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ABSTRACT 

Clonal propagation of Eucalyptus spp. and its hybrids allows for competitiveness in the 

commercial forestry industry through the propagation and preservation of superior/elite 

genotypes. Vegetative propagation through rooted cuttings is the industry‟s standard 

and the choice of clones selected for plantations are determined by their rooting ability. 

However, as many potentially valuable genotypes are recalcitrant to adventitious 

rooting, micropropagation is the only effective means of propagating them. 

Micropropagation results in high plantlet yields, achieved primarily through the 

empirical use of the key plant growth regulators (PGRs) cytokinins and auxins, for 

shoot and root production, respectively. Their selection for use in vitro is driven by their 

effects on percent rooting rather than root quality.  Little is known regarding the quality 

of the roots of the plantlets ex vitro, but there is some evidence that they are different 

from those of seedlings and cuttings. It was therefore hypothesized that the properties of 

exogenous PGRs and their interaction with other exogenous and endogenous PGRs, 

influenced root development and subsequent root quality. This was tested in vitro using 

a good-rooting E. grandis (TAG31) and two poor-rooting E. grandis x nitens hybrid 

clones (GN155 and NH58). In the former, the auxins supplied during the pre-rooting 

culture stages (multiplication and elongation) were sufficient for 100% rooting in an 

auxin-free rooting medium. Different combinations of PGRs in the two pre-rooting 

stages, followed by rooting without auxins, revealed a direct relationship between the 

stability of the supplied auxin and the rooting ability of TAG31. Gas chromatography-

mass spectrometry (GC-MS) analyses indicated that endogenous shoot levels of indole-

3-acetic acid (IAA) influenced graviperception. Also, low IAA content was associated 

with atypical starch grain accumulation or its absence from root tips (53.1 nmol IAA g-1 

DW compared with 325.7 nmol IAA g-1 DW in gravisensing roots). The specific roles 

of the natural auxins IAA and IBA on root morphogenesis were then investigated using 

2,3,5-triiodobenzoic acid (TIBA; inhibits IAA transport), ρ-chlorophenoxyisobutyric 

acid (PCIB; inhibits auxin signal transduction), and the auxin antagonist kinetin in the 

rooting medium, following root induction. After 3 weeks, the mean root diameter was 

significantly reduced from 552.8µm (control) to 129.2µm (with PCIB) and 278.6µm 

(with kinetin). TIBA increased root diameter to 833.4µm, decreased Δ root length, 
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increased root vasculature and resulted in agravitropism. Hence, whereas rooting could 

be induced by IBA, IAA was necessary for the maintenance of vascular integrity and 

graviperception. This critical role of IAA in root development is of importance as IBA, 

owing to its higher stability, has been traditionally relied upon for root induction in the 

majority of micropropagation protocols. 

The potential of incorporating IAA into the media formulations of in vitro protocols for 

poor-rooters that do not respond well to IAA was then investigated, using GN155 and 

NH58. While PCIB in the rooting medium of GN155 completely inhibited rooting, the 

addition of dihydroxyacetophenone (DHAP), an inhibitor of auxin conjugation, to the 

rooting medium, did not significantly increase % rooting in the presence of 0.1 mg l-1 

IBA (i.e. 50% rooting with 2mM DHAP and IBA, compared with 45% with IBA alone). 

The results suggested that the inability of some eucalypts to induce roots easily in vitro 

was not due to a deficiency in auxin signal transduction or to auxin conjugation. 

Instead, rooting was inhibited by an accumulation of kinetin within shoots during the 

pre-rooting culture stages. The endogenous levels of PGRs in shoots of GN155 and 

NH58 showed a strong relationship (R2 = 0.943) between the shoot kinetin:auxin and 

shoot rootability. Substituting kinetin with the relatively less stable natural cytokinin 

trans-zeatin in the elongation stage resulted in a significant increase in % rooting in 

both clones, from 19% to 45% (GN155) and from 31% to 52% (NH58), with 0.1 mg l-1 

IAA in the rooting medium. However, omitting all cytokinins from the elongation 

medium, resulted in over 95% and 75% rooting of shoots of GN155 and NH58, 

respectively, with 0.1 mg l-1 IAA.  

These results suggest that IAA is a requirement for root development and cannot be 

substituted by its analogues in certain root developmental events. Hence, IAA should be 

the preferred auxin for eucalypt micropropagation. As fundamental research, the 

approach taken in this study circumvents the empirical method used in improving 

micropropagation protocols. The importance of the properties and the interactions 

between endogenous and exogenous PGRs in regulating root morphogenesis, and the 

practical implications of these findings is emphasised.   
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1.1 The importance of Eucalyptus 

 

When the French botanist Charles Louis L‟Heritier De Brutelle adopted the term 

“Eucalyptus” for an Australian tree in 1788, few would have predicted the impact that 

this genus would have on the forestry industry and subsequently, the global economy. 

The genus is native to Australia and its neighbouring northern islands, and contains 

more than 500 species (Turnbull 1999). Originally considered exotic, eucalypts were 

planted in botanical gardens across Europe before their potential as forestry products 

was recognised. This led to the dissemination of eucalypts to many parts of the world by 

travellers, gold miners, traders, priests, soldiers and botanists (Zacharin 1978; Eldridge 

et al. 1994; Turnbull 1999), where they continue to serve a range of industries. During 

the early period of eucalypt forestry, they were seen as a valuable fuel source and were 

therefore planted along railway lines in South Africa and Brazil to supply wood for 

locomotives and were also established for leaf-oil production, land reclamation, 

hardwood timber, and as windbreaks (Eldridge et al. 1994, Turnbull 1999). Since then, 

eucalypts have emerged as the most prevalent forestry crop worldwide, being the most 

widely-planted hardwood species (Merkle and Nairn 2005). Their uses extend beyond 

those initially envisaged, and eucalypt plantations now serve and provide material for 

mine props, poles, firewood, essential oils, charcoal, honey, paper pulp, and many other 

industries (Eldridge et al. 1994; Turnbull 1999). The most recent industry to take 

advantage of this short-rotation woody crop is the energy industry, as the interest for 

renewable, sulphur-free and carbon neutral materials mounts (Rockwood et al. 2008). 

A perusal of the literature on eucalypt plantations reveals that one of the key 

contributors to the worldwide success of the genus is its adaptability. The acquisition of 

this property can be traced back to the evolution of eucalypts alongside the changing 

environmental conditions in Australia. The Eucalyptus lineage can be traced back to 

over 70 million years ago, during a period when the formation of continental ice in 

Antarctica led to the drying of the continent (Hill et al. 1999; Myburg et al. 2007). 

Since then, the Australian climate has undergone a series of glacial and interglacial 
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phases which has resulted in vegetation, soils and landscape instability. Thus, the 

Eucalyptus progenitor/s can be assumed to have possessed remarkable adaptability in 

order to keep pace with these environmental changes. Eucalypts have, therefore, 

adapted to conditions such as dry climates and low nutrient soils, and exhibit traits like 

high growth rates and being relatively pest-free. Under present climatic conditions, 

eucalypts can extend from the cool temperate highlands, to the hot and humid lowlands 

of the tropics, but can also survive outside of this range if the local climatic conditions 

are favourable and the incidence of pathogens and insect pests are low (Eldridge et al. 

1994). 

Major industrial eucalypt plantations can now be found in Brazil, India, China, South 

Africa, Spain and Portugal, with relatively smaller-scale operations in Morocco, 

Thailand, Indonesia, Vietnam, Congo, Australia and Chile. According to available data, 

the largest plantation area exists in Brazil, with an excess of 4 million hectares (Couto et 

al. 2011), primarily due to government incentive policies between 1965 and 1985 

(Stape et al. 2001), followed by China with an excess of 3 million hectares 

(www.globalwood.org, 2011). Eucalypt plantations in South Africa currently cover over 

500 000 hectares (Godsmark 2010) and plantation areas are projected to increase as the 

demand for forestry products increase.  

Although Brazil is recognised as having the largest scale eucalypt forestry industry in 

the world, South Africa is considered a good example of a well-managed forestry 

establishment and of the economic flows generated from this industry (Denison 2001). 

According to the latest available forestry report on South Africa (Godsmark 2010), 

forestry plantations account for approximately 1% (1 274 869 ha) of the total land area, 

the largest being situated in Mpumalanga, followed by KwaZulu-Natal (6.4% and 5.5% 

of the total land areas, respectively). Of the current forestry crops, which include pine, 

wattle and others, eucalypts account for the highest percentage (53.4%) in the province 

of KwaZulu-Natal, followed by 37.9% in Mpumalanga. Economic and management 

strategies for these products meant that 82.5% was used for pulpwood in 2009, by far 

the largest sector of the South African eucalypt material industry, which totalled 6.7 

billion rand in that year (Godsmark 2010). In addition, this industry contributes 

http://www.globalwood.org/
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substantially to South Africa‟s employment sector, with close to 170 000 direct and 

indirect employees, according to the latest released report (Godsmark 2010). Apart from 

industrial eucalypt forests, non-industrial plantations also exist, established by rural 

farmers for local consumption. These are used for posts and poles, furniture, essential 

oils and to support honey production.   

It should be noted that the extensive establishment of eucalypt plantations has also been 

met with contention. Eucalypt forests have been described as soil degraders and natural 

forest destroyers (Lohmann 1990; Lang 2008; Liu and Li 2010). The pulp and paper 

industry in Thailand, for example, has been accused of indiscriminate destruction of 

arable land, leading to a decline in ground water availability, loss of local food sources 

and permanent damage to soil (Lang 2008). The reduction in water yields and stream 

flows have been linked to the high rates of evapotranspiration in certain eucalypt 

species (Langford 1976; Roberts et al. 2001). Yet, in some parts of Australia, the 

establishment of salt-tolerant eucalypts is commonly used as a management strategy to 

discharge shallow saline groundwater from agricultural lands (Cramer et al. 1999) and 

re-establish water balance in catchments (Dale and Dieters 2007). High transpiration 

rates and salt-tolerance of certain eucalypts in these instances have been advantageous 

in remediation of land with dryline seepage salinity (Benyon et al. 1999; Benyon et al. 

2001). Sustainable forestry practices such as mixed Eucalyptus and Acacia plantations 

have been shown to enhance water-use efficiency (Forrester et al. 2010). 

While ecological concerns around eucalypt plantations do exist, one cannot deny the 

usefulness of the crop in meeting the increasing global demand for forestry-related 

material. Foresters have responded by showing a growing emphasis on sustainable land 

use practices, where plantations are considered beyond their use as timber products. 

This extends to protection of the environment along with the adjoining crops and soil, 

and by selecting particular species and matching these to suitable sites to create 

favourable ecological and subsequently socio-economic conditions (Ball 1995; Turnbull 

1999; Chipeta 2010). A number of incentives have since been made available in many 

parts of the world to encourage private sector participation in eucalypt plantation 

programmes. These include supplying seedlings without charge or at a subsidised rate, 
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various tax concessions and plantation monitoring and management advice (Ball 1995). 

In South Africa, commercial forestry is recognised as both an important part of the 

economy and as a contributor to the substantial loss of biodiversity and groundwater. 

Consequently, a shift in forestry policies in line with those described above has been 

suggested (Tewari 2000) and implemented (Chipeta 2010) to add to the sustainability 

and wider benefit of the industry. In this way, and depending on the species and related 

management practices, eucalypts can be described as multipurpose trees that serve 

social, economic and political capacities (Turnbull 1999). To this end, land use planning 

and proper eucalypt site matching is crucial. 

Since the mid 1990s, matching eucalypt species with provenance has become more 

precise with the development of scientific methods in this field (Eldridge et al. 1994; 

Criddle et al. 1995). Parameters such as location of the planting site, local climate, 

existing vegetation, soil properties, plant physiology and metabolism (Criddle et al. 

1995) and the proposed management regime are considered before land is made 

available for eucalypt planting (Eldridge et al. 1994). Further, careful trials and 

screening procedures are subsequently undertaken to ensure the success of the selected 

eucalypt species at the designated site. In order to be able to screen and select clones 

that combine site-suitability with preferred growth form and wood characteristics, 

eucalypts should be selected from a wide genetic base.  

 

1.2 Propagating and improving plantations 

 

1.2.1 Propagation by seeds vs. vegetative propagation 

Natural eucalypt forests and planted eucalypt stands with wide genetic bases represent 

the initial sources of eucalypt material for commercial activities and breeding 

programmes. These are essential as gene resource and conservation stands and serve as 

a means of meeting future demands of forestry establishments (Eldridge et al. 1994; 

Harvett 2001). Substantial genetic variation exists in these natural eucalypt forests and 

conservation stands, which confers advantages in forestry practices with respect to 
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selecting superior eucalypt genotypes in tree improvement programmes. Once trees with 

outstanding qualities are identified, large quantities of seeds are collected from these 

and planted out to establish „seed orchards‟, from which inferior trees are identified 

early and removed. However, the establishment of eucalypt plantations by seed has been 

viewed with caution, since the possibility of unsuitable provenance and undesirable 

genetics is high, given the genetic variability (Eldridge et al. 1994). Also, many 

eucalypts exhibit irregular flowering and high abortion rates (Jones et al. 2000), which 

result in unreliable and often limited seed supply (Hung and Trueman 2011). In order to 

maintain competitiveness in the forestry industry, more efficient and reliable methods 

were necessary to supply the large amounts of planting material required, while 

preserving superior genotypes.   

The successful rooting of stem cuttings in the mid 1950s (Eldridge et al. 1994), and its 

recognised potential in supplying clonal material to the forestry industry, saw the 

implementation of this technology gain momentum in subsequent years, with its 

introduction into commercial forestry in the 1970s (Zobel 1993; de Assis et al. 2004; 

Saya et al. 2008; Stape et al. 2010). Propagation by seed and vegetative propagation are 

often integrated in the management of forestry establishments, each with its advantages 

and disadvantages. Propagation by seeds is favoured when genotype-site matching has 

not been well established, when sites are potentially highly variable, when rooting of 

superior selected genotypes proves difficult, and owing to the relatively low 

technological requirement, when cheap propagation is required (Zwolinski and Bayley 

2001). However, propagation by seed is a relatively slower process compared with 

vegetative propagation. Seedlings typically take four months before they are ready to be 

transferred to the forest (Meadows 1999), while vegetative propagation via rooted 

cuttings, although variable in the time taken to prepare shoots for deployment into 

forests, represents a significantly shorter time-frame than seed propagation (Eldridge et 

al. 1994; de Assis et al. 2004). Clonal forestry plantations display greater uniformity in 

crop height, diameter and wood properties, which subsequently translate to a reduction 

in management costs (Eldridge et al. 1994; Watt et al. 2003). Being superior to sexual 

regeneration through the preservation of superior genetic potential, vegetative or clonal 

propagation was recognised by foresters as the most favourable option in meeting the 
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objectives of crop improvement programmes (Denison and Kietzka 1993a; Watt et al. 

2003; de Assis et al. 2004; Saya et al. 2008).  

 

1.2.2 Tree improvement programmes 

While good potential for the expansion of forestry establishments through prudent site-

matching strategies exists in countries with suitable rainfall, climate and soils, drier 

countries such as South Africa have seen the expansion of forests on more marginal 

areas (Denison and Kietzka 1993b). In an effort to remain sustainable and competitive, 

forestry establishments need to either expand into newer sites, or seek from existing 

stands better clone- site suitability, and increased growth rates and yields, while 

minimising costs. This challenge has been addressed through tree improvement 

programmes and are epitomised by the development of hybrids (Denison and Kietzka 

1993b; de Assis 2011).  

Hybridisation is integral to improvement programs for many crop species. Many 

eucalypt species (within, but not between the major subgenera) can be readily crossed 

(Potts and Dungey 2004), conferring properties generally midway between both parent 

species (Denison and Kietzka 1993b). These should ideally display superior 

performance traits than those of the parent species if they are to be economically viable. 

Some outstanding benefits that hybrids are selected for are hybrid vigour, increased 

disease resistance, superior wood, growth and maintenance properties, and site 

adaptability, the latter allowing for plantation in marginal areas where pure species 

cannot be easily grown (Denison and Kietzka 1993b). An initial drawback to the 

implementation of large-scale hybrid forestry was the difficulty in attaining sufficient 

quantities of hybrid seed (Denison and Kietzka 1993b; Potts and Dungey 2004). For this 

reason, vegetative propagation has found favour and has since been extended to include 

the propagation of pure species (Eldridge et al. 1994; Watt et al. 2003).  

Since 1983, Mondi Forests, a division of the then Mondi Paper Company Limited (now 

Mondi Business Paper of Mondi Group), has been actively involved in tree 

improvement programmes in South Africa (Denison and Kietzka 1993a; Harvett 2001; 
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www.mondigroup.com, 2011), of which the present study forms a part. The focus of 

these programmes has been on maintaining sustainability while improving the quality, 

wood properties and yield of forestry crop.  

A number of forestry establishments throughout the world have reported successes in 

tree improvement programmes based on interspecific hybridisation. Worldwide, E. 

grandis is often encountered as either a pure species or as a hybrid (Denison and Quaile 

1987; van Wyk 1990; Eldridge et al. 1994; Harvett 2001; Potts et al. 2001; Potts and 

Dungey 2004), the latter resulting in an extension in its plantation range. The choice of 

parent species in producing hybrids depends largely on the respective climatic 

conditions and the properties of the parent species. For example, in more temperate 

regions, one may find E. grandis x E. nitens (Denison and Kietzka 1993b; Harvett 2001; 

Potts and Dungey 2004), combining the fast growth rates of E. grandis with the cold-

tolerance of E. nitens (Denison and Kietzka 1993a). Further, in subtropical climates, 

suitable hybrids may be produced from E. grandis and E. urophylla (Denison and 

Kietzka 1993b; Harvett 2001; Potts and Dungey 2004), which seeks to combine the 

preferred growth rates of E. grandis with the greater coppicing ability and disease 

tolerance of E. urophylla (Eldridge et al. 1994). Other examples of large, successful 

hybrid propagation programmes include E. tereticornis x grandis at Pointe Noire in 

Congo and E. grandis x urophylla at Aracruz in Brazil (Eldridge et al. 1994; Turnbull 

1999; Potts and Dungey 2004). One of the objectives of the tree improvement 

programmes is to reduce wood specific consumption (WSC – the amount of wood 

needed in the production of a ton of pulp) while simultaneously improving pulp yield 

(Grattapaglia and Kirst 2008). Hybrids of E. grandis had initially reduced the WSC by 

20% in the 1980s (Ikemori et al. 1994). Further reductions were subsequently achieved 

through hybrids with E. globulus, known for its superior wood properties (de Assis et 

al. 2005; de Assis 2011).  

More recent developments in eucalypt improvement have been in the application of 

transgenic technologies. A number of genes related to wood formation in eucalypts (and 

other commercially important forestry trees) have been identified and manipulated to 

improve genotypes (Boerjan 2005; Harfouche et al. 2011). Despite the ongoing debate, 

http://www.mondigroup.com/
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genetic modification is regarded as an important tool in potentially improving forestry 

crop and meeting future demands for wood products, while easing the pressure on 

native forests and biodiversity. Some of the key advantages of genetic modification 

include the potential to substantially reduce the long generation times of forest trees 

compared with classical tree-breeding programmes, and the reduced risk of elite clones 

losing their superior genetic composition, compared with hybrid crossing. Studies on E. 

globulus have already shown a reduction in allele richness as a result of forestry 

breeding programmes (Jones et al. 2006). 

Perpetuating genetically improved clones relies almost exclusively on vegetative 

propagation, as several physiological and structural barriers hinder the production of 

hybrid seed (Potts and Dungey 2004). Hence, advancements in clonal propagation 

technology must accompany genetic improvements of forestry crops. Improvements in 

vegetative propagation should see more reliable and efficient ways of generating whole 

plants that are of suitable quality in terms of above- and below-ground development. 

The current methods of vegetative propagation, although successful in many respects, 

do have their limitations, the most critical of which is root production. There exists a 

need, therefore, to understand and refine current techniques of vegetative propagation in 

order to ensure clone quality, and meet the requirements of industry as well as for 

fundamental research.    

 

1.3 Eucalyptus vegetative propagation 

 

1.3.1 Propagation by cuttings 

The ability to propagate plants vegetatively via rooted cuttings was recognised as far 

back as the 4th century B.C.E, as the writings of Aristotle and Theophrastus suggests 

(Haissig and Davis 1994). However, the Chinese and later the Japanese, are credited 

with the first application of this technique on a commercial scale for timber, with the 

Chinese propagating Cunninghamia lanceolata (Chinese fir) over a thousand years ago, 

and the Japanese for Cryptomeria japonica (sugi) over 500 years ago (Ritchie 1994; 
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Hartmann et al. 1997). However, the usefulness of rooted cuttings in forestry 

applications in the West was only recognised at the end of the 19th century (Zobel 1993; 

Ritchie 1994). Initially applied to the propagation of Populus spp. and Salix spp., this 

method of vegetative propagation has since grown in popularity to include almost all 

forestry crops, as its potential in maintaining and propagating superior genotypes to 

yield more efficient and uniform forests was recognised (Zobel 1993; Ritchie 1994). 

The proportion of eucalypt forests propagated via rooted cuttings in terms of global 

forestry establishments has and continues to increase steadily, helped in no small part 

by the huge initial successes observed in Aracruz in Brazil and Pointe Noire in Congo 

(Zobel 1993; Eldridge et al. 1994; Turnbull 1999), which continue to-date (Saya et al. 

2008; Stape et al. 2010).  

Vegetative propagules for stem cuttings in commercial forestry applications were 

initially sourced from field plantations, which meant reserving substantial land areas 

solely for this purpose (de Assis et al. 2004). In order to overcome this and, in the 

process, increase the efficiency in commercial plantations, the clonal hedge-based 

concept was developed. These hedges required significantly less land area and provided 

large numbers of shoots for vegetative propagation (Denison and Kietzka 1993a; 

Meadows 1999; de Assis et al. 2004; Titon et al. 2006; Saya et al. 2008). The nursery 

practice entailed collecting macro-cuttings of 8 to 10 cm with basal diameters of 2 to 5 

cm from 30- to 60-day-old shoots from coppicing stumps of superior selected clones 

(Stape et al. 2001). Although initially, the macro-cuttings practice cost more than 

propagating eucalypts by seed, due to higher labour and infrastructure investments, the 

benefit gained by the industry from uniform plantations of superior clones (Eldridge et 

al. 1994; Campinhos 1999) was seen as a long-term advantage. However, since macro-

cuttings were sourced from relatively mature material, a major problem encountered 

was in the success rates of adventitious root formation (Stape et al. 2001; López et al. 

2010). In order to minimise the effects of maturation, the mini-cuttings system was 

introduced, whereby cuttings of 2 to 3 cm height and 0.4 to 1 cm basal shoot diameters 

were used as vegetative propagules (Stape et al. 2001). Compared with macro-cuttings, 

mini-cuttings conferred the advantages of lower production costs and higher rooting 

ability of cuttings, with superior root systems (Stape et al. 2001; de Assis et al. 2004; 
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López et al. 2010). Further, mini-cuttings (of good-rooting clones) were able to root 

with minimal or no root enhancer treatments and still produce roots of a good quality 

and morphology over those produced from macro-cuttings (Yang et al. 1995). Mini-

cuttings also represented a substantial reduction in operational costs brought about by a 

reduction in intensive cuttings and hedge management systems that were characteristic 

of macro- or stem-cuttings practices (de Assis et al. 2004). The speed of rooting of 

mini-cuttings subsequently resulted in a reduction in the turnaround time of plantation 

programmes and a reduction in the exposure-time of mini-cuttings to pathogenic fungi, 

leading to minimal fungicide applications (de Assis et al. 2004).  

Clonal hedges for macro-cuttings are typically maintained in the ground, outdoors. 

Hence, they are susceptible to nutrient leaching during periods of adverse climate, such 

as excessive rainfall (de Assis et al. 2004). In an attempt to manage the nutritional status 

of mother plants better and increase the number of cuttings that could be harvested, 

indoor clonal hedges were developed and intensely managed. These were often 

maintained in containers as drip irrigation sand-bed systems or hydroponics (Denison 

and Kietzka 1993a; de Assis et al. 2004; López et al. 2010). This system allowed better 

management of mother plants, which translated to economic advantages due to better 

productivity of mini-cuttings, and lower chemical and water demands (de Assis et al. 

2004). While mini-cuttings provided many advantages over macro-cuttings, a number 

of commercially-important clones still proved difficult-to-root via mini-cuttings. Many 

potentially valuable eucalypts are not targets for mass vegetative propagation through 

cuttings owing to their difficulty in producing adventitious roots. The rooting ability of 

mini-cuttings is dependent on the maturation state of the mother plant, and decreases 

with the age of the parent plant (Eldridge et al. 1994; Watt et al. 2003; Yasodha et al. 

2004). To this end, investigations using adult tissues of E. grandis have indicated the 

existence of possible rooting inhibitors (Paton 1970), probably alluding to auxin 

antagonists (see later). A reversal of the maturation state (rejuvenation) of the parent 

plant allows for the restoration of rooting ability of cuttings (Eldridge et al. 1994; 

Yasodha et al. 2004). 
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Rejuvenation in eucalypts can be achieved by coppicing, repeated grafting, serial 

production of cuttings over a number of generations, or through micropropagation, each 

with varying levels of success depending on the clone concerned (Eldridge et al. 1994; 

de Assis et al. 2004). Of these methods, micropropagation potentially serves the widest 

range of forestry needs. Not only can it restore juvenility, but it also serves as a source 

of material for clonal plantations, allowing for rooting of difficult-to-root genotypes 

(Yasodha et al. 2004). Micro-cuttings, sourced from micropropagated mother plants, are 

more juvenile than their macro- and mini-cutting counterparts and, therefore, result in 

further gains in rooting ability (Denison and Kietzka 1993a; de Assis et al. 2004; 

Yasodha et al. 2004). In addition, micropropagated mother plants provide significantly 

higher numbers of shoots for micro-cuttings (Yasodha et al. 2004). Nevertheless, the 

juvenility achieved through micropropagation does gradually erode from mother plants 

maintained ex vitro, with a consequent reduction in the rooting ability of micro-cuttings 

harvested from them (de Assis et al. 2004). However, the high multiplication rates 

achieved through micropropagation, and the maintenance of juvenility in vitro, can 

potentially circumvent most of the shortcomings of the vegetative propagation via 

cuttings, if plantable units of suitable quality can be produced. In vitro propagation of 

eucalypts can not only meet the demands for propagules in industry, but this technology 

also serves as a tool in further genetic modification by providing a means of cloning 

transformed cells.    

 

1.3.2 In vitro propagation 

 

1.3.2.1 Basic principles and routes of morphogenesis 

This aseptic vegetative propagation technique exploits the property of totipotency, a 

biological principle which states that since every plant cell possesses all the necessary 

genetic information, it has the potential to reproduce the entire organism, given the 

correct stimuli and environmental conditions (Hartmann et al. 1997). Totipotency in 

whole plants applies to the zygote and to meristematic cells of the shoot and root 
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(Hartmann et al. 1997). In a plant tissue, cell, or organ culture application, this cellular 

competency is used to induce somatic embryos, adventitious shoots or adventitious 

roots, following cell dedifferentiation to attain the meristematic state, often under the 

influence of plant growth regulators (PGRs) (Hartmann et al. 1997).  A range of explant 

material can therefore be used, depending on the purpose of the proposed culture, the 

plant species in question and the kind of culture that needs to be initiated (George et al. 

2008). Plantlet regeneration protocols have been achieved for a plethora of species and 

hybrids of eucalypts, with explants ranging from seeds, shoots and callus, to protoplasts 

and somatic embryos (reviews by Jones and van Staden 1997; Watt et al. 2003). Each in 

vitro stage of morphogenesis contains a suitable combination of micro- and macro-

nutrients and vitamins for the explant‟s metabolism and growth, together with the 

appropriate PGR (where necessary) to direct and regulate morphogenesis.  

Both somatic embryogenesis and shoot and root morphogenesis (organogenesis) can 

proceed via direct or indirect pathways, the latter involving an intervening callus stage. 

With regards to somatic embryogenesis, the callus that forms during the indirect 

pathway can contain either or both embrogenic or non-embryogenic callus, which 

makes the direct and indirect pathways difficult to delineate (Blakeway et al. 1993; 

George et al. 2008). Embryogenic cultures are initiated by culturing the explant on a 

medium containing a high concentration of auxins, usually 2,4-dichlorophenoxy acetic 

acid (2,4-D). The embryogenic callus that develops is composed of proembryogenic 

masses, which continue to proliferate in the high auxin environment until transferred to 

a medium lacking PGRs. Here, proliferation is halted and the embryogenic callus cells 

are stimulated to form somatic embryos, following a morphogenic path similar to that of 

zygotic embryos (Hartmann et al. 1997). Somatic embryos are subsequently matured 

through culture on a medium often characterised by reduced osmotic potential (through 

the addition of osmotic agents such as organic salts or polyethylene glycol – PEG), or 

containing abscisic acid (ABA). Plants are then regenerated through embryo 

„germination‟ and seedling establishment on a medium lacking PGRs (Hartmann et al. 

1997; George et al. 2008). By virtue of forming from the embryon meristems, roots 

produced from a somatic embryo are expected to more closely resemble those of 

zygotic seedlings than those formed adventitiously (Watt et al. 1991). 
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While several routes of morphogenesis are possible, the in vitro mass vegetative 

propagation of Eucalyptus plantlets for the forestry industry generally follows plantlet 

regeneration through shoot and root morphogenesis. This involves directing 

organogenesis via an induced meristematic group of cells. The number of organogenic 

stages usually includes culture establishment, shoot multiplication, root formation, and 

acclimatisation (Hartmann et al. 1997). For many plant species, including the eucalypts 

(Jones and van Staden 1997), a shoot elongation stage that precedes the rooting step, is 

sometimes necessary to produce plantlets that are suitably robust for an industrial or ex 

vitro application (Warrag et al. 1990; Jones and van Staden 1997; Arya et al. 2009).   

The exogenous supply of phytohormones in micropropagation systems is integral to the 

culture medium and subsequent organogenesis. These compounds are naturally-

occurring, and are generally active at low concentrations (George et al. 2008). Since the 

extraction and isolation of the first PGR ethylene by Gane (1934), more compounds 

with plant regulatory activity have been extracted and isolated, with the auxins 

(Haagen-Smit et al. 1942), and cytokinins (Letham 1963) soon following. Many more 

natural and synthetic compounds have since been identified (Barciszewski et al. 1999; 

Weyers and Paterson 2001; Gaspar et al. 2003; de Rybel et al. 2009; Santner and Estelle 

2009). Although many classes of plant growth substances are known to exist, five of 

these have received most of the attention, i.e. auxins, cytokinins, gibberellins, ethylene 

and abscisic acid. The most relevant of these classes to the micropropagation of 

hardwood species such as the eucalypts, are the auxins and cytokinins, which direct and 

regulate root and shoot organogenesis, respectively. One or more type of cytokinins and 

auxins is therefore added to the culture medium, depending on factors such as the 

plantlet regeneration approach, the explant used, and the plant species in question. The 

roles and interactions of these phytohormones are discussed later. 
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1.3.2.2 An account of Eucalyptus micropropagation 

Eucalypt regeneration using tissue culture approaches was first reported in the 1960s, 

where eucalypts were cultured from lignotubers (Aneja and Atal 1969). Substantial 

developments were made in the following years, with successful plantlet regeneration 

from almost all organs (reviews by Le Roux and van Staden 1991; Jones and van Staden 

1997; Watt et al. 2003). Examples include shoot tips (e.g. Gomes and Canhoto 2003), 

axillary buds (e.g. Jones and van Staden 1994; Mokotedi et al. 2000); nodes (e.g. 

Gomes and Canhoto 2003; Arya et al. 2009; Hung and Trueman 2011), and cotyledons 

(e.g. Bandyopadhyay et al. 1999; Nugent et al. 2001a). Plantlet regeneration via somatic 

embryogenesis has also been reported (e.g. Watt et al. 1991; Termignoni et al. 1996; 

Bandyopadhyay et al. 1999; Pinto et al. 2002) (Table 1.1), albeit with limited success.  

While significant advances have been achieved in vegetatively propagating clones in 

vitro, the implementation of some routes of plantlet regeneration into the forestry 

industry has been hampered by certain limitations. Poor acclimatisation of plantlets and 

the risk of somaclonal variation has largely stopped efforts towards micropropagation of 

superior genotypes via indirect organogenesis (Bandyopadhyay et al. 1999; Watt et al. 

2003), while the low frequency of converting somatic embryos into established plants 

has limited the application of somatic embryogenesis (Watt et al. 2003; Moyo et al. 

2011) (Table 1.1). Other perceived disadvantages of somatic embryogenesis include 

variations in the induction of somatic embryos across family and over the years of seed 

production, as reported for E. globulus (Pinto et al. 2008). Fluctuations in reserve 

accumulation between somatic embryos and zygotic embryos have also been suggested 

to contribute to the low frequency of plantlet regeneration via somatic embryogenesis 

(Pinto et al. 2010). However, it still holds potential as a means of regeneration of 

transgenic plants in crop improvement programmes (Watt et al. 2003; Merkle and Nairn 

2005; Moyo et al. 2011), but further studies are needed to understand and optimise this 

route of regeneration. In the meantime, mass vegetative propagation via direct 

organogenesis (through axillary bud proliferation) is the preferred method to supply 

large numbers of elite clonal material to the industry. This is evidenced in the number of 

successful regeneration protocols reported for a range of explant types (reported from 
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the year 2000 to present) (Table 1.2), compared with the number of reports on somatic 

embryogenesis, and their plantlet regeneration rates (Table 1.1).  

The preferred route of vegetative propagation in the majority of industrial applications 

that employ in vitro technology is through harvesting coppice from clonal hedges, 

followed by in vitro shoot proliferation and subsequent rooting. In line with the 

objectives of reducing costs in commercial applications, several standard media 

compositions (standard protocols) have been devised for the micropropagation of suites 

of eucalypt clones, which essentially comprise MS nutrients (Murashige and Skoog 

1962) supplemented with vitamins and the appropriate PGR for shoot and/or root 

development (see earlier). The essential difference amongst these protocols is nested in 

the nature of the clone (with regard to its ease of propagation) and the required route of 

morphogenesis, which is dictated by the exogenous PGRs. As the literature suggests, 

the type and concentration of PGRs used (within a given class) is often determined 

empirically for a given clone (Table 1.2). In the micropropagation of eucalypts for the 

forestry industry, the PGR combinations are selected based on their ability to yield the 

highest number of shoots following multiplication, and eventually the highest number 

of rooted shoots. These combinations are used to establish complete in vitro 

regeneration protocols. A summary of those reported from the year 2000 is presented in 

Table 1.2, following from earlier reviews of Le Roux and van Staden (1991), Jones and 

van Staden (1997), and Watt et al. (2003).  

The ultimate aim of the various vegetative propagation options discussed above is the 

production of fully functional plants. In this regard, the production of adventitious roots 

is critical (de Assis et al. 2004), as they need to develop adequately to serve the 

nutritional and supportive roles of the plant. The success of vegetative propagation 

programmes is determined by root production, and as mentioned, the difficulty in 

producing adventitious roots through vegetative propagation has hampered the 

establishment of a number of potentially important eucalypt clones (Eldridge et al. 

