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ABSTRACT

The efficacies ofsoil extraction methods, namely, Soxhlet, sonication, agitation, alkaline digestion

and the ethyl acetate micro-method, for monitoring soil bioremediation were evaluated using three

soil types, Swartland, Rensburgand Hutton, encompassingthe mineralogical range prevalent in Kwa

Zulu Natal. Phenol, atrazine and the BTEX component of petrol were the molecules used in this

study and were extracted under different spiking concentrations, after prolonged ageing times up

to 21 days and after changing the composition of the spiking solution. It was concluded that

extraction methods must be validated for the specific conditions under which they would be used,

taking into consideration, soil type, spiking solutions, moisture content, weathering times and the

analyte(s) in question. A preliminary appraisal of atrazine degradation in a Hutton soil was then

made under the conditions ofsterilized, fertilized/non-fertilized and non-sterilized, fertilized/non­

fertilized soils. The predominant pathway of atrazine degradation was deemed to be

chemically/abiotically mediated due to the soil pH and the presence ofiron and aluminium oxides

as well as the high levels ofmanganese in the soil. The results obtained prompted further study into

atrazinecatabolism using soil-slurry reactors, under the conditions of carbon-limitation, nitrogen

limitation, carbon/nitrogen non-limitation and carbon/nitrogen limitation. A comparison was made

between inoculated and non-inoculated bioreactors. The ability of the indigenous microbial

population to return the Hutton soil to its original pristine state was confirmed. The expense of

inoculation and culture maintenance could be avoided since carbon and nitrogen supplementation

would be as equally effective as inoculation.
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INTRODUCTION

Environmental issues in South Africa were low on the list ofpriorities ofthe previous South African

apartheid era government, and dealt mainly with nature conservation (Kidd, M., 1997). In an

attempt to correct apartheid's legacy ofinjustice, the current South African government has created

the Reconstruction and Development Programme (RDP). At the core ofthe RDP is the concept of

sustainable development, i.e., improvingthe quality oflife ofits citizens without affecting adversely

the future of the coming generations of South Africans.

Our constitution includes clauses dealing with environmental protection and one of the main

objectives listed in the Green paper on the environmental policy is the need to ensure that the

necessary resources and capabilities required for effective implementation ofenvironmental policy

are available (Green Paper, 1996, Environmental Policy for SouthAfrica). The major obstacles to

achieving this objective are that minimum standards, compliance monitoring, and regulation and

enforcement relating to the environmental impacts of industry in South Africa are inadequate and

uneven (Green Paper, 1996). Also, there is a lack ofcapacity in the majority ofthe population due

to the fact that most people were denied access to effective education and training.

Among the key priorities listed in the Green paper is the need to initiate environmental and

education projects to meet the needs ofprimary, secondary and tertiary education, as well as those

ofthe general public and ofworkers and managementin the private and public sectors (Green Paper,

1996). A wider scope of opportunities has been created to ensure that the people working in the

environmental sector are able to meet the demands created by the new proposed environmental

legislation to bring South Africa in line with first world countries.

With this in mind, the principal aim ofthis study was to examine the different methods ofextracting

organic pollutants from soil. The other objectives were to assess the inherent limitations ofvarious

extraction procedures and to determine their precision. The criteria governing the choice of the

extraction methods were that they must be simple in their execution and not require the use of

xx



inordinately expensive equipment. These limitations meant that many of the newer, more

sophisticated extraction methods were not investigated. Upon investigation of two companies

involved in environmental analysis, it was concluded that there is currently no demand for these

sophisticated methods as the infrastructure does not generate samples requiring such extraction

methods and there is no demand for trace-level analyses (Wepener, D.; Talbot, B., Personal

Communication).l Many workers in this sector employ EPA methods, NIOSH methods and OHSA

analytical methods for sample preparation prior to analysis (Wepener, D, Personal Communication).

The extraction (and subsequent analysis) ofan organic pollutant from the soil is the first in a long

series ofsteps which lead, eventually, to successful bioremediation. Without having an idea ofthe

nature and the extent of the pollution, one would not be able to determine the protocol necessary

for the remediation of the soil to its original pristine state.

An ideal extraction method should be: rapid, simple and inexpensive to perform; give quantitative

recovery of the target analyte(s) without loss or degradation; yield a sample that is ready

immediately for analyses without additional concentrationorclass fractionation steps; and generate

no additional laboratory wastes (Hawthome, 1990).

Three types ofcommonly occurring pollutants, phenol, atrazine and the BTEX (benzene, toluene,

ethylbenzene, m-, 0-, p-xylene) components of petrol, were chosen for this study. Because this

thesis encompasses several, sometimes seemingly only distantly related, fields, the literature

discussion has been sub-divided into specific sections which have been given chapter status.

Chapter 1 is a review ofextraction methodologies and includes a briefhistory and background on

phenol and the BTEX components ofpetrol.

For logistical reasons it was necessary to choose only one of the pollutants for further study.

Atrazine was chosen as the molecule of interest for the rest of the programme and its history and

lWepener, D.,Chemtaur Technologies, Pretoria, South Afii.ca.
Talbot, B., Talbot Consulting Services, Pietermaritzburg, South Afii.ca.
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background are discussed in greater detail in Chapter 2. A preliminary analysis ofthe molecule's

degradation in a Hutton soil was the secondary focus ofthis study and the results obtained prompted

further investigation into the bioremediation ofan atrazine-contaminated Hutton soil by means of

a soil slurry bioreactor. Therefore, a chapter (Chapter 3) dedicated to theoretical and technological

aspects of soil bioremediation has been included in the thesis.
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CHAPTER ONE

Chemical Extraction Methodology Development

1.1 Review on Extraction Methodologies

The extraction methods evaluated for phenol, atrazine and BTEX molecules in this study included

agitation extraction, alkaline digestion, the ethyl acetate micro-method, Soxhlet extraction, and

extraction by sonication extraction.

1.1.1 Description and applications of extraction methods

Extracting an organic compound from soil involves both forward and reverse reactions that depend

on concentration gradients. As the organic compound dissolves into the extraction solvent, it may

move away from the soil surface only if there is stirring. Diffusion is a relatively slow process if

allowed to proceed unaided, but may be accelerated ifthe solution is agitated. A more appropriate

term for stirring is mass transfer (Rubinson and Rubinson, 1998). All of the above extraction

methods aim to promote the transfer of the organic pollutant from the soil into the extraction

solvent. Thus, the judicious choice of the extraction solvent plays a crucial role in the success of

the extraction process. A number ofextraction methods are discussed below, together with some

applications oftheir use. The efficacies ofselected extraction methods were evaluated in the study.

Agitation Extraction

Of the extraction methods evaluated in the study, extraction by the agitation method may be

considered the simplest. Agitation extraction depends on physical agitation/stirring ofa mixture of

contaminated soil and the extraction solvent to increase the mass transfer of the pollutant into the

solvent. The choice of solvent is crucial as the partitioning of the pollutant from the soil into the

solvent is dependent on the affinity of the pollutant for the solvent.
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Huang and Pignatello (1990) employed a combination ofmethanol and water (4: 1v/v) and elevated

temperature (75°C) to extract atrazine from field samples which were held in sealed vials for the

duration ofthe extraction. The extraction temperature was not raised above 75°C in order to prevent

any uncertainties associated with possible thermal decomposition of the pesticide. The optimum

time required for the extraction was determined to be between 2 and 4 hours. Agitation extraction

was examined for the recovery ofatrazine ( 500 j..Lg.kg-1
) from soil with a combination ofmethanol

and water (4:1 v/v) (Koskinen, Jarvis, Dowdy, Wyse and Buhler, 1991). Goh, Hemandez, Powell,

Garretson, Troiano, Ray and Greene (1991) investigated the efficiency of four different solvents,

water, methanol, methanol + water (4:1 v/v) and acetonitrile, to extract atrazine (20, 100,500 and

1 000 j..Lg.g-l) from soil. The recoveries obtained with the methanol and the methanol + water (4: 1)

extractions were more consistent than those obtained with the extractions which employed water

or acetonitrile. They found that the extraction efficiencies of the four solvents depended on the

atrazine concentration in the fortified soil. There was greatervariability in the recoveries oflow (20

and 100 j..Lg.g-l) concentrations than high (500 and 1 000 j..Lg.g-l) concentrations.

Mills and Thurman (1992) also used a combination ofmethanol and water (4:1 v/v) and elevated

temperature (75°C) to extract atrazine and its transformation products from field soil samples. They

advocated the addition ofwater to the extraction solvent so that the more polar metabolites ofthe

pesticide may be extracted simultaneously. The extract was concentrated by the removal of

methanol and by passingthe aqueous phase through a C-18 Sep-pak cartridge. The extract was then

eluted into ethyl acetate and analyzed.

Sabik, Cooper, La France and Fournier (1995) extracted atrazine-contaminated

(10 50 ng.g- l
) sediments with a mixture of methanol and hydrochloric acid (0.1 N) (1:1 v/v)

facilitated by a wrist-action shaker. The pH values of the extracts were adjusted to pH 4 prior to

concentration and purification with solid-phase extraction cartridges. The overall recoveries were

determined to be ± 75%.

Del Valle, Muldoon, Kams, Nelson and Mulbry (1996) used a combination ofmethanol and water
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(4: I v/v) and a wrist-action shaker to extract atrazine from field soil samples.

Wahle and Kordel (1997) assessed the efficacies of a number of extraction solvents: a synthetic

extraction solution (0.15 M sodium acetate, 0.15 M acetic acid, 0.007 M salicylic acid, 0.05 M

glycine); detergents (sodium dodecylsulphate and nonylphenol-polyethyleneglycolether dissolved

in water or buffers); and humic acids. The extraction solvents were added to soil and shaken for 14

hours. From the results it was concluded that the detergents increased the extraction of organic

pollutants (10 - 50 mg.kg-1
) from soil. Humic acids enhanced the solubilities oforganic pollutants

and thus the extraction efficiencies. Parallel recoveries with the synthetic extraction solution

compared poorly with those obtained with the detergents and humic acids.

Atalay and Hwang (1996) used, individually, methanol, 2-propanol and water to extract light

hydrocarbons (0.4 mg.g-I) from three soil types by agitating the slurry for four hours. The soils were

raised to their field moisture contents and then spiked with a hydrocarbon mixture representative

ofthe C6-C lO hydrocarbons ofpetrol. Soil extracted with water gave the lowest recoveries « 2 %)

while methanol was deemed to be the most effective solvent (64 -70 % recoveries).

A mixture of water and methanol (I: 1 v/v) was the solvent chosen for the extraction of BTEX

compounds (2.4 J.1g.g- l
) by agitation (Meney,Davidson and Littlejohn, 1998) from artificially

fortified soils. The recoveries obtained from spiked air-dried soils were much higher (> 90 %) than

those obtained from field-moist samples. They also spiked soils with petrol to determine if the .

method may be applied to petrol-contaminated soils. For this study it was found necessary to change

the extraction solvent from methanol: water (1:1 v/v) to methanol only, due to the immediate

formation of immiscible droplets.

(i) Alkaline digestion

The. alkaline digestion method used by Pearce, Snyman, van Heerden, Greben and Oellermann,

(1995) to extract phenol (50 - 5 000 mg.kg-') from soil was a modified version of agitation
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extraction. A mixture ofwater and sodium dithionite (Na2S20 4) was used as the extraction solvent

instead oforganic solvents. This method follows the current trend to avoid the use oflarge volumes

oforganic solvents and successfully uses pH manipulation to enhance the extraction ofphenol from

soil.

(ii) Ethyl acetate micro-method

Steinwandter (1992) attempted to miniaturize the conventional agitation extraction method, using

field samples, so that, firstly, lower volumes of solvents were used and, secondly, the individual

steps of filtration, partitioning and shake-out were eliminated. He succeeded by introducing a

ternary solvent system which was then further reduced to a binary system by replacing one of the

solvents (acetone) with anhydrous magnesium sulphate (MgS04). The solvent system which was

finally used was a combination ofethyl acetate( EtOAc) and water (2: 1 v/v). In addition to reducing

the volume of organic solvent (20 rnl ofEtOAc for 5 g of soil) used, Steinwandter succeeded in

minimizing the number of extraction steps, thereby reducing analytical error.

Soxhlet Extraction

The USEPA Method 3540 (Soxhlet Extraction) is an approved method for the extraction of semi­

volatile organic molecules from solids such as soils, sludges, sediments and hazardous wastes

(USEPA, 1986).

Increased mass transfer is achieved in the Soxhlet extraction by the repeated cyclical passage of

heated solvent through the soil sample. The sample is packed into a special thimble made ofthick

filter paper. The thimble is placed into the Soxhlet apparatus and the entire apparatus is placed on

top ofa round-bottomed flask which contains an organic solvent. A reflux condenser is placed on

top ofthe Soxhlet extractor. The flask is heated until the solvent boils and its vapour passes up the

outer tube ofthe apparatus. Condensed solvent then drips downthrough the thimble which contains

the soil sample. The pollutant is thus extracted from the solid into the hot solvent. When the
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solution reaches the top of the siphon tube, it siphons automatically through the narrow tube and

returns to the flask where the analyte accumulates. The process is efficient because the same batch

of solvent is cycled repeatedly through the solid (Harwood and Moody, 1989).

Steinwandter (1992) compared atrazine recoveries obtained by Soxhlet extraction with those ofthe

ethyl acetate micro-method and found the former to be between 30 and 40% less effective.

Guzella, de Paolis, Bartone, pazzoni and Giuliano (1996) used Soxhlet extraction to determine the

pesticide content ofagricultural soil and achieved a recovery of 100 % for atrazine from field soil

samples when methanol was the extraction solvent.

According to Naude, de Beer, Jooste, van der Merwe and van Rensburg (1998), the disadvantages

of Soxhlet extraction are: the use of copious volumes ofhazardous and flammable liquid organic

solvents; the potential for toxic emissions during extraction; the requirement of expensive, high

purity solvents; and its non-selectivity, labour intensiveness and time consumption.

Huang and Pignatello (1990) compared Soxhlet extraction recoveries (with methanol as the

extraction solvent) with recoveries by agitation extraction with methanol and water (4:1 v/v) at

elevated temperature (75°C). For the latter, the recoveries were between 1.3 and 1.8 times higher

than those ofthe Soxhlet extraction. The authors attributed the lower extraction efficiencies ofthe

Soxhlet method to the absence ofagitation in the extraction thimble and to solvent cooling before

passage through the thimble.

Durand and Barcel6 (1991) determined the residual concentrations (5 ng.g- l
- 9 J..1g.g- l

) ofa number

ofpesticides, including atrazine, in agricultural soils following Soxhlet extraction. Unfortunately,

no mention was made of whether the efficacy of the extraction was determined initially on soils

artificially spiked with the pesticides.

Soxhlet extraction of soil hydrocarbons (50, 1 000 and 25 000 mg.kg- l
) with methanol and
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dichloromethane was made sequentially by Sporst01, Lichtenthaler and Oreld (1985). Each sample

was extracted first for 24 hours with methanol, after which the solvent was decanted and replaced

by dichloromethane prior to refluxation (24h). The reproducibility of the extraction was 4.5%.

Comparisons with sonication extraction revealed no significant difference (90% confidence level).

Hydrocarbon extraction efficiency by Soxhletextraction (24h) with methanol, water and 2-propanol,

was determined by Atalay and Hwang (1996). The analyte concentrations were 0.4 mg.g- l
.

Methanol and water effected consistently higher recoveries (29 - 48%) than water « 1%) although

the highest recoveries were recorded with 2-propanol. For all solvents, higher recoveries were

obtained with air-dried rather than moist soil.

Sonication Extraction

Increased mass transfer is achieved by the use ofultrasound waves (sound vibrations) in sonication

extraction. The vibrations stir a solution by generating microscopic bubbles which expand and

contract (Rubinson and Rubinson, 1998). In addition to stirring the solution, the bubbles can break

up a solid surface through formation in microscopic cracks and expansion.

Lopez-Avila, Hirata, Kraska, Flanagan and Taylor (1985) used an ultrasonic cell disruptor and a

mixture ofacetone and hexane (1:1 v/v) to extract residual spiked atrazine (2010 000 Jlg.g-1
) from

soil. The pH ofthe soil slurry was maintained at pH 7 and the average, but variable, recovery was

86%. Recovery from water gave much more reproducible results. Donaldson, Miller and Miller

(1990) evaluated sonication extraction from soil with acetone plus dichloromethane (1:1 v/v) for

light hydrocarbons (C6 - C12 components found commonly in gasoline). The final spiking

concentration was 500 mg.kg-l
. In this study they replaced an ultrasonic probe with a tank-style

ultrasonic bath. Better total recoveries (43.2%) were obtained from dry soil than moist soil (21.8%).

Although the recoveries ofthe higher molecular weight compounds were> 80 % from the dry soils,

the recoveries ofbenzene and heptane were generally < 5%.
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Llompart, Lorenzo, Cela and Pare (1997) extracted phenol from soils by sonication extraction.

Extraction optimizations were made with soils which had been spiked with phenol (10.84 IJ.g.g- l
)

and cresol. For phenol the extractions accounted for 50% of the concentration added. The same

researchers compared (1997) sonication extraction with super-critical fluid extraction to determine

if the molecule could be extracted best as its acetic anhydride derivatized product or in its

unadulterated form and found that the derivatization-extractions performed better and did not

require extreme extraction conditions.

Microwave-Assisted Extraction (MAE)

The use of microwave energy to extract organic compounds from a contaminated soil was first

reported by Ganzier and Salgo (1986). They used a conventional household microwave oven to

irradiate solvent/sample suspensions for 30 seconds up to seven times each. Microwave heating

results from the varying electrical field of the microwaves. The variation of this field at the

microwave frequency causes molecules such as water to rotate, the migration of ions in ionic

solution, and the movement ofelectrons in metallic materials. The rotating movement ofthe water

molecules is stopped by collision with the surrounding molecules which, in turn, heats the liquid.

Similarly, the moving ions are stopped by the liquid and the energy is transferred throughout the

solution as heat. Samples for microwave digestion are held in open or closed containers which are

often made from a type of Teflon, (perfluoroalkoxy)ethylene (TeflonPFA). This material is

transparent to microwave radiation at the commonly used frequency of2 450 MHz, therefore, the

sample is heated directly by the penetration of the microwave energy (Rubinson and Rubinson,

1998).

Lopez-Avila, Young and Beckert (1994) used MAE to extract 14 phenols from freshly spiked (16.3 ­

1 450 mg.kg- l
) soils (no simulated weathering) and compared this with Soxhlet and sonication

extractions and room temperature extraction (without agitation). The solvent used was a mixture

of hexane and acetone (1:1 v/v) and the average MAE recovery for phenol was 74.9% (with a

relative standard deviation of7.6%) which compared favourably with the average recover at room
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temperature of~ 52%.

Lopez-Avila, Young, Benedicto, Ho and Kim (1995) further evaluated MAE from soil of 187

compounds, including phenol. The spiking concentrations were in the range 1.01 - 20.0 mg.kg-'.

Recoveries from freshly spiked soil were compared with recoveries from spiked soil which had been

aged for 24h, 14 days and 21 days. In general, the recoveries decreased with ageing time, as did

their reproducibility, although this method gave at least comparable results to those obtained with

sonication or Soxhlet extraction.

Llompart et at (1997b) developed and optimized a rapid MAE for phenol and 0-, m-,p-cresol in soil

samples. Soil was spiked and allowed to age for 25 days before treatment to facilitate analyte­

matrix interactions. The solvent used was acetone: hexane (4:1 v/v) and recoveries of 89 - 104%

were obtained, compared with sonication extractions of only 45 - 59%.

Pastor, Vazquez, Ciscar and de la Guardia (1997) used MAE with toluene as the extraction solvent

to facilitate quantitative recovery of the highest possible number of different types of pollutants.

Water (10 % v/v) was added to the reagent mixture to improve the polarity of toluene. The

recoveries achieved for unresolved hydrocarbons were 98 % and these compared with an average

recovery of92 % with sonication extraction.

The use ofMAE is becoming increasingly popular due to its requirement for smaller volumes of

solvent, as well as the shortened extraction times (Llompart, Lorenzo, Cela and

Pare 1997b).

Supercritical Fluid Extraction (SFE)

A supercritical fluid is a substance which, under the conditions, above but close to, its critical point,

may no longer be classified as either a liquid or a gas but shares the properties of both (Breet, van

Eldik and Steiner, 1996). Since a substance at its supercritical phase is neither a gas nor a liquid
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it is simply called a fluid. The critical point, where the gas and liquidjust become indistinguishable,

occurs at a specific temperature called the critical temperature (Tc) and a specific pressure called

the critical pressure (Pc)' The values ofTc and Pc are compound specific (Rubinson and Rubinson,

1998). The choice of substance to be used as a supercritical (SC) solvent depends, as with all

extraction solvents, on the polarity ofthe target analyte(s). The temperature and pressure required

to push a substance into its critical region must be considered also (Phelps, Smart and Wai, 1996).

The most commonly used supercritical fluid is carbon dioxide since it becomes supercritical under

mild conditions (31.1 QC and 7 380 kPa). It is, also, readily available, is inexpensive, has a low

toxicity and reactivity and provides a clean alternative to conventional liquid/solid extraction

techniques. Supercritical carbon dioxide is the most widely used SF for extracting non-polar

analytes (Hills and Hill, 1993). When more polar analytes are present a low volume ofmodifier,

such as methanol or ethanol, may be added to make a mixed fluid. By varying the temperature and

pressure of SC-C02, it may assume the equivalent properties ofa range of conventional solvents,

from pentane to pyridine, to suit different applications (Phelps et af, 1996). This range, also,

includes solvents such as benzene, toluene, carbon tetrachloride and other chlorinated solvents.

Compounds extracted from their matrix by SFE may be recovered by lowering the density of the

fluid, i.e., lowering the pressure, so that the fluid returns to its gaseous phase (Rubinson and

Rubinson, 1998).

van der Velde, de Haan and Liem (1992) concluded that SFE could replace the Soxhlet extraction

after comparing SFE, Soxhlet extraction and agitation extraction for the removal of PCBs and

organochlorine pesticides (5 ng.g-1
) from soil.

Steinheimer, Pfeiffer and Scoggin (1994) used SFE to recover atrazine, cyanazine, deethylatrazine,

deisopropylatrazine and metolachlor from fortified soils. They found that the method extracted

fewer co-extractants than recorded with conventional solvent extractions and the degradation ofthe

target analytes, with the exception ofcyanazine, was minimal. The recoveries ofeach analyte from

soil fortified to a concentration ofbetween 0.1 and 2.0 mg.kg-1 ranged from 25 to 120% depending

on the soil matrix and the analyte. A low statistical correlation was found between the spiking
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concentration and the recovered analyte concentration.

