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Foreword

Those who matter most to us are taken away too soon,

To my late dad, Thembinkosi Alson (1940- 1987),

Your spirit lives on!

"I do not have the pointer on the truth."

"I hope to live long enough to see us return to the vigorous debates where we argue who

is right and wrong, not who is good and bad. My experience is most people I have known

in this work are good people who love their country desperately and I am profoundly

grateful for a brief period I had a chance to be one of them. "

"I did it for the weakest possible reason. I can."

William Jefferson Clinton, 42nd President of the United States of America (1993-2000)
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Preface

The experimental work described in this dissertation was carried out in the Plant Cell

Biology and Plant Physiology Research Laboratories and Biochemistry Laboratory in the

Division of Biological Sciences, School of Life and Environmental Sciences, University

of NataL Durban, South Africa and the Seed Science Research Laboratory in the

Department of Crop and Weed Science, Horticulture Research InternationaL

Wellesbourne, United Kingdom under the supervision of Professors Patricia Berjak,

Norman W. Pammenter and Michael T. Smith.

The present study represents original work by the author and has not been submitted in

any form to another university. Where use was made of the work of others, it has been
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Abstract

Desiccation-sensitive seeds show differential viability characteristics during drying at

different rates. A number of studies have demonstrated that rapid dehydration permits

survival to lower water contents than does slower desiccation.

The aim and objective of the present study was to test the hypothesis which states that

rapid drying of desiccation-sensitive seeds removes water sufficiently fast to reduce the

accumulation of metabolic damage. In addition, the hypothesis that wet storage subjects

desiccation-sensitive seeds to mild, but increasingly severe, water stress causing

oxidative damage if additional water is not supplied, was tested.

In the present study, axes of germinating orthodox seeds ofPisum sativum and newly­

shed recalcitrant counterparts of Quercus robur, Strychnos madagascariensis, Trichilia

emetica, Trichilia dregeana and Avicennia marina were subjected to rapid or slow drying

or wet storage. For those species where more than one harvest was investigated,

differences were observed in water contents at shedding. For all the species studied, the

dehydration rate could be described by an exponential and a modified inverse function

for both desiccation regimes, and the water content remained constant with wet storage.

The level of tetrazolium staining and germination percentage of axes decreased

sharply drying and hydrated storage such that the marked decline took place at lower

water contents upon rapid than slow dehydration.

The conductivity of electrolyte leachate increased progressively during desiccation

and moist storage of axes of all species investigated. Greater membrane leakage occurred

upon slow, than rapid dehydration in axes of all species studied.

Activities of respiratory enzymes which have a potentially regulatory role in

glycolysis, phosphofructokinase (PFK), or the tricarboxylic acid cycle, malate

dehydrogenase (MDH), and levels of the oxidized form of the coenzyme, nicotinamide

adenine dinucleotide (NAD), of the enzymes of the electron transport chain, NADH

dehydrogenases ofNADH-ubiquinone (coenzyme Q) reductase (complex I) and NADH­

cytochrome c reductase (complex IV), were monitored in the present investigation.
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In addition, the role of free radical activity in the form of lipid peroxidation, which has

been implicated in loss of viability in seeds, was examined by assaying the levels of

hydroperoxides. The involvement of the free radical processing enzymes, superoxide

dismutase (SOD), catalase (CAT) and glutathione reductase (GR), and the antioxidant,

ascorbic acid (AsA), was also ascertained.

The activity of PFK in axes of P. sativum remained constant during drying and wet

storage. However, PFK activity increased as rapid dehydration and hydrated storage of Q.

robur axes proceeded. In contrast, the activity of PFK in axes of Q. robur decreased

during slow desiccation. Similarly, PFK activity was reduced upon drying, and moist

storage, of T. dregeana axes such that higher activity of PFK was seen during rapid than

slow dehydration. The activity ofPFK inA. marina axes also declined upon desiccation.

The activity ofMDH in axes of P. sativum was also unchanged during drying and wet

storage. However, an increase in MDH activity was recorded in Q. robur axes during

dehydration and hydrated storage such that the activity of MDH was higher upon slow

than rapid desiccation. In contrast, MDH activity in axes of T. dregeana decreased as

drying proceeded. Similarly, the activity of J\.1DH declined during dehydration and moist

storage ofA. marina axes.

An increase in the level of NAD occurred in axes of P. sativum during drying. In

contrast, a decrease in NAD levels was seen upon dehydration and wet storage of Q.

robur axes such that the level of NAD was higher upon rapid than slow desiccation.

There was an enhancement of the level of NAD in axes of T. dregeana during hydrated

storage. Conversely, NAD levels declined during drying ofA. marina axes.

A decrease in the level of hydroperoxides in axes of P. sativum was seen as rapid

drying proceeded. In contrast, hydroperoxide levels increased during wet storage of P.

sativum axes. Similarly, the levels of hydroperoxides were enhanced upon dehydration

and hydrated storage of Q. robur axes such that they were higher in axes during slow

desiccation compared to those dried rapidly. Conversely, the hydroperoxide level in axes

of T. dregeana was reduced upon rapid dehydration. In contrast, an elevation of the level

of hydroperoxides was observed during moist storage. The levels of hydroperoxides

remained constant as desiccation and wet storage ofA. marina axes proceeded.
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The activity of SOD in axes of P. sativum decreased during rapid drying. In contrast,

SOD activity increased upon slow dehydration and wet storage ofP. sativum axes. There

was a decline in the activity of SOD in Q. robur axes during slow desiccation. Similarly,

SOD activity was diminished upon drying of axes of T. dregeana. The activity of SOD in

T. dregeana axes was enhanced during hydrated storage. An elevation in SOD activity

also took place during rapid dehydration and moist storage of axes ofA. marina.

The activity of CAT did not change during drying of axes of P. sativum. However, a

decrease in CAT activity in Q. robur axes was seen upon slow dehydration and wet

storage. Similarly, the activity of CAT declined as desiccation of axes of T. dregeana

proceeded. In contrast, CAT activity inA. marina axes increased during slow drying.

Whereas the activity of GR in axes of P. sativum increased during drying and wet

storage, GR activity decreased in A. marina axes upon all treatments such that the

activity of GR was higher during rapid than slow dehydration. GR activity also declined

upon slow desiccation and hydrated storage ofaxes of Q. robur. Similarly, the activity of

GR in T. dregeana axes was reduced during moist storage.

Finally, a decrease in the level of AsA in axes of P. sativum took place during drying.

Nonetheless, dehydration and wet storage of Q. robur axes were associated with no

siginificant change in AsA levels. There was also a decline in the level of AsA in axes of

T. dregeana as rapid desiccation proceeded. Similarly, a reduction in AsA level occurred

upon slow drying ofaxes ofA. marina.

The results presented here are consistent with the observation that drying and wet

storage adversely affected the respiratory enzymes, PFK, MDH and NADH

dehydrogenase. It is suggested that the resultant metabolic imbalance led to more leakage

of electrons from the mitochondrial electron transport chain than normal, and through

lipid peroxidation increased levels of hydroperoxides. In addition, dehydration and

hydrated storage may depress the activities of free radical processing enzymes, SOD,

CAT and GR and levels of antioxidant, AsA. This phenomenon was less pronounced

during rapid, in comparison to slow, desiccation and moist storage. However, it appears

that the above biochemical events are overtaken by physical damage at higher water

contents in the highly recalcitrant seeds. It was concluded that the differential effects of
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the drying rate and wet storage on responses of desiccation-sensitive seeds varies with

tissue, harvest, species and the degree of desiccation sensitivity.
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ABA

ACC

AFM

ANOVA

APOD

AsA

CAT

CSI

dm

DPPC

DSC

EP/SR(I)

ENDOR

FFA

FTIR

G6PDH

GPOD

g g-l dm

GR

IBPGR

IPGRI

LEA

LTSEM

MDH

MIP

NMR(I)

PGR

PFK

Key to symbols and abbreviations

= abscisic acid

= I-aminoacylpropane I-carboxylic acid

= atomic force microscopy

= analysis of variance

= ascorbate peroxidase

= ascorbic acid (ascorbate)

= catalase

;", chemical shift imaging

= dry matter

= dipalmitoylphosphatidylcholine

= differential scanning calorimetry

= electron paramagnetic/spin resonance (imaging)

= electron nuclear double resonance

= free fatty acid

= Fourier transform infrared

= glucose-6-phosphate dehydrogenase

= guaicol peroxidase

= g H20 / g dry matter

=glutathione reductase

=International Board for Plant Genetic Resources

= International Plant Genetic Resources Institute

= late embryogenesis abundant (proteins)

= low-temperature scanning electron microscopy

= malate dehydrogenase

= major intrinsic protein

= nuclear magnetic resonance (imaging)

= plant growth regulator

= phosphofructokinase

IX



PIP

PL(s)

POD

PV(P)P

RH

ROS

Rwe

SOD

TOe

Tg

TIP

Tm

TZ

Vso

wc

ZR

= plasmalemma intrinsic protein

= phospholipid(s)

= peroxidase

= polyvinyl(poly)pyrolidone

= relative humidity

= reactive oxygen species

= relative water content

= superoxide dismutase

= tocopherol

= glass to liquid transition temperature

= tonoplast intrinsic protein

= membrane phase transition temperature

= tetrazolium

= 50% of the original viability

= water content

= zeatin riboside
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Chapter 2

Figure 2.1

Figure 2.2

Figure 2.3

Figure captions

Water relations

Water contents of embryonic axes of Trichilia dregeana

harvested in 1997 during drying over various salt

solutions. Data points represent means of five replicate

readings. Error bars, in some cases hidden within the

data symbols, show standard errors.

Water contents of germinating P. sativum axes of

different lengths during drying over sodium chloride

solution. Data points represent means of five replicate

readings. Error bars, in some cases hidden within the

data symbols, show standard errors.

Water contents of axes and different axial tissues of

Avicennia marina harvested in 1999 and dried rapidly

(A) or slowly (B) or stored wet (C). Data points

represent means of five replicate readings. Error bars, in

some cases hidden within the data symbols, show

standard errors. 67

Figure 2.4 Water contents of axes of Pisum sativum (A), Quercus

robur (B), Strychnos madagascariensis (C), Trichilia

emetica (D), Trichilia dregeana (E) and Avicennia

marina (F) harvested in 1999 (closed symbols) or 2001

(open symbols) where applicable during drying at

different rates. Data points represent means of five

replicate readings. Error bars, in some cases hidden

within the data symbols, show standard errors.
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Chapter 3

Figure 3.1

Figure 3.1

Figure 3.2

Figure 3.2

Figure 3.3

Viability characteristics

Level of tetrazolium (TZ) staining of axes of P. sativum

(A-B), Q. robur (C-D), S. madagascariensis (E-F) and

T. emetica (G-H) during drying at different rates or wet

storage.

Level of tetrazolium (TZ) staining of axes of T.

dregeana (1-J) and A. marina (K-L) harvested in 1999

(closed symbols) or 2001 (open symbols) where

applicable during drying at different rates or wet

storage. The storage curves of A. marina axes harvested

in 1999 and 2001 were identical.

Gennination of axes of P. sativum (A-B), Q. robur (C­

D), S. madagascariensis (E-F) and T. emetica (G-H

dl,lring rapid or slow drying or wet storage.

Gennination of axes of T. dregeana (1-J) and A. marina

(K-L) harvested in 1999 (closed symbols) or 2001 (open

symbols) where applicable during rapid or slow drying

or wet storage. The storage curves of A. marina axes

harvested in 1999 and 2001 were identical.

Pattern of electrolyte leakage of axes of P. sativum (A­

B), Q. robur (C-D), S. madagascariensis (E-F) and T.

emetica (G-H) during drying at different rates or wet

storage. Data points represent means of ten replicate

readings. Error bars, in some cases hidden within the

data symbols, show standard errors. Percentages above

or below or beside data symbols indicate gennination.

Data points without percentages are unchanged over the

previous values.
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Figure 3.3

Chapter 4

Figure 4.1

Pattern of electrolyte leakage of axes of T. dregeana (I­

J) and A. marina (K-L) harvested in 1999 (closed

symbols) or 2001 (open symbols) where applicable

during drying at different rates or wet storage.

Conductivity curves of A. marina axes harvested in

1999 and 2001 and stored wet overlapped.

Respiratory metabolism

Activities of phosphofructokinase in axes of P. sativum

(A-B), Q. robur (C-D) and T. dregeana (E-F) during

drying at different rates or wet storage. Data points

represent means of three replicate extractions. Error

bars, in some cases hidden within the data symbols,

show standard errors. Percentages above or below data

symbols indicate germination. Data points without

percentages are unchanged over the previous values. 1

U of PFK will convert 1 /-lmol of fructose-6-phosphate

and ATP to fructose-1,6-bisphosphate and ADP per

minute at pH 8.0 at 30°C.
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Figure 4.2

Figure 4.3

Activities of phosphofructokinase in whole axes (A-B)

and different axial tissues (hypocotyls rC-DJ, root

primordia [E-F] and plumules [G-H]) of A. marina

during rapid or slow drying or wet storage. Data points

represent means of three replicate extractions. Error bars,

In some cases hidden within the data symbols, show

standard errors. Percentages above or below data

symbols indicate germination. Data points without

percentages are unchanged over the previous values. 1 U

of PFK will convert 1 /lmol of fructose-6-phosphate and

ATP to fructose-l,6-bisphosphate and ADP per minute at

pH 8.0 at 30°C.

Activities of malate dehydrogenase in axes of P.

sativum (A-B), Q. robur (C-D) and T. dregeana (E-F)

during drying at different rates or wet storage. Data

points represent means of three replicate extractions.

Error bars, in some cases hidden within the data

symbols, show standard errors. Percentages above or

below data symbols indicate germination. Data points

without percentages are unchanged over the previous

values. 1 U ofMDH will convert 1 /lmol of oxaloacetate

and NADH to malate and NAD per minute at pH 7.5 at

25°C.
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Figure 4.4

Figure 4.5

Figure 4.6

Activities of malate dehydrogenase in whole axes (A-B)

and different axial tissues (hypocotyls [C-D], root

primordia [E-F] and plumules [G-H]) of A. marina

during rapid or slow drying or wet storage. Data points

represent means of three replicate extractions. Error

bars, in some cases hidden within the data symbols,

show standard errors. Percentages above or below data

symbols indicate germination. Data points without

percentages are unchanged over the previous values. 1

U of MDH will convert 1 ~mol of oxaloacetate and

NADH to malate and NAD per minute at pH 7.5 at 25

cC.

Levels of NAD in axes of P. sativum (A-B), Q. robur

(C-D) and T. dregeana (E-F) during drying at different

rates or wet storage. Data points represent means of

three replicate extractions. Error bars, in some cases

hidden within the data symbols, show standard errors.

Percentages above or below data symbols indicate

germination. Data points without percentages are

unchanged over the previous values.

Levels of NAD in whole axes (A-B) and different axial

tissues (hypocotyls [C-D], root primordia [E-F] and

plumules [G-H]) of A. marina during rapid or slow

drying or wet storage. Data points represent means of

three replicate extractions. Error bars, in some cases

hidden within the data symbols, show standard errors.

Percentages above or below data symbols indicate

germination. Data points without percentages are

unchanged over the previous values.
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Chapter 5

Figure 5.1

Figure 5.2

Figure 5.3

Free radical processes

Levels of hydroperoxides in axes of P. sativum (A-B),

Q. robur (C-D) and T dregeana (E-F) during drying at

different rates or wet storage. Data points represent

means of three replicate extractions. Error bars, in some

cases hidden within the data symbols, show standard

errors. Percentages above or below data symbols

indicate gennination. Data points without percentages

are unchanged over the previous values.

Levels of hydroperoxides in whole axes (A-B) and

different axial tissues (hypocotyls [C-D], root primordia

[E-F] and plumules [G-H]) of A. marina during rapid or

slow drying or wet storage. Data points represent means

of three replicate extractions. Error bars, in some cases

hidden within the data symbols, show standard errors.

Percentages above or below data symbols indicate

gennination. Data points without percentages are

unchanged over the previous values.

Activities of superoxide dismutase in axes ofP. sativum

(A-B), Q. robur (C-D) and T dregeana (E-F) during

drying at different rates or wet storage. Data points

represent means of three replicate extractions. Error

bars, in some cases hidden within the data symbols,

show standard errors. Percentages above or below data

symbols indicate germination. Data points without

percentages are unchanged over the previous values. 1

unit (U) of SOD will inhibit the rate of reduction of

cytochrome c by 50% in a coupled system with xanthine

and xanthine oxidase at pH 7.8 at 25°C. 127
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Figure 5.4

Figure 5.5

Activities of superoxide dismutase in whole axes (A-B)

and different axial tissues (hypocotyls rC-DJ, root

primordia [E-F] and plumules [G-H]) of A. marina

during rapid or slow drying or wet storage. Data points

represent means of three replicate extractions. Error

bars, in some cases hidden within the data symbols,

show standard errors. Percentages above or below data

symbols indicate germination. 1 unit (U) of SOD will

inhibit the rate of reduction of cytochrome c by 50% in

a coupled system with xanthine and xanthine oxidase at

pH 7.8 at 25°C.

Activities of catalase in axes of P. sativum (A-B), Q.

robur (C-D) and T. dregeana (E-F) during drying at

different rates or wet storage. Data points represent

means of three replicate extractions. Error bars, in some

cases hidden within the data symbols, show standard

errors. Percentages above or below data symbols

indicate germination. Data points without percentages

are unchanged over the previous values. 1 unit (U) of

CAT will decompose 1 /lmol of hydrogen peroxide per

min at pH 7.0 at 25°C.
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Figure 5.6

Figure 5.7

Activities of catalase in whole axes (A-B) and different

axial tissues (hypocotyls [C-D], root primordia [E-F]

and plumules [G-HD of A. marina during rapid or slow

drying or wet storage. Data points represent means of

three replicate extractions. Error bars, in some cases

hidden within the data symbols, show standard errors.

Percentages above or below data symbols indicate

germination. Data points without percentages are

unchanged over the previous values. 1 unit (U) of CAT

will decompose 1 !-Lmol ofhydrogen peroxide per min at

pH 7.0 at 25°C.

Activities of glutathione reductase in axes of P. sativum

(A-B), Q. robur (C-D) and T. dregeana (E-F) during

drying at different rates or wet storage. Data points

represent means of three replicate extractions. Error

bars, in some cases hidden within the data symbols,

show standard errors. Percentages above or below data

symbols indicate germination. Data points without

percentages are unchanged over the previous values. 1

unit (U) of GR will reduce 1 !-Lmol of oxidised

glutathione per min at pH 7.6 at 25°C.
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Figure 5.8

Figure 5.9

Figure 5.10

Activities of glutathione reductase in whole axes (A-B)

and different axial tissues (hypocotyls [C-D], root

primordia [E-F] and plumules [G-HD of A. marina

during rapid or slow drying or wet storage. Data points

represent means of three replicate extractions. Error

bars, in some cases hidden within the data symbols,

show standard errors. Percentages above or below data

symbols indicate gennination. Data points without

percentages are unchanged over the previous values. 1

unit (U) of GR will reduce 1 ~mol of oxidised

glutathione per min at pH 7.6 at 25°C.

Levels of ascorbic acid in axes of P. sativum (A-B), Q.

robur (C-D) and T. dregeana (E-F) during drying at

different rates or wet storage. Data points represent

means of three replicate extractions. Error bars, in some

cases hidden within the data symbols, show standard

errors. Percentages above or below or beside data

symbols indicate gennination. Data points without

percentages are unchanged over the previous values.

Levels of ascorbic acid in whole axes (A-B) and

different axial tissues (hypocotyls [C-D], root primordia

[E-F] and plumules [G-HD ofA. marina during rapid or

slow drying or wet storage. Data points represent means

of three replicate extractions. Error bars, in some cases

hidden within the data symbols, show standard errors.

Percentages above or below data symbols indicate axis

viability. Data points without percentages are

unchanged over the previous values.
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Chapter 1

General introduction

1.1 General background

Seeds are the source of man's most important staple foods. For example, cereal grains

alone, which comprise c. 90% of all cultivated seeds, contribute up to half the global

per capita energy intake (Bewley, 1997; Bradford and Cohn, 1998).

In addition to providing humans with a direct and indirect source of food and

animal feed, seeds are used in a vast array of industrial and commercial practices such

as the production of oils, fibres, flavourings and drugs. As a result, the trade in seeds

on the international market forms a substantial part of the global economy. For

instance, it was estimated that the value of genetically manipulated seed, alone, could

reach about US$30 and 60 billion by 2005 and 2015, respectively (Anonymous, 1997;

Bradford and Cohn, 1998).

Furthermore, seeds, in the form of seed banks, play a critical role in the

conservation of biodiversity. In this regard, it is noteworthy that the United Nations

considers seed storage as the cheapest form of conservation of plant genetic resources

(International Board for Plant Genetic Resources [IBPGR], 1976).

1.2 Seed classification

Traditionally, seeds are described as orthodox or recalcitrant on the basis of their

ability, or lack thereof, to tolerate desiccation (a highly desirable trait in agriculture and

conservation of biodiversity in seeds of flowering plants) and depending on their

responses to chilling and their longevity in storage (Roberts, 1973). Characteristically,

orthodox seeds usually undergo a period of maturation drying on the parent plant

towards the end of their pre-shedding development, during which their water contents

fall to very low levels and, finally, come to equilibrium with ambient relative humidity

(RH). However, in some species, there is continued physiological maturation after

drying and before shedding (e.g. cotton [Hughes and Galau, 1991]). Also, some

orthodox seed species undergo dehydration after rather than before shedding (e.g.

tomato [Berry and Bewley, 1991]). Irrespective of when drying occurs, orthodox
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seeds tolerate dehydration to low water contents (5% or less, wet mass basis [Ellis et

a!., 1990b]) and are amenable to cooling to low temperatures (-18°C or less [IBPGR,

1976]). Under these conditions, they can survive in hermetic storage for long periods

(up to 100 years or longer [IBPGR, 1976]). Their survival period in storage can be

predicted from their water content and temperature by the formula:

v = Ki-p / (lOexpKE-CwloglOm-CHt-CQt2)

where: v = probit percentage viability

p = storage period (days)

m = water content (%, wet basis)

t = temperature (OC)

Kj = seed lot constant

KE, Cw, CH and CQ = species viability constants (Ellis and Roberts, 1980; Ellis

and Hong, 1996). The equation is subject to both low and high water content limits

(Roberts and Ellis, 1989). Beyond the upper limit, seed longevity in hermetic storage is

no longer reduced with further increases in water content. Similarly, no increases in

survival accompany continued reduction in water content below the lower limit (Ellis

et al., 1990b).

In contrast to orthodox seeds, recalcitrant types are shed at relatively high water

contents, apparently undergoing little or no maturation drying on the parent plant. In

addition, they show variability in their sensitivities to desiccation and chilling and in

storage lifespans and hence have been categorised as minimally, moderately and highly

recalcitrant (Farrant et a!., 1988). Their longevity in moist storage is frequently brief

and only rarely exceeds a few months (reviewed in Chin and Roberts, 1980; Bewley

and Black, 1994; Smith and Berjak, 1995; Vertucci and Farrant, 1995; BeIjak and

Parnmenter, 1997a,b; Parnmenter and BeIjak, 1999).

Recently, a third category of seeds - intermediate - has been identified (Ellis et a!.,

1990a; 1991a,b,c). They tolerate dehydration to low water contents (though not as low

as orthodox seeds). However, if tropical, they are sensitive to low temperatures in the

desiccated state (Hong and Ellis, 1998).

Berjak et al. (1989) used the term poikilohydrous to refer to orthodox seeds, on

one hand, as many undergo maturation drying on the host plant, are shed metabolically

quiescent and come to equilibrium with ambient humidity (Farrant et a!., 1993a,b). On

2
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the other hand, recalcitrant seeds have been said to be homoiohydrous (Berjak et al.,

1989; 1990; Farrant et aI., 1992a) as they are shed at high water contents whilst they

are relatively metabolically active and die if they come into equilibrium with ambient

humidity (Roberts and King, 1980). Nonetheless, recalcitrant seeds do reach that stage

even if it is after extended periods of exposure (discussed in Dickie and Pritchard,

2002). It has been suggested that their curtailed lifespans are a consequence of the

initiation of germination on, or shortly after, shedding (Pammenter et aI., 1984) and in

many cases additional water is required for the process to go to completion (Farrant et

al., 1986).

Plants that produce recalcitrant seeds generally occur in habitats conducive to

relatively rapid, if not immediate, seedling establishment, such as wetlands, aquatic

environments and tropical rainforests, usually where there is no temperature constraint

(reviewed by Roberts and King, 1980; Berjak et aI., 1989; von Teichman and van

Wyk, 1994; Hong and Ellis, 1997; 1998; Hong et al., 1998; Farnsworth, 2000; Hay et

aI., 2000; Pammenter and Berjak, 2000; Dickie and Pritchard, 2002). In such

environments, there can be little selective advantage to maturation drying and

dormancy.

Oliver et aI. (2000) argued that desiccation-tolerance was the ancestral state for

early land plants (liverworts, hornworts and mosses), but that this trait was lost early in

the evolution of tracheophytes, possibly beginning in Silurian (from 439 mya). In this

regard, it is interesting to note that none of the vegetative tissues of extant

gyrrmosperms are known to tolerate desiccation (Gaff, 1980; reviewed by Proctor and

Pence, 2002). Farnsworth (2000) and Oliver (2000) have suggested that the most

parsimonious explanation of the current distribution of species seed desiccation

sensitivity is by convergent loss of tolerance from tolerant ancestors. Recalcitrance

may be a derived trait evolved through neoteny and is probably associated with large

seeds and trees (reviewed by Dickie and Pritchard, 2002). Alternatively, systematic

analyses, mainly based on primitive seed structures, have led to the proposal that seed

desiccation sensitivity is the ancestral state, with tolerance evolving early, and several

times independently (von Teichman and van Wyk, 1991; 1994; Pammenter and Berjak,

2000).

In conclusion, it is noteworthy that Berjak and Pammenter (1994; 1997a,b; 2001;

2004) and Pammenter and Berjak (1999) and Dussert et aI. (1999) and Sun (1999)

3
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contend that natural populations show a continuum of responses to desiccation

subtended by orthodoxy, on one hand, and extreme recalcitrance, on the other, unlike

highly inbred crop species. This view is in contrast to that of Waiters (1999) who

proposes five discrete levels of desiccation-tolerance. Thus, BeIjak and Pammenter

(1994) propose that when reporting on recalcitrance, it is important to give as much

information about the species concerned as possible. These data include: (1) natural

habitat of the species, (2) time to reach 50% of the original viability (Vso) during

storage under fully hydrated conditions at specified temperature, (3) mean water

content of both embryonic axes and storage tissues for Vso on dehydration at specified

drying rates, (4) water activity corresponding to Vso, (5) temperature for Vso, (6) low­

temperature sensitivity of dehydrated seeds, (7) sensitivity to temperature of

dehydration, (8) dormancy and (9) taxonomic status.

1.3 Seed development (Embryogenesis)

Farrant et al. (1993b) suggested that the differences in post-shedding behaviour among

seed types arise as a result of differences in pre-shedding development. However, there

are few studies on the development of recalcitrant seeds [e.g. Quercus alba L.

(Bonner, 1976), Guilfoylia monostylis (Benth) F. Muell. (Nkang and Chandler, 1986),

Podocarpus henkelii Stapf (Dodd et ai., 1989), Acer pseudoplatanus L. (Hong and

Ellis, 1990) and Quercus robur L. (Finch-Savage, 1992; Finch-Savage et al., 1992;

Grange and Finch-Savage, 1992) in contrast to orthodox seeds. Consequently,

comparison of the acquisition or non-acq~isition of desiccation-tolerance between the

two seed types in terms of their development is presently difficult but important in

elucidating the basis of desiccation-tolerance (reviewed by Farrant et ai., 1993b; Finch­

Savage, 1996; Kermode and Finch-Savage, 2002).

Much of the evidence on the characteristics of recalcitrant seeds comes from a

study on the development and behaviour of the highly recalcitrant seeds of the white

mangrove, Avicennia marina (BeIjak et ai., 1984; Farrant et ai., 1985; 1992a,b;

1993a,b,c). It may be expected that other recalcitrant seeds as well as intermediate

seeds will have characteristics between those of A. marina and orthodox seeds.

Mutants of Zea mays and Arabdopsis thaliana which produce recalcitrant seeds (Neill

et ai., 1986 and Koorneef et ai., 1989, respectively) are also useful for comparative

purposes.

4
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The embryological development in A. marina is similar to that occurring in other

dicotyledonous angiosperm seeds (Farrant et a!., 1992a). In addition, it appears to be

under the same plant growth regulator (PGR) control (Farrant et al., 1993c).

However, embryo formation occurs outside of the ovular tissue, unlike the situation

in most seed types (Farrant et a!., 1992a). As a result, there is no integument-derived

seed coat. Thus, the embryo is bounded by the pericarp. Such behaviour, called

cryptoviviparity, is thought to be related to the mangrove habit (Tomlinson, 1986) and

is not a general rule of desiccation-sensitive seeds (Farrant et a!., 1993b).

The development of orthodox seeds can be conveniently divided into three

confluent stages. The single-celled zygote undergoes extensive mitotic division during

histodifferentiation. The resultant cells differentiate to form the embryo (axis and

cotyledons). Concurrently, there is the formation of the triploid endosperm or haploid

megagametophyte. Thereafter, cell division ceases and seeds grow by laying down

reserve material. Finally, the development of orthodox seeds is terminated by some

degree of drying called maturation drying which results in a gradual reduction in

metabolic activity as water is lost from seed tissues. As a result, the embryo passes into

a metabolically inactive or quiescent state.

1.3.1 HistoditTerentiation

Farrant et al. (l993b) maintained that the process of histodifferentiation is essentially

similar in the seed types (reviewed by Kermode and Finch-Savage, 2002). It is also

under the same PGR control. Indole-3-acetic acid, the main auxin occurring naturally

in plants, cytokinins and gibberellic acid are thought to promote the formation of

embryonic tissues.

5
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1.3.2 Seed growth

Recalcitrant seeds undergo the process of growth by cell expanSIOn and reserve

deposition in common with their orthodox counterparts (reviewed by Farrant et al.,

1993b; Kermode and Finch-Savage, 2002). The nature and quantity of the reserves

accumulated during seed development have been related to germination characteristics,

such as the germination rate, which, in turn, has been related to the degree of

recalcitrance and the natural habitat (Berjak et aI., 1989; Farrant et al., 1989). It is,

therefore, not surprising that recalcitrant seeds show variability in the nature and

quantity of reserves amassed. While A. marina acquires carbohydrates mainly in the

form of soluble oligosaccharides, with starch as the only form of complex reserve

accumulated (Farrant et aI., 1992a), other recalcitrant seeds (e.g. Quercus alba

[Bonner, 1976], Camellia sinensis O. Kuntze [Devey et aI., 1987], Podocarpus

henkelii [Dodd et aI., 1989] and Landolphia kirkii Dyer [Berjak et aI., 1992]

accumulate various complex reserves similarly to orthodox seeds.

A difference between the two seed types, as regards reserve accumulation, concerns

the levels of abscisic acid (ABA). This PGR is widely believed to play an important

role in reserve deposition, particularly in that of proteins, in orthodox seeds (e.g.

Quatrano, 1987, Kermode, 1990). Recalcitrant seeds show variability in the amounts

of ABA during development. While embryonic axes of A. marina show insignificantly

low levels of this PGR, together with lack of storage proteins (Farrant et aI., 1992a;

1993c), cotyledons of Quercus robur maintain high quantities of ABA almost until

shedding (Finch-Savage et aI., 1992). However, peak ABA levels have subsequently

been shown to be significantly lower than those reported for many orthodox seeds

(Finch-Savage and Farrant, 1997).

1.3.3 Reserve utilisation

Farrant et al. (l993c) observed a decline in the levels of ZR towards the end of

development in seeds of A. marina. Such a decline is thought to promote reserve

utilisation in the metabolically active seeds (Farrant et aI., 1992a).

6
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1.3.4 Acquisition of germinability

It has been shown that isolation of the embryo from covenng tissues allows

germination to occur precociously for many orthodox seeds (reviewed by Farrant et

al., 1993b; Finch-Savage, 1996; Kermode and Finch-Savage, 2002). Such an event has

been shown for a variety of seeds (Ihle and Dure, 1972; Quebedeaux et al., 1976;

Long et al., 1981; Ackerson, 1984; Bartels et ai., 1988; Bochicchio et al., 1988;

Kermode and Bewley; 1988; Rasyad et ai., 1990).

However, application of ABA prevents the germination of excised embryos (Crouch

and Sussex, 1981; Long et ai., 1981; Quatrano et ai.; 1983; Eisenberg and

Masceranhas, 1985; Xu et ai., 1990). High levels of ABA and/or high osmolality are

held to promote the development of the embryo (Finkelstein et al., 1985; Quatrano,

1987; Welbaum and Bradford, 1988; Kermode, 1990; Xu et al., 1990).

Seeds of A. marina appear to show a similar behaviour to orthodox seeds with

respect to the control of precocious germination, although its ABA is located extra­

embryonically, in the pericarp (Farrant et ai., 1993b). The levels of ABA decline

during maturation drying in non-dormant orthodox seeds (King, 1976; Kermode,

1990). The desiccated state prevents germination.

The acquisition of germination is similar in both seed types (Farrant et ai., 1993b).

It is thought that most orthodox seeds are able to achieve normal post-germinative

growth once they have reached a stage of near-completion of reserve accumulation, or

at, or just after, the onset of maturation drying (Obendorf et ai., 1980; Dasgupta et al.,

1982; Kermode and Bewley, 1985, Rosenberg and Rinne, 1986; Ellis et ai., 1987;

Kermode, 1990; Rasyad et ai., 1990). In addition, gibberellins and/or other PGRs are

thought to be a requirement for seedling establishment in orthodox seeds. It is

noteworthy that the competence to respond to, or for the synthesis of, these PGRs

might be achieved only after some desiccation in orthodox seeds (Kermode and

Bewley, 1985; 1986; Kermode, 1990).

7
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1.3.5 Acquisition of desiccation-tolerance

Orthodox seeds do not tolerate desiccation during early development. They undergo a

transition to a desiccation-tolerant state approximately midway through development

(reviewed by Kermode, 1990; 1995; Kermode and Finch-Savage, 2002).

The rate of drying during early development is critical. Whole seeds of several

legumes (Adams et a!., 1983; Ellis et a!., 1987) and castor bean (Ricinus communis)

(Kermode and Bewley, 1985) are unable to withstand rapid drying at early stages of

development. In contrast, full germination is evident at the same stage in seeds dried

slowly. Tolerance of rapid dehydration generally occurs only at or near the completion

of reserve deposition just after the onset of maturation drying (Rogerson and

Matthews, 1977; Kermode and Bewley, 1985; Ellis et a!., 1987). It is thought that

gradual water loss may allow protective changes to occur.

Tolerance to desiccation increases throughout reserve accumulation in most

recalcitrant seeds as in their orthodox counterparts (Hong and Ellis, 1990; Farrant et

a!., 1997). However, recalcitrant seeds are shed before full desiccation-tolerance is

acquired. Nonetheless, there appears to be no clear end-point to development in this

seed type. Thus, development in recalcitrant seeds is said to be indeterminate (Finch­

Savage and Blake, 1994).

