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Thesis Abstract 
Sweetpotato production contributes significantly to food security and incomes of subsistence 

farmers in Tanzania. However, productivity of the crop is constrained by several biotic, abiotic 

and socio-economic factors. Amongst the biotic constraints, the sweetpotato virus disease 

(SPVD) causes significant yield losses in the country. Improved cultivars and landraces that are 

grown succumb to SPVD. Both chemical and biological control methods are not fully effective 

against SPVD. The use of resistant varieties remains the most effective and cheapest method for 

subsistence farmers. Therefore, breeding for SPVD resistance and high yields is an important 

consideration to develop and release improved sweetpotato varieties with end users preferences. 

Therefore, the objectives of the study were to: 1) assess the present sweetpotato farming 

systems, farmers’ preferences, production constraints and breeding priorities in eastern 

Tanzania, 2) determine genetic variation among diverse sweetpotato germplasm with regards to 

yield, dry matter content and SPVD resistance and to identify suitable clones for breeding, 3) 

investigate the genetic diversity of 48 Tanzanian sweetpotato genotypes using nine selected 

polymorphic simple sequence repeat (SSR) markers and to determine genetic relationship and 

select unique parents for breeding, 4) determine the general combining ability (GCA) and specific 

combining ability (SCA) effects of selected sweetpotato clones for the number of storage roots, 

fresh storage root yield, dry matter content (DMC) and resistance to sweetpotato virus disease 

(SPVD) for further selection and breeding, and 5) determine the magnitude of genotype-by-

environment and stability for yield and yield related traits and SPVD resistance among newly 

developed sweetpotato clones in eastern Tanzania. 

Participatory rural appraisal study was conducted involving 138 and 149 farmers sampled for 

household interviews and focus group discussion, respectively at Gairo, Kilosa and Kilombero 

districts of Morogoro Region and Mkuranga district of the Coast Region of Tanzania. More than 

94% of the respondents depended on crop farming for their livelihoods. Farmers preferred 

sweetpotato varieties with high yields, high dry matter content, tolerance to diseases and early 

maturing. Sweetpotato virus disease and pests, drought, unavailability of markets, lack of 

transport, low prices, inadequate extension services and post-harvest losses were identified by 

farmers being the most important production constraints. Improved extension service delivery, 

SPVD tolerant cultivars and reliable and coordinated market systems of sweetpotato were the 

most immediate needs for improved sweetpotato production and productivity. 
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Field experiments consisting 144 sweetpotato genotypes were conducted at two sites in Tanzania 

using a 12x12 simple lattice design in 2013 to screen genotypes for yield, dry matter content and 

sweetpotato virus disease resistance and to identify suitable clones for breeding. The genotypes 

differed in time to 50% flowering, number of roots per plant, root yield, dry matter content and 

resistance to SPVD. Seven clones including Simama, Ukerewe, Mataya, Resisto, 03-03, Ex-

Msimbi-1 and Gairo were selected as potential parents for sweetpotato breeding for high storage 

root yield and related traits or SPVD resistance.  

Nine polymorphic simple sequence repeat markers (SSR) were used to determine genetic 

relationship among 48 Tanzanian sweetpotato genotypes to identify unique parents useful for 

future breeding. The SSR markers were highly polymorphic and allocated the genotypes into 

three major genetic clusters. Ex-Ramadhani, Kibakuli, Mkombozi, Mjomba, Ex-Halima-3 and 

Kabuchenji were identified as genetically unrelated and complementary genotypes and 

recommended for future breeding programmes. 

Eight genotypes contrasting for their yield, dry matter content or SPVD resistance were selected 

and crossed using an 8x8 half diallel mating design. The families were evaluated in the field using 

a 6x6 triple lattice design at Sugarcane Research Institute (SRI) at Kibaha, Kilombero Agricultural 

Training and Research Institute (KATRIN) and Sokoine University of Agriculture (SUA) in 

Tanzania. There were highly significant differences among families (P< 0.001) for all studied traits 

across sites. Clonal parents with highest general combining ability (GCA) were 03-03 and Resisto 

for storage root yield, Ukerewe for dry matter content (DMC) and Ex-Msimbu-1 which displayed 

negative and significant GCA effect for SPVD resistance. Therefore, the parents Resisto, 

Ukerewe and Ex-Msimbu-1 could be used for future sweetpotato breeding programmes to 

improve yield, DMC or resistance to SPVD. The following crosses were best combiners displaying 

positive and significant SCA effects: Mataya x Gairo and Simama x Gairo for number of roots per 

plant, Mataya x Ex-Msimbu-1 and 03-03 x Ex-Msimbu-1 for root yield and, Mataya x 03-03, 03-

03 x Ukerewe and Resisto x SPKBH008 for DMC, and Mataya x SPKBH008 and Mataya x Gairo 

had negative and significant SCA effect for resistance to SPVD. The selected parents and crosses 

were the best candidates to develop improved sweetpotato varieties with high root yield, DMC or 

SPVD resistance.  

 

The magnitude of genotype-by-environment interaction for yield and related traits and SPVD 

resistance of 26 selected sweetpotato clones was investigated across six diverse environments; 

namely Gairo, Kilombero Agricultural Training Research Institute (KATRIN), Sokoine University 
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of Agriculture (SUA), Sugarcane Research Institute (SRI), Chambezi and Mkuranga. The Additive 

Main Effect and Multiplicative Interaction (AMMI) and genotype and genotype-by-environment 

interaction (GGE) biplot analyses were used to determine the GxE interaction and stability of the 

genotypes. The genotypes were ranked differently for yield and related traits and SPVD 

resistance. AMMI and GGE biplot analyses identified the following genotypes: G5, G11, G23, G9, 

G7, G18 and G17 being high yielding and resistant to SPVD which could be further evaluated in 

multi-environment yield trials (MEYTs) in eastern Tanzania. Also, the genotypes G22 and G3 

were isolated as high yielding and resistant to SPVD but specifically suited to Chambezi and 

Gairo. Test environments sufficiently discriminated the candidate genotypes for the traits studied. 

MEYTs are required for selection and recommendation of high yielding, SPVD resistant and 

stable sweetpotato clones for eastern Tanzanian or similar environments. 

Overall, the study identified valuable sweetpotato parents and families with high combining ability 

for number and yield of storage roots, dry matter content and SPVD resistance from which new 

clones can be selected for future evaluation and release as new cultivars.  
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Thesis introduction 

Importance of sweetpotato 

Sweetpotato (Ipomoea batatas L., 2n = 6x =90) is an important root crop grown in more than 100 

countries worldwide (Osiru et al., 2009; Lou et al., 2010). It is the seventh most important food 

crop globally. In developing countries sweetpotato is the fifth important food security crop after 

rice, wheat, maize and cassava (Cervantes-Flores et al., 2010). According to FAOSTAT (2015) 

the average sweetpotato production from 1999 to 2013 was 120 million tonnes per annum 

worldwide, of which 79% was produced by China (Table 1). In sub-Saharan Africa (SSA), it is 

cultivated in an area of about 3.22 million hectares with an annual production of 14.65 million 

tonnes (Table 1) which is about 12% of the world total production (FAOSTAT, 2015). Within sub-

Saharan Africa 66% of sweetpotato production is concentrated in East Africa, where it is the basic 

subsistence crop (FAOSTAT, 2015).  

Table 1. Sweetpotato production for some selected countries/regions from 1999–2013  

Region/Country Average area harvested in 

ha 

Average production in 

tonnes 

Productivity 

(tonnes/ha) 

World 8 800 798  119 530 437 13.58 

Africa 3 216 819    14 652 992 4.56 

China 4 388 052     93 778 201 21.37 

Burundi   122 817         832 195 6.78 

Kenya    63 840         706 186 11.06 

Nigeria 997 800      2 995 733 3.00 

Rwanda 146 451          935 021 6.38 

Uganda  576 919      2 606 827 4.52 

Tanzania 480 815      1 596 267 3.32 

Source: FAOSTAT, 2015. 

Sweetpotato is grown for food, feed and income generation in many countries in SSA (Fugile, 

2007; Low et al., 2009). It is an important food security crop, often crucial during famine due to its 
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excellent drought tolerance and rapid production of storage roots (Kapinga et al., 2003; 

Mukhopadhyay et al., 2011). It is a crucial crop in rural and marginalized communities including 

many HIV affected and women-headed households in eastern and central Africa (Johanson and 

Ives, 2001). The per capita consumption in SSA ranges between 85–160 kg year-1 (Johanson and 

Ives, 2001). It has supported more people per unit area than any other crop (Okada et al., 2002). 

In Tanzania, sweetpotato is an important crop widely grown in almost all agro-ecological zones 

(Kulembeka et al., 2005; Masumba et al., 2005). In the country, it ranks fifth in terms of food 

production after maize, cassava, rice and sorghum. It is the second most important root crop after 

cassava (Table 2).  

Table 2. Area and production of primary crops in Tanzania from 1999–2013 

Crop Average area harvested in ha Average production in tonnes 

Maize 2 731 616 3 815 196 

Paddy/ rice    704 691 1 392 176 

Sorghum  705 479    685 542 

Cassava  848 110 5 127 036 

Sweetpotato 480 814 1 596 267 

Potatoes 128 981    892 200 

Bananas 390 978 2 262 260 

Source: FAOSTAT, 2015. 

Sweetpotato has high productivity per unit area. It performs well in infertile soils and it is relatively 

drought tolerant (Tairo et al., 2005). It is grown in different cropping systems and patterns in 

different agro-ecologies in Tanzania. It is either monocropped or intercropped with maize, 

coconut, banana, cassava, pigeon peas or sunflower (Mukhopadhyay et al., 2011). Farmers 

mainly grow diverse landraces disseminated informally through farmer to farmer exchange of 

vines during planting time (Ndunguru et al., 2009). The crop has flexible planting and harvesting 

periods such that it can be harvested within 4 months of planting, and roots store well when left 

in the ground for a period of six to twelve months (Kapinga et al., 1995; Karyeija et al., 1998). In 

addition to serving as an important complementary food crop, sweetpotato supplements 

household income through formal and informal trading at both rural and urban markets, thereby 
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contributing to the alleviation of widespread food shortages and poverty for the majority of rural 

communities who are dependent on this crop (Mwanga and Ssemakula, 2011). 

Despite the importance of sweetpotato and its wide adaptability in Tanzania the current crop 

yields are quite low. In the country sweetpotato yields ranges from 3–6 t ha-1, which is lower than 

the potential yields recorded from experimental trials varying from 15 to 27 t ha-1 (Sebastiani et 

al., 2007; FAOSTAT, 2015). 

Constraints to sweetpotato production  

Biotic constraints 

The production of sweetpotato is affected by several biotic constraints such as viral diseases, 

insect pests and weeds (Ndunguru et al., 2009). Important diseases and insects are sweetpotato 

virus diseases and sweetpotato weevils, respectively. Sweetpotato virus disease (SPVD) caused 

by the dual infection and synergistic interaction of sweetpotato chlorotic stunt virus and 

sweetpotato feathery mottle virus is cosmopolitan (Mukasa et al., 2006). It is the most devastating 

disease causing reduction in plant growth and root yields and quality (Gibson, 2005; Kapinga et 

al., 2009). Also SPVD limits the length of time the roots can be kept in the ground and shorten 

the storage duration of the harvested crop (Engoru et al., 2005; Tsakama et al., 2010). The 

damage caused by SPVD ranges from 50-100% (Gibson et al., 1998). A sweetpotato weevils, 

Cylas punctcollis and Cylas brunneus, are also major sweetpotato production constraints 

(Stathers et al., 2003; Munyiza et al., 2007). The weevils tunnel and feed on vines and roots 

thereby reducing the quality and yield of the crop (Mullen, 1984; Stathers et al., 1999). According 

to Stanthers et al. (1999), yield losses from weevil infestation can be as high as 100%. Moreover, 

infestation levels are the highest under dry conditions due to many cracks which appear when the 

soil dries (Muyinza et al., 2007). Other biotic constraints such as millipedes, Alternaria leaf spot, 

stem blight, black rot, Fusarium rot, bacterial rot, nematodes and vertebrate pests such as rats 

also affect sweetpotato production (Fugile, 2007; Namanda et al., 2011). In addition, weeds may 

cause severe yield loses when high rainfall occurs early in the growing season (Harrison and 

Jackson, 2011). Seem et al. (2003) reported that time of weed infestation was critical. They 

reported that, the critical period of weed competition was from 2-6 weeks after planting. Al-Tikriti 

(1966) cited in Harrison and Jackson (2011), reported a yield loss of over 90% in weedy 

sweetpotato plots compared to weeded ones. Destruction of the crop by stray animals such as 

cattle and goats has also been reported in east Africa (Namanda et al., 2011). 
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Abiotic constraints 

Abiotic constraints which significantly affect sweetpotato production include low soil fertility and 

drought (Fugile, 2007; Namanda et al., 2011). Declining soil fertility constrains sweetpotato 

production as its replenishment is limited by unaffordable high prices of inorganic fertilizers (Elliott 

and Hoffman, 2010). Moreover, most soils under smallholder farmers’ condition are degraded and 

depleted making applied fertilizers less effective. Continuous cropping without addition of organic 

and inorganic manures has led to a decline in soil fertility and consequently a decline in 

productivity (Saleh and Zahor, 2007).  

Drought is a significant abiotic constraint that limits the productivity of sweetpotato affecting both 

the quality and quantity of yields (Cattivelli et al., 2008; Namanda et al., 2011). In a participatory 

rural appraisal, Oduro (2013) reported that drought was among the highly ranked constraints in 

sweetpotato production in Ghana. Although it is documented that sweetpotato is drought tolerant, 

prolonged and frequent dry spells and erratic rainfall cause substantial yield reduction (Johanson 

and Ives, 2001). An et al. (2003) reported lower sweetpotato yields under hot-dry season 

compared to cool-wet season; however, the response varied with genotypes. Drought not only 

affects crop growth and development, but also root yield, dry matter content and composition, and 

pests and disease incidences (Ekanayake and Collins, 2004; Masumba et al., 2005). Besides low 

dry matter content and susceptibility to viral diseases, the newly introduced orange fleshed 

sweetpotato (OFSP) are unable to withstand drought, which leads to low productivity and 

unacceptability to farmers (Mwanga and Ssemakula, 2011). Sweetpotato varieties less tolerant 

to drought significantly retard the efforts invested by farmers making them unpopular and 

subsequently rejected. Gibson (2005) reported that the participatory sweetpotato breeding and 

selection trials were ruined by drought and farmers rejected the less drought tolerant varieties. 

Therefore, drought significantly affects and lowers sweetpotato production and productivity.  

Socio-economic constraints 

There are several socio-economic constraints which affect sweetpotato production. These include 

inadequate availability of high yielding, disease resistant planting materials, poor or no fertilization 

and weeding and lack of post-harvest technologies (Kulembeka et al., 2005; Tairo et al., 2005; 

Ndunguru et al., 2009). The use of infected, low yielding planting materials significantly 

contributes to persistence of sweetpotato viral diseases (Namanda et al., 2011). Inadequate 

extension services limits dissemination and adoption of improved husbandry practices. 

Consequently, farmers continue growing informally disseminated inferior planting materials, 
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which lead not only to persistence of diseases but also negatively affect productivity of the crop 

(Fugile, 2007; Namanda et al., 2011). Similarly, poor linkage between farmers and other 

stakeholders coupled with undeveloped and fragmented infrastructures in rural areas, 

significantly lowers the productivity of the crop (Kapinga and Carey, 2003; Waddington et al., 

2010). Further, inadequate post-harvest technologies such as storage facilities and processing 

technologies severely affect investment, production and sustainability of the crop (Fugile, 2007; 

Waddington et al., 2010). Den (1991) cited in Rahman et al. (2003) reported root crops losses of 

20-40% due to lack of appropriate storage and processing technologies. 

Low production of sweetpotato is also contributed by lack of high yielding varieties with farmers’-

preferred traits (Karuri et al., 2009). High yielding and farmers-preferred varieties are the bases 

for increased productivity and sustainable development of the crop. Presently, most farmers use 

local landraces. Though adapted to local agro-ecologies, the landraces are low yielding and late 

maturing (Masumba et al., 2005). Also, sweetpotato is one of the most under-exploited crop and 

breeding initiatives are at a relatively early stage compared to other crops such as maize, rice 

and cassava (Gasura et al., 2010). Several attempts have been made to use exotic varieties in 

various agro-ecologies to improve low productivity and circumvent pest and disease damage 

(Kapinga et al., 2009; Gasura et al., 2010). However, the exotic varieties have shown relatively 

poor performance compared to landraces which are well adapted to the farming systems (Gasura 

et al., 2010). Mwanga and Ssemakula (2011) reported almost 100% failure of the newly 

introduced orange-fleshed sweetpotato in Uganda. Similar studies in Tanzania indicated that, 

some of the introductions were rejected by farmers due to low dry matter content, low yields and 

poor production of vines during recurrent droughts (Kulembeka et al., 2005). A relatively similar 

performance of the local unimproved and introduced improved varieties for both yields and 

adaptability to different agro-ecologies have been reported (Mbwaga et al., 2007). This underpins 

the need for sweetpotato breeding to develop and release cultivars with high yielding, resistant to 

prevailing diseases and with preferred traits such as high dry matter content. 

Problem statement and justification 

Sweetpotato production significantly contributes to food security and incomes of subsistence 

farmers in Tanzania. Both improved cultivars and landraces that are grown succumb to several 

viral diseases, including the most devastating sweetpotato virus disease (SPVD). Sweetpotato 

virus disease is amongst the major constraints to sweetpotato production and causes significant 
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yield losses in the country. Continued use of susceptible varieties, absence of high yielding and 

early maturing resistant varieties, and lack of effective control measures to SPVD contribute to 

low yields and disease build up, development and persistence. Both chemical and biological 

control methods are not effective against viral diseases. Therefore, use of resistant varieties 

remains the most effective and cheapest method for small-scale farmers. Developing new 

sweetpotato clones through genetic recombination of local germplasm and exotic ones with 

desirable genetic variations and attributes is helpful for breeding. This requires a complementary 

genetic analyses and continuous selection of useful traits such as high yields and resistance to 

SPVD. The use of local genetic resources is necessary since they are well-adapted to local agro-

ecologies and possess farmers-preferred traits. In the past, there are limited genetic studies on 

breeding of sweetpotato for resistance to SPVD in Tanzania. Development of sweetpotato 

cultivars with farmers-preferred traits and SPVD resistance is an overriding consideration to 

ensure food security and incomes to small scale farmers. Therefore, this study aimed at 

developing sweetpotato varieties with improved yield and related traits and resistance to SPVD 

for increased productivity and acceptability by farmers. The following trials were conducted 

encompassing five objectives. 

Objectives 

Overall objective 

The main objective of this study was to contribute to the development of improved sweetpotato 

varieties with improved yield and related traits and resistant to SPVD for increased productivity 

and acceptability by farmers in Tanzania.  

Specific objectives 

The specific objectives of the study were: 

1. To assess the present sweetpotato farming systems, farmers’ preferences, production 

constraints and breeding priorities in eastern Tanzania 

2. To determine genetic variation among diverse sweetpotato germplasm with regards to yield, 

dry matter content and sweetpotato virus disease (SPVD) resistance and to identify suitable 

clones for breeding. 

3. To investigate the genetic diversity of 48 Tanzanian sweetpotato genotypes using nine selected 

polymorphic simple sequence repeat (SSR) markers to determine genetic relationship  
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4. To determine the general combining ability (GCA) and specific combining ability (SCA) effects 

of selected sweetpotato clones for the number of storage roots, fresh storage root yield, dry 

matter content (DMC) and resistance to sweetpotato virus disease (SPVD) for further selection 

and breeding. 

5. To determine the magnitude of genotype-by-environment and stability for yield and yield related 

traits and sweetpotato virus disease (SPVD) resistance among newly developed sweetpotato 

clones in eastern Tanzania. 

 

Thesis outline 

This thesis consists of six distinct chapters (Table 3) reflecting a number of activities related to 

the above-mentioned objectives. Chapters 2 to 6 are written in the form of discrete research 

chapters, each following the format of a stand-alone research paper (whether or not the chapter 

has already been published). The referencing system used in the chapters of this thesis is based 

on the Journal of Crop Science system. This is the most recommended thesis format adopted by 

the University of KwaZulu-Natal. As such, there is some unavoidable repetition of references and 

some introductory information between chapters. Chapter 1 has been published in African Journal 

of Agricultural Research, while Chapter 2 is in press in the South African Journal of Plant and 

Soil. Chapter 3 has been published in the Acta Agriculturae Scandinavica, Section B - Soil & Plant 

Science and Chapter 4 has been published in the South African Journal of Botany. 
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Table 3. Thesis outline 

Chapter Title 

- Thesis introduction 

1 A review of the literature 

2 Assessment of sweetpotato farming systems, production constraints and breeding 
priorities in eastern Tanzania 

3 Screening of Tanzanian sweetpotato germplasm for yield and related traits and 
resistance to sweetpotato virus disease  

4 Genetic diversity assessment of Tanzanian sweetpotato genotypes using simple 
sequence repeat markers  

5 Combining ability of sweetpotato clones for storage root yield and related traits and 
resistance to sweetpotato virus disease 

6 Genotype-by-environment interaction of yield and related traits and resistance to 
sweetpotato virus disease among selected sweetpotato clones 

7 An overview of research findings 
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Chapter one 

1. A Review of the Literature 

Abstract 

Sweetpotato is one of the main staple food crops for millions of subsistence farmers in Africa.  

Biotic and abiotic stresses and socio-economic challenges are the major production constraints 

of the crop. Amongst biotic constraints, the sweetpotato virus disease (SPVD) is the most 

devastating causing yield reduction ranging from 50-98%. Both improved cultivars and landraces 

that are presently grown succumb to SPVD and several viral diseases. The yield losses caused 

by SPVD have significant negative impact on food security and income for the rural poor in eastern 

Tanzania. Continued use of susceptible varieties, absence of high yielding and early maturing 

resistant varieties, and lack of effective control measures to SPVD contribute to low yields and 

disease build up, development and persistence. Both chemical and biological control methods 

are not effective against viral diseases. The use of resistant varieties remains the most effective 

and cheapest method for small-scale farmers. Breeding for resistance against SPVD remains the 

most important component to improve yield and reduce the impact of SPVD. Reduced flowering 

and fertility, self- or cross-incompatibility are the major challenges of conventional breeding in 

sweetpotato breeding. The use of new breeding techniques such as marker-assisted selection 

and genetic engineering could have complementary roles in sweetpotato breeding. This review 

provides theoretical basis on breeding sweetpotato for SPVD resistance and improved yields. 

Keywords: Breeding, resistance, SPVD, Sweetpotato, viral disease, yield 
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1.1. Introduction 

Sweetpotato (Ipomoea batatas (L.) Lam.; 2n=6x=90) is a perennial plant cultivated as an annual 

crop. It is a dicotyledonous and belongs to morning glory family Convolvulaceae (Huaman, 1992; 

Martin, 1970). Principally, sweetpotato is grown for its storage roots for food security and income 

(Diaz et al., 1996; Tairo et al., 2004). It has supported more people per square unit than any other 

crop (Okada et al., 2002). The genus Ipomoea consists of about 600 to 700 species including 

sweetpotato (Cao et al., 2009; Vaeasey et al., 2008). The series Batatas consists of 13 species 

closely related to cultivated sweetpotato (Diaz et al., 1996; Huang and Sun, 2000; Orjeda et al., 

1990; Srisuwan et al., 2006).  Further, section Batatas consists of three cytogenetic groups, 

namely; group A, B and X; while A and X are self- and cross- compatible, group B where 

sweetpotato belongs is self-incompatible but cross-compatible (Diaz et al., 1996; Kobayashi et 

al., 1993; Kowyama et al., 2000; Nishiyama et al., 1975). Central America has been documented 

as the origin and the primary centre of diversity of the currently cultivated sweetpotato (Gichuki et 

al., 2003; Low et al., 2009; Srisuwan et al., 2006; Zhang et al., 2000). On the other hand, East 

Africa is one of the secondary centres for sweetpotato diversity (Gichuki et al., 2003). Sweetpotato 

is believed to be introduced to Africa by Portuguese during 16th and 17th century (Gichuki et al., 

2003; Zhang et al., 2000).  

Sweetpotato is grown from 48N to 40°S of the equator with altitudes ranging from 0 to 3000 m 

above sea level (Low et al., 2009; Troung et al., 2011; Vaeasey et al., 2008; Woolfe, 1992). The 

crop requires ambient day and night temperatures of 15°C to 33°C for optimum growth and root 

development. Temperature above 25°C is considered optimal for maximum growth (Woolfe, 

1992). However, temperatures below 12°C and above 35°C retard sweetpotato growth (Kuo, 

1991). Dry matter production increases with increasing temperatures from 20°C to 30°C, but 

declines at temperatures beyond 30°C (Kuo, 1991). The crop grows best with a well distributed 

annual rainfall of 600-1600mm (Low et al., 2009). Excess rainfall at early stage of establishment 

may aggravate weed problem resulting in low yield (Harrison and Jackson, 2011). The crop is 

extensively grown under rain-fed conditions and is relatively drought tolerant. However, prolonged 

and frequent dry spells or drought and erratic rainfall cause substantial yield reduction (Low et al., 

2009; Schafleitner et al., 2010). Sweetpotato requires well-drained soil with a pH of 5.5 to 6.5 

(Woolfe, 1992). It also requires full sun light; however, it can tolerate a 30-50% reduction of full 

solar radiation (Troung et al., 2011).  
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Flowering ability is an essential aspect in sweetpotato breeding and determines the potential for 

crop improvement through breeding (Gasura et al., 2010). Sweetpotato flower contains both male 

and female reproductive organs for sexual reproduction (Jones, 1980). The flowers are born 

solitarily and grow vertically upward from the leaf axis (Huaman, 1992). Each flower has five 

united sepals and five petals joined together to form a funnel-shaped corolla tube (Huaman, 1992; 

Jones, 1980). The tube is usually lavender coloured and is the most conspicuous part of the flower 

(Jones, 1980). Five stamens with varying heights are attached to the base of the corolla tube 

(Jones, 1980). In most cultivars the two longest stamens are about the same length as the style. 

The filaments vary in length and are hairy and, anthers are either white or yellow or pink and 

contain numerous pollen grains on their surfaces (Huaman, 1992). The ovary consists of two 

carpel, each containing one locule (Mont et al., 1993; Orjeda et al., 1991). Each locule contains 

either one or two ovules, with a maximum of four ovules per ovary (Huaman, 1992; Jones, 1980).  

Despite that sweetpotato flowers mostly under short day length, long day and day neutral cultivars 

exist (Jones, 1980; Troung et al., 2011). However, most sweetpotato cultivars are sensitive to day 

length. Hence, some genotypes flower readily at any season while others only when days are 

short (Jones, 1980). Short days promote flowering and growth of storage root (Martin, 1988). Still 

others do not flower under any normal conditions. Those that do not flower can be induced to 

flower by grafting on other Ipomoea species (Chiona, 2009). Sweetpotato cultivars differ in their 

flowering ability, some do not flower, others produce very few flowers or flower profusely 

depending on the genotypes and environmental influences (Huaman, 1992; Jones, 1980). On the 

other hand, non-flowering genotypes pose challenges in exploiting their genes via the 

conventional breeding programmes.  

The flowers open soon after daybreak and wither depending on prevailing environmental 

conditions (Jones, 1980). Flowers open longer on cool and cloudy days compared to hot and 

sunny days. Pollination can be facilitated either by insects or hand. In either case, the male pollen 

grain lands on the stigma, initiating fertilization. The pollen germinates few minutes to 3 or 4 hours 

after pollination (Jones, 1980; Kowyama et al., 2000; Martin and Cabanillas, 1966). The pollen 

tube grows down the style until it meets the female gametophyte in 8 hours after pollination 

(Jones, 1980; Martin and Cabanillas, 1966). Pollen may be rejected shortly after contacting the 

stigmatic surface resulting in pollen germination failure (Kowyama et al., 2000). With normal 

fertilization and embryo development up to four seeds can be produced per ovary (Jones, 1980; 

Mont et al., 1993). However, successful fertilization is uncertain, possibly due to embryo and fruit 

abortions (Mont et al., 1993). Gasura et al. (2010) reported higher fertilization successes for 
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flowers pollinated in early than late hours of the day. Additionally, insect pollination produce more 

seeds compared to hand pollination (Gasura et al., 2010; Nishiyama et al., 1975). The low fertility 

or fertilization failure could be due to incompatibility contributed by hexaploid genome of the crop. 

Besides incompatibility, other environmental and management practices also affect the amount 

of seeds produced in the ovary. Weed management and controlled application of nitrogen fertilizer 

improve seed setting (Jones, 1980). 

The sweetpotato fruit is a capsule containing one to four seeds (Huaman, 1992). The seeds are 

black and about 3 mm long; also they are flat on one side and convex on the other (Chiona, 2009; 

Huaman, 1992). The seeds remain viable for many years with extended dormancy period 

probably due to thick, hard and impermeable testa (Chiona, 2009; Huaman, 1992). This has 

implication on seed germination. Therefore, mechanical or chemical scarification is necessary for 

improved germination (Ernest et al., 1994; Huaman, 1992). Nevertheless, the production 

sweetpotato is constrained by several biotic, abiotic and socio-economic factors (Thottappilly and 

Loebenstein, 2009). Amongst the most important biotic constraints are sweetpotato virus 

diseases. The objective of this paper was to highlight the progresses and challenges of breeding 

sweetpotato towards improved yield and SPVD resistance. Further, the potential and limitations 

of non-conventional breeding techniques for sweetpotato improvement have been reviewed. 

1.2. Constraints to sweetpotato production 

1.2.1. Biotic constraints 

The production of sweetpotato is affected by several biotic constraints such as viral diseases, 

insect pests and weeds (Harrison and Jackson, 2011; Lou et al., 2010; Ndunguru et al., 2009; 

Schafleitner et al., 2010). Diseases and insects of paramount importance are sweetpotato virus 

diseases and sweetpotato weevils, respectively (Kivuva et al., 2014b). Sweetpotato virus disease 

(SPVD) caused by the dual infection and synergistic interaction of sweetpotato chlorotic stunt 

virus and sweetpotato feathery mottle virus is distributed worldwide (Gibson et al., 1998; Mukasa 

et al., 2006). It is the most devastating disease causing reduction in plant growth and storage root 

yields (Gibson, 2005; Gibson et al., 2004; Gibson et al., 1997; Kapinga et al., 2009; Karyeija et 

al., 2000). Also SPVD limits the length of time the roots can be kept in the ground and shorten 

the storage duration of the harvested crop (Engoru et al., 2005; Tsakama et al., 2010). The 

damage caused by SPVD ranges from 50-98% (Gibson et al., 1998; Njeru et al., 2004; Tairo et 
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al., 2004). On the other hand, sweetpotato weevils, Cylas spp., is another major sweetpotato 

production constraint (Kapinga et al., 2003b; Korada et al., 2010; Munyiza et al., 2007; Stathers 

et al., 2003). The weevils tunnel and feed on vines and storage roots thereby reducing the quality 

and yield of the crop (Mullen, 1984; Stathers et al., 1999). According to Stanthers et al. (1999), 

yield losses from weevils’ infestation can be as high as 100%. Moreover, infestation levels are 

highest under dry conditions due to many cracks which appear when the soil dries (Muyinza et 

al., 2007). Other biotic constraints such as millipedes, Alternaria leaf spot, stem blight, black rot, 

Fusarium rot, bacterial rot, nematodes and vertebrate pests such as rats are also a threat to 

sweetpotato production (Ebregt et al., 2004; Johanson and Ives, 2001; Kapinga et al., 1995). In 

addition, weeds may cause severe yield loses when high rainfall occurs early in the growing 

season (Harrison and Jackson, 2011). 

1.2.2. Abiotic constraints 

Abiotic constraints which significantly affect sweetpotato production include low soil fertility and 

drought (Kapinga et al., 1995; Mihale et al., 2009; Mwololo et al., 2007; Pareek et al., 2010). 

Declining soil fertility constrains sweetpotato production as its replenishment is limited by 

unaffordable high prices of inorganic fertilizers (Elliott and Hoffman, 2010; Mudiope et al., 2000). 

Moreover, degraded and depleted soils make applied fertilizers less effective. Continuous 

cropping without addition of organic and inorganic manures has led to a decline in soil fertility and 

consequently a decline in productivity (Saleh and Zahor, 2007).  

Drought is a significant abiotic constraint limiting the productivity of not only sweetpotato but also 

many other crops and affects both the quality and quantity of yield (Balouchi, 2010; Cattivelli et 

al., 2008; Collins et al., 2008). Kivuva et al. (2014b) reported that, 28% of 345 farmers interviewed 

identified drought as a major constraint in sweetpotato production in Kenya. Although it is 

documented that sweetpotato is drought tolerant, prolonged and frequent dry spells and erratic 

rainfall cause substantial yield reduction (Johanson and Ives, 2001; Liwenga and Kangalawe, 

2009; Schafleitner et al., 2010). Drought not only affects crop growth and development, but also 

root yield, dry matter content and composition, and pests and disease incidences (Ekanayake 

and Collins, 2004; Masumba et al., 2005; Mcharo and Carey, 2001). Mwololo et al. (2007) 

reported an increased incidence and severity of sweetpotato viral diseases in the event of 

drought. For instance, besides low dry matter content and susceptibility to viral diseases, the 

newly introduced orange fleshed sweetpotato (OFSP) were unable to withstand drought, which 
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leads to low productivity and unacceptability to farmers (Mwanga and Ssemakula, 2011). 

Sweetpotato varieties less tolerant to drought significantly retard the efforts invested by farmers 

making them unpopular and subsequently rejected. Gibson (2005) reported that the participatory 

sweetpotato breeding and selection trials were ruined by drought and farmers rejected the less 

drought tolerant varieties. Therefore, together with other constraints, the production of 

sweetpotato is also significantly affected by drought leading to low productivity.  

1.2.3. Socio-economic constraints 

There are several socio-economic constraints which affect sweetpotato production. These include 

inadequate availability of high yielding, disease resistant planting materials, poor or no fertilization 

and weeding, and lack of post-harvest technologies (Kulembeka et al., 2005; Mpagalile et al., 

2003; Mudiope et al., 2000; Mwololo et al., 2007; Ndunguru et al., 2009; Rees et al., 1998; 

Schafleitner et al., 2010; Tairo et al., 2005). The use of infected, low yielding planting materials 

contributes significantly to persistence of sweetpotato viral diseases (Mwololo et al., 2007; Opiyo 

et al., 2010). Inadequate extension services limits dissemination and adoption of improved 

husbandry practices. Consequently, farmers continue growing informally disseminated inferior 

planting materials, which lead not only to persistence of diseases but also negatively affect 

productivity and profit of the crop (Kapinga and Carey, 2003; Fugile, 2007). Similarly, poor linkage 

between farmers and other stakeholders coupled with undeveloped and fragmented 

infrastructures in rural areas significantly lowers the productivity of the crop (Kapinga and Carey, 

2003; Waddington et al., 2010). Further, inadequate post-harvest technologies such as storage 

facilities and processing technologies severely affect investment, production and sustainability of 

the crop (Fugile, 2007; Hu et al., 2011; Mpagalile et al., 2003; Waddington et al., 2010).  

Also, lack of high yielding sweetpotato varieties with farmers’ preferred traits contributes to low 

production (Karuri et al., 2009). High yielding and farmers’ preferred varieties are the bases for 

increased productivity and sustainable development of the crop. Presently, most farmers use local 

landraces. Though adapted to local agro-ecologies, the landraces are low yielding and late 

maturing (Gibson et al., 1998; Masumba et al., 2005). Likewise, sweetpotato is one of the most 

under-exploited crop and breeding initiatives are at a relatively early stage compared to other 

crops such as maize, rice and cassava (Gasura et al., 2010; Kriegner et al., 2003). In the past, 

attempts were made to use exotic varieties in various agro-ecologies to address low productivity 

and circumvent pest and disease damages (Gasura et al., 2010; Kapinga et al., 2009). 
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Nevertheless, the exotic varieties have shown relatively poor performance compared to landraces 

which are well adapted to the farming systems (Gasura et al., 2010). Mwanga et al. (2007) and 

Mwanga and Ssemakula (2011) reported almost 100% failure of the newly introduced orange-

fleshed sweetpotato in Uganda. Similar studies in Tanzania indicated that, some of the 

introductions were rejected by farmers due to low root yields and dry matter content, and poor 

production of vines during recurrent droughts (Kulembeka et al., 2005; Masumba et al., 2003). 

On the other hand, relatively similar performance of the local unimproved and introduced 

improved varieties for both yields and adaptability to different agro-ecologies have been reported 

(Mbwaga et al., 2007). This underpins the need for further sweetpotato research and 

development. 

1.3. Sweetpotato virus diseases 

Sweetpotato is invariably affected by bacteria, fungal and viral diseases, and nematode (Clark et 

al., 2009; Thottappilly and Loebenstein, 2009). Different diseases attack the crop at different 

stages of growth, from pre-harvest to post harvest (Dje and Diallo, 2005). The levels of damages 

due to diseases and pests depend on the causal agent, intensity of infestation, variety and 

prevailing environmental conditions (Thottappilly and Loebenstein, 2009). Viral diseases cause 

substantial yield losses in farmers’ fields (Wambugu, 2003). 

Viral diseases are amongst the important biotic constraints in sweetpotato production (Gutiérrez 

et al., 2003; Wambugu, 2003). They are the most devastating and occur in all sweetpotato 

growing areas (Mwololo et al., 2007; Ndunguru et al., 2009; Tairo et al., 2004). The most important 

sweetpotato virus diseases include sweetpotato feathery mottle virus (SPFMV), sweetpotato 

chlorotic stunting virus (SPCSV), sweetpotato mild mottle virus (SPMMV) and sweetpotato 

chlorotic fleck virus (SPCFV) (Feng et al., 2000; Tairo et al., 2004). Sweetpotato mild speckling 

virus (SPMSV), sweetpotato virus G (SPVG) and sweetpotato latent virus (SPLV) have also been 

reported to affect sweetpotato (Feng et al., 2000; Ndunguru and Kapinga, 2007). These viruses 

not only adversely affect sweetpotato yields and quality but also decrease plant resistance to 

insect pests (Bryan et al., 2003; Feng et al., 2000; Yang, 2010). An infection by single virus strain 

causes little yield losses compared to co- or multiple-infections that cause the complex 

sweetpotato virus disease (SPVD) (Ames de Icochea and Ames, 1997; Karyeija et al., 2000).   

Sweetpotato virus disease (SPVD) severely affects sweetpotato production (Gutiérrez et al., 

2003; Kokkinos et al., 2006). It is caused by dual infection and synergistic interaction of 

sweetpotato chlorotic stunting virus (SPCSV); family Closteroviridae, genus Crinivirus and 
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sweetpotato feathery mottle virus (SPFMV); family Potyviridae genus Potyvirus (Karyeija et al., 

1998; Kreuze et al., 2009; Untiveros et al., 2008). Sweetpotato feathery mottle virus is non-

persistently transmitted by aphids while sweetpotato chlorotic stunting virus is semi-persistently 

transmitted by the whitefly [Bemisia tabaci] (IsHak et al., 2003; Kokkinos et al., 2006; Untiveros 

et al., 2008). In some incidences, co-infection of sweetpotato chlorotic stunting virus and 

sweetpotato mild mottle virus (SPMMV) occurs (IsHak et al., 2003; Mukasa et al., 2006). Further, 

not only dual co-infection but also triple infections occur resulting into most severe disease 

symptoms and yield losses (Gibson et al., 2004; Kapinga et al., 2009; Mukasa et al., 2006; Tairo 

et al., 2005). The symptoms and damage of co-infection are more severe and devastating than 

individual viral disease (Feng et al., 2000; Karyeija et al., 2000; Mukasa et al., 2006). The SPVD 

symptoms and damages are subject to its incidences and severity. 

