2.4] now reads

as follows:

Theorem 1.14 (Theorem 3.1 of [8]) Let A : D(A) -t X, D(A) C X, be a
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linear operator in a Banach space X and B : D(B) --t Z, D(B) c X, be a

linear operator from X to a Banach space Z satisfying the conditions of Defini-

tion 1.1 with ii) replaced by assumption iv). Then A E B - Q(M, w, X, Z) and

satisfies equation (3.9) iff

i) B(1)) is dense in 1mB,

ii) there exists a constant M > 0 and wEIR such that

(3.32)

for any 'rJ E x, A > wand n E N.

Proof We begin by employing the operators In(A) n --t Z, defined as

follows

1 jCXJ
In(A)X := (n _ I)! 0 tn- 1 exp( -At)Y(t)x dt, (3.33)

where n is the common domain of the family of operators {Y(t) h~o. The

integral exists since the function t --t Y(t)x is continuous. In particular, for

x E D(B), we have from the definition, that

1 jCXJ
IIJn(A)xll z ~ (n _ I)! 0 tn- 1 exp( -At) II Y (t)xll z dt

(3.34)

M
< (A _ w)n IIBxll .
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By (3.1) and (3.34) we can extend by continuity the operators I n(>'') ,

n = 1,2,3, ... , >.. > wand Y(t), t ~ 0, to bounded linear operators

.In(>'') : X B ------t Z and ~(t) : X B ------t Z, respectively. Let Xn ------t ~ in X B

t ------t ~(th is continuous for any ~ E X B . Moreover, by (3.34) we can pass to

the limit in (3.33) to get

for any ~ E X B and>.. > w. Now, for all ~ E D(2t)

(3.35)

;:h (A)(AI - 2lh = AJ~ exp( -At)!D(th dt - J~ exp(-At)!D(t)21~ dt

- AJ~ exp(-At) ['EH J: !D(s)21~ dS] dt

-J~ exp( -At)!D(t)21~ dt

'E~ + AJ~ J~ exp(-At)dt !D(s)21~ ds

-J~ exp( -At)!D(t)21~ dt,

(3.36)
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where the first integral is evaluated by the use of an extension of (3.2) and we

finally obtain the following equation

(3.37)

Using the assumption iv), we obtain that if (AI - 2t 11) h: = TJ then

(3.38)

for all TJ E X and by estimate (3.34) we obtain that for those TJ, we have

Next, using (3.35) and the extension of (3.2)

'1)(t)~='E~+ J: '1)(s)'2l~ds, t::::O,

which is valid for all ~ E D(Q(), we obtain

(3.39)

(3.40)

J2(A)~ = J~ t exp( -At) ['E~ +J: '1) (s)'2lx dS] dt (3.41)

for all t E D(Q() and A > w.
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Hence,

1 100 [1A2~t:+ 0 >:sexP(-As) +

and

where we have used equations (3.38) and (3.35). Thus, we have

(3.42)

(3.43)

(3.44)
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for t: E D(Qt). From the equation (AI - Qt \f»t: = 'rJ, we get

(3.45)

for all 'rJ E X.

By iterating the above procedure, we have

(3.46)

for'rJ E X, A > w. Finally from equations (3.46), (3.34) and inequality (3.35),

we obtain

(3.47)

which is part ii). To prove property i) we extend the argument of [11]. Let

t: E X and define 'rJ>, = A(AI - Qt If»-lt: E 1'. We have by (3.38)

The property (3.9) gives Y(O)x = Bx for all x E D(B). Since both operators

can be extended by continuity to X B and D(B) is dense in X B , we have that

q)(O)t: = ~t: for all t: E X. The function t ---+ q)(t)t: is continuous, hence for
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any c > 0 we can find a 8 > 0 such that sUPO::;t::;8 II(~ - q)(t))tllz :::; c. Thus

II~~ - ~1].Jz ~ J~ Aexp( -At) I1 (~ - q)(t) )~lIz dt

< E + (1 + M) J~ Aexp (- (A - w)) 11~llxB dt (3.49)

< 2c,

provided A is sufficiently large. Hence, ~CD) is dense in ~(x) in the Z topology

or 1:' is dense in x in the X B topology. However, as D(B) C x is dense in X B ,

x is dense in X B and therefore 1:' = X B . This proves the necessity of conditions

i) and ii).

To prove the sufficiency we note first that the resolvent equation is of purely

algebraic character and therefore for A, J-L E (w, (0) and t E x, we have

where we used the assumption that f) C x.

Since B(1:') is dense in 1mB, we see that 1:', and consequently x, are dense in

X B · From the assumption (3.32) it follows that for each A > w the operator

(AI - 2t If)) -1 can be extended by continuity to a bounded operator
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9\>. : X B ---+ X B which satisfies

(3.51)

for any r; E X B . Thus, equation (3.50) can be extended onto the whole of

X B preserving its structure, and hence the family of operators 9\>. is a pseudore-

solvent. The range of each 9\>. contains f) I and therefore is dense in X B . As a

result of (3.51) and the use of Theorem 9.4 of [25], we can conclude that 9\>. is

the resolvent of a unique densely defined closed operator in X B . Denote this

operator by A. Since ((AI - A)-l)-l t = ((AI - 2t 1:0)-1)-1 t for t E f) and

(3.52)

we obtain that A is an extension of 2t 11)=: 2t:o, and since 2t:o is c10sable we get

2(1) c A. Let now t E D(A). Then t = (AI - A)-lr; for some r; E X B . This

means that

(3.53)

for r;n E X and r;n ---+ r;. In other words, tn = (AI - 2t:o)-lr;n E f) converges

to~. Solving this equation we get 2(1)tn = Atn - r;n and (2t1)tn)nEN converges,

Therefore inequality (3.51) can be written as

(3.54)
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valid for any t: E X B and A > w. Writing

(3.55)

and using induction in n E N, we find that

(3.56)

for all n E Nand t: E X B which shows that 2(1) generates a semigroup in X B .

Due to the assumption DB(A) C f) c D(2tf)) , the family

{Y(t)h~o = {~et2tD h~o satisfies the condition of the Definition 1.1, which can

be proved as in the proof of Theorem 1.5. 0

The assumption that DB(A) C f) may seem too restrictive as what we need and

use is that DB(A) C D(2t1») (otherwise the condition iii) of Definition 1.1 would

be satisfied on a smaller set that required). However, the proposition below

shows that this is precisely what we need. Let us consider the relations between

the operators appearing in this theorem. We have the original operator A, its

shift A, its closure Q(. of A, the restriction of Q(. to ~ and the generator A = Q(.1).

We can prove the following proposition.

Proposition 1.15 (Proposition 3.2 of [8]) The following are equivalent

i) A = 2t,
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ii) A c Q(1),

iii) for some A > w the operator AI - Qt is injective,

iv) Ac~.

Proof i){:}ii) Let A = Qt. Then A = Q(1) = Qt yields A C Q(1). Conversely, we

have A C Q(1) c Qt = Qt and Qt = Ac Qtf) = A. Hence A = Qt.

i){:}iii) To prove i){:}iii) we assume that QtA is one-to-one and let Qt => A; then

also QtA => AA' However AA acts onto X B and hence for any x' E D(Qt) there

is ;f E D(A) such that QtAX' = AA;f. By i) QtA;f = AA;f, and therefore by the

injectivity of Qt we obta in that ;f = x'. The converse is obvious.

i){:}iv) For i){:}iv) we see that if Ac Qtf) then Qt = Ac Q(1) = A. Conversely,

if A = Qt then by iii) QtA is a one-to-one operator for some A and therefore

AA and (Qt1))A are one-to-one. Let;f E D(A)\f). Then AA;f = U E D(B)

and since D(B) C 1: there is;f i- x' E f) such that (Qt1))A X' = U. However,

since both these operators are restrictions of the injective operator QtA. this is

impossible. Thus D(A) C f). o

This proposition shows that the adopted assumption DB(A) C f) is necessary

and sufficient for the semigroup {etA h>o to define aB-bounded semigroup. An­

other important consequence of this proposition is that the B-bounded semigroup
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{Y(t)h~o is uniquely determined by A and B, being defined by the semigroup

generated by the B-c1osure of A restricted to DB(A).

3.2 A heat transfer problem

In this section we show that B-bounded semigroups can be used to solve certain

types of implicit evolution equations. The heat transfer problem that follows

was considered by N. Sauer; see [28, Section 8]. as an example of application of

B-evolution theory.

Consider the followi ng problem: solve

atU (x, t) = a;u(x, t) 0 < x < 1, t > 0

with the following initial and dynamic boundary conditions

(3.57)

u(O, t) 0,

atu(l, t) -axu(l, t), for t > 0
(3.58)

u(x,O) a (x), for 0 < x < 1

u(l,O) - a.

A possible way of finding a solution to the problem is to express it as an implicit
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evolution equation:

~(Ku) = Lu , hm (Ku)(t) = UO
dt t->O+

(3.59)

where K : Z ---7 X, L : Z ---7 X, and Z, X are Banach spaces and K, L are

linear operators.

