
Scenario Testing using OWL

A dissertation submitted in fulfillment of the
requirements for the award of the degree

Master of Computer Science (Research)

from

UNIVERSITY OF KWAZULU-NATAL

by

Hendrina Francina Harmse

Colledge of Agriculture, Engineering and Science
March 2015

We can only see a short distance ahead, but we can see plenty there that
needs to be done.

Alan Turing

ii

Abstract

The main contribution of this dissertation is to provide an approach and related techniques
and guidelines for an OWL 2 formalization of scenario testing, called formal scenario testing,
that can be used to validate UML class diagrams. The main objective of formal scenario
testing is to arrive at a complete and consistent conceptual schema (that can be expressed as a
UML class diagram or directly in OWL 2), which is a cohesive and an accurate representation
of the business domain. Hence, formal scenario testing is aimed at the validation rather than
the verification of UML class diagrams. To this end, techniques are defined for formal scenario
testing that can be used to validate the accuracy of UML class diagrams. Moreover, formal
scenario testing can be used to validate the cohesiveness of UML class diagrams.

In service of this main contribution, the translation of UML class diagrams to DLs (and
in particular SROIQ(D)) and OWL 2 are revisited. Firstly, a number of UML class diagram
features have not been explicitly translated to SROIQ(D) or OWL 2, for which the translation
is made explicit. Secondly, some newer features of UML class diagrams have never before
been translated to any DL. A notable example is ID constraints on classes. Lastly, some of
the existing UML class diagram to DL/OWL 2 translations need to be refined for the purpose
of formal scenario testing.

The formal scenario testing approach, and related techniques and guidelines, presented in
this dissertation is of value to modellers since it enables them to validate UML class diagrams
during the requirements engineering phase. Any endeavour that improves the detection and
remedy of errors during the requirements engineering phase, helps to decrease the number of
errors that are propagated to the later phases of the SDLC. Reducing the number of errors
throughout the SDLC reduces the cost of the development of a software system.

iii

Acknowledgments

First of all I will like to thank the Centre of Artificial Intelligence Research, University of
KwaZulu Natal and CSIR Meraka Institute, South Africa for their financial assistance and
infrastructure support. Without this support this research would not have been possible.

Secondly, I will like to thank my supervisors, Arina Britz, Aurona Gerber and Deshendran
Moodley. Thank you for allowing me the freedom to explore the ideas I had, giving me
guidance when needed and being excited about this research. Your optimism and thoughtful
advice have made this onerous task an absolute pleasure.

Lastly, thank you to my partner for not only allowing me this time, but also for actively
encouraging me to do my masters. Thank you for the many chats in which you enabled me to,
at least partially, understand some of the challenges of the requirements engineering phase.

iv

Contents

Abstract iii

Acknowledgments iv

1 Introduction 1
1.1 Requirements Engineering . 1

1.1.1 Requirements Elicitation . 2
1.1.2 Requirements Specification . 2
1.1.3 Requirements Validation . 3

1.2 Conceptual Modelling . 3
1.2.1 Conceptual Modelling and Object-oriented Analysis 4
1.2.2 Theoretical Basis of Object-oriented Analysis 4
1.2.3 Object-oriented Analysis versus Object-oriented Design 5
1.2.4 Object-oriented Analysis versus Conceptual Data Modelling 5

1.3 Description Logics . 6
1.3.1 Syntactic Building Blocks . 6
1.3.2 Analogy between Description Logics and Object-orientation 6
1.3.3 Decidability and Complexity . 7
1.3.4 Formalisms used in this Dissertation 7

1.4 The Case for the Formalization of Scenario Testing 8
1.4.1 DL Translations of UML Class Diagrams 8
1.4.2 Validating the Conceptual Schema . 9
1.4.3 Formal Scenario Testing Intuitions . 10

1.5 Aims and Objectives . 10
1.6 Outline of Dissertation . 11

2 UML Class Diagrams and Heuristics 13
2.1 UML Class Diagrams . 13

2.1.1 Classes . 13
2.1.2 Data Types . 15

v

2.1.3 Binary Associations and Attributes Revisited 16
2.1.4 Generalization/Specialization of Classes 17
2.1.5 Association Specialization, Subsetting and Redefinition 18
2.1.6 Identity Constraints . 20
2.1.7 Qualified Names . 21

2.2 Modelling Heuristics . 21
2.2.1 Separable Class Cohesion . 22
2.2.2 Multifaceted Class Cohesion . 22
2.2.3 Non-delegated Class Cohesion . 25
2.2.4 Concealed Class Cohesion . 27
2.2.5 Low Inheritance Cohesion of Attributes 27
2.2.6 Low Inheritance Cohesion of Operations 28

2.3 Summary . 29

3 Description Logics and OWL 2 31
3.1 Description Logics . 31

3.1.1 Description Logic Primer . 31
3.1.2 Semantics . 33
3.1.3 AL . 33
3.1.4 Extending DLs with Data Types . 36
3.1.5 DL Nomenclature . 38
3.1.6 Characteristics of DLs . 38

3.2 DLs for the Translation of UML Class Diagrams 40
3.2.1 ALCQI . 40
3.2.2 SROIQ(D) . 41
3.2.3 OWL 2 . 43

3.3 Reasoning Tasks . 46
3.3.1 Deductive Reasoning Tasks . 46
3.3.2 Other Reasoning Tasks . 47

3.4 Summary . 48

4 DL Translations of UML Class Diagrams 49
4.1 Classes . 49
4.2 Attributes . 50

4.2.1 Multiplicity . 51
4.3 Operations . 51

4.3.1 Operations with no Parameters . 51
4.3.2 Operations with Parameters . 52

vi

4.4 Binary Associations . 53
4.4.1 Multiplicity . 53

4.5 Generalization/Specialization of Classes . 54
4.6 Association Specialization . 54
4.7 Data Types . 55
4.8 Summary . 55

5 OWL and DL Translations for Scenario Testing 60
5.1 UML Class Diagram Identity Constraints . 61

5.1.1 Problematic Interpretation of Compound Keys 61
5.1.2 Identity Constraint Challenges and OWL 2 Easy Keys 62
5.1.3 The Effect of Easy Keys Compromises on Formal Scenario Testing . . 62

5.2 Tight Specification of Domain and Range Restrictions 63
5.2.1 Attributes . 64
5.2.2 Binary Associations . 65
5.2.3 Operations . 65

5.3 Operations . 66
5.3.1 Explicit Naming Convention . 67
5.3.2 An Operation is Performed by the Class that Defines it 68
5.3.3 Operations with No Parameters . 69
5.3.4 OWL 2 Translation of Operations . 69
5.3.5 Unique Return Values . 71
5.3.6 Operations with no Return Values . 71

5.4 Translations for Modeller Productivity . 73
5.4.1 Enumerations . 73
5.4.2 Limiting Redundancy of Assertions for Binary Associations 74

5.5 Subsetting and Redefinition of Association Ends 75
5.6 On the Equivalence of Attributes and Binary Associations 75
5.7 A Note on Uniqueness of Names in UML Class Diagrams 76

5.7.1 Attributes and Associations . 76
5.7.2 Operations and Parameters . 77
5.7.3 Dealing with Anonymous Classes . 78

5.8 Why Composition and Aggregation are excluded from Formal Scenario Testing 79
5.9 Contribution and Related Research . 80

5.9.1 Contribution . 80
5.9.2 Related Research . 81

5.10 Summary . 82

vii

6 Formal Scenario Testing 92
6.1 Approach . 92

6.1.1 Steps of the Formal Scenario Testing Approach 93
6.1.2 Key Characteristics of Formal Scenario Testing 93

6.2 Techniques . 94
6.2.1 Consistent Scenario Tests . 94
6.2.2 Inconsistent Scenario Tests . 96
6.2.3 Classification Scenario Tests . 97
6.2.4 Repairs for Formal Scenario Testing 102

6.3 Guidelines . 103
6.3.1 Dealing with OWA . 104
6.3.2 Dealing with UNA . 106
6.3.3 Structuring Scenario Tests in Protégé 106

6.4 A Case Study . 108
6.4.1 Business Domain . 108
6.4.2 Deficiencies of a Naïve UML Class Diagram and a Solution 109
6.4.3 Validating the UML Class Diagram 111
6.4.4 Adoption and Preliminary Feedback 114

6.5 Contribution and Related Research . 115
6.5.1 Contribution . 115
6.5.2 Related Research . 117

7 Applying Formal Scenario Testing 119
7.1 Separable Class Cohesion . 120

7.1.1 Detection . 120
7.1.2 Validation . 123

7.2 Multifaceted Class Cohesion . 125
7.2.1 Detection . 125
7.2.2 Validation . 126

7.3 Non-delegated Class Cohesion . 127
7.3.1 Detection . 127
7.3.2 Validation . 129

7.4 Concealed Class Cohesion . 131
7.4.1 Detection . 131
7.4.2 Validation . 138

7.5 Low Inheritance Cohesion of Attributes . 141
7.5.1 Detection . 141
7.5.2 Validation . 142

viii

7.6 Low Inheritance Cohesion of Operations . 144
7.6.1 Detection . 144
7.6.2 Validation . 145

7.7 Contribution and Related Research . 147
7.7.1 Contribution . 147
7.7.2 Related Research . 148

8 Conclusion 150
8.1 Contribution . 150

8.1.1 The Research Gap Identified . 150
8.1.2 How the Gap is addressed by this Research 150
8.1.3 The Value Proposition of this Research 151
8.1.4 Presentation and Publication in Support of this Dissertation 151

8.2 Future Research . 152
8.3 Summary . 152

Appendices 153

A RatesConfig Class Diagram Translated to OWL 2 154

B Separable Class Cohesion Examples Translated to OWL 2 157
B.1 Translation of Employee Class with Separable Class Cohesion 157
B.2 Translation of Redesigned Employee Class . 159

C Multifaceted Class Cohesion Examples Translated to OWL 2 161
C.1 Translation of ContactInformation Class with Multifaceted Class Cohesion 161
C.2 Translation of Redesigned ContactInformation Class 162

D Non-delegated Class Cohesion Examples Translated to OWL 2 163
D.1 Translation of Employee Class with Non-delegated Class Cohesion 163
D.2 Translation of Redesigned Employee Class . 164

E Concealed Class Cohesion Examples Translated to OWL 2 165
E.1 Translation of LeaveRequest and PerformanceReview Classes with Concealed

Class Cohesion . 165
E.2 Translation of Redesigned LeaveRequest and PerformanceReview Classes . . 167

F Low Inheritance Cohesion Examples Translated to OWL 2 170
F.1 Translation of Rectangle and Square Classes with Low Inheritance Cohesion 170
F.2 Translation of Redesigned Rectangle and Square Classes 170
F.3 Translation of Bird Inheritance Hierarchy with Low Inheritance Cohesion . . 171

ix

F.4 Translation of Redesigned Bird Inheritance Hierarchy 172

Bibliography 174

x

List of Figures

1.1 Relation of contributions of chapters 5–7. 11

2.1 Different graphical representations of classes. 14
2.2 An example of an enumeration data type. 15
2.3 Association A exists between class C and class T. 16
2.4 Different ways to depict an association with one association end. 16
2.5 Different ways to depict an association with two association ends. 16
2.6 Classes C1, C2, ..., Cn specializes class C. 18
2.7 Class diagrams illustrating association specialization, subsetting and redefinition. 19
2.8 Examples of identity constraints applied to classes. 20
2.9 Classes C1 and C2 both have an attribute called a. 21
2.10 Classes C1 and C2 both have an operation with name f 21
2.11 The Employee class has separable class cohesion. 23
2.12 pablo and projectX are both instances of the Employee class. 23
2.13 Splitting the Employee class into Employee and Project classes. 23
2.14 Setting project related properties on the Project class. 23
2.15 The ContactInformation class has multifaceted class cohesion. 24
2.16 Instances of the ContactInformation class. 24
2.17 The redesign of ContactInformation class. 24
2.18 Instances of the redesigned ContactInformation class. 25
2.19 The Employee class has non-delegated class cohesion. 25
2.20 Instances of the Employee class. 26
2.21 Extracting the project concept into its own Project class. 26
2.22 Instances of the redesigned Employee and Project classes. 26
2.23 The classes LeaveRequest and PerformanceReview have concealed class cohesion. 27
2.24 Redesign of the LeaveRequest and PerformanceReview with Period class. . 27
2.25 The Square and Rectangle classes have low inheritance cohesion. 28
2.26 A redesign of the Square and Rectangle classes. 28
2.27 The Bird class hierarchy have low inheritance cohesion. 29
2.28 A redesign of the Bird inheritance hierarchy. 29

xi

4.1 Reification of a (m+2)-ary relation. 52

6.1 Relation of contributions of chapters 5–7. 92
6.2 A UML class representing a robot. 95
6.3 An instance representing a red robot. 95
6.4 An instance of Robot that should be disallowed. 96
6.5 A redesign of the Robot class. 97
6.6 Explanations for a broken Robot. 98
6.7 Robot and TrafficLight have the same attributes. 98
6.8 The classes Robot and TrafficLight are not equivalent. 100
6.9 An individual with properties colour and lastMaintenanceDate. 101
6.10 The classes ColourDomain and LastMaintenanceDateDomain are equivalent. 101
6.11 An individual is inferred to be of type Robot. 102
6.12 An individual is inferred to be of type TrafficLight. 105
6.13 Explanation for the inconsistent scenario test in (6.8). 105
6.14 Explanation for a robot with no colour in (6.9). 106
6.15 The same TBox is reused for different ABoxes. 108
6.16 The initial UML class diagram for rate configuration. 109
6.17 An accurate representation of the business requirements. 110
6.18 Explanation for the disallowed scenario. 112
6.19 interleadingHotelRateConfig is of type InterleadingHotelRateConfig. . 113
6.20 interleadingHotel is of type InterleadingHotelRateConfig. 114

7.1 Classification of the individual pablo. 121
7.2 Classification of the individual projectX. 121
7.3 Classification of the individual sandy. 122
7.4 Classification of the individual projectMassMarket. 123
7.5 The individual projectX is correctly classified. 124
7.6 The individual projectMassMarket is correctly classified. 124
7.7 Multifaceted class cohesion validated by inconsistency. 128
7.8 Non-delegated class cohesion validated by inconsistency. 130
7.9 Classification of the individual individualUsingPeriodInfo. 133
7.10 Inferred equivalences. 134
7.11 Detecting the operations with the same signature. 135
7.12 Inferred class hierarchy for operation. 136
7.13 Classification of the individual individualUsingPeriodInfo for the redesign. 137
7.14 Inferred class hierarchy of the FromDateDomain class. 138
7.15 Validating the signature of an operation. 139
7.16 individualUsingPeriodInfo is classified as being of type Period. 140

xii

7.17 The individual square is classified as being of type Rectangle. 142
7.18 Explanation of the inconsistency for square. 142
7.19 Correct classification of the individual quadrilateral. 143
7.20 Individual with height and width properties is classified as a Rectangle. . . 143
7.21 Classification based on the fly() operation yields the class Bird. 144
7.22 The Bird class includes both the Penguin and Eagle classes. 145
7.23 Penguins not flying results in an inconsistency. 145
7.24 Only birds of type FlyingBird can fly. 146
7.25 Eagles are the only birds of type FlyingBird. 146
7.26 All things of type Bird can walk. 147
7.27 Both eagles and penguins can walk. 147

xiii

Chapter 1

Introduction

In 1987 Frederick P. Brooks stated [22]:

“The hardest part of the software task is arriving at a complete and consistent
specification, and much of the essence of building a program is in fact the debugging
of the specification.”

The requirements specification Brooks refers to here, is created during the requirements
engineering phase of the software development life-cycle (SDLC). As part of the requirements
engineering phase, a conceptual schema can be created that represents the concepts, properties
and relationships of the business domain. The work presented in this dissertation contributes to
the objective, as stated by Brooks, by helping to achieve a complete and consistent conceptual
schema. This is achieved by providing a description logic (DL) formalization of the industry
standard approach for validating requirements called scenario testing. This DL formalization
of scenario testing is called formal scenario testing.

The aim of this introductory chapter is to provide sufficient information, without delving
too deeply into the details, to enable a succinct description of the contributions of this
dissertation. This section begins by providing a wider perspective on the SDLC, and in
particular the requirements engineering phase in Section 1.1. Key notions are clarified
regarding conceptual modelling and DLs in Sections 1.2 (p. 3) and 1.3 (p. 6) respectively. In
Section 1.4 (p. 8) an intuïtive motivation is given for the formal scenario testing of conceptual
schemas. Section 1.5 (p. 10) explicates the aims and objectives of this dissertation and Section
1.6 (p. 11) presents an outline of the chapters of this dissertation.

1.1 Requirements Engineering

The SDLC is a phased approach to delivering software with the objective of delivering specific
artefacts at the end of each phase. At a high-level, irrespective of the exact SDLC model
being applied (i.e. Waterfall, Spiral, etc), all the different SDLC models agree in terms of
having a requirements engineering-, design-, implementation-, followed by a test phase [46].
In this dissertation the focus is on the requirements engineering phase. The requirements

1

1.1. Requirements Engineering 2

engineering phase consists of the following processes: requirements elicitation, requirements
specification and requirements validation [96]. Each of these processes is discussed in the
subsequent subsections.

1.1.1 Requirements Elicitation

Before a new software system can be built, one has to have knowledge of the functions
the software system needs to perform. Knowledge regarding the functions of the intended
software system is gained through a requirements elicitation process [96]. Nuseibeh observes
that the term “elicit” is preferred to “capture” to emphize that information regarding the
intended software system is not merely gathered, but rather, it is gained through a process
of interpretation, analysis, modelling and validation [95]. Indeed, one of the challenges of
requirements elicitation is that the stakeholders often find it difficult to articulate their
requirements concisely [18, 95].

In order to facilitate the requirements elicitation process, stakeholders are encouraged
to think through specific use cases. A use case is a set of actions performed by a software
system to produce an observable result. Typically, a use case consists of a number of scenarios
[18, 30, 46, 104]. According to Gomaa “[a] scenario is one specific path through a use case”.
The main scenario of a use case describes the most common path through a use case and
alternative scenarios describe the less-frequent paths through a use case [46].

Based on the information gained from use cases and their various scenarios, a requirements
specification document is compiled. This is the topic of the next section.

1.1.2 Requirements Specification

The main purpose of the requirements specification document is to facilitate effective commu-
nication between the various stakeholders [95]. Stakeholders are people who have a vested
interest in the system. Broadly speaking stakeholders can be categorized as people for whom
the software system has financial impact (customers, business owners), as people who use the
software system (users) and as people who are responsible for building and maintaining the
software system (development team) [95, 96]. During the requirements specification process
business owners and users are responsible for reaching agreement on the requirements of the
system. The requirements specification document is the key deliverable of the requirements
specification process and serves as the basis from which the development team will design,
implement and test the system.

The requirements specification document defines both the functional and non-functional
requirements of the software system. Functional requirements refer to functions that need to be
performed by the software system while non-functional requirements refer to quality-of-service
objectives (i.e. performance, response times, etc.) of the software system [46, 96]. This

1.2. Conceptual Modelling 3

dissertation is only concerned with the functional requirements of a software system.
The requirements specification document typically includes natural language descriptions

(often in the form of use cases) and conceptual schemas of the functional needs of the system
[18, 46, 96]. In this work the focus will be on the creation of a complete and consistent
conceptual schema. Conceptual modelling and conceptual schemas are discussed in more
detail in Section 1.2 (p. 3). For the moment it is important to note that a complete
and consistent conceptual schema is indispensable in permitting economy of communication
between stakeholders. A complete and consistent conceptual schema helps in building consensus
and resolving conflicts between business owners and users while giving concise guidance to
the development team as to what functions the software system has to fulfill [48, 93, 95, 115].
It is therefore of the utmost importance to ensure the correctness of the conceptual schema,
which provides the motivation for a requirements validation process.

1.1.3 Requirements Validation

Addressing software system defects earlier in the SDLC is more cost effective than addressing
them later [34]. Resolving defects when a software system is in production is estimated to be
100 times as expensive when compared to resolving them during the requirements engineering-
and design phases of the SDLC [16]. Additionally, poor requirements are often mentioned as
the main reason for failure [101] and often the most expensive software failures have their
roots in the business requirements [75].

It is due to these reasons that the requirements validation process forms an essential part of
the requirements engineering phase. One manner which is often used to validate requirements
is scenario testing. Formally, a scenario test is a test based on a scenario [18, 30, 46, 67, 95].
In this dissertation a formal DL formalization of scenario tests will be used to verify that the
conceptual schema is consistent and validate that it corresponds with the requirements as
specified by the stakeholders.

1.2 Conceptual Modelling

In this section a brief introduction to conceptual modelling and the core definitions, that
are relevant to making the precise contributions of the current dissertation explicit, are
provided. For conceptual modelling the focus will be on object-oriented analysis for which the
terminology is clarified in Section 1.2.1 (p. 4). In Section 1.2.2 (p. 4) the theoretical basis
that underpins object-oriented analysis is explained. Sections 1.2.3 (p. 5) and 1.2.4 (p. 5) are
aimed at discerning aspects of object-oriented conceptual modelling that are often cause for
confusion.

1.2. Conceptual Modelling 4

1.2.1 Conceptual Modelling and Object-oriented Analysis

The precise meaning of “conceptual modelling” is ambiguous [33, 72]. This is in part due
to the inconsistent use of the term “conceptual model” [40, 42, 72, 96] and variances in
terminology related to conceptual modelling (see for instance [48, 96]). In an attempt to limit
ambiguity, this dissertation will use the conceptual modelling terminology as is defined by
Mylopoulos [93] and Olive [96]. Conceptual modelling is the act of documenting a domain
to facilitate understanding and communication between stakeholders [48, 93, 96, 115]. The
artefact resulting from the conceptual modelling activity is called the conceptual schema
[93, 96]. A conceptual schema is an abstraction of the conceptually relevant aspects of a
domain from a particular point of view [18, 43, 82, 96]. Implementation specific details are
excluded from a conceptual schema [96, 112]. A particular domain may be described by a
number of different conceptual schemas [96].

A conceptual schema is constructed using a conceptual modelling language [96, 115]. Each
conceptual modelling language has a particular syntax and semantics [115]. The syntax and
semantics of a conceptual modelling language depends on a commitment to view a domain in
a particular way. This commitment to view a domain in a particular way is called a conceptual
model [96].

As an example, a domain can be described in terms of concepts, properties and relationships.
This represents one conceptual model of a domain. Another conceptual model is to describe a
domain as consisting of facts that can be either true or false. The same conceptual model
can be used to describe different domains and the same domain can be described by different
conceptual models [96].

The field of software engineering makes the fundamental assumption that a domain consists
of a number of objects, which have properties and relationships between them, which are
classified into concepts [96]. That is, the assumption is that the conceptual model consists of
concepts, properties and relationships. This kind of conceptual modelling is often referred
to as object-oriented analysis [18, 42, 43, 82, 104]. The conceptual modelling language most
commonly adopted for object-oriented analysis is UML and in specific UML class diagrams
[13, 112].

1.2.2 Theoretical Basis of Object-oriented Analysis

Classification is the core activity of object-oriented analysis [18, 96, 117]. Classification is the
means via which people order knowledge according to the similarities they recognize between
different objects they observe in the world. The specific classification approach that is applied
when doing object-oriented analysis is called classical categorization [18]. Classification, in
specific classical categorization, does not pertain to object-orientation alone, but rather, it
reflects how people think in general about the world [80]. Olive explains the need and use of

1.2. Conceptual Modelling 5

classification as follows [96]:

“Classification provides cognitive economy because it allows us to structure knowl-
edge about objects into two levels: concept and instance. At the concept level, we
find the properties (both defining and nondefining) common to all instances of
the concept. At the instance level, we find only the concept of which the object
is an instance, and the particular properties of that instance. In the absence of
classification, we would have to associate every instance with all of its properties.
Classification reduces the amount of information we have to remember, commu-
nicate, and process; the extent to which it is reduced depends on the number of
properties of the concept.”

It is precisely this cognitive economy, provided by a complete and consistent object-
oriented conceptual schema, that is the essence of enabling efficient communication between
stakeholders and a key objective of this dissertation.

1.2.3 Object-oriented Analysis versus Object-oriented Design

UML is a general-purpose modelling language designed for use in the analysis, design and
implementation of object-oriented software systems [18, 43, 64, 82]. Object-oriented analysis
is distinguished from object-oriented design in that the focus of object-oriented analysis is
to elicit and describe the classes and objects that form part of the problem domain, while
the focus of object-oriented design is on designing the software solution consisting of objects
and related collaborations that would fulfill the requirements [18, 42, 43, 52, 82, 89, 104, 109].
Thus, object-oriented analysis is strongly related to conceptual modelling while object-oriented
design is strongly related to the implementation details of realizing the conceptual schema in
code.

1.2.4 Object-oriented Analysis versus Conceptual Data Modelling

Traditional software engineering clearly separated data from the operations that operate
on the data [109, 117]. Conceptual data modelling aims to represent an abstraction of data
[29, 113]. This is in contrast with object-oriented analysis where objects consists of the data
and the operations that operate on the data [109]. Therefore, in this dissertation the use
of conceptual modelling will be favoured to conceptual data modelling with the implicit
understanding that conceptual modelling includes the operations that operate on the objects.

1.3. Description Logics 6

1.3 Description Logics

Description logics (DLs) are syntactic variants of first-order logic that are specifically designed
for the conceptual representation of an application domain in terms of concepts and relation-
ships between concepts [13, 24]. In Section 1.3.1 (p. 6) the building blocks of DLs are defined.
In Section 1.3.2 (p. 6) the relation between object-orientation and DLs are made explicit.
Important considerations in DL research are decidability and complexity, which are discussed
in Section 1.3.3 (p. 7). In Section 1.3.4 (p. 7) the motivation is given for the DLs that will be
used in this dissertation.

1.3.1 Syntactic Building Blocks

Expressions in DLs are constructed from atomic concepts (unary predicates), atomic roles
(binary predicates) and individuals (constants). Complex expressions can be built inductively
from these atomic elements using concept constructors. Formally a concept represents a set of
individuals and a role a binary relation between individuals [8, 94].

Formally every DL ontology consists of a set of axioms that are based on finite sets of
concepts, roles and individuals [78]. Axioms in a DL ontology are divided into the TBox, the
RBox and the ABox. A TBox is used to define concepts and relationships between concepts
(that is the terminology or taxonomy) and an ABox is used to assert knowledge regarding
the domain of interest (i.e. that an individual is a member of a concept). Depending on the
expressivity of the DL used, an ontology may include an RBox. An RBox is used to define
relations between roles as well as properties of roles [8, 78, 94, 103].

1.3.2 Analogy between Description Logics and Object-orientation

The analogy between DLs and object-orientation can be observed when it is considered that
the basic task in constructing a terminology is classification [8, 94]. Explicit subsumption
relationships between concepts can be defined in the TBox. In object-orientation this can
be achieved by definition of an inheritance hierarchy between classes. Classification is
further solidified as the basis of DLs in that the core reasoning capabilities they provide are
subsumption and instance checking. Subsumption computes a subsumption hierarchy, which
essentially categorizes concepts into superconcept/subconcept relationships. Instance checking
verifies whether a given individual is an instance of a specific concept [94].

In object-orientation the domain of interest is described in terms of classes that have
properties, which are defined via attributes and/or associations. Objects that are classified
by a class are called instances of the class [18, 64]. The analogy with DLs is that classes,
attributes/associations and instances (or sometimes called objects) correspond respectively
with concepts, roles and individuals in DLs [13, 24].

1.3. Description Logics 7

1.3.3 Decidability and Complexity

A feature of DLs is that they have decidable reasoning algorithms for standard reasoning tasks
(i.e subsumption and instance checking) [6, 103]. Indeed, a fundamental goal of DL research
is to preserve decidability to the point that decidability is considered to be a precondition for
claiming that a formalism is a DL [103]. Standard DL reasoning algorithms are sound and
complete and, even though the worst-case computational complexity of these algorithms are
ExpTime and worse, in practical applications they are well-behaved [6].

The expressivity of a DL is determined by the number of different concept constructors
it permits with a higher number of concept constructors in general correlating to higher
expressivity. An important trade-off in DL design is to strike a balance between expressivity
and computational complexity, since the more expressive a DL is, the higher is its computational
complexity. Early DL research has focused on the search for DLs with tractable reasoning
for core reasoning tasks, that is reasoning that can be completed in polynomial time. As
mentioned before, in practice it turns out that even DLs with computational complexity of
ExpTime and worse are well-behaved [6].

Tractability is of special importance when reasoning across large ontologies are required
while for small ontologies it is less of a concern [28]. Formal scenario testing, as presented in
this dissertation, will only deal with relatively small ontologies. As such preference can be
given to DLs with high expressivity at the cost of high computational complexity.

1.3.4 Formalisms used in this Dissertation

In this dissertation the DLs ALCQI and SROIQ(D) will be considered. ALCQI is one of the
DLs used by Berardi, et. al. for the translation of UML class diagrams [13]. The contributions
of this dissertation will mainly be focused on SROIQ(D) and OWL 2. There are a number of
reasons for this decision:

1. The formal semantics of OWL 2 is based on SROIQ(D) [47]. OWL 2 is a World Wide
Web Consortium (W3C) endorsed specification for the construction of ontologies for the
semantic web [92].

2. As part of formal scenario testing, there is a requirement to be able to represent key
constraints formally. OWL 2 semantics extends SROIQ(D) with a relaxed form of
DL-safe rules, which permits modelling of key constraints [97].

3. The ontologies that will be considered in formal scenario testing are relatively small.
Since tractability is not a major concern for small ontologies [28], the DL SROIQ(D)

can be used, which has a complexity of N2ExpTime-complete. [47, 68].

4. The standardization of OWL 2 has resulted in the development of ontology editors and
reasoners in support of OWL 2. The main open source ontology editors are Protégé

1.4. The Case for the Formalization of Scenario Testing 8

and Swoop [47]. A commercially available tool in this regard is TopBraid Composer
(Meastro Edition) from TopQuadrant [2]. HermiT and Pellet are reasoners that support
reasoning in SROIQ(D) as well as SWRL [35]. SWRL serves as the basis of DL-safe
rules [76], which is a requirement for reasoning on key constraints in OWL 2 [97].

1.4 The Case for the Formalization of Scenario Testing

Due to the potential for substantial cost savings (as explained in Section 1.1.3 on p. 3),
a considerable amount of research has been done to mathematically formalize and verify
conceptual schemas, and in specific, UML class diagrams. This research primarily focuses on
DL formalizations of UML class diagrams. With regards to existing DL translations of UML
class diagrams, Section 1.4.1 (p. 8) lists the kind of errors that can be detected, while Section
1.4.2 (p. 9) lists the kind of errors that cannot be detected. In Section 1.4.3 (p. 10) the key
difference between formal scenario testing and existing approaches is explained.

1.4.1 DL Translations of UML Class Diagrams

Cali, et al. [24] and Berardi, et al. [13] laid the foundation for describing UML class diagrams
in DLs. Cali, et al. described UML class diagrams in the DL DLRifd [24]. Berardi, et al.
extended this work by describing UML class diagrams in the DLs DLRifd and ALCQI [13].
Recent research described UML class diagrams in OWL 2 [118]. Based on these DL translations
a number of reasoning tasks are possible on UML class diagrams [13]. The reasoning tasks
that are most pertinent to the current dissertation are briefly explained next.

Consistency of the complete UML class diagram can be proved. This implies that at least
one class in the diagram can be instantiated without violating any of the constraints defined
in the diagram. Proving that a complete class diagram is consistent proves that it does not
contain any contradictions.

Consistency of a single class in the diagram can be proved. This means that the class can
be instantiated. A class that can never be instantiated indicates a design mistake within the
diagram.

Classes in the UML class diagram can be classified to show inferred inheritance relationships.
This information can be used to make inferred inheritance relationships that are not explicitly
stated in the diagram explicit. It can also be used to detect low inheritance cohesion: that is,
classes that are in the same inferred inheritance hierarchy, which are not suppose to share
attributes and/or associations. Low inheritance cohesion indicates that the UML class diagram
contains one or more modelling errors.

Redundant classes can be detected by proving that different classes in the diagram are
indeed equivalent. Equivalent classes indicate classes that can be merged into a single class.

1.4. The Case for the Formalization of Scenario Testing 9

Formal reasoning on a UML class diagram can be used to detect the implicit consequences
of the constraints enfored by the classes, associations and inheritance hierarchies contained in
the diagram. A core objective of a conceptual schema is to facilitate communication between
stakeholders. Any implicit consequences that are not explicitly stated in the diagram detracts
from this objective.

1.4.2 Validating the Conceptual Schema

Existing research regarding the formalization of UML class diagrams are concerned with
verification whereas formal scenario testing is concerned with validation. With regards to
software requirements, Barry Boehm defined verification and validation informally as [17]:

Verification: “Am I building the product right?”
Validation: “Am I building the right product?”

DL verification of UML class diagrams can prove that a class diagram is free of logical
inconsistencies. However, even when a class diagram is consistent, it may still not agree with
the business requirements. When the conceptual schema is the right conceptual schema, it
must give a cohesive and an accurate representation of the business requirements. The term
“cohesive” here is used to capture two related notions. Firstly, when used in the context of a
single class, it is meant that the class represents a single semantically meaningful concept. In
object-oriented parlance, this is referred to as model cohesion, which is the most stringent type
of class cohesion [21]. Secondly, when used in the context of a class hierarchy, it means that
from a conceptual modelling perspective, it forms a generalization hierarchy. This is known
as inheritance cohesion, which means that classes in a single class hierarchy have shared
meaning. Inheritance cohesion is highest when the meaning of each class in the hierarchy is
more specialized than that of its parent, for classes that have parents. When unrelated classes
are found in the same class hierarchy, the class hierarchy displays low inheritance cohesion [38].
When a class diagram is “accurate”, it is not possible to instantiate the class diagram, or a
single class in the diagram, such that it serves as a counter-example of the requirements of
the business.

An important difference between verification and validation, from a conceptual modelling
perspective, is that verification can be mathematically proven while validation cannot be
mathematically proven. A conceptual schema can be verified by proving that it is free of
logical inconsistencies. However, a conceptual schema cannot be validated mathematically.
Rather, at most, techniques and heuristics can be provided, which can be used as evidence
that the conceptual schema is potentially the right conceptual schema. In this dissertation,
formal scenario testing will be the approach that underpins techniques and heuristics with
regards to the validation process. This is discussed in the next section.

1.5. Aims and Objectives 10

1.4.3 Formal Scenario Testing Intuitions

In formal scenario testing UML class diagrams are validated by giving a domain expert the
opportunity to define scenarios that are either allowed or disallowed for the given business
domain. The domain expert can define, in object-oriented parlance, a combination of instances,
or in DL parlance, a set of individuals, that represents a single scenario. An allowed scenario
indicates a real-world situation that is a requirement of the business domain. A disallowed
scenario is a situation that should never be possible in the given business context. With the
formal scenario testing approach presented here, scenarios can be validated by showing that
the DL translation of a scenario is consistent for an allowed scenario and inconsistent for a
disallowed scenario. Furthermore, classification is employed extensively to detect potential
class cohesion and inheritance cohesion violations. This is made possible by the domain expert
providing exemplars of the business domain.

Thus, in addition to considering UML class diagrams, formal scenario testing specifically
includes instances. These instances can be represented in an object diagram. The UML
specification is not overly prescriptive and allows objects to be present in UML class diagrams
and class definitions to be present in UML object diagrams [64]. In this dissertation the
assumption is made that UML class diagrams only contain classes while UML object diagrams
only contain objects. With this assumption in place, it is noted that, loosely speaking (due to
the UML specification not being restrictive), a TBox1 corresponds with a UML class diagram
and an ABox corresponds with a UML object diagram. Prior research on reasoning on UML
class diagrams using DLs has focused on reasoning on UML class diagrams (respectively
TBoxes) alone, whilst the formal scenario tesing approach includes reasoning on UML object
diagrams (respectively ABoxes) [24, 13, 118].

1.5 Aims and Objectives

The main contribution of this dissertation is to provide an approach and related techniques
and guidelines for an OWL 2 formalization of scenario testing, called formal scenario testing,
that can be used to validate UML class diagrams. The main objective of formal scenario
testing is to arrive at a complete and consistent conceptual schema (that can be expressed as a
UML class diagram or directly in OWL 2), which is a cohesive and an accurate representation
of the business domain. Hence, formal scenario testing is aimed at the validation rather than
the verification of UML class diagrams. To this end, techniques are defined for formal scenario
testing that can be used to validate the accuracy of UML class diagrams. Moreover, formal
scenario testing can be used to validate the cohesiveness of UML class diagrams.

In service of this main contribution, the translation of UML class diagrams to DLs (and
1An RBox may be included if the expressivity of the underlying DL permits RBoxes.

1.6. Outline of Dissertation 11

Chapter 5

Contributions

Adds the following translations
for the purpose of formal
scenario testing:
- UML class diagram to SROIQ(D),
- UML class diagram to OWL 2.

Chapter 6

Contributions
Introduces the formal scenario
testing approach which is
supported by:
- techniques and
- guidelines.
A small case study where
formal scenario testing has
been used on a real-world
project is discussed.

Chapter 7

Contributions

Defines techniques for detecting
cohesion heuristic violations and
validating adherence to
cohesion heuristics using formal
scenario testing.

supports uses

Figure 1.1: Relation of contributions of chapters 5–7.

in particular SROIQ(D)) and OWL 2 are revisited. Firstly, a number of UML class diagram
features have not been explicitly translated to SROIQ(D) or OWL 2, for which the translation
is made explicit. Secondly, some newer features of UML class diagrams have never before
been translated to any DL. A notable example is ID constraints on classes. Lastly, some of
the existing UML class diagram to DL/OWL 2 translations need to be refined for the purpose
of formal scenario testing.

The formal scenario testing approach, and related techniques and guidelines, presented in
this dissertation is of value to modellers since it enables them to validate UML class diagrams
during the requirements engineering phase. Any endeavour that improves the detection and
remedy of errors during the requirements engineering phase, helps to decrease the number of
errors that are propagated to the later phases of the SDLC. Reducing the number of errors
throughout the SDLC reduces the cost of the development of a software system.

1.6 Outline of Dissertation

Chapters 2–4 represent the literature study in support of the contributions of this dissertation.
Chapters 5–7 represent the contributions and Chapter 8 the conclusion of the current disser-
tation. How the contributions of chapters 5–7 relate to each other are depicted in Figure 1.1.
A brief description of what is covered in each chapter is given below.