The incidences and severity of SPVD are highly variable. They vary between and within agro-

ecologies, between varieties and growth stages of plants (Gasura and Mukasa, 2010; Gibson et 

al., 2000; Kapinga et al., 2009; Mwololo et al., 2007). The disease is characterized by stunted 

growth, chlorotic and malformed leaves, and ultimately reduced yields (Gibson et al., 2004; 

Gutiérrez et al., 2003; Untiveros et al., 2008). The SPVD infection causes yield losses as high as 

98% (Feng et al., 2000; Gibson et al., 2000; Gutiérrez et al., 2003; Mukasa et al., 2006). Bryan et 

al. (2003) reported a decrease in root diameter and yield due to presence of SPFMV and other 

potyviruses. The disease not only decreases yields, but also lowers quality and resistance to other 

pathogen (Bryan et al., 2003; Domola et al., 2008). In severe incidences, SPVD can lead to 

abandonment of elite cultivars (Bryan et al., 2003; Gasura and Mukasa, 2010; Rukarwa et al., 

2010). 

The SPVD is persistent in farmers’ fields due to several predisposing factors. Lack of knowledge 

among farmers, predominantly use of aged vegetative propagating materials, susceptible 

landraces, and high temperatures favour development, spread and expression of the disease 

(Ateka et al., 2004; Kreuze, 2002; Mwololo et al., 2007; Ndunguru et al., 2009; Tairo et al., 2004; 

van den Bosch et al., 2007). Also, the use of healthy-looking vines collected from the previous to 

the succeeding cropping cycles contributes to the spread of the disease (Opiyo et al., 2010; 

Rukarwa et al., 2010). Bryan et al. (2003) reported early development of disease symptoms from 

transplants infected with viruses compared to uninfected transplants which consequently led to 

decline in yield and root quality.  Aritua et al. (2007) reported high virus incidences in bimodal 

rains compared to unimodal rain in a year. On the other hand, Ndunguru et al. (2007) found lower 

incidences and severity of SPVD in cooler compared to warmer agro-ecologies and where the 
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crop was grown in only one season per year. Further, prolonged, hot and dry spells provide natural 

breaks in the transfer of viruses between crop cycles (Aritua et al., 2007; Ndunguru et al., 2007). 

In endeavour to reduce the incidences and effects of SPVD, several strategies such as 

phytosanitation and breeding for resistant cultivars have been recommended (Tairo et al., 2004; 

Valverde et al., 2007).  

1.4. Strategies to control SPVD 

Adequate management of plant disease is amongst the prerequisite for stable and profitable crop 

production for ascertained food security. Plant viruses are a major problem in the cultivation of 

many crops. There is no effective and complete control method against the disease to date. The 

control of viral diseases remains difficult in subsistence cropping systems (Rukarwa et al., 2010). 

Both chemical and biological control methods are not effective against viral diseases (Dje and 

Diallo, 2005; Garcĩa-Arenal and McDonald, 2003; Maule et al., 2007). Several strategies such as 

cultural practices, phytosanitary measures, control of vectors and deployment of genetic 

resistance to prevent or limit the extent of damage have been recommended (Maule et al., 2007; 

van den Bosch et al., 2007). On the other hand, control of SPVD has been mainly by use of clean 

and virus-free planting materials and resistant varieties (Aritua et al., 1998; Gibson et al., 2000). 

The use of clean and disease free planting materials, sanitation and other cultural practices 

effectively contribute to the control of the disease (Miano et al., 2008; Tairo et al., 2005). Karyeija 

et al. (1998) and Thottappilly and Loebenstein (2009) suggested that, use of virus-free and 

certified planting materials are likely to significantly reduce the effects of SPVD. However, 

deployment of genetic resistance to virus disease is viewed as the most effective and sustainable 

approach for managing SPVD (Garcĩa-Arenal and McDonald, 2003; Maule et al., 2007). 

1.4.1. Cultural practices to control SPVD 

Virus infected plants cannot be cured and the only way to adequately protect the crops is the use 

of resistant cultivars (Kreuze, 2002). The use of resistant varieties is cheap, easy, safe, effective 

and environmentally friendly (Byamukama et al., 2002; Garcĩa-Arenal and McDonald, 2003; 

Okada et al., 2001; Valverde et al., 2007). The impact of SPVD in farmers’ fields has been reduced 

by the use of resistant cultivars and landraces (Miano et al., 2008). However, the local landraces 

are highly variable in their resistance to SPVD. Most varieties are resistant to SPFMV but this 

resistance breaks down in the event of co-infection with SPCSV resulting in redundant resistance 

(Gasura and Mukasa, 2010; Tairo et al., 2004; van den Bosch et al., 2007). Further, the 
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sweetpotato grown by farmers are landraces with build-up of viruses resulting from several 

generations of vegetative propagation (Low et al., 2009; Miano et al., 2008). In general, resistant 

varieties are rarely available in addition to being low yielders and late maturing (Abidin et al., 

2005; Gibson et al., 2004; Miano et al., 2008). Therefore, improving virus resistance through 

development and deployment of SPVD resistant and high yielding varieties would improve 

production, productivity and ensure food security for subsistence farmers.  

Improved phytosanitation offers considerable benefits for controlling SPVD (Muturi et al., 2007). 

Phytosanitary measures includes quarantine, sanitation, use of virus-free vegetative propagules 

for all new plantings and roguing of diseased plants from within plantings (Thresh, 2003). 

Roguing, the removal of all plants showing disease symptoms has been reported to decrease the 

population of whitefly, a vector responsible in spreading SPVD (Karyeija et al., 1998; Muturi et al., 

2007; Valverde et al., 2007). Also, Ndunguru et al. (2009) and van den Bosch et al. (2007) 

reported that, roguing of infected plants may form an effective way of minimizing SPVD incidence 

and its damage to sweetpotato production. Gibson et al. (2000) and Gibson et al. (2004) found 

that, Tanzanian and Ugandan farmers controlled SPVD by using symptomless plants to establish 

new crop and destroying all infected plants. On the other hand, control of vegetation closer to 

sweetpotato fields is likely to significantly reduce vectors’ population thereby reducing incidences 

of SPVD. Muturi et al. (2007) reported drastic increase in whitefly populations in experimental 

plots surrounded by maize plants. Contrastingly,  Gutiérrez et al. (2003) used maize as an 

integrated pest management to control whitefly and aphid population to reduce virus transmission. 

Further, avoidance of introducing new infections in a new field by isolating new plots from SPVD-

affected ones can effectively reduce spread and incidences of SPVD (Domola et al., 2008; Gibson 

et al., 2004). Moreover, Gibson et al. (1998) recommended enforcement of phytosanitary controls 

to prevent introduction of new and severe viral strains between regions. Aritua et al. (1999) 

suggested widerspread cultivation of resistant varieties could limit infections to susceptible ones 

grown in nearby fields. 

Another approach to circumvent the damage caused by viral infection is the production and use 

virus-free plants through shoot tip culture (Feng et al., 2000; Okada et al., 2002; Rukarwa et al., 

2010). The use of health planting materials contributes significantly to the control of viral diseases 

including SPVD. The approach is effective in eliminating sweetpotato viruses. Recently, Kivuva 

et al. (2015) reported use of clean seed and high yielding varieties being amongst the strategies 

to address SPVD and low productivity constraints. Hannington et al. (2002) reported that, 

inadequate quantities of clean planting materials was amongst the causes of persistent low yields 
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of sweetpotato in farmers’ fields in Kenya. According to Feng et al. (2000) and Gutiérrez et al. 

(2003), the use of virus-free sweetpotato is likely to restore cultivar’s original yield, quality and 

improve resistance to other pathogens and insects. Further, the use of virus-free sweetpotato 

planting materials has been recommended to be among the most effective way to circumvent 

losses caused by viruses (Opiyo et al., 2010). Aritua et al. (2003) reported that farmers in Uganda 

selected cuttings from new unaffected crops to control SPVD thereby reducing disease incidences 

and yield losses. Nevertheless, the use of clean and virus-free planting materials is economically 

viable provided there is effective and efficient system for production, multiplication and distribution 

of planting materials (Carey et al., 1999; Feng et al., 2000). However, commercialization of 

sweetpotato production is a major challenge in many developing countries particularly in Sub-

Saharan Africa as the crop is mainly grown for household subsistence (Valverde et al., 2007). 

The capacity of public institutes to sustainably produce and multiply clean and virus-free planting 

materials for low income farmers in these countries is uncertain. Research institutes are financially 

constrained and farmers lack purchasing power to multiply and distribute, and purchase improved 

healthy planting materials, respectively (Kapinga et al., 2003a; Mtunda et al., 2003). Rukarwa et 

al. (2010) reported that, inadequacy of production, multiplication and distribution of certified virus-

free planting materials was a major setback in sweetpotato production in Uganda. Therefore, 

economic and infrastructure constraints are likely to significantly limit establishment and 

development of clean and virus-free planting material schemes. 

1.4.2. Control of SPVD vectors 

The viruses including SPFMV and SPCSV, the major components of SPVD are transmitted by 

aphids and whiteflies, respectively. The control of these vectors is likely to contribute significantly 

to the control of SPVD. The control of the vectors may involve varied practices such use of 

chemicals, eradication of weeds and other virus sources (Hull, 1994; Thresh, 2003). However, 

the control of vector populations under field conditions has proven to be difficult and seldom used 

in sweetpotato (van den Bosch et al., 2007).  Ames et al. (1997) pointed out that controlling 

whiteflies is not usually an effective means of limiting the incidence of the viruses they transmit. 

Also, Ndunguru et al. (2009) reported the absence of correlation between number of whiteflies 

and SPVD severity. Further, the control of insect vectors may not be economically viable as 

sweetpotato is not well commercialized and is largely grown by subsistence farmers (Rukarwa et 

al., 2010).  
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1.4.3. Deployment of SPVD resistant germplasm  

Sweetpotato is primarily propagated using stem cuttings. Botanically, true seeds have been 

exclusively used for breeding programmes (Gaba and Singer, 2009; Sihachakr et al., 1997). In 

farmers’ fields sweetpotato seeds or seedlings have not been considered as a source of diversity 

(Gibson et al., 2000). In sweetpotato improvement programmes genetic variation has largely been 

enhanced through conventional hybridization. The approach has some limitations due to 

biological nature of the crop (Shin et al., 2011; Yi et al., 2007). Genetic improvement of 

sweetpotato has been challenging due to their heterozygous genetic constitution, polyploidy, self-

incompatibility and cross-incompatibility (Mwanga et al., 2002b; Okada et al., 2002; Zhang et al., 

2000). Sweetpotato has hexaploid number of chromosomes (2n = 6x = 90) (Kowyama et al., 2000; 

Magoon et al., 1970; Martin and Ortiz, 1967; Nishiyama et al., 1975; Orjeda et al., 1990). This 

large number of chromosomes has implications on meiotic irregularity. Sexual compatibility 

barriers associated with hexaploidy nature restricts hybridization within the species (Diaz et al., 

1996; Jones, 1980). The barriers are either genetic or cytogenetic or physiological and their 

interactions. Also, its genetic improvement is largely limited by sterility and incompatibility (Jones, 

1980; Kowyama et al., 2000; Martin, 1968; Martin, 1970; Ting and Kehr, 1953). Relatively few 

genetic studies on sweetpotato could be largely be due to reproductive barriers from self-

incompatibility, high levels of cross-incompatibility, polyploidy and reduced or absence of 

flowering in some genotypes (Cao et al., 2009; Chang et al., 2009; Magoon et al., 1970; Martin 

and Ortiz, 1967; Okada et al., 2002; Shin et al., 2011). Incompatibility is caused by pre- and post-

fertilization barriers (Kobayashi et al., 1993; Kowyama et al., 1980; Martin, 1970; Martin and Ortiz, 

1967). The system of SI in sweetpotato and other species in genus Ipomoea is homomorphic 

sporophytic incompatibility controlled by a single multiple alleles at S-locus (Diaz et al., 1996; 

Kowyama et al., 1980; Kowyama et al., 2000; Martin, 1968; Tomita et al., 2004). This system 

causes complete failure of pollen germination on the stigma after self-fertilization (Kowyama et 

al., 2000; Martin, 1970; Tomita et al., 2004). Martin (1968) suggested presence of duplicated 

incompatibility loci with epistatic interaction. On the other hand, Kowyama et al. (1980) suggested 

presence of either dominance or independence or competitive relationships among multi-alleles 

controlling sporophytic incompatibility. 

Self-incompatibility prevents self-fertilization and promotes cross-fertilization (Byers and 

Meagher, 1992; Tseng et al., 2002). However, cross-fertilization is not guaranteed due to cross-

incompatibility (Martin, 1970; Tseng et al., 2002). According to Diaz et al. (1996), complex genetic, 

cytogenetic and physiological interactions, greatly influence interbreeding in the section Batatas. 
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It plays a role in maintaining genetic diversity but limits genetic improvement due to cross-

incompatibility (Nishiyama et al., 1975; Tomita et al., 2004). Despite the SI gene, high degree of 

cross-incompatibility and other barriers such as male sterility (Elameen et al., 2011; Liu, 2011), 

genetic improvement of sweetpotato by either conventional or biotechnology means are 

necessary.  

1.4.4. Conventional sweetpotato breeding for SPVD resistance 

Breeding for virus resistant cultivars has been recommended as the long-term solution to 

sustainably control SPVD and other viral diseases (Domola et al., 2008). However, breeding for 

SPVD resistance has not been an easy endeavour. Lack of resistant, high yielding and locally 

adapted varieties have given farmers limited alternatives to susceptible high yielding local 

varieties or landraces (Gibson et al., 2000). Therefore, incorporation of resistance genes into 

susceptible but high yielding landraces is a preferred strategy for managing not only SPVD but 

also other crop diseases. This is the direct and effective strategy for long term control of viral 

diseases (Carey et al., 1999; Fraile et al., 2011; Hull, 1994; Mihovilovich et al., 2000). Jones et 

al. (1986) recommended that, “no matter which insect species infecting the plant, genetic 

resistance should be considered as the possible solution; even intermediate level of resistance 

can be of significant economic importance”. Efficient and effective breeding systems are likely to 

effectively contribute to the release of superior and resistant cultivars to control SPVD (Gibson et 

al., 2004; Gibson et al., 2000). Progress on breeding for SPVD resistance has been made in 

several countries including Uganda, United States, Japan, China, Taiwan and Peru (Carey et al., 

1999; Lebot, 2010; Mwanga et al., 2002b; Tairo et al., 2005).  

Emphasis in developing resistance to SPVD has largely focused on resistance to SPFMV, an 

important component of SPVD (Mwanga et al., 2002b; Valverde et al., 2007). This resistance 

breaks down in co- or multi-infections with either SPCSV or SPMMV or both. Breakdown of 

resistance by different strains or highly virulent viruses leaves the resistance redundant (Kreuze 

et al., 2009; Miano et al., 2008). This implies that, resistant cultivars developed such as in Peru 

and other parts of the world might be of little value in other environments due to presence of 

different viral strains. The international potato center (CIP) identified some clones resistant to 

SPFMV after exhaustive germplasm screening; however, the selections succumbed to the SPVD 

in Uganda (Karyeija et al., 1998). Further, Gibson et al. (1998), Karyeija et al. (1998) and Mwanga 

et al. (2002b) reported that, resistant varieties in West Africa and Peru succumbed viral diseases 

in East Africa, possibly due to different strains of viruses. Even in the same region, resistant 
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cultivars still succumbed to SPVD (Tairo et al., 2005). Therefore, this underpins the use of local 

germplasm in breeding for SPVD resistant varieties than heavily depending on exotic 

introductions (Gasura et al., 2010). The resistance of landraces could have been attributed by co-

evolutionary processes which led to accumulation of resistance genes in the host population due 

to dynamic pathogen population (host-parasite co-evolution) (Anderson et al., 2011; Fraile et al., 

2011; Ghazvini and Tekauz, 2007). Plants have diverse mechanisms to survive and adapt to 

broad range of biotic and abiotic stresses. Ulukan (2009) pointed out that most field crops have 

in-built protection mechanism against diseases, pests and vermin. Oduro (2013) reported lower 

yields in exotic parents than their progenies due to high viral incidences. Therefore, there is a 

need to identify and use local germplasm in breeding for SPVD resistant varieties (Gasura et al., 

2010; Gibson et al., 1998). Despite its contribution in genetic deployment for disease resistance, 

conventional hybridization in sweetpotato is constrained by its sterility, incompatibility and 

hexaploidy nature. Biotechnology or genetic engineering offers great potential for improving 

disease, pest or stress resistance in sweetpotato (Liu, 2011). 

1.4.5. Sweetpotato genetic engineering 

Efficient methods to control the sweetpotato virus disease are not available and conventional 

breeding for resistance has limited success. Breeding for resistance through genetic engineering 

offers an alternative solution for the control of SPVD. For more than two decades non-

conventional approaches have shown the potential to accelerate crop improvement. Plant tissue 

culture, regeneration techniques and development of transgenic plants are valuable tools for 

sweetpotato improvement and development (Liu, 2011; Nyaboga et al., 2008; Yang, 2010; Yi et 

al., 2007). Some of the valued added traits through genetic engineering include plant resistance 

to viral diseases (Jauhar, 2006). Feng et al. (2000) pointed out the potential of genetic engineering 

in virus resistance breeding. Also, Chang et al. (2009) pointed the value of marker-assisted 

selection (MAS) to breeders for rapid determination of superior genotypes prior field maturity. For 

instance, Prakash and Varadarajan (1992) reported successful introduction of foreign marker 

genes into the genome of sweetpotato through particle bombardment. Otani et al. (2003) and Yi 

et al. (2007) successful introduced herbicide resistant bar gene in sweetpotato cells and pointed 

the potential of combining it with other agronomically important traits for improvement of new 

sweetpotato cultivars. Anwar et al. (2011) successfully produced transgenic plants from a diverse 

group of sweetpotato cultivars that were tolerant to herbicide and indicated the possibility of 

generating transgenic plants for economically important groups of sweetpotato. Therefore the use 
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of transgenic technology could be an excellent option to protect crops against devastating viral 

diseases including SPVD via pathogen–derived resistance or non-conventional protection to viral 

diseases (Hull, 1994; Jauhar, 2006; Kreuze, 2002). Transgenic sweetpotato resistant to SPVD 

through resistance to SPFMV have been developed in Kenya, China and other parts of the world 

(Hannington et al., 2002; Okada et al., 2001; Wambugu, 2003). However, the Kenyan transgenic 

sweetpotato resistant to SPFMV has been controversial Due to fact that, while Wambugu (2003) 

reported success’ Ching (2004) reports “Broken promises; genetically modified sweetpotato 

project turns sour as the transgenic material did not quite withstand virus challenge in the field all 

lines tested were susceptible to viral attacks”. Further, Hannington et al. (2002) reported that, 

despite a decade of research in transgenics, sweetpotato farmers did not receive the virus 

resistant genetic stock due to underdeveloped biosafety systems. 

The transgenic resistance uses the viral coat protein (CP) gene to achieve resistance to SPFMV 

(Kreuze, 2002). The international potato center (CIP) has used cysteine proteinase inhibitor to 

develop transgenic resistance to both SPFMV and SPCSV (Kreuze, 2002).  Nishiguchi et al. 

(1998) reported no significant difference in transgenic and non-transgenic sweetpotato with 

regard to morphological and biological characters. Further, reported no significant differences of 

ELISA values between the inoculated-transgenic and the non-inoculated-virus free plants to 

SPFMV. Nyaboga et al. (2008) reported increased resistance with less severe symptoms in 

transgenic plants than the non-transformed lines inoculated with a combination of SPFMV and 

SPCSV. Also, Okada and Saito (2008) reported that CP gene provided long term protection to 

transgenic sweetpotato against SPFMV complex infection compared to the control and suggested 

that the same are likely to acquire resistance to SPFMV in the field. The technology shades some 

light as the CP gene is likely to be transmitted from one generation to the next (Okada and Saito, 

2008). Despite the appropriateness of transgenic resistance in addressing sweetpotato farmers’ 

priorities is doubtful as low productivity is attributed not only by diseases but also several other 

factors (Clark et al., 2002; Hannington et al., 2002). Further, transgenic approach is useful for a 

single gene trait while most of economically important traits including disease resistance in 

sweetpotato are quantitatively inherited (Cervantes-Flores et al., 2010; Jain, 2010; Mwanga et al., 

2002a; Mwanga et al., 2002b). Working with Kenyan sweetpotato genotypes, Miano et al. (2008) 

identified molecular markers associated with SPVD resistance which could be used in breeding. 

Yang (2010) recommended that, in vitro shoot tip tissue culture could contribute significantly to 

the production of virus-free plantlets for farmers. The use of tissue culture in generating clean 

propagating materials should be an integral component of any management programme as it 
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offers the possibility of managing not only virus diseases but also other pathogens and control 

genetic stability (Clark et al., 2002). 

Despite the low transformation efficiency which has limited the successful application of genetic 

engineering in sweetpotato (Liu, 2011), still the technology has attractive potential of contributing 

to sweetpotato improvement not only disease resistance but also other agronomically important 

traits. Further, marker-assisted selection techniques are effective tools for improving disease 

resistance and quality in sweetpotato (Liu, 2011). Therefore, identification and development of 

improved cultivars is one of the strategies for increasing productivity and food security; however, 

this depends on the availability of diverse germplasm coupled with improved and efficient 

technologies. 

1.4.6. Mutation breeding 

For more than half a century, mutation breeding, specifically induced mutation has contributed 

significantly in the development of superior crop varieties (Jain, 2010). Since sweetpotato is 

clonally propagated, mutation breeding is likely to be an effective approach for crop improvement 

and breeding for disease resistance (Liu, 2011; Shin et al., 2011; Wang et al., 2007). Maluszynski 

et al. (1995) and Wang et al. (2007) pointed out the application of in vitro mutagenesis techniques 

in improving vegetatively propagated crops. By in vitro selection, desirable mutants with useful 

agronomic traits such as disease resistance can be isolated within a relatively short period of time 

(Jain, 2010). Contrary to transgenic approach which is for single gene traits, mutants with multiple 

traits are possible. Further, mutation breeding in conjunction with genetic engineering is likely to 

enhance the improvement of sweetpotato not only for disease resistance but also other important 

agronomic traits (Wang et al., 2007). Further, Jain (2010) commended mutation induction as 

being flexible, workable and a low-cost alternative to genetically modified organisms (GMOs). 

1.5. The genetics of root yield, dry matter and SPVD 

Important traits in crops are controlled mostly by quantitative genes which have distinct effects 

which are described by different gene effects. Gene effects are either additive or non-additive (e 

Silva et al., 2004; Hill et al., 2008). Most of economically important traits in sweetpotato are 

quantitatively inherited (Cervantes-Flores et al., 2010; Lin et al., 2007). Knowledge on heritability 

of quantitative traits is necessary for an efficient genetic improvement in breeding programmes 

(Maluf et al., 1983).  
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Additive gene action has reported in the inheritance of dry matter content. Shumbusha et al. 

(2014) reportedpredominance of additive gene action than non-additive action in inheritance of 

dry matter in Uganda. Similar findings were reportedby Chiona (2009). Also, Oduro (2013) 

reported that the GCA effect was substantially greater than SCA effect for dry matter. Moreover, 

GCA effect for root yield was larger than SCA effect indicating the predominance of additive to 

non-additive gene effects in inheritance of sweetpotato root weight and yield (Chiona, 2009; 

Oduro, 2013). Likewise, (Musembi et al., 2015) reported the GCA/SCA ratio of 0.51–0.76 for root 

yield and dry matter percentage, implying additive gene effects were more important than non-

additive gene effects in inheritance of these traits. Conversely, the same author reported 

predominance of non-additive over additive gene effect for inheritance of number of marketable 

roots. 

Unlike resistance to other plant pathogens, resistance to plant viruses is inherited quantitatively 

(Diaz-Pendon et al., 2004). Studies on inheritance of SPVD resistance are limited due to its 

hexaploidy characterized by high genetic variability and complex segregation rations of 

sweetpotato progeny genotypes (Mwanga et al., 2002b; Nishiyama et al., 1975). Previous studies 

have indicated the potential of improving resistance to SPVD despite limited knowledge on its 

inheritance which hinders its efficient utilization in breeding programmes. Hahn et al. (1981) and 

Mwanga et al. (2002b), reported broad-sense heritability of resistance to SPVD ranging from 0.48-

0.98 and narrow-sense heritability of 0.31-0.41. Therefore, with these levels of heritability there 

are potentials for sweetpotato improvement for SPVD resistance through population improvement 

techniques.  

The breeding of vegetatively reproducing crops differs from sexually reproducing crops. In 

sweetpotato, once the seedlings are established from the true seeds following hybridization, the 

integrity of its genotype is maintained by vegetative propagation (Tai, 1974). Hence the genetic 

effects, either additive or dominance are inherited as whole. Genetic effect can either be additive 

or dominant or epistatic and in rare cases over-dominance. According to Griffing (1956), general 

combining ability (GCA) and specific combining ability (SCA) are used to estimate gene effects. 

The GCA is used to estimate the additive genetic effect while SCA estimates the non-additive 

components. Fraser (1986) in Mihovilovich et al. (2000) pointed out that where virus resistance 

was controlled by more than one gene, additive effects were found. Similarly, using a diallel 

mating design, Mwanga et al. (2002b) found significant proportion of GCA effect compared to 

SCA implying the presence of additive gene action with regard to inheritance to SPVD resistance. 

Also, Mihovilovich et al. (2000) reported the predominance of additive genetic effect on the 
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inheritance of resistance to SPFMV, a major component of SPVD. In addition to additive effects, 

dominance genetic effect also contributed significantly in the inheritance of SPVD (Mwanga et al., 

2002b). Despites the efforts made in developing resistant varieties, lack of knowledge and limited 

information on the nature of inheritance of the resistance hinders its application in sweetpotato 

breeding (Mihovilovich et al., 2000; Mwanga et al., 2002b; Valverde et al., 2007) necessitating 

further investigations. Valverde et al. (2007) pointed the need for comprehensive resistance for 

protection against local strains in the breeding programmes. Consequently, a number of mating 

designs have been used to estimate these genetic effects for the aforementioned traits and 

others. This includes polycross, topcross, North Carolina designs and diallel mating designs. 

The choice of a good mating design in conventional plant breeding is a key to the successful plant 

breeding programme (Nduwumuremyi et al., 2013). Different mating designs have been used to 

estimate genetic effects for different traits in sweetpotato. Ernest et al. (1994) used nine 

sweetpotato clones in a polycross for high yield and estimation of heritability for number and yield 

of storage root in Papua New Guinea. Chiona (2009) adopted polycross design for 12 and 30 

parents to determine the magnitude of GxE on various traits including dry matter and root yield. 

Also, Kapila et al. (2010) adopted a 12 parent polycross mating design to develop high yielding 

orange fleshed sweetpotato in Papua New Guinea. Mihovilovich et al. (2000) used a 7x7 diallel 

method four model one to estimate combining ability for resistance to sweetpotato feathery mottle 

virus. Mwanga et al. (2002) and Chiona (2009) used a 5x5 full diallel to determine the inheritance 

of resistance to SPVD, root yield, dry matter content and bête carotene. Kivuva et al. (2015) 

adopted a 6x6 half diallel for root yield, dry matter and drought tolerance. Alternatively, Gasura et 

al. (2010) and Oduro (2013) adopted a 7x6 and 6x5 North Carolina design II studying inheritance 

of yield and other quality traits. Likewise, Sseruwu (2012) used a 7x9 North Carolina II to study 

inheritance of Alternaria blight and other root yield components in Uganda. On the other hand, 

the expression of the genetic effects is substantially influenced by prevailing environments. 

1.6. Effects of genotype-by-environment interaction on resistance to SPVD 

Crop growth and production are a result of interactions of its genetic potential and environment. 

The performance of genotypes is quantified in terms of a wide and specific adaptability and yield 

stability (Abidin et al., 2005). 

Several important and common traits are a composite reflection of multiple genetic and 

environmental factors (Vuylsteke and van Eeuwijk, 2008). Sweetpotato is grown in diverse 
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environments across the world (Caliskan et al., 2007). Despite its adaptability to diverse and harsh 

growing conditions, the crop is very sensitive to environmental variation (Bryan et al., 2003). This 

influences most of economically important traits which are largely quantitatively inherited and 

delays selection process in breeding programmes (Lebot, 2010; Ngeve, 1993). Nakitandwe et al. 

(2005) found that, sweetpotato genotypes grown in multi-location trials performed differently with 

regard to yield and disease resistance. The GxE interactions could have largely contributed to 

breakdown of resistance in improved varieties grown in agro-ecologies with high SPVD pressure 

(Gibson et al., 1998; Karyeija et al., 1998). Osiru et al. (2009) suggested that, knowledge of 

genotype performance in different agro-ecologies is critical in cultivar development. Since there 

are differences in virus strains between agro-ecologies or regions, this could cause resistant 

genotypes in one region to be susceptible in others (Carey et al., 1999; Gibson et al., 1998). 

Therefore, newly developed cultivars need to be evaluated across target agro-ecologies to 

ascertain not only their reaction to SPVD but also yield and other related traits (Caliskan et al., 

2007; Mwololo et al., 2009). Determination of genotype by environment interaction effects of 

sweetpotato genotypes is essential prior to variety release (Kivuva et al., 2014a). Moreover, Laurie 

(2010) suggested that assessing the reaction of new varieties to different environments would 

facilitate cultivar recommendations. On the other hand, selecting genotypes that interact less with 

the environments in which they are grown would be beneficial though not an easy endeavour.  

1.7. Conclusions 

Sweetpotato is a vital staple food crop for most communities in developing world. Unfortunately, 

the crop is underexploited compared to other crops despite its contribution. Hence its productivity 

is not encouraging. The low productivity is aggravated by biotic, abiotic and socio-economic 

factors. Amongst the biotic factors, SPVD is the most important. The effects of SPVD in 

sweetpotato production are real and devastating. Breeding for resistant cultivars is indispensable 

to control the disease for ascertained food security and incomes of rural and marginalized 

communities depending on this subsector. Conventional breeding in combination with non-

conventional techniques such as biotechnology, mutation breeding and genetic engineering have 

significant role in developing new sweetpotato cultivars that are high yielding and resistant to 

SPVD. Despite the potential of genetic engineering in crop improvement, its application is not 

promising in developing countries (Jain, 2010). Presently, combination of conventional breeding, 

mutation breeding and tissue culture has the role in new cultivar development while waiting for 
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institutionalization of transgenic crops and other GMOs. Lastly, phytosanitary practices have a 

role in maintaining the newly developed cultivars. 
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Chapter two 

2. Assessment of sweetpotato farming systems, production 
constraints and breeding priorities in eastern Tanzania 

Abstract 

Sweetpotato is an important food security crop in Tanzania. The crop is grown under diverse 

farming systems with very low yields. The objective of this study was to assess the present 

sweetpotato farming systems, farmers’ preferences, production constraints and breeding 

priorities in eastern Tanzania. Participatory rural appraisal was conducted at Gairo, Kilosa and 

Kilombero districts of Morogoro region and Mkuranga district of the Coast region of Tanzania. 

Primary and secondary data were collected using semi-structured questionnaire, focus group 

discussions and field observations. The study showed that more than 94% of the respondents 

depended on farming for their livelihoods. Main sweetpotato production constraints were 

Sweetpotato virus disease (SPVD) and pests, drought, unavailability of markets and lack of 

transport, low prices, inadequate extension services and postharvest losses. Preferred 

sweetpotato attributes included high yield, high dry matter content, tolerance to diseases and 

early maturity. Farmers expressed their persuasive needs towards improved extension service 

delivery, SPVD tolerant cultivars and reliable and coordinated market systems of sweetpotato. 

Key words: Farmers’ preferences; persuasive needs; production constraints; sweetpotato; 

Tanzania 
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2.1. Introduction 

Sweetpotato is grown for food and feed in many developing countries (Low et al., 2009). It is an 

important food security crop, often crucial during famine periods due to its excellent drought 

tolerance and rapid production of storage roots (Mukhopadhyay et al., 2011). It is an important 

crop grown by subsistence farmers for food security in Tanzania (Kulembeka et al., 2005; 

Masumba et al., 2005). It contributes significantly to livelihoods of many households. There is no 

recent data that comprehensively reported the sweetpotato production constraints in Tanzania.  

In the country sweetpotato virus disease (SPVD) is the most devastating biotic constraint in 

farmers’ fields (Tairo et al. 2004). The disease is caused by dual infection and synergistic 

interaction of Sweetpotato chlorotic stunt virus and Sweetpotato feathery mottle virus (Gibson et 

al., 2004). Yield losses due to SPVD can reach up to 98% (Gibson et al., 1998).  

Farmers are the ultimate beneficiaries of newly developed cultivars and production technologies. 

Therefore, development of improved sweetpotato cultivars, production technologies and 

alleviating socio-economic constraints would improve sweetpotato productivity. Moreover, in-

depth knowledge of farmers’ preferences, production challenges and priorities in technology 

development is vital. Participatory rural appraisal (PRA) have been widely used to collect 

information on farmers’ needs and challenges to venture in breeding new sweetpotato cultivars 

(Kiiza et al., 2012). 

Participatory rural appraisal is flexible and time saving approach used to collect and analyze 

information involving farmers and researchers (Bhandari, 2003). The approach enables 

communities to share and enhance their experiences, plan and act together with external agents 

to enrich their livelihoods (Bar-On and Prinsen, 1999). It empowers local people to assume an 

active role in analyzing their own living conditions, problems and potential in order to change their 

situation. Gibson et al. (2011), Mwanga et al. (2011) and Kiiza et al. (2012) suggested the need 

to consider farmers and consumers in sweetpotato variety development and selection for 

enhanced adoption. Therefore, the objective of this study was to assess the present farming 

systems, farmers’ preferences, production constraints and breeding priorities of sweetpotato in 

eastern Tanzania.  
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2.2. Materials and methods  

2.2.1. Description of the study areas 

The study was conducted during 2013/2014 cropping season in Mkuranga in Coast region, Gairo, 

Kilombero and Kilosa in Morogoro region in eastern Tanzania. The districts grow sweetpotato at 

varying degrees. The rainfall pattern received in the zone varies, while Mkuranga and Kilombero 

receive rains during October to December and March to May/June, Gairo and Kilosa have one 

rain season starting in November/December to April/May. With exception of Gairo and Kilosa 

districts which are dry and cool, the zone experiences high temperatures and humidity except for 

the month of June. Geographical Positioning System (GPS) was used to determine the locations 

of the surveyed areas (Table 2.1). 

Table 2.1. Regions and corresponding districts and villages of eastern Tanzania sampled for the 

study.  

Region District Village Elevation (m) Geographic coordinates 

Morogoro 

Gairo 
Ibuti 1317 S06008.181’, E036053.997’ 

Ihenje 1163 S06009.625’, E036056.304’ 

Kilosa Kiyegeya 1037 S06011.224’, E037003.730’ 

Kilombero 

Msolwa ujamaa 320 S07044.263’, E036055.615’ 

Sanje 313 S07046.230’, E036054.810’ 

Ichonde 316 S07052.835’, E036052.628’ 

Coast Mkuranga 

Magoza 116 S06007.684’, E039006.810’ 

Kise 134 S07009.584’, E039067.060’ 

Matanzi 78 S07019.167’, E039002.640’ 

 
 

2.2.1.1. Sampling procedures 

Purposive sampling was employed to identify regions, districts, villages, and farmers for the 

survey. Coast and Morogoro regions were selected due to their potential for sweetpotato 

production. Gairo, Kilosa, Kilombero and Mkuranga districts were chosen based on prior 

information on the importance of sweetpotato in these areas. Nine villages were selected based 

on their accessibility. The target group was sweetpotato farmers. Farmers were randomly 

selected by village and hamlet leaders with the help of agricultural extension officers. In each 



51 

 

village, 13 to 18 sweetpotato farmers and 13 to 20 individuals were selected for household 

interviews and focus group discussion, respectively.  

Focus groups comprised of sweetpotato farmers and other key informants with broad knowledge 

on diverse social issues in the village. Key informants comprised of retired village leaders and 

other civil servants. For both individual interviews and focus group discussions, it was necessary 

to ensure both males and females were represented through purposively sampling.  

2.2.1.2. Data collection 

Primary data were collected using semi-structured questionnaire, focus group discussions and 

field visits. Focus groups were used to collect general information on food and cash crops grown, 

sweetpotato cultivars and their characteristics, cropping systems, production calendar, production 

constraints, preferred traits and gender relations in sweetpotato production.  

Semi-structured questionnaire was used to collect household’s information regarding sweetpotato 

production, preferred attributes, cropping systems, constraints, yields and breeding priorities. 

Other data collected were gender relationships in sweetpotato production, seasonal calendar to 

identify planting and harvesting periods in a year. Data on yield given by farmers were converted 

into tons per hectare. Field observations were conducted to comprehend the cropping systems 

and disease and pest incidences and severity. Secondary data was collected from previous 

reports at district agricultural departments. 

2.2.1.3. Data analysis 

Collected data were captured and analyzed using Statistical Package for Social Sciences 

computer package (SPSS, 2011) and Microsoft Excel (Windows Office 2010; Microsoft Inc., 

Redmond, WA). Frequencies and descriptive statistics were computed for each district. Cross 

tabulations were used in the analysis and the number or percentages of respondents per district 

were summarized and presented in tables. 

2.3. Results 

2.3.1. Households and farming characteristics 

A total of 138 small-scale farmers were interviewed during household survey (Table 2.2). Sixty 

five percent of farmers were males and 35% were females. The mean family size was 6.1 with 

54% of interviewed households having family size between 6-10 members. Mkuranga district had 
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the highest number of interviewed households with family size >10 members (Table 2.2). 

Household size has implication on family labour available for production. Majority (57%) of 

households’ heads interviewed aged between 26-50 years; the most productive group of the 

population. Sixty three percent of the population attended primary education, being capable to 

read and write; those who attended post-secondary education were mainly primary school 

teachers and village leaders.  

Table 2.2. Description of household characteristics in surveyed districts of eastern Tanzania 

during 2013/2014.  

Variable 
Districts 

Total 
Gairo Kilosa Kilombero Mkuranga 

Sex      
Male 23 (69.7) 9 (60.0) 28 (60.9) 30 (68.2) 90 (65.2) 
Female 10 (30.3) 6 (40.0) 18 (39.1) 14 (31.8) 48 (34.8) 
Age (years)      
<25 10 (30.3) 3 (20.0) 13 (28.3) 10 (22.7) 36 (26.1) 
26-50 18 (54.5) 10 (66.7) 25 (54.3) 25 (56.8) 78 (56.5) 
>50 5 (15.2) 2 (13.3) 8 (17.4) 9 (20.5) 24 (17.4) 
Family size      
<6 9 (27.3) 5 (33.3) 21 (45.6) 22 (50.0) 57 (41.3) 

6-10 23 (69.7) 10 (66.7) 23 (50.0) 18 (40.9) 74 (53.6) 

>10 1 (3.0) 0 2 (4.4) 4 (9.1) 7 (5.1) 
Education level      
Illiterate 2 (6.1) 1 (6.7) 2 (4.4) 3 (6.8) 8 (5.8) 

Primary education 20 (60.6) 7 (46.7) 30 (65.2) 30 (68.2) 87 (63.0) 

Vocational training 4 (12.1) 2 (13.3) 4 (8.7) 4 (9.1) 14 (10.2) 

secondary education 4 (12.1) 3 (20.0) 6 (13) 5 (11.4) 18 (13.0) 

Post-secondary 3 (9.1) 2 (13.3) 4 (8.7) 2 (4.5) 11 (8.0) 

Source of incomes      

Farms 32 (97.0) 14 (93.0) 43 (94.0) 41 (93.0) 130 
(94.2) 

Others 1 (3.0) 1 (7.0) 3 (6.0) 3 (7.0) 8 (5.8) 
The number in brackets represents relative percentages of respondents 

 

More than 94% of respondents depended on farming for their livelihoods. Secondary income 

sectors included mini-shops, gardening, labour hiring and charcoal business (Table 2.2). During 
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offseason farmers grew vegetables and engaged in micro-trading such as making and selling 

‘Mandazi’, and local brews. Majority of households kept a limited number of animals such as pigs 

and chicken.    

