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Abstract

The presence of massive objects is detectable in observations via the gravita-

tional lensing effect on light from more distant sources. From this effect it is

possible to reconstruct the masses of clusters, and the distribution of matter

within the cluster. However, further theoretical work needs to be done to prop-

erly contextualize any proposed projects involving, for instance, SALT data sets.

Observational lensing studies use one of two techniques to recover the lens mass

distribution: parametric (model dependent) techniques; and, a more recent in-

novation, non-parametric methods. The latter deserves further study as a tool

for cluster surveys. To this end, we provide a comprehensive analysis of existing

non-parametric algorithms and software, as well as estimates on the likely errors

to be expected when used as an astronomical tool.
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Chapter 1

Introduction

Galaxy clusters are thought to be the largest gravitationally bound entities in

the universe. Hence, accurate determination of their mass distribution is impor-

tant to the understanding of the formation of structure in the universe. In this

dissertation, we shall investigate a particular technique (non-parametric mass

distribution reconstruction, as implemented in the Weak and Strong Lensing

Analysis Package, WSLAP), with an eye towards using this procedure to re-

cover masses in cluster suveys.

Unlike galaxy lenses, clusters tend to have surface densities less than the criti-

cal density, and a less cuspy density profile (since their cooling times exceed the

Hubble time). This makes strong lensing analysis difficult. However, including

weak lensing data and exploiting the rich image structure of such systems ale-

viates this problem.

A good number of methods have been used to investigate the formation of clus-

ters and their mass distribution. To mention but a few: (i) dynamical methods

in which the observed line of sight velocity distribution of the luminous cluster
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galaxies is used in conjunction with the virial theorem to convert the measured

line of sight velocity dispersion for the cluster galaxies into the cluster mass [9];

(ii) x-ray methods, in which x-ray emission due to the intracluster hot gas is

used to trace the cluster potential [9]; (iii) radio emission, in which the radio

emission is used to estimate the ambient gas density in the vicinity of radio

lobes. For instance, the ambient gas density as a function of the separation of

the lobe from the center of the parent galaxy may indicate a composite density

profile of a galaxy cluster [38].

However, the efficiency of these methods depends on the geometrical and dy-

namical state of the observed clusters. Recent research literature [9]contains

much discussion and disagreement with regard to the cluster distributions ob-

tained using the above mentioned methods. For example, for clusters which are

expanding, the hot gas emitted by them does not synchronize with the gravita-

tional potential. Hence the x-ray method is not reliable [9].

A method which has proved to be sophisticated and effective is that of in-

ferring mass via gravitational lensing. Within this technique, there are various

methods which are traditionally used to infer masses from lensing observations

[51]. These are (i) the parametric model fitting for strong lensing [17] [27] [28]

[29][30] and (ii) the statistical distortion method for the weak lensing regions

[4][13][50][51]. These two regimes are physically complementary: strong lensing

being a sensitive tracer of the central mass distribution of the lens, and weak

lensing being better at tracing the mass distribution of the outer regions. The

parametric model fitting starts from the center or the innermost point of the

cluster where lensing is most pronounced and thereafter extends the analysis

outwards. This method involves fitting parametrized models so as to charac-

terize galaxies. It works best with one or two multiple images and becomes
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difficult to use with several multiple images. These models make assumptions

about the cluster mass distribution. For example, that the dark matter traces

luminosity, or that galaxy profiles possess certain symmetries. The statistical

distortion method starts from outside the cluster where the distortions are weak

and goes inward. It involves a statistical analysis of ellipticities of background

galaxies over patches of sky to trace the cluster mass distribution. This method

suffers from what is called the mass-sheet-degeneracy and it cannot be used

to probe the inner regions of rich clusters. The techniques described above do

not naturally reconcile, involving as they do a model dependent and a statisti-

cal analysis. Nevertheless, the physically complementary nature of strong and

weak lensing have prompted several attempts to combine the two approaches

[4] [13][29][38], although at the price of inheriting the problems associated with

parametric approaches.

Other techniques include: (i) Visual inspection of images obtained with the

Hubble space telescope [11]–here the author calculated the expected number

of detectable multiply imaged galaxies within the Hubble Deep field (HDF) for

different cosmological parameters and constrained the parameters by comparing

with the observations [2]; Targeting the image population of potentially lensed

quasars or radio sources, in which the Cosmic Lens All-Sky Survey (CLASS)

group used a Very Large Array (VLA) as a tool to provide high quality snap-

shot images with angular resolution of 0.2 to 0.3 arcseconds. Between 1994

and 1999, for instance, a total of 13832 target radio sources were mapped and

among these hundreds of multiple–components sources were identified following

the reconstruction of the lens system [17]; and (iii) Following up of systems that

revealed anomalous emission lines. The idea is that a massive foreground galaxy

acts as an effective gravitational lens of any objects positioned sufficiently far

behind it at small enough impact parameter and any emission features from
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such lensed objects should be detectable in the spectra of the foreground galaxy

[1].

For the general situation in which there is a combination of strong and weak lens-

ing data, which is the main concern of this dissertation, non-parametric methods

are more useful [5][16][17]. This method also allows one to present a general re-

construction technique that combines regions of varying lensing strength. The

technique is basically an extension of the strong lensing non-parametric clus-

ter inversion first described by Diego et al [17]. Non-parametric techniques are

particularly useful with multiply arced systems, which are increasingly being

imaged.

This dissertation is organized as follows. Chapter two gives a brief introduc-

tion to general relativity, cosmology, the physics of gravitational lensing, the

statistical concepts required and the notation used throughout the dissertation.

Chapter three gives a detailed description of non-parametric mass reconstruc-

tion via gravitational lensing. Chapter four consists of a detailed analysis, using

simulated data, of the Weak Strong Analysis Package (WSLAP). This is an im-

plementation [17] of the non-parametric techniques discussed in chapter three.

We provide contextualized estimates for the expected errors, when using this

tool to recover mass distributions from astronomical data.
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Chapter 2

Background

In this chapter we shall briefly discuss general relativity, contemporary cosmol-

ogy and the phenomena of gravitational lensing. In the first section of this

chapter we shall begin by outlining some relevant information from general rel-

ativity i.e., the Friedmann–Lemaitre–Robertson–Walker (FLRW) metric, the

FLRW equations, the Levi-Civita connection and the curvature tensor. In cos-

mology there are many ways to specify the distance between two points, because

in the expanding universe, the distances between comoving objects are con-

stantly changing, and earthbound observers look back in time as they look out

in distance. The unifying aspect is that all distance measures somehow measure

the separation between events on radial null trajectories; trajectories of photons

which terminate at the observer. Since gravitational lensing calculations require

knowledge of distances, section 2.2 discusses the cosmological distances, as well

as density parameters, and the redshift. Formulae for several different cosmo-

logical distance measures are also provided. In section 2.3 the physical geometry

of gravitational lensing is introduced. Since lensing typically turns the image of

a circular galaxy into an ellipse, we shall look also at the ellipticity of images

in section 2.3. In section 2.4 we provide the statistical background required by
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the Weak and Strong Lensing Analysis Package (WSLAP) algorithm.

2.1 General Relativity

In this section we review some aspects of Einstein’s theory of gravity and the

standard cosmological model which are relevant for our further discussion of

gravitational lensing. The standard model describes the cosmological back-

ground which is the spherically symmetric homogeneous and isotropic solution

of the field equations of general relativity. For further details the reader is

referred to standard texts such as Modern Cosmology [18][20]. (One of the fas-

cinating aspects of cosmological modeling is that it reveals a number of balances

of parameters which must be maintained quite precisely for the universe as we

know it to exist. For more details we refer the reader to [18][19]). We begin

with a brief discussion of Riemannian Geometry, and then present the FLRW

field equations.

2.1.1 Riemannian Geometry

In this section, we review how pseudo–Riemannian geometry may be used to

formulate general relativity. For further details, the reader is referred to [46].

A topological space M is an n-dimensional differentiable manifold if there exist

an appropriate collection of open subsets Qα, and bijective functions ϕα: Qα

7→ <n. The pair (ϕα, Qα) is called a chart. In order for a collection of charts

to be the unique atlas for a manifold M , the following properties must hold:

� The collection covers M so that each point is contained in at least one

Qα.

� The function ϕα maps Qα into the same <n, for all α.

� For all α, β, the composite functions ϕα o ϕ
−1
β are differentiable functions
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from <n 7→ <n, that are only defined if Qα ∩ Qβ 6= 0.

� The collection must be maximal in the sense that any other chart is con-

tained in this set.

The third condition enables one to consider coordinate transformations from

the coordinate system induced by the map ϕα, to that induced by ϕ−→
β

. These

must be differentiable and invertible so that Jacobians

x
′a
b =

∂xa′

∂xb
, xa

b =
∂xa

∂xb′ , (2.1)

have non zero determinant. Here xa is the natural co-odinate system induced by

ϕα: xa = τa ◦ ϕα where τa is the a-th projection in <n. These transformation

matrices may be used to define the transformation law for a tensor (a multilinear

functional T r
s ):

T
a
′
1.....a

′
r

b
′
1.....b′s

= x
a
′
1

a1 · · · ·xa
′
r

arx
b1
b
′
1
· · · ·xbs

b′s
T a.....ar

b1.....bs
. (2.2)

A pseudo–Riemannian manifold is a differentiable manifold endowed with an

indefinite metric tensor field g of order two, having components that transform

according to eq.(2.2). This allows an invariant definition of the length of a curve

in M :

S =
∫ u2

u1

|gabẋ
aẋb|du; ẋa =

dxa

du
. (2.3)

This is equivalent to the infinitesimal line element

ds2 = gabdx
adxb. (2.4)

The metric tensor gab also allows one to define an inner product; and to raise

and lower indices. The fundamental theorem of pseudo–Riemannian geometry

guarantees the existence of a unique symmetric connection that preserves inner

products under parallel transport in the manifold. This is also known as the

Christoffel symbol and its components are given by

Γa
bc =

1
2
gad [gbd,c + gdc,b − gbc,d] , (2.5)
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where the comma denotes partial differentiation. This object is the key to

defining a tensorial differentiation operator: the covariant derivative denoted

by a semi–colon:

Y a1......am

b1.....bn;c
= Y a1......am

b1.....bn,c + Γa1
cmY

ma2......am

b1......bn
· · · ·+ Γam

cmY
a1......am−1m
b1......bn

· · · · · · −Γm
cbn
Y a1......am

b1......bn−1m · · · · · · − Γm
cb1Y

a1......am

mb2......bn
. (2.6)

This in turn may be used to obtain a geometric object that provides a measure

of curvature:

Rd
abcYd = Ya;bc − Ya;cb. (2.7)

This curvature tensor may also be written via

Rd
abc = Γd

ac,b − Γd
ab,c + Γd

ρbΓ
ρ
ac − Γd

ρcΓ
ρ
ab, (2.8)

and may be contracted to define the Ricci tensor and Ricci scalar

Rab = Rc
acb; R = Ra

a. (2.9)

A combination of these yields the Einstein tensor

Gab = Rab − 1
2
Rgab, (2.10)

which is equated to the stress-energy-momentum tensor to yield the Einstein

field equations

Gab = 8πGTab + Λgab, (2.11)

where G is Newton’s gravitational constant, and Λ is the cosmological constant.