1994; de Assis et al. 2004). While adventitious root production in vitro may be regarded 

as favourable based on quantitative (assessed by root number) or qualitative (by 
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appearance) analyses, careful trials are necessary to assess the development and 

function of in vitro produced roots in the field.  

 

1.3.2.3 From in vitro to the field: assessments of plants post-

acclimatisation 

Despite their potential in supplying large numbers of rooted shoots to the South African 

forestry industry, micropropagated plantlets are currently not directly deployed into 

forestry establishments due to the lack of reliable information regarding their long-term 

performance. In a review by Gupta et al. (1991), several commercially important 

micropropagated forestry species, including eucalypts, were shown to have increased 

biomass production, greater uniformity, early flowering and maturation traits, and 

superior yield, compared with their seedling-derived counterparts. Greenhouse studies, 

with in vitro and seedling-derived E. grandis, showed that while some growth 

differences may be initially observed between in vitro plantlets and seedlings, neither 

propagatory method conferred a nett advantage in terms of photosynthetic ability 

(Warrag et al. 1989a) or dry matter accumulation and distribution (Warrag et al. 1989b). 

Field trials on micropropagated and macropropagated Eucalyptus hybrids over 36 

months indicated that for the majority of the tested clones, micropropagated plantlets 

fared significantly better in terms of survival, tree height and growth parameters, and 

uniformity (Watt et al. 1995). Following at least 14 months acclimatisation, 

micropropagated E. grandis x nitens were as efficient at leaf gas exchange compared 

with macropropagated E. grandis x nitens and seed-propagated E. grandis and E. nitens 

(Mokotedi et al. 2009a).  
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Table 1.1 Examples of reports on somatic embryogenesis and plantlet regeneration for eucalypts 

Species Details Plantlet conversion rate Reference 

E. grandis Callus from leaf explants 30% Watt et al. (1991) 

E. globulus Callus from cotyledon pieces and hypocotyls  13% of embryos showed signs of germination, but 

no plantlet development was reported 

Embryos displayed abnormal shoot apex 

development and poorly-developed cotyledons 

Nugent et al. (2001b) 

E. globulus Callus from cotyledons, hypocotyls, leaves and 

stem explants 

21% Pinto et al. (2002) 

E. tereticornis Callus from mature zygotic embryo explants 54% frequency of embryo development, with a 

subsequent conversion rate of 80% 

Prakash and Gurumurthi (2004) 

E. camaldulensis - Direct: from hypocotyl segment explants  

- Callus from zygotic embryo explants 

10% frequency of embryo development 

Highest frequency of embryo development = 63% 

In total, less than 10% of the somatic embryos 

reached the germinating stage  

Prakash and Gurumurthi (2010) 
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Table 1.2 Examples of successful Eucalyptus micropropagation protocols reported from the year 2000, and the PGRs* (mg l-1) used in the 

reflected in vitro stages. NR = Not Reported 

Species Explant Multiplication PGRs Elongation PGRs Rooting PGRs Reference 

E. grandis x E. nitens Nodal segments BAP (0.1) + NAA (0.01) IBA (0.01) + NAA (0.01) 

+ Kinetin (0.2) 

IBA (20.0) for 24 hrs 

or IBA (2.5) for 72 

hrs, or IBA (0.1, 2.5) 

for 28 days 

Mokotedi et al. (2000) 

E. nitens Seedlings and 1 yr-old 

shoot tips and nodes 

BAP (0.1, 0.2) GA3 (0.1) IBA or IAA (1.0, 2.0, 

3.0)  

Gomes and Canhoto 

(2003) 

Eucalyptus tereticornis x 

E. grandis 

Mature Shoots BAP (1.0) + NAA (1.0) None  IBA (1.0) Joshi et al. (2003) 

E. globulus In vitro-derived 

meristematic nodules 

Shoot regeneration with 

ABA alone, or with NAA 

NR IBA (0.5) Trindade and Pais (2003) 

E. grandis Nodal segments BAP (200-600), pulse for 

1-3 hours 

  de Andrade et al. (2006) 

E. erythronema x 

E.stricklandii 

Axillary shoots of 

seedlings 

BAP (1.0) + NAA (0.2) BAP (1.0) + NAA (0.2) + 

GA3 (0.5) 

IBA  Glocke et al. (2006a) 
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Table 1.2 continued      

Species Explant Multiplication Elongation Rooting Reference 

E. erythronema Apex and leaf BAP (0 – 1.0) NR NR Glocke et al. (2006b) 

E. stricklandii Apex and leaf BAP (0 – 1.0) NR NR Glocke et al. (2006b) 

E. grandis x E. urophylla Shoots NAA (0.01) + BAP (0.2) Callus induction using IAA 

(5.0) + BAP (0.25), 

followed by shoot 

initiation 

IBA (0-1.0) Hajari et al. (2006) 

E. grandis Shoots NAA (0.01) + BAP (0.2) Callus induction using IAA 

(5.0) + BAP (0.25), 

followed by shoot initiation 

IBA (0-1.0) Hajari et al. (2006) 

E. camaldulensis x E. 

tereticornis 

Nodal segments BAP (1.0) + IBA (0.1) Along with multiplication IBA (0.1-2.0) alone, 

or with NAA (0.1-2.0) 

Arya et al. (2009) 

Corymbia. torelliana x C. 

citriodora 

Nodal segments BAP (1.0) Along with multiplication IBA (0.1-2.0) alone, 

or with NAA (0.1-2.0) 

Arya et al. (2009) 

E. benthamii x E. dunnii Nodal segments BAP (0 – 1.0) NAA (0 – 1.0) + BAP 

(0.05) 

NR Brondani et al. (2009) 
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*  2,4-D: 2,4-Dichlorophenoxy acetic acid; BAP: Benzylaminopurine; IAA:  Indole-3-acetic acid; IBA: Indole-3-butyric acid; NAA: α-

Naphthalene acetic acid; GA3: Gibberellic acid  

Table 1.2 continued      

Species Explant Multiplication Elongation Rooting Reference 

E. urophylla x E. grandis Nodal segments from 

mature plants 

BAP (1.0) + NAA (0.01) Along with multiplication IBA and/or NAA Nourissier and Monteuuis 

(2008) 

E. urophylla x E. grandis Nodal segments BAP (1.0) + NAA (0.01) Along with multiplication IBA and/or NAA Mankessi et al. (2009) 

E. tereticornis Nodal segments BAP (0 – 2.8), in 

combination with 2,4-D 

or NAA (various 

concentrations) 

- - Aggarwal et al. (2010) 

E. globulus hybrids Nodal segments BAP (0.5)   Borges et al. (2011) 

E. benthamii x E. dunnii Nodal segments BAP (0, 0.05, 0.1) BAP (0, 0.05, 0.1) + GA3 

(0, 0.1, 0.2, 0.3) 

IBA (2.0) Brondani et al. (2011) 

C. torelliana x C. 

Citriodora  (eucalypts) 

Shoots  With or without NAA 

(0.01) 

Along with multiplication  IBA (4.0) Hung and Trueman 

(2011) 
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While the above-ground performance of micropropagated plantlets following 

acclimatisation is encouraging, an analysis of the below-ground performance (i.e. root 

architecture and development) is necessary to correctly assess the total performance and 

result of this propagatory technique. Even though root architecture is recognised as 

crucial in plant stability and productivity (Coutts 1983; Lynch 1995), such studies are 

relatively scarce, since it is difficult and expensive to obtain reliable and precise data on 

actual root systems (Lynch 1995; Misra et al. 1998). The few studies in the 

development and architecture of in vitro produced roots following acclimatisation have 

presented somewhat contradictory reports. Some documented no differences in field 

performance between seed- and vegetatively-propagated eucalypts, while others 

reported gross differences in root morphology following acclimatisation. In a study 

comparing the early growth of tissue-cultured and seed-propagated Eucalyptus 

camaldulensis, Bell et al. (1993) found little above- or below-ground architectural 

differences in growth. Both micropropagated and seed-propagated plants displayed a 

similar ability at penetrating heavy clay soil, although in one clonal line, roots were 

concentrated in the upper soil profiles (Bell et al. 1993). Mokotedi et al. (2010) 

undertook a more comprehensive study on the field performance of vegetatively 

propagated E. grandis x nitens and seed-propagated E. grandis and E. nitens. After 16 

months of field growth, micropropagated plants displayed significantly lower uprooting 

resistance than macro- and seed-propagated plants. This decreased uprooting resistance 

was attributed to the architecture of the roots. The seed- and macro-propagated plants 

developed tap roots (T-beam) or tap root-equivalent “tap-sinker” roots, whereas the 

micropropagated plants developed only I-beam shaped horizontal roots, which were less 

efficient at anchorage (Mokotedi et al. 2010).  

Root architecture that compromises tree stability is undesirable, particularly in forestry 

establishments, and more so in the case of tall and fast-growing eucalypt forests.  In the 

post-acclimatisation studies of Bell et al. (1993) and Mokotedi et al. (2010) mentioned 

above, micropropagated shoots were rooted in vitro using the auxin indole-3-butyric 

acid (IBA). Generally, the success of the in vitro rooting stage is measured by the 

number and visual quality of the roots, before shoots are prepared for acclimatisation. 

Studies such as those above suggest that this kind of assessment is insufficient at 



23 

 

    

 

predicting root development and quality post-acclimatisation and, therefore, the 

parameters that influence the adventitious rooting process require attention, if the 

potential benefits of micropropagation to forestry productivity are to be realised. Such 

parameters include the actions and interactions of the PGRs used for root induction in 

vitro, and the subsequent induction and development of the adventitious roots. 

 

 

1.4 Role of auxins and cytokinins in root growth and 

development 

 

1.4.1 Biosynthesis, metabolism and interactions 

Historically, the majority of the studies on plant growth regulation have been focussed 

on auxins and their biochemical and molecular implications in plant development, with 

relatively few reports on cytokinin biochemistry, other than its gross physiological 

effect on plants. Recently, however, and probably due to its antagonistic relationship 

with auxins, there has been a renewed interest in cytokinins. Although the information 

is still limited, major advances in this field have been steady of late, mainly through 

molecular and genetic approaches. 

Cytokinins are known to occur in the tRNA of most organisms as a bound form, and so 

it was initially thought that cytokinin synthesis was as a result of the breakdown of 

tRNA (Mok and Mok 2001). However, in keeping with the low turnover rate of tRNA, 

this method of synthesis could not account for the levels of cytokinins found in plants 

(Haberer and Kieber 2002). Subsequent investigations have led to the discovery of a 

number of genes – AtIPT genes – that encode the biosynthesis of the natural cytokinins 

isopentenyladenine (iP) and zeatin in Arabidopsis and in some bacterial species (Takei 

et al. 2001; Kakimoto 2001; Haberer and Kieber 2002). Given that alternative cytokinin 

biosynthetic pathways have been proposed (Åstot et al. 2000), plant tissues can be said 

to contain several types of cytokinins, each with tissue-specific roles. These may be 
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found as both free bases or in their corresponding nucleotide and nucleoside forms, with 

interconversions between these forms mediated by enzymes (Martin et al. 2001; Mok 

and Mok 2001). Cytokinin inactivation and hence turnover is facilitated by cytokinin 

oxidases, resulting in irreversible cytokinin degradation (Haberer and Kieber 2002). The 

rapid degradation of the natural cytokinins zeatin and iP by cytokinin oxidases has been 

suggested to contribute to the ineffectiveness of these regulators in certain plant species 

(George et al. 2008). An enzyme other than cytokinin oxidase has been suggested to be 

involved in the degradation of certain synthetic cytokinins in some plant species 

(Forsyth and van Staden 1987). This implies that synthetic cytokinins that are not 

substrates for these enzymes will persist in plant tissues. While the deeper 

understanding of cytokinins has only recently received renewed attention, auxins have 

long been recognised as a major regulator of plant development and, therefore, much 

more has been documented regarding the auxins. 

 Although auxin biosynthesis has been reported as occurring mainly via the indole 

amino acid tryptophan, alternate pathways independent of tryptophan (Trp) have been 

documented (Bartel et al. 2001; Woodward and Bartel 2005). The biosynthesis of the 

most widely-encountered and studied natural auxin indole-3-acetic acid (IAA) via 

indole-3-pyruvic acid (IPA) has been oft-reported, in which Trp is transaminated (by 

tryptophan transaminase) to IPA, which is decarboxylated to indole-3-acetaldehyde 

(IAAld) (Gibson et al. 1972; Schneider et al. 1972). Then, IAA is formed either through 

oxidation or dehydrogenation of IAAld (Woodward and Bartel 2005; Tromas and 

Perrot-Rechenmann 2010). Similarly, other Trp-dependent biosynthetic pathways have 

been identified for IAA, e.g. the indole-3-acetamide (IAM) pathway, the tryptamine 

pathway, and the indole-3-acetaldoxine (IAOx) pathway (Woodward and Bartel 2005; 

Tromas and Perrot-Rechenmann 2010). Tryptophan auxotrophs of maize and 

Arabidopsis maintained the ability to synthesise IAA, leading to the suggestion that 

IAA can be synthesised independently of Trp (Wright et al. 1991; Normanly et al. 

1993; Östin et al. 1999). However, the majority of IAA biosynthesis is still thought to 

occur via Trp-dependent pathways (Eckardt 2001). The biosynthesis of the other natural 

auxin found in plants, indole-3-butyric acid (IBA) is in many ways analogous to that of 

IAA. This can occur through Trp, but with a longer side chain (Epstein and Ludwig-
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Müller 1993; Ludwig-Müller 2000); via β-oxidation in chain-elongation reactions, 

similar to fatty acid synthesis (Epstein and Ludwig-Müller 1993; Ludwig-Müller 2000); 

or as some evidence suggests, via Trp-independent pathways similar to those described 

for IAA (Wright et al. 1991; Normanly et al. 1993; Östin et al. 1999).    

Since plants utilise auxins for numerous developmental processes, there are advantages 

to storing the hormone in tissues. IAA can be stored in either conjugated form or IBA, 

which allows for the availability of free IAA either through hydrolysis to free the 

conjugated form, or through β-oxidation to convert IBA to IAA (Bartel et al. 2001; 

Woodward and Bartel 2005). Conjugation products have also been reported for IBA, 

which have been suggested to be a better source of free IAA than conjugation products 

of IAA (Wiesman et al. 1989). IBA and IAA are both rapidly metabolised and 

conjugated within plant tissues. These conjugates act as „slow release‟ mechanism for 

the hormone, from which they are hydrolysed to release free auxins (Ludwig-Müller 

2000). Auxin-conjugates play an important role in auxin metabolism and physiology, by 

facilitating its storage and utilisation, protecting auxins from enzymatic deactivation, 

and in maintaining a homeostatic concentration of the hormone in the plant (Epstein and 

Ludwig-Müller 1993). IAA conjugates are said to be more susceptible to oxidative 

degradation and hence deactivation than IBA conjugates (Epstein and Ludwig-Müller 

1993; Woodward and Bartel 2005), again supporting the greater stability of IBA over 

IAA. No oxidation products have been reported for IBA conjugates. IBA thus remains 

at elevated levels longer than IAA (Epstein and Ludwig-Müller 1993). Auxin 

conjugation products need to be hydrolysed in order to avail free auxin to the plant 

(Epstein et al. 1993; Epstein and Ludwig-Müller 1993; Bartel et al. 2001). Easy-to-root 

cultivars of sweet cherry were shown to be able to hydrolyse IBA conjugates to free 

IBA more successfully than difficult-to-root cultivars (Epstein et al. 1993). It was 

therefore hypothesised that difficult-to-root eucalypts may also be lacking in their 

ability to hydrolyse auxin conjugation products.  

The regulation of both auxins and cytokinins are tightly controlled, with significant 

cross-talk between their respective metabolic pathways. Investigations into auxin 

signalling have revealed three main families of auxin response genes, which accumulate 



26 

 

    

 

rapidly in response to auxin: Small Auxin Up RNA (SAURs), GH3-related genes (GH3s), 

and Auxin/Indole-3-acetic acid (AUX/IAA) (reviewed by Hagen and Guilfoyle 2002; 

Woodward and Bartel 2005; Tromas and Perrot-Rechenmann 2010). Transcripts of the 

SAURs genes are short-lived and highly conserved, being implicated in calmodulin 

binding (Yang and Poovaiah 2000). Genes of GH3 code for conjugating enzymes that 

regulate free auxin levels (Staswick et al. 2005). The AUX/IAA gene family has been 

studied in Arabidopsis, and comprise at least 29 genes in that species (Overvoorde et al. 

2005), with homologous genes present in other plant species (Woodward and Bartel 

2005). Sequence identity is shared in four conserved domains between proteins of 

Aux/IAA (Hagen and Guilfoyle 2002). Domain I of the Aux/IAA protein has been 

identified as a potent transcriptional repressor (Tiwari et al. 2004), Domain II is 

involved in Aux/IAA instability, and domains III and IV elicit dimerisation or 

multimerisation between of Aux/IAA proteins and heterodimerisation between 

Aux/IAA and Auxin Response Factor (ARF) proteins. The latter can attach to Auxin 

Response Elements (AREs), which are ultimately responsible for auxin-induced gene 

expression (Hagen and Guilfoyle 2002; Woodward and Bartel 2005; Tromas and Perrot-

Rechenmann 2010). Auxin perception at the site of action is mediated by receptors of 

the Transport Inhibitor Response 1 (TIR1) family. The TIR1 gene encodes an F-box 

protein subunit which forms part of the ubiquitin ligase complex that targets substrates 

for degradation by the 26s proteasome (Hagen and Guilfoyle 2002; Woodward and 

Bartel 2005; Moubayidin et al. 2009; Tromas and Perrot-Rechenmann 2010).  

As reviewed by several authors (Hagen and Guilfoyle 2002; Woodward and Bartel 

2005; Moubayidin et al. 2009; Tromas and Perrot-Rechenmann 2010), the control of 

auxin signalling lies mainly with the ARFs and Aux/IAA protein families, and proceeds 

as follows: Under conditions of low auxin concentration, the Aux/IAA protein is 

heterodimerised to the ARFs, thereby preventing ARFs from binding to auxin 

responsive elements within auxin-responsive genes. When auxin concentration is high, 

the auxin is perceived by the TIR1 receptors at the site of action. This stimulates and 

stabilises the interaction between TIR1 and the Aux/IAA proteins, resulting in the 

ubiquitination and ultimate degradation of Aux/IAA by the 26S proteasome. This 
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relieves the ARFs from their inhibition, resulting in its interaction with AREs and hence 

the expression of auxin-responsive genes.  

While cytokinins have been shown to modulate auxin-induced organogenesis through 

its regulation of auxin efflux (Pernisová et al. 2009; Růžička et al. 2009), the 

mechanisms of these interactions still remain largely unknown. Investigations using 

Arabidopsis, maize and rice have shown that a two-component signalling pathway is 

employed (Hwang and Sheen 2001; To and Kieber 2008). In Arabidopsis, cytokinin 

reception is mediated by proteins of the histidine kinase Arabidopsis Histidine Kinase 

(AHK 1, AHK 2 and AHK 3) and the Cytokinin Response 1 families. Two classes of 

Arabidopsis Response Regulators (ARRs) are in turn activated, following the transfer of 

the cytokinin signal through phosphorelay to the nucleus. Type A-ARRs are negative 

regulators of cytokinin signalling (To et al. 2004), while type-B ARRs are positive 

regulators which, when phosphorylated, activates the transcription of cytokinin-

regulated genes (Mason et al. 2005). This results in a negative feedback loop of 

cytokinin regulation. Some components of cross-talk between auxin and cytokinin 

signal transduction in root meristems has been uncovered in Arabidopsis. The 

cytokinin-response transcription factor ARR1 activates the gene SHY2, which is a 

member of the Aux/IAA family of auxin-inducible genes, which heterodimerise to 

inactive ARFs (see earlier). Activation of the SHY2 gene by cytokinin perception 

therefore results in repression of auxin signalling, particularly of the auxin transport 

proteins (PIN proteins – discussed later). Being members of the Aux/IAA family of 

proteins, auxin availability and perception therefore results in the degradation of the 

SHY2 protein, restoring and sustaining polar auxin transport (Ioio et al. 2008; 

Moubayidin et al. 2009). In this way, cell division, differentiation and development are 

regulated and tightly controlled by the antagonistic relationship and cross-talk between 

auxins and cytokinins. An understanding of the relationship and properties of 

phytohormones in in vitro applications is invaluable towards increasing the yield and 

quality of commercially important forestry crops. Their metabolism and interactions 

within plant tissues are of particular importance, since the addition of one of these 

groups during a specific propagation stage could potentially impact on the performance 

of the other group in subsequent stages. In this regard, the efficiency of the final and 
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most crucial in vitro stage in the production of fully-functional plantlets, i.e. rooting, 

can potentially be affected by the exogenous PGRs used in the preceding stages. Hence, 

an understanding of the factors influencing adventitious root development is necessary 

if the quality of in vitro-produced plants is to be improved.    

 

1.4.2 Adventitious root induction and development 

Plant root systems comprise primary, lateral and adventitious roots. The origins of 

primary roots can be traced back to the development of the radicle during 

embryogenesis (Barlow 1986; Casson and Lindsey 2003). However, lateral and 

adventitious roots are formed post-embryogenically, from differentiated cells (Barlow 

1986; Casson and Lindsey 2003; Geiss et al. 2009). Lateral roots typically form from 

existing roots, while adventitious roots form from leaf or stem tissues (Barlow 1986; 

Geiss et al. 2009). The potential for adventitious root development is a natural product 

of plant evolution that allowed for the diversification and exploration of new 

environments, as in the case of epiphytes (Barlow 1986). Fossil evidence has even 

suggested that adventitious root systems precede embryonic or primary root systems 

(Barlow 1986). Adventitious roots can become specialised to serve numerous functions 

over and above those of primary roots (i.e. acquisition of nutrients and water, storage of 

food reserves and anchorage). They can be induced naturally or artificially, through 

environmental changes, wounding, or phytohormone application (Barlow 1986, George 

et al. 2008), a property which is extensively exploited in the vegetative propagation of 

most of the commercially important horticultural, agricultural and forestry crops 

(Ritchie 1994; Hartmann et al. 1997). As a result, this has generated much interest in 

the field of adventitious root formation and the factors influencing their development. 

Essentially, adventitious roots arise from a group of cells – the root initials - that are 

able to dedifferentiate and become meristematic (Hartmann et al. 1997; Geiss et al. 

2009). The location of root initials varies with species and in a number of easily-rooted 

species, root initials are latent or preformed. These lie dormant until environmental 

conditions are favourable for their emergence and development as adventitious roots 
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(Girouard 1967; Smith and Wareing 1972; Hartmann et al. 1997). Latent root initials 

have been observed in species such as willow (Salix), currant (Ribes) and citron (Citrus 

medic) (Girouard 1967; Hartmann et al. 1997). Where root initials are not latent, they 

can be induced through wounding (de novo formation). After a cut is made, a wounding 

response is triggered which results in apoptosis of the injured cells and eventually leads 

to the division of cells in the vicinity of the vascular cambium and phloem to initiate 

adventitious roots (Hartmann et al. 1997; Schiefelbein et al. 1997; Amissah et al. 2008; 

Millán-Orozco et al. 2011). The de novo development of adventitious roots is generally 

divided into successive stages, each with different physiological requirements. Although 

the number of discrete, but interdependent phases is debated, it is generally accepted 

that the stages consist of cell dedifferentiation, induction and initiation (when cell 

division starts and root initials are formed), development of root initials into root 

primordia, and finally expression (growth of root primordia and emergence) (Hartmann 

et al. 1997; Kevers et al. 1997; de Klerk et al. 1999; Geiss et al. 2009). 

 As already mentioned, the location of root initials is species-specific. In stem cuttings 

of Quercus sp., adventitious root primordia were found to develop from secondary 

phloem (Amissah et al. 2008). In microcuttings of apple, root primordia were observed 

from outside the xylem (Hicks 1987) or from phloem parenchyma cells (Harbage et al. 

1993). Other authors have reported the initiation of adventitious roots from 

interfascicular cambium adjacent to phloem cells (de Klerk et al. 1995; Jásik and de 

Klerk 1997). Specifically in eucalypts, Baltierra et al. (2004) found that adventitious 

roots in vitro originated from either old vascular tissue or from newly-formed xylem. In 

common, however, is the de novo development of adventitious roots adjacent to the 

central core of vascular tissue, and in woody species, from phloem ray parenchyma cells 

(Hartmann et al. 1997). Whilst histological studies on the cellular origins of 

adventitious roots in various plant species have been useful in characterising the steps 

and cells involved in this complex process, studies focussing on the environmental and 

molecular factors influencing adventitious rooting have revealed some underlying 

mechanisms governing this process. 
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Molecular and genetic studies of adventitious rooting have shown that rooting 

competence is heritable and, therefore, quantifiable (Grattapaglia et al. 1995; Marques 

et al. 1999; Geiss et al. 2009). In the case of eucalypts (and other woody species of 

economic importance), clones are classified as difficult- or easy-to-root based on their 

genetic predisposition. Reports of the existence of quantitative trait loci (QTLs) for root 

number in cuttings of Populus deltoides (eastern cottonwood) by Wilcox and Farmer 

(1968), led to the search for rooting genes in other commercially important crops.  

Grattapaglia et al. (1995) found four QTLs for the percentage of rooted cuttings in E. 

grandis X urophylla, with E. urophylla contributing most of the rooting ability in that 

cross. Similarly, investigations into the vegetative propagation traits in E. tereticornis 

and E. globulus revealed nine QTLs associated with adventitious rooting, with a larger 

portion of the phenotypic variation in adventitious rooting associated with E. 

tereticornis, a known good-rooting clone (Marques et al. 1999; Geiss et al. 2009). 

Further, attempts to identify candidate genes associated with adventitious root formation 

have disclosed a number of genes that are either up-regulated or down-regulated during 

adventitious rooting (reviewed by Casson and Lindsey 2003; Geiss et al. 2009; Li et al. 

2009). These were also strongly induced by phytohormones, particularly auxins and 

their affiliated transport proteins.  

From some of the earliest studies in this field, auxins emerged as an important factor in 

the genetic regulation of adventitious rooting (Dhindsa et al. 1987). More recent 

developments towards understanding auxin signalling and perception have provided 

further evidence in this regard (see reviews by Quint and Gray 2006; Pop et al. 2011). 

Genes identified as promoting adventitious root formation, such as ROLB (root loci) in 

Agrobacterium, have been shown to confer increased sensitivity to auxin (Shen et al. 

1988), which indicates a relationship between root formation and the auxin perception 

pathway (Quint and Gray 2006; Geiss et al. 2009; Li et al. 2009; Pop et al. 2011). The 

positive regulator genes of crown root formation in rice, CRL1/ARL1 (Crown 

Rootless1/Adventitious Rootless 1) (Inukai et al. 2005), are also auxin-responsive genes 

(Geiss et al. 2009). Genes of the auxin response factors (ARFs) have often been reported 

as being involved in the initiation and control of adventitious rooting (Geiss et al. 2009; 

Li et al. 2009; Pop et al. 2011). Even during the initiation of root development, 
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expression of genes such as Scarecrow (SCR), which are involved in a range of root 

control and maintenance events, are dependent on auxin availability and distribution 

(Sabatini et al. 2003; Sánchez et al. 2007). Although auxin is accepted as being crucial 

to each step of the adventitious rooting process, a number of other phytohormones and 

endogenous factors have been shown to work either synergistically or antagonistically 

with auxin during root formation, the most documented being ethylene and cytokinins.   

The relationship between ethylene and auxin was recognised as early as 1935 by 

Zimmerman and Wilcoxon. Increased ethylene concentrations have been shown to 

heighten endogenous IAA sensitivity in Rumex palustris (Visser et al. 1996). 

Subsequently, various roles of ethylene on root development have been reported in a 

number of plant species. These have often appeared contradictory, with ethylene either 

promoting or inhibiting root development (Geiss et al. 2009). What has been 

established, is that the effects of ethylene on root development is dependent on the 

synthesis, transport and signalling of auxin (Stepanova et al. 2007; Dugardeyn and van 

Der Straeten 2008). Cytokinins, however, are known to work antagonistically with 

auxins in plant development, with the inhibitory role of cytokinins on root initiation 

being well-recognised (Hartmann et al. 1997; George et al. 2008). The cross-talk 

between auxins and cytokinins has been the subject of numerous studies on root 

development (reviewed by Moubayidin et al. 2009). As a consequence of its 

antagonistic relationship with auxins, cytokinins play various regulatory roles during 

root development, most notably via their regulation of polar auxin transport (Růžička et 

al. 2009). In addition to the primary genetic and phytohormone determinants in 

adventitious root development, environmental conditions also influence root initiation 

and development, either directly or in conjunction with each other. 

Environmental factors such as temperature, light and nutrient availability have varying 

effects on adventitious rooting. Corrêa and Fett-Neto (2004) demonstrated that the 

effect of temperature on adventitious root formation is species-specific, with E. saligna 

more resistant to higher temperatures than E. globulus in terms of rooting of in vitro-

grown microcuttings. Whereas warmer temperatures increased the rooting potential of 

E. saligna, the opposite was true for E. globulus. In conifers (Berhens 1988) and 
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Chrysanthimum spp. (Dreuge et al. 2000), cold storage of mother plants was found to 

influence carbohydrate concentration, leading to an alteration in the 

nitrogen/carbohydrate ratio, thereby increasing the rooting potential of cuttings. The 

reliance of adventitious rooting on carbohydrate content has also been demonstrated in 

other commercially important crops, such as Tectona grandis (teak) (Husen and Pal 

2007). The rooting potential of explants of E. sideroxylon was dependant on sucrose 

concentration in vitro (Cheng et al. 1992), starch accumulation was observed prior to 

root primordium emergence in Pinus radiata (Li and Leung 2000), and an adequate 

supply of carbohydrate was necessary for adventitious root initiation and development 

in apple microcuttings (Calamar and de Klerk 2002). Moreover, in the presence of 

auxin, the type of carbohydrate was found to influence the adventitious rooting capacity 

of E.saligna and E. globulus (Corrêa et al. 2005). Mineral nutrition also appears to 

modulate adventitious rooting by increasing the root number or influencing root length 

(Hartmann et al. 1997; George et al. 2008; Geiss et al. 2009). An investigation into the 

effects of various minerals on E. globulus revealed that while root length was affected 

by phosphorous, iron and manganese, root number was influenced by calcium, nitrogen 

source and zinc (Schwambach et al. 2005), although the effects of specific minerals on 

adventitious rooting depends on the species (Geiss et al. 2009). Calcium plays a 

particularly important role in this process, as it is involved in cell division and 

elongation of root primordia (Geiss et al. 2009), and acts as a second messenger in key 

signalling pathways, particularly those of auxin (Schwambach et al. 2005; Lanteri et al. 

2006).  

The influence of light on adventitious rooting was investigated by Fett-Neto et al. 

(2001) in two eucalypt species with varying rooting abilities. They found that cuttings 

of the good-rooting E. saligna responded to lower auxin concentrations and were not 

significantly affected by light, whereas cuttings from the poor-rooting E. globulus did 

not root when exposed to light during the root formation stage, in the absence of auxin. 

The addition of the auxin IBA reversed this response, indicating the role of irradiance as 

a factor in adventitious root formation (Fett-Neto et al. 2001). A genetic basis of the 

interactions between auxins and light was established using Arabidopsis mutants, 

wherein a suite of proteins were identified that correlated with adventitious root 
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formation (Sorin et al. 2005). Indications were that some of these proteins were 

involved in the regulation of light-associated metabolic pathways and auxin 

homeostasis (Sorin et al. 2005; Lao and Deng 2010). The involvement of auxin does not 

end with adventitious root induction, but it is oft-encountered during almost all aspects 

of root development and physiology (Hartmann et al. 1997; Perrot-Rechenmann and 

Napier 2005; George et al. 2008; Vanneste and Friml 2009). 

 

1.4.3 Root gravitropism 

The complete plant gravitropic reaction proceeds broadly in three stages: perception, 

transduction, and response. The idea that structures in the root tip provide the means for 

gravity perception in roots was put forward in the late 19th century by Ciesielski (1872) 

and later by Darwin (1880), who showed that de-capped roots were unable to respond to 

gravity. It was postulated that the cap of the root tip would sense gravity and a 

physiological signal is then produced that promotes differential elongation on the upper 

root surface (away from the gravity vector), so as to create curvature in the direction of 

gravity (reviewed by Chen et al. 1999; Swarup and Bennett 2009).  Since then, there 

have been a number of hypotheses that attempted to explain the mechanism of 

graviperception, the two most popular being the starch-statolith hypothesis and the 

protoplast pressure model. 

The starch-statolith hypothesis of graviperception was proposed as early as 1886 when 

Berthold and later Noll (1892) speculated that it was possible for gravitropism to 

proceed via asymmetric settling of cellular inclusions. A few years later Haberlandt 

(1900) and Nĕmec (1900) identified the sedimenting inclusions as starch grains 

(amyloplasts) (Shen-Miller and Hinchman 1974; Staves 1997), contained within the 

columella cells in the root tip. The sedimentation of these starch grains is thought to 

then activate a signal transduction pathway that eventually results in root curvature 

(Evans and Ishikawa 1997). A number of researchers have subsequently presented both 

direct and indirect evidence to support the starch-statolith hypothesis (Chen et al. 1999; 

Swarup and Bennett 2009).  
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A strong correlation exists between amyloplast density and root gravity response, as 

shown by Kiss et al. (1996). Through comparisons of various gravity response 

parameters between starchless mutants, intermediate-starch mutants, and wild type 

plants, those authors demonstrated that the starch content of Arabidopsis thaliana roots 

affected graviperception. Starchless mutants responded much less to gravity compared 

with intermediate-starch mutants and wild type plants, indicating that the degree of 

gravity perception depended on the mass of plastids per cell. Additional support for the 

starch-statolith theory was provided using a laser-ablation approach, in which A. 

thaliana roots were shown to lose most of their ability to perceive gravity when the 

central columella cells of the root tip were ablated (Blancaflor et al. 1998).  

Despite the numerous studies that support the starch-statolith theory, many authors have 

doubted its validity. Studies by Pickard and Thimann (1966) showed that coleoptiles 

depleted of starch grains were still able to carry out a geotropic response, albeit much 

reduced compared with those containing starch. Work on starchless A. thaliana mutants 

by Kiss et al. (1989) and Caspar and Pickard (1989) convincingly demonstrated that 

starch was not an absolute necessity for full gravity perception and response. The 

protoplast pressure model was proposed as an alternative to the starch-statolith theory, 

and a number of studies supported this model. 