2.3.2. Crops grown and farming systems 

Major crops grown in the four districts are presented in Table 2.3. Sweetpotato and maize were 

the most important crops. Rice was only grown at Kilombero and Mkuranga. These crops were 

primarily grown for household’s consumption and little for sale to earn cash for other family 

obligations such as clothing and medical costs. Sugarcane and cashew nut were main cash crops 

in Kilombero and Mkuranga, respectively.  

Table 2.3. Crops grown by farmers (%) in surveyed districts of eastern Tanzania  

Crop 

Districts 

Mean Gairo Kilosa Kilombero Mkuranga 

Banana 0.0 0.0 2.0 1. 8 0.9 

Dry beans 15.1 14.5 0.0 0.0 7.4 

Cashewnuts 0.0 0.0 0.0 6.9 1.7 

Cassava 0.0 4.8 5.3 17.9 7.0 

Cowpea 1.8 0.0 0.7 3.6 1.5 

Tangerine 0.0 0.0 0.0 1.5 0.4 

Maize 29.8 24.2 20.9 16.8 22.9 

Mangoes 0.0 0.0 0.0 1.3 0.3 

Orange 0.0 0.0 0.0 4.5 1.1 

Coconuts 0.0 0.0 0.0 3.1 0.8 

Passion fruit 0.0 0.0 0.0 0.5 0.1 

Pigeon pea 7.5 24.2 0.0 4.3 9.0 

Pineapple 0.0 0.0 0.0 2.3 0.6 

Rice 0.0 0.0 24.5 12.1 9.1 

Simsim 0.0 0.0 0.0 2.8 0.7 

Sugarcane 0.0 0.0 15.9 0.0 4.0 

Sunflower 15.3 4.8 0.0 0.0 5.0 

Sweetpotato 28.8 24.2 27.6 20.3 25.2 

Tomato 0.9 1.6 0.6 0.0 0.8 

Other vegetables 0.9 1.6 2.5 0.5 1.4 
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2.3.3. Sweetpotato production 

Land allocated for sweetpotato production varied among households with majority allocating 

between 1-2 hectares. However, productivity of sweetpotato under farmers’ fields was very 

minimal with mean yield of 2.22 t ha-1. 

Time for sweetpotato planting varied among districts. Most farmers (63%) planted sweetpotato 

during January/March. At Gairo and Kilosa, sweetpotato was planted during January/March. 

There were multiple planting seasons at Kilombero and Mkuranga where farmers planted 

sweetpotato during January-March, April-June and October-December. January-March and 

October-December plantings depended on onset of long and short rains, respectively. April-June 

planting followed rice harvesting. About 82% of the farmers harvested sweetpotato from June-

September. 

Sweetpotato cropping systems varied greatly across districts. Sweetpotato was grown either as 

monoculture or intercropped. It was intercropped with either maize, cowpea, pigeon pea, cassava 

or cashew nut (Table 2.4). Rotation with maize and rice was also practiced. Rotation with rice was 

practiced at Kilombero and Mkuranga in which rice was planted during main rain season and 

sweetpotato planted after rice harvesting. Due to scarcity of land, rotation with maize was done 

on yearly basis. Moreover, fallowing was practiced for soil fertility restoration and disease and 

pest control.  

Table 2.4. Farmers (%) practicing different sweetpotato farming systems in surveyed districts of 

eastern Tanzania 

Cropping system 

Districts 

Mean Gairo Kilosa Kilombero Mkuranga 

Rotation with maize 81.8 60.0 19.6 75.0 59.1 

Rotation with rice 0.0 0.0 74.1 9.0 20.8 

Rotation with maize and  cowpeas 9.1 40.0 0.0 2.3 12.9 

Intercropping with cassava 0.0 0.0 0.0 2.3 0.6 

Intercropping with pigeon peas 9.1 0.0 6.3 9.1 6.1 

After fallowing 0.0 0.0 0.0 2.3 0.6 
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It was established that, farmers did not use fertilizers in sweetpotato production. Farmers solely 

depended on natural soil fertility. Lack of awareness was the predominant reason; further high 

prices limited use of fertilizer not only in sweetpotato production but also in other crops (Table 

2.5). 

Table 2.5. Reasons of not using fertilizers in sweetpotato production and corresponding 

proportion of respondents (%) across surveyed districts of eastern Tanzania 

Reasons 

Districts  

Mean  Gairo Kilosa Kilombero Mkuranga 

Expensive 3 6.6 4.3 2.3 4.05 

Lack of knowledge 75.8 66.7 84.8 93.2 80.13 

Soils naturally fertile - - 4.3 4.5 2.20 

Fertilizers destroy soil - - 2.2 - 0.55 

Fertilizers burn the crop 3 -  - 0.75 

Others 18.2 26.7 4.4 - 12.32 

 

Sweetpotato is principally vegetatively propagated. Results revealed that, 66% of farmers used 

vines from their fields, 29% from neighbours while only 2% sourced planting materials from 

research institutes (Table 2.6).  

Table 2.6. Sources of sweetpotato planting materials reported by farmers (%) across surveyed 

districts of eastern Tanzania 

Sources  
Districts  

Mean 
Gairo Kilosa Kilombero Mkuranga 

Own fields  72.7 80 63 47.7 65.9 

Neighbours 24.3 20 28.3 42.3 28.7 

Research institutes 0 0 4.4 4.4 2.2 

Own fields and neighbors 3 0 4.3 5.6 3.2 

Farmers in Mkuranga district received planting materials from Sugarcane Research Institute (SRI) 

based at Kibaha. Non-governmental organizations such as Tanzania Agricultural Productivity 

Programme (TAPP) and Developing Alternatives Initiative-Improving Multi-sectoral AIDS 
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Responses to Incorporate Economic Strengthening for Households Affected by AIDS (DAI-

IMARISHA) distributed vines for demonstration on processing technologies and promotion of 

orange-fleshed sweetpotato (OFSP). These NGOs outsourced planting materials from SRI and 

multiplied under controlled environments before distributing to farmers.  

2.3.4. Commonly grown and farmers’ preferred sweetpotato varieties  

Sweetpotato varieties grown in the four districts are presented in Table 2.7. Variety Gairo was 

most popular in Kilombero and Mkuranga; and varieties Shangazi and Morogoro were common 

in Gairo and Kilosa, respectively. Farmers grew local varieties bearing different names. The name 

of variety was given either by place of origin or the person who pioneered it. Interestingly, OFSP 

were also grown. At Gairo, Kilosa and Mkuranga the OFSP were popularized by SRI through on-

farm evaluation. About 9% of farmers were interested to grow OFSP varieties (Tables 2.7 and 

2.15). Despite lacking most of preferred attributes, some varieties such as Bora Kupata, Lingukulu 

and Sindano are grown in pursuit of food security. 

 
Table 2. 7. Commonly grown sweetpotato varieties across surveyed districts of eastern Tanzania   

Variety  

Percent respondents   

Mean Gairo Kilombero Kilosa Mkuranga 

Gairo - 71.7 6.7 84.1 40.6 

Simama 12.1 6.5 - - 4.7 

Shangazi 63.6 - 33.3 9.1 26.5 

Morogoro 21.2 - 60.0 - 20.3 

Shinyanga - 6.5 - - 1.6 

Carrot - - - 2.3 0.6 

Msukuma - 4.3 - - 1.1 

Orange fleshed  - 8.7 - - 2.2 

Canada - - - 4.5 1.1 

Maghimbi 3.0 2.2 - - 1.3 

 

Farmers described preferred traits for a given variety (Table 2.8). The most preferred traits were 

high yield (33%), resistance to diseases mainly SPVD (15%), high dry matter content (14%), early 

maturity (10%), drought tolerance (10%), marketability (9.8%), sweet taste (7%) and elliptic root 

shape (1%). Elliptic root shape was preferred for easy packaging for transportation. 
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Table 2.8. Farmers’ preferred sweetpotato traits and corresponding respondents (%) across four 

selected districts of eastern Tanzania 

Preferred traits  
Districts 

Mean 
Gairo Kilosa Kilombero Mkuranga 

Early maturity 12.1 6.7 8.7 11.4 9.7 

High yield 33.3 40 32.6 25 32.7 

High dry matter  12.1 13.3 16.9 13.6 14 

Sweet taste  6.1 6.7 2.2 13.6 7.2 

Drought tolerance 12.1 6.7 6.5 15.9 10.3 

Disease tolerance 18.2 13.3 15.2 13.6 15.1 

Elliptic shape   2.2 2.2 1.1 

Marketability  6.1 13.3 13 6.8 9.8 

 

Some sweetpotato varieties were abandoned by farmers. Farmers rejected some varieties and 

yet opted to grow others. Low yield, susceptibility to diseases and pests and poor marketability 

were the most important rejection criteria (Table 2.9). However, a variety abandoned in one area 

was found to be grown in other areas suggesting varied preferences.  

Farmers received new sweetpotato varieties from research institutes. About 73, 39, 13 and 37% 

of respondents from Kilosa, Gairo, Kilombero and Mkuranga, respectively, received new or 

candidate sweetpotato varieties from SRI. Varieties received for the past five years were 

NASPOT1, Kabode, Ukerewe, Simama, Mataya, Kiyegeya, Kakamega, Polista, Maghimbi, 03-

03, 0656 and 06/676. While Cultivars NASPOT1, Kakamega and Kabode were released for Lake 

Zone; cultivars Mataya and Kiyegeya were released for eastern and central zones, respectively. 

Other varieties were yet to be registered by the Ministry of Agriculture. 
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Table 2.9. Abandoned sweetpotato varieties, reasons for abandonment and respective proportion of respondent farmers (%) during 

the last ten years in four districts of eastern Tanzania. 

Obsolete 

variety  

Districts  

Mean 
Reasons for abandonment 

Districts  

Mean Gairo Kilosa Kilombero Mkuranga Gairo Kilosa Kilombero Mkuranga 

Gairo 0 0 0 2.3 0.6 Susceptible to diseases and pests 24.2 13.3 15.2 11.3 16.0 

Simama 3 0 0 0 0.8 Poor marketability 18.2 33.3 21.7 9.1 20.5 

Shangazi 0 0 0 2.3 0.6 Poor taste 6.1 6.7 19.6 9.1 10.3 

Morogoro 3 0 0 2.3 1.3 Watery/soft when cooked 0 6.7 4.3 0 2.8 

Carrot 36.4 20 10.9 22.7 22.5 Low yields 42.4 33.3 34.8 47.7 39.6 

Msukuma 0 0 2.2 0 0.6 Small root size 0 0 2.2 2.3 1.1 

Canada 3 0 0 29.5 8.1 Late maturity 3 6.7 0 20.5 7.6 

Sindano 6.1 46.7 0 2.3 13.8 Drought sensitive 6.1 0 2.2 0 2.1 

Others 48.5 33.3 86.9 38.6 51.8            
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2.3.5. Contribution of sweetpotato production to households’ livelihoods  

Sweetpotato played multiple roles for food and cash (Table 2.10). The crop contributed 

significantly to generating household income. At harvest, farmers sold part of the produce to meet 

family and other community obligations; remaining portion was for household consumption. 

Harvesting was done either in staggered manner or at once. For household consumption, 

staggered harvesting was commonly practiced. 

Table 2.10. Uses of sweetpotato and corresponding proportion of respondent farmers (%) in 

surveyed districts of eastern Tanzania   

 Uses 

Districts  

Mean Gairo Kilosa Kilombero Mkuranga 

Food 49 60 26 50 46.3 

Market 15 14 24 16 17.3 

Food and market 36 26 50 34 36.5 

 

2.3.6. Gender relationships in sweetpotato production 

The study envisaged to establish gender relations in sweetpotato production chain. It was 

revealed that men played a significant role in sweetpotato production contrary to the idea that 

sweetpotato was a women’s crop. There was equal participation of men and women from land 

preparation to harvesting. However, men were decisions makers on selling and handling the 

money earned (Table 2.11). More than 93% of the resources were owned by men and 85% of 

family care activities were women’s roles. 



60 

 

Table 2.11. Gender relations in sweetpotato production and marketing and corresponding proportion of respondent (%) in surveyed 

districts in eastern Tanzania 

Production activity 

Districts Mean 

Gairo Kilosa Kilombero Mkuranga Men Female 

Land preparation 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 

Planting 33.3 66.7 33.3 66.3 66.7 33.3 50.0 50.0 45.8 54.2 

Weeding 50.0 50.0 33.3 66.3 50.0 50.0 40.0 60.0 43.3 56.6 

Harvesting 50.0 50.0 50.0 50.0 33.3 66.7 60.0 40.0 48.3 51.7 

Selling 66.7 33.3 50.0 50.0 50.0 50.0 75.0 25.0 60.4 39.6 

Keeping the money 50.0 50.0 50.0 50.0 100.0 0.0 33.3 66.7 58.3 41.7 

Decision making on use of cash generate 

from sweetpotato 66.7 33.3 50.0 50.0 66.7 33.3 75.0 25.0 64.6 35.4 

Resource ownership 100.0 0.0 100.0 0.0 100.0 0.0 75.0 25.0 93.8 6.2 

Family care 33.3 66.7 0.0 100.0 0.0 100.0 25.0 75.0 14.6 85.4 
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2.3.7. Sweetpotato production constraints 

The most important constraints identified were pests and diseases, unreliable markets, drought 

and low prices (Table 2.12). Others were lack of transport, lack of credit facilities and extension 

services. Sweetpotato virus disease was the common problem in surveyed areas. Farmers did 

not name SPVD, but clearly described typical symptoms of the disease such as stunted growth 

and leaf chlorosis. While 47% of farmers prevented spreading and controlled SPVD by uprooting 

infected plants, 53% did not consider any strategy. Likewise, sweetpotato weevil was the main 

pest affecting sweetpotato in most fields. Unreliable markets with low prices were regarded as 

major constraints of sweetpotato production limiting farmers to pull out of poverty. Farmers sold 

the produce in the fields, local markets and along public roads. The price for produce was very 

low and unprofitable to farmers. Only 2% of the respondents described that their sales fetched 

high market price.  

Table 2.12. Major constraints to sweetpotato production and corresponding proportion of 

respondents (%) in surveyed districts of eastern Tanzania  

Constraints  
 District 

Mean 
Gairo Kilosa Kilombero Mkuranga 

Pest and diseases 30.4 26.6 32.6 36.4 31.5 

Lack of reliable markets 21.2 13.3 19.6 9.1 15.8 

Drought 21.2 20 10.9 9.1 15.3 

Lack of extension services 3 6.7 - 13.6 5.8 

Low market prices 18.2 6.7 4.3 2.3 7.9 

Low yielding varieties  3 - - 2.3 1.3 

Lack of credit facilities - 20 8.7 15.9 6.5 

Poor transport systems 3 6.7 15.2 6.8 7.8 

Post-harvest losses - - 6.5 4.5 2.8 

Theft - - 2.2 - 0.4 

 

Majority of farmers were discontented and ranked sweetpotato price to be low (Table 2.13). The 

low prices were due to the fact that middlemen determined the price of the produce (Table 2.14). 

Farmers were forced to sell at low prices due to perishability of the crop. Early and late harvested 

sweetpotato fetched high prices compared to produce sold during peak harvesting periods. 
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Farmers at Mkuranga, Kilombero and Gairo established informal micro-cooperatives to search for 

attractive prices. Some farmers reported that they were trained on post-harvest processing 

technologies but were incapable of purchasing processing equipment due to lack of capital.  

Table 2.13. Price ranking of sweetpotato (%) in surveyed districts of eastern Tanzania 

Price  

Districts 

Mean Gairo Kilosa Kilombero Mkuranga 

Very low 0 0 2.2 6.8 2.3 

Low 87.9 73.3 63 70.5 73.6 

Average 12.1 26.7 32.6 18.2 22.4 

High 0 0 2.2 4.5 1.7 

Very low ≤ 4000/Tanzanian Shillings (Tshs), Low = 4000-5000/Tshs, average = 5000-6000/Tshs and High 

≥7000/Tshs.  Prices based on 20kgs. (1US$ = 1650/ Tshs in 2013/2014) 

Table 2.14. Price regulating agents for sweetpotato (%) in surveyed districts of eastern Tanzania 

Price regulating agents 

Districts  

Mean Gairo Kilosa Kilombero Mkuranga 

Farmers 9.1 20 19.6 18.2 16.7 

Middlemen 81.8 73.3 63 77.2 73.8 

Farmers and middlemen 9.1 6.7 17.4 2.3 8.9 

Cooperatives 0 0 0 2.3 0.6 

 

2.3.8. Field observation  

The interviewers and farmers made field visits to assess cropping systems and incidences and 

severity of SPVD. The visited fields were severely affected by SPVD and drought. Famers were 

desperate and expressed the devastating effect of SPVD. Further, it was reported that co-

occurrences of SPVD and prolonged drought greatly retarded plant growth and yields. 
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2.3.9. Future needs for improved sweetpotato production 

Farmers expressed their most immediate needs for enhancing sweetpotato production. Extension 

services, SPVD resistant varieties and coordinated markets ranked the top (Table 2.15). 

Establishment of price governing boards, availability of healthy planting materials and 

cooperatives were also pointed to be important. Also, farmers expressed their interests on OFSP 

cultivars. Farmers emphasized their need for extension officers to empower them on various 

agronomic practices and post-harvest processing techniques.  

Table 2.15. Persuasive needs for improved sweetpotato production and corresponding proportion 

of respondents (%) in surveyed districts of eastern Tanzania   

Needs 
Districts 

Rank 
Gairo Kilosa Kilombero Mkuranga Mean 

Extension services 18.2 30.6 32.6 27.3 27.2 1 

Coordinated markets  6.2 20 19.6 20.5 16.6 3 

Price regulating board 21.1 6.7 10.9 11.4 12.5 4 

OFSP  6.2 16 6.5 6.8 8.9 6 

Disease tolerant cultivars 27.1 20 23.9 13.6 21.1 2 

Timely supply of high quality planting 

materials 18.2 6.7 6.5 18.2 12.4 5 

Establishment of cooperatives 3 0 0 2.2 1.3 7 

 

2.4. Discussion  

Ninety four percent of farmers depended on farming for their livelihoods. The result concurs with 

data presented by the national statistics that more than 80% of Tanzanian population depended 

on agriculture (Maltsoglou and Khwaja, 2010). Also, farmers have multiple crop enterprises; 

practiced mixed cropping for diversification. Apart from agricultural activities, farmers engaged in 

non-agricultural enterprises for additional incomes. Similar finding was reported by Fawole (2007) 

in Nigeria, where sweetpotato was intercropped with other crops for food security and households’ 

incomes.  
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The study revealed that farmers were knowledgeable about sweetpotato varieties and their 

attributes. Sweetpotato varieties with diverse attributes were found to be grown. Most of the 

varieties were landraces with white or cream flesh. Similar to this study, Chiona (2009) reported 

different sweetpotato varieties grown by farmers in Zambia. Orange fleshed cultivars were 

recently introduced and grown by few farmers. Most farmers were aware on the nutritional value 

of OFSP. Kulembeka et al. (2005) and Laurie and Magoro (2008) reported acceptance of OFSP 

cultivars in Tanzania and South Africa, respectively. Similarly, Mwanga and Ssemakula (2011) 

reported an increased area and demand for OFSP varieties in Uganda.  

Farmers grew sweetpotato varieties possessing diverse attributes. Farmers preferred varieties 

with high yield and dry matter content, resistance to diseases and pests, early maturing, sweet 

taste, elliptic root shape and drought tolerance. High yield, early maturity, sweetness and disease 

tolerance were the most important selection attributes by farmers in Tanzania (Kapinga et al., 

2003). Low fibre, insect tolerance and high root firmness were also considered important. Similar 

findings were reported by Gibson et al. (2011). Farmers in South Africa were reported to prefer 

sweetpotato varieties with sweet taste, dry texture and good yield (Domola, 2003). Zawedde et 

al. (2014) reported that higher yield, taste, and maturity period were primary criteria for adopting 

new cultivars in Uganda.  

The present study observed ahigh level of participation of men in sweetpotato production, though 

women were the major players in the sector. Stathers et al. (2013), grouped gender roles and 

responsibilities in sweetpotato production chain into three categories, namely; sweetpotato as 

female’s crop with few or no men growing it, sweetpotato as male’s crop with few or no women 

growing it and sweetpotato grown by both men and women on individually or family owned plots. 

Increased sweetpotato market demand has brought changes in the traditional roles and 

responsibilities related to sweetpotato production. Similar to present study, Lederman (1989) 

reported that land preparation, planting, weeding and harvesting were mainly women’s 

responsibilities in New Guinea. Moreover, Olagunju et al (2013) reported more participation of 

males in sweetpotato production activities than females in Nigeria. Also, Low (2004) reported that 

increased role of sweetpotato as cash crop in South Nyanza in Kenya has attracted men 

involvement in sweetpotato production. Therefore, increased market demand for sweetpotato has 

greatly attracted men participation in sweetpotato production.  

Despite remarkable role of sweetpotato, its productivity is very low compared to yield potential of 

15-23 tha-1 (Sebastiani et al., 2007). Low productivity was due to several biotic, abiotic and socio-

economic constraints. Prevalence of SPVD, unavailability of healthy planting materials, drought, 
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inadequate extension services, markets and low prices contributed to low crop productivity. 

Similar findings were reported in Kenya by Kivuva et al. (2014). 

The main sources of planting materials were largely from farmers’ fields or neighbors. Farmers 

preserved their planting materials in home gardens and valley bottoms; farmers have used local 

and low yielding sweetpotato landraces for decades. Ndolo et al. (2001) and Tairo et al. (2004) 

reported similar practices in Kenya and Tanzania, respectively.  

Generally, diseases, pests and use of old vines constrained sweetpotato production. Farmers 

identified SPVD as the most important constraint. Limited access to and unavailability of healthy 

planting materials contributed to persistence of SPVD. This result concurs with findings reported 

by Fugile (2007) who reported that unavailability of healthy planting materials and high yielding 

cultivars was amongst the hindrances in improving sweetpotato production. As a clonally 

propagated crop, utilization of vines from stock with latent infection speeds the buildup, 

multiplication and spread of SPVD. Farmers controlled the disease either by selecting 

symptomless planting materials or rouging infected plants. Similar practices were reported by 

Ndunguru and Kapinga (2007). Also, Gutiérrez et al. (2003) suggested production of healthy 

planting materials to control SPVD. 

Sweetpotato weevils and other insects such as Elegant grasshoppers (Zonocerus elegans) were 

found to severely damage sweetpotato storage roots and leaves. Farmers controlled sweetpotato 

weevils by crop rotation and hilling up. Stathers et al. (2003) reported similar practices to control 

and reduce weevils’ damage. Drought was reported to constrain sweetpotato production. Despite 

being drought tolerant, prolonged dry spells during and after crop establishment severely affect 

crop growth and development and ultimately yields. Drought tolerance is one of the selection 

criteria for adoption of new varieties by farmers (Masumba et al., 2004). Sweetpotato is 

predominantly sold fresh after harvest. Poor, uncoordinated markets dominated by middlemen 

who set and control product prices diminish farmers’ economic returns. Low (1998) reported 

unorganized markets with low prices being the major limiting factor in sweetpotato marketing. 

Lack of capital and credit facilities have caused farmers to remain underdeveloped for decades. 

Despite some farmers being trained on post-harvest processing technologies, lack of capital to 

purchase processing equipment has caused the knowledge gained redundant. Fawole (2007) 

reported that lack of capital and credit facilities caused low sweetpotato yield in Nigeria. Moreover, 

lack of transport, transportation facilities and dilapidated roads were other bottlenecks to 

sweetpotato business. Unavailability and inadequate extension services contributed to low 

sweetpotato production. Most of extension workers are overworked with agricultural and non-
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agricultural activities such as health campaigns and elections; depending on what was pressing 

at a particular time. Further, most extension workers have limited knowledge on sweetpotato 

agronomy. Although a post-harvest loss was only mentioned by farmers from Mkuranga district, 

it was a critical problem in all sweetpotato growing areas. Since the crop is perishable and there 

were no developed storage and processing facilities, harvest losses are to be expected. Fugile 

(2007) reported strong need for improvement of postharvest utilization and marketing 

infrastructures.  

In an endeavor to improve sweetpotato production and productivity, improved extension services, 

supply of disease and insect resistant varieties and well-coordinated markets are critical. Timely 

supply of healthy planting materials would improve productivity, income and nutritional status of 

farmers. Establishment of price regulating boards and cooperatives were the wishes of farmers.  

2.5. Conclusions 

Sweetpotato is a food security crop for subsistence communities. However, its productivity is low. 

Diseases and pests, drought, unavailability of markets, low sweetpotato prices, inadequate 

extension services and post-harvest losses were the main production constraints. Sweetpotato 

attributes preferred by farmers were high yield, high dry matter content, tolerance to SPVD and 

early maturity. Farmers expressed their persuasive needs towards improved extension service 

delivery, SPVD tolerant cultivars and reliable and coordinated markets. 
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Chapter three 

3. Screening of Tanzanian sweetpotato germplasm for yield and 
related traits and resistance to sweetpotato virus disease 

Abstract 

Sweetpotato (Ipomoea batatas [L.] Lam) is a versatile crop globally serving as food, feed and raw 

material for industries. Designed selection for higher yields and related traits is crucial to identify 

complementary sweetpotato clones for breeding. The objective of this study was to determine 

phenotypic variation among diverse sweetpotato collections with regard to yield, dry matter 

content and sweetpotato virus disease resistance and to identify suitable clones for breeding. A 

total of 144 sweetpotato genotypes were evaluated at two sites in Tanzania using a 12x12 simple 

lattice design. Data collected included 10 quantitative and 17 qualitative agro-morphological traits 

and virus reaction. Results indicated differences among genotypes for most traits studied. The 

mean dry matter content was 36% with clones Zapallo and Ukerewe exhibiting the lowest and 

highest values of 29 and 45%, respectively. The mean storage root yield of clones was 5.1 t/ha 

with genotype Jewel expressing the highest yield of 11.3 t/ha. Genotypes Resisto and Mataya 

were early flowering at 40 and 50 days, respectively while Ex-Mwanza and Kandoro did not flower 

at all. Fifty eight percent of the genotypes showed resistant reaction to SPVD while 31% and 11% 

were moderately susceptible and susceptible to the disease, respectively. A positive correlation 

was reported for number of roots and fresh root yield. Seven clones including Simama, Ukerewe, 

Mataya, Resisto, 03-03, Ex-Msimbi-1 and Gairo were selected for high storage root yield and 

related traits or SPVD resistance. The selected genotypes are recommended as potential parents 

for sweetpotato breeding. 

Keywords: Farmers’ preferences; persuasive needs; production constraints; sweetpotato; 

Tanzania 
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3.1. Introduction 

Sweetpotato (Ipomoea batatas [L.] Lam, 2n=6x=90) is a versatile crop globally serving as food, 

feed and industrial raw material. It is an excellent companion crop with strong ability to adjust in 

many cropping systems. Both phenotypic and genotypic variations exist among sweetpotato 

genotypes. Sweetpotato diversity analyses have given a better understanding of the extent of 

variation available between and within germplasm collections for breeding and conservation 

(Tumwegamire et al., 2011). Thus germplasm identification and characterization are essential 

steps for successful conservation, management and utilization of genetic resources (Arizio et al., 

2009). Further, genetic diversity is a precondition for plant breeding which requires diverse genetic 

pool to develop new cultivars that meet the changing needs regarding adaptation to growing 

conditions, resistance to biotic and abiotic stresses, yield potential or specific quality requirements 

of consumers (Ulukan, 2009). Therefore the most efficient and effective ways in breeding 

programmes is to use promising parents selected from a well-characterized germplasm of wide 

and diverse genetic pool.  

Traditionally, sweetpotato genetic characterization has been based on morphological and 

agronomic traits as they are easy to evaluate and the methods are relatively cheap (Elameen et 

al., 2011). However, the expression of these traits is subjected to genetic constitution, 

environmental factors and their interactions.  

Sweetpotato diversity studies using morphological descriptors have been extensively used in 

describing sweetpotato germplasm. Sweetpotato displays a high degree of phenotypic variations 

and thus morphological descriptors have been widely used in genotype identification (Huaman, 

1999; Tsegaye et al., 2007). Veasey et al. (2007) used morphological and agronomic traits to 

describe sweetpotato landraces from Vale do Riberia in Brazil. Jha (2011) and Beah et al. (2014) 

using agro-phenotypic characters reported wide genetic diversity among sweetpotato genotypes 

in India and Sierra Leone, respectively. Phenotypic characterization is relatively cheap in terms 

of time and resources and  represents the real architecture or ideotype of the plants and provides 

baseline information for breeding and strategic conservation. Also, Jha (2011) and Beah et al. 

(2014) used agro-phenotypic characters and reported wide genetic diversity among sweetpotato 

genotypes in India and Sierra Leone, respectively. Therefore, designed selection for higher yields 

and related traits is crucial to identify complementary sweetpotato clones for breeding.  

In Tanzania, sweetpotato is an important food security crop supporting millions of people. It ranks 

fifth in terms of food production after maize, cassava, rice and sorghum. It is the second most 

important root crop after cassava. According to Kapinga et al. (1995) and Sebastian et al. (2007), 
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sweetpotato yields in the country ranges from 3–6 tha-1, lower than the potential yields of 15- 27 

tha-1 . The average area harvested for the last ten years was 536451 hectares with mean yield of 

3.8 tha-1 (FAOSTAT, 2015). The national sweetpotato yields are low due to several biotic, abiotic 

and socio-economic constraints. Sweetpotato virus diseases and sweetpotato weevils are the 

most devastating biotic constraints. Sweetpotato virus disease (SPVD) caused by the dual 

infection and synergistic interaction of sweetpotato chlorotic stunt virus and sweetpotato feathery 

mottle virus is distributed worldwide (Gibson et al., 1998, Mukasa et al., 2006). It is the most 

devastating disease causing reduction in plant growth and storage root yields (Gibson et al., 2004, 

Gibson, 2005, Kapinga et al., 2009). Also SPVD limits the length of time the roots can be kept in 

the ground and shorten the storage duration of the harvested crop (Engoru et al., 2005, Tsakama 

et al., 2010). The damage caused by SPVD ranges from 50-98% (Gibson et al., 1998, Njeru et 

al., 2004, Tairo et al., 2004). Although research has led to many recommendations for practices 

to increase production of sweetpotato at farm level, the rate of adoption of improved practices is 

low (Kapinga et al., 2003). Amongst farmers’ the selection criteria for sweetpotato varieties are 

high yields, early maturity, tolerance to diseases and pests, dry matter content and sweetness 

(Kapinga et al., 2003; Masumba et al., 2005; Masumba et al., 2007). There are limited studies on 

the description of local and improved sweetpotato varieties with regard to yield, dry matter content 

and other related traits in Tanzania. Tairo et al. (2008) and Elameen et al. (2011) described 

Tanzanian sweetpotato germplasm collection using morphologic and agronomic descriptors. 

However, thorough description of currently grown sweetpotato varieties with regard to farmers’ 

preferences is vital. Consequently, germplasm was collected in the eastern zone (Dar es Salaam, 

Morogoro, Coast and Tanga regions) and Kagera from Lake Zone. Germplasm from Kagera were 

collected and used in screening due to high SPVD pressure in that region, hence could be used 

as a source of resistance in breeding programme. Therefore, the objective of this study was to 

determine phenotypic variation among sweetpotato accessions with regard to yield, dry matter 

content and resistance to sweetpotato virus disease (SPVD) and to identify suitable clones for 

breeding. 

3.2. Materials and Methods 

3.2.1. Germplasm collection, multiplication and preliminary evaluation 

A total of two hundred and thirty nine sweetpotato genotypes grown in Tanzania were collected 

in 2012. The regions and the number of germplasm collected were: Dar es Salaam (6°49’24” S, 
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39°16’10” E) (14), Coast (7°15’0” S, 38°49’59” E) (71), Kagera (4°39’36” S, 30°40’08” E) (32), 

Morogoro (6°49’15” S, 37°39’40” E) (74), Tanga (5°0’0” S, 38°15’0” E) (47) and Zanzibar Island 

(6°09’50” S, 39°11’52” E) (1). The collections were planted at Sugarcane Research Institute (SRI) 

– Kibaha for multiplication. The germplasm consisted of landraces, elite and breeding clones and 

exotic sweetpotato genotypes. Only 144 genotypes were included for phenotypic diversity studies 

after two growing seasons of preliminary evaluations that allowed selection of redundant clones. 

The pre-selection criteria were evident morphological duplicates and production of sufficient and 

healthier planting vines. 

3.2.2. Characterization of study sites 

The genotypes were evaluated during 2013 at two sites: SRI – Kibaha (S06°46’834’’, 

E038°58.435’’) and Kilombero Agricultural and Training Research Institute (KATRIN) – Ifakara 

(S08°03’693’’, E036°40’005’’) representing the Coast and Morogoro regions, respectively. The 

selected sites are hotspots for SPVD. The physico-chemical soil properties of the two sites are 

presented in Table 3.1.  

 

Table 3.1. Geographical locations and their soil characteristics of the study sites 

Study sites  

 

Geographic location Soil characteristics 

Latitude Longitude 

Altitude 

 (masl) pH 

TN 

(%) OC (%) 

K 

(meq 100/g) 

Av. P.  

(meq 100/g) 

SRI-Kibaha S06°46’834’’ E038°58.435’ 172 7.1 0.08 0.5 0.13 3.67 

KATRIN-

Ifakara S08°03’693’’ E036°40’005’’ 286 6.1 0.13 2.12 1.23 4.56 

(meq 100/g = Milliequivalent per 100g of soil, Av. P. = Available phosphorus, K = potassium, masl = metres 

above sea level, OC = Organic carbon, TN = total nitrogen. 

The soils are clay and clay loam with neutral and slightly acidic soil reactions for SRI-Kibaha and 

KATRIN-Ifakara, respectively. While SRI-Kibaha had very low organic carbon and total nitrogen, 

KATRIN-Ifakara had medium organic carbon and low total nitrogen. Both sites had low levels of 

available phosphorus. 
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3.2.3. Experimental design and field trial establishment 

The 144 sweetpotato genotypes were evaluated in a 12 x 12 simple lattice design (Gomez and 

Gomez, 1984). At SRI-Kibaha the trial was established during 22nd March and at KATRIN-Ifakara 

on 19th April, 2013. Each plot consisted of two rows of 6 m long with a total of 40 plants. The intra-

row and inter-row spacing were 0.3 m and 1 m, respectively. Four to six node vine cuttings were 

planted on ridges. Agronomic practices such as weeding were done per recommendation in the 

study areas.  

3.2.4. Data collection 

Sweetpotato virus disease reactions data was collected at 60, 90 and 120 days after planting 

using a 1 to 5 scale; where 1 = no visible symptoms, 2 = mild symptoms (a few local lesions on a 

few leaves), 3 = moderate symptoms (mosaic symptoms on leaves), 4 = severe symptoms 

(mosaic symptoms with plant stunting) and 5 = very severe symptoms of purpling/yellowing or 

mosaic on leaves, severe leaf distortion, reduced leaf size and severe stunting (Mwanga et al., 

2013). Genotypes Shangazi and Simama were used as susceptible and resistant checks, 

respectively. Graft inoculation was conducted only to genotypes which appeared to be resistant 

under field conditions. This was done in an insect proof screen house at SRI-Kibaha. Five plants 

were selected from each genotype and each plant was grafted onto Ipomoea setosa, an SPVD 

indicator plant. Plants were grown and maintained in one litre capacity plastic pots. Five weeks 

after planting the sweetpotato scions were grafted to I. setosa the root stock. After grafting, 

observation for the symptoms of SPVD was conducted and recorded using the above described 

scale.  

Genotypes were characterized using selected agro-morphological traits (Table 3.2) following the 

phenotypic descriptors of Huamán (1999). Above ground and storage root traits were evaluated 

three months after planting and at harvest, respectively. Four plants per genotype were randomly 

selected and tagged to collect data on quantitative agro-morphological traits. Time to fifty percent 

flowering was recorded from the 30th day after planting and thereafter on weekly basis until 100 

days after planting. 

The field trials were harvested at 120 days after planting. At harvesting, all root characteristics 

were collected from four tagged plants. Storage roots were grouped into marketable and un-

marketable types and their fresh weight (kg) was recorded. The number of roots was expressed 

on per plant basis. The root and vine yield were collected on plot basis and later converted to 
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tones per hectare (t/ha). From each plot, a sample of three storage roots was collected for 

determination of dry matter content.  

The dry matter content was determined using methods described by Carey and Reynoso (1999)   

and Tairo et al. (2008) with some modifications. A sample of 200 g was chopped from undamaged 

roots for each entry in each replication. The samples were air-dried and then oven dried at 700C 
until constant weight. The dried samples were weighed using an electronic balance and the 

resulting figures were used to calculate dry matter content as percentage of the fresh weight.  

3.2.5. Data analysis 

The data for root and vine yield; number of storage roots, dry matter content and SPVD across 

the two sites were subjected to analysis of variance using Statistical Analysis System version 9.2 

(SAS, 2008). A separate analysis was done for each site; however, due to homogeneity in error 

variances, a combined analysis of variance for both sites was conducted (Gomez and Gomez, 

1984).  

Data collected were subjected to hierarchical cluster analysis using un-weighted pair group 

method with arithmetic means (UPGMA). Using 24 agro-morphological characters, a dendrogram 

grouping the test genotypes based on similarity index was generated. All introductions were 

excluded in in cluster analysis. Pearson and Spearman correlation coefficients were used to 

determine the associations between quantitative and qualitative traits, respectively.   

 

  



76 

 

Table 3.2. Agro-morphological traits used in characterisation of sweetpotato germplasm in the 
study.  

Trait Description of data Unit 

Leaf 

General outline of leaf: Rounded (1), reniform (2), cordate (3), triangular (4), 
hastate (5), lobed (6) or divided (7) 

Code 
number 

Type of leaf lobes: No lobe (1), slight (2), very slight (3), moderate (4), deep 
(5) or very deep (6) 

Code 
number 

Number of leaf lobes Number 
Shape of central lobe: Absent (1), toothed (2), triangular (3), semicircular (4), 
semielliptic (5), elliptic (6), lanceolate (7), oblanceolate (8) or linear (9) 

Code 
number 

Pigmentation  

Abaxial vein pigmentation: yellow (1), green (2), purple spot at base of main 
rib (3), purple spots on several veins (4), main rib partially purple (5), main rib 
mostly or totally purple (6), all veins partially purple (7), all veins mostly or 
totally purple (8) or lower surface and veins totally purple (9)  

Code 
number 

Petiole pigmentation: green (1), green with purple near stem (2), green with 
purple near leaf (3), green with purple at both ends (4), green with purple spots 
throughout petiole (5), green with purple stripes (6), purple with green near 
leaf (7), some petioles purples, others green (8) or totally or mostly purple (9) 

Code 
number 

Vine 

Length of main vine cm 
Growth habit: erect (3), semi-compact (5), spreading (7), extremely spreading 
(9) 

Code 
number 

Vine tip pubescence: none (0), sparse (3), moderate (5), heavy (7), very heavy 
(9) 

Code 
number 

Size of vine internode:    
Length  cm 
Diametre mm 

Storage root 

Storage formation: Closed cluster (1), open cluster (2), dispersed (3) or very 
dispersed (4). 

