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Abstract

By knowing the incidence of an infectious disease, we can ascertain the high

risk factors of the disease as well as the effectiveness of awareness programmes

and treatment strategies. Since the work of Hugo Muench in 1934, many

methods of estimating the force of infection have been developed, each with

their own advantages and disadvantages.

The objective of this thesis is to explore the different compartmental models

of infectious diseases and establish and interpret the parameters associated

with them. Seven models formulated to estimate the force of infection were

discussed and applied to data obtained from CAPRISA. The data was age-

specific HIV prevalence data based on antenatal clinic attendees from the

Vulindlela district in KwaZulu-Natal.

The link between the survivor function, the prevalence and the force of infec-

tion was demonstrated and generalized linear model methodology was used
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to estimate the force of infection. Parametric and nonparametric force of

infection models were used to fit the models to data from 2009 to 2010. The

best fitting model was determined and thereafter applied to data from 2002

to 2010. The occurring trends of HIV incidence and prevalence were then

evaluated. It should be noted that the sample size for the year 2002 was con-

siderably smaller than that of the following years. This resulted in slightly

inaccurate estimates for the year 2002.

Despite the general increase in HIV prevalence (from 54.07% in 2003 to

61.33% in 2010), the rate of new HIV infections was found to be decreasing.

The results also showed that the age at which the force of infection peaked

for each year increased from 16.5 years in 2003 to 18 years in 2010.

Farrington’s two parameter model for estimating the force of HIV infection

was shown to be the most useful. The results obtained emphasised the im-

portance of HIV awareness campaigns being targeted at the 15 to 19 year

old age group. The results also suggest that using only prevalence as a mea-

sure of disease can be misleading and should rather be used in conjunction

with incidence estimates to determine the success of intervention and control

strategies.
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Chapter 1

Introduction

Infectious diseases frequently dominate news headlines because of their abil-

ity to spread rapidly amongst the population and debilitate a country’s

healthcare facilities and policies. Thus by having prior knowledge of the

transmission patterns of an infectious disease, we are able to discover whether

an epidemic is a likely outcome or not, amongst other vital conclusions. It

is possible to mathematically model the progress of most infectious diseases.

Modelling infectious diseases allows us to gain insight into mechanisms in-

fluencing the spread of the disease. Such models force a clear statement of

assumptions and hypotheses and help to derive new insights and hypothe-

ses. Modelling infectious diseases establishes relative importance of different
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processes and parameters so as to focus research or management efforts, and

explores management options. Modelling and analysis of infectious diseases

further helps to guide the design of studies that lead to the collection of rel-

evant data, to inform the design of public health policies and in the design

of control strategies.

Models can support, add to, and sometimes even overturn prevailing wis-

dom. Models support research flow for the development of new treatment

and vaccination plans. They can aid public health policy decisions concern-

ing a country’s, such as South Africa’s, most dangerous infectious diseases

such as HIV, TB, malaria and many more. Essentially, infectious disease

modelling plays a key role in policy making, health-economic aspects, emer-

gency planning and risk assessment and control-programme evaluation.

The force of infection is a crucial parameter in epidemiological models and

characterizes the instantaneous rate at which susceptible individuals acquire

an infectious disease. The force of infection consists of the contact rate be-

tween susceptible and infected individuals, the probability of disease trans-

mission given contact and the probability that the randomly chosen partner
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is infectious (Akpa et al. 2010).

Relying solely on prevalence to determine the level of disease within a pop-

ulation can lead to inaccurate conclusions. Prevalence is defined as the pro-

portion of cases in a population at a given time. It indicates how widespread

a disease is whereas the force of infection indicates the risk of contracting

the disease. Prevalence is sensitive to the age structure of the population.

Younger individuals have less time to become infected and will thus record

lower prevalence estimates than those of older individuals. Further, if the

disease mortality is high (infected individuals dying sooner than the unin-

fected), raw prevalence may underestimate the impact of the disease since

living individuals are less likely to be infected. Force of infection models

are helpful in this regard and can analyse prevalence data when age can be

determined at the time of the sample and when the disease is endemic in a

population (Conn et al. 2012).
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1.1. Literature review and preliminary concepts

1.1 Literature review and preliminary con-

cepts

In 1760, a publication by Daniel Bernoulli was the first to introduce math-

ematical modelling of infectious diseases but it was Hugo Muench who first

proposed the idea of estimating the force of infection. In the year 1934, Hugo

Muench stated,

“The thing to do, then, is to find out what curve describes the growth of the

summation data and to find the derivative, which will be the rate at which

the curve is rising at different ages.”

This formed the basis of Muench’s catalytic model and the in depth research

of the estimation of the force of infection that followed. However, it was only

in 1959 that his work became widely known, through a publication entitled

Catalytic Models in Epidemiology. Muench’s model assumed a constant force

of infection that was applicable to the entire population at any point in time

i.e. at any age. It also catered for the fraction of the population that could

not be infected at all. Muench (1934) modelled prevalence as

π(a) = 1− e−λa
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1.1. Literature review and preliminary concepts

where λ was assumed to be a constant effective exposure rate. He determined

the rate of change of the prevalence to be:

∆π(a) = λe−λa

Thus the rate of change per susceptible was modelled by Muench as

l(a) =
∆π(a)

1− π(a)
=
λe−λa

e−λa
= λ

Muench’s work triggered further research into the force of infection and both

parametric and nonparametric methods were developed to estimate the force

of infection.

Griffiths (1974) proposed an age-dependent (linear) force of infection. Letting

l(a) denote the force of infection (or equivalently the hazard of infection as

in survival analysis) as a function of age, then the model by Griffiths can be

written as

l(a) =


β1 + 2β2a , a > τ

0 , a ≤ τ

τ=end of the maternal antibody period

5



1.1. Literature review and preliminary concepts

Since τ has been specified as a parameter in the model, the model can be

viewed as a changepoint model. Griffiths deduced that the prevalence for his

model would be

π(a) = 1− e−(β0+β1a+β2a2)

and showed the linear trend by plotting

l(a) =
∆π(a)

1− π(a)

against age.

Eleven years later, Grenfell and Anderson (1985) expanded on Griffiths (1974)

model and proposed a polynomial function to model the force of infection.

The proposed approach has the advantage of flexible curve shapes because

of the higher order of the polynomials used. The force of infection under

Grenfell and Anderson’s model did not constrain the force of infection to

be constant or linear but instead allowed the data to lead the results. The

model assumed can be written as

π(a) = 1− e−
∑

βia
i

,

6



1.1. Literature review and preliminary concepts

implying

l(a) =
∑

βiia
i−1.

However, the Grenfell and Anderson model had the complication of yielding

negative estimates for the force of infection. Farrington (1990) sought to

correct this by considering a nonlinear model:

l(a) = (α1a− α3)e
−α2a + α3.

To ensure that his model produced positive estimates, Farrington constrained

the parameter space to be non-negative.

Finally, Keiding (1991) proposed a nonparametric method of estimating the

force of infection from serological data, based on the Kaplan-Meier estimator

of 1 − π(a) which finds its origin in survival analysis. Keiding addressed

the issues of time homogeneity, monotonicity, and censoring. He used a ker-

nel smoother in his method and in 1996 he proposed to replace the kernel

smoother with a smoothing spline. Semi-parametric models were later ex-

plored, in which the age-specific prevalence was modelled nonparametrically

and possible covariate effects such as gender were included in the parametric

component of the model. In more recent times, Shkedy et al (2003 and 2006)

proposed local and fractional polynomials to model the force of infection.
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1.2. HIV prevalence among antenatal clinic attendees in South Africa

The five milestone papers of Muench (1934), Griffiths (1974), Grenfell and

Anderson (1985), Farrington (1990), and Keiding (1991), form the frame-

work of the estimation of the force of infection that is still used today. In

more recent times, researchers have built upon this work using more modern

statistical models and advanced estimation procedures that are subsequently

more computer intensive.

1.2 HIV prevalence among antenatal clinic

attendees in South Africa

Until 1998, South Africa had one of the fastest growing HIV epidemics in the

world, but since 2006, HIV prevalence among pregnant women has remained

relatively stable.

The South African Department of Health carried out the National Antenatal

Sentinel HIV and Syphilis Prevalence Survey in South Africa in 2010, pub-

lished in 2011. The annual study looks at data from antenatal clinics and

uses it to estimate HIV prevalence amongst pregnant women. According to

the study, KwaZulu-Natal’s estimated HIV prevalence among the antenatal

clinic attendees was 39.5% for both 2009 and 2010. KwaZulu-Natal had the
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1.2. HIV prevalence among antenatal clinic attendees in South Africa

highest HIV prevalence for both years. Table 1.1 shows the estimated HIV

prevalence among antenatal clinic attendees in KwaZulu-Natal by age.

Table 1.1: The estimated HIV prevalence (%) among antenatal clinic atten-

dees in KwaZulu-Natal, by age.

Age Group 2009 2010

10-14 7.9 9.1

15-19 13.7 14.0

20-24 26.6 26.7

25-29 37.1 37.3

30-34 41.5 42.6

35-39 35.4 38.4

40-44 25.6 30.9

45-49 23.9 28.2

In such a large and diverse country as is South Africa, the true figures can

not be known exactly. What is essential however, is that the limitations of

each study are acknowledged whenever their results are interpreted. For this

reason, the advantages and disadvantages of each force of infection estimation

method is considered when comparing the results obtained in this thesis. We
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1.3. Statement of problem

also discuss the suitability of using antenatal clinic data.

