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ABSTRACT 

 

 

 

Background. It is well established that unaccustomed activity/exercise with a large eccentric 

component causes the development of muscle damage which results in soreness and a decline in the 

functional capacity of muscle. Although this usually subsides after 3-4 days of relative inactivity, it 

temporarily impedes the level of performance in sports by preventing training and leading to greater 

susceptibility to injuries.  Manual massage (MM) is a therapeutic modality that has been utilised in 

management of this condition for centuries with most of its accepted benefits being based on anecdotal 

reports and its functional benefits remaining contentious. Vibration therapy (VT) has on the other hand, 

recently gained popularity and replaced more time consuming manual massage.  Its effectiveness is 

however also still in question as there is not enough clear scientific evidence regarding its efficacy in 

overcoming the consequences of exercise-induced muscle damage (EIMD) when compared to those of 

MM.  

Aims. To conduct a systematic review examining the efficacy of MM as compared to the local vibration 

therapy (LVT) modalities on recovery from EIMD and to determine its efficacy in attenuating the 

negative effects of EIMD on measures of joint flexibility, muscle strength/power output, muscle 

soreness/DOMS, systemic markers of inflammation and blood lactate concentration and / or markers of 

fatigue.  

Method.  Following extensive computerised literature searches carried out using PubMed/MEDLINE, 

ResearchGate, EBSCOhost, Google Scholar and Science Direct, and a comprehensive literature review,   

randomized controlled trials and counter balance trials focusing on the beneficial effects of MM and 

LVT, were located.  Criteria required for inclusion of trials in a systematic review were determined.  

After screening of the 63 initial studies located, articles that did not meet the inclusion criteria were 

excluded. The findings in terms of the effects of MM and LVT in terms of measures of joint flexibility, 

muscle strength/power output, muscle soreness/DOMS, systemic markers of inflammation and blood 

lactate concentration and /or markers of fatigue, were presented in tabular format, differentiating 

between the MM and LVT.   A binary outcome summary for the trials in each category in which similar 

methodology was used, was created.  Fisher’s Exact test was conducted to establish whether the 

difference between MM and LVT for each outcome measure was statistically significant or not.  Finally, 

the findings of the systematic review were compared to those of Imityaz et al. (2014). 
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Results: No trials reported a positive effect of MM on joint flexibility, while 50% (n=2) showed a 

beneficial effect of LVT.  Of the 11 trials located investigating the effects of MM on strength, 4 (36%) 

revealed an attenuation of force deficit, while 50% (n=2) of the 4 trials on the effects of LVT showed a 

positive effects. DOMS was attenuated following EIMD in 75% (n=9) of the trials following MM and 

100% (n=4) following LVT. Blood creatine kinase concentration was reduced in 50% of trials following 

MM (n=2) and LVT (n=1).  No reduction in blood lactate concentration or markers of fatigue was 

shown following MM or LVT.  Fisher’s Exact test showed no significant difference in the efficacy of 

MM and LVT in attenuating the effects of EIMD (p>0.05). 

 
CONCLUSION: A systematic review of the literature confirmed that MM is no more effective in 

controlling functional declines and physiological response to EIMD than LVT. However, most studies 

had limitations and methodological flaws and frequently reported conflicting results. The number of 

randomized controlled studies qualifying for review was also small (n=28). 
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CHAPTER ONE 

Introduction 

 

1. Background to the study 

When skeletal muscles are exposed to exercise with a large eccentric component, as in resistance 

training or downhill running bouts, muscle fibers undergo trauma which, when excessive, causes muscle 

damage or injury (Charge and Rudinicki, 2004; Friden et al., 1992).   Particularly following 

unaccustomed eccentric exercise, the athlete experiences delayed onset muscle soreness (DOMS). This 

begins to develop during the first 24hours (h) after exercise (Hilbert et al., 2003) and peaks at 48-72h, 

depending on the severity of the exercise induced muscle damage (EIMD) (Tiidus, 1997; Armstrong, 

1984). 

It is well accepted that skeletal muscles have the ability to regenerate after injury (Kawiak et al., 2006) 

and the regeneration process has been found to be similar in most types of muscle injuries (Baoge et 

al., 2012).  Although there is no existing treatment that is accepted as a universally used tool (Ernst, 

1998), massage is commonly used in the athletic community despite little scientific evidence confirming 

its effectiveness (Stamford, 1985). As an alternative treatment it has been described as effective and 

safe in reversing or controlling moderate inflammation, improving blood flow, reducing  DOMS (Crane 

et al., 2012) and has remained popular in sport with many athletes requesting massage treatment 

following heavy training sessions and during/after competitive events (Hilbert et al., 2004). Mackenzie 

(2000) estimates that up to 45% of current physiotherapy treatment in sport consists of massage. Much 

money and time has been invested by athletic teams to provide sports massage for their participants 

trusting that it will reduce exercise-induced functional muscle stiffness and strength losses, muscle 

soreness and enhance recovery (Tiidus, 1997). 

Manual massage (MM) is well accepted to be one of the earliest forms of physical therapy known to 

man and has been used by many different cultures for more than 3000 years (Callaghan, 1993). But it 

was only in the 19th century that the research started investigating the efficacy of this form of massage 

which varied from light effleurage (stroking) to deep kneading (petrissage), frictions and tapotement, 

in enhancing post injury recovery (Callaghan, 1993). The popularity of MM as a treatment modality 

has, however, declined recently with (i) the development of the pharmaceutical industry, (ii) new 

machines supplanting older forms of physical therapy and (iii) the dehumanisation prevalent in the 

therapist-to-patient relationship (Callaghan, 1993).  One example of modern technological advances is 

the current use of mechanical vibratory massage as a mode of physical therapy which has grown 

substantially in the last two decades (Summer and Pletcher, 2014).   
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Although it has been used in physiotherapy for pain management and by athletes to supplement their 

training, vibration therapy (VT) is one of the interventions that has not been studied extensively (Lau 

and Nosaka, 2011). It was first used by Jean-Martin Charcot, a French neurologist in patients with 

Parkisons’ Disease (Vegar and Imtiyaz, 2012) and Nasarov was the first to use VT in sport believing 

that it helped to improve athletes’ performance (Nazarov, 1987). According to Vegar and Imityaz 

(2012), VT helps with the synchronization of motor unit activity by preventing sarcomere disruption 

and also improves muscular strength, power development and kinaesthetic awareness.  

Callaghan (1993) argues that MM is too time-consuming a technique for physiotherapists and highlights 

that research reports found in English publications are contradictory concerning how long the technique 

is to be performed in order to give a positive result, whereas localised VT (LVT) applied with the use 

of electrically or battery powered hand-held devices, is found to be faster and more uniform. It has been 

suggested that the physiotherapist must rather supervise and perform passive stretches and warm-ups 

in getting athletes ready for competing than spending extended time massaging athletes (Callaghan, 

1993).   

Due to the growing market for the sale of mechanical vibratory equipment for this modern massage 

modality, the question must therefore be asked whether these are as or more effective than MM and 

whether they can be used as a substitute for MM by therapists in the treatment of EIMD or sport injuries.   

As the body of literature available remains relatively small and a lack of consensus exists regarding 

many of the hypothesised functional benefits of MM and VT a systematic review with possible 

subsequent meta-analyses was deemed appropriate in order to thoroughly examine the research and 

literature to date with the objective to guide practice and identify gaps in the literature providing 

directions for future research in the field of the efficacy of various massage modalities and their practical 

application.  

 

1.2 Aim and Objectives  

The broad aim of this study is to systematically review the early and more recent scientific literature on 

the comparative effects of traditionally used MM as opposed to the more modern electrically powered 

local vibratory therapy modalities on recovery from EIMD. This will provide an indication of whether 

LVT is as effective as manually executed massage in the treatment of EIMD. 

The specific objectives of this study focussed on specific outcome measures including the following 

physical measures of muscle function and biochemical/immunological parameters:           

 measures of joint flexibility  

 measures of muscle strength/power output  



3 
 

 

 muscle soreness/DOMS 

 systemic markers of inflammation 

 blood lactate concentrations or markers of muscle fatigue 

 

1.3 Hypotheses 

According to the knowledge of the writer, lack of consensus exists regarding the relative efficacy of 

MM and LVT in accelerating recovery following EIMD. The following null-hypotheses were thus set 

prior to the study: 

1.3.1 There is no difference between the relative effects of MM and LVT on post-exercise joint 

flexibility  

1.3.2 There is no difference between the relative effects of MM and LVT on post-exercise muscle 

strength or power 

1.3.3 There is no difference between the relative effects of MM and LVT on post-exercise DOMS and 

muscle soreness 

1.3.4 There is no difference between the relative effects of MM and LVT on post-exercise systemic 

markers of muscle inflammation 

1.3.5 There is no difference between the relative effects of MM and LVT on post-exercise and blood 

lactate concentrations or markers of muscle fatigue. 

 

1.4 Scope of the Study 

Various computerised literature searches were conducted using ResearchGate, Cochrane Library, 

EBSCOhost, Science Direct and PubMed/MEDLINE. Only human randomised controlled trials (RCT) 

on MM or VT implemented following strenuous exercise involving a large eccentric component, were 

selected. A total of 28 studies which met all inclusion criteria and focussed on one or more of a set of 

five pre-selected outcome variables, were included in a systematic review. 
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CHAPTER TWO 

Review of the Related Literature 

 

Although massage has been used by physiotherapists in the treatment of EIMD, little is known of the 

histological effects of different types of massage on recovery from eccentrically induced muscle 

damage and its effect on muscle function. This review of the related literature will examine the current 

state of the knowledge regarding (i) EIMD and (ii) the efficacy of MM and VT in reducing the 

impairments in muscle function, muscle soreness and systemic markers of an inflammatory response to 

this muscle damage. It will focus on both animal and human experimental models and will conclude by 

highlighting gaps in the literature and areas for future research. 

 

2.1 Ultrastructural changes following eccentric contraction 

2.1.1 Concentric versus eccentric contraction: 

As is well described in standard human physiology text books, the contractile unit of the skeletal muscle 

consists of myofibres possessing longitudinal myofibrils which lie parallel to each other and are made 

up of a large number of primarily thin, actin filaments and thick myosin filaments Figure 2.1, which 

run from one z disk to the next, comprising sarcomeres (Guyton and Hall, 2011).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Microstructure of the human skeletal muscle. Adapted from Powers and Howley (2005).  

myofibrils Skeletal muscle fiber 

Myosin thick filament 

Actin thin filaments 

Actin filaments 
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An anchoring plane for the thin actin filaments is provided by Z disks lying in the middle of the light 

actin-containing inotrophic (I) band which is pulled towards the centre of each sarcomere as the muscle 

shortens during concentric muscle contraction (Armstrong, 1990). 

During eccentric contraction, the muscle however contracts while it is lengthened. This is demonstrated 

in Figure 2.2 in which a participant lowers his forearm and lengthens the biceps muscle while the 

weight in his hands is lowered.  

          Figure 2.2 Eccentric muscle contraction in the biceps muscle 

As the muscle lengthens, non-contractile proteins including titin, desmin, talin, vinculin and dystrophin 

keep the sarcomeres attached to the cell membrane (Schwane and Armstrong, 1983) and work together 

to maintain the integrity of the muscle. When they fail to achieve this, severe disruption of the 

microstructure of the muscle, including torn actin and myosin filaments and disruption of the 

anisotrophic (A) & I bands, central nuclei, swollen mitochondria and displaced organelles, can result 

(Newham et al., 1983, Friden et al., 1983, Gibala et al., 1995).  As is shown in Figure 2.3, this can 

include single and half disrupted sarcomeres with streaming and widening of Z disks.

     Figure 2.3 Electron micrographs showing disruption of the 

microstructure of the skeletal muscle following eccentric contraction (Reprinted with permission from Feasson et 

al., 2002). 
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2.1.2 The presence and function of the non-contractile proteins 

Regarding the cytoskeletal elements which are important in maintain Z-disk structure and membrane 

integrity, titin (Figure 2.4) keeps the thick filaments centred by binding the myosin to the Z-disc and 

strengthening this disk as it interlocks within the disk and also adds passive force increase to the 

production of the force of the muscle (Bubbico and Kravitz, 2010).  Its’ absence when the muscle is 

stretched, results in failure of interdigitation that may also lead to membrane damage (Morgan, 1990, 

Proske and Morgan, 2001) and misalignment of myosin filaments (Morgan and Allen, 1999).        

 

 

 

 

 

 

Figure 2.4 The microstructure of muscle with emphasis on the non-contractile cytoskeletal proteins. Adapted 
from website http//: www. Imgarcade.com.  

Another important non-contractile protein which prevents disruption of the cytoskeleton is desmin.  It 

is one of the proteins located at the level of the Z disk (Lieber et al., 1996) that is responsible for 

horizontal structure of the sarcomeres (Waterman-Storer, 1991) and transmission of tension both 

longitudinally and laterally (Morgan and Allen, 1999).  As shown in Figure 2.5, it maintains the 

sarcomere’s appearance and connects adjacent Z lines from myofibrils and has been shown to transmit 

force from myofibrillar force (active and passive 

generators to the muscle surface and to the muscle 

tendon junction.  It is also involved in the positioning, 

distribution and function of the mitochondria (Paulin 

and Li, 2004). 

 

 

 

Figure 2.5 The cytoskeletal protein, desmin. Adapted from website http//: www.  

 

Laminin is an important component of the extracellular matrix that is primarily needed for building of 

skeletal muscle during embryonic developmental stage (Zou et al., 2014).  It has been related to 

tropomodulin 
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enhancement of satellite cell proliferation and its role in the post exercise regenerative muscle function 

has also been recorded in mouse models of muscular dystrophy exposed to downhill running.  

Other non-contractile structural proteins include nebulin which is a large protein that primarily acts as 

a ruler to regulate thin filament length (Wang et al., 1996) and talin which links the cytoplasmic domain 

of integrin beta subunits to actin filament (Critchley and Gingras, 2008). Talin  is important for 

attachment of the filaments to the lipid bilayer (Drenckhahn and Franke, 1988) and is expressed in the 

distal tip cell. Reduction or lack of this protein results in severe defects in gonad formation because of 

aberrant distal tip cell migration and disruption of oocyte maturation (Cram et al., 2003).  Vinculin is a 

membrane cytoskeletal protein found in focal adhesion plaques that is involved in the linkage of integrin 

adhesion molecules to the actin cytoskeleton (Brown et al., 1997) whereas dystrophin forms a link 

between actin and associated cytoskeleton and is found throughout the sarcolemma including the 

neuromuscular junction. Studies have indicated that lack of dystrophin may lead to muscular dystrophy 

and may result in permanent damage to fibers.  Muscle fibers lacking dystrophin have also been shown 

to be more susceptible to eccentric damage and it has been suggested that EIMD may lead to some 

muscle diseases (Morgan and Allen, 1999). 

In conclusion, the presence of these non-contractile proteins enhances the stability of the muscle 

structure minimising the amount of ultrastructural damage which occurs in the muscles following 

eccentric exercise.  

   

2.1.3 Systemic markers of post-exercise inflammatory response in venous blood 

2.1.3.1.  Creatine phosphokinase (CPK) and lactate dehydrogenase (LDH): With EIMD to the 

muscle membrane, the intracellular enzymes present in muscle, creatine phosphokinase (CPK), more 

commonly referred to as creatine kinase (CK) and lactate dehydrogenase (LDH) leak into the blood and 

systemic concentrations increase (Brancaccio et al., 2007). The mechanism of the increase in CK 

following muscle damage has been described as a consequence of both metabolic and mechanical 

factors. In addition to the local tissue damage with sarcomeric degeneration from Z-disk fragmentation, 

in 1976 Fink and Luttgau already described how metabolically exhausted muscle fibres exhibit a 

decrease in the membrane resistance following an increase in the internal free calcium ions (Ca2+), 

which promotes the activation of the potassium channel.   

These two enzymes are thus commonly used as indirect indicators of EIMD.   Blood LDL 

concentrations have been found to peak by 6h post exercise and return to resting levels by 48h post 

exercise (Maughan et al., 1989),  while CK concentrations are  markedly elevated for 12-24 h after the 

exercise bout (Semple et al., 2007).  
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Both LDH and CK however often show a large intra- and inter-individual variation (Peters et al., 2005) 

and it should be taken into account that they are affected by other kinases. In the case of CK, these 

include mitochondrial CPK, CPK-immunoglobulin complexes and CPK derived from cardiac muscle 

(Martinez-Amat et al., 2005).  In addition, total levels have also been found to depend on age, gender, 

ethnicity, muscle mass, climatic condition and exercise mode and intensity (Brancaccio et al., 2007; 

Mckune et al., 2012), all of which can affect enzyme tissue activity and subsequent serum levels (Baird 

et al., 2012). Furthermore, both CK and LDH comprise different isoenzymes that are distinguished by 

slight differences in their structure. In the case of LDH, the isoenzymes are LDH-1 (in the heart and red 

blood cells), LDH-2 (in white blood cells), LDH-3 (in the lungs), LDH-4 (in the kidneys, placenta, and 

pancreas), and LDH-5 (present in liver and skeletal muscle) (Epstein and Butler, 2015). Isoenzymes of 

CK include CK-MM (found in the muscle), CK-BB (found in the brain) and CKMB (found in the heart) 

(Grossman, 1982). An elevation of total blood concentrations is therefore not necessarily always well 

correlated with the severity of skeletal muscle damage (Peters et al., 2005). 

 

2.1.3.2   Inflammatory response  

Following muscle damage, an inflammatory reaction sets in and is associated with an invasion of 

neutrophils and macrophages into the damaged fibres within 6h (Armstrong et al., 1991; Peake et al., 

2005). These secrete reactive oxygen and nitrogen species, cytokine factors and proteolytic enzymes 

that lead to initial tissue degradation (Clarkson and Sayers, 1999). Neutrophils remain present in the 

damaged muscle up to 24h post exercise, while resident macrophages are active for several days after 

EIMD and produce pro-inflammatory cytokines including interleukin (IL) -1β and tumor necrosis factor 

(TNF-α) that activate the breakdown of damaged muscle tissue (Peake et al., 2005), as well as IL-6, 

which initiates an anti-inflammatory response (Peters, 2004).   

A further systemic response to EIMD and subsequent inflammation results in an acute phase response, 

similar to that which occurs with infections, surgery and trauma (Fallon, 2001). While muscle damage 

results in elevated levels of CK, myoglobin and LDH (Overgaard et al., 2002), release of IL-6 from 

activated macrophages in the tissues and subsequently cortisol from the adrenal cortex stimulates 

hepatic production of C-reactive protein (CRP; Peters et al., 2005; Semple, 2006).  

Venous blood CRP concentration is therefore a sensitive indicator of the inflammatory response which 

is commonly used in exercise studies on humans.  Studies have shown that circulating CRP 

concentrations rise substantially 24-48h after acute eccentric exercise (Peters et al., 2005; Semple, 

2006). 
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With EIMD and inflammation, the activation of nuclear factor kappa B (NFκB), a protein complex that 

controls transcription of DNA, cytokine production and cell survival, also occurs. Peroxisome 

proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), primarily involved in the 

regulation of carbohydrates and lipids in the human body (Liang and Ward, 2006), stimulates 

mitochondrial biogenesis and promotes the remodelling of muscle tissue to a fibre-type composition 

that is metabolically more oxidative and less glycolytic in nature (Liang and Ward, 2006).  

NFκB and PGC-1α are therefore both mediators in the inflammatory process and play a role in cellular 

repair.  Lowering NFκB levels reduces inflammation and increasing PGC-1α levels leads to the creation 

of more mitochondria that generate energy for cell growth (Ward, 2012), also improving the contractile 

function of dystrophic muscle and reducing the level of inflammation (Crane et al., 2012).  

 

A prominent feature of an inflammatory response to EIMD is swelling in the isolated area around the 

injured tissue. Accumulation of fluid has been shown to result from influx of Na+ into the muscle cells 

following cell membrane damage and increased membrane permeability (Mckune et al., 2012) and the 

slow removal of muscle breakdown products such as protein fragments from the extracellular matrix, 

both of which attract water (Clarkson et al., 1992).   This swelling may peak 5-8 days after EIMD, 

beginning inside the muscle and spreading to subcutaneous spaces after about 5 days (Ezeilo, 2002).   

 

2.2. Delayed onset muscle soreness (DOMS)   

DOMS is a predictable painful condition that begins within 24h after exercise, peaks at 48 to 72h after 

unaccustomed eccentric exercise and may last several days (Ernst, 1998; Mancinelli et al., 2006). Its 

intensity is closely associated with the degree of structural damage and intensity of the eccentric 

exercise (Pilladi et al., 2013).  The symptoms of DOMS include a decrease in ROM and joint stiffness, 

reduction in muscle strength, muscle pain and tenderness.  In terms of the mechanism, exercise-induced 

mechanical disruption of muscle cell sarcomeres and sarcolemmas, and a reduced membrane 

excitability (Armstrong et al., 1991; Fitts, 1994) leads, during repeated contractions, to more extensive 

damage and, ultimately, to necrosis of some muscle fibres. The injury triggers a local inflammatory 

response that is accompanied by some oedema and the breakdown products of injured tissues, sensitise 

nociceptors (Proske and Morgan, 2001).  The physiological mechanisms associated with the reduction 

of muscle strength post eccentric exercise are thought to be the exercise-induced mechanical disruption 

of muscle cell sarcomeres and sarcolemma, and a reduced membrane excitability (Armstrong et al., 

1991; Fitts, 1994).  In patients with exercise-induced DOMS during the first three days following 

unaccustomed eccentric exercise, studies have also confirmed disorganization of myofibrillar proteins, 

especially in and around the Z-disk (Cluett, 2010; Bubicco and Kravitz, 2010).  This includes the 

https://en.wikipedia.org/wiki/Transcription_factor
https://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/Mitochondrion
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absence of the main z-disc protein, α-actinin, in z-disc alterations (Yu and Thornell, 2002; Yu et al., 

2004) that appeared to be related to the increase in desmin.  

