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ABSTRACT  
 

Worldwide, organisational management is increasingly confronted by the need 

for data quality to make informed decisions. It has been reported that a 

significant percentage of turnover is lost due to bad data. The higher education 

sector also requires quality data in order to keep up with the pace of change in 

this sector. It is against this background that this study investigates the factors 

and perspectives influencing accountability and the sustainability of data quality 

improvements at the University of KwaZulu-Natal (UKZN). The study used a 

questionnaire to elicit responses from approximately 120 information system 

users (IS-Users) at the University on their perspectives of data quality 

awareness, quality practices, and the cost, accountability and sustainability of 

data quality improvement in order to support the implementation of the data 

quality initiative recently launched at UKZN. The sample was selected from a 

population of primary information system users. Data collection took place over 

two months, with a response rate of 50%.    

  

The findings and recommendations of the study revealed different opinions on 

various issues from the perspective of the three groups of IS-User constituents 

that were surveyed. The findings include significant and moderate issues relating 

to the lack of training, skills and leadership; work-around time problems arising 

from uncertainty with regard to who owns data at the Institution; and the need for 

stronger leadership and skills in the area of data quality. 

 

The recommendations range from investment in training, to the implementation 

of performance management to support current data quality activity, service level 

agreements to enhance data quality from third party suppliers, incentives to 

reward work that enhances data quality, feedback mechanisms such as metrics 

or a data quality monitor to report on the condition of data quality in real time and 

promoting data ownership in order to enhance organisational agility to reduce the 

work-around or run around time of IS-users. 
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CHAPTER ONE 

 
INTRODUCTION TO THE RESEARCH 

 
1.1 Introduction  
 

In an environment characterised by continuous external and internal change, 

institutional data quality in higher education institutions, as in ‘organised industry’, 

has become increasingly difficult to manage. Quality of data is a challenge to 

organisations across the world as many factors impact the availability of quality 

data for managerial decision-making. This study examines numerous issues 

relating to the role of ‘people, processes and technology’ in ensuring data quality. 

The study gathered empirical data / information on the awareness, practice, 

accountability, cost and sustainability of data quality improvement in order to 

support the implementation of a data quality initiative recently launched at the 

University of KwaZulu-Natal (UKZN).  The purpose of the study is to investigate 

user perceptions of their involvement in data quality activities (this is elaborated 

on in the Problem Statement in Section 1.7). The results of the study will lay a 

foundation for data quality improvement.  

 

While there is no single definition of data quality, data appears to be of 

acceptable quality if it is found to be fit for its intended uses in operations, 

decision-making and planning (Juran, 1999). It refers to how fitness or 

appropriateness of data is perceived or assessed in terms of its purpose within a 

particular context. 

 

The data under discussion relates to higher education institutions, i.e., 

operational, tactical, strategic data for use in decision-making, funding and 

planning at the University.  
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1.2  The Problem of Data Quality  
 
As data is ‘intangible’ in nature, it is a challenge for organisations to manage as a 

strategic organisational asset. As with other assets, data has to be managed 

bearing in mind that this process is associated with costs as well as benefits. 

Worldwide, organisational management is increasingly confronted by the need 

for data quality to make informed decisions.  

 

High quality data is critical to an organisation’s success, while poor data will 

impede organisational efficiency (Haug and ArlBjorn, 2011, Zhu, Madnick, Lee 

and Wang, 2012). As early as 1998, Redman warned that poor data quality can 

jeopardise the effectiveness of an organisation’s tactics, operations and 

strategies (Redman, 1998). Poor data quality can cause serious problems in the 

organisation (Fisher and Kingma, 2001). The impact of data quality and 

information about data quality on decision-making has been the subject of 

several studies (Chengular-Smith, Ballou and Pazer, 1999 and Jung, Olfman, 

Ryan and Park, 2005). Sheng and Mykytyn (2002) assessed the impact of data 

quality on firm performance. Lee and Strong (2003) investigated whether a 

certain mode of knowledge, or knowing-why affects work performance and 

whether the knowledge held by different work roles has an effect on work 

performance.   

 

Madnick and Lee (2009a) postulated that the modern data intensive knowledge 

and economic environment has increased awareness of data and information 

quality issues.  Wand and Wang (1996) note, that, poor data quality can severely 

affect the overall effectiveness of an organisation. If this problem is not 

addressed, the organisation may lose money and operating sub-optimally in 

terms of efficiency. Data quality also impacts issues relating to corporate and 

public accountability. Ewell (1989) suggests that satisfyingg stakeholders’ 

expectations, requires the good use of public money, accountability for resources 

and supporting the educational goals of a country.  
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1.3 Data Quality Impact - Value and Costs   
 

The impact of data quality can be appreciated in terms of the business value of 

data as well as the cost of data quality.  

 
Value:  
 

From a practitioner point of view, O’Neal (2012) recognises that, while data is an 

intangible asset, the information and knowledge assets of an organisation can 

represent up to 20% of its value. She demonstrates the theoretical value of 

information and knowledge within the organisation via the formula VI (theoretical) 

(value of information) = VOrg x 0.20 where VOrg = Share Price x Number of 

Shares and VI (theoretical).  

 

Costs:  
 

Poor data quality costs a typical organisation in the industrial sector between 

10% and 20% of its revenue (Redman, 2004).  Previous studies estimated that 

1% to 5% of data found in organisations is of poor quality (Redman, 1998). At the 

time of Redman’s (1998) review, research efforts focused on operation and 

assurance costs, research and development and the production of data products.   

More recent ‘Data Crunch’ reports have underscored the extent of the costs of 

data quality (Data Crunch Report (Australia) (2011), Data Crunch Report (UK) 

(2011). It is important for an institution to quantify the impact of its data quality, as 

well as the cost in order to have a benchmark against which to measure the 

effectiveness of data quality improvement.  
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1.4 Change and Complexity   
 

One of the reasons for increasing data complexity in industry in the past two 

decades is the number of mergers and acquisitions in response to a challenging 

and increasingly competitive business milieu. The higher education sector that is 

the focus of this research has not been exempt from these pressures and data 

quality management has become very important. Data volumes have increased 

and software and systems have become more complex, putting pressure on the 

maintenance of data in these systems.  Change therefore requires a continuous 

review of the impact of data quality on the organisation and interventions and 

programmes need to be launched to counteract its devaluing impact on 

information. During times of continuous change, data quality improvement efforts 

are often given lower priority than higher order operational issues (O’Neal, 2011).    

 

This study is situated in a higher education environment. While the ‘profit motive’ 

is absent in such an environment, appropriate accountability and reporting 

structures nevertheless exist with auditing practices that require data to 

accurately reflect the institution’s operations.  

 

1.5 Data and Information:  
  

For the purpose of this study, the terms ‘data quality’ and ‘information quality’ are 

used interchangeably. Strong, Lee and Wang (1997) refer to the difference 

between data as ‘raw facts’ and ‘information’. This distinction is supported by 

Zhu, Madnick, Lee and Wang (2012), who also state that ‘data quality’ can be 

used to refer to technical issues around data, while ‘information quality’ can be 

used to refer to non-technical issues. In this study ‘data’ is a broad term used to 

cover the concept, ‘information’.   
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1.6 
1.6.1 Data Quality Policy: Data Quality Initiative  
 

A data quality initiative was recently approved at UKZN and is in the process of 

being executed. The scope, stakeholders and role players involved in data 

quality activity have been formally outlined. The initiative aims to review data in 

the University’s main student administrative system.  The initiative came about as 

a result of concerns expressed by a variety of stakeholders regarding poor data 

for statutory and internal decision-making purposes coupled with the range and 

rate of changes experienced by the Institution. The policy has been approved at 

Executive level, and appropriate documentation has been produced, that details 

the terms of reference and roles and responsibilities (Data Quality Principles and 

Guidelines, 2011, Data Quality Terms of Reference, 2011).  

 

The need for a formal approach and formal structures in the area of data quality 

arose out of the merger of higher education institutions (HEIs) in KwaZulu-Natal, 

which required the amalgamation of different process and procedures, and 

software upgrades. Recent changes in UKZN’s organisational structure and 

reporting requirements (for example ‘global rankings’) underlined the need for a 

new approach.   

 

UKZN relies on good quality data to achieve its goals as defined in the 

institutional Strategic Plan.  Goal Seven of the Strategic Plan states that the 

University should “establish and maintain efficient, effective management 

systems and processes that provide a caring and responsive service to meet 

internal and external needs in a pragmatic and flexible manner” (UKZN Strategic 

Plan, 2013, p 19). The University has a strong commitment to data quality and 

recognises the importance of data for the following objectives: 

 

• to provide efficient and effective services to students, staff and 

other stake holders; 
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• to produce accurate management information for effective 

governance, planning and decision-making; 

• to meet the University’s statutory  obligations to the Department of 

Higher Education and Training (DoHET); 

• to meet external audit standards and requirements.  

 

(Data Quality Principles and Guidelines, UKZN, 2011) 

 

Data quality depends on a data quality strategy that should be the product of 

appropriate data quality planning and control (Eppler and Helfert, 2007). To give 

further impetus to the implementation of the policy, it is the researcher’s opinion 

that the policy should be augmented by a data quality strategy to guide current 

data quality activity at operational level in terms of predefined steps.  

 
1.6.2 Data Quality Practice and Problems  
 

Data problems emanate from poor data at various stages of the data information 

life cycle (or even the student life cycle) and poor operational processes. They 

manifest at different levels of data gathering and collection and in the way data is 

extracted and interpreted during various operational phases. Problems also arise 

as a result of the integration of several operational systems and data transfers, 

as well as the interpretation of data, particularly more recently with the use of 

business intelligence applications. It is important to deal with the problem at 

source and very important to focus on the ‘right thing’. According to Gharajedaghi 

(2006, p 114), “we fail more often not because we fail to solve the problems we 

face but because we fail to face the right problem”. 

 
Institutional data has historically / conventionally been improved in order to 

support HEIs’ statutory submissions to Government.  These audit exercises are 

compulsory and submissions cannot be finalised unless quality controls have 

been satisfied. While data quality checks for statutory reporting are accepted 
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practice, for the data in information systems ‘at large’, data correction occurs in 

an ad hoc and reactive manner. Furthermore, a lack of formal accountability 

structures and feedback mechanisms would compromise the provision of 

consistent data quality, making it very difficult for the impact of bad data to be 

reported, particularly to those in authority (Haug & ArlBjorn, 2011). 

 

It is acknowledged that most data problems originate at the data capturing stage 

(Maydanchick, 2007). Users should be trained and training material should be 

readily available to support data capture processes as a ‘bottom-up’ approach. A 

‘top down’ approach should also be followed in terms of having instruments in 

place to quantify and measure, where possible, the financial impact of data 

errors.  For the ‘wider’ system, a cycle of programmes could be available to elicit 

errors where data elements were either incorrect or missing due to violation of 

the business rules underlying the integrity of these elements.   
 
1.6.3 The Management Information (MI) / Institutional Intelligence (II) 
Function as a Catalyst for Change 
 

Three groups of information systems staff (referred to in this study as IS-Users) 

have been recognised as pivotal stakeholders in the success of UKZN’s 

Institutional Data Quality initiative (DQI): Data Owners, the Data Custodian and 

Data Stewards. The University’s Management Information / Institutional 

Intelligence (MI/II) section has been identified as the Data Custodian. Institutional 

knowledge vis a vis data and systems resides in these three groups, and it is in 

these groups that quality activity takes place. Therefore, this study sought to 

establish IS-Users’ perspectives of the sustainability of data quality activity.  

 

Data Owners are the institutional functional or business owners of specific areas 

e.g., Human Resources or Finance. They are referred to in this study as Data 

Stewards (Business).  Another variation of the Data Steward associated with ‘IT’ 

relates to the technical assistance provided to the Data Stewards (Business) and 
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Data Custodian by a Data Steward (Technical). This distinction has been drawn 

for the purpose of this research study.  

 

1.7 Statement of the Problem 
 
As the world progresses from an industrial to an information economy, the 

importance of data and information has increased rapidly, supported by 

technological progress. Data has become the currency of the new economy.  

 

However, the quality of data has been identified as a problem. This has 

significant consequences in terms of the efficiency and effectiveness of 

organisations and businesses and has contributed significantly to organisations’ 

operational costs. As data is important in planning and decision-making, 

organisations confront the challenge of addressing this problem. While many use 

data cleansing tools to unearth dirty data, technological solutions alone cannot 

eliminate the causes of poor data quality, as it is as much a business problem as 

an information technology problem.  Research is therefore required to suggest 

solutions to this dilemma. 

 

This study addresses some of the reasons for poor data quality in a higher 

education environment to support exist data quality initiatives at the Institution. 

The study sought to elicit the perspectives of information system users to provide 

a firm foundation for future data quality improvement and the measurement of 

data quality improvement.  
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1.8 Purpose of the Study 
 

The purpose of this research study is to improve data quality at UKZN.  

Improving the quality of data will promote efficiency, cost savings and customer 

satisfaction. 

• The study seeks to establish the factors that determine data quality in 

order to design interventions to confront the problem of poor data quality. 

 

• The findings will be used to support the current data quality initiative at the 

University.  

 

1.9 Objectives of the Study  
 

The objective of this research study is to ascertain data quality stakeholders (‘IS 

Users’)’s perspectives of the sustainability of data quality at UKZN. These 

stakeholders comprise institutional data owners, data custodians and data 

stewards. The perspectives were obtained via a survey focusing on data quality 

awareness, data quality practices and the cost of data quality, as well as 

accountability issues and sustainability towards data quality improvement. 

 
1.10 Research Questions  
 

The research study can be encapsulated in the following keywords:  

 

A - Awareness   
What is the nature of awareness and communication practices relating to data 

quality? Are these practices conducive to data quality improvement? Do 

structures exist to communicate issues relating to data quality (DQ) and the 

management of data quality? What is the nature of data quality in terms of 

dimensions and what are the causes and impact? 
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B – Accountability and Management  
What are the perceptions vis a vis accountability, the roles involved in 

accountability for data quality issues, and the role of performance and service 

levels in promoting data quality? Is the notion of data ownership clear in terms of 

accountability for data quality? 

 

C - Data Quality Problem Handling / Practice 
What are the perceptions vis a vis practices or processes that could affect the 

quality of data? 

  

D – Cost of Data Quality  
Is it possible to determine a ‘benchmark’ cost of addressing data quality issues?    

 

E - Sustainability of Data Quality Improvement 
Are there differences in perspectives of the sustainability of data quality among 

the three groups of data quality stakeholders and if so, are these differences 

significant? Differences may point to levels of cooperation / synergy that require 

intervention.  

 

While UKZN’s institutional data quality policy has been approved, a ‘DMAIC’ 

(Define, Measure, Analyse, Improve and Control) intervention will be proposed to 

support the implementation of an institutional data quality strategy.  

 

1.11 Motivation for the Research  
 

There is a paucity of research on different perspectives of information system 

staff vis a vis the sustainability of data quality improvement.  Earlier studies 

focused on:  

 

• What data quality means to data consumers (Wang, Strong and 

Guarascio, 1996); 



11 
 

• The role of data producers (Strong, Lee and Wang, 1997); 

• Data quality at British Telecommunications (Tull, 1997). 

 

This research study was inspired by the researcher’s involvement in various 

areas of data quality in the primary role of Information Analyst at UKZN but also 

via secondary involvement as an internal networker and catalyst for change. The 

reason for undertaking such a research study in the higher education sector is 

twofold:  

 

• Externally - the changing higher education landscape and commensurate 

funding mechanisms require decisions based on quality data (a higher 

premium on accountability for data quality); and 

• Internally - the researcher’s occupational environment has been subject to 

continuous change, inter alia, relating to mergers, the internal 

organisational structure and the student system. This led to serious data 

challenges that raised concerns about data quality among various senior 

stakeholders that use institutional data, culminating in a formal data 

quality policy. The researcher utilised this climate of institutional data 

redress to investigate perspectives that may influence data quality 

improvements and provide deeper insight into issues that may enhance or 

impede current initiatives.  

 
1.12 Research Methods 
 

The study adopts a case study approach that incorporates a largely quantitative 

approach. An analysis of the time devoted to data quality activity will be 

undertaken to obtain the cost of data quality; this will be used as the basis to 

evaluate future data quality improvements. Responses from IS-users relating to 

the sustainability of data quality activity will be assessed in terms of differences in 

means.        
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1.13 Beneficiaries of the Research and Outcomes 
 

The beneficiaries of this research study will be the dimensions of ‘people, 

process and technology’. Firstly, the study aims to sensitise ‘information workers’ 

to data quality issues and re-examine data quality practices, leading to improved 

data governance structures to support accountability for data issues. An 

improved structure will streamline roles and processes, resulting in improved 

accountability. This will provide clarity and stability and a technology platform to 

support the monitoring and measurement of data quality, supported by the 

development of metrics to hold the relevant parties accountable.     

 
1.14 Chapter Outline  
 

Chapter 2 – Literature Review 
 
The literature reviewed in support of the research objectives includes quality and 

data quality theory; the role of data governance in providing a framework for 

clarity on the roles and functions of data owners; theory around data ownership 

and accountability; the costs of data quality; and the sustainability of data quality 

improvement. It also presents a brief situational overview of UKZN and the 

context within which the research problem is investigated.  The role of 

management information and data quality at the University is discussed, 

including its role as an information broker, facilitator and a catalyst for change 

and data custodian. The roles and activities of the data quality stakeholders are 

also discussed.  

 

 
Chapter 3 – Research Methodology and Situational Background      
 

This chapter reviews the research framework relating to the need that inspired 

this study; the choice and conceptualisation of the research instrument, the 
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process, scope and people involved in data collection and the challenges 

encountered in the research process.   

 
Chapter 4 – Data Analysis   
 
Chapter 4 analyses the data with reference to the research objectives.  It 

analyses the perspectives of the IS-Users using descriptive statistics and 

estimates the cost of correcting bad data as well as providing a statistical 

perspective on the sustainability of data quality improvement from the 

perspective of the data custodians and data stewards. 

 
Chapter 5 – Conclusions and Recommendations 
 

This chapter summarises the findings ‘from the field’ vis a vis the literature, the 

implications of the cost of data quality, and the implications relating to 

perspectives of the sustainability of data quality activity. The chapter provides a 

brief synopsis of data quality improvement and its challenges and presents 

recommendations arising from the survey results. Recommendations are also 

made for future research.  
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CHAPTER TWO   
 
      LITERATURE REVIEW  

 
2.1 Introduction 
 

This chapter presents a review of the literature on data quality. It examines the 

framework within which data quality operates, namely selected building blocks of 

data governance frameworks and data quality theory relating to awareness and 

knowledge of data quality dimensions. Dimensions are linked to problems and 

can be used to diagnose the problems.  The causes and impacts of data quality 

are discussed, as well as the role of data stewardship and accountability. In 

accordance with the notion of ‘people’ within the ‘people, processes and 

technology’ theme in the definition of data governance, the notion of 

‘stewardship’ is further analysed in terms of responsibilities and job functions. A 

brief overview of data quality cost is presented as well as the factors that 

determine the sustainability of data quality improvements. The chapter concludes 

with a situational overview of data quality at UKZN, in particular the data roles set 

out in the Data Quality Policy.    

 
2.2 DATA GOVERNANCE   
 
2.2.1 Introduction and Definition  
 

The literature that will be dealt with in this Chapter, notes that data governance 

provides the broader framework for data quality, data quality management and 

the roles and commensurate accountability that accompany it.  A data 

governance framework provides the environment for the management of data 

quality and the execution of data quality initiatives. It sets out the facets of data 

quality management pertaining to the ‘what’ of decision making and 

accountability and ‘who’ makes decisions. Data quality participants’ work roles 
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are complex as similar job titles are not always associated with the same 

functions. The research study focuses on information systems users’ 

perspectives.  The research participants are involved in sourcing, capturing, 

storage, production, maintenance, analysis and reporting of data. The literature 

that examines the building blocks of data governance, i. e., data quality 

management and data quality, respectively in terms of citations over the past two 

decades is shown below in Figures 2.1 and 2.2.   

 
Data Quality Management Research 

 
Figure 2.1 - Publications and Citations in Data Quality Management 
Research  
Source: Microsoft Academic Search,  

http://academic.research.microsoft.com/Keyword/9056/data-quality-management 

 

Data Quality Research 

 
Figure 2.2: Publications and Citations in Data Quality Research  
Source: Microsoft Academic Search, 

http://academic.research.microsoft.com/Keyword/9053/data-

quality?query=data%20quality 

 

A comparison of the figures shows that the importance of data quality has 

increased exponentially over the past 13 years. An understanding and alignment 

of the goals of business and data governance is important as the objective of a 

http://academic.research.microsoft.com/Keyword/9056/data-quality-management
http://academic.research.microsoft.com/Keyword/9053/data-quality?query=data%20quality
http://academic.research.microsoft.com/Keyword/9053/data-quality?query=data%20quality
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business is to create revenue, decrease costs and increase operational 

efficiency. The objective of the data governance organisation is to give direction 

to how data should be captured, collected, transferred and managed (O’Neal, 

2011). 

 
2.2.2 Corporate and IT Governance  
 
A discussion of data quality and its position within data governance requires an 

examination of the position of data governance within corporate governance. 

