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ABSTRACT  

Coffee (Coffea arabica L.) is an important economic crop produced by over 25 million farmers, 

across four continents. Coffee production is not just important for livelihoods of farmers, but also 

provide ecosystem services. As a perennial crop, coffee requires a robust, reliable and cost-

effective monitoring strategy for diseases, pests, water stress, soil fertility and other crop stressors, 

to ensure long-term productivity and to safeguard investments and other related ecosystem 

services. The current monitoring methods largely rely on spontaneous field inspections and 

sampling, which are not only labour intensive, but also conclusive once economic damage has 

been inflicted on the crop. The coffee crop, due to its architecture, production system, planting 

arrangement and cropping cycle presents many challenges that make traditional remote sensing 

not applicable.  Vegetation monitoring data and algorithms developed for either natural ecosystems 

or annual agricultural crops cannot be applied to coffee production because its distinct 

characteristics. In addition, since the majority of the coffee production is in developing countries, 

easily available multispectral level approaches are required for crop condition assessments of a 

unique and challenging but yet economically and ecologically important cropping system.  

 

This study presents an integrated system for crop condition assessment using available 

multispectral remote sensing data for landscape scale modelling and mapping of crop health in 

coffee plantations. First, as a perennial crop, coffee is planted in various age groups across the 

landscape for continuity. However, age of the coffee plants significantly affects remote sensing 

potential due to its relationship with canopy cover and soil background effect. An approach to 

develop reliable and detailed age-specific thematic maps for areas producing coffee was developed 

by combining the machine learning robustness of the random forests algorithm with the improved 

sensor design of Landsat 8 OLI data. Results showed that higher overall classification accuracy 

was achieved when coffee was classified as a single class (90.3% for OLI and 86.8% for ETM+) 

than the three age-based coffee classes (86.2% for OLI and 81.0% for ETM+). It was concluded 

that disaggregating coffee classes to produce age-specific maps reduce overall accuracy, but the 

usefulness of a thematic map with age-specific classes is more than the value of the marginal 

decrease in accuracy. Thus, this research achieved inter and intra-class discrimination of landcover 

classes in a heterogenous coffee producing area. A reliable coffee age-mask was produced, thereby 

solving the problem of age variability in coffee plantations, which is one of the key limitations to 

crop condition assessments with remote sensing in perennial crops.  

Next, the age specific thematic maps were used as age masks to develop an NDVI based method 

to detect and quantify incongruous patches based on their deviation from the age-expected mean 

values. Incongruous patches represent areas experiencing poor crop growth, pest infestation, 

disease outbreaks, soil fertility problems and/or responding or not responding to management 

interventions. Results showed that using the age-adjusted anomalies performed better in separating 

incongruous and healthy patches than using the global mean for both normalized difference 

vegetation index (NDVI) (Overall accuracy=77.2% and 66.4% respectively) and for Land Surface 

Water Index (LSWI) (Overall accuracy=66% and 49.2% respectively). When applied to other 

Landsat 8 OLI scenes, the results showed that the proportions of coffee fields that were modelled 

incongruent decreased with time for the young age category while it increased for the mature and 
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old age classes with time. Using the distribution of transformed age-adjusted NDVI values around 

known health values with the inverse cumulative distribution function (ICDF) is an innovative 

way of detecting and mapping anomalous areas in plantations both spatially and temporally.  

Having identified anomalous areas, more specific remote sensing approaches could now be used 

to determine the cause of the identified anomalies in the coffee fields. To achieve this, the effect 

of plant water stress and coffee leaf rust (CLR), a major coffee disease was explored as potential 

abiotic and biotic stressors that influence the spectral response of coffee at field scale. In both cases 

the random forest algorithm successfully classified and quantitatively predicted stress levels in 

coffee leaves. In plant water stress modelling, the results showed that the bands selected through 

reflectance sensitivity performed best in water stress detection (r = 0.87, RMSE = 4.91% and pBias 

= 0.9%). In CLR discrimination, the results showed that simulated Sentinel-2 MSI derived 

vegetation indices achieved relatively high overall accuracy of 76.2% when compared to 69.8% 

obtained using raw spectral bands. The RBF-PLS model satisfactorily modelled CLR severity 

(R2=0.92 and RMSE=6.1%) using all simulated Sentinel-2 MSI bands. These results indicate that 

it is possible to reliably predict plant water content (PWC) and CLR using wavebands in the 

VIS/NIR range that correspond with many of the available multispectral remote sensing data. This 

is an important development as previous studies mainly used hyperspectral data and data beyond 

the VIS/NIR range that is not available in many of the commonly accessible multispectral sensors. 

However, further research at field and landscape scale is required to operationalize these findings 

as problems are encountered in transferring models from leaf level to canopy level.  

 

The successful isolation of abiotic and biotic stressors that influence spectral signatures of coffee 

plantations set the basis to use multispectral remote sensing data to model the spatial variability of 

chlorophyll and nitrogen with Sentinel 2 MSI data. Results showed that the best modelling results 

(R2=0.77, RMSE=5.9) were achieved when all the bands at 10m spatial resolution were used in 

modelling coffee leaf chlorophyll for mature coffee stands. It was also concluded that the 

interaction between spectral settings and spatial resolution are important in chlorophyll estimation 

with Sentinel-2 MSI data. These findings are imperative in that Sentinel 2 MSI data comes with 

variable spatial and spectral resolution. Therefore, our finding that the spatial resolution, together 

with the spectral settings, cast aspersions on spectroscopic simulation studies that did not consider 

spatial resolution of Sentinel 2 MSI data in biochemical and biophysical vegetation 

characterisation. A combination of optimized bands and vegetation indices produced the best 

results for coffee foliar nitrogen modelling (R2=0.78, RMSE=0.23) at a landscape scale. The 

obtained nitrogen distribution maps can be used in precision coffee plantation management, 

insurance assessment and yield forecasting which were previously daunting tasks. This study 

therefore extended the frontiers of knowledge by developing an integrated multi-sensor approach 

for landscape scale modelling of coffee plant health. The use of multispectral remotely sensed data 

that is reliable and available at little to no cost as an added advantage to coffee producing countries 

in developing countries particularly in Sub-Saharan Africa.  
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1.1 Coffee and coffee production  

The production of coffee (Coffea arabica L.), a perennial tree crop whose fruits are used for 

making coffee, a very popular non-alcoholic beverage, is an important agricultural activity in over 

sixty countries across four continents. The majority of producer countries are developing countries 

in sub-Saharan Africa, South East Asia and Central America. In these countries, over twenty 

million coffee farmers tend about three billion coffee trees to supply the global coffee demand of 

over two billion coffee cups consumed daily (Waston & Achinelli, 2008; ICO, 2015). Accordingly, 

coffee production contributes over US$20 billion annually to producer countries, with incomes 

cascading down to millions of smallholder farmers and farm workers for which coffee is a unique 

legal source of income and livelihoods. In addition to being a significant source of livelihoods, 

coffee plantations also contribute to landscape scale ecosystem processes such as carbon 

sequestration, erosion control and provision of other ecosystem services (Brauman et al., 2007). 

Unlike annual crops, perennial crops such as coffee represent a long-term investment because they 

are in the field for a long period of time.   

Evidence shows that there are increases in frequency, magnitude and impacts of production 

challenges in the coffee sector threatening livelihoods, economies and ecosystems in coffee 

producing areas (Jayathilaka et al., 2012; Rahn et al., 2013). Water stress, increasing pest 

incidences, more severe and frequent disease pressure, and limited soil nutrient supply, coupled 

with slow developments in technologies to deal with these challenges, are affecting productivity 

of coffee. For example, Hillocks et al. (1999) pointed that some pests such as coffee white stem 

borer (CWB) and coffee leaf miner (CLM) previously considered minor are having significant 

impacts on coffee production. Similarly, African Development Bank (2010) observed that the 

coffee sector is facing many production challenges that are limiting yields and quality, and 

consequently reducing farmers’ incomes.  

Many studies have demonstrated that production challenges are increasingly becoming more 

pronounced, extended and severe because of climate change and variability (Ghini et al., 2011; 

Jayathilaka et al., 2012; Kutywayo et al., 2013). Due to these challenges, productivity and area 

under coffee production of coffee are falling. In order to meet growing demand and export 

commitments, farmers have to expand their coffee fields, in some areas through conversion of 

environmentally sensitive land to crop land. This poses several environmental challenges 
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especially now that many coffee consumers are increasingly demanding sustainably produced 

coffee. Remote sensing can be used in enhancing coffee production to reduce production costs, 

increase productivity and safeguard ecosystem services in coffee producing areas. 

 

1.2 Remote sensing in agronomic decision making 

There is an urgent need to increase coffee production volume and quality to support livelihoods 

without adversely affecting the environment, which is the basis of productivity.  To achieve this, 

there is need to increase productivity of coffee. One way of increasing productivity per unit area 

is through crop condition assessments and season-long monitoring to support agronomic decision 

making (Baret et al., 2007). Current agronomic decision making in coffee is based on calendar 

based management programs, spontaneous field inspections and sampling by trained and 

experienced personnel who scout the often large coffee plantations looking for signs of production 

challenges. These methods are not only labour intensive, but also conclusive once economic 

damage has been inflicted on the crop. In addition, these methods are not spatially explicit and 

since they are based on sampling, assume that the crop condition is uniform across coffee fields. 

For example, if an identified pest is found to exceed the threshold on one tree, the whole field is 

sprayed. This is not only expensive to farmers who bear the cost of excessive agrochemical 

applications, but also to the environment that absorbs the excess chemicals.  

There is overwhelming evidence that remote sensing utility in agriculture is significant especially 

under the broader goal of precision agriculture. For instance, it was demonstrated that remote 

sensing can provide automated routines for accurate and early detection and differentiation of plant 

diseases for farm-level decision making (Moshou et al., 2004; Rumpf et al., 2010; Mahlein et al., 

2012a; Barbedo, 2013). Similarly, crop nutrient status can also be determined and mapped using 

remote sensing methods to identify anomalous areas and therefore ensuring uniform yields across 

fields (Scharf et al., 2002; Zhao et al., 2005). Furthermore, signs of plant water stress can also be 

detected using spectral bands and vegetation indices (Peñuelas et al., 1994; Barnes et al., 2000; 

Eitel et al., 2006; Brillante et al., 2016; Dangwal et al., 2016).  More generally, cropped area and 

plant populations can be accurately estimated together with indications of crop vigour that are 

directly related to yield (Maxwell et al., 2004; Gitelson et al., 2005; Atzberger, 2013). This 

indicates that the ability of remote sensing to enhance agricultural productivity has since moved 

from potential to reality with evidence of practical applications across the world.  
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1.3 Challenges of remote sensing application in coffee production  

The majority of the studies on agricultural applications of remote sensing have been on annual 

crops, with many of the developed approaches difficult or impossible to transfer to perennial crops 

such as coffee and cocoa. This is attributed to the differences in physiology, functional 

photosynthetic pathways, phenological cycles, and type and extent of challenges between annual 

and perennial crops. For instance, many of the remote sensing applications in agriculture are 

reported for crop species in the grass family such as corn (Zea mays L) (Maxwell et al., 2004; 

Freeman et al., 2007; Kuri et al., 2014), wheat (Triticum aestivum L)(Sembiring et al., 2000; Liu 

et al., 2003; Riedell et al., 2003; Atzberger et al., 2010; Dangwal et al., 2016) and rice (Oryza 

sativa L.) (Lee et al., 2008; Cao et al., 2015; Kanke et al., 2016; Zhou et al., 2016). Soybean 

(Glycine max L. Merr.) (Nutter Jr. et al., 2002; Venteris et al., 2015), and leafy vegetables (Mahlein 

et al., 2012b), annual field crops such as cotton (Gossypium hirsutum L.) (Zarco-Tejada et al., 

2005; Ko et al., 2006) and sunflower (Helianthus annuus L.) (Gutierrez et al., 2008) also feature 

prominently in remote sensing applications in agriculture.  

As a result, in published reviews of applications of remote sensing for different aspects of precision 

agriculture, reports on perennial tree crops are scarce, far in-between and in a few cases, they 

appear to be overshadowed by annual crops. For instance, very few perennial woody species-

related applications appear in reviews of broad remote sensing in agriculture (Hatfield et al., 2008; 

Ge et al., 2011; Mulla, 2013), unmanned aerial systems and precision agriculture (Zhang & 

Kovacs, 2012; Sankaran et al., 2015) and remote sensing for disease detection (Mahlein et al., 

2012a). There is thus a huge gap between the application of remote sensing in annual and perennial 

agricultural systems, particularly in coffee production. This gap has to be closed to advance the 

benefits of coffee production in ensuring local and national economic development and provision 

of ecosystem services.  

There are a number of challenges that make remote sensing applications in perennial tree crops in 

general and for coffee in particular more complicated than in a natural grassland, forest and in 

annual crops. Firstly, coffee is in the field all year round for up to between 15 and 25 years of 

production. Because of this, there are no distinct phenological cycles that can be used for its 

characterisation as it does not shed its leaves completely. Secondly, coffee is planted in hedgerows 

or covas that produce a systematic spatial planting arrangement. In addition, coffee is managed to 
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ensure that there are gaps between rows for efficient scouting, fertilisation and harvesting 

operations which results in a permanent background spectral effect from soil or weeds (Brunsell 

et al., 2009). This challenge is exacerbated in areas where coffee is being produced under shade. 

To ensure production continuity, farmers always grow coffee at different age groups and yet age 

has significant effects on the fractional components that influence the spectral signature of coffee 

plants (Netto et al., 2005). Furthermore, coffee has been shown to follow a specific biennial 

bearing effect that is related to its fruiting sequence that also has a bearing on remote sensing 

applications (Bernardes et al., 2012). There are also a number of coffee varieties produced and 

these have different growth and structural characteristics that may influence the remote sensibility 

of coffee plantations for crop biophysical and biochemical parameter assessment, and their 

relationship to yield.  

In addition to the unique planting system used in coffee production system, and most importantly, 

production limiting factors in coffee plants are interrelated and thus may occur concurrently as 

confounding factors. For example, the coffee white stem borer (Monochamus leuconotus L.) is 

prevalent in areas of low soil fertility while Cercospora leaf spot is common in coffee with frequent 

water stress and nutrient imbalances (Logan & Biscoe, 1987; Kutywayo et al., 2013). Thus, it may 

be difficult to know exactly which factor is contributing to low agricultural productivity and what 

to deal with first in such instances. These broad challenges explain the limited application of 

remote sensing in perennial tree crops such as coffee and yet they are hugely important in that they 

are part of a few systems that simultaneously support economic development and ecosystem 

services.   

1.4 Importance of multispectral remote sensing in coffee production  

Remote sensing, particularly the use of hyperspectral sensors provides very promising options for 

early, objective and spatially resolved crop condition assessments in agricultural crops. 

Hyperspectral remote sensing data consists of many, very narrow contiguous spectral wavebands 

located from the visible, near infrared, mid-infrared and thermal infrared portions of the 

electromagnetic spectrum (Blackburn, 2007; Knyazikhin et al., 2013). However, relying on the 

hyperspectral data for detecting and quantifying coffee condition assessments for field crop 

management presents challenges in data handling, dimensionality, high costs, noise and 

unavailability, all of which dissuade potential users from relying on this range of data for 
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determining crop condition assessments (Dube & Mutanga, 2015). New generation multispectral 

space-borne earth observation instruments, such as WorldView-2, RapidEye and Sentinel-2 

multispectral imager have incorporated narrow wavebands including those in the red-edge position 

that were not available in predecessor sensors (e.g. Landsat series, MODIS, SPOT, ASTER etc). 

These technological advancements therefore provide an opportunity for timely landscape or farm-

based assessment of crop condition (that is health status and yield estimation). Unlike the 

hyperspectral sensors, multispectral sensors have a huge swath-width and are currently available 

at low or no costs for many developing countries where coffee is produced. They are also available 

sequentially, providing potential for temporal analysis of coffee condition which is important for 

long-term monitoring of perennial crops such as coffee. 

1. 5    Aim and objectives  

1.5.1 Aim  

The overall aim was to develop a landscape scale approach to model spatial variability in coffee 

(Coffea arabica L.) condition using multispectral remote sensing data. 

1.5.2 Objectives  

The specific objectives were to:  

1. Develop detailed age-specific thematic coffee plantation maps in heterogeneous 

agricultural landscapes. 

2. Integrate coffee plantation age in identification and mapping of incongruous 

patches using multi-temporal remotely sensed data. 

3. Evaluate the potential of multispectral remote sensing data for quantifying leaf 

water stress in coffee.  

4. Assess the potential of multispectral remote sensing bands and vegetation indices 

for discriminating and predicting coffee leaf rust infection. 

5. Determine the effects of spectral band settings, spatial resolution and crop canopy 

cover in predicting leaf chlorophyll content in coffee plantations.  

6. Model the spatial variability in foliar nitrogen in coffee plantations with 

multispectral level data for agronomic decision making. 
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1.6 Description of the study area  

Two study areas were used; one for experimental studies and the other for field studies.  

1.6.1 Coffee Research Institute  

For laboratory spectroscopy studies, research was carried out at Coffee Research Institute (CoRI) 

in Chipinge, Zimbabwe. CoRI is located at coordinates 20°14'4.11"S and 32°38'49.98"E at an 

altitude of 1100 meters above sea level (m.a.s.l.). The average annual rainfall at CoRI is 1180mm 

of which 80% falls in five months from November to March. The mean maximum daily 

temperature is 20˚C and minimum is 14˚C. Most of the soils in this area are leached and strongly 

weathered and in the Orthoferralitic group derived from Umkondo quartzite and sandstone 

(Chemura, 2014). Chipinge is in the main coffee production zone in Zimbabwe.  

1.6.2: Ward 19 Chipinge District  

Field studies were carried out in Ward 19 of Chipinge district, which consists of coffee estates and 

smallholder communal coffee farmers. The site is located in Mossurize sub catchment, South-east 

of Zimbabwe between latitude 32°36'1.00"E and 32°48'1.00"E, and longitude 20°20'1.00"S and  

20°33'1.00"S in Chipinge district (Figure 1.1). The study site represents the current largest coffee 

producers in Zimbabwe in terms of volume and area. The climate of the area is subtropical with 

two distinct seasons, divided almost equally between months of the year (October to March is the 

growing season while April to September is the dry season). Compared to other parts of Zimbabwe, 

the area receives relatively high mean annual rainfall totals (1200-1300 mm/year) with mean 

annual temperatures around 22.5°C. Together with deep red clayey soils formed from mafic rocks, 

the climatic conditions make the area suitable for quality coffee production. As the area is 

dominated by large scale coffee farms, the coffee production system is sun-coffee, which means 

plantations are exclusively grown with coffee and not mixed with shade trees. In Chipinge district, 

the mean size of coffee farms is 25 ha and is dominated by Catimor varieties due to their resistance 

to coffee leaf rust (Chemura et al., 2015a).  
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Figure 1. 1: Map of the study area showing (a) the location of the study area in Zimbabwe (b) the 

sites used to identify coffee areas (c) the sites used for anomalies and (d) the site used for field 

mapping of coffee condition. 

 

1.7 Thesis structure  

This thesis is presented in four sections, each with standalone chapters that can be independently 

read as research articles published in international journals but all aimed towards developing 

spatial models for coffee condition assessment. Section 1 provides an introduction and overview. 

Section 2 sets the stage for coffee condition assessment where initial processes required for 

successful coffee characterisation are presented. Section 3 presents the experimental studies on 

dealing with potential biotic and abiotic confounding factors to coffee condition assessment. 

Section 4 presents application of multispectral data in estimating coffee chlorophyll and nitrogen 

content, two important indicators of coffee condition together with the synthesis. Most of the 



10 
 

content and structure of the manuscripts submitted to peer-reviewed journals has been retained and 

thus each chapter has an abstract, introduction, materials and methods, results, discussion and 

conclusion sections. However, because of this, there are some duplications and overlaps, 

particularly in the introduction and methods sections of these chapters. This is assumed to be of 

little consequence since these chapters are independent but related peer-reviewed journal articles, 

that can be read separately, without losing the overall context of the study.  This thesis is made up 

of nine chapters as summarized in the following section.  

1.7.1 Section 1: Introduction and Overview 

1.7.1.1 Chapter One: Introduction 

This chapter serves as an introduction that gives the background and broad statement of the 

problem that underpins this study. It describes the importance of coffee production, its 

physiological and plant characteristics and how this affects remote sensing potential of the crop. 

This chapter also explains the importance of multispectral level remote sensing in tropical field 

crops such as coffee.  The aim and objectives of the study and a detailed description of the study 

area are also provided.  

1.7.1.2 Chapter Two: Literature review  

A state of the art literature review on crop condition assessments with remote sensing in coffee is 

presented in this chapter. A synopsis of the global coffee industry is provided together with the 

physiology of the coffee plant. An analysis of major coffee biotic and abiotic stressors that require 

monitoring is provided with an assessment of the application of remote sensing in their monitoring.  

A review of reported applications of remote sensing in coffee crop management is presented 

together with sensors, algorithms and future perspectives.  

1.7.2 Section 2: Setting the stage for coffee condition assessment  

1.7.2.1 Chapter Three: Development of an age mask for coffee condition assessment 

This chapter presents an approach for development of age-specific maps of coffee from 

multispectral remote sensing data in heterogeneous agricultural landscapes. These age-specific 

maps are important for use as age-masks for coffee condition assessment. The cost of producing 
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these age specific masks in terms of accuracy in comparison to general landcover maps is evaluated 

in relation to the utility of such a map for crop condition assessment.  

1.7.2.2 Chapter Four: Identification of anomalous patches in coffee plantations 

In this chapter, the age-masks produced from the preceding chapter are used to identify areas in 

coffee fields that are anomalous and therefore require attention. An approach using deviation from 

age-specific mean Normalised Difference Vegetation Index (NDVI) and Land Surface Water 

Index (LSWI) is developed using Landsat data and applied to monitor coffee condition over time. 

The value of such an approach is analysed for field application in coffee condition assessment at 

various scales. 

1.7.3 Section 3: Remote sensing individual coffee stressors 

1.7.3.1 Chapter Five:  Predicting plant water content in coffee plants using multispectral 

remote sensing 

This chapter presents an experimental evaluation of the potential for remote sensing abiotic stress 

that contribute to anomalous patches in coffee plantation. A machine learning approach to predict 

plant water stress in coffee using multispectral level data is presented. Modelling plant water 

content using secondary water absorption features is presented as a promising approach for coffee 

condition assessment to explain anomalies.  

1.7.3. 2 Chapter Six: Modelling coffee leaf rust using multispectral remote sensing  

In this chapter, an experimental evaluation of the possibility to discriminate and quantify biotic 

factors that are responsible for causing anomalous conditions in coffee is presented. Coffee leaf 

rust, one of the major diseases of coffee, is discriminated into three levels (healthy, moderate and 

severe) using multispectral level band settings and derived vegetation indices. The severity of the 

infection is also quantitatively modelled. For both discrimination and severity modelling, machine 

learning algorithms are applied.  

1.7.4 Section 4: Empirical modelling of coffee condition using multispectral data  

1.7.4.1 Chapter Seven: Multispectral remote sensing of coffee chlorophyll content 

Having successfully demonstrated the possibility to identify and quantify biotic and abiotic factors 

that can confound coffee condition assessment at field level in experimental studies, this chapter 
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presents field level application of multispectral data in estimating coffee chlorophyll content.  The 

Sentinel-2 MSI data is used to map and quantify the spatial variability of chlorophyll in coffee 

fields that can be related to the biotic or abiotic factors discussed in Chapter 5 and 6.  

1.7.4.2 Chapter Eight: Multispectral remote sensing of spatial variability of coffee foliar 

nitrogen  

This chapter developed an approach for monitoring coffee foliar nitrogen, one of the most 

important determinants of crop productivity, with multispectral level remote sensing data. The role 

of spectral bands and vegetation indices and their optimisation is presented to identify important 

parameters for the task.   

1.7.4.5 Chapter Nine: Synthesis  

This chapter provides a synthesis of this research work. It presents a summary of the major findings 

of the study and their meaning for the coffee sector. Deductions are also made about the 

achievements and limitations of the presented project that feed into recommendations for future 

research in coffee crop condition assessment. A single reference list is provided at the end of the 

thesis. 

 

  



13 
 

CHAPTER 2: ADVANCES IN SENSOR APPLICATIONS FOR 

COFFEE (COFFEA ARABICA L.) CROP CONDITION 

ASSESSMENTS AND MONITORING 

 

 

 

 

 

 

 

This chapter is based on: 

Chemura A and Mutanga O.  (Under Review) Advances in sensor applications for coffee (Coffea 

arabica L.) crop condition assessments and monitoring, Agronomy for Sustainable 

Development.   
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Abstract 

Coffee is an important crop for producers in developing countries and their economies. These 

producers are increasingly facing production constraints due to climate change and are required to 

sustainably produce their coffee to meet consumer demands. They therefore require intra and inter-

seasonal monitoring of coffee plants to achieve sustainable production. There are many 

developments in technology, data storage, processing algorithms and platforms for applications of 

remote sensing that provide opportunities for application of remote sensing in coffee production. 

This paper provides a detailed survey on constraints to coffee production and the progress of 

remote sensing applications in coffee production across the world. The major limiting factors to 

coffee productivity and the potential of remote sensing to detect, quantify and model these were 

assessed. The availability and applicability of different remote sensing datasets, in terms of spatial 

radiometric and temporal resolutions are discussed in relation to physiology, climate and physical 

conditions in coffee producing countries. It was observed that the majority of research on coffee 

has focused on brewed coffee and related products with less research papers focusing on 

production. Of the papers on remote sensing of coffee production, many have focused on the 

application of sensors in mapping cropping areas with very little research on coffee condition 

assessment. It was concluded from the analysis that although there is potential for application of 

remote sensing in coffee condition assessment, there is need for more research focusing on high 

fidelity sensors and high spatial and spectral resolutions that utilizes readily available data and 

advanced algorithms targeted for remote producing areas.  
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2.1 Introduction  

Perennial tree crops such as coffee are important agricultural crops for many developing countries. 

The coffee plant belongs to the family Rubiaceae and genus Coffea, which is subdivided into 

Mascarocoffea, Eucoffea, and Paracoffea sections. The cultivated species of coffee (Coffea 

canephora and  Coffea  arabica) belong  to  the  subsection Paracoffea having originated from 

sub-tropical montane areas in Africa (Nair, 2010). Coffee is does not shade its leaves although 

fruiting load alters leaf area index (LAI). Coffea arabica is an allotetraploid with a chromosome 

constitution of 2n = 4x = 44, and is known for its high quality, intense aroma,  lower caffeine 

content, and a less bitter taste, all of which give it higher aggregate prices (Lashermes & Anthony, 

2007). Under commercial production, coffee has a gestation period of 2-3 years after planting 

before economic yields can be obtained, and can be productive for an average of 15 years, although 

productive plants over 50 years have been reported (Nair, 2010).  

Coffee is sensitive to extremes of temperature, preferring temperatures between 15 and 25°C, and 

well distributed rainfalls are a key requirement (>1800 mm/annum) for healthy growth and 

productivity (Wrigley, 1988). It is known that the rate of net photosynthesis of coffee plants slows 

down progressively above a temperature threshold of 25°C to the detriment of the plant. On the 

other hand, the plant responds in several ways to moisture deficit stress such as leaf folding, leaf 

and branch dieback, leaf shape change and altered biomass allocation between the roots, the stems, 

and leaves (DaMatta, 2004; Dias et al., 2007; Chemura et al., 2014). The crop is produced across 

a range of altitudes although, generally, it does very well between 1200–1800 m above sea level 

in the equatorial and tropical zones (Coste, 1992). The ideal soils are deep, clayey, slightly acidic, 

and rich in humus and exchangeable bases (Logan & Biscoe, 1987; Nair, 2010).  

In addition to being a significant agricultural crop, coffee represents a long-term capital 

investment. This is because it is in the field all-year round and in production for longer periods 

and therefore requires accurate, reliable and cost-effective crop condition monitoring strategies for 

diseases, pests, water stress, soil fertility and other crop stressors. However, the current monitoring 

methods largely rely on spontaneous field inspections and sampling. There is thus a general lack 

of fine-scale long-term datasets to monitor plantation tree crop stressors (Jeger & Pautasso, 2008). 

Long term monitoring is required in identifying and analysing inter and intra-annual variations in 

crop conditions useful for farm managers, investors, insurers and other stakeholders interested in 
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monitoring coffee condition and productivity.  

There is an increasing body of literature that shows that producing the required amounts of good 

quality coffee is now more difficult than before (ICO, 2009; Haggar & Schepp, 2011). There are 

a number of reasons for this. In traditional production areas rainfall patterns have become 

unpredictable and unreliable exposing the coffee plants to frequent and often severe water deficit 

stress. Water deficit stress has permanent and short-term effects on coffee physiology and 

productivity potential (DaMatta, 2004). These changing weather patterns due to climate change 

and variability are even projected to reduce the suitability of many coffee producing areas. This is 

through increasing production costs, reducing coffee quality and increasing the frequency and 

severity of coffee pests and diseases, all of which ultimately erodes the profitability of the coffee 

enterprise (Laderach et al., 2006; ICO, 2009; Hagar & Schepp, 2011).  

The growing coffee production challenges increase the demand for crop assessments, particularly 

given the limitations in current coffee monitoring methods. These therefore call for increased 

efforts in development, testing and implementation of more efficient production technologies and 

systems in coffee producing countries such as Zimbabwe, Zambia, Malawi, Kenya, Tanzania, 

Ethiopia, Burundi, Uganda in Africa and Brazil, Guatemala, Costa Rica and Uruguay in South 

America. These are important to sustain the economies dependent on coffee in these countries and 

maintain the culture in which coffee is associated with in developed countries. Despite this urgent 

requirement, much of the research around coffee from major research databases has focused on 

coffee consumption rather than on production with over 50% of results from Web of Science, 

EBSCOHost, Scopus and Google Scholar research databases being coffee consumption studies. 

The effects of coffee on health and coffee beverage chemistry dominate the coffee research space 

in published papers (Figure 2.2). On the other hand, there have been very few studies on climate 

change and use of remote sensing in coffee production despite the pressing climate change related 

challenges the sector is facing and the potential of the later to help with handling these challenges.  
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Figure 2. 1: Distribution of number of published papers across different subjects in coffee (2007-

2017) across the first 100 search results. Search term was coffee for Web of Science, EBSCOHost 

and Scopus and Coffee arabica for Google Scholar as there was a user named Coffee whose name 

affected results. Other refers to coffee waste, packaging materials and socio-economic studies. 

The aim of this paper is to review the physiological characteristics of coffee in relation to remote 

sensing applications and demonstrate the progress made in remote sensing applications in coffee 

production in order to determine future research directions. Firstly, the review highlights specific 

challenges faced in perennial tree crops in comparison to annual crops. Secondly, the effect of 

physiology, phenology and limiting factors to operational remote sensing are highlighted. 

Furthermore, the applicability of available remote sensing sensors, platforms and algorithms is 

then discussed with regards to the identified challenges. The future prospects of condition 

assessments are given with specific focus on monitoring coffee leaf rust as a potential example 

application. 

2.2 Physiological characteristics of coffee and their potential influence on remote sensing 

Coffee is planted in hedgerows and can reach up to 3m depending on varieties, environmental 

conditions and crop husbandry, and has an average leaf area index (LAI) of 6 (Coste, 1992). Plant 

populations are based on spacing and planting arrangements and vary between 2000 to 6000 

plants/ha as influenced by variety, region, soil types, shading design or just farmer experimentation 

(Logan & Biscoe, 1987). The coffee plant has an orthotropic stem from which series of branches 

(primary, secondary, tertiary and quaternary) develop. Leaves develop from each of these 
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depending on the age of the crop as opposite pairs at right angles to the previously formed pair. 

Older leaves are found at the base of the tree while young leaves are on the top parts of the plant 

(Coste, 1992; Lashermes & Anthony, 2007). Leaf life is variable and new leaf production 

compensates for old leaf fall which occurs throughout the year.  In new leaves, light green and 

bronze are predominant colours depending on age and variety (Logan & Biscoe, 1987). Mature 

leaves are lanceolate, ribbed and waxy, and vary in size due to variety, environmental conditions, 

crop management and season (Coste, 1992).  

The development of a coffee serial bud into an inflorescence is catalysed by rainfall or irrigation 

after a required short period of drought. Full floral blossoming then occurs 10 days later and then 

the flowers begin to wither with development of pinheads (Coste, 1992). The vegetative cover in 

coffee field progressively increases with age and can reach up to 90% for old coffee (Vieira et al., 

2006). Thus, there is always a background effect in coffee plantations unlike in natural forests and 

annual crops such as maize and wheat for which much of the agricultural remote sensing has been 

done.  

 
Figure 2.2: Physiological characteristics of coffee showing (a) planting arrangement in 

hedgerows, (b) flowering and (c) coffee fruits.  Photo credits: A. Chemura (2017) 

 

As a perennial tree, the coffee plant is in the field throughout the seasons and the year, and as such, 

seasonal and year-to-year fluctuations in climatic conditions are considered as part of the transient 

environmental fluctuations the plant should adapt to. There is overwhelming evidence that one key 

physiological adaptation method of coffee is biennial bearing cycle where one year of good harvest 

is followed by a subsequent year of lower yields (Nair, 2010; Bernardes et al., 2012). One of the 
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reasons for this phenomenon is that up to 95% of total plant nitrogen can be taken up by fruits in 

heavily bearing coffee trees (Wrigley, 1988), which results in remarkable decreases in the leaf 

nitrogen concentrations after harvests, contributing to subsequent lower yields the following year. 

Another explanation is that higher yields contribute to lower new primary development which 

provided little basis for next year fruit development (Logan & Biscoe, 1987).   The following year 

will be a year of recovery that will culminate in higher yields the following year and the cycle 

continues. From a field level remote sensing perspective, the condition assessment may need to be 

sensitive to capture these ‘natural’ changes or at least be adjustable for them. Thus, regardless of 

other biotic and abiotic stressors, there is an inherent fluctuation in coffee plant physiology that 

can influence observed year-to-year changes in spectral signatures of coffee.  

2.3 Major biotic and abiotic stressors of coffee arabica plants that require monitoring  

Although the genetic diversity of coffee is much higher in tropical Africa where coffee originated, 

the majority of the coffee under current production are from a few genetically similar trees (Nair, 

2010). Due to this, cultivated varieties have a very narrow genetic base, making them susceptible 

to pest and disease epidemics and limiting selection and improvement efforts (Van  der Vossen & 

Walyaro, 2009). Major plant stressors for coffee are nutrient deficiencies, plant water stress and 

pests. Major diseases of economic importance for coffee are Coffee Leaf Rust (Hemileia vastatrix 

(B & Br)), Coffee Berry Disease (Colletorichum kahawae (J.M.Waller & Bridge)) and Fusarium 

Bark Disease (Fusarium lateritium) while major pests are the Coffee White Stem Borer 

(Monochamus leuconotus) (Brown, 2008; Kutywayo et al., 2013).  

2.3.1 Nutrient deficiencies   

Coffee plants require a high level of fertility and an intensive fertiliser programme is a prerequisite 

for successful coffee production. Without proper soil fertility management, nutrient deficiencies 

will affect productivity and survival of the coffee plants. Nitrogen (N)  is known as the single most 

limiting factor to coffee productivity (Coste, 1992). Mature coffee requires a total of about 105 kg 

ha-1 of N to achieve yield levels of 1 tone ha-1 per year and yet some coffee farms report up to 6 

tonnes clean coffee per ha-1 per year (Chemura, 2014). N plays several interconnected roles in 

coffee plant development and productivity and its deficiency results in stunted growth, the 

characteristic yellowing of leaves and floral abortion and fruit drop that is usually accompanied 

with die back. Phosphorus (P) is another important nutrient for coffee as the element has a 
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stimulating effect on root growth and assists in hastening crop maturity (Logan & Biscoe, 1987). 

Furthermore, in coffee areas where Potassium (K) is inherently low, the appearance of K 

deficiency can be spectacular. This normally happens in areas where irrigation water has high level 

of Mg and Ca as these are antagonistic to the uptake of K by coffee plants. The appearance of K 

deficiency symptoms often coincides with berry development and are shown by small necrotic 

areas on the leaf margins that rapidly extend towards the centre of the leaf and towards each other, 

eventually coalescing (Wrigley, 1988). K deficiency results in serious defoliation, often along the 

complete lengths of the coffee branches, and this significantly alters the coffee plant LAI (Wrigley, 

1988; Nair, 2010).   

2.3.2 Plant water stress and drought  

Irrigation water management is another critical aspect of coffee management in coffee production 

as plant water stress and drought have significant impacts on the crop. Excessive irrigation, in 

addition to being costly and environmentally unfriendly, may result in root rot caused by 

Armillaria mellea. On the other hand, moisture deficit stress results in dieback, wilting and 

opportunistic disease and pest attacks, resulting in reduced production in both cases (DaMatta et 

al., 1993; Kutywayo et al., 2010). Depending on the timing in coffee plant cycle, moisture stress 

can also result in floral abortion and premature berry drop, which results in reduced economic 

yields of coffee (Chemura et al., 2014). Coffee plants affected by plant water stress go through a 

variety of physiological processes, such as damage or removal of the waxy cuticle, destruction of 

cell walls, reduced stomatal conductance and retarded rates of net carbon assimilation (DaMatta, 

2004).  

Coffee plants respond in different ways to drought and plant water stress depending on the stage 

in the growth cycle. For example, during the pinhead stage, the effects of moisture stress are 

exhibited by scotched berries but during berry expansion, moisture stress results in blue-green 

coloured berries that are later dropped. Towards berry maturity, plant water stress results in 

reduced size beans which are ragged with reduced quality and mass (Logan & Biscoe, 1987).  It is 

therefore imperative that water requirements are regularly monitored for irrigation scheduling with 

current methods relying on soil water holding capacity, measurements of soil tension, evaporation, 

rooting depth and the crop factor. These, however, are not direct estimates of plant water content 

of the coffee plants, but are only used as proxies on which decisions are based.  
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2.3.3 Coffee Leaf Rust (CLR) 

There is consensus that CLR caused by the fungus Hemileia vastatrix is by far the most severe of 

all coffee diseases, especially for Coffea arabica (Dinesh et al., 2011; Cressey, 2013). The 

basidiomycete H. vastatrix is an obligate biotrophic fungus that is found in almost all coffee 

producing countries and capable of long distance dispersal (Brown & Hovmøller, 2002). Unlike 

other fungal plant diseases, CLR is not necrotic and its symptoms appear only on the underside of 

the leaves (Belan et al., 2015). The optimum environmental conditions for CLR spore germination 

are temperatures between 20-25°C, presence of free water through rain, high humidity or dew and 

low light intensity (Deepak et al., 2012; Vandermeer et al., 2014). It is also known that CLR 

severity is positively correlated with coffee tree fruit load of the previous season because of the 

effect the load has on the status of mineral nutrition (Muller et al., 2004; Alves et al., 2009). The 

disease is spread passively by wind, rain splash, farm workers or vectors mainly from diseased 

leaves of the preceding campaign that remain on the coffee trees but also from far afield (Avelino 

et al., 2012; Cristancho et al., 2012).  

Current management approaches are preventive and curative fungicides, host plant resistance and 

biological control (Haddad et al., 2009; Jackson et al., 2012; Kilambo et al., 2013).  In the absence 

of early detection and proper management, CLR results in up to 50% loss of leaves and 70% yield 

reduction in coffee through premature leaf drop, dieback and debilitation of trees, which will 

eventually lead to death of coffee plants (Avelino et al., 2004). It is also well documented that 

CLR does not only affect yield quantity, but also quality, with devastating impacts on farmers’ 

incomes (Ribeyre & Avelina, 2011). One of the key challenges in coffee leaf rust identification is 

that the characteristics signs of infections only occur on the abaxial leaf side with little to no signs 

of infection on the upper side. Secondly, CLR infection affects the distribution of nutrients in the 

coffee leaf (Belan et al., 2015) and thus characteristic reflectance associated with nutrient 

deficiency such as N can be depicted in CLR infected leaves. In addition, leaf fall appears to be a 

common problem caused by many of the coffee plant stressors including for CLR.  