 

These findings support those of earlier rodent studies including those of Barash et al. (2002) in which 

desmin content and immunohistochemical appearance were increased following eccentric exercise in 

rats that were subjected to single bout of exercise consisting of 30 eccentric contractions induced by 

stimulation of the peroneal nerve for 650ms at 100Hz with a small nerve cuff at two min interval with 

the contralateral leg serving as the control.  Loss of desmin staining occurred 12h post eccentric 

exercise, and full recovery was seen by 72h.  It was suggested that the desmin content in each cell may 

thereafter have increased by 15fold between 72-168h post eccentric contractions. In this study, 

increased expression of desmin was associated with muscle protection from exercise-induced injury.   

However, it currently remains unclear whether myofibrillar disruption or membrane breakdown is the 

result of eccentric contraction (Friden et al., 1981; Petrof et al., 1993; Lynch et al., 2000).   

A large study of 344 male Fischer rats subjected to downhill interval treadmill running for 90 min 

(Armstrong et al., 1983), on excitation-contraction (EC) coupling showed four ultrastructural changes 

in the arrangement of the transverse (t)-tubules and the disposition of triads after the downhill running 

exercise.  Greater changes were observed 2-3 days post eccentric exercise. 

In terms of the possibility of membrane disruption occurring with EIMD, animal models have revealed 

that EIMD will also result in disruption of the sarcolemma of muscle during the first hour post exercise 

(Yu et al., 2002).  Lieber et al. (1994) reported that in the rabbit model, cytoskeletal disruption including 

a loss of immunostaining of desmin, was followed by increased membrane permeability. In 1996 this 

laboratory reported that the sarcolemmal proteins including dystrophin and laminin were also 

completely disrupted following EIMD (Lieber et al. , 1996).  

 

Recent human studies, on the other hand, have not confirmed that eccentric exercise that results in 

DOMS causes sarcolemmal disruption and loss of desmin (Yu et al., 2002; 2013). Lieber and Frieden 

2002) and Paulsen et al. (2012) have suggested that contraction induces extracellular or intracellular 

membrane disruption that may induce hydrolysis of structural proteins such as the desmin intermediate 

filament network and myofibrillar disorganization in form of z-band streaming or complete disruption. 

It is further hypothesised that this results in fibre necrosis and inflammatory cell infiltration that 

activates the nerve endings and perception of pain. This possibility however requires further 

examination and Yu et al (2013) suggest that the search for greater clarity regarding the exact 

mechanisms explaining the functional and structural alterations in human skeletal muscles after 

eccentric exercise, should continue.  
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Vasodilatation following massage has been shown to be caused by the release of neuropeptide Y (NPY) 

and calcitonin gene-related peptide (CGRP), potent vasoregulatory neuropeptides (Jӧnhagen et al., 

2004).  These peptides have also been shown to be involved in the modulation of pain and increased 

detectability of CGRP in human muscle using microdialysis followed by radioimmunoassay after hard 

eccentric exercise and have been related to increased DOMS (Jӧnhagen et al., 2006).  This supports an 

earlier finding of Homonko and Theriault (1997) who reported increased concentrations of CGRP in 

the motor neurones of medial gastrocnemius muscles in rats 72h after eccentric downhill running 

confirming that the peripheral nervous system initially reacts to EIMD by releasing CGRP.  

In addition to nociceptive, vasoregulatory and proinflammatory actions, CGRP has also been suggested 

to exert trophic effects, activating proliferation of fibroblasts and endothelial cells in response to stress.  

Detection of CGRP after eccentric exercise, can therefore also be assumed to reflect tissue regeneration 

(Jӧnhagen et al., 2006).   

Eccentric exercise and EIMD also results in the production of prostaglandin E2, lipid autocoids derived 

from arachinonic acid and produced in response to inflammation. In addition to causing intracellular 

fibre swelling, elevated circulating prostaglandin E2 concentrations sensitise group IV afferent fibres 

of muscle connective tissue associated with a dull aching pain and stiffness (Friden et al., 1988; 

Clarkson and Hubal, 2002; Proske and Allen, 2005; Lewis et al., 2012). Damage to the sarcoplasmic 

reticulum (SR) and structure of the t-tubules has been shown to impair its release of Ca2+ and result in 

activation of proteolytic enzymes which degrade structures within the muscle fibre resulting in fibre 

swelling, muscle soreness and inflammation (Armstrong et al., 1991).  

 

Descriptive rating scales commonly used to measure pain intensity experienced following exercise-

induced DOMS originated in psychological and medical experimentation (Freyd, 1923; Kneele, 1948). 

They most commonly include the visual analog scale (VAS) shown in Figure 2.6 in which individuals 

are asked to rate their pain arbitrarily on a continuous 10cm line with varying degrees of perceived pain 

intensity indicated below the line (Drake et al., 2012). Today variations of these scales are commonly 

used in clinical and experimental settings and graduated to assess the effectiveness of treatment 

interventions. Weber et al. (1994), for example, examined the effect of three different therapeutic 

modalities in untrained female subjects following high-intensity eccentric contractions of the elbow 

flexors which induced DOMS and reductions in muscle strength, using a seven- point soreness rating 

scale (Talag, 1973)  to collect soreness perception data.  Subjects verbally reported the number on the 

scale that best corresponded with their symptoms when the extremity was at rest and returned after the 

pretest to repeat the soreness rating at 0, 24, or 48h. 

.  

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2491989/#ref13
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Figure 2.6 Comparison of Visual Analog and Graphic Rating Scales for Assessing Pain following Delayed Onset 
Muscle Soreness.  Adapted from Mattacola et al. (1997) 
 
 

Of further interest to the focus of this thesis is that in recent work examining DOMS, inactive 

transcutaneous electrical nerve stimulation (TENS) pads are frequently used as placebo in partially 

blinded studies. TENS is a non-pharmacologic treatment for pain relief electric current produced by a 

device is used to stimulate the nerves for therapeutic purposes (DeSantana et al., 2008).  TENS pads 

are  usually connected to the skin using two or more electrodes and cover the complete range of 

transcutaneously applied currents used for nerve excitation although the term is often used with a more 

restrictive intent, namely to describe the kind of pulse produced by portable stimulators used to treat 

pain. 

 

2.3 Performance decrements following exercise-induced muscle damage 

2.3.1 Muscle strength 

A prolonged increase in strength loss is an indicator of EIMD and considered as one of the most reliable 

indirect markers thereof (Eston et al., 2007). The level or amount of muscle strength loss depends on 

the intensity of the eccentric exercise and its duration (Sayers and Hubal, 2008).   

 

Numerous studies have reported the loss ability of the eccentrically induced damaged muscle to 

generate force (Brown et al., 1996).  Clarkson et al. (1992) reported a post exercise strength loss of 

50% and that it that took more than 10 days for the muscle to recovery fully, whereas in the study of 

Howell et al. (1993) strength loss of 30% was evident on the day following the exercise with about 70% 

of muscle recovery occurring by 3 days post exercise. 

In terms of the physical mechanism, it has been attributed to the length – tension relationship of muscle 

and overstretching of sarcomeres (Howell et al., 1993). During eccentric contraction and exercising at 

longer compared to shorter muscle lengths, a greater number of sarcomeres are operating on the 
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descending limb of this length- tension curve and are stretched to the point of “no myofilament overlap.” 

Failure to re-interdigitate results in their disruption (Eston et al., 2007). 

McKune et al. ( 2012) emphasises that the small volume of tissue damage immediately after eccentric 

exercise does not account for the large reduction in strength and that this lack of association has led to 

the contention that much of the early loss of function following eccentric contractions results from 

impairment of excitation-contraction coupling (Sayers and Hubal, 2008). This has in turn, been related 

to disruption of the Ca2+ cycling mechanism and is a well described cause of the muscle strength deficit 

following EIMD. Koh (2008) suggests that impaired Ca2+ release from the SR occurring with EIMD is 

responsible for reduced excitation-contraction coupling and that this impairment could occur at any 

point in the chain of events between depolarization of the muscle cell membrane and the release of Ca2+ 

from the SR which has important implications for the post exercise force deficit as Ca2+ is required for 

force production in the myofibrils.  

The initial physical damage of individual muscle fibres during eccentric contractions that may cause 

disruption of the normal permeability barrier provided by the cell membrane as well as disturbed 

functioning of the SR, allows Ca2+ which is present in higher concentrations in the extracellular spaces, 

to enter the fibre down its electrochemical gradient, causing intracellular Ca2+ accumulation (Armstrong 

et al, 1991).  If the Ca2+ influx overwhelms the Ca2+ pumps and free intracellular Ca2+ concentrations 

rise, these activate a number of Ca2+-dependent proteolytic and phospholipolytic pathways and degrade 

structural and contractile proteins and membrane phospholipids (Figure 2.7). For example elevation of 

intracellular Ca2+ levels results in loss of CK activity from the fibres through activation of phospholipase 

A2 and subsequent production of leukotrienes (Armstrong et al., 1991). In addition, the lower 

Ca2+intracellular availability for the contractile process results in reduced maximal contractile force. 

Eccentric muscle contraction                                                                            

Structural damage to individual muscle fibres 

Increased membrane permeability 

Increased protease activity 

 

                            Sarcoplasmic reticulum damage         Muscle membrane damage                                                                           

                               Loss of intracellular protein        inflammation 

                                ↓intracellular Ca2+            

             

                              ↓contractile force 

Figure 2.7 Reduced intracellular Ca2+ concentrations results in a force deficit accompanied by an inflammatory 
response following eccentric exercise (adapted from McKune et al., 2012). 
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2.3.2 Joint flexibility  

A reduction in voluntary range of motion (ROM) in joints is another consistent finding following EIMD 

(Callaghan, 1993) which is also regarded as one of the most valid and reliable indicators of EIMD 

(Armstrong, 1990).  ROM decreases immediately following exercise and can be reduced by 20-45 

degrees. Although recovery begins within 24h, full recovery is not achieved until 10 days after exercise 

(Jones, 1987).   Joint flexibility has been quantified by measuring actual change in range of ROM within 

joints using goniometers (Clarkson and Sayers, 1999), changes in muscle length (Eston et al., 2007) or 

actual standard flexibility tests such as the sit and reach (S&R test; Barlow et al., 2004).  

In terms of the mechanism, Clarkson and Sayers (1999) attributed the “stiffness” of the muscle 

following EIMD to the ultrastructural damage with consequent excitation - contraction coupling and 

cross-bridge formation which results in the muscle fibres failing to return to their optimal resting length. 

This increase in the number of contracted fibre segments has been suggested to related to the previously 

described elevation in resting cytosol Ca2+ levels  which occurs following EIMD (Sayers and Hubal, 

2008). Furthermore, the reduction in ROM following EIMD may also be partly attributed to a 

concomitant increase in fluid accumulation and swelling (McKune et al., 2012).  

 

2.3.3 Muscle fatigue  

Eccentric exercise produces a long lasting low frequency muscle fatigue (Clarkson and Sayers, 1999).  

Skeletal muscle fatigue is a progressive decline of muscle force production or power output that occurs 

during or after repeated muscle contractions.  The mechanism causing fatigue is not easy to identify 

due to multivariate nature of the fatigue process and the complexity of the pathways involved (Kano et 

al., 2012). Therefore, to provide insights into the mechanisms of muscle fatigue, many studies have 

been performed on isolated whole muscles or single fibres as an expedient to permit greater control 

over the experimental environment (Kano et al., 2012). 

Possible low-frequency muscle fatigue following acute high intensity has also been attributed to the 

above-described depression in the maximal rate of Ca2+ release and Ca2+ uptake from the SR 

immediately after exercise by Hill et al. (2001). Confirming the suggestions of Jones (1996) that a 

reduction of Ca2+ release by the SR was one of the likely mechanisms of low-frequency fatigue, he was 

the first to report the effect of an intense exercise bout on the functional characteristics of sarcoplasmatic 

Ca2+ release, Ca2+ uptake and Ca2+-ATPase activity and muscle contractile characteristics in human 

muscle.  Upon stimulation, Ca2+ required for the contractile process, is released by the SR resulting in 

muscle contraction; the subsequent removal of Ca2+ from the contractile proteins back into the SR by 

the SR Ca2+-ATPase results in relaxation of the muscle.    
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During high-intensity exercise, accumulation of blood lactate (Tesch et al., 1978) and the associated 

fall in pH have also been attributed to the development of muscular fatigue (Brooks, 1991). The decrease 

in pH associated with elevated levels of lactate production is well known to impede performance by 

inhibiting key glycolytic enzymes (MacClaren et al., 1989) and myosin-ATPase (Peters, 1984) causing 

performance deficit. The rate of lactate removal which has been shown to correlate with H+ uptake 

from the blood (Peters, 1984) is therefore indirectly indicative of the recovery process and crucial to 

the successful performance of repeated bouts of exercise (Tesch et al., 1978; Peters-Futre et al., 1987). 

 
Removal of blood lactate occurs through various mechanisms in the body. Tracer studies have shown 

that during light exercise most of the lactate is taken up by skeletal muscle, reconverted to pyruvate, 

and then oxidised in the mitochondria via the Krebs cycle (Brooks and Gaesser, 1980). Other major 

organs of lactate uptake post exercise include the heart, the inactive muscle fibre and the liver (Peters, 

1984). 

 

Previous research has demonstrated that the elimination of post exercise blood lactate can be optimised 

by light activity (30-45% VO2max) since moderate activity increases cardiac output and blood flow to 

the lactate-consuming tissues, increasing the rate of post-exercise lactate uptake (Peters-Futre et al., 

1987).  Some researchers have speculated that blood lactate removal might also be accelerated during 

massage recovery due to increased blood flow and therefore better distribution of lactate to the tissues  

responsible for lactate-uptake (Wiktorsson-Moller et al., 1983).  

 

It is, however, currently accepted that it is not the removal of the lactate per se, that results in muscle 

fatigue, but rather the associated release of H+ ions and drop in muscle pH which is well correlated with 

a rise in blood lactate concentrations (Peters, 1984). Interestingly, the uptake of H+ ions during the post-

exercise recovery, is equally optimised by an increase in blood flow to the skeletal muscle (Peters-Futre 

et al., 1987), but research examining the effect of massage on H+ ion uptake post EIMD does not appear 

to have been conducted.   

 
 
2.4 The repeated bout effect (RBE) 

The ultrastructural disruption seen after eccentric contraction and the level of disruption is known to be 

reduced if the subjects have been previously exposed to this type of training.  This phenomenon is 

known as the repeated bout effect (RBE; Cheung et al., 2003).  It refers to the adaption where a single 

bout of exercise strengthens the muscle for the following eccentric bouts (McHugh, 2003)  However, 

the contraction intensity of the initial bout must be high enough to induce a protective effect against 

subsequent eccentric bouts. Nosaka et al. (2001) stated that even as few as two eccentric contractions 

that are performed at a maximum level have been shown to induce this protective adaptation, whereas 
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Maes and Kravitz (2003) reported that repeated bouts of lower intensity eccentric exercise performed 

1-6 weeks before the initial higher intensity eccentric bouts have been shown to consistently reduce 

DOMS and EIMD.  Evidence confirms that during the RBE there is a shift towards recruiting slow 

twitch motor units and cellular changes with addition of sarcomeres and inflammation.  These include 

cytoskeletal adaptations as the first line of defence to protect against damage (McHugh, 2003). Barash 

et al.(2002) contend that the increase in desmin content that was demonstrated in a study of rats 

following damaging contractions could provide mechanical reinforcement against excessive sarcomere 

strain caused by a repeated bout of eccentric exercise. Paulsen et al. (2012) have also shown that passive 

and active movements alter intramuscular pressure and cause stimulation of mechanoreceptor nerve 

endings. However, this was not supported by recent studies where z-streaming was proposed to be the 

hallmark of muscle damage after eccentric exercise (Friden et al.,1981; Friden and Lieber, 1992) and 

to represent myofibril remodelling (Yu et al., 2002, 2003, 2004; Carlsson et al., 2007, 2008).  According 

to McHugh (2003) one specific mechanism for RBE has not been identified. 

 

2.5. Manual massage (MM) 

2.5.1 Introduction 

Massage has been promoted as a means to help prepare athletes for competitions and to improve the 

performance and recovery of injury after exercise (Cassar, 2004). It is one of the modalities that has 

been used since early civilisation and is thought to have benefits in sport (Callaghan, 1993) and its use 

has increased in the past years (Jӧnhagen et al., 2004).  There are various forms of MM that are being 

used, but the basic techniques of “classic massage” remain unchanged and are also referred to as 

“Swedish massage” (Hofkosh, 1985; Holey, 1991). These include effleurage (light stroking), petrissage 

(kneading, also referred to as Tuina Therapy or deep tissue massage) and frictions.  Although some also 

identify deep tissue massage, myofascial release, trigger point and craniosacral massage, the three main 

techniques used in sport are primarily a combination of effleurage, petrissage and frictions.  The 

majority of research has used Classic Western massage or Swedish massage to investigate the effects 

of MM with very few studies having used other techniques such as myofascial trigger point massage or 

focused on one individual technique (Reynolds, 2010; Callaghan, 1993). Although post-event MM may 

have a substantial effect in reducing post-exercise fatigue level and helping recovery when applied to 

athletes (Wakim, 1985), massage is however also used by athletes before an event (Callaghan, 1993) 

and found to be of value (Balke et al., 1990).   As the focus of this dissertation is on the therapeutic 

value of MM in the post–exercise recovery process, this review will be restricted to studies  MM used 

after exercise involving a large eccentric component. 
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2.5.2 Effleurage technique 

Although frequently used in sport massage, effleurage is not usually applied as a stand-alone technique.  

It consists of light strokes that are delivered by hand following the contour of the body, with no attempt 

to manipulate the deeper tissue (Cafarelli and  Flint, 1992), but is usually used in preparation for deeper 

massage to the tissues and performed in the direction of the lymph and venous flow (Moraska, 2005).    

If conducted at the end of the massage, it is used for the purpose of relaxation or to achieve a “flushing” 

effect (Tappan and Benjamin, 2005).  

 

In one of the earliest studies, Hansen and Kristensen (1973) examined the comparative effect of 

effleurage, shortwave diathermy and ultrasound on the clearance rate of inert gas using radioactive 

xenon 133Xe to measure of capillary blood flow (Aladj et al., 1991), in the triceps surae of the right calf. 

After 5minutes (min) of application of these three techniques to the calves of 12 human subjects, 

effleurage was found to result in increased 133Xe clearance from the muscle (p<0.01). This, however, 

decreased within 2min after cessation of the effleurage, becoming negative by 10 min after the massage. 

Shortwave diathermy and ultrasound induced no significant changes in the 133Xe clearance from muscle.  

  

In follow up work including a focus on the functional benefits of effleurage alone, Tiidus and 

Shoemaker (1995) studied the effect of this modality on post-exercise recovery in healthy volunteers 

with one leg assigned to massage and the contralateral leg acting as control.  Ten minutes of effleurage 

was administered for 4 days post-eccentric exercise.  During this 96h post-exercise recovery period 

there were no differences in the rate of recovery of isometric and dynamic quadriceps peak torque 

measures in the massaged and control leg.  Blood flow, determined using pulsed Doppler ultrasound 

velocimetry, was also not improved significantly in the massaged limb, while muscle soreness was only 

attenuated at 48-96h post exercise in the massaged leg. It was concluded that massage was not an 

effective treatment modality for enhancing long term restoration of post-exercise muscle strength and 

its use in controlling DOMS in sport should be questioned. 

A subsequent clinical controlled trial conducted by Stanley et al. (2001) examined the passive tension 

and stiffness properties of the plantar flexors of the ankle joint in 19 subjects who received effleurage 

alone post eccentric exercise. They did not find a positive effect on passive muscle stiffness and 

maximum tension compared to a control group that had no significant intervention. In a more recent 

clinically controlled trial (CCT), Reynolds (2010) also found that 10min of effleurage had no significant 

effects on passive gastrocnemius muscle stiffness properties when compared with 10min rest in 12 

patients and attributed this finding to the pressure of effleurage not being sufficient to produce 

mechanical effects.  
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Fehrs (2010) however later proposed that effleurage stimulates the nerve endings and that this reflex 

effect may result in the release of neurotransmitters, vasopressin and oxytocin leading to a relaxation 

response, consequently decreasing blood pressure and reducing stress. This hypothesis requires further 

examination.  