Dismute (2009) cites Shleifer and Vishny’s (1997, p737) definition of data 

governance as “the way in which suppliers of finance to corporations assure 

themselves of getting a return on their investment”. He adds that, “the definitions 

all seem to deal with the direction and performance of a corporation” and involve 

a number of stakeholders, including directors, senior management and other 

shareholders (Weill and Ross, 2004, p11). This definition also embraces all the 

organisation’s assets.  

 

 
Figure 2.3: Basic corporate governance structure 
Source: Dismute, WS (2009) Data Governance: A Study of the Current State and 

Emerging Trends, Master’s Thesis, Information Science Department, University 

of Arkansas, Little Rock.  
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While governance infrastructure is an amalgamation of technologies, systems, 

people, policies, practices, and relationships, IT governance is a distinct and 

subordinate component of corporate governance. Data governance has become 

a distinct area, as the scope of IT governance requires that it be afforded specific 

attention.  Khatri and Brown (2010) observe that IT Governance creates the 

context for data governance; this is illustrated in Figure 2.4 below: 

 

  
Figure 2.4: Corporate Governance 
Source: Khatri, V % Brown CV, (2010), Designing data governance, 

Communications of the ACM, Vol 53, No 1 pp 148-152. 

 
2.2.3 Data Governance  
 

Data governance refers to a system that confers decision making and 

accountability responsibilities and involves information processes, executed in 

alignment with models that describe what action can be taken by whom, on the 

basis of what information, when, under what circumstances, using what methods. 

It provides a framework for fiduciary obligations for data to be enhanced and 

protected in order for stakeholders to have access to data of appropriate quality. 

The success of data governance is determined by the extent to which leadership 
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and management acknowledge and support the notion that it is the responsibility 

of everybody in the organisation.    

 

Wende and Otto (2011, p6) describe data governance as a “framework that 

specifies the decision rights and accountabilities to encourage desirable 

behaviour in the use of data” and sets the ‘rules of engagement’ for management 

activities relating to data. It is motivated by the need for members of the 

organisation to exhibit ‘desirable’ behaviour in the use of data and information. In 

order to inculcate such behaviour, data governance provides for and implements 

organisation-wide data policies, guidelines and standards in line with the 

organisation’s mission, strategy, values, norms, and culture. Data governance 

enables planning at a high, over-arching level and control over data management 

and coordinates the collaboration between IT and the enterprise. This is 

underscored by Khatri and Brown (2010) who emphasise the assignment of 

decision-making rights particularly with regard to an enterprise’s data assets. 

Decision rights refer to the ‘who’ and ‘what’ in data governance, i.e., who makes 

the decisions and what processes are involved. 

 

The control aspect of data governance relates to  assessment, management, use 

and improvement in data quality; this is analogous to a ‘control’ imperative in a 

Define, Measure, Analyse, Improve and Control  (‘DMAIC’)/ TQM (Total Quality 

Management) approach to quality.  

 

Data governance is a framework within which a data asset can be managed 

(Tyche, 2007). In the case of IT, technology assets are managed. While an 

organisation’s technological infrastructure provides a platform for data, the data 

asset itself carries the business value / business information. It is for this reason 

that efficient and effective management of data is required in order to realise its 

potential value. Tyche (2007) outlines the criteria that define data as an asset, 

namely, that the asset has a value that can be quantified, it contributes to the 

organisation reaching its strategic objectives and the asset requires specialised 
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skills in order for it to be appropriately developed and maintained. As data is 

converted to information, and knowledge is derived from information, the 

business value attached to the data increases, producing the intelligence 

required for sound business decisions.  

 

Organisations around the world are becoming increasingly aware of the 

importance of data governance (Brunelli, 2012). Brunelli (Ibid.) notes, that a 

reader survey in 2011 found that 77% of the respondents either had, or were 

planning to implement, a data governance programme 

(SearchDataManagement.com 2011 Reader survey). He added that, business 

users’ increasing ownership of data is a major contributor to increased 

awareness of the importance of data quality. Organizations are also becoming 

more aware that data problems are business problems; previously, they were 

regarded simply as IT problems.   

 
2.2.4 Decision Domains 
 

Khatri and Brown (2010) state that, data governance can be expressed in terms 

of five decision areas or domains:  Data Principles, Data Quality, Metadata, Data 

Access and Data Lifecycle. These domains are described below:  

  

• Data Principles – recognition of data as an asset  

• Data Quality – the prerequisites for data quality 

• Metadata – the semantics or semiotics underlying data should be 

appropriately understood and interpreted  

• Data Access -  the requirements and infrastructure to access the data  

• Data Lifecycle – issues involving the production, retention and redundancy 

of the data 

 

Interrogating the decision domains in terms of the ‘what’, ‘how’, ‘why’, and ‘who’ 

of data governance, the ‘who’ or the human element represents the roles of 

http://searchdatamanagement.techtarget.com/
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those that will be involved in data quality, expressed via the roles of Data Owner, 

Subject Data Expert, Data Quality Manager and Data Quality Analyst. 

  

2.2.5 Data Governance - Data Quality  
 

It follows that the link between data governance and data quality can be 

expressed as the data governance initiatives managed by a number of role 

players that comprise the team responsible for data according to the five decision 

domains. At a narrower level within the data quality decision domain, a team 

consisting of Data Owner, Subject Data Expert, Data Quality Manager and Data 

Quality Analyst would work together to ensure the accuracy, accessibility, 

consistency and completeness of data (Khatri and Brown, 2010). 

 

2.2.6 Data Governance – Accountability and Locus of Control     
 
Once a structure is in place to determine how decisions are made vis a vis data, 

who will decide what needs to be done and by when will depend on the concept 

of control and locus of control. The locus of control is the structure that has 

primary responsibility for data governance in an organisation. In terms of where it 

should be positioned, functionally and hierarchically, some authors suggest that it 

is best located in business departments (Friedman, 2007 in Otto, 2011) while 

others suggest the organisation’s information systems (IS) or information 

technology (IT) department (Otto, 2011).  

 
 
2.3 DATA QUALITY - AWARENESS, CHARACTERISTICS, CAUSES AND 
IMPACT (Objective 1) 
 

Once a data governance environment in place within which a team of data or 

information workers can operate, it is important to consider the data itself and 

enhance institutional knowledge of aspects of data quality. It is important that 

http://en.wikipedia.org/wiki/Data_quality
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users understand the dimensions of data quality as well as the causes and 

impacts of such quality relative to the complexities involved in data quality 

improvement. Data quality can be determined by definitions and the criteria or 

dimensions that are most often cited when data problems are discussed. It is 

also important to understand the nature of data quality in order to raise 

awareness of the need for such quality.  

 

2.3.1 Awareness of Data Quality  
 

As early as 1993, scholars identified data quality awareness as a critical 

component of a Data Quality ‘Jigsaw’ matrix (Mare, 1993); this is depicted in 

Figure 2.5 below. Awareness is seen as a cornerstone of all data quality activities 

irrespective of it having originated from experience or philosophical thought. 

 

 
 
Figure 2.5 - Data Quality ‘Jigsaw’ 
Source: Mare, D (1993), IC Position Paper: Managing Data Quality, Shell 
Internationale Petroleum Maastschappij B.V., The Hague. 
 

Redman (1998) alerts practitioners to the fact that creating awareness of a 

problem and its impact is an important step towards resolving the problem. 

 

Data quality dimensions such as those depicted in Figure 2.6 below could be 

used as feedback mechanisms to sensitise users to unsatisfactory levels of 

quality as the organisation uses the data. Jones (2012) encourages vigilance and 
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action when dealing with problems, e.g., when errors in spreadsheets, reports or 

an email are encountered (related to accuracy and completeness of data), users 

normally fix these themselves. Such errors should ideally be routed to the source 

department that captures or generates the data.  

 

Table 2.6 below categorises the dimensions into the information quality 

categories of intrinsic, contextual and representational quality (Wang, 1998).  

 

IQ Category IQ Dimensions 
Intrinsic IQ Accuracy, Objectivity, Believability, Reputation 
Accessibility IQ Access , Security 
Contextual IQ Relevancy, Value-Added, Timeliness, Completeness, 

Amount of Data 
Representational IQ Interpretability, Ease of Understanding, Concise 

representation, Consistent representation 
 

Table 2.6 - Information Quality categories linked to Information / data 
quality dimensions 
Source: Wang, R (1998), A product perspective on total data quality 

management, Communications of the ACM, Vol 41, No 2, pp 58–65. 

 

Pipino, Lee and Wang (2002) suggest that metrics would play a role in the 

feedback mechanisms, as the process of assessing data quality is a continuous 

effort that requires awareness of the basic principles underpinning the 

development of subjective and objective data quality metrics. Madnick and Lee 

(2009a) suggest that the continuously changing business milieu, regulatory 

requirements, the increasing varieties of data forms and media, and Internet 

technologies that dictate how information is generated, stored, manipulated and 

consumed, heighten quality awareness. This requires constant vigilance in terms 

of data quality. Madnick and Lee (2009b) add that users’ sensitisation to data 

quality issues has been increasing in light of the importance of data quality in a 

data-intensive, knowledge-based economy. Lee and Strong (2004) note that, it is 

important for data workers to possess the ‘why knowledge’ that provides the 
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foundation for the data production process in order to contribute to the generation 

of quality data. They add that data collectors’ knowledge is more important than 

that of data custodians.  Wang, Storey and Firth (1995) documented employee 

awareness of issues related to data quality.  

 

Organisations may sometimes be unaware that there are data quality problems. 

In outlining performance domains, Lwanga Yonke, Walenta and Talburt (2011) 

state that Information Certified Quality Professionals (ICQPs) can enhance 

awareness by:   

 

• Formulating a communication strategy that identifies key stakeholders, 

messages, desired actions and results in order to solicit support for an 

information quality strategy and governance. 

 

• Critical relationships with senior leaders should be nurtured through 

regular communication that highlights value and business results; these 

relationships become a foundation for support and enforcement of the 

information quality mandate.   

 

• Data quality levels should be monitored and reported on an ongoing basis 

in order to ensure that data quality levels are maintained. Feedback 

mechanisms should be put in place to promote awareness.   

 

Grek and Ozga (2008) observe that, regular evaluation and increased regulation, 

particularly in the education sector, has heightened global demand for more data 

as well as improved data quality.    

 

Data quality awareness is often created by the practical problems users 

encounter with operational processes, e.g., data migrations (moving data from 

one system to another), data mergers (amalgamating data from disparate 
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sources (silos) into a single master file and data consolidation, when 

organisations ‘purge’ redundant data.    

 

User awareness of the ‘current state of data quality’ could be further facilitated by 

technologies, for example, using data profiling to provide a ‘helicopter view’ of the 

condition of data. Data profiling is a relatively new concept that has gained 

ground as users do not readily have knowledge of the condition of data in ‘real 

time’. Data is subject to decay from the moment of data entry onwards and is 

particularly evident in customer information, for example, names and addresses 

that change continuously. Data loses its value if it is not continually maintained. 

Knowledge of the current state of data quality would sensitise users to the need 

for continual maintenance.       

 
Grek and Ozga (Ibid.) acknowledge that while data is a product (or by-product) 

produced by most organisations, it is not viewed or managed as such. It is 

important for data to be treated as an asset that has business value and to be 

aware that costs are incurred if it is not maintained. This thinking lies behind the 

development of the Six Sigma ‘DMAIC’ concept.  

 

The DMAIC concept refers to a data-driven improvement cycle to improve, 

optimise and stabilise business processes and designs. The DMAIC 

improvement cycle is the core process used to drive Six Sigma projects.  

 

2.3.2 Characteristics of Data Quality  
  

This section introduces the various philosophies, principles and dimensions of 

data quality as well as its causes and impacts in order to understand the 

complexities of data quality improvement. It is important to understand the 

foundations of data quality through the definition(s), criteria and dimensions that 

are most often cited when data problems are discussed.   
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Du Mars (2008, p1) reports that “missing or incorrect data, duplicate entries, 

misidentified information, undocumented relationships between data elements” 

are some of the problems that diminish the value of data on a daily basis in 

organisations due to errors and mistakes by business users. The compounded 

effect of these factors means that seemingly insignificant, sporadic data quality 

problems can ‘snowball’ into big problems for business processes and cause 

significant losses in both monetary terms as well as employee productivity (Ibid).  
 

Data represents the building blocks of information. While there is no single 

definition of data quality, data appears to be of an acceptable quality if it is found 

to be fit for intended uses in operations, decision-making and planning (Juran, 

1999). The ‘fit for use’ concept of data has been widely accepted in the literature 

(Strong, Wang and Guarascio, 1996). Among other things, it seems to be related 

to the context of its use. The earlier literature derided information management 

as mere data management (Mutch, 1996) in line with the thinking that data 

quality problems were purely technical nature in that they were restricted to data 

base elements. On the other hand, information was seen in a holistic dimension 

as data that was interpreted and reported as meta data and information 

glossaries and used at strategic levels by information managers and executive 

management.  

 

Data has generally not been managed or subjected to the same management 

and quality control measures as other assets in an organisation (English, 2000).  

Studies relating to the poor quality of information include English (2000) and 

Huang (1999) in Xu (2009). The Gartner Group estimated that up to 25% of 

revenues in the financial industry are forfeited due to poor quality data. Dun and 

Bradstreet reported in 2007 that the cost of poor data quality to the U.S. 

economy may be $600b annually (Dun and Bradstreet, 2007).  
 
 
 

http://searchdatamanagement.techtarget.com/feature/Thirteen-causes-of-enterprise-data-quality-problems
http://searchdatamanagement.techtarget.com/feature/Thirteen-causes-of-enterprise-data-quality-problems
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2.3.3 Data Quality Dimensions 
 
Loshin (2011) states that, in order to assess the impact of data quality on a 

business, it is necessary to classify both data quality expectations and business 

impact criteria. Data quality dimensions need to be understood in order to 

determine what the underlying root causes are. While there is no consensus on 

what the various dimensions should be, those that are cited frequently in the 

literature are discussed below.    

 

Accuracy: Accuracy is defined in terms of correctness and reliability and also in 

terms of certified and even audited data (Wang and Strong, 1996). Accuracy of 

data describes how exact an event describes the real world.  Data that has been 

peer-reviewed (Winningham, 2011) lends itself to higher accuracy. The quality 

processes involved in the capturing, sampling and storage of data (Ibid) can 

contribute to improved data accuracy. Winningham (2011) adds that, one of the 

foundations of research is that the results must be replicable. A researcher needs 

to come to a similar conclusion working from an identical set of data.  Accuracy 

relates to the differences between an estimated and the true or unknown value. It 

is may be measured by two main sources of error, namely the sampling error and 

non-sampling error (Ibid). 

 

Completeness: Completeness of data is measured against the various attribute 

criteria associated with that data. Hassany, Panahy, Sidi, Affendey, Jabar, 

Ibrahim and Mustapha (2013) relate completeness to the breadth, depth and 

scope of the data quality task at hand.  Winningham (2011) notes that, while data 

may be complete it can be inaccurate but still meet the requirements of a 

stakeholder and this suggests that there are trade-offs between dimensions.   

 

Consistency: Consistency requires agreement between data across the 

enterprise. Data in silos presents problems for reporting. The data attributes may 

contradict each other in terms of maintenance. While it may be consistent within 
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a narrow band of data or reporting, it may not be consistent across the 

organisation. Data may be different if it is reported in various instances. While 

data can be accurate (representing the real world), it may still be inconsistent. 

Furthermore, while it may be complete, it might also be inconsistent 

(Winningham, 2011). 

 

Timeliness: Timeliness refers to how updated the data is in relation to the task it 

is applied to, or used for (Pipino, Lee and Wang, 2002). This is often evident in 

organisations’ quarterly results that must be reported within a given timeframe 

(BipM, 2007). While timeliness may be related to user expectations, data may not 

always be ‘timely’ as organisations’ financial statements are often published after 

the year-end.  

 

 Auditability: “Auditability implies that means that any transaction, report, 

accounting entry, bank statement etc. can be tracked to its originating 

transaction” (BiPM, 2007, p1).  

 

Credibility: Credibility refers to the extent to which the source as well as the data 

content can be relied upon (Khatri and Brown, 2010). 

 

Relevance: Relevance relates to the extent to which statistical information 

matches clients’ real requirements (Wang and Wand, 1996). 

 

Accessibility: Accessibility refers to the ability to easily obtain data from the 

providing source.  It also relates to the ease with which the information can be 

verified as well as determining whether the format of the available information is 

appropriate. The importance of this indicator has diminished as data and 

information that was previously in hard copy format has largely been replaced by 

on-line information. The cost of deploying information may also have decreased 

commensurately.  Accessibility has become important dimension for both IS 

professionals and data consumers as technology increasingly enables data and 
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information to be presented in a variety of electronic formats.  Accessibility also 

relates to secure access and a shared understanding of data by various 

stakeholders (Huang, Lee and Wang, 1999, Strong, Lee and Wang, 1997). 

 

Interpretability: The advent and increase of computing power have made it easier 

for users to interpret statistical information via metadata (Winningham, 2011). 

 

Methodological soundness: Methodological integrity refers to the implementation 

of international, national or peer-confirmed standards as well as guidelines and 

practices that are the foundation of statistical outputs. Such standards enable 

intra-national and international comparison of data and information. 

 

Integrity: If integrity is not built into data, users cannot trust the data or the 

agency that produced it (Winningham, 2011). 

 

The data quality dimension that deserves mention is the CIA (Confidentiality, 

Integrity, and Availability) model. The CIA dimension is, however more applicable 

as guide to policy for information security within an organization (Yan, Olariu & 

Weigle, 2009). While the dimension of cconfidentiality prevents sensitive 

information from reaching the wrong people, the dimension of integrity involves 

maintaining the consistency, accuracy, and trustworthiness of data over its entire 

life cycle. The dimension of availability in terms of information security relates to 

the technical or hardware support for the maintenance of data. Of the three CIA 

dimensions, however integrity is the most relevant for this study. Another 

approach also is the Parkerian Hexad consisting of the dimensions of confide-

entiality, integrity, availability, authenticity, possession, and Utility (Dardick & 

Secau, 2010). 
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2.3.4 Other Data Quality Dimension Approaches  
 
Other approaches to data quality dimensions have been advocated (Wang and 

Strong, 1996) and supported by research. De La Harpe and Marshall (2009) add 

an intrinsic and contextual as well as a representational approach to the 

dimensions already discussed.   

 

• The intrinsic dimension relates to the quality of data ‘in its own right’ in 

the sense that believability and reputation require recognition. Intrinsic 

data quality refers to the dimensions of accuracy, objectivity, believability, 

reputation, pragmatism, usefulness and usability (Strong, Lee and Wang, 

1997). 

 

• The contextual dimension relates to data quality ‘within the context of 

the task at hand’.  This dimension places the onus on data consumers to 

be aware of tasks and their contexts that change over time and to be 

vigilant in taking these into consideration when conducting research. This 

dimension relates to the relevance, timeliness, completeness and volume 

of information data and how much value can be added to it (Strong, Lee 

and Wang, 1997). 

 

• The representational dimension relates to data quality in terms of how it 

is presented, delivered or disseminated.  Representational data quality 

includes issues relating to how data is formatted and how concisely and 

consistently it is represented. Data needs to be easy to understand 

(format) and interpret (meaning). Representational data quality refers to 

the ease with which data can be interpreted and the ease of 

understanding, how concisely it can be interpreted and consistently 

represented (Strong, Lee and Wang, 1997). 
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The South African Statistical Quality Assessment Framework (SASQAF) draws a 

distinction between syntactic, semantic and pragmatic data quality dimensions as 

follows: 

  

• Syntactic data quality focuses on the structure of symbols and 

emphasises the form of data rather than what it means. Syntactic data 

quality can be related to the dimension of consistency, where data values 

for particular data elements are represented by a consistent set of 

symbols, a consistent symbolic representation or a consistent coding 

taxonomy (Ballou and Pazer, 1995). 

 

• Semantic data quality relates to what data means. It focuses on symbols 

that represent things in the real world. Semantic quality refers to the 

dimensions of completeness, accuracy, timeliness and currency (Wang, 

Strong, Guarascio, 1996). 
 

• Pragmatic data quality has to do with the use of data, and how useful 

stakeholders find it in the execution of their work (Wang, Storey & Firth, 

1995).  

 

2.3.5 Trade-offs within Dimensions 
  
Scannapieco, Paolo and Batini (2005) report that quality dimensions are not 

independent of one another, but that a correlation exists among them. While one 

dimension may be deemed more important than another, the choice of one may 

negatively affect the others. Establishing trade-offs among dimensions raises 

complex questions, e.g., a trade-off may need to be made between timeliness and 

either accuracy, completeness, or consistency. Providing accurate (complete or 

consistent) data may require time. Conversely, data may be timely, but accuracy 

may be compromised if it is required at very short notice.  Scannapieco, Paolo  

and Batini (2005) add that consistency and completeness may be traded-off in the 
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sense of either choosing to rely on too little data, but with a higher rate of 

consistency or having access to more data almost  immediately, but with a lower 

rate of consistency.  Opinions differ as to which data quality dimension is the most 

important. Data accuracy appears to be the most important (Olson, 2013), but 

relevance could also be regarded as more important; (Brackstone, 2001) states 

that the other dimensions are meaningless without relevance.  