1.3.6 Maturation drying

One of the fundamental differences between orthodox and recalcitrant seeds is that

recalcitrant seeds do not undergo maturation drying sensu stricto. Although some

recalcitrant seeds may undergo a considerable reduction in embryo water content

during their development, hydration levels at shedding are nevertheless high (BeIjak et

al., 1992; Finch-Savage et a!., 1992). Unlike orthodox seeds, recalcitrant seeds remain

hydrated and metabolically active throughout development and do not become tolerant

of a significant degree of desiccation at any stage (BeIjak et al., 1989; Farrant et a!.,

1989; 1993a). It is worth noting that not all orthodox seeds undergo full maturation

drying (e.g. tomato [Berry and Bewley, 1991]).

8
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1.4 Mechanisms of desiccation-tolerance

Part of the puzzle of desiccation-tolerance in plants is that it is very uncommon but

nearly universal (reviewed by Vertucci and Farrant, 1995; Alpert, 2000; Alpert and

Oliver, 2002). The relative biomass of desiccation-tolerant plants in all but the most

arid or frigid habitats is very low and fewer than one in a thousand species of

flowering plants is known to tolerate desiccation.

In addition, desiccation-tolerance appears common, though not universal in

bryophytes (e. g. Richardson, 1981; Proctor, 1990), common in lichens (Kappen and

Valladeres, 1999), uncommon in pteridophytes, rare in angiosperms and no

gymnosperms are known to tolerate desiccation (Gaff, 1980; reviewed by Dickie and

Pritchard, 2002) even though gymnosperms may have desiccation-tolerant seeds or

pollen (Hoekstra, 2002; Kermode and Finch-Savage, 2002). Desiccation-tolerance

also occurs in non-lichenised fungi, cyanobacteria and algae (Mazur, 1968; Schonbeck

and Norton, 1978; Potts, 1994; 1999; Doods et al., 1995) but little is known about its

extent. It must be very common in free-living algae and bacteria that grow on surface

of plants or soil, where they are probably subject to desiccation (Alpert and Oliver,

2002). It is also common in seeds of flowering plants, but tolerance to desiccation is

not an exclusive preserve of orthodox seeds. It is the rule rather than the exception in

other propagating structures such as pollen and spores of lower plant and fungi, and

buds and somatic embryos of at least some spermatophytes also possess this unusual

feature.

It was thought that the mechanism of this phenomenon were purely mechanical

until recently when Bewley (1979) suggested that desiccation-tolerance is primarily

protoplasmic in nature. Much of our understanding of cellular mechanisms of

desiccation-tolerance comes from studies on orthodox seeds (reviewed by Bewley and

Black, 1994). Desiccation-tolerance in lower orders such as mosses and algae is held

to be based on repair rather than protection, as is hypothesised for seeds (Bewley and

Oliver, 1992).

Despite its widespread occurrence, the mechanisms of desiccation-tolerance are not

yet fully understood (reviewed by Vertucci and Farrant, 1995; Alpert and Oliver,

2002). It may be concluded that desiccation-tolerance is difficult to achieve and is

energetically costly, because not all tissues possess this ability. There is probably a

trade-off between this trait and growth. Alternatively, tolerance to desiccation is lost

9
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in plants that are not exposed to it due to lack of selection pressure to maintain this

characteristic.

Desiccation-tolerance is acquired during development and is lost after germination

in seeds (reviewed by Vertucci and Farrant, 1995; Finch-Savage, 1996; Berjak and

Pammenter, 1997a,b; Kermode and Finch-Savage, 2002). Many investigators have

shown that embryos become more tolerant as they mature and less tolerant as they

germinate for both recalcitrant and orthodox seeds (Rogerson and Matthews, 1977;

Bewley, 1979; Long et al., 1981; Sargent et al., 1981; Dasgupta et al., 1982; Adams et

al., 1983; Kermode and Bewley, 1985; Farrant et al., 1986; 1988; 1989; Rosenberg

and Rinne, 1986; Fischer et al., 1988; Berjak et al., 1989; 1992; 1993; Welbaum and

Bradford, 1989; Hong and Ellis, 1990; 1992; Berry and Bewley, 1991; Pritchard,

1991; Finch-Savage, 1992; Sun and Leopold, 1993; Tompsett and Pritchard, 1993;

Farrant et al., 1997). In contrast, Berjak et al. (1992) showed that axes from seeds of

Landolphia kirkii became more desiccation-sensitive as they matured. However, it is

noteworthy that in that study desiccation sensitivity was assessed in terms of

electrolyte leachate conductivity rather than germinability and that the axes from

immature seeds were ungerminable. Furthermore, no change in desiccation sensitivity

was observed in seeds ofAvicennia marina after they had become germinable (Farrant

et al., 1993a).

Desiccation-tolerance differs greatly among species within genera, provenances,

harvests and individuals within species and tissues within individuals in seeds

(reviewed by Dickie and Pritchard, 2002). In addition, tolerance to desiccation varies

highly with temperature of drying conditions (Berjak et al., 1994; Ntuli et al., 1997;

reviewed in Song et aI., 2003) and rate, as well as conditions upon rehydration

(reviewed by Alpert and Oliver, 2002; Pammenter et al., 2002; Song et al., 2003).

A number of mechanisms have been implicated in desiccation-tolerance. However,

none of them, alone, seems to explain the phenomenon fully. Presently, it appears that

the presence of at least some of these mechanisms and possibly some yet to be

identified is necessary for the attainment of desiccation-tolerance.
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1.4.1 Desiccation protectants

a. The role of sucrose, oligosaccharides and cyclitols

The water replacement hypothesis is one of the earliest theories attempting to account

for desiccation-tolerance in living tissues (Clegg, 1986; Crowe and Crowe, 1986). It

proposes that non-reducing sugars replace water on macromolecular surfaces during

dehydration, thus enabling stabilisation of membranes in the desiccated state (reviewed

by Crowe et aI., 1992).

High levels of sugars, particularly the disaccharide, sucrose, and oligosaccharides,

raffinose and stachyose, have been suggested to afford desiccation-tolerance in

orthodox seeds (Leopold and Vertucci, 1986; Koster and Leopold, 1988; Chen and

Burris, 1990; Leprince et aI., 1990a; Blackman et al., 1992). Obendorfand co-workers

have recently implicated free and galactosyl sugar alcohols or cyclitols in a similar role

(Horbowicz and Obendorf, 1994; Obendorf, 1997).

Drying induces lipid phase transitions from the lamellar liquid-crystalline phase to

the solid gel phase (reviewed by Crowe et ai., 1992; 1997). A rise in the membrane

phase transition temperature (Tm) commences with the loss of the last 10-12 water

molecules per phospholipid (PL) molecule at water contents below 0.2 to 0.3 g g-l.

Sugars depress the Tm by interacting with the polar head groups ofPLs and replace the

water molecules (e.g. Hoekstra et ai., 1991).

However, the aforementioned observations are confounded by the fact that high

levels of soluble sugars, particularly stachyose, occur in the highly recalcitrant seeds of

A. marina. In addition, sucrose comprises 45% of the total sugar content of the

moderately recalcitrant Camellia sinensis (tea) seeds, consisting of 11% of the dry

matter of these seeds (reviewed by Berjak et aI., 1989).

Dehydration-induced damage occurs at hydration levels far higher than those at

which water would be removed from membrane surfaces in C. sinensis and other

recalcitrant seeds (Berjak et ai., 1989; 1992; Pammenter et ai., 1991). In this regard,

Leopold and collaborators have postulated that vitrification (or glass formation) is

perhaps the major mechanism by which desiccation-tolerance is achieved in orthodox

seeds (Koster and Leopold, 1988; Williams and Leopold, 1989; Koster, 1991). There

is evidence to suggest that the metastable glass (vitrified) state is promoted at low

water contents, when sucrose and certain oligosaccharides and/or galactosyl cyclitols

form high high-viscosity amorphous super-saturated solutions (Obendorf, 1997). The
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prevalence of glasses imposes a stasis on metabolic and deleterious reactions (Leopold

et al., 1994).

The presence of the glassy state depends on three factors: (1) water content, (2)

temperature and (3) chemical composition. A decrease in the water content of the

tissue results in an increased glass transition temperature (Tg). The value of Tg is also

dependent on the composition of the amorphous state. Tg is known to vary with

molecular weight (Slade and Levine, 1991). For instance, a sugar of high molecular

weight, like stachyose, exhibits a higher Tg over the entire range of water contents

than a small molecular weight sugar such as glucose.

However, it is unlikely that achievement of the glassy state occurs at the high water

contents at which recalcitrant seeds die, except perhaps when excised axes survive

very rapid dehydration to appropriate water contents (Pammenter et al., 1993). In this

regard, it has been suggested that a significant proportion of sugars may be tightly

associated with late embryogenesis abundant (LEA) proteins (WaIters et al., 1997;

Wolkers et al., 1998c). Such complexes are held to control and optimise the rate of

water loss during dehydration of orthodox seeds.

b. The role of late embryogenesis abundant (LEA) proteins

A variety of orthodox seeds accumulate a set of dehydration- and/or ABA-inducible

hydrophilic, and heat-stable (with the exception of Group 5) proteins at the time of

acquisition of desiccation-tolerance during late stages of embryogenesis (Cuming and

Lane, 1979; Aspart et al., 1984; Williamson et al., 1985; Galau et al., 1986; 1987;

1991; 1993; Galau and Hughes, 1987; Bartels et al., 1988; Bochicchio et al., 1988;

Goday et al., 1988; Mundy and Chua, 1988; Rosenberg and Rinne, 1988; 1989;

Blackman et al., 1991; Hughes and Galau, 1987; 1989; 1991; Bradford and Chandler,

1992; Ried and Walker-Simmons, 1993; Roberts et al., 1993; Mao et al., 1995;

Wolkers et al., 1998c). LEA proteins have been linked to desiccation-tolerance (Close

et al., 1989; 1993; Kermode, 1990; Blackman et al., 1991; Bewley and Olivier, 1992;

Bradford and Chandler, 1992; Mao et al., 1995; Wolkers et aI., 1998c).

A number of mechanisms by which LEA proteins may protect cellular constituents

have been suggested. It has been hypothesised that they bind to macromolecular

surfaces in much a similar way as postulated for sucrose and oligosaccharides (Dure et

al., 1989). Many LEA proteins have extensive regions of random coiling which have
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been proposed to promote the binding of water, as a result helping to maintain a

minimum water requirement (Ingram and Bartels, 1996). In addition, Barker et al.

(1988) suggested that the random coil nature of some of the LEA proteins may allow

them to confonn to the shape of cellular constituents thus helping to maintain their

solvation state by virtue of their hydroxyl groups when water is removed.

Furthennore, those authors proposed that Group 2 LEA proteins (dehydrins) provide

surfaces that would sequester ions by virtue of their amphipathic helical repeats. LEA

proteins may also act as anchors in the structural network that stabilises cytoplasmic

components during drying and in the desiccated state (Waiters et al., 1997; Wolkers et

aI., 1998c).

The genes that encode LEA proteins in developing cotton seed are comprised of

two distinct classes whose regulation is co-ordinated (Galau et al., 1986; 1987; 1991;

Galau and Hughes, 1987; Hughes and Galau, 1991). One class contains six different

lea transcripts which appear relatively early in development and reach maximum level

about three days before the onset of maturation drying. The other class contains 12

transcripts which appear late in maturation and reach maximum expression just before

and during maturation drying.

LEA proteins fall into five groups by virtue of sequence similarities (Dure et al.,

1989; Ingram and Bartels, 1996; Cumming, 1999). Group 1 LEA proteins are

characterised by a 20-amino acid motif (Cumming and Lane, 1979). Similarly, Group

2 LEA proteins (dehydrins) share a characteristic 15-amino acid motif, the K-segment,

which is a stretch of serine residues and a conserved motif near the N-tenninus of the

protein (Close, 1996; 1997). Dehydrins are the most widespread and studied. Group 3

LEA proteins are characterised by a 1I-amino acid motif (Dure et al., 1989) which is

predicted to fonn an amphipathic a-helix. Group 4 and 5 LEA proteins are more

hydrophobic than other LEA proteins and are not resistant to high temperature (Dure

et a!., 1993b; Galau et al., 1993).

The evidence for the involvement of LEA proteins III desiccation-tolerance is

circumstantial but compelling (reviewed by Alpert and Oliver, 2002). For instance,

ABA-deficient and ABA-insensitive double-mutants ofArabidopsis thaliana seeds do

not dry on the parent plant, do not tolerate desiccation and lack several LEA proteins

(Koomeef et al., 1989; Meurs et al., 1992). In addition, the observation that seeds of

A. marina do not produce these particular proteins (Farrant et al., 1992b) supports the
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hypothesis that lack of such proteins might be an inherent feature of desiccation

sensitivity (Bradford and Chandler, 1992).

In contrast, Finch-Savage et a!. (1994b), Farrant et al. (1996) and Han et al. (1997)

have shown LEA proteins in several recalcitrant seeds of temperate and sub-Itropical

trees, respectively. Furthermore, Blackman et al. (1991) showed that LEA proteins

accumulated in soybeans before desiccation-tolerance developed.

c. The role of small heat-shock proteins (sHSPs)

Heat-shock proteins (HSPs) have recently been associated with desiccation-tolerance.

In contrast to those of other eukaryotes, the most prominent HSPs of plants are small

heat-shock proteins (sHSPs). They have monomeric molecular masses of 15-42kDa,

but assemble into oligomers of nine to over 20 subunits, depending on the protein

(Waters et aI., 1996).

Expression of sHSPs has been observed before and after maturation drying in

developing seeds and in resurrection plants (Almoguera and Jordano, 1992; Coca et

a!., 1994; DeRocher and Vierling, 1994; Alamillo et aI., 1995; Wehmeyer et al., 1996;

Collada et aI., 1997; Wehmeyer and Vierling, 2000). While sHSPs are relatively

abundant during the first few days of germination, they decline rapidly as it progresses

(reviewed by Alpert and Oliver, 2002; Buitink et aI., 2002).

sHSPs are molecular chaperones. They interact with other proteins which help to

maintain protein structure under denaturing conditions (Waters et al., 1996; Gething,

1997, Feder and Hofinann, 1999; Soto et aI., 1999; Sales et a!., 2000).

d. The role of major intrinsic proteins (MIPs)

Major intrinsic proteins (MIPs) are a family of channel proteins that are mainly

represented by aquaporins in plants. They are generally divided into tonoplast intrinsic

proteins (TIPs) and plasmalemma intrinsic proteins (pIPs) according to their

subcellular localisation (reviewed by Maurel et aI., 1997).

For instance, the vacuolar membrane protein, u-TIP, a water channel protein

accumulates during seed maturation in parenchyma cells of seed storage organs.

Synthesis of this integral membrane protein does not appear to be related, in a

quantitative manner, to storage protein deposition. A role in seed desiccation,
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cytoplasmic osmoregulation and/or seed rehydration has been suggested (Johnson et

aI., 1989).

The water-channel actIvIty can be regulated by phosphorylation. The protein

assembly as a 60 AX 60 Asquare in which each subunit is formed by a heart-shaped

ring comprised of a.-helices (Daniels et aI., 1999).

Homologues to PIPs and TIPs are controlled by dehydration and ABA in

desiccation-tolerant resurrection plant Craterostigma plantagineum (Mariaux et al.,

1998). Members of a subset of PIPs (pIPa) are regulated by ABA-dependent and

ABA-independent pathways.

e. The role of osmolytes

Many plants and microorganisms accumulate organic compounds of low molecular

weight known as osmolytes or compatible solutes in response to environmental

stresses that cause cellular dehydration, such as drought, freezing and osmotic shock

(Amuti and Pollard, 1977; Zhang et al., 1982; Hoekstra et al., 1992b; Saranga et aI.,

1992; Takagi et aI., 1997; Hare et aI., 1998; Strom, 1998). Their accumulation

correlates with improved stress tolerance. Among such compatible solutes are proline,

serine, glutamate, glycine-betaine, carnitine, mannitol, sorbitol, fructans, polyols,

trehalose, sucrose and oligosaccharides.

It has been shown in model experiments that these substances stabilise protein

structure and activity by keeping macromolecules preferentially hydrated thus

preventing them from unfolding (Arakawa and Timasheff, 1985; Rudolph and Crowe,

1985; Anchordoguy et aI., 1987; 1988; Carpenter and Crowe, 1988, Carpenter et aI.,

1990; 1992). When bulk water is removed, preferential hydration fails (Crowe et al.,

1990). In addition, osmolytes are thought to maintain turgor (reviewed in WaIters et

aI., 2002).
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f. Deployment of amphipathic/amphiphilic molecules

Cells may contain various cytoplasmic amphiphilic metabolites. Recently, Hoekstra and

co-workers have suggested that endogenous amphipathic substances such as

flavonoids and antioxidants may partition from the aqueous polar cytoplasm into the

lipid phase, such as membranes and lipid bodies, with loss of water (Hoekstra et aI.,

1997; 1999; Golovina et aI., 1998; Hoekstra and Golovina, 1999; 2000; Buitink et aI.,

2002; Golovina and Hoekstra, 2002).

On one hand, such partitioning into membranes could seriously perturb membrane

structure with adverse effects on permeability properties of membranes (Herbette et

al., 1983; Takahashi et aI., 1998). Thus, partitioning into membranes has been used to

explain transient leakage of cytoplasmic solutes from rehydrating anhydrobiotes

commonly termed imbibitional damage. On the other hand, the presence of amphiphiles

in membranes could obviate the formation of the gel phase in lipid bilayers by

promoting fluidisation. Furthermore, partitioning into membranes might be extremely

effective at inserting amphiphilic antioxidants such as tocopherol/vitamin E into

membranes upon dehydration, thus promoting desiccation-tolerance and extending

storage longevity.

In desiccation-tolerant organisms, the mobility of amphiphiles decreases on further

drying. In contrast, it remains high in desiccation-sensitive organisms until almost all

water is lost. For partitioning to be beneficial, it must be controlled to confer

desiccation-tolerance and minimise its detrimental effects on membrane function.
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1.4.2 Intracellular physical characteristics

a. Reserve deposition and degree of vacuolation

It has been suggested that the accumulation of complex reserves and the consequent

low level of vacuolation might limit the physical disruption caused by dehydration and

so contribute to tolerance of desiccation (lljin, 1957; Kermode and Bewley, 1986;

Kermode, 1990; Farrant et al., 1997). This argument is supported by the reverse

scenario in A. marina seeds, which remain highly desiccation-sensitive. These seeds

accumulate predominantly soluble sugars and remain highly vacuolated (Farrant et aI.,

1992a). Many recalcitrant seeds, however, do accumulate large quantities of complex

reserves. These species include, among others, Quercus alba (Bonner, 1976),

Araucaria angustifolia (Farrant et aI., 1989), Podocarpus henkelii (Dodd et aI.,

1989), Camellia sinensis (BeIjak et aI., 1991) and Landolphia kirkii (BeIjak et al.,

1992). While these seeds appear to tolerate a relatively greater decrease in water

content than those of A. marina (Farrant et aI., 1985; 1986; 1993a), all are notably

desiccation-sensitive.

b. Intracellular de-differentiation

In orthodox seeds, intracellular structures are simplified and minimised at the onset of

maturation drying (Klein and Pollock, 1968; Bewley, 1979; Dasgupta et al., 1982;

Galau et aI., 1991; Vertucci and Farrant, 1995; Farrant et aI., 1997). It should be

remembered that membranes and cytoskeletal elements are vulnerable to dehydration

(BeIjak and Pammenter, 1997a,b; 2001; 2004; Pammenter and BeIjak, 1999).

In this regard, Farrant et al. (1997) reported a substantially higher proportion of cell

volume occupied by mitochondria in A. marina seeds, which are highly recalcitrant,

than those ofA. hippocastenum, which are less recalcitrant. In contrast, in P. vulgaris

seeds, which are orthodox, mitochondria occupied a significantly smaller proportion of

the cell volume, even prior to maturation drying. Furthermore, mitochondria of

recalcitrant seeds showed well-developed cristae, typical of an active hydrated

condition. Interestingly, mitochondria ofP. vulgaris seeds were almost completely de­

differentiated at comparable water contents to their recalcitrant counterparts.
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c. Integrity of cyto- and nUcleoskeletons

The cyto- and nucleoskeletons provide internal support to cells. Additionally, they

impose organisation of the cytoplasm and nucleus, respectively. Whilst microtubules

consist of polymerised a,- and p-tubulin, microfilaments are composed of F-actin, a

polymer of G-actin.

In the hydrated state, there is an extensive microfilamentous network in the root tip

cells of embryonic axes of Q. robur. Following dehydration, this network is

dismantled. At damagingly low water contents, the ability to re-assemble on

rehydration is lost (reviewed by Berjak and Pammenter, 1997a,b; 2001; 2004; BeIjak

et aI., 1999; Parnmenter and Berjak, 1999, Mycock et al., 2000). In contrast, orderly

re-assembly of cytoskeletal elements on imbibition was reported in orthodox seeds.

d. DNA integrity and chromatin condensation

The retention of DNA integrity is vital to survival upon dehydration and subsequent

rehydration (reviewed by Osborne and Boubriak, 1994; 1997). In vivo, DNA can

assume different conformations depending on the water activity, the base sequence

and the presence of specific binding proteins (Osborne and Boubriak, 1994; 1997). It

has been shown that DNA integrity was retained in embryos of orthodox seeds and in

pollen, during drying (reviewed by Osborne and Boubriak, 1994; 1997).

Chromatin structure changes as a function of hydration. In the desiccation-tolerant

phase of developing and germinating orthodox seeds, chromatin is in the condensed

state (Osborne and Boubriak, 1994; 1997). During germination, resumption of DNA

replication is associated with both chromatin decondensation and loss of desiccation­

tolerance (Deltour, 1985; Leprince et al., 1995a).

e. The possible role of oleosins

Oleosins are layers of unique protein that surround lipid droplets (Huang, 1992).

They consist of a central hydrophobic domain, which interacts with the lipid, and an

amphipathic N-terminal which, with the C-terminal domain, facilitates interaction

with the aqeous cytromatrix.

Leprince et al. (1998) recorded lack (or inadequate amount) of oleosin in

desiccation-sensitive seeds. On rehydration, those tissues showed loss of stability of
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lipid bodies. It is worth noting that coalescence of lipid bodies is a common

abnormality accompanying deterioration of both orthodox and recalcitrant seeds.

1.4.3 Repression of metabolism

Rogerson and Matthews (1977) observed a sharp decline in the levels of sugars, which

preceded a fall in the respiratory rate, prior to the acquisition of desiccation-tolerance

in developing seeds ofPisum sativum (garden pea). Those authors suggested that such

an event facilitated desiccation-tolerance in these tissues by, presumably, obviating

metabolic damage.

Furthermore, Brunori (1967) showed that cell cycling was arrested at G1 phase

during maturation drying in orthodox seeds. Following imbibition, the first round of S­

phase replication occurred during G2 phase. As soon as cells enter G2M, during which

mitosis takes place, desiccation-tolerance is lost (Sen and Osbome, 1974).

In contrast, seeds of A. marina showed transient arrest of DNA replication

lasting no more than 24 h around shedding (Boubriak et aI., 2000). Sacande et aI.

(1997) reported a situation where there was hardly any arrest of cell cycling in

recalcitrant/intermediate/sub-orthodox seeds of Azadirachta indica (neem). Ongoing

cell cycling was associated with loss of the ability to synthesise and repair DNA

(Osbome and Boubriak, 1994; 1997; Boubriak et al., 1997; 2000).

1.4.4 The role of free radical processing systems

Antioxidant systems have been suggested to play a role In desiccation-tolerance.

Evidence for their involvement comes from a number of studies which have shown that

susceptibility to peroxidation may increase with dehydration (Rockland, 1969; Bewley,

1979; McKersie et al., 1988; Leprince et al., 1990b; 1992; Dhindsa, 1991; Hendry et

ai., 1992; Chaitanya and Naithani; 1994; Chandel et al., 1995; Finch-Savage et al.,

1994a; 1996; Li and Sun; 1999; Tommasi et aI., 1999; Greggains et ai., 2001).

Among the studies conducted in this area, there appears to be a correlation between

the nature and efficacy of antioxidants and desiccation-tolerance. For example, the

level of tocopherol (vitamin E), a lipid-soluble compound that slows the initiation of

autoxidation of lipids, is about ten times higher in orthodox embryos of maize and

soybean than in the recalcitrant counterparts of Q. robur (compare Priestley et al.,
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1980 and Leprince et aI., 1990b with Hendry et al., 1992). The efficiency of

antioxidative systems in developing embryos depends on the species, tissue type, their

water potentials and the developmental status of the embryo (Leprince et al., 1990b;

Arrigoni et aI., 1992; Hendry et al., 1992; Cakmak et al., 1993; Chandel et aI., 1995;

Li and Sun, 1999; Greggains et al., 2001).

1.4.5 Repair (Damage restitution)

Storage of orthodox seeds at high temperatures and water contents causes damage

which decreases vigour and brings about viability loss. Before the onset of viability

loss, diminished vigour is manifested as an increasing time lag between seed imbibition

and radicle extension. During this period, intracellular repair mechanisms become

operational and repair must be effected before germination can occur (Osbome, 1983).

Repair during this phase in orthodox seeds occurs at the level of protein

macromolecules (Mudgett et aI., 1997), membranes (BeIjak and Villiers, 1972a) and

nucleic acids (Elder et aI., 1987). Indeed, the efficacy of osmopriming of low-vigour

orthodox seeds is attributed to the repair processes which occur while the seeds are

held at water potentials that allow this metabolism, but preclude germination (Bray,

1995).

There are very few studies of repair by damaged recalcitrant seeds (reviewed by

Berjak and Pammenter, 2004). As an example, no DNA repair was possible following

rehydration of the highly-recalcitrant seeds of Avicennia marina once 22% of the

originally-present water had been lost (Boubriak et aI., 2000). In addition, there is

accumulating evidence that free radical processing systems failed during dehydration of

recalcitrant seeds and were assumed to remain ineffective on rehydration (e.g.

Chaitanya and Naithani, 1994; Chandel et aI., 1995; Finch-Savage et al., 1996; Li and

Sun, 1999; Greggains et aI., 2001) Thus, it appears that the repair mechanisms of

recalcitrant seeds are as sensitive to water loss as are all other processes.
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1.5 Dormancy

Despite apparent adaptations for rapid germination, a few recalcitrant seeds of

temperate species are dormant at shedding, such as Acer pseudoplatanus (Hong and

Ellis, 1990), Aesculus hippocastanum (Tompsett and Pritchard, 1993) and Zizania

palustris (Kovach and Bradford, 1992a). In contrast, viviparous germination is a

common event in recalcitrant seeds of tropical species such as Avicennia marina

(Farrant et ai., 1993b) and Telfaria occidentalis (Akoroda, 1986).

Many authors have identified seed dormancy with the absence of a germination

response under conditions that should facilitate this process (e.g. Harper, 1959;

Vleeshouwers et ai., 1995; Simpson, 1990; Murdoch and Ellis, 1992). Recently,

however, Vleeshouwers et ai. (1995) have proposed that a distinction should be made

between dormancy release and germination elevation as well as between induction of

dormancy and inhibition of germination. Those authors define dormancy as a seed

characteristic, the degree of which defines what conditions should be met to make the

seed germinate. Dormancy, unlike the absence of a germination response, is seen not

as an all-or-nothing property.

Dormancy occurs in, at least, three forms: (1) physiological dormancy (reviewed by

Cohn, 1987; Baskin and Baskin, 1989; 1998), (2) dormancy caused by a hard seed

coat and (3) dormancy caused by underdevelopment of the embryo (Simpson, 1990;

Vleeshouwers et al., 1995). Breaking of dormancy caused by underdevelopment is

sometimes referred to as after-ripening (Simpson, 1990).

Dormancy can also be classified as primary or secondary (Crocker, 1916;

Vleeshouwers et ai., 1995; Karssen, 1982; reviewed by Hilhorst, 1995; 1998). Primary

dormancy is the dormancy state of the freshly shed seed. If primary dormancy is

relieved but suitable conditions are not present and germination does not occur,

secondary dormancy may develop.

It has frequently been suggested that the primary function of dormancy is survival

during prolonged unfavourable conditions (reviewed by Vleeshouwers et al., 1995). In

contrast, those authors contend that dormancy is a device for surviving short periods

of favourable conditions. They argue that during unfavourable conditions, the lack of

germination-elevating factors will prevent germination on one hand. Dormancy, on the

other hand, prevents germination during transient favourable conditions when it is

likely that the seedling that originates from the seed will not survive.
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Hilhorst (1993; 1995; 1998) has presented a hypothetical model for the regulation

of dormancy and stimulation of germination in seeds. In that model, it is proposed that

environmental factors of light and temperature and internal factors such as GA play a

pivotal role in the release of dormancy and stimulation of germination in seeds. In

addition, Karssen (1982) has implicated ABA in the induction of dormancy and

inhibition of germination. Nonetheless, Vleeshouwers et al. (1995) caution that as yet,

there is only circumstantial evidence to support the model. Those authors contend,

though, that the model structures and integrates a large number of observations on

dormancy and germination in a concise and comprehensible way.

In conclusion, Cohn (1996) has reviewed a number of chemical mechanisms of

breaking seed dormancy and concluded that such mechanisms are useful for the

attainment of at least two objectives. Firstly, they serve as molecular probes of the

mechanisms involved in the transition from developmental arrest to growth. Secondly,

they can increase the efficacy 0f weed control and crop establishment. However,

successful field applications have been limited due to insufficient potency of available

chemicals and poor understanding of the mechanisms of chemical action.

1.6 Germination

As mentioned above, germination In orthodox seeds is under PGR control. For

example, ABA is thought to prevent precocious germination prior to maturation drying

and might promote further development (Long et aI., 1981; King, 1982; Quatrano et

aI., 1983; Bray and Beachy, 1985; Eisenberg and Mascarenhas, 1985; Finkelstein et

aI., 1985; DeLisle and Crouch, 1989; Kermode, 1990).

Maturation drying appears to cause a decline in and/or negation of the effect of

ABA (Kermode, 1990; Bewley and Oliver, 1992). It is associated with metabolic

quiescence (Kermode, 1990) and acts as a punctuation between development and

germination, thus enabling seeds to tolerate adverse environmental conditions.

However, this pattern of events may not be universal. For instance, seeds of cotton and

tomato may not need this switch (Hughes and Galau, 1991 and Berry and Bewley,

1991, respectively).

Upon imbibition, non-dormant seeds undergo re-activation of their metabolic

processes. These events include, among others, production of catabolic and anabolic
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enzymes which mobilise reserves and synthesise structural components, respectively.

The process is completed with the elongation of the radicle.

In contrast, the situation is considerably different in recalcitrant seeds. Such seeds

show neither maturation drying, nor quiescence and there is no definite punctuation

between development and germination, although in many, there is a definite period of

low metabolism. For example, seeds of A. marina initiate reserve utilisation prior to

abscission (Farrant et al., 1992a). This phenomenon has been observed in other

recalcitrant seeds (e.g. C. sinensis [Berjak et al., 1991], L. kirkii [Berjak et aI., 1992]

and Q. robur [Finch-Savage et al., 1992]).

Nonetheless, seeds of A. marina show an increase in metabolism upon shedding

(Farrant et aI., 1992a,b) akin to that observed in orthodox seeds. However, these

events are not accompanied by qualitative changes in protein synthesis (at least in A.

marina [Farrant et aI., 1992b]), even though cell division occurs. These observations

have led those authors to conclude that germination, in the sense defined by Come and

Corbineau (1990), does not actually occur.

Come and Corbineau (1990) have proposed that germination sensu stricto involves

only the activation of the embryo and is complete by the onset of root elongation. For

instance, it is difficult to identify any metabolic process that could be considered to be

associated specifically with germination in A. marina. Development appears to grade

imperceptibly into germination (Farrant et al., 1992a). However, in many recalcitrant

species, there is a more pronounced switch from development to germination, and this

event may occur even occur in storage.

1.7 Deteriorative changes associated with loss of viability in seeds

It might seem of little relevance to discuss deteriorative mechanisms of orthodox seeds

in storage in the present treatise. However, this has been done in view of the marked

similarities between deteriorative changes in orthodox seeds in storage and those in

recalcitrant seeds during dehydration and in wet storage particularly, at the biochemical

and ultrastructural levels (see Smith and Berjak, 1995). Moreover, our understanding

of desiccation sensitivity could benefit from studies on maturing and germinating

orthodox seeds. During maturation and germination, orthodox seeds have yet to attain

or have lost, respectively, full desiccation-tolerance.
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1.7.1 Desiccation-tolerant (orthodox) seeds

a. Factors influencing viability

As early as 1972, Heydecker identified at least four distinct but interacting

detenninants of longevity of orthodox seeds in storage. They are: (1) genetic factors,

(2) pre-harvest and maturational effects, (3) mechanical factors and (4) storage

environment, particularly RH and temperature.

i. Genetic factors: It may be expected that seed longevity has a genetic basis. This

phenomenon was demonstrated for maize some 50 years ago by Lindstrom (1942)

(Smith and Berjak, 1995). However, the genetic differences among species and

cultivars could be masked or amplified by environmental factors during development

and those operating during harvest and storage. The study of Lindstrom (1942) has

been borne out by more recent studies (Scott, 1981; Bewley and Black, 1982; Moreno

Martinez et a!., 1988; Ramamoorthy et al., 1989; Diojode, 1990). Those studies have

equated genetic differences to biochemical parameters, such as levels of polyamines,

putrescine and spennidine (Lozano and Leopold, 1988; Lozano et al., 1989; Matilla,

1996) and morphological characteristics, such as hard, impermeable coats (Harrington,

1972; Flood and Sinclair, 1981; OWrogge and Keman, 1982).

ii. Pre-harvest and maturational effects: Environmental factors such as

temperature, rainfall, photoperiod, soil and atmospheric moisture and soil mineral

status not only influence the storage reserves of developing seeds but their vigour as

well (reviewed by Smith and Berjak, 1995). This phenomenon is probably the basis for

the differences in vigour characteristics among harvests of the same cultivar. It is

interesting to note that while many studies have shown that heavier or larger seeds

generally show superior vigour and longevity characteristics, Olaridan and Mumford

(1990) have shown that smaller seeds of Amaranthus species showed superior

gennination and storage characteristics.

iii. Mechanical factors: The advantages of mechanisation in commercial practices

during harvesting and threshing are self-evident. These practices, however, may inflict

damage on seeds, especially those that are excessively dry. Such mechanical damage

may contribute to loss of viability in storage.

iv. Storage environment: Harrington (1972) proposed a generalisation that was to

become a central dogma in orthodox seed storage. It states that seed storage life is

decreased by increases in storage temperature and RH. As a "rule of thumb", it was
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suggested that storage life is halved for every 5 °C increase in storage temperature and

for every 1% increase in relative humidity. When both factors come into play, they are

additive. Recently, Smith and Berjak (1995) have proposed a two-stage model of

seed ageing. A seminal feature of that model is the realisation that both enzymatic and

non-enzymatic reactions are substantially influenced by the extent and nature of water

binding in seeds. Three zones (1, 11 and Ill) of hydration are distinguished following the

convention ofFennema (1976) and correspond to equilibrium RH ranges (0-25%, 25­

80% and 80-99%). It is postulated that certain molecular events can be associated with

each hydration level.