The protoplast pressure model, which suggests that other organelles may be involved in 

gravity perception, was first alluded to by Pickard and Thimann in 1966. Work by 

Wayne et al. (1990) on internodal cells of the algae Nitellopsis obtusa provided support 

for this model, wherein it was demonstrated that the entire mass of the cytoplasm is 

involved in gravity perception. However, Sack (1997) and Perbal (1999) attempt to 

merge the theories by suggesting that multiple mechanisms function to bring about 

gravity perception in plants. Essentially, receptors within the plasma membrane of 

columella cells need to sense pressure in order to activate graviresponse. This pressure 

can be applied by the entire mass of the protoplast, by sedimenting starch grains, or by 

plastids in general. The difference between these effectors can then be reduced to a 

matter of efficiency or the area on which they focus pressure (Perbal 1999). Once 

gravity is perceived, a signal transduction pathway is activated which results in a 
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response to the gravity stimulus. While this model attempted to explain the variations in 

gravitropic efficiency through differences in the mass of the cytoplasm, it did not 

account for the biochemical signal and maintenance of the geotropic response once 

initiated.  

The Cholodny-Went theory of gravitropic bending has traditionally been the most 

widely accepted model upon which research in gravitropism has been built. This theory 

proposes that following gravity perception, the response is controlled and maintained by 

auxin, which is laterally transported in the tissue (either stem or root). An asymmetric 

differential redistribution of this auxin then results in curvature, depending on the organ 

in question, since auxin plays very different roles in stems and roots. Auxins have an 

inhibitory effect on growth in root tissues, and an opposite effect in shoot tissues 

(Kaufman et al. 1995). Although the essential predictions of the theory have been 

extensively proven experimentally, some criticisms against the theory are that it is an 

over-simplification of a much more complex process involving (at least) factors such as 

changing sensitivity to auxin (Trewavas 1992; Davies 1995), as well as participation of 

other phytohormones together with auxin (Philosoph-Hadas et al. 2005).   

Building on the Cholodny-Went hypothesis, the „fountain model‟ (Trewavas 1981; 

Evans et al. 1986) proposes that auxin is transported towards the root tip through the 

stele and eventually enters the root cap, from where it is transported symmetrically back 

(basipetally) through the cortex towards the root elongation zone (Wolverton et al. 

2002). When the root perceives a reorientation with respect to gravity, an asymmetric 

redistribution of auxin is induced, which results in auxin accumulation on the lower side 

of the root. Since auxin is inhibitory to cell elongation in root tissues (Philosoph-Hadas 

et al. 2005), the result is that the root curves towards the gravity vector (Wolverton et 

al. 2002; Swarup and Bennett 2009).  

Polar transport of auxin was initially demonstrated through the classical experiments of 

Went (1935). An agar block with known auxin concentration was placed on the apical 

surface of a coleoptile cylinder, while one devoid of auxin was placed on the basal 

surface. After a few hours the greater portion of the auxin was detected in the lower 

block. Swopping the agar blocks resulted in no auxin being transported through the 
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coleoptile cylinder, indicating auxin transport in a polar direction through an ordered 

cellular arrangement. Recognising that cell polarity is a basic requirement for ordered 

growth and differentiation, Leopold and Hall (1966) proposed a mathematical model for 

polar auxin transport. It explained that polarity is achieved in auxin transport through 

the preferential secretion of more auxin from the lower end of the cell compared with 

the upper end, so as to maintain nett auxin secretion in the basipetal direction.    

A more explanatory model of auxin transport was proposed by Rubery and Sheldrake 

(1974) and Raven (1975), which is based on the chemiosmotic theory. According to 

those authors, auxin transport is driven by the proton motive force across the plasma 

membrane. Auxin may enter a cell either through transport via an uptake carrier; or 

directly in its protonated form, since IAA (pKa = 4.7) is a weak acid and its carboxyl 

group is more protonated in the acidic conditions (pH = 5.5) of the extracellular matrix. 

In this state the lipophilic IAA is able to pass through the cell membrane and into the 

cytoplasm. Upon exposure to the more basic pH in the cytoplasm (pH = 7), IAA loses 

its proton and becomes charged (hydrophilic), hence trapped within the cytoplasm. 

Auxin efflux is then facilitated by efflux carriers located on the basal side of the cell. 

This arrangement gives auxin transport its polar nature (Lomax et al. 1995; Leyser 

1999). Jacobs and Gilbert (1983), using an immunological approach, verified the basal 

location of the IAA efflux carrier.    

In addition to the passive influx of auxin into cells, Bennet et al. (1996) found evidence 

of carrier-mediated auxin influx, wherein mutations within the AUX1 gene resulted in 

auxin-resistant root growth characteristics. Sequence similarity between AUX1 and 

permeases led to the suggestion that AUX1 is a transport mediator for an amino acid-

like signalling molecule. Being structurally similar to the amino acid tryptophan, it was 

then suggested that auxin (IAA) was the substrate of the AUX1 transport protein. Given 

the proton-driven nature of plant permeases, and that auxin influx has also been shown 

to occur through a proton co-transport system (Estelle 1998), Bennett et al. (1996) 

proposed that AUX1 may be an auxin influx protein. Support for this mode of auxin 

influx was gained with studies by Yamomoto and Yamamoto (1998) involving aux1 

seedlings resistant to auxins that are good transport substrates, such as IAA and 2,4-D. 
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Putative auxin efflux carriers were isolated by a number of authors at around the same 

time (Chen et al. 1998; Luschnig et al. 1998; Müller et al. 1998; Utsuno et al. 1998). 

Studies on the Arabidopsis pin1 mutant, which exhibits greatly reduced auxin transport 

in the inflorescence axis (Okada et al. 1991), have revealed the presence of a basally 

located auxin efflux carrier (Gälweiler et al. 1998). Loss of PIN1 function elicits a 

growth response analogous to growth in the presence of auxin transport inhibitors. 

While the PIN1 protein is found in the stem, a second gene family was found in roots 

that lacked the gravitropism response. Bell and Maher (1990) induced and isolated a 

number of Arabidopsis mutants with altered root graviresponse, called “Agravitropic” 

(agr) mutants. While some of these mutants (agr2 and agr3) displayed reduced gravity 

sensing, the mutant designated agr1 was totally agravitropic. Studies on these (agr1) 

mutants by Chen et al. (1998) showed that the AGR1 protein promoted the efflux of 

radiolabelled IAA.  

Working on A. thaliana etiolated seedlings in an attempt to identify genes for ethylene 

perception, Roman et al. (1995) reported the existence of a number of previously 

unidentified gene complementation groups. Four of these were responsible for ethylene 

insensitivity, while the fifth group eir1 (ethylene insensitive root 1), defined a class of 

mutants that were both insensitive to ethylene as well as exhibiting severe 

agravitropism. Immunolocalisation studies with antibodies against the EIR1 protein 

revealed the accumulation of the protein on the basal end of cells limited to the plasma 

membrane of epidermal and cortical cells in the root tip (Müller et al. 1998; Leyser 

1999). Luschnig et al. (1998) then showed agr1 and eir1, as well as other putative auxin 

efflux carriers such as Atpin2 (Müller et al. 1998) to be alleles of the larger PIN gene 

family. These proteins were revealed to have amino acid sequence similarity to several 

membrane transport proteins, and their properties were consistent with their role as IAA 

transport proteins (Luschnig et al. 1998; Müller et al. 1998). Numerous studies have 

subsequently supported the role of these carrier proteins, by using mutant A. thaliana 

lines that exhibit loss-of-function of any one or multiple PIN proteins (reviewed in 

Palme and Gälweiler 1999; Michniewicz et al. 2007). The discovery, isolation and 

characterisation of root-and stem-specific IAA influx and efflux proteins, as well as 

their localisation within the cell, provided the tools for further research into the 
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implications of polar auxin transport on gravitropism, as well as root developmental 

physiology in general. 

The physiological signals that are produced upon gravity perception have to be 

transported to the relevant regions of the root, i.e. its distal and central elongation zones, 

in order for the appropriate response to be elicited. Polar auxin transport has been 

shown to be intimately connected with the gravitropic responses observed in these 

tissues (Chen et al. 1999; Muday 2001; Blancaflor and Masson 2003). The asymmetric 

distribution and localisation patterns of the IAA influx and efflux carriers are consistent 

with the chemiosmotic theory, and their respective functions of polar auxin transport in 

the distal and central elongation root zones (Chen et al. 1998). Proteins of the efflux 

PIN family and of the influx AUX1 family are either located basally, or along the upper 

plasma membrane of cells within the root cap, depending on the orientation of the root 

with respect to gravity (Chen et al. 1999; Moore 2002; Blancaflor and Masson 2003). 

They are rapidly relocated within the cell when the root is reorientated relative the 

gravity vector, and an asymmetric auxin gradient is generated so that more auxin is 

transported to the new bottom edge of the root, where it functions in inhibiting root 

elongation, thereby allowing downward curvature (Philosoph-Hadas et al. 2005; 

Swarup and Bennett 2009; Vanneste and Friml 2009).  

Essentially, the model of polar transport of auxin as the signal and effector of the 

gravitropic response within the root tip is as follows: auxin is transported acropetally 

(towards the root tip) via the PIN1 efflux carriers and then via the PIN4 carrier into the 

quiescent centre. Starch grains within statoliths in the columella region sediment in the 

direction of gravity, causing a relocation of the PIN3 carrier to the lower side (relative 

to gravity) of root tip cells (Fig. 1.1). An accumulation of auxin at the basal end then 

inhibits root elongation in the lower side, causing a directional change in the growing 

root towards the gravity vector. The auxin gradient is re-established through the PIN7 

and PIN2 carriers, which are located in the cortical and epidermal cells. Auxin gradients 

are then restored through the basipetal delivery back along the root transport (Fig. 1.1) 

(reviewed by Moore 2002; Perrot-Rechenmann and Napier 2005; Swarup et al. 2005; 

Swarup and Bennett 2009). This model of gravitropism is based on the polar transport 
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of IAA and, therefore, implicates the IAA-specific protein carries. However, not much 

is known regarding the influences of other auxin analogues on graviperception, and this 

area therefore needs further elucidation.   

AUX1

AUX1

AUX1

PIN

PIN

PIN

A

P
olar auxin transport

    

PIN1

Columella region

Root capPIN 3

PIN 2PIN 2

PIN 4

Quiescent centre

PIN 7

B  

Fig 1.1 Polar auxin transport in the root tip is facilitated mainly through the AUX1 and PIN 

family of proteins, located on the upper and lower sides of root cells, respectively (A). Auxin is 

instrumental in effecting a gravitropic response through its polar transport, brought about by the 

positioning of particularly the PIN3 auxin efflux carrier, which relocates to the lower side of 

cells upon gravity perception by the sedimentation of amyloplasts within the root cap columella 

region (B) (Adapted from Michniewicz et al. 2007 and Moubayidin et al. 2009) 

 

Information regarding carrier-mediated auxin transport materialised from studies using 

inhibitors of polar auxin transport in intact plants, tissue fragments and cultured cells. 

For example, it was found for example, that 2,3,5-triiodobenzioc acid (TIBA), a known 

inhibitor of polar auxin transport, effected an accumulation of labelled IAA in maize 

coleoptiles in a manner that led to the idea that TIBA inhibited IAA efflux (Hertel and 

Leopold, 1963). The finding that auxin influx is also carrier-mediated was a result of 
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research using auxin transport inhibitors. Rubery and Sheldrake (1974) found that 

uptake of auxin into suspension cells was a saturable process, showing that a protein 

mediator must be involved in the process.  

There are a number of natural and synthetic auxin transport inhibitors that have been 

identified. The major class of such inhibitors are the phytotropins, which in addition to 

inhibiting polar auxin transport, also inhibit plant gravitropic and phototropic responses. 

These are the most widely studied and refer to a class of auxin transport inhibitors that 

share a common chemical structural theme (Lomax et al. 1995). Whatever the chemical 

class, auxin transport inhibitors inhibit efflux of auxin by non-competitive binding with 

the transport protein at the site of the catalytic unit of the auxin efflux carrier, but 

distinct from the auxin binding site (Rubery 1990; Lomax et al. 1995). While the bulk 

of the research has been directed at inhibitors of auxin efflux carriers, inhibitors that 

target auxin influx carriers have also been identified, such as 1-naphthoxyacetic acid 

(Parry et al. 2001a). 

It has been documented that the auxin efflux carrier PIN1 is disrupted by transport 

inhibitors that interfere with its cycling within the cell (a property that is central to its 

auxin transport role) and with the membrane trafficking process in general (Geldner et 

al. 2001). The transport inhibitor TIBA has been shown to inhibit membrane trafficking 

of both the efflux carrier, as well as the influx carrier (AUX1) (Kleine-Vehn et al. 

2006). Those authors also demonstrated that the AUX1 and PIN1 transport proteins are 

subjected to membrane trafficking via distinct pathways in A. thaliana. Interference in 

auxin signal transduction with ρ-chlorophenoxyisobutyric acid (PCIB) has been shown 

to regulate Aux/IAA stability and hence root graviperception in Arabidopsis (Oono et 

al. 2003). Further, although cytokinins generally inhibit auxin actions in plants (George 

et al. 2008; Geiss et al. 2009), their interactions with auxin with respect to root 

graviperception are unclear. They have been reported to contribute to the regulation of 

root gravitropism in Arabidopsis, particularly during the rapid, early phase of root 

gravity response (Aloni et al. 2004; Aloni et al. 2006). However, more recently, 

cytokinins were shown to influence cell-to-cell auxin transport through the modification 

of components of auxin transport, in turn influencing auxin efflux and distribution 
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(Pernisová et al. 2009; Růžička et al. 2009). The influences of auxin inhibitors and 

antagonists not only on IAA action, but also other auxin analogues need further 

elucidation, to clarify the specific roles of these analogues on plant development and 

physiology, particularly since they are crucial in almost every aspect of plant 

development and are used interchangeably in micropropagation protocols. 

As proteins, influx and efflux carriers bear a degree of specificity (although some 

overlap has been observed) for the type of auxin that they transport, and this has 

implications for plant physiological development. Delbarre et al. (1996), using tobacco 

cells, and later Yamamoto and Yamamoto (1998), using the A. thaliana aux1 mutant, 

demonstrated that IAA and the synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) 

are substrates for the AUX1 influx carrier. The synthetic auxin 1-naphthaleneacetic acid 

(NAA) on the other hand, is not transported via the same influx carrier, since it was 

found to be able to restore gravitropism in the aux1 mutants (Yamamoto and Yamamoto 

1998). NAA has been shown to enter cells through passive diffusion, while its exit from 

cells is facilitated by efflux carrier proteins (Delbarre et al. 1996). Although 2,4-D and 

IAA share the influx carrier, they are not transported via the same efflux carriers, as 

demonstrated in A. thaliana (Utsuno et al. 1998), and in suspension-cultured tobacco 

cells (Delbarre et al. 1996). Work conducted on the Arabidopsis rib1 mutant, which 

exhibits resistance to IBA, has shown that IBA is also not transported via the same 

efflux carriers as does IAA (Poupart and Waddell 2000; Strader and Bartel 2011).  

Since different auxins are transported within tissues in different ways (passive and 

active), and due to the specificity of the protein mediators that allow them to carry out 

their various functions, it can be tentatively deduced that the auxin requirements for 

plant growth and development are specific to an auxin type. This has implications for 

the development of in vitro protocols of eucalypts, which empirically select PGRs, 

based on their apparent organogenic potency rather than their long-term effects on 

growth and development, or their interactions with other PGRs. 
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1.5 Aims and objectives of the present study 

 

Vegetative propagation of commercially important eucalypt clones are an important part 

of tree improvement programmes. In vitro organogenesis protocols are not only 

essential in genetic modification, but also provide a means of propagating valuable and 

elite clones that would otherwise not be considered for forestry owing to the difficulty 

in propagating them via mini- or macro-cuttings. For these reasons, such 

micropropagation protocols need to be optimised in order to allow for quality plantlet 

generation both in vitro and following acclimatisation. The key to organogenesis in 

vitro lies in the appropriate supply of exogenous PGRs and, therefore, any attempt at 

understanding plant growth and development following in vitro regeneration requires an 

understanding of the roles of the exogenous PGRs in that system.  

The final and most important step in any clonal propagation programme is the 

successful development of roots. Studies have indicated, however, that in vitro-

produced roots of certain commercially important eucalypts have a root system which, 

owing to its horizontal and shallow architecture, is more susceptible to uprooting than 

roots of seedling or macro-propagated plants (Mokotedi et al. 2009b). Root 

development is particularly dependent on auxins, which are implicated in a range of 

physiological processes such as root cell patterning (Blilou et al. 2005), maintenance 

and zonation of the root meristem (Luijten and Heidstra 2009), and gravitropism 

(Swarup and Bennett 2009). Since exogenous auxins are used to direct root initiation 

and development in vitro, an understanding of the roles of these exogenous auxins is 

necessary to realise their control on root development.   

The present study was aimed at understanding the specific roles of PGRs during in vitro 

root organogenesis of selected commercially important eucalypt clones. The influence 

of exogenous auxin type, stability, concentration, and subsequent accumulative effects 

during the pre-rooting culture stages on in vitro and post-acclimatisation root 

development was investigated. The specific roles of auxin in relation to parameters such 

in vitro vascular differentiation, root tip development and graviperception were studied, 
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using inhibitors of auxin transport and signal transduction, and antagonists of auxin 

action.  

A good- and two poor-rooting clones were selected in order to understand the 

interactions between auxins and cytokinins and their relative influences on root 

development in clones of variable rooting ability. This was aimed at refining 

micropropagation protocols to allow for root induction not only under conditions of the 

most potent PGR, but rather the most appropriate PGR. With such information, the 

present limitations of in vitro propagation can be addressed, and the potential of this 

technology in fundamental research, and in supplying large amounts of clonal material 

to the forestry industry can be realised. In addition, by understanding the phytohormone 

needs of eucalypt clones, other vegetative propagation protocols can be optimised to 

increase yields of both difficult- and easy-to-root clones.  
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CHAPTER 2: AUXIN STABILITY AND ACCUMULATION 

DURING in vitro SHOOT MORPHOGENESIS 

INFLUENCES SUBSEQUENT ROOT INDUCTION AND 

DEVELOPMENT IN Eucalyptus grandis 
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2.1 Introduction 

 

Eucalyptus spp. and their hybrids are widely propagated and utilised by the forestry 

industry to help meet the increasing global demand for wood and wood-related 

products. In many countries, they are preferentially propagated vegetatively as this 

preserves desired genotypes, allows for relatively accurate site matching of superior 

clones and confers the advantage of uniformity (in height, tree diameter, wood 

properties, etc.) (Eldridge et al. 1994; de Assis et al. 2004), all of which translate to 

increased economic value from the plantation.  

Traditionally, Eucalyptus propagation programmes utilise stem cuttings, but this method 

has limitations as the yield is restricted, the rooting ability amongst clones is variable 

and tend to decrease as the parent plants age (Eldridge et al. 1994; de Assis et al. 2004). 

Hence, alternative methods such as minicuttings, hydroponics and micropropagation are 

being employed (Denison and Kietzka 1993a; Eldridge et al. 1994; de Assis et al. 

2004). In terms of micropropagation, axillary bud proliferation is generally the preferred 

choice (reviews by Jones and van Staden 1997; Watt et al. 2003; de Assis et al. 2004) 

and, together with some specific mini-cutting techniques (e.g. Schwambach et al. 2008), 

the only viable method for the propagation of difficult-to-root clones (Yasodha et al. 

2004; Mokotedi et al. 2000; George et al. 2008). 

The reported successes of micropropagation protocols for eucalyptus, including axillary 

bud proliferation, have centred on achieving the correct balance of plant growth 

regulators (PGRs) (most notably auxins and cytokinins), in a genotype-specific manner, 

to achieve maximum in vitro shoot proliferation and rooting (reviews by Jones and van 

Staden 1997; Watt et al. 2003; de Assis et al. 2004). Further, with respect to rooting, the 

emphasis has been on root induction and percent rooting, rather than on root quality 

prior to and post acclimatisation. An exception is the work by Bell et al. (1993) which 

revealed no growth morphological differences between the roots of E. camaldulensis 

obtained from seed and tissue cultured plants after nine months of field growth. In 

addition, both plant types exhibited sinker roots that were equally capable of penetrating 
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heavy clay soils, although one clonal line displayed root architecture that was found 

predominantly in the upper 20 cm of the soil profile. Similarly, Mokotedi et al. (2003) 

found that the propagation method did not significantly affect root hydraulic 

conductance of nine-month-old micro- and macro-propagated E. grandis x nitens. 

However, when micropropagated plants of that hybrid were compared with seed-

propagated E. grandis and E. nitens after sixteen months of field growth, significant 

differences were found in root architecture, root hydraulic conductance (Mokotedi et al. 

2009b), growth patterns and in uprooting resistance (Mokotedi et al. 2010). In 

particular, roots of micropropagated plants established just below the soil surface as a 

few I-beam shaped roots, whereas seedling plants developed numerous T-beam shaped 

roots, which were significantly more resistant to uprooting than the micropropagated 

ones (Mokotedi et al. 2010). That study employed the standard, routinely-used protocol 

in our laboratories, adapted for the clone for maximum multiplication, elongation, 

rooting and acclimation yields, with specific PGRs for each of the in vitro stages 

(Mokotedi et al. 2000).  The results from that field work may, therefore, be explained 

by the influences of the supplied phytohormones pre- and post rooting.  

While root induction can potentially be achieved with any auxin type, the mode of 

action and transport of each auxin within plant tissues differs (Vieten et al. 2007), and 

their specific effects on the physiological development of the plantlet cannot be 

discounted. For example, indole-3-acetic acid (IAA) is more rapidly taken up by plants 

and easily conjugated or oxidised to inactive forms (Blakesley 1994; de Klerk et al. 

1999) than indole-3-butyric acid (IBA), which is more stable and persists for longer in 

plant tissues (de Klerk et al. 1999). These auxin conjugates are then stored within the 

plant and later hydrolysed to provide free auxin as the plant requires (Blakesley 1994). 

Furthermore, the differential effects of auxins on root development in vitro have been 

demonstrated in Eucalyptus. For example, based on adventitious rooting studies with E. 

globulus and E. saligna, Fogaça and Fett-Neto (2005) concluded that the best rooting 

response achieved using IBA could possibly be explained by its conversion to IAA, and 

its higher relative stability over IAA. Those authors further suggested that the more 

persistent auxins such as NAA inhibit root emergence by remaining in tissues in the free 

form. Rooting studies on E. sideroxylon have also demonstrated a greater callus-
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forming tendency of IBA over NAA (Cheng et al. 1992), further emphasising the 

effects of different auxin types and stabilities on tissue development in vitro. Since root 

development progresses in stages that differ in auxin sensitivity, with some 

developmental stages being inhibited by auxins (de Klerk et al. 1999), the choice and 

longevity of the exogenously-supplied auxins, and their transport with respect to 

gravistimulation, need to be considered in micropropagation protocols. 

The present study tested the hypothesis that in vitro root induction and development are 

adversely affected by exogenous auxin supply above or below a specific concentration 

range. The type of auxin, its accumulation from previous culture stages, its relative 

stability and its role in graviperception in vitro were considered. Further, it investigated 

which auxin type successfully effects graviperception in vitro, using the auxin transport 

inhibitor 2,3,5-triiodobenzoic acid (TIBA). 

 

2.2 Materials and Methods 

 

2.2.1 Decontamination and culture initiation 

Pure E. grandis parent plants with high minicuttings rooting success (clonal material) 

were obtained from Mondi Business Paper, Hilton, KwaZulu-Natal, from which 

minicuttings were taken and surface sterilised in 0.02% (w/v) HgCl2 and a drop of 

Tween® -20 for 10 minutes, followed by 1% (w/v) calcium hypochlorite for 10 minutes 

and rinsed several times with sterilised distilled water. They were then cut into nodal 

segments, each with half a leaf intact and placed on 10 ml bud induction medium [MS 

nutrients (Murashige and Skoog 1962), 0.1 mg l-1 biotin, 0.1 mg l-1 calcium 

pantothenate, 0.04 mg l-1 (0.21 µM) α-naphthaleneacetic acid (NAA), 0.1 mg l-1 (0.44 

µM) 6-benzylaminopurine (BAP), 0.05 mg l-1 (0.23 µM) kinetin, 20 g l-1 sucrose and 4 

g l-1 Gelrite®, pH 5.6-5.8] in 50 ml culture tubes with snap-on lids for 2 weeks.  
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2.2.2 Micropropagation protocol  

The multiplication and elongation formulations of the standard protocol employed in 

our laboratories are designated M1 and E1, respectively. Their components were as for 

bud induction, except for the PGRs. Two multiplication media were used, M1 

(standard) contained 0.04 mg l-1 (0.21 µM) NAA and M2 lacked auxin. The tested 

PGRs for the elongation media are given in Table 2.1. Shoots were maintained in 20 ml 

medium in 100 ml culture bottles (5 shoots per culture bottle) during the multiplication 

and elongation stages, which were typically 3 and 4 weeks, respectively. Once shoots 

reached a height of at least 1.5 cm, they were transferred to 10 ml rooting medium in 

culture tubes, containing ¼ MS nutrients (Murashige and Skoog 1962), 0.1 mg l-1 

biotin, 0.1 mg l-1 calcium pantothenate, 15 g l-1 sucrose and 4 g l-1 Gelrite®. Rooting 

media were supplemented with auxins at various concentrations and 0.4 mg l-1 (0.8 µM) 

2,3,5-triiodobenzoic acid (TIBA), as required. Root induction was monitored every 3 to 

5 days, and was scored as positive when at least 0.5 cm of the root protruded from the 

base of the shoot. The mean rooting times were calculated according to the method 

described by Fett-Neto et al. (2001). 

All media, including those with the phytohormones, were adjusted to a pH of between 

5.6 and 5.8, and decontaminated by autoclaving at 121°C and 1KPa for 20 minutes. 

Cultures were maintained under a 16-h light (200 µmol m-2 s-1) / 8-h dark photoperiod, 

at 25°C and 23°C, respectively.   

 

2.2.3 Acclimatisation 

Rooted shoots were acclimatised in insert trays containing 1:1 peat:perlite mix, 

supplemented with 1/3 MS nutrients. Shoots were maintained for 2 months in a mist 

tent and then planted out in 25 litre pots that were kept in a shadehouse at Mondi 

Business Paper, Hilton, KwaZulu-Natal.  
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Table 2.1 Plant growth regulators in the tested elongation media 

 

 

2.2.4 Sample preparation for phytohormone analysis 

Analysis of the levels of auxins in shoots were conducted using GC-MS. Samples were 

prepared as follows: 50 mg of freeze-dried shoots per sample were homogenised and 

suspended in 500 µl sodium phosphate buffer (pH 7) and incubated for an hour at 4°C. 

The pH was adjusted to 2.6 with HCl, adsorption of the compounds were facilitated by 

the addition of Amberlite® XAD-7 (Sigma-Aldrich), and the solution was incubated 

again at 4°C for another hour. Following 2 washes of 500 µl 1% (v/v) acetic acid and 

dichloromethane, the samples were dried down and 50 µl of trimethylsilyl-

diazomethane was added. The samples were then incubated for 30 minutes at room 

temperature. Acetic acid (1% v/v) was added to quench the samples, which were then 

dried down overnight. Samples were ready for GC-MS analysis once heptane was 

added. Analysis was conducted using the GCT PremierTM benchtop orthogonal 

acceleration time-of-flight (oa-TOF) mass spectrometer, Waters, USA. 

 

2.2.5 Microscopy 

Root tips were prepared for light microscopy by placing them initially in a 2.5% (v/v) 

gluteraldehyde solution in a 0.1 M phosphate buffer at pH 7.2 for at least 24 hours at 

4°C. The primary fixative was removed by several rinses with the phosphate buffer and 

PGR (mg l-1/µM)  Media 

 E1 E2 E3 E4 E5 E6 

0.2/0.93 Kinetin + - + + + + 

0.3/1.6  NAA + - + - - - 

0.05/0.25 IBA + - - - + - 

0.37/2.1 IAA - - - - - + 
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the samples were then post-fixed in 0.5% (v/v) osmium tetroxide solution for an hour. 

Following several rinses in phosphate buffer, the samples were dehydrated through a 

series of increasing acetone concentrations. The samples were then infiltrated with 

50:50 acetone: epoxy resin (Spurr 1969) and left on a shaker for 5 hours before being 

placed in epoxy resin overnight for further infiltration. Samples were then placed into 

silicone blocks and the resin was polymerised at 70°C for 8 hours. Sections of 1 µm 

were collected using the Reichert Ultracut E microtome. These were stained with a 1% 

(w/v) KI and 1% (w/v) safranin solution. Sections were viewed using the Nikon 

Biophot® light microscope coupled with the Motic Image Plus 2.0 computer 

programme. 

 

2.2.6 Statistical analysis 

All statistical analyses was carried out using the programme PAST, version 2.01 

(Hammer et al. 2001). All experiments were repeated at least three times, with sample 

sizes of at least 3 for phytohormone analysis, and 25 for root induction and development 

studies. 

 

2.3 Results  

 

The clone of E. grandis used in the present investigation was chosen because of its high 

minicutting rooting success in the production nurseries. To confirm and define the 

rooting ability of this clone in vitro, shoots were produced using the standard in vitro 

protocol conditions (multiplication [M1] and elongation [E1]) used in our laboratory, 

and then transferred to rooting medium with and without IBA. All shoots rooted in an 

auxin-free medium and percentage rooting was inversely related to the concentration of 

IBA supplied (Fig. 2.1). Mean rooting times were recorded as 7.6 days, 11.9 days, and 

13.5 days for the auxin-free, 0.1 mg l-1 (0.49 µM), and 0.5 mg l-1 (2.45m µM) IBA 

treatments, respectively. Whereas percentage rooting and mean rooting times decreased 
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with increasing auxin concentration in the rooting medium, the opposite was observed 

for callus production at the base of the stem, indicating that an excess of exogenous 

auxin delayed root organogenesis. However, the number of roots per shoot increased 

significantly with IBA supply, viz. 3.16 ± 0.47, 4.36 ± 0.50, and 7.6 ± 0.55 for 0, 0.1 

and 0.5 mg l-1 IBA, respectively (p = 0.00075), in keeping with the rhizogenic influence 

of the auxin. 
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Fig 2.1 The effect of IBA on the percentage rooting of shoots, cultured according to the 

standard multiplication and elongation protocol. The data were analysed using one way 

analysis of variance followed by Fisher‟s least significant difference and found to be 

significantly different (P<0.05). Bars indicate standard deviations of the mean, n = 30 

 

The very high rooting success and relatively rapid root production (100% in 20 days, 

7.6 days mean rooting time) of shoots in auxin-free rooting medium (Fig. 2.1) implied 

that, in this clone of E. grandis, root induction was brought about by the action of stored 

auxins from the previous culture stages (multiplication and elongation). This was, 

therefore, investigated by culturing shoots on auxin-free multiplication medium, 

transferring them onto six elongation media (Table 2.1), followed by rooting on auxin-

free medium. The overall ability of shoots in an elongation treatment to produce a high 
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percentage of roots decreased with decreasing levels of auxin exposure in their culture 

history (Fig. 2.2). Mean rooting times were recorded as E1 = 11 days; E2 = 9.4 days; E3 

= 7.7 days; E4 = 4.5 days; E5 = 4.5 days; E6 = 5.4 days. The three elongation media 

that resulted in the lowest percentage rooting were E4 (no auxin), E5 (0.05 mg l-1/ 0.25 

µM IBA) and E6 (0.37 mg l-1 /2.1 µM IAA). The 29% rooting success of shoots 

cultured on E5 can be attributed to the low concentration of IBA in that elongation 

medium, prior to rooting on auxin-free medium. Even though the elongation medium 

E6 contained greater levels of auxin (IAA) (0.37 mg l-1 /2.1 µM) than the other two 

auxin-containing elongation media (0.3 mg l-1 /1.6 µM NAA in E3 and 0.05 mg l-1 /0.25 

µM IBA in E5), only 31.3% of shoots from E6 rooted. 

 

0

20

40

60

80

100

0 10 20 30

%
 R

oo
tin

g

Days

E 1
E 2
E 3
E 4
E 5
E 6

 

Fig 2.2 Percentage rooting of shoots multiplied on auxin-free medium, elongated on 

media with different PGRs and subsequently rooted on auxin-free medium. E1 

(standard) – E6 as in Table 2.1. Data were subjected to one-way analysis of variance 

and Fisher‟s least significant difference. Bars indicate standard errors of the mean, n = 

25  
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Another apparent effect of the elongation media tested was altered  graviperception 

(AG) in roots, defined in this study as root growth greater than 90° away from the 

gravity vector at any time (Rashotte et al. 2000). As listed in Table 2.2, shoots that 

produced AG roots had significantly reduced levels of IAA compared with those that 

produced graviperceptive roots. 

Further evidence to support the need for free IAA within shoots for graviperception was 

sought by adding the IAA-specific transport inhibitor TIBA to the rooting medium, 

together with 0.1 mg l-1 IBA, IAA or NAA (0.49 µM, 0.57 µM, and 0.54 µM, 

respectively). Shoots treated with IBA retained their full rooting ability, while 70.9% of 

those on IAA were able to induce roots. Only 20.6% of shoots cultured on NAA-

containing medium retained their rooting ability as a result of TIBA treatment (Fig. 

2.3). Mean rooting times were recorded as 15.8 days, 11.2 days, and 2.6 days for the 

IBA-, IAA- and NAA-containing TIBA media, respectively. Further, although IBA, and 

to a lesser extent IAA and NAA, were able to induce roots in vitro in the presence of 

TIBA, IAA availability and its transport within the root seemed necessary to effect root 

graviperception, since all the shoots produced at least one AG root per shoot. In 

addition, a qualitative analysis of histological sections of roots grown in the presence of 

TIBA showed inconsistent starch grain accumulation in the columella cells and in at 

least 40% of the sections viewed, these starch grains, necessary for gravity sensing, 

were missing completely (Fig. 2.4).  
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Table 2.2 Root gravity response observed in vitro from shoots exposed to varying 

levels and types of auxins in the elongation stage and rooted in an auxin-free medium (n 

= 25). The amount of extractable IAA present in shoots indicates free IAA available just 

prior to transferring the shoots into rooting media. (Standard deviations of the mean are 

indicated, significantly different values are denoted by different letters, p<0.05) 

Elongation media Extractable PGR (mg l-1) % shoots with AG 
roots 

IAA (nmol g-1 DW) 

E1 0.3 NAA, 0.2 kinetin, 0.05 IBA 0 325.7±77.7a 

E2 None 70 53.1±46.5b 

E3 0.3 NAA, 0.2 kinetin 15 229.5±81.8a 

E4 0.2 kinetin 70 45.36±4.24c 

E5 0.05 IBA, 0.2 kinetin 60 84.67±10.69b 

E6 0.37 IAA, 0.2 kinetin 65 86.7±41.1b 
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Fig 2.3 Percentage rooting of shoots cultured in rooting media containing 0.1 mg l-1 of 

either IBA, IAA, or NAA, and supplemented with 0.4 mg l-1 TIBA. Data were subjected 

to one way analysis of variance and found to be significantly different (P<0.05). 