In 2012 Drake et al. re-examined the effect of 10min of effleurage immediately following an eccentric 

biceps protocol and found that there was no significant attenuation of pain or enhanced recovery of 

isometric torque deficit assessed using electromyography (EMG), despite a significant 

mechanomyography (MMG) interaction, confirming the earlier findings of Tiidus and Shoemaker 

(1995). 

Despite the indication for further research that is necessary to confirm whether effleurage activates a 

relaxation response as described by Fehrs (2010), according to the work done to date, it can be 

concluded that there is little current evidence in favour of a beneficial effect of effleurage alone as a 

massage modality. This justifies its exclusion in a systematic review of the optimal physiological effects 

of MM in recovery from EIMD. 

2.5.3 Petrissage and effleurage combined with petrissage   

The kneading technique (petrissage) used on deeper tissues, is a technique in which the skin and 

underlying tissues are mobilized in circular and rotational motion.  It is a powerful technique applied 

with the whole palm of the hand (Miernik et al., 2011) which has been shown to be particularly effective 

in mobilizing fluids in very deep muscles and applying a stretch to the fibres involved (Mackenzie, 

2000).  

In sport, the kneading pressure used on athletes is generally higher compared to that applied on 

sedentary individuals (Jönhagen et al., 2004). However, the scientific evidence regarding the 

physiological and functional benefits of the use of petrissage appears to lack consensus and the practice 

has remained controversial.   

With regard to the effects of petrissage on neuromotor activity, there appears to be a dichotomy of 

contradictory responses. On the one hand Morelli et al. (1990) and Sullivan et al. (1991) focussed on 

the effect of petrissage alone in the proximal aspects of the triceps surae muscle of 16 adults without 

neuromuscular impairments on the Hoffman reflex (H- reflex). As a reflectory reaction of muscle 

response measured by electromyography (EMG) after electrical stimulation of afferent sensory fibres 

which bypasses actual activation of the muscle spindle, the H-reflex represents monosynaptic reflex 

activity in the spinal cord and is analogous to the stretch muscle reflex. 
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Figure 2.8 The monosynaptic stretch reflex (adapted from Dick, 2003).  
 

The ipsilateral monosynaptic reflex is outlined in Figure 2.8. Stimulation of muscle spindles (receptors) 

that detect abrupt stretching in the muscle, activate the nerve impulse along the sensory neuron,  

stimulating ion channels in response to the stretch and depolarising the membrane and creating greater 

potential (Fritz, 2013).  On reaching its threshold, the greater potential causes the ion channels to open 

and results in the action-potential spreading along the sensory neuron.  This travels through the nerve 

that innervates that particular muscle back to the spinal nerve and to dorsal roots ganglion and into the 

spinal cord, synapsing immediately with the motor neuron.  The motor neuron takes impulses into the 

ventral horn of the grey matter to the spinal nerve through motor neuron and back to the same muscle 

which is then stimulated to contract and shorten. This counteracts the initial stretch, protecting the 

muscle from overstretching (Ezeilo, 2002).  

In comparison, the H-reflex involves activation of the spinal stretch reflex induced by electrical 

activation of a percutaneous mixed afferent nerve (Armstrong et al., 2008). It is a viable laboratory–

induced measure of motorneuron excitability and its suppression after fatiguing exercise as well as 

petrissage is well documented (Armstrong et al., 2008; Sullivan et al., 1991). 

In well cited studies, Morelli et al. (1990) and Sullivan et al. (1991) reported reductions in H-reflex 

amplitude indicating an inhibition of spinal alpha (α) motorneuron excitability of short term duration 

while massage was administered.  Morelli et al. (1990) reported that all massage-control pairings were 

statistically different (p < 0.01) with as much as a 71% decrease in H-reflex amplitudes observed during 

the massage, while the principal finding of Sullivan et al. (1991) was that MM reduced the amplitude 

of H-reflex of ipsilateral triceps surae.  These researchers proposed that rapidly adapting cutaneous 

and/or muscle receptors may be responsible for mediating these responses, the intensity of which are 

dependent on the amount of pressure exerted.  While the cutaneous receptors, activated by light fingertip 

pressure during effleurage, facilitate spinal reflex activity, stimulation of the deep tissue receptors by 

tendon pressure was proposed to inhibit activity along the reflex pathway as measured by the H-reflex. 

According to Morelli et al. (1990) this would imply transient relaxation and reduced power output of 

the muscles following petrissage. 

 

On the other hand, an earlier study by Ask et al. (1987) in which 8 participants were assigned to either 

10 min of effleurage and petrissage (massage group) or to a control group not receiving treatment in a 
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cross-over design study, reported that average power at 50% maximum voluntary contraction (MVC) 

after massage was 11% greater than in the untreated control group. These findings were supported by 

Brooks et al. (2005) who reported that 5min of manual effleurage and friction massage on the forearm 

and hand had a greater positive effect on power-grip performance immediately after maximal exercise 

in healthy adults than no treatment and/or stretching. While these researchers attributed this finding to 

a rise in circulating β-endorphin concentrations and metabolic recovery facilitated by massage-induced 

increases in circulation, the exact mechanism remains unclear. 

 

As adequate flexibility and ROM are believed to be beneficial in terms of injury prevention and optimal 

muscular performance, considerable research has focussed on the effect of massage on this area. In 

addition to above-described inhibition of the H-reflex (Morelli et al., 1990), massage is known to 

increase ROM and flexibility by affecting both the muscular and connective tissue (Moraska, 2005).     

One cause of injury may be due to myofascial trigger point (MTrP) activity.   MTrPs are tightly 

contracted regions within muscle tissue characterised by a hyperirritable taut band with defined pain 

referral patterns and result in limitation of strength, loss of muscle function and muscle shortening 

(Moraska, 2005).  Davidson et al. (1997) who reported that deep tissue massage and mobilization of 

surrounding soft tissue including MTrPs facilitated healing of Achilles Tendonitis in rats, attributed 

their findings to this mechanism. 

The findings on the effects of petrissage (in most cases preceded by effleurage) on attenuating the 

contractile force deficit and reduced flexibility accompanying EIMD, are, however, not consistent.  A 

thorough systematic review of well-designed CCTs is necessary to clarify the present state of the 

knowledge in this regard.   

Most of these studies also investigated the effects of petrissage on markers of DOMS and muscle 

inflammation/fatigue associated with EIMD. 

 

In 1994, Weber et al. examined the effect of 8 min of effleurage and petrissage when compared to (i) 8 

min of microcurrent electrical stimulation, and (ii) 8 min of upper body ergometry in 40 untrained 

female subjects following high-intensity eccentric contractions of the elbow flexors which induced 

DOMS. There were no significant changes noted between the experimental and control groups in 

soreness rating, maximal voluntary isometric contraction, and peak torque recorded immediately and at 

24 & 48h post exercise.  

In 1997 Lightfoot et al. conducted a randomised controlled trial (RCT) showing that immediate post 

exercise massage does not attenuate DOMS or reduce the exercise-induced deficit in muscle strength 

in 12 males and 19 females. All subjects performed heel drop exercise 4x15 with 100% of their body 

weight and then 24h following this eccentric exercise, one group underwent a stretch routine, the 
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second, 10 min of petrissage and the third, no treatment. No significant difference was reported between 

the groups in muscle soreness at 0, 24 & 48h post exercise, muscle strength and limb girth. 

In the same year, Tiidus showed that massage had an effect on inflammatory response and may be able 

to affect the development of muscle soreness.  However, he proposed that for massage to be able to 

disrupt the initial stages of muscle damage and inflammatory response, it will have to be applied 1-2h 

following eccentric exercise. This supported the findings of Smith et al. (1994), who, when examining 

the effects of athletic massage on DOMS, serum CK concentration and neutrophil count on 14 subjects 

randomly assigned to either control or massage groups, found that a 30 min of effleurage and petrissage 

performed within 2h after exercise, resulted in prolonged elevation of blood neutrophil concentrations 

(suggesting that neutrophils had migrated from inflamed muscle), reduced serum CK concentrations, 

and an apparent reduction in DOMS.   

 

Hemmings et al. (2000) were unable to add support to these findings in a CCT conducted on 8 amateur 

boxers who received a combination of petrissage and effleurage immediately following punching 

exercise with a large eccentric component vs. untreated controls performing the same exercise, but not 

receiving massage thereafter. Although massage reduced perceptions of recovery (p>0.01), the deficit 

in punching force and recovery of blood lactate concentrations, were not improved in the group 

receiving massage (p>0.05).  

 

Farr et al. in 2002 also found that 30min massage sessions consisting of effleurage and petrissage 

performed by a qualified masseur attenuated muscle soreness and tenderness that resulted in the 

development of DOMS in eight subjects after downhill walking. These subjects received massage on 

one limb 2h post –exercise.  Although soreness and tenderness associated with DOMS was improved 

in the massaged legs, measures of strength and one-legged vertical jump displacement however did not 

differ significantly between the treatment and control legs.  This led to the conclusion that massage may 

attenuate DOMS, but had no effect on strength and muscle function.  

Jӧnhagen et al. (2004) examined the effect of a combination of 4min effleurage & 8min petrissage 

10min, 24h and 48h following 300 maximal bilateral eccentric contractions of the quadriceps femoris. 

No improvement in recovery in maximum strength measured on a leg dynamometer, functional tests on 

single-leg long jumps, pain (evaluated using VAS) post eccentric exercise was reported.  

Frey Law et al. (2008) more recently studied the effect of deep tissue massage on post EIMD torque, 

mechanical hyperalgesia or pressure pain threshold (PPT) and perceived pain (DOMS).  Forty 

participants were randomly assigned to either a 6min deep-tissue (effleurage and petrissage), cutaneous, 

light stroking of the skin (superficial touch) or control (quiet rest only) groups following an 

unaccustomed eccentric wrist extension.  The treatment was performed 24-48h after eccentric exercise 
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and strength, pain, and sensory testing took place before and after treatment.  Testers were blinded to 

group assignment for rest of the study.  Although it was found that no significant group interactions 

were reported in terms of torque recovery in the massaged group, massage did reduce symptoms of 

myalgia by approximately 25-50%, and the reversal of DOMS symptoms was significantly greater in 

the treatment group and pain increased minimally with rest (p<0.0001).  Deep tissue massage was able 

to decrease mechanical hyperalgesia and decreased stretch pain relative to the control group. 

Dolgener and Morien (1993) determined the effect of 20min sport massage (effleurage and petrissage) 

on lactate disappearance following exhaustive exercise.  Twenty-two male subjects were randomly 

selected into passive recovery (rest in supine position), bicycle recovery or massage groups.  Subjects 

performed an exhaustive treadmill run before intervention.   The subject were either massaged, rested 

or rode a bicycle for the total of 20min recovery time.  Blood samples were taken and lactate 

concentration  determined at rest, 3, 5,9,15 and 20min post exercise and led to the conclusion that 

massage did not remove lactate more than resting or as well as cycling at 40% of VO2max following 

exercise.  

 

Due to the inconsistent, often conflicting, evidence that currently exists regarding the possible benefits 

of these two recovery modalities used in combination, the need for a robust systematic review in RCTs 

is confirmed. From a preliminary review of the literature focussing on studies that have examined the 

effects of the two massage modalities combined, it would also appear that petrissage is more effective 

when it is preceded by effleurage which would justify the exclusion of studies using only one of these 

techniques as therapeutic modality in a thorough systematic review of the beneficial effects of MM.  

2.5.4 Friction and tapotement techniques 

Friction is defined as “an accurately delivered penetrating pressure applied through fingertips” 

(Galloway and Watt, 2004) that is administered either transversely to (cross-fibre) or parallel to (linear) 

the direction of tissues (Moraska, 2005).  It is used to initiate a small, controlled inflammatory response 

to the affected area in order for breaking down scar tissue and separate adhered tissues. It has been 

found to influence cell behaviour in all soft tissues (Cyriax, 1984) and it was suggested by Van der 

Windt et al. (1999) that friction massage may stimulate the proliferation of fibroblasts and collagen 

fibre alignment. This had been confirmed by Davidson et al. (1997) who reported an improvement in 

gait in rodents with Achilles Tendinitis recording an improvement in both step length and frequency 

following friction massage. It was also confirmed by Fehrs in 2010 who reported break down of 

adhesive tissue that had developed and optimization of the quality of scar tissue.   

Tapotement, another frequently used massage technique, is also known as percussion or hacking and 

involves repetitive light stroking movements that are applied with the ulnar portion of the hands or 
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cupped hands.  It is usually performed prior to performance in sports to energize the muscle tissue and 

stimulate muscle spindles or Golgi tendon organs according the location of treatment (Kukulka et al., 

1986; Moraska, 2005). In addition, using the previously described local xenon 133Xe wash out method 

to determine blood flow, Hovind and Nielsen (1974) reported an increase in skeletal blood flow 

comparable to exercise hyperemia observed in healthy uninjured adults who had not exercised and 

ascribed this increase to repetitive contractions resulting from the tapotement.   

 

The majority of studies do, however, not use these techniques in isolation and incorporate them into 

Swedish or classic massage therapy sessions.   

 

2.5.5 Swedish/Classic massage trials  

Classic western massage, also referred to as “Swedish” massage, is the most common form of massage 

that is used globally.  It is a combination of a variety of techniques, frequently including effleurage, 

petrissage, friction, vibration, tapotement, percussion and stroking with the choice of combination 

differing between therapists depending on the therapist’s experience and /or the intended clinical 

advantage desired (Weerapong et al., 2005).  In most of the studies a combination of western techniques 

has been used to investigate the effects of massage.  

 

2.5.5.1 Swedish Massage without preceding exercise 

Although this thesis is primarily concerned with the use of different forms of therapeutic massage 

following EIMD, it is of interest to begin by examining the outcome of a few studies which have 

focussed on the effects of Swedish massage in the uninjured individual in whom EIMD was not induced. 

 

In 1999 Leivadi et al. conducted a study comparing massage and relaxation therapy on 30 University 

dance students who were asked to continue their normal daily routine and school regimen, and were 

randomly assigned to two groups. The treatment group received 30min of whole body effleurage, 

petrissage and friction and the control group, 30 min of progressive muscle relaxation exercise twice a 

week for five consecutive weeks.  The massage group presented with a significant increase in ROM of 

the shoulder joint and neck and although both groups reported lower levels of depression and anxiety, 

the stress hormone, cortisol, was evidently decreased in the saliva of the massage group.  

Barlow et al. (2004) followed this up by investigating the immediate effect of MM on hamstring 

flexibility in a single blind study conducted on 11 physically active young men age (21+/- 3years).  

Hamstring muscles randomly received either 15min of effleurage, friction and petrissage performed by 
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a massage therapist bilaterally or 15min of supine rest.  It was found that a single bout of hamstring 

massage did not have a significant effect upon “sit and reach” score, but a higher percentage of change 

in reach in those subjects who had pre-test reach score of less than 15cm. This study highlighted the 

need for further studies with a larger sample and to investigate the greater effect on flexibility in the 

individuals with lesser ROM. 

In explaining the possible effect of MM on ROM, it is necessary to understand that fascial tissue is 

richly innervated with free nerve endings and mechanoreceptors and that Pacini corpulscles and Ruffini 

endings are nerve endings in the skin responsible for transporting impulses to central nervous system 

(CNS), particularly regarding pressure, pain and location (proprioception). While activation of motor 

nerves by motor neuron impulses relayed to muscle tissue cause contraction via the stretch reflex 

(Figure 2.7),   Ruffini endings are activated by lateral stretch and Pacini corpuscles by slight pressure 

changes. This subsequently lowers the activity of the sympathetic nervous system and increases muscle 

relaxation (Van den Berg and Capri, 1999; Schleip, 2003), supporting the findings that deep tissue 

techniques have a relaxing effect on local tissues and whole organism (Schleip, 2003). 

 

2.5.5.2 Swedish massage after eccentric exercise  

The majority of studies focussing on the effects of Swedish classical massage techniques used to 

attenuate the consequences of EIMD, investigated a variety of associated markers related to the 

functional deficits and levels of muscle soreness and pain experienced. In this initial review of the 

related literature, these will be presented chronologically with a focus on more recent work undertaken 

in the last 12 years. 

In a RCT conducted by Hilbert et al. (2003), 18 healthy volunteers assigned to either a massage or 

control group performed six sets of eight MVC of the right hamstring, which were followed 2h later by 

7min of effleurage, 1min of tapotement and 12min of petrissage versus 20min of applied placebo lotion 

and resting in the control group.  Peak torque and mood, ROM, intensity and unpleasantness of soreness, 

and neutrophil counts were assessed at regular intervals during the 24h after exercise.  There was no 

effect found on eccentric torque with massage but level of soreness was reduced 48h post exercise.  The 

results showed that massage administered 2h after exercise did not improve muscle function, but there 

was improvement in intensity of soreness. 

Zainuddin et al. (2005) examined the effects of Swedish massage on DOMS, swelling, and recovery of 

muscle function, in five healthy men and five healthy women with no history of upper limb injury and 

resistance training, using contralateral arms for treatment and control phases. Subjects received 10 min 

of Swedish massage on exercised arm 3h following maximal eccentric exercise of the elbow flexors. 
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MM had a significant effect (p<0.05) in reducing DOMS and also improving swelling in the upper arm 

muscles, but showed no effect on muscle function.   

A randomized self-controlled comparative study on the effect of classic massage (effleurage that was 

performed distal to proximal, kneading that was performed in forward circular movements, picking up 

that was done from proximal to distal and shaking) and dynamic soft tissue mobilization (DSTM) 

massage techniques on hamstring muscle length (estimated from the height of straight leg raise) in 35 

competitive female hockey players was completed by Hopper et al. in 2005.  The passive straight leg 

raise and passive knee extension were used to measure indirect hamstring length, before, following and 

24h after treatment.  It was concluded that massage had a significant short term effect on hamstring 

length (p <0.01), but was not maintained over a 24h period.  Both DSTM and classic massage had a 

significant effect on hamstring length.   

Mancinelli et al. (2006) used a randomized pre-test/post-test control group design, to determine whether 

post-exercise classic massage has an effect on DOMS and physical performance in women collegiate 

athletes. Twenty-two female basketball and volleyball players received either thigh massage (17 min 

effleurage, petrissage & manual vibration treatment group, n=11) or no treatment n=11) on a day of 

predicted peak soreness following 4-day training routine.   There were improvements in vertical jump 

displacement, perceived soreness and algometer readings for the massage group, but not muscle length.   

This study promotes the use of Swedish MM in collegiate athletes for the control of muscle soreness, 

pain pressure and improved muscle power. 

In a contralateral RCT, Willems et al. (2009) examined the effect of MM (25min of effleurage, 

petrissage,  tapotement and effleurage), on DOMS in the quadriceps muscles and single leg vertical 

jump performance after a 20min downhill walk carrying a load equal to 10% of their body mass in 

seven active females.  DOMS was reduced by MM at 48hr post-exercise in the rectus femoris and vastus 

lateralis (p<0.05), but not in the vastus medialis.  The decline in jumping performance with each leg 

after the downhill walking was decreased (p<0.001) by 19% and 21% in control and massaged legs, 

respectively (p<0.05).  Reductions in DOMS in the massaged leg after downhill walking were muscle-

specific.   

Abad (2010) studied the effects of classical massage on DOMS perception, ROM, limb girth and 

maximum strength performance after muscle damage following strenuous eccentric exercise.  Eighteen 

males were divided into the following three groups: massage-only, exercise-only (control group), and 

exercise + massage (experimental group) according to their 1-RM value.  Muscle damage was induced 

by 30 supramaximal eccentric contractions (6 sets of 5 repetitions at 110% 1RM).  Six minutes of 

classical massage was applied on the exercise and massage group immediately post exercise and 

DOMS, ROM and limb girth were assessed 24, 48, 72 and 96h after exercise and maximum strength 
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after 48 and 96h.  No difference was detected in experimental and control groups in all parameters 

assessed. The authors concluded that classic massage did not minimise symptoms associated with 

DOMS. 

Pilladi et al. (2013) evaluated the effect of massage compared to active exercise on DOMS.  Thirty 

subjects were divided into groups of either  20 min of effleurage, petrissage, friction, tapotement, 

stroking on quadriceps muscles (massage group) or 5-6 sets  of active exercise separated by 2-3min of 

rest (control group).  Measurements of pain using VAS and knee joint functional capacity using a 

functional knee rating scale showed that massage had a positive effect in ameliorating DOMS. 

Han et al. (2014) examined the effect of massage on the muscle pain of the gastrocnemius muscle and 

gait.  In this randomized trial the control subjects received 20 min placebo (TENS pads put on the leg) 

and treatment group 20 min of light stroking, skin rolling, friction and milking.  The induced muscle 

damage response was induced in the subjects by walking up and down the stairs in a five storey building. 

The massage reduced the pain significantly compared to the control group and change in gait was seen 

in terms of distance, step length, stride length and temporal parameters (ambulation, heel on off time, 

stride velocity).   The pain relief correlated with gait, suggesting a greater effect of massage after 

DOMS. 