Here, Tab is the energy momentum tensor [46], which for cosmology, is typically

assumed to be that of a perfect fluid:

Tab = (ρ+ P ) υaυb − gabP. (2.12)

(For the present universe this implies a very large-scale viewpoint, where individ-

ual galaxies are microscopic fluid particles, too small to be resolved). Isotropy
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implies that the fluid is at rest in the Robertson–Walker coordinates – see

eq.(2.15) – so that vector υb is timelike (υbυb = 1). Here ρ and P represent

the density and pressure of the fluid respectively. The matrix form of the en-

ergy momentum tensor is given as

Tab =




ρ 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P




, (2.13)

and energy-momentum conservation is encoded in the equation

Gab
;b = 0 ⇐⇒ T ab

;b = 0. (2.14)

Both the Copernican principle, and our best observations [1][8][18][25] of the

universe on large scales suggest that our cosmological models should be homo-

geneous and isotropic; with spherical symmetry. This implies the Friedmann-

Lematre-Robertson-Walker (FLRW) line element

ds2 = dt2 − a2

[
dr2

1− kr2
+ r2

(
dθ2 + sin2θdθ

)]
, (2.15)

where a =a(t) is the scale factor and where r, θ and ϕ are given as spherical

coordinates. Throughout this dissertation we shall denote by c the speed of light

and by k the radius of curvature. Here, and for the reminder of this dissertation,

we use units in which c = 1. The spatial part of eq.(2.15) is positively curved

when k > 0; negatively curved when k < 0; and flat when k = 0. By considering

the metric tensor corresponding to the line element of eq.(2.15) one obtains the

non vanishing components of gab as

g00 = 1, grr = − a2

1− kr2
, gθθ = −a2r2 (2.16)

and

gϕϕ = −a2r2sin2θ. (2.17)
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By defining a conformal time a(τ)dτ = dt, we may also rewrite eq.(2.15) as

ds2 = a2

(
dτ2 −

[
dr2

1− kr2
+ r2

(
dθ2 + sin2θdθ

)])
(2.18)

Using eq.(2.15) one may calculate the non vanishing components of the connec-

tion

Γi
j0 = Γi

0j =
ȧ

a
gij , Γ0

ij = gij
ȧ

a
,

and

Γi
ij =

1
2
gik (gkl,i + gjk,l − gjl,k) , (2.19)

where the overdot denotes differentiation with respect to time (t), and hence-

forth, Roman lower case scripts denote the spatial coordinates only. Explicitly,

the following are the non-vanishing spatial components of the Levi-Civita con-

nection eq(2.19)

Γr
rr = 1

2g
rr,r(grr) = kr

1−kr2 ,

Γr
θθ = −r(1− kr2),

Γr
ϕϕ = −r2sin2θ (1− kr2) = rsin2 θ Γr

θθ,

Γθ
θr = 1

r = Γϕ
ϕr,

Γθ
ϕϕ = −sinθ cosθ,

Γϕ
ϕθ = cosθ

sinθ .

(2.20)

Hence, one obtains the
′
00

′
component of the Ricci tensor

R00 = −3
ä

a
. (2.21)

Similarly one can easily show that the off-diagonal components vanish and there-

fore we obtain

R0i = 0. (2.22)

The spatial componets of the Ricci curvature tensor are given by

Rij = −
[
ȧ

a
+ 2

(
ȧ

a

)2
]
gij +3 Rij , (2.23)
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where 3Rij represents the spatial section curvature of the FLRW metric and it

is defined as [9]:

3Rij = Γl
ij,l − Γl

jl,i + Γl
klΓ

k
ij − Γl

kiΓ
k
jl. (2.24)

Hence, the non-vanishing components elements are

3Rrr = 2k
1−kr2 ,

3R−→
θ
−→
θ

= 2kr2,

3Rφφ = 2kr2sin2θ.

(2.25)

respectively, where the off diagonal elements vanish. The Ricci curvature scalar,

3R, of the spatial section of the space time is defined as

3R =3 Rijg
ij . (2.26)

The components of the Ricci curvature tensor for the spatial section of the

FLRW metric can be written as [46]

3Rij = −2k
a2
gij , (2.27)

such that, when substituted in eq(2.26), yields the corresponding Ricci scalar

as

3R =
6k
a2
. (2.28)

The Ricci scalar for the full metric eq.(2.15) can be computed from the relation

R = gabRab, and from the quantities discussed above, as

R = 6

[
ä

a
+

(
ȧ

a

)2
]

+3 R. (2.29)

2.1.2 FLRW equations

Now that we have calculated the Ricci tensor and scalar for the FLRW line

element eq.(2.15) one can easily find the FLRW field equations. We recall the

Einstein tensor which is defined by eq.(2.10) and by applying above equations

with energy-momentum tensor eq.(2.12) one can obtain
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G00 = −3
[(

ȧ
a

)2
+ k

a2

]
8πGρ, G0i = 0,

Grr = 8πGPa2, Gϕϕ = sin2Gθθ = 0.
(2.30)

We may write the spatial components compactly as

Gij =

[
2
ä

a
+

(
ȧ

a

)2

+
k

a2

]
gij . (2.31)

We also recall the Einstein field equations that link the geometry of the space

time and the energy momentum tensor given in eq.(2.11). When substituting

the 00 components of eq.(2.30) and the 00 component of eq.(2.12) into eq.(2.11)

we obtain (
ȧ

a

)2

+
k

a2
− Λ

3
= 8πGρ. (2.32)

Also substituting eq.(2.13) and eq.(2.31) into eq.(2.11) we get

2
ä

a
+

(
ȧ

a

)2

+
k

a2
− Λ = −8πGP. (2.33)

We rewrite eq.(2.32) as

(
ȧ

a

)2

+
k

a2
− Λ

3
=

8πGρ
3

, (2.34)

and eq.(2.33) as
ä

a
= −1

2

[(
ȧ

a

)2

+
k

a2
− Λ

]
− 4πGρ. (2.35)

Rearanging eq.(2.35) and substituting eq.(2.34) into it we obtain

ä

a
= −1

2

[
8πGρ

3
+

Λ
3
− Λ

]
− 4πGP. (2.36)

Using above equation, eq.(2.36), one can arrive at

ä

a
= −4πG

3
(ρ+ 3P ) +

Λ
3
. (2.37)

Equation (2.34) is called the FLRW equation. Here a(t) is the scale factor (di-

mensionless), and H is the Hubble parameter discussed in detail in the next

12



section.

The local conservation of energy-momentum, Tµ
ν;µ = 0 yields an evolution equa-

tion for the energy density:

ρ̇+ 3H (ρ+ P ) = 0. (2.38)

Here the second term corresponds to the dilution of ρ due to expansion, while

the third is the work done by pressure of the fluid.

We typically assume that the cosmological fluid consists of several species of

(non–interacting) particles each with equations of state Pi = ωi ρi, so that

ρ = Σ ρi, and so on.

2.2 Cosmology

Cosmology is the scientific study of the large scale properties of the universe

as a whole. It endeavors to use the scientific method to understand the origin,

evolution and ultimate fate of the entire universe. Like any field of science,

cosmology involves the formation of theories or hypotheses about the universe

which make specific predictions for phenomena that can be tested with observa-

tions. Depending on the outcome of the observations, the theories will need to be

abandoned, revised or extended to accommodate the data [22]. The prevailing

theory about the origin and evolution of our universe is the so-called Big Bang

theory discussed at length in the book titled “Modern cosmology” by Dodel-

son [20], also see [54] and [21] by D. L. Wiltshire, and G. F. R. Ellis respectively.

Regardless of the theory, it must survive confrontation with the data, and for

cosmology, the two most important data sets are the Cosmic Microwave Back-

ground (see for example, [8][25]), and the large–scale structure, or distribution
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of galaxies and clusters (see for example [1]).

Disentangling theory from data is not easy since astronomical observations may

be biased by the cosmology in which one assumes them to take place. In this

section we therefore make clear our assumed cosmology currently: we describe

the cosmological parameters that specify the background cosmology currently

in favor. Nevertheless, surveying the sky is one of our oldest occupations as a

species, and with ever better data we can hope to obtain a better picture of our

cosmos.

When mapping the distribution of galaxies and clusters, one is interested in

how much mass they contain, as well as where they are. This dissertation is

concerned with using the phenomenon of gravitional lensing as a tool for esti-

mating these masses, and to obtain the positions of the sources. Even in the

absence of a gravitational lensing based mass estimate, the extent to which lens-

ing affects apparent source position is itself important to surveys.

Recall that we define H ≡ ȧ
a . This quantity H = H(t) gives the expansion

rate of the universe, and it is called the Hubble parameter. It measures how

rapidly the scale factor changes. For instance, if the universe is flat and dom-

inated by matter, a is proportional to t
2
3 and H is equal to (2/3)t−1. Thus,

an important observational tool of this cosmology is to measure separately the

Hubble rate today and the age of the universe t. The present Hubble rate is de-

noted by the value H0. We shall use the subscript 0 throughout this dissertation

to represent a quantity today. The dimension of H is given by

1
time

or
velocity

distance
. (2.39)
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The present measures of the Hubble expansion rate are parametrized by h de-

fined through

H0 = 100h km sec−1Mpc−1.

A distance of one million parsecs (approximately 3,262,000 light years or 3.08602×

1019 kilometers) is commonly denoted by the megaparsec (Mpc). Astronomers

typically measure the distances between neighboring galaxies and galaxy clus-

ters in megaparsecs. Current measurements set h equal to 0.72 ± 0.08 [18].

The Friedmann equation, eq.(2.37), connects the three quantities, the density

ρ, the spatial curvature k/a2 , and the expansion rate H of the universe as well

as the cosmological constant Λ.

ρ = ρc +
3k

8πGa2
− Λ

8πG
, (2.40)

where we have defined the critical density, ρc, as

ρc =
3H2

8πG
, (2.41)

corresponding to the given value of the Hubble parameter. This implies that

the critical density changes as the Hubble parameter evolves. When referring

to critical density, we usually mean its present value, given by the value of the

Hubble constant today,

ρc ≡ ρc(t0) ≡ 3H2
0

8πG
. (2.42)

Newton’s constant, G in eq.(2.42) is equal to 6.67 x 10−8 cm3 g−1 sec−2. This

and the value of H0, give us the value of critical density as

ρc = 1.88h2 × 10−29g cm−3. (2.43)

The density parameter due to radiation Ωr is defined as

Ωr ≡ ρr

ρcr
. (2.44)
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Other density parameters are

Ωm ≡ ρm

ρc
,

ΩΛ ≡ ρΛ
ρc

= Λ
3H2 ,

Ωk ≡ −3k
8πGa2ρc

,

(2.45)

Where Ωm, ΩΛ and Ωk denote energy density due to the baryons, dark energy

and curvature respectively. The sum of the densities i.e.,

Ωm + Ωr + ΩΛ + Ωk = 1, (2.46)

where 1 is an approximation to the observed (almost flat) universal geometry

[9]. Using eq.(??), and the Friedmann equation (2.37), eq.(2.46) can now be

written as

Ωt = 1 +
k

H2a2
− Λ

3H2
. (2.47)

Thus k = − 1 gives Ω < 1, an open universe, and Ω > 1, i.e., k = 1 a closed

universe and k = 0 yields Ω = 1 which implies a flat universe for Λ = 0.

However, observations suggest that the density of the universe today is close to

critical, Ω0 ≈ 1.