Chapter 2 : Key features of UML class diagrams are introduced. Related object-oriented
design heuristics are discussed, which are helpful in evaluating the cohesiveness of classes
and class hierarchies in a UML class diagram.

Chapter 3 : An overview of DLs is given, which is followed by the syntax and semantics of
the DLs ALCQI and SROIQ(D). The syntax and semantics of OWL 2 are discussed
based on the semantics of SROIQ(D). Reasoning tasks that are of importance to the
current dissertation are also discussed.

1.6. Outline of Dissertation 12

Chapter 4 : Existing translations of UML class diagrams to ALCQI and OWL 2 are
discussed.

Chapter 5 : Not all features of UML class diagrams have been formalized in DLs or OWL 2
as yet. Here UML class diagram features that are pertinent to formal scenario testing
are translated to SROIQ(D) and OWL 2.

Chapter 6 : The formal scenario testing approach, the main contribution of this dissertation,
is introduced. Techniques and guidelines used in formal scenario testing are defined.
Preliminary feedback is given on a small case study where formal scenario testing has
been used on a real-world project.

Chapter 7 : In this chapter techniques for detecting and validating object-oriented cohesion
heuristics are defined using formal scenario testing.

Chapter 8 : A synopsis is given of the contributions of this dissertation and the value of
these contributions is made explicit. A view is given on possible future directions of
research; with regards to the topics that were investiated in this study.

Chapter 2

UML Class Diagrams and Heuristics

This chapter provides background on the aspects of UML class diagrams that are used
throughout this dissertation (Section 2.1). Knowledge of the syntax and semantics of UML
class diagrams is imperative for creating conceptual schemas expressed as UML class diagrams.
However, this knowledge is not sufficient to enable a modeller to create complete and consistent
conceptual schemas. This fact is attested by the vast literature dedicated to various heuristics
for guiding the modelling of classes (see for instance [18, 46, 88, 89, 81, 116]). Formal scenario
testing can be an aid in applying some of these heuristics. Therefore modelling heuristics are
the topic of Section 2.2 (p. 21).

2.1 UML Class Diagrams

This section discusses key features of UML class diagrams that are used in formal scenario
testing. In general UML is a large and complex conceptual modelling language [64, 104]. As
a means to cope with the complexity of UML, Booch, et. al. [18] and Rumbaugh, et. al.
[104] recommend modellers give preference to the essential elements of notation and only use
advanced notation when their use is imperative to conveying meaning. This is the guideline
that is followed in this dissertation.

2.1.1 Classes

A class denotes a set of instances which share the same attributes and operations [64]. From
a classical categorization theory persective, instances that have the attributes and are able to
perform the operations defined by a class, are considered to be instances of the class [18].

Graphically a class is represented as a rectangle that consists of one to three compartments
(see Figure 2.1). The first compartment denotes the name of the class and is compulsary. The
second compartment lists the attributes and the third compartment the operations of the class.
The second and third compartments can be suppressed as is shown in Figure 2.1(a). This
is a convenient form of representation when there is a mere need to refer to a class without
giving consideration to its attributes and operations. Figure 2.1(b) illustrates a class with

13

2.1. UML Class Diagrams 14

C C

t: T

f(p1:P1, …,pm:Pm):R

C

f(p1:P1, …,pm:Pm):R

(a) (b) (c)

Figure 2.1: Different graphical representations of classes.

both attribute and operation compartments populated and Figure 2.1(c) shows a class with
only the operation compartment populated [64].

Attributes

Attributes are used in UML class diagrams to define properties that are characteristic of a
particular class [18, 64, 104, 117]. For example it is natural to accept that “having feathers”
is a characteristic property of birds but not of dogs, while “having fur” is a characteristic of
dogs but not of birds.

Figure 2.1(b) defines the attribute t of type T as belonging to class C. T can either denote
a class or a data type. Data types are discussed in Section 2.1.2 (p. 15).

Operations

Throughout this dissertation UML class diagrams are considered from a conceptual modelling
perspective, meaning that operations are therefore considered from a conceptual modelling
perspective. Hence, the preference for the term “operation” rather than the term “method”.
The distinction is that operations refer to the conceptual modelling of behaviour whereas
methods refer to the implementation details of behaviour [104]. In UML class diagrams
operations are used to define behaviours that are considered to be characteristic of a given
class [18, 64, 104, 117]. As an example, the ability to fly is a behaviour that is associated with
birds, but it is not a behaviour that is associated with for instance dogs. Using operations, it
is possible to, for example, write a game in which instances of the Bird class can fly from
point A to point B (on a screen). This behaviour should be distinguished from the attribute
of “can fly”, which merely states that instances of the Bird class can fly, without being able
to move said instance from point A to point B1.

In Figures 2.1 (b) and (c) the operation f(p1:P1, ..., pm:Pm):R is defined. This states
1 From a DL perspective it may, for the simple case of the operation fly() that takes no parameters

and returns nothing, seem as if there is no difference between the attribute “can fly” and the operation “fly”.
Indeed, based on the translation of attributes in Section 5.2.1 (p. 64) and the translation of operations with no
parameters and no return value in Section 5.3.6 (p. 71), the underlying DL representations of these are quite
similar. However, from the perspectives of object-orientation and UML class diagrams, the attribute “can fly”
is quite different from the operation “fly”. Whereas the value of the “can fly” attribute can be used to decide
various rules, it will not by itself be able to cause instances of a Bird class to move from point A to point B
(as in the game example). In order for instances of the Bird class to be able to fly from point A to point B, the
Bird class has to be equipped with a “fly” operation.

2.1. UML Class Diagrams 15

<<enumeration>>
Colour

Red
Amber
Green

change():Colour

Figure 2.2: An example of an enumeration data type.

that the operation with name f takes parameters p1, ..., pm respectively of type P1, ...,

Pm returning a value of type R. An operation f that does not take any parameters or return
any value is defined simply as f().

2.1.2 Data Types

Data types differ from classes in that instances of data types are completely defined by their
values. In particular, if two instances of a data type have the same value, they do in actual
fact represent the same instance. Data types are similar to classes in that they can also have
attributes and operations. However, the attributes and operations of data types do not define
characteristic features of the data type. That is, instances that do have the attributes and
operations defined by a data type do not imply the that the instances are members of the
data type. Rather, the value of the data type determines membership. Attributes are used
to model the internal structure of a data type. UML distinguishes two types of data types
namely primitive types and enumerations [64].

Primitive types are predefined types that contain no internal structure. The primitive types
defined in UML are Boolean, Integer, UnlimitedNatural, Real and String [63, 64]. Boolean
represents the logical values (true, false). Integer, UnlimitedNatural and Real respectively
represent the mathematical concepts of integer, natural and real numbers. String represents
sequences of characters [63].

The values that represent the values of an enumeration are explicitly defined in the
conceptual schema. An example is the colours of a robot (traffic light), which can only consist
of the values “red”, “amber” and “green”. This is illustrated in Figure 2.2. Also, as shown in
Figure 2.2, data types can have operations. For instance the operation change():Colour can
be used to model the behaviour of the colour of a robot changing. Enumerations can also
have attributes, though this have not been indicated in the example.

In this dissertation only predefined primitive data types and enumerations are used.
User-defined data types are not used due to scope constraints.

2.1. UML Class Diagrams 16

C T
i..j
tc A

k..l

Figure 2.3: Association A exists between class C and class T.

C T
i..j

C

t: T [i..j]

(b)

C

t: T [i..j]

(c)

T

t
(a)

Figure 2.4: Different ways to depict an association with one association end.

2.1.3 Binary Associations and Attributes Revisited

Binary associations are used to define relations between two classes and/or datatypes. As-
sociations between the instances of the classes are called links [64]. Figure 2.3 defines the
association named A between the class C and the class T. A is the name of the association
and c and t represent the names of the association ends. Usually either the name of the
assocation or the names of the association ends is supplied [64].

C T
i..j

C

t: T [i..j]

(b)

C

t: T [i..j]

(c)

t
(a)

c

k..l

T

c:C [k..l]

T

c:C [k..l]

Figure 2.5: Different ways to depict an association with two association ends.

2.1. UML Class Diagrams 17

Equivalence of Attributes and Binary Associations Ends

Associations and attributes are closely related. The association end t of Figure 2.4(a) is
equivalent to an attribute t of type T belonging to class C as is shown in Figure 2.4(b) 2. It is
also possible to use the attribute and association notation together as in Figure 2.4(c) [64]. In
this dissertation the graphical notation of Figure 2.4(c) is adopted.

For completeness sake Figure 2.5 shows that an association between classes C and T with
two association ends c and t is equivalent to an attribute t:T belonging to class C and an
attribute c:C belonging to class T.

Multiplicities

A multiplicity on an association end denotes the number of instances that can be associated
with an instance of the opposite class. The multiplicity is expressed as a range i..j where
i is the lower bound and j the upper bound. Thus, Figure 2.4(a) on p. 16 states that i to
j instances of T can be associated with an instance of class C. Similarly, a multiplicity on
an attribute indicates the number of instances the attribute can consist of. Thus, for Figure
2.4(b) on p. 16 the attribute t can consist of i to j instances of type T [64].

When only one value is supplied for a multiplicity (rather than a range) it is assumed to
be the upper bound. When no multiplicity is given the multiplicity 1..1 or 1 is assumed.
When the upper bound is unlimited it is denoted as *, however when it is used on its own
(without a lower bound), its assumed meaning is 0..* [64].

2.1.4 Generalization/Specialization of Classes

Generalization defines a taxonomic relation between a more general parent class and a more
specialized child class. Or stated differently: a child class specializes a more general parent
class. The meaning of inheritance is such that every instance of a child class is per definition
an instance of the parent class, but not every instance of the parent class is necessarily an
instance of a child class [64].

Figure 2.6 indicates that the classes C1, C2, ..., Cn specializes class C. An inheritance
hierarchy can be annotated with a {covering, disjoint} annotation. Permitted values
for covering are complete and incomplete where complete indicates that every instance
of the parent class is also an instance of at least one child class and incomplete indicates
that every instance of the parent class is not necessarily an instance of a child class. That
is, there are instances of the parent class that are not specialized by a child class. disjoint
indicates whether an instance can belong to more than one child class. Permitted values

2This is a slight simplification of associations since the ends of an association can be owned by the partaking
classes or the association. An association end and an attribute are only equivalent for an end that belongs to
the class [64]. In this dissertation the assumption is that association ends belong to the class.

2.1. UML Class Diagrams 18

C

C1 C2 Cn...

{covering, disjoint}

Figure 2.6: Classes C1, C2, ..., Cn specializes class C.

for disjoint are overlapping and disjoint. overlapping indicates that an instance can
belong to more than one child class while disjoint states that an instance can at most
belong to one child class. When an inheritance hierarchy is not explicitly annotated with
a {covering, disjoint} annotation, the default annotation {incomplete, disjoint} is
assumed to apply [64].

2.1.5 Association Specialization, Subsetting and Redefinition

With regards to associations and attributes the UML specification defines three closely
related notions namely association specialization, subsetting and redefinition. Association
specialization is applied at the level of the complete association while subsetting and redefinition
are applied at the level of association ends and attributes [64].

The meaning of association specialization is similar to that of classes. That is, association
A2 is a specialization of association A1 in Figure 2.7(a). Therefore every link between instances
of classes C3 and C4 is necessarily a link between instances of classes C1 and C2. However,
every link between instances of classes C1 and C2 is not necessarily a link between instances
of classes C3 and C4.

In Figure 2.7(b) it is stated that c4 {subsets c2}. This means that the collection of
instances represented by the association end c4 is a subset of the collection of instances repre-
sented by the association end c2. The same holds for association ends c3 and c1. Subsetting
is distinguished from association specialization in that subsetting considers set membership
only whereas association specialization specializes the characteristics that determine link
membership.

Redefinition is used to change the definition of a feature. As an example association end
c4 redefines c2 in Figure 2.7(c). Redefinition is distinguished from association specialization
in that redefinition is defined for an association end rather than for the complete association.

The intuition that these notions are rather closely related is confirmed by Bildhauer and
Costal, et. al [14, 31]. After a comprehensive analysis of these notions Bildhauer concludes [14]:

2.1. UML Class Diagrams 19

C1 C2
A1

C3 C4
A2

(a)

C1 C2
c2c1

C3 C4

(b)

{subsets c2}{subsets c1}

c3 c4

C1 C2
c2c1

C3 C4

(c)

{redefines c2}{redefines c1}

c3 c4

* *

* *

* *

* *

**

* *

Figure 2.7: Class diagrams illustrating association specialization, subsetting and redefinition.

2.1. UML Class Diagrams 20

SACitizen

idNumber: String {id}
name: String

(a)
SACitizen

idNumber: String {id}
name: String

(c)

Employee

employeeCode: String {id}
salary: Integer

Employee

idNumber: String {id}
employeeCode: String {id}
name: String
salary: Integer

(b)

Figure 2.8: Examples of identity constraints applied to classes.

“The specialization of an association is equivalent to the subsetting of (one of) its
ends and redefinition can be treated as a subconcept of subsetting.”

Indeed, the UML specification states explicitly that subsetting or redefinition of association
ends respectively implies association specialization of the relevant association [64]. Therefore,
in this dissertation no further attempt will be made to explicitly distinguish the notions of
association specialization, subsetting and redefinition. Rather, the simplifying assumption
will be made that these notions are all a form of association specialization.

2.1.6 Identity Constraints

Version 2.4.1 of the UML specification introduces means via which instances of a class can
be identified uniquely. To indicate that an attribute forms part of the identity of a class, an
id property modifier is applied to it [64]. An example of this is shown in Figure 2.8(a). The
{id} property modifier next to the attribute idNumber indicates that it is not permitted for
the class SACitizen to have two or more instances with the same value for the idNumber

attribute.
When multiple attributes are marked on a single class with the {id} property modifier,

it represents a compound key [64]. Thus, instances of the Employee class in Figure 2.8(b)
are uniquely identified by the compound key consisting of the attributes idNumber and
employeeCode.

According to the UML specification a compound key can also be represented by applying
the id property modifier across classes in an inheritance hierarchy as shown in Figure 2.8(c) [64].
That is, instances of the Employee class are uniquely identified by the compound key consisting
of the attributes idNumber (defined in the SACitizen) and employeeCode. In Section 5.1
(p. 61) it will be shown that this interpretation is problematic.

2.2. Modelling Heuristics 21

C1

a:T1

C2

a:T2

Figure 2.9: Classes C1 and C2 both have an attribute called a.

C1

f(p1:P1, …,pm:Pm):R

C2

f(p1:P1, …,pn:Pn):R

Figure 2.10: Classes C1 and C2 both have an operation with name f

2.1.7 Qualified Names

In UML the names of classes, associations, association ends (roles), attributes, operations and
parameters to operations are all unique due to the use of qualified names [64]. This section
discusses the impact of qualified names on associations/attributes and operations and their
parameters.

Consider the case of an attribute a appearing in two different classes as is shown in
Figure 2.9. The name of attribute a is qualified by the classes C1 and C2 resulting respectively
in the qualified names C1::a and C2::a. Hence, even though the unqualified name of the
attribute a may be the same for both the classes C1 and C2, the qualified names of the
attribute a for classes C1 and C2 are different. Thus, an attribute a appearing in class C1 can
be distinguished from an attribute a appearing in class C2.

Figure 2.10 shows operation f appearing in the classes C1 and C2 with parameters p1:P1,
..., pm:Pm and p1:P1, ..., pn:Pn respectively. The qualified name of operation f for
class C1 is C1::f and C2::f for class C2. Parameter names are qualified similarly. That is,
the qualified names of the parameters p1, ..., pm for class C1 are C1::p1, ...,C1::pm.
Similarly the qualified parameter names of p1, ..., pn for class C2 are C2::p1, ...,C2::pn.

2.2 Modelling Heuristics

The aim of this section is by no means to provide a comprehensive treatise on object-
oriented modelling heuristics. Rather, this section is constrained to only those heuristics that
are meaningful from a conceptual modelling perspective and that can (as is illustrated in
Chapter 7 on p. 119) be detected via formal scenario testing. In particular the focus will be on
heuristics that support conceptual modelling and therefore heuristics that are concerned with
implementation details are intentionally excluded. The objective of the heuristics discussed
here is therefore to detect various forms of classification violations. For this purpose notions
of class cohesion and inheritance cohesion are considered as is defined by Eder, et. al. [38].

2.2. Modelling Heuristics 22

Eder, et. al. distinguish five degrees of class cohesion namely separable-, multifaceted-,
non-delegated-, concealed- and model class cohesion. Model class cohesion is the most ideal
form of class cohesion. A class has model class cohesion when it does not suffer of separable-,
multifaceted-, non-delegated- or concealed class cohesion. Instead the class represents a
single semantically meaningful concept. Undesirable degrees of class cohesion are discussed in
Sections 2.2.1 - 2.2.4.

Eder, et. al. rate inheritance cohesion of an inheritance hierarchy as high if the inheritance
hierarchy represents a generalization hierarchy in the sense of conceptual modelling [38].
From a conceptual modelling perspective a subclass of a more general class is understood as
representing a proper subset of the general class. That is, instances of the subclass are also
instances of the more general class [49, 64]. Low inheritance cohesion occurs where attributes
and/or operations are defined in the general class that are not applicable to every subclass.
Inheritance cohesion is discussed for attributes and operations in Sections 2.2.5 (p. 27) and
2.2.6 (p. 28) respectively.

2.2.1 Separable Class Cohesion

Separable class cohesion indicates a class that consists of multiple unrelated semantic concepts.
Separable class cohesion is exemplified by a class that consists of one or more disjoint groups
of attributes and/or operations where each group is used in isolation of other groups.

As an example, consider the Employee class in Figure 2.11. The employeeCode, employ-
eeName and salary attributes along with the calculateSalaryIncrease(increase:Integer)
operation only pertain to employees, while the projectName, projectCost1, projectCost2
attributes and the calculateProjectCost() operation relate to project concerns.

To make the difference in use for the employee and project concepts explicit, example in-
stances of the Employee class are provided in Figure 2.12. It illustrates an UML object diagram
with instances called pablo and projectX. It is clear that the calculateProjectCost() op-
eration is not meaningful for the pablo instance. The calculateSalaryIncrease(increase:
Integer) operation is similarly not sensible for the projectX instance. In order to address
separable class cohesion it is shown in Figure 2.13 how the employee and project concepts
can be split into separate classes. Figure 2.14 illustrates that creating instances of the classes
Employee and Project are now more meaningful when the semantic concepts are separated.

2.2.2 Multifaceted Class Cohesion

A class has multifaceted class cohesion if it is not separable and if, when the set of attributes of
the class is interpreted as a relation schema, it is found to not be in second normal form (2NF).
Here 2NF is simply defined to mean that each non-key attribute is functionally dependent on
the complete key. For an in-depth discussion on the nuances of normalization the reader is

2.2. Modelling Heuristics 23

Employee

employeeCode: String
employeeName: String
salary: Integer
…
projectName: String
projectCost1: Integer
projectCost2: Integer

Integer calculateSalaryIncrease(increase:Integer)
Integer calculateProjectCost()

Figure 2.11: The Employee class has separable class cohesion.

pablo:Employee

employeeCode = “1234”
employeeName = “Pablo”
salary = 100000

projectX:Employee

projectName = “ProjectX”
projectCost1 = 540000000
projectCost2 = 239

Figure 2.12: pablo and projectX are both instances of the Employee class.

Employee

employeeCode: String
employeeName: String
salary: Integer

Project

projectName: String
projectCost1: Integer
projectCost2: Integer

Integer calculateSalaryIncrease(increase:Integer)
Integer calculateProjectCost()

Figure 2.13: Splitting the Employee class into Employee and Project classes.

pablo:Employee

employeeCode = “1234”
employeeName = “Pablo”
salary = 100000

projectX:Project

projectName = “ProjectX”
projectCost1 = 540000000
projectCost2 = 239

Figure 2.14: Setting project related properties on the Project class.

2.2. Modelling Heuristics 24

ContactInformation

companyName: String {id}
contactPerson: String {id}
companyAddress: Address
phoneNumber: String

Figure 2.15: The ContactInformation class has multifaceted class cohesion.

sandyContactInfo:ContactInformation

companyName = “CSIR”
contactPerson = “Sandy”
companyAddress = csirAddress
phoneNumber = “1234”

pabloContactInfo:ContactInformation

companyName = “CSIR”
contactPerson = “Pablo”
companyAddress = otherAddress
phoneNumber = “5678”

Figure 2.16: Instances of the ContactInformation class.

referred to the references provided by Eder, et. al. [38] in this regard (see for instance [32, 55]).
The class ContactInformation in Figure 2.15 represents the contact information of a

person who serves as a contact person of a particular company. It is possible that the same
company can have more than one contact person, each with their own phone number. Thus
companyName and contactPerson serve as the compound key of the ContactInformation

class. Furthermore, the assumption is made that a single address is associated with a company.
Therefore, the ContactInformation class is not in 2NF because the companyAddress attribute
is only dependent on the companyName part of the key and not the complete key. Since the
ContactInformation class is not in 2NF, it will be possible to create two different instances of
ContactInformation such that the instances have the same companyName values but different
values for the companyAddress attribute. This is illustrated in Figure 2.16.

The problem can be addressed by redesigning the ContactInformation class by intro-
ducing a Company class, which holds the companyName and companyAddress attributes where
companyName serves as the key of the Company class. In the ContactInformation class the
companyName and companyAddress attributes are replaced with a company attribute. This is
shown in Figure 2.17 and in Figure 2.18 it is shown how the instances of Figure 2.16 can be
represented in the redesign.

ContactInformation

company: Company {id}
contactPerson: String {id}
phoneNumber: String

Company

companyName: String {id}
companyAddress: Address

Figure 2.17: The redesign of ContactInformation class.

2.2. Modelling Heuristics 25

sandy:ContactInformation

company = csir
contactPerson = “Sandy”
phoneNumber = “1234”

csir:Company

companyName = “CSIR”
companyAddress = csirAddress

pablo:ContactInformation

company = csir
contactPerson = “Pablo”
phoneNumber = “5678”

Figure 2.18: Instances of the redesigned ContactInformation class.

Employee

name: String {id}
dateOfBirth: String
currentProject: String
projectManager: String

Figure 2.19: The Employee class has non-delegated class cohesion.

2.2.3 Non-delegated Class Cohesion

If the set of attributes of a class is interpreted as a relation schema and they are found to not
be in third normal form (3NF), the class cohesion of the class is said to be non-delegated if its
cohesion is neither separable nor multifaceted. A schema relation is in 3NF if it is in 2NF and
it does not contain transitive dependencies.

Consider the Employee class in Figure 2.19. The attributes dateOfBirth and current-

Project are functionally dependent on the name attribute. If the assumption is made that a
given project always has one project manager, there is also a functional dependency between
the currentProject and projectManager attributes. This results in there being a transitive
dependency between name and projectManager. Hence, the Employee class is not in 3NF. It
is therefore possible to have two instances of the Employee class such that they have the same
value for the attribute currentProject, but not for the attribute projectManager. This is
illustrated in Figure 2.20.

This semantic anomaly can be avoided by extracting the project concept into a separate
class. This redesign is illustrated in Figure 2.21 and in Figure 2.22 it is shown that with the
redesigned classes it is impossible to have different project managers for the same project.

2.2. Modelling Heuristics 26

sandy:Employee

name = “Sandy”
dateOfBirth = “1985-06-01”
currentProject = “ProjectX”
projectManager = “Ruth”

pablo:Employee

name = “Pablo”
dateOfBirth = “1968-04-11”
currentProject = “ProjectX”
projectManager = “Peet”

Figure 2.20: Instances of the Employee class.

Employee

name: String {id}
dateOfBirth: String
currentProject: Project

Project

name: String {id}
manager: String

Figure 2.21: Extracting the project concept into its own Project class.

sandy:Employee

name = “Sandy”
dateOfBirth = “1985-06-01”
currentProject = projectX

pablo:Employee

name = “Pablo”
dateOfBirth = “1968-04-11”
currentProject = projectX

projectX:Project

name = “ProjextX”
projectManager = “Ruth”

Figure 2.22: Instances of the redesigned Employee and Project classes.

2.2. Modelling Heuristics 27

LeaveRequest

id: Integer {id}
reason: String
dateFrom: String
dateTo: String
status:LeaveRequestStatus

PerformanceReview

employee: Employee {id}
dateFrom: String {id}
dateTo: String {id}
manager: Employee

Integer calculatePeriodLength()
Integer calculatePeriodLength()

Figure 2.23: The classes LeaveRequest and PerformanceReview have concealed class cohe-
sion.

LeaveRequest

id: Integer {id}
reason: String
period: Period
status:LeaveRequestStatus

PerformanceReview

employee: Employee {id}
period: Period {id}
manager: Employee

Period

dateFrom: String
dateTo: String

Integer calculatePeriodLength()

Figure 2.24: Redesign of the LeaveRequest and PerformanceReview with Period class.

2.2.4 Concealed Class Cohesion

A class has concealed class cohesion when it does not have separable-, multifaceted- or non-
delegated class cohesion, but there is still a useful concept concealed within the class. An
example of this can be seen in the LeaveRequest class presented in Figure 2.23. Even though
the fromDate and toDate attributes along with the calculatePeriodLength() operation are
related and relevant to the LeaveRequest class, this combination of attributes and operation
represents a concealed concept.

Concealed class cohesion becomes even more apparent where two or more classes exist,
which share the same subset of attributes and/or operations. As can be seen in Figure 2.23
the PerformanceReview class shares the fromDate and toDate attributes and calculate-

PeriodLength() operation with the LeaveRequest class. This is an indication of concealed
class cohesion. The redesigned LeaveRequest and PerformanceReview classes are illustrated
in Figure 2.24.

2.2.5 Low Inheritance Cohesion of Attributes

In Figure 2.25 an example, which is often mentioned in the literature [87, 89], is illustrated of
low inheritance cohesion of attributes. Since the Rectangle class provides both a width and
a height attribute, the Square class (since it specializes the Rectangle class) is forced to
ignore one of the attributes of the Rectangle class in order to stay true to the semantics of a
square.

This design can be improved by having both the Rectangle and Square classes specialize

2.2. Modelling Heuristics 28

Rectangle

width: Integer
height: Integer

Square

Quadrilateral

Figure 2.25: The Square and Rectangle classes have low inheritance cohesion.

Square

length: Integer

Rectangle

height: Integer
width: Integer

Quadrilateral

{incomplete, overlapping}

Figure 2.26: A redesign of the Square and Rectangle classes.

the Quadrilateral class, where the Square class is defined as having only a length attribute
and the Rectangle class is defined to have the attributes height and width. The annotation
{incomplete, overlapping} is added to emphasize that other quadrilaterals may exist and
that rectangles and squares may overlap when the width and height of a rectangle are equal.
This redesign is illustrated in Figure 2.26.

2.2.6 Low Inheritance Cohesion of Operations

Operations form an essential part of classification in UML class diagrams. Low inheritance
cohesion with regards to operations is best expressed in terms of the Liskov substitution
principle. The Liskov substitution principle states that a subclass must be substitutable by
the more general class [83, 87]. Consider the Bird and Penguin classes of Figure 2.27. If an
instance of the Penguin class is used as if it is an instance of the Bird class, the instance of
the Penguin class will be allowed to fly() and walk(). It makes sense for a penguin to be
able to walk but not to fly. Allowing a penguin to fly is an example of a Liskov substitution
principle violation, while allowing a penguin to walk agrees with the Liskov substitution
principle.

In Figure 2.28 the Liskov substitution principle violation is addressed by adding the
FlyingBird and FlightlessBird classes as direct subclasses of the Bird class. Moving the
fly() operation from the Bird class to the FlyingBird class ensures that only birds that
can fly are able to fly. The Penguin class is now defined as a subclass of the FlightlessBird

2.3. Summary 29

Bird

fly()
walk()

Eagle Penguin

Figure 2.27: The Bird class hierarchy have low inheritance cohesion.

FlyingBird

fly()

Eagle

Penguin

FlightlessBird

Bird

walk()

Figure 2.28: A redesign of the Bird inheritance hierarchy.

class, while the Eagle class is defined as a subclass of FlyingBird class. By addressing the
Liskov substitution principle violation, inheritance cohesion of the Bird inheritance hierarchy
is improved.

2.3 Summary

This chapter provided a brief introduction into UML class diagrams and related modelling
heuristics that will be used for formal scenario testing in Chapters 6 (p. 92) and 7 (p. 119).
This chapter discussed classes and data types with their attributes and operations. Binary
associations was discussed and it was made explicit that the end of a binary association
corresponds with an attribute. The discussion on the essential elements of the UML class
diagram notation concluded with a discussion on the specialization of classes. The discussion
on advanced UML class diagram notation included association specialization and identity
constraints.

2.3. Summary 30

Modelling heuristics for detecting low class cohesion (separable-, multifaceted-, non-
delegated- and concealed class cohesion) and low inheritance cohesion were discussed. For all
occurrences of low cohesion the means to improve cohesion have been discussed. In Chapter 7
(p. 119) it will be shown how violations of these heuristics can be detected using formal
scenario testing.

Chapter 3

Description Logics and OWL 2

This chapter gives a general introduction to DLs (Section 3.1), which is followed by descriptions
for the DLs ALCQI and SROIQ(D), as well as OWL 2, in Section 3.2 (p. 40). Relevant
reasoning tasks are discussed in Section 3.3 (p. 46).

3.1 Description Logics

Description logics (DLs) are often described as syntactic variants of first-order logic [19, 105]
that are specifically designed for the conceptual representation of an application domain in
terms of concepts and relationships between concepts [8, 6, 13, 24, 78]. The name Description
Logics was chosen to emphasise that this family of knowledge representation formalisms is
used to describe a domain of interest in terms of concept descriptions, and on the other hand
that these formalisms have a formal logic-based semantics [6]. An introduction to DLs is given
in Section 3.1.1 and the formal logic-based semantics of DLs are discussed in Section 3.1.2 (p.
33). In Section 3.1.3 (p. 33) the syntax and semantics of DLs are elucidated by providing
the syntax and semantics of the DL AL along with examples of concept descriptions that are
either permissible or unacceptable in AL. The extension of DLs with data types are discussed
in Section 3.1.4 (p. 36). The expressivity of a DL depends on the constructors that are defined
for the DL. This is discussed in Section 3.1.5 (p. 38).

3.1.1 Description Logic Primer

The basic syntactic building blocks for an arbitrary DL L are based on the three disjoint
sets NC , NR and NI , where NC is a set of concept names, NR is a set of role names and NI

is a set of individual names. Concept names represent classes of entities (called concepts)
that share common characteristics, roles names denote binary relations (called roles) that
exist between individuals and individual names are used to refer to specific instances (called
individuals) in a domain of interest [8, 94, 76, 103].

Ontologies (or knowledge bases) constructed using DLs can consist of three possible
building blocks namely, the TBox, the ABox and the RBox. The TBox is used to define
the vocabulary or terminology of the application domain along with the relations that exist

31

3.1. Description Logics 32

between concepts. Axioms in the TBox have the form C1 v C2 (C2 subsumes C1 or C1

is subsumed by C2) or C1 ≡ C2 (C1 is equivalent to C2) where C1 and C2 are concepts
[8, 94, 103]. As an example, it is possible to state that a woman is a kind of person using the
axiom

Woman v Person

Roles can be used to define relations between concepts. As an example,

Parent ≡ ∃hasChild.Person

states that every parent has at least one child whom is a person.
While the TBox defines general knowledge about the application domain, the ABox is

used to assert specific knowledge regarding particular individuals in the application domain.
For C a concept, r a role, and a and b individuals, ABox assertions are of the form [8, 94, 103]

• C(a), which states that the individual a is an instance of the concept C,

• r(a, b), which asserts that the individuals a and b are related by r,

• ¬r(a, b), which asserts that the individuals a and b are not related by r,

• a ≈ b, which states that the individual names a and b refer to the same individual and

• a 6≈ b, which states that the individual names a and b refer to different individuals.

As an example, consider the conceptWoman and the individual mary. Then the assertion

Woman(mary)

states that Mary is a woman. The assertion

hasChild(mary, susan)

states that the individual mary has a child, which is the individual susan using the hasChild
role.

Depending on the expressivity of the DL used to construct the ontology, the ontology
may include an RBox. An RBox is used to define relations between roles, which consists of
role inclusion axioms and role property assertions. Role inclusion axioms are of the form
r v s where r and s are roles. Role property assertions are used to assert role properties like
reflexivity, transitivity, symmetry and disjointness [58, 103]. As an example, the role inclusion
axiom

hasChild v hasFamily

3.1. Description Logics 33

states that the hasChild binary relation is a kind of hasFamily binary relation. The role
property assertion

Dis(hasParent, hasChild)

states that a given individual cannot have a single individual as both parent and child.
Throughout this chapter A, C and D denote concepts, r, s and t denote roles and a and b

denote individuals.

3.1.2 Semantics

The formal logic-based semantics of DLs are defined in a model-theoretic way. That is, the
semantics of a DL are defined by assigning an interpretation to the concept constructors
and (depending on the expressivity of the DL) role constructors, that are defined for the DL
[8, 6, 94, 103].

Definition 3.1. An interpretation for an arbitrary DL L , denoted by I, is defined as
I = (4I , ·I) where 4I denotes the domain of interest and ·I denotes a mapping function
that maps every concept name C ∈ NC in L to a set CI ⊆ 4I , every role name r ∈ NR in
L to a binary relation rI ⊆ 4I ×4I and every individual name a ∈ NI in L to an element
aI ∈ 4I . ♦

Definition 3.2. An interpretation I satisfies the respective TBox, ABox and RBox axioms
based on the conditions defined in Table 3.1. When an interpretation I satisfies axiom α,
it is written as I α. An axiom α is called satisfiable if and only if there is at least one
interpretation I such that I α [58, 76, 103]. ♦

The interpretation function is extended to arbitrary concept descriptions by the inductive
application of the concept constructors defined for the particular DL L [8, 94, 103]. The
model-theoretic semantics of DLs are given by Definitions 3.3 and 3.4.

Definition 3.3. I is called a model of an axiom α if α is satisfied by the interpretation I. I
is called a model of an ontology O, written as I O, if for every α ∈ O it follows that I α

[36, 94, 103]. ♦

Definition 3.4. An axiom α is said to be entailed by an ontology O, written as O � α, if
every model of O is also a model of α. Thus, for every I O, I α holds. It is also said
that axiom α is the logical consequence of ontology O. [8, 103]. ♦

3.1.3 AL

The different DLs are characterised by the concept constructors they permit respectively. As
an example, the DL AL is considered in Definition 3.5 (p. 35). A summary is given of the
AL concept constructor names and their syntax in Table 3.2 (p. 35).

3.1. Description Logics 34

Table 3.1: Semantics of TBox, ABox and RBox axioms

Atom Syntax Semantics

Vocabulary

Atomic concept NC A AI ⊆ 4I

Atomic role NR p pI ⊆ 4I ×4I

Individual NI a aI ∈ 4I

Axiom name Axiom α Condition for I � α

TBox axioms

Concept inclusion C1 v C2 CI1 ⊆ CI2
Concept equivalence C1 ≡ C2 CI1 = CI2

ABox axioms

Concept assertion C(a) aI ∈ CI

Role assertion r(a, b) (aI , bI) ∈ rI

Negated role assertion ¬r(a, b) (aI , bI) 6∈ rI

Individual equality a ≈ b aI = bI

Individual inequality a 6≈ b aI 6= bI

RBox axioms

Role inclusion r1 v r2 rI1 ⊆ rI2
Role equivalence r1 ≡ r2 rI1 = rI2

Complex role inclusion r1 ◦ · · · ◦ rn v r rI1 ◦ . . . ◦ rIn ⊆ rI

Role transitivity Tra(r) rI ◦ rI ⊆ rI

Role reflexivity Ref(r) (x, x) ∈ rI for all x ∈ 4I

Role irreflexivity Irr(r) (x, x) 6∈ rI for all x ∈ 4I

Role disjointness Dis(r1, r2) If (x, y) ∈ rI1 then (x, y) 6∈ rI2 for all x, y ∈ 4I

Role symmetry Sym(r) If (x, y) ∈ rI then (y, x) ∈ rI for all x, y ∈ 4I

Role asymmetry Asy(r) If (x, y) ∈ rI then (y, x) 6∈ rI for all x, y ∈ 4I

Functional role restriction Func(r) > v≤ 1r.>

◦ on the right-hand side denotes standard composition of binary relations:
rI1 ◦ rI2 := {(x, z)|(x, y) ∈ rI1 , (y, z) ∈ rI2 }

3.1. Description Logics 35

Table 3.2: AL concept constructors and syntax

Concept constructor Syntax

Atomic concept A

Top concept >

Bottom concept ⊥

Atomic concept negation ¬A

Concept conjunction C1 u C2

Limited existential restriction ∃r.>

Universial restriction ∀r.C

Definition 3.5. AL concept descriptions are defined as follows:

C ::= > |⊥ |A | ¬A |C1 u C2 | ∀r.C | ∃r.>

where A is an atomic concept, C1 and C2 are (possibly complex) concepts and r a role1.
The semantics of AL concept descriptions are defined by inductively extending the concept
descriptions according to the semantics of the AL concept constructors as given in Table 3.3 [8].

♦

Assuming the atomic concepts Person and Female are defined for an AL TBox. Then,
using the conjunction concept constructor (see Table 3.2), it is possible to define the complex
concept Woman as

Woman ≡ Person u Female (3.1)

Furthermore, assume that the atomic role hasChild is used to describe the binary relation
between individuals that are in a parent-child relation. The complex concept Mother can
then be defined using the conjunction, limited existential restriction and universal restriction
concept constructors (see Table 3.2) as

Mother ≡Woman u ∃hasChild.> u ∀hasChild.Person (3.2)

This complex expression (3.2) states that a mother is a woman that has at least one
child (∃hasChild.>) and all her children are persons (∀hasChild.Person). The axiom
∀hasChild.Person is required to ensure only children that are persons (and not pets for
example) are considered.

Note that since AL only includes the limited existential restriction concept constructor
rather than the full existential restriction concept constructor, it is not possible to define

1The > concept has to be distinguished from the capital letter T.