The hypothesis states that at high temperatures and RHs, lipid peroxidation is likely

to increase exponentially and the induction period will be a matter of a few days. At

the other extreme (i.e. low temperatures and RH), deteriorative damage is likely to

take of the order of years before being manifested. While the hypothesis suggests that

at very low seed water content, seed longevity would be maximal, there is evidence to

suggest that below a critical level, a further decrease in water content adds no

advantage to seed longevity (Roberts, 1991) and, in fact, may even actually contribute

to seed deterioration (Vertucci and Roos, 1990).

b. Changes associated with viability loss

Many events have been suggested to be basic to, or associated with, loss of viability in

seeds. Such changes are: (1) biochemical or (2) ultrastructural. However, these

changes can be detected only on imbibition.

i. Biochemical changes: Many biochemical changes occur in deteriorating seeds.

However, it is presently difficult to discriminate between primary and secondary events

(Smith and Berjak, 1995). Those authors argue that such a situation may be largely

due to the limited number of studies carried out so far. Additionally, investigators have

studied diverse aspects of deterioration using different techniques at various stages of

degeneration for a wide range of seeds.

They include, inter alia,: (1) changes in DNA status and metabolism, (2) changes in

RNA metabolism and protein synthesis, (3) changes in enzyme activities, (4) changes

in reserves, (5) changes in respiratory and energy metabolism and (6) changes in free

radical processing systems.
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(1) Changes in DNA status and metabolism: Osbome and co-workers have

shown that molecular dysfunction at the DNA level can be correlated with declining

viability (Roberts and Osbome, 1973; Osbome, 1983; Osbome and Boubriak, 1994;

1997; Coello and Vazquez-Ramos, 1996; Boubriak et a!., 1997; 2000). Repair

enzymes may also suffer damage during seed storage (Elder and Osbome, 1993;

Osbome and Boubriak, 1994; 1997; Coello and Vazquez-Ramos 1996; Boubriak et

a!., 1997; 2000). Consequently, repair during a pre-germination lag phase may be

evident before full recovery (Vazquez et a!., 1991). Inadequate repair mechanisms

could lead to nonsense information or DNA molecules with impaired function.

Eventually, damage reaches a stage at which gross chromosomal aberrations become

evident and repair is impossible. This event is followed by cell death.

(2) Changes in RNA metabolism and protein synthesis: As physiological

expressions of seed deterioration, such as reduced germinability and seedling growth,

suggest low rates of synthesis, it is not surprising that attention has been directed

towards the functioning and possible relationships of RNA metabolism and protein

synthesis in the deteriorative process. Studies which have investigated the role ofRNA

and protein synthesis in the deteriorative process, reveal that there exists a differential

stability among the different species of RNA (Roberts and Osbome, 1973; Bray and

Chow, 1976; Dell'Aquilla et a!., 1976). They show that while both r- and m-RNAs are

affected, tRNA is particularly resistant to deterioration.

As far as protein synthesis is concemed, Roberts et a!. (1973) have shown

progressive degradation of ribosomes. Those authors also reported loss of and

reduction in activities of elongation factors 1 and 2, respectively.

(3) Changes in enzyme activities: A number of changes in enzyme activities

during the deterioration of seeds have been documented in the literature. They include:

(1) increased free fatty acid (FFA) production as a result of lipolytic activity, (2)

increased hydrolysis of phytin by phosphatases and (3) increased proteolysis by

proteases.

(4) Changes in reserves: Changes in enzyme activities and increased protein

crosslinking ([including enzymes], Ching and Schoolcraft, 1968) and carbonyl-amine

reaction ([including the Maillard reaction], Feeney et a!., 1975) between carbohydrates

and amino acids and proteins lead to changes in the nature and levels of storage

carbohydrates, lipids and proteins.
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(5) Changes in respiratory and energy metabolism: Since germination involves

energy-dependent cell division and growth, it is not surprising that many investigators

have examined respiratory activity. Changes in this regard include reduced coupling,

greater oxygen consumption and a reduced P:O ratio (Abu-Shakra and Ching, 1967).

As far as ATP production is concerned, Smith and Berjak contend that the picture

that emerges is far from clear. Studies which have shown a correlation between ATP

content and viability in seeds of unrelated species (Ching and Danielson, 1972; Ching,

1973; Lunn and Madsen, 1981) have been confounded by those that have indicated

that ATP levels are not good indicators of viability (Styler et a!., 1980; Mazor et a!.,

1984).

(6) Changes in free radical processing systems: Recently, Bailly et al. (1996;

1997; 1998) have shown that the activities of free radical scavenging enzymes,

superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) were

adversely affected by accelerated ageing in sunflower seeds.

ii. Ultrastructural changes: They include: (1) chromosome aberrations, (2)

membrane changes, (3) general cytoplasmic and nuclear deterioration.

(1) Chromosome aberrations: The idea that chromosome aberrations underlie

seed deterioration was the first to be suggested (Navashin, 1933). There is a good

correlation between viability loss and chromosome damage (Roberts, 1972a,b; Villiers,

1974). Such chromosome damage represents gross damage to DNA. When a critical

proportion of aberrant dividing cells occurs, growth ceases and death follows.

(2) Membrane changes: There are several ultrastructural studies that clearly

show that membranes undergo deteriorative changes with increasing seed age which

are manifested at imbibition (Berjak and Villiers, 1972a,b,c; Hallarn, 1973; Simola,

1974; 1976; van Staden et a!., 1975; Berjak et ai., 1986; Dawidowicz-Gizegorzewska

and Podstolski, 1992). They include: (1) abnormalities of mitochondrial and plastid

inner and outer membranes, (2) lobing of the nuclear envelope, (3) fragmentation and

loss of the endoplasmic reticulum, (4) dissolution of the bounding membranes of

vacuoles and protein bodies, (5) fusion of lipid bodies to form larger bodies or

irregular pools, (6) discontinuities in the plasmalemma and (7) the occasional

appearance of floccular material in the extra-protoplasmic space (Smith and Berjak,

1995).
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(3) General cytoplasmic and nuclear deterioration: Apart from the changes

mentioned above, there are other ultrastructural changes which are consistently

associated with seed ageing. They include, among others, chromatin clumping,

cytoskeletal and nucleolar abnormalities, and loss of ribosomes (including polysomes)

(Smith and BeIjak, 1995). It is noteworthy that such changes would impact on the

DNA, RNA and protein synthetic systems and consequently on repair systems.

1.7.2 Desiccation-sensitive (recalcitrant) seeds

a. Changes associated with desiccation

Water plays a plethora of roles in cells including: (1) providing cell structure, (2)

providing the medium for the diffusion of substrates to the active sites of enzymes, (3)

the stabilisation of macromolecular conformations through hydrophylic and

hydrophobic interactions, (4) the sequestration of cellular constituents and (5) acting as

a reactant and product in many important reactions (reviewed by Vertucci and Farrant,

1995; Waiters et aI., 2002).

Removal of water from cells leads to changes in their physical and physiological

properties (reviewed by Vertucci and Farrant, 1995; Waiters et aI., 2002). It may be

expected, therefore, that this process could have adverse consequences.

i. Physical damage: At a cellular level, the first sign of water-stress is loss of turgor

(Levitt, 1980b). This event occurs at water potentials of -1 to -2 MPa and may lead to

cell collapse. A number of factors, which influence the effects of physical stress during

water loss, have been suggested. They include: (1) the size of the cell, (2) vacuolar

space (Levitt, 1980a,b), (3) plasma membrane PL composition (Uemura and

Steponkus, 1989) and (4) organellar geometry (Bewley, 1979; Levitt, 1980b;

Bergstrom et aI., 1982; Kaiser, 1982; Oliver and Bewley, 1984; Oertli, 1986).

At lower water potentials, cells shrink as they lose water (Merryman, 1974;

Steponkus, 1979; Steponkus and Lynch, 1989; Steponkus et al. 1995). Osmotic

adjustments lessen the water potential difference between cells and the environment

and augment the amount of dry matter in cells and, thus, can prevent loss ofwater and

cell contraction (Iones and Gorman, 1983). However, they are ineffective at reducing

strains when cells are exposed to even lower water contents (Wolfe and Bryant, 1999).

When cells that have not acclimatised to water-stress shrink by 50-80%, they burst

when returned to the original water potential. This observation led to the concept of
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the (critical cell volume', which describes the limit to which a cell can contract in an

osmotic excursion or reversible contraction-expansion cycle when cooled and

subsequently warmed (Merryman, 1974).

Differences in the degree to which cell walls contract compared with the protoplasm

may cause mechanical stress and damage to the plasmalemma during drying. The tight

attachment of the plasmalemma to the cell wall creates tension to the cell membrane in

shrinking cells (Murai and Yoshida, 1998a). This phenomenon is most profound at the

cell wall-plasmalemma attachments near the plasmodesmata (Iljin, 1957; Bewley and

Krochko, 1982; WaIters et ai., 2002). Plasmolysis, during which the plasma membrane

separates from the cell wall, mitigates damage to the whole cell during severe water­

stress (Murai and Yoshida, 1998b). There is evidence to suggest that cells in

desiccation-tolerant seeds are slightly plasmolysed (Pemer, 1965; reviewed in Waiters

et ai., 2002).

However, observations of plasmolysis may be an artefact of the aqueous fixatives

used to study dry organisms (Opik, 1985; Platt et ai., 1997; Wesley-Smith, 2001). In

studies using anhydrous chemical fixation (Opik, 1985) and freeze substitution

(Wesley-Smith, 2001; Wesley-Smith et ai., 2001), the plasma membrane remained

closely appressed to the cell wall, and both the cell wall and plasmalemma became

highly convoluted during desiccation of tolerant cells.

It is noteworthy that Opik (1985) showed that the plasmalemma separated from the

cell wall during rehydration as a result of differential swelling of the cell wall­

plasmalemma association caused by detergents such as dimethylsulphoxide. The

mechanical properties of the cell wall, which include: (1) elasticity, (2) ability to fold

and (3) association with plamsodesmata, influence the degree to which plasma

membrane disruption occurs as a consequence of contraction or expansion (Webb and

Arnott, 1982; Opik, 1985; Murai and Yoshida, 1998b; Vicre et ai., 1999).

Cell membranes must fold and/or vesiculate to accommodate the volume changes

during cell contractions. Conservation of membrane surface area is critical for

successful rehydration. If the surface area is reduced too much, cells burst upon

rehydration. This observation suggests there is a critical minimum surface area, rather

than a critical minimum volume, down to which cells can survive (Steponkus, 1979;

Steponkus and Lynch, 1989; Steponkus et ai., 1995).
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It is interesting to note that cells which are not acclimatised to cold, which generally

respond like their desiccation-sensitive counterparts to water-stress, contract through

invaginations of the plasma membrane which eventually fonn endocytotic vesicles that

can not be reincorporated into the plasmalemma upon warming (Steponkus and Lynch,

1989; Steponkus et aI., 1995). In contrast, the plasmalemma from protoplasts tolerant

of water-stress contract through exocytotic extrusions, which remain continuous with

the plasma membrane and, as a result, help conserve the membrane surface area

(Steponkus and Lynch, 1989; Steponkus et al., 1995).

It appears that high PLsterol ratios and high amounts of diunsaturated fatty acids in

the plasmalemma facilitate exocytotic folding in shrinking protoplasts and greater

elasticity of expanding membranes (Steponkus and Lynch, 1989; Steponkus et aI.,

1995). Protoplasts with these properties tend to survive to lower water potentials.

Most orthodox and recalcitrant seeds, except for those with highly vacuolated cells

(e.g. Avicennia marina [Farrant et aI., 1992a; 1993a,bD, are fairly tolerant of water­

stress to water potentials of -12 :MPa or higher, although recalcitrant seeds will

tolerate this stress only in the short tenn. Nonetheless, drying results in some degree of

cell contraction, which is mostly completed when the water potential of the cell is

reduced to -12 MPa. In cells that survive water potentials of -12:MPa but not lower,

both endo- and exocytotic vesicles have been observed (reviwed in Waiters et aI.,

2002).

In severely dried cells of fully desiccation-tolerant seeds, the plasmalemma stays

intact and closely attached to the cell wall. This observation suggests that membrane

surface area remains relatively constant (Opik, 1985).

Some membrane constituents may be removed during cell contraction as evidenced

by whorls of membranes close to the plasmalemma in seed cells (Webster and Leopold,

1977; Opik, 1985; Wesley-Smith et aI., 2001) and circular membrane structures and

plastoglobuli within chloroplasts in sections of leaf tissue from desiccation-tolerant

angiospenns (Farrant et aI., 1999). These membrane bodies have been proposed to

provide additional membrane reserves upon rehydration (Webster and Leopold, 1977;

Farrant et aI., 1999).

Mechanisms by which such structures would be reinstated are not clear.

Furthennore, their very existence could be artefacts of aqeous fixation. Alternatively,

these membrane abnonnalities may arise from other organelles such as endoplasmic
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reticulum and may participate in autophagy or vacuole formation (Wesley-Smith et

al., 2001).

The shapes of nuclei, mitochondria and plastids in dried cells of desiccation­

tolerant seeds are irregular and convoluted (Opik, 1985). This observation suggests

that the surface area of the membranes of these organelles is also conserved by

folding.

The membranes of cell vacuoles experienced tensions similar to those described for

protoplasts during reversible contraction-expansion cycles following exposure to

water potentials of -2.5 to -5 MPa (Murai and Yoshida, 1998b). As a result, they are

prone to rupture with lethal consequences. Highly vacuolated cells of immature seeds

(Berjak et al., 1984; 1994; Farrant et al., 1989) and desiccation-sensitive tissue

(Farrant and Sherwin, 1997; Farrant, 2000) are particularly sensitive to tonoplast

dissolution.

Replacing the water in vacuoles with solid material reduces the degree to which

vacuoles must contract, thereby lessening the tension on tonoplast membranes during

drying. Dry matter reserves naturally accumulate during embryogenesis in orthodox

and some recalcitrant seeds. This phenomenon may explain the progressive tolerance

to desiccation in developing seeds (Farrant et al., 1997; Farrant and WaIters, 1998).

There is also accumulation of dry matter in vacuoles of vegetative tissues in many of

the desiccation-tolerant angiosperm species during acclimatisation to water-stress.

In addition to protection by filling cells with dry matter, the consequences of cell

contraction can be alleviated by initial high surface area-to-volume ratios of cells and

vacuoles (reviewed in Iljin, 1957; Bewley, 1979; Walters et al., 2002). This

phenomenon may explain why cells from non-vascular plants, which usually have

small vacuoles, do not suffer physical damage (reviewed by Bewley and Krochko,

1982).

Severe water-stress is associated with dismantling of mitochondria. For instance,

mitochondria in mature orthodox seeds lack defined cristae (Bergtrom et al., 1982;

Thompson and Platt-Aloia, 1984; Farrant et al., 1997) and mitochondrial proteins are

easily extractable from dried pollen (Hoekstra and Roekel, 1983). Conversely,

mitochondria from recalcitrant and immature orthodox seeds are more defined. This

condition has been linked to greater sensitivity to desiccation (Farrant et al., 1997).
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Chloroplast structure is also degraded during dehydration. For example, dried

leaves of desiccation-tolerant grasses Borya nitida and Xerophyta humilis become

yellow concurrent with the loss of grana stacks in chloroplasts (Gaff and Hallam,

1974; Farrant, 2000). Furthermore, there was a decline in photosynthetic activity, as

measured by efficiency of photosytem n, at water potentials between -3 and -4 MPa

(Wiltens et al., 1978; Hetherington et al., 1982b; Sherwin and Farrant, 1998; Tuba et

al., 1998; Csintalan et al., 1999).

This decrease could be a consequence of photochemical damage. However,

Demmig-Adams and Adams (1992) and Farrant (2000) contend that it is more likely a

reflection of protective dismantling of photosystem n. Indeed, the dismantling of

photosynthetic apparatus during drying of B. nitida and X. humilis is required for

survival in those species (Gaff and Hallam, 1974; Farrant, 2000). This phenomenon is

evidenced by the fact that plants dried too rapidly stay green and do not recover.

Slight water-stress at water potential between -1 and -3 MPa enhances protein

synthesis, which is held to be important for conferring tolerance (Ried and Walker­

Simmons, 1993; Ingram and Bartels, 1996; Oliver et aI., 1998; Mundree et al., 2000;

Whittaker et al., 2001). However, further desiccation reduces the rate of protein

synthesis in both tolerant and sensitive cells (Salmen-Espindola et al., 1994; Ingram

and Bartels, 1996; Oliver et al., 1998; Mundree et al., 2000; Whittaker et al., 2001). It

is thought that this event is a result of dismantling of endoplasmic reticulum,

dictyosomes and polysomes (Webster and Leopold, 1977; Thompson and Platt-Aloia,

1984; Farrant et al., 1997; Wesley-Smith et al., 2001).

The cytoskeleton of cells from recalcitrant seeds is disrupted at fairly high water

potentia1s during dehydration (e.g. -3.8 MPa for Trichilia dregeana [Berjak et al.,

1999] and -3.5 MPa for Quercus robur [Mycock et al., 2000]). Nonetheless,

cytoskeletal disassembly also occurs in cells of desiccation-tolerant seeds and

vegetative tissues during dehydration. In this regard, Mycock et al. (2000) contend

that the distinguishing factor between the two tissue types is the failure to reconstitute

in desiccation-sensitive material.

At the molecular level, intermolecular associations of polar lipids are intrinsically

linked to the water content of the medium (reviewed in Walters et al., 2002). Under

aqueous conditions, polar lipids spontaneously align to form micelles or bilayer

structures depending on the polar head group of the lipid. Acyl chains within bilayers
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are mobile. This situation gives considerable fluidity to the structure. It also allows

proteins and other constituents to be inserted.

Drying brings membrane bilayers into close proximity, thus, causing membrane

constituents to separate laterally into different domains enriched with particular lipid

classes or proteins (Lis et al., 1982; Bryant and Wolfe, 1989; 1992; Rand and

Parsegian, 1989; Bryant et al., 1992; Crowe and Crowe, 1992; Steponkus et al., 1995;

Hoekstra and Golovina, 1999). The closer packing between membranes and

membrane constituents results in greater rigidity of the fatty acid domain within the

bilayer. Molecular remix occurs upon rehydration. However, the reactions that

occurred during the desiccated state may have irreversible consequences (reviewed by

Crowe et al., 1992; 1997).

Two mechanisms have been suggested to explain why fatty acid domains become

more rigid based on either intra- on interlamellar events. One hypothesis states that

the associated fatty acids compress because of increased van der Waals attractions

when water molecules are removed from between adjacent polar head groups (Crowe

et al., 1990; Crowe and Crowe, 1992; Hoekstra and Golovina, 1999). The other states

that strong repulsive hydration forces keep different bilayers separate as they come

into close apposition, but create isotropic tensions which lead to lateral compression

within the acyl domain (Lis et al., 1982; Wolfe, 1987; Rand and Parsegian, 1989;

Bryant and Wolfe, 1992; Wolfe and Bryant, 1999).

Increased rigidity of the acyl domain eventually leads to lipid phase transitions

within the membrane from a lamellar liquid-crystalline to solid gel state (Ladbrooke

and Chapman, 1969; Cullis and de Kruijff, 1979). While these phase transitions are

reversible, they interfere with the semi-permeable properties of membranes.

Permanent damage comes from permanent exclusion of proteins from parts of the

bilayer (Rand and Parsegian, 1989; Bryant and Wolfe, 1992; Crowe and Crowe, 1992;

Hoekstra and Golovina, 1999).

Transient damage also occurs upon rehydration; the rush of water on to an inelastic

membrane may cause it to rupture (Murphy and Noland, 1982; Steponkus et al., 1995;

Hoekstra et al., 1999) or imperfect packing among different domains may cause

leakage of cellular constituents (Crowe and Crowe, 1992; Hoekstra et al., 1999).

The close approach of membrane systems and the lateral demixing of membrane

constituents can lead to even greater problems to membrane integrity than lamellar
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liquid-crystalline to solid gel phase transitions. Membranes may fuse together, thus

causing complete loss of compartmentation within the cell (Crowe and Crowe, 1992;

Steponkus et al., 1995). The mechanism that causes polar lipids to cross over to a

different bilayer is unclear.

In principle, four factors are thought to allow the formation of inverted micelles

within closely appressed bilayers. They include: (1) the hydration characteristics of

individual lipids and lipids in a mixture, (2) the intrinsic curvature of different head

groups, (3) the water content and (4) the temperature (Cullis and de Kruijff, 1979;

Crowe et al., 1986; Steponkus et al., 1995).

The polar head groups coalesce into rings and the acyl chains extend radially

outward in what is called the hexagonal phase in domains enriched with non-bilayer­

forming lipids such as phosphatidylethanolamine-diglycerides or monogalactosyl­

diglycerides (Cullis and de Kruijff, 1979; Siegel et al., 1994; Steponkus et al., 1995).

Membrane fusion via hexagonal phase changes is rare in native membranes (reviewed

in Waiters et al., 2002). However, it has been shown in cells from non-acclimatised

leaves that were lethally cooled (Steponkus et al., 1995) and more frequently in

animal cells (Cullis and de Kruijff, 1979; Crowe and Crowe, 1992).

Membrane fusion is common in desiccation-damaged cells, protoplasts and

liposomes (e.g. Crowe et al., 1986; Steponkus et al., 1995). Nonetheless, this damage

does not occur via hexagonal phase changes. For instance, fusion of the plasmalemma

and endomembranes was demonstrated in cold-acclimatised rye and oat leaves at

temperatures and water potentials between -10 and -40 °C and -12 and -48MPa,

respectively, depending on the level of cold tolerance achieved (Steponkus et al.,

1995). Upon rehydration, fused membranes produce vesicles that exclude constituents

or are combinations of different membrane systems. Because the osmotic balance

inside and outside the cell is completely disrupted, vesicles from membrane fusions

are unable to expand during rehydration (Steponkus et al., 1995).

The water contents and temperatures at which phase transitions of prepared

membrane systems occur, depend on two factors (Ladbrooke and Chapman, 1969;

Cullis and de Kruijff, 1979; Crowe et al., 1989a,b; Steponkus et al., 1995). They are:

(1) the saturation of the acyl chains and (2) the presence ofnon-PLs. A water potential

of about -12 MPa is often cited as critical. It has been suggested that structural water

needed for proper spacing of polar head groups is removed at water potentials below
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that level (Ladbrooke and Chapman, 1969; Crowe et aI., 1990). Also, potentially

deforming hydration forces result from the close approach of molecules at a water

potential of about -12 MPa (Wolfe, 1987).

Changes in bilayer spacing or membrane lamellar liquid-crystalline to solid gel

lipid phase transitions have been detected in both desiccation-tolerant and -sensitive

plant cells during desiccation, with little difference observed with degree of tolerance

(McKersie and Stinson, 1980; SeewaIdt et al., 1981; Priestley and de Kruijff, 1982;

Singh et al., 1984; Kerhoas et al., 1987; Crowe et al., 1989a,b; Hoekstra et al., 1991;

1992a; Sun et al., 1994; Hoekstra and Golovina, 1999). For example, Seewaldt et al.

(1981) observed a membrane lipid phase transition in tolerant soybean cotyledons

when seeds were dried to less than 0.2 g g-l dm which correspond to a water potential

of -12 MPa CVertucci and Roos, 1990).

However, water potentials between -10 and -15 MPa also mark the survival limit

of recalcitrant seeds. Nonetheless, a membrane-mediated mechanism is often invoked

to explain damage in desiccation-sensitive seeds and pollen because the membrane

integrity of their cells is compromised upon rehydration (McKersie and Stinson, 1980;

Berjak et al., 1992; 1993; Poulsen and Eriksen, 1992; Sun and Leopold, 1993; Sun et

aI., 1994; Ntuli et al., 1997; Wolkers et al., 1998b).

Protein structure is conserved during drying to extremely low levels (Schneider and

Schneider, 1972; Kuntz and Kauzman, 1974; Ruegg and Hani, 1975; Fujita and Noda,

1978; Careci et al., 1980; Takahashi et al., 1980; Jaenicke, 1981; Rupley et al., 1983;

Walters et al., 2002). Some proteins even maintain functional activity, albeit at low

levels, when dry (Acker, 1969; Potthast, 1978; Labuza, 1980; Rupley et al., 1983).

Secondary structure of cytoplasmic proteins from desiccation-tolerant pollen was

also conserved upon drying in the absence of protectant sugars. This observation

demonstrated the innate stability of the secondary structure of proteins as a result of

the high degree of a-helical structures (Wolkers and Hoekstra, 1995). Furthermore,

the reversibility of sorption-desorption isotherms of numerous proteins supported the

idea that conformational changes of proteins during hydration were slight and

reversible (Bull, 1944; D'Arcy and Watt, 1970; reviewed by WaIters et al., 2002).

Slight and reversible changes in protein structure, particularly secondary structure,

have been attributed to volumetric changes from loss of water rather than to the native

structure of proteins. These changes occur at low water contents and water potentials
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of between 0.2 and 0.1 g g-l dIn and -70 to -200 MPa, respectively (Ruegg and Hani,

1975; Griebenow and Klibanov, 1995).

In fact, drying stabilises protein structures, thus making them particularly resistant

to ageing (Franks et al., 1991; Constantino et al., 1998) and heat denaturation (Echigo

et al., 1966; Ruegg et al., 1975; Fujita and Noda, 1978; Takahashi et al., 1980;

Jaenicke, 1981; Leopold and Vertucci, 1986; Wolkers and Hoekstra, 1997). The

extreme stability of protein structure with low hydration may be attributed to stronger

intramolecular associations compared with the situation of polar lipids. Such

interactions would reduce the need for hydrogen bonding with water to maintain

structural integrity, thus preventing the need for water replacement, as suggested by

Crowe and Crowe (1992) and/or provide mechanical strength that resists deformation

when molecules are compressed, thus obviating the need for mechanical barriers, as

proposed by Wolfe and Bryant (1999).

However, the conformations of some proteins are irreversibly damaged by drying

or freeze-drying in the absence of protectants (Hanafusa, 1969; Carpenter et al., 1987;

1990; Franks et al., 1991; Prestrelski et al., 1993). For instance, enzymes such as

lactate dehydrogenase and polypeptides such as poly-L-lysine are particularly labile

(Prestrelski et al., 1993) and damage is exacerbated if molecules are freeze-dried

rather than air-dried (Franks et al., 1991). In this regard, rate of drying also has a large

effect on the conservation of protein structure (Wolkers et al., 1998a,b). It appears

greater preservation is achieved by rapid drying conditions.

The structure and activity of proteins are compromised if they are stored under

extremely dry condition of approximately 0.1 g g-l dIn or -200 MPa or less (Kuntz

and Kauzmann, 1974; Luscher-Mattli and Ruegg, 1982; Sanches et al., 1986; Labrude

et al., 1987). Substantial deterioration of the lattice of protein crystals was attributed

to the refolding of polypeptide chains to increase packing efficiency (Kuntz and

Kauzmann, 1974). Other studies have shown that severe drying exposes haem groups

on proteins, thus promoting free radical production (Sanches et al., 1986; Labrude et

al., 1987). At such low contents, proton exchanges among charged amino acids could

be measured, suggesting that these sites were exposed (Careri et al., 1980; Rupley et

al., 1983).

Many mechanisms have been suggested to cause damage to proteins at low water

contents. They include: (1) exposure of the reactive sites, (2) increased relaxation as
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they fill voids left by water and (3) relaxation of the glassy matrix which embeds

proteins. Such mechanisms are responsible for the deterioration of stored seeds and

pollen. Nonetheless, protein structure is stable in seeds stored at 30% RH (Golovina et

al., 1997). Furthermore, increased ageing rates in seeds and pollen stored below the

'critical water content' have been attributed to reduced viscosity of the aqueous

medium in cells that are almost completely dry (Buitink et al., 1998a).

The same destabilising forces that perturb lipid and protein structures may also

affect nucleic acids upon dehydration (Rau et al., 1984). DNA is a particularly stable

molecule (Wayne et al., 1999). Its structure is maintained in the absence of water and

it reversibly unfolds at high temperatures (Bonner and Klibanov, 2000). The

intermolecular distances of dehydrating DNA strands are comparable to those of

condensed DNA in hydrated nuclei (Rau et al., 1984). This observation suggests that

DNA structures are resistant to perturbation resulting from dense packing.

When DNA is replicating during germination and, therefore, is decondensed the

cells concomitantly become susceptible to desiccation injury (Deltour and Jacqmard,

1974; Crevecoeur et al., 1988). Also, rapidly dividing cells during embryogenesis are

sensitive to drying (Myers et al., 1992). Additionally, desiccation did not affect the

structure of condensed and decondensed chromatin in desiccation-tolerant or sensitive

maize embryos, respectively (Leprince et al., 1995a). However, in those studies, the

chelation of ci+ and other divalent cations by ethylenediamine tetra-acetic acid

present in the medium used for chromatin spreading, may have relaxed previously

condensed chromatin, thus accounting for the reportedly similar results in desiccation­

tolerant and sensitive material (reviewed by Pammenter and Berjak, 1999).

ii. Metabolic damage: Removal of water from cells results in an increased

concentration of solutes and an increase in the viscosity of the aqueous medium.

These events precipitate a number of changes in metabolic pathways of plant cells

(reviewed by WaIters et al., 2002). For example, assimilation of CO2 in

photosynthetic tissue and growth are impaired although growth is much more

sensitive to water-stress than CO2 assimilation.

Particular metabolic activities are believed to occur at specific moisture levels

(Clegg, 1978; Leopold and Vertucci, 1989). In this regard, it is important to note that

cells may be sensitive to the rate of desiccation in addition to loss of water per se

(Farrant et aI., 1985; Pammenter et al., 1991; Pritchard, 1991; Berjak et ai, 1993).
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Often, protein synthesis is temporarily stimulated during mild dehydration

(reviewed by Vertucci and Farrant, 1995; Ingram and Bartels, 1996; Oliver et al.,

1998). This event is thought to lead to the production of proteins with putative

protection characteristics. Observations of increased occurrence of polysomes and

endoplasmic reticulum in slightly water-stressed recalcitrant seeds suggest that

certain, and possibly similar, metabolic pathways may also be induced in seeds that do

not acquire full desiccation-tolerance (BeIjak et al., 1984; Farrant et al., 1989;

Pammenter et al., 1998).

However, these changes in metabolism do not indicate that cells have already

experienced damage; when briefly water-stressed, most organisms resume normal

metabolism once the stress is relieved. Nonetheless, prolonged mild stress, which

could be considered akin to drought, is deleterious to both vegetative and embryonic

tissues.

Metabolism slows down at water potentials less than -2MPa. However, not all

reactions are affected by dehydration in the same way. For instance, whilst protein

synthesis slows down at relatively high water potentials (reviewed by Bewley and

Krochko, 1982; Clegg, 1986; Salmen-Espindola et al., 1994; Ingrams and Bartels,

1996; Mundree et aI., 2000 Whittaker et aI., 2001), respiration continues to much

lower levels (Vertucci and Leopold, 1984; Vertucci and Roos, 1990; Salmen­

Espindola et al., 1994; Leprince and Hoekstra, 1998; Leprince et al., 1999; Farrant,

2000; WaIters et al., 2001).

Various reactions within photosynthetic (Wiltens et al., 1978; Hetherington et al.,

1982a; Vertucci et al., 1985; Vertucci and Leopold, 1986; Farrant, 2000) and

respiratory (Vertucci and Leopold, 1986; Leprince and Hoekstra, 1998; Leprince et

al., 2000) pathways respond differently to low water contents. The differing responses

to water-stress among and within metabolic pathways lead to imbalances in

metabolism. Furthermore, metabolic imbalances may be confounded by the

respiration of fungi, which occur at water potentials as low as -20MPa in orthodox

and recalcitrant seeds (Mycock and BeIjak, 1990; Goodman, 1994; Calistru et al.,

2000).

Damage by metabolic stress is most pronounced at water potentials between -2 and

-5 MPa and diminishes in effect as cells are dried to -12MPa (Leprince et al., 2000;

Waiters et al., 2001). In this regard, both desiccation-sensitive and tolerant organisms
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are damaged when stored at intennediate water potentials, though the time­

dependency of the damage varies considerably among species and tissues (Waiters et

al., 2001).

A by-product of continued respiration and photosynthesis when other metabolic

processes are shut off is the accumulation of high-energy intennediates that leak out

of mitochondria and plastids and fonn reactive oxygen species (ROS) and free

radicals (Puntarulo, 1991; Dean et al., 1993; Hendry, 1993; Leprince et al., 1993a;

1994; 1995b; Smimoff, 1993; Foyer et al., 1994; Halliwell and Gutteridge, 1999).

ROSs and free radicals react with proteins, lipids and nucleic acids, thus causing

pennanent damage to enzymes (Wolff et al., 1986; Dean et al., 1993; Halliwell and

Gutteridge, 1999), membranes (Senaratna and McKersie, 1983; 1986; Chan, 1987;

McKersie et al., 1988; 1989; Finch-Savage et al., 1996; Halliwell and Gutteridge,

1999; Leprince et al., 2000) and chromosomes (Dizdaroglu, 1994). Peroxidation of

lipids decreases the fluidity within membranes (McKersie et al., 1988; 1989), thus

interfering with their selective penneability upon rehydration.

High levels of free radicals have been detected in desiccation-sensitive seeds upon

dehydration (Senaratna and McKersie, 1983; 1986; McKersie et al., 1988; Hendry et

al., 1992; Leprince et al., 1993a; 1994; 1995b; 1999; 2000). The origin and sequence

of the events following the appearance of these toxic compounds remains unclear.

They may be produced by the water-stressed cell (Leprince et al., 1993a; 1994; 1995b;

1999; 2000; Leprince and Hoekstra, 1998) or as a result of the associated fungi

(Goodman, 1994; Finch-Savage, 1999). Additionally, they may precede or precipitate

damage (Finch-Savage et al., 1996; Leprince et al., 2000) or arise after the cell has

already died (Finch-Savage, 1999).

There are several ways in which cells can protect themselves from metabolic

imbalance and ROS-mediated damage. At higher moisture levels, free-radical­

processing enzymes efficiently detoxify ROS (Bewley, 1979; Dhindsa, 1987; Hendry,

1993; Smimoff, 1993; Foyer et al., 1994; Kranner and Grill, 1997; Sherwin and

Farrant, 1998; Farrant, 2000). Nonetheless, these enzymes appear ineffective at low

water contents and antioxidants, such as tocopherol (TOe) and ascorbic

acid/ascorbate may be more effective (reviewed by McKersie et al., 1988; Pammenter

and Berjak, 1999).
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Amphipathic molecules such as TOC can partition between aqueous and lipid

domains according to the water content of the cell and the polarity of the molecule

(Golovina et al., 1998). In addition, a controlled repression of metabolism upon

drying may also mitigate the consequences of unbalanced metabolism (reviewed by

Leprince et al., 1993b; Vertucci and Farrant, 1995; Parnmenter and Barjak, 1999).

Cells with more organelles and greater definition of organelle structure appear

more sensitive to desiccation (Bewley, 1979; Hetherington, 1982a; Gaff, 1989; Berjak

et al., 1990; Farrant et al., 1997; Farrant and Walters, 1998; Farrant, 2000). This effect

may be a result of the requirement to protect more membranes or greater ROS

production because of higher metabolism.

