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ABSTRACT 

Aromatic rings are a negative contributing factor in the bioavailability of chemical compounds 

in drug discovery. Due to the inevitable effect the aromatic rings possess on the bioavailability 

of chemical compounds, methods to continuously evaluate their effect should be ceaseless. As 

such, this study aimed at investigating the impact of aromatic ring count on the bioavailability 

of chemical compounds by screening a small collection compound library comprising 13 

compounds. The permeability of chemical compounds was evaluated using the PAMPA assay; 

the results further analysed through spectrophotometry. The PAMPA assay is an automated 

system and was used to allow for rapid screening of compounds and the screening was 

successful. Overall, only four chemical compounds showed poor permeability: ammonium 

bromide, gibberellic acid, salicylic acid, and PMSF. Osiris Property Explorer was used to screen 

all 13 compounds for cLogP, LogS, TPSA, Toxicity risks, drug-likeness and drug score.  Most 

of these compounds produced suitable logP (< 5) and were therefore predicted to possess good 

absorption and permeability properties. Percentage protein binding was assessed separately; all 

chemical compounds were screened for percentage protein binding using Amicon Ultra-15 

Centrifugal Filter method. The results indicated a broad range of protein binding for all 

chemical compounds tested (70.29 – 98.23%). Lipinski’s Rule of Five was applied to all 

chemical compounds and compounds were scored against the four rules. Most compounds 

adhered to all four rules with only two compounds violating one or two rules. A relationship 

between parameters: permeability, drug-score, and percentage protein binding, against the 

aromatic ring count of chemical compounds, was explored.  Overall, no real relationship existed 

between any of these parameters and aromatic ring count, as was indicated by low correlation 

coefficients (R2) (< 0.95). Overall, this study resulted in the successful screening of 13 chemical 

compounds and the establishment of effective permeability, percentage protein binding assays 

for future studies.  
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CHAPTER 1: INTRODUCTION 
 

 

1.1 Brief history of natural compounds 

Natural products are described as compounds that are found occurring naturally (plants) or from 

living organisms, are bioactive and a group of compounds with particular molecular properties 

(Croteau et al., 2000). Plants are therefore a reach source of natural products and a few of the 

earliest bioactive compounds extracted from plants include colchicine, morphine, and atropine, 

to name a few (Balunas and Kinghorn, 2005 & Veeresham, 2012). One of the notable 

breakthroughs in pharmaceutical industries emanated in the year 1806 when Friedrich Serturner 

isolated a pure natural compound, morphine from the opium poppy.  Later in 1897, Bayer and 

colleague isolated aspirin as the first semi-synthetic pure drug which was synthesized from a 

natural compound, salicylic acid, which was isolated from the willow tree. Moreover, the 

isolation of morphine laid an important foundation for the isolation of more other natural 

compounds like strychnine, colchicine, and codeine and, oxycodone which is still useful today 

for modulating analgesic activities. Isolated in the same period was quinine which is one of the 

famous drugs of natural origin which, and for more than 300 years, was the only cure used for 

malaria. A further contribution of natural products in drug discovery continued in the year 1942 

when penicillin began to commercialize as the first natural product originate antibacterial 

commercial drug. The success of penicillin as a natural product changed the way 

pharmaceutical society view natural products as it expanded the knowledge of antibacterial 

therapies and the discovery of more antibiotics such as streptomycin. This historical importance 

of natural products provided new inspiration in the development of new drugs for different 

therapeutic targets and more natural product drug derivatives are still introduced on the market 

today as FDA approved (Jantan et al., 2015). In 2000 and 2006 alone, an estimated 26 natural 

products were approved by the FDA for the drug market and a further increase of natural 

product approval for the market is expected in the coming years as interest on natural products 

keeps growing (Lam, 2007).   

Half of all the drugs in the market today originated from natural products and the success of 

natural products over the years was facilitated by, mostly the development of synthetic 

chemistry which was a very important factor as it enabled the development of synthetic 

methods, isolation techniques, and structure exposition methods (Dias et al., 2012). Natural 
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products possess different chemical structural moieties thus a plea for structure elucidation 

methods, and this structure difference in natural products serves as an advantage for binding to 

protein receptors or enzymes and also for further discovery of new drug candidates. 

 

1.2 Natural products properties 

As mentioned above in the description of natural products that they are a group of compounds 

with particular properties and these properties are helpful in differentiating between natural 

products and other compounds like synthetic compounds. Chemical informatics, shortly, 

cheminformatics analysis is used to identify the molecular properties that distinguish natural 

products from other available compounds (Brielmann et al., 1999). Through cheminformatics 

analysis, which was performed by Henkel et al., (1999) natural products appeared to have much 

more complex chemical structures, with an average of three stereogenic centers. Further 

analysis revealed that bridgehead atoms in natural products were more than there are in other 

compounds and more oxygen-containing but less nitrogen-containing moieties than other 

compounds. These properties define and separate natural products from the rest of the available 

compounds. 

   

1.3 Comparison between natural compounds and synthetic compounds 

A comparison of synthetic compounds to natural compounds reveals that synthetic compounds 

usually adhere to parameters which are mostly compiled in the Lipinski's rule of five (RO5). 

Synthetic compounds have lower molecular weight than natural compounds as the rule of five 

states that; an orally active drug should have a molecular weight of less than 500 Da, whereas 

natural compounds break this rule as some have a molecular weight greater than 500 Da but are 

still orally active drug potential candidates. This does not mean natural products are all greater 

in structure size than synthetic compounds since they also incorporate small molecules. The 

analyses by Lee and Schneider, on natural products based on the Rule-of-Five, revealed that 

natural products are slightly more lipophilic with a logP of 2.9 rather than 2.1 for most synthetic 

compounds. Natural products contain half the number of nitrogen atoms as synthetic 

compounds, 0.84 against 2.69, but contained twice as many oxygen atoms. This analysis was 

presented through the work of Feher and Schmidt (2003), where they calculated more than 40 

different molecular properties for natural products and synthetic compounds. Compared to 

synthetic compounds, natural compounds contain 10 times less sulfur and halogens. In addition, 
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through the Feher and Schmidt analysis, natural product structures displayed two or more rings 

than synthetic compounds, this, in turn, makes natural products to have more unsaturated 

moieties than synthetic compounds. In addition, the binding of natural compounds is greater 

than that observed in synthetic compounds. The distribution of the parameters from the rule of 

five is actually based on the calculated potential drugs’ properties and by definition, most 

natural compounds lie outside of these parameter’s cut-offs. Fascinatingly, most of these natural 

compounds are orally active compounds and potential therapeutics. Thus, the search for new 

therapeutics has produced tens of thousands of natural compounds. Natural compounds are 

typically identified through activity assays and advanced further along the drug discovery and 

development pipeline based on their modulation of a specific target.  

 

1.4 Toxicity 

1.4.1 Toxicity screening in drug discovery and development 

Most drug candidates fail due to toxicity at preclinical stages of drug discovery. Kramer et al 

reported attrition due to the toxicity of 70% occurring in the preclinical stage, and 23% of 

compound failure during registration due to attrition caused by toxicity and safety. To provide 

early estimates of the drug safety and to determine whether drug candidates is likely to proceed 

or fall out in further development stages, early in vivo preclinical toxicity testing is applied. 

Preclinical toxicity studies are important in providing an early assessment of a compound or 

drug’s risk in humans to avoid late-stage failures or withdrawals because drug failures and 

withdrawals in late-stage development due to toxicity are actually considered the main factor 

contributing to increased drug development costs and has gained considerable attention from 

the pharmaceutical industries. Accordingly, this has inspired the development and introduction 

of early preclinical toxicity testing models (Fielden and Kolaja 2008). There are different types 

of early preclinical assays applied to assess drug safety and these assays comprise of both high 

and low-to-intermediate throughput in vitro assays and in vivo toxicity studies (Kramer et al., 

2007). Toxicity screening models and their applications are preferably required in as early as 

the lead optimization step and this is a demand that most pharmaceutical industries are fighting 

to meet and thus the development of several approaches. The proposed models include in silico 

methods, a series of in vitro screening assays and limited in vivo animal tests and for the best 

rational approach, all these strategies need to be combined when evaluating toxicity.  
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1.4.2 Toxicity screening assays 

There are different toxicity screening assays that are commonly used in preclinical development 

each having a different contribution in predicting drug toxicity. The toxicity screening assays 

include the screening through MTT assay and screening through ATP measurement, to name a 

few. The MTT (3-(4, 5-dimethyl-thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide) in its original 

form is a yellow tetrazolium salt and is reduced to a blue precipitate formazan dye through a 

mitochondrion of metabolically active cells. The blue precipitate is extracted by an organic 

solvent. MTT assay is mostly used in cytotoxicity experiments where cell viability is measured 

through the quantification of the blue precipitate by fluorescence. This is the most famous 

method of testing for compound toxicity on all cell types where the HTS approach is applied 

with 96-well or more plates. The limitation of this assay is that it measures cell viability based 

on the activity of mitochondria, as live cells will have active mitochondria but cells affected by 

the compound's toxicity will die due to inactive mitochondria thus selecting for compounds that 

directly affect mitochondria might result in a toxicity overestimation. ATP measurement is easy 

and simple, it measures the amount of ATP released by live cells through chemiluminescence 

and is quantified through luciferin-luciferase assay. This assay can use 96-well or up to 384-

well plate treated live cells with different compounds at different concentrations or a specific 

concentration.  

 

1.5 Drug discovery and development 

The development of new drug molecules requires vast resources in intellect, as this is a complex 

field of research that basically incorporates multidisciplinary scientific systems such as 

medicine, chemistry, biotechnology, and pharmacology. Drug discovery is described as a 

process where new therapeutics which are against a specific target is discovered. The drug 

discovery process is a very lengthy and costly process that takes about 10-15 years of drug 

candidates' development at an estimated cost of up to $1.5 billion per successful drug. It is 

estimated that for every successful drug candidate reaching the market, an initial 5000-10000 

entities are evaluated for therapeutic activity. From the initial compound entities, approximately 

250 entities go into the clinical stage and it is reported that only one in these candidates might 
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be FDA approved. The drug discovery and development consist of different stages starting from 

the discovery of drugs which is the initial stage. The development stage includes; pre-clinical, 

clinical, FDA review and post-FDA approval. 

 

The design of new drugs needs to consider the effect the drugs have on their targets, this is 

called target validation, but more prominently, the design needs to address the drug's ability to 

elicit the effect against the human arrangement complications. These newly designed drug 

molecules are referred to as "lead" compounds, and these are basically chemical entities 

possessing pharmacological activity or bioactivity against specific set target with a potential to 

become drug candidate (Han and Amidon, 2000 & Wohnsland and Faller, 2001). Visual 

screening of lead compounds is impossible but the starting point for the development of a drug 

candidate is the compound's chemical structure. This is well described by Lipinski using the 

rule-of-five defined above (Section 1.3). When identified, through the discovery process, lead 

compounds proceed further into a development program where it is processed for a long period 

of time before FDA approval and market.  Whilst the design of lead compound is important, 

equal importance must be employed to both target validation and compound bioavailability for 

attaining positive therapeutic effect. Lead compounds are derived and designed from HIT 

compounds, from what is normally known as Heat to Lead (H2L) stage where HITS compounds 

are vigorously screened through high throughput screening models and optimized in order to 

identify lead compounds. The early discovery stage of the identification of HIT compounds is 

the selection of compounds from the compound library through either random or rational 

screening methods. This discovery takes approximately 5 years with approximate cost 

contribution of 25% as demonstrated in Figure 1.1. This signifies how difficult it is to screen 

compounds on compound libraries, and even then, only about 5000 compounds go through as 

potential HIT compounds. In definition, HIT compounds are compounds possessing specific 

inhibition against a specific target. Screening of HIT compounds involves random screening 

approach and rational design approach. 
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Figure 1.1: Diagram representation of the drug discovery and development in different stages and 

approximate years and cost contributing to each stage of the process. Clinical stage is the final valuation 

stage before reaching the FDA and thus drug assessment in this stage is longer and more costly than the rest 

of the stages. The drug discovery stage involves multiple evaluation models and assays to identify potential 

HITS compounds and thus takes approximately 5 years with a 25% cost contribution. Pre-clinical and FDA 

approval are two of the least time consuming and low-cost stages as pre-clinical is actually a median stage 

leading to the actual clinical testing and FDA approval is at the final post-marketing testing. 