Standard deviations of the mean are indicated, n = 28 
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100µm A
100µm B  

Fig 2.4 Histological sections of root tips from shoots treated with TIBA. Square 

indicates region of starch grain accumulation; A) present; B) absent 

 

Having established that, in this clone, exogenous auxins accumulate in the shoots during 

culture, the effects of excess auxin accumulation on rooting was investigated. The 

persistence of IAA, IBA and NAA in the shoots of this clone was investigated by 

multiplying and elongating shoots under auxin-free conditions (i.e. multiplication on 

M2 and elongation on E4), and subsequently rooting them on auxin-containing media 

(0.1 or 0.5 mg l-1). All shoots produced roots after 21 days regardless of the auxin type 

(Table 2.3). However, the type of auxin affected the pace of root induction, with the 

greatest delay in rooting occurring in media containing 0.5 mg l-1 IBA and 0.5 mg l-1 

NAA. For all three tested auxins, mean rooting time was longer in the presence of the 

higher tested concentration (Table 2.3). The formation of basal callus was observed in 

all shoots cultured at 0.5 mg l-1, regardless of auxin type, although shoots on IBA- and 

NAA-media developed larger calli than IAA-treated shoots (results not shown). In 

addition, increasing the IBA and NAA concentration in the rooting medium, from 0.1 

mg l-1 to 0.5 mg l-1, resulted in a significant increase in the number of roots produced 

per shoot and a significant decrease in the mean root length (Table 2.4).  
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Table 2.3 Average percentage rooting of shoots cultured in auxin-free multiplication 

and elongation media, and transferred to rooting media containing IBA, IAA, or NAA 

at 0.1 mg l-1 and 0.5 mg l-1. Standard deviations of the mean are included, n=25 

Auxin used Days  % rooting 

  0.1 mg l-1 0.5 mg l-1 

IBA 3 0 0 

 7 14.7±4.2 1.7±2.9 

 12 95±5 17.7±4.9 

 18 100 88.3±11.1 

 21 100 98.3±1.6  

Mean rooting time (days)  11.6 16.9 

IAA 3 0 0 

 7 40.7±3.1 10.3±5.5 

 12 91.7±7.6 65.7±11 

 18 96.7±2.9 82.3±15.8 

 21 100 98.7±1.3 

Mean rooting time (days)  10.6 13.8 

NAA 3 0 0 

 7 7.7±3.8 3.3±5.7 

 12 55±5.6 4.2±7.4 

 18 93.7±5.1 92±7.2 

 21 100 98±2 

Mean rooting time (days)  14.5 15.1 
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Following one-month acclimatisation, 100% plantlet survival was recorded, and new 

root growth was observed in all (100%) shoots, regardless of the auxin type or 

concentration used in vitro for rooting. Calli that had developed in vitro, degraded 

during acclimatisation. However, differences in the new root architecture were apparent 

in that the new roots were thicker than those roots that developed in vitro. Shoots rooted 

with 0.5 mg l-1 auxin (regardless of type) developed new roots that tended towards I-

beam architecture, while those  shoots rooted with 0.1 mg l-1 auxin produced new roots 

that tended towards T-beam architecture. This developmental response was more 

apparent in the shoots treated with IBA and NAA in vitro, compared with IAA 

treatment for root induction in vitro (Fig. 2.5). 

 

Table 2.4 Mean rooting time, root number and root length produced from shoots 

cultured on auxin-free multiplication and elongation media, and transferred to rooting 

media with IBA, IAA or NAA, n = 25 (Standard deviations of the mean are included for 

root length, significantly different values are denoted by different letters, p<0.05) 

Auxin (mg l-1) Mean rooting time (days) Mean root number Mean root length (cm) 

    

0.1 IBA 11.6 6±1.1a 6.76±0.25d 

0.5 IBA 16.9 9±0.7b 1.90±0.25e 

0.1 IAA 10.6 4±0.3c 7.63±0.32d 

0.5 IAA 13.8 4±0.3c 7.86±0.25d 

0.1 NAA 14.5 5±0.6a 7.86±0.85d 

0.5 NAA 15.1 7±0.5a 4.70±0.45f 
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A B

 

Fig 2.5 New root growth observed in shoots following one-month acclimatization; A) in 

vitro root induction with 0.1 mg l-1 auxin (IAA, IBA or NAA); B) in vitro root induction 

with  0.5 m g l -1 auxin (IAA, IBA o r NA A). T he ne w roots th at developed during 

acclimatisation a re indi cated with white arrows. During acclimatisation, shoot s that 

were roote d in v itro with 0.5 m g l -1 auxin de veloped roots that tended to gr ow at a  

smaller angle to the soil surface (tending more towards I-beam) compared with the 0.1 

mg l-1 auxin treatment (T-beam) 

 

2.4 Discussion  

 

The physiological e ffect of  each auxin on plant tissue development, with re spect to 

growth a nd morpho genesis, diff ers in terms of uptake, conjugation, t ransport a nd 

metabolism within plant  ti ssues (Blakesley 1994 ; George et al . 2008) . A number of  

studies and re views have hig hlighted the relatively hi gher stability of  IBA compared 

with IAA in media and in plant ti ssues (Nordström et al . 1991; Epstein and Ludwig-

Müller 19 93; L udwig-Müller 2000), a nd thi s property h as been exploited in in v itro  

protocols that require adventitious root formation. The two natural auxins IAA and IBA 
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are rapidly taken up by plant tissues in vitro to form conjugate products with sugars and 

amino acids, which then serve as storage for free auxin when it is required (Woodward 

and Bartel 2005). Although IBA can act as an independent auxin (Ludwig-Müller 

2000), its conversion to IAA via β-oxidation is often cited as the pathway through 

which it acts (Epstein and Ludwig-Müller 1993; Woodward and Bartel 2005; George et 

al. 2008). Further, some authors have suggested that IBA conjugates serve as a better 

source of free IAA than IAA conjugates (Wiesman et al. 1989), based on its relative 

stability to oxidation. Conjugates of IAA are often subjected to irreversible deactivation 

through oxidation (Epstein and Ludwig-Müller 1993), although in general conjugation 

is reversible for all auxins (de Klerk et al. 1999). The synthetic auxin NAA has also 

been reported to form conjugates (Goren and Bukovac 1973; Smulders et al. 1990; 

Centeno et al. 1999) and their hydrolysis sustains levels of NAA over relatively long 

periods in culture (Centeno et al. 1999). These metabolic properties of auxins result in 

IAA being the least stable, compared with IBA and NAA, whether in conjugated or free 

form (de Klerk et al. 1999). 

In the tested clone, endogenously produced auxins, together with the auxins that were 

added during the multiplication and elongation stages (at the concentrations of the 

standard protocol) were sufficient at inducing adventitious roots, rendering exogenous 

auxin supply in the rooting medium unnecessary (Fig. 2.1). Since the addition of IBA to 

the rooting medium was unnecessary for this clone, the excess exogenous auxin resulted 

in basal callus formation which delayed root emergence.  

The influence of auxin accumulation from the pre-rooting culture steps on root 

induction was demonstrated with the removal of the auxins from the multiplication and 

elongation stages (Fig. 2.2). The total percentage rooting decreased with decreasing 

auxin exposure in the culture history, and was coupled with the loss in ability of some 

roots to perceive gravity (Table 2.2). The low total percentage rooting observed from 

shoots cultured on elongation medium 6 (E6), in which IAA was added at a higher 

concentration than NAA and IBA in elongation media 3 (E3) and 5 (E5) respectively, is 

consistent with the low stability of IAA in plant tissues (de Klerk et al. 1999; Ludwig-

Müller 2000). Even though the auxins supplied in the present study were not equimolar, 
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the observed rooting responses still reflected established knowledge on the stabilities 

and rhizogenic efficiencies of the tested auxins in vitro and in plant tissues (reviewed by 

George et al. 2008). 

The need for auxin (in particular IAA) availability to influence graviperception was 

shown in that shoots cultured without any auxins during multiplication and elongation 

showed the highest percentage of AG roots (Table 2.2). This was supported by GC-MS 

analysis, which showed that shoots that produced AG roots had less free IAA compared 

with those that produced graviperceptive roots in vitro. These results indicate that even 

though other auxins (IBA and NAA in the present study) may be used in the culture 

history, in vitro shoots require sufficient levels of free IAA in order to form 

graviperceptive roots.  

Given that auxin transport is central to auxin action, this property serves as a useful tool 

in elucidating the function of different auxins in plant responses. Auxins need to be 

transported in either a basipetal or acropetal direction, depending on the root cell type, 

to effect gravitropism (Chen et al. 1999). While starch grain sedimentation within the 

statoliths, in root columella cells, is known to be the means of root graviperception, the 

effecter of the gravitropic signal is auxin transport (Evans 1991; Chen et al. 1999; Kiss 

2000; Morita and Tasaka 2004). A number of studies have acknowledged that the 

transport of IAA within root tip cells results in gravitropic bending (Palme and 

Gälweiler 1999). IAA and IBA transport has been shown to be protein-mediated, 

although these natural auxins do not share their influx and efflux transport proteins 

(Poupart and Waddell 2000). IAA influx into cells is mediated by the AUX1 protein 

family (Bennett et al. 1996; Yamamoto and Yamamoto 1998), while efflux is facilitated 

by proteins of the PIN family (Chen et al. 1999; Palme and Gälweiler 1999). The 

synthetic auxin NAA has been shown to enter cells through passive diffusion, while its 

exit from cells is protein-mediated (Delbarre et al. 1996).  

The results obtained in this study with the addition of the IAA-specific transport 

inhibitor TIBA to the rooting medium, together with IBA, IAA, or NAA (Fig. 2.3), 

illustrated the interconversion between IBA and IAA in the tested clone. Uptake of the 

auxins supplied in the medium would have been through the cut surface via the xylem, 
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together with water and nutrients. Since it has been shown (Ludwig-Müller 2000) in 

several cuttings systems that IBA is transported better acropetally than IAA, it is 

possible that IBA was either taken up and converted to IAA, or that IBA was directly 

involved in root induction. The latter would result in the significantly highest 

percentage rooting from IBA-treated shoots, compared with the IAA and NAA 

treatments. Even though IAA efflux was inhibited by TIBA, 70.9% of shoots treated 

with IAA for root induction retained the ability to induce roots. This could be attributed 

to the fact that TIBA treatment may actually have led to the cellular accumulation of 

IAA through the inhibition of IAA efflux, resulting in root induction, or the in vitro 

conversion of IAA to IBA for root induction. Such a conversion has been previously 

reported in roots, coleoptiles and leaves of maize (Ludwig-Müller and Epstein 1991). 

Although the conversion of NAA to IBA has not been reported, it would explain the 

lowest percentage rooting by NAA-treated shoots (not discounting the influence of 

endogenous auxins), compared with those supplied with IBA and IAA, all in the 

presence of TIBA. Since NAA relies largely on PIN-mediated efflux from cells 

(Yamamoto and Yamamoto 1998; de Klerk et al. 1999), its influence on root induction 

was reduced in the presence of TIBA (Fig. 2.3) While it cannot be conclusively deduced 

that IBA acted independently of IAA for root induction in the tested clone, a direct 

correlation does exist between IAA availability and root graviperception in this clone 

(Table 2.2).   

Once roots had developed in vitro in the presence of TIBA, many displayed AG 

behaviour. This suggests that in this case the IBA translocation within root tissues was 

insufficient in effecting graviperception, and that uninhibited auxin transport through 

the IAA efflux transporter was necessary. Such auxin transport is also necessary for the 

accumulation of starch grains in the root tip, since histological sections revealed that 

TIBA-treated shoots developed roots with inconsistent statolith presence, and in some 

cases statoliths were missing completely (Fig. 2.4). Stange (1985) also reported on the 

inhibition by TIBA of starch accumulation in meristematic tissues of Riella helicophylla 

by TIBA.     
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While IBA remains the most commonly-used auxin for adventitious root induction (in 

both micropropagation and minicuttings protocols), in vitro root induction in the clone 

under study was also achieved with IAA and NAA (Table 2.3). However, it appears that 

root development following induction was influenced by the stabilities of these three 

auxins in the shoots. Studies on root development indicated that plant tissues display 

varying sensitivities and responses to auxins, even being inhibited by them at some 

phases of root development (reviewed by de Klerk et al. 1999). Apple microcuttings 

were unaffected by auxins and cytokinins during the initial dedifferentiation phase, but 

became sensitive at 72 to 96 hours, when adventitious roots were induced, after which 

the auxin became inhibitory to root development (de Klerk et al. 1999).  

The investigation into the influence of excess auxin supply during in vitro root 

induction on callus and root development, both in vitro and during acclimatisation, 

revealed that shoots treated with IAA (the least stable auxin) were the quickest to induce 

roots (Table 2.3) and produced longer roots (Table 2.4) at the highest tested 

concentration. Shorter mean rooting times correlated with greater root elongation over 

the investigation period. Similar observations were recorded by Fogaça and Fett-Neto 

(2005) with E. globulus and E. saligna, following root induction with IBA, IAA and 

NAA, with some discrepancies attributable to endogenous auxin effects. These 

responses emphasise the inhibitory effect that stable and persistent auxins exert during 

the phases following root induction (de Klerk et al. 1999). Hence, the relative stabilities 

of auxins in plant tissues invariably have implications for root development following 

induction in vitro. This suggests the necessity to use a less stable auxin (e.g. IAA) for 

root induction in vitro, or alternatively a pulse auxin treatment in the rooting stage. 

In conclusion, the results imply that the properties of the auxins used in 

micropropagation programmes need to be considered in terms of the explant‟s 

endogenous and exogenous phytohormone requirements and varying sensitivities to 

these during the stages of root induction and development. The administered PGRs 

should also provide for the physiological requirements of the developing roots, such as 

graviperception. The most commonly encountered natural auxin, IAA, appears to fulfil 

these requirements. Nevertheless, preliminary studies on certain poor-rooting 
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Eucalyptus in our laboratory have shown that the in vitro percentage root induction is 

approximately 20% with 0.1 mg l-1 IAA and increases to approximately 80% under the 

same concentration of IBA, indicating that IBA may still be necessary for root induction 

in difficult-to-root clones, due to its more potent rhizogenic action compared with IAA. 

Presently, the effects of the different auxins and their accumulation on root induction, 

root characteristics, and in the early stages of acclimatisation in such „poor-rooters‟ are 

being investigated, along with the effects of cytokinin on auxin action. 
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CHAPTER 3: THE CHOICE OF AUXIN ANALOGUE FOR 

ROOT INDUCTION in vitro INFLUENCES POST-

INDUCTION DEVELOPMENT IN Eucalyptus grandis 
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3.1 Introduction 

 

The commercial and economic importance of the world‟s Eucalyptus plantations is well 

known and documented (Eldridge et al. 1994; Turnbull 1999; Watt et al. 2003). 

Amongst the wide range of their products the most important include paper and pulp, 

charcoal, and timber for furniture and construction (Eldridge et al. 1994; Turnbull 1999; 

Watt et al. 2003). The increasing demand for these commodities and the associated 

favourable growth characteristics of members of the genus has led to a concomitant 

dominance of eucalypt plantations worldwide (Merkle and Nairn 2005). This has been 

achieved through breeding programmes, the use of hybrids and prudent nursery and 

clonal practices. Selected superior eucalypt clonal lines, both pure and hybrid, are 

perpetuated through vegetative propagation in order to preserve desired genotypes and 

traits (Denison and Kietzka 1993a; Denison and Kietzka 1993b; Watt et al. 2003). This 

allows for increased true-to-type plantlet yield, more efficient site-matching and 

uniformity in the plantations (Eldridge et al. 1994).  

While propagation through macrocuttings has proven successful for a number of 

eucalypt clones (Eldridge et al. 1994), mini- or micro- cuttings confer even greater 

advantage in terms of speed of rooting, root quality and an improvement in rooting 

potential, coupled with decreased production costs (Eldridge et al. 1994; de Assis et al. 

2004). In conjunction with these approaches, micropropagation through in vitro 

practices provides increased plantlet multiplication rates (Le Roux and van Staden 

1991), and may be the only practical means of propagating certain difficult-to-root 

clones (Mokotedi et al. 2000; Yasodha et al. 2004; George et al. 2008). As a result, 

there are numerous published in vitro protocols for the propagation and maintenance of 

superior selected eucalypt genotypes (Le Roux and van Staden 1991; Jones and van 

Staden 1997; Watt et al. 2003).  

Fundamental to all vegetative propagation programmes is the attainment of fully 

functional plants. In this regard root ontogeny is often an area of research focus and this 

is particularly true for the eucalypts of commercial importance (de Assis et al. 2004). 
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As previously discussed (Nakhooda et al. 2011) (Chapter 2), the aim of the rooting 

stage of these propagation programmes and their specific micropropagation protocols 

has been to achieve a high percentage rooting (Jones and van Staden 1997; Trindade 

and Pais 1997; de Assis et al. 2004; Mankessi et al. 2009; Nourissier and Monteuuis 

2008). However, with few exceptions (Bell et al. 1993; Mokotedi et al. 2010), reports 

have not documented root growth, quality and morphology of in vitro-produced roots 

post-acclimatisation, or compared these traits with those of seed-, macro or mini-

cuttings- propagated eucalypt clones. The study by Mokotedi et al. (2010) showed that 

after 16 months acclimatization, micropropagated plants displayed a relatively weaker 

root system than macro- and seed- propagated eucalypt clones, due to a shallow 

horizontal root architecture. Most eucalypt micropropagation protocols prescribe the use 

of one or more of the auxin analogues to induce roots in vitro (reviewed by Jones and 

van Staden 1997). However, preliminary findings by Nakhooda et al. (2011) (Chapter 

2) indicated that the choice of auxin analogue [IAA (indole-3-acetic acid) or IBA 

(indole-3-butyric acid)] and concentration used for the in vitro multiplication and 

elongation stages of the micropropagation protocol influenced both in vitro root gravity 

perception and post acclimatisation root architecture, and that IAA was integral to those 

processes. That study specifically investigated the influence of auxin analogues supplied 

during the multiplication and elongation stages on subsequent root development. In the 

present study, the influence of the auxin analogues IAA and IBA on root development 

was investigated when these analogues were added to the rooting medium, the final 

stage of every micropropagation protocol.  

Linked to any study of root development is an understanding of auxin transport and 

action. The major form of natural auxin found in plants, IAA, has been shown to be 

transported in a basipetal direction, through diffusion (Delbarre et al. 1996; Kramer and 

Bennett 2006), or predominantly through membrane-bound transport proteins of the 

AUX 1 (Bennett et al. 1996; Parry et al. 2001b), PGP (Terasaka et al. 2005; Mravec et 

al. 2008) and PIN families (Gälweiler et al. 1998), providing influx and efflux of auxin 

in a polar manner, primarily through the phloem (George et al. 2008; Tromas and 

Perrot-Rechenmann 2010). Specifically in roots, auxin is laterally distributed in the root 

cap, as the primary signal in gravitropic bending (Chen et al. 1999; Friml 2003; Swarup 
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and Bennet 2009). Studies conducted using Arabidopsis have implicated auxin and 

auxin transport in numerous root physiological processes such as regulation and 

maintenance of root meristem and zonation (Luijten and Heidstra 2009), root cell 

patterning (Blilou et al. 2005) and, along with cytokinins (Campilho et al. 2009), auxins 

influence vascular development (Mattsson et al. 1999; Ye 2002). 

Much of the understanding of auxin transport and action has developed through studies 

utilising auxin inhibitors and antagonists (Geldner et al. 2001; Oono et al. 2003; de 

Rybel et al. 2009; Kuderová and Hejátko 2009). These inhibit auxin action in various 

ways. For example, 2,3,5-triiodobenzoic acid (TIBA) blocks polar auxin by competing 

for auxin binding sites (Geldner et al. 2001) and ρ-chlorophenoxyisobutyric acid 

(PCIB) inhibits auxin signal transduction by impairing the auxin signalling pathway 

(Oono et al. 2003). Cytokinins are also known to work antagonistically with auxins in 

many root developmental processes (Brault and Maldiney 1999; George et al. 2008).  

While the use of an auxin for root induction in eucalypt micropropagation protocols is 

often encountered in the literature (reviewed by Jones and van Staden 1997), the choice 

of analogue needs further investigation. This is achievable through the use of auxin 

inhibitors and antagonists, which can serve to confirm the specific roles of each auxin 

analogue during root development. With such information, in vitro protocols can be 

refined, potentially at each stage, to produce maximum plantlet yield without 

compromising plantlet quality, from the in vitro stages through to post-acclimatisation. 

The present contribution is a continuation of our studies on eucalypt root ontogeny in 

vitro (Nakhooda et al. 2011) (Chapter 2). The role of auxins on root induction, 

graviperception, cell patterning, vascular differentiation, and root tip development were 

investigated, both at the root induction stage and 3 weeks after root induction.  
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3.2 Materials and Methods 

 

3.2.1 Decontamination and culture initiation 

One year old potted plants of a pure Eucalyptus grandis clone were obtained from 

Mondi Business Paper, Hilton, KwaZulu-Natal. Minicuttings from these plants were 

decontaminated and placed onto bud induction medium, as described previously 

(Nakhooda et al. 2011) (Chapter 2).  

 

3.2.2 Micropropagation protocol 

After bud induction, explants were cultured for two weeks on multiplication medium, 

followed by four weeks on elongation medium. Multiplication medium was composed 

of MS nutrients (Murashige and Skoog 1962), 0.1 mg l-1 biotin, 0.1 mg l-1 calcium 

pantothenate, 0.04 mg l-1 (0.21 µM) α-naphthalene acetic acid (NAA), 0.1 mg l-1 (0.44 

µM) 6-benzylaminopurine (BAP), 0.05 mg l-1 (0.23 µM) 6-furfurylaminopurine 

(FAP/kinetin), 20 g l-1 sucrose and 4 g l-1 Gelrite®. Elongation medium contained MS 

nutrients, 0.1 mg l-1 biotin, 0.1 mg l-1 calcium pantothenate, 0.3 mg l-1 NAA, 0.1 mg l-1 

indole-3-butyric acid (IBA), 0.2 mg l-1 kinetin, 20 g l-1 sucrose and 4 g l-1 Gelrite®. Both 

stages were conducted using 20 ml of media in 100 ml culture bottles. 

Elongated shoots (approximately 1.5 cm) were then individually transferred to 10 ml 

rooting medium in 40 ml culture tubes. This medium comprised ¼ MS nutrients, 0.1 mg 

l-1 biotin, 0.1 mg l-1 calcium pantothenate, 15 g l-1 sucrose and 4 g l-1 Gelrite®. The 

auxin analogues IAA and IBA, the auxin inhibitors TIBA (0.8 µM/0.4 mg l-1) and PCIB 

(10.7 mg l-1/50 µM) and the auxin antagonist kinetin (1 mg l-1/4.6 µM) were added to 

the media, where indicated. Shoots were recorded to have rooted when at least 0.5 cm of 

the root protruded from the base of the shoot. These studies were conducted using 

Magenta® plant culture boxes, to provide space for observations of graviperception of 

the developing roots in vitro. All media, together with the phytohormones and auxin 

inhibitors, were adjusted to pH 5.6 to 5.8, before decontamination through autoclaving 
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at 121ºC and 1 kPa for 20 minutes. All cultures were maintained under 16-hour light 

(200 µmol.m-2.s-1)/8-hour dark photoperiod, at 25 and 23ºC, respectively.  

 

3.2.3 Microscopy 

Shoot-root junction, root sections taken midway between the root tip and the shoot, and 

root tips were prepared for light microscopy and histological analysis by initially 

placing them into 2.5% (v/v) gluteraldehyde solution prepared in a 0.1 M phosphate 

buffer, at pH 7.2, for at least 24 hours at 4ºC. Following primary fixation, samples were 

rinsed several times in the phosphate buffer to remove all traces of fixative. Samples 

were then dehydrated using a series of acetone solutions of increasing concentrations. 

Dehydrated samples were subsequently infiltrated with 50:50 acetone:epoxy resin 

(Spurr 1969), left on a shaker for 5 hours, and then placed in full epoxy resin overnight 

to allow for further resin infiltration. This was followed by resin embedding in silicon 

blocks and polymerisation at 70ºC for 8 hours. Sample sectioning of 1 µm was 

conducted using the Riechert Ultra-cut E microtome, followed by staining using a 1% 

(v/v) safranin solution and a 1% (w/v) KI solution for visualisation of starch grains in 

root tips. Section viewing and measurement analysis (mean root diameter) was achieved 

using the Nikon Biophot® light microscope coupled with the Motic Image Plus 2.0 

computer programme. 

 

3.2.4 Statistical analysis 

All statistical analyses were carried out using PAST, version 2.01 (Hammer et al. 2001). 

The experiments were repeated at least 3 times, each with a minimum sample size of 30. 

Measurements of root length were conducted ex vitro using a tape measure.   
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3.3 Results 

 

The specific roles of auxin on root induction and post-induction development were 

investigated, using an E. grandis clone, known to be „easy-to-root‟ in vitro and as 

minicuttings (Nakhooda et al. 2011) (Chapter 2). As demonstrated (Table 3.1), initial 

experiments with exogenous auxins showed that neither IAA nor IBA in the rooting 

medium had any significant effect on the percentage rooting of shoots of the tested 

clone compared with shoots cultured on auxin-free medium, with shoots rooting to over 

85% (100% in the absence of exogenous auxin). Since this clone relies mainly on 

endogenous auxin for root induction (Nakhooda et al. 2011) (Chapter 2), the effects of 

the inhibitors and antagonist on root development can be related to either the 

endogenous auxin (in the absence of an exogenous analogue), or to the supplied 

exogenous auxin.  

 

3.3.1 Auxin inhibitor and antagonist exposure at root induction 

The addition of the auxin inhibitors and antagonist to the rooting medium had varying 

effects on root production (Table 3.1). Kinetin significantly decreased percentage 

rooting and mean root number (except for the IAA-containing rooting medium), and 

resulted in the formation of basal callus. In the IBA-containing rooting medium, kinetin 

also significantly reduced the mean root diameter and induced the largest observed basal 

callus formation. The inhibitor of auxin signal transduction PCIB (Oono et al. 2003) 

almost completely inhibited root production, regardless of exogenous auxin supply. 

When rooting occurred, only one root per shoot was produced with the significantly 

smallest mean root diameters recorded. The inhibitor of auxin transport TIBA (Geldner 

et al. 2001) resulted in a significant reduction in percentage rooting in the auxin-free 

and IAA-containing rooting media compared with the control. However, no significant 

difference in percentage rooting was recorded for the shoots on the + IBA + TIBA 

treatment compared with those on + IBA – TIBA medium (Table 3.1). The largest basal 

callus formation was again recorded in the IBA-containing rooting medium with TIBA. 
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In addition, the + IBA + TIBA combination resulted in the largest mean root diameter 

obtained from all the tested rooting treatments.  

Given that root induction and zonation is dependent on auxin transport (Luijten and 

Heidstra 2009), cross sections of the shoot-root junctions were taken to determine the 

origins of adventitious roots. This approach was also used to establish if the auxin 

antagonist treatments influenced the cellular origins of the adventitious roots in vitro. 

The results revealed that, for all treatments, at the time of root induction, a fully-

developed shoot vascular cambium was absent (Fig. 3.1). Instead, there was only a 

procambial region with primary phloem and primary xylem vessels scattered throughout 

the procambium. Adventitious roots appeared to originate from the procambium region 

(Fig. 3.1). This root developmental morphology was consistent across all rooting 

treatments (with or without IBA or IAA) and irrespective of auxin inhibitor or 

antagonist presence (Fig. 3.1).       
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Table 3.1 Rooting parameters (± SD) across all the investigated auxin treatments after 

30 days for the tested E. grandis clone in vitro.  Shoots were rooted on media 

containing auxin inhibitors (PCIB, TIBA), auxin antagonist (kinetin), together with 

either of the indicated auxin analogues (IAA or IBA), or in an auxin-free environment. 

Callus was quantified as less than 2 mm; between 2 mm and 5 mm; and greater than 5 

mm, as indicated by +, ++ and +++, respectively  

Auxin 

treatment 

(mg l-1) 

Antagonist 

Treatment 

% Rooting Mean root 

number 

Mean root diameter 

(µm) 

Callus 

0 

Control 100 ± 3.8a 5 ± 0.8a 794.5 ± 54.3a - 

Kinetin 73.4 ± 8.2b 3 ± 1.0b 832.7 ± 43.1a + 

PCIB 2.1 ± 0.9c 1 ± 0.6c 524.6 ± 78.3b - 

TIBA 62.1 ± 5.6b 6 ± 2.1a 1187.5 ± 213.6c ++ 

0.1 IAA 

Control 94.8 ± 7.3a 5 ± 1.6a 835.6 ± 44.8ad - 

Kinetin 69.6 ± 9.7bd 4 ± 1.4ab 875.9 ± 62.6a + 

PCIB 2.7 ± 1.9c 1 ± 0.8c 575 ± 96.2b - 

TIBA 72.1 ± 6.2b 6 ± 2.4ad 1216.3 ± 143.7c ++ 

0.1 IBA 

Control 85.7 ± 12.9ae 7 ± 1.2ad 929.7 ± 82.7d + 

Kinetin 52.7 ± 11d 4 ± 1.4b 859 ± 74.1a +++ 

PCIB 4.3 ± 3.1c 1 ± 0.4c 632.7 ± 85.9b - 

TIBA 79.7 ± 3.5e 8 ± 1.4d 1305.4 ± 56.3e ++ to +++ 
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Fig. 3.1 Stem section showing emerging adventitious root (ER). New root had formed 

from the procambium (PC). The stem endodermis (En) is visible, as is the cortex (C) 

and pith (P). At this stage, only primary xylem and primary phloem were present 

 

3.3.2 Auxin inhibitor and antagonist exposure post root induction  

In this investigation, aimed at determining the effects of auxin antagonists on in vitro 

root development post-induction, shoots were rooted using the standard rooting 

medium, supplemented with 0.1 mg l-1 IBA. This auxin was added to the rooting 

medium to complement endogenous IAA, the presence of which was confirmed by 

Nakhooda et al. (2011). Ensuring the presence of both auxin analogues would allow for 

further investigation into the specific roles of each of these natural auxins in root 

development in the tested clone. Three days after root emergence, rooted shoots were 

placed onto a rooting medium containing either 1 mg l-1 kinetin, 10.7 mg l-1 PCIB or 0.4 

mg l-1 TIBA, each with 0.1 mg l-1 IBA. After 3 weeks in vitro, compared with the 

control treatment (no auxin inhibitor or antagonist) (Fig. 3.2A), the kinetin-treatment 

had no significant impact on root elongation, but did significantly reduce the mean root 

diameter of the elongating root. It also produced roots that displayed altered gravity 

(AG) perception (Fig. 3.2B; Table 3.2), which was defined as root growth with greater 

than 90º deviation from the gravity vector (Rashotte et al. 2000; Nakhooda et al. 2011). 
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Exposing shoots to PCIB (which inhibits auxin signal transduction) resulted in a 

significant increase in root elongation (Fig. 3.2C), coupled with a significant decrease in 

mean root diameter (see later), compared with the control (Table 3.2). However, PCIB 

treatment did not affect the ability of the elongating root to respond to the gravity vector 

(Table 3.2). On the other hand, exposing shoots to TIBA (which inhibits IAA transport) 

significantly retarded root elongation, while increasing the mean root diameter, 

compared with the control (Fig. 3.2A and D; Table 3.2). In addition, the TIBA treatment 

resulted in roots which did not appear to respond to the gravity vector (Fig. 3.2D). 

Cross-sections of the shoot-root junction after 3 weeks in each of the modified rooting 

media revealed no change in the root-shoot junction morphology compared with that 

already described (Fig. 3.1).  

 

B DCA
 

Fig. 3.2 Morphology of roots of the tested E. grandis clone following various auxin 

antagonist treatments post-induction. Three days after normal root induction and 

emergence, shoots were transferred to A) control rooting medium, where no antagonist 

was added; B) rooting medium containing 1 mg l-1 kinetin; C) 10.7 mg l-1 PCIB; and D)  

and 0.4 mg l-1 TIBA. Images were recorded after 3 weeks  
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Table 3.2 The mean root diameter, change in root length (±SD) and gravitropic 

responses after 3 weeks in culture. Shoots were exposed to the indicated auxin 

inhibitors and antagonist 3 days after root induction and emergence in the presence of 

0.1 mg l-1 IBA. G = gravitropic; AG = altered graviperception 

Treatment Mean root diameter 

(µm)* 

∆ Root length 

(mm) 

Gravitropic 

response 

Control 552.8 ± 4.7a 2.8 ± 0.9a G 

Kinetin 278.6 ± 70.7b 3.7 ± 0.4a AG 

PCIB 129.2 ± 62.2b 12.2 ± 2.4b G 

TIBA 833.4 ± 64.5c 0.8 ± 0.2c AG 

*At 3 days after root induction, mean root diameter was recorded as 489 ± 32µm   

 

Histological analysis of roots that developed in the presence of the tested auxin 

inhibitors or antagonist revealed a marked change in the vascular organisational 

integrity of TIBA-treated roots. Kinetin- and PCIB- treatments did result in altered 

graviperception and a significant increase in root elongation, respectively, coupled with 

a loss in cortical organisation (similar to that of Fig. 3.3B), compared with the control. 

The TIBA-treatment, on the other hand, led to an increase in vascular bundle area, in 

which vessel organisation and tissue patterning was lost (Fig. 3.3B). Additionally, root 

cortex organisation was lost (Fig 3.3), compared with the normally developing roots in 

vitro (Fig. 3.3A).  
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Fig. 3.3 Cross-sections of roots, taken midway between the root tip and the shoot, 

showing: A) morphology of a normal (control) root produced from shoots not exposed 

to any auxin antagonist; and B) typical root development from shoots treated with 0.4 

mg l-1 TIBA five days after normal root induction. Restricting IAA transport resulted in 

an alteration in vascular patterning 

 

The loss of cortical organisation in the roots of auxin inhibitor- and antagonist- treated 

shoots was also apparent in longitudinal sections of their root tips (Fig. 3.4). Under the 

influence of post induction supply of kinetin, the root tips developed a characteristic 

curvature away from the gravity vector, with no discernible organisation in the root 

meristematic region and columella cells (Fig. 3.4A). Above the meristematic region, the 

cells of the cortex lacked discernible structure. Post-induction treatment of shoots with 

PCIB or TIBA resulted in the collapse of the columella region, coupled with the 

collapse of cortical integrity. Only the quiescent centre and root meristematic regions of 

roots maintained tissue/cellular integrity in the presence of TIBA or PCIB (Fig. 3.4B). 