3.1. Description Logics 36

Table 3.3: AL concept constructors and semantics

Concept constructor Semantics

>I 4I

⊥I ∅

(¬A)I 4I\AI

(C1 u C2)I CI1 ∩ CI2
(∀r.C)I {x ∈ 4I |For all y ∈ 4I , if (x, y) ∈ rI , then y ∈ CI}

(∃r.>)I {x ∈ 4I |There exists an y ∈ 4I , such that (x, y) ∈ rI}

Mother as

Mother ≡Woman u ∃hasChild.Person (3.3)

The full existential restriction concept constructor is, for example, defined for the DL ALC,
which has the syntax ∃r.C with the semantics defined as [107]

(∃r.C)I = {x ∈ 4I |There exists an y ∈ 4I , such that (x, y) ∈ rI and y ∈ CI}

3.1.4 Extending DLs with Data Types

Extending DLs with data types is based on the idea of data type mapping. Let D be a set
of data types. The function ·D associates for each d ∈ D, a set dD ⊆ 4D where 4D is the
domain of all data types. A detailed account of data type mappings can be found in the
papers of Horrocks, et. al. [60, 59, 90].

Definition 3.6. For a DL L extended with data types the set of role names NR are defined
as

NR = RA ∪ {r−|r ∈ RA} ∪RD

where RD is the set of concrete role names and RA is the set of abstract role names. ♦

Definition 3.7. An interpretation for a DL L extended with data types is a triple I =
(4I ,4D, ·I), where 4I and 4D are nonempty disjoint sets such that 4I is the domain of
interest, dD ⊆ 4D for each d ∈ D and ·I is a function assigning to each concept C ∈ NC ,
each abstract role r ∈ RA, each individual a ∈ NI , and to each concrete role t ∈ RD of L ,
interpretations CI ⊆ 4I , rI ⊆ 4I ×4I , aI ∈ 4I , and tI ⊆ 4I ×4D respectively. The
functions ·D and ·I are extended to data type concepts as shown in Table 3.4. ♦

The interpretation I is a model for an axiom α and a model for an ontology O as per
Definition 3.3 (p. 33).

3.1. Description Logics 37

Table 3.4: Model-theoretic semantics of DLs extended with data types

Vocabulary

Atom Syntax Semantics

Data type d d dD ⊆ 4D

Concrete role RD t tI ⊆ 4I ×4D

Data value v vI = vD

Data type axioms

Axiom name Axiom α Condition for I � α

Concrete role disjointness Dis(t1, t2) If (x, y) ∈ tI1 , then (x, y) 6∈ tI2 , for all x ∈ 4I and y ∈ 4D

Concrete role inclusion t1 v t2 tI1 ⊆ tI2
Concrete role assertion t(a, v) (aI , vD) ∈ tI

Concept constructors using data types

Constructor name Syntax Semantics

Data type at least ≥ nt.d {x ∈ 4I |]{y ∈ 4D|(x, y) ∈ tI and y ∈ dD} ≥ n}

Data type at most
restriction

≤ nt.d {x ∈ 4I |]{y ∈ 4D|(x, y) ∈ tI and y ∈ dD} ≤ n}

Data type universal
restriction

∀t.d {x ∈ 4I |For all y ∈ 4D, if (x, y) ∈ tI , then y ∈ dD}

Data type existential
restriction

∃t.d {x ∈ 4I |An y ∈ 4D exists such that (x, y) ∈ tI and y ∈ dD}

3.1. Description Logics 38

Table 3.5: Nomenclature for important DL features

Symbol Expressive feature Example

C Complex concept negation ¬C

U Concept disjunction C1 t C2

E Full existential restriction ∃r.C

I Inverse roles r−

Q Qualified number restrictions ≤ 3r.C

N Unqualified number restrictions ≤ 3r.>

F Functional role restriction > v≤ 1r.> or Func(r)

O Nominals {a}

H Role hierarchies r1 v r2

R Limited complex role inclusion r1 ◦ r2 v r

S Abbreviation for ALC with transitive roles r ◦ r v r

(D) Concrete data types ∃t.String or ≤ 10t.Integer

3.1.5 DL Nomenclature

The main goal in designing DLs is to achieve and maintain desirable computational complexity
properties for core reasoning tasks while retaining expressive power. As such, for many DLs
the core reasoning tasks are decidable and well-behaved in practice. This is achieved by
limiting the expressivity of the DL in different ways. However, for a DL to be useful in an
application domain, it needs to be expressive enough to describe the domain accurately. Since
DLs are used in a wide variety of application domains with conflicting expressivity demands, it
gave rise to the design of different DLs with different levels of expressivity and computational
complexity. Consequently, it is possible that a given DL may be suitable for one application
domain, while it may be impractical for another [6, 76, 103].

More expressive DLs are designed by extending an inexpressive DL like AL. As an example,
the DL ALC extends the DL AL with complex concept negation, full existential restriction
and concept disjunction [8, 60, 76, 103].

In order to discern the expressivity of different DLs, an informal naming convention has
been established, which gives some hint as to the expressivity of the DL. Table 3.5 provides
an abbreviated list of notations representing different DL features [8, 60, 59, 76, 56, 103].

3.1.6 Characteristics of DLs

In this section, characteristics that are core to DL semantics are discussed. These are the
open-world assumption, monotonicity and the unique name assumption [103].

3.1. Description Logics 39

Open-world versus Closed-world Assumption

DLs have been designed with the explicit intention to be able to deal with incomplete
information. Consequently, DLs intentionally do not make any assumptions with regards
with information that is not known. In particular, no assumption is made about the truth or
falsehood of facts that cannot be deduced from the ontology. This approach is known as the
open-world assumption (OWA). This approach is in contrast with the closed-world assumption
(CWA) typically used in information systems. With the CWA facts that cannot be deduced
from a knowledge base (i.e. database) are implicitly understood as being false [8, 77, 103].

As an example, consider a knowledge base (ontology or database), which constains the
single fact hasChild(mary, susan). Thus, it contains only one fact which states that Susan is
the child of Mary. From a DL perspective the only deduction that can be made is that Mary
has a child called Susan. From the OWA it follows that it is not known whether Mary has
other children. Indeed, it is possible for the existence of (a potentially infinite number) of
different interpretations, in which Mary either has only one child, only two children or any
number of children greater than one. Each of these interpretations represents a model in which
the fact hasChild(mary, susan) is true. On the other hand, when a database containing this
single fact is considered, the implicit consequence is that Mary has one child only, called
Susan. Moreover, from a database perspective, only a single world (or model) is considered
where Mary has one child, and one child only.

Monotonic Semantics

Definition 3.4 (p. 33) states that, if an axiom α holds in all models of an ontology O, α
is a logical consequence of O. As more axioms are added to an ontology, the fewer models
the ontology has and the more logical consequences follow from the ontology. Hence, the
semantics of DLs are monotonic. In particular, adding new axioms to an ontology does not
cause existing logical consequences to be invalidated [78].

Unique Name Assumption

In general, DLs do not make the unique name assumption (UNA): different individual names
may denote the same individual. To make explicit that different individual names denote
different individuals, an individual inequality assertion has to be applied [8, 103]. As an
example, to make explicit that the individuals names a and b denote different individuals, the
assertion a 6≈ b has to be added to the ontology.

3.2. DLs for the Translation of UML Class Diagrams 40

Table 3.6: Syntax and semantics of ALCQI

Constructor name Syntax Semantics

Atomic concept A AI

Concept negation ¬C 4I\CI

Concept conjunction C1 u C2 CI1 ∩ CI2
At most restriction ≤ nr.C {x ∈ 4I |]{y ∈ 4I | (x, y) ∈ rI and y ∈ CI} ≤ n}

Inverse role r− {(x, y) ∈ 4I ×4I |(y, x) ∈ rI}

3.2 DLs for the Translation of UML Class Diagrams

The purpose of this section is to introduce the DLs ALCQI (Section 3.2.1) and SROIQ(D)

(Section 3.2.2) as well as OWL 2, the Web Ontology Language (Section 3.2.3). ALCQI is a
strict subset of SROIQ(D), with SROIQ(D) forming the basis for the formal semantics of
OWL 2.

UML class diagrams have been translated by Berardi, et. al. to ALCQI [13] and by
Zedlitz, et. al. to OWL 2 [118]. This is discussed in Chapter 4 (p. 49). Refinements to the
translation of UML class diagrams to SROIQ(D) and OWL 2 (for the purpose of formal
scenario testing) are discussed in Chapter 5 (p. 60).

3.2.1 ALCQI

Definition 3.8. Concept expressions for the DL ALCQI are defined by the grammer

C ::= A|¬C|C1 u C2| ≤ nr.C

where n is a non-negative integer, A is an atomic concept, C,C1, C2 are (possibly complex)
concepts and r is a role. Role expressions for ALCQI are defined by

r := p|p−

where p is an atomic role and p− is the inverse of atomic role p. The semantics of ALCQI
concept and role constructors are given in Table 3.6. From the ALCQI concept constructors
further useful concept expressions can be derived, which are abbreviated in Table 3.7 [13,
85]. ♦

The abbreviations listed in Table 3.7 are used in the translation of UML class diagrams to
ALCQI by Berardi, et. al. [13].

3.2. DLs for the Translation of UML Class Diagrams 41

Table 3.7: ALCQI abbreviations

Abbreviation Concept expression
abbreviated

> A t ¬A

⊥ ¬>

C1 t C2 ¬(¬C1 u ¬C2)

C1 ⇒ C2 ¬C1 t C2

≥ nr.C ¬(≤ n− 1r.C)

∃r.C ≥ 1r.C

∀r.C ¬∃r.¬C

3.2.2 SROIQ(D)

In this section the syntax and semantics of the DL SROIQ(D) are explained. However, before
proceeding, some prerequisite notions are defined.

Definition 3.9. The set Rs of simple roles is defined as

Rs = RA\Rn

where Rn, the set of non-simple roles, is defined as [58, 103]:

• Every role r occurring in r1 ◦ . . . ◦ rn v r, where n > 1, is non-simple.

• Every role r occurring in a simple role inclusion r1 v r with a non-simple role r1 is itself
non-simple.

• If r is non-simple, so is Inv(r) where the function Inv is defined such that Inv(r−) = r

and Inv(r) = r−.

• No other role is non-simple.

♦

Definition 3.10. A role hierarchy is regular if there is a strict partial ordering ≺ on non-simple
roles Rn such that

• r1 ≺ r if and only if Inv(r1) ≺ r, and

• every role inclusion axiom is of one of the forms

r ◦ r v r,

Inv(r) v r,

r1 ◦ . . . ◦ rn v r,

3.2. DLs for the Translation of UML Class Diagrams 42

Table 3.8: Syntax and semantics of SROIQ(D)

Vocabulary

Atom Syntax Semantics

Atomic concept NC A AI ⊆ 4I

Simple role Rs s sI ⊆ 4I ×4I , adhering to the constraints of Definition 3.9

Non-simple role Rn r rI ⊆ 4I ×4I

Concrete role RD t tI ⊆ 4I ×4D

Individual NI a aI ∈ 4I

Data type d d dD ⊆ 4D

Data value v vI = vD

Constructors

Constructor name Syntax Semantics

Top concept > 4I

Bottom concept ⊥ ∅

Atomic concept A AI

Nominal {o} {oI}

Self restriction ∃s.Self {x ∈ 4I |(x, x) ∈ sI}

Concept negation ¬C 4I\CI

Concept conjunction C1 uC2 CI1 ∩ CI2
Concept disjunction C1 tC2 CI1 ∪ CI2
Universal restriction ∀r.C {x ∈ 4I |For all y ∈ 4I , if (x, y) ∈ rI , then y ∈ CI}

Existential restriction ∃r.C {x ∈ 4I |There exists an y ∈ 4I , such that (x, y) ∈ rI ∧ y ∈ CI}

At least restriction ≥ ns.C {x ∈ 4I |]{y ∈ 4I | (x, y) ∈ sI and y ∈ CI} ≥ n}

At most restriction ≤ ns.C {x ∈ 4I |]{y ∈ 4I | (x, y) ∈ sI and y ∈ CI} ≤ n}

Inverse role r− {(x, y) ∈ 4I ×4I |(y, x) ∈ rI}

3.2. DLs for the Translation of UML Class Diagrams 43

r ◦ r1 ◦ . . . ◦ rn v r,

r1 ◦ . . . ◦ rn ◦ r v r,

such that r ∈ RA is a (non-inverse) role name, and ri ≺ r for i = 1, . . . , n whenever ri is
non-simple [58, 103]. ♦

Definition 3.11. SROIQ(D) concept descriptions are formed inductively using the following
grammar:

C ::=> |⊥ |A | {a} | ∃s.Self | ¬C |C1 u C2 |C1 t C2 | ∀r.C | ∃r.C | ≥ ns.C | ≤ ns.C |

≥ nt.d | ≤ nt.d | ∀t.d | ∃t.d

where A is an atomic concept, C, C1, C2 are concepts, a is an individual, r is an abstract role
(see Definition 3.6 on p. 36), s is a simple abstract role, t is a concrete role, d is a data type
and n is an integer. The syntax and semantics of SROIQ(D) concept and role constructors
are provided in Table 3.8 (p. 42). The syntax and semantics for concept constructors using
data types are as defined in Table 3.4 (p. 37) [62, 60, 59, 58, 61, 90, 103].

Decidability is achieved by ensuring that role hierarchies are regular and by restricting
the use of abstract roles to only simple roles appearing in

• self restrictions, at most and at least restrictions and

• irreflexivity and disjointness axioms.

♦

3.2.3 OWL 2

The syntax of OWL 2 is specified by the World Wide Web Consortium (W3C) [92]. The W3C
OWL 2 specification is defined in terms of axioms (or functional-style syntax), which may not
be accessible to non-logicians. Therefore, the OWL 2 Manchester syntax has been defined
as a means to provide a more compact and user-friendly syntax for OWL 2 [54, 57]. This
dissertation makes use of the OWL 2 Manchester syntax.

The semantics of OWL 2 is based on DLs, and in particular SROIQ(D) [47, 59, 61, 91],
extended with a relaxed form of DL-safe rules for the purpose of modelling key constraints [97].

Table 3.9 provides a summary of the translations from OWL 2 Manchester syntax to
OWL 2 functional-style syntax to DL syntax. Only syntax that is pertinent to the current
dissertation has been included in the summary. For the full syntax and related translations
the reader is referred to the relevant literature [57, 59, 61, 91]. The associated DL semantics
follow from the semantics provided in Tables 3.1 (p. 34), 3.4 (p. 37) and 3.8 (p. 42).

From the translations in Table 3.9 it follows that OWL classes, object properties and data
properties are translated respectively to DL concepts, abstract roles and concrete roles. In

3.2. DLs for the Translation of UML Class Diagrams 44

Table 3.9: Manchester to functional-style to DL syntax translation

Vocabulary

Name OWL Atom DL Atom

OWL class name A A A

OWL object property name r r r

OWL simple object property name s s s

OWL data property name t t t

OWL data type name d d d

OWL individual name a a a

OWL data value v v v

Translations

Manchester syntax Functional-style syntax SROIQ(D) syntax

Class: A A A

Class: C1
EquivalentTo: C2 EquivalentClasses(C1 C2) C1 ≡ C2

Class: C1
SubClassOf: C2 SubClassOf(C1 C2) C1 v C2

DisjointClasses: C1, C2 DisjointClasses(C1, C2) C1 v ¬C2

ObjectProperty: r r r

ObjectProperty: r1
SubPropertyOf: r2 SubObjectPropertyOf(r1 r2) r1 v r2

ObjectProperty: r
Domain: C1 ObjectPropertyDomain(r C1) ∃r.> v C1

ObjectProperty: r
Range: C2 ObjectPropertyRange(r C2) ∃r−.> v C2

ObjectProperty: r1
InverseOf: r2 InverseObjectProperties(r1 r2) r1 ≡ r−2

DataProperty: t t t

DataProperty: t1
SubPropertyOf: t2 SubDataPropertyOf(t1 t2) t1 v t2

DataProperty: t
Domain: C1 DataPropertyDomain(t C1) ∃t.> v C1

DataProperty: t
Range: d DataPropertyRange(t d) > v ∀t.d

Individual: a
Types: C ClassAssertion(C a) C(a)

Individual: a
Facts: r b ObjectPropertyAssertion(r a b) r(a, b)

Individual: a
Facts: t v DataPropertyAssertion(t a v) t(a, v)

Individual: a
DifferentFrom: b DifferentIndividuals(a b) a 6≈ b

Individual: a
SameAs: b SameIndividual(a b) a ≈ b

(†) r some C ObjectSomeValuesFrom(r C) ∃r.C

(†) r only C ObjectAllValuesFrom(r C) ∀s.C

(†) s min n C ObjectMinCardinality(n s C) ≥ ns.C

(†) s max n C ObjectMaxCardinality(n s C) ≤ ns.C

(†) The Manchester syntax provided
in these instances are usually used
in conjunction with EquivalentTo or
SubClassOf axioms.

As an example a universal restriction can be used to define
class C1 as:
Class: C1

EquivalentTo: r only C2

3.2. DLs for the Translation of UML Class Diagrams 45

this dissertation, depending on the context of the discussion, either OWL terminology or DL
terminology will be used.

Table 3.9 does not include the syntax and semantics of OWL 2 key constraints. Key
constraints are of importance to Chapters 5 (p. 60) and 7 (p. 119) of this dissertation. Key
constraints in OWL 2, called Easy Keys, are implemented using a form of DL safe rules and
hence cannot be formalized using DLs syntax and semantics. The Manchester syntax for an
OWL 2 key constraint is [57, 91]

Class: C
hasKey s1, ..., sn,t1, ...,tm

(3.4)

and the functional-style syntax is

HasKey(C (s1...sn)(t1...tm)) (3.5)

The semantics of Easy Keys is given by Definition 3.12, as is defined by Parsia, et. al. [97].

Definition 3.12. A key constraint is a statement of the form

C hasKey(s1, . . . , sn, t1, . . . , tm) (3.6)

where s1, . . . , sn are simple object properties, t1, . . . , tm are data type properties and C is a
class description. The semantics for an OWL 2 key constraint (3.7) is then defined for an
ontology O by an interpretation I such that I is a model of O and satisfies (3.7) below

∀xy
[
∃z1 . . . znv1 . . . vm

[
α ∧ HU(x) ∧ HU(y) ∧

∧
i=1,...,n

HU(zi)
]
→ x = y

]
, (3.7)

where HU holds for all the named individuals in O (that is, HU is a Herbrand universe) and α
is defined as

α = C(x) ∧ C(y) ∧
∧

i=1,...,n

(
si(x, zi) ∧ si(y, zi)

)
∧

∧
i=1,...,m

(
ti(x, vi) ∧ ti(y, vi)

)
(3.8)

♦

Equation (3.7) states that the named individuals x and y of type C represent the same
individual, if and only if, they agree on

1. their simple object properties si with named individuals zi, for 1 ≤ i ≤ n, and

2. their data properties ti with data values vi, for 1 ≤ i ≤ m, respectively.

3.3. Reasoning Tasks 46

Note that Easy Keys is restricted to apply to simple object properties relating named
individuals in order to ensure decidability. Moreover, note that object properties and data
properties are treated in different ways. In particular, z1, . . . , zn represent named individuals
while v1, . . . , vm are not necessarily named values. This difference in treatment is due to data
properties not requiring restrictions in order to achieve decidability and some counter-intuïtive
inferrences that follow if named values are enforced for data types [97].

3.3 Reasoning Tasks

In this section reasoning tasks that are of importance for this dissertation are discussed. DLs
are equipped with a number of reasoning procedures, which can be utilized to infer implicit
knowledge from the knowledge stated explicitly in the ontology. The pertinent reasoning tasks
in this regard are discussed in Section 3.3.1. Reasoning tasks that are focussed on finding and
eliminating modelling errors in ontologies are discussed in Section 3.3.2 (p. 47).

3.3.1 Deductive Reasoning Tasks

Axiom satisfiability and axiom entailment have been defined in Definitions 3.2 (p. 33), and
3.4 (p. 33) respectively. Ontology satisfiability (also called ontology consistency), concept
satisfiability, subsumption, classification and instance checking are defined next.

Definition 3.13. A concept C is satisfiable with respect to an ontology O if there exists a
model I of O such that CI 6∈ ∅. A concept C is unsatisfiable if and only if for all interpretations
I it follows that CI ∈ ∅ [8, 103]. ♦

Definition 3.14. An axiom α is satisfiable with respect to an ontology O if there exists
a model I of O such that I α. An axiom α is unsatisfiable if it does not have a model
[36, 94, 103]. ♦

Satisfiability of roles can be checked by reducing role satisfiability to concept satisfiability.
Thus, given a role r, checking the satisfiability of r reduces to checking the satisfiability of the
concept (≥ 1r.>) [66].

Definition 3.15. An ontology O is said to be satisfiable or consistent if it has a model. An
ontology that does not have a model is said to be unsatisfiable or inconsistent or contradictory
[94, 103]. ♦

Definition 3.16. A concept C is subsumed by a concept D with regards to an ontology O
if CI ⊆ DI for every model I of O. This is written as C vO D or O � C v D [8, 103].
Classification is the task of determining vO for all concept names in an ontology O [6, 103]. ♦

3.3. Reasoning Tasks 47

Definition 3.17. An assertion C(a) is satisfiable, if and only if there exists an interpretation
I such that aI ∈ CI , where C is a concept and a is an individual [8]. An individual a is an
instance of a concept C with respect to an ontology O if aI ∈ CI for all interpretations I of
O. This is written as O � C(a) [94]. ♦

These different reasoning tasks are all reducible to ontology consistency [8, 103]. Recall
that an ontology is consistent if all the axioms in it are simultaneously satisfiable (Definition
3.15 on p. 46). Instance checking can be reduced to ontology consistency since O � C(a) if
and only if O ∪ {¬C(a)} is inconsistent [8, 36]. Subsumption (and by extension classification)
can be reduced to concept satisfiability since C v D if and only if C u ¬D is unsatisfiable [8].
Concept satisfiability can be reduced to axiom entailment since for an unsatisfiable concept
O � C v ⊥ holds [103]. Futhermore, axiom entailment is reducible to ontology consistency
by proof by contradiction, as follows: Let β be an axiom that claims the opposite of axiom
α2. For the axioms α and β every interpretation either satisfies α or β, but not both. Now if
O � α holds, no model of O can be a model for β. Hence, the extended ontology O′ = O∪{β}
is inconsistent.

A benefit of the reducibility of these reasoning tasks is that it eases their implementation
in tools. Rather than having to implement all the reasoning tasks, only for example ontology
consistency can be implemented, and the rest of the reasoning tasks can be implemented based
on their reduction to ontology consistency [103]. Tools that are available for doing consistency
checking, concept satisfiability and classification are HermiT, FaCT++ and Pellet [35].

3.3.2 Other Reasoning Tasks

The reasoning tasks discussed in the previous section are deductive in nature. That is, logical
consequences are inferred from explicitly stated information in an ontology. In contrast, the
reasoning tasks, namely justification and abduction, discussed in this section are not deductive
in nature.

Intuitively, abduction can be understood as the process through which a person will guess
the reason(s) why certain facts are observed in the world. As an example, a person may note
that it is wet outside and therefore conclude that it has rained. This conclusion may however
be refuted when new information is learned, for instance, if the sprinklers were on. Abduction
is formalized in Definition 3.18.

Definition 3.18. An abductive problem for an ontology O and a logical consequence ϕ,
represented by 〈O, ϕ〉, is when ϕ is not entailed by O, that is, O 6� ϕ. An axiom α is a solution
to an abductive problem 〈O, ϕ〉 if and only if O ∪ {α} � ϕ [73]. ♦

2β can be a single axiom or a set of axioms emulating the opposite of α. Corresponding opposite axioms
are provided for SROIQ in the provided reference (see p. 51 of [103]).

3.4. Summary 48

Research into abductive reasoning tasks in DLs is in its early stages. Currently a compu-
tational framework exists for abductive reasoning in the DL ALC. However, this framework
still needs to be extended to other DLs [74].

An inconsistent ontology is undesirable since it entails everything due to the principle
of explosion [103]. Hence, no useful information can be inferred from it. Moreover, an
inconsistent ontology is often indicative of modelling errors. This gave rise to the formulation
of reasoning tasks that can explain (or justify) and correct modelling errors [98, 106].

A justification for an entailment is a minimal subset of an ontology such that the entailment
still holds. A single justification for an entailment is calculated by removing axioms from the
ontology until a minimal subset of the ontology remains such that the entailment still holds.
A single entailment may have many justifications [56].

From a set of justifications {J1, . . . ,Jn}, a set R can be constructed by adding a single
axiom from each of the justifications {J1, . . . ,Jn} to R. Since the justifications are minimal,
removing R from O is a repair for O such that O 6� η [56].

Justification and repair are defined formally in Definitions 3.19 and 3.20 respectively.

Definition 3.19. J is a justification for O � η if J ⊆ O,J � η, and for all J ′ J it is the
case that J ′ 6� η [56]. ♦

Definition 3.20. Given an ontology O such that O � η, the set of axioms R is a repair for
η in O if R ⊆ O,O \R 6� η and there is no R′ R such that O \R′ 6� η [56]. ♦

Pellet and RacerPro are reasoners (which can be used with both Protégé and Swoop
[45]) that support the finding of justifications for inconsistent concepts [35], while the Swoop
ontology editor has a plugin for doing repairs [102].

3.4 Summary

In this chapter an overview was given of the general syntax and semantics of DLs (see Section
3.1 on p. 31). In Section 3.2 (p. 40) the DLs ALCQI and SROIQ(D), as well as the OWL 2
Web Ontology Language, was introduced. In the next chapter existing research is discussed
for translating UML class diagram features to ALCQI and OWL 2, while in Chapter 5 (p.
60) SROIQ(D) and OWL 2 are used to provide translations of UML class diagram features
for the purpose of formal scenario testing.

Section 3.3 (p. 46) discussed reasoning tasks for DLs that are relevant to formal scenario
testing. Ontology consistency checking is the core reasoning task that will be used in Chapters
6 (p. 92) and 7 (p. 119). Even though justifications are used to explain entailments in
Chapters 6 (p. 92) and 7 (p. 119), current justification algorithms are not a perfect match for
the needs of formal scenario testing. This, along with how abductive reasoning tasks can be
of use in formal scenario testing, will be discussed in Section 6.2.4 (p. 102).

Chapter 4

DL Translations of UML Class Diagrams

In order to support the formal scenario testing of UML class diagrams, the diagrams can be
translated to DLs. Substantial work has been done on the translation of UML class diagrams
to DLs [5, 24, 25, 11, 10, 12, 13, 70, 4, 100]. UML class diagrams have been translated to
the DLs ALC, ALCI, ALCQI and DLRifd [24, 13, 4, 100]. Artale, et. al. [5], showed that
translating UML class diagrams and entity-relationship models to the DL-lite family of DL
languages affords lower computational complexity bounds. More recently UML class diagrams
have been translated to OWL 2 [118, 119]. As was explained in Section 1.3.4 (p. 7), this
dissertation focuses on the DLs ALCQI and SROIQ(D). The DL ALCQI is a subset of the
DL SROIQ(D) which serves as the mathematical logic basis of OWL 2 (see Section 3.2 on
p. 40).

In this chapter the ALCQI translation of UML class diagram notation is given as defined
by Berardi, et. al. [13]. Where the related translation to OWL 2 was defined by Zedlitz, et.
al. [118], the translation to OWL 2 is supplied as well. For UML class diagram features that
cannot be expressed in ALCQI, the SROIQ(D) translation is given where it follows from
existing research.

4.1 Classes

In this section the translation of classes with their attributes and operations to the DL ALCQI
and OWL 2 are given. A UML class C corresponds to an atomic concept C in ALCQI and a
class C in OWL 2.

An aspect in which UML class diagrams differ from DLs and OWL is that UML class
diagrams make the UNA (see Section 3.1.6 on p. 39), while DLs and OWL 2 do not make this
assumption. Thus, for DLs and OWL 2 uniqueness of names must be enforced for any pair of
classes that are not in the same inheritance hierarchy. To make explicit that for example the
classes C and T are disjoint, it is necessary to assert that the ALCQI concepts C and T are
disjoint. This is done through assertion (4.1).

49

4.2. Attributes 50

C v ¬T (4.1)

To assert that the classes C and T are disjoint in OWL 2, it is sufficient to apply the
DisjointWith axiom as shown in listing (4.2).

Class: T
DisjointWith: C

(4.2)

4.2 Attributes

Consider the class C with an attribute t:T as illustrated in Figure 2.1(b) (p. 14). In ALCQI
an attribute t is represented as an atomic role t. Assertion (4.3) is applied.

C v ∀t.T (4.3)

Berardi, et. al. [13], in order to simplify the translation, intentionally do not distinguish
between classes and data types. Furthermore, ALCQI does not support concrete domains
and nominals and hence, it is not possible to represent data types using ALCQI (see Section
3.2.1 (p. 40)) [7, 8, 13]. Data types will be discussed in more detail in Chapter 5 (p. 60).

Depending on whether the type T denotes a class or a data type, the attribute t is
represented as an ObjectProperty or a DataProperty in OWL 2. Listing (4.4) defines the
object property t with its domain and range.

The translation is similar where T is a data type, except that the DataProperty rather
than the ObjectProperty axiom is used. In this dissertation assertions will be defined in
terms of ObjectProperty axioms with the explicit understanding that it can be replaced
with DataProperty axioms if data types rather than classes are used. Only where distinct
differences between the use of object properties and data properties are present, will these
differences be made explicit.

ObjectProperty: t
Domain: C
Range: T

(4.4)

4.3. Operations 51

4.2.1 Multiplicity

The multiplicity [i..j] of an attribute t is expressed as

C v (≥ i t.>) u (≤ j t.>) (4.5)

in ALCQI and as

Class: C
SubClassOf: (t min i Thing) and

(t max j Thing)
(4.6)

in OWL 2. When j is *, the second conjunct of the assertion is ommitted. For [0..*], the
complete assertion is ommitted. For the multiplicity [1..1] the assertion

C v ∃t.> u (≤ 1 t.>) (4.7)

is applied in ALCQI and for OWL 2 the assertion (4.8) is applied:

Class: C
SubClassOf: t exactly 1 Thing

(4.8)

4.3 Operations

In this section the translation of UML class diagram operations to the DL ALCQI is described.
An equivalent translation of operations to OWL 2 is not supplied since, to the best knowledge
of the author, operations have not been translated to OWL 2 as yet. However, as part of the
contribution of this dissertation a translation of operations to OWL 2 is provided in Chapter 5
(p. 60).

Berardi, et. al. [13] distinguish between operations with no parameters and operations
with m parameters. Operations with no parameters are addressed first and in Section 4.3.2
operations with parameters are addressed.

4.3.1 Operations with no Parameters

Consider the operation f():R on class C, that is, the operation f taking no parameters and
returning a value of type R. The operation f is modelled in ALCQI as a role rf() for which
the following assertion must hold:

C v ∀rf().R u (≤ 1rf().>) (4.9)

4.3. Operations 52

C P1 Pm R

r0

r1 rm
rm+1

...

Figure 4.1: Reification of a (m+2)-ary relation.

4.3.2 Operations with Parameters

Consider an operation f(p1:P1, ..., pm:Pm):R taking one or more parameters. Hence, f
is an operation taking m parameters p1, ..., pm with types P1, ..., Pm respectively and
returning a value of type R. Formally the operation f(p1:P1, ..., pm:Pm):R corresponds
with an (m+2)-ary relation where the first component of the relation represents the class
C, the next m components represent the parameters and the last component (that is, the
component at (m+2)) represents the return type of the operation.

The (m+2)-ary relation cannot be directly represented in ALCQI, but instead needs
to be represented using reification. The (m+2)-ary relation can be reified by introducing
the atomic concept Cf(P1,...,Pm) and (m+2) roles r0, . . . , r(m+1) such that every individual of
Cf(P1,...,Pm) is linked to each component of the tuple (x0, . . . , x(m+1)) via the respective roles
r0, . . . , r(m+1) [26]. Reification is graphically represented in Figure 4.1. Hence, the operation
f(p1:P1, ..., pm:Pm):R is translated to ALCQI by applying the following assertions using
the reified atomic concept Cf(P1,...,Pm)

Cf(P1,...,Pm) v ∃r0.> u (≤ 1r0.>) u
...

∃r(m+1).> u (≤ 1r(m+1).>)

(4.10)

Cf(P1,...,Pm) v ∀r1.P1 u . . . u ∀rm.Pm (4.11)

C v ∀r−0 .(Cf(P1,...,Pm) ⇒ ∀rm+1.R) (4.12)

where Cf(P1,...,Pm) ⇒ ∀rm+1.R is an abbreviation for ¬Cf(P1,...,Pm) t ∀rm+1.R (see Table 3.7
on p. 41).

Assertion (4.10) ensures that each individual of Cf(P1,...,Pm) represents a tuple that is
linked to each of the roles r0, . . . , r(m+1). In DLs that do not have the tree-model property it
is possible that there may be two or more different individuals of Cf(P1,...,Pm) representing the
same tuple. ALCQI has the tree-model property and hence it is not possible for different

4.4. Binary Associations 53

individuals to represent the same tuple [13].
Assertion (4.11) enforces the correct typing of the parameters p1:P1, ..., pm:Pm based

only on the name of the operation. The assertion (4.12) states that when operation f,
represented by the atomic concept Cf(P1,...,Pm), is called on instances of class C it will return
a value of type R.

4.4 Binary Associations

Consider the binary association of Figure 2.3 (p. 16). For ALCQI the atomic role a is
introduced (to represent the association A1) along with assertion (4.13).

> v ∀a.T u ∀a−.C (4.13)

For OWL 2 the object properties a and a_inv, where a_inv is the inverse of a, are introduced.
The relevant OWL 2 assertions are given in (4.14).

ObjectProperty: a
Domain: C
Range: T

ObjectProperty: a_inv
Domain: T
Range: C
InverseOf: a

(4.14)

4.4.1 Multiplicity

The multiplicity [i..j] of an association a is expressed as

C v (≥ i a.>) u (≤ j a.>)

T v (≥ k a−.>) u (≤ l a−.>)
(4.15)

in ALCQI and as

Class: C
SubClassOf: (a min i Thing) and

(a max j Thing)
Class: T

SubClassOf: (a_inv min k Thing) and
(a_inv max l Thing)

(4.16)

in OWL 2.
1a is preferred to A which agrees with the naming convention stated in Section 3.1.1 (p. 31). a in this

context represents a role and not an individual.

4.5. Generalization/Specialization of Classes 54

4.5 Generalization/Specialization of Classes

Figure 2.6 (p. 18) refers. Stating that UML class C1 is a subclass of class C is expressed as

C1 v C (4.17)

in ALCQI and in OWL 2 as

Class: C1
SubClassOf: C

(4.18)

To state that the subclasses C1, ..., Cn of class C cover class C, assertions (4.19) are added
for ALCQI.

C v C1 t . . . t Cn (4.19)

For OWL 2 assertion (4.20) is added.

Class: C
SubClassOf: C1 or ... or Cn

(4.20)

To state that classes C1, ...,Cn are disjoint the assertions of (4.21) suffice for ALCQI.

Ci v un
j=i+1¬Cj for 1 ≤ i ≤ n− 1 (4.21)

In OWL 2 this is expressed as

DisjointClasses: C1, ..., Cn (4.22)

When the subclasses C1, ..., Cn are disjoint with each other and they cover class C (that is,
the UML annotation {complete, disjoint} is applied) it can be abbreviated in OWL 2 as

Class: C
DisjointUnionOf: C1, ..., Cn

(4.23)

4.6 Association Specialization

Assuming the object properties a1, a1_inv, a2 and a2_inv have been defined as for binary
associations (see Section 4.4 (p. 53)), the assertions of (4.24) need to be added to transcribe
the assocation specialization of Figure 2.7(a) (p. 19).

4.7. Data Types 55

ObjectProperty: a2
SubPropertyOf: a1

ObjectProperty: a2_inv
SubPropertyOf: a1_inv

(4.24)

Association specialization cannot be translated to ALCQI since it does not have a role
inclusion constructor (see Section 3.2.1 (p. 40)). However, as discussed in Section 3.2.2
(p. 41), SROIQ(D) does have a role inclusion constructor. The translation of association
specialization for DLs with role inclusion constructors are given by Calvanese, et. al. [27].

a2 v a1 (4.25)

4.7 Data Types

In this dissertation only primitive data types and enumerations are used. User-defined data
types are not explicitly considered due to scope constraints. Since ALCQI does not have
constructors for concrete domains and nominals [7, 8, 13], it is not possible to represent data
types in ALCQI.

Zedlitz, et. al. [119] discuss in detail the translation of UML data types to OWL 2.
Predefined primitive data types are translated to the corresponding XML schema data types
that underpins OWL 2. The Colour enumeration of Figure 2.2 (p. 15) cannot be translated
to OWL 2 due to the presence of the operation. If, for the moment, the operation is ignored,
the Colour enumeration is translated as follows:

DataType: Colour
EquivalentTo: “Red”, “Amber”, “Green”

(4.26)

In Section 5.4.1 (p. 73) the SROIQ(D) and OWL 2 translations of enumerations with
operatons will be given.

4.8 Summary

To conclude this chapter, a summary is provided of the translations of UML class diagram
features to ALCQI (or where applicable SROIQ(D)) and OWL 2 in Table 4.1 (p. 59).

4.8. Summary 56

Table 4.1: UML class diagram translation to ALCQI and OWL 2

UML class diagram feature ALCQI OWL 2 Ref.

C

Class C

C Class: C
4.1
p. 49

C

D

Classes C and D

C v ¬D Class: C
Class: D

DisjointWith: C

4.1
p. 49

C

t: T [i..j]

Attribute t of type T

with multiplicity
[i..j]

C v ∀t.T

C v (≥ i t.>) u (≤ j t.>)

Class: C
SubClassOf:
(t min i Thing) and
(t max j Thing)

Class: T
ObjectProperty: t

Domain: C
Range: T

4.2
p. 50

C

t: T [i..*]

Attribute t of type T

with multiplicity
[i..*]

C v ∀t.T

C v (≥ i t.>)

Class: C
SubClassOf:
(t min i Thing)

Class: T
ObjectProperty: t

Domain: C
Range: T

4.2.1
p. 51

C

t: T [0..*]

Attribute t of type T

with multiplicity
[0..*]

C v ∀t.T

Class: C
Class: T
ObjectProperty: t

Domain: C
Range: T

4.2.1
p. 51

C

t: T [1..1]

C

t: T

OR

Attribute t of type T

with multiplicity
[1..1]

C v ∀t.T

C v ∃t.> u (≤ 1 t.>)

Class: C
SubClassOf:

t exactly 1 Thing
Class: T
ObjectProperty: t

Domain: C
Range: T

4.2.1
p. 51

4.8. Summary 57

Table 4.1: UML class diagram translation to ALCQI and OWL 2

UML class diagram feature ALCQI OWL 2 Ref.