 
2.3.6 Dependencies within Dimensions – Relationships of Data Quality 
Dimensions to Data Quality Improvement   
 
In Figure 2.7 below, Hassany et al. (2013) show how data quality dimensions are 

interdependent using the ACCTI (accuracy, completeness, consistency, 

timeliness, improvement process) framework. 

 

The first three attributes (accuracy, completeness and consistency) are related to 

timeliness. Alternatively, all four dimensions can be related to data quality 

improvement. The authors used the ACCTI framework to model these 

dimensions and their effect on data quality improvement.   

 

  
Figure 2.7: ACCTI framework 
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Source: Hassany, P Panahy, S Sidi, F Affendey, LS  Jabar, MA Ibrahim, M 

Mustapha, A (2013), Discovering Dependencies among Data Quality 

Dimensions: A Validation of Instrument. Journal of Applied Sciences, 13: 95-

102). 

 

2.3.7 Causes of Data Quality  
 
To improve data quality it is important to understand the issues and factors that 

give rise to data quality problems. Haug and ArlBjorn (2011) identify the lack of 

clearly identified roles and responsibilities, lack of data ownership, inefficient 

organisational procedures to address data quality, a lack of penalties or 

incentives and training and education shortcomings as potential barriers to data 

quality improvement. McKnight (2009) proposes the following ‘real life’ questions 

in relation to the causes of bad data quality:   

 

• Source - was the data correctly captured or uploaded at the source?  

• Process - was the integrity / quality of the information maintained as it was 

processed through the system (e.g., the student life cycle)?  

• Usage - is the data being interpreted correctly? 

• Ageing and rate of decay - to what extent is data quality compromised as 

data ‘age’ in terms of its currency or ‘shelf life’?   

• Consistency - can data from disparate systems be reconciled to conform 

to the way an organisation would ideally want to view the data?  

 

Lee, Pipino, Funk and Wang (2006) add the poor data quality can also be related 

to a lack of procedures and appropriate technologies. Maydanchik (2007) 

advocates a process approach to investigate the causes of bad data. This 

involves the following processes:  

  

• processes that import data from the outside 
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• data conversions that may not have been done correctly, or importing 

problems from legacy systems   

• system consolidations through mergers and acquisitions and the 

integration of different systems  

• manual data capturing and mistakes via various forms and interfaces   

• batch updates – the impact of changes in data ‘downstream’ are hard to 

determine  

• real-time interfaces – while real time interfaces significantly improve IS 

efficiencies, the capture of data that ‘triggers’ through to many other 

systems occurs too rapidly for the data’s reliability to be monitored      

• processing causes data to decay 

• processes that change or transmute data from within the organization, for 

example, changes in organisational structure  (Maydanchik, 2007) 

 

Various organisational processes related to changes to data, the currency of 

data, upgrades to software and hardware systems, the incorporation of new data, 

and the automation of processes as well as the loss of organisational skills can 

contribute to bad data. The causes may relate to deficiencies in the data quality 

management function itself and manifest through the following stages:  

 

• data processing – are programmes regularly maintained? (poorly 

maintained programmes with unadjusted business rules will yield 

incorrect results)     

• data cleansing – have data changes been effected to incorporate new 

technologies?    

• data purging – has data intended for deletion or deactivation been 

purged? (data that is still erroneously current or relevant may cause 

confusion and slow down processes)   (Maydanchik, 2007). 

 

Furthermore, LaValle, Lesser, Shockley, Hopkins and Kruschwitz (2011) note 

that managerial and cultural factors, that are not always considered when 
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evaluating data quality may impede the use of data to improve an organisation. 

This is illustrated in Figure 2.8 below.    

 

 
Figure 2.8: Barriers to Information Use  
Source:  LaValle, S Lesser, E Shockley, R Hopkins, MS Kruschwitz, N (2011) - 

Big Data, Analytics and Lee Y, Strong D (2003), Knowing why about data 

processes and data quality, Journal of Management Information Systems, Vol 20 

No3, pp 13–39. 

 

2.3.8 Impact of Data Quality   
 

Slone (2006) has shown that poor data affects organisational performance and 

that the relationship between information quality and organisational performance 

can be measured. Marsh (2005) summarises the concerns and findings from 

several similar surveys: 

 

• 88% of all data integration projects will fail completely or exceed their 

budgets 

• 75% of organisations have calculated and identified the costs arising from 

bad data 

• poor data has caused 33% of organisations to delay or cancel new IT 

initiatives  
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• according to Gartner in Marsh (2005), bad data are the number one cause 

of customer relationships management systems’ failure 

 
Loshin (2012) notes that bad data impacts the organisations’ financial 

performance, confidence, productivity and risk or compliance. He proposes a 

business impact hierarchy where data is made more manageable by managing 

its impacts in smaller components.    

 

Industry experts including Gartner Group, Price Waterhouse Coopers, and The 

Data Warehousing Institute note that, while data quality management is in crisis, 

senior stakeholders have been apathetic in resolving the problems (Marsh, 

2005). Madnick and Lee (2009b) concur and add that more research is needed 

to assess the impact of data quality on individual firms as well as the national 

economy.  

 

In terms of operational impacts, as early as 1998, Redman predicted that data 

quality would compromise customer satisfaction and lower employee satisfaction.  

The impact of poor data quality manifests in delayed decision-making and slow 

transmission of data from data warehouses. Organisations may also mistrust 

data sources.   

 

The strategic impact of poor quality data is difficulty in determining and executing 

strategy. Issues around data ownership can divert attention from organisational 

objectives, culminating in: 

  

• Increased IT work - scrapping and reworking with more resources devoted 

to labour and material    

• Lost confidence in organisational business intelligence (decisions based 

on information and knowledge based on faulty data)  

• Failure to comply with regulations (may have  funding consequences)    
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• Lost business opportunities and lower profit (opportunity cost of missed 

ventures)   

• Waste (scrapping and reworking)   

• Short term remedies more costly (vicious circle; the higher the rate of 

organisational change, the more maintenance is required but 

organisations often resort to quick fixes – the momentum of the ‘techtonic  

effect’ (Winningham, 2011). 

 
2.3.9 Positioning DQ Dimensions Relative to Data Quality improvement     
 

Shanks and Darke (1998b) proposed a useful framework for understanding data 

quality in a data warehouse environment that includes both intrinsic and extrinsic 

data quality dimensions and is based on semiotic theory, the study of the use of 

signs and symbols to convey knowledge. An important feature of their framework 

is the separation of data quality goals from the means to achieve them. Other 

components of the framework include stakeholders, improvement strategies, 

measures, weightings and ratings. Four types of stakeholders are identified: data 

producers, data custodians, data consumers, and data managers (Strong, Lee & 

Wang, 1997, Wang, 1998). This framework is illustrated in Figure 2.9 below and 

the dimensions are discussed in the following section.  

 
Figure 2.9: Connecting stakeholders to data quality dimensions   
Source:  Strong, DM, Lee, YW, Wang, RY (1997), Data quality in context, 
Communication of the ACM, Vol 40, Nov 5 , pp 104–108. 
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2.4 ACCOUNTABILITY AND DATA QUALITY ROLE PLAYERS (Objective 2) 
 

This section discusses the issues pertaining to accountability and data quality 

role players. 

 
2.4.1 Data Roles   
 
This section focuses on data roles, types of data ownership, ownership models 

and the roles and perspectives of Data Custodians, Data Stewards and Data 

Owners in the organisation. This is complex as different functions are associated 

with similar role names, and roles are blurred, with stewards and custodians 

involved in similar activities and support for groups rather than individuals.  

 

As noted earlier, the data role players are also associated with the ‘locus of 

accountability for decision making’ in the data quality domain. They set 

‘underlying standards with respect to various dimensions of data quality’ as well 

as mechanisms to show business users how data can be used on a continuous 

basis; they also prescribe procedures to evaluate the quality of data.  Parker, 

Stofberg, De La Harpe, Venter and Wills (2006) stress the role of people in the 

progress or ‘flow’ of data through the organisation. Data only has value when it  

fulfils purposes that are determined by the data stakeholders. They cite 

Rothenberg’s (1996) observation that the quality of data should be determined 

and assessed early during the data production stage. Schwolow and Jungfalk 

(2009) concur and state that, the quality of data should be interrogated in all 

stages in its lifecycle; indeed, data quality interrogation should occur at source. 

Those who will be responsible for this process should therefore also be identified 

early in the lifecycle.  

 

The following approaches have been advocated to data roles or a combination of 

these roles:  
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Information supplier - information manufacturer - information consumer 
approach 

 

Wang (1998) notes that, information suppliers are those who are responsible for 

creating and collecting the data. Information manufacturers are charged with 

designing, developing or maintaining the data and information systems 

infrastructure, while information consumers are the people who apply the 

intellectual property in their work. 

  
Data producer – Data custodian – Data consumer approach – Strong, Lee & 

Wang (1997) proposed three roles for those involved in data quality:  

 

• Data producers are people or groups of people that generate the data and 

who are charged with functions associated with producing the data. They 

generate data according to specifications and they need to assess 

whether the data elements are valid and accurate and ensure that the 

data achieves the purposes for which it is created. They are charged with 

the scope of the data quality.   

 

• Data custodians provide, marshall and manage the resources required to 

store, process and secure the data.  

 

• Data consumers use and aggregate the data.   

 
Strong, Lee & Wang (1997) added that the data custodian should have a broader 

conceptualisation of data quality (which is congruent with the nature of the role 

as envisaged in UKZN’s Data Quality Policy). 

 
Data collector – Data custodian - Data consumer approach - Lee and Strong 

(2003) maintain that the three major roles in most organisations should be data 

collectors, data custodians, and data consumers, with data collectors entrusted 
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with initial capture or upload of data, data custodians to store and maintain the 

data and data consumers using the data to integrate and aggregate, present and 

interpret (affirmed by Zhu, Madnick, Lee, and Wang, 2012). 

 
Data Manager – Xu, Nord, Nord and Lin (2003) added a fourth data role, data 

managers, within the data production cycle. They should manage data quality in 

the system. Mathieu and Khalil (1998) raise the role of process owners and 

advocate that they should be bear responsibility for the quality of data that the 

organisation produces. Different data roles might assign different priorities to 

data quality dimensions (De la Harpe and Roode, 2004). 

 

The research literature emphasises the flow of data and various data roles. The 

stage of data in the data lifecycle is also important when quality data is required 

in an organisation. However, the current study focuses on data quality 

participants that are accountable rather than investigating the quality 

requirements within each of the lifecycle stages.  

 

Hodkiewicz, Kelly, Sikorska and Gouws (2006) hold that many organisational and 

behavioural factors influence the quality of data. The people element in the 

‘people-process-technology’ triad has to ensure that ‘things happen’. They 

interrogate the data collection process and propose key performance indicators 

(KPIs) such as MTTF (‘mean time to failure’) and the MTTR (‘mean time to 

repair’) and the input factors that may affect the MTTF and MTTR at collection 

stage and also determine ‘weak’ links in the data collection process, as well as 

potential remedial initiatives.   
 
 
2.4.1.1 Data Owners    
 

Various definitions of data owners have been proposed. A data owner has been 

defined as a “role or group who is empowered to make decisions about how a 
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data entity can be structured, manipulated, or used” 

http://www.datagovernance.com/glossary_d.html 

 

A data owner is also seen as “the individual responsible for the policy and 

practice decisions of data.  For business data, the individual may be called a 

business owner of the data” http://www.information-

management.com/glossary/d.html 

 

They are also “the individual responsible for the policy and practice decisions of 

data” http://www.aexis.eu/DataWarehouse-Glossary/ 

“A data owner is the ultimate accountable person within data governance, 

although data ownership can also be treated as a shared corporate 

responsibility” http://www.stibosystems.com/US/Resources/Glossary/B.aspx 

 

Loshin (2001a) states that data ownership is a management issue and that there 

are complicated issues such as different views of the value of data, issues 

related to privacy or bureaucratic practices that make the management of data 

quality difficult. Discussing ownership paradigms, Loshin (Ibid) differentiates 

between data producers and data consumers but also proposes that whoever 

produces or generates the data should be the data owner. Some of Loshin’s 

approaches to data ownership are listed below, often from the position of those 

that have the most interest in the data: 

 

• when all the data that the organisation sourced may be assumed to be 

produced within that organisation, the organisation is the owner,  

 

• where two parties are involved, where one pays for the production of the 

data and the other actually creates the data, the one who pays is the data 

owner,  

 

http://www.datagovernance.com/glossary_d.html
http://www.information-management.com/glossary/d.html
http://www.information-management.com/glossary/d.html
http://www.aexis.eu/DataWarehouse-Glossary/
http://www.stibosystems.com/US/Resources/Glossary/B.aspx
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• the party that can ‘unlock’ or ‘decode’ the data i.e. the ‘decoder’, will be 

the owner,  

 

• those in whom the rights are vested such as personal privacy or image 

copyrights, will be the owner, 

 

• the individual or organisation that buys or licenses data as a purchaser 

or licenser will be the owner,   

 

• ultimately Loshin (2000) states that everybody in an organisation could 

be a data owner. If this philosophy was applied throughout the 

organisation, it would cascade into data quality efficiency at various levels 

of the organisation.  
 
2.4.1.2 Data Stewards   
 
A data steward may be an individual with data associated responsibilities as 

stipulated by a data governance or data stewardship programme. Data stewards 

may be categorised according to various titles such as Data Quality Stewards, 

Data Definition Stewards and Data Usage Stewards 

http://www.datagovernance.com/glossary_d.html 

 

Data stewards are the people that implement the data standards and policies that 

their organisations have adopted.  A Data steward may be the person entrusted 

to maintain a data definition on behalf of the owner of the data definition 

http://www.damauk.org/glossary.php 

 

Loshin (2000, Ibid) draws a distinction between a data steward and a data 

custodian.  He states that a data steward is responsible for maintaining and 

distributing the data as directed by a data custodian. A steward should be 

responsible for procedures that take care of the capture, storage, validation, 

http://www.datagovernance.com/glossary_d.html
http://www.damauk.org/glossary.php
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correction, documentation and production of data from the operational area. 

Weber, Otto and Osterle (2009) cite Bitterer and Newman (2007) who define 

data stewards as those accountable for and committed to the ‘collaborative 

business practices’ required to manage data as an asset.  Weber and Otto (Ibid) 

also refer to a Chief Steward as a ‘master data coordinator’ and ‘director of data 

management’ or ‘data czar’ (Dych´e and Levy, 2006). Dych´e and Levy (2006) 

suggest the need for ‘detailed skill profiles’ to connect and assign employees 

who are data workers to data associated roles. 

 

Winningham (2011) states that a data steward should be accountable to 

implement and enforce data governance policies.  Lucas (2011) describes a data 

steward as a business leader and / or an expert on a particular subject charged 

with accountability in the following areas: 

  

• the identification of the requirements of a business intelligence system  

• laying down the definition of business domain values, and data names in 

specific subject areas 

• ensuring compliance with regulatory requirements and that the 

organisation adheres to the data policies and standards it has set itself 

• analysing and improving data quality 

 

Data stewards typically work with a data custodian, whose responsibility it is to 

store and move the data 

http://www.stibosystems.com/US/Resources/Glossary/B.aspx 

 

However, Karel (2007) of Forrester Research recognises that the definition of a 

data steward has evolved and distinguishes between business and IT stewards.  

Business stewards should know the subject matter the best. They apply strategic 

and tactical priorities to the business and the data to support it. This requires a 

detailed grasp of the requirements of line users. The business steward 

communicates these needs to the technical data stewards and complies with 

http://www.stibosystems.com/US/Resources/Glossary/B.aspx
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decisions taken by the Executive member responsible. On the other hand, IT 

Stewards provide support to the data supply chain front line through all the 

conversion processes, the infrastructure supporting the data ‘in the middle’ and 

downstream to a warehouse and business intelligence application. They are also 

tasked with converting the technical specifications to be interpreted and applied 

by IT designers and developers.  

 
2.4.1.3 Data Custodians 
 

The literature supports both narrow and wider definitions of the role of data 

custodians.  They also range from the technical to the business side of data 

quality. Loshin’s (2001b) approach can be considered a ‘narrow’ view in that he 

considers this role as having the “responsibility of operating systems, data 

centres, data warehouses, operational databases, and business operations in 

conformance with the policies and practices prescribed by the data owner” 

http://www.information-management.com/glossary/d.html 

 

Data custodians are responsible for enforcing data standards. Loshin (2001b) 

notes that the data custodian is required to provide appropriate administrative 

data to the organisation in a reliable form that complies with established 

standards. Data custodians are also entrusted to take appropriate care of the 

data in the operational system and the definition is widened in that they would be 

directly involved in policy matters.  Loshin (2001b, Ibid) acknowledges that the 

role of the data custodian also accommodates the business side.   

 

Jesionowski (2012) provides for a wider interpretation of the role of a data 

custodian and suggests that they are directly involved in ensuring data quality by:   

   

• collaborating with data stewards to interrogate data issues and 

inquiries – custodians know the rules for reporting  

http://www.information-management.com/glossary/d.html
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• resolving data issues, and collaborating on system changes – this is 

often required for statutory reporting; conversions have to be facilitated 

between the coding structures of the institution and the coding 

structures of the body that a submission is made to  

• ensuring that data movements are documented and recorded in 

designated repositories 

• assessing the quality of the data produced by the institutional reporting 

unit, and running data validations and reconciliation processes 

subsequent to the completion of data capture and corrections 

movement done by data stewards   

• providing source data to support a data repository warehouse – this 

role is also connected to the coordination and management of service 

level agreements  

• relaying appropriate and relevant issues governing the delivery or 

quality of source data to the repository team  

 

(Jesionowski’s repository team has various parallels with the Data Quality 

Working Group referred to in this research study).    

 
2.4.2 Connecting Data Roles to Data Quality Dimensions   
 

Giannoccaro, Shanks and Darke (1999) were some of the first scholars to link 

data stakeholders to the categories and dimensions of data quality (Figure 2.10 

below). 
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Figure 2.10: Associations between stakeholders and particular data quality 
dimensions  
Source: Giannoccaro A, Shanks G, Darke, P (1999), Stakeholder Perceptions of 

Data Quality in a Data Warehouse Environment, Proc. 10th Australasian 

Conference on Information Systems). 

 

Lee and Strong (2003) observe that it is important for data workers to possess 

the ‘why knowledge’ underlying the foundations of the data production process in 

order to contribute to the creation of quality data. They are of the opinion that the 

knowledge of data collectors is more important than that of data custodians. 
 
2.4.3 Data Quality Board   
 
Weber, Otto & Osterle (2009) advocate for a Data Quality Board that is similar to 

a business information team (English, 1999), a data governance council or a 

trustee council (Dych´e and Levy, 2006). 

 

2.4.4 Dimensions of Common Responsibility  
 

Jesionowski (2012) applies a ‘team approach to data quality improvement in that 

data stewards and custodians should work together to apply organisational data 

management policies and standards. He notes that data stewards and data 

custodians can facilitate efficiency by collaborating in channeling requests for 
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data access to relevant stewards involved, conceptualizing as well as specifying 

and developing audits in the areas of data governance or data quality.  

 

2.4.5 RACI Charting in Allocating Roles in Data Quality  
 

The RACI ‘matrix’ refers to a specific framework of data governance activity that 

consist of a matrix of roles and decision areas, encapsulating four central 

responsibilities that are usually applied to data governance projects in terms of 

parties being Responsible, Accountable, Consulted and Informed and defined as 

follows : 

 

• Responsible – the responsible person is the person who performs an 

activity or does the work 

• Accountable – the accountable person is the person who is ultimately 

accountable. This is however, not a simple concept. These are the people 

who identifies those who are responsible for a stated outcome. In many 

cases, however an accountable and responsible person may be the same 

individual (Costello, 2012). 

• Consulted – the consulted person is the person that needs to both receive 

feedback and contribute to the activity 

• Informed – the informed person indicates the person that needs to know of 

the decision or action (Grobler and Dlamini, 2010).   

 

The RACI model provides for an opportunity to manage the flow of information 

relative to the duties and involvement of the stakeholders involved. Wende and 

Otto (2011) illustrates the position of stakeholders in data quality vis a vis the 

dimensions of data quality i.e. vis a vis accuracy, timeliness, completeness, 

comparability. Their model (Figure 2.11 below) is crafted around data quality 

roles that closely resembles the model implemented at the Institution, i e 

providing for a Sponsor, a Data Quality Board, a Chief Steward, a Business Data 

Steward and a Technical Data Steward. 
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Exec 
Sponsor 

Data Quality 
Committee

Chief 
Steward / 

(Custodian?)

Business 
Data 

Steward / 
(Owner?) 

Technical 
Data 

Steward 
(ICT 

Resource?)

Plan Data Quality Initiatives A R C I I

Establish a Data Quality Review Process I A R C C

Define data producing processes A R C C

Define rules and responsibilities A R C I I

Establish policies, procedures and standards for data quality A R R C C

Create a business dictionary A C C R

Define information Systems Support I A C R

R = Responsible, A = Accountable, C=Consulted, I = Informed  
Figure 2.11 - ‘RACI’ Chart 
Source : Wende, K Otto, B (2011), A contingency approach to Data Governance 

http://mitiq.mit.edu/iciq/PDF/A%20CONTINGENCY%20APPROACH%20TO%20

DATA%20GOVERNANCE.pdf 

 

There are other approaches as well to analyse roles and activity in terms of data 

quality eg the COBIT framework (Barnier, 2012). 

