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ABSTRACT 

Hydrological models and tools are often used as decision support systems to inform water 

resources management. The successful application of these systems is largely dependent on 

the quality of data being incorporated into them. Accurate information with regards to total 

evaporation is of paramount importance to water resources managers, as it is a key indicator 

in determining if water resources are being used for their specific purposes. Due to the 

inherent spatial limitations associated with conventional techniques to estimate total 

evaporation, the application of satellite earth observation as a tool to estimate total 

evaporation is being advocated more frequently. The focus of this Dissertation was to 

develop an approach which would allow for the incorporation of total evaporation estimates 

from an existing evaporation model that incorporates satellite earth observation data i.e. the 

SEBS model, into a hydrological simulation model i.e. ACRU, to simulate streamflow.  

The SEBS model was first validated in the Komatipoort study site against the surface renewal 

system. The results of this investigation indicated that the SEBS model over-estimated total 

evaporation by approximately 47% and produced R
2
 and RMSE values of 0.33 and 2.19, 

respectively, when compared to total evaporation estimates obtained from the surface renewal 

system. Once, the model had been validated, it was then applied to estimate total evaporation 

for quarternary catchment X23_A for the period 01
st
 December 2011 to 25

th
 November 2012. 

These estimates were used to create a continuous total evaporation time series, which was 

used as an input to ACRU to model streamflow.  

The EVTR3 approach was derived to allow for the incorporation of the aforementioned 

SEBS total evaporation estimates in ACRU and to estimate streamflow amongst other 

hydrological parameters. The simulated streamflow for this technique was under-estimated 

by approximately 10% and produced R
2
 and RMSE values of 0.41 and 1.05, respectively, 

when compared to observed streamflow. Although these results appear to be satisfactory at 

best, similar results were obtained when using the conventional evaporation routine in ACRU 

to estimate streamflow. This occurrence circuitously highlights the potential of utilizing 

satellite earth observation data as a data source for a hydrological model. 
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1. INTRODUCTION 

1.1  Background and Significance 

Semi-arid environments, such as South Africa, are predominantly water-scarce (Jarmain et 

al., 2009). There is a diverse community of water resources consumers in South Africa, all 

competing for a share of a limited resource (Jarmain et al., 2009). Subsequently, the need to 

accurately estimate and understand the temporal and spatial variations of total evaporation 

takes on added significance in these environments (Jarmain et al., 2009). Approximately 91% 

of the mean annual precipitation which southern Africa receives is returned to the atmosphere 

through total evaporation (Whitmore, 1971).  

The loss of water to total evaporation is quite substantial, as daily water requirements usually 

surpass the amount of available rainfall and therefore the demands for water resources have 

to be supplemented by dams, water transfer schemes and irrigation systems, which utilize 

additional surface water and ground water resources (Kongo and Jewitt, 2006; Gowda et al., 

2007; Jarmain et al., 2009). Consequently, total evaporation has become one of the key 

factors in water resources management, since accurate estimates of total evaporation assist in 

making well-informed decisions for various activities such as the design and management of 

irrigation schemes, regulating water laws and providing greater insight to hydrological 

studies (Bastiaansen, 2000; Bastiaansen et al., 2012). 

Obtaining accurate estimates of total evaporation will enable water resources managers and 

practitioners to account for the loss of water from the land surface and to assist in the 

prevention of wastage which could have occurred previously (Bastiaansen, 2000). Therefore, 

it is of utmost importance to possess techniques which acquire accurate information with 

regards to total evaporation (Allen et al., 1998; Bastiaansen, 2000). Conventional techniques 

which are commonly used to estimate total evaporation, both locally and internationally, are 

confined to the field scale, providing point-based estimates (Bastiaansen, 2000; Su, 2002; Jin 

et al., 2005; Jarmain et al., 2009; Li et al., 2011; Bastiaansen et al., 2012).  
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These techniques have been extremely useful in acquiring total evaporation data, however 

they are only representative at the field scale and generally cannot be used to estimate total 

evaporation over large geographic scales (Bastiaansen, 2000; Twine et al., 2000; Su, 2002; 

Jin et al., 2005; Jarmain et al., 2009; Bastiaansen et al., 2012; Teixera and Batsiaansen, 

2012).  This is largely due to the heterogeneity of land surfaces, which becomes more 

pronounced over larger geographical scales, as well as the changing nature of heat transfer 

processes at greater spatial scales (Bastiaansen, 2000; Su, 2002; Li et al., 2011; Bastiaansen 

et al., 2012). In addition to this, the use of conventional techniques to estimate total 

evaporation over large geographic scales would prove to be impractical and somewhat costly 

(Elhaddad and Garcia, 2008; Badola, 2009; Bastiaansen et al., 2012).  

Advancements in satellite earth observation systems over the past four decades have provided 

a suitable alternative to capturing hydro-meteorological data. Satellite earth observation has 

shown a great deal of potential in providing information at large geographic scales, capturing 

information which is not easily accessible through the use of conventional techniques and 

providing time series data of variables fairly easily, due to the periodic updating of 

information (Sandholt et al., 1999; Bastiaansen, 2000; Su, 2002; Bastiaansen and 

Harshadeep, 2005; Jarmain et al., 2009; Jovanovic and Israel, 2012; Li et al., 2009; van Dijk 

and Renzullo, 2011; Bastiaansen et al., 2012; Ershadi et al., 2011; Fern´andez-Prieto et al., 

2012; Ma et al., 2012; Muhammed, 2012; Wu et al., 2012).  

1.2  Research Problem 

Numerous hydrological models and tools are used as decision support systems to inform 

water resources management. However, the success of these systems is not dependent on the 

type of model or tool used, but rather by the data being incorporated into them (van Dijk and 

Renzullo, 2011; Mengistu et al., 2014). Effective and efficient water resources management 

is therefore dependent on data being available, for the representative spatial and temporal 

scales (van Dijk and Renzullo, 2011). The use of satellite earth observation data alone is not 

seen as a solution to the current challenges of data acquisition, however it is a useful 

alternative in providing crucial data when conventional measures prove to be inadequate or 

unavailable (Jarmain et al., 2009).  
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Previous research indicates that satellite earth observation is potentially a very useful 

information source with regards to environmental variables such as precipitation, total 

evaporation and soil moisture amongst others (Kite and Pietroniro, 1996; Sandholt et al., 

1999; van Dijk and Renzullo, 2011; Fern´andez-Prieto et al., 2012; Xu et al., 2014). Satellite 

earth observation is able to provide information at large geographic scales, capture 

information which is not easily accessible through the use of conventional techniques and to 

provide time series data of variables fairly easily, due to the periodic updating of information 

(Sandholt et al., 1999; Bastiaansen, 2000, Su, 2002; Bastiaansen and Harshadeep, 2005; 

Jarmain et al., 2009; Li et al., 2009; Ershadi et al., 2011; Fern´andez-Prieto et al., 2012; 

Jovanovic and Israel, 2012). 

The ability of satellite earth observation to provide spatially representative observations has 

created improved prospects for the advancement and application of fully distributed 

hydrological models (Peck et al., 1981; Kuttinen, 1985; Engman and Gurney, 1991; Schultz, 

1993; Engman, 1995; Kite and Pietroniro, 1996; Sandholt et al., 1999; van Dijk and 

Renzullo, 2011; Fern´andez-Prieto et al., 2012; Mengistu, 2014; Xu et al., 2014). There has 

been intensive research conducted on a global scale, to integrate satellite earth observation 

and hydrological modelling over the past few decades, with noteworthy advancements being 

made in the land/hydrologic satellite earth observation data integration (Kite and Pietroniro, 

1996; Sandholt et al., 1999; Bulcock and Jewitt, 2010; Xu et al., 2014).  

However, there still remains a number of major challenges in this field that need to be 

overcome (Xu et al., 2014). This is largely due to the lack of appropriate technology required 

to handle and process satellite earth observation data and the lack of knowledge regarding the 

application of these techniques (Schultz and Engman, 2000: Bulcock and Jewitt, 2010; van 

Dijk and Renzullo, 2011).  

The nature of currently available hydrological models has also proved to be a major 

stumbling block to the integration of satellite earth observation data and hydrological models. 

These hydrological models, whether lumped or distributed, require some form of modification to 

incorporate satellite-derived data (Sandholt et al., 1999; Wagener et al., 2009; Xu et al., 2014). A 

great deal of time, expertise and effort is required to successfully modify these models and as a 

result, there has been reluctance to move away from traditional and reputable methods 

(Bulcock and Jewitt, 2010; van Dijk and Renzullo, 2011; Xu et al., 2014).  
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Satellite earth observation data possess a variety of benefits that can be used to assist water 

resources management. In order to truly understand the potential benefits associated with the 

integration of satellite earth observation data in hydrological models, the aforementioned 

challenges need to be overcome (Fern´andez-Prieto et al., 2012). The only means of achieving 

this is to focus future research on adapting current hydrologic models, to utilize satellite earth 

observation data, to develop new hydrologic models specifically created to utilize satellite earth 

observation data, to improve current data collection techniques and to develop new techniques 

(Sandholt et al., 1999; Wagener et al., 2010; van Dijk and Renzullo, 2011; Fern´andez-Prieto et 

al., 2012; Xu et al., 2014). 

1.3  Research Aims and Objectives 

The aim of this study was to develop an approach to allow for the integration of satellite-

derived total evaporation data into the Agricultural Conservation Research Unit (ACRU) 

Model, which can then be used to assist the water resources management decision-making 

process and to develop an understanding of the hydrological characteristics within a 

catchment, through improved hydrological modelling. The general objective of this study was 

to apply the output of an existing evaporation model i.e. the SEBS Model, which incorporates 

satellite earth observation data into the ACRU Model to simulate streamflow.  

1.4  Specific Objectives 

 Review current techniques which utilize satellite earth observation data to estimate 

total evaporation. 

 Apply and validate estimates of total evaporation extending from the SEBS model 

against in situ total evaporation estimates obtained from a conventional technique. 

 Generate a time series of the satellite-derived SEBS total evaporation which can be 

used as an input to the ACRU Model. 

 Apply and validate an infilling technique which can be used to patch any missing 

values in the satellite-derived SEBS total evaporation time series. 

 Develop and test an approach describing how to incorporate the satellite-derived 

SEBS total evaporation estimates into the ACRU hydrological model. 

 Compare the simulated streamflow obtained from using the satellite-derived SEBS 

total evaporation estimates against observed streamflow. 
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1.5  Research Questions 

i. How do the satellite-derived SEBS daily total evaporation estimates compare against 

in situ measurements obtained from a conventional technique? 

ii. How can the satellite-derived SEBS total evaporation estimates be incorporated into 

the ACRU hydrological model? 

iii. How will simulated streamflow modelled, using the satellite-derived SEBS total 

evaporation estimates, compare against observed stream flow? 

 

1.6  Research Hypotheses 

 Ho: Modelled streamflow volumes obtained using the satellite-derived SEBS total 

evaporation estimates, as a data source to ACRU, will compare favourably with 

observed streamflow volumes. 

 Ha: Modelled streamflow volumes obtained using the satellite-derived SEBS total 

evaporation estimates, as a data source to ACRU, will not compare favourably with 

observed streamflow volumes. 

1.7  Organization of Dissertation 

This dissertation is divided into seven chapters, starting with an introduction and ending with 

conclusions and recommendations. The broad overview of the dissertation is presented as 

follows: 

The second chapter briefly explains the current techniques used to estimate total evaporation, 

using satellite earth observation data and provides an in-depth description of one of these 

techniques. Chapter three provides a description of the study area. Chapter four provides a 

detailed description of the satellite data, validation data and meteorological data used in the 

study, a description of the processing techniques used to estimate total evaporation, a 

description of the infilling techniques used and a description of the ACRU Model, as well as, 

the hydrological simulations undertaken. Chapters five and six details the results of the 

infilling techniques investigation and the total evaporation modelling, as well as the results 

for the streamflow modelling component of the study, respectively. The conclusions, 

limitations and recommendations of the study are discussed in chapter seven. 
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2. LITERATURE REVIEW 

2.1 A Brief Review of Current Techniques to estimate Total Evaporation based on 

Satellite Earth Observation Data 

The use of satellite earth observation data to estimate total evaporation began approximately 

four decades ago in the late 1970’s. The type of evaporation models incorporating satellite 

earth observation data to estimate total evaporation gradually evolved over time, becoming 

more complex in nature in comparison to their predecessors (Jarmain et al., 2009). 

According to Courault et al. (2005), there are four broad classes of techniques, which are 

based on satellite earth observation used to estimate total evaporation. These include; (i) 

empirical direct methods, (ii) deterministic methods, (iii) the vegetation index approach and 

(iv) techniques based on the parameterisation of the energy balance.  

i. Empirical direct methods of estimating total evaporation incorporate satellite earth 

observation data directly into semi-empirical models. (Courault et al, 2005). This 

technique is based on the assumption that the daily total evaporation can be directly 

related to the instantaneous difference between the air and surface temperature. The 

surface temperature can be estimated, using thermal infrared measurements from 

satellite earth observation data for the regional scale (Courault et al, 2005). This 

technique has been widely used to map total evaporation over large geographic areas 

based on surface temperature measurements (Lagouarde and Brunet, 1991; Courault 

et al, 1994). 

ii. Deterministic methods are generally based on complex models such as the Soil-

Vegetation-Atmospheric Transfer models which are used to determine the different 

components of the energy budget (Courault et al, 2005). Satellite earth observation 

data is used in this technique, either as an input parameter to describe various 

surfaces, or in an assimilation procedure, which aims to attain the necessary 

parameters required for the total evaporation computation (Courault et al, 2005).  

iii. Vegetation index methods also known as inference methods utilize satellite earth 

observation data to compute a reduction factor such as the crop coefficient or the 

Priestley-Taylor alpha parameters (Courault et al, 2005). This is then used in 

conjunction with the reference evaporation which can be obtained from field 

measurements, to estimate the total evaporation (Courault et al, 2005). 
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iv. Techniques based on parameterisation of the energy balance combine some empirical 

relationships with physical modules to determine the total evaporation. Satellite earth 

observation data as well as meteorological data is used directly in these models to 

estimate the input parameters, which are required for the total evaporation 

computation (Courault et al, 2005). 

The advantages and disadvantages of each of the aforementioned techniques are listed in 

Table 2.1 and have been discussed in Courault et al (2005), Jarmain et al (2009) and 

Timmermans (2014). Taking into consideration the relative strengths and weaknesses 

associated with each technique, the technique based on, utilizing the parameterisation of the 

energy balance, to estimate total evaporation was chosen, to be applied in this study, as it can 

be applied operationally, involves little to no cost and possesses minimal data requirements. 

Table 2.1 A summary of advantages and disadvantages of the different approaches 

used to estimate total evaporation from remote sensing data  

Summary of advantages and disadvantages of the different approaches  

used to estimate total evaporation from remote sensing data 

Technique Advantages Disadvantages 

Empirical 
Operational from local to 

regional scale 

Spatial variations of 

coefficients 

Deterministic 

Very detailed in their 

descriptions  

Large number of input 

parameters, long 

computation times 

Vegetation Index Methods 

Simple parameterisation of 

processes  

Only valid for specific 

conditions, does not account 

for all surface flux 

components needed in land 

surface and climate models 

Parameterisation of the 

energy balance 

Operational, low cost, minimal 

data requirements 

Some empirical 

relationships, dry and 

wetland requirements to 

estimate the sensible heat 

flux 
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The estimation of total evaporation as a parameterisation of the shortened energy balance is a 

commonly applied technique for both operational and scientific research purposes (Mu et al., 

2007; Senay et al., 2007; Jarmain et al., 2009; Long and Singh, 2012). There are a vast 

number of total evaporation models which are based on the aforementioned technique. Some 

of the commonly applied techniques include the Surface Energy Balance Index (SEBI), the 

Surface Energy Balance Algorithm for Land (SEBAL), the Surface Energy Balance System 

(SEBS) and Mapping Evapotranspiration at High Resolution with Internalized Calibration 

(METRIC). A brief description of these models is given below. 

SEBI which was proposed by Menenti and Choudary (1993) is a single sourced energy 

balance model (Li et al., 2009). SEBI is based on the distinction between the wet and dry 

limits and uses this relationship to derive pixel-by-pixel total evaporation from the relative 

evaporative fraction, when it is combined with surface parameters obtained from satellite 

earth observation data and field-based measurements (Li et al., 2009).  

The dry limit is characterized by maximum surface temperatures with minimal or no total 

evaporation occurring, whilst the wet limit is characterized by minimum surface temperatures 

with high or maximum total evaporation (Li et al., 2009). SEBAL and SEBS have been 

formulated applying the basic SEBI concept, with the main distinctions between these 

evaporation models being, the calculation of the sensible heat flux, defining wet and dry 

limits and interpolating between defined upper and lower limits, to determine the sensible 

heat flux for specific boundary layer conditions (Li et al., 2009). 

SEBAL utilizes visible, near-infra-red and thermal infrared input data obtained from satellite 

imagery, empirical relationships and other physical modules, to determine the instantaneous 

fluxes of the shortened energy balance equation (Bastiaansen et al., 1998a; 2000; Jarmain et 

al., 2009; Li et al., 2009; Jovanovic and Israel, 2012). The algorithm computes key hydro-

meteorological fluxes, which are used in conjunction with field data to determine the 

instantaneous terms of the shortened energy balance (Jarmain et al., 2009).  The latent heat 

flux, which is the energy required for total evaporation to occur is calculated, as a residual of 

the shortened energy balance. Once, the instantaneous latent heat flux has been determined 

the daily total evaporation can be determined by assuming the evaporative fraction remains 

constant throughout the day (Bastiaansen et al., 1998a; 2000; Jarmain et al., 2009; Li et al., 

2009; Jovanovic and Israel, 2012).  
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The METRIC Model described by Allen et al. (2007) is based on the same principles used in 

SEBAL. The model was derived to overcome the limitations of SEBAL in mapping the 

regional total evaporation over complex terrain (Li et al., 2009). The main distinction 

between SEBAL and METRIC is the determination of the cold pixel value. The alfalfa 

reference evaporation is used to determine the energy balance conditions of the cold pixel 

(Allen et al., 2007; Jarmain et al., 2009; Li et al., 2009). The cold pixels in METRIC are 

selected for an agricultural setting in which the biophysical characteristics are similar to that 

of the alfalfa reference crop (Allen et al., 2007; Li et al., 2009). The daily total evaporation is 

calculated, based on the ratio of the instantaneous total evaporation and the reference crop 

evaporation obtained from field-based measurements at the time of satellite overpass (Allen 

et al., 2007).  

The SEBS model, developed by Su (2002), is a single-sourced surface energy balance model 

which can be utilized to estimate turbulent fluxes within the atmosphere or to determine the 

evaporative fraction through the use of remote sensing and meteorological data for both local 

and regional scales (Su, 2002; Jin et al., 2005; Badola, 2009; Jarmain et al. 2009; Li et al., 

2009; van de Kwaast, 2009; Gibson et al., 2011; Ma et al., 2011; 2012; Muhammed, 2012; 

Ershadi et al., 2014; Ma et al., 2014 Mengistu et al., 2014; Pardo et al., 2014). The model 

consists of a suite of tools used to determine roughness length of heat transfer, land surface 

physical parameters and the evaporative fraction (Su, 2002). Similar to SEBAL, the daily 

total evaporation is calculated by assuming that the evaporative fraction remains constant 

throughout the day (Su, 2002).  

The advantages and disadvantages of each of the aforementioned techniques are listed in 

Table 2.2 and have been discussed in Allen et al. (2007), Bastiaansen et al. (1998a); (2000), 

Su (2002), Jarmain et al. (2009), Li et al., (2009) and Jovanovic and Israel, (2012). Taking 

into consideration the relative strengths and weaknesses associated with each technique, the 

SEBS Model was chosen to be applied in this study as it is open source software which can 

easily be obtained and utilized. The SEBS model is discussed in detail in the following sub-

section. 
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Table 2.2 A limited list of techniques which are based on the parameterisation of the 

energy balance to estimate total evaporation through the incorporation of 

satellite earth observation data 

Technique Advantages Disadvantages 

SEBI 

Directly relates the effects of temperature and 

aerodynamic resistance to the latent energy 

Requires a lot of field-based 

measurements, evaporative fraction is 

assumed to be constant in order to 

estimate daily total evaporation 

SEBAL 

Minimal data requirements, physical concept, 

land use not required, multi-sensor approach 

User defined hot and cold pixels, only 

applicable to flat terrain, evaporative 

fraction is assumed to be constant in 

order to estimate daily total 

evaporation, not open source 

METRIC 

Similar to SEBAL but surface slope and 

aspect can be considered 

Uncertainty in the determination of hot 

and cold pixels, up-scaling of 

instantaneous total evaporation to daily 

total evaporation based on the ratio of 

the instantaneous total evaporation and 

the reference crop evaporation at the 

time of satellite overpass . 

SEBS 

No apriori knowledge of actual turbulent 

fluxes needed, computes roughness height of 

heat transfer instead of using fixed values, 

open source software available in ILWIS, 

application of the model is fairly user-friendly, 

Less assumptions are made then in other 

techniques and the energy balance is solved 

with more physical parameterizations in the 

SEBS formulation. 

Dry and wetland requirement to 

determine the sensible heat flux, 

combined with Penman-Monteith 

equation, too many parameters are 

required, solution to determine 

turbulent heat flux is fairly complex, 

evaporative fraction is assumed to be 

constant in order to estimate daily total 

evaporation.  
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2.2  The SEBS Model 

The SEBS Model is one of the commonly applied satellite-based techniques utilized to 

estimate total evaporation and has been applied in a vast array of studies in area of different 

climate, topography and land uses, including but not limited to; Su (2002), Jin et al. (2005), 

Jarmain et al. (2009), Li et al. (2009) van de Kwaast (2009), van de Kwaast et al. (2009), 

Gibson et al. (2011), Ma et al. (2011); (2012), Muhammed, (2012), Timmermans et al. 

(2013), Ershadi et al. (2014), Ma et al. (2014),  Matinfar and Soorghali (2014), Mengistu et 

al. (2014), Pardo et al. (2014). The SEBS Model is easily accessible open source software, 

which is available in the Integrated Land and Water Information System (ILWIS).  