C

f():R

Operation f with no
parameters returning a

value of type R

C v ∀rf().R u (≤ 1rf().>) Not translated as yet 4.3
p. 51

C

f(p1:P1, …,pm:Pm):R

Operation f with
parameters p1,

...,pm respectively of
type P1, ..., Pm

returning a value of
type R

Cf(P1,...,Pm) v

∃r0.> u (≤ 1r0.>) u

...

∃r(m+1).> u (≤ 1r(m+1).>)

Cf(P1,...,Pm) v

∀r1.P1 u . . . u ∀rm.Pm

C v

∀r−0 .(Cf(P1,...,Pm) ⇒ ∀rm+1.R)

Not translated as yet 4.3
p. 51

C T
i..j
tc A

k..l

Association A exists
between classes C and

T

> v ∀a.T u ∀a−.C

C v (≥ i a.>) u (≤ j a.>)

T v (≥ k a−.>) u (≤ l a−.>)

ObjectProperty: a
Domain: C
Range: T

ObjectProperty: a_inv
Domain: T
Range: C
InverseOf: a

Class: C
SubClassOf:

(a min i Thing) and
(a max j Thing)

Class: T
SubClassOf:

(a_inv min k Thing) and
(a_inv max l Thing)

4.4
p. 53

4.8. Summary 58

Table 4.1: UML class diagram translation to ALCQI and OWL 2

UML class diagram feature ALCQI OWL 2 Ref.

C1 C2
A1

C3 C4
A2

* *

* *

Association A2

specializes association
A1

The SROIQ(D) translation is
> v ∀a1.C2 u ∀a−1 .C1

> v ∀a2.C4 u ∀a−2 .C3

a2 v a1

Class: C1
Class: C2
Class: C3
Class: C4
ObjectProperty: a1

Domain: C1
Range: C2

ObjectProperty: a1_inv
Domain: C2
Range: C1

ObjectProperty: a2
Domain: C3
Range: C4
SubPropertyOf: a1

ObjectProperty: a2_inv
Domain: C4
Range: C3
SubPropertyOf: a1_inv

4.6
p. 54

<<enumeration>>
Colour

Red
Amber
Green

The Colour

enumeration consists
of the colours Red,
Amber and Green

Not translated as yet DataType: Colour
EquivalentTo:

"Red", "Amber","Green"

4.7
p. 55

{incomplete,
disjoint}

C

C1 C2

C

C1 C2

OR

Class C is specialized
by the disjoint classes
C1 and C2 which do
not cover class C

C1 v C

C2 v C

C1 v ¬C2

Class: C
Class: C1

SubClassOf: C
Class: C2

SubClassOf: C
DisjointClasses:

C1, C2

4.5
p. 54

4.8. Summary 59

Table 4.1: UML class diagram translation to ALCQI and OWL 2

UML class diagram feature ALCQI OWL 2 Ref.

{complete,
disjoint}

C

C1 C2

Class C is specialized
by the disjoint classes
C1 and C2 which cover

class C

C v C1 t C2

C1 v ¬C2

C1 v C

C2 v C

Class: C
DisjointUnionOf:

C1, C2
Class: C1

SubClassOf: C
Class: C2

SubClassOf: C

4.5
p. 54

{complete,
overlapping}

C

C1 C2

Class C is specialized
by the overlapping
classes C1 and C2

which cover class C

C v C1 t C2

C1 v C

C2 v C

Class: C
SubClassOf:

C1 or C2
Class: C1

SubClassOf: C
Class: C2

SubClassOf: C

4.5
p. 54

{incomplete,
overlapping}

C

C1 C2

Class C is specialized
by the overlapping
classes C1 and C2

which do not cover
class C

C1 v C

C2 v C

Class: C
Class: C1

SubClassOf: C
Class: C2

SubClassOf: C

4.5
p. 54

Chapter 5

OWL and DL Translations for Scenario Testing

In order to perform formal scenario testing, the existing DL/OWL translations of UML class
diagrams are extended. The previous chapter discussed features of UML class diagrams that
have already been translated to either ALCQI or OWL 2. This chapter extends the existing
translations in the following ways:

1. Features of UML class diagrams that are required for formal scenario testing that have
not previously been translated to any DL related formalisms, are translated. Identity
constraints on UML class diagrams have not been translated to DL or OWL as yet
(Section 5.1). Some features of operations have not been translated to DLs or OWL 2
and these are addressed in Section 5.3 (p. 66)

2. Berardi, et. al [13] made the assumption that the same attribute/association and
operation can be shared across classes. This resulted in the domains and ranges of the
relevant roles of the translations of attributes/associations and operations to ALCQI
to be overly lenient. In Section 5.2 (p. 63) the domains and ranges of these roles are
defined tightly.

3. Operations have not been translated to OWL 2 before. A translation for operations to
OWL 2 is provided in Section 5.3 (p. 66).

4. The translation of enumerations and binary associations are revisited to optimize
modeller productivity in Section 5.4 (p. 73).

5. In Section 2.1.5 (p. 18) it was stated that subsetting and redefinition of association
ends are forms of association specialization. In Chapter 4 (p. 49) the SROIQ(D) and
OWL 2 translations of association specialization were given (see Section 4.6 (p. 54)).
However, since association specialization is defined for associations while subsetting
and redefinition are defined for association ends, the translations for subsetting and
redefinition of association ends were not made explicit. In Section 5.5 (p. 75) the
translations of these are made explicit.

60

5.1. UML Class Diagram Identity Constraints 61

6. In order to be able to detect the various heuristics mentioned in Section 2.2 (p. 21)
using formal scenario testing, the translation of UML class diagrams is refined with
this specific purpose in mind. The refinement of the translation of operations and how
formal scenario testing is dealing with the unique names of UML class diagram features
are handled in Section 5.3 (p. 66) and Section 5.7 (p. 76).

7. The equivalence of attributes and associations are confirmed in Section 5.6 (p. 75).

8. Section 5.8 (p. 79) provides the rationale for excluding aggregation and composition
from formal scenario testing.

This chapter concludes with a summary of the contributions of this chapter and a review
of related research (Section 5.9 (p. 80)).

5.1 UML Class Diagram Identity Constraints

Identity constraints on UML class diagrams have been added in version 2.4.1 of the UML
specification [64]. Identity constraints on UML class diagrams have not been translated to DLs
or OWL 2 as yet. It is the aim of this section to provide a translation of identity constraints
on UML class diagrams that can be used for the purpose of formal scenario testing.

Section 5.1.2 (p. 62) explains some of the challenges in translating identity constraints
on UML class diagrams to DLs, as well as the Easy Key identity constraint implementation
of OWL 2. In designing Easy Keys, a number of compromises were made. In Section 5.1.3
(p. 62) these compromises are evaluated in the context of formal scenario testing. However,
before any attempt can be made to provide a translation of identity constraints on UML class
diagrams, the exact meaning of identity constraints has to be clarified. This is the topic of
Section 5.1.1.

5.1.1 Problematic Interpretation of Compound Keys

With regards to compound keys the UML specification states the following [64]:

“If multiple properties are marked (possibly in superclasses), then it is the combi-
nation of the (property, value) tuples that will logically provide the uniqueness for
any instance.”

Consider the example given in Figure 2.8(c) on p. 20. The {id} property modifier on the
attribute idNumber of the SACitizen class implies that instances of the SACitizen class are
uniquely identified by their idNumber. According to the quote from the UML specification
above, the {id} property modifier on the employeeCode attribute cannot be considered
on its own, but needs to be considered in conjunction with the {id} property modifiers

5.1. UML Class Diagram Identity Constraints 62

on the superclass. Hence, according to the UML specification, instances of the Employee

class are uniquely identified exclusively by the compound key consisting of idNumber and
employeeCode. This leads to a contradiction since instances of Employee are also instances
of SACitizen.

A more appropriate interpretation is that instances of the Employee class can be uniquely
identified by either idNumber or employeeCode or the compound key consisting of idNumber
and employeeCode. For the purpose of this dissertation, this is the interpretation that will
be used for {id} property modifiers applied across an inheritance hierarchy.

5.1.2 Identity Constraint Challenges and OWL 2 Easy Keys

The challenge of mapping UML identity constraints to DLs is that identity constraints in
UML class diagrams are usually applied to data types. It is a well-known fact that identity
constraints in the presence of data types leads to undecidability even for the DL ALC extended
accordingly [84, 97].

The semantics of OWL 2 is based on the DL SROIQ(D). For the implementation of Easy
Keys, a relaxation of DL-safe rules was incorporated into OWL 2. Decidability is maintained
by restricting reasoning on identity constraints to named individuals. With the Easy Key
implementation both concepts and data types can serve as keys of concepts [97].

The Easy Key translations for examples (a) - (c) of Figure 2.8 (p. 20) are given in listings
(5.1) - (5.3).

Class: SACitizen
HasKey: idNumber

(5.1)

Class: Employee
HasKey: idNumber, employeeCode

(5.2)

Class: SACitizen
HasKey: idNumber

Class: Employee
SubClassOf: SACitizen
HasKey: employeeCode
HasKey: idNumber, employeeCode

(5.3)

5.1.3 The Effect of Easy Keys Compromises on Formal Scenario Testing

Parsia, et. al. state that keys in general have (or may have) the following properties [97]:

(P1) If two individuals x and y have the same key values, then x = y.

5.2. Tight Specification of Domain and Range Restrictions 63

(P2) Integrity constraint: missing key values raise an error. Individuals which
may have a key must have a key. This is easily seen in the case of relational
database rows.

(P3) Functionality constraint: entities have only one key. This can be interpreted
weakly (in any model, a given entity has at most one key) or strictly (each
entity has a known key, the same one in every model).

For the implementation of P1, Easy Keys restrict reasoning to individuals explicitly
specified in the ontology (as opposed to generated individuals) in an attempt to keep reasoning
on identity constraints feasible. Formal scenario testing is concerned with named individuals
(as is explained in Section 6.1 on p. 92) and is therefore not affected by this restriction in
Easy Keys.

P2 is not expressible in first-order logic or OWL 2, due to P2 being non-monotonic, conse-
quently its implementation in Easy Keys has been forgone [97]. Forgoing the implementation
of property P2 is compatible with the requirements of formal scenario testing. The purpose of
identity constraints in formal scenario testing is to enable the detection of various modelling
heuristic violations (see Chapter 7 (p. 119)). It is not the intent to use identity constraints in
formal scenario testing as a means of enforcing integrity constraints on data. Rather, data for
industry-strength software is typically stored in a relational database, which by definition,
has support for integrity constraints. Furthermore, for many formal scenario tests identity
constraints will not be the focus of the test. Due to the absence of P2 the modeller is not
forced to supply values for identity constraints, which results in the more efficient use of the
modeller’s time. However, when the modeller wants to specifically test identity constraints, i.e.
that two individuals do not have the same key, the Easy Keys implementation will highlight
consistencies/inconsistencies.

Only the weak interpretation of property P3 is implemented in OWL 2, which states that
in any model a given entity has at most one key value. Formally, a particular business domain
is just one possible interpretation of an ontology. If this specific interpretation satisfies the
ontology, it is a model for the ontology. Business is only concerned with their particular
interpretation of an ontology and therefore the strict interpretation of P3 is not required by
businesses. Hence the weak interpretation of P3 is sufficient for formal scenario testing.

5.2 Tight Specification of Domain and Range Restrictions

In the translations of UML class diagram features to ALCQI and OWL 2 of Chapter 4 (p. 49)
there are a disconnect between how UML features are translated to ALCQI versus OWL 2:

• In translating attributes/associations and operations to ALCQI various roles are in-
troduced. The domains and ranges of these roles are not constrained sufficiently to

5.2. Tight Specification of Domain and Range Restrictions 64

accurately represent the UML semantics of these features.

• For binary associations translated to ALCQI the domain and range restrictions are
given as a single assertion (see (4.13) on p. 53). In OWL 2 domain and range restrictions
are stated separately. In an attempt to make the translation from ALCQI/ SROIQ(D)

to OWL 2 more apparent, the preference in this dissertation will be to split domain and
range restrictions for ALCQI/ SROIQ(D) translations as well.

In this section the DL translations of UML class diagrams will be provided based on the
domain and range restrictions as defined in a presentation by De Giacomo [44], which is based
on research by Calvanese, et. al. [27]. This section is structured as follows:

1. Section 5.2.1 explains why the attriute translation of Berardi, et. al. [13], is incorrect
and it provides the correct translation to SROIQ(D). This correction also applies to
binary associations, which are adressed in Section Section 5.2.2 (p. 65).

2. Berardi, et. al. [13], made a similar error in the translation for operations as for
attributes. Furthermore, Berardi, et. al. [13], provided dissimilar translations for
operations with parameters and operations without parameters. These aspects are
discussed in Section 5.2.3 (p. 65).

5.2.1 Attributes

Berardi, et. al. [13], assumed that an attribute a appearing in two different classes, C1 and C2,
of possibly different types, are in actual fact the same attribute. This assumption is incorrect
due the use of qualified names in UML as explained in Section 2.1.7 (p. 21). This incorrect
assumption of Berardi, et. al. [13], resulted in the translation (4.3) on p. 50, which in essence
states that C is a subset of the domain of role a and T is a subset of the range of role a 1.
This assertion falls short of the UML semantics for attributes, which state that the domain of
attribute a is class C and the range is T [64].

The intended semantics of attributes are correctly captured by the translation of Zedlitz,
et. al. in assertion (4.4) on p. 50 [118]. This assertion states that the domain and range
of a property t is respectively the class C and the class (or data type) T. This translation
also captures correctly the semantics of UML class diagrams where a class C1 extends class C
on which attribute a of type T is defined. Since in OWL 2 class C1 is defined as a subclass
(or subset in terms of DLs) of class C, it follows that the domain and range of the inherited
attribute a in class C1 is the same as that of the attribute a of the parent class C.

Based on the preceding discussion, this dissertation gives preference to the translation
of attributes as given by Zedlitz, et. al [118]. This is also the translation supplied by De

1Note that in terms of the assumption made by Berardi, et. al. [13], axiom (4.3) on p. 50 is correct.
However, the contention here is that the Berardi, et. al. [13] assumption is incorrect.

5.2. Tight Specification of Domain and Range Restrictions 65

Giacomo [44]. Hence, an attribute a of type T of class C is translated to SROIQ(D) as

∃t.> v C (5.4)

∃t−.> v T (5.5)

where for role t assertion (5.4) represents the domain and assertion (5.5) represents the range.

5.2.2 Binary Associations

According to the UML specification, a binary association expresses a relation between two
specific types. These constraints on the types of a binary association is not captured correctly
by (4.13) on p. 53. Similar to Calvanese, et. al. [27], the preference in this dissertation is to
use assertions

∃a.> v C (5.6)

∃a−.> v T (5.7)

where (5.6) represents the domain and (5.7) represents the range of role a for association A.

5.2.3 Operations

As mentioned in the introduction of this section (Section 5.2), there are two aspects with
regards to operations that are addressed here:

1. Berardi, et. al. [13], in their translation of operations do not take cognizance of qualified
names in UML.

2. Berardi, et. al. [13], provided dissimilar translations for operations with parameters and
operations without parameters.

Berardi, et. al. [13], assumed that an operation f(p1:P1, ..., pm:Pm):R defined for
classes C1 and C2 represent the same operation with the same parameters. As discussed in
Section 2.1.7 (p. 21), due to the use of qualified names in UML, these two operations in
UML have different names as well as different parameter names. Taking the qualified names
of UML into consideration, the domains and ranges of the roles of assertions (4.11) and
(4.12) on p. 52 are overly lenient. To ensure that the roles introduced in the translation of
operations represent the semantics of UML accurately, assertions (5.8) and (5.9) are preferred
to assertions (4.11) and (4.12) on p. 52. Hence, Cf(P1,...,Pm) is the domain and Pi are the
ranges for the roles ri where i = 1, . . . ,m in assertion (5.8). In assertion (5.9) Cf(P1,...,Pm) is
the domain, and C and R are the ranges for roles r0 and rm+1 respectively.

5.3. Operations 66

∃ri.> v Cf(P1,...,Pm) ∃r−i .> v Pi i = 1, . . . ,m (5.8)

∃r0.> v Cf(P1,...,Pm) ∃r−0 .> v C

∃rm+1.> v Cf(P1,...,Pm) ∃r−m+1.> v R
(5.9)

For assertion (4.9) on p. 51 the domain and range of role rf() is also overly lenient. In
assertions (5.10) and (5.11) the domain and range of role rf() is specified tightly enough to
reflect the semantics of the UML specification precisely [64]. Assertion (5.12) ensures that
evoking operation f() on class C is deterministic.

∃rf().> v C (5.10)

∃r−f().> v R (5.11)

C v (≤ 1rf().>) (5.12)

Note that it is indeed possible to express assertions (5.10) – (5.12) as a single assertion,
but in this dissertation the preference is to specify the various aspects of the semantics of
UML as separate assertions. Using separate assertions make it easier to distinguish the effect
of the nuances of various UML features.

5.3 Operations

This section addresses a number of aspects regarding the translation of operations.

1. The translation of Berardi, et al. [13] uses arbitrary roles names in translating operations.
Section 5.3.1 refines the translation of operations to make use of an explicit naming
convention.

2. Section 5.3.2 (p. 68) refines the translation of operations to enforce the constraint that
a class that defines an operation must be able to call it.

3. Berardi, et al. [13] translate operations with no parameters and operations taking one
or more parameters differently. Section 5.3.3 (p. 69) provides a translation of operations
with no parameters, which is similar to the translation of operations with one or more
parameters.

5.3. Operations 67

4. Since the translation of operations to OWL 2 has not been done before, the related
OWL 2 translation is provided in Section 5.3.4 (p. 69).

5. When translating operations with return values it is necessary to ensure that the
combination of class instance and parameter values will determine the return value
uniquely. In ACLQI no specific assertions are required to enfore this constraint since
ALCQI has the tree-model property [13]. However, SROIQ(D) and OWL 2 do not
have the tree-model property [61, 76] and therefore specific assertion(s) need to be
provided to enforce unique return values. This is considered in Section 5.3.5 (p. 71).

6. A translation for operations that do not return a value is given in Section 5.3.6 (p. 71).

5.3.1 Explicit Naming Convention

The existing translation of the operation f(p1:P1, ..., pm:Pm):R by Berardi, et al. [13]
introduces the atomic concept Cf(P1,...,Pm) and arbitrary roles r0, . . . , rm+1 for the reified
representation of the (m+2)-ary relation as was explained in Section 4.3 (p. 51).

Firstly, to make explicit that the operation f(p1:P1, ..., pm:Pm):R returns a value
of type R, the atomic concept Cf(P1,...,Pm):R will be used rather than Cf(P1,...,Pm). Adding
the return type to the concept name, makes it possible to distinguish between concepts
representing operations that have a return value and operations that do not have a return
value. Operations that have no return values will be discussed in Section 5.3.6 (p. 71).

Secondly, rather than introducing arbitrary roles, the use of roles that make their intended
application explicit, is proposed. The role f− will be used rather than r0 to associate
individuals of C with individuals of the atomic concept Cf(P1,...,Pm):R. The reason for using
the inverse of f is discussed in the next section. Furthermore, the roles p1, . . . , pm are preferred
(as opposed to the roles r1, . . . , rm) where the role names correspond with the names of the
parameters of the operation f. Thus, the roles p1, . . . , pm are used to link individuals of the
concept Cf(P1,...,Pm):R with individuals of the concepts P1, . . . , Pm respectively.

Lastly, for the role that assigns the return value of type R to the atomic concept
Cf(P1,...,Pm):R, the role rR is used to make the return type explicit. Roles with explicit
names rather than arbitrary roles will be used in Chapter 7 (p. 119) to identify operations
that share the same signature or partial signature. The assertions (4.10), (5.8) and (5.9) are
rewritten as follows:

5.3. Operations 68

Cf(P1,...,Pm):R v ∃f−.> u (≤ 1f−.>) u

∃p1.> u (≤ 1p1.>) u
...

∃pm.> u (≤ 1pm.>) u

∃rR.> u (≤ 1rR.>)

(5.13)

∃pi.> v Cf(P1,...,Pm):R ∃p−i .> v Pi i = 1, . . . ,m (5.14)

∃f−.> v Cf(P1,...,Pm):R ∃f.> v C

∃rR.> v Cf(P1,...,Pm):R ∃r−R .> v R
(5.15)

5.3.2 An Operation is Performed by the Class that Defines it

Defining an operation on a class in essence states that instances of the class must in general
be able to perform the behaviour as defined by the operation2 [18, 64, 104]. The translation
of Berardi, et. al. [13] do not make this constraint explicit. This constraint is formalized here.

For a class C with an operation f(p1:P1, ...,pm:Pm):R the atomic concept Cf(P1,...,Pm):R

and the role f− (along with the roles p1, . . . , pm, rR) are introduced as was explained in the
previous section. Assertion (5.16) is added to the assertions (5.13)-(5.15).

C v ∃f.Cf(P1,...,Pm):R (5.16)

Assertion (5.16) states that every individual of C is linked via the role f to at least one
individual of Cf(P1,...,Pm):R. Since operation f can be performed on instances of class C the
preference is to use the role f such that the concept C is the domain of f . This is the
reason for using the role f− in the reification of the (m+ 2)-ary relation using atomic concept
Cf(P1,...,Pm):R (as was mentioned in Section 5.3.1 on p. 67). The equivalent assertion of (5.16)
is expressed in OWL 2 as assertion (5.17).

2It is possible to specify preconditions on an operation which give an indication as to when it is permitted
to call an operation on an instance of a class. However, in this dissertation preconditions are not considered
due to scope constraints. Therefore the assumption is that when an operation is defined on a class, it must be
possible to call the operation.

5.3. Operations 69

Class: C
SubClassOf: f some C_f(P1, ..., Pm)_R

(5.17)

5.3.3 Operations with No Parameters

In line with the translation of operations with one or more parameters, a translation for an
operation taking zero parameters (see assertion (4.9) on p. 51 of Section 4.3) is provided
based on reification. The atomic concept Cf():R and the roles f− and rR are introduced and
assertions (5.18) and (5.19) are applied:

Cf():R v ∃f−.> u (≤ 1f−.>) u

∃rR.> u (≤ 1rR.>)
(5.18)

∃f−.> v Cf():R ∃f.> v C

∃rR.> v Cf():R ∃r−R .> v R
(5.19)

Assertion (5.18) ensures that each individual of the atomic concept Cf():R is linked to the
roles f− and rR while assertions (5.19) enforces the return type of operation f() on class C
as being of type R.

5.3.4 OWL 2 Translation of Operations

In translating operations for the DLsALCQI and SROIQ(D) the atomic concept Cf(P1,...,Pm):R

and the roles f−, p1, . . . , pm, rR have been introduced as was explained in Section 5.3.1 (p. 67).
Similarly for OWL 2 the class C_f(P1, ..., Pm)_R and the properties f_inv, p1, ..., pm,

r_R are introduced. The only explicit inverse property that is required is the inverse of f
which is defined as f_inv. Both the properties f and f_inv will be essential in applying
formal scenario testing, which is discussed in Chapter 7 (p. 119).

5.3. Operations 70

Thus the assertions (5.13) - (5.15) in OWL 2 becomes assertions (5.20) - (5.22):

ObjectProperty: f_inv
ObjectProperty: p1

...
ObjectProperty: pm
ObjectProperty: r_R
Class: C_f(P1, ..., Pm)_R

SubClassOf:
f_inv exactly 1 Thing and
p1 exactly 1 Thing and
...
pm exactly 1 Thing and
r_R exactly 1 Thing

(5.20)

ObjectProperty: p1
Domain: C_f(P1, ..., Pm)_R
Range: P1

...
ObjectProperty: pm

Domain: C_f(P1, ..., Pm)_R
Range: Pm

(5.21)

ObjectProperty: f_inv
Domain: C_f(P1, ..., Pm)_R
Range: C

ObjectProperty: f
InverseOf: f_inv

ObjectProperty: r_R
Domain: C_f(P1, ..., Pm)_R
Range: R

(5.22)

For the operation f():R the class C_f()_R and the properties f_inv, f and r_R are
introduced and the assertions (5.23) and (5.24) are applied:

ObjectProperty: f_inv
ObjectProperty: r_R
Class: C_f()_R

SubClassOf:
f_inv exactly 1 Thing and
r_R exactly 1 Thing

(5.23)

5.3. Operations 71

ObjectProperty: f_inv
Domain: C_f()_R
Range: C

ObjectProperty: f
InverseOf: f_inv

ObjectProperty: r_R
Domain: C_f()_R
Range: R

(5.24)

5.3.5 Unique Return Values

In order to ensure determinism of an operation f(p1:P1, ..., pm:Pm):R it is necessary to
ensure that the return value of type R will be uniquely determined for a given instance of class
C with given parameter values p1, ..., pm. In ALCQI this is achieved without additional
assertions due to the fact that ALCQI has the tree-model property [13]. SROIQ(D) and
OWL 2 do not have the tree-model property [61, 76]. Thus, other means need to be considered
for achieving determinism of operations.

For the DL DLRifd the determinism of operations with return values is achieved through
applying an identity constraint [13]. Section 5.1 (p. 61) discussed how identity constraints
can be applied in OWL 2 using Easy Keys [97]. Easy Keys are not directly expressible in
SROIQ(D) but instead rely on the extension of SROIQ(D) with DL safe rules. Hence, only
the OWL 2 translation is provided here.

Assertion (5.25) applies the identity constraint to the properties f_inv, p1, ..., pm

on the class C_f(P1, ..., Pm)_R. It states that two or more different individuals of class
C_f(P1, ..., Pm)_R cannot agree on their participation in properties f_inv, p1, ..., pm.

Class: C_f(P1, ..., Pm)_R
Haskey: f_inv, p1, ..., pm

(5.25)

For the operation f():R with class C_f()_R and property f_inv assertion (5.26) is added.

Class: C_f()_R
Haskey: f_inv

(5.26)

5.3.6 Operations with no Return Values

The UML specification allows operations of the form f(p1:P1, ..., pm:Pm), which defines
an operation that has no return value [64]. Here the translation of such operations are made

5.3. Operations 72

explicit. This is achieved by removing reference to the role rR from (5.13) and (5.15) as shown
in (5.27) and (5.28) respectively:

Cf(P1,...,Pm) v ∃f−.> u (≤ 1f.>) u

∃p1.> u (≤ 1p1.>) u
...

∃pm.> u (≤ 1pm.>)

(5.27)

∃f−.> v Cf(P1,...,Pm) ∃f.> v C (5.28)

The OWL 2 equivalents of assertions (5.27) and (5.28) are respectively (5.29) and (5.30):

ObjectProperty: f_inv
ObjectProperty: p1

...
ObjectProperty: pm
Class: C_f(P1, ..., Pm)

SubClassOf:
f_inv exactly 1 Thing and
p1 exactly 1 Thing and
...
pm exactly 1 Thing

(5.29)

ObjectProperty: f_inv
Domain: C_f(P1, ..., Pm)
Range: C

ObjectProperty: f
InverseOf: f_inv

(5.30)

For the situation of operation f() (i.e. an operation that takes no parameters and returns
no value) the SROIQ(D) and OWL 2 assertions respectively are:

∃f−.> v Cf() ∃f.> v C (5.31)

5.4. Translations for Modeller Productivity 73

ObjectProperty: f_inv
Domain: C_f
Range: C

ObjectProperty: f
InverseOf: f_inv

(5.32)

5.4 Translations for Modeller Productivity

This section revisits the translations of enumerations (Section 5.4.1) and binary associations
(Section 5.4.2 on p. 74) with the aim to improve modeller efficiency.

5.4.1 Enumerations

The translation of Zedlitz, et. al. assume that enumerations do not have internal structure
[118, 119]. The UML specification defines enumerations as data types, but data types in
UML class diagrams can also have attributes and operations [64, 104]. Therefore, for the
purpose of formal scenario testing, the preference is to translate enumerations to OWL 2
classes (respectively concepts) rather than data types. The reason for this is that it is easier
to evolve classes (respectively concepts) than data types to support an internal structure if it
becomes apparent from the business requirement that this is required. Hence, the Colour

enumeration of Figure 2.2 (p. 15) is translated as follows:

Class: Colour
EquivalentTo: {Green, Amber, Red}

Individual: Green
Types: Colour

Individual: Amber
Types: Colour

Individual: Red
Types: Colour

DifferentIndividuals: Green, Amber, Red

(5.33)

The translation of the operation is the same as was discussed in Section 5.3 (p. 66). Where
an enumeration Enum owns attributes a1, ..., an that are translated to the data properties
dp1, ..., dpn, the Easy Key assertion (5.34) has to be added as explained by Zedlitz, et.
al. [119]. This assertion enforces that all individuals that have the same values for the data
properties dp1, ..., dpn represent the same individual.

5.4. Translations for Modeller Productivity 74

Class: Enum
HasKey: dp1, ..., dpn

(5.34)

The SROIQ(D) translation is defined in terms of nominals as in (5.35).

Colour ≡ {Green,Amber,Red} (5.35)

As explained in Section 5.1.2 (p. 62) Easy Keys cannot be expressed in SROIQ(D). Hence
assertion (5.34) cannot be translated to SROIQ(D).

5.4.2 Limiting Redundancy of Assertions for Binary Associations

In some instances in the translation of UML class diagram features to OWL 2, Zedlitz, et.
al. [118] define assertions that are redundant. That is, some of the explicit assertions can be
inferred from already specified assertions. For formal scenario testing the preference is for
minimal assertions. For a modeller applying the translation from UML to OWL 2 manually,
it is more efficient if the assertions that need to be stated are free of redundancies.

Zedlitz, et. al. [118] define the translation for association A in Figure 2.3 (p. 16) as the
assertions (4.14) on p. 53. It states the domain and range restrictions of both object properties
a and a_inv, even though a_inv is stated to be the inverse of a and therefore the domain
and range of a_inv can be inferred from a. Therefore, (4.14) can be rewritten as (5.36).

ObjectProperty: a
Domain: C
Range: T

ObjectProperty: a_inv
InverseOf: a

(5.36)

For the translation of the association specialization in Figure 2.7(a) (p. 19) Zedlitz, et. al.
[118] define the assertions (4.24) on p. 55. Since the assumption is that a1_inv is the inverse
of a1 and a2_inv is the inverse of a2, it follows that a2_inv is a sub property of a1_inv if
a2 is a sub property of a1. Hence (4.24) can be rewritten as (5.37).

ObjectProperty: a2
SubPropertyOf: a1

(5.37)

5.5. Subsetting and Redefinition of Association Ends 75

5.5 Subsetting and Redefinition of Association Ends

In Section 4.6 (p. 54) the translations of association specialization to SROIQ(D) and OWL 2
were given. Even though, as explained in Section 2.1.5 (p. 18), subsetting and redefinition
of association ends are forms of association specialization, the translations for these were
not made explicit. The reason for this is that association specialization is defined at the
level of the complete association while subsetting and redefinition are defined at the level of
association ends [64].

Subsetting and redefinition (see Figure 2.7(b) and 2.7(c) respectively on p. 19) are both
translated to the SROIQ(D) and OWL 2 assertions (5.38) and (5.39) respectively.

c1 ≡ c−2
∃c1.> v C1

∃c−1 .> v C2

c3 ≡ c−4
∃c3.> v C3

∃c−3 .> v C4

c3 v c1

c4 v c2

(5.38)

ObjectProperty: c1
Domain: C1
Range: C2
InverseOf: c2

ObjectProperty: c2
ObjectProperty: c3

Domain: C3
Range: C4
InverseOf: c4
SubPropertyOf: c1

ObjectProperty: c4

(5.39)

5.6 On the Equivalence of Attributes and Binary Associations

In Section 2.1.3 (p. 16) the equivalence of attributes and associations, as stated in the UML
specification, was discussed [64]. Here the mathematical equivalence of binary associations
and attributes are confirmed.

5.7. A Note on Uniqueness of Names in UML Class Diagrams 76

Consider the attribute t:T of class C as illustrated in Figure 2.1(b) (p. 14). For the trans-
lation to SROIQ(D) an atomic role t is introduced with domain C and range T respectively
defined by assertions (5.4) and (5.5) on p. 65. Association A in Figure 2.3 (p. 16) is translated
to SROIQ(D) using the domain assertion (5.6) on p. 65 and the range assertion (5.7) on
p. 65. It introduces the atomic role a with domain C and range T . Since the atomic roles
t and a correspond with regards to their domains and ranges, it follows that t ≡ a holds.
Therefore, an attribute of type T (which can be either a class or a data type) on class C is
equivalent to class C having a binary association with class/data type of type T.

Strictly speaking the above result is stronger than what is suggested by the UML specifi-
cation. The UML specification concedes that attributes and binary associations are equivalent
under certain circumstances. However, the above result indicates that attributes and binary
associations are equivalent irrespective of the circumstances.

Based on the above result formal scenario testing will make no distinction between
associations and attributes. The benefit of this equivalence is that a modeller can decide to
use either attributes or associations depending on whether a more compact or a more explicit
graphical representation is required.

5.7 A Note on Uniqueness of Names in UML Class Diagrams

Section 2.1.7 (p. 21) explained that all names in UML class diagrams are unique due to the
use of qualified names. However, for the purpose of formal scenario testing the uniqueness
of names are relaxed. This relaxation affords the opportunity to support the detection of
cohesion heuristics that are discussed in Chapter 7 (p. 119).

On the face of it, it may seem as if this section contradicts the efforts made in Section
5.2 (p. 63) to specify various domain and range restrictions as tightly as possible. However,
this not the case. Even with relaxing the domain and range restrictions in this section, the
resulting domains and ranges of the relevant roles still turn out to be subsets of those specified
by Berardi, et. al. [13] in Chapter 4 (p. 49).

This section is structured as follows. Sections 5.7.1 and 5.7.2 (p. 77) respectively discuss
the relaxation of qualified names of attributes/associations and operations. When using
ontology editors, a related issue that needs to be considered is anonymous classes. How to
deal with anonymous classes are discussed in Section 5.7.3 (p. 78).

5.7.1 Attributes and Associations

Figure 2.9 (p. 21) refers in the discussion that follows. In order to stay true to semantics of
UML, when attribute a is translated to DL (respectively OWL 2), the translation needs to
take cognizance of qualified names. This means that the attribute a for the respective classes
C1 and C2 needs to be translated to two different roles (respectively properties). However,

5.7. A Note on Uniqueness of Names in UML Class Diagrams 77

for the purpose of formal scenario testing, qualified names are intentionally ignored. Hence,
the attribute a of Figure 2.9 (p. 21) is translated to a single role a (respectively property a)
of which the domain is the union of the concepts C1 and C2 (respectively classes C1 and C2)
and the range the union of the concepts T1 and T2 (respectively classes T1 and T2). In (5.40)
and (5.41) the respective SROIQ(D) and OWL 2 translations for an attribute a belonging to
classes C1 and C2 are provided.

∃a.> v C1 t C2

∃a−.> v T1 t T2
(5.40)

ObjectProperty: a
Domain: C1 or C2
Range: T1 or T2

(5.41)

5.7.2 Operations and Parameters

In the following discussion Figure 2.10 (p. 21) refers. In terms of qualified names the
translation for operations are relaxed in a similar way as for attributes. In line with the
translation of operations the atomic concepts C1f(P1,...,Pm):R and C2f(P1,...,Pn):R are introduced
for representing the reified relations of the operations f appearing in class C1 and class C2
respectively. Assuming that m < n, the assertions (5.14) and (5.15) for Figure 2.10 are
rewritten as (5.42) and (5.43) respectively:

∃pi.> v C1f(P1,...,Pm):R t C2f(P1,...,Pn):R ∃p−i .> v Pi i = 1, . . . ,m

∃pj .> v C2f(P1,...,Pn):R ∃p−j .> v Pj j = m+ 1, . . . , n
(5.42)

∃f−.> v C1f(P1,...,Pm):R t C2f(P1,...,Pn):R ∃f.> v C1 t C2

∃rR.> v C1f(P1,...,Pm):R t C2f(P1,...,Pn):R ∃r−R .> v R
(5.43)

Below the equivalent translations to OWL 2 are provided assuming k=m+1:

5.7. A Note on Uniqueness of Names in UML Class Diagrams 78

ObjectProperty: p1
Domain: C1_f(P1, ..., Pm)_R or C2_f(P1, ..., Pn)_R
Range: P1

...
ObjectProperty: pm

Domain: C1_f(P1, ..., Pm)_R or C2_f(P1, ..., Pn)_R
Range: Pm

ObjectProperty: pk
Domain: C2_f(P1, ..., Pn)_R
Range: Pk

...
ObjectProperty: pn

C2_f(P1, ..., Pn)_R
Range: Pn

(5.44)

ObjectProperty: f_inv
Domain: C1_f(P1, ..., Pm)_R or C2_f(P1, ..., Pn)_R
Range: C1 or C2

ObjectProperty: f
InverseOf: f_inv

ObjectProperty: r_R
Domain: C1_f(P1, ..., Pm)_R or C2_f(P1, ..., Pn)_R
Range: R

(5.45)

5.7.3 Dealing with Anonymous Classes

In ontology editors any expressions that are not explicitly named are considered to be
anonymous classes. The effect is that when an ontology editor reports on inferences, only
named classes are displayed. Any anonymous classes which form part of inferences are omitted
from the display. This may result in important inferences not being made explicit within the
user interface of the ontology editor [99].

To limit problems due to the lack of displaying of anonymous classes, explicit named
classes for the unions of classes used in the domains and/or ranges of (5.41), (5.44) and (5.45)
are introduced. As an example (5.41) is rewritten as follows:

5.8. Why Composition and Aggregation are excluded from Formal Scenario Testing 79

Class: ADomain
EquivalentTo: C1 or C2

Class: ARange
EquivalentTo: T1 or T2

ObjectProperty: a
Domain: ADomain
Range: ARange

(5.46)

In the case where another attribute say b exists, which is also shared between classes C1
and C2, another class called BDomain equivalent to the union of C1 and C2 is introduced. In
this case the classes ADomain and BDomain turn out to be equivalent. Even so, for formal
scenario testing the preference is to keep the classes ADomain and BDomain as separate classes.
This decision is motivated by the fact that the domains of attribute a and b may evolve
independently over time. Having the same class representing the domain of both attributes
makes such an natural evolution cumbersome.

Lastly, it is worth noting that gathering domains and ranges together as suggested here is
not ideal. The most notable downside is that a modeller may forget to gather domains and
ranges together, which will make it impossible to detect some of the heuristics discussed in
Chapter 7 (p. 119). This problem can be limited and possibly be avoided if tool support can
be provided that does the gathering without modeller intervention.