 

2.5 DATA QUALITY PRACTICE / SPECIFIC ISSUES   
 

The following are relevant to sound data quality practice. 

 
2.5.1 Currency of Data   / Data Decay    
 

In line with the trend of data driven decision making (DDDM) and the pressure for 

data to be accurate, timeous, current etc, can an institution afford the data decay 

associated with delays in data correction? In terms of data quality corrections, 

one of the survey questions (question 17) for this study was: ‘In order to minimise 

the time that data remains incorrect, do you believe that a ‘Data Correction 

Window Period’ (e.g. 24 / 48 / 72 hours) should exist for regular data errors to be 

fixed?’ According to the glossary of data compiled by the International 

http://mitiq.mit.edu/iciq/PDF/A%20CONTINGENCY%20APPROACH%20TO%20DATA%20GOVERNANCE.pdf
http://mitiq.mit.edu/iciq/PDF/A%20CONTINGENCY%20APPROACH%20TO%20DATA%20GOVERNANCE.pdf
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Association for Information and Data Quality (IAIDQ), data quality decay is the 

extent to which previously accurate data will become not accurate over time 

because the characteristic about the real world object will change without a 

corresponding update to the data applied 

(http://iaidq.org/main/glossary.shtml#D). 

 

McGilvray (2010) refers to data decay as data erosion, describing it as negative 

changes to data and suggest methods to counteract this phenomenon. Loshin 

(2010) states that there may be an acceptable level of quality and that knowledge 

relating to data quality dimensions and data quality measures needs to be 

applied to determine acceptable thresholds for data quality. He suggests that the 

threshold for data quality tolerance should be related to the business impact of a 

data problem. The tolerance levels would be built into a system of data audits 

that examine and report on data quality in real time. An institution should monitor 

errors and their impact over a period of time in order to determine acceptable 

quality levels.       

 

Loshin proposes Service Level Agreements (SLAs) on data quality; his model is 

illustrated in Figure 2.12 below. While normally associated with issues related to 

system availability and service turnaround, he is of the opinion that SLAs could 

play a significant role in data quality improvement. 

 

http://iaidq.org/main/glossary.shtml%23D
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Figure 2.12: Model of a Service Level Agreement within a Data Quality 
Environment  
Source: Loshin, D (2011), The Practitioners’ Guide to Data Quality Improvement, 

Book Online 

http://books.google.co.za/books?id=B3zd4GCAWeYCandq=SLA#v=onepageand

qandf=false 

  

While SLAs may relate to time intervals to correct data, they may also relate to 

third parties that are responsible for providing data to the systems. Several 

scholars have noted that it is important to determine data quality problems at the 

entry points in the data or information lifecycle as data quality may already be 

compromised before being assimilated into the host system.  In this respect, an 

analogy can be drawn between Michael Porter’s (1985) Value Chain Model 

(Figure 2.13) and Schwolow and Jungfalk’s (2009) Information Value Chain 

Model (Figure 2.14), where Porter’s idea is adapted to a data / information 

environment. 

 

http://books.google.co.za/books?id=B3zd4GCAWeYCandq=SLA%23v=onepageandqandf=false
http://books.google.co.za/books?id=B3zd4GCAWeYCandq=SLA%23v=onepageandqandf=false
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Figure 2.13: The Value Chain Model 
Source: Porter, ME (1985), Competitive Advantage, Free Press, New York.  
 
 

 
Figure 2.14: The Information Value Chain Model  
Source; Schwolow, S and Jungfalk, M (2009), The Information Value Chain: 

Strategic Information Management for Competitive Advantage, Copenhagen 

Business School. 

http://www.scribd.com/doc/46315789/Information-Value-Chain 

 

While recognising aspects of Michael Porter's value chain in Schwolow and 

Jungfalk’s model, the different phases of information management in the latter 

model allow for data actors to be involved in data quality improvement activities 

in each of the three components of information acquisition, information 

processing and information distribution. As poor data manifest at various stages 

of the data information life cycle, it may be critical to implement SLAs at Porter’s 

‘inbound logistics’ stage and Schwolow and Jungfalk’s ‘information requirements’ 

stage to address problems at the source. 

 

http://en.wikipedia.org/w/index.php?title=Competitive_Advantage_(book)&action=edit&redlink=1
http://www.scribd.com/doc/46315789/Information-Value-Chain
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Loshin (2011) maintains that controls are required to measure if SLAs have been 

met with appropriate metrics to set off alerts. Dealing with data at the source will 

underscore that an organisation is focusing on the ‘right thing’.  

 
2.5.2 Performance 
 

In terms of data quality and performance, one of the survey questions (question 

18) posed was: ‘In terms of accountability for data and data quality success, do 

you believe that data quality responsibilities should be included in data owners’ 

key performance indicators (KPIs)?’ Although the literature has not established a 

direct link between data quality and performance measurement (it has only been 

implied via SLAs), some studies relate data quality to organisational 

performance.  Anturaniemi (2012) reports that targets and metrics related to data 

quality are related to organisational performance and that, KPIs as referred to in 

Figure 2.17 should be used to monitor this performance.  Slone’s 2006 study 

showed that the relationship between data quality and organisational outcomes 

can be systematically measured and that measuring data quality can be used to 

predict organisational outcomes. Masayna, Koronios and Gao (2009) distinguish 

between corporate KPIs (at a strategic level), business KPIs (at a tactical level) 

and operational KPIs (at an operational level).   

 

Masayna, Koronios, Gao and Gendron (2007) cite KPIs as measures that 

determine how well business processes are performing in terms of their potential 

to achieve a particular goal (illustrated in Figure 2.15 below). Masayna (2006) 

notes that, since KPIs are dependent on data to support KPI metrics, if one 

relates this to data quality dimensions, it is not practically possible to assure data 

quality for every dimension (referring to trade-offs). This suggests that one may 

have to accept satisfactory scores on some of the selected dimensions only.  

Very little subsequent research has been conducted on the relationship between 

data quality and KPIs. 
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Figure 2.15: A proposed model to determine the links between Data Quality 
initiatives and organisational KPIs  
Source: Masayna, Koronios, Gao, Gendron, (2007), Data Quality and KPIs: A 

link to be established, paper presented at the Second World Congress on 

Engineering Asset Management and the Fourth International Conference on 

Condition Monitoring (WCEAM-CM2007), Harrogate, United Kingdom, 11-14 

June. 

 
2.5.3 Quality of Processes    
 

The quality of business processes also impact data quality. 

 
Survey question 15 asked: ‘Do you feel that the operational processes in your 

areas of work support /underpin work with respect to Data Quality, are robust and 

of adequate quality ?’   

 

Masayana and Koronios (2011) observe that the efficiency and effectiveness of 

business processes are two defining criteria of organisational success. 

Operational processes in users’ areas of work should support or underpin data 

quality. Business Impact Analysis is one of the processes that guide analysts. It 

notes that, ‘any potential data-related issues may increase costs, reduce 
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revenues, impact margins or introduce inefficiencies or delays in business 

activities’. In the CobiT framework, KPIs are defined as measures to gauge the 

progress of business processes towards a particular goal or objective. 

 

Madnick, Wang, Lee and Zhu (2009) note that as new technologies affect how 

data is managed and assure its quality, organisations may change processes 

faster than their systems are updated, with a resultant ‘lag’ in the system to 

support the new processes. Heravizadeh, Mendling and Rosemann (2009, p8) 

explored the quality of business processes. They refer to “the quality of functions, 

quality of input and output processes, quality of non-human resources, and 

quality of human resources” from which one may infer that many a data quality 

antecedent can be traced to a business process.  

 

2.5.4 Access to Reports and Data Quality    
 

According to the Agency for HealthCare Research and Quality (2010), access to 

well-produced reports can promote a good understanding of the dimensions of 

data quality. Consumer or user reports contribute to data quality in various ways: 

  

• the dimensions of data quality are better understood 

• quality improvement is stimulated among providers as they perceive that 

performance data can affect their market share or their position in the 

organisation  

• reports that affect providers’ or users’ ‘public image’ may be used as a 

lever to improve the data to safeguard their reputation    

(http://www.ahrq.gov/legacy/qual/pubrptguide2.htm) 

 
 
 
 
 

http://www.ahrq.gov/legacy/qual/pubrptguide2.htm
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2.6 DATA QUALITY SUSTAINABILITY 
 

Pipino, Lee and Wang (2002) consider approaches that can be deployed to 

assess an organisation’s data quality or prospects and sustainability for data 

quality improvement.   

 
2.6.1 The Comparative Approach, first implemented by Pipino, Lee and Wang 

(2002) involves the use of data quality surveys and quantifiable data quality 

metrics. This approach compares the data collected from surveys (perceptions of 

each class of stakeholder) and the results of the quantitative metrics. The 

comparisons are used to diagnose and prioritise key areas for improvement. This 

is referred to as the diagnostic approach due to its diagnostic nature and in order 

to distinguish it from an alternative comparative approach.  

 

2.6.2 An Alternative Comparative Approach uses aggregated results of data 

quality surveys to analyse and prioritise key areas of improvement. It includes 

gap analysis and benchmark analysis. Here the comparisons are not between 

two techniques. Making use of the survey technique, comparisons are made 

across stakeholders (collector, custodian and consumer) against an industry 

standard. This approach falls within the broader category of the AIMQ 

methodology (Pipino, Lee and Wang, 2002).  

 

Lwanga Yonke, Walenta and Talburt (2011) note that in order to sustain data 

quality, the Information/Data Quality Professional should assume the role of an 

internal consultant who will facilitate increasing knowledge and understanding of 

the data among business customers, and continuously monitor and report on 

levels of data quality, ensuring that quality is maintained as well utilising it as a 

feedback mechanism to foster awareness. They should work with project teams 

in system development lifecycles, promoting information on quality best practices 

and ensuing that these are included in all information technology development 

and support processes.  
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Research on data quality management (involving the ‘hard’ or IT responsibility or 

involvement systems approach) accelerated from 2000 to 2010. In terms of 

initiatives to promote a data and information culture or information literacy 

(question 24) Zu, Fredendall and Robbins (2006) state that (relating to 

sustainability), organisational culture could be an explanatory variable for the 

extent that an organisation effectively executes its quality practices. They 

suggest that organisational culture can be significantly influenced by quality 

management and different quality practices.  

 

With regard to role of change in sustainability (question 28), and managing data 

quality in the face of organisational change, Loshin (2010) states that during the 

process of data quality improvement, policies, processes, and procedures that 

govern the programme must be able to continue even in the face of change. This 

applies to situations involving downsizing or re-organisation, outsourcing or IT 

staff changes.  

 

The role of training in quality (question 26) is so important that it relates to two of 

the 14 Points of Quality proposed by Edwards Deming (1996), as cited by 

Masoumeh, Basri and Sadegh (2011). 

 

Turning to the question of how well teams or networks function in terms of 

sustainability (question 27) Brennan, Bosch, Buchan and Green (2013) state that  

cross-functional teams is critical to diagnosing process based problems in the 

area of quality and describe their involvement in developing and testing process 

improvement as an important element in continuous quality improvement. They 

also allude to teams overcoming obstacles to cross functional team work such as  

boundaries in the professional realm and status differences that hinder 

collaboration (Ibid). 
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2.6.3 Policy and Strategy – Way Forward  
 

While a data quality policy is a ‘directive’ or a set of guiding rules intended to 

ensure that desired practice is implemented, it may need to be complemented by 

a strategy. A strategy is an operational ‘roadmap’ where resources are mobilised 

to achieve an organisation’s objectives. According to Dravis (2004 ), strategy is 

the implementation of a series of tactical steps, a practical set of procedures 

relating to what has to be done, the implementation of an action plan to achieve 

an organisation’s goals.     

 

While no formal data governance framework exists at UKZN, sufficient elements 

appear to have been extracted from the informal application of data governance 

at the Institution to implement a data quality policy. 

 
2.7 DATA QUALITY COSTS  
 

The impact of poor data quality and the potential of quantifying data quality 

improvement cannot be fully understood without a brief discussion of costs. JM 

Juran was the first scholar to address the different forms of waste. Since then, 

the identification and reduction of waste has become one of the core activities of 

quality management. Juran (1989) in Dahlgaard and Dahlgaard-Park (2006), 

referred to this as the cost of poor quality (COPQ).   

 

Dahlgaard and Dahlgaard-Park (Ibid) distinguish between two definitions of data 

quality costs citing Juran (1951 and 1989). He distinguished between Quality 

costs – the costs which would disappear if no defects were apparent (1951) and 

the COPQ – as the sum of all costs that would disappear if there were no quality 

problems (1989).  

 



57 
 

The costs associated with data quality issues may include: 

 

• the costs associated with poor data quality, that is process costs caused 

by data errors and opportunity costs due to lost and missed revenues, as 

well as indirect costs. 

 

• the costs of assessment and improvement activities, also referred as 

direct costs. 

 

The costs of poor quality can be classified as follows (English 1999): 

  

• process costs, such as the costs associated with the re-execution of the 

whole process due to data errors 

• opportunity costs due to lost and missed revenues. 

 

O’ Riain and Helfert’s (2005) proposal to model data quality costs is presented in 

Figure 2.16 below:    
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Figure 2.16: Theoretical cost/benefit analysis for investment in DQ 
assurance in HIS 

Source: O’ Riain, C and Helfert, M (2005), An Evaluation of Data Quality related 

problem patterns in health care information systems, School of Computing, 

Dublin City University, Ireland. 

 
This study will focus only on time (‘hours’), namely labour spent on data quality 

activity. The objective is to obtain an estimate of cost savings through a data 

quality improvement exercise.  

 

From a practitioner point of view, O’Neal (2012) found that 50% of the time spent 

by a data quality team is devoted to reconciling data that are very often from 

disparate systems. The author proposed a calculation of productivity cost, based 

on the hours spent on reconciliations weighted by the full cost of the staff (Ibid). 

The cost of accessing data and the cost of project delays can be added. This 

research study adopts a formula to determine the labour costs in terms of hours 

spent on data quality activity.   

 
A limitation of the study is that, as a wide variety of factors giving rise to data 

quality was examined, the scope of the study only allowed for the calculation of 

labour cost of data quality activity. There are other costs that could also have 

been incorporated. 

 
2.8 UNIVERSITY OF KWAZULU-NATAL - SITUATIONAL OVERVIEW 
 

The data situation at UKZN is discussed below. 

 
2.8.1 Institutional Data Roles 
 

The positions of those involved in data quality at the Institution are:   
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• The data stewards (technical) belong to the area Innovation and 

Development within the Information and Communication Services Division 

(ICS).  

• The data custodians belong to the area of Institutional Intelligence within 

ICS.   

• The data stewards (business) are support staff from the Colleges and 

Student Academic Affairs who share ownership of the data on the main 

administrative system (ITS).  

 

The ICS divisional structure consists of sections devoted to User Support, 

Student Computing, Improvement and Development of Systems, and Networks 

and Communications as well as Information and Innovation, which includes 

Institutional Intelligence where the institutional data custodian resides.  

 
2.8.2 Roles and Functions     
 

A list has been compiled of the three information user groups and their functions 

vis a vis data quality as outlined in the Institutional Data Quality Policy (Data 

Quality Principles and Guidelines, 2011).  For the purpose of the study, the 

functions of the Data Stewards who are involved in technical issues (DST) have 

been separated from those involved in the functional business area (DSB). 
 
Data Steward (Technical) (DST): 

• Drives data governance initiatives  

• Reviews data quality scoreboard 

• Reviews / approves validation /business rules   

• Designs data cleansing strategy  

• Approves user access to systems (in collaboration with DSB)  

• Ensures user and system security 

• Ensures maintenance / storage / disposal of data   

• Manages information system projects  
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• Configures information system applications  

 
Data Steward (Business) (DSB) / also Referred to as Data Owner or 
Designate of Data Owner:     

• Collaborates with DST to ensure quality  

• Designs cleansing strategy with Data Custodian 

• Approves user details to access the system 

• Advises Data Custodian of data problems 

• Cleans data at the root / source 

• Advises DC DST of system problems, enabling data quality issues to be 

addressed at source       

• Data owner of functional area 

 

Data Custodian (DC): 

• Conceptualises validation / business rules   

• Conceptualises / maintains data quality scoreboard  

• Assesses data quality / undertakes data profiling   

• Assesses data quality impact  

• Designs data quality audit system  

• Identifies users on the system (in collaboration with DSB) 

• Designs cleansing strategy  

• Maintenance of metadata  / glossary of information 

• Data Quality Awareness workshops / campaigns  

• Develops Data Quality KPIs 

• Designs Data quality scoreboard  
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2.8.3 Roles and Functions ‘Augmented’ for the Purposes of this Research 
Study from the Institutional Data Quality Policy      
 

In terms of the Institutional Data Quality Policy, the Data Custodian is entrusted 

with coordinating the Data Quality initiative. In support of this function, there has 

to be synergy between this role and other IS-User roles (below) in order for data 

quality improvement to be feasible.  The ‘Principles and Guidelines’ (Data Quality 

Principles and Guidelines, 2011), that are part of the Data Quality Policy define 

the roles as follows:  

 

• the Data Owner is a Senior Manager who is ultimately responsible for 

the data in a functional area. 

  

• the Data Stewards are the source of the data with the best knowledge 

of the data and the strongest incentive or motivation to take care of it. 

They will manage the data on behalf of the data owners.  

 

• the Data Custodian refers to Management Information (MI) / 

Institutional Intelligence (II) in ICS that is charged with the overall 

responsibility of coordinating data quality improvement in all functional 

areas.  

 

The Custodians are entrusted with:    

• Promoting a culture of data quality across the Institution 

• Enhancing data quality in the Institution 

• Monitoring and measuring functional data 

• Implementing systems to identify and correct data errors 

• Implementing systems to measure and monitor data quality 

 

The Stewards are entrusted with:    

• Managing data on behalf of Data Owners 
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• Auditing and correcting data 

• Identifying data quality issues and reporting them to Data Owners 

• Assisting with the conceptualisation and implementation of data audit 

systems 

• Providing regular reports to the Data Owners 

• Formulating procedure manuals for the capturing, storing and 

maintenance of data in the relevant transactional databases 

 

For the purpose of this research, the notion of Data Steward (as suggested by 

Karel, 2007) has been differentiated into Data Steward Technical (‘DST’) and 

Data Steward Business (‘DSB’) / also known as the Data Owner. This forms the 

basis for the differentiated approach that will unfold as the survey data is 

analysed and the perspectives of each of these roles are obtained.  

 
2.9 CONCLUSION 
 

While the literature review on data quality in this research study may seem very 

detailed, the issues around accountability and the multidimensionality of the 

problem in terms of its causes and impacts cannot be overstated. The cost of 

data quality has become a popular barometer in industry to quantify its impact. 

The RACI approach was mentioned but can only fully be utilized after further 

study. As a study of data quality is multi-facetted, other approaches may ‘delve’ 

deeper than the approach adopted here. One such approach is the  

D M A I C (Define, Manage, Analyse, Improve, Control) method that is a Sig 

Sigma approach to data quality improvement.  This approach consist of steps 

that have to be executed in a specific order. One of the main deliverables of a  

D M A I C approach is a process map at a very high level that may also be used 

as a basis to craft data improvement at tactical and operational levels. 

 

Chapter Three outlines the framework for this research study.    
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CHAPTER THREE 
 
RESEARCH METHODOLOGY 

 
3.1 Introduction  
 

This chapter presents the research methodology used in this study. It outlines the 

research approach and design, data collection methodology and mechanisms, 

sample or population used, issues relating to reliability and validity and ethical 

considerations. 

 
3.2 Research Approach  
 
A quantitative approach was selected as this approach lends itself to statistical 

analysis and access to data that can be measured. As quantitative data is 

expressed in numbers, it is easily expressed in tables and graphs and also 

facilitates the interpretation of the data (WordPress, 2011). This approach is also 

relevant to this particular study of data quality, as a benchmark for data quality 

improvement will be set by calculating the cost of data quality.  

 

3.3 Research Design 
 
Case study has been used as the research design in this study. Yin (1984, p 23) 

defines the case study research method as an “empirical inquiry that investigates 

a contemporary phenomenon within its real-life context, when the boundaries 

between phenomenon and context are not clearly evident and in which multiple 

sources of evidence are used”. Yin (1989) proposed six types of data collection 

for case studies, namely, documentation, archival records, interviews, direct 

observations, observations by participants and physical artefacts.  
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A case study is appropriate as it contributes to an understanding of a complex 

issue and can augment experience or add value to what is already known 

through previous research (Wang, Strong & Guarascio, 1996, Tull, 1997, Wende 

& Otto, 2007). One of the disadvantages of using a case study is that it may be 

biased towards verification, i.e., support the tendency to confirm a researcher’s 

own presumptions and allow general theories to develop from the basis of a 

specific case study.  