1.3 Statement of problem

The project starts by first exploring the different infectious disease com-

partmental models and the parameters associated with them. In particu-

lar, we discuss the SIR (Susceptible-Infected-Recovered), MSLIR (Mater-

nal Protected-Susceptible-Latent-Infected-Recovered) and SIS (Susceptible-

Infected-Susceptible) models. Note that the transmission of HIV is described

by an SI (Susceptible-Infected) model. These compartmental models are the

basic models for transmission of a disease and are established by classifying

the affected population by disease status, namely susceptible, infected and

recovered. The rates at which individuals move from one state to the next

are key to the model and in understanding the risk level of the disease. We

shall be studying the interpretation of these rates which are key parameters

of the models and transmission dynamics. The specific rates in question are

the incidence rates, force of infection and recovery rates. The research will

also seek to estimate the key disease parameters using different statistical

assumptions and methods.

10



1.4. Specific objectives

1.4 Specific objectives

The specific objectives for this project are:

1. To explore the different compartmental models of infectious diseases

and establish the parameters associated with them including their in-

terpretation.

2. Demonstrate the link between the survivor function as used in time to

event analysis, the prevalence and the hazard or force of infection.

3. Use the generalized linear model formulation and methodology to esti-

mate the force of infection.

4. Show the application to HIV antenatal clinic sero-prevalence data.

1.5 Data

At the heart of any statistical research project lies the data. The project

makes use of current status data obtained from CAPRISA (Centre for AIDS

Programme Research In South Africa). The data was collected from the

Vulindlela Clinical Research Site, one of CAPRISA’s five clinical research

11



1.5. Data

sites.

Vulindlela is a sub-district situated 90 minutes west of Durban. About

230 000, predominantly Zulu-speaking, people reside in this rural community.

Access to seven primary health care clinics is available. Residents are able to

receive extensive primary care as well as acquire advice on family planning,

sexually transmitted infection (STI) treatment, antenatal care, treatment of

opportunistic infections and minor ailments and are able to undergo volun-

tary HIV counseling and testing. Grey’s Hospital and Edendale Hospital,

the regional referral hospitals, are within a 30 minute drive away from the

Vulindlela district. Many of the 60 community-based organizations in the

district provide residents with HIV prevention and home-based care services.

These organisations are also closely linked with CAPRISA.

The data we used was obtained from pregnant women visiting the antenatal

clinics in the Vulindlela district. They were asked a variety of questions and

voluntary anonymous testing for HIV was carried out at the clinic. From the

many variables available, we extracted the age of each patient and their HIV

status. The reason is because age is a key determinant of the onset of most

12



1.5. Data

infectious diseases and HIV infection, which is the focus of the current study,

is not an exception.

Antenatal clinic data is used since pregnant women attending antenatal clin-

ics are thought more likely to best represent the general population of adult

women as they constitute an easily identifiable, accessible and stable popu-

lation. This is because they consist of the proportion of the population that

are sexually active and are not using contraceptives. Thus, this makes them

susceptible to HIV infection. They are thus used to estimate HIV preva-

lence. However, there are many biases that may arise because of using only

this select population. Only pregnant women are tested suggesting that only

fertile women are sampled. Also, HIV-infected women may be less likely to

become pregnant and studies have shown that HIV reduces fertility (Gray et

al, 1997). In addition, not all pregnant women may be attending antenatal

clinics.
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Chapter 2

General Disease Transmission

Models

Individuals in a population can be classified into different states with respect

to their disease status. This method of dynamical rules is applicable to only

transmissable diseases such as AIDS, SARS, measles and other infectious

diseases. This is because the number of new cases of infection or incidence

of the disease is dependent on the number of existing cases. Compared with

non-transmissable diseases such as cardio-vascular diseases, the number of

new cases is independent of the number of existing cases.

14



2.1. The SIR model

2.1 The SIR model

The SIR model is the most basic infectious disease model. The model is

applicable mostly to viral and bacterial diseases that can confer immunity.

For simple infectious diseases, the population can be modelled by (Shkedy

et al. 2009):

N(a, t) = X(a, t) + Y (a, t) + Z(a, t) (2.1)

N(a,t) - total population at age a and time t

X(a,t) - number of susceptible individuals at age a and time t

Y(a,t) - number of infected individuals at age a and time t

Z(a,t) - number of recovered/immune individuals at age a and time t

The SIR model operates on the following assumptions:

i) Newborns enter directly into the susceptible phase i.e the period during

which newborns are protected from infection maternal antibodies is ignored.

ii) Infection, the latent period, the infectious period and disease occur simul-

taneously.

15



2.1. The SIR model

iii) Once an individual has recovered from the disease, they cannot be re-

infected.

We also assume the birth rate to be equal to the natural death rate so that

the total population size is constant.

The compartmental nature of the SIR model leads to interest in estimating

the rate at which individuals move from state to state. Figure 2.1 depicts

the basic SIR model.

There are five rates that need to be considered when modelling the flow of

individuals within the population, with respect to age and time:

• Birth rate µ(a, t): The rate at which individuals enter the susceptible

class.

• Force of infection λ(a,t): The rate at which individuals leave the sus-

ceptible class and enter the infected class.

• Recovery rate ν(a, t): The rate at which individuals leave the infected

16



2.1. The SIR model

Figure 2.1: The basic SIR model.

class and enter the recovered class.

• Disease death rate α(a, t): The excess mortality rate at which individ-

uals leave the infected class as a consequence of death due to disease.

• Natural death rate µ(a, t): The rate at which individuals leave the

susceptible, infected and recovered classes as a consequence of natural

death.

Change in number of susceptible individuals

Change in susceptibles = number of newborns - number leaving susceptible

17



2.1. The SIR model

class

⇒∂X(a,t)
∂a

+ ∂X(a,t)
∂t

= N(a, t)µ(a, t)− [λ(a, t) + µ(a, t)]X(a, t)

Change in number of infected individuals

Change in infected = number of newly infected - number of recovering and

dying infected

⇒∂Y (a,t)
∂a

+ ∂Y (a,t)
∂t

= λX(a, t)− [ν(a, t) + α(a, t) + µ(a, t)]Y (a, t)

Change in number of immune individuals

Change in immunes = number of newly recovered - number of dying immune

⇒∂Z(a,t)
∂a

+ ∂Z(a,t)
∂t

= ν(a, t)Y (a, t)− µ(a, t)Z(a, t)

The above three equations are together known as the governing disease trans-

mission equations.

2.1.1 The time homogeneous model

The time homogeneous model is a steady state SIR model. Where the SIR

model employs two timescales of host age and time, the time homogeneous

model employs only one timescale of host age. This means that there is

18



2.1. The SIR model

no time dependence in the variables in the governing disease transmission

equations. We also assume that the disease death rate α = 0. it will be

shown that by assuming an equal birth and death rate of µ and a disease

death rate of α = 0, we will arrive at a system of two coupled ordinary

differential equations which becomes easier to analyse. The transmission

models under the time homogeneous model become (Shkedy et al. 2009):

N(a) = X(a) + Y (a) + Z(a) (2.2)

dX(a)

da
= N(a)µ(a)− [λ(a) + µ(a)]X(a), (2.3)

dY (a)

da
= λ(a)X(a)− (ν(a) + µ(a))Y (a), (2.4)

dZ(a)

da
= ν(a)Y (a)− µ(a)Z(a). (2.5)

The total number of individuals at age a denoted N(a) can be calculated as:

N(a) = N(0)P(survives to age a) = N(0)S(a)

The survival function S(a) can assume two forms which can be labelled as

Type I and Type II survivor function.

19



2.1. The SIR model

Type I survivor function

Under Type I survivor function, we consider only two cases: a person dying

before age L or a person dying after age L. The survival function S(a) then

becomes:

S(a) =


1 , a ≤ L

0 , a > L

(2.6)

Type II survivor function

Type II survivor function assumes the death rate to be a constant rate of µ

over time. The survival function S(a) then becomes:

S(a) = e−µa (2.7)

Thus N(a) can be determined assuming either Type I or Type II survival.

Given Type I survival:

N(a) =


N(0) , a ≤ L

0 , a > L.

(2.8)

Given Type II survival:

N(a) = N(0)S(a) (2.9)

= N(0)e−µa.
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2.1. The SIR model

In equation (2.2), X(a) is the number of individuals present in the suscepti-

ble class. It is possible to calculate X(a) by using our knowledge of Markov

chains. The introduction of a stochastic process accommodates for the un-

equal time intervals between observations (Mwambi et al. 2011). Also, real

processes are stochastic and adding stochasticity to a model gives it greater

flexibility ensuring a better tool of estimation (Haran. 2009). Let TX be the

amount of time spent in the susceptible class (and the outcome of an ex-

ponential distribution). Ignoring the natural death rate (since an epidemic

outbreak moves faster than the vital rates), individuals leave the susceptible

class at a rate of λ. Thus:

TX ∼ Exp(λ)

Therefore, the probability that an individual becomes infected before age a

(moves from class X to class Y before age a) is the cumulative distribution

of TX .