5.8 Why Composition and Aggregation are excluded from
Formal Scenario Testing

In this section the reasons are discussed for explicitly excluding aggregation and composition
from formal scenario testing. Firstly, aggregation and composition are used to denote whole-
part relations [18, 64, 104], but the analysis of for instance Henderson-Sellers, et. al. [53],
Barbier, et. al. [9], and Keet [69] have respectively pointed out various aspects with regards
to aggregation and composition in which the UML specification is under specified. All have
proposed means for addressing the shortcomings of the UML specification, but to date these
changes have not been incorporated into the UML specification [64].

Secondly, Wazlawick [116] observes that the real advantage of composition and aggregation
is that the attributes of the parts are often used to derive attributes of the whole. As an
example he mentions that the total value of an order (whole) is derived of the value of each of
its items (parts). However, this to him is a design concern rather than a conceptual modelling
concern. From a conceptual modelling perspective, he believes that modellers often apply
aggregation and composition inappropriately (that is, where whole-part relations are not

5.9. Contribution and Related Research 80

present) and that their use seldom have real benefit. Hence he suggests avoiding or even
abolishing their use.

Thirdly, since the goal of this dissertation is to be able to reason on UML class and object
diagrams, it is needed to be able to provide a concise translation of whole-part relations to DLs.
However, reasoning on whole-part relations is a well-known challenge in DLs [15, 71, 108].

5.9 Contribution and Related Research

In this section the contributions of this chapter and related research are discussed.

5.9.1 Contribution

The emphasis of the research contribution of this chapter is on the translation of UML class
diagrams and UML object diagrams to SROIQ(D) and OWL 2 for the purpose of formal
scenario testing. Below the contributions of this chapter are briefly reviewed:

1. A means for translating identity constraints on UML class diagrams to OWL 2 is
suggested which can be used to validate identity constraints on instances in a UML
object diagram (Section 5.1 on p. 61).

2. The domains and ranges of the roles introduced for the translation of attributes/associations
and operations have been tightened in order to accurately represent the semantics of
these UML features (see Section 5.2 on p. 63).

3. The main contribution of Section 5.3 (p. 66) is to suggest, based on the existing
translation of operations to ALCQI, translations of operations to SROIQ(D) and
OWL 2. Fine grained contributions in this regard are:

(a) For the purpose of formal scenario testing the existing translation of operations are
refined to enable the detection of various modelling heuristics. Therefore preference
is given to an explicit role name convention rather than arbitrary role names
(Section 5.3.1 on p. 67).

(b) A class that has a particular operation defined on it, necessarily must be able to
call the operation. This requirement is enforced through the addition of relevant
assertions for SROIQ(D) and OWL 2 in Section 5.3.2 (p. 68).

(c) Existing translations of operations handle the translation of operations with no
parameters and operations with one or more parameters differently. Section 5.3.3
(p. 69) modifies the translation of operations with no parameters to be similar to
that of operations with one or more parameters.

(d) Section 5.3.4 (p. 69) provides a translation of operations to OWL 2.

5.9. Contribution and Related Research 81

(e) In order to ensure that the return value of an operation called on an instance of a
class is deterministic for a given set of parameters, an identity constraint needs to
be applied to SROIQ(D) and OWL 2 (Section 5.3.5 on p. 71).

(f) The UML specification allows operations without return values. The translation of
operations without return values is made explicit in Section 5.3.6 (p. 71).

4. The SROIQ(D) and OWL 2 translations for subsetting and redefinition of association
ends have been made explicit in Section 5.5 (p. 75).

5. Some of the translations of UML class diagram features to OWL 2 are not efficient in the
context of formal scenario testing. Therefore Section 5.4.1 (p. 73) defines an alternative
translation for enumerations, while Section 5.4.2 (p. 74) addresses redundancies regarding
the translations of associations and association specializations.

6. The UML specification states that attributes and binary associations are equivalent
under certain circumstances. Section 5.6 (p. 75) confirms this intuition by providing a
mathematical proof that these are equivalent irrespective of the circumstances.

7. Names in UML class diagrams are unique and hence any formalization of UML class
diagrams has to take this into account. Section 5.7 (p. 76) explains how this is handled
for formal scenario testing in order to enable detection of various modelling heuristics.

8. Composition and aggregation are features of UML class diagrams that are explicity
excluded from formal scenrio testing. The rationale for this decision is given in Section
5.8 (p. 79).

5.9.2 Related Research

Here only related research with regards to the translation of UML class diagrams to DLs and
OWL 2 is discussed. Related research with regards to formal scenario testing is discussed in
Section 6.5.2 (p. 117).

Identity constraints have been applied to UML class diagrams by Cali, et. al. [24] and
Berardi, et. al [13] using the DLs DLRifd and ALCQI. DLRifd has specific constructors
which can be used to express functional dependency and identity constraints. However, it
does not have constructors for data types [24, 13]. The DL ALCQI does not have a specific
constructor for applying identity constraints. Rather, identity constraints are implicit in
ALCQI due to it having the tree-model property. In addition, ALCQI does not have support
for data types [13].

Queralt, et. al. [100] defined OCL-Lite which is a decidable subset of OCL. OCL provides
a means through which additional constraints can be defined on classes in a UML class
diagram which cannot otherwise be expressed. OCL-Lite can be translated to the DL ALCI

5.10. Summary 82

which is a DL which is strictly less expressive than the DLs ALCQI and SROIQ(D). Hence,
theoretically at least the capabilities of OCL-Lite must be available in SROIQ(D) and OWL 2.
The only reason for explicitly excluding OCL constraints in this dissertation is due to scope
constraints.

5.10 Summary

This chapter concludes with a summary of the translations of UML class diagram features to
SROIQ(D) and OWL 2 in Table 5.1. For completeness sake the translations of all UML class
diagram features, as have been discussed in Chapter 2 (p. 13), are repeated here even in the
case where the translation does not differ from that given in Table 4.1 (p. 59).

Table 5.1: UML class diagram translation to SROIQ(D) and OWL 2

UML class diagram feature SROIQ(D) OWL 2 Ref.

C

Class C

C Class: C
4.1
p. 49

C

D

Classes C and D

C v ¬D Class: C
Class: D

DisjointWith: C

4.1
p. 49

C

t: T [i..j]

C T
i..j

t

OR

Attribute t of type T

with multiplicity
[i..j]

OR
Association end t of

type T with
multiplicity [i..j]

∃t.> v C

∃t−.> v T

C v (≥ i t.>) u (≤ j t.>)

Class: C
SubClassOf:
(t min i Thing) and

(t max j Thing)
Class: T
ObjectProperty: t

Domain: C
Range: T

4.2.1
p. 51,
5.2.1
p. 64
and
5.6
p. 75

5.10. Summary 83

Table 5.1: UML class diagram translation to SROIQ(D) and OWL 2

UML class diagram feature SROIQ(D) OWL 2 Ref.

C

t: T [i..*]

C T
i..*

t

OR

Attribute t of type T

with multiplicity
[i..*]

OR
Association end t of

type T with
multiplicity [i..*]

∃t.> v C

∃t−.> v T

C v (≥ i t.>)

Class: C
SubClassOf:
(t min i Thing)

Class: T
ObjectProperty: t

Domain: C
Range: T

4.2.1
p. 51,
5.2.1
p. 64
and
5.6
p. 75

C

t: T [0..*]

C T
0..*

t

OR

Attribute t of type T

with multiplicity
[0..*]

OR
Association end t of

type T with
multiplicity [0..*]

∃t.> v C

∃t−.> v T

Class: C
Class: T
ObjectProperty: t

Domain: C
Range: T

4.2.1
p. 51,
5.2.1
p. 64
and
5.6
p. 75

5.10. Summary 84

Table 5.1: UML class diagram translation to SROIQ(D) and OWL 2

UML class diagram feature SROIQ(D) OWL 2 Ref.

C

t: T [1..1]

C

t: T

OR

C T
1..1

t

OR

C T
t

OR

Attribute t of type T

with multiplicity
[1..1]

OR
Association end t of

type T with
multiplicity [1..1]

∃t.> v C

∃t−.> v T

C v ∃t.> u (≤ 1 t.>)

Class: C
SubClassOf:

t exactly 1 Thing
Class: T

4.2.1
p. 51,
5.2.1
p. 64
and
5.6
p. 75

C

f():R

Operation f with no
parameters returning a

value of type R

Cf():R v ∃f−.> u (≤ 1f−.>) u

∃rR.> u (≤ 1rR.>)

∃f−.> v Cf():R

∃f.> v C

∃rR.> v Cf():R

∃r−R .> v R

C v ∃f.Cf():R

Note that determinism of the re-
turn value cannot be enforced
since rule-like constructs are re-
quired which are not supported in
SROIQ(D)

Class: C_f()_R
SubClassOf:

f_inv exactly 1 Thing
and
r_R exactly 1 Thing

Haskey: f_inv

ObjectProperty: f_inv
Domain: C_f()_R
Range: C

ObjectProperty: f
InverseOf: f_inv

ObjectProperty: r_R
Domain: C_f()_R
Range: R

Class: C
SubClassOf:

f some C_f()_R

Class: R

5.2.3
p. 65
and
5.3
p. 66

5.10. Summary 85

Table 5.1: UML class diagram translation to SROIQ(D) and OWL 2

UML class diagram feature SROIQ(D) OWL 2 Ref.

C

f()

Operation f with no
parameters and no

return value

Cf() v ∃f−.> u (≤ 1f−.>)

∃f−.> v Cf()

∃f.> v C

C v ∃f.Cf()

Class: C_f()
SubClassOf:

f_inv exactly 1 Thing
ObjectProperty: f_inv

Domain: C_f()
Range: C

ObjectProperty: f
InverseOf: f_inv

Class: C
SubClassOf:

f some C_f()

5.2.3
p. 65
and
5.3
p. 66

C

f(p1:P1, …,pm:Pm):R

Operation f with
parameters p1,

...,pm respectively of
type P1, ..., Pm

returning a value of
type R

Cf(P1,...,Pm):R v

∃f−.> u (≤ 1f−.>) u

∃p1.> u (≤ 1p1.>) u

...

∃pm.> u (≤ 1pm.>) u

∃rR.> u (≤ 1rR.>)

∃pi.> v Cf(P1,...,Pm):R

∃p−i .> v Pi i = 1, . . . , m

∃f−.> v Cf(P1,...,Pm):R

∃f.> v C

∃rR.> v Cf(P1,...,Pm):R

∃r−R .> v R

C v ∃f.Cf(P1,...,Pm):R

Note that determinism of the
return value cannot be enforced
since rule-like constructs are re-
quired which are not supported in
SROIQ(D)

Class: P1
...

Class: Pm
Class: C_f(P1,..., Pm)_R

SubClassOf:
f_inv exactly 1 Thing

and
p1 exactly 1 Thing and
...

pm exactly 1 Thing and
r_R exactly 1 Thing

Haskey:
f_inv, p1, ..., pm

ObjectProperty: p1
Domain: C_f(P1,..., Pm)_R
Range: P1
...

ObjectProperty: pm
Domain: C_f(P1,..., Pm)_R
Range: Pm

ObjectProperty: f_inv
Domain: C_f(P1,..., Pm)_R
Range: C

ObjectProperty: f
InverseOf: f_inv

ObjectProperty: r_R
Domain: C_f(P1,..., Pm)_R
Range: R

Class: C
SubClassOf:

f some C_f(P1,..., Pm)_R

Class: R

5.2.3
p. 65
and
5.3
p. 66

5.10. Summary 86

Table 5.1: UML class diagram translation to SROIQ(D) and OWL 2

UML class diagram feature SROIQ(D) OWL 2 Ref.

C

f(p1:P1, …,pm:Pm)

Operation f with
parameters p1,

...,pm respectively of
type P1, ..., Pm and

no return value

Cf(P1,...,Pm) v

∃f−.> u (≤ 1f−.>) u

∃p1.> u (≤ 1p1.>) u

...

∃pm.> u (≤ 1pm.>)

∃pi.> v Cf(P1,...,Pm)

∃p−i .> v Pi i = 1, . . . , m

∃f−.> v Cf(P1,...,Pm)

∃f.> v C

C v ∃f.Cf(P1,...,Pm)

Class: P1
...

Class: Pm
Class: C_f(P1,..., Pm)

SubClassOf:
f_inv exactly 1 Thing

and
p1 exactly 1 Thing and
...

pm exactly 1 Thing
ObjectProperty: p1

Domain: C_f(P1,..., Pm)
Range: P1
...

ObjectProperty: pm
Domain: C_f(P1,..., Pm)
Range: Pm

ObjectProperty: f_inv
Domain: C_f(P1,..., Pm)
Range: C

ObjectProperty: f
InverseOf: f_inv

Class: C
SubClassOf:

f some C_f(P1,..., Pm)

5.2.3
p. 65
and
5.3
p. 66

C T
i..j

A

k..l

Association A exists
between classes C and

T

∃a.> v C

∃a−.> v T

C v (≥ i a.>) u (≤ j a.>)

T v (≥ k a−.>) u (≤ l a−.>)

ObjectProperty: a
Domain: C
Range: T

ObjectProperty: a_inv
InverseOf: a

Class: C
SubClassOf:

(a min i Thing) and
(a max j Thing)

Class: T
SubClassOf:

(a_inv min k Thing) and
(a_inv max l Thing)

4.4
p. 53,
5.2
p. 63
and
5.4.2
p. 74

5.10. Summary 87

Table 5.1: UML class diagram translation to SROIQ(D) and OWL 2

UML class diagram feature SROIQ(D) OWL 2 Ref.

C T
i..j

tc

k..l

C

t: T [i..j]

OR

T

c: C [k..l]

C

t: T [i..j]

T

c: C [k..l]

OR

Attribute t of type T

with multiplicity
[i..j] belongs to

class C and attribute c

of type C with
multiplicity [k..l]

belongs to class T

OR
Association end t with
multiplicity [i..j] is
associated with class C

and asociation end c

with multiplicity
[k..l] is associated

with class T

OR
Line notation is used
to make explicit that
attributes t and c are
also association ends

∃t.> v C

∃t−.> v T

C v (≥ i t.>) u (≤ j t.>)

c ≡ t−

T v (≥ k c.>) u (≤ l c.>)

ObjectProperty: t
Domain: C
Range: T

Class: C
SubClassOf:
(t min i Thing) and

(t max j Thing)

ObjectProperty: c
InverseOf: t

Class: T
SubClassOf:
(c min k Thing) and

(c max l Thing)

4.4
p. 53,
5.2
p. 63
and
5.6
p. 75

C1 C2
A1

C3 C4
A2

* *

* *

Association A2

specializes association
A1

∃a1.> v C1

∃a−1 .> v C2

∃a2.> v C3

∃a−2 .> v C4

a2 v a1

Class: C1
Class: C2
Class: C3
Class: C4
ObjectProperty: a1

Domain: C1
Range: C2

ObjectProperty: a2
Domain: C3
Range: C4
SubPropertyOf: a1

4.6
p. 54
and
5.4.2
p. 74

5.10. Summary 88

Table 5.1: UML class diagram translation to SROIQ(D) and OWL 2

UML class diagram feature SROIQ(D) OWL 2 Ref.

C1 C2

C3 C4

* *

* *

OR

c1 c2

c3 c4

{subsets
c1}

{subsets
c2}

C1 C2

C3 C4

* *

* *

c1 c2

c3 c4

{redefines
c1}

{redefines
c2}

C1

c2:C2[0..*]

C2

c1: C1 [0..*]

C3

c4:C4[0..*]
{subsets c2}

C4

c3: C3 [0..*]
{subsets c1}

OR

OR

C1

c2:C2[0..*]

C2

c1: C1 [0..*]

C3

c4:C4[0..*]
{redefines c2}

C4

c3: C3 [0..*]
{redefines c1}

Association end (resp.
attribute) c3 subsets
association end (resp.
attribute) c1 and

association end (resp.
attribute) c4 subsets
association end (resp.

attribute) c2

OR
Association end (resp.
attribute) c3 redefines
association end (resp.
attribute) c1 and

association end (resp.
attribute) c4 redefines
association end (resp.

attribute) c2

c1 ≡ c−2

∃c1.> v C1

∃c−1 .> v C2

c3 ≡ c−4

∃c3.> v C3

∃c−3 .> v C4

c3 v c1

c4 v c2

Class: C1
Class: C2
Class: C3
Class: C4
ObjectProperty: c1

Domain: C1
Range: C2
InverseOf: c2

ObjectProperty: c2
ObjectProperty: c3

Domain: C3
Range: C4
InverseOf: c4
SubPropertyOf: c1

ObjectProperty: c4

5.5
p. 75

5.10. Summary 89

Table 5.1: UML class diagram translation to SROIQ(D) and OWL 2

UML class diagram feature SROIQ(D) OWL 2 Ref.

<<enumeration>>
Colour

Red
Amber
Green

The Colour

enumeration consists
of the colours Red,
Amber and Green

Colour ≡ {Green, Amber, Red}

Green 6≈ Amber

Green 6≈ Red

Amber 6≈ Red

Class: Colour
EquivalentTo:
{Green, Amber, Red}

Individual: Green
Types: Colour

Individual: Amber
Types: Colour

Individual: Red
Types: Colour

DifferentIndividuals:
Green, Amber, Red

5.4.1
p. 73

{incomplete,
disjoint}

C

C1 C2

C

C1 C2

OR

Class C is specialized
by the disjoint classes
C1 and C2 which do
not cover class C

C1 v C

C2 v C

C1 v ¬C2

Class: C
Class: C1

SubClassOf: C
Class: C2

SubClassOf: C
DisjointClasses:

C1, C2

4.5
p. 54

{complete,
disjoint}

C

C1 C2

Class C is specialized
by the disjoint classes
C1 and C2 which cover

class C

C v C1 t C2

C1 v ¬C2

C1 v C

C2 v C

Class: C
DisjointUnionOf:

C1, C2
Class: C1

SubClassOf: C
Class: C2

SubClassOf: C

4.5
p. 54

{complete,
overlapping}

C

C1 C2

Class C is specialized
by the overlapping
classes C1 and C2

which cover class C

C v C1 t C2

C1 v C

C2 v C

Class: C
SubClassOf:

C1 or C2
Class: C1

SubClassOf: C
Class: C2

SubClassOf: C

4.5
p. 54

5.10. Summary 90

Table 5.1: UML class diagram translation to SROIQ(D) and OWL 2

UML class diagram feature SROIQ(D) OWL 2 Ref.

{incomplete,
overlapping}

C

C1 C2

Class C is specialized
by the overlapping
classes C1 and C2

which do not cover
class C

C1 v C

C2 v C

Class: C
Class: C1

SubClassOf: C
Class: C2

SubClassOf: C

4.5
p. 54

C1

a:T1

C2

a:T2

Classes C1 and C2 both
have an attribute a

respectively of type T1

and T2.

∃a.> v C1 t C2

∃a−.> v T1 t T2

C1 v ∃a.> u (≤ 1 a.>)

C2 v ∃a.> u (≤ 1 a.>)

Class: C1
SubClassOf:

t exactly 1 Thing
Class: C2

SubClassOf:
t exactly 1 Thing

Class: T1
Class: T2
ObjectProperty: a

Domain: C1 or C2
Range: T1 or T2

4.2.1
p. 51
and
5.2.1
p. 64
and
5.7.1
p. 76

5.10. Summary 91

Table 5.1: UML class diagram translation to SROIQ(D) and OWL 2

UML class diagram feature SROIQ(D) OWL 2 Ref.

C1

f(p1:P1, …,pm:Pm):R

C2

f(p1:P1, …,pn:Pn):R

Classes C1 and C2 both
have an operation f

with return value R

and respective
parameters

p1:P1, ..., pm:Pm

and
p1:P1, ..., pn:Pn

with m<n.

C1f(P1,...,Pm):R v

∃f−.> u (≤ 1f−.>) u

∃p1.> u (≤ 1p1.>) u

...

∃pm.> u (≤ 1pm.>) u

∃rR.> u (≤ 1rR.>)

C1 v ∃f.C1f(P1,...,Pm):R

C2f(P1,...,Pn):R v

∃f−.> u (≤ 1f−.>) u

∃p1.> u (≤ 1p1.>) u

...

∃pn.> u (≤ 1pn.>) u

∃rR.> u (≤ 1rR.>)

C2 v ∃f.C2f(P1,...,Pn):R

∃pi.> v C1f(P1,...,Pm):R

t C2f(P1,...,Pn):R

∃p−i .> v Pi i = 1, . . . , m

∃pj .> v C2f(P1,...,Pn):R

∃p−j .> v Pj j = m + 1, . . . , n

∃f−.> v C1f(P1,...,Pm):R

t C2f(P1,...,Pn):R

∃f.> v C1 t C2

∃rR.> v C1f(P1,...,Pm):R

t C2f(P1,...,Pn):R

∃r−R .> v R

Note that determinism of the re-
turn values is not enforced.

Class: P1
...

Class: Pn
Class: R
Class: C1_f(P1,..., Pm)_R

SubClassOf:
f_inv exactly 1 Thing

and
p1 exactly 1 Thing and
...

pm exactly 1 Thing and
r_R exactly 1 Thing

Haskey:
f_inv, p1, ..., pm

Class: C1
SubClassOf:

f some C1_f(P1,..., Pm)_R

Class: C2_f(P1,..., Pn)_R
SubClassOf:

f_inv exactly 1 Thing
and

p1 exactly 1 Thing and
...

pn exactly 1 Thing and
r_R exactly 1 Thing

Haskey:
f_inv, p1, ..., pn

Class: C2
SubClassOf:

f some C2_f(P1,..., Pm)_R

ObjectProperty: p1
Domain: C1_f(P1, ..., Pm)_R

or C2_f(P1, ..., Pn)_R
Range: P1
...

ObjectProperty: pm
Domain: C1_f(P1, ..., Pm)_R

or C2_f(P1, ..., Pn)_R
Range: Pm

ObjectProperty: pk
Domain: C2_f(P1, ..., Pn)_R
Range: Pk
...

ObjectProperty: pn
C2_f(P1, ..., Pn)_R
Range: Pn

ObjectProperty: f_inv
Domain: C1_f(P1, ..., Pm)_R

or C2_f(P1, ..., Pn)_R
Range: C1 or C2

ObjectProperty: f
InverseOf: f_inv

ObjectProperty: r_R
Domain: C1_f(P1, ..., Pm)_R

or C2_f(P1, ..., Pn)_R
Range: R

5.2.3
p. 65
and
5.3
p. 66
and
5.7.2
p. 77

Chapter 6

Formal Scenario Testing

This chapter introduces formal scenario testing, which consists of an approach, techniques
and guidelines. The approach details the steps that need be followed to apply formal scenario
testing, the techniques define the kind of scenario tests that can be constructed and the
guidelines direct the creation and structuring of scenario tests.

Formal scenario testing represents the main contribution of this dissertation. The intent
of the translations of UML class diagram features to OWL 2, as was discussed in Chapter 5
(p. 60), is to support formal scenario testing. In Chapter 7 (p. 119) formal scenario testing
is used to detect cohesion heuristic violations and validate adherence to cohesion heuristics.
How chapters 5–7 relate to each other as is depicted in Figure 6.1.

This chapter is organized as follows: Section 6.1 details the formal scenario testing
approach, Sections 6.2 (p. 94) and 6.3 (p. 103) respectively define the related techniques and
guidelines and Section 6.4 (p. 108) discusses a small case study where formal scenario testing
was applied on a real-world project.

6.1 Approach

Formal scenario testing pertains specifically to the situation where at least one UML class
diagram is created as part of the requirements specification process. Formal scenario testing is
envisaged as a means for validating that such a UML class diagram is an accurate representation

Chapter 5

Contributions

Adds the following translations
for the purpose of formal
scenario testing:
- UML class diagram to SROIQ(D),
- UML class diagram to OWL 2.

Chapter 6

Contributions
Introduces the formal scenario
testing approach which is
supported by:
- techniques and
- guidelines.
A small case study where
formal scenario testing has
been used on a real-world
project is discussed.

Chapter 7

Contributions

Defines techniques for detecting
cohesion heuristic violations and
validating adherence to
cohesion heuristics using formal
scenario testing.

supports uses

Figure 6.1: Relation of contributions of chapters 5–7.

92

6.1. Approach 93

of the requirements of the business domain. In order to validate a UML class diagram using
formal scenario testing, the modeller will need to follow a number of steps, which are detailed
in Section 6.1.1. Key characteristics of the formal scenario testing approach are discussed in
Section 6.1.2 (p. 93).

6.1.1 Steps of the Formal Scenario Testing Approach

The steps for applying formal scenario testing are as follows:

1. Based on the requirements gathered as part of the requirements elicitation process, the
modeller creates a UML class diagram. This UML class diagram represents the key
concepts, along with the relations between concepts (conceptual schema), of the business
domain.

2. The UML class diagram is translated to OWL 2 and checked for consistency using
an ontology editor such as for instance Protégé. If any inconsistencies are found, the
modeller must go back to step 1 and correct the UML class diagram. If no inconsistencies
are found (that is, the UML class diagram is consistent), the modeller can continue to
step 3.

3. Since a consistent UML class diagram does not guarantee that it represents the business
requirements accurately, various scenario tests can be applied using the formal scenario
testing techniques, which are introduced in Section 6.2 (p. 94). A scenario test represents
specific instances of the classes in the UML class diagram, which can be represented
using a UML object diagram. The UML object diagram is translated to OWL 2, which
enables reasoning on the UML object diagram. If running the reasoner on the OWL 2
translation of a scenario test indicates that the scenario test has an unexpected result
(based on the formal scenario testing technique that is applied), the UML class diagram
needs to be remedied and therefore the modeller needs to go back to step 1.

4. Step 3 is repeated until there are no further scenario tests to apply. This completes the
formal scenario testing process.

Formal scenario testing has a number of key characteristics that are discussed in the next
section.

6.1.2 Key Characteristics of Formal Scenario Testing

In this section some key characteristics of formal scenario testing are discussed. Firstly, as
mentioned in Section 1.4.2 (p. 9), formal scenario testing differs from typical DL formalizations
of UML class diagrams in that it is concerned with validation rather than verification.

6.2. Techniques 94

Secondly, existing research has focused on checking consistency of a UML class diagram
(respectively in DLs the TBox 1). Formal scenario testing extends existing research by checking
consistency of scenario tests expressed as UML object diagrams (respectively the ABox in
DLs) for the UML class diagram that was created in step 1. In applying formal scenario
testing, the actual UML object diagram is seldomly drawn, except for illustration purposes.
Rather, scenario tests are often created directly in OWL 2.

Thirdly, it is important to note that the benefits gained from formal scenario testing is
directly proportional to the quality and extend of scenario tests considered in step 3. If only
a handful of scenario tests is considered with little business impact, the potential benefits of
formal scenario testing will be limited.

Lastly, the UML class diagram in step 1 can be created incrementally over time. Even
though formal scenario testing can be applied to a UML class diagram of the complete business
domain, a complete UML class diagram is not a prerequisite for applying formal scenario
testing. Indeed, where formal scenario testing was applied on a real-world project, it was
found that creating the UML class diagram incrementally is more efficient. This is discussed
in Section 6.4.4 (p. 114).

6.2 Techniques

Three techniques are defined for constructing scenario tests for the purpose of formal scenario
testing namely consistent scenario tests, inconsistent scenario tests and classification scenario
tests. These techniques are discussed in Sections 6.2.1–6.2.3. Due to the particular techniques
applied in formal scenario testing, existing justification reasoning services are not an exact
fit for formal scenario testing. Therefore Section 6.2.4 (p. 102) revisits justifications in the
context of formal scenario testing and explains how abduction may be better suited.

6.2.1 Consistent Scenario Tests

A scenario that is allowed in a particular business context can be tested for consistency. As
an example, consider a UML class diagram that models a robot (traffic light) as illustrated
in Figure 6.2. Each of the colours of the robot is modelled to be of type boolean and hence
each of the colours can be set to true or false depending on the colour of the robot that is
represented. In listing (6.1) the equivalent OWL 2 translation for the UML class diagram in
Figure 6.2 is given. In accordance with step 2 in Section 6.1.1 (p. 93) the reasoner is run on
listing (6.1) to verify that the UML class diagram is consistent.

1 Strictly speaking, a UML class diagram corresponds to a TBox and possibly an RBox. All DL translations
of UML class diagrams have a TBox, but since not all DL translations of UML class diagrams necessarily have
an RBox, the convention used here will be to refer to a TBox with the understanding that the inclusion of an
RBox is implied where relevant.

6.2. Techniques 95

Robot

red: boolean
amber: boolean
green: boolean

Figure 6.2: A UML class representing a robot.

redRobot:Robot

red = true
amber = false
green = false

Figure 6.3: An instance representing a red robot.

A scenario that is permissible for the robot example is when the robot is red. This
scenario is represented in the UML object diagram of Figure 6.3 with the equivalent scenario
represented in OWL 2 in (6.2). If the reasoner is run on the ontology represented by listings
(6.1) and (6.2), it confirms that the ontology is consistent. Since this scenario represents an
allowed scenario, the formal scenario testing approach expects this ontology to be consistent.
If the ontology turned out to be inconsistent, it would represent an unexpected result. Setting
up a scenario and running the reasoner to validate the scenario agrees with step 3 of the
formal scenario testing process.

DataProperty: red
Domain: Robot
Range: boolean

DataProperty: amber
Domain: Robot
Range: boolean

DataProperty: green
Domain: Robot
Range: boolean

Class: Robot
SubClassOf:

red exactly 1 boolean,
amber exactly 1 boolean,
green exactly 1 boolean

(6.1)

6.2. Techniques 96

wrongRobot:Robot

red = true
amber = true
green = tue

Figure 6.4: An instance of Robot that should be disallowed.

Individual: redRobot
Types: Robot
Facts:

red true,
amber false,
green false

(6.2)

In terms of DLs, the UML class diagram (Figure 6.2) and the OWL 2 translation represent-
ing a robot (listing (6.1)), both correspond with the TBox. Similarly the UML object diagram
(Figure 6.3) and the OWL 2 translation representing the scenario (listing 6.2), correspond
with the ABox.

6.2.2 Inconsistent Scenario Tests

The corresponding ontology of a scenario that should be disallowed, based on the business
requirements, is expected to be inconsistent. In the discussion that follows the robot example
of Figure 6.2 (p. 95) refers.

A scenario that should be disallowed for a robot is where all the colours are active
simultaneously. Accordingly, for the wrongRobot instance the attributes red, amber and
green are all set to true as shown in Figure 6.4. If listing (6.1) (TBox) and the translation
of Figure 6.4 to OWL 2 (ABox) is used, and the reasoner is run on this ontology, the ontology
is consistent. Since, from a formal scenario testing perspective, this is a scenario that is
disallowed, a consistent ontology represents an unexpected result. Therefore, in accordance
with step 3 on p. 93 of the formal scenario testing approach, for an unexpected result the
modeller needs to go back to step 1 (p. 93). Hence, the modeller needs to redesign the UML
class diagram such that the disallowed scenario test will result in an inconsistent ontology
when it is translated to OWL 2.

In Figure 6.5 the redesigned UML class diagram is given with the associated OWL 2
translation provided in listing (6.3). If the scenario where all the colours of the robot are
active (see listing (6.4)) is considered again, the resulting ontology is now inconsistent as
expected. The partial list of explanations for the inconsistency is shown in Figure 6.6 (p. 98).

6.2. Techniques 97

Robot

colour: Colour

<<enumeration>>
Colour

Red
Amber
Green

1 1

Figure 6.5: A redesign of the Robot class.

Individual: Red
Types: Colour

Individual: Amber
Types: Colour

Individual: Green
Types: Colour

DifferentIndividuals: Red, Amber, Green
Class: Colour

EquivalentTo: {Red, Amber, Green}
ObjectProperty: colour

Domain: Robot
Range: Colour

Class: Robot
SubClassOf: colour exactly 1 Thing

(6.3)

Individual: brokenRobot
Facts:

colour Red,
colour Amber,
colour Green

(6.4)

6.2.3 Classification Scenario Tests

Business often has different products on offer with each product having different features. If
two products have the same features, it usually indicates that one of the products is redundant.
Redundancies can be identified by applying classification to the OWL 2 translation of object
instances with the appropriate associated features. As an example, consider the case where a
UML class diagram mistakenly contains both a Robot and a TrafficLight class with the
same attributes as illustrated in Figure 6.7 (p. 98).

The translation of Figure 6.7 to OWL 2 is given in listing (6.5) on p. 99. The classes
ColourDomain and LastMaintenanceDateDomain are introduced to represent the domains of
the properties colour and lastMaintenanceDate to cater for anonymous classes in ontology

6.2. Techniques 98

Figure 6.6: Explanations for a broken Robot.

Robot

colour: Colour
lastMaintenanceDate: String

<<enumeration>>
Colour

Red
Amber
Green

1 1

TrafficLight

colour: Colour
lastMaintenanceDate: String

1

1

Figure 6.7: Robot and TrafficLight have the same attributes.

6.2. Techniques 99

editors as discussed in Section 5.7.3 (p. 78).

Individual: Red
Types: Colour

Individual: Amber
Types: Colour

Individual: Green
Types: Colour

DifferentIndividuals: Red, Amber, Green
Class: Colour

EquivalentTo: {Red, Amber, Green}
Class: ColourDomain

EquivalentTo: Robot or TrafficLight
Class: LastMaintenanceDateDomain

EquivalentTo: Robot or TrafficLight
ObjectProperty: colour

Domain: ColourDomain
Range: Colour

DataProperty: lastMaintenanceDate
Domain: LastMaintenanceDateDomain
Range: String

Class: Robot
SubClassOf: colour exactly 1 Thing
SubClassOf: lastMaintenanceDate exactly 1 String

Class: TrafficLight
SubClassOf: colour exactly 1 Thing
SubClassOf: lastMaintenanceDate exactly 1 String

(6.5)

In accordance with step 2 of the formal scenario testing approach on p. 93, the reasoner is
run on listing (6.5) to ensure that it is consistent. As shown in Figure 6.8, running the reasoner
on listing (6.5) does not result in the inference that the classes Robot and TrafficLight are
equivalent. The reasoner does however infer that the class Robot is a subclass of the class
ColourDomain, which is equivalent to the anonymous class Robot or TrafficLight. The
inference that Robot is a subclass of Robot or TrafficLight is not as meaningful as one
would hope it to be. Indeed, for any classes X and Y it holds that class X is a subclass of
X or Y. In particular, this inference does not enforce that individuals of X are necessarily
individuals of Y.

If reasoning is done over the ontology represented by the TBox of listing (6.5) and the ABox
of listing (6.6), the inferences as shown in Figures 6.9 (p. 101) and 6.10 (p. 101) are obtained.
Again, these inferences fall short of showing that the classes Robot and TrafficLight are
equivalent. However, the inferences obtained from Figures 6.9 and 6.10 make explicit that an

6.2. Techniques 100

Figure 6.8: The classes Robot and TrafficLight are not equivalent.

individual that has the properties colour and lastMaintenanceDate can be of either type
Robot or TrafficLight. Consequently, an individual that has the properties colour and
lastMaintenanceDate is considered to be of both the types ColourDomain and LastMainte-

nanceDateDomain (see Figure 6.9). Since both the classes ColourDomain and LastMainte-

nanceDateDomain are equivalent to the union of the classes Robot and TrafficLight (see
Figure 6.10), an individual that has the properties colour and lastMaintenanceDate can
either be a Robot or a TrafficLight.

Individual: product
Facts:

colour Amber,
lastMaintenanceDate "2014-08-07" string

(6.6)

The inference that individuals with the properties colour and lastMaintenanceDate

can be considered to be either robots or trafficlights indicates that there is a redundancy
present in the ontology that represents the associated UML class diagram. By extension, this
implies that either the Robot or TrafficLight class is redundant in the associated UML class
diagram of Figure 6.7 (p. 98). This redundancy represents an unexpected result. According
to step 3 of the formal scenario testing approach on p. 93, this requires the redesign of the

6.2. Techniques 101

Figure 6.9: An individual with properties colour and lastMaintenanceDate.

Figure 6.10: The classes ColourDomain and LastMaintenanceDateDomain are equivalent.

UML class diagram of Figure 6.7 (p. 98).
For the redesign it is sufficient to simply remove the TrafficLight class (or alternatively

the Robot class) from the UML class diagram in Figure 6.7. The associated OWL 2 translation
for the UML class diagram consisting only of the Robot and Colour classes is given in listing
(6.7). Applying the scenario in listing (6.6) on the TBox in listing (6.7) results in the inference
shown in Figure 6.11. The inference that an individual with the properties colour and
lastMaintenanceDate is of type Robot is an expected result. This completes the formal
scenario testing process.

6.2. Techniques 102

Figure 6.11: An individual is inferred to be of type Robot.

Individual: Red
Types: Colour

Individual: Amber
Types: Colour

Individual: Green
Types: Colour

DifferentIndividuals: Red, Amber, Green
Class: Colour

EquivalentTo: {Red, Amber, Green}
ObjectProperty: colour

Domain: Robot
Range: Colour

DataProperty: lastMaintenanceDate
Domain: Robot
Range: String

Class: Robot
SubClassOf: colour exactly 1 Thing
SubClassOf: lastMaintenanceDate exactly 1 String

(6.7)

6.2.4 Repairs for Formal Scenario Testing

Justification and abduction were discussed in Section 3.3.2 (p. 47). Recall that the purpose
of justifications is to explain a given entailment for a given ontology. Abduction, on the other
hand, will try to guess what axioms are missing from an ontology to ensure that a particular
entailment follows from the ontology. This section discusses how justification and abduction
can be used in finding repairs when using formal scenario testing. Four situations need to be
considered.

Firstly, according to the formal scenario testing approach (see Section 6.1 p. 92), before

6.3. Guidelines 103

scenario testing can commence, the TBox of the DL translation of the UML class diagram
must be consistent. If the TBox is inconsistent, justifications can be used to explain the
inconsistency and based on the justifications, a repair can be constructed as explained in
Section 3.3.2 (p. 47).

The second situation is when a consistent or classification scenario test gives an unexpected
result. Since classification can be reduced to ontology consistency (see Section 3.3.1 p. 46),
classification scenario tests are reducible to consistent scenario tests. When a consistent
scenario test is inconsistent, the source of the inconsistency will be the ABox, since the
assumption is that the TBox is consistent (see Section 6.1 p. 92). In typical justification and
repair reasoning tasks, a first step is to remove the ABox [66]. For formal scenario testing this
is not an option since the ABox represents a scenario test, which represents an exemplar of
the business requirements. Rather, justifications can be determined, but instead of removing
assertions from the ABox as a repair, axioms have to be removed from the TBox.