In this regard, it is noteworthy that conditions that reduce metabolism such as low

temperature (Leprince et al., 1995b) or highly complex substrates (Leprince et al.,

1990a) reduce sensitivity to desiccation. Additionally, desiccation-sensitive cells

respire at comparatively greater rates than their tolerant counterparts at the same water

content (Farrant et aI., 1997; Leprince et aI., 1999; Walters et al., 2001). This

phenomenon may reflect the properties of the mitochondria themselves or the cellular

matrix.

Leprince and Hoekstra (1998) have suggested that changes in viscosity with

dehydration in desiccation-sensitive cells are not as marked as in their tolerant

counterparts. Consequently, metabolism is not as restricted in desiccation-sensitive as

in tolerant cells. Furthermore, it has been suggested that the packaging of

macromolecules in desiccation-sensitive cells is not as dense (Wolkers et al.,

1998a,d). Thus, diffusion of oxygen through the cell matrix is facilitated.

W. Desiccation damage: Removal of water that is intimately associated with

surfaces of macromolecules can be considered desiccation damage sensu stricto

(reviewed by Parnmenter and Berjak, 1999; WaIters et al., 2001). Those authors

contend that desiccation-tolerant tissues can survive removal of most (but not all) of

bound water.

Membrane structures appear more prone to desiccation damage sensu stricto than

do proteins or DNA, perhaps because of the intense hydrogen bonding within proteins

and nucleic acid structures (reviewed in WaIters et al., 2002). Protection from damage

often lies in the ability of the structure or the surrounding medium to offer mechanical

resistance to the stress or to accommodate the stress through enhanced elasticity.
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b. Changes associated with hydrated storage

i. Cellular events: There may be no clear marker event between the end of

development and initiation of germination in some recalcitrant seeds (Farrant et al.,

1993b). Furthermore, seeds of all the tropical and subtropical species so far examined

and Quercus robur initiate germination in hydrated storage (Berjak et al., 1989;

Farrant et al., 1989; Pammenter et al., 1994; 1997; Motete et al., 1997). However,

recalcitrant seeds of temperate species can tolerate months of wet storage as they are

shed either dormant or immature. The latter continue development and/or growth prior

to the initiation of germination in a phenomenon Tompsett (1987) described as after­

ripening.

The situation for seeds that initiate germination in hydrated storage is exemplified

for Camellia sinensis, Landolphia kirkii and Avicennia marina. Embryonic axes from

those seeds in hydrated storage reveal an ultrastructure commensurate with their

active metabolic condition. Subcellular organisation increases in a manner similar to

seeds set out to germinate immediately after they are shed (BeIjak et al., 1989).

ii. The requirement of additional water: The germinative events that occur in

recalcitrant seeds in wet storage culminate in cell division and extensive vacuolation

(Pammenter et al., 1994; 1997; Motete et al., 1997). However, unless more water is

supplied thereafter, extensive degeneration rapidly follows with concomitant viability

loss. Nonetheless, some species will produce extensive roots.

iii. Consequences of intracellular water-stress: The deteriorative processes In

recalcitrant seeds during wet storage superficially appear to be similar to those in

orthodox seeds during dry storage. They include, among others, biochemical changes

(such as lipid peroxidation) and ultrastructural changes (such as damage to

membranes).
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From the events outlined above Pammenter and co-workers hypothesised that: (l)

wet storage lifespan of recalcitrant seeds is inversely related to rate of germinative

metabolism and (2) a progressively intense water-stress develops during hydrated

storage. Thus, those authors concluded that reducing the rate of germinative

metabolism would lead to: (1) an extended storage lifespan and (2) slowing down of

the intensification of the water-stress (Pammenter et aI., 1997).

Those workers set out to test these hypotheses on the highly-recalcitrant seeds of

Avicennia marina. To reduce the rate of germinative metabolism, seeds were coated

with an alginate gel into which ABA had been incorporated. They found that coating

seeds with alginate gel alone, as well with gel plus ABA, extended the storage

lifespan of those seeds by a factor of three to four (Pammenter et al., 1997).

Germination rate, respiration, consumption of storage reserves and ultrastructural

data indicated a reduction in the rate of germinative metabolism and may have

contributed to, but could not fully explain the enhanced storage lifespan of coated

seeds. However, no evidence of water-stress in bulk tissue could be detected during

storage. On the contrary, osmotic and water potentials increased rather than

decreased, although turgor did not change. This increase in osmotic and water

potentials was attributed to the decline in soluble reserves.

Microorganisms, particularly fungi, whose inoculum is present in fresh seeds even

when they have been newly hand-harvested, play a significant role in post-harvest

deterioration of recalcitrant seeds (reviewed by BeIjak, 1996). The same phenomenon

is likely to be true for seed types classed as intermediate. As seeds naturally

deteriorate, fungal proliferation and activity increase. It is thought that in wet-stored

recalcitrant seeds, which have become debilitated, phytoalexin production and other

defence mechanisms become impaired or non-functional.

Phytoalexins are small molecules, the synthesis of which is elicited by the presence

of microorganisms or other factors in a wide variety of species (e.g. pea [Hadwiger

and Webster, 1984], elm [Duchesne et ai, 1990], pine [Gehlert et al., 1990], citrus

[Sulistyowati et al., 1990], reviewed by Schafer, 1994). In this regard, there is

evidence to suggest that the methyltransferase activity, which converts a precursor

molecule into the phytoalexin, (+) pisatin, in pea seedlings, is induced by microbial

infection (Sweigard et al., 1986). In addition, it is noteworthy that many pathogens are

able to inactivate the host plant defence mechanisms, including the accumulation of
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phytoalexins, and that phytoalexins are not nonnally present in any significant

amounts in the absence ofbiotic or abiotic elicitors (Darvill and Albersheim, 1984).

A fungal succession occurs in hydrated recalcitrant seeds, with the most aggressive

species present outcompeting the others (Mycock and Bejak, 1990). Besides being

infected by fungi, recalcitrant seeds also generally harbour a range of bacteria

although one species in particular may dominate.

In conclusion, it is noteworthy that the changes associated with damage and

viability loss in ageing orthodox seeds and drying or wet storage in recalcitrant seeds

cannot be observed directly in many cases (reviewed by Leprince and Golovina,

2002). Rather, they become apparent on extraction and in vitro assays. Hence, the

damage may not become apparent until the system is hydrated. However, this

situation may not accurately reflect that in vivo, especially when dealing with

dehydrating desiccation-sensitive seeds.

1.8 Application of modern physical techniques to the study of the desiccation
response

The development of physical techniques has brought substantial insights into the

physical states of water and cellular components of seeds in recent years (reviewed by

Leprince and Golovina, 2002). These techniques cover a large range of: (1)

spectroscopic techniques such as (a) nuclear magnetic resonance (NMR), (b) electron

paramagnetic resonance (EPR) also referred to as electron spin resonance (ESR) and

(c) Fourier transfonn infrared (FTIR) spectroscopy as well as (2) differential scanning

calorimetry (DSC).

The success of these techniques and spectroscopy, in particular, originates in their

versatility and their ability to assess the state of seeds by non-invasive means. Here,

these techniques are discussed briefly, although they were not used, to highlight the

vast possibilities they open for future seed science research with respect to their

responses to desiccation and storage.

NMR can be used to obtain infonnation of biological interest such as the state of

water, intracellular pH and membrane dynamics. Proton eH) NMR allows the non­

destructive measurement of water content in biological systems with high precision.

Two types of analytical NMR are commonly used in this respect: (1) continuous wave

NMR (Pohle and Gregory, 1968) and (2) pulsed NMR (Martin et al., 1980). Presently,

the latter is generally adopted.
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Such an approach is widely used for rapid non-invasive determination of water and

oil content in air-dry seeds (Tiwari et al., 1974; Gambhir and Agarwala, 1985;

Brusewitz and Stone, 1987; Gambhir, 1992; Rubel; 1994; Warrnsley, 1998). Drying or

D20 can be used to separate the NMR signal of free water from that of oil in hydrated

seeds (Ratkovic et al., 1982).

Only pulsed NMR can be used to characterise different water fractions in living

tissues. The changes in water fractions can be followed during the dehydration and

rehydration of anhydrobiotic systems. This tool gives insight into the role of different

water fractions in biological systems (Seewaldt et al., 1981; Ratkovic et al., 1982;

Aksyonov and Golovina, 1986a,b; Ishida et al., 1987; 1988; Bacic et al., 1992;

Golovina and Aksyonov, 1993; Marconi et al., 1993).

The behaviour of water in living systems can also be characterised by the water

self-diffusion coefficient. This coefficient is measured by pulsed NMR technique

(Fukushima and Roeder, 1981).

The NMR method proposed by Stejskal and Tanner (1965) can be used to study the

in situ membrane permeability to water during drying. This approach has been applied

to follow the changes in membrane properties in developing barley seeds (Ishida et al.,

1995) and to calculate the size of the oil bodies in rape seeds (Fleischer et al., 1990;

Fleischer and Wemer, 1992).

NMR imaging (NMRI) is mainly based on the detection of water. Information on

the spatial distribution of water and water properties can be obtained. Dynamic

information can also be obtained. There are two experimental approaches in NMRI:

(1) imaging large objects such as roots, stems or whole plants and (2) imaging small

samples such as seeds and excised tissues with high resolution NMR microscopy

(Ratcliffe, 1994; Ishida et al., 2000).

The development of NMRI has led to a resolution that approaches the dimensions

of single cells in plant tissues (Connelly et al., 1987). The theoretical limit is

considered as 10 X 10 X 10 Jlm (Ratcliffe, 1994). While NMRI is not yet able to

compare with light microscopy in its resolution of cellular structures, it has the great

advantage of being non-invasive. Thus, it can be used to monitor the functioning of

plant tissues. Nitroxide radicals (Magin et al., 1986; Swartz et al., 1986) and

paramagnetic ions (Ishida et aI., 2000) can be used as contrasting agents.
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It is possible to map stationary, diffusing and flowing water in plant tissues

(Ratcliffe, 1994). For instance, NMRl enables the water distribution inside seeds to be

determined. The changes in water distribution during drying and rehydration have

demonstrated the transfer routes for water (Ruan and Litchfield, 1992; Ruan et al.,

1992; Song et al., 1992; Kovacs and Nemenyi, 1999).

The synthesis of storage substances and their hydrolysis during germination result

in an apparent decrease or increase in brightness of the NMR image, respectively

(Ishida et al., 1990; 1995; McIntrye et al., 1995), such that solubilised parts of the

storage tissues can become visible. For example, the changes in image contrast during

precocious germination of Phaseolus vulgaris after ethylene treatment have been

attributed to the changes in the water status and redistribution from the cotyledon to

the axis (Fountain et al., 1998).

The spatial distribution of other compounds, mainly lipids and carbohydrates, that

accumulate in storage tissues, can be mapped in vivo (Bottomley et aI., -1984). For

instance, mung bean seeds, which have been germinating for one day, showed

uniformly distributed oil. This phenomenon allowed the changes in. the image with

germination to be attributed to the bulk water fraction (Connelly et al., 1987).

Similarly, oil and sucrose have been mapped in fresh maize kernels (Koizumi et al.,

1995), barley seeds (Ishida et al., 1990) and developing pea seeds (Tse et al., 1996).

High-resolution NMR is used to detect ions and metabolites of low molecular

weight, intracellular pH, subcellular compartmentation of compounds and flux

through metabolic pathways (Ratcliffe, 1994; Schneider, 1997; Roberts, 2000).

However, low concentrations of molecules of interest makes this approach rather

insensitive.

IH NMR is widely used to analyse tissue extracts for the presence of specific

compounds such as, for example, betaine in wild-type and trarIsformed Arabidopsis

thaliana seeds (Alia et al., 1998). l3C NMR has been used to establish changes in

soybean seeds during maturation and germination (Ishida et al., 1987; 1988). The

sensitivity of l3C NMR can be enhanced (Ni arId Eads, 1992; Heidenreich et al.,

1998). l3C labelling gives opportunities for probing different metabolic pathways such

as lipid synthesis in soybean ovules (Schaeffer et al., 1975) arId the metabolism of

dormancy-breaking chemicals in red rice (Footitt et al., 1995).
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31 p NMR has many applications because of the physiological importance of the

information that it provides. The measurement of cytoplasmic and vacuolar pH is one

of the most important applications of in vivo 31 p NMR. Furthermore, a number of

important phosphorylated metabolites can be resolved in 31 p spectra. For some of

them such as polyphosphate, information on the subcellular distribution can also be

obtained.

31 P NMR has been applied to study the pH of intracellular compartments in

germinating seeds of Phacelia tanacetifolia (Espen et al., 1995). Changes in the

cytoplasmic pH and vacuolar inorganic phosphate concentration correlate with

germination. 31 P can also be used to monitor phosphorus compounds and their

changes during maturation and germination of seeds, both in extracts and in vivo.

Phosphorus compounds can also be resolved in vivo (Ishida et al., 1987; 1988) and in

extracts (Ricardo and Santos, 1990). 31p spectra can also be used for the identification

of the appearance or disappearance of vacuoles in seeds during germination and

maturation, respectively (Ishida et al., 1990).

The 31 P NMR signal of phospholipids (PLs) depends on the orientation of the

phosphate groups. Different PLs can be resolved (Smith, 1985). 31 p NMR is sensitive

to the physical state of PLs.

There are very few examples of successful application of 31 p NMR in the field of

desiccation-tolerance: for instance, Lee et al. (1986; 1989) studied the interaction of

trehalose with the PL, dipalmitoylphosphatidylcholine (DPPC). On one hand, they

showed that the head groups are in a rigid state above and below the phase transition

for both dry DPPC and trehalose. On the other, Tsvetkova et al. (1998) used 31p NMR

in comparative study of the interaction of glucose, trehalose and hydroxyethyl starch

with dry DPPC. Those authors related the differential effect of carbohydrates on the

behaviour of head groups of PLs to the role of trehalose in membrane protection upon

drying.

PLs arranged in lamellar bilayers or in an inverted hexagonal phase have different

31
p patterns (Cullis and Kruijff, 1979). These differences between lamellar bilayer and

hexagonal phase arise from the fact that the lipids are restricted in motion to the plane

of the membrane in the lamellar state. These differences in the 31p pattern can be used

to detect the presence of either phase.
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Researchers have been interested in the membrane transition from the lamellar

bilayer to the hexagonal phase upon drying for many years (e.g. Simon, 1974).

Priestley and Kruijff (1982) applied 3lp NMR to several biological systems in an

attempt to detect this transition. Pollen of Typha latifolia was the most suitable for

analysis. However, 3lp NMR was not suitable for analysis at 0.052 g g-l dm water

content as only phosphorus low-weight molecules could be identified at water

contents less than or equal to 0.088 g g-l dm. In contrast, PLs organised in lamellar

bilayers became evident at 0.109 g g-l dm water content. As a result, no evidence was

obtained for the presence of a hexagonal phase in the pollen on drying to 0.109 g g-l

dm water content.

Deuterium eH) is an ideal probe for membranes (Smith, 1985). This technique can

be used to study membrane phase transitions, the influence of acyl chain saturation on

membrane fluidity and changes in membrane fluidity.

Lee et al. (1986; 1989) applied 2H NMR to study the effect of the interaction

between trehalose and dry DPPC on the behaviour of acyl chains. 2H spectra of dry

DPPC showed that the disorder of lipid acyl chains is much greater in the case of

interaction of DPPC with trehalose above phase transition, than in the hydrated state

or in dry DPPC without trehalose. The type of liquid-crystalline phase observed in the

dry mixture of trehalose and DPPC is believed to play the main role in maintaining

membrane stability in dehydrating organisms.

l3C-Iabelled PLs can be used to study particular dynamics of membranes in the

interfacial region. For example, Lee et al. (1989) used 13C-Iabelled sn-2-carbonyl of

DPPC to study the influence of the interaction of dry DPPC with trehalose on

interfacial behaviour. Those authors reported observing no changes in 13C NMR

spectra during the phase transition of a dry mixture of DPPC/trehalose, whereas

hydrated DPPC exhibited pronounced changes during the phase transition.

l3C-NMR is not a sensitive method and requires concentrations in the millimolar

range. However, advantage can be taken of this low sensitivity by tracing metabolic

changes through the detection of compounds that accumulate to high levels. These

metabolites include compatible solutes that accumulate in cyanobacteria (Reed et al.,

1985), sugars and oil in seeds (Rutar, 1989; Ishida et al., 1990; 1996; Koizumi et al.,

1995) and trehalose in fungal spores (Becard et al., 1991). The non-invasive character

of NMR may allow the time-course of metabolic events to be followed and the
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subcellular localisation of some metabolites such as in maturing or germinating seeds

(Colnago and Seidl, 1983; Ishida et al., 1990; 1996).

Alternatively, it is possible to label specific metabolites and monitor their fate

through the cellular network of metabolic pathways in vivo or in vitro with crude

extracts (Dieuaide-Noubhani et al., 1995; Roberts, 2000; Roscher et al., 2000).

Similarly, 31 p_ and l~-labelled compounds can be used to monitor the dynamics of

phosphorylated metabolites and amino acids, respectively. The applicability of in vivo

NMR to drying tissues remains to be ascertained.

It should be possible to pinpoint the metabolites, the concentrations of which are

mostly sensitive to changes in water content during drying (Fan, 1996; Noteborn et

al., 2000). Approximately 0.5-1 g of fresh material is often required to take an NMR

spectrum. This requirement could prove a limiting factor if the availability of the

biological material is restricted.

In conclusion, NMR provides a rapid and non-invasive method for investigating

the state of membranes in isolated cellular fractions and living tissues. It is the

approach of choice in the study of membrane structure and dynamics. In addition,

NMR spectroscopy appears to be the most appropriate technique to determine the

effects of desiccation on the dynamics of metabolic pathways by analysing the flux of

metabolites through the different pathways (Shachar-Hill and Pfeffer, 1996; Roberts,

2000). Several strategies can be adopted using I3C_, 3Ip_, 14N_or 15N-NMR, depending

on the nature of the metabolite to be analysed. NMR studies mayor may not be

invasive.

The principle of the EPR method for the estimation of the relative amount of viable

cells is based on the fact that membranes of viable cells are impermeable to some

agents, whereas the membranes of damaged cells are not (Keith and Snipes, 1974).

The EPR signal from the sample correlates with the amount of viable cells in a sample

(Dobrucki et al., 1990). It is possible to determine small amounts of viable cells in

mostly dead tissue because of the high sensitivity of the method.

As an example, this approach has been successfully applied m the study of

desiccation-tolerance acquisition of proembryonic cells in wheat kernels. Cells were

dried slowly on the ear at an early stage when proembryos could not be detected

morphologically in that investigation (Golovina et al., 2001). Such an approach

allowed the death of wheat endosperm cells during kernel development (Golovina et
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al., 2000) and the progress of cell death after cold or imbibitional stress in neem seeds

(Sacande et al., 2001) to be followed.

Changes in plasma membrane penneability can be estimated (Miller and Barran,

1977; Golovina et al., 1998; Hoekstra et al., 1999). The method is based on the

presence of temporary defects in membranes

EPR can be used to detennine cell volume changes under osmotic stress. The total

volume is the product of the number and volume of viable cells. As a result, cell

division and enlargement of cells during imbibition and gennination (Golovina et al.,

2001) and osmotically induced changes in cell volume (Miller, 1978) can be detected.

Cytoplasmic viscosity can be studied (Keith and Snipes, 1974). The changes in

cytoplasmic viscosity with drying of desiccation-tolerant and sensitive samples

(Leprince et al., 1999) and with the acquisition of desiccation-tolerance during seed

development (Golovina et al., 2001) have been established based on such an

approach. EPR can also be used to characterise biological glasses (Buitink et al.,

2000b,c,d,e).

EPR is also used to study the physical properties of membranes (Berliner, 1976;

Marsh, 1981; Morse, 1985). Infonnation can be obtained from different depths in

membranes from surface to core.

EPR is particularly suitable to characterise the glassy state. EPR has been used to

study the motion of proteins in biological membranes (Marsh, 1981; Hernminga,

1983) and glasses (Roozen et al., 1991). This method has also been successfully

applied in the study of biological glasses in anhydrobiotic systems (Buitink et al.,

1998b; 1999; Buitink et al., 2000b,c,d,e).

This approach has given insight into the differences between biological glasses and

sugar or polymer glasses. For example, the occurrence of a second kinetic change in

mobility at a definite temperature above the glass transition temperature was observed

from EPR measurements (Buitink et al., 2000e), which may have physiological

relevance for survival in the dry state. EPR has been used to identify the glassy state in

wheat seed (Dzuba et al., 1993) and to characterise biological glasses of different

water content (Buitink et al., 2000a).

There are several biological applications in which EPR imaging (EPRI) has an

advantage over NMRI: (1) the spatial distribution of O2 and redox metabolism, (2)

mapping viable and non-viable cells, (3) the diffusion of solutes and (4) mapping free
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radicals at the site of radical production (Berliner and Fujii, 1986; Bacic et al., 1989;

Dobrucki et al., 1990). In spite of the potential advantage of EPRl, there are only a

few cases in which the method has been applied to desiccation-tolerant systems.

The pathways of bulk water penetration into wheat kernels during imbibition have

been studied (Smimov et al., 1988; Golovina et al., 1991). The image enabled contrast

between embryo and storage tissue to be observed.

EPR has been used to determine the pH in vesicles and cells (Mehlhorn et al.,

1982). EPR can also be used to study the changes in pH in sample during drying

(Khramtsov and Weiner, 1988).

With the introduction of FTIR spectrometers, in vivo studies became possible,

which was not the case with grating infrared spectrometers. FTIR spectroscopy can be

used for the analysis of certain compounds or to study the interaction between

molecules. The technique is particularly useful in studies in dry organisms because of

the absence of water. A considerable advantage of in vivo FTIR spectroscopy is that it

permits the analysis of macromolecules in their natural environment as opposed to in a

solvent.

An example of the in vivo analysis of certain compounds in seeds is the

confirmation that the aleurone layer is enriched in proteins and the endosperm in

starch (Leprince and Golovina, 2002). The change in molecular interactions or

conformation is of interest in dehydrating organisms. It is possible to study, in vivo,

membranes with dehydration (Cameron et al., 1983; Crowe et al., 1989a,b; Hoekstra

et al., 1992a). It is possible to determine the gel to liquid crystal transition temperature

of these membranes.

In vivo FTIR spectroscopy has been successfully applied in the study of protein

secondary structure during dehydration (Wolkers and Hoekstra, 1995; 1997; Golovina

et ai, 1997; Wolkers et al., 1998a,c). The intermolecular extended ~-sheet is

indicative of the formation of large protein aggregates with drying in some model

enzyme systems (Prestrelski et al., 1993). These aggregates have also been found in

vivo on heat denaturation. The stability of protein against heat denaturation can be

followed (Wolkers and Hoekstra, 1997; Wolkers et al., 1998c).

Recently, it was established that the glassy state can be studied in vivo (Wolkers et

al., 1998b; 1999). The interaction of sugars with proteins or polar head groups has

been verified in dry model systems (Wolkers et al., 1998d; Crowe et al., 1996). FTIR
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spectroscopy has considerable advantage in that molecules are studied in their native

environment.

DSC is applied to the study of thermal events associated with lipid and water

phase/state transitions. It is used for two main purposes in plant anhydrobiotes: Cl) to

determine the calorimetric properties of water present in the system and (2) to

construct a phase/state diagram in which the glass (to liquid phase) transition

temperature (Tg) and the ice formation/melting temperature are plotted as a function

of water content (Vertucci, 1990; Leprince and Vertucci, 1995; Buitink et al., 1996).

The heat released during the glass transition is sometimes below the sensitivity of

the equipment. For example, Tg cannot be detected by DSC in seeds of rice and

tobacco (Leprince and Golovina, 2002). In addition, the lipid melting transitions often

mask the thermal events associated with water in oily seeds such as neem

(Azadirachta indica) and bell pepper (Impatiens) (Buitink et al., 1996; Sacande et al.,

2000). However, the future of DSC in studying anhydrobiosis is questionable since no

major difference in the calorimetric properties of water was found between

desiccation-tolerant and -sensitive organisms (Sun et al., 1994; Buitink et al., 1996).

Two non-invasive techniques are worth mentioning owing to technical difficulties

in studying ultrastructural characteristics of cells in the dry state and upon rehydration

are: Cl) atomic force microscopy (AFM) and low-temperature scanning electron

microscopy (LTSEM). AFM is particularly suitable for imaging the surface

topography of membranes. Furthermore, AFM can be used to obtain information on

the mechanical properties of surfaces (Heinz and Hoh, 1999; Claessens et al., 2000).

LTSEM overcomes problems linked to aqueous fixation. It allows a fast and direct

observation of specimens. Application of LTSEM was found to be powerful for

studying ultrastructural damage resulting from imbibitional injury in seeds (Leprince

et al., 1998; Nijsse et al., 1998; Sacande et al., 2001) and cellular collapse in lichens

(Scheidegger et al., 1995). Non-invasive fixation (freeze-substitution) and a new non­

aqueous fixative for immunocytochemistry, acrlein, are becoming available for

transmission electron microscopy (TEM) studies (Grote et al., 1999; Wesley-Smith,

2001), allowing observation without disturbing the sample water content.
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1.9 The effects of drying rate on desiccation sensitivity - an overview

Desiccation-sensitive seed tissues are thought to be subjected to metabolic damage at

intermediate water contents during dehydration. It has been argued that desiccation

differentially affects enzyme activities and hence results in metabolic imbalance

(Farrant et al., 1985; Leprince et al., 1992; 1993a; 1994; 1995b; 1998; 1999; 2000;

Finch-Savage et al., 1993; reviewed by Vertucci and Farrant, 1995; reviewed by

Come and Corbineau, 1996; Li and Sun, 1999; Pammenter et al., 1999; Leprince et

al., 2000). It has been suggested that the consequent unbalanced respiration may

result in more leakage of electrons than normal in the electron transport chain thus

generating the accumulation of free radical species, which are associated with lipid

peroxidation (Leprince et al., 1990b; 1994; 1995b; Hendry et al., 1992; reviewed by

Hendry, 1993).

Many recalcitrant seeds are characteristically large. As a result, they dry slowly.

However, even when recalcitrant seed are of similar size to comparable orthodox

counterparts such as in A. pseudoplatanus (recalcitrant) and A. platanoides

(orthodox), recalcitrant Acer takes 12 times as long to reach 20% water content under

the same drying conditions (Greggains et al., 2000a).

A number of studies have shown that rapid drying of recalcitrant seeds permits

survival to lower water contents than does slow drying (Berjak et al., 1984; Farrant et

al., 1985; 1989; Grabe, 1989; Pritchard, 1991; Pammenter et al., 1991; 1998; 1999;

Leprince et ai, 2000; Liang and Sun, 2000; WaIters et al., 2001; Wesley-Smith et al.,

2001; Wu et al., 2001). It has been suggested that rapid dehydration removes water

sufficiently fast to reduce the accumulation of damage resulting from aqueous-based

deleterious reactions (Betjak et al., 1989; 1993; Pammenter et al., 1991; Pritchard,

1991). In this regard, it is interesting to note that although rapid (especially very rapid

[flash]) drying of excised embryonic axes decreased the minimum water content to

which recalcitrant seeds could be dried without loss of viability under specific drying

conditions, it was never less than the amount of non-freezable (matrix-bound) water

(Berjak et al., 1992; 1993; Pammenter et al., 1991; Finch-Savage, 1992; reviewed by

Vertucci and Farrant, 1995). In addition, the lifespan of rapidly-dried material is very

short (WaIters et aI., 2001)

In contrast to the studies mentioned above, some authors have found no effect of

the drying rate on desiccation sensitivity (e. g. Tompsett, 1982; Finch-Savage, 1992;
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desiccation. Berjak et al. (1989) suggested that this apparent contradiction may be

explained in terms of the rates of dehydration relative to the rates of germination. It

should be remembered that germination is accompanied by cell division and hence

high metabolic activity and extensive vacuolation both of which render recalcitrant

seeds more sensitive to desiccation.

In a review, Berjak et al. (1989) categorised recalcitrant seeds into four groups on

the basis of their rate of germination: (1) very slow germinators, (2) relatively rapid

(slow) germinators, (3) rapid germinators and (4) very rapid germinators. Those

authors argued that the effect of dehydration rate on survival of recalcitrant seeds

following drying varies among the four categories of recalcitrant seeds.

In very slow germinators, the period of axis differentiation is quite extended.

Consequently, the subsequent germination process might be slow. The period of low

desiccation sensitivity can be of the order of months, and, unless drying rates are of

this order, no differential effect will be apparent. Araucaria hunsteinii and Araucaria

cunninghamii (Tompsett, 1982), Scadoxus membranaceus (Farrant et al., 1989) and

Quercus robur (Finch-Savage, 1992) exhibit this type of behaviour.

Seeds of relatively rapid (slow) germinators are shed with relatively

undifferentiated axes. Before cell division and subsequent growth can occur, axis

differentiation must be completed. This phase, and subsequent germination can be

relatively rapid. Hevea brasiliens, where germination of newly-shed seeds occurs

within about 10 days, exemplify this type of behaviour. If the drying rates are not

sufficiently dissimilar, then a differential effect is unlikely to be apparent.

In rapid germinators, the embryonic axis is fully differentiated on seed shedding.

This is followed by a short period of organisation and differentiation at the cell level.

A time scale of approximately 1-3 days is involved. During this period the tissue is at,

or near, its relatively most desiccation-tolerant. This period is followed by cell

division and extensive vacuolation during which desiccation sensitivity increases.

Differential drying rates will have a marked effect. A. marina exhibits this behaviour.

Finally, very rapid germinators may germinate so rapidly that the relatively

desiccation-tolerant state is obviated. In such cases, not even the most rapid drying

rate is fast enough to prevent death of most of the seeds on dehydration. Drying rate

will have a minimal discernible effect, at most (Berjak et al., 1989).
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1.10 The purpose and scope of the present study

The aim and objective of the present study was to test the hypothesis of Berjak and co­

workers which states that rapid dehydration of desiccation-sensitive seeds removes

water sufficiently fast to reduce the accumulation of metabolic damage (Berjak et al.,

1989; 1993; Pammenter et aI., 1991). Additionally, the hypothesis that hydrated

storage subjects desiccation-sensitive seeds to mild, but increasingly severe, water­

stress causing oxidative damage if additional water is not supplied (Pammenter et al.,

1994), was tested.

To achieve the objectives of the present study, a number of tests were performed.

Firstly, excised embryonic axes of mature seeds of a number of species (Trichilia

dregeana [forest mahogany], Trichilia emetica [Natal mahogany], germinating Pisum

sativum [garden pea], Quercus robur [English oak], Avicennia marina [white

mangrove] and Strychnos madagascariensis [black monkey orange]) were dried

rapidly or slowly or stored wet. During dehydration and wet storage, water contents

were determined periodically to establish the relationship between water content and

viability, and, to ascertain if it was influenced by drying rate and hydrated storage.

Seed vigour was assessed at regular intervals using tetrazolium and germination tests.

Membrane integrity was estimated by electrolyte leakage. To establish if rate of

dehydration and hydrated storage affect metabolism differentially, the activities of

respiratory enzymes, phosphofructokinase (PFK) and malate dehydrogenase (MDH),

and the concentration of the oxidised form of the coenzyme nicotinamide adenine

dinucleotide (NAD) were measured periodically. A simple peroxide test was

performed to determine if the level of peroxidation was a function of rate of drying

and wet storage. To evaluate the effect of rate of drying and wet storage on free

radical scavenging systems, the activities of enzymes, SOD, CAT and GR and levels

of the antioxidant, ascorbate (vitamin C), were monitored at regular intervals. It was

hoped that the results of the present study would show whether or not there exists a

relationship between the rate of drying and survival, such that the faster the drying

proceeds, the better the survival of desiccation-sensitive tissues, and some

biochemical markers of viability loss.
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1.11 Importance of the present study

Our present agricultural system is almost totally dependent upon the ability of

orthodox seeds to tolerate desiccation. Although recalcitrant seeds constitute less than

10% of the seeds with known storage behaviour (Ellis, 1984; Hong et al., 1998; Hay

et al., 2000; reviewed by Dickie and Pritchard, 2002) and comprise a very small

fraction of all seeds, they include economically-important species such as rubber,

cocoa and coconut, timber species (e.g. families Dipterocarpaceae and Araucariaceae

and genera Quercus and Hippocastanum) and several tropical fruit species (for

example avocado, durian, jackfruit, mango, neem and rambutan). Furthermore, seeds

of up to seven out of ten tree species in tropical rainforests may be recalcitrant (Gunn,

1991).

Often, it is not yet possible to store recalcitrant seeds from harvest till the next

sowing season (Roberts and Ellis, 1989). As such, difficulties are experienced with

storage of those seeds, in the short-term, for agricultural purposes and in the long­

term, for conservation of biodiversity in seedbanks.

The purpose of the present study was to shed more light on our understanding of

desiccation-tolerance/sensitivity. Such knowledge may eventually allow us to store

recalcitrant seeds for periods comparable to their orthodox counterparts. Of immediate

promIse III this regard, is the rapid dehydration of embryonic axes and their

subsequent cryostorage (reviewed by Berjak et al., 1996; 1999; Berjak and

Pamrnenter, 1997a,b; 2001; 2004; Pammenter and Berjak, 1999).

In conclusion, over 35% of the world's land surface is considered semi-arid,

experiencing precipitation that is inadequate for agricultural uses. In addition,

Ramanathan (1988) has suggested that developing crops that are more tolerant of

water deficits while maintaining productivity will be the critical requirement in the

early part of this century. As a result, it is vital to understand this complex trait to

develop strategies that can influence crop productivity and survival under these

conditions of decreasing water availability.
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Aspects of water relations during desiccation and moist storage

2.1 Introduction

Water plays multiple roles in supporting life (reviewed by Vertucci and Farrant, 1995;

Waiters et al., 2002). At the cellular level, it plays a structural role. It fills spaces and

provides turgor. On the other hand, it provides hydrophilic and hydrophobic

associations, at the molecular level. Thus, it controls intermolecular distances that

determine conformation of proteins and polar lipids and the partitioning of molecules

within organelles and limits reactivity among molecules such as metals. Water also

plays a role in controlling metabolism, as it is a reactant and product of many

reactions. Furthermore, as a dilutant, it affects the chemical potential of other

molecules, potentially shifting the likelihood of reactions. In addition, water provides

the fluid matrix that allows the diffusion of substances to reactive sites. Consequently,

it may be expected that removal of water would result in a number of strains.

There are many ways to express water loss in cells (reviewed by Pammenter et aI.,

2002; Sun, 2002; WaIters et aI., 2002). They include: (1) water content, both absolute

and relative (e.g. Berjak et al., 1992; Sun et al., 1994; Farrant, 2000), (2) water

potential and related functions such as water activity (Roberts and Ellis, 1989;

Vertucci, 1990; Vertucci and Roos, 1990; Tompsett and Pritchard, 1993; Vertucci et

al., 1995; Farrant and WaIters, 1998), (3) cell volume (Merryman, 1974; Steponkus,

1979; Murai and Yoshida, 1998a,b), (4) intracellular viscosity CVertucci and Roos,

1990; Koster, 1991; Williams et aI., 1993; Leopold et al., 1994; Buitink et al., 1998a;

Leprince and Hoekstra, 1998; Bryant et al., 2001), (5) intermolecular proximity (Lis et

al., 1982; Steponkus et al., 1995) and (6) structural water (Ladbrooke and Chapman,

1969; Vertucci and Leopold, 1984; 1987; Crowe et al., 1990; Pammenter et al., 1991).