P (TX ≤ a) =
∫ a

0
λe−λxdx (2.10)

= 1− e−λa.
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2.1. The SIR model

Hence, the probability of staying in the susceptible class at age a is

P (TX > a) = e−λa.

X(a) can be calculated as:

X(a) = N(a)P (TX > a) = N(a)e−λa. (2.11)

Under Type I mortality:

X(a) = N(a)e−λa (2.12)

=


N(a)e−λa , a ≤ L

0 , a > L

dX(a)

da
= −λN(a)e−λa = −λX(a) (2.13)

Under Type II mortality:

X(a) = N(a)e−λa (2.14)

= N(0)e−µae−λa

= N(0)e−(λ+µ)a

dX(a)

da
= −(λ+ µ)N(0)e−(λ+µ)a = −(λ+ µ)X(a) (2.15)
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2.1. The SIR model

Let x(a) be the proportion of the population that is susceptible at age a.

x(a) =
X(a)

N(a)
=
N(0)e−λae−µa

N(0)e−µa
= e−λa (2.16)

By using the proportion of susceptible individuals at a given age or time, we

eliminate the natural death rate µ and thus any change in the proportion of

susceptible hosts would be due solely to individuals moving into the infected

class.

Similarly, we can eliminate the natural death rate for the infected class and

the recovered class by calculating the proportion of the population that each

of these classes represent. For the infected class, we integrate the differential

equation over all ages and calculate the proportion y(a).

dY (a)

da
= λX(a)− (ν + µ)Y (a). (2.17)

⇒ Y (a) =
λ

λ− ν
N(a)[e−νa − e−λa],

y(a) =
Y (a)

N(a)
=

λ

λ− ν
[e−νa − e−λa]. (2.18)

Likewise, for the recovered class we have:

dZ(a)

da
= νY (a)− µZ(a) (2.19)
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2.2. The MSLIR model

But N(a) = X(a) + Y(a) + Z(a),

⇒ Z(a) = N(a)−X(a)− Y (a)

Therefore,

z(a) =
Z(a)

N(a)
= 1− x(a)− y(a) (2.20)

2.2 The MSLIR model

The MSLIR model is an expansion of the SIR model. It accounts for two

more stages in the transmission of an infectious disease (Shkedy et al. 2009).

• The period during which an newborn is temporarily protected from

infection by maternal antibodies.

• The period during which an individual is infected, but not yet infec-

tious. This is known as the latent period.

Figure 2.2 depicts where these two additional stages fit into the SIR model.
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2.3. The SIS model

Figure 2.2: The MSLIR model.

2.3 The SIS model

The SIS model has only two compartments: susceptible and infected. This is

because it models diseases where re-infection after recovery is possible. Some

forms of childhood respiratory diseases and some STIs such as gonorrhoea

may fall under such a model. Figure 2.3 depicts this model. Some STI’s such

as gonorrhoea follow this model (Shkedy et al. 2009).
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2.3. The SIS model

Figure 2.3: The SIS model.
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Chapter 3

Exploratory Data Analysis

The data obtained from CAPRISA was collected for the years of 2002 through

to 2010. Each observation consisted of the age of the patient (pregnant

woman attending the antenatal clinic in Vulindlela), and their status of HIV

infection. Disease status was ascertained via the ELISA test. Patient ages

ranged from a minimum of 12 years to a maximum of 45 years.

3.1 Prevalence estimation by year

The yearly prevalence estimate can be calculated using the following formula
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3.1. Prevalence estimation by year

p =
x

n
(3.1)

p=prevalence estimate

x=number of patients who tested positive for HIV infection

n=total number of individuals in the sample

A cursory glance at the prevalence (estimated using equation 3.1) over the

years (Figure 3.1) reveals a general increasing trend. We find 2004 to have

the highest prevalence estimate and 2007 to have the lowest. Focusing on

more recent times, the prevalence estimate for 2009 is shown to be 0.3898

(95% CI 0.3416-0.4402) or 38.98% and that of 2010 to be 0.4088 (95% CI

0.3578-0.4618) or 40.88%. This is realistic as it echoes KZN’s HIV prevalence

rate of 39.5%. Further it should be noted that Vulindlela is one of the high

risk HIV areas within KwaZulu-Natal so it should not be a surprise that its

prevalence estimates tend to be higher than those at the province level.
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3.2. Prevalence estimation by age group

Figure 3.1: The estimated prevalence of HIV amongst pregnant women in

Vulindlela by year. The prevalence bars also include confidence intervals at

the top.

3.2 Prevalence estimation by age group

Making use once again of equation 3.1, we can calculate the estimated preva-

lence of HIV amongst the women for each age group. The data was grouped

into three age groups: 24 years and younger, 25-34 years, and 35 years and

above. Figure 3.2 shows estimated prevalence for each of these age groups.
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3.2. Prevalence estimation by age group

Figure 3.2: The estimated prevalence of HIV amongst pregnant women in

Vulindlela by age group.

Figure 3.2 shows the prevalence by age. The most striking feature we find is

the age group of 25-34 years having the highest prevalence for each year.

In general, focusing on recent years, we notice that 2010 has a higher overall

observed prevalence than 2009. The models we fit to estimate the force of

infection should reflect this. The higher prevalence in 2010 may tend to
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3.2. Prevalence estimation by age group

support the argument that while we might think we are winning the war

against HIV, it might not be the case in some high risk areas. This also

touches on the question of spatial temporal heterogeneous dynamics of the

disease.
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Chapter 4

Estimation of the Force of

Infection for HIV

4.1 A note about the generalized linear model

The Generalized Linear Model (GLM) was first introduced by Nelder and

Wedderburn (1972). The model provides a unified theory of regression mod-

elling that encompasses the most important models for continuous and dis-

crete variables. There are three main characteristics present in GLMs as

described in Section 4.1.2. There are two important issues to consider:

• The distribution of the response
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4.1. A note about the generalized linear model

• The model (link function) that relates the mean response to the ex-

planatory variables

GLMs are restricted to the exponential family of distributions for the re-

sponse Y because the algorithm applies to the entire family, for any choice

of the link function. Note that Y here is a random variable that can be

continuous or discrete, depending on the nature of the outcome of the event

of interest.

4.1.1 The exponential family of distributions

The canonical form of distributions that are members of the exponential

family is

f(y, θ, φ) = e
yθ−b(θ)
a(φ)

+c(y,φ) (4.1)

where a(.), b(.) and c(.) are specific functions, θ is the natural location pa-

rameter and φ is the scale parameter.

Two important properties of the exponential family of distributions are:

µ = E(y) = b′(θ) (4.2)
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4.1. A note about the generalized linear model

var(y) = b′′(θ)a(φ) (4.3)

The normal, binomial, negative binomial, exponential and gamma distribu-

tions are just some of the distributions that belong to this family.

4.1.2 The GLM structure

A GLM has three important components:

• Random Component : the response variables Y1, Y2, . . . , Yn are indepen-

dently and identically distributed from the exponential family having

the canonical form

• Systematic Component : a linear predictor as a function of explanatory

variables,

ηi = xiβ

• Link Function: a relationship between the linear predictor ηi to the

expected value µi = E(Yi),

ηi = g(µi)
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4.1. A note about the generalized linear model

There are many link functions available, depending on the response variable

of interest, but the most commonly used, and the ones that we make use of

when modelling current status data in the form of binary outcomes are listed

below. Assuming Yi Bernoulli(1, µi):

• The log link function

ηi = ln(µi).

• The logit link function

ηi = ln{ µi
1− µi

}.

• The complementary log-log link function

ηi = ln[−ln(1− µi)].

It is important to understand that the link function is a transformation on

the population mean, and not the data. This is the main idea as introduced

by Nelder and Wedderburn (1972). Note that because of specific modelling

needs, the use of a canonical link function is not a necessity as will be demon-

strated in the current application.
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4.1. A note about the generalized linear model

4.1.3 Parameter estimation

When carrying out parameter estimation under the GLM models we can

make use of three possible iterative methods to estimate the parameters of a

the GLM model.

• Newton-Raphson method

• Fisher Scoring algorithm

• Iterative Reweighted Least Squares method

The Newton-Raphson method is a commonly used method for finding zero

approximations of a real-valued function. It can also be used to find a min-

imum or maximum of a function by applying the method to the derivatives

(Newton-Raphson method in optimization). The Fisher scoring algorithm is

a form of the Newton-Raphson method and is used to solve maximum likeli-

hood equations numerically. Nelder and Wedderburn (1972) used it to esti-

mate β̂ in GLMs. Fisher scoring is a special case of the iterative reweighted

least squares method.