2.2.1 Redshift

The redshift z of an object is the fractional Doppler shift of its emitted light

resulting from radial motion [9]

z =
νe

ν0
− 1 =

λ0

λe
− 1. (2.48)

Here, ν0 and λ0 are the observed frequency and wavelength, where the νe and

λe are the emitted frequency and wavelength respectively. The cosmological

redshift is directly related to the scale factor a(t), or the size of the universe

through

1 + z =
a(t0)
a(te)

, (2.49)
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where a(t0) is the size of the universe at the time light from the object is ob-

served, and a(te) is the size at the time it was emitted. For small v or small

distance d, in the expanding universe, the velocity is proportional to the dis-

tance (and all the distance measures, e.g., angular diameter distance, luminosity

distance, etc., converge)-see the next section. Taking the linear approximation

this reduces to

z ≈ v. (2.50)

2.2.2 Cosmological distances

The meaning of distance is not unique in a curved space time. In a curved space

time, unlike in Euclidian space, distance definitions in terms of different mea-

surement prescriptions lead to different distances. In this section we shall define

some of the distance scales commonly employed in cosmology and astronomy.

i.e., the proper distance, comoving distance and the angular diameter distance.

A distance measure relates two separate events i.e., the emission and observa-

tion events on two separate geodesic lines which fall on the common light cone:

either the front cone of the source, or the backward cone of the observer[9].

Hence they are characterized by t2 and t1, the times of emission and obser-

vation respectively. The times are expressed in terms of the scale factor i.e.,

a2 = a(t2) and a1 = a(t1), and throughout this dissertation we shall assume

that the observer is at the origin.

Proper distance

The proper distance ( Light Travel Time Distance (LTTD)) is the time taken for

the light from distant galaxies to reach us. It is therefore a distance measured

by a light ray propagating from a source at redshift z2 to an observer at z1 <
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z2. It is defined as

dDprop = −dt, (2.51)

and, using the definition of Hubble rate, H ≡ ȧ
a , eq.(2.51) can be rewritten as

dDprop = −ȧ−1da = −da(aH)−1, (2.52)

where the presence of the minus sign is due to the arbitrary choice of coordinates

centred on the observer. When rewriting the definition of the Hubble rate in

terms of energy densities and when integrating with respect to scale factor a(t)

the proper distance, eq.(2.52), can be redefined as [9]

Dprop =
1
H0

∫ a(z1)

a(z2)

[
a−1Ωm + (1− Ωt − ΩΛ) + a2ΩΛ

] 1
2 da.

Using the following relation Ωk = 1−Ωt−ΩΛ one easily obtains the equivalent

equation as

Dprop =
1
H0

∫ a(z1)

a(z2)

[
a−1Ωm + Ωk + a2ΩΛ

] 1
2 da, (2.53)

as the equation for proper distance.

Comoving distance

The comoving distance Dcom is the distance scale that expands with the uni-

verse. It can also be defined as the distance between two points measured along

a path defined at the present cosmological time. For objects moving with the

Hubble flow 1,comoving distance seems to remain constant in time. It tells us

where the galaxies are now even though our view of the distant universe is as it

was much younger and smaller. The comoving distance from an observer to a
1The general outward movement of galaxies and clusters of galaxies resulting from the

expansion of the universe.
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distant galaxy can be computed by the following formulae:

Dcom =
∫ t

te

dt
a(t)

, (2.54)

where a(t) is the scale factor, te is the time of emission of the photons detected

by the observer, and t denotes present time. From eq.(2.51) we can write

Dcom = −
∫ t

te

dDprop

a(t)
, (2.55)

and in terms of energy densities one can rewrite eq.(2.55) as

Dcom = − 1
a(t)H0

∫ a(z1)

a(z2)

[
a−1Ωt + Ωk + a2ΩΛ

] 1
2 da. (2.56)

Angular diameter distance

In analogy to Euclidian space, the angular diameter distance Dang to an object

is defined in terms of the object’s actual size, δA, at z and the solid angle δω

subtended by an observer who is at redshift z = 0: δωD2
ang = δA. Thus we

write

Dang =

√
δA

δω
. (2.57)

One can also express it in terms of the comoving distance Dcom as:

Dang =
r(Dcom)

1 + z
, (2.58)

where r(Dcom) is defined as:

r(Dcom) =





sin
(√−ΩkH0Dcom

)
/

(
H0

√
|Ωk|

)
Ωk < 0.

Dcom Ωk = 0

sinh
(√

ΩkH0Dcom

)
/

(
H0

√
|Ωk|

)
Ωk > 0

. (2.59)

2.3 Lensing

The gravity from a massive object (such as a galaxy cluster or black hole) can

warp space-time, bending the paths followed by light rays from a bright back-

ground source. This alters the time taken for the light to reach an observer,
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and can both magnify and distort the apparent image of the background source.

This bending of light due to the gravitational field provided by such massive

objects is called gravitational lensing.

Gravitational lensing has become a well established field in cosmology and as-

trophysics, and a powerful tool to tackle important problems. For instance, it

is a unique probe of the dark side of the universe: it provides a direct way to

map the distribution of dark matter around galaxies, clusters of galaxies and

on cosmological scales [44]. Furthermore, the measurement of lensing induced

distortions of the shapes of distant galaxies is a powerful probe of dark energy

[9]. In this dissertation, we aim to investigate the ability of lensing based re-

construction of cluster masses, with a perceived application to cluster surveys.

Since the gravitational potential provided by these objects is responsible for

the bending of light paths, it is important to discuss it in detail. Thus, in this

section we review some equations that shall be important in our lens modeling.

We begin by describing the geometry of lensing systems and obtain the lensing

equation, and conclude with a discussion about ellipticity and shear.

2.3.1 Lensing Geometry

The basic setup of gravitational lensing is shown in figure 2.1. Here a represents

−→α , angle B represents
−→
β and angle O represents

−→
θ . A light ray from a source

S is incident on a lens L. The lens influence can be described by a deflection

angle a (a two-vector) experienced by the ray on crossing the lens plane. The

deflected ray reaches the observer, who sees the image of the source apparently

at O on the sky. The true direction of the source, i.e. its position on the sky in

the absence of the lens, is indicated by B. Also shown are the angular diameter

distances Dd, Ds, Dds, separating the source, deflector, and observer.
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Figure 2.1: Shows a gravitation lensing system.

The three key factors in such a lensing situation are the source S, the lens

plane L and the observer O. Light rays emitted by the source are deflected

by the angle −→α at the lens L, and reach the observer O. The angle between

the chosen optic axis and the true position of the source is denoted by B and

the angle between the optic axis and the position of the image is denoted by
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O. In every lensing situation, it is important to know the relation between the

position of the source
−→
β and the image

−→
θ , and this relation is made via the

lensing equation.

From figure 2.1 we can geometrically obtain the following relation:

−→
β =

−→
θ −−→α (

−→
θ )
Dds

Ds
, (2.60)

which is called the lensing equation and is valid for all astrophysical situations

in which
−→
θ ,
−→
β and −→α are less or equal to 1 – i.e., small angles [17]. The inter-

pretation of eq.(2.60) is that the source positioned at
−→
β can be viewed by an

observer at angular position
−→
θ . Therefore, the lens equation relates the true

position of the source,
−→
β , to the observed position,

−→
θ , of lensed images. If

there is more than one solution to eq.(2.60) then the source at
−→
β in the source

plane corresponds to many images and/or extended images on the sky.

2.3.2 Gravitational potential

It is useful also to define the scalar gravitational potential ψ(
−→
θ ) which is the

appropriately scaled, see [9], projected Newtonian potential of the lens,

ψ(
−→
θ ) =

Dds

DdDs
2

∫
φ(Dd

−→
θ , z)dz, (2.61)

where φ is the Newtonian gravitational potential and ψ(
−→
θ ) is the two dimen-

sional analogue of the Newtonian gravitation potential [9]. Here the angular

diameter distances between the observer and the lens, the lens and the source,

and the source and the observer, are represented by Dd, Ds and Dds, respec-

tively. The angle of deflection can be written as the gradient of eq.(2.61) as

−→∇−→
θ
ψ = Dd

−→∇ψ = 2
Dds

Ds

∫ −→∇⊥ψdz = −→α . (2.62)
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We can rewrite the deflection angle, −→α given by eq.(2.62), in terms of the

mass density Σ by introducing the Poison equation for ψ which connects the

gravitational potential and the mass density as

−→∇2−→
θ
ψ = 2

Dds

Ds

∫
∇2ψdz = 2

Dds

Ds
· 4πGΣ = 2

Σ(
−→
θ )

Σcr
≡ 2κ(

−→
θ ), (2.63)

where κ(
−→
θ ) is called the convergence and is defined as

κ(
~−→
θ ) =

1
2
∇2ψ(

~−→
θ ), (2.64)

while the critical mass density

Σcr =
c2Ds

4πGDdsDd
. (2.65)

The potential can be written in terms of the convergence κ as

ψ(
−→
θ ) =

1
π

∫
d2−→θ ′κ(

−→−→
θ
′
)ln|−→θ −−→θ ′ |. (2.66)

Finally, one can rewrite eq.(2.62) as

−→α (
−→
θ ) =

−→∇ψ =
1
π

∫
κ(
−→
θ
′
)
−→
θ −−→θ ′

|−→θ −−→θ ′ |2
d2−→θ ′ . (2.67)

The above equation eq.(2.67) shows the amount of deviation that light rays

emitted from distant galaxies experience as they propagate across a massive

cluster of galaxies to the obsever.

2.3.3 Ellipticity and shear

A perfect circular by symmetric gravitational lens is a useful theoretical con-

struct that will most likely never be seen in any astronomical setting. Every

real lens will have some small asymmetries either in its own mass distribution

(e.g ellipticity) or in the distribution of objects near the line of sight (leading

to a tidal shear). Thus, in any models of gravitational lensing, especially when

reconstructing the lens mass distribution, it is important to consider also the
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ellipticity and shear of the lens [51]. In fact, it is well known that ellipticity

and shear cannot be ignored in models of gravitational lensing [51]. Our main

objective in this section, therefore, is to employ the best method of measuring

this ellipticity, the deviation of lensed images from perfect circular or spherical

form toward elliptic or ellipsoidal form, and compare with the component of

shear. In order to achieve this, we begin by defining the quadrupole moment of

an image. We imagine that the image is located at the (
−→
θ x,

−→
θ y) origin having

dipole moment equal to zero [19]. In this regard, the quadrapole moment is

defined as [19]

qij =
∫
d2−→θ Iobs(

−→
θ )
−→
θ i
−→
θ j , (2.68)

where i , j ∈ (x, y).

Here, Iobs is the observed intensity. If the image is circular then the following

relation applies: qxx = qyy and qxy = 0.

The measure of ellipticity ε is obtained as [19]

ε1 =
qxx − qyy

qxx + qyy
, (2.69)

and

ε2 =
2qxy

qxx + qyy
. (2.70)

Shear ( γ) and ellipticity are related through

εobs = εint + γ, (2.71)

where εobs is the observed ellipticity, and εint the intrinsic ellipticity. We can

also define shear as [19]

γ1 =
1
2

(ψ11 − ψ22) = γ(
−→
θ )cos[2

−→
θ ], (2.72)

and

γ2 = ψ12 = ψ21 = γ(
−→
θ )sin[2

−→
θ ], (2.73)
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where ψ12 and ψ21 are components of the gravitational potential given in eq.(2.66).