The system of equations (3.57) I (3.58) may be written in the form (3.59)

in the following way: Let X = L2(0,1)x CC with the inner product defined

as ((1,0:), (g,(3)) = (!,g) +o:~, where C,·) denotes the usual inner product in

L 2 . The norm of (1,0:) E X is defined as 11(1,0:)11 = (11111 2 + 10:1 2
)1/2. Let

Z = L2 (0, 1). We introduce the trace operators

(3.60)

and define the linear operators Land K as follows:

on D(L) = {v; v E Wi(O, l),v(O) = O} and

Kv = (v,rov)

(3.61)

(3.62)

on D(K) = {v; v E Wl(O, l),v(O) = O}, so that problem (3.57), (3.58) takes

the required form.
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A "natural" way of approaching (3.59) would be to factor out K, and provided

it is invertible, to consider a standard Cauchy problem with the operator K- 1L

on the right-hand side. In some cases, however, the operator K is not c10sable

and therefore there is no way the "time derivative" and the limit at t = 0+ can

commute with K. In fact, this is the case for the operator K defined in (3.62),

even though it has a bounded inverse and Im K is dense in Z; see [28, Proposi­

tion 8.1]. To circumvent this difficulty, in [28] a special evolution family, called

a B-evolution, is introduced.

Definition 2.1 Let X and Z be Banach spaces and let B be a linear operator

with D(B) c X and 1mB C Z. A family {S(t)h>o of bounded linear operators

defined on Z is called a B-evolution if

and

S(t)Z c D(B) for all t > 0

S(t + s) = S(s)BS(t) for all s, t > O.

(3.63)

(3.64)

Associated with any B-evolution is a semigroup {T(t) h>o of linear operators in

Z defined by

T(t) = BS(t) for all t > o. (3.65)

Using the B-evolution theory, we see from Theorem 5.1, Proposition 7.3 and
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Proposition 8.2 of [28] that to obtain solvability of the problem it is sufficient

to prove that LK-1 generates a holomorphic semigroup in X. To do this we

consider for A E C the equation

(AK - L) K- 1 (u, 'You) = (f, a), u E D(L), (3.66)

which is equivalent to the system of equations

AU-Uxx f,

Au(l) + ux(l)

u(O)

a,

0,

(3.67)

for arbitrary (f,a) EX. Taking the inner product of the left-hand side of the

first two equations with (u, u(l)) we obtain

A IIul1 2
- J: uxxudx + A lu(1W + ux(1)u(l)

(3.68)

= A (11 U 11
2 + Iu (1) 1

2
) + 11 Ux 11

2
.
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To shorten notation, denote the left hand side by Q. Then we obtain

2 Re A (11 U 11
2 + 1u(1) 1

2
) 11 ux 11

2 + 11 ux 11
4

_ IA1
2

( ( 11 U 11
2 + Iu (1) 1

2
) 2 + 11 u x 11

4
1A1-

2 +

2 IA1-1 cos e (11 u 11
2 + 1u (1)1

2
) 11 ux 11

2
) I

(3.69)

where e= arg A.

Since for - ~ ::; e ::; ~, we have that cos e ~ 0 and from equation (3.69) we

obtain

(3.70)

Using

2 1A,-I cos e (11 u 11
2 + Iu (1) /2) 11 ux 11

2 > - 11 ux 11
4

IA/- 2
-

(3.71)

cos2 e (11 u 11
2 + 1u (1)1

2
) 2 ,
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we obtain from equation (3.69) that

IQ1
2 2:: 1A1

2
(11 U 11

2 + IU ( 1)1
2

) 2 sin
2 e.

For ~ ::; lel ::; 3:, inequality (3.72) yields

(3.72)

(3.73)

31r 31r
From inequalities (3.70) and (3.73) it follows that in the sector -4::; e ::; 4

(3.74)

y2::; m11 (U, IOU) I111 (!, a) 11·

Taking into account that by (3.66) we have (AK - L) K-1(U"OU) = (!, a),

31r 31r .
we obtain that in the sector - - < e< - the estimate4 - - 4

(3.75)

is valid, which shows that LK-1satisfies the Hille-Yosida estimate, and since X

is a Hilbert (reflexive) space, this is sufficient for the generation of a holomorphic

semlgroup. D

The theory of B-bounded semigroups provides another convenient way of per-

forming this "impossible" commutation by passing to a specifically constructed

85



space related to K.

Definition 2.2 Let X <----t X B and L be an extension of operator Land k be

an extension of the operator K in the space X B . A map t ---7 u(t) is called a

XB-solution of problem (3.59), if it is a classical solution of the problem

d - - -
dt

(Ku) = Lu, lim (Ku)(t) = u0
•

t-tO+

Theorem 2.3 (Theorem 3.4 of [6]) Assume that

i) D(K-1L) = {y E D(L) nD(K),Ly E ImK} is dense in D(K),

(3.76)

ii) The operator (K- 1L,D(K-1L)) is c10sable in Z and there exists spaces: X

satisfying D(K) c Xc Z, and 1) satisfying D(K-1L) c 1) c D(K-IL) such

that for x E X either

11 ((>.1 - K-I L III ) -I xL ::; ~ Ilxllz ,for>. > 0 (3.77)

or

11 (>.1 - K-IL br\llz ::; I>'~wl Ilxllz' (3.78)

7r
for A E Se = {A E CC; larg AI ::; "2 + e, e > O}. Then for any x E D(LK-1)

the function t ---7 Y(t)x is an X B -solution of (3.59). For x E D(LK-l) the
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classical solution is given by

In reflexive spaces assumption i) of Theorem 2.3 is superfluous. 0

Retaining the same spaces as in the B-evolution approach, let us try the B-

bounded semigroup approach. We should prove the estimate

where Z = £2(0,1), X = £2(0,1) x C and (I, a) E D(K- 1 ). Thus

I E WI(O, 1),1(0) = 0, 1(1) = a. However, using the results of the B-evolution

approach, we see that knowing that

J2
lI(u,u(l))11 ~ m11(1,!(l))II,

we are required to prove that

(3.81 )

lI u ll
M

< /If 11111 ' (3.82)

where u is the solution of (3.67) with I described above. This seems unlikely,

as a = u(l) can be estimated only by the norm of ! in WI(O, l) and not in
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Let us now change the setting and take X = {v E Wi(O, 1); v(O) = O}. Then

K is well-defined and bounded on X with range in Y = X x C defined as

Im K = {(v, a) ;v E X, v(l) = a}. Since this set is closed in Y, K is an

isomorphism onto its image. According to Theorem 2.3, we should define L on

such a domain that Lu = (uxx , -ux(l)) E ImK. This requires u E W{(O, 1),

uxx(O) = 0, and uxx (l) = -ux(l). In other words

D(K-1L) = {u E Wi(O, l);u(O) = uxx(O) = 0, uxx(l) + ux(l) = O}. (3.83)

Now, K- 1Lu = U xx and to prove the generation theorem, we must solve the

problem

AU - U xx

Ux(1) + U xx (1)

u(O)

I,

0,

0,

(3.84)

where 1 EX. Now, differentiating the first equation with respect to x, defining

v = U x and using uxx(O) = u(O) = 0, we rewrite (3.84) in the form

AV - Vxx ix,

0,

0.

(3.85)
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Next, we have

(AV - Vxx , VlL,(O,l) - AllvI1 2
- J: vxxvdx

Since the last two terms are non-negative, the right-hand side of (3.86) has

exactly the same structure as IQI 2 in (3.69) so that we can repeat the estimates

(3.69) - (3.73) to obtain

2 1 2 4
I(AV - vxx,v)1 2:: "2 IA1 Ilvll

37f 37f
for - 4 ~ arg A ~ 4' From the Cauchy Schwarz inequality, we obtain

J2
~ T\T IIfxllll v ll·

Since we defined v = ux , it follows that the estimate

(3.87)

(3.88)

(3.89)
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31f 31f
is valid in the sector - 4 ::; arg A ::; 4' As a result of the fact that for an

element j E X, we have j(O) = 0, we obtain immediately that the norms above

are equivalent to the norms in X, thus we have the estimate

Ilull
M

< ~lIjll (3.90)

for some M, valid in the same sector. Since we are working in Hilbert (reflexive)

spaces, we get the density of D(K-1L) in the space X and therefore the problem

is solvable. Here X B = X, the semigroup t -----t etK-
1L acts in X, and the

solution operator is defined as t -----t etK-ILK-l (a,a(l)). Thus our solution,

contrary to the empathy approach, requires compatibility a(l) = a. 0

90



Chapter 4

A generalization: C-regularized

•semlgroups

4.1 C-regularized semigroups

Generating a strongly continuous semigroup corresponds to the abstract Cauchy

problem having a unique mild solution, for all initial data in X, [16, p 146].

By a mild solution we mean a map t ----t u(t) that is a strict solution of the

"integrated" version of the abstract Cauchy problem. What should be done

when the abstract Cauchy problem is ill-posed, for instance, if it does not have

a mild solution for all initial data? One possible approach would be to search
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for initial data in the original space that yield solutions. This approach entails

finding a bounded operator C, such that the abstract Cauchy problem (1.7) has

a mild solution for all initial data in the image of C, and this corresponds to the

problem having a mild C-existence family, [15, Theorem 4.13].

Definition 1.1 A mild solution of the abstract Cauchy problem is a function

u(t), satisfying u(t) E C ([0, oo),X), 1:u(s)ds E D(A), t :::: 0, and

A (1:U(S)dS) = u(t) - x, u(O) = x.

In what follows let us assume that C E £(X) and that it is injective.