Newton-Raphson method

Given a function f(x) and its derivative f ′(x), we can use the Newton-
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4.1. A note about the generalized linear model

Raphson updating equation

xn+1 = xn −
f(xn)

f ′(xn)
, n = 0, 1, . . . (4.4)

Fisher Scoring algorithm

Specifically, given an initial estimate β, the algorithm update equation for

Fisher Scoring is

βnew = β +

[
E

(
− ∂2I

∂β∂βT

)]−1
∂I

∂β
. (4.5)

It can be shown that equation (4.5) can be rewritten as

βnew = β + (XTWX)−1XTWz, (4.6)

where z is the n-vector with ith component

zi = (Yi − µi)g′(µi),

and W is the n× n diagonal matrix with

Wii =
[
g′(µi)

2b′′(θi)
]−1

.
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4.2. Modelling current status data

Iterative Reweighted Least Squares method

In GLM, if we let z∗ be an n-vector with the ith component given by

z∗i = (Yi − µi)g′(µi) + xTi β,

then the updating equation of GLM becomes

βnew = (XTWX)−1XTWz∗, (4.7)

where

W = diag[(g′(µ1)
2b′′(θ1))

−1, . . . , (g′(µn)2b′′(θn))−1].

4.2 Modelling current status data

Before we can begin modelling current status, there are some concepts that

need to be established first.

(i) In general, the change in the probability of being susceptible, with respect

to age and time, can be expressed as

∂q(a, t)

∂a
+
∂q(a, t)

∂t
= −l(a)q(a, t).

q(a, t) = P(susceptible at age a, time t)

l(a, t) = force of infection/hazard
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4.2. Modelling current status data

The above expression follows from ignoring the vital dynamics in ∂X(a,t)
∂a

+

∂X(a,t)
∂t

= N(a, t)µ(a, t) − (λ(a, t) + µ(a, t))X(a, t). Since a single epidemic

outbreak moves faster than the normal birth and death rates in a given pop-

ulation, normal birth and death rates are excluded. A possible limitation is

assuming the disease death rate to be zero. Future research could involve

accommodating this parameter for increased accuracy.

However, we are interested in the change of the number of susceptible indi-

viduals under the assumption of time homogeneity (dq(a,t)
∂t

= 0). Hence

dq(a)

da
= −l(a)q(a).

(ii) Current status data can be interval-censored, left- or right-censored.

With interval-censored data, each individual is tested more than once with

a specified period of time between each test. If an individual tests negative

for the disease at age a1 but tests positive for the disease at age a2, this im-

plies that although the exact age of infection is unknown, infection occurred

within the age interval (a1, a2).

With left- and right-censored data (the type of data that we have available),
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4.2. Modelling current status data

individuals are tested only once, at certain point in time, and two observa-

tions are recorded: the age of the individual and their disease status. Let

age a* be the age at which the individuals are tested. If an individual tests

negative, it implies that the individual may be infected after age a*. This is

known as right-censored data (assumed to occur with probability q(a)).

If an individual tests positive, it implies that the individual was infected

before age a*. This is known as left-censored data (assumed to occur with

probability 1− q(a)).

We can then observe the binary random variable Yi where for sample size N

and age of the ith individual ai

Yi =


1 if left− censored

0 if right− censored
(4.8)

In survival analysis, the probability of an individual surviving beyond time x

(event occurs after time x ) is given by the survival function S(x). The hazard

rate is the rate at which the event occurs and is given by

f(x)

S(x)
=

F ′(x)

1− F (x)
, (4.9)

where f(x) = F ′(x) = [1− S(x)]′ = −S ′(x).
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4.2. Modelling current status data

Adapting (4.9) for our purposes, the probability of an individual becoming

infected after age a (surviving or escaping infection beyond age a) is

S(a) = 1− prevalence = 1− π(a)

Thus F (x) in (4.9) corresponds to π(a). Since the hazard rate is congruent

to the force of infection:

l(a) =
π′(a)

1− π(a)
. (4.10)

Letting the probability that an individual is susceptible at age a i.e. infected

after age a, be represented by q(a), the prevalence π(a) is given by

π(a) = 1− q(a). (4.11)

It is important to note that π(a) represents a cumulative prevalence. It

denotes the probability of being infected before or at age a. Thus when

interpreting our results, the value of π(a) at the maximum age in the sam-

ple estimates the prevalence rate of the disease in the total sample. This

is because the cumulative prevalence at age amax includes the cumulative

prevalences of all ages less than amax in the sample.
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4.2. Modelling current status data

Note

Consider an age-specific cross-sectional prevalence sample of size N where ai

is the age of the ith subject. Instead of observing the age at infection, we

observe a binary variable Yi such as in equation (4.8).

Remembering that π(ai) = P(infected before age ai) = 1 − q(ai), our pdf

becomes

f [Yi, π(ai)] = π(ai)
Yi(1− π(ai))

1−Yi .

Thus our log-likelihood is

L =
N∑
i=1

{Yiln[π(ai)] + (1− Yi)ln[1− π(ai)]} . (4.12)

Incorporating a link function g and a linear predictor η, we arrive at

g[π(a)] = η(a)⇒ π(a) = g−1[η(a)] (4.13)

g is often taken to be the logit link function
{
ln( π

1−π )
}

, but other link func-

tions can be used as well. For example, the complementary log-log link

{ln[−ln(1− π)]} and the log link {−ln(1− π)}.

Using a model with a log link function leads to a simple interpretation of the

first derivative of the linear predictor. η(a) is the cumulative hazard there-

fore the force of infection is equivalent to the first derivative of η(a). In the

general case, when the link function is not restricted, the force of infection
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4.2. Modelling current status data

Table 4.1: Table of link functions and their corresponding δ structures

Link π(a) l(a) δ[η(a)]

log 1− e−η(a) η′(a) 1

clog-log 1− e−eη(a) η′(a)eη(a) eη(a)

logit eη(a)

1+eη(a)
η′(a) eη(a)

1+eη(a)
eη(a)

1+eη(a)

can still be derived using the definition of the hazard rate.

It is easy to see that for the binomial distribution, the force of infection can

be expressed as a product of two functions:

l(a) = η′(a)δ[η(a)]. (4.14)

where δ is determined by the link function. Table 4.1 shows three possible

link functions with their corresponding δ structure for the force of infection.

4.2.1 Constant force of infection

The catalytic model assumes a constant force of infection applicable to the

entire population at any point in time, that is, at any age. Assuming a con-

stant force of infection for HIV, however, implies like risk factors for both

younger and older individuals. Thus, age becomes our defining risk factor
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4.2. Modelling current status data

and the force of infection should be modelled as such.

If we assume that the time spent in the susceptible class follows an exponen-

tial distribution with parameter λ, we obtain a constant force of infection.

The pdf of the exponential distribution is

f(x) = λe−λx.

From the pdf above, we can derive the probability of being susceptible at age

a, the prevalence and the force of infection as

q(a) = P (X > a) = e−λa,

π(a) = 1− q(a) = 1− e−λa. (4.15)

l(a) =
π′(a)

1− π(a)
=
λe−λa

e−λa
= λ. (4.16)

We can fit a general linear model with a complementary log-log link function

in SAS to estimate our constant force of infection, λ. That is,

g[π(a)] = ln[−ln[1− π(a)]], (4.17)

= ln[−ln[e−λa]],
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4.2. Modelling current status data

= ln(λa),

= ln(λ) + ln(a),

= µ+ ln(a).

Thus we can fit the above model in SAS using Proc GENMOD and obtain

the intercept µ. Thus

µ = ln(λ)⇒ λ = eµ.

4.2.2 Linear force of infection

The age-dependent(linear) force of infection model accounts for the maternal

antibody period though it has the disadvantage of constraining the force of

infection to be linear.

Expanding and generalizing on the assumption of the constant force of in-

fection estimation, let us assume that λ(a) = β0 + β1a + β2a
2. Thus our

prevalence π(a) is given by π(a) = 1− e−λ(a). Then

π(a) = 1− e−(β0+β1a+β2a2). (4.18)

Thus

l(a) =
π′(a)

1− π(a)
, (4.19)
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4.2. Modelling current status data

=
(β1 + 2β2a)e−(β0+β1a+β2a

2)

e−(β0+β1a+β2a2)
,

= β1 + 2β2a.

Thus to estimate the linear functional form of the force of infection a non-

linear optimization algorithm can be used first to fit a prevalence model

specifying initial values for β0, β1 and β2. In our case Proc NLMIXED in

SAS was used and since no information on the values of the β’s is available

we assume a minimal value for each. If estimates from previous research are

known, they can be used as initial values. However, this thesis determines

the initial values through trial-and-error and convergence of the employed

algorithm.

Proc NLMIXED then iteratively provides us with estimates of β0,β1 and β2

and thus the linear force of infection can be estimated, for a given age.

4.2.3 Weibull force of infection

If we assume that the time spent in the susceptible class follows a Weibull dis-

tribution with parameters k and λ, we obtain a monotone force of infection.

The pdf of the Weibull distribution is

f(x) =
k

λ

(
x

λ

)k−1
e−(

x
λ
)k .
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4.2. Modelling current status data

Thus

q(a) = P (X > a) = e−(
a
λ
)k ,

π(a) = 1− q(a) = 1− e−(
a
λ
)k . (4.20)

l(a) =
π′(a)

1− π(a)
, (4.21)

=
kλ−kak−1e−(

a
λ
)k

e−(
a
λ
)k

,

= kλ−kak−1.