Drug discovery Pre-clinical            Clinical trials FDA review Approval 

Phase I       Phase II   Phase III 

5 years 2 years                         6 years            2 years 

25% 7%                          63%               5% 
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1.5.1 Random screening approach 

Random screening approach screens compound libraries without any previous knowledge of 

the compounds that are screened against a specific target. The combination of natural libraries, 

parallel synthesis, combinatorial chemistry and drug repositioning all form part of the 

compound libraries. 

 

Table 1.1: Different random screening methods contributing to the compound libraries. 

Random screening methods Contribution to the compound libraries 

Combinatorial chemistry Compiles molecules related to an active 

particular scaffold against a target and 

synthesis of compounds not limited to a 

single target. 

Drug repositioning Redistribution of FDA approved drugs into 

new disease models. 

Natural library  Natural products derived directly from 

plants. 

Parallel synthesis Synthesis of compounds in parallel through 

spatially separated compartments. 

 

All of these screening techniques are normally screened through High Throughput Screening 

(HTS) automated systems. The evidence of random screening using natural library was 

documented through the screening of the famous South African plant used for a traditional 

medicine called Sutherlandia frutescens, derived from a natural product (Stokes, 2002). This 

natural product derivative had reached phase II in clinical trials as it was proposed to possess 

HIV/AIDS possible treatment activity (Hewer et al., 2012). Random screening using HTS 

increases failure rate as there will be thousands of compounds randomly screened without any 

prior knowledge and thus high running cost is associated with HTS. HITS compounds are 

normally identified in early discovery stages as these are compounds with no specific target 

screened against but due to this, High Throughput Screening of HITS compounds is not 

favourable to cost-effectiveness. 
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1.5.2 Rational design approach 

This approach selects a group of compounds with potential activity against a specific target 

from the available compound libraries. Unlike the random screening approach, the selection of 

compounds in this approach is due to prior compound knowledge against their target. 

 

Table 1.2: Structure-based and ligand-based design both contributing to the rational 

design approach. 

 

Structure-based design Ligand-based design 

Homology modelling Pharmacophore modelling 

Threading 3D QSAR 

De Novo design (VS)Virtual screening 

NMR  

X-ray crystallography  

Virtual screening  

 

Both structure-based design and ligand-based design are used in early stage of discovery and 

they share virtual screening which, through computational methods, predicts ligand interaction 

with a specific target. The incorporation of computational methods through rational drug design 

results in the rapid and low-cost evaluation of compound interactions with their specific target 

and thus HIT identification. The evidence of the success of rational drug design was 

documented through the discovery of ritonavir and indinavir, both are PIs. Rational drug design 

is also useful in prediction of the adsorption, distribution, metabolism, excretion, and toxicity 

(ADMET) properties due to the fact that all of these properties can be tested in silico, which is 

computer modeling. ADMET properties are important in the discovery of drugs more 

specifically in bioavailability prediction. 

 

 

1.6 Bioavailability 

Bioavailability is the key factor in drug discovery and development and it is well defined 

through the five major properties, which are adsorption, distribution, metabolism, excretion, 

and toxicity. Bioavailability is defined as the degree at which a drug molecule reaches the 
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systematic circulation. By definition, the degree at which a drug, after being administered, 

reaches the target is 100% bioavailable, but unfortunately, this is not true for orally administered 

drugs. Due to the oral administration route, drug bioavailability is affected, mainly by the 

ADMET properties. With absorption, a drug molecule is required to cross through a physical 

and selective barrier of both the small and large intestines and also endure through enterocytes 

and first phase metabolism in the liver. When a drug molecule has passed through the absorption 

barriers, it is distributed throughout the body to stimulate response to the target. The distribution 

of a drug molecule must be attained while the drug defends itself from the body's defence 

system because the body develops a defensive approach against xenobiotics. This is achieved 

through metabolism in the liver and excretion of compounds into bile, gut lumen, and urine. 

 

Absorption is one of the important properties from the ADMET properties and in order to 

clearly understand absorption, an understanding of a compound's permeability is crucial as it 

plays a central role in compound's oral absorption. Different techniques have been used in an 

attempt to study permeability of potential drug candidates and most of these techniques are in 

vitro, in vivo, in situ and ex vivo methods. The most effective methods thus far have been the in 

vivo methods which better investigate drug permeability. Considering the time and cost 

effectiveness of discovery of new drugs, in vitro methods are most favourable as they provide 

rapid screening option whilst minimizing the costs. The main advantage of the cell-mediated 

system is the ability to represent the human intestinal barrier and thus the more accurate 

prediction of the drug behaviour in actual human intestinal barrier rather than using in vivo 

assay (Orsi and Essex, 2010). 

 

1.7 Permeability  

1.7.1 Transporter- mediated permeability  

Studies reveal that there are 1022 membrane transporters encoded by the human genome but in 

our study, we only focused on the two types of drug transporters namely active and passive 

transported. In drug pharmacokinetics, it is essential to test the permeation of drugs that cross 

through a biological membrane thus it is important to know the types of transporters involved 

in the permeation of drugs to their target (Kell et al., 2014).  
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There are two super-families in which transporters fall under, these are the solute carrier (SLC) 

and ATP binding cassette (ABC) transporters. The major difference between the two is that 

ABC transporters are primary active transporters whereas SLC transporters depend on 

secondary transporters. This means that when ABC transporters need to pump their substrates 

across membranes they depend only on the hydrolysis of ATP. SLC transporters, on the other 

hand, consist of genes that encode ion-coupled secondary active transporters and are thus 

assisted transporters. The active efflux of environmental toxins, xenobiotics, cellular waste as 

well as the influx of nutrients that are essential, is also driven by these two membrane 

transporters and this activity may or may not depend on energy. 

 

The membrane permeation of both organic and inorganic compounds is completed by both 

ABC and SLC transporters and further assistance from channels, although channels allow 

permeability in their open state. Briefly, a complex between a substrate and transporter is 

formed and it results in a change in the conformation of the transporter and that causes the 

translocation of the substrate to the opposite side or target site of the biological membrane. The 

two types of mediated transporter mechanisms are passive diffusion and active transport and 

are both involved in the transport of mostly, solutes across the membranes (Kell et al., 2011). 

Active transport falls under ABC super-family because it involves the transport of solutes 

against their electrochemical gradients, this means that solutes will be concentrated on just one 

side of the plasma membrane and therefore cellular energy is required. This mode of 

transportation is one of the few energy-dependent mechanisms (Giacomini and Sugiyama, 

2006). By definition, active transport is the concentrative uptake of drugs which moves drugs 

from low drug concentration to a high drug concentration, while conversely, passive transport 

is naturally not concentrative and moves drugs from high concentration region to a low 

concentration region. One other difference between these two types of drug transporter is that 

passive diffusion does not involve carrier proteins that cross the membrane whereas active 

transport usually has carrier proteins as a mode of drug entry (Lentz et al., 2000). The most 

famous example of the active transport carrier protein is the P-glycoprotein, and is the most 

studied and understood transporter in drug discovery (Amin, 2013 & Lin and Yamazaki, 2003). 

This blood-brain barrier protein serves as an efflux transporter and depends mainly on ATP for 

its function and is famous for granting multi-drug resistance to tumour cells (Bode, 2009, 

Carpenter et al., 2014 & Pardridge, 2012). 
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The second type of transporter, passive transport involves the diffusion of solute or drugs from 

a high concentration gradient, across a membrane, to a low concentration gradient 

(Doppenschmitt et al., 1999 & Leung et al., 2012). The most famous example of the passive 

transport system is the parallel artificial membrane plate assay (PAMPA) which involves the 

movement of drugs or compounds from a high concentration region, the donor, into a low 

concentration region, the acceptor and does not depend on cellular energy for transport but 

rather diffusion of drugs or solutes. No energy is required in facilitated diffusion and basically 

involves the diffusion of both organic compounds and ions across the plasma membrane 

(Giacomini and Sugiyama, 2006) and so this type of transport falls under SLC super-family. 

Passive transport uses two means of drug or compound transport through membrane namely, 

paracellular and transcellular methods (Doan et al., 2002).  One other example of active 

transport, which is a derivative of endocytosis is called transcytosis (Figure 1.2) which basically 

captures surface substances of the enterocyte layer and passes them through a membrane layer 

while they remain bound within a vesicle. 

 

                                                            APICAL                                                 

 

              

                                                                                                                                          

 

 

 

                                                               BASAL 

Figure 1.2 Representation of absorption from the intestinal barrier. [A] paracellular diffusion, [B] 

paracellular enhanced through modulation of tight joints, [C] transcellular passive diffusion, [  ] 

intracellular metabolism, [D] carrier-mediated transcellular transport, [E] polarized apically modified 

transcellular, [F] transcellular vesicular transcytosis.  Figure reproduced from Ramlucken, 2014. 

 

1.7.2 Solubility and dissolution 

In the discussion of absorption and permeability, compound solubility and dissolution rate are 

the first most important factors that need to be addressed on the early stages of drug discovery. 
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The rate at which a compound completely breaks down into a solvent state is called dissolution 

and the ability of a compound to turn into a liquid solution is called solubility. Solubility is key 

in bioavailability as it accounts for more than 40 % NCEs insoluble in water which in turn leads 

to inadequate bioavailability. After oral administration, a drug normally stays in intestinal fluid 

for some time and is in, later transported to the permeable barrier and therefore it is very 

important for a drug to maintain its dissolution rate at minimal. 

 

There is a direct relationship between solubility and membrane permeability of drugs through 

drug absorption, this relationship was introduced in the year 1995 by the Biopharmaceutical 

classification system (BCS). The system provides a systematic outline to understand the model 

of drug absorption in terms of solubility and permeability (Sachan et al., 2014). The behavior 

of drugs absorbed inside the human intestines differs according to their solubility strength and 

permeability ability. The BCS system separates these drugs into four categories or classes in 

vivo/in vitro (I, II, III, and IV) as indicated in Figure 1.2. This system is a guideline for 

formulating strategies in improving the success of drugs in bioavailability and improving 

efficiency in drug development stages.  

 

Class I 

 

High Solubility 

High Permeability 

Class II 

 

Low Solubility 

High Permeability 

Class III 

 

High Solubility 

Low Permeability 

Class IV 
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Low Permeability 
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Solubility: volume of water required to dissolve the highest dose strength across the 

physiological pH range   
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Figure 1.3: The representation of the Biopharmaceutics classification system. The direct 

relationship between solubility and permeability, drugs absorbed in the human intestine against its 

solubility. Adapted from Amidon et al, 1995.   

Table 1.3: The chemical compounds reported to fall into each Class based on their 

dissolution rate and their absorption ability.  

Solubility 

 

 

Permeability 

High Low 

High Class I 

• Propranolol 

• Metoprolol 

• Diltiazem  

• Verapamil 

Class III 

• Acyclovir 

• Neomycin B 

• Enalaprilat 

• Alendronate 

Low Class II 

• Ketoconazole 

• Mefenamic acid 

• Nisoldipine 

• Nicardipine 

Class V 

• Chlorothiazide 

• Furosemide 

• Tobramycin 

• Cefuroxime 

 

Class I drugs are highly soluble and highly permeable drugs, which are most successful when 

it comes to bioavailability. Exceedingly successful in bioavailability means that these drugs 

possess at least 100% expectancy in intestinal absorption and 85% of these drugs completely 

disintegrate with 30 minutes at optimum pH. Class II drugs are highly permeable meaning they 

are absorbed easily but however possess low solubility meaning the rate of dissolution is low. 