2.3.4 Coffee Berry Disease (CBD)  

The second most important disease of C. arabica after CLR is CBD, which is caused by the fungus 

Colletorichum kahawae (J.M.Waller & Bridge). CBD is endemic in Africa (Rutherford & Phiri, 

2006). Field studies have shown that CBD is an anthracnose of the green and ripening berries that 
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result in mummified berries with dark, brown sunken lesions that make berries to be dry, wrinkled, 

decayed and with a hard skin (Bedimo et al., 2007; Mtenga et al., 2008). It has been established 

that the pathogen infects berries at all stages of bean development (flowers, pinhead, expanding, 

mature and ripe stages) although the greatest losses are due to infection of the green expanding 

berries, between four and six weeks after flowering (Waller et al., 2007; Zeru et al., 2008). Like 

CLR, the severity and resultant impact of CBD varies between seasons depending on weather 

conditions as it favours wet conditions and warmer temperatures (Bedimo et al., 2008). It is known 

that CBD results in considerable yield losses of up to 90% and significantly degrades coffee quality 

when not adequately controlled (Coste, 1992; Mtenga et al., 2008; Ribeyre & Avelina, 2011). 

Current management methods are routine calendar preventive fungicidal sprays and curative 

sprays in affected areas as well as host plant resistance (Mtenga et al., 2008; Van  der Vossen & 

Walyaro, 2009).   

2.3.5 Coffee Wilt Disease (CWD) 

Another serious threat to C. arabica production is CWD caused by Fusarium xylaroides Steyaert, 

the conidial stage of Gibberella xylarioides Hem. & Saccas, although so far it has been more 

significant on Robusta coffee. CWD has devastated millions of coffee trees in central, eastern and 

southern Africa, costing millions in control and lost earnings in affected countries (Waller et al., 

2007; Musoli et al., 2008; Flood, 2009). Unlike other coffee diseases that affect plant parts, CWD 

kills the whole tree making it more devastating as it takes years for coffee to fully establish and is 

therefore more difficult to control once it has established (Musoli et al., 2008; Phiri & Baker, 

2009). CWD is a vascular disease causing yellowing and wilting of the trees leading to eventual 

death. It has been observed that the first signs of CWD are yellowing of the leaves on one side of 

the plant which then wilt, curl, dry up and fall off the branches. Infection and symptoms start on 

one side of the coffee stem where the vascular bundles become blocked by the interaction of fungal 

colonization and host responses (Phiri & Baker, 2009; Nair, 2010). Depending on the age of the 

plant and other factors such as water stress and soil fertility, the period between infection and death 

of the plant ranges from one month to eighteen months. Current management methods are cultural 

control, fungicides and host plant resistance but once a tree is infected, there is no remedy other 

than to uproot the tree and burn it in situ to reduce the chances of spreading the infection (Muller 

et al., 2004; Waller et al., 2007; Musoli et al., 2008; Phiri & Baker, 2009). Since infection is 

progressive, there is potential for remote sensing CWD. In addition, since the CWD kills the whole 
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plant it is relatively easy to apply remote sensing to identify affected areas and fields as this alters 

the spectral signature of coffee plants and fields. Patterns of disease spread across a field or a 

region can be monitored from spectral reflectance and vegetation indices.  

2.3.6 Coffee White Stem Borer (CWB) 

The CWB (Monochamus leuconotus, Pascoe) is the most serious pest of coffee in many of the 

coffee producing countries in Africa with yield losses of up to 25% and its prevalence and severity 

is increasing from the recent past (Murphy et al., 2008). The presence of CWB is detected by 

yellowing of leaves, signs of ring barking, exit holes and frass. CWB attack leads to stunted 

growth, wilting, dieback and reduced yields on affected plants (Logan & Biscoe, 1987; Murphy et 

al., 2008). The complete life cycle of the CWB can be up to two years with the larval stage taking 

about 20 months (Logan & Biscoe, 1987; Shoeman et al., 1998). The common management 

practices for the CWB in Zimbabwe is picking and killing adults as well as uprooting and burning 

infested plants. According to Kutywayo (2002a), there is evidence of a kairomonal relationship 

between nitrogen deficiency and CWB infestation in coffee fields. Since there is selective 

infestation that depend on other individual tree factors such as N, there is possibility of remote 

sensing CWB infestation at field levels. Factors such as the spatial patterns in potentially confusing 

signs such as yellowing of leaves that also occur in nitrogen and plant water stress can be used to 

separate these. For example, N and water stress affect whole fields or whole blocks while CWB 

affects specific individual coffee plants in a hedgerow.  

2.3.7 Other coffee diseases and pests  

Other diseases of Arabica coffee are fusarium bark disease (FBD) caused by Fusarium lateritium 

(Wollen) (telemorph: Gibberella stilboides). The characteristic symptoms  of this disease are 

scaling of the bark leading to stem cankers and a progressive dying back of the whole tree (Logan 

& Biscoe, 1987; Nair, 2010).  In addition, the brown eye spot or berry blotch caused by Cercospora 

coffeícola (Berk and Cooke) is also another disease affecting nurseries and plantations. This 

disease infects the coffee leaves and the fruits, although impact is usually less significant (Waller 

et al., 2007). Although these diseases are considered minor, there is potential that they can develop 

to become significant diseases with climate change and changes in cultural management practices 

(Baker & Haggar, 2007). In addition to diseases, there are also threats from pests of economic 

significance such as coffee leaf minor (Leucoptera meyricki (Ghesquiére)) and antestia bug 
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(Antestiopsis orbitalis (Kirk)) and parasites such as nematodes (Coste, 1992; Kutywayo, 2002b; 

Ghini et al., 2011). The plant parts affected, extend of damage on the plant and the remote sensing 

potential for each of the identified major coffee stressors are described in Table 2.1.  

Table 2.1: Summary of major diseases of coffee, parts affected and author perceived potential for 

remote sensing based on extend and coffee plant parts affected.  

Disease/Pest/Condi

tion  

Parts affected Extend of effect Potential for 

remote sensing 

Water stress  Leaves and stem Whole plant Very High 

Nutrient deficiency  Leaves Whole plant Very High 

CLR Leaves Few leaves to whole plant High 

CBD Berries Few berries to whole plant Low 

CWD Main stem Whole plant Moderate 

FBD Stem Whole plant Moderate 

Cercospora Leaves Few leaves Low 

CWB Stem and branches Whole plant Moderate 

Leaf minor Leaves Few leaves to many Low 

Antestia bug Berries Variable Very Low 

Nematodes  Roots Whole plant Moderate 

 

2.4. Current condition assessment methods in coffee crop management 

Current coffee condition assessment methods rely on occasional field surveys by teams of specially 

trained and experienced personnel who use eyeballing and pacing in fields looking for disease 

signs. However, besides being the largely adopted approach, particularly in resource limited areas, 

the technique is strenuous especially for large coffee plantations and subjective, with the results 

being confirmatory, mostly once the disease has fully established. Remote sensing therefore, offers 

timely and spatially explicit objective assessment of plant condition throughout the coffee growing 

season (Sankaran et al., 2010; Junior et al., 2015). 

 



25 
 

2.5. Applications of remote sensing in coffee crop management 

There has since been a realisation of the need for remote sensing applications in coffee crop 

management, and many studies have been done to apply remote sensing in coffee production. 

These applications can be loosely grouped into mapping cropped areas, determination of coffee 

physiological properties, crop condition assessments and yield modelling.  

2.5.1 Mapping cropped areas 

Much of the remote-sensing based research in coffee production has been to map coffee areas to 

develop spatially explicit inventories of coffee farms and fields for local, regional and national 

planning. An array of spatial resolutions and sensors ranging from high, medium and low-

resolution imagery for this task. For instance, Mukashema et al. (2014) developed an automated 

approach that utilises an object-based Bayesian classifier on high resolution aerial orthophotos and 

QuickBird imagery to develop maps of coffee production areas for Rwanda. When this was 

coupled with a DEM and a forest map, an overall accuracy of 87% was achieved. In a separate 

comparative study, Ramirez et al. (2006) showed that the IKONOS imagery performed better than 

Landsat ETM+ in land cover classification in a coffee-dominated landscape owing to its high 

resolution, with correlations low between reflectance values of the two sensors for most bands. 

Also using RapidEye and GeoEye high resolution imagery, Johl et al. (2014) obtained thematic 

maps of coffee areas with an overall accuracy of 80.7% in Tanzania. High classification accuracies 

are also obtained when high resolution imagery such as aerial photos are coupled with advanced 

classification methods such as hierarchical boost-classifiers adapted to multi-scale segmentation 

as done by Dos Santos et al. (2012). It was concluded from this study that the classification 

approach does not only produce a better classifier which result in higher accuracy (OA=76.7%) 

but also reduces the training time, making the classification process more efficient.   

Most of the studies though, utilised the medium resolution Landsat imagery for coffee cropped 

area mapping. N'Doume et al. (2000) did a detailed supervised classification of Landsat imagery 

to map coffee fields in Cote d’Ivoire by categorising fields according to shade and field 

maintenance, and obtained an overall accuracy of 72% with producer’s accuracy of 69% for coffee 

fields. A study by Moreira et al. (2010) demonstrated that unsupervised classification and visual 

analysis of Landsat ETM+ image composites can be used to develop accurate thematic maps of 

coffee farms at municipal level. Alternatively, Bispo et al. (2014) used a computationally intensive 
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SVM to map crop areas in Minas Gerais in Brazil and reported a low overall classification accuracy 

of 67% mainly because of the high omission error in the coffee class of 39%. Also, Southworth et 

al. (2002) observed expansion of coffee production areas in Honduras from parametric 

classification of Landsat TM imagery. Bolanos (2007), in a study in Colombia, concluded that 

object based classification resulted in higher accuracies (74.9%) compared to pixel-based 

classification (71.9%), with producer and user accuracies much higher for sun coffee compared to 

shaded coffee when using Landsat ETM+ imagery.  

In a study in El Salvador, Ortega-Huerta et al. (2012) used Landsat TM and obtained an overall 

accuracy of 76.7% when classifying coffee according to levels of shades, a difficult task given the 

complexities and heterogeneity introduced by other trees in influencing the spectral signature of 

coffee. In a recent study, Chemura and Mutanga (2016) pointed that although these previous 

studies were important in developing thematic maps for coffee areas as a shift from non-spatial 

data in planning, it would have been better to develop age-specific thematic maps as age influences 

management, yield and crop stand and therefore influences the spectral signatures of coffee. They 

observed that the spectral signatures of coffee are indeed age variant but disaggregating the coffee 

class into young mature and old coffee classes significantly reduces the accuracy of the thematic 

maps produced by the random forest (RF) algorithm applied on Landsat 8 OLI imagery (from 

90.3% to 86.2%). They however concluded that, the benefit of splitting the age-classes could be 

more than the accuracy reduction cost in terms of utility of the thematic maps for other purposes 

such as anomaly detection, disease modelling and yield prediction. Coarse resolution imagery has 

also been used in coffee area mapping. For instance, Stibig et al. (2007) and Vancutsem et al. 

(2009) reported mapping coffee areas using multi-temporal SPOT Vegetation composite data as 

part of mapping perennial croplands in South-East Asia and tropical Africa, respectively. In both 

cases, results on coffee area mapping were poor mainly due to the coarse resolution of the imagery, 

indicating that this resolution is not suited for the task.  

2.5.2 Detection of coffee physiological properties 

Apart from mapping coffee areas, some studies have used remote sensing to characterize the field, 

tree and fruit physiological properties of coffee. These properties are mainly related to yield 

quantity and quality and therefore can be used as proxies to plan for field labour for harvesting, 

expected harvests and their quality attributes.  Moreira et al. (2004) used time series spectral 



27 
 

signatures obtained from Landsat TM and ETM+ of coffee to identify changes in coffee phenology 

at landscape scale. They concluded that the spectral behaviour of coffee was variable between the 

seasons with better differences with other land cover types more pronounced during the dry season. 

In another study, Campos et al. (2005) was able to detect and map scene fractional components in 

a coffee field such as plants, shadow and soil through some segmentation and correlated the 

spectral characteristics of each component to Landsat TM bands.  They concluded that the 

fractional components in a coffee field were related to most Landsat TM bands (the highest 

correlation being between Band 5 and shadows which had a correlation coefficient of -0.97). 

Furthermore, they also demonstrated that it was possible to classify and map the spatial patterns 

of scene fractions at field level using fused high resolution QuickBird imagery and therefore 

providing detailed information about crops in the field while excluding confounding soil 

background and shadows. A study by Gomez et al. (2010) coupled canopy heterogeneity and tree 

crown size characteristics obtained from Quickbird with a DEM to predict shaded coffee areas in 

New Caledonia and reported overall accuracy of 83.2% at regional scale. 

Physical characteristics of fields and plants have also been related to remotely sensed spectral 

values and derived vegetation indices. For example, Vieira et al. (2006) correlated coffee 

parameters such as height of coffee plants, plant density, vegetative vigour, plant diameter, 

productivity, proportion ground cover and slope gradient to Landsat TM spectral band 4 (NIR). 

They observed that a complex spectral response relationship exists between coffee plants and 

reflectance as only proportion ground cover was significantly related (α > 0.05) to reflectance of 

Landsat band 4 (r =0.61). They therefore concluded that proportion ground cover can be estimated 

using this band in coffee fields at Landsat spatial resolution of 30m, especially in older coffee with 

ground cover over 50%. After considering challenges using medium resolution Landsat imagery, 

Coltri et al. (2013) further developed the idea by relating coffee plant characteristics (fresh weight, 

dry weight, height, basal circumference, plant area index, and lower canopy circumference) with 

reflectance and vegetation indices derived from high resolution GeoEye imagery. It was concluded 

from this study that vegetation indices, as expected, had highest correlations with coffee plant 

parameters than spectral bands, with the highest being for generalised normalised difference 

vegetation index (GNDVI) and fresh and dry biomass (r=0.97 for both). Therefore, high resolution 

imagery can be used to model coffee plant biophysical properties such as height, fresh biomass 

and dry biomass.  
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LAI is one of the plant physiological characteristics that can be estimated using remote sensing 

approaches. Marcon et al. (2011) successfully developed an approach based on a digital camera to 

estimate the LAI of coffee using the dimensions of the plant as captured in the width and height 

model (WHM), producing results that are similar to those from time consuming and fastidious 

field measurements after adjusting for outliers (R2=0.91). Studies have shown that it is possible to 

characterize and map ripening of coffee in a field for harvest planning and yield estimation with 

UAV-mounted digital cameras (Herwitz et al., 2004; Furfaro et al., 2005). They were both able to 

reliably estimate percentages of coffee crop that were at different ripening stages (under-ripe, ripe 

and over-ripe), demonstrating the ability of remote sensing to provide information on very specific 

coffee plant characteristics. In a related study, it has also been shown that coffee quality can be 

reliably estimated by remotely sensed colour of coffee beans at field levels, providing indications 

of an important attribute that determines income from coffee (Silva et al., 2014).  

2.5.3 Coffee condition assessment 

Although relatively fewer, some studies have attempted to assess crop condition of coffee using 

remote sensing-based approaches. Using in-vitro studies, it was determined that the percentage 

diseased area for CLR can be accurately estimated using digital image processing techniques of 

remotely sensing imagery but results are dependent on both sensor quality and algorithms for data 

processing (Price et al., 1993). It was therefore suggested from this study that sensor systems that 

are able to provide information at leaf level on the shape, area, and perimeter of individual rust 

lesions are better suited at that scale to provide better epidemiological models for predicting CLR 

epidemics and related yield losses. In another study that used a high resolution unmanned aerial 

vehicles (UAV) system, Herwitz et al. (2002) was able to identify and map areas with invasive 

weeds in coffee areas, providing an improved way of targeted spraying for affected plants or 

explaining field level yield variability.  Literature has also shown that the selection of data 

processing algorithms matter in coffee crop condition assessment as random forest (RF) was able 

to more accurately predict plant water content in coffee leaves (R2= 0.76) than simple multiple 

linear regression (SMLR) (R2=0.59) and partial least squares regression (PLSR) (R2 =0.56) from 

field spectra (Chemura & Mutanga, 2015). Given the array of crop conditions affecting coffee and 

other crops in general, these studies are just too few and show underdevelopment in remote sensing 

applications not just in coffee but in perennial field crops.   
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2.5.4 Yield estimation and modelling 

Crop yield estimation is important in agricultural management including in coffee production. In 

coffee, this is even more important because the local and global market prices of coffee are 

dependent on the exchange market, which are mainly influenced by projected production of coffee. 

In this regard, attempts to predict the yield of coffee at farm or regional levels using remote sensing 

have been reported. For example, Brunsell et al. (2009) converted coarse resolution MODIS NDVI 

into fractional vegetation cover, derived its lagged cross-correlation to surface precipitation and 

air temperature data, and successfully correlated the obtained vegetation fractions to coffee yields 

and their annual trends in Brazil. The reported approach is very attractive in that it is based on high 

temporal resolution data that is able to show, quantify and explain inter-annual variability in yields 

of coffee as influenced by climate and coffee physiology. Using similar MODIS data,  Bernardes 

et al. (2012) were able to capture biennial bearing trends in coffee yields using lagged cross-

correlations of yields and metrics of NDVI and EVI. They concluded that the best correlations 

were between variation on yield and variation on vegetation indices during the previous year, 

indicating that the conditions of coffee as measured by MODIS data this year is related to the yield 

of the following year (r= 0.74 for minEVI and  r = 0.68  for  minNDVI).  

2.5.5 Platforms and algorithms used in remote sensing applications in coffee 

Most of the reported remote sensing applications in coffee management used satellite data. Landsat 

data series dominate the list of reported sensors because the majority of the studies have been in 

cropped area mapping (Table 2.2). It is interesting to note that unmanned aerial vehicles and aerial 

imageries follow satellites in prevalence of platforms, which indicates that there is great interest 

in application of technology in the coffee industry. Many of the algorithms that were applied on 

remote sensing data were parametric statistical methods but recent studies are showing application 

of non-parametric and machine learning algorithms in remote sensing applications in coffee. The 

spatial distribution of coffee studies using remote sensing that are publicly available is shown in 

Figure 2.3.
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Tabl e 2.2: Summary of applications of remote sensing technology in coffee crop condition assessments showing the sensor types 

used, methods, maximum reported accuracy and the references. 

Area Sensors  Methods/Algorithms  Accuracy References  

Mapping 

cropped areas 

Landsat TM Visual, PCA, statistical  Croome (1989) 

SPOT Maximum Likelihood OA=80.0% N'Doume et al. (2000) 

Landsat TM Maximum Likelihood OA=85% Southworth et al. (2002) 

Ikonos-II, Landsat/ETM+ Visual & statistical differences  r=0.81 Ramirez et al. (2006) 

Landsat ETM+ Object–based classification OA=74.8% Bolanos (2007) 

Landsat TM Unsupervised classification OA=92.8% Moreira et al. (2010) 

Landsat TM ISODATA & hierarchical data clustering OA=74.7% Ortega-Huerta et al. (2012) 

Aerial images  Object–based classification OA- 82.7% Dos Santos et al. (2012) 

Aerial orthophotos & QuickBird Bayesian Network  R2=0.92 Mukashema et al. (2014) 

GeoEye, RapidEye Maximum Likelihood OA=80.7% Johl et al. (2014) 

SPOT-Vegetation Unsupervised maximum likelihood  OA=72.0% Stibig et al. (2007) 

SPOT-Vegetation ISODATA OA=76.9% Vancutsem et al. (2009) 

QuickBird  Neural Network and textual analysis  OA=83.2% Gomez et al. (2010) 

MODIS Support Vector Machine OA=67.0% Bispo et al. (2014) 

SPOT, Aerial photos  Predictive probability models  OA=88.9% Hailu et al. (2015) 

Landsat 8 OLI Random Forest R2=0.88 Chemura and Mutanga (2016) 

Physiological 

properties 

Landsat TM and ETM+ Time series analysis NA Moreira et al. (2004) 

Landsat ETM+, QuickBird Histogram thresholds, regression  R2=0.95 Campos et al. (2005) 

Digital camera  Otsu thresh-holding, Regression  R2= 0.91 Marcon et al. (2011) 
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UAV with Hasselblad 555ELD camera Thresh-holding vegetation indices NA Herwitz et al. (2004) 

Landsat TM Correlation r=0.61 Vieira et al. (2006) 

GeoEye Correlation and regression  R²=0.92 Coltri et al. (2013) 

Field Spectra Ward’s Method & K-means R²=0.88 Silva et al. (2014) 

Condition 

assessment 

Digital Camera imagery, Planimeter Correlations R2=0.84 Price et al. (1993) 

UAV with Hasselblad 555ELD camera Visual, Correlations  R2=0.81 Herwitz et al. (2002) 

UAV Leaf-Canopy radiative transport Model NA Furfaro et al. (2005) 

UAV with DuncanTech MS3100 camera Ripeness Index, correlations  R=0.94 Johnson et al. (2004) 

Field spectra SMLR, PLSR, RF R2=0.79 Chemura and Mutanga (2015) 

Yield 

modelling 

MODIS and SPOT 5 Fractional NDVI & lagged correlations NA Brunsell et al. (2009) 

MODIS Wavelet-based filtering & correlations R2=0.74 Bernardes et al. (2012) 
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Figure 2.3: Map showing the coffee producing countries, types of coffee produced and the 

number of papers published on use of remote sensing in coffee production. 

2.6 Challenges for remote sensing in coffee production and future perspectives  

There are a number of physiological, operational and technological challenges that make coffee sensing a 

challenging task (Section 1.3). The observation that coffee always has a background effect means that 

spectral scanners will not experience the problem of saturation of the red band that limits application of 

generic vegetation indices such as NDVI in closed canopy vegetation. However, always having the 

background effect presents its own challenges for operational remote sensing. There are other challenges 

reported in coffee area mapping and condition assessment such as influence of age, plants spacing and 

varieties that limit remote sensing applications (Moreira et al., 2004; Marcon et al., 2011). Dealing with 

these will require higher spectral resolution datasets such as hyperspectral imagery that are not just 

expensive, but come with their own new challenges such as dimensionality or the Hugh’ curse. Higher 

spatial resolution sensors can also come handy in dealing with these challenges but these are usually 

inaccessible in coffee producing areas, are expensive to obtain or maybe limited spectrally.   

This review has shown that there has been great interest in mapping coffee areas using remote sensing 

methods from as early as the 80s (Croome, 1989) and that possibility of doing so has been increasing with 

improvements in sensor technology as well as with development of robust algorithms to handle the remote 

sensing data. However, coffee area mapping studies have covered a small fraction of coffee producing 

countries (Figure 2.3) and given the heterogeneity in coffee systems, terrain and other factors, it is not 

certain if the algorithms and sensors remain effective across borders. Major issues limiting accuracy 

reported in these studies are the influence of age of the coffee crop, where young coffee is confused with 
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bare soil because of the significant soil background influence while old coffee is confused with forest 

because of the high LAI (Ramirez et al., 2006; Mukashema et al., 2014). Thus, factors such as the health of 

the crop, shade and the planting arrangement of coffee often in straight rows present further classification 

challenges (Ramirez et al., 2006; Bolanos, 2007; Bispo et al., 2014). In dealing with variability in coffee 

ages at landscape scale and associated influence of canopy cover on reflectance, a pre-data handling or 

masking approach is required. If this pre-masking data can be developed from remote sensing the better, 

but if not available, it can be obtained from extensive field based methods and farm maps. These pre-masks 

are vital in dealing with age and other potentially confounding factors in remote sensing-based 

characterisation of coffee biophysical and biochemical properties related to coffee condition. 

Current studies on yield assessment are based on MODIS data. These studies are very important in 

demonstrating application of remote sensing for direct assessment of coffee yield but the purity of the large 

250m x 250m MODIS pixels is a serious issue of concern because of the influence of edges of fields and 

for intensive land use systems where coffee is just but one of the many options for the farmer. Alternatively, 

a generic coffee condition map based on field based anomalies can be developed for directing high 

resolution sensors and new technologies such as UAVs in condition monitoring. This is important as a 

hierarchical approach to coffee condition assessment where different sensor systems are applied for 

different but interrelated objectives. Medium resolution remote sensing data such as Landsat and MODIS 

can be applied for coffee field mapping and anomaly detection while higher resolution datasets such as 

WorldView, GeoEye and UAVs can be targeted to identify anomalous patches to characterise and quantify 

the specific cause of the anomaly.  In this way, an integrated multi-sensor approach will benefit the coffee 

condition assessment as each of the sensors have their strengths and limitations.  

It was also observed that the spectral fidelity of the imagery is important in mapping coffee areas. Johl et 

al. (2014) showed that RapidEye imagery (10m), which has the red-edge bands, had the highest overall 

accuracy (80.7%) compared to GeoEye (1.65m) in mapping coffee areas in Tanzania. The accuracy 

obtained in mapping coffee areas from high resolution imagery (e.g. IKONOS, aerial photos, QuickBird) 

is comparable and in many cases less than that obtained from medium resolution sensors such as Landsat 

(Table 2.2). This may also indicate that local factors such as terrain and heterogeneity influence the 

accuracy. In addition, classification and modelling algorithms also appear to play a significant role in 

performance of coffee area and condition assessment. Advanced machine learning algorithms such as 

Bayesian networks, Random Forests and Neural networks consistently showed high accuracies than 

maximum likelihood for classifications and linear regression for modelling in coffee. Therefore, the choice 

of an algorithm is important and future research in coffee condition assessment could benefit from the use 
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of kernel learning nonparametric machine learning algorithms. These appear more suited to remote sensing 

data in addition to having high transferability potential (Verrelst et al., 2012).  

2.7 Conclusion 

Coffee is an important export commodity in international trade and it can benefit from application of remote 

sensing in condition assessment for decision support. The limiting factors to coffee production such as 

nutrient deficiency, moisture stress deficit, diseases and pests were discussed in relation to the application 

of remote sensing. The reported interests and efforts in the application of remote sensing in coffee 

production were reviewed to analyse achievements and limitations so far. The major challenges to the 

application of remote sensing in coffee condition assessments that are related to coffee physiological 

characteristics and production were identified and discussed. It was concluded from this review that there 

are a number of significant coffee plant conditions that limit yield and quality of coffee and associated 

economic and environmental benefits. The existence of these stressors concurrently may pose challenges 

in their remote sensing which makes general assessments such as anomaly detection or estimation of 

biochemical properties affected by the majority of these stressors a more useful approach. There have been 

recent developments in multispectral scanners such as Landsat 8 OLI and Sentinel-2 which build on the 

limitations of predecessor sensors to provide an opportunity to possibly overcome some of the challenges 

faced in the application of remote sensing in coffee condition assessment. Also related to that are the 

developments in nonparametric and robust machine learning algorithms that have the potential to further 

increase the identification and estimation of coffee condition parameters.  Future studies should therefore 

build on the development of sensors and algorithms to necessitate coffee condition assessment with 

multispectral remote sensing data.  
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CHAPTER 3:  DEVELOPMENT OF AN AGE MASK FOR 

COFFEE CONDITION ASSESSMENT 

 

 

 

 
        Photo credits: A. Chemura (2017) 

 

 

 
This chapter is based on: 

Chemura, A. and Mutanga, O. (2016) Developing detailed age-specific thematic maps for coffee 

(Coffea arabica L) for heterogeneous agricultural landscapes using random forests applied on 

Landsat 8 multispectral sensor data, Geocarto International, 32(7), 759-776. 
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Abstract  

Coffee is a commodity of international significance and its production can benefit from spatially 

explicit age-specific thematic maps. The aim of this study was to evaluate the potential to develop 

age-specific maps of coffee from Landsat 8 OLI coupled with an intelligent classifier, the random 

forest.  Results showed that the classifier achieved higher overall classification accuracy when 

coffee was classified as a single class (Scheme B; 90.3% for OLI and 86.8% for ETM+) than the 

three age-based coffee classes (Scheme A; 86.2% for OLI and 81.0% for ETM+). Comparing the 

RF mapped area with farm records indicated that the Landsat 8 OLI mapped area closely matched 

farm records (R2=0.88) compared to that of Landsat 7 ETM+ (R2=0.78). It was concluded that 

disaggregating coffee classes to produce age-specific maps reduce overall accuracy, but the 

usefulness of a thematic map with age-specific classes is more than the value of the marginal 

decrease in accuracy.  

 

Keywords: intra-class discrimination, coffee, age mapping, Landsat 8 OLI, random forest 
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3.1 Introduction  

Despite the importance and wide distribution of coffee production, reliable spatially explicit 

information on where, how much and by whom coffee is produced is lacking in many producer 

countries. Such datasets are imperative for management decisions for various stakeholders 

operating at different spatial scales.  Most of the current data on coffee production in many 

countries is on coffee marketing inventories where producers are logged at processing mill level 

or at washing stations. In some countries, agricultural extension and central statistical agencies 

collect information on agricultural commodity production, usually at administrative unit level 

(Mukashema et al., 2014). In addition to this information being scarce, unreliable and expensive 

to collect, it lacks spatial attributes and therefore maybe limited in its application.  

Realising the need for spatial information for the coffee sector, there have been various attempts 

on mapping coffee production zones in some producer countries. Some studies have characterized 

and mapped potential coffee production areas using physical and environmental factors (Alves et 

al., 2006; Devi & Kumar, 2008; Trabaquini et al., 2010; de Carvalho et al., 2013). Campos et al. 

(2005) concluded that coffee fractional components were related to most Landsat TM bands and 

demonstrated that it was possible to classify coffee at landscape scale using scene fractional 

components on QuickBird images. An object-based Bayesian classifier was used to develop a 

coffee production map for Rwanda that can be useful in agricultural planning and yield prediction 

(Mukashema et al., 2014). It was also demonstrated that it is possible to estimate coffee yield from 

phenological behaviour of coffee extracted from remotely sensed data (Moreira et al., 2004; 

Brunsell et al., 2009; Bernardes et al., 2012). In another study, high resolution IKONOS imagery 

performed better than Landsat ETM+ in land cover classification in a coffee-dominated landscape 

(Ramirez et al., 2006). Although these studies are positive steps towards development of reliable 

and spatially explicit coffee inventories, one important missing component is age of the coffee 

plantations.  

The mapping of coffee plantations, disaggregated according to age is an important agricultural 

management component. Coffee has a gestation period of four years (young coffee) in which 

production is not profitable. Mature coffee (4-8 years) is the most profitable stage beyond which 

productivity and profitability decreases. Age-specific thematic maps are required for precision 



39 
 

agricultural planning that ensures optimal resource utilization and management of farm operations 

such as fertilization and pest control. Since productivity of coffee is age-dependent, age-specific 

coffee thematic maps are also useful in yield forecasting required for pre-harvesting and post 

harvesting operational planning. Reliable yield forecasts can then be used for coffee market 

intelligence necessary for economic planning at local, regional and national levels (Mukashema et 

al., 2014). This is especially important for coffee, as local prices are determined by activities on 

the international commodity markets. All this information leads to more efficient farm 

management. Efficient coffee management results in higher productivity per unit area, while 

reducing economic and environmental costs of production (Balasundram  et al., 2013). As a result, 

producer countries will be able to meet their production targets, which is important in securing and 

meeting contractual agreements without expanding area under production, thereby preserving the 

environment.  

There has been some interest in developing remote sensing-based approaches to produce age-

specific thematic maps for agricultural and forestry applications, with different levels of success. 

Some of the methods included directly relating age to reflectance characteristics. For example,  

McMorrow (2001) found strong relationships between oil palm age and reflectance in Landsat 

NIR bands. Some studies evaluated the potential of remotely sensed plant biophysical parameters 

such as leaf area index, canopy cover, crown size and shadow lengths that are directly related to 

age of plantations (Suratman et al., 2004; Ozdemir, 2008; Tan, 2013). These studies have focused 

on discriminating age in single-crop dominated landscapes such as for oil palm where the degrees 

of heterogeneity were not much a factor. In addition, many of these studies relied on the use of 

high resolution imagery such as airborne hyperspectral data, Worldview-2 and IKONOS which 

have been reported as the most successful in discriminating different aged stands when coupled 

with advanced methods such as wavelet transform (Ghiyamat et al., 2015), object based image 

classification (Chemura et al., 2015b) and support vector machines (Kamiran & Sarker, 2014). The 

high-resolution imagery are however expensive and unavailable for many parts of the developing 

countries where coffee is produced. These limitations have necessitated reliance on more readily 

available satellite datasets such as the Landsat series. However, to achieve age-based intra-species 

discrimination for developing age-specific thematic maps for coffee from medium resolution 

imagery such as Landsat 8 OLI, a more robust discriminating algorithm is required.  
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Machine learning algorithms are among the highly performing classifiers in terms of accuracy 

assessment. These methods are typically nonparametric and thus do not require any assumptions 

regarding the distribution of input data which are difficult to meet in remotely sensed data 

(Srivastava et al., 2012; Adelabu et al., 2014). In addition, they are flexible and robust with respect 

to nonlinear and noisy relations among input features and class labels (Li et al., 2013). The random 

forest (RF) is among such machine learning methods. For example, Adam et al. (2014) reported 

high accuracies in  classifying age-specific categories for sugarcane and conditions of grassland 

using RF classification method and the RapidEye imagery.  

The aim of this study was therefore to evaluate the potential of the RF classifier and Landsat 8 OLI 

imagery in discriminating and mapping coffee plantations of different ages in a heterogeneous 

agricultural landscape in comparison to Landsat 7 ETM+. Precisely, the objectives of this work 

were to (i) test for spectral separability of three age-based coffee classes using Landsat 8 OLI data, 

and (ii) identify the Landsat 8 OLI bands that are specific for coffee detection and age separation 

and (iii) evaluate performance of the RF classifier applied on Landsat 8 OLI data in comparison 

to Landsat 7 ETM+ for intra-class and inter-class discrimination and mapping of heterogeneous 

agricultural landscapes to produce age-specific thematic maps for coffee areas. These maps are 

meant to be detailed so that they can be useful for many applications at landscape scale. 

3.2 Material and methods 

3.2.1 Study area  

The study was conducted in Ward 19 of Chipinge district, which consists of four large coffee 

estates and smallholder communal coffee farmers. The site is located in the Mossurize sub-

catchment, South-east of Zimbabwe between latitude 32̊ 36’00E and 32̊ 48’00E, and longitude 20̊ 

20’00S and 20̊ 33’00S in Chipinge district (Figure 1). The study site represents the current largest 

coffee producers in Zimbabwe in terms of volume and area. The climate of the area is subtropical 

with two distinct seasons, divided almost equally between months of the year (October–March is 

the growing season while April to September is the dry season). Compared to other parts of 

Zimbabwe, the area receives relatively high mean annual rainfall totals (1200-1300 mm/year) with 

mean annual temperatures around 22.5°C (Lagerblad, 2010; Nicolin, 2011). Together with deep 

red clayey soils formed from mafic rocks, the climatic conditions make the area suitable for quality 

coffee production. As the area is dominated by large scale coffee farms, the coffee production 
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system is sun-coffee, which means plantations are exclusively grown with coffee and not mixed 

with shade trees. In Chipinge district, the mean size of coffee farms is 25 ha and is dominated by 

Catimor varieties due to their resistance to coffee leaf rust (Chemura et al., 2015a).  

 

Figure 3.1: Map of the study area showing general landscape and roads. The insert shows the 

location of the study area in eastern Zimbabwe and in Southern Africa. 

3.2.2 Field data collection 

The training and validation data was collected during a field campaign conducted from the 15th to 

the 16th of December 2014. A general landscape map of the area was produced from Google 

Earth® to guide the fieldwork. A stratified sampling scheme was designed from the Google Earth® 

imagery to enable proportional sampling of reference points with respect to their sizes. Nine 

classes as described in Table 3.1 were sampled in the study area. The centre coordinates of the 

selected locations were recorded using a handheld GPS receiver with an accuracy of ~3m 

(Garmin® eTrex Vista).  Only sample sites that were greater than 1000m2 were selected. 
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Table 3.1: Description of the land cover classes used in the classification. 

Class Description 

Bare Areas with open soil mainly due to cultivation.  

Forest Area with tree crown cover of more than 10% covering at least 0.5 ha. 

Built-up  Areas with human settlements in high concentrations.  

Grassland Open areas predominantly covered by grass species. 

Tea Plantations with tea plants (Camellia sinensis). 

Water Water bodies exceeding 5000m2  

Young coffee Areas with coffee plants aged between 1 and 4 years. 

Mature coffee Areas with coffee plants aged between 5 and 8 years. 

Old coffee Areas with coffee plants aged 9 years and above. 

All coffee Sample areas with sites selected from young, mature and old coffee. 

3.2.3 Image data and pre-processing  

One Landsat OLI scene (path 168 and row 74) was obtained for the study area from the USGS-

EROS Centre archive (www.earthexplorer.usgs.gov). The image acquisition date is the 4th of 

December 2014 at a sun-azimuth angle of 99.7°, a sun elevation angle of 64.38° and was cloud-

free. In addition, one Landsat ETM+ image for the same area was acquired and used for 

comparative analysis. The Landsat ETM+ data was taken on the 11 of November 2014 at sun 

azimuth angle of 87.39° and sun elevation angle of 64.85° and was cloud free. These images were 

the available images taken on a date closest to the dates of field data collection. For the purposes 

of this study, only band 2-7 of Landsat 8 OLI were considered necessary and used for image 

classification. This is because they have a uniform spatial resolution of 30 m and matched the 

bands in the Landsat 7 ETM+ data (Table 3.2).  

Table 3.2: Spectral and spatial characteristics of the Landsat 8 OLI and Landsat ETM+ data  

 Landsat 8 OLI  Landsat ETM+ 

Band Name Bandwidth(µm) 
GSD 

(m) 
 Band Name Bandwidth(µm) 

GSD 

(m) 

2 Blue 0.452–0.512 30  1 Blue 0.441–0.514 30 

3 Green 0.533–0.590 30  2 Green 0.519–0.601 30 

4 Red 0.636–0.673 30  3 Red 0.631–0.692 30 

5 NIR 0.851–0.879 30  4 NIR 0.772–0.898 30 

6 SW1 1.566–1.651 30  5 SW1 1.547 – 1.749 30 

7 SW2 2.107–2.294 30  7 SW2 2.064 – 2.345 30 

http://www.earthexplorer.usgs.gov/
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The two Landsat (OLI and ETM+) scenes were obtained in digital number (DN), and were 

converted to reflectance values. All Landsat ETM+ images acquired from 2003 have scan-line 

errors (striping problem) and  were corrected for scanline errors using the Landsat toolbox in 

ArcGIS 10.2 before being converted to reflectance (Walawender et al., 2012). The Landsat ETM+ 

bands were then converted to Top-Of-Atmosphere (TOA) spectral radiances and then to at-sensor 

reflectance using the reflectance rescaling coefficients provided in the image’s metadata files. 

Atmospheric correction of Landsat ETM + and Landsat 8 OLI images to surface reflectance was 

performed using the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercube (FLAASH) 

radiative transfer model in ENVI Environment. Ten ground control points collected using a GPS 

with ~3m accuracy at noticeable places such as road intersections and sharp turns were used for 

geometric correction. A first order polynomial (Affine) transformation was used for geometric 

correction of the Landsat imagery and the root mean square error (RMSE) obtained was considered 

acceptable for the classification process, as it was less than half the pixel dimensions for both 

Landsat OLI and ETM+.  

3.2.4 Spectral analysis and characterization  

The spectral profiles of the three coffee age groups were determined by extracting reflectance 

values from Landsat 8 OLI bands using sample points. To test for the significant differences in 

spectral reflectance of the three coffee age groups in each band, the non-parametric Kruskal–

Wallis one-way analysis of variance was used at α<0.05 significance level (McKight & Najab, 

2010). The Kruskal-Wallis test was chosen because it is known that spectral data seldom follows 

the normal distribution (Srivastava et al., 2012) and also to deal with the un-balanced number of 

the samples between classes.  