Definition 1.2 The family of operators {W(t) h~o ~ £(X) is a

mild C-existence family for A if

i) the map t ----+ W(t)x E C([O, (0), X), for all x E X;

ii) for all x E X, 1:W(s)xds E D(A), t > 0, with

A (1: W(S)XdS) = W(t)x - Cx. (4.1)

In particular, u(t, Cy) = W(t)y, x = Cy, is a mild solution of the abstract

Cauchy problem, for all x E lm C; see Theorem 2.6 of [15]. The existence of a

mild solution of the abstract Cauchy problem, for all initial data in the image of

C, corresponds to the problem having a mild C-existence family; see Theorem

4.13 of [15].
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Definition 1.3 The family of operators {W(t) h~o ~ £ ([[D(A)]]) is called a

C -existence fa miIy for A if

i) t ----t W(t)x E C([O, (0), [[D(A)]]), for all x E D(A)

ii) for all x E D(A), t 2:: 0

J: AW(s)xds = W(t)x ~ ex,

where A : D(A) ----t X is a closed linear operator. In particular,

(4.2)

u(t, Cy) = W(t)y, x = Cy, is a solution of the abstract Cauchy problem, for

all x E C(D(A)); see Theorem 2.6 of [15].

Definition 1.4 The mild C-existence family for A, {W(t) h~o is called a strong

C-existence family for A if {W(t) 1[[D(A)]]h~o is a C-existence family for A.

Next, we shall address the matter of uniqueness; see Lemma 2.10 and Proposition

2.9 of [15]. For a closed linear operator A : D(A) ----t X that has no eigenvalues

in (w, (0), w E JR, a mild solution u(t) of the abstract Cauchy problem, that is

exponentially bounded, is unique. Furthermore, for Re z > w,

J~ e-ztu(t)dt E D(A) and

(z - A) J~ e-ztu(t)dt = x. (4.3)

Definition 1.5 The strongly continuous family {W(t) h~o ~ £(X) is called a
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C -regularized semigroup if

i) W(O) = C,

ii) CW(t + s) = W(t)W(s) for all s,t ~ O.

Definition 1.6 An operator A : D(A) ---+ X, D(A) c X, is the generator of

a C-regularized semigroup {W(t) h~o, if

1
CAx = lim - (W(t)x - Cx) I

t----+O+ t

with D(A) = {x; the limit exists and is in lm C}.

(4.4)

Theorem 1.7 (Theorem 3.4 of [15]) If {W(t)h~o is a C-regularized semigroup

generated by A, then

i) A is closed,

ii) ImC~D(A),

iii) for all t ~ 0, W(t)A ~ AW(t) and

W(t)x = Cx + J: W(s)Axds,

for all x E D(A).

(4.5)

iv) if f : [0, (0) ---+ X is continuously differentiable and t > 0 then

J: W(s)f(s)ds E D(A) with

A (J: W(S)f(S)dS) = W(t)f(t) - Cf(O) - J: W(s)J'(s)ds.
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Proposition 1.8 (Proposition 3.11 of [15]) Suppose an extension of A, A

generates a C-regularized semigroup. Then the following are equivalent:

i) C (D(A)) C D(A).

ii) C-1AC A.

Definition 1.9 A complex number A E <C is in Pc(A), the C-resolvent set of

A, if (AI - A) is injective and lm C C lm(AI - A).

Proposition 1.10 (Corollary 3.12 of [15]) Suppose A is closed, A ~ A, A

generates a C-regularized semigroup and Pc(A) n Pc(A) is nonempty. Then

C-1AC = A.

We conclude this section with an example; see [15, Example 3.2].

Example 1.11 Let

(Af)x = xf(x), for x E lR (4.6)

on the set of all continuous real-valued functions on lR that vanish at infinity,

denoted by CO(lR) , with sup-norm. The operator A does not generate a strongly

continuous semigroup, for

(4.7)
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defines an unbounded operator, since etx is an unbounded function. However,

there are solutions of the abstract Cauchy problem for all initial data in a dense

set, namely for any initial data f such that lim etx f(x) = O. The multiplication
Ixl~oo

of the unbounded function e tx with the bounded function e-
x2 yields a bounded

2 2

function of x, since e-
x2

e tx = e-(x-~)2 e~ ~ e~. Setting

(W(t)f) (x) = e-
x2

e
tx f(x) (4.8)

and (Cf)(x) = e-x2 f(x), we get that for 0 < t ~ to, x E IR and f E CO(IR),

(4.9)
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(4.10)

_(X-!Q) 2 !li !li
e-X2 etOXt e 2 e 4 e 4

and since <_ t < t- -----t 0 as t -----t 0+ it follows that
2 2 - 2

tli,~ I1 W(t)~ - Cf - CAfl1 = o.

Thus A generates a C-regularized semigroup.

4.2 An equivalent representation of the genera-

tor

Regularized semigroups were introduced by G. Da Prato, [26], in which the author

defined their generator as in Section 4.1. Regularized semigroups have been

introduced independently by E.B Davies and M. M. Pang, [12], and the authors

defined their generator using the Laplace transform. In this section we show

that in the case of the generation of an exponentially bounded C-regularized

semigroup the generators defined in [12] and [26] are equivalent.

Definition 2.1 The strongly continuous family {W(t) h2:o ~ £(X) is an ex-

ponentia//y bounded C-regularized semigroup if it satisfies i) and ii) of Defini-

tion 1.5 of Section 4.1 and there exists constants M > 0 and wEIR such

that IIW(t)1I :::; M exp(wt) , for all t 2: o.
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Definition 2.2 For w E JR, A > w, define the operators LA : X ----+ X as

follows:

LAx = J~ e-AtW(t)xdt, (4.11)

where x E X and {W(t) h2:o is an exponentially bounded C-regularized semi­

group with Im C dense in X.

Since {W(t) h2:o is exponentially bounded it follows that LA E £(X) for all

A> w.

We shall show that the operators LA are invertible and satisfy the resolvent

identity with an accuracy to within C; see Proposition 3.1 of [22].

Proposition 2.3 (Proposition 3.1 of [22]) Let {W(t) h2:o be an exponentially

bounded C-regularized semigroup, then the identity

(4.12)

is satisfied for A, J..L > wand there exists a closed operator

(4.13)

that is independent of the scalar A > W with D(Z) = {x E X;Cx E Im(LA)}.

98



Proof Let x E X and A,f-L > w. Then from the C-semigroup property ii) of

Definition 1.5 of Section 4.1 it follows that

hLl'x = J~ J~ exp (-(As + J1t)) W(s + t)Cxdtds

J~J: exp (-A(T - t) + J1t)) W(T)CxdtdT

(J1- A)-l {J~ exp (-AT) W(T)CxdT-

J~ exp (-J1T) W(T)CXdT}

(4.14)

Let us show that LA is invertible for A > w. It follows from relation (4.12),

that if LAx = 0, then CLJ1x = 0 and LJ1x = 0, i.e., kerLA = kerLJ1. From the

definition of LA and the uniqueness theorem for the Laplace transformation, it

follows that if LAx = 0, then W(O)x = Cx = 0 and x = 0, i.e., the operator

LA is invertible for A > w. Let Cx E Im(LA). It follows from (4.12), that

(4.15)
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and L~l (ALA - C) X = L~l (p,LJ1- - C) x. This means that the operator

(4.16)

does not depend on A and, since the composition of a closed operator and a

bounded operator is closed, it follows that Z is closed. We obtain that

(A - Z)-l x = C- 1LAx,

where D((A - Z)-l) = {x E X; LAx E ImC} and

LAX=C(A-Z)-l X

for x E D (( A - Z) -1 ) .

(4.17)

o

In [12] the operator Z is called the generator of the exponentially bounded C­

regularized semigroup {W(t) h2:o. In what follows we shall show that the oper­

ator Z from Proposition 2.3 is identical to the generator A defined in Definition

1.6 of Section 4.1. We require the following lemma which also holds for the

operator Z; see Theorem 11 of [12].
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lemma 2.4 Suppose {W(t) h~o is an exponentially bounded C-regularized

semigroup generated by A, then for A > w, x E X, J: cASW(s)xds E D(A)

and

(4.18)

Proof Since A generates an exponentially bounded C-regularized semigroup,

J: W(s)xds E D(A); see Theorem 1.7 of Section 4.1, and from Theorem 3.8

of [15], it follows that {W(t)h~o is a mild C-existence family for A and the mild

sol ution is given by

u(t, Cx) = W(t)x, x E X. (4.19)

Fix A > w, and let L = J~ e-Atu(t, y)dt, y = ex. Then integration by parts

shows that

L = AJ~ e-
At J: u(s, y)dsdt.

Since A is closed, L E D(A) and

AJ~ e-At (u(t, y) - y) dt

)"L- y
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and so we get

(>' - A) J~ e-Atu(t, y)dt = y.