Code 
number 

Storage root shape: Round (1), round elliptic (2), elliptic (3), ovate (4), obovate 
(5), oblong (6), long oblong (7), long elliptic (8) or long irregular (9). 

Code 
number 

Storage root skin colour: Whitish (1), cream (2), yellow (3), orange (4), brown 
(5), pink (6), red (7), purple (8). 

Code 
number 

Storage root flesh colour: White (1), cream (2), yellow (3), orange (4), purple 
(5). 

Code 
number 

Yield and dry 
matter content 

Number of storage roots Number 
Weight of storage roots Kg/ha 
Weight of vines Kg/ha 
Dry matter content % 

SPVD  Symptoms in response to SPVD infection on a scale of 1 to 5 (see above) Code 
number 

Sources: Huamán (1999) and Mwanga et al. (2013) 
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3.3. Results  

3.3.1. Analysis of variance of dry matter content, number of roots, and 
fresh root and vine yields of sweetpotato genotypes  

Analysis of variance showed highly significant (p<0.001) differences among genotypes for dry 

matter content, number of roots, storage root and vine yields and response to SPVD across sites 

(Table 3.3). There was a significant (p<0.001) effect of site by entry interaction for these traits 

suggesting differential response of genotypes across sites. The mean performance of each 

genotype per site is presented in Table 4.4.  

3.3.2. Performance of genotypes for various traits 

3.3.2.1. Reaction to sweetpotato virus disease   

Analysis of variance showed highly significant (p ≤ 0.001) difference in the response of genotypes 

to SPVD. Symptoms severity ranged from 1 to 5 with the mean of 2.02. Fifty eight percent of the 

genotypes had resistant reaction to SPVD with scores of 1 and 2, 31% had moderate reaction 

and 11% were susceptible (Table 3.4). Genotypes with code number 42 and 106 were the most 

susceptible and genotypes Kabode and 91 were the most resistant. There were significant 

differences (p ≤ 0.05) in responses to SPVD across sites (Table 3.3). Genotypes such as Kibakuli, 

Mataya and Mkombozi were symptomless in the field; however, after graft-inoculation, I. setosa 

manifested typical symptoms for SPVD in the screen house. 
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Table 3.3. Analysis of variance of dry matter content, number of roots, and root and vine yields of 

144 sweetpotato genotypes evaluated across two sites in Tanzania 

Sources of 

variation 
DF 

Mean squares   

DMC (%) NR/plant Yield (t/ha) Vine (t/ha) SPVD 

Site 1 26.48*** 4.00** 1353.40*** 81.89*** 2.00* 

Rep(site) 2 0.13 0.34ns 3.63ns 0.09ns 0.84ns 

Block(Rep) 44 2.89* 0.76ns 5.31*** 3.09ns 0.34ns 

Entry 143 25.38*** 4.59*** 22.65*** 12.30*** 3.18*** 

Site*entry 143 2.44** 0.96*** 10.38*** 8.48*** 0.31ns 

Error 265 1.74 0.53 2.75 2.91 0.39 

ns, *, **, *** no significant at P<0.05, significant at p<0.05,  p<0.01 and significant at p<0.001; respectively; 

DF = degrees of freedom, DMC = dry matter content, NR/ha = number of roots, SPVD = Sweetpotato virus 

disease 

3.3.2.2. Time to 50% flowering 

The tested sweetpotato genotypes showed great differences on of duration and ability of flowering 

(Table 4). Time to 50% flowering ranged from 40-100 days. For instance, the time to 50% 

flowering for genotypes Resisto and Mataya were 40 and 45 days, respectively. The genotypes 

were early and profuse flowering. From this study, the genotypes could be grouped into early, 

intermediate and late flowering varieties with others not flowering at all. Hence, 2, 48, 47 and 47 

genotypes were early, intermediate, late and non-flowering, in that order. For instance, genotypes 

EX-Mwanza and Mchikichini did not produce flower at both test sites.   
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Table 3.4. Means for dry matter content, number of roots, fresh root yield, fresh vine yield and SPVD reaction of 144 sweetpotato 

genotypes evaluated at two sites in eastern Tanzania  

SR. 
No Genotype/code 

DMC (%) Number of roots/plant Fresh root yield (t/ha) 
Fresh vine yield 

(t/ha) SPVD 
Time  to 
50% 
flowering SRI–

Kibaha 
KATRIN–

Ifakara 
SRI–

Kibaha 
KATRIN–

Ifakara 
SRI–

Kibaha 
KATRIN–

Ifakara 
SRI–

Kibaha 
KATRIN–

Ifakara 
SRI–

Kibaha 
KATRIN–
Ifakara 

1 28 37.50 35.00 5 4 5.8 6.8 3.63 1.58 1.0 1.5 68 
2 109 40.00 38.75 5 3 6.4 5.5 3.08 2.46 2.5 4.0 86 
3 123 41.25 40.00 6 6 5.3 9.2 5.42 3.42 1.5 2.0 73 
4 23 36.25 35.00 5 5 3.6 8.5 2.99 2.93 2.0 3.0 72 
5 122 36.25 36.25 3 3 3.4 9.0 5.31 1.99 1.0 1.0 61 
6 124 37.50 38.75 6 7 6.8 12.1 4.32 3.48 2.5 2.5 Na 
7 57 36.25 37.50 4 3 1.9 6.8 2.52 2.19 1.5 2.0 Na 
8 60 32.50 31.50 8 6 5.5 12.8 7.32 6.55 1.0 1.0 78 
9 Kandoro 35.00 33.75 3 4 7.8 11.8 4.96 2.13 1.0 1.0 81 
10 SP2008/70 37.50 35.00 6 4 6.8 8.9 5.39 8.22 1.0 1.0 85 
11 Jitihada 36.25 36.25 5 5 8.4 12.7 7.17 3.89 4.5 2.5 Na 
12 117 32.50 33.75 4 6 3.2 9.2 1.76 3.29 2.5 2.5 75 
13 7 40.00 38.75 4 5 6.3 8.0 3.8 5.5 1.0 1.0 Na 
14 66 33.75 35.00 6 5 5.6 7.6 0.46 0.66 1.0 1.0 75 
15 101B 36.25 35.00 6 4 3.6 4.6 4.41 2.23 1.5 2.0 68 
16 SPSP2008/01 32.50 33.75 4 6 6.5 17.6 5.52 3.77 2.5 2.5 65 
17 77 33.75 32.50 4 5 3.0 7.2 2.49 4.46 1.0 1.0 72 
18 Ex-Ungindoni 36.25 35.00 4 4 3.1 5.0 3.76 0.84 1.5 2.0 Na 
19 15 37.50 35.00 7 5 3.3 14.1 2.59 5.94 3.5 4.0 Na 
20 Ex-Sungwi 33.75 35.00 3 4 8.1 17.0 8.47 6.17 1.0 1.0 78 
21 Ex-Madina 32.50 30.00 5 7 5.2 14.2 7.73 5.56 1.0 1.0 Na 
22 NASPOT 1 32.50 31.25 5 6 5.5 9.6 3.28 7.08 1.5 1.0 80 
23 16 36.25 36.25 5 5 2.9 1.7 3.02 2.03 1.0 1.0 71 
24 17 32.50 32.50 4 4 11.9 9.6 7.24 2.56 2.0 2.0 68 
25 Shangazi 37.50 37.50 5 3 4.9 5.9 3.59 3.48 5.0 4.0 Na 
26 59 36.25 36.25 3 4 4.6 8.3 3.72 4.06 3.0 2.5 78 
27 30 36.25 35.00 6 5 6.7 6.2 3.69 0.65 1.0 1.0 85 
28 Carrot njano 31.25 31.25 5 6 6.0 8.1 3.84 1.79 1.5 2.5 na 
29 Binti jongo 33.75 33.75 4 5 7.8 12.8 11.5 2.87 1.5 1.0 na 
30 95 33.75 33.75 5 4 3.5 5.5 3.37 1.45 2.5 2.5 na 
31 Ex-Mwanza 38.75 38.75 4 4 3.5 3.2 1.97 2.97 1.0 1.0 na 
32 Mkombozi 33.75 31.25 6 6 9.2 15.2 4.81 4.32 3.0 3.5 68 
33 Ex-Yohana 35.00 33.75 5 6 5.8 10.5 6.05 5.11 1.0 1.5 na 
34 Ex-Mengwa – 3 41.25 41.25 3 4 5.9 3.0 4.23 5.02 2.5 2.5 67 
35 Jewel 31.25 28.75 4 5 6.0 10.7 3.13 3.49 1.0 1.0 80 
36 Ex-Kazimzumbwe – 2 35.00 33.75 4 4 2.6 2.4 2.36 2.3 2.5 2.5 55 
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37 O3-03 35.00 35.00 4 3 4.8 5.8 3.32 1.42 1.5 2.0 60 
38 68 34.00 31.25 5 3 9.3 11.2 3.76 1.62 1.0 1.0 80 
39 101A 37.50 40.00 3 3 3.2 6.3 6.11 1.56 3.0 3.0 71 
40 74 37.50 38.75 4 4 4.9 5.4 3.19 1.58 2.5 3.0 74 
41 63 35.00 32.50 4 4 9.1 5.9 5.15 2.16 2.0 2.0 75 
42 1 36.25 35.00 4 3 4.0 9.5 5.12 4.41 5.0 4.0 78 
43 19 36.25 37.50 4 4 5.5 7.8 3.57 1.44 2.5 2.5 73 
44 Ex-Maneromango-2 36.25 36.25 2 3 5.8 8.3 7.07 3.69 2.5 3.0 76 
45 26 33.75 33.75 7 8 9.3 10.3 3.4 23.94 2.5 2.0 80 
46 Simama 36.25 36.25 5 6 7.6 10.8 5.68 2.05 1.5 1.5 71 
47 Kiegea 35.00 33.75 5 4 8.4 7.5 2.54 1.64 2.0 3.0 59 
48 Matako mapana 37.50 37.50 6 6 9.1 11.8 3.1 0.63 2.5 3.0 80 
49 73 37.50 37.50 4 5 3.2 4.6 3.53 1.59 3.0 2.5 80 
50 2 36.25 35.00 5 4 5.7 9.8 3.21 3.43 1.0 1.0 na 
51 Ex-Ramadhani 37.50 37.50 4 3 2.6 3.5 2.46 1.79 2.5 1.5 na 
52 Emil Julius-2 33.75 35.00 4 4 4.3 8.6 6.13 4.69 1.0 1.0 81 
53 Liponjwa 35.00 33.75 5 4 3.7 6.7 2.87 2.17 3.0 2.5 na 
54 106 37.50 36.25 3 4 3.3 8.0 2.86 1.52 3.5 3.5 78 
55 18 35.00 33.50 6 7 3.3 5.6 8 6.01 2.0 2.0 78 
56 92 32.50 31.25 6 5 4.4 5.9 3.31 2.61 1.5 2.5 74 
57 25 34.00 33.75 5 4 8.4 9.1 3.02 2.3 1.0 2.5 76 
58 13 37.50 35.00 4 5 8.4 8.7 5.55 4.2 3.5 4.5 78 
59 82 36.25 36.25 4 6 2.6 4.8 1.96 2.86 1.5 2.0 78 
60 79 37.50 40.00 4 5 6.6 8.8 3.74 2.92 2.5 2.5 80 
61 Ex-Kibuta – 2 35.50 35.00 3 3 2.4 12.5 6.2 2.74 1.0 1.0 na 
62 Ex-Berene 36.25 36.25 6 5 3.4 15.1 8.65 10.86 1.0 1.0 85 
63 Mnyalu 31.25 30.00 5 5 1.7 2.5 2.27 4.33 1.0 2.0 53 
64 121 40.00 41.25 4 4 4.4 8.7 2.51 4.03 2.5 2.5 na 
65 Carrot east 32.50 31.25 5 5 3.7 12.7 3.74 5.99 3.0 2.5 na 
66 Mkwakwa 38.75 38.75 6 6 3.4 7.8 6.32 7.42 3.0 2.5 68 
67 Gairo 35.00 37.50 6 7 6.5 9.9 5.59 2.32 3.0 2.5 78 
68 Ex-Msimbu – 2 36.25 37.50 5 7 3.4 2.8 0.34 1.2 2.5 3.0 69 
69 45 33.75 35.00 6 7 4.4 9.4 4.96 1.03 3.5 3.5 na 
70 27 37.50 36.25 4 6 3.6 8.8 2.63 5.84 1.5 2.5 80 
71 Ex-Kibugumo 37.50 35.00 3 4 4.9 13.4 4.12 3.89 1.5 2.0 80 
72 Ex-Miale – 2 36.25 35.00 4 3 7.5 15.5 6.09 3.59 3.0 2.5 63 
73 50 40.00 36.25 6 6 5.3 6.3 3.59 3 2.5 2.5 60 
74 11 35.00 36.25 4 4 4.1 5.0 2.9 4.07 1.0 1.0 63 
75 Kikabeji 36.25 35.00 3 4 6.0 7.8 8.48 2.83 1.0 1.0 na 
76 Kigambile nyoko 37.50 40.00 4 5 1.5 2.4 5.42 1.93 2.5 3.0 75 
77 SPBOP2006/943 35.00 35.00 5 4 7.1 10.5 6.41 2.45 1.5 1.0 na 
78 78 37.50 37.50 6 6 5.1 6.4 2.95 1.94 2.5 2.5 na 
79 127 33.75 35.00 3 3 5.2 2.3 2.89 1.16 1.5 1.5 na 
80 Carrot Dar 32.50 32.50 6 5 6.9 9.2 5.22 1.92 2.0 1.0 Na 
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81 130 35.00 36.25 5 6 7.8 14.9 2.19 2.68 2.5 2.5 80 
82 65 40.00 41.25 6 4 3.4 2.9 1.89 4.17 1.5 1.5 73 
83 85 36.25 39.07 3 4 5.1 12.1 1.69 3.23 1.0 2.0 78 
84 Mataya 35.00 32.50 5 5 7.8 10.0 2.07 2.27 3.0 3.5 45 
85 NASPOT 6 32.50 33.75 4 6 2.4 12.4 8.43 6.65 1.0 1.5 na 
86 Carrot C 31.25 32.50 3 4 5.1 12.7 4.88 5.15 2.5 2.5 na 
87 Ejumla 31.25 32.50 5 5 4.2 12.4 3.53 2.84 2.0 1.5 80 
88 Kabuchenji 38.75 38.75 6 6 5.1 5.6 7.22 3.09 1.5 1.0 75 
89 Mayai 35.00 35.00 8 7 2.5 8.1 7.06 3.46 1.5 1.5 75 
90 Tembele la kisukuma 33.75 32.50 4 5 0.3 3.6 1.09 3.5 1.0 2.0 na 
91 SPKCC2008/01 37.50 35.00 6 7 10.6 19.4 3.22 1.43 1.5 1.5 75 
92 Resisto 30.00 31.25 3 4 4.2 4.7 2.47 0.88 4.0 3.5 45 
93 116 32.50 35.00 6 3 2.7 6.1 4.97 1.63 1.0 1.0 80 
94 128 37.50 35.00 5 4 8.2 10.8 4.69 3.46 1.0 2.0 80 
95 SPBOP2008/920 37.50 38.75 4 4 2.3 6.5 7.07 3.31 1.0 1.5 80 
96 SP9062/0P 33.75 35.00 5 5 5.6 8.2 5.76 1.45 1.5 1.5 na 
97 12 38.75 38.75 6 5 3.3 6.0 3.27 6.19 1.5 1.5 na 
98 Ex-Kiboda-4 36.25 36.25 3 3 2.8 7.4 8.05 10.5 3.0 2.0 85 
99 O69 33.75 35.00 4 5 6.0 1.8 1.81 5.45 1.0 1.0 55 
100 Sekondari 33.75 31.25 4 4 2.2 2.2 2.6 2.41 1.0 1.0 75 
101 Ex-Kiboda-2 36.25 36.25 5 5 0.9 1.7 1.77 3.35 1.0 2.0 60 
102 81 37.50 36.25 4 4 2.6 2.9 1.48 0.78 3.0 2.0 80 
103 Kagole 35.00 35.00 3 6 5.3 9.5 8.3 2.45 1.0 1.0 na 
104 Zambezi 32.50 35.00 4 5 8.5 10.6 3.4 2.28 2.0 2.0 65 
105 Kakamega 33.75 32.50 4 3 3.3 8.7 5.42 -0.36 1.0 1.0 95 
106 9 36.25 33.75 3 4 6.8 9.1 4.75 1.51 4.5 4.5 na 
107 94 35.00 32.50 5 4 3.1 8.6 3.34 3.09 1.5 2.0 na 
108 Ex-Msimbu-1 42.50 40.00 4 4 2.4 18.1 7.87 1.58 1.5 3.5 75 
109 Polista 36.25 33.75 6 7 4.5 14.9 7.22 4.02 1.5 1.5 90 
110 14 41.25 41.25 4 4 3.8 14.3 5.73 7.83 3.0 4.0 80 
111 3 38.75 38.75 5 4 8.3 14.2 3.88 4.17 3.0 2.0 na 
112 55 37.5 37.50 3 3 8.7 15.4 5.96 5.98 1.0 1.0 70 
113 44 36.25 36.25 5 5 6.4 11.5 3.25 2.66 1.0 1.0 65 
114 75 35.00 30.00 4 5 6.0 6.5 2.53 4.53 1.0 2.0 80 
115 86 37.5 37.50 6 6 3.5 5.3 2.19 2.37 4.5 4.0 na 
116 32 37.50 36.25 3 2 7.4 7.5 2.92 2.6 1.0 1.0 na 
117 Ex-Msimbu-3 35.00 33.75 4 4 7.3 6.7 1.8 1.46 2.5 2.5 80 
118 Ex-Kiboda-1 40.00 40.00 5 5 5.2 6.5 1.54 1.45 3.0 2.5 na 
119 Canada nyekundu 31.25 33.75 4 4 7.6 6.1 2.04 2.44 2.5 2.5 80 
120 Berene 33.75 31.25 5 5 6.0 8.7 2.97 1.81 1.5 1.5 na 
121 99 38.75 37.50 8 10 5.4 6.0 1.89 3.99 1.5 2.0 80 
122 Ex-Kibuta-3 35.00 32.50 5 7 6.7 11.8 6.65 7.83 2.5 2.5 80 
123 Ukerewe 46.25 43.75 6 6 12.4 8.2 3.43 1.73 1.0 2.0 75 
124 43 32.50 30.00 6 7 8.4 10.6 5.27 5.01 1.5 1.5 80 
125 Mchikichini 32.50 32.50 6 4 5.9 5.9 2.35 1.91 2.5 2.5 na 
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126 Ex-Halima-3 35.00 32.50 4 4 8.6 10.7 2.82 2.18 1.0 1.0 65 
127 91 36.25 37.50 3 2 3.4 7.1 5.33 3.45 1.0 1.0 71 
128 20 35.00 37.50 4 4 4.9 7.6 6.31 1.28 1.0 1.0 71 
129 Mwanatata 40.00 37.50 4 5 6.9 6.8 3.07 2.48 3.0 2.5 na 
130 Zapallo 30.00 27.50 5 5 3.9 5.7 5.69 2.94 4.0 3.5 na 
131 Ex-Bwana 37.50 40.00 6 6 6.2 8.0 2.36 5.52 1.5 2.5 80 
132 Mjomba mkwe 33.75 31.25 3 5 3.2 7.8 2.57 1.97 1.5 1.5 na 
133 Ex-Halima-2 36.25 37.50 5 6 7.2 14.3 5.43 7.68 1.0 1.0 80 
134 8 40.00 40.00 4 6 5.8 8.1 6.38 3.41 3.5 4.0 65 
135 5 33.75 33.75 5 6 5.7 5.5 5.81 4.21 4.5 4.0 73 
136 Ex-Kazimzumbwe-1 37.50 35.00 6 7 10.4 5.7 2.45 2.13 4.0 4.0 73 
137 96 35.00 37.50 4 5 5.2 8.0 2.88 3.28 3.0 3.5 na 
138 Ex-Msimbu-4 33.75 33.75 5 6 2.9 6.3 2.93 2.57 1.0 1.0 na 
139 119 37.50 36.25 5 5 5.5 6.5 1.94 1.42 1.0 1.0 na 
140 47 36.25 36.25 5 4 7.0 8.5 4.41 3.13 1.0 1.0 80 
141 Kibakuli 32.50 32.50 6 6 9.5 12.6 2.83 2.56 3.5 4.0 65 
142 98 33.75 33.75 4 4 6.1 6.9 2.66 9.03 3.0 2.5 na 
143 Mbutu 35.00 35.00 4 4 3.2 4.1 4.86 2.68 2.0 3.0 80 
144 Kabode 35.00 32.50 5 4 6.5 2.9 1.92 1.45 1.0 1.0 na 
 Mean 35.72 35.30 4.45 4.60 5.3 8.4 3.44 64.19 1.96                2.08  
 CV (%) 3.73 3.76 15.65 15.67 28.6 20.9 67.19 15.93 37.08       23.53 
  R Square 0.90 0.92 0.87 0.89 0.84 0.92 0.77 0.96 0.82         0.90 
 EMS 1.78 1.76 0.48 0.53 2.4 3.1 5.33 0.45 0.52         0.24 
 LSD 2.64 2.63 1.38 1.43 7.1 8.1 4.57 1.98 1.44                 0.97 

CV = Coefficient of variation, DMC = Dry matter content, EMS = Error mean square, LSD = List significant difference, na= not available (no flowering 

the entire study period), SPVD = Sweetpotato virus disease, SR No = Serial number
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3.3.2.3. Number of roots per plant 

There was significant difference in the number and yield of fresh roots among genotypes within 

and across sites (Table 3.3). The number of roots ranged from 2-9 with average of 4 roots/plant 

(Table 3.4). Genotype with code 26 had the highest mean number of roots per plant. On the other 

hand, genotypes with codes 26, Mayai and 99 had the lowest mean number of roots per plant 

(Table 3.4).  

3.3.2.4. Fresh root yield 

Genotypes performed differently in terms of fresh root yield within and across sites (Table 3.3). 

Storage root yield ranged from 0.3-15 t/ha with average yield of 6.9 t/ha for Tembele la kisukuma 

and SPKCC2008/01, respectively (Table 3.4). Genotypes SPKCC2008/01 and Ex-kiboda-2 had 

the highest and lowest yields, respectively. Genotypes Mataya, Simama and Ex-Msimbu-1 with 

yield of 8.8, 9.2 and 10.2 t/ha, respectively were selected for crossing. Despite high yield, 

genotype Jewel was not selected due to poor flowering (Table 3.4).  

3.3.2.5. Vine yield 

There were significant differences in vine yield within and across sites (Table 3.3). Vine yield 

ranged from 0.56-13.67 t/ha with mean of 3.81 t/ha (Table 4). Genotypes 26, Ex-Berene and 81 

had the highest vine yield of 13.67, 9.75 and 9.27t/ha, respectively (Table 3.4). However, the vine 

yields were relatively low. 

3.3.2.6. Dry matter content 

There was highly significant differences (p<0.001) in storage root dry matter content among 

genotypes and across sites (Table 3.3). Dry matter content ranged from 28.8-45% with mean 

value of 35.5% (Table 3.4). Genotypes Zapallo and Ukerewe had the lowest and highest DMC, 

respectively. Based on DMC, genotypes Ukerewe, Ex-Msimbu-1 and Simama with DMC values 

of 45, 41.3 and 36.3%, respectively were selected for breeding.  

3.3.3. Cluster analysis 

The un-weighted pair group method with arithmetic means (UPGMA) grouped the 144 genotypes 

into five main clusters. Each of the clusters had two sub-clusters (Table 3.5). Clustering of these 

genotypes displayed similarity coefficients that ranging from 0.65 to 1.0 (data not shown). Due to 

the large number of genotypes included in the analyses the dendrogram was not shown but data 

presented in Table 3.5 showing the five clusters and genotypes. 
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The first cluster had common primary and secondary vine colour, mature leaf colour and petiole 

pigmentation. Sub-clustering was due to differences in petiole length among the genotypes. The 

second cluster had common vine primary colour and diametre, mature leaf and skin colour and 

leaf outline and size. Sub-clustering was due to root formation. The third cluster, despite having 

the same primary vine and leaf colour, had the same leaf outline and size, storage root skin colour 

and reaction to SPVD. The fourth cluster had common leaf size and the fifth one had common 

leaf outline, lobe number, leaf size and root shape.  

Table 3.5. Summary of cluster analyses when evaluating 144 sweetpotato genotypes across two 

sites in Tanzania 

Clusters 
Number of 
genotypes 

Sub-clusters 
Codes of genotypes 

I 50 
A 

1, 41,107, 52, 118, 40, 28, 65, 26, 108, 30, 59, 102, 76, 69, 
115, 137, 20, 112, 21, 78, 138, 83, 140, 116, 114, 88, 46, 56, 
124, 128, 131, 8 

B 86, 11, 16, 80, 32, 91, 129, 19, 141, 72, 136, 73, 44, 98 

II 15 
A 37, 50, 70, 117, 93, 133, 139 

B 60, 122, 134, 61, 77, 95, 96 

III 14 
A 4, 123, 71, 120, 68 

B 10, 79, 63, 103, 109, 23, 97, 62 

IV 31 

A 5, 113, 55, 34, 82, 111, 24, 43, 127, 75, 89 

B 
7, 9, 51, 13, 36, 67, 99, 14, 38, 27, 100, 121, 48, 66, 47, 84, 
126, 53 

V 34 

A 
2, 110, 6, 12, 17, 143, 42, 49, 54, 58, 57, 81, 15, 90, 39, 64, 
45 

B 
3, 94, 106, 29, 119, 18, 25, 142, 125, 135, 74, 132, 33, 101, 
31 

See Table 4 for codes and names of genotypes 

For all clusters, there was great variability in most of the agronomic traits namely; number of roots, 

DMC and root and vine yield. Genotypes varied based on both qualitative and quantitative traits 

across the two sites, however; greater variations were largely due to quantitative traits than 

qualitative traits. Further, the variations could be due to genotypes, environment and their 

interactions. 
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3.3.4. Correlation between traits 

The correlation coefficients between quantitative and qualitative phenotypic traits studied are 

presented in Tables 3.6 and 3.7. Highly significant and positive correlations (p=0.01) were 

reported between growth habit and dry matter content (r=0.26), vine diametre and petiole length 

(r=0.26), petiole length and vine yield (r=0.27), number of roots and fresh root and vine yield 

(r=0.30) and fresh root yield and vine yield (r=0.40) (Table 6). Also, a significant and positive 

correlations (r=0.19; p=0.05) were reported between growth habit and vine yield and leaf size with 

dry matter content (r=0.18) (Table 3.6). Non-significant, negative correlations were reported 

between vine diametre and number of roots with dry matter content (Table 3.6). 

Among qualitative traits (Table 3.7), highly significant and positive correlations (p=0.01) were 

reported between vine primary colour with mature, immature leaf colour and petiole pigmentation, 

petiole pigmentation and root skin colour; immature leaf colour with petiole pigmentation and root 

skin colour, and petiole pigmentation and root skin colour. Significant and positive correlations 

(p=0.05) were reported between mature leaf colour with immature leaf colour and petiole 

pigmentation. On the other hand, highly significant and negative correlations were reported 

between growth habit and petiole pigmentation with root flesh colour. Also, negative correlations 

were reported for immature leaf colour with roof flesh colour. There was no correlation between 

mature leaf colour and root flesh colour.
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Table 3.6. Pearson correlation coefficients among quantitative traits when evaluating 144 sweetpotato genotypes across two sites in 

Tanzania 

  
Growth 

habit 

Vine 

diametre 
Leaf size 

Petiole 

length 

Number of 

roots 

Fresh root 

yield 
Vine yield 

Dry matter 

content 

Growth habit 1 -0.160ns 0.150ns 0.113ns -0.040ns 0.067ns 0.187* 0.255** 

Vine diametre  1 0.105ns 0.262** 0.061ns 0.042ns 0.095ns -0.050ns 

Leaf size   1 0.135ns -0.092ns -0.226** 0.090ns 0.176* 

Petiole length    1 0.069ns 0.142ns .268** 0.134ns 

Number of roots     1 0.537** 0.304** -0.080ns 

Fresh root yield      1 0.402** 0.030ns 

Vine yield       1 0.127ns 

Dry matter content        1 

ns = non-significant correlation, *, and ** denote significant correlations at the 0.05 and 0.01 probability levels, respectively.  
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Table 3.7. Spearman correlation coefficients among qualitative traits when evaluating 144 sweetpotato genotypes across two sites in 

Tanzania 

  Primary colour 
Mature leaf 

colour 

Immature leaf 

colour 

Petiole 

pigmentation 
Root skin colour Root flesh colour 

Primary colour 1 0.280** 0.36** 0.879** 0.505** -0.226** 

Mature leaf colour  1 0.203* 0.207* 0.157ns 0 

Immature leaf colour   1 0.253** 0.410** -0.174* 

Petiole pigmentation    1 0.476** -0.291** 

Root skin colour     1 -0.111 

Root flesh colour           1 

ns = non-significant correlation, * and ** denote significant correlations at the 0.05 and 0.01 probability levels, respectively.  
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3.4. Discussion 

3.4.1. Reaction to SPVD 

Under natural field infections, the genotypes showed variable reactions to SPVD. Generally, the 

genotypes were grouped into three groups due to their reaction to SPVD, namely; resistant, 

moderately resistant and susceptible (Table 3.4). Fifty eight percent of genotypes showed low 

levels of SPVD infections. Since the study sites were hotspots for SPVD, field SPVD inoculum 

pressure was capable of causing moderate to severe infection in plants (Mwanga et al., 2013). 

The low incidences of SPVD may refer either to cultivar resistance or tolerance to the disease or 

disease transmitting insects (Gasura and Mukasa, 2010; Mwanga et al., 2013). Similar to this 

study, Ndunguru and Kapinga (2007) and Ndunguru et al. (2009) reported highly signifant 

differences in severity of SPVD symptoms among sweetpotato cultivars. Further, they reported 

significant difference in severity of SPVD symptoms among locations studied in Southern 

Tanzania and in Northwestern of Tanzania and Central Uganda. 

Some genotypes recovered from  SPVD infection over time under field conditions. Recovery could 

be a natural mechanism for some form of resistance (Gasura and Mukasa, 2010). Mwanga et al. 

(2002) reported recovery in some genotypes with severe SPVD symptoms. It is suspected that 

the recovery from  SPVD infection could have greatly contributed to the persistence of most of 

landraces in farmers’ fields (Aritua et al., 1998).  

Although, most of the genotypes had relatively moderate dry matter content no definite trend could 

be established at this stage on the relationship between dry matter content and reaction to SPVD 

for the genotypes studied. However, 61% of genotypes that were resistant had dry matter content 

between 35-41% which is higher compared to some susceptible varieties such as Zapallo and 

Resisto with dry matter content of 28.75 and 30%, respectively (Table 3.4). Based on resistance 

to SPVD (score between 1-2), genotypes Simama, Ukerewe, Gairo and 03-03 were selected for 

breeding. Despite being susceptible or moderately susceptible to SPVD, genotypes Resisto and 

Mataya, and Ex-Msimbu-1 were selected for breeding due to high beta carotene content and high 

vine yield, respectively (Table 3.4). 
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3.4.2. Performance of genotypes for different traits 

3.4.2.1. Time to 50% flowering 

Poor flowering ability is one of the main challenges in sweetpotato breeding programmes. A wide 

range of variations were reported in time to 50% flowering among the genotypes (Table 3.4). The 

starting time of flowering and time to 50% flowering markedly varied among genotypes. Based on 

differences in time to 50% flowering, the tested sweetpotato genotypes can be grouped into early, 

intermediate and late flowering types. Resisto and Mataya flowered early compared to other 

genotypes with 40 and 45 days, respectively. Genotypes such as Mataya, 03-03 and 069 had 

profuse flowering ability except very limited crossing window period. Consequently, production of 

few flowers and narrow ‘flowering window’ limits the number of crosses that can be made. Further, 

differences in time to flowering in addition to self- and cross-incompatibility, poses a great 

challenge in genetic improvement of the crop.  

A number of factors such as genotype, day length, and plant nutrition and water availability greatly 

influence flowering ability in sweetpotato. Veasey et al. (2007) reported a wide range in flower 

initiation in different local varieties which ultimately determine the time to 50% flowering. Similar 

to this study, the same author reported the presence of non-flowering accessions.  Lardizabal and 

Thompson (1990) reported production of limited number of flowers despite flower induction. Also, 

the author found that seed setting is variety dependent. 

3.4.2.2. Number of roots per plant 

Sweetpotato is mainly grown for its roots. The number of storage roots produced differed 

significantly among varieties and across the two sites (Table 3.3). Similar result was reported by 

Tairo et al. (2008) who found significant variations among sweetpotato genotypes for number of 

roots and root weight. The differences in number of roots and ultimately yield were probably 

attributed to differences in cultivars, maturity and response to environmental conditions (Oggema 

et al., 2007). Bhattacharya et al. (1985) reported a number of roots at high carbondioxide 

concentration.  

3.4.2.3. Fresh root yield 

The significant differences in root yield were reported between genotypes and across sites 

(Tables 3.3 and 3.4). Since management practices were the same, the differences in root yields 

among genotypes within and across sites could have been attributed to genotypic variations, 

differences in maturity and their interactions with the environments. The storage root yield 

depends on the number of roots per plant and the rate and efficiency at which the photosythate 
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translocate to storage roots (Bhagsari and Ashley, 1990; Kapinga et al., 2003). Bhagsari and 

Ashley (1990) reported a significant difference in yield among sweetpotato genotypes in the 

United States. Similar findings have been reported by An et al. (2003) and Abdissa et al. (2012). 

However, none of the genotypes in this study attained the expected yield potential of 15-23 t/ha 

set by Department of Research and Development, Ministry of Agriculture, Tanzania (Sebastiani 

et al., 2007). This could have been attributed to early stoppage of rains which to some extent 

affected root bulking; however, too much rain may also compromise yield. Hartemink et al. (2000) 

reported lower sweetpotato yields in New Papua Guinea due to soils, weather and cultivar 

differences. According to Lebot (2010) the yield of sweetpotato is determined by the length of the 

growing period. Additionally, Mwanga and Zamora (1988) and Oggema et al. (2007) reported that 

varietal differences, growing conditions and management practices may significantly cause yield 

differences in sweetpotato genotypes. Further, Harrison and Jackson (2011) reported that, 

sweetpotato yields vary depending on varieties, length of growing season, cultural management 

and environmental conditions. In the case of this study, the yield differences reported could be 

due to genotypic variations, differences in maturity and their interactions with the environments 

because the management practices were the same. 

3.4.2.4. Vine yield 

The genotypes performed differently in vine production (Table 3.3). Sweetpotato is primarily 

cultivated for its fresh storage roots. However, in some sweetpotato cultivars their young and 

tender vines and leaves vines are used as vegetables. Also, their aboveground biomass is used 

as forage (An et al., 2003). This is an important attribute in both rural and urban areas for livestock 

feed. However, high tonnage of vine may compromise storage root yields (Abdissa et al., 2012). 

Apart from animal feed, in rural areas sweetpotato vines are either used as organic manure or 

burnt and used to improve soil fertility (Abdissa et al., 2012). The genotypic differences in vine 

production within and across sites could be due to cultivar differences, environment and their 

interaction. 

3.4.2.5. Dry matter content 

Generally, most of the accessions had high dry matter content (Table 3.4). Dry matter content is 

an important and most preferred market attribute and is one of the criteria famers use in selecting 

sweetpotato cultivars (Tairo et al., 2008). Dry matter content for different varieties falls within the 

range of 17-49% (Tairo et al., 2008; Karuri et al., 2009). Dry matter content is associated with 

farmers’ and consumers’ preferences and processing quality. Farmers prefer sweetpotato 

cultivars which are tasty with high dry matter content. Further, it affects eating quality, shelf-life 
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and industrial processing (Lebot, 2010). Tairo et al. (2008) reported differences in dry matter 

content among sweetpotato germplasm collected from different agro-ecological zones of 

Tanzania. Similarly, An et al. (2003) reported differences in storage root dry matter content among 

sweetpotato varieties. Generally high dry matter content is a common phenomenon to east 

African sweetpotato genotypes (Gichuki et al., 2003). In a participatory rural appraisal conducted 

in Mkuranga, Kilosa, Kilombero and Gairo districts of Tanzanian in 2014 (Ngailo et al., 2015; in 

press), it was learned that, low dry matter content is amongst the attribute that has led to 

abandonment of many varieties by famers. 

Dry matter content varies with varieties, environments, cultural practices and seasons (Tsakama 

et al., 2010). Mwanga and Zamora (1989) reported a significant decrease in dry matter content 

due to shading. The application of farm yard manure and green leaf manure in sweetpotato 

production yielded storage root with high dry matter content compared to application of inorganic 

fertilizer (Nedunchezhiyan et al., 2010). Gomes and Carr (2003) reported that, the competition of 

assimilates between two principal sinks, namely, vines and storage roots affects the dry matter 

content in sweetpotato. Also, dry matter content is likely to be compromised by number of storage 

roots (Lowe and Wilson, 1974). A large number of storage roots might reduce dry matter content 

as the plant may not be able to supply enough photosynthetic assimilates to all storage roots 

(Gasura et al., 2010). 

3.4.3. Cluster analysis 

The cluster analysis of the genotypes using 24 characters revealed a great phenotypic diversity 

(Table 3.5). The variability could have been attributed to genetic differences, environment and 

their interactions. The genotypes exhibited variability in growth habit, vine characteristics, skin 

and flesh colour and reaction to SPVD. This result is comparable to that reported by Gwandu et 

al (2012) in Tanzanian elite sweetpotato genotypes who reported two clusters with sub-clusters. 

Also, Karuri et al. (2010) reported high genetic diversity among Kenyan sweetpotato germplasm 

using morphological and SSR markers. It is suspected that natural mutations, high ploidy level 

asexual reproduction, self-incompatibility and cross-pollination of sweetpotato could have 

contributed to great variability among genotypes (Villordon and LaBonte, 1995; Veasey et al., 

2007).  
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3.4.4. Correlation between traits 

Correlation analysis among different traits revealed diverse relationships (Tables 3.6 and 3.7). 

However, most of the traits revealed positive and high significant relationships. For instance, a 

highly significant correlation was reported between number of roots and fresh root and, vine yield 

(r=0.30) and fresh root yield and vine yield (r=0.40). Kiarie (1988), Afuape et al. (2011) and 

Solankey et al. (2014) reported a highly significant and positive correlation between number of 

roots and root yield. Comparable finding was reported by Tsegaye et al. (2006) and Yada et al. 

(2011). Similar to this study, Abdissa et al. (2012) reported a positive correlation between root 

yield and vine yield as the increase in vine or plant top led to greater amount of photosynthate 

translocation to the storage roots causing their increase in size and ultimately root yield. 

Consistent with this study, a positive and significant correlation between vine weight and number 

of roots was reported by Jha (2011). On the other hand an inverse relationship between SPVD 

infection and dry matter content has been reported. Karuri et al. (2009) reported low dry matter 

content for genotypes which were resistant to SPVD. Lebot et al. (2011) reported high correlation 

coefficient between vine pigmentation and petiole pigmentation and non-significant correlation 

between aerial and underground traits. Moreover, a positive correlation of r = 0.647 between 

primary vine colour and petiole pigmentation compared to r = 0.879 in this study has been 

reported by Norman et al. (2014). While there was no correlation between mature leaf colour and 

root flesh colour in this study, a negative correlation (r=0.0117) between the two traits was 

reported by Koussao et al. (2014) in Burkina Faso. Provided that the correlations between traits 

are well established, it is possible for the known variable to predict the potential of corresponding 

trait (Augustina et al., 2013). On the other hand, the lack of correlation between mature leaf colour 

and root flesh colour may be of special interest for further investigation. 