Thirdly, for an inconsistent scenario test, the expectation is that the ABox must be the
cause for the ontology to be inconsistent, since again, it is the assumption that the TBox is
consistent (see Section 6.1 p. 92). If the ontology turns out to be consistent for an inconsistent
scenario test, it is because the ABox is consistent rather than inconsistent. In the case of
inconsistent scenario tests, it is often the case that the TBox is not restrictive enough. In
particular, the TBox permits models that are not permissible in a given business context.
Due to the monoticity of DLs, in order to reduce the number of models that are permitted by
the TBox, axioms have to be added to the TBox (see Section 3.1.6 on p. 39). Hence, this can
be stated as the following abductive reasoning problem: what axioms need to be added to the
TBox such that the ABox will be inconsistent?

Lastly, throughout this discussion there has been a reluctance to make changes to the
ABox. It is certainly possible that the ABox may have been constructed incorrectly. However,
from a formal scenario testing perspective, an error in the ABox represents a fundamental lack
of understanding of the business requirements. If it is suspected that this is indeed the case,
it is best to consult with the domain expert and confirm the business requirements before
continuing. Hence, automated reasoning will not be of help in this situation.

6.3 Guidelines

UML class diagrams are based on the CWA and the UNA (see Section 3.1.6 on p. 39), while
DLs and OWL 2 adopt the OWA and not the UNA. Sections 6.3.1 and 6.3.2 (p. 106) give
some guidelines for dealing with OWA and UNA respectively. Section 6.3.3 (p. 106) gives
guidelines regarding how to structure scenario tests in an ontology editor such as for instance
Protégé.

6.3. Guidelines 104

6.3.1 Dealing with OWA

In this section some guidelines are provided for dealing with the OWA (see Section 3.1.6 on
p. 39) of DLs and OWL 2 in representing UML class- and object diagrams, which adopt the
CWA. To bridge the OWA and CWA gap, scenario tests used in formal scenario testing have
to make known information explicit. In this section some examples are given to illustrate how
this can be achieved in the context of formal scenario testing.

Asserting that an Individual is not of a given Type

Section 6.2.3 (p. 97) illustrated how formal scenario testing can be utilized to detect that
the properties colour and lastMaintenanceDate both belong to the classes Robot and
TrafficLight. A slight variation is to assume the situation where a modeller already knows
that a class Robot exists, which has the properties colour and lastMaintenanceDate. The
question that the modeller will like to be answered is whether another class (which is not a
robot) exists, which have the same properties.

This question can be answered using the scenario of listing (6.8). Since the modeller is
looking for a class that is not a robot, the type of the individual isThereSomethingElse is
explicitly stated as not (Robot).

Applying this scenario to the TBox of listing (6.5) on p. 99 (which contains both a Robot

and a TrafficLight class) results in the reasoner inferring that the individual isThereSome-
thingElse must be of type TrafficLight. This is shown in Figure 6.12. However, when
scenario (6.8) is also applied to the TBox of listing (6.7) on p. 102, which contains only a
Robot class, it results in the inconsistency of which the explanation is given in Figure 6.13.
Moreover, the inference of Figure 6.12 states that there is a class called TrafficLight that is
not a Robot, which has the properties colour and lastMaintenanceDate, while Figure 6.13
infers that such a class does not exist, hence the inconsistency.

Individual: isThereSomethingElse
Types: Thing,

not (Robot)
Facts: colour Amber,

lastMaintenanceDate "2014-08-11" string

(6.8)

Asserting that an Individual does not have a given Property

The UML class diagram of Figure 6.5 (p. 97) states that instances of the Robot class are
always expected to have exactly one colour attribute. Scenario (6.4) on p. 97 illustrates that
the reasoner can detect when more than one colour is assigned to an individual of type Robot.

6.3. Guidelines 105

Figure 6.12: An individual is inferred to be of type TrafficLight.

Figure 6.13: Explanation for the inconsistent scenario test in (6.8).

6.3. Guidelines 106

Figure 6.14: Explanation for a robot with no colour in (6.9).

As such scenario (6.4) on p. 97, which assigns the colours red, amber and green to a robot,
results in the inconsistency of which the explanation is given in Figure 6.6 (p. 98).

What was not shown is that not assigning a colour property to an individual of type
Robot will also result in an inconsistency. This can be achieved by applying scenario (6.9)
to the TBox of listing (6.3) on p. 97. To state that the individual robotWithNoColour is a
robot that does not have a colour, robotWithNoColour is defined as being of both type Robot
and colour max 0 Colour. This scenario results in the expected inconsistency of which the
explanation is given in Figure 6.14.

Individual: robotWithNoColour
Types: Robot,

colour max 0 Colour
(6.9)

6.3.2 Dealing with UNA

Listing (6.3) on p. 97 defined the TBox for the UML class diagram of Figure 6.5 (p. 97). This
listing includes the assertion DifferentIndividuals: Red, Amber, Green. In the absence
of this assertion, scenario (6.4) on p. 97 (which assigns the colours red, amber and green to
a robot) will not be inconsistent. This is because DLs and OWL 2 do not adopt the UNA
(see Section 3.1.6 on p. 39). Hence it is possible that the individuals Red, Amber and Green

represent the same individual.

6.3.3 Structuring Scenario Tests in Protégé

Throughout this dissertation formal scenario testing is applied using Protégé [1]. In using
Protégé for formal scenario testing, it is often beneficial to structure Protégé files in a certain
way. Experiences in this regards are shared here. In the discussion to follow it is important to
note that when various formal scenario testing techniques are applied, the aim is not only to

6.3. Guidelines 107

confirm consistency, inconsistency or classification of the ontology, but also to ensure that the
ontology is consistent, inconsistent or classified in a particular way for the correct reasons. In
order to realize this requirement, the files of a Protégé project needs to be structured in a
particular way.

Firstly, since anything can be entailed from an inconsistent ontology, no meaningful
conclusions can be drawn from it [56]. It therefore makes sense to keep each inconsistent
scenario in a separate file and reason on it separately. By keeping inconsistent scenarios in
different files and reasoning on them separately, it can be ensured that the explanations for a
particular inconsistent scenario pertains only to the inconsistent scenario that is currently
considered. This makes it easier for a modeller to check that the scenario is inconsistent for
the appropriate reasons.

Secondly, for the same reason it does not make sense to have different inconsistent scenarios
in the same file, it does not make sense to mix inconsistent scenarios with either consistent or
classification scenarios.

Thirdly, it is often more efficient from a modeller’s perspective to have numerous consistent
and classification scenarios in the same file. For a modeller this can be more efficient because
rather than running the reasoner across multiple scenario one-by-one, it can be run once
across a number of scenarios. However, different closely related consistent and classification
scenarios can influence each other such that they may obscure the explanations as to why a
particular scenario is consistent or classified in a specific way. The guideline in this regard
is too keep consistent and classification scenarios together as long as it is relatively easy to
make sense of the explanations provided. The moment it becomes difficult to understand
explanations, it may make sense to split the scenarios across different files.

The last consideration in structuring ontologies for formal scenario testing follows from the
need to spread scenario tests across different files. The different files representing scenario tests
correspond to different ABoxes in DL parlance (or object diagrams in UML parlance). All
these ABoxes (respectively object diagrams) have the same TBox (respectively class diagram).
Therefore the TBox (respectively class diagram) is defined in a separate file, which is imported
into each of the different files representing the different scenario tests.

In Figure 6.15 a graphical representation is provided of how to structure files in Protégé.
Each rectangle represent a different file in Protégé. The rectangle marked TBox: Class

diagram represents the TBox obtained when the class diagram is translated to OWL 2. The
rectangles marked ABox 1, ABox 2,..., ABox n, ABox n+1, ..., ABox n+m represent
different ABoxes, each corresponding to a single scenario test or group of scenario tests.
Each file representing an ABox imports the file representing the TBox, thereby forming the
ontologies Ontology 1, Ontology 2, ..., Ontology n, Ontology n+1, ..., Ontology

n+m respectively.

6.4. A Case Study 108

TBox:
Class

diagram

ABox 1:
Object diagram for

inconsistent
scenario test 1

ABox 2:
Object diagram for

inconsistent
scenario test 2

ABox n:
Object diagram for

inconsistent
scenario test n

ABox n+1:
Object diagram for

consistent and
classification

scenario tests 1

ABox n + m:
Object diagram for

consistent and
classification scenario

tests m

Ontology 1

Ontology 2

...

Ontology n

Ontology n+1

...

Ontology n+m

Figure 6.15: The same TBox is reused for different ABoxes.

6.4 A Case Study

This section starts by explaining the business requirements for a portion of the business from a
real-world project in the hospitality industry in Section 6.4.1. Section 6.4.2 (p. 109) proceeds
by providing the UML class diagram as it was modelled initially. It explains why this initial
UML class diagram is problematic and it provides a UML class diagram which addresses the
deficiencies of the naïve UML class diagram. Section 6.4.3 (p. 111) shows how formal scenario
testing can be employed to validate that the improved UML class diagram of Section 6.4.2 (p.
109) indeed does address the deficiencies mentioned. In Section 6.4.4 (p. 114) preliminary
feedback is given on experiences in using formal scenario testing.

6.4.1 Business Domain

The example business domain that is described here, is a simplified version of the real-world
software project that was done for a South African hotel group. On this project formal
scenario testing was employed to detect and rectify conceptual modelling errors during the
requirements engineering phase of the SDLC.

In the hospitality industry the business requirements around calculating the rate that
needs to be charged when a reservation is made, generally referred to as a room rate, can be
extremely complex. Before a room rate can be calculated, the different configurations that
are used to determine these rates have to be specified. In this example, the focus is on the
UML class diagram representing rate configurations. In the following a brief description is
given of the relevant concepts and business constraints.

6.4. A Case Study 109

RateConfig

chargeType: ChargeType
criterionType: CriterionType

ChargeType

HotelChargeType

PAXChargeType

RoomTypeChargeType

CriterionType

InterleadingCriterionType

BlockBookingCriterionType

ChannelCriterionType

{complete, disjoint}{complete, disjoint}

1 1 1 1

Figure 6.16: The initial UML class diagram for rate configuration.

The basic rate that is applicable to a room can be determined in three different ways.
Firstly, a flat rate can be charged across all rooms in the hotel. Secondly, the rate can be
charged based on the number of guests who form part of the booking. In the hospitality
industry this is often referred to as PAX. Lastly, the rate can be determined based on the
kind of room that is booked, i.e. single room or suite.

The basic rate that applies to a room can be adjusted based on additional criteria that
apply to a room. For instance, a different rate will apply when two rooms are booked that are
connected by an interleading door. When a reservation is made through a partner network
(commonly referred to as a channel) a discounted rate may apply. Similarly when a guest
makes a block booking, say of more than 10 rooms per night, a different rate may apply. In
order to the keep the example succinct, the assumption is made that basic rate charges are
always adjusted.

Additional business rules are that PAX charges can only be adjusted by a channel criterion,
while a room type charge can be adjusted by a block booking or a channel criterion. Hotel
charges can be adjusted by any criteria. Failure to adhere to these business rules will give rise
to opportunities for fraud.

6.4.2 Deficiencies of a Naïve UML Class Diagram and a Solution

Figure 6.16 presents the UML class diagram that was initially created to represent the rate
configuration business requirements. The UML class diagram of Figure 6.16 is consistent when
translated to OWL 2. Even so, this UML class diagram will allow combinations of charge
types and criterion types that (based on the business requirements) should be disallowed.
To make these deficiencies in the UML class diagram apparent, the possible scenarios are
compiled in Table 6.1 and for each scenario it is indicated whether it is allowed or disallowed.

Figure 6.17 (p. 110) shows the UML class diagram redesigned to represent the business
requirements concisely. The essence of the redesign is to make the combinations of charge
types and criterion types that are allowed by the business explicit in the UML class diagram.
This is achieved through a combination of class specialization and attribute redefinition, which

6.4. A Case Study 110

hotelChargeType: HotelChargeType
{redefines chargeType}
channelCriterionType: ChannelCriterionType
{redefines criterionType}

hotelChargeType: HotelChargeType
{redefines chargeType}
interleadingCriterionType: InterleadingCriterionType
{redefines criterionType}

RateConfig

chargeType: ChargeType
criterionType: CriterionType

CriterionType

InterleadingCriterionType

BlockBookingCriterionType

ChannelCriterionType

1

InterleadingHotelRateConfig

ChannelHotelRateConfig

BlockBookingHotelRateConfig

ChannelPAXRateConfig

ChannelRoomTypeRateConfig

BlockBookingRoomTypeRateConfig

ChargeType

HotelChargeType

PAXChargeType

RoomTypeChargeType

1

hotelChargeType: HotelChargeType
{redefines chargeType}
blockBookingCriterionType: BlockBookingCriterionType
{redefines criterionType}

paxChargeType: PAXChargeType
{redefines chargeType}
channelCriterionType: ChannelCriterionType
{redefines criterionType}

roomTypeChargeType: RoomTypeChargeType
{redefines chargeType}
channelCriterionType: ChannelCriterionType
{redefines criterionType}

roomTypeChargeType: RoomTypeChargeType
{redefines chargeType}
blockBookingCriterionType: BlockBookingCriterionType
{redefines criterionType}

1

{complete, disjoint}

{complete, disjoint}

{complete, disjoint}

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

Figure 6.17: An accurate representation of the business requirements.

6.4. A Case Study 111

Table 6.1: Allowed/disallowed rate configuration scenarios

No Criteria Type Charge Type Allowed or
Disallowed

Interleading Channel Block booking Hotel PAX Room
type

Scenario

1 X X Allowed

2 X X Allowed

3 X X Allowed

4 X X Disallowed

5 X X Allowed

6 X X Disallowed

7 X X Disallowed

8 X X Allowed

9 X X Allowed

was discussed respectively in Sections 2.1.4 (p. 17) and 2.1.5 (p. 18). The next section shows
how this UML class diagram can be validated using formal scenario testing.

6.4.3 Validating the UML Class Diagram

Protégé is used as was discussed in Section 6.3.3 (p. 106) to validate that scenarios that aught
to be inconsistent are indeed inconsistent. The TBox is defined based on the class diagram in
Figure 6.17 for which the full listing is provided in Appendix A (p. 154). The translation of
the UML class diagram is based on the translations provided in Chapters 4 and 5. Note that
the translation of attributes with the same name appearing in different classes are translated
as a single property of which the domain consists of the union of the classes the attribute
appears in (as is described in Section 5.7.3 on p. 78).

For illustrating how formal scenario testing can be used to validate that a disallowed
scenario is indeed inconsistent, the disallowed scenario is considered where a PAXChargeType is
combined with an InterleadingCriterionType as shown in (6.10). The individuals pax and
interleading are defined to be of type PAXChargeType and InterleadingCriterionType

respectively. For the disallowed scenario the individual interleadingPAXRateConfig, which
is of type RateConfig is introduced and the disallowed combination of paxChargeType

and interleadingCriterionType properties are assigned using the individuals pax and
interleading respectively.

Running the reasoner on this disallowed scenario results in the expected inconsistent
ontology. The explanations for the inconsistency is shown in Figure 6.18. These explanations
essentially state that based on the properties paxChargeType and interleadingCriteri-

onType the type of the individual interleadingPAXRateConfig is inferred to be of type

6.4. A Case Study 112

Figure 6.18: Explanation for the disallowed scenario.

ChannelPAXRateConfig and InterleadingHotelRateConfig, but since the classes Channel-
PAXRateConfig and InterleadingHotelRateConfig are disjoined, there is an inconsistency.

Individual: pax
Types: PAXChargeType

Individual: interleading
Types: InterleadingCriterionType

Individual: interleadingPAXRateConfig
Types: RateConfig
Facts:

paxChargeType pax
interleadingCriterionType interleading

(6.10)

As stated in Section 6.2.1 (p. 94) formal scenario testing expects allowed scenarios to
be consistent. It should for example be possible to configure a RateConfig that combines
an InterleadingCriterionType and a HotelChargeType. The listing for this scenario is
provided in (6.11). Running the reasoner on this scenario confirms that this scenario is indeed
consistent as shown in Figure 6.19.

6.4. A Case Study 113

Figure 6.19: interleadingHotelRateConfig is of type InterleadingHotelRateConfig.

Individual: hotel
Types: HotelChargeType

Individual: interleading
Types: InterleadingCriterionType

Individual: interleadingHotelRateConfig
Types: RateConfig
Facts:

hotelChargeType hotel
interleadingCriterionType interleading

(6.11)

Individual: hotel
Types: HotelChargeType

Individual: interleading
Types: InterleadingCriterionType

Individual: interleadingHotel
Facts:

hotelChargeType hotel
interleadingCriterionType interleading

(6.12)

A classification scenario test can be created by stating specific properties that an individual
has without specifying the type of the individual. Hence, the reasoner is given the opportunity
to infer the type of the individual purely based on the properties assigned to the individual.
An example of this is illustrated in listing (6.12). Note that the difference between listing
(6.11) and (6.12) is that the type of individual interleadingHotelRateConfig is set while
for individual interleadingHotel it is not set. Running the reasoner on listing (6.12) allows
detection of classes outside of the RateConfig class hierarchy that also have attributes of

6.4. A Case Study 114

Figure 6.20: interleadingHotel is of type InterleadingHotelRateConfig.

type HotelChargeType and InterleadingCriterionType.
Figure 6.20 shows that individual interleadingHotel is inferred to be only of type

InterleadingHotelRateConfig. This proves that there is only one class in the UML class
diagram that have attributes of type HotelChargeType and InterleadingCriterionType.
As such classification scenario tests can be used to detect potential redundancies.

6.4.4 Adoption and Preliminary Feedback

As explained at the beginning of this case study, the example discussed here forms part of a
larger real-world software project for a hotel group in South Africa. On this project formal
scenario testing was used to help model the calculation of room rates. Here feedback is given
on experiences gained in using formal scenario testing on this project.

The business analyst (BA) on this project was responsible for creating the UML class
diagrams. This BA had extensive experience in UML and in specific UML class diagrams, but
no prior knowledge regarding OWL 2 or DLs. This BA was given instruction in translating
UML class diagrams to Protégé.

The BA and client started with an initial UML class diagram that was translated to OWL 2.
Using Protégé they set up a number of scenario tests, which quickly showed that the initial
UML class diagram did not represent the required business rules adequately. Interestingly,
at this point they abandoned the UML class diagram in favour of Protégé. Occasionally
they drew portions of the UML class diagram to help guide their thinking. In this manner
they incrementally created the UML class diagram by validating each increment with a
number of scenario tests. Only when the scenario tests confirmed that the UML class diagram
corresponds with the business requirements, did they extend the conceptual schema to include
additional concepts from the business domain. Once they completed the UML class diagram
in this fashion in Protégé, the BA translated the classes and relationships to a UML class

6.5. Contribution and Related Research 115

diagram.
At the completion of this process the resulting UML class diagram consisted of 62 classes,

which have been validated by 100 scenario tests. The scenario tests consisted of 43 allowed, 47
disallowed and 10 classification scenario tests. The BA used the resulting UML class diagram
to explain the business logic to the development team. Both developers and testers frequently
referred to this UML class diagram throughout the development process.

Feedback from this project on using formal scenario testing highlights some opportunities
for improvement.

1. There is a need for tools to assist with the translation between UML and OWL 2.
Zedlitz, et. al. [118] have suggested such a tool, but it will need to be extended to fit
the needs of scenario testing.

2. Formal scenario testing was instrumental in providing a clear understanding of the
business requirements on this project, which benefited both developers and testers.
However, the UML class diagram relied on multiple inheritance, which cannot be
represented directly in many programming languages [104] and it is not clear how to
translate notions like {disjoint, complete} into code. Guidelines in this regard will
be valuable.

About a year after the initial rates calculation module was implemented, there was an
additional need to add business rules and functions. Changing the UML class diagram for the
rates calculation module resulted in a minimum of rework. The main reason for this seems to
be the fact that the new business capabilities could be added without changing any existing
classes. Thus, new capabilities have been added by either adding completely new classes or
extending existing classes. It seems that the key factor that enabled this efficiency is that
the classes of the rates calculation module have model class cohesion. Accordingly, each class
represents a single cohesive concept, as was discussed in Section 2.2 (p. 21). Indeed, high
cohesion has been positively correlated with high maintainability of software systems [86]. It
is therefore conceivable that high cohesion of the rates calculation UML class diagram was
the key factor in ensuring its maintainability.

6.5 Contribution and Related Research

In this section a synopsis is given of the research contributions discussed in this chapter.
These contributions are contextualized by a review and evaluation of related research.

6.5.1 Contribution

Formal scenario testing provides a means for the early detection of errors of business intent.
An error of business intent is where there is a mismatch between the semantics of the UML

6.5. Contribution and Related Research 116

class diagram and the desired business requirements. The hope is that through enabling early
detection of errors of business intent, the identified errors can be remedied before the actual
construction of the software system commences. Formal scenario testing can also be employed
to validate that errors of business intent have not been committed. Consequently, formal
scenario testing can be used to confirm that the UML class diagram agrees with the business
requirements. Detection and validation are enabled through the presence of a domain expert
who provides scenario tests that serve as exemplars of either scenarios that are allowed or
disallowed based for the business requirements.

In formal scenario testing detection and validation are based on the reasoning capabilities
of DLs and OWL 2 (see Chapter 3). Chapter 4 explained how UML class diagrams can be
translated to DLs (respectively OWL 2). In particular, the classes in UML class diagrams are
translated to concepts in DLs (respectively classes in OWL 2) and associations/attributes
in UML class diagrams are translated to roles in DLs (respectively properties in OWL 2).
Formal scenario testing extends this work by allowing reasoning on scenario tests, which
can be expressed as UML object diagrams. That is, instances in UML object diagrams are
translated to individuals in DLs (respectively individuals in OWL 2).

Below a synopsis is given of the contributions of this chapter.

1. A step-wise process is defined, which explains how formal scenario testing can be applied
(Section 6.1 p. 92).

2. Techniques for defining scenario tests for formal scenario testing are described. These
techniques are based on the consistency checking and classification reasoning procedures
of DLs (Section 6.2 on p. 94).

3. An evaluation is done of the appropriateness of justification and abduction reasoning
procedures in the context of formal scenario testing (Section 6.2.4 on p. 102).

4. UML class diagrams adopt the UNA and the CWA while DLs and OWL 2 adopt the
OWA and not the UNA. Guidance is given in how to deal with this mismatch when
using formal scenario testing (Sections 6.3.1 (p. 104) and 6.3.2 (p. 106)).

5. Practical guidance is given for how to structure ontologies in an ontology editor like
Protégé (Section 6.3.3 on p. 106).

6. A small case study is described where formal scenario testing was used on a real-world
project. This case study indicates that formal scenario testing can be helpful in creating
a conceptual schema that has model cohesion, which is beneficial for the long term
maintainability of the conceptual schema (Section 6.4 p. 108).

6.5. Contribution and Related Research 117

6.5.2 Related Research

Formal scenario testing extends the research of Cali, et. al., Berardi, et. al. [25, 13] and
Zedlitz, et. al. [118], which translated UML class diagrams to TBoxes for DLs and OWL 2. In
formal scenario testing UML object diagrams (which represents scenario tests) are translated
to ABoxes in DLs and OWL 2 respectively. The main motivation for translating UML class
diagrams to DLs/OWL 2 is to verify that the UML class diagram is consistent and free of
redundancies [13]. The main motivation for translating UML object diagrams to DLs/OWL 2
is to validate that the business intent of the UML class diagram agrees with the business
requirements.

Various approaches exist for validating UML class diagrams based on generated instances
[20, 23, 110]. Cabot, et. al. [23] encodes UML class diagrams as constraint satisfaction
problems (CSP) and then generates instances of the model using their UMLtoCSP tool, which
passes the instances to a constraint solver for validation. UMLtoCSP generates a UML object
diagram of the object instances that satisfies the UML class diagram. Soeken, et. al. [110]
follow a similar approach using C++ code to generate instances and a SAT solver to do
validation. For both approaches decidability is achieved by definition of a finite solution
space and therefore both approaches are decidable, but incomplete. Hence, results are only
conclusive when a solution is found. When a solution is not found, a solution may still exist
in some other finite solution space [23, 110].

Braga, et. al. [20] apply scenario testing to OntoUML conceptual models, which are
translated into Alloy, a logic based language. OntoUML is a UML profile that extends the
UML class diagram metamodel with Unified Foundation Ontology (UFO) elements. UFO
defines the ontological foundations for the most fundamental concepts in structural conceptual
modeling [20]. Alloy is defined as “a structural modeling language based on first-order logic,
for expressing complex structural constraints and behavior” [65]. In the approach of Braga,
et. al. the Alloy analyzer is used to automatically generate instances and counterexamples of
the model which are presented to the modeller [20]. The Alloy logic is based on first-order
logic (and in particular relational calculus), which gives rise to undecidability. Tractability is
achieved by specifying a scope, which means a counterexample may possibly be found given a
larger scope [65].

Formal scenario testing is different in the following ways. Firstly, since OWL 2 is based on
the DL SROIQ(D) extended with Easy Keys, reasoning on OWL 2 is decidable and complete
[97, 58]. Thus, theoretically it is possible to get an answer on whether a knowledge base
is consistent, but due to tractability concerns there is a practical limit to the size of the
knowledge base on which reasoning is feasible [47]. Secondly, formal scenario testing relies
on the presence of a domain expert for guiding the definition of scenario tests. None of the
approaches mentioned cater for the explicit definition of scenario tests [20, 23, 110] and hence,

6.5. Contribution and Related Research 118

there is no way to ensure that scenario tests with high business impact are indeed considered.
Furthermore, even when a model is consistent, it may not represent the business requirement
accurately. The explicit specification of scenario tests can help alert the modeller to this
occurrence.

Formal scenario testing shares some similarities with the research of Tort, et. al. [114].
Similar to formal scenario testing domain experts are employed to provide scenarios that are
either expected to be consistent or inconsistent. For writing tests Tort, et. al. introduced the
conceptual schema testing language (CSTL), which can run automated tests written for UML
class diagrams with OCL constraints. Testing of a conceptual schema proceeds in a similar
fashion as for unit testing of software. Thus, a test application is responsible for running a
number of tests written in CSTL in sequence with the result of each test being compared to
an expected result for which the test application reports on the result of each comparison.

Differences in the approach of Tort, et. al. [114] and formal scenario testing are explained
next. In Tort, et. al. OCL constraints are explicitly included. In Section 5.9.2 (p. 81) it was
explained that it may be possible to support OCL-Lite, but that this falls outside the scope
of the current dissertation. Due to the inclusion of OCL constraints, Tort, et. al. are able to
consider tests that validate the occurrence (or non-occurrence) of domain events. Automated
testing, the ability to run sequences of tests, is also not currently possible with formal scenario
testing. Formal scenario testing is likely to benefit from automated testing tool support that
can generate a consolidated report on running the reasoner across all scenario tests (that is,
consistent-, inconsistent- and classification scenario tests). CSTL, the programming language
that Tort, et. al. use for writing tests, has no formal reasoning capabilities and hence cannot
detect nor explain logical consistencies/inconsistencies and entailments beyond that which can
be detected with tests. Since formal scenario testing is based on DLs, implicit consequences
can be made explicit.

Chapter 7

Applying Formal Scenario Testing

In this chapter it is shown how formal scenario testing can be applied to improve the quality
of UML class diagrams by detecting violations of the heuristics that were discussed in Section
2.2 (p. 21). Recall that for each heuristic in Section 2.2 (p. 21), an example UML class
diagram was provided that illustrates how the heuristic is violated. This was followed by a
redesigned UML class diagram, which corrects the violated heuristic. This chapter proceeds
by first indicating how the heuristic violation can be detected and then shows how it can be
confirmed that the correction is indeed free from the given heuristic violation.

Each of the following sections are dedicated to one modelling heuristic. To keep this
chapter succinct and predictable, the same format is used for each of the sections. At the
beginning of each section, the formal scenario testing technique(s) that are applied to detect
and validate the heuristic, is stated. Each section is divided into “Detection” and “Validation”
subsections. In the “Detection” subsection it is illustrated how the violation of the heuristic
can be detected. In the “Validation” subsection it is shown how it can be validated that a
class or classes do not suffer of the particular heuristic violation. At the begining of each
“Detection” and “Validation” subsection it is stated which figure refers in Section 2.2 (p. 21)
and where the related OWL 2 translation can be found.

The detection and validation techniques that are defined using formal scenario testing
represent the main contributions of this chapter. These are detection and validation techniques
for:

1. separable class cohesion (see Section 7.1),

2. multifaceted class cohesion (see Section 7.2 p. 125),

3. non-delegated class cohesion (see Section 7.3 p. 127),

4. concealed class cohesion (see Section 7.4 p. 131),

5. low inheritance cohesion of attributes (see Section 7.5 p. 141) and

6. low inheritance cohesion of operations (see Section 7.6 p. 144).

119

7.1. Separable Class Cohesion 120

7.1 Separable Class Cohesion

Formal Scenario Testing Technique: Classification

7.1.1 Detection

Figure: 2.11, p. 23

OWL 2 Translation: Appendix B.1, p. 157

Separable class cohesion is detected by creating an individual of type Thing. It is important
not to assign a type other than Thing to the individual. Rather, specific properties are assigned
to the individual that correspond to attributes and/or operations that are relevant for a
particular concept. If a reasoner is allowed to classify this individual, it will determine the
type of the individual based on the assigned properties. If this process is now repeated for a
second individual representing a different concept than the first individual, the expectation is
that the two individuals will be classified as different classes. This process is illustrated by
the following example.

If an individual pablo of type Thing, with properties employeeName, employeeCode and
salary, is added to the ontology in listing B.1 (p. 157), as shown in listing (7.1), it will
cause the individual pablo to be classified to be of type Employee (see Figure 7.1). If another
individual projectX of type Thing is added, to which project related properties are assigned,
it is also classified to be of type Employee. The listing for the individual projectX is given in
(7.2) and the related inference can be seen in Figure 7.2. The fact that the individuals pablo
and projectX, which represent different concepts (respectively employee and project), are
classified as belonging to the same class (Employee), is an indication that the class (Employee
in this case) has separable class cohesion.

Individual: pablo
Types: Thing
Facts:

employeeName "Pablo" string,
employeeCode "1234" string,
salary 100000

(7.1)

7.1. Separable Class Cohesion 121

Figure 7.1: Classification of the individual pablo.

Figure 7.2: Classification of the individual projectX.

Individual: projectX
Types: Thing
Facts:

projectName "projectX" string,
projectCost1 540000000,
projectCost2 239

(7.2)

Separable class cohesion can also be detected by considering the operations that can be
called on a class. An individual on which it is asserted that it is in a property relation with
an individual of a class representing an operation, will be inferred to be of a class on which
the operation can be called. This is illustrated with the following example.

7.1. Separable Class Cohesion 122

Figure 7.3: Classification of the individual sandy.

Listing (7.3) defines an individual employee_calculateSalaryIncrease of type Em-

ployee_calculateSalaryIncrease_integer, which is the class that is introduced to repre-
sent the reified relation representing the operation
calculateSalaryIncrease(increase:Integer):Integer (see Section 5.3 on p. 66). It
states that the operation, represented by the class
Employee_calculateSalaryIncrease_integer, can be performed by the individual sandy
by asserting the fact that sandy is in the property relation calculateSalaryIncrease with
the individual employee_calculateSalaryIncrease. Note that again the type Thing is
assigned to the individual sandy to allow the reasoner to determine the class that sandy

belongs to. The classification of sandy, based on the operation that can be performed on this
individual, is shown in Figure 7.3.

In listing (7.4) it is stated that the operation calculateProjectCost():Integer can be
performed on the individual projectMassMarket. Again classification is applied and from
Figures 7.3 and 7.4 it is inferred that both the individuals sandy and projectMassMarket

are of type Employee. Again this is an indication of the class Employee having separable class
cohesion.

Individual: employee_calculateSalaryIncrease
Types: Employee_calculateSalaryIncrease_integer

Individual: sandy
Types: Thing
Facts:

calculateSalaryIncrease employee_calculateSalaryIncrease

(7.3)

7.1. Separable Class Cohesion 123

Figure 7.4: Classification of the individual projectMassMarket.

Individual: employee_calculateProjectCost
Types: Employee_calculateProjectCost_integer

Individual: projectMassMarket
Types: Thing
Facts:

calculateProjectCost employee_calculateProjectCost

(7.4)

7.1.2 Validation

Figure: 2.13, p. 23

OWL 2 Translation: Appendix B.2, p. 159

When the scenarios of listings (7.1) on p. 120 and (7.2) on p. 121 are applied to the OWL 2
translation of the UML class diagram in which separable class cohesion has been corrected,
the result of the inferences is most notable on the projectX individual. The individual pablo
is still classified as being of type Employee, but the projectX individual is now classified as
being of type Project. This is shown in Figure 7.5. Since the types of pablo and projectX

are correctly inferred, it confirms that separable class cohesion has been removed from the
associated UML class diagram.

When operations are considered, the scenario in listing (7.3) applies as-is on the redesigned
conceptual schema. However, listing (7.4) have to be revisited. The revised scenario of listing
(7.4) is given in listing (7.5).

7.1. Separable Class Cohesion 124

Figure 7.5: The individual projectX is correctly classified.

Figure 7.6: The individual projectMassMarket is correctly classified.

Individual: project_calculateProjectCost
Types: Project_calculateProjectCost_integer

Individual: projectMassMarket
Types: Thing
Facts:

calculateProjectCost project_calculateProjectCost

(7.5)

Applying the scenario in listing (7.5) on the OWL 2 translation of the redesigned UML
class diagram now results in the individual projectMassMarket being classified as being of
type Project, as illustrated in Figure 7.6.

7.2. Multifaceted Class Cohesion 125

7.2 Multifaceted Class Cohesion

Formal Scenario Testing Technique: Inconsistent

7.2.1 Detection

Figure: 2.15, p. 24

OWL 2 Translation: Appendix C.1, p. 161

Multifaceted class cohesion can be detected by applying a scenario similar to the scenario
represented by the UML object diagram in Figure 2.16 (p. 24). The OWL 2 translation of this
scenario is given in listing (7.6). In Section 2.2.2 (p. 22) it was stated that for this business
context it is assumed that a company can only have one address. Hence, this is a scenario
that is expected to be inconsistent since both Pablo and Sandy work at the same company
(i.e. the CSIR), but the UML class diagram allows different addresses (i.e. csirAddress and
otherAddress) to be assigned as the company address. When the reasoner is run on this
scenario, it finds that it is consistent rather than inconsistent, which indicates that there is a
modelling error in the UML class diagram.

Note that in scenario (7.6) it is necessary to explicitly state that the individuals csirAd-
dress and otherAddress are different individuals. If this assumption is not made explicit,
since DLs and OWL 2 do not adopt the UNA (see Section 6.3.2 on p. 106), the reasoner
can infer that the individuals csirAddress and otherAddress represent exactly the same
individual.

7.2. Multifaceted Class Cohesion 126

Individual: csirAddress
Types: Address
DifferentFrom: otherAddress

Individual: otherAddress
Types: Address
DifferentFrom: csirAddress

Individual: sandyContactInformation
Types: ContactInformation
Facts:

companyName "CSIR",
contactPerson "Sandy" string,
companyAddress csirAddress,
phoneNumber "1234" string

Individual: pabloContactInformation
Types: ContactInformation
Facts:

companyName "CSIR",
contactPerson "Pablo" string,
companyAddress otherAddress,
phoneNumber "5678" string

(7.6)

7.2.2 Validation

Figure: 2.17 p. 24

OWL 2 Translation: Appendix C.2, p. 162

The redesigned UML class diagram can be validated by setting up a scenario where different
addresses are assigned to different individuals of type Company, but with all individuals having
the same company name, e.g. “CSIR”. This is shown in listing (7.7). Running the reasoner
on this scenario results in an inconsistency. This inconsistency confirms that the UML class
diagram of Figure 2.17 (p. 24) is modelled tightly enough to disallow the scenario where
the same company can have different addresses. The partial list of explanations of the
inconsistency is shown Figure 7.7 (p. 128).

7.3. Non-delegated Class Cohesion 127

Individual: csirAddress
Types: Address
DifferentFrom: otherAddress

Individual: otherAddress
Types: Address
DifferentFrom: csirAddress

Individual: csir
Types: Company
Facts:

companyName "CSIR",
companyAddress csirAddress

DifferentFrom: csirWithOtherAddress

Individual: csirWithOtherAddress
Types: Company
Facts:

companyName "CSIR",
companyAddress otherAddress

DifferentFrom: csir

(7.7)

7.3 Non-delegated Class Cohesion

Formal Scenario Testing Technique: Inconsistent

7.3.1 Detection

Figure: 2.19, p. 25

OWL 2 Translation: Appendix D.1, p. 163

Non-delegated class cohesion is detected in a similar way in which multifaceted class
cohesion has been detected. Setting up the equivalent scenario in Protégé (see listing (7.8))
as for the UML object diagram of Figure 2.20 (p. 26) does not lead to an inconsistency.
Remember, the assumption is that a project may only have one project manager. Hence, it
is desirable that the UML class diagram is modelled tightly enough such that if Sandy and
Pablo work on the same project (i.e. ProjectX), it should not be possible for them to have
different project managers.

7.3. Non-delegated Class Cohesion 128

Figure 7.7: Multifaceted class cohesion validated by inconsistency.

7.3. Non-delegated Class Cohesion 129

Individual: sandy
Types: Employee
Facts:

name "Sandy",
dateOfBirth "1985-06-01",
currentProject "ProjectX",
projectManager "Ruth"

Individual: pablo
Types: Employee
Facts:

name "Pablo",
dateOfBirth "1968-04-11",
currentProject "ProjectX",
projectManager "Peet"

(7.8)

7.3.2 Validation

Figure: 2.21, p. 26

OWL 2 Translation: Appendix D.2, p. 164

When the scenario of listing (7.9) is applied on the OWL 2 translation of the redesigned
UML class diagram, it results in the expected inconsistency. In this scenario, two individuals
are added of type Project, each with the name ProjectX, but with different project managers.
This is a scenario that should be disallowed and therefore this scenario must result in
an inconsistency. The explanations for the inconsistency are given in Figure 7.8. This
inconsistency confirms that the Employee and Project classes are free from non-delegated
class cohesion.

Individual: projectX
Types: Project
Facts:

name "ProjectX",
projectManager "Ruth"

Individual: anotherProjectX
Types: Project
Facts:

name "ProjectX",
projectManager "Peet"

(7.9)

7.3. Non-delegated Class Cohesion 130

Figure 7.8: Non-delegated class cohesion validated by inconsistency.