The SEBS Model, developed by Su (2002), is a single-sourced surface energy balance model 

which can be utilized to estimate turbulent fluxes within the atmosphere or to determine the 

evaporative fraction through the use of remote sensing and meteorological data at both local 

and regional scales (Su, 2002). The SEBS model permits the use of data obtained from a 

variety of satellite sensors, which is available at varying spatial, temporal and spectral 

resolutions.  

A number of tools are presented within the Model, which integrate meteorological data and 

satellite earth observation data to estimate daily total evaporation (Su, 2002). Su (2002) states 

that there are three primary sets of data required by SEBS to estimate the daily total 

evaporation for any region. This data is obtained from two sources i.e. through satellite earth 

observation systems measuring spectral reflectances and radiances of the land surface and 

meteorological stations. Satellite earth observation data is used to provide information for a 

number of land surface parameters required by SEBS, including the land surface albedo, land 

surface temperature, emissivity, fractional vegetation cover, leaf area index, vegetation 

roughness height and the normalized difference vegetation index (NDVI) (Su et al., 2001; Su 

2002). 

Climatic data such as wind speed, air temperature, air pressure at a reference height, humidity 

and sunshine hours, are obtained from the meteorological stations. Radiation data i.e. the 

downward short-wave radiation, is also required by SEBS; however, this can be obtained 

from various sources and is not restricted to one particular source of the two previously 

described sources (Su et al., 2001; Su, 2002).  
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The various input data required by SEBS is incorporated into three sub-models, to determine 

the components of the energy balance, stability factors and the roughness length of heat 

transfer (Su et al., 2001; Su, 2002). The three sub-models are then used to estimate the 

evaporative fraction at limiting cases. The evaporative fraction in SEBS is assumed to be 

constant for the entire day and the daily total evaporation can then be determined from the 

available latent heat energy (Su et al., 2001; Su, 2002).  

The use of remote sensing data within SEBS improves the spatial representation of the 

estimates, whilst simultaneously accounting for the heterogeneity of the land surface over 

increasing geographic scales (Su, 2002). In addition to the various SEBS pre-processing 

functions available in ILWIS, SEBS possesses the added advantage of determining land 

surface physical parameters such as albedo, fractional vegetation cover and NDVI, amongst 

others (Su, 2002). The open-source nature of SEBS as well as the previously described 

advantages make it a promising tool which can be used as a decision support system for water 

resources research, planning and management.  

2.3  Determination of Total Evaporation within SEBS 

A number of equations are used to determine the daily total evaporation within SEBS. 

Satellite data derived from spectral reflectances and radiances of the land surface as well as 

meteorological data are used to determine the various variables outlined in these equations 

(Su, 2002). The following equations are used to determine the daily total evaporation in 

SEBS: 

2.3.1  The simplified surface energy balance  

The simplified surface energy balance equation is given as (Su, 2002):  

Rn - Go – H - λET  =  0    (2.1) 

Where  Rn is net radiation (W.m
-2

); H is sensible heat flux energy (W.m
-2

); Go is soil heat flux 

energy (W.m
-2

) and λET is latent heat flux energy (W.m
-2

). 
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2.3.2  The net radiation  

The net radiation equation is given as (Su, 2002): 

Rn  =  (1 - α) RSwd +ε.RLwd – ε.σ. To
4 

    (2.2) 

Where  α is land surface albedo; RSwd is incoming solar radiation (W.m
-2

); ε is surface 

emissivity; is RLwd is incoming long wave radiation (W.m
-2

); σ is Stefan Boltzman constant 

(5.67x10
-8

 W.m
-
2.K

-4
) and To is the surface temperature (K). 

2.3.3  The soil heat flux  

Soil heat flux is one of the components of the energy balance equation. This energy flux 

enters the land surface during the day and exits the land surface at night. Generally, the soil 

heat flux is assumed to be zero over a 24-hour period (Muhammed, 2012). The soil heat flux 

equation is given as (Su, 2002):  

Go  =  Rn.[Гc +( 1- fc).(Гs - Гc)]      (2.3) 

Where Гc is the ratio of soil heat flux to net radiation which is assumed to be equal to 0.05 for 

a fully vegetated canopy (Monteith, 1973) and Гs is the ratio of soil heat flux to net radiation 

which is assumed to be equal to 0.315 for a bare soil surface (Kustas and Daughtry, 1989). 

The fractional canopy coverage (fc), which is derived from satellite earth observation, is then 

used to perform an interpolation between the two limiting cases described above (Su, 2002). 

 

2.3.4  The sensible heat flux  

The sensible heat flux is determined by applying the similarity theory and the Monin-

Obukhov stability correction procedure (Su, 2002).The equations used to determine wind and 

temperature profiles in the vertical direction are given in Equations 2.4 and 2.5 as: 

u  = (u
*
/k) x [ln((z-do)/zom) -ψm x ((z-do)/L) + ψm x (zom/L)]   (2.4) 

θo-θa = (H/ku
*
ρCp) x [ln((z-do)/zoh) – ψh x ((z-do)/L) + ψh x (zoh/L)]   (2.5) 
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In Equations 2.4 and 2.5; u and u
* 

are wind and the friction velocity (m.s
-1

) respectively, z 

and do are reference meteorological height (m) and displacement height respectively (m), ρ is 

the density of air (kg.m
-3

), Cp is the heat capacity of dry air (Jkg
-1

), k is von Karman’s 

constant (0.4), zom and zoh are the roughness height for momentum and scalar roughness 

height for heat transfer respectively (m), θo and θa are the potential surface temperature and 

air temperature respectively at height z (K), ψm and ψh are stability correction factors for 

momentum and sensible heat transfer respectively and L is the Obhukov length (m) which is 

calculated as: 

L =  -(ρCpu
*3

 θv/kgH)        (2.6) 

Where θv is the virtual temperature near the surface (K) and g is the acceleration due to 

gravity (ms
-2

). 

In order to estimate the sensible heat flux the roughness length for momentum (zom) and 

scalar roughness height for heat transfer are required (zoh). The scalar roughness heigh for 

heat transfer is estimated as: 

zoh = zom/exp(KB
-1

)         (2.7) 

Where KB
-1

 is the inverse Stanton number which is a dimensionless heat transfer coefficient. 

In order to estimate the KB
-1

 value an extended model of Su et al. (2001) is proposed as: 

KB
-1  

= [(kCd/(4Ct) x (u
*
/(u(h))) x (1-e

Nec/2
) x fc

2
] +  

[(2 fcfs) x ((k x (u
*
/(u(h))) x (zom/h)/ Ct

*
)) + (KB

-1 
x fs

2
)]   (2.8) 

Where Cd is the drag coefficient of foliage elements assumed to have a value of 0.2, Nec is the 

within-canopy wind profile extinction coefficient, u(h) is the horizontal wind speed at the top 

of the canopy, fc is the fractional vegetation cover and fs is its complement, Ct is the heat 

transfer coefficient of the leaf which for most canopies and environmental conditions is 

bounded between 0.005N   Ct   0.075N (N is the number of sides of the leaf which is 

involved in the heat transfer process).  
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Ct
*
 is the heat transfer coefficient of the soil given as Ct

* 
=  Pr

-2/3
 x Re* 

-1/2
, where Pr is the 

Prandtl number and Re* is the roughness Reynolds number which is estimated as Re* = hsu*/v, 

where hsis the roughness height of the soil and v is the kinematic viscosity of the air (v = 

1.327x10
-5

 x (po/p) x (T/To)
1.81 

where p and T are the ambient pressure and temeperature po = 

101.3 Kpa and To = 273.5 K. For bare soils the KB
-1

 value can be estimated as: 

KBs
-1

  = 2.46(Re*)
1/4 

– ln(7.4)        (2.9) 

According to Su (2002) ―the actual sensible heat flux is constrained in the range set by the 

sensible heat flux at the wet limit (Hwet) and the sensible heat flux at the dry limit (Hdry)‖.  

At, the dry limit, the latent heat is zero and the sensible heat flux possesses its maximum 

value due to, the limitation of soil moisture. The sensible heat flux under the dry limit is 

given as (Su, 2002): 

Hdry =  Rn – Go        (2.10) 

At, the wet limit, the sensible heat flux possesses its minimum value as evaporation can take 

place at near potential rates. The sensible heat flux at the wet limit is given as (Su, 2002): 

Hwet =  Rn – Go - λEwet       (2.11) 

2.3.5  The relative evaporation 

The relative evaporation is given as (Su, 2002): 

Λr  =  λE/λEwet  

=  1 – (λEwet – λE/ λEwet)        (2.12) 

Where Λr is the relative evaporation; λE is the latent heat at the dry limit and λEwet is the 

latent heat at the wet limit 

Su (2002) then incorporates Equations 2.1, 2.10, and 2.11 into Equation 2.6 to represent the 

relative evaporation as:  

Λr  =  1 – [(H - Hwet)/ (Hdry- Hwet)      (2.13) 
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2.3.6  The evaporative fraction  

In order to, determine the evaporative fraction; Su (2002) combined Equation 2.11 and a 

combination equation similar to the Penman combination equation. According to Menenti, 

(1984) when the resistance terms are grouped into internal and external bulk surface 

resistances, the combination equation to determine the latent heat energy can be given as 

follows: 

λE  =  [Δ x re x (Rn – Go) + pcp(es – ea)] / [re(γ + Δ) + γ x ri]   (2.14) 

Where Δ is the rate of change of saturated vapour pressure with temperature (hPaK
-1

); re is 

aerodynamic resistance (s.m
-1

); es is saturated vapour pressure (hPa); ea is actual vapour 

pressure (hPa); γ is the psychometric constant(hPa.K
-1

) and  ri is the bulk surface internal 

resistance (s.m
-1

). 

 

In Equation 2.14, it is assumed that the roughness length for heat transfer and vapor transfer 

are equal (Brutsaert, 1982). The Penman-Monteith equation only holds true for a vegetated 

canopy, however Equation 2.8 is valid for both a vegetated canopy and a soil surface with 

defined bulk surface internal resistance (Su, 2002).  

The use of Equation 2.14 to determine the latent heat energy can be seen as problematic due 

to the difficulty in determining the bulk surface internal resistance, as this is regulated by the 

availability of soil moisture (Su, 2002). 

Su (2002) proposes a solution to this problem by circumventing the use of the bulk surface 

internal resistance in the estimation of the latent heat energy. According to definition, the 

internal bulk surface resistance at the wet limit is equal to zero. Incorporating this value into 

Equation 2.14 and altering the variables to reflect wet limit conditions, the sensible heat flux 

is given as (Su, 2002): 

Hwet =  [(Rn – Go) – (pcp/rew)(( es – ea)/γ)] / ((1 + Δ)/γ)   (2.15)  

The external resistance (rew) is a function of the Obukhov length, which sequentially is a 

function of the sensible heat flux and the friction velocity (Su, 2002) Equations 2.4 - 2.6. The 

friction velocity and the Obukhov length which have been determined previously can then be 

used to estimate the external resistance from Equation 2.5.  
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re = (1/ku
*
) x [ln((z-do)/zoh) –ψh x ((z-do)/L) + ψh x (zoh/L)]   (2.16) 

Similarly the external resistance at the wet limit can be determined as: 

rew = (1/ku
*
) x [ln((z-do)/zoh) –ψh x ((z-do)/Lw) + ψh x (zoh/Lw)]   (2.17) 

The stability length at the wet limit can be determined as: 

Lw =  ρu
*3

/(k x g x 0.61 x (Rn – Go)/ λ) 

The evaporative fraction can then be determined and is given as follows (Su, 2002): 

Λ  =  λE/(Rn – G) 

    =  Λr.λEwet/(Rn – G)       (2.18) 

2.3.7  Daily total evaporation 

If the evaporative fraction is assumed to be constant throughout the day, the daily actual ET 

can then be estimated as (Su, 2002): 

Edaily  =  8.64x10
7
 x Λo

24
 x ((Rn24 - Go)/ λρw)     (2.19) 

Where  Edaily is daily total evaporation (mm/day); Λo
24

 is the daily evaporative fraction; Rn24 

is the daily net radiation which is measured in situ (W.m
-2

); ρw is density of water (kg.m-
3
) 

and λ is the latent heat of vaporization (2.501-0.00237x Tair)x10^
6
 (J.kg

-1
). 

2.4 Limitations Associated with the use of the Pre-Packaged Version of SEBS and 

Satellite Earth Observation in The Estimation of Total Evaporation  

The benefits of employing satellite-based evaporation estimation techniques can be 

invaluable to improve water resources management; however, it is important to note that 

these techniques do possess limitations, some of which are shared by all satellite earth 

observation techniques, whilst some limitations are technique specific. It is often difficult to 

obtain continuous total evaporation data series using satellite earth observation techniques 

due to the effects of cloud cover as well as the revisit and repeat cycle of any given satellite 

(Jarmain et al., 2009; Mertz, 2010). Cloud coverage has a strong influence on the amount of 

reflected radiation, which can be measured from the earth’s surface for both the optical and 

thermal wavelengths (Jarmain et al., 2009; Timmermans, 2012).  
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The amount of images which can be processed is therefore dependent on the amount of cloud 

free images available. The availability of an image for a particular region is also influenced 

by the satellite revisit and repeat cycle. The revisit and repeat cycles vary, depending on the 

satellite sensor which is being used.  

In addition to the aforementioned limitations, the resolution of the satellite sensor influences 

the accuracy of the daily total evaporation estimate which is obtained. An image obtained 

using a coarse resolution sensor will not be able to accurately account for the spatial 

heterogeneity of the land surface which is being captured (McCabe and Wood, 2006; Li et 

al., 2008; Jarmain, 2009).  

With regards to SEBS, the model is highly sensitive to the following four parameters i.e. the 

gradient between the land surface temperature and air temperature (Su, 2002), the fractional 

vegetation cover formula (Lin, 2006; Badola, 2009; van de Kwast et al., 2009), the 

displacement height and the height of wind speed measurements (Timmermans et al., 2005; 

van de Kwast et al., 2009) and the spatial heterogeneity of the study area (McCabe, and 

Wood, 2006; Li et al., 2008). A detailed description of the aforementioned sensitive 

parameters is presented in Gibson et al. (2011). 

Within the SEBS Model, instantaneous total evaporation values are extrapolated to daily total 

evaporation values by assuming that the evaporative fraction remains constant throughout the 

day (Su, 2002). Research undertaken by Stewart (1996); Lhomme and Elguerro (1998); 

Gentine et al. (2007); (2011) and Mkhwanazi and Chavez (2013), indicate that assuming the 

evaporative fraction to be constant throughout the day may lead to the generation of 

erroneous daily total evaporation estimates, especially during advective conditions (Gentine 

et al., 2007; Mkhwanazi and Chavez, 2013).  

2.5  Case studies: Application of the SEBS Model 

A vast array of studies exist which utilize the SEBS Model to estimate total evaporation, 

however, only a few select case studies will be discussed in this section. A brief description 

of these studies is presented below. The key findings for each of these studies are presented 

in Tables 2.3 and 2.4.  
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Su (2002), proposed SEBS to estimate turbulent fluxes and the evaporative fraction, using 

satellite earth observation data. Three field data sets obtained from flux stations and one 

remote sensing data set obtained from the Thematic Mapper Simulator were used as inputs 

for the SEBS model. Four experimental data sets were then used to test the reliability of 

SEBS in this study.  

Jarmain et al. (2009) conducted a study, to review techniques available to determine total 

evaporation utilizing satellite earth observation data and to recommend a technique that could 

be potentially applied in South Africa, in order to assist total evaporation estimation and 

water resources management. The SEBS model was one of the numerous techniques which 

were reviewed and applied. The SEBS model was applied to three study sites in South Africa 

i.e. Seven Oaks, St Lucia and Kirkwood. The simulated results were compared with a Kipp 

and Zonen Large Aperture Scintillometer, Surface Renewal and Eddy Covariance for each of 

the study sites, respectively. 

Yang et al. (2010) applied the SEBS Model, to determine the water consumption of 

maize/wheat in the Northern China Plain. MODIS Level 1_B images from the period 2006 to 

2008 and meteorological data obtained from a field-based flux tower were used as inputs to 

the SEBS model. The simulated total evaporation estimates were validated against the field-

based measurements of the energy fluxes and total evaporation estimates obtained from an 

eddy covariance system. 

Elhag et al. (2011) applied the SEBS model over the Nile delta, to estimate daily total 

evaporation. AATSR and MERIS Level 1_B data were used as inputs to SEBS, in 

conjunction with meteorological data obtained from six in situ meteorological stations. The 

simulated daily total evaporation estimates were compared against actual ground truth data 

taken from ninety-two points uniformly distributed over the study area. 

Gibson et al. (2011) conducted a study in the Piketberg region in the Western Cape Province 

of South Africa, to investigate the uncertainties associated with the application of the pre-

packaged version of SEBS in ILWIS. MODIS Level1_B, Advanced Spaceborne Thermal 

Emmision and Reflection Radiometer (ASTER) Level 1_B and ASTER Level 2 data, as well 

as meteorological data obtained from an automatic weather station located in the study area 

were used in this study.  
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Rwasoka et al. (2011) applied the SEBS model, to determine the total evaporation of the 

Upper Manyame Catchment in Zimbabwe. Nine clear sky MODIS Level 1_B images and 

field-based meteorological data were used as inputs to SEBS to generate total evaporation 

estimates, which corresponded to the time of the satellite overpass. Two study sites were 

selected i.e. the Harare Kutsage Station and the Grasslands Station. The simulated total 

evaporation estimates were evaluated for physical/logical consistency, by comparing total 

evaporation estimates against reference evaporation, spatial variation of total evaporation and 

understanding the total evaporation of different land types. 

Muhammed (2012) conducted a study to investigate the use of satellite earth observation data 

in a hydrological model. The SEBS Model was used to estimate daily total evaporation, 

which was one of the inputs required by the TOP model to simulate streamflow for the Upper 

Gilgal Abbay Basin. Streamflow volume estimates obtained, using SEBS estimates of total 

evaporation were compared against the streamflow volume estimates which were obtained by 

using the TOP Model total evaporation estimates. 

Ma et al. (2014) applied the SEBS model, to determine the regional distribution of total 

evaporation over the NamCo region in the Tibetan Plateau, situated in the northwest of 

China. Two scenes of ASTER data for the 11
th

 June 2006 and 25
th

 February 2008 were used 

as inputs, to the SEBS Model, to estimate total evaporation. The simulated total evaporation 

estimates were validated against the field-based measurements of the energy fluxes and total 

evaporation estimates obtained from an eddy covariance system 

Mengistu et al. (2014) applied the SEBS Model, to derive spatially representative total 

evaporation for the Baynesfield Estate in KwaZulu Natal South Africa, which would be used 

to assist in the calibration of hydro-meteorological models. MODIS Terra images and 

Landsat 7 EM+ were used as inputs to the SEBS Model for the estimation of total 

evaporation. The SEBS daily total evaporation estimates obtained using the MODIS Terra 

images and the Landsat 7 EM+ images were compared with Eddy covariance daily total 

evaporation measurements. 
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Table 2.3 Summary of key findings for limited list of case studies 

STUDY MAIN OBJECTIVE SUMMARY OF KEY FINDINGS 

Su, 2002 Assess the reliability of SEBS to 

estimate total evaporation 

 SEBS can provide reliable estimates of H. 

 Errors in the estimation of H due to uncertainties in roughness 

height for heat transfer equations. 

 Stability corrections available at the time were inadequate. 

Jarmain et 

al., 2009 

Review satellite based total 

evaporation techniques 

 For two of the three sites SEBS estimates of Rn compared 

favourably with field observations. 

 SEBS failed to accurately simulate G for all three study sites it 

was applied to. 

 SEBS estimates of the sensible heat flux and the evaporative 

fraction were in good agreement with field observations for two of 

the three study sites. 

Yang et al., 

2010 

Determine the water consumption 

of maize/wheat in the Northern 

China Plain 

 SEBS performed better during the wheat growing season than 

during the maize growing season. 

 The relative error in the estimation of LE was within 20% either 

within the wheat growing or maize growing season.  

Elhag et 

al., 2011 

Determine total evaporation using 

SEBS 

 SEBS total evaporation estimates were in good agreement with 

field based measurements. 

 The ability of the model to utilize satellite earth observation data 

with a high temporal resolution will assist decision makers  to take 

into account the different plant growth phases and improve their 

real time water management strategies 

Gibson et 

al., 2011 

Investigation of uncertainties 

associated with the pre-packaged 

version of SEBS in ILWIS 

 The use of a coarse spatial resolution sensor is appropriate for 

catchment scale operations however at the field scale high spatial 

resolution imagery is required. 

 The pre-packaged version of SEBS in ILWIS was found to be 

most sensitive to; the land surface and air temperature gradient, 

choice of fractional vegetation cover formula, displacement height 

and height at which wind speed is measured, and the heterogeneity 

of the study area. 
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Table 2.4 Summary of key findings for limited list of case studies 

STUDY MAIN OBJECTIVE SUMMARY OF KEY FINDINGS 

Rwasoka et 

al., 2011 

Determine total 

evaporation using 

SEBS 

 On average SEBS performed well for the plausibility and consistency check. 

 SEBS performed well for the Harare-Kutsage station and poorly for the 

Grassland station, this was attributed to spatial variability of temperature, 

heterogeneity of the land surface and roughness parameterization. 

 Overall the model was found to be a useful tool to estimate spatial total 

evaporation. 

Muhammed, 

2012 

Application of satellite 

based total 

evaporation estimates 

in a hydrological 

model 

 SEBS total evaporation estimates were found to be realistic when related to the 

seasonal conditions of the study area. 

 The comparison between streamflow volume estimates obtained using SEBS 

estimates of total evaporation and streamflow volume estimates obtained using 

the TOP model total evaporation estimates, produced satisfactory results with a 

Nash-Sutcliffe efficiency of 0.78 and a relative volume error of 0.59 

Ma et al., 

2014 

Determine the regional 

distribution of total 

evaporation in the 

NamCo region in the 

Tibetan Plateau 

 The SEBS model over-estimated the total evaporation for  by 39.50% and 

38.90% for 11
th

 June 2006 and 25
th

 February 2008, respectively, when 

compared with eddy covariance measurements. 