As a result, the root meristematic area just above the root cap appeared bulbous 

compared with the rest of the elongating root. Even though starch grains were visible in 

the collapsed columella region of TIBA-treated roots (Fig. 3.4B), these roots remained 

unresponsive to the gravity vector (Table 3.2) as a result of IAA transport inhibition. Of 
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note, PCIB-treated roots remained graviresponsive (Table 3.2), despite having similar 

root tip morphology to TIBA-treated roots (Fig. 3.4B). Treating shoots with TIBA was 

previously shown to result in a loss of starch-grain accumulation within the root cap 

columella region (Nakhooda et al. 2011).      
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Fig. 3.4 Typical root development when shoots were rooted on normal root induction 

media supplemented with 0.1 mg l-1 IBA, and then transferred, after 3 days, to rooting 

medium containing the auxin antagonists A) kinetin and B) PCIB or TIBA, in vitro. RT 

= root tip; M = meristematic region 

 

3.4 Discussion 

 

It is well established that auxins are integral to root induction and development 

(Hartmann et al. 1997; George et al. 2008). Recent research in our laboratory has shown 

that at least in some Eucalyptus clones, the choice of auxin analogue supplied in the 

pre-rooting micropropagation stages is critical, in that the natural auxin IAA was 

necessary for root functioning processes such as graviperception. The auxin analogues 

NAA (α-naphthalene acetic acid) and IBA could not act as substitutes to IAA 

(Nakhooda et al. 2011) (Chapter 2). These auxin requirements, at least for some 
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eucalypt clones, could potentially explain the horizontal root architecture (post-

acclimatisation) reported by Mokotedi et al. (2010), in which IBA was used for rooting 

eucalypts in vitro. While the study by Nakhooda et al. (2011) focussed on in vitro root 

development effected by auxin supply during the multiplication and elongation stages 

prior to rooting, the present investigations focused on the supply of auxin at the rooting 

stage. Both PCIB and TIBA, and the cytokinin antagonist kinetin, significantly reduced 

the percentage rooting of the tested clone, regardless of the auxin analogue (IAA or 

IBA) used for root induction, although only PCIB addition completely inhibited rooting 

(Table 3.1). Of the two tested auxin analogues, exogenous IBA generally resulted in the 

greatest basal callus formation. Being a more potent rhizogenic auxin than IAA 

(Nordström et al. 1991; Epstein and Ludwig-Müller 1993; Ludwig-Müller 2000; 

George et al. 2008), IBA also resulted in significantly larger mean root diameters, when 

supplied in the absence of kinetin or in the presence of TIBA, the inhibitor of IAA 

efflux (Christie and Leopold 1965; Geldner et al. 2001). Since auxin stimulates cell 

growth (George et al. 2008) and retards root elongation (Woodward and Bartel 2005), 

these observations indicate that the exogenous IBA was converted to IAA in situ, and at 

least in the tested clone, may serve as a source of IAA, as previous authors have noted 

in other plant species (Woodward and Bartel 2005).  

The basal stem morphology from which the roots developed was similar in all the tested 

treatments. Histological analysis revealed that a vascular cambium had not developed at 

the time at which in vitro shoots were placed onto rooting medium in the current study. 

Adventitious roots had developed from the meristematic procambium (Fig. 3.1). 

According to the general model of adventitious root formation from stem cuttings of 

woody plants, roots arise from secondary phloem, but may also originate from the 

vascular cambium and phloem (Hartmann et al. 1997). In addition, Ye (2002) stated 

that in woody plants, the vascular tissues develop from either meristematic procambium 

or vascular cambium. Of particular interest to the present work is a study by Baltierra et 

al. (2004) using E. globulus, which showed that adventitious roots in vitro originated 

from either old vascular tissue or from newly-formed xylem. In our laboratory, roots 

from minicuttings of E. grandis x nitens have been found to originate from developed 

shoot xylem archs, a feature not prominent in micropropagated shoots at the time of 
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rooting (Fig. 3.1). Considering this, it is suggested that, when applying the present in 

vitro protocol, the time at which elongated shoots are placed onto root induction 

medium may contribute to the differences in subsequent root architecture compared 

with macro- and seed- propagated eucalypts following acclimatisation, as reported by 

Mokotedi et al. (2010).       

The addition of auxin inhibitors or antagonist post root induction, revealed the specific 

need for IAA to produce the known root development and physiological responses 

(Hartmann et al. 1997) in the tested eucalypt clone. The presence of either the auxin 

antagonist kinetin or the IAA-specific transport inhibitor TIBA, resulted in the loss of 

root gravity perception, a response not observed in PCIB-treated shoots. In addition, the 

mean root diameters of kinetin and PCIB treatments were significantly reduced 

compared with the control, but a significant increase in this parameter resulted from 

TIBA-treatment (Table 3.2). These results indicate that following root induction in 

vitro, the loss in gravity perception and hence horizontal root architecture (Mokotedi et 

al. 2010; Nakhooda et al. 2011) may be due to a disruption in IAA efflux and not to a 

loss in auxin signal transduction. A disruption in auxin efflux, induced either through 

auxin transport inhibition or through auxin regulation via a cytokinin (Pernisová et al. 

2009; Su and Zhang 2011), is suggested to have resulted in a redistribution and/or 

accumulation of auxin within the root cells. This in turn interfered with gravitropism 

and root cap development, events that rely on regulated auxin transport and specific 

distribution with respect to auxin maxima and minima concentrations (Muday 2001; 

Moore 2002; Pernisová et al. 2009). Furthermore, studies using Arabidopsis have 

implicated the PIN family of proteins, responsible for auxin efflux, as the determinant in 

root growth and patterning (Blilou et al. 2005). The rooting response observed in the 

presence of TIBA (Table 3.2) indicated that IAA efflux is a requirement in root 

development, and that IAA cannot be successfully replaced by its analogue IBA in the 

tested eucalypt clone.  

Disturbances in auxin transport and action also resulted in changes in root vascular 

patterning (Fig. 3.3), which was most prominent with the TIBA treatments. Under these 

conditions, a qualitative increase in the vascular bundle area was observed, coupled with 
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a loss in vascular patterning compared with the control (Fig. 3.3). The continuity of the 

IAA signal appeared necessary for the maintenance of vascular patterning and IBA 

could not replace IAA in this regard. These results are similar to those observed in 

Arabidopsis, in which conditions of reduced auxin transport resulted in increased 

vascular tissue development that were less ordered than those of normal auxin transport 

and perception (Berleth et al. 2000).  

Accompanying the alterations in root development, graviperception and vascular 

patterning brought about by the disruption of auxin flow, changes in root tip 

development were also noted. The presence of kinetin resulted in a distinct curvature of 

the root cap away from the gravity vector, while that of PCIB or TIBA resulted in the 

collapse of the root cap structure, with little interference to the root meristematic region 

(Fig. 3.4). This maintenance of the quiescent centre and meristematic region, despite 

interruptions in auxin transport, is in keeping with the requirements of these regions, in 

that the quiescent state is linked to high levels of auxin through accumulation via auxin 

transport (Kerk and Feldman 1995; Kerk et al. 2000). The collapse of the root cap (Fig. 

3.4B) may explain the observed loss in graviperception under conditions of auxin efflux 

interruption through kinetin (Pernisová et al. 2009; Su and Zhang 2011) or TIBA action 

(Christie and Leopold 1965; Geldner et al. 2001). Even though starch grains were 

visible in the root cap in a number of root tip sections (e.g. Fig. 3.4B), the asymmetric 

redistribution of auxin is the ultimate gravity response effecter (Muday 2001; Moore 

2002). A similar collapse was not observed in kinetin-treated roots, but the possible 

interference of auxin efflux by cytokinin action did result in a loss in graviperception 

(Fig. 3.4A). Exogenous cytokinin has been shown to induce bending towards the 

application site in Arabidopsis, thus supporting the inhibitory role that cytokinins play 

in root gravitropism (Aloni et al. 2004), as supported by the present findings.  

These results highlight some key root developmental aspects and requirements for in 

vitro rooting of E. grandis shoots. The conversion of exogenous IBA to IAA was 

established, in that specifically inhibiting IAA transport without inhibiting IBA 

transport, impeded several root developmental events which were not affected in the 

control. Adventitious root induction in vitro was found to form from shoot meristematic 
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procambium in all treatments, regardless of the presence of auxin inhibitors or 

antagonist. Of the inhibitors or antagonist treatments imposed following normal root 

induction, only a disruption in auxin efflux, i.e. a disruption in the asymmetric 

distribution of auxin in the root, was found to alter gravity perception. This brought 

about morphological changes in the root cap and alterations in vascular patterning. 

These critical root developmental events rely on polar transport of IAA (Chen et al. 

1999; Muday 2001; Moore 2002; Ye et al. 2002). 

As previously mentioned, IBA is the auxin most widely used in commercial vegetative 

propagation practices, including eucalypt culture (Hartmann et al. 1997; de Klerk et al. 

1999; de Assis et al. 2004; George et al. 2008). It is chosen on the basis of its 

rhizogenic efficacy which results from its higher stability in plant tissues (George et al. 

2008). This, in turn, also makes IBA the preferred choice for clones that display 

difficulty in rooting, and do not respond well to IAA application (Epstein and Ludwig-

Müller 1993; Ludwig-Müller et al. 2005). However, a previous (Nakhooda et al. 2011) 

(Chapter 2) and the present study, show that the most potent auxin may not necessarily 

be the most suitable auxin in terms of root development and quality, and that IAA 

cannot always be substituted for in certain root developmental responses. Ongoing work 

in our laboratory, has shown that at least in some poor-rooting eucalypt clones, IAA can 

have equal rhizogenic ability to IBA, provided that cytokinin exposure in the pre-

rooting culture history is reduced (see Chapter 4). It may therefore be possible to refine 

eucalypt micropropagation protocols to utilise exogenous IAA for both easy- and 

difficult-to-root clones, thereby ensuring the quality of the developed roots (e.g. 

gravitropism and vascular development). Such traits are particularly important for 

commercially important trees such as eucalypts, in ensuring healthy and productive 

forests. 
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CHAPTER 4: THE PROPERTIES AND INTERACTION OF 

AUXINS AND CYTOKININS INFLUENCE THE 

ROOTABILITY OF Eucalyptus CLONES in vitro 
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4.1 Introduction 

 

Eucalyptus forestry programmes have proven invaluable in their contribution to meeting 

timber demands worldwide. Profitable plantations have been established in more than 

70 countries, and the products of these establishments continue to serve the wood, 

paper, pulp, and charcoal industries, among others (Eldridge et al. 1994; Turnbull 1999; 

Watt et al. 2003). In order to remain competitive, forestry programmes need to seek and 

maintain superior genotypes that confer traits of interest (e.g. preferred timber 

properties), allow for genotype-to-site matching, and other strategies to increase 

production yields. In the pursuit of this, superior eucalypt hybrids have found favour, 

and their selection programmes often seek to combine stress tolerance with superior 

wood characteristics in a sustainable, cost effective manner that meets industrial 

requirements (Watt et al. 2003; de Assis et al. 2004). 

The traditional eucalypt propagatory method, i.e. via seedlings, is not often possible for 

hybrids (Denison and Kietzka 1993b), consequently, vegetative propagation, e.g. 

through macro-, mini- or micro-cuttings is often the only option, and it has the benefit 

of ensuring the maintenance and continuity of the value-added traits (Denison and 

Kietzka 1993a; Denison and Kietzka 1993b). Even for pure species, vegetative 

propagation has many advantages over seedling propagation, most notably the increase 

in yield and the maintenance and conservation of superior genotypes (Eldridge et al. 

1994). However, propagation through macro- and mini-cuttings has its limitations in 

that the rooting ability amongst clones is variable and is known to decrease with the age 

of the parent plants (Eldridge et al. 1994; de Assis et al. 2004). Micropropagation 

potentially addresses such shortcomings by providing a highly controlled environment 

that yields high shoot multiplication rates (Le Roux and van Staden 1991), improved 

potential, speed and quality of rooting (de Assis et al. 2004), and is an efficient and 

often the only viable method of propagating difficult-to-root clones (Mokotedi et al. 

2000; Watt et al. 2003; Yasodha et al. 2004). 
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A number of studies have investigated and developed micropropagation protocols for 

the commercially important pure and hybrid eucalypt clones (Le Roux and van Staden 

1991; Jones and van Staden 1997; Watt et al. 2003). These are based on the empirical 

manipulation of key plant growth regulators - notably auxins and cytokinins - to achieve 

the desired morphogenesis in each of the in vitro culture stages. In general, the initial 

stages of bud induction from minicuttings (taken from the parent plant) and subsequent 

shoot multiplication are achieved using either a single cytokinin type or a combination 

of cytokinins to encourage shoot proliferation. Shoot elongation is then stimulated by a 

combination of auxins and cytokinins and lastly rooting is accomplished using one or 

more types of auxins at various concentrations, depending on the clone in question 

(Jones and van Staden 1997; George et al. 2008). Since each of the established 

protocols empirically addressed the micropropagation needs of a specific clone, their 

interclonal application often leads to large variations in propagation and rooting 

success.  

As core to the success of a micropropagation protocol is the ability of the shoots to 

produce roots (de Assis et al. 2004), there is a large body of published reports on the 

rooting efficiencies of eucalypts in response to the various auxin types and 

concentrations, on an empirical and clone-specific basis (Jones and van Staden 1997; 

Watt et al. 2003). However, little attention has been paid to the antagonistic effects of 

the auxin and cytokinin types on morphogenesis, in particular the inhibitory effect that 

persistent cytokinins may exert on root induction of eucalypt shoots in vitro.  

Both auxins and cytokinins are recognised as the key signalling molecules in plant 

development (Moubayidin et al. 2009). It is accepted that elevated cytokinin content 

favours shoot development, elevated auxin content favours root development, whilst 

equal concentrations of both results in callus formation (George et al. 2008). While this 

general model dictates the use of these phytohormones during the various stages in in 

vitro protocols, the properties of the various cytokinins and auxins used should also be 

considered. Indole-3-acetic acid (IAA) is the most frequently encountered natural auxin, 

and is known to be more easily oxidated than the other natural auxin indole-3-butyric 

acid (IBA), or the synthetic auxin α-naphthaleneacetic acid (NAA) (de Klerk et al. 
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1999; George et al. 2008). Similarly, the properties of the various cytokinins differ, with 

the synthetic cytokinin kinetin (6-furfurylaminopurine (FAP)) been shown to persist 

longer (George et al. 2008) than the natural cytokinin compounds such as trans-zeatin, 

which is rapidly degraded by the enzyme cytokinin-oxidase (Mok and Mok 2001; 

Haberer and Kieber 2002; George et al. 2008). An enzyme other than cytokinin oxidase 

is thought to be involved in kinetin degradation in some plant species (Forsyth and van 

Staden 1987). Given that the most commonly-used auxins and cytokinins in eucalypt 

culture vary in their stabilities, their interaction at each of the culture stages, and 

subsequent effect on rooting, need further elucidation.   

In the present study, the apparent inability of two eucalypt clones to root „with ease‟, in 

vitro, was investigated in relation to the perception and conjugation of the most 

commonly-used auxins in eucalypt culture. The tested hypothesis was that the inhibition 

of root induction in some difficult-to-root clones is due to cytokinin persistence from 

the pre-rooting culture stages, resulting in a supra-optimal cytokinin:auxin ratio in 

shoots prior to rooting. The aim is to optimise in vitro protocols for eucalypt culture, to 

maximise yields of both easy- and difficult-to-propagate clones. 

 

 

4.2 Materials and Methods 

 

4.2.1 Decontamination and culture initiation 

The eucalypt clones used in the present study were a pure Eucalyptus grandis (TAG31) 

and an E. grandis x E. nitens (GN155). A further E. grandis x nitens natural hybrid 

(NH58) was later used to confirm observations. All clones were obtained from Mondi 

Business Paper, Hilton, KwaZulu-Natal. They were chosen on the basis of their rooting 

performance as mini-cuttings in the Mondi nursery, i.e. as examples of a „good rooter‟ 

(easy-to-root) (TAG31) and of two „poor rooters‟ (difficult-to-root clones) (GN155 and 

NH58). Cuttings of the parent plants were surface decontaminated in 0.02% (w/v) 
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HgCl2 with a drop of Tween® -20 for 10 minutes, followed by 1% (w/v) calcium 

hypochlorite for 10 minutes. After several rinses in sterilised distilled water, they were 

cut into nodal segments, each with a half-leaf, and placed on bud induction medium, 

containing MS nutrients (Murashige and Skoog 1962), 0.1 mg l-1 biotin, 0.1 mg l-1 

calcium pantothenate, 0.04 mg l-1 (0.21 µM) NAA, 0.1 mg l-1 (0.44 µM) 6-

benzylaminopurine (BAP), 0.05 mg l-1 (0.23 µM) kinetin, 20 g l-1 sucrose and 4 g l-1 

Gelrite® for 2 weeks. 

 

4.2.2 Micropropagation protocol 

The multiplication and elongation media were as for bud induction, except that 

elongation media contained different combinations of plant growth regulators (Table 

4.1; E1 represents the standard elongation medium used for eucalypt micropropagation 

in our laboratory). Shoots were maintained in culture bottles on 20 ml of medium during 

the multiplication and elongation stages, which typically lasted 3 and 4 weeks, 

respectively. Upon reaching a height of at least 1.5 cm, shoots were transferred to 10 ml 

of rooting medium (¼ MS nutrients, 0.1 mg l-1 biotin, 0.1 mg l-1 calcium pantothenate, 

15 g l-1 sucrose and 4 g l-1 Gelrite®), in culture tubes. Manipulations of the rooting 

media (where indicated) included the addition of the auxins IAA, IBA, or NAA at 0.1 

mg l-1 (0.57 µM, 0.49 µM, and 0.54 µM, respectively) or at 0.5 mg l-1 (2.85 µM, 2.46 

µM, and 2.7 µM, respectively). These compounds were purposely supplied as mg l-1 to 

mimic reported protocols.  Two studies were undertaken with clone 2 (poor rooter), 

where the following were added to the rooting medium: 50 µM of the inhibitor of auxin 

signal transduction ρ-chlorophenoxyisobutyric acid (PCIB) (to test its auxin-responsive 

ability) and 2 mM of the auxin conjugation inhibitor 1,6-dihydroxyacetophenone 

(DHAP) (to test  the effects of auxin conjugation on root induction).  

All media were adjusted to a pH of 5.6 - 5.8 prior to autoclaving at 121°C and 1KPa for 

20 minutes, with phytohormones added as per suppliers‟ instructions. Maintenance of 

cultures was under a 16-h light (200 µmol m-2 s-1)/ 8-h dark photoperiod at 25°C and 
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23°C, respectively. Mean rooting times were evaluated according to the method 

reported by Fett-Neto et al. (2001). 

 

Table 4.1 Concentration and composition of plant growth regulators (PGRs) in the eight 

different elongation media (E1-8) used in this study. N = absent; Y = present 

 

 

4.2.3 Sample preparation for phytohormone analysis 

Concentrations of auxins and cytokinins within whole shoots, just prior to rooting, were 

evaluated using gas chromatography-mass spectrometry (GC-MS). A preliminary study 

indicated no significant differences in phytohormones along the 1.5 cm long in vitro 

shoots (results not shown). Freeze-dried shoots were homogenised and suspended in 

500 µl sodium phosphate buffer (pH 7) and incubated for 1 hour at 4°C. The pH was 

then reduced with HCl to 2.6, and compound absorption was carried out, facilitated by 

the addition of Amberlite® XAD-7 (Sigma-Aldrich). The solution was incubated for a 

further hour at 4°C, followed by two washes of 500 µl of 1% (v/v) acetic acid and 

dichloromethane. Samples were then dried down, 50 µl of 2 M trimethylsilyl-

diazomethane was added, and samples were incubated for 30 minutes at room 

temperature. Samples were then quenched with the addition of acetic acid (1% v/v) and 

dried down overnight, followed by heptanes addition and sample analysis, using the 

PGR (mg l-1)/(µM)  Media 

 E1 E2 E3 E4 E5 E6 E7 E8 

0.2 /0.93Kinetin Y Y Y Y N Y N N 

0.3 /1.6 NAA Y Y N N Y N N N 

0.05 /0.25 IBA Y N Y N Y N N N 

0.37 /2.1 IAA N N N Y N N N Y 

0.2/0.91 trans-zeatin N N N N N N N Y 
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GCT PremierTM benchtop orthogonal acceleration time-of-flight (oa-TOF) mass 

spectrometer, Waters, USA.   

 

4.2.4 Statistical analysis 

All statistical analyses were carried out using PAST, version 2.01 (Hammer et al. 2001). 

Experiments were repeated at least 3 times, with sample sizes of at least 25 for rooting 

studies, and at least 3 for phytohormone analysis. 

 

4.3 Results 

 

The in vitro rooting responses of the tested clones recorded in this study (Fig. 4.1) 

reflected their reported behaviour as minicuttings in the nursery (Wallis, pers. comm.1). 

After exposure to standard multiplication and elongation conditions (E1-Table 4.1), and 

30 days in rooting medium containing 0.1 mg l-1 IBA,  the percent rooting of the clones 

were 85% for TAG31 (good rooter), 45% for GN155 (poor rooter) and 41% for NH58 

(poor rooter) (Fig. 4.1), with mean rooting times of 12, 5.9 and 4.6 days, respectively. 

The high in vitro rooting efficiency of TAG31 has been established previously 

(Nakhooda et al. 2011) (Chapter 2) and, together with NH58, were used in some studies 

for comparative purposes against GN155, which was the focus of subsequent 

investigations.  

To further characterise the poor-rooting GN155, its rooting response in the presence of 

different auxin analogues was assessed. The response of its shoots to 0.1 mg l-1 and 0.5 

mg l-1 IBA, IAA and NAA, following elongation on the standard medium (E1), 

indicated that none of the tested auxins yielded greater than 50% rooting (Fig. 4.2) 

Mean rooting times for each auxin analogue (0.1 mg l-1 and 0.5 mg l-1) were recorded as 

IBA = 5.9 and 7.6 days; IAA = 3.9 and 8.9 days; and NAA = 6.1 and 6.4 days. The 0.1 

mg l-1 IAA treatment resulted in the least efficient root production (30%) (Fig. 4.2). 

Furthermore, upon these treatments, basal callus was observed in all the shoots, with 

1 Jackie Wallis, Mondi Business Paper, Hilton, KwaZulu-Natal, South Africa 



89 

 

    

 

callus production being greatest at 0.5 mg l-1, regardless of the type of auxin used (Fig. 

4.3). At this concentration, IBA and NAA resulted in larger basal callus formation than 

IAA. Callus formation was also observed in places other than the cut end of the shoot 

but no root formation was observed from them (Fig. 4.3).  
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Fig. 4.1 Percentage rooting of shoots of TAG31, GN155 and NH58, over 30 days on 

rooting medium containing 0.1 mg l-1 IBA. Shoots were produced on standard 

multiplication and elongation media. The values are the mean ± SE (n=30), different 

letters denote significant differences as determined by one way analysis of variance 

(P<0.05)  

 

The extent to which the shoots of GN155 were able to perceive exogenous auxin was 

then tested by including the inhibitor of auxin signal transduction, PCIB (Oono et al. 

2003) in the rooting medium, which was also supplemented with 0.5 mg l-1 IBA, IAA or 

NAA (Table 4.2). In the presence of 50 µM PCIB, none of the auxin treatments were 

able to induce root production significantly by day 30 (Table 4.2).  

 

a 

b 
b 
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Fig. 4.2  Percentage rooting of GN155 shoots, over 30 days on rooting medium 

containing 0.1 mg l-1 or 0.5 mg l-1 IBA (◊, ), IAA (▲,│) or NAA (X, ▬). Shoots 

were produced on standard multiplication and elongation media. The values are the 

mean ± SE (n=30). The data were analysed using one way analysis of variance followed 

by Fisher‟s least significant difference. Different letters indicate significant differences 

(P<0.05) 

 

A B
 

Fig. 4.3 Typical basal callus formation in response to A) 0.5 mg l-1 IBA or NAA, or B) 

0.5 mg l-1 IAA 
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Table 4.2 Percentage rooting of GN155 shoots cultured on rooting media containing 0.5 

mg l-1 indole 3-acetic acid (IAA), indole 3-butyric acid (IBA) or 3-napthalene acetic 

acid (NAA), together with the auxin signal transduction inhibitor p-

chlorophenoxyisobutyric acid (PCIB, 50 µM). The values are the mean ± SE (n=30). 

The data were analysed using one way analysis of variance followed by Fisher‟s least 

significant difference. All values were found to be statistically similar (P>0.05 for all 

statistical comparisons) 

 

In order to test the hypothesis that rooting efficiency is dependent on a clone‟s ability to 

hydrolyse auxin conjugates (van der Krieken et al. 1992; Epstein and Ludwig-Müller 

1993; Epstein et al. 1993; George et al. 2008), the rooting ability of GN155 was 

assessed by including the auxin conjugation inhibitor DHAP, together with 0.1 mg l-1 

IBA, in the rooting medium (Fig. 4.4). By the end of the 30 day culture period, no 

significant increase in rootability was observed, with rooting still below 55% in the 

presence of 2 mM DHAP (Fig. 4.4). Mean rooting time for the 0.1 mg l-1 IBA (without 

DHAP) was 5.9 days, 6.5 days for the 0.1 mg l-1 + 1 mM DHAP, and 7.7 days for the 

0.1 mg l-1 + 2 mM DHAP treatments. 

 % Rooting 

Time (days) IAA IBA NAA 

5   0 0 0 

15  6.3±5.5 0 0 

30  6.3±5.5 6±5.7 5.3±5.5 
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Fig. 4.4 Percentage rooting of GN155 shoots, over 30 days on rooting medium 

containing 0.1 mg l-1 IBA alone (◊), and 0.1 mg l-1 IBA with either 1mM () or 2 mM 

1,6-dihydroxyacetophenone (DHAP) (∆). Shoots were produced on standard 

multiplication and elongation media. The values are the mean ± SE (n=30). The data 

were analysed using one way analysis of variance followed by Fisher‟s least significant 

difference, and found to be statistically similar, as indicated by common letters (P>0.05) 

 

Having established that GN155 was able to perceive exogenous auxin (Table 4.2) and 

inhibition of exogenous auxin conjugation did not markedly increase its rooting 

efficiency (Fig. 4.4), the effect of plant growth regulators (PGRs) supplied during the 

elongation stage on rooting was tested. Shoots of TAG31 (good rooter) and GN155 

(poor rooter) were transferred from multiplication medium onto seven elongation media 

(E1 to E7), each with different combinations of auxin and cytokinin analogues 

(variation on the standard elongation medium, E1) (Table 4.1). Following these 

treatments, the shoots were transferred to rooting medium lacking auxin. The results 

show that the levels and combinations of the PGRs used during shoot elongation 

significantly influenced the rooting ability of the shoots of both tested clones (Table 

4.3). TAG31 rooted best (100%) when elongated on the standard medium (E1, 

containing kinetin, NAA and IBA), on the medium lacking kinetin (E5, containing 
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NAA and IBA) and on the medium devoid of PGRs (E7) (Table 4.3). However, its 

percentage rooting was significantly inhibited when kinetin was supplied alone (E6), or 

in conjunction with the unstable auxin IAA (E4), or with a low concentration of the 

stable auxin IBA (E3) (Table 4.3). While a similar trend in rooting ability in response to 

the auxins and cytokinin present in the elongation media was observed for shoots of 

GN155, it was apparent that this clone was more dependent on exogenous auxin to 

counteract the inhibitory effects of kinetin on root production than TAG31 (Table 4.3). 

In the presence of kinetin, root production was inhibited in relation to the concentration 

and stability of the auxins used in the elongation stage. This was indicated by the 

percentage rooting of GN155 shoots following elongation on media E2, E3 and E4 

(Table 4.3). While no significant difference in rooting was observed between E1 and E2 

(containing the relatively stable, but synthetic NAA), a significant increase in rooting 

resulted following elongation on media containing kinetin and either a low 

concentration of the relatively stable IBA (E3), or a higher concentration of the less 

stable IAA (E4) (Table 4.3). The percentage rooting of GN155 shoots elongated with 

kinetin alone was not significantly different from that obtained following elongation on 

E3 or E4, eluding to the possible effects of endogenous auxins on rootability (Table 4.3, 

see later for further discussion).  

As the rooting results of GN155 from the E1 and E7 treatments show, the absence of 

exogenous phytohormones from the elongation stage did not significantly affect root 

production (Table 4.3). However, rooting was significantly enhanced (80.3%) by 

removing the kinetin while retaining the auxins NAA and IBA (E5) during shoot 

elongation, prior to rooting on an auxin-free rooting medium. The rooting ability of this 

clone was restored (100% rooting) with the addition of 0.1 mg l-1 IAA, IBA or NAA to 

the rooting medium (Fig. 4.5), with mean rooting times of 12.3, 14.9 and 15.2 days for 

the IAA, IBA and NAA treatments, respectively.  
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Fig. 4.5 Percentage rooting of shoots of GN155, elongated on E7 (Table 4.1) and 

transferred to rooting media containing 0.1 mg l-1 IAA (◊), IBA () or NAA (∆). The 

values are the mean ± SE (n=30). The data were analysed using one way analysis of 

variance followed by Fisher‟s least significant difference and found to be statistically 

similar (P>0.05) 

 

The inability of GN155 shoots to produce roots, when subjected to the standard protocol 

(E1), and the restoration of rootability by removing kinetin from the elongation medium 

suggested that exogenous cytokinin during the pre-rooting culture stages inhibited root 

production, either directly or through the alteration of endogenous phytohormone levels 

in the shoots. To test this, the endogenous levels of kinetin, IAA, IBA and NAA of 

shoots of TAG31 and GN155, cultured on selected elongation media (E1, E5, E6 and 

E7) were determined using GC-MS (Table 4.3). As expected, shoots produced on media 

containing no phytohormones (E7) had the lowest levels of these compounds and those 

produced on media containing kinetin (E1 and E6) had the highest synthetic cytokinin 

content, irrespective of the clone identity. The addition of the auxin analogues IBA and 

NAA (E1 and E6) resulted in an increase in endogenous IAA content to levels 

comparable or in excess of those of the auxin analogues themselves (Table 4.3). After 

elongation on E1, the ratio of kinetin to auxin was four times higher in GN155 than in 

TAG31 (2.6 and 0.58, respectively).  However, when shoots of GN155 were elongated 
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on E5 (excluding kinetin, but containing NAA and IBA), kinetin:auxin was reduced to 

0.39 and rooting increased to 80%  (Table 4.3). A strong relationship between the 

kinetin:auxin ratio and percent rooting (R2 = 0.943) of shoots of both tested clones 

following elongation on selected media, indicated the inhibitory effect of high 

kinetin:auxin on root induction (Fig. 4.6).  

 

Table 4.3 Percentage rooting of shoots of TAG31 and GN155 after 30 days, following 

elongation on different media (E1-E7), and rooted in the absence of exogenous auxins. 

E1 = standard protocol (Table 4.1). The values are the mean ± SE (n=30). The data were 

analysed using one way analysis of variance followed by Fisher‟s least significant 

difference and values that do not share letters are significantly different (P<0.05) from 

each other 

Elongation media PGR (mg l-1) % rooting 

  TAG31 GN155 

E1 
0.3 NAA, 0.2 kinetin, 0.05 

IBA 
100a 10±2d 

E2 0.3 NAA, 0.2 kinetin 68.3±2.9b 6±5.3d 

E3 0.05 IBA, 0.2 kinetin 29±3.6c 18±2e 

E4 0.37 IAA, 0.2 kinetin 31.3±5.5c 19±2.6e 

E5 0.3 NAA, 0.05 IBA 95±8.6a 80.3±4.5f 

E6 0.2 kinetin 37.3±2.5c 21.3±4.2e 

E7 None 91.7±7.6a 9.3±1.1d 
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Fig. 4.6 Linear regression of rootability (percentage rooting) to endogenous cytokinin: 

auxin ratios during the elongation culture stage  

 

Since kinetin appeared to accumulate to higher amounts in the shoots of GN155 than in 

TAG31 and subsequently inhibited rooting, an additional elongation medium was tested 

(E8). It contained trans-zeatin, a cytokinin less stable than kinetin (George et al. 2008), 

and was selected in an attempt to reduce the inhibitory effect of cytokinin accumulation 

on root induction. This trans-zeatin-containing medium (E8) was comparable to E4, 

except that kinetin was replaced with 0.91 µM trans-zeatin (Table 4.1). Following 

elongation, shoots were transferred to rooting media containing 0.1 mg l-1 IAA. Under 

these conditions, percentage rooting was significantly higher in the trans-zeatin (E8) 

than in kinetin-containing (E4) medium, albeit lower than on the medium devoid of 

cytokinins (E5) (Fig. 4.7). Mean rooting times for shoots on these treatments (Fig. 4.7) 

were 12.3, 8.11 and 2.9 days for cytokinin-free, trans-zeatin and kinetin-containing 

media, respectively. The observed inhibitory effect of kinetin and trans-zeatin supply 

during shoot elongation on subsequent rooting was then tested with NH58, another poor 

rooting clone (Fig. 4.1). Following elongation on E4 (kinetin-containing), E5 

(cytokinin-free), and E8 (trans-zeatin-containing) (Fig. 4.8), it became apparent that the 

rooting ability of the two tested poor-rooters could be significantly improved by 
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omitting or modifying the cytokinin type used in the elongation medium. Recorded 

mean rooting times were 11.2, 7.9 and 4.9 days for the cytokinin-free, trans-zeatin and 

kinetin treatments, respectively. 

 

Table 4.4 Average concentrations (± standard error of the mean) of extractable IAA, 

IBA, NAA and kinetin in elongated shoots of the tested clones, prior to rooting in an 

auxin-free medium, following each elongation treatment. Refer to Table 3 for % rooting 

for each treatment. The ratio of kinetin: auxin is indicated 

 

 

 

 

Clone Elongation 
medium Extractable PGR ( µmol/g DW) 

Total 
cytokinin/total 

auxin 

  IAA  IBA  NAA  Kinetin   

1 

E1 0.33±0.08 0.33±0.02 0.15±0.04 0.47±0.2 0.58 

E5 0.13±0.015 0.02±0.007 0.22±0.13 0.12±0.03 0.2 

E6 0.12±0.1 0.04±0.03 0.07±0.03 0.51±0.2 2.2 

E7 0.08±0.04 0.02±0.01 0.014±0.01 0.09±0.07 0.8 

2 

E1 0.2±0.05 0.05±0.02 0.14±0.09 1.01±0.2 2.6 

E5 0.18±0.06 0.03±0.008 0.63±0.3 0.33±0.04 0.39 

E6 0.17±0.08 0.09±0.06 0.02±0.013 0.68±0.35 2.42 

E7 0.06±0.04 0.02±0.004 0.007 0.28±0.16 3 
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Fig. 4.7 Percentage rooting of shoots of GN155, elongated on either E4 (kinetin-

containing medium) (◊), E7 (no cytokinins) (∆), or E8 (trans-zeatin-containing medium) 

(), followed by rooting on medium containing 0.1 mg l-1 IAA. The values are the 

mean ± SE (n=30). The data were analysed using one way analysis of variance followed 

by Fisher‟s least significant difference. Different letters denote significant differences 

(P<0.05)  
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Fig. 4.8 Percentage rooting of shoots of NH58, elongated on either E4 (kinetin-

containing medium) (◊), E7 (no cytokinins) (), or E8 (trans-zeatin-containing 

medium) (∆), followed by rooting on media containing 0.1 mg l-1 IAA. The values are 

the mean ± SE (n=30). The data were analysed using one way analysis of variance 

followed by Fisher‟s least significant difference. Different letters denote significant 

differences (P<0.05) 

 

4.4 Discussion 

 

Successful root induction is a critical step in vegetative propagation programmes, and 

different species and genotypes within a species are known to vary greatly in this regard 

(Eldridge et al. 1994; Jones and van Staden 1997; George et al. 2008). Such variation 

has been attributed to a range of biotic and abiotic factors (Geiss et al. 2009), most 

notably the availability of PGRs, particularly auxins and cytokinins (George et al. 