Digitized regions of interest (roi) were used for both classification and accuracy assessment. This 

is because the sample size used in classification training (n=79) and accuracy assessment (n=55) 

was small. Evaluation of the suitability of the training samples to perform classification was done 

by statistically testing for separability using the transformed divergence separability index. The 

transformed divergence separability index (TDSI) is calculated as the Jeffries-Matusita (JM) 

distance squared (Equation 3.1).  
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𝑇𝐷𝑆𝐼 = (√2(1 − 𝑒−∝))
2

      (3.1) 

 

where ∝ is the Bhattacharya distance (Equation 3.2).  

 

∝ =  
1

8
(𝜇𝑖 − 𝜇𝑗)𝑇 (

𝐶𝑖+𝐶𝑖

2
)

−1

(𝜇𝑖 − 𝜇𝑗) +
1

2
𝑙𝑛 (

|(𝐶𝑖+𝐶𝑗)/2|

√|𝐶𝑖|x|𝐶𝑗|
)    (3.2) 

 

where i and j are the two signature classes being compared, Ci is the covariance matrix of signature 

i, µi is the mean vector of vector i and |Ci| is the determinant of Ci (Asmala, 2012; Dian et al., 

2014). In the JM distance, values greater than 1.9 show that spectral classes are highly separable 

while values less than 1.0 are not statistically different to enable a proper classification (Castillejo-

González et al., 2014). 

3.2.5 Classification schemes  

The performance of the RF classifier on Landsat 8 OLI and Landsat 7 ETM+ for intra-species 

discrimination of coffee was evaluated by running classifications with three age-based classes for 

coffee and other classes in Scheme A. This classification procedure had nine classes.  In Scheme 

B, the three age-based classes were combined into one class and all other classes remained constant 

as defined in Table 3.1. In this way, Scheme B classification procedure had seven classes. Scheme 

B was used as the standard control as it represented the generic approach to running classifications. 

Both Scheme A and Scheme B were used for classification with the RF classifier on Landsat OLI 

and Landsat ETM+. 

3.2.6 Random forest classification  

Random forest (RF) is an ensemble machine learning algorithm developed by Breiman (2001) to 

solve classification and regression problems through a multitude of decision trees. RF employs an 

iterative bagging (bootstrap aggregation) operation where a number of trees (ntree) are 

independently built using a random subset of samples from the training samples. Each tree is then 

independently grown to a maximum size based on a bootstrap sample of about two-thirds the 

training dataset. Each node is then split using the best, among a subset of input variables (mtry). 

The ensemble then classifies the data that are not in the trees as out-of-bag (OOB) data, and by 

averaging the OOB error rates from all trees, the RF algorithm gives an error rate called the OOB 
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classification error for each input variable. This way, the RF algorithm assesses  the importance of 

each input variable to the outcome by comparing how much the OOB error increases when a 

variable is removed, while all others are left unchanged (Gislason et al., 2004; Breiman & Cutler, 

2007; Adelabu et al., 2013).  

In many applications, this algorithm produces one of the best accuracies to date and has important 

advantages over other techniques in terms of ability to handle highly non-linear data, robustness 

to noise and tuning simplicity (Caruana & Niculescu-Mizil, 2006; Rodriguez-Galiano et al., 2012; 

Lebedev et al., 2014; Lu & Weng, 2007). When running the RF, the parameters, mtry and ntree 

have to be optimized for improved accuracy (Breiman, 2001; Adelabu et al., 2014). The default 

number of trees (ntree) in EnMAP box is 100 while mtry is determined as the square root of the 

total number of variables used which in this study was seven spectral bands (Breiman, 2001; Liaw 

& Wiener, 2002). To determine the optimal ntree, the random forest model was iteratively ran 

between 500 and 2500 while assessing the accuracy on training data. An optimal default ntree of 

500 was used for subsequent analysis as confirmed in literature (Breiman & Cutler, 2007). In the 

present study, the RF classification algorithm was implemented in EnMAP Box 2.2 (Rabe et al., 

2014). The algorithm was applied at the original spatial resolution of 30m after pre-processing. 

3.2.7 Accuracy assessment 

A confusion matrix was used for accuracy assessment of the thematic maps. A confusion matrix 

is an empirical estimate of the probabilistic association between remotely sensed and ancillary data 

versus reference data. To assess the accuracy, the overall accuracy (OA), user’s accuracy (UA), 

producer’s accuracy (PA) and Kappa coefficient (Kc) were used (Congalton, 1991; Liu et al., 

2007). OA expresses as percentage, the probability that a pixel is classified correctly by the 

thematic map and is a measure of the overall classification accuracy (Equation 3.3).  PA for a 

certain class expresses the percentage of a category on the ground that is correctly classified by 

the classifier, and measures proportion of pixels omitted from a reference class (omission error) 

(Equation 3.4). UA expresses the proportion of a category on the ground that is included 

erroneously in another category (commission error) (Equation 3.5) (Congalton, 1991; Foody, 

2002). Kc is a statistical measure of the actual agreement between reference data and classified 

data versus the chance of agreement between the reference data and a random classifier (Equation 

3.6) (Congalton & Green, 1999). Kc measures the amount of agreement between attributes and 
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corrects for the expected amount of agreement.  If Kc is one or close to one then there is perfect 

agreement between the classified map and the reference data. However, limitations of Kc have 

been reported especially in terms of giving misleading information and difficulties in interpretation 

(Pontius et al., 2004; Pontius & Millones, 2011). The quantity disagreement and allocation 

disagreement measures in addition to the above measures were also used. Quantity disagreement 

(QD) is the amount of pixels of a class in the training data that is different from the quantity in the 

test data. Allocation disagreement (AD) is the location of a class of pixels in the training data that 

is different from the location of the same class in the test data (Pontius & Millones, 2011; Safaa & 

Pontius, 2012).  

 

OA =  
1

𝑁
∑ 𝑛𝑖𝑖

𝑟
𝑖=1        (3.3) 

 

𝑃𝐴 =  
𝑛𝑖𝑖
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𝑟
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𝑟
𝑖=1 𝑛𝑖𝑟𝑜𝑤      (3.6) 

 

where nii is the number of pixels correctly classified in a category, N is the total number of pixels 

in a confusion matrix, r is the number of rows, and nicol are the column totals representing reference 

data and nirow is row total representing the predicted classes (Congalton & Green, 1999; Liu et al., 

2007; Petropoulos et al., 2012).  

In order to determine the above accuracy matrices, at least 100 pixels from each class (a total of 

1532 pixels for Scheme A and 1283 pixels for Scheme B) that were set aside as validation regions 

of interest developed from fieldwork were used. This represented less than 0.5% of the study area. 

These validation points were selected from equally representative areas as the training data and 

away from the training pixels to avoid overlaps between training and validation data. To ensure a 

fair comparative evaluation of performance of the two schemes, the same set of validation points 
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were used for classification with Scheme A and B and for Landsat 8 OLI and Landsat ETM+ 

(Table 3.3). The only differences were in the class ‘coffee’.  

Table 3.3: The number of training regions of interest (ROIs) and validation ROIs used for the 

classification by the two schemes with Landsat 8 OLI and Landsat 7 ETM+. Each ROI represents 

a field collected sample point.  

Class Training ROIs Validation ROIs Total ROIs 

Bare 9 6 15 

Forest 12 9 21 

Built-up 10 7 17 

Grassland 8 5 13 

Tea 12 9 21 

Water 8 5 13 

Young coffee 7 5 12 

Mature coffee 6 4 10 

Old coffee 7 5 12 

All coffee 15 12 27 

3.2.8 Comparing performance of classifiers 

The statistical significance of the difference in accuracy performance of the RF classifier on 

Landsat 8 OLI and Landsat ETM+ was evaluated using the McNemar’s test (Foody, 2004). The 

McNemar’s test is used in evaluating the superiority of one thematic map over another using the 

same validation data and when developed from the same training samples. This test is based on 

the chi-square (χ2) test computed from a two by two matrix F (Equation 3.7) based on correctly 

and incorrectly classified pixels in both classifications (Equation 3.8).  

𝐹 =  (
𝑓11 𝑓12

𝑓21 𝑓22
)     [3.7] 

 

χ2 =  
(𝑓12 − 𝑓21)2

𝑓12+ 𝑓21
     [3.8] 

where f11 is the number of cases correctly classified by both data one (Landsat 8 OLI) and data two 

(Landsat 7 ETM+), f12 is the number of cases that are correctly classified in data one (Landsat 8 

OLI) but incorrectly classified in data two (Landsat 7 ETM+),). f21 is the number of cases that are 

correctly classified in data two (Landsat 7 ETM+), but wrongly classified in data one (Landsat 8 
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OLI) while f22 is the number of cases wrongly classified in both datasets. In addition, farm records 

on area under each age category from three large scale coffee farms in the area were obtained. The 

area on the farm records was compared with the area estimated to be in each category for the farms 

to understand how well the RF classifier produce age-maps related to actual field data.   

3.4 Results  

3.4.1 Spectral characteristics of coffee age groups 

The differences between the age-based coffee classes are apparent in the spectral profiles of coffee 

shown in Figure 3.2. The young coffee class had the highest reflectance in all bands except the 

NIR band where mature coffee class had the highest reflectance. Significant differences (p<0.01) 

in reflectance between the three coffee classes were obtained from band 3 to band 7. This indicates 

these bands are important in discriminating the coffee age groups.  

 

Figure 3.2: Mean reflectance of the coffee classes for the Landsat 8 OLI bands. 

 

3.4.2 Assessment of spectral separability of coffee classes 

The transformed divergence spectral separability index showed that the classes were statistically 

different and could therefore be discriminated using the collected training samples for Landsat 8 

OLI and Landsat ETM+. For Landsat 8 OLI, the lowest pairwise transformed divergence 

separability index was 1.70, which was between mature coffee and old coffee. Mature coffee and 

forest yielded a score of 1.91 while young coffee and mature coffee had a TDSI of 1.98, which, 
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when compared to other classes, showed lower separability using the Landsat 8 OLI data (Table 

3.4). The highest separability on Landsat 8 OLI data for coffee classes was between young coffee 

and old coffee (TDSI=1.99). The results for Landsat ETM+ gave the lowest separability as being 

between mature coffee and old coffee (TDSI=1.61) followed by mature coffee and young coffee 

(TDSI=1.67). There was also lower separability between in Landsat ETM+ data between old 

coffee and grassland (TDSI=1.82) and between mature coffee and forest (TDSI=1.89). These 

results show that spectral separability for most classes was less in Landsat ETM+ than in Landsat 

8 OLI data.   

Table 3.4: Transformed divergences indices showing pairwise interclass separability of coffee 

classes and other classes in the training samples. 

  Landsat 8 OLI Landsat ETM+ 

Class 
Young 

coffee 

Mature 

coffee 

Old 

coffee 

Young 

coffee 

Mature 

coffee 

Old 

coffee 

Water 1.99 2.00 2.00 1.99 2.00 2.00 

Forest 1.99 1.91 1.98 1.99 1.89 1.98 

Built-up 1.98 1.96 2.00 1.99 1.95 2.00 

Grassland 2.00 1.92 1.88 1.99 1.90 1.82 

Bare 1.99 2.00 2.00 1.96 1.96 2.00 

Tea 2.00 2.00 2.00 2.00 1.99 2.00 

Young coffee - 1.98 1.99 - 1.67 1.97 

Mature coffee 1.98 - 1.70 1.67 - 1.61 

Old coffee 1.99 1.70 - 1.95 1.61 - 

 

 

3.4.3 Assessing importance of individual bands in RF classification 

An evaluation of the importance of image bands in the RF classification showed that the NIR band 

is the most important parameter for both Scheme A and Scheme B for Landsat 8 OLI while results 

for Landsat 7 ETM+ were less consistent. Figure 3.3a shows that the accuracy of the RF model 

drastically drops by 70% on Landsat 8 OLI when the NIR band is not included in running the RF 

model when coffee is split into three age-based classes. The importance of the Landsat 8 OLI NIR 

band in the classification however drops by 46.1% when the classification is run with coffee as 

one compound class (Figure 3.3b). For Landsat ETM+, the SWIR1 band was the most important 

when classes were split to have age-specific coffee classes (Figure 3.3c) while the NIR band was 

the most important when a compound coffee class was used (Figure 3.3d).  
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Figure 3.3: Importance of the spectral bands in class separation shown by decrease in training 

accuracy when the band is excluded for (3.3a) Scheme A samples on Landsat 8 OLI, (3.3b) 

Scheme B samples on Landsat 8OLI, (3.3c) Scheme A samples on Landsat ETM+ and (3.3d) 

Scheme B samples on Landsat 7 ETM+.  The highest percentage increase in mean standard error 

(%IncMSE) corresponds to the decrease in accuracy when that band is excluded and therefore 

indicates the most important bands. 

3.4.4 Classification accuracy assessment  

Figure 3.4 shows thematic map outputs from RF classifier for scheme A and Scheme B on Landsat 

OLI and Figure 3.5 shows the thematic maps produced from Scheme A and Scheme B samples on 

Landsat ETM+. The accuracy metrics showed that the accuracy of the thematic maps was better 

in Scheme B than in Scheme A. The RF classification achieved an overall accuracy of 90.3 percent 

in Scheme B when coffee was one class compared to 86.2 percent in Scheme A when coffee was 
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split into three age-based classes in Landsat 8 OLI. This represents a 4.1% decrease in overall 

classification accuracy due to splitting the classes in Landsat OLI data. Scheme B also yielded a 

higher Kc value (0.9) that that Scheme A which had 0.8. The allocation disagreement and quantity 

disagreement increased by 2% when coffee classes were split into three age-based classes, 

compared to classification of coffee as a single class on Landsat 8 OLI data (Table 3.5).  

 

Figure 3.4: Thematic maps produced from random forest classification of the agricultural 

landscape using Landsat 8 OLI data using (a) Scheme A samples (b) Scheme B samples. 
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Figure 3.5: Thematic maps produced from random forest classification of the agricultural 

landscape using Landsat 7 ETM+ data using (a) Scheme A samples and (b) Scheme B samples. 

  

When the classification was run on Landsat ETM+, lower accuracies were realised for both 

Scheme A and Scheme B, with Scheme B being better than Scheme A (Table 3.5). The accuracy 

metrics were consistently better for Landsat 8 OLI compared to Landsat ETM+ (higher OA and 

Kc).  The individual class producer’s accuracy for Landsat 8 OLI changed only for the forest class 

(91.9% to 85.2%) due to splitting of the coffee into three age groups, indicating possible spectral 

confusion with one of the three coffee classes (Table 3.6). The producer’s accuracy of water, bare, 

built-up, tea and grassland remained relatively unchanged after the split of the coffee class in 

Landsat 8 OLI. Unlike in Landsat 8 OLI, there were remarkable changes in producer accuracies 

due to splitting the coffee class into three age-based classes. For example, the producer accuracy 

of tea reduced from 96.5% with classification of coffee as a compound class to 69.4%. On the 

other hand, the producer accuracy of grassland increased from 67.4% when the compound class 

was used to 90.2% when split coffee classes were used.  
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Table 3.5: Confusion matrix and associated classification accuracies based on independent test data set for Scheme A produced from Landsat 8 OLI and 

Landsat 7 ETM+. The accuracies include overall accuracy (OA), kappa (Kc), user’s accuracy (UA) and producer’s accuracy (PA). 

Scheme A: Landsat 

OLI 
Reference class 

  Class Water Forest Bare Built-up Tea Grassland Young Mature Old Total PA 
 Water 94 0 0 0 0 0 0 0 0 94 88.7 

C
la

ss
if

ie
d

 

Forest 7 190 0 0 1 0 0 0 10 208 85.2 

Bare 0 1 181 0 0 8 4 0 0 194 94.3 

Built-up 0 1 0 213 0 0 9 0 0 223 87.3 

Tea 0 0 1 6 166 0 30 13 0 216 96.5 

Grassland 4 8 1 0 0 158 0 0 0 171 92.4 

Young 0 0 7 20 0 2 126 0 0 155 70 

Mature 0 0 2 4 5 0 8 90 19 128 80.4 

Old 1 23 0 1 0 3 3 9 103 143 78 

Total 106 223 192 244 172 171 180 112 132 1532  

 UA 100 91.4 93.3 95.5 76.9 92.4 81.3 70.3 72.0   

 OA 86.2    Kc 0.8      
Scheme A: Landsat 

ETM+ 
Reference class 

  Class Water Forest Bare Built-up Tea Grassland Young Mature Old Total PA 
 Water 105  0 0 0 0 0 0 0 105 99.1 

C
la

ss
if

ie
d

 

Forest 0 220 0 0 0 1 1 0 10 232 98.7 
Bare 0 0 183 0 0 16 44 0 0 243 95.3 
Built-up 0 0 2 241 2 1 36 0 0 282 98.8 
Tea 0 0 0 0 164 0 0 0 0 164 95.4 
Grassland 1 3 4 0 0 119 2 1 1 131 69.6 
Young 0 0 0 3 0 3 53 6 34 99 29.4 
Mature 0 0 2 0 6 19 39 101 28 195 90.2 
Old 0 0 1 0 0 12 5 4 59 81 44.7 
Total 106 223 192 244 172 153 180 112 132 1532  

 UA 100.0 94.8 75.3 85.5 100.0 90.8 53.5 51.8 72.8   
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Table 3.6: Confusion matrix and associated classification accuracies based on independent test data set for Scheme B produced from 

Landsat 8 OLI and Landsat 7 ETM+. The accuracies include overall accuracy (OA), kappa (Kc), user’s accuracy (UA) and producer’s 

accuracy (PA). 

Scheme B Landsat 8 OLI Reference class 

  Class Water Forest Bare Built-up Tea Grassland Coffee Total PA 

  
  

  
  

  
  

  
  

 C
la

ss
if

ie
d
 

Water 94 0 0 0 0 0 0 94 88.7 

Forest 7 205 0 0 1 0 10 223 91.9 

Bare 0 2 181 0 0 10 0 193 94.3 

Built-up 0 1 3 214 0 0 2 220 87.7 

Tea 0 2 1 6 166 0 19 194 96.5 

Grassland 4 7 1 0 0 158 3 173 92.4 

Coffee 1 6 6 24 5 3 141 186 80.6 

Total 106 223 192 244 172 171 175 1283  

UA 100 91.9 93.8 97.3 85.6 91.3 75.8   

  OA 90.3    Kc 0.89    
Scheme B: Landsat 7 

ETM+ Reference class 

  Class Water Forest Bare Built-up Tea Grassland Coffee Total PA 

C
la

ss
if

ie
d
 

Water 103 0 0 0 0 1 0 104 97.2 

Forest 2 220 0 0 0 0 0 222 98.7 

Bare 0 0 184 0 0 5 20 209 95.8 

Built-up 0 0 3 242 2 1 0 248 99.2 

Tea 0 0 0 0 166 0 37 203 96.5 

Grassland 0 3 0 0 0 81 0 84 47.4 

Coffee 1 0 5 2 4 83 118 213 67.4 

Total 106 223 192 244 172 171 175 1283  

UA 100 98.7 88.0 84.9 100 96.4 55.4   

  OA 86.8    Kc 0.84    
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In terms of the user’s accuracy, the water, forest, bare, built-up and grassland, classes remained 

relatively unchanged by splitting the coffee class into three in Landsat 8 OLI data. Notable 

changes were in the tea class whose accuracy decreased by 8.7% from 85.6% in Scheme B to 

76.9% in Scheme A.  For Landsat 7 ETM+, user accuracies were better for tea and grassland 

when the classification was done with the compound while they were better for split coffee 

classes for built-up and bare, which are spectrally very close classes. Although, there was a 

decrease in overall and individual class accuracies, the degree of change was not remarkable 

in Landsat 8 OLI data, which show that RF classifier was able to accurately discriminate, inter 

and intra-species variation of coffee in a heterogeneous agricultural landscape. This was further 

supported by the McNemar’s test that showed that the accuracy of Landsat OLI significantly 

outperformed that of Landsat ETM+ for both Scheme A and Scheme B (Table 3.7).  

 

Table 3.7: McNemar’s test results for comparison between Landsat ETM+ and Landsat 8 

OLI for Scheme A an Scheme B classifications*.  

  f11 f12 f21 f22 Total χ² p-value 

Scheme A 1169 152 76 135 1549 24.67 0.0001338 

Scheme B 1069 90 45 79 1283 25.04 5.39E-07 

*Scheme A classes: Water, Forest, Bare, Built-up, Tea, Grassland, Young Coffee, Mature Coffee, and Old Coffee. Scheme 

B: Same classes as Scheme A except all coffee classes were combined into one class, Coffee.   

3.4.5 Comparing class area between the classifiers and schemes 

In concurrence to the changes in producer and user accuracies, the areas determined for each 

class by Scheme A closely matched the area determined by Scheme B for bare, water, built-

up, and tea when classified using Landsat 8 OLI. Only the forest class (10.3%) and grassland 

class (15.3%) changed in area by more than 10% in area between Scheme A and Scheme B for 

Landsat 8 OLI data. The total area predicted as the coffee class increased by 8% when the 

coffee class was split from one class to three age-based classes by the Landsat 8 OLI data. For 

Landsat 7 ETM+, splitting coffee into three age-based classes increased area of forest by 3%, 

of tea by 8 %, bare reduced by 3% while that of coffee remained relatively unchanged. The 

age-specific thematic maps for coffee are shown in Figure 3.6. 
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Figure 3.6: Age specific thematic maps for coffee produced from (a) Landsat 8 OLI and (b) 

Landsat ETM+. 

When areas for each class were compared between Landsat 8 OLI and Landsat ETM+, thematic 

maps from Landsat 8 OLI had more area for young coffee (+19.6%) and mature (+5.9%) and 

while it was less for old coffee (-10.6%, Table 3.7).  The area under coffee classified by Landsat 

OLI and Landsat 7 ETM+ matched, indicating that differences between the two schemes are 

apparent in intra-class discrimination.  

A comparison of the farm records from three large-scale farms in the study area with the area 

predicted by the RF classifier using Landsat 8 OLI and Landsat 7 ETM+ was done. Results 

indicated that the area estimated by Landsat 8 OLI was closer to field farm record of area 

(R2=0.88) than that of Landsat 7 ETM+ (R2=0.78). However, there was apparent over-

estimation of coffee area by the Landsat 8 OLI for all the age categories and farms (Figure 

3.7a). This pattern was different from that of Landsat 7 ETM+, which had both over-estimation 

and under-estimation of areas (Figure 3.7b). The relationship between area estimated by the 

Landsat 8 OLI and Landsat ETM+ is shown in Figure 3.7c.  
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Figure 3.7: Comparison of classifier estimated area with reference data from three farms 

showing relationships between (a) Landsat 8 OLI data and farm record of area of the three 

age groups (b) Landsat 8 ETM+ data and farm record of area of the three age groups and (c) 

Landsat 8 OLI areas and Landsat ETM+ area of the three age groups. The dashed line is the 

1:1 line. 

Table 3.8: Area (ha-1) for each land cover class as obtained from the random forest 

classification of Landsat 8 Oli and Landsat 7 ETM+ with Scheme A and Scheme B samples. 

 Scheme A(ha-1) Scheme B(ha-1) 

  Landsat 7 ETM+ Landsat 8 OLI 

Landsat 7 

ETM+ Landsat 8 OLI 

Bare 2205 2134 2265 1113 

Forest 3866 3520 3755 3970 

Built-up 1943 1736 1949 2337 

Grassland 1102 1086 1068 1101 

Tea 1179 1257 1275 1751 

Water 89 91 89 89 

Young 2433 3025 - - 

Mature 2178 2314 - - 

Old 1825 1650 - - 

Coffee*  6436 6989 6418 6453 
*The area for class Coffee under Scheme A is the total area of classes young coffee, mature coffee and old coffee.  

 

3.5 Discussion  

The overall outcome of this study is that it is possible to achieve acceptable accuracies for 

developing age-specific thematic maps for coffee in a heterogeneous agricultural landscape 

using Landsat 8 OLI and the RF algorithm. This result provides an opportunity for a cost-

effective way of producing reliable age-specific thematic maps that are useful in coffee crop 

condition assessments and other applications.  

3.5.1 Comparison of performance of Landsat 8 OLI and ETM+ 

The ability to achieve reliable classification accuracy is premised on the significance of the 

differences in spectral reflectance of the coffee classes of different age categories as well as 

with other land cover classes. This difference is a factor of the sensor characteristics, 

particularly its spectral fidelity.  The sensor technology in Landsat 8 OLI, particularly the use 
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of numerous elongated sets of detectors for each waveband, makes it capable of a detailed scan 

of the surface along track. Along track scanning is known to increase the sensitivity of the 

sensor to the important biophysical characteristics that determine vegetation reflectance (Dube 

& Mutanga, 2015). In addition, when compared to the Landsat TM/ETM+, Landsat 8 OLI 

performed better possibly as it has an enhanced image radiometric resolution  of 12 bits which 

permits more accurate detection of variations in vegetation characteristics (Pahlevan & Schott, 

2013; Jia et al., 2014). This, when coupled with Landsat 8 OLI prolonged sensor radiation 

sampling residence-period for each field-of-view, explain the ability of the RF classifier to 

produce accurate age-specific thematic maps from Landsat 8 OLI data than on Landsat ETM+.  

3.5.2 Effect of age on spectral reflectance of coffee  

In this study, it was demonstrated that the spectral reflectance of coffee age categories (young, 

mature and old) classes are significantly different in the spectral range from the red to the 

SWIR2 bands of Landsat 8 OLI data. These differences are mostly apparent in the NIR and 

SWIR1 band, which also showed the greatest uniqueness in spectral characteristics for all age 

groups. This study therefore underscores the importance of analysing the spectral 

characteristics of classes in order to discriminate age groups of coffee accurately, and to 

distinguish these from other land cover classes in order to develop age-specific thematic maps 

at landscape scale. Furthermore, utilising the random forest inherent variable importance 

assessments, the results showed the contribution of each band in modelling the land cover 

classes. This is very important in understanding the usefulness of the Landsat 8 OLI bands in 

general land cover classification and in vegetation discrimination in particular.  

The findings that mature coffee had the highest reflectance in the NIR band was somewhat 

expected. This is because at mature stage, the coffee is most productive in terms of 

photosynthetic potential and yield, which is then captured in reflectance in these bands where 

biochemical properties are least absorptive. The difference between mature coffee and old 

coffee was not discernible from the visible bands but only in the infrared bands. This confirms 

the importance of the NIR bands in vegetation characterization particularly in intra-species 

discrimination. The reduced reflectance of old coffee compared to young and mature coffee 

could be a result of the normal dieback associated with old coffee. Old coffee also has generally 

reduced nutrient utilisation and increased leaf fall from plant debilitation (Logan & Biscoe, 

1987; Wrigley, 1988). The results indicated a higher degree of spectral overlap between mature 

coffee and old coffee, and this could be explained by the forward and backward transition of 

coffee into and out of the mature stage in some samples. The influence of general dieback that 
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occurs in old coffee was ostensive in the overlaps between the old coffee and young coffee as 

old coffee droops, thereby having soil background influence similar to that of young coffee. 

This influence of crop parameters was also reported for coffee by other studies (Vieira et al., 

2012).    

The spectral profiles showed that there could be significant variations in reflectance of an age 

group particularly in the infrared bands. This point to the fact that for large-scale seemingly 

uniform plantation crops such as coffee, there can be variation in reflectance even from the 

same age groups. These are because of local specific field factors which may confound the age-

reflectance relationships utilised by the classifier (McMorrow, 2001). In this particular case, 

there is therefore need to consider a more robust classifier that is able to better deal with these 

subtle differences, which is the premise of the use of the kernel random forest classifier in this 

study. In other studies, the random forest classifier was reported to be able to discriminate 

between degraded and healthy grassland, between young and mature sugarcane and between 

inland and coastal sand (Adam et al., 2014). This ability to deal with marginal spectral class 

changes makes the RF classifier an ideal candidate for the development of age-specific 

thematic maps from Landsat 8 OLI data.  

3.5.3 Comparison of accuracy performance  

When all accuracy evaluation metrics are considered (overall accuracy, Kappa, allocation 

disagreement and quantity disagreement), it is apparent that splitting coffee into three age 

classes reduces the classification accuracy. However, the reduction in classification accuracy 

that occur when coffee is split into three classes is marginal (only 4.1% decrease in overall 

classification accuracy and only 2% increase in allocation and quantity disagreement). This 

indicate that it could be worthwhile to trade-off some accuracy to obtain a more functional 

thematic map with age-specific classes in mapping complex agricultural landscapes. 

Although Landsat data has been used for age discrimination in landscape vegetation analysis 

(McMorrow, 2001; Franklin et al., 2003), most successful approaches have involved mostly 

high spatial and spectral resolution imagery such as Worldview-2 (Chemura et al., 2015b), 

IKONOS (Thenkabail et al., 2004b) and RapidEye imagery (Adam et al., 2014). This study 

therefore points to the potential utilisation of enhanced Landsat 8 OLI data combined with 

clever machine learning classifiers to achieve what has traditionally been in the domain of high-

resolution imagery. This high spatial and spectral resolution data is very expensive, unavailable 

for most areas, suffers from speckle effect and often have high dimensionality (Dalponte et al., 
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2009; Mutanga et al., 2012). Some earlier studies had dismissed the potential of thematic maps 

produced from Landsat 8 OLI data for operational applications because of obvious errors that 

were associated with the common classification methods at the time (Foody, 2002). Even at 

the same spatial resolution of 30m, with the improvements in spectral characteristics, coupled 

by intelligent classifiers, the utility of Landsat data can be further extended to areas that 

previous studies considered not possible.  

3.6 Conclusions  

This study tested the utility of Landsat 8 OLI data to discriminate coffee ages in a complex and 

heterogeneous agricultural landscape using the random forest classifier. The following 

conclusions were drawn from this study: 

1. There are fundamental changes in the spectral profiles of coffee as it grows. 

2. There is a marginal increase in class prediction error when coffee classes are separated 

into three age-based classes (young, mature, and old) as compared to a composite class 

used in classification. 

3. The Landsat 8 OLI data, in combination with the RF classifier, was able to produce 

satisfactorily compared to Landsat 7 ETM+ accurate age-specific thematic maps for 

coffee in a heterogeneous agricultural landscape. 

 

3.7: Link to next chapter  

This chapter developed age-specific thematic maps using multispectral level Landsat 8 OLI 

remote sensing data, thereby dealing with age of plants which was identified as one of the most 

important problems in condition assessment and coffee area mapping. The next chapter utilises 

the age-specific thematic maps developed from this chapter for identifying areas in coffee 

plantations that are not growing well.  
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CHAPTER 4: IDENTIFICATION AND MAPPING OF 

ANOMALOUS PATCHES IN COFFEE PLANTATIONS WITH 

MULTISPECTRAL DATA 

 

 

 

 
   Photo credits: A. Chemura (2017) 

 

This chapter is based on 

Chemura, A., Mutanga, O. and Dube, T. (2017) Integrating age in the detection and mapping of 

incongruous patches in coffee (Coffea arabica) plantations using multi-temporal Landsat 8 NDVI 

anomalies, International Journal of Applied Earth Observation and Geoinformation, 57(4), 1–13.  
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Abstract 

The development of cost-effective, reliable and easy to implement crop condition monitoring 

methods is urgently required for perennial tree crops such as coffee (Coffea arabica), as they 

are grown over large areas and represent long term and higher levels of investment. These 

monitoring methods are useful in identifying farm areas that experience poor crop growth, pest 

infestation, diseases outbreaks and or to monitor response to management interventions. This 

study compares field level coffee mean NDVI and LSWI anomalies and age-adjusted coffee 

mean NDVI and LSWI anomalies in identifying and mapping incongruous patches across 

perennial coffee plantations. To achieve this objective, deviation of coffee pixels from the 

global coffee mean NDVI and LSWI values of nine sequential Landsat 8 OLI image scenes 

was first derived. The influence of coffee age class (young, mature and old) on Landsat-scale 

NDVI and LSWI values was evaluated using a one-way ANOVA and since results showed 

significant differences, NDVI and LSWI anomalies were adjusted for age-class. The 

cumulative inverse distribution function (α ≤ 0.05) was then used to identify fields and within 

field areas with excessive deviation of NDVI and LSWI from the global and the age-expected 

mean for each of the Landsat 8 OLI scene dates spanning three seasons. Results from accuracy 

assessment indicated that it was possible to separate incongruous and healthy patches using 

these anomalies and that using NDVI performed better than using LSWI for both global and 

age-adjusted mean anomalies.  Using the age-adjusted anomalies performed better in 

separating incongruous and healthy patches than using the global mean for both NDVI (Overall 

accuracy=77.2% and 66.4% respectively) and for LSWI (Overall accuracy=66% and 49.2% 

respectively).  When applied to other Landsat 8 OLI scenes, the results showed that the 

proportions of coffee fields that were modelled incongruent decreased with time for the young 

age category and while it increased for the mature and old age classes with time. It was 

concluded that the method could be useful for the identification of anomalous patches using 

Landsat scale time series data to monitor large coffee plantations and provide an indication of 

areas requiring particular field attention.  

Keywords: Monitoring, multi-temporal Landsat NDVI, age, coffee, crop condition 
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4.1 Introduction 

Perennial tree crops are important for economic development, food security and alternative 

energy development, particularly in the developing world, where they are mostly produced 

(Ghini et al., 2011; Lin, 2011). Coffee (Coffea arabica L), an evergreen, perennial tree crop 

that typically grows up to 4m tall under a variety of production systems in tropical montane 

areas, is one such important crop (Ortega-Huerta et al., 2012). As part of perennial agricultural 

systems, coffee plantations protect water resources, improve soil quality, buffer floods, 

sequester carbon dioxide and provide jobs for millions of people (Omont et al., 2006; Kahn et 

al., 2011; Dixon & Garrity, 2014). Coffee also represents a long-term capital investment as it 

is in production for longer periods and therefore requires a robust, reliable and cost-effective 

monitoring strategy for diseases, pests, water stress, soil fertility and other crop stressors, to 

safeguard investments and other related ecosystem services. So far, there is however, a general 

paucity of fine-scale long-term datasets to monitor plantation tree crop stressors (Jeger & 

Pautasso, 2008). These types of data are required in tracking fingerprints of inter and intra-

annual variations in crop conditions useful for plantation managers, investors, insurers and 

other stakeholders interested in monitoring crop performance. The current monitoring methods 

largely rely on spontaneous field inspections and sampling, which are not only labour intensive, 

but also conclusive once economic damage has been inflicted on the crop.  

Remotely sensed data provides valuable opportunities for detailed crop condition assessments 

using the spectral, spatial and temporal domains of raw image bands or their derived vegetation 

indices or a combination of both. The normalised difference vegetation index (NDVI) because 

of its robustness is, for instance, one of the most commonly applied remote sensing indices in 

assessing plant condition i.e. health, growth and vegetation productivity (Glenn et al., 2008; 

Ding et al., 2014). The NDVI takes advantage of contrasting effects of vegetation on the red 

and near infrared portion of the spectrum to provide information of vegetation condition. It is 

a linear estimator of the fraction of photosynthetically active radiation (fPAR) intercepted by 

vegetation and thus useful in analysing patterns of net primary productivity (NPP) at different 

spatial and temporal scales (Wang et al., 2004; Alcaraz-Segura et al., 2009). However, NDVI 

is known to saturate under closed canopy and to be sensitive to atmospheric conditions and soil 

background (Xiao et al., 2003). Other vegetation indices such as the Land Surface Water Index 

(LSWI) and the Enhanced Vegetation Index (EVI) are thus also commonly used in land cover 

assessments and crop monitoring. The LSWI is especially used because it is more sensitive to 
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equivalent water thickness as it is generated by ratios of spectral bands that are known to be 

sensitivity to vegetation, soil moisture and water properties (Xiao et al., 2005; Torbick & Salas, 

2014).  

Vegetation indices can be used to map vegetation and crop conditions over a large area and to 

detect these changes over time. This is because if the fPAR intercepted by vegetation for the 

‘healthy’ vegetation condition is estimated, then the departure from this indicates an anomaly. 

For example, Rulinda et al. (2012), used MODIS NDVI anomalies to detect drought-hit areas 

in east Africa, by applying threshold values to assess the spatial and temporal transition into 

drought condition. Funk and Budde (2009), using NDVI time-series data for drought 

assessment, concluded that smoothening, masking and phenological adjustments provide scale-

invariant quantitative and visual drought assessment results that are consistent across sub-

national, national and regional spatial aggregations. However, the downside of the commonly 

used hyper-temporal NDVI data in assessing crop condition is that its spatial resolution is very 

large (>250m) for localized applications due to the mixed pixel effect (Atzberger, 2013; 

Rembold et al., 2013). Furthermore, most hyper-temporal sensors, such as MODIS, have wide 

viewing angles that result in significant Bi-Directional Reflectance Distribution Function 

(BRDF) (Hansen & Loveland, 2012). This confounds such time-series data making them less 

attractive for field scale applications. 

With the high costs and limited coverage of alternative high-resolution imagery and the 

aforementioned issues with coarse resolution time series data, research efforts have started 

shifting towards the utilisation of medium resolution multispectral data such as Landsat data 

series in mapping crop area and condition assessments. These efforts are meant to enable 

updating of currently available coarser agricultural inventories (e.g. national data) to localized 

scales (e.g. fields) that help in better understanding of crop dynamics. For example, Dangwal 

et al. (2016), used Landsat TM data for monitoring water stress in wheat and the use of Landsat 

derived vegetation indices yielded promising results (RMSE = 0.12, R2= 0.65) . This 

concluding remark was also validated by a couple of studies across the globe which showed 

that Landsat NDVI anomalies can be successfully used for identifying land degradation 

hotspots in the Eastern Tibetan Plateau, China (Fassnacht et al., 2015) and in Basilicata, Italy 

(Lanfredi et al., 2015). In a comparative study, Ding et al. (2014) concluded that the use of 

NDVI values produces the greatest observable heterogeneity in the early stage of crop growth 

at Landsat spatial resolution of 30m. They also concluded that this significantly decays with 

increase in the spatial resolution of imagery. This observation is further confirmed by Venteris 
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et al. (2015), whose work successfully showcased the ability of applying the 26 year Landsat 

data in identifying and mapping anomalous patches (i.e. abnormal vegetation conditions) in 

soybean and corn at field level, based on their deviation from the expected NDVI. In addition, 

Tatsumi et al. (2015) demonstrated that Landsat time series can be used for agricultural crop 

mapping in homogeneous areas by harnessing spatial and temporal characteristics (Overall 

accuracy of 81% and Kappa of 0.71).  

Many studies have developed remote sensing-based phenological metrics such as onset of 

greenness, time of peak NDVI, senescence period, among others, for monitoring growth and 

conditions of annual crops. However, the spectral characteristics and growth behaviour of 

annual crops are very different from those of perennial tree crops that have cumulative growth 

characteristics, making remotely-sensed distinctions more difficult (Atzberger, 2013). 

Therefore, much of the focus of remote sensing-based anomaly detection applications in 

agriculture have been on annual crops, such as wheat, maize and soybeans and yet these are in 

the field for a relatively shorter period to make same crop assessments (Wang et al., 2011). In 

addition, in annual crops, unlike in perennial tree crops, it is difficult to interpret season by 

season anomalies because of potential differences introduced by planting new cultivars, 

different planting dates and different management between seasons and years, which can 

contribute to observed NDVI anomalies.  

Consequently, attempts to apply coarse-resolution time series NDVI anomalies to map 

perennial tree crops, such as coffee have not been as widespread and as successful as in annual 

crops. For example, Vancutsem et al. (2009) using monthly SPOT Vegetation composite data 

in mapping perennial croplands in tropical Africa, observed incongruent results with those from 

reference datasets. In a separate study, Stibig et al. (2007), used the same data to map expanding 

coffee plantations in southern Asia and concluded that results were not consistent as coffee 

areas were rather mapped as shrubland. This therefore shows that coarse-resolution hyper-

temporal data, such as MODIS and SPOT vegetation are only limited to the discrimination and 

characterisation of land cover types that explicitly exhibit seasonality and that have very 

contrasting growth cycles, such as annual crops and deciduous species. Medium resolution 

Landsat data, given the spectral improvements on Landsat 8 may therefore, provide 

opportunities for the development of detailed spatial datasets on coffee areas and where 

sequential data is available, to monitor growth or lack thereof.  
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There is currently more potential in utilising the Landsat 8 imagery for crop condition 

assessment than what was possible with TM and ETM+. This is because the Landsat-8 satellite, 

launched on February 11th, 2013, installed into orbit the multispectral operational land imager 

(OLI) which has many significant technical improvements when compared to its predecessors. 