Drugs in this Class display flexible bioavailability and thus need improvements in solubility for 

better bioavailability.   Meanwhile, Class III drugs are the opposite of Class II, these are drugs 

possessing high solubility and low permeability. Finally, Class IV drugs and these are very 

poorly absorbed drugs with low solubility and this category contains drugs that are mostly poor 

drug candidates and are not appropriate for oral drug discovery. The BCS system groups all the 

highly permeable drugs in Class I and II to be having a high in vivo/in-vitro correlation and low 

permeable drugs in Class III and IV demonstration a low in vivo/in-vitro correlation (Le Ferrec 

et al., 2001). 
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Compounds in Class I which include propranolol, metoprolol, diltiazem, and verapamil, are all 

good potential drug candidates but this does not mean these drugs go straight to the market, 

they would still have to qualify for pharmacokinetics and pharmacodynamics for their specific 

target.  Propranolol, for example, is known to be highly soluble in water and ethanol but 

however it suffers a high first-pass metabolism by the liver and only about 25%, on average, 

reaches systematic circulation. Compounds in Class II include ketoconazole and these can also 

be used for controlled drug delivery but however will require enhancements. Permeability tends 

to vary over a narrower range than solubility, meaning the difference between a highly 

permeable and a low permeable compound can be 50-fold whilst the difference between highly 

soluble and a low soluble compound might be a million-fold. Thus, the Class II drugs will still 

be a good candidate and possess merely good bioavailability. However, compounds in Class III 

and IV are generally problematic in controlled drug release development as they both display 

fairly low permeability. The solubility of drugs eventually affects its absorption, but there are 

quiet notable factors or properties that directly affect solubility, properties like ionization, 

particle size, and lipophilicity. To precisely explain the relationship each of these properties has 

with drug solubility and in turn effects on permeability, Di and Kerns (2015) used a schematic 

diagram linking each property to the other, presented in Figure 1.4 below. 
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Figure 1.4: Schematic representation of the effect each property has on solubility and 

permeability. All of these properties should be considered when addressing the issues of solubility 

and/or permeability, but as stated as above, permeability varies in a much narrow range than solubility. 

Reproduced from Di and Kerns, 2015.  

As helpful as the Lipinski’s rule of five is, there are other properties or criterions that should be 

incorporated with, to increase a compound’s potential to become more drug-like. Drug-like 

meaning the compound possessing functional groups and physiochemical properties that are 

similar to those of the known drugs. The above properties are all important contributors to a 

compound's drug-likeness and careful evaluation of each one should be ceaseless, as they are 

contributing to the drug discovery database. Nonetheless, Lipinski's rule of five is useful in 

excluding non-drug like compounds.  Bemis and Murcko (1996) described the framework of 

specific drugs as one of an alternative model of addressing the compound's drug-likeness and 

according to their study, there are about 33 frameworks used in drugs. These framework 

systems are structural filters that eliminate less "drug-like" compounds whilst promoting the 

progress of more "drug-like" compounds. All the available methods that address the issue of 

compounds and their drug-likeness properties are proof of how the field of drug discovery 

branches into different multidisciplinary (Ursu et al., 2011), this makes it inconceivable that a 

single study could address the success of potential drug candidates or natural compounds in 

general (Di et al., 2003).   

 

1.7.3 In vitro tools for predicting drug permeability 

Absorption of drugs is one of the significant properties in drug discovery and development and 

thus it is imperative to find the most accurate and suitable screening assays or methods in 

evaluating intestinal permeability (Milanetti et al., 2015). The use of standardized in vitro 

assays in high throughput screening of potential drug candidates and their application in vitro 

have been more successful than the in vivo uses. A few advantages of using the in vitro methods 

rather than in vivo is that it requires a much lesser number of compounds to be tested, 

experimental evaluations of test compounds are much easier as they exclude live animals, 

involves much quicker turn-around time, permits a perfect assessment of the mechanisms that 

are involved in membrane transport, provides data or information on the compound’s 

metabolism that occur during transport,  structure-transport relationships are easily designed 
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and developed and lastly, it delivers the free from contaminating plasma protein samples for 

analysis. 

 

1.7.3.1 Cell-based assays in permeability 

In substitution of live animal experiments, different in vitro screening assays that actually use 

cell monolayers are employed (Volpe, 2011). In this type of screening assay, cell types are 

grown on permeable membranes which resembles the gastral epithelial layer after being 

differentiated. This permeable membrane system allows for the measurement of permeability 

through the test compound's passive diffusion and it assesses the absorption of these compounds 

in correlation to the GI tract absorption model.  

  

 1.8 Aromatic rings 

 A potential drug candidate is normally categorized by its adherence to the Lipinski’s rule of 

five and one of the reasons this rule is so widely used is because medicinal chemists can 

consciously apply it to both small and large compounds. The principle of RO5 is the simplistic 

analysis of drug properties one of which is the number of aromatic rings contained in a chemical 

compound. Aromatic ring count generally involves benzenoid and heteroaromatics, 

heteroaromatics include pyridine and imidazole. Each ring in a chemical compound is counted 

individually and this means that groups such as indole and naphthalene each contain two 

aromatic rings. The aromatic rings are an important structural factor in drug discovery as most 

currently marketed drugs contain at least one aromatic ring (Ward and Beswick, 2014).    

 

1.9 Rationale for the study 

The bioavailability of a promising candidate can now be assessed within the early-stage drug 

discovery phase through adherence to Lipinski “Rule of Five” (RO5) and numerous in silico 

computer-aided drug discovery programs which are formulated from the experimental 

assessment of the ADME qualities of successful drugs. Due to their complexity, natural 

compounds cannot be accurately assessed by existing ADME models and theoretical 

evaluations. This project seeks to determine whether aromatic rings influence the 

bioavailability of natural products. To this end, the plasma protein-binding, permeability and 

metabolism of a collection of natural compounds were experimentally determined and carefully 

correlated to total aromatic ring count. 
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1.10 Aims 

The aim of this study is the experimental evaluation of the ADME properties of a small 

collection of natural compounds in order to determine the influence of aromatic ring count on 

the bioavailability. 

1.11 Objectives 

The objectives include the design, development, and validation of relevant biological assays; 

the evaluation of the compound collection within these assays. 

• Specifically, plasma protein-binding, permeability and cytotoxicity of a collection of 

natural compounds experimentally determined and carefully delineated. 

• Description of the Lipinski's rule of five involvement in guiding early-stage drug 

discovery from natural compounds.    
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CHAPTER 2: MATERIALS AND METHODS 

 

2.1. Chemical compounds 

Different chemical compounds; namely, aniline (cat. 242284, Sigma- Aldrich, USA), ascorbic 

acid (cat. A92902, Sigma-Aldrich, USA), ammonium bromide (cat. 121249797, Sigma- 

Aldrich, USA), caffeine (cat. C0750, Sigma-Aldrich, USA), carminic acid (cat. C1022, Sigma-

Aldrich, USA), coomassie blue (cat. 20279, Thermo-Fisher Scientific, USA), fuchsine (cat. 

215597, Sigma-Aldrich, USA), gibberellic acid (cat. 77065, Sigma-Aldrich, USA), salicylic 

acid (cat. 247588, Sigma-Aldrich, USA), methyl red (cat. 08714, Sigma-Aldrich, USA), 8- 

hydroquinone (cat. H9003, Sigma-Aldrich, USA) and colchicine (cat. C9754, Sigma-Aldrich, 

USA) were dissolved in dimethyl sulfoxide (DMSO) and stored in stocks (10 mg/ml) at 4 °C. 

Table 2.1 illustrates these compounds with their chemical structures and corresponding 

molecular weight in alphabetical order. The chemical structures were all constructed using the 

Advanced Chemical Development (ACD) / ChemSketch program (available at 

https://webstore.acdlabs.com/software-solutions/acd-chemsketch/ and last accessed on 

December 2018). 

 

 

 

 

 

 

 

 

 

 

https://webstore.acdlabs.com/software-solutions/acd-chemsketch/
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Table 2.1: The chemical structure and corresponding molecular weight (g/mole) of the 

chemical compounds investigated within this study. 

 Compound name Chemical structure Molecular 

weight 

(g/mole) 

Source 

1 Ammonium 

bromide N

BrH

H  

94.91 Synthetically 

derived 

2 Aniline NH2

 

93.13 Synthetic 

compound 

3 Ascorbic acid 

O
O

OHOH

OH

OH

H

 

176.12 Natural origin 

4 Caffeine 
N
H

N
NH

N
H

O

O  

194.19 Natural origin 

5 Carminic acid 

O

OH

OH

O

CH3

O

O

OH

OH

OH

OH

OH

OH

OH

 

492.38 Synthetic 

compound 

6 Colchicine CH3

NH

O

CH3

OCH3

O

OCH3

O

CH3

O

CH3

 

399.43 Natural origin  
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7 Coomassie blue 

N

CH3

NH

O CH3

N
+

S
–

O

O
O

CH3

SO O

OH

 

825.97 Synthetically 

derived 

8 Fuchsine 
NH2

NH2

NH

CH3

 

337.86 Synthetically 

derived 

9 Gibberellic acid  

OH

OH

CH2
CH3

OH
OC

O

 

346.37 Natural origin 

10 Methyl red 

N
N

N
CH3 CH3

OOH  

269.30 Synthetic origin 

11 Phenylmethylsulf

onyl fluoride 

(PMSF) 
S

O

O
F  

174.20 Synthetic origin 

12 Salicylic acid 

OH

OH

O

 

138.12 Natural origin 

13 8-hydroxyquinoline  

 

N

OH  

145.16  Synthetically 

derived 
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2.2 Lipinski’s rule of five and Osiris property explorer 

Lipinski’s rule of five analyses orally active compounds with their adherence to the four rules 

described by Lipinski (Lipinski, 2004). For potential drug candidates, the 13 compounds of this 

study were assessed to determine the number of hydrogen bond donors, the number of hydrogen 

bond acceptors, the molecular weight and logP. According to the Lipinski Rule of Five (RO5), 

a drug candidate is more likely to be orally bioavailable if it possesses a molecular weight of 

less than 500 Da, log P values not greater than 5, no more than 5 hydrogen donors and no more 

than 10 hydrogen acceptors.  Experimental compounds were scored according to these four 

rules (i.e. compounds adhering to all four rules were assigned a score of four out of 4 (4/4) 

while compounds violating one of these rules scored three out of three (3/3) and so forth. For 

further assessment, the Osiris property explorer online program was used (available at 

https://www.organic-chemistry.org/prog/peo/ and last accessed on December 2018). This 

program was used to predict solubility (log S), cLogP, Toxicity Risk, Molecular weights, TPSA, 

Drug-likeness, and the overall drug-likeness score of each compound. In order to do this, 

chemical structures of each compound were generated in the program window either through 

use of the chemical drawing tool provided or through entry of the simplified molecular-input 

line-entry system (SMILES) code into the SMILES translator provided.  

 

2.3 Effective permeability assay 

2.3.1 Standard curve construction 

The standard curves for all thirteen compounds were constructed by a two-fold serial dilution 

of a compound solution in 5% DMSO in phosphate buffered saline (PBS) beginning at an initial 

concentration of 500 µM for each compound. Ultraviolet / visible (UV/VIS) spectroscopy via 

the NanoDrop 2000 (Thermo-Fischer Scientific, USA) was used to determine the absorbance 

of each compound at eight different concentrations (500 – 12.5 µM) at a fixed wavelength 
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determined individually for each compound. Absorbance as a factor of concentration was then 

plotted for each compound. A linear regression line was fitted using Excel 2010 (Microsoft 

Corporation, USA). All equations were produced with a regression coefficient (R2 value) of 

greater than 0.95. 

 

 

2.3.2 Parallel artificial membrane permeability assay 

The parallel artificial membrane permeability assay was conducted as per manufacturer’s 

instructions and as previously described (Faller et al., 2001). Briefly, the stock solution of each 

compound was diluted in PBS to order to obtain the donor solution at a final compound 

concentration of 500 µM (< 5% final DMSO concentration). Each donor well of the 96-well 

multiscreen filter plate (cat. ELIIP10SSP, Merck-Millipore, USA) was coated with 5% hexane 

in hexadecane solution and allowed to evaporate for 1 hour. A solution comprising 5% DMSO 

in PBS (300 µL) was pipetted into the acceptor plate which was covered by the donor plate to 

create a PAMPA sandwich. The above-prepared solutions of the experimented compounds (150 

µL) were then transferred into the wells of the donor plate. The donor plate was covered to 

prevent evaporation and the completed PAMPA sandwich was incubated at 37° C. After 

incubation periods ranging from 4 to 72 hours, the donor plate and the acceptor plate were 

separated and absorbance of both the donor and the acceptor plate solutions were measured 

using the NanoDrop 2000 (Thermo-Fischer Scientific, USA). Lucifer yellow (LY; Sigma-

Aldrich, USA) was used as a non-permeant control and integrity marker for assay validation. 