From equation (4.19) and Cx = y, it follows that

(>. - A) J~ e-AtW(t)xdt = Cx

(4.21 )

(4.22)

for all x E X, A > w. We conclude by showing that (AI - A) is injective,

whenever A > w. Suppose (AI - A)x = 0, x E D(A) and A > w. Then since

A is closed

o= J~ e-AtW(t)(AI - A)xdt = (AI - A) J~ e->.tW(t)xdt = Cx. (4.23)

Since C is injective this implies that x = O. After applying (A - A)-l to both

sides of equation (4.22),

for a11 x EX, A > w.
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Theorem 2.5 Let {W(t) h20 be an exponentially bounded C-regularized semi­

group generated by A in the sense of (4.4) and let {S(t)h20 be an exponentially

bounded C-regularized semigroup generated by Z in the sense of Proposition

2.3. If W(t)x = S(t)x for all x E Im C, then A = Z.

Proof Let x E D(A). Then from Proposition 1.8 and Proposition 1.10 of

Section 4.1, it follows that Cx E D(A). Thus (AI - A)Cx, defines an element

belonging to X, for all A > w. Now, since CA c AC, we obtain that

(AI - A)Cx E Im C and thus for some y E X,

(AI - A)Cx = Cy.

From equation (4.18) I and Definition 2.2, it follows that

(AI - A)Cx = (AI - A)L>.y.

Since (AI - A) is injective, this implies that

From equations (4.25), (4.27) and since L>. is injective, we get

(4.25)

(4.26)

(4.27)

(4.28)

Finally, we obtain from Proposition 1.8 of Section 4.1, that A = C- 1AC, and
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so equation (4.28), reduces to

(AI - A)x = (AI - C- 1AC)x = L~ICX = (AI - Z)x. (4.29)

Furthermore, from equation (4.27), Cx E Im(L A). Thus x E D(Z).

Let x E D(Z). Then Cx E Im(L A), and thus for some y E X,

(4.30)

From equation (4.18), it follows that Cx E D(A) and

By Proposition 1.8 of Section 4.1, A = C- 1AC. Since Cx E D(A) this implies

that x E D(A) and so

(AI - Z)x = L~ICX = C- 1(AI - A)Cx = (AI - A)x. (4.31)

Thus x E D(A). The proof is complete. D

Below we present an alternative proof of Theorem 2.5 that was found in [22],

Proposition 3.2.
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Let x E D(A). Then

d
-W(t)Cx
dt

and

. W(t) (W(h) - C) x
hm hh-tO

W(t) lim (W(h) - C) x
h-tO h

W(t)CAx

(4.32)

AL>,Cx - J~ exp (-At) W(t)CAxdt

J
oo d

AL>.Cx - 0 exp (-At) dt W(t)Cxdt

(4.33)

Hence, L>.(A - A)x = Cx, i.e., Cx E ImL>. and Zx = (A - L>.lC)X = Ax.

If we now assume that x E D(Z) then there exists y E X such that Cx = L>.y.

Let us consider the followi ng:
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W(h)x - Cx
h

~ { C-1W(h) J~ exp (-At) W(t)ydt -

J~ exp (-At) W(t)Ydt}

*{J~ exp (-At) W(t + h)ydt -

(4.34)

J~ exp (-At) W(t)Ydt}

exp(Ah) - 1 Joo
exp( -At)W(t)ydt-

h h

1 Jh- exp (-At) W(t)ydt
h 0

---+ AL>.y - Cy = C(AX - y) E ImC

as h --T O. It follows that x E D(A), D(A) = D(Z) and Ax = Zx. 0

In the paper [12, Definition 3], the authors introduced an operator G that was
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used as a technical tool. The operator G is defined as follows:

. (C-lW(t)x - x)Gx = hm ,
t~O+ t

with

{ (
C-lW(t)X - x) . }

D(G)= xElmC; 1im eXists.
t~O+ t

(4.35)

We shall now show the relation that exists between the operator A and the

operator G. Let x E D (G) . Then

C · (C-lW(t)x - x) l' (W(t)X - cx) CACGx = hm = lm = x
t~O+ t t~O+ t

and since C is injective, it follows that x E D(A) and so G c A.

Since A is a closed operator, it follows that G is c1osable. The closure of

the operator G is called a complete infinitesimal generator of the C-regularized

semigroup, The inclusion G c A, holds for the complete infinitesimal generator,

In [12, Theorem 33, Corollary 36], it was shown that when C is accretive or when

the resolvent set p(A), contains a subinterval of JR, then G = A. The theorem

that follows establishes this relationship between these operators, but, instead of

requiring the resolvent set of A to contain a subinterval of JR, we show that it is

sufficient that the resolvent set of A be nonempty for the complete infinitesimal

generator to coi ncide with the generator,
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Theorem 2.6 If A generates an exponentially bounded C-regularized semigroup

{W(t) h~o and p(A) i- 0, then G = A.

Proof Since p(A) i- 0, there exists A E p(A) such that

(4.36)

for x E X. Setting y = Cx, we obtain that

(4.37)

From Lemma 31 of [12], we have that G satisfies a similar relation

(4.38)

for y E Im C. Th us it follows that

(4.39)

for y E Im C. Furthermore, Im C is dense in X and by a variation of Kato's

result; see [5, Lemma 4.1], (AI - A) -1 has a unique extension by continuity to

(AI - A) -1 and in a similar manner we can extend (AI - G) -1 to the whole

space X and obtain the following relation

(4.40)
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for all y E X. It follows that A = G. D

In [12] it was shown that if we assume that the resolvent set of the complete

infinitesimal generator is nonempty then the complete infinitesimal generator

coi ncides with the generator.

Theorem 2.7 (Proposition 3.3 of [22]) If A generates an exponentially bounded

C-regularized semigroup {W(t)h~o and p(G) =I- 0, then G = A. D

4.3 The inhomogeneous initial value problem

In order to guarantee the existence of a mild/strict solution for the non-homogeneous

abstract Cauchy problem one has to impose condition/s on the non-homogeneous

part. In this section we focus on these condition/s, and investigate under what

conditions is a mild solution a classical solution.

In this section, we consider the inhomogeneous initial value problem

ut (t) = Au (t) + f (t), u (0) = x

where f : [0, to) ----+ lm C, x E lm C, to > O.
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Definition 3.1 A function u : [0, to) ----t X is a classical solution of (4.41) on

[0, to) if u is continuous on [0, to), continuously differentiable on [0, to),

u(t) E D(A) for °< t < to and (4.41) is satisfied on [0, to).

Definition 3.2 Let {W(t) h~o be a C-regularized semigroup generated by A

and C- 1 f(s) E L 1([0,tO),X). Then the function u E C([O,to),X) given by

u(t)x = W(t)C-1x + J: WIt - s)C-1 f(s)ds (4.42)

for x E Im C is a mild solution of the initial valued problem (4.41) on [0, to).

Let {W(t)h~o be a C-regularized semigroup generated by A and let u(t) be a

classical solution of equation (4.41). Since the derivative u'(t) exists, we get

u(t + h) = u(t) + hu' (t) + c(h) , (4.43)

where c(h) ---t °as h ---t 0. For °< s < t < to, and using the semigroup

property of Definition 1.5 of Section 4.1,

1h [CW(t - s + h)u(s + h) - CW(t - s)u(s)]

{
W(h) - C}

= W(t - s) h u(s) + CW(t - s + h)u'(s) +

CW(t - s + h)c(h).
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The family of operators {W(t) h~o is bounded for 0 ::; t ::; E, where E is some

positive constant. In fact, if this statement is false, then there is a sequence

(tn)nEN satisfying tn 2:: 0, lim tn = 0 and IIW(tn)11 2:: n. From the uniform
n~oo

boundedness theorem, it then follows that for some x E X, IIW(tn)xll is un-

bounded contrary to the fact that this family is strongly continuous. Thus, it

follows that IIW(t)11 ::; a for 0 ::; t ::; E. Similarly, it can be shown that there

exists a constant a such that IIW(t)11 ::; a, for every compact subset of [0, to).

Thus, we get IICW(t - s + h)c(h) 11 ::; a' Ilc(h) 11 ---+ 0 as h --t O. Hence we

obtain
1

lim -h [CW(t - s + h)u(s + h) - CW(t - s)u(s)]
h~O

(4.45)

= - W(t - s)CAu(s) +CW(t - s)u'(s).

Thus the function s --t CW(t - s)u(s) is differentiable for 0 < s < t < to and
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since W(t)C = CW(t), it follows that

d-CW(t - s)u(s) = -W(t - s)CAu(s) + CW(t - s)u'(s)
ds

-W(t - s)CAu(s) + CW(t - s) x

(4.46)

(Au(s) + f(s))

= CW(t - s)f(s).

If C- 1 f(s) E L1([O,to),X), then W(t-s)C- 1 f(s) is integrable and integrating

equation (4.46) from 0 to t, t < to yields

CW(O)u(t) - C2W(t)C-1x = J: CW(t - s)f(s)ds

(4.47)

Since C is injective, we get

u(t) = W(t)C-1x + J: W(t - s)C-1 f(s)ds. (4.48)

which is a mild solution of the initial value problem (4.41) for all x E lmC. In

the homogeneous case we know that not every mild solution is a solution and

thus we investigate under what condition/s imposed on f, will the mild solution
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become a strict solution. In order to prove the existence of solutions of (4.41)

we require more than just the continuity of f. We commence with a general

criterion for the existence of solutions of (4.41).

Theorem 3.3 Let A be the infinitesimal generator of a C-regularized semigroup

{W(t)h~o, and let C-1f(8) E L1([0, to), X) be continuous on [0, to) and define

v(t) = J: W(t - s)C-1 f(s)ds. (4.49)

The initial value problem (4.41) has a solution u on [0, to) for every x E C(D(A))

iff one of the following conditions is satisfied:

i) v(t) is continuously differentiable on (0, to).

ii) v(t) E D(A) for °< t < to and Av(t) is continuous on (0, to).