Additionally, water content can be expressed on a fresh or dry mass basis. Whilst,

moisture levels on a fresh mass basis may give an accurate picture of the

concentration of water in seeds, water content on a dry mass is usually preferred when

dealing with studies on the effects of water loss or uptake. This situation arises

because water content on a dry mass basis is a linear expression of water content in

tissues (Sun, 2002). For instance, a tissue with a water content of 0.20 g H20 / g dry
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matter (g g-I dm) is exactly twice as hydrated as that with a water content of 0.1 0 g g-I

dm and four-fold as much as a sample with a water content of 0.05 g g-I dm. In

contrast, water content on a fresh mass basis is not a linear expression of water

content because fresh mass appears in both the numerator (fresh mass - dry mass

[mass of the water content]) and denominator (fresh mass) terms. Indeed, the change

in water content on a fresh mass basis during drying or rehydration is related to the

reciprocal of tissue fresh mass (Sun, 2002). Hence, water content on a fresh mass

basis does not reflect the extent of dehydration or rehydration stress. For example,

when a tissue with a water content of 80% fresh mass basis is dried to 70% and then

60% water contents fresh mass basis, the tissue actually loses 41.7% and 62.5% of the

initial water quantity, respectively, not just 12.5% and 25% reduction as implied by

the values of water content on a fresh mass basis. Indeed, the quantity of water lost

during desiccation from 80 to 70% water contents fresh mass basis is twice as much

as water loss from 70 to 60% water content fresh mass basis.

The loss of water from tissues depends on three factors: (1) the gradient in water

potential between tissue arId external air, which, in turn, is affected by: (a) the vapour

pressure of the surrounding air, which, in turn, is linearly related to relative humidity,

which is an exponential function of temperature and water potential (Wexler, 1997),

(b) temperature and (c) the rate of air movement around the tissue (Pammenter et aI.,

2002; Sun, 2002), (2) the hydraulic conductivity of the tissue, which is dependent on

permeability of the tissue which, in turn, is affected by the chemical composition and

the presence and nature ofphysical barriers such as the testaJpericarp of the outer layer

of the tissue and (3) surface area which, in turn, will be influenced by: (a) size and

shape of the tissue and (b) the amount ofmaterial to be dried (Pammenter et al., 2002;

Sun, 2002). Thus, the volume flow of water from the tissue to air can be described by:

Vw = ALp ('Vo - 'Vi)

where:

vw = the volume flow ofwater per unit time (m3 S-I),

A =the surface area of the tissue (m2
),

Lp =hydraulic conductivity of the tissue and boundary layer (m S-I Pa-I),

'Vo = water potential of external air (MPa) and

'Vi =water potential of the tissue (MPa).
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Whilst, the difference in water potential (\j!o - \j!i) is the measure of the driving force,

hydraulic conductivity of the tissue and boundary layer (Lp) are a measure of

diffusional resistance of the water transport pathway within the tissue.

Under constant temperature and relative humidity (RH), the water content (wc) of

the tissue may decrease exponentially over time until \j!i reaches \j!o. In this case, the

curve of water loss can be described by:

wc = a exp(-~t)

where:

a = initial water content (g g-l dm) and

~ = the rate constant of water loss.

This relationship was first used by Tompsett and Pritchard (1998) to compare the

dehydration rates of Aesculus hippcastanum seeds. It has since been tried on the

drying curves of Theobroma cacao, and they conform (Li and Sun, 1999; Liang and

Sun, 2000). Typically, water content curves are biphasic. During the first drying

phase, the loss of water may follow a simple exponential function. In contrast, water

content does not decrease much during the second phase as tissue approaches

equilibrium with the surrounding air. Because water loss during the first phase may be

described by an exponential function, the rate constant of water loss (~) can be used as

an expression of drying rate.

Although an exponential relationship has been found to fit some data sets (e.g.

Liang and Sun, 2000), particularly for seeds or excised axes, in many cases initial

drying is considerably faster than described by an exponential function (e.g.

Parnmenter et al., 1998; reviewed by Pammenter et al., 2002; 2003). However, the

modified inverse function:

wc = a.bl(b+t)

where:

wc = water content (g g-l dm),

a = initial water content (g g-l dm),

b = time required to dry the tissue to half its original water content (h) and

t = time (h)

was found to fit data reasonably well in many cases (reviewed by Pammenter et al.,

2002; 2003). a and b are constants and b describes the curvature of the function.
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If data are expressed as a relative water content (RWC), normalised to the initial

water content, then a becomes unity and the function simplifies to:

RWC = b/(b+t)

This function has only one constant and so b constitutes an objective desriptor of

drying rate. The value of b is determined as the inverse of the slope of a plot of

llRWC vs t.

Conventionally, when working with vegetative tissues, RWC is normalised to the

water content of fully hydrated tissue. However, when seeds or excised axes are

placed in water to attain 'full hydration', they continue to absorb water and start

germinating. In effect, the concept of 'full hydration' is meaningless for seed material

and so RWC is calculated relative to the water content at shedding.

As a generalisation, if tissue is dried relatively slowly, the relationship between

water content and drying time is exponential. However, for material dried more

rapidly, the initial water loss is considerably faster than that predicted by the

exponential relationship. It must be emphasised that the terms 'slow' and 'rapid' are

relative. There is no drying rate common across species where drying changes from

faster-than-exponential to exponential. Furthermore, a fast drying rate in one

experiment could be equivalent of slow in another.

For example, during 'slow' drying of whole seeds of Landolphia kirkii (Pammenter

et aI., 1991) and of Camellia sinensis (BeIjak et al., 1993), the water content of the

axes within the seeds followed an exponential relationship with time, but during

'rapid' drying of excised axes did not (pammenter et al., 2002). Similarly, initial

faster-than-exponential drying rates have been observed in rapidly dried excised axes

of Syzigium guiniense, Castanospermum australe, Trichilia dregeana, Artocarpus

heterophyllus, Azadirachta indica and radicle tips of axes of Podocarpus henkelii

(Pammenter et al., 2002). Conversely, axes ofAvicennia marina and the entire axes of

P. henkelii, which are relatively large, show exponential drying (Pammenter et al.,

2002).

However, when excised axes of A. heterophylius (pammenter et al., 2002), C.

australe (pammenter et al., 2002) and T. dregeana (pammenter et al., 1999; 2002)

were dried slowly at 96% RH, drying was exponential. In contrast, when axes of these

species were dried rapidly over silica gel, the initial drying was faster than predicted

by an exponential rate (Parnmenter et al., 1999; 2002).
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Similarly, when seeds of Ekebergia capensis with endocarp were dried slowly by

burying in silica gel, drying was exponential. Conversely, when seeds of this species

without endocarp were dried more rapidly, initial drying was faster than predicted by

an exponential relationship (pammenter et a!., 1998).

Pammenter et al. (1998) suggested that the drying kinetics of E. capensis indicated

that uneven drying of the tissue might be occurring under rapidly dehydrating

conditions. This observation was borne out by a later study of the ultrastructure of

axes ofA. heterophyllus during desiccation at two rates (Wesley-Smith et al., 2001).

Wesley-Smith et a!. (2001) found that a short exposure of axes to rapid drying

resulted in preferential withdrawal of water from the outermost tissue layers and a

corresponding contraction of these cells, while those in the core of the axis (stele)

remain relatively unaffected. In contrast, slow dehydration caused more even

distribution of water throughout the entire embryonic axes. This finding has

implications for axes dried slowly: germinative cells from the core endured less

dehydration, but for longer periods, than those dried rapidly.

The response of plant tissues to desiccation is significantly affected by dehydration

conditions, such as dehydration rate and temperature. Plant tissues stay longer at

intermediate water contents under slow drying conditions. In contrast, fast drying

reduces damage accumulation of recalcitrant plant seeds (reviewed by Pammenter and

Berjak, 1999).

The response of tissue to water-stress varies with drying rate. Therefore, the change

in water potential (d\jJ/dt) can be used to quantify the rate of application of the stress

(Sun, 2002). Under the condition of constant temperature and RH, such plots (d\jJ/dt)

may be straight lines down to the fraction of apoplastic water. Water potential

decreases faster and deviates away from the straight line when the apoplastic water is

lost. The slope of the straight-line portion of each plot represents the degree of direct

physical stress under different desiccation conditions. The relationship between d\jJ/dt

and the rate constant of water loss (P) is linear if drying is exponential.

The 'critical water content' to which mature embryos can be dried under specific

conditions without inducing desiccation damage has been suggested to be species­

dependent (Levitt, 1980b). However, it is now known that the rate of drying

influences the response. These 'critical water contents' correspond to the critical

moisture levels for particular metabolic activities. Discrete changes in metabolic
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activity with water content are hypothesized to be associated with discrete changes in

the physical properties of water (e.g. Clegg, 1978; Rupley et al., 1983; Bruni et al.,

1989; Leopold and Vertucci, 1989; Vertucci, 1989; 1990; 1992). This hypothesis is

based on the observation that the characteristics of water change with the degree of

hydration (reviewed by Vertucci and Farrant, 1995; Waiters et al., 2002).

At least five levels of hydration can be distinguished from calorimetric and

motional properties (Clegg, 1978; Rupley et al., 1983; Vertucci, 1990; Vertucci and

Farrant, 1995; WaIters et al., 2002). Hydration level V water behaves as water would

in a dilute solution and occurs at water contents and water potentials between 0.6 to

0.9 g H20 g-l dry matter (g g-l dm) and 0 to -1.5 MPa, respectively. At level IV of

hydration, water behaves as it would in a concentrated solution or syrup and is

detected at water contents and water potentials between 0.45 and 0.7 g g-l dm and ­

1.8 and -4MPa, respectively. Hydration level III water forms bridges over

hydrophobic moieties on macromolecules and behaves as water would in rubber. It

occurs at water contents and water potentials between 0.25 and 0.45 g g-l dm and -5

and -12 MPa, respectively. Hydration level II water has characteristics of water in

leathers and glasses and has strong interactions with polar surfaces of macromolecules

and hydroxyl groups of solutes. It is detected at water contents and water potentials

between 0.08 and 0.25 g g-] dm and -15 and -190 MPa, respectively. Hydration level

I water corresponds to the theoretical level at which water binds to macromolecules as

a structural component (e.g. Briarty and Leopold, 1992). It occurs at water contents

and water potentials of 0.08 g g-l dm and -220 MPa, respectively or less.

It appears that the water at different hydration levels performs different functions in

plant cells (reviewed by WaIters et al., 2002). For example, hydration level V water is

required for turgor and supports growth (Vertucci, 1990). Hydration level IV water is

required for photosynthesis and stress-related metabolism, whilst hydration level III

water is required for respiration, and hydration level II is required to carry out

catabolic reactions. Hydration level I water appears to be in stasis (Clegg, 1986;

Roberts and Ellis, 1989). Its removal is lethal to intermediate seeds (Ellis et aI.,

1990a,b; 1991a,b,c; Kovach and Bradford, 1992a,b), and may affect the long-term

viability of some orthodox seeds and pollen (Vertucci and Roos, 1990; 1993;

Hoekstra et al., 1992a). It is noteworthy that the response of tissue depends not only

on the hydration level, but also the time it spends in that range.
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Viscosity is reduced at the transition from hydration level II to I CVertucci and

Roos, 1990; Buitink et al., 1998b). Similarly, there is a discrete change in the heat

capacity of water at this moisture level (Rupley et aI., 1983; Vertucci, 1990; Buitink et

aI., 1996). Additionally, characteristics of water sorption are poorly understood at this

hydration level CVertucci and Leopold, 1987; Vertucci and Roos, 1990; Vertucci et

al., 1994; Buitink et al., 1998a,b; Eira et al., 1999). With the exception of hydration

level I, the relationships between physical properties of water and water potential

appear to be similar among diverse cells CVertucci and Leopold, 1987; Eira et al.,

1999). However, subtle differences may distinguish desiccation-tolerant from

sensitive material (Koster, 1991; BeIjak et aI., 1993; Farrant and Waiters, 1998;

Leprince et al., 1999).

Comparisons of the properties of water in mature orthodox and recalcitrant seeds

have revealed no major differences between the two seed types CVertucci, 1990;

Parnmenter et al., 1991; Berjak et al., 1992; 1993). This phenomenon has led

Parnmenter et al. (1991) and Vertucci and Farrant (1995) to conclude that, contrary to

the previously widely-held view that desiccation-tolerance was a result of the amount

of structured water retained (Adams and Rinne, 1980; Berjak et al., 1984; Vertucci

and Leopold, 1987; W.elbaum and Bradford, 1989; Grange and Finch-Savage, 1992),

desiccation-tolerance involves the ability to lose a considerable proportion of

structural water.

The aim of the phase of the work described in this chapter was to establish the

drying or storage water content vs drying or storage time curves of embryonic axes of

recalcitrant and germinating orthodox seeds during drying at different rates or wet

storage, respectively.
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2.2 Materials and methods

2.2.1 Plant materials

Seeds of Trichilia dregeana L. Sond. (Meliaceae) were collected in 1997, 1999 and

2001 from a number of trees in Durban, South Africa. Their counterparts of Trichilia

emetica L. Sond. (Meliaceae) were collected from a number of trees in Emthunzini,

South Africa in 1998. Seeds of Pisum sativum L. var Greenfeast (Fabaceae) were

bought from Pannar Seeds, Greytown, South Africa. Propagules of Avicennia marina

L. [Forssk.] Vierh. (Avicenniaceae) were collected from a number of trees in 1999 and

2001 in Beachwood Nature Reserve and Isipingo Beach, Durban, South Africa,

respectively. Seeds of Q. robur L. (Fagaceae) were collected from two trees in

Wellesbourne, UK in 1999. Finally, fruits of Strychnos madagascariensis L.

(Loganiaceae) were collected in 1999 from a number of trees in Durban, South Africa.

All seeds were collected within a day of shedding. They were then brought to the

laboratory, major debris removed and rinsed thoroughly. Following the removal of the

aril and the testa, seeds of T. dregeana and T. emetica were surface-sterilised for 20

minutes in commercial bleach diluted to 1% sodium hypochlorite (NaOCI) and rinsed

three times with distilled water. After coating with Benlate®, they were stored in

loosely-closed plastic bags at approximately 15°C until required, but for not longer

than two weeks to minimise seed deterioration in storage. Seeds of P. sativum were

allowed to imbibe water for 6 h, surface-sterilised and set out to germinate in

germination trays on moist paper towel at room temperature under constant light for

72 h after which they were used immediately. Following immersion in water at room

temperature for 10 min to stimulate the shedding of the pericarp, propagules of A.

marina were surface-sterilised in commercial bleach diluted to 1% NaOCI and rinsed

three times with distilled water. After the removal of the testa, seeds of Q. robur were

surface-sterilised in 6.4 g sodium dichloroisocyanurate (Fichlor [C3ClzN303Na]) per

100 ml H20 for 20 min and rinsed three times with distilled water. They were then

stored in loosely-closed plastic bags at 1 ± 1°C until required. Following the removal

of the testa, seeds of S. madagascariensis were surface-sterilised in commercial

bleach diluted to 1% NaOCI and rinsed three times with distilled water. After coating

with Benlate®, they were stored in loosely-closed plastic bags in an air-conditioned

room maintained at approximately 15°C until required, but for not longer than two

weeks.
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2.2.2 Excision of embryonic axes

Embryonic axes were excised manually from seeds of all species. For T. dregeana and

T. emetica seeds, a small block (c. 2 mm3
) of cotyledon was left attached to each axis.

This practice is thought to avoid injury to embryonic axes. Only axes longer than 10

mm were used for subsequent experiments on P. sativum seeds. Petioles were left

attached to embryonic axes of Q. robur seeds,. This procedure was performed to avoid

damage to axes. During excision, axes were accumulated on moist filter paper in

closed Petri dishes.

2.2.3 Surface-sterilisation protocols

Excised axes from seeds of tropical species (S. madagascariensis, T. emetica, T.

dregeana and A. marina) and P. sativum were surface-sterilised in commercial bleach

diluted to 1% NaOCI containing a drop of Tween-80 in a laminar flow cabinet for 15

min. In contrast, those from the temperate Q. robur, were surface-sterilised in a

laminar flow cabinet in 3.2g Fichlor / 100rnl H20 containing a few drops ofNonidet

for 6 min. They were then all rinsed three times with sterile distilled water.

2.2.4 Dehydration treatments

Embryonic axes of each species were partitioned into two samples. Each sample was

aseptically placed in sterile containers over: (1) activated silica gel with a fan mounted

(rapid drying [~O% RH]), or (2) a saturated solution of sodium chloride (slow

dehydration [75 ± 1% RH]). For T. dregeana seeds, saturated solutions of magnesium

chloride, potassium carbonate or sodium bromide (33 ± 0.5%, 43% and 58 ± 1% RH,

respectively) were also used. The containers were stored in an air-conditioned room

maintained at approximately 15°C.

2.2.5 Wet storage of axes

Embryonic axes were aseptically placed in sterile containers over distilled water. The

containers were then stored in an air-conditioned room maintained at approximately

15°C.
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2.2.6 Water content determinations

Water contents were determined gravimetrically by drying axes in the oven at 80 °C for

48 hours. They were determined periodically during dehydration and wet storage. The

reported water contents represent means ± SE for five individual axes expressed on a

dry matter basis. Drying rates, determined as rate constants of water loss (ps) and time

taken to dry the tissue to half its original water content (bs) were calculated as slopes

of log-transformed water contents vs time curves and inverse of the slope of a plot of

llRWC vs t, respectively (Sun, 2002 and Pammenter et al., 2002, respectively).

2.3 Results

No apparent differences were seen in the drying curves of embryonic axes of T.

dregeana harvested in 1997 and dried over saturated salt solutions of magnesium

chloride (33 ± 0.5% RH), potassium carbonate (43% RH), sodium bromide (58 ± 1%

RH) and sodium chloride (75 ± 0.5% RH) (Fig. 2.1Y This observation indicates that

transfer resistances (within the axes, axes surface and boundary layer) were controlling

the drying rate.
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Figure 2.1 Water contents of embryonic axes of Trichilia dregeana harvested in 1997

during drying over various salt solutions. Data points represent means of five replicate

readings. Error bars, in some cases hidden within the data symbols, show standard

errors.
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Embryonic axes ofP. sativum seeds reached a water content of c. 2.0 g H20 /g dry

matter (g g-l dm) after imbibition for 6 h. A water content of4.5 g g-l dm was attained

after germination for 72 h subsequent to imbibition for 6 h ofP. sativum axes (Figs 2.2

and 2.4A). Axes ofP. sativum of various lengths showed different drying curves (Fig.

2.2).
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Figure 2.2 Water contents of germinating P. sativum axes of different lengths during
drying over sodium chloride solution. Data points represent means of five replicate
readings. Error bars, in some cases hidden within the data symbols, show standard
errors.
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No discernible differences were observed in the water contents of axes and three

axial tissues (hypocotyls, distal portions of the hypocotyl containing root primordia

and plumules) of A. marina harvested in 1999 before, during and after rapid or slow

drying or wet storage (Fig. 2.3).
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Figure 2.3 Water contents of axes and different axial tissues of Avicennia marina
harvested in 1999 and dried rapidly (A) or slowly (B) or stored wet (C). Data points
represent means of five replicate readings. Error bars, in some cases hidden within the
data symbols, show standard errors.

Axes of Q. robur were shed at a water content of 1.6 g g-l dm (Fig. 2AB). S.

madagascariensis axes were at a water content of 1.9 g g-l dm immediately after

shedding (Fig. 2AC). Whilst axes of T. emetica were shed at a water content of 1.9 g

g-l dm (Fig. 2.4D), those of T. dregeana axes harvested in 1997, 1999 and 2001were

at a water content of2.1, 1.9 and 1.9 g g-l dm immediately after shedding, respectively

(Figs 2.1 and 2.4E). A water content of 2.4 and 2.7 g g-l dm was attained by axes ofA.

marina harvested in 1999 and 2001 following immersion in water for 10 nun,

respectively (Figs 2.3 and 2.4F).
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Figure 2.4 Water contents of axes of Pisum sativum (A), Quercus robur (B),
Strychnos madagascariensis (C), Trichilia emetica (0), Trichilia dregeana (E) and
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Both exponential and modified inverse functions were fitted to the drying time

courses, and the exponential drying rate constant (B) and the inverse function constant

(b) were calculated. The r2 and p values for the fit to each function were also

calculated.

Axes of P. sativum reached a water content of 0.19 g g-l dm in 24 h during rapid

drying (13 = lA, r2 = 0.75 and p = 0.01; b = 1.05 h, r2 = 0.99 and p < 0.01 [Fig. 2AA]).

In contrast, a final water content of 0.22 g g-l dm was attained in 7 days upon slow

dehydration (13 = 0.19, r2 = 0.58 and p = 0.24; b = 8.25 h, r2 = 0.83 and p ~ 0.09 [Fig.

2AA]). Both desiccation treatments fitted an exponential and a modified inverse

relationship between water content and time, although the correlation was not

statistically significant for slow drying for both relationships. The fit was better for the

modified inverse function for both regimes. Water content remained constant during

wet storage of P. sativum axes (data not shown). The axes maintained a water content

of c. 4.5 g g-l dm over four weeks.

Q. robur axes reached a water content of 0.08 g g-l dm in 24 h during rapid drying

(13 = lA, r2 = 0.91 and p < 0.01; b = 1.14 h, r2 = 0.99 and p < 0.01 [Fig. 2AB]).

Conversely, a final water content of 0.57 g g-l dm was attained in 7 days upon slow

dehydration (13 = 0.07, r2 = 0.96 and p = 0.02; b = 100 h, r2 = 0.98 and p = 0.01 [Fig.

2AB]). Both desiccation regimes followed an exponential and a modified inverse

functions of water content and time. The fit was better for the modified inverse

relationship for both treatments. Water content remained constant during hydrated

storage of axes of Q. robur (data not shown). The axes maintained a water content of

c. 1.5 g g-l dm over four weeks.

Axes of S. madagascariensis reached a water content of 0.06 g g-l dm in 12 h

during rapid drying (13 = 3.5, r2 = 0.89 and p = 0.001; b = 0.14 h, r = 0.76 and p =

0.01 [Fig. 2AC]). In contrast, a final water content of 0.1 g g-l dm was attained in 5

days upon slow dehydration (13 = 0.24, r2 = 0.55 and p = 0.02; b = 4.55 h, r2 = 0.63

and p = 0.01 [Fig. 2AC]). Both desiccation treatments fitted an exponential and a

modified inverse relationship between water content and time. The fit was better for

the exponential function on rapid drying, and the modified inverse function on slow

dehydration. Water content remained constant during moist storage of S.

madagascariensis axes (data not shown). The axes maintained a water content of c.

1.5 g g-l dm over four weeks.
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T. emetica axes reached a water content of 0.06 g gol dm in 12 h during rapid

drying (13 = 8, r2 = 0.89 and p < 0.01; b = 0.12 h, r2 = 0.92 and p = 0.01 [Fig. 2.4D]).

Conversely, a final water content of 0.1 g gol dm was attained in 5 days upon slow

dehydration (13 = 0.18, r2 = 0.55 and p = 0.02; b = 8.33 h, r2 = 0.77 and p < 0.01 [Fig.

2.4D]). Both desiccation regimes followed an exponential and a modified Inverse

function of water content and time. The fit was better for the modified Inverse

relationship for both treatments. Water content remained constant during wet storage

of axes of T. emetica (data not shown). The axes maintained a water content of c. 1.5

g g-l over four weeks.

Axes of T. dregeana reached a water content of 0.1 g g-l dm in 4 h during rapid

drying (13 = 7.4, r2 = 0.99 and p < 0.01; b = 0.22 h, r2 = 0.89 and p = 0.02 [Fig. 2.4E]).

In contrast, a final water content of 0.1 g g-l dm was attained in 5 days upon slow

dehydration (13 = 0.18, ~ = 0.99 and p < 0.01; b = 10 h, r2 = 0.95 and p < 0.01 [Fig.

2.4E]). Both desiccation treatments fitted an exponential and a modified inverse

relationship between water content and time. The fit was marginally better for the

exponential function for both regimes although the fit for the modified inverse function

was also good. Water content remained constant during hydrated storage of T.

dregeana axes (data not shown). The axes maintained a water content of c. 1.8 g g-l

dm over four weeks.

Finally, axes of A. marina reached a water content of 1.1 g g-l dm in 12 h during

rapid drying (13 = 0.3, r2 = 0.99 and p < 0.01; b = 20 h, r2 = 0.98 and p < 0.01 [Fig.

2.4F]). Conversely, a final water content of 0.29 g g-l dm was attained in 15 days upon

slow dehydration (13 = 0.06, ~ = 0.95 and p = 0.15; b = 50 h, r2 = 0.85 and p = 0.25

[Fig. 2.4FJ). Both desiccation regimes followed an exponential and a modified inverse

function of water content and time, although the correlation was not statistically

significant for slow drying for both relationships. The fit was better for the exponential

function for both treatments. Water content remained constant during moist storage in

A. marina axes (data not shown). The axes maintained a water content of c. 2.5 g g-l

dm over four weeks.

It is noteworthy that the oily axes of Trichilia species dried considerably faster than

axes containing predominantly carbohydrates (Pisum sativum, Quercus robur, S.

madagascariensis and Avicennia marina) during rapid dehydration (Table 2.1). A

comparison of the desiccation rates of axes of different species with their dry mass of
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individual axes and total amount of material dried showed that the bigger the individual

axes and/or the consequent greater the amount of the total material dried, the slower

the drying rate under a specific set of drying conditions (Table 2.1).

Table 2.1 A comparison of the drying rates of axes of various species with their
individual dry mass and total amount of material dried. Data points represent means of
five replicate readings. Variations show standard errors. Ranking in brackets indicate
the highest to the lowest values.
Species Dry mass of Total dry mass Drying rate

individual of the material (f3) (b)

axes dried Rapid Slow Rapid Slow

(mg) (g)

P. sativum 3.7 ± 0.06 (5) 1.1 (5) 1.4 (4) 0.19 (2) 1.05 (3) 8.25 (5)

Q. robur 9.1 ± 1.4 (2) 1.4 (3) 1.4 (4) 0.07 (5) 1.14 (2) 100 (1)

S. madagascariensis 0.35 ± 0.01 (6) 0.1 (6) 3.5 (3) 0.24 (1) 0.14 (5) 4.55 (6)

A. marina 51.4 ± 2.2 (1) 5.1 (1) 0.3 (6) 0.06 (6) 20 (1) 50 (2)

T. emetica 4.8 ± 0.7 (4) 1.4 (3) 8 (1) 0.18 (3) 0.12 (6) 8.33 (4)

T. dregeana 6.4 ± 0.4 (3) 1.9 (2) 7.4 (2) 0.18 (3) 0.22 (4) 10.0 (3)

2.4 Discussion

According to Pammenter et al. (2002) and Sun (2002), the loss of water from

tissues depends, among other factors, on the hydraulic conductivity of the tissue which

is dependent on penneability of the tissue which, in turn, is affected by the chemical

composition, and surface area to volume ratio which is influenced by the size and

shape of the tissue and the amount of material to be dried. The results of the present

study are in good agreement with the ideas advanced by those authors.

Generally, bigger axes dried more slowly than smaller ones (Table 2.1). In addition,

the larger the quantity that was dried, the slower the drying rate attained. Indeed, it

appears that the total amount of material dried was more influential on the drying rate

than the size of the individual axis. Furthennore, oily seeds dried faster than their

starchy counterparts except for S. madagascariensis.

The relationship between water content and time fitted both the modified inverse

and exponenial functions for each one species. However, the fit was better with the
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modified inverse relationship during drying of axes of P. sativum, Q. robur and T.

emetica. In contrast, a better fit obtained with the exponential function upon

dehydration of T. dregeana and A. marina axes. The plot of water content against time

fitted an exponential and a modified inverse function better during rapid and slow

desiccation of axes of S. madagascariensis, respectively.

In this regard, it is noteworthy that it was suggested that, as a generalisation, if

tissue is dried relatively slowly, the relationship between water content and drying time

is exponential (pammenter et aI., 2002). In the present study, this statement may be

true for A. marina axes, which dried at the slowest rate, but is not for axes of T.

dregeana, which attained the second fastest dehydration rate (Table 2.1). It is

proposed that the mass of the indidvidual axes and, perhaps more importantly, the total

mass of the material dried are better predictors of the kinetics of desiccation of excised

axes than drying rate per se.

It should be remembered that the drying conditions of temperature and RH were

similar during each drying or storage treatment for all species studied. As a result, any

differences in drying or storage responses among species would be expected to be a

consequence of differences in the hydraulic characteristics and surface area of the

various species. In this regard, it is noteworthy that the rate of water loss could be

described by an exponential and modified inverse function for all species investigated.

It should be remembered that the vapour pressure of a system, which is linearly related

to RH has an exponential relationship with its temperature and water potential

(Wexler, 1997). In addition, the gradient in water potential between the tissue and the

surrounding air drives the process ofwater loss.

It is apparent that both the initial water contents and the drying curves vary with

season for species that were studied for more than one season (Trichilia dregeana and

Avicennia marina), although the differences were marginal for T. dregeana.

Recalcitrant seeds show marked differences in post-harvest behaviour within species

both intra- and inter-seasonally (reviewed by BeIjak et al., 1996; BeIjak and

Pammenter, 1997a,b; Pammenter and BeIjak, 1999; BeIjak and Pammenter, 2004). For

instance, inter-seasonal differences in germination capacity ofAesculus hippocastanum

seeds were ascribed to differences in mean temperature during seed filling (Tompsett

and Pritchard, 1998). Similarly, interseasonal differences in post-harvest behaviour of

seeds such as initial water content and drying curves in the present investigation may
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be attributed to seasonal changes in environmental factors such as mean annual rainfall

and temperature.

The decrease in water content over time during slow drying of axes of Avicennia

marina appeared linear. It is suggested that this observation is a result of a very low

drying rate (~ [constant ofwater loss] = 0.06). In this regard, it should be noted that as

~ approaches zero, the more linear the plot of the water content against time, in which

wc = a exp(-~t), becomes. A. marina axes are very large. Their large individual masses

would have resulted in a greater amount of material dried for an equivalent number of

axes during each run of every treatment and reduced the surface area-volume ratios. It

is suggested that these two factors led to very low drying rates during slow

dehydration ofA. marina axes.

Axes of all species studied maintained a constant water content during wet storage.

This response may be expected given that the surrounding air during storage was fully

humidified and that there was no direct contact between stored axes and water as they

were kept at a distance from it. Thus, both water loss to the surrounding air and water

uptake by the axes were obviated.

In conclusion, considerably different drying rates were reached by the various

species studied despite identical drying conditions. Bigger axes generally dried

discernibly more slowly. This phenomenon is a result of the larger axes having lower

surface area to volume ratios, which influence the process of water loss. In addition,

oily axes dried noticeably faster than axes containing mainly carbohydrates. It is

suggested that this event is a consequence of the exclusion of water from the

predominantly hydrophobic environment. Furthermore, it appears that the mass of the

indidvidual axes and the total mass of the material dried may affect the kinetics of

desiccation of excised axes directly rather than through the drying rate.
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Biochemical, biophysical and physiological assessment of seed viability

3.1 Introduction

The primary function of seeds is to produce seedlings. Seeds must germinate to fulfil

this function. Seed quality can therefore be equated to ability to germinate

(germinability or viability). However, germination may be considered as activation of

the embryo (e.g. Come and Corbineau, 1990) on one hand, or establishment of the

seedling, on the other. In addition, there is a lack of consistent relationship between

laboratory germination tests and field emergence (Perry, 1973). The concept of seed

vigour was developed in an attempt to rectify this anomaly. Vigour is simply defined as

a concept describing several seed performance characteristics and is not a single

measurable property (perry, 1981).

The major challenge of seed vigour testing has been to find quantifiable parameters,

associated with seed deterioration, which detect differences in performance potential

among high germinating seed lots. A vigour test should provide a reproducible result

which accurately describes the potential for rapid and uniform emergence under field

conditions and/or describes the storage potential of a seed lot (reviewed by Hampton

and Tekrony, 1995). Whilst many different vigour testing methods have been

proposed, only very few are in international usage (Hampton, 1992). The primary

difference between the evaluation of viability and vigour is that certain seed conditions,

which are not critical in assessing seed viability, can be important in a seed vigour

assessment (Hampton and Tekrony, 1995). Methods for the determination of quality of

seeds fall into four basic categories: (1) biochemical, (2) biophysical, (3) ultrastructural

and (4) physiological.

The main biochemical approaches used for assessing seed quality have been: (1) the

tetrazolium (TZ) (staining) and (2) the (electrolyte) conductivity (of leachate) tests

(reviewed by Pritchard, 1996). The TZ test has been used to estimate seed vigour as

well as seed viability. Close attention is focused on all parts of the individual seed, in

particular the internal condition of the embryo. The TZ test provides a rapid evaluation

of the vigour of viable seeds and provides timely guidance concerning the extent and
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the nature of seed quality problems during harvesting, conditioning, storage and

distribution (AOSA, 1983; Moore, 1985). It is based on the observation that a

colourless solution of 2,3,5-triphenyltetrazolium chloride interacts with reduction

processes of living cells and accepts hydrogen from dehydrogenases. It forms a red,

stable and non-diffusible substance called triphenyl formazan after reduction. The

topographical tetrazolium test is an extension of the TZ test as described in Chapter 6

of the International Rules for Seed Testing (ISTA, 1996).

Although undoubtedly of value, there are difficulties associated with the TZ test: (1)

extensive experience is needed in evaluating the seed as viable by staining in relation to

germination, as the TZ test often overestimates germinability (e.g. Ntuli et al., 1997),

(2) the inconsistent application of the evaluation procedure between laboratories (e.g.

barley seed quality testing at seven ISTA stations was found to differ [Don et al.,

1990]), (3) certain chemical pre-treatments have resulted in false positive scores for

viability (e.g. glyphosphate treatment of barley plants can kill the seed but their staining

pattern appears 'normal' [Don et al., 1990]) and (4) the method of applying the

tetrazolium test may also influence the interpretation of the desiccation response in

recalcitrant seeds (e.g. rapid imbibition of dry split seeds of Zizania palustris can

account for the loss of viability [Kovach and Bradford, 1992a]). The third difficulty

may be of particular concern to the use of this test in recalcitrant seed storage studies

utilising chemical pre-treatment to inhibit fungal or insect attack. Thus, use should be

made of other complementary biochemical staining tests such as the indigo carmine

test, as the TZ test can be unreliable at times (Hendry and Grimme, 1992).

The conductivity test provides measurement of the electrolytic conductivity of

leachate from plant tissues. It was first recognised for seeds of several crop species by

Hibbard and Miller (1928) (Hampton and Tekrony, 1995). This test has been used to

identify seed lots that have high laboratory germination, but poor field emergence.

Such seed lots have high electrolyte leakage and are classified as showing low vigour,

while those with low leakage are considered to show high vigour.