The amplitude (γ) and orientation angle (
−→
θ ) of shear in terms of eq.(2.72) and

eq.(2.73) are

γ =
√
γ2
2 + γ2

2 , (2.74)

−→
θ =

1
2
tan−1

(
γ2

γ1

)
. (2.75)

When measuring the distortion we measure the reduced shear g instead as de-

fined in eq.(2.76). This is because the transformation of image ellipticities de-

pends only on the reduced shear, and not on the shear and the surface mass

density individually. Using eq.(2.74) we write the reduced shear as

g =
γ

1− κ
. (2.76)

In order to use gravitational lensing as an astronomical tool, we need to discuss

the solution of the lensing equation. More detailed information on this task

is provided in chapter 3. In this chapter we shall look at both strong and

weak lensing. In order to obtain robust information about a cluster’s mass

distribution, we need the combination of the two. Combining the two types

of lensing can help one to obtain significant results from data both within,

and away from, the centre of the mass cluster. Data from strong lensing is

particularly sensitive to the central region of the cluster. On the other hand,

weak lensing data is more sensitive in tracing the mass distribution further

away from the center. The advantage of using both regimes is therefore that

they complement each other [17].

2.4 Statistics

There are various statistical methods that have been implemented in order to

estimate and analyze the lens mass distribution. These methods have made it

easier to complete the numerical estimation of the lens within a short period of
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time. They thus also make it easier for fast comparison of theoretical predic-

tions and observation. In this section we shall discuss probability distributions,

the binomial distribution, and in particular, we shall review the Gaussian dis-

tribution as well as the χ2 test of distribution [42].

2.4.1 Probability distributions

Probability distributions are a fundamental concept in statistics. They are used

both on a theoretical level and a practical level. Some practical uses of proba-

bility distributions are: (i) To calculate confidence intervals for parameters and

to calculate critical regions for hypothesis tests. (ii) For univariate data, it is

often useful to determine a reasonable distributional model for the data. Sta-

tistical intervals and hypothesis tests are often based on specific distributional

assumptions. Before computing an interval or test based on a distributional

assumption, we need to verify that the assumption is justified for the given data

set. In this case, the distribution does not need to be the best-fitting distribution

for the data, but an adequate enough model so that the statistical technique

yields valid conclusions. Simulation studies with random numbers generated

using a specific probability distribution are often needed [42].

There are various types of probability distribution; some of them are discrete,

and some are continuous.

Discrete distribution

A discrete probability function is a function that can take on a discrete number

of values (not necessarily finite). This is most often the non-negative integers or

some subset of the non-negative integers. Mathematically a discrete probability

function, p(x), is a function that satisfies the following properties.
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� The probability that x can take a specific value is p(x). That is

P [x = x] = p(x) = px.

� p(x) is positive for all real x.

� The sum of p(x) over all possible values of x is 1, that is

Σjpj = 1,

where j represents all possible values that x can have and pj is the prob-

ability at xj .

Continuous distributions

A continuous probability function, f(x), is a function that satisfies the following

properties.

� The probability that x is between two points d and e is

p[d <= x <= e] =
∫ e

d

[f(x)dx].

� It is non-negative for all real x.

� The integral of the probability function is one, that is

∫ ∞

−∞
f(x)dx = 1.

The physical meaning of this relation is that the probability at a single

point is always zero since continuous probability functions are defined for

an infinite number of points over a continuous interval. The property

that the integral must equal one is equivalent to the property for discrete

distributions that the sum of all the probabilities must equal one.
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2.4.2 The binomial distribution

The binomial distribution of observing x of n items in the state with probability

p is given by

P (x, n, p) =
n!

x!(n− x)!
px(1− p)n−x, (2.77)

where (1 − p) is the probability of another event to occur. The binomial dis-

tribution is also used to analyze the error in experimental results that estimate

the proportion of individuals in a population that satisfy a condition of interest

[42]. We shall therefore see how we can make use of the binomial distribution

when we shall look at the Gaussian distribution.

Mean µ

The mean of the binomial distribution is defined as

µ = Σn
x=0

[
n!

x!(n− x)!
px(1− p)n−x

]
= np. (2.78)

The physical meaning of eq.(2.78) is that if the experiment is done with n

items with x as the observed number of successes after repeating the experiment

several times then the average of the number of successes is equal to the mean

value [42].

Standard deviation σ

The standard deviation of a binomial distribution is defined as

σ =
(

Σn
x=0

[
n!

x!(n− x)!
px(1− p)n−x

]) 1
2

. (2.79)

In probability theory and statistics eq.(2.79) describes how spread out are a

set of outcomes whose preferred average is the mean eq.(2.78). Therefore the

importance of this equation shall be seen when looking at Gaussian distributions.
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2.4.3 The Gaussian distribution and the χ2 statistic

The Gaussian distribution is one of the most important in statistical analysis.

It describes the distribution of random observations and the distribution ob-

tained when estimating the parameters of most other probability distributions.

Mathematically it is defined as

G(x) =
1

(2πσ)
1
2
e−

1
2σ2 (x−µ)2 , (2.80)

where σ is the standard deviation of the distribution given by eq.(2.79).

The quantityχ2 is the statistic that measures the dispersion of observed

frequency h(xj) from the expected frequency. It is defined as

χ2 = Σn
j=1

[h(xj)−NP (xj)]2

σ(h)2
, (2.81)

where n is the possible different measured values of (xj) and j runs from 1 to n.

Here also, P (xj) is the probability for observing the value of (xj) in any random

measurement. Here N is the total number of measurements. The product of

the total number of measurements and the probability for observing the value

of (xj) i.e., NP (xj) is the mean [42].

Our data consist of pairs of measurements (xi, yi) of independent and dependent

variables x and y respectively and one wishes to find the values of constants a

and b that minimizes the discrepancy existing between the measured values yi

and calculated values y(x). For arbitrary values of a and b the deviation ∆yi

between each of the observed values yi and the corresponding calculated values

can be calculated as linear model

∆yi = yi − y(xi) = yi − a− bxi. (2.82)

For the particular problem of an expected linear relationship between dependent

and independent variables, we set parameters a and b such that the actual
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relationship between x and y is

y0(x) = a0 + b0x.

We shall assume that each individual measured value of yi is drawn from a

Gaussian distribution with mean equal to y0(xi) and standard deviation σi.

Then finding the values of a and b implies minimizing χ2 by setting its partial

derivative to zero. Given the χ2 as

χ2 = Σ
[
yi − y(xi)2

σ

]
= Σ

[
1
σi

(yi − a− bxi)
]2

, (2.83)

and setting to zero its partial derivatives we obtain

∂
∂aχ

2 = ∂
∂aΣ

[
1

σ2
i

(yi − a− bxi)
2
]

= −2Σ
[

1
σ2

i
(yi − a− bxi)

]
= 0,

∂
∂bχ

2 = ∂
∂bΣ

[
1

σ2
i

(yi − a− bxi)
2
]

= −2Σxi

[
1

σ2
i

(yi − a− bxi)
]

= 0.

(2.84)

We can arrange these equations as a pair of linear simultaneous equations in

the unknown parameters a and b as

Σ yi

σ2
i

= aΣ 1
σ2

i
+ bΣ xi

σ2
i

Σxiyi

σ2
i

= aΣ xi

σ2
i

+ bΣ x2
i

σ2
i

.

(2.85)

The solutions are obtained assuming that one is familiar with method of deter-

minants [12]. The solutions are given as

a =
1
∆

Σ yi

σ2
i

Σ xi

σ2
i

Σxiyi

σ2
i

Σ x2
i

σ2
i

=
1
∆

(
Σ
x2

i

σ2
i

Σ
yi

σ2
i

− Σ
xi

σ2
i

Σ
xiyi

σ2
i

)
,

b =
1
∆

Σ 1
σ2

i
Σ yi

σ2
i

Σ xi

σ2
i

Σxiyi

σ2
i

=
1
∆

(
Σ

1
σ2

i

Σ
xiyi

σ2
i

− Σ
xi

σ2
i

Σ
yi

σ2
i

)
, (2.86)
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∆ =
Σ 1

σ2
i

Σ xi

σ2
i

Σ xi

σ2
i

Σ x2
i

σ2
i

= Σ
1
σ2

i

Σ
x2

i

σ2
i

−
(

Σ
xi

σ2
i

)2

.

We shall apply these methods in chapter 4 to obtain the solution when recon-

structing the lens mass distribution in a similar manner to that discussed in this

section.
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Chapter 3

Non-parametric mass

reconstruction via

gravitational lensing

As explained in the previous chapter, a gravitational lens is formed when light

from a very distant, bright source (such as a quasar) is bent around a mas-

sive object (such as a cluster of galaxies) between the source object and the

observer. The process is known as gravitational lensing, and is one of the pre-

dictions of Albert Einstein’s general theory of relativity. During gravitational

lensing, the appearance of an observed distant background galaxy through the

lens is changed. This is because the tidal gravitational field distorts the shape

of galaxy images.

If all the galaxies were uniformly circular, any distortion to the image could

provide the required information about the lens. Since they are of different

shapes, it is indeed difficult to extract significant information from the result-

32



ing images. Two approaches may be employed: parametric and non-parametric

mass reconstruction. In the former [17] [27] [28] [30][57], the mass distribu-

tion of the lens is described by a model containing free parameters, which are

subsequently determined by comparison with the observational data. Hence,

this technique is necessarily model dependent. The latter techniques [9] make

no such assumptions, but attempt to solve the lensing equation directly. To

do so accurately requires one to take full advantage of all available data. This

difficulty can be overcome by considering both types of gravitational lensing:

strong lensing (where there are easily visible distortions such as the formation

of Einstein rings, arcs, and multiple images) and weak lensing (where the dis-

tortions of background sources are much smaller and can only be detected by

analyzing large numbers of sources to find coherent distortions of only a few

percent). One of the advantages of combining the two is that they complement

each other. Strong lensing is mostly sensitive in the central part of the lens,

while weak lensing is sensitive in the outer part. It is also useful to consider

images with multiple arcs etc. so as to maximize the amount of information.

The beginning of this chapter starts with a brief description of some terms that

will be used in this chapter.

Residual

The residual is the difference between results obtained by observation and by

computation from a formula or between the mean of several observations.

Covariance

The covariance is a measure of how much two variables change together (vari-

ance is a special case of the covariance when the two variables are identical).

Therefore, the covariance matrix is a matrix of covariances between elements of

a vector.
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Likelihood function

In statistics, the likelihood function (often simply called the likelihood) is a func-

tion of the parameters of a statistical model that plays a key role in statistical

inference.

3.1 Methodology

The method used is a free-form or non-parametric one that reconstructs the

lens mass distribution without any prior information on the underlying lens

[17]; and that implements constraints from weak as well as strong lensing. The

lens is divided into multiple pixels. Throughout the reconstruction process we

use Gaussian pixels instead of square pixels. By Gaussian pixels we mean that

one obtains the mass in each cell using a Gaussian distribution formula. This

is done by dividing the lens plane into N × N pixels with inter pixel distance

equal to, for instance, q. Suppose that θmn is the center of the Gaussian peak

of mn− th pixel and pmn is the height of the peak then the mn− th pixel has

a mass profile equal to pmn exp
(
−2(θ − θmn)2

q2

)
. Here q controls the width of

the curve and hence, q is the pixel size. We measure pmn in units of the critical

density Σcr given by eq.(2.65) for sources at infinity. One can see that the total

mass M is

M =
q2π

2
ΣcrΣmnpmn. (3.1)

Here the arrival time τ of a light ray emitted by a background source galaxy at

an unlensed angular position
−→
β , through a point

−→
θ in the pixellated lens mass

distribution to the observer, can be computed as

τ(
−→
θ ) =

1
2
(
−→
θ −−→β )2 − Dds

Ds
Σmnpmnψmn(

−→
θ ), (3.2)

where ψmn(
−→
θ ) is the gravitational potential computed using eq.(2.66). The

term pmnψmn(
−→
θ ) is the contribution of the mn− th pixel to the total gravita-

34



tional potential.