Compound and LY permeability was conducted in experimental and biological triplicates 

(n=3). The following formulae [1 & 2] (Faller et al., 2001) was then employed to calculate the 

log effective permeability (LogPe) of the chemical compounds and LY percentage 

transmittance:  

 

LogPe = log [C*-ln (1-[drug] acceptor / [drug] equilibrium)]    [1] 

 

Where: C = (Vd * Va / (Vd + Va) Area* time, 

             Vd = Volume of the donor plate (cm3)  

 Va = Volume of the acceptor plate (cm3) 

 Area = Membrane surface area (cm2)  
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 Time = Incubation time for plate (s) 

 

 % T = Acceptor Abs / Abs Equilibrium * 100     [2] 

 

Where: Acceptor Abs = Absorbance value from the acceptor plate 

            Abs Equilibrium = Absorbance of the acceptor + Absorbance of the donor 

2.4 Evaluation of compound toxicity  

2.4.1 Cultivation of mammalian cells  

The HEK293T cell-line (Cat, 103, The reagent was obtained through the NIH AIDS Reagent 

Program, Division of AIDS, NIAID, NIH: HEK-293 Cells from Dr. Andrew Rice), was cultured 

in Dulbecco’s Modified Eagle’s Medium (DMEM) containing 4500 mg/L glucose (Sigma-

Aldrich, USA), 10% heat-inactivated fetal bovine serum (FBS; Thermo-Fisher Scientific, 

USA), 20 U /ml penicillin-streptomycin (Sigma- Aldrich, USA) and  20 µg/µl gentamicin 

selective antibiotic (Gibco, USA) (10 % DMEM). The cells were sub-cultured every 3 days 

through centrifugation at 200 x g for 5 minutes and resuspension of the cell pellet in 10 % 

DMEM. Cell counting was completed through the dilution of cell suspension at 1: 10 with 0.4% 

Trypan Blue stain and determined manually or by means of the T20 Automated Cell Counter 

(Bio-Rad, USA). Cells were cultured at a concentration of 1 x 105 cells/ml in a controlled 

environment incubator (SHEL LAB, USA) at 37°C and 5% CO2.   

 

2.4.2 Cytotoxicity bioassay  

The cytotoxicity bioassay was conducted as previously described (Harrison et al, 2015). 

Briefly, HEK293T cells were added to a 96 well culture plate (TPP, Switzerland) at a 

concentration of 2 x 104 cells per well (100 µl) and left to equilibrate at 37 °C and 5% CO2 for 

four hours. Thereafter, 100 µl of each test compound [ Warfarin (Sigma-Aldrich, USA) or 

Auranofin (Biomol International, USA)] at 8 different concentrations (serially diluted from 200 

to 1.56 µM in 10% DMEM media) was added to the plate. Following an incubation of 72 hours 

at 37°C with 5% CO2, 20 µl of a 5mg/ ml MTT solution (VWR Life Sciences, USA) was added 

to each well and mixed. The plate was then incubated under previously described conditions 

for 4 hours. The waste media was removed by inversion of the plate and replaced with 150 µl 

MTT solvent (4 mM HCl, 0.1% Triton X100 in isopropanol). Absorbance readings were 
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obtained at a fixed wavelength of 590 nm (VersaMax microplate reader; Molecular Devices, 

USA) and the concentration required to kill 50% of cells (CC50) was calculated for each 

compound using Origin 8.1 (OriginLab, USA). Standard deviations (SD) were determined 

using Excel 2010 (Microsoft Corporation, USA).  

 

 

2.5 Percentage protein-binding 

2.5.1 Percentage protein binding by filtration  

Amicon Ultra-15 Centrifugal Filter devices (Merck-Millipore, USA) with a molecular weight 

cut-off (MWCO) of 50K were used to separate bound proteins from the unbound proteins as 

per a previously described method (Barre et al., 1984). Briefly, into the 30K filter device, a 

maximum of 15 mL of each compound (500 µM) was mixed with bovine serum albumin (BSA) 

(Sigma-Aldrich, USA) at molar equivalents. The capped centrifugal filter tube was centrifuged 

using a swinging-bucket rotor centrifuge (Beckman Coulter, USA) at 4000 x g for 20 minutes. 

The bound protein and compound fraction were measured using the NanoDrop 2000 (Thermo-

Fischer Scientific, USA) at optimal wavelengths determined for each compound. Compound 

concentration was calculated from a standard curve constructed for each compound. To 

complete the percentage protein-binding (PPB) calculations, the following formulae [3 & 4] 

were applied: 

 

PPB = ((T-F)/T) * 100      [3]  

Where: T= Fraction bound 

F = Fraction unbound 

       Fu = Cu / Cinitial        [4] 

Where: Fu = Fraction unbound 

Cu = Concentration of the unbound compound 

Cinitial = Initial concentration of the compound  

 

2.5.2 Percentage protein binding by permeation  

The 96-well multiscreen filter plate (cat. ELIIP10SSP, Merck-Millipore, USA) was used to 

assess percentage protein binding of Warfarin (Sigma- Aldrich, USA) to BSA (Sigma- Aldrich, 

USA). Briefly, the donor compartment of the plate was filled with 150 µl Warfarin at 100 µM 
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while the acceptor compartment was filled with 300 µL BSA at a molar concentration 

equivalent. The plate was allowed to incubate at 37º C for 5 hours after which the data was 

captured and analyzed as above (Section 2.4.1). 

 
 

 

2.6 Statistical Analysis 

All experiments were carried out in at least triplicates and Microsoft (MS) Office Excel TM 

2010 was used to calculate all averages and standard deviations, as well as to construct line 

graphs and tables. The Origin 6.1 software was used in calculation of CC50. Statistical 

analysis through p-values was calculated to assess statistical differences within parameters 

and assay conditions. This was done using the online simple interactive statistical analysis 

(SISA) pairwise t-test (www.quantitativeskills.com/sisa/). The value of p < 0.05 were 

considered statistically significant at a 95% confident interval (CI). The correlation coefficient 

(r2) was used to measure the fit of the equation. 
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CHAPTER 3: RESULTS 
 

 

3.1 Theoretical characterization and assessment 

3.1.1 Lipinski’s Rule of Five 

The Lipinski RO5 evaluates potential drug candidates according to 4 criteria; namely, the 

number of hydrogen acceptors, the number of hydrogen donors, the logP and the molecular 

weight. Compounds that adhere to the Lipinski RO5 are more likely to be orally bioavailable 

than those with properties that violate the four RO5 criteria. Typically, compounds that violate 

more than 2 of the rules are considered to have poor bioavailability and unlikely to be pursued 

further as candidates to be administered orally (without structural changes made to the 

compound to address the specific violation). As shown in Table 3.1, the compounds assessed 

within this study adhered well to the Lipinski RO5 with 11 of the 13 compounds producing 

scores of 4/4. The only exemption to this was the pigment, coomassie blue, which, as a large 

biomolecule, greatly exceeded the 500 kDa cut-off imposed by the RO5. In addition, lower 

bioavailability of carminic acid was predicted as it also exceeded the < 5 hydrogen bond donor 

criteria and therefore obtained a Lipinski RO5 score of 2/4. As such, the number of aromatic 

rings within a compound may play a direct role in determining the bioavailability of the 

compound as each ring increases the molecular weight of the compound by approximately 78 

kDa. As displayed in Table 3.2, the chemical compounds assessed within this study contained 

at least two or more aromatic rings.  
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Table 3.1: The scoring of chemical compounds using the Lipinski’s rule of five 

Compound name Rule of five scores ( /4)a 

Ammonium bromide 4  

Aniline 4  

Ascorbic acid 4 

Caffeine 4 

Carminic acid 2 

Colchicine 4 

Coomassie blue 3 

Fuchsine 4 

Gibberellic acid 4 

Methyl red 4 

Phenylmethylsulfonyl fluoride 4 

Salicylic acid 4 

8-hydroxyquinoline 4 

a The above values are scores obtained by each compound when assessed through the four criteria that 

constitute the Lipinski Rule of 5.   
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Table 3.2: The number of aromatic rings in each experimental compound  
 

Compound name Aromatic ring count 

Ammonium bromide 0 

Aniline 1 

Ascorbic acid 1 

Caffeine 2 

Carminic acid 4 

Colchicine 3 

Coomassie blue 6 

Fuchsine 3 

Gibberellic acid 3 

Methyl red 2 

Phenylmethylsulfonyl fluoride  1 

Salicylic acid 1 

8- hydroxyquinoline 2 

 

3.1.2 Osiris Property Explorer 
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To further explore the physio-chemical and drug-like properties of the test compounds, each 

compound was screened through the Osiris Property Explorer program. The compounds 

screened all produced suitable clogP (< 5.00) and only two compounds were identified with 

solubility values > - 4 (Table 3.3). Therefore, 11 chemical compounds were predicted to possess 

good absorption and permeability properties (Escobedo-González et al., 2017). Good 

absorption ability of these compounds is complemented by their high TPSA scores. This 

notwithstanding, many of the compounds were predicted to have toxicity issues and were 

flagged as potentially mutagenic, tumorigenic and/or irritant (Table 3.3). In addition, the 

majority of the compounds produced low drug-likeness scores with only four of the compounds 

(ascorbic acid, caffeine, colchicine, and gibberellic acid) producing positive drug-likeness 

values. A drug-like score ranges from 0 to 1, where 1 indicates a good drug candidate while 

indicates a poor drug candidate. Each of the properties shown in Table 3.3 and the molecular 

weight of each compound (Table 2.1) combined produce the compound’s overall drug score. 

As shown in Table 3.2, the compounds generally produced low overall drug scores (ranging: 

0.07 – 0.63) with the exception of ascorbic acid which produced an acceptable score of 0.74.  

 

Table 3.3: Prediction of molecular properties of the test compounds using the Osiris 

Property Explorer Program  

Compound name cLogPa Solubilityb 

(Log S) 

Drug–-

likenessc 

Drug 

scored 

TPSAf Toxicity 

Riskse 

Ammonium bromide 0.0 -0.53 -1.0 0.63 0.0 None 

Aniline 0.98 -1.69 -1.98 0.07 26.02 

Mutagenic, 

tumorigenic, 

Irritant, 

reproductive 

effective  

Ascorbic acid -2.46 -0.35 0.02 0.74 107.2 None 

Caffeine -0.18 -1.14 2.59 0.20 58.44 

Mutagenic, 

tumorigenic, 
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aLogarithm of compound’s partition of coefficient between n-octanol and water, hydrophilicity measure. 
bMeasure of compound’s aqueous solubility 

reproductive 

effective 

Carminic acid -0.93 -3.32 -3.02 0.14 242.5 

Irritant, 

reproductive 

effective, 

mutagenic 

Colchicine 1.86 -3.05 1.02 0.42 83.09 
Reproductive 

effective 

Coomassie blue 2.28 -6.34 -16.7 0.1 89.85 
Reproductive 

effective 

Fuchsine 1.78 -3.40 -2.29 0.18 75.89 

Mutagenic, 

tumorigenic, 

reproductive 

effective 

Gibberellic acid -1.25 -0.15 0.47 0.39 125.03 None 

Methyl red 3.24 -4.16 -21.42 0.08 65.26 

Mutagenic, 

tumorigenic, 

reproductive 

effective 

Phenylmethylsulfonly 

fluoride 
1.97 -1.37 -12.22 0.29 42.52 

Irritant  

Salicylic acid 0.8 -1.33 -1.44 0.13 57.53 

Mutagenic, 

Irritant, 

reproductive 

effective 

8-hydroxyquinoline 1.63 -2.03 -1.55 0.12 33.12 

Mutagenic, 

tumorigenic, 

Irritant,  



31 

 

cScore of compounds containing predominantly fragments which are frequently present in commercial 

drugs 
dCombination of drug-likeness, cLogP, LogS, molecular weight, and toxicity risks. 
eToxicity risk predictor of a chemical structure. 
f Topological polar surface area 

 

 

The above parameters assist in predicting potential drug candidates from experimental 

compounds. The chemical structure of a compound effects its physiochemical properties and in 

turn influences the compound's bioavailability (Mao et al., 2016).  This prompted the evaluation 

of a correlation between the aromatic ring number and the drug score produced from the Osiris 

Property Explorer program. However, as displayed in Figure 3.1, there is no direct correlation 

to be drawn from the number of aromatic rings possessed by the compound and the drug-score 

produced by Osiris Property Explorer. It can be concluded from this that, beyond increasing the 

size of the molecule, the number of aromatic rings does not impact the predicted drug-like score 

of the compound (at least within this small set of representative compounds). 