A review article by Dean (1996) summarized the bases of soil-pesticide interactions and their

importance in identifying the appropriate SFE conditions for the removal ofanalytes from soil. ~e

made an important distinction between spiked samples and native samples and emphasized that the

experimental conditions may well be different for native sample extractions.

Llompart etal (1997a) evaluated SFE and MAE for the recovery ofphenol and m-, 0-, p-cresol from

five different soils. Supercritical CO2 modified with methanol was used as the extractant. Although

SFE effected very low recoveries ofphenol (62 - 65 %) in these particular soils, the recoveries were

much improved after an in situ derivatization step was added to the procedure which, according to

the authors, gave more specific extractions, as well as higher recoveries.

Naude et al (1998) compared the recoveries ofDDT, DDD and DDE from sediments with SFE and

Soxhlet extraction. They found that the differences were not statistically significant at the 95 %

confidence level and concluded that SFE could replace Soxhlet extraction. Many advantages are

cited for SFE, such as: reduction of extraction time (30 minutes compared to 14h); reduction of

sample preparation time; and elimination ofa clean-up step. In addition, they are virtually solvent

free (5 III of acetone as modifier compared to 500 ml of solvent for Soxhlet extraction).

Purge and Trap

This technique is usually used for removing and concentrating low concentrations of organic

compounds from water samples. Also, it may be combined with other extraction methods, such as

SFE, for the extraction oforganic pollutants from soil and water samples. Purge and trap involves

passing a gas such as helium through a solution which contains volatile organic compounds in low

concentrations. As the carrier gas passes through the solution, it purges the organic compounds.

The gas is then directed into a tube which is packed with a solid adsorbent material such as

charcoal, silica gel or Tenax™. Tenax™ is a porous polymer based on 1,6-diphenyl-p-phenylene
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oxide (Rubinson and Rubinson, 1998). The trap is then heated and the volatile organic molecules

are driven into the instrument being used for the analyses, usually a gas chromatograph. Hewitt,

Miyares, Legette and Jenkins (1992) and Schumacher and Ward (1997) used purge and trap to

extract succesfully, volatile organic compounds from laboratory spiked soils.

1.1.2 Factors governing the choice of organlc solvent

The range of organic solvents available for use in extraction methodology is wide but the main

criteria are good stability and volatility, so that the solvent may be removed easily from the organic

compound by evaporation (Harwood and Moody, 1989). Ideally, an extraction solvent should also

be non-toxic and non-flammable, but these criteria are often difficult to satisfy. The choice of

organic solvent often depends on the polarity and solubility of the analyte of interest and is also

determined by the sample matrix.

1.1.3 The trend towards reducing or eliminating organic solvent usage

As indicated previously, conventional sample preparation techniques are often complicated andtime

consuming and are frequently perceived to be the limiting factor in the analytical method. Also,

they are not cost-effective since they require the use of high-purity organic solvents. Recently, a

trend has emerged to develop methods which do not require these hazardous solvents or, at the very

least, reduce the volume required and, thereby, shorten the extraction time.

Supercritical fluid extraction has, therefore, increased in preeminence as it uses, most often,

innocuous CO2 at its critical point. Hawthome (1990) published an in-depth article on supercritical

fluid extraction and its applications and concluded that this technique would replace rapidly the

more conventional liquid solvent extraction techniques. While the use of organic solvents

(methanol, acetone) as modifiers is often necessary to extract the more polar compounds, the

volume required is negligible (in the microlitre region) (van der Velde et aI, 1992; Steinheimer et

aI, 1994; Dean, 1996; Llompart et aI, 1997a; and Naude et aI, 1998).
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Microwave-assisted extraction requires small volumes of solvent, has a dramatically reduced

extraction time and many samples may be extracted simultaneously ( Lopez-Avila , Young and

Beckert, 1994; Lopez-Avila, Benedicto, Charan and Young, 1995; Lopez-Avila, Young, Benedicto,

Ho and Kim, 1995; Llompart, Lorenzo, Cela and Pare, 1997; and Pastor et ai, 1997).

Static headspace techniques in gas-tight vials involve a partitioning ofvolatile components between

the aqueous and vapour phases. Soil samples are held in the vials with distilled water as the

extractant. Thereafter, the volatile organic molecules partition into the enclosed yapour phase (Roe,

Lacy, Stuart and Robbins, 1989) and may be injected directly into the analytical instrument with a

gas-tight syringe. Bianchi and Vamey (1989) successfully used a static headspace method to

determine the VOCs in estuarine and marine sediments, while Llompart-Vizoso, Lorenzo-Ferreira

and Cela-Torrijos (1996) developed a GC-headspace method for the analyses ofphenol and cresols

in soils following direct acetylation with acetic anhydride.

Headspace techniques have also been combined with fibre-optic sensors (Bamard and WaIt, 1991)

and solid phase micro-extraction (SPME) (lames and Stack, 1996) for the recovery and analyses of

VOCs. Solid phase micro-extraction requires the use ofan analytical instrument, while fibre-optic

sensors are composed ofa chemical reagent phase which is combined physically or immobilized

chemically on the distal end ofan optical fibre. The reagent phase contains a chemical indicator

which changes its properties, either absorbance or fluorescence, on interaction with the analyte,

making further analyses unnecessary.

Purge and trap methods were applied successfully by Hewitt et al (1992) and Schumacher and Ward

(1997) to extract VOCs from soils.

Other methods which require organic solvents, albeit in reduced volumes, are the ethyl acetate

micro-method, which is an example of a miniaturization procedure of a conventional extraction

method (Steinwandter, 1992) and accelerated solvent extraction (ASE) (Richter, lones, Ezzell,

Porter, Avdalovic and PoW, 1996).
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In ASE, a solid sample is placed in a static sample cartridge which contains an extraction fluid

under elevated temperature (50 - 200°C) and pressure (500 - 3000 psi) conditions for short time

periods (5 - 10 minutes). Compressed gas is then used to displace the extract from the cell into a

collection vessel. Wahle and Kordel (1997) replaced successfully the conventional organic solvents

with organic acids, tensides and humic acids.

Although conventional organic solvents are very effective for recovering pollutants from soils, they

have many disadvantages including: protracted extraction times, the use of large volumes of

expensive, high-purity solvents, and inherent health and environmental hazards. Newer techniques

that emphasize the reduction or total elimination of organic solvents and their shorter extraction

times, as well as their ease ofautomation, make them a more viable choice. One ofthe limitations

ofthe newer techniques is that their initial expense is very high; conversely, their shorter extraction

times and their ability to extract multiple samples simultaneously, often in a wholly automated

environment, are some oftheir benefits.

1.1.4 Analytical techniques

The analytical techniques used to quantify chemical species include: gas chromatography (GC); GC­

mass spectrometry (GC-MS); high performance liquid chromatography (HPLC); supercritical fluid

chromatography; ultra-violet/visible spectrophotometry; fluorescence spectrophotometry; fibre-optic

sensors; and biological methods, such as immunoassay.

A number of review articles have been dedicated to analyses of environmental samples (Matson,

Kahrs and Murphy, 1970; Clement, Langhorst and Eiceman, 1991; Sherma, 1991; Nubbe, Adams,

Watts and Clark, 1992; Dietrich, Jensen and da Costa, 1996; Clement, Yang and Koester, 1997;

Lopez-Avila and Hill, 1997; and Clement and Yang, 1999).

The trend towards using biological and fibre-optic sensors is certainly on the increase, as many

researchers now prefer to use more compact methods of analysis.
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1.1.5 Factors affecting the extraction of organic compounds from soils

Since extraction of organic molecules from soils is, essentially, the breaking of bonds between a

chemical and the surface of soil particles, it is reasonable to assume that factors similar to those

governing the adsorption oforganic chemicals to soil particles will govern their extraction into an

organic solvent. Thus, the principal factors are: the soil composition; soil pH; whether the soil is

wet or dry; the soil organic matter content; and the octanol-water partition coefficient (Kw) of the

molecule itself (Johnston, 1996).

The solubility ofan organic compound is often determined by the pH ofthe aqueous solution and

its solubility may be enhanced by the pH ofthe extracting solvent. Pearce et at (1995) used alkaline

digestion to extract phenol from soils.

Many researchers have optimized extraction methods using only soil samples spiked with the

analyte immediately prior to extraction. This approach is limited by the fact that the samples do not

reflect the complexity of analyte-matrix interactions, which develop and intensify with time

(Llompart, Lorenzo, Cela, Belanger and Pare, 1997).

Huang and Pignatello (1990) evaluated their extraction methods on artificially weathered or field

samples since the recoveries from the former invariably gave lower values than those predicted on

the basis of a freshly-added spike. They emphasized the need to validate extraction methods with

field samples. In a similar study, in which the effects ofweathering on analyte-matrix interactions

were simulated byspiking soil samples and maintaining them in sealed containers in the refrigerator

for 24 hours, 14 days or 21 days, Lopez-Avila et at (1995) found that analyte recovery decreased

with increased ageing time and their extraction variability increased. Llompart et at (1997)

emphasized that, since the soil retained residual moisture throughout the storage period, the analyte­

matrix interactions should have occurred during the weathering period to a similar extent as those

in actual contaminated soil with similar properties.

Donaldson et at (1990) reported great discrepancies for the extraction of the light fraction of
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gasoline from dry and wet soils. Recovery ofunleaded petrol from a dry, spiked soil was 43.2%

whilst the recovery from a wet, spiked soil was 21.8 %. Langenfeld, Hawthorne, Miller and

Pawliszyn (1995) reported similar results for the SFE recoveries of spiked analytes and incurred

analytes. The addition ofmodifiers or stronger extraction conditions appeared to be necessary to

obtain values which were comparable with those ofconventional extraction techniques ofcertified

reference materials (van der Velde et ai, 1994).

Atalay and Hwang (1996) investigated the effects ofsoil moisture on the extraction ofhydrocarbons

and found that their recoveries from wet soil were greatly reduced compared with dried soil. They

speculated that soiVsediment drying removes loosely held water thereby making conditions

favourable for hydrogen bond formation between the appropriate sites. The expansion and

contraction ofclays, due to changes in moisture content, may also affect recoveries.

Llompart et al (1997b) simulated the weathering of soil samples by adding various amounts of

activated charcoal to increase the analyte-matrix interactions. After spiking, the samples were

stored for 20 days before analysis. The recoveries obtained with MAE were not dissimilar, even in

the presence of increased charcoal contents, but SFE effected reduced recoveries with increased

amounts ofcharcoal.

The rate ofextraction is governed partly by the ability of the solvent to diffuse through the matrix

(Dean, 1996). Such diffusion may be enhanced by controlling the particle size of the matrix.

Therefore, most soils are air-dried, ground and sieved to at least a 2 mm diameter particle size

before the extraction to enhance diffusion of the solvent.

Hewitt et al (1992) considered the spiking technique to be an additional factor in determining the

recovery of organic analytes from soil. They used a vapour fortification technique to fortify soils

with hydrocarbons. This method is similar to the exposure of unsaturated soils to vapours which

originate from a separate contaminant phase. Vapour fortification was carried out for a 4-day period

and/or a period lasting between 39 and 46 days and there was no conclusive pattern between the two
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treatments.

Generally, an organic solvent is used to transfer the analyte ofinterest to the soil. Thus, the solvent

may change the original structure and composition ofthe soil and, upon vaporization, may facilitate

large losses of the more volatile components. Auer and Malissa (1990), therefore, dissolved the

analytes in a minimum volume of acetone which was then diluted with water and the soil spiked

with the mixture. When the soil was spiked with a smaller volume of the analyte stock solution

only, the extraction effected very high percentage recoveries.

Each extraction method has its merits and limitations and before an analytical method is chosen it

must be determined first what detection limits are required, as well as the type and specific details

ofthe information required. Other major factors are the capital and consumable costs involved and

the duration ofthe extraction and subsequent analysis. Regulatory aspects must be considered also,

as different countries have different guidelines and requirements in terms of both accepted

methodology and detection limits (Miller, Ferko, Genicola, Kopera and Stainken, 1991).

As stated in the introduction, the criteria for the choice ofextraction methods in this study were that

they must be simple to perform; relatively inexpensive; and not require complicated equipment and

apparatus. The extraction methods investigated for the removal of phenol were Soxhlet and

sonication extractions and alkaline digestion. SOxhlet extraction was selected because it is one of

the most frequently used extraction methods for the removal of organic compounds from soil.

Sonication extraction is also well documented in the literature and has the advantage of requiring

less solvent than the SOxhlet extraction as well as being less time consuming. Alkaline digestion

was selected because it epitomizes the trend towards reducing or eliminating organic solvents and

manipulates the pH ofthe solvent/soil suspension to maximize the extraction.

Atrazine was recovered from soil by the following extraction methods: Soxhlet; sonication;

agitation; and the ethyl acetate micro-method. Agitation extraction was selected for its simplicity,

while the ethyl acetate micro-method represents those extraction methods which minimize the use
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oforganic solvents and reduce also the overall number ofsteps required in the extraction.

Agitation and sonication extraction were selected for the extraction of the BTEX molecules from

soil. Agitation extraction was chosen for its simplicity and sonication extraction for its use oflow

volumes of solvent and limited time requirement.

Analysis by gas chromatography was selected for all three pollutant types because of the ready

availability ofa gas chromatograph.
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1.2 Phenol

The petrochemical industry produces raw phenol primarily by the oxidation ofcumene, a second

generation petrochemical product derived from benzene and propylene (Anon., 1978). Phenol

appears to have an infinite variety of uses. Its largest single use is in the production ofplastics and

it is used, also, in the synthesis ofcaprolactam and adipic acid, the precursors for Nylon-6 and other

man-made fibres (O'Brien and Olofsson, 1979). Phenol application is product specific and, in many

cases, it may not be replaced readily (Rowe, 1983). The molecule is one of the most ubiquitous

pollutants present in soil and groundwater and is found often in wastes generated from oil refineries

and chemical- and wood-treatment plants. It is, also, one ofmany organic compounds found in coal

tar and petroleum (US Environmental Protection Agency, 1992). Phenol is a versatile feedstock in

the resin industry because ofits distinctive physical properties. The plastic resins such as the epoxy

and polycarbonate resins are the major products derived from phenol. It is, also, a component of

pesticides and dyes (Verschueren, 1996).

Phenolic compounds are produced naturally by plant and animal decomposition. There are few

natural occurrences of phenol per se, although it does occur in the needles of pine trees (Pinus

sylvestris), in the essential oil ofleaves oftobacco (Nicotiana tobacum) and currant (Ribes nigrum)

and in lichens (Evernia prunastri) (Harbome and Simmonds, 1964).

Phenol is a neurotoxin. Its effects are accentuated in water by reduced oxygen concentrations and

by increased salinity, hardness and temperature (Food and Agricultural Organization ofthe United

Nations, 1972). Phenol is listed as a priority pollutant by the United States Environmental

Protection Agency (USEPA) and has a solubility of 6.7 g in 100 ml ofwater. The reported lethal

dose for humans is 5-10 mg.kg- l (O'Brien and Olofsson, 1979). Humans exposed via contaminated

well-water to phenol concentrations of approximately 100 mg.t l for 1 month, following a spill at

Lake Beulah, Wisconsin, showed temporary illness including diarrhoea, sores, burningofthe mouth

and darkened urine (Baker, Landrigan, Bertozizi, Field, Batteyn and Skinner, 1979). Humans have

reportedly died from oral phenol doses ofbetween 200 and 350 mg.t'. Acute illness and influenza-
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like symptoms resulted over a period of one to three months after a tanker spill resulted in

contamination concentrations ofbetween 10 and 280 mg.t1
• However, phenol in both its free and

conjugated forms was reported in human sweat and urine with no adverse health effects in the range

of 1 to 60 mg.t1 (USEPA, 1979).

There is growing concern surrounding the contamination of potable groundwater supplies by

phenolic compounds. Phenol and its derivatives may enter the environment directly as components

of industrial effluents or indirectly as transformation products of other compounds. The

chlorination ofwastewaters can convert phenol to 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4­

DCP), 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP) (Smith and Novak, 1987).

Knowledge of the processes controlling the fate of phenol and its derivatives is essential because

they are soluble in water in concentrations which may cause adverse health effects.

In South Africa, the target water quality range for domestic use is set at 0 tol J..Lg.tt, with no

aesthetic or health effects, and in this range the water is suitable for continuous long-term intake.

Concentrations> 300 J..Lg.t1 are deemed unacceptable aesthetically and there is a danger of toxic

effects (South African Water Quality Guidelines, 1996).

1.2.1 Interactions with soil components

Phenol is representative of an acidic organic substance and is sorbed onto the hydrophobic and

neutral siloxane (Si-D) surfaces in soil (Johnston, 1996). At alkaline pH, organic acids can

dissociate to form anionic complexes:

OH

6 high pH ..
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In their anionic form, these compounds have very little interaction with clay mineral surfaces and

are highly mobile. Such interaction is influenced strongly by pH, water content, the type of clay

surface and the nature of the exchangeable cations present.

1.2.2 Phenol catabolism

Evans (1947) showed that the first product in phenol catabolism is catechol. Figure 1.1 shows the

typical orthocleavage pathway ofphenol catabolism.

OH
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Figure 1.1 Typical orthocleavage pathway of phenol
metabolism by bacteria
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1.3 BTEX

The BTEX chemicals (Figure 1.2) are volatile monoaromatic hydrocarbons which are commonly

found in crude petroleum and petroleum products such as gasoline. They are present, either

singularly or in various combinations, in many materials other than petroleum (Atalay and Hwang,

1996) such as solvents and raw materials for the manufacture of pesticides, plastics and synthetic

fibres (Meney, Davidson and Littlejohn, 1998).

o
Benzene Toluene Ethylbenzene m-X lene

Figure 1.2 Compounds commonly referred to as BTEX
(henzene, toluene, ~thylbenzene, !ylene)

The BTEX compounds may comprise more than 60% of the mass that solubilizes when gasoline

enters water and they are the hydrocarbons most frequently reported as groundwater contaminants,

primarily because oftheir high solubilities in water (Barbaro, Barker, Lemon and Mayfield, 1992).

Petroleum and petroleum products are amongst the most important and widespread pollutants,

largely due to the leakage of underground storage tanks (Atlas and Cemiglia, 1995). In addition,

fuel spillage during transport and storage also contributes to the volume of hydrocarbons

contaminating the environment. Unbumt fuel residues in the exhaust gases from internal

combustion engines can also be sources ofhydrocarbon pollution (Brodskii and Savchuk, 1998).

The organic compounds associated with gasoline use react in the presence of nitrogen oxides to

generate ozone and other substances which manifest as chemical smog (Quach, Ciszowski and

FinIayson-Pitts, 1998). Gasoline contributes to photochemical smog in two ways. First, by direct

evaporation of gasoline vapours into the air and, second, through the emission of compounds

generated in its combustion.
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Benzene, toluene and ethylbenzene are amongst the compounds listed as priority pollutants by the

USEPA and action levels are listed in the Dutch Government Quality Standards for the Assessment

ofLand Contamination (Meney et ai, 1998).

1.3.1 Interactions with soil components

The BTEX chemicals are categorized as non-polar organic compounds. The sorption ofvolatile

organic compounds (VOCs) from the vapour phase onto clay is influenced strongly by the water

content ofthe soil. Since these two constituents often compete for the same sites (Hewitt, Miyares,

Legett and Jenkins, 1992), two distinct sorption processes are responsible for the uptake ofVOCs

by soils. At a low water content, VOC sorption is determined by the nature ofthe mineral surfaces

with minimal contribution from the soil organic matter (SOM). With increasing water content,

however, the partitioning mechanism of VOCs into SOM appears to be the dominant process

(Johnston, 1996).

1.3.2 Catabolism of BTEX molecules

All of the BTEX compounds have at least one catabolic pathway that includes degradation to a

substituted catechol. Benzene is degraded to catechol. Toluene has many degradative pathways,

some ofwhich include 3-methylcatechol as an intermediate. Various degradation pathways exist

also for ethylbenzene which can be transformed to 3-ethylcatechol. All ofthe xylenes (ortho, meta

and para) are catabolized to mono-methylated catechols. For example, m-xylene is catabolized to

3-methyl catechol (http://www.1abmed.umn.edu/umbbd/BTEX). The enzyme dioxygenase is then

responsible for the cleavage of the substituted catechol. The first step in the aerobic degradation

ofBTEX compounds is illustrated in Figure 1.3.
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o
Benzene

Toluene

Ethylbenzene

m-Xylene

R

~H

U OH

Benzene: R=H
Toluene: R= CH3
Ethylbenzene: R= CH2CH3
m-Xylene: R= CH3

Figure 1.3 The first step in the aerobic degradation o(tbe BTEX compounds
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CHAPTER TWO

Atrazine: History and Background

2.1 Introduction

Atrazine was registered initially by CffiA-GEIGY in 1958 as a weed control herbicide. It has been

one ofthe most widely used pesticides globally (Sirons, Frankand Sawyer, 1973). Atrazine controls

selectivelydicotyledonous weeds, such as pigweed, cockleburand velvetleaf, as well as certaingrass

species. Due to its selectivity, only the target weeds are controlled with little or no injury to the

crop. Atrazine is versatile and may be used at different crop stages (pre-planting, pre-emergence

or post-emergence) (Regehr, Peterson and Hickman, 1992).

In 1992, the annual sales ofatrazine and atrazine- based products ranged between 36 and 40 million

kilograms in the USA (U.S. Environmental Protection Agency, 1992). Atrazine usage in South

Africa is, typically, ofthe order of2.6 million kg. of active ingredient per annum (Hugo, 1994).

2.1.1 Human health risks

Stevens and Sumner (1991) stated that atrazine is slightly to moderately toxic to humans and other

animals. Itcan be absorbed orally, dermally and by inhalation. The symptoms ofpoisoning include

abdominal pain, diarrhoea and vomiting, eye irritatio~ irritation of mucous membranes and skin

reactions.

In a study to determine the impact ofpesticide exposure on farm workers in South Africa, Rama and

Jaga (1992) estimated that there were 1.2 million farm workers and, ifone were to consider their

families, this number could be extrapolated to approximately 7 million people who were exposed

occupationallyand/orenvironmentally to one ormore types ofpesticide. Although the specific risks

of human exposure to atrazine are not well understood, some research indicates potential toxic
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effects from atrazine metabolites, particularly from the adducts ofnitrosoderivatives, that may be

produced in mammalian systems (Meisner, Roloff and Belluck, 1993). The USEPA classified

atrazine as Class C, a possible human carcinogen, since, despite evidence from existing animal

studies suggesting carcinogenicity, there were insufficient human data for confirmation (Johnson,

Pepperman and Selim,1998).