Shin and Sung (2015) focussed on the effects of massage on muscular strength and proprioception after 

EIMD.  Subjects were randomly divided into a placebo group (n=10) which was fitted with TENS pads 

for 15 min following EIMD exercise (20 x up & down stairs) or an experimental group (n=11) in which 

the stair climbing EIMD exercise was followed by 15 min of effleurage, milking, friction and skin 

rolling in the gastrocnemius muscle. Blood lactate concentrations were assessed using a Lactate Pro 

analyser before and after exercise and proprioception by dual inclinometer.  The findings revealed that 

massage to the gastrocnemius muscle improved muscle strength and proprioception, stimulating the 

superficial layer of this muscle.  A tension equal to one gram and a stretch of a 1 micrometer (in length) 

was found to be enough to activate the muscle spindle. Ward (2012) attributes their findings to the 

psychological aspects of touch therapy. He argues that the idea of placing hands on the individual could 

trigger psychological relaxation or the perception that the treatment is doing something favourable.  

Moreover, he highlights the duration of the treatment as playing a role in achieving positive results 

when there is excessive pain or excessive EIMD.  

From this descriptive review on the effects of Swedish massage, it would appear that the evidence is 

quite conclusive that when a combination of 3 or more Western classical techniques are used, the effect 

of MM is positive.  

As the majority of the research in this field has however examined a variety of different outcome 

measures and the number of studies are small and in some cases not randomised, a systematic review 



27 
 

 

in which outcome measures are subdivided and classified into homogenous groups, is needed to provide 

greater clarity regarding the efficacy of MM in attenuating the functional and physiologic deficits 

associated with EIMD.  

 

2.5.6 Manual (classic) massage combined with other therapies  

The combination of warm-up, stretching and massage decreased the negative effects of eccentric 

exercise in the study by Rodenburg et al. (1994).  50 people, were randomly assigned to a treatment 

and a control group, performed eccentric exercise with the forearm flexors for 30 min and treatment 

group additionally performed a warm-up and underwent a stretching protocol before the eccentric 

exercise and massage afterwards. Functional and biochemical measures were obtained before, and 1, 

24, 48, 72 and 96h after exercise.  Outcome measures were CK, maximal force and the flexion angle of 

the elbow.  The results were however, inconclusive, the objective measures did not yield more 

unequivocal results than the subjective DOMS scores.  

Andersen et al. (2013) examined the acute effects of massage or active exercise in relieving muscle 

soreness in 20 healthy female volunteers in a RCT. The subjects performed eccentric contractions for 

the upper trapezius muscle on a Biodex dynamometer to induce DOMS.   DOMS presented 48h later, 

at which stage subjects either (a) received 10 min of massage of the trapezius muscle or (b) performed 

10min of active exercise (shoulder shrugs 10 × 10 reps) with increasing elastic resistance (Thera-Band). 

Initially, one treatment was randomly applied to one shoulder while the contralateral shoulder served 

as a passive control. Two hours later, the contralateral resting shoulder received the other treatment. 

The subjects rated the intensity of soreness on a 0–10scale, and a blinded examiner took measures of 

pressure pain threshold (PPT) of the upper trapezius immediately before treatment, 0, 10, 20 and 60min 

after the treatment. 

Massage compared with control, significantly reduced the intensity of soreness and increased pressure 

pain threshold (PPT) (i.e. reduced pain sensitivity) when compared to the alternative treament.  For both 

types of treatment, the greatest effect on perceived soreness occurred immediately after treatment, 

whereas the effect on PPT peaked 20min after treatment. However, active exercise using elastic 

resistance provided similar acute relief of muscle soreness as did massage (Andersen et al., 2013).  

These researchers concluded that although massage can be used to reduce DOMS acutely, for example, 

to prepare for competition or strenuous work, the effect was found to be should be temporary with the 

greatest effects occurring during the first 20min after treatment and diminishing within an hour.  
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2.5.7 Combination trials focussing on changes in blood flow 

In the study by Cambron et al. (2006) six different massage techniques were used including Swedish 

(effleurage and petrissage), deep tissue, myofascial release, trigger point, sports and craniosacral 

massage. Massage ranged between 30-90min in duration.  The subjects that received Swedish massage 

had greater reduction in blood pressure (BP) than subjects who had other forms of massage.  The length 

of the massage and techniques performed were however, not controlled and the length of the technique 

was based on the student’s perception of the subject’s need.   

Numerous studies have also evaluated the effect of massage on blood flow using venous occlusion 

plethysmographs and showed significant increase in average blood flow (Callaghan, 1993).   Examining 

the hypothesis that an increase in blood flow may lead to elevation of the amount of the oxygen 

delivered to the injured tissue, hence improving healing or return to homeostasis process (Hunt, 1990), 

Callaghan (1993) used venous occlusion plethysmography and Doppler ultrasound to determine arterial 

and venous blood flow during effleurage massage on the quadriceps muscles (Tiidus and Shoemaker, 

1995).   They found no effect of effleurage quadriceps arterial or venous flow in both the light and deep 

effleurage techniques that were performed for 10min (Tiidus, 1997).  Moreover, Shoemaker et al. 

(1997) also found no positive results on the effect of effleurage, and petrissage massage on blood flow 

of the quadriceps muscles, but light muscle contractions showed increase in blood flow and then 

concluded that the light contraction may actually have more effect in enhancing blood flow post 

eccentric exercise compare to MM.  

Although the validity of the evidence must be questioned as venous occlusion plethysmography was 

used for measurement of blood flow during massage (Tiidus and Shoemaker, 1995), and Doppler 

ultrasound was used to determine arterial and venous blood flow during effleurage massage on the 

quadriceps muscles.  Shoemaker et al. (1996) found no positive effect of effleurage, petrissage or 

tapotement massage on blood flow of the quadriceps muscles, but light muscle contractions showed 

increase in blood flow and then concluded that the light contraction may actually have more effect in 

enhancing blood flow post eccentric exercise compare to MM. 

Since blood flow and the rate of lactate redistribution are likely to be near maximal following high-

intensity exercise, it seems unlikely that massage could improve these factors during recovery. In fact, 

recent research has suggested that massage recovery is no more effective than rest recovery in 

promoting blood lactate removal (Micklewright et al., 2006), while recently it has been reported that a 

combined active and massage recovery intervention is more effective than rest, and as effective as 

continuous active recovery for the elimination of blood lactate following a simulated 5km cycling time 

trial (Monedero and Donne, 1993). However, interpretation of the contribution of massage to the 

recovery process in this study is difficult because the combined recovery interventions included an 
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initial active phase. In the combined active-massage-active group, the effect of the massage phase on 

blood lactate reduction is consequently obscured by the initial active phase. The effectiveness of 

massage and active recovery in terms of the elimination of lactate from the blood following an 

exhaustive bout of high-intensity exercise and the hypothesis that blood lactate removal would be 

accelerated by active recovery and combined massage-active recovery, compared to rest, massage, or 

combined rest-massage recovery, was therefore subsequently re-examined by numerous researchers. 

 

Gupta et al. (1996) also investigated the comparison of blood lactate removal during the period of 

recovery in which the subjects were required to sit down as a passive rest period, followed by active 

recovery at 30% VO2 max and short term body massage (10 min of kneading and stroking)  as the three 

modes of recovery used. After exhaustive intermittent exercise was performed on a bicycle ergometer 

blood lactate concentration was recorded at 0, 3, 5, 10, 20, 30 & 40min post-exercise and no remarkable 

difference between massage and a passive type of sitting recovery period was reported. It is concluded 

from the study that the short term body massage is ineffective in enhancing the lactate removal and that 

an active type of recovery is the best modality for enhancing lactate removal after exercise. 

 

These findings were confirmed by Monedero and Donne (2000) who conducted a study on 18 healthy 

trained male cyclists’ subjects examining the effect of recovery interventions on lactate removal and 

subsequent performance.  Subjects were allocated to either control passive recovery where the subject 

seated at rest on the chair, active cycling 50% VO2max, effleurage, combined stroking and tapotement    

massage and cycling all done 15min post eccentric exercise.  There was no significant difference 

between passive rest and massage group, but there was significant improvement with other interventions 

compared to massage and passive rest.   Combined recovery was found to be better than passive 

(p<0.01) and either active or massage (p < 0.05) in maintenance of performance time. Removal of blood 

lactate during combined recovery was significantly better than passive at 3min and significantly better 

than passive, active, and massage at 15 min.  Therefore, the combination of these modalities showed 

more positive effect for maintaining maximal performance with active recovery.  

Robertson et al (2003) examined the effects of leg massage compared with passive recovery on lactate 

clearance, muscular power output, and fatigue characteristics after repeated high intensity cycling 

exercise. Nine male games players’ subjects attended the laboratory on two occasions one week apart 

and at the same time of day.  After five min of active recovery, the intervention was either 20 min of 

passive supine rest or 20 min of leg massage (effleurage and non-specified techniques), assigned in a 

randomised cross over fashion an either 20 min of leg massage or supine passive rest following high 

intensity exercise subjects performed a second standardised warm up and a 30sec Wingate test. 

Capillary blood samples were drawn at intervals, and heart rate, peak power, mean power, and fatigue 

index were recorded.    Massage was applied five min to the back of the left leg, five min to the back of 

http://europepmc.org/abstract/med/8833711/?whatizit_url_Chemicals=http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI%3A24996
http://europepmc.org/abstract/med/8833711/?whatizit_url_Chemicals=http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI%3A24996
http://europepmc.org/abstract/med/8833711/?whatizit_url_Chemicals=http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI%3A24996
http://europepmc.org/abstract/med/8833711/?whatizit_url_Chemicals=http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI%3A24996
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the right leg with the subject in a prone position on a standard treatment couch. The subject then 

assumed a supine position, and massage was applied to the front of the right then left leg (each for five 

min).  The results of the study showed no measurable physiological effects of leg massage compared 

with passive recovery were observed on recovery from high intensity exercise, but the subsequent effect 

on fatigue requires  further investigation because a significantly lower fatigue index was observed in 

the massage trial (p  =  0.04) post exercise.  

 

2.5.8 Unspecified massage therapy 

In the recent publication of Crane et al. (2012), the type of MM used was unfortunately not specified. 

But interestingly, compared to unmassaged muscle cells, the tissue from massaged legs had different 

levels of the two key proteins, NFκB and PGC-1α. The authors regarded this as a positive finding that 

promotes the healing of muscle cells as lowering NFκB levels has been shown to reduce inflammation 

and increasing PGC-1α levels to lead to the creation of more mitochondria that generate energy for cell 

growth and muscle repair. Massage was also found to have attenuated the production of TNFα and IL-

6 inflammatory cytokines.  

Limitations observed in this study however include the changes in blood circulation to both legs and 

the difficulty in isolating each leg in one subject.  The additional muscle injury to the area resulting 

from the muscle biopsies could also have influenced the outcome of the study.    

 

Bakowski et al. (2008) found that massage decreased muscle soreness by 10-20% with no significant 

change noted in ROM of the massaged arm when the arms of the 14 healthy subjects were randomly 

assigned to either massage or control. The subjects performed eight sets of concentric and eccentric 

actions of the elbow flexors with each arm. One arm was massaged for 10 min 30 min after exercise 

and contralateral arm rested. The measurements were taken pre-exercise, post-exercise, 10min, 6, 12, 

24, 36 48, 72 and 96 h.  Although there was a 10%-20% decrease in soreness in the massaged arm, it 

was not significant. No difference in ROM and upper arm circumference noted within the groups.  

 

2.5.9 Massage therapy following exercise-induced muscle damage in rabbits 

In an extensive study performed on rabbits, Hu et al. (2007) looked at the effect of Tuina (kneading) 

therapy on muscle growth following muscle damage induced by heavy beats with a 2kg hammer on the 

middle belly of gastrocnemius muscle 9cm away from calcaneus muscle in an attempt to simulate the 

damaging effects of eccentric exercise on muscle, 114 six-month old male rabbits were divided into 

four groups (I) observational group (n=36) which were exposed to eccentric exercise, but received no 

http://en.wikipedia.org/wiki/Mitochondrion
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treatment, (ii) control group (n=36) which received massage treatment 24h after the injury, (iii) Tuina 

group (n=36) which received massage treatment two hours after the injury and normal group (n=6) 

which did not undergo any intervention and no activity.  The force and the frequency of the technique 

were measured with dynamic testing instruments.  Sixteenth day after the modelling, six rabbits in each 

subgroup were sacrificed and in a normal group, six rabbits were sacrificed on the second day after the 

other groups.  

The Tuina group had greater number of satellite cells (analysed using light microscope, where a semi-

quantitative count of PCNA staining positive of satellite cells were counted).  The cells that had PCNA 

positive satellite were changing to brown colour) compared to the remaining groups.  The control group 

had more satellite cells than observation group but less than the Tuina group. There was no change with 

normal group. The authors of this study concluded that Tuina therapy improves muscle recovery by 

increasing the number of satellite cells promoting an increase in regenerative skeletal muscle cells and 

more rapid recovery of the function of the muscle, delay DOMS and reducing muscle soreness (Hu et 

al., 2007; Marong and Jin, 2009) and attributed this to a reduction in muscle spasm, more oxygen and 

nutrient provision that increased metabolic activity which were also observed.  However, the effect of 

Tuina therapy on contractile proteins following eccentric muscle damage was not observed.     

In a rodent study, Marong and Jin (2009) found that Tuina applied pre-exercise was able to reduce the 

level of muscle damage cause by eccentric exercise in DOMS, moreover, Tuina was more effective in 

delaying DOMS and controlling the damage of lipid peroxidation.  

Muscle regeneration initiated shortly after injury can be limited by fibrosis which affects the degree of 

recovery and predisposes the muscle to reinjury (Best et al., 2008).  Massage has been identified as one 

of the useful strategies to enhance skeletal muscle repair through increased vascularisation also 

including gene therapy, exercise and neuromuscular electrical stimulation.   

In another study by Butterfield et al. (2008) on New Zealand white rabbits performed a bout of eccentric 

contraction resulting in muscle damage.  One leg was then subjected to cyclic compressive loads and 

the contralateral was put as a control. The rabbits had a peroneal nerve cuff inserted surgically and 

subcutaneous interfaces for controlling tibialis anterior /exterior hallucis longus muscles in both legs 

showed facilitation of recovery, fibre necrosis attenuation and reduction of leukocytes infiltration.  MM 

was found to have improved recovery of function and the wet weight of the tissue was also reduced by 

the compressive loading.  It also attenuated the damaging effects of inflammation in the rabbit model. 

However, Butterfield suggests further investigation on the translational efficacy of these findings. 

According to the author’s knowledge no work has to date been done on effect of massage on satellite 

cells in humans. These preliminary findings on animal models are positive, but replication in humans 

is a valuable directions for future research.  
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2.5.10   Conclusion  

Due to the heterogeneity of the study designs and the diversity in the outcomes measured, it is difficult 

to reach an objective conclusion regarding the efficacy of MM in positively affecting the physiological 

recovery post EIMD. While greater homogeneity regarding intervention strategies and design should 

be considered for the future and recent work performed in animal studies should be extended to humans, 

a formal systematic review and where possible, meta-analyses are required to reach a conclusion 

regarding the state of the knowledge in the field. 

However, the increase in the use of VT both in sport poses the question as to whether this modality 

results in the same or greater benefits than MM or whether is it because MM is time consuming and 

mostly requires a qualified therapist to perform, that the popularity of VT is increasing.   

 

2.6.   Vibration Therapy (VT) 

2.6.1 Introduction  

In 1895, Dr John Harvey Kellog invented a machine that creates mechanical vibration. It was later used 

to improve circulation when applied to parts of the human body and referred to as VT. Today this type 

of modality is mostly used in the athletic settings (Cafarelli et al., 1990).   

Vegar and Imtiyaz (2012) describes VT as a periodic alteration of force, acceleration and displacement 

over time in form of mechanical oscillation.  The energy is transferred from an actuator (vibration 

device) to a resonator (the human body or body part).  First use of vibration in sport was in 1987 by 

Nazarov et al. using the principle that if the vibration stimulation is placed on the distal muscle, the 

effect will be transmitted to the proximal muscle and improve athlete’s performance. 

There are two types of VT, whole body vibratory therapy (WBVT) and localized VT (LVT).  Both work 

on the principles of amplitude, frequency, and magnitude of the oscillations which determine intensity.  

The extent of the oscillatory motion determines the amplitude (peak to peak displacement, in mm) of 

the vibration, the repetition rate of the cycles of oscillation denotes the frequency of the vibration 

(measured in Hz), and the acceleration indicates the magnitude of the vibration (Cardinale and Bosco, 

2003).  Low-amplitude (range: 3-10 mm), low-frequency (range: 15 - 44 Hz) mechanical stimulation 

of human body (has been hypothesised to be a safe and effective way to improve muscle strength 

(Cardinale and Bosco, 2003), while the best pain reducing frequencies range between 50 and 200 Hz 

(Lundenberg et al., 1984).  
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2.6.2   Whole Body Vibration Therapy (WBVT)   

 

WBVT is performed with the subject standing on a vibration machine/plate and results in transference 

of vibratory stimuli to the whole body. Chronic treatments of WBVT have been shown to produce 

improvement in neuromuscular properties of human skeletal muscle and frequent contractions from the 

muscles which then improves muscle soreness (Aminian-Far et al., 2011). 

 

Early reported benefits of VT include an improvement in circulation, blood flow to the skin, an increase 

in skin temperature and decreased accumulation of lactate in the blood (Friden et al., 1988). More recent 

reports include mention of improvements in bone density, muscle mass, reduced joint pain and stress 

and activation of metabolism (Summer and Pletcher, 2014).  Furthermore, a training program that 

includes vibration has been shown to enhance the strength, power and length of muscle (Issurin and 

Tenenbaum, 1999; Delecluse et al., 2003).  It has been found to cause stimulation of muscle spindles, 

increasing their afferent activities (Ayles et al., 2011) and reducing background tension if applied before 

exercise (Bosco et al., 1999; Veqar and Imtiyaz, 2012). These studies have resulted in the frequent 

current use of VT as an exercise intervention. This application of VT is however not the focus of this 

study. 

As is summarised in Table 2.1, WBVT has been found to enhance power output, PPT, and active ROM 
during recovery from DOMS.  Bosco et al. (1999a) first reported the effect of regular WBVT (26 Hz) 
applied over a period of 10 days in 14 subjects assigned to experimental and control groups resulting in 
enhanced mechanical power and jumping height in the subjects receiving regular daily WBVT sessions.  
The acute effects of WBVT (of non-specified frequency) were examined on the lower limbs of six 
female volleyball players randomly assigned to control (n=3) and experimental (n=3) groups. Those 
receiving WBVT following a maximal dynamic leg press, significantly improved performance to a 
“level that could have otherwise taken several weeks to obtain”.  The adaptive responses of human 
skeletal muscle to vibration exposure were examined in six female volley ball players and significant 
enhancement with the treatment was reported in both average velocity and power (p<0.05; Bosco et al., 
1999b).  Studying this reaction on the upper limbs of 12 national level boxers randomly assigned to a 
control or experimental group, Bosco et al. (1999c)  subsequently reported that vibration @ 30Hz  (1 
min x 10repetitions) was applied to the experimental group post eccentric exercise, increased the 
average mechanical power force. 

After Edge et al. (2008) published work reporting no benefit of WBVT at a low frequency (12 Hz) on 

running performance recovery following a high-intensity interval training (HIIT) session in terms of 

serum CK, VO2 and blood lactate.  In 2010, Sui et al. examined the immediate effects of 2 vibration 

frequencies that yielded the same maximum acceleration on peak torque and stiffness of knee extensor 
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2.1 Outline of recent studies conducted on the efficacy of Whole Body Vibration Therapy  
(WBVT)  on measures of physical performance and DOMS on inflammatory markers 
 Outcomes Measured Results Comments 
WBVT    
Bosco et al. (1999a) Power output- vertical jump Positive 26Hz 
Bosco et al. (1999b) Power output- maximal 

dynamic leg press 
Positive Frequency not specified 

Edge et al. (2008) Serum CK, CRP 
concentration 

No difference Following HIIT 

VO2 No difference 
Blood lactate concentration No difference 

Sui et al. (2010) Tissue stiffness No difference 26Hz or 40Hz post 
eccentric exercise Knee extensor and flexor 

peak torque @ 26Hz vs 
40Hz vs control 

Positive in both 26 
and 40Hz 

Aminian-Far et al. 
(2011) 

DOMS Positive  
CK Positive 
MVC Positive 

Marshall and  Wyon        
(2012) 

Vertical jump 
 

Positive No immediate effect post 
exercise.  Long-term 
positive effect noted Active ROM 

 
Positive 

Leg anthropometry (thigh 
and calf circumference) 

Positive 

Wheeler and Jacobson 
(2013) 

Flexibility No difference Compared to light 
exercise DOMS (VAS) No difference 

Explosive power No difference 
WBVT: whole body vibration therapy; ROM: range of motion; CK: creatine kinase; CRP: C-reactive protein; 
DOMS: delayed onset muscle soreness; HIIT: high intensity interval training; MVC:  maximum voluntary 
contractions; VAS: visual analog scale; vs: versus  

and flexor muscles.  Ten recreationally active subjects performed 10 x 60sec static half squats 

intermitted with a 60sec rest period between bouts on a platform with no vibration (control) and two 

vibration frequencies (experimental groups).  CON peak knee extensor and flexor torques examined 

within 5min before and after vibration frequencies of 26 and 40Hz were found to be significantly greater 

than that in a control group (p<0.05).  Greater positive change of ECC peak torque of knee flexor after 

vibration was only seen in 26Hz frequency group, compared to control group.  There were no significant 

differences obtained in tissue stiffness in the quadriceps and hamstring muscles using Young's modulus 

as index of tissue stiffness (Sui et al., 2010). 