2008). 

The present study was aimed at elucidating the effects of auxins and cytokinins on root 

induction in three eucalypt clones of varying rooting ability (Fig. 4.1), using an in vitro 

approach. It was initially found that the popular auxins employed in Eucalyptus sp. 

a 

b 

c 
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micropropagation, i.e. IBA, IAA and NAA, did not increase the rooting ability of 

GN155 (poor-rooter) (Fig. 4.2), none of which were able to produce over 50% rooted 

shoots, even at 0.5 mg l-1. Predictably, given that IAA is the least stable of the tested 

auxins (George et al. 2008), treatment of GN155 shoots with 0.1 mg l-1 IAA resulted in 

the lowest rooting potential. While callus production was visible at the base of all 

shoots, those treated with 0.5 mg l-1 IAA developed the least basal callus, in keeping 

with the higher stabilities of IBA and NAA in plant tissues (George et al. 2008). The 

lack of any significant rooting response from shoots of GN155 in the presence of PCIB, 

a known inhibitor of auxin signal transduction (Oono et al. 2003), indicated that it was 

able to perceive the exogenous auxin (Table 4.2). This, together with shoot basal callus 

formation in the presence of exogenous auxin in the rooting stage (without PCIB), 

suggested that in this poor-rooter (GN155), the supplied auxin was directed towards 

callus formation, rather than rhizogenesis. 

Studies into auxin metabolism have shown that auxins are rapidly taken up by cells 

either through influx carrier proteins or through passive diffusion (reviewed by Leyser 

1999; Muday and de Long 2001). Further, they are rapidly conjugated or oxidated to 

inactive forms through enzymatic action within the cell (de Klerk et al. 1999; George et 

al. 2008), which results in only a small portion of the supplied auxin occurring in the 

free form (de Klerk et al. 1999). This has led to the suggestion that a clone‟s ability to 

produce roots depends on the ease and timing at which it can hydrolyse these 

conjugated auxins to free auxin forms (van der Krieken et al. 1992; Epstein and 

Ludwig-Müller 1993; Epstein et al. 1993; George et al. 2008). In support of this, work 

conducted by Epstein et al. (1993) on cuttings of sweet cherry, showed that an easy-to-

root cultivar metabolised IBA conjugates slower than a difficult-to-root cultivar, leaving 

free IBA available for a longer period within the shoots. Such conjugates have been 

suggested to serve as a sustainable source of auxin (Wiesman et al. 1989). The addition 

of the auxin conjugation inhibitor DHAP significantly improved the percentage rooting 

in difficult-to-root cuttings in that study (Epstein et al. 1993). However, such a response 

was not obtained in the present investigation with the addition of 2 mM DHAP. This did 

not significantly increase the rootability of GN155 shoots, indicating that this clone‟s 

poor rooting ability could not be attributed solely to its inability to hydrolyse auxin 
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conjugates (Fig. 4.4). Auxin metabolism is not autonomous, and a complex interaction 

exists between auxin and a number of other plant growth regulators. Of interest to the 

present study, was the interaction between auxins and cytokinins as they are the main 

PGRs used in in vitro regeneration protocols (George et al. 2008). The general model of 

organogenesis states that a high auxin to low cytokinin ratio favours root formation, 

while a high cytokinin to low auxin ratio favours shoot proliferation (Skoog and Miller 

1957; George et al. 2008), a principle applied in micropropagation protocols. Both 

auxins and cytokinins are essential in the regulation of the cell cycle (Mok and Mok 

1994) and they have been shown to work antagonistically within root tissues (Brault and 

Maldiney 1999; George et al. 2008; Kuderová and Hejátko 2009). Cytokinins have also 

been found to modulate auxin-induced organogenic processes through the regulation of 

auxin efflux (Pernisová et al. 2009). Apart from research based on establishing effective 

(largely clone-specific) in vitro protocols (e.g. Le Roux and van Staden 1991; Jones and 

van Staden 1997; Gomes and Canhoto 2003; Arya et al. 2009), relatively few studies 

have documented the interaction between auxins and cytokinins on the rootability 

through micro- or macro-propagation of commercially important eucalypt clones, or the 

reasons for poor rooting percentages achieved with many of these clones. 

On the hypothesis that the plant growth regulators used during the pre-rooting culture 

stages affected the tested clones‟ rootability, both clones were elongated on a range of 

media (Table 4.1) and subsequently transferred to rooting medium without exogenous 

auxins. Compared with GN155 (poor rooter), shoots of TAG31 (good rooter) displayed 

a greater ease of rooting, relative to the exogenous auxin type and concentration 

supplied in the elongation treatments (Table 4.3). The more stable auxins, IBA and 

NAA, in elongation yielded higher rooting percentages for clone 1 than the elongation 

medium with IAA (except in E5, in which the IBA concentration was minimal). Shoots 

of GN155 on the other hand, were not able to achieve more than 22% rooting when 

elongated on media containing kinetin, either with or without auxins. Eliminating 

kinetin from the elongation medium (E7) of GN155 did, however, result in at least 80% 

rooting in auxin-free rooting medium and 100% rooting in media containing 0.1 mg l-1 

auxin (either as IAA, IBA or NAA) (Fig. 4.5). This indicates that the poor rootability of 

some eucalypt clones may be due to excess cytokinin supplied and stored during the 
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pre-rooting culture stages. This proposal was further supported by GC-MS analysis of 

IAA, IBA, NAA and kinetin in the shoots of both tested clones, following elongation on 

selected media (Table 4.4), but prior to rooting. From these results, it was deduced that 

the exogenous kinetin in the elongation stage heavily influenced the cytokinin:auxin 

ratio, thereby inhibiting root induction in GN155 (Fig. 4.6).  

Cytokinins themselves have complex metabolic pathways which include conjugation 

and degradation reactions (Mok and Mok 1994; van Staden and Crouch 1996; Haberer 

and Kieber 2002; George et al. 2008). Natural cytokinins (such as trans-zeatin and 

isopentenyladenine) are degraded by the naturally-occuring enzyme cytokinin oxidase 

(Mok and Mok 2001; Haberer and Kieber 2002; George et al. 2008). The rapid 

enzymatic breakdown of some natural cytokinins has been regarded as the reason for 

their ineffectiveness in many culture protocols. In this context, it has been suggested 

that cytokinins that are not substrates of the cytokinin oxidase enzyme (such as kinetin), 

may last longer in plant tissues (George et al. 2008). In the present study, the synthetic 

cytokinin kinetin would therefore have likely persisted within shoots of the two poor-

rooting clones. Since cytokinins generally delay or even inhibit root formation (Brault 

and Maldiney 1999; George et al. 2008; Kuderová and Hejátko 2009), the percentage 

rooting of GN155 and NH58, following elongation with either kinetin or trans-zeatin 

(Figs. 4.7 and 4.8), reflected the relative persistence of these cytokinins in shoots. These 

results suggest that a relationship exists between cytokinin depletion and root formation 

in the tested poor-rooting eucalypt clones, regardless of genotype. The use of trans-

zeatin instead of kinetin during elongation did significantly increase the rooting ability 

of GN155 (Fig. 4.7) and NH58 (Fig. 4.8), while complete cytokinin omission during 

elongation resulted in even higher rooting percentages in both clones (GN155 and 

NH58) (Figs. 4.7 and 4.8). 

Collectively, the data indicate that in the development of micropropagation protocols 

for specific clones, the complex interactions that exist between the two main 

phytohormone groups - auxins and cytokinins - and, in particular, their stabilities and 

metabolic requirements within plant tissues need to be considered in order to achieve 

the objective of each culture stage. Improving eucalypt micropropagation protocols to 
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increase the yield of difficult-to-propagate clones (such as in the present study), is an 

essential tool in tree improvement programmes, which are highly beneficial to the 

forestry industry (de Assis et al. 2004) 

It is possible that the present observations have implications for vegetative propagation 

of eucalypts through minicuttings under nursery conditions, in that altering the 

endogenous cytokinin:auxin ratios of minicuttings through treatments of parent plants 

(e.g. exogenous PGRs may potentially result in greater rooting abilities of known poor-

rooting clones). This in turn would greatly enhance yield rates in forestry programmes. 
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5.1 Background 

 

As previously discussed, vegetative propagation is a valuable tool in the management 

practices and propagation of commercially-important forestry species, such as 

Eucalyptus. Not only does it allow for the preservation of superior selected genotypes, 

but it also eliminates the erratic and/or poor yields of plants characteristic of 

propagation that relies on seed production. In addition, vegetative propagation often 

represents the only viable means of perpetuating valuable hybrid genotypes. Since the 

1950s, eucalypts have and continue to be widely vegetatively propagated, mainly 

through macro- or mini- cuttings. Efforts to increase the productivity of plantations have 

led to the development of several methods to supply superior material to the industry, 

such as clonal hedges and hydroponics (Denison and Kietzka 1993a; de Assis et al. 

2004). These methods were aimed at maintaining desired genotypes while providing a 

sufficient amount of superior planting material for commercial forest deployment. One 

of the drivers behind these developments was the need to increase the rooting potential 

of cuttings from elite genotypes. Initially, as it was recognised that rooting ability 

decreased as the parent material aged (de Assis et al. 2004), i.e. juvenile material rooted 

better than older material, efforts were directed at maintaining juvenility. However, 

despite significant advances made towards increasing the rooting ability of 

commercially important pure and hybrid eucalypts, the difficulty of producing 

adventitious roots from cuttings of many clones has persisted (Eldridge et al. 1994; de 

Assis et al. 2004; López et al. 2010). As a result, many potentially valuable clones have 

been excluded from commercial forestry (Eldridge et al. 1994; de Assis et al. 2004; 

Saya et al. 2008).  

An important advancement in the understanding of adventitious rooting was achieved 

using in vitro technology (Trindade and Pais 1997; Gomes and Canhoto 2003; 

Nourissier and Monteuuis 2008). The process of micropropagation was found to restore 

juvenility of old material, resulting in microcuttings (sourced from micropropagated 

plants) rooting more easily than macro- or mini- cuttings (de Assis et al. 2004). In 
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addition to restoring juvenility, micropropagation offered benefits such as high shoot 

multiplication rates, the potential to root valuable clones that could not be readily rooted 

as cuttings, and provided a means of plantlet regeneration following genetic 

modification. However, due to the lack of knowledge regarding their long-term field 

performance, micropropagated plants have largely been excluded from commercial 

forestry deployment. As discussed, only a few reports have documented field trials of 

micropropagated eucalypts (e.g. Bell et al. 1993; Watt et al. 1995; Mokotedi et al. 

2010). Those of Bell et al. (1993) and Mokotedi et al. (2010) investigated various 

parameters regarding the above- and below- ground performance of micropropagated 

plants compared with plants from seed- or cuttings- propagation. Whereas in both of 

those studies, little or no significant differences were reported for above-ground 

physiology, that by Mokotedi et al. (2010) found differences at 16 months in the field. 

These included micropropagated plants exhibiting a root system that was significantly 

less resistant to vertical uprooting than roots of seedlings or cuttings. Given the fast 

growth rates and heights of productive eucalypts forests, trees with reduced anchorage 

are of particular concern in this industry.  

While several factors govern the formation of adventitious roots in vitro, one of the key 

determinants is the exogenous application of PGRs (Geiss et al. 2009). Since various 

genotypes respond differently to exogenous PGR application (Fogaça and Fett-Neto 

2005; Nourissier and Monteuuis 2008; Mankessi et al. 2009), a range of exogenous 

PGRs and their concentrations have been empirically prescribed for root induction in 

vitro (Table 1.2). Attempts at promoting adventitious rooting in difficult-to-root 

genotypes have frequently led to the use of a range of auxin analogues with varying 

potencies (Table 1.2). These analogues – natural or synthetic – are often unique in their 

perception, transport, metabolism, or interaction with other endogenous and exogenous 

growth regulators (de Klerk et al. 1999; de Rybel et al. 2009; Tromas and Perrot-

Rechenmann 2010). These differences could potentially result in dissimilar regulation 

of growth and development, in keeping with the specific perception and transport routes 

of the various PGRs, as reports suggest (Mok and Mok 2001; Moubayidin et al. 2009; 

Petrášek and Friml 2009). In addition to such variations in PGR action, shoot responses 
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to exogenously applied PGRs are often genotypic (Fogaça and Fett-Neto 2005; 

Nourissier and Monteuuis 2008; Mankessi et al. 2009).  

In order to understand the roles of PGRs on the rooting ability of various eucalypt 

genotypes, the approach taken in the present study was to use eucalypt genotypes of 

differing rooting abilities and incorporate inhibitors and antagonists of auxin transport 

and action to investigate the specific roles of auxin analogues on in vitro eucalypt root 

induction and development. The selected clones - a good-rooting E. grandis (TAG31) 

and two poor-rooting hybrids - E. grandis x nitens (GN155) and E. grandis x nitens 

natural hybrid (NH58) – were utilised to develop an understanding of the interactions of 

auxins and cytokinins in root development, relative to the genotypic responses to 

exogenously applied PGRs.  

 

5.2  PGR choice for in vitro root induction and 

development 

 

5.2.1 The need for IAA  

The forestry industry has a range of clones with differing morphogenic abilities at its 

disposal. Considering the varied responses that these eucalypt genotypes display to 

PGRs in vitro, variations in the stabilities and modes of action of cytokinin and auxin 

analogues are useful when empirically selecting an analogue for shoot and root 

production. As often mentioned in this document, when devising a protocol for in vitro 

organogenesis, the worker‟s tendency has been to select a cytokinin or an auxin that 

results in the best shoot or root production, assessed in terms of number or appearance 

(e.g. Warrag et al. 1990; Nourissier and Monteuuis 2008; Mankessi et al. 2009). The 

range of cytokinin and auxin analogues and the concentrations that have been prescribed 

for the micropropagation of the various commercially-important clones is testament to 

this (Table 1.2). However, while phytohormone stability or „potency‟ may be desirable 

for a specific in vitro stage of morphogenesis, the results of the studies presented here 
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indicate that the persistence of a stable phytohormone may hamper morphogenesis in 

subsequent stages, where its presence may be inhibitory. A further consideration is that 

both good- and poor- rooting clones are affected to different degrees by this hormone 

carryover effect, illustrating genotypic effects to PGR application and action. For 

example, in the present study, the tested poor-rooters (GN155 and NH58), were more 

susceptible to the inhibitory effects of kinetin persistence from the pre-rooting culture 

stages on root induction than TAG31 (good-rooter).  

The data collected using the good-rooting clone TAG31, suggested that the auxins 

supplied during the multiplication and elongation stages persisted into the rooting stage 

(Figs. 2.1 and 2.2). This was supported by the fact that this clone rooted best in auxin-

free rooting medium. The supply of exogenous auxin (IBA, IAA or NAA) at the rooting 

stage possibly resulted in a supra-optimal auxin environment, leading to a reduction in 

rooting ability (Fig. 2.1). As a consequence of reducing the auxin exposure of shoots 

from the pre-rooting culture stages, however, a sub-optimal auxin environment was 

created, which resulted in a reduction in percentage rooting, with a concomitant 

reduction in root graviperception (Fig. 2.2; Table 2.2). Roots that displayed reduced 

gravitropism were shown, histologically, to have inconsistent or no starch grain 

accumulation is root cap columella cells compared with normal graviperceptive roots in 

vitro (Fig. 2.4). This indicated that eucalypt shoots require auxins within a specific 

concentration range in order to induce roots and ensure the correct physiological 

properties of these roots, such as gravitropism, are met. In addition, a direct relationship 

was recognised between shoot IAA concentration and root graviperception (Table 2.2). 

These findings not only supported the need for auxins in adventitious rooting and in 

gravitropism, but also suggested that the specific properties of IAA (transport and 

action) are critical in root development.  

The typical stages of adventitious root development are cellular dedifferentiation, 

induction and initiation, development of root initials into root primordia and, finally, 

root emergence (Hartmann et al. 1997; Kevers et al. 1997; de Klerk et al. 1999; Geiss et 

al. 2009). In vitro studies using apple shoots have indicated that although cells are 

responsive to and require auxins during the dedifferentiation and the induction to 
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initiation stages, auxins become inhibitory following root primordia development (de 

Klerk et al. 1995; de Klerk et al. 1999). If auxins are inhibitory following the 

development of root primordia, then maintaining a supra-optimal auxin environment in 

vitro hampers root development and emergence, resulting in a reduction in percentage 

rooting, as was observed with the good-rooting clone TAG31 (Fig. 2.1). The rationale 

for successful in vitro rooting should, therefore, be to maintain an optimum auxin 

environment, which is also dynamic and in keeping with the changing auxin 

sensitivities of the developing adventitious roots. One way to achieve this is through the 

use of auxins and cytokinins that degrade as they would in the natural formation of 

adventitious roots, following their respective actions. This would eliminate the 

possibility of their persistence into subsequent stages of morphogenesis where they may 

be inhibitory. For example, an auxin should be freely available within plant tissues for 

the duration of the dedifferentiation, induction and initiation stages of adventitious 

rooting, and then rapidly „disappear‟ (through conjugation or oxidation, as reported for 

most auxins) (Centeno et al. 1999; Woodward and Bartel 2005), before the subsequent 

stages of rooting. The differing stabilities of the auxin analogues and their 

concentrations used in micropropagation protocols are compliant with this requirement, 

as shown in the present work (Chapter 2). 

Studies undertaken to investigate the influence of the stabilities of IAA, IBA or NAA on 

in vitro rooting of TAG31 shoots (Chapter 2), revealed that root induction and post-

acclimatisation development were dependent on the respective analogue‟s stability. 

While all of those tested analogues have been reported to be inactivated through 

conjugate formation (Centeno et al. 1999; Woodward and Bartel 2005), IAA is 

relatively more unstable compared with IBA and NAA, due to its rapid oxidative 

degradation (de Klerk et al. 1999; Woodward and Bartel 2005). For these reasons, in 

TAG31, following the induction of adventitious roots, IBA and NAA were likely to 

have persisted longer in plant tissues compared with IAA, resulting in a supra-optimal 

and thus inhibitory auxin environment with regard to root development, following the 

initiation of adventitious roots in TAG 31. Hence, it is proposed that when IBA and 

NAA were supplied at a relatively high concentration in the rooting medium (0.5 mg l-

1), their respective stabilities allowed for their persistence into the acclimatisation stage. 
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This also resulted in the formation of new roots with architecture tending towards I-

beam (Fig. 2.5). These findings may explain the results reported by Mokotedi et al. 

(2010), in which micropropagated eucalypts, rooted in vitro using IBA, developed I-

beam shaped roots in the field, with compromised anchorage as a result of significantly 

reduced uprooting resistance. In view of the results presented here, a less stable auxin 

such as IAA is suggested to be more suitable for the long-term development of quality 

roots. 

Many aspects of the current understanding of auxin transport and action have been 

gained through the use of auxin inhibitors and antagonists (Geldner et al. 2001; de 

Rybel et al. 2009). Adopting a similar approach in this study allowed for the specific 

roles of IAA, IBA and NAA on in vitro root morphogenesis to be investigated. It was 

found that, whereas all three analogues were able to induce roots in TAG31 

successfully, in the presence of the IAA-specific transport inhibitor TIBA in the rooting 

medium, subsequent root development was impaired (Figs. 2.3; 3.2D, 3.3B and 3.4B). 

These findings supported the model that describes the polar transport of IAA through 

the AUX1 and PIN protein families of influx and efflux transporters as the effector of 

root graviperception (Swarup and Bennett 2009). Despite other auxin analogues (IBA 

and NAA) being suitable for root induction, their action could not replace that of IAA 

during root development in the tested clones. Furthermore, when shoots of TAG31 were 

transferred to medium containing TIBA or PCIB (inhibitors of IAA efflux and auxin 

signal transduction, respectively) after root induction, alterations in root vascular 

patterning and root tip development were recorded. These results not only confirmed the 

role of auxins in vascular patterning and root tip maintenance (Berleth et al. 2000; Ye 

2002), but also emphasised that IAA was required in the investigated root development 

parameters, by virtue of its specific polar transport. Bearing in mind that IAA 

availability and transport are essential for root development, one questions whether the 

increased rooting potential of shoots achieved by many workers through the use of more 

stable auxin analogues (e.g. Gomes and Canhoto 2003; Nourissier and Monteuuis 2008; 

Mankessi et al. 2009) justifies their use in eucalypt micropropagation. This is raised, 

given that the quality of roots induced using stable analogues, and potentially of the 

quality of the whole plant may be compromised. This choice of auxin should, therefore, 
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be considered in view of the close relationship between plant productivity and root 

architecture (Lynch 1995). Even though analogues such as IBA and NAA may 

outperform IAA in certain root developmental responses, such as the induction of 

adventitious roots, IAA is required in virtually all root physiological processes. This 

being the case, why and how do IAA analogues (e.g. IBA and NAA) function in certain 

root physiological responses (e.g. root induction), and not others (e.g. gravitropism or 

the maintenance of root vasculature)? The mechanisms of auxin signal perception, 

transduction and transport explain the basis behind these variations in the actions of the 

auxin analogues. 

As discussed earlier, auxin is perceived by receptors of the Transport Inhibitor 

Response/Auxin Signalling F-box (TIR1/AFB) family of proteins, which are subunits of 

a ubiquitin ligase complex (SCFTIR1) responsible for the degradation of Aux/IAA auxin 

transcription repressors (Tromas and Perrot-Rechenmann 2010; Simon and Petrášek 

2011). This receptor has been shown to recognise IAA and at least two other synthetic 

auxin analogues - NAA and 2,4-D (Dharmasiri et al. 2005; Kepinski and Leyser 2005). 

However, to-date, no evidence suggests that IBA is included among its recognition 

molecules. Recent reports have documented a dual-specificity phosphatase-like protein, 

IBA Response 5 (IBR5), which promotes and regulates auxin response gene expression 

through a pathway distinct from the TIR/AFB-mediated repressor degradation in 

Arabidopsis (Strader et al. 2008). The fact that Arabidopsis ibr5 mutants are resistant to 

the actions of IBA, supports this (Monroe-Augustus et al. 2003). Those findings suggest 

that alternate pathways of auxin signalling exist, with IBA perception and signal 

transduction being different to that described for IAA, which is core to the system 

controlling auxin gene expression and action (Tromas and Perrot-Rechenmann 2010). 

The implication is that when exogenous IBA is supplied in vitro, it is either converted to 

IAA or is perceived as IBA, in which case it acts independently of IAA. Both of these 

pathways have been reported in plants (Tromas and Perrot-Rechenmann 2010; Simon 

and Petrášek 2011), as well as instances where exogenous IBA interacts with 

endogenous IAA to elicit the required auxin response (Ludwig-Müller et al. 2005).     
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In the present study, IBA was able to induce roots in the presence of the IAA-specific 

transport inhibitor TIBA when IAA was unable to do so, indicating that IBA can act 

independently at least for root induction in eucalypts. However, root development 

following induction relied on IAA, since the presence of TIBA resulted in 

agravitropism, alterations in vascular patterning and changes in root tip development 

(Figs. 3.3B and 3.4B). These results suggest that the IBA analogue can only transiently 

replace the actions of IAA, possibly by virtue of its alternate perception and signalling 

pathway. The findings presented in this study also highlighted the importance of auxin 

transport via the AUX1 and PIN influx and efflux transporters, characteristic of IAA. 

Although auxin influx and efflux transporters maintain a degree of specificity by virtue 

of being proteins, some cross-functioning within these transport proteins has been 

reported. AUX1, the protein responsible for IAA influx, also facilitates influx of the 

synthetic auxin analogue 2,4-D, but not the influx of NAA or IBA (Delbarre et al. 1996; 

Yamamoto and Yamamoto 1998; Tromas and Perrot-Rechenmann 2010). Similarly, the 

PIN proteins responsible for IAA efflux also facilitates NAA efflux, but not the efflux 

of 2,4-D or IBA (Delbarre et al. 1996; Utsuno et al. 1998). This implies that 2,4-D and 

NAA are incapable of sustaining plant responses that require auxin polar transport 

through the AUX1 and PIN transporters (e.g. gravitropism). As the IBA analogue does 

not share either of the influx or efflux transport proteins with IAA (Poupart and 

Waddell 2000; Strader and Bartel 2011), and even though it is transported in a polar 

manner (Poupart and Waddell 2000; Rashotte et al. 2003), it did not replace IAA polar 

transport in the tested clones.     

It appears that the central principle in root morphogenesis, with respect to the auxins, is 

creating and maintaining an auxin concentration gradient and maintaining auxin 

homeostasis through the biosynthesis, conjugation, transport, degradation, distribution 

and even interconversion of auxin analogues (Petrášek and Friml 2009; Simon and 

Petrášek 2011). As the most likely auxin implicated in root morphogenesis is IAA, other 

auxin analogues have been suggested to contribute to the creation of IAA concentration 

gradients within root tissues and to the overall maintenance of IAA homeostasis 

(Petrášek and Friml 2009; Simon and Petrášek 2011). These analogues may, therefore, 
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participate in specific parts of the complete auxin response (i.e. localised response), but 

are limited in their action compared with IAA. This is manifested in detectable but not 

sustained auxin effects. For example, IBA is an endogenous auxin and may act 

independently from IAA in exerting certain auxin responses (Ludwig-Müller 2000; 

Ludwig-Müller 2007; Simon and Petrášek 2011). However, given that no IAA-

independent biosynthetic pathway has yet been identified for IBA, and the endogenous 

levels of IBA depend on those of IAA (Simon and Petrášek 2011), it is more likely that 

IBA serves as a source of IAA. Storing auxins as IBA ensures auxin availability, since 

IBA conjugates are a more stable storage form of auxins from which IAA can be 

synthesised via peroxisomal β-oxidation enzymes (Epstein and Ludwig-Müller 1993; 

Zolman et al. 2008; Strader and Bartel 2011). It is suggested, therefore, that analogues 

of IAA contribute to the maintenance of IAA concentration gradients and homeostasis, 

which are reported to be the critical factors determining a number of aspects of plant 

growth and morphogenesis (Kieffer et al 2010; Tromas and Perrot-Rechenmann 2010; 

Simon and Petrášek 2011).   

 

5.2.2 Choosing a cytokinin: a case for natural analogues 

Exogenous cytokinins are necessary during in vitro organogenesis to promote shoot 

multiplication (George et al. 2008), a key feature of micropropagation. As with the 

auxins for root production, the choice of cytokinin is based on its shoot-producing 

efficiency. This is often also clone-specific for eucalypts and consequently, a number of 

analogues and their concentrations have been reported in micropropagation protocols 

(Table 1.2).  

Impaired auxin response and the resulting difficulty in rooting has been suggested to be, 

among others, 1) a consequence of defective auxin signal transduction (Oono et al. 

2003; Li et al. 2009); 2) a failure to hydrolyse auxin conjugates to free auxins when 

necessary (Epstein et al. 1993); or 3) due to the presence of auxin antagonists such as 

cytokinins (Brault and Maldiney 1997). In this study, investigations using GN155 

(poor-rooter) revealed that the apparent lack of response to exogenous auxins with 
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respect to root formation was not due to the inabilities of those clones to transduce the 

exogenous auxin signal (through the use of PCIB), or to hydrolyse conjugated auxins to 

free forms (through the use of DHAP). As known antagonists of auxin action (Brault 

and Maldiney 1999; Moubayidin et al. 2009), cytokinins have been reported to impair 

auxin responses (Pernisová et al. 2009). As with auxins, cytokinin analogues can vary 

in stability, which is dependent on their respective degradation pathways (Mok and Mok 

2001, Haberer and Kieber 2002). Those cytokinins that are not targets for the enzyme 

cytokinin-oxidase (e.g. the synthetic cytokinin kinetin), which rapidly inactivates 

compounds such as trans-zeatin, have been suggested to persist longer in plant tissues 

than targets of the enzyme (George et al. 2008). Having observed the inhibitory effects 

of persistent auxins on root development (Fig. 2.5), an hypothesis linking persistent 

cytokinins from the pre-rooting culture stages with a reduction in rooting ability was 

tested. Gas-chromatography-mass spectrometry (GC-MS) analysis revealed an inverse 

relationship between shoot kinetin:auxin and rooting ability (Fig. 4.6). This implied that 

the rooting ability of at least two poor-rooting eucalypts was dependent on kinetin 

absence from shoots. Even though kinetin was not supplied during in vitro rooting, the 

nature of its metabolism resulted in its persistence, from the multiplication and 

elongation stages, into the rooting stage. In support of this, was the observation of the 

significant increase in the rooting ability of the shoots of GN155 and NH58 (both poor-

rooters) resulted, when using the less-stable trans-zeatin in the pre-rooting culture 

stages. Under those conditions, together with 0.1mg l-1 IAA in the rooting medium of 

GN155 and NH58, rooting ability of shoots was recorded as 100% (Fig. 4.5).  

Since rooting ability is dependent on cytokinin absence from shoots, the use of a stable 

cytokinin for shoot multiplication may present a long-term disadvantage for root 

morphogenesis in vitro. While the micropropagation of eucalypts via cytokinin-free 

culture has been previously described for certain clones (Trueman and Richardson 

2007), the majority of commercially-important eucalypts require exogenous cytokinin/s 

for shoot proliferation (e.g. Gomes and Canhoto 2003; de Andrade et al. 2006; 

Aggarwal et al. 2010). Being a synthetic cytokinin, kinetin is often favoured for shoot 

multiplication over its less-stable analogues, since it is not as easily degraded by natural 

enzymes (George et al. 2008). However, if adventitious rooting is the ultimate aim of 
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vegetative propagation, then any antagonist effect to the rooting process should be 

eliminated. In the present study, the metabolism of the natural cytokinin trans-zeatin, a 

target for degradation by cytokinin oxidase, was shown to be in synergy with the aims 

of in vitro propagation. While it may not be as stable as kinetin, its metabolism allows 

for a reduction in antagonism with the auxins, necessary in the latter rooting stages of 

micropropagation. This has been shown to be especially useful for the two tested poor-

rooting eucalypt clones (Figs. 4.7 and 4.8). 

 

5.3 Auxin-cytokinin interactions in the regulation of in vitro 

root development  

 

As antagonists in plant development, auxins and cytokinins regulate each other to direct 

various aspects of root development, such as root induction, vascular differentiation, 

maintenance of the root meristem and gravitropism (Aloni et al. 2006), all of which 

were investigated in the present study. Significant interaction occurs between auxins 

and cytokinins in the regulation of plant development and reports have also suggested 

that cytokinins may inhibit enzymes that conjugate free IAA (Gaspar et al. 2003; 

Moubayidin et al. 2009). These interactions direct root architecture and ensure that 

appropriate and timely developmental events occur, in relation to environmental cues 

and the needs of the plant (Aloni et al. 2006). For example, root tips have been shown 

to possess the highest concentration of free cytokinins, owing to the expression of IPT 

genes (involved in cytokinin biosynthesis, see Chapter 1) in the root cap (Aloni et al. 

2006). However, the root tip is also responsible for gravity perception, a process in 

which polar transport of IAA is inseparable (Chen et al. 1999; Philosoph-Hadas et al. 

2005; Swarup and Bennett 2009). In effecting the gravity response, both cytokinins and 

auxins are redistributed in the root tip with respect to the gravity vector, working to 

inhibit growth on the lower root side and promote growth on the upper root side so as to 

result in the root bending towards the gravity vector (Aloni 2004; Aloni et al. 2006). It 

has also been suggested that the primary signal of gravitropism, i.e. signalling the start 
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of a gravitropic response, are the cytokinins in the root cap (Aloni et al. 2004). This is 

then followed by polar IAA transport, responsible for effecting and sustaining 

gravitropism (Swarup and Bennett 2009).   

Both auxins and cytokinins are also responsible for in vitro vascular development. In 

support of published reports (Ye 2002; Aloni 2004), polar transport of IAA was shown 

in this study to be necessary for the induction and differentiation of vascular tissues 

(Chapter 3). Although cytokinins do not induce vascularisation (Aloni et al. 2006), they 

have been reported to promote vascular differentiation in roots and shoots, in the 

presence of IAA (Aloni 1995; Aloni et al. 2006). The maintenance of the IAA 

concentration gradients through polar transport is an oft-encountered feature in root 

development. As discussed earlier, IAA analogues are suggested to contribute to the 

pool of free IAA and its subsequent homeostasis (Simon and Petrášek 2011). The 

implication is that for cytokinin-auxin interaction to take place during in vitro root 

development, the auxins and cytokinins chosen for micropropagation protocols should 

have properties that enable interaction. The abilities of these key phytohormones to be 

activated or inactivated by oxidation, conjugated or degraded by enzymes at the 

appropriate points in their respective responses, are critical in their control. A potential 

imbalance in this auxin-cytokinin homeostatic control of root development may result 

when more stable analogues are introduced into the cytokinin and auxin pools, as is 

routinely practiced during micropropagation practices. This may explain the aberrant 

root development (compared with seedlings) observed in field-trials from 

micropropagated plants and from some macrocuttings, both rooted using IBA 

(Mokotedi et al. 2010). In order to address this, vegetative propagation protocols for 

eucalypts, particularly those of micropropagation, need to be modified to accommodate 

auxins and cytokinins that are capable of interaction and reciprocal regulation. 

 

 

 



117 

 

    

 

5.4  Conclusion and future prospects 

 

A suite of Eucalyptus genotypes, matched to an array of sites and environmental 

conditions, are in commercial forestry use worldwide. Within this suite of 

economically-viable genotypes, there exists a range of responses to the vegetative 

propagation methods used, with some genotypes more resistant to vegetative 

propagation than others. Hence, a need often exists to modify propagation protocols to 

improve plantlet yields. In the commercial environment, foresters have addressed such 

modifications empirically, often on a clone-specific basis. Frequently, more stable 

growth regulators are administered where such organogenesis is required, e.g. IBA for 

adventitious root induction, whether for cuttings in industry or in vitro in the 

preparation of parent material for microcuttings. However, the results of the present 

work suggest that at least in vitro, the most stable growth regulators may not be the best 

options for root morphogenesis, when considering their respective properties and 

interactions with various endogenous and exogenous factors.  

The roles of several exogenous factors on in vitro root development have been 

previously investigated by a number of authors, with the aim of improving the 

rootability of various commercially important Eucalyptus species. For example, the in 

vitro adventitious rooting potential of shoots has been shown to be dependent on 

sucrose concentration in E. sideroxylon (Cheng et al. 1992), on temperature in E. 

saligna and E. globulus (Corrêa and Fett-Neto 2004), on several minerals in E.globulus 

(Schwambach et al. 2005), and on various auxin types, phenolic compounds and light 

intensities in E. saligna and E. globulus (Fogaça and Fett-Neto 2005). The majority of 

such studies have reported on the effects of exogenous factors on adventitious rooting, 

but have fallen short of adequately considering the interactions of such exogenous 

factors on endogenous ones, e.g. PGRs.  