 The comparison between the observed data and the SEBS estimates yielded, a 

root mean square error value of 0.7mm/day. 

Mengistu et 

al., 2014 

Provide accurate field 

and satellite estimates 

of total evaporation for 

the calibration of 

hydro-meteorological 

models 

 The SEBS daily total evaporation estimates using MODIS Terra images, as 

well as, Landsat 7 EM+ were higher than Eddy covariance daily total 

evaporation estimates for the corresponding days. 

 The SEBS Model over-estimated the daily total evaporation by approximately 

15% for these days. 

 

2.6 Integrating satellite earth observation and hydrological modelling 

There has been a concerted global research effort to integrate satellite earth observation data 

with hydrological modelling over the past decade (Xu et al., 2014). A large majority of the 

research with regards to this topic has been focused on; integrating satellite derived 

hydrological parameters, such as precipitation, surface soil moisture, leaf area index and total 

evaporation, with hydrological modelling (Xu et al., 2014).  
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Xu et al. (2014) states that satellite earth observation can contribute to hydrological 

modelling applications, by providing estimates for a variety of hydro-meteorological 

parameters, through three possible methods; (i) applying the satellite earth observation data to 

model inputs, (ii) applying the satellite earth observation data to parameter estimation and 

(iii) applying the satellite earth observation data to a data assimilation problem. 

 

According to Xu et al. (2014), the first of the aforementioned methods has been the 

historically dominant strategy, which has been applied, to facilitate the integration of satellite 

earth observation and hydrological modelling. With regards to this strategy, satellite earth 

observation can be used to provide hydrological models with information on catchment 

characteristics, satellite derived hydrologic variables required to drive the model and spatially 

representative data for forcing hydrological models.  

 

* * * * * * 

The research presented in the literature review assisted in the identification of; (i) a satellite 

based technique which can be used to estimate total evaporation and (ii) a potential strategy 

to assist in the integration of satellite earth observation data and hydrological modelling. 

These findings assisted in, informing the methodology used for this study.  

The SEBS model was chosen to be applied in this study, to generate daily total evaporation 

estimates. These estimates would then be integrated and applied in a hydrological model, 

based on the historically dominant strategy described in Xu et al. (2014). 

Chapter three will discuss the selection and description of the study area, whilst Chapter four 

will provide a detailed description of the methodology used to generate the SEBS daily total 

evaporation estimates and the approach used to integrate these estimates in the ACRU Model.  
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3. STUDY AREA 

The Risk-based Operational Water Management Project (RISKOMAN) was established, to 

assist water managers and stakeholders in the identification, application and modification of 

efficient allocation policies for the Incomati Basin which is shared between South Africa, 

Swaziland and Mozambique (Ridell and Jewitt, 2010). 

3.1 Description of the study area 

The Inkomati Catchment is located in the Mpumalanga Province and partially in the Limpopo 

Province, both of which lie in the north-eastern half of South Africa. The Inkomati 

Catchment, which forms part of the international Incomati River Basin, borders the countries 

of Mozambique and Swaziland, on the east and south-east, respectively (Basson and 

Rossouw, 2003). There are three major catchments within the Inkomati Catchment i.e. the 

Komati, Crocodile and Sabie-Sands Catchments. In addition to this, two smaller catchments 

i.e. the Nwaswitsontso and Nwanedzi Catchments, are located in the conservation areas 

within South Africa (Kruger National Park) (DWAF, 2001). All the rivers within the 

Inkomati Catchment flow into the Incomati River. The Incomati River enters the Indian 

Ocean near Marracuene, after flowing through Mozambique (DWAF, 2001). Figure 3.1 

illustrates the Inkomati Catchment, its sub-catchments and flow network. 

The majority of the precipitation which falls within the Catchment occurs during the summer 

months. The mean annual precipitation (MAP) ranges between 400 mm to 1000 mm. In the 

mountainous regions of the Catchment, MAP may reach approximately 1500 mm (DWAF, 

2001; Basson and Rossouw, 2003). Potential evaporation exceeds rainfall, which is 

accentuated in the drier reaches of the Catchment (Basson and Rossouw, 2003).  

The Great Escarpment divides the Catchment into the Plateau region on the west and the 

Lowveld region in the East. As a result of this topographical divide, there are noticeably 

different climates within the region (Basson and Rossouw, 2003). The natural vegetation 

varies from scarce thornveld in the east and forestry along the Escarpment, to savannah 

vegetation in the Highveld (Basson and Rossouw, 2003). The geology of the region is 

complex and usually possesses a low water-bearing capacity (Basson and Rossouw, 2003). 

There are a large variety of land uses spread throughout the region, as well as numerous 

major storage dams (DWAF, 2001; Basson and Rossouw, 2003).  
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Figure 3.1 Location of the Inkomati Catchment within the Incomati Basin (After Jibs, 

2011) 
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Two study sites, which are located within the Inkomati Catchment, were selected for this 

study i.e. the Komatipoort Research site and the X23_A quarternary catchment situated 

within the Kaap River Catchment. Figures 3.2 and 3.3, illustrate the location of these 

catchments within South Africa, respectively. The Komatipoort Research Site is located 

within the Inkomati Catchment in the north-eastern part of South Africa. The study site was 

selected based on the availability of meteorological data and observed daily total evaporation 

data. The sugarcane field within the Komatipoort Research Site is approximately 0.04 km
2
. 

The surface renewal system and the eddy covariance flux tower which are discussed in the 

following chapter are situated within in this field at coordinates (25.59
0
 S, 31.89

0
 E).  

 

Figure 3.2 Location of the Komatipoort sugarcane field within the Inkomati Catchment 
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The X23_A quarternary catchment is situated within the Kaap River Catchment, which forms 

part of the Inkomati Catchment in the north-eastern part of South Africa. The catchment was 

selected based on the availability of nearby meteorological data and streamflow data, which 

coincided with the satellite-derived total evaporation estimates, which were processed for this 

study. The X23_A Catchment is located at coordinates (25.62
0
 S, 30.75

0
 E) and is situated at 

1161 m above sea level, with an approximate area of 126.81 km
2
. The mean annual 

precipitation (MAP) which the X23_A Catchment receives is approximately 1057 mm, with 

majority of the rainfall occurring during the summer months.  

 

Figure 3.3 Location of the X23_A quarternary Catchment within the Inkomati 

Catchment 



 

 28 

4.  METHODOLOGY 

4.1  General Methodology 

The methodology which was applied in this study was divided into two sections, to answer 

the research questions posed in Chapter 1, which were listed as: 

i. How do satellite-derived daily total evaporation estimates compare against in situ 

measurements obtained from a conventional technique? 

ii. How can the satellite derived total evaporation estimates be incorporated into a 

hydrological model? 

iii. How will simulated streamflow, using satellite-derived total evaporation estimates, 

compare against observed stream flow? 

 

The first section was aimed at addressing research question one. The research carried out in 

this section, involved the application of the SEBS model, to generate daily total evaporation 

estimates. The total evaporation estimates generated by SEBS were compared with the 

observed historical daily total evaporation estimates for an irrigated sugarcane field situated 

in Komatipoort (Figure 3.2). The surface renewal technique was used, to obtain the historical 

daily total evaporation estimates. The satellite pixels located, in and around, the field site 

were selected as areas of interest and only the data within these pixels were used for the data 

comparison.  

The methodology for Section One of the research work was divided into three phases. Phase 

One involved the collection of the SEBS input data. Historical satellite earth observation data 

and historical meteorological data were collected for the period 01
st 

December 2011 to 25
th 

November 2012. The choice of the time period for the collection of the satellite earth 

observation data was influenced by the availability of the historical observed data. Phase Two 

involved the pre-processing of the satellite earth observation data, which was collected in 

Phase One and Phase Three involved the use of the pre-processed data and the meteorological 

data as inputs, to the SEBS Model, to generate a daily total evaporation estimate. 
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Section Two of the research work was aimed at addressing the second and third research 

questions. The research conducted in this section involved, the application of SEBS total 

evaporation estimates for the period 01
st
 December 2011 to 25

th
 November 2012, as an input 

to the ACRU Model, to simulate the streamflow of the X23_A quarternary located within the 

Kaap Catchment. The average satellite pixel values located within the X23_A1 and X23_A2 

sub-catchments were used to generate the daily total evaporation time series.  

Due to the effects of cloud coverage, it was not possible to create a continuous total 

evaporation time series extending from the SEBS model. Therefore, these missing records 

needed to be infilled. A preliminary investigation was conducted, to identify a potential 

infilling technique, which could be used, to assist in the generation of a continuous total 

evaporation time series. Once the continuous total evaporation time series had been 

generated, two streamflow modelling scenarios, as well as two sensitivity analysis tests were 

performed using the ACRU Model.  

In addition to the SEBS total evaporation data and the historical observed total evaporation 

data obtained from the surface renewal technique, historical rainfall and temperature data 

obtained from the Agricultural Research Council Institute for Soil, Climate and Water (ARC-

ISCW), streamflow data obtained from the Department of Water Affairs (DWAF), soil 

characteristics from the national land type map, leaf area index (LAI) obtained from the 

MODIS products of MOD15A2 data and landcover data at 20 m resolution obtained from the 

SPOT 5 satellite, were used as inputs to ACRU. 

Performance statistics were used, to analyse the results obtained from the comparisons 

between the total evaporation estimates, extending from the SEBS Model and the historical 

total evaporation estimates obtained from the surface renewal system, as well as for the 

comparisons between the two infilling techniques.  

The statistics used in this study were the mean, median, relative volume error (RVE), root 

mean square error (RMSE), coefficient of determination (R
2
) and a two sample t-test. These 

statistics have been used in a variety of studies in which satellite earth observation data are 

used to estimate total evaporation (Su, 2002; Jarmain et al., 2009; Yang et al., 2010; Elhag et 

al., 2011; Gibson et al., 2011; Rwasoka et al., 2012; Muhammed, 2012; Ma et al., 2014; 

Pardo et al., 2014).  
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The two sample t-test was conducted to assess if there was any significant difference between 

the means of the historical total evaporation estimates obtained from the surface renewal 

system and the total evaporation estimates extending from the SEBS Model, as well as to 

determine if there was any significant difference between the infilled data values and the 

known data values. 

4.2  Satellite Earth Observation Data and Meteorological Data Inputs 

Historical Moderate Resolution Imaging Spectroradiometer (MODIS) Terra images were 

used for this study, for the SEBS total evaporation estimation. Terra orbits the earth from a 

northerly to a southerly direction, passing the equator during the morning, (Muhammed, 

2012). The spatial resolution of the data obtained from the MODIS sensors varies, depending 

on the product. MODIS Level 1_B calibrated radiances and a MODIS geo-location file were 

downloaded and used during the pre-processing phase of the study. MODIS Level 1_B data 

is calibrated, but not atmospherically corrected (Wang, 2010). The spatial resolutions of the 

products used in this study are displayed in Table 4.1. 

Table 4.1 Spatial and temporal resolutions for each of the MODIS products used for 

the estimation of daily total evaporation  

(http://ladsweb.nascom.nasa.gov/data) 

 

The images used in this study were primarily selected according to the extent of cloud 

coverage present within an image for a particular day. Images possessing little or no cloud 

coverage were selected. The rule used in the selection of images was that, only those images, 

which possessed less than approximately 30% (visual assessment) of cloud coverage over the 

study area, were selected. 

 

 

 

MODIS_ID Terra level 1 product
Spatial 

Resolution

Temporal 

Resolution

MOD021KM Level1_B calibrated radiances 1km Daily 

MOD03 Geolocation 1km Daily 
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Meteorological data for the study area (i.e. hourly solar radiation and hourly temperature 

data) were collected at co-ordinates 25
0
 35' 40" S, 31

0
 53' 33" E. These records were 

previously collected for the WRC study K5/2079//4 undertaken by Jarmain (2012) and 

Jarmain et al. (2013). However, this meteorological data did possess gaps. Consequently, 

hourly solar radiation and temperature data was obtained from the ARC-ISCW and used as a 

surrogate input for days in which there was no hourly solar radiation and temperature data 

available from the study undertaken by Jarmain (2012) and Jarmain et al. (2013). 

In addition to the previously described meteorological parameters, ancillary meteorological 

data required for this study i.e wind speed, temperature and solar radiation were obtained 

from the ARC-ISCW, as well as the NASA earth observatory website (water vapor and 

aerosol optical thickness). The historical daily total evaporation records were provided by Dr 

C Jarmain. These records were previously collected at co-ordinates 25
0
 35' 40" S, 31

0
 53' 33" 

E for the WRC study K5/2079//4 by Jarmain (2012) and Jarmain et al. (2013). 

 

4.3 Pre-processing and Post-processing of Satellite Earth Observation Data to be used 

in SEBS for the Estimation of Daily Total Evaporation 

4.3.1  Pre-processing and post-processing of MODIS Level1_B data 

The MODIS Level1_B data sourced for this study were in an orbit-based format, therefore 

they needed to be projected into a standard projection and format which would be compatible 

with Geographic Information System (GIS) software. The MODIS reprojection Swath Tool 

was used to convert both the MODIS Level1_B calibrated radiances and MODIS geolocation 

files into a geographic projection and Geotiff format, which is supported by ILWIS. During, 

this procedure only the relevant reflectance bands, which were required for further processing 

were exported into ILWIS (Wang, 2010; Timmermans, 2011). These bands are displayed in 

Table 4.2. 

The MODIS Level 1_B data which were imported into ILWIS were given as a simplified 

integer number and therefore had to be converted into reflectances and radiances (Wang, 

2010). Calibration coefficients consisting of scales and offsets are used in ILWIS, to perform 

the aforementioned conversion (Wang, 2010).  
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Calibration coefficients can be obtained from viewing the MODIS Level1_B data files in the 

HDF View 2.9 Software Tool. Band1_dn and Band3_dn to Band7_dn were converted to 

reflectances, whilst Band31_dn and Band32_dn were converted to radiances by, applying the 

relevant reflectance and radiance calibration coefficients (Wang, 2010). The solar and 

satellite zenith and azimuth angles also required correction. A scaling factor of 0.01 was 

applied to each of these bands (Wang, 2010). 

Table 4.2  Representation of the 17 extracted reflectance bands and their output file 

names in ILWIS (Wang, 2010) 

 

The corrected reflectance, radiance, solar azimuth, satellite zenith, sensor zenith and sensor 

azimuth were then used as inputs to five processing phases in ILWIS i.e. computing the 

brightness temperature, A Simplified Method for the Atmospheric Correction of Satellite 

Measurements (SMAC), land surface albedo computation, land surface emissivity 

computation and the land surface temperature computation (Wang, 2010). The radiance 

values of Bands 31 and 32 were used to compute the brightness temperature by, converting 

radiances to black body temperatures (Wang, 2010).  

This procedure is based on Planck’s equation which is given as: 

Tc  =  C2/(λc log((C1/λc5πLs) + 1)      (4.1) 

Where Tc is the brightness temperature from a central wavelength and λc is the sensors 

central wavelength.  

Input GeoTIFF filename Output Filename in ILWIS 

EV_250_Aggr1km_RefSB_b0.tif Band1_dn

EV_250_Aggr1km_RefSB_b1.tif Band2_dn

EV_500_Aggr1km_RefSB_b0.tif Band3_dn

EV_500_Aggr1km_RefSB_b1.tif Band4_dn

EV_500_Aggr1km_RefSB_b2.tif Band5_dn

EV_500_Aggr1km_RefSB_b3.tif Band6_dn

EV_500_Aggr1km_RefSB_b4.tif Band7_dn

EV_1KM_RefSB_b11.tif Band17_dn

EV_1KM_RefSB_b12.tif Band18_dn

EV_1KM_RefSB_b13.tif Band19_dn

EV_1KM_Emissive_b10.tif Band31_dn

EV_1KM_Emissive_b11.tif Band32_dn

SolarZenith.tif sza_dn

SolarAzimuth.tif saa_dn

SensorAzimuth.tif vaa_dn

SensorZenith.tif vza_dn

Height.tif Height
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The SMAC procedure derived by Rahman and Dedieu (1994) is used to correct all bands 

present in the visible channel i.e. Bands 1 to 7. The land surface albedo was computed 

utilizing the atmospherically corrected Bands 1 to 5, Band 7 and the formula derived by 

Liang (2001; 2002) given in Equations 4.2 as follows: 

α = (0.160 x r1) + (0.291 x r2) + (0.243 x r3) + (0.116 x r4) +    (4.2) 

(0.112 x r5) + (0.018 x r7) – 0.0015 

 

Where α is land surface albedo and r1, r2, r3, r4, r5, and r7 are bands present in the visible 

channel i.e. Bands 1 to 5 and Band 7. 

 

The land surface emissivity was computed, using the atmospherically corrected Bands 1 and 

2, as well the land surface albedo maps. This procedure is based on the algorithm described in 

Sobrinho et al. (2003) which fixes threshold values in the Normalized Difference Vegetation 

Index (NDVI) to differentiate between pixels i.e. bare soils pixels, vegetation pixels and a 

combination of bare soils and vegetation pixels. 

In addition to, the land surface emissivity computation, emissivity difference, NDVI and 

vegetation proportion were also computed in ILWIS during this phase. The final phase 

involved computing the land surface temperature based on the formula by Sobrinho and 

Rassouni (2000). Water vapour values, which are required for the above mentioned formula, 

were not sourced for this study; instead the formula described in Li et al. (2003) was used to 

estimate water vapour values. 

4.3.2  Estimation of daily total evaporation in SEBS 

Meteorological data inputs such, as the air temperature, mean daily air temperature, mean 

daily wind speed, surface pressure and pressure at a reference height are used in conjunction 

with the satellite-derived raster maps to estimate daily total evaporation based on the 

algorithm derived by Su (2002). 
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Apart from the SEBS daily total evaporation map, additional maps are generated in ILWIS, 

once the SEBS model has been applied. These include the evaporative fraction, relative 

evaporation, soil heat flux, sensible heat flux at the dry limit, sensible heat flux at the wet 

limit, sensible heat flux, net radiation, latent heat flux, roughness height for momentum 

transfer, stability corrections, scalar roughness height for heat transfer, difference between 

LST and air temperature and the kb
-1

 value (Wang, 2010; Timmermans, 2011).  

4.4  Estimation of daily total evaporation using the Surface Renewal Technique 

The surface renewal technique is an energy balance technique which can be used to estimate 

the daily total evaporation (Savage et al., 2004). It requires knowledge of only a few 

parameters and is relatively low-cost, compared to other conventional techniques, therefore 

making it an attractive technique to use for the estimation of daily total evaporation (Jarmain 

et al., 2013). The surface renewal technique is used to estimate the sensible heat flux.  

The sensible heat flux is then combined with measurements of the soil heat flux and net 

radiation, to determine the latent heat flux as a residual of the simplified energy balance 

equation (Jarmain et al., 2013). The surface renewal technique requires information 

pertaining to the vegetation type, measurement height, the air temperature gradient and a 

weighting factor (Jarmain et al., 2013). The surface renewal technique requires calibration.  

This is achieved by determining the weighting factor beforehand for the vegetation type, 

thermocouple size and measurement height and then comparing the estimated sensible heat 

flux against the sensible heat flux measured by an alternate technique (Jarmain et al., 2013). 

Weighting factors are obtainable for a variety of vegetation types (Nile, 2010).  

An eddy covariance system was installed in situ to determine the weigthing factors for a 

young short sugarcane crop during the period 24
th

 July to 17
th

 September 2012. The factors 

used for the remaining period and the various sugarcane growth stages were obtained from 

literature (Jarmain, 2013).  

A graphic of the surface renewal system and eddy covariance flux tower is depicted in Figure 

4.1. The surface renewal total evaporation data set used in this study was obtained by Dr C 

Jarmain for the WRC K5/2079//4study. The surface renewal system and eddy covariance flux 

tower was set up on a sugarcane field in Komatipoort Research Site (co-ordinates: 25
0
 35' 40" 

S, 31
0
 53' 33" E). 
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Figure 4.1 The surface renewal system (left) and the eddy covariance flux tower (right) 

used for calibration, installed in a sugarcane field in Komatipoort (Jarmain 

et al., 2013) 

4.5  Application of the SEBS Model 

The MODIS historical satellite earth observation data, as well as the historical meteorological 

data were used as inputs to the SEBS Model in order to conduct simulations to estimate the 

daily total evaporation. The SEBS model was used to estimate total evaporation on a daily 

time step for a period of 361 days i.e. from 01
st
 December 2011 to 25

th
 November 2012. 

 The daily total evaporation estimates generated through the use of MODIS Level 1_B 

satellite data were compared against observed historical daily total evaporation obtained 

through the use of the surface renewal technique.  

A continuous daily total evaporation time series forms a fundamental component for the 

streamflow modelling component of the study, therefore MODIS Level1_B data was seen as 

the best option to be used for the estimation of daily total evaporation. An alternate to the use 

of MODIS Level 1_B data in the pre-packaged version of SEBS, is data obtained from the 

AATSR/MERIS sensors and Landsat. However, the temporal resolution of this data is far 

coarser than that of MODIS Level 1_B; therefore utilizing this data was not considered for 

this study. 
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In addition to the limited temporal availability of AATSR/MERIS data, the ENVISAT 

satellite which houses these two sensors was decommissioned in 2012, therefore only data 

captured before this period would have been available for processing. The validation data 

provided by Jarmain (2012) and Jarmain et al. (2013) is for the period 01
st
 December 2011 to 

25
th 

November 2012. Consequently the use of AATSR/MERIS would have not been 

applicable for the scope of this project. 

4.6 Infilling Techniques used to create a Continuous Daily Total Evaporation time 

series  

Due to complete cloud coverage for twenty-eight days in the MODIS Level1_B data, it was 

impossible to generate a continuous daily total evaporation data set, using SEBS estimates of 

total evaporation. Therefore the use of an infilling technique was required to infill the missing 

data records within the time period 01
st
 December 2011 to 25

th
 November 2012.  