Although conductivity measurements are usually made on bulk seed samples,

equipment is available to determine electrolyte leakage from single seeds (e. g. Steere

et al., 1981; Hepburn et al., 1984; Ntuli et al., 1997). The conductivity test has the

tremendous advantages of simplicity, rapidity and meets most of the requirements for a

good vigour test (Hampton and Coolbear, 1990). It is based on the observation that
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the integrity of cell membranes is different among seed lots of different vigour and can

be measured indirectly as electrolyte leakage (powell, 1988). However, a study on

aged orthodox maize seeds which showed an increase in electrolyte leakage, which

almost exclusively came from the embryo, demonstrated that the electrolyte content of

the pericarp may interfere with quality testing by conductivity measurements (Bruggink

et al., 1991). Therefore, care must be exercised when applying this test to species for

the first time. In addition, more specific chemical testing of the leachate has been

performed. For example, Fu et ai. (1990) measured the amounts of soluble sugars.

The most reliable indicator of seed quality is the germination test (pritchard, 1996)

although there may be a lack of consistent relationship between laboratory germination

tests and field emergence (perry, 1973). However, this method and its evaluation can

be critical when dealing with some dormant recalcitrant seeds such as Zizania palustris

(Kovach and Bradford, 1992b) and horse chestnut (pritchard and Tompsett, 1995).

Germination rate may provide the first indication of stress in seeds. For instance,

mango seeds exhibit a reduced vigour index before there is any noticeable fall in

germination percentage (Fu et al., 1990). In contrast, seed vigour and germination

percentage and/or rate may increase during the early stages of drying of recalcitrant

seeds (e.g. in Avicennia marina [Berjak et ai., 1989], lychee and longan [Xia et al.,

1992] and horse chestnut [pritchard and Tompsett, 1995]). However, there is usually a

strong correlation between germination percentage and vigour in both orthodox (Ellis

and Roberts, 1980) and (partially) desiccated recalcitrant (pritchard et ai., 1995b)

seeds.

Characterisation of the germination response may also be valuable in identifying

optimal conditions for the storage of recalcitrant seeds. Recalcitrant seeds often

progress from development to germination without the need for a quiescent phase. As

a result, it has been hypothesised that the rate of germinative metabolism is linked to

storage lifespan (pamrnenter et ai., 1994; 1997; Motete et ai., 1997). Indeed, an

association has been observed between the minimum temperature for germination and

that suitable for short-term storage in the chilling-tolerant seeds of Araucaria

hunsteinii (pritchard et ai., 1995a). Considerable viability was also retained over a 3­

year period when horse chestnut seeds were maintained at a temperature which was

not conducive to dormancy breakage and germination (pritchard, 1996).
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Embryo culture techniques could be employed in the event that the germination

response is known to be protracted and there is a need to assess growth potential,

rather than biochemical and/or biophysical quality, in a relatively short time period.

This approach may be particularly important for seeds with hard endocarps such as

palms. Moreover, embryonic axis culture underpins attempts to develop a routine

cryopreservation method for embryonic axes of recalcitrant seeds.

In conclusion, it is recommended that the biochemical and biophysical tests should

not be used in isolation, but in association with others and/or the germination test,

where possible. This recommendation arises from the uncertainties associated with

some of them and the fact that most, if not all, of the biochemical and biophysical tests

measure a single aspect of seed quality.

The objective of the work described in the present chapter was to assess the effects

of drying rate and wet storage on the viability and vigour of axes of different

recalcitrant species and germinating pea seeds.

3.2 Materials and methods

3.2.1 Seed material

Excised embryonic axes of Trichilia dregeana, Pisum sativum, Avicennia marina,

Quercus robur, Trichilia emetica and Strychnos madagascariensis, which were

obtained and treated as described in the previous chapter, were used for the tests

outlined below.

3.3.2 Surface-sterilisation protocols

Excised axes from seeds of tropical species (S. madagascriensis, T. emetica, T.

dregeana and A. marina) and from P. sativum were surface-sterilised in commercial

bleach diluted to 1% sodium hpochlorite containing a drop of Tween-80 in a larninar

flow cabinet for 15 min. Axes of Q. robur were surface-sterilised in 3.2g

dichloroisocyanurate / 100ml H20 containing a few drops of nonidet in a larninar flow

cabinet for 6 min. They were then all rinsed three times with sterile distilled water.
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3.3.3 Pre-moistening of dehydrated axes

To minimise the effects of imbibitional injury, dehydrated axes were moistened on

damp filter paper in Petri dishes overnight at 20°C before being subjected to the

tetrazolium, germination and conductivity tests. Stored axes were also pre-moistened

to avoid introducing an extraneous factor.

3.2.4 Tetrazolium (TZ) tests

Apparent axis viability was determined by the tetrazolium test. Twenty pre-moistened

axes were cut through longitudinally, soaked in 1% (w/v) 2,3,5-triphenyltetrazolium

chloride solution for 24 h in the dark at 20°C, and scored using intensity and location

of staining as criteria (International Seed Testing Association, 1999).

3.2.5 Germination tests

Axes of T. dregeana, P. sativum, T. emetica and A. marina were cultured in Petri

dishes on half-strength Musharige and Skoog (Musharige and Skoog, 1962) medium

supplemented with 0.3 g r1 sucrose (photoperiod 16 h) under sterile conditions for a

period of 20 days at room temperature. Those of S. madagascariensis were

germinated in the dark and the medium for the germination of axes of Q. robur was

further supplemented with 1 mg r1 benzylaminopurine. In all cases, axes were scored

as germinated when they showed greening, elongation, expansion, or a combination of

these characteristics. They were all taken to be equivalent.

3.2.6 Electrical conductivity tests

Electrolyte leakage from five individual replicates of moistened axes of tropical seeds

was measured using a multi-cell conductivity meter (CM100; Reid and Associates cc,

Durban, SA) over 12 h. For Q. robur, a temperate species, leakage from ten replicates

of individual moistened axes was measured using a compact conductivity meter

(Cardy, C-172/173; Horiba Ltd, Kyoto, Japan) after leaching for 12 h. All

measurements were made at 2 V whilst axes were immersed in 1 ml of distilled water

except for the large A. marina axes where 3 ml of distilled water was used. Leakage

was recorded as the highest reading over the measurement period. The results are

78



Chapter 3 Viability characteristics

reported as means ± SE of five or ten individual axes. After the test, axes were dried

and data expressed on a dry mass basis.

3.3 Results

3.3.1 TZ staining

Fresh embryonic axes of germinating P. sativum seeds showed 100% tetrazolium (TZ)

staining (Figs 3.1A and B). It remained at 100% throughout rapid drying (Fig. 3.1A).

However, a sharp decrease took place at c. 0.26 g g-l dm during slow dehydration.

Similarly, a gradual decline occurred after two weeks ofwet storage (Fig. 3.2B).

Newly-shed Q. robur axes recorded 100% TZ staining (Figs 3.1C and D).

Nonetheless, a marked reduction was seen at c. 0.26 and c. 0.8 g g-l dm during rapid

and slow drying, respectively (Fig. 3.1C). Total loss of viability was observed at c.

0.08 and c. 0.57 g g-l dm upon rapid and slow dehydration, respectively. A gradual

decrease took place immediately after wet storage (Fig. 3.1D) with loss of viability

being complete after two weeks ofwet storage.

TZ staining of fresh axes of S. madagascariensis was 100% (Figs 3.1E and F).

Nonetheless, an abrupt decline occurred at c. 0.14 and c. 0.37 g g-l dm during rapid

and slow drying, respectively (Fig. 3.1E). Total loss ofviability was seen at c. 0.37 g g­

1 dm upon slow dehydration. Similarly, a marked reduction was observed after a week

of wet storage (Fig. 3.1F) with loss of viability being complete after four weeks of

hydrated storage.

Newly-shed T. emetica axes showed 100% tetrazolium staining (Figs 3.1G and R).

However, a sharp decrease took place at c. 0.22 and c. 0.4 g g-l dm during rapid and

slow desiccation, respectively (Fig. 3.1G). Total loss of viability occurred at c. 0.15 g

g-l dm upon slow dehydration. Similarly, an abrupt decline in staining was seen after a

week of wet storage (Fig. 3.1R). Loss of viability was complete after three weeks of

hydrated storage.
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Figure 3.1 Level of tetrazolium (TZ) staining of axes of P. sativum (A-B), Q. robur
(C-D), S. madagascariensis (E-F) and T. emetica (G-H) during drying at different
rates or wet storage.
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TZ staining of fresh axes of T. dregeana was 90% in axes from seeds collected in

1999 and 100% for those harvested in 2001 (Figs 3.1 and 1). An abrupt decrease took

place at c. 0.8 and c. 1.4 g g-l dm during rapid and slow drying of axes from seeds

collected in 1999, respectively (Fig. 3.11). Similarly, a sharp decline took place at c.

0.8 and c. 1.4 g g-l dm upon rapid and slow dehydration of axes from seeds collected

in 2001, respectively. Total loss of viability occurred at c. 0.1 and c. 0.4 g g-l dm

during rapid and slow desiccation of axes from both harvests, respectively. Similarly, a

marked decline was seen after a week of wet storage of axes from both harvests (Fig.

3.11). Complete loss of viability was observed after two weeks of hydrated storage of

axes from both harvests.

Fresh A. marina axes recorded 100% TZ staining (Figs 3.1K and L). It remained at

100% throughout rapid drying of axes from both harvests although the extent of

drying was not marked - minimum value of 1.0 g g-l dm (Fig. 3.1K). Nonetheless, a

sharp decrease took place at c. 1.4 and c. 2.0 g g-l during slow drying of axes collected

from seeds harvested in 1999 and 2001, respectively. Similarly, a marked decline

occurred after a week of wet storage of axes from both harvests (Fig. 3.1L). Total loss

ofviability was seen after four weeks of wet storage of axes from both harvests.

3.3.2 Germination

After various surface-sterilisation treatments, 100% germination of axes of P. sativum

took place except after 2.5 min exposure to 0.1% mercuric chloride, which killed all

the embryonic axes (Table 3.1). Nonetheless, axes showed different lengths, hence the

choice of the surface-sterilisation treatment of 15 minutes exposure to 1% sodium

hypochlorite in the present study for this species, which was inhibitory to growth but

eliminated fungal proliferation.

The results of the germination test are generally in good agreement with those of

the tetrazolium test. Fresh axes of P. sativum showed 100% germination (Figs 3.2A

and B). Germination percentage remained at 100% throughout rapid dehydration (Fig.

3.2A). A sharp loss of germination took place at c. 0.26 g g-l dm following slow

drying. Germination percentage also decreased gradually after two weeks of hydrated

storage (Fig. 3.8B).
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Newly-shed Q. robur axes recorded 100% germination percentage (Figs 3.2C and

D). However, a marked decline in germination totality occurred at c. 0.26 and c. 0.8 g

g-l dm during rapid and slow drying, respectively (Fig. 3.2C). Total loss of ability to

germinate was seen at c. 0.08 and c. 0.57 g g-l dm upon rapid and slow dehydration,

respectively. Similarly, germination percentage decreased progressively during wet

storage (Fig. 3.2D). Loss of the ability to germinate was complete after two weeks of

hydrated storage.

Germination percentage of fresh axes of S. madagascariensis was 100% (Figs 3.2E

and F) when kept in the dark. No germination was seen if axes were set out to

germinate in the light. An abrupt reduction was observed at c. 0.37 and c. 0.6 g g-l dm

during rapid and slow drying, respectively (Fig. 3.2E). Total loss of ability to

germinate took place at 0.14 and 0.37 g g-l dm upon rapid and slow dehydration,

respectively. Similarly, germination percentage decreased sharply after a week of wet

storage (Fig. 3.2F). Loss of germination was complete after four weeks of hydrated

storage.

Table 3.1 Germination of axes of P. sativum after different surface-sterilisation
treatments. Lengths are shown as means of ten replicate readings. Variation indicates
standard errors.

Treatment Germination percentage Length of axes

(%) (mm)

None 100 13.6 ± 0.36

5 min 1% NaOCl 100 13.1± 0.41

10 min 1% NaOCl 100 12.3 ± 0.28

10 min 1% NaOCl + 1 drop Tween 80 100 11.6 ± 0.53

15 min 1% NaOCl 100 10.8 ± 0.21

20 min 1% NaOCl 100 10.4 ± 0.36

20 min 0.01% HgCh 100 8.6 ± 0.46

(+ 20min 1% NaOC1) 8.4 ± 0.56

2.5 min 0.1% HgCh 0
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Newly-shed T. emetica axes showed 90% germination percentage (Figs 3.2G and

H). A precipitous decrease in germination percentage took place at c. 0.42 and c. 0.6 g

i l dm during rapid and slow drying, respectively (Fig. 3.2G). Total loss of ability to

germinate occurred at c. 0.22 and c. 0.4 g g-l dm upon rapid and slow dehydration,

respectively. Similarly, germination declined markedly after a week of wet storage

(Fig. 3.2H). Loss ofgermination was complete after four weeks of hydrated storage.

Germination percentage of fresh T. dregeana axes was 90% in axes from seeds

collected in 1999 and 100% for those harvested in 2001 (Figs 3.21 and 1). A sudden

reduction was seen at c. 0.8 and c. 1.4 g g-l dm during rapid and slow drying of axes

collected in 1999, respectively (Fig. 3.2 I). Similarly, a sharp decrease was seen at c.

0.8 and c. 1.2 g g-l dm during rapid and slow desiccation of axes collected in 2001,

respectively. Total loss of germination was observed at c. 0.1 and c. 0.44 g g-l dm

upon rapid and slow drying of axes from both harvests, respectively. Germination

percentage decreased precipitously after a week of wet storage (Fig. 3.2J). Loss of

germination was complete after two weeks of hydrated storage of axes from both

harvests.

Newly-shed A. marina axes recorded 100% germination percentage for both

harvests (Figs 3.2K and L). A decline in germination percentage to 60% took place at

c. 2.0 and 2.4 g i l
dm during rapid and slow drying of axes from seeds harvested in

1999, respectively (Fig. 3.2K). Similarly, a reduction in germination percentage to

60% took place at c. 2.0 and 2.6 g g-l dm during rapid and slow dehydration of axes

from seeds harvested in 2001, respectively. Total loss of the ability to germinate

occurred at c. 0.3 and c. 0.7 g i l dm upon slow desiccation of axes from seeds

harvested in 1999 and 2001, respectively. Germination percentage decreased abruptly

after a week of hydrated storage of axes from both harvests (Fig. 3.2L). Loss of

germination was complete after two weeks of wet storage of axes from both harvests.
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Axes of the different species studied showed a wide range of 'critical water

contents' (i. e. water contents at which viability decreased sharply) during drying

(Table 3.2). Similarly, lifespans (prior to any loss of viability) of axes ranged from 0-15

days during wet storage. In addition, the 'critical water contents' varied greatly with

the rate of drying within each species investigated such that they were lower upon

rapid than slow dehydration. Furthermore, 'critical water contents' of axes of A.

marina, T. emetica and S. madagascariensis were higher when assessed by in vitro

culture in comparison to TZ staining. Moreover, the' critical water content' was higher

and storage lifespan was shorter than expected in Q. robur axes during slow drying

and wet storage for both viability tests, respectively.

Table 3.2 'Critical water contents' and storage lifespans of axes of various species
during drying at different rates or wet storage. Viability was assessed by in vitro
culture and tetrazolium (TZ) staining. Where different from in vitro culture values,
those of the TZ test are shown in brackets. - denotes no decrease in viability.

Species 'Critical water content' Storage Iifespan

(g g-l dm)

Rapid Slow

Pisum sativum 0.26

Quercus robur 0.27 0.8

Strychnos madagascariensis 0.37 (0.14) 0.6 (0.37)

Trichilia emetica 0.4 (0.22) 0.6 (0.42)

Trichilia dregeana 0.8 1.4

Avicennia marina 2.1(-) 2.4 (1.4)

(days)

15

o

7

7

7

7

3.3.3 Electrolyte leakage

Leachate from fresh embryonic axes of P. sativum showed a mean electrolyte

conductivity of c. 47 mS cm-l g-l dm after 12 h leakage. A gradual increase in

electrolyte leakage took place upon drying and wet storage (Fig 3.3A and B). The

highest conductivity readings of leachate of axes that were dried rapidly and slowly

were c. 68.5 and c. 122 mS cm-l g-l dm, respectively. The material dried slowly

recorded more leakage than that dried rapidly throughout the water content range

monitored.
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Figure 3.3 Pattern of electrolyte leakage of axes ofP. sativum (A-B), Q. robur (C-D),
S. madagascariensis (E-F) and T. emetica (G-H) during drying at different rates or
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A mean electrolyte leakage conductivity of c. 1.73 mS cm-I g-I dm was seen for

newly-shed Q. robur axes after a 12 h measurement period. A progreSSIve

enhancement in electrolyte leakage occurred following dehydration and during

hydrated storage (Fig 3.3C and D). The highest conductivity readings of leachate of

axes that were dried rapidly and slowly were c. 18.3 and c. 21 mS cm-I g-I dm,

respectively. The material dried slowly showed more leakage than that dried rapidly

throughout the water content range monitored.

Leachate from fresh axes of S. madagascariensis demonstrated a mean electrolyte

conductivity of c. 61 mS cm-1 g-I dm after 12 h of leakage. A gradual elevation in

electrolyte leakage was seen upon desiccation and moist storage (Fig 3.3E and F). The

highest conductivity readings of leachate of axes that were dried rapidly and slowly

were c. 250 and c. 450 mS cm-I i l
, respectively. The material dried slowly revealed

slightly more leakage than that dried rapidly throughout the water content range

monitored.

A mean electrolyte leakage conductivity of c. 20 mS cm-I g-l dm was recorded by

newly-shed T. emetica axes after a 12 h measurement period. A progressive increase in

electrolyte leakage was observed folowing drying and wet storage (Fig 3.3G and H).

The highest conductivity readings of leachate of axes that were dried rapidly and

slowly were c. 90.3 and c. 98.6 mS cm-1 g-l dm, respectively. The material dried slowly

recorded more leakage than that dried rapidly throughout the water content range

monitored.

Leachate from fresh axes of T. dregeana revealed a mean electrolyte conductivity of

c. 2.2 mS cm-
1 i 1

dm over 12 h of leakage. A gradual enhancement in electrolyte

leakage took place upon dehydration and hydrated storage (Fig 3.31 and J). The

highest conductivity readings of leachate of axes that were dried rapidly and slowly

were c. 3.2 and c. 3.8 mS cm-1 g-l dm, respectively. The material dried slowly showed

more leakage than that dried rapidly throughout the water content range monitored. In

addition, material harvested in 2001 exhibited the classic pattern of a marked increase

in electrolyte leakage at a particular water content, but this was not the case for the

1999 material.

A mean electrolyte leakage conductivity of c. 2.9 mS cm-1 g-l dm was observed for

fresh of A. marina axes after a 12 h measurement period. A progressive elevation in

electrolyte leakage occurred following desiccation and moist storage (Fig 3.3K and L).
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The highest conductivity readings of leachate of axes that were dried rapidly and

slowly were c. 4.5 and c. 15.9 mS cm-1 g-l dm, respectively. The material dried slowly

demonstrated more leakage than that dried rapidly throughout the water content range

monitored.

3.4 Discussion

Axes of P. sativum showed 100% survival after surface sterilization with 0.01%

mercuric chloride for 20 minutes but none with 0.1 % for 2.5 minutes. It appears that

the higher (0. 1%) concentration of mercuric chloride, which is in itself a relatively low

concentration, is lethal to the rather robust P. sativum axes. It may be concluded that

mercuric chloride is lethal not only to the contaminating microorganisms, but to the

axes themselves. As a result, sodium hypochlorite was used as a surface-sterilisation

agent for this species. Coincidentally, this sterilisation protocol is the method of choice

for various species in the Plant Cell Biology Research Laboratory.

No germination was seen if axes of S. madagascariensis were set out to germinate

in the light. Thus, it is suggested that darkness is a necessary condition for the S.

madagascariensis axes to germinate in vitro.

Like in the previous studies (e.g. Ntuli et ai., 1997; reviewed by Pammenter et al.,

2002), the TZ test overestimated the viability during drying of axes of A. marina, T.

dregeana and S. madagascariensis in comparison to the germination test. This

discrepancy is usually attributed to the need for extensive experience of the evaluation

of each species (reviewed by Pritchard, 1996). In contrast, the results of the TZ test of

P. sativum, Q. robur and T. dregeana axes were in good agreement with those of in

vitro culture.

Similarly, the findings of the germination and TZ tests of all species studied were in

complete concurrence with regards to lifespans during wet storage. Hence, it appears

that the TZ test may be a better indicator of viability during hydrated storage than it is

of drying damage. It is suggested that the longer period of exposure and consequent

longer measuring intervals during moist storage than dehydration may explain this

anomaly. Nonetheless, lifespans during wet storage seem a poorer discriminator of the

degree of desiccation sensitivity than 'critical water contents' during drying.

Alternatively, this phenomenon may also be a result of longer measuring intervals. In
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this regard, it is worth remembering that moist storage is equivalent to long-term and

low-intensity water-stress.

In addition, it appears that the survival of axes of Q. robur during slow drying and

moist storage was poorer than expected. It is proposed that this discrepancy is a result

of the high temperature (20 QC) at which these treatments were carried out for this

temperate species. However, temperature appeared not to be a major factor influencing

longevity upon rapid dehydration presumably because of the limited time span of

exposure to this procedure (24 h). Consequently, rapid desiccation is recommended as

a method of choice to determine the 'critical water contents' accurately.

No loss of viability took place during rapid drying of axes of P. sativum. In

contrast, viability loss occurred at low (:s; 0.5 g g-l dm) water contents (sensu Vertucci,

1990) upon slow dehydration of P. sativum axes. As a result, it is suggested that

metabolic disruption rather than desiccation damage (sensu stricto) underlied viability

loss during slow desiccation of axes of P. sativum as removal of water did not kill the

axes. It is proposed that metabolic damage may play a major role in loss of viability of

P. sativum axes during wet storage.

Viability loss was seen mainly at intermediate (between 0.5 and 0.9 g i l dm) and

low (:s; 0.5 g g-l dm) water contents (sensu Vertucci, 1990) during slow and rapid

drying of axes of Q. robur, S. madagariensis and T. emetica, respectively. Thus, it

may be concluded that metabolic disruption is the major cause ofloss of viability upon

slow dehydration and desiccation damage (sensu stricto) brought about viability loss

during rapid dehydration of axes of these species, respectively. It is suggested that

metabolic damage may play a significant role in viability loss of Q. robur, S.

madagariensis and T. emetica axes during wet storage.

Loss of viability was observed primarily at high (~ 0.9 g i l dm) and intermediate

(between 0.5 and 0.9 g g-l dm) water contents (sensu Vertucci, 1990) during slow and

rapid drying of axes of T. dregeana, respectively. Consequently, it may be concluded

that physical and metabolic damage underlied viability loss upon slow and rapid

dehydration of T. dregeana axes, respectively. It is proposed that metabolic damage

may also play a major role in loss ofviability of axes of T. dregeana during wet storage

as there was no loss of water.
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Viability loss occurred predominantly at high (:2: 0.9 g g-l dm) water contents (sensu

Vertucci, 1990) during drying of axes of A. marina. Hence, it appears that physical

damage was a major cause ofloss of viability upon dehydration ofA. marina axes. It is

suggested that metabolic damage also played a significant role in viability loss of axes

ofA. marina during wet storage.

In the present study, the relationship between electrolyte leakage and water content

during drying and wet storage of axes of P. sativum, Q. robur, S. madagascariensis,

T. emetica, T. dregeana and A. marina did not show the typical pattern in which

leakage remains relatively constant to a 'critical water content', at which point a sharp

increase is observed. Rather, there was a gradual increase in leakage as dehydration

proceeded. Pammenter et al., (1998) demonstrated a similar trend during desiccation

of whole seeds of Ekebergia capensis. It is suggested that progressive deterioration of

cellular membranes took place upon desiccation and hydrated storage ofP. sativum, Q.

robur, S. madagascariensis, T. emetica, T. dregeana and A. marina axes possibly as a

result of oxidative attack.

However, less leakage occurred during rapid than slow drying of axes of all species

investigated. It is proposed that less membrane damage was seen during rapid than

slow dehydration because of the shorter period axes were subjected to stress during

rapid in comparison to slow desiccation.

In contrast, axes of T. dregeana harvested in 2001 showed the classic pattern. This

apparent discrepancy, as with initial water contents, drying curves and viability, is

attributed to interseasonal variability in post-harvest behaviour of recalcitrant seeds

(reviewed by BeIjak and Pammenter, 1997a,b; 2001; 2004).

In conclusion, it seems that desiccation-sensitive seeds can be divided into three

categories on the basis of the predominant mechanism of loss ofviability during drying:

(1) minimally desiccation-sensitive seeds such as P. sativum, Q. robur, S.

madagascariensis and T. emetica which died largely as a result of desiccation damage

sensu stricto, (2) moderately desiccation-sensitive seeds such as T. dregeana which

lost viability predominantly due to metabolic damage and (3) highly desiccation­

sensitive seeds such as A. marina which were mainly killed by physical damage.

Irrespective of the mode of dying, the effect of the rate of drying on viability was

always apparent.
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In addition, excised embryonic axes do not seem to survive for appreciable periods

in wet storage in comparison to whole seeds. For instance, considerable viability was

retained over a 3-year period when horse chestnut seeds were maintained at a

temperature which was not conducive to dormancy breakage and germination

(Pritchard, 1996). Similarly, coating of A. marina propagules with alginate, which

reduced the rate of germinative metabolism, extended the storage lifespan of those

seeds by a factor of three to four (Pammenter et ai., 1997).

Furthermore, it appears that vigour, as assessed by the germination test and

tetrazolium staining, may play a role in determining whether the responses of axes of

desiccation-sensitive seeds to desiccation and wet storage show a typical pattern or

not. For example, axes of T. dregeana harvested in 1999, which did not display the

classical pattern, demonstrated lower vigour in terms of germination percentage and

level of tetrazolium staining than those harvested in 2001, which exhibited the typical

pattern in the present study. It is suggested that this phenomenon is a result of the

ability of the more vigorous axes to better withstand water-stress.
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Some biochemical studies on respiratory metabolism

4.1 Introduction

Water has physical properties that make it an ideal biological solvent. Therefore, it is

hardly surprising that it plays many roles in cellular metabolism. Because it is virtually

incompressible, it fills cells and, thus, provides structure. The fluid environment it

provides allows the diffusion of substrates to active sites of enzymes. Hydrophilic and

hydrophobic interactions stabilise macromolecular conformations and allow for

sequestering of cellular constituents. Water is a reactant or product in many important

reactions. It also serves as a protectant of macromolecular structure by inhibiting

deleterious reactions through preventing interaction between molecules (reviewed by

Vertucci and Farrant, 1995; WaIters et aI., 2002).

To appreciate the important role that water plays in cellular metabolism, it may be

necessary to look at the damage that plant cells incur as a result of water removal.

However, cells may be more susceptible to the rate of desiccation rather than loss of

water per se and hence can survive to lower water contents with rapid dehydration

(compare Probert and Brierley, 1989 and Kovach and Bradford, 1992a; Pammenter et

aI., 1991; 1998; 1999; Pritchard, 1991; Finch-Savage, 1992; BeIjak et aI., 1993;

Waiters et al., 2001; Wesley-Smith et aI., 2001). It is thought that when cells are held

at intermediate moisture levels during slow dehydration, they may suffer damage

because they are subjected to the stress of unbalanced metabolism for longer periods

than when dried rapidly (pammenter et aI., 1991; 1998; 1999; Waiters et al., 2001). In

effect, inadequate time is allowed for aqueous-based deleterious reactions to occur

when cells are dried rapidly (pammenter et aI., 1991; 1998; 1999; Waiters et aI.,

2001).

Because of the many roles it plays in metabolism, water controls the level of

metabolism in plant cells (Clegg, 1978; Hegarty, 1978; Adams and Rinne, 1980;

McIntyre, 1987; Leopold and Vertucci, 1989; reviewed by Waiters et al., 2002). It has

been postulated that minimum critical moisture levels are required for different

metabolic processes to take place. These processes include, among others, germination
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(Hegarty, 1978; McIntyre, 1987; Palit, 1987), embryogenesis (Adams and Rinne,

1980; Finkelstein and Crouch, 1986; Rosenberg and Rinne, 1986; Fischer et aI., 1988;

Xu et al., 1990; Galau et al., 1991; Morris et al., 1991), growth (Adams and Rinne,

1980; Saab and Obendorf, 1989), cell division (Adams and Rinne, 1980; Myers et aI.,

1992) and respiration (Leopold and Vertucci, 1989).

The discrete changes in metabolic activity with water content have been

hypothesized to be associated with discrete changes in the physical properties of water

(Clegg, 1978; Rupley et aI., 1983; Bruni et al., 1989; Leopold and Vertucci, 1989;

Vertucci, 1989; 1990; 1992). This hypothesis is based on the observation that the

characteristics of water change with the degree of hydration (Vertucci and Roos,

1990). Thus, water becomes progressively capable of fulfilling the particular functions

required for specific metabolic processes with increasing levels of hydration. On the

other hand, removal of water from cells with the consequent loss of certain properties

essential for particular metabolic activities, results in the loss of the capability for those

activities.

For instance, it has been shown that phosphofructokinase (PFK) and malate

dehydrogenase (MOH) were slightly and mildly affected by dehydration, respectively

while the glucose-6-phosphate dehydrogenase (G6PDH) and NADH dehydrogenases

of NADH-ubiquinone (coenzyme Q) reductase (complex I) and NADH-cytochrome c

reductase (complex IV) were extremely sensitive to desiccation in germinating maize

(Leprince et aI., 1993a; 1994). In contrast, Carpenter et al. (1987) observed that PFK

was highly sensitive to in vitro desiccation. Furthermore, the activity of succinate

dehydrogenase was elevated in the short-term by rapid or slow drying of propagules of

Avicennia marina (Farrant et aI., 1985).

More recently, Bettey and Finch-Savage (1996) have shown an enhancement during

germination in cabbage seeds in the activities of four enzymes which have a potentially

regulatory role in glycolysis (pFK, pyrophosphate-dependent fructose-6-phosphate 1­

phosphotransferase, pyruvate kinase and phosphoenol pyruvate carboxylase) and one

enzyme which dominates the regulation of the oxidative pentose phosphate pathway,

G6PDH. As expected, the ageing treatments caused a delayed increase in respiration

on imbibition. However, priming the seeds after ageing brought forward the increase.

It also brought the increase closer to the control levels.
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In this regard, it is noteworthy that the cause of the differences in sensitivity to

desiccation between enzymes is unknown. It has been suggested that desiccation­

induced disruption of the electron transport chain of mitochondrial and microsomal

membranes between the ubiquinone pool and cytochrome oxidase may result in more

leakage of electrons from the electron transport chain than normal, thus generating the

accumulation of free radical species, which are associated with lipid peroxidation

(Leprince et al., 1990b; 1994; 1995b; Hendry et al., 1992; Hendry, 1993). However, it

remains unclear whether oxidative damage is a cause or consequence of tissue death

(Hendry et aI., 1992; Hendry, 1993; reviewed by Leprince and Golovina, 2002).

In addition to studies that have investigated the activities of respiratory enzymes, a

number of investigations have examined the effects of drying and germination on

respiration in terms of O2 consumption and CO2 production (Farrant et aI., 1985;

Salmen Espindola et aI., 1994; Corbineau et aI., 1997; Leprince et al., 1998; 2000;

Waiter et aI., 2001). In general, whilst dehydration diminishes the rate of respiration,

germination elevates respiration.

Further evidence for the suppression of respiratory metabolism with desiccation

comes from studies which investigated the effects of drying on respiratory substrates

(monosaccharides [such as glucose and fructose], disaccharides [such as sucrose] and

oligosaccharides [such as stachyose]). For example, there was a decline in the levels of

these compounds with the onset of maturation drying in developing pea (Rogerson and

Matthews, 1977) and cabbage (Leprince et aI., 1994) seeds. Moreover, germination

was associated with an increase in the levels of respiratory substrates in maize seeds

(Leprince et aI., 1992). In contrast, Ntuli et al. (1997) showed higher levels of these

substances in control (hydrated) than their experimental (dried) counterparts in seeds

of wild rice. Interestingly, Zizania palustris seeds dried at the optimal (25 QC)

temperature showed a sugar profile more similar to the control than the experimental

material.

In addition, dehydration induced a decrease in ATP and ADP levels and an increase

in AMP content in Araucaria angustifolia embryos (Salmen Espindola et aI., 1994;

Corbineau et al., 1997). Consequently, there was a decline in the (adenylate) energy

charge which was calculated as (ATP+0.5ADP)/(ATP+ADP+AMP) according to
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Atkinson (1968). Moreover, there was a delayed reduction in the adenylate pool

(ATP+ADP+AMP).

Furthermore, it was shown that desiccation ofA. angustifolia embryos is associated

with a rapid loss of the activity of l-aminoacylpropane I-carboxylic acid (ACC)

oxidase which oxidises ACC to ethylene (Salmen-Espindola et al., 1994; Corbineau et

ai., 1997). This effect is more pronounced in the cotyledons than in the axes.

The objective of the work reported in the present chapter was to determine if drying

rate and/or wet storage differentially affects respiratory metabolism of embryonic axes

of desiccation-sensitive seeds.

4.2 Materials and methods

4.2.1 Seed material

Excised embryonic axes of Pisum sativum, Quercus robur, Trichilia dregeana and

Avicennia marina were subjected to the slow or rapid drying or wet storage protocols

outlined in Chapter 2.

4.2.2 Respiratory enzyme assays

Phosphofiuctokinase (PFK) activity was determined according to Leprince et ai.

(1993a). Axes (c. 5 mg dry matter [dmJ) were homogenised to a fine powder under

liquid nitrogen using a pestle and mortar. Soluble proteins were extracted from the

frozen powder in 5 ml of 50 mM Tris-HCl (pH 7.6) in the presence of 0.1%

polyvinylpyrolidone (pVP) (Hofinann and Kopperschlager, 1982) and the homogenate

centrifuged at 8 000 g for 5 min. An aliquot of 2 ml of the supematant was then

transferred to 1 ml of a mixture of 0.2 mM ethylenediaminetetraacetic acid, 2 mM

fiuctose-6-phosphate, 5 mM MgCh, 0.6 mM ATP, 0.33 U ml- I aldolase, 10 U ml- I

triose phosphate isomerase, 1 U ml- I glycerophosphate dehydrogenase and 0.2 mM

NADH in Tris (pH 7.6) buffer. Activity was monitored by measuring the formation of

fiuctose-l,6-bisphosphate, indicated by a coupled NADH-dependent reduction of

dihydroxyacetone phosphate to glycerol-3-phosphate, as the change in absorbance at

340 nm over 3 min.

Malate dehydrogenase ()1DR) activity was monitored usmg the procedure of

Leprince et ai. (1993a). Axes (c. 5 mg dm) were homogenised to a fine powder under

liquid nitrogen using a mortar and pestle. Soluble proteins were extracted from frozen
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powder in 5 ml of 50 mM potassium phosphate buffer (pH 7.4) in the presence of

0.1% PVP. The homogenate was then centrifuged at 8 000 g for 5 min. An aliquot of

0.1 ml of the supematant was added to 2 ml of 0.1 M phosphate buffer (pH 7.55) and

0.1 ml of2 mg/ml NADH. After 10 min, 0.1 ml of 0.5 M oxaloacetate in 0.1 M

phosphate buffer (pH 7.0) was added. Activity was determined by observing the

change in optical density ofNADH at 340 nm over a 3 min period.