In the present investigation, the relationship between endogenous and exogenous auxins 

and cytokinins in adventitious root development - the critical point in any vegetative 

propagation programme - was established for one good- and two poor- rooting eucalypt 
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clones in vitro. However, there still exists a need to extend these findings to include a 

greater number of eucalypt genotypes that exhibit different responses with regard to 

PGRs. Several authors have reported on genotypic responses to PGRs in the vegetative 

propagation methods used, and in many cases certain genotypes exhibit recalcitrance to 

a particular protocol where other genotypes respond well (e.g. Fogaça and Fett-Neto 

2005; Nourissier and Monteuuis 2008; Mankessi et al. 2009).  In the present study, it 

was found that for a genotype that can easily produce adventitious roots in vitro, by 

virtue of its higher endogenous auxin:cytokinin ratio than a poor-rooting clone, 

exogenous auxin presents an obstacle to root induction (Fig. 2.1). Similarly, in the 

tested poor-rooting genotypes, where the endogenous cytokinin:auxin ratio is higher 

than in a good-rooting genotype, the persistence of exogenous cytokinins from the 

multiplication and elongation stages in vitro, inhibited root induction (Figs. 4.7 and 4.8). 

In addition, the presented findings that established that the poor-rooting genotypes were 

able to produce 100% rooting, when the specific PGR requirements for root induction 

were considered, also suggest that this may be the case for other poor-rooting 

genotypes. This indicates that many eucalypt genotypes may not necessarily be poor-

rooters, but have been exposed to the incorrect PGR treatments with regards to their 

respective genotypic requirements for root induction in vitro. The implication of this is 

that increased emphasis should be placed on adapting and modifying vegetative 

propagation protocols to be more sensitive to genotypic requirements. Although this has 

been attempted empirically, such modifications must be guided by investigations into 

the actions of, and interactions between PGRs with respect to root induction for several 

genotypes. In terms of root development following induction in vitro, future 

investigations will need to focus on the association between in vitro-supplied PGRs and 

nutrients, and their influence in shaping root architecture, since a relationship does exist 

between nutrient availability and root patterning (López-Bucio et al. 2003), and auxin 

distribution patterns and concentration gradients within roots and lateral root formation 

(Laskowski et al. 2008). 

From the results of the present study, it was suggested that in both good- and poor- 

rooting eucalypts, exogenous auxin analogues may contribute to the establishment and 

maintenance of IAA concentration gradients and IAA homeostasis. As it was also found 
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that the interactions between IAA and the cytokinin pathway are critical in the 

regulation of root development, vegetative propagation protocols should aim for the 

least interference between these and other PGR interactive pathways (Jaillais and Chory 

2010). As previously mentioned, however, many clones do not respond to IAA in the 

rooting stage, which necessitates the use of more stable auxin analogues such as IBA for 

adventitious rooting. Hence, future studies will need to investigate methods of 

vegetative propagation wherein an increased responsiveness of shoots to IAA is 

achieved. Owing to the high level of control afforded by the in vitro system, studies 

conducted in this manner are valuable in identifying the factors that can lead to 

increased IAA responsiveness or on the influence of PGR interactions and properties on 

adventitious rooting.  

The results obtained may indicate that in vitro responses could be used as a predictor of 

the ex vitro rooting requirements of eucalypt cuttings. For example, based on the current 

observations of the inhibitory effects of stable auxins on root induction and 

development in vitro, preliminary studies in our laboratory have indicated that a 

possible supra-optimal environment, through the use of IBA-containing rooting 

enhancers, also inhibits adventitious rooting of eucalypt cuttings in some clones 

(unpublished). However, more stable exogenous auxins such as IBA continue to be 

prescribed for root induction of eucalypt cuttings, particularly in poor-rooting clones 

(Goulart et al. 2008; Trueman and Richardson 2008; Borges et al. 2011). Hence, future 

investigations that consider the actions of, and interactions between PGRs will be 

invaluable in improving plantlet yields for a number of commercially-important species. 

Such investigations should consider the link between the treatments and environmental 

conditions that parent material are maintained under, and the endogenous PGR levels in 

the parent material and in the cuttings sourced from them. 

Studies based on the adventitious rooting ability of cuttings with respect to parent plants 

have primarily focussed on increasing the rooting ability of cuttings through the 

maintenance of juvenility of the parent material and ensuring that parent material is 

nutritionally balanced (López et al. 2010). This is achieved through intensely-managed 

programmes in industry (de Assis et al. 2004). Some factors that are considered in the 
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maintenance of optimum conditions for parent plants are planting density, genetic level 

(i.e. first or second generation material) and level of silvicultural intensity (Pallett and 

Sale 2004). With regard to sourcing the best cuttings for adventitious rooting ability and 

plant survival, the approach taken is often empirical. For example, factors such as 

cutting length (Naidu and Jones 2009), cutting type and genotype (Mankessi et al. 

2010), and various growth regulators (Goulart et al. 2008) have all been reported to 

influence the adventitious rooting ability of cuttings. While such studies have been 

useful in addressing adventitious rooting and plant survival on a clone-specific basis, a 

deeper understanding of the relationship between environmental conditions, treatment 

of parent material, distribution of endogenous PGRs within parent material, and 

genotypic and topophysic effects is lacking.  

The distribution pattern of PGRs, as a function of the environmental conditions and 

treatment of parent plants, is an area that should receive substantial attention. 

Topophysic effects, related to the number and position of nodes of the explants, have 

been reported to influence morphogenesis in eucalypts (Hung and Trueman 2011). 

Hence, establishing the distribution gradients of PGRs in shoots, with respect to nodes, 

apical buds, and the base of the shoot will allow for cuttings to be sourced from regions 

of suitable auxin content for adventitious rooting. This in turn will provide a more 

reliable source of information than empirical means, towards improving yields of 

cuttings. Recently, auxin distribution patterns within in vitro shoots of E. globulus were 

investigated, through the distribution patterns of the IAA influx and efflux transporters 

(Fett-Neto et al. 2011). Those authors found that auxin efflux via the PIN carrier was 

necessary to create an auxin concentration gradient and induce adventitious roots.  

The possibility of incorporating cytokinin inhibitors in the rooting stage to eliminate 

cytokinin inhibition of auxin transport and action also requires consideration. While 

several compounds with anti-cytokinin activity have been reported in the literature 

(George et al. 2008), the various modes of cytokinin biosynthesis and their complex 

metabolic pathways (Mok and Mok 2001) will require that these compounds are 

rigorously tested to identify those that specifically participate in adventitious rooting. 

This will minimise further interferences between the PGR interactive pathways in other 
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aspects of plant development, apart from rooting. This future area of research will be 

helped in no small part by ongoing developments towards our understanding of signal 

transduction pathways and PGR interactions in plant physiology.  

Significant advancements are being made in the area of Eucalyptus genomics. With the 

sequencing of the E. grandis genome (Mizrachi et al. 2010; Myburg et al. 2011), it has 

become possible, through careful manipulations of environmental conditions, to identify 

and isolate genes that are expressed in response to PGRs and the environment in which 

plants are maintained. Such investigations will reveal the factors that influence and 

regulate adventitious rooting gene expression. In turn, future studies in this field will 

provide an understanding of the relationship between endogenous and exogenous PGRs, 

the genes that are up-regulated or down-regulated in response to their perception, and 

the basis behind the various genotypic responses to PGRs.    

In addition to fundamental research, the common objective of the present study and 

future work in the area of plant physiology and biotechnology is to improve genotypes, 

enhance methods of propagating them, and elevate yields of not only Eucalyptus, but 

also other commercially-important forestry species. This is necessary for the forestry 

industry to secure a sustainable, high-yielding and reliable source of planting material to 

meet the growing global demands for timber, while minimising the pressures on natural 

forests and its associated biodiversity. 



122 

 

    

 

REFERENCES 

 

Aggarwal D, Kumar A, Reddy MS (2010) Shoot organogenesis in elite clones of 

Eucalyptus tereticornis. Plant Cell, Tissue and Organ Culture 102: 45-52 

Aloni R (1995) The induction of vascular tissues by auxin and cytokinin. In: Davies PJ 

(ed) Plant hormones: physiology, biochemistry and molecular biology. Dordrecht, 

Kluwer, pp 531-546 

Aloni R (2004) The induction of vascular tissue by auxin. In: Davies PJ (ed) Plant 

hormones: biosynthesis, signal transduction, action! Dordrecht, Kluwer, pp 471-492 

Aloni R, Langhans M, Aloni E, Ullrich CI (2004) Role of cytokinin in the regulation of 

root gravitropism. Planta 220: 177-182 

Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in 

shaping root architecture: regulating vascular differentiation, lateral root initiation, root 

apical dominance and root gravitropism. Annals of Botany 97: 883-893 

Amissah JN, Paolillo DJ Jr., Bassuk N (2008) Adventitious root formation in stem 

cuttings of Quercus bicolor and Quercus macrocarpa and its relationship to stem 

anatomy. Journal of the American Society for Horticultural Science 133: 479-486 

Aneja S, Atal CK (1969) Plantlet formation in tissue cultures from lignotubers of 

Eucalyptus citriodora Hook. Current Sciences 38: 69-70 

Arya ID, Sharma S, Chauhan S, Arya S (2009) Micropropagation of superior eucalyptus 

hybrids FRI-5 (Eucalyptus camaldulensis Dehn x E. tereticornis Sm) and FRI-14 

(Eucalyptus torelliana F.V. Muell x E. citriodora Hook): a commercial multiplication 

and field evaluation. African Journal of Biotechnology 8: 5718-5726 

 

 



123 

 

    

 

Åstot C, Dolezal K, Nordström A, Wang Q, Kunkel T, Moritz T, Chua N-H, Sandberg 

G (2000) An alternative cytokinin biosynthesis pathway. Proceedings of the National 

Academy of Sciences USA 97: 14778-14783 

Ball JB (1995) Proceedings of the regional expert consultation on Eucalyptus. Rapa 

Publication 1995/6, Food and Agricultural Organisation of the United Nations Regional 

Office for Asia Pacific, Bangkok 

Baltierra XC, Montenegro G, De García E (2004) Ontogeny of in vitro rooting 

processes in Eucalyptus globulus. In Vitro Cellular and Developmental Biology – Plant 

40: 499-503 

Bandyopadhyay S, Cane K, Rasmussen G, Hamill JD (1999) Efficient plant 

regeneration from seedling explants of two commercially important temperate eucalypt 

species – Eucalyptus nitens and E. globulus. Plant Science 140: 189-198 

Barciszewski J, Rattan SIS, Siboska G, Clark BFC (1999) Kinetin – 45 years on. Plant 

Science 148: 37-45 

Barlow P W (1986) Adventitious roots of whole plants: their forms, functions and 

evolution. In Jackson M B (ed) New root formation in plants and cuttings, Martinus 

Nijhoff, Dordrecht, The Netherlands, pp 67–110 

Bartel B, LeClere S, Magidin M, Zolman B (2001) Inputs to the active indole-3-acetic 

acid pool: de novo synthesis, conjugate hydrolysis, and indole-3-butyric acid β-

oxidation. Journal of Plant Growth Regulation 20: 198-216 

Bell CJ, Maher PE (1990) Mutants of Arabidopsis thaliana with abnormal gravitropic 

responses. Molecular and General Genetics 220: 289-293 

Bell DT, van der Moezel PG, Bennett IJ, McComb JA, Wilkins CF, Marshall SCB, 

Morgan AL (1993) Comparisons of growth of Eucalyptus camaldulensis from seeds and 

tissue cultre: root, shoot and leaf morphology of 9-month-old plants grown in deep sand 

and sand over clay. Forest Ecology and Management 57: 125-139 



124 

 

    

 

Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, 

Schulz B, Feldmann KA (1996) Arabidopsis AUX1 gene: a permease-like regulator of 

root gravitropism. Science 273: 948-950 

Benyon RG, Marcar NE, Crawford DF, Nicholson AT (1999) Growth and water use of 

Eucalyptus camaldulensis and E. occidentalis on a saline discharge site near 

Wellington, NSW, Australia. Agricultural Water Management 39: 229-244 

Benyon RG, Marcar NE, Theiveyanathan S, Tunningley WM, Nicholson AT (2001) 

Species differences in transpiration on a saline discharge site. Agricultural Water 

Management 50: 65-81 

Berhens V (1988) Storage of unrooted cuttings. In: Davis TD, Haissig BE, Sankhla N 

(eds) Adventitious root formation in cuttings, Portland, Dioscorides Press, pp 235-247 

Berleth T, Mattsson J, Hardtke CS (2000) Vascular continuity and auxin signals. Trends 

in Plant Science 5: 387-393 

Berthold GDW (1886) Studien uÈ ber Protoplasmamechanik. In: Staves MP (1997) 

Cytoplasmic streaming and gravity sensing in Chara intermodal cells. Planta 203: S79-

S84 

Blakesley D (1994) Auxin metabolism and adventitious root formation. In: Davis TD 

and Haissig BE (eds) The biology of adventitious root formation, Plenum Press, New 

York, pp 143-153 

Blakeway FC, Herman B, Watt MP (1993) Establishment of cell suspension cultures of 

Eucalyptus grandis and E. grandis x camaldulensis. South African Forestry Journal 

166: 17-26 

Blancaflor EB, Fasano JM, Gilroy S (1998) Mapping the functional role of cap cells in 

the response of Arabidopsis primary roots to gravity. Plant Physiology 116: 213-222 

 

 



125 

 

    

 

Blancaflor EB, Masson PH (2003) Plant gravitropism. Unraveling the ups and downs of 

a complex process. Plant Physiology 133: 1677-1690 

Blilou I, Xu J, Wildwater M, Willemson V, Papnov I, Friml J, Heidstra R, Aida M, 

Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth 

and patterning in Arabidopsis roots. Nature 433: 39-44 

Boerjan W (2005) Biotechnology and the domestication of forest trees. Current Opinion 

in Biotechnology 16: 159-166 

Borges SR, Xavier A, de Oliveira LS, de Melo LA, Rosado AM (2011) Rooting of 

mini-cuttings of Eucalyptus globulus hybrid clones. Revista Árvore 35: 425-434 

Brault M, Maldiney R (1999) Mechanisms of cytokinin action. Plant Physiology and 

Biochemistry 37: 403-412 

Brondani GE, Dutra LF, Grossi F, Wendling I, Hornig J (2009) Establishment, 

multiplication and elongation in vitro of Eucalyptus benthamii Maiden and Cambage x 

Eucalyptus dunnii Maiden. Revista Árvore 33: 11-19 

Brondani GE, Dutra LF, Wendling I, Grossi F, Hansel FA, Araujo MA (2011) 

Micropropagation of an Eucalyptus hybrid (Eucalyptus benthamii x Eucalyptus dunnii). 

Acta Scientiarum. Agronomy 33: 655-663 

Calamar A, de Klerk G-J (2002) Effect of sucrose on adventitious root regeneration in 

apple. Plant Cell, Tissue and Organ Culture 70: 207-212 

Campilho A, Lindgren O, Helariutta Y (2009) Vascular morphogenesis during root 

development. In: Beeckman T (ed) Annual Plant Reviews 37: Root Development, 

Blackwell Publishing Ltd, United Kingdom, pp 39-63 

Campinhos E (1999) Sustainable plantations of high-yield Eucalyptus trees for 

production of fibre: The Aracruz case. New Forests 17: 129-143 

Caspar T, Pickard BG (1989) Gravitropism in starchless mutants of Arabidopsis. Planta 

177: 185-197 



126 

 

    

 

Casson SA, Lindsey K (2003) Genes and signalling in root development. New 

Phytologist 158: 11-38 

Centeno ML, Fernández B, Feito I, Rodríguez A (1999) Uptake, distribution, and 

metabolism of 1-naphthaleneacetic acid and indole-3-acetic acid during callus initiation 

from Actinidia deliciosa tissues. Journal of Plant Growth Regulation 18: 81-88 

Chen R, Hilson P, Sedbrook J, Rosen E, Caspar T, Masson PH (1998) The Arabidopsis 

thaliana AGRAVITROPIC1 gene encodes a component of the polar-auxin-transport 

efflux carrier. Proceedings of the National Academy of Sciences USA 95: 15112-15117 

Chen R, Rosen E, Masson PH (1999) Gravitropism in higher plants. Plant Physiology 

120: 343-350 

Cheng B, Peterson CM, Mitchell RJ (1992) The role of sucrose, auxin and explant 

source on in vitro rooting of seedling explants of Eucalyptus sideroxylon. Plant Science 

87: 207-214 

Chipeta S (2010) Forest policy, governance and institutional arrangements in a 

changing environment. Forestry Indaba, Department of Agriculture, Forestry and 

Fisheries, Republic of South Africa  

Christie AE, Leopold AC (1965) On the manner of triiodobenzoic acid inhibition of 

auxin transport. Plant and Cell Physiology 6: 337-345 

Ciesielski T (1872) Untersuchungen über die ubwartskrummung der wurzel. In: Chen 

R, Rosen E, Masson PH (1999) Gravitropism in higher plants. Plant Physiology 120: 

343-350 

Corrêa LdR, Fett-Neto AG (2004) Effects of temperature on adventitious root 

development in microcuttings of Eucalyptus saligna Smith and Eucalyptus globulus 

Labill. Journal of Thermal Biology 29: 315-324 

 

 



127 

 

    

 

Corrêa LdR, Paim DM, Schwambach J, Fett-Neto AG (2005) Carbohydrate as 

regulatory factors on the rooting of Eucalyptus saligna Smith and Eucalyptus globulus 

Labill. Plant Growth Regulation 45: 63-73 

Couto L, Nicholas I, Wright L (2011) Short rotation eucalypt plantations for energy in 

Brazil. IEA Bioenergy Task 43:2011:02, Promising resources and systems for 

producing bioenergy feedstocks (Available online: www.ieabioenergytask43.org) 

Coutts MP (1983) Root architecture and tree stability. Plant and Soil 71: 171-188 

Cramer VA, Thorburn PJ, Fraser GW (1999) Transpiration and groundwater uptake 

from farm forest plots of Casuarina glauca and Eucalyptus camaldulensis in saline 

areas of southeast Queensland, Australia. Agricultural Water Management 39: 187-204 

Criddle RS, Anekonda TS, Breidenbach RW, Hansen LD (1995) Site-fitness and 

growth rate selection of Eucalyptus for biomass production. Thermochimica Acta 251: 

335-349 

Dale G and Dieters M (2007) Economic returns from environmental problems: breeding 

salt- and drought-tolerant eucalypts for salinity abatement and commercial forestry. 

Ecological Engineering 31: 175-182 

Darwin C (1880) The power of movements in plants, John Murray, London 

Davies PJ (1995) The plant hormone concept: concentration, sensitivity and transport. 

In: Davies PJ (ed) Plant Hormones: Physiology, Biochemistry and Molecular Biology, 

Kluwer Academic Publishers: Dordrecht, The Netherlands, pp 13-38 

de Andrade WF, de Almeida M, Gonçalves AN (2006) In vitro multiplication of 

Eucalyptus grandis under BAP pulse. Pesquisa Agropecuaria Brasileira 41: 1715-1719 

de Assis TF, Fett-Neto AG, Alfenas AC (2004) Current techniques and prospects for the 

clonal propagation of hardwoods with emphasis on Eucalyptus. In: Walter C, Carson M 

(eds) Plantation Forest Biotechnology for the 21st century. Research Signpost, 

Trivandrum, India, pp 303-333 

http://www.ieabioenergytask43.org/


128 

 

    

 

de Assis TF, Rezende GDSP, Aguiar AM (2005) Current status of breeding and 

deployment for clonal forestry with tropical eucalypt hybrids in Brazil. International 

Forestry Review 7: 61 

de Assis TF (2011) Hybrids and mini-cutting: a powerful combination that has 

revolutionised the Eucalyptus clonal forestry. IUFRO Tree Biotechnology Conference 

2011: From Genomes to Integration and Delivery, Arraial d’Ajuda, Bahia, Brazil, 26 

June - 2 July, BMC Proceedings 5: I18 

de Klerk G-J, Keppel M, Ter Brugge J, Meekes H (1995) Timing of the phases in 

adventitious root formation in apple microcuttings. Journal of Experimental Botany 46: 

965-972 

de Klerk G-J, van der Krieken W, de Jong J (1999) The formation of adventitious roots: 

new concepts, new possibilities. In Vitro Cellular and Developmental Biology - Plant 

35: 189-199 

de Rybel B, Audenaert D, Beeckman T, Kepinski S (2009) The past, present, and future 

of chemical biology in auxin research. ACS Chemical Biology 4: 987-998 

Delbarre A, Muller P, Imhoff V, Guern J (1996) Comparison of mechanisms controlling 

uptake and accumulation of 2,4-dichlorophenoxyacetic acid, naphthalene-1-acetic acid, 

and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198: 532-541 

Denison NP and Quaile DR (1987) The applied clonal eucalypt programme in Mondi 

Forests. South African Forestry Journal 142: 60-67 

Denison NP and Kietzka JE (1993a) The development and utilisation of vegetative 

propagation in Mondi for commercial afforestation programmes. South African Forestry 

Journal 165: 47-54 

Denison NP and Kietzka JE (1993b) The use and importance of hybrid intensive 

forestry in South Africa. South African Forestry Journal 165: 55-60  

 



129 

 

    

 

Denison NP (2001) Tree improvement: what has South Africa achieved? South African 

Forestry Journal 190: 1-2 

Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin 

receptor. Nature 435: 441-445 

Dhindsa RS, Dong G, Lalonde L (1987) Altered gene expression during auxin-induced 

root development from excised mung bean seedlings. Plant Physiology 84: 1148-1153 

Dreuge U, Zerche S, Kadner R, Ernst M (2000) Relation between nitrogen status, 

carbohydrate distribution and subsequent rooting of chrysanthemum cuttings as affected 

by pre-harvest nitrogen supply and cold-storage. Annals of Botany 85: 687-701 

Dugardeyn J, van Der Straeten D (2008) Ethylene: fine-tuning plant growth and 

development by stimulation and inhibition of elongation. Plant Science 175: 59-70 

Eckardt NA (2001) New insights into auxin biosynthesis. The Plant Cell 13: 1-3 

Eldridge K, Davidson J, Harwood C, van Wyk G (1994) Eucalypt domestication and 

breeding. Claredon Press, London 

Epstein E, Ludwig-Müller J (1993) Indole-3-butyric acid in plants: occurrence, 

biosynthesis, metabolism, and transport. Physiologia Plantarum 88: 382-389 

Epstein E, Zilkah S, Faingersh G, Rotebaum A (1993) Transport and metabolism of 

IBA in sterile easy-to-root and difficult-to-root cuttings of sweet cherry (Prunus avium 

L.), ISHS Acta Horticulturae: VII International Symposium on Plant Growth Regulators 

in Fruit Production 329: 292-295 

Estelle M (1998) Polar auxin transport: new support for a new model. The Plant Cell 

10: 1775-1778 

Evans ML, Moore R, Hasenstein KH (1986) How roots respond to gravity. Scientific 

American 254: 112-119 

 



130 

 

    

 

Evans ML (1991) Gravitropism: interaction of sensitivity modulation and effector 

redistribution. Plant Physiology 95: 1-5  

Evans ML, Ishikawa H (1997) Cellular specificity of the gravitropic motor response in 

roots. Planta 203: S115-S122 

Fett-Neto AG, Fett JP, Goulart LWV, Pasquali G, Termignoni RR, Ferreira AG (2001) 

Distinct effects of auxin and light on adventitious root development in Eucalyptus 

saligna and Eucalyptus globulus. Tree Physiology 21: 457-464 

Fett-Neto A, de Almeida M, Ruedell C (2011) Expression of auxin carrier genes during 

adventitious rooting in Eucalyptus globulus. IUFRO Tree Biotechnology Conference 

2011: From Genomes to Integration and Delivery, Arraial d’Ajuda, Bahia, Brazil, 26 

June - 2 July, BMC Proceedings 5: P64 

Fogaça CM, Fett-Neto AG (2005) Role of auxin and its modulators in the adventitious 

rooting of Eucalyptus species differing in recalcitrance. Plant Growth Regulation 45: 1-

10 

Forrester DI, Theiveyanathan S, Collopy JJ, Marcar NE (2010) Enhanced water use 

efficiency in a mixed Eucalyptus globulus and Acacia mearnsii plantation. Forest 

Ecology and Management 259: 1761-1770 

Forsyth C, van Staden J (1987) Cytokinin metabolism in tomato plants. II. Metabolites 

of kinetin and benzyladenine in decapitated roots. Plant Growth Regulation 6: 277-292 

Friml J (2003) Auxin transport – shaping the plant. Current Opinion in Plant Biology 6: 

7-12 

Gälweiler L, Guan C, Müller A, Wiseman E, Mendgen K, Yephremov A, Palme K 

(1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. 

Science 282: 2226-2230 

Gane R (1934) Production of ethylene by some ripening fruits. Nature 134: 1008 

 



131 

 

    

 

Gaspar TH, Kevers C, Faivre-Rampant O, Crèvevoeur M, Penel CL, Greppin H, 

Dommes J (2003) Changing concepts in plant hormone action. In Vitro Cellular and 

Developmental Biology – Plant 39: 85-106 

Geiss G, Gutierrez L, Bellini C (2009) Adventitious root formation: new insights and 

perspectives. In: Beeckman T (ed) Annual Plant Reviews 37: Root Development. 

Blackwell Publishing Ltd, United Kingdom, pp 127-156 

Geldner N, Friml J, Stierhof Y-D, Jürgens G, Palme K (2001) Auxin transport inhibitors 

block PIN1 cycling and vesicle trafficking. Nature, 413: 425-428 

George EF, Hall MA, de Klerk G-J (eds) (2008) Plant propagation by tissue culture 3rd 

edition, Springer, The Netherlands 

Gibson RA, Schneider EA, Wightman F (1972) Biosynthesis and metabolism of indole-

3yl-acetic acid II: In vivo experiments with 14C-labelled precursors of IAA in tomato 

and barley shoots. Journal of Experimental Botany 23: 381-399  

Girouard RM (1967) Anatomy of adventitious root formation in stem cuttings. 

Combined Proceedings of the International Plant Propagators‟ Society 17: 289-302  

Glocke P, Delaporte K, Collins G, Sedgley M (2006a) Micropropagation of juvenile 

tissue of Eucalyptus erythronema x Eucalyptus stricklandii cv. „urrbrae gem‟. In Vitro 

Cellular and Developmental Biology - Plant 41: 139-143 

Glocke P, Collins G, Sedgley M (2006b) 6-Benzylamino purine stimulates in vitro 

shoot organogenesis in Eucalyptus erythronema, E. stricklandii and their interspecific 

hybrids. Scientia Horticulturae 109: 339-344 

Godsmark RC (2010) The South African forestry and forestry products industry 2009, 

Forestry South Africa (Available online www.forestrysa.co.za) 

Gomes F, Canhoto JM (2003) Micropropagation of Eucalyptus nitens Maiden (shining 

gum). In Vitro Cellular and Developmental Biology – Plant 39: 316-321 

 

http://www.forestrysa.co.za/


132 

 

    

 

Goren R and Bukovac MJ (1973) Mechanism of naphthaleneacetic acid conjugation. 

Plant Physiology 51: 907-913 

Goulart PB, Xavier A, Cardoso NZ (2008) Effect of the growth regulators IBA and 

NAA on the rooting of mini-cuttings of Eucalyptus grandis x Eucalyptus urophylla 

clones. Revista Árvore 32: 1051-1058 

Grattapaglia D, Bertolucci FL, Sederoff RR (1995) Genetic mapping of QTLs 

controlling vegetative propagation in Eucalyptus grandis and E. urophylla using a 

pseudo-testcross strategy and RAPD markers. Theoretical and Applied Genetics 90: 

933-947 

Grattapaglia D and Kirst M (2008) Eucalyptus applied genomics: from gene sequences 

to breeding tools. New Phytologist 179: 911-929 

Gupta PK, Timmis R, Mascarenhas AF (1991) Field performance of micropropagated 

forestry species, In Vitro Cellular and Developmental Biology 27P: 159-164 

Haagan-Smit AJ, Leach WD, Bergren WR (1942) The estimation, isolation and 

identification of auxins in plant tissues. American Journal of Botany 29: 500-506 

Haberer G, Kieber JJ (2002) Cytokinins. New insights into a classic phytohormone. 

Plant Physiology 128: 354-362 

Haberlandt G (1900) Uber die perzeption des geotropischem Reizes. In: Staves MP 

(1997) Cytoplasmic streaming and gravity sensing in Chara intermodal cells. Planta 

203: S79-S84 

Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and 

regulatory factors. Plant Molecular Biology 49: 373-385 

Haissig BE, Davis TD (1994) A historical evaluation of adventitious rooting research to 

1993. In: Haissig BE, Davis TD (eds) Biology of Adventitious Root Formation, Plenum 

Press, New York, pp 275-331 

 



133 

 

    

 

Hajari E, Watt MP, Mycock DJ, McAlister B (2006) Plant regeneration from induced 

callus of improved Eucalyptus clones. South African Journal of Botany 72: 195-201 

Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics Software 

Package for Education and Data Analysis. Palaeontologia Electron 4: 9 

Harbage JF, Stimart DP, Evert RF (1993) Anatomy of adventitious root formation in 

microcuttings of Malus domestica Borkh. „Gala‟. Journal of the American Society for 

Horticultural Science 118: 680-688 

Harfouche A, Meilan R, Altman A (2011) Tree genetic engineering and applications to 

sustainable forestry and biomass production. Trends in Biotechnology 29: 9-17 

Hartmann HT, Kester DE, Davies FT, Geneve RL (1997) Plant propagation: Principles 

and practices, 6th edition, Prentice Hall International, London, UK 

Harvett C (2001) A manager‟s view of tree improvement – towards designer fibres: 

maximising value from applied tree improvement. South African Forestry Journal 190: 

25-29 

Hertel R, Leopold AC (1963) Versuche zur analyse des auxintransports in der koleoptile 

von Zea mays L. Planta 59: 535-562. In: Michniewicz M, Brewer PB, Friml J (2007) 

Polar auxin transport and asymmetric auxin distribution: The Arabidopsis Book, 

Rockville, MD: American Society of Plant Biologists, doi: 10.1199/tab.0111, 

http://www.aspb.org/publications/arabidopsis/ 

Hicks GS (1987) Adventitious rooting of apple microcuttings in vitro: an anatomical 

study. Canadian Journal of Botany 65: 1913-1920 

Hill R, Truswell E, McLoughlin S, Dettmann M (1999) Evolution of the Australian 

flora: fossil evidence. In: George AS (ed) Flora of Australia, Volume 1, Co-published 

by CSIRO and Australian Biological Resources Study, pp 251-320 

 

 

http://www.aspb.org/publications/arabidopsis/


134 

 

    

 

Hung CD, Trueman SJ (2011) Topophysic effects differ between node and organogenic 

cultures of the eucalypt Corymbia torelliana x C. citriodora. Plant Cell, Tissue and 

Organ Culture 104: 69-77 

Husen A, Pal M (2007) Metabolic changes during adventitious root primordium 

development in Tectona grandis Linn. F. (teak) cuttings as affected by age of donor 

plants and auxin (IBA and NAA) treatment. New Forests 33: 309-323 

Hwang I, Sheen J (2001) Two-component circuitry in Arabidopsis cytokinin signal 

transduction. Nature 413: 383-389 

Ikemori YK, Penchel RM, Bertolucci FLG (1994) Integrating biotechnology into 

Eucalyptus breeding. In: Proceedings of the International Symposium on wood 

Biotechnology, Tokyo, Japan: TAPPI, Japan Wood Research society and Nippon Paper 

Industries, pp 79-84 

Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Shibata Y, Gomi K, Umemura I, Hasegawa 

Y, Ashikari M, Kitano H, Matsuoka M (2005) Crown rootless 1, which is essential for 

crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin 

signalling. The Plant Cell 17: 1387-1396 

Ioio RD, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita MT, Aoyama T, 

Costantino P, Sabatini S (2008) A genetic framework for the control of cell division and 

differentiation in the root meristem. Science 322: 1380-1384 

Jacobs M, Gilbert SF (1983) Basal localisation of a presumptive auxin transport carrier 

in pea stem cells. Science 220: 1297-1300 

Jaillais Y, Chory J (2010) Unravelling the paradoxes of plant hormone signalling 

integration. Nature Structural and Molecular Biology 17: 642-645 

Jásik J, de Klerk G-J (1997) Anatomical and ultrastructural examination of adventitious 

root formation in stem slices of apple. Biologia Plantarum 39: 79-90 

 



135 

 

    

 

Jones NB, van Staden J (1994) Micropropagation and establishment of Eucalyptus 

grandis hybrids. South African Journal of Botany 60: 122-126 

Jones NB, van Staden J (1997) Micropropagation of Eucalyptus. In: Bajaj YPS (ed) 

Biotechnology in Agriculture and Forestry (vol 39), High-tech and micropropagation. 

Springer-Verlag, Berlin, pp 286-329 

Jones WR, Clarke CRE, van Staden J (2000) Understanding the breeding system of 

cold-tolerant Eucalyptus species and its impact on seed production. Proceedings of the 

IUFRO Working Party 2.08.01 on Forest Genetics for the Next Millennium, Durban, 

South Africa, pp 146-150 

Jones TH, Steane DA, Jones RC, Pilbeam D, Vaillancourt RE, Potts BM (2006) Effects 

of domestication on genetic diversity in Eucalyptus globulus. Forest Ecology and 

Management 234: 78-84 

Joshi I, Bisht P, Sharma VK, Uniyal DP (2003) In vitro clonal propagation of mature 

Eucalyptus F-1 hybrid (Eucalyptus tereticornis Sm. x E. grandis Hill ex. Maiden). 

Silvae Genetica 52: 110-113 

Kakimoto T (2001) Identification of plant cytokinin biosynthetic enzymes as 

dimethylallyl diphosphate:ATP/ADP isopentenyltransferases. Plant Cell Physiology 42: 

677-685 

Kaufman PB, Wu L-L, Brock TG, Kim D (1995) Hormones and the orientation of 

growth. In: Davies PJ (ed.) Plant Hormones: Physiology, Biochemistry and Molecular 

Biology, Kluwer Academic Publishers: Dordrecht, The Netherlands, 547-571 

Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. 

Nature 435: 446-451 

Kerk NM, Feldman LJ (1995) A biochemical model for the initiation and maintenance 

of the quiescent centre: implications for the organization of root meristems. 

Development 121: 2825-2833 



136 

 

    

 

Kerk NM, Jiang K, Feldman LJ (2000) Auxin metabolism in the root apical meristem. 