In 1999, the Environmental Working Group (EWG) found that the USEPA had underestimated by

a factor ofalmost 15 the health risks that atrazine and other contaminants pose to infants drinking

formula mixed with tap water. In the worst case scenario, the study found that in 13 Midwestern

towns in the USA, infants can exceed their "allowable" lifetime cancer risk within the first four

months of their lives through exposure to atrazine (http://ens.lycos.com, 12/08/99).

Atrazine is linked to many types of cancer, including cancer of the breast, ovaries, uterus and

testicles, as well as leukaemia and lymphoma. Atrazine, like DDT, is both an endocrine-disrupting

chemical and a toxin. It interrupts hormone function causingbirth defects and reproductive tumours

(http://www.ro-systems.netlatrazine.htmL 10.05.2000).

Although the evidence against the prolonged use ofatrazine keeps mounting, DrJohnBamett, Vice­

President ofEnvironmental andPublic Affairs for Norvartis Crop Protection (the manufacturers and

marketers ofatrazine) stated that" Atrazine does not cause any adverse health effects, including the

mythical organ damage, genetic effects, hormone disruption and cancer. ''(http://www.tb.orgl ).

2.1.2 Animal health risks

Lethal doses of atrazine in test animals have caused congestion and/or haemorrhaging in lung,

kidney, liver, spleen, brain and heart tissue. Long-term consumption of atrazine has caused

paroxysms, change in organ weight and damage to the liver and heart (Stevens and Sumner, 1991).

The lipophilic nature ofatrazine results in its concentration in the fat reserves ofanimals although

it is usually eliminated rapidly from the body. In mammalian toxicity tests, more than 50 % ofthe

25



dose was eliminated rapidly from the body in the urine and faeces.

Decreased growth and reproduction have been observed in invertebrates exposed to atrazine (South

African Water Quality Guidelines, 1996).

2.1.3 Phytotoxity, persistence and environmental impacts

Atrazine is used commonly in maize (Zea mays) and sorghum (Sorghum spp) farming. These crops

are able to absorb and metabolize atrazine thereby de-activating it. In sensitive plants, unaltered

atrazine accumulates and results in chlorosis and death. Because atrazine inhibits photosynthesis,

the vulnerability of algae to atrazine may affect the food chain at some contaminated sites

(Stratton,1984).

Atrazine usage impacts on farming practices. Both de-ethyl atrazine and de-isopropyl atrazine have

been shown to be toxic in plant bioassays (Kaufman and Keamey, 1970). The degradation products

are known to persist in soil and exhibit herbicidal effects which prevent crop rotation from maize

to soy beans in successive years (Sirons et ai, 1973). In South Africa, for example,atrazine may

persist for longer than 12 months under field conditions thus impacting greatly on crop rotation

(Reinhardt, Ehlers and Ne1, 1990). While longevity in the soil increases the effectiveness ofatrazine

as a pre-emergence herbicide, its persistence can limit the options for crop rotation (Singh, Shea,

Rundal, Comfort, Zhang and Rage, 1998).

Atrazine, although only slightly soluble in water (28 mg.t l at 20°C), is often detected in groundwater

due to its persistence in soil (Thurman,Goolsby, Meyer and Kolpin, 1991). It may be responsible

also for the pollution of fog and rain due to its release into the atmosphere through spray

applications (Bintein and Devillers, 1996).
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2.1.4 Legislation

The Swiss Government issued stringent criteria on atrazine concentrations in water resources in

1984. This legislation requires that no single test may reveal more than 0.llJ.g.t1 atrazine in water

systems. Other European countries have banned atrazine usage altogether (http://ens.lycos.com ).

The "Lifetime Health Advisory Level" for atrazine in drinking water was set at 3 IJ.g.t1 by the

USEPA in 1989. The State of California adopted a "Maximum Contaminant Level" of3 IJ.g.t1

(Goh, Hernandez, Powell, Garretson, Teoiano, Ray and Greene, 1991). On January 1, 1989 atrazine

was placed on the "Groundwater Protection List"of California which lists pesticides with the

potential to pollute groundwater. To complement this, atrazine "Pesticide Management Zones" are

designated where agricultural and outdoor and indoor institutional uses ofatrazine are prohibited.

These areas are sensitive to groundwater leaching of the pesticide (Goh et ai, 1991).

In 1994, the US Department of Agriculture investigated extensively the impact of restricting or

eliminating the use ofatrazine. The Department concluded that a total ban would prove too costly

and encouraged local bans in areas most susceptible to environmental risk (Ribaudo and Bouzaher,

1994).

In South Africa, legislation promulgated in 1996 requires that the target water quality range for

atrazine in aquatic ecosystems is ~ 10 IJ.g.t1 (South African Water Quality Guidelines, 1996). The

target water quality for domestic water is set at ~2IJ.g.tl with the range from 2-20 IJ.g.t1 considered

to have no adverse health effects during an exposure period not exceeding 7 years. Exposure longer

than 7 years carries a potential risk of cancer. An atrazine concentration >20 IJ.g.t1 is considered

to carry a risk of long-term cancer induction.

In 1997, atrazine was added to the USEPA's list of the most toxic chemicals, pesticides and

herbicides in current use.
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2.2 Interactions with soil components

There are a nwnber ofdifferent chemical groups present in soil and the interactions ofpesticides

with these are complex and difficult to characterize. There are, however, particular soil properties

that determine to a large extent whether a chemical is adsorbed, mobile/immobile or is/is not

biologically available to the indigenous microbial population. A key property that regulates

pesticide behaviour in soil is the soil structure, primarily the presence of macropores that should

accelerate pesticide and water movement, and fragipans/hardpans which should impede the

infiltration ofwater and pesticides. Other important factors are the presence and types ofclays, the

quantity of organic matter and the presence of Fe and AI oxides which may bind and reduce the

movementlbioavailability ofthe pesticide. The soil pH plays a role in determining the predominant

ionic species of the pesticide (Nel and Reinhardt, 1984).

Atrazine is classified as beingcationic in nature with respect to its interactions with soil components

(Johnson, 1996) and, as such, it exchanges with the cations on the negatively charged clay mineral

surfaces. Generally, cationic pesticides, pesticides ofextremely low water solubility and pesticides

which complex readily with the soil fractions tend to be immobile in soils. The sorption oforganic

cations relies on their ability to become positively charged and this, in turn, is dependent on their

dissociation constants (pKa values). s-Triazines with a pKa value in the range of 4 to 5 exhibit

stronger sorption to soil colloids than s-triazines with pKa values closer to 2 (Lerch, Thurman and

Kruger, 1997). Triazine adsorption depends on the organic matter content and the soil pH (Gao,

Maguhn, Spitzhauer and Kettrup, 1998).

2.2.1 pH.

The maximwn adsorption of triazines normally occurs when the soil pH values are near the pKa

values (1.7 - 2.6). Half of the triazine should then be present in the cationic form and half in the

non-ionic form (Weber, Weed and Ward, 1969). Due to the moderately hydrophobic nature

CKow = 2.3 - 2.7) ofatrazine, the molecule is not protonated significantly at soil pH values of2 units
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or more above its inherent pKa value (ca. 1.7). Thus, atrazine is protonated significantly only at

very low pH values « - 3.7) but may have a slightly polar character in aqueous solution (Devitt and

Wiesner, 1998). Since triazines are weakly basic, an increase in the soil pH should result in

decreased adsorption and increased desorption. The greater sorption of the higher pKa value

triazines occurs because ofmixed mode binding to soils while triazines with a pKa value nearer 2

are limited to hydrophobic interactions as their primary binding mechanism. Since the pH at colloid

surfaces is approximately 0.5 - 2 units lower than the bulk solution, cation exchange is a significant

binding mechanism in many agricultural soils.

2.2.2 Organic matter content

Gao et al (1998) found that the adsorption of a pesticide on a soil was proportional to the organic

matter content of the soil but correlated inversely with its solubility in water. The primary mode

of interaction between the weakly polar atrazine molecule and natJ,u"al organic matter (NOM) is

hydrogen bonding. Such bonds are weak and are often reversible (Devitt and Wiesner, 1998).

Nevertheless, the NOM (ofa soil or sediment) appears to have a substantial influence on both the

transport and fate ofatrazine and other micro-pollutants in soil and groundwater.

2.2.3 Chemical functional groups

The formation ofbound residues ofpesticides is linked often with the phenolic hydroxy (-OH) and

carboxylic (-COOH) groups in the SOM and involves chemically-stabilizing reactions between the

functional groups and the pesticide. Alzaga, Bayona and Barcel6 (1995) speculated that humic

matter consists ofphenolic and benzene-carboxylic acids joined by hydrogen bonds to form a sieve­

like polymeric structure that is immensely stable. They proposed that this structure is characterized

by voids / holes of different molecular dimensions which should trap pesticides. This theory is,

however, still a matter ofconjecture.

Essentially, other factors notwithstanding, atrazine may be sorbed on soil surfaces in one of three
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HUMUS

ways (Rowell, 1994):

1. Hydrophobic bonds

In these bonds, the energy change in displacing water from the humus surface favours the adsorption

of the molecule as indicated in Figure 2.1(a).
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Figure 2.1(a) Hydrophobic bonding between
atrazine and humus

2. Hydrogen bonds, Van der Waals forces and other weak intermolecular bonds.

These usually occur with polar molecules, i. e., they have uneven electron distributions in certain

bonds so that although the molecule is electrically neutral, certain parts have a finite charge. Thus,

they tend to be attracted to other polar molecules. s-Triazines are attracted to humus in this way.

These bonds normally occur in conjunction with hydrophobic bonds. Hydrogen bonding is

illustrated in Figure 2.1 (b).

H20 H2
0 H20

~
}-N

N ~Cl>=N
H20 NHCzH(

~ ~

Figure 2.1(b) Hydrogen bonding between atrazine and humus
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3. Ligand bonds

These bonds form between uncharged or charged molecules and metals bound to humus. Figure

2.1(c) illustrates ligand bonding between atrazine and a metal (M) bound to humus.

The nitrogen atoms ofatrazine have a pair of free electrons which are shared between each Nand

the metal (arrows) bound to humus. Water molecules hydrating the metal are displaced by the

atrazine molecule.

H20 H2
0 H20

Cl

H N~
~N~ If H

\N~N-"\.
_M/

coo 'ooc
I I

Figure 2.1(c) Ligand bonds between atrazine and a metal (M) bound to humus

2.3 Atrazine degradation

Although much has been reported and speculated about the degradation of atrazine and the other

s-triazines, our knowledge of their degradation pathways is still incomplete. Atrazine may be

degraded by either abiotic (physical/chemical) or biological methods (Figure 2.2).
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2.3.1 Abiotic detoxification of atrazine

There is much speculation surrounding the contribution of non-biological detoxifications but it is

evident that their contributions are greater than believed initially (Jordan, Farmer, Goodin and Day,

1970). The mechanisms involved include photo-decomposition, volatilization, soil adsorption and

two soil-assisted chemical reactions, hydroxylation and de-alkylation (Jordan etai, 1970). In a study

to determine the contribution of chemical degradation of atrazine to its overall breakdown,

Blumhorst and Weber (1994) concluded that chemical processes dominated in both a moderately

acidic (pH 5.3) and a neutral pH soil.

Photo-decomposition

There is sufficient evidence to indicate that photo-decomposition does occur with some s-triazine

herbicides. However, very little research has been done to determine the actual losses effected by

this. Gast (1962) reported losses in activity of simazine and atrazine after exposure to ultraviolet

and infrared light irradiation. He further demonstrated that the loss in activity was greater when

atrazine was applied to a dry surface. Comes and Timmons (1965) demonstrated that atrazine and

simazine on a soil surface may be detoxified by sunlight. They sprayed sterilized soil with the two

chemicals and exposed it to sunlight during the Spring and Summer. To confirm that the

decompositions resulted from light exposure, a non-illuminated control was used. In the Spring,

atrazine loss due to irradiation was 73 % in 60 days, while there was negligible loss from the non­

illuminated control. In the Summer, 65-80 % ofthe atrazine ofboth the experimental and control

plots was rendered non-toxic to oats. Since the soil temperatures during that Summer ranged from

65.6-82.2 QC, this made it difficult to determine the extent ofphoto-decomposition.

It is evident that the detoxification pathways which effect losses of soil-applied s-triazines under

sunlight still require clarification.
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Volatilization

The rate of loss by volatilization of s-triazine herbicides applied to soil is detennined by soil

properties, moisture content and temperature, and the physical and chemical properties of the s­

triazine in question. Davis, Funderburk and Sansingh (1963) showed that atrazine loss by

volatilization can be very rapid from metal discs at 60°C. At room temperature, atrazine loss was

of the order of 61 % in 36 days although this was reduced substantially when a coating of clear

acrylic resin was applied to the disc.

Keamey, Sheets and Smith (1964) studied the volatility ofseven s-triazine herbicides. At 25°e, the

volatility, in descending order, from nickel-plated metal discs was prometone ~ trietazine> atrazine

~ ametryne~ prometryne > propazine ~simazine. By comparison of the vapour pressures of the

compounds with the above order of volatilities, it is evident that volatility from metal discs

correlates with the vapour pressure of the herbicide (Table 2.1).

Table 2.1 Vapour pressures ofs-triazines at different temperatures

Herbicide Vapour Pressure (mmHg)

lOoe 200 e 300 e 500 e

Prometone 5.9 x 10-7 2.3 x 10-<> 7.9 x 10-<> 7.6 X 10-5

Prometryne 2.4 x 10-7 1.0 x 10-<> 4.0 x 10-<> 4.7 X 10-5

Ametryne 1.9 x 10-7 8.4 X 10-7 3.3 x 10-<> 3.9 X 10-5

Atrazine 5.7 x 10-8 3.0 X 10-7 1.4 x 10-<> 2.3 X 10-5

Propazine 5.0 x 10-9 2.9 X 10-8 1.6 X 10-7 3.4 x 10-<>

Simazine 9.2 x 10-10 6.1 X 10-9 3.6 X 10-8 9.0 X 10-7
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Keamey et al (1964) reported that the s-triazine herbicides volatilize more slowly from soil than

from metal discs. They, also, found that atrazine volatility increased with an increased sand content

and decreased with increased organic matter and clay contents. A 10°C increase in temperature

from 35°C to 45°C resulted in a 20 % greater atrazine loss. In addition, atrazine was volatilized less

from a dry soil than from a wet soil.

Hydroxylation Reactions

The s-triazine herbicides can be detoxified through hydrolysis to form non-phytotoxic hydroxy­

analogues (Armstrong, Chester and Hams, 1967). They found that the conversion of atrazine to

hydroxyatrazine occurred in the presence of soil but no microbial degradation was detected when

a soil-free medium was inoculated with the perfusate obtained from the soil. The perfusion

technique consisted of continuously recycling a soil column with a basal mineral salts medium

which contained atrazine. Atrazine hydrolysis also occurred in sterilized soil (sterilization method

was not stated) at a pH of3.9. The hydrolysis rate was 10x greater in the presence of soil than in

its absence, which indicated its importance.

Hams (1967) studied the effects of temperature on the loss of atrazine from four soils. Hydroxy­

derivatives were identified as the degradation products in methanol extracts of the soils. An

increased soil temperature from ambient to 95°C increased greatly the rate of atrazine conversion

to hydroxyatrazine compared with a control of an aqueous solution. Harris (1967), therefore,

postulated that since 95°C is usually bacteriostaticlbactericidal, the hydroxylation was probably

abiotic and that atrazine hydrolysis was catalyzed by the presence of soil. To confirm this, he

showed that 200 mg.kg- I of the microbial inhibitor, sodium azide, had little effect on the

accumulation ofhydroxy-derivatives in soil. Ro, Chungand Robinson (1995) showed, subsequently,

that the presence of sodium azide catalyzes the detoxification of atrazine by forming three

degradation products, 3-ethylamino,5-isopropylamino-s-triazyl azide and 3-ethyl amino,5­

isopropylamino-s-triazinone. These results led them to recommend that sodium azide should not

be used in controls in atrazine degradation studies.
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The chemical hydrolysis ofatrazine occurs in strongly acidic and basic solutions (Annstrong et aI,

1967; Nel and Reinhardt, 1984). Acid hydrolysis occurs due to the protonation ofa chain or ring

N atom, followed by the cleavage of the C-CI bond by water. There is considerable evidence to

substantiate the mechanism postulated for the adsorption-catalyzed hydrolysis of atrazine. The

adsorption results from hydrogen bonding between the adsorbent and the atrazine ring N atom and

catalyzes hydrolysis by the mechanism proposed by Horrobin (1963). The ring C atom bonded to

the Cl group is surrounded by electronegative Cl and N groups. It is, thus, electron deficient and

is susceptible to displacement by nucleophilic groups such as OH-. This phenomenon is especially

evident in the alkaline hydrolysis ofatrazine.

De-alkylation Reactions

Free radicals exist in the soil because of biological production. It has been speculated often that

these free radicals are capable of degrading pesticides (Jordan et aI, 1970). Jordan et al (1970)

demonstrated that free radicals effected N-dealkylation ofthe s-triazines and speculated that these

reactions also occurred in soil.

2.3.2 Microbial degradation of atrazine

By virtue of its inherent chemical structure, atrazine (Figure 2.4) may be used as both a source of

nitrogen and/or carbon.

Figure 2.4 Chemical structure ofatrazioe
(CSH14CINS)
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There is considerable evidence to confinn that soil microorganisms are capable of utilizing s­

triazines as a source of energy (Kaufman and Kearney, 1970) although the ring carbons are very

resistant to biodegradation. Catabolism ofthe atrazine molecule with its small side chains and the

fully oxidised ring C yields very little energy per mole and is, therefore, thennodynamically not

favourable to the microorganisms (Stucki, Yu, Baumgarrtner and Gonzalez-Valero, 1995). Many

s-triazine-degrading microorganisms have been isolated and identified and their degradative

capacities demonstrated in ways such as growth in mineral salts medium supplemented with a s­

triazine as the sole source ofcarbon and/or nitrogen. Evolution of 14C02 and/or increased oxygen

consumption in s-triazine-treated systems have been considered as confinnation of atrazine

utilization (Kaufman and Kearney, 1970). Other researchers (Burnside, Schmidt andBehrens, 1965;

Murray and Rieck, 1968) followed, by means ofbioassays, the progressive reduction of residual

triazine concentrations in microbial cultures. Chemical analyses of s-triazine residues in these

systems indicated a direct correlation between the two analytical techniques (Skipper, Gilmour and

Furtick, 1967).

Microbial populations exposed to atrazine produce enzymes that degrade the molecule (de Souza,

Seffernick, Martinez, Sadowsky and Wackett, 1998). Although several atrazine-eatabolizing

associations and monoculture have been isolated, the Pseudomonas sp. strain ADP was one ofthe

first bacteria shown to metabolize atrazine to carbon dioxide, ammonia and chloride (Seffernick,

Johnson, Sadowsky, and Wackett, 2000). Atrazine is mineralized via three consecutive hydrolytic

reactions which remove the chloride, N-ethylamine and N-isopropyl amine substituents. The

enzymes catalysingthese reactions are atrazine chlorohydrolase (atzA), hydroxyatrazine ethyl amino

hydrolase (atzB) and isopropylammelide isopropylamino hydrolase (atzC), respectively (see

Figure 2.3). Currently the atzA, -B and -C gene sequences are used to investigate the presence of

homologous genes in other atrazine degrading bacteria (Topp, Zhu, Nour, Hoot, Lewis and Cuppels,

2000a; Topp, Mulbry, Zhu, Nour and Cuppels, 2000b; Rosseaux, Hartman and Soulas, 2001;

Ralebitso, Senior and van Verseveld, 2002). These molecular methods are used to detennine the

degradative potential of atrazine contaminated sites and will aid the design of successful

bioremediation strategies.
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Mechanisms ofAtrazine Degradation

Microbial degradation ofatrazine may follow one ofthree pathways: dealkylation, deamination or

hydroxylation (Kaufman and Kearney, 1970; Erickson and Lee, 1989).

(i) De-alkylation

Dealkylation appears to be a major step involved in microbial degradation of triazines. The

molecule can be de-alkylated to de-ethylatrazine (Figure 2.5(a)), by removal of the ethyl group, or

to de-isopropyl atrazine (Figure 2.5(b)). The ethyl and isopropyl side-chains ofatrazine contain the

only available sources ofenergy that microorganisms can obtain through oxidative phosphorylation

(Erickson and Lee, 1989).

(a) (b)

Figure 2.5 Two degradation products arising from dealkylation ofatrazine,
De-ethylatrazine (a) and De-isopropylatrazine (b)

Similar degradation patterns have been observed for other related s-triazines such as simazine.

Some microorganisms remove preferentiallythe ethyl side chain, whilstothers remove the isopropyl

side chain first (Behki and Khan, 1986). Behki and Khan (1986) succeeded in isolating three

species ofPseudomonas which were capable ofutilizing atrazine (50 mg.tl
) as a sole carbon source.

The enrichment was made with soil that had a long annual (14 years) history ofatrazine application.

Although there was no evidence ofmineralization, the workers identifiedde-isopropylatrazine (DlA)

and, more particularly, de-ethylatrazine (DEA) as degradation products. Two ofthe isolated species

were also found to de-chlorinate the de-alkylated products to their hYdroXYanalogues (Figure 2.6 ).
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Figure 2.6 The formation of hydroxylated atrazine catabolic products

The appearance of the hydroxylated atrazine degradation products (HADPs) led the authors to

conclude that side-chain removal encouraged bacterial dechlorination although mineralization was

incomplete.

Yanze-Kontchou and Gschwind (1994) reported a Pseudomonas sp, YAYA6, which was capable

ofatrazine (30 mg./') mineralization when it was used as a sole carbon and energy source. They

concluded that catabolism proceeded via a number ofdifferent pathways. The first steps involved

dechlorination, with the formation ofhydroxyatrazine (HA), or de-alkylation, with the formation

ofeither de-ethylatrazine or de-isopropylatrazine. The workers also detected substantial quantities

of transient propazine, traces of which have been found in situ where it had not been applied

previously. Yanze-Kontchou and Gschwind (1994) speculated that there may be a third degradation

pathway responsible for the formation ofpropazine but were unable to confirm this. In contrast to

Behki and Khan (1986), Yanze-Kontchou and Gschwind (1994) found that the addition of

alternative carbon sources such as glucose, succinate andL-alanine did not stimulate the degradation

ofatrazine by the strain YAYA6.