 

 

 
Figure 3.1: The relationship between the aromatic ring number of each compound and their 

corresponding drug score generated through Osiris Property Explorer. The correlation coefficient 

value of 0.1543 represents a weak relationship between the aromatic ring count and drug score. There 

is a significant difference between the aromatic ring count and the chemical compound’s drug score (p 

= 0.05). 
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Ritchie and Macdonald (2009) pronounced the correlation between aromatic ring count and the 

lipophilicity of compounds. This thus prompted the evaluation of a correlation of lipophilicity 

values of chemical compounds, generated through the Osiris Property Explorer program, and 

aromatic ring count.  However, as can be observed from the Figure 3.2 below, there is no direct 

relationship to be drawn between the aromatic ring counts possessed by chemical compounds 

and their lipophilicity values as produced by the Osiris Property Explorer program. It can thus 

be concluded that despite all chemical compounds possessing lipophilicity values less than 

5.00, the number of aromatic rings does not directly impact the predicted lipophilicity of the 

chemical compounds. 

  

 

Figure 3.2: Relationship between the lipophilicity of chemical compounds and the aromatic ring 

count.  A weak relationship was observed between lipophilicity and aromatic ring count indicated by 

the low correlation coefficient value of 0.0389. According to Lipinski’s Rule of Five, lipophilicity values 

of compounds intended for oral administrative should be less than 5.00. There is a significant difference 

between the aromatic ring count and lipophilicity of chemical compounds (p = 0.05).  

 

Lipophilicity is inversely proportional to solubility, this means that as lipophilicity increases, 

solubility decrease or vice versa. The above figure displayed a low regression coefficient 

R² = 0,0389
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value for lipophilicity and aromatic ring count while Figure 3.3 below displayed a positive 

regression coefficient value of 0.5986 from the correlation between solubility and aromatic 

ring count. The solubility values were generated through the Osiris Property Explorer 

program. From the figure below, it can be concluded that increasing the number of aromatic 

rings in chemical compound structure results in an increased compound solubility. However, 

the correlation coefficient is lower than 0.95 and thus the relationship between the aromatic 

ring count and solubility, in this study, is weak.  

 

Figure 3.3: Relationship between the aromatic ring count and solubility of chemical compounds. 

The regression coefficient value of 0.5986 is an indicative of a positive relationship between aromatic 

ring count and solubility. However, there is a significant difference between the aromatic ring count and 

solubility of chemical compounds (p= 0.05) < 0.95.  

Drug-likeness scores were generated from the Osiris Property Explorer program. Drug-

likeness, as described above, score compounds against fragments that are similar to those in 

commercial drugs, and aromatic rings, amongst other properties, is well described for 

commercial drugs. However, on the contrary, there was no significant correlation between the 

drug-likeness and aromatic ring count, (p=0.05). The correlation coefficient was 0.0908 and 

this is a clear indication of a lack of a relationship between aromatic ring count and drug-

likeness. 
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Figure 3.4: Relationship between the aromatic ring count and the drug-likeness score of chemical 

compounds. The regression coefficient value, 0.0908 indicate a positive relationship between the 

aromatic ring count and drug-likeness but however, the relationship is weak as it is closer to 0.0 and 

thus the correlation between the two parameters is not significant. Most points fall below zero and only 

three points were greater than zero, this means that out 13 compounds, only 3 compounds possess 

predominantly fragments that are frequently present in commercial drugs. 

 

Topological polar surface area values were generated through the Osiris Property Explorer 

program and it assist in predicting the compound’s drug likeness. Chemical compounds with 

high TPSA accounts for a poor penetration of compounds in a hydrophobic environment while 

those with low TPSA are not transported (Fernandes and Gattass, 2009). Chemical compounds 

possessing high TPSA have values greater than 140 while compounds with low TPSA have 

values less than or equal to 60. The relationship between the aromatic ring count and the TPSA 

was explored and the resulting regression coefficient values was 0.3347. 
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Figure 3.5: Relationship between the aromatic ring count and TPSA score generated through 

the Osiris Property Explorer. The regression coefficient value of 0.3347 is an indicative of a 

positive but weak and insignificant correlation between the aromatic ring count and TPSA (p= 0.05) 

<0.95. Overall TPSA scores were low, with most points falling below 150, ranging from 150 to 45, 

implying the ease of absorption of the chemical compounds. 
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3.2 Evaluation of compound permeability 

The PAMPA assay is used to predict in vivo drug permeability and specifically assess the 

passive permeability ability of a chemical compound. In the PAMPA assay, a sandwich is 

formed which consists of a 96 - well donor compartment filled with test compounds dissolved 

in a buffer solution and a 96 - well acceptor compartment which is filled with a buffer solution 

only (free of test compounds). The donor compartment is impregnated with an alkane 

(hexadecane) which forms a rate-limiting artificial membrane barrier where compounds 

migrate by diffusion. Test compounds are collected through the acceptor compartment, which 

is infused with the donor compartment and both are separated by a lipophilic microfilter and 

were analysed through UV / Vis spectrophotometry (Mason, 2009 & Ramlucken, 2014).  

 

Lucifer Yellow was utilized within this study as a membrane integrity marker. To this end, LY 

was assessed within the PAMPA assay and absorbance values of the donor compartment and 

acceptor compartment solutions were obtained and utilized to calculate the percentage 

transmittance (Table 3.4). Similar to a previously published report by Ramlucken (2014), a 

transmittance value approximating 0 was obtained for LY following replicate analysis (Table 

3.4) indicating LY was not able to penetrate through the membrane. This finding was 

anticipated and in line with numerous other reports that establish LY to be a compound 

achieving low-to-no permeability across biological and artificial membranes (Stewart, 1978). 

This finding served to confirm the rigidity of the micro-filter donor compartment and validate 

the assay for further use.  

 

Table 3.4: Calculated percentage transmittance of Lucifer Yellow across the artificial 

membrane of the permeability assay.  

Donor plate 

(Absorbance)a,b 

Acceptor plate 

(Absorbance)a,b 

Equilibrium 

(Absorbance) 

% Transmittancec ± SDd 

0.546 -0.001 0.545 -0.002 ± 0.234 

a The above average values are obtained through replicate analysis (n = 3) 
b Absorbance readings determined at a wavelength of 427 nm 
c % Transmittance = Acceptor Abs / Abs Equilibrium * 100 
d SD = standard deviation  
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Following validation of the membrane integrity and assay procedure, the thirteen experimental 

chemical compounds (as described in Table 2.1) were successfully assessed for effective 

permeability in PAMPA assay. Initially, standard curves were generated for each of the test 

compounds. Wavelengths specific to each of the test compounds (Table 3.5) were obtained by 

identifying the absorbance maxima of the compound over a full UV/ VIS spectrum. Using this 

wavelength, a standard curve for each compound was constructed. Representative curves for 

caffeine, aniline, colchicine and salicylic are shown in Figure 3.3. Here, the standard curves for 

each compound were constructed after the determination of their specific wavelengths. With a 

regression line applied, the straight-line equation was determined and the R2 values of these 

curves were determined. Similarly, standard curves were produced for all compounds and, in 

each case, the R2 values of ≥ 0.95 were observed. 

 

Table 3.5: The absorbance maxima wavelengths of the compounds used within this study. 

Compound name Absorbance maxima wavelength (nm) 

Ammonium bromide 269 

Aniline 330 

Ascorbic acid 264 

Caffeine 272 

Carminic acid 275 

Colchicine 248 

Coomassie blue 465 

Fuchsine 540 

Gibberellic acid 254 

Methyl red 450 

Phenylmethylsulfonyl fluoride  174 

Salicylic acid 295 

8-hydroxyquinoline 240 
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The standard curves were constructed using the compound’s specific wavelengths. For caffeine 

(A) the absorbance maxima wavelength was 272 nm, aniline (B) absorbance maxima 

wavelength was 330 nm, colchicine (C) absorbance maxima wavelength was 248 nm and 

salicylic acid (D) absorbance maxima wavelength was 295 nm. The absorbance values were 

plotted against the compound concentrations produced through serial dilutions. The correlation 

coefficient (r2) values were well above 0.95.  The standard curves equation of the straight line 

was used to calculate the unknown chemical compound concentrations. 
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C                                                                                                                                  

    

D  

      

Figure 3.6: Caffeine (A), aniline (B), colchicine (C) and salicylic acid (D) standard curve 

constructed at different concentrations at specific wavelengths.  

 

The standard curves were constructed through a two-fold serial dilution starting from 10 to 300 

µM concentrations against the absorbance of each concentration at their specific wavelengths. 

The figures were constructed using Microsoft Excel, 2010 and the equation of a straight line, 

with a regression coefficient greater than 0.95, was used to calculate the unknown concentration 

of the chemical compounds below for effective permeability calculations. 
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Adhering to an established protocol (Faller et al, 2001), the permeability of each compound 

was then determined within the PAMPA assay following a 5-hour incubation. The absorbance 

of each compound in the donor and acceptor compartments was measured and the concentration 

determined from the standard curves previously constructed. Using the appropriate formulae 

(described in Section 2.3.2), the LogPe and effective permeability (Pe) values of each compound 

were calculated and reported in Table 3.6 below.  

 

Table 3.6: The determined LogPe and effective permeability (Pe) of each chemical 

compound.  

 
Compound name Log Pe 

a Pe  (cm s-1) 

1 
Ammonium bromide -4.20 6.31E-05 

2 
Aniline -5.30 5.01E-06 

3 
Ascorbic acid -6.32 4.79E-07 

4 
Caffeine -5.64 2.29E-06 

5 
Carminic acid -6.14 7.24E-07 

6 
Colchicine -7.85 1.41E-08 

7 
Coomassie blue -9.87 1.35E-10 

8 
Fuchsine -8.93 1.17E-09 

9 
Gibberellic acid -3.87 1.35E-04 

10 
Methyl red -9.25 5.62E-10 

11 
Phenylmethylsulfonyl fluoride -3.25 5.62E-04 

12 
Salicylic acid -4.32 4.78E-05 

13 
8-hydroxyquinoline -7.35 4.47E-08 

a Each value represents the average concentration calculated from replicate experiments (n = 3). 
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The PAMPA assay is capable of distinguishing between compounds of high, low or moderate 

permeability through the calculated effective permeability values. Compounds with LogPe 

values less than -5.00 are considered highly permeable compounds while compounds with 

LogPe values greater than -5.00 are considered to be compounds with lower permeability (Di 

Li et al., 2003). Ammonium bromide, gibberellic acid, salicylic acid, and PMSF yielded LogPe 

values higher than -5.00 while the remainder of the compounds produced LogPe values less 

than -5.00. Chemical compounds with LogPe values less than -5.00 possess high permeability 

while compounds with LogPe values greater than -5.00 possess low permeability, as reported 

by Di Li et al (2003).  

 

A distinction was observed between natural compounds and synthetic compounds based on the 

calculated average permeability of each grouping. The average permeability of natural 

compounds combines; ascorbic acid, caffeine, colchicine, gibberellic acid, and salicylic acid, 

while the average permeability of synthetic compounds combines; aniline, methyl red, fuchsine, 

PMSF, ammonium bromide, carminic acid. 8-hydroxyquinoline and coomassie blue. The 

average permeability (LogPe) of natural compounds was -5.60 while the average permeability 

of synthetic compound group was -6.78. This means that, on average, natural compounds 

produced an effective permeability which was higher, not significantly (p = 0.05), than the 

effective permeability of the synthetic compounds. On average, both natural and synthetic 

compounds show reasonably high effective permeability and with natural compounds showing 

a higher LogPe. A possible relationship between the number of aromatic rings in each chemical 

structure and the effective permeability was explored and is shown graphically in Figure 3.4. 

As shown, a positive relationship exists, an upward trend is observed but however, as evidenced 

through the correlation coefficient value of 0.2268. 
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Figure 3.7:  The relationship between the aromatic ring count for each test compound and effective 

permeability. There is a weak relationship between the effective permeability and the number of 

aromatic rings in each compound. There is no significant correlation between the aromatic ring count 

and the effective permeability (p = 0.05), < 0.95.  