 

In a study by Aminian-Far et al. (2011) on WBVT and prevention and treatment of DOMS, in which 

22 females and 10 males untrained university students were randomly placed into either a WBV training 

(n=15) or non-WBV-training (n=17) group, both groups performed six sets of 10 maximal voluntary 

eccentric contractions to induce DOMS. The WBVT-training group received vibration loading for 1min 

at 35Hz in a squatting position on the vibratory platform (100degrees of knee flexion) prior to the 
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eccentric exercise.  The greatest decrease in muscular strength occurred in the in the control group and 

PPT was found to be more decreased in WBV-training group than in the control group.  Plasma CK 

levels were greater in the control with muscle soreness being greater in the control group.   

Barnes et al. (2011) examined the acute effect of WBVT on performance using the commercial machine 

(Galileo Sport, Novotec, and Pforzheim, Germany) which has motorized teetering platform that 

produces side to side alternating sinusoidal vertical vibration (SAV) to the body. Equal numbers of 

subjects (n=8) were randomly assigned to either WBVT or control treatment groups.  Subjects 

completed a bout of eccentric exercise after they underwent either VT (26Hz) or control (no treatment) 

immediately post exercise, 12h and 24h post exercise.  Significant decreases in isometric (ISO) and 

concentric (CON) strength measures occurred in both groups. VT did not attenuate muscle force loss 

and improve the recovery of muscular performance after strenuous bout of eccentric exercise. 

Marshall and Wyon (2012) reported that a beneficial supplemental training intervention increased jump 
and active flexibility in highly trained dancers.  These researchers investigated the effect of 4 weeks 
WBVT on jump height, active ROM and calf and thigh circumferences in 17 dance students randomly 
assigned to an intervention group (WBVT) for 30sec at 35Hz frequency, 8mm displacement for 2 weeks 
and then 40sec at 40Hz for the last two weeks) or control group (which performed the same type of 
exercises without vibration stimuli).  Significant (p<0.05) improvements in the experimental group were 
noted over time for vertical jump, active ROM for both legs (p<0.01) and anthropometric data, when 
compared to the control group.  

Wheeler and Jacobson (2013) determined the effects of WBVT on DOMS (using VAS), measures of 

perceived pain/soreness, flexibility and explosive power after EIMD in 20 healthy subjects randomly 

assigned to experimental (WBV) or the control group (Light exercise), immediately following eccentric 

exercise and again immediately after receiving treatment. No significance (p > 0.05) was found within 

or between groups when comparing pre-assessments and post-assessments of DOMS, flexibility, or 

explosive power.  It was concluded that WBV is as effective as light exercise in reducing the severity 

of DOMS and may be used as a recovery option in addition to current treatments.   Their findings were 

however not supported by those of Xanthos et al. (2013) who studied the effect of WBV and traditional 

intervention as a recovery technique on running kinematics and jumping performance following EIMD. 

Although the WBVT has been studied by many researchers, this descriptive overview confirms the 

conclusion reached by Animian –Far (2011) that the efficacy of WBVT is not yet conclusively proven 

due to contradictory results.  As summarized in Table 2.1 of the 7 studies conducted since 1999, only 4 

did not show a positive on attenuation of muscle strength losses, one showed a failure to improve 

markers of inflammation. 
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This could be due to different mechanisms of action.  One mechanism that has been described is elicited 

neuromuscular activation (Bosco et al., 1999, Cardinale and Bosco, 2003), whereby the local tendon 

and muscle vibrations stimulate muscle spindle and Iα fibres (Figure 2.1), which mediate the 

monosynaptic and polysynaptic pathways (Hagbarth and Eklung, 1985; Siedel, 1988). 

Although the evidence is therefore primarily positive, the sample sizes are relatively small and a larger 

scale randomized controlled study needs to be conducted to confirm these results before the evidence 

is overwhelmingly positive. Furthermore the timing of the WBVT sessions is often prior to exercise 

and a clear differentiation between the efficacy prior to, during the course of and following exercise 

needs to be examined. 

  

2.6.3   Local Vibration Therapy (LVT) 

During LVT used in physiotherapy settings, the therapist holds or uses a hand-held vibratory device to 
the specific part of the body treated such as calf, thigh or shoulder.  The effects of VT include motor 
pool activation.  Comprising a group of motor spinal neurons that innervate same muscle, motor pools 
with multiple neurons produce finer movements.  The frequency of vibratory stimulation as well as the 
initial length of the stimulated muscle has been shown to be highly correlated with motor neuron 
recruitment (Ayles et al., 2011). 

One of the most frequently used innovative LVT tools that is currently on the market, are the percussive 
vibratory massagers.  These frequently have nodes that release vibration at different intensities and their 
heads ensure that the users experience a deep massage when placed on a particular body segment 
experiencing pain.  Manufacturers claim that they result in reduction of muscle soreness and enhance 
healing to the muscle as the powerful vibration released from hand held devices, relax the muscle 
(Percussive Massager, 2015). 

Balke et al. (1989) compared the effects of manual and mechanical massage on recovery from muscular 
and physiological fatigue on 16 subjects assigned to either MM or LVT (using a thumper machine/sport 
percussive massager) groups.  They concluded that there were physiological and local recuperative 
benefits from both modalities when compared to rest.  As the sample size of this study was small and it 
is not clear whether the manual techniques used were as vigorous as the VT using a mechanical 
machine, the comparative findings of this early study with regard to the relative benefits of MM and 
VT were questioned (Callaghan, 1993).  

A summary of the recent studies investigating the physiological effects of LVT on recovery from EIMD 
is given in Table 2.2  
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Table 2.2 Outline of recent studies conducted on the efficacy of Local Vibration Therapy (LVT) on 
measures of physical performance and DOMS on inflammatory markers 

 Outcomes Measured Results Comments 

Cafarelli et al. (1990) Static contractions of 
quadriceps-rate of fatigue 

No effect Percussive vibration 
massage 

Bosco et al. (1999c) Power output- boxing Positive 30Hz 

Issurin and 
Tenenbaum (1999) 

Explosive strength Positive 44Hz 

Sinahara et al. (2005) Inhibition of the H-reflex Positive 75Hz, 30 min 
Bakthiary et al. (2007) IMVC Positive 50Hz  

DOMS Positive 
Serum CK concentrations Positive 

Kinser et al. (2008)  Flexibility positive  30Hz combined with 
stretching 

Flexibility Negative 30Hz  
Explosive strength Negative All groups 

Sands et al. (2008) Split ROM 
PPT in BF  
PPT in VL 

Positive 
No difference 
No difference 

Using stretching & 30Hz, 
54 x 77x 32 cm vibrator 
placed below heel & 
rearward thigh  

Herda et al. (2009) Passive ROM Negative No difference between 
passive stretch     LVT 
control 

Torque Positive 
Surface EMG No difference 
Mechanographic amplitude 
of gastrocnemius soleus 

No difference 

Broadbent et al.(2010) DOMS No effect of LVT Randomised controlled 
trial post IL-6 

Lymphocytes  
Neutrophils  
Histamine  

Ayles et al. (2011) Mechanosensitivity 
PPT 
DOMS 

Positive 
Positive 
Positive after 24 h 

No difference 

Barnes (2011) Isometric concentric force No change 26Hz 
Lapole and Pẻrot 
(2011) 

Passive stiffness Positive  
Musculo-tendinous 
stiffness 

Positive 

Tendinous reflex Positive 
H-reflex Positive 

Lau and Nosaka 
(2011) 

ROM Positive 65Hz post eccentric 
exercise DOMS Positive 

Swelling No effect 
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Muscle strength recovery No effect 
Serum CK No effect 

Mohammadi and 
Sahebazamani (2012) 

ROM Positive 50Hz prior to eccentric 
exercise Muscle soreness 24-96h 

post exercise 
Positive 

Xanthos et al., 2013 DOMS No difference 26Hz 
ROM: range of motion; h: hours; CK: creatine kinase; DOMS: delayed onset muscle soreness; LVT: localised 
vibration therapy; BF: biceps femoris; VL: vastus lateralis; IMVC: isometric maximum voluntary 
contractions; H-reflex: Hoffman reflex; IL: interleukin; EMG: electromyography; PPT: pain pressure threshold 

\ 

Cafarelli et al. (1990) studied the effect of percussive vibratory massage on recovery from repeated 

submaximal contractions.  Twelve male subjects were assigned to either 5 min of rest (control) or 5 min 

of percussive vibratory massage after performing repeated, static contractions of the quadriceps at 70% 

MVC.  The rate of fatigue was calculated from a regression line fit to the decline of the periodic MVC.  

No effect on the rate of fatigue in control and vibrated conditions found, it was concluded that short-

term recovery from intense muscular activity is not augmented by percussive vibratory massage. 

Shinohara et al. (2005) examined the influence of prolonged vibration of a hand muscle with the purpose 

of studying amplitude of the stretch reflex, motor unit discharge area and force fluctuations during 

steady, submaximal contractions.  The experiment was conducted the non-dominant hand of 32 adults 

(15 men and 17 women) without neuromuscular disorders.  The experimental group (n=20) received 

vibration (75Hz for 30 min) on the first dorsal interosseus muscle and control group (n=12) received no 

VT.  All subjects performed the tasks with the index finger of the non-dominant hand before the 

experiment.  LVT increased the amplitude of the latency component of the stretch reflex, the discharge 

rate of motor units and force fluctuation.  The authors concluded that the differential changes in the 

amplitudes of the H- and stretch reflexes are indicative of a change in the sensitivity of the muscle 

spindle before and after an intervention and the suppression of the short term latency reflex (or response 

time) in the first dorsal interosseus muscle is probably the result of inhibitory input from higher centers.  

Moreover, Bakhtiary et al. (2007) examined the effect of LVT (50Hz) on left and right quadriceps, 

hamstrings and calf muscles for 1min applied before downhill walking on 10◦ declined treadmill at 

4km/h) on 50 healthy non-athletic subjects, randomly assigned to VT or non-VT groups (no 

intervention). The isometric maximum voluntary contraction force (IMVC) of left and right quadriceps 

muscles and PPT was measured 5, 10 and 15cm above the patella and mid-line of the calf muscle of 

both lower limbs before and after the treadmill walking.  There was an attenuation of the post exercise 

deficit in IMVC and PPT and decrease in DOMs and CK concentrations in the VT group.   

Kinser et al., in the same year, examined the effects of simultaneous vibration-stretching on flexibility 

and explosive strength in 22 subjects allocated to vibration-stretching (VS; n=7), vibration alone (VF, 

n=8) and stretch only (n=7) groups.  Vibration (30Hz, 2mm for 10s) was localised to four body sites. 



39 
 

 

Right and left forward-split flexibility was measured using the distance between the ground and anterior 

suprailiac spine, while  explosive strength variables included flight time, jump height, peak force, 

instantaneous forces, and rates of force development. A combination of vibration and stretching 

treatment was found to have a large positive impact on flexibility, while not altering explosive strength.  

Sands et al. (2008) assessing the use of LVT (30Hz, 22mm displacement) and stretching to enhance 

acute ROM and its influence on PPT in 10 gymnasts with one side split randomly assigned to the 

experimental condition, and the other side split was assigned as the control used a 54 x 77x 32cm come 

vibration device placed below the rearward thigh and heels was used to perform both side splits, 

Gymnasts were also assessed for PPT using an algometer on the biceps femoris (stretched) and vastus 

lateralis (not-stretched) bilaterally. Vibration improved split ROM more than stretching alone, but did 

not show a difference in PPT in either the stretched or non-stretched muscles. 

Herda et al. (2009) examined the acute effects of passive stretching vs. prolonged vibration on voluntary 

peak torque, percent voluntary activation, peak twitch torque, passive ROM, musculo-tendinous 

stiffness, and surface electromyographic (EMG) and mechanomyographic amplitude of the medial 

gastrocnemius and soleus muscles during IMVC of the plantar flexors. 15 subjects were assigned to 

passive stretch, prolonged vibration or control groups and performed the IMVC.  Passive ROM 

assessments before and after 20 min of the interventions.  Passive ROM increased by 19% and 

musculotendinous stiffness decreased by 38% after the passive stretch, but neither changed after the 

vibration or control conditions.  Both passive stretch and vibration elicited similar neural deficits (i.e., 

gamma loop impairment) that may have been responsible for the strength loss.  

In 2010 Broadbent et al. assessed the effect of LVT on DOMS and associated inflammatory markers 

after downhill running in 29 male recreational runners who performed a downhill run for 40 min.  They 

were randomly allocated to a LVT group or control group and underwent once-daily sessions of LVT 

on the upper and lower legs. Pre-run and for five days after the run, DOMS (using VAS) and selected 

plasma inflammatory markers were assessed in both groups. LVT (50Hz) significantly reduced calf 

pain 96h post-run, gluteal pain 96h and 120h post-run.  Blood IL-6 concentration 24h and 120h post-

run was also observed.  It was concluded that an application of 50Hz vibration significantly reduces IL-

6 and lymphocytes.  A substantial decrease in histamine 24h and 120h post-run was also noted, but 

there were no clear substantial effects of LVT on neutrophils and lymphocyte subsets and histamine. 

Ayles et al. (2011) examined the effect of LVT on 16 healthy males performed eccentric exercise 

inducing DOMS in the tibialis anterior muscle on one randomly selected leg and the contralateral leg 

served as a control.  DOMS peaked at 24 hrs post EIMD  On day 1 following exercise, segmentally 

related site PPTs reduced significantly when LVT was applied concurrently to the DOMS affected 
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tibialis anterior muscle (p<0 .04)compared to baseline mechanosensitivity or extra segmental control 

vibration. 

In 2011, Lapole and Pẻrot investigated the effects of tendon vibration on the triceps surae stiffness of 

healthy subjects.  The vibration program consisted in 14 days of 1h daily Achilles tendon vibration 

applied at rest.   After the program, musculo-tendinous stiffness was significantly decreased (p=.01) and 

maximal passive stiffness was reduced (p <0.001). The tendon reflex also significantly decreased. The 

results showed that VT had positive effect in reducing the stiffness and could be of benefit to the 

athletes. 

Lau and Nosaka (2011) conducted a randomized crossover design study on 15 male subjects who 
performed 10 sets of 6 maximal contractions of the elbow flexors 4 weeks apart.  After exercise the one 
arm received 30 min of VT at 30 min after exercise and 1, 2, 3 and 4 days post-exercise.  The other arm 
did not receive any intervention (control).   The dominance and non-dominance of the arms were counter 
balanced as well as the order of treatment and control conditions.  Results indicated that LVT was 
effective in reducing DOMS at 2 to 5 days after exercise and recovery of ROM, but did not have any 
effect on swelling, recovery of muscle strength and serum CK activity.  

In recent studies by Mohammadi and Sahebazamani (2012) on the influence of LVT (50 Hz) on selected 
of the functional markers of DOMS.  The study was done on 30 college males who were randomly 
selected to vibration group or control group.  LVT was applied prior to the exercise at 50Hz vibration 
for 1 min on upper limb.  They then performed 5 x 10 repetitions of eccentric contraction, at 85% of 
one rep maximum.  Results showed that LVT had positive effects on ROM reducing muscle soreness 
24, 48, 72 and 96h post exercise. 

Imtiyaz et al. (2014) 45 healthy, but non-athletic females were distributed into three groups (n=15) 

including a VT group (VTG), a massage therapy group (MTG) and the control group (CG no 

intervention). MM was performed 15min prior to eccentric exercise in MTG and 50Hz  mechanical 

vibration in supine position on the belly and the tendons of biceps brachii for five min prior to exercise 

in VTG.   The researchers reported changes in blood LDH and CK concentrations and related these to 

the repetition maximum of the dumbbell exercise finding that VT and MM therapy have an equal effect 

on the prevention of DOMS.  MM was effective in restoration of concentric strength, whereas VT 

resulted in earlier reduction of pain.  

A broad descriptive overview of 15 recent studies outlining the effect of LVT on physical performance 

and summary thereof provided in Table 2.2 indicates that the majority of recent studies used a frequency 

range of 26-50Hz, although Shinahara et al., (2005) also reported positive effect on H-reflex 

suppression using 75Hz. The majority of these recent studies also used LVT as an intervention to 

optimise training effect, rather than as a therapeutic modality post EIMD.  
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Interestingly, of the six studies that focused on measures of flexibility (with and without concurrent 

stretching), five (83%) showed positive effect, while of the seven focusing on contractile force (and 

related aspects), five (71%) showed positive effect. Other positive outcomes were those with the 

attenuation in DOMS (two of three; 67%), while the effect on post EIMD and markers of inflammation, 

was not consistent. 

A robust systematic review in which studies are selected according to carefully chosen inclusion criteria 

is therefore warranted. 

 

2.6.4 Conclusion 

As summarised in Tables 2.1 and 2.2 and concluded by Osawa and Oguma (2013), LVT does appear to 

have positive effects in promoting relaxation of the muscle and increased joint flexibility. In a meta-

analysis of 23 LVT and WBVT studies performed to date, Osawa and Oguma (2013), showed that VT 

had significant effects on flexibility alone as well as a significant additive effect on flexibility training, 

compared to identical conditions without VT. They attributed this to the suppression of the central 

nervous system owing to motor pool excitability (Vegar and Imtiyaz, 2012), a decrease in pain sensation 

(Lundeberg et al., 1987), increased blood flow , relaxation of stretched muscles (Lythgo et al., 2009) 

and inhibition of the muscular antagonist mediated by the GTO-IIB afferent neuron pathway (Stone et 

al., 2003). 

With reference to the tendon reflex referred to by Osawa and Oguma (2013), it has also been implicated 

in explaining the effects of application of LVT in order to reduce muscle stiffness.  This is an ipsilateral 

polysynaptic inhibitory reflex activated by pressure on the GTOs or severe contraction of muscle which 

places tension on the tendons and their receptors. The effector response is relaxation of the agonist 

muscle   (Ezeilo, 2002). 

As the majority of these studies have focused on VT as a supplementary exercise training modality, it 

will be of interest to determine whether the analysis on the use of VT in reducing post EIMD muscle 

stiffness will confirm these findings.  

2.7. Conclusion  

This descriptive review of the related literature therefore reveals that in terms of the efficacy of LVT in 

enhancing recovery from EIMD, the studies display less heterogeneity, and those completed following 

EIMD are focusing on a particular muscle localized group and hence a comparison between the efficacy 

of LVT and MM was regarded as a viable comparison. 
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Of the 10 studies discussed, 5 appear to report positive results in terms of recovery post-EIMD.  

However the outcomes measured vary considerably.  A similar conclusion was reached following the 

descriptive survey of MM.  

A thorough systemic review of recent studies directed at specific outcome measures and meeting pre-

set inclusion criteria in terms of study design and outcome measures, is therefore warranted before more 

clarity regarding the current status quo of the scientific evidence can be obtained.  
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CHAPTER THREE 

Methodology 

 

According to Petticrew and Roberts (2006), a systematic review comprehensively identifies, appraises, 

and synthesizes all the relevant studies on a given topic and is particularly pertinent to research in which 

there is uncertainty about the outcome of the effectiveness of an intervention.  Ulman (2011) emphasises 

the importance of reducing selection bias by establishing a detailed and comprehensive plan and search 

strategy a priori and including a meta-analysis component to synthesise the data into a single 

quantitative summary.  

 

After a clear identification of the research questions in Chapter One, this systematic review has been 

approached as follows: 

 

3.1   Completion of a comprehensive literature search and literature review  
The online PubMed/MEDLINE EBSCOhost, Science Direct, Google Scholar and Research Gate 

databases were searched using the following key words: Massage, Manual massage (MM), Vibratory 

massage/therapy (VT), Eccentric exercise, Muscle damage, DOMS.  Reference lists of potentially 

useful recent research publications were also searched to identify additional articles. 

 

Thereafter a comprehensive purely descriptive literature review was written describing the state of the 

knowledge in each of the related areas of interest and including evidence obtained from both animal 

and human studies. This review is presented in Chapter Two. 

 

3.2 Determination of the criteria required for inclusion of trials in the systematic review 

A trial was included in the systematic review if it  

(i) examined the effects of Swedish massage or a combination of a minimum of two classical MM 

techniques following induction of EIMD on humans in either gender or made use of  local 

vibration therapy (LVT) before or following induction of EIMD  

(ii) could be classified as a prospective RCT. This included both self-controlled trials examining 

responses between left and right limbs and trials of cross over design in which there was 

evidence of randomisation.  