Plant Physiology 122: 925-932   

Kevers C, Hausman JF, Faivre-Rampant O, Evers D, Gaspar T (1997) Hormonal 

control of adventitious rooting: progress and questions. Journal of Applied Botany – 

Angewandte Botanik 71: 71-79 

Kieffer M, Neve J, Kepinski S (2010) Defining auxin response contexts in plant 

development. Current Opinion in Plant Biology 13: 12-20 

Kiss JZ, Hertel R, Sack FD (1989) Amyloplasts are necessary for full gravitropic 

sensitivity in roots of Arabidopsis thaliana. Planta 177: 198-206 

Kiss JZ, Wright JB, Caspar T (1996) Gravitropism in roots of intermediate-starch 

mutants of Arabidopsis. Physiologia Plantarum 97: 237-244 

Kiss JZ (2000) Mechanisms of the early phases of plant gravitropism. CRC Critical 

Reviews in Plant Science 19: 551-573 

Kleine-Vehn J, Dhonukshe P, Swarup R, Bennett M, Friml J (2006) Subcellular 

trafficking of the Arabidopsis auxin influx carrier AUX1 uses a novel pathway distinct 

from PIN1. The Plant Cell 18: 3171-3181 

Kramer EM, Bennett MJ (2006) Auxin transport: a field in flux. Trends Plant Science 

11: 383-386 

Kuderová A, Hejátko J (2009) Spatiotemporal aspect of cytokinin-auxin interaction in 

hormonal regulation of the root meristem. Plant Signaling and Behaviour 4: 156-157 

Lang C (2008) Taking the land, impoverishing the people: The pulp industry in the 

Mekong Region. Watershed 12: 92-101 

Langford K (1976) Change in yield of water following a bushfire in a forest of 

Eucalyptus regnans. Journal of Hydrology 29: 87-114 

 



137 

 

    

 

Lanteri ML, Pagnussat GC, Lamattina L (2006) Calcium and calcium-dependent protein 

kinases are involved in nitric oxide- and auxin-induced adventitious root formation in 

cucumber. Journal of Experimental Botany 57: 1341-1351 

Lao OS, Deng XW (2010) Plant hormone signaling lights up: integrators of light and 

hormones. Current Opinion in Plant Biology 13: 571-577 

Laskowski M, Grieneisen VA, Hofhuis H, ten Hove CA, Hogeweg P, Marée AFM, 

Scheres B (2008) Root system architecture from coupling cell shape to auxin transport. 

PLoS Biology 6 (e307): 2721-2735  

Le Roux JJ, van Staden J (1991) Micropropagation and tissue culture of Eucalyptus – a 

review. Tree Physiology 9: 435-477 

Leopold AC, Hall OF (1966) Mathematical model of polar auxin transport. Plant 

Physiology 41: 1476-1480 

Letham DS (1963) Zeatin, a factor inducing cell division from Zea mays. Life Sciences 

8: 569-573 

Leyser O (1999) Plant hormones: Ins and outs of auxin transport. Current Biology 9: 

R8-R10 

Li M, Leung DWM (2000) Starch accumulation is associated with adventitious root 

formation in hypocotyls cuttings of Pinus radiate. Journal of Plant Growth Regulation 

19: 423-428 

Li S-W, Xue L, Xu S, Feng H, An L (2009) Mediators, genes and signalling in 

adventitious rooting. Botanical Review 75: 230-247 

Liu H, Li J (2010) The study of the ecological problem of Eucalyptus plantation and 

sustainable development in Maoming Xiaoling. Journal of Sustainable Development 3: 

197-201 

Lohmann L (1990) Japanese sow gum trees in Thailand to feed pulpmills. Canberra 

Times 64: 8 



138 

 

    

 

 

Lomax T, Muday GK, Rubery PH (1995) Auxin transport. In: Davies PJ (ed.) Plant 

Hormones: Physiology, Biochemistry and Molecular Biology, Kluwer Academic 

Publishers: Dordrecht, The Netherlands, 509-530 

López G, Caňas I, Ruiz F (2010) Vegetative propagation techniques and genetic 

improvement in Eucalyptus globulus. In: Gil L, Tadesse W, Tolosana E, López R (eds) 

Eucalypt species management, history, status and trends in Ethiopia. Proceedings from 

the Congress held in Addis Ababa, September 15-17 

López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L (2003) The role of nutrient 

availability in regulating root architecture. Current Opinion in Plant Biology 6: 280-287 

Ludwig-Müller J, Epstein E (1991) Occurance and in vivo biosynthesis of indole-3-

butyric acid in corn (Zea mays L.). Plant Physiol 97: 765-770 

Ludwig-Müller J (2000) Indole-3-butyric acid in plant growth and development. Plant 

Growth Regulation 32: 219-230 

Ludwig-Müller J, Vertocnik A, Town CD (2005) Analysis of indole-3-butyric acid-

induced adventitious root formation on Arabidopsis stem segments. Journal of 

Experimental Botany 56: 2095-2105 

Ludwig-Müller J (2007) Indole-3-butyric acid synthesis in ecotypes and mutants of 

Arabidopsis thaliana under different growth conditions. Journal of Plant Physiology 

164: 47-59 

 Luijten M, Heidstra R (2009) Arabidopsis root development. In: Beeckman T (ed) 

Annual Plant Reviews 37: Root Development. Blackwell Publishing Ltd, United 

Kingdom, pp 1-38 

Luschnig C, Gaxiola R, Grisafi P, Fink GR (1998) EIR1, a root specific protein 

involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes 

and Development 12: 2175-2187 



139 

 

    

 

Lynch J (1995) Root architecture and plant productivity. Plant Physiology 109: 7-13 

Mankessi F, Saya A, Baptiste C, Nourissier S, Monteuuis O (2009) In vitro rooting of 

genetically related Eucalyptus urophylla x Eucalyptus grandis clones in relation to the 

time spent in culture. Trees 23: 931-940 

Mankessi F, Saya AR, Toto M, Monteuuis O (2010) Propagation of Eucalyptus 

urophylla x Eucalyptus grandis clones by rooted cuttings: influence of genotype and 

cutting type on rooting ability. Propagation of Ornamental Plants 10: 42-49  

Marques CM, Vasquez-Kool J, Carocha VJ, Ferreira JG, O‟Malley DM, Liu B-H, 

Sederoff R (1999) Genetic dissection of vegetative propagation traits in Eucalyptus 

tereticornis and E. globulus. Theoretical and Applied Genetics 99: 936-946  

Martin RC, Mok MC, Habben JE, Mok DWS (2001) A maize cytokinin gene encoding 

an O-glucosyltransferase specific to cis-zeatin. Proceedings of the National Academy of 

Sciences USA 98: 5922-5926 

Mason MG, Mathews DE, Argyros DA, Maxwell BB, Kieber JJ, Alonso JM, Ecker JR, 

Schaller GE (2005) Multiple type-B response regulators mediate cytokinin signal 

transduction in Arabidopsis. The Plant Cell 17: 3007-3018 

Mattsson J, Renee Sung Z, Berleth T (1999) Responses of plant vascular systems to 

auxin transport inhibition. Development 126: 2979-2991 

Meadows DG (1999) Growing the forests in South Africa. TAPPI Journal 82: 60-67 

Merkle SA, Nairn CJ (2005) Hardwood tree biotechnology. In Vitro Cellular and 

Developmental Biology – Plant, 41: 602-619 

Michniewicz M, Brewer PB, Friml J (2007) Polar auxin transport and asymmetric auxin 

distribution. In: Last R (ed) The Arabidopsis Book, American Society of Plant 

Biologists, Rockville, MD, USA, pp 1-28 

 



140 

 

    

 

 

Millán-Orozco L, Corredoira E, San Jose Md (2011) In vitro rhizogenesis: histoanatomy 

of Cedara odorata (Meliaceae) microcuttings. Revista de Biología Tropical 

(International Journal of Tropical Biology) 59: 447-453 

Misra RK, Turnbull CRA, Cromer RN, Gibbons AK, LaSala AV (1998) Below- and 

above-ground growth of Eucalyptus nitens in a young plantation I. Biomass. Forest 

Ecology and Management 106: 283-293 

Mizrachi E, Hefer CA, Ranik M, Joubert F, Myburg AA (2010) De novo assembled 

expressed gene catalog of a fast-growing Eucalyptus tree produced by illumine mRNA-

Seq. BMC Genomics 11: 681 

Mok DWS, Mok MC (eds) (1994) Cytokinins - chemistry, activity and function. CRC 

Press, Boca Raton  

Mok DWS, Mok MC (2001) Cytokinin metabolism and action. Annual Review of Plant 

Physiology and Plant Molecular Biology 52: 89-118 

Mokotedi MEO, Watt MP, Pammenter NW, Blakeway FC (2000) In vitro rooting and 

subsequent survival of two clones of cold-tolerant Euclayptus grandis x E. nitens 

hybrid. HortScience 35: 1163-1165 

Mokotedi MEO, Pammenter NW, Watt MP, Blakeway FC (2003) Physiological 

characteristics of nine-month-old Eucalyptus grandis x nitens plants produced through 

micropropagation and macropropagation. Acta Horticulturae 616: 407-411 

Mokotedi MEO, Watt MP, Pammenter NW (2009a) Analysis of differences in field 

performance of vegetatively and seed-propagated Eucalyptus varieties I: survival and 

leaf gas exchange. Southern Forests 71: 267-271 

Mokotedi MEO, Watt MP, Pammenter NW (2009b) The influence of vegetative 

propagation on root functioning in Eucalyptus grandis x nitens. Acta Horticulturae 812: 

395-402 



141 

 

    

 

Mokotedi MEO, Watt MP, Pammenter NW (2010) Analysis of differences in field 

performance of vegetatively and seed-propagated Eucalyptus varieties II: vertical 

uprooting resistance. Southern Forests 72: 31-36 

Monroe-Augustus M, Zolman BK, Bartel B (2003) IBR5, a dual-specificity 

phosphatase-like protein modulating auxin and abscisic acid responsiveness in 

Arabidopsis. The Plant Cell 15: 2979-2991 

Moore I (2002) Gravitropism: lateral thinking in auxin transport. Current Biology 12: 

R452-R454 

Morita MT and Tasaka M (2004) Gravity sensing and signalling. Current Opinion in 

Plant Biology 7: 712-718 

Moubayidin L, Di Mambro R, Sabatini S (2009) Cytokinin-auxin crosstalk. Trends in 

Plant Science 14: 557-562 

Moyo M, Bairu MW, Amoo SO, van Staden J (2011) Plant biotechnology in South 

Africa: micropropagation research endeavours, prospects and challenges. South African 

Journal of Botany 77: 996-1011 

Mravec J, Kubes M, Bielach A, Gaykova V, Petrášek, Skůpa, Chand S, Benková, 

Zažímalova, Friml J (2008) Interaction of PIN and PGP transport mechanisms in auxin 

distribution-dependent development. Development 135: 3345-3354 

Muday GK (2001) Auxins and tropisms. Journal of Plant Growth Regulation 20: 226-

243 

Muday GK, De Long A (2001) Polar auxin transport: controlling where and how much. 

Trends Plant Science 6: 535-542 

Müller A, Guan C, Galweiler L, Tanzler P, Huijser P, Marchant A, Parry G, Bennet M, 

Wiseman E, Palme K (1998) AtPIN2 defines a locus of Arabidopsis for root 

gravitropism control. The EMBO Journal 17: 6903-6911 

 



142 

 

    

 

Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with 

tobacco tissue cultures. Physiologia Plantarum15: 473-497 

Myburg AA, Potts BM, Marques CM, Kirst M, Gion J-M, Grattapaglia D, Grima-

Pettenatti J (2007) In: Kole C (ed) Genome mapping and molecular breeding in plants, 

Volume 7: Forest trees, Springer, Berlin, pp 116-160 plant biology. BMC Proceedings 

5: I20 

 

Myburg AA, Grattapaglia D, Tuskan G, Jenkins J, Schmutz J, Mizrachi E, Hefer C, 

Pappas G, Sterck L, van de Peer Y, Hayes R, Rokhsar D (2011) The Eucalyptus grandis 

genome project: genome and transcriptome resources for comparative analysis of 

woody plant biology. IUFRO Tree Biotechnology Conference 2011: From Genomes to 

Integration and Delivery, Arraial d’Ajuda, Bahia, Brazil, 26 June - 2 July, BMC 

Proceedings 5: I20 

Naidu RD, Jones NB (2009) The effect of cutting length on the rooting and growth of 

subtropical Eucalyptus hybrid clones in South Africa. Southern Forests 71: 297-301  

 

Nakhooda M, Watt MP, Mycock D (2011) Auxin stability and accumulation during in 

vitro shoot morphogenesis influences subsequent root induction and development in 

Eucalyptus grandis. Plant Growth Regulation 65: 263-271 

Nĕmec B. (1900) Uber die Art der Wahrnehmung des Schwerkraftreizes bei den 

Pflanzen. In: Staves MP (1997) Cytoplasmic streaming and gravity sensing in Chara 

intermodal cells. Planta 203: S79-S84 

Noll F (1892) Über heterogene induction. In: Staves MP (1997) Cytoplasmic streaming 

and gravity sensing in Chara intermodal cells. Planta 203: S79-S84 

Nordström A-C, Jacobs FA, Eliasson L (1991) Effect of exogenous indole-3-acetic acid 

and indole-3-butyric acid on internal levels of the respective auxins and their 

conjugation with aspartic acid during adventitious root formation in pea cuttings. Plant 

Physiology 96: 856-861 



143 

 

    

 

Normanly J, Cohen JD, Fink GR (1993) Arabidopsis thaliana auxotrophs  reveal a 

tryptophan-independent biosynthetic pathway for indole-3-acetic acid. Proceedings of 

the National Academy of Sciences USA 90: 10355-10359 

Nourissier S, Monteuuis O (2008) In vitro rooting of two Eucalyptus urophylla X 

Eucalyptus grandis mature clones. In Vitro Cellular and Developmental Biology - Plant 

44: 263-272 

Nugent G, Chandler SF, Whiteman P, Stevenson TW (2001a) Adventitious bud 

induction in Eucalyptus globulus Labill. In Vitro Cellular and Developmental Biology – 

Plant 37: 388-391 

Nugent G, Chandler SF, Whiteman P, Stevenson TW (2001b) Somatic embryogenesis 

in Eucalyptus globulus. Plant Cell, Tissue and Organ Culture 67: 85-88 

Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y (1991) Requirement of the auxin 

polar transport system in early stages of Arabidopsis floral bud formation. The Plant 

Cell 3: 677-684 

Oono Y, Ooura C, Rahman A, Aspuria ET, Hayashi K-i, Tanaka A, Uchimiya H (2003) 

ρ-Chlorophenoxyisobutyric acid impairs auxin response in Arabidopsis root. Plant 

Physiology 133: 1135-1147 

Östin A, Ilić N, Cohen JD (1999) An in vitro system from maize seedlings for 

tryptophan-independent indole-3-acetic acid biosynthesis. Plant Physiology 119: 173-

178 

Overvoorde PJ, Okushima Y, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Liu 

A, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005) Functional genomic 

analysis of the AUXIN/INDOLE-3-ACETIC ACID gene family members in Arabidopsis 

thaliana. The Plant Cell 17: 3282-3300 

 

 



144 

 

    

 

Pallett RN, Sale G (2004) The relative contributions of tree improvement and cultural 

practice toward productivity gains in Eucalyptus pulpwood stands. Forest Ecology and 

Management 193: 33-43 

Palme K, Gälweiler L (1999) PIN-pointing the molecular basis of auxin transport. 

Current Opinion in Plant Biology 2: 375-381 

Parry G, Marchant A, May S, Swarup R, Swarup K, James N, Graham N, Allen T, 

Martucci T, Yemm A, Napier R, Manning K, King G, Bennett G (2001a) Quick on the 

uptake: characterisation of a family of plant auxin influx carriers. Journal of Plant 

Growth Regulation 20: 217-225 

Parry G, Delbarre A, Marchant A, Swarup R, Napier R, Perrot-Rechenmann C, Bennett 

MJ (2001b) Novel auxin transport inhibitors phenocopy the auxin influx carrier 

mutation aux1. The Plant Journal 25: 399-406 

Paton DM, Willing RR, Nicholls W, Pryor LD (1970) Rooting of stem cuttings of 

Eucalyptus: a rooting inhibitor in adult tissues. Australian Journal of Botany 18: 175-

183  

Perbal G (1999) Gravisensing in roots. Advances in Space Research 24: 723-729 

Pernisová M, Klíma P, Horák J, Válkova M, Malbeck J, Souček P, Reichman P, 

Hoyerová K, Dublová J, Friml J, Zažímalová E, Hejátko J (2009) Cytokinins modulate 

auxin-induced organogenesis in plants via regulation of the auxin efflux. Proceedings of 

the National Academy of Sciences USA 106: 3609-3614 

Perrot-Rechenmann C, Napier RM (2005) Auxins. Vitamins and Hormones 72: 203-233 

Petrášek J and Friml J (2009) Auxin transport routes in plant development. 

Development 136: 2675-2688 

Philosoph-Hadas S, Friedman H, Meir S (2005) Gravitropic bending and plant 

hormones. Vitamins and Hormones 72: 31-77 

 



145 

 

    

 

Pickard BG, Thimann KV (1966) Geotropic response of wheat coleoptiles in absence of 

amyloplast starch. Journal of General Physiology 49: 1065-1086 

Pinto G, Santos C, Neves L, Araújo C (2002) Somatic embryogenesis and plant 

regeneration in Eucalyptus globulus Labill. Plant Cell Reports 21: 208-213 

Pinto G, Park Y-S, Neves L, Araújo C (2008) Genetic control of somatic embryogenesis 

induction in Eucalyptus globulus Labill. Plant Cell Reports 27: 1093-1101 

Pinto G, Silva S, Neves L, Araújo C, Santos C (2010) Histological changes and reserve 

accumulation during somatic embryogenesis in Eucalyptus globulus. Trees 24: 763-769 

Pop TI, Pamfil D, Bellini C (2011) Auxin control in the formation of adventitious roots. 

Notulae Botanicae Horti Agrobotanici Cluj-Napoca 39: 307-316 

Potts BM, Dutkowski, G, Smethurst P, Vaillancourt R (2001) Report on the ACACA 

(AFFA) funded 2001 eucalypt mission to China, CRC for Forestry, Australia, Technical 

Report 63 

Potts BM and Dungey HS (2004) Interspecific hybridization of Eucalyptus: key issues 

for breeders and geneticists. New Forests 27: 115-138 

Poupart J, Waddell CS (2000) The rib1 mutant is resistant to indole-3-butyric acid, an 

endogenous auxin in Arabidopsis. Plant Physiology 124: 1739-1751 

Prakash MG, Gurumurthi K (2004) Somatic embryogenesis and plant regeneration in 

Eucalyptus tereticornis Sm. Current Science 88: 1311-1316 

Prakash MG, Gurumurthi K (2010) Effects of type of explant and age, plant growth 

regulators and medium strength on somatic embryogenesis and plant regeneration in 

Eucalyptus camaldulensis. Plant Cell, Tissue and Organ Culture 100: 13-20 

Quint M, Gray WM (2006) Auxin signalling. Current Opinion in Plant Biology 9: 448-

453 

 



146 

 

    

 

Rashotte AM, Brady SR, Reed RC, Ante SJ, Muday GK (2000) Basipetal auxin 

transport is required for gravitropism in roots of Arabidopsis. Plant Physiology 122: 

481-490 

Rashotte AM, Poupart J, Waddell CS, Muday GK (2003) Transport of the two natural 

auxins, indole-3-butyric acid and indole-3-acetic acid, in Arabidopsis. Plant Physiology 

133: 761-772 

Raven JA (1975) Transport of indoleacetic acid in plant cells in relation to pH and 

electrical potential gradients, and its significance for polar IAA transport. New 

Phytologist 74: 163-172 

Ritchie GA (1994) Commercial application of adventitious rooting to forestry. In: Davis 

TD, Haissig BE (eds) Biology of adventitious root formation, Plenum Press, New York, 

pp 37-52 

Roberts S, Vertessy R, Grayson R (2001) Transpiration from Eucalyptus sieberi (L. 

Johnson) forests of different age. Forest Ecology and Management 143: 153-161 

Rockwood DL, Rudie AW, Ralph SA, Zhu JY, Winandy JE (2008) Energy product 

options for Eucalyptus species grown as short rotation woody crops. International 

Journal of Molecular Sciences 9: 1361-1378 

Roman G, Lubarsky B, Kieber JJ, Rotheneberg M, Ecker JR (1995) Genetic analysis of 

ethylene signal transduction in Arabidopsis thaliana: Five novel mutant loci integrated 

into a stress response pathway. Genetics 139: 1393-1409 

Rubery PH, Sheldrake AR (1974) Carrier-mediated auxin transport. Planta 188: 101-

121 

Rubery PH (1990) Phytotropins: receptors and endogenous ligands. Symposia of the 

Society for Experimental Biology 44: 119-146 

 

 



147 

 

    

 

Růžička K, Šimášková M, Duclercq J, Petrášek J, Zažímalová E, Simon S, Friml J, van 

Montagu MCE, Benková E (2009) Cytokinin regulates root meristem activity via 

modulation of the polar auxin transport. Proceedings of the National Academy of 

Sciences USA 106: 4284-4289 

Sabatini S, Heidstra R, Wildwater M, Scheres B (2003) SCARECROW is involved in 

positioning the stem cell niche in the Arabidopsis meristem. Genes and Development 

17: 354-358 

Sack F (1997) Plastids and gravitropic sensing. Planta 203: S63-S68 

Sánchez C, Vielba JM, Ferro E, Covelo G, Solé A, Abarca D, De Mier BS, Díaz-Sala C 

(2007) Two SCARECROW-LIKE genes are induced in response to exogenous auxin in 

rooting-competent cuttings of distantly related forest species. Tree Physiology 27: 1459-

1470 

Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone 

signalling. Nature 459: 1071-1078 

Saya RA, Mankessi F, Toto M, Marien J-N, Monteuuis O (2008) Advances in mass 

clonal propagation of Eucalyptus urophylla x E. grandis in Congo. Bios et Forèts des 

Tropiques 297: 15-25 

Schiefelbein JW, Masucci JD, Wang H (1997) Building a root: the control of patterning 

and morphogenesis during root development. The Plant Cell 9: 1089-1098 

Schneider EA, Gibson RA, Wightman F (1972) Biosynthesis and metabolism of indole-

3-yl-acetic acid I: The native indoles of barley and tomato shoots. Journal of 

Experimental Botany 23: 152-170 

Schwambach J, Fadanelli C, Fett-Neto AG (2005) Mineral nutrition and adventitious 

rooting in microcuttings of Eucalyptus globulus. Tree Physiology 25: 487-494 

 

 



148 

 

    

 

Schwambach J, Ruedell CM, de Almeida MR, Penchel RM, de Araújo EF, Fett-Neto 

AG (2008) Adventitious rooting of Eucalyptus globulus x maidennii mini-cuttings 

derived from mini-stumps grown in sand bed and intermittent flooding trays: a 

comparative study. New Forests 36: 261-271 

Shen WH, Petit A, Guern J, Tempe J (1988) Hairy roots are more sensitive to auxin 

than normal roots. Proceedings of the National Academy of Sciences USA 85: 3417-

3421 

Shen-Miller J, Hinchman RR (1974) Gravity sensing in plants: a critique of the starch 

statolith theory. Bioscience 24: 643-651 

Simon S, Petrášek J (2011) Why plants need more than one type of auxin. Plant Science 

180: 454-460 

Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant 

tissues cultured in vitro. Symposia of the Society for Experimental Biology 11: 118-130 

Smith NG, Wareing PF (1972) The distribution of latent root primordia in stems of 

Populus x robusta and factors affecting emergence of preformed roots from cuttings. 

Forestry 45: 197-210  

Smulders MJM, van de Ven ETWM, Croes AF, Wullems GJ (1990) Metabolism of 1-

naphthaleneacetic acid in explants of tobacco: evidence for release of free hormone 

from conjugates. Journal of Plant Growth Regulation 9: 27-34 

Sorin C, Negroni L, Billiau T, Corti H, Jacquemot M-P, Davanture M, Sandberg G, 

Zivy M, Bellini C (2005) Proteomic analyses of different mutant genotypes of 

Arabidopsis led to the identification of 11 proteins correlating adventitious root 

development. Plant Physiology 140: 349-364 

Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron 

microscopy. Journal of Ultrastructural Research 26: 31-43 

 



149 

 

    

 

Stange L (1985) Effects of TIBA on meristematic activity and starch metabolism in 

Riella helicophylla (Bory et Mont.) Mont. Biologia Plantarum 27: 221-225 

Stape JL, Gonçalves JLM, Gonçalves AN (2001) Relationships between nursery 

practices and field performance for Eucalyptus plantations in Brazil. New Forests 22: 

19-41 

Stape JL, Binkley D, Ryan MG, Fonseca S, Loos RA, Takahashi EN, Silva CR, Silva 

SR, Hakamada RE, Ferreira JMdA, Lima AMN, Gava JL, Leite FP, Andrade HB, Alves 

JM, Silva GGC, Azevedo MR (2010) The Brazilian Eucalyptus potential productivity 

project: influence of water, nutrients and stand uniformity on wood production. Forest 

Ecology and Management 259: 1684-1694 

Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W 

(2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids 

to indole-3-acetic acid. The Plant Cell 17: 616-627 

Staves MP (1997) Cytoplasmic streaming and gravity sensing in Chara intermodal 

cells. Planta 203: S79-S84 

Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel interactions 

between ethylene and auxin in Arabidopsis roots. The Plant Cell 19: 2169-2185  

Strader LC, Monroe-Augustus M, Bartel B (2008) The IRB5 phosphatase promotes 

Arabidopsis auxin responses through a novel mechanism distinct from the TIR1-

mediated repressor degradation. BMC Plant Biology 8: 41  

Strader LC, Bartel B (2011) Transport and metabolism of the endogenous auxin 

precursor indole-3-butyric acid. Molecular Plant. doi: 10.1093/mp/ssr006 

Su Y-H, Zhang X-S (2011) Auxin-cytokinin interaction regulates meristem 

development. Molecular Plant. doi: 10.1093/mp/ssr007 

 

 



150 

 

    

 

Swarup R, Kramer EM, Perry P, Knox K, Leyser HMO, Haseloff J, Beemster GTS, 

Bhalerao R, Bennet MJ (2005) Root gravitropism requires lateral root cap and 

epidermal cells for transport and response to a mobile auxin signal. Nature Cell Biology 

7: 1057-1065 

Swarup R, Bennett MJ (2009) Root gravitropism. In: Beeckman T (ed) Annual Plant 

Reviews 37: Root Development. Blackwell Publishing Ltd, United Kingdom, pp 157-

174 

Takei K, Sakakibara H, Sugiyama T (2001) Identification of genes encoding adenylate 

isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. The 

Journal of Biological Chemistry 276: 26405-26410 

Terasaka K, Blakeslee JJ, Titapiwatanakun B, Peer WA, Bandyopadhyay A, Makam 

SN, Lee OR, Richards EL, Murphy AS, Sato F, Yazaki K (2005) PGP4, an ATP 

binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. 

The Plant Cell 17: 2922-2939 

Termignoni RR, Wang P-J, Hu C-Y (1996) Somatic embryo induction in Eucalyptus 

dunnii. Plant Cell, Tissue and Organ Culture 45: 129-132 

Tewari DD (2000) Is commercial forestry sustainable in South Africa? The changing 

institutional and policy needs. Forest Policy and Economics 2: 333-353 

Titon M, Xavier A, Otoni WC (2006) Clonal propagation of Eucalyptus grandis using 

the mini-cutting and micro-cutting techniques. Scientia Forestalis 71: 109-117 

Tiwari SB, Hagen G, Guilfoyle TJ (2004) Aux/IAA proteins contain a potent 

transcriptional repressor domain. The Plant Cell 16: 533-543 

To JPC, Haberer G, Ferreira FJ, Deruère J, Mason MG, Schaller GE, Alonso JM, Ecker 

JR, Kieber JJ (2004) Type-A Arabidopsis response regulators are partially redundant 

negative regulators of cytokinin signalling. The Plant Cell 16: 658-671 

 



151 

 

    

 

To JPC, Kieber JJ (2008) Cytokinin signalling: two components and more. Trends in 

Plant Science 13: 85-92 

Trewavas AJ (1981) How do plant growth substances work? Plant, Cell and 

Environment 4: 203-228 

Trewavas AJ (1992) What remains of the Cholodny-Went theory: A forum. Plant, Cell 

and Environment 15: 759-794 

Trindade H, Pais MS (1997) In vitro studies on Eucalyptus globulus rooting ability. In 

vitro Cellular and Developmental Biology – Plant 33: 1-5 

Trindade H, Pais MS (2003) Meristematic nodule culture: a new pathway for the in 

vitro propagation of Eucalyptus globulus. Trees 17: 308-315 

Tromas A, Perrot-Rechenmann C (2010) Recent progress in auxin biology. Comptes 

Rendus Biologies 333: 297-306 

Trueman SJ, Richardson DM (2007) In vitro propagation of Corymbia torelliana x C. 

citriodora (Myrtaceae) via cytokinin-free node culture. Australian Journal of Botany 55: 

471-481 

Trueman SJ, Richardson DM (2008) Relationship between indole-3-butyric acid, 

photoinhibition and adventitious rooting of Corymbia torelliana, C. citriodora and F1 

hybrid cuttings. Tree and Forest Science and Biotechnology 2: 26-33  

Turnbull JW (1999) Eucalypt plantations. New Forests 17: 37-52 

Utsuno K, Shikanai T, Yamada Y, Hashimoto T (1998) AGR, an Agravitropic locus of 

Arabidopsis thaliana, encodes a novel membrane protein family member. Plant and Cell 

Physiology 39: 1111-1118 

van der Krieken WM, Breteler H, Visser MHM (1992) Uptake and metabolism of 

indolebutyric acid during root formation of Malus microcuttings. Acta Botanica 

Neerlandica 41: 435-442 



152 

 

    

 

 

van Staden J, Crouch NR (1996) Benzyladenine and derivatives – their significance and 

interconversion in plants. Plant Growth Regulation 19: 153-175 

van Wyk G (1990) Genetic improvement of timber yield and wood quality in 

Eucalyptus grandis (Hill) Maiden, Part 1: Genetic parameters of growth characteristics. 

South African Forestry Journal 153: 1-11 

Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136: 

1005-1016 

Vieten A, Sauer M, Brewer PB, Friml J (2007) Molecular and cellular aspects of auxin-

transport-mediated development. Trends Plant Science 12: 160-168 

Visser EJW, Blom CWPM, Voesenek LACJ (1996) Flooding-induced adventitious 

rooting in Rumex: morphology and development in an ecological perspective. Acta 

Botanica Neerlandica 45: 17-28 

Warrag EI, Lesney MS, Rockwood DL (1989a) Comparative greenhouse study of 

Eucalyptus grandis in vitro plantlets and half-sib seedlings, I. Net photosynthesis. Plant 

Cell Reports 8: 497-499 

Warrag EI, Lesney MS, Rockwood DL (1989b) Comparative greenhouse study of 

Eucalyptus grandis in vitro plantlets and half-sib seedlings, II. Dry matter accumulation 

and relative distribution. Plant Cell Reports 8: 500-503 

Warrag EI, Lesney MS, Rockwood DJ (1990) Micropropagation of field tested superior 

Eucalyptus grandis hybrids. New Forests 4: 67-79 

Watt MP, Blakeway FC, Cresswell CF, Herman B (1991) Somatic embryogenesis in 

Eucalyptus grandis. South African Forestry Journal 157: 59-65 

Watt MP, Duncan EA, Ing M, Blakeway FC, Herman B (1995) Field performance of 

micropropagated and macropropagated Eucalyptus hybrids. South African Forestry 

Journal 173: 17-21 



153 

 

    

 

Watt MP, Blakeway FC, Mokotedi MEO, Jain SM (2003) Micropropagation of 

Eucalyptus. In: Jain SM, Ishii K (eds) Micropropagation of woody trees and fruits, 

Kluwer Academic Publishers, Netherlands, pp 217-244 

Wayne R, Staves MP, Leopold AC (1990) Gravity-dependent polarity of cytoplasmic 

streaming in Nitellopsis. Protoplasma 155: 43-57 

Went FW (1935) Auxin, the plant-hormone. Botanical Review 1: 162-182 

Weyers JDB, Paterson NW (2001) Plant hormones and the control of physiological 

processes. New Phytologist 152: 375-407 

Wiesman Z, Riov J, Epstein E (1989) Characterization and rooting ability of indole-3-

butyric acid conjugates formed during rooting of mung bean cuttings. Plant Physiology 

91: 1080-1084 

Wilcox JR, Farmer RE Jr. (1968) Heritability and C effects in early growth of eastern 

cottonwood cuttings. Heredity 23: 239-245 

Wolverton C, Ishikawa H, Evans ML (2002) The kinetics of root gravitropism: dual 

motors and sensors. Journal of Plant Growth Regulation 21: 102-112 

Woodward AW, Bartel B (2005) Auxin: regulation, action and interaction. Annals of 

Botany 95: 707-735 

Wright AD, Simpson MB, Neuffer MG, Michalczuk L, Slovin JP, Cohen JD (1991) 

Indole-3-acetic acid biosynthesis in the mutant orange pericarp, a tryptophan auxotroph. 

Science 254: 998-1000 

Yamamoto M, Yamamoto KT (1998) Differential effects of 1-naphthaleneacetic acid, 

indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid on the gravitropic response of 

roots in an auxin-resistant mutant of Arabidopsis, aux1. Plant Cell Physiology 39: 660-

664 

 



154 

 

    

 

 

Yang JC, Chung JD, Chen ZZ (1995) Vegetative propagation of adult Eucalyptus 

grandis  x urophylla and comparison of growth between micropropagated plants and 

rooted cuttings. Plant Cell Reports 15: 170-173 

Yang T, Poovaiah BW (2000) Molecular and biochemical evidence for the involvement 

of calcium/calmodulin in auxin action. The Journal of Biological Chemistry 275: 

31373143 

Yasodha R, Sumathi R, Gurumathi K (2004) Micropropagation for quality propagule 

production in plantation forestry. Indian Journal of Biotechnology 3: 159-170 

Ye Z-H (2002) Vascular tissue differentiation and pattern formation in plants. Annual 

Review of Plant Biology 53: 183-202 

Zacharin RF (1978) Emigrant Eucalypts. Melbourne University Press, Australia 

Zimmerman PW, Wilcoxon F (1935) Several chemical growth substances which cause 

initiation of roots and other responses in plants. Contributions of the Boyce Thompson 

Institute 7: 209-229 

Zobel BJ (1993) Clonal forestry in the Eucalypts. In: Ahuja MR, Libby WJ (eds) Clonal 

Forestry II: Conservation and Application, Springer, Berlin, pp 139-148 

Zolman BK, Martinez N, Millius A, Adham AR, Bartel B (2008) Identification and 

characterisation of Arabidopsis indole-3-butyric acid response mutants defective in 

novel peroxisomal enzymes. Genetics 180: 237-251 

Zwolinski J, Bayley AD (2001) Research on planting stock and forest regeneration in 

South Africa. New Forests 22: 59-74 

http://www.globalwood.org/market/timber_prices_2009/aaw20110201d.htm (Accessed 

September 2011) 

http://www.mondigroup.com/desktopdefault.aspx/tabid-349/ (Accessed October 2011) 

http://www.globalwood.org/market/timber_prices_2009/aaw20110201d.htm
http://www.mondigroup.com/desktopdefault.aspx/tabid-349/


155 

 

    

 

APPENDIX 1: SAMPLE OF GC-DERIVED CHROMATOGRAM 

Sample:D4 R5

Sample:D3 R2

Sample:B1 R4

Sample:A3 R5

Sample:D4 R5

Sample:D3 R2

Sample:B1 R4

Sample:A3 R5

 