3.5. Conclusions 

The present study selected the following genotypes; Simama, Ukerewe, Mataya, Resisto, 03-03, 

Ex-Msimbi-1 and Gairo. They were selected based on resistance to SPVD (Simama and 

Ukerewe), high storage root yields (Simama and Mataya), better dry matter content (Ukerewe, 

Simama and Ex-Msimbu-1), vine yield (Ex-Msimbu-1), suitable flesh colour (Resisto, 03-03 and 

Mataya) and elliptical root shape which is preferred by farmers for easy packaging. In addition, a 

clone SPKBH008 was selected owing to its early and long lasting profuse flowering ability. The 

selected eight genotypes are recommended as promising parents for sweetpotato breeding.   
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Chapter four 

4. Genetic diversity assessment of Tanzanian sweetpotato 
genotypes using simple sequence repeat markers 

Abstract 

Genetic diversity assessment of 48 Tanzanian sweetpotato genotypes was conducted using nine 

polymorphic simple sequence repeat markers to determine genetic relationship and select unique 

parents which could be used for future breeding. Genetic diversity parameters, cluster analysis, 

and analysis of molecular variance were calculated to determine genetic diversity and 

relationships. Results showed that the SSR markers used had the mean PIC of 0.78, allelic 

richness per locus ranged from 4-17 with a mean of 10.0 and the number of effective alleles varied 

from 2.2-6.1 with a mean value 3.5. The un-weighted pair group method with arithmetic mean 

allocated the germplasm collection into three major genetic clusters. The greatest genetic 

distance was identified between the genotypes sourced from Kagera, Temeke, Mkuranga and 

Kisarawe areas of Tanzania. The study identified genetically unrelated and complementary 

sweetpotato genotypes such as Ex-Ramadhani, Kibakuli, Mkombozi, Mjomba, Ex-Halima-3 and 

Kabuchenji which are recommended for future breeding programmes.  

Keywords:  Genetic diversity, genotyping, SSR markers, Sweetpotato, Tanzania 
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4.1. Introduction 

Sweetpotato is an important root crop serving as food, feed and raw material globally. Its role as 

cash crop is significantly increasing due to crop’s high yield potential and ability to grow in wide 

range of environments (Chiona, 2009; Wang et al., 2011). Most agricultural practices have greatly 

improved crops through selection and breeding (Messeguer, 2003). Targeted selection for 

specific traits such as high yields has narrowed genetic diversity among modern cultivars 

compared to farmers’ varieties (Ulukan, 2009).  

Genetic diversity analyses give better understanding on the extent of variation available between 

and within germplasm collections (Tumwegamire et al., 2011). Genetic diversity is a precondition 

for successful plant breeding (Ulukan, 2009). Several approaches have been used in crop genetic 

diversity analysis including morphological, agronomical, biochemical and DNA-based markers 

(Mohammadi and Prasanna, 2003). The choice of approach depends on objectives, required 

information and resources. Molecular markers have become important tools in genetic diversity 

analysis of sweetpotato for enhancing efficient sweetpotato breeding (Buteler et al., 2002; Hu et 

al., 2004; Wang et al., 2011; Zhao et al., 2013). Molecular techniques used in sweetpotato genetic 

diversity studies include randomly amplified polymorphic DNAs (Gichuki et al., 2005), amplified 

fragment length polymorphisms (Elameen et al., 2008) and simple sequence repeat (SSR) 

markers (Karuri et al., 2009). The SSR markers have been widely used in genetic diversity 

analysis of sweetpotato. Previous studies by Yada et al. (2010) and Rodriguez-Bonilla et al. 

(2014) showed that SSR markers revealed the highest level of polymorphism due to co-

dominance nature and high numbers of alleles per locus. These markers are powerful and have 

the ability to discriminate genotypes including those related by pedigree.  

In Tanzania, sweetpotato is an important food crop supporting millions of people. It is the second 

most important root crop after cassava. Sweetpotato yields in Tanzania ranges from 3-6 tha-1, 

lower than yield potential of 15-27 tha-1 (Kapinga et al. 1995; Sebastian et al. 2007). Average area 

harvested for the last ten years was 500 000 hectares with mean yield of 3.83 tha-1 (FAOSTAT, 

2015). Sweetpotato productivity could be enhanced through effective selection of locally adapted 

and farmers’ preferred genotypes and targeted breeding. This requires genetic diversity analysis 

using effective molecular tools such as SSR markers.    

There are limited sweetpotato genetic diversity studies conducted in Tanzania. Tairo et al. (2008) 

and Elameen et al. (2011) used agro-morphological parameters to study the diversity present 

within Tanzanian sweetpotato germplasm. Elameen et al. (2008) and Gwandu et al. (2012) used 
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amplified fragment length polymorphism and SSR markers, respectively to analyze the genetic 

diversity of sweetpotato germplasm.  Gwandu et al. (2012) specifically analyzed the genetic 

diversity among elite sweetpotato genotypes for resistance to sweetpotato virus disease (SPVD) 

and dry matter content. The author reported relatively high level of genetic variation within the 

studied germplasm. However, most farmers grow landraces and have limited access to elite 

sweetpotato varieties. Systematic genetic grouping of sweetpotato genotypes well-adapted to 

diverse geographical locations may offer a unique genetic resource base. Use of polymorphic 

SSR markers could efficiently assist genetic grouping of sweetpotato germplasm and 

consequently reduce the timeline for developing sweetpotato cultivars in the country. Therefore, 

the objective of this study was to determine the genetic relationship within Tanzania sweetpotato 

germplasm and select unique parents for breeding using SSR markers. 

4.2. Materials and methods  

4.2.1. Plant materials, DNA extraction, SSR amplification and polymerase 
chain reaction  

A total of 48 agronomically useful and morphologically distinct sweetpotato genotypes (Table 4.1) 

were selected from the 144 germplasm collected from lake and eastern zones of Tanzania. The 

selection of genotypes was based on agro-morphological attributes and their reaction to 

Sweetpotato virus disease (SPVD). 

DNA samples of the sweetpotato genotype were collected on FTA cards. The sap was extracted 

from fresh tender leaves of five plants per genotype grown at Sugarcane Research Institute (SRI) 

– Kibaha in 2013/2014. Genotyping was conducted at Incotec laboratory, South Africa. All 

samples were used in bulked amplification, using DNA from five individual leaf samples. A single 

punch of each card per submission was taken and homogenized in the Finnzymes dilution buffer 

(Kit). Two micro liter of each bulked sample was used in the polymerase chain reaction (PCR).   

The PCR products were fluorescently labeled and separated by capillary electrophoresis on an 

ABI 3013 automatic sequencer (Applied Biosystems, Johannesburg, South Africa); analysis was 

performed using GeneMapper 4.1. A total of nine polymorphic SSR markers were used for this 

study (Table 4.2). Markers were selected based on their polymorphic information content (PIC) 

values which ranged from 0.52 to 0.81 and their history from previous related studies (Table 4. 

2). 
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Table 4.1. Description of sweetpotato genotypes used in the study 

Sr. No. Genotypes Zone District DMC (%) Yield (t/ha) Root flesh colour Reaction to SPVD 
1 Ex-Kazimzumbwe-4 Eastern Kisarawe 33.75 2.5 2 2 
2 Ex-Halima-1 Eastern Mkuranga 36.25 8.9 2 1 
3 Ex-Miale-1 Eastern Mkuranga 35.00 8.5 2 2 
4 Ex-Kibuta-1 Eastern Kisarawe 35.5 6.0 1 2 
5 Ex-Maneromango-1 Eastern Kisarawe 36.25 6 1 2 
6 Ex-Kazimzumbwe-3 Eastern Kisarawe 34.40 6.5 2 2 
7 Shangazi Eastern Kilosa 37.50 4.0 4 4 
8 Ex-Kibuta-2 Eastern Kisarawe 35.00 5.0 2 1 
9 Ex-Kazimzumbwe-2 Eastern Kisarawe 33.75 4.0 3 2 
10 Mwanatata Lake  Kagera 37.50 4.5 3 2 
11 Ex-Halima-2 Eastern Mkuranga 36.25 7.0 1 1 
12 Ex-Maneromango-2 Eastern Kisarawe 36.25 5.5 1 2 
13 Ex-Miale-2 Eastern Kilombero 36.25 8.9 1 2 
14 Gairo Eastern Kilombero 36.25 4.6 3 3 
15 Mbutu Eastern Bagamoyo 35.00 3.5 1 3 
16 Ex-Madina Eastern Kisarawe 31.25 7.6 3 1 
17 Ex-Msimbu-2 Eastern Kisarawe 36.90 2.5 1 2 
18 Ex-Msimbu-4 Eastern Kisarawe 33.75 4.0 4 1 
19 Berene Lake  Kagera 32.50 6.0 1 1 
20 Ex-Ungindoni Eastern Temeke 35.60 4.0 2 1 
21 Ex-Msimbu-3 Eastern Kisarawe 34.40 5.0 3 2 
22 Mkombozi Lake  Kagera 32.50 9.0 4 3 
23 Ex-Kibugumo Eastern Temeke 36.25 6.0 3 1 
25 Kabuchenji Lake  Kagera 38.75 7.0 2 1 
26 Ex-Halima-3 Eastern Mkuranga 33.75 6.5 1 1 
27 Ex-Mengwa-3 Eastern Kisarawe 41.25 3.0 1 2 
28 Mjomba mkwe Eastern Kisarawe 32.50 4.0 4 1 
29 Ex-Kiboda-2 Eastern Temeke 36.25 1 2 2 
30 Liponjwa Eastern Mkuranga 34.40 3 1 2 
31 Ex-Sungwi Eastern Kisarawe 34.40 8.7 3 1 
32 Kikabeji Lake  Kagera 35.60 7.5 2 1 
33 Sekondari Lake  Kagera 32.50 3.0 2 1 
34 Matako mapana Eastern Bagamoyo 37.50 6.5 1 2 
35 Ex-Ramadhani Eastern Kisarawe 37.50 2.0 1 1 
36 Mchikichini Eastern Temeke 32.50 6.0 3 2 
37 Mkwakwa Eastern Kisarawe 38.75 5.5 2 2 
38 Kigambile nyoko Lake z Kagera 38.75 3.0 4 2 
39 Ex-Kiboda-4 Eastern Temeke 36.25 3.0 3 2 
40 Ex-Berene Lake  Kagera 36.25 6.5 3 1 
41 Ex-Msimbu-1 Eastern Kisarawe 41.25 7.0 1 3 
42 Ex-Kiboda-1 Eastern Temeke 40.00 3.5 2 2 
43 Kandoro Eastern  Kisarawe 34.40 5.5 1 2 
44 Ex-Yohana Eastern Kisarawe 34.40 6.0 1 1 
45 Ex-Mwanza Lake  Kagera 38.75 5.5 3 1 
46 Ex-Bwana Eastern Kisarawe 38.75 6.5 3 1 
47 Ex-Kazimzumbwe-1 Eastern Kisarawe 36.25 4.5 2 3 
48 Binti Jongo Eastern Mkuranga 33.75 6.5 2 1 

Root flesh colour: 1 = White, 2 = cream, 3 = yellow and 4 = orange, SPVD: 1 = no visible symptoms, 2 = mild symptoms (a few local lesions on a 
few leaves), 3 = moderate symptoms (mosaic symptoms on leaves), 4 = severe symptoms (mosaic symptoms with plant stunting) and 5 = very 
severe symptoms of purpling/yellowing or mosaic on leaves, severe leaf distortion, reduced leaf size and severe stunting. 
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Table 4.2. Details of SSR markers used to genotype 48 sweetpotato genotypes collected from 

Tanzania  

Name Dye Primer 5’-3’ Primer reverse 5’-3’ 

IB-R03 PET GTAGAGTTGAAGAGCGAGCA CCATAGACCCATTGATGAAG 

1B-S07 FAM GCTTGCTTGTGGTTCGAT CAAGTGAAGTGATGGCGTTT 

IB-R12 NED GATCGAGGAGAAGCTCCACA GCCGGCAAATTAAGTCCATC 

IB-R16 VIC GACTTCCTTGGTGTAGTTGC AGGGTTAAGCGGGAGACT 

1B-R19 PET GGCTAGTGGAGAAGGTCAA AGAAGTAGAACTCCGTCACC 

IB-CIP13 NED CGTGCTTGAGGTCTGAGTAGAA TTCCCTAGAAGCTGCGTGAT 

SSR 07 PET TTTTCAACGACAAGCCTCTTGC TCAAAGGTCCGCATGGAAATC 

SSR 09  AAGTTAATCTAAGGTGGCGGGG CGTCGATTCCAGTCTAATCCAATCC 

690524 VIC AAGGAAGGGCTAGTGGAGAAGGTC CAAGGCAACAAATACACACACACG 

Sources: Karuri et al., 2009; Gwandu et al., 2012. 

4.2.2. Data analysis 

4.2.2.1. Genetic diversity analysis 

Genotypic data were subjected to analyses with various measures of genetic diversity within and 

among genotypes using FSTAT version 2.9.3 and GenAlex software version 6.5 (Goudet, 2001; 

Peakall and Smouse, 2012). Genetic diversity parameters such as total number of alleles per 

locus, number of effective alleles per locus, Shannon's Information Index, gene diversity were 

determined using the protocol of Nei and Li (1979). Other genetic parameters such as 

differentiation, gene flow and polymorphic information content (PIC) were estimated using 

GenAlex software. Based on Euclidian distances, analysis of molecular variance (AMOVA) was 

conducted using GenAlex software to partition total genetic variations into, within and among 

districts and agro-ecologies of germplasm collection so as to quantify the diversity level and 

genetic relationship among genotypes. 
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4.2.2.2. Cluster analysis 

The SSR marker alleles were converted to binary data scored as either presence or absence of 

the band for all the 48 sweetpotato clones and treated as dominant marker. To evaluate the results 

of SSR markers, each amplified fragment was considered as one locus. The genetic dissimilarity 

matrix of the 48 sweetpotato clones was calculated using the Jaccard’s coefficient (Jaccard, 

1908).  

Cluster analysis was done based on neighbor-joining algorithm using the un-weighted pair group 

method using arithmetic average (UPGMA) in DARwin 5.0 software (Perrier and Jacquemoud-

Collet, 2006). A dendrogram was then generated on the dissimilarity matrix. To investigate the 

genetic relationships among accessions, genetic distances between all pairs of individual 

accessions were estimated to draw a dendrogram.   

4.3. Results 

4.3.1. Characteristics of the SSR markers  

The polymorphic information content (PIC) values reflecting the genetic diversity of the nine SSR 

markers used ranged from 0.61 for the marker SSR07 to 0.88 for the IB-R16 with a mean of 0.78 

(Table 4.3).  All the primers considered in this study were highly polymorphic. The high mean PIC 

implies that the SSR markers used for analysis were very informative with high discriminating 

ability; hence the markers can suitably be used in genetic diversity and relationship analysis.  

4.3.1.1. Genetic diversity and relationship among sweetpotato genotypes 

A summary statistics for various genetic diversity parameters are presented in Table 4.3. The total 

number of alleles amplified per locus ranged from 4 to 17 with a mean of 9.78. Eighty eight 

putative alleles were detected among the 48 genotypes studied. The lowest and highest number 

of alleles per locus were detected from the markers SSR07 (4) and IB-R12 (17), respectively. The 

effective number of alleles per locus ranged from 2.2-5.1 with mean value of 3.5. The markers 

SSR07 and IB-R16 had the lowest and highest number of effective alleles of 2.2 and 6.1, 

respectively. The high allelic richness indicates high level of genetic diversity among Tanzanian 

sweetpotato genotypes useful for further systematic breeding. 
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The Shannon’s diversity value ranged from 0.78 to 1.69 with a mean of 1.22. The loci SSR07 and 

IB-R12 had the lowest and highest diversity values, respectively (Table 4.3). This suggests that 

the germplasm used in the present study was highly variable.  

The gene diversity ranged from 0.51 to 0.84 with a mean of 0.69 (Table 4.3). Markers SSR07 and 

IB-R12 had the lowest and highest gene diversity, respectively among the nine markers. 

The genetic differentiation ranged from 0.1 to 0.41 with a mean of 0.21 (Table 4.3). The markers 

IB-R12 and IB-CIP13 had the lowest and highest genetic diversity, respectively. Therefore, the 

germplasm demonstrated sufficiently large genetic differentiation.  

Table 4.3. Summary of characteristics and genetic parameters of nine SSR markers used in 

assessing genetic diversity of 48 sweetpotato collections from Tanzania 

 Marker Size range of alleles   
Genetic parameters  

N Ne I He FST Nm PIC 

IB-R03 150-220 15 4.87 1.61 0.82 0.11 1.96 0.86 

IB-S07 130-175 14 4.16 1.37 0.78 0.18 1.18 0.87 

IB-R12 80-140 17 5.05 1.69 0.84 0.10 2.18 0.85 

IB-R16 135-200 15 5.11 1.64 0.83 0.11 1.99 0.88 

IB-R19 155-205 5 2.47 0.95 0.60 0.21 0.94 0.68 

IB-CIP13 130-190 5 2.27 0.83 0.57 0.41 0.36 0.74 

SSR07 90-115 4 2.16 0.78 0.51 0.29 0.61 0.61 

SSR09 155-180 7 2.61 1.03 0.61 0.27 0.68 0.78 

690524 158-190 6 2.88 1.08 0.64 0.22 0.89 0.75 

Overall mean 10  3.51 1.22 0.69 0.21 1.20 0.78 

SE 5.31 0.26 0.08 0.03 0.03 0.22 0.10 

N = number of alleles, Ne = number of effective alleles, I = Shannon's information index, He = gene diversity, 

FST = genetic differentiation, Nm = gene flow, PIC = polymorphic information content, SE = standard error. 
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The gene flow for the studied germplasm collection ranged from 0.36 to 2.18 with an overall mean 

of 1.20 (Table 4.3). Short distances between agro-ecologies or limited introductions of new gene-

pools could have greatly contributed to easier gene flow between locations.  

4.3.1.2. Analysis of molecular variance (AMOVA) 

There was a highly significant difference (P ≤ 0.001) in molecular variance among genotypes 

within district and agro-ecologies of collection (Tables 4.4). Most of the genetic variability was due 

to differences among individuals within districts and agro-ecologies contributing to 87 and 84% of 

the variations, respectively. Only 9 and 4% was due to variations within genotypes within districts 

and agro-ecologies, respectively.   

Table 4.4. Analysis of molecular variance for (AMOVA) of the SSR markers among and within the 

48 sweetpotato genotypes studied 

Source of variation df SS MS Estimated 
variation 

Percentage 
variation F-Statistics 

Districts       

Among 

populations 
4 49.13 12.28 0.32 9 0.001 

Among individuals 43 282.55 6.57 3.21 87 0.001 

Within individuals 48 7 0.15 0.15 4 0.001 

Agro-ecologies       

Among 

populations 
1 21.47 21.47 0.46 12 0.001 

Among individuals 46 310.2 6.74 3.3 84 0.001 

Within individuals 48 7 0.15 0.15 4 0.001 

df = degrees of freedom; SS =sum of squares, MS = mean square 

4.3.1.3. Genetic distance and genetic identity 

The average Nei’s unbiased genetic distance (Nei, 1987) indicated among and within location of 

germplasm collections is presented in Table 4.5. The analysis showed the greatest distance for 

genotypes sampled between the areas of Kagera and Temeke (1.764) followed by Kagera and 

Mkuranga (1.562). The shortest genetic distance was between Kisarawe and Mkuranga (0.195). 

Similarly, genetic identity among genotypes and districts varied from 0.171 to 0.8 (Table 4.5). The 

highest genetic identity (0.823) was between Kisarawe and Mkuranga and lowest (0.171) was 

between Kagera and Temeke.  
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Table 4.5. Nei's unbiased genetic identity (top diagonal) and genetic distance (bottom diagonal) 

of 48 Tanzanian sweetpotato genotypes characterized using nine SSR makers  

Locations Zanzibar Kagera Kisarawe Mkuranga Temeke 

                       Genetic identity 

Zanzibar  0.504 0.800 0.586 0.472 

Kagera 0.686  0.464 0.210 0.171 

Kisarawe 0.223 0.768  0.823 0.649 

Mkuranga 0.535 1.562 0.195  0.739 

Temeke 0.751 1.764 0.432 0.303  

 Genetic distance 

4.3.2. Cluster analysis 

The UPGMA cluster analysis based on genetic dissimilarity using the neighbor-joining method in 

DARwin 5.0 grouped the 48 genotypes into three major clusters (Figure 4.1). Clusters I and II 

each had 21 genotypes and III had 6 genotypes. Each cluster had sub-clusters. The SSR markers 

cluster analysis did not comply with the predefined genotype grouping based on their 

geographical origins. From cluster I, genotype Ex-Ramadhani originally collected from Kisarawe 

area was clearly identified. This genotype was characterized by cream fleshed storage roots with 

high dry matter content and resistant to SPVD. From cluster III genotype Kibakuli was selected. 

This genotype was collected from Zanzibar and displays orange fleshed roots with low dry matter 

content and susceptibility to SPVD. Further, genotype Mkombozi in cluster III was sourced from 

Kagera region in Lake Zone has orange flesh and relatively high root yields but low in dry matter 

content. Mkombozi could be integrated with genotype Mjomba mkwe collected from Kisarawe 

(cluster III) which displayed moderate yields and high dry matter content. The genotype Ex-

Halima-3 collected from Mkuranga (cluster III) was cream fleshed, tolerant to SPVD, relatively 

high yielder but low in dry matter content but could be integrated to genotype Kabuchenji 

originated from Kagera area (cluster II) with yellow fleshed roots, moderately susceptible to 

SPVD, high yield and dry matter content.  
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 Figure 4.1. Dendrogram showing genetic relationship among 48 sweetpotato genotypes tested using nine 

SSR markers 
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4.4. Discussion 

4.4.1. Characteristics of the SSR markers  

All primers used in the present study were highly polymorphic. The high mean PIC implied that 

the SSR markers were very informative. According to Botstein et al. (1980) PIC guideline, all the 

nine SSR markers were highly informative; they had PIC greater than 0.5. The PIC values 

calculated in the present study was in agreement with that reported by Koussao et al. (2014) who 

studied the genetic diversity of Burkina Faso’s sweetpotato germplasm using SSR markers and 

reported a mean PIC of 0.73. Similarly, Yada et al. (2010) and Gwandu et al. (2012) reported 

mean PIC values of 0.62 and 0.50 for Ugandan and Tanzanian sweetpotato germplasm, 

respectively. Vaeasey et al. (2008) reported a high mean PIC value of 0.96 using SSR markers 

for Brazilian sweetpotato genotypes.  Also, Rodriguez-Bonilla et al. (2014) using 23 SSR markers 

to assess genetic diversity in Puerto Rico’s sweetpotato germplasm reported a high mean PIC 

value of 0.79. The high levels of polymorphism reported could be due to large genome size, 

allopolyploid, outcrossing nature and heterozygosity of sweetpotato (Hwang et al., 2002). He et 

al. (1995) reported a high level of polymorphisms in sweetpotato which was fixed through 

vegetative reproduction and maintained through high level of gene flow due to self-incompatibility. 

Therefore, the SSR markers used in this study confirmed the existence of high genetic variability 

in sweetpotato germplasm. 

4.4.1.1. Genetic diversity and relationship among sweetpotato genotypes 

The effective number of alleles per locus ranged from 2.2 - 5.1 with mean value of 3.5. This result 

is comparative to findings reported by Gwandu et al. (2012) who reported 11 - 22 alleles per locus 

when studying elite sweetpotato genotypes from Tanzania.  Further, Rodriguez-Bonilla et al. 

(2014) reported number of alleles ranging from 4-25 per locus when charactering sweetpotato 

germplasm from Puerto Rico. The high number of alleles in sweetpotato could be due its 

hexaploidy (Karuri et al., 2010; Rodriguez-Bonilla et al., 2014). The high allelic richness indicates 

high level of genetic diversity among Tanzanian sweetpotato genotypes useful for further 

systematic breeding. 

The Shannon’s diversity value ranged from 0.78 to 1.69 with a mean of 1.22. The diversity values 

from this study are slightly lower compared to those reported by Arizio et al. (2009) with mean 

diversity value of 2.69 and slightly higher than those reported by da Silva et al. (2014) with a mean 

diversity index of 0.45, while studying the genetic diversity of Northern Brazil collection using 
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random amplified polymorphic DNA (RAPD). Therefore, the germplasm sampled in this study are 

genetically diverse. However, the result of this study is similar to the findings of Gwandu et al. 

(2012) who reported the genetic diversity from 0 to 0.98 with mean of 0.55. The high level of 

genetic diversity might have been contributed largely by cross pollination, hexaploidy and 

vegetative propagation of the crop (He et al., 1995; Hwang et al., 2002; Yada et al., 2010). Also, 

farmers are known to maintain a high level of genetic diversity of a species as well as several 

varieties for a particular species (Peroni and Hanazaki, 2002). As a result, the germplasm used 

in this study was highly variable.  

The gene diversity ranged from 0.51 to 0.84 with a mean of 0.69. The mean gene diversity 

reported in this study was higher than 0.55 reported by Hwang et al. (2002). The high levels of 

genetic diversity could be justified by the outcrossing and self-incompatibility in sweetpotato. Also, 

vegetative propagation could have attributed to maintaining high levels of genetic diversity of this 

crop. 

The genetic differentiation ranged from 0.1 to 0.41 with a mean of 0.21. According to standard 

guidelines for the interpretation of genetic differentiation (Wright, 1978), the range 0–0.005 

indicates little, 0.05–0.15 moderate, 0.15–0.25 great, and above 0.25 very large genetic 

differentiations. Therefore, FST values in the present study ranged from moderate to very large 

genetic differentiation. These values indicate that there is likelihood of gene recombination or 

exchange between populations or genotypes. This could have been contributed by outcrossing 

nature of sweetpotato. Therefore, the germplasm demonstrated sufficiently large genetic 

differentiation.  

The gene flow for the studied germplasm collection ranged from 0.36 to 2.18 with an overall mean 

of 1.20. Short distances between agro-ecologies or limited introductions of new gene-pools could 

have greatly contributed to easier gene flow between locations (Elameen et al., 2008). Further, 

gene flow between and across sweetpotato populations has not only been contributed by being 

an outcrossing species but also due to the presence of self-incompatibility and free exchange of 

planting materials (Martin, 1968; Hwang et al., 2002; Rodriguez-Bonilla et al., 2014). Pollination 

mechanisms play a primary role in determining the levels of gene flow in plants (Govindaraju, 

1988). Arizio et al. (2009) reported that, while self- incompatibility and cross-pollination in 

sweetpotato encourage high gene flow between genotypes, vegetative propagation helps to 

maintain its genetic identity. Depending on the existing systems, gene flow can occur at 

remarkable distances and rates (Ellstrand, 2003). According to Slatkin (1989) and Morjan and 

Rieseberg (2004), gene flow <1 is considered to be low, while Nm=1 is considered to be 
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moderate. Moderate or relatively low levels of gene flow can significantly alleviate the loss of 

genetic diversity by preventing the effect of genetic drift (Aguilar et al., 2008). Hence, routine 

exchange of planting materials between farmers in different agro-ecologies and limited 

introductions of new gene pools may have contributed to gene flow among sweetpotato 

populations.  

4.4.1.2. Analysis of molecular variance (AMOVA) 

There was a highly significant difference (P ≤ 0.001) of molecular variance among genotypes 

within district and agro-ecologies of collection. Similar to this study, Gichuki et al. (2003) reported 

a significantly high contribution of among genotypes within regions variation to the total variation. 

According to Veasey et al. (2007) the higher variability reported could provide some insights to 

the evolutionary dynamics of sweetpotato. The AMOVA result suggests that a small collection 

within a given region will capture the genetic diversity existed in Tanzanian Sweetpotato.  

4.4.1.3. Genetic distance and genetic identity 

The present study found genetic distance estimates which is generally higher than previous 

reports. Gwandu et al. (2012) reported a genetic distance of 0.55 in elite sweetpotato genotypes 

from Tanzania. Similarly, a mean genetic distance of 0.57 was reported in Ugandan sweetpotato 

germplasm (Yada et al., 2010). Also, it is much higher than those reported by Gichuki et al. (2003) 

in which the highest genetic distance between South America and Africa was at 0.1809. The high 

genetic distances for the genotypes studied could be attributed to the uniqueness of east African 

sweetpotato germplasm which seems to be different from other regions (Gichuki et al., 2003). The 

authors suggested that, evolutionary and germplasm exchange processes could have attributed 

to the current sweetpotato diversity in the region. According to Nei (1972), genetic distance is 

linearly related to geographical distance. However, the genetic distance values for Tanzanian 

germplasm (1.562 and 1.764) requires further confirmation by using more primers.  

4.4.2. Cluster analysis 

The UPGMA cluster analysis based on genetic dissimilarity using the neighbor-joining method in 

DARwin 5.0 grouped the 48 genotypes into three major clusters. The genotypes were not 

necessarily grouped according to the origin of collection suggesting genetic differences of 

collections from the same region. Similar to this study, the lack of geographic associations with 

the source of collections among genotypes was also reported by Elameen et al. (2008), Yada et 

al. (2010b) and Gwandu et al. (2012) for germplasm from Tanzania and Kenya, respectively. 
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Gichuru et al. (2006) reported a lack of association between genotypes and their origin of 

collections in cluster analysis among East African sweetpotato landraces and suggested that it 

could be due to random genetic variation within the East Africa.  The random genetic variation 

could be  due to gene flow arising from short distances between agro-ecologies which has led to 

routine exchange of planting materials among and between farmers who have been growing 

sweetpotato for decades (Karuri et al., 2010; Gwandu et al., 2012). Contrary to the present study 

which classified the entries into three major genetic groups, Elameen et al. (2008) using AFLP 

markers reported two major clusters for 97 sweetpotato genotypes from Tanzania. Consistent to 

previous authors, using four SSR markers Gwandu et al. (2012) found two major clusters except 

nine genotypes not being grouped into any of the clusters in elite sweetpotato genotypes from 

Tanzania. Overall, this variation could be due to genotypic differences and number and types of 

markers used.  

4.5. Conclusions 

From the present study, it is concluded that the nine SSR markers were highly polymorphic and 

sufficiently distinguished the 48 sweetpotato genotypes investigated. The genotypes indicated 

existence of relatively high genetic variability which could be exploited for future crop 

improvement. The extremely high genetic distances for some of the populations between districts 

call for further investigation and confirmation. The study identified genetically unrelated and 

complementary sweetpotato genotypes such as Ex-Ramadhani, Kibakuli, Mkombozi, Mjomba 

mkwe, Ex-Halima-3 and Kabuchenji. These are valuable genetic resources and are 

recommended for breeding for high yield and other related traits and resistance to sweetpotato 

virus diseases in Tanzania or similar agro-ecologies. Finally, the information generated will 

contribute significantly to sweetpotato germplasm management and conservation in the country.  
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Chapter five 

5. Combining ability of sweetpotato clones for storage root yield 
and related traits and resistance to sweetpotato virus disease  

Abstract 

This study was conducted to determine general combining ability (GCA) and specific combining 

ability (SCA) effects of selected sweetpotato clones for number of roots, root yield, DMC and 

resistance to SPVD for further selection and breeding. Eight clones selected for their yield, DMC 

or SPVD resistance were crossed in a half diallel mating design. The generated families were 

evaluated at Sugarcane Research Institute (SRI), Kilombero Agricultural Training and Research 

Institute (KATRIN) and Sokoine University of Agriculture (SUA) in Tanzania. Results showed 

significant (p<0.001) differences among families for all traits. The number of roots ranged from 2-

7 with a mean of 3. Root yield ranged from 9.5-17.1 t/ha with a mean of 13.4 t/ha. DMC ranged 

from 31.3-39.4% with a mean of 36.2%. The reaction to SPVD ranged from 1-4 with a mean score 

of 3. The GCA effects of parents were significant (P≤0.001) for number of roots, yield, DMC and 

SPVD resistance. The SCA effects of crosses were significant (P≤0.05) for number of root per 

plant, root yield, DMC and SPVD resistance. GCA and SCA interacted significantly with sites 

indicating environmental influence on the gene action for traits studied. Parents Simama and 

Gairo had positive and significant GCA effects for number of roots per plant of 0.23 and 0.26, 

respectively. Parents 03-03 and Simama had significant GCA effects for root yield, while Ukerewe 

and Simama had significant GCA effect for DMC. Ex-Msimbu-1 and Gairo had significant (P≤0.01) 

GCA effect for SPVD resistance. Therefore, parents Gairo, 03-03, Ukerewe, Simama and Ex-

Msimbu-1 could be used in recurrent selection for sweetpotato breeding for improved yield, DMC 

and SPVD resistance. Best combining families with positive and significant SCA effects were: 

Mataya x Gairo and Simama x Gairo for number of roots per plant, Mataya x Ex-Msimbu-1 and 

03-03 x Ex-Msimbu-1 and Resisto x Gairo for root yield and, Resisto x SPKBH008, Mataya x 

Gairo, 03-03 x Ukerewe and SPKBH008 x Gairo for DMC, and Mataya x SPKBH008 and Mataya 

x Gairo had negative and significant SCA effect for resistance to SPVD. The selected parents and 

families were the best candidates to develop improved sweetpotato varieties with high root yields, 

DMC and SPVD resistance.  

Keywords: combining ability, diallel analysis, gene action, sweetpotato 
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5.1. Introduction 

Sweetpotato (Ipomoea batatas [L.] Lam., 2n =6x=90) is grown for food, feed and industrial raw 

material in many countries. Nonetheless, the current crop yields in sub-Saharan Africa (SSA) are 

low due to several factors including biotic, abiotic and socio-economic constraints. Both improved 

sweetpotato cultivars and landraces that are widely grown succumb to several viral diseases, 

including the most devastating, sweetpotato virus disease (SPVD) (Gibson et al., 1998). In 

Tanzania, SPVD is the major constraint to sweetpotato production causing significant yield losses. 

Continued use of pest and disease susceptible, low yielding and late maturing varieties, and lack 

of effective control measures for SPVD contributes to reduced yields and disease build up, 

development and persistence. Several approaches have been devised in combating development 

and spread of the SPVD including use of clean and disease free planting materials and breeding 

of resistant genotypes. Development of genotypes resistant to SPVD will improve food security 

and income to small-scale farmers. 

Diallel mating designs have been widely used in genetic studies to investigate the inheritance of 

different important traits of various crops including sweetpotato (Griffing, 1956; Mwanga et al., 

2002; Hallauer et al., 2010). The design entails crossing of a parent with other parents in all 

possible combinations (Hayman, 1954). The design is used to study polygenic systems that 

determine quantitative traits  and provides information on predominant gene action (Viana et al., 

1999; Ferreira et al., 2004). With diallel analysis, it is assumed that the genes in the parents are 

independently distributed (Sughroue and Hallauer, 1997). According to Johnson and King (1997), 

the design is useful in providing pedigreed breeding population for selection, progeny tests and 

to estimate genetic parametres. In a breeding programme, selection of parents showing good 

general combining ability (GCA) effects and their progenies with high specific combining ability 

(SCA) effects for desirable traits are essential (Bridgwater et al., 1992; Johnson and King, 1997; 

Buteler et al., 2002; Ferreira et al., 2004). It provides for realized and expected gains arising from 

both additive and non-additive genetic effects (Bridgwater et al., 1992).  

Contrary to other crops, sweetpotato may be poorly suited for SCA-based improvement due to 

incompatibility barriers which limit successful hybridization of selected parents (Buteler et al., 

2002). In the past, considerable research efforts were made in Uganda and Kenya towards 

breeding for resistance to sweetpotato virus diseases. In Tanzania, sweetpotato improvement 

has been limited to evaluation of local, improved or exotic genotypes. There is therefore a need 

to devise a well-designed sweetpotato breeding program in the country to improve yield and yield 

related traits and disease resistance. Clonal selection and information on GCA and SCA effects 
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for the desired traits among the sweetpotato genotypes is important to identify the best combiners 

for successful breeding. Therefore, the objective of the present study was to determine the GCA 

and SCA effects of selected sweetpotato clones for the number of storage roots, fresh storage 

root yield, dry matter content (DMC) and resistance to sweetpotato virus disease (SPVD) for 

further selection and breeding. 

5.2. Materials and methods 

5.2.1. Plant materials 

Eight selected sweetpotato genotypes described in Table 5.1 were used to generate new genetic 

combinations. The parents were selected based on field evaluation aiming at flowering ability, 

yield potential, dry matter content of storage root or resistance to sweetpotato virus disease 

(SPVD) (Ngailo et al., 2015). 

5.2.2. Diallel crosses and seedling plants  

The eight sweetpotato parents (Table 5.1) were crossed using a half diallel mating design in 2013 

at Sugarcane Research Institute (SRI) (S06°46’701” and E038°58’315”). Plants were established 

in well-prepared seedbeds. The crossing block was irrigated on a daily basis from mid-May to end 

of September. Vines were tended to grow on wooden trellises tied with a plastic rope. Weeding 

and other agronomic practices were carried out to optimize flowering, fertilization, seed setting 

and maturity. Flower buds that were near to open were tagged between 3:00-4:00 pm. The next 

day each flower was hand pollinated between 7:00 and 11:00 am. The pollinated flowers were 

labeled and tagged and the dried seed capsules from successful crosses were regularly 

harvested and kept in seed envelopes. A total of 28 new families [n(n-1)2] were generated  

(Griffing, 1956; Shattuck et al., 1993).  

The botanical seeds collected from successful crosses (Figure 5.1A) were soaked in a 

concentrated sulphuric acid (98% H2SO4) for 20 minutes. The acid was discarded and seeds 

rinsed with running tape water for 10 minutes. The seeds were placed in petri dishes lined with 

moistened tissue paper and covered with cotton (Figure 5.1B). The petri dishes were kept at an 

ambient temperature. After two to three days, germinated seeds were transferred into 20 L 

capacity plastic pots to raise seedlings (Figure 5.1C). 
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Table 5.1. Names, origin and important traits of sweetpotato genotypes used in an 8x8 half diallel 
crosses 

Name of parents Origin SPVD reaction DMC (%) Root flesh colour 

Mataya Tanzania  Susceptible 30.61 Orange 

03-03 Tanzania Resistant 37.45 Orange 

Resisto CIP – Nairobi Susceptible 30.81 Deep orange 

Ukerewe Tanzania  Resistant 42.34 Cream  

SPKBH008 Breeding clone unknown 31.81 Deep orange 

Simama Tanzania (commercial) Resistant 41.72 Cream 

Ex-Msimbu-1 Tanzania (local) Resistant 41.01 White  

Gairo Tanzania (commercial) Moderately Resistant 38.85 White  

DMC = Dry matter content; CIP=International Potato Center (Centro Internacional de la Papa)  

When seedlings reached a plant height of 40-60 cm, they were transplanted to multiplication 

seedbeds from where the planting materials for evaluation trials were collected (Figure 5.1D). 

From each cross, 15-20 seedling plants were selected for clonal evaluation across three sites.  

    

Figure 5.1: A= Botanical seeds, B = Germinating seeds in petri dish, C = Seedlings established in plastic 
pots, D=seedlings transplanted in seedbeds at SRI. 

5.2.3. Field trial establishment and evaluation 

Study sites and experimental design  

A B C D 
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Clonal stage I, 28 families and eight parents were evaluated across three sites. The study sites 

are hot spot areas for SPVD and experience high disease pressure during the growing season. 

The sites were Sugarcane Research Institute (SRI) - Kibaha (S06°46’701’’, E038°58’315”), 

Kilombero Agricultural Training and Research Institute (KATRIN) – Ifakara (S08°03’693”, 

E036°40’005”) and Sokoine University of Agriculture (SUA) – Morogoro (S06°50’279”, 

E037°38’636”). The trials were established in March, April and May, 2014 for SRI, KATRIN and 

SUA, respectively. The trials at SRI and KATRI were rainfed, while that at SUA was under drip 

irrigation. The families and eight parents were evaluated using a 6x6 lattice design with three 

replications. The experimental plot consisted of a single 6 m long row with inter- and intra-spacing 

of 1 m and 0.3 m, respectively. Spreader rows of the SPVD susceptible variety Kibakuli were 

planted between rows of test clones. All agronomic practices were done as per recommendation 

for the study sites. 