Radosevich, Traina, Hao and Touvinen (1995) isolated a microorganism, M91-3, which used
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atrazine (22 mg.tl) as both a carbon and nitrogen source. The culture partially degraded the

molecule as demonstrated by the release of14C02-[U-ring_14C ] atrazine. The presence ofbiuret and

urea also indicated catabolism. Atrazine could be replaced by cyanuric acid as the sole source of

N which indicated that the microorganism was capable ofring cleavage. The authors stated that the

most effective atrazine-degrading cultures resulted from ammonium-free enrichments in which

atrazine was the sole source of nitrogen. When atrazine was supplied as the sole source of both

carbon and nitrogen there was minimal increase in biomass. The isolate degraded the molecule

under all the atrazine-supplemented culture conditions tested: basal mineral salts (BMS) plus

glucose; ammonium-free BMS with glucose and nitrate; ammonium-free BMS plus glucose; and

ammonium-free BMS.

Stucki et at (1995) studied the aerobic mineralization of atrazine (15 mg.mtl)supplied as a sole

source ofcarbon, nitrogen and energy, in a fixed bed bioreactor, with a pseudomonad. The culture,

which was immobilized on sintered glass beads, attenuated atrazine to < 10 ~gtl. Removals >95%

were still recorded when the volumetric loading rate was increased step-wise from to 2t.d-1 to

15.5I.d-l
. Hydroxyatrazine was the major metabolite while de-ethylatrazine was detected once but

in a low concentration «1 0 ~g.tl). The authors concluded thatthe monoculture had a very efficient

substrate uptake mechanism and the optimal enzymes for the initial degradation steps to

hydroxyatrazine and de-ethylatrazine. However, the further mineralization steps appeared to be rate

limiting as the metabolites were detected under the conditions of: carbon limitation; oxygen

deficiency and carbon-limitation and denitrification. Similar observations were made by

Mandelbaum, Wackett and Alan (1993) and Rodosevich etat (1993). The culture isolated by Stucki

et at (1995) was also capable of using nitrate as an electron acceptor, which made it attractive for

atrazine-contaminated wastewater treatment.

(ii) Deamination

Mandelbaum et at (1993) demonstrated microbial mineralization ofatrazine by mono- and mixed­

cultures under conditions ofnitrogen limitation. In contrast to other workers, they used elevated
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concentrations ofatrazine (100 mg.t1
) which were above its solubility limit. None of the isolated

monocultures utilized the molecule as a nitrogen source but once they were recombined, atrazine­

catabolizing activity was restored. This suggested that atrazine metabolism required an interacting

microbial association. The rate ofatrazine metabolism increased rapidly with each transfer of the

association. The following factors were considered to provide indisputable evidence of the

utilization of atrazine as a nitrogen source in the presence of sucrose and citrate supplementation.

Firstly, atrazine catabolism occurred simultaneously with growth in a nitrogen-limited medium.

Secondly, media which lacked atrazine failed to support growth. Finally, the addition ofammonium

nitrate to the culture supported growth but suppressed atrazine degradation. At 30°C, atrazine

degradation was constant for the pH range of 5.5 to 8.5.

Stucki et al (1995) reported that Agrobacterium radiobacter Jl4a catabolized a number ofdifferent

s-triazines such as ametryne, cyanazine, prometon, propazine and simazine in a nitrogen-limited

medium. The s-triazines chosen were, however, similar to atrazine since each contained either an

N-ethyl, an N-isopropyl or a chloride functional group. The microorganism was then used in a

bioaugmentation study of a spill site which contained a mixture of s-triazine herbicides but the

results were inconclusive.

Alvey and Crowley (1995) studied the effects of nitrate-nitrogen supplementation on atrazine

mineralization and recorded depressed rates particularly when the nitrogen was supplied as

inorganic N03. These results contrasted those obtained with organic nitrogen additions such as plant

debris or soil organic matter. They also studied the effects of a range of organic compounds such

as rice hulls, starch, compost, glucose, Sudan hay and sodium citrate on the rate of atrazine

mineralization and concluded that the carbon source appeared to be a strong determinant of the

microbial catabolic population.

A similar conclusion to Stucki et at (1995) was reached by Struthers, Jayachandran and Moorman

(1998) who reported the isolation and characterization ofAgrobacterium radiobacter Jl4a, a strain

which was capable of using atrazine as a sole nitrogen source. In a nitrogen-free medium, with
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citrate and sucrose as carbon sources, 94% of 50 J.1g.ml-1 p4C-U-ring] atrazine was mineralized in

72h. Cells cultured in the absence ofany additional carbon and nitrogen sources degraded atrazine

but the population size did not increase. Radosevich et al (1995) reported similar results. The

detection of hydroxyatrazine, de-ethylatrazine and de-ethylhydroxyatrazine led the workers to

speculate that de-alkylation and dechlorination occurred simultaneously.

Bichat, Sims and Mulvaney (1999) confirmed that ring cleavage is preceded by N-de-alkylation and

the side-chain nitrogen is incorporated into the biomass prior to the ring nitrogens. Glucose was

used as an alternative source ofcarbon and the carbon:nitrogen ratios ranged from 2.5 :1 to 10 :1.

The workers also studied the effects of alternative nitrogen sources on atrazine degradation and

found that the pesticide was preferred to nitrate as a source of nitrogen. In contrast, ammonium­

cultured Pseudomonas sp. preferentially assimilated ammonium-nitrogen. They also found that the

degradation kinetics of atrazine-cultured cells were unaffected by the addition of alternative

nitrogen sources suchas ammonium, urea orglycine. However, previous growthofthe same culture

on urea, nitrate or ammonium reduced the rate ofatrazine degradation.

(iii) Hydroxylation

Hydroxylation is often the first step in the microbial degradation of halogenated pesticides

(Kaufman and Kearney, 1970). One of the earliest cited examples of hydroxylation was that by

Couch, Gramlich, Davis and Funderburk (1965) who reported a rapid rate ofhydrolysis ofatrazine

by Fusarium roseum. Klages, Marcus and Lingens (1981) and, more recently, de Souza, Wackett,

Mandelbaum and Sadowsky (1995) reported the hydrolysis of atrazine to hydroxyatrazine via a

microbial pathway. Other researchers (Cook and HOtter, 1984; Behki and Khan, 1986;

Mandelbaum, et ai, 1993; Yanze-Kontchou and Gschwind, 1994, Stucki et ai, 1995) also reported

the formation ofhydroxyatrazine although it was previously assumed erroneously that this process

was purely abiotic.
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2.3.3 Factors affecting atrazine degradation in soil

It is very desirable that s-triazines are effective during the entire growing season ofa particular crop.

However, they should not persist into the next growing season as this could limit the subsequent

choice of crops. The factors associated commonly with the degradation rate ofa pesticide in soil

are: microbial activity; soil temperature; water content; oxygen content; pesticide concentration;

pesticide application; and soil type (Fomsgaard, 1995). The soil pH appears to be the factor that

controls largely whether degradation of atrazine proceeds via a chemical or biological pathway.

Armstrong et al (1967) supported the theory that atrazine degradation was determined primarily by

the pH of the soil with chemical degradation dominant under acidic conditions while the

contribution ofmicrobial catabolism increased with alkalinity. Blumhorst and Weber (1994) found

that there was, however, a significant contribution from microbial degradation in neutral pH soil.

Other factors, including the soil organic matter content, the clay composition and the presence of

Fe and Al oxides, were not taken into consideration.

McCormick and Hiltbold (1966) reported that the rate of atrazine degradation increased with

increased temperature and a rate doubling was recorded with each 10°C rise in temperature from

10°C to 30°C. This effect accounts for the faster degradation rates recorded in southern parts ofthe

USA compared with northern regions (Kearney et aI, 1964). An increase in soil temperature should

also lead to increased volatilization of the molecule.

The addition of organic matter to soils has been shown to increase s-triazine degradation (Mc

Cormick and Hiltbold, 1966) and decrease residual phytotoxicity (Burschel, 1961).

The soil moisture content is also responsible for determining the rate of atrazine degradation with

slow rates recorded in dry soils (Le Baron, 1970). Roeth, Lavy and Burnside (1969) reported a six­

fold increase in 14C02 evolution from labelled atrazine with an increase in soil moisture content

from 40 to 80% (v/m) of the field capacity. Consideration must be given to the fact that the

chemical and physical factors which promote or inhibit microbial activity may also affect the
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availability ofthe molecule or its chemical degradation independent ofmicrobial effects. Therefore,

the increased decomposition of a pesticide in soil may not result necessarily from increased

microbial activity but could reflect an increased solubility, reactivity or availability to the catabolic

species. One must also bear in mind that the latter would encourage the former.

2.3.4 Chemical treatment methods

Intrinsic chemical degradation ofatrazine is very slow. However, many ofthese chemical methods

have been harnessed for use in large-scale industrial remediation programmes. Among these

methods are the use of zero-valent iron or pyrites (Singh et aI, 1998), the photo-assisted Fenton

reaction (Huston and Pignatello, 1999), the use of photo-catalysts (Legrinin, Oliveros and Braun,

1993,), DV irradiation combined with photo-sensitizers such as hydrogen peroxide and titanium

dioxide as photocatalysts (Texier, Ouazzani, Delaire and Giannotti, 1999), and ozonation (Ma and

Graham, 1999).

Fe-catalyzed Oxidation

Singh et al (1998) assessed the potential of fine-grained, zero-valent iron (FeO) to remove atrazine

and to enhance its degradation in contaminated water and soil. They speculated that Feo may

promote dechlorination and hydroxylation of chlorinated organic compounds and suggested the

following mechanism for the formation ofhydroxyatrazine (HA):

Feo + 2H20+ 2Atrazine- Cl-t 2- Atrazine- OH + Fe 2
+ + 2Cr + H

2
(2.1)

Atrazine degradation by pyrites is thought to follow an initial oxidation step, which may be biotic

or abiotic, followed by the generation ofFe 2+. The reaction is self-sustained by the formation of

Fe3+:

(2.2)

(2.3)
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The authors treated soils contaminated with low (20 Ilg-t1
) and high (20 mg.t1

) concentrations of

atrazine. The predominant degradation product was de-ethylatrazine, although traces of de­

isopropylatrazine and hydroxyatrazine were also detected. The effectiveness ofpyrites in degrading

atrazine was diminished in the presence of nitrates and/or sulphates. Iron was effective in

promoting atrazine transformation in both soil and water.

The following methods have been used to remediate atrazine-contaminated water.

Advanced Oxidation Processes

Advanced oxidation processes employ chemical, photochemical, sonochemical or radiolytic

techniques to effect chemical degradation of pollutants. The most commonly used advanced

oxidation processes (AOPs) employ peroxide, ozone or oxygen as the bulk: oxidant (Legrinin, et ai,

1993). The principal active species is the hydroxy radical (OH} In natural systems, the generation

of OH- is slow and much of it is scavenged ultimately by dissolved organic matter.

(i) Ozonafion processes

Ma and Graham (1999) studied the degradation of atrazine by manganese-catalyzed oxidation.

Atrazine-contaminated wastewater (3J.LM atrazine) was pumped into an ozonation column in the

presence ofMn (ll). This modified version of ozonation was attempted because many pesticides

are recalcitrant to the process. The authors proposed that a free radical mechanism was responsible

for the oxidation ofatrazine. They also investigated the effects ofhumic matter, which is thought

to be both a radical promoter and a scavenger of free radicals (Xiong and Graham, 1992), on the

degradation and concluded that ozone oxidation alone was less effective than oxidation in the

presence of humic matter. They confirmed that low concentrations (lmg.t' as dissolved organic
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carbon(DOC)) of humic substances enhanced the destruction of atrazine, most probably through

humic matter-mediated radical formation. When the concentration ofhumic matter was increased

6 mg.t l reductions in the rate and extent ofatrazine degradation were recorded, probably due to the

radical-scavenging ability ofhumic matter outweighing the initiation/production of radicals. The

products detected following the ozonation ofatrazine are shown in Figure 2.7.

1

CDDT

4-acetamid0-6-n- isopropyl
2-cbloro-s-triazine

CDlT
Cl Cl

N~N 0 ~...-- 0 N N 0

H2NANAN~ .)lNAN)l.N~
4,6-acetamido,2-cbloro
s-triazine

CIAT

4-acetamid0-6-amino-2-cbloro
s-triazine

CDAT

Cl

N~N
H2NAN)l.N~

de-isopropylatrazine
CEAT

cblodiamino-s-triazine

CAAT
Figure 2.7 Principal ozonation oxidation products of atrazine
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Leeson, Hapeman and Shelton (1993) combined both chemical and microbial degradation strategies

to remediate atrazine-contaminated (100 mg.t l
) water. After ozonation for several hours ( the exact

time was not specified) the sole products were chlordiamino-s-triazine (CAAT) and 4-acetamido-6­

amino-2-chloro-s-triazine (CDAT). These were then subjected to microbial catabolism by

Klebsiella terragena strain DRS-I in a continuous-flow stirred-tank reactor (CFSTR) and/or an

upflow fixed column reactor. Both CAAT and CDAT may serve as organic nitrogen sources,

although the acetyl group of the latter may serve as a carbon source. The researchers recorded

mineralization ofthe atrazine ozonation products under conditions ofhigh nitrogen concentrations

and ambient temperatures and concluded that the process may be modified to remediate large

volumes ofatrazine-containing wastewater and, potentially, soils.

(ii) The Fenton advanced oxidation process

Huston and Pignatello (1999) investigated the degradation in aqueous solution of a number of

pesticides, including atrazine, by the catalytic photo-Fenton Fe(III)1H20JUV advanced oxidation

process. The Fenton reaction uses Fe 2+ to generate OH radicals from H20 2:

(2.4)

(2.5)

The initial concentrations were 2x1 0-4 M or as high as the solubility ofeach pesticide allowed. With

total organic carbon (TOC) as a measure for degradation ofatrazine, 46.5 % was lost in 2h but no

mineralization of ring-UI4C-atrazine occurred and it was concluded that the triazine ring was

recalcitrant to the photo-Fenton reaction. The authors stated that the sequence in ozonation was

towards the formation ofde-alkylated and de-chlorinated products and, ultimately, to cyanuric acid
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(2,4,6-trihydroxy-l,3,5-triazine) as the end product. Other researchers who have used OR

generatingadvanced oxidation processes have reported similar results (Keamey, Muldoon, Somich,

Ruth and Voaden, 1988 ;Pelizetti, Maurino, Minero, Carlin, Pramauro, Zerbinati and Tosato, 1990).

Photocatalytic Degradation ofAtrazine

Texier, Ouazzani, Delaire and Giannotti (1999) investigated the photodegradation ofatrazine in the

presence oftwo photocatalysts, titanium dioxide (Ti02) and sodium decatungstate (Na4W10032) and

recorded de-alkylated products with both. In addition, the amido products (Figure 2.6) were formed

in the presence ofTi02which, thus, appeared to be more effective than Na4W10032. The researchers

also attempted to couple photodegradation with microbial decomposition. Thus, Penicillium

chrysogenum andBacillus licheniformis catabolism ofsodium tungstate-catalyzed photodegradation

products andPenicillium sp catabolismofthe products oftitanium-catalyzed photodegradation were

studied. Penicillium chrysogenum mineralized 27 % ofthe products obtained from the tungstate­

catalyzed reaction and 20 % of the products of the titanium-catalyzed photodecomposition within

the first week of incubation.

Chemical and microbial degradation ofatrazine may be utilized in tandem to mineralize atrazine.

Although atrazine usage has been curtailed in many countries, its residues can persist for many years

in areas where it has been applied repeatedly. It is imperative, therefore, that atrazine remediation

technologies are studied and optimized to ensure timely removal of this molecule from soil and

groundwater before it poses potential environmental hazards to animal, invertebrate and plant

specIes.
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CHAPTER THREE

Bioremediation and Bioremediation Technology

3.1 Introduction

Bioremediation refers to any system or process in which biological methods are used to transform

or immobilize contaminants in soil or groundwater (Eweis, Ergas, Chang and Schroeder, 1998).

Thus, microorganisms (or their enzymes) or plants are used to detoxify an environment, usually by

transforming or degrading the pollutant(s). Four basic techniques may be used (Bollag and Bollag,

1995):

(i) stimulation of indigenous microbial activity, by the addition of nutrients or the regulation of

redox and/or pH conditions, etc;

(ii) inoculation of the sites with microorganisms with specific biotransforming abilities;

(iii) application of immobilized enzymes; and

(iv) the use of plants (phytoremediation) to remove, contain and/or transform pollutants.

The goal ofbioremediation is to degrade organic pollutants to concentrations that are undetectable

or, ifdetectable, to concentrations below the limits established as safe or acceptable by regulatory

bodies. Bioremediation is used to destroy chemicals in soils, groundwater, wastewaters, sludges,

industrial waste systems and gases (Alexander, 1994).

3.2 Bioremediation processes for the treatment of contaminated soils

The treatment processes used in the bioremediation of contaminated soils, gases and water differ

considerably. This chapter focuses on the treatment of contaminated soils.

Bioremediation ofcontaminated soils may be carried out in situ or the soil may be excavated and
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treated on site or at a separate treatment facility. In situ treatments encompass

biostimulationlattenuation (Litchfield, 1991), soil venting (where volatile components are dominant)

(USEPA, 1995), bioventing(where semi-volatile and non-volatile components are present) (USEPA,

1995), electrokinetic treatment (Chambers, Willis, Giti-Pour, Zieleniewski, Rickabaugh, Mecca,

Pasin, Sims, Sorenson, Sims, McLean, Mahmood, Dupont and Wagner, 1991), soil flushing

(Chambers et ai, 1991), low temperature thermal treatment (USEPA, 1995), soil washing (i.e.

surfactant injection) (Eweis et ai, 1998), bioaugmentation (www.obio.com. 6/23/01) landfarming

(www.epa.gov/swerustllcatllandfarm.htmL 6/23/01) and bioslurping

(http://www.frtr.gov/matrix2/section4/4, 6/23/01). Ex situ processes include land treatment

(landfarming can be in situ, e.g. nutrient addition and tilling), composting, soil washing (can be in

situ e.g. surfactant injection), low temperature thermal decomposition (can be in situ, e.g.

radiofrequency heating) and bioreactor treatments (Eweis et ai, 1998).

3.2.1 In situ treatments

Biostimulation

The factors governing in situ bioremediation are relatively simple. The basic premise is that there

are indigenous bacteria in soils and that they have adapted to the contaminant(s) (Litchfield, 1991).

These adapted microorganisms degrade the contaminants until some molecule, often oxygen but

frequently nitrogen or phosphate, reaches a growth-limiting concentration. Thus, in situ

biodegradation is a natural, on-going process which may be stimulated by the addition of the

limiting nutrient(s), often in the form of commercial fertilizer. In some cases, the indigenous

microbial population has limited catabolic potential and an enriched microbial culture needs to be

added (bioaugmentation). Essentially, in situ bioremediation is a technology that encourages the

growth and reproduction of indigenous microorganisms to enhance biodegradation of organic

contaminants in the soil. Bioremediation requires a mechanism for stimulating and maintaining
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these microorganisms. This mechanism is often a delivery system for providing any or all of the

following: an electron acceptor (oxygen, nitrate); nutrients (nitrogen, phosphorus); and an energy

source. The electron acceptors and nutrients are the most critical components of the system

(USEPA, 1995).

Bioaugmentation is different to biostimulation in that the contaminated sites are treated with highly

concentrated populations of specific microorganisms (www.obio.com. 6/23/01) which are

maintained under their optimum conditions for growth.

In some cases, the addition ofsupplemental nitrogen has limited the mineralization ofaromatic and

aliphatic hydrocarbons (Alexander, 1994). It was speculated that with elevated nitrogen

concentrations, more substrate carbon was incorporated into the biomass, to the detriment ofCO2

production. The addition oflowconcentrations ofsurfactants, such as non-ionic alcohol ethoxylates

(soil washing) has also been shown to stimulate biodegradation through the release ofhydrophobic

molecules into the aqueous phase (Aronstein, Calvillo and Alexander, 1991).

Soil Vapour Extraction (SVE)

Soil vapour extraction is also known as soil venting, soil stripping or vacuum extraction. It is an in

situ remedial technology that reduces the concentrations ofthe volatile constituents in a pollutant

adsorbed to soils in the unsaturated zone (USEPA, 1995). The volatile organic components (VOCs)

are removed from the vadose zone by installing wells and applying a negative pressure gradient

(vacuum) that causes the movement ofvapours towards the extraction wells. The extracted vapours

are then treated (gas biofiltration or activated carbon adsorption) as necessary and discharged into

the atmosphere.
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Advantages and disadvantages

Soil vapour extraction is effective for the more volatile constituents of petroleum. The heavier

components ofpetroleum products, such as those found in diesel, heating oils and ker~senemay not

be treated by SVE (USEPA, 1995). This is a remediation and not a treatment process, therefore the

extracted contaminants must still undergo some form of gas treatment (biofiltration or activated

carbon adsorption)(Eweis et ai, 1998). However, SVE is easily combined with other technologies

such as air sparging, bioventing or vacuum-enhanced dual phase extraction (USEPA, 1995). Since

air moves more easily through soil than water, due to the large differences in viscosity and

diffusivity, the application ofSVE to relatively tightly-packed soils is possible (Eweis et ai, 1998).

Soil vapour extraction requires short operation times (6 months to 2 years) and involves minimal

site disturbance. It can be used under buildings and at other locations that cannot be excavated

(USEPA, 1995).

Bioventing

Bioventing is an in situ remediation technology that uses the indigenous microbial population to

degrade organic constituents adsorbed to soils in the unsaturated zone (USEPA, 1995). The activity

of the indigenous bacteria is enhanced by inducing air flow into the unsaturated zone by means of

extraction or injection wells. The transformation or degradation ofthe contaminants is carried out

at the point ofcontamination, so one ofthe objectives is to minimize contaminant migration (Eweis

et ai, 1998).

The bioventing process is similar to SVE with one crucial difference. Soil vapour extraction

removes contaminants primarily by volatilization, while bioventing promotes biodegradation ofthe

constituents and minimizes vo1atilization usually due to low air flow rates (USEPA, 1995). All

compounds that are biodegradable under aerobic conditions can be treated by bioventing. Such
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molecules include mid-weight petroleum products such as diesel fuel and jet fuel. The higher

molecular weight compounds (e.g. lubricating oils) take longer to degrade.

Advantages and disadvantages

The advantages and disadvantages of bioventing are very similar to those of SVE. Because

bioventing utilizes the indigenous microorganisms, it is possible that the constituent concentrations

may be, initially, bactericidal. Unlike SVE, bioventing may not require off-gas treatment.