3.2 Gridding the mass

We obtain results by means of a minimization process and assume that we

know nothing about the mass distribution and use a regular grid to describe the

lens. A regular grid, however, does not describe the fine details of the lens with

enough accuracy. This means that the lens is less adaptable and unphysical

solutions are more likely. We can avoid getting unphysical solutions by making

the epsilon–smallest target value, more reasonable before the grid reproduces

much finer details to the extent of including negative cell masses. On other hand

the multire solution (adaptive grid) tries to describe the finer details of mass

distribution with enough accuracy. However, the multire solution also suffers

from what is known as memory effects [17]. In this regard regions which are

less sensitive to the data tend to retain information about the initial condition.

The weak and strong analysis package algorithm therefore combines the two

methods.

The first iteration process with regular grid which typically consists of 500 cells

constructed the mass. Once the initial guess for the mass is made, the adaptive

grid is constructed by subdividing the cells having higher density of mass. The

splitting of cells stops once the goal number is achieved. The new system of

equations is computed each time the grid is built [17]. The minimization step,

new grid + new system of equations + new solution is faster when using the

bi–conjugate method and much slower when using non–negative quadratic pro-

graming. See section 3.5 and 3.6 for more details on bi–conjugate method and

non–negative quadratic programing.
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3.3 Strong lensing

The fundamental problem encountered in most lensing modeling is, for a given

number positions of lensed images,
−→
θ , finding their corresponding true posi-

tions,
−→
β , and the mass distribution of the lens (see figure 2.1 of chapter two)

for the geometric set up of the lens. This problem implies that one should use

eq.2.60
−→
β =

−→
θ −−→α (

−→
θ )
Dds

Ds
.

In eq.(2.60), the deflection angle depends on
−→
θ in a non-linear manner. As a

result multiple solutions for
−→
θ are possible for certain position

−→
β , and it follows

that if eq.(2.60) has more than one solution for a fixed position
−→
β then a source

at this position corresponds to many images at several positions on the sky.

This is called strong lensing and may be quantified by the dimensionless mass

density which can be written in terms of critical surface mass density Σcr [17]

[9][38] as

M(
−→
θ ) =

Σ(Dd
−→
θ )

Σcr
. (3.3)

It follows that the higher the value of M , the more multiple images are produced

for some source position
−→
β and, hence the stronger the lensing [51]. For high

values of M we mean the compactness of the lens. If the lens is compact and

massive enough then it would be possible for light from one source to reach the

observer via more than one path. In this case, the observer would see the same

source at several positions in the sky.

In our approach we assumed that the lens equation as well as the distortion

of gravitationally lensed images at all
−→
θ values corresponding to the observed

image locations, are taken to be rigid linear constraints on the mass distribution

and so, the lens equation similar to eq.(2.60) can be computed by equating the
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derivative of eq.(3.2) to zero:

∇τ(−→θ ) = 0, (3.4)

to obtain
−→
β =

−→
θ − Dds

Ds
Σmnpmnψmn(

−→
θ ). (3.5)

The physical interpretation of eq.(3.4) is that the gravitionally lensed images of

the source can also be determined by the minima, maxima and saddle points of

the function τ . In eq.(3.5),
−→
β is the position of the source and the last term

represents the contribution of mass in an individual cell, to the bending of light.

Here each image supplies us with a two-component constraint equation. But we

have to solve for our source position
−→
β . Hence, we can say that the number of

constraints on the mass distribution from the multiple images is 2((number of

images)-(number of sources)). These strong lensing constraints are linear equal-

ity constraints [17].

Let R be a given set of points in the lens plane. Then this set of points corre-

sponds to the set of R points in the source plane by a matrix shown in eq.(3.6).

Let
−→
Θ be a vector of length 2R, consisting of coordinates of the points in the

image plane and
−→
β be a vector of the same length containing the coordinates of

the corresponding points in the source plane. The masses of each cell that make

up the mass distribution of the lens are stored in an N dimensional column

vector
−→
M . Thus the lens equation can be rewritten

−→
β =

−→
Θ −Υ

−→
M, (3.6)

where Υ is the matrix whose entries are just deflection angles. The problem

of inverting a gravitational lens system is thus transformed into the problem

of finding the vector M , given the matrices Θ and Υ. The projected mass
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distribution may be expanded with respect to a set of basis functions {fl(x, y)}

m(x, y) = Σlclfl(x, y). (3.7)

Where cl are the coefficients of the decomposition. It is most useful [17] to use

compact basis functions defined on the gridded mass distribution. In particular,

Diego et al [16], found that a Gaussian basis (centered in each cell with a width

equal to twice the cell size) yields better results than a power law, isothermal

spheres, or Legendre / Hermite polynomials.

Using the above mass decomposition eq.(3.7) one can rewrite the lensing equa-

tion as

α(Θj) = λjΣlclfl(Θj), (3.8)

where all constants are absorbed into the factor λj , and

fl(Θj) =
∫
fl(Θ

′
)

Θ−Θ
′

|Θ−Θ′ |2 dΘ
′
.

Then we may explicitly define Υ as

Υjl = λjfl(Θj), (3.9)

which is the deflection angle created by fl at sky position Θj .

If we group all the unknowns (i.e.,
−→
β and masses) into a new vector, x, then

we have rewritten eq.(2.60) into compact form

−→
Θ = ∧x, (3.10)

where ∧ is a 2(number of
−→
θ positions) × (number of unknown masses + 2(num-

ber of sources)) dimensional matrix and x is a (number of cells + 2× number

of sources) dimensional vector containing all the unknowns [17]. The number

2 arises because there are two (x and y) components for each source and position.
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In eq.(3.6) and (3.10) we have systems of 2Nθ linear equations in 2Nθ +Ns

unknowns (the Ns are the source positions). If we impose a scheme to specify

the source positions [16] then we may solve this system.

3.4 Adding Weak Lensing

In many cases the lens is not strong enough to form multiple images or arcs.

However, the source can still be distorted: both stretched and magnified. If

all sources were well known in size and shape, one could just use the shear and

convergence to deduce the properties of the lens [17]. However, usually one does

not know the actual properties of the sources, but has information about the

average properties. Thus, the statistics of the sources can then be used to get

information about the lens. For instance, galaxies in general are not perfectly

spherical, and if one has a collection of galaxies one does not expect them all to

be lined up [51]. Hence, if this set of galaxies is lensed, on average there will be

some overall shear and/or convergence imposed on the distribution, which will

give information about intervening lens [17].

In this section we shall discuss how one can add the information about shear

via weak lensing to the system of linear equations corresponding to the strong

lensing so as to find the combined solution for both weak and strong lensing.

We shall begin by defining the matrix comprised of distorted images. We shall

include the shear measurement into the vector array defined by eq.(3.10) and

we shall then use this vector to reconstruct the lens.

The solution
−→
θ of the lens is the angular position of the images of a source

at
−→
β . The shapes of the lensed images differ from that of the sources in the
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sense that light bundles are deflected differently. One can determine the shape

of the lensed images by solving the lens equation for all points within an ex-

tended source [9]. The absence of emission of photons as well as absorption of

photons by the lens mass implies that lensing conserves brightness. Therefore,

if Is (
−→
β ) is the surface brightness in the source plain then the corresponding

brightness in the lens plane is

I(
−→
θ ) = Is [

−→
β (
−→
θ )]. (3.11)

The distortion of the image is described by the Jacobian matrix A as

Aij = δij +
∂αi

∂xi
=




1− κ− γ1 γ2

γ2 1− κ+ γ2


 , (3.12)

where the shear γ2 and γ2 are given in terms of potential as in eq.(2.72) and

eq.(2.73) respectively, and κ is the convergence defined via eq.(2.64).

Given a data set containing shear measurements, another equation analogous

to eq.(3.6) can be constructed with entries



γ1

γ2


 =




∆1

∆2


 c. (3.13)

Here, c is the vector containing unknown entries and each element contained

in the matricess ∆1 and ∆2 represents the contribution to the shear γ1 and γ2

respectively [17].

When observationally measuring shear, the reduced shear eq.(2.76) is measured

instead and this means modifying matricess ∆1 and ∆2 to account for the cor-

rection. During modification of these matricess one uses two equations that

relate ∆ and γ. The two equations are

γk
1 = Σl∆1

lkcl (3.14)
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and

γk
2 = Σl∆2

lkcl (3.15)

In the combined regime of strong and weak lensing, one simply includes the

shear measurement of weakly lensed images into a vector array of eq.(3.10). In

so doing the vector array of eq.(3.10) becomes a new vector containing both

strong and weakly lensed images, i.e.,
−→
θ positions for strong lensing, and shear

measurements for weakly lensed images. The new array (vector) then becomes

φt = (θx, θy, γ1, γ2), (3.16)

and we can write the system of linear equations as [17]



θx

θy

γ1

γ2




=




γx Ix 0

γy 0 Iy

∆1 0 0

∆2 0 0







c

βx

βy



. (3.17)

The above system of equations is obtained by simply expanding ∧ and x into

their components. In this system the 0 contains all zeros and the ij elements in

matrix Ix are unity if the image θi arises from the βj source, and zero otherwise.

The matrix Iy is defined in an analogous way for the y-coordinates. The above

system of equation in more compact form can be written as

φ = Γx, (3.18)

where

φ =




θx

θy

γ1

γ2




,
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Γ =




γx Ix 0

γy 0 Iy

∆1 0 0

∆2 0 0




and

x =




c

βx

βy




Thus, the full weak and strong lensing problem is formulated in such a way

that all the observables of φ are entirely dependent on the unknown x and all

the physical and geometric complications are encoded into the known matrix Γ.

We may not be able to solve eq.(3.18) by using direct matrix inversion be-

cause, in most cases, Γ is singular implying that the eigenvalues are not well

distributed: some of them are basically zero within rounding errors. Further-

more, even when Γ is not singular, we are not interested in obtaining an exact

solution but an approximate solution. This follows from a consideration of the

definition of x which assumed that each source galaxy responsible for strong

lensing arcs is defined only by its coordinates (βx and βy), which is not true

in practice as galaxies will have some spatial extent. This means the solution

should allow some residual in eq.(3.18). The residual is

r ≡ φ− Γx. (3.19)

We need the solution x which maximizes the likelihood function

L(x) = e−
1
2 χ2

, (3.20)

where

χ2 = rtC−1r, (3.21)
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and we have assumed that the residual r is Gaussian distributed [17]. Here

C is the covariance matrix of the residual r and is a diagonal matrix whose

diagonal elements are equal to either σ2
θ and σ2

γ for strong and weak lensing

respectively. Here the diagonal form of C is the simplifying assumption. The

covariance matrix allows one to weight the strong and weak lensing data, and

also to allow for instrumental and/or systematic errors. Reasonable values for

σθ and σγ are of the order of 2 pixels (' two arcseconds), and a few percent, re-

spectively. The strong lensing estimates are obtained using simulated data, and

the weak lensing estimates are derived by considering a typical (for, example,

the Hubble Space Telescope) background density of galaxies. Of the two, σθ,

is the more difficult to gauge, as it is dominated by systematic effects arising

from the assumption of point like sources, and the gridding process. However,

variations less than a factor of 2 yield robust results [17].