 
3.4 Research Process: Academic and Work 
 
This research study was practitioner-based and, as is the case with applied 

research, occupied “an area situated between academia-led theoretical pursuits 

and research-informed practice” (Furlong and Oancea, 2005, p1). Furlong and 

Oancea (Ibid) and Groundwater-Smith and Mockler (2006) note that, in practice-

based research, a researcher involved in practitioner inquiry is bound to make 

use of ‘theoretical’ as well as ‘practical’ knowledge to ‘move seamlessly between 

the two’. In line with Tull’s (1997) model, the knowledge base for this study rested 

on two approaches:   

 

• Work-based - as the topic is an industry-wide problem and the researcher 

is a practitioner, he would have extensive experiential resources to draw 

on. 

• Academic-based - The growth in information technology (IT) has led to a 

rapid increase in the literature (academic and practitioner-based) in the 

research area, especially via the Internet. 

 

The work-based approach produces rich personal information due to the 

researcher’s extensive knowledge of the research area. The researcher’s 

membership of the Institutional Data Quality Working Group (DQWG) provides a 

close connection to problems in this field of work. With permission from the 
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appropriate institutional authority, the researcher was able to access UKZN’s IS-

users to collect data. 

 

The academic approach contributes to the research study in that the research 

topic is a well-documented problem that is well-represented in the literature. The 

broad and multidimensional nature of the data quality problem was illustrated by 

the bibliographical literature count for this study that was higher than anticipated. 

A hundred and forty-nine sources were counted and were classified as follows:    

• Journal articles - 39% 

• Conference / Symposium proceedings - 13% 

• Practitioner-based sources - 19% 

• Dissertations - 5% 

• Other (books, reports etc.) - 24% 

 

The questionnaire design and administration are discussed below. 

 

3.4.1 Questionnaire 
 
A questionnaire was used for data collection as this is a quick method of 

collecting standardised data. The questionnaire consisted of 33 questions 

divided into five sections (Appendix 1). 

 

Part 1 - Biographical details and use of systems 

Part 2 - Data Quality Awareness (including Data Quality Impact, Causes)  

Part 3 - Data Quality Practice  

Part 4 – Accountability  

Part 5 – Sustainability of Data Quality Improvement 

 

The questionnaire was adapted from the one used in an MBA by Peter Tull 

(1997) who sourced it from Vaughan Merlin of Omega Point Consulting based 



66 
 

on his presentation entitled, “Developing A Data Quality Culture” (1October 

1997).  

 

The questionnaire is generic in nature and interrogates users’ perceptions of 

the use and experience of data quality in University systems, ranging from 

business (‘soft’) to technical (‘hard’) perspectives. Practitioners have learned 

that it is not the hard technical issues that stymie an organisation's data 

quality efforts, but rather the soft, organisational, political and social issues. 

The structuring of the questionnaire into five parts provided a balance 

between nominal data describing categories of staff and systems and data 

quality experience, and ordinal data, enabling opinions to be ranked, and 

providing interval data to estimate the cost of time spent on data quality 

activity. Most of the questions could be answered by completing a ‘check’ 

box, while some allowed for an explanation if the ‘No’ or ‘Other’ option was 

selected. The questions in the section pertaining to the sustainability of data 

quality improvements were based on a four point scale.  

 

3.4.2 Questionnaire Distribution - Survey Monkey 
 
The Survey Monkey software was used to make the questionnaire available 

to users. It lent itself to the easy capture and collection of data for both the 

interviewees and the researcher. It also supported data collection after the 

first appeal by tracking and following up on non-responses. The Survey 

Monkey software stores data in a standard format and makes it available for 

export to either Excel or SPSS for analysis.  

 

3.4.3 Pilot Study 
 
A pilot study was undertaken was undertaken with 11 users for Part 5 of the 

questionnaire in July 2012. For practical purposes, the questionnaire items in 

Part 3 (Practice) and Part 4 (Accountability) were rearranged after the pilot. 
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The 11 users were chosen in a stratified manner to be representative of the 

three user groups. The sections were structured for the purpose of analysis 

as:   

  

 Section A - General  

 Section B - Data Quality Awareness   

 Section C – Accountability and Management / Practice  

 Section D - Cost of Data Quality  

 Section E – Sustainability  

 

3.5 Sampling and Population  

 

Flyvbjerg (2004) notes, that, a representative or random sample might not be the 

most informative. As one of the precepts of the case study approach is to attempt 

to collect as much information as possible, a decision was made to target the 

population of information system users. This comprises all those directly involved 

in the data quality process in terms of data correction, identifying problems and 

assessing the impact, as well as the technical users who assist the business 

users (to correct the problems). Including all the stakeholders who are directly 

involved in the data quality process means that the numbers in each of the 

categories are representative.  

 
The survey list included 120 people comprising all the data custodians (8) and 

data stewards (technical) (22) who work in the Information and Communication 

Services (ICS) Division, as well as data stewards (business) (90) in the Colleges 

and Student Academic Affairs sourced from lists of operational workers closely 

related to data maintenance and correction provided by College and School 

Managers. The users span the student and staff systems.  
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3.6 Alternative approaches 
 

Data quality is defined as data that is ‘fit for use by data consumers’. Wang and  

Strong (1996, p7) define a data quality dimension as a “set of data quality 

attributes that represent a single aspect or construct of data quality”. Three 

approaches are used in the literature to study data quality: (1) intuitive, (2) 

theoretical and (3) empirical (Wang and Strong, Ibid). 

 

An intuitive approach is adopted when the selection of data quality attributes for a 

particular study is based on the researcher’s experience or intuitive 

understanding of which attributes are important. One of the key attributes is 

‘accuracy’ and in financial literature ‘reliability’ is often used. In information 

systems, information quality and user satisfaction are two major criteria for 

evaluating the success of information systems. Wang and Strong (ibid) held that 

these two dimensions incorporate several data quality attributes, including 

accuracy, timeliness, precision, reliability, currency, completeness, and 

relevance.   

 

The theoretical approach is based on data deficiencies occurring during the data 

production process. During the ‘manufacturing’ of a data element, the process 

often impacts on its path ‘into the system’ and detracts from its ‘value added’ 

potential during processing by the system. This research study adopted an 

empirical approach to enable the voice of consumers or stakeholders to be 

heard. It was envisaged that this research study could produce the following 

outcomes: 

 

• Factors found to facilitate the smooth adoption of the University’s data 

quality policy could enhance the possibility of the policy’s success and 

sustainability.  
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• The study’s findings could augment the learning experience of the 

researcher as well as information systems (IS) users, while promoting 

broad organisational learning at the Institution. 

 

Lee’s (2004, p97) study found that “experienced practitioners solve data quality 

problems by reflecting on and explicating knowledge about contexts embedded 

in, or missing from, data. Specifically, these individuals investigate how data 

problems are framed, analysed, and resolved throughout the entire information 

discourse. Their discourse on contexts of data, therefore, connects otherwise 

separately managed data processes, that is, collection, storage, and use”. 

 
3.7 Summary of Research  

 

Table 3.1: Relationship of the research objectives to the questionnaire, and 
the literature references   
 

Section  Objectives Questionnaire Literature Review  

Section A Awareness 

Q 5 to 11, Q 20  

to Q 23 

Section 2.2.1, 

2.2.3,2.2.4, 2.2.7, 2.2.8 

Section B Accountability Q 17 to Q 19 

Section 2.1.6, 2.3.1 to 

2.3.3, 2.4.1,2.4.2,2.5.2  

Section C 

Problem Handling 

/ Management / 

Practice  

Q 13, Q 14,  Q15, 

Q 16 Section 2.4.3, 2.5.3 

Section D 

Data Quality 

Costs Q 14 Section 2.6 

Section E Sustainability Q 24 to Q 33 Section 2.4.4 
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3.8 Data Collection Process, Tools and Analysis  
 

The research instrument was circulated during June and July 2013, via the 

Survey Monkey software and individually followed up to ensure a maximum 

response (60 responses were received by 14 July 2013), resulting in a response 

rate of 50%. Since a response rate of 20% is considered the norm, and Baruch & 

Holtom (2008) cite a mean response rate of 38% for surveys conducted via the 

Web, the response rate for this survey is considered statistically reasonable. A 

degree of non-response bias was expected as data quality is a sensitive topic; 

the level of non-response that was encountered may reflect some employees’ 

fear that their views might not be treated in confidence as promised, or that they 

would reflect negatively on the functional area they represent. Some 20 

responses were received after the first round. This was followed up by a second 

submission via the software and by individual e-mails. This resulted in the 

response rate increasing to 45%. A week later, the response set was closed and 

finalised at 50%.  

 

The graphic capabilities of the Survey Monkey software and Excel as well as the 

statistical components of Microsoft Excel and IBM SPSS were used to analyse 

the data. 

 

A cross tabular analysis of the results was conducted. An analysis of time 

devoted to data quality activity was undertaken to obtain data quality costs as a 

benchmark for future data quality improvements. Differences in means were 

assessed to illustrate different perspectives on the sustainability of data quality 

activity.  

 

The data to determine the cost of data quality activities in terms of person-hours 

were obtained though access to institutional records, and from data on the ranks, 

grades and mid-point salary structures of the individuals that participated in the 

survey.    
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3.9 Reliability and Validity 
 

“Validity and reliability are two fundamental elements in the evaluation of a 

measurement instrument” (Takavol and Dennick, 2011, p 53). Reliability reflects 

that an instrument measures in a consistent way. The reliability of an instrument 

is closely associated with its validity. A research instrument needs to be reliable 

in order to be valid. Cronbach’s alpha was developed as a measure of internal 

consistency. Internal consistency refers to the extent that all the items in a test 

measure the same concept or construct.  

 

From a total of 60 responses, 45 completed responses were received for Part 5 

of the questionnaire. A Cronbach’s alpha coefficient of .8 was obtained on the 

basis of a measure to support the internal consistency of this section. This was 

an improvement on the coefficient of .61 achieved during the pilot survey that 

included 11 users.  

 

Non-parametric measures (frequency counts) were used and expressed as 

integers and percentages of the population. The ordinal data captured (using a 

four point scale) in Part 5 was summarised as a parametric measure in terms of 

mean values.  

 

3.10 Ethical Considerations  
 
Diener and Crandall (1978) in Bryman & Bell (2007) note that researchers need 

to be mindful of ethical considerations, including causing harm to participants, a 

lack of informed consent, invasion of privacy and the use of deception. 

Interviewees were assured of the privacy and confidentiality of the opinions 

expressed. This was particularly important in terms of interviewees not having to 

fear that their opinions would be divulged at School and College levels. They 

were informed that their perspectives would be analysed at the ‘collective’, i.e., 
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institutional level and that demarcation would only be applied at the level of the 

three different information system user groups.    

 

As users participated in the survey online via the use of Survey Monkey, their 

consent to take part in the study was implicitly assumed. 

 

3.11 Conclusion 
 

What differentiates this research study from other research on data quality is the 

collection of detailed data from the perspective of the different groups of 

information systems users at the Institution. Warner and Burke and Argyris in 

French and Bell (1999) noted that the interactions and inter-relationships 

between individuals or groups or different groups in a system may ‘elevate’ the 

system in terms of its problems. While the interrelationships between groups are 

not the primary focus of this study, the differences in the perspectives of the 

information users may point to the need for further research with a strong 

systems focus. 

 

 

 
 
 
 
 
 
 
 
 
 



73 
 

 
 
 
 
 
 
CHAPTER FOUR  
 
DATA ANALYSIS   

 
4.1 Introduction 
 
This chapter presents 1) an analysis and interpretation of the survey data 

involving descriptive statistics; 2) the estimation of the cost of correcting bad 

data; and 3) a statistical perspective on the sustainability of data quality 

improvement vis a vis the data custodians and data stewards. Data from 60 out 

of a total of 120 IS Users were analysed using the data analysis features of the 

Survey Monkey software and the SPSS v 13 software. Descriptive statistics were 

used for sections A to C, while for section D, the cost of data quality activities 

were calculated in terms of person-hours through access to institutional records 

and from data on the ranks, grades and mid-point salary structures of the IS 

Users that participated in the survey.      

 

4.2  BIOGRAPHICAL DETAILS  
 
This section summarises the biographical details of the surveyed sample i.e., 

level in the organisation, general and specific systems involved in and years of 

systems experience.  
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Figure 4.1 - USER PROFILE: MANAGERS AND NON-MANAGERS 
 
 
Table 4.1 - USER PROFILE: MANAGERS AND NON-MANAGERS   

 
 

Table 4.1 above shows that 28.8% of the 60 respondents are managers, with 

one IS User not answering this question. Fourteen of these managers are 

located in Colleges and Schools and are directly involved in capturing data. This 

is a significant number, as provides a sound indication of managerial 

perceptions of the research issues, particularly among Data Stewards 

(Business).  
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These individuals oversee the data quality activities in their functional areas by 

monitoring data quality to ensure that their functional areas are represented at 

data quality workshops. Fewer managers who are Data Custodians (only one) 

and Data Stewards (Technical) responded to the survey, as fewer staff are 

employed in these positions at the Institution. 

 

 
Figure 4.2 - USER PROFILE: USE OF SYSTEMS  
 
Table 4.2 - USER PROFILE: USE OF SYSTEMS  
 

    IS User 

  

 

Data Custodian Data Steward - Business Data Steward – Technical Total 

ITS  Count  5 43 8 56 

  % within IS User 50.0% 53.8% 47.1% 52.3% 

SMS  Count  1 30 4 35 

  % within IS User 10.0% 37.5% 23.5% 32.7% 

Other  Count  4 7 5 16 

  % within IS User 40.0% 8.8% 29.4% 15.0% 

Total  Count  10 80 17 107 

  % within IS User 100.0% 100.0% 100.0% 100.0% 

 
Many of the survey participants would have had exposure to the ITS system as 

the main administrative system that was dominant at the institutions that 

merged to form UKZN (the University of Durban-Westville used the ITS 

administrative system from 1990 and the University of Natal from 2000). While 
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other very relevant systems such as the SMS (Student Management System) 

have linkages to ITS; the main data quality activity takes place on ITS.  

 

Table 4.2 shows that Data Custodians only report 50% involvement in ITS (as a 

transactional system) while other systems (40%), would involve information 

dissemination systems.  As the Data Stewards (Technical) serve a larger 

constituency and are involved in the maintenance of peripheral systems (to 

ITS), the 29% response rate is not surprising. Overlaps between the use of ITS 

and SMS are expected as those with access to ITS will often access SMS as 

well, due to the SMS to ITS ‘refresh’ mechanisms. 

 

 

 
Figure 4.3 - USER PROFILE: YEARS INVOLVEMENT IN SYSTEMS WORK 
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Table 4.3 - USER PROFILE: YEARS INVOLVEMENT IN SYSTEMS WORK 
 

 
 

Table 4.3 indicates that 33.3% of the respondents have 15 or more years’ 

exposure to information systems. Just over two-thirds of the respondents from 

managerial ranks have experience of 15 years and longer. This is a significant 

number, as it provides a sound indication of managerial perceptions of the 

research issues. The respondents in this category are Data Stewards 

(Technical). This is a reflection of the low turnover of ITS staff at the former 

Universities of Durban-Westville and Natal as well as UKZN. Mergers and 

software system upgrades proved beneficial to the Institution in terms of 

continuity, particularly with regard to the retention of institutional knowledge that 

is reflected in data quality improvements. Seventy-seven percent of the Data 

Stewards (Technical) who participated in the survey have more than 15 years’ 

experience, followed by Data Stewards (Business) (26.7%) and Data 

Custodians (16.7%). Furthermore, 66.7% of the Data Custodians have more 

than ten years’ experience, followed by Data Steward (Business) (60%) and 

Data Stewards (Technical) (89%). 
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Figure 4.4 - USER PROFILE: CAPACITY IN SYSTEMS WORK  
 
Table 4.4 - USER PROFILE: CAPACITY IN SYSTEMS WORK  
 

 
 
Table 4.4 shows the categories in which the users are employed. Data 

Custodians’ core function is data quality, i.e. MI and Info Analysis (100%), while 

84% of the Data Stewards’ (Business) activities are associated with Colleges 

and Schools.   

 

 



79 
 

Data Stewards (Technical) are involved in more diversified areas i.e., system 

administration (22.2%), system development (44.4%) and other systems 

(33.3%). 

 
4.3  AWARENESS AND COMMUNICATION  
 
This section summarises the results relating to communication of data quality, 

the importance of data quality in terms of data quality dimensions, knowledge of 

the state of data quality and the causes and impact of poor data quality.  

 

 
Figure 4.5 - ADEQUACY OF COMMUNICATION ON DATA QUALITY 
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Table 4.5 - ADEQUACY OF COMMUNICATION ON DATA QUALITY 
 

 
 
A series of workshops were held over a year with Colleges and School as part 

of UKZN’s Data Quality Awareness campaign. Table 4.5 shows that only 16% of 

the Data Custodians felt that the notion of data quality had been adequately 

addressed. This is surprising, given their role of coordinating the data quality 

process. This result suggests that there are communication problems that 

needs to be addressed. The high level of positive responses (70.3%) from the 

Data Stewards (Business) reflects their exposure to the Data Quality 

Workshops that conveyed and interrogated various aspects of the Data Quality 

policy. The low percentage for Data Stewards (Technical) (37.5%) may reflect 

the fact that they were not exposed to the Data Quality Workshops. 

Management felt that they could not all attend as they were ‘on call’. 
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Figure 4.6 - MEANS BY WHICH DATA QUALITY AWARENESS WAS 
ACQUIRED 
 
Table 4.6 - MEANS BY WHICH DATA QUALITY AWARENESS WAS 
ACQUIRED 
 
    IS User 

  
 

Data 
Custodian 

Data 
Steward - 
Business  

Data 
Steward - 
Technical  Total  

Mgt Briefings Count  1 15 3 19 
  % within IS Staff 14.3% 25.0% 25.0% 24.1% 
Training Courses Count  0 19 2 21 
  % within IS Staff 0.0% 31.7% 16.7% 26.6% 
Personal Job 
Experience Count  5 24 6 35 
  % within IS Staff 71.4% 40.0% 50.0% 44.3% 
UKZN Publ and Other Count  1 2 1 4 
  % within IS Staff 14.3% 3.3% 8.3% 5.1% 
Total  Count  7 60 12 79 
  % within IS Staff 100.00% 100.00% 100.00% 100.00% 

 

Table 4.6 above indicates that 69% (34 out of 49 distinct IS Users – the total of 

79 includes more than one response per user) reported that they gained 

awareness of data quality through personal job experience, 43% through training 

and 37% through management communication. Moreover, 44.4% of all IS Users 

(duplicated responses) and 71.4% of the Data Custodians stated that they learnt 

about data quality through job experience.    
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Only 26% of all respondents stated that they gained awareness of data quality 

through training. This suggests that there is a need for more training to address 

data quality problems. It is also possible that the training is ineffective and needs 

to be improved.   

 

 
Figure 4.7 - AWARENESS OF DATA QUALITY INITIATIVES TAKING PLACE 
 

Table 4.7 - AWARENESS OF DATA QUALITY INITIATIVES TAKING PLACE 
 

 
 

Table 4.7 above shows that 83.3% of the Data Custodians stated that they are 

aware of data quality activity, reflecting the significant role these employees play 

in terms of ‘driving’ data quality initiatives. The corresponding statistics for Data 

Stewards (Business) and Data Stewards (Technical) are 67% and 75%, 

respectively. It is a fact that not all of the data stewards (business) attended the 
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workshops. The reason for the non-attendance not clear. The awareness of 

data quality activity may not have ‘trickled down’ to everybody. The fact that a 

reasonable percentage of data stewards (technical) (25%) were not aware, can 

be understood against the background of their ‘overall’ non-exposure. 

 
Figure 4.8 - EXTENT OF DATA QUALITY EXPERIENCE  
 
Table 4.8 - EXTENT OF DATA QUALITY EXPERIENCE  
 

 
 
A significant number of IS Users (80.4%) reported data quality problems as part 

of their work, which should contribute to a heightened level of awareness.  

 

All the Data Custodians (100%) reported that they experience data quality 

problems as part of their daily work. This is expected; MI / II as institutional 

reporter would be well acquainted with the challenge of reporting amidst data 

quality problems. 
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Seventy-three percent of the Data Stewards (Business) stated that they 

experience data quality problems as part of their work. This reflects the extent to 

which data quality problems surface at the operational, detailed level where 

Data Stewards (Business) function. The corresponding statistics for Data 

Stewards (Technical) is 100%. Once again, this is expected. Due to the 

technical nature of their work, this group of employees finds it difficult to perform 

procedures on incomplete or inaccurate data. 