Electrokinetics

Electrokinetics have been used for more than 50 years to de-water and stabilize soils. The chemical

reaction inherent in electro osmosis results in the electrolysis of water during which hydrogen gas

is released and the soil pH is raised. As the electrolysis continues, concentration gradients in the

soil are established between the cathode and anode which cause diffusion from areas of low

concentration to areas ofhigh concentration. Ionic metal species, which may be subjected to ionic

reaction in the soil system, appear to be the contaminants that may be treated effectively by

electrokinetics (Chambers et aI, 1991). The application of direct electric current effects direct

movement of ions by electromigration, the flow of pore fluid by electro osmosis, ionic changes to

contaminants bonding to soil, and migration of charged particles, including microorganisms, by

electrophoresis. Thus, pore fluid, bacteria and organic molecules may be moved relative to each

other and so increase contact between the contaminant(s) and the catabolic species. It is, however,

critical that the concentration of the target contaminant(s) does not exceed the critical substrate

concentration of the catabolic species.

At voltages > 0.2 Vcm-1 microbial cells move to the cathode by electroosmotic flow and this
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overrides migration to the anode by electrophoresis. Uncharged organic molecules move to the

cathode. The soil is heated in the process, thus facilitating low temperature thermal treatment and

oxygen is generated at the anode, thus favouring aerobic catabolism. Organic molecules which are

normally unavailable through migration into soil pores are also released.

Soil Flushing

Soil flushing involves the elution oforganic and/or inorganic constituents from soil for recovery or

treatment (Chambers et ai, 1991). The contaminants are mobilized into the flushing solution by

solubilization, emulsion formation or by means of a chemical reaction with the flushing solution

(USEPA, 1993).

Bioslurping

Bioslurping is described as an in situ treatment which utilizes bioventing and vacuum-enhanced

free- product recovery (http://www.frtr. gov/matrix2/section4/4, 6/23/01) to remove free products and

remediate vadose-zone soils. The factors limiting bioventing include low permeability ofsoils, low

soil moisture contents and low temperatures. Because fuel, water and air are removed from the

subsurface in one stream, special separators/treatment may be required before the process water can

be discharged.

3.2.2 Ex situ treatments

Ex situ treatments may be subdivided into solid-phase bioremediation and slurry-phase remediation.

Solid-phase treatment describes the exsitu treatment ofsoil under unsaturated conditions and differs

from slurry-phase treatment in which soil is mixed with water and stirred mechanically in a

bioreactor (Eweis et ai, 1998). Typical bioreactor configurations which may be used in commercial
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bioremediation strategies include fixed-film, totally-submerged, fluidized-bed and sequencing-batch

reactors (King, Long and Sheldon, 1992). Biofilters may be used to treat contaminants in the vapour

phase. The emphasis of this chapter is, however, on slurry-phase remediation.

Solid-Phase Bioremediation

Solid-phase bioremediation is divided into two broad categories: land treatment; and composting.

The critical difference between the two processes is in the mode ofaeration. Soil washing and low

temperature thermal desorption, both in situ and ex situ, are other solid-phase treatments.

(i) Land treatment

Land treatment is also known as solid-phase treatment or landfarming. The method is simple and

consists ofspreading the excavated contaminated soil onto the ground, supplementing the soil with

nutrients and oxygen, and then tilling to promote photochemical oxidations, and irrigating to create

an optimal environment for microbial activity and to enhance the contact between the soil

microorganisms and the soil pollutant (Bollag and Bollag, 1995). Solid-phase biotreatment relies

on the principles applied in agriculture in the biocycling ofnatural compounds (Bourquin, 1989).

Landfarming may be carried out in situ if the contaminated soil IS shallow

(www.epa. gov/swerust1/cat/landfarm.htmL 6/23/01) or, more commonly, ex situ. A treatment unit

has to be constructed in both cases. An impermeable layer must lie between the land-farm area and

a deep groundwater table to prevent groundwater contamination by leaching (Bollag and Bollag,

1995). The impermeable layer may be constructed from synthetic liners such as high density

polyethylene (IIDPE), several feet of clay (natural or constructed) or even an existing paved or

asphalted area (Eweis et ai, 1998). A drainage system is necessary to collect any leachate, due to

water irrigation and rain, and a storage pond is usually required to collect and retain excess leachate.
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Advantages and disadvantages

Landfarming is simple to design and implement and is cost-effective. The large area required for

treatment is, however, a drawback as, too, are the possible emissions ofdust and vapours generated

by tilling. The presence of heavy metals (> 2 500 mg.kg-1
) may inhibit microbial growth.

Remediation by landfarming is often restricted to those times ofthe year when soil temperatures are

in the range that promotes microbial growth (Alexander, 1994). Ryan, Loehr and Rucker (1991)

described enclosed prepared bed systems in greenhouse tunnels which resulted in an increase in soil

temperature, as well as control ofvolatile emissions.

(ii) Composting

In composting, the polluted soil is mixed with materials such as fresh straw, wood chips, wood bark,

hay, fibrous vegetation and inert synthetic material and is supplemented with nitrogen, phosphorus

and other inorganic nutrients. The material is formed into heaps and made into long rows called

windrows. Alternatively, it is placed into a large vessel equipped with some means of aeration

(Alexander, 1994).

Substantial heat is generated during the composting process due to the pervading high organic

molecule concentration and low moisture content. The operating temperatures often exceed 55°C

and are useful for killing pathogenic bacteria and, more significantly, can be harnessed for the rapid

degradation ofhazardous organic compounds (Eweis et aI, 1998).

Four parameters need to be optimized for successful composting: aeration; pH; moisture content;

and temperature. Aeration is achieved in static piles by a system of perforated pipes connected to

a blower or a vacuum pump, while Windrows are aerated by the mechanical turning ofthe compost­

soil mixture. Some piles depend on passive aeration which results from the existing temperature
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gradient between the inside of the pile and the ambient atmosphere.

Compost piles retain more moisture than the field capacity ofthe soil due to the constituents ofthe

pile. There is no need for additional heating because the heat generated by aerobic metabolic

activity is produced at a rate faster than it is dissipated. The rise and fall in temperature during

composting is used to monitor the performance ofthe pile. Once the pile cools and the temperature

approaches ambient, the period of active composting is considered to be complete (Eweis et ai,

1998).

Composting has been used to treat diesel-contaminated soil (Stegmann, Lotter and Heerenklage,

1991), lagoon sediments contaminated with explosives and propellants (Williams and Myler, 1990),

soil contaminated with chlorophenols (Valo and Salkinoja-Salonen, 1986), a viscous hydrocarbon­

contaminated sludge (Stroo, Smith, Torpy, Coover and Kabrick, 1989) and sediments contaminated

with trinitrotoluene (TNT), cyclotrimethylenetrinitramine (Royal Demolition eXplosive, RDX) and

octahydro-l,3,5,7-tetranitro-l,3,5,7-tetrazocine (Highvelocity Military eXplosive orHer Majesty's

eXplosive, HMX) (Ziegenfuss, Williams and Myler, 1991).

Advantages and disadvantages

Composting is simple to design and implement and is very cost effective. It also requires relatively

short treatment times and can be engineered to be effective for any combination ofsite conditions

and contaminants (USEPA, 1995). It may be used for organic constituents with slow degradation

rates and can be operated in a closed system to minimize vapour emissions (DSEPA, 1995). The

degradation rates for similar compounds are much shorter in composting than in in situ or land

treatments to the scale of weeks instead of months (Savage, Diaz and Golueke, 1985). The

disadvantages associated with composting are: the volatile constituents tend to evaporate rather than

biodegrade; it may not be effective for high constituent concentrations (e.g. > 50 000 mg.kg-! TPH)
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and the presence ofheavy metals (> 2500 mg.kg-!) may inhibit microbial growth. The pile may also

require a bottom liner if leaching is a matter of concern (USEPA, 1995).

(;;i) Soil washing

The objective ofsoil washing is to separate the highly contaminated fine soil particles from the less

contaminated larger particles. In the process, the larger particles may be cleaned to a degree which

would allow for low-cost disposal (Eweis et aI, 1998). The wash water may be incorporated with

a leaching agent, surfactant, pH adjustment or chelating agent to remove organics and heavy metals

(www.frtr.gov/matrix2/section4/4, 6/23/01).

(iv) Low temperature thermal desorption

Low temperature thermal desorption uses heat to separate physically volatile components from

excavated soils. Thermal desorbers are designed to heat soils to temperatures which are high

enough to cause the contaminants to volatilize and desorb from the soil. The process is also known

as low-temperature thermal volatilization, thermal stripping and soil roasting (USEPA, 1995). For

heating to temperatures>1oooe, electrical heat input by conduction ( thermal wells and blankets)

or radiation ( radiofrequency (RF) heating) may be used. Temperatures>1 ooooe may be reached

in the vadose zone with these methods (http://erb.nfesc.navy.mil/restoration/technologies/remed,

6/23/01).

The thermal blanket system uses modular electrically heated blankets that are placed on top ofthe

polluted ground surface. Heat from the blanket is conducted down into the soil to vaporize

contaminants which are then trapped within an impermeable membrane. The contaminants are then

oxidised in a thermal treatment unit. A carbon bed collects trace concentrations oforganics that are

not oxidised (http://erb.nfesc.navy.mil/restoration/technologies/remed, 6/23/01).

59



The thermal well system incorporates an arrangement of electrical immersion heating elements

which are placed in vertical wells in the contaminated soil. After heat conduction and the resultant

vaporization of organic molecules, treatment is made as described for the thermal blankets

(http://erb.nfesc.nayy.mil/restoration/technologies/remed, 6/23/0 I).

Radiofrequency heating uses electromagnetic energy in the RF band and heating of the soil is

independent ofits conductivity. Heat is generated in a manner similar to that in a microwave oven

and is generated by electrodes which are inserted into drilled holes in the soil. The exact frequency

is determined by the extent of the contamination and the dielectric properties of the soil

(http://erb.nfesc.nayy.mil/restoration/technologies/remed, 6/23/01).

(v) Slurry-phase bioremediation

Slurry-phase bioremediation involves the treatment of contaminated soil-like materials (soil,

sediment, sludge) in a contained system (bioreactor) (Mueller, Lantz, Blattmann and Chapman,

1991). These treatments are characterized by the fact that they are made under saturated conditions,

with the slurry formed by the addition of water or wastewater to the contaminated material to

achieve the desired density. As the slurry is mixed, the contact between the microorganisms and

the contaminated material is increased and results in increased mass transfer and reaction rates

(Eweis et aI, 1998). Slurry-phase treatments rely heavily on efficient mass transfer which is

controlled by adequate mixing and aeration conditions (Ryan, Loehr and Rucker, 1991).

Fundamentally, slurry-phase treatment is a tri-phasic system which involves three major

components: water, air and suspended particulate matter. Water serves as the suspending medium

in which the supplementary nutrients, trace elements, chemical conditioners and the desorbed

contaminant(s) are dissolved. Air, in the form ofbubbles, provides the necessary oxygen for aerobic

metabolism (Christodoulatos and Koutsospyros, 1998). The suspended particulate matter consists

of soil/sediment/sludge which contains the contaminant(s) and attached biomass.
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Bioslurry reactors are designed to (Christodoulatos and Koutsospyros, 1998):

(i) alleviate microbial growth-limiting factors, including substrate, nutrient and oxygen

availability in soil environments;

(ii) promote suitable and stable environmental conditions, including moisture, pH and

temperature, for microbial growth;

(iii) enhance uniformity and, thus, reduce toxicity due to localized contaminant

concentrations; and

(iv) minimize mass transfer limitations and facilitate phenomena such as desorption of

organics from the matrix.

Slurry-phase bioremediation, generally, provides more rapid treatment and requires less area than

solid-phase, land-farming or composting biological treatment processes. Consequently, these

treatments have been applied at sites where time and available area, rather than costs, are critical

(Ross, 1990).

Slurry remediation is usually preferred to land treatment systems in areas where biodegradation

slows/ceases due to low ambient temperatures. This is because the temperature in a slurry reactor

may be maintained in the range suitable for biodegradation (Alexander, 1994).

Generally, there are three types ofslurry bioreactors (Griffin, Bronx and Brown, 1990; Castaldi and

Ford, 1992): aerated lagoons; low-sheer airlift reactors; and fluidized-bed soil reactors. The

treatment may be carried out in situ or on site (Eweis et ai, 1998). In situ treatment refers to the

treatment of the contaminated material in the area (lagoon) from which it originated. A floating

mixer and/or an aerator may be introduced into the lagoon and the treatment is carried out in a

single batch process. Slurry-phase lagoons are, however, subject to operational instability due to

variations in weather conditions (Christodoulatos and Koutsospyros, 1998).
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On-site treatment refers to the dredging and excavation of the contaminated sludge or soil for

treatment in an above-ground bioreactor (Eweis et aI, 1998). Low-sheer airlift reactors (LSAR) are

cylindrical tanks which are made of stainless steel or other relatively inert materials. Intimate

contact of the microorganisms with the targeted contaminant(s) and homogeneity between all the

phases involved are accomplished by mixing. Mechanical agitation and aeration, together with

properly placed baffles, ensure a more defined hydrodynamic behaviour in slurry bioreactors than

in aerated lagoons. The above-ground bioreactor concept is useful when the contaminated soils

have been excavated already because the cost of this constitutes a large fraction of the total

operating costs (Litchfield, 1991).

Process description

The excavated soil is first processed by soil fractionation, to separate physically large particles such

as stone and rubble, and soil milling, to reduce the particle size (USEPA, 1993 ~

www.frtr.gov/matrix2/Section4/4_16.html, 8/24/00). Some procedures combine slurry phase

treatments with soil washing to remove the contaminant(s) from the soil or to concentrate the

contaminants (Alexander, 1994; Eweis et aI, 1998).

Slurry-phase treatments are operated in batch, semi-batch or continuous mode. The selection ofthe

operation mode is based on a number of factors of which the most important are: the treatment

objectives; the quantity ofwaste; the initial concentration ofthe target contaminant(s)~ integration

into existing treatment schemes~ and economic considerations (Christodoulatos and Koutsospyros,

1998).

Batch reactors are the most commonly used in slurry phase treatment and are easier to control than

semi-batch or continuous stirred-tank reactors (CSTRs). A single reactor is used in the batch mode

and the contaminated soil is introduced together with nutrients, water and the microbial inoculum.
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The slurry is then mixed and aerated until the targeted compound(s) is attenuated to the desired

concentration (Eweis et ai, 1998).

In the semi-batch mode, a primary tank is used to mix the soil with water, nutrients and the

microbial inoculum and pH adjustment is made. The slurry is then transferred to the treatment

tank:(s) where it is mixed continuously and aerated to facilitate biodegradation. Separation ofthe

soil slurry occurs in the last tank in which the degradation may continue. This mode ofoperation

is more efficient than batch mode in terms ofvolume utilization but it is more complex and not as

cost effective (Eweis et ai, 1998).

The slurry concentration depends on the reactor design, the soil type and the contaminant

concentration. In situ treatments have a typical solids concentration ofbetween 5 and 20% (rn/v)

while on-site treatments can handle higher solids concentrations ofas much as 50% (USEPA, 1993).

A high solids concentration means a shorter treatment period or a smaller reactor but a high

concentration of contaminant(s) may prove to be microbistatic/microbicidal and dilution of the

slurry may be necessary.

The production of foam is a problem which is encountered often in slurry-phase treatments.

Glasser, Platt, Dosani, McCauley and Krishnan (1994) suggested that the presence of naturally­

occurringorganic molecules in certain soils promotes the formation offoams. Reducing the mixing

speed, lowering the slurry density or adding an anti-foaming agent may all help to control foam

production.

Bioremediation technologies rely on desorption phenomena to transfer the contaminant(s) from the

solid to the aqueous phase (Aronstein, et ai, 1991). Surfactants are sometimes used to aid the

desorption and solubilizationofthe contaminant(s). Solvents and surface active agents (surfactants)

promote desorption by changing the free energy of the surface and by increasing the aqueous
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solubility of the compound(s) (Christodoulatos and Koutsospyros, 1998). This increased

solubilization facilitates microbial oxidation and the rates of degradation of many hydrophobic

compounds. Incorrect surfactant use has many drawbacks. For example, high surfactant

concentrations cause foaming and may impart toxicity to the system and, thus, inhibit microbial

growth. Castaldi and Ford (1992) suggested that maintenance ofa high microbial biomass could

result in the production of microbial surfactants which are believed to act as emulsifiers which

desorb the more hydrophobic contaminants and displace them into the aqueous phase.

Factors affecting slurry biodegradation

The efficacy ofbioslurry reactors is affected by many factors which may be broadly divided into

three categories in relation to the various system components: system parameters; contaminant(s)

properties; and soil properties (Christodoulatos and Koutsospyros, 1998)~

The system factors are: pH (the optimum pH for microbial degradation is often between 5.5 and

8.5); moisture content or slurry solids content (this ranges between 5 and 40% (m/v)); temperature

(the temperature range in most applications is between 10 and 30°C while the optimum temperature

for microbial degradation often lies between 20 and 30°C); oxygen (aerobic metabolism is

preferred); ageing (which affects adsorption/desorption and, thus, the bioavailability of the

contaminant(s)); mixing (to increase mass transfer and microbial growth and reduce toxic effects);

nutrients (for microbial growth and activity); and microbial population, reactor operation and

residence time (which affect process efficiency).

The contaminant properties include solubility in aqueous media (which may be enhanced by the

addition of surfactants and used as a measure of mobility and availability), volatility,

biodegradability and toxicity (where pretreatment may be required for toxicity reduction).
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The properties ofthe soil treated in the bioreactor play an important role in bioslurry systems, as all

removal mechanisms are affected by them. The crucial soil properties include: particle size (most

contaminants are adsorbed onto soil particles < 63 ~m in diameter); soil composition (sand, silt,

clay content) which affects the slurry density and adsorption/desorption; the cation/anion exchange

capacity; and the organic carbon content which affects the desorption of polar and neutral organic

molecules.

Advantages and disadvantages

Slurry treatment is faster and requires less land area than landfarming (Ross, 1990). Also, more

control is exercised than with other soil treatment methods and, therefore, it may be one ofthe most

effective biological treatments. Slurry-phase treatment is highly mechanized so the obvious

disadvantage is the high capital investment and the operation and maintenance costs (Eweis et af,

1998).

Applications of slurry- phase bioremediation

Koning, Hupe, LOth, Knetch, Timmermann, Paul and Stegmann (1997) compared the efficacies of

a fixed-bed reactor, blade-mixing reactor and a slurry reactor for oil-contaminated soil treatment.

Slurry treatment proved to be more effective than the fixed-bed reactor, primarily because

biodegradation was hindered in the latter due to soil pellet formation. Castaldi and Ford (1992)

evaluated slurry remediation ofwaste sludges from petrochemical production. The treatment was

made in batch mode at ambient temperature (22 - 24°C), although the pH and dissolved oxygen

content were not controlled during the study. The volatile fraction (BTEX) was removed in the first

15 days of operation while negligible concentrations of the semi-volatile compounds (phenol,

naphthalene, phenanthrene) remained after 90 days. The researchers speculated that the apparent

mechanism for the degradation of the tarry waste slurry involved an initial dissolution of the
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components into the aqueous phase followed by aerobic biodegradation.

Banerjee, Gray, Dudas and Pickard (1997) investigated the feasibility of using anthracene,

naphthalene and phenanthrene as biostimulators ofcreosote biodegradation in contaminated soils.

They used a rotatory bioreactor system and compared the efficiency ofstatic and agitated systems.

The addition ofeach biostimulator did not overcome the plateau effect in which the degradation of

a particular contaminant stops after a specific concentration is reached. The static system proved

less effective than the agitated system.

Hampton and Sisk (1997) examined the impacts ofthe surfactant Tween on the slurry remediation

ofexplosives-contaminated soils. The excavated soil had TNT concentrations of

1 000 - 7 500 mg.kg-!, HMX concentrations of0 - 300 mg.kg-! and RDX concentrations of

0- 100 mg.kg-!. The soil slurry had a solids concentration of between 15 and 25% (m/v) and the

reactors were operated at ambient temperature. They concluded that the surfactant reduced the

initial acclimation time by making the explosives more readily available for biodegradation but the

total process enhancement, in comparison with a bioreactor which was supplemented with molasses

rather than Tween, was marginal (one week in eight weeks).

Harvey, Fredrickson, Zappi and Hill (1997) compared aerobic and anaerobic bioslurry treatments

for explosives-contaminated soils. All treatments supplemented with co-metabolites (Tween,

molasses) degraded the explosives successfully.

Other researchers (Shell, Guiot, Ampleman, Thiboutot and Hawari, 1997) used a soil slurry reactor

(40 % (m/v) solids concentration) to treat successfully soil contaminated artificially with RDX

(2 000 mg.kg-!) and TNT (1 000 mg.kg-!). The reactor was inoculated with municipal activated

sludge and complete removal of TNT and its metabolites was achieved in 12 days of operation,

while RDX removal was achieved in 50 days.
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Boopathy and Manning (1999) treated explosives-contaminated soil in batch slurry reactors at

ambient temperature (20 - 22°C). Each slurry comprised 20% (m/v) TNT-contaminated soil and

water. The TNT concentration in the soil ranged from 4000 - 12000 mg.kg-!. One reactor received

0.3 % (m/v) molasses as a supplementary carbon source every week, while a second reactor received

a single addition of 3%(m/v) Tween 80 as a carbon source and a surfactant. The third reactor

received weekly additions of0.3% (m/v) molasses as a supplementary carbon source and a single

addition ofTween 80 (3% v/v) as a surfactant. The fourth reactor received no additional carbon and

served as the control. The results indicated that TNT was removed in all the reactors except the

control. The reactor supplemented with both surfactant and molasses was more efficient than the

reactors supplemented with either surfactant or molasses only.

Mueller etat (1991) subjected creosote-contaminated soil and sediment to slurry-phase remediation.

The slurry was generated after washing the soil and retaining the wash liquid and the fine soil

suspension. The slurry was incubated for 30 days with continuous mixing, in batch mode, at 28.5°C

and pH 7 to promote the indigenous microbial species. The higher molecular weight compounds

were not attenuated extensively although removal ofbetween 40 and 60% ofthe lower molecular

weight compounds was accomplished within 14 days.