These improvements include a higher signal-to-noise ratio (increased by a factor of at least 

eight compared to ETM+), a higher radiometric resolution (12 bits compared to 8 bits on 

ETM+) and better radiometric sensitivity from tens of thousands of highly sensitive detectors 

(Roy et al., 2014; Dube & Mutanga, 2015). In addition, it has an improved geometric accuracy 

from an on-board global positioning system and an improved combination of pre-launch, on-

board and vicarious calibration procedures for a better sensor fidelity (Roy et al., 2014). The 

Landsat 8 OLI imagery also has an added coastal band designed for atmospheric correction 

and this is particularly useful in tropical areas where many perennial tree crops are produced. 

The Landsat 8 OLI therefore provides further opportunities for detailed and accurate detection 

and mapping of crop conditions than its predecessors. As a result of these improved 

characteristics, comparative studies have shown that Landsat 8 OLI derived NDVI has better 

capability of capturing inherent subtle differences across different land surface characteristics 

(Roy et al., 2014; Ke et al., 2015), which among other things, is attributable to greater signal-

to-noise ratio and the radiometric sensitivity. 

Given the improvements on Landsat 8 OLI data, it should be possible to identify anomalies in 

the structural and functional characteristics of coffee by integrating phenology in order to detect 

incongruous areas where the crop stand is less productive or lagging behind. Perennial tree 

crops are in production for many years that can exceed 50 years and age is important in 

influencing fertility management, weed regimes and yield dynamics of these crops (Bhojaraja 

et al., 2015). Consequently, the age of the crop has significant effect on reflectance and 

subsequently on derived vegetation indices because of the decrease in the effect of soil 

background, changes in tree morphology, increase in productivity, and expansion of leaf area 

index (LAI) with age (McMorrow, 2001; Moreira et al., 2004). The yield of coffee, for 

example, is known to start after four years (young gestation period), peak between four and 

eight years (mature period) and then stagnates or decreases thereafter (Logan & Biscoe, 1987; 

Nair, 2010). This indicates that the age of the crop influences its spectral behaviour and 

characteristics and thus influences the potential for remote sensing. With these influences of 

age on spectral characteristics of plantation crops, age-based adjustment of vegetation indices 
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anomalies is mostly likely to produce better representation of crops than using the global 

means.   

In this study, it was hypothesized that age-adjusted Landsat 8 NDVI and LSWI anomalies can 

be used to identify incongruous patches in coffee plantations as part of development and 

application of spatially explicit geospatial, agronomic and economic tools to advance 

productivity of perennial tree crops. In addition to most of the past studies on the use of NDVI 

and LSWI anomalies being on annual crops, they have not demonstrated the applicability of 

the determined anomalies in farm and field-level management decisions. The aim of this study 

was therefore to assess the utility of multi-temporal age group adjusted Landsat 8 derived 

NDVI and LSWI data in detecting and mapping anomalous growth patches in continuously 

growing agricultural crops of economic importance, using coffee as an example.  

4.2 Materials and methods 

4.2.1 Study area 

This study was conducted in south-eastern Zimbabwe, the country’s commercial coffee 

production hub. The study focussed on three of the country’s top coffee producing estates and 

smallholder farmers in the area. The dominant coffee production system is sun-coffee where 

plantations are exclusively grown with coffee and not mixed with shade trees (Chemura et al., 

2015a). The study area has field geometry of 23 km by 16 km, covering a total of 16,815 ha 

and of this, 860 ha is under coffee production at different ages (Figure 4.1). The site is located 

in Mossurize sub-catchment, between longitude 32̊ 36’00E and 32̊ 42’00E, and latitude 20̊ 

26’00S and 20̊ 32’00S in Chipinge district. The region is characterized by a subtropical climate 

with two distinct seasons, divided almost equally between months of the year (October to 

March - growing season, while April to September - dry season).  
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Figure 4.1: Map of the study area showing the distribution of coffee ages used in the study 

adapted from Chemura and Mutanga (2016). The insert shows the location of the study area 

in Eastern Zimbabwe. 

4.2.2 Satellite imagery 

4.2.2.1 Data acquisition 

Nine Landsat OLI scenes (path 168 and row 74) were obtained for the study area from the 

USGS-EROS Centre archive (www.earthexplorer.usgs.gov) covering a period from September 

2014 to January 2016. This period covers three contrasting seasons for sufficient monitoring 

of perennial tree growth. The images were acquired as Level 1 terrain corrected (L1T) products 

with systematic geometric correction, orthorectification with a digital elevation model (DEM) 

and precision correction assisted by ground control chips (Roy et al., 2014; Peña & Brenning, 

2015). The reference period for data collection was December 2014 when field data was 

available. Three image scenes were selected for each season (October to March is the rainy 

season and May to September in the dry season) at a temporal spacing of about a month. A 

spacing of a month was considered sufficient for temporal monitoring of coffee crop health 

and to provide opportunities for obtaining images with less cloud cover for practical 

applications. The dates, day of year (DOY), cloud cover percentage and sun elevation angles 

of all the image scenes are shown in Table 4.1. Image scenes with the lowest percentage cloud 

cover over the study area were selected. 

 

http://www.earthexplorer.usgs.gov/
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Table 4.1: Detail on Landsat 8 Scenes used to derive NDVI  

Scene Date Day of year Cloud cover (%) Sun Elevation Local Season  

15 Sept 2014 258 0.00 53.5 Wet 

17 Oct 2014 290 7.00 62.5 Wet 

04 Dec 2014 338 0.00 64.4 Wet  

13 May 2015 133 0.05 41.9 Dry  

14 June 15 165 0.28 37.5 Dry 

16 July 2015 197 1.70 38.2 Dry 

20 Oct 2015 293 7.24 62.9 Wet 

23 Dec 2015 357 24.00 102.1 Wet 

08 Jan 2016 008 18.00 60.6 Wet  

 

4.2.2.2 Data pre-processing 

Since derivation of vegetation indices from satellite imagery is known to be sensitive to 

atmospheric conditions and also given the diversity of the dates and seasons of the Landsat 8 

OLI scenes, atmospheric correction was therefore necessary. Landsat 8 OLI L1T Digital 

Number (DN) images were first converted to TOA reflectance based on the available Landsat 

8 OLI calibration coefficients and standard correction formulas 

(http://landsat.usgs.gov/Landsat8_Using_Product.php) as described by Chander et al. (2009). 

These were then used to perform atmospheric correction of the 9 Landsat 8 OLI image scenes 

using  the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercube (FLAASH) 

radiative transfer model in ENVI  5.1  Software (Exelis Visual Information Solutions, Inc.; 

Boulder, CO, USA). This method takes into consideration the most likely atmospheric 

conditions for each DOY.  Cloud and cloud shadow contamination were then detected and 

removed using mask layers generated with the “Fmask” method and code (Zhu & Woodcock, 

2012; Zhu et al., 2015). Since the period between the first and the last image is only 18 months, 

there was no need to account for satellite signal decay over time. In order to ensure that there 

was a spatial match of the image pixels that were acquired at different dates, further geometric 

co-registration of the stacked Landsat 8 OLI scenes was performed using ten-ground control 

points. These were collected using a GPS with ~3m accuracy at noticeable places using first 

order polynomial (Affine) transformation. Root mean square errors (RMSE) obtained from 

each scene were checked and were considered acceptable, as they were all less than half the 

pixel dimensions.  

http://landsat.usgs.gov/Landsat8_Using_Product.php
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4.2.2.3 Derivation of vegetation indices 

NDVI was derived from Landsat 8 OLI band 5 (NIR, 0.851–0.879µm) and band 4 (Red, 0.636–

0.673µm) as shown in Equation 4.1 (Rouse et al., 1973; Tucker, 1979). LSWI was derived 

from band 5 (NIR) and band 6 (SWIR1, 1.57–1.65µm) as shown in Equation 4.2 (Xiao et al., 

2005; Torbick & Salas, 2014). Both bands had 30m ground sampling distance (GSD) and a 

radiometric resolution of 12 bits. 

NDVI =  
𝜌nir − 𝜌red

𝜌nir + 𝜌red
     [4.1] 

LSWI =  
𝜌nir − 𝜌swir

𝜌nir + 𝜌swir
    [4.2] 

4.2.3 Field data and statistical analysis  

Field data was collected during a field campaign conducted between the 15th and 16th of 

December 2014. During field campaigns, only healthy coffee sample locations were marked 

using a GPS and their age, variety and other general characteristics were also recorded (N=18). 

Three age groups which are young (1-4 years), mature (5-8 Years) and old (9 years +) were 

used for age-adjustment of the anomalies. To increase the number of samples for statistical 

analysis, the mean and the standard deviation of the 18 sample points were used to obtain pixels 

that represent healthy coffee as those whose NDVI values lie within two standard deviations 

of the mean of healthy coffee. Using this approach the number of samples increased to 71 for 

each age class (N=213). The one-way analysis of variance  (ANOVA) was performed in R (R 

Core Team, 2013) by taking age class as independent variable and pixel values extracted from 

sample points as dependent (response) variables (α≤0.05). Coffee NDVI and LSWI values 

extracted from field sample points (N=213) were first tested for the assumptions of normality 

using the Shapiro-Wilk test before being subjected to ANOVA. Where means were 

significantly different, ANOVA was followed by the Tukey pairwise comparison test for mean 

separation. The three coffee classes were selected because of their significance in determining 

coffee productivity. There is little to no productivity in the first four years of coffee (young) 

followed by maximum productivity between four and eight years (mature) and dwindling yield 

thereafter in the old age group (Logan & Biscoe, 1987; Nair, 2010). These groups also 

correspond to management requirements for coffee as intensive monitoring is required in the 

young and the old age groups to ensure productivity.   
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4.2.4 Anomaly detection and mapping 

In order to identify anomalous coffee patches, a method that uses pixel-based difference for 

identifying incongruous crop areas was adopted (Lanfredi et al., 2015; Venteris et al., 2015). 

The procedure presented here involves a statistical analysis of anomalies to identify 

incongruent patches in perennial coffee plantations. The analysis was done by identifying and 

analysing departures from expected mean values, with and without putting into consideration 

their age classes. The age map was derived from the map generated by Chemura and Mutanga 

(2016), Chapter 3.  The mean coffee NDVI and LSWI from the sample points were determined 

and used as the global coffee NDVI and LSWI means on which deviation of all coffee pixels 

was calculated. The global mean is the average coffee NDVI and LSWI for all the points and 

was computed for each image scene date. In addition, the average coffee NDVI and LSWI 

values for each age class were determined from the group means in the ANOVA procedure and 

used as the age- expected values for a particular age class. Using this age-class based mean, 

the deviation of each pixel from the age-expected mean for each image scene date was 

calculated using Equation 4.3.  

𝐼𝑛𝑑𝑒𝑥𝐷𝑖𝑓𝑓(%) =
𝑋𝑖𝐴−𝑋̅𝐴

𝑋̅𝐴
∙ 100     [4.3] 

where 𝑋𝑖𝐴 is the pixel NDVI or LSWI value in the image and 𝑋̅𝐴 is the mean NDVI or LSWI 

for a particular age group where the pixel belongs. This produces the distribution of deviation 

from the mean of NDVI and LSWI values around 0 for each age class and for each Landsat 

scene. This transformation is important as it filters the amplitude NDVI and LSWI deviation 

of each age group into values between 0 and -100 (patches that are less healthy than the normal 

sampled plots), and +100 (higher than the mean representing those pixels that are healthier than 

the normal sampled plots) around their age-class mean.  

To determine the pixels with excessive NDVI and LSWI deviation, focus was put on the left 

tail where values were less than the mean.  We used the inverse cumulative distribution function 

(ICDF) to obtain areas that are excessively lower in NDVI and LSWI than the mean for all 

identified coffee pixels. This was done for both the deviation of the global mean and the age-

based anomalies. The ICDF gives the value associated with a specific cumulative probability 

given the mean and the standard deviation of that data. The cumulative distribution function 

and the inverse ICDF are related by Equation 4.4 and Equation 4.5. The NDVI and LSWI 

anomalies were tested for normality using Shapiro-Wilk test before application of the ICDF to 

ensure that the assumptions of normality are met.  
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𝑝 = 𝐹(𝑥)      [4.4] 

𝑥 =  𝐹−1(𝑝)      [4.5] 

The threshold probability at 0.05 (outside two standard deviations) was set to be incongruent 

patches that were not performing well, when compared to their age peers. The area for those 

pixels was calculated and mapped in ArcGIS 10.3 (ESRI, Redlands, CA, USA). These 

calculations were done for each age and each scene from September 2014 to January 2016. 

4.2.5 Model evaluation  

The approach applied in this study was evaluated using the final binary coffee condition map 

obtained from one independent image scene. Reference data on coffee condition were  

collected using  visual  interpretations of very high resolution (VHR)  imagery within  Google  

Earth®)  as described by (Clark & Aide, 2011).  Google Earth VHR is increasingly being used 

in evaluation of remote sensing approaches particularly for those that involve historical 

archival data such as in this study (Dong et al., 2014; Landmann & Dubovyk, 2014; Reschke 

& Hüttic, 2014; Zhou et al., 2016). The sampled VHR imagery (taken on July 10, 2015) was 

close to the July 16, 2015 Landsat scene and this was therefore considered appropriate for 

evaluation. The image provider in the study area on which reference data was obtained is 

Digital Globe. The interpretation operator applied consistent rules including minimum area, 

observable crop density, crop stand and soil background cover for identification of a pixel as 

incongruous or normal. Only areas larger 30m x 30m were considered and interpreted in order 

to match Landsat 8 resolution.  The kml reference data points were exported to ArcGIS 10.3, 

re-projected and overlaid on the final incongruous/normal map and used to extract the condition 

for statistical analysis. A total of 47 points were used for validation (34 healthy and 13 

unhealthy) from the VHR imagery. Using this a confusion matrix from the reference validation 

data and classified map was developed.  

To evaluate model performance, five overall performance (overall accuracy (OA), prevalence, 

area under the receiver operating curve (AUC), false positive rate (FPR), false negative rate 

(FNR) and two class specific (producer’s and user’s accuracy) assessment measures were used 

(Foody, 2002; Brenning, 2009). The process of identifying healthy and incongruous patches in 

coffee plantations used in this paper is summarized in Figure 4.2. 
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Figure 4.2: Flowchart of the methodology to detect and map incongruous patches in coffee 

plantations using time series global and age-adjusted Landsat 8 NDVI and LSWI anomalies. 

 

4.3 Results 

4.3.1 Evaluating influence of age classes on vegetation indices 

Age class resulted in significant differences (p < 0.05) in coffee NDVI values for all the applied 

nine Landsat OLI scenes (p < 0.05), with four of the dates showing highly significant difference 

(p < 0.001) between classes (Figure 4.3a). Results also showed that age resulted in significant 

differences in LSWI for all image scene dates except one, 15 July 2015. For all scene dates, 

younger coffee had the lowest NDVI and LSWI values, followed by old coffee, with mature 

coffee exhibiting the highest NDVI values (Figure 4.3 and Figure 4.4). Although a similar trend 

was followed, the magnitude of differences in NDVI and LSWI among the three coffee age 

classes differed with scene date. For example, the difference between mean NDVI of young 

and mature coffee was quite remarkable for some dates such as 13 May 2015 and 8 January 

2016 when compared to other scene dates. Post-hoc pairwise comparisons showed that for 

some dates there were no significant differences in coffee NDVI means between mature and 

old (Figure 4.3a). This was more pronounced in LSWI as these two classes were significantly 
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different for only two dates out of the nine, indicating that LSWI was less able to differentiate 

between mature and old coffee when compared to NDVI (Figure 4.3b). 

 

Figure 4.3: Effect of age on mean (a) Landsat 8 Scene NDVI and (b) Landsat 8 Scene LSWI 

extracted from sample points for all the nine scenes. Means followed by the same letter are 

not significantly different after the Tukey HSD test (α ≤ 0.05). 

4.3.2 Determining anomalies  

The percentage difference of coffee NDVI and LSWI values from the age-expected mean for 

one image scene is shown in Figure 4.4. The deviation of the pixel values for the mature age 

class were mostly around zero (Figure 4.4b and 4.4e) indicating that the coffee in this class was 

more uniform compared to the young (Figure 4.4a and 4.4d) and old age classes (Figure 4.4c 

and 4.4f). It was therefore possible to identify areas that deviated immensely from their 

expected global and age-class expected NDVI and LSWI means both positively and negatively. 

Since it was assumed that negative percentage difference indicate incongruent patches, the 

focus of the analysis was on red areas on the maps, which had lower NDVI values  (Figure 
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4.5a-e) and LSWI (Figure 4.6a-e) than their expected mean. Between the 15th of September 

2014 and the 8th January 2016, there is evidence that some fields and parts of fields were either 

getting closer to their age-class or deviating from the mean over time. For example, in the 

south-eastern part of the maps (Figure 4.5 and Figure 4.6) , some young coffee fields began as 

red, indicating that they were below their age-expected mean (Figure 4.5a-4.5d) but by the end 

of the 8 Jan 2016 these patches had moved closer to their age-expected means (Figure 4.5e-

4.5i).  

 

Figure 4.4: Histogram plots of the percentage differences of coffee NDVI (a-c) and LSWI (d-

f) values from their age-expected mean values for the 4th of December image scene. 

The map for NDVI deviation from the age-adjusted means (Figure 4.5) and that of LSWI 

deviation from the age-expected means (Figure 4.6) showed temporal trends in coffee 

condition. For example, as from the 16th of July 2015, one of the fields in the northern part of 

the study area deteriorated in condition, and this further extended to neighbouring fields by 

January 2016. There are more pronounced temporal and spatial variations in deviations from 

NDVI (Figure 4.5) than those from LSWI (Figure 4.6) indicating that NDVI captured more 

variations than LSWI.  
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Figure 4.5: Spatial distribution of percentage deviation from age-expected NDVI mean over 

the study area across the nine Landsat 8 OLI image dates. 
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Figure 4.6: Spatial distribution of percentage deviation from age-expected LSWI mean over 

the study area across the nine Landsat 8 OLI image dates 

 

By applying the ICDF to the distribution curves of percentage difference of NDVI values 

(global and age-adjusted) and LSWI values (global and age-adjusted), it was possible to 

identify areas with excessive NDVI anomalies that could be regarded as incongruent for a 

specified image scene date. These maps were then used to evaluate the accuracy of the mapping 

and the output from the age-adjusted NDVI anomalies, the best performing in terms of accuracy 

metrics, is shown in Figure 4.7. As expected, the areas that greatly deviated from the mean 
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NDVI for their age class on the first three Landsat Image scenes were incongruent (Figure 4.7a-

c). From season two onwards, many of these were no longer incongruent as there were now 

within the range of their age-expected NDVIs for the age adjusted means (Figure 4.7d-i).  

 

Figure 4.7: Map showing the distribution of incongruent coffee patches because of excessive 

age-specific NDVI deviation from the mean for the nine Landsat 8 OLI Scenes. 

4.3.3 Accuracy assessment 

Comparison of model determined anomalous and healthy coffee patches with reference data 

showed plausible model performance for age-adjusted anomalies compared to the anomalies 

based on the global coffee mean (Table 4.2). Age-adjusted NDVI anomalies had the highest 

accuracy metrics (overall accuracy, prevalence and AUC) while having lower error metrics 

(FPR and FNR) compared to using the global coffee mean in identifying incongruous patches 
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(Table 4.2). Class based accuracy assessment showed that age-adjusted NDVI anomalies had 

the highest producer’s and user’s accuracies for normal coffee patches and the highest user’s 

accuracy for incongruous patches (Figure 4.8). Age-adjusted LSWI showed good performance 

for normal coffee patches in terms of user’s and producer’s accuracies but had lower user’s 

accuracy for incongruous patches compared to both global NDVI and age-adjusted NDVI. 

 

Table 4.2: Accuracy assessment of model performance 

Accuracy Metric Global NDVI  Age Adjusted NDVI Global LSWI  Age-Adjusted LSWI 

Overall 

Accuracy 66.4 77.2 49.2 66.0 

Prevalence 0.72 0.83 0.68 0.85 

AUC 0.59 0.67 0.41 0.54 

FPR 0.54 0.25 0.80 0.57 

FNR 0.26 0.23 0.37 0.30 

 

 

Figure 4.8: Producer’s and user’s accuracy for normal and incongruous patches for all 

different types of anomalies. 

4.3.4 Quantification of incongruous areas 

Given that the age-adjusted NDVI anomalies had the best performance, they were used to 

determine the location, size and proportion of coffee areas that are performing below their 

expected conditions at each scene date. The results indicated that the proportion of the coffee 
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fields that was considered incongruent decreased with time for the young coffee age category 

while it increased for the mature coffee class (Figure 4.9). From the results of the identified 

incongruent patches, it was obtained that 56.3ha (6.6%) of the total area under coffee in the 

study area was excessively below their age-expected NDVI on the 14th of September 2014. 

This had increased to 74.7ha (8.8%) of the area by the 8th of January 2016.  

 

Figure 4.9: Percentage area determined as incongruent from age-adjusted NDVI anomalies 

for all the nine Landsat 8 OLI image scenes. 

4.4 Discussion  

The aim of the study was to demonstrate a robust method for evaluating and incorporating age 

class in identifying incongruent patches in large coffee plantations by using plantations in 

Eastern Zimbabwe as a case study. To achieve this objective, NDVI and LSWI anomalies with 

and without age-adjustments derived from the Landsat 8 OLI data were used because of their 

improved sensor characteristics. These sensor characteristics were perceived to have the 

capability to improve the identification of healthy and anomalous areas and therefore map 

spatial heterogeneity of a perennial tree crop by using between and within field NDVI and 

LSWI variations.  

4.4.1 Effect of age on NDVI and LSWI values 

It was observed from the study that age significantly influences coffee NDVI and LSWI values. 

This indicates that there is a transition in terms of spectral signatures of coffee over time, 

although this is less pronounced between mature and old coffee. The age-classes used in this 

study have a known influence on various management and productivity aspects of coffee. This 

is because young coffee is mainly in the gestation period before reasonable yields are achieved, 

mature coffee represent the most productive and profitable stage and old coffee represent the 
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drooping stages of the plant when productivity, LAI and photosynthetic efficiency are 

decreased (Logan & Biscoe, 1987).  Moreover, younger coffee have a significant soil 

background influence, due to open canopies, which explains the observed significantly lower 

NDVI and LSWI values across all image scene dates (Chemura & Mutanga, 2016). Using high 

resolution QuickBird imagery, Campos et al. (2005) characterised the fractional components 

of different coffee fields to explain the observed significant effects of growth stage on NDVI 

and LSWI.  

Landsat 8 NDVI performed better than LSWI in terms of distinguishing between age classes 

and in terms of accuracy of the mapping of incongruous areas. NDVI is known to correlate 

well with plant biophysical characteristics that are affected by age, condition and other factors 

(Ke et al., 2015). It was expected that NDVI will have problems in handling mature coffee 

which tend to have more biomass per unit area and canopy cover. However, this was not so 

possibly because coffee and other plantation crops are systematically planted in rows and 

therefore do not exhibit the dense canopies in natural forests and grasslands or in high density 

crops where the problems of saturation are reported (Mutanga & Skidmore, 2004; Wang et al., 

2004). NDVI also performed better than LSWI for coffee possibly because LSWI is specific to 

water stress when the conditions of anomalous patches in this study were not only limited to 

water stress. This is despite the fact that some studies have linked water stress to crop stressors 

such as pests and diseases infestations, soil nutrient deficiency, and used water-sensitive 

vegetation indices to map these conditions (Peñuelas et al., 1994; Mutanga & Ismail, 2010; 

Oumar & Mutanga, 2014).  

4.4.2 Remote sensing-based identification of incongruent patches 

Transforming coffee NDVI and LSWI values into age-based deviation proved to be able to 

show and emphasize extreme patches that are either below or above their expected growth 

stages. For example, it was very clear how some patches moved from being incongruent to be 

in the range of their age-expected means for young coffee, indicating growth. This shows that 

although the age classes are wide (four years), they are able to provide a spatial and quantitative 

idea of crop performance for every Landsat 8 pixel per scene date. In addition, the results 

demonstrate that the change in characteristics of a particular pixel either naturally or after 

management intervention can be monitored using this approach. Although at this stage it is not 

possible to provide an indication of what is causing particular areas to be incongruous, 

identifying them provides not only the opportunity for managers to identify areas requiring 
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attention in large plantations, but provide opportunities for further application of remote 

sensing methods to determine causes at particular sites. Many hyperspectral, and high spatial 

and spectral resolution sensors can be focused on these specific areas to determine the cause of 

the below-average performance. For example, approaches demonstrated by Li et al. (2014) for 

citrus greening disease detection and Delalieux et al. (2009) for leaf biotic stress of apple plants 

can be targeted, making these more effective and cheaper. Methods such as linear discriminant 

analysis on hyperspectral data can then be used to detect levels of infection on specifically 

identified patches using satellite data, field spectroscopy UAVs or a combination of sensors 

(Zhang et al., 2012). However, not all pixels identified as incongruent are diseased or 

necessarily lagging in growth. This means that this method provides a first step in crop 

condition assessment, which can be followed up either by fieldwork or by other sensing 

approaches.  

Relationships between NDVI and physical characteristics in croplands is confounded by many 

other factors to be directly determined. Venteris et al. (2015), correlated NDVI anomalies of 

field crops with cumulative crop moisture index (CCMI) and concluded that the relationships 

were complex. This is possibly because it is not only soil moisture that explains NDVI variation 

of a pixel and this explains why LSWI did not perfume better than NDVI in this study. 

Therefore, a two-stage process maybe the most appropriate for practical field application of 

remote sensing crop stress where the first method identifies incongruent patches (as 

demonstrated in this study) and the other methods identifies and quantifies the causes of the 

observed incongruence. Higher spatial and spectral resolution data, such as Worldview 2 and 

Sentinel-2 data could be used in the second stage of identifying what exactly is responsible for 

the observed departures from age-expected vigour.  

Scene-based anomaly detection is more applicable in tropical areas because of problems of 

clouds and other surface characteristics that are dependent on sharp variations in seasons. For 

instance, many factors such as dry weather conditions and their effects on LAI explain the 

lower NDVI during the winter. The natural phenological cycle of coffee and field operations 

such as harvesting may have contributed to this (Brunsell et al., 2009; Bernardes et al., 2012). 

A general identification of anomalous areas could be more appropriate in plantation crops 

where crop conditions are a function of multiple stressors through opportunistic infections. For 

example, a short period of soil moisture stress could create opportunities for coffee white stem 

borer (Monochamus leuconotus) infestation which predisposes plants to pathogens, such as 

cercospora leaf spot (cercospora coffeicola) among others (Logan & Biscoe, 1987; Nelson, 



83 
 

2008; Kutywayo et al., 2013). In addition, crop insurance companies can also use this approach 

to objectively determine compensation for farmers by setting a threshold of farm area 

determined incongruent.  

It was expected that using age-adjusted anomalies would outperform use of the global mean in 

identification and mapping of incongruous patches in coffee. This is because Bausch (1993) 

pointed out that when the soil background effect is not factored in NDVI-based crop coefficient 

determination, there could be estimation errors of magnitudes exceeding 20%. In other studies, 

it was concluded that regression functions of plant biophysical characteristics with NDVI were 

significantly different at different growth stages (Sembiring et al., 2000; Freeman et al., 2007). 

From these it was concluded therefore that growth specific calibration is required when using 

NDVI for crop condition assessments but then this is impossible with coarse data. This points 

to the increasing requirement for age-mapping agricultural plantations to feed the information 

into precision phenotyping and characterisation that are required for many applications 

(Thenkabail et al., 2004b; Bhojaraja et al., 2015).  The challenge is therefore in having age-

disaggregated spatial datasets to enable applications of approaches like this. Merely separating 

a crop from other land use/cover types is still a challenge and thus extending the separation 

into within class classification brings further challenges. However, with improvements in 

sensor characteristics and availability of robust methods such as random forests, objected-

oriented classification and sub-pixel classification, this is becoming possible (Tan, 2013; 

Chemura & Mutanga, 2016).   

4.4.3 Potential limitations and future improvements 

The approach presented in this study could have some limitations, which provide opportunities 

for future development. Despite promising results, there are still several limitations of the 

proposed method that need to be considered. The study is dependent on a pre-determined age-

map also produced from Landsat 8 OLI data. An approach that could produce the age-map and 

concurrently identify anomalies could be easier to implement because not all areas have these 

age maps. The spatial resolution of the medium resolution Landsat 8 OLI data is large, meaning 

that it is not possible to identify specific individual plants that are anomalous due to infection, 

fertility and/or soil moisture deficit. Therefore, there is already considerable spread before the 

source of the anomalous plant is actually identified by this approach. However, it is known that 

causes of anomalous crop conditions, such as pest attacks, disease infections and fertility cause 

considerable damage to the plant system and even spread before any visual signs could be 

detected even by field methods (Carter & Miller, 1994; Eitel et al., 2011). This therefore means 
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that an anomalous pixel could actually have a mixture of problems which individual stress 

identification methods may give the error of omission, making the approach presented here a 

better option. In addition, since the method is not dependent on field samples, once expected 

mean values have been established or sample positions to collect them are set, there is huge 

opportunity for development of automated online platforms and apps for use in coffee 

monitoring from this approach.  

4.5 Conclusions  

In this study, the use of multi-temporal age-adjusted Landsat 8 OLI anomalies to identify and 

quantify within and between fields spatial heterogeneity of a perennial tree crop for informing 

management decisions was demonstrated. The following conclusions from this study were 

made: 

• Age class is a significant factor affecting coffee NDVI and LSWI and should be 

incorporated in using anomalies for identifying incongruent patches.  

• NDVI performs better in discriminating coffee age classes compared to LSWI and in 

accuracy of identifying incongruous patches. 

• Age-adjusted anomalies perform better than using anomalies from the global mean in 

detecting crop conditions for coffee plantations. 

• Although this method is promising for long-term monitoring of perennial tree crops 

which are in the field for decades, further studies are still required to validate the 

applicability of this method in other plantation crops.  

 

4.6 Link to next chapter  

This chapter demonstrated the ability of multispectral level remote sensing data to identify and 

quantify anomalous areas in coffee fields using age adjusted NDVI anomalies. The next two 

chapters experimentally evaluates the ability of the multispectral remote sensing data to 

identify specifically the cause of the anomalies using case studies of abiotic stressor (plant 

water stress) and biotic stressor (coffee leaf rust). 
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CHAPTER 5: MULTISPECTRAL LEVEL REMOTE SENSING 

OF PLANT WATER CONTENT IN COFFEE 

 

 

            Photo credits: A. Chemura (2017) 
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Abstract  

Water management is an important component in agriculture, particularly for perennial tree 

crops such as coffee. Proper detection and monitoring of water stress therefore plays an 

important role not only in mitigating the associated adverse impacts on crop growth and 

productivity but also in reducing expensive and environmentally unsustainable irrigation 

practices. Current methods for water stress detection in coffee production mainly involve 

monitoring plant physiological characteristics and soil conditions. In this study, the ability of 

selected wavebands in the VIS/NIR range to predict plant water content (PWC) in coffee using 

the random forest algorithm was tested. An experiment was set up such that coffee plants were 

exposed to different levels of water stress and reflectance and plant water content measured. In 

selecting appropriate parameters, cross-correlation identified 11 wavebands, reflectance 

difference identified 16 and reflectance sensitivity identified 22 variables related to PWC. Only 

three wavebands (485nm, 670nm and 885nm) were identified by at least two methods as 

significant. The selected wavebands were trained (n=36) and tested on independent data (n=24) 

after being integrated into the random forest algorithm to predict coffee PWC. The results 

showed that the reflectance sensitivity selected bands performed the best in water stress 

detection (r = 0.87, RMSE = 4.91% and pBias = 0.9%), when compared to reflectance 

difference (r = 0.79, RMSE = 6.19 and pBias=2.5%) and cross-correlation selected wavebands 

(r = 0.75, RMSE = 6.52 and pBias = 1.6). These results indicate that it is possible to reliably 

predict PWC as part of coffee condition assessment using wavebands in the VIS/NIR range 

that correspond with many of the available multispectral scanners using random forests and 

further research at field and landscape scale is required to operationalize these findings.  

Keywords: Plant water content, water stress monitoring, remote sensing, coffee, random 

forests 
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5.1 Introduction 

Plantation agriculture uses more water per unit area per year than other agricultural enterprises 

(Prosser & Walker, 2009). This is because perennial tree crops are usually large plants with 

high leaf areas that consequently transpire more water, their tree canopy intercepts more rain, 

they often have deeper roots and use water over the whole year (O’Loughlin & Nambiar, 2001; 

Farley et al., 2005; Gordon et al., 2005). Since coffee (Coffea arabica) evolved from the 

highlands of Ethiopia (Coste, 1992), it is commonly produced in headwater catchments of river 

systems where its total moisture requirements are considerably influenced by the annual 

evaporation which, in turn, is influenced by the relative humidity, temperature, lengths of 

overcast weather and the amount and nature of rainfall (Logan & Biscoe, 1987; Hess et al., 

1998). Consequently, irrigation is a necessity for successful coffee production in many areas 

due to the heightened increase in temperatures and reduced rainfall as a result of climate change 

and variability (ICO, 2009; Schroth et al., 2009). However, even in areas where a reliable 

source of good quality water supply is available, irrigation comes with increased costs of 

installation, water pumping and maintenance (Masarirambi et al., 2009). A water management 

program is therefore used in coffee production. Water availability is a critical factor for coffee 

plant survival, development and productivity and the monitoring of plant water status has 

important implications for profitability and sustainability.  

Coffee plants affected by water stress go through a variety of physiological processes, such as 

damage or removal of the waxy cuticle, destruction of cell walls, reduced stomatal conductance 

and retarded rates of net carbon assimilation (DaMatta, 2004). This does not only affect growth 

and productivity, but predisposes the plant to infestation by opportunistic insect pests and 

diseases such as coffee white stem borer and coffee leaf rust (Kutywayo, 2002a; Gay et al., 

2006; Ghini et al., 2011). Current plant water management and monitoring approaches in coffee 

production include general calendar-based irrigation scheduling, use of tensiometers, use of 

soil moisture probes and reliance on experienced farm managers who occasionally stroll the 

fields looking for signs of moisture stress (Logan & Biscoe, 1987). This is because precise 

laboratory based plant water content (PWC) quantification is time consuming, expensive and 

reliant on sampling, which is usually not very representative of the entire field condition, above 

being prone to instrumental and human errors (Glenn et al., 2008).   

Remote sensing, particularly the use of hyperspectral sensors provides very promising options 

for early, objective and spatially resolved water stress detection for coffee management. 

Hyperspectral remote sensing data consists of many, very narrow contiguous spectral 
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wavebands located from the visible, near infrared, mid-infrared and thermal infrared portions 

of the electromagnetic spectrum. Many studies have confirmed the existence of strong water 

absorption bands in specific channels of the mid-infrared region of the electromagnetic 

spectrum specifically at around 1175nm, 1450nm, 1650nm, 1940nm, 2250nm and 2500nm 

(Carter, 1991; Glenn et al., 2008; Jeger & Pautasso, 2008). In addition, to the mid-infrared 

region having primary bands associated with plant water content, the visible to near infrared 

(VIS/NIR) region (400-1300 nm) has secondary water content related bands that can be used 

in water stress detection (Carter & Miller, 1994; Lin, 2011). This is possible because plant 

water content has several primary and secondary effects on leaf characteristics, which in turn 

influences leaf, canopy and top-of-the-atmosphere scale spectral reflectance.  

Primary effects of water absorption are associated with water absorption that occurs in the mid 

infrared range, where they result in water mediated decrease in leaf reflectance in turgid plants, 

when compared to leaves with less water content (Carter, 1991). Secondary effects of water 

content on the spectral reflectance of leaves are influenced by the transmissivity of water that 

occur because of the leaf internal structure, cell size and cell shape and besides they are less 

pronounced when compared to primary effects (Carter & Miller, 1994; Oumar & Mutanga, 

2014). These secondary effects are therefore very attractive from a remote sensing perspective, 

since relying on the full width reflectance of the electromagnetic spectrum for detecting and 

quantifying water deficit stress in field crop management present greater challenges in data 

handling, dimensionality, costs and noise, all of which dissuade potential users to rely on this 

range of data for determining water deficit stress in crops. 

Using secondary effects of water absorption on leaf reflectance, Peñuelas et al. (1994) 

developed the water band index (WBI) which is based on the ratio between the water band at 

970 nm and reflectance at 900 nm which has been widely used in plant water content 

assessments with remote sensing. For example, Oumar and Mutanga (2014) observed that the 

WBI was the most important variable that uses reflectance from the optical domain in 

estimating plant water thickness (EWT). Similarly, Eitel et al. (2006) found significant 

correlations between WBI and PWC (r = 0.90), and WBI and EWT (r = 0.88). This indicates 

that secondary effects of water absorption that occur in the VIS/NIR region of the spectrum 

could be useful in estimating PWC and EWT in crop plants, without using the primary effects 

found beyond 1000nm. This is important because many of the identified wavebands and 

consequently resultant vegetation indices for water stress detection that use primary effects of 

water absorption coincide with very intense atmospheric water vapour absorption (Lillesand & 
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Kiefer, 2008; Kahn et al., 2011). This limits operational remote sensing using these in tropical 

areas that are producing perennial tree crops such as coffee. In addition, many of the studies on 

PWC estimation using remote sensing, focused on detecting fuel moisture content (FMC) in 

fire risk modelling across large natural ecosystems (Omont et al., 2006; Lin, 2011; Ortega-

Huerta et al., 2012; Dixon & Garrity, 2014), in timber plantations (Jeger & Pautasso, 2008; 

Mutanga & Ismail, 2010; Oumar & Mutanga, 2014) and annual crops (Liu et al., 2003; Venteris 

et al., 2015) and yet these are significantly different from tree crops, such as coffee in terms of 

leaf area index (LAI), leaf angles, canopy structure and photosynthetic channels.  

The ability to predict plant water stress using wavebands in the VIS/NIR region allows for the 

early detection of unnoticeable stress that is caused by water stress associated with soil 

moisture, disease infestation and pest attack, while opening opportunities for stress detection 

using handheld scanners, multispectral satellite scanners and simple unmanned aerial vehicles 

(UAV). The objective of this study therefore was to evaluate the effectiveness of wavebands 

in the VIS/NIR region in predicting coffee PWC. This objective is achieved by identifying the 

most significant water stress related wavebands that can be integrated into a modelling 

algorithm for efficient PWC estimation in coffee in order to ensure economic sustainability 

while reducing unnecessary water losses and related financial and environmental costs.  

 

5.2 Materials and methods 

5.2.1 Study area 

The study was carried out at Coffee Research Institute (CoRI) in Chipinge, Zimbabwe. CoRI 

is located at coordinates 32°37.523’E and, 20°12.474’S at an altitude of 1100 m.a.s.l. The 

average annual rainfall is 1180mm of which 80% falls in five months from November to March. 

The mean maximum temperature is 20˚C and minimum is 14˚C. Most of the soils in this area 

are leached and strongly weathered and in the Orthoferralitic group derived from Umkondo 

quartzite and sandstone (Chemura, 2014). Chipinge is in the main coffee production zone in 

Zimbabwe.  

 

5.2.2 Experimental materials and design  

Six months old healthy coffee seedlings (variety Catimor 129) were used in the study. These 

seedlings were transplanted into black polythene pots (29cm x 13.5cm) at four months and 

were allowed two months to acclimatize the conditions of the greenhouse before 
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experimentation. This age represented the minimum age at which coffee can be transplanted 

into the field. The seedlings were grown in the nursery in recommended growth medium for 

raising coffee seedlings and all other routine nursery management activities were based on 

nursery recommendations from the Coffee Handbook (Logan & Biscoe, 1987).  