5.2.4. Data collection  

5.2.4.1. SPVD assessment 

The data for SPVD reactions wasrecorded at 2, 3 and 4 months after planting. The SPVD 

reactions were assessed using a scale of 1 to 5, where 1 = no visible symptoms, 2 = mild 

symptoms (a few local lesions on a few leaves), 3 = moderate symptoms (mosaic symptoms on 

leaves), 4 = severe symptoms (mosaic with plant stunting) and 5 = very severe symptoms of 

purpling/yellowing or mosaic on leaves, severe leaf distortion, reduced leaf size and severe 

stunting (Figure 5.2) (Mukasa et al., 2004; Njeru et al., 2004; Mwanga et al., 2013). Graft 

inoculation with Ipomoea setosa (an indicator plant) was done in an insect proof screen house 

particularly for those in the scale of 1-3 to further confirm if they were disease free.

   

Figure 5.2: Some of sweetpotato clones showing the SPVD symptoms, A, B and C for SRI, 
KATRIN and SUA, respectively. 

A   B C 
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5.2.4.2. Yield and related traits  

Other data collected were number of roots per plant and fresh root yield per plant (kg per plant 

and later converted to t/ha). The test clones were generally variable and only plants with 

marketable roots were described in terms of root form, root shape, skin and flesh colour. This was 

done using a sweetpotato descriptor (Huaman, 1999). Further, CIP guide on sweetpotato flesh 

colour was used to describe the flesh colour. The trials were harvested 120 days after planting. 

     

Figure 5.3: Different storage root shapes, skin and flesh colour for some of the new sweetpotato 
clones. A = elliptic shape, B = ovate shape, C and D = orange and yellow flesh colour, 
respectively.  

Samples to determine root dry matter content were collected from marketable roots on plant basis. 

The dry matter content was determined using the methods described by Carey and Reynoso 

(1999), Fonseca et al. (1999) and Tairo et al. (2008) with some modifications. A sample of 200 g 

was chopped from undamaged roots for each plant in each replication. The samples were air-

dried and then oven dried at 70°C for 72 hours until constant weight. The dried samples were 

weighed using an electronic balance and the resulting figures were used to calculate dry matter 

content as percentage of the fresh weight. The families mean dry matter content was finally used 

for analysis. 

5.2.5. Data analysis 

5.2.5.1. Analysis of variance  

The data for root yield, number of storage roots and dry matter content of  the three sites were 

subjected to the standard analysis of variance using the GLM procedure of the SAS 9.2 statistical 

programme (SAS, 2008). The data were analyzed separately. After homogeneity of variance 

tests, a combined analysis of variance was conducted. 

A B C D 
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5.2.5.2. Estimation of general and specific combining ability effects  

Analysis of variance was performed using the DIALLEL-SAS05 program (Zhang et al., 2005) to 

identify the significant level of general combining ability (GCA) of parents and specific combining 

ability (SCA) of  crosses. The diallel analysis was performed using Griffing’s (1956) method II 

random model with the genetic statistical model of:  
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  is the population mean, 

ji gg ,  is the general combining ability effect for the ith and jth parents 

ijs is the specific combining ability effect of the cross between the ith and jth parents such that 

ijs = jis  

ijkle  is the experimental error effect unique to the ijklth  observation (Griffing, 1956) 

The narrow sense heritability was calculated according to the formula proposed by van Buijtenen 

(1976) and Kang (1994);  
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GCA, genetic variance for general combining ability, 

σ2
SCA genetic variance component for specific combining ability,   

σ2e/r = error variance divided by the number of replications. 

Heterosis estimates for number of roots per plant, root yield, dry matter content and resistance to 

SPVD for each cross was estimated using mid-parent (MP) and better-parent (BP) means or 

scores for the trait concerned according to the following equations: 
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F1 = mean performance of F1, MP = mean of the two parents making the cross and BP = mean 

of the better parent for that particular cross (Falconer and Mackay, 1996). 

5.3. Results 

5.3.1. Analysis of variance  

Analysis of variance showed highly significant (p<0.001) differences among F1 families for 

number of roots per plant, storage root yield, dry matter content, and response to SPVD across 

sites (Table 5.2). There were significant (p<0.001) effects of site, entry and site by entry interaction 

for all traits suggesting differential performances of families across sites.  

Table 5.2. Analysis of variance of four traits of 28 F1 sweetpotato families and their parents 

evaluated across three sites in Tanzania   

Source of variation DF Mean square 

Nrpp Yield (t/ha) DMC (%) SPVD  

Site 2 15.89*** 44.16*** 194.42*** 6.78***  

Rep (site) 6 6.08*** 6.92ns 4.99ns 0.36ns  

Block (site*rep) 45 1.40ns 4.86* 4.14ns 0.61ns  

Genotypes 35 2.99*** 57.85*** 34.46*** 1.91***  

Site*genotypes 70 2.87*** 21.81*** 9.91*** 1.04**  

Error 165 1.16 3.28 3.54 0.60  

Total 323      

DF = degree of freedom, DMC (%) = dry matter content (%), Nrpp = number of roots per plant, *. **, *** = 

Significant at 0.05, 0.01 and 0.001, respectively, ns = non-significant at P≤0.05, SPVD = Sweetpotato virus 

disease. 

Site effects had significant contribution to the total variability than family and family by sites effects 

explained by the highest sum of squares for dry matter content and root yield and number storage 
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root yield. Conversely, entry effect contributed largely to total variability to resistance for SPVD 

compared to other components.  

5.3.2. Mean response of yield and related traits  

The mean performance of each genotype per site is presented in Table 5.3. There was highly 

significant difference (p<0.001) in the number storage roots among families within and across 

sites (Table 5.2). The number of storage roots ranged from 2-10, 2-5 and 2-6 for SRI, KATRIN 

and SUA, respectively, with the overall mean of 3 (Table 5.3). Eight families had mean number of 

storage roots of 2 at SRI. The families Mataya x Gairo and Simama x Gairo had the highest 

number of 6 and 10 roots per plant, respectively. On the other hand, 54% of the families had 2 

storage roots per plant and family Resisto x Gairo had the highest number of roots of 5 at KATRIN 

(Table 5.3). Further, cross 03-03 x Resisto had the highest mean number of storage roots of 6 at 

SUA. More than 50% of the crosses had mean root number of 3 at SUA. On the other hand, the 

number of roots for parents ranged from 2-3. 

There were highly significant differences (p<0.001) in storage root yield among families and 

across sites (Table 5.2). Overall, storage root yield ranged from 9.3-17.2 t/ha with the mean of 

12.9 t/ha (Table 5.3). The families performed differently across sites. At SRI, the mean yield was 

12.7 t/ha and families of SPKBH008 x Simama and Resisto x Ex-Msimbu-1 had the lowest and 

highest storage root yield of 6.8 and 24.1 t/ha, respectively. At KATRIN, the mean yield was 13.6 

t/ha. At this site, the families Ukerewe x SPKBH008 and Resisto x Simama had the lowest and 

highest yields of 8.8 and 19.2 t/ha, respectively. Similarly, families of Mataya x 03-03 and 03-03 

x Ex-Msimbu-1 had the lowest and highest yield of 8.1 and 21.0 t/ha at SUA with a site mean of 

12.4 t/ha. For the parents, Mataya and Simama had the lowest and highest yield of 8.2 and 21.8 

t/ha, respectively. 

There were highly significant differences (p<0.001) in storage root dry matter content among 

families and across sites (Table 5.2). Dry matter content ranged from 31.1-39.6% with a mean of 

36% (Table 5.3). The crosses Ukerewe x Simama and 03-03 x Ukerewe had the highest dry 

matter content, while crosses 03-03 x Ex-Msimbu-1 had the lowest. Among the three sites, SRI 

and KATRIN had the lowest and highest average dry matter content of 34.8 and 37.4%, 

respectively. Crosses Ukerewe x Simama, SPKBH008 x Simama and 03-03 x Ukerewe had the 

highest dry matter content of 44.5, 38.9 and 40.2% for SRI, KATRIN and SUA, respectively. 

Conversely,  cross 03-03 x Ex-Msimbu-1 had the lowest dry matter content of 32, 29.8 and 31.5% 
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at SRI, KATRIN and SUA, respectively (Table 3). The parents SPKBH008 and Ukerewe had the 

lowest and highest DMC of 32.1 and 40.7%, respectively. 

There was highly significant difference (p<0.001) with regard to SPVD resistance among families 

and across sites (Table 5.2). The SPVD symptoms ranged from 1-4 with the overall mean score 

of 2 (Table 5.3). There were no definite relationships of F1s with respect to their parents with 

regard to reaction to SPVD, indicating variable sources of resistance to the disease among 

sweetpotato genotypes. Generally, most of the families showed relatively low scores to SPVD; 

however, families of Mataya x 03-03, Mataya x SPKBH008, SPKBH008 x Simama and Ex-

Msimbu-1 x Gairo were the best genotypes with lowest SPVD scores. Conversely, Resisto and 

Mataya were the most susceptible parents with SPVD mean scores of 3 and 4, respectively. 
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Table 5.3. Mean number of roots per plant yield of storage root, dry matter content, and reaction to sweetpotato virus disease of 
sweetpotato families evaluated across three sites of eastern Tanzania. 

  Number of roots per plant Yield (t/ha) DMC (%) SPVD 

 Crosses SRI KATRIN SUA Mean SRI KATRIN SUA Mean SRI KATRIN SUA Mean SRI KATRIN SUA Mean 

Mataya x 03-03 2 2 3 2 11.6 13.0 8.1 10.9 38.2 35.6 36.3 36.7 1 1 2 1 
Mataya x Resisto  3 2 3 2 9.0 15.3 10.6 11.7 33.8 36.5 31.8 34.0 2 3 2 2 
Mataya x Ukerewe 2 3 3 3 12.0 14.8 9.0 11.9 38.7 37.5 37.3 37.8 2 2 1 2 
Mataya x SPKBH008 4 2 3 3 9.1 10.0 8.9 9.3 38.5 36.1 37.1 37.2 2 1 1 1 
Mataya x Simama 2 3 3 3 15.9 14.7 14.0 14.9 38.4 38.8 36.3 37.8 2 2 4 3 
Mataya x Ex-Msimbu-1 2 3 3 3 17.8 13.5 16.6 16.0 40.9 35.1 36.8 37.6 2 2 2 2 
Mataya x Gairo 6 3 3 4 8.9 14.9 10.7 11.5 38.6 35.6 34.0 36.1 3 2 1 2 
03-03 x Resisto 3 2 6 3 14.6 12.6 19.9 15.7 35.1 33.8 31.3 33.4 2 2 3 2 
03-03 x Ukerewe 3 2 3 3 12.4 14.4 10.8 12.5 39.0 35.3 40.2 38.2 2 2 2 2 
03-03 x SPKBH008 5 2 4 3 11.3 14.6 10.6 12.2 37.2 34.2 36.6 36.0 2 3 2 2 
03-03 x Simama 5 2 4 4 14.5 18.5 15.4 16.1 35.9 31.3 36.4 34.5 3 1 1 2 
03-03 x Ex-Msimbu-1 2 2 3 3 19.9 10.6 21.0 17.2 32.0 29.8 31.5 31.1 1 2 1 2 
03-03 x Gairo 4 2 3 3 11.5 16.1 16.7 14.7 35.4 35.0 36.8 35.7 2 4 3 3 
Resisto x Ukerewe 2 3 3 3 10.6 14.6 12.4 12.5 36.3 34.1 37.9 36.1 3 2 2 2 
Resisto x SPKBH008 3 3 3 3 10.7 15.1 13.1 13.0 36.9 37.7 36.5 37.1 2 3 1 2 
Resisto x Simama 3 3 4 3 16.9 19.2 13.6 16.6 36.0 35.6 35.1 35.6 2 2 2 2 
Resisto x Ex-Msimbu-1 3 2 3 3 24.1 10.5 11.4 15.3 37.8 35.4 32.8 35.3 1 2 2 2 
Resisto x Gairo 3 5 4 4 21.1 14.5 11.0 15.5 40.1 32.8 35.1 36.0 2 2 2 2 
Ukerewe x SPKBH008 3 2 5 3 14.1 8.8 14.8 12.6 33.4 32.7 32.6 32.9 3 2 2 2 
Ukerewe x Simama 4 4 3 3 10.3 16.3 10.5 12.3 44.5 35.5 38.9 39.6 3 3 3 3 
Ukerewe x Ex-Msimbu-1 3 2 4 3 7.8 13.7 8.9 10.1 36.3 33.4 38.6 36.1 2 4 1 2 
Ukerewe x Gairo 4 3 3 3 12.1 14.5 9.0 11.9 40.3 35.4 38.4 38.0 2 2 2 2 
SPKBH008 x Simama 3 2 3 3 6.8 12.6 9.7 9.7 39.2 38.9 35.1 37.7 1 2 1 1 
SPKBH008 x Ex-Msimbu-1 2 3 3 3 13.9 16.1 10.7 13.6 38.9 35.6 36.4 37.0 1 3 1 2 
SPKBH008 x Gairo 4 3 4 4 12.6 13.1 13.6 13.1 38.1 34.6 37.6 36.8 1 2 1 2 
Simama x Ex-Msimbu-1 3 3 3 3 13.2 14.9 13.5 13.9 36.6 33.7 35.3 35.2 1 3 1 2 
Simama x Gairo 10 2 5 6 12.7 16.9 17.6 15.8 38.8 32.6 35.9 35.8 1 3 1 2 
Ex-Msimbu-1 x Gairo 2 2 4 3 12.1 11.0 15.4 12.8 42.9 31.1 38.4 37.4 1 2 1 1 
Parents                 
Mataya 3 3 2 2 7.7 10.8 5.9 8.2 36.0 30.7 32.5 33.1 5 2 4 4 
O3-03 2 3 4 3 10.3 11.9 11.8 11.3 34.6 34.1 38.2 35.6 1 2 1 1 
Resisto 2 2 4 3 5.9 10.0 10.9 8.9 32.0 32.9 32.2 32.4 3 2 3 3 
Ukerewe 3 2 3 3 8.1 9.1 9.2 8.8 42.7 37.8 41.4 40.7 2 2 1 2 
SPKBH008 2 3 2 2 10.2 8.7 10.6 9.9 32.1 34.4 29.8 32.1 2 1 1 1 
Simama 2 3 3 3 22.7 24.1 18.7 21.8 39.5 35.1 39.6 38.1 1 2 1 1 
Ex-Msimbu-1 3 3 2 3 9.8 9.1 10.6 9.8 38.8 36.1 38.0 37.6 1 1 1 1 
Gairo 2 2 2 2 13.6 10.2 9.6 11.1 34.7 37.0 33.6 35.1 1 2 1 1 
Mean 3.2 2.6 3.3 3.1 12.7 13.6 12.4 12.9 37.4 34.8 35.9 36.0 1.9 2.2 1.7 1.9 
CV (%) 50.1 23.3 21.6 36.3 13.9 14.1 14.1 14.1 4.5 6.6 4.4 5.2 39 37.1 48.1 41.1 
R2 (%) 66.1 77.0 80.2 72.1 92.3 86.9 89.4 90.0 86.2 65.1 86.4 82.7 70.3 66.3 66.3 69.0 

LSD(0.05) 5.34 2.03 2.38 0.35 5.85 6.36 6.76 0.58 5.58 7.57 5.26 0.61 2.4 2.64 2.63 0.25 

CV = Coefficient of variation, DMC = dry matter content, LSD = Least significant difference, R2 = Coefficient of determination,  
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5.3.3. Combining ability effects 

There was significant (P≤0.001) general combining ability (GCA) and specific combining ability 

(SCA) effects for number of storage roots, root yield and dry matter content and resistance to 

sweetpotato virus disease (SPVD) (Table 5.4). Similarly, there were highly significant interaction 

(P≤0.001) of GCA x site and SCA x site for number of storage root, root yield and dry matter 

content and SPVD except SCA x site effect for SPVD was not significant (Table 5.4). 

Table 5.4. Mean squares and significant tests of combining ability effects for number and yield of 
storage roots, dry matter content and resistance to Sweetpotato virus disease of sweetpotato 
clones evaluated at three sites in eastern Tanzania. 

Source DF 
Mean squares 

Nrpp Yield DMC SPVD 

GCA 7 2.26*** 120.08*** 47.66*** 3.16*** 

GCA x Env 14 3.17*** 28.83*** 22.99*** 1.41** 

SCA 28 3.72*** 56.07*** 32.78*** 1.37*** 

SCA x Env 56 2.56*** 27.08*** 8.33*** 0.77ns 

Error 210 0.61 3.62 3.664511 0.56 

DF: degree of freedom, DMC = dry matter content, GCA = general combining ability, SCA = specific 
combining ability, Env = environment, *. ***, *** = significant at 0.05, 0.01 and 0.001, respectively, ns = Not 
significant at 0.05. 

 

5.3.3.1. General combining ability effects 

Parents Simama and Gairo showed significant GCA effects of 0.26 and 0.23 at P≤0.01 and 

P≤0.05, respectively for number of roots per plant, while the other parents had negative and non-

significant GCA effects (Table 5.5).  

Positive and highly significant (P≤0.001) GCA effects of 2.05 and 0.70 were recorded for storage 

root yields for parents Simama and 03-03, respectively which were in a desirable direction. 

Negative and highly significant (P≤0.001) GCA effects of 1.39 and 1.25 were detected for parents 

Ukerewe and SBKBH008, respectively (Table 5.5). The rest of the parents had non-significant 

GCA effects. 
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A positive and highly significant (P≤0.001) GCA effect of 1.37 for dry matter content was recorded 

for parent Ukerewe (Table 5.5). Also, a significant (P≤0.05) and positive GCA effect of 0.55 was 

reported for parent Simama for the same trait. Conversely, a highly significant (P≤0.001) but 

negative GCA effect of 1.05 was estimated for parent Resisto for dry matter content. Likewise, 

parent 03-03 had a negative and significant (P≤0.05) GCA effect of 0.78. The GCA estimates for 

parents Mataya, SPKBH008, Ex-Msimbu-1 and Gairo were non-significant. 

In a desirable direction, a negative and significant (P≤0.01) GCA effect of 0.24 and 0.21 for 

resistance to SPVD was reported for the parents Ex-Msimbu-1 and Gairo (Table 5.5). Conversely, 

a positive and highly significant (P≤0.01) GCA effect of 0.27 was reported for parent Mataya. 

Similar, parent Ukerewe had a positive and significant (P≤0.01) GCA effect of 0.27 for the same 

trait. The GCA effects for other parents were non-significant. 

Table 5.5. Estimates of GCA effects for number of storage roots, yield, dry matter content and 
resistance to sweetpotato virus disease among eight sweetpotato parents. 

Genotype Nrpp Yield DMC Resistance to SPVD 

Mataya -0.15ns -1.16ns 0.08ns 0.27*** 

03-03 -0.04ns 0.70*** -0.78** -0.10ns 

Resisto -0.02ns 0.59ns -1.05*** 0.05ns 

Ukerewe -0.01ns -1.25*** 1.37*** 0.26** 

SPKBH008 -0.11ns -1.39*** -0.41ns -0.09ns 

Simama 0.23* 2.05*** 0.55* 0.06ns 

Ex-Msimbu-1 -0.18ns 0.38ns -0.03ns -0.24** 

Gairo 0.26** -0.01ns 0.23ns -0.21** 

DMC = dry matter content, Nrpp = number of roots per plant, SPVD = Sweetpotato virus disease, *. **, *** 

= Significant at 0.05, 0.01 and 0.001, respectively, ns = not significant at 0.05. 

 

5.3.3.2. Specific combining ability effects 

The specific combining ability effects for number of storage root, root yield, dry matter content 

and resistance to SPVD are presented in Table5. 6. Crosses Mataya x Gairo and Simama x Gairo 

had highly significant (P≤0.001) SCA effects of 2.03 and 1.88, respectively.  



132 

 

Table 5.6. Estimates of SCA effects for number of storage roots, yield, dry matter content and 
resistance to sweetpotato virus disease among 28 sweetpotato families.  

Crosses Nrpp Yield (t/ha) DMC (%) SPVD 

Mataya x 03-03 -0.38ns -2.22** 1.45ns -0.29ns 

Mataya x Resisto -0.28ns -0.39ns -1.25ns -0.11ns 

Mataya x Ukerewe 0.25ns 1.70ns 0.20ns -0.43ns 

Mataya x SPKBH008 0.25ns -0.99ns 0.87ns -0.63** 

Mataya x Simama -0.54ns 1.39ns 0.51ns 0.33ns 

Mataya x Ex-Msimbu-1 0.31ns 4.11*** 1.69* -0.04ns 

Mataya x Gairo 2.03*** 2.78ns 3.20** -1.29*** 

03-03 x Resisto 0.61ns 1.56ns -0.69ns -0.07ns 

03-03 x Ukerewe 0.02ns 0.37ns 2.06** -0.05ns 

03-03 x SPKBH008 -0.27ns -0.27ns 1.23ns 0.41ns 

03-03 x Simama 0.25ns -0.07ns -0.68ns 0.15ns 

03-03 x Ex-Msimbu-1 -0.57ns 3.44*** -4.09*** -0.11ns 

03-03 x Gairo -0.19ns 3.75** -0.27ns 0.89* 

Resisto x Ukerewe -0.21ns 0.27ns -0.11ns -0.09ns 

Resisto x SPKBH008 -0.02ns 0.74ns 2.61*** 0.04ns 

Reisto x Simama 0.12ns 1.07ns -0.21ns 0.11ns 

Resisto x Ex-Msimbu-1 -0.14ns 0.54ns 0.83ns -0.04ns 

Resisto x Gairo 1.16* 7.68*** 2.40* -0.29ns 

Ukerewe x SPKBH008 0.32ns 2.22** -4.30*** 0.61** 

Ukerewe x Simama 0.20ns -1.20ns 1.34ns 0.34ns 

Ukerewe x Ex-Msimbu-1 0.27ns -1.97* -1.64* 0.31ns 

Ukerewe x Gairo 0.08ns 1.53ns -1.35ns 0.81* 

SPKBH008 x Simama -0.46ns -3.80*** 0.96ns -0.30ns 

SPKBH008 x Ex-Msimbu-1 0.28ns 1.60ns 1.72* 0.11ns 

SPKBH008 x Gairo 0.67ns 1.87ns 3.29** 0.29ns 

Simama x Ex-Msimbu-1 0.16ns -1.91* -1.48* -0.16ns 

Simama x Gairo 1.88*** -3.82** -1.58ns 0.21ns 

Ex-Msimbu-1 x Gairo -0.11ns 3.35* -0.52ns 0.08ns 

DMC = dry matter content, Nrpp = number of roots per plant, SPVD = Sweetpotato virus disease, *. **, ***, 

*** = Significant at 0.05, 0.01 and 0.001, respectively, ns = Not significant at 0.05 

Cross Resisto x Gairo had significant (P≤0.05) SCA effects of 1.16 for number of roots per plant. 

The SCA effects for other parents were non-significant. A positive and highly significant (P≤0.001) 
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SCA effect of 2.61 for dry matter content was reported for cross Resisto x SPKBH008. Crosses 

SPKBH008 X Gairo, Mataya x Gairo and 03-03 x Ukerewe had positive and highly significant 

(P≤0.01) SCA effects of 3.29, 3.20 and 2.05, respectively. Also, a positive and significant (P≤0.05) 

SCA effects of 2.40, 1.72 and 1.69 were reported for crosses Resisto x Gairo, SPKBH008 x Ex-

Msimbu-1 and Mataya x Ex-Msimbu-1, respectively.  

Conversely, crosses 03-03 x Ex-Msimbu-1 and Ukerewe x SPKBH008 had negative and highly 

significant (P≤0.001) SCA effects of -4.03 and -4.30, respectively (Table 6). Also, Simama x Ex-

Msimbu-1 and Ukerewe x Ex-Msimbu-1 had negative and significant (P≤0.05) of -1.48 and -1.64, 

respectively. The rest of the crosses did not produce statistically significant SCA effects for dry 

matter content. 

The SCA effects for storage root yield for crosses Mataya x Ex-Msimbu-1 and 03-03 x Ex-Msimbu-

1 and Resisto x Gairo were positive and highly significant (P≤0.001) (Table 5.6). Also, there were 

positive and highly significant (P≤0.01) SCA effects for crosses 03-03 x Gairo and Ukerewe x 

SPKBH008 (Table 6). Moreover, cross Ex-Msimbu-1 x Gairo had positive and significant (P≤0.05) 

SCA effect for storage root yield. Likewise, negative and significant SCA effects were reported for 

crosses SPKBH008 x Simama (P≤0.001), Simama x Gairo and Mataya x 03-03 (P≤0.01) and, 

Ukerewe x Ex-Msimbu-1 and Simama x Ex-Msimbu-1 (P≤0.05). The rest of the crosses were not 

significant.   

The cross Mataya x Gairo had negative and highly significant (P≤0.001) SCA effect of -1.29 and 

Mataya x SPKBH008 had a negative and significant (P≤0.001) SCA effect of 0.63 for resistance 

to SPVD (Table 5.6). Conversely, cross Ukerewe x SPKBH008 had positive and significant 

(P≤0.01) SCA effect of 0.61 and, Ukerewe x Gairo and03-03 x Gairo, had positive and significant 

(P≤0.05) SCA effects of 0.89 and 0.81, respectively for resistance to SPVD (Table 5.6). The rest 

of the crosses had statistically non-significant SCA effects for resistance to SPVD.  

 

5.3.3.3. Heritability estimates 

The narrow sense heritability estimates for number of storage root per plant, storage root yield, 

DMC and resistance to SPVD were 0.1, 0.22, 0.16 and 0.27, respectively. Conversely, the broad 

sense heritability estimates of these traits were 0.98, 0.99, 0.99 and 0.96, in that order. 
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5.3.3.4. Heterosis 

The percent heterosis for the 28 progenies are presented in Table 5.7. High and positive heterosis 

for number of roots per plant were recorded for  the families of Mataya x Gairo and Simama x 

Gairo with %MPH and %BPH of 142.4 and 122 and 113.7 and 72.8, in that order. Only one 

progeny, 03-03 x Ex-Msimbu-1 had negative %MPH and two progenies (03-03 x Ex-msimbu-1 

and Mataya x 03-03) had negative %BPH for number of roots per plant (Table 5.7). About 82 and 

71% of the progenies had positive MPH and BPH, respectively for storage root yield. The family 

from the cross of Mataya x Ex-msimbu-1 had the highest %BPH, while the cross SPKBH008 x 

Ex-Msimbu-1 had the lowest for root yield. Progenies from the crosses of Resisto x SPKBH008 

and Mataya x SPKBH008 had the highest MPH of 15.9 and 12.7%, respectively for dry matter 

content. The same progenies had the highest BPH of 15.7 and 11.3%, respectively for the same 

trait. Overall, 29 and 64% of the progenies had negative MPH and BPH, respectively for DMC. 

Most crosses showed lower mean scores for SPVD reaction displaying 32 and 4% mean negative 

MPH and BPH. Only one family from the cross of Mataya x Resisto had negative BPH. Likewise, 

the following crosses: SPKBH008 x Simama and Mataya x SPKBH008 had zero MPH and BPH. 

The progeny derivied from the cross Mataya x SPKBH008 had the highest MPH for resistance to 

SPVD. 
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Table 5.7. Estimates of percentage mid-parent (MPH) and better parent heterosis (BPH) for number of roots per plant, root yield, dry 
matter content and resistance to SPVD among 28 F1 families of sweetpotato. 

  Nrpp Yield DMC SPVD 

Cross Mean %MPH %BPH Mean %MPH %BPH Mean %MPH %BPH Mean %MPH %BPH 
Mataya x 03-03 2.6 2.2 -14.8 10.5 10.7 -7.9 36.9 8.43 5.2 1.7 -28.6 50.0 
Mataya x Resisto 2.7 20.0 9.1 12.1 50.6 42.2 33.9 4.04 2.9 2.0 -29.4 -5.3 
Mataya x Ukerewe 3.2 38.1 20.8 12.4 48.27 35.5 37.7 2.50 -7.3 1.9 -26.1 21.4 
Mataya x SPKBH008 3.1 47.4 40.0 9.6 11.0 -0.8 36.7 12.73 11.3 1.3 -45.5 0.0 
Mataya Simama 2.7 14.3 0.0 15.4 6.2 -28.1 37.3 5.34 -1.4 2.4 -4.4 57.1 
Mataya x Ex-Msimbu-1 3.1 33.3 16.67 16.4 94.9 77.2 37.9 7.01 0.0 1.8 -25.6 45.5 
Mataya x Gairo 4.4 142.4 122.2 11.5 26.0 7.7 36.3 6.82 3.7 1.8 -23.8 60.0 
03-03 x Resisto 3.7 34.7 22.2 16.0 60.9 40.6 33.6 -0.12 -4.2 1.7 3.5 50.0 
03-03 x Ukerewe 3.1 9.8 3.7 13.0 26.6 14.1 38.7 2.29 -4.8 1.9 41.7 70.0 
03-03 x SPKBH008 3.2 23.4 7.4 12.2 16.3 7.3 36.2 7.69 3.1 2.0 63.6 80.0 
03-03 x Simama 3.7 29.4 22.2 15.9 -3.2 -25.8 35.2 -3.33 -6.8 1.8 37.7 65.3 
03-03 x Ex-Msimbu-1 2.3 -17.7 -22.2 17.7 71.4 55.3 31.3 -14.30 -17.5 1.4 22.7 28.9 
03-03 x Gairo 3.1 33.3 3.7 14.4 29.9 25.8 35.8 2.17 2.1 1.9 70.0 70.0 
Resisto x Ukerewe 2.9 14.0 8.3 12.7 43.7 48.9 36.3 -0.44 -10.8 2.0 9.1 28.6 
Resisto x SPKBH008 3.0 29.8 25.0 13.0 43.6 52.8 37.3 15.89 15.7 1.8 3.2 33.3 
Resisto x Simama 3.4 36.0 29.2 16.8 12.3 -21.4 35.4 1.16 -6.3 2.0 9.1 28.6 
Resisto x Ex-Msimbu-1 2.8 9.75 4.2 14.6 64.1 57.6 35.9 2.44 -5.3 1.6 -6.7 27.3 
Resisto x Gairo 3.9 91.3 62.0 15.6 62.4 46.0 35.9 6.81 2.6 1.6 -3.5 40.0 
Ukerewe x SPKBH008 3.3 35.4 23.5 12.7 35.1 31.7 32.7 -10.03 -19.6 2.6 76.9 91.7 
Ukerewe x Simama 3.6 32.5 31.7 12.7 -16.8 -40.6 39.4 0.28 -3.3 2.4 57.1 57.1 
Ukerewe x Ex-Msimbu-1 3.2 20.1 19.3 10.3 11.4 10.6 35.8 -8.81 -11.9 2.1 52.0 72.7 
Ukerewe x Gairo 3.0 37.4 11.1 11.9 20.1 11.4 38.2 1.01 -6.1 1.9 41.7 70.0 
SPKBH008 x Simama 2.8 14.2 4.2 10.0 -35.8 -53.5 37.2 6.50 -1.5 1.4 0.0 8.3 
SPKBH008 x Ex-Msimbu-1 3.1 27.9 16.7 13.7 44.8 42.1 37.4 6.98 -1.2 1.6 21.7 27.3 
SPKBH008 x Gairo 3.4 78.2 56.6 12.8 26.2 19.9 36.0 7.35 2.9 1.4 18.2 30.0 
Simama x Ex-Msimbu-1 3.3 24.2 23.5 13.6 -11.1 -36.3 35.2 -6.97 -7.1 1.4 4.0 18.2 
Simama x gairo 4.7 113.7 72.8 15.9 -1.2 -25.9 35.9 -1.42 -5.1 1.6 16.7 40.0 
Ex-Msimbu-1 x Gairo 3.0 37.4 11.1 12.2 22.6 14.4 37.6 3.11 -0.9 1.3 14.3 20.0 
Mataya 2.0   7.6   32.9   3.6   
03-03 3.0   11.4   35.1   1.1   
Resisto 2.4   8.5   32.2   2.1   
Ukerewe 2.7   9.1   40.7   1.6   
SPKBH008 2.2   9.6   32.1   1.3   
Simama 2.7   21.4   37.8   1.6   
Ex-Msimbu-1 2.7   9.3   37.9   1.2   
Gairo 1.7   10.7   35.0   1.1   
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5.4. Discussion 

5.4.1. Analysis of variance  

There were significant differences in the performance of the families for number of storage 

roots per plant, yield of storage roots, dry matter content and reaction to SPVD implying 

variations among genotypes. Also, there were significant genotype by environment interaction 

for number of roots per plant, yield and DMC. Similarly, sites had significant effect on the 

performance of the traits evaluated. However, sites and site by family interactions were not 

significant for reaction of the families to SPVD. Similar to this study, Kanju (2000), Chiona 

(2009) and Tumwegamire et al. (2011) reported significant differences in the performance of 

number of storage roots, fresh root yield and dry matter content in newly developed 

sweetpotato clones in South Africa, Zambia and Uganda, in that order. Ngailo et al. (2015) 

reported similar findings for root yield and DMC. Furthermore, Manrique and Hermann (2000) 

and Mbwaga et al. (2007) reported significant differences in root yield and their interactions 

among genotypes. Similar findings were reported for sweetpotato storage roots in Peru and 

Uganda (Grüneberg et al., 2005; Osiru et al., 2009a). Nakitandwe et al. (2005) found that, 

sweetpotato genotypes grown in multi-location trials performed differently with regard to yield 

and disease resistance. The G x E interactions could have largely contributed to break down 

of resistance in improved varieties grown in agro-ecologies with high SPVD pressure (Gibson 

et al., 1998; Karyeija et al., 1998). Also, Yada et al. (2011) reported significant differences in 

response to SPVD for Ugandan sweetpotato germplasm evaluated in different sites. Caliskan 

et al. (2007) and Mwololo et al. (2009) suggested that, newly developed cultivars need to be 

evaluated across target agro-ecologies to ascertain their reaction to SPVD as different 

genotypes will respond differently. Similar to the present study, significant differences in yield 

and variety by season interaction were reported in Uganda (Bua et al., 2006; Osiru et al., 

2009b). Manrique and Hermann (2000) reported significant effects of genotypes, environment 

and their interactions for storage root yield with genotypes contributing more to total variability 

compared to other effects. Significant genotypic effects were reported for root yield, dry matter 

content and their genotype x season interactions by Mcharo et al. (2001). While Yildirim et al. 

(2011) reported significant differences among genotypes for yield and number of storage roots 

in Turkey. Also, Mcharo and Ndolo (2013) reported significant differences in storage root yield 

and dry matter content and their interactions across locations in Kenya. Further, significant 

differences in root yield in different environments were reported by Laurie (2010). The same 

author reported highly significant effects due to genotypes, environments and their interactions 

in South Africa.  
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5.4.2. General and specific combining ability effects  

The GCA and SCA effects were statistically significant for the total variability reported in the 

genotypic performance which implies that both additive and non-additive effects were 

important in the expression of the trait. While the GCA was highly significant for all traits, the 

SCA was highly significant for DMC, root yield and number of roots per plant and significant 

(P≤0.05) for SPVD. However, the GCA variances for all traits except DMC were much larger 

than their respective SCA variances. The effects of their interaction with environment were 

statistically significant indicating that the magnitude of differences among the combining ability 

of the parents was significantly changed when evaluated across environments. Significant 

GCA x site and SCA x site for DMC, yield and number of roots per plant indicates that the 

expression of gene actions are significantly affected by environmental conditions. 

The GCA effects of parents and SCA effects of crosses revealed significant differences among 

genotypes for number of storage roots, root yield, dry matter content and resistance to SPVD. 

The magnitudes of both GCA and SCA effects (Table 4) imply the roles of both additive and 

non-additive gene actions in controlling the expression of the traits evaluated. Also, the GCA 

and SCA interaction with the environment were highly significant for all traits except resistance 

to SPVD. According to Baker (1978), the closer the combining ratio is to unity, the larger the 

importance of additive genetic control, and hence, the greater the capacity to predict progeny 

performance based on GCA effects. Similar to this study, Musembi et al. (2015) and Mwije et 

al. (2014) reported significant GCA and SCA effects for storage root yields and dry matter 

content. Consistently, Musembi (2013) reported significant GCA and SCA effects for number 

of roots and fresh root yield. On the other hand, Chiona (2009) reported a highly significant 

GCA and SCA effects for root yield and dry matter content except SCA effect for DMC which 

was non-significant. 

5.4.2.1. Number of root per plant 

The GCA and SCA effects for number of roots per plant were statistically significant for the 

total variability reported in the genotypic performance suggesting that both additive and non-

additive effects were important in the expression of the trait. The ratio of GCA to SCA variance 

mean squares was 0.80, implying the predominance of additive gene action to non-additive in 

expression of the trait. Only two parents had significant GCA effects. All crosses had non-

significant SCA except one cross which had a negative significant (P≤0.05) SCA effect (Table 

6). Similar to this study, Sseruwu (2012) reported both negative and positive non-significant 

GCA effects for number of roots in most of the parents used in breeding programme in 

Uganda. Also, Kanju (2000) reported non-significant SCA effects for number of roots in South 

Africa. On the other hand, Saad (1993) reported larger contribution of SCA effects in 
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controlling number of roots than GCA effects. Absence of SCA effects for the parents and 

crosses calls for further confirmation. 

5.4.2.2. Storage root yield 

The GCA variance component was larger than that for SCA for storage root yield indicating 

that the additive gene action played a major role than non-additive gene action in the 

inheritance of sweetpotato yield. Similar to this study, Chiona (2009) and Musembi et al.  

(2015) reported significant GCA to SCA effects in the expression of sweetpotato storage root 

yield. Similar findings were reported in Malaysia (Saad, 1993) where the GCA effects were 

larger than SCA effects for sweetpotato root yield. Also, significant contribution of both GCA 

and SCA effects on expression of root yield were reported by Mwije et al. (2014). According 

to Musembi et al. (2015) positive contribution of non-additive action to the expression of fresh 

storage root yield may not necessarily depend on parental GCA; therefore in breeding 

programmes, parents should not be disqualified based on negative GCA. 

5.4.2.3. Dry matter content 

The GCA and SCA mean squares for DMC were significant. Accordingly, gene action 

controlling this trait was predominantly additive and to some extent non-additive gene action 

contributed to the expression of the trait. Based on GCA values, the high DMC parent Ukerewe 

had highest, positive and significant GCA effect. Consistently, the low DMC parent Resisto 

had the lowest, negative and significant GCA effect. The genetic effects of the other parents 

were minimal with their GCA estimates showing non-significant effect. Genotype Ukerewe 

appears to be the best parent to be used in future breeding programme with high potential to 

transmit the desirable trait to other complementary parents. Some of the crosses had positive 

and significant SCA effects and others had negative and significant SCA effects implying good 

and bad combiners (Table 6). The findings from the present study corroborate those reported 

by Shumbusha et al. (2014) who reported that both GCA and SCA were highly significant for 

DMC in Uganda. The result concurs with that of Chiona (2009) and Musembi et al. (2015). On 

the contrary, Sseruwu (2012) reported non-significant GCA effects in either of the parents 

studied. Therefore, both additive and non-additive gene action play a vital role in the 

inheritance of DMC in sweetpotato. 