Proof If the initial value problem (4.41) has a solution u for some x E C(D(A)),

then the solution is given by (4.42). Consequently

v(t) = u(t) - W(t)C- 1x, (4.50)

is differentiable for t > 0 as a difference of two such differentiable functions and

v'(t) = u'(t) - W(t)AC- 1x,
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is continuous on (0, to). Therefore i) is satisfied. Also if x E C(D(A)),

W(t)C- 1x E D(A) for t ~ 0 and therefore v(t) = u(t) - W(t)C- 1x E D(A) for

t > 0 and

Av(t) = Au(t) - AW(t)C-1x = u'(t) - f(t) - W(t)AC- 1x (4.52)

is continuous on [0, to). Thus also ii) is satisfied.

On the other hand for h > 0, we obtain the following identity

W(h) - C v(t) = C {v(t + h) - v(t)_
h h

(4.53)

1 Jt+h }h t W(t+h-s)C- 1 f(s)ds .

From the continuity of C- 1 f(s) it follows that the second term on the right hand

side of (4.53) has the limit f(t) as h -----t O. If v(t) is continuously differentiable

on (0, to) then it follows from (4.53) that v(t) E D(A) for 0 < t < to, and

Av(t) = v'(t) - f(t). Since v(O) = 0 it follows that u(t) = W(t)C- 1x+v(t) is

the solution of the initial value problem (4.41), for x E C(D(A)). If v(t) E D(A)

it follows from (4.53) I that v( t) is differentiable from the right at t and the

right derivative D+v(t) of v satisfies D+v(t) = Av(t) + f(t). Since D+v(t)

is continuous, v(t) is continuously differentiable and v'(t) = Av(t) + f(t), [25].

Since v(O) = 0, u(t) = W(t)C- 1x + v(t) is the solution of (4.41) for x E

C(D(A)) and the proof is complete.
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From Theorem 3.3 we get the following useful corollaries.

Corollary 3.4 Suppose {W(t) h~o is a C-regularized semigroup generated by

A, f : [0, to) --t lm C has the property that t --t C- 1 f(t) is continuously

differentiable on [0, to), and x E C(D(A)). Then (4.41) has a unique solution

on [0, to), for every x E C(D(A)).

Proof We have that

v(t) J: W(t - s)C-1 j(s) ds

(4.54)

= J: W(s)C-1j(t - s) ds

From equation (4.54) it follows that v(t) is differentiable for t > °and that its

derivative

v'(t) W(t)C-1j(O) + J: W(s)C-11'(t - s) ds

(4.55)

W(t)C-1j(O) + J: W(t - s)C-11'(s) ds

is continuous on (0, to), (sum of continuous functions is continuous). The result

therefore follows from Theorem 3.3 i). Since A is the generator of a C-regularized

semigroup we are guaranteed uniqueness of solutions; see [15, Lemma 25.26]. 0
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Corollary 3.5 Let A be the infinitesimal generator of a C-regularized semigroup

{W(t)h~o. Let C- 1 f(8) E L1 ([0, to), X) be continuous on (0, to). If f(8) E

C(D(A)) for °< 8 < to, and AC-1 f(8) E L1 ([0, to), X), then for every x E

C(D(A)) the initial value problem (4.41) has a solution on [0, to).

Proof Since f(8) E C(D(A)), it follows that for 8 > 0,

W(t - 8)C- 1 f(8) E D(A) and that AW(t - 8)C- 1 f(8) = W(t - 8)AC-1 f(8)

is integrable. Therefore v(t) defined by (4.50) satisfies v(t) E D(A) for t > °
and

Av(t) = A J: W(t - s)C-1 f(s)ds = J: W(t - s)AC-1 f(s)ds (4.56)

is continuous. The result follows from the Theorem 3.1 ii). D

As a consequence of the previous results we can prove the following:

Theorem 3.6 Let A be the infinitesimal generator of a C-regularized semigroup

{W(t)h~o and let C- 1 f E L1((0,tO),X). If u is a mild solution of (4.41) on

[0, to] I then for every t~ < to, u is the uniform limit on [0, t~] of solutions of

(4.41).

Proof Assume that C- 1xn E D(A) satisfy C- 1xn ---+ C- 1x and let C- 1 fn E

Cl ((0, to), X) satisfy C- 1 fn ---+ C- 1 f in L1 ((0, to), X). From Corollary 3.4, it
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follows that for each n ~ 1 the initial value problem

(4.57)

has a solution un(t) on [0, to) satisfying

un(t) = W(t)C- 1xn + J: W(t - s)C-1 fn(s)ds. (4.58)

If u is the mild solution of (4.41) on [0, to] then

11 Un ( t) - u (t ) 11

(4.59)

and the result follows from (4.59). o

We see that if one imposes further conditions on f, then the mild solution (4.42),

becomes a classical solution i.e., a continuous differentiable solution of (4.41). If

A is the infinitesimal generator of a holomorphic C-semigroup, we have stronger

results.

Definition 3.7 Let 1:::..8 = {z; larg zl < <5} for some °< <5 <~. A holomorphic
2

C-regularized semigroup is a family of bounded linear operators {W(z) }ZE.6.6
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satisfying the following:

i) z ---t W(z),

ii) W(O) = C,

from 6..0 into £(X) is holomorphic,

W(z)W(w) = CW(z + w) for all z, w E ~o,

iii) lim W(z)x = Cx for x E X and E E (0,8).
z-+o,
zE~c5-f

Theorem 3.8 Let °< 8 < ~ and let A be the infinitesimal generator of a
2

holomorphic C-regularized semigroup {W(t) h~o of angle 8 and let

C- 1f E Lp([O, to), X) with 1 < p < 00. If u is a mild solution of (4.41) then u

is Holder continuous with exponent 1 - ~ on [E, to] for every E> 0.
p

Proof Let IIW(t) 11 ::; et, on [0, to], where

W(t) = ~JeAt(A - A)-lCdA (4.60)
21f1,

r

and r is the path composed from the rays peie and pe-ie , °< p < 00 and

~ < 8 < ~ + 8. The path r is oriented so that lm A increases along r. Since

{W(t) h~o is holomorphic, differentiating (4.60) with respect to t yields

W'(t) = ~JAeAt(A - A)-lCdA.
21f1,

r

From the proof of [15, Theorem 3.4], we obtain that AW(t) = W'(t) for

t E (0, to] and

(4.61 )

00

IIAW(t) 11 ::; ~ Je-plcoseltdp = ( et ) ~ for t E (0, to]. (4.62)
1f 1f leos 81 t

o
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This implies that W(t)C- 1x is Lipschitz continuous on [E, to] for every E> 0. If

x E C(D(A)), W(t)C- 1x is Lipschitz continuous on [0, to]. It suffices to show

that if C-1 f E Lp([O, to), X) then v(t) = J: W(t - s )C-1 f(s)ds is Holder

continuous with exponent 1 - ~ on [0, to). For h > 0, we have
p

J
t+h

v(t + h) - v(t) = t W(t + h - s)C-1 f(s)ds

(4.63)

+ J: (W(t + h - s) - W(t - s)) C-1 f(s)ds.

For the first integral, using Holders inequality, we obtain

11J:+
h

W(t + h - s)C-1f(s)dsll

In order to estimate the second integral, we note that for h > 0,

(4.64)

Ilwtt + h) - W(t) 11 ::; 2a, for t,t + h E [0, to] (4.65)
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and for t,t + h E (0, to]

J
t+h

IIW(t + h) - W(t)11 < t IIAW(s)11 ds

Therefore, for t,t + h E [0, to]

(4.66)

Using Holder's inequality

IIJ: (W(t + h - s) - W(t - s)) C-1!(S)dSII

( a) (Jta
) lip

::; max 2a, 1f leos 81 0 IIC- I
f( s) liP ds x

(J
t . ( h) pI(p-l) ) (p-l)/p

mIn 1, -- ds I

o t - s
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but since, min (1, ~) :::: 0, we get

Jt ( . ( h) )P/(P-l)
mIll 1, -- ds

o t - s Jt ( . ( h))P/(P-l)
mIll 1,- dT

o T

J
oo ( (h)) p/(p-l)

::; 0 mill 1,~ dT=ph..

(4.69)

Finally, we get IIJ: (W(t + h - s) - W(t - s)) C-1!(S)dSII ::; const.h(P-1)/p,

and the proof is complete. D

Finally, we turn to conditions imposed on f that will ensure that a mild solution

is a classical solution.

Theorem 3.9 Let A be the infinitesimal generator of a holomorphic C-regularized

semigroup {W(t)L~o' Let C- 1 f(s) E L 1 ((0, to), X) and assume that for every

o< t < to, there exists Dt > 0 and a continuous real valued function

Bt(T) : [0,00) -----+ [0,00) such that

(4.70)

and

(4.71 )

Then for every x E lm C the mild solution of (4.41) is a classical solution.