(iii) did not incorporate any additional treatment which would alter the independent massage 

variable specified in (i). In all cases, the control group was not to receive any alternative therapy 

including pharmaceutical aids, stretching and dynamic soft tissue mobilization (DSTM) 

(iv) was conducted on humans  
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(v) was available as a full text publication in English, Portuguese, Germany or Dutch 

(vi) included outcome measures to quantify  

 measures of joint flexibility 

 measures of muscle strength and/or power output 

 muscle soreness/DOMS 

 systemic markers of inflammation 

 blood lactate concentrations and/or  markers of muscle fatigue 

          following EIMD. 

 

3.3 Screening of the studies located and determination of whether they be 

included/excluded in the systematic review.  
 

An exclusion criterion was the use of WBVT. As most WBVT is currently being used as exercise 

intervention (Cardinale and Bosco, 2003), rather than post-EIMD therapeutic modality, this was not 

regarded as fundamental to investigation of the research question examined in this thesis.   

 

3.4 Critical appraisal of the studies to be included in the systematic review  
Each study was appraised in terms of design, intervention, number of subjects and outcome measures 

quantified and assessed for homogeneity by two independent reviewers in order to ensure inter-rater 

reliability (Ullman, 2011). 

 

As the trials investigating the effects of massage following induction of EIMD on humans examined 

too diverse a range of physical measures of muscle function and/or biochemical/immunological 

outcomes, it was decided not to pool the studies in the presentation of results, but present them in 

separate tables for the purpose of later analysis of results in terms of MM and LVT.  The studies were 

therefore subdivided the studies investigating the effects of MM and LVT according to the following 

five categories/groups of outcome measures:  

 measures of joint flexibility 

 measures of muscle strength and/or power 

 muscle soreness/DOMS 

 systemic markers of inflammation 

 blood lactate concentrations and/or markers of fatigue  

 

Five tables were constructed and each study meeting the above-mentioned inclusion criteria and falling 

into the specified outcome category, was completed in a standardised pre-defined fashion in terms of 

author/s (date), trial design, intervention, number of subjects, outcome measures, and primary findings 
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for both MM and LVT. In the cases of excellent studies not quite meeting all inclusion criteria, they 

were included in the tables to provide additional insight to the reader, but highlighted and not included 

in the formal systematic review and quantification of final results.  

 

3.5   Synthesis of the studies  
The outcomes of the studies contained in each table were thereafter analysed for general trends and 

summarised in the text above each table.   In addition, the number of positive outcomes for each of the 

MM and VT trials was summarised in a separate concluding table (Table 4.4.3) with a graphic 

representation (Figure 4.4.4.)  A statistician was consulted to verify the best appropriate statistical 

techniques to be used in classifying and interpreting the results and offer assistance in terms of how to 

present the findings.  

 

3.6   Statistical analyses 
Due to the diversity of the outcome measures reported in the existing published research trials on the 

topic of the efficacy of MM and LVT following EIMD and unavailability of raw data providing 

sufficient detail regarding the outcomes specifying means and variances of the change post-EIMD in 

many of the qualifying studies, a formal meta-analysis involving statistical “pooling” of means and 

SDs, could not be done.  

 

Following tabulation of the findings of the review, broadly categorised according to the five outcome 

measures listed above, a binary outcome summary for the trials in each category in which the similar 

methodology was used and that were therefore comparable, was created. As some of the studies 

examined more than one of the specified outcome measures, they appeared in more than one table.   

 

After conducting a final numerical count of the number of studies with positive and negative findings 

in terms of the efficacy of MM and LVT in relation to each of the five outcomes examined, 2 x2 

contingency tables were drawn up for each outcome measure examined and a  single quantitative 

summary of the findings was obtained using Fishers Exact Test  to establish whether the difference 

between MM and LVT  for each specific outcome measure was statistical significant or not, using a 

pre-set probability level of 0.05. 

 

Finally a qualitative comparison of the findings of the systematic review and those of Imityaz et al. 

(2014), the only comparative trial which have been appropriately presented to date on LVT vs. MM, 

was also conducted. 
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3.7 Dissemination of the outcome of the systematic review. This is described in Chapter Five and 

will result in a publication in an appropriate peer reviewed journal, and is also to be presented at a 

conference. 
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 CHAPTER FOUR  

Results 

 

4.1 Introduction 

Only randomized controlled trials (RCT’s) that met the inclusion criteria in terms of manual massage 

(MM) and vibratory therapy (VT) detailed in Chapter 3 are summarized in the tabular analyses of the 

results which have been categorised according to 

 measures of joint flexibility              

 measures of muscle strength/power output 

 muscle soreness/DOMS 

 systemic markers of inflammation 

 blood lactate concentrations and/or markers of fatigue  

For the purpose of the actual systematic review, only RCT’s that met all inclusion criteria, were 

included. Of the 63 studies screened, 28 articles satisfied the inclusion criteria and were included in 

the systematic review.  

 

4.2 Manual massage (MM) 

A summary of controlled trials performed on the effects of MM on measures of joint flexibility in 

human subjects following eccentric exercise is provided in Table 4.2.1. As is apparent from the trials 

summarized in this table, of the five controlled trials conducted on measures of joint flexibility 

following eccentric exercise on a total number of 82 participants, only four trials (n=72) were 

randomized and therefore fully qualified for inclusion in the systematic review. None revealed positive 

outcomes.  
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Table 4.2.1 Summary of controlled trials performed on the effects of manual massage (MM) on 
measures of flexibility in human subjects 

Authors 
(date) 

Trial design Intervention N Outcome Measures Primary 
findings 

Abad et 

al.(2010) 
RCT 
(treatment vs. 
2control 
groups 
 

Group 1 : 6min of 
classical massage alone 
(no preceding exercise)  
Group 2: 30 
supramaximal ECC 
contractions of elbow 
flexors + passive rest 
Group 3: classical 
massage immediately 
after 30 supramaximal 
ECC contractions of 
elbow flexors  

18 
 

ROM of elbow joint 
before, at 0, 24, 48, 72 & 
96h 

No significant 
difference 
between  groups 
(p>0.05) 

Bakowski et al. 
(2008) 

RCT 
(arm to arm 
comparison) 

10min massage, 30min 
after 8 sets of CON & 
ECC actions of elbow 
flexors with each arm 
Control: no treatment 

14 ROM No difference in 
ROM noted 
control and 
treatment arms 
(p>0.05) 

Mancinelli et 

al.(2006) 
 RCT 
(treatment 
vs.control 
group) 

17min effleurage, 
petrissage & manual 
vibration on a day of 
predicted peak soreness 
following 4-day 
training routine 
Control: no treatment 

22 Length of quadriceps 

femoris muscle 
No significant 
differences 
between groups 
(p>0.05) 

Zainuddin et al. 
(2005)* 

CCT 
(Arm to arm 
comparison) 

10min Swedish 
massage 3h post  ECC 
contraction of elbow 
flexors One arm 
received massage; 
other = control 

10 ROM  (elbow joint) 
before, at 30min, 1-4, 7 , 
10 & 14 days post-
exercise 
 

No significant 
difference  in 
ROM  between 
treatment  
& contralateral 
arm (p>0.05) 

Hilbert et al. 
(2003) 

RCT 
(treatment vs 
control 
group) 

20min effleurage, 
percussion & petrissage 
2h post 6 x 10 maximal 
ECC hamstring 
contractions  
Control= placebo lotion 

18 ROM (knee joint) at 6, 24 
& 48h) 

No significant 
change between 
groups 
(p>0.05) 

DSTM: dynamic soft tissue manipulation; min: minutes; h: hour; ROM: range of motion; RCT: randomized 
controlled trial; CCT: clinically controlled trial; vs: versus; *: not randomized; CON: concentric; ECC: eccentric  
 

A summary of 14 controlled trials involving a total of 293 participants which investigated the effect of 

MM on the muscle strength and /or power in human subjects following eccentric exercise is provided 

in Table 4.2.2. Of the 14 trials, 11 were RCTs (n=255), only four trials (36%; Shin and Sung, 2015; 

Mancinelli et al., 2006; Brooks et al., 2005; Williams et al., 2009) showed significantly positive 

improvement in the strength/power output of the massaged groups/limbs.  
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Table 4.2.2 Summary of controlled trials on the effect of manual massage (MM) on muscle strength 
and power in human subjects following eccentric exercise  

Authors 
(date) 

Trial design Intervention N Outcome 
measures 

Primary findings 

Shin and 
Sung (2015) 

RCT 
(treatment vs. 
2 control 
groups 
 

Group1 (n=10): 
EIMD exercise (20 x 
up & down stairs) 
placebo: nerve 
stimulation pad.  
Group 2 (n=11): 
EIMD exercise 
+15min of effleurage, 
milking, friction, skin 
rolling- gastrocnemius 
muscle  

21 EMG, 
sonography,  
Proprioception ( 
dual 
inclinometer) 

Increased 
activation of 
gastrocnemius 
fibres and muscle 
strength 

Abad et 

al.(2010) 
RCT 
(treatment vs. 
2 control 
groups 
 

Group 1 : 6min 
classical massage 
alone (without 
preceding exercise)  
Group 2: 30 
supramaximal ECC 
contractions of elbow 
flexors + passive rest 
Group 3: classical 
massage immediately 
after 30 supramaximal 
ECC contractions of 
elbow flexors 

18 Muscle strength 
(elbow flexors) 

No significant 
difference between 
control & treatment 
groups 

Willems et 

al. (2009) 
RCT 
(leg to leg 
comparison) 

5min effleurage, 5min 
petrissage, 5min 
tapotement & 10min 
effleurage immediately 
following 20min 
downhill walk 
Control: rest 

7 One leg vertical 
jump 
displacement 
(before, at 24, 
72h) 

Significantly 
greater increase in 
the massaged leg 
@ 48h (p<0.05) 

Frey Law et 

al.(2008) 
RCT 
(treatment vs. 
control groups 
 

Group1: superficial 
touch  
Group 2:  
   1min effleurage,  
   4min petrissage; 
   1min effleurage,  
Group 3: Control : rest 
48 h following ECC 
contraction of  wrist 
extensors  

44 MIT wrist 
extension using 
dynamometer 
before treatment 
and (48h) after 
treatment 

No significant 
differences in post-
exercise recovery 
of torque between 
groups (p>0.05)  
 
 

Mancinelli et 

al. (2006) 
RCT 
(Treatment vs. 
control group) 

17min effleurage, 
petrissage & manual 
vibration on a day of 
predicted peak 
soreness following 4-
day training routine 
Control: Post exercise 
rest 

22 Vertical jump 
displacement 

Significantly 
greater  increase in 
the massage group 
(p<0.05) 
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Zainuddin et 

al. (2005)* 
CCT 
(Arm to arm 
comparison) 

10min Swedish 
massage 3h post  
eccentric contraction 
of elbow flexors  
One arm received 
massage  
Control: no treatment 
(contralateral arm)  

10 Elbow flexor 
strength using 
dynanometer 
 
 
 

No significant 
changes in the 
reduction in MVI 
torque between 
arms (p=0.82) 
 

Brooks et al. 
(2005) 
 
 

RCT 
(blinded) 
4 groups 
(n=13):  
 

5min effleurage & 
friction to forearm & 
hand immediately after 
maximal isometric 
hand exercise  
Groups 1& 2: massage 
(dominant & non-
dominant hand) 
Group 3: control 
Group 4: shoulder & 
elbow stretching 

52 
 

Power grip 
measurements 
on hand 
dynamometer 
at 5min 
 

Greater effect on 
post exercise grip 
strength in massage 
groups 
(n=26) than both  
control groups  
(p<0.05) 

Robertson et 
al. (2004) 

RCO 
(treatment vs. 
control) 

Treatment:  
4x5min effleurage & 
kneading to back & 
front of both legs 
following 6 x 30 sec 
high intensity bouts of 
cycle ergometry. 
Control: passive rest 

9 Peak & mean 
power output 
during Wingate 
cycling test   

No significant 
effect of massage 
compared to 
control 
(p>0.05) 

Jönhagen et 

al. (2004) 
 
 

RCT 
(Leg to leg 
comparison) 

4min effleurage & 
8min petrissage 
10min, 24h & 
48h.following 300 
maximal bilateral ECC 
contractions of 
quadriceps femoris. 
Control: no 
treatment/rest 

16 Strength 
measured on leg 
dynamometer  

No differences in 
loss of functional 
strength between 
the treatment & 
control  legs 
(p>0.05) 

Hilbert et al. 
(2003) 

RCT(treatment 
vs control 
group) 

20min effleurage, 
percussion & 
petrissage 2h post 6 x 
10 max ECC 
hamstring contractions  
Control= placebo 
lotion  

18 Peak torque of 
knee flexors     
using isokinetic 
device at 6,24 & 
48h post 
exercise 

No significant 
difference  between 
the control and 
treatment group 
(p>0.05) 

Farr et al. 
(2002) 

RCT 
(leg to leg 
comparison) 

30min effleurage & 
petrissage tone leg 2hr 
post 40min weighted 
downhill walk on  
treadmill 
Control : no treatment 

8 Isometric & 
isokinetic 
strength; single 
leg vertical jump 
displacement at 
1,24,72 &120h 
post walk 

No significant 
differences 
between the 
treatment & control  
legs (p>0.05) 
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Hemmings 
et al. 
(2000)* 

CO 
(treatment vs. 
control groups) 

Treatment: 50-60 
strokes/min petrissage 
30 strokes /min 
effleurage 
immediately after 
punching the boxing 
ergometer 
Control: passive rest 

8 Punch force (N) 
registered on 
ergometer  

No significant 
difference between 
the groups 
(p>0.05) 

Rinder and 
Sutherland 
(1995)* 

CO 
(treatment vs. 
control) 

6min leg effleurage & 
petrissage after 
maximum number of 
leg extensions @ 50% 
MVC 
Control: passive rest 

20 Quadriceps 
performance: 
Total number of 
50% MVC  leg 
extensions 

Increase in 50% 
MVC in massage 
group and decrease 
observed with  
control group 

Weber et al. 

(1994) 
RCT 
(treatment vs. 
control groups) 

8min massage at 0 & 
24h post exercise 
Group1: effleurage 
&petrissage 
Group 2 : electrical 
stimulation 
Group 3: Upper body 
ergometry 
Group 4: 10 reps of  
post eccentric 
contraction of elbow 
flexors until fatigue 
Control: passive rest 

40 
 

MIC & peak 
torque assessed 
on a Cybex 11+ 
isokinetic 
dynamometer 
before, at 0,  24h 
post exercise 
 

No significant 
between the groups 
(p>0.05) 

UAC: upper arm circumference; MVI: maximal voluntary isokinetic; min: minute; h: hours; vs: versus; n: newton; 
CCT: clinically controlled trials; RCT: randomized controlled trials; RCO: randomized crossover design; CO: 
cross over design *: not reported as randomized; MIC: maximal isometric contraction; MIT: maximum isometric 
torque; reps: repetitions; ECC: eccentric; EIMD: eccentric induced muscle damage; MVC: maximum voluntary 
contractions  
 

 
A summary of 15 controlled trials performed on the effects of MM on muscle soreness, DOMS and 

related neuropeptides in human subjects following eccentric exercise is provided in Table 4.2.3. As is 

apparent from the trials summarized in this table, 12 RCTs involving (n=242) participants have been 

conducted on the effects of MM on muscle soreness and/or DOMS.  Nine (75%) thereof showed a 

positive effect in reducing these measures.   No evidence of an attenuation of the exercise-induced 

functional strength loss or biochemical markers of muscle soreness (CGRP and NPY) were, however, 

reported by Jönhagen et al. (2004). 
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Table 4.2.3 Summary of controlled trials on the effect of manual massage (MM) on muscle soreness 
and/or DOMS in human subjects following eccentric exercise.  

Authors 
(date) 

Trial design Intervention N Outcome 
Measures 

Primary findings 

Han et al. 
(2014) 

RCT 
(treatment vs. 
control 
groups) 

20 min massage( light 
stroking, skin rolling, 
friction, milking) vs. 
Placebo (inactive TENS 
pads) following up and 
down stairs in five-
storey building  

21 Muscle pain  
in 
gastronemius 
using 
algometer  

Significantly 
reduced amount 
of pain in 
treatment group  

Anderson et 

al. (2013) 
RCT (Arm to 
arm 
comparison) 
 

10 x10-15 reps MVC 
of upper trapezius 
muscle on dynamometer 
48h post-exercise: 
10min petrissage, 
friction, effleurage. 2h 
later: contralateral 
repeat 
Control limb: passive 
rest 

20 PMS  scale (0-
10); Before, 0, 
10, 20, 60min 
after treatment 

Significantly 
reduced PMS;  
PPT@ most time 
points (p<0.05) 
 

Abad et al. 
(2010) 

RCT 
(treatment vs. 
2 control 
groups 
(massage only; 
exercise only) 

6 min of classical 
massage (effleurage, 
petrissage, tapotement) 
immediately after 30 
supramaximal ECC 
contractions of elbow 
flexors 

18 DOMS No significant 
difference in the 
treatment group  

Willems et al. 
(2009) 

RCT 
(leg to leg 
comparison 

5min effleurage, 
10min petrissage &  
tapotement  
10min effleurage  
in quadriceps femoris 
immediately following 
20min downhill walk 

7 DOMS on 
scale of 1-10 

Significantly 
lower at 48h post-
exercise in rectus 

femoris and 
vastus lateralis 

(p<0.05) 

Frey Law et 

al.(2008) 
RCT 
(Treatment vs. 
Control group) 

Group1: superficial 
touch  
Group 2:  
   1min effleurage,  
   4min petrissage; 
   1min effleurage,  
Group 3: Control : rest 
48 h following ECC 
contraction of  wrist 
extensors 

44 PPT 
DOMS using 
VAS 0h, 48h, 
post treatment  

Significantly 
greater  reduction 
in PPT &  DOMS  
in Group 2  
compared to 
Group 3 (p<0.05) 

Bakowski et 

al. (2008) 
RCT 
(arm to arm 
comparison) 

10min massage, 30min 
after 8 sets of CON& 
ECC actions of elbow 
flexors with each arm 
Control: no treatment 

14 Perceived 
Soreness 
before 
exercise, after 
ex,10min, 
6,12,24,36,48,
72 and 96h 

Non-significant 
10%-20% 
decrease in 
soreness  was 
noted with control 
compare to 
control 
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Mancinelli et 

al. (2006) 
RCT 
(Treatment vs. 
Control group) 

17min effleurage, 
petrissage & manual 
vibration to thighs on a 
day of predicted peak 
soreness following 4-
day training routine 
Control: rest 

22 PPT using 
algometer 

Decrease in 
pressure pain 
threshold  in 
massaged group  
(p<0.05) 

Zainuddin et 

al. (2005)* 
CCT 
 (arm to arm 
comparison) 

10min Swedish massage 
3h post  ECC 
contraction of elbow 
flexors  
One arm received 
massage  

10 Muscle 
soreness 

20%-40% 
decrease in 
soreness  in 
massaged arm 
(p<0.05) 

Jönhagen et 

al. (2004) 
 

RCT  
(leg to leg 
comparison) 

4min effleurage  
8min petrissage  
10min, 24, 48h 
following 300 maximal 
bilateral ECC 
contractions of 
quadriceps femoris 
Control: no treatment 

16 VAS (1-10) 
Muscle  CGRP 
& NPY 
concentrations 
in each leg  

Significant  
difference 
between legs were 
observed 

Hilbert et al. 
(2003) 

RCT 
(treatment vs 
control/placeb
o group 
 

20 min effleurage, 
percussion & petrissage 
2h post 6 x 10 maximal 
ECC hamstring 

contractions  
Control= placebo lotion 

18 Level of 
soreness 

Decreased level 
of soreness  in 
treatment group at 
48h post-exercise 
(p<0.05) 

Farr et al. 
(2002) 

RCT: counter 
balance trial 
(leg to leg 
comparison) 

30min effleurage & 
petrissage to one leg 2h 
post 40min weighted 
downhill walk on  
treadmill 
Control: no treatment 

8 DOMS at 
1,24,72,120h 
post walk 

Very significant 
reduction in 
muscle soreness 
& tenderness in 
massaged leg  at 
24h (p<0.001) 

Lightfoot et 

al. (19972)** 
RCT 
(treatment vs 
control) 

Group1: stretching 
Group2:10min 
petrissage 
Group 3: control 
following 60 reps of 
heel-drop exercise  

31 DOMS No significant 
difference 
between groups 

Smith et al. 
(1994) 

RCT 
(treatment vs 
control group) 

30min Swedish massage 
(effleurage & 
petrissage) 2h post ECC 
elbow  extensor /flexor 
exercise:4-5 sets at 
MVC 
Control: rest 

14 DOMS at 8, 
24,48,72 , 96 
& 120h post 
exercise  
 

Reduced DOMS 
from 24-96h post 
exercise  (p<0.05) 
in massaged 
group 

Weber et al. 
(1994) 

RCT 
(treatment vs     
control) 

8min massage at 0 & 
24h post exercise 
Group1: effleurage 
& petrissage(n=10) 
Group 2: electrical 
stimulation(n=10) 
Group 3: Upper body 
ergometry(n=10) 

40 Soreness 
rating scale 
scale (1-10) 
 

No significant 
difference 
between the 
groups  
(p>0.05) 
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Group 4: Control (n=10) 
Control: rest  