 

The above figure indicates a weak relationship between the number of aromatic rings in each 

compound and their effective permeability. In this instance, the effective permeability and 

aromatic ring count were represented for all thirteen chemical compounds (i.e. both natural and 

synthetic compounds). However, there are noticeable differences between natural compounds 

and synthetic compounds, the most obvious is their structural make-up. Natural compound 

structures are more complex than synthetic compound structures, possessing two or more rings 

than synthetic compounds (Feher and Schmidt, 2003). There is therefore, differences between 

the aromatic ring count of natural compounds and those of synthetic compounds hence, a 

relationship between the number of aromatic rings on natural compounds against their effective 

permeability was explored (Figure 3.8A). Also, a relationship between the synthetic compound 

effective permeability and the number of aromatic ring count was explored (Figure 3.8B).
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A  

      

B 

      

Figure 3.8: Relationship between the effective permeability and the number of aromatic rings for 

natural compounds (A) and synthetic compounds (B) structure. There is no true relationship 

between the effective permeability of natural compounds and the number of aromatic rings as indicated 

by the correlation coefficient of 0.0285 (A). A relationship exists between the effective permeability of 

synthetic compounds and the number of aromatic rings displaying a correlation coefficient of 0.6565 

(B) as indicative of a positive correlation between the two parameters.  
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The relationship between effective permeability of the chemical compounds and molecular 

weight was also explored. From the figure below, it was clearly evident that coomassie blue, 

the compound with the highest molecular weight of the compounds tested, produced the lowest 

LogPe value while ammonium bromide, the compound with the lowest molecular weight of the 

compounds tested, produced one of the highest LogPe values. However, after plotting the 

molecular weight of each compound as a factor of its corresponding LogPe, there was no true 

relationship between these two parameters (Figure 3.9) the correlation coefficient was 0.3983.  

 

 

Figure 3.9: Relationship between molecular weight and LogPe of the experimental compounds. 

The values in the x-axis represent effective permeability from the test compounds. There is a weak 

relationship between the molecular weight of compounds and the effective permeability, indicated by a 

low regression coefficient (R2 = 0.3983).  The effective permeability of compounds is independent of 

their molecular weights.  

 

The relationship between the molecular weight of natural compounds and the effective 

permeability (A) was explored. There was a positive correlation between the molecular weight 

and the effective permeability of natural compounds with the correlation value of 0.245.  Also, 

the relationship between the molecular weight and the effective permeability of synthetic 
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compounds was explored (B). There was a positive correlation between the molecular weight 

and the effective permeability of synthetic compounds indicated by the correlation value of 

0.7108. The regression value of synthetic compounds was higher than that of natural 

compounds. The regression value of synthetic compounds suggests that increasing the size of 

a compound influences its effective permeability. However, the regression value of natural 

compounds is low, indicating the complexity in natural compounds structures, which is 

unrelated to the effective permeability. 

 

A 

 

B 

 

Figure 3.10: The relationship between the effective permeability and molecular weight of natural 

compounds (A) and synthetic compounds (B). There is a positive correlation between the molecular 

weight and the LogPe of both, the natural compounds and synthetic compound group. A relationship 

between the molecular weight and LogPe of natural compounds produced a correlation coefficient value 

of 0.245 which was significantly (p > 0.05) lower than the correlation coefficient value of 0.7108 

produced from the relationship between the molecular weight and LogPe of synthetic compounds. 
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3.2.1 Effective permeability with increased incubation times 

To determine whether increased incubation periods would alter the effective permeability of 

the compounds, the assay optimized and described above was adapted to include five distinct 

incubation periods of 4, 5, 11, 24 and 72 hours. For the purpose of this experiment, the 

compounds salicylic acid, caffeine, and colchicine were utilized to represent chemical 

compounds with 1, 2 and multiple aromatic rings respectively. The LogPe was calculated for 

each of the three compounds following replicate analysis at the five different time points. As 

depicted in Table 3.7, altering the incubation time did not increase the effective permeability of 

the three test compounds in any noticeable or significant (p > 0.05). These findings contradict 

studies by Faller et al., 2001 and Sugano et al., 2010 which suggest that increased incubation 

periods may increase the determined effective permeability of a test compound. Furthermore, 

these results clearly demonstrate that altered incubation times did not offer any selective 

advantage to the compounds based on the number of rings present in the structure. 

 

 

Table 3.7: Evaluated average LogPe for varying incubation time of three different 

chemical compounds. 

Time (hour) Average LogPe (cm/s)a 

Caffeine Salicylic acid Colchicine 

4 

5 

11 

24 

72 

-5.82 

-5.64 

-5.96 

-6.13 

-5.75 

-4.45 

-4.32 

-4.01 

-4.89 

-4.21 

-7.85 

-7.85 

-7.85 

-7.91 

-7.73 

Average -5,86  -4,376 -7,838   

SDb 0,190 0,330 0,066 
a Values determined as the average of replicate experiments (n=3) 
b SD = Standard deviation 
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3.3 Percentage plasm-protein binding of experimental compounds 

Percentage protein binding typically refers to the degree at which the test compound binds to a 

serum protein (typically serum albumin) and is calculated by deducing the amount of compound 

bound to protein in relation to the unbound fraction of the compound (Barre et al., 1984). In 

this experiment, PPB was determined using a micro spin filter cartridge with a MWCO of 30 

kDa. As such, samples less than 30 kDa were sieved through the filter unit and those larger than 

30 kDa were retained above the membrane. The protein used in this experiment, which was 

BSA with a MW of 66.5 kDa, was unable to sieve through the filter unit. Compounds which 

bound to the protein were trapped together with protein in the upper compartment of the filter 

unit which enabled the percentage protein-binding of the compound to be determined. Using 

this method, the percentage protein binding of the 13 compounds was determined and reported 

in Table 3.8. The results indicate a broad range of protein binding for the 13 chemical 

compounds tested (70.29 – 98.23%). The results displayed for percentage protein –binding are, 

overall, high values and thus small fractions of compounds will reach the target for therapeutic 

activity, in the framework of this study. 

 

Table 3.8: Evaluation of the percentage protein binding of the test chemical compounds. 

Chemical compound  Protein-binding (%)a  

Ammonium bromide 75.35  

Aniline 92.68  

Ascorbic acid 85.25  

Caffeine 80.42  

Carminic acid 73.25  

Colchicine 73.28  

Coomassie blue 71.57  

Fuchsine 98.23  

Gibberellic acid 78.32  

Methyl red 70.29  
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a Percentage protein-binding calculated from replicate experiments (n≥3) 

 

As indicated in Table 3.8 above, the percentage protein-binding for all thirteen compounds was, 

in overall, high. An average percentage protein-binding was calculated for both natural 

compounds and synthetic compounds and the results are displayed in the below figure. The 

average percentage protein-binding for natural compounds was 67.98% while the average 

percentage protein-binding for synthetic compounds was calculate at 85.01%. Natural 

compounds have 32.02 % on average, of compound fraction unbound while synthetic 

compounds have 16.99% on average, of compound fraction unbound. This means there will be 

more of natural compounds available for therapeutic activity than there is of synthetic 

compounds.  

 

 

 

Figure 3.11: The difference between natural compounds and synthetic compounds based on their 

percentage protein binding. The above is the calculated average percentage protein-binding for a group 

of natural compounds and a group of synthetic compounds. There was a difference between natural 

compounds and synthetic compounds in terms of their average percentage protein-binding. Natural 

compounds displayed a lower average percentage protein-binding (67.98%) whilst the synthetic 

compounds displayed a higher average percentage protein-binding (85.01%).  
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The relationship between the aromatic ring count and percentage protein-binding was explored 

and the results displayed in Figure 3.12 below. There was a positive correlation between the 

aromatic ring count and percentage protein-binding with the regression value of 0.1628. There 

was no true relationship between the percentage protein-binding of chemical compounds and 

their aromatic ring count, suggesting that an increased in aromatic rings of a chemical 

compound structure does not affect its protein binding ability.  

 

 

Figure 3.12: The percentage protein binding of the test compounds against the number of 

aromatic rings in each chemical compound structure. The low regression coefficient (R2 = 0.1628) 

above, is indicative of a weak relationship between the protein binding of compounds and the number 

of aromatic rings in each chemical compound. The weak relationship implies that each parameter is 

independent of each other. 

 

As observed in Figure 3.11, there is a difference between natural compounds and synthetic 

compounds in terms of their contribution in percentage protein-binding. The average 

percentage protein-binding values are 67.98% and 85.01% for a set of natural compounds and 

synthetic compounds (ascorbic acid, caffeine, colchicine, gibberellic acid, and salicylic acid) 

and (ammonium bromide, aniline, carminic acid, methyl red, fuchsine, PMSF and 8-

hydroxyquinoline) respectively. A relationship between aromatic ring number and the 

percentage protein-binding of natural compounds (Figure 3.13A), and a relationship between 
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the aromatic ring number and percentage protein-binding of synthetic compounds was explored 

and the findings are displayed below (Figure 3.13B). There were noticeable and significant (p 

> 0.05) differences between the correlation coefficient of the natural compounds and that of the 

synthetic compounds; natural compounds displayed a high regression coefficient value of 

0.8364 whereas synthetic compounds displayed a low regression coefficient value of 0.1717. 

 

A    

  

B  

 

Figure 3.13: Relationship between the percentage protein-binding and the number of aromatic 

rings for natural compounds (A) and synthetic compounds (B). A true relationship between 

percentage protein-binding and aromatic ring number on a group of natural compounds, with a 

correlation coefficient of 0.8364 whilst synthetic compounds displayed a weak relationship between the 

aromatic ring count and percentage protein-binding. 
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The relationship between the chemical compound molecular weight and percentage protein-

binding was explored and results displayed in Figure 3.14 below. The correlation coefficient 

value displayed on the figure indicates a positive relationship but however, a relationship 

between the two parameters is weak. The findings in this study suggest that increasing the size 

of a molecule does not possess major effect on its binding ability. 

 

 

Figure 3.14: Relationship between the percentage protein-binding and molecular weight. 

Percentage protein-binding for all test compounds was above 60% as indicated here hence all points 

congested in a range 60-100 %. Even so, there was a weak relationship between molecular weight and 

percentage protein binding observed, this is indicated by the correlation coefficient value 0.2748. Each 

of the two parameters is independent of the other. There is an upward trend but this is just a trend rather 

than a statistically validated correlation.
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For further evaluation, the effect of protein binding on the compounds effective permeability 

was evaluated by incubating each compound with BSA prior to application to the PAMPA 

assay. The introduction of BSA reduced the amount of compound available for diffusion 

through the membrane and, in all cases, significantly (p < 0.05) reduced the effective 

permeability values as indicated by the concentration values below. 

 

Table 3.9: Evaluated percentage protein-binding and the effective permeability through 

the usage of PAMPA plate. 

 

Compound Donor 

Concentration 

(µM) 

Acceptor 

Concentration 

(µM)  

Percentage 

protein binding 

(%) 

LogPe Pe 

1Warfarin 122.12 59.42 49 -5.03 9.33 x 10-6 

2Warfarin 

+ BSA 

287.22 108.02 38 -5.13 7.41 x 10-6 

3BSA + 

Warfarin 

330.52 79.82 24 -5.30 5.01 x 10-6 

 

As can be observed above, the percentage protein-binding of 1Warfarin was 49%, and the 

complex of both the 3BSA and Warfarin was half, 24%.  

2Warfarin + BSA, was Warfarin on the Donor compartment and BSA on the Acceptor 

compartment as a protein bound Warfarin, at equilibrium, should be equal the amount of free 

Warfarin, the unbound. The results above suggest that this was true as Warfarin bound to BSA 

was 108.02 µM which was close to the amount of free Warfarin, 122.12 µM. 

 

3.4 Evaluation of cytotoxicity of caffeine, warfarin and auranofin 

The cytotoxicity of caffeine, warfarin and auranofin in HEK293-T cells was tested and CC50 

values were determined. Overall, these three compounds (caffeine, warfarin and auranofin) did 

demonstrate cytotoxicity (CC50 ≤ 10 µM) within the range evaluated. The dose-response 

sigmoidal curves of caffeine, warfarin and auranofin was generated and is demonstrated in 

Figure 3.15. The CC50 values were 1.619µM ± 0.195, 1.679µM ± 0.238 and 0.218µM ± 0.135 
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for caffeine, warfarin and auranofin respectively. The CC50 of caffeine and warfarin was 

approximately equal; and auranofin CC50 was approximately 2-fold more cytotoxic than both 

caffeine and warfarin. The CC50 values vary according to the values on the Y- axis, in instances 

where Y- values just decrease or increase, the curve may appear to fit well but the CC50 values 

can be wildly wrong. 

 

 

      

 

Figure 3.15: A representative graph that demonstrate the relationship between HEK-293T cell 

viability and warfarin concentration. The viability of cells was quantified through and MTT assay 

where the absorbance of the reduced formazan product was read at 590nm for all three compounds. The 

figure was generated through the online Origin 8.1 program. The program generates a dose-response 

plot and fit it to a curve to give the mid-point ligand concentration or the CC50. The sigmoidal curve 

displays the concentration at which cell viability is reduced by 50%.  