The linear interpolation technique by Muhammed (2012) and the Kcact technique by Santos et 

al. (2008) were applied in this study. These techniques were selected based on, the following 

criteria i.e. their relative ease of application and the data requirements of the technique. The 

description of each technique, as well as the methodological approach used to apply these 

techniques in this study will be further described in the following sub-sections. 

4.6.1   The Linear Interpolation Technique 

Muhammed (2012) applied a linear interpolation technique to infill missing data in a time 

series of daily total evaporation. Daily total evaporation estimates were generated by the 

SEBS Model. Muhammed (2012) used SEBS to populate a daily total evaporation time series 

which was to be used in the TOP model to conduct streamflow modelling simulations for the 

Gilgel Abay Catchment, Ethiopia. The daily total evaporation values generated for the days 

in which images possessed little or no cloud cover were used to infill the missing total 

evaporation records by interpolating between consecutive days for which daily total 

evaporation was known.  

The aforementioned technique was used to infill the missing data in the SEBS total 

evaporation time series for this study which could be attributed to the presence of cloud 

cover. The linear interpolation technique described in Muhammed (2012) is given as: 

ET2  =  [(ET3-ET1)/X3-X1)] (X2-X1) +ET1     (4.3) 
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Where  ET2 is the unknown daily total evaporation value (mm/day); ET1 is the first known 

daily total evaporation value (mm/day); ET3 is the next known daily total evaporation value; 

X1  is the Julian day for ET1; X2 is the Julian day for ET2 and X3 is the Julian day for ET3. 

4.6.2  The Actual Crop Coefficient (Kcact) Technique 

The Kcact technique derived and discussed in Santos et al. (2008) was used to incorporate 

total evaporation estimates derived from a satellite-based remote sensing technique i.e. 

Mapping Evapotranspiration with high Resolution and Internalized Calibration (METRIC) 

into a Water Balance Model, with the aim of improving irrigation scheduling in the Genil 

Cabra Irrigation Scheme, Spain. Santos et al. (2008) describes Kcact as the ratio between total 

evaporation and the reference evaporation, which is determined using the standardized 

Penman-Monteith technique (ASCE-EWRI, 2005).  

The Kcact equation is given as: 

Kcact =  AET/ET0        (4.4) 

Where Kcact is actual Kc; AET is total evaporation (mm/day) and ET0 is reference 

evaporation 

However, Kcact differs from the Kc described by Allen et al. (1998) (Santos et al., 2008). 

Santos et al. (2008) produced Kcact images by dividing the total evaporation images produced 

in METRIC by the reference evaporation. Kcact was interpolated between missing dates as the 

total evaporation images were temporally spaced at a minimum of 16 days. A spline was used 

to interpolate the values for the missing dates in order to account for the temporal progression 

of Kcact which, in turn, was used to develop the Kcact curves (Santos et al., 2008). Due to the 

temporal spacing of images in the study undertaken by Santos et al. (2008), Kcact values were 

obtained for every 16 days at minimum. 

The MODIS Level 1_B images used in this study are available at a daily time step. Therefore, 

theoretically a Kcact value could be generated on a daily basis for the entire time period, 

provided there was limited or no cloud cover on a particular day.  
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Although it is possible to generate a Kcact value on a daily basis, this option was not exercised 

in this study. Instead, Kcact values were generated approximately once every 10 days by 

dividing the MODIS Level 1_B image by the reference evaporation for that particular day. 

The reference evaporation data was obtained from the SASRI weather web for the period 01
st
 

January 2012 to 31
st
 December 2012. 

The choice of this temporal scale was based on the characteristics of the single crop 

coefficient approach. The crop coefficient can be described as a coefficient which expresses 

the difference in total evaporation between a particular crop and the reference grass (FAO, 

1998). The differences between the crop and reference grass evaporation can be combined 

into a single coefficient or it can be divided into individual factors separately, describing the 

differences in soil water evaporation and transpiration between the crop and reference grass 

surfaces (FAO, 1998). The SEBS total evaporation estimate is a combined estimate of soil 

water evaporation and transpiration, therefore the single crop coefficient approach was seen 

as the most applicable approach to apply in this study (FAO, 1998).  

The single crop coefficient approach is generally used to determine total evaporation for 

weekly or longer temporal periods. However, calculations using this coefficient may be 

undertaken on a daily basis (FAO, 1998). Suitable temporal scales for the application of the 

single crop coefficient are suggested in FAO (1998).  

4.6.3  Application of the linear interpolation technique and the Kcact technique 

In order to assess which technique would be most suitable to infill the missing data in the 

SEBS total evaporation time series for the period 01
st
 December 2011 to 25

th
 November 

2012, a preliminary investigation was undertaken involving two tests. A time period of six 

months i.e. from 01
st
 January 2012 to 30

th
 June 2012, was used to conduct the preliminary 

investigation.  

The first test involved the use of the observed historical daily total evaporation record from 

the surface renewal system, which was obtained for the studies undertaken by Jarmain (2012) 

and Jarmain et al. (2013). Forty-five known total evaporation values obtained from the 

surface renewal system were hidden for the aforementioned time period. These values were 

treated as missing data. Seven of the forty-five days possessed complete cloud coverage, 

whilst a vast majority of the remaining thirty-eight days did possess some percentage of cloud 

coverage. 
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The linear interpolation technique and the Kcact technique were then applied to these forty-

five days to infill the missing data records. The forty-five days were selected randomly and 

the maximum number of consecutive days which required infilling was preset as three. The 

rationale behind this was due to the maximum number of consecutive days in which an SEBS 

total evaporation estimate could not be produced.  

Tables 5.1 and 5.2 illustrate the comparison between the historical observed total evaporation 

for the respective days and the total evaporation values obtained through the use of infilling 

i.e. using linear interpolation and Kcact, respectively.  

The second test involved the use of the SEBS daily total evaporation estimates generated for 

the period 01
st
 January 2012 to 30

th
 June 2012. The equivalent forty-five random days to be 

in-filled in the first test were used here yet again. Known SEBS estimates of total evaporation 

were hidden and the linear interpolation technique and the Kcact technique were applied to 

infill the missing data records. Tables 5.4 and 5.5 illustrate the comparison between the SEBS 

daily total evaporation for the respective days and the daily total evaporation values obtained 

through the use of infilling i.e. using linear interpolation and Kcact, respectively.  

The performance statistics outlined in Section 4.1 were used to analyse and interpret the 

results for each of these scenarios. A two sample t-test for a two tailed distribution with 

unequal variance was applied. The equation and t-distribution values used for this test are 

outlined in Larson and Farber (2003). The null hypothesis and alternate hypothesis were 

stated as: 

Ho: Observed total evaporation = Infilled total evaporation 

Ha: Observed total evaporation ≠ Infilled total evaporation 
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4.7  The Agricultural Catchments Research Unit (ACRU) Model  

The ACRU4 Version of The Agricultural Catchments Research Unit (ACRU) model 

described in Clark et al. (2009) was chosen to be used in this study to conduct the streamflow 

modelling simulations, as it is has been applied extensively in South Africa and is listed by 

the South African Department of Water Affairs as one of the recommended hydrological 

models to be used. ACRU was developed by Schulze (1975) and has been frequently updated 

since its inception (Schulze, 1995; Jewitt and Schulze, 1999; Martinez et al., 2008; 

Warburton et al., 2010; Clark, 2013).  

ACRU has been described as a ―multi-purpose and multi-level integrated physical conceptual 

model that can simulate streamflow, total evaporation, land cover management and 

abstraction impacts on water resources at a daily time step‖ (Jewitt and Schulze, 1999). 

ACRU has been applied extensively, both locally and internationally, for a variety of 

purposes, some of which include crop yield estimation, irrigation scheduling, climate change 

analysis, land use change analysis, reservoir yield analysis and design hydrology (Schulze, 

1995; Jewitt and Schulze, 1999; Martinez et al., 2008; Warburton et al., 2010; Clark, 2013). 

4.7.1  General structure for daily multi-layer soil water budgeting in ACRU 

ACRU is uniquely structured to determine how water is used within a catchment. This 

structure is known as the daily multi-layer soil water budget. The rainfall and/or irrigation 

which are not intercepted or contributing directly to stormflow, will first enter the surface 

layer of the earth and remain in the top soil horizon (Schulze, 1995). Once the top soil is 

saturated (field capacity), any additional moisture will percolate down into the sub-soil 

horizon/s.  

The rate at which this takes place depends on the characteristics of the top soil horizon, for 

example, soil texture or wetness (Schulze, 1995). If the subsoil horizon/s reaches field 

capacity, any additional moisture will then drain into intermediate stores and ultimately 

contribute to groundwater. As a result, baseflow may then be generated. During, unsaturated 

conditions water may be redistributed either upwards or downwards, however the 

redistribution rate will be markedly slower than the rate which occurs during saturated 

conditions (Schulze, 1995). 
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Evaporation occurs from water which has been previously intercepted, as well as from the 

soil horizon/s. Within ACRU, evaporation which takes place from the soil horizon may be 

split into soil water evaporation from the top soil and transpiration, which includes all soil 

horizons where roots are present, or evaporation may be combined as total evaporation 

(Schulze, 1995). Plant transpiration is estimated, amongst other things, according to the 

atmospheric demand for water vapour which is based on the reference evaporation and the 

plant’s growth stage (Schulze, 1995). 

Stormflow generation within ACRU is based on the assumption that after the initial 

abstractions have taken place, the volume of runoff generated is dependent on the size of the 

rainfall event, as well as the antecedent soil water deficit at a critical response depth of the 

soil (Schulze, 1995). The critical response depth of the soil, amongst others, is a function of 

the prevailing runoff generating process, whilst the soil water deficit prior to a rainfall event 

is determined within ACRU on a daily basis, through the various multi-layer soil water 

budgeting procedures (Schulze, 1995).  

It is important to note that not all of the stormflow generated in ACRU for a given rain event 

will be a same day response at the catchment outlet. Therefore stormflow in ACRU is 

separated into quickflow (i.e. a same day response) and delayed stormflow, which is 

dependent on soil characteristics and the catchment’s properties (Schulze, 1995). Figure 4.2 

depicts the daily multi-layer soil water budgeting in ACRU. 
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Figure 4.2 Multi-layer soil water budgeting through the partitioning and redistribution 

of soil water (Schulze, 1995) 

4.7.2 Estimating total evaporation in the ACRU Model and the EVTR3 approach 

Total evaporation may be modelled in one of two ways in the ACRU model, either by 

treating potential soil water evaporation and potential transpiration as a single entity, or 

estimating the potential soil water evaporation and potential transpiration components of 

potential evaporation separately (Schulze, 1995). 

 

4.7.2.1   The EVTR1 routine 

The estimation of total evaporation, by computing potential soil water evaporation and 

potential transpiration, as a single entity, is termed EVTR1 in the ACRU model (Schulze, 

1995). Crop coefficient (Kc) values which are frequently used are stored in the ACRU Model, 

within a database for known land covers. These Kc values are then used in conjunction with 

reference evaporation data which is input to the model to estimate the potential evaporation 

(Schulze, 1995). The estimation of soil water evaporation and transpiration as a single entity 

is useful when the information required to estimate each of these parameters individually is 

not available (Schulze, 1995). 
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The EVTR1 technique was not applied in this study, as there was sufficient information 

available to estimate the soil water evaporation and transpiration components of total 

evaporation separately, therefore only a brief description of the EVTR1 procedure has been 

provided. 

 

4.7.2.2  The EVTR2 routine 

The estimation of total evaporation, by computing potential soil water evaporation and 

potential transpiration, as individual parameters, is termed EVTR2 in the ACRU model 

(Schulze, 1995). This option was selected to be applied in this study, as it allows for the soil 

water evaporation and transpiration components of total evaporation to be estimated with 

greater accuracy (Schulze, 1995).  

 

For the EVTR2 option, the reference evaporation is entered as an input into the ACRU 

Model. On a day with interception losses, the interception loss is first determined in ACRU. 

This can be determined through the use of daily or monthly LAI information, based on the 

relationship outlined by von Hoyningen-Huene (1983) in (Schulze, 1995). This relationship is 

given, as follows: 

 

Il  =  0.30 + 0.27Pg + 0.13LAI − 0.013 P
2

g + 0.0285Pg.LAI − 0.007LAI
2
     (4.5) 

 

Where Il is interception loss (mm/day); Pg is gross daily rainfall (mm/day) and LAI is leaf 

area index (dimensionless). 

 

Intercepted water, which still remains on the plant canopy from the previous day’s rainfall, 

will be evaporated back to the atmosphere, using the available energy from the reference 

evaporation first. The remaining energy can then be used for soil water evaporation and 

transpiration processes (Schulze, 1995).  

 

With regards to forests, this stored water from the previous day’s rainfall has been found to 

evaporate at rates in excess of the available net radiation and potential evaporation. This is 

largely due to advection (Calder, 1982) and lower aerodynamic resistances of wet forest 

canopies (Rutter, 1967).  
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A conservative approach to estimate the enhanced wet canopy evaporation has been 

incorporated into ACRU, to simulate evaporation processes under forested conditions 

(Schulze, 1995). This relationship is given, as follows: 

 

Ew = Er(0.267LAI + 0.33)       (4.6) 

 

Where Ew is enhanced wet canopy evaporation (mm); Er is A-pan equivalent reference 

potential evaporation (mm) and LAI is leaf area index (dimensionless). 

 

Once, the interception loss has been determined, it is removed from the initial reference 

evaporation store. The reduced reference evaporation store is then available to estimate 

potential soil water evaporation and potential transpiration (Schulze, 1995). If no interception 

losses occur for a particular day, the reference evaporation amount entered, as an input to 

ACRU will be used to estimate potential soil water evaporation and potential transpiration. 

 

The potential transpiration can be determined in ACRU from LAI information, based on an 

adaptation of Ritchie (1972) procedures, which is detailed in Schulze (1995), as follows: 

 

Ft = 0.7 x LAI
0.5

 – 0.21        (4.7) 

 

Where Ft is the fraction of total available transpiration (dimensionless) and LAI is leaf area 

index (dimensionless). 

 

However, if LAI information is not available, the decision support database for known land 

covers can be used. Kc values which are stored in this database can be used to determine LAI, 

using the equation derived by Angus (1987), based on information given in Kristensen (1974) 

(Schulze, 1995) 

The fraction of transpiration cannot exceed 95% of the potential evaporation; therefore the 

lower and upper limits of the fraction of transpiration are set as 0.00 and 0.95, respectively.  

The potential transpiration can then be determined, as follows:  

 

PT = Ft x ET0        (4.8) 
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Where PT is potential transpiration (mm/day); Ft is the fraction of total available 

transpiration (dimensionless) and ET0 is reference evaporation (mm/day). 

 

The potential transpiration which is determined from the above equation may be suppressed, 

due to the effects of enhanced atmospheric CO2 concentrations. The levels of potential 

transpiration suppression in ACRU are dependent on the nature of the plants present i.e C3 or 

C4 plants (Schulze, 1995). The potential transpiration from the plant is apportioned to the A- 

Horizon and B-Horizon based on the proportion of the root mass distributions present within 

the respective layers. 

 

Soil water evaporation is assumed to occur from the top soil only in ACRU (Schulze, 1995). 

Potential soil water evaporation in ACRU can be estimated either as a residual of the 

available energy not used for the estimation of potential transpiration, or from considerations 

of the effects, which shading from the above ground vegetation has on the soil surface 

(Schulze, 1995). The latter approach is used in ACRU for irrigation simulations and will 

therefore not be discussed further, as this option was not exercised in this study. The potential 

soil water evaporation is estimated, as a residual in ACRU’s ―dryland‖ (rainfed) routine 

(Schulze, 1995), as follows: 

 

PSWE = Er x (1-Ft)         (4.9) 

 

Where  PSWE is potential soil water evaporation (mm); Er is A-pan equivalent reference 

potential evaporation (mm) and Ft is the fraction of total available transpiration 

(dimensionless). 

 

The potential soil water evaporation, which is determined from the aforementioned equation, 

may be suppressed, due to the effects of surface cover such as mulch, litter or surface rocks 

(Schulze, 1995).  

 

The actual soil water evaporation is calculated in two stages in ACRU, according to Ritchie 

(1972). During the first stage, when the soil is wet, soil water evaporation is limited only by 

the available energy at the surface; therefore the actual soil water evaporation is equal to the 

potential soil water evaporation.  
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The stage two evaporation process begins, when the accumulated soil water evaporation 

exceeds the stage 1 upper limit (Schulze, 1995). The stage 1 upper limit is estimated in 

ACRU (Schulze, 1995), as follows: 

 

U1 = 9(αs - 3)
0.42         

(4.10) 

 

Where  U1 is stage 1 upper limit of SWC (mm) and αs is soil water transmission parameter.

   

While the stage two soil water evaporation is estimated in Schulze (1995), by: 

 

Es = αstd
0.5 

- (td - 1)
0.5        

(4.11) 

 

Where Es is stage two soil water evaporation (mm/day); αs is soil water transmission 

parameter and td is time (days). 

 

Once the stage two soil water evaporation commences, soil water evaporation begins to 

decline rapidly. 

 

The actual transpiration in ACRU can be equal to the potential transpiration or it may be less 

than the potential transpiration, due to limited/excess of soil water. During conditions of 

limited soil water availability, the actual transpiration is estimated in ACRU (Schulze, 1995), 

as follows: 

 

EtA = EptA (θA - θPWPA)/ (fs x PAWA)     (4.12) 

 

Where EtA is actual transpiration of the A-Horizon (mm/day); EptA is potential transpiration 

of the A-Horizon (mm/day); θA is SWC of the A-Horizon (mm); θPWPA is SWC of the A-

Horizon at permanent wilting point (mm); PAWA is plant available water (PAW) for the A-

Horizon (mm) and fs is fraction of PAW at which stress sets in due to soil water deficit. 

 

While under conditions of soil water excess, actual transpiration is estimated, as: 

 

EtA = EptA[0.7(θPOA - θA)/ (θPOA  - θDULA) + 0.3]     (4.13) 
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Where EtA is actual transpiration of the A-Horizon (mm/day); EptA is potential transpiration 

of the A-Horizon (mm/day); θPOA is SWC of the A-Horizon at saturation (mm); θA is SWC of 

the A-Horizon (mm) and θDULA isSWC of the A-Horizon at the drained upper limit (mm). 

 

The same form of the equation will apply for the B-Horizon in both cases. 

 

The ACRU model operates on the assumption that ―roots look for water, water does not look 

for roots‖ (Schulze, 1995). Based on this premise, once the daily actual transpiration has been 

determined for the respective soil horizons, the daily actual transpiration may be adjusted 

horizon-by-horizon, when one of the soil horizons experiences a greater deficiency in soil 

moisture than the other (Schulze, 1995).  

 

During such conditions the model has been encoded, so that the horizon which is not 

experiencing stress, will contribute more to daily actual transpiration than what was initially 

computed, by accounting for the proportion of root mass available in the horizon for 

transpiration (Schulze, 1995). This however, is only possible if the plant is in an active stage 

of growth (Schulze, 1995). 

 

Once, the actual soil water evaporation and actual transpiration have been determined, the 

soil water content within each of the soil horizons is adjusted (Schulze, 1995). Figure 4.3 

provides a simplistic representation of the EVTR2 procedure. 
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4.7.2.3   The EVTR3 approach 

The ACRU4 Version of the ACRU Model described in Clarke et al. (2009) does not 

accommodate actual total evaporation, as an input. Therefore, in order to utilize the SEBS 

total evaporation estimates, as an input to ACRU, a new routine was required, to be added to 

the model. This routine was termed EVTR3. This new approach was needed because neither 

option EVTR1 or EVTR2 had the capacity of handling total evaporation as an input. 

 

The total evaporation is used as an input to ACRU for the EVTR3 approach, however before 

it can be used to perform various hydrological simulations; it must be apportioned 

accordingly to interception losses, actual transpiration and soil water evaporation. 

ESTIMATION OF TOTAL 

EVAPORATION FOR EVTR 2 

Figure 4.3 Estimation of total evaporation within ACRU for option EVTR2 (After Schulze, 1995) 

Input: 

Days evaporation demand 

Top soil and subsoil water content 

LAI f(Kcm) 

C3, C4 suppression  f(CO2) 

 

Compute soil water evaporation Compute plant transpiration 

Maximum soil water evaporation f(LAI) Maximum plant transpiration f(LAI) 

      Actual soil water evaporation of top soil 

f(Soil water content, Texture, surface cover) 

   Actual transpiration of individual soil horizons 

f(Soil water content, root distribution, stress) 

Compute soil water content for individual horizons 
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On a day with interception losses, the interception loss is first determined in ACRU. This can 

be determined through the use of daily or monthly LAI information. Interception loss can be 

determined from LAI data based on the relationship outlined by von Hoyningen-Huene 

(1983) in (Schulze, 1995), detailed in Equation 4.5.  

Once, the interception loss has been determined, it is removed from the initial actual total 

evaporation store. The reduced actual total evaporation store is then available to determine 

actual soil water evaporation and actual transpiration. If no interception losses occur for a 

particular day, the actual total evaporation amount entered as an input to ACRU will be used 

to determine actual soil water evaporation and actual transpiration. 

The actual transpiration for the EVTR3 procedure can be determined in ACRU, based on an 

adaptation of Ritchie (1972) procedures, detailed in Equation 4.7. The fraction of total 

available transpiration is then used to determine the daily actual transpiration, which is given 

as: 

Atrans = AET x Ft         (4.14) 

Where Atrans is actual transpiration (mm/day); AET is total evaporation (mm/day) and Ft is 

the fraction of total available transpiration. 

The actual transpiration which occurs from the A-Horizon and B-Horizon is determined, 

based on the plant root fraction. For example if 60 % of the roots are situated within the A-

Horizon, then 60% of the actual transpiration calculated in Equation 4.14, will occur from the 

A-Horizon, whilst the remaining 40 % will occur from the B-Horizon.  

The root fraction parameter values used for the EVTR3 option are a user-defined value. The 

ACRU decision support database for known land covers can be used to assist in determining 

representative root fraction values.  