RCT: Randomized controlled trial; CCT: clinical controlled trial; min: minutes; PMS: Perceived muscle soreness; 
DOMS: delayed onset muscle soreness; PPT: pain-pressure threshold; VAS: visual analog scale; h: hour;  vs.: versus 
* not randomized  **:petrissage only; MVC: maximum voluntary contraction VAS: visual analog scale CGRP: 
Calcitonin gene-related peptide; NPY: neuropeptide Y; TENS: transcutaneous electrical nerve stimulation; 
ECC: eccentric; CON: concentric 

 

A summary of controlled trials on the effect of MM on systemic markers of inflammation in human 

subjects following eccentric exercise is provided in Table 4.2.4. Six trials were located of which four 

RCTs were included involving 51 participants. For CK, one of the two trials (50%) showed a decrement 

for 6 days (Smith et al., 1994).  For neutrophil count, one (Smith et al., 1994) showed decrease in the 

first 1h and the other (Hilbert et al., 2003) showed no difference.  Cortisol decreased in the first 5h in 

one trial (Smith et al., 1994). Only one trial (Crane et al., 2012) examined TNFα, NFκB, IL-6 and PGC-

1α and found that massage had a beneficial effect on these markers of an inflammatory response. 
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Table 4.2.4 Summary of controlled trials on the effect of manual massage (MM) on systemic markers 
of inflammation in human subjects following eccentric exercise 

Authors 
(dates) 

Trial Design Intervention N Outcome 
Measures 

Primary findings 

Crane et al. 
(2012) 

RCT 
(Leg to leg 
comparison) 

10min of  MM: 
 2min effleurage 
 3min petrissage 
 3min slow 

stripping 
 2min effleurage 

Control: no treatment 
after EIMD 

11 Serum TNFα 
Serum NFκB 
Serum IL-6 
Muscle PGC-1α 
concentrations 
immediately & 
2.5h post 
intervention 

TNFα & NFκB 
reduced (p<0.05) at 0h 
only 
IL-6 (p>0.05) reduced 
after 2.5h;  
PGC-1α higher in the 
massaged leg 2.5 h 
after treatment. 
(p>0.05)   

Zainuddin et 

al. (2005)* 
CCT  
 (arm to arm 
comparison) 

10min Swedish 
massage 3h following 
ECC contraction of 
elbow flexors  
One arm received 
massage  

10 Plasma CK 
Concentration 

CK peak values in 
massaged arm lower 
than that in  control 
arm 
(p<0.05) 

Hilbert et 

al.(2003) 
 
 

RCT 
(treatment 
vs. control 
group) 
 

20min effleurage, 
percussion & 
petrissage 2h post 6 x 
10 maximal ECC 
hamstring contractions  
Control = placebo 
lotion 

18 Neutrophil 
count 

No significant 
difference between  
groups (p<0.05) 

Farr et al. 
( 2002) 

RCT: 
counter 
balance trial 
(leg to leg 
comparison) 

30min effleurage & 
petrissage tone leg 2h 
following 40min 
weighted downhill 
walk on  treadmill 
Control: no treatment 

8 Plasma CK at 0. 
24, 48, 72., 96 
and 120h post 
exercise 

No significant 
difference between  
limbs at any of time 
intervals (p<0.05) 

Lightfoot et 

al. (1997)* 
RCT 
(treatment 
vs. control) 

Group1: stretching 
Group2: 10min of 
petrissage 
Group 3: passive 
control 
post 60 repetitions of 
heel-drop exercise 

31 Plasma CK 
levels 

No significance 
changes between the 
groups 

Smith et al. 
(1994) 

RCT 
(treatment 
vs. control 
group) 

30min Swedish 
massage (effleurage 
and petrissage) 2h 
following eccentric 
elbow  extensor /flexor 
exercise: 4-5sets at 
MVC 
Control: rest 

14 Serum Cortisol 
Serum CK 
Neutrophil 
concentration 

Decreased 
concentration of 
cortisol during first 5h 
post-exercise 
Reduced post-exercise 
CK throughout 6 days, 
reduced post-exercise 
neutrophil for 1h post 
exercise (p<0.05) 

RCT: randomized controlled trial; TNFα: tumor necrosis factor –alpha; NFκB: nuclear factor kappa B; IL-6: 
interleukin-6; PGC-1α: peroxisome proliferator-activated receptor coactivator 1α; CK: Creatine Kinase; vs: 
versus; h: hour; min: minutes; *: petrissage only; MVC: maximum voluntary contractions; EIMD: exercise 
induced muscle damage; ECC: eccentric; CCT: controlled clinical trials 
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A summary of controlled trials examining the effect of MM on blood lactate concentrations and/or 

systemic markers of fatigue in human subjects following eccentric exercise is provided in Table 4.2.5. 

Three trials (n=52) out of seven were included in the analysis and showed no significant change in 

blood lactate concentration and/or on muscle fatigue.   

 
 

  



57 
 

 

Table 4.2.5 Summary of controlled trials on effect of manual massage (MM) on blood lactate 
concentrations and/or systemic markers of fatigue in human subjects following eccentric exercise 

Authors 
(date) 

Trial design Intervention N Outcome 
Measures  

Primary 
findings 

Shin and 
Sung  
(2015) 

RCT 
(treatment vs. 2 
control groups 
 

Group1 (n=10): EIMD 
exercise (20 x up & 
down stairs).placebo 
nerve stimulation pad.  
Group 2( n=11): EIMD 
exercise +15 min of 
effleurage, milking, 
friction, skin rolling- 
gastrocnemius muscle 

21 BLa conc 
 

No 
significant 
difference 
between 
groups 
(p>0.05) 

Hemmings 
et al. 2000)* 

Counter 
balance trial 
(treatment vs. 
control groups) 

50-60 strokes/min 
petrissage 
30 strokes /min 
effleurage 
immediately after 
punching the boxing 
ergometer 

8 BLa conc 
 
 

No 
significant 
difference 
between 
groups 
(p>0.05) 

Dolgener 
and Morien 
(1993) 

RCT 
(treatment vs. 
control groups) 

20min of  
Group 1: passive 
recovery (rest) 
Group2 : bicycle 
recovery 
Group3: effleurage and 
pertissage  
after an exhaustive 
treadmill run*** 

22 BLa conc 
3, 5, 9, 15 & 
20min post 
treatment 

No 
significant 
difference 
between 
groups in 
BLa 
concentration 
(p>0.05) 

Robertson et 
al. (2004) 

RCO 
(treatment vs. 
control) 

Treatment : massage 
Control: passive rest 
20min of effleurage and 
kneading 5min post 
6x30 sec eccentric 
exercise on cycle 
ergometer 

9 BLa conc 
 
 
 
 
 

No 
difference in 
BLa conc 
passive vs. 
massage 
group 
 
 

Monedero 
and Donne 
(2000)* 

CO 
(treatment vs. 
control) 

Group1: Passive rest 
Group 2: Active cycling 
@ 50% VO2max 
Group 3: Massage 
Group4: combined 
massage and cycling 
Non-specified massage 
15min post 5km trial  

18 BLa conc Combined 
massage & 
cycling was 
most 
efficient 
intervention 
(p<0.05) 

Gupta et al 
(1996)* 

CO 
(treatment vs. 
control) 
Counter 
balance trial 

Group1: passive rest 
Group 2: active rest @ 
30% VO2max 
Group 3: massage 
Kneading & stroking of 
upper & lower limbs 

10 BLa conc Lower BLa 
for active 
group than 
other groups. 
No 
significant 
difference in 
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massage vs. 
control group 
(p>0.05) 
 

Bale and 
James 
(1991)* 

CO 
(treatment vs. 
control) 

Group1: passive rest 
Group 2: active rest @ 
60% VO2max 
Group3: massage  
(17min each) 

9 BLa conc Significant 
decrease 
noted with 
massage 
compared to 
control group 
(p<0.05) 

RCT: randomized controlled trial; min: minutes; vs: versus; conc: concentration; EIMD; exercise induced muscle 
damage; MVC: Maximum voluntary contraction; *: Not randomized; counter balance trial; vs: versus; BLa: 
blood lactate; conc: concentrations; CO: cross-over design; RCO: randomised crossover design 

 

4.3 Vibratory Therapy (VT) 

The results of studies that have compared the efficacy of local vibration therapy (LVT) with that non-

massaged controls or control limbs, are subdivided into those that examine the following outcomes: 

measures of flexibility, measures of strength and power output, DOMS and muscle soreness, fatigue 

and /or blood lactate concentrations and systemic markers of inflammation in human subjects and 

presented. 

A summary of RCTs located on the effect of VT on measures of joint flexibility in human subjects in 

Table 4.3.1.  As is apparent in the table, three trials involving (n= 60) participants examined the effects 

of LVT following eccentric exercise and (67%) confirmed a positive effect of LVT on ROM and the 

other showed no effect. 
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Table 4.3.1 Summary of controlled trials on the effect of local vibratory therapy (LVT) on measures 
of joint flexibility in human subjects.  

yAuthors 
(date) 
 

Trial design Intervention N Outcome 
Measures 

Primary 
findings 

Mohammedi 
and 
Sahebazamani 
(2012)* 

RCT 
(treatment vs. 
control) 

LVT @ 50Hz with a 
vibrator pre-exercise 
for 1 min prior to  5 
sets x10 reps of 
eccentric contraction 
@ 85% of 1-RM 
Control: no treatment 
following ECC 
exercise of biceps 

brachii 

30 ROM of 
elbow joint 

Increase in 
ROM in 
treatment group 
for 48h post 
exercise 
(p>0.05) 

Lau and 
Nosaka (2011) 

RCO 
(treatment vs. 
control, 
crossover 
design) 

30 min LVT (non-
specified)  at 30 min, 
1, 2, 3 and 4 days 
following ECC 
exercise 
Control: no treatment 

15 ROM Faster increase 
in ROM  in 
treatment group 
compared to 
control (p<0.05) 

Herda et 

al.(2009) 
RCO 
(treatment vs 
control) 

Group 1: 20min of  
Passive stretch 
Group 2: prolonged 
vibration only 
Group 3: control (no 
treatment) after 
isometric maximal 
voluntary of the 
plantar flexors 

15 Passive 
ROM 

No change 
noted in VT vs 
control groups.  

LVT: local vibration therapy; RCT:  randomized controlled trial; RCO: randomized cross-over design; EIMD; 
exercise induced muscle damage * intervention prior EIMD; ROM: range of motion; min: minutes; vs: versus; 
1-RM: 1 repetition maximum; reps: repetitions; ECC: eccentric 

 

 

A summary of controlled trials on the effect of LVT on muscle strength and power output in human 

subjects is presented in Table 4.3.2. Four RCTs involving 70 participants met all inclusion criteria.  

Although 50% (Herda et al., 2009; Shinohara et al., 2005) reported that prolonged vibration increased 

the short latency component of the stretch reflex, the discharge rate of motor units and the fluctuations 

in force during contractions by a hand muscle, 50% (Barnes et al.,2012; Lau and Nosaka, 2011 ) did 

not confirm significant change following the LVT intervention. 
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Table 4.3.2 Summary of controlled trials on the effect of local vibratory therapy (LVT) on muscle 
strength and/or power output in human subjects 

Authors  
(dates) 

Trial design  Intervention N Outcome 
Measures 

Primary findings 

Barnes et al. 
(2012) 

RCT 
(treatment vs. 
control) 
Cross over 
trial 

5 set of 1min LVT 
with 26Hz 
immediately, 12h & 
24h post 300 maximal  
eccentric contraction 
of quadriceps of one 
leg on an isokinetic 
dynamometer  
Control: no treatment 

8 Peak and 
average peak 
ISO tension & 
isokinetic 
CON & ECC 
torque prior to 
exercise, 24h 
& 48h post 
exercise 

Significantly 
greater decrease 
in peak & 
average peak 
ECC torque  24h 
post exercise 
compared to 
control (p<0.05) 

Lau and 
Nosaka 
(2011) 

RCO trial 
(treatment vs. 
control 

30 min LVT (non-
specified)  at 30 min, 
1, 2, 3 and 4 days 
following eccentric 
exercise 
Control : no treatment 

15 Maximal 
isometric 
torque using 
isokinetic 
dynamometer 
 

No significant 
difference in 
muscle strength  
post treatment 
VT group 
(p>0.05) 

Herda et 

al.(2009)* 
RCO 
(treatment vs 
control) 

Group 1: 20min of  
passive stretch 
Group 2: prolonged 
vibration only 
Group 3: control (no 
treatment) after 
isometric maximal 
voluntary of the 
plantar flexors 

15 Voluntary 
Peak  torque 
(PT) 

No significant 
difference 
between 
groups(p>0.005) 

Shinohara et 

al. (2005) 
RCT 
(treatment vs. 
control) 
Control (n=12) 
Treatment 
(n=20) 

30min LVT with 
electromagnetic 
vibrator on relaxed 
muscle post 2 sets of 
10 constant –force 
contraction on the 1st 
dorsal interosseous 
muscle of left hand & 
subsequently followed 
by another session of 
eccentric exercise 
Control: no treatment 

32 Mean EMG 
amplitude of 
the S-L 
component of 
stretch reflex, 
discharge rate 
of motor units, 
muscle force 
on the left 
hand 
measured with 
a force 
transducer 

Mean EMG 
amplitude of the 
S-L component 
of  stretch 
reflex, discharge 
rate of motor 
units and 
fluctuations in 
force during 
contractions of 
the hand 
significantly 
enhanced 
(p<0.05) 

Bosco et 

al.(1999c) 
RCT 30Hz LVT of  1 min 

of 10 reps on the 
upper limb during 
maximal arm curl with 
extra load of 5%BM 

12 Mechanical 
power 

Greater 
improvement in 
treated group vs  
control (p<0.05) 

LVT: local vibration therapy; RCT: randomized controlled trial; RCO: randomized cross over; min: minutes; 
reps: repetitions; vs: versus; &: ISO: isometric; CONC: concentric; ECC: eccentric; MVC: maximum voluntary 
contraction; *no eccentric exercise; **: vibration as exercise intervention; EMG: electromyography; S-L: short- 
latency; PT: voluntary peak torque  
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A summary of controlled trials on the effect LVT on DOMS and muscle soreness in human subjects 

provided in Table 4.3.3. Six trials were located with five trials (n=140) meeting the inclusion criteria.  

Four trials (80%) showed positive effect and one (Ayles et al., 2011) showed no significant effect.  

Table 4.3.3 Summary of controlled trials on the effect of local vibratory therapy (LVT) on DOMS and 

muscle soreness in human subjects 

Authors 
(dates) 

Trial design Intervention N Outcome 
Measures 

Primary findings 

Xanthos et al. 
(2013)** 

RCT 
(treatment  
(vibration) vs. 
control 
(traditional) 
  

10 reps of 1 min LVT 
(26Hz, 4.5mm) post 
ECC exercise & prior to 
the repeat of ECC 
exercise 

13 DOMS 
Muscle 
soreness 

No decrease in  
DOMS 
No difference in 
muscle soreness in 
treatment vs control 
(p<0.05) 

Mohammedi 
and 
Sahebazamani 
(2012)* 

RCT 
(treatment vs. 
control) 

LVT @ 50Hz with a 
vibrator pre-exercise for 
1min prior to 5x10 reps 
of ECC contraction @ 
85% of 1-RM 
Control: no treatment 

30 Muscle 
soreness 
before, after, 
24h, 48h, 72h 
and 96h 

Less DOMS in the 
experimental group 
compared to control 
group (p<0.05) 

Ayles et al. 

(2011) 
RCT 
(leg to leg 
comparison) 

LVT@ 50Hz with 
vibrating device of 1cm2  
size of the probe was 
performed after ECC 
exercise.   
Control: no treatment 

16 PPT 
(algometer) 

DOMS 
  

No significant 
change in muscle 
soreness 

Lau and 
Nosaka (2011) 

RCT 
(treatment vs. 
control 
crossover 
design) 

30min LVT (non-
specified)  at 30min, 1, 
2, 3 and 4 days post 
ECC exercise 
Control: no treatment 

15 DOMS Less DOMS in the 
experimental group 
compared to control 
group (p<0.05) 

Broadbent et 

al. (2010) 
RCT 
(treatment vs. 
control) 

LVT 5mm with 40Hz 
3 bouts of 1min 
vibration for 30min 5 
days post exercise 
Control: no treatment 

29 DOMS Less DOMS in the 
experimental group 
compared to control 
group (p<0.05) 

Bakhtiary et 

al. (2007)* 
RCT 
(treatment vs. 
control) 

LVT 50Hz for 1 min on 
quadriceps, hamstring & 
calf muscles of left & 
right prior to 30min 
walk down a 100  

declined treadmill 
@4km/h 
Control: no treatment 

50 DOMS 
measured 
with VAS 
after 24h 

Less DOMS in the 
experimental group 
compared to control 
group (p<0.05) 

LVT: local vibration therapy; RCT: randomized controlled trial; WBVT: Whole Body Vibration Therapy; *:  prior 
to exercise intervention; DOMS: delayed onset muscle soreness; deg: degrees; min: minutes; vs: versus; trad: 
traditional modality; ** control received an intervention; TT: time trial; HIIT high intensity interval training; 
VAS: visual analog scale; PPT: pain pressure threshold; ECC: eccentric 
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A summary of controlled trials on the effect of LVT on systemic markers of an inflammatory response 

is provided in Table 4.3.4. Only two trials examined the change in serum CK concentration, including 

65 participants. One thereof (50%; Lau and Nosaka, 2011;) showed no significant change while that of 

Bakhtiary et al. (2007) showed significantly lower levels of CK in the treatment group. 

Table 4.3.4 Summary of controlled trials on the effect of the local vibratory therapy (LVT) on 
systemic markers of inflammation 

Authors 
(dates) 

Trial design Intervention n Outcome 
Measures 

Primary findings 

Lau and 
Nosaka 
(2011) 

RCT 
(treatment vs. 
control : 
crossover 
design) 

30min LVT (non-
specified)  at 30min, 1, 2, 
3 & 4 days post ECC 
exercise 
Control: no treatment 

15 Serum CK 
concentration 
4 days after 
exercise 
 

No significant 
effect noted in 
serum CK in both 
groups (p>0.05) 

Bakhtiary et 

al. (2007)*** 
RCT 
(treatment vs. 
control) 

LVT 50Hz vibration with 
a vibrator for 1 min on 
quadriceps, hamstring and 
calf muscles of left & 
right prior to 30min walk 
down a 100  declined 
treadmill @4km/h 
Control: no treatment 

50 Serum CK 
concentration 
Measured 
after 24h 
 

Significantly lower  
mean CK levels 
treatment group 
(p<0.05) 

LVT: local vibration therapy; RCT: randomized controlled trial; min: minutes; CK: creatine kinase; vs: versus; 
h: hours; *** intervention prior to eccentric exercise; ECC: eccentric  

A summary of 2 trials which qualified for inclusion in the review and examined the effect of LVT on 

fatigue and /or lactate in human subjects following strenuous exercise is presented in Table 4.3.4.  Only 

one trial involving a total of 12 participants, was conducted on blood lactate concentration and muscle 

fatigue showed no effect of LVT.   

Table 4.3.5 Summary of trials on the effect of local vibratory therapy (LVT) on fatigue and /or blood 
lactate concentrations in human subjects 

Authors 
(dates) 

Trial design Intervention N Outcome 
Measures 

Primary 
findings 

Cafarelli et 

al.  
(1990) 

RCT 
(Treatment vs. 
control) 

4min percussive 
vibratory massage & 1 
min of rest following 
repeated sets of static 
contractions of 
quadriceps muscle @ 
@70% MVC and 
following 30min 
cycling at 75% VO2 

max.  
Control: no treatment 

12 Muscular 
fatigue 
(calculated 
from a 
regression line 
fit to the 
decline of the 
periodic 
MVCs)  

No effect on the 
rate of fatigue in 
control and 
vibrated 
conditions 

LVT: local vibration therapy; min: minutes; RCT: randomized controlled trial and control had intervention; *: 
counter balance trial; vs: versus; CK: creatine kinase; CRP: C-reactive protein; MVC: maximum voluntary 
contractions 
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4.4 Collective findings: 

Table 4.4.1 summarises the findings of a recent  study (Imitiyas et al., 2014) examining the comparative 

effect of LVT and MM in the prevention of delayed onset muscle soreness(DOMS) in terms of ROM, 

muscle strength and power, muscle soreness/ or DOMS, inflammatory markers and markers of  muscle 

fatigue.  Imtiyaz et al. (2014) reported greater efficacy of LVT in attenuating ROM and strength deficits 

following EIMD. 

Table 4.4.1 Summary of the randomized controlled trial of Imtiyaz et al. (2014) examining the 
comparative effect of local vibration therapy (LVT) and manual massage (MM) in the prevention of 
delayed onset muscle soreness (DOMS) in terms of range of motion, muscle strength and power, muscle 
soreness/ or DOMS, inflammatory markers and markers of  muscle fatigue      

Group1: 5 min LVT 
50Hz 
Group 2: 15 min non-
specified MM 
Group 3: no treatment 
prior to eccentric exercise 
of elbow flexor muscles 
using dumbbell with 
elbow flexed from (500 -
1700) extension in 4-5 
sec. 
 