121



Proof Since W(t) is a holomorphic C-regularized semigroup, W(t)C- 1x is a

solution of the homogenous equation with initial data x E lm C. To prove the

theorem it is therefore sufficient to show that

v(t) = J: W(t - s)O-lf(s)ds E D(A) and that Av(t) is continuous. To this

end, we write

J: W(t ~ s) (0- 1 f(s) - 0- 1 f(t)) ds + (4.72)

J: W(t ~ S)O-1 f(t)ds

It follows that V2(t) E D(A) and that AV2(t) = (W(t) - C)C-1f(t). Since the

assumptions of our theorem imply that C- 1f is continuous on (0, to), it follows

that AV2(t) is continuous. To prove the same conclusion for V1(t) we define

Vl,o(t) = J:-o W(t - s) (0- 1 f(s) - 0- 1f(t)) ds, t 2': E (4.73)

and

V1,c:(t) = 0 for t < c. (4.74)

From this definition it follows that V1,c:(t) ---t V1(t) as c ---t O. It also follows
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that Vl,c(t) E D(A) and for t 2:: E

AVI,E(t) = 1/-E AW(t - s) (C- I f(s) - C- I f(t)) ds. (4.75)

From the assumptions (4.70) and (4.71), it follows that for t > 0, AVl,c(t)

converges as c ---+ 0 and that

limAvl,E(t) = Jt AW(t - s) (C- 1 f(s) - C- 1 f(t)) ds. (4.76)
10---+0 0

The c10sedness of A then implies that VI (t) E D(A) for t > 0 and

To conclude the proof we have to show that AVl(t) is continuous on (0, to). For

o< 8 < t, we have

AVI(t) = J: AW(t - s) (C-I f(s) - C-I f(t)) ds +

(4.78)

J: AW(t - s) (C- I f(s) - C- I f(t)) ds.

For fixed 8 > 0 the second integral on the right of (4.78), is a continuous function

of t while the first integral is of order 8 uniformly in t. Thus, AVl (t) is continuous

and the proof is complete.

An immediate consequence of Theorem 3.9 is,
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Corollary 3.10 Let A be the infinitesimal generator of an analytic semigroup

{W(t)h2:o, If C- 1f E L1 ((0, to), X) is locally Holder continuous on (0, to] then

for every x E lm C the initial value problem (4.41) has a unique solution. D

In [25], the author concluded in Section 4.1, with a result, similar to Theorem

3.9, in which the condition on the modulus of continuity of f is replaced by

another regularity condition using fractional powers of the generator. A theory

of fractional powers of the generator of a C-regularized semigroup has not been

established and so we had to conclude with Theorem 3.9.
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Chapter 5

A relationship

5.1 Relation between B-bounded semigroups and

C-regularized semigroups and similar objects.

Upon a superficial reading of the literature the philosophy and appearance of B­

bounded semigroups are similar to C-regularized semigroups and related objects

like C-existence and uniqueness families. However, in [8] we show that these

objects are quite different, to the extent that the only objects which can be

simultaneously C-regularized semigroups and B-bounded semigroups in the same

space X are Co-semigroups. For a relation between C-existence families and B-
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bounded semigroups, we begin with noting that, by Theorem 1.5 of Section 3.1 a

B-bounded semigroup solves an abstract Cauchy problem in X B . Since the very

concept of a C-existence family is that they provide solutions for the initial values

taken from a subspace of the original space X, we are placed in the situation

described in Theorem 1.10 of Section 3.1 with C = B-
1

. The first result in this

direction is the following.

Proposition 1.1 Assume that A : D(A) ---7 X is a closed operator with no

eigenvalues in (w,oo) for some wEnt and A E B - Q(M,w,X). If B-1 is

densely defined and X B C-.....t X, then

--1 --1
{W(t)h20 = {B Y(t)B h20

is a mild B-
1
-existence family for A. Moreover, if

B-
1
(D(A)) c D(A),

(5.1)

(5.2)

then {W(t)h20 is a strong C-existence family for A. If B-1A c AB-1 then

--1 --1
{B Y(t)B h20 is a C-regularized semigroup generated by A.

Proof From Theorem 1.10 of Section 3.1, B is c10sable and B-1 is bounded

and we can identify X B with D(B) and lm B = X. Moreover, then A = Q(

restricted to DB(A) = {x E D(A) n D(B); Ax E D(B)} and the B-bounded
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semigroup is given by Y(t) = BetA, where the semigroup acts in D(B). Then

W(t) = etA B-1
= B-1Y(t)B- 1, t 2:: 0 is a strong C-existence family for A.

Indeed, since X B '----t X, {W(t)h~o is a family of bounded operators in X and

t --7 W(t)x is a continuous function for any x E X. Since {etAh~o is a

semigroup in X B , we have for any y E X B

(5.3)

for t 2:: 0, and therefore for any x E X such that x = By, we have

W(t)x = etAB-
1
x = B-\ + A (1 e

sAB-
1
x dS) , (5.4)

which is a mild C-existence family identity (note that again due to X B '----t X,

the integra I and A ca n be considered as X -space operations).

Next note that for a mild C-existence family to be a strong C-existence family

it is necessary to leave D(A) invariant; see Definition 1.3 of Chapter 4, so if we

have a semigroup acting in a subspace of X which is accessible by an operator

C, then we must have ex E D(A) whenever x E D(A) which in our case

translates into relation (5.2). If this is the case then using again the fact that

{etA h~o is the semigroup generated by A, we have from B-
1
x E D(A) that

etAB-
1
x E D(A) and {etAB-1h~o is a strongly continuous family of operators
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in D(A) with the graph-norm. Thus A can be moved inside the integral in (5.4)

and {W(t) h2':o is a strong B-
1
-existence family for A.

Finally, if the commutativity property is satisfied (and then (5.2) follows auto-

matically), then for x E D(A) and t 2: 0 we have

so that by Theorem 3.7 of [15], {W(t) h2':o is a C-regularized semigroup gen-

erated by an extension of A and since p(A) =I- 0, by Proposition 3.9 of [15],

{W(t) h2':o is generated by A. o

This proposition suggests that C-evolution families are related to C-1-bounded

semigroups rather than C-bounded semigroups. The following theorem shows

that the choice is quite limited.

Theorem 1.2 Assume that A : D(A) ---t X is a closed operator with no

eigenvalues in (w, (0) for some w E JR, B-1 is densely defined and X '-----+ X B .

Let {W(t)h~o be a mild B-
1
-existence family for A. The formula

Y(t)x = BW(t)Bx, (5.6)

- - --1
defines aB-bounded semigroup iff BAB generates a Co-semigroup in X and

{W(t)h2':o is exponentially bounded. Then BAB-1 = BAB-
1
and {Y(t)h2':o is
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generated by A.

Proof If the equation (5.6) defines a B-bounded semigroup, then, since

B (D(B)) = X, as in the previous theorem

W(t)X c D(B) (5.7)

(5.8)

for all t ~ O. Also, since by Theorem 1.5 of Section 3.1, Y(t) = etK B for some

K acting in X, {BW(t)h;:::o is a semigroup in X. To identify K, we use the

definition of mild existence families to obtain ;:W(s )xds E D(A), for all t 2: 0

and x E X and

W(t)x = B-
1
x + A (1W(S)XdS) .

By (5.7), all the terms above are in D(B) and we have

BW(t)x = x + BA (1 B-
1
BW(S)XdS) . (5.9)

Since B-
l
is bounded, we have ;: BW(s)xds E D(BAB- l

) and

BW(t)x = x + BAB-
l
(;: BW(S)XdS) . (5.10)

By equation (5.6), t ----t BW(t)x = Y(t)B-
1
x and since B- 1x E D(B), this is

a continuous function by Definition 1.1 of Section 3.1. Therefore t ----t BW(t)x

is a mild solution of the Cauchy problem

- --1
BtU = BAB u, u(O) = x.
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Moreover, by Definition 1.1 of Section 3.1,

IIBW(t)xllx = IIY(t)B-
1xlix:::; M ewtllxllx. (5.12)

--1
Hence the solutions to (5.11) are exponentially bounded. Since B is a bounded

operator, we obtain also

and hence {W(t) h~o is exponentially bounded.

By Proposition 2.9 of [15], all exponentially bounded mild solutions are unique.

Since we have an exponentially bounded mild solution for any x E X, by Theorem

- --1
5.5 and (5.16) of [15], the operator BAB generates a Co-semigroup on X.

- - --1

Next we obtain BW(t)x = etBAB x for all t ~ 0, x E X and consequently

- --1

Y(t)x = etBAB Bx

for all t ~ 0, x E D(B). Using the semigroup property we obtain

- --1

Y(t)x = etBAB Bx

Ex + J: Y(s)Axds
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- --1

and by uniqueness [11], {etBAB h~o is generated by A and from equation (4.9)

- --1 - --1
of [5], it follows that BAB-1 = BAB . Conversely, if BAB generates a

Co-semigroup in X, then repeating the considerations above we obtain that A

- --1 --1
generates aB-bounded semigroup, and by Proposition 1.1, W(t) = B Y(t)B

defines an exponentially bounded B-
1
-existence family for A. Since {W(t) h~o

is also an exponentially bounded semigroup, {W(t)h~o = {W(t) - W(t)h~o

is also exponentially bounded. However, we have for any x E X, W(t)x =

A (1: '2D(S)XdS). i.e. t --t '2D(t)x is an exponentially bounded mild solution

to the homogenous problem (1.7). By Proposition 2.9 of [15], W(t)x = 0, and

hence {W(t) h~o = {W(t) h~o and formula (5.6) holds. o

From the proof of the above theorem it follows that the "only if" part can be

proved under the weaker assumption that mild solutions of (1.7) in X are unique.