The actual soil water evaporation can be estimated as a residual of the available energy not 

used for the estimation of actual transpiration and is given, as follows:  

Aswe = AET x (1-Ft)         (4.15) 

Where Aswe is actual soil water evaporation (mm/day); AET is total evaporation (mm/day) 

and Ft is the fraction of total available transpiration. 
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Soil water evaporation is assumed to take place from the top soil horizon only. Once, the 

actual soil water evaporation and actual transpiration have been determined, the soil water 

content within each of the soil horizons is adjusted.  

It is important to note that the actual total evaporation which is input to the model may not be 

equal to the actual total evaporation output by the model, as the soil water content of the A-

Horizon and B-Horizon, which is estimated within the model may not be able to meet the 

actual total evaporation demand being specified. 

4.7.3  ACRU configuration 

The delineation of sub-catchments in the Inkomati Catchment (X23) was based on a quinary 

shapefile obtained from DHI (Fregzi, 2012b), originating from a report undertaken by 

Mallory and Beater, which was commissioned by the Department of Water Affairs (DWAF) 

(DWAF, 2009). Twenty sub-catchments were identified within this quinary shapefile, and of 

these twenty, two sub-catchments were further sub-divided, based on the location of the 

proposed Mountain View (Haumann, 2008) and Concession Creek (Theron, 2006) Dams. A 

20 m DEM received from the Inkomati Catchment Management agency was used to delineate 

the new sub-catchments and rivers, to create the X23_A shapefile used in this study 

(Thornton-Dibb et al., 2013). 

The ACRU Model was configured for the X23_A quarternary located within the Kaap River 

Catchment. The details pertaining to model inputs, such as climate, elevation, soils, landuse 

and ancillary model inputs are described in the proceeding sub-sections. 

4.7.3.1  Sub-catchment and HRU configuration 

The ACRU Model was configured by extracting the X23_A quarternary catchment, which is 

located within the X23 tertiary catchment (Thornton-Dibb et al., 2013). The sub-catchments, 

the flow network and the area of the quarternary and its sub-catchments are shown in Figures 

4.4 and 4.5, respectively and Table 4.3. The X23_A coverage was then used as an input to the 

ACRU Grid extractor (Lynch and Kiker, 2001), which is an extension of ArcView that is 

used to extract rainfall correction factors, soils and land type information required as inputs to 

the ACRU Model (Thornton-Dibb et al., 2013). 
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Figure 4.4 Location of the X23A Quaternary Catchment, sub-catchments, flow gauging 

weir and rain gauge 

Table 4.3 X23_A quarternary catchment and sub-catchment areas 

Quarternary catchment Subcatchment 

ID Area (km
2
) ID Area (km

2
) 

X23_A 126.86 

X23_A1 51.66 

X23_A2 75.2 
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Figure 4.5 X23_A flow network (Thornton-Dibb, 2014) 

 

 

 

CatchmentNode-X2H010 

X23A-2.River_FlowFromX23A-1_InflowNode 

ExitNode 

X23A-1.SubCatchmentNode 

HRU    

River Inflow Node 

Dam 

HRU  

Dam Inflow Node 

Iinflow Node 

HRU   

Dam 

HRU   

Dam Inflow Node 

Iinflow Node 

River Inflow Node 

X23A-1.River_HRUs 

X23A-2.River_HRUs 

River Inflow 

Node 

X23A 

River Inflow 

Node 

X23A-2.SubCatchmentNode 

X23A-1.River 

X23A-1 

X23A-2.River 

X23A-2 

X23A-2.River_FlowFromX23A-1 



 

 53 

4.7.3.2  Historical observed climate data 

Rainfall is the chief driver input to the ACRU model. Rain gauges located within the 

quarternary did not possess rainfall records which corresponded to the time period that was to 

be used for the modelling of streamflow in the X23_A quarternary i.e. 01
st
 December 2011 to 

25
th

 November 2012. The nearest rain gauge which possessed the required rainfall record, 

formed part of an ARC-ISCW automatic weather station located at coordinates: 25
o
.81 S and 

31
o
.01 E, at an altitude of 703 m, a mean annual precipitation of 681 mm and 80.7 % 

reliability (Thornton-Dibb et al., 2013). This station was selected as the driver station for the 

quarternary. Rainfall values can be corrected using the gridded MAP. The MAP is 

represented by a degree grid (Schulze et al., 2008) and is illustrated in Figure 4.6. 

 

Figure 4.6 Distribution of mean annual precipitation (MAP) over the X23 tertiary 

catchment 
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The rainfall values for this station were not corrected in ACRU, as the length of record (7 

years) was not adequate to generate representative rainfall correction factors. A length of 

record of 20 years or longer is the suggested time period for the generation of correction 

factors. Daily temperature and daily Penman-Monteith reference evaporation data were also 

acquired from the ARC-ISCW weather station. The SEBS total evaporation time series was 

obtained, by determining the average of the satellite pixel values located within the X23_A1 

and X23_A2 sub-catchments. A sample of the SEBS total evaporation estimates for a random 

day in winter and summer is illustrated in Figure 4.7. 

 

Figure 4.7 Variation of SEBS total evaporation over the X23 tertiary catchment  
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Observed streamflow values were obtained by downloading the weir records from the 

Department of Water Affairs database. Streamflow depths were downloaded for the gauging 

weir X2H010 located at coordinates 25
o
.615 S, 30

o
.875 E (Thornton-Dibb et al., 2013). 

Quality control and error checking of the data was undertaken for the study by Thornton-

Dibb et al. (2013). The observed values of rainfall, temperature, FAO Penman-Monteith 

reference evaporation and streamflow were then used to compile a climate file, which was 

used to input the relevant climate data and to drive the ACRU Model. 

4.7.3.3  Elevation 

The variation in altitude over the quarternary catchment X23_A, represented by the national 

200 m Digital Elevation Model (DEM) for South Africa is represented in Figure 4.8. The 

elevation for each of the sub-catchments was extracted from the DEM at a 200 m resolution 

and used as an input to ACRU (Thornton-Dibb et al., 2013). 

 

Figure 4.8 Variation of altitude over the X23 tertiary catchment 
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4.7.3.4 Soils and land use  

The hydrological soils information required as an input to ACRU were extracted from the 

Land Type map (Schulze et al., 2008). The soil parameters which were extracted and used as 

inputs to ACRU included the wilting point, field capacity and porosity for the A-horizon and 

B-horizon, as well as the depth and drainage response fractions for the aforementioned 

horizons (Thornton-Dibb et al., 2013). The broad soils classification used to extract the soil 

parameters required as inputs to ACRU, are displayed in Figure 4.9. 

 

Figure 4.9 Broad soil classification within the X23 tertiary catchment (after ISCW, 

2005) 
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The land use information was obtained from a Spot 5 satellite image at a 20 m resolution. A 

number of varying land uses were identified within each of the sub-catchments. However, 

due to the differences in the spatial resolution of the MODIS Level 1_B (1 km) images used, 

as inputs to SEBS, to generate daily total evaporation estimates, the total evaporation for each 

of the varying land covers could not be accurately accounted for.  

This phenomenon is illustrated in Figures 4.10 and 4.11. Figure 4.10 illustrates the SEBS 

total evaporation which was calculated for the quarternary catchment X23_A. The 1 km 

pixels highlighted in this figure were then overlaid onto the landcover map in Figure 4.11, to 

illustrate the limited inter-field variation detected by the MODIS Level1_B data.  

 

Figure 4.10 An illustration of the SEBS total evaporation (mm) estimated at a resolution 

of  1km for the quarternary catchment X23_A 
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Figure 4.11 An illustration of the spatial coverage for the selected MODIS Level1_B 

pixels in comparison to the land uses present within the quarternary 

catchment X23_A 
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The selected pixels in Figure 4.10 provide a total evaporation estimate at a spatial resolution 

of 1 km
2
. Within this pixel, as shown in Figure 4.11, it can be seen that there are various land 

covers which are present. Each of these land covers may possess differing total evaporation.  

The total evaporation estimate provided by SEBS in this instance, therefore may not be a 

representative estimation of the different land covers present within the quarternary X23_A. 

In order to overcome this limitation the model had to be configured in a relatively simplistic 

manner.  The quarternary catchment X23_A was modelled at the sub-catchment level and a 

homogenous land cover would be assumed for the Hydrological Response Units (HRU’s) 

within the X23_A1 and X23_A2 sub-catchments. The landcover which possessed the largest 

area contribution within each sub-catchment was selected to represent the landuse in each of 

the sub-catchments.  

Forestry contributes to more than 65% of the total area within the quarternary catchment 

X23_A and more than 75% and 60% of the total area within the sub-catchments X23_A1 and 

X23_A2 respectively. Eucalyptus plantations accounted for more than 65% and 41% of the 

forestry, present in sub-catchments X23_A1 and X23_A2, respectively. Therefore it was 

decided that eucalyptus plantations would be used to represent the landuse in each of the sub-

catchments.  The area contribution of each land use within the sub-catchments is shown in 

Table 4.4. These were determined, using the tabulate area function in ArcGIS 9.3. 

The sub-catchments X23_A1 and X23_A2 were further sub-divided into two HRU’s. The 

land cover present within each of these HRU’s would remain the same i.e. each HRU would 

possess eucalyptus plantations as the land cover. The sub-division of each of the sub-

catchments was used to assist in the configuration of the flow network into a logical sequence 

which is representative of the river flow; this is represented in Figure 4.4. 
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Table 4.4 Landuse area contribution within the X23_A sub-catchments 

Land Use X23_A-

1 (km
2
) 

X23_A-2 

(km
2
) 

X23_A 

(km
2
) 

Forest (indigenous) 4.25 6.71 10.96 

Thicket, Bush land, Bush Clumps, High 

Fynbos 5.78 16.36 22.15 

Unimproved (natural) Grassland 3.55 5.79 9.34 

Bare Rock and Soil (natural) 0.23 1.07 1.30 

Water bodies (manmade) 0.07 0.11 0.17 

Urban / Built-up (residential) 0.15 0.35 0.50 

Mines & Quarries (mine tailings, waste 

dumps) 0.00 0.00 0.00 

Forest Plantations (clear-felled) 2.51 1.85 4.36 

Forest Plantations (Pine spp) 7.35 18.50 25.85 

Forest Plantations (Eucalyptus spp) 26.37 19.32 45.70 

Wetlands 0.15 0.25 0.40 

Cultivated, permanent, commercial, dry land 0.03 3.88 3.90 

Cultivated, commercial, irrigated 1.21 1.03 2.24 

Total area  51.66 75.20 126.86 

 

4.7.3.5 LAI 

The LAI data used in this study was downloaded from the MODIS products of MOD15A2 

for the period 01
st
 December 2011 to 25

th
 November 2012. The MOD15A2 product is 

available at a spatial resolution of one km and an eight-day temporal resolution. The 

MOD15A2 product is archived in the NASA HDF EOS data format (Muhammed, 2012). The 

MODIS reprojection tool was used to reproject and convert the data to a Geo-tiff format, 

which was compatible with ArcGIS. A correction factor of 0.1 was applied to the data, to 

obtain LAI values in m
2
/m

2
.  

The LAI values were assumed to remain constant over the eight-day period and based on this 

assumption, a daily LAI time series for the period 01
st
 December 2011 to 25

th
 November 

2012 was generated. The LAI values for the aforementioned time period were added to the 

climate file. An example of the LAI for the quarternary catchment X23_A is shown in Figure 

4.12. 
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Figure 4.12 LAI values over the X23_A quarternary on the 03rd December 2011 

4.7.3.6 Dams and water bodies 

A database of registered dams housed on the Department of Water Affairs Website was 

downloaded to identify the dams within the X23_A quarternary (DWA, 2012a). A Google 

earth file is included within the database, to facilitate the location of these dams within the 

X23_A quarternary (Thornton-Dibb et al., 2013). The files in the database were only accurate 

to the nearest second of a degree and as a result, some of the locations specified in the file did 

not correspond to the dams identified using Google Earth. Five unidentified dams were 

situated within the X23_A1 and X23_A2 sub-catchments (Thornton-Dibb et al., 2013). 

The dams located in the X23_A quarternary within the database were linked with the dams 

identified within Google Earth, as well as the water bodies identified by the Spot 5 land use 

map. A single virtual dam was created per sub-catchment and used in the ACRU 

configuration. The creation of the virtual dam was based on the aggregation of water bodies 

and dams located within the respective sub-catchments (Thornton-Dibb et al., 2013). 
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4.7.4  Streamflow modelling scenarios and sensitivity analysis tests 

The configuration of the ACRU Model discussed in the previous sub-section was used to 

conduct two streamflow modelling scenarios and two sensitivity analysis tests. The first 

streamflow modelling scenario involved the application of Penman-Monteith reference 

evaporation data as the evaporation input to the ACRU Model, whereas the second 

streamflow modelling scenario involved the use of the SEBS total evaporation time series as 

the evaporation input to the ACRU model.  

The first sensitivity analysis test which was performed focused on assessing the sensitivity of 

the ACRU model to the initial baseflow store value. The second sensitivity analysis test 

focused on the sensitivity of the ACRU Model to the root fraction parameter values required 

for the EVTR3 option. A detailed description of each of the streamflow modelling scenarios 

and sensitivity analysis tests will be outlined in the following sub-sections. 

4.7.4.1  Scenario One: streamflow modelling using daily FAO Penman-Monteith 

reference evaporation estimates 

The first scenario involved comparing the simulated streamflow, which was attained using 

the FAO Penman-Monteith Reference evaporation data, against observed streamflow. The 

flow network of the quarternary catchment X23_A and its sub-catchments are displayed in 

Figure 4.5. The MAP and hydrological soils information which was extracted using the 

ArcView grid extractor was used to populate the ACRU model. A climate file was added to 

each HRU to provide the relevant climatic data required to drive the model. It is important to 

note that the climate data used in the climate file pertains to the ARC-ISCW weather station 

located at coordinates 25.81 S and 31.01 E.  

This weather station is not situated within the quarternary catchment X23_A; however, it was 

the only station in close proximity which possessed the required climatic data to conduct 

streamflow modelling simulations for the period 01
st
 December 2011 to 25

th
 November 2012. 

A sample of the climate file used, as an input to ACRU is shown in Table 4.5. The vegetation 

parameters pertaining to eucalyptus plantations were used to populate the HRU’s menu and 

these were obtained from the ACRU decision support database for known land covers.  
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Table 4.5 Sample of climate file used 

Station 

ID 

 

Date Rfl 

(mm) 

 Tmax  

(oc) 

 Tmin 

(oc) 

 FAO 

ref_evap 

(mm) 

 Streamflow 

(mm) 

   LAI  

  

30765 20111201 0.51  32.68  18.90  4.13  0.2419    1.70 
 

30765 20111202 1.02  30.20  19.89  3.11  0.2814    1.70  

30765 20111203 13.72  22.26  16.84  1.43  0.2718    1.70  

 

The daily temperature and daily FAO Penman-Monteith reference evaporation values stored 

in the climate file were corrected within ACRU. The daily temperature values were subjected 

to an altitudinal correction, based on the lapse rate region for the Limpopo Province (Schulze 

and Maharaj, 2004) and the base elevation of the respective sub-catchment. A correction 

factor of 1.2, suggested in Schulze (1995) for Kc values from Doorenbos and Pruitt (1977), 

was applied to the daily FAO Penman-Monteith reference evaporation, to produce daily A-

pan equivalent values which are required by ACRU. Soil water evaporation and transpiration 

can be modelled as a single entity (EVTR1) or as separate entities (EVTR2) within ACRU. 

The EVTR2 option was chosen for this scenario.  

Once all the relevant information had been input into ACRU, simulations were undertaken. 

The time period used to conduct the streamflow modelling in ACRU was from the 01
st
 of 

December 2011 to 25
th

 November 2012. This time period was selected due to the length of 

record of the SEBS daily total evaporation estimates and the MODIS LAI data processed for 

this study.  

However, the model was initially run using only the historical observed climate data from the 

ARC-ISCW automatic weather station for the period 28
th

 September 2006 to 29
th

 September 

2013. This was done in order to determine an initial baseflow store value for the 01
st
 

December 2011. An assumption was made that this value would be somewhat more 

representative than conducting simulations with the baseflow store beginning at a value of 

zero. 
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During this initial simulation, Kc values were used instead of the MODIS LAI values, as the 

MODIS LAI values were only available from the 01
st
 of December 2011 to 25

th
 November 

2012. Once the initial baseflow store value was determined for the 01
st
 December 2011, 

streamflow simulations were undertaken, using the historical observed climate data and the 

MODIS LAI data for the period 01
st
 of December 2011 to 25

th
 November 2012. The 

simulated streamflow for this simulation was compared with the observed streamflow. The 

results of these simulations are discussed in Section 6.1. 

4.7.4.2  Scenario Two: streamflow modelling using SEBS daily total evaporation 

estimates 

The configuration of ACRU and the inputs used in scenario one was once again used in this 

scenario. However changes were made to the vegetation parameters and the evaporation data 

used as inputs to the model. Instead of using the daily FAO Penman-Monteith reference 

evaporation, as an input to ACRU, to determine actual soil water evaporation and actual 

transpiration, the daily SEBS total evaporation estimates were used. A sample of the climate 

file used as an input to ACRU is shown in Table 4.6. Daily FAO Penman-Monteith reference 

evaporation was still used as an input to ACRU however this was only used to estimate open 

water evaporation as SEBS has rarely been applied and validated for the estimation of open 

water evaporation (Abdelrady, 2013). In order to estimate open water evaporation using 

satellite earth observation data, an adaptation of the SEBS model is required (Su et al., 2001).  

Once the actual total evaporation values were successfully incorporated, ACRU was run for 

the period 01
st
 of December 2011 to 25

th
 November 2012, to estimate streamflow. The 

simulated streamflow for this simulation was compared with the observed streamflow. These 

results are discussed in Section 6.1. 

Table 4.6 Sample of climate file used 

Station 

ID 

 

Date Rfl 

(mm) 

 Tmax  

(oc) 

 Tmin 

(oc) 

 FAO 

ref_evap 

(mm) 

 Streamflow 

(mm) 

 SEBS 

ET 

(mm) 

 LAI  

  

30765 20111201 0.51 

 

32.68 
 

18.90 

 

4.13  0.2419  6.08 

 

1.70  

30765 20111202 1.02 

 

30.20 
 

19.89 

 

3.11  0.2814  0.23 

 

1.70  

30765 20111203 13.72 

 

22.26 
 

16.84 

 

1.43  0.2718  3.12 

 

1.70  
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4.7.4.3  Sensitivity analysis test 1: initial baseflow store value 

ACRU was configured to simulate streamflow in Scenario One and Scenario Two, using an 

initial baseflow store value for the 01
st
 of December 2011, which was determined by 

conducting an initial simulation, using only the historical observed climate data from the 

ARC-ISCW automatic weather station for the period 28
th

 September 2006 to 29
th

 September 

2013. 

An assumption was made that this value would be somewhat more representative of the 

observed conditions rather than conducting simulations with the initial baseflow store 

beginning at 0 mm. The initial baseflow store value was determined to be 400 mm for the 01
st
 

of December 2011. 

In order to test the validity of the aforementioned assumption, a sensitivity analysis was 

performed by conducting five simulations to assess the effect of what a specified initial 

baseflow value has on the simulated streamflow. The ACRU configuration used for Scenario 

Two was used for all five simulations. The initial specified baseflow store specified was 0 

mm, which was increased by 200 mm increments for each of the four simulations thereafter. 

These results are discussed Section 6.2. 

4.7.4.4  Sensitivity analysis test 2: root fraction parameter values 

As detailed previously in sub-section 4.7.3.4, a number of varying land uses were identified 

from a Spot 5 satellite image at a 20 m resolution. However, the HRU’s in ACRU were 

configured to represent only eucalyptus plantations. The root fraction parameters pertaining 

to eucalyptus were used as this was the dominant land use present within each of the sub-

catchments that were being modelled. It was assumed that because the average SEBS total 

evaporation within each sub-catchment was used, the root fraction parameter for the 

dominant landuse in each sub-catchment could be used for the EVTR3 routine. 

The root fraction parameter values pertaining to this vegetation type were used to conduct 

simulations for the first and second scenarios, as well as for the first sensitivity analysis test 

for the EVTR3 routine. 
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Although the HRU’s are being modeled as eucalyptus plantations, the SEBS daily actual total 

evaporation estimate is a mixed pixel estimate of actual total evaporation i.e. the actual total 

evaporation estimate produced per pixel by SEBS may account for other vegetation types. 

This is due to the coarse resolution of the MODIS Level 1_B data processed in SEBS, to 

generate the daily actual total evaporation estimate. The assumption that eucalyptus would be 

used to represent the landuse in each of the sub-catchments will not affect the representation 

of the SEBS total evaporation used as an input to ACRU.  

The EVTR3 option in ACRU does not require detailed land use information,, however the 

root fraction parameter values plays an important role in determining the amount of actual 

transpiration, which occurs from the A-Horizon and from the B-Horizon, as well as the soil 

water evaporation, which occurs from the A-Horizon. As a result, inaccuracies may be 

introduced to simulated outputs by incorporating root fraction parameter values pertaining to 

a single land use. 

A sensitivity analysis was performed to assess the effect which the root fraction parameter 

variable associated with a specific land cover (in this case eucalyptus) has on certain 

hydrological parameters for the EVTR3 option. The configuration of ACRU used in Scenario 

Two was used to conduct the sensitivity analysis. Three simulations were performed using 

the minimum (eucalyptus plantation), average and maximum (wetland grasses) A-Horizon 

root fraction values present in the X23_A quarternary catchment.  