5.2.3 Moisture stress treatments  

The six months old seedlings were subjected to water stress treatments by withholding and 

varying water supply to the plants to obtain a range of soil moisture. Three treatments were 

used for inducing plant water stress; each replicated 20 times (60 plants). The first batch had 

no moisture stress where the seedlings were provided with required irrigation twice a week 

(not stressed). The second had plants being provided irrigation once a week (moderate stress) 

while the third had plants that were not provided with irrigation water for two weeks prior to 

spectral assessments and PWC measurements (severe stress). This allowed for a gradient in 

plant water content.  

5.2.4 Spectral reflectance measurements 

On each plant, spectral reflectance was measured on one of the leaves on the third node from 

the top. This was done to sample mature coffee leaves that are representative of those in the 

field. Reflectance was measured using an Apogee VIS-NIR spectrometer (Apogee Instruments, 

Inc., Logan, UT, USA) which has an effective spectral range of 400-900 nm and a spectral 

resolution of 0.5 nm. Each reading consisted of an average of three spectral scans, taken at 15 

cm above the coffee leaf of interest at 30° angle. A white polytetrafluoroethylene (PTFE) 

reflectance standard was used as a reference, and reflectance by wavelength was calculated as 

the ratio of scene reflectance to the reflectance of the standard. The reflectance was averaged 

to 10nm to reduce dimensionality and a moving Savitzky–Golay filter with a frame-size of 5 

data points and a 2nd order polynomial was employed to smooth the spectra (Savitzky & Golay, 

1964).  

5.2.5 Leaf water content measurements 

The physiological characteristics (leaf length, width, fresh weight and dry weight) of the leaves 

on each plant that was used in spectral sampling was recorded. Fresh weight (FW) was 

measured soon after reflectance measurements, using an electronic balance on site. For 

determining dry weight, the leaves were placed in tagged containers and placed in an oven set 

at 70°C for 8 hrs and afterwards their mass was measured using the digital balance. Plant Water 

Content (PWC) was calculated after Liu et al. (2003) as in equation 5.1. 
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PWC(%) =  
FW(g)−DW)(g)

FW(g)
∗ 100                                          [5.1] 

5.2.6 Identification of water stress related wavebands 

Hyperspectral data are high dimensional and exhibit a high degree of inter-band correlation, 

leading to data redundancy that can cause convergence instability in models (Thenkabail et al., 

2004a; Blackburn, 2007). Therefore, the use of fewer wavebands is preferable for more stable 

modelling of plant biophysical parameters and chemistry with hyperspectral data. It is also 

easier to implement in field applications. Variable selection methods attempt to capture the 

maximum information present in the original assorted data, while concurrently making sure 

that the selected data  remain fit for purpose (Fodor, 2002; Demšar et al., 2013). Many variable 

selection methods have been reported for use with remote sensing data. Each has unique data 

processing capabilities and potential applications in selecting useful wavebands. The objective 

of all variable selection methods is to produce a list of features arranged by their discriminatory 

ability and therefore provides a means by which an optimal feature subset can be used in 

modelling from remote sensing data. Since no single best approach was available to determine 

the optimal number of bands required for coffee PWC modelling, three variable selection 

methods were used in this study, which are cross-correlation threshold, reflectance difference 

and reflectance sensitivity.   

5.2.6.1 Cross-correlation threshold  

Cross correlation is a standard measure of degree of similarity between two band matrices and 

is optimized for faster calculation and /or more accurate results (Ahmed et al., 2012). This 

method is dependent upon covariance calculation between the two wavebands, and can be 

adjusted for brightness and contrast using normalization (Wang et al., 2008). The higher the 

correlation between the bands, the more the similarity in their spectral characteristics for a 

feature of interest and vice-versa. Therefore, in the correlation matrix all areas of low 

coefficient of determination (R2) values are the waveband regions with the least redundancy 

and the highest information content and therefore should be retained (Thenkabail et al., 2004a). 

As such, a cross-correlation threshold should be set, beyond which datasets should be 

considered unsuitable for modelling. As expected, the adjacent bands of the hyperspectral data 

had very high inter-correlations, meaning that they are redundant. In this study this threshold 

was set as R2=0.95, meaning that for wavebands with a coefficient of determination of more 

than 0.95, only one was retained. 
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5.2.6.2 Reflectance difference  

The reflectance difference of the stressed treatments to the unstressed to calculate the spectral 

difference between the irrigated, moderate and severely stressed plants was also used. The 

objective of reflectance difference was to identify a few important bands based on the peak 

value of the reflectance difference across the three treatments, but not to seek the variation in 

the peak value itself. The mean reflectance values for each water deficit stress treatments was 

considered instead of that of individual replicates. Relative difference in reflectance, due to 

water stress was measured by calculating the reflectance difference at each wavelength after 

Riedell et al. (2003): 

Reflectance Difference(RD) = (Relectance of Stressed − Reflectance of Unstressed) [5.2] 

5.2.6.3 Reflectance sensitivity  

The reflectance sensitivity method is an extension of the reflectance difference method where 

the difference between the stressed and the non-stressed leaf reflectance is considered as a 

proportion to the reflectance of the non-stressed samples. This method therefore normalizes the 

differences in spectral reflectance to the origin. The wavebands with the highest reflectance 

sensitivity represented the areas of the spectrum with the most important information and were 

therefore selected. Reflectance sensitivity was calculated after (Riedell et al., 2003): 

Reflectance Sensitivity(%) = [(RD/Reflectance of Unstressed) ∗ 100]   [5.3] 

5.2.7 Modelling approach  

The Random Forest (RF) algorithm was used for modelling PWC from selected wavebands. 

RF is an ensemble machine learning algorithm developed by Breiman (2001) to solve 

classification and regression problems through a multitude of decision trees. RF employs an 

iterative bagging (bootstrap aggregation) operation where a number of trees (ntree) are 

independently built, using a random subset of samples from the training samples. Each tree is 

then independently grown to a maximum size based on a bootstrap sample of about two-thirds 

the training dataset. Each node is then split using the best, among a subset of input variables 

(mtry). The ensemble then classifies the data that are not in the trees as out-of-bag (OOB) data, 

and by averaging the OOB error rates from all trees, the RF algorithm gives an error rate called 

the OOB error for each input variable (Gislason et al., 2004; Breiman & Cutler, 2007). In many 

applications, this algorithm produces one of the best accuracies to date and has important 

advantages over other techniques in terms of ability to handle highly non-linear data, 

robustness to noise and tuning simplicity (Rodriguez-Galiano et al., 2012; Lebedev et al., 
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2014). The default number of trees (ntree) of 500 was used while mtry is automatically 

determined as the square root of the total number of variables used (Breiman, 2001). The r 

package randoForest was used for running the RF modelling (Liaw et al., 2009). 

5.2.8 Model evaluation 

The field data was randomly partitioned into 60:40 for model training and validation 

respectively. Several error indices are commonly used in model evaluation and some of them 

were applied to compare RF model performances and to assist in identifying the best 

performing variable selection methods. All model evaluation metrics were performed on 

independent data. The correlation coefficient (r) and coefficient of determination (R2) was used 

to assess the goodness of fit of the predicted PWC and measured PWC values. In terms of 

performance, the best model should be identified as the one with the largest r and R2. In 

addition, mean absolute error (MAE, Equation 5.4) root mean square error (RMSE, Equation 

5.5), normalized root mean square error (nRMSE(%), Equation 5.6) and percent bias (pBias 

(%), Equation 5.7) were used to determine the errors of the model in predicting PWC from 

selected variables. For MAE, RMSE, and pBias values of 0 indicate a perfect fit between 

measured and predicted PWC (Ghini et al., 2011). MAE is the average of the absolute values 

of the differences between predicted and measured values. RMSE is one of the commonly used 

error index statistics and the lower the RMSE the better the model performance. pBias 

measures the average tendency of the simulated data to be larger or smaller than their observed 

counterparts and positive values indicate overestimation whereas negative values indicate 

model underestimation (Ghini et al., 2011).  
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)      [5.7] 

where for all cases n is the number of data points, yi is the measured PWC (%) at that data point 

and ŷi is the model predicted PWC (%) at that data point.  
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5.3. Results  

5.3.1 Coffee plant water content and reflectance 

The distribution of the PWC for all the samples is shown in Figure 5.1. The descriptive statistics 

of the plant water content for each of the three treatments used in the study are shown in Table 

5.2. PWC ranged between 27.9% and 76.8% in all treatments, with an average of 53%. The 

results showed that reflectance from the stressed plants was higher than reflectance of the plants 

that had constant water supply (Figure 5.2a). Correlating the PWC with reflectance of each 

wavelengths showed that the PWC was negatively correlated with reflectance and that highest 

correlations were in the NIR bands (Figure 5.2b).  

 

Figure 5.1: Distribution of plant water content of coffee leaves used in the study. 

Table 5.1: Descriptive statistics of the PWC for the three stress levels. 

Treatment Min Max Mean SD 

Irrigated  45.67 76.84 55.33 4.9 

Moderate Stress  37.89 65.06 54.92 11.2 

Severe stress 27.86 64.26 48.73 9.8 

5.3.2 Variable selection  

5.3.2.1 Cross-correlation threshold 

The results showed that the bands in the same regions were highly correlated and therefore 

redundant in modelling PWC. Inter-region cross correlation was particularly low between the 

NIR region and the red-edge region of the spectrum (Figure 5.2a). Lower correlations were 
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also observed between the NIR range and the visible parts of the spectrum. The application of 

the cross correlation threshold on the correlation matrix resulted in eleven wavebands being 

selected as having unique and independent information and therefore could be used in 

modelling PWC. Five of these wavebands were located in the red-edge position (between 600 

and 700nm) while four were in the NIR region with only two bands being in the visible region 

of the spectrum (Figure   5.2b).    

 

Figure 5.2: Coefficient of determination for (5.2a) all wavebands between 400 and 900 and 

(5.2b) selected wavebands using the threshold R2. 

5.3.2.2 Reflectance difference and reflectance sensitivity  

The reflectance difference and reflectance sensitivity functions were applied on the spectra for 

variable selection. Reflectance difference selected 16 variables mainly in the NIR range 

between 830nm and 900nm. Two difference inflection points between the water stressed and 

the irrigated treatments were identified at 705nm and 735nm as important variables (Figure 

5.3a). These indicate the wavelength at which reflectance difference is highest between the 

irrigated, the moderate stress and the severe stress treatments and thus, the wavelengths at 

which the PWC can be successfully separated. Normalising the differences by calculating the 

ratio of the reflectance difference to the FW produced a different set of variables than that 

obtained from reflectance differences. Variables selected were in the visible range and in the 

red-edge region of the spectrum with no variables selected in the NIR region (Figure 5.3b).   
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Figure 5.3: The application of the reflectance difference and reflectance sensitivity for 

variable selection. Figure 5.3a shows the variables selected using reflectance difference and 

Figure 5.3b shows the variables selected using reflectance sensitivity. 

5.3.3 Variable importance  

The variable importance obtained from the internal RF variable ranking for each method are 

shown in Figure 4. Two variables (the 775nm and 885nm) are distinctively significant in PWC 

estimation for the variables selected through cross-correlation (Figure 5.4a). 830nm and 890nm 

parameters were observed to be very important of the variables selected by reflectance 

differencing (Figure 5.4b). There were many variables considered important in predicting PWC 

in the variables selected by reflectance sensitivity, indicating a combined influence of 

parameters on the output rather than individual significance of parameters (Figure 5.4c). 

 

Figure 5.4: Variable importance of wavebands used in modelling plant PWC as selected by 

(5.4a) Cross-correlation (5.4b) Reflectance Difference and (5.4c) Reflectance Sensitivity. 

5.3.4 Model performance evaluation  

5.3.4.1 Cross-correlation threshold 

The wavebands selected by cross-correlation were trained using the training dataset (n=36) and 

their coefficients were then used to predict PWC on independent validation dataset (n=24). The 

use of variables selected by cross-correlation resulted in a good fit between RF predicted and 

measured PWC (r=0.75, RMSE=6.52, Figure 5.6a). The RF model had a positive bias meaning 

that it was overestimating water content.  
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5.3.4.2 Reflectance difference  

The fit between measured and predicted PWC from reflectance difference selected variables 

was better than that obtained from cross-correlation threshold selected variables. The 

correlation coefficient between measured and RF predicted PWC was 0.79 with a reduced 

RMSE to 6.19 (Figure 5.6b). Reflectance selected variables; however, had the highest positive 

bias (2.5%), showing that there was an overestimation of when predicted values are compared 

to the measured values.  

5.3.4.3 Reflectance sensitivity  

Reflectance sensitivity selected variables had the best fit to data, when compared to other 

variable selection methods. It had the highest correlation coefficient of 0.87,  the lowest RMSE 

of 4.91% and the least bias of 0.9% (Figure 5.5c). Other model performance values used in 

evaluating the performance of the three variable selection methods are shown in Table 5.2.  

 

Figure 5.5: One-to-one plots showing performance of the RF model for predicting PWC from 

wavebands for selected through (5.5a) Cross-Correlation, (5.5b) RD and (5.5c) RS. 

 

Table 5.2: Summary model performance evaluation using test dataset (n=24) 

Selection Method N r R2 
MAE 

(%) 
RMSE (%) nRMSE (%) pBias (%) 

Cross-Correlation 11 0.75 0.57 5.65 6.52 67.5 1.6 

Reflectance 

Difference 
16 0.79 0.62 4.83 6.19 64.2 2.5 

Reflectance 

Sensitivity 
22 0.87 0.76 3.21 4.91 50.9 0.9 
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5.4 Discussion 

This study aimed at evaluating the effectiveness of wavebands in the VIS/NIR region in 

modelling PWC in coffee, a perennial tree crop of economic importance. This was achieved by 

identifying the most significant water stress related wavebands, using three methods and these 

were integrated into random forests, a novel modelling algorithm. The prediction of plant water 

content in plantation crops, such as coffee is very important for maintaining productivity, 

profitability, crop health and in safeguarding long-term investments that farmers make in their 

plantations. In coffee production, reliable estimates of plant water content are not just required 

for keeping growth vigour but for necessary agronomic practices, such as inducing uniform 

and high level of flowering in a short window of time, without which yield and quality, two 

important parameters in determining farmers’ returns, are significantly reduced (Masarirambi 

et al., 2009). Therefore, the ability of remote sensing to provide accurate plant water content 

estimates for coffee as shown in this study bring opportunities for improved production and 

profitability in the sector, while safeguarding water resources.   

5.4.1 Comparison of variable selection methods 

This study has identified secondary wavebands in the VIS/NIR region that can be used for 

estimation of PWC in coffee plants for field level decision making. Sensitivity could have 

produced very good predictive performance for PWC because unlike reflectance difference, it 

magnifies points where the effects of the water stress are most significant relative to their 

origin. Therefore, the overall difference in reflectance between the irrigated and water stressed 

may not be as important as the percentage change in reflectance. This is important in order to 

normalize the effect of water stress across the spectrum that is known to have significant 

patterns in vegetation reflectance, particularly in the NIR region. The cross-correlation 

threshold produced good results, but were inferior to the other methods. This is possibly 

because this method is not in any way related to the plant condition, as it just considers the 

characteristics of one waveband’s reflectance in relation to another waveband, and not its 

behaviour as caused by the stress.  

5.4.2 Range of identified bands for PWC estimation  

It is worth noting that the variables selected by reflectance sensitivity were mainly in the red-

edge and the visible, particularly the blue region of the spectrum, with none in the NIR region. 

This result was rather unexpected because vegetation reflectance in this region is strongly 

influenced by chlorophyll, dry matter and leaf internal structure (Lin, 2011; Ortega-Huerta et 

al., 2012). Since this study is focused on one plant species, coffee, the influence of these factors 
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could be discounted, as they are more apparent in PWC estimation over multiple plant species 

whose biophysical parameters could be widely different. What is very surprising is the 

conspicuous absence of application of the blue region in PWC in order to make comparisons 

with this study. Many of the studies on PWC estimation effectively excluded the blue region 

of the spectrum (Lin, 2011; Ortega-Huerta et al., 2012; Dixon & Garrity, 2014), which is 

commonly regarded as the “water band” in remote sensing. When Kahn et al. (2011) evaluated 

the significance of wavebands related to effective leaf water thickness (EWT), they noted that 

425nm was important in plant water estimation, which concurs with findings in this study. In 

this study, 430nm waveband was ranked as the most important band for all the bands selected 

by RS in predicting PWC.  

These results compare well with studies that applied the known water absorption bands in the 

mid-infrared spectra such as at 1450nm, which obtained correlations of 0.78 (Mutanga & 

Ismail, 2010; Oumar & Mutanga, 2014). However, the seemingly better correlation observed 

in this study could stem from the fact that there was a direct sensing of water content in this 

study in healthy plants while in other studies the focus was on predicting water content in 

disease/insect infected crops. Other studies used both raw and first-derivative reflectance to 

predict plant water content and got very promising results (Kumar, 2007) while other used 

vegetation indices to predict PWC (Eitel et al., 2006).  

5.4.3 Potential applications and limitations  

The results presented in this study are important for coffee, which unlike other field crops, has 

an added water requirement for stimulating flowering (Logan & Biscoe, 1987). This additional 

role of water management in breaking bud dormancy and subsequent floral development has a 

direct influence on yield capacity and is dependent on the continuation of satisfactory plant 

water relations. This is additional to the water required to support maximum vegetative growth 

and berry development. If water is not supplied in adequate amounts, water stress will result in 

a drop in the rate of vegetative growth and if this is prolonged it will result in leaf fall and 

dieback, and if during bean filling, it will result in bean abortion, which reduces yield of coffee 

(Nair, 2010).  

In addition, the ability of wavebands in the visible and NIR range to predict PWC is very 

attractive for application of multispectral scanners, particularly of high spatial resolution 

sensors and simple UAVs in PWC estimation. Using high spatial resolution sensors, such as 

GeoEye, WorldView-2 and 3, RapidEye and Sentinel series is very important for predicting 
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PWC as part of precision agriculture. This is because, as explained by Lin (2011) it is not 

possible to use low-resolution satellite data for PWC estimation at species level because one 

pixel will usually contain a mixture of several species and soil backgrounds which will affect 

the results. In addition to their ability to focus on specific crop fields and super-spectral bands 

strategically positioned across important regions of the spectrum, there is therefore potential 

for use of wavebands in the VIS/NIR region for PWC prediction.  

The study, however, relied on healthy coffee leaves and under field conditions; other factors 

may influence the accuracy of the results. For example, plant diseases and insect infestations 

(Mutanga & Ismail, 2010; Oumar & Mutanga, 2014) tend to have an influence on plant water 

content and these are not accounted for in this study. In many areas around the world, coffee is 

often produced under shade, which may also limit the application of remote sensing approaches 

to detect PWC. Consideration of other factors that can affect PWC estimation such as age of 

the coffee plants can be handled by prior age-mapping before  a method such as this is 

implanted (Chemura & Mutanga, 2016). Nonetheless, this study is important in proving a 

method for detecting PWC using a few selected bands in the VIS/NIR region making possible 

for wider application of PWC prediction using multispectral sensors and UAVs.  

5.5 Conclusions  

This study presents findings on the ability of spectral features in the multispectral region of the 

spectrum to predict coffee PWC. It was concluded that hyperspectral wavebands in the 

VIS/NIR region selected by sensitivity analysis produce the best accuracy and the least errors 

in PWC estimation in coffee. Overall, this study provides a basis for application of remote 

sensing in precision irrigation planning, which has benefits in terms of crop productivity and 

in reducing unnecessary losses associated with excessive irrigation.   

5.6 Link to next chapter 

This chapter presented the ability to model plant water content as an individual coffee stressor 

from multispectral remote sensing data. Plant water stress can explain the anomalies identified 

in Chapter 4. The next chapter presents an assessment of remote sensing to identify an 

individual biotic stress factor, coffee leaf rust which can also specifically explain coffee plant 

condition.  
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CHAPTER 6: MULTISPECTRAL LEVEL REMOTE 

SENSING-BASED DISCRIMINATION AND SEVERITY 

MODELLING OF COFFEE LEAF RUST 
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Abstract  

Coffee leaf rust (CLR), which is caused by the fungus Hemileia vastarix, is a devastating 

disease in coffee producing countries and remote sensing has the potential to detect and monitor 

the disease. This study evaluated the detection, discrimination and quantification of CLR 

infection levels to inform on possibility of using Sentinel-2 data for disease monitoring. Field 

spectra was resampled to the band settings of the Sentinel-2 MSI sensor. The ability of remote 

sensing to discriminate levels of infection was evaluated using the random forest (RF) and 

partial least squares discriminant analysis (PLS-DA) algorithms with and without variable 

optimization. For modelling severity, the non-linear radial basis function-partial least squares 

regression (RBF-PLS) was employed. The results showed that using all variables, Sentinel-2 

MSI derived vegetation indices achieved higher overall accuracy of 76.2% when compared to 

69.8% obtained using raw spectral bands. Using the RF OOB scores, 4 spectral bands and 7 

vegetation indices were identified as important variables in CLR discrimination. Using the 

PLS-DA VIP score, 3 spectral bands (B4, B6 and B5) and 5 vegetation indices were found to 

be important variables. Use of the identified variables improved the CLR discrimination 

accuracies for both the RF and the PLS-DA. The RBF-PLS derived models satisfactorily 

modelled CLR severity (R2=0.92 and RMSE=6.1% with all bands and R2=0.78 and 

RMSE=10.2% with selected bands) when compared to PLS (R2 = 0.27 and RMSE = 18.7% 

with all bands and R2 = 0.17 and RMSE = 19.8% with model optimally selected bands). 

Specifically, four bands; Band 2 (490nm), Band 4 (665nm), Band 5 (705nm) and Band 7 

(783nm) were identified as the most important spectral bands in modelling CLR severity. 

Better accuracy was obtained in modelling severe levels of CLR (R2=0.71 with all variables) 

when compared to moderate infection levels (R2=0.38 using all variables). Overall, this study 

underscores the applicability of Sentinel-2 MSI spectral settings for accurate disease 

monitoring and modelling in producer countries as part of crop condition assessment, which 

can be confounded by co-occurrence of other crop characteristics that affect the spectral 

signature and spatial resolution of the bands. 

 

Keywords: disease discrimination, red-edge, precision agriculture, variable optimization, 

resampled data, swath-width 
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6.1 Introduction 

There are increases in severity and frequency of coffee biotic and abiotic stressors such as 

diseases, pests and drought that are limiting yield and quality of coffee produced, with 

consequences on livelihoods and economies dependent on coffee production. Regular and 

systematic monitoring of these is therefore required for sustainable and profitable coffee 

production.  Coffee leaf rust (CLR), caused by the fungus Hemileia vastatrix, is the most 

destructive disease and threat to coffee production the world-over (Ghini et al., 2011; Cressey, 

2013). The disease is most severe on Coffea arabica, which accounts for about 70% of the 

world coffee production and supply (Dinesh et al., 2011). Unlike other plant fungal diseases, 

CLR is not necrotic and its symptoms appear only on the underside of the leaves where the 

pathogen penetrates through the stomata, resulting in small yellowish lesions, which grow and 

coalesce to form uredospore with a distinct yellow or ‘rustic’ colour (Gouveia et al., 2005; 

Belan et al., 2015). In the absence of early detection and proper management, CLR results in 

up to 50% loss of leaves and 70% yield reduction in coffee through premature leaf drop, 

dieback and debilitation of trees, which will eventually lead to death of coffee plants (Avelino 

et al., 2004).  

Current CLR disease monitoring methods rely on occasional field surveys by a team of 

specially trained and experienced personnel. However, besides being the largely adopted 

approach, particularly in resource limited areas, the technique is strenuous and subjective, with 

the results being confirmatory, mostly once the disease has fully established with already 

severe inflicted economic damages on the crop. Remote sensing therefore, offers unlimited 

opportunities for instantaneous, timely and spatially explicit objective assessment of plant 

condition throughout the growing season (Sankaran et al., 2010). The urgent adoption of these 

technologies is perceived to have the potential to increase crop productivity through the 

provision of accurate and up-to-date crop information, as well as reduce unplanned costs on 

disease control and environmental contamination associated with the over-application of 

pesticides. The success of potential crop protection methods is highly dependent on early 

disease detection (Rumpf et al., 2010; Martinelli et al., 2015). 

Previous work demonstrates that remote sensing approaches can be reliably used in the 

detection of plant diseases in many crops. For instance,  Huang et al. (2007) demonstrated that 

the photochemical reflectance index (PRI) developed from hyperspectral remote sensing data 

can be applied to identify and quantify yellow rust in winter wheat (r2=0.91), providing a basis 

for development of a proximal, airborne or spaceborne imaging sensors for its monitoring. In 
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addition,  Mahlein et al. (2013) developed specific spectral disease indices (SDIs) for the 

detection and discrimination of healthy sugar beet leaves from those infected with cercospora 

leaf spot (Cercospora beticola), sugar beet rust (Uromyces betae) and powdery mildew 

(Erysiphe betae) and achieved high accuracy and sensitivity of over 85%. It is therefore clear 

from these studies that species-specific disease indices derived from hyperspectral bands 

located in the narrow contiguous parts of the red-edge and NIR regions have the strength and 

capability to significantly enhance crop disease detection, identification and monitoring.  

Reflectance in the red-edge and NIR regions is able to identify changes in internal leaf 

structure, content and processes that affect absorption of radiation and thus reveal physiological 

stress in plants caused by the disease or other stress (Coops et al., 2003; Eitel et al., 2011). 

These detected changes are associated with changes in the quality and quantity of chlorophyll 

and chemical properties of the affected leaves, when compared to their previous stress-free 

condition or unstressed counterparts (Carter & Knapp, 2001; Mutanga & Skidmore, 2007). 

Many of these specific wavebands were previously only available in hyperspectral sensors, 

which are known to have many challenges, such as high costs, high dimensionality and above 

all poor spatial coverage. So far, there are no prospects that there will be global coverage of 

affordable hyperspectral data in the near future at sufficient temporal resolution (Rulinda et al., 

2012). This therefore means that there is need to shift towards harnessing the opportunities 

provided by the new generation of multispectral imaging sensors.  

New generation multispectral space-borne earth observation instruments, such as WorldView-

2, RapidEye and Sentinel-2 multispectral imager have incorporated narrow wavebands 

including those in the red-edge position that were not available in predecessor sensors (i.e. 

Landsat series, MODIS, SPOT, ASTER etc). These technological advancements therefore 

provide an opportunity for timely landscape or farm-based assessment of crop condition (i.e. 

health status and yield estimation). Unlike the hyperspectral sensors, multispectral sensors have 

a huge swath-width and are currently available at low or no costs for many developing countries 

where coffee is produced. There has been a lot of interest in the upcoming Sentinel-2 

multispectral imager data in terms of its potential applications as a game changer in 

multispectral remote sensing (Wang et al., 2004; Funk & Budde, 2009; Rulinda et al., 2012; 

Atzberger, 2013; Rembold et al., 2013; Ding et al., 2014). This is because it is freely available 

with relatively high resolution (10m for some bands), as well as strategically positioned bands 
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(such as two red-edge bands), which makes it useful for many applications, including 

vegetation characterization and mapping.  

The Sentinel-2 multispectral satellite capitalizes on the technology and the vast experience 

acquired with SPOT and Landsat series data over the past decades. Sentinel-2 multispectral 

imager which is a polar orbiting, super-spectral high resolution imaging mission (Hansen & 

Loveland, 2012), has a huge swath-width of about 290 km with thirteen unique spectral bands. 

These spectral bands range from the visible and near infrared (VNIR) to the shortwave infrared 

(SWIR) regions of the spectrum. Of these thirteen bands, four are provided at 10 m spatial 

resolution, six bands at 20 m spatial resolution and three bands at 60 m spatial resolution (Funk 

& Budde, 2009). Most importantly, the sensor provides data about the earth’s surface every 

five days under cloud-free conditions, and typically every 15–30 days in cloudy areas, making 

it attractive for temporal feature analysis (Dangwal et al., 2016). 

One of the most attractive features of the Sentinel-2 multispectral imager is that it incorporates 

three new bands in the red-edge region, which are centred at 705, 740 and 783 nm specifically 

designed for vegetation characterization and quantification (Frampton et al., 2013; Hedley et 

al., 2012). Because of these advanced sensor characteristics, Sentinel-2 multispectral imager is 

therefore hypothesized to be capable of providing timely data for the generation of high-level 

operational products. These include the generation of spatially explicit estimation and 

monitoring of important plant biophysical variables, (i.e. chlorophyll, LAI and leaf water 

content and crop health) in addition to producing generic land-cover, land-change detection 

and crop disease maps.  

The operationalization of using the Sentinel-2 sensor in coffee and other plantation crops may, 

however, be limited. This is because the effect of disease infection is not only confused by soil 

background effect as influenced by age but also by other confounding factors such as co-

infection with other diseases, nutrient deficiency issues, water stress among many others. This 

therefore means that what the sensor detects may not necessarily be the effect of the crop 

disease, but something else. It therefore becomes of paramount importance to determine the 

possibility of separating disease levels using the Sentinel-2 sensor in the absence of other 

potential stressors. The aim of this work was therefore to evaluate the potential of the Sentinel-

2 multispectral imager derived band settings and vegetation indices in discriminating coffee 

leaf rust infection levels using the random forest (RF) and partial least squares discriminant 
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analysis (PLS-DA) algorithms at leaf level. A secondary objective was to model CLR severity 

using spectral settings of the Sentinel 2 MSI sensor.  

6.2 Materials and methods 

6.2.1 Study area 

The study was carried out at Coffee Research Institute, Chipinge, Zimbabwe (32°37.523’E, 

20°12.474’S and altitude 1,100 m above sea level). The climate in Chipinge is subtropical with 

two distinct seasons: the dry season and the wet season. Average total annual rainfall is 

1800 mm of which 80 % fall in 5 months from November to March. The mean maximum 

temperature is 20°C and minimum is 14°C. 

6.2.2 Coffee leaf rust inoculation 

Eight months old coffee seedlings (variety Yellow Catuai) were inoculated with CLR in a 

greenhouse for the study. CLR spores were collected from naturally infected coffee plants from 

a coffee field that is maintained at the station as disease reservoir in June 2015. The spores 

from the infected leaves were scrapped into petri dishes, using a razor blade. These spores were 

then used to make a spore suspension of 8 x 106 spores/ml, using sterile deionized water as 

counted by a hemocytometer. Inoculation of spores was done by brushing the spore suspension 

at the underside of leaves, using pen brushes. The inoculated plants were incubated for 72 hours 

in dark incubation chambers with ~100% relative humidity. After three days in the incubation 

chamber, seedlings were removed, and laid on benches to allow completion of infection. Eighty 

plants were inoculated in two batches of 40 each in a space of two weeks, in order to get 

different levels of infection.  

Twenty-one days after the first inoculation, coffee plants were visually scored and grouped by 

a plant pathologist, using visual signs into severely infected, moderately infected and healthy 

seedlings (no inoculation). Reflectance from twenty-one coffee plants was measured for each 

level of infection (healthy, moderate CLR and severely infected level (n = 63, Table 6.1). Only 

21 samples were used for each class because of the poor success of inoculation associated with 

CLR under controlled conditions. For severity modelling, diseased area was measured using a 

graduated transparent polythene plate and converted to proportion infected area (%) by 

dividing over leaf area. The distribution of the leaf area of the leaf samples is shown in Figure 

6.1a and the distribution of area diseased for the healthy, moderate and severe leaf samples are 

shown in Figure 6.1b.  
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Table 6.1: Description of levels of CLR infection levels, sample images and number of 

samples used in the study 

Disease levels  Sample 

picture 

Description of class  

Healthy 

(n=21) 

 

 

Healthy leaves from plants that were left non-

inoculated. 

Moderate 

infection 

(n=21) 

 

 

Infected leaves with early or sparse spores of CLR 

visible of the underside of the leaves. Estimated covered 

area less than 10% of the leaf area 

Severe 

infection 

(n=21) 

 

 

Severely infected leaves with typical CLR yellowing on 

the underside of leaves. Covered area more than 10% of 

the leaf area.  

 

 
Figure 6.1: (a) The histogram showing distribution of leaf area of samples and (b) box plots 

of percent diseased area of leaves as measured on the day of reflectance measurements 

(N=63). 

6.2.3 Reflectance measurements and resampling 

Reflectance was measured using an Apogee VIS-NIR spectrometer (Apogee Instruments, Inc., 

Logan, UT, USA) with an effective spectral range of 400-900 nm and a spectral resolution of 
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0.5 nm. Each reading consisted of an average of three spectral scans, taken at 15 cm above the 

coffee leaf of interest at 30° angle. A white polytetrafluoroethylene (PTFE) reflectance 

standard was used as a reference. Reflectance by wavelength was calculated as the ratio of 

scene reflectance to the reflectance of the standard. The reflectance was averaged to 5 nm to 

reduce dimensionality.  

The collected reflectance measurements were resampled to simulate the Sentinel-2 satellite 

sensor’s reflectance (Table 6.2). The resampling of the field spectra was done in ENVI 4.7 

(ITT, 2008) software. The resampling method used applies a Gaussian model with a Full Width 

at Half-Maximum (FWHM) equal to the band spacing provided. The technique uses the field 

spectral data from the spectrometer and resamples it to the spectral width of the sensor being 

simulated. Only eight Sentinel-2 MSI land management bands were used, because the other 

bands were considered unnecessary for plant biophysical studies, had a higher spatial resolution 

for application in coffee or were outside the range of the spectroradiomter used in this study 

(Table 6.2). 

Table 6.2: Specifications of the Sentinel-2 Multispectral Instrument (MSI)  

Spectral band Centre wavelength (nm) Band width (nm) Spatial resolution (m) 

B2 490 65 10 

B3 560 35 10 

B4 665 30 10 

B5 705 15 20 

B6 740 15 20 

B7 783 20 20 

B8 842 115 10 

6.2.4 Vegetation Indices  

Seventeen spectral vegetation indices were computed and applied in evaluating transformation 

of spectral bands of the Sentinel-2 MSI data’s ability to detect and discriminate the different 

CLR infection levels (Table 6.3). These vegetation indices were selected based on their 

reported ability to discriminate different vegetation characteristics and conditions from 

remotely sensed data. The three red-edge bands contained in Sentinel-2a multispectral imager 

were used to generate vegetation indices that were indexed according to the particular red-edge 

band used (B5, B6 and B7). Vegetation indices were used in discrimination studies only and 

not in severity modelling.  
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Table 6.3: Selected vegetation indices (VIs) evaluated in the study. 

Name Formula 
Sentinel-2 

Bands 
Source 

Normalized Difference 

Vegetation Index  
𝑁𝐷𝑉𝐼 =

𝜌𝑁𝐼𝑅 − 𝜌𝑅

𝜌𝑁𝐼𝑅 + 𝜌𝑅
 

B8, B4 Rouse et al. (1973) 

Simple Ratio 

 
𝑆𝑅 =

𝜌𝑁𝐼𝑅

𝜌𝑅
 

B8, B4 
Baret and Guyot (1991) 

Green Chlorophyll Index  

 
𝐺𝐶𝐼 = (

𝜌𝑁𝐼𝑅

𝜌𝐺𝑅𝐸𝐸𝑁
) − 1 

B8, B3 
Gitelson et al. (2005) 

Green Normalized Difference 

Vegetation Index  

 

𝐺𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅 − 𝜌𝐺𝑅𝐸𝐸𝑁

𝜌𝑁𝐼𝑅 +  𝜌𝐺𝑅𝐸𝐸𝑁
 B8, B3 

Gitelson et al. (1996) 

Renormalized Normalized 

Difference Vegetation Index  

 

𝑅𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷

√𝜌𝑁𝐼𝑅 + 𝜌𝑅

 
B8, B4 

Gitelson and Merzlyak 

(1994b) 

Normalized Difference Red-

edge Index 
𝑁𝐷𝑉𝐼. 𝑅𝐸1 =

𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸1

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝐸1
 

B8, B5 Gitelson and Merzlyak 

(1994b) 

 𝑁𝐷𝑉𝐼. 𝑅𝐸2 =
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸2

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝐸2
 B8, B6 Gitelson and Merzlyak 

(1994b) 

 𝑁𝐷𝑉𝐼. 𝑅𝐸3 =
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸3

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝐸3
 

B8, B7 Gitelson and Merzlyak 

(1994b) 

Simplified Canopy Chlorophyll 

Content Index 
𝑆𝐶𝐶𝐶𝐼1 =

𝑁𝐷𝑉𝐼. 𝑅𝐸1

𝑁𝐷𝑉𝐼
 

B8, B4, 

B5 
Barnes et al. (2000) 

 𝑆𝐶𝐶𝐶𝐼2 =
𝑁𝐷𝑉𝐼. 𝑅𝐸2

𝑁𝐷𝑉𝐼
 

B8, B4, 

B6 
Barnes et al. (2000) 

 𝑆𝐶𝐶𝐶𝐼3 =
𝑁𝐷𝑉𝐼. 𝑅𝐸3

𝑁𝐷𝑉𝐼
 

B8, B4, 

B7 
Barnes et al. (2000) 

Red-edge Chlorophyll Index 𝐶𝐼𝑅𝐸1 = (
𝜌𝑁𝐼𝑅

𝜌𝑅𝐸1
) − 1 

B8, B5 
Gitelson et al. (2005) 

 𝐶𝐼𝑅𝐸2 = (
𝜌𝑁𝐼𝑅

𝜌𝑅𝐸2
) − 1 

B8, B6 
Gitelson et al. (2005) 

 𝐶𝐼𝑅𝐸3 = (
𝜌𝑁𝐼𝑅

𝜌𝑅𝐸3
) − 1 

B8, B7 
Gitelson et al. (2005) 

Normalized Red-edge 

Difference Index 
𝑁𝑅𝐸𝐷𝐼1 =

𝜌𝑅𝐸3 − 𝜌𝑅𝐸1

𝜌𝑅𝐸3 +  𝜌𝑅𝐸1
 

B7, B5 Gitelson and Merzlyak 

(1994a) 

 𝑁𝑅𝐸𝐷𝐼2 =
𝜌𝑅𝐸3 − 𝜌𝑅𝐸2

𝜌𝑅𝐸3 +  𝜌𝑅𝐸2
 

B7, B6 Gitelson and Merzlyak 

(1994a) 

 𝑁𝑅𝐸𝐷𝐼3 =
𝜌𝑅𝐸2 − 𝜌𝑅𝐸1

𝜌𝑅𝐸2 +  𝜌𝑅𝐸1
 

B6, B5 Gitelson and Merzlyak 

(1994a) 
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6.2.5 Statistical approaches for CLR discrimination  

6.2.5.1 Random forest algorithm. 

The random forest (RF) ensemble algorithm developed by Breiman (2001) was one of the two 

robust machine learning approaches used for CLR discrimination with raw spectral bands and 

vegetation indices. The classification version of RF (Breiman & Cutler, 2007) together with 

in-built variable optimization was used in this analysis. The concept of the random forest 

algorithm is described in detail by Breiman (2001) and Lebedev et al. (2014). The default 

number of trees (501) and the square root of the number of variables as mtry were used as RF 

settings in the randomForest library in R (Liaw et al., 2009). The RF variable importance 

measure was used to select bands and vegetation indices that were used in CLR discrimination. 

The RF algorithm assesses the importance of each input variable to the outcome by comparing 

how much the OOB error increases when a variable is removed, while all others are left 

unchanged (Gislason et al., 2004; Breiman & Cutler, 2007). This way, the RF ranks the 

variables according to the mean decrease in error when that variable is included in the 

modelling and those variables with higher mean decreases in error are the most important 

variables for the modelling and should therefore be retained.  

6.2.5.2 Partial least squares discriminant analysis  

In addition to the RF approach, partial least squares discriminant analysis (PLS-DA) algorithm 

was used in CLR discrimination. PLS-DA is the classification version of PLS regression and 

is a powerful multivariate supervised pattern recognition method that uses a training routine to 

assign class membership to variables based on their known statistical parameters projected into 

latent variables (Wang et al., 2011; Venteris et al., 2015). It is very important in PLS-DA to 

determine the appropriate number of components for the model to avoid overfitting and this 

was done using cross-validation (Wang et al., 2011). The appropriate number of components 

was identified as 2 for spectral and 3 for vegetation indices and these were used accordingly. 