A greater difficulty is presented by how to combine the two data sets. A proper

treatment would also need to consider correlations (off diagonal elements in C)

in the strong lensing data. This is, however, left as future work.

An iteration method can prove to be a useful tool in finding an approximation

to the exact solution with high accuracy. Among these are (i) the bi–conjugate

gradient method and (ii) nonnegative quadratic programing methods. Both

these methods require an initial condition and exhibit a dependence on this

initial mass distribution, especially in the outer regions. Typically, large mass

fluctuations yield over estimates of the final recovered mass and conversely. [17]

By using a fast algorithm (such as the bi–conjugate gradient method), and

a multi–resolution grid, it is possible to repeat the mass estimation many times

with random initial conditions. In this way, estimates of errors can be made.
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3.5 Bi–conjugate gradient method (BG)

In mathematics (especially in numerical analysis) an algorithm called the bi–

conjugate gradient method is mostly used to solve systems of linear equations

i.e.,

Ax = b, (3.22)

where A is the matrix and b is a vector. In general A need not to be self adjoint

as it is the case when the conjugate gradient method [23] is used.

Before going into further details one might want to look through definitions

of some mathematical terms that we will refer to in this section.

Condition number

The condition number associated with a problem is a measure of that problem’s

amenability to digital computation, that is, how numerically well conditioned

the problem is [7]. A problem is said to be well-conditioned if it has a low

condition number otherwise it is ill-conditioned. Thus, the condition number

of a matrix of eq.(3.22) can be defined as the maximum ratio of the error in x

to the relative error in b. Suppose that e is the error in b then the error in the

solution A−1 b is A−1 e. Hence, the maximum ratio of the relative error in x to

the relative error in b is
||A−1 e||
||A−1 b|| ×

||b||
||e|| . (3.23)

The above eq.(3.23) can also be written as

( ||A−1 e||
||e||

)
× ||b||
||A−1 b|| . (3.24)

The maximum value Q(A) for b and e where b and e are greater than zero can

be written as the product of the two operator norms as

Q(A) = ||A−1|| · ||A||. (3.25)
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For more details on operator norms we refer the reader to reference [36].

Preconditioner

A preconditioner P of A is a matrix whose inverse product with A has lower

condition number than A. Preconditioners are mostly used especially when

using an iterative method to solve a large system of linear equations like that of

eq.(3.22) for x since the rate of iteration decreases as the condition number of

matrix increases. Instead of solving eq.(3.22) directly one might want to solve

either the left preconditioned systems

P−1Ax = P−1b, (3.26)

via the two equations

c = P−1b, (3.27)

and

c = (P−1A)x; (3.28)

or the right preconditioned systems through the two equations

b = (AP−1)y, (3.29)

and

x = P−1y, (3.30)

which is the same as solving the original system, provided that the precondi-

tioner matrix P is non singular.

The main idea of a preconditioned system is to reduce the condition number of

the matrix so as to obtain a well-conditioned matrix. The most efficient precon-

ditioner is choosing P equal to the identity matrix I so that P−1 A = A P−1 [7].

Substituting eq.(3.19) into eq.(3.21) one may arrive at

χ2 = (φ− Γx)tC−1(φ− Γx)
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= φtC−1φ− 2φtC−1Γx + xtΓtC−1Γx. (3.31)

If we define a constant b ≡ φtC−1φ, the vector a ≡ 2ΓtC−1φ and the matrix

A≡ 2ΓtC−1Γ one may obtain

χ2 = b− atx +
1
2
xtAx. (3.32)

Differentiating eq.(3.32) with respect to x and setting the derivative equal to

zero yields the solution x = A−1a. The solution obtained might not be useful

since A may be singular. One simple regularization technique that can be used

to obtain a reasonable result is the bi–conjugate gradient method. It minimizes

eq.(3.32) through a series of iterations and stops once an approximate solution

is obtained. Here, the bi–conjugate gradient method performs successive min-

imizations which are carried out in a series of orthogonal conjugate directions

with respect to metrix A [17].

The algorithm starts with an initial value of x0 and then finds the gradient

of eq.(3.32) at this same initial value. It minimizes this eq.(3.32) in the direc-

tions which are conjugate to the previous ones until one reaches the minimum

value. The outline of part of the algorithm is given below. Here, the algorithm

constructs the following sequence of vectors rk and dk as well as two constants,

αk and βk [17]

� The algorithm starts by choosing x0 and a preconditioner P−1 = I is

preferred.

� The initial value of the residual r is computed as r0 = b − A x0

� d0 → P−1 r0,–initial direction

where αk is obtained as

αk =
r∗krk
d∗kAdk

., k = 0, 1, .. (3.33)
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where * denotes the conjugate transpose and where we have that

dk+1 = P−1rk+1 +Bkdk, (3.34)

and

rk = b−Axk. (3.35)

Also,

rk+1 = rk − αkAdk (3.36)

and the solution is obtained as

xk+1 = xk + αkdk. (3.37)

The constant βk is obtained as

βk =
r∗k+1P

−1rk+1

r∗kP−1rk
(3.38)

The method is numerically unstable, but very important from the theoretical

point of view because it finds the solution much faster than the non-negative

quadratic programing (QADP) described in the next section. The difficulty

with using the bi–conjugate method lies in the fact that one is not seeking the

best solution, since this corresponds to a point source solution. Also, a regular-

ization procedure must be applied because some modes in the mass distribution

corresponds to eigenvalues whose values are near zero. Therefore, plotting these

modes would show some oscillations, trading off positive mass in some places

against unphysical negative mass elsewhere. Thus, we need to stop the mini-

mization proces at a radius ε a little larger than the physical size of the sources.

This may be estimated as

ε = r∗krk,

where rk = Γ∗ C−1 r. We note, however, that the extreme sensitivity to ε

present when using the bi–conjugate method on exclusively strong lensing data,

may be reduced when weak lensing data is included [17]. More details on this
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issue are given in chapter 4.

Typically a larger ε results in a smoother, lower mass version of real solution,

while one that is too small yields artificial substructure, and an overestimate of

the mass.

The bi–conjugate method uses conjugate directions instead of the local gra-

dient for going downhill. If the vicinity of the minimum has the shape of a

long, narrow valley, the minimum is reached in far fewer steps than would be

the case using the method of QADP. The conjugate gradient method is an ef-

fective method for symmetric positive definite systems. The method proceeds

by generating vector sequences of iterates (i.e., successive approximations to the

solution), residuals corresponding to the iterates, and search directions used in

updating the iterates and residuals. Although the length of these sequences

can become large, only a small number of vectors needs to be kept in memory

[17]. We encourage the reader to see [17], [47], [26] and [56] for more on the

bi–conjugate gradient method.

3.6 Non–negative quadratic programing (QADP)

Although the bi-conjugate gradient method produces the approximated solu-

tion fast, it is not the ideal method to use. The need for regularization and

the negative mass problem can be removed by using nonnegative quadratic pro-

gramming. In this method, the iterative solution is expressed in terms of the

positive and negative components of the matrix A in eq.(3.32). We let A+ and

A− represent the nonnegative matrix and negative matrix respectively. Then

Aij
+ = Aij if Aij > 0 and equal to zero if Aij < 0. Also Aij

− = |Aij | if Aij

< 0 and equal to zero if Aij > 0.

It follows that A = A+ - A−. In terms of these nonnegative matricess, the
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proposed multiplicative updates take the form

xi+1 = xi


−ai +

√
a2

i + 4(A+x)i(A−x)i

2(A+x)i


 . (3.39)

Here one can observe that eq.(3.39) prescribes a multiplicative update for the

ith element of x in terms of the ith element of the vectors a, A+x and A− x.

Secondly since the elements of x, A+, and A− are nonnegative, the overall factor

multiplying xi on the right hand side of eq.(3.39) is always positive. Therefore

the updates never violate the constraints of nonnegativity.

We can easily show that these updates have fixed points wherever the objective

function, χ2 achieves its minimum value. Let x∗ denote a global minimum of

χ2. At this point one of two conditions must hold for each element x∗i : either

(i) x∗i > 0 and
∂f(x∗)
∂xi

= 0

or (ii) x∗i = 0 and
∂f(x∗)
∂xi

≥ 0

The first condition applies to positive elements of x∗i whose corresponding terms

in gradient vanish and whose derivatives are given as

∂f(x∗)
∂xi

= (A+x)i − (A−x)i + ai. (3.40)

The second condition applies to zero elements of x∗i and the corresponding terms

in gradient are greater than zero there by pinning x∗i to the boundary of the

feasibility region [43]. Fixed points of the multiplicative updates occur when

either x∗i > 0 and δi= 1 or x∗i = 0. It can be shown from eq.(3.39) and

eq.(3.40) that ∂f(x∗)
∂xi|x∗ = 0 implies δi= 1 [32]. The multiplicative updates in both

cases take the value δi= 1, the minimum is a fixed point and therefore the fixed

point of the iteration must be a minimum.
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3.7 Mass sheet degeneracy

In this section we will focus on possible methods to break the mass sheet degen-

eracy by using distortion and redshift information of background sources. The

mass sheet degeneracy can be broken provided that the redshift of the observed

sources is known with accuracy.

The determination of the surface mass density κ can only be obtained up to

a degeneracy of

κ→ κ
′
= λκ+ (1− λ), (3.41)

where λ is constant. This invariance leaves the relation between intrinsic and

observed ellipticity unchanged. This implies that the mass sheet degeneracy can

not be broken by using only measurements of the distortion of the background

galaxies, and this can affect the accuracy of mass determination.

The robust solution to this problem is to constrain λ by simply making reason-

able assumption about κ. For instance one can assume that the mass density

decreases as one moves away from the center implying that λ > 0. Secondly, κ

can not be negative and hence we can obtain the upper limit of λ (for κ > 1).

Still, the determination of cluster mass or lens mass distribution can not be

accurately obtained. A source of uncertainty in determining the cluster mass

distribution is the mass sheet degeneracy.