Letting α = λ−k and β = k, we get

l(a) = αβaβ−1. (4.22)

We can fit a general linear model with a complementary log-log link function

in SAS to estimate the force of infection.

g[π(a)] = ln[−ln[1− π(a)]], (4.23)

= ln[−ln[e−αa
β

]],

= ln(αaβ),

= ln(α) + βln(a),

= µ+ βln(a).
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4.2. Modelling current status data

We can fit the above model in SAS using Proc GENMOD with ln(a) as the

covariate or predictor variable and obtain the estimates for µ and β. Note

µ = ln(α)⇒ α = eµ

and β is the regression coefficient for ln(a). We can then substitute the values

of α and β into l(a) to estimate the force of infection for a given age.

4.2.4 Log-logistic force of infection

If we assume that the time of spent in the susceptible class follows a log-

logistic distribution with parameters α and β, we obtain a single-peak force

of infection. We know the pdf of the log-logistic distribution is

f(x) =
(β
α

)( x
α

)β−1

[1 + ( x
α

)β]2
.

Thus

q(a) = P (X > a) = 1− 1

1 + ( a
α

)−β
,

π(a) = 1− q(a) =
1

1 + ( a
α

)−β
. (4.24)

Hence, to derive our force of infection l(a),

π′(a) =
d

da
[1 + a−βαβ]−1, (4.25)

= −[1 + a−βαβ]−2.− βa−β−1αβ,
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4.2. Modelling current status data

=
βa−β−1αβ

(1 + a−βαβ)2
.

1− π(a) = 1− 1

1 + a−βαβ
, (4.26)

=
1 + a−βαβ − 1

1 + a−βαβ
,

=
a−βαβ

1 + a−βαβ
.

l(a) =
π′(a)

1− π(a)
, (4.27)

=
βa−β−1αβ

(1 + a−βαβ)2
÷ a−βαβ

1 + a−βαβ
,

=
βa−β−1αβ

(1 + a−βαβ)2
× 1 + a−βαβ

a−βαβ
,

=
βa−1

1 + a−βαβ
,

=
βa−1

a−β(aβ + αβ)
,

=
βaβ−1

aβ + αβ
,

=
βaβ−1α−β

α−βaβ + 1
,

=
βaβ−1λ

1 + λaβ
.

where λ = α−β. We can fit a general linear model with a logit link function

in SAS to estimate the force of infection.

g[π(a)] = logit[π(a)], (4.28)
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4.2. Modelling current status data

= ln

[
(1 + a−βαβ)−1

(a−βαβ)(1 + a−βαβ)−1

]
,

= −ln(a−βαβ),

= βln(a)− βln(α),

= βln(a) + ln(α−β).

Letting λ = α−β;

g[π(a)] = ln(λ) + βln(a), (4.29)

= µ+ βln(a).

We can fit the log-logistic model in SAS using Proc GENMOD and obtain

the estimates for µ and β. Note

µ = ln(λ)⇒ λ = eµ.

We can then substitute the values of β and λ into l(a) to estimate the force

of infection for a given age.

4.2.5 Farrington’s force of infection

In 1985, Grenfell and Anderson proposed polynomial functions to model the

force of infection. The method had the advantages of

• flexible curve shapes due to the higher order of polynomials
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4.2. Modelling current status data

• an unconstrained force of infection since the model allowed the data to

lead the results

and the disadvantages of

• flexibility limited the type of polynomial used

• unbounded and uncontrolled behaviour at the extremes of the age scale

• non-monotonicity

• negative force of infection estimates

In 1990, Farrington sought to correct the negative estimates of Grenfell and

Anderson and proposed non-linear models for the force of infection. Under

the three parameter Farrington (1990) model, the prevalence is modelled as

π(a) = 1− e
α1
α2
ae−α2a+ 1

α2
(
α1
α2
−α3)(e−α2a−1)−α3a, (4.30)

= 1− er.

where r = α1

α2
ae−α2a + 1

α2
(α1

α2
− α3)(e

−α2a − 1)− α3a.

Note that π(a) ∈ (0, 1) implies that r ∈ (−∞, 0).
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4.2. Modelling current status data

Hence, to derive our force of infection l(a),

dr

da
=

α1

α2

e−α2a − α1ae
−α2a − α1

α2

e−α2a + α3e
−α2a − α3, (4.31)

= −α1ae
−α2a + α3e

−α2a − α3,

= (−α1a+ α3)e
−α2a − α3.

π′(a) = −er × dr

da
(4.32)

= −er ×
[
(−α1a+ α3)e

−α2a − α3

]
.

1− π(a) = 1− (1− er), (4.33)

= er.

l(a) =
π′(a)

1− π(a)
, (4.34)

=
−er × (−α1a+ α3)e

−α2a − α3

er
,

= −[(−α1a+ α3)e
−α2a − α3],

= (α1a− α3)e
−α2a + α3.
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To ensure that the force of infection is always positive across all ages, Far-

rington constrained the parameter space to be non-negative. Thus,

αj ≥ 0, j = 1, 2, 3

l(ai) ≥ 0, i = 1, 2, . . . , n

Note that lima→∞[(α1a − α3)e
−α2a + α3] = α3. Therefore, l(a) ≥ 0 because

α3 ≥ 0 is constrained.

Farrington’s model assumes that the force of infection at birth is zero, and

then rises linearly to a peak, thereafter decreasing exponentially. When

the contact rate between susceptible individuals and infectious individuals

reaches a maximum, the peak in the model is obtained at the corresponding

age.

The long-term residual value of the force of infection is represented by the

parameter α3. Under Farrington’s two parameter model, α3 = 0. This re-

sults in the force of infection decreasing to zero as a→∞.

We can fit Farrington’s prevalence model in SAS using the flexible nonlinear

optimization procedure Proc NLMIXED which allows the user to specify their
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4.2. Modelling current status data

own likelihood model. We fit Farrington’s model with two parameters and

three parameters and use model fit statistics to choose the best fitting model.

Since no information on the parameters is given, we assume a minimal initial

value for each. The initial values are determined through trial-and-error.

Proc NLMIXED then provides us with parameter estimates which can be

substituted into l(a) to estimate the force of infection for any given age.

4.2.6 Fractional polynomials

Standard high order polynomials offer a variety of curves but have a weak-

ness in that they fit the data badly at the extremes of the age scale. It

also fits data poorly whenever asymptotic behaviour of the infection process

is expected. Fractional polynomials allow for flexible changes in the force

of infection since they extend standard polynomials to multiple non-integer

powers.

In general, a fractional polynomial of degree m for the linear predictor is

defined as

ηm(a, β, p1, p2, · · · , pm) =
m∑
i=o

βiHi(a). (4.35)

where m ∈ Z, p1 ≤ p2 ≤ . . . ≤ pm is a sequence of powers and Hi(a) is a
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4.2. Modelling current status data

transformation function given by

Hi(a) =


api , pi 6= pi−1

Hi−1(a)ln(a) , pi = pi−1

(4.36)

with initial conditions p0 = 1 and H0 = 1.

Royston and Altman (1994) argued that, in practice, fractional polynomials

of order higher than 2 are rarely needed and suggested to choose the value

of the powers from the set:

{-2,-1,-0.5,0,0.5,1,2,max(3,m)}.

First order fractional polynomials

η1(a, β, p) =
1∑
i=0

βiHi(a), (4.37)

= β0H0(a) + β1H1(a),

= β0 + β1H1(a).

H1(a) =


ap1 , p1 6= p0

H0(a)ln(a) , p1 = p0

(4.38)
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4.2. Modelling current status data

=


ap1 , p1 6= 1

ln(a) , p1 = 1

Therefore

η1(a) =


β0 + β1a

p1 , p1 6= 1

β0 + β1ln(a) , p1 = 1

(4.39)

Second order fractional polynomials

η2(a, β, p1, p2) =
2∑
i=0

βiHi(a), (4.40)

= β0H0(a) + β1H1(a) + β2H2(a),

= β0 + β1H1(a) + β2H2(a).

H2(a) =


ap2 , p2 6= p1

H1(a)ln(a) , p2 = p1

(4.41)

Therefore

η2(a) =


β0 + β1a

p1 + β2a
p2 , p2 6= p1

β0 + β1a
p1 + β2a

p1ln(a) , p2 = p1

(4.42)
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4.2. Modelling current status data

Note

The constant, linear, Weibull and log-logistic force of infections can all be

shown to be fractional polynomials.

Constant force of infection

g[π(a)] = µ+ ln(a)

is a first order fractional polynomial with p = 0,β0 = µ and β1 = 1.

Linear force of infection

The model with a linear force of infection can be parameterized as a first-

order fractional polynomial with a complementary log-log link for which p = 0

and β1 = 2. This implies that

η1(a) = β0 + β1ln(a) = β0 + 2ln(a)

Thus

η′1(a) =
2

a

and

eη1(a) = eβ0+2ln(a) = eβ0a2 = κa2

where κ = eβ0 . Therefore

l(a) = η′1(a)eη1(a) =
2

a
κa2 = 2κa
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4.2. Modelling current status data

The form of l(a) implies that the force of infection is zero at birth and there-

after, increases linearly.

Weibull force of infection

g[π(a)] = µ+ βln(a)

is a first order fractional polynomial with p = 0, β0 = µ and β1 6= 1.

Log-logistic force of infection

g[π(a)] = µ+ βln(a)

is a first order fractional polynomial with p = 0, β0 = µ and β1 6= 1.