7.4. Concealed Class Cohesion 131

7.4 Concealed Class Cohesion

Formal Scenario Testing Technique: Classification
Before concealed class cohesion can be detected, it is necessary to translate UML class

diagrams in a way that will enable the detection of concealed concepts. The discussion on how
to deal with qualified names in UML class diagrams (Section 5.7 on p. 76) refers. As stated
in Section 5.7 (p. 76), when the same name is used for a feature in different UML classes,
the relevant domains and ranges are translated as unions of the classes the feature appears
in. To limit problems due to anonymous classes, explicitly named classes are introduced for
domains and ranges that are expressed as unions of classes. Hence, for the fromDate attribute
appearing in the classes LeaveRequest and PerformanceReview, the class FromDateDomain
is introduced which is applied to the OWL 2 fromDate property as shown in listing (7.10).

Class: FromDateDomain
EquivalentTo:

LeaveRequest or
PerformanceReview

DataProperty: fromDate
Domain: FromDateDomain
Range: string

(7.10)

A further important point is that for the attribute toDate, also appearing in the classes
LeaveRequest and PerformanceReview, the class ToDateDomain is introduced, which is also
the union of the classes LeaveRequest and PerformanceReview, as was discussed in Section
5.7 (p. 76).

7.4.1 Detection

Figure: 2.23, p. 27

OWL 2 Translation: Appendix E.1, p. 165

As discussed in Section 2.2.4 (p. 27), concealed class cohesion is present in classes where a
group of attributes/associations and/or operations are used together in more than one class.
In order to detect concealed class cohesion, an individual of type Thing can be created. On
this inidividual properties are set that correspond to attributes and/or operations that are
suspected to appear in more than one class.

As an example, it will be shown how violations of concealed class cohesion can be de-
tected for Figure 2.23 (p. 27). An individual leaveRequest_calculatePeriodLength of
type LeaveRequest_calculatePeriodLength_integer is created to represent the operation
calculatePeriodLength on the class LeaveRequest. Linking

7.4. Concealed Class Cohesion 132

leaveRequest_calculatePeriodLength to the individual individualUsingPeriodInfo via
the calculatePeriodLength property states that the individual individualUsingPeriod-
Info can perform the operation in question. Furthermore, the properties fromDate and
toDate are asserted for the individual individualUsingPeriodInfo, which implies that the
associated UML class have fromDate and toDate attributes/associations. The associated
OWL 2 assertions are given in listing (7.11).

Individual: performanceReview_calculatePeriodLength
Types:

PerformanceReview_calculatePeriodLength_integer
Individual: leaveRequest_calculatePeriodLength

Types:
LeaveRequest_calculatePeriodLength_integer

Individual: individualUsingPeriodInfo
Types: Thing
Facts:

calculatePeriodLength leaveRequest_calculatePeriodLength,
fromDate "1972-09-10" string,
toDate "2014-08-01" string

(7.11)

Running the reasoner on scenario (7.11) infers that individualUsingPeriodInfo is of
type CalculatePeriodLengthDomain, FromDateDomain and ToDateDomain (see Figure 7.9).
If the inferred class hierarchy is investigated, it is noted that the classes CalculatePeri-

odLengthDomain, FromDateDomain and ToDateDomain are all equivalent (see Figure 7.10
on p. 134). This gives some indication that the combination of attributes and operations,
represented by the properties set on the individual, may define a concealed concept since the
domains of these properties are equivalent.

What is confirmed is that an operation with name calculatePeriodLength appear on
both the classes PerformanceReview and LeaveRequest. Whether these two operations
have the same parameters and return type, is a question that still needs to be confirmed.
This can be checked by creating an individual calculatePeriodLengthOperation of type
Thing and assigning properties to it, which represent the signature of an operation as in
listing (7.12) on p. 134. The property calculatePeriodLength_inv states that the op-
eration is called on instances of class LeaveRequest while property r_integer states that
its return type is of type integer. Since this operation does not take any parameters,
no further properties need to be set to specify it signature. Running the reasoner on
this ontology results in the inferences shown in Figure 7.11 (p. 135). It is inferred that
the individual calculatePeriodLengthOperation is of type CalculatePeriodLengthRange
and R_integerDomain. The inferred class hierarchy (Figure 7.12 on p. 136) shows that

7.4. Concealed Class Cohesion 133

Fi
gu

re
7.
9:

C
la
ss
ifi
ca
tio

n
of

th
e
in
di
vi
du

al
in
di
vi
du
al
Us
in
gP
er
io
dI
nf
o.

7.4. Concealed Class Cohesion 134

Figure 7.10: Inferred equivalences.

the classes CalculatePeriodLengthRange and R_integerDomain are equivalent as well as
that they represent the classes LeaveRequest_calculatePeriodLength and PerformanceRe-

view_calculatePeriodLength. Thus, it can be inferred that the operations calculatePe-
riodLength on the classes LeaveRequest and PerformanceReview have the same signatures.

Individual: leaveRequest
Types: LeaveRequest

Individual: calculatePeriodLengthOperation
Types: Thing
Facts:

calculatePeriodLength_inv leaveRequest,
r_integer 10 integer

(7.12)

In the scenarios (7.11) on p. 132 and (7.12), the operation
calculatePeriodLength():integer on the class LeaveRequest has been considered. Note
that similar inferences can be obtained by considering the same operation on the class
PerformanceReview.

Based on the inferences in Figure 7.9 and the equivalences in Figure 7.10, it may seem as
if it is only possible to detect concealed class cohesion when the domains of the properties in
question are equivalent. Therefore, consider the case where the fromDate attribute/association
appears on the classes LeaveRequest, PerformanceReview and Employee. Hence, the domain
of the fromDate property is the union of the classes LeaveRequest, PerformanceReview and
Employee as stated in (7.13) on p. 136.

7.4. Concealed Class Cohesion 135

Fi
gu

re
7.
11

:
D
et
ec
tin

g
th
e
op

er
at
io
ns

w
ith

th
e
sa
m
e
sig

na
tu
re
.

7.4. Concealed Class Cohesion 136

Figure 7.12: Inferred class hierarchy for operation.

Class: FromDateDomain
EquivalentTo:

LeaveRequest or
PerformanceReview or
Employee

DataProperty: fromDate
Domain: FromDateDomain
Range: string

(7.13)

If the same scenario as in (7.11) on p. 132 is applied, the inferences and inferred class hierar-
chy are obtained as shown in Figure 7.13 and Figure 7.14 (p. 138) respectively. The individual
individualUsingPeriodInfo is classified as being of type CalculatePeriodLengthDomain

and ToDateDomain. If the inferred class hierarchy is inspected again, it is noted that the
class FromDateDomain subsumes the classes CalculatePeriodLengthDomain, Employee and
ToDateDomain. This indicates, from a UML class diagram perspective, that the attributes
fromDate and toDate along with the operation calculatePeriodLength appear together
in the classes LeaveRequest and PerformanceReview. However, the attribute fromDate

appears alone in the class Employee. Hence, a concealed concept is detected in the classes
LeaveRequest and PerformanceReview, but not in the class Employee.

Figure 7.11 (p. 135) and Figure 7.12 (p. 136) have illustrated what inferences can be
expected when the signatures of the operation calculatePeriodLength correspond in the
classes LeaveRequest and PerformanceReview. Now consider instead that for the class
PerformanceReview the operation calculatePeriodLength has the signature calculatePe-
riodLength(newEmployee:boolean):integer. If scenario (7.12) on p. 134 is added to this
ontology, then the inferences as seen in Figure 7.11 and Figure 7.12 will still hold.

Scenario (7.14) can be created to test specifically for the new signature calculate-

PeriodLength(newEmployee:boolean):integer on class PerformanceReview. Running

7.4. Concealed Class Cohesion 137

Fi
gu

re
7.
13

:
C
la
ss
ifi
ca
tio

n
of

th
e
in
di
vi
du

al
in
di
vi
du
al
Us
in
gP
er
io
dI
nf
o
fo
r
th
e
re
de

sig
n.

7.4. Concealed Class Cohesion 138

Figure 7.14: Inferred class hierarchy of the FromDateDomain class.

the reasoner on this scenario results in the inferences shown in Figure 7.15. It infers
that the individual performanceReview_calculatePeriodLength is of type PerformanceRe-
view_calculatePeriodLength_integer only. Consequently, this signature corresponds with
only one operation in the UML class diagram.

Individual: performanceReview
Types: PerformanceReview

Individual: performanceReview_calculatePeriodLength
Types: Thing
Facts:

calculatePeriodLength_inv performanceReview,
newEmployee true boolean,
r_integer 10 integer

(7.14)

7.4.2 Validation

Figure: 2.24, p. 27

OWL 2 Translation: Appendix E.2, p. 167

If scenario (7.15) on p. 141 is applied on the OWL 2 translation (see E.2 on p. 167) of
the redesigned UML class diagram and the reasoner is run, the inferences as shown in Figure
7.16 (p. 140) are obtained. The individual individualUsingPeriodInfo is now classified as
belonging to a single class named Period. Since individualUsingPeriodInfo is classified as
belonging to a single class, it confirms that the combination of properties is used on a single
class only.

7.4. Concealed Class Cohesion 139

Fi
gu

re
7.
15

:
Va

lid
at
in
g
th
e
sig

na
tu
re

of
an

op
er
at
io
n.

7.4. Concealed Class Cohesion 140

Fi
gu

re
7.
16

:
in
di
vi
du
al
Us
in
gP
er
io
dI
nf
o
is

cl
as
sifi

ed
as

be
in
g
of

ty
pe

Pe
ri
od

.

7.5. Low Inheritance Cohesion of Attributes 141

Individual: period_calculatePeriodLength
Types:

Period_calculatePeriodLength_integer
Individual: individualUsingPeriodInfo

Type: Thing
Facts:

calculatePeriodLength period_calculatePeriodLength,
fromDate "1972-09-10" string,
toDate "2014-08-01" string

(7.15)

7.5 Low Inheritance Cohesion of Attributes

Formal Scenario Testing Techniques: Classification, consistent

7.5.1 Detection

Figure: 2.25, p. 28

OWL 2 Translation: Appendix F.1, p. 170

In order to detect low inheritance cohesion, as seen in Figure 2.25 (p. 28), a classification
scenario test is first applied. Listing (7.16) can be used to detect that it is not possible to
assign properties to an individual of type Thing in such a way that it will ever be classified as
being of type Square. The scenario (7.16) classifies the individual square as being of type
Rectangle (see Figure 7.17 on p. 142).

Individual: square
Type: Thing
Facts:

width 10 integer

(7.16)

Secondly, to indicate the problem with the conceptual schema of Figure 2.25 explicitly, the
consistent scenario test as specified in (7.17) is used. In this scenario an individual square
is created with its type set to Square. Moreover, the type is also set to make explicit that
there is no need to set the height property on a Square. Running the reasoner results in the
inconsistency displayed in Figure 7.18.

7.5. Low Inheritance Cohesion of Attributes 142

Figure 7.17: The individual square is classified as being of type Rectangle.

Figure 7.18: Explanation of the inconsistency for square.

Individual: square
Type:

Square,
height exactly 0 integer

(7.17)

7.5.2 Validation

Figure: 2.26, p. 28

OWL 2 Translation: Appendix F.2, p. 170

7.5. Low Inheritance Cohesion of Attributes 143

Figure 7.19: Correct classification of the individual quadrilateral.

Figure 7.20: Individual with height and width properties is classified as a Rectangle.

Individual: quadrilateral
Type: Thing
Facts:

length 10 integer

(7.18)

Individual: quadrilateral
Type: Thing
Facts:

height 6 integer
width 10 integer

(7.19)

If the scenario (7.18) is applied to the OWL 2 translation of the redesigned UML class
diagram (see Appendix F.2 on p. 170), the individual quadrilateral is classified as being
of type Square (see Figure 7.19). If both height and width properties are added to the
quadrilateral individual in scenario (7.19), it is classified as a Rectangle as shown in Figure
7.20. For the redesign, the scenario (7.17) is now consistent. These formal scenario tests
confirm that the Square and Rectangle UML class diagram has been improved.

7.6. Low Inheritance Cohesion of Operations 144

Figure 7.21: Classification based on the fly() operation yields the class Bird.

7.6 Low Inheritance Cohesion of Operations

Formal Scenario Testing Techniques: Classification, consistent

7.6.1 Detection

Figure: 2.27, p. 29

OWL 2 Translation: Appendix F.3, p. 29

Furthermore, the techniques defined here are applied on UML class diagrams and not on code
as is the case with approach of Etzkorn, et. al.

A classification scenario test can be used to determine all the birds that can fly. This
scenario is listed in listing (7.20). To achieve this, an individual bird_fly is created of type
Bird_fly which represents the fly() operation. To represent flying birds, an individual
flyingBirds of type Thing is created to which the property fly is assigned. Running the
reasoner results in flyingBirds being classified as Bird (Figure 7.21). Consulting the inferred
class hierarchy (as seen in Figure 7.22) shows that the class Bird subsumes the classes Penguin
and Eagle. This is incorrect since penguins cannot fly.

Individual: bird_fly
Type: Bird_fly

Individual: flyingBirds
Type: Thing
Facts: fly bird_fly

(7.20)

7.6. Low Inheritance Cohesion of Operations 145

Figure 7.22: The Bird class includes both the Penguin and Eagle classes.

Figure 7.23: Penguins not flying results in an inconsistency.

By applying a consistent scenario test, the problem with the UML class diagram of Figure
2.27 (p. 29) can be made more apparent. Again, in listing (7.21) an individual bird_fly
of type Bird_fly is defined to represent a fly() operation. An individual of type Penguin

is created and the believe that penguins are not suppose to fly are made explicit by adding
the type not (fly some bird_fly). Running the reasoner on this scenario results in the
inconsistency shown in Figure 7.23.

Individual: bird_fly
Type: Bird_fly

Individual: penguin
Type: Penguin,

not (fly some bird_fly)

(7.21)

7.6.2 Validation

Figure: 2.28, p. 29

OWL 2 Translation: Appendix F.4, p. 172

7.6. Low Inheritance Cohesion of Operations 146

Figure 7.24: Only birds of type FlyingBird can fly.

Figure 7.25: Eagles are the only birds of type FlyingBird.

The OWL 2 translation for Figure 2.28 (p. 29) is given in Appendix F.4 (p. 172). The
scenario in (7.20) on p. 144 is rewritten as as (7.22). This results in the classification and
inferred class hierarchy as seen in Figure 7.24 and 7.25 respectively. The classification indicates
that only birds of type FlyingBird can fly and from the inferred class hierarchy it follows
that only eagles are of type FlyingBird.

Individual: flyingBird_fly
Type: FlyingBird_fly

Individual: flyingBirds
Type: Thing
Facts: fly flyingBird_fly

(7.22)

For completeness sake the scenario in (7.22) can be adjusted to classify all birds that can
walk. Figures 7.26 and 7.27 confirm the expectation that both penguins and eagles can walk.

Rewriting scenario (7.21) on p. 145 as (7.23) and running the reasoner over it is now
consistent. This illustrates that the UML class diagram of Figure 2.28 is now in agreement
with the general understanding of eagles and penguins.

7.7. Contribution and Related Research 147

Figure 7.26: All things of type Bird can walk.

Figure 7.27: Both eagles and penguins can walk.

Individual: flyingBird_fly
Type: FlyingBird_fly

Individual: penguin
Type: Penguin,

not (fly some flyingBird_fly)

(7.23)

7.7 Contribution and Related Research

This section gives a synopsis of the contributrions of this chapter (see Section 7.7.1) with
related research being discussed in Section 7.7.2 (p. 148).

7.7.1 Contribution

The contributions of this chapter builds on the work of Eder, et. al. [38]. Briand, et. al. have
levelled the following criticim against the work of Eder, et. al. [21]:

“Within this framework, an analysis of the semantics of a given method or class is
required to determine its degree of method, class or inheritance cohesion. Such
an analysis cannot be automated. If we use this framework to derive cohesion

7.7. Contribution and Related Research 148

Table 7.1: Formal scenario testing techniques used for detection and verfication of heuristics

Heuristic violation Formal scenario testing technique(s) Reference

Separable class cohesion Classification scenario test 7.1, p. 120

Multifaceted class cohesion Inconsistent scenario test 7.2, p. 125

Non-delegated class cohesion Inconsistent scenario test 7.3, p. 127

Concealed class cohesion Classification scenario test 7.4, p. 131

Low inheritance cohesion Classification and consistent scenario tests 7.5, p.141 and
7.6, p. 144

measures, the resulting measures will not be automatically collectable. This is a
severe impediment to their widespread use.”

The contribution of this chapter is to present techniques to detect and validate the cohesion
heuristics defined by Eder, et. al. [38] in a semi-automated fashion. A summary is given of
the heurists and the related formal scenario testing techniques that are used to detect and
validate violations in Table 7.1.

Naturally these heuristics can be detected and corrected through manual means. However,
conceptual schemas in practice are often large and created and maintained over a long period of
time, which makes detecting these heuristics manually difficult and error-prone. Furthermore,
there is substantial variance in modeller expertise in practice, which may result in modellers
having difficulty reasoning about normal forms, as is required for detecting multifaceted- and
non-delegated class cohesion violations [79, 111]. Various database design tools are available
to support database normalization [37], but no tools exist for facilitating the design process
for UML class diagrams. The semi-automated approach discussed in this section, takes the
first tentative steps which could eventually result in providing tool support for the design of
UML class diagrams.

Finally, even though this chapter discussed the various means through which cohesion
related heuristics can be detected and validated, it is worthwhile to bear in mind that none
of these techniques can give indisputable proof of the conceptual schema being correct or
incorrect. However, equipped with the techniques discussed here, a modeller can gain greater
insight into the appropriateness or inappropriateness of a conceptual schema.

7.7.2 Related Research

Most of the work done regarding object-oriented heuristics is based on syntactical analysis
of object-oriented code bases. A detailed discussion in this regard is provided by Lanza, et.
al. [81].

An automated approach to the semantic analysis of code is presented by Etzkorn, et.
al. [39]. Their approach employs a knowledge-based system which is equipped with a natural

7.7. Contribution and Related Research 149

language program understanding system. It parses object oriented code bases and performs
natural language understanding on comments and identifiers found in the code, from which
concepts are extracted which are stored as conceptual graphs in the knowledge-base. Semantic
analysis of a class involves understanding each method separately and storing a conceptual
graph in the knowledge base that is representative of the meaning of the method. They
introduce a metric, called the Logical Related of Methods (LORM), which gives an indication
of how related the concepts are for a pair of methods. Further key metrics that are provided
are a metric for measuring the complexity of a class and the overlap in functionality for a pair
of classes.

The main differences between the research presented in this chapter and that of Etzkorn,
et. al. are that the current research makes no attempt to provide metrics to measure semantics
or to provide full automation. Rather, it provides a set of techniques which can be applied by
a modeller in order to detect classification violations. Furthermore, the techniques defined
here are applied on UML class diagrams and not on code, as is the case with approach of
Etzkorn, et. al.

Chapter 8

Conclusion

In this chapter a concise synopsis is given of the contributions of this dissertation (see Section
8.1) and in Section 8.2 (p. 152) avenues for further research are discussed.

8.1 Contribution

The contributions of this dissertation are clarified by explaining

1. the gap in existing research (see the next section),

2. how this gap is addressed by the contributions of this dissertation (see Section 8.1.2 on
p. 150) and

3. the value proposition of the research presented here (see Section 8.1.3 on p. 151).

In Section 8.1.4 (p. 151) presentations and publications that form part of this research
effort are included.

8.1.1 The Research Gap Identified

As mentioned in Section 1.4.2 (p. 9) and illustrated in Chapter 6 (p. 92), existing DL
translations of UML class diagrams are aimed at verification rather than validation. That is,
existing DL translations of UML class diagrams can detect logical inconsistencies in UML
class diagrams, but they cannot comment on whether the UML class diagram is a cohesive
and an accurate representation of the business requirements.

8.1.2 How the Gap is addressed by this Research

Formal scenario testing is an attempt to at least in part address the gap as defined in the
previous section. The high-level contributions with regards to formal scenario testing are
listed below with references to where the detailed contributions can be found.

1. The formal scenario testing approach and related techniques and guidelines are defined
in Chapter 6 (p. 92). Feedback is also given on a small case study where formal scenario
testing has been used on a real-world project.

150

8.1. Contribution 151

2. Formal scenario testing builds on existing research which translates UML class diagrams
to DLs and OWL 2. However, not all UML class diagram features (that are of importance
to formal scenario testing) have been translated to DLs and OWL 2. Also, existing
translations are not always sufficient for the requirements of formal scenario testing.
In Chapter 5 (p. 60) existing UML to DL/OWL 2 translations are extended for the
purpose of formal scenario testing.

3. In Chapter 7 (p. 119) it is illustrated how formal scenario testing can be applied to give
evidence of the cohesiveness, or lack of cohesiveness, of the classes and class hierarchies
found in a UML class diagram.

8.1.3 The Value Proposition of this Research

Throughout this dissertation, the focus has been on the requirements engineering phase of the
SDLC (see Section 1.1 on p. 1). As stated in Chapter 1 (p. 1), arriving at a complete and
consistent software specification is one of the most challenging tasks in software engineering.
Moreover, detecting and correcting errors during the requirements engineering phase is 100
times cheaper than when the software is in production. Existing DL translations of UML
class diagrams contribute to this effort by enabling formal verification of UML class diagrams.
Formal scenario testing extends this effort by facilitating formal validation of UML class
diagrams. Chapter 6 (p. 92) introduced formal scenario testing and showed how it can be
used to validate UML class diagrams. Chapter 7 (p. 119) showed how formal scenario testing
can be used to test various object-oriented cohesion heuristics.

What has not been made explicit is that formal scenario testing can be applied to ontology
engineering. Indeed, Falbo, et. al. [41] observe that in ontology engineering the ontology
development process should be quite similar to that of the software development process of
software engineering. In a similar vein as for software engineering, can formal scenario testing
be utilized in ontology engineering to gather evidence of whether an ontology is in agreement
with the business requirements or not.

8.1.4 Presentation and Publication in Support of this Dissertation

The work in this dissertation is supported by the following presentation and publication:

Presentation [50] H. Harmse, A. Britz, and A. Gerber. Scenario Testing on UML Class
Diagrams using Description Logics. "http://www.cair.za.net/research/outputs/ scenario-
testing-uml-class-diagrams-using-description-logic", 2013.

Publication [51] H. Harmse, K. Britz, A. Gerber, and D. Moodley. Scenario testing using
formal ontologies. In G. Guizzardi, O. Pastor, Y. Wand, S. D. Cesare, F. Gailly,
M. Lycett, and C. Partridge, editors, 1st Joint Workshop ONTO.COM / ODISE on

8.2. Future Research 152

Ontologies in Conceptual Modeling and Information Systems Engineering, volume 1301
of CEUR Workshop Proceedings. CEUR Workshop Proceedings, 2014. CEUR-WS.org,
2014.

8.2 Future Research

In Section 6.2 (p. 94) techniques have been defined for constructing formal scenario tests in
an ad hoc fashion. If a generic methodology can be defined for constructing these scenario
tests, it will pave the way towards (semi-)automation and the eventual creation of tools in
support of formal scenario testing.

The research presented in this dissertation has focussed on the creation of a complete and
consistent UML class diagram that is an accurate representation of the business requirements.
Constraints expressed in the Object Constraint Language (OCL) [3] have been explicitly
excluded from this dissertation due to scope constraints. The usefulness of OCL in enriching
the semantics of UML class diagrams is undeniable. It can be used to define constraints [3]
such as class invariants, which are constraints that apply to every class instance as a whole [89],
and pre- and post conditions on operations, which are required to model the functionality
of a software system [116]. However, it is well-known that OCL is undecidable. Queralt, et.
al. [100] have defined a fragment of OCL, called OCL-lite, which is decidable and which
guarantees finite satisfiability. Investigating how OCL-lite can be incorporated into formal
scenario testing will improve the usefulness of formal scenario testing.

Section 6.4 (p. 108) discussed a small case study in which formal scenario testing have been
used on a real-world project. In order to understand the potential benefits and shortcomings
of the formal scenario testing approach described here, it is imperative to conduct larger scale
case studies. The feedback from these case studies will be vital in fine-tuning formal scenario
testing for maximum benefit.

Section 2.2 (p. 21) explained how ideas from data normalization can be applied to improve
class cohesion. From a class cohesion perspective only second and third normal forms have
been considered in the literature [38]. The question is: “Can class cohesion benefit from
taking into consideration higher normal forms?”.

8.3 Summary

This chapter gave a brief overview of the research gap that was identified and explained at a
high-level how formal scenario testing, the main contribution of this dissertation, addresses
this gap.

Appendices

153

Appendix A

RatesConfig Class Diagram Translated to OWL 2

Here we provide the complete translation of the UML class diagram of Figure 6.17 to OWL 2
Manchester Syntax [57].

Class: ChargeType
DisjointUnionOf: HotelChargeType,

PAXChargeType, RoomTypeChargeType
Class: CriterionType

DisjointUnionOf: InterleadingCriterionType,
BlockBookingCriterionType, ChannelCriterionType

Class: RateConfig
SubClassOf:

chargeType exactly 1 Thing,
criterionType exactly 1 Thing

DisjointUnionOf: InterleadingHotelRateConfig,
BlockBookingHotelRateConfig, ChannelHotelRateConfig,
ChannelPAXRateConfig, ChannelRoomTypeRateConfig
BlockBookingRoomTypeRateConfig

ObjectProperty: chargeType
Domain: RateConfig
Range: ChargeType

ObjectProperty: criterionType
Domain: RateConfig
Range: CriterionType

Class: HotelChargeType
SubClassOf: ChargeType

Class: PAXChargeType
SubClassOf: ChargeType

Class: RoomTypeChargeType
SubClassOf: ChargeType

154

155

Class: InterleadingCriterionType
SubClassOf: CriterionType

Class: BlockBookingCriterionType
SubClassOf: CriterionType

Class: ChannelCriterionType
SubClassOf: CriterionType

Class: InterleadingHotelRateConfig
SubClassOf: RateConfig,

hotelChargeType exactly 1 Thing,
interleadingCriterionType exactly 1 Thing

Class: BlockBookingHotelRateConfig
SubClassOf: RateConfig,

hotelChargeType exactly 1 Thing,
blockBookingCriterionType exactly 1 Thing

Class: ChannelHotelRateConfig
SubClassOf: RateConfig,

hotelChargeType exactly 1 Thing,
channelCriterionType exactly 1 Thing

Class: ChannelPAXRateConfig
SubClassOf: RateConfig,

paxChargeType exactly 1 Thing,
channelCriterionType exactly 1 Thing

Class: ChannelRoomTypeRateConfig
SubClassOf: RateConfig,

roomTypeChargeType exactly 1 Thing,
channelCriterionType exactly 1 Thing

Class: BlockBookingRoomTypeRateConfig
SubClassOf: RateConfig,

roomTypeChargeType exactly 1 Thing,
blockBookingCriterionType exactly 1 Thing

ObjectProperty: hotelChargeType
SubPropertyOf:chargeType
Domain: BlockBookingHotelRateConfig

or ChannelHotelRateConfig
or InterleadingHotelRateConfig

Range: HotelChargeType

156

ObjectProperty: paxChargeType
SubPropertyOf:chargeType
Domain: ChannelPAXRateConfig
Range: PAXChargeType

ObjectProperty: roomTypeChargeType
SubPropertyOf:chargeType
Domain: BlockBookingRoomTypeRateConfig

or ChannelRoomTypeRateConfig
Range: RoomTypeChargeType

ObjectProperty: channelCriterionType
SubPropertyOf: criterionType
Domain: ChannelHotelRateConfig

or ChannelPAXRateConfig
or ChannelRoomTypeRateConfig

Range: ChannelCriterionType
ObjectProperty: interleadingCriterionType

SubPropertyOf: criterionType
Domain: InterleadingHotelRateConfig
Range: InterleadingCriterionType

ObjectProperty: blockBookingCriterionType
SubPropertyOf: criterionType
Domain: BlockBookingHotelRateConfig

or BlockBookingRoomTypeRateConfig
Range: BlockBookingCriterionType

DisjointProperties: hotelChargeType,
paxChargeType, roomTypeChargeType

DisjointProperties: blockBookingCriterionType,
channelCriterionType, interleadingCriterionType

Appendix B

Separable Class Cohesion Examples Translated to
OWL 2

B.1 Translation of Employee Class with Separable Class Cohe-
sion

Here we provide the complete translation of the UML class diagram of Figure 2.11 to OWL 2
Manchester Syntax [57].

DataProperty: employeeCode
Domain: Employee
Range: string

DataProperty: employeeName
Domain: Employee
Range: string

DataProperty: salary
Domain: Employee
Range: integer

DataProperty: projectName
Domain: Employee
Range: string

DataProperty: projectCost1
Domain: Employee
Range: integer

DataProperty: projectCost2
Domain: Employee
Range: integer

ObjectProperty: calculateSalaryIncrease_inv
Domain: Employee_calculateSalaryIncrease_integer
Range: Employee

157

B.1. Translation of Employee Class with Separable Class Cohesion 158

ObjectProperty: calculateSalaryIncrease
InverseOf: calculateSalaryIncrease_inv

DataProperty: increase
Domain: Employee_calculateSalaryIncrease_integer
Range: integer

ObjectProperty: calculateProjectCost_inv
Domain: Employee_calculateProjectCost_integer
Range: Employee

ObjectProperty: calculateProjectCost
InverseOf: calculateProjectCost_inv

DataProperty: r_integer
Domain: Employee_calculateSalaryIncrease_integer

or Employee_calculateProjectCost_integer
Range: integer

Class: Employee
SubClassOf:

employeeCode exactly 1 string,
employeeName exactly 1 string,
salary exactly 1 integer,
projectName exactly 1 string,
projectCost1 exactly 1 integer,
projectCost2 exactly 1 integer,
calculateProjectCost some Employee_calculateProjectCost_integer,
calculateSalaryIncrease some Employee_calculateSalaryIncrease_integer

Class: Employee_calculateSalaryIncrease_integer
SubClassOf:

calculateSalaryIncrease_inv exactly 1 Thing,
increase exactly 1 integer,
r_integer exactly 1 integer

HasKey:
calculateSalaryIncrease_inv, increase

Class: Employee_calculateProjectCost_integer
SubClassOf:

calculateProjectCost_inv exactly 1 Thing,
r_integer exactly 1 integer

HasKey:
calculateProjectCost_inv

B.2. Translation of Redesigned Employee Class 159

B.2 Translation of Redesigned Employee Class

Here we provide the complete translation of the UML class diagram of Figure 2.13 to OWL 2
Manchester Syntax [57].

DataProperty: employeeCode
Domain: Employee
Range: string

DataProperty: employeeName
Domain: Employee
Range: string

DataProperty: salary
Domain: Employee
Range: integer

DataProperty: projectName
Domain: Project
Range: string

DataProperty: projectCost1
Domain: Project
Range: integer

DataProperty: projectCost2
Domain: Project
Range: integer

ObjectProperty: calculateSalaryIncrease_inv
Domain: Employee_calculateSalaryIncrease_integer
Range: Employee

ObjectProperty: calculateSalaryIncrease
InverseOf: calculateSalaryIncrease_inv

DataProperty: increase
Domain: Employee_calculateSalaryIncrease_integer
Range: integer

B.2. Translation of Redesigned Employee Class 160

ObjectProperty: calculateProjectCost_inv
Domain: Project_calculateProjectCost_integer
Range: Project

ObjectProperty: calculateProjectCost
InverseOf: calculateProjectCost_inv

DataProperty: r_integer
Domain: Employee_calculateSalaryIncrease_integer

or Project_calculateProjectCost_integer
Range: integer

Class: Employee
SubClassOf:

employeeCode max 1 string,
employeeName max 1 string,
salary max 1 integer,
calculateSalaryIncrease some Employee_calculateSalaryIncrease_integer

DisjointWith: Project

Class: Project
SubClassOf:

projectName max 1 string,
projectCost1 max 1 integer,
projectCost2 max 1 integer,
calculateProjectCost some Project_calculateProjectCost_integer

DisjointWith: Employee

Class: Employee_calculateSalaryIncrease_integer
SubClassOf:

calculateSalaryIncrease_inv exactly 1 Thing,
increase exactly 1 integer,
r_integer exactly 1 integer

HasKey:
calculateSalaryIncrease_inv, increase

Class: Project_calculateProjectCost_integer
SubClassOf:

calculateProjectCost_inv exactly 1 Thing,
r_integer exactly 1 integer

HasKey:
calculateProjectCost_inv

Appendix C

Multifaceted Class Cohesion Examples Translated
to OWL 2

C.1 Translation of ContactInformation Class with Multifaceted
Class Cohesion

Here we provide the complete translation of the UML class diagram of Figure 2.15 to OWL 2
Manchester Syntax [57].

ObjectProperty: companyAddress
Domain: ContactInformation
Range: Address

DataProperty: companyName
Domain: ContactInformation
Range: string

DataProperty: phoneNumber
Domain: ContactInformation
Range: string

DataProperty: contactPerson
Domain: ContactInformation
Range: string

Class: ContactInformation
SubClassOf:

companyName exactly 1 string,
contactPerson exactly 1 string,
companyAddress exactly 1 Thing,
phoneNumber exactly 1 string

HasKey:
companyName, contactPerson

DisjointWith:
Address

161

C.2. Translation of Redesigned ContactInformation Class 162

Class: Address
DisjointWith:

ContactInformation

C.2 Translation of Redesigned ContactInformation Class

Here we provide the complete translation of the UML class diagram of Figure 2.17 to OWL 2
Manchester Syntax [57].

ObjectProperty: companyAddress
Domain: Company
Range: Address

ObjectProperty: company
Domain: ContactInformation
Range: Company

DataProperty: companyName
Domain: Company
Range: string

DataProperty: phoneNumber
Domain: ContactInformation
Range: string

DataProperty: contactPerson
Domain: ContactInformation
Range: string

Class: Address
Class: Company

SubClassOf:
companyName exactly 1 string,
companyAddress exactly 1 Thing

HasKey:
companyName

Class: ContactInformation
SubClassOf:

company exactly 1 Thing,
contactPerson exactly 1 string,
phoneNumber exactly 1 string,

HasKey:
company, contactPerson

DisjointClasses:
Address, Company, ContactInformation

Appendix D

Non-delegated Class Cohesion Examples Translated
to OWL 2

D.1 Translation of Employee Class with Non-delegated Class
Cohesion

Here we provide the complete translation of the UML class diagram of Figure 2.19 to OWL 2
Manchester Syntax [57].

DataProperty: name
Domain: Employee
Range: string

DataProperty: dateOfBirth
Domain: Employee
Range: string

DataProperty: currentProject
Domain: Employee
Range: string

DataProperty: projectManager
Domain: Employee
Range: string

Class: Employee
SubClassOf:

name exactly 1 string,
dateOfBirth exactly 1 string,
currentProject exactly 1 string,
projectManager exactly 1 string

HasKey:
name

163

D.2. Translation of Redesigned Employee Class 164

D.2 Translation of Redesigned Employee Class

Here we provide the complete translation of the UML class diagram of Figure 2.21 to OWL 2
Manchester Syntax [57].

DataProperty: name
Domain: NameDomain
Range: string

DataProperty: dateOfBirth
Domain: Employee
Range: string

DataProperty: currentProject
Domain: Employee
Range: string

DataProperty: projectManager
Domain: Project
Range: string

ObjectProperty: currentProject
Domain: Employee
Range: Project

Class: NameDomain
EquivalentTo:

Employee or Project
Class: Employee

SubClassOf:
name exactly 1 string,
dateOfBirth exactly 1 string,
currentProject exactly 1 Thing

HasKey:
name

DisjointWith:
Project

Class: Project
SubClassOf:

name exactly 1 string,
projectManager exactly 1 string

HasKey:
name

DisjointWith:
Employee

Appendix E

Concealed Class Cohesion Examples Translated to
OWL 2

E.1 Translation of LeaveRequest and PerformanceReview Classes
with Concealed Class Cohesion

Here we provide the complete translation of the UML class diagram of Figure 2.23 to OWL 2
Manchester Syntax [57].

Class: PerformanceReview
SubClassOf:

employee exactly 1 Thing,
fromDate exactly 1 string,
toDate exactly 1 string,
manager exactly 1 Thing,
calculatePeriodLength

some PerformanceReview_calculatePeriodLength_integer
HasKey:

employee, fromDate, toDate
Class: LeaveRequest

SubClassOf:
id exactly 1 integer,
reason exactly 1 string,
fromDate exactly 1 string,
toDate exactly 1 string,
status exactly 1 Thing,
calculatePeriodLength

some LeaveRequest_calculatePeriodLength_integer
HasKey:

id
Class: Employee
Class: LeaveRequestStatus

165

E.1. Translation of LeaveRequest and PerformanceReview Classes with Concealed Class
Cohesion 166

ObjectProperty: employee
Domain: PerformanceReview
Range: Employee

ObjectProperty: manager
Domain: PerformanceReview
Range: Employee

DataProperty: fromDate
Domain: FromDateDomain
Range: string

DataProperty: toDate
Domain: ToDateDomain
Range: string

DataProperty: id
Domain: LeaveRequest
Range: integer

DataProperty: reason
Domain: LeaveRequest
Range: string

ObjectProperty: status
Domain: LeaveRequest
Range: LeaveRequestStatus

Class: CalculatePeriodLengthDomain
EquivalentTo:

LeaveRequest or
PerformanceReview

Class: CalculatePeriodLengthRange
EquivalentTo:

LeaveRequest_calculatePeriodLength_integer or
PerformanceReview_calculatePeriodLength_integer

Class: FromDateDomain
EquivalentTo:

LeaveRequest or
PerformanceReview

Class: ToDateDomain
EquivalentTo:

LeaveRequest or
PerformanceReview

E.2. Translation of Redesigned LeaveRequest and PerformanceReview Classes 167

Class: R_integerDomain
EquivalentTo:

LeaveRequest_calculatePeriodLength_integer or
PerformanceReview_calculatePeriodLength_integer

DataProperty: r_integer
Domain: R_integerDomain
Range: integer

ObjectProperty: calculatePeriodLength_inv
InverseOf: calculatePeriodLength

ObjectProperty: calculatePeriodLength
Domain: CalculatePeriodLengthDomain
Range: CalculatePeriodLengthRange

Class: LeaveRequest_calculatePeriodLength_integer
SubClassOf:

calculatePeriodLength_inv exactly 1 Thing,
r_integer exactly 1 integer

HasKey:
calculatePeriodLength_inv

Class: PerformanceReview_calculatePeriodLength_integer
SubClassOf:

calculatePeriodLength_inv exactly 1 Thing,
r_integer exactly 1 integer

HasKey:
calculatePeriodLength_inv

DisjointClasses: Employee, LeaveRequest, LeaveRequestStatus,
PerformanceReview

E.2 Translation of Redesigned LeaveRequest and PerformanceReview

Classes

Here we provide the complete translation of the UML class diagram of Figure 2.24 to OWL 2
Manchester Syntax [57].