4.2.3 NAD assay

Following homogenisation to a fine powder under liquid nitrogen in the mortar with a

pestle, axes (c. 5 mg dm) were further homogenised in 5ml of 0.2 M HCI, heated in a

boiling water bath for 5 min, cooled in an ice bath and centrifuged at 14 000 g for 10

min (Zhao et at. 1987). An aliquot of 0.5 ml of the supematant was then transferred to

1.0 M Bicine-NaOH buffer (pH 8.0) and neutralised with 0.2 M NaOH in the dark

(Matsumura and Miyachi, 1980). Following the addition of 0.1 ml each of 40 mM

EDTA, 4.2 mM 3-(4,5 dimethyl-thiazoyl-2)-2,5-diphenyltetrazolium bromide (MTT),

16.6 mM phenol ethosulfate and 5.0 M ethanol, 0.1 ml of 500 U ml-1 alcohol

dehydrogenase was added after 5 min at 37°C. The level ofNAD was determined by

measuring the rate of reduction ofMTT as absorbance at 570 nm after 30 min.

For all three assays, the results are reported as percentage changes (between the

present and previous values) of the initial values of means of three replicate

extractions. After each assay, axes were dried and data expressed on a dry mass basis.

Due to shortage of plant material, assays were only conducted after 7 days during wet

storage of axes ofAvicennia marina.

4.2.4 Statistical analysis

Data were subjected to one-way analysis of variance (ANOVA) test. Where significant

effects were found to occur, the Tukey multiple range test was subsequently used to

identify where they occurred.
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4.3 Results

4.3.1 Respiratory enzyme activities

a.PFK

No statistically significant changes in the activity of PFK were seen during rapid and

slow drying and during wet storage of axes ofP. sativum (F = 1.30 and p = 0.46, F =

30.80 and p = 0.13 and F = 0.90 and p = 0.51, respectively [Fig 4.1A and B]).

The onset of loss of germination was preceded by a statistically significant c. 15%

increase in the activity ofPFK in axes of Q. robur during rapid drying at c. 0.26 g g-l

dm (F = 5.60 and p = 0.01 [Fig 4.1 C]). In contrast, a marginally significant decrease

was observed upon slow dehydration (F = 0.80 and p = 0.6). During wet storage, a

highly significant c. 40% enhancement in PFK activity accompanied germination loss

(F = 48.9 and p < 0.01 [Fig. 4. ID]).

A highly significant c. 70% decrease in the activity of PFK in axes of T. dregeana

took place before the onset ofloss ofgermination during rapid drying at c. 0.8 g g-l dm

(F = 9.80 and p < 0.01 [Fig 4. lE]). Similarly, a statistically significant c. 45% decline

in PFK activity in T. dregeana axes occurred at c. 1.4 g g-l dm prior to the onset of

germination loss upon slow dehydration (F = 13.80 and p = 0.01). Loss ofgermination

was associated with a statistically significant c. 20% increase in the activity of PFK

during rapid desiccation. During wet storage, a statistically significant c. 60%

reduction in PFK activity preceded the onset of germination loss (F = 42.90 and p <

0.01 [Fig. 4. IF]). There was a further highly significant c. 90% post-mortem decrease

in PFK activity after total loss of germinability upon hydrated storage (F = 42.90 and p

< 0.01).
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Figure 4.1 Activities of phosphofructokinase in axes of P. sativum (A-B), Q. robur
(C-D) and T. dregeana (E-F) during drying at different rates or wet storage. Data
points represent means of three replicate extractions. Error bars, in some cases hidden
within the data symbols, show standard errors. Percentages above or below data
symbols indicate germination. Data points without percentages are unchanged over the
previous values. 1 U ofPFK will convert 1 /lmol offructose-6-phosphate and ATP to
fructose-I,6-bisphosphate and ADP per minute at pH 8.0 at 30°C.
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A statistically significant c. 70% decrease in the activity ofPFK in whole axes ofA.

marina was seen during the initial 40% loss of germination at c. 1.1 g g-l dm upon

rapid drying (F = 1 585.70 and p = 0.02 [Fig 4.2AD. Similarly, a statistically significant

c. 80% decline in PFK activity in whole axes was observed during the initial 40% loss

of germination at c. c. lA g g-l dm upon slow dehydration (F = 113.32 and p = 0.01).

During wet storage, there was no significant change in the activity of PFK in whole

axes before the onset ofloss of germination (F = 17.00 and p = 0.15 [Fig 4.2BD.

The activity of PFK in A. marina hypocotyls was higWy significantly diminished by

c. 83% during the initial 40% loss of germination upon rapid drying (F = 98.10 and p <

0.01 [Fig 4.2CD. Similarly, a marginally siginificant c. 30% decrease in PFK activity in

hypocotyls was associated with 40% germination loss during slow dehydration (F =

16.70 and p = 0.06). Upon wet storage, a marginally significant c. 55% decrease in the

activity ofPFK in hypocotyls preceded the onset ofloss of germination (F = 16.70 and

p = 0.06 [Fig. 4.2DD.

There were no significant changes in the activity of PFK in root primordia of A.

marina during rapid and slow drying (F = 1.7 and p = 0.35 and F = 1. 90 and p = OA6,

respectively [Fig 4.2ED. However, a marginally siginificant c. 73% decrease in PFK

activity preceded loss of germination upon wet storage (F = 15.00 and p = 0.06 [Fig.

4.2FD·

No significant changes in the activity ofPFK in A. marina plumules were associated

with rapid and slow drying and wet storage (F = 0.20 and p = 0.13, F = 0.00 and p =

1.00 and F = OAO and p = 0.64, respectively (Fig 4.2G and RD.
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Figure 4.2 Activities of phosphofructokinase in whole axes (A-B) and different axial
tissues (hypocotyls rC-DJ, root primordia [E-F] and plumules [G-H]) of A. marina
during rapid or slow drying or wet storage. Data points represent means of three
replicate extractions. Error bars, in some cases hidden within the data symbols, show
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convert 1 Jlmol of fructose-6-phosphate and ATP to fructose-l,6-bisphosphate and
ADP per minute at pH 8.0 at 30 QC.
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b.MDH

Although changes in the activity of MDH in axes ofP. sativum during rapid and slow

drying and wet storage were considerable, they were not statistically significant (F =

0.90 and p = 0.49, F = 1.50 and p = 0.33 and F = 1.70 and p = 0.26 [Fig 4.3 A and

BD·
A highly significant c. 50% increase in the activity of MDH in axes of Q. robur

preceded the onset ofloss of germination during slow dehydration (F = 245.10 and p <

0.01 [Fig. 4.3CD. Germination loss was associated with a statistically significant c.

80% enhancement ofMDH activity upon rapid dehydration (F = 106.00 and p = 0.01).

Similarly, a highly significant c. 120% elevation in the activity of MDH accompanied

loss of germination during slow desiccation (and F = 245.10 and p < 0.01). There was

a statistically significant c. 110% increase in :MDH activity during germination loss

upon wet storage (F = 10.50 and p = 0.05 [Fig. 4.3DD.

A highly significant c. 50% decrease in the activity ofMDH in axes of T. dregeana

was seen before the onset of loss of germination during slow drying (F = 13.75 and p <

0.01 [Fig. 4.3ED· Similarly, a statistically significant c. 60% decline in :MDH activity

was observed during germination loss upon rapid dehydration (F = 22.80 and p <

0.01). During wet storage, there were no significant changes in the activity of:MDH (F

= 0.90 and p = 0.51).
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Figure 4.3 Activities of malate dehydrogenase in axes of P. sativum (A-B), Q. robur
(C-D) and T. dregeana (E-F) during drying at different rates or wet storage. Data
points represent means of three replicate extractions. Error bars, in some cases hidden
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105



Chapter 4 Respiratory metabolism

In whole axes ofA. marina, a marginally significant c. 85% decrease in the activity

of MDH was seen during the initial 40% loss of germination upon rapid drying (F =

4.80 and p = 0.06[Fig. 4.4AD. Similarly, a statistically significant c. 70% decline in

MDH activity was observed during the initial 40% germination loss upon slow

dehydration of whole axes (F = 11.90 and p = 0.04). During wet storage, a highly

significant c. 85% reduction in the activity of MDH in axes preceded the onset of loss

ofgermination (F = 288.00 and p < 0.01 [Fig. 4.4BD.

The activity of:MDH in A. marina hypocotyls did not change significantly during

rapid and slow drying and wet storage (F = 2.20 and p = 0.23, F = 2.70 and p = 0.21,

and F = 3.50 and p = 0.20, respectively [Fig. 4.4C and DD. Similarly, there were no

siginificant changes in MDH activity in root primordia of A. marina upon rapid and

slow dehydration and hydrated storage (F = 1.80 and p = 0.30, F = 0.50 and p = 0.65

and, F = 0.00 and p = 1.00, respectively [Fig. 4.4E and FD. Also, the activity ofMDH

in A. marina plumules did not change significantly during rapid and slow desiccation

and moist storage (F = 0.01 and p = 1.00, F = 0.00 and p = 0.98 and F = 1.70 and p =

0.33, respectively [Fig. 4.4G and HD.
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Figure 4.4 Activities of malate dehydrogenase in whole axes (A-B) and different axial
tissues (hypocotyls [C-D], root primordia [E-F] and plumules [G-H]) of A. marina
during rapid or slow drying or wet storage. Data points represent means of three
replicate extractions. Error bars, in some cases hidden within the data symbols, show
standard errors. Percentages above or below data symbols indicate germination. Data
points without percentages are unchanged over the previous values. 1 U ofMDH will
convert 1 ~mol of oxaloacetate and NADH to malate and NAD per minute at pH 7.5
at 25°C.
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4.3.2 NAD levels

A marginally siginificant c. 90% increase in the level of NAD occurred during rapid

drying (F = 4.50 and p = 0.09 [Fig. 4.5A]). Germination loss was associated with a

statistically significant c. 70% enhancement in NAD level as slow drying proceeded (F

= 3.50 and p = 0.01). However, no siginicant change in the level ofNAD accompanied

wet storage (F = 3.50 and p = 0.20 [Fig. 4.5B]).

A marginally siginificant c. 50% decrease in the level ofNAD was seen during rapid

drying of axes of Q. robur (F = 0.80 and p = 0.06 [Fig. 4.5C]). Similarly, a statistically

significant c. 60% decline in NAD level was observed in advance of the onset ofloss of

germination upon slow dehydration (F = 5.64 and p = 0.01). There was a marginally

siginificant c. 86% reduction in the levels of NAD during germination loss upon wet

storage (F = 3.20 and p = 0.07 [Fig. 4.5D]).

The levels ofNAD in axes of T. dregeana did not change significantly during rapid

and slow drying (F = 2. 60 and p = 0.17 and F = 0.90 and p = 0.5, respectively [Fig.

4.5E]). Total loss of germinability was followed by a statistically significant c. 70%

post mortem increase in NAD levels upon wet storage (F= 23.40 and p < O.Ol[Fig.

4.5F]).
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Figure 4.5 Levels of NAD in axes of P. sativum (A-B), Q. robur (C-D) and T.
dregeana (E-F) during drying at different rates or wet storage. Data points represent
means of three replicate extractions. Error bars, in some cases hidden within the data
symbols, show standard errors. Percentages above or below data symbols indicate
germination. Data points without percentages are unchanged over the previous values.
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No siginificant changes in the levels ofNAD were seen in whole axes ofA. marina

during rapid drying and wet storage (F = 2.60 and p = 0.43 and F = 8.80 and p = 0.21,

respectively [Fig. 4.6A and B]). However, a statistically significant c. 80% decrease in

NAD level in whole axes was observed during the initial 40% loss of gennination upon

slow dehydration (F = 427.40 and p = 0.04).

The levels of NAD in A. marina hypocotyls did not change significantly during

rapid drying and wet storage (F = 1.10 and p = 0.60 and F = 4.90 and p = 0.27,

respectively [Fig. 4.6C and D]). Nonetheless, a marginally significant c. 90% decrease

in NAD level in hypocotoyls was associated with the initial 40% loss of germination

upon slow deydration (F = 157.50 and p = 0.06).

There was no siginificant change in the level ofNAD in root primordia ofA. marina

during rapid drying (F = 7.10 and p = 0.13 [Fig. 4.6E]). However, a highly significant

c. 90% decrease in NAD level in root primordia accompanied the initial 40% loss of

germination upon slow dehydration (F = 791.50 and p < 0.01). The onset of

germination loss was preceded by a statistically significant c. 80% decline in the level

ofNAD in root primordia during wet storage (F = 256.80 and p = 0.04 [Fig. 4.6F]).

A marginally significant c. 70% decrease in the level ofNAD in A. marina plumules

took place during the initial 40% loss of germination upon rapid drying, respectively (F

= 14.60 and p = 0.07 [Fig 4.6G]). Similarly, a statistically significant c. 90% decline in

NAD level in plumules occurred during the initial 40% germination loss upon slow

dehydration (F = 2 792.00 and p = 0.01). Nonetheless, no significant change in the

levels of NAD in plumules was associated with wet storage (F = 8.80 and p = 0.20

[Fig. 4.6H]).
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Figure 4.6 Levels ofNAD in whole axes (A-B) and different axial tissues (hypocotyls
[C-D], root primordia [E-F] and pluffiules [G-H]) of A. marina during rapid or slow
drying or wet storage. Data points represent means of three replicate extractions. Error
bars, in some cases hidden within the data symbols, show standard errors. Percentages
above or below data symbols indicate germination. Data points without percentages
are unchanged over the previous values.
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4.4 Discussion

The activities of respiratory enzymes, PFK, MDH and NADH dehydrogenase, were

reported to be adversely affected by drying (Leprince et aI., 1993a; reviewed by Come

and Corbineau, 1996). The results of the present study support those observations.

The activities of PFK in axes of T. dregeana and A. marina decreased during

dehydration such that the activity of PFK was higher upon rapid than slow desiccation

of T. dregeana axes. Similarly, PFK activity declined during wet storage of axes of T.

dregeana. The activity of PFK in Q. rabur axes also decreased during slow

desiccation.

However, the activity of PFK in A. marina axes did not change significantly upon

hydrated storage. The activity of PFK also remained constant during drying and

hydrated storage of axes of P. sativum. Nonetheless, PFK activity actually increased

upon rapid dehydration and wet storage of Q. rabur axes. In this regard, it should be

remembered that partially-germinated P. sativum and fresh Q. rabur axes were found

to be minimally desiccation-sensitive in the present investigation. In addition, PFK

activity is only slightly adversely affected by drying (Leprince et al., 1993a; reviewed

by Come and Corbineau, 1996).

A decline in activities of MDH in axes of T. dregeana and A. marina took place

during dehydration and wet storage such that MDH activity was higher in T. dregeana

axes upon rapid than slow desiccation. Nonetheless, the activity of MDH remained

constant during drying and moist storage of axes of P. sativum. The activity of MDH

in Q. rabur axes was enhanced during dehydration and hydrated storage such that it

was higher upon slow than rapid desiccation. The reason for this anomalous response

is similar to the one advanced for the activity ofPFK.

An elevation in the levels of NAD occurred in axes of P. sativum during drying.

Similarly, there was an enhancement of NAD level in T. dregeana axes upon moist

storage. It is suggested this response is a result of the impairment of the activity of the

NADH dehydrogenases ofNADH-ubiquinone (coenzyme Q) (complex I) and NADH­

cytochrome c reductase (complex IV) of the electron transport chain, as shown in

germinating maize (Leprince et aI., 1993a; 1994; 1995; 1998; 2000; reviewed by Come

and Corbineau, 1996).

In contrast, NAD levels were diminished during rapid and/or slow dehydration

and/or wet storage of axes of Q. rabur and A. marina. For Q. rabur axes, their
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response may be explained by a similar reason given for the activities of PFK and

MDH. The reason for the increase in NADH dehydrogenase activity in A. marina axes

is unknown.

The activities of PFK and MDH in axes of A. marina were adversely affected by

desiccation and hydrated storage. However, the effect of the rate of drying was not

apparent. It is possible that this discrepancy is a consequence of physical damage

becoming more important than metabolic damage, as was shown by Greggains et aI.

(2001). The reason for the lack of the effect of drying rate on the response of the level

ofNAD in axes ofP. sativum is unknown.

In addition, whole axes and different tissues of axes ofA. marina showed dissimilar

responses of the activities of PFK and MDH and level of NAD to desiccation and

moist storage. These observations support those of Greggains et aI. (2001) who

demonstrated a similar phenomenon.

Desiccation-sensitive seeds ultimately die in wet storage; this has been suggested to

be as a result of an initially mild but increasingly severe long-term water-stress

(Pammenter et aI., 1994; 1997; Motete et al., 1997). Nonetheless, it is often difficult

to compare the responses of desiccation-sensitive tissues to hydrated storage with

those to drying due to the vast difference in time scales (hours to days against weeks to

months) and because water content remains constant during moist storage.

However, this problem may be overcome if the magnitude of the response to one or

two of the treatments remain(s) constant whilst the other(s) change(s). For instance,

the activity of PFK remained constant during wet storage of axes of A. marina.

Nonetheless, it decreased upon rapid and slow drying. It may be concluded that A.

marina axes incurred equivalent stress to PFK activity upon rapid and slow

desiccation, but less during wet storage.

In conclusion, it appears that the responses of respiratory enzymes and,

consequently, coenzymes to drying and hydrated storage vary with species and tissue.

In this regard, it is noteworthy that, firstly, the degree of desiccation sensitivity of

seeds plays a major role in determining the responses of their enzyme activities to

water-stress.

On one hand, enzyme activities of minimally desiccation-sensitive seeds (such as Q.

robur) may not be adversely affected but elevated. On the other hand, differential

effects of desiccation and moist storage on enzyme activities of highly recalcitrant seed
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types (such as A. marina) may not be apparent. In between, enzyme activities of

moderately desiccation-sensitive (such as T. dregeana) seeds show a classic response

to water-stress where they are adversely and are differentially affected by the rate of

drying.

In addition, the sensitivity of the enzyme activities themselves to drying and wet

storage is central to the responses of seeds for each species. For example, it appears

that NADH dehydrogenase is more sensitive to water-stress than MDH, which, in turn,

is more sensitive than PFK.

114



Chapter 5

The role of free radical processes in seed deterioration

5.1 Introduction

Free radicals are molecular species which contain unpaired electrons (reviewed by

Benson, 1990). Consequently, they are some of the most chemically reactive structures

known. Because of the need to pair its single electron, a free radical abstracts an

electron from a neighbouring molecule. This event causes the fonnation of yet another

free radical and a self-propagating chain reaction ensues.

In biological systems, free radical fonnation is involved in important processes of

nonnal metabolism (reviewed by Benson, 1990; Hendry, 1993; Hendry and Crawford,

1994). They include, for instance, electron transport, substrate oxidation, lipid

metabolism and pathological defence mechanisms. Under nonnal conditions, these

processes are tightly controlled by metabolic coupling and cellular compartmentation.

In addition, aerobic organisms have evolved extensive mechanisms to protect the cell

against free radical injury and oxygen toxicity.

However, the tight control of the processes that involve free radical fonnation can,

and does, become altered (e.g. by environmental stresses [Hendry, 1993; Hendry and

Crawford, 1994], ageing and physical injury [Benson, 1990]). A situation arises in

which metabolism enters a series of reactions which produce highly reactive, self­

propagating free radical species. Perhaps, it is the biggest irony of life that oxygen, the

primary agent of aerobic respiration, is often the primary promoter of the deleterious

free radical reactions in biological systems.

The biochemical events, which lead to free radical production, are complex

(reviewed by Benson, 1990). Furthennore, the high reactivity of the free radicals

makes interpretation of their origin difficult. It is, therefore, not surprising that it is

often difficult to determine if free radicals are a direct cause of injury or a consequence

of preceding damage (reviewed by Benson, 1990; Hendry, 1993; Hendry and

Crawford, 1994).

The free-radical theory of ageing originated in the medical sciences nearly half-a­

century ago (Hannan, 1956). It was soon introduced into seed biology when
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Kaloyereas (1958) suggested that lipid oxidation might underlie loss of viability in

seeds.

Since then, evidence to support the free-radical theory in seed ageing has been

accumulating. The earliest study of Koostra and Harrington (1969) analysed

phospholipid (PL) changes and raised the possibility that membrane peroxidative

changes were associated with ageing. More recent studies have implicated lipid

peroxidation involvement in membrane deterioration (e.g. Hailstones and Smith,

1988). These studies have shown a strong correlation between hydroperoxide

(products of oxidation of unsaturated free fatty acids [FFAs] by free radicals) levels

and viability loss. These findings are supported by a decline in levels of unsaturated

FFAs during seed deterioration (Hailstones and Smith, 1988). Further evidence comes

in the form of studies, which have analysed the headspace above seeds heated in a

sealed container for aldehydes (thermal breakdown products of hydroperoxides

[Frankel, 1982]). These studies have shown a link between increasing aldehyde

evolution and viability loss (Hailstones and Smith, 1989; Ntuli et aI., 1997).

However, there are studies which contrast with the picture painted above. For

instance, Fergusson et aI. (1990) and Ntuli et aI. (1997) did not find a decline in total

and polar FFA levels in aged soybean axes and dried wild rice seeds during

deterioration, respectively. Smith and BeIjak (1995) attributed this contradiction to

differences in methodology.

A number of factors determine the extent of peroxidation in ageing seeds. They

include: (1) composition and saturation of FFAs (priestley, 1986; Ponquett et aI.,

1992), (2) level of hydration (Karel and Yong, 1981), (3) relative humidity (RH) and

temperature (reviewed by Smith and BeIjak, 1995; Leprince et aI., 1995b), (4) oxygen

availability (Ohlrogge and Kernan, 1982; Leprince et aI., 1995) and (5) efficiency of

antioxidative systems (pokorny, 1987).

Membranes are one of the most important of the many targets of free radical attack

(reviewed by Benson, 1990). Membrane lipids contain unsaturated bond systems.

Thus, they are electron-rich. Consequently, they provide an ideal target for free radical

attack. Free radical damage to membranes is thought to be primarily mediated through

the process of lipid peroxidation, although associated proteins may also present targets

(reviewed by Smith and BeIjak, 1995).
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Free radicals have been implicated in a number of processes in seed biology. These

include: (1) ageing of orthodox seeds (reviewed by McKersie et al., 1988; Tommasi et

aI., 1999), (2) dehydration of recalcitrant seeds (Hendry et al., 1992; Chaitanya and

Naithani; 1994; Chandel et al., 1995; Finch-Savage et aI., 1994a; 1996; Li and Sun;

1999; Tommasi et al., 1999; Greggains et aI., 2001) and (3) deterioration of

desiccation-sensitive seeds in wet storage (e.g. Greggains et al., 2000b). Here, the

involvement of free radicals during dehydration and hydrated storage of recalcitrant

seeds is considered.

The free radicals and hydroperoxides produced during peroxidation are often not

stable and can readily decompose to produce a whole range of breakdown products

(Kappus, 1985; Sevanian and Hochstein, 1985; Chan, 1987). Apart from being

cytotoxic, these breakdown products provide an indirect measurement of free radical­

mediated damage (e.g. Hailstones and Smith, 1989).

Recent studies have provided evidence that recalcitrant seeds become exposed to

activated forms of oxygen and lipid peroxidation, and accumulate stable free radicals

under water-stress conditions (Finch-Savage et aI., 1994a). As an example, Hendry et

al. (1992) have shown that loss of viability during drying in the desiccation-sensitive

seeds of Quercus robur coincided with increased lipid peroxidation and free radical

formation in the embryonic axes. More recently, Hendry and co-workers (Hendry et

aI., 1994; Leprince et aI., 1994; 1995) and other authors (e.g. Wood et al., 1995) have

shown the occurrence of free radicals in a range of species subjected to dehydration.

The direct detection of free radicals requires sophisticated equipment (reviewed by

Benson, 1990; Leprince and Golovina, 2002). The two commonly used methods

(electron paramagnetic resonance [EPR] and electron nuclear double resonance

[ENDOR]) exploit the fact that electrons possess both spin and charge and hence can

behave like magnets (Williams and Wilson, 1975). If molecules containing unpaired

electrons are placed in a magnetic field and electromagnetic radiation is applied, the

electron can undergo a spin reversal ('electron spin resonance' [ESR]). The frequency

at which spin reversal occurs depends on the free radical species and the applied

magnetic field.

Because of the inhibitory cost and consequent lack of availability ofEPR/ESSR and

ENDOR equipment, a number of indirect methods have been developed to detect the

products of free radical activity (reviewed by Wilson and McDonald, 1986). These
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include monitoring changes in lipid bond saturation, lipid and PL content and

measuring the release of FFAs, and the production of lipid peroxides and their

breakdown products (e.g. volatiles such as hydrocarbons, aldehydes and alcohols).

Free radicals are naturally produced during plant metabolism, particularly m

electron transport chains of chloroplasts and mitochondria during photosynthesis and

respiration, respectively (reviewed by Halliwell' 1987; Benson, 1990; Puntarulo, 1991;

Hendry, 1993; Hendry and Crawford, 1994). Consequently, plants are well endowed

with both enzymatic and low-molecular-weight non-enzymatic free radical processing

antioxidants (reviewed by Leprince et aI., 1993b; Come and Corbineau, 1996).

An antioxidant is any compound capable of quenching free radicals without itself

undergoing conversion to a destructive radical (reviewed by Rose and Bode, 1993;

Nishikimi and Vagi, 1996; Noctor and Foyer, 1998). Free radical processing enzymes

catalyse such reactions or are involved in the direct processing of free radicals. Of the

numerous enzymes and metabolites potentially covered by these definitions, many

remain uncharacterised (reviewed by Smimoff and Cumbes, 1989; Halliwell et aI.,

1995; Noctor and Foyer, 1998).

Non-enzymatic antioxidants include the fat-soluble u- and y-tocopherol (TOC)

isomers (vitamin E) and retinol (vitamin A) or p-carotene (provitamin A) and water­

soluble ascorbic acid (AsA [vitamin CD and glutathione. TOCs are chain-breaking

antioxidants, thus block lipid peroxidation. Seeds are known to contain large

concentrations of such antioxidant compounds varying in different tissues and seeds

(Franzen and Haas, 1991).

Enzymic free radical processing enzymes include superoxide dismutase (SOD),

catalase (CAT), glutathione reductase (GR) and ascorbate and guaicol peroxidases

(A/GPODs). SOD catalyses the dismutation of superoxide into hydrogen peroxide and

molecular oxygen. CAT, GR and PODs are involved in the detoxification of hydrogen

peroxide. Enzymatic systems are more likely to be involved in an early antioxidant

response by neutralising potentially toxic activated oxygen formed during water

deprivation (reviewed by Leprince et aI., 1993b).

Earlier studies have demonstrated the link between tolerance to oxidative stress,

induced by water-stress during seed development, and the type and efficiency of free

radical processing systems and antioxidants (reviewed by Leprince et aI., 1993b).
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Those studies have shown that protective mechanisms against oxidative attack are

predominantly enzymic. In addition, there was an increase in the activities of free

radical processing enzymes with radicle emergence. However, there was severe

impairment of the glutathione metabolism and activities of SOD and POD in

geminating desiccation-intolerant maize radicles subjected to a desiccation treatment

(Leprince et al., 1990b). Similar events were observed in soyabean and wheat seeds

(puntarulo et ai., 1991 and Cakmak et ai., 1993, respectively). In contrast, the pattern

of TOC metabolism did not show any convincing evidence that depletion in the supply

of these antioxidants was the cause of loss of desiccation-tolerance in germinating

maize radicles (Leprince et ai., 1990b).

More recently, it has been shown that accelerated ageing resulted in a decrease in

activities of SOD, CAT and GR in sunflower seeds and seedlings (Bailly et al., 1996;

1997; 1998; 2002). However, osmopriming with polyethylene glycol was associated

with progressive increase in SOD, CAT and GR activities to levels similar to those

found in unaged seeds and seedlings (Bailly et ai., 1997; 1998; 2000; 2002).

Furthermore, the osmotreatment induced a second isoform of CAT.

Like germinating orthodox seeds, it appears that the patterns of physiological and

biochemical response of the free radical processing systems in desiccation-sensitive

seeds to oxidative stress differ among both tissues and species. For instance, the

defence against oxidative attack on axial tissue of Quercus robur was largely

dependent on antioxidants whereas it was predominantly enzymic in cotyledons

(Hendry et ai., 1992). Moreover, the activities of SOD and GR in axes decreased

during desiccation. In contrast, SOD and GR activity increased in the cotyledons upon

drying. Furthermore, there was a decrease in the levels of a-tocopherol in axes during

dehydration. Conversely, a-tocopherol levels increased in the cotyledon upon

desiccation. However, the activity of SOD increased significantly during drying in

Shorea robusta seeds (Chaitanya and Naithani, 1994). Furthermore, there was a rapid

decrease in activities of SOD and peroxidases in Theobroma cacoa axes corresponding

to loss of viability (Li and Sun; 1999). Additionally, an increase in both the amount of

tocopherol and activity of SOD was observed in the plumules of axes of Avicennia

marina following dehydration (Greggains et ai., 2001).
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The aim of the work reported in the present chapter was to establish whether free

radical-mediated damage was differentially affected by drying rate, or wet storage of

embryonic axes from desiccation-sensitive seeds. Free radical damage was measured as

level of hydroperoxides. In addition, the involvement of free radical processing

enzymes and antioxidants during dehydration at different rates, or during wet storage,

of embryonic axes from desiccation-sensitive seeds was ascertained.

5.2 Materials and methods

5.2.1 Seed material

Excised embryonic axes of Pisum sativum, Quercus rabur, Trichilia dregeana and

Avicennia marina were subjected to the slow or rapid drying or wet storage protocols

outlined in Chapter 2.

5.2.2 Hydroperoxide determinations

Lipids were extracted from embryonic axes (c. 5 mg dm) that had been ground with

liquid nitrogen in a mortar with a pestle, in 5 ml of dicWoromethane/methanol (2: 1 v/v)

containing butylated hydroxytoluene (50 mg r1
) according to Hailstones and Smith

(1988) and modified as in Ntuli et al. (1997). Following centrifugation at 1 500 g for 5

mill, 1 ml of 0.014 M ferrous cWoride was added to 2 ml of the lipid extract in

dicWoromethane/methanol and shaken. Twenty III of 30% potassium thiocyanate were

then added. Hydroperoxide levels were estimated by the oxidation of Fe2
+ as the

absorbance recorded at 505 nm.

5.2.3 Antioxidant enzyme assays

Superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) were

extracted in 10 ml of 50 mM potassium phosphate (pH 7.0), 0.25% (w/v) Triton X­

100 and 1% (w/v) polyvinlypolypyrolidone, following homogenisation of axes (c. 5 mg

dm) to a fine powder under liquid nitrogen in the mortar with a pestle, following the

procedures of Mishra et al. (1993; 1995). The homogenate was then centrifuged at 8

000 g for 15 min. For SOD, the reaction was performed with an aliquot of2 ml of the

supematant and 1 ml of 50 mM potassium phosphate (pH 7.8), 0.1 mM EDTA

containing 18 flM cytochrome c and O. 1 mM xanthine and the reaction started with

addition of 0.02 ml of 1 U ml-1 of xanthine oxidase (McCord and Fridovich 1969', ,
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Schoner and Krause, 1990). Activity was monitored by measuring the rate of reduction

of cytochrome c as the change in absorbance at 550 nm.

CAT was assayed in an aliquot of 2 ml of the supematant added to 1 ml of 50 mM

potassium phosphate containing 11 mM hydrogen peroxide (pH 7.0). Activity was

determined as the decomposition of hydrogen peroxide by the decrease in absorbance

at 240 nm (Aebi, 1983).

GR was assayed in an aliquot of 2 ml of the supematant added to 1 ml of 25 mM

Tris-HCI containing 0.5 mM oxidised glutathione and 0.12 mM NADPH (pH 7.8)

(Foyer and Halliwell, 1976). Activity was recorded by measuring the oxidation of

NADPH as the decrease in absorbance at 340 nm.

5.2.4 Ascorbic acid (AsA) assay

AsA was extracted in 4 ml of 2.5 mM perchloric acid following homogenisation of

axes (c. 5 mg dm) in liquid nitrogen in the mortar with a pestle according to Foyer et

al. (1983). The homogenate was then centrifuged at 8 000 g for 5 min and neutralised

to pH 5.6 with 1.25 M potassium carbonate. One ml of the extract was transferred to 1

ml of 0.1 M sodium phosphate buffer (pH 5.6) and reaction started with addition of 1

ml of 5 U ml-1 of ascorbate oxidase (Hewitt and Dickes, 1961). The level of AsA was

estimated by measuring its oxidation as the decrease in absorbance at 265 nm.

For all five assays, the results are reported as percentage changes (between the

present and previous values) of initial values of means of three replicate extractions.

After each assay, axes were dried and data expressed on a dry mass basis. Due to

shortage of plant material, assays were only conducted after 7 days during wet storage

of axes ofAvicennia marina.

5.2.5 Statistical analysis

Data were subjected to one-way ANOVA test. Where significant effects were found to

occur, the Tukey multiple range test was subsequently used to identify where they

occurred.
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5.3 Results

5.3.1 Hydroperoxide levels

A marginally significant c. 70% decrease in the level ofhydroperoxides occurred in

axes ofP. sativum during rapid drying (F = 13.00 and p = 0.07 [Fig. 5.1A]). However,

no significant change in hydroperoxide level was associated with slow dehydration (F =

0.00 and p = 0.96). A c. 70% increase in the level of hydroperoxides was seen prior to

the onset of the decrease in germination percentage during wet storage (F = 13.00 and

p = 0.07 [Fig. 5.1B]).

Loss of germination was associated with a highly significant c. 190% increase in the

level of hydroperoxide during rapid drying of axes of Q. robur (F = 7.00 and p < 0.01

[Fig. 5.1e]). Similarly, a highly significant c. 380% enhancement in hydroperoxide

level was observed prior to the onset of germination loss upon slow dehydration (F =

43.60 and p < 0.01). A highly significant c. 190% decrease in the level of

hydroperoxides was associated with loss of germination during slow desiccation (F =

43.60 and p < 0.01). Loss of germination percentage was accompanied by a highly

significant c. 310% elevation of the hydroperoxide level upon wet storage (F = 19.60

and p < 0.01 [Fig. 5.1D]).

A marginally significant c. 40% decrease in the levels of hydroperoxide in axes of T.

dregeana preceded the onset of loss of germination during rapid drying (F = 3.00 and

p = 0.09 [Fig. 5. lE]). However, no significant change in hydroperoxide level preceded

the onset of germination loss during slow dehydration (F = 0.10 and p = 0.97 [Fig.

5.1E]). During wet storage, a statistically significant c. 140% increase in

hydroperoxide levels was seen before the onset of loss of germination (F = 5.90 and p

= 0.03 [Fig. 5. IF]).
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No significant changes in the level of hydroperoxides in whole axes of A. marina

were associated with rapid and slow drying and wet storage (F = 0.10 and p = 0.96, F

= 0.30 and p = 0.80 and F = 33.06 and p = 0.11, respectively [Fig. 5.2A and BD.