Bourquin (1989) treated a highly (13 200 mg.kg- l
) and a moderately (390 mg.kg-!) 2,4-D

contaminated soil in slurry reactors inoculated with the bacterial strain JMP-134. Reinoculation was

made every 4 days while nutrients (nitrogen and phosphorus) were added at the beginning of the

treatment. The 2,4-D concentration in the moderately-contaminated soil decreased from 390 to 15

mg.kg-! over 16 days while the concentration of2,4-D in the highly contaminated soil decreased

from 13 200 to 2610 mg.kg- l in the same period.
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3.3 Advantages and disadvantages of bioremediation

The advantages associated with the bioremediation ofa contaminated site are numerous. Principal

amongst them is the lower cost involved compared to chemical treatments. In addition, many

pollutants may be treated on site, thus, reducing the risk to personnel and wider exposure as a result

of transportation accidents (Gabriel, 1991). Bioremediation is also a relatively simple technology

when compared to chemical treatment. In situ bioremediation can be carried out with minimal site

disruption, volatile compound emission, and health risks to the neighbouring residents or site

occupants (Eweis et ai, 1998). Furthermore, the various techniques can be expected to have

minimal environmental impact since bioremediation is a natural process. Because bioremediation

often results in the mineralization of contaminants, there is no or minimal generation of waste

products (Bollag and Bollag, 1995).

However, a number of disadvantages are often associated with the application of bioremediation

technologies. The most important are the difficulties in predicting performance and in scaling up

from laboratory or pilot-plant tests (Eweis et ai, 1998). Public perception is often negative through

fe~rofproliferation of"monster" bacteria with uncontrolled degradative capabilities. There is also

the fear that pathogenic bacteria will be unleashed due to above-ground or in situ technology

(Litchfield, 1991).

Another risk of bioremediation technologies is the formation of toxic products from innocuous

precursors (activation) (Alexander, 1994). This justifies study of the catabolic pathways and

products since the latter may have either short residence times or persist long enough to create

pollution problems. The consequences of activation include the biosynthesis of carcinogens,

mutagens, teratogens, neurotoxins, phytotoxins and insecticidal and fungicidal agents. Depending

on the catabolic rate, bioremediation may be time ~onsuming (Eweis et ai, 1998). Also, clean-up

goals may not be achievable because some compounds are recalcitrant or the required contaminant
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removal levels cannot be attained microbially (Eweis et aI, 1998).

Formicroorganisms to degrade pollutants, their populations must first increase and this is facilitated

by maintenance of optimum growth conditions. Such control may prove difficult due to the

variabilities of different sites and the labour requirements (Bollag and Bollag, 1995). Even under

ideal conditions, the microorganisms may utilize more readily available nutrients within the

contaminated area. Alternatively, the pollutant may be inaccessible due to sorption processes and

may thus require the intervention of extracellular enzymes (Novak, Jayachandran, Moorman and

Weber, 1995). In addition, the environment may contain chemicals, such as heavy metals, which

inhibit the catabolic species (Bollag and Bollag, 1995).

Ex situ bioremediation processes address most of the above disadvantages and limitations in a

satisfactory manner although they suffer from significant costs associated with solids handling

processes such as excavation, screening and fractionation, mixing and homogenization, and final

disposal.
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CHAPTER FOUR

General Materials and Methods

4.1 Mineral salts solutions/culture medium

4.1.1 Basic mineral salts

The basic mineral salts solution contained the following (g.t1 distilled water): KHZP04, 2.5;

KZHP04, 7.5; MgS04.7HZO, 1.0; and (NH4)ZS04, 2.5. The phosphates and sulphates were

autoclaved (I21°C (205 kPa),15 minutes) separately to prevent initial precipitation. After

cooling, the salts were combined.

4.1.2 Medium solutions i.e. 1 medium and 3 solutions

"Ideal" medium (en)

This medium (pH 6.8-7.0, 25°C) contained (g.tl distilled water): KZHP04, 1.6; KHZP04, 0.4;

MgS04.7H20, 0.2; NaCl, 0.1; CaClz 0.025; ~N03 0.5; sucrose, 1.0; and tri-Na-citrate, 1.0., ,

Carbon-free solution (elm)

This solution (pH 6.8-7.0, 25°C) contained (g.t1 distilled water): KzHP04, 1.6; KHZP04, 0.4;

MgS04·7HZO, 0.2; NaCI, 0.1; CaClz, 0.025; and ~N03, 0.5 (Behki and Khan, 1986).

Nitrogen-free solution (nlm)

This solution (pH 6.8-7.0, 25°C) contained (g.tl distilled water): KZHP04, 1.6; KHZP0
4

, 0.4;

MgS04·7HZO, 0.2; NaCI, 0.1; CaClz, 0.025; sucrose, 1.0; and Na-citrate, 1.0 (Mandelbaum et

ai, 1993).
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"Basic mineral salts solution" (bms)

This solution (pH 6.8-7.0, 25°C) contained (g.t! distilled water): K2HP04, 1.6; KH2P04, 0.4;

MgS04.7H20, 0.2; NaCI, 0.1; and CaCI2, 0.025.

For all ofthe above, the phosphates and sulphate were autoclaved (121°C (205 kPa),15 minutes)

separately to prevent initial precipitation. After cooling, the solutions were combined.

4.2 Enrichment and isolation of atrazine-catabolizing microbial associations

To enrich/isolate atrazine-catabolizing microbial associations from agricultural soil (Ukulinga

Research Farm, Pietermaritzburg), selective media were used which reflected the nutrient

conditions chosen for each bioreactor. Atrazine-contaminated soil (+/- 10 g wet weight) was

slurried with the different solutions/medium (4.1.2) (85 m/) which contained atrazine dissolved

in methanol (5 ml ofa 6 mg.mt! solution). The flasks were maintained in the light at ambient

temperature (+/- 25°C) and shaken on a platform shaker (Thermolyne). Subculturing (10 ml

culture supematant in 85 ml ofthe appropriate fresh medium) was made every three weeks (or

until the residual atrazine concentrations were negligible) until no soil remained in the

enrichments. Enrichment/isolation was made with three replicates ofeach treatment. Routine

GC analysis for residual atrazine and methanol was made every three days.

4.2.1 Determination of colony-forming units (CFUs) in inocula

The numbers of CFUs in inocula of the atrazine-catabolizing microbial associations were

determined by serial dilutions in Ringers solution (25% m/v) and inoculation onto the four

different solutions/medium (4.1.2) supplemented with atrazine (300 mg.t!) and set with agar

(1.5% m/v). The plates were incubated at 30°C in the dark until colony formation was noted.

The colonies were counted with a colony counter (Suntex 560) and only plates which contained

> 30 and <200 colonies were used to determine the average number of colonies in each

inoculum.
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4.3 Extraction methodologies

For each of the extraction methods, all glassware was dried in an oven at 105°C prior to use.

Prior to use, the magnesium sulphate was dried in an oven at 400°C for 4 h to remove any

organic impurities.

4.3.1 Phenol

Soxhlet Extraction

Soxhlet extraction was made by a modified version ofEPA Method 3540 (USEPA, 1986). The

spiked soil sample (5 g) was placed in an extraction thimble (Whatman, cellulose) and held with

a glass wool plug to prevent dispersion. Dichloromethane (75 ml) was placed in a round-bottom

flask which contained one or two clean boiling chips. The flask was attached to a Soxhlet

extractor (which contained the thimble + sample) and a water-cooled condenser and the

extraction was continued for 8h. After cooling, the extract was passed through magnesium

sulphate (MgS04) to remove residual water. The extract was filtered (Whatman No. 1) and the

total volume reduced to about 5 ml with a rotovapor (Heidolph). Residual dichloromethane was

evaporated under a low flow ofnitrogen. The modification made to the EPA method was to add

MgS04 after the extraction since it has been reported (Lopez-Avila et ai, 1993) that the

dehydrant does not play a critical role in improving recoveries by a particular extraction method.

Sample blanks were made for each extraction method with soil to which phenol was not added.

Sonication Extraction

The sonication extraction method used was a modified version ofthat described by Llompart et

al (1997). Solvent (dichloromethane, .15 ml) was added to the soil sample (5 g). After mixing

thoroughly, the tip ofan ultrasound disruptor cell (VirSonic 60 Sonicator) was inserted into the

solvent and the sample was sonicated on continuous mode (IOW) for two minutes. The extract

was then passed through a plug of anhydrous MgS04. The solvent was reduced to about 5 ml
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with a rotovapor (Heidolph). Residual dichloromethane was evaporated under a low flow of

nitrogen. For samples with lowphenol concentrations, the sonication was repeated at least twice

with fresh solvent used each time. Sample blanks were made for each extraction method with

soil to which phenol was not added.

Alkaline Digestion

Alkaline Digestion was made by the method developed by Pearce et al (1995). Sodium

thiosulphite (Na2S20 3, +/- 0.05g) was added to the soil sample (5 g) which was held in a flask.

Distilled water (20 ml) was then added and the pH raised to +/- 13 (pH indicator strips,

Macherey Nagel) by the addition ofsodium hydroxide (I OM). After closing with a stopper, the

flask was agitated for 10 minutes at 300 rpm with a Thermolyne shaker and the supematant

decanted into a centrifuge tube. The sample was extracted a second time beginning at the

addition of distilled water step. Both extracts were combined in the centrifuge tube and

centrifuged for 10 minutes at 756 x g. Subsequently, the supematant was decanted and the pH

lowered to +/- 2.5 with concentrated phosphoric acid and extracted into dichloromethane (3 x

15 ml). The extracts were combined and dried over anhydrous MgS04• The total volume was

reduced to +/- 5 ml with a rotovapor (Heidolph) and then evaporated to dryness under a lowflow

of nitrogen. Sample blanks were made for each extraction with soil to which phenol was not

added.

4.3.2 Atrazine

Technical grade atrazine (80% active ingredient) was used in all experiments.

Sonication Extraction

Sonication extraction was performed as follows: the soil (5 g) was extracted three times with a

mixture of acetone: hexane (50:50 (v/v), 10 ml) with an ultrasonic cell disruptor (Virsonic 60

Sonicator) used to enhance contact between the extraction solvent and the soil. Following each
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extraction the soil was allowed to settle and the solvent decanted. The combined supematants,

were then dried by passage through a column ofanhydrous MgS04 prior to concentration with

a rotovapor (Heidolph). The final volume was reduced to 1 m! under a low flow ofnitrogen.

Ethyl Acetate Micro-method

In the ethyl acetate micro-method, soil (5 g) was weighed into an Erlenmeyer flask (100 mT) and

distilled water (10 mf) and ethyl acetate (20 mf) added. The flask was stoppered and placed on

a mechanical shaker (Thermolyne, ~ 120 cycles.min-I
) for 16h at 20°C. The extract was

centrifuged (10 minutes at 756 x g) and the supematant was decanted and dried over anhydrous

MgS04. The volume was then reduced by a rotovapor (Heidolph) with further reduction until

dryness effected by nitrogen evaporation.

Agitation Extraction

For the agitation extraction method, soil (5 g) was weighed into an Erlenmeyer flask (100 mT)

and a combination ofmethanol and water (4: I, v/v, 25 mf) added. The flask was agitated on a

linear shaker (Thermolyne) for 3h prior to filtration (Whatman No. I) and soil washing with

methanol (10 mT) prior to further filtration. The filtrates were combined and the volume reduced

to 25 m! by rotary evaporation (Heidolph). Further extraction ofthe atrazine was effected with

dichloromethane (2 x 25 mT). The combined extract was then dried with anhydrous MgS04 and

the volume reduced with a rotovapor (Heidolph) prior to evaporation to dryness under a low flow

ofnitrogen. The resultant solid was then dissolved in 1 ml ofchloroform.

Soxhlet Extraction

Soxhlet extraction was performed by the method outlined by Guzzella et o! (1996). The spiked

soil sample (5 g) was placed in an extraction thimble (Whatman, cellulose). Methanol (100 mf)

was placed in a round-bottomed flask which contained one or two clean boiling chips. The flask

was attached to a Soxhlet extractor (which held the thimble and sample) and a water-cooled

74



condenser and the extraction was continued for 6h. After cooling (ambient temperature), the

extract was passed throughanhydrous MgS04 to remove residual water. The extract was filtered

(Whatman No. 1) and the total volume reduced to +/- 5 ml with a rotovapor (Heidolph).

Residual methanol was evaporated undera lowflow ofnitrogen and the resulting solid dissolved

in 1 ml ofchloroform.

4.3.3 BTEX

Agitation Extraction

Agitation extraction was made by the method described by Meney et al (1998). The soil (5 g)

was placed in a centrifuge tube. A mixture ofmethanol and water (50:50 v/v, 20 ml) was added

and the slurry was shaken for Ih on an end-over-end shaker at ambient temperature (+/- 25°C).

After centrifugation (10 minutes at 756 x g) the supematant was diluted to 25 ml with methanol

prior to GC analysis (4.5.1).

Sonication Extraction

Sonication extraction was performed as described by Sporst01 et al (1985). Methanol (10 ml)

was added to the soil (5 g) and an ultrasonic probe (VirSonic 60 Sonicator) was immersed into

the slurry which was treated for 2 minutes at 300 W. The solvent was decanted and the

procedure repeated. The extracts were combined and diluted to 25 ml with methanol prior to

GC analysis (4.5.1). The sum of the individual percentage recoveries was taken to determine

the overall recovery ofthe BTEX compounds from soil.

4.4 Bioreactor configuration

Each bioreactor(5l), designed by the Vrije Universiteit, Amsterdam (Figure 4.1), was operated

under aerobic conditions in batch mode at 30°C in the light. The reactors were stirred

continuously at a speed of2 500 rpm and glass-wool filtered oxygen was supplied at an air flow
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rate of6 m/.min- I . Each soil slurry comprised 20% (m/m) soil and 80% (v/v) medium or mineral

salts solution (4.1.2) pH adjusted to 6.8 - 7. The initial cultures were made with the indigenous

soil microorganisms. Thereafter, the cultures were made with microbial inocula (4.2) (soil, 20%

m/m; inoculum, 10% v/v; and mineral salts solution (4.1.2), 70% v/v).

Figure 4.1 Bioreactor used in the atrazine degradation studies

4.4.1 Experimental protocol

Sampling/Analytical Methods

The bioreactors (4.4) were sampled on days 0,3,5,7,10,16 and 23. After sampling, microbial

activity (4.5.4) was determined immediately. Forotheranalyses, aluminium sulphate (saturated

solution, 0.5 m/) was added to the slurry samples prior to centrifugation at 11 612 x g

(Beckmann, J2-HS). The supematants were retained for analysis of pH (4.5.3), ammonium

content (4.5.6), residual atrazine concentration (4.5.2(ii) and cyanuric acid (4.5.2).

Atrazine and its degradation products (hydroxyatrazine, deethylatrazine anddeisopropylatrazine)

were determined by the following method:

Each supematant sample (2 ml) was passed through a pre-conditionedC18 sep-pakcartridge and

eluted with ethyl acetate (4 m/). The solvent was removed under a low flow ofnitrogen until

the extract was dry. The dry extract was then dissolved in the mobile phase (2 m/) ofmethanol:

water (60:40 v/v) and analyzed by reversed phase HPLC (4.5.2(ii».
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4.5 Analytical methods

4.5.1 Gas chromatography (GC) analyses

Phenol

Soil phenol extracts ( 4.3.1) were diluted to volume (l m/) with acetone and were analysed by

gas chromatography (Varian 3600) under the following conditions. The column was glass and

was packed with 5% OVlOl ehromosorb 80/100 mesh. The injector and detector (Fill)

temperatures were set at 2000 e and 250oe, respectively. The initial column temperature was

700 e and was held for 0.1 minutes after which it was increased at a rate of 100 e per minute to

a final temperature of 1200 e and held for 0.5 minutes.. The carrier gas was nitrogen at a flow

rate of 30 ml.min-1 and the injection volume was 11l1. Quantification was made by peak area

comparison with phenol standards (range 0.25 - 15 mg.mt').

Atrazine

All soil atrazine extracts ( 4.3.2) were diluted to a fixed volume (l m/) with chloroform and were

analysed by gas chromatography (Varian 3600) under the following conditions. The column was

a megabore ZB-5 (5% phenyl polysiloxane, length 15m x 0.53 mm i.d. x 1.5 Ilm FT). The

injector and detector (Fill) temperatures were set at 2300 e and 250oe, respectively. The initial

column temperature was I200 e and was held for 2 minutes after which it was increased at a rate

of IOoe per minute to a final temperature of 1800 e and held for 2 minutes. The carrier gas was

helium at a flow rate of30 ml.min-1 and the injection volume was I Ill. Quantification was made

by peak area comparison with atrazine standards (range 0.025 - 0.8 mg.mt').

BTEX

All soil BTEX extracts ( 4.3.3) were analysed by gas chromatography (Varian 3600) under the

following conditions. The capillary column( ZB-WAX, Polyethylene glycol, length 30 m x
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0.5 mm i.d. x I Ilm FT) was maintained at 48°C and the analysis was made under isothermal

conditions. Both the injector and detector (Fill) temperatures were set at 250°C. The carrier gas

was helium at a flow rate of30 mI.min-1 and the injection volume was Ill!. Quantification was

made by peak area comparison with BTEX standards (range 0.2 - 0.8 mg.mt
1
).

4.5.2 High performance liquid chromatography (HPLC) analyses

Atrazine

(i) Gradient elution

Analysis of soil extracts was made by reversed phase HPLC (Spectra System P2000 liquid

chromatograph (Thermo Separation Products) capable of binary gradient separations and

equipped with a photodiode array detector) with instrumental control maintained through PC

1000 software.

Chromatography

The instrumental chromatographic parameters involved both binary system pumping functions

and flow programming. A Hypersil H50DS EXCEl (5 Ilm, 250 x 6 mm (H50DS- EXL - 250A))

column was used. Photodiode array data were captured at 220, 235 and 254 nm with a 3 nm

bandwidth. Spectral data were acquired between 200 and 400 run. The injection volume was

100 Ill. The analysis protocol was a modified version of that recommended by Steinheimer

(l993)and the conditions were as stipulated in Table 4.1. The mobile phase consisted of a

mixture of acetonitrile and water. Quantification was made by peak area comparison with

atrazine standards (range 0.04 - 0.4 mg.mt1
).
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Table 4.1 Gradient elution conditions for HPLC analysis of atrazine and atrazine degradation products

Mobile Phase (%v/v)

Time (min) Acetonitrile Water Flow

(ml.min-1
)

0 10 90 1.5

6 25 75 1.5

21 65 35 1.5

23 100 0 0.5

27 25 75 1.5

30 10 90 1.5

(ii) Isocratic elution

Analysis was made under isocratic conditions at ambient temperature (+/- 25°C). The mobile

phase was methanol and water (60% : 40% v/v) at a flow rate of 1 ml.min-I (Assaf and Turco,

1994). Quantification was made by peak area comparison with atrazine standards (range 0.002­

0.05 mg.mtI
).

Cyanuric Acid

Qualitative analysis ofbioreactor supematant samples (1 m!) was made by reversed phase HPLC

(Spectra System P2000 liquid chromatograph (Thenno Separation Products) capable ofbinary

gradient separations and equipped with a photodiode array detector) with instrumental control

maintained through PC 1000 software. Cyanuric acid and biuret were separated on a C18

reversed phase column with an isocratic solvent system which consisted of

octyltriethylammonium phosphate (5 mM , Q-8 Ion-Pair cocktail, Regis Chemical Co.) in

potassium phosphate (5 mM). The final pH was 6.8 and the flow rate was 2 ml.min-I . Biuret was

detected at 200 nm and cyanuric acid at 225 nm (Karns, 1999).
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4.5.3 pH

So;1

Potassium chloride (lM, 25 mt)was added to soil (10 g, air-dried) in a beaker ( 50 mt) and the

slurry allowed to equilibrate for 30 minutes with occasional stirring with a glass rod. A Crison

micropH 2002 meter fitted with a pH electrode (Ingold) was used to determine the pH of the

slurry. Each analysis was made in triplicate.

Slurry

The pH values ofbioreactor (5.3) soil slurry samples (25 m/) were determined by a Crison

micropH 2002 meter fitted with a pH electrode (Ingold).

4.5.4 Microbial activity

50;1

Microbial activity was determined by fluorescein production (Mandelbaum , Hadar and Chen,

1988).

Stock solutions

Sodium phosphate buffer (0.6 M )

N~HP04 (7.4102 g) and NaH2P04(0.9358 g) were dissolved in distilled water and the

resulting solution diluted to 1/. The pH was adjusted to pH 7.6 by the addition ofHCI

(conc.) or NaOH ( 10 M) prior to sterilization by autoclaving (121°C (205 kPa), 15

minutes).
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Fluorescein

Fluorescein (100 mg) was dissolved in sodium phosphate buffer and the resulting

solution diluted to 1 I.

Fluorescein diacetate (FOA)

Fluorescein diacetate (0.2 g) was dissolved in acetone and the solution diluted to 100 ml

prior to storage (4°C) in the dark.

FDA solution (4 ~/, 2 mg.rot1
) was added to sodium phosphate buffer (20 ml) and wet soil (+/­

2 g). For each determination, the mass of soil was recorded and quadruple assays were made.

For each assay a blank was used which did not contain FDA. All the samples and blanks were

incubated at 30°C in the dark ina controlled environment shaker incubator (NewBrunswick, NJ,

USA). The flasks were shaken at 150 rpm for Ih after which acetone (20 m/) was added to each

to quench the reaction. The contents of each flask were filtered (Whatman number 1) and the

filtrates retained for fluoroscein concentration determination by spectrophotometry (MiltonRoy

Spectronic 310) at 490 nm. Where necessary, the samples were diluted. Activity was expressed

as mg fluorescein produced g-l dry weight soil.h-1
.

Slurry

Microbial activity was determined also for bioreactor ( 5.3) slurry samples (2 m/).

4.5.5 Soil moisture content

The soil moisture content was determined by drying soil (approx. 109) overnight (or until

constant mass was obtained) in an oven (l20°C). The soil was weighed before and after drying

and the soil moisture content determined by difference.
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4.5.6 Ammonium concentration

Bioreactor (4.4) supematantammonium concentrations were detennined by direct measurement

with an Orion millivoltmeter fitted with an Orion specific ion electrode. Each sample (5 ml)

was diluted with distilled water (45 m/) and sodium hydroxide (10 M, +/- 10 m/) added to raise

the pH to >12 (pH indicator strips, Macherey Nagel). Quantification was then made by

comparison with a series ofammonium chloride standards (range 1 x 10-5
- 1 X 10-1 M).
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CHAPTER FIVE

(Experimental) Results and Discussion

5.1 Monitoring bioremediation: chemical extraction methodology development

The aim of this part of the study was to detennine how the soil type, spiking concentration,

composition of the spiking solution and ageing time affected the percentage recovery of the

target molecules by different extraction methods. Three soil types, encompassing the

mineralogical range encountered in KwaZulu-Natal, were chosen for this study. They were a

Rensburg (rich in smectitic clays), a Swartland (rich in kaolinitic (flays) and a Hutton (rich in

iron and aluminium oxides). They were chosen because their organic carbon contents did not

vary greatly. The soils were air dried at ambient temperature and ground to pass through a 2mm

pore size sieve. The soil properties are summarized in Appendix A. Phenol, atrazine and the

BTEX molecules were chosen for this study. The rationale for their choice is discussed in

Chapter 1 (phenol, BTEX) and Chapter 2 (atrazine). A selection of the less sophisticated

extraction methods was chosen for each pollutant type and the efficacy ofeach was detennined

with quadruplicate extractions. The data were subjected to ANOVA analysis with Genstat

software. All percentages recorded in this section refer to % m/m.