Variable optimization in PLS-DA was done through the Variable Importance in Projection 

(VIP) scores produced in the discrimination. The VIP is a quantitative estimate of the 

discriminatory power of each individual variable used in the model and as such can be used to 

interpret the outcome in relation to the input variables (Vancutsem et al., 2009).  

6.2.6 Statistical approaches for severity modelling  

The radial basis function partial least squares regression (RBF-PLS) was used to model CLR 

severity from Sentinel-2 spectral bands. The RBF-PLS is part of the kernel learning family of 
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algorithms. These learning methods are based on mapping the originally observed data into a 

high-dimensional feature space where simple linear models are then constructed (Rosipal, 

2010). The concept of the RBF-PLS is described in detail in literature (Orr, 1996; Yan et al., 

2004; Jia et al., 2010; Jiang et al., 2013). The RBF-PLS was implemented in Matlab using the 

TOMCAT toolbox (Daszykowski et al., 2007). 

6.2.7 Accuracy assessment  

6.2.7.1 CLR discrimination  

In order to assess the performance of CLR discrimination, k-fold cross validation with 10 folds 

was used since the sample number was relatively small (n = 63) for sub-setting the data into 

training and test data. A confusion matrix, defined as a table that describes the performance of 

a discriminating model on a set of test data for which the true values are known, was used to 

evaluate the overall accuracy of the random forest discrimination of CLR infection levels (i.e. 

healthy, moderate and severe CLR infection. Overall accuracy, Kappa (k) and related class 

user’s and producer’s accuracies were calculated to evaluate the performance of Sentinel-2 

MSI derived spectral bands and vegetation indices in discriminating CLR, using the RF and 

PLS-DA algorithms. The effect of variable optimization was determined by the McNemar’s 

test (Foody, 2004) of confusion matrices of discrimination with all variables versus 

discrimination with optimized variables. 

6.2.7.2 Severity modelling  

In order to assess the performance of CLR severity predictions, k-fold cross validation with 

100 folds was used since the sample number was relatively small (n = 63) for sub-setting the 

data into training and test data. The correlation coefficient (r) and coefficient of determination 

(R2) were used to assess the goodness of fit of the predicted and measured CLR severity values. 

In addition, Mean Absolute Error (MAE, Equation 5.4) Root Mean Square Error (RMSE, 

Equation 5.5), and percent bias (pBias, Equation 5.6) were used to determine the errors of the 

model in predicting CLR severity from variables.  

 

6.3 Results 

6.3.1 Spectral Resampling  

Figure 6.2 shows the mean reflectance of Sentinel-2 bands for the healthy, moderate and severe 

CLR samples used in the study. As expected with vegetation, the results show that coffee leaf 
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reflectance was higher in the NIR region of the spectrum when compared to the visible spectral 

region. Healthy leaves produced higher reflectance in B3 (green) and the least in two of the 

three Sentinel-2 red-edge bands (B5 and B6) where the severely CLR infected leaves produced 

the highest reflectance. The reflectance of the severely infected CLR was least in the red-edge 

3 band (B7) and the NIR band (B8).  

 

Figure 6.2: Mean spectral reflectance of CLR infection levels across the Sentinel-2 bands 

obtained from resampling hyperspectral imagery. 

6.3.2 CLR discrimination 

6.3.2.1 Discrimination with all variables  

The results from CLR discrimination with all variables (N = 7 for bands and N= 17 for 

vegetation indices) are shown in Table 6.4. When Sentinel-2 MSI seven bands were used with 

the PLS-DA, an overall accuracy of 63.5% (k=0.45) was achieved while this increased to 69.8 

% (k = 0.55) from the use of the RF algorithm. Results indicate spectral confusion in 

discriminating between the moderate and severe CLR when compared to the discrimination 

between healthy and moderate CLR for both algorithms. Higher accuracies in discriminating 

CLR were achieved by using all vegetation indices (PLS-DA =68.3% and RF = 76.2%) when 

compared to that obtained from use of all spectral bands (PLS-DA =63.5% and RF = 69.8%). 

However, notable misclassifications were observed when vegetation indices were used 

between moderate CLR (producer accuracy = 66.7% for RF and 47.6% for PLS-DA) and 

severe CLR classes (producer accuracy = 71.4% for RF and 66.7% for PLS-DA).  
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Table 6.4: CLR discrimination accuracies obtained using Sentinel-2 MSI derived spectral bands and vegetation indices 

All Bands 

(N=7) 

  

RF     All Bands 

 (N=7) 

PLS-DA   

Healthy Moderate 

CLR 

Severe 

CLR 

Total Producer’s 

Accuracy 

 
Healthy Moderate 

CLR 

Severe 

CLR 

Total Producer’s 

Accuracy 

Healthy 17 3 1 21 81.0  Healthy 19 2 0 21 90.5 

Moderate CLR 3 13 5 21 61.9  Moderate CLR 4 9 8 21 42.9 

Severe CLR 2 5 14 21 66.7  Severe CLR 2 7 12 21 57.1 

Total 22 21 20 63   Total 25 18 20 63  

User’s Accuracy 77.3 61.9 70.0    User’s Accuracy 76.0 50.0 60.0   

Overall Accuracy 69.8      Overall Accuracy 63.5     

Kappa 0.55      Kappa 0.45     

All VIs  

(N=17) 

  

RF     All VIs 

(N=17) 

  

PLS-DA   

Healthy Moderate 

CLR 

Severe 

CLR 

Total Producer’s 

Accuracy 

 
Healthy Moderate 

CLR 

Severe 

CLR 

Total Producer’s 

Accuracy 

Healthy 19 0 2 21 90.5  Healthy 19 2 0 21 90.5 

Moderate CLR  3 14 4 21 66.7  Moderate CLR 4 10 7 21 47.6 

Severe CLR 2 4 15 21 71.4  Severe CLR 0 7 14 21 66.7 

Total 24 18 21 63   Total 23 19 21 63  

User’s Accuracy 79.2 77.8 71.4    User’s Accuracy 82.6 52.6 66.7   

Overall Accuracy 76.2      Overall Accuracy 68.3     

Kappa 0.64       Kappa 0.52     
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6.3.2.2 Variable optimization  

The results in Figure 6.3 illustrates the most important selected model variables (i.e. bands and 

vegetation indices) derived using the RF OOB and variable importance in projection (VIP) 

classification ensembles.  From the results in Figure 6.3a and 6.3b, it can be observed that the 

RF model identified four spectral bands (B4, B6, B3, B7) whereas PLSA-DA selected only 

three (B4, B6 and B5). Comparatively, both models managed to select two identical variables 

(i.e. B4 and B6 bands) as the most important variables for discriminating CLR levels (Figure 

6.3a and 6.3b).  Further, when the variable optimization was implemented using the seventeen 

derived vegetation indices, only seven were selected as important by RF and most of these 

were transformations of Sentinel-2 red-edge bands and the NIR (Figure 6.3c). On the other 

hand, the PLS-DA algorithm identified only five vegetation indices (i.e. SCCCI3 (B8, B7 & 

B4), CIRE1 (B8 & B5), RNDVI (B8 & B4), NREDI2 (B7 & B6), GCI (B8 & B3)) as having a 

VIP above 1. Only four of the vegetation indices were identically selected by both the methods 

(SCCCI3, CIRE1, RNDVI and GCI). 

 

Figure 6.3: Optimization of Sentinel-2 variables for CLR discrimination through (a) RF-OOB 

error for spectral bands (b) PLS-DA for spectral bands (c) RF-OOB error for vegetation 

indices and (d) PLS-DA VIP for vegetation indices. The dotted line shows the cut-off point 

for variables. 
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6.3.2.3 CLR discrimination with optimized variables  

Table 6.5 shows the results of CLR discrimination using optimized variables. The results 

indicate that there is an improvement in accuracy of CLR discrimination when optimized 

variables are used, with the highest magnitude of change observed in optimized vegetation 

indices (Table 6.5). Overall, optimized Sentinel-2 derived vegetation indices achieved the 

highest overall CLR discrimination accuracies of 82.5% (k = 0.74) and 71.4% (k = 0.57) using 

the RF and PLS-DA algorithms respectively. It can be noted that CLR discrimination 

accuracies increased by about 10% for RF algorithm. On the other hand, optimization of 

Sentinel-2 derived vegetation indices from 17 to 5 variables improved the performance of the 

PLS-DA model in CLR discrimination, particularly in terms of the producer accuracy of the 

class severe and all user accuracies. 

In general, the finding of this work further demonstrates that the RF outperformed the PLS-DA 

in CLR discrimination using Sentinel-2 with and without model optimization (Figure 6.4). The 

differences in accuracy due to optimization was also assessed through McNemar’s test (Table 

6.6), which showed that variable optimization significantly improved the accuracy of CLR 

discrimination with spectral bands run through the RF algorithm (χ² = 4.17, p < 0.05).  

 

Figure 6.4: Effect of RF and PLS-DA model variable optimization on CLR discrimination 

accuracies using Sentinel-2 bands and vegetation indices. 
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Table 6.5: CLR discrimination accuracies derived using the most important selected model variables (i.e. spectral bands and optimized 

vegetation indices).  

Optimized Bands 

(N=4) 

  

RF     Optimized Bands 

(N=3) 

PLS-DA   

Healthy Moderate 

CLR 

Severe 

CLR 

Total Producer's 

Accuracy 

 
Healthy Moderate 

CLR 

Severe 

CLR 

Total Producer's 

Accuracy 

Healthy 20 1 0 21 95.2  Healthy 19 1 1 21 90.5 

Moderate CLR 3 13 5 21 61.9  Moderate CLR 3 9 9 21 42.9 

Severe CLR 1 3 17 21 81.0  Severe CLR  3 6 12 21 57.1 

Total 24 17 22 63   Total 25 16 22 63  

User's Accuracy 83.3 76.5 77.3    User's Accuracy 76.0 56.3 54.6   

Overall Accuracy  79.4      Overall Accuracy 63.5     

Kappa 0.69      Kappa 0.45     

Optimized VIs 

(N=7) 

  

RF     Optimized VIs 

(N=5) 

  

PLS-DA   

Healthy Moderate 

CLR 

Severe 

CLR 

Total Producer's 

Accuracy 

 
Healthy Moderate 

CLR 

Severe 

CLR 

Total Producer's 

Accuracy 

Healthy 19 2 0 21 90.5  Healthy 18 3 0 21 85.7 

Moderate CLR  1 14 6 21 66.7  Moderate CLR 2 11 8 21 52.4 

Severe CLR 1 1 19 21 90.5  Severe CLR 1 4 16 21 76.2 

Total 21 17 25 63   Total 21 18 24 63  

User's Accuracy 90.5 82.4 76.0    User's Accuracy 85.7 61.1 66.7   

Overall Accuracy 82.5      Overall Accuracy 71.4     

Kappa 0.74           Kappa 0.57         
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Table 6.6: Comparison of the performance of CLR discrimination accuracy results derived 

using RF and PLS-DA models with and without variable optimization  

Parameters f11 f12 f21 f22 Total χ² P-value (95%) 

RF Bands 44 0 6 13 63 4.17 0.041 

RF VIs 48 0 4 11 63 2.25 0.133 

PLS-DA Bands 37 3 3 20 63 0.00 1.000 

PLS-DA VIs 41 2 4 16 63 0.17 0.683 

 

6.3.3 CLR severity modelling  

6.3.3.1 Relationship between Sentinel-2 MSI spectral bands and CLR severity  

The results showed that there were weak correlations between CLR severity and Sentinel-2 MSI 

spectral parameters (Table 6.7). Only three out of the seven bands were significantly (p<0.05) 

correlated with CLR severity (Blue, Red and RE1). In both of these cases, the correlations were 

positive. Results showed very poor linear relationships between CLR severity and Sentinel-2 

MSI spectral settings as all bands had weak correlations with CLR severity (r<0.5, Figure 6.5). 

From the correlation plots of the significant variables in Figure 6.5, it is difficult to use linear 

modelling to relate CLR severity with Sentinel-2 MSI spectral parameters. Leaf size did not have 

any significant influence on reflectance as leaf area was not significantly correlated (p>0.05) 

with any of the Sentinel-2 MSI bands. Interestingly, all spectral bands were significantly 

correlated to each other, presenting potential challenges of collinearity in the model if linear 

methods are applied (Table 6.7).  
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Table 6.7: Correlation coefficients (r) and significance of correlation (α<0.05) between 

Sentinel-2 MSI bands and CLR severity.   

  Severity (%)* Leaf Area Blue Green Red RE1 RE2 RE3 NIR 

Severity 

(%) 1 -0.127 0.264 -0.102 0.331 0.254 -0.049 -0.101 -0.106 

Leaf 

Area 0.320 1 0.026 0.118 0.047 0.116 0.145 0.126 0.096 

Blue 0.036 0.839 1 0.835 0.954 0.749 0.550 0.468 0.517 

Green 0.426 0.355 <0.001 1 0.755 0.858 0.760 0.632 0.616 

Red 0.008 0.711 <0.001 <0.001 1 0.751 0.497 0.422 0.473 

RE1 0.044 0.363 <0.001 <0.001 <0.001 1 0.607 0.453 0.474 

RE2 0.697 0.256 <0.001 <0.001 <0.001 <0.001 1 0.974 0.931 

RE3 0.432 0.323 <0.001 <0.001 <0.001 <0.001 <0.001 1 0.973 

NIR 0.409 0.454 <0.001 <0.001 <0.001 <0.001 <0.001 0<0.001 1 
*Corelation coefficients with bold letters were significcant (α<0.05) 

 

 
Figure 6.5: Correlation between CLR severity and Sentinel-2 MSI (a) Band 2 reflectance, (b) 

Band 4 reflectance and (c) Band 6 Reflectance. 

6.3.3.2 Determining gaussian widths 

Figure 6.5 shows the relationship between cross-validated RMSE and σ representing Gaussian 

widths. The results show that the best Gaussian width for the RBF-PLS model is 0.3 as it 

produces the least cross-validated training RMSE of 6.7 for all variables (Figure 6.6a). The model 

therefore used this as the σ for the model. For selected variables, however, the best Gaussian 

width was lower at 0.2 but with a minimum cross-validated RMSE of 6.8 being higher than that 

of all variables (Figure 6.6b). The learning process thus produced different results for developing 

the model with all variables and with selected variables.  
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Figure 6.6: Determination of σ through cross-validated RMSE for use as Gaussian widths in the 

non-linear RBF-PLS models for (a) All Sentinel-2 MSI bands and (b) Selected Sentinel-2 MSI 

variables. 

6.3.3.3 Modelling CLR severity  

The RBF-PLS was able to satisfactorily model CLR severity at Sentinel 2 spectral settings. Using 

all Sentinel-2 MSI bands as variables was able to explain 92% of the variance in CLR severity 

using RBF-PLS (Figure 6.7a, Table 6.8). On the other hand, the use of model selected variables 

reduced the accuracy of the modelling (R2=0.78, RMSE=10.2, Figure 6.7b, Table 6.8). A 

comparison shows that using all Sentinel-2 MSI variables outperforms the use of a few model 

selected variables in modelling CLR (p<0.05). Although the results show that both models are 

good, there is a general indication that moderate levels of infection are more difficult to predict 

than severe using all Sentinel-2 MSI bands and only significantly correlated Sentinel-2 MSI 

bands (R2=0.71 for severe and R2=0.38 for moderate bands, Table 6.8).  
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Figure 6.7: Relationship between measured and modelled CLR severity with RBF-PLS with (a) 

All Sentinel-2 MSI bands and (b) Selected Sentinel-2 MSI variables. 

Table 6. 8: Error metrics for all models in predicting CLR severity from Sentinel-2 MSI 

variables with RBF-PLS 

Method Infection Levels MAE RMSE pBias  R2 

RBF-PLS: All 

Moderate CLR 3.05 3.37 -0.1  0.38 

Severe CLR 7.43 10.06 0.0  0.71 

All levels 3.58 6.13 -  0.92 

RBF-PLS: 

Selected 

Moderate CLR 3.56 4.2 -6.8  0.11 

Severe CLR 10.3 15.31 -4.9  0.37 

All levels 6.18 10.18 -  0.78 

 

6.4 Discussion  

This study aimed to evaluate the spectral separability of coffee leaf rust infection levels and 

predict its severity using machine learning methods and spectral data at Sentinel-2 MSI 

resolutions as a basis for field disease monitoring and modelling for coffee condition assessment 

with remote sensing. To achieve this objective, two machine-learning algorithms were applied 

on un-optimized and optimized Sentinel-2 MSI spectral bands and vegetation indices for CLR 

discrimination while one was applied for CLR severity modelling. Accurate discrimination of 
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CLR infection levels and prediction of severity provides the most required knowledge for precise 

crop diseases monitoring and controlling with remote sensing, especially if high crop 

productivity is to be realized.   

6.4.1 Spectral resampling 

The resampled spectra demonstrated the general response of vegetation to electromagnetic 

radiation with lower reflectance in the visible region and higher reflectance in the NIR regions. 

This research confirms the effect of biotic stress on vegetation reflectance observable by the blue 

shift in the red-edge region of the spectrum where infected samples produced higher reflectance, 

when compared to healthy samples. The blue shift as indicated by the shift of the slope of stressed 

plants is associated with a decline in leaf chlorophyll quantity and quality (Ustin et al., 2009) and 

can be used as an early indicator of disease infection, allowing for control measures to be more 

effective. This phenomenon has been reported due to plant diseases (Prabhakar et al., 2013), 

nutrient stress (Mutanga & Skidmore, 2007), pest attacks (Stone et al., 2001) and other physio-

chemical plant disorders (Carter & Knapp, 2001; Roy et al., 2014).  

6.4.2 Discrimination  

6.4.2.1 Performance of Sentinel-2 spectral bands in CLR discrimination 

This study has for the first time managed to demonstrate the utility and strength of the new 

generation Sentinel-2 MSI sensor in discriminating disease infections in commercial crops such 

as coffee- a previous challenging task from broadband multispectral sensors (e.g. Landsat series). 

For example, the results of this study have successful managed to identify Sentinel-2 MSI’s most 

important individual spectral bands (i.e. B4, B6 and B5) required for the accurate discrimination 

of CLR infection levels. The results from the RF OOB score show that the Sentinel-2 RE3 band 

(B7) is the most significant variable for CLR discrimination. This confirms the importance of 

this region of the spectrum in fungal disease detection and discrimination in vegetation as 

reported in previous studies (Mahlein et al., 2013; Bhojaraja et al., 2015).  

The finding that the red band (B4) was ranked by both the RF OOB score and the PLS-DA VIP 

score as the most significant band was rather surprising. Although all red-edge bands (B5, B6 & 

B7) were identified as important by RF OOB score, they were behind the red band in significance 

while only RE2 (B6) and RE1 (B5) were selected by the PLS-DA VIP score. This could be 

because CLR is different from other diseases and plant stress conditions in that it is not necrotic 
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(Belan et al., 2015) and also result in distinctive asymptomatic rustic pustules on the underside 

of the leaf, which perhaps are responsible for the red band being significant in its discrimination. 

While studies have generalized the approaches for remote sensing plant diseases, it is clear from 

this work that the application of spectral bands in disease discrimination could be disease and 

plant specific, given the observed peculiarities. Most interestingly, in vegetation reflectance 

studies, the red band is associated with high absorption of radiation because of pigments, such as 

phycocyanin and phycoerythrin and not its reflectance. More studies are therefore required to 

verify the effects of CLR infection on the leaf content of these pigments in order to explain the 

observed significance of the Sentinel-2 red band.  

6.4.2.2 Performance of Sentinel-2 vegetation indices in CLR discrimination  

The general finding from this study was that the use of spectral vegetation indices produced 

plausible CLR discrimination results, when compared to the use of the sensor’s raw spectral 

bands. This observation is in line with previous findings that concluded that the spectral 

transformation that occurs in converting spectral bands to vegetation indices enables more 

information to be obtained resulting in better performance from vegetation indices. For example, 

Dube and Mutanga (2015) achieved higher model fit in biomass estimation using vegetation 

indices (R2=0.53) than by spectral bands (R2=0.40) with the RF algorithm. Similarly, other 

studies reported better performance of vegetation indices than spectral bands (Wang et al., 2004; 

Dube & Mutanga, 2015).  

In addition, the better performance of vegetation indices could also be attributed to the ability of 

Sentinel-2 MSI derived vegetation indices to deal with confounding factors, such as reflectance 

saturation, leaf area, roughness and moisture in the leaf and canopy level that reduce the 

performance of raw spectral bands. It is known that narrow band vegetation indices as the ones 

obtainable from Sentinel-2 MSI sensor are capable of reducing the effects of asymptotic 

saturation common in raw reflectance and broadband vegetation indices (Mutanga & Skidmore, 

2004; Baret & Buis, 2008; Glenn et al., 2008). This could be because Sentinel-2 MSI derived 

vegetation indices are more sensitive to plant biochemical and biophysical properties, as they are 

a combination of two or more strategically positioned spectral bands solely designed for 

vegetation condition assessment. For instance, the simplified canopy chlorophyll content index 

(SCCCI3) that was considered most useful for CLR discrimination is a second stage 
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transformation of the normalized difference vegetation index and the normalized difference red-

edge index that are based on the NIR (B8) and red-edge (B7) Sentinel-2 bands.  

6.4.2.3 Effect of variable optimization and algorithm on CLR discrimination 

Results have also shown that RF and PLS-DA algorithms variable optimization improves the 

accuracy of CLR discrimination, when compared to model implementation without variable 

selection. There are many reasons why variable optimization is able to achieve better results than 

using all available variables. These multispectral sensors have been developed for wide purposes 

ranging from forestry, agricultural, water and urban applications (although Sentinel-2 has a bias 

towards vegetation) and therefore, a few may be fit for purpose. Although the wavebands in 

multispectral data have been optimally selected, there remains a need to find the optimal model 

parameters from the feature subset, as there is no guarantee that the parameters for the full feature 

set are equally optimal for the optimal feature subset, which are the selected multispectral bands 

and vegetation indices  (Saeys et al., 2007).  

The effect of variable selection/optimization was even more remarkable in the RF algorithm that 

is eulogized for its robustness to noise, ability to handle non-linear data and deal with huge 

numbers of variables (Gislason et al., 2004; Mutanga et al., 2012; Rodriguez-Galiano et al., 

2012). These characteristics of the RF explain the observed superior performance of the RF over 

PLS-DA, making it a better candidate for use in CLR discrimination with recently launched 

Sentintel-2 MSI data. This is important because in order to improve the effectiveness of remote 

sensing applications, retrieval algorithms should be accurate, fast, robust, and sufficiently 

flexible to make use of the Sentinel-2 spectral bands and vegetation indices (Fassnacht et al., 

2015). It appears from this study that the RF algorithm is fit for this purpose with an added 

advantage of explaining how the output is obtained through ranking the weights of input 

variables.  

6.4.3 Severity modelling  

6.4.3.1 Relationship between Sentinel-2 MSI spectral bands and CLR severity 

The finding that CLR severity as measured by proportion of leaf diseased area was not 

significantly correlated to most spectral bands and weakly so for bands where results were 

significant, was not at all surprising. This could be because of the non-linear influence of disease 

infection on spectral reflectance (Zhang et al., 2012; Mahlein et al., 2013). Thus, when the 
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reflectance is averaged across a spectral width, this direct influence is lost, resulting in non-linear 

relationships. Even for the specific narrow-band indices obtained from hyperspectral indices, this 

linear relationship is also not always obvious because of other confounding factors that may 

influence the reflectance. For example, it is known that the CLR infection has significant 

influence on nutrient distribution within the leaf structure (Belan et al., 2015). The effect of the 

disease on the nutrient distribution will then result in nutritional composition having direct 

influences on reflectance. Other studies have also shown that disease and pest incidence have 

significant influences on leaf water content (Mutanga & Ismail, 2010; Oumar & Mutanga, 2014), 

which in turn influences water absorption features. The influence of CLR severity on water 

content may explain the significance of the blue band in this study. More studies are however 

required to determine the exact relationship between CLR severity and leaf water content as this 

relationship is disease specific. The role of the red and red-edge bands that were found important 

in this study in condition assessment has been reported widely (Rumpf et al., 2010; Eitel et al., 

2011).  

6.4.3.2 Modelling CLR severity with spectral bands  

Results of this study showed that using only spectral bands on the RBF-PLS showed a high 

accuracy (R2 = 0.92), which is an interesting achievement. This is so because much of the 

reported good results in vegetation condition modelling have been from vegetation indices or at 

least a combination of vegetation indices and spectral bands, even with hyperspectral data. 

Although vegetation indices produce good results, many vegetation indices are derivatives of the 

NIR or the red-edge bands and putting more than one index in a model results in serious over-

fitting which eliminates transferability of the model. For example, the normalised difference 

vegetation index, simple ratio, renormalized normalized difference vegetation index and 

simplified canopy chlorophyll index all use the Sentinel MSI B8 and B4. Thus developing a 

model with all these vegetation indices will likely produce an unstable model. Therefore, having 

a band-based model producing this level of accuracy is important as each individual parameter 

is unique in their contribution to the outcome. Ramoelo et al. (2015) also used only spectral bands 

to model nitrogen in rangelands and obtained a high accuracy (R2=0.90, RMSE=0.04), 

confirming that the spectral settings of Sentinel-2 MSI spectral settings are good for modelling 

vegetation condition. Similar bands (except for B2) were identified as important in CLR 
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discrimination with RF and PLS-DA, confirming that these are the bands that can be used to 

perform both discrimination and modelling of CLR severity with Sentinel-2 MSI data.  

Results showed that the correlation between modelled and measured values was higher for severe 

levels of CLR compared to moderate levels when the RBF-PLS was used. This indicates better 

model performance for severe CLR infection level than on moderate levels. These observations 

can be explained by the fact that on more serious levels of infection, there is little spectral 

confusion as effects will be distinct compared to moderate levels as observed in the 

discrimination study. However, from a practical application viewpoint, it is more useful to be 

able to predict the CLR at moderate levels because control measures can be implemented 

successfully (Carter & Miller, 1994; Rumpf et al., 2010). At severe levels, the leaves will most 

definitely be shaded and thus economic impact would have been inflicted.  

6.4.4 Multispectral level remote sensing of biotic stress in coffee  

CLR discrimination and severity modelling with Sentinel-2 data could inform farm managers 

and plant phytosanitary regulators on occurrence and levels of severity of plant diseases, reducing 

the subjectivity, costs, spatial singularity and inconveniences associated with field methods. In 

addition, the high temporal resolution of Sentinel-2 can provide opportunities for modelling CLR 

rate and direction of spread by combining analysis in both time and space over fields. Therefore, 

Sentinel-2 MSI can freely bring information on plantation crop condition that the current crop of 

multispectral sensors could not. Despite the fact that these results reported here are based on 

resampled data, they actually provide the required impetus for field application of the Sentinel-2 

data in disease discrimination, providing opportunities for the required regionalized data in coffee 

condition assessment. Notwithstanding these findings, there is need for additional research to 

bridge the gap between the handheld device used in this study and the satellite platform that it is 

mimicking. It is a gigantic leap of faith to assume that leaf level studies such as these could be 

interpreted in terms of actual satellite data performance at field level.  

6.5 Conclusion 

The aim of this work was to explore the utility of the Sentinel-2 multispectral imager in detecting, 

discriminating and modelling the severity of coffee leaf rust (Hemileia vastatrix) at leaf level. 

Specifically, this work has demonstrated that Sentinel-2 MSI derived bands and vegetation 

indices computed using spectral information located the red-edge position are useful for crop 
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diseases discrimination and modelling that is the basis for coffee condition assessments. Also, 

the study has shown that optimized vegetation indices and spectral bands perform better in CLR 

discrimination when compared to the use of all variables as an independent dataset while this is 

not so for modelling the severity of CLR with RBF-PLS. This study therefore underpins the 

application of Sentinel-2 MSI data in crop and vegetation state assessment that can improve 

management of croplands and stewardship of the environment through reduced unnecessary use 

of crop protection chemical for disease control. Although the results are positive in indicating 

potential application as sensors in disease levels modelling, factors such as canopy structure and 

distribution of the disease across the canopy have to be considered for practical application. There 

is need for more field studies to apply the RF and RBF-PLS in modelling the biophysical (e.g. 

LAI reduced to defoliation) and biochemical (e.g. chlorophyll and foliar nitrogen) parameters of 

coffee that are affected by the disease. Notwithstanding the positive outcome of these studies, 

the transfer of models from leaf level to canopy level is not easy and direct. Therefore, these 

results should only be considered for leaf level assessment with more studies required to transfer 

leaf level assessments to canopy level applications.  

6.6 Link to next chapter  

The two chapters in this section (Chapter 5 and Chapter 6) sought to experimentally evaluate the 

potential for remote sensing individual stressors that affect coffee condition at leaf level. 

Although the results are very positive, there are many challenges in operation upscaling of leaf-

level models to canopy level models. There is evidence that coffee stressors have a significant 

bearing on coffee foliar biochemical properties particularly chlorophyll and nitrogen and 

therefore these can be used as proxies for coffee condition, whatever the individual factor 

contributing to them. The next chapter therefore assess the potential for modelling coffee leaf 

chlorophyll using multispectral remote sensing data at field level.  
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CHAPTER 7: LANDSCAPE SCALE MULTISPECTRAL 
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CONTENT 

 

 
        Photo credits: A. Chemura (2017) 
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Abstract 

Coffee leaf chlorophyll (Chl) is an important proxy for coffee plant photosynthetic rates, nitrogen 

content, leaf health and yield potential. Therefore, approaches to monitor coffee leaf Chl are 

necessary for field, landscape, regional and national scale decision making to improve coffee 

stand health and productivity and to reduce yield losses. Leaf chlorophyll is among the many 

plant biochemical parameters that can be non-destructively mapped with remote sensing. 

Whereas the recently launched Sentinel-2 multi-spectral instrument (MSI) data has great 

potential for plant condition assessment, the value of its spectral settings at variable spatial 

resolutions in relation to crop canopy cover on Chl content prediction remains largely 

unexplored. In this study, an empirical model to estimate coffee leaf Chl with Sentinel-2 MSI 

data was applied. Specifically, the influence of spectral settings, spatial resolution and age-related 

crop canopy cover on modelling performance was investigated. The random forest algorithm was 

used to predict coffee leaf Chl using all 9 Sentinel-2 MSI bands at 20m, all 9 bands at 10m, 5 

bands at 10m and 4 bands at 20m spatial resolutions for all coffee stands (3-8 years, N=72) and 

then for mature stands only (5-8 years, N=60). Results showed that coffee biophysical parameters 

(height and canopy cover) are significantly influenced by stand age while biochemical 

parameters (plant water concentration (PWC) and total Chl) are age invariant. Results further 

showed that the best modelling results (R2=0.69, RMSE=64.4) were achieved when all the bands 

at 10m spatial resolution were used in modelling coffee leaf Chl for all coffee stands. The 

prediction accuracy improved (R2=0.77, RMSE=56.5) when only mature coffee stands were 

used. The 20m bands (red-edge and SWIR) performed similarly in coffee leaf Chl estimation as 

using all bands at 20m and using only 10m bands for all coffee stands and for mature coffee 

stands. Accuracy metrics were highest and error values lowest when coffee leaf Chl was 

estimated for mature stands only compared to when both all coffee stands were used in the 

modelling.  It was concluded that Sentinel-2 MSI is a valuable dataset for predicting coffee leaf 

Chl, however, based on our findings, it is suggested that finer spatial resolutions of 10m applied 

on mature coffee stands only should be adopted for better prediction results.  

Key words:  Leaf chlorophyll, Crop condition assessment, Random forest, Spectral resolution, 

Spatial resolution 
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7.1 Introduction 

Coffee (Coffea arabica) in a perennial tree crop with significant input costs, and thus intra- and 

inter-seasonal crop condition assessments and productivity monitoring are necessary for 

sustained production and profitability. Plant biophysical (e.g. LAI) and biochemical (e.g. 

chlorophyll) parameters are good indicators of vegetation condition and directly related to 

productivity in crops and natural systems. Chlorophyll (Chl), for example, is important in 

agricultural crop management as it is a reliable indicator of photosynthetic rates, nitrogen content 

and leaf health. This is because leaf Chl is associated with plant CO2 assimilation capacity, which 

is directly related to photosynthetic rate and quantum yield due to its association with leaf 

biochemistry such as Rubisco content (Lawlor, 1995). In coffee, Chl is closely associated with 

N content and yield levels, hence can be used in yield estimations (Reis et al., 2009). Since coffee 

plantations dominate landscapes in areas of production, Chl amounts in coffee leaves control 

carbon exchange and are therefore related to a wide range of ecosystem goods and services. In 

addition, Chl content is an indicator of crop condition as it varies with both biotic and abiotic 

stress factors such as drought, plant diseases, pest infestation and nutrient imbalances (Netto et 

al., 2005; de Oliveira et al., 2009; Pompelli et al., 2010). Hence predicting Chl content in coffee 

is necessary for coffee crop management and yield estimation at local, regional and national 

levels. This type of information is necessary in monitoring intra- and inter-seasonal variations in 

crop health required by extension officers, plantation managers, investors, insurers and other 

stakeholders interested in monitoring crop performance at various scales.  

Many studies have shown that Chl can be reliably estimated using remotely sensed data at points, 

across landscapes and even at regional scales.  For example, Kalacska et al. (2015) demonstrated 

that it is possible to model and map chlorophyll Chl distribution across mixed species peatlands 

at leaf and canopy levels (R2>0.8). Using multi-sourced imagery, Croft et al. (2013) mapped Chl 

across broadleaf and needle leaf canopies with MERIS and Landsat TM data(R2=0.62 and 0.65 

respectively). Similar success in remote sensing based estimation of Chl has also been reported 

in agricultural crops. For instance, Darvishzadeh et al. (2012) successfully used ALOS AVNIR-

2 image data and inverted coupled radiative transfer models to predict Chl in rice fields at 10m 

resolution using root mean square error (RMSE) as the cost function (R2=0.65, RMSE=0.45), 

while Moharana and Dutta (2016) produced canopy Chl maps for rice using various vegetation 

indices and predictive models (highest R2=0.77 for a linear model and 0.82 for non-linear model). 
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Many other studies have applied remote sensing data in Chl estimation in agricultural crops e.g. 

(Wu et al., 2008; Hunt et al., 2011; Peng et al., 2011; Clevers & Gitelson, 2013). However, 

adoption of remote sensing in biochemical assaying of perennial tree crops such as coffee 

remains largely unexplored.  In natural ecosystems the canopy structure as influenced by 

mixtures (or lack thereof) of tree and grassland species dictate absorbance and resultant remote 

sensing ability of Chl and other pigments (Baret & Buis, 2008; Malenovský et al., 2009). On the 

other hand, in annual crops such as maize, rice, wheat and soybean, plants follow a weather 

mediated phenological cycle which results in largely uniform-aged crop fields (Houborg et al., 

2015). Unlike in natural systems and in annual cropping systems, perennial tree crops such as 

coffee are planted uniformly across fields, but with fields of different ages to ensure production 

continuity.  Thus, coffee farms will have different age stands and probably different crop varieties 

at a time. These have significant influence on spectral characteristics (Chemura & Mutanga, 

2016) and therefore complicating the potential use remote sensing data for plant pigment 

estimations (Chapter 3).  

Evidence shows that the Sentinel-2 multispectral imager (MSI) spectral settings can be used in 

modelling leaf Chl content at canopy level.  Clevers and Gitelson (2013) for example, showed 

that leaf Chl is strongly related to some Sentinel-2 MSI data in maize (R2=0.94), soybean 

(R2=0.94) potato (R2=0.89) and grass (R2=0.80). Also, Vincini et al. (2014) identified MERIS 

Terrestrial Chlorophyll Index(MTCI) and red-edge position (REP) as important Sentinel-2 MSI 

derived indices in predicting Chl in winter wheat canopies. Promising results have also obtained 

by Frampton et al. (2013) who related several vegetation indices to Chl in grapevines. These 

results are attributed to the sensor’s thirteen unique and strategically positioned bands that are 

useful for vegetation characterization and mapping. These spectral bands range from the visible 

and near infrared (VNIR) to the shortwave infrared (SWIR) regions of the spectrum. However, 

these studies were limited to an evaluation of the sensor’s spectral settings, disregarding the fact 

that the Sentinel-2 MSI data comes at different spatial resolutions for different bands. Knowledge 

on the interaction between spectral band settings and spatial resolution in Chl and other 

vegetation characteristics modelling with Sentinel-2 MSI data remains limited. Of the available 

Sentinel-2 MSI’s thirteen bands, four are provided at 10 m spatial resolution, six bands at 20 m 

spatial resolution and three bands at 60 m spatial resolution (Frampton et al., 2013). This design 
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is unique to the sensor in that there is interaction of both spatial and spectral resolution in 

measured reflectance values of each band.   

The three new bands (compared to predecessor sensors such as Landsat) in the red-edge region 

specifically designed for vegetation analysis are centered at 705 nm, 740 nm and 783 nm are 

available at a 20m spatial resolution while the traditional VIS/NIR are available at a 10m spatial 

resolution. It has not been established if the lower (20m) spectral bands with vegetation focused 

red-edge spectral settings are better in coffee (and other vegetation type) Chl modelling compared 

to the higher (10m) traditional VIS/NIR bands. Some results have also shown that performance 

of Sentinel spectral settings in modelling leaf Chl are dependent on dominant leaf angle 

distribution of crop canopies and other biophysical characteristics (Vincini et al., 2015). Hence 

this study sought to evaluate the performance of Sentinel-2 MSI data in modelling and mapping 

leaf Chl in coffee plantations at landscape scale. Specifically, the study sought to  (i) determine 

the influence of age on coffee biophysical parameters affecting reflectance (ii) identify the 

influence of bands combinations and spatial resolutions in estimating leaf Chl with Sentinel-2 

MSI data in coffee and (iii) assess the influences of age of coffee stands on coffee leaf Chl 

modelling performance.  

7.2 Materials and methods 

7.2.1 Study area 

The study was conducted at Jersey Tea and Coffee Estates in Chipinge district, Zimbabwe. The 

site is located at longitude 32̊ 41’00E and 32̊ 42’00E, and latitude 20̊ 28’00S and 20̊ 31’00S 

(Figure 7.1). The area is characterised by a subtropical with two distinct dry and wet seasons, 

divided almost equally between months of the year i.e. October to March – rainy and April to 

September - dry season. The topography is undulating with a relief difference of over 100m. The 

area receives relatively high mean annual rainfall totals for a subtropical area(1200-1300 

mm/year) with mostly warm temperatures, around 22.5°C (Lagerblad, 2010; Nicolin, 2011). 

With deep red clayey soils formed from mafic rocks, climatic conditions in the area make it 

suitable for good quality coffee production. Sun-coffee production, i.e. coffee plantations without 

tree shading is practiced in the area (Chemura et al., 2015a).  
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Figure 7.1: The study area showing the distribution of the coffee fields and stand ages. 

7.2.2 Field data 

Field data on various biophysical (coffee height, variety, canopy width, age since planting) and 

biochemical (Chl) characteristics of coffee that were deemed to be related to reflectance was 

carried out during the first week of January 2017. Sampling points were randomly selected across 

the coffee fields and a high-resolution imagery sampling map was generated for the identification 

of sampling sites. The total size of the sampled fields was 216 hectares with 64% under mature 

coffee. Sampling points were selected to cover all coffee age groups (mature and young) and to 

capture the varieties produced in the plantations (Catimor 129 and CR95). The sampling plots on 

which data was collected consisted of six coffee plants obtained from two rows of three adjacent 

plants each. The coffee trees had a sowing arrangement of 2.0 m x 2.5 m giving a sampling area 

of 15m2 for each sampling point. The height (in cm) of each plant was measured using a 

graduated stick and averaged per plot.  