E.2. Translation of Redesigned LeaveRequest and PerformanceReview Classes 168

Class: PerformanceReview
SubClassOf:

employee exactly 1 Thing,
period exactly 1 Thing,
manager exactly 1 Thing

HasKey:
employee, period

Class: LeaveRequest
SubClassOf:

id exactly 1 integer,
reason exactly 1 string,
period exactly 1 Thing,
status exactly 1 Thing

HasKey:
id

ObjectProperty: employee
Domain: PerformanceReview
Range: Employee

ObjectProperty: manager
Domain: PerformanceReview
Range: Employee

ObjectProperty: period
Domain: PeriodDomain
Range: Period

DataProperty: id
Domain: LeaveRequest
Range: integer

DataProperty: reason
Domain: LeaveRequest
Range: string

ObjectProperty: status
Domain: LeaveRequest
Range: LeaveRequestStatus

E.2. Translation of Redesigned LeaveRequest and PerformanceReview Classes 169

Class: Employee
Class: LeaveRequestStatus
Class: Period

SubClassOf:
fromDate exactly 1 string,
toDate exactly 1 string,
calculatePeriodLength

some Period_calculatePeriodLength_integer

Class: PeriodDomain
EquivalentTo:

LeaveRequest or
PerformanceReview

DataProperty: r_integer
Domain: Period_calculatePeriodLength_integer
Range: integer

ObjectProperty: calculatePeriodLength_inv
InverseOf: calculatePeriodLength

ObjectProperty: calculatePeriodLength
Domain: Period
Range: Period_calculatePeriodLength_integer

Class: Period_calculatePeriodLength_integer
SubClassOf:

calculatePeriodLength_inv exactly 1 Thing,
r_integer exactly 1 integer

HasKey:
calculatePeriodLength_inv

DataProperty: fromDate
Domain: Period
Range: string

DataProperty: toDate
Domain: Period
Range: string

DisjointClasses: Employee, LeaveRequest, LeaveRequestStatus
PerformanceReview, Period

Appendix F

Low Inheritance Cohesion Examples Translated to
OWL 2

F.1 Translation of Rectangle and Square Classes with Low In-
heritance Cohesion

Here we provide the complete translation of the UML class diagram of Figure 2.25 to OWL 2
Manchester Syntax [57].

DataProperty: width
Domain: Rectangle
Range: integer

DataProperty: height
Domain: Rectangle
Range: integer

Class: Quadrilateral
Class: Rectangle

SubClassOf:
Quadrilateral
width exactly 1 integer,
height exactly 1 integer

Class: Square
SubClassOf: Rectangle

F.2 Translation of Redesigned Rectangle and Square Classes

Here we provide the complete translation of the UML class diagram of Figure 2.26 to OWL 2
Manchester Syntax [57].

170

F.3. Translation of Bird Inheritance Hierarchy with Low Inheritance Cohesion 171

DataProperty: width
Domain: Rectangle
Range: integer

DataProperty: height
Domain: Rectangle
Range: integer

DataProperty: length
Domain: Square
Range: integer

Class: Quadrilateral
Class: Square

SubClassOf: Quadrilateral,
length exactly 1 integer

Class: Rectangle
SubClassOf: Quadrilateral,

width exactly 1 integer
height exactly 1 integer

F.3 Translation of Bird Inheritance Hierarchy with Low In-
heritance Cohesion

Here we provide the complete translation of the UML class diagram of Figure 2.27 to OWL 2
Manchester Syntax [57].

ObjectProperty: fly_inv
InverseOf: fly

ObjectProperty: fly
Domain: Bird
Range: Bird_fly

ObjectProperty: walk_inv
InverseOf: walk

ObjectProperty: walk
Domain: Bird
Range: Bird_walk

F.4. Translation of Redesigned Bird Inheritance Hierarchy 172

Class: Bird
SubClassOf:

fly some Bird_fly
walk some Bird_walk

Class: Eagle
SubClassOf: Bird

Class: Penguin
SubClassOf: Bird

Class: Bird_fly
SubClassOf: fly_inv exactly 1 Thing

Class: Bird_walk
SubClassOf: walk_inv exactly 1 Thing

F.4 Translation of Redesigned Bird Inheritance Hierarchy

Here we provide the complete translation of the UML class diagram of Figure 2.28 to OWL 2
Manchester Syntax [57].

ObjectProperty: fly_inv
InverseOf: fly

ObjectProperty: fly
Domain: FlyingBird
Range: FlyingBird_fly

ObjectProperty: walk_inv
InverseOf: walk

ObjectProperty: walk
Domain: Bird
Range: Bird_walk

Class: FlyingBird_fly
SubClassOf: fly_inv exactly 1 Thing

Class: Bird_walk
SubClassOf: walk_inv exactly 1 Thing

F.4. Translation of Redesigned Bird Inheritance Hierarchy 173

Class: Bird
SubClassOf:

walk some Bird_walk
Class: FlyingBird

SubClassOf: Bird
fly some FlyingBird_fly

Class: FlightlessBird
SubClassOf: Bird

Class: Eagle
SubClassOf: FlyingBird

Class: Penguin
SubClassOf: FlightlessBird

Bibliography

[1] protégé. url=http://protege.stanford.edu/.

[2] TopBraid Composer: Meastro Edition. url=http://www.topquadrant.com/tools/IDE-
topbraid-composer-maestro-edition/.

[3] OMG Object Constraint Language (Version 2.4). Technical Report formal/2014-02-01,
Object Management Group, February 2014.

[4] A. Artale, D. Calvanese, and A. Ibáñez-García. Full satisfiability of UML class diagrams.
In J. Parsons, M. Saeki, P. Shoval, C. Woo, and Y. Wand, editors, Conceptual Modeling
– ER 2010, volume 6412 of Lecture Notes in Computer Science, pages 317–331. Springer
Berlin Heidelberg, 2010.

[5] A. Artale, D. Calvanese, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev. Reasoning
over Extended ER Models. In C. Parent, K. Schewe, V. C. Storey, and B. Thalheim,
editors, Conceptual Modeling - ER 2007, volume 4801 of Lecture Notes in Computer
Science, pages 277–292. Springer Berlin Heidelberg, 2007.

[6] F. Baader. What’s new in Description Logics. Informatik-Spektrum, 34(5):434–442,
2011.

[7] F. Baader and P. Hanschke. A scheme for integrating concrete domains into concept
languages. In J. Mylopoulos and R. Reiter, editors, Proceedings of the 12th International
Joint Conferences on Artificial Intelligence, pages 452–457. Morgan Kaufmann Publishers
Inc., 1991.

[8] F. Baader and W. Nutt. Basic description logics. In F. Baader, D. Calvanese, D. L.
McGuinness, D. Nardi, and P. Patel-Schneider, editors, The description logic handbook:
theory, implementation and applications, pages 43–95. Cambridge University Press, New
York, USA, 2003.

[9] F. Barbier, B.Henderson-Sellers, A. L. Parc, and J. Bruel. Formalization of the whole-
part relationship in the Unified Modeling Language. IEEE Transactions on Software
Engineering, 29(5):459–470, 2003.

174

BIBLIOGRAPHY 175

[10] D. Berardi. Using DLs to reason on UML class diagrams. In G. Görz, V. Haarslev,
C. Lutz, and R. Möller, editors, Proceedings of the KI-2002 Workshop on Applications
of Description Logics, volume 63. CEUR Worksop Proceedings, September 2002.

[11] D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on UML class diagrams
using description logic based systems. In G. Görz, V. Haarslev, C. Lutz, and R. Möller,
editors, Proceedings of the KI-2001 Workshop on Applications of Description Logics,
volume 44. CEUR Worksop Proceedings, 2001.

[12] D. Berardi, D. Calvanese, and G. D. Giacomo. Reasoning on UML class diagrams is
EXPTIME-hard. In D. Calvanese, G. D. Giacomo, and E. Franconi, editors, Proceedings
of the 16th International Worksop on Description Logics, volume 81. CEUR Workshop
Proceedings, 2003.

[13] D. Berardi, D. Calvanese, and G. D. Giacomo. Reasoning on UML class diagrams.
Artificial Intelligence, 168(1-2):70–118, Oct. 2005.

[14] D. Bildhauer. On the relationships between subsetting, redefinition and association
specialization. In D. Costal, C. Gómez, and G. Guizzardi, editors, Databases and
Information Systems: Proceedings of the Ninth International Baltic Conference, Riga,
Latvia, 2010.

[15] T. Bittner and M. Donnelly. Computational ontologies of parthood, componenthood,
and containment. In L. P. Kaelbling and A. Saffiotti, editors, Proceedings of the 19th
International Joint Conference on Artificial Intelligence, pages 382–387. Professional
Book Center, 2005.

[16] B. Boehm and V. Basili. Software Defect Reduction Top 10 List. Computer, 34(1):135–
137, January 2001.

[17] B. W. Boehm. Guidelines for verifying and validating software requirements and design
specifications. In P. A. Samet, editor, Proceedings of the European Conference on Applied
Information Technology of the International Federation for Information Processing, pages
711–719. North-Holland Publishing Company, September 1979.

[18] G. Booch, R. A. Maksimchuk, M. W. Engel, B. J. Young, J. Conallen, and K. A. Houston.
Object-oriented analysis and design with applications. Addison-Wesley Professional, 3rd
edition, April 2007.

[19] A. Borgida. On the relative expressiveness of description logics and predicate logics.
Artificial Intelligence, 82(1-2):353–367, 1996.

BIBLIOGRAPHY 176

[20] B. Braga, J. Almeida, G. Guizzardi, and A. Benevides. Transforming OntoUML
into Alloy: towards conceptual model validation using a lightweight formal method.
6(1-2):55–63, March 2010.

[21] L. C. Briand, J. W. Daly, and J. Wüst. A unified framework for cohesion measurement
in object-oriented systems. Empirical Software Engineering, 3(1):65–117, 1998.

[22] F. P. Brooks. No silver bullet: essence and accidents of software engineering. Computer,
20(4):10–19, 1987.

[23] J. Cabot, R. Clariso, and D. Riera. On the verification of UML/OCL class diagrams
using constraint programming. Journal of Systems and Software, 93:1–23, July 2014.

[24] A. Calí, D. Calvanese, G. De Giacomo, and M. Lenzerini. Reasoning on UML class
diagrams in description logics. In R. Gore, A. Leitsch, and T. Nipkow, editors, Proceedings
of the International Joint Conference on Automated Reasoning Workshop on Precise
Modelling and Deduction for Object-oriented Software Development (PMD), volume
2083 of Lecture Notes in Artificial Intelligence. Springer, 2001.

[25] A. Calì, D. Calvanese, G. D. Giacomo, and M. Lenzerini. A formal framework for
reasoning on UML class diagrams. In M. Hacid, Z. W. Raś, D. A. Zighed, and
Y. Kodratoff, editors, Proceedings of the International Symposium on Methodologies for
Intelligent Systems, volume 2366 of Lecture Notes in Computer Science, pages 503–513.
Springer Berlin Heidelberg, 2002.

[26] D. Calvanese and G. D. Giacomo. An introduction to description logics. In F. Baader,
D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors, The description logic
handbook: theory, implementation, and applications. Cambridge University Press, 2003.

[27] D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-Muro,
and R. Rosati. Ontologies and databases: The DL-Lite approach. In S. Tessaris,
E. Franconi, T. Eiter, C. Gutierrez, S. Handschuh, M. Rousset, and R. A. Schmidt,
editors, Reasoning Web. Semantic Technologies for Information Systems, volume 5689
of Lecture Notes in Computer Science, pages 255–356. Springer Berlin Heidelberg, 2009.

[28] D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-Lite:
Tractable Description Logics for Ontologies. In A. Cohn, editor, Proceedings of the
20th National Conference on Artificial Intelligence, volume 2 of Assosiation for the
Advancement of Artificial Intelligence, pages 602–607. AAAI Press, 2005.

[29] D. Calvanese, M. Lenzerini, and D. Nardi. Description logics for conceptual data
modeling. In J. Chomicki and G. Saake, editors, Logics for Databases and Information

BIBLIOGRAPHY 177

Systems, volume 436 of The Springer International Series in Engineering and Computer
Science, pages 229–263. Springer US, 1998.

[30] A. Cockburn. Writing effective use cases. Addison-Wesley Professional, 2000.

[31] D. Costal, C. Gómez, and G. Guizzardi. Formal semantics and ontological analysis
for understanding subsetting, specialization and redefinition of associations in UML.
In M. A. Jeusfeld, L. M. L. Delcambre, and T. Ling, editors, Conceptual Modeling –
ER 2011, volume 6998 of Lecture Notes in Computer Science, pages 189–203. Springer
Berlin Heidelberg, 2011.

[32] C. J. Date. Relational database: selected writings. Addison Wesley Publishing Company,
1986.

[33] C. J. Date. The relational database dictionary. FirstPress. Apress, 2008.

[34] C. Denger and T. Olsson. Quality assurance in requirements engineering. Springer
Berlin Heidelberg, 2005.

[35] K. Dentler, R. Cornet, A. ten Teije, and N. de Keizer. Comparison of reasoners for large
ontologies in the OWL 2 EL profile. Semantic Web Journal, 2(2):71–87, 2011.

[36] F. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasoning in description logics. In
G. Brewka, editor, Principles of Knowledge Representation, pages 191–236. Center for
the Study of Language and Information, 1996.

[37] H. Du and L. Wery. Micro: a normalization tool for relational database designers.
Journal of Network and Computer Applications, 22(4):215–232, 1999.

[38] J. Eder, G. Kappel, and M. Schrefl. Coupling and cohesion in object-oriented systems.
Technical report, University of Klagenfurt.

[39] L. H. Etzkorn and H. S. Delugach. Towards a semantic metrics suite for object-oriented
design. In Q. Li, D. Firesmith, R. Riehle, and B. Meyer, editors, Proceedings of the 34th
Technology of Object-Oriented Languages and Systems, pages 71–80. IEEE, 2000.

[40] E. Evans. Domain-driven design: tackling complexity in the heart of software. Addison-
Wesley Professional, 2003.

[41] R. Falbo, G. Guizzardi, A. Gangemi, and V. Presutti. Ontology patterns: clarifying
concepts and terminology. In A. Gangemi, M. Gruninger, K. Hammar, L. Lefort,
V. Presutti, and A. Scherp, editors, 4th International Workshop on Ontologies and
Semantic Patterns, volume 1188. CEUR Worksop Proceedings, 2013.

BIBLIOGRAPHY 178

[42] M. Fowler. Analysis patterns - reusable object models. Addison-Wesley Professiona,
1997.

[43] M. Fowler. UML distilled: a brief guide to the Standard Object Modeling Language.
Addison-Wesley Professional, 3rd edition, 2003.

[44] G. D. Giacomo. Description logics for conceptual data modeling in UML.
"http://www.eecs.yorku.ca/course_archive/2010-11/F/6390A/DLmaterial/

DeGiacomo-2-uml-dls2up.pdf".

[45] C. Golbreich, M. Horridge, I. Horrocks, B. Motik, and R. Shearer. OBO and OWL:
Leveraging semantic web technologies for the life sciences. In K. Aberer, P. Cudré-
Mauroux, K. Choi, N. Noy, D. Allemang, K. Lee, L. Nixon, J. Golbeck, P. Mika,
D. Maynard, R. Mizoguchi, and G. Schreiber, editors, The Semantic Web, volume 4825
of Lecture Notes in Computer Science, pages 169–182. Springer-Verlag Heidelberg Berlin,
2007.

[46] H. Gomaa. Software modeling and design: UML, use cases, patterns, and software
architectures. Cambridge University Press, March 2011.

[47] B. C. Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, and U. Sattler. OWL
2: the next step for OWL. Web Semantics: Science, Services and Agents on the World
Wide Web, 6(4):309–322, November 2008.

[48] G. Guizzardi. Ontological foundations for structural conceptual models. PhD thesis,
2005.

[49] T. A. Halpin and H. A. Proper. Subtyping and polymorphism in object-role modelling.
Data & Knowledge Engineering, 15(3):251–281, 1995.

[50] H. Harmse, A. Britz, and A. Gerber. Scenario testing on UML class di-
agrams using description logics. "http://www.cair.za.net/research/outputs/

scenario-testing-uml-class-diagrams-using-description-logic", 2013.

[51] H. Harmse, K. Britz, A. Gerber, and D. Moodley. Scenario testing using formal
ontologies. In G. Guizzardi, O. Pastor, Y. Wand, S. D. Cesare, F. Gailly, M. Lycett,
and C. Partridge, editors, 1st Joint Workshop ONTO.COM / ODISE on Ontologies
in Conceptual Modeling and Information Systems Engineering, volume 1301 of CEUR
Workshop Proceedings. CEUR Workshop Proceedings, 2014.

[52] F. Hayes and D. Coleman. Coherent models for object-oriented analysis. In A. Paepcke,
editor, Conference proceedings on Object-oriented programming systems, languages, and
applications, volume 26 of ACM Special Interest Group on Programming Languages
Notices, pages 171–183. ACM, November 1991.

"http://www.eecs.yorku.ca/course_archive/2010-11/F/6390A/DLmaterial/DeGiacomo-2-uml-dls2up.pdf"
"http://www.eecs.yorku.ca/course_archive/2010-11/F/6390A/DLmaterial/DeGiacomo-2-uml-dls2up.pdf"
"http://www.cair.za.net/research/outputs/scenario-testing-uml-class-diagrams-using-description-logic"
"http://www.cair.za.net/research/outputs/scenario-testing-uml-class-diagrams-using-description-logic"

BIBLIOGRAPHY 179

[53] B. Henderson-Sellers and F. Barbier. What is this thing called aggregation? In
R. Mitchell, A. C. Wills, J. Bosch, and B. Meyer, editors, Proceedings of 29th Technology
of Object-Oriented Languages and Systems, pages 236–250. IEEE, 1999.

[54] P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-Schneider, and S. Rudolph. OWL 2 web
ontology language primer. "http=http://www.w3.org/TR/owl2-primer/".

[55] S. Hong. A class normalization approach to the design of object-oriented databases. In
Proceedings of the 5th Technology of Object-Oriented Languages and Systems. Prentice
Hall, 1991.

[56] M. Horridge. Justification based explanation in ontologies. PhD thesis, University of
Manchester, 2011.

[57] M. Horridge and P. F. Patel-Schneider. OWL 2 web ontology language Manchester
syntax. url=http://www.w3.org/TR/owl2-manchester-syntax/, December 2012.

[58] I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible SROIQ. In P. Doherty,
J. Mylopoulos, and C. A. Welty, editors, Proceedings of the 10th International Conference
on Principles of Knowledge Representation and Reasoning, pages 57–67. AAAI Press,
2006.

[59] I. Horrocks and P. F. Patel-Schneider. Reducing OWL entailment to description logic
satisfiability. Web Semantics: Science, Services and Agents on the World Wide Web,
1(4):345–357, October 2004.

[60] I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) description logic.
In Proceedings of the 17th International Joint Conference on Artificial Intelligence,
volume 1, pages 199–204. Morgan Kaufmann Publishers Inc., 2001.

[61] I. Horrocks and U. Sattler. A tableau decision procedure for SHOIQ. Journal of
Automated Reasoning, 39(3):249–276, 2007.

[62] I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individuals for the description logic
SHIQ. In D. A. McAllester, editor, Proceedings of the 17th International Conference
on Automated Deduction, volume 1831 of Lecture Notes in Computer Science, pages
482–496. Springer-Verlag London, 2000.

[63] ISO. Information technology - Object Management Group Unified Modeling Language
(OMG UML), Infrastructure, iso/iec 19505-1 edition, April 2012.

[64] ISO. Information technology - Object Management Group Unified Modeling Language
(OMG UML), Superstructure, iso/iec 19505-2 edition, April 2012.

"http=http://www.w3.org/TR/owl2-primer/"

BIBLIOGRAPHY 180

[65] D. Jackson. Software abstractions: logic, language, and analysis. The MIT Press, 2006.

[66] A. Kalyanpur. Debugging and repair of owl ontologies. PhD thesis, Maryland, USA,
2006.

[67] C. Kaner. An Introduction to Scenario Testing. Technical report, 2003.

[68] Y. Kazakov. RIQ and SROIQ Are Harder than SHOIQ. In G. Brewka and J. Lang,
editors, Proceedings of the 19th International Conference on Principles of Knowledge
Representation and Reasoning, pages 274–284. AAAI Press, 2008.

[69] C. Keet. Introduction to part-whole relations: mereology, conceptual modelling and
mathematical aspects. Technical report, Free University of Bozen-Bolzano, Oct. 2006.

[70] C. M. Keet. A formal comparison of conceptual data modeling languages. In T. Halpin,
E. Proper, J. Krogstie, X. Franch, E. Hunt, and R. Coletta, editors, Proceedings of the
13th International Workshop on Exploring Modeling Methods in Systems Analysis and
Design, volume 337, pages 25–39. CEUR Worksop Proceedings, 2008.

[71] C. M. Keet. Detecting and revising flaws in OWL object property expressions. In
A. ten Teije, J. Völker, S. Handschuh, H. Stuckenschmidt, M. d’Aquin, A. Nikolov,
N. Aussenac-Gilles, and N. Hernandez, editors, Proceedings of the 18th International
Conference on Knowledge Engineering and Knowledge Management, volume 7603 of
Lecture Notes in Computer Science, pages 252–266. Springer Berlin Heidelberg, 2012.

[72] M. Khosrow-Pour. Dictionary of information science and technology. IGI Global, 2007.

[73] S. Klarman. ABox abduction in description logic. Master’s thesis, Universiteit van
Amsterdam, 2008.

[74] S. Klarman, U. Endriss, and S. Schlobach. ABox abduction in the description logic
ALC. Journal of Automated Reasoning, 46(1):43–80, 2011.

[75] P. Kroha and J. Gayo. Using semantic web technology in requirements specifications.
Chemnitzer Informatik-Berichte. Technische Universität Wien, 2008.

[76] M. Krötzsch. Description logic rules. PhD thesis, Karlsruhe Institute of Technology,
2010.

[77] M. Krötzsch, F. Simančík, and I. Horrocks. A description logic primer. Computing
Research Repository, abs/1201.4089, 2012.

[78] M. Krötzsch, F. Simančík, and I. Horrocks. Description logics. IEEE Intelligent Systems,
29(1):12–19, 2014.

BIBLIOGRAPHY 181

[79] H. Kung and L. Kung. An interactive tool to improve learning of data modeling: a
survey study. Journal of Computing Sciences in Colleges, 28(4):11–18, Apr. 2013.

[80] G. Lakoff. Women, fire and dangerous things: what categories reveal about the mind.
University of Chicago Press, Chicago, 1990.

[81] M. Lanza and R. Marinescu. Object-Oriented metrics in practice. Springer-Verlag Berlin
Heidelberg, 2006.

[82] C. Larman. Applying UML and patterns: an introduction to object-oriented analysis
and design and the unified process. Prentice Hall, 2nd edition, 2001.

[83] B. Liskov. Data abstraction and hierarchy. In Addendum to the proceedings on Object-
oriented programming systems, languages and applications, volume 23 of ACM Special
Interest Group on Programming Languages Notices, pages 17–34, New York, USA, 3
1987. ACM.

[84] C. Lutz, C. Areces, I. Horrocks, and U. Sattler. Keys, nominals, and concrete domains.
Journal of Artificial Intelligence Research, 23:667–726, 2005.

[85] C. Lutz, U. Sattler, and L. Tendera. The complexity of finite model reasoning in
description logics. In F. Baader, editor, Proceedings of the 19th International Conference
on Automated Deduction, volume 199 of Information and Computation, pages 132–171.
Elsevier, 2005.

[86] A. Marcus, D. Poshyvanyk, and R. Ferenc. Using the conceptual cohesion of classes for
fault prediction in object-oriented systems. IEEE Transactions on Software Engineering,
34(2):287–300, March-April 2008.

[87] R. Martin and M. Micah. Agile principles, patterns, and practices in C#. Prentice Hall,
2006.

[88] R. C. Martin, M. C. Feathers, T. R. Ottinger, J. J. Langr, B. L. S. J. W. Grenning,
and K. D. Wampler. Clean code: a handbook of agile software craftsmanship. Robert C.
Martin Series. Prentice Hall, New Jersey, USA, 2008.

[89] B. Meyer. Object-oriented software construction. Prentice Hall, 2nd edition, March
1997.

[90] B. Motik and I. Horrocks. OWL datatypes: design and implementation. In A. Sheth,
S. Staab, M. Dean, M. Paolucci, D. Maynard, T. Finin, and K. Thirunarayan, editors,
Proceedings of the 7th International Semantic Web Conference, volume 5318 of Lecture
Notes Computer Science, pages 307–322. Springer, 2008.

BIBLIOGRAPHY 182

[91] B. Motik, P. F. Patel-Schneider, and B. C. Grau. OWL 2 web ontology language: direct
semantics. url=http://www.w3.org/TR/owl2-direct-semantics/, December 2012.

[92] B. Motik, P. F. Patel-Schneider, and B. Parsia. OWL 2 web ontology language: structural
specification and functional-style syntax. url=http://www.w3.org/TR/owl2-syntax/,
2012.

[93] J. Mylopoulos. Conceptual modelling and Telos. In P. Loucopoulos and R. Zicari,
editors, Conceptual Modeling, Databases, and CASE: An Integrated View of Information
Systems Development. John Wiley & Sons, 1992.

[94] D. Nardi and R. Brachman. An introduction to description logics. In F. Baader,
D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors, The description logic
handbook: theory, implementation, and applications, pages 1–40. Cambridge University
Press, New York, NY, 2003.

[95] B. Nuseibeh and S. Easterbrook. Requirements engineering: a roadmap. In A. Finkelstein,
editor, Proceedings of the Conference on the Future of Software Engineering, pages
35–46. ACM, 2000.

[96] A. Olivé. Conceptual modeling of information systems. Springer, 2007.

[97] B. Parsia, U. Sattler, and T. Schneider. Easy Keys for OWL. In C. Dolbear, A. Rutten-
berg, and U. Sattler, editors, Proceedings of the 5th Workshop on OWL: Experiences and
Directions, volume 432 of CEUR Workshop Proceedings. CEUR Workshop Proceedings,
2008.

[98] B. Parsia, E. Sirin, and A. Kalyanpur. Debugging OWL ontologies. In A. Ellis and
T. Hagino, editors, Proceedings of the 14th international conference on World Wide
Web, Chiba, Japan, May 2005. ACM.

[99] Protege. Protege 4.x Anonymous Classes. url=
http://protegewiki.stanford.edu/wiki/P4AnonymousClasses, 2009.

[100] A. Queralt, A. Artale, D. Calvanese, and E. Teniente. OCL-Lite: finite reasoning on
UML/OCL conceptual schemas. Data & Knowledge Engineering, 73:1–22, 2012.

[101] C. Rolland and C. Salinesi. Modeling goals and reasoning with them. In A. Aurum and
C. Wohlin, editors, Engineering and Managing Software Requirements. Springer Berlin
Heidelberg, 2005.

[102] C. Roussey and O. Zamazal. Antipattern detection: how to debug an ontology without
a reasoner. In P. Lambrix, G. Qi, M. Horridge, and B. Parsia, editors, Proceedings of the

BIBLIOGRAPHY 183

2nd International Workshop on Debugging Ontologies and Ontology Mappings, volume
999, pages 45–56. CEUR Workshop Proceedings, 2013.

[103] S. Rudolph. Foundations of description logics. In A. Polleres, C. d’Amato, M. Arenas,
S. Handschuh, P. Kroner, S. Ossowski, and P. F. Patel-Schneider, editors, Reasoning
Web. Semantic Technologies for the Web of Data 7th International Summer School,
volume 6848 of Lecture Notes in Computer Science, pages 76–136. Springer, 2011.

[104] J. Rumbaugh, I. Jacobson, and G. Booch. The unified modeling language reference
manual. Addison Wesley, 2nd edition, 2005.

[105] U. Sattler, D. Calvanese, and R. Molitor. Relationships with other formalisms. In
F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors,
The description logic handbook: theory, implementation and applications, pages 137–177.
Cambridge University Press, 2003.

[106] S. Schlobach and R. Cornet. Non-Standard reasoning services for the debugging of
description logic terminologies. In Proceedings of the 18th International Joint Conference
on Artificial Intelligence. Morgan Kaufmann Publishers Inc., 2003.

[107] M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with complements.
Artificial intelligence, 48(1):1–26, 1991.

[108] L. Schröder and D. Pattinson. How many toes do I have? Parthood and number
restrictions in description logics. In G. Brewka and J. Lang, editors, Proceedings of the
11th International Conference on Principles of Knowledge Representation and Reasoning,
pages 307–218. AAAI Press, 2008.

[109] P. Shoval. Functional and object oriented analysis and design: an integrated methodology.
IGI Global, 2006.

[110] M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, and R. Drechsler. Verifying UML/OCL
models using Boolean satisfiability. In Proceedings of the Conference on Design, Au-
tomation and Test in Europe, pages 1341–1344. IEEE Computer Society, 2010.

[111] V. C. Storey, C. B. Thompson, and S. Ram. Understanding database design expertise.
Data & Knowledge Engineering, 16(2):97–124, 1995.

[112] M. Szlenk. Formal semantics and reasoning about UML class diagram. In W. Zamojski,
J. Mazurkiewicz, J. Sugier, and T. Walkowiak, editors, Proceedings of the International
Conference on Dependability of Computer Systems, pages 51–59. IEEE, 2006.

[113] A. ter Hofstede, H. Proper, and T. van der Weide. A conceptual language for the
description and manipulation of complex information models. In G. Gupta, editor, 17th

BIBLIOGRAPHY 184

Annual Computer Science Conference, volume 16, pages 157–167. Australian Computer
Science Communications, January 1994.

[114] A. Tort and A. Olivé. An approach to testing conceptual schemas. Data & Knowledge
Engineering, 69(6):598–618, 2010.

[115] Y. Wand, D. E. Monarchi, J. Parsons, and C. C. Woo. Theoretical foundations for
conceptual modelling in information systems development. Decision Support Systems,
15(4):285–304, 1995.

[116] R. S. Wazlawick. Object-oriented analysis and design for information systems: modeling
with UML, OCL and IFML. Morgan Kaufmann, 2014.

[117] P. Wegner. Classification in object-oriented systems. In P. Wegner and B. Shriver,
editors, Proceedings of the Special Interest Group on Programming Languages Workshop
on Object-oriented Programming, volume 21, pages 173–182. ACM, 1986.

[118] J. Zedlitz, J. Jörke, and N. Luttenberger. From UML to OWL 2. In D. Lukose,
A. Ahmad, and A. Suliman, editors, Third Knowledge Technology Week, volume 295 of
Communications in Computer and Information Science, pages 154–163. Springer Berlin
Heidelberg, 2012.

[119] J. Zedlitz and N. Luttenberger. Data types in UML and OWL 2. In A. Cheptsov, editor,
Proceedings of the 7th International Conference on Advances in Semantic Processing.
ThinkMind, 2013.

	Abstract
	Acknowledgments
	1 Introduction
	1.1 Requirements Engineering
	1.1.1 Requirements Elicitation
	1.1.2 Requirements Specification
	1.1.3 Requirements Validation

	1.2 Conceptual Modelling
	1.2.1 Conceptual Modelling and Object-oriented Analysis
	1.2.2 Theoretical Basis of Object-oriented Analysis
	1.2.3 Object-oriented Analysis versus Object-oriented Design
	1.2.4 Object-oriented Analysis versus Conceptual Data Modelling

	1.3 Description Logics
	1.3.1 Syntactic Building Blocks
	1.3.2 Analogy between Description Logics and Object-orientation
	1.3.3 Decidability and Complexity
	1.3.4 Formalisms used in this Dissertation

	1.4 The Case for the Formalization of Scenario Testing
	1.4.1 DL Translations of UML Class Diagrams
	1.4.2 Validating the Conceptual Schema
	1.4.3 Formal Scenario Testing Intuitions

	1.5 Aims and Objectives
	1.6 Outline of Dissertation

	2 UML Class Diagrams and Heuristics
	2.1 UML Class Diagrams
	2.1.1 Classes
	2.1.2 Data Types
	2.1.3 Binary Associations and Attributes Revisited
	2.1.4 Generalization/Specialization of Classes
	2.1.5 Association Specialization, Subsetting and Redefinition
	2.1.6 Identity Constraints
	2.1.7 Qualified Names

	2.2 Modelling Heuristics
	2.2.1 Separable Class Cohesion
	2.2.2 Multifaceted Class Cohesion
	2.2.3 Non-delegated Class Cohesion
	2.2.4 Concealed Class Cohesion
	2.2.5 Low Inheritance Cohesion of Attributes
	2.2.6 Low Inheritance Cohesion of Operations

	2.3 Summary

	3 Description Logics and OWL 2
	3.1 Description Logics
	3.1.1 Description Logic Primer
	3.1.2 Semantics
	3.1.3 AL
	3.1.4 Extending DLs with Data Types
	3.1.5 DL Nomenclature
	3.1.6 Characteristics of DLs

	3.2 DLs for the Translation of UML Class Diagrams
	3.2.1 ALCQI
	3.2.2 SROIQ(D)
	3.2.3 OWL 2

	3.3 Reasoning Tasks
	3.3.1 Deductive Reasoning Tasks
	3.3.2 Other Reasoning Tasks

	3.4 Summary

	4 DL Translations of UML Class Diagrams
	4.1 Classes
	4.2 Attributes
	4.2.1 Multiplicity

	4.3 Operations
	4.3.1 Operations with no Parameters
	4.3.2 Operations with Parameters

	4.4 Binary Associations
	4.4.1 Multiplicity

	4.5 Generalization/Specialization of Classes
	4.6 Association Specialization
	4.7 Data Types
	4.8 Summary

	5 OWL and DL Translations for Scenario Testing
	5.1 UML Class Diagram Identity Constraints
	5.1.1 Problematic Interpretation of Compound Keys
	5.1.2 Identity Constraint Challenges and OWL 2 Easy Keys
	5.1.3 The Effect of Easy Keys Compromises on Formal Scenario Testing

	5.2 Tight Specification of Domain and Range Restrictions
	5.2.1 Attributes
	5.2.2 Binary Associations
	5.2.3 Operations

	5.3 Operations
	5.3.1 Explicit Naming Convention
	5.3.2 An Operation is Performed by the Class that Defines it
	5.3.3 Operations with No Parameters
	5.3.4 OWL 2 Translation of Operations
	5.3.5 Unique Return Values
	5.3.6 Operations with no Return Values

	5.4 Translations for Modeller Productivity
	5.4.1 Enumerations
	5.4.2 Limiting Redundancy of Assertions for Binary Associations

	5.5 Subsetting and Redefinition of Association Ends
	5.6 On the Equivalence of Attributes and Binary Associations
	5.7 A Note on Uniqueness of Names in UML Class Diagrams
	5.7.1 Attributes and Associations
	5.7.2 Operations and Parameters
	5.7.3 Dealing with Anonymous Classes

	5.8 Why Composition and Aggregation are excluded from Formal Scenario Testing
	5.9 Contribution and Related Research
	5.9.1 Contribution
	5.9.2 Related Research

	5.10 Summary

	6 Formal Scenario Testing
	6.1 Approach
	6.1.1 Steps of the Formal Scenario Testing Approach
	6.1.2 Key Characteristics of Formal Scenario Testing

	6.2 Techniques
	6.2.1 Consistent Scenario Tests
	6.2.2 Inconsistent Scenario Tests
	6.2.3 Classification Scenario Tests
	6.2.4 Repairs for Formal Scenario Testing

	6.3 Guidelines
	6.3.1 Dealing with OWA
	6.3.2 Dealing with UNA
	6.3.3 Structuring Scenario Tests in Protégé

	6.4 A Case Study
	6.4.1 Business Domain
	6.4.2 Deficiencies of a Naïve UML Class Diagram and a Solution
	6.4.3 Validating the UML Class Diagram
	6.4.4 Adoption and Preliminary Feedback

	6.5 Contribution and Related Research
	6.5.1 Contribution
	6.5.2 Related Research

	7 Applying Formal Scenario Testing
	7.1 Separable Class Cohesion
	7.1.1 Detection
	7.1.2 Validation

	7.2 Multifaceted Class Cohesion
	7.2.1 Detection
	7.2.2 Validation

	7.3 Non-delegated Class Cohesion
	7.3.1 Detection
	7.3.2 Validation

	7.4 Concealed Class Cohesion
	7.4.1 Detection
	7.4.2 Validation

	7.5 Low Inheritance Cohesion of Attributes
	7.5.1 Detection
	7.5.2 Validation

	7.6 Low Inheritance Cohesion of Operations
	7.6.1 Detection
	7.6.2 Validation

	7.7 Contribution and Related Research
	7.7.1 Contribution
	7.7.2 Related Research

	8 Conclusion
	8.1 Contribution
	8.1.1 The Research Gap Identified
	8.1.2 How the Gap is addressed by this Research
	8.1.3 The Value Proposition of this Research
	8.1.4 Presentation and Publication in Support of this Dissertation

	8.2 Future Research
	8.3 Summary

	Appendices
	A RatesConfig Class Diagram Translated to OWL 2
	B Separable Class Cohesion Examples Translated to OWL 2
	B.1 Translation of Employee Class with Separable Class Cohesion
	B.2 Translation of Redesigned Employee Class

	C Multifaceted Class Cohesion Examples Translated to OWL 2
	C.1 Translation of ContactInformation Class with Multifaceted Class Cohesion
	C.2 Translation of Redesigned ContactInformation Class

	D Non-delegated Class Cohesion Examples Translated to OWL 2
	D.1 Translation of Employee Class with Non-delegated Class Cohesion
	D.2 Translation of Redesigned Employee Class

	E Concealed Class Cohesion Examples Translated to OWL 2
	E.1 Translation of LeaveRequest and PerformanceReview Classes with Concealed Class Cohesion
	E.2 Translation of Redesigned LeaveRequest and PerformanceReview Classes

	F Low Inheritance Cohesion Examples Translated to OWL 2
	F.1 Translation of Rectangle and Square Classes with Low Inheritance Cohesion
	F.2 Translation of Redesigned Rectangle and Square Classes
	F.3 Translation of Bird Inheritance Hierarchy with Low Inheritance Cohesion
	F.4 Translation of Redesigned Bird Inheritance Hierarchy

	Bibliography