 

 
 

Figure 4.9 - RATING OF DATA QUALITY DIMENSIONS 
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Table 4.9 - RATING OF DATA QUALITY DIMENSIONS 
 

IS-User DC     DSB     DST 

Order of preference  Total 
 

Order of 
preference  Total  

 

Order of 
preference  Total 

1234 1 
 

1112 1 
 

1234 2 
1324 3 

 
1234 4 

 
1324 5 

2314 1 
 

1324 11 
 

2431 1 
4444 1 

 
1342 1 

 
3421 1 

Grand Total 6 
 

1423 5 
 

Grand Total 9 
  

  
2314 2 

  
  

  
  

4444 2 
  

  
  

  
1424 1 

  
  

  
  

1 2 
  

  
  

  
2134 2 

  
  

  
  

2413 1 
  

  
  

  
4321 1 

  
  

  
  

4332 1 
  

  
  

  
4443 1 

  
  

  
  

Grand Total 35 
  

  
  

      
  

                                    Keys : Accuracy - 1, Completeness - 2, Timeousness - 3, Comparability - 4   

 

 

Table 4.9 provides an overview of the data dimensions that are most important to 

an IS User. IS Users were asked to rank their preferences in order, amongst the 

data quality dimensions of Accuracy (1), Timeousness (2), Completeness (3) and 

Comparability (4). In order of preference, a coding structure of, e.g., ‘1234’ 

reveals a preference for Accuracy, followed by Completeness as the most 

important data dimensions, among the six Data Custodians, 35 Data Stewards 

(Business) and nine Data Stewards (Technical) who responded. Data Accuracy 

was placed first by 4 out of 6 DC’s (66%), 24 out of 35 DSB’s (68%) and 7 out of 

9 DST’s (77%). There appears to be a significant trade-off between Accuracy 

and Timeousness amongst the Data Stewards (Business).  
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Figure 4.10 - THE CURRENT STATE OF DATA QUALITY 
 
Table 4.10 - THE CURRENT STATE OF DATA QUALITY 

  
 
Table 4.10 shows that 51 % of the IS Users feel that that the data is good but for 

a few problems. This statistic is significantly weighted by the Data Stewards’ 

(Business) opinions (62.2%). While 30% of the Data Stewards (Business) deem 

the data to be ‘in a mess’, the majority are more optimistic. This may be related 

to their involvement in a recent (annual) iterative series of cycles of data 

cleaning; they may thus feel that progress has been made. While this bodes well 

for their commitment to the data quality initiative, their opinion may be based on 

the data quality initiatives presented to them thus far. The ‘whole picture’, e.g., 
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the data audits that are still to be designed and enlarging the scope of the audit, 

are a further process in the data quality initiative. The majority of the Data 

Stewards (Technical) (62.5%) felt that the data is ‘in a mess’; this is likely 

influenced by the fact that they have not been always involved in the data 

cleaning activity undertaken by the Data Custodians and Data Stewards 

(Business).  However, the majority of the Data Custodians either felt that the data 

is ‘in a mess’ or that there are serious problems overall.  
 

 
Figure 4.11 - RESPONSIBILITIES IN TERMS OF CHANGES TO RECORDS 
 
Table 4.11 - RESPONSIBILITIES IN TERMS OF CHANGES TO RECORDS 
 

  IS User 

  Data Custodian 
Data Steward - 

Business 

Data Steward - 
Technical 

 Total 
Creating Records 3 24 3 30 
Reading Records 2 26 4 32 
Updating Records 3 29 4 36 
Deleting Records 2 17 3 22 
Capturing Records  2 27 1 30 
I do not change records  3 7 4 14 
  15 130 19 164 
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Table 4.11 provides an overview of the IS Users’ data management activity. The 

responses illustrate that the Data Stewards (Business) are at the ‘front-end’ of 

the system. Data Custodians’ activity it is low, as they do not have the authority 

to create or delete records. This is commissioned by the Data Stewards 

(Business) as data owners and technical issues are attended to by the Data 

Stewards (Technical). 

 
 

 
Figure 4.12 – BARRIERS TO THE ADOPTION OF DATA QUALITY 
INITIATIVES 
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Table 4.12 – BARRIERS TO THE ADOPTION OF DATA QUALITY 
INITIATIVES  
 

 
 

Table 4.12 shows, that, 50% of the Data Stewards (Technical) felt that the quality 

of leadership of data quality initiatives is a significant barrier to the adoption of 

these initiatives. This may be due to the fact that the Data Stewards (Technical) 

are not directly represented on the Data Quality Working Group (DQWG); their 

involvement is only operationalised at DQWG Sub-group level. Some data 

Stewards (Business) (29.7%) felt that unrealistic expectations are often set. This 

might be because they have to address data quality issues among other 

competing priorities. 

 

Data Custodians felt that management at various levels should be more 

committed to data quality (33.3%).  They also stated that the costs of fixing data 

quality are too high (16%) possibly relating to the costs of fixing software to 



90 
 

prevent data capturing errors as well as the cost of developing data quality 

detection and management software. 

  

 
Figure 4.13 - ASSESSMENT OF SOURCE OF PROBLEMS 
 
Table 4.13 - ASSESSMENT OF SOURCE OF PROBLEMS  

 
 

Table 4.13 shows that, all the IS Users reported high rates of problems with 

dimensions of the data (accuracy, completeness, consistency and timeliness) 

with an overall rate of 76%.  Both the Data Custodians (16.7%) and the Data 

Stewards (Technical) (12.5%) cited ‘clarity of roles and responsibilities’ as 

another source of data quality problems.  While the Data Stewards (Business) 
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also felt that data quality as measured by the various dimensions was significant 

(75%), they cited the system’s inability to manipulate data as another reason. 

          

 
Figure 4.14 – IMPACT OF POOR DATA 
 
Table 4.14 – IMPACT OF POOR DATA 
 

 
 

The impact of poor data quality (Table 4.14) was most significantly related to 

financial waste and inefficiency (76%), with 99% of Data Stewards (Technical) 

and 72% and 66.6% of Data Stewards (Business) and Data Custodians, 

respectively, citing these factors.  
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While some Data Custodians (33.3%) and Data Stewards (Business) (22.2%) 

felt that poor data quality impacts the Institutions’ reputation,  no Data Stewards 

(Technical) cited this factor, which may again reflect the ‘distance’ between the 

technical function and the business aspects (e.g., reporting the information and 

the implications  thereof) of the organisation.  

 

 
Figure 4.15 – CAUSES OF POOR DATA 
 
Table 4.15 – CAUSES OF POOR DATA 
 

 
 
Commenting on the dimensions that contribute to poor data (Table 4.15), the 

majority of Data Custodians (83.3%) attributed poor data to human and 

behavioural issues. While on the surface, this can be related to the capture e.g., 
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inaccurate, incomplete data, it can also relate to processes that require human 

intervention or that had not been adhered to.   

 

Most of the Data Stewards (Technical) attributed poor data to human and 

behavioural issues (62.5%). The fact that they did not cite system issues (which 

is their domain), may indicate that that the quality of the system as a contributor 

to data quality (or how it ‘dove-tails’ with data quality) is underestimated. 

 

The Data Stewards (Business) felt that both behavioural issues (41%) and 

training (41%) are significant; some 16% also felt that systems issues cause 

poor data. More Data Stewards (Business) than Data Custodians and Data 

Stewards (Technical) cited the need for training; this may be due to the fact that 

they are operationally closer to the sources of the data than other IS Users. 

 

 
 
4.4 ISSUES RELATING TO ACCOUNTABILITY AND DATA QUALITY 
PRACTICE / MANAGEMENT 
 
4.4.1 ACCOUNTABILITY  
 
This section examines the respondents’ perceptions of how information system 

users respond in terms of accountability.   
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Figure 4.16 - ROUTES TAKEN IN DATA QUALITY ENCOUNTERS 
 
Table 4.16 - ROUTES TAKEN IN DATA QUALITY ENCOUNTERS 
 

 
 

Table 4.16 shows responses relating to IS Users’ initiative and efficiency in 

managing data quality problems, as well as their knowledge and perceptions of 

the ‘originators’ of the data problem.  In terms of the ‘critical path’ they follow 

when they encounter a data quality problem,  23.5% of the respondents stated 

that they generally fix problems themselves, while 25.5% report it to a central 

point or work around it in the best way possible (21.6%).  
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The extent of users not attending to data quality issues themselves and reporting 

or escalating it, is approximately 46%. The Data Custodians reported that they 

refer problems (66%) or work around the problem (25%). The Data Stewards 

(Business) responded that they refer the problem (40%) but try to fix or work 

around it (53%). 

 

Data Stewards (Technical) do not have the authority to change data; therefore 

they do not correct or fix data themselves. Thus, 62.5% of the Data Stewards 

(Technical) reported referring the problem elsewhere and 25% attempt to work 

around the problem. 

 

 
Figure 4.17- ASSESSMENT OF ROLES THAT SHOULD BE ACCOUNTABLE  
 
 
 
 
 
 
 
 
 
 



96 
 

Table 4.17- ASSESSMENT OF ROLES THAT SHOULD BE ACCOUNTABLE  
 

 
 

Table 4.17 shows that, the Data Custodians and Data Stewards (Technical) 

stated that the Data Stewards (Business) should be charged with accountability 

for bad data. Only 62.2% of the Data Stewards (Business) felt that they 

themselves should be accountable, and involve the Data Custodians (8.1%) and 

the Data Stewards (Technical) (10.8%). The fact that the Data Stewards 

(Business) feel that the Data Custodians and the Data Stewards (Technical) 

should be accountable ‘as a group’ may be due to their reliance on the Data 

Custodians for the data audit systems and for the data problems to be 

transparent (and measureable) in order for them to maintain and manage data.  
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Figure 4.18 - INCLUSION OF DATA QUALITY IN PERFORMANCE 
MANAGEMENT 
 
Table 4.18 - INCLUSION OF DATA QUALITY IN PERFORMANCE 
MANAGEMENT 
 

 
 

Approximately 78% of all the respondents indicated that it is reasonable for data 

quality responsibility to be incorporated into data owner’s performance 

management agreements, as expressed in key performance areas (KPAs) 

(Table 4.18).  The corresponding statistics for Data Steward (Business) and 

Data Stewards (Technical) are 72.2% and 87.5%, respectively. In their role as 

institutional reporters, the Data Custodians are required to report data at regular 

intervals. They are pressed for time and cannot be delayed by data quality 
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issues. This explains why all the Data Custodians feel that it is reasonable for 

data quality responsibility to be included in KPAs. Eleven percent of the Data 

Stewards (Business) indicated that they were ‘not sure’. This may be related to 

their reluctance to fully commit to data quality KPAs as other factors may 

jeopardise their objective of meeting their data correction deadlines.  

 
Figure 4.19 - FEASIBILITY OF DATA CORRECTION WINDOW PERIOD   
 
Table 4.19 - FEASIBILITY OF DATA CORRECTION WINDOW PERIOD   

 
 
Table 4.19 shows, that, 78.4% of all the respondents stated that, it is reasonable 

to impose a ‘Data Correction Window Period’. Taken together with the previous 
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responses relating to performance management, this suggests that the IS Users’ 

are committed to data quality. 

 

The high level of agreement that a ‘Data Correction Window Period’ is 

reasonable amongst the Data Stewards (Business) may reflect the problems 

they experience with third party data providers. A service level agreement (SLA) 

to guarantee data quality to the University may have to be considered. SLAs 

could apply to both third party data providers and internal providers. 

 

In view of their roles as institutional reporters, data quality coordinators, 

initiators of data quality systems and data quality monitors, the Data Custodians 

adopted a softer approach to adherence to a window period (66.7%). This may 

be due to their experience that it is difficult for users to keep within prescribed 

deadlines, let alone the short window periods that the research question 

proposed.   

 

4.4.2 - DATA QUALITY PRACTICE / MANAGEMENT 
 
This section examines perceptions of practices or processes that could affect the 

quality of data.  

 
Figure 4.20 – PROCESSES TO CLEAN DATA 
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Table 4.20 – PROCESSES TO CLEAN DATA  
 

 
 

Table 4.20 indicates, that, overall, the respondents reported a high level of 

awareness of an institutional system for data correction (Data Custodians, 

83.3%, Data Stewards (Business), 67.6%, and Data Stewards (Technical), 

62.5%).  

 

While stating that they are aware of data cleaning / auditing mechanisms (67%), 

the Data Stewards (Business) credit themselves with their own efforts to deal 

with bad data (17%). As the institutional reporters, coordinators of data quality 

systems and data quality monitors, the Data Custodians reported high 

involvement (83%) as they conceptualise and implement these systems. The fact 

that data quality initiatives and formal data correction processes have not been 

infused at every level may explain the lower awareness of a data cleaning / 

auditing mechanisms amongst the Data Stewards (Technical) at 62.5%. As with 

Data Stewards (Business), Data Stewards (Technical) reported their own efforts 

to correct data at lower percentages (12.5%), while indicating uncertainty (25%) 

about the totality of the data systems that may exist. They may only be ‘part of 

the picture’ in that they may assist the Data Custodians and Data Stewards 

(Business) with portions of programming towards the data quality system. 
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Figure 4.21- ACCESS TO REPORTS AND DATA QUALITY  
 
Table 4.21- ACCESS TO REPORTS AND DATA QUALITY  
 

 
 
Table 4.21 shows, that, while 64.7% of all the IS Users expressed the opinion 

that faster access or the use of reports may have a positive effect on lS quality 

improvement, the responses of the Data Stewards (Business) are significantly 

higher than the other IS Users. This is probably due to the fact that they need 

reports due to the operational nature of their work. 33.3% of the Data Custodians 

and 25% of the Data Stewards (Technical) supported the need for reports 

compared with 78.4% of the Data Stewards (Business). The number of Data 

Stewards (Technical) who indicated that they were ‘not sure’ (37.5%) may be 

related to the fact that they are not directly involved in reporting and auditing 

processes. 
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It should be bone in mind that IS Users have access to reports designed for 

them, as well as access to information at a summary level via the II Web Portal.  

 

 
Figure 4.22 - EXTENT OF DATA QUALITY SUPPORTED BY OPERATIONAL 
PROCESSES 
 
Table 4.22 - EXTENT OF DATA QUALITY SUPPORTED BY OPERATIONAL 
PROCESSES 
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In terms of the quality of the processes that contribute to IS Users’ data quality 

activity (Table 4.22), Data Steward (Business) expressed a higher level of 

confidence in the quality of operational or business processes than other IS 

Users (18.9%) while 60% acknowledged some weaknesses. Data Stewards 

(Technical) reported a higher level of concern than the Data Custodians or Data 

Stewards (Business). Between 50% and 60 % were concerned or unsure. The 

Data Custodians expressed concerns about processes as precursors of data that 

reflected a lack of insight into the operations (60%). Business process support is 

very important. All of the users are exposed to batch jobs running at night that 

are required to update various parts of the system. If this does not occur for 

various reasons, the quality of the data in the system is compromised and the 

quality of data in all dependent ‘upstream’ information reporting mechanisms and 

operational decisions may be compromised.  

 
4.5 COST OF DATA QUALITY 
 
The results of the survey show that up to 80% of the respondents reported 

problems with data quality on a daily basis. The response data was converted 

via mean scales of remuneration to calculate and quantify the time that IS Users 

spend in terms of labour.  An analysis of the respondents’ time spent on data 

quality is provided in Table 4.22 below. 
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Figure 4.23 - TIME SPENT ON DATA QUALITY 
 
Table 4.23 - TIME SPENT ON DATA QUALITY 

 
 

There were only four responses from Data Custodians. These responses could 

be understated as data quality is part of the researcher’s official portfolio and he 

could not be part of the survey. Up to 20% of the Data Custodians’ time is 

devoted to data quality.  The time spent by Data Stewards (Business) on data 

quality varies; 8% of these respondents reported spending more than 50% of 

their time on data quality. Fifty percent of the Data Stewards (Technical) reported 
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that they spend up to 20% of their time on data quality. The tables below (Tables 

4.24a to 4.24c) depict the time spent on data quality by the Data Custodians, 

Data Stewards (Business) and Data Stewards (Technical). The data are 

presented in a ‘lower range’ as well as an ‘upper range’ scenario. 

 

Table 4.24a - ESTIMATED COST OF DATA QUALITY – Data Custodians   
 

  

Ordinal 
representation of 
time spent 

Lower 
Range 

Upper 
Range  

Mid Point 
Salary 
Range  

Lower - R 
Per Yr  

Upper - R 
Per Yr  

No of 
Respondents  

Total Cost 
(Lower 
Range)  

Total Cost 
(Upper 
Range)  

  Less than 5%  0.01 
 

R 300 585 R 3 006 
   

  
   5 to 20%  0.05 0.2 R 300 585 R 15 029 R 60 117 4 R 60 117 R 240 468 
   21 to 50 %  0.2 0.5 R 300 585 R 60 117 R 150 293 

  
  

  Over 50 %  0.5 0.6 R 300 585 R 150 293 R 180 351       
              4 R 60 117 R 240 468 

 
Table 4.24b - ESTIMATED COST OF DATA QUALITY – Data Stewards 
(Business)    
 

  

Ordinal 
representation of 
time spent 

Lower 
Range 

Upper 
Range  

Mid Point 
Salary 
Range  

Lower - R 
Per Yr  

Upper - R 
Per Yr  

No of 
Respondents  

Total Cost 
(Lower 
Range)  

Total Cost 
(Upper 
Range)  

  Less than 5%  0.01 0.05 R 249 350 R 2 494 R 12 468 20 R 49 870 R 249 350 
   5 to 20%  0.05 0.2 R 249 350 R 12 468 R 49 870 10 R 124 675 R 498 700 
   21 to 50 %  0.2 0.5 R 249 350 R 49 870 R 124 675 2 R 99 740 R 249 350 
  Over 50 %  0.5 0.6 R 249 350 R 124 675 R 149 610 3 R 374 025 R 448 830 
              35 R 648 310 R 1 446 230 

 
Table 4.24c - ESTIMATED COST OF DATA QUALITY – Data Stewards 
(Technical)    
 

  

Ordinal 
representation of 
time spent 

Lower 
Range 

Upper 
Range  

Mid Point 
Salary 
Range  

Lower - R 
Per Yr  

Upper - R 
Per Yr  

No of 
Respondents  

Total Cost 
(Lower 
Range)  

Total Cost 
(Upper 
Range)  

  Less than 5%  0.01 0.05 R 351 970 R 3 520 R 17 599 2 R 7 039 R 35 197 
   5 to 20%  0.05 0.2 R 351 970 R 17 599 R 70 394 3 R 52 796 R 211 182 
   21 to 50 %  0.2 0.5 R 351 970 R 70 394 R 175 985 

  
  

  Over 50 %  0.5 0.6 R 351 970 R 175 985 R 211 182       
              5 R 59 835 R 246 379 
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The estimation arrived at was R 728 262 per annum at the lower range and  

R 1 932 077 per annum at a higher range. If these results are extrapolated to 

the total IS Users in the survey the labour costs amount to R 1 031 420 per 

annum at the lower range and R 2 663 623 per annum at the higher range.  

These costs may be conservative as data quality initiatives at the Institution 

have not reached their apex. Various areas have yet to be incorporated that will 

put pressure on current resources for the data quality initiative. In addition, 

functional areas such as Human Resources and Finance have not been 

incorporated in terms of errors in the current data quality audit system, and will 

substantially add to the labour cost that is calculated in this exercise. 

Furthermore, this exercise does not take the cost of technical solutions and 

changing business processes to improve data quality into account.   

 

4.6  SUSTAINABILITY OF DATA QUALITY IMPROVEMENTS  
 
Section E of the questionnaire dealt with questions 24 to 33 in the research 

instrument and sought to gauge IS Users’ perceptions of the sustainability of data 

quality improvements as well as their perceptions on managing the change 

associated with data quality and how comfortable they are with such change 

(Tull, 1997). The users were asked to indicate their views on a four point scale 

with 4 indicators where ‘1’ represented ‘high sustainability’ or ‘Strongly Agree’ 

and a value of ‘4’ that represented ‘low sustainability’ or ‘Strongly Disagree’. Fifty 

of the 60 IS Users responded. An average mean of 2.25 and a mean of 2.26 

were found from the analysis of the 10 questions in this section. A graphical 

representation is provided below. Detailed descriptive statistics have been 

attached (Appendix 4).    

 

Question 24 (whether data quality awareness promotes a data and information 

culture) and Question 29 (whether management views data quality as important) 

recorded lower levels of optimism, i.e., an average and mean of 1.54 and 1.5 and 

1.68 and 2, respectively.  
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1. Data quality initiatives / awareness will promote a data and 
information culture / information literacy (Question 24) 

 

       

 

Figure 4.25: Data quality initiatives / awareness will promote a data and 
information culture / information literacy 
 

Mean Median 

Standard 

Deviation 

1.54 1.5 .08 

 

Fifty users responded to this question. The mean of 1.54 and median of 1.5 

suggest that, overall, IS Users are positively inclined towards data quality 

awareness as a conduit for information literacy that should serve as a catalyst to 

sensitise users to data quality.  The means for the Data Custodians, Data 

Stewards (Business), and Data Stewards (Technical) are 1.66, 1.55 and 1.375, 

respectively.   

 

2. At this institution there are sufficient people to support the data 
quality initiative with the necessary skills and knowledge to guide 
the implementation (Question 25)  
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Figure 4.26: Sufficient people to support the data quality initiative with the 
necessary skills and knowledge to guide the implementation 
 

Mean Median 

Standard 

Deviation 

2.21 2.0 .105 

 

Forty-nine users responded to this question. The mean of 2.21 suggests that IS 

Users tend to be skeptical about the adequacy of the institutional skills and 

knowledge base to support data quality improvement.  The means for the Data 

Custodians, Data Stewards (Business), and Data Stewards (Technical) are 3.0, 

2.14 and 1.875, respectively.  The Data Custodians are the most skeptical. 