In the simple case of background sources having the same redshift, the mass

sheet degeneracy can be understood from the equations we discused in previous

sections. Consider the transformation of the potential

ψ(θ, z) → ψ
′
(θ, z) =

1− λ

2
θ2 + λψ(θ, z), (3.42)
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where λ is an arbitrary constant. Here λ is linked to the potential as shown in

eq.(2.72) and eq.(2.73) and κ is given in terms of potential as

κ =
1
2

(ψ11 + ψ22) , (3.43)

where the subscripts denote the second partial derivative. Using eq.(3.42) one

can show that the transformation of κ is

κ(θ, z) → κ
′
(θ, z) = λk(θ, z) + (1− λ). (3.44)

Also, shear transforms as

γ(θ, z) → λγ(θ, z). (3.45)

According to Geiger and Schneider [24] in the case of a known redshift dis-

tribution, a similar form of the mass sheet degeneracy holds to a very good

approximation for clusters with the reduced shear g ≤ 1 for all source redshifts

z [24]. In such a case the weak lensing mass reconstruction is affected by the

degeneracy

κ→ κ
′ ∼= κ+

1− λ〈Z(z)〉
〈Z2(z)〉 , (3.46)

where Z(z) is the cosmological weight function defined as

Z(z) = lim→∞
Σcr(zd, z)
Σcr(zd, z)

H(z − zd). (3.47)

The link between k and Z is given through the relation

θ(z) = Z(z)κ(θ). (3.48)

In eq.(3.47) H(z − zd) is the Heaviside step function which shows that the

sources that are closer to the observer than the lens are not lensed. In the above

eq.(3.46) the term 〈Zn(z)〉 represents the n th order moment of the distribution

of cosmological weights. As a result the weak lensing mass reconstructions are

still affected by the degeneracy even for the sources at different redshifts. This

may, however, be broken by using a sufficient number of measurements.
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Suppose that half of the galaxy sources are located at a known redshift i.e.,

z1 and the other half at redshift z2, then the weak lensing reconstruction con-

tains two different sets of information and the result is two different mass maps,

κ
′
(θ, zi) and κ

′
(θ, z2) leading to two different forms of the mass sheet degen-

eracy [24]. Thus, the equation describing the two mass reconstructions can be

given as

κ
′
(θ, zi) = λκt(θ, zi) + (1− λ), (3.49)

for j=1,2. Here κt(θ, zi) denotes the true projected κ of the lens at angular

position θ and redshift of sources zi. Since the transformation above holds for

any angular position θ, we hence have the system of equations to be solved for

λ(1) and λ(2). The relation between κt(θ, z1) and κt(θ, z2) can be seen through

eq.(3.48). It follows that

κt(θ, z(1))Z(z(2)) = κt(θ, z(2))Z(z(1)). (3.50)

Suppose one measures both κ
′
(θ, z(i)) at N different positions θj , this gives us

a system of 2N equations to be solved for λ(i) and κt(θj). The mass sheet

degeneracy is thus, at least in theory, lifted. In the Weak and Strong lensing

package analysis (WSLAP) used to obtain the results in chapter four, the mass

sheet degeneracy is dealt with by solving such systems of equations. Here not

only are the individual source redshifts assumed to be known (via, for instance,

photometry), and not only do we have large numbers of equations, but we also

see that adding strong lensing acts as a regularizing procedure [17].
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Chapter 4

Simulations

Since we ultimately wish to investigate the application of gravitational lensing

to reconstructing cluster masses, we need to consider how well these techniques

perform. Parametric techniques are model dependent, allowing for the intro-

duction of systematic errors that are hard to estimate [17] [28] [30]. On the

other hand, nonparametric techniques are purely statistical in nature, and may

therefore be studied in this light. This task is likely to be a large and ongoing

one, since the best tests we can construct consist of using all known techniques

on astronomical data and looking for consistence, within known errors and de-

ficiencies. At this point this procedure is labour intensive, even with using the

Weak and Strong Lensing Analysis Package (WSLAP) software. However, an

important first step is to consider how well the code performs on simulated data.

This is more easily done.

The combined strong and weak lensing package WSLAP has been analysed

in this chapter from the perspective of its internal consistency/biases and sys-

tematic effects. Most of this analysis was done using simulated data and focused

on assessing the dependence on different choices for the basis functions and the
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covariance matrix; a comparison between the bi–conjugate and non–negative

quadratic methods; and comparison with the pure weak lensing and pure strong

lensing cases [17].

Similar analysis was performed on the non–parametric strong lensing package

(SLAP) [16] [17] and focusing additionally on the residual, ε, and number of

cells. [16]. There was also performed a comparison with other mass reconstruc-

tion techniques [16].

In this chapter we seek to study the sensitivity of the WSLAP package to a

range of simulation parameters, and where applicable, to compare the results to

those obtained for its parent code, strong lensing analysis package, SLAP. The

perspective adopted is that of a user rather than that of a developer as was the

case in previous studies [17] [39][16][40].

We begin with a brief outline of the numerical procedure. We consider, in

turn, the effect on the reconstructed mass distribution of using the bi–conjugate

or nonnegative quadratic algorithms, as well as varying epsilon (minimization

threshold); the number of cells; the redshift of the lens; the number of sources;

and the number and geometry of sublenses. With an eye to a cosmological ap-

plication, we plot these against percentage error in total recovered mass. Note

that a positive percentage error indicates an underestmate of mass.

4.1 A typical simulation

A simulation consists

� the lens which is our target to recover
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� the observed arcs in the central region of the field of view and

� the shear measurement through the entire field of view.

The simulation starts by creating a cluster; for instance, we may consider a clus-

ter consisting of 6 sublenses, placed at redshift z = 0.2, and having a total mass

of 1.05×1015h−1M¯. After cluster creation the algorithm goes on subdividing

the lens into smaller cells. Since each mass cell contributes to the deflection

of light paths, the process of dividing the lens makes it possible for a better

approximation of the mass and the calculation of the deflection angle and the

position of images. The next thing that the algorithm does is to generate the

sources behind the cluster at different random positions. Some sources fall in-

side and some outside the caustic curves. The caustic curves are curves that

form when the light bundle is deflected by the ellipsoidal surface of the lens

mass distribution. If the sources fall inside the caustic curves we observe that

they are strongly lensed while those falling outside are weakly lensed.

To generate an image, the sources with redshift between 2.0 and 3, are placed

behind the cluster and lensed into arcs, see [31]. Some are lensed into more

than one arc. We consider seven sources within the range of redshift [17]. We

consider as shown in figure 4.1 arcs within the central part of field of view. The

central part constitutes a cluster rich in structure which strongly deflects light

from the source.

We also obtain the image of the reduced shear within the entire field of view.

The weak lensing data set consists of 169 measurements. We assume galaxy

ellipticities averaged over the area 0.4225 arcmin2 and a density of 100 galaxies

/arcmin2 [17]. We therefore assume 42 galaxies within that area. Figures 4.1
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and 4.2 show the strongly lensed arcs and the shear field respectively. These

values are consistent with observations [17].

Figure 4.1: strongly lensed arcs. Figure 4.2: shear field.

4.2 Bi–conjugate gradient method (BG) against

Non–negative quadratic programing method

(QADP)

Here we test WSLAP using the bi–conjugate gradient and non–negative quadratic

programming to perform the minimization process. In figure 4.3 we plot BG and

QADP recovered masses as a function of redshift of the lens. We see that, at

lower redshifts the QADP typically outperforms the BG method. However, at

higher redshift this advantage appears to disappear, and both techniques show

an increase in the error. This we attribute mostly to the fact that the image
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Figure 4.3: The graph of redshift of the lens percentage error in against percent-

age error in total mass using bi–conjugate gradient methods and non–negative

quadratic programming. The value of the epsilon used was constant everywhere

and equalled 10−12.

occupies a smaller field of view when the lens is located at higher redshift. Thus

most cells contain no information, and those that do, with insufficient solution.

We explore this further in the next section.

We noticed that the bi–conjugate method find the solution much faster than

the nonnegative quadratic programing method, which also suffers from memory

effects. On the other hand, the BG method may lead to point source solutions

and negative masses. This manifests as a need to take care not to choose ε too

small.

These issues are minimized when combining weak and strong lensing data, be-
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cause negative mass cannot reproduce the strong lensing constraints. We explore

these issues further in section 4.4. Examples of reconstructions performed using

QADP and BG methods are shown in figure 4.4 and 4.5. Note how the QADP

method move accurately recovers not only the cluster mass, but also the overly-

ing clouds/noise. The number of cells, sources and sublenses used is 500, 7 and

6 respectively. The redshift used for the lens is 0.2 and that of sources between

2 and 3.

Figure 4.4: The reconstructed mass obtained when using QADP. The left hand

side shows the reconstructed mass and the right hand side shows the simulated

mass.

Figure 4.5: The reconstructed mass obtained when using BG. The left hand

side shows the reconstructed mass and the right hand side shows the simulated

mass.
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4.3 Weak against strong lensing

Figure 4.6: The radial profile. Here the number of sublenses and cells used is 6

and 500 respectively. The number of sources is 7 and the redshift of sources is

between 2 and 3 while the redshift of the lens is 0.2.The dotted graph represents

the strong lensing analysis, the solid graph represents the original mass profile,

the dash graph represents weak lensing, and the dotted graph which almost

follow the same track traced by original mass profile represents data of combined

strong and weak lensing analysis.

Here we contrast between weak, strong and combine of radial profile. One can

see that using weak lensing alone reproduces almost overall the shape of the

original mass profile but falls off slightly at some points. This is due to the

problem of mass sheet degeneracy. When using strong lensing alone the graph

reproduces that of the original profile for some time and then quickly falls off.

However, when the combined data is used the graph almost reproduces that

of the original profile. From this experiment one can see that using strong and

weak lensing separately cannot produce satisfying results. Strong lensing is only
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sensitive in the central part and insensitive in the outer part of the lens mass

distribution which is opposite when considering weak lensing. Thus one can see

the advantage of combining both regimes is that they complement each other

trying to correct the deficits of each other.

We expect that at around 1 arcmin from the centre of the image, the WSLAP

algorithm will produce a bias due to neither the strong lensing nor the weak

lensing data being good here. This might also be an effect of the use of a multire

solution grid [17].

There is still an underestimate in the recovered mass, related to a systematic

loss of mass in the innermost and outermost regions, but this is less than the

case for a pure strong lensing analysis.

This effect appears to be dependent also on the effect of the residual ε or initial

conditions: a larger value of ε will tend to yield a smoother and lower mass

estimate, and initial conditions with larger mass fluctuations will typically yield

over estimates, especially in the outer regions.[17]

4.4 Epsilon

As observed in the preceding section, although BG is fast, one must take care not

to choose ε too small. We thus consider varying the value of epsilon and, as can

be seen from figure 4.7, we noticed that more mass was recovered corresponding

to the smaller values of epsilon. Thus, the lower the value of epsilon, the larger

the mass recovered. This is to be expected as the algorithm is performing to

higher tolerances. However, if one chooses ε too small the code has an infinite

loop. A judicious estimate would be for an underestimet of the mass of around
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20–30 percent for values of ε between 10−10 and 10−13. The upward trend in re-

covered mass at small ε is also seen in SLAP [16], but is much less severe. There

mass begins to diverge at around ε ∼ 10−11. Here the threshold is similar,

but the effect is much less serious. These thresholds correspond roughly to a

physical size for the sources of around 12h−1kpc. For large values of ε it appears

that, not only does the accuracy suffer, but that it is mildly erratic. This could

also be a consequence of unphysical mass [17]. At intermediate values it seems

clear that a larger ε yields a smooth and bigger underestimate of the mass. Our

consistent underestimates are a consquence of a conservative choice for epsilon.

Figure 4.7: The graph shows the variation of epsilon against the total mass.

Here the redshift of the lens was kept at 0.2 and that of the sources between 2

and 3.
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4.5 Number of cells

In an effort we made to reconstruct the mass profile while keeping other pa-

rameters constant but varying the number of cells, we found that increasing the

number of cells facilitates the recovery of mass. In all cases (both weak and

strong lensing) as the number of cells increases, the percentage error is reduced

implying that increasing the number of cells is one of the most powerful tools

in recovering mass distribution (see figure 4.8). Here, in all the cases except

where indicated, we used the bi–conjugate gradient method to reconstruct the

mass profile. The value of epsilon, ε, was chosen with care so as not to include

negative mass during the process of iteration. This value was chosen to be

ε = 10−12. In this experiment, the number of cells were chosen from 200 to

1500 cells. We found that, for an ∼ 50 percent underestimation, one should use

500 cells, while for an ∼ 20 percent error, one should use 1000 cells. Although it

Figure 4.8: The graph shows number of cells against total mass.

consistently outperforms using either data alone, the behaviour of the combined
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data with number of cells is clearly a composite of the behaviour for strong and

weak lensing separately. When studying the effect of the number of cells on

recovered mass using just strong lensing data, Diego et al [16] found that very

large values can negatively impact on the errors obtained. This is because the

number of cells is effectively a priori fixing the minimum scale/mass sensitivity,

and should not be greater than the resolution of the projected density of the

observed images. This appears to be less of a problem for the weak lensing case,

perhaps because it is more sensitive to more diffuse matter distributions.