To determine whether the aromatic ring number have an effect on the chemical cytotoxicity 

ability, a relationship between the aromatic ring count and cytotoxicity concentrations of 

caffeine, warfarin and auranofin was explored. The concentration of a chemical compound is 

directly proportional to their cytotoxicity and the bigger the molecule/ compound the higher the 

cytotoxicity effect. The correlation coefficient of a relationship between the aromatic ring 
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number and cytotoxicity was 0.7807 implicating a positive relationship, though the R2 value 

was below 0.95, there is a true relationship between the aromatic ring number and cytotoxicity. 

 

Figure 3.16: The relationship between the aromatic ring number and the caffeine, 

warfarin and auranofin cytotoxicity concentration- response. Caffeine cytotoxicity was 

1.619, warfarin was 1.679 and auranofin was 0.218, and as indicated in the figure; the higher 

the aromatic ring number the higher the cytotoxicity concentration. This correlation implies that 

there might be a negative effect aromatic ring number has on the chemical compound 

cytotoxicity ability.    

R² = 0,7807

0

0,5

1

1,5

2

2,5

3

3,5

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8

A
ro

m
at

ic
 r

in
g 

co
u

n
t

Concentration (uM)



55 

 

CHAPTER 4: DISCUSSION 
 

 

The increasing need for the production of novel drugs against new and existing diseases has 

propagated investigations to identify novel therapeutics from chemical compounds of different 

nature. This study focuses on assessing properties that affect the bioavailability of natural and 

synthetic compounds, more specifically the effect of aromatic ring number on the 

bioavailability of these compounds. Thirteen compounds were screened for a potential 

correlation between the aromatic ring count and bioavailability. The chemical compound 

wavelengths and standard curves were constructed using a spectrophotometer, and NanoDrop 

confirmed that the wavelengths were in correlation with the wavelengths described in the 

literature. Overall, 13 chemical compounds were identified and screened for permeability, 

protein binding and the aromatic ring count. The ability of a compound to reach its target 

(permeability) and the degree at which the compound reaches the target (bioavailability) is 

important because it explains the compound’s bioactive ability. The PAMPA assay was used 

in predicting the chemical compound’s passive permeability. Transcellular passive 

permeability is the most commonly used pathway for orally administered drugs (Pappenheimer 

and Reiss, 1987). Protein binding experiments were undertaken through ultrafiltration using the 

Amicon Ultra- 15 Centrifugal filter unit as described by Barre et al., 1984. The PAMP technique 

was applied once again for percentage protein binding further analysis. The toxicity studies 

were performed through the cell culture of HEK293-T mammalian cells. The rest of the 

properties were generated through the Osiris Property Explorer program. 

  

4.1 In silico prediction of chemical compounds drug-likeness  

Through the analysis of the 13 chemical compounds according to the Lipinski RO5, carminic 

acid and coomassie blue do not entirely adhere to the rule-of-five, since the hydrogen bond 

donors of carminic acid was < 5, and coomassie blue with molecular weight > 500 Da. This 

was not expected as both the carminic acid and coomassie blue are synthetic compounds and 

therefore are expected to stringently compile to the Lipinski RO5. Natural products, on the other 

hand, do not usually adhere to Lipinski RO5, but in this study they all scored 4/4 meaning they 

did comply with the Lipinski RO5. The cLogP values of all 13 chemical compounds predicted 

were ideal as they complied with Lipinski RO5 which states that the cLogP must be less than 
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5. As stated before, high solubility of a compound is usually an indicative of good absorption. 

According to the Osiris Property Explorer predictions (Table 3.3), all 13 chemical compounds 

were highly soluble and therefore are well absorbed. However, the overall drugs-core (includes 

cLogP, aqueous solubility, MW and overall drug-likeness) predicted from the Osiris Property 

Explorer was low, with 10 chemical compounds displaying different toxicity effects. 

Furthermore, Lipinski RO5 demonstrated that 11 of 13 experimental compounds are potential 

drugs as they adhered to all four rules. The disparity between the solubility property and drug-

likeness of the chemical compounds obtained from Osiris Property Explorer and the Lipinski 

RO5 may be due to the prediction models used. Osiris Property Explorer uses the increment 

system that is based solely on atom type contributions and it includes compounds that are within 

the 99% and 95% confidence ellipse (Abrahams, 2014). Well-absorbed compounds decrease 

outside the 95% ellipse and so the Osiris Property Explorer excludes these compounds. 

 

4.2 The influence of aromatic ring count on predicted bioavailability 

 

The chemical structure of a compound influences its physiochemical properties which, in turn, 

influences its bioavailability (Di and Kerns, 2015). There are different physiochemical 

properties that influence the compound’s bioavailability and these include ADME/T properties 

and MW, lipophilicity, aqueous solubility, acid-based ionization constant (pKa), number of 

hydrogen bond donors and acceptors, rotatable bonds (ROT), number of aromatic rings, polar 

surface area (PSA) and acid/base properties. Recent studies have demonstrated that the number 

of aromatic rings influences chemical compound’s developability and, in turn, bioavailability 

(Mao et al., 2016 & Ritchie et al., 2011). On average, the number of aromatic rings of 

compounds in preclinical trials is reported to be 3.3 but the aromatic ring number decreases as 

compounds lure closer to the market (Lipinski, 2000). In 2009, Ritchie and Macdonald, 

analysed the influence of aromatic ring number in chemical compounds against aqueous 

solubility, lipophilicity and serum albumin binding and concluded that chemical compounds 

containing fewer aromatic rings are better potential drug candidates than compounds containing 

more than three aromatic rings (Ward et al., 2014). Ritchie and colleagues demonstrated that 

an addition of aromatic heterocycles have less effect on the compound’s lipophilicity than the 

addition of aromatic carbon-containing rings does, and that the aromatic heterocycles increases 



57 

 

the TPSA of a compound and potentially decrease the oral absorption and cell penetration 

(permeability). 

4.2.1 Osiris Property Explorer properties 

The relationship between the aromatic ring number and lipophilicity was explored and the 

results presented in Figure 3.2 suggest that there is no true relationship between the aromatic 

ring count and lipophilicity. There was a significant difference (p > 0.005) between the aromatic 

ring count and lipophilicity with a regression coefficient value of 0.0389 which clearly indicate 

a lack of correlation. The aqueous solubility of a compound plays a crucial role in its 

bioavailability (Jorgensen and Duffy, 2002) and therefore an investigation of the influence of 

aromatic ring number on solubility was incorporated. Solubility is inversely proportional to 

lipophilicity (Ran and Yalkowsky, 2001), and therefore an expectation would be that the 

relationship between the aromatic ring number and solubility will show an increased positive 

relationship, in correlation with a lipophilicity regression value. As observed in Figure 3.3, a 

positive correlation between the aromatic ring number and solubility displayed a regression 

coefficient value of 0.5986 which is approximately 50% greater than the regression coefficient 

value of the correlation between the lipophilicity and aromatic ring count. This means that 

increasing the aromatic ring number leads to an increased solubility but does not influence 

lipophilicity. Two chemical compounds, coomassie blue and carminic acid, contain aromatic 

rings greater than 3 (Table 3.2). Coomassie blue contains 6 aromatic rings, and this is above the 

aromatic ring count threshold (< 3), and on the contrary it displayed a solubility value greater 

than -4, which is an indicative of a poorly soluble compound. However, looking at carminic 

acid which contains 4 aromatic rings, one ring extra to the threshold and it displayed solubility 

value (-3.32) close to -4. It may be resolved that adding one extra aromatic ring does not have 

a major effect on the solubility of a chemical compound, and in support of this, Ritchie and 

Macdonald stated that adding two or more aromatic rings decreases the solubility. Coomassie 

blue has 3 more (< 3) aromatic rings and that is why it displayed a poor solubility. 

 

As high as the aromatic ring number of coomassie blue was, it did not influence its lipophilicity 

(2.28) as it fell well below 5.00. Thus, increasing the aromatic ring number by 2 or more appears 

to be affecting aqueous solubility, and the lipophilicity remains relatively low or constant. In 

support of this statement, ammonium bromide does not have any aromatic rings and it displayed 

a lipophilicity value of 0 and is well absorbed. A similar trend was described by Lamanna and 
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co-workers, where they discarded insoluble compounds based on the compound’s molecular 

weight and increased aromatic ring number (Lamanna et al., 2008). Aqueous solubility is 

important on the permeability and oral absorption of a potential drug candidate (Lipinski, 2004), 

and if a compound in lead optimization stage possesses poor solubility, decreasing the number 

of aromatic rings may be beneficiary (Ritchie and Macdonald, 2009). As a structural feature, 

adding an aromatic ring increases ligand-binding energy and consequently increases a 

compound’s potency and so in development, medicinal and pharmaceutical chemist will seek 

to add an aromatic ring in an attempt to increase compound’s potency. However, in the context 

of orally administered drugs, adding a single aromatic ring increases the molecular weight by 

78 and in turn increases the lipophilicity by 2.14 units (Ritchie and Macdonald, 2009) and thus 

makes a compound toxic.  

 

Recent analysis has demonstrated that the mean values of lipophilicity, H-bond donors and total 

polar surface area (TPSA) between older and newer oral drugs are not changing (Leeson and 

Davis 2004), and this proves that these parameters (lipophilicity, H-bond donors and TPSA) 

are fundamental drug discovery functions and alteration of these parameters has been reported 

to caused an increase in the rate of attrition owing to safety findings (Reitchert, 2003). Chemical 

compounds with TPSA scores greater than 140 A2 are not easily absorbed while those with 

TPSA scores ≤ 60 A2 are easily absorbed (Palm et al., 1997). The findings in Table 3.3 

demonstrate that 12 out of 13 chemical compounds in this study have TPSA scores of less than 

140 A2, with aniline, caffeine, PMSF, salicylic acid, 8- hydroxyquinoline and ammonium 

bromide scoring less than 60 A2 as an indication of a high capacity of penetrating cell 

membranes. Carminic acid however, displayed a TPSA score of 242.5 A2 which is greater than 

140 A2, demonstrating a low capacity of penetrating cell membranes and may lead to high 

attrition rate. The reason for high TPSA score of carminic acid might be explained through 

Ritchie and colleagues’ study which states that an addition of an aromatic heterocycle leads to 

an increased TPSA scores and carminic acid possesses 4 aromatic rings which is greater than 

the threshold. When interrogating the relationship between the aromatic ring number and the 

TPSA scores (Figure 3.5), an opposite was observed, the correlation coefficient was 0.3347 

indicating a weak and insignificant (p= 0.05) correlation between the TPSA scores and aromatic 

ring number. This means that, regardless of increasing or decreasing the aromatic ring number 

of a compound, polar compounds may still be able to cross through the lipid bilayer.  
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4.2.2 Permeability 

The chemical compounds used in this study all have different physiochemical properties, for 

some compounds, their physiochemical properties are well described in the literature. The 

effective permeability, as a physiochemical property, of different synthetic compounds is 

described in literature and that includes some of the synthetic compounds in this study. The 

effective permeability of most natural compounds, on the hand, is not well defined in literature. 

  

Control compounds used in this study were caffeine and lucifer yellow, and this was because 

these two compounds fall into the 20 model drugs suggested by the FDA to use in evaluating 

the permeability assay’s appropriateness (Benet et al., 2008). These compounds have been used 

in different studies as positive and negative controls to validate the permeability system. The 

advantage in using these two compounds is that they are commercially available, and are widely 

used because of their merit in passive paracellular and transcellular permeability characteristics. 

Both control compounds displayed expected behaviour thereby validating the PAMPA system. 

The results obtained from caffeine were conclusive, the effective permeability was -5.64, and a 

similar value was obtained from the study by Li Di et al, 2003 and Mensch et al, 2010. The 

overall effective permeability results obtained from 13 chemical compounds in this study, 

indicated that most of these chemical compounds did exhibit promising transcellular passive 

diffusion properties, with an exception of phenylmethylsulfonyl, salicylic acid, gibberellic acid 

and ammonium bromide, which did not display encouraging transcellular passive diffusion 

properties. The LogPe values calculated for most of the chemical compounds were well above 

the threshold (-5.00), which is an indication of compounds with high effective permeability. 