 

 

  

3. At this Institution training among data capturers / data owners is 
adequate to support the attainment of better data quality (Question 
26) 
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Figure 4.27: Training is adequate to support the attainment of better data 
quality 
 

Mean Median 

Standard 

Deviation 

2.66 3.0 .129 

 

Fifty users responded to this question. The mean of 2.66 suggests that a 

significant number of IS Users feel that the levels of training vis a vis data quality 

at the Institution are inadequate and needs more attention. The means for the 

Data Custodians, Data Stewards (Business), and Data Stewards (Technical) are 

3.0, 2.61 and 2.625, respectively.  The strongest opinion that training is required 

was found among the Data Custodians.  

 

4. The execution of data quality initiatives through dynamic structures 
(e.g. teams, networks and workgroups) at the Institution is working 
well (Question 27) 
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Figure 4.28: Teamwork at the Institution is working well  
 

Mean Median 

Standard 

Deviation 

2.69 3.0 .106 

 

Forty-nine users responded to this question. The mean of 2.69 suggests that the 

teams and workgroups for data quality projects are not functioning as efficiently 

as expected.  The means for the Data Custodians, Data Stewards (Business), 

and Data Stewards (Technical) are 3.33, 2.55 and 2.85, respectively. 

  

5. In this organisation individuals have become comfortable with 
change and do not seek stability (Question 28) 
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Figure 4.29: Individuals have become comfortable with change and do not 
seek stability 
 

Mean Median 

Standard 

Deviation 

2.83 3.0 .084 

 

Forty-nine users responded to this question. The mean of 2.83 suggests that IS 

Users are not comfortable with change and implicitly express a ‘wish’ for a data 

environment that is stable. The means for the Data Custodians, Data Stewards 

(Business), and Data Stewards (Technical) are 2.66, 2.88 and 2.75, respectively.   

 

 

6. Management views data quality as important (Question 29) 
 

 

Figure 4.30: Management views data quality as important 
 

Mean Median 

Standard 

Deviation 

1.68 2.0 .096 
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Fifty users responded to this question. The means for the Data Custodians, Data 

Stewards (Business), and Data Stewards (Technical) are 2.00, 1.52 and 2.12, 

respectively.   

 

7. There are enough people in the Institution to lead a data quality 
initiative (Question 30) 

 

 
Figure 4.31: There are enough people at the Institution to lead a data 
quality initiative 

 

Mean Median 

Standard 

Deviation 

2.37 2.0 .108 

 

Forty-eight users responded to this question. The mean of 2.37 suggests that 

there are not enough people to lead a data quality initiative at the Institution. The 

means for the Data Custodians, Data Stewards (Business), and Data Stewards 

(Technical) are 3.2, 2.31 and 2.12, respectively.   
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8. There are enough people in the Institution that care about data 
quality  (Question 31) 

 

 

Figure 4.32: There are enough people in the Institution that care about data 
quality 

 

Mean Median 

Standard 

Deviation 

2.4 2.0 .103 

 

Fifty users responded to this question. The mean of 2.4 suggests that not enough 

people at the Institution care about data quality. The means for the Data 

Custodians, Data Stewards (Business), and Data Stewards (Technical) are 2.83, 

2.27 and 2.625, respectively.   
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9. Expectations about achieving data quality improvement are 
reasonable (Question 32) 

 

 

Figure 4.33: Expectations about achieving data quality improvement are 
reasonable 

 

 

 

 

 

 

Forty-eight users responded to this question. The mean of 2.14 suggests that IS 

Users are fairly balanced in their views on whether or not expectations relating to 

data quality are reasonable. This could be influenced by the fact that, on the one 

hand, they realise the benefits of improved data quality in their own work areas 

but, on the other, they may be concerned about the expectations / deliverables in 

terms of workloads and timelines.   

 

The means for the Data Custodians, Data Stewards (Business), and Data 

Stewards (Technical) are 2.4, 2.08 and 2.25, respectively.  

 

Mean Median 

Standard 

Deviation 

2.14 2.0 .104 
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10.  Data quality activity / processes will over the longer term be 
successful and sustainable (Question 33) 

 

 
     Figure 4.34: Data quality activity / processes will over the longer term be 
successful and sustainable 

 

Mean Median 

Standard 

Deviation 

2.04 2.0 .098 

 

Fifty users responded to this question. The mean of 2.04 suggests that IS Users 

are slightly negatively inclined towards the long term sustainability of data quality. 

The means for the Data Custodians, Data Stewards (Business), and Data 

Stewards (Technical) are 2.16, 1.97 and 2.25, respectively.   

 

Summary  
 

A summary of the 10 indicators shows that the respondents are of the opinion 

that there are areas where data quality could be improved, with an overall mean 

value of 2.26 and a median of 2.35.   
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4.7 CONCLUSION  
 

This chapter provided an analysis and interpretation of the survey data using 

descriptive statistics pertaining to issues affecting data quality awareness, data 

quality practice and accountability; an estimation of the cost of correcting bad 

data; and a statistical perspective on the sustainability of data quality 

improvement vis a vis the data custodians and data stewards. The analysis of the 

data provided a comprehensive picture of the perspectives of the three groups of 

IS Users.  

 

To elaborate on accountability and roles, a ‘RACI’ matrix applied to the data 

quality environment at the Institution may be provided in Chapter 5 for future 

research. 
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CHAPTER 5   
 

CONCLUSIONS AND RECOMMENDATIONS 
 
5.1 INTRODUCTION 
 

This chapter elaborates on the findings that were discussed in the previous 

chapter and follow with proposal and conclusions. It includes -    

 

• 5.2 a comparison of the literature vs the fieldwork in terms of the research 

objectives  

• 5.3 suggestions for further research in the form of a proposed ‘D M A I C’ 

framework for further research to express the data quality policy through a 

data quality strategy in terms of concrete actions and steps that may have 

to take place 

• 5.3.1 a proposed RACI diagram to formalise or embody ‘Responsibilities 

and Accountabilities’ in support of the data quality initiative at the 

Institution 

• 5.4 a conclusion 

  

5.2 COMPARISON OF THE LITERATURE vs. FIELDWORK  
 
The section that follows draws a comparison between the literature and what was 

found in the ‘field’ i.e. via the survey. It provides pointers in each of the research 

areas from the literature, followed by observations from the ‘field’ and concluded 

with Discussion and Recommendations that might include suggestions for action.      
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5.2.1  OBJECTIVE 1 : AWARENESS 

 
Literature vs Fieldwork 
 
 Literature Fieldwork 
 

1 
 
The extent to how data quality is 
incorporated into work areas 
(question 5) and by what means 
users obtained knowledge about data 
quality (question 6) relates to 
communication strategies may 
identify key audiences, messages, 
desired actions and results in order to 
gain support for the information 
quality strategy and governance. The 
extent of the ‘big picture’ or users’ 
‘knowing-why’ of data quality would 
over time been enhanced by the 
spread of Quality philosophies eg 
Total Data Quality and TDQM 
philosophies. 
 

 
1. IS-Users indicate that pertaining to 
their awareness of data quality, that 
69% (34 out of 49 distinct IS Users) 
report that they have become aware 
of data quality through personal job 
experience, 43% through training and 
37% through management 
communications. 
 

 
2 

 
The extent of users’ awareness of 
current data quality activity and the 
state of data quality (questions 7 and 
10) may be related to the extent to 
which data quality improvements are 
incentivized and awareness is 
reinforced via resulting feedback 
loops to further stimulate data quality 
improvement.  
 

 
Up to two thirds of Data Stewards 
report awareness of data quality 
activities (question 7). The incidence 
of Data Custodians and Data 
Stewards (Technical) reporting that 
data may be ‘in a mess’ is higher than 
that of the Data Stewards (Business). 

 
3 

 
Accuracy of data quality (question 9) 
as a data quality dimension appears 
to be more important than other 
dimensions. Accuracy seems to be 
followed by Completeness as 
dimension and there is a recognised 

 
Data Quality accuracy was rated as 
the most important data quality 
dimension. The results indicate a 
variety of other dimensions following 
accuracy in importance.   
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interplay or trade-off between the 
two. 
 

 
4 

 
The main causes of data quality 
(questions 20 and 23) seem to be 
lack of clarity of roles, procedures, 
problems with data at the source and 
system issues. 

 
In terms of causes of data quality, 
overall responses to the issue of 
barriers to the adoption of data quality 
initiatives indicate that 1) the quality of 
leadership around data quality 
initiatives represent a significant 
barrier to the adoption of a data 
quality initiative and 2) behavioural 
issues. 
 

 
5 

 
The impact of data quality (question 
22) seem to be financial, productivity 
and risk to be compliant. 

 
In terms of impact of data quality, 
responses to the impact of poor data 
quality were most significantly related 
to factors related to financial waste 
and inefficiency. 
 

 
Discussion and Recommendation: 
 
1.  As data stewards (technical) may not have been involved in the data quality 

initiative as the other IS-Users, it is important that they become part of the 

mainstream communication and workshops. There needs to more management 

briefing, in particular to the Data Custodians and Data stewards (Technical).   

2. A higher percentage of Data Custodians and Data Stewards (Technical) than 

Data Stewards (Business) report that data being ‘in a mess’. The need for a data 

quality monitor has become an important mechanism for all role players to have 

access to an objective source to the condition of data quality.          

3. While the survey reports accuracy as the most important data quality 

dimension, other dimensions such as completeness is important. In practical 

situations, trade-off amongst dimensions are part of convention and acceptable. 

As the generally accepted definition of data quality is ‘fitness for purpose’, need 

to be highlighted at data quality briefings.  
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4. Users responses reflecting that poor data quality cost money being attributed 

to  factors related to financial waste and inefficiency, will in conjunction with the 

response to time spent on data quality, will represent a strong motivational basis 

for the current cost of data quality activity to be reduced. Process quality, in 

addition to data quality needs to be interrogated and root causes identified with in 

a D M A I C (Define, Manage, Analyse, Improve and Control) exercise in order to 

address waste and inefficient practice.  

 

5.2.2 OBJECTIVE  2 : ACCOUNTABILITY 
 
Literature vs Fieldwork 
 

 Literature Fieldwork 
 

1 
 
Relating to accountability and data 
ownership (question 17), there are 
considerable differences in the 
interpretation of the role of a data 
steward. While early definitions tended to 
be restricted to associations with an 
information technology (‘IT’) approach to 
data quality improvement, later research 
extended the involvement of data 
stewards to include functional, business 
(or subject) interest in the organisation 
as well.  Considerable differences in the 
definition of accountability (‘everybody’s 
accountable) existed as are there 
degrees of agreement. Ultimately the 
data owner of a business or functional 
subject area is proposed to be 
accountable for data quality. 

 
The fieldwork is congruent with the 
literature that accountability for data 
quality is vested with the data owner. In 
addressing the issue of data quality 
accountability, data custodians and data 
stewards (technical) report that the data 
stewards (business) should be 
accountable for poor data.  
 

 
2 

 
Regarding routing data quality problems 
(question 16) and ‘work around’ 
problems to compensate for ‘not 
knowing’, the lack of clarity around 
accountability leads to a vacuum in 
leadership a vacuum and result in 
inefficiencies to get data problems 

 
Relating to which ‘critical paths’ or 
‘routing’ they may follow in an encounter 
with a data quality problem, IS-Users 
report that they generally fix problems 
themselves (23.5%), or report them to a 
central point (25.5%) or work around 
them in the best way possible (21.6%). 
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solved.   This may be related to management not 
informing them what to do in such 
instances. 

 
3 

 
The application of key performance 
areas (KPA’s) (question 18) as 
performance criteria measured by the 
data quality activity of IS-users is 
recognized in the literature (Loshin, 
2011, Anturaniemi, 2012). 
 

 
In terms of applying performance 
measures to data quality activity, IS- 
Users seem to view the application of 
performance management (KPA’s) to 
data quality improvement to be 
reasonable. This is affirmed by 
approximately 78% of all respondents. 

 
4 

 
The use of service level agreements 
(SLA’s) (question 19) as internal and 
external accountability mechanisms are 
useful levers in terms of improving the  
quality of data at the source (Schwolow 
& Jungfalk, 2009). 
 

 
In terms of internal and external 
accountability, IS Users indicate that the 
application of a service level agreement 
(SLA) to data provided externally (third  
parties), as well as a transferred 
internally as part of the student data 
lifecycle, is reasonable. In terms of a data 
correction window period to exist for 
regular data issues to be resolved, about 
78.4% of all respondents indicate that it is 
‘reasonable.’ 
 

 
Discussion and Recommendation: 
 
1. Following from a very significant response in the research, the idea of a data 

steward (business) as data owner is well accepted in the Institution. The 

responsibilities of a data owner may have to work-shopped with the IS-Users as 

well the tools and mechanisms that are required to execute those functions.  

The recognition and importance of ‘information’ within the traditional structures of 

‘IT’ has been recognised by the creation of the position of a Chief Information 

Officer (‘CIO’) in the Institution where a merge of IT (networks, systems 

development) and management information (the business reporting) has been 

taking place as one division.  

 

2. Who the data owners are, needs to be formalised through the communication 

structures in order for people to know how to route a data problem. There are a 
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significant number of users that ‘work around data’ or ‘try to fix it themselves’. 

Organisational agility should be vastly improved by improved internal 

communication structures to facilitate the routing of issues to data owners that on 

their turn may invoke service level agreements if the problem had been caused 

by third parties.  

3. The inclusion of performance management via the inclusion of data quality in 

job profiles should be urgently considered for implementation. 

4. In terms of data quality issues related to data from third parties that should not 

be attended to in the Institution, the implementation of service level agreements 

vis a vis those providers should be urgently considered. 
 
5.2.3 OBJECTIVE 3 : PRACTICE – DATA QUALITY PRACTICES THAT MAY 
SUPPORT / INHIBIT DATA QUALITY IMPROVEMENT 
 
Literature vs Fieldwork 
 
 Literature Fieldwork 
 

1 
 
Relating to the use of and faster 
access to reports and data quality 
(question 12), the use of 
management information and data 
workshops are important and 
represent an important lever to detect 
data problems (Braa, Heywood & 
Sundeep, S (2012).  The use of 
reports is advocated in terms of 
understand the dimensions of data 
quality better, provide feedback to 
users to view and correct data to, 
inter alia, protect their reputations 
and see how data may be affecting 
outcomes that is important to them. 
 

 
A large number of IS-Users indicate 
that faster access or the use of 
management (information) reports 
may have a positive effect on data 
quality improvement. While literature 
underscores reports as a lever vis a 
vis data quality, there appears to be 
under-utilisation of management 
reports at the Institution.  
 

 
2 

 
Regarding robustness of operational 
processes and data quality ((question 
13), processes underpinning 
operations need to be robust enough 

 
IS-Users indicate that, in terms of the 
quality of processes that contributes 
to data quality, Data Steward 
(Business) expressed a higher level 
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to support data quality (McKnight, 
2009). 

of confidence in the quality of 
operational or business processes 
than other IS-Users while a significant 
number acknowledge some 
weaknesses. 
 

 
3 

 
Data quality correction and 
monitoring systems should exist with 
‘levels of tolerance’ built into those 
systems. 

 
IS-Users overall report a high level of 
awareness of an institutional system 
for data correction across the 
spectrum of Data Custodians, Data 
Stewards (Business) and Data 
Stewards (Technical).  
 

 
Discussion and Recommendation: 
 
1. In terms of the use of reports as a lever vis a vis data quality, there appears to 

be ‘under-utilisation’ of reports and ‘dilution’ by other factors. This ‘dilution’ that 

have been reported as among others, ‘users being too busy’ as reported in equal 

measure by each of the groups of IS-Users. Attempts need to be made to ensure 

that a platform exists for management reports to be available in real-time.    

2. Following from a very significant response that indicate knowledge of systems 

that exist to clean data, there is still up to a third of the respondents (inclusive of 

data custodian and data stewards (technical) that appear ignorant. The 

formalisation of a real time data auditing ‘exception’ interface and data quality 

monitor should provide a feedback mechanism to sensitize users and facilitate a 

slow-down in data decay.          

 
5.2.4 OBJECTIVE 4 - COST OF DATA QUALITY 
 
Literature vs Fieldwork 
 
 Literature Fieldwork 
 

1 
 
Data quality problems lead to 
considerable cost to organisations in 
terms of financial waste and 
inefficiency (question 14). The 

 
IS- Users at the Institution reported 
moderate to significant time spent on 
data quality activity. The costs could 
very likely be higher if the whole 
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literature distinguishes between direct 
and indirect data quality costs. Data 
quality is significant organisations in 
monetary terms. Cost models show 
that cost of poor data decreases at 
when levels of data improvement 
‘peaks’ but that cost of data quality 
maintenance increases. 
 
 

population was included as well as 
the costs of functional areas eg 
Human Resources and Finance that 
are currently outside of the current 
scope. Cost of data quality was 
consequently deemed to be 
conservative.  
 

 
Discussion and Recommendation: 
 
While a benchmark has been provided for measuring the (current cycle) of data 

quality improvement, this exercise, due to its limited scope, provides by necessity 

only a ‘tunnel’ view having to measure cost in terms of labour only. While 

systems need to be in place to measure the reduction in costs that change 

commensurately with data quality improvements, system input controls as 

another cost need to be determined and incorporated.  

 

Other costs that that need to be considered but difficult to quantify, may be the 

opportunity cost of the time devoted to data quality improvement, in other words 

what activities IS-Users may have spent their time on instead of correcting data. 

Other costs mentioned by Helfert & Eppler (2007), is related to data re-entry, 

costs due to increased turnaround due to data quality, costs of acceptance 

testing and assessment costs. 

 

5.2.5 OBJECTIVE 5 : SUSTAINABILITY of DATA QUALITY IMPROVEMENT 
 
Literature vs Fieldwork 
 
In order to provide for a link to assess whether data quality improvement is 

sustainable, a few concepts relating to the sustainability of data quality were 

researched. 
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 Literature Fieldwork 
 

1 
 
Data quality practices can play a role in 
shaping organisational culture facilitating a 
culture receptive to data quality issues 
(Ababaneh, 2010, Zu, Fredendal & 
Robbins, 2006)  

 
IS-Users responded positively 
that data quality awareness can 
via a heightened levels of 
information literacy, affect the 
organisational culture of the 
Institution. 
  

 
2 

 
Team work and in particular cross 
functional teamwork are important in 
diagnosing process based quality problems 
that may affect sustainable data quality 
improvement (Ababaneh, Ibid) 
 

 
IS-Users functioning as teams 
and workgroups on data quality 
projects are not functioning as 
efficiently as expected. 
 

 
3 

 
Training was important for W Edwards 
Deming to emphasise it as one of his 14 
Points of Quality. Data quality assurance 
program that incorporate training programs 
should be considered to include quality 
improvement training (Pipino, Lee & Wang, 
2002) 

 
In terms of training, a significant 
number of IS-Users suggest that 
the levels of training vis a vis 
data quality at the Institution are 
inadequate and need to be 
addressed.  

 
4 

 
Adequate Skills and knowledge are 
necessary to ensure continuity in data 
quality activity.   
 

 
IS-Users are sceptical towards 
the adequacy of institutional 
skills and knowledge base to 
support data quality 
improvement.  
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5 
 
Change induced by internal and external 
forces can affect sustainability causing 
stress to maintaining quality as the change 
puts pressure on consistent application of 
policies and procedures, implying a trade-
off between organisational change and 
maintaining quality (Loshin, 2000). 
 

 
In terms of change, IS-Users are 
positively inclined towards data 
quality awareness as being a 
conduit to information literacy 
that should serve as a catalyst 
to sensitize users towards data 
quality.   
 

 
 

6 

 
 
Management support has been cited as a 
key driver in success of data quality efforts 
over the long term. 

 
 
In terms of management 
supporting data quality, IS-Users 
responded neutrally to positively  
to the issue if Management if 
supporting data quality.   
 

 
7 

 
Continuous change is a challenge to the 
sustainability of data quality improvement.  

 
IS-Users are negatively inclined 
towards being comfortable with 
change and implicitly express a 
‘wish’ for a data environment 
that is stable. 
 

 
 
Discussion and Recommendation: 
 

Overall the results indicate that the opinions vis a vis sustainability of data quality 

improvement suggest a slightly skeptical view as illustrated by a mean value of 

2.21. 

1. The lack of training has surfaced more than once as a problem during the 

research. Training in the operative student administrative systems should be 

afforded urgent priority. Optimal staffing in the Institution for the function should 

be determined and training schedules should be arranged as strong opinions 

were expressed by all three constituent IS-Users. 

2. A user needs analysis should be undertaken to ascertain what data quality 

skills and at what levels are required. While the data quality skills is non-

negotiable at the level of Data Custodians, skills may need to be developed at 
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the level of the Data Stewards as well. In fulfilling their role as Data Owners 

some types of investigations may have to be ‘devolved’ and Data Stewards may 

would need requisite skills to undertake those tasks.   

3. Management and leadership to drive data quality appears to a perceived 

problem. Although the research did not differentiate between top and middle 

management, it is proposed that there should be representation of management 

at Data Quality workshops to be continually informed of the data problems. 

4. How teams work, perceived synergy, how the three groups of IS-Users that 

participated in the study work together, should be reconstituted. The Data 

Stewards (Technical) should have a closer involvement in data quality activity 

and they should have direct representation in the Data Quality Working Group 

(DQWG).  

5. In terms of continuous change as a challenge to the sustainability of data 

quality, reporting elements and the data quality monitoring system that should 

exist, should be subject to regular reviews in the light of continuous change. A 

‘Change Control’ item should be on the agenda of the DQWG to manage the 

effect of change.  