Canopy area was determined by measuring canopy diameter (in cm) of each planting station in 

the plot, which was then used to calculate canopy area, assuming that the coffee canopy 
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approximates a circle. A SPAD-502 (Konica Minolta Sensing Inc., Japan) was used to measure 

absorbance that was converted into total coffee leaf Chl content. The SPAD reading of each 

coffee leaf was taken at approximately the same spot on selected leaves. The average of SPAD 

measurements from five leaf discs of each of the six coffee trees was used to determine the 

average SPAD readings of the plot. To convert the SPAD readings to total Chl, 34 coffee leaves 

collected from the same fields as SPAD measurements were frozen and their Chl a and b 

determined in the laboratory. The N,N-dimethylformamide (DMSO) solvent method was used 

for Chl extraction and a curvilinear function relating SPAD readings and total Chl (µg/cm2) was 

established and used.  

7.2.3 Image acquisition and pre-processing 

Sentinel-2 Level-1C (L1C) MSI data were downloaded from Remote Pixel, a Sentinel-2 Data 

Hosting portal (https://remotepixel.ca/). The Sentinel-2 data for the study area was taken on the 

30th of November 2016, which was the closet day to field work with usable cloud-free images. 

The Sentinel-2 L1C product used in this study is characterized by individual bands of 100 km2 

tiles (ortho-images in UTM/WGS84 projection). The image had 0.02% cloud cover and the 

spectral bands, center wavelengths and band width of the Sentinel-2 MSI data used are shown in 

Table 7.1. 

Table 7.1: Specifications of the Sentinel-2 Multispectral Instrument (MSI)  

Spectral band Centre wavelength (nm) Band width (nm) 

B2 490 65 

B3 560 35 

B4 665 30 

B5 705 15 

B6 740 15 

B7 783 20 

B8 842 115 

B11 1610 90 

B12 2190 180 

 

Individual bands were stacked in four different ways according to the different spatial 

resolutions. To obtain a stack with all 9 bands at 20m resolution, the 10m bands were resampled 

to 20m using nearest neighbour in Sentinel Application Platform (SNAP) version 4.0. To obtain 
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all 9 bands at 10m resolution the 20m bands were pan sharpened in ENVI 5.3 (Exelis Visual 

Information Solutions, Boulder, CO, USA) using Gram-Schmidt pan-sharpening. The Gram-

Schmidt method is generally recommended for most pan-sharpening applications as it is typically 

more accurate than other methods. This accuracy is attributed to its use of spectral response 

function of a given sensor to estimate what the higher resolution band would be.  

All resampling and pan-sharpening were done after converting reflectance to top of the canopy 

reflectance (Level-2A) using the Sen2cor atmospheric correction module in SNAP (Muller-Wilm 

et al., 2013). The dark-object subtraction method was applied in QGIS 2.6 using Semi-Automatic 

Classification Plugin for QGIS as the reflectance values were low after atmospheric correction 

in SNAP. To model the influence of age on performance, data analysis was done firstly on all 

the data, then on mature coffee stands only, with the mature fields obtained from an age mask. 

The band combination, number of variables and spatial resolutions are shown in Table 7.2. 

Table 7.2: Specifications of the Sentinel-2 Multispectral Instrument (MSI) band settings 

showing spatial/spectral combinations, number of bands and spatial resolution. 

Set Spatial/Spectral 

Combinations 

# of 

bands 

Sentinel-2 MSI 

bands 

Spatial 

Resolutio

n  

Description 

A All MSI bands 

at 20m  

9 B2, B3, B4, B5, 

B6, B7, B8a, B11, 

B12 

20m 10m bands resampled to 

20m  

B 10m bands 

only 

4 B2, B3, B4, B8a 10m Original 10m bands only 

C 20m bands 

only 

5 B5, B6, B7, B11, 

B12 

20m Original 20m bands only 

D All MSI bands 

at 10m  

9 B2, B3, B4, B5, 

B6, B7, B8a, B11, 

B12 

10m 20m bands pan-sharpened 

to 10m resolution 
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7.2.4 Machine learning modelling approach 

The Random Forest (RF) algorithm was used for modelling total coffee chlorophyll from 

different band combinations and spatial resolutions. RF is an ensemble machine learning 

algorithm developed by Breiman (2001) to solve regression problems through a multitude of 

decision trees. RF employs an iterative bagging (bootstrap aggregation) operation where the 

number of trees (ntree) are independently built using a random subset of samples from the 

training samples. Each node is then split using the best, among a subset of input variables (mtry). 

In many applications, this algorithm produces one of the best accuracies to date and has important 

advantages over other techniques in terms of ability to handle highly non-linear data, robustness 

to noise and tuning simplicity (Rodriguez-Galiano et al., 2012; Lebedev et al., 2014). The default 

number of trees (ntree) of 500 was used while mtry is automatically determined as the square 

root of the total number of variables used (Breiman, 2001). Coffee chlorophyll modelling was 

done in R (R Core Team, 2013) using the R package randomForest to run the RF modelling 

(Liaw et al., 2009) for both training and prediction. 

 7.2.5 Accuracy assessment and performance comparison  

In order to assess the performance of all models in coffee leaf chlorophyll estimation, the field 

data was split into 60% for training and 40% for evaluation (43:29 for all stands and 36:24 for 

mature coffee stands). The correlation coefficient (r) and coefficient of determination (R2) were 

used to assess the goodness of fit of the predicted and measured coffee leaf chlorophyll. In 

addition, Mean Absolute Error (MAE, Equation 7.1) Root Mean Square Error (RMSE, Equation 

7.2), and percent bias (pBias, Equation 7.3) were used to determine the errors of the model in 

predicting coffee leaf chlorophyll from variables.  
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where for all cases n is the number of data points, yi is the measured coffee leaf chlorophyll 

content at that data point and ŷi is the model predicted coffee leaf chlorophyll content at that data 

point (Moriasi et al., 2007; DeJonge et al., 2016).  

7.3 Results 

7.3.1 Effect of biophysical and age characteristics  

Tree height and canopy area increased with age, with results showing that Cat129 variety is taller 

than CR95 while not having wide canopies (Figure 7.2a and Figure 7.2b). Total coffee Chl was 

not significantly influenced by age or variety (Figure 7.2c). The results show that there was more 

variation in coffee tree canopy area per age group and variety compared to that of height, 

especially in mature coffee trees. There was great variation in total coffee leaf Chl across varieties 

and ages. These results indicate that there was no significant influence of variety (p>0.05) on all 

key biophysical and biochemical parameters in coffee leaves. Conversely, age significantly 

affected coffee biophysical parameters i.e. height and canopy area (p<0.05) and not the 

biochemical parameter i.e. Chl (p>0.05). Young coffee stands had a mean Chl of 43.4±10.6 

µg/cm2 while mature coffee stands had a mean Chl of 49.3±10.2 µg/cm2. 
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Figure 7.2 Influence of stand age and variety on (a) coffee height (b) tree canopy area (c) total 

Chl obtained from field work (n=72). The numbers (3,4,6,7 and 8) are the ages while letters (A 

and B) are coffee varieties. 

7.3.2 Total coffee leaf chlorophyll estimation with all coffee stands 

Results showed that better modelling performance was achieved using the10m spatial resolution 

Sentinel-2 MSI data than 20m in the parameterized RF model. There was poor model 

performance when Chl modelling was done with all Sentinel-2 MSI bands at 20m resolution 

(R2=0.60, RMSE=7.0, Figure 7.3a, Table 7.3). The predictive performance of the RF further 

deteriorated when the 5 Sentinel-2 spectral bands originally at 20m were used in modelling coffee 

leaf Chl (R2=0.58, RMSE=7.4, Figure 7.3c, Table 7.3). Conversely, modelling coffee leaf Chl at 

10m improved model performance. Better model performance was achieved when modelling all 

coffee stands with all bands at 10m resolution (R2=0.69, RMSE=6.8, Figure 7.3d), than 4 bands 

at 10m resolution (R2=0.62, RMSE=7.2, Figure  7.3b). Generally, the results showed 

overestimation of lower Chl values (below 50µg/cm2) and underestimation of higher values 

(Figure 7.4) 
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Figure 7.3: Relationship between measured and predicted coffee leaf chlorophyll using (a) all 9 

bands at 20m resolution, (b) 4 bands originally at 10m resolutions (c) 5 bands originally at 20m 

resolutions and (d) all 9 bands at 10m resolutions. 

Table 7.3: Performance evaluation of different band settings in predicting coffee leaf 

chlorophyll using all coffee stands.  

Band settings MAE RMSE r R2 

All bands at 20m  5. 7 7.0 0.78 0.60 

10m bands only 6.4 7.2 0.79 0.62 

20m bands only  6.3 7.4 0.76 0.58 

All bands at 10m  6.3 6.8 0.83 0.69 
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The total coffee leaf Chl maps produced from the best performing 20m RF model (all 9 bands at 

20m resolution) and at 10m (all 9 bands at 10m resolution) are shown in Figure  7.4a and Figure  

7.4b respectively. At 20m resolution, the maps show that the greater part of the younger coffee 

fields have lower total coffee leaf Chl (Figure 7.4a), which is somewhat unexpected, considering 

the insignificant influence of age on total coffee leaf Chl in Figure 7.2c. However, there is 

concurrence between the 20m and 10m RF models in predicting northern and central parts of the 

coffee fields as having lower total coffee Chl.  

The slope of the relationship between measured and predicted total coffee leaf Chl was not 

significantly different between using all bands at 20m and using only the 10m bands. These 

results thus show that spectral settings of Sentinel-2 MSI data play a significant role in total 

coffee leaf Chl prediction performance beyond that played by spatial resolution. As a result, using 

all coffee stands, the prediction performance among all bands at 20m, 10m bands only and 20m 

bands only were close in terms of error metrics (Table 7.3). 

 

Figure 7.4: Total coffee leaf Chl distribution maps obtained using the RF on (a) all 9 bands at 

20m spatial resolutions and (b) all 9 bands at 10m spatial resolutions for all coffee stands. 
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7.3.3 Total coffee leaf chlorophyll estimation for mature coffee stands only 

Although there was no significant influence of age in coffee leaf Chl content (Figure 7.2c), 

modelling results show that age is important in modelling coffee leaf Chl as there is a general 

increase in prediction performance for mature coffee stands compared to when all coffee stands 

were used (Table 7.4). However, the trends in model performance remained the same where 

models built using 20m spatial resolution had lower predictive power (Figure 7.5a and 7.5c), 

compared to those built using 10m spatial resolution Sentinel-2 MSI data (Figure 7.5b and Figure 

7.5d). As with using all coffee stands, the best performing model for mature coffee was for all 

bands at 10m spatial resolutions (R2=0.77, RMSE=5.9, Figure 7.6d, Table 7.3). All results 

showed that prediction of total coffee Chl had positive model bias with the least bias of 0.4 

obtained from modelling total coffee Chl with all 9 bands at 20m (Figure 7.5a).  

 

Figure 7.5: Relationship between measured and predicted mature coffee leaf chlorophyll using 

(a) all 9 bands at 20m resolution, (b) 4 bands originally at 10m resolutions (c) 5 bands 

originally at 20m resolutions and (d) all 9 bands at 10m resolutions. 
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Table 7. 4: Performance evaluation of different band settings in predicting coffee leaf 

chlorophyll using mature coffee stands only.  

 Band settings MAE nRMSE % PBIAS % r R2 

All bands at 20m  45.24 54.4 3.1 0.85 0.72 

10m bands only 44.20 57.1 1.3 0.85 0.73 

20m bands only 51.54 66.1 3.1 0.84 0.70 

All bands at 10m  50.25 58.6 1.4 0.88 0.77 

 

The distribution of the total coffee leaf Chl as predicted from the best performing 20m RF model 

(all 9 bands at 20m resolution) and at 10m (all 9 bands at 10m resolution) for mature coffee 

stands are shown in Figure 7.6a and Figure 7.6b respectively. There is an agreement in patterns 

of total coffee Chl distribution but the total coffee leaf Chl distribution from using all bands at 

10m (Figure 7b) shows greater Chl variation than those from using all bands at 20m (Figure 

7.6b).  Using 20m Sentinel-2 MSI bands had the highest RMSE and the lowest R2 value in total 

coffee leaf Chl estimation. 

 

Figure 7.6: Total coffee leaf Chl distribution maps obtained from the RF using (a) all 9 bands at 

20m spatial resolution and (b) all 9 bands at 10m spatial resolutions for mature fields. 
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7.3.4 Comparison of performances of different approaches in coffee chlorophyll 

estimation  

Correlating the predicted total coffee leaf Chl from the different band settings showed that the 

highest correlations were between 10m spatial resolutions (r=0.82) while the least was between 

20m spatial resolution (r=0.59) for all coffee stands (Table 7.5). A similar trend was observed 

for prediction of total coffee Chl in mature stands only. The influence of canopy area on total 

coffee leaf Chl prediction accuracy was further evaluated (Figure 7.7). The results indicated that 

for all spatial and spectral settings, there was overestimation of total coffee leaf Chl for smaller 

coffee canopy area and underestimation for large coffee canopies, with a higher significance at 

20m spatial resolution (Figure 7.7a). Absolute differences show that prediction errors were 

higher for smaller coffee canopies (younger coffee), which decreased as canopy sizes increased 

(Figure 7.7b). 

Table 7.5: Correlation coefficients (r) between predicted coffee leaf chlorophyll using different 

band settings*. 

 
All bands at 20m 10m bands only 20m bands only All bands at 10m 

All bands at 20m 1 0.70 0.68 0.73 

10m bands only 0.72 1 0.67 0.85 

20m bands only 0.59 0.75 1 0.70 

All bands at 10m  0.73 0.82 0.65 1 

*Bold figures (below the diagonal) are for all coffee stands while plain numbers are for mature 

coffee stands only. 
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Figure 7.7: Effect of coffee canopy area on total coffee Chl estimation accuracy as shown by 

(a) prediction difference and (b) absolute difference with all coffee data (n=29). 

7.4 Discussion  

The aim of this study was to assess the influence of Sentinel-2 MSI spectral settings and spatial 

resolution and coffee stand age in image-level coffee leaf Chl estimation with the empirical RF 

machine learning algorithm. This aim was pursued with an intention of developing landscape 

scale spatially-explicit crop condition assessment approach that is scientifically sound, easier to 

implement and cost effective. It is anticipated that adoption of such an approach will be valuable 

in coffee condition assessments for improving productivity as well as provision of environmental 

goods and services. This is based on the fact that total coffee leaf Chl is a valuable indicator of 

crop health, hence yield quality and quantity (de Oliveira et al., 2009; Reis et al., 2009). To 

achieve the aforementioned aim, it was hypothesized that understanding the influence of spectral 

settings and spatial resolution of Sentinel-2 MSI data, and of coffee stand age could provide 

useful insights into choice of bands and limits to practical applications in determining coffee 

stand Chl content.  

7.4.1 Effect of biophysical and age characteristics 

As expected, coffee biophysical attributes (height and canopy area) were strongly related to 

coffee age. However, there was no relationship between these attributes and coffee variety. This 

is explained by the fact that the majority of coffee varieties originate from crosses of the genotype 

hibrido de timor (Chidoko et al., 2017), which possibly explains why they are not significantly 

different in their structural characteristics. Our findings are consistent with a large body of 

literature that has used remotely sensed data for age mapping or modelling of other perennial 

crop characteristics using the relationship between stand biophysical characteristics and age 

(Chemura et al., 2015b). However, our findings show that biochemical properties are not 

influenced by age or variety, as total coffee Chl was variety and age invariant. Thus, while 

biophysical coffee parameters are age-dependent, biochemical characteristics may be influenced 

by site conditions such as fertility, insects or pests or other local factors.  

In remote sensing, measured canopy reflectance is determined by the plant’s structural properties 

and biochemical parameters. For example, local factors such as soil fertility and or soil moisture 

have direct influences on both biophysical (canopy area, LAI, height) parameters related to age 
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and biochemical (total Chl, leaf N, PWC) crop parameters that may not be related to age. Whereas 

the influence of these parameters on reflectance is relatively complex, it has been established that 

biophysical vegetation parameters such as LAI and height are not always related to foliar pigment 

concentrations. For example, Lepine et al. (2016) found no relationships between leaf nitrogen 

and LAI in boreal and temperate forests of different ages. Based on our findings, it is concluded 

that variety specific models are unnecessary, as the coffee’s biophysical and biochemical 

characteristics are similar between coffee varieties. Although age was not related to biochemical 

plant parameters, it is suggested that it should be incorporated in modelling as an age-related 

influence of biophysical characteristics on coffee canopy reflectance was established. 

7.4.2 Effect of spectral settings and spatial resolution on coffee leaf Chl estimation  

Based on our finding, it is concluded that total coffee leaf Chl empirical modelling performance 

with Sentinel-2 MSI data is more related to image’s spatial resolution than spectral 

characteristics. This finding is important as the Sentinel-2 MSI data comes at 10m, 20m and 60m 

spatial resolutions, tied to unique spectral settings. There is much promise reported in the 

potential role of Sentinel-2 MSI red-edge bands in vegetation characterization and quantification 

(Herrmann et al., 2011; Clevers & Kooistra, 2012; Frampton et al., 2013; Sibanda et al., 2016). 

However, these studies relied on simulated spectra, ignoring the influence of spatial resolution. 

While simulation-based studies provide important information on the potential of a sensor to 

perform specific tasks, it is necessary that future studies consider all sensor factors that may 

influence its performance. This is particularly critical to Sentinel-2 MSI data as its VIS-NIR data 

comes in different spatial resolutions, a departure from previous sensor designs such as Landsat, 

Worldview and GeoEye that have a constant spatial resolution, except for the panchromatic band. 

Thus, our finding that spatial resolution is more important in influencing total Chl modelling in 

coffee casts aspersions on spectroscopic simulation studies using Sentinel-2 MSI data that did 

not consider spatial resolution. Studies in natural forests have also reported that leaf biochemical 

estimations are more accurate at finer resolutions than at coarser resolutions (Lepine et al., 2016).  

The finding that Sentinel-2 MSI data’s spatial resolution is more influential than spectral settings 

in total coffee leaf Chl estimation may however be restricted to coffee for a number of reasons.  

Firstly, coffee is planted in hedgerows. Hence, there is always soil background effect due to open 

canopies. In this regard, the visible portion of the spectrum becomes an important parameter in 
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explaining variations in reflectance compared to closed canopies where the NIR and other 

vegetation specific bands (and resultant vegetation indices) are more significant (Kalacska et al., 

2015). Secondly, the NIR (B8) band used in this study is available at 10m spatial resolution with 

VIS bands while the vegetation quality and quantity bands of the red-edge portions are available 

at 20m. Studies have shown that the NIR band alone can be used in plant pigment concentration 

estimation. For instance, Lepine et al. (2016) developed a model for N mapping using MODIS 

(R2=0.80) and Landsat (R2=0.79) NIR bands, with no red-edge bands. Many other studies (El-

Shikha et al., 2008; Lee et al., 2008; Schlemmer et al., 2013a) have associated NIR reflectance 

with plant biochemical parameters related to total Chl.  

The Sentinel-2 MSI NIR band has the largest spectral width of all MSI bands (115nm), which 

can be considered an advantage or a disadvantage in total coffee leaf Chl estimation. It is an 

advantage in that the wide spectrum can capture and average wide reflectance across the NIR 

spectrum including that of background effect, capturing influence of structural parameters such 

as canopy cover in the process. In this regard, Lepine et al. (2016) observed no effect of 

bandwidth on the strength of the relationship between leaf biochemistry and canopy reflectance, 

hence suggested that many of narrow wavelengths in imaging spectrometers may just be 

superfluous, a view incongruent with our findings.  On the other hand, recorded NIR reflectance 

maybe be directly related to total coffee Chl through its interaction with photons that have an 

influence on spectral absorption features and indirectly through capturing effects of plant 

associations that affect light scattering and capture (Kruse et al., 2006; Ollinger, 2011). 

Unscrambling what, by how much and why and what is contributing to what is beyond the scope 

of this study. Nevertheless, since there was a similar performance between the use of 20m bands 

(red-edge bands) and 10m bands with all and mature coffee stands, it is concluded that there is 

an influence of these red-edge bands in plant biochemical analysis. However, in coffee this is 

eroded by spatial resolution.  

7.4.3 Influence of coffee stand age on coffee leaf Chl estimation  

Coffee leaf biochemical parameters did not significantly vary with age or variety. or variety. 

Unlike in multispecies studies, the Chl of coffee leaves is expected to not significantly vary with 

anomalous Chl conditions being caused by such factors as soil fertility, diseases, pest attack, 

water stress or other stressors (de Oliveira et al., 2009; Reis et al., 2009). However, modelling 
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results improved on mature coffee stands, compared to the use of both young and mature ages. 

This result is partly explained by the observation that the NIR reflectance is more reflective in 

mature coffee (Chemura & Mutanga, 2016) and thus able to capture variability in factors that 

contribute to the reflectance. The effects of canopy area (which is directly related to age) were 

also apparent in influencing both prediction patterns and magnitude of errors. From these results, 

it is suggested that the model for coffee leaf Chl mapping be applied only to mature coffee fields 

(over 4 years). In large scale modelling, use of pre-existing age masks is useful for practical 

applications (Chapter 3). This is despite the fact that the data used for mature stands was 84% of 

the data used in all stands. Therefore, the few young coffee stands (12 in this case) had an effect 

of reducing the modelling performance for the entire dataset when included in the modelling of 

total coffee Chl. Further studies using more young stands maybe required to confirm this and 

determine if this is the same beyond coffee plantations to other tree crops and plantation forests 

that may have different age stands.  

When coffee leaf Chl was estimated for mature fields only, the best model (all bands at 10m 

resolution) only explained 77% of the variation in measured coffee leaf Chl. Potential sources of 

errors in this finding include the difference between the image and the field data collection dates, 

the strength of the pan-sharpening (where 20m bands were resampled to 10m) and the algorithm 

used. Despite these factors possible contribution to the limited results, our selection is considered 

to be the best possible for the study. Based on our findings and approach, it may be possible to 

develop Sentinel-2 MSI data-based near-real time online and mobile apps for coffee Chl 

assessment that can be used by field managers, insurance companies, extension officers and other 

interested stakeholders as Chl is an indicator of coffee condition. This is possible, especially once 

the twin Sentinel-2b satellite, with a five-day temporal resolution is in orbit.  

7.5 Conclusions 

This study has evaluated the role of Sentinel-2 MSI spectral settings and spatial resolution 

together with stand parameters related to age in empirical estimation of coffee leaf Chl content 

using image data. From this study, it was concluded that:  

1) Coffee biophysical parameters (height and canopy cover) are significantly influenced by 

stand age while biochemical parameters (PWC and total Chl) are age invariant. This is 
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despite the fact that total canopy reflectance is influenced by both biophysical and 

biochemical characteristics. 

2) Fine scale (10m) spatial resolution Sentinel-2 MSI data produce better coffee leaf Chl 

estimation results, regardless of band settings. Thus, future applications should consider 

spatial resolution, in addition to the red-edge bands in coffee Chl estimations. 

3) Models for coffee leaf Chl estimation with Sentinel-2 MSI data should be applied on 

mature coffee stands for better results as young coffee increases prediction errors.  

7.6 Link to next chapter  

This chapter showed that it is possible to model coffee leaf chlorophyll with Sentinel-2 

multispectral data at landscape scale. The key findings are that the spatial resolution is more 

important and that acceptable modelling results are obtained for mature coffee formed the basis 

of the next chapter in nitrogen modelling. In the next chapter, spatial variability of coffee foliar 

nitrogen is modelled at 10m spatial resolution and for mature stands only as informed from this 

chapter.   
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CHAPTER 8: LANDSCAPE SCALE MULTISPECTRAL 

REMOTE SENSING OF COFFEE FOLIAR NITROGEN 

CONTENT 
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Abstract 

Nitrogen (N) is the most limiting factor to coffee development and productivity. Therefore, 

development of rapid, spatially explicit and temporal remote sensing based approaches to 

determine spatial variability of coffee foliar N are imperative for increasing yields, reducing 

production costs and mitigating environmental impacts associated with excessive N applications. 

This study sought to assess the value of Sentinel-2 MSI spectral bands and vegetation indices in 

empirical estimation of coffee foliar N content at landscape level. Results showed that coffee 

foliar N is related to Sentinel-2 MSI B4 (R2=0.32), B6 (R2=0.49), B7 (R2=0.42), B8 (R2=0.57) 

and B12 (R2=0.24). Vegetation indices were more related to coffee foliar N as shown by the 

Inverted Red-Edge Chlorophyll Index - IRECI (R2=0.66), Relative Normalized Difference Index 

– RNDVI (R2=0.48), CIRE1 (R2=0.28), and Normalized Difference Infrared Index – NDII 

(R2=0.37). These variables were also identified by the random forest variable optimisation as the 

most valuable in coffee foliar N prediction. Modelling coffee foliar N using vegetation indices 

produced better accuracy (R2=0.71 with RMSE= 0.27 for all and R2=0.73 with RMSE= 0.25 for 

optimized variables), compared to using spectral bands (R2=0.57 with RMSE= 0.32 for all and 

R2=0.58 with RMSE= 0.32 for optimized variables). Combining optimized bands and vegetation 

indices produced the best results in coffee foliar N modelling (R2=0.78, RMSE=0.23). All the 

three best performing models (all vegetation indices, optimized vegetation indices and combining 

optimal bands and optimal vegetation indices) established that 15.2 ha (4.7%) of the total area 

under investigation had low foliar N levels (<2.5%). This study demonstrates the value of 

Sentinel-2 MSI data, particularly vegetation indices in modelling coffee foliar N at landscape 

scale.  

Keywords: Nutrient management, random forest, canopy nitrogen, precision agriculture. 
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8.1 Introduction 

Coffee follows the C3 or Calvin cycle photosynthetic pathway with the plant biomass 

productivity, growth and yield being dependent on carbohydrates produced through 

photosynthesis (Wrigley, 1988). The capacity of the plant to produce these carbohydrates 

depends on nutrient supply with nitrogen (N) known as the single most limiting factor to coffee 

productivity (Coste, 1992). Mature coffee requires a total of 105 kg ha-1 of N to achieve yield 

levels of 1 tonne ha-1 per year, and yet some coffee farms report up to 6 tonnes clean coffee per 

ha-1 per year (Chemura, 2014). N plays several interconnected roles in coffee plant development 

and productivity. Firstly, N determines plant establishment and root growth, which in turn 

influences other aspects of the plant’s health. Secondly, in addition to enhancing berry 

productivity in the year of supply, N ensures production of fresh cropping wood frame, valuable 

for improved productivity in subsequent years. Furthermore, N plays a significant role in plant 

resilience to biotic and abiotic stresses. For example, it has been suggested that bushes with low 

nitrogen levels are more susceptible to coffee white stem borer attacks (Kutywayo, 2002b).  In 

addition, sufficient N helps the coffee plant to tolerate higher levels of manganese by preventing 

the breakdown of leaf proteins under extremely hot and dry conditions. Coffee plants with higher 

N are also known to have a higher ability to withstand drought due to higher hydraulic 

conductivity (Logan & Biscoe, 1987; DaMatta, 2004).  

Commonly, N fertilisers are used to supplement soil available nitrogen to increase growth and 

prevent leaf fall, hence optimise photosynthetic area. On the other hand, excessive or ill-timed N 

may induce the excessive production of side shoots from the nodes, rather than flower buds, 

reducing berry yield (Kutywayo et al., 2010). Concerns about leaching and volatilization of N 

fertilisers from excessive applications have also been raised (Bortolotto et al., 2012; Tully et al., 

2012). Although N is essential for coffee plants throughout the year, its demand increases 

significantly during blossom and berry development (Coste, 1992). Hence, Coffee N 

management decisions are not just about N supply, but about achieving and maintaining a season 

long balance of nitrogen within the plant.   

To achieve the fine N balance in coffee plants, plantation managers supply nitrogen as 

compound, organic or straight fertilisers applied as basal applications, foliar sprays and/or trickle 

or drip fertigation. These applications are based on calendar management program or occasional 
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lab-based soil and/or leaf sampling used in conjunction with established diagnostic norms. In 

extreme cases, nutrient deficiency symptoms such as the characteristic yellowing of leaves for N 

deficiency are used for reactive decision making.  These methods are not only labour intensive, 

but also commonly adopted once economic damage has already been inflicted on the crop 

(Chemura et al., 2017). In the long term, these sampling-based methods are not ideal for 

balancing the crop nutrient needs, supply of nutrients from natural sources, and the short- and 

long-term fate of the fertilizer applied, resulting in unsustainable production and yield shortfalls.  

Remote sensing methods have been demonstrated to successfully identify distributions of foliar 

N in natural vegetation and agricultural crops across different biomes.  This is enabled by the 

fact that N is related to factors influencing spectral responses of vegetation across the visible, 

NIR and SWIR regions of the spectrum. Many authors, (e.g. Ollinger et al. (2008), Wang et al. 

(2016) and Lepine et al. (2016)) have reported that there are significant correlations between NIR 

reflectance (800–850 nm) and canopy foliar mass-based nitrogen concentration (N), which 

enable remote sensing-based N predictions. Whereas the reason for this correlation is still under 

speculation (Knyazikhin et al., 2013; Ollinger et al., 2013), there is sufficient ground for 

development of remote-sensing based foliar N prediction and mapping from remotely sensed 

data at various scales (Baret et al., 2007).  

Leaf level N versus reflectance dynamics vary with canopy level interactions. For instance, 

Frampton et al. (2013) reported contrasting performance of vegetation indices at leaf and canopy 

levels. Consequently, Wang et al. (2016) suggested that canopy structure confounds the 

estimation of foliar nitrogen when using canopy spectral data because it is the main driver of 

canopy reflectance variations. This is interesting for application of remote sensing in coffee 

plantations because coffee plants have a distinct canopy, influenced by their physiology, growth 

cycle and planting arrangement. Thus, reported interactions between vegetation and reflectance 

in forests, grasslands, annual crops and other plantations may not hold for coffee. This is because 

(i) coffee is planted in hedgerows and there is always background effect which reduces potential 

for saturation (ii) the function and structure of the canopy that explain reported variation is the 

same in coffee fields (except where coffee is under shade) and, (iii) each pixel is usually on 

uniform aged plants, with similar height and canopy width, which influence adjoining cover 

reflectance.  
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Understanding the functional relationships between leaf N and plant growth and development, 

as well as rapid and less expensive diagnostic approaches for spatial and temporal estimation of 

plant N are necessary for efficient and sustainable management of coffee plantations. However, 

majority of reported approaches either use hyperspectral data, which is not easily accessible to 

many coffee producers or field spectroscopy, with similar limitations that characterise 

aforementioned sampling approaches. New generation satellite sensors such as WorldView-2 

and 3, RapidEye and Sentinel-2 have incorporated new wavebands unavailable in similar 

predecessor sensors. The Sentinel-2 is particularly attractive due to its free availability, with 

relatively high spatial resolution, as well as strategically positioned bands, making it useful for 

many applications that include vegetation characterisation and mapping. It has a huge swath-

width of about 290 km with thirteen unique spectral bands (Hansen & Loveland, 2012). These 

spectral bands range from the visible and near infrared (VNIR) to the shortwave infrared (SWIR) 

regions of the spectrum. Of these thirteen bands, four are provided at 10 m spatial resolution, six 

at 20 m spatial resolution and three at 60 m spatial resolution (Funk & Budde, 2009).  

Due to these unique characteristics, the Sentinel-2 multispectral imager is hyped to be capable of 

providing timely data for the generation of high-level operational products. These include the 

generation of spatially explicit estimation and monitoring of important plant biophysical and 

biochemical variables such as chlorophyll, N, LAI, leaf water content and crop health. Given the 

uniqueness of coffee as a target and the spectral features of the Sentinel-2 MSI data, the aim of 

this study was to assess the potential for Sentinel-2 bands and vegetation indices to predict foliar 

N content in coffee (Coffea arabica L.). A secondary objective was to establish the relationships 

between spectral variables and coffee foliar N at canopy level. The latter objective was aimed at 

identifying the best performing variables in coffee N prediction for the purposes of quantifying 

and mapping N levels that can be operationally used to characterise and manage coffee fields to 

achieve optimum productivity.  

 

8.2 Materials and methods  

8.2.1 Study area 

The study was conducted at Jersey Tea and Coffee Estates in Chipinge district, Zimbabwe. The 

site is located at longitude 32̊ 41’00E and 32̊ 42’00E, and latitude 20̊ 28’00S and 20̊ 31’00S 
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(Figure 8.1). The area is characterised by a subtropical climate with two distinct dry and wet 

seasons, divided almost equally between months of the year i.e. October to March – rainy and 

April to September – dry seasons. The topography is undulating with a relief difference of over 

100m. The area receives relatively high mean annual rainfall totals for a subtropical area (1200-

1300 mm/year) with mostly warm temperatures, around 22.5°C (Lagerblad, 2010; Nicolin, 

2011). With deep red clayey soils formed from mafic rocks, climatic conditions in the area make 

it suitable for good quality coffee production.  

 

Figure 8.1: The study area showing the distribution of the coffee fields and stand ages 

8.2.2 Field data  

A field campaign for sampling coffee leaf samples was carried out during the first week of 

January 2017. Sampling points were randomly selected across the coffee fields and a high-

resolution imagery sampling map was generated for the identification of sampling sites. The 
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sampling plots on which data was collected consisted of six coffee plants obtained from two rows 

of three adjacent plants each. On each tree on the plot, five leaf samples were collected from 

different canopy levels, making a total of 30 leaves from the six plants. The sampling site was 

marked with a handheld GPS with an accuracy of ~3m (eTrex 10, Garmin, Germany). The 

descriptive statistics of the data collected during field work is shown in Table 8.1. 

8.2.3 Foliar nitrogen determination  

Coffee leaves were obtained from the field and stored in a cooler box with ice packs during field 

work. The leaf samples were oven-dried at 70ºC for 8hrs to remove moisture and properly 

crushed using mortar and pestle. The micro-Kjeldahl method was used for quantitative 

determination of foliar nitrogen content in coffee leaves using the procedures detailed by Okalebo 

et al. (2002). 0.5 g of each dried coffee leaf sample was taken for chemical analysis. The foliar 

nitrogen content of coffee leaf samples was calculated from the amount of ammonia present. The 

amount of ammonia was determined by titration with sulphuric acid solution with a methyl 

orange pH indicator. Percentage of foliar nitrogen concentration in coffee leaves was determined 

using the following formula: 

𝐹𝑜𝑙𝑖𝑎𝑟 𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛 (%) =  
0.014 × Volume of H2SO4 × Normality of the H2SO4

Weight of leaf samples
                  [8.1] 

Table 8.1: Descriptive statistics of field data  

 
Age Height PWC (%) N (%) 

Min 5 143.3 48.9 1.7 

Mean 5.6 165.8 56.7 2.8 

Max 8 261.7 68.8 3.8 

Std.Dev 1.9 59.5 4.2 0.4 

Range 3 128.3 19.8 2.2 

 

8.2.4 Image acquisition and preprocessing 

Sentinel-2 Level-1C (L1C) MSI data were downloaded from Remote Pixel, a Sentinel-2 Data 

Hosting portal (https://remotepixel.ca/). The Sentinel-2 data for the study area was taken on the 

30th of November 2016, which was the closest day to field work with usable cloud-free images. 
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The Sentinel-2 L1C product used in this study is characterized by individual bands of 100 km2 

tiles (ortho-images in UTM/WGS84 projection) detailed in Table 8.2.  

Table 8.2: Specific details about the Sentinel-2 MSI image used.  

Details  Characteristic 

Date of image acquisition  2016-11-30 

Day of the Year (DOY) 335 

Quantization  12 bits  

Cloud cover  0.02% 

Data format  .jp2 

10m bands  4 

20m bands 5 

 

The spectral bands, centre wavelengths, band width and spatial resolution of the Sentinel-2 MSI 

data used are shown in Table 8.3. To obtain all nine bands at 10m resolution, the 20m bands were 

pan sharpened in ENVI 5.3 (Exelis Visual Information Solutions, Boulder, CO, USA) using 

Gram-Schmidt pan-sharpening. The Gram-Schmidt method is generally recommended for most 

pan-sharpening applications as it is typically more accurate than other methods. This accuracy is 

attributed to its use of spectral response function of a given sensor to estimate what the higher 

resolution band would be. All resampling and pan-sharpening were done after converting 

reflectance to top of the canopy reflectance (Level-2A) using the Sen2cor atmospheric correction 

module in SNAP (Muller-Wilm et al., 2013). The dark-object subtraction method was applied in 

QGIS 2.6 using Semi-Automatic Classification Plugin for QGIS as the reflectance values were 

low after atmospheric correction in SNAP. Only mature coffee data was used, with the mature 

coffee being identified from an existing age mask.  

 

 



158 
 

Table 8.3: Specifications of the Sentinel-2 Multispectral Instrument (MSI) band settings 

showing centre wavelengths, band width and spatial resolution. 

Spectral 

band 

Name  Centre wavelength 

(nm) 

Band width 

(nm) 

Original Spatial 

resolution (m) 

B2 Blue 490 65 10 

B3 Green 560 35 10 

B4 Red 665 30 10 

B5 Red-Edge 1 705 15 20 

B6 Red-Edge 2 740 15 20 

B7 Red-Edge 3 783 20 20 

B8 NIR 842 115 10 

B11 SWIR1 1610 90 20 

B12 SWIR2 2190 180 20 

 

8.2.5 Vegetation indices  

Nine vegetation indices were evaluated for N prediction in coffee plantations as listed in Table 

8.4. The selection of these vegetation indices was based on performance evaluation of Sentinel-

2 based vegetation indices in characterising coffee health (Chemura et al., 2016) or Chapter 6). 

Other vegetation indices were obtained from reported Sentinel-2 performance evaluations in 

vegetation biochemical assaying principally from Frampton et al. (2013). 
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Table 8.4: Name, formula and Sentinel-2 bands utilized in selected vegetation indices (VIs) 

evaluated in the study. 

Name Formula Bands Source 

Normalized Difference 

Vegetation Index  
𝑁𝐷𝑉𝐼 =

𝜌𝑁𝐼𝑅 − 𝜌𝑅

𝜌𝑁𝐼𝑅 + 𝜌𝑅

 B8, B4 
Rouse et al. 

(1973) 

Green Chlorophyll Index  

 
𝐺𝐶𝐼 = (

𝜌𝑁𝐼𝑅

𝜌𝐺𝑅𝐸𝐸𝑁

) − 1 B8, B3 
Gitelson et al. 

(2005) 

Renormalized 

Normalized Difference 

Vegetation Index  

 

𝑅𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷

√𝜌𝑁𝐼𝑅 + 𝜌𝑅

 B8, B4 
Gitelson and 

Merzlyak (1994b) 

Simplified Canopy 

Chlorophyll Content 

Index 

𝑆𝐶𝐶𝐶𝐼 =
𝑁𝐷𝑉𝐼. 𝑅𝐸3

𝑁𝐷𝑉𝐼
 B8, B4, B7 

Barnes et al. 

(2000) 

Red-edge Chlorophyll 

Index 
𝐶𝐼𝑅𝐸1 = (

𝜌𝑁𝐼𝑅

𝜌𝑅𝐸1

) − 1 B8, B5 
Gitelson et al. 

(2005) 

Sentinel-2 Red-Edge 

Position  
𝑆2𝑅𝐸𝑃 = 705 + 35 ∗

(
𝜌𝑁𝐼𝑅 + 𝜌𝑅

2
) − 𝜌𝑅𝐸1

𝜌𝑅𝐸2 − 𝜌𝑅𝐸1

 

B4, B5, B6, 

B8 

Frampton et al. 

(2013) 

MERIS Terrestrial 

Chlorophyll Index  
𝑀𝑇𝐶𝐼 =

(𝜌𝑁𝐼𝑅−𝜌𝑅𝐸1)

(𝜌𝑅𝐸1 − 𝜌𝑅)
 B4, B5, B8 

Dash and Curran 

(2004) 

Normalised Difference 

Infrared Index 
𝑁𝐷𝐼𝐼 =  

(𝜌𝑁𝐼𝑅−𝜌𝑆𝑊𝐼𝑅1)

(𝜌𝑁𝐼𝑅−𝜌𝑆𝑊𝐼𝑅1)
 B8, B11 

Hardisky et al. 