Interestingly, it must be noted that salicylic acid, a hormone found in a plant and widely used 

as a medication for skin infections, exhibited a slightly poor permeability (-4.32). It must be 

noted, however, that salicylic acid is a natural compound, and as described in the above section 

(Section 1.3), most natural compounds violate most rules of potential drug candidates but do 

possess pharmacological activity. This is supported by a second natural compound, gibberellic 

acid, which is also a hormone found in plants but exhibited a poor permeability (-3.87).  
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The permeability of a drug is usually influenced by multiple factors, one of which is the number 

of aromatic rings on a chemical compound structure. Thus, a relationship between the effective 

permeability and aromatic ring count was investigated, and the results in Figure 3.4 indicates a 

weak correlation between the two parameters, with R2 of 0.22, (R2 < 0.5). Coomassie blue is 

widely used in biochemical studies, mostly for protein staining, and methyl red in 

microbiological studies for bacterial staining and as expected, both displayed a relatively high 

effective permeability. Coomassie blue has the highest number of aromatic rings (6) and is a 

synthetic compound and this prompted an investigation of a possible correlation between the 

aromatic ring numbers of synthetic compounds against their specific effective permeability. It 

is not surprising that there was a positive relationship between synthetic compounds aromatic 

ring count and the effective permeability (R2 = 0.66). This was expected as synthetic 

compounds are likely to adhere to Lipinski RO5 for potential drug candidates. Natural 

compounds, on the other hand, displayed a weak correlation (R2 = 0.0285) between the aromatic 

ring count and their effective permeability. However natural compounds do not require 

stringent compliance to the Lipinski RO5. Natural compounds have been deprioritized or in 

some cases eliminated from the drug discovery process due to the fact that some natural 

compounds do not comply to Lipinski RO5 yet they can be excellent drug candidates (Ganesan, 

2008). 

 

Amidon et al (1995) described an association between the permeability and the aqueous 

solubility of chemical compounds (Figure 1.3). Different classes of compounds are described 

in their study, and each class has different levels of permeability and solubility. The overall 

permeability results in this study indicate that there was generally high chemical compound 

permeability and apparent low solubility. In the context of Amidon and colleagues’ study in 

Figure 1.3, our chemical compounds fall in Class Ⅱ. Class II compounds are highly permeable 

and low solubility class of compounds which, amongst many, includes compounds such as 

ketoconazole, mefenamic acid, nisoldipine and nicardipine, to name a few. 

 

4.2.3 Protein binding 

Protein binding is one of many physiochemical factors that influence the compound’s ADME 

and in turn bioavailability (Zhang et al., 2012). There is a high concentration of protein in 

plasma and when drugs are absorbed, most of them bind to these proteins and thus decreasing 
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the drug concentration intended for pharmacological target activity. Free drug theory is 

commonly used to explain the pharmacokinetics/ pharmacodynamic correlation, the theory 

state that in an absence of energy-dependent processes, after equilibrium, the amount of free 

drug in plasma is equal to the amount of free drug in tissues, and only the free drug in the tissues 

is available for pharmacological activity (Bohnert and Gan, 2013). Percentage protein-binding 

was used to measure the amount of free compound in plasma (unbound) and the amount of 

compound bound to plasma, specifically serum albumin. The results displayed in Table 3.8 

demonstrate a relatively high percentage protein-binding (PPB), with all 13 chemical 

compounds showing PPB > 70%, and salicylic acid displayed 90.62% PPB which was similar 

to a PPB presented by Kratochwil et al., 2002.  This means that the compound fraction that will 

be unbound is, on average, less than 30% and this is a rather low free unbound fraction. Bovine 

serum albumin was used as a plasma protein, because of its low cost and easy availability (Alam 

et al., 2009) and it is apparent that all of these compounds have a high affinity for bovine serum 

album. Similar results were presented by Banis et al 2017, where their findings demonstrated a 

mean percentage protein binding of 72.7 % for BSA. Natural compounds displayed a low 

average percentage protein binding (67.98%) while synthetic compounds displayed a higher 

average percentage protein binding (85.01%). The difference in average PPB implies that 

natural compounds have 32.02%, on average, of free or unbound fraction for pharmacological 

activity, while synthetic compounds only have 14.99 % of unbound fraction for 

pharmacological activity. The interaction of compounds with BSA is electrostatic, 

hydrophobic, satiable and reversable, and BSA binds mostly to organic anions, basic and neutral 

drugs (Zhang et al., 2012) and therefore natural compounds are expected to possess a high 

affinity for binding to BSA than synthetic compounds but the average PPB demonstrate the 

opposite.   

 

The percentage protein-binding of compounds to BSA is influenced by the confirmation 

changes of compounds (Zeitlinger et al., 2011), and the type of method used to measure PPB. 

The influence of aromatic ring number, as a structural feature, was interrogated and the results 

presented in Figure 3.12 indicates an upward trend but statistically, there is a weak correlation 

between the aromatic ring number and PPB indicated by a correlation coefficient of 0.1628. 

The low regression coefficient value of 0.1628 suggests that the overall percentage protein 

binding is independent of the aromatic ring number, meaning the PPB is not affected by the 
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number of aromatic ring number within a chemical compound. However, when the influence 

of aromatic ring number on a group of natural compounds was analysed, a surprising correlation 

coefficient value of 0.8364 was observed. This means that there is a significant (p > 0.05) 

correlation between the aromatic ring number and natural compounds PPB, meaning that 

increasing the number of aromatic rings of natural compounds do actually results in increased 

PPB. On the hand, synthetic compounds aromatic rings and PPB displayed a low correlation 

coefficient value of 0.1717, implying a lack of correlation. The correlation coefficient value 

between the aromatic ring number of synthetic compounds and PPB was not expected as 

literature states that the number of aromatic ring number do influence compound’s 

developability (Mao et al., 2016 & Ritchie et al., 2011), and most synthetic compounds in this 

study are FDA approved, meaning they have passed through preclinical development. The 

reason for this unexpected output might have been due to the MW effect or the method used to 

analyse percentage protein binding, which in this study was ultrafiltration. The results displayed 

in Figure 3.14 demonstrated a correlation coefficient value of 0.2745, which is an indicative of 

a weak relationship between the MW and PPB. This means that PPB was independent of the 

MW and thus increasing the size of a compound did not influence or affect the percentage 

protein binding, in this study. 

 

Ultrafiltration is a simple and a rapid technique for unstable compounds, it is a plastic device 

with a filter membrane made up of cellulose acetate. The filter membrane however, causes 

nonspecific binding of compounds and the nonspecific binding is thought to account for 20- 

30% effect on tested compounds (Zhang et al., 2012). There are two models of ultrafiltration, 

one is the use of individual vials (Amicon Ultra-15 Centrifugal Filter device) or a 96-well 

ultrafiltration device (substituted by the PAMPA plate in this study) (Peng et al., 2001). 

The results displayed in Table 3.9 were obtained through the 96-well ultrafiltration device and 

after 24hour incubation, warfarin PPB calculated value of 49% was observed.  This PPB value 

was different from what Kratochwil and colleagues obtained, they presented a warfarin PPB 

value of 99% which is almost 50% higher than the PPB value obtained in this study. However, 

Kratochwil and co-workers used equilibrium dialysis to measure warfarin PPB, which is a 

method frequently used for PPB calculation and is labelled as the ‘gold standard’ because it is 

believed to be more accurate than ultrafiltration (Son et al., 1996).  
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The introduction of BSA to warfarin, reduced the PPB and significantly reduced effective 

permeability of warfarin, as displayed in Table 3.9. The compound- BSA protein complex 

reduced the PPB by half (from 49% to 24%), and this is because the compound-BSA protein 

complex cannot permeate through cell membranes by passive transcellular or paracellular 

permeation (Zhang et al., 2012). The drug-plasma protein complexes exist as drug reservoirs 

for the unbound drugs, because when different drug elimination processes remove drugs from 

the body, the complex delay the duration of a drug action (Zhange et al., 2012). Moreover, the 

drug-plasma protein complex is usually pharmacologically inactive (Lin et al., 2003). There is 

abundant plasma protein binding data, but it is not easy to classify plasma protein binding of 

compounds and there are no suggestions in designing lead-like compounds through the 

examination of the existing drug properties (Zhang et al., 2012). 

 

4.3 Cytotoxicity of auranofin, caffeine and warfarin 

The activity of caffeine, warfarin and auranofin was investigated in HEK-293T mammalian 

cells (Figure 3.15). An overall high cytotoxicity was observed for all three compounds, caffeine, 

warfarin and auranofin. Auranofin yielded a high cytotoxicity, CC50 value of 0.218 µM which 

correlated with previously reported CC50 values for auranofin (CC50 < 1.652 µM) (Abrahams, 

2014; Mphahlele, 2012 & Lasagna-Reeves et al., 2010). Auranofin is a gold salt, and like other 

gold-containing compounds, it can cause toxicity to cells. Gold-containing compounds are well 

known by inducing the increased levels of reactive oxygen species (ROS) (Kudrin, 2000), and 

these ROS results in auto-oxidative stress (Omata et al., 2006) through the destruction of the 

biological molecule interactions (Thannickal and Fanburg, 2000). Gold-containing compounds 

tend to have varying oxidation states and these changing oxidation states may lead to toxic 

redox properties in the media used for cell culture (Shaw, 1999). Caffeine exhibited 

cytotoxicity, with CC50 value of 1.619µM, and this was an unexpected output because caffeine 

is an FDA approved psychoactive drug and a widely used stimulant. Acosta and Anuforo 

reported a possible caffeine cytotoxicity due to the duration treatment of cells with caffeine 

longer than 24 hours and concentrations greater than 20mM. Caffeine cytotoxicity in this study 

was possibly due to the treatment duration of cells which was 72 hours rather than 24 hours or 

less. Other reported caffeine cytotoxicity effects include cell hypertrophy (Boyd, 1965) and cell 

chromosomal breakage (Thayer et al., 1975). To produce these caffeine cytotoxicity effects, 

the concentration had to be greater than 20mM, and Jang et al., 2002, used a similar assay (MTT 
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assay) as was used in this study, and reported caffeine cytotoxicity at 10mM concentrations, 

and established a cytotoxicity effect increasing in a time-dependent manner (Jang et al., 2002). 

Though the concentrations used in this study were relatively low, the duration of treatment 

might have been the critical contributing factor. Jang and co-workers displayed an, 

approximately, 50% increase in cytotoxicity after 12 hours of caffeine treatment. Warfarin 

yielded cytotoxicity in HEK-293T mammalian cells, displaying a CC50 value of 1.679µM. 

Warfarin is an FDA approved oral anticoagulant drug and thus the observed cytotoxicity in 

HEK-293T cells was unexpected. The reason for the cytotoxicity effect displayed by warfarin 

might possibly be time-dependent effects, as reported by Kubat et al., 2018, warfarin displayed 

significantly high cytotoxicity from a 24-hour to 48-hour incubation (Kubat et al., 2018). 
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4.4 Conclusion 

Overall results of this study demonstrated the value of predictive screening coupled with 

molecular experimental analysis of natural and synthetic compounds. The predictive and 

theoretical techniques predicted an overall low drug score for all thirteen chemical compounds. 

The drug score was further validated through molecular modelling studies, where synthetic 

compounds outperformed natural compounds, possessing relatively high effective 

permeability, and plasma protein binding. In overall assessment, aromatic ring count did not 

have a significant correlation with physiochemical properties discussed in this study, with an 

exception of natural compounds and plasma protein binding.  This study could not validate 

whether caffeine and warfarin were cytotoxic against mammalian cells, however, our results 

corroborate the findings from previous studies showing that treatment durations longer than 24 

hours on HEK-293T cells result in cytotoxicity. In conclusion, the aromatic ring number within 

chemical compounds, both synthetic and natural compounds, does not influence the 

bioavailability of compounds based on the physiochemical properties discussed in this study. 

 

4.5 Future studies   

The results from this study can be advanced by conducting the following experiments: 

1) Increase the number of both natural and synthetic compound to be screened. 

2) Molecular modelling of aqueous solubility and metabolism for both synthetic and natural 

compounds to guide the early-stage assessment of compound bioavailability. 

3) Evaluation of cytotoxicity using a different cell line and reduced treatment duration.  

4) Identifying the structural moieties of natural compounds involved in plasma protein binding 

as well as the residues to which these compounds bind and the subsequent mechanism of 

action, to guide preclinical lead-like compound selection. 
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