5.1.1 Phenol extractions from soil

Two different spiking methods were used, a dry spike and a wet spike, because the effect ofthe

soil moisture content needed to be detennined. The spiking solution was phenol dissolved in

acetone. For the dry spike, the solution (1 m!) was added directly to the air-dried soil. The dry

spike method was discontinued after several attempts to extract the samples resulted in low

recoveries «5%). It was, also, felt that this method was unrepresentative of actual field

conditions.

83



For the wet spike method air-dried soil (5 g) was weighed into a glass bottle and distilled water
?

(1 m/) was added. A 16.67% water content was chosen arbitrarily and was intended to represent
. ~ "

typical wet soil. The spiking solution was then added. After mixing thoroughly, to ensure

homogeneity, the soil was allowed to equilibrate forlh at ambient temperature (25°C) to effect

acetone evaporation. Bottles of samples to be "aged" were then closed with teflon-lined

aluminium caps and stored in a refrigerator at 4°C in the dark. Three different spiking

concentrations were employed, 5 000, 500 and 50 mg.kg- l
, with respect to the air-dried soil. The

concentrations were selected to represent soil phenol concentrations which would be present

under a range of circumstances, from typical phenol usage to inadvertent spillage. The effect

ofageing time was also studied with 5 000 mg.kg- l phenol and four different ageing periods: 1h,

48h, 1 week and 3 weeks after spiking.. The soil was not sterilized prior to ageing because the

samples were stored at 4°C to minimize microbial activity.

Three pollutant extractionmethods, Soxhlet, Sonicationand anAlkaline DigestionMethodwere

evaluated with respect to the three soil types.

Extracts were diluted with acetone and were analysed by gas chromatography (4.5.1).

Phenol Extraction - Results and Discussion

(i) Effect ofspiking concentration on percentage phenol recovery

Because there was no direct correlation between the individual factors studied and the

percentage phenol recovered, the raw data were subjected to ANOVA analysis with Genstat

software. Genstat software presents the data as two-way treatment means, which signifies that

only the interaction between two factors was considered at anyone time.

The results from the analysis ofvariance indicated mathematically highly significant

(P = 0.001) two-way interactions: extraction x soil, extraction x phenol concentration and soil

x phenol concentration. Figures 5.1 - 5.3 are histograms of these interactions. The three-way
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interaction, i.e., extraction x soil x phenol concentration was also highly significant (P =0.001).

When considering the interaction between the soil type and the extraction method for phenol

(Figure 5.1), Soxhlet extraction was the most effective, followed by sonication for the Rensburg

and Hutton soils (Figure 5.1). Soxhlet extraction gave the highest reproducibility (% relative

standard deviation (RSD) = 11.62) for the three soil types and sand. The most effective method

for 'the extractio.n of phenol from the Swartland soil appeared to be sonication extraction.

Sonication extraction recovered the highest concentration of phenol from sand. Alkaline

digestion was the least effective extraction method (mean recovery 58.67 %, Figure 5.1).
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Figure 5.1 Mean percentage phenol recoveries from sand (sa), Rensburg
(rn), Swartland (sw) and Button (bu) soils by soxblet (sx), soniation
(se) and alkaline digestion (ad) extractions.

It was envisaged that quantitative recoveries ofphenol would be obtained from sand although

the phenol appeared to bind quite strongly with the neutral siloxane surfaces (Johnston, 1996)

with the result that the recoveries ranged from 44 to 76 % (Figure 5.1). Phenol recovery from

the Hutton soil and sand appeared to be independent of the spiking concentration since

comparable percentage recoveries were recorded for each spiking concentration (5000,500 and

50 mg.kg-1
) (Figure 5.2). This result was in accordance with the results obtained by Steinheimer

et af (1994) who reported that spiking concentration did not appear to impact on the extraction

method efficacy.
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The general decreased recoveries with increased spiking concentration were probably due to

assisted adsorption (HC. Bester, I personal communication). With a soil concentration of 50

mg.kg- l phenol, it was envisaged that there would be low coverage ofthe mineral surfaces, thus

facilitating molecule removal. With the increased concentration of 500 mg.kg-l phenol, the

molecule should have covered the entire mineral surface and, thus, the hydrophilic surface

properties should have become hydrophobic and so limited phenol extraction. With 5 000

mg.kg- l
, it is possible that the adsorption sites would have been filled completely. Thus,

unadsorbed molecules should have been extracted readily.
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Figure 5.2 Mean percentage pbenol recoveries from Swartland (sw),
Rensburg (m) and Button (bu) soils of SO, 500 and 5 000 mg.kg-l
spiking concentrations

For each soil type, phenol recoveries were highest with the lowest spiking concentration (Figure

5.2). Recoveries from sand and the Hutton soil showed good reproducibility (% RSD =6.12 and

5.68) with the change in spiking concentration, while the opposite was true for the Swartland

(% RSD = 31.38) and Rensburg (% RSD = 36.80) soils.

The interaction between the extraction method and the spiking concentration and its effect on

the percentage phenol recovery are shown in Figure 5.3. The spiking concentration had only

limited effect on the efficacy ofSoxhlet extraction (% RSD = 8.22) with an increase from 63.25

to

74.56 % recorded for a concentration increase of4950 mg.kg- l . In contrast, both sonication and

alkaline digestion recorded poor reproducibility (% RSD = 19.51 and 51.35 %, respectively)

with changes in the spiking concentration.

IHC. Bester, Department ofSoil Science, University ofNatal, Pietennaritzburg, South Africa

86



~100

~ 75
8 f.O
~ 25
~ 0

f{) &>0 5 <XX)

spiking~ (rng.kg1
)

mse

Figure 5.3 Mean percentage phenol recoveries by soxhlet (sx), alkaline
digestion (ad) and sonication (se) extractions of50,500 and
5 000 mg.kg-l spiking concentrations over aD three soil types

(ii) Effect ofageing time on percentage phenol recovery

Alexander (1995) questioned the validityof "spike-and-recover"experiments for the assessment

of soil extraction methods on the grounds that they did not simulate accurately the manner in

which contamination occurs in situ. According to him, "although quantitative recoveries may

be obtained when a soil is spiked and promptly extracted, use of the same method could

seriously underestimate contamination in a field sample."

The results ofthe analysis ofvariance indicated mathematically highly significant (p = 0.001)

two-way interactions: extraction x soil type, extraction x ageing and soil type x ageing. There

was also a mathematically highly significant three-way interaction. Sand was not used in this

part of the experiment since it was anticipated that any changes would be instantaneous.

Lowered recoveries and poor reproducibility were anticipated with increased ageing time as

phenol-soil interactions were expected to occur with the "weathering/ageing" of the soil

samples.

Soxhlet extraction appeared to be the most effective method to recover phenol from "aged"

Rensburg soil while sonication gave the highest recovery from the Swartland and Hutton soils

(Figure 5.4). Sonication-facilitated recovery was, however, variable (%RSD=26.09) for all the

soil types tested, while alkaline digestion and Soxhlet extraction gave less variable results

(% RSD = 9.74 and 10.49, respectively).
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Figure 5.4 Mean percentage phenol recoveries from Swartland (sw),
Rensburg (m) and Button (hu) soils by soxhJet (sx), alkaline digestion
(ad) and sonication (se) extractions

Ingeneral, phenol recovery decreased with increased ageing time (Figure 5.5) for each extraction

method. This result emphasised that specific adsorption/degradation occurs with increased

ageing, with the molecules arranged on the clay mineral surfaces to form stable complexes

which are resistantto extraction. A % RSD of6.53 for the different ageing periods up to 21 days

was recorded following sonication extraction, while % RSDs of 16.33 and 15.73, were recorded

respectively, with soxhlet and alkaline digestion.
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Figure 5.5 Mean percentage phenol recoveries by soxhJet (sx), alkaline
digestion (ad) and sonication (se) extractions following lh, 48h, 7d and
2ld ageing times

The Swartland and Rensburg soils recorded decreased phenol recoveries with increased ageing

up to 21d (Figure 5.6) while a similar trend would have been observed for the Hutton soil but

for the 48h datum point. Similar results were obtained by Huang and Pignatello (1990), Lopez­

Avila et01 (1995) and Llompart et01 (1997). Recovery from the Rensburg soil showed a % RSD

of 7.96 with ageing time up to 21 d.
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Figure 5.6 Mean percentage phenol recoveries from Swartland (sw),
Reosburg (m) and Button (hu) soils following th, 48h, 7d and 2td
ageing times

(iii) Effectofcomposition ofspiking solution on percentage phenol recoveries

All ofthe above experiments were made with soils spiked with a solution ofphenol in acetone

which is unrepresentative of the manner in which the molecule would enter the soil under

normal circumstances. Therefore, a comparison was made of phenol recoveries from soils

spiked with phenol in acetone and with phenol solution alone. The extractions were made with

soils which had been aged for 21 days, so low recoveries and poor reproducibilities were

expected due to soil-analyte interactions.

Analysis of variance results indicated mathematically highly significant (P = 0.001) two-way

interactions: extraction x spiking solution and soil x spiking solution. The interaction between

extraction x soil type was mathematically significant at the 5 % level (P =0.027), although the

three-way interaction was not significant (p = 0.447).

Alkaline digestion recovered the lowest concentrations ofphenol from all three soils

(Figure 5.7). The Soxhlet and sonication extraction methods were equally effective for the

Rensburg and Swartland soils with the latter method more reproducible (% RSD = 9.22) for all

three soil types.
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Figure 5.7 Mean percentage phenol recoveries from Swartland (sw),
Rensburg (m) and Button (hu) soils by soxblet (sx), alkaline digestion
(ad) and sonication (se) extractions

The spiking solution appeared to affect the Soxhlet and sonication extractions more than the

alkaline digestion with lower recoveries obtained for the aqueous phenol solution-spiked soils

(Figure 5.8). Greater reproducibility was recorded with alkaline digestion (% RSD = 14.40) than

either Soxhlet (% RSD = 47.40) or sonication (% RSD= 37.19) extractions. Auer and Malissa

(1990) concluded that the selected solvent may change the original structure and composition

ofthe soil and, upon vaporization, may facilitate large losses ofthe more volatile components.

Phenol interaction with clay mineral surfaces is very dependent on the soil pH and water content

(Johnston, 1996). The alkaline digestion method required a pH increase> 13 to maximise

phenol removal. At this pH value the clay mineral surfaces become negatively charged and

phenol is in its anionic form. The resultant repulsion of phenol by the clay mineral surfaces

ensures that it becomes very mobile and, as a consequence, is easily extracted. Dissolution of

the clay mineral surfaces also exists at this pH and results in increased phenol availability.
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Figure 5.8 Mean percentage phenol recoveries from acetone- and water­
spiked soils by soxblet (sx), alkaline digestion (ad) and sonication (se)
extractions
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The composition ofthe spiking solution exerted a greater effect with the Swartland

(% RSD = 41.03) and Hutton (% RSD = 48.75) soils than with the Rensburg soil (% RSD =

15.63) with lower recoveries obtained from the aqueous solution-spiked soils (Figure 5.9). It is

possible that the addition ofwater ensured swelling ofthe smectite clay in the Rensburg soil and

so facilitated phenol extraction.
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Figure 5.9 Mean percentage phenol recoveries from acetone- and
water-spiked Swartland (sw), Rensburg (m) and Button (hu) soils

Phenol recoveries from the Rensburg soil with its smectite content of65 % (m/m) of the total

clay content (Appendix A) were consistently low (total mean for the different spiking

concentrations was 67 %) (Figures 5.2, 5.6, 5.7). Sawhney (1985) showed in his study ofphenol

with smectites that, depending on the nature ofthe exchangeable cations present, smectites can

retain significant quantities ofphenol. He observed that Ca-exchanged smectite could retain 17

% by weight of o-methyl phenol with slightly lower amounts sorbed for Fe-, Al- and Na­

exchanged smectite.

Lowered phenol recoveries from the Hutton soil may be attributed to polymerization of the

molecule by the Fe and AI sesquioxides (iron content,0.75 % m/m). Sawhney (1985) concluded

that the presence of specific cations would polymerize phenolic compounds in the order ofFe

> AI > Ca> Na. McBride and Wesselink (1988) showed that, in addition to clay minerals, iron,

aluminium and manganese oxides can chemisorb organic acids, including catechol and phenol,

which may result in lowered extraction recoveries.
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Another possible contributory factor is partitioning into organic matter. The Hutton soil had a

TOC of3.31 % (m/m) in comparison to the Swartland (1.9 % m/m) and Rensburg (1.7 % m/m)

soils (Appendix A) although the chemistry ofthe Hutton soil should have been dominated by the

iron- and aluminium-oxide content (He. Bester, personal communication).

As introduced above, soil pH is a further factor which determines phenol adsorption and, thus,

extraction efficacy. At pH values <6, phenol exists in its neutral form and can interact, albeit

weakly, with the clay mineral surfaces by one orboth principal mechanisms: direct co-ordination

to the exchangeable or exposed cations; and water bridging to co-ordinated water molecules

(Johnston, 1996). The pH (4.16, KCI) of the Swartland soil was the lowest of the three soils

used in this study and may have facilitated both increased adsorption of phenol and decreased

recovery.

All the above soil characteristics must be analyzed collectively to determine their impact on

extraction method efficacy. Individual analysis is insufficient since the overall effects are due

to complex interactions.

Phenol recoveryby Soxhlet extraction did not vary greatly with increased spikingconcentrations

(Figure 5.3) while sonication gave the most reproducible results for the different ageing periods

(% RSD = 6.53). Although the alkaline digestion method resulted in lower recoveries than the

Soxhlet and sonication extraction methods, the-phenol recovery changed little with the different

spiking solutions (Figure 5.8). Sonication extraction also gave more marginally reproducible

results than Soxhlet extraction. The advantages ofsonication extraction compared with Soxhlet

extraction are: it is less labour intensive; it requires less solvent; and it is quick and easy to

perform.

Phenol recovery from the Rensburg soil showed the highest reproducibility with ageing time (%

RSD = 7.96) and with the different spiking solutions (% RSD = 15.63). The Hutton soil gave

reproducible recoveries with changes in the phenol spiking concentration (% RSD = 5.68).

Because large differences in recoveries were obtained with the two different spiking solutions,

it was decided to use an aqueous spike in all subsequent experiments, with the soil moisture

contents raised to 16.67 % (v/m) prior to spiking.
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5.1.2 Atrazine extractions from soil

Four extraction methods, Sonication, Ethyl acetate Micro-Method, Agitation and Soxhlet (4.3.2),

were evaluated with respect to the three soil types. Soil samples (5 g) were slurried with

distilled water (1 m!) and spiked with atrazine to achieve fixed pesticide soil concentrations of

30,60 or 120 mg.kg- l
. These values were chosen arbitrarily and were intended to represent a

range ofconcentrations arising from a minor to a major spill. Each spike was added in} mlof

a methanol-water (25:75) tJlix and was allowed to equilibrate with the soil for a specific time
,. ~ :'

interval (lh, 48h, lweek or 3weeks).

All the extracts were diluted to a fixed volume (1 ml) with chloroform and the atrazine

concentrations quantified by gas chromatography (4.5.1).

Atrazine Extraction - Results and Discussion

(i) Effect ofspiking concentration on percentage atrazine recovery

Analysis of variance results indicated mathematically highly significant (P = 0.001) two-way

interactions: extraction x soil, extraction x atrazine concentration and soil x atrazine

concentration. The three-way interaction ofsoil x extraction x obtrusion concentration was also

mathematically highly significant (p = 0.001).

Figure 5.10 shows the percentage atrazine recoveries from the different soil types by the four

extraction methods. Atrazine extraction from the Rensburg and Swartland soils was best

achieved by Soxhlet extraction while its recovery from the Rensburg soil byagitation, sonication

and the ethyl acetate micro-method did not vary greatly (% RSD = 7.05). Atrazine recovery by

sonication from the Swartland soil was comparable to Soxhlet extraction (% RSD = 6.80). The

ethyl acetate micro-method was most effective for atrazine extraction from the Hutton soil.

Agitation, sonication and Soxhlet extraction of the Hutton soil were reproducible (% RSD =

0.62). The most reproducible method for all three soil types was the Soxhlet extraction (% RSD

= 13.65) followed by agitation extraction (% RSD = 14.02 %).
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Figure 5.10 Mean percentage atrazine recoveries from Swartland (sw),
Rensburg (rn) and Button (bu) soils by soxblet (sx), sonication (se),
agitation (ae) and the ethyl acetate micro-method (mm) extractions

In general, the percentage atrazine recovered increased with increased spiking concentration

with marked increases noted for agitation (% RSD = 26.3) and the ethyl acetate micro-method

(% RSD = 32.5) (Figure 5.11). These results were in contrast to those of Steinheimer et al

(1994) who reported a low correlation between the spiking concentration and the concentration

recovered by super-critical fluid extraction. The Soxhlet extraction gave the most reproducible

recoveries for the different spiking concentrations (% RSD = 14.7).
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Figure 5.11 Mean percentage recoveries by soxblet (sx), sonication (se),
agitation (ae) and the ethyl acetate micro-method (mm) extractions of
30, 60 and 120 mg.kg-l spiking concentrations

Increased percentage recoveries with increased spikingconcentration were recorded for all three

soils (Figure 5.12). These may have been due to direct cation exchange-facilitated atrazine

adsorption which would promote extraction of the molecule from soil (Devitt and Wiesner,

1998). Of the three soils, the lowest recoveries for the 60 and 120 mg.kg-1 spiking
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concentrations were recorded for the Swartland soil, whilst the Rensburg soil had the lowest

recovery at 30 mg.kg-1. 10hnston(1996) showed thatthe s-triazine herbicides are sorbed strongly

by clay minerals and at low pH atrazine becomes positively charged and is sorbed in its cationic

state. Therefore, at low pH values atrazine should be more strongly sorbed (McBride, 1994).

The lowatrazine recoveries (total mean = 53.21 %) from the Swartland soil may be attributed

to the soil pH (4.16, Appendix A). Mortland (1967) showed that smectitic clays are acidic in

nature and facilitate the protonation oforganic species so this would account for the low atrazine

recoveries (total mean = 54 %) from the Rensburg soil. In general, the trend of increased

recovery with increased spiking concentration was predictable. The most reproducible

recoveries (% RSD = 13.19) for the three spiking concentrations were recorded with the

Swartland soil.
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Figure 5.12 Mean percentage atrazine recoveries from Swartland (sw),
Rensburg (m) and Button (bu) soils of 30,60 and 120 mg.kg-l spiking
concentrations

(ii) Effect ofageing time on percentage atrazine recovery

Given the P-value of 0.001, it was determined that the mathematically significant two-way

interactions were extraction x soil, extraction x ageing and soil x ageing.

Soxhlet extraction was the most efficient method for atrazine extraction from all three soil types

(Figure 5.13). Since the ethyl acetate micro-method was not the most efficient method for

atrazine extraction from Hutton soil, this implied that when the molecule was left on the mineral

surface for> 48 h, it changed to a more stable, less easily extractable form. The Soxhlet
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extraction (% RSD = 4.79) produced the most reproducible results for the three soil types.

Sonication recorded the lowest recoveries for all three soil types (Figure 5.13).
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Figure 5.13 Mean percentage atrazine recoveries from Swartland (sw),
Rensburg (rn) and Button (bu) soils by soxblet (SI), sonication (se),
agitation and ethyl acetate micro-method (mm) extractions

For the Soxhlet, agitation and the ethyl acetate micro-method initial decreases in recoveries were

recorded with an ageing time of 48h (Figure 5.14). The ethyl acetate micro-method and

agitation extraction then recorded slight increases in recovery although the recoveries were

lower than those obtained for the 1h ageing period. As expected, sonication extraction recorded

constant decreased recoveries with ageing times > 48h. Soxhlet extraction was the most

reproducible method (% RSD = 8.49) for the 21-d ageing period, followed by agitation (% RSD

= 12.16). Sonication (%RSD = 36.44) and the ethyl acetate micro-method (% RSD = 26.15)

both gave a large spread of percentage recoveries with increased ageing time.
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Figure 5.14 Mean percentage atrazine recoveries by soxblet (sx),
sonication (se), agitation (ae) and ethyl acetate micro-method (mm)
extractions following lh, 48h, 7d and 21d ageing times
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Atrazine recoveries from the Swartland and Hutton soils decreased with increased ageing time

(Figure 5.15) although the latter soil exhibited a more gradual decline and higher reproducibility

(% RSD = 7.98). The decline in recoveries from the Swartland soil with ageing may be

attributed to the low soil pH (Appendix A) and the resultant atrazine adsorption in its cationic

state (Johnston, 1996) since atrazine is protonated significantly at pH values < 3.7 (Devitt and

Wiesner, 1998). Hutton soil is characterized by a layer ofFe and AI oxides which coats the clay

mineral surfaces. Acidic exchange cations such as Mi+ or AI3
+ are able to protonate atrazine

while organic matter can also adsorb atrazine by cation exchange (Devitt and Wiesner, 1998).

Huang, Grover and McKercher (1984) concluded that together with organic matter, non­

crystalline to poorly crystalline oxides of AI and Fe of soils also govern the adsorptivity of

atrazine. Recoveries from the Rensburg soil indicated an initial decrease in the first 48h

followed by increased recovery and stabilization as the ageing time approached 21d. This

phenomenon could have been due to the weak bonding of the protonated atrazine molecule to

the acidic smectitic clays present. Ingeneral, the percentage recoveries decreasedwith increased

ageing time, probably due to the formation ofsoil-bound residues, and these were accompanied

by lowered reproducibilities. This phenomenon has been recorded by other researchers (Huang

and Pignatello, 1990; Lopez-Avila et ai, 1995; and Llompart et ai, 1997b).
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Figure 5.15 Mean percentage atrazine recoveries from Swartland (sw),
Rensburg (m) and Button (bu) soils foUowing Ib, 48b, 7d and 21d
ageing times

The Soxhlet extraction method exhibited the least dependency on the soil type. Recoveries by

Soxhlet extraction showed good reproducibility with different spiking concentrations
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(% RSD = 14.7) as well as increased ageing periods (% RSD = 8.49). The Swartland soil

recorded the most reproducible recoveries (% RSD = 13.19) with different spiking

concentrations, while atrazine recoveries from the Hutton soil did not vary greatly (% RSD =

7.98) with increased ageing time.