Note, that the fact that A generates a semigroup in X B = D(B), is not sufficient

for that purpose as it gives only uniqueness in a smaller space.

Corollary 1.3 Let the assumptions of the previous theorem be satisfied and let

--1
(W(t))t~O be a B -regularized semigroup generated by A. The formula

Y(t)x = BW(t)Bx, (5.15)

defines aB-bounded semigroup iff {BW(t) h~o is a semigroup in X generated
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by A.

Proof
--1 --1

Since a B -regularized semlgroup generated by A is a mild B -

existence family for A, Theorem 3.5 of [15], we obtain from Theorem 1.2, that

_ - --1 --1 --l.
{BW(t)h~o is a semigroup generated by BAB which, since B A c AB IS

an extension of A. However, using the definition of the generator we obtain that

- --1
for x E D(BAB )

--1
- --1 . BW(t)x - x l' BW(t)x - B x
BAB x = hm = 1m .

t~O+ t t~O+ t
(5.16)

Since B-1is bounded, the existence of the left hand side limit yields the existence

of the limit of W(t)x-B-
1
x. Thus x E D(A) and the semigroup {BW(t)h~o

is generated by A. D

The converse follows as in Theorem 1.2, with the sole difference that we use the

uniqueness of solutions of the Cauchy problem (1.7) I ensured by Theorem 3.5

of [15]. In [15], the author develops the theory of C-regularized semigroups in

the extrapolation spaces (obtained by completion of X with respect to the norm

IIC·II-compare our approach to B-bounded semigroups). This enable a link to

be developed between C-regularized semigroups and B-bounded semigroups with

a different set of assumptions on B. We have the following theorem.

Theorem 1.4 Let B : X ---7 X be a bounded, injective operator,
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A : D(A) -----t X be a closed operator which generates aB-bounded semigroup

{Y(t) h~o and satisfies

BA cAB. (5.17)

Then the extension of A, given by B-1AB, generates aB-regularized semigroup

{W(t) h~o on X which is given by

W(t)X = Y(t)x

for all t 2:: 0 and x E X. If p(A) i- 0, then A = B-1AB.

(5.18)

Proof We check the following points. The operator ~ X B -----t X is a

bounded extension of B which satisfies

(5.19)

(the last embedding follows from the construction of the completion and bound-

edness of B). Moreover, Q( generates a strongly continuous semigroup on X B .

Since Q( is the closure of A in X B , any r E D(Q() is defined by ~r = lirn Bxn ,
n----too

X n E D(A) and

~Q(r = lirn BAxn = Hrn ABxn,
n----too n----too

(5.20)

where in the last equality we used (5.17). Since (BXn)nEN converges and, from

the above, (ABxn)nEN also converges, by c10sedness of A we obtain

(5.21)
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as, by the definition, 2l is the closure of A in X B . Therefore et2l Q) = Q)et2l
. Thus

all the assumptions of the Proposition 6.4 of [15], are satisfied and B-1AB

generates a C-regularized semigroup on X given by

(5.22)

for all t ~ 0 and x E X, which, by Theorem 1.5 of Section 3.1, yields equation

(5.18). Note, that condition (5.17) ensures only that A c B-1AB as there can

be x E X\D(A) satisfying Bx E D(A) and ABx E 1mB. The last statement

of the theorem follows from Proposition 3.9 of [15]. o

The second set of comparison results stems from the formal similarity of equation

(3.2) of Section 3.1, and the formula ii) of Definition 1.3 of Section 4.1, which

suggests that aB-bounded semigroup could be a C-existence family with C = B

subject to additional conditions. The following theorem shows that again this is

possible only for a very restricted class of operators.

Theorem 1.5 Let us assume that A : X ~ X is a closed operator, such that

[w, 00) does not contain its eigenvalues, B : X ~ X is a bounded operator with

range Im B dense in X and {W(t) h~o is a mild B-existence family for A. Then

{W(t)h~o is aB-bounded semigroup {Y(t)h~o satisfying (3.9), generated by
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some operator 7) iff A generates a semigroup in X. In such a case

W(t)x = etABx = etlB;DlB-
1 Bx = Y(t)x (5.23)

for all t 2 0 and x E X, where ~, 1) are the closures of Band 7), respectively

in X B .

Proof Let t ~ u(t,Bx) = W(t)x be a mild solution to (1.7), and {W(t)h~o

be aB-bounded semigroup. From the property a) of Definition 1.1 of Section

3.1, we have

Ilu(t, Bx) 11 = IIY(t)xll ::; M ewtllBxl1 ::; M' ewtllxll (5.24)

for all x E X. Hence we can use [15, Lemma 2.10], to get

(A - B) J~ e-Atu(t, Bx)dt = Bx (5.25)

for all x E X and A > w. On the other hand, from the original version of [11,

Lemma 1], we obtain

J~ e-AtY(t)xdt = B(A - 'D)-l X

for all x E X and A > w. Combining (5.25) and (5.26), we have
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for all x E X and A > w. From Lemma 3.1 of [5]. we know that A -1) reduces

cosets XIN(B) and therefore equation (5.27) can be written for ~, restricted

to X (where ~ is the extension by density of B to the completion X B of X

with respect to the seminorm liB· 11):

(5.28)

for all x E X and A > w. Let t E X B be such ~t = z E 1mB; then from

equation (5.28), we have

for all z E Im B and A > w. Since A is closed, (,\ - A)-l is also closed and,

being defined on a dense subspace Im B c X and bounded, it is in fact defined

on the whole space X. Therefore (A - A)-lis the resolvent of A. Furthermore,

(,\ - A)-l (~(,\ - 1))-1~-1 z) (5.30)

and using (5.29)

(5.31)
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By induction we see that A satisfies the Hille-Yosida estimates in X. Since

{Y(t)h~o satisfies (3.9), B(D(V)) is dense in X. Hence, by equation (5.27),

D(A) = (A-A)-lX::) (A-A)-l(ImB) is dense in X. Therefore A generates

a semigroup in X and from (5.28) we obtain that

(5.32)

Thus by Theorem 1.5 of Section 3.1, the B-existence family is given by

(5.33)

Conversely, assume that A generates a semigroup in X and define by (5.32)

(5.34)

for all t E ~-l(D(A)). Since D(A) is dense in X and ~ is an isomorphism,

~-l(D(A)) is dense in X B . Next, we obtain for any for A > wand x E X

(5.35)

Therefore for any A > W

which gives for all t E X B

(5.37)
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By induction we obtain all the Hille-Yosida estimates. Thus V generates a B-

bounded semigroup in X. o

Corollary 1.6 If, in the statement of the previous theorem, {Y(t) h~o is gener­

ated by an extension of A, then {W(t) h~o is B-regularized semigroup generated

by A.

Proof By c10sedness of A, the equation

(5.38)

originally defined for z E lm B is valid (with the same operators) on the whole

space X. Therefore D(A) = ~(D(V)). Moreover, V is an extension of A,

that is, D(A) C D(V). Consequently, if x E D(A) then Vx = Ax E X

and ~Vx = BAx. Also, if x E D(A), then Bx = ~x E D(A). Equation

(5.32) can be written as A~x = ~Vx, for all x E ~-l(D(A)), which by the

considerations above, is equivalent to ABx = BAx, for all x E D(A). Hence,

W(t)Ax = etABAx = AetA Bx (5.39)

for all x E D(A), and by Theorem 3.7 of [15], {W(t)h~o is a B-semigroup gen­

erated by an extension of A. However, since A is the generator of a semigroup,

by Proposition 3.9 of [15], {W(t)h~o is generated by A itself.
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These results allow us to prove an interesting observation pertaining to B­

bounded semigroups.

Corollary 1.7 If B : X ---t X is a bounded, one-to-one operator satisfying

BA c AB and A generates aB-bounded semigroup {Y(t) h~o, then the exten­

sion of A, B-1AB, generates a semigroup in X. If p(A) #- 0, then A generates

a semigroup in X.

Proof By Theorem 1.4, there is aB-regularized semigroup {W(t)h~o generated

by an extension B-1AB of A, such that

W(t)x = Y(t)x (5.40)

for all t ~ 0 and x E X. If p(A) #- 0, then B-1AB = A by Proposition 3.9 of

[15]. By Theorem 3.5 of [15] I this B-regularized semigroup is a mild existence

family for B-1AB, or A, respectively. From Theorem 1.5, it follows then that

B-1AB, (or respectively A) generates a semigroup in X. 0

Theorem 1.8 Let us assume that B : X ---t X is a bounded one-to-one

operator, image lm B is dense in X, and let {W(t) h2:o be aB-regularized

semigroup in X generated by A. Then {W(t) h~o is aB-bounded semigroup

iff the semigroup {B- 1W(t) h2:o extends to a Co-semigroup on X, generated by

A.
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Proof By Theorem 3.5 of [15], {W(t) h20 is a strong B-existence family for A.