The level of hydroperoxides in A. marina hypocotyls increased highly significantly

by c. 440% during the initial 40% loss of germination upon rapid drying (F = 80.50

and p < 0.01 [Fig. 5.2CD. Similarly, a highly significant c. 145% enhancement in

hydroperoxide level in hypocotyls was associated with the initial 40% germination loss

during slow dehydration (F = 120.20 and p < 0.01). However, no significant change in

the level of hydroperoxides in hypocotyls accompanied wet storage (F = 2.10 and p =

0.29 [Fig. 5.2DD·

The levels of hydroperoxides in root primordia of A. marina did not change

significantly during rapid and slow drying and wet storage (F = 2.90 and p = 0.41, F =

0.40 and p = 0.76 and F = 1.00 and p = 0.50, respectively [Fig. 5.2£ and FD. Similarly,

there were no siginificant changes in hydroperoxide levels in A. marina plumules upon

rapid and slow dehydration and hydrated storage (F = 5.80 and p = 0.30, F = 0.40 and

p = 0.76 and F = 0.10 and p = 0.77, respectively [Fig. 5.2G and H).

It is noteworthy that the level of hydroperoxides was considerably higher in the root

primordia, and especially the plumules, than in the hypocotyls, so that the level in the

whole axes reflected those in the plumules rather than in the hypocotyls which make up

the bulk of the axes.
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Figure 5.2 Levels of hydroperoxides in whole axes (A-B) and different axial tissues
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5.3.2 Antioxidant enzymes activities

a. SOD

A marginally significant c. 50% transient decrease in the activity of SOD in axes ofP.

sativum took place during rapid drying (F = 3.50 and p = 0.09 [Fig. 5.3AD. A

statistically significant c. 120% increase in SOD activity occurred before the onset of

germination loss upon slow dehydration (F = 10.50 and p = 0.01). Similarly, there was

a c. 140% enhancement in the activity of SOD prior to the onset of loss ofgermination

during wet storage (F = 20.40 and p = 0.02 [Fig. 5.3BD·

No significant change in the activity of SOD in axes of Q. robur was seen during

rapid drying and wet storage (F = 0.90 and p = 0.58 F = 3.90 and p = 0.11,

respectively [Fig. 5.3C and DD. However, a statistically significant c. 30% decrease in

SOD activity was observed before the onset of loss of germination upon slow

dehydration (F = 9.20 and p = 0.01). The decline in germination percentage was

accompanied by a further statistically significant c. 29% reduction in the activity of

SOD during slow desiccation (F = 9.20 and p = 0.01).

Loss of germination was associated with a statistically significant c. 70% decrease

in the activity of SOD during rapid drying of axes of T. dregeana (F = 9.20 and p =

0.01 [Fig. 5.3£]). Similarly, a highly significant c. 25% decline in SOD activity

accompanied germination loss upon slow dehydration (and F = 10.90 and p < 0.01). In

contrast, there was a statistically significant c. 110% increase in SOD activity prior to

the onset of loss of germination during wet storage (F = 10.70 and p = 0.01 [Fig.

5.3FD followed by a decline during germination loss.
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Figure 5.3 Activities of superoxide dismutase in axes of P. sativum (A-B), Q. robur
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A statistically significant c. 540% increase in the activity of SOD in whole axes of

A. marina took place during the initial 40% loss of germination upon rapid drying (F =

1 789.80 and p = 0.02 [Fig. 5AA]). However, no significant change in SOD activity in

whole axes occurred during slow dehydration (F = 1.30 and p = OA5). There was a

statistically significant c. 200% enhancement in the activity of SOD in axes prior to the

onset ofgermination loss upon wet storage (F = 54.70 and p = 0.02 [Fig. 5AB]).

No significant changes in the activity of SOD in A. marina hypocotyls were seen

during rapid and slow drying and wet storage (F = 5.50 and p = 0.30, F = 0.20 and p =

0.70 and F = 0.20 and p = 0.70, respectively [Fig. 5AC and D]). Similarly, there were

no significant changes in SOD activity in root primordia of A. marina upon rapid and

slow dehydration and hydrated storage (F = 0.50 and p = 0.75, F = 1.30 and p = OA6

and F = 1.30 and p = OA6, respectively [Fig. 5AE and F]). It is noteworthy that the

activity of SOD in A. marina plumules was very high compared with other axial

tissues. Nonetheles, no significant changes in SOD activity were observed during rapid

and slow desiccation and moist storage (F = 1.60 and p = OA1, F = 4.50 and p = 0.32

and F = 6.30 and p = 0.24, respectively [Fig. 7.2G and H]).
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Figure 5.4 Activities of superoxide dismutase in whole axes (A-B) and different axial
tissues (hypocotyls [C-D], root primordia [E-F] and plumules [G-H]) of A. marina
during rapid or slow drying or wet storage. Data points represent means of three
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(U) of SOD will inhibit the rate of reduction of cytochrome c by 50% in a coupled
system with xanthine and xanthine oxidase at pH 7.8 at 25°C.
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b.CAT

There were no significant changes in the activity of CAT during rapid and slow

drying and wet storage of axes ofP. sativum (F = 0.90 and p = 0.53, F = 4.70 and p =

0.12 and F = 0.20 and p = 0.69, respectively [Fig. 5.5A and BD.

The activity of CAT in axes of Q. robur did not change significantly during rapid

drying (F = 2.00 and p = 0.15 [Fig. 5.5CD. A marginally significant c. 80% decrease

in CAT activity in Q. robur axes preceded the onset of loss of germination upon slow

drying (F = 3.20 and p = 0.07). Similarly, a statistically significant c. 75% decline in the

activity of CAT was associated with loss of germination during wet storage (F = 6.90

and p = 0.03 [Fig. 5.5DD.

A statistically significant c. 20% decrease in the activity of CAT in axes of T.

dregeana accompanied loss of germination during rapid drying (F = 4.30 and p = 0.03

[Fig. 5.5ED· Similarly, a statistically significant c. 45% decline in CAT activity was

associated with germination loss upon slow dehydration (F = 10.10 and p = 0.01).

However, no significant change in the activity of CAT took place during wet storage

(F = 3.60 and p = 0.16 [Fig. 5.5FD.
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No significant changes in the activity of CAT in whole axes ofA. marina took place

during rapid drying and wet storage (F = 3.60 and p = 0.16 and F = 0.00 and p = 0.91,

respectively [Fig. 5.6A and BD. However, a marginally significant c. 40% elevation in

CAT activity in axes was associated with loss of germination percentage beyond the

initial 40% during slow dehydration (F = 12.60 and p = 0.07).

The activity of CAT in A. marina hypocotyls did not change significantly during

rapid and slow drying and wet storage (F = 2.90 and p = 0.21, F = 1.20 and p = 0.45

and F = 0.00 and p = 0.91, respectively [Fig. 5.6C and DD.

Simlarly, no significant changes in the activity of CAT in root primordia of A.

marina took place during rapid and slow drying (F = 3.20 and p = 0.15 and F = 0.40

and p = 0.72, respectively [Fig. 5.6ED. However, a statistically significant c. 360%

increase in CAT activity preceded the onset ofloss of germination upon wet storage (F

= 37.00 and p = 0.03 [Fig. 5.6FD.

The activity of CAT in A. marina plumules also did not change significantly during

rapid and slow drying and wet storage (F = 1.40 and p = 0.40, F = 0.36 and p = 0.72

and F = 6.00 and p = 0.14, respectively [Fig. 5.6G and H]).
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Figure 5.6 Activities of catalase in whole axes (A-B) and different axial tissues
(hypocotyls [C-D], root primordia [E-F] and plumules [G-HD of A. marina during
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c.GR

The activity of GR statistically significantly increased by c. 240% during rapid

drying of axes of P. sativum (F = 10.50 and p = 0.01 [Fig. 5.7AD. Similarly, GR

activity was enhanced by a marginally significant c. 40% prior to the onset of

germination loss upon slow dehydration (F = 3.50 and p = 0.09). During wet storage,

the onset of loss of germination was preceded by a statistically siginificant c. 220%

elevation in GR activity (F = 20.40 and p = 0.02 [Fig. 5.7BD.

The activity of GR in axes of Q. robur did not change significantly during rapid

drying (F = 0.80 and p = 0.60 [Fig. 5.7CD. However, there was a statistically

significant c. 70% decrease in GR activity before the onset of loss ofgermination upon

slow dehydration (F = 5.70 and p = 0.02). The onset of germination loss was

associated with a statistically significant c. 75% decline in the activity of GR during

wet storage (F = 5.50 and p = 0.03 [Fig. 5.7DD.

No significant changes in the activity of GR accompanied rapid and slow drying of

axes of T. dregeana (F = 1.60 and p = 0.33 and F = 0.70 and p = 0.63, respectively

[Fig. 5.?ED. The onset of loss of germination was preceded by a marginally significant

c. 50% decrease in GR activity during wet storage (F = 6.00 and p = 0.06 [Fig. 5.7FD

and a post mortem increase.
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Figure 5.7 Activities of glutathione reductase in axes of P. sativum (A-B), Q. robur
(C-D) and T. dregeana (E-F) during drying at different rates or wet storage. Data
points represent means of three replicate extractions. Error bars, in some cases hidden
within the data symbols, show standard errors. Percentages above or below data
symbols indicate germination. Data points without percentages are unchanged over the
previous values. 1 unit (U) of GR will reduce 1 fJ.mol of oxidised glutathione per min
at pH 7.6 at 25 QC.
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The activity of GR in whole axes of A. marina decreased highly significantly by c.

90% during the initial 40% loss of germination upon rapid drying (F = 33.74 and p <

O.OI[Fig. 5.8AJ). Similarly, GR activity in axes was diminished by a highly significant

c. 90% during the initial 40% germination loss upon slow dehydration (F = 61.20 and

p < 0.01). During wet storage, the onset of loss of germination was preceded by a

statistically significant c. 95% reduction in the activity of GR in axes (F = 63.10 and p

= 0.02 [Fig. 5.8BJ).

No significant changes in the activity of GR in A. marina hypocotyls were seen

during rapid drying and wet storage (F = 3.80 and p = 0.11 and F = 0.90 and p = 0.45,

respectively [Fig. 5.8C and DJ). Loss of germination beyond the initial 40% was

associated with a statistically significant c. 40% enhancement in GR activity in

hypocotyls during slow dehydration (F = 27.10 and p = 0.01).

The activity of GR in root primordia of A. marina did not change significantly

during rapid and slow drying and wet storage (F = 2.60 and p = 0.23, F = 2.50 and p =

0.23 and F = O. 50 and p = 0.57, respectively [Fig. 5.8E and FD.

No significant changes in the activity of GR in A. marina plumules were seen during

rapid drying and wet storage (F = 0.90 and p = 0.56 and F = 0.20 and p = 0.70,

respectively [Fig. 5.8G and H]). A statistically significant c. 90% decrease in GR

activity in A. marina plumules was observed during the initial 40% loss of germination

upon slow drying (F = 25.70 and p = 0.01).
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Figure 5.8 Activities of glutathione reductase in whole axes(A-B) and different axial
tissues (hypocotyls [C-D], root primordia [E-F] and plumules [G-H]) of A. marina
during rapid or slow drying or wet storage. Data points represent means of three
replicate extractions. Error bars, in some cases hidden within the data symbols, show
standard errors. Percentages above or below data symbols indicate germination. Data
points without percentages are unchanged over the previous values. 1 unit (U) of GR
will reduce 1 ~mol of oxidised glutathione per min at pH 7.6 at 25 QC.
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5.3.3 AsA levels

A marginally significant c. 50% decrease in the level of AsA took place during rapid

drying of axes of P. sativum (F = 3.50 and p = 0.09 [Fig. 5.9AD followed by an

increase. Similarly, a marginally significant c. 28% decline in AsA level occurred pror

to the onset of germination loss upon slow dehydration (F = 3.52 and p = 0.09) with a

subsequent enhancement. The level of AsA did not change significantly during the

experimental period upon wet storage (F = 0.20 and p = 0.69 [Fig 5.9BD.

Although the level of AsA during rapid and slow drying and wet storage of Q.

robur axes were highly variable, they did not change significantly (F= 1.30 and p =

0.32, F = 2.50 and p = 0.11 and F = 0.60 and p = 0.65, respectively [Fig. 5.9C and

DD·
A marginally significant c. 30% decrease in the level of AsA in axes of T. dregeana

took place before the onset of the loss of germination during rapid drying, (F = 2. 90

and p = 0.09 [Fig. 5.9ED. However, no significant changes in AsA levels occurred

upon slow dehydration and wet storage (F = 2.20 and p = 0.21 and F = 2.40 and p =

0.25, respectively [Fig 5.9E and FD.
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Figure 5.9 Levels of ascorbic acid in axes ofP. sativum (A-B), Q. robur (C-D) and T.
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No significant change in the level of AsA in whole axes of A. marina took place

during rapid drying and wet storage (F = 1.40 and p = 0.46 and F = 30. 10 and p =

0.12, respectively [Fig. 5.10A and BD. However, a statistically significant c. 80%

decrease in AsA level in whole axes occurred during the initial 40% loss of

germination upon slow dehydration (F =29.00 and p = 0.03).

The level of AsA in A. marina hypocotyls did not change significantly during rapid

and slow drying and wet storage (F = 0.20 and p = 0.92, F = 0.70 and p = 0.59 and F

= 4.30 and p = 0.29, respectively [Fig. 5.lOC and D]). Similarly, there were no

significant changes in AsA level in root primordia of A. marina upon rapid and slow

dehydration and hydrated storage (F = 0.40 and p = 0.83, F = 1.90 and p = 0.35 and F

= 4.30 and p = 0.29, respectively [Fig. 5.lOE and F]).

A marginally significant c. 10% decrease in the level of AsA was seen during the

initial 40% loss of germination in A. marina plumules upon rapid drying (F = 9.30 and

p = 0.10 [Fig. 5.10G]). Nonetheless, no significant changes in AsA levels in plumules

were observed during slow dehydration and wet storage (F = 0.40 and p = 0.72 and F

= 19.80 and p = 0.14, respectively [Fig. 5.1OG and R]).
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Figure 5.10 Levels of ascorbic acid in whole axes (A-B) and different axial tissues
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5.4 Discussion

An increase in the levels of hydroperoxides was seen in embryonic axes of several

recalcitrant species during drying (Hendry et al., 1992; Finch-Savage et al., 1994;

Chaitanya and Naithani, 1994; Chandel et al., 1995; Li and Sun; 1999; Greggains et

aI., 2001). Similarly, Greggains et aI., 2000b observed an enhancement in free radical

activity and/or lipid peroxidation in Q. robur axes and A. marina plumules and root

primordia although the elevation did not change with storage conditions of

temperature and oxygen concentration. The results of the present study are generally in

good agreement with those findings. An elevation in the hydroperoxide levels in P.

sativum, Q. robur and T. dregeana axes was observed upon dehydration and/or wet

storage such that the hydroperoxide levels were higher during slow than rapid

desiccation of axes of P. sativum, Q. robur and T. dregeana. It is suggested that this

event may be a result of metabolic imbalance and degradative processes in damaged

and dead tissue, respectively.

However, the level of hydroperoxides in A. marina axes did not change during

drying and wet storage. It is proposed that this observation may be a consequence of

physical damage being more important than metabolic imbalance in these highly

desiccation-sensitive axes. In addition, this event may be largely a result of degradative

processes in dead tissue as a consequence of physical damage. In this regard, it is

noteworthy that free radical processes in living and dead tissue differ both

quantitatively and qualitatively (Hendry, 1993).

Nonetheless, an increase in hydroperoxide levels took place upon dehydration in the

hypocotyls ofA. marina such that it was higher upon rapid than slow desiccation. This

observation supports those of Greggains et aI. (2001) who showed that whole axes

and different axis tissues of A. marina exhibit dissimilar responses to drying and

possibly wet storage.

Rapid drying caused a decrease in the levels of hydroperoxide in axes ofP. sativum

and T. dregeana. It is suggested that the decline in the hydroperoxide levels may be a

result of an increase in the activities and/or levels of free radical processing enzymes

and/or antioxidants not studied in the present investigation such as guaicol peroxidase

and/or tocopherol isomers and/or yet to be identified, respectively.

The activity of SOD in axes of P. sativum decreased during rapid drying. In

contrast, it increased upon slow dehydration and wet storage. As a result, SOD activity
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was higher during slow dehydration and hydrated storage than rapid drying. Thus,

rapid desiccation had an adverse effect on SOD activity whereas slow drying and

moist storage enhanced it. In this regard, it should be remembered P. sativum axes

were shown to be minimally desiccation-sensitive and may be responding more like a

desiccation-tolerant system, which withstand slow dehydration better than rapid

desiccation, than a desiccation-sensitive one, where the converse is true.

The activity of SOD was diminished during slow drying of axes of Q. robur. In this

regard, it is noteworthy that slow dehydration may be more damaging on the basis of

the duration of the stress. These findings support the hypothesis that the differential

effects of the three treatments may vary within system among species.

The activity of SOD in axes of T. dregeana was diminished during dehydration and

such that it was higher upon slow than rapid dehydration. In contrast, SOD activity

was enhanced by wet storage. The decrease in the activity of SOD is attributed to the

adverse effect of water-stress on that enzyme. The increase is proposed to be a result

of mild water-stress during hydrated storage being less damaging.

The activity of SOD in whole axes, but not the three axial tissues studied, of A.

marina was elevated during rapid desiccation and moist storage such that it was

higher upon rapid than slow drying. These findings concur with those of Greggains et

al. (2001) which showed that various A. marina tissues respond differently to water-

stress.

The activity of CAT decreased during slow drying and wet storage of axes of Q.

robur. Similarly, CAT activity in T. dregeana axes declined during dehydration such

the activity of CAT was higher upon rapid than slow desiccation. The reduction in

CAT activity is attributed to the adverse effect of water-stress on that enzyme. In

contrast, the activity of CAT in axes, but not the three axial tissues studied, of A.

marina was enhanced during slow drying such that it was higher during rapid than

slow dehydration.

The activity of GR in axes of P. sativum axes increased during drying and wet

storage such that it was higher upon rapid than slow dehydration. This event may

explain the decrease in the level of hydroperoxide in P. sativum upon rapid

desiccation.

Conversely, a decrease in the activity of GR in axes of Q. robur was seen during

slow drying and wet storage. Similarly, a decline in GR activity was observed upon
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hydrated storage of T. dregeana axes. The activity of GR in axes of A. marina was

also diminished during dehydration and moist storage such that GR activity was

higher upon rapid rather than slow desiccation. Similarly, the activity of GR was

reduced in A. marina plumules. In contrast, an enhancement in the activity of GR

occurred in hypocotyls ofA. marina.

Ultimately, no significant changes in the levels of AsA in axes of Q. robur were

seen during drying and wet storage. While the AsA levels in axes of P. sativum, T.

dregeana and A. marina were diminished during rapid and/or slow desiccation, the

levels of AsA remained constant upon wet storage of axes of all species investigated.

It is suggested that lower levels of AsA during dehydration may be a result of higher

activities of GR and/or APOD and/or its greater involvement in the reduction of u­

tocopherol and/or glutathione.

In conclusion, the previously-made observation of an increase in free radical

activity and/or lipid peroxidation during desiccation and moist storage was confirmed

by the results of the present study. In addition, free radical processes differed both

between species and tissues. This difference is both quantitative and qualitative. For

instance, there was a decrease in hydroperoxide level in T. dregeana and P. sativum

axes with desiccation in contrast to all other species studied. Furthennore, free radical

processes may differ quantitatively and qualitatively in living and dead tissues. For

example, higher levels of hydroperoxides in axes of A. marina were seen upon rapid

than slow desiccation, in which dead axes may have predominated, in contrast to all

other species investigated.

Moreover, free radical processing enzymatic and low-molecular-weight non­

enzymatic antioxidants were predominantly adversely affected by drying and wet

storage in axes of T. dregeana and Q. robur. In contrast, no such effect was seen in P.

sativum and A. marina axes. It is suggested that the latter phenomenon may be a result

of germinating axes of P. sativum being largely at the desiccation-tolerant phase of

early gennination and those of A. marina overcome by physical damage at relatively

high water contents (~ 0.9 g g-l dm). In addition, it appears that the differential effects

of drying and hydrated storage may differ with species, system and enzyme.
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Overview and conclusions

6.1 Overview

The rate of water loss could be described by both an exponential and a modified

inverse function for all species studied. However, the fit was better with the modified

inverse relationship during drying of axes of P. sativum, Q. robur and T. emetica. In

contrast, a better fit was obtained with the exponential function upon dehydration of T.

dregeana and A. marina axes. Whereas the plot of water content against time fitted an

exponential function better during rapid desiccation of axes of S. madagascariensis,

the fit was better with a modified inverse function upon slow drying of S.

madagascariensis axes.

In this regard, it is noteworthy that it was suggested that, as a generalisation, if

tissue is dried relatively slowly, the relationship between water content and drying time

is exponential (pammenter et al., 2002). In the present study, this statement may be

true for A. marina axes, which dried at the slowest rate, but is not for axes of T.

dregeana, which attained the second fastest dehydration rate (Table 2.1). It is possible

that the mass of the indidvidual axes and, perhaps more accurately, the total mass of

the material dried are better predictors of the kinetics of desiccation of excised axes

than drying rate per se.

Oily seeds generally dried faster than their starchy counterparts. It should be

remembered that the loss of water from tissues depends on their surface area which, in

turn, is influenced by the size and shape of the tissue, the amount of material to be

dried and the hydraulic conductivity of the tissue (pammenter et aI., 2002; Sun, 2002).

The latter would be affected by the chemical composition of the tissue.

Axes of all species investigated maintained a constant water content during wet

storage. This response may be expected given that the surrounding air during storage

was vapour-saturated.

Plant tissues incur damage as a result of removal ofwater from cells. At high (~ 0.9

g g-l dm [sensu Vertucci, 1990]) water contents, damage consequent upon physical

processes takes place. Subsequently, changes in the metabolic status of cells occur at
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intermediate (between 0.5 and 0.9 g g-l dm [sensu Vertucci, 1990]) water contents.

Damage that is consequent upon loss of water that is intimately associated with

surfaces of macromolecules can be considered desiccation damage sensu stricto

(reviewed by Pammenter and Berjak, 1999; Walters et al., 2001). Such an event can be

seen at water contents below 0.2 - 0.25 g g-l dm.

Loss of viability was observed mainly at low (~ 0.5 g g-l dm [sensu Vertucci,

1990]) water contents during drying of axes of P. sativum, Q. robur, S.

madagascariensis and T. emetica although it took place at higher water contents upon

slow than rapid dehydration (Table 6.1). As a result, it may be inferred from these

observations that desiccation damage (sensu stricto) underlied viability loss during

desiccation of the axes of these species.

On the other hand, viability loss of axes of T. dregeana occurred predominantly at

intermediate (between 0.5 and 0.9 g g-l dm) and high (~ 0.9 g g-l dm) water contents

during rapid and slow drying, respectively (Table 6.1). Thus, it may be concluded that

metabolic and physical damage largely caused loss of viability in T. dregeana axes

upon rapid and slow dehydration, respectively.

Loss of viability was seen primarily at high (~ 0.9 g g-l dm) water contents during

drying of axes of A. marina (Table 6.1). Hence, it is likely that physical damage

underlied loss ofviability during dehydration of axes ofA. marina.

Consequently, it appears that desiccation-sensitive seeds can be grouped into three

categories on the basis of the prevalent mechanism of viability loss during drying: (1)

minimally desiccation-sensitive seeds such as P. sativum, Q. robur, S.

madagascariensis and T. emetica, which die mainly as a result of desiccation damage

sensu stricto, (2) moderately desiccation-sensitive seeds such as T. dregeana, which

lose viability mostly due to damage associated with deranged metabolism and (3)

highly desiccation-sensitive seeds such as A. marina, which are essentially killed by

physical damage. Irrespective of the mode of dying, it is noteworthy that the

differential effect of the rate of drying is apparent.

As was noted in previous studies (e. g. Ntuli et aI., 1997; reviewed by Pammenter

et aI., 2002), the tetrazolium (TZ) test overestimated the viability of axes ofA. marina,

T. emetica and S. madagascariensis in relation to the germination test (Table 6.1).

This discrepancy is usually attributed to the need for extensive experience of the
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evaluation of each species (reviewed by Pritchard, 1996). In contrast, the results of the

TZ test of P. sativum, Q. robur and T. dregeana were in agreement with those of in

vitro culture.

Similarly, the germination and TZ tests were in concurrence with regards to the

lifespans of axes during wet storage. Hence, it appears that the TZ test may be a better

indicator of viability during hydrated storage than drying, It is suggested that the

longer period of exposure and the consequent longer measuring intervals during moist

storage than dehydration may explain this anomaly. Nonetheless, the lifespans during

wet storage seem to be a poor discriminator of the degree of desiccation sensitivity as

assessed by the 'critical water content' during drying. In this regard, it is worth

remembering that hydrated storage is equivalent to long-term and low-intensity water-

sress.

In addition, it appears that both viability tests gave lower than expected survival of

the axes of Q. robur during slow drying and wet storage (Table 6.1). It is suggested

that this discrepancy is a result of the high temperature (20°C) at which these

treatments were conducted for this temperate species. However, temperature was not

a major factor on longevity upon rapid dehydration, presumably because of the limited

duration (24 h) of this procedure. Consequently, rapid desiccation is recommended as

the method of choice in determining the 'critical water content'.

The relationship between the conductivity of electrolyte leachate and water content

during drying of axes of all species studied did not show the typical pattern of a

constant leakage to a 'critical water content', at which point a sudden increase is

observed. Rather, there was a gradual and progressive increase in leakage as

dehydration proceeded. Pammenter et al. (1998) observed a similar pattern during

desiccation of whole seeds ofEkebergia capensis. This observation suggest that there

was progressive deterioration of cellular membranes during drying and wet storage of

the axes of all species investigated, possibly as a result of oxidative attack.

Nonetheless, less electrolyte leakage took place during rapid, than slow drying of

axes of all species studied (Table 6.1). It is suggested that less membrane damage

occurred during rapid than slow dehydration because of the limited duration those

structures were subjected to stress during rapid desiccation.
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In contrast, the axes of T. dregeana from seeds harvested in 2001 showed the

classic pattern. This apparent anomaly, as with initial water contents, drying curves and

viability, is attributed to interseasonal variability in post-harvest behaviour of

recalcitrant seeds (reviewed by Berjak and Pammenter, 1997a,b; 2001; 2004).

It appears that vigour as assessed by TZ, germination and conductivity tests may

play a role in determining whether the responses of axes of desiccation-sensitive seeds

to desiccation and wet storage show a typical pattern or not. For instance, axes of T.

dregeana from seeds harvested in 1999, which did not show the classical pattern,

displayed lower vigour than those for seeds harvested in 2001, which demonstrated the

typical pattern in the present study. It is suggested that this phenomenon is a

consequence of the ability of the more vigorous axes to better withstand stress to a

certain point (the 'critical water content'), thereafter abruptly failing should the stress

persists.

The activity of phosphofructokinase (PFK) in axes ofP. sativum remained constant

during drying and wet storage (Table 6.1). Similarly, PFK activity did not change

significantly upon wet storage ofA. marina axes. However, the activity ofPFK in axes

of T. dregeana and A. marina was reduced upon drying such that higher activity was

seen during rapid than slow dehydration of T. dregeana axes. Similarly, a decrease in

PFK activity in axes of T. dregeana occurred during hydrated storage. There was also

a decline in the activity ofPFK upon slow desiccation of Q. robur axes. In contrast, an

increase in the activity ofPFK took place upon rapid dehydration and moist storage of

Q. robur axes. These observations generally support those of Leprince et al. (1993a)

who described PFK activity as only slightly sensitive to desiccation.

No significant changes in malate dehydrogenase (lMDH) were seen in axes of P.

sativum for all treatments. Similarly, MDH activity remained constant during wet

storage of T. dregeana axes. The activities of MDH in axes of T. dregeana and A.
~

marina decreased upon drying such that higher activities were observed during rapid

dehydration in comparison to slow desiccation of T. dregeana axes (Table 6.1). There

was also a decline in MDH activity in axes of T. dregeana upon hydrated storage. In

contrast, an increase in the activity of MDH was recorded in axes of Q. robur during

drying and hydrated storage such that it was higher upon slow than rapid dehydration.

These findings mainly agree with those of Leprince et al. (1993a) who described the

activity ofMDH as mildly sensitive to desiccation.
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An increase in the level of the oxidised fonn of nicotinamide dinucleotide (NAD)

was observed during rapid drying of axes of P. sativum (Table 6.1). Similarly, there

was an enhancement in NAD level upon wet storage of T. dregeana axes. In contrast,

a decrease in the levels of NAD occurred in axes of Q. robur and A. marina during

slow dehydration. In addition, there was a decline in NAD level upon hydrated storage

of O. robur axses. It is suggested that the decreases in the level ofNAD are a result of

the impainnent of the NADH dehydrogenases of NADH-ubiquinone (coenzyme Q)

reductase (complex I) and NADH-cytochrome c reductase (complex IV) of the

electron transport chain. It should be remembered that Leprince et at. (1993a)

described NADH dehydrogenase in maize as higWy sensitive to drying.

A decrease in the levels of hydroperoxides in axes of P. sativum and T. dregeana

was seen as rapid drying proceeded, such that they were higher in axes during slow

dehydration compared to those which were desiccated rapidly (Table 6.1). In contrast,

hydroperoxide levels increased during hydrated storage ofP. sativum and T. dregeana

axes. The level of hydroperoxides in axes of A. marina remained constant during

drying and moist storage such that it was higher upon rapid than slow dehydration.

The increases in hydroperoxide levels is suggested to be a result of an enhanced

leakage of electrons from electron transport chain due to water-sress. It is possible

that the decreases in the level ofhydroperoxides in axes ofP. sativum and T. dregeana

may be associated with an elevation in antioxidants not studied here (such as guaicol

peroxidase and tocopherol) and/or yet to be identified.

The activity of superoxide dismutase (SOD) in axes ofP. sativum decreased during

rapid drying (Table 6.1). However, it increased upon slow dehydration and wet

storage. Whereas SOD activity was elevated during rapid desiccation and hydrated

storage of Q. robur axes, it was reduced upon slow drying. The activity of SOD in

axes of T. dregeana was diminished during dehydration such that it was lower upon

rapid than slow desiccation. In contrast, the activity of SOD was enhanced during

rapid drying and wet storage ofA. marina axes such that it was higher upon rapid than

slow dehydration. There was no pattern that was common to more than one species. It

appears that the response of SOD activity may vary higWy between species. The

reason for this behaviour is unknown.

The activity of catalase (CAT) did not change significantly during drying and during

wet storage of axes of P. sativum. However, CAT activity in Q. robur axes was
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reduced during slow dehydration and hydrated storage. Similarly, the activity of CAT

was diminished upon desiccation of axes of T. dregeana such that CAT activity was

higher upon rapid rather than slow drying. In contrast, it increased in A. marina axes

during slow desiccation.

The reduction in the activities of SOD and CAT are suggested to be a result of

adverse effects of water-sress on those enzymes. In contrast, the elevation of the

activities of those enzymes in axes of A. marina may be a result of some undefined

"unblocking of inhibitors" of those enzymes in dead tissue.

Whereas the activity of glutathione reductase (GR) in axes ofP. sativum increased

during drying and wet storage, GR activities decreased in Q. robur and A. marina axes

such that they were higher upon rapid than slow dehydration in all three cases. The

activity of GR was diminished during wet storage of axes of T. dregeana. However, it

remained constant upon rapid and slow drying. The reason for the elevation of GR

activity in P. sativum axes is thought to be a defence mechanism against oxidative

stress. In contrast, the decrease in the activity of GR could be attributed to the adverse

effect ofwater-sress on that enzyme.

Finally, the level of ascorbic acid (AsA) in axes of Q. robur remained constant

during drying and wet storage. However, a decrease in AsA levels occurred upon

dehydration and hydrated storage ofP. sativum, T. dregeana and A. marina axes. The

lack of an effect of water-sress on AsA levels in Q. robur axes is proposed to be

related to the degree of desiccation sensitivity of that species. It is suggested that

higher levels of AsA upon desiccation and wet storage may be a result of higher

activities of dehydroascorbate reductase (DHAR).

150



Chapter 6 Overview and conclusions

Table 6.1 Summary of the responses of axes of various species to fast (F) or slow (S)
drying or wet storage (W). Arrows indicate a decrease (J...), an increase (t) or no
apparent change (~). Double arrows denote changes that were discernibly larger than
that of the other treatment(s) (J... or t), respectively. - represents no decrease in
viability. Viability is expressed in terms of 'critical water content's' or storage
lifespans.

Species Treatment P. Q. s. T. T. A.
Response sativum robur madagascariensis emetica dregeana marina

"Critical water F 0.27 0.14 0.22 0.8
content"

S 0.26 0.8 0.4 0.4 1.4 1.4(g g-l dm) or
storage lifespan W 15 0 7 7 7 7

(days)
is determined by

TZ staining
'Critical water F 0.27 0.37 0.4 0.8 1.1

content'
S 0.26 0.8 0.6 0.6 1.4(g g-l dm) or 1.4

~torage lifespan W 15 0 7 7 7 7
(days)

is determined by
germination

Leakage F t t t t t t
(mS cm-1 g-l

S tt tt tt tt tt ttdm)
W t t t t t t

~FK activity (U F ~ t not determined n. d. J... J...
g-l dm)

S J... (n. d.) J...J... J...~

W ~ t J... ~

MDH activity F ~ t n. d. n. d. J... J...
(U g-l dm)

S tt J...J... J...~

W ~ t ~ J...

NAD level F t ~ n. d. n. d. ~ ~

(flmol gol dm)
S t J... J...~

W ~ J... t ~

lIydroperoxide F J... t n. d. n. d. J... ~

level
S ttAsos g-l dm) ~ ~ ~

W t t t ~
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Species Treatment P. Q. s. T. T. A.
Response sativum robur madagascariensis emetica dregeana marina

SOD activity F J- ~ n. d. n. d. J-J- t
(U g-1 dm)

S t J- J- ~

w t ~ t t
CAT activity F ~ ~ n. d. n. d. J- ~

(D g-1 dm)
S ~ J- J-J- t
w ~ J- ~ ~

GR activity F tt ~ n. d. n. d. ~ J-
(U g-1 dm)

S t J- ~ J-J-
w t J- J- J-

AsA level F J- ~ n. d. n. d. J- ~

(nmol g-1 dm)
S J- ~ ~ J-
w ~ ~ ~ ~

6.2 Conclusions

The responses of axes of different species to desiccation vary among harvests, tissues

and species. It appears that while differences among harvests may be related to vigour,

those among species may be determined by the level of desiccation-sensitivity. It also

seems that changes in metabolism and the failure of the free radical processing system

may underlie seed desiccation-sensitivity. In addition, the differential effects of water­

sress appeared to vary with enzyme, tissue, system and species.
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6.3 Further studies

It would be worthwhile to study further other antioxidants, such as tocopherol, in axes

of P. sativum and T. dregeana to ascertain if any of them may explain the decrease in

lipid peroxidation in axes of that species as rapid drying proceeded. In addition, it

would to interesting to follow the control, at molecular level, of the activities of

respiratory enzymes, PFK, MDH and NAD dehydrogenase, in Q. robur axes, where an

increase in the activities was seen. Moreover, it would be worthwhile to study further

the activity of NADH dehydrogenase in axes of A. marina in which there were

decreases in the levels ofNAD. A closer look at the activity of CAT in A. marina axes

is recommended as it increased during slow drying.
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