Soxhlet extraction of atrazine from all three soils was problematic because water-soluble

components were co-extracted with the pesticide and so further extraction into ethyl acetate was

required. For this reason, together with the fact that the Soxhlet extraction requires large

volumes of solvent and is time-consuming and laborious, its advantages in terms of its

reproducibility were offset by its disadvantages.

Preference may then be given to sonication, the ethyl acetate micro-method or agitation

extraction. The ethyl acetate micro-method uses less organic solvent and has fewer steps in the

protocol than agitation extraction. Although the former is more time-consuming (16 hours

compared with 3 hours), the extraction is made in one flask and this reduces any potential

analytical errors. Sonication extraction is also quick and is not labour intensive. Both the ethyl

acetate micro-method and agitation extraction use water as one ofthe extraction solvents and

it was probably this factor which ensured better atrazine recoveries since Mills and Thurman

(1991) reported that the presence of 20 % water can improve the efficiency of herbicide

extraction from a variety of soil types. They postulated that the addition of water to the

extraction solvent increases the wetting ability of the other solvent and, thus, enhances atrazine

extraction.

5.1.3 BTEX extractions from soil

Agitation and Sonication extractions (4.3.3) were evaluated for their efficacies to extractBlEX

from three different soil types. These methods were chosen for their simplicity ofexecution and

minimal time requirements.

Soil (5 g) was slurried with distilled water (1 m!) and was spiked with 1 m/ of the prepared

spiking solution in methanol to give a final BlEX soil concentration of 5000 mg.kg- l . The
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spiking solution consisted of 25 mg.mt l of each of the following components dissolved in

methanol: benzene (B); toluene (T); ethylbenzene(E); and m-, 0-, andp- xylene (X). The spike

was allowed to equilibrate with the soil for a specific period of time (lh, 48h, 1week or 3

weeks).

BTEX Extraction - Results and Discussion

ANOVA analysis gave a P-value of0.001 which indicated mathematically significant two-way

interactions: ageing x extraction, ageing x soil and extraction x soil. The three-way interaction

ofextraction x soil x ageing was also mathematically highly significant (p = 0.001).

.(i) Effect ofageing time on percentage BTEX recovery

For the BTEX spike, extraction by sonication was more effective than agitation for all three soils

(Figure 5.16), probably due to the enhanced extraction ability afforded by the ultrasound waves.

Both methods used methanol as the solvent but the aqueous solution of methanol used in the

agitation protocol did not improve the extraction in comparison with sonication.
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Figure 5.16 Mean BTEX recoveries from SwartlaDd (sw), Reosburg (m)
and Button (hu) soils by sonication (se) and agitation (ae) extra~tions

Bothextractionmethods recordeddecreasedrecoveries with increased ageingtime (Figure 5.17).
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Figure 5.17 Mean percentage BTEX recoveries by sonication (se) and
agitation (ae) extractions foUowing lb, 48b, 7d and 2ld ageing times

Figure 5.18 shows the interactions between the soil types and ageing times. The BTEX

recoveries from all three soils decreased with increased ageing time as expected and were due

probably to the formation ofsoil-bound residues and, possibly, evaporation ofthe more volatile

components ofBTEX (benzene, toluene). Meney et a/ (1998) reported that the presence ofthe

aqueous phase may limit analyte access to binding sites in the soil matrix, resulting in enhanced

loss ofthe more volatile analytes..
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Figure 5.18 Mean percentage BTEX recoveries from Swartland (sw),
Rensburg (m) and Button (hu) soils foUowing lh, 48h, 7d and 2ld
ageing times

Soil BTEX recoveries were much lower than expected particularly for the Ih ageing period

(mean recovery =46.28 %). The low recoveries were due probably to the soil moisture content,

as clays absorb appreciable quantities of BTEX under moist conditions and from aqueous

solutions (Sawhney, 1996). Donaldson et a/ (1990) compared BTEX extractions from a dry

spiked soil and a wet spiked soil and recorded recoveries of43.2 and 21.8%, respectively. They
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speculated that when most soils are subjected to the extraction solvent, the soil particles tend to

flocculate causing entrapment and reduced extraction. Theyattributed reduced recoveries to the

development of an electrostatic hydration envelope surrounding the soil-adsorbed organic

compounds. Since distilled water was added to all three soils prior to BTEX spiking this could

have resulted in the low recoveries.

Both sonication and agitation extractions were not time-consuming and did not use large

volumes of organic solvents. Of the two, the former gave consistently higher recoveries and

better reproducibilities.

5.4.4 General discussion

Phenol is regarded as an organic acid and is thus anionic in character, i. e., phenol may be present

in soils in either its neutral or anionic forms. The molecule would be adsorbed effectively ifthe

pH were low (no disassociation) and the soil organic matter content high (Johnston, 1996). It

may be assumed that phenol would exist primarily in its neutral form in the soils used in this

study because the soil pH would not encourage anion formation.

Since the Swartland soil is dominated by kaolinitic clays phenol would adsorb onto the neutral

siloxane surfaces and the hydrophobic sites (Johnston, 1996). Also, Mc Bride (1994) stated that

in its neutral form, phenol may be retained by physical adsorption onto soil organic matter. In

addition, phenol may be retained bydirect coordination to the exchangeable cations and bridging

to the coordinated water molecules.

In the Rensburg soil, which is smectite rich (Appendix A), phenol would bind to the internal

surfaces ofthe clay (Johnston, 1996) thus rendering the molecule inaccessible to the extraction

solvent. The molecule would become more inaccessible to the extraction solvent if the clay

were desiccated by virtue ofthe wetting and drying of the soil and the resultant shrinking and

swelling ofthe clays.
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The chemistry ofthe Hutton soil is dominated by its Fe and AI oxide content, which may retain

phenol by ligand exchange (Johnston, 1996). There is also a considerable amount (40 - 60 %)

ofvermiculite and smectite (40 -60 %) (Appendix A) and sorption ofphenol to the interlayer of

these minerals may be an added adsorption mechanism.

The decrease in percentage phenol recovery with increased spiking concentration may be

understood by the concept ofassisted adsorption at the higher spiking concentrations. Once the

first few molecules have overcome the initial high energy barrier (heat ofadsorption) then more

molecules may be adsorbed easily in this manner. The physical interaction of phenol with the

soil organic matter and the clay mineral surfaces appears to dominate when phenol is present in

its neutral form. Since physical adsorption is generally higher at higher concentrations of the

adsorbate and many more layers ofthe molecule may be present (Mc Bride, 1994), it is obvious

that at higher phenol concentrations, there would be decreased extraction recoveries. This is

borne out by the results obtained with the different phenol spiking concentrations. In the Hutton

soil, however, physical adsorption should not predominate due to the presence ofthe vermiculite

and smectite clays, with the former having a greater affinity for water molecules than for the

phenol molecule. Confirmation ofthis hypothesis was obtained from the results which showed

that the percentage phenol recoveries obtained from the Hutton soil did not vary greatly with a

change in the spiking concentration.

Phenol recovery decreased with increased ageing time for all three soils. A sharp decrease in

percentage phenol recovery was noted for the Swartland soil, probably because phenol

adsorption occurred at the hydrophobic sites in the kaolinite clay. More gradual decreases were

recorded for the Rensburg and Hutton soils. Phenol adsorption into the interlayer surfaces ofthe

smectitic clays in the former and into the interlayer surfaces of both the vermiculite and.

smectitic clays in the latter is thought to be responsible for this trend. Hydrogen bonding, which

is weak, may have also occurred in these soils. These adsorption mechanisms are not

instantaneous and reach equilibrium over prolonged periods of time, resulting in lowered

recoveries with increased ageing times.
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The presence/absence of water appeared to play an ambiguous role in detennining the

percentage phenol recoveries. When a dry-spike method was attempted, phenol recoveries were

<5 %, as phenol was strongly sorbed to the soils. In the presence ofwater, it is anticipated that

there will be competition for the adsorption sites between phenol and water, with preference

being given to the latter. Phenol recoveries from a wet-spiked soil did improve and all of the

discussion above is based on this method. However, phenol recoveries were always lower from

the aqueous solution spiked soil than from soil spiked with acetone. It appeared that the larger

volume ofwater facilitated phenol partitioning into the soil organic matter, where the molecule

became bound strongly and was, thus, more resistant to extraction, thereby resulting in lowered

recovenes.

The combination ofheat and large extraction solventvolumes in the Soxhlet extraction appeared

to provide sufficient energy to overcome the tightly bound molecule (by hydrophobic bonding)

in the Swartland soil and to access the internal surfaces ofthe clays in the Rensburg and Hutton

soils. Although the conditions used for alkaline digestion would ensure that phenol was present

in its more mobile anionic form, the harsh pH value (> 12) could have been responsible for the

dissolution ofthe clay mineral surfaces, releasing cations which would polymerize phenol and

lead eventuallyto lowered percentage phenol recoveries. Although sonicationwas less effective

than the Soxhlet extraction, it furnished more reproducible results, making it the extraction

method of choice. A possible reason for this phenomenon could simply be that higher

temperatures were utilized for the Soxhlet extraction which would result, ultimately, in the non­

reproducible, random breakdown ofthe soil amorphous fraction thus leading to widely varying

phenol recoveries.

Atrazine is weakly polar, is regarded as an organic base and is cationic in nature under pH

conditions suitable for disassociation (Johnston, 1996). The molecule would sorb most likely

onto the isomorphic substitution sites in its cationic form, while the neutral form ofthe molecule

would sorb onto the hydrophobic sites (Johnston, 1996).

Atrazine sorption in the Swartland soil would occur on the surface ofthe kaolinitic clays along

with hydrogen bonding (Ne! and Reinhardt, 1984), while sorption in the Rensburg soil would
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occur in the interlayer of the smectitic clays (Ne! and Reinhardt, 1984). Adsorption in the

Hutton soil would occur by the interaction ofthe positive charge on the AI-OH ofthe Fe and AI

hydroxy component and the free electron on the nitrogen in the amino groups or in the ring

structure (Nel and Reinhardt, 1984). In addition, there is the possibility ofadsorption within the

interlayer ofthe vermiculite clays in the Hutton soil, as was discovered by Schulze (1989). It

is fair to assume that atrazine would exist in both its neutral and cationic forms in all three soils

(pH range = 4.16 - 6.18) and, therefore, bothhydrogen bonding and Van der Waals forces would

contribute to the molecules adsorption. Adsorption via cation exchang~ would predominate at

low pH since protonation ofthe neutral atrazine molecules would occur (Sposito, Martin-Neto

and Young, 1996). Moerau-Kervevan and Mouvet (1998) found that the amount of non­

extractable residues of atrazine in clays followed the order: kaolinite<smectite<humic acids.

The results obtained in this study, however, were in contrast to those obtained by Moerau­

Kervevan and Mouvet (1998) and showed that there was no significant difference in recoveries

between the Swartland (kaolinite rich) and the Rensburg (smectite rich) soils when the spiking

concentration was changed, although, with ageing time, better recoveries were obtained from

the Rensburg soil, indicating that the amount ofnon-extractable residues was lower in this soil

than in the Swartland soil.

Better percentage atrazine recoveries were obtained with increased spiking concentrations. If,

as predicted, cation exchange was the primary mode of adsorption, then the number of

adsorption sites would be fixed and the effects ofadsorption would become less noticeable with

increased spiking concentration (Mc Bride, 1994). Atrazine recoveries from the Swartland soil

were reproducible under different spiking concentrations, probably because the degree of

hydrophobic bonding was not as widespread as initially thought. Only fast modes ofadsorption

would be accounted for in this facet ofthe experiment, as the samples were aged for 1hour prior

to extraction. The effects of ageing on percentage atrazine recovery are complicated and

difficult to ascertain with confidence, probably because the modes of interaction are many and

equilibrium times would now come into play. However, cation exchange in the Rensburg soil

would account for the lack ofappreciable change with ageing time. This is in accordance with

the findings ofMoerau-Kervevan and Mouvet (1998) who concluded that sorption in smectitic
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clays is initially rapid but then continues at slow rates for extended periods, due possibly to

assisted adsorption. Recoveries from the Hutton soil were reproducible over the 21 day ageing

period, thereby making ligand exchange a less valid sorption mechanism than cation exchange.

Moerau-Kervevan and Mouvet, (1998) stated that hydrogen bonding or Van der Waals forces,

which reach equilibrium very slowly, may be responsible for the pronounced decrease in

percentage atrazine recoveries with ageing time, as was found for the Swartland soil in this

study. Atrazine recoveries from the Swartland soil were reproducible under different spiking

concentrations, probably because the degree ofhydrophobic bonding was not as widespread as

initially thought.

Reproducible results were once again obtained from Soxhlet extractionfor the different soils and

the reasoning behind the better phenol recoveries (heat, large solvent volumes) obtained with

this method would also be a factor here. Low recoveries were obtained from sonication

extraction, probably due to solvent polarity effects. Both the Soxhlet and agitation extraction

methods used methanol as the extracting solvent and high percentage recoveries were obtained

from both these methods. The ethyl acetate micro-method appeared to be more effective in

extractingatrazine from the Huttonthan from the Rensburg or Swartland soils, probablybecause

this solvent combination was more compatible with the Hutton soil (Atalay and Hwang, 1996)

in that the solvent had a greater affInity for the atrazine molecule than did the soil. Another

possibility for this phenomenon could be that the combination ofethyl acetate and waterand the

Hutton soil ensured that the extraction pH was more conducive for atrazine extraction.

Possible ways ofimproving extraction efficiencies would include adding excess cations into the

extractionsolutionto facilitate cationexchange and ensure that more atrazine wouldbe available

in solution. Adjusting the pH of the extraction medium to ensure that atrazine was present in

its neutral form would also facilitate better percentage recoveries from soil. .Different solvent

combinations (to ensure a wide range ofpolarities) could also be attempted in order to find an

optimum extraction solution, which would not degrade the mineral structure and which would

also minimize cation exchange and, thus, adsorption onto the soil particles.
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The BTEX compounds are categorized as non polar organic compounds. The active adsorption

sites on soil particles would be the neutral siloxane surfaces and the hydrophobic sites (Johnston,

1996). Because of the inherently hydrophilic nature of the clay mineral surfaces, sorption of

these molecules onto the soil organic matter and the humic substance coatings on the clay

mineral fraction is thought to play a major role (Mc Bride, 1994). The Soxhlet extraction was .

not attempted for the extraction ofthe BTEX molecules because ofthe high temperatures that

would be required and, consequently, the risk ofBTEX volatilization into the atmosphere.

Soil BTEX recoveries were lower for agitationthan sonication extractionand were probably due

to the presence of water in the extraction solvent. The presence of water molecules, while

ensuring that BTEX adsorption is minimized due to competition for the adsorption sites

(Sawhney, 1996), also facilitates BTEX volatilization and eventual loss, thereby resulting in

lower extraction recoveries. Decreased recoveries with increased ageing time could result also

from the longer equilibration times required for BTEX sorption into soil particles (Mc Bride,

1994).

It is also possible that the BTEX molecules would bind onto the kaolinite clay ofthe Swartland

soil by hydrophobic bondingandassisted adsorptionwould come into play with increasedageing

time. BTEX recoveries from the Rensburg soil were consistently lowerthan those obtained from

the Swartland and Hutton soils except for the Ih ageing period, where the BTEXrecoveries were

higher than those obtained from the Hutton soil. This result implies that BTEX adsorption onto

the Rensburg soil is not instantaneous and requires longer equilibrium times, thus eliminating

the possibilityofbinding onto the smectite clay surfaces ofthe Rensburg soil. Ifadsorption onto

the claymineral surfaces was a dominantpathway, then similartrends would have been obtained

for both the Hutton and Rensburg soils. Therefore, the most likely scenario would be the

incorporation ofthese molecules into the soil organic matter which requires longer equilibrium

times, resulting in the adsorption becoming increasingly noticeable with increased ageing.

Although the Hutton soil has a high organic matter content (3.31 %, Appendix A) by South

African standards, its chemistry would be dominated by the Fe and Al oxide content and single

electron transfer reactions (SET) with the Fe3+ ions would be possible (Johnston, 1996). Single

electron transfer reactions predominate under dry conditions by coordination of the molecule
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with the transition metal cation and taper offas the soil water content is increased when the clay

hydrophilic sites have a greater affinity for water molecules.

It is possible that increasingthe pH ofthe extraction solvent could facilitate BTEX removal from

soil organic matter and improve extraction efficacies. The incorporation of water into the

extraction solvent would also result in the clay mineral surfaces becoming hydrated and, thus,

hydrophilic in nature, although care would have to be taken to ensure that the water content did

not facilitate sorption into the soil organic matter.

To summarize, either the Soxhlet extraction or sonication method could be selected for phenol

recovery from soil, the former because the reproducibility is independent ofthe soil type and

spiking concentrations s 5 000 mg.kg-! and the latter because it is reproducible for ageing

periods s 21 days and varied little with the different soil types. Soxhlet extraction was also the

most suitable for atrazine extractionbecause it effected reproducible recoveries for the different

soil types and different spiking concentrations s 120 mg.kg-! as well as ageing periods up to 21

days. ForBTEX, sonication extraction was deemed to be more suitable than agitation extraction

as it gave more reproducible results with the different soils and ageing times s 21 days.

The Hutton soil provided the most reproducible phenol recoveries for spiking concentrations

s 5 000 mg.kg-!, while recoveries from the Rensburg soil did not vary greatly with ageing time

s 21 days and the concentration ofthe spiking solution. Atrazine recovery from the Swartland

soil was very reproducible for the three spiking concentrations examined while for the Hutton

soil good reproducibilities were recorded for ageing periods s 21 days. BTEX recovery from

the Hutton soil was also very reproducible for the same ageing periods.

Although the extraction ofpollutants from soil is done on a regular basis, little thought is given

to the actual mechanisms governing the recoveries of these molecules. What seems to be a

straightforward tool depends upon a combination ofmany interlinking factors. While there is

limited time during the assessment of a spill site to contemplate the complex interactions that

occur once a molecule enters a soil, it may be advantageous to analyze critically the results

obtained and acknowledge their limitations. An initial extractionmethod would give one an idea
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of the identity of the pollutants. Thereafter, to maximize the recoveries of the different

pollutants it may be necessary to optimize an extraction protocol for each individual molecule.

This action would, ofcourse, be governed by manpower and financial constraints.

From the results obtained, it is clear that many factors determine the efficacy ofa particular soil

extraction method. In addition to soil characteristics, the molecule and its manner of infusion

determine its recovery. Because there is uncertainty regarding the true extent ofpollution, it is

imperative that once an extraction method has been selected its efficacy and reproducibility must

be examined prior to the determination of the pollutant concentration. While a rigorous

examination ofall the contributing factors is not always possible, one needs to, at the very least,

be aware of all the factors which could affect the outcome of a given extraction method.

Much research has been done by many organizations around the world to determine the

efficacies of different extraction methods but their recommendations may only serve as

guidelines because the results obtained are specific for a particular soil type/matrix and the exact

conditions under which the extraction is made. There are, however, several extraction methods,

such as Soxhlet extraction and sonication, that have been tried and tested over many years and

these protocols may necessitate only minor modifications to suit specific requirements.

The relevance of this work is supported by the following:

The field applicability of this research .was shown when a sludge sample obtained from the

sludge dam of a company that had attempted landfarming their phenol-contaminated effluent

was analyzed. Due to time constraints the alkaline-digestion and sonication extraction methods

were selected for the extraction. Although alkaline digestion gave poor recoveries in the spiked

samples, the method was selected because phenol recovery was not susceptible to changes in the

spiking solution (Figure 5.8).

Five sludge samples (air-dried, - 5.00 g) were extracted using both extraction methods. The

recoveries were adjusted to reflect the exact mass ofsludge sample extracted. Recoveries from

alkaline digestion were in the range 476 - 613 mg.kg- l and the % RSD was 9.69 % which is
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acceptable as it falls below the 10 % required for good reproducibility. Sonication furnished on

average < 80 % ofthe recoveries obtained following alkaline digestion.

This result again emphasizes the fact that each extraction method has to be asessed for the

specific sample being extracted, taking into consideration the sample history. Solvent effects

and the pH ofthe extraction solution could have also played a role in determining the recoveries

obtained from each sample.

An interesting case study was used to determine the applicability of the atrazine extraction

methods to "real" samples. A soil sample was sent to our laboratories by a company located in

the greater Durban (Kwa Zulu Natal, South Africa) area, to determine if the herbicide atrazine

had been applied recently to the soil. The request for the analysis was accompanied by a report

outlining an intriguing history.

The company in question produces cabbage seedlings on contract to the local farming

community. One oftheir clients, who farms in the Muden district, placed an order for R 60 000

worth ofcabbage seedlings from the company. The company realized that it would be unable

to supply the full order and obtained the outstanding seedlings from another seedling supplier.

Upon planting, the seedlings initially grew well, but then growth ceased in some fields. The

farmer immediately suspected that some ofthe seedlings were ofinferior quality, being unaware

of the fact that they originated from two suppliers, and withheld payment.

The company investigated the problem and concluded that the herbicide atrazine may have been

applied to the fields in question, as atrazine is phytotoxic to cabbage seedlings. The farmer

denied all knowledge of atrazine application and the soil was brought to the university for

analysis.

Upon consultation, it was concluded that if atrazine had in fact been applied to the fields, it

would not have been done recently and so the analysis was extended to include atrazine

degradation products. An aliquot ofthe sample was extracted according to the method ofMills

and Thurman (1992) which used a combination ofmethanol and water at elevated temperatures
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(75°C). Qualitative analysis by HPLC using DV detection revealed no traces of atrazine,

although the presence of the phytotoxic atrazine degradation product, de-ethyl atrazine, was

confirmed. Confirmation ofthe presence ofde-ethyl atrazine in the soil was obtained when the

extract was spiked with a pure solution of the compound.

As this preliminary analysis was simply qualitative, the company was then advised to take the

sample to an accredited laboratory for further re-analysis if it wished to pursue this matter via

legal channels.

The study re-emphasized a number ofpoints which were made earlier, viz.:

(i) Weathering ofthe sample must be taken into account;

(ii) Ifthere are no traces ofthe analyte in question, one cannot assume mineralization

ofthe compound, and the isolation ofany known metabolic intermediates must

be attempted;

(iii) The extraction method must be chosen to suit the specific sample and best

provide the information that is required from the analysis;

Work done in collaboration with Atagana2 (personal communication) on creosote-eontaminated

soil was indicative ofthe conditions experienced by remediation specialists. Soil samples were

obtained from a wood-treatment plant in the Kwa Zulu Natal (South Africa) midlands to

determine the extent of creosote contamination prior to pilot scale landfarming. The soil was

a Mispah type soil (pH