The results for this sensitivity analysis are discussed in Section 6.3. Table 4.7 shows the A-

Horizon rooting fraction for the various land uses in the X23_A quarternary catchment. The 

B-Horizon rooting fraction for the various land uses in the X23_A quarternary catchment is 

determined as: 

B-Horizon rooting fraction = 1 – A-Horizon rooting fraction 
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Table 4.7 A-Horizon root fractions for varying land uses in the X23_A quarternary 

catchment 

Root Fraction A-horizon  

Landuse Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Bare rock 0.90 0.90 0.90 0.94 0.94 0.94 0.94 0.94 0.92 0.92 0.90 0.90 

Com Dryland 0.77 0.75 0.81 0.93 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.86 

Indig Forest 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 

Clearfelled Forest 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 

Euc Forest 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 

Pine Forest 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 

Thicket and bush 0.80 0.80 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.80 0.80 0.80 

Grassland 0.90 0.90 0.90 0.94 0.98 1.00 1.00 1.00 1.00 0.95 0.90 0.90 

Urban 0.80 0.80 0.80 0.90 1.00 1.00 1.00 1.00 0.90 0.90 0.80 0.80 

Wetland grasses 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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5. RESULTS AND DISCUSSION: SEBS DATA SET 

5.1 Application of the Linear Interpolation Technique and the Kcact Technique to the 

Observed Data Set 

As detailed in Section 4.6.3, the linear interpolation technique and Kcact technique were tested 

on the surface renewal total evaporation data set and the SEBS total evaporation data set, 

respectively. The first test involved applying the two techniques to the surface renewal data 

set. Tables 5.1, 5.2 and 5.3 indicate the results of the investigations. The use of the linear 

infilling technique to estimate the missing observed daily total evaporation values yielded 

positive results.  

The relative volume error between the observed total evaporation and the linear infilled total 

evaporation indicates that the linear interpolation technique over-estimates total evaporation 

by approximately 2%. The R
2
 and RMSE values are 0.67 and 0.90, respectively. These 

statistics, as well as the results of the t-test indicate a fairly good agreement between the 

known surface renewal values and the linear infilled surface renewal values and show no 

significant difference between their means.  

Table 5.1 A comparison of observed total evaporation vs infilled total evaporation 

using linear interpolation for 45 random days during the period 01st 

January 2012 to 30th June 2012 

 

Surf Ren ET 

(mm) 

Linear Int ET 

(mm) 

RVE 

(%) 

Total  122.16 124.33 -1.78 

Average 2.71 2.76 -18.56 

Median  2.76 2.56   

Variance 2.47 2.06   

Std Dev 1.57 1.43   

Max 6.07 6.00   

Min 0.42 0.63   

R2 0.67   

RMSE 0.90   
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The use of the Kcact technique to estimate the missing observed daily total evaporation values 

yielded positive results. The relative volume error between the observed total evaporation and 

the Kcact infilled total evaporation indicates that the Kcact interpolation technique under-

estimates total evaporation by approximately 1%. The R
2
 and RMSE values are 0.85 and 

0.60, respectively. These statistics, as well as the results of the t-test indicate a good 

agreement between the known surface renewal values and the Kcact infilled surface renewal 

values and show no significant difference between their means. 

Table 5.2 A comparison of observed total evaporation vs infilled total evaporation 

using Kcact for 45 random days during the period 01st January 2012 to 

30th June 2012 

 

FAO56 Ref ET 

(mm) 
Surf Ren ET 

(mm) 

Kcact ET 

(mm) 

RVE 

(%) 

Total  163.70 122.16 121.17 0.81 

Average 3.64 2.71 2.69 -9.21 

Median  3.50 2.76 2.49   

Variance 1.75 2.47 2.19   

Std Dev 1.32 1.57 1.48   

Max 6.70 6.07 6.03   

Min 1.60 0.42 0.65   

R
2
   0.85   

RMSE   0.60   

 

The observed total evaporation estimates and the infilled estimates were accumulated for the 

period 01
st
 January 2012 to 30

th
 June 2012 and are illustrated in Figure 5.1. Both the 

techniques appear to be in fairly good agreement with the observed data for the forty-five 

random days and they are able to capture the trends of the observed data. The results of the t-

tests shown in Table 5.3 indicate that the null hypothesis can be accepted for both the 

techniques at the 95% interval.  

Table 5.3 A two sample t-test for the difference between means, comparison of linear 

infilling and observed data, as well as Kcact and observed data 

Technique 

T-test     

(p-value) 

Rejection region for null 

hypothesis (95% confidence) 

Accept 

/Reject 

Linear Int 1 p < 0.05 Accept 

Kcact 0.95 p < 0.05 Accept 
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Figure 5.1 A comparison of accumulated observed total evaporation vs accumulated 

infilled total evaporation using linear interpolation and Kcact for 45 

random days during the period 01st January 2012 to 30th June 2012 

 

5.2 Application of the Linear Interpolation Technique and the Kcact Technique to 

the SEBS Data Set 

The second test involved applying the two techniques to the SEBS data set. Tables 5.4, 5.5 

and 5.6 indicate the results of the investigation. The use of the linear infilling technique to 

estimate the missing SEBS daily total evaporation values yielded contrasting results. 

The relative volume error between the SEBS total evaporation and the linear infilled total 

evaporation indicates that the linear interpolation technique under-estimates total evaporation 

by approximately 3%, indicating a fairly good comparison. This was further supported by the 

results of the t-test shown in Table 5.6, which indicate that there is no significant difference 

between their means. However the R
2
 and RMSE values of 0.27 and 1.54, respectively, 

indicate a poor agreement between the known SEBS values and the linear infilled SEBS 

values.  
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Table 5.4 A comparison of SEBS total evaporation vs infilled total evaporation using 

linear interpolation for 45 random days during the period 01st January 

2012 to 30th June 2012 

  

SEBS ET 

(mm) 

Linear Int ET 

(mm) 

RVE 

(%) 

Total  201.12 195.49 2.80 

Average 4.47 4.34 -19.78 

Median  4.34 4.07   

Variance 3.24 1.40   

Std Dev 1.80 1.18   

Max 8.75 8.15   

Min 0.00 2.09   

R
2
 0.27   

RMSE 1.54   

 

The use of the Kcact technique to estimate the missing SEBS daily total evaporation values 

yielded poor results. The relative volume error between the SEBS total evaporation and the 

Kcact infilled total evaporation indicates that the Kcact interpolation technique under-estimates 

total evaporation by approximately 30%. The R
2
 and RMSE values are 0.37 and 1.96, 

respectively. These statistics, as well as the results of the t-test indicate a poor agreement 

between the known SEBS values and the Kcact infilled SEBS values.  

Table 5.5 A comparison of SEBS total evaporation vs infilled total evaporation using 

Kcact for 45 random days during the period 01st January 2012 to 30th June 

2012 

 

FAO56 Ref ET 

(mm) 

SEBS ET 

(mm) 

Kcact ET 

(mm) 

RVE 

(%) 

Total  163.70 201.12 141.68 29.55 

Average 3.64 4.47 3.15 21.69 

Median  3.50 4.34 3.05   

Variance 1.75 3.24 1.99   

Std Dev 1.32 1.80 1.41   

Max 6.70 8.75 5.85   

Min 1.60 0.00 1.33   

R
2
   0.37   

RMSE   1.96   
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Table 5.6 A two sample t-test for the difference between means, comparison of linear 

infilling and SEBS data, as well as Kcact and SEBS data 

Technique 

T-test     

(p-value) 

Rejection region for null 

hypothesis (95% confidence) 

Accept 

/Reject 

Linear Int 0.7 p < 0.05 Accept 

Kcact 0 p < 0.05 Reject 

 

The SEBS total evaporation estimates and the infilled estimates were accumulated for the 

period 01
st
 January 2012 to 30

th
 June 2012 and are illustrated in Figure 5.2. Both techniques 

have been shown to perform poorly on the known SEBS data set. The linear interpolation 

technique closely follows the trends of the SEBS data, whilst the Kcact technique compares 

less favourably.  

The linear interpolation technique marginally under-estimates the total evaporation value 

specified in the SEBS data set, whereas the Kcact technique largely under-estimates the total 

evaporation value specified in the SEBS data set. Taking into consideration the results 

obtained for each of the tests, the linear interpolation technique was chosen to infill the 

missing data in the SEBS daily total evaporation time series, which was to be generated for 

the quarternary catchment X23_A.  

The Kcact technique performed well in the first test, when Kcact was calculated for a 

homogenous landcover (sugarcane) at a point scale. However for the second test, the Kcact 

was calculated from the SEBS total evaporation which was estimated at a 1 km spatial 

resolution. Other landuses which are present within the 1 km pixel could have contributed to 

the total evaporation resulting in a mixed pixel estimate of total evaporation. Taking into 

consideration the results of the two tests the heterogeneity of the pixel and scale at which 

Kcact was determined could have had a significant influence on the performance of the 

technique, as the performance of the Kcact technique markedly decreased when it was applied 

to estimate the artificially removed SEBS total evaporation.  

The linear interpolation technique was influenced only by the known total evaporation 

values. Consequently, a more favourable comparison was identified between the linear 

interpolation technique and the known SEBS total evaporation values, as it was able to better 

capture the trends displayed by the known SEBS values.  
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Figure 5.2 A comparison of accumulated SEBS total evaporation vs accumulated 

infilled total evaporation using linear interpolation and Kcact for 45 

random days during the period 01st January 2012 to 30th June 2012 

 

Complete cloud coverage within the MODIS Level 1_B images, resulted in no daily total 

evaporation values being generated for twenty-eight days of the entire SEBS time series. The 

linear infilling technique was applied to these days, in order to create a complete total 

evaporation time series to validate the SEBS total evaporation against the surface renewal 

total evaporation and to create a complete total evaporation time series required for the 

modelling of the Kaap Catchment.  

 

5.3 Comparison of SEBS Daily Total Evaporation Estimates against Observed 

Historical Daily Total Evaporation Estimates 

The daily total evaporation estimates generated by SEBS for the time period 01st December 

2011 to 25
th

 November 2012 were compared with observed historical surface renewal 

estimates for the corresponding time period. Tables 5.7 and 5.8 provide the monthly 

statistical comparisons between the SEBS estimates and the surface renewal technique, whilst 

Table 5.9 provides the statistical comparison for the entire data collection period.  
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The comparison between the SEBS daily total evaporation estimates and the Surface Renewal 

daily total evaporation estimates show considerable variations over the entire time period. 

The relative volume error between the SEBS total evaporation estimates and the surface 

renewal total evaporation estimates indicates that SEBS over-estimates total evaporation for 

the entire time period, except for the month of December. The SEBS total evaporation 

estimates and the surface renewal total evaporation estimates are in fairly good agreement for 

December, January and February. The relative volume error between the two techniques 

during this period is less than 20%. 

The poor correlation between the observed data and the SEBS daily total evaporation 

estimates begins from the month of March onwards, until September. With the exception of 

the month of March, the relative volume error between the SEBS total evaporation estimates 

and the surface renewal total evaporation estimates is close to 100% or exceeds 100%. This 

indicates that the total evaporation estimates generated by SEBS are close to double that of 

the total evaporation which is observed. The correlation between the observed data and the 

SEBS daily total evaporation estimates then begins to improve from October onwards. 

The monthly comparisons between the SEBS estimates and the observed data indicate that 

the SEBS model possesses bias, when estimating daily total evaporation for the study area. 

The model possesses the tendency to perform better during the warmer phases of the time 

period. The results of the t-test, presented in Table 5.10 further serve to confirm this 

observation.  
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Table 5.7 A statistical comparison of SEBS total evaporation estimates vs surface 

renewal total evaporation estimates from 01st December 2011 to 31st May 

2012 

Month   
Surf Ren ET 

(mm) 

SEBS ET 

(mm/d) 

RVE 

(%) 
Month   

Surf Ren ET 

(mm) 

SEBS ET 

(mm) 

RVE 

(%) 

Dec-11 Total 135.52 125.98 7.04 Mar-12 Total 105.31 149.47 -41.93 

  Average 4.37 4.06 11.84   Average 3.40 4.82 -44.44 

  Median 4.71 4.32     Max 4.55 8.15   

  Variance 2.65 6.79     Min 0.80 0.61   

  Std Dev 1.63 2.61     Median 3.61 4.72   

  Max 6.75 8.15     Variance 0.74 3.53   

  Min 0.38 0.06     Std Dev 0.86 1.88   

  RMSE 1.79       RMSE 2.20     

Jan-12 Total 143.41 164.48 -14.69 Apr-12 Total 73.84 134.73 -82.46 

  Average 4.63 5.31 -15.71   Average 2.46 4.49 -93.89 

  Max 7.40 9.68     Max 4.10 6.93   

  Min 0.49 0.00     Min 0.42 0.79   

  Median 4.75 5.63     Median 2.49 4.91   

  Variance 2.40 6.38     Variance 0.69 1.91   

  Std Dev 1.55 2.53     Std Dev 0.83 1.38   

  RMSE 2.10       RMSE 2.34     

Feb-12 
Total 122.50 145.66 -18.90 

May-12 
Total 54.01 121.48 

-

124.95 

  Average 4.22 5.02 -20.49   Average 1.74 3.92 

-

144.40 

  Max 5.87 7.52     Max 3.72 5.66   

  Min 1.15 0.03     Min 0.67 0.85   

  Median 4.55 5.45     Median 1.65 3.96   

  Variance 1.74 4.47     Variance 0.46 1.05   

  Std Dev 1.32 2.11     Std Dev 0.68 1.02   

  RMSE 1.89       RMSE 2.37     

 

The null hypothesis is accepted during the warmer periods of the time series at the 95% 

confidence level, indicating that there is no significant difference between the means between 

the surface renewal total evaporation estimates and the SEBS total evaporation estimates. 

However, during the colder periods of the time series, the null hypothesis is rejected at the 

95% confidence level, indicating a significant difference between the means between the 

surface renewal total evaporation estimates and the SEBS total evaporation estimates. 
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A possible reason for this occurrence is that the SEBS model provides higher uncertainties 

for dryer regions (Timmermans, 2014). The colder periods in the time series are the dryer 

periods and this is when the SEBS total evaporation estimates are in extremely poor 

agreement with the surface renewal total evaporation estimates. 

 

Table 5.8 A statistical comparison of SEBS total evaporation estimates against surface 

renewal total evaporation estimates from 01st June 2012 to 25th November 

2012 

Month   
Surf Ren ET 

(mm) 

SEBS ET 

(mm) 

RVE 

(%) 
Month   

Surf Ren ET 

(mm) 

SEBS ET 

(mm) 

RVE 

(%) 

Jun-12 Total 35.16 94.77 -169.56 Sep-12 Total 71.14 116.78 -64.16 

  Average 1.17 3.16 -203.15   Average 2.37 3.89 -203.41 

  Max 2.92 5.38     Max 4.53 9.58   

  Min 0.39 0.57     Min 0.09 0.00   

  Median 1.07 3.35     Median 2.58 4.09   

  Variance 0.24 0.77     Variance 2.43 5.89   

  Std Dev 0.49 0.88     Std Dev 1.56 2.43   

  RMSE 2.17       RMSE 2.55     

Jul-12 Total 35.24 79.62 -125.96 Oct-12 Total 85.58 93.32 -9.04 

  Average 1.14 2.57 -141.37   Average 2.76 3.01 -4.77 

  Max 2.49 4.93     Max 6.56 7.96   

  Min 0.39 0.00     Min 0.55 0.00   

  Median 1.03 2.89     Median 2.65 2.55   

  Variance 0.19 1.58     Variance 1.56 5.81   

  Std Dev 0.43 1.26     Std Dev 1.25 2.41   

  RMSE 1.89       RMSE 1.79     

Aug-12 
Total 42.48 103.40 -143.40 

Nov-

12 Total 84.58 117.58 -39.02 

  Average 1.37 3.34 -168.67   Average 3.38 4.70 -41.11 

  Max 2.13 5.58     Max 5.50 9.59   

  Min 0.72 0.00     Min 1.20 0.00   

  Median 1.33 3.58     Median 3.62 4.45   

  Variance 0.12 2.12     Variance 1.64 7.30   

  Std Dev 0.34 1.46     Std Dev 1.28 2.70   

  RMSE 2.52       RMSE 2.50     
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This trend can also be seen in the time series comparison between SEBS and the Surface 

Renewal technique illustrated in Figure 5.3. The SEBS Model estimates are in good 

agreement with the observed data from December to March. However, from March to August 

this relationship becomes consistently poorer and then begins to improve again from 

September onwards. Although there is a poor correlation between the observed data and the 

SEBS daily total evaporation estimates, the seasonal trends which are displayed in the 

observed data set, are captured within the SEBS daily total evaporation time series. 

Table 5.9 A statistical comparison of SEBS estimates against Surface Renewal 

estimates from 01st December 2011 to 25th November 2012 

Time period   
Surf Ren ET 

(mm) 

SEBS ET 

(mm) 

RVE 

(%) 

01st Dec 2011 : 25th Nov 2012 Total 988.76 1447.27 -46.37 

  Average 2.74 4.01 -89.66 

  Median 2.42 3.95   

  Variance 2.66 4.50   

  Std Dev 1.63 2.12   

  Max 7.40 9.68   

  Min 0.09 0.00   

  R2 0.33   

  RMSE 2.19   

 

The R
2
 and RMSE values are 0.33 and 2.19, respectively. These statistics, as well as the 

results of the t-test, shown in Table 5.11, indicate a poor agreement between the known SEBS 

total evaporation estimates and the surface renewal total evaporation estimates for the entire 

time period. The null hypothesis is rejected at the 95% confidence level, indicating that there 

is a significant difference between the means of surface renewal total evaporation estimates 

and the SEBS total evaporation estimates for the entire time period.  
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Table 5.10 A two sample t-test for the difference between means, monthly comparisons 

between Surface Renewal and SEBS total evaporation estimates 

Time 

period 

T-test     

(p-value) 

Rejection region for null 

hypothesis (95% confidence) 

Accept 

/Reject 

Dec-11 0.58 p < 0.05 Accept 

Jan-12 0.21 p < 0.05 Accept 

Feb-12 0.91 p < 0.05 Accept 

Mar-12 0.00 p < 0.05 Reject 

Apr-12 0.00 p < 0.05 Reject 

May-12 0.00 p < 0.05 Reject 

Jun-12 0.00 p < 0.05 Reject 

Jul-12 0.00 p < 0.05 Reject 

Aug-12 0.00 p < 0.05 Reject 

Sep-12 0.01 p < 0.05 Reject 

Oct-12 0.61 p < 0.05 Accept 

Nov-12 0.03 p < 0.05 Reject 

 

The comparison between the SEBS daily total evaporation estimates and the surface renewal 

total evaporation estimates for the entire duration of time period indicates a very poor 

relationship. The SEBS total evaporation estimates and the surface renewal estimates were 

accumulated for the entire time period i.e. 01
st
 December 2011 to 25

th
 November 2012, which 

is illustrated in Figure 5.4. The relative volume error between the SEBS total evaporation 

estimates and the surface renewal evaporation estimates indicates that SEBS over-estimates 

total evaporation for the entire time period by approximately 47%.  

The poor relationship between the SEBS estimates and the observed data is largely attributed 

to the difference in the spatial resolution at which SEBS total evaporation estimates are 

generated and surface renewal total evaporation estimates are captured. This may be further 

compounded by the scattering and absorption of radiation by cloud coverage in the MODIS 

Level1_B images, the infilling of missing data in the observed record and the SEBS total 

evaporation time series, as well as the up-scaling from instantaneous total evaporation to 

daily total evaporation 
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Figure 5.3 A time series comparison between SEBS daily total evaporation estimates 

and Surface Renewal daily total evaporation estimates 

The number of clear sky MODIS level1_B images available for the study area during the 

period 01
st
 December 2011 to 25

th
 November 2012 was limited. A large majority of the 

images for this time period possessed a percentage of cloud coverage.  

 

Figure 5.4 A comparison of accumulated SEBS total evaporation estimates vs surface 

renewal total evaporation estimates for the period 01st December 2011 to 

25th November 2012 
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The scattering and absorption of radiation, by clouds will affect the accuracy of the data 

captured for the optical and thermal bands, which are used during the SMAC, albedo, land 

surface emissivity, and land surface temperature computations within SEBS. These maps are 

key inputs to the SEBS model. Therefore inaccuracies associated with these inputs will be 

further exacerbated during the computation of daily total evaporation within SEBS.  

The surface renewal time series which was used for the validation component of the study 

was not a complete record. Approximately 25% of the 361 day record was infilled, this was 

due to the surface renewal system being removed just prior to harvesting and just after crop 

reestablishment (30
th

 May 2012-28
th

 July 2012), as well as a short period in January 2012 

(10
th

-30
th

) (Jarmain, 2014). The infilling of the total evaporation data for the aforementioned 

time periods may not have produced accurate estimates.  Consequently comparing the SEBS 

total evaporation estimates to these values, which possess some level of uncertainty, could 

lead to unfavourable results. 

The SEBS estimates were generated through the use of MODIS Level 1_B data which are 

collected at a spatial resolution of 1 km, whereas the surface renewal technique operates at a 

point scale. The SEBS total evaporation estimate which is provided is therefore inclusive of 

total evaporation values from all landuses which are present within the 1 km pixel, whilst the 

surface renewal technique only provides an estimate of total evaporation at the point in which 

it is situated. 

Table 5.11 A two sample t-test for the difference between means, comparisons between 

Surface renewal and SEBS total evaporation estimates for the time period 

01st December 2011 to 25th November 2012 

Time 

period 

T-test     

(p-value) 

Rejection region for null 

hypothesis (95% confidence) 

Accept 

/Reject 

Dec 2011 : 

Nov 2012 
0 p < 0.05 Reject 

 

According to McCabe and Wood (2006), MODIS has a restricted ability to capture the spatial 

variability of energy fluxes at the field level. Coarse resolution satellite earth observation data 

may be appropriate for the partitioning of energy at the catchment scale, however at the field 

scale, high resolution spatial data is required in order to adequately detect inter-field 

variations (Gibson et al., 2011). Figures 5.5 and 5.6 illustrate this phenomenon.  
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Figure 5.5 illustrates the SEBS total evaporation which was calculated for the sugarcane field 

in the Komatipoort Research Site. The 1 km pixel highlighted in this figure is then overlaid 

onto the landcover map in Figure 5.6, to illustrate the limited interfiled variation detected by 

the MODIS Level1_B data. Consequently, it is expected that, more often than not, there will 

be an unfavourable comparison between the SEBS estimate and the observed data due to the 

differences in the spatial resolution at which the estimate is produced.  

The use of finer resolution imagery to estimate total evaporation could assist in improving the 

comparisons between the surface renewal total evaporation and the SEBS total evaporation. 