Therefore by Theorem 1.5, A generates a semigroup {exp(tA) h20 such that

(5.41)

for all x EX. By Theorem 3.4 of [15], and the definition of B-regularized

semigroup, we have

BAcAB

and since B is bounded, from the exponential formula for etA we obtain

for all x E X. Thus W(t)x C lm B for any x E X, t 2:: 0 and

for all x E X. By (5.42), we have

(5.42)

(5.43)

(5.44)

(5.45)

Indeed, let y = B(AI - A)-lX, x E X. Then B-ly E D(A) and

x = AB-ly - AB-ly. Equation (5.42) is equivalent to saying that B-1Ay =

AB-ly whenever B-ly E D(A) (and then y E D(A)). This is exactly the

condition on y we have above, and therefore y = (AI - A)-l Bx. As a result of
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this, (5.27) can be written as

-(5.46)

for all x E X and A > W, and from the invertibility of B we obtain TJ =

A. An application of Corollary 1.6 ends the proof of this part. Conversely, if

{B- 1W(t)h2:o is a Co-semigroup generated by A, then we define

Y(t)x = etABx = BetAx = W(t)x (5.47)

where IIY(t)xll ::; MewtllBxl1 and t ----t Y(t)x is continuous for any x E X.

From the semigroup properties and (5.42), for any x E D(A) I Bx E D(A) and

t t

Y(t)x = Bx +JAesABxds = Bx +JesA BAxds, (5.48)

o 0

which shows that {Y(t) h2:o is the B-bounded semigroup generated by A. 0

These questions could be looked at also from the following point of view. Let

{W(t) h2:o be aB-regularized semigroup generated by A. This means that there

are mild solutions t ---+ u(t, x) originating from x = By E D(B), that is, there

exists an (algebraic) semigroup {etAh2:o such that

W(t)y = etABy (5.49)

for all y E X and t ~ o. This semigroup, however, is not confined to lm B, but

in general it could take values in X (more precisely, in some space Z ~ X).
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Only if x E lm B2, we obtain etAx E lm B. In fact, if x E lm B2, then x = B2y

for y E X. Hence

= W(t)By = BW(t)y E lm B for any t ~ O.

If {Y(t)h~o satisfying (5.15) is aB-I-bounded semigroup, then {Y(t)Bh~o is

a Co-semigroup acting in lm B. Unfortunately, requesting only

W(t)y E 1mB (5.50)

for all y E X and t ~ 0, or in other words, that etA lm B C lm B is not sufficient

for {W(t) h~o to be aB-I-bounded semigroup. In such a way {etAh~o would

be a semigroup of bounded operators in lm B but not necessarily a strongly

continuous one. In fact, since each W(t) is a bounded operator and B-1 is

closed, then B- 1W(t) is a closed operator and, being defined on X, it is a

bounded operator in X. Thus, for y = Ex, x E X,

(5.51)

< K Ilxll = K IIB-1YII = K IlyllrmB
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for some constant K.

For {etA h2:0 to be strongly continuous on Im B, we see that for any

y=BxElmB

(5.52)

must be continuous as an X-valued function, that is t ---7 B-1W(t) must be

strongly continuous on X.

It follows from Theorem 3.13 of [15], that, provided W(t)x E 1mB, t ---7

B-1W(t)x is strongly continuous iff there is a mild solution of the Cauchy prob­

lem for A with the initial value x. Since x E X is arbitrary then by Corollary

4.11 of [15]. A generates a strongly continuous semigroup in X. o

It is interesting and important in some applications (see [11]), to understand

what happens when A generates aB-bounded semigroup and at the same time

satisfies the Hille-Yosida estimates. We can formulate the following theorem.

Theorem 1.9 Let {Y(t)h2:o be aB-bounded semigroup generated by the pair

of operators A and B, where A : D(A) ~ X, B : D(B) ~ Z, D(A),

D(B) c X, A satisfies ii) of Definition 1.1 of Section 3.1, and B is a bounded,

one-ta-one operator. Assume that there exists M > 0 such that for all A > W
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and n E N

(5.53)

Then the followi ng hold:

i) The part of A in D(A), denoted hereafter by Ao, generates a Co-semigroup

{exp(tAo)h~o in D(A) and

tAo ( t~ I )e x = e D(A) x (5.54)

for all t ~ 0 and x E D(A), where {exp(tQt)h~o is the semigroup defining

{Y(t) h~o. Equivalently, for any r > w, A generates an (r - A)-I-regularized

semigroup {W(t) h~o in X given by

(5.55)

for all t ~ 0 and x E X, and the family {e-wtW(t) h~o is bounded and uniformly

Lipschitz continuous.

ii) If X has the Radon-Nikodym property, then {et~ Ixh>o is a strongly contin-

uous exponentially bounded semigroup in X (but not a Co-semigroup in general-

no continuity at t = 0), satisfying

(5.56)

for all t ~ 0 and x E X.
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iii) If X is reflexive or D(A) is dense is X, then A generates a Ca-semigroup in

X satisfying

(5.57)

for all t 2:: 0 and x E X.

Proof Without any loss of generality we can assume that w = 0; then the

exponential boundedness should be replaced by the boundedness.

i) The fact that Aa generates a semigroup in D(A) and the corresponding state-

ment for (r - A)-I-regularized semigroup follow from Theorem 5.5, 5.10, 5.17

and 17.3 of [15]. To prove equation (5.54), we note that since B is bounded

and injective, then D(A) '----+ X '----+ X B . Using e.g., the exponential formula for

the semigroup and the fact that 2( is an extension of Aa we obtain for x E D(A)

etAox = lim (1 - iAa)-1 x
n-+oo n

lim (1 - i2() -1 X
n-+oo n

_ t21 t21 I- e x = e D(A) X.

(5.58)

ii) Part of the second statement has been proved (see e.g., [2], where it has be

proved using the theory of integrated semigroups). For the sake of completeness
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we provide a proof involving the theory of C-regularized semigroups.

Let us consider the (r - A)-I-regularized semigroup given by equation (5.55)

(5.59)

In particular (etAo )t~O is a family of operators bounded in the X -norm. From [15],

Theorem 17.3, {W(t) h~o is bounded and uniformly Lipschitz continuous, and

since X has the Radon-Nikodym property, for any x E X, t ~ W(t)x is differ-

entiable almost everywhere with a measurable and bounded derivative. Next

from Proposition 2.7 of [15], if W'(to)x exists, then W(to)x E D(A) and

W'(to)x = AW(to)x. Since W'(t) exists almost everywhere, for each t > 0,

there is to < t such that W'(to)x exists. Let us consider for any t > 0 and

W(t + h)x - W(t)x
h

e(t+h)Aoy _ etAoy

h

(

e(to+h)AOy _ etoAoy)
e(t-to)Ao

h

= e(t-to)Ao (W(to+ h)~ - W(to)x) .

(5.60)

Since the expression in brackets converges in X, the derivative W'(t)x exists by
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continuity of the semigroup and again by Proposition 2.7 of [15], we obtain

W'(t)x = AW(t)x, t > O. (5.61)

Hence AW(t)x is well-defined for any x E X and since W(t) is bounded and

A is closed, {AW(t) h2:o is a family of bounded operators by the Closed Graph

Theorem. In particular we obtain from the Banach-Steinhaus theorem that the

family {AW(t)h2:o is bounded. Consider now {T(t)h>o = {(r - A)W(t)h>o,

which is strongly measurable, bounded family of bounded linear operators on X.

Moreover,

T(t)T(s)x

(5.62)

= T(t+s)x.

Hence {T(t) h2:o is a semigroup and by [19, Theorem 10.2.3]' it is a strongly

continuous semigroup for t > O. Next, from i), we know that etAo = et2t ID(A)'
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Thus we have

T(t)x

(5.63)

iii) If the space X is reflexive, then any operator satisfying the Hille-Yosida

estimates is densely defined. For densely defined operators the statement of this

point follows from the standard Hille-Yosida theorem (existence of {etA h:2:o) and

equation (5.58) with Ao replaced by A.
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Conclusion

The theories of B-bounded semigroups, C-regularized semigroups, C-existence

and uniqueness families are generalizations of the theory of strongly continuous

semigroups. In this thesis we provide an analysis of the inter-relationship that

exists between these theories and show that, despite superficial similarities, the

objects they describe are essentially different.

While introducing the concept of B-bounded semigroups we revisit the transport

problem from where they originated and in the process we extend the original

results of Belleni-Morante (who considered only purely multiplying boundaries;

purely absorbing being standard), to cover the mixed, that is, partly multiplying

and partly absorbing, case.

Further we present a development of the theory of B-bounded semigroups and

demonstrate their usefulness in solving certain types of implicit evolution equa­

tions by considering an example of the heat equation with dynamical boundary

conditions. In this example we also compare B-bounded semigroups with B­

evolutions introduced by N. Sauer.
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The main part of the thesis is concluded by a study of the inhomogeneous ini­

tial value problem in the context of C-regularized semigroups. We show that

the results presented in the monograph" Semigroups of linear operators and ap­

plications to partial differential equations" by A. Pazy for strongly continuous

semigroups apply, with minor modifications, to the case when the evolution is

given only by a C-regularized semigroup. The only gap between these two the­

ories that we could not fill, follows from the fact that the concept of fractional

powers of the generator of a C-regularized semigroup is yet to be developed to a

satisfactory degree. Thus the results from Pazy that involve the regularity of the

data with respect to the domains of the fractional powers of strongly continuous

semigroups, have no counterparts in the C-regularized semigroups context.
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