Model selection

In general, we make use of the quantity G(m, p) to measure the fit of different

models. More specifically,

G(m, p) = D(1, 1)−D(m, p) (4.43)

where D(1, 1) is the deviance of the model with fractional polynomial of

order 1 and power 1, and D(m, p) is the deviance of the model with fractional

58



4.2. Modelling current status data

polynomial of order m and sequence of powers p = (p1, p2, . . . , pm).

Note that D(1, 1) is taken to be the reference or baseline deviance and we

measure the improvement of other models upon this. The larger the value of

G, the better the fit of the model.

To determine the most adequate order of the model, we begin by selecting

the best first order fractional polynomial and the best second order fractional

polynomial - the best model being determined by that which has the highest

likelihood or, equivalently, the smallest deviance. The criterion

D(1, p̃)−D(2, p̃) > χ2
2,0.9

where p̃ is the power sequence for the model with the best goodness of fit,

is recommended by Royston and Altman as a decision tool to select between

the first and second order fractional polynomial models. The first order

fractional polynomial model is rejected if the above criterion is met.

Constrained fractional polynomials

Regardless of the variety of curve slopes that fractional polynomials offer,

there is still no guarantee that π(a) will be a monotone function of age. This

can result in a negative estimate for the force of infection. From Table 4.1

we can see that the force of infection is negative whenever η′(a) is negative
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4.2. Modelling current status data

(since δ[η(a)] is strictly positive). Thus, our models should be fitted subject

to the constraint

η′m(a, β̂, p) ≥ 0

for all ages a in the predefined range. In practice, we can fit a large number of

fractional polynomials over a grid of powers, and check if the above constraint

is met for all ages a. If a given sequence of powers leads to a negative

derivative of the linear predictor, the model is considered inappropriate. This

implies that the model with the best goodness-of-fit amongst all fractional

polynomials for which η′m(a, β̂, p) ≥ 0 is selected.

4.2.7 Monotone local polynomials

Parametric models in literature require assumptions about the parametric

structure. This restrains the linear predictor thus detracting from the true

shape of the estimated force of infection. Nonparametric models assume only

smoothness for the prevalence or the force of infection. Local polynomials:

• estimate the prevalence and force of infection simultaneously resulting

in a smooth estimated probability curve.

• have the advantageous property of automatic boundary correction.
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4.2. Modelling current status data

• are fully unconstrained and highly data driven resulting in a revelation

of data aspects that was previously ignored or hidden by parametric

models.

Monotone local polynomials is a nonparametric method that can be used to

estimate the force of infection. We know that within the fractional polyno-

mial framework

η(a) = g[π(a)]⇒ π(a) = g−1[η(a)]

where η(a) is the linear predictor having a flexible parametric structure.

Within the local polynomial framework, we assume the same structure with

the exception of not specifying a parametric structure for η(a). This method

accommodates for the simultaneous nonparametric estimation of the force

of infection and prevalence. At certain ages, however, negative estimates of

the force of infection may arise as a result of the unconstrained model. Thus

we make use of a local smoother, constrained to be monotone, to ensure

maximum flexibility in addition to overcoming the negative force of infection

estimate problem.
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4.2. Modelling current status data

As shown before, when observing the age of infection of an age-specific cross-

sectional prevalence sample, the log-likelihood is given by

L =
N∑
i=1

Qi

{
Yi, g

−1[η(ai)]
}

(4.44)

where Qi is the contribution of the ith subject to the Bernoulli log-likelihood

with success probability π(ai) = g−1[η(ai)]. As shown before the force of

infection can be expressed as

l(a) = η′(a)δ[η(a)] (4.45)

where δ is determined by the link function g. The choice of link function

when using a local polynomial likelihood method, however, is less impor-

tant. The local polynomial likelihood method provides consistent estimates

for η(a) and η′(a), without any parametric restriction on the functional form.

They only have to satisfy some smoothness condition. Thus, for a given link

function, the local force of infection can be found using equation (4.45).

The local likelihood estimation is based on the maximization of

n∑
i=1

Qi

{
Yi, g

−1[η(ai − a)]
}
K[

(ai − a)

h
],

where K is a kernel, assigning higher weights to data points in the neighbour-

hood of some fixed a, and h is a bandwidth parameter. The linear predictor
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4.2. Modelling current status data

is locally approximated by a polynomial of order p.

η(ai − a) ≈ η(a) + η′(a)(ai − a) + . . .+ η(p)(ai − a)[
(ai − a)p

p!
],(4.46)

= β0(a) + β1(a)(ai − a) + . . .+ βp(ai − a)r,

=
p∑
r=0

βr(a)(ai − a)r.

Let us consider the first order Taylor expansion for the linear predictor. Thus

η(ai − a) ≈ η(a) + η′(a)(ai − a), (4.47)

= β0(a) + β1(a)(ai − a).

Hence, the linear predictor and the first derivative can be estimated as fol-

lows:

η(a) = β̂0(a), (4.48)

η′(a) = β̂1(a). (4.49)

Table 4.2 demonstrates how we can estimate the force of infection using local

polynomials, for a given link function.

For each value of a, the estimation of βr(a) must be repeated. The choice

of kernel is less important but conventional choices are the symmetrical beta

family given by
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4.2. Modelling current status data

Table 4.2: Table of local estimates for l(a) for a given link function

Link π(a) δ[η(a)] Local estimate for l(a)

log 1− e−η(a) 1 ˆβ1(a)

clog-log 1− e−eη(a) eη(a)
ˆ

β1(a)e
ˆβ0(a)

logit eη(a)

1+eη(a)
eη(a)

1+eη(a)
ˆβ1(a) eβ̂0(a)

1+eβ̂0(a)

K(u) =
(1− u2)γ

β(0.5, γ + 1)
, (4.50)

for |u| ≤ 1, γ = 0, 1, 2, . . . and the Gaussian kernel given by

K(u) =
e−

u2

2

√
2π
. (4.51)

However, the choice of the smoothing parameter h is crucial. The optimal

local bandwidth h is the minimizer of the average mean square error (AMSE)

for the force of infection.
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Chapter 5

Application and Results

As mentioned before, our dataset consists of left- and right-censored obser-

vations. These are dealt with by using the cumulative and survivor functions

which in our data, correspond to a prevalent and susceptible event respec-

tively. Ages of the women attending the antenatal clinics in Vulindlela ranged

from 14 to 45 years. To ensure that the models fitted as best as possible, the

ages were scaled such that the minimum age of 14 years would be represented

by the value 0.5. Hence, the maximum age of 45 years is represented by the

value 31.5. The minimum age is represented by 0.5 instead of 0 so as to ac-

commodate for the function ln(a) that occurs in the Weibull and log-logistic

models (ln(a) is undefined for a = 0). The models were first fitted to the
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5.1. Constant force of infection

2009 data and then to the 2010 data. These are the most recent data sets

obtained from CAPRISA on HIV sero-prevalence in their Vulindlela research

sites.

SAS was used to obtain parameter estimates for each model then MATLAB

was used to plot the prevalence and force of infection functions.

5.1 Constant force of infection

The constant force of infection model was fitted using the GENMOD pro-

cedure with a complementary log-log link function. This procedure revealed

estimates such that

π(a)2009 = 1− e−0.0523a, (5.1)

π(a)2010 = 1− e−0.0536a, (5.2)

and

l(a)2009 = 0.0523, (5.3)
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5.1. Constant force of infection

l(a)2010 = 0.0536. (5.4)

Figure 5.1: The fitted prevalence function for the constant model.

Figure 5.1 shows us that the prevalence of HIV among the pregnant women

in Vulindlela peaked at 81% in 2009 and 82% in 2010. These figures do

not seem realistic. This may indicate that a constant force of infection is

very unrealistic. Prevalence rises as age increases since π(a) is a cumulative

probability. The force of infection as can be seen in figure 5.2 for 2009 is
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5.1. Constant force of infection

Figure 5.2: The fitted force of infection for the constant model.

a constant 0.0523 across all ages, while for 2010 there was a slight increase

to 0.0536. Under the constant force of infection these rates imply that only

approximately 5 per every 100 individuals will be newly infected at each age

level. For a widely spread disease, this figure seems to be underestimated.

Also, it would be disadvantageous to assume a constant rate of new infections

regardless of age.
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5.2 Linear force of infection

The NLMIXED procedure was used to fit the linear force of infection. As-

suming initial values β0 = β1 = β2 = 0.001 (note that the β’s can each assume

different initial values as per trial-and-error), estimates produced were such

that

π(a)2009 = 1− e−(−0.1067+0.0973a−0.0024a2), (5.5)

π(a)2010 = 1− e−(−0.1414+0.1159a−0.0033a2), (5.6)

and

l(a)2009 = 0.0973− 0.0048a, (5.7)

l(a)2010 = 0.1159− 0.0066a. (5.8)

From Figure 5.3, we can see that the prevalence only becomes significant

after the age of 15 for both 2009 and 2010. The prevalence increases mono-

tonically and reaches its peak of 58.5% during the early thirties for the year

2009. For 2010, prevalence peaks to 58.4% during the early thirties as well.

The estimated prevalence for the total sample is 43.8% for 2009 and 20.9%
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5.2. Linear force of infection

Figure 5.3: The fitted prevalence function for the linear model.

for 2010. Compared to the estimates produced under the constant force of

infection model, these estimates make more sense.