If finer resolution imagery is unavailable, the application of downscaling techniques can be 

applied to the coarse resolution imagery to improve the representation of the SEBS total 

evaporation estimate. However the application of a downscaling technique was not within the 

scope of this study and was therefore not applied. 

 

Figure 5.5. An illustration of the SEBS total evaporation (mm) estimated at a resolution 

of 1km for the sugarcane field in the Komatipoort Research Site 



 

 82 

 

Figure 5.6 An illustration of the spatial coverage for the selected MODIS Level1_B pixel 

in comparison to surface renewal system 
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6. RESULTS AND DISCUSSION: ACRU STREAMFLOW 

MODELLING 

The ACRU Model is able to provide a variety of simulated output. However, only the 

hydrological parameters, which are expected to be most affected, by the changes 

implemented in each of the scenarios, as well as the sensitivity analysis tests, will be 

analysed. The analysis involved identifying trends in these parameters, which occurred 

throughout the duration of the time series.  

6.1 A Comparison of Results Obtained for Scenario One and Scenario Two 

The ACRU model configuration for Scenario One and Scenario Two were identical, with the 

only exception being the evaporation option used within the model. This was done in order to 

determine the effects which the EVTR3 option would have on hydrological parameters. An 

analysis of the key hydrological parameters, which are affected by the choice of evaporation 

option selected in ACRU (i.e. the actual total evaporation, soil water content, interception 

evaporation and runoff) were undertaken, to assess if the EVTR3 approach is not 

conceptually flawed. The results displayed in Figures 6.1 to 6.9 and Tables 6.1 to 6.6, are for 

the HRU upstream of the dam in the X23_A2 sub-catchment. 

Figure 6.1 illustrates the total evaporation which is output by ACRU (GAET) for the EVTR2 

and EVTR3 option, as well as the observed total evaporation input to ACRU (AET) for the 

EVTR3 option. The AET and GAET for the EVTR3 option are not equal. This is due to the 

soil water content of the A-Horizon and B-Horizon within the model not being able to meet 

the actual total evaporation demand being specified. The use of MODIS Level 1_B data 

could have resulted in an overestimation of the SEBS total evaporation. In addition to this the 

degree of uncertainty associated with the SEBS total evaporation estimates during dryer 

periods is higher, therefore the SEBS total evaporation estimates during the winter period of 

the time series could be inaccurate. 

 

 

 



 

 84 

The soils ability to meet the evaporation demand being specified could have been exceeded 

and as a result the total evaporation which was input to the model was constrained.The 

constraints to the total evaporation input can be limited or made obsolete through the use of 

finer resolution satellite imagery for the estimation of total evaporation. Finer resolution 

satellite imagery would allow for greater inter-field variations in total evaporation to be 

accounted for thereby assisting in providing a more representative representation of the total 

evaporation estimated within SEBS. Downscaling of coarse scale imagery can also be used to 

assist in improving the representativeness of the SEBS total evaporation estimate. 

The underestimation of soil water levels and the use of rainfall data which possesses a degree 

of uncertainty could have also contributed to the AET and GAET for EVTR3 option not 

being equal. The rainfall data used to drive the streamflow simulation in quarternary 

catchment X23_A was obtained from a raingauge located at a great distance from the study 

site and separated by differences in topography and altitude. No correction factors where 

applied to the rainfall data set due to the length of record. Rainfall is the chief contributor to 

soil water recharge. As a result the soil water levels which are estimated within the model 

could be inaccurate due to the uncertainties associated with the rainfall data. 

The trend identified in Figure 6.1 illustrates that the GAET output for the EVTR2 option and 

the EVTR3 option appear to be in reasonably good agreement, with the GAET for EVTR3 

being marginally higher. This observation is further confirmed by the results of the statistical 

analyses shown in Tables 6.1 and 6.2. 



 

 85 

  

Figure 6.1 A comparison of accumulated observed total evaporation used as an input 

for EVTR3 vs accumulated actual total evaporation for EVTR2 and 

EVTR3 

 

 

Table 6.1 Statistical comparison between EVTR2 GAET and EVTR3 AET and GAET 

Actual evapotranspiration (mm) 

  EVTR2 EVTR3 

  GAET AET GAET 

Total 819.96 1470.94 842.37 

Mean 2.27 4.07 2.33 

Med 2.29 3.84 1.35 

RMSE   2.80 1.64 

RVE (%)   -79.39 -2.73 

R
2
   0.18 0.63 

 

The relative volume error between the EVTR2 GAET and EVTR3 GAET option indicates 

that the accumulated total evaporation for the EVTR3 option is 2.73% higher than that 

simulated for EVTR2. The R
2 

and RMSE error values for the daily actual evaporation 

comparisons between the EVTR2 GAET and EVTR3 GAET are 0.63 and 1.64, respectively. 
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A two tailed t-test was conducted in order to understand how significant the difference 

between the EVTR2 GAET and EVTR3 GAET is. The null hypothesis and alternate 

hypothesis were stated as: 

Ho: EVTR2 GAET = EVTR3 GAET 

Ha: EVTR2 GAET ≠ EVTR3 GAET 

The results of the t-test, shown in Table 6.2, indicate that there is no significant difference 

between the GAET simulated for the EVTR2 option and the EVTR3 option. 

Table 6.2 A two sample t-test for the comparison between daily GAET for EVTR2 and 

EVTR3 

T-test  

(p value) 

Rejection region for null hypothesis 

 ( 95% confidence level) Accept/Reject 

0.72 p < 0.05 Accept 

  

Quickflow and baseflow are the two major contributors to runoff within a catchment; 

therefore these parameters were selected in ACRU to understand the runoff contribution to 

streamflow for each of the evaporation options used. Figure 6.2 represents the baseflow 

contribution to runoff for the EVTR2 and EVTR3 options.  

The baseflow contribution for EVTR2 is fractionally higher than that for EVTR3. This is 

possibly due to the reduced soil moisture storage, which occurs as a result of the increased 

GAET experienced for EVTR3. The changes in soil moisture storage in the A and B horizons 

for the EVTR2 and EVTR3 options are illustrated in Figures 6.3 and 6.4, respectively, and 

Table 6.3. 

The quickflow contribution for the EVTR2 and EVTR3 option is illustrated in Figure 6.5. 

The quickflow contribution for EVTR3 is marginally higher than that of EVTR2. This is 

attributed to the variation in interception losses which occur for each of the evaporation 

options. Even though the technique used to determine the interception loss for EVTR2 and 

EVTR3 is identical, EVTR2 has a greater interception loss than EVTR3, which is illustrated 

in Figure 6.6.  
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Figure 6.2 A comparison of accumulated baseflow for EVTR2 and EVTR3 

 

 

Figure 6.3 A comparison of change in A-Horizon soil moisture storage for EVTR2 and 

EVTR3 

0

5

10

15

20

25

30

B
a

se
fl

o
w

 (
m

m
) 

Date 

EVTR2

EVTR3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

S
o

il
 m

o
is

tu
r
e
 s

to
r
a

g
e
 (

m
) 

Date 

EVTR2

EVTR3



 

 88 

 

Figure 6.4 A comparison of change in B-Horizon soil moisture storage for EVTR2 and 

EVTR3 

The reason attributed to the higher interception losses for EVTR2 is due to the observed total 

evaporation for EVTR3 being less than the interception storage for 26 days of the time period 

being modelled, whereas for EVTR2, the potential evaporation was less than the interception 

storage for 18 days of the time period being modelled.  

This implies that the interception, which is stored on the plant canopy for specific days during 

the time period being modelled, will be completely evaporated for eight days more for 

EVTR2, as opposed to EVTR3. These are represented in Figures 6.7 and 6.8, respectively.  

The increased loss of water to interception evaporation for EVTR2 results in the plant canopy 

having a greater capacity to store intercepted water, thereby reducing the amount of rainfall 

that will reach the soil surface and contribute to quickflow.  

Table 6.3 A comparison between initial and final soil moisture storages for EVTR2 

and EVTR3 

Soil Moisture storage A-Horizon  (mm) Soil Moisture storage B-Horizon (mm) 

  EVTR2 EVTR3   EVTR2 EVTR3 

Final 77.39 70.81 Final 215.63 199.41 

Initial 66.50 66.50 Initial 249.60 249.60 

Δ 10.89 4.31 Δ -33.97 -50.19 
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Figure 6.5 A comparison of accumulated quickflow for EVTR2 and EVTR3 

The differences in the baseflow and quickflow for the EVTR2 and EVTR3 options are 

minimal. However, the difference in the quickflow generated for EVTR2 and EVTR3 is 

greater than the difference in the baseflow generated for the EVTR2 and EVTR3. Thus, the 

runoff generated for the EVTR3 option is higher than the runoff generated for EVTR2. The 

differences in baseflow, quickflow and runoff are displayed in Table 6.4 and the runoff for 

EVTR2 and EVTR3 is illustrated in Figure 6.9. 

The coupling of SEBS and ACRU may introduce uncertainties to the outputs simulated by 

ACRU, due to uncertainties which can be associated with both the SEBS and ACRU models. 

The validation component of the study was done in order to understand the uncertainties 

associated with the SEBS total evaporation estimates. The uncertainties associated with the 

ACRU model prior to its modification to accommodate the EVTR3 routine were not 

considered.  

However once all the various hydrological parameters had been analysed for the X23_A2 

sub-catchment, a water balance calculation was done for the X23_A2 sub-catchment for both 

the EVTR2 and EVTR3 scenarios, in order to ensure that all inputs to the subcatchment are 

balanced by outputs leaving the subcatchment, thereby validating the model and the 

evaporation routines being used.  
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Although this does not provide a true reflection/representation as to the degree of uncertainty 

associated with the parameters/variables estimated within the model, it did provide an 

indication that the processes which are being simulated within the model are being 

represented correctly. 

 

Figure 6.6 A comparison of accumulated interception evaporation output by ACRU for 

EVTR2 and EVTR3 
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Figure 6.7 A comparison between the interception storage output by ACRU for EVTR2 

and daily FAO Penman-Monteith reference evaporation used as an input 

for EVTR2 

 

 

Figure 6.8 A comparison between the interception storage for EVTR3 and the daily 

observed total evaporation used as an input for EVTR3 
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Figure 6.9 A comparison of accumulated runoff for EVTR2 and EVTR3 

 

Table 6.4 A comparison between accumulated baseflow, quickflow and runoff for 

EVTR2 and EVTR3 

  Baseflow Quickflow  Runoff 

EVTR2 18.81 103.93 122.74 

EVTR3 18.74 104.45 123.19 

Difference 0.07 0.52 0.45 

 

The relevant hydrological parameters were selected and a simple equation was used to 

perform the water balance calculation i.e. Inputs – Outputs = 0. The inputs and outputs used 

for this equation are shown in tables 6.5 and 6.6 for EVTR2 and EVTR3, respectively. 

Table 6.5 Parameter values used for the EVTR2 water balance calculation 

Inputs and outputs for water balance calculation (mm) 

Input Output Input Input Input Input Output Input 

RFL GAET Δ INTSTO Δ RUNCO Δ STO1 Δ STO2 URFLOW Δ DELSTS 

901.05 819.96 0.00 -18.65 10.89 -33.97 122.74 0.00 
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Table 6.6 Parameter values used for the EVTR3 water balance calculation 

Inputs and outputs for water balance calculation (mm) 

Input Output Input Input Input Input Output Input 

RFL GAET Δ INTSTO Δ RUNCO Δ STO1 Δ STO2 URFLOW Δ DELSTS 

901.05 842.37 0.00 -18.71 4.31 -50.19 123.19 0.00 

 

Where RFL is rainfall (mm); GAET is actual total evaporation simulated in ACRU (mm); Δ 

INTSTO is difference between the initial and final interception storage (mm); Δ RUNCO is 

difference between the initial and final baseflow storage (mm); Δ STO1 is difference between 

the initial and final A-Horizon storage (mm); Δ STO2 is difference between the initial and 

final B-Horizon storage (mm); is URFLOW is runoff (mm) and Δ DELSTS is delayed 

stormflow store (mm). 

 

The results for the water balance calculation for both EVTR2 and EVTR3 were rounded off 

to the nearest millimetre. A final answer of 0 mm was obtained for both EVTR2 and EVTR3, 

indicating that the model is performing as expected for both evaporation options in ACRU. 

The results presented in the preceding Figures and Tables indicate that the EVTR3 

evaporation technique is not flawed conceptually. Therefore this technique can be used for 

the estimation of streamflow in ACRU.  

In order to assess the performance of the two evaporation techniques used in ACRU to 

simulate streamflow i.e. EVTR2 and EVTR3, observed streamflow volumes for the X23_A 

quaternary catchment were compared to the simulated streamflow for the X23A quaternary 

catchment. A statistical analysis and graphical analysis was undertaken for each of the 

aforementioned outputs. These results are displayed in Figures 6.10 to 6.11 and Tables 6.7 to 

6.10. 

Daily streamflow values were accumulated to represent the streamflow for the time period 

that the simulation was conducted (i.e. 01
st
 December 2011 to 25

th
 November 2012) and these 

are represented in Figure 6.10. The total flow appears to be adequately simulated for both the 

EVTR2 and EVTR3 options. The statistical analyses for each of these scenarios are presented 

in Table 6.7. 
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Table 6.7 Statistical comparison between simulated daily and total flows vs observed 

daily and total flows 

Streamflow (mm) 

  Obs EVTR2 EVTR3 

Total 138.02 123.34 123.78 

Mean 0.38 0.34 0.34 

Med 0.31 0.06 0.06 

RMSE   1.05 1.05 

RVE (%)   10.63 10.32 

R
2
   0.41 0.41 

 

The total flow simulated using the EVTR2 option compared fairly well against the observed 

total flow. The relative volume error indicates that ACRU under-simulates the total flow by 

10.63%. However, the daily flow comparisons are less favourable with a R
2 

and RMSE error 

values of 0.41 and 1.05, respectively.  

The total flow simulated using the EVTR3 option compared fairly well against the observed 

total flows. The relative volume error indicates that ACRU under-simulates the total flow by 

10.32%. However, the daily flow comparisons are less favourable, with R
2 

and RMSE error 

values of 0.41 and 1.05, respectively. 

The R
2 

and RMSE error values for the daily flow comparisons indicate that flow values 

simulated for the EVTR2 and EVTR3 option do not compare as favourably with the observed 

daily flow values, when compared to the simulated total flow and observed total flow 

comparisons. Figure 6.11 illustrates the simulated daily flow for the EVTR2 and EVTR3 

option, as well as the observed daily flow. 

The general trend represented in Figure 6.11 indicates that there is a general under-simulation 

of streamflow for both the EVTR2 and EVTR3 option in ACRU. The high streamflow 

simulated during the month of January is attributed to the high precipitation which occurred 

during this period. However, this response does not appear to be captured in the observed 

streamflow record, which is possibly due to instrumentation malfunction or the rainfall data 

used for the modelling of the catchment.   

 



 

 95 

The rainfall station which was used to drive the streamflow simulation in the quarternary 

catchment X23_A was not situated within close proximity to the catchment. No rainfall 

correction factors were applied to the data from this raingauge due to the length of the rainfall 

record. It is possible that the magnitude of this rainfall event did not occur within the 

catchment therefore explaining why it was not captured within the observed streamflow 

record. 

 

 

Figure 6.10 A comparison of accumulated observed streamflow and accumulated 

simulated streamflow for the X23_A quaternary 
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Figure 6.11 A comparison of daily observed streamflow and daily simulated streamflow 

for the X23_A quaternary 

A frequency analysis of the simulated daily flows for the EVTR2 and EVTR3 option, as well 

as the observed daily flows was conducted to further understand the difference between the 

daily simulated flow output and the observed daily flow. The results of the frequency analysis 

are presented in Tables 6.8 and 6.9 and indicate the relative volume error between the 

observed daily flows and simulated daily flows for low flows (80%), moderate flows (50%) 

and high flows (20%). A positive result indicates an under-simulation, whilst a negative 

result indicates an over-simulation. 

Table 6.8 Percentage difference between simulated daily flows for EVTR2 and 

observed daily flows 

RVE (%) between observed vs simulated streamflow for EVTR2 

Percentile Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

20 65.78 87.88 68.89 -461.70 -3.98 53.61 74.71 81.00 82.28 80.10 79.89 47.59 

50 81.69 89.61 65.50 -133.10 11.52 66.11 78.57 82.05 81.89 80.20 80.43 74.86 

80 84.62 90.13 63.48 72.55 26.71 76.76 80.59 82.40 82.50 80.40 78.66 82.82 
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Table 6.9 Percentage difference between simulated daily flows for EVTR3 and 

observed daily flows 

RVE (%) between observed vs simulated streamflow for EVTR3 

Percentile Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

20 61.89 87.18 62.67 -463.51 -3.73 54.02 76.15 81.00 82.68 80.10 79.89 49.20 

50 80.60 89.61 65.50 -133.98 8.69 66.59 79.50 82.42 81.89 80.69 80.43 75.43 

80 85.04 90.13 63.48 69.47 26.09 76.50 81.25 82.77 82.50 80.40 78.66 83.21 

 

The results of the frequency analysis are fairly similar and further serve to confirm the 

observation that streamflow is being under-simulated within ACRU. Low flows, moderate 

flows and high flows for both the EVTR2 and EVTR3 options are generally under-simulated, 

when compared with the observed low, moderate and high flows.  

 

However, the high flows in January and February, as well as the moderate flows in January 

are being largely over-simulated. This is attributed to the effect of high rainfall in the month 

of January not being captured in the observed streamflow, which could be due to 

uncertainties associated with; the streamflow data, the rainfall data used for the modelling of 

the catchment or a combination of both. 

The general under-simulation is attributed to the configuration of vegetation within the sub-

catchments. The vegetation selected to be present in each of the HRU’s was eucalyptus 

plantations. Commercial afforestation is a known streamflow reduction activity in South 

Africa. Therefore, the simplistic configuration used in ACRU (i.e. selecting eucalyptus 

plantations) to represent the land use of the entire X23_A quaternary catchment, was 

expected to yield lower streamflow volumes.  
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A two tailed t-test was conducted in order to understand how significant the difference 

between the observed and simulated streamflow is for, both the EVTR2 and EVTR3 options. 

The results of the t-test are shown in Table 6.10. The null hypothesis and alternate hypothesis 

were stated as: 

Ho: Observed streamflow = Simulated streamflow 

Ha: Observed streamflow ≠ Simulated streamflow 

Table 6.10 Two sample t-test for the comparison between daily simulated streamflow 

and daily observed streamflow for EVTR2 and EVTR3 

Evaporation 

Routine T-test (p value) 

Rejection region for null hypothesis 

 ( 95% confidence level) Accept/Reject 

EVTR2 0.54 p < 0.05 Accept 

EVTR3 0.55 p < 0.05 Accept 

 

Although, ACRU has been shown to under-simulate streamflow for both the EVTR2 and 

EVTR3 options, the results of the t-test, indicate that there is no significant difference 

between the simulated streamflow and observed streamflow for either evaporation routine. 

 

6.2 Sensitivity Analysis Test 1: Initial Baseflow Store Value 

ACRU was configured to simulate streamflow in Scenario One and Scenario Two, using an 

initial baseflow store value for the 01
st
 of December 2011, which was predetermined by 

conducting a simulation, using only the historical observed climate data from the ARC-ISCW 

automatic weather station for the period 28
th

 September 2006 to 29
th

 September 2013.  

An assumption was made that this initial baseflow store value would produce simulated 

streamflow values which are more representative of the observed conditions, rather than 

conducting simulations using an initial baseflow store value of 0 mm.  
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The results discussed in this section will attempt to identify how sensitive ACRU is with 

regards to the initial baseflow store value. Daily observed and simulated streamflow depths 

were accumulated for the period 01
st
 December 2011 to 25

th
 November 2012. These are 

illustrated in Figure 6.12. The general trend identified in Figure 6.12, indicates that, as the 

initial baseflow store value is increased, the resultant streamflow depth increases as well. 

This observation is further confirmed by the results presented in Table 6.11. 

The general trend identified in the previous section for the comparison between the observed 

and simulated streamflow for EVTR2 and EVTR3, was that ACRU generally under-

simulated daily streamflows for the entire time period and largely over-simulated streamflow 

during the month of January. A frequency analysis test was conducted to better understand 

the effects that the initial baseflow store value, specified in ACRU would have on the daily 

simulated streamflow.  

 

Figure 6.12 A comparison of accumulated observed streamflow and accumulated 

simulated streamflow in the X23_A quaternary for varying initial baseflow 

store values 

The results of this analysis are shown in Tables 6.12 to 6.16 and indicate the relative volume 

error between the observed daily flows and simulated daily flows for low flows (80%), 

moderate flows (50%) and high flows (20%). 

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

0
1

/1
2

/1
1

0
1

/0
1

/1
2

0
1

/0
2

/1
2

0
1

/0
3

/1
2

0
1

/0
4

/1
2

0
1

/0
5

/1
2

0
1

/0
6

/1
2

0
1

/0
7

/1
2

0
1

/0
8

/1
2

0
1

/0
9

/1
2

0
1

/1
0

/1
2

0
1

/1
1

/1
2

St
re

am
fl

o
w

 (
m

m
) 

Date 

Obs

BF_0

BF_200

BF_400

BF_600

BF_800



 

 100 

Table 6.11 Statistical comparison between simulated daily and total flows vs observed 

daily and total flows 

Streamflow (mm) 

  Obs Streamfow BF_0 BF_200 BF_400 BF_600 BF_800 

Total 138.02 105.09 112.40 123.78 138.94 156.26 

Mean 0.38 0.29 0.31 0.34 0.38 0.43 

Med 0.31 0.01 0.03 0.06 0.09 0.12 

 

The results of the frequency analysis shown in Tables 6.12 to 6.16 indicate that, low flows, 

moderate flows and high flows are generally being under-simulated in ACRU when 

compared with the observed low flows, moderate flows and high flows, with the exception of 

the high flows in January and February, as well as the moderate flows in January. 