 
5.3 FURTHER RESEARCH  
 

It is the opinion that further research needs to be done in the root causes of data 

quality. The ‘5 why’ approach referred to in the possible D M A I C - to explore 

the cause-and-effect relationships underlying a particular problem, particularly 

underlying the behaviour underlying the actions of the IS-Users and to what 

interventions can be made to bring about altered behaviour.     

 

 
 
 
 
 

http://en.wikipedia.org/wiki/Causality
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5.3.1 RACI DIAGRAM – PROPOSED ACCOUNTABILITIES  
 

The illustration below is a hypothetical representation of the RACI model of 

Wende and Otto (2011) in terms of data quality activity and roles at the moment 

at the Institution. As this is hypothetical only and the purpose of this research 

was not to interrogate this or to determine a ‘optimal’ model, further research is 

required to find a RACI model that represents the ‘closest fit’ of the roles, 

responsibilities and data role players to the directives in the Data Quality Policy 

at the Institution. 

  
APPLICATION OF THE 'RACI' TO UKZN 

ACTIVITIES  / ROLE PLAYERS

Exec 
Sponsor  
Registrar 

Data Quality 
Working 

Group 

Data Owner 
(Business data 

steward)
Data 

Custodian
Data Steward 

(technical)

1. Overall strategic responsibility for data 
quality and report data quality matters to the 
Executive A R I C I

2. The formulation of a overall data quality 
strategy, action plans and Identifies and 
prioritizes data quality initiatives, makes 
recommendations and motivates for funding A A/R C C C

3. The promotion of a culture of data quality 
across the institution, monitoring and 
measuring functional data, implementing 
systems to identify and correct data errors, as 
well as to measuring and monitoring data 
quality A A C A/R C

4. The correction of data quality in all 
functional areas, the formulation of procedure 
manuals for the capturing, storing and 
maintenance of data in the relevant 
transactional databases A I A/R C I
 
5. Information Systems Support I I C A/C A/R
 
R = Responsible, A = Accountable, 
C=Consulted, I = Informed  
Figure 5 : RACI Chart adapted from Wende & Otto (2011) 
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5.3.2   A PROPOSED ‘D M A I C’ APPROACH 
 

While an Institutional Data Quality policy does exist, and this research has 

hopefully contributed in terms of benchmarking costs and defining roles and 

responsibilities, a further ‘structured improvement procedure’ could be proposed 

in terms of developing a strategy to ‘embody’ the ‘deliverables’ associated with a 

data quality improvement programme.   

 

The Define-Measure-Analysis-Improve-Control (DMAIC) is one approach within 

the Six Sigma set of tools representative of a formal, strict process to undertake 

improvement projects according to Pande et al. (2000) in Zu, Fredendall and 

Robbins (2006).  

 

A proposed DMAIC approach, to further give form to the current data quality 

improvement initiative may consist of the following components or building blocks 

that may assist in expanding the thinking to support the formal basis of a data 

quality improvement regime. 

 

A) DEFINING  

• Implement a University-wide Data Quality Strategy exist that is 

endorsed by the Executive.  

• Develop a Data Dictionary or Glossary exist that identify all production 

files from source systems and explain information terminology at a 

higher level. 

• Develop Policy and Procedure documents exist as a guide to Data 

Capture.  

• Develop a Data Audit System exist with Exception reports.  

 

B) MEASURING 

• Develop systems to measure data or processes to arrive at an 

assessment of performance. 
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• Apply data profiling to data quality in terms of determining null or 

missing values, data values or high or low boundary data.     

• Undertaking a gap analysis to determine the ‘tension’ between what 

information users require and what the system provides.  

 

C) ANALYSING 

Undertake a ‘Root Cause Analysis’. By investigating root cause issues at all 

levels, interrogating “why” (formerly) on various and successive ‘deeper’ levels.  

 

D) IMPROVING  

• Improve processes by addressing or eliminating (root causes of) defects. 

• Establish or determine roles and accountability in terms of data owners. 

• Review business rules that underlie the data that has to be tested.  

• Implement business rules into program and distribute to data owners for 

correction.   

• Implement change controls to ensure change in data elements and 

systems are incorporated in the data quality systems   

 

E)  CONTROLLING / FEEDBACK  

• Encapsulate the data, processes, business rules governing that Data 

Area and its tables/fields into Policy and Procedure guides to serve as 

a guide to the capturer as well to the analyst. 

• Create a platform for the effective dissemination and maintenance of 

Policy and Procedure documents.  

• Incorporate the violation of business rules into an on-line Data Auditing 

system where recurring problems can be dealt with at data capture 

entry. 

• Create a platform for effective dissemination and maintenance of 

errors in the Data Auditing System. 
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• Conceptualise, develop, implement operational reports to serve users 

general needs as well as serve as feedback on errors that cannot be 

‘trapped’ with a business rule.  

• Ensure that, if Peripheral systems exist, that they are ‘synchronised’ 

with the reporting infrastructure of the main administrative system.   

• Adopt a ‘connect and collaborate’ attitude in interacting with users in 

the area of Data Auditing as well as in communicating information 

terminologies.      

• By means of a Data Quality Scorecard, use metrics to monitor that 

data quality does not fall under a certain threshold or limits.  

 

5.4 CONCLUSION AND RECOMMENDATIONS 
 

This research has assessed perspectives towards the sustainability of data 

quality improvement at the University. Various shortcomings have been identified 

and recommendations made as how they can be remedied (sections 5.2.1 to 

5.2.5) with the emphasis on; 

  

• training in data quality  

• performance management to support current operations  

• support teamwork to sustain the current initiatives and use  cross-

functional teams to diagnose process-based quality problems  

• implement service level agreements to enhance data quality from third 

party suppliers  

• adopt incentives to reward work done in the area of data quality  

• and develop feedback mechanisms such as data quality monitor to report 

on the condition of data quality in real time,  

• propagate data ownership to enhance organizational agility to reduce 

‘work around’/ ‘run around’ around time of IS-users 

• a better understanding of the cost of data quality     
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In terms of cost of data quality, while the research has provided a benchmark for 

improvements in terms of cost but has limited the study to direct labour only, 

there are other data quality costs that need to be studied in order to get a 

‘complete picture’ of the cost of data quality. 
 

Over and above the proposals made in section 5.3 in terms of a D M A I C 

approach to supplement this research, as data quality is directly linked to data 

and information digested by the Institution, research needs also to be done not 

only from the perspective of the information system users but from information 

users themselves. A junction between perspectives and practical experience vis 

a vis data quality and an information needs analysis in an organisation may 

contribute significantly to enhancing the quality of the information that 

organisations need. 
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APPENDICES 
 
APPENDIX 1 – Questionnaire  
 
SECTION 1 : General details about you as a computer system(s) user / 
information worker 
  
 
1. Are you employed as a:  

manager, 

non-manager 
2. Which of the following computer system(s) do you use or are involved 
with most?  

 ITS, 

SMS, 

Other 

Other (please specify)  
3. 3 How many years have you been involved in systems work?  

<5 yrs, 

5 to 10yrs, 

11 to 15 yrs, 

>15yrs 
4. As a systems user, in what capacity are you employed?  

 System Administration, 

User Access /Data User Support 

Development, 

College / School, 

MI and Info Analysis, 

Other 

Other (please specify)  
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SECTION 2 : Data Quality Awareness, Experience and Practice (reflecting 
experience of the problem)  
  
 
5. As part of your systems and/or other job related training, do you feel that 
the notion of data quality and its importance to our business has been 
adequately addressed when related to your area?  

Yes 

No 

Other (please specify)  
6. By what means has this knowledge or awareness been acquired?  

 Training Courses 

Management Briefings 

Personal Job Experience 

UKZN Publications, 

Other 

Other (please specify)  
7. Are you aware of any Data Quality initiatives underway or having taken 
place?  

Yes 

No 
8. Do you experience data quality problems as part of your daily work?  

Yes 

No 
9. Amongst the dimensions of data quality below, which are in your opinion 
the most important to a data user. Please rank them (e.g. 1,4,3,2)  
Accuracy  
Completeness  
Timeousness  
Comparability  
10. Current state of data quality  

 Perfect 

Pretty good but a few problems 
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Some data sources are in a mess 

There are serious problems overall 

Not sure 
11. On the system(s) with which you are involved, please indicate your 
responsibilities with respect to respect to changing data records  

 Creating Records, 

Reading Records, 

Updating Records, 

Deleting Records 

Capturing Records 

I do not change data records 

Other (please specify)  
12. 4 Processes to clean data  

 Yes, the organisation has a system / division providing data quality 'alerts'  

We clean up data ourselves 

Not Sure 

Other (please specify)  
13. Use of Reports - Should faster access to data / information help to 
discover DQ problems and to do something about it  

 Yes, to compensate for time saved in accessing info faster, users will spend 
time on DQ 

No, users too busy using info to worry about DQ 

Not sure 
14. If yes, approximately what percentage of your week is involved in 
rework or resolving problems caused by bad data?  

I don’t spend time on Data Quality 

Less Than 5 % 

5 to 20 % 

21 to 50 % 

> 50% 
15. Do you feel that the operational processes in your areas of work 
support /underpin work with respect to Data Quality, are robust and of 
adequate quality ? (Choose the most important option)  

Wholly Adequate 

Some Minor Weaknesses Present 
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Useful As A Guide Only 

Inadequate 

Not Sure 
16. When encountering a data quality problem, do you (choose most 
important option)  

Always Correct Or Fix The Problem Yourself 

Report The Problem To A Central Point (Helpdesk / Support Function / Data 
Quality Desk) 

Report/Hand Problem To The Originator 

Work Round Problem Best Way Possible To Complete Task 

Escalate By Some Other Means 

Not Applicable 

Other 

Other (please specify)  
17. Where, in which role, in your opinion, does the accountability for bad 
data lie?  

Data Stewards - Business (eg Data Owners in the areas of Student / HR / 
Finance) 

Data Stewards - Technical (Data Stewards in ICS)  

Data Custodian (Management Information Services in ICS) 

Not sure 
18. In terms of accountability for data and data quality success, do you 
believe that data quality responsibilities should be included in data owners’ 
performance management agreements (KPA’s)?  

 Reasonable 

Not reasonable 

Not sure 
19. Data Problem Corrections – In order to minimise the time that data 
remains incorrect, do you believe that a ‘Data Correction Window Period’ 
(e.g. 24 / 48 / 72 hours) should exist for regular data errors to be fixed  

Reasonable 

Non Reasonable 

Not sure 
20. Elements that you see as Barriers to the adoption of Data Quality 
Initiatives (Choose the most important)  

Management Does Not View Data Quality As Important 
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Very Difficult To Present A Business Case 

No One Prepared To Lead The Initiative 

None One In The Organisation Appears To Care 

Unrealistic Expectations Are Often Set 

It Would Cost Too Much 

We Do Not Have The Right Skill Sets 

Don’t Know 

 
 
 
SECTION 3 : Problem Areas, Impact and Causes related to Data Quality 
  
 
21. In which area do you feel the data problems lie? (Choose most 
important option)  

Accuracy, completeness, consistency, timeliness. (Processes) 

System’s ability to model and manipulate data representing the real world 
(including user friendlyness) 

System’s ability to output meaningful information 

Clarity of roles and responsibilities 

None of these 

Not sure 
22. Impact of Poor Data – Please choose the most important impact 
element of poor data  

Financial Waste / Costs 

Reputation 

Efficiency 

Loss of Opportunities 

Other 

Other (please specify)  
23. Causes of Poor Data – Please choose the most important contributor to 
poor data  

System Issues 

Human / Behavioural / Error 

Lack of Training 
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Other 

 
 
 
SECTION 4: An Organisational Assessment / Sustainability of Data Quality 
Improvement  
  
 
This section seeks your overall perception of the business with respect to Data 
Quality and should not be specifically focused on your current work area. 
 
The following questions/statements reflect key dimensions of data quality 
initiatives that are predictors of sustainability. Please indicate your views on a 
scale of than varies from 'Strongly Agree' to 'Strongly Disagree'. 
24. Data quality initiatives / awareness will promote a data and information 
culture / information literacy  

 Strongly Agree Agree Disagree Strongly 
DisAgree 

 
 Strongly 
Agree Agree Disagree Strongly 

DisAgree 
25. At this institution there are sufficient people to support the data quality 
initiative with the necessary skills and knowledge to guide the 
implementation  

 Strongly Agree Agree Disagree Strongly 
Disagree 

 
 Strongly 
Agree Agree Disagree Strongly 

Disagree 
26. At this Institution training among data capturers / data owners is 
adequate to support the attainment of better data quality  

 Strongly Agree Agree Disagree Strongly 
Disagree 

 
 Strongly 
Agree Agree Disagree Strongly 

Disagree 
27. The execution of data quality initiatives through dynamic structures 
(e.g. teams, networks and workgroups) at the Institution is working well  

 Strongly Agree Agree Disagree Strongly 
Disagree 

 
Strongly 

Agree Agree Disagree Strongly 
Disagree 

28. In this organisation individuals have become comfortable with change 
and do not seek stability  
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 Strongly Agree Agree Disagree Strongly 
Disagree 

 
 Strongly 
Agree Agree Disagree Strongly 

Disagree 
29. Management views data quality as important  

Strongly Agree Agree Disagree Strongly Disagree 

 Strongly Agree Agree Disagree Strongly 
Disagree 

30. There are enough people in the Institution to lead a data quality 
initiative  

Strongly Agree Agree Disagree Strongly Disagree 

Strongly Agree Agree Disagree Strongly 
Disagree 

31. There are enough people in the Institution that cares about data quality  
Strongly Agree Agree Disagree Strongly Disagree 

 Strongly Agree Agree Disagree Strongly 
Disagree 

32. Expectations about achieving data quality improvement is reasonable  
Strongly Agree Agree Disagree Strongly Disagree 

Strongly Agree Agree Disagree Strongly 
Disagree 

33. Data quality activity / processes will over the longer term be successful 
and sustainable  

Strongly Agree Agree Disagree Strongly Disagree 

Strongly Agree Agree Disagree Strongly 
Disagree 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



156 
 

APPENDIX 2 – Research Areas by Question   
 
 

Research Questions  
 

The research can be encapsulated in the form of the following keywords and 

objectives.  
 
A - Awareness   
 
What is the nature of awareness and communication practices around data 

quality? Are these practices conducive to data quality improvement? Do 

structures exist to communicate issue around data quality (DQ) and manage data 

quality?  

 
A.1 Awareness / Structures to communicate DQ problems  

Question 5 - has the importance of date quality been incorporated into your work 

area?  

Question 6 - how knowledge of DQ or DQ activity has been obtained 

(communication structures) 

Question 7 - awareness of any DQ activity taking place  

Question 8 - the user’s experience with DQ problems – large data activity eg: 

data migration    

Question 9 - rate the DQ dimensions  

Question 10 - current state of DQ 

Question 11 - the user’s responsibility in terms of maintaining records (bio with q 

1 to 5) 

 
A.2 Awareness of i t o the nature of DQ i e barriers to information use, 
causes, impact = Questions 20, (cause), 22(impact), 21 and 23 (cause) 

 

B – Accountability and Management  
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What are the perceptions vis a vis accountability – ROLES - Accountability 
and consequences 

 

Question 16 - how DQ problems are routed  

Question 17 - Where does accountability for DQ lie  

Question 18 - Should DQ be incorporated into KPA’s (linked performance 

management) 

Question 19 - Minimize data decay – business value of data – should window 

periods be determined for data correction (linked to SLA’s with users)   

 

Perspectives of locii of control and commitment to accountability will be assessed 

in terms of linking data quality activity to performance management and improved 

turnover in terms of time spent on data quality improvement (section 2)  

 

C How do are we in terms of Information Quality Problem Handling / 

Practice –    

Processes and Process Quality / Structures to route DQ problems  

Question 12 - does Institution have a ‘system’ to clean up data and so what is it  

Question 13 - reports as a FB to assess data – data with metrics – i t o 

assessment   

Question 15 - how does processes support you (robustness, quality, agility)  

 

D – Cost of Data Quality  
 

Can the cost of data quality practices be quantified? Is it significant? In order in 

inform this question, time (person-hours) and costs will determined that is 

devoted to data quality improvement in order determine a ‘base’ from which data 

quality can be improved and data quality costs can be monitored (Question 14)  

 

E - Sustainability (‘means difference’) 
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Are there differences in perspectives toward the sustainability of data quality 

among the three groups of data quality stakeholders and are the differences 

significant?. Differences that may be found may point to levels of cooperation / 

synergy that may require intervention (Questions 24 to 33)  
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APPENDIX 3 – Cost of Data Quality 
 
 
     COST OF DATA QUALITY 
 

Ordinal 
representation 
of time spent

Lower 
Range

Upper 
Range 

Mid Point 
Salary 
Range 

Lower - R 
Per Yr 

Upper - R 
Per Yr 

No of 
Respon

dents 

Total Cost 
(Lower 
Range) 

Total Cost 
(Upper 
Range) 

Potential 
respondents 

Lower - w ter 
Yr 

Upper - w ter 
Yr 

Less than 5% 0.01 R 300 585 R 3 006
 5 to 20% 0.05 0.2 R 300 585 R 15 029 R 60 117 4 R 60 117 R 240 468
 21 to 50 % 0.2 0.5 R 300 585 R 60 117 R 150 293  
Over 50 % 0.5 0.6 R 300 585 R 150 293 R 180 351

4 R 60 117 R 240 468 6 w 90 176 w 360 702

Ordinal 
representation 
of time spent

Lower 
Range

Upper 
Range 

Mid Point 
Salary 
Range 

Lower - R 
Per Yr 

Upper - R 
Per Yr 

No of 
Respon

dents 

Total Cost 
(Lower 
Range) 

Total Cost 
(Upper 
Range) 

No of 
Outstanding 

Respondents 

Total Cost 
(Lower 

Range) - 
Outstanding 
Respondent

Total Cost 
(Upper 

Range) - 
Outstanding 

Respondents
Less than 5% 0.01 0.05 R 249 350 R 2 494 R 12 468 20 R 49 870 R 249 350
 5 to 20% 0.05 0.2 R 249 350 R 12 468 R 49 870 10 R 124 675 R 498 700
 21 to 50 % 0.2 0.5 R 249 350 R 49 870 R 124 675 2 R 99 740 R 249 350
Over 50 % 0.5 0.6 R 249 350 R 124 675 R 149 610 3 R 374 025 R 448 830

35 R 648 310 R 1 446 230 45 w 833 541 w 1 859 439

Ordinal 
representation 
of time spent

Lower 
Range

Upper 
Range 

Mid Point 
Salary 
Range 

Lower - R 
Per Yr 

Upper - R 
Per Yr 

No of 
Respon

dents 

Total Cost 
(Lower 
Range) 

Total Cost 
(Upper 
Range) 

Less than 5% 0.01 0.05 R 351 970 R 3 520 R 17 599 2 R 7 039 R 35 197
 5 to 20% 0.05 0.2 R 351 970 R 17 599 R 70 394 3 R 52 796 R 211 182
 21 to 50 % 0.2 0.5 R 351 970 R 70 394 R 175 985
Over 50 % 0.5 0.6 R 351 970 R 175 985 R 211 182

5 R 59 835 R 246 379 9 w 107 703 w 443 482

44 w 768 262 w 1 933 077 60 w 1 031 420 w 2 663 623

Potential responses = 'as if all 60 respondents indicated time spent on data quality

Note : The salary ranges do not constitute any particular level at the Institution. It is calculated as an average of all the different levels and grades 
that constituted each of the IS-User groups.  
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APPENDIX 4 – Descriptive Statistics – Section D 
 
 

Statistics
Question 

25 
Question 

26
Question 

26
Question 

27
Question 

28
Question 

29
Question 

30
Question 

31
Question 

32
Question 

33

Mean 1.54 2.204082 2.66 2.693878 2.836735 1.68 2.375 2.4 2.145833 2.04
Standard Error 0.081866 0.105057 0.129709 0.105962 0.084248 0.096637 0.105794 0.103016 0.103097 0.098809
Median 1.5 2.00 3 3 3 2 2 2 2 2
Mode 1 2.00 3 3 3 2 2 2 2 2
Standard Deviation 0.57888 0.735402 0.917183 0.741734 0.589736 0.683329 0.732963 0.728431 0.714279 0.698687
Sample Variance 0.335102 0.540816 0.841224 0.55017 0.347789 0.466939 0.537234 0.530612 0.510195 0.488163
Kurtosis -0.67781 -1.05165 -0.54088 -0.22708 1.415376 -0.74352 -0.00577 0.11721 0.610274 0.190338
Skewness 0.496044 -0.34459 -0.41303 -0.07142 -0.5941 0.50657 0.285434 0.528005 0.509331 0.31952
Range 2 2 3 3 3 2 3 3 3 3
Minimum 1 1 1 1 1 1 1 1 1 1
Maximum 3 3 4 4 4 3 4 4 4 4
Sum 77 108 133 132 139 84 114 120 103 102
Count 50 49 50 49 49 50 48 50 48 50  
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APPENDIX 5 – Gatekeepers Letter  
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APPENDIX 6 – Approval 
 

 
 
 
 



163 
 

APPENDIX 7 – TurnItIn Summary  
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