5.4.2.4. Resistance to SPVD 

Parents and crosses had significant GCA and SCA effects for resistance to SPVD, in that 

order. The ratio of GCA to SCA variance mean squares for resistance to SPVD was 0.76, 

implying that additive gene action was more important than non-additive in expression of the 

trait. The parent, Ex-Msimbu-1, had negative and highly significant GCA effects (Table 5). 
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Similar to this study, Mwanga et al. (2002) reported significant GCA and SCA effects for 

resistance to SPVD with GCA:SCA variance components ratios 0.51-0.87 indicating that 

additive gene effects were predominant in the inheritance of resistance to SPVD. Similarly, 

Mihovilovich et al. (2000) reported significant GCA effects and non-significant SCA effects for 

resistance to sweetpotato feathery mottle virus, one of the components of SPVD. On the 

contrary, Sseruwu (2012) reported non-significant parents’ GCA effects for SPVD. According 

to Sseruwu (2012), negative GCA effect for a given parent indicates a contribution to an 

increased disease resistance in its progenies based on the rating scale used 1-5, where, 1 = 

resistant and 5 = susceptible (Mwanga et al., 2013). Equally, a positive GCA effect indicates 

undesirable contribution to an increased susceptibility to the disease in the progenies. 

Consequently, parent Ex-Msimbu-1 can be incorporated in future breeding programmes for 

developing new SPVD resistant varieties. However, the ratio of GCA/SCA effects of 

sweetpotato could not be solely used as a criterion to select the best recombining parents on 

improving targeted traits (Chiona, 2009).  

5.4.2.5. Heritability estimates 

Estimates of narrow-sense heritability ranged from 0.1 to 0.3 for the characters studied. 

Narrow sense heritability for number of roots per plant estimated at 0.1. Similar to this study, 

Teresa et al. (1994) reported the narrow sense heritability of 0.03-0.72 for number of roots per 

plant. Also, Ernest et al. (1994) reported heritability of 0.62 for the same trait. Conversely, 

Lestari et al. (2010) reported high broad-sense heritability of 0.87 for number of storage roots 

per plant. Despite that the narrow sense heritability estimate for this trait was within reported 

range but was relatively low.  

Narrow sense heritability estimates for storage root yield were 0.22. Similar to the present 

study, Teresa et al. (1994) reported narrow sense heritability for root yield from 0.11-0.75. 

Similarly, Chiona (2009) reported narrow and broad sense heritability of 34.9 and 96.9%, 

respectively for the same trait. Mwije et al. (2014) reported high heritability for most of the traits 

including root yield. According to Chiona (2009), the broad sense heritability estimate was 

high. 

Narrow and broad sense heritability for DMC was 0.16 and 0.99, respectively. Similar to this 

study, Shumbusha et al. (2014) reported broad sense heritability of 0.70-0.73 for dry matter 

content. Further, narrow and broad sense heritability of 76.3% and 89.6%, respectively were 

reported by Chiona (2009). Teresa et al. (1994), reported the heritability ranging from 0.26-

0.49. The narrow sense heritability from this was unexpectedly low.  

The narrow sense heritability estimate for resistance to SPVD was 0.27, while the broad sense 

heritability estimate was 0.96. Similar to this study, Mwanga et al. (2002) reported the narrow 
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sense heritability ranging 0.31-0.60 and broad sense heritability of 0.73-0.98 for resistance to 

SPVD. On the other hand, Yada (2014) reported the broad sense heritability of 0.51 for 

resistance to SPVD.  

5.4.2.6. Estimates of heterosis 

The present study found variable degree of mid-parent and better-parent heterosis for number 

of roots per plant, root yield, dry matter content and resistance to SPVD. Similar to this 

findings, Chiona (2009) reported the presence of heterosis for dry matter and root yield of 

sweetpotato studied in Zambia. Lin et al. (2007) reported heterotic effect in F1 of sweetpotato 

families for root yield. Also, Iwanga et al. (1998) reported heterosis in hybrids generated from 

diverse genetic sources for root yields where the F1s yielded more than the female parents 

and local checks. Gruneberg et al. (2009) suggested that, exploitation of heterosis is an 

important strategy to achieve high genetic gain for yield, yield stability and adaptability. 

According to Singh (1993) cited in Sibiya (2009), heterosis is largely attributed to dominance 

gene action though epistasis and over-dominance gene actions are also important. The 

presence of heterosis in the studied traits indicates the role of non-additive gene action in the 

inheritance of these traits suggesting the possibility of improving these traits through 

hybridization. 

5.5. Conclusions 

There were significant differences in the performance among families and across sites. The 

GCA and SCA effects were statistically significant for the total variability reported in the 

genotypic performance which implies that both additive and non-additive effects were 

important in the expression of the trait. All parents except Gairo had non-significant GCA 

effects for number of roots per plant. Parents 03-03 and Simama had positive and highly 

significant GCA effects for storage root yield. While parent Ukerewe had positive and 

significant GCA effects for DMC, parents Ex-Msimbu-1 and Gairo had a negative and highly 

significant GCA effect for SPVD resistance. On the other hand, none of the crosses had 

significant SCA effects for number of roots. Two crosses: Mataya x Gairo and Simama x Gairo 

had positive and significant SCA for number of roots per plant. Crosses Mataya x Ex-Msimbu-

1, 03-03 x Ex-Msimbu-1 and Resisto x Gairo had positive and highly significant SCA effect for 

storage root yield. Crosses Resisto x SPKBH008, Mataya x Gairo, 03-03 x Ukerewe and 

SPKBH008 x Gairo had positive and significant SCA effects for DMC. Negative and significant 

SCA effect for SPVD was estimated for crosses Mataya x SPKBH008 and Mataya x Gairo.  

Since the number of roots is an integral component of sweetpotato root yield, parent Gairo 

could be recommended to be incorporated in future breeding programmes due to its positive 
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and significant GCA effect for the trait. Parents 03-03 and Simama are recommended for yield 

improvement due to positive and significant GCA effects to the expression of the trait. 

Genotype Ukerewe is recommended for future breeding programme for DMC due to its 

positive contribution to the expression of the trait as its GCA effect estimate was positive and 

significant. On the other hand, genotypes Ex-Msimbu-1 and Gairo are recommended for future 

breeding programmes for SPVD resistance. These clones had negative and highly significant 

GCA effects. Based on the SCA effects, Mataya x Ex-Msimbu-1, 03-03 x Ex-Msimbu-1 and 

Resisto x Gairo were the best combiners for storage root yield; Resisto x SPKBH008, Mataya 

x Gairo, 03-03 x Ukerewe and SPKBH008 x Gairo were best combiners for DMC and Mataya 

x SPKBH008 and Mataya x Gairo were best combiners for resistance to SPVD. 
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Chapter six 

6. Genotype-by-environment interaction of yield and related 
traits and resistance to sweetpotato virus disease among 
selected sweetpotato clones  

Abstract  

A study was conducted to determine the magnitude of genotype-by-environment and stability 

for yield and yield related traits and sweetpotato virus disease (SPVD) resistance among 

newly developed sweetpotato clones in eastern Tanzania. Experiments were conducted 

across six diverse environments namely; Gairo, Kilombero Agricultural Training Research 

Institute (KATRIN), Sokoine University of Agriculture (SUA), Sugarcane Research Institute 

(SRI), Chambezi and Mkuranga. Twenty three newly bred clones and three commercially 

grown varieties were evaluated in a randomized complete block design with three replications. 

The Additive Main Effect and Multiplicative Interaction (AMMI) and genotype and genotype-

by-environment interaction (GGE) biplot analyses were used to determine the GxE and 

stability of the genotypes. Environment, genotype and GxE interaction variances were highly 

significant (p ≤ 0.01) for all traits. The mean number of roots per plant ranged from 2.1-5.8 

with an overall mean of 3.6. Mean root yield ranged from 7.5-17.2 t/ha for G24 and G5, 

respectively with a mean of 10.7 t/ha. Dry matter content (DMC) varied from 30.3-40.8% for 

G25 and G26, respectively with a mean of 36%. The severity of SPVD symptoms differed from 

1.2-3.1 for G12 and G25, respectively with a mean of 1.6.  AMMI analysis of variance revealed 

significant (p ≤ 0.001) differences among genotypes, environments and genotype x 

environment interaction (GEI) effects for all traits evaluated. The interaction principal 

component analysis axes (IPCAs) contributed significantly to the GEI. Both AMMI and GGE 

biplot identified the following genotypes: G5, G11, G23, G9, G7, G18 and G17 as high yielding 

and resistant to SPVD. These genotypes could be further evaluated in multi-environment yield 

trials (MEYTs) in eastern Tanzania. Furthermore, both models isolated the genotypes G22 

and G3 as high yielding and resistant to SPVD but specifically suited to two environments; E5 

and E1. Overall, the selected test environments were sufficiently capable of discriminating the 

candidate genotypes with respect to the traits studied. Further MEYTs are required for 

selection and recommendation of high yielding and stable sweetpotato varieties. 

Keywords: Additive main effects and multiplicative interaction, Genotype x environment 

interactions. GGE biplot, Sweetpotato, Yield stability 
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6.1. Introduction 

Expression of economic traits of crop varieties is determined by the genotype, environment 

and genotype x environment interaction. Often genotype and environment are not additive but 

they interact (Mwololo et al., 2009). Genotype-by-environment interaction (GEI) refers to the 

changes in the relative performance of genotypes across different growing environments 

(Acquaah, 2011; Xu, 2010). Baker (1988) defined GEI as the failure of genotypes to achieve 

the same relative performance in different environments. The GEI plays a key role in 

formulating strategies for crop improvement (Singh et al., 1999). According to Annicchiarico 

(2009), existence of GEI has significantly influenced the efficiency of crop improvement 

through plant breeding. In the event of a large GEI, the selection process and 

recommendations for a given genotype becomes slow and difficult (Caliskan et al., 2007; 

Mwololo et al., 2009). Ceccarelli (2012) reported that GEI is one of the major factors limiting 

the efficiency of plant breeding programmes. Consequently, multi-locational trials are 

necessary for proper separation and ranking of genotypes for reliable selection of high and 

stable yielding genotypes. Multi-locational trials are mandatory before the release of superior 

genotypes for target production environments (Ilker et al., 2009).  

 

Sweetpotato is grown in diverse environments across the world (Haldavanekar et al., 2011; 

Caliskan et al., 2007). Several important traits are a composite reflection of multiple genetic 

and environmental factors in the crop (Vuylsteke and van Eeuwijk, 2008). Despite its 

adaptability to diverse and harsh growing conditions, the crop is very sensitive to 

environmental variations (Bryan et al., 2003). This influences expression of most of 

economically important traits which are largely quantitatively inherited (Ngeve, 1993; Lebot, 

2010). Genotype-by-environment interactions are of great interest when evaluating the 

stability of breeding clones under different environmental conditions (Manrique and Hermann, 

2000). Nakitandwe et al. (2005) found that sweetpotato genotypes grown in multi-location trials 

performed differently with regard to yield and disease resistance. Progress in sweetpotato 

breeding depends amongst others, the presence and extent of genotype-by-environment 

interaction on traits expression. Development of sweetpotato genotypes with high and stable 

yield and other agronomic traits of economic importance remains an important component in 

sweetpotato breeding programmes. 

 

Owing to widespread cultivation and utilization of sweetpotato as a food security crop in many 

developing countries, knowledge of the cultivar’s stability and reaction to disease is vital (Osiru 

et al., 2009). The same authors suggested that, knowledge of genotype performance in 
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different agro-ecologies is critical in cultivar development. Identification of superior cultivars 

for yield, disease resistance and other important traits may be confounded by GEI (Ngeve, 

1993). Therefore, newly developed sweetpotato cultivars need to be evaluated across target 

agro-ecologies to ascertain their performances such as reaction to yield and yield components 

and pest and disease resistance notably to the sweetpotato virus disease (SPVD) (Caliskan 

et al., 2007; Mwololo et al., 2009). According to Laurie (2010), study of GEI is particularly 

important in countries with multiple agro-ecologies such as Tanzania. Therefore, knowledge 

of GEI is necessary to select genotypes either for wide or specific adaptation (Grüneberg et 

al., 2005).  

Several statistical approaches are currently available for GEI analysis. The Additive Main 

Effect and Multiplicative Interaction (AMMI) (Gauch, 1992) and genotype and genotype-by-

environment interaction (GGE) biplot (Yan and Tinker, 2006; Yan and Kang, 2003) analyses 

are the most commonly applied methods. The AMMI model combines the analysis of variance 

of genotype by environment main effects, principal component analysis and the interaction of 

the main effects, while GGE biplot analysis is an effective method based on principal 

component analysis (PCA) to fully explore MET data. It is an effective tool for: mega-

environment analysis (e.g. “which-won-where” pattern), where by specific genotypes can be 

recommended to specific mega-environments (Yan and Kang, 2003; Yan and Tinker, 2006), 

genotype evaluation (the mean performance and stability) and environmental evaluation (the 

power to discriminate among genotypes in target environments) (Ding et al., 2008). The GGE 

biplot analysis is a useful tool for identifying locations that optimized the genotypes 

performance and for making better use of limited resources available for the testing 

programme. In an attempt to develop high yielding and SPVD resistant sweetpotato cultivars 

for eastern Tanzania regions, 23 promising clones were selected and the objective this study 

was to determine the magnitude of GxE and stability for yield and yield related traits and SPVD 

resistance among these newly developed sweetpotato clones in eastern Tanzania. 

 

6.2. Materials and methods 

6.2.1. Study sites and planting materials 

The study was conducted at six environments namely; Gairo, Kilombero Agricultural Training 

Research Institute (KATRIN), Sokoine University of Agriculture (SUA), Sugarcane Research 

Institute (SRI), Chambezi and Mkuranga. The description of the study sites is summarized in 
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Table 6.1. The sites represent low to high altitude ranges with diverse agro-ecologies in 

Tanzania where sweetpotato is widely grown.  

Twenty three clones were selected from families developed through a diallel cross. The F1 

seedling plants were originally field evaluated along with other three commercially grown 

sweetpotato. The experimental clones were selected based on various attributes including 

orange, yellow or white flesh colour of roots, low to high root dry matter content (RDMC), high 

fresh root yields or resistance to sweetpotato disease (SPVD) or a combination of these traits 

(Table 6.2).  
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 Table 6.1. Description of the experimental sites used for the study. 

Location Code Coordinates 
Altitude 

(masl) 
Soil textural class 

pH 

(H2O) 

OC 

(%) 

TN 

(%) 

Av. P 

(meq/100g) 

Exchangeable bases 

(meq/100g) 

Ca Mg K N 

Gairo E1 E036o54’787”,      S06o08’156”  1310 Sandy clay loam 5.9 0.81 0.08 5.9 4.1 1.9 0.66 0.2 

SRI E2 E038o58’315”,  S06o46’701” 169 Clay 6.7 0.71 0.07 3.9 6.2 2.1 0.48 0.26 

KATRIN E3 E036o39’945”, S08o03’612” 288 Sandy loam 6 1.15 0.06 6 9.9 2.1 0.53 0.25 

SUA E4 E037o38’756’’, S06o50’252’’ 518 Clay 5.3 2.1 0.11 5.3 5.1 2.5 0.95 0.3 

Chambezi E5 E038o28’59”,  S06o33’302” 47 Loamy sand 6.4 0.39 0.05 6.4 2.7 0.7 0.24 0.21 

Mkuranga E6 E039o11'689",  S06o08'306" 119 Sandy loam 6.4 0.37 0.06 6.4 2.0 0.4 0.24 0.17 

masl = metres above sea level, meq 100g-1 = milli-equivalent per 100 g of soil. Av. P = Available phosphorus, OC = organic carbon, TN = total 

nitrogen, Ca = calcium, Mg = Magnesium, K = potassium, Na = Sodium; KATRIN = Kilombero Agricultural Training and Research Institute, SRI = 

Sugarcane Research Institute, SUA = Sokoine University of Agriculture. 
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Table 6.2. Description of sweetpotato genotypes used for the study. 

Sr.No. Cross/Name of  genotypes Genotype 
code 

Flesh colour DMC 
(%) 

Root yield 
(t/ha) 

Response to SPVD 

1 Resisto x Ukerewe G1 Yellow 35.7 14.6 Moderately resistant 

2 Resisto x Ukerewe G2 Orange 35.7 14.6 Moderately resistant 

3 Ukerewe x Ex-Msimbu-1 G3 Cream 36.1 13.0 Resistant 

4 03-03 x SPKBH008 G4 Cream 35.8 18.3 Resistant 

5 Ukerewe x SPKBH008 G5 White 32.9 10.7 Resistant 

6 Mataya x Gairo G6 Yellow 36.1 12.3 Resistant 

7 Simama x Ex-Msimbu-1 G7 Pale orange 36.1 12.3 Resistant 

8 SPKBH008 x Ex-Msimbu-1 G8 Cream 37.0 16.7 Resistant 

9 Mataya x Ukerewe G9 Cream 37.8 16.3 Resistant 

10 Resisto x Simama G10 Pale orange 36.1 16.9 Resistant 

11 Resisto x Simama G11 Pale orange 36.1 16.9 Resistant 

12 03-03 x SPKBH008 D12 Orange 36.0 16.7 Resistant 

13 Mataya x Gairo G13 Orange 36.1 17.0 Resistant 

14 Resisto x Gairo G14 Orange 35.7 14.7 Resistant 

15 Ukerewe x Simama G15 Cream 39.6 15.9 Resistant 

16 Mataya x Ukerewe G16 Yellow 37.8 13.7 Resistant 

17 Mataya x Resisto G17 Orange 34.0 15.3 Resistant 

18 Resisto x Simama G18 Cream 35.6 21.7 Resistant 

19 Ukerewe x Simama G19 Cream 39.6 17.5 Resistant 

20 03-03 x Ukerewe G20 Yellow 38.2 14.9 Moderately resistant 

21 03-03 x Resisto G21 Orange 33.4 15.4 Resistant 

22 Ukerewe x Gairo G22 Cream 37.0 16.0 Resistant 

23 SPKBH008 x Ex-Msimbu-1 G23 Cream 37.0 16.0 Resistant 

24 Simama G24 Cream 38.1 21.4 Resistant 

25 Mataya G25 Orange 33.1 15.5 Susceptible 

26 Ukerewe G26  40.7 10.5 Resistant 

Sr.N = serial number 
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6.2.2. Experimental design and field establishment 

The experimental clones and check varieties were field evaluated using a randomized 

complete block design with three replications. Experimental plots consisted of two rows of six 

metre long for each genotype. The intra-row and inter-row spacing were 0.3 m and 1 m, 

respectively. Four to six node vine cuttings were planted on ridges. At Mkuranga, the trial was 

replanted following severe dry spell immediately after the first planting. Agronomic practices 

such as weeding and fertilization were done as per recommendation for sweetpotato 

production in Tanzania.  

6.2.3. Data collection 

Sweetpotato virus disease reactions were assessed visually at 60, 90 and 120 days after 

planting using a 1 to 5 scale; where 1 = no visible symptoms, 2 = mild symptoms (a few local 

lesions on a few leaves), 3 = moderate symptoms (mosaic symptoms on leaves), 4 = severe 

symptoms (mosaic symptoms with plants showing stunted growth) and 5 = very severe 

symptoms of purpling/yellowing or mosaic on leaves, severe leaf distortion, reduced leaf size 

and severe stunting (Mwanga et al., 2013). The genotypes Mataya and Ukerewe were used 

as susceptible and resistant checks, respectively. The field trials were harvested 120 days 

after planting. At harvesting, storage roots were grouped into marketable and un-marketable 

types, counted and their fresh weight (kg) per plot was recorded. The number of roots was 

expressed per plant basis. The root yield were collected on plot basis and later converted to 

tonnes per hectare (t/ha). From each plot, a sample of three to four medium to large storage 

roots was collected to determine root dry matter content. The dry matter content was 

determined using methods described by Carey and Reynoso (1999) and Tairo et al. (2008) 

with some modifications. Briefly, a sample of 250 g was chopped from undamaged roots for 

each entry in each replication. The samples were air-dried and then oven dried at 70°C until 

constant weight. The dried samples were weighed using an electronic balance and the 

resultant figures were used to calculate dry matter content as percentage of the fresh weight.  

6.2.4. Data analysis 

6.2.4.1. Analysis of variance  

The data for number of storage roots, root yield, dry matter content and SPVD across the six 

sites were subjected to analysis of variance using Statistical Analysis System version 9.2 

(SAS, 2008). A separate analysis was done for each site; however, due to homogeneity in 



154 

 

error variances, a combined analysis of variance for the six sites was conducted (Gomez and 

Gomez, 1984).  

The presence of GxE interaction was detected using ANOVA and consequently stability 

analysis was conducted using AMMI and GGE biplot models.  

6.2.4.2. GxE and stability analysis  

The data on number of storage roots per plant, storage root yield, dry matter content and 

SPVD scores for the six environments were analysed using AMMI and GGE biplots in GenStat 

17th edition (Payne et al., 2014) to determine the effects of genotypes, environments and their 

interaction. 

The GxE and stability analysis were conducted using additive main effects and multiplicative 

interaction (AMMI) (Gauch, 1988; Gauch and Zobel, 1988), AMMI stability value (ASV) 

(Purchase, 1997) and genotype main effect and genotype x environment interaction (GGE) 

biplot (Kempton, 1984; Yan et al., 2000; Yan, 2001; Yan et al., 2001). 

The AMMI statistical model is given below: 

        ijjkik

m

k kjiijk EGY    1
 

Where: ijkY = the yield of the ith genotype in the jth environment, Gi = the mean of the ith genotype 

minus the grand mean, jE  = the mean of the jth environment minus the grand mean,  k = the 

square root of the eigen value of the kth IPCA axis, ik  and jk = the principal component scores 

for IPCA axis k of the ith genotypes and the jth  environment, ij =  the deviation from the model.  

According to Zobel et al. (1988), AMMI with only two interaction principal component axes 

could be the best predictive model. Hence, two IPCAs were adopted in this study in AMMI 

analysis. 

 

Since AMMI model does not make provision for a quantitative stability, AMMI stability value 

(ASV) was calculated to quantify and rank genotypes (Rezene et al., 2014). This was carried 

out using a formula suggested by Purchase (1997); 

AMMI Stability Value (ASV) =    

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SSIPCA  

represents the weighted value assigned to the first interaction principal component score due 

to its high contributions in the GXE model, SSIPCA1 and SSIPCA2 are the sum of squares for 

IPCA1 and IPCA2, respectively, IPCA1 and IPCA2 are the first and second IPCA scores for 
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each genotype. The larger the ASV value the more specifically adapted the genotype to a 

certain environment and the smaller ASV indicates a more stable genotype across 

environments (Purchase, 1997; Farshadfar et al., 2011; Thiyagu et al., 2012). The AMMI 

stability value was calculated using Microsoft excel 2013 programme.  

The model for a GGE biplot (Yan, 2002; Yan et al., 2007) based on singular value 

decomposition (SVD) of t principal components is: 

  


t

k ijjkikkjiijY
1

       

Where: ijY  is the performance of genotype i in environment j,   is the grand mean,  j  is 

the main effect of environment j,  k is the number of principal components (PC); k is singular 

value of the kth PC;  and ik  and jk are the scores of ith genotype and jth environment, 

respectively for PCk; ij  is the residual associated with genotype i in environment j. AMMI and 

GGE biplot were performed with GenStat 17th edition (Payne et al., 2014).  

6.3. Results 

6.3.1. Analysis of variance  

Results from analysis of variance of data from each environment for number of roots per plant, 

root yield, dry matter content and resistance to SPVD indicated significant (p ≤ 0.001) 

differences among genotypes for each environment. Similarly, combined analysis of variance 

showed highly significant (p ≤ 0.001) differences among the six test environments and the 

genotypes (Table 6.3). Significant (p ≤ 0.01) genotype x environment interactions were 

reported for all traits studied (Table 6.3). Replication within environment contributed 

significantly to variation in the performance of the traits studied except for dry matter content 

where replication was not significant (Table 6.3). The analysis of variance depicted the 

presence of significant genotype x environment interactions for the traits evaluated 

necessitating assessment of the magnitude of the interaction.  
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Table 6.3. Analysis of variance for number of roots, root yield, dry matter content and 

resistance to SPVD for sweetpotato clones evaluated across six environments in eastern 

Tanzania. 

Sources of variation DF 

Mean squares 

Nrpp Yield (t/ha) DMC (%) SPVD 

Environment 5 30.92*** 2396.37*** 430.26*** 6.38*** 

Rep (Environment) 12 2.26* 28.69*** 5.60ns 1.35*** 

Genotypes 25 13.76*** 83.79*** 98.09*** 2.78*** 

Genotypes x environment  125 2.86*** 38.06*** 10.79*** 0.78*** 

Error 300 1.18 10.43 6.13 0.4 

Total 467     

Mean  3.61 10.69 35.97 1.62 

CV (%)  30.08 30.21 5.65 39.22 

R2 (%)  71.45 85.97 82.93 63.59 

LSD  1.34 3.99 2.51 0.78 

EMS  1.18 10.43 4.13 0.4 

DF = Degrees of freedom, *, *** = significant at 0.05 and 0.001, respectively, ns = non-significant at 0.05, 

CV = coefficient of variation, DMC = dry matter content, EMS = error mean square, LSD = least 

significant difference, Nrpp = number of roots per plant, R2 = coefficient of determination. 

6.3.2. GxE and stability analysis using AMMI 

Combined analysis of variance for the six test environments indicated highly significant (p ≤ 

0.001) effects for genotypes, environment and their interactions for number of roots per plant, 

root yield, dry matter content and SPVD (Table 6.4). All the principal components were highly 

significant. 

6.3.2.1. Number of roots per plant 

The AMMI analysis of variance for number of roots per plants in the tested environments 

showed highly significant (p ≤ 0.001) effects of the genotypes, environment and their 

interaction (Table 6.4). All IPCAs were highly significant (Table 6.4). IPCA1 and IPCA2 

accounted for 47.7 and 20.1% of the GE interaction, respectively. The genotype G10 had high 

and positive IPCA1 score and G20 had lowest negative score (Table 6.5). 
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Table 6.4. AMMI analysis of variance for number of roots per plant, root yield, dry matter 

content and SPVD of 26 sweetpotato clones evaluated across six environments in eastern 

Tanzania. 

Sources of variation DF 
Mean squares 

Nrpp Yield (t/ha) DMC (%) SPVD 

Genotypes (G) 25 13.77*** 83.9*** 98.1*** 2.78*** 

Environments (E)  5 30.38*** 2396.2*** 430.3*** 5.39*** 

Block 12 2.34ns 28.7*** 5.6ns 1.53*** 

Interactions (GxE) 125 2.71*** 38.0*** 10.8*** 0.78*** 

 IPCA 1  29 5.57*** 107.5*** 19.5*** 1.40*** 

 IPCA 2  27 2.52*** 28.8** 13.0*** 1.08*** 

Residuals 69 1.58 12.4 6.3** 0.41ns 

Error 300 1.17 10.4 4.1 0.40 

DF = Degrees of freedom, *, **, *** = significant at 0.05, 0.01, and 0.001, respectively, ns = non-

significant, DMC = dry matter content, GxE = genotype by environment interaction, IPCA1 and 2 = first 

and second interaction principal component analysis axes, Nrpp = number of roots per plant. 

 

The means for number of roots per plant of the 26 genotypes (G1-G26) across the six 

environments (E1-E6) are presented in Table 6.5. Genotype G20 ranked the best across 

environments with a mean number of roots per plant of 5.8, and performed better than other 

genotypes in four out of six environments namely, E2, E3, E4 and E6 with mean root number 

of 7.4, 7, 8.8 and 6.3, respectively. E2 (the site at the Sugar Research Institute) was the best 

environment with the highest mean number of roots per plant of 4.5 and E1 (the site at Gairo) 

had the lowest mean number of roots per plant of 2.7.  

AMMI stability value (ASV) ranged from 0.14-4.25 for genotypes G5 and G20, respectively 

(Table 6.5).  The smaller the ASV the stable the genotypes and vice versa is true; hence, G5, 

G15 and G13 were relatively stable and G20 was the least stable genotype. 

AMMI biplot for number of roots per plant is presented in Figure 6.1a. In the biplot, the 

genotypes with IPCA1 scores close to zero were G5, G15, G6 and G13 were most stable in 

the test environments. Conversely, G20 and G10 were the most responsive genotypes to 

environment changes. In addition, genotypes with negative first IPCA scores such as G20 

were allocated in environments with negative IPCA scores too and the opposite is true for G10 

(Figure 6.1; Table 6.5).  
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Table 6.5. AMMI means for number of roots per plant, IPCA scores and ASV values of 26 sweetpotato 

clones evaluated across six environments in eastern Tanzania. 

Genotype E1 E2 E3 E4 E5 E6 Mean IPCA1 IPCA2 ASV 

G1 3.6 4.5 3.6 4.1 5.4 4.0 4.2 0.60 0.03 1.4 

G2 3.4 5.9 4.8 5.6 3.4 4.2 4.6 -0.51 -0.05 1.2 

G3 3.4 5.5 4.9 5.7 3.1 4.5 4.5 -0.60 0.23 1.4 

G4 3.2 4.2 4.5 5.1 3.1 4.7 4.1 -0.34 0.70 1.1 

G5 2.9 4.8 3.6 4.3 3.9 3.4 3.8 0.04 -0.11 0.1 

G6 2.4 4.1 3.0 3.7 3.5 3.0 3.3 0.10 -0.01 0.2 

G7 2.1 4.4 2.7 3.4 3.2 2.3 3.0 0.02 -0.34 0.3 

G8 2.1 2.5 2.7 3.1 3.1 3.3 2.8 0.29 0.58 0.9 

G9 2.7 7.2 4.0 5.1 2.9 2.5 4.1 -0.71 -1.01 2.0 

G10 2.6 2.4 2.4 2.7 4.7 3.3 3.0 0.88 0.45 2.1 

G11 2.9 5.7 3.4 4.2 4.2 2.8 3.9 0.07 -0.62 0.6 

G12 2.6 3.8 3.0 3.6 4.0 3.2 3.4 0.32 0.10 0.8 

G13 1.1 2.4 2.0 2.6 1.7 2.1 2.0 -0.05 0.32 0.3 

G14 2.4 3.1 3.4 3.9 2.8 3.7 3.2 -0.03 0.63 0.6 

G15 2.2 4.0 3.0 3.7 2.9 2.9 3.1 -0.08 0.04 0.2 

G16 2.5 4.0 3.1 3.7 3.5 3.1 3.3 0.12 0.04 0.3 

G17 1.5 2.7 2.5 3.1 2.0 2.6 2.4 -0.09 0.41 0.5 

G18 2.9 6.0 3.6 4.4 4.0 2.8 4.0 -0.11 -0.66 0.7 

G19 3.3 4.2 3.9 4.4 4.4 4.3 4.1 0.22 0.35 0.6 

G20 4.1 7.7 7.1 8.2 1.7 5.8 5.8 -1.79 0.27 4.3 

G21 2.2 3.6 2.1 2.7 4.4 2.3 2.9 0.64 -0.25 1.5 

G22 4.3 7.3 5.2 6.0 5.0 4.4 5.3 -0.26 -0.50 0.8 

G23 2.3 3.9 2.3 2.8 4.3 2.3 3.0 0.57 -0.30 1.4 

G24 2.0 4.3 2.2 2.8 3.7 1.8 2.8 0.32 -0.56 1.0 

G25 3.3 4.3 3.2 3.7 5.4 3.5 3.9 0.69 -0.08 1.6 

G26 1.8 3.3 3.0 3.6 2.0 2.9 2.8 -0.27 0.33 0.7 

Mean 2.7 4.5 3.4 4.1 3.6 3.3 3.6    

IPCA1 0.44 -0.85 -0.76 -1.04 2.18 0.04     

IPCA2 0.14 -1.63 0.43 0.21 -0.44 1.29     

ASV = AMMI stability value, E1, E2, E3, E4, E5 and E6 = Gairo, SRI, KATRIN, SUA, Chambezi and 

Mkuranga, respectively, IPCA1 and IPCA2 = first and second interaction principal component analysis 

axes, See codes of genotypes in Table 6.2. 
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Figure 6.1 AMMI biplot a, b, c and d showing the distribution of 26 sweetpotato clones 

evaluated across six environments in eastern Tanzania for number of roots per plant, storage 

root yield, dry matter content and SPVD, respectively. See codes of environments and 

genotypes in Tables 6.1 and 6.2, respectively.  

 

6.3.2.2. Storage root yield 

AMMI analysis of variance for storage root yield is presented in Table 6.4 The genotypes, 

environments and GxE interaction effects were highly significant (p ≤ 0.001) and contributed 

to 81.9% of the total sum of squares. About 64% of the total sum of squares were attributed 

a b 

c d 
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by the environmental effect compared to 11 and 25% accounted by genotypes and their 

interaction, respectively. Large environment sum of squares relative to other sources of 

variation suggests that the environments were relatively diverse. The magnitude of the 

interaction sum of squares was 2.3 times larger than that of the genotypes, indicating that 

there were substantial differences in genotypic yield response across environments. 

The means for storage root yield are presented in Table 6.6. Mean root yield across the six 

environments ranged from 7.5-17.2 t/ha for G24 and G5, respectively with a mean of 10.6 t/ha. 

More than 46% of the genotypes yielded above the mean with G5, G11 and G23 being the 

highest yielder of 17.2, 13.8 and 13.5 t/ha, respectively across the six environment. The test 

environments Mkuranga (E6) and KATRIN (E3) had the lowest and highest mean yields of 5.6 

and 21.6t/ha, respectively. None of the released and commercially grown cultivars performed 

better than the new clones in all locations. 

AMMI analysis of variance showed statistically significant effect of the IPCA1 and IPCA2 (p ≤ 

0.01), respectively (Table 6.4). The two IPCAs captured 82% of the GE interaction, IPCA1 

accounted 65.6% of the interaction. The genotypes G24 and G5 had the highest and lowest 

IPCA1 scores, respectively (Table 6.6). The ASV values corresponded well with the IPCA 

scores. ASV values ranged from 0.30-11.16 for G24 and G5, respectively (Table 6.6). 

Consequently, G9 was the most stable genotype across the test environments (Table 6.6; 

Figure 6.2). 

AMMI biplot of IPCA1 scores against the genotype and environment means is presented in 

Figure 6.1b. In the biplot, 42% of the tested genotypes yielded above the mean yield. G5 and 

G11 were the highest yielding genotypes by 61 and 29% above the overall mean. Conversely, 

G5, G11 and G23 were specifically adapted to E3, while G19 and G2; G6 and G21; and, G12 

and G7 were specifically adapted to E1, E4 and E2, respectively. Among the test 

environments, E3 and E6 were considered as the high and low yielding environments, 

respectively (Figure 6.2). Likewise, E2, E6 and E3 were regarded as stable environments and 

E1 and E5 as least stable environments in discriminating genotypes regarding yield (Figure 

6.2). The mean yield under  environment E3 was 102% above the overall mean. 
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Table 6.6. AMMI means for fresh root yield (t/ha), IPCA scores and ASV values for 26 

sweetpotato clones evaluated across six environments in eastern Tanzania. 

Genotype E1 E2 E3 E4 E5 E6 Mean IPCA1 IPCA2 ASV 
G1 9.6 9.4 27.8 9.0 8.6 5.2 11.6 -1.02 0.29 4.11 
G2 14.8 8.8 18.0 7.6 5.4 6.0 10.1 0.66 1.68 3.14 
G3 10.7 10.0 30.2 8.9 8.2 5.4 12.2 -1.34 0.59 5.42 
G4 8.9 9.9 21.0 11.9 12.3 7.1 11.8 0.31 -0.69 1.44 
G5 8.7 14.0 42.0 14.4 15.6 8.4 17.2 -2.77 -1.03 11.16 
G6 6.8 8.3 15.9 11.5 12.2 6.3 10.2 0.96 -1.13 4.02 
G7 9.1 6.6 15.1 7.4 6.7 4.2 8.2 0.80 0.35 3.21 
G8 8.9 9.5 20.1 11.4 11.7 6.8 11.4 0.41 -0.58 1.74 
G9 10.0 10.1 23.2 11.1 11.0 6.9 12.1 -0.06 -0.21 0.30 
G10 9.2 8.4 25.5 8.1 7.6 4.5 10.5 -0.77 0.38 3.10 
G11 10.9 11.1 37.6 9.2 8.6 5.5 13.8 -2.48 0.67 9.97 
G12 7.4 6.6 15.9 8.0 7.8 4.0 8.3 0.64 -0.16 2.56 
G13 10.2 8.3 21.3 8.3 7.6 5.0 10.1 -0.03 0.49 0.51 
G14 6.2 9.2 25.8 11.1 12.0 5.6 11.7 -0.69 -1.04 2.95 
G15 10.0 8.8 22.2 9.1 8.5 5.5 10.7 -0.11 0.28 0.51 
G16 5.7 6.3 14.7 8.7 9.0 4.0 8.1 0.80 -0.73 3.29 
G17 9.0 8.8 23.3 9.3 9.1 5.3 10.8 -0.31 0.01 1.24 
G18 13.2 9.0 17.6 8.8 7.3 6.3 10.4 0.77 1.00 3.25 
G19 15.4 10.1 25.1 7.8 5.8 6.2 11.7 -0.39 1.83 2.41 
G20 9.4 9.0 22.5 9.8 9.6 5.8 11.0 -0.12 -0.05 0.48 
G21 6.8 8.1 16.4 11.0 11.6 5.9 10.0 0.83 -1.02 3.48 
G22 9.9 7.8 16.7 8.6 8.0 5.2 9.4 0.71 0.28 2.86 
G23 7.9 10.9 31.0 11.8 12.5 6.6 13.5 -1.33 -0.74 5.38 
G24 11.1 6.5 7.9 7.8 6.6 5.2 7.5 2.09 0.61 8.41 
G25 6.2 6.0 13.1 8.3 8.4 3.9 7.7 1.04 -0.54 4.21 
G26 7.3 6.6 11.8 9.2 9.2 4.9 8.2 1.40 -0.54 5.64 
Mean 9.4 8.8 21.6 9.5 9.3 5.6 10.7    

IPCA1 1.47 0.37 -5.12 1.07 0.89 1.31     

IPCA2 3.03 0.23 0.24 -1.26 -2.29 0.06         

ASV = AMMI stability value, IPCA1 and IPCA2 = first and second interaction principal component 

analysis axes; See codes of environments and genotypes in Tables 6.1 and 6.2, respectively. 

 

6.3.2.3. Dry matter content (DMC) 

The AMMI analysis of variance for root dry matter content is presented in Table 6.4. 

Genotypes, environments and their interactions had highly significant (p ≤ 0.001) effects on  
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Table 6.7. AMMI means for dry matter content (%), IPCA scores and ASV values of 26 

sweetpotato clones evaluated across six environments in eastern Tanzania. 