 

45 ROM of elbow 
joint (using 
goniometer) & 
MIF, RM 
measured 
before, 
immediately 
post 
intervention, 
0,24, 48, 72h 
post exercise 

ROM @48, 72 h significant recovery by LVT & 
MM groups, no difference reported between groups  
No difference in MIF vs control group in LVT & 
MM groups  
RM No difference between LVT groups and control 
@48h 
LVT significant difference @pre & 48h post 
exercise  vs massage group( p<0.01) 
MM significant recovery vs control group (p=0.00) 
 

Muscle soreness 
measured 
before, 
immediately 
post 
intervention, 
0,24, 48, 72h 
post exercise 
using VAV 

Reduction in muscle soreness in both LVT (24, 48 
& 72h) & MM groups (48 & 72h post exercise)  
 vs control group; (p>0.05) 
 
 

Serum CK, 
LDH,  
concentration 
measured 
before, 
immediately 
post 
intervention, 
48h post-
exercise 

Significant difference in CK between the massaged 
groups( LVT, MM) & control at 48h  (p=0.000); 
VT: significantly less LDH vs control group 
(p<0.05) @48h; MM group no significant 
difference( p>0.05) 

LVT: local vibration therapy; MM: manual massage, VT: vibration therapy; MIF: Maximum isometric Force; 
RM: repetition maximum, LDH: lactate dehydrogenase; CK: creatine kinase  

 

4.4.2 Comparison of MM and VT 

As is shown in Table 4.4.1 and Figure 4.4.1, no studies supported an attenuation of the muscle stiffness 

resulting from MM applied following strenuous eccentric exercise.  Although 50% of studies examining 
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the effect of LVT following strenuous eccentric exercise, confirmed a positive effect on post exercise 

ROM/and or flexibility, only 36% of 11 RCT studies (n=255) confirmed an improvement in the strength 

deficit following MM, two of four studies (50%) confirmed a positive outcome in strength  following 

LVT.  The difference between the efficacy of MM and LVT in improving strength deficit was not 

statistically significant (p>0.05).   

Both MM and LVT displayed positive outcomes in terms of post-exercise muscle soreness and DOMS 

with a larger percentage of the total number of LVT trials being positive.  This difference (75% vs 

100%) was not statistically significant (p>0.05).  Only one study showed a positive effect of MM on 

CK (p>0.05); while there was no evidence of blood lactate level being affected by either form of 

massage.  The Fisher’s Exact Test revealed that the difference between the efficacy of MM and LVT 

was not statistically significant (p=0,142).  Due to the absence of a positive outcome, the Fisher’s Exact 

Test could not be applied for the blood lactate MM vs. LVT. 

Table 4.4.3 The percentage of studies showing a positive effect of manual massage (MM) and local 
vibratory therapy (LVT) on measures of flexibility, strength,  muscle soreness, inflammation and 
blood lactate concentration and comparison to the findings of Imtiyaz et al. (2014) 
 

MM: manual massage; VT: vibratory therapy; h: hour; CK: creatine kinase; h: hours; vs: versus; CK: creatine 
kinase; DOMS: delayed onset muscle soreness 
 

 
 
Outcome Measure 

Manual Massage Local Vibratory Therapy Imtiyaz et al. 
(2014) 

 No of 
trials 
(no of 
particip
ants) 

Posit
ive 
outc
ome 

% 
+ve 

No of 
trials      
(no of 
participa
nts) 

Positi
ve 
outco
me 

% 
 +ve 

Result 

Measures of joint 
flexibility 

4 
(72) 

0 0 % 3 
(30) 

2 67% positive @ 48, 72h 
post  
 

Strength/Power 11 
(255) 

4 36% 4 
(70) 

2 50% Greater difference 
after 48h in VT 
group 

Soreness/ 
DOMS 

12 
(242) 

9 75% 4 
(140) 

4 100% Reduction in 
muscle soreness in 
both VT (24, 48 & 
72h) & MM groups 
(48 & 72h post 
exercise)  
vs. control group 

Inflammatory 
Marker (CK) 

2 
(22) 

1 50% 2 
(15) 

1 50% VT & MM positive 
@ 48h 
 

Blood Lactate / 
Fatigue 

3 
(52) 

0 0% 1 
(12) 

0 0% Not assessed 
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Figure 4.4.1 The percentage of studies showing a positive effect of manual massage (MM) and local vibratory 
therapy (LVT) on measures of flexibility, strength, muscle soreness, inflammation and blood lactate 
concentration. P >0.05; Fisher’s Exact Test; DOMS: delayed onset muscle soreness; CK: creatine kinase 
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CHAPTER FIVE 

Discussion 

 

5.1 Introduction 

Despite the popular appeal and widespread use of massage among sportsmen among sportsmen over 

centuries, a consensus in terms of its beneficial effects is difficult to obtain because of wide variations 

in techniques, time, area of body, and outcome measures.   
 

Although every attempt was, however, made to ensure that the systematic review was as robust as 

possible, numerous differences in experimental design and execution made straightforward comparison 

of the trials difficult and excluded the possibility of pooling the results and completing a quantitative 

meta-analyses.   
 

These included the 

 heterogeneity of trials and lack of standardization in massage procedures 

 lack of sufficient data and the method used not being the same or comparable  

 use of different methods and time points to measure similar outcomes. For example, 

Bakhtiary et al. (2007) measured serum CK concentrations 24h after exercise whereas Lau 

and Nosaka (2011) measured it 4 days post exercise.  

 different timing and duration of the massage sessions   

 variations in the exercise model used to induce muscle damage and the protocols used the 

lack of sufficient studies using  randomized control groups 

 fact that blinding as an inclusion criterion in massage – based intervention studies, would 

not be realistic.  

 rare use of placebo treatments 

 

Nevertheless, every attempt was made to conduct a thorough systematic review of the state of the 

knowledge in this field by setting a number of inclusion criteria which were strictly implemented. 

Firstly, classic western massage or Swedish massage is the most common type of MM that is currently 

used (Weerapong et al., 2005).  As previously mentioned, this consists a variety of techniques rather 

than only one technique such as effleurage alone. For this reason, use of at least two different techniques 

accepted in the classic massage or sports massage repertoire, was set as a fundamental inclusion 

criterion for this review.  



67 
 

 

Secondly only controlled trials in which there was a control group or limb that did not receive any 

alternative therapy, were included in this systematic review. All studies in which the control phases did 

not consist of passive rest, were excluded from this systematic review. 

A third fundamental inclusion criterion that was rigidly applied in this review, was that of 

randomization.  As is evident in the tabulation of the results, if it was not clearly stated in the description 

of the study that the division of participants or limbs was randomized, the study was not included in the 

assessment. In the case of otherwise valuable studies providing important results, they were described 

in tables and lightly highlighted, but not included in the final systematic review and concluding analysis.  

Due to the clinical relevance being specifically focussed at physiotherapy settings, the systematic 

review focussed only on LVT as oppose to WBV which is usually applied in the full body and often as 

modality to enhance performance during exercise. 

 

5.2 Decrements in performance following EIMD 

The first important finding of this systematic review was a lack of evidence in favour of a superior 

attenuation of the functional declines occurring following strenuous eccentric exercise namely, loss of 

flexibility and loss of strength of either modality (MM vs. LVT).  

5.2.1 Joint Flexibility 

The loss of flexibility following eccentric exercise and EIMD was confirmed in each of the four RCTs 

on a total number of 72 participants (Table 4.2.1) prior to examining efficacy of massage in reducing 

this. As described on page 13, attaining a point of “no myofilament overlap and failure to re-

interdigitate” results in ultrastructural damage.  Clarkson and Sayers (1999) explain that this damage 

can result in excitation - contraction coupling and cross-bridge formation.  

Despite the evidence MM has been shown to increase blood flow to the muscle (Kerschan-Schindl et 

al., 2001), reduce sympathetic stimulation favouring muscle relaxation (Turnbull et al., 1982), suppress 

the H- reflex (Sullivan et al., 1991), the finding of this systematic review showed that none of the four 

RCTs included in the review, revealed a positive outcome. While the sample size was small (n=4), this 

does indicate that an attenuation of the loss of flexibility induced by EIMD, is not supported.  

As is evident in Table 4.3.1, LVT however, had a positive impact on joint flexibility in two of the three 

RCTs (67%) conducted on 30 participants.  In terms of a possible mechanism, Morelli et al. (1990) and 

Sullivan et al., 1991 propose that the kneading action and pressure exerted on the  GTO during LVT, 

reduces the H-reflex via suppression of the central nervous system owing to a decrease in motor neuron 

pool excitability (Anderson et al., 2008).   
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Another  possible reason is that mobilising and elongating shortened or adhered connective tissue while 

applying LVT may increase muscle-tendon compliance by activating myofascial trigger point (MTrP) 

activity, resulting in less stiff muscle-tendon units (Moraska, 2005).  

Previous studies also suggest that the improvement in ROM by vibration is associated with pain 

alleviation (Lundeberg et al., 1984; Pantaleo et al., 1986), increase in blood flow (Kerschan-Schindl et 

al., 2001), relaxation of stretched muscles (Turnbull et al., 1982) and inhibition of muscular antagonist 

mediated by the Golgi tendon organ -Iβ afferent neuron pathway (Bove et al., 2003).  

 

However, the findings of this review and lack of significance obtained when a Fishers Exact test was 

applied to 2x2 contingency tables, does reject the null hypothesis set at the commencement of the study 

and not provide evidence that LVT is significantly more effective in attenuating loss of flexibility 

induced by EIMD. Due to the small sample size (n=4; n=3), a high p value may also have resulted from 

a Type II error and a need for further studies exists.  

 

5.2.2 Muscle Strength Deficits 

Of the 11 RCTs including 255 participants which investigated the effect of MM on measures of muscle 

strength and /or power in human subjects following eccentric exercise summarised in Table 4.2.2, four 

trials (36%) showed a significantly positive improvement in the strength/power output of the massaged 

groups/limbs (p ≤ 0.05). In the case of LVT, only four RCTs investigating parameters related to the 

strength deficit following EIMD and 2 of these studies (50%) showed a significant improvement. The 

difference between the efficacy of the two trials was not significant (p>0.05), but this may once again 

be a Type II error due to the small number of studies which met the inclusion criteria. 

Of importance is however the fact that the attenuation of strength gains did take place in a number of 

studies using each modality. Although this is not a consistent finding, it has been reported following 

both MM and VT after EIMD.  

Previous studies suggest that the mechanism responsible for this strength loss could be excitation- 

contraction coupling failure which plays an important role in force reduction observed after eccentric 

exercise (Hubal and Sayers, 2008), overstretching of sarcomeres during the lengthening of the muscles 

which occur with eccentric contraction (Howell et al., 1993) as well as disruption in calcium 

homeostasis (Weber et al., 1994)  and  loss of CK activity (Armstrong et al., 1991) that  occurs with 

EIMD.   

 

According to Vegar and Imityaz (2012), VT helps with the synchronization of motor unit activity by 

preventing sarcomere disruption and also improves muscular strength, power development and 
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kinaesthetic awareness. Bosco et al. (1999) also mention that vibration results in neuromuscular 

activation whereby the local tendon and muscle vibrations stimulate muscle spindle and Iα fibres, which 

mediate the monosynaptic and polysynaptic pathways (Hagbarth and Eklung, 1985; Siedel, 1988). 

5.3 DOMS and systemic markers of inflammation 

As detailed in Table 4.4.3, the results of this systematic review of randomized controlled studies firstly 

revealed that MM and LVT both had positive effects on attenuating the symptoms of DOMS.  Trials 

performed on the effects of MM on muscle soreness, DOMS and related neuropeptides on 12 

randomized controlled trials involving 242 participants showed a positive effect in reducing DOMS in 

75% (n=9) of the studies, while each of the trials investigating the effects of LVT, on DOMS also 

showed a positive outcome. This confirms the findings of the meta-analysis completed by Torres et al. 

(2012) investigating the effects of MM on DOMS only.   

 

In terms of DOMS, most of these studies compared healthy subjects receiving massage with the control 

group receiving no treatment (rest) only.  As the outcomes were all measured using slight variations of 

VAS and were relatively homogenous and this allowed for a robust comparison. The only shortcoming 

in terms of rating of the study design, was the absence of blinding in most of the studies. While Hilbert 

et al. (2003) did however ensure that their studies were single blinded on the side of the 

researchers/blinded examiner/testers taking post intervention measures, and Hane et al. (2014) reported 

the use of a placebo intervention such as TENS pads, the failure to include this characteristic of good 

study design, as inclusion criterion, is a somewhat unavoidable limitation of this systematic review. 

Ullman (2011) emphasises, absence of a placebo treatment makes it impossible to exclude the 

psychological influence or effects.   

Timing of the massage sessions is also an important extraneous variable. Torres et al. (2012) reported 

that massage applied after exercise is effective on muscle soreness only after 24h post exercise. This 

confirms the recommendation of Tiidus (1997) who showed that massage also had an effect on 

inflammatory response and may be able to affect the later development of muscle soreness.  However, 

he proposed that for massage to be able to disrupt the initial stages of muscle damage or progression 

and inflammatory response, it will have to be applied 1-2h post eccentric exercise. This confirmed the 

speculation of Tidis in 1997 that  if 30 min of massage (effleurage and petrissage) is performed within 

2h after exercise will positively affect the migration of neutrophils from the site of the damage in muscle 

(Smith et al., 1994). Unfortunately the timing of the MM sessions in this review was not consistent. 

This may account for some of the negative outcomes reported in terms of attenuation of DOMS.  

In the case of VT, numerous researchers have found LVT applied before induction of EIMD effective 

in attenuating DOMS and inflammatory markers of EIMD and accelerating recovery from EIMD. The 

importance of this variable requires further investigation.     
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As is evident in Table 4.3.3, although LVT did appear to have greater consistency in attenuating the 

symptoms of DOMS, the Fisher’s Exact test did not show superiority (p>0.05) of LVT over MM in 

reducing DOMS following EIMD.  These findings are supported by the study of Imityaz (2014), who 

also found that LVT had the same positive effect as MM on symptoms of DOMS at 24, 48 and 72 hr 

post EIMD.  

Interestingly, the reduction in DOMS was also associated with a reduction in PPT in measured using 

an algometer in two of the studies and with the intramuscular concentration of the related neuropeptide, 

muscle CGRP and NPY in the study of (Jӧnhagen et al., 2006)  et al. (2004). As this is, however, the 

only work having investigated this association, further studies are required in order to test the validity 

of this finding.  

 

In terms of inflammatory markers found in the circulation associated with DOMS, the early finding of 

Tiidus (1997) who showed that massage also had an effect on inflammatory response and may be able 

to affect the later development of muscle soreness, was of interest. 

 

As indirect measures of muscle damage, CK concentrations only showed a correlation with DOMS in 

50% (n=2) of the trials in which it was measured (n=4). The large individuality in the link with DOMS 

and influence of genetics, age, and gender and dependence on the time-points at which measurements 

were taken as well as isoenzymes measured (as described on page 8), may have resulted in these 

discrepancies in the association between DOMS and these muscle enzyme levels in blood . However 

the work of Crane et al. (2012) reported attenuated levels of PCG1α, confirming its role as potent 

vasoregulatory neuropeptides (Jӧnhagen et al., 2004) and involvement in the modulation of pain. 

Furthermore the reduction in TNF-α and IL-6 in addition to NFκB confirm reduction of the level of 

inflammation (Crane et al., 2012).   

 

Insufficient studies have, however, investigated this relationship between DOMS and systemic markers 

of inflammation in order to verify the proposal of Kresge (1988) that massage reduces DOMS by 

increasing muscle lymph flow, circulation and muscle relaxation.  Further in-depth studies investigating 

massage induced decrements in DOMS following EIMD that investigate at the correlation between 

these markers of inflammation and levels of DOMS after EIMD need to be undertaken. 

 

The time-points at which blood sampling is taken after application of MM or VT also needs to be kept 

consistent between studies before a meta-analysis can be undertaken to reveal the association.  The 

other factors that influence the ability of massage to give an effect are types and durations of massage 
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as well as pressure applied varies based on the therapist’s experience and preferences (Callaghan, 1993).  

The tissue healing and psychological effect of massage may also require attention for future research. 

Ayles et al. (2011) have recently suggested that the positive effect of VT in attenuating DOMS could 

be due to the stimulation of muscle spindles and increase in its afferent activity that is caused by 

vibration; that vibration reduces the perception of pain through same mechanism of pain gait theory, 

leading to increase in background tension and motor unit activity (Weerapong et al., 2005).  As 

mentioned on page 72, the isolated muscle or tendon vibration could lead to activation of primary and 

secondary muscle spindle endings so as the Iβ afferents from GTOs (Burke et al., 1976).  It also reduces 

Iα afferent transmission because of an increased level of presynaptic inhibition. (Ritzmann et al., 2013).   

As described in the literature review,  Tiidus (1997) states that there is very little evidence that MM has 

any significant impact on muscle recovery following an exercise and in support of the finding that light 

exercise on the affected muscles may be effective in improving blood flow and short-term reduction of 

muscle soreness than MM.   

However, in the cross over design studies the effects of the RPE could have contributed to the positive 

results that was obtained for example, Lau and Nosaka (2011) found that vibration reduced the 

symptoms of DOMS 2 – 5 days after exercise.  The ultrastructural disruption seen after eccentric 

contraction and the level of disruption appears to be reduced if the subjects have been previously 

exposed to this type of training.  As Cheung et al ( 2003) mentions, the RBE in which a single bout of 

exercise strengthens the muscle for the following eccentric bouts (McHugh, 2003), may well have been 

an extraneous variable influencing the outcomes in all of the cross-over studies of DOMS in both MM 

and VT.  

 

 

5.4 Blood Lactate Concentration and/or Markers of fatigue 

As discussed in the literature review, blood lactate concentration is not a marker of EIMD per se. It is 

only of interest in terms of indirectly reflecting the increased blood flow accompanying MM and LVT. 

While earlier numerous studies included this variable in their evaluations of the efficacy of MM, this 

appears no longer to be included in more recent studies focusing on the benefits of LVT.  In the case of 

the MM studies,  these were usually conducted in comparison to other intervention strategies such as 

active post-exercise recovery and stretching and often did not contain untreated control groups, hence 

did not qualify for inclusion in this systematic review as would anticipated according to the state of the 

knowledge regarding lactate clearance from the  blood described on pages 15, 28 & 29 blood lactate  

uptake was not accelerated during post exercise recovery in the 4 studies reported (Table 4.2.5). 
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Only one study investigated another parameter which may provide an indirect indication of recovery 

from fatigue post EIMD, namely a regression line fit to the decline of repeated MCVs. This interestingly 

did also not provide a positive result in terms indirectly reflecting recovery from damage to the muscle 

cell.   
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CHAPTER SIX 

 

Conclusion 

 

 

The findings of this systematic review confirm that both MM and LVT potentially offer benefits in 

terms of more rapid recovery from the functional decrements of EIMD. However the potential 

superiority of one modality over another cannot be proven until such time as more randomised 

controlled clinical trials involving larger sample sizes and minimal bias, are conducted which will 

provide sufficient statistical power and quantitative data to undertake a thorough meta-analysis and /or 

statistical comparison of the two interventions. 
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CHAPTER SEVEN 

Directions for future research 

 

Future studies should involve larger sample sizes. The size of the sample was found to be one of the 

flaws in many studies done on massage and resulted in possible type II errors (Ernst, 1998). 

 

The studies need to be randomised, controlled, blinded and homogenous in terms of the intervention 

used to induce EIMD, the age and gender of the trial participants and the outcome measures assessed. 

 
The timing and duration of the massage sessions need to be standardized in future studies.  

 

The time-points of blood/muscle sampling after application of MM or VT need to be kept consistent 

between studies before meta-analyses can be undertaken for the purpose of comparison of the two 

modalities.   

 

Further in-depth studies investigating massage induced decrements in DOMS following EIMD that 

investigate at the correlation between TNF-α, IL-6, CGRP and NFκB markers of inflammation and 

levels of DOMS after EIMD need to be undertaken. 
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Appendix B 

 

RESULT SUMMARY: SYSTEMATIC REVIEW 

 

Contingency Tables 

 

(i) Flexibility 

 Positive Negative TOTAL 

MM 0 4 4 

VT 2 1 3 

TOTAL 2 5 7 

                                                                                                         p>0.05 

(ii) Strength and Power 

 Positive Negative TOTAL 

MM 4 7 11 

VT 2 2 4 

TOTAL 6 9 15 

                                                                                                          p >0.05 

(iii) Soreness/DOMS 

 Positive Negative TOTAL 

MM 9 3 12 

VT 4 0 4 

TOTAL 13 3 16 

                                                                                                        p>0.05 

(iv) Creatine Kinase concentration 

 Positive Negative TOTAL 

MM 1 1 2 

VT 1 1 2 

TOTAL 2 2 3 

                                                                                            p>0.05 

 

(v) Blood Lactate concentration 

 Positive Negative TOTAL 

MM 0 3 3 

VT 0 1 1 

TOTAL 0 4 4 

                                                                                      p>0.05 

 