Figure 5.4 shows the plot of the force of infection under the linear model.

Immediately, we notice the force of infection to be a declining function. How-

ever, after the ages of 33 and 31 for years 2009 and 2010 respectively, the force

of infection becomes negative. This suggests that the rate of new infections

beyond these ages is too insignificant to contribute to prevalence.
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Figure 5.4: The fitted force of infection function for the linear model.

5.3 Weibull force of infection

We fit the Weibull model in SAS using the GENMOD procedure with a

complementary log-log link function. The procedure reveals estimates of the

functional forms of age dependent prevalence and force of infection as

π(a)2009 = 1− e−0.0865a0.7916 , (5.9)
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π(a)2010 = 1− e−0.0874a0.8023 , (5.10)

and

l(a)2009 = 0.0685a−0.2084, (5.11)

l(a)2010 = 0.0701a−0.1977. (5.12)

The plotted prevalence in Figure 5.5 reveals an increasing prevalence as age

increases, which is expected. The prevalence reaches a maximum of 73%

in 2009 and 75% in 2010. These prevalence figures are less than that of

the figures produced under the constant model but larger than the figures

produced under the linear model. Figure 5.6 reveals the plotted force of

infection. The force of infection has the pattern of decreasing as age increases.

For 2009, the force of infection decreases from 0.079 at age 14 to 0.033 at age

45. For 2010, the force of infection decreases from 0.08 at age 14 to 0.035 at

age 45. As age increases, the slope of the Weibull force of infection becomes

flatter.
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Figure 5.5: The fitted prevalence for the Weibull model.

5.4 Log-logistic force of infection

The GENMOD procedure with a logit link function was used to fit the log-

logistic model. Estimates produced were such that

π(a)2009 =
0.0621a1.0777

1 + 0.0621a1.0777
, (5.13)
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Figure 5.6: The fitted force of infection for the Weibull model.

π(a)2010 =
0.0597a1.1188

1 + 0.0597a1.1188
, (5.14)

and

l(a)2009 =
0.0669a0.0777

1 + 0.0621a1.0777
, (5.15)
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l(a)2010 =
0.0668a0.1188

1 + 0.0597a1.1188
. (5.16)

Figure 5.7: The fitted prevalence for the log-logistic model.

The estimated prevalence function under the log-logistic model, as plotted

in Figure 5.7, closely resembles the estimated prevalence function under the

Weibull model (Figure 5.5). The prevalence rate, as per Figure 5.7, of HIV

is estimated to be 72% in 2009 and 74% in 2010. The log-logistic force of

infection as plotted in Figure 5.8, rises to a peak and then proceeds to decline
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Figure 5.8: The fitted force of infection for the log-logistic model.

with increasing age. In 2009, the graph shows that the force of infection

reached a maximum of 0.063 at the age of 15. In 2010, the force of infection

reached its peak of 0.064 at the age of 15.5. As Figure 5.8 shows, the log-

logistic model assumes a decreasing rate of new infections as age increases.
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5.5 Farrington’s force of infection

Farrington’s two parameter model and Farrington’s three parameter model

were fitted using the NLMIXED procedure, with the default Dual-Quasi

Newton optimization technique assuming

α1 = α2 = α3 = 0.1,

for the three parameter model, and

α1 = α2 = 0.1,

α3 = 0,

for the two parameter model. Note that the α’s can each assume different

initial values.

5.5.1 Farrington’s two parameter model

The estimates for the two parameter model were iteratively obtained such

that

π(a)2009 = 1− e0.2139ae−0.2324a+0.9202(e−0.2324a−1), (5.17)
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π(a)2010 = 1− e0.2285ae−0.2394a+0.9544(e−0.2394a−1), (5.18)

and

l(a)2009 = 0.0497ae−0.2324a, (5.19)

l(a)2010 = 0.0547ae−0.2394a. (5.20)

Figure 5.9 shows a fitted prevalence function that increases monotonically as

age increases and then proceeds to flatten out at higher ages. The prevalence

of HIV infection among the women attending antenatal clinics in Vulindlela

was 60% in 2009 and increased to 61% in 2010, the maximum values of

prevalence in Figure 5.9. Figure 5.10 shows the estimated force of infection

for Farrington’s two parameter model. The general function rises to a peak

and thereafter declines until it flattens out at higher ages. In 2009, the

estimated force of infection reached a peak of 0.079 around the age of 18 and

decreased to almost zero in the mid-forty age group. In 2010, the estimated

force of infection reached a peak of 0.084 around the age of 18 as well and

thereafter declined to close to zero in the mid-forty age group.
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Figure 5.9: The fitted prevalence for Farrington’s two parameter model.

5.5.2 Farrington’s three parameter model

The estimates for the three parameter model were iteratively obtained such

that

π(a)2009 = 1− e0.3342ae−0.1457a+2.727(e−0.1475a−1)+0.068a, (5.21)
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Figure 5.10: The fitted force of infection for Farrington’s two parameter

model.

π(a)2010 = 1− e0.4876ae−0.1167a+5.5079(e−0.1167a−1)+0.1552a, (5.22)

and

l(a)2009 = (0.0493a+ 0.068)e−0.1475a − 0.068, (5.23)
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l(a)2010 = (0.0569a+ 0.1552)e−0.1167a − 0.1552. (5.24)

Figure 5.11: The fitted prevalence for Farrington’s three parameter model.

The plotted prevalence under Farrington’s three parameter model is shown

in Figure 5.11. It shows the prevalence increasing from almost zero to a peak

and thereafter decreasing, as age increases. For 2009, the peak of 58.87% is

reached around the age of 31, while for 2010, the peak of 62.17% is reached

around age 30. The estimated prevalence for the total sample was 36.73%
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Figure 5.12: The fitted force of infection for Farrington’s three parameter

model.

for the year 2009. However, for 2010, we find that the prevalence is grossly

underestimated to be 8.67%.

We find, in Figure 5.12 Farrington’s three parameter force of infection rising

from almost zero to a peak and thereafter decreasing as age increases. The

force of infection reaches a peak of 0.083 at age 19 for 2009. For 2010, the

peak of 0.091 is reached around the age of 19 as well. We find that beyond age
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30, the force of infection becomes negative. Thus, the rate of new infections

beyond the age of 30 become insignificant. This is a worrying prediction as

it is a productive age. It further suggests that Farrington’s three parameter

model may not realistically capture this particular force of infection.

5.6 Fractional polynomial force of infection

A variety of first order fractional polynomials and a variety of second order

fractional polynomials was fitted using a SAS MACRO containing the GEN-

MOD procedure. The power sequence and the link used was varied. The

best fitting polynomial for each order was then noted.

Table 5.1: Table of best fitting fractional polynomials

Year First and Second Order Fractional Polynomial Link Deviance

2009 η1(a) = 1.747− 6.1826a−0.5 logit 56.0457

η2(a) = −16.8353 + 11.4565a−0.2 + 6.3036a−0.2ln(a) clog-log 54.7315

2010 η1(a) = 0.2336− 6.5838a−1 clog-log 26.1467

η2(a) = −2.0175− 5.1644a−0.5 + 4.5238a−0.5ln(a) clog-log 24.6872

Remembering that the first order fractional polynomial is rejected in favour
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of the second order if the criterion

D(1, p̃)−D(2, p̃) > χ2
2,0.9

is met, we find that the second order fractional polynomial is the most ade-

quate for both 2009 and 2010. By using Tables 4.2 and 5.1, we can find the

prevalence and force of infection. We find the prevalence to be

π(a)2009 = 1− e−u, (5.25)

where u = e−16.8353+11.4565a−0.2+6.3036a−0.2ln(a);

π(a)2010 = 1− e−v, (5.26)

where v = e−2.0175−5.1644a
−0.5+4.5238a−0.5ln(a);

and the force of infection to be

l(a)2009 = (4.0123a−1.2 − 1.2607a−1.2ln(a))e−16.8353+11.4565a−0.2+6.3036a−0.2ln(a),

(5.27)
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l(a)2010 = (7.106a−1.5 − 2.2619a−1.5ln(a))e−2.0175−5.1644a
−0.5+4.5238a−0.5ln(a).

(5.28)

Figure 5.13: The fitted prevalence for the second-order fractional polynomial

model.

From Figure 5.13, we can immediately see that the fractional polynomial

prevalence function closely resembles Farrington’s two parameter prevalence

function (Figure 5.9). Both increase monotonically as age increases and
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Figure 5.14: The fitted force of infection for the second-order fractional poly-

nomial model.

flattens out at higher ages. Figure 5.13 shows the prevalence of HIV in this

community was 57% in 2009 and increased slightly to 58% in 2010. These

estimates are lower than that produced using Farrington’s two parameter

model.

Figure 5.14 shows the estimated force of infection for the fractional polyno-

mial model. Again we see the resemblance when compared to Farrington’s
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two parameter force of infection function (Figure 5.10). The function of Fig-

ure 5.14 rises to a peak and thereafter declines until it flattens out at higher

ages. The estimated force of HIV infection reached a peak of 0.0929 in 2009

and increased to 0.1148 in 2010 - both around the age of 17. After the age

of 38, we find that the force of infection becomes negative suggesting that

after this age, the rate of new infections is too insignificant to contribute to

prevalence.