Although the QADP algorithm outperforms the BG method for similar number

of cells, one can increase the number of cells in the BG method without signif-

icantly increasing calculation time. Moreover this can be done such that the

accuracy of the recovered mass is greater than that obtained using QADP for

lower numbers of cells.
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4.6 The redshift of the lens

Figure 4.9: Graphs of strong, weak lensing and combining data of strong and

weak lensing when using the bi–conjugate method without cropping.

In section 4.2 we observed that increasing the redshift of the lens, led to an

increase in the percentage underestimate. This we attributed to the fact that

the image occupies less of the field of view, and may be seen also in figure 4.9

where we see that weak, strong, and combined data yield decreasing accuracy

as redshift is increased.

However, this may be alleviated by judiciously cropping the image-i,e., focussing

in on the relevant lensing data. However, note that, with real astronomical data,

the ability to crop the image (and increasing the number of cells containing in-

formation) is constrained by the resolution of the telescope. Nevertheless, figure

4.10 shows the increase in accuracy that results.
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Figure 4.10: Graphs of strong, weak and combining data of strong and weak

lensing when using the bi–conjugate method with cropping.

Using eq.(2.58) with Ωk = 0; the matter era result is that a(t) ∝ t
2
3 ; us-

ing the definition of redshift eq.(??), and eq.(2.57), we may relate the size of

the cluster to its perceived angular scale via

δω =
δA√
Dang

; (4.1)

Dang = C

[
1√

1 + z

] [
1− 1√

1 + z

]
, (4.2)

where C is a constant. Using a scale of 1.7Mpc for the cluster ( ∼ 80 percent of

its virial radius) corresponds to 8.4 arcmin at z = 0.2, where C∼ 2.88 h−1Mpc.

The appropriate angular scale may similarly be calculated for other redshifts: e.g

at z = 0.4 we have δω ∼ 5.4 arcmin. One must take care not to crop the image

more than this scale since one obviously wishes not to exclude part of the image.

A similar calculation may be used to relate a telescope’s angular resolution
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to a scale at the lens position. Clearly one should avoid using a grid with cells

smaller than this scale, but with adaptive grids this is less easy to implement.

4.7 Number of sources

The main idea here is to investigate what happens to the lens mass distribution

if we vary the number of sources. With the help of the WSLAP package we kept

the number of sublenses and cells at 6 and 500 respectively while varying the

number of sources. We observed, as shown in figure 4.11, that certain number

of sources yield slightly better recovery mass. We speculate that this slight

Figure 4.11: The graph of number of sources against percentage error in total

mass.

variation arises because the number of arcs in the image plane reduces implying

that the data available to reconstruct the lens mass distribution is less. This

is likely with fewer sources, although the lens configuration and geometry may

also have an effect. We explore this possibility in sections 4.8 and 4.9. We note
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that, in practice, one should simply choose lens systems with rich structure, in

order to obtain the best results.

4.8 Number of sublenses

In this section we investigated the variation of the number of sublenses against

the reconstructed mass. The recovered total mass was observed to be increasing

and decreasing as the number of sublenses was changing. We notice that the

graph obtained is some form of zigzag but otherwise is quite robust. The reason

for this might be due to different weights of each sublenses leading to weak

effect. It is important to understand how serious the problem might be: The

relatively flat curve in fig 4.11 may be unrepresentative. We therefore consider

next the effect of lens geometry. In figure 4.11 the number of sources was kept

constant at 7 and the redshift of the sources were taken between 2 and 3. The

number of cells considered was 500.

Figure 4.12: The graph of number of sublenses against total mass using bi–

conjugate gradient method.
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4.9 Lens configuration

In this section the algorithm was used to test the lens configuration. In order to

do that the sublenses were put at different locations and after simulating and

analyzing the data the resulting mass recovered was recorded. The images of

the recovered lens mass distribution for each configuration is shown in figures

4.13 to 4.31. During this experiment the number of cells was kept constant at

500. The number of sources was also kept constant at 7 while the redshift, z, of

the lens was at 0.2 and the redshift of the sources was between 2 and 3. Here

the total true mass used was 1.05× 1015h−1M¯. After orienting the sublenses

at different positions, we observed that certain sets of orientations yield more

mass than others but the difference in mass obtained was not large.

Figure 4.13: The graph of lens configuration against percentage error in total

mass

The following pictures shown from figure 4.13 to 4.31 show the lens mass dis-

tribution of different lens configuration. The left panels show the recovered mass
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and the right panel show their corresponding simulated lens mass distribution.

We encourage the reader to focus on the bright sports of the simulated mass to

see the different pattern obtained. The overall diffuse structure is superimposed.

Figure 4.14: picture of 0.72× 1015h−1M¯ mass

recovery

Figure 4.15: picture of the corresponding simu-

lated lens mass distribution

Figure 4.16: picture of 0.74× 1015h−1M¯ mass

recovery

Figure 4.17: picture of the corresponding simu-

lated lens mass distribution
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Figure 4.18: picture of 0.75× 1015h−1M¯ mass

recovery

Figure 4.19: picture of the corresponding simu-

lated lens mass distribution

Figure 4.20: picture of 0.726×1015h−1M¯ mass

recovery

Figure 4.21: picture of the corresponding simu-

lated lens mass distribution
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Figure 4.22: picture of 0.723×1015h−1M¯ mass

recovery

Figure 4.23: picture of the corresponding simu-

lated lens mass distribution

Figure 4.24: picture of 0.752×1015h−1M¯ mass

recovery

Figure 4.25: picture of the corresponding simu-

lated lens mass distribution

71



Figure 4.26: picture of 0.731098207805972 ×

1015h−1M¯ mass recovery

Figure 4.27: picture of the corresponding simu-

lated lens mass distribution

Figure 4.28: picture of 0.726×1015h−1M¯ mass

recovery

Figure 4.29: picture of the corresponding simu-

lated lens mass distribution
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Figure 4.30: picture of 0.727×1015h−1M¯ mass

recovery

Figure 4.31: picture of the corresponding simu-

lated lens mass distribution

Figure 4.32: picture of 0.770×1015h−1M¯ mass

recovery

Figure 4.33: picture of the corresponding simu-

lated lens mass distribution

.
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4.10 Initial conditions

The minimization algorithms used require that one specify initial conditions.

It is therefore necessary to consider the dependence on these initial conditions.

This may be done by using multiple minimizations with random initial con-

ditions. The initial conditions are presented in figure 4.35 by three vertical

lines. Each vertical line marks the total mass of the initial condition, X0. The

first vertical line corresponds to random masses between (all masses in units

of h−11015M¯ between 0 and 3×10−3h−1M¯ and has total mass of 0.75 in

X0. The second vertical line corresponds to random masses between 0 and

4×1015h−1M¯ and has the total mass of 1 in X0. The third vertical line corre-

sponds to random masses between 0 and 5×10−3h−1M¯ and has a total mass

of 1.25 in X0. As we can see from figure 4.35 the first set seems to predict the

right profile while the second and the third sets produced the solutions which

under predict masses in the outer regions.

An additional advantage of the above considerations is that they allow for in-

ternal estimates of the errors in the recovered mass. Plotted in figure 4.35 is

the histogram showing the recovered total mass against frequency of solution.

As can be seen the error is of the order of 20 percent. This is also consis-

tent with those reported by [17]. We also show the radial profiles for the 1000

minimizations, as the envelope of curves in figure 4.34.
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Figure 4.34: Reconstructed profile after minimizing a thousand times. Here a

different initial condition is choosen at each minimization step.

Figure 4.35:
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Chapter 5

Conclusion

The procedure described and illustrated in this dissertation is a non-parametric

method for inverting a gravitational lens, making no prior assumption about the

lens mass distribution. In this dissertation we began with a review of the theory

of general relativity, cosmology and provided a brief discussion on the physics of

gravitational lensing as well as the relevant statistical techniques. We then gave

a detailed description of non-parametric mass reconstruction via gravitational

lensing, before turning to an analysis of the WSLAP software, using simulated

data.

During our analysis we noticed that:

� The bi–conjugate gradient method is quicker than non–negative program-

ming techniques, and its problems are largely eliminated by combining

weak and strong lensing data.

� Increasing the redshift of the lens, leads to an increase in the percentage

underestimate of lens mass distribution. This may be partially alleviated

by increasing the resolution of the algorithm of the image, constrained by

telescope resolution.
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� More lens mass was recovered when choosing reasonable smaller values of

ε. However, for very small and very large values of ε it appears not only

that the accuracy suffers, but that it is mildly erratic.

� Increasing the number of cells is one of the most powerful tools in recover-

ing most of the lens mass distribution. Again, the constraint is ultimately

imposed by the telescope resolution, via its impact on the minimum scale

for cell size, which is affected by the number of cells in an adaptive sce-

nario.

� Changing the number of sources, the number of sublenses, and the lens

configuration yield slight variations in recovered mass. This is probably

the result of slight variations in the richness of the image.

� Using strong or weak lensing alone does not give a robust result. We

consistently observe that the best results can be obtained when using the

two data sets together.

Our overall conclusion is that the WSLAP package yields results with less than

30 percent error out to z = 0.4, and consistently less than 50 percent, out to z

= 1. This should be compared to errors of around a 40 percent underestimate

for strong lensing data alone, and a lens at z = 0.18 [45]. Claims are made that

including null space information reduces error to single figure percentages [16],

and multiple minimizations (with different initial conditions) suggest similar

figures for WSLAP. However, note that the latter were performed for a given

lens geometry (at z = 0.2) and agree with our results at that redshift.

The work described in this dissertation leads naturally to the following several

future projects. At an ongoing level, we are:

� Testing the WSLAP package against simulations, particularly with mul-

tiple minimizations so as to obtain internal error estimates.
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� Testing via comparison with other methods as applied to observational

images. As a first step we intend applying the WSLAP algorithm to

A1689 (already analysed non-parametrically using strong lensing data)

[13][4][17][27].

The next stage of our inquiry shall include looking at the following issues:

� Investigating the effect of non diagonal elements in the covariance matrix.

This is motivated by the existence of correlations in strong lensing data,

which justify the use of a covariance matrix reflecting similar properties.

� Including the redshift uncertainty of the sources. Uncertainties of 15 to

20 percent are common [15], and have been investigated via multiple min-

imizations and a Gaussian probability distribution with mean and disper-

sion drawn from the data [17]. It is to be hoped, however, that including

additional constraints (for example via off diagonal elements in the covari-

ance matrix, or null space information), could yield better estimates.

Looking ahead to doing physics with WSLAP, we note that:

� To use WSLAP as a cluster survey tool not only requires error estimates,

but also needs additional automization of the algorithm, for instance, to

crop the image appropriately.

� In order to use lensing data in cosmology, one needs to calculate the num-

ber of systems that need to be observed, with what resolution, in order

to do useful cosmology. We note that the cosmological implications of

lensing studies have already been commented upon [33][55].
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