Genotype E1 E2 E3 E4 E5 E6 Mean IPCA1 IPCA2 ASV 

G1 31.5 35.6 32.4 34.1 35.5 32.8 33.7 -0.76 -0.10 1.23 

G2 28.6 31.1 34.2 36.2 34.4 32.9 32.9 0.56 -1.06 1.39 

G3 34.4 36.7 36.2 36.3 37.2 34.5 35.9 -0.78 -0.76 1.47 

G4 34.5 39.9 34.8 37.8 39.5 36.9 37.2 -0.68 0.38 1.15 

G5 32.8 34.4 33.4 32.4 34.1 31.0 33.0 -1.29 -0.84 2.23 

G6 33.0 37.5 32.0 33.3 36.0 32.8 34.1 -1.34 0.20 2.16 

G7 34.9 40.9 32.4 34.6 38.4 34.9 36.0 -1.59 0.83 2.70 

G8 32.4 38.2 34.5 38.7 39.2 37.1 36.7 -0.02 0.35 0.35 

G9 30.2 36.5 32.3 36.9 37.4 35.4 34.8 0.06 0.50 0.51 

G10 32.7 38.9 36.0 41.2 40.8 39.1 38.1 0.49 0.36 0.86 

G11 30.5 37.1 32.5 37.4 37.9 35.9 35.2 0.07 0.60 0.61 

G12 32.0 36.1 37.3 41.2 39.4 38.0 37.3 0.81 -0.50 1.40 

G13 31.9 38.8 34.9 40.6 40.4 38.7 37.6 0.48 0.61 0.98 

G14 27.3 30.8 33.2 36.5 34.4 33.1 32.6 0.87 -0.79 1.60 

G15 34.7 37.3 38.1 39.3 39.1 36.9 37.6 -0.18 -0.80 0.85 

G16 35.6 37.2 38.0 37.8 38.3 35.7 37.1 -0.65 -1.02 1.46 

G17 29.5 34.8 35.0 40.1 38.2 37.1 35.8 1.08 -0.14 1.74 

G18 30.3 37.0 35.5 41.9 40.2 39.1 37.3 1.19 0.31 1.95 

G19 32.8 39.5 36.3 42.0 41.5 39.9 38.7 0.61 0.50 1.10 

G20 33.0 37.6 36.2 39.7 39.4 37.5 37.2 0.18 -0.13 0.32 

G21 31.0 37.0 34.3 39.2 38.8 37.1 36.2 0.44 0.29 0.76 

G22 29.2 36.3 30.1 35.2 36.4 34.2 33.6 -0.17 0.86 0.91 

G23 31.6 37.4 35.0 39.8 39.3 37.6 36.8 0.45 0.20 0.75 

G24 33.7 42.2 34.4 40.9 42.2 40.1 38.9 0.00 1.33 1.33 

G25 26.7 29.8 30.6 32.8 32.0 30.1 30.3 0.15 -0.68 0.73 

G26 37.2 40.8 40.6 42.9 42.6 40.6 40.8 0.03 -0.48 0.48 

Mean 32.0 36.9 34.6 38.0 38.2 36.1 36.0    

IPCA1 -2.29 -1.55 0.21 2.13 0.33 1.18     

IPCA2 -0.94 1.77 -2.36 -0.05 0.8 0.78     

ASV = AMMI stability value, IPCA1 and IPCA2 = first and second interaction principal component 

analysis axes, See codes of environments and genotypes in Tables 6.1 and 6.2, respectively. 

DMC of genotypes across sites. The means for dry matter content are presented in Table 6.7. 

The mean DMC across the six sites ranged from 30.3-40.8% for G25 and G26, respectively, 

with an overall mean of 36%. Both G25 and G26 are released and commercially grown 

cultivars.  
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Among the newly bred clones, G14 and G19 had the lowest and highest DMC of 32.6 and 

38.7%, respectively; G7 had the same DMC to the overall mean. About 54% of test genotypes 

had DMC above the overall mean (Table 6.7). Test environments E1 and E5 had the lowest 

and highest DMC of 32 and 38.2%, respectively. 

IPCA1 and IPCA2 had significant differences at p ≤ 0.01. The IPCAs accounted for 68% of 

the GxE interaction sum of squares. G7 and G18 had the lowest and highest IPCA1 of -1.59 

and 1.19, respectively (Table 6.7). Conversely, G24 had zero IPCA1. The ASV for DMC 

among the test genotypes ranged from 0.32-2.7 for G20 and G7, respectively (Table 6.7). 

Therefore, G20 was the most stable and G7 the least stable genotype (Figure 6.1c). 

An AMMI biplot with IPCA scores against means of genotypes and environments for dry matter 

content is presented in Figure 6.3A. Genotypes G25 and G26 had the lowest and highest 

DMC, respectively. G7, G3 and G17 had DMC closer or equal to the overall mean DMC; 

however, they were least stable. G24, G20, G8, G11, G22, G25 and G15 were relatively stable  

in the test environments compared to G7, G6, G5, G18 and G17 which were least stable. On 

the other hand, test environments E3 and E5 were stable. In contrast, E1, E2 and E4 showed 

great variablity in discriminating test genotypes with regards to dry matter content (Figure 

6.1c).  

6.3.2.4. Sweetpotato virus disease (SPVD) 

The AMMI analysis of variance for SPVD showed highly significant (p ≤ 0.001) effects of 

genotypes, environments and their interaction on SPVD response (Table 6.4). IPCA1 and 

IPCA2 were highly significant (p ≤ 0.001). The two IPCAs accounted to 71% of the interaction.  

The mean SPVD severity scores are presented in Table 6.8. The SPVD scores for the six 

environments ranged from 1.17-3.11 corresponding to the genotypes G4 and G25, 

respectively; with an overall mean of 1.62. Therefore, the genotype G4 was the most resistant 

and G25 the most susceptible. G25 is a released orange fleshed and commercially grown 

cultivar, while G4 is a newly bred clone. About 62% of the genotypes had SPVD scores less 

than the overall mean scores of the six environments.  

The genotypes G22 and G14 had the lowest and highest IPCA1 score of -0.87 and 1.02, 

respectively (Table 6.8). The ASVs for the experimental clones ranged from 0-0.38 (Table 

6.8). The following genotypes: G16, G19, G5 and G12 had an ASV value of zero; while G14, 

G6 and G1 had ASV of 0.38. Hence, the genotypes G16, G19, G5 and G12 were stable and 

G14, G6 and G1 were unstable across the six environments with regards to reaction to SPVD 

(Table 6.8; Figure 6.1d). 
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Table 6.8. AMMI means for SPVD reaction, IPCA scores and ASV values for 26 sweetpotato 

clones evaluated across six environments in eastern Tanzania 

Genotypes E1 E2 E3 E4 E5 E6 Mean IPCA1 IPCA2 ASV 

G1 1.76 1.66 1.32 0.89 2.89 1.14 1.61 -0.39 0.70 0.38 

G2 2.16 1.49 1.26 1.76 1.09 1.57 1.56 0.19 -0.30 0.08 

G3 3.16 1.60 1.51 1.79 2.55 1.39 2.00 -0.54 -0.11 0.08 

G4 1.46 1.23 0.93 1.19 0.99 1.20 1.17 0.20 -0.03 0.01 

G5 1.70 1.50 1.19 1.24 1.72 1.32 1.44 0.01 0.19 0.00 

G6 1.11 2.31 1.77 1.65 1.64 2.19 1.78 0.63 0.43 0.38 

G7 1.40 1.34 1.01 1.23 1.05 1.30 1.22 0.25 0.02 0.01 

G8 2.32 1.37 1.18 1.43 1.81 1.23 1.56 -0.22 -0.05 0.02 

G9 2.77 1.02 0.98 1.77 0.95 1.17 1.44 -0.14 -0.66 0.13 

G10 2.07 1.64 1.37 1.37 2.16 1.40 1.67 -0.15 0.22 0.05 

G11 1.84 1.25 1.00 1.03 1.87 1.01 1.33 -0.22 0.19 0.06 

G12 1.34 1.47 1.11 1.35 0.94 1.47 1.28 0.38 0.01 0.00 

G13 1.85 1.47 1.19 1.59 1.07 1.51 1.44 0.24 -0.17 0.06 

G14 1.84 2.60 2.15 2.68 0.83 2.90 2.17 1.02 -0.27 0.38 

G15 3.06 1.04 1.05 1.85 1.18 1.16 1.56 -0.28 -0.68 0.26 

G16 2.17 1.70 1.44 1.69 1.71 1.63 1.72 0.05 -0.03 0.00 

G17 2.29 1.25 1.09 1.64 1.09 1.32 1.44 0.02 -0.37 0.01 

G18 1.35 1.37 1.03 1.22 1.05 1.32 1.22 0.28 0.05 0.02 

G19 2.17 1.70 1.44 1.69 1.71 1.63 1.72 0.05 -0.03 0.00 

G20 1.28 2.13 1.64 1.45 1.93 1.92 1.72 0.38 0.48 0.25 

G21 1.46 1.35 1.02 0.87 1.95 1.03 1.28 -0.13 0.40 0.07 

G22 3.32 1.17 1.18 1.44 2.68 0.88 1.78 -0.87 -0.12 0.15 

G23 2.46 1.14 1.02 1.43 1.55 1.07 1.44 -0.27 -0.24 0.09 

G24 2.47 1.77 1.54 1.57 2.49 1.50 1.89 -0.29 0.19 0.08 

G25 3.18 3.22 2.86 2.51 4.12 2.78 3.11 -0.23 0.61 0.20 

G26 2.37 1.22 1.08 1.69 1.00 1.32 1.44 0.03 -0.44 0.02 

Mean 2.09 1.58 1.32 1.54 1.69 1.47 1.62    

IPCA1 -1.06 0.59 0.32 0.39 -1.09 0.86     

IPCA2 -1.07 0.46 0.19 -0.70 1.11 0.02     

ASV = AMMI stability value, IPCA1 and IPCA2 = first and second interaction principal component 

analysis axes, See codes of environments and genotypes in Tables 6.1 and 6.2, respectively. 

 

AMMI biplot for IPCA1 scores against genotype and environment means for response to 

SPVD is presented in Figure 6.1d. Genotypes G19, G16, G10, G17, G26 and G5 were 

relatively stable across sites; however, only G17, G26 and G5 had SPVD scores below the 
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overall mean. Corresponding to IPCA1 scores and ASV values, G14 and G22 were most 

responsive across all the test environments. G25 fell out of the range of the biplot due to its 

high SPVD mean scores and its susceptibility. G22 was highly susceptible at E5 and E1, while 

G14 and G6 were highly susceptible at E6. On the other hand, G7, G18 and G12 had minimal 

infection rate at E3. Test environments; E1 and E5 had high infection rates and conducive for 

SPVD, while E2, E3, E4 and E6 had less infection rates. Two sites, one from each of the two 

groups could sufficiently be used to evalute the test genotypes for evaluation of genotypes for 

SPVD resistance.   

6.3.3. Best or worst genotypes selected by AMMI per environment 

AMMI analysis identified four best test genotypes per environment for number of roots per 

plant, root yield and DMC. Also, highly SPVD susceptible test genotypes per each 

environment were identified (Table 6.9). G20 ranked first in four environments for number of 

roots per plant. G5 was the best in all test environments except E1 where G19 was the best 

for root yield. Similarly, G26 was the highest at E1, E3, E4, E5 and E6 except E2 where G24 

was the highest for DMC. Alternatively, G25 was the most susceptible in all environments, it 

ranked first at E2, E3 and E5 and, second at E1, E4 and E6. While at E6 where G14 was the 

highly infected, G22 ranked first at E1. The above ranking corresponds to IPCA1 scores and 

ASV values previously highlighted in Tables 6.5 to 6.8. 
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Table 6.9. The first four AMMI selections of sweetpotato genotypes per environment  

Traits Environments Mean Scores 1 2 3 4 

Nrpp 

E2 4.5 -0.85 G20 G22 G9 G18 

E4 4.1 -1.04 G20 G22 G3 G2 

E5 3.5 2.18 G1 G25 G22 G10 

E3 3.4 -0.76 G20 G22 G3 G2 

E6 3.3 0.04 G20 G4 G3 G22 

E1 2.7 0.44 G22 G20 G1 G2 

Yield 

E3 21.6 -5.12 G5 G11 G23 G3 

E4 9.5 1.07 G5 G4 G23 G6 

E1 9.4 1.47 G19 G2 G18 G24 

E5 9.3 0.90 G5 G23 G4 G6 

E2 8.8 0.37 G5 G11 G23 G19 

E6 5.6 1.32 G5 G4 G9 G8 

DMC 

E5 38.2 0.33 G26 G24 G19 G10 

E4 38.0 2.13 G26 G19 G18 G10 

E2 36.9 -1.55 G24 G7 G26 G4 

E6 36.1 1.18 G26 G24 G19 G18 

E3 34.6 0.21 G26 G15 G16 G12 

E1 32.0 -2.29 G26 G16 G7 G15 

SPVD 

E6 1.5 0.86 G14 G25 G6 G20 

E2 1.6 0.59 G25 G14 G6 G20 

E4 1.5 0.39 G14 G25 G15 G3 

E3 1.3 0.32 G25 G14 G6 G20 

E1 2.1 -1.07 G22 G25 G3 G15 

E5 1.7 -1.09 G25 G1 G22 G3 

DMC = dry matter content, Nrpp = number of roots per plant, SPVD = sweetpotato virus disease. See 

codes of environments and genotypes in Tables 6.1 and 6.2, respectively. 
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6.3.4. GxE and stability analysis using GGE biplot 

6.3.4.1. Number of roots per plant 

GGE biplot analysis of number of roots per plant using principal component 1 (PC1) and PC2 

is presented in Figure 6.2A. The two PCs explained about 78% of the interaction. Large and 

positive PC scores for given genotypes indicate higher average value while those with large 

negative PC scores imply lower average value (Yan et al., 2000). Consequently, the following 

genotypes: G20, G22, G3, G2, G9 and G4 had the highest average number of roots per plant 

(Figure 6.5). Conversely, genotypes G13, G17, G10, G21 and G8 had the lowest mean 

number of roots per plant (Figure 6.2A).  

Genotypes with PC2 scores near zero indicate that they were more stable. Accordingly, G6, 

G16, G5, G11 and G12 had relatively low PC2 scores. Unlike genotypes at the polygon 

vertexes, the clones designated as G1, G22, G20, G10 and G13 were the most responsive to 

environments. Five out of six environments were located in one sector implying that they 

discriminated the test genotypes similarly. 

Genotypes at the vertices of the polygon performed either best or poorest. Hence, G20, G1 

and G22 had highest average number of roots at E3, E5 and E4, respectively. Figure 6.2A 

shows what genotype won where, consequently G20 and G22 won at E1, E2, E3, E4 and E6, 

while G1 was best suited for E5.  

Moreover, environments with large PC1 scores were better in discriminating the genotypes 

and those with PC2 scores near zero weare more representative of an average environment 

(Yan et al., 2000). Therefore, E1, E2, E3, E4 and E6 discriminated the genotypes similarly 

with regard to number of roots per plant. Conversely, G1 and G25 specifically won at E5. While 

E5 was not representative in discriminating the test genotypes, the rest were representative. 

Consequently, this led to two mega-environments for the numbers of roots per plant as 

depicted in Figure 6.2A. 

Figure 6.2a shows the stability of the genotypes across the test environments. The line that 

passes through the biplot origin is called the average environment coordinate (AEC), it shows 

the stability of the genotypes (Farshadfar et al., 2011). The stability of the genotypes is 

measured by their projection to the AEC y-axis. Either direction away from the biplot origin, on 

this axis, indicates greater GE interaction and reduced stability (Farshadfar et al., 2011). 

Therefore, genotypes G6, G16, G7, G8, G4, G12 and G5 were considered to be stable across 

the test environments for number of roots per plant. Conversely, G1, G25, G13, G26, G17 and 

G15 were least stable. Among the test environments, E5 was highly variable compared to E1, 

E6, E4 and E2 which were relatively stable. The AEC y-axis also separates genotypes with 

mean value of below average and above average. Genotypes to the right of this line are high 
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performers and those to the left are low performers (Gurmu et al., 2012). Therefore, G20 and 

G22 were the highest, while G13 and G17 were the lowest (Figure 6.2a).  

 

        

          

Figure 6.2 GGE biplots showing the ‘which won where’ view of (A and B) and comparison with 
ideal genotypes (a and b) of 26 sweetpotato genotypes tested across six environments for 
number of roots per plant (A and a) and storage root yield (B and b), respectively. See codes 
of environments and genotypes in Tables 6.1 and 6.2, respectively. 
  

A a 

B b 



169 

 

6.3.4.2. Storage root yield 

The GGE biplot showing environments and their respective sweetpotato genotypes for storage 
root yield is as presented in Figure 6.2B. Genotypes G5, G11, G23, G14 and G3 had positive 

PC1 scores and were higher yielders compared to the rest in all test environments except E1. 

Conversely, G24, G25, G26, G7, G16 and G12 had negative PC1 scores and yielded below 

the overall mean.  

The clone G5 won across most of the test environments, while G19 performed better at E1 

(Figure 6.2B; Table 6.9). E2 and E6 were more representative of the test environments, while 

E1 was a non-representative or discriminated the test genotypes differently for root yield. Five 

out of six environments were contained in the same sector meaning that they discriminated 

test genotypes similarly and consequently constituting one mega-environment. Uniquely, E1 

constituted one mega-environment.  

Figure 6.2b shows the stability of the genotypes across the test environments. Genotypes G5, 

G7, G9, G17, G10 and G22 were most stable across the test environments. However, G5 was 

the most stable and high yielding. Alternatively, G2, G19, G6 and G21 were least stable. G24 

and G5 had the lowest and highest mean yields, respectively. Conversely, E2 and E6 were 

stable and, E1 and E4 were highly variable test environments with regard to root yield. 

Therefore, E2 and E6 could be used to test genotypes for a wide adaptation.  

6.3.4.3. Dry matter content (DMC) 

Figure 6.3A shows which genotype won where or which is best for which environment with 

regard to DMC. Both PC1 and PC2 accounted about 81% of the total variation implying that 

they sufficiently explained the GGE. Genotypes G26, G24, G19, G10 and G13 had high and 

positive PC1 scores and high mean DMC mean. Conversely, G25, G14, G5, G2, G1, G22 and 

G6 had negative PC1 scores and had DMC below overall mean. Overall, 54% of the test 

genotypes had high mean DMC than the overall mean. All the test environments had positive 

PC1 scores and constituted one mega-environment implying that they were equally similar in 

discriminating test genotypes with regard to DMC. Nonetheless, E3, E5 and E6 were most 

representative environments.  

Figure 6.3a shows the stability of the genotypes across the test environments for DMC. 

Genotypes G22, G9, G11, G8, G20, G24, G15 and G26 were most stable across the test 

environments. G24 and G26 were the highest in DMC across sites. The genotypes including 

G7, G6, G5, G14, G17 and G18 were least stable. Genotype G26 and G25 had the highest 

and lowest mean DMC, respectively. E5 and E3 were relatively the most stable environments 

with regard to DMC.  
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Figure 6.3 GGE biplots showing the ‘which won where’ view of (C and D) and comparison with 
ideal genotypes (c and d) of 26 sweetpotato genotypes tested across six environments for dry 
matter content and SPVD reaction (C and c) and (D and d), respectively. See codes of 
environments and genotypes in Tables 6.1 and 6.2, respectively. 

 

6.3.4.4. Resistance to sweetpotato virus disease (SPVD) 

Figure 6.3B shows which genotype wins where or which is best for which environment with 

regard to reaction to SPVD. The two PCs accounted for 69% of the total variation with PC1 

and PC2 contributing at 45 and 24%, respectively. Contrary to the previously described traits, 

genotypes with high and positive PC1 scores imply that they were most susceptible and those 

with negative PC1 are most resistant. Thus genotype G25 was consistently the most 

susceptible across locations, while G14 was most affected by SPVD at E6. Interestingly, 65% 

of the genotypes had SPVD scores below the overall mean. Some of the new clones were 

A 
a 

B b 
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more resistant than the resistant check, G26. Overall, the genotypes G4 and G7 had the 

lowest SPVD scores. Consequently, G25 and G26 could be used as susceptible and resistant 

checks, in that order, when evaluating new sweetpotato genotypes against SPVD in eastern 

Tanzania. 

The test environments had positive PC1 scores and constituted one mega-environment; 

hence they were similar in discriminating genotypes for SPVD. However, E3 and E4 were 

relatively the most representative environments in discriminating genotypes.  

Figure 6.3b shows the stability of the genotypes across locations for SPVD. The genotypes 

indicated as G10, G16, G19, G6, G26, G21, G11, G17, G8 and G25 were stable across test 

environments. The genotype G25 was the most susceptible. Conversely, the genotypes G14, 

G22, G6, G3 and G20 were least stable by showing high divergence from the AEC abscissa. 

G25 had the highest SPVD score, while the remaining genotypes had disease scores less 

than the mean except G16 and G19. 

6.4. Discussion 

6.4.1. Analysis of variance  

Significant differences were detected in number of roots per plant, storage root yield, dry 

matter content and resistance to SPVD among the genotypes studied across the six sites. 

Presence of significant differences in genotypes, environments and GE interaction effects 

implied differential responses in performances of genotypes across sites. Ngailo et al. (2015) 

and Placide et al. (2015) reported significant differences among sweetpotato genotypes, 

environments and their interactions in number of roots per plant, root yield, dry matter content 

and response to SPVD in Tanzania and Rwanda, respectively. Karuri et al. (2009) reported 

significant differences in SPVD symptoms severity among genotypes studied in Kenya. The 

same authors reported significant differences in dry matter content among genotypes studied. 

Laurie (2010) reported significant differences in yield and dry matter content in newly released 

and commercially grown sweetpotato varieties in South Africa. Likewise, Nwankwo and 

Afuape (2013) reported significant differences among orange fleshed sweetpotato genotypes 

for number of roots per plant, storage root yield, dry matter content and response to pests and 

diseases including viral diseases. Moreover, Marzouk et al. (2011) reported significant 

differences in the number of roots per plant in Egyptian sweetpotato germplasm. Similar 

findings were reported by Ali et al. (2015) for storage root yield and dry matter content in 

Ethiopia, while Kathabwalika et al. (2013) reported root yield differences in Malawi. Similarly, 

Mcharo and Ndolo (2013) and Saraswati et al. (2013) reported differential responses of 
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genotypes across test environments for root yield and dry matter content in sweetpotato 

genotypes in Kenya and Papua Indonesia, respectively. In Tanzania and Uganda, Mbwaga et 

al. (2007) and Mwanga et al. (2007), respectively, reported varied yields, dry matter content 

and SPVD symptoms severity of sweetpotato genotypes in agreement to the present findings. 

Differential response across sites implied differences in environments, and their interactions 

with the test genotypes.  

6.4.2. AMMI analysis  

6.4.2.1. Number of roots per plant 

From AMMI analysis of variance (Table 6.4), the main effects and their interaction significantly 

caused variations in the number of roots per plant. However, the magnitude of their 

contribution varied. Genotypic and interaction effects were equally important, environments 

contributed less to the total sum of squares compared to other treatment components. IPCA1 

contributed about 46.46% of the interaction and was the most important, while IPCA2 

contributed to 21.1% of the interaction variance. Number of roots per plant is an important 

component of yield; however, the size and weight of the roots determine the final yield. Ngailo 

et al. (2015) and Placide et al. (2015) reported variations in the number of roots per plant 

across test sites in east Africa. This suggests that, the number and size of the roots is 

determined not only by genotypes but also by soil properties and other management practices 

during growth and development processes. 

6.4.2.2. Storage root yield 

The AMMI analysis of variance on storage root yield showed great contribution of 

environments and GE interactions to the variation in storage root yield compared to the main 

effect of genotypes. The contribution of environment to total sum of squares was larger 

compared to other sources of variations implying that the environments were diverse with 

large differences causing most of variations in root yields. IPCA1 and IPCA2 accounted for 66 

and 16% of the interaction variance, respectively. There was a decrease in the contribution to 

GE interaction sum of squares with an increase in number of IPCAs. Similar to this study, 

Mwololo et al. (2009), Oduro (2013) and Kivuva et al. (2014) reported significant effects of 

genotypes, environments and their interactions in sweetpotato genotypes performance in 

Kenya and Ghana. Amare et al. (2014) reported significant effects of the genotypes, locations 

and their interaction on total sweetpotato root yields in Ethiopia. Adebola et al. (2013) reported 

similar findings in South Africa. Congruent to this study, Kivuva et al. (2014) reported large 

proportion of IPCA1 to GE interaction. However, Niringiye et al. (2014) reported higher 

contribution of genotypic effects than environment and GE interaction effects in variation of 
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sweetpotato root yields Uganda. Also, Kathabwalika et al. (2013) reported larger contribution 

of the interaction than genotype and environment in the variation of root yield in Malawi. The 

presence of interaction between genotypes and environments on the performance of 

candidate genotypes emphasizes the need to ascertain the influence of GE interaction in 

evaluation, selection and release of new varieties.  

6.4.2.3. Dry matter content (DMC) 

The AMMI analysis of variance showed that, genotypes and environment and their interaction 

were highly significant. The two IPCAs contributed to 68% of GE interaction. Caliskan et al. 

(2007) reported great variation in dry matter across locations in Turkey. Similar to this study, 

Oduro (2013) reported larger contribution of genotypic effects compared to environment and 

interaction effects in variation of dry matter content and other quality attributes. Likewise, most 

of sweetpotato quality traits were reported to have high dependence on environment main 

effects except dry matter content (Moussa et al., 2011). Shumbusha et al. (2014) reported little 

differences in dry matter content across locations among sweetpotato families in Uganda. 

Placide et al. (2015) reported significant genotype-environment interaction for sweetpotato dry 

matter content in Rwanda. Likewise, Wera et al. (2014) argued that significant GE interaction 

for dry matter content was attributed by genotypic effect. Contrary to this study and other 

reports, Chiona (2009) reported absence of environment effects and only 3% contribution of 

GE interaction on the variation of dry matter content in newly bred sweetpotato clones in 

Zambia. The mean DMC reported in this study resembles those reported by Tairo et al. (2008) 

and Chiona (2009) of 26.9-45.3% and 30.5-42.1%, respectively. In general, dry matter content 

of sweetpotato is the most preferred attribute by both farmers and consumers. 

6.4.2.4. Resistance to sweetpotato virus disease (SPVD) 

There were highly significant differences for genotypes, environments and their interactions. 

The IPCAs sufficiently explained the interaction of the main effects and accounted for 71% of 

GE interaction. The high IPCA scores in any direction and in any environment indicated the 

high degree of severity of SPVD for such particular genotype. For instance, genotypes G1 and 

G25 had high mean SPVD scores at E5 and, G14 and G22 at E6 and E1 respectively (Table 

6.10; Figure 6.4). As opposed to yield and possibly other traits, high IPCA scores did not 

indicate responsiveness and specific adaptation but rather high degree of disease severity. 

The high GEI might be most useful in testing accessions’ adaptability and resistance to pest 

and diseases  (Tumwegamire et al., 2011). Byamukama et al. (2002) reported the variation of 

SPVD incidences with environments and that GE interaction effects for SPVD existed among 

sweetpotato clones in Uganda. Mwololo et al. (2012) reported significant variations in SPVD 

incidences due to sites, seasons and genotypes. The environmental mean SPVD severity 
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scores reported in this study were slightly lower than those reported by Niringiye et al. (2014). 

Forbes et al. (2005) argued that, stability of resistance over time is difficult to study as it 

requires historical data for stability inferences to be drawn over a significant period. Differential 

responses of genotypes to SPVD across sites could imply differences in disease inoculum 

pressure, hence testing of genotypes for resistance to the disease is vital to identify either for 

specific or wide adaptation to SPVD and possibly other diseases. 

6.4.3. GGE biplot analysis 

6.4.3.1. Number of roots per plant 

From the GGE biplot, G20 and G22 had the highest number of roots per plant but very 

responsive to environment changes (Figure 6.2a). Also, G1, G25, G13, G26 and G17 were 

responsive and unstable genotypes with specific provisional adaptation to specific 

environments. E1 was the most stable but low yielding environment compared to E2, E3 and 

E4 were stable and high number of roots. Alternatively, E5 was unstable environment and 

mainly for specific adaptation. The findings indicated that genotypes were different and the 

environments were diverse in discriminating the test genotypes for number of roots. 

6.4.3.2. Storage root yield 

Genotypes G5 and G11 were high yielding in most of test environment. E2 and E6 were most 

stable but low yielding compared to E3 was the stable and high yielding. On the other hand, 

E1 and E4 were relatively less stable in discriminating the test genotypes. GGE biplot analysis 

resulted into two mega-environments implying that only two sites, one from each mega-

environment could sufficiently be used to evaluate the genotypes. According to Yan et al. 

(2000), genotypes closer to the origin within the biplot polygon were considered stable and 

those at the polygon vertexes were responsive to environment changes. Hence, G5, G11 and 

G19 were very responsive to environment changes unlike G8 and G22. Laurie and Booyse 

(2015) reported similar trend among ten sweetpotato varieties selected for multiple traits in 

South Africa. Also, Kivuva (2013) reported similar findings where high yielding genotypes were 

positioned at the vertices of the polygon and most of the test environments were contained in 

one sector when working for drought tolerance in sweetpotato in Kenya. Therefore, different 

genotypes are likely to perform differently when tested in diverse environments. 

6.4.3.3. Dry matter content (DMC) 

All the test environments had positive PC1 scores and were contained in one sector which 

indicated their similarity in discriminating the test genotypes with regard to dry matter content. 

However, E3 and E5 were stable compared to the other four environments. Genotypes G25 
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and G26, both check varieties, had the lowest and highest DMC, respectively. Likewise, G7 

had mean DMC similar to the overall mean DMC of genotypes. Alternatively, G7, G17, G18 

and G14 were responsive to environment changes hence least stable compared to other 

genotypes. Besides GE interactions, variations in dry matter content among genotypes could 

be due to genetic constitution (Ali et al., 2015).  

6.4.3.4. Resistance to sweetpotato virus disease (SPVD) 

SPVD resistant genotypes with low severity scores were found to be close to the origin of the 

biplot hence most stable compared to their counterparts. Genotypes G25, G14 and G22 were 

the most susceptible in the test environments in descending order. The environments were 

similar in discriminating the test genotypes for SPVD. E2, E3 and E4 were moderately stable, 

the rest were highly variable. Resistant genotypes are claimed to be stable unlike the 

susceptible counterparts (Mulema et al., 2008). Nakitandwe et al. (2005) found that, 

sweetpotato genotypes grown in multi-location trials performed differently with regard to yield 

and disease resistance. Since resistance to SPVD is quantitatively inherited (Diaz-Pendon et 

al., 2004); it is likely to be relatively stable across environments (Forbes et al., 2005). However, 

it is a long term endeavour as the presence of GxE interactions is claimed to have largely 

contributed to break down of resistance in improved varieties grown in agro-ecologies with 

high SPVD pressure (Gibson et al., 1998; Karyeija et al., 1998). However, further evaluation 

would be useful for certainty. Likewise, the results insist the need to breeders and agronomists 

to breed and evaluate new genotypes in multiple environments to identify resistant genotypes 

for either specific or wide adaptation for SPVD or other diseases. 

6.5. Conclusions 

There were significant differences in the performance among genotypes and across sites. 

AMMI analysis of variance showed significant differences for additive main effects and their 

interaction. Genotype, environment and their interaction contributed significantly to the 

variations in the traits studied though in varying proportions.  The two IPCAs sufficiently 

explained the GEI. Both AMMI and GGE biplot identified G5, G11, G23, G9, G7, G18 and G17 

being high yielding and resistant to SPVD and could be further evaluated in multi-environment 

yield trials (MEYTs) in eastern Tanzania. Likewise, both models identified G22 and G3 as high 

yielding and resistant to SPVD but specifically suited to E5 and E1. The presently used 

environments sufficiently discriminated the test genotypes with respect to traits studied. 

However, further MEYTs will be useful. 
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7. General overview 

7.1. Introduction  

Sweetpotato production contributes significantly to food security and incomes of subsistence 

farmers in Tanzania. However, its production is constrained by several biotic, abiotic and 

socio-economic factors. Sweetpotato virus disease (SPVD) is amongst the major biotic 

constraints and causes significant yield losses in the country. Both improved cultivars and 

landraces that are grown succumb to SPVD. Continued use of susceptible varieties and lack 

of effective control measures to SPVD has contributed to low yields and disease build up, 

development and persistence. Several SPVD control strategies such as cultural practices, 

phytosanitary measures, control of vectors and deployment of genetic resistance to prevent 

or limit the extent of damage have been recommended singly or in combinations. Both 

chemical and biological control methods are not effective against SPVD. The use of resistant 

varieties remains the most effective and cheapest method for subsistence farmers. The use 

of resistant varieties is cheap, easy, safe, effective and environmentally friendly.  Therefore, 

breeding for SPVD resistance and high yields is an important consideration to develop and 

release improved sweetpotato varieties with end users preferences. This overview presents 

the summary of major findings of each objective. Finally, the implications of the findings are 

presented for sweetpotato breeding to SPVD resistance and improved yield and related traits. 

The specific objectives of the study were: 

1. To assess the present sweetpotato farming systems, farmers’ preferences, production 

constraints and breeding priorities in eastern Tanzania 

2. To determine genetic variation among diverse sweetpotato germplasm with regard to yield, 

dry matter content and sweetpotato virus disease (SPVD) resistance and to identify 

suitable clones for breeding. 

3. To investigate the genetic diversity of 48 Tanzanian sweetpotato genotypes using nine 

selected polymorphic simple sequence repeat (SSR) markers to determine genetic 

relationship and select unique parents for breeding  

4. To determine the general combining ability (GCA) and specific combining ability (SCA) 

effects of selected sweetpotato clones for the number of storage roots, fresh storage root 

yield, dry matter content (DMC) and resistance to sweetpotato virus disease (SPVD) for 

further selection and breeding. 
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5. To determine the magnitude of genotype-by-environment and stability for yield and yield 

related traits and sweetpotato virus disease (SPVD) resistance among newly developed 

sweetpotato clones in eastern Tanzania. 

7.2. Summary of major findings 

The first study assessed the present sweetpotato farming systems, farmers’ preferences, 

production constraints and breeding priorities in eastern Tanzania. A participatory rural 

appraisal was conducted at Gairo, Kilosa and Kilombero districts of Morogoro Region and 

Mkuranga district of the Coast Region of Tanzania. A total of 138 and 149 farmers were 

sampled for household interviews and focus group discussion, respectively.  The main findings 

of this study indicated that:  

 More than 94% of the respondents depended on crop farming for their livelihoods.  

 The main sweetpotato production constraints were Sweetpotato virus disease (SPVD) 

and pests, drought, unavailability of markets and lack of transport, low prices, 

inadequate extension services and postharvest losses.  

 High yield, high dry matter content, tolerance to diseases and early maturity were the 

most preferred sweetpotato attributes. 

 Farmers expressed their persuasive needs towards improved extension service 

delivery, SPVD tolerant cultivars and reliable and coordinated market systems of 

sweetpotato. 

The second study determined phenotypic variation among diverse sweetpotato collections 

with regard to yield, dry matter content and sweetpotato virus disease resistance and identified 

suitable clones for breeding. A total of 144 sweetpotato genotypes were evaluated at two sites 

in Tanzania using a 12x12 simple lattice design in 2013. The main findings are listed 

hereunder: 

 Genotypes differed in time to 50% flowering, number of roots per plant, root yield, dry 

matter content and resistance to SPVD. 

 Fifty eight percent of the genotypes showed resistant reaction to SPVD, while 31% and 

11% were moderately susceptible and susceptible to the disease, respectively.  

 Seven clones including Simama, Ukerewe, Mataya, Resisto, 03-03, Ex-Msimbi-1 and 

Gairo were selected for high storage root yield and related traits or SPVD resistance. 

The selected genotypes are recommended as potential parents for sweetpotato 

breeding. 
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The third study determined genetic relationship and selected unique parents useful for future 

breeding. A total of 48 Tanzanian sweetpotato genotypes were genotyped using nine 

polymorphic simple sequence repeat markers. Genetic diversity parameters, cluster analysis, 

and analysis of molecular variance were calculated to determine genetic diversity and 

relationships. The following were the outcomes: 

 The SSR markers used were highly polymorphic with the mean polymorphic 

information content (PIC) of 0.78, while allelic richness per locus ranged from 4-17 

with a mean of 10.0 and the number of effective alleles varied from 2.2-6.1 with a 

mean value of 3.5.  

 The un-weighted pair group method with arithmetic mean allocated the germplasm 

collection into three major genetic clusters.  

 Ex-Ramadhani, Kibakuli, Mkombozi, Mjomba, Ex-Halima-3 and Kabuchenji were 

identified as genetically unrelated and complementary genotypes and recommended 

for future breeding programmes. 

The fourth experiment determined combining ability effects for yield and related traits, and 

resistance to SPVD. Eight genotypes selected for their high yield, dry matter content or SPVD 

resistance were crossed using an 8x8 half diallel mating design. The generated families were 

evaluated in the field at Sugarcane Research Institute (SRI) at Kibaha, Kilombero Agricultural 

Training and Research Institute (KATRIN) and Sokoine University of Agriculture (SUA) in 

Tanzania. Results showed: 

 Highly significant differences among families for all studied traits across sites.  

 Highly significant GCA and SCA effects of parents for all traits studied.  

 Both GCA and SCA interacted significantly with sites indicating environmental 

influence on the gene action for respective traits.  

 Clonal parent Gairo had positive and significant GCA effect for number of roots per 

plant.  

 Clonal parents 03-03 and Simama had significantly positive GCA effects for storage 

root yield, while Ukerewe displayed positive and significant GCA effect for DMC.  

 The parental clones Ex-Msimbu-1and Gairo displayed negative and significant GCA 

effect for SPVD resistance. Therefore, the following parents: 03-03, simama, Ukerewe, 

Ex-Msimbu-1 and Gairo could be used for future sweetpotato breeding programmes 

poised to improve yield, dry matter content and resistance to SPVD.  

 Families that were best combiners displaying positive and significant SCA effects: 

Mataya x Gairo and Simama x Gairo for number of roots per plant, Mataya x Ex-

Msimbu-1, 03-03 x Ex-Msimbu-1 and Resisto x Gairo for root yield and, Resisto x 
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SPKBH008, Mataya x Gairo, 03-03 x Ukerewe and SPKBH008 x Gairo for DMC and 

Mataya x SPKBH008 and Mataya x Gairo had negative and significant SCA effect for 

resistance to SPVD.  

 The selected parents and families were the best candidates to develop improved 

sweetpotato varieties with high root yield, DMC and SPVD resistance.  

 

Finally, the magnitude of genotype-by-environment interaction among newly developed 

sweetpotato clones was determined for yield and related traits and SPVD resistance in eastern 

Tanzania. Experiments were conducted across six diverse environments, namely Gairo, 

Kilombero Agricultural Training Research Institute (KATRIN), Sokoine University of Agriculture 

(SUA), Sugarcane Research Institute (SRI), Chambezi and Mkuranga. Twenty three newly 

developed clones and three released and commercially grown check varieties were evaluated 

using a randomized complete block design with three replications. The Additive Main Effect 

and Multiplicative Interaction (AMMI) and genotype and genotype-by-environment interaction 

(GGE) biplot analyses were used to determine the GxE interaction and stability of the 

genotypes.  

 AMMI analysis of variance revealed highly significant differences among genotypes, 

environments and genotype x environment interaction effects for all traits evaluated.  

 Both AMMI and GGE biplots identified genotypes: G5, G11, G23, G9, G7, G18 and 

G17 being high yielding and resistant to SPVD which could be further evaluated in 

multi-environment yield trials (MEYTs) in eastern Tanzania.  

 Also, both models isolated genotypes G22 and G3 as high yielding and resistant to 

SPVD but specifically suited to Chambezi and Gairo.  

 Test environments sufficiently discriminated the candidate genotypes for traits studied.  

 Further MEYTs are required for selection and recommendation of high yielding, SPVD 

resistant and stable sweetpotato clones for eastern Tanzanian or similar environments. 

7.3. Implications of the research findings  

The following implications were noted from this study:  
 

 Farmers‘ participation in sweetpotato varietal selection and identification of breeding 

priorities is important for adoption of newly developed and improved varieties.  

 Participatory germplasm conservation and utilization is fundamental for maintenance 

of useful genetic resources and diversity for future sustainable uses.  
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 The SSR genetic markers are useful in genetic diversity analysis studies. 

 Presence of both additive and non-additive gene effects for yield and resistance to 

SPVD suggests that breeding gain can be realized through hybridization and selection 

strategies. 

 

In general, the study identified constraints and brreding priorities for improving sweetpotato 

production, presence of distantly sweetpotato genotypes which are valuable genetic resources 

for future crop breeding and generated valuable sweetpotato families with high combining 

ability for number and yield of storage roots, dry matter content and SPVD resistance from 

which new clones can be selected for future evaluation and release as new cultivars.  

 

 

 

 

 

 

 