(1983) 

Inverted Red-Edge 

Chlorophyll Index 
𝐼𝑅𝐸𝐶𝐼 =  

(𝜌𝑁𝐼𝑅−𝜌𝑅)

(𝜌𝑅𝐸2/𝜌𝑅𝐸1)
 

B4, B5, B6, 

B8 

Frampton et al. 

(2013) 

8.2.6 Foliar N Prediction algorithm and its implementation  

The Random Forest (RF) algorithm was used for modelling coffee foliar N from different spectral 

bands and vegetation indices in their optimized and unoptimized combinations. RF is an 

ensemble machine learning algorithm developed by Breiman (2001) to solve regression problems 

through a multitude of decision trees. RF employs an iterative bagging (bootstrap aggregation) 

operation where the number of trees (ntree) are independently built using a random subset of 

samples from the training samples. Each node is then split using the best, among a subset of input 

variables (mtry). Each tree is then independently grown to a maximum size based on a bootstrap 
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sample of about two-thirds the training dataset. Each node is then split using the best, among a 

subset of input variables (mtry). The ensemble then classifies the data that are not in the trees as 

out-of-bag (OOB) data, and by averaging the OOB error rates from all trees, the RF algorithm 

gives an error rate called the OOB classification error for each input variable. This way, the RF 

algorithm assesses  the importance of each input variable to the outcome by comparing how much 

the OOB error increases when a variable is removed, while all others are left unchanged (Breiman 

& Cutler, 2007; Adelabu et al., 2013).  

In many applications, this algorithm produces one of the best accuracies to date and has important 

advantages over other techniques in terms of ability to handle highly non-linear data, robustness 

to noise and tuning simplicity (Rodriguez-Galiano et al., 2012; Lebedev et al., 2014). The default 

number of trees (ntree) of 500 was used while mtry is automatically determined as the square 

root of the total number of variables used (Breiman, 2001). Coffee N modelling and mapping 

was done in R (R Core Team, 2013), using the R package randomForest to run the RF modelling 

(Liaw et al., 2009) for both training and prediction. The coffee foliar diagnostic norms for mature 

field coffee obtained from Logan and Biscoe (1987) were used for describing the predicted N as 

low N level (<2.5%), sufficient N (2.5-3.5%) and high N (>3.5%). 

8.2.7 Accuracy assessment  

In order to assess the performance of all models in coffee foliar N estimation, k-fold cross 

validation (with 10 folds) was used. The correlation coefficient (r) and coefficient of 

determination (R2) were used to assess the goodness of fit of the predicted and measured coffee 

foliar N. In addition, Mean Absolute Error (MAE, Equation 8.2) Root Mean Square Error 

(RMSE, Equation 8.3), and percent bias (pBias, Equation 8.4) were used to determine the errors 

of the model in predicting coffee foliar N from both spectral bands and vegetation indices.  



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


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                  [8.2] 
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i                 [8.3] 
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∑(𝑦𝑖−𝑦̂𝑖)∗100

∑ 𝑦𝑖
)      [8.4] 
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where for all cases n is the number of data points, yi is the measured foliar N content at that 

data point and ŷi is the model predicted coffee foliar N content at that data point (Moriasi et al., 

2007; DeJonge et al., 2016). 

8.3 Results 

8.3.1 Correlation between bands and vegetation indices with foliar N 

The relationship between Senintel-2 MSI bands and derived vegetation indices is shown in Table 

8.3. There was a general poor relationship between N and most of the Sentinel 2 MSI bands and 

vegetation indices (R2<0.7 for both bands and vegetation indices). Surprisingly, the NIR band 

had the strongest relationship to coffee foliar N (R2=0.57) compared to red-edge bands. The 

spectral bands in the visible and the shortwave region of the spectrum had weak relationships 

with N (Table 8.5). For vegetation indices, the results indicate that IRECI was more related to N 

followed by RNDVI while MTCI was the least related to coffee foliar N. The performance of 

vegetation indices showed that the number of spectral bands in the index is less important to the 

arrangement of the bands in that index as IRECI and S2REP had exactly the same spectral bands 

but are contrastingly related to N.  Of two band ratios, RNDVI was more strongly related to N 

(R2=0.48) but has the same spectral bands as NDVI which was not strongly related to N.  

Table 8.5: Relationship between Senitnel-2 MSI variables and coffee foliar N.  

Spectral Bands  
 

Vegetation indices  

Name Band R2 
 

Name Bands R2 

B B2 0.108 
 

CIRE B8, B5 0.281 

G B3 0.184 
 

GCI B8, B3 0.337 

R B4 0.32 
 

IRECI B4, B5, B6, B8 0.668 

RE1 B5 0.127 
 

MTCI B4, B5, B8 0.107 

RE2 B6 0.496 
 

NDII B8, B11 0.376 

RE3 B7 0.429 
 

NDVI B8, B4 0.152 

NIR B8 0.572 
 

RNDVI B8, B4 0.484 

SWIR1 B11 0.069 
 

S2REP B4, B5, B6, B8 0.279 

SWIR2 B12 0.242 
 

SCCCI B8, B4, B7 0.341 
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8.3.2 Foliar N prediction with spectral bands 

The results of predicting coffee foliar N with spectral bands only are shown in Table 8.6.  

Optimization of variables slightly increased performance of modelling coffee foliar N with 

spectral bands (Figure 8.2). The performance of the RF model in predicting coffee foliar N with 

all spectral bands is shown in Figure 8.2a. The map showing the N levels predicted from using 

all spectral bands in the field is shown in Figure 8.3a. Compared to other variables, using all 

variables resulted in overestimation of coffee foliar N levels, which explains the low performance 

for this set of variables (R2=0.57 and RMSE=0.32).  

Table 8.6: Accuracy of coffee foliar N prediction with all and optimized Sentinel-2 bands.  

Accuracy metrics All bands Optimum bands 

# of variables 9 4 

MAE 0.27 0.28 

RMSE 0.32 0.32 

NRMSE % 67.3 66.7 

r 0.75 0.76 

R2 0.57 0.58 

 

Using the RF oob error, only four spectral bands, which are RE2 (B6), RE3(B7), NIR(B8) and 

SWIR2(B12), were identified as significant in modelling coffee foliar N (Figure 8.4). It is 

interesting that the RF model identified two bands in the red-edge region as influencing N 

distribution and yet these were less correlated to N compared to the NIR band. Also, it was 

surprising that the RF results put the SWIR2 band in higher importance than the red, red-edge-1 

and green bands in N estimation. Using the four optimized variables did not considerably 

improve the prediction accuracy of N using Sentinel-2 spectral bands (Table 8.6, Figure 8.2b). 

The map of predicted N from using optimized spectral bands only is shown in Figure 8.3b). This 

map was similar to that obtained using all Sentinel-2 MSI spectral bands, in terms of areas with 

low and sufficient N levels.  
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Figure 8.2: 1:1 plot showing the relationship between measured and predicted coffee foliar N 

using (a) all spectral bands and (b) optimized spectral bands. 

 

Figure 8.3: Predicted distribution of foliar nitrogen levels in coffee leaves obtained from (a) 

modelling with all spectral bands and (b) modelling with optimized spectral bands. 
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Figure 8.4: Variable optimization for prediction of coffee foliar N using (a) spectral bands and 

(b) vegetation indices. 

8.3.3 Foliar N prediction with Sentinel-2 vegetation Indices  

Predicting coffee foliar N with vegetation indices considerably improved the prediction accuracy 

compared to using Sentinel-2 MSI spectral bands only (Table 8.7, Figure 8.5). The RF oob error 

identified five vegetation indices as important in the modelling of coffee foliar N from Sentinel-

2 MSI data. All the optimized vegetation indices had the NIR band while three had spectral bands 

from the red-edge portion of the spectrum.  

Table 8.7: Performance of predicting coffee foliar N with all and optimized Sentinel-2 

vegetation indices.  

Accuracy metrics All vegetation indices Optimum vegetation indices 

# of variables  9 5 

MAE 0.22 0.2 

RMSE 0.27 0.25 

NRMSE % 55.9 51.8 

r 0.84 0.85 

R2 0.71 0.73 

 

As with spectral bands, optimisation of vegetation indices slightly improved the performance of 

modelling coffee foliar N. The N levels distribution map produced from using all nine vegetation 

indices is shown in Figure 8.6. It was interesting that using all vegetation indices had the highest 
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positive bias (+2.9) indicating overestimation of foliar N. On the contrary, optimized vegetation 

indices had the least bias of all variables used (+0.4), indicating no systematic shifts in foliar N 

prediction (Figure 8.5). While the general areas with low N levels were similar to those obtained 

from using spectral bands, when optimized spectral bands were identified, the areas predicted as 

having high N content were more than those from other approaches (Figure 8.6). In addition, 

other areas in the middle block were only identified as having low foliar N by optimized 

vegetation indices alone.  

 

Figure 8.5: 1:1 plot showing the relationship between the measured and the predicted foliar N 

levels with (a) all nine vegetation indices and (b) five optimized vegetation indices. 
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Figure 8.6: Predicted distribution of foliar nitrogen levels in coffee leaves obtained from (a) 

modelling with all vegetation indices and (b) modelling with optimized vegetation indices. 

8.3.4 Foliar N prediction with combination of bands and vegetation indices 

The optimum spectral bands (N=4) and the optimum vegetation indices (N=5) were stacked 

together and used to predict foliar N distribution in coffee fields with the RF (N=9).  A 

combination of optimal bands and vegetation indices performed the best as shown by the highest 

accuracy metrics and the least error metrics (Table 8.8). All N prediction models showed that 

they underestimated N when values were over 3.0%.  

Table 8.8: Performance of predicting coffee foliar N with a combination of optimal bands and 

vegetation indices.  

Accuracy metrics Optimum bands and vegetation indices 

# of variables  9 

MAE 0.19 

RMSE 0.23 

NRMSE % 48.5 

r 0.89 

R2 0.78 
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Figure 8.7: 1:1 plot showing the relationship between the measured and the predicted foliar N 

levels using a combination of optimal bands and vegetation indices. 

The distribution of predicted N levels from optimized bands and vegetation indices is shown in 

Figure 8a. Compared to other N modelling approaches, a larger area was predicted as having low 

N levels when a combination of optimal bands and vegetation indices were used (Figure 8.8b).  

 

Figure 8.8: Predicted distribution of foliar nitrogen levels from combination of optimal bands 

and vegetation indices showing (a) variation in foliar N and (b) distribution of N levels. 
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8.3.5 Mapping of low foliar nitrogen areas in coffee plantations 

Areas with low, sufficient and high foliar N levels are shown in Table 8.8, with Figure 8.8 

comparing positive (high foliar N) and negative (low N) anomalous areas. Using optimized bands 

had the highest area considered to have low N levels (11% of the study area) while concurrently 

having the least area with positive anomalies of high foliar N levels (0.14 ha). Contrary, using 

all spectral bands identified a greater part of the area as having sufficient foliar N levels (Table 

8.8). 8.5 ha (2.6%) of coffee area was identified as having low N levels by all datasets. However, 

considering that vegetation indices and combination of optimized variables produced better 

accuracy, an intersection of these showed that 15.2 ha (4.7%) of the mature coffee area in the 

study area have low foliar N levels (<2.5%).  

 

Figure 8.9: Comparison of coffee area with positive (high foliar N) and negative (low N) 

anomalous foliar N levels from different modelling approaches. 
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Table 8.9: Sizes (in ha) and % of low, sufficient and high coffee foliar N levels.  

Approach  Level 

Low 

nitrogen 

Sufficient 

nitrogen 

High 

nitrogen Total 

All bands Area(ha) 9.7 342.9 0.2 352.9 

 
% 2.8 97.2 0.1 100.0 

Optimized Bands Area(ha) 38.8 313.9 0.1 352.9 

 
% 11.0 89.0 0.0 100.0 

All VIs Area(ha) 25.3 322.6 4.9 352.9 

 
% 7.2 91.4 1.4 100.0 

Optimized VIS Area(ha) 20.2 331.3 1.3 352.9 

 
% 5.7 93.9 0.4 100.0 

Optimized Bands + Vis Area(ha) 17.0 330.0 5.9 352.8 

 
% 4.8 93.5 1.7 100.0 

 

8.4 Discussion  

The aim of this study was to assess the feasibility for Sentinel-2 spectral bands and vegetation 

indices to predict foliar N content in coffee plantations with the view of identifying areas that 

require management attention. The study also sought to determine the most valuable spectral 

bands and vegetation indices for coffee foliar N prediction to be used for optimisation of the 

machine-learning algorithm used in prediction. Such determination allows for adoption of 

remotely sensed data for provision of timely, repeatable, spatially explicit, easier to implement 

and cost-effective means of managing nutrient dynamics in coffee plantations.  

8.4.1 Identifying Sentinel-2 bands and vegetation indices related to coffee foliar N 

The relationship between Sentinel-2 MSI spectral bands and coffee foliar N, where the red-edge 

and NIR bands dominated the list of mostly correlated bands was not surprising. This finding 

was expected as the region’s relationship to vegetation N content is already established (Clevers 

& Kooistra, 2012; Schlemmer et al., 2013b). However, it was anticipated that the red-edge band’s 

relationship to coffee foliar N would be stronger than the NIR bands, as the red-edge portion is 

known for its value in biochemical assessment. Two possible reasons may explain our finding. 
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First, the Sentinel-2 NIR band has almost 6-8 times larger band width (115 nm) of the red-edge 

bands (15 -20 nm), making it more sensitive to vegetation characteristics. Secondly, coffee stands 

are characterised by soil background due to planting arrangement, as such, the recorded 

reflectance is dominated by impure vegetation pixels. In this  case the NIR is better suited for 

foliar N determination than the red-edge bands (Frampton et al., 2013).  

In this study, the RF variable optimisation ranked the red-edge bands above the NIR in coffee 

foliar N prediction.  These findings are consistent with findings by Clevers and Gitelson (2013) 

who demonstrate the value of the red-edge bands in characterising specific leaf biochemical 

properties on maize and grassland, due to their narrower bands  that mimic hyperspectral 

capabilities. Although relatively low, the relationship of the Sentinel-2 SWWIR2 band (B12, 

2190 nm) is explained by the reported N absorption features in the SWIR range at 2180 nm due 

to leaf lignin, cellulose, starch, and proteins (Curran, 1989). This importance was confirmed by 

the RF variable optimization.  

The IRECI, which utilises Sentinel-2 B4, B5, B6 and B8, was the most important variable related 

to N, as shown by correlation and RF variable ranking. Since this study focused on coffee foliar 

N at canopy level, this result was expected as this is the only index among the selected vegetation 

indices that utilises at least two red-edge bands (RE2 and RE1) together with the traditional NIR 

and R bands. It can therefore be argued that IRECI performs well in canopy biochemical 

characterisation because it uses the red-edge bands to characterise the red-edge slope while 

concurrently also making use of the contrasting maximum and minimum reflectance found in the 

NIR and red bands. A similar strong (R2=0.87) IRECI relationship was reported in chlorophyll 

estimation (which is directly related to N) by Frampton et al. (2013) at canopy level. However, 

this relationship diminished when using leaf level estimations (R2=0.24). Whether the strong 

relationship between IRECI and N is limited to canopy level in coffee, as reported for chlorophyll 

requires further investigation. Since IRECI is more directly related to chlorophyll estimation, it 

was concludse that the observed high performance of this vegetation index is more related to the 

biological associations between nitrogen, chlorophyll, and canopy structure. This is because N is 

present as the fundamental unit in proteins, nucleic acids, chlorophyll and other organic 

components in coffee plants (Wang et al., 2016). 
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It is interesting that the S2REP, which utilises similar bands as IRECI did not perform well in 

both correlations and variable optimisation. From this, it can be concluded that it is the 

arrangement of the bands, rather than the bands themselves that are more important in coffee 

foliar N estimation when using vegetation indices. Thus, the type of transformation adopted by 

a vegetation index determines how it performs in its analysis of leaf biochemical properties such 

as N. The MTCI performed poorly for correlation analysis and variable ranking.   

8.4.2 Quantification and mapping coffee foliar N distribution  

Our findings demonstrate the feasibility of using Sentinel-2 MSI spectral bands and vegetation 

indices in determining foliar N in coffee. However, it is apparent that the use of vegetation indices 

produces better accuracy than use of spectral bands in coffee foliar N estimation. Chemura et al. 

(2016) reported similar performance from Sentinel-2 derived vegetation indices in discriminating 

coffee health levels (Chapter 6). They attributed this to vegetation indices ability to better deal 

with confounding factors such as reflectance saturation, leaf area, roughness and moisture in the 

leaf and canopy, which reduce the performance of raw spectral bands. However, this could also 

be attributed to the Sentinel-2’s sensor design that leads to reduced band and vegetation indices 

saturation in hedgerow coffee that accounts for soil or weeds background reflectance. This 

saturation has been demonstrated in closed canopy forests and in densely planted agricultural 

crops such as maize (Schlemmer et al., 2013b). A combination of optimal bands and vegetation 

indices benefits from the strengths of most important variables and thus achieves the best results. 

This is possible only in machine learning methods such as the RF, which are able to deal with 

collinearity as the vegetation indices are products of the individual bands.  

While the results for modelling coffee foliar N at landscape scale are promising, it is important 

to understand the potential effects of omission or commission errors to costs of production and 

the environment. For instance, using optimized Sentinel-2 spectral bands produced a larger area 

with low N (below 2.5%).  Thus, at current applications rates of 270kg/ha of ammonium 

fertilisers per ha-1 per year (Logan & Biscoe, 1987), these low areas will require an additional 

10.5t of fertilisers, which is four times more than the requirement obtained from using all 

Sentinel-2 spectral bands (2.5t). While these two results had the least accuracy (all bands and 

optimized bands), they demonstrate that the results have to be understood in context to avoid 

increased costs and environmental damage from prediction errors arising from an approach that 
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seeks to achieve the converse. Nonetheless, the results have demonstrated the possibility of site 

based nutrient management, specifically for N (and its associated benefits) in coffee using 

multispectral Sentinel-2 data.  

8.5 Conclusions  

This study has assessed the feasibility of Sentinel-2 MSI spectral bands and vegetation indices 

in empirical estimation of coffee foliar N content at landscape level with satellite data. From this 

study, it was concluded that:  

1) Coffee foliar N is strongly related to Sentinel-2 MSI red-edge (B6 and B7), NIR (B8) and 

SWIR2 (B11) bands and to IRECI, RNDVI, CIRE1 and NDII vegetation indices that can 

be used for its prediction.  

2) Using vegetation indices produces better accuracy in coffee foliar N modelling compared 

to using spectral bands. Selecting optimal bands and vegetation indices produces the best 

results and is recommended for coffee foliar N estimation from Sentinel-2 MSI data.  

3) It is possible to use the derived N distribution maps to make site specific nutrient 

management in coffee plantations from using Sentinel-2 MSI data.  
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CHAPTER 9: MODELLING SPATIAL VARIABILITY OF 

COFFEE CROP CONDITION WITH MULTISPECTRAL 

REMOTE SENSING DATA: A SYNTHESIS 

 

 

 

Photo credits: A. Chemura (2017) 
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9.1 Introduction  

Coffee is an important commodity in international agricultural trade especially for producer 

countries that depend on it for off-setting balance of payments, local taxes and livelihoods. The 

major players in the coffee sector are producers who struggle with climatic, edaphic and other 

biotic factors to produce coffee of sufficient quantity and quality to satisfy a demand of over 2 

billion coffee cups consumed daily (Waston & Achinelli, 2008). Biotic and abiotic calamities are 

increasingly affecting the coffee sector, with these explaining fluctuations in world coffee 

supplies and market prices (Van  der Vossen, 2001). Given the importance of coffee in 

developing producer economies, consumer countries and ecosystems, there is a need for 

systematic landscape-scale monitoring of coffee crop condition to increase productivity through 

reducing impacts of potential stressors. These monitoring mechanisms are required for assisting 

on farm decisions especially for large farms, for insurance and risk services and national coffee 

sector planning. Monitoring coffee condition is also important in precision farming in which case 

agrochemicals are efficiently applied to reduce costs and associated environmental impacts from 

over-application of fertilizers and pesticides. However, current condition assessment methods in 

the coffee sector are based on sampling that assumes the selected sites represent the whole field 

and also on subjective visual assessments that are laborious and conclusive once economic 

damage has been inflicted.  

Developments in remote sensing data acquisition, storage and processing provide an opportunity 

for spatially explicit and objective vegetation condition assessments. However, there are a 

number of challenges in applications of remote sensing coffee for crop area mapping and 

condition assessment that render traditional remote sensing approaches limited in coffee 

producing areas. These challenges include the fact that coffee is a perennial crop and as such 

requires long-term monitoring beyond one season. Secondly, at landscape scale, producers plant 

coffee of different ages, with age of the coffee plants influencing percentage canopy cover and 

its resultant effect on background effect. There is also a systematic planting arrangement in 

hedgerows that ensures gaps between rows for efficient farm management operations but also 

results in background spectral effect (Brunsell et al., 2009). In addition, the LAI of coffee follow 

biennial cycle  that is influenced by fruiting sequence and this influences applications of remote 

sensing applications (Bernardes et al., 2012). Coffee stressors can also concurrently occur, 

making it difficult to separate them spectrally or to understand the root cause of the problem. 
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(Logan & Biscoe, 1987; Kutywayo et al., 2013). Given the need for crop condition assessment 

in resource-constrained coffee producer countries and the challenges from the nature of the crop 

and the production system, the objectives of this work were to: 

1. Develop detailed age-specific thematic maps for coffee for heterogeneous agricultural 

landscapes for use as age-masks in condition assessments. 

2. Integrate age in the identifying and mapping of incongruous patches in coffee 

plantations using multi-temporal multispectral level anomalies. 

3. Evaluate the potential of multispectral remote sensing data for quantifying leaf water 

stress in coffee using only the secondary effects of water absorption.  

4. Assess the potential of multispectral remote sensing bands and vegetation indices for 

discriminating and predicting coffee leaf rust infection levels at leaf level. 

5. Determine the effects of spectral settings, spatial resolution and crop canopy cover on 

ability of multispectral level data to predict leaf chlorophyll content as an indicator of 

crop condition in coffee plantations.  

6. Model the spatial variability in foliar nitrogen in coffee plantations with multispectral 

level data for agronomic decision making. 

9.2 Mapping coffee plantations and development of age-masks 

The fact that coffee plants have different age groups presents challenges not only in separating 

coffee from other land use/cover types with remote sensing data but also in coffee condition 

assessments. In addition, remote sensing-based age-specific thematic maps for coffee areas are 

important for coffee farm planning such as the rate of application of fertilisers and pest control 

chemicals are applied, which are age-dependent. The objective of this study was to capitalize on 

sensor improvements in Landsat 8 OLI data and machine learning algorithms in developing age-

specific thematic maps for coffee producing areas. The overall outcome is that it is possible to 

develop age-specific thematic maps for coffee in a heterogeneous agricultural landscape using 

Landsat 8 OLI and the RF algorithm. The ability to achieve reliable classification accuracy for 

coffee age-groups (young, mature and old) is based on the significance of the differences in 

spectral reflectance among coffee classes of different ages and between coffee and other land 

use/cover types that is captured by higher sensor fidelity of the Landsat 8 OLI.  For example, 

Landsat 8 OLI uses numerous elongated sets of detectors for each waveband, which increases 
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the sensitivity of the sensor to the age-based biophysical characteristics that determine vegetation 

reflectance (Dube & Mutanga, 2015).  

This study confirmed the importance of the NIR in remote sensing coffee plantations. For 

example, this study observed that the spectral difference between mature coffee and old coffee 

was only discernible in the NIR band. It was however clear from this study that, splitting coffee 

into three age classes reduces the classification accuracy (for example by a 4.1% decrease in 

overall accuracy). However, the reduction in classification accuracy that occur when coffee is 

split into three classes is small, indicating that it could be worthwhile to trade-off some accuracy 

to obtain a more functional thematic map with age-specific classes in mapping complex 

agricultural landscapes. The success of development of age-specific thematic maps for coffee is 

premised on the improvements in spectral characteristics of the Landsat 8 OLI sensor, coupled 

by an intelligent and robust non-parametric classifier, the RF.  The developed age-specific 

thematic maps are useful not only in separating coffee from other land use/cover types, but among 

different age categories which deals with the challenge of age in coffee area mapping and 

condition assessment. Development of age masks has been a remote sensing challenge for other 

perennial agricultural crops (McMorrow, 2001; Tan, 2013; Chemura et al., 2015b). It would be 

interesting to assess if the same approach can work in coffee under shade or in robusta coffee 

that has more canopy cover than arabica coffee. The produced age-masks were used in 

subsequent condition assessment studies.  

9.3 Identification of anomalous patches in coffee plantations 

As a perennial crop, coffee requires a consistent monitoring framework to monitor biotic and 

abiotic stressors and their effect on inter and intra-annual variations in crop conditions, but these 

are currently largely unavailable. Vegetation indices such as NDVI and LSWI can be used to 

monitor crop conditions over a large area and to detect any significant changes over time. When 

the “normal” or expected index value is known, then any departure from this indicates an 

anomaly. The objective of this study was to use the age-specific thematic maps from the 

preceding chapter to identify areas in coffee fields that are anomalous and therefore requiring 

attention. An approach using deviation from age-specific mean NDVI and LSWI was developed 

using Landsat 8 OLI data and applied for identifying, quantifying and mapping between and 

within field crop stand variations. The outcome of this study was that age has a significant 
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influence on coffee NDVI and LSWI values associated with physiological development, 

photosynthetic efficiency, LAI and canopy cover of the coffee plants (Logan & Biscoe, 1987).  

Landsat 8 OLI derived NDVI performed better than LSWI in identifying of anomalous areas in 

coffee fields. This is because NDVI associates well with plant biophysical characteristics that are 

affected by age, condition and other factors (Ke et al., 2015). Age-adjusted NDVI deviations 

from the mean were even more accurate in showing areas that are growing either below or above 

their expected growth stages. It was therefore clear that age-adjustment of NDVI anomalies 

improved performance of mapping incongruous areas in coffee plantations. In addition, multi-

temporal analysis clearly showed how some coffee areas moved from being healthy to being 

incongruous over the months. This provides a spatial, quantitative and temporal idea of crop 

performance for every Landsat 8 pixel per scene date that can be used for farm level decision 

making. The presented age-adjusted anomaly detection identifies where in the coffee plantations 

condition is deteriorating either through biotic or abiotic stress or improving through 

management intervention. Although this approach does not identify the exact cause of the 

anomaly that is important in decision making, this is a challenge dealt with in subsequent studies 

in this project. Identifying these anomalous areas is important for identifying specific areas 

requiring attention in large plantation and for more targeted application of remote sensing 

methods to determine causes at particular sites 

Three important advancements in remote sensing were presented in this study; (i) age-adjustment 

is important in anomaly detection in coffee, (ii) scene-based anomaly detection is more 

applicable in tropical areas where coffee is produced because of problems of clouds and 

seasonality and (iii) multi-temporal remote sensing is a good basis for understanding crop 

dynamics in coffee condition assessment, which is possible with accessible multispectral data 

such as Landsat 8 OLI and/or Sentinel-2 MSI data compared to many studies that are dependent 

on only a single scene. Although this method is very promising for long-term monitoring of 

perennial tree crops such as coffee which are in the field for decades, it forms a basis for more 

specific studies on specific causes of anomalies in coffee plantations.  
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9.4 Predicting plant water content in coffee plants using multispectral remote sensing 

Having developed an approach for identifying anomalous patches in coffee plantations, it was 

imperative to identify, with remote sensing, the specific cause of the anomalies.  Experimental 

evaluation of the possibility to quantify plant water content using secondary water absorption 

bands in the VIS/NIR region was done. Wavebands that are selected by reflectance sensitivity 

were the best in predicting PWC with relatively high correlations between measured and 

predicted PWC on test data and lower error metrics. Reflectance sensitivity identified bands 

mainly in the red-edge and the visible, particularly the blue region of the spectrum, with none in 

the NIR region. However, reflectance in this region is influenced mostly by leaf structure, 

chlorophyll, biomass and stand age. Since this is a single species study using same age healthy 

plants, these factors are not significant. This also underscores the importance of separating coffee 

from other land use/cover types and age categories (Chapter 3). The ability of wavebands in the 

visible and NIR range to predict PWC is very attractive for application of multispectral scanners, 

in coffee condition assessments. This is so because multispectral scanners such as Sentinel-2 can 

be focused on specific crop fields and super-spectral bands strategically positioned across 

important regions of the VIS/NIR bands applied in PWC estimation. It is important to note that 

this study relied on healthy coffee leaves and under field conditions; other factors such as diseases 

and pests (Mutanga & Ismail, 2010; Oumar & Mutanga, 2014) may influence potential for PWC 

estimation. Overall, this study provides a basis for application of remote sensing in identifying 

and quantifying PWC, which alone can explain anomalies in coffee fields or indirectly as PWC 

is related to other plant conditions such as pest and disease attacks.  

9.5 Modelling coffee leaf rust using multispectral remote sensing  

PWC is an abiotic factor contributing to coffee stress and this study extended the application of 

remote sensing in biotic stress by experimentally evaluating multispectral remote sensing of 

coffee leaf rust caused by the fungus H. vastatrix. This study has for the first time demonstrated 

the utility of the new generation Sentinel-2 MSI sensor in discriminating disease infections. The 

most important Sentinel-2 MSI’s spectral bands (i.e. B4, B6 and B5) for CLR discrimination and 

modelling were identified. The finding that the red band (B4) was the most significant band in 

CLR discrimination is explained by the fact that CLR is different from other diseases and plant 

stress conditions in that it is not necrotic (Belan et al., 2015) and also result in distinctive 

asymptomatic rustic pustules on the underside of the leaf. As expected, vegetation indices 
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produced better results in CLR discrimination, when compared to the use of raw spectral bands, 

which was expected. In CLR severity modelling, the proportion of leaf diseased area was not 

significantly correlated to most spectral bands because of the non-linear influence of disease 

infection on spectral reflectance (Zhang et al., 2012; Mahlein et al., 2013).  

Using the RBF-PLS showed a high accuracy in CLR severity modelling with resampled data. 

This is an achievement considering that much of the reported work on disease modelling is based 

on vegetation indices or at least a combination of vegetation indices and spectral bands, even 

with hyperspectral data. This is attributed to the Sentinel-2 sensor settings as Ramoelo et al. 

(2015) also used only spectral bands to model nitrogen in rangelands and obtained a high 

accuracy, confirming that the spectral settings of Sentinel-2 MSI spectral settings are good for 

modelling vegetation condition. Findings of this study showed higher accuracy for severe levels, 

but from an operation perspective, this is not good as economic damage would have already been 

inflicted on the crop. This study underpins the application of Sentinel-2 MSI data in coffee 

condition assessment that can improve management of croplands and stewardship of the 

environment through reduced unnecessary use of crop protection chemical for disease control. 

Although the results are positive in indicating potential application as sensors in disease levels 

modelling, these results are based on field spectra at leaf level. There is need for more field 

studies to apply the RF and RBF-PLS in modelling the biophysical (e.g. LAI reduced to 

defoliation) and biochemical (e.g. chlorophyll and foliar nitrogen) parameters of coffee that are 

affected by the disease.  

9.6 Multispectral remote sensing of coffee chlorophyll content 

Chl is important in agricultural crop management as it is a reliable indicator of photosynthetic 

rates and leaf health as majority of the plant stressors affect this variable. A field level application 

of multispectral remote sensing data in mapping and quantifying the spatial variability of 

chlorophyll in coffee fields that can be related to the abiotic (Chapter 5) and biotic (Chapter 6) 

factors was presented. The aim of this study was to evaluate the influence of Sentinel-2 MSI 

spectral settings and spatial resolution and coffee stand age in empirical landscape scale coffee 

Chl estimation. As expected, coffee biophysical attributes (height and canopy area) were strongly 

related to coffee age while biochemical parameters (PWC and Chl) were age invariant, and thus 

more influenced by site conditions such as fertility, insects or pests or other local factors.  
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It was evident from this study that total coffee Chl empirical modelling with Sentinel-2 MSI data 

is more related to image’s spatial resolution than spectral characteristics. This finding is 

important as the Sentinel-2 MSI data comes at 10m, 20m and 60m spatial resolutions, tied to 

unique spectral settings. This is particularly critical to Sentinel-2 MSI data as its VIS-NIR data 

comes in different spatial resolutions, a departure from previous sensor designs. Thus, our finding 

that spatial resolution is more important in influencing total Chl modelling in coffee casts 

aspersions on spectroscopic simulation studies using Sentinel-2 MSI data (e.g Chapter 6) that did 

not consider spatial resolution. Studies in natural forests have also reported that leaf biochemical 

estimations are more accurate at finer resolutions than at coarser resolutions (Lepine et al., 2016). 

This finding may be specific to coffee as the coffee plantations do not have closed canopy. 

Although, coffee leaf biochemical parameters did not considerably vary with age, there was 

higher accuracy in modelling total coffee Chl in mature coffee stands only, compared to the use 

of both young and mature ages. This result is because the NIR reflectance is more reflective in 

mature coffee (Chapter 3). The effects of canopy area (which is directly related to age) were also 

apparent in influencing both prediction patterns and magnitude of errors. It was concluded 

therefore that landscape scale modelling of coffee leaf biochemical properties be applied only to 

mature coffee fields (over 4 years). In large scale modelling, use of pre-existing age masks 

(Chapter 3) is therefore very useful for practical applications. When coffee leaf Chl was estimated 

for mature fields only, the best model (all bands at 10m resolution) explained 77% of the variation 

in measured coffee leaf Chl.  

9.7 Multispectral remote sensing of spatial variability of coffee foliar nitrogen  

Nitrogen is one of the most important determinants of coffee productivity and general coffee 

condition. The utility of multispectral level remote sensing data in landscape scale mapping of N 

in coffee was presented.    The red-edge and NIR bands dominated the list of mostly N correlated 

bands as region’s relationship to vegetation N content is already known(Clevers & Kooistra, 

2012; Schlemmer et al., 2013a). The NIR was more correlated to N than red-edge bands because 

of the crop and sensor-related reasons. Crop because coffee pixels are never pure vegetation as 

there is always background effect and this reduces the sensitivity of the red-edge bands. Sensor-

related reasons because Sentinel-2 NIR band has almost 6-8 times larger band width (115 nm) 

than the red-edge bands (15 -20 nm), making it more sensitive to vegetation characteristics.  
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The IRECI, which utilises Sentinel-2 B4, B5, B6 and B8, was the most important variable related 

to N, as shown by correlation and RF variable ranking. Of the selected indices, this was the only 

index among the selected vegetation indices that utilises at least two red-edge bands (RE2 and 

RE1) together with the traditional NIR and R bands. Therefore, IRECI uses the red-edge bands 

to characterise the red-edge slope while concurrently also making use of the contrasting 

maximum and minimum reflectance found in the NIR and red bands respectively at canopy level 

(Frampton et al., 2013). It was apparent that the use of vegetation indices produces better 

accuracy than the use of spectral bands in coffee foliar N estimation. This finding concurs with 

findings in Chapter 6 on CLR discrimination which reported better performance of vegetation 

indices.  The results have demonstrated the possibility to use the derived N distribution maps to 

make site specific nutrient management in coffee plantations from Sentinel-2 MSI data. 

9.8 Implications for the coffee sector 

Applying remote sensing in coffee condition assessment is important for maintaining 

productivity, profitability, crop health and in safeguarding long-term investments that farmers 

make in their plantations. This study intended to develop landscape scale spatially-explicit crop 

condition assessment approaches that are scientifically sound, easier to implement and cost 

effective. Adoption of these approaches in the coffee sector is valuable in improving coffee 

productivity, as well as provision of environmental goods and services from coffee plantations. 

This is increasingly important with increasing production challenges presented by climate change 

and variability. Landscape scale modelling of the spatial variability in coffee condition with 

remote sensing provide farm managers, insurance companies, national regulatory boards and 

other players in the coffee value chain with spatially explicit information, reducing the 

subjectivity, costs, spatial singularity and inconveniences associated with field methods. 

Identification of specific coffee stressors such as plant water stress are not just required for 

keeping growth vigour but are a necessary agronomic practices, such as inducing uniform and 

high level of flowering in a short window of time, without which yield and quality, two important 

parameters in determining farmers’ returns, are significantly reduced (Masarirambi et al., 2009).  

Many opportunities for coffee condition assessment are linked to Sentinel-2 MSI data. With the 

high temporal resolution, it is possible to model coffee condition changes by combining analysis 

in both time and space over fields at a lower cost, a feat predecessor sensors could not achieve.  
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There are therefore opportunities for development near-real time online and mobile apps for 

coffee condition assessment that can be used by field managers, insurance companies, extension 

officers and other interested stakeholders.  This is possible, especially once the twin Sentinel-2b 

satellite, with a five-day temporal resolution is in orbit. The important variables in coffee 

condition assessment has been identified and can be implemented from the shelve with machine 

learning approaches. Therefore, landscape scale modelling of coffee condition with multispectral 

remote sensing provides timely, repeatable, spatially explicit, easier to implement and cost-

effective means of managing coffee plantations. More efficient management improves 

production and profitability in the coffee sector, while ensuring environmental stewardship from 

prudent use of water, fertilisers and agrochemicals. Production targets can be achieved without 

increasing area under production thereby satisfying the often conflicting goals of achieving 

economic development and environmental sustainability in the coffee sector. 

9.9 Conclusions 

The overall aim of this study was to develop landscape scale modelling approaches for assessing 

the spatial variability in crop condition in coffee plantations with multispectral remote sensing 

data. Based on the findings from the objectives of this study, the following conclusions are 

drawn: 

1. It is possible to develop detailed age-specific thematic maps for coffee for heterogeneous 

agricultural landscapes for use as age-masks in condition assessments using Landsat 8 

OLI data. Although the accuracy of such maps is lower than that of not disaggregating 

coffee by class, the potential benefit and utility of such an age-specific map of coffee 

areas is greater than the cost of the reduced accuracy. 

2. Age-specific Landsat 8 derived NDVI anomalies can be reliably used in identifying and 

mapping of incongruous patches in coffee plantations and help inform areas requiring 

attention and monitoring coffee condition over time.  

3. Secondary effects of water absorption available in the VIS/NIR region of the spectrum 

can be successfully used in estimating plant water content in coffee to explain anomalies 

that may occur in coffee plantations.  

4. Sentinel-2 MSI bands and vegetation indices can be used for discriminating and 

predicting biotic stress factors such as coffee leaf rust infection levels at leaf level. 
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5. The spatial variability in Chl and foliar N in coffee plantations can be reliably modelled 

for mature coffee plantations with Seintinel-2 MSI data for landscape scale coffee 

condition assessment and agronomic decision making. 

9.10 Outlook for future research  

Although the findings of this study are conclusive within the scope of the study, they lay a 

foundation for further research in this area. The following future research directions are therefore 

recommended based on this study.  

1. Much of the approaches and results from this study are based on empirical models relating 

spectral features and their transformations to coffee condition without providing a 

mechanistic understanding of the identified relationships. More research is therefore 

required to understand the underlying leaf and canopy processes in coffee that influence 

the identified relationships.  

2. There is a need to understand how the coffee biophysical and biochemical properties evolve 

during coffee growth cycle as coffee is a perennial crop that is in the field throughput the 

year. For example, it is important to understand if the leaf nutrient balance during and 

between the vegetative, senescent, fruiting and harvesting stages changes and identify how 

these changes affect multispectral level remote sensing estimation of coffee condition. 

3. There is a need for research on the social and technical possibility of developing decision 

support systems for coffee production based on multispectral remote sensing data. 

Operational aspects, technology design aspects and uptake factors need to be investigated.  

4. While the Sentinel-2 data used in this approach showed promising results, there is need for 

investigation of other satellite based (such as WorldView 3) and unmanned aerial vehicles 

(UAV) or drones in modelling the spatial variability of coffee condition for use in coffee 

management.  

5. Most of the coffee fields used had sun-coffee and it is therefore important to understand 

how shade trees can influence the estimation of coffee condition with multispectral remote 

sensing data.  
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