Table 6.12 Percentage difference between simulated daily flows for BF_0mm and 

observed daily flows 

RVE (%) between observed vs simulated streamflow for initial baseflow store of 0mm 

Percentile Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

20 69.90 95.34 80.89 -454.74 4.84 65.66 92.24 98.92 100.00 100.00 100.00 57.47 

50 89.34 98.52 100.00 -121.30 20.39 81.52 96.27 99.63 100.00 100.00 100.00 87.71 

80 98.29 99.68 100.00 91.88 39.96 92.69 98.68 100.00 100.00 100.00 100.00 96.18 

 

Table 6.13 Percentage difference between simulated daily flows for BF_200mm and 

observed daily flows 

RVE (%) between observed vs simulated streamflow for initial baseflow store of 0.02 

Percentile Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

20 66.02 90.91 75.11 -457.62 1.86 61.24 85.92 91.76 92.91 91.75 91.30 53.56 

50 84.97 94.07 89.92 -125.70 16.13 76.07 89.44 93.04 92.59 91.58 91.85 80.86 

80 92.31 95.22 89.57 84.59 34.99 86.68 92.11 93.26 92.92 91.96 90.85 90.08 
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Table 6.14 Percentage difference between simulated daily flows for BF_400mm and 

observed daily flows 

RVE (%) between observed vs simulated streamflow for initial baseflow store of 0.04 

Percentile Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

20 61.89 87.18 62.67 -463.51 -3.73 54.02 76.15 81.00 82.68 80.10 79.89 49.20 

50 80.60 89.61 65.50 -133.98 8.69 66.59 79.50 82.42 81.89 80.69 80.43 75.43 

80 85.04 90.13 63.48 69.47 26.09 76.50 81.25 82.77 82.50 80.40 78.66 83.21 

 

Table 6.15 Percentage difference between simulated daily flows for BF_600mm and 

observed daily flows 

RVE (%) between observed vs simulated streamflow for initial baseflow store of 0.06 

Percentile Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

20 58.74 84.15 40.00 -472.99 -12.05 44.58 64.94 68.82 71.65 68.93 69.57 45.52 

50 77.05 85.76 13.57 -146.83 -2.13 54.74 67.39 70.70 71.60 69.80 70.11 71.14 

80 78.63 86.31 10.43 42.58 12.84 62.92 68.42 71.16 72.08 70.35 68.29 77.48 

 

Table 6.16 Percentage difference between simulated daily flows for BF_800mm and 

observed daily flows 

RVE (%) between observed vs simulated streamflow for initial baseflow store of 0.08 

Percentile Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

20 56.55 82.28 -5.56 -484.75 -21.61 35.34 53.74 58.42 62.99 60.19 61.41 42.76 

50 74.59 83.38 -67.83 -161.97 -13.83 43.36 56.52 60.81 62.96 61.39 63.04 68.00 

80 74.36 83.76 -70.43 5.32 -1.86 49.09 57.24 62.17 64.17 62.31 60.37 73.28 

 

An increase in the initial baseflow store results in a decrease in the degree of general under-

simulation. However, an increase in the initial baseflow store results in a higher degree of 

over-simulation for the high flows in January and February, as well as the moderate flows in 

January, with the greatest effect being seen for an initial baseflow store of 800 mm.  

Taking into consideration the results presented and discussed in this section, it can be 

concluded that the initial baseflow store value specified in ACRU has a direct influence on 

the daily streamflow which is simulated. Therefore, it is necessary to possess apriori 

knowledge on the initial baseflow, to ensure the simulated output is representative of the 

system being modelled. 
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6.3 Sensitivity Analysis Test 2: Root Fraction Parameter Values 

As described previously, with regards to the EVTR3 option in ACRU, the root fraction 

parameter values play an important role in determining the amount of soil water evaporation 

and actual transpiration which occurs from the A-Horizon and from the B-Horizon. As a 

result, inaccuracies may be introduced to the simulated output, by incorporating root fraction 

parameter values pertaining to a single land use, when there are multiple land uses within the 

catchment. A sensitivity analysis was performed to assess the effect which the root fraction 

parameter variable has on certain hydrological parameters for the EVTR3 option. The results 

discussed in this section pertain to the HRU upstream of the dam in the X23_A2 sub-

catchment. 

The effect of the root fraction parameter on soil moisture storage is shown in Table 6.17 and 

illustrated in Figures 6.13 and 6.14, respectively. The change in soil moisture storage in the 

A-Horizon does not seem to be greatly affected by the choice of root fraction parameter 

values used, as the increase in soil moisture storage is fairly similar for all three of the root 

fraction parameter choices. 

However, the change in the B-Horizon soil moisture storage shows a greater degree of 

variation. The minimum A-Horizon root fraction (RF-MIN) option, which is representative of 

the A-Horizon root fraction for eucalyptus plantations, shows the greatest decrease in soil 

moisture storage, whereas the maximum A-Horizon root fraction (RF-MAX), which is 

representative of the A-Horizon root fraction for wetlands, shows the smallest decrease in soil 

moisture storage. This was expected, as eucalyptus plantations have the majority of their 

roots in the B-Horizon and can therefore extract more water from this horizon. 

Table 6.17 Comparison between initial and final soil moisture storages for EVTR3, 

using differing A-Horizon root fraction options 

Soil moisture storage A-Hor (mm) Soil moisture storage B-Hor (mm) 

  RF-MIN RF-AVG RF-MAX   RF-MIN RF-AVG RF-MAX 

Final 71.69 69.95 71.40 Final 143.92 150.50 201.08 

Initial 66.50 66.50 66.50 Initial 249.60 249.60 249.60 

Δ 5.19 3.45 4.90 Δ -105.68 -99.10 -48.52 
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The effect of the root fraction parameter on soil water evaporation is shown in Table 6.18 and 

illustrated in Figure 6.15. The highest soil water evaporation occurs for RF-max, whilst RF-

min and the average A-Horizon root fraction (RF-AVG) display similar soil water 

evaporation losses. Soil water evaporation for EVTR3 is determined as the difference 

between the GAET and actual transpiration. Therefore, the higher the actual transpiration, the 

lower the soil water evaporation and vice versa.  

The lowest actual transpiration occurs for RF-MAX, whilst RF-MIN and RF-AVG display 

similar actual transpiration, with RF-MIN being marginally higher. This is illustrated in Table 

6.19 and Figure 6.16. This occurrence justifies the soil water evaporation losses for the 

different root parameter options which have been discussed previously.  

 

 

Figure 6.13 A comparison of change in A-Horizon soil moisture storage for EVTR3, 

using differing A-Horizon root fraction options 

The effect of the root fraction parameter on runoff is illustrated in Table 6.20 and Figure 

6.17. The total runoff generated for the RF-MIN and RF-AVG options is identical. This is 

largely due to similar losses of water to soil water evaporation and transpiration.  
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The contribution of water to the two major components of runoff i.e. baseflow and quickflow, 

for the RF-max option is higher than the RF-MIN and RF-AVG rooting fraction parameters 

due to, the smaller loss of water to transpiration and soil water evaporation. As a result, the 

runoff generated for the RF-max option is the highest of the three rooting fraction parameter 

options used to conduct the sensitivity analysis. 

 

 

Figure 6.14 A comparison of change in B-Horizon soil moisture storage for EVTR3, 

using differing A-Horizon root fraction options 

 

Table 6.18 Statistical comparison between soil water evaporation for EVTR3, using 

differing A-Horizon root fraction options 

Soil water evaporation (mm) 

  RF-MIN RF-AVG RF-MAX 

Total 58.83 59.55 86.19 

Mean 0.16 0.16 0.24 

Med 0.00 0.04 0.18 
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Figure 6.15 A comparison of soil water evaporation for EVTR3, using differing A-

Horizon root fraction options 

 

Table 6.19 Statistical comparison between actual transpiration for EVTR3, using 

differing A-Horizon root fraction options 

ATRAN (mm) 

  RF_MIN RF_AVG RF_MAX 

Total 646.44 644.87 537.84 

Mean 1.79 1.79 1.49 

Med 0.00 0.33 0.50 

 

A frequency analysis test was conducted to better understand the effects which the root 

fraction parameter values specified in ACRU would have on the daily simulated runoff. The 

results of the frequency analysis, shown in Table 6.21, indicate that the runoff, which 

exceeded 20%, 50% and 80% of the time, is fairly similar for all months for the RF-min and 

RF-avg rooting fraction parameter options. The runoff, exceeded 20%, 50%, and 80% of the 

time for the RF-max rooting fraction parameter option, has increased for all months. 
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Figure 6.16 A comparison of actual transpiration for EVTR3, using differing A-

Horizon root fraction options 

 

Table 6.20 Statistical comparison between runoff for EVTR3, using differing A-Horizon 

root fraction options. 

Runoff (mm) 

  RF_MIN RF_AVG RF_MAX 

Total 119.34 119.34 134.05 

Mean 0.33 0.33 0.37 

Med 0.06 0.06 0.11 

 

The results discussed in this section indicate that there are marginal differences in the 

simulated hydrological parameters between the RF-MIN and RF-AVG rooting fraction 

parameter options. However, significant differences are noted for the RF-MAX rooting 

fraction parameter options. Taking into consideration the results presented and discussed in 

this section, it can be concluded that it is necessary to utilize representative rooting fraction 

parameter values as inputs to ACRU, to ensure that the simulated output is representative of 

the system being modelled. 
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Figure 6.17 A comparison of runoff for EVTR3, using differing A-Horizon root 

fraction options 

However it should be noted that the results which were obtained using an average root 

fraction value for the entire catchment and the root fraction value for eucalyptus were fairly 

similar. Therefore choosing eucalyptus as a dominant land use did not severely affect the 

EVTR3 routine. 

Table 6.21 Percentage exceeded between simulated daily runoff for RF-min 

% exceeded of  simulated runoff for RF-MIN 

Percentile Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

20 0.16 0.05 0.17 4.70 0.84 0.23 0.09 0.06 0.05 0.04 0.04 0.22 

50 0.07 0.04 0.09 1.33 0.52 0.14 0.07 0.05 0.05 0.04 0.04 0.08 

80 0.04 0.03 0.09 0.10 0.36 0.09 0.06 0.05 0.04 0.04 0.04 0.05 

% exceeded of  simulated runoff for RF-AVG 

Percentile Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

20 0.15 0.04 0.17 4.57 0.83 0.23 0.09 0.06 0.05 0.04 0.04 0.22 

50 0.06 0.04 0.09 1.30 0.47 0.13 0.07 0.05 0.05 0.04 0.04 0.08 

80 0.04 0.03 0.09 0.10 0.34 0.09 0.06 0.05 0.04 0.04 0.04 0.05 

% exceeded of  simulated runoff for RF-MAX 

Percentile Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

20 0.16 0.07 0.17 4.51 0.87 0.34 0.18 0.13 0.11 0.09 0.08 0.26 

50 0.08 0.06 0.09 1.33 0.52 0.24 0.16 0.12 0.10 0.09 0.08 0.12 

80 0.07 0.05 0.09 0.10 0.39 0.21 0.15 0.11 0.10 0.08 0.07 0.08 
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7. CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusion 

Hydrological models and tools are often used as decision support systems to inform water 

resources management. However, the successful application of these models and tools are 

largely dependent on the data which is used to drive them. Total evaporation data is regarded 

as one of the key factors in assisting water resources management. Conventional field-based 

techniques, which are used to acquire total evaporation data have long been utilized to assist 

water resources management; however, issues such as the spatial resolution of estimates and 

capacity constraints, such as, cost and time expended have limited the feasibility of applying 

these techniques to large-scale water resources management.  

Satellite-derived total evaporation estimates provide a relatively timeous and cost-effective 

means of acquiring spatially representative total evaporation estimates, which are sought after 

by various water resources managers and planners. However, the hydrological community, 

both locally and internationally, has displayed an unwillingness to utilize satellite earth 

observation data for hydrological applications. This is largely due to the lack of appropriate 

technology required to handle and process satellite earth observation data, the lack of 

knowledge regarding the application of these techniques and the reluctance to move away 

from traditional and reputable methods (Schultz and Engman, 2000; Xu et al., 2014).  

The focus of this study was to develop an approach to allow for the integration of satellite-

derived total evaporation data into the ACRU hydrological model. In order to meet this 

overarching objective, various specific objectives were outlined, to inform the tests and 

analyses that were performed. The results of these investigations were divided into two 

separate sections focusing on the validation of the SEBS model and the integration of the 

satellite-derived SEBS total evaporation estimates in the ACRU hydrological model.  

The SEBS model was initially applied in the Komatipoort Research site for the period 01
st
 

December 2011 to 25
th

 November 2012. The SEBS total evaporation estimates were 

validated against historical observed total evaporation estimates.  
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The results of this comparison indicated that the SEBS model consistently oversimulated 

daily total evaporation when compared with total evaporation estimates obtained from the 

surface renewal technique. The model did perform better during the summer months as 

opposed to winter. However, even in the summer months the daily total evaporation was 

oversimulated when compared with the surface renewal technique.  

The poor relationship between the SEBS estimates and the observed data was attributed to the 

difference in the spatial resolution at which SEBS total evaporation estimates are generated 

and surface renewal total evaporation estimates are captured. This was further exacerbated by 

the scattering and absorption of radiation by cloud coverage in a large majority of the 

MODIS Level1_B images, as well as the infilling of missing data in the observed record.  

Although the model poorly estimated the daily total evaporation for the Komatipoort 

Research site, it was once again applied to estimate the daily total evaporation for the 

quarternary catchment X23_A. McCabe and Wood (2006) detail the restricted ability which 

MODIS Level1_B data has to capture the spatial variability of energy fluxes at the field level. 

However Gibson et al. (2011) states that coarse resolution satellite earth observation data 

may be appropriate for the partitioning of energy at the catchment scale. Therefore it was 

assumed that the use of MODIS Level1_B data in SEBS would provide acceptable daily total 

evaporation estimates for the quarternary catchment X23_A. 

The SEBS Model was applied to estimate the daily total evaporation for the quarternary 

catchment X23_A, for the 01
st
 December 2011 to 25

th
 November 2012. These daily total 

evaporation estimates would then be used as an input to ACRU to model streamflow. Due to, 

complete cloud coverage for twenty-eight days in the MODIS Level1_B data, there remained 

missing data records in the SEBS derived total evaporation time series.  

The EVTR3 option used to incorporate the SEBS total evaporation time series ACRU 

requires a continuous daily record. Therefore the use of an infilling technique was required to 

infill the missing data records within the time period 01
st
 December 2011 to 25

th
 November 

2012. The linear interpolation and Kcact techniques were applied and tested to infill the 

missing records in the SEBS derived total evaporation time series. 
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Two tests were conducted to assess the representativeness and accuracy of these techniques. 

The results of these tests indicated that the linear infilling technique was the most suitable 

technique to infill the missing records in the SEBS total evaporation time series, as it 

performed within acceptable limits for both of the tests that were conducted.  

The linear interpolation technique was applied to infill the missing records in the SEBS 

derived total evaporation time series. Once the continuous SEBS derived total evaporation 

time series had been generated, these values were then ready to be used as an input to the 

ACRU Model. 

As stated previously, the ACRU4 Version of the ACRU Model described in Clark et al. 

(2009) does not accommodate actual total evaporation, as an input. Therefore, in order to 

utilize the SEBS total evaporation estimates, as an input to ACRU, a new option was 

required, to be added to the model. This option was termed EVTR3 

The methodology of the EVTR3 approach, which was derived and discussed in this study, 

and which seeks to incorporate the satellite-derived total evaporation estimates in the ACRU 

hydrological model, is not site or model-specific and can therefore be repeated elsewhere. 

The added advantage of this technique is that it is not limited to satellite-derived total 

evaporation data. If available, actual total evaporation estimates from conventional 

techniques can be used as an input to ACRU, to perform various hydrological modelling 

scenarios. 

Total evaporation estimates obtained from the SEBS Model for the period 01
st
 December 

2011 to 25
th

 November 2012 were used as an input to the ACRU Model, in conjunction with 

climate, land use, soils and topographical data, to model the streamflow for the quarternary 

catchment X23_A. The application of satellite-derived total evaporation estimates in ACRU 

resulted in poor simulations of daily streamflow, when compared to observed streamflow for 

the aforementioned time period. ACRU was found to generally under-simulate streamflow on 

a daily time step, with large over-simulations of streamflow during periods of high rainfall.  

However, when comparing the accumulated simulated streamflow with the accumulated 

observed flow for the aforementioned time period, it was found that ACRU under-simulated 

streamflow by 10.32% for EVTR3. Similar results for streamflow modeling were obtained 

when conducting simulations using the conventional evaporation routine available in ACRU.  
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The application of FAO Penman-Monteith reference evaporation data in ACRU resulted in 

equally poor simulations of daily streamflow, when compared to observed streamflow for the 

aforementioned time period; however, the accumulated streamflow was only 10.68% less 

than the accumulated observed streamflow. 

The general under-simulation of daily streamflow and the under-simulation of accumulated 

streamflow were largely due to the manner in which the quarternary catchment X23_A had 

been configured with regards to land use. A variety of land uses were identified within the 

quarternary catchment; however, eucalyptus plantations were selected as the sole land use in 

the X23_A quarternary catchment X23_A, as this was the dominant land use present in the 

X23_A1 and X23_A2 sub-catchments. The under-simulation of streamflow was therefore 

expected, as commercial afforestation is a known streamflow reduction activity in South 

Africa.  

Eucalyptus plantations were selected as the sole land use, due to the differences in spatial 

resolution between the land uses identified in the catchment and the spatial resolution at 

which the satellite-derived total evaporation estimate was generated. A few of the land uses 

which were identified within the X23_A1 and X23_A2 sub-catchments were less than 1 km
2
,
 

which is the resolution at which the total evaporation estimate had been generated. Therefore, 

these estimates may not have been representative of the total evaporation actually taking 

place for these land uses.  

The inability of coarse resolution satellite imagery to capture the spatial variability of energy 

fluxes at smaller spatial scales has been well-documented. This has also been presented in the 

results of the validation of the SEBS Model in the Komatipoort Research Site. The simplistic 

configuration which had to be adopted in ACRU as a result of, the coarse resolution of 

imagery used to generate the total evaporation estimates may introduce further inaccuracies 

in the representation of hydrological parameters.  

The root fraction parameter, which is pertinent to the EVTR3 approach, affects the 

partitioning of water to transpiration and soil water evaporation which, in turn, influences soil 

moisture storage and other associated processes. The lack of observed climatic data for a 

relevant period of time and the limited satellite earth observation data which was processed 

due to time constraints, posed further limitations to the study.  
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In spite of, the aforementioned limitations, the results of the study indicated that the 

accumulated streamflow obtained for simulations, using the satellite-derived SEBS total 

evaporation estimates compared favourably, with the accumulated observed streamflow and 

even more so with the accumulated streamflow obtained, using the FAO Penman-Monteith 

reference evaporation data.  

The good correlation between the simulated streamflow for the conventional evaporation 

option (EVTR2) in ACRU and the new evaporation option (EVTR3) added to ACRU, 

indicates that there is potentially a great deal of promise for the integration of satellite earth 

observation data and the ACRU Model viz. satellite-derived total evaporation estimates. 

7.2 Recommendations for future research 

The recommendations outlined below can be used to address the major limitations 

experienced in this study and provide assistance for future studies: 

 The generation of total evaporation estimates in SEBS can be fairly time-consuming 

especially; if an extensive time series is required. Due to, time constraints, only 361 

total evaporation estimates were generated for this study (i.e. from 01
st
 December 

2011 to 25
th

 November 2012). Increasing the record length, of the input data sets used 

in ACRU, can assist in producing more representative outputs. It is therefore 

advisable to automate processing procedures, to assist overcoming time constraints. 

 The major limitation associated with the modelling of total evaporation in SEBS was 

the resolution of the imagery used. MODIS Level 1_B data, which is available at a 1 

km resolution, was used as an input to the model. MODIS Level 1_B data was 

selected for this study, due to it being freely available, easily accessible and available 

at a daily time step. However, the use of finer resolution imagery could allow for a 

better understanding of land use specific total evaporation, therefore finer resolution 

imagery should be used, if possible. If finer resolution imagery is not available, the 

downscaling of coarse resolution imagery can be used to assist in improving the 

representativeness of the SEBS total evaporation estimate.  

 An improvement to the validation of the SEBS model can be made by determining the 

evaporative fraction and averaging this value at a daily time step. This would assist in 

directly showing if the SEBS hypothesis (evaporative fraction is constant) is valid.  
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In addition, using the evaporative fraction does not require calibration, while the 

surface renewal technique does. Furthermore differences found between SEBS and 

observed data can be handled in more depth. The use of different up-scaling 

techniques (of which one requires calibration and the other does not) could possibly 

contribute to differences found between the observed data and the SEBS estimates. 

 The use of finer resolution imagery, in turn, will influence the hydrological modelling 

in ACRU for the EVTR3 option. The constraints to the total evaporation input can be 

limited or made obsolete through the use of finer resolution satellite imagery for the 

estimation of total evaporation. Furthermore finer resolution imagery can allow for a 

more detailed land use configuration in ACRU, thereby reducing the assumptions 

which have to be made viz. the rooting fraction of the A and B Horizons. 

 If possible LAI should be validated for the study area as the MODIS15A2 LAI 

product can behave differently from what is expected; this is because MODIS15A2 

LAI is produced as an eight day product, while the TERRA satellite has a sixteen day 

repeat cycle. The first eight days of observations are different from the second eight 

days. This may lead to errors in the final product. If possible LAI can be interpolated 

between MODIS15A2 LAI production days. 

 Rainfall data is of critical importance to any hydrological model. The altitude of the 

station, the distance away from the catchment, the amount of errors in the data record, 

missing records and records that have been infilled, need to be known, as these factors 

significantly influence the representativeness of the model. The observed rainfall data 

used in this study were obtained from an ARC-ISCW automatic weather station 

(coordinates: 25.81 S and 31.01 E). This station was selected as the driver station for 

the quarternary. The rainfall values for this station were not corrected in ACRU, as 

the record length (seven years) was not adequate to generate representative rainfall 

correction factors. Inaccuracies may have been introduced to the simulated output due 

to the uncertainties associated with the station data that was used in the study. 

 Global precipitation products such as TRMM, CMORPH, CHIRPS and ECMWF can 

be used to provide rainfall data. These products can be recalibrated using the stations 

rainfall stations data. This would provide a better representation of rainfall data which 

can be used. 
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