5.7 Fit statistics

Tables 5.2 and 5.3 show the fit statistics of each force of infection model.

For 2009, the AIC value of 117.4 (smaller is better) determines that both

Farrington’s two and three parameter models are the best fitting models.

Farrington’s three parameter model for the force of infection (Figure 5.12),

however, does not fall within our desired range (we desire both the prevalence

and force of infection to be positive). Hence, we will rule out Farrington’s

three parameter model and select Farrington’s two parameter model as our

best fitting model. Farrington’s two parameter model realistically captures

the prevalence and force of infection.
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For 2010, the AIC value of 95.3 determines Farrington’s three parameter

model as the best fitting model. However, we once again find the estimated

force of infection under this model to be negative at higher age groups (Fig-

ure 5.12). Thus, we will disregard Farrington’s three parameter model and

accept our second best fitting model (as determined by the AIC value of

98.0), Farrington’s two parameter model, as our best fitting model.

To emphasise, the force of infection is by definition a non-negative quan-

tity. Therefore, the linear model together with Farrington’s three parameter

model, which lead negative estimates of the force of infection, are strictly not

suitable.

5.8 Evolution of HIV infection in the Vulindlela

district

As determined by our previous analysis of data from the years 2009 and 2010,

we find that Farrington’s two parameter model best fitted both sets of data.

Using this model, we can now analyse a larger dataset to discover trends
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Table 5.2: Table of fit statistics for force of infection models fitted to the

2009 data

Model Deviance(df) Pearson Chi-Square Log Likelihood AIC

Constant 63.2071 (29) 54.6925 (29) -229.8957 124.4049

Linear - - - 118.7

Weibull 60.7889 (28) 49.9468 (28) -228.6866 123.9866

Log-logistic 58.7540 (28) 48.1866 (28) -227.6692 121.9517

Farrington(2) - - - 117.4

Farrington(3) - - - 117.4

Frac. Polynomial 54.7315 (27) 44.6818 (27) -225.6579 119.9292

occurring in the prevalence and force of HIV infection. More specifically, we

look at data ranging from the year 2002 through to 2010. Figures 5.15 and

5.16 depict the cumulative prevalence and force of infection estimates that

were obtained respectively.

After applying Farrington’s two parameter model to the increased dataset,

we observe three key statistics: the prevalence, the peak of the estimated

force of infection and the age at which the force of infection peaks. Note

that Table 5.4 shows the true age at which the force of infection peaks and

not the scaled age.
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Table 5.3: Table of fit statistics for force of infection models fitted to the

2010 data

Model Deviance(df) Pearson Chi-Square Log Likelihood AIC

Constant 37.3420 (28) 38.9755 (28) -208.5575 109.0099

Linear - - - 98.2

Weibull 35.1002 (27) 33.8385 (27) -207.4366 108.7680

Log-logistic 31.9906 (27) 31.2173 (27) -205.8818 105.6585

Farrington(2) - - - 98.0

Farrington(3) - - - 95.3

Frac. Polynomial 24.6872 (26) 26.8188 (26) -202.2301 100.3551

Using Table 5.4, we can make use of line graphs to enable us to clearly see

trends in these statistics over the years.

Immediately from Table 5.4, we can see that the estimates for the year 2002,

are considerably lower than the estimates produced for the following years.

We can attribute this inaccuracy to the small sample size available for that

year. Figure 5.17 shows the prevalence under Farrington’s two parameter

model over the years. Prevalence increased in general from 54% in 2003 to

61% in 2010. It can also be seen that the prevalence decreased between 2004
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Figure 5.15: The cumulative prevalence estimates under Farrington’s two

parameter model for the years 2002 to 2010.

and 2006.

Figure 5.18 shows the estimated force of infection peaks over the years. The

graph has a decreasing trend (0.0893 in 2002 to 0.0838 in 2010). Despite the

occurring increase in prevalence, the rate of new HIV infections is decreasing.

This may imply successful HIV prevention strategies and programmes.

Finally, Figure 5.19 depicts the age at which the force of infection peaked for

each year. The general trend is increasing (16.5 years in 2003 to 18 in 2010).

The increasing trend is desirable, in a sense, as it suggests that the risk of

HIV infection is highest at an older age group rather than at a previously
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Figure 5.16: The force of infection estimates under Farrington’s two param-

eter model for the years 2002 to 2010.

younger group.

Determining the best strategy for measuring incidence remains a challenge.

The prospective follow-up of a cohort of HIV-negative individuals provides a

direct estimate of HIV incidence; however, such studies are expensive, chal-

lenging, resource-consuming and raise the ethical dilemma of collecting data

from cohorts without implementing interventions. Furthermore, the enrol-

ment of individuals into a cohort study often leads to behavioural changes

that result in a lower observed HIV incidence than in the wider population
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Table 5.4: Table of observed key statistics gathered from the plotted esti-

mated prevalences and forces of infection under Farrington’s model.

Year Prevalence (%) Peak of FOI Age of Peak

2002 38.75 0.0893 13.5

2003 54.07 0.0918 16.5

2004 54.86 0.1127 16

2005 49.12 0.0818 16.5

2006 47.81 0.1152 16.5

2007 59.32 0.0517 18

2008 57.2 0.072 17

2009 59.95 0.0786 18

2010 61.33 0.0838 18

of interest. Cross-sectional, age-specific prevalence data provides valuable

age-specific incidence estimates as an alternative to measuring the incidence

of HIV infection directly from cohort studies.

The most rudimentary of the statistical models that have been developed to

estimate incidence from cross-sectional age-prevalence surveys assume that

HIV incidence rates in the population are stable over time and that the preva-
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Figure 5.17: The estimated Farrington’s prevalence of HIV amongst pregnant

women in Vulindlela by year.

lence in young people increases linearly with age. Based on this assumption,

we can apply Farrington’s model to the area HIV because of the distinctive

property of the Farrington force of infection rising to a peak and declining

until flattening out at higher ages. However, Farrington applied his model

to measles, mumps and rubella - all being reversible infections. Podgor and

Leske (1986) developed a method for estimating the incidence of irreversible
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Figure 5.18: The estimated Farrington’s force of HIV infection amongst preg-

nant women in Vulindlela by year.

diseases (eg. HIV) from age-specific prevalence data. Their method adjusts

for differential mortality, assumes that the force of infection is constant and

allows incidence to be estimated over age bands. We have seen, however,

that a constant force of infection is unlikely for HIV. Williams et al (2001)

formulated an extended dynamic model which allowed for a changing force of

infection, age-dependence of the risk of infection and differential mortality.
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Figure 5.19: The age at which Farrington’s force of infection peaks for each

year.
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Chapter 6

Conclusion

Prevalence and incidence are two vital measures of disease when consider-

ing infectious disease modelling. The prevalence gives us an idea about the

proportion of the population that is living with the disease. However, since

this proportion includes both old and new infections, it tells us little about

the present moment status of the disease. Thus, in order for us to discern

between old and new infections, we make use of incidence or equivalently the

force of infection. Incidence refers to the rate of appearance of new infections

or the force of infection. Hence, incidence affects the prevalence. By knowing

the force of infection, we can ascertain the high risk factors of the disease as

well as the effectiveness of awareness programmes and treatment strategies.
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The project started by first exploring compartmental modelling of infectious

diseases and the key parameters associated with it. The key parameters as-

sociated with the SIR, MSLIR and SIS models were explored as well and an

interpretation of them was made. We then explored six different methods

of estimating the force of HIV infection amongst pregnant women attending

antenatal clinics in the Vulindlela district, for the years of 2009 and 2010.

We also concluded that Farrington’s two parameter model best described the

prevalence and force of infection. The results showed that HIV prevalence in-

creased from 60% in 2009 to 61% in 2010. It was shown that as age increases,

the probability of being infected increased with age. We also found that the

force of infection was at its highest in the 15-19 year old age group for both

years, with the highest force of infection being 0.084 in 2010 - an increase

from 2009’s 0.079 force of infection. This suggests that HIV awareness cam-

paigns should be aimed at the 15-19 year old age group in an effort to bring

the rate of new infections down. Applying Farrington’s two parameter model

to a larger dataset (data for the years 2002-2008), we were able to identify

any trends that may have been present. This application yielded three key

findings - an increasing trend in prevalence, a decreasing trend of the force
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of infection or equivalently the incidence rate and an increasing trend of the

age at which the force of infection peaks. The ages, at which the force of

infection was found to peak, ranged from 13-18 years. This key finding fur-

ther emphasises the importance of HIV awareness campaigns targeting the

15-19 year old age group. Further research could focus on the 15-19 year

old age group and determine other factors that could be contributing to this

increased force of HIV infection.

The results also suggest that using only prevalence as a measure of disease

intensity can be misleading. The force of infection is the best measure to use

in evaluating the success of intervention and control strategies for a disease

such as the use of ARVs in the case of HIV/AIDS. Prevalence should therefore

be interpreted in conjunction with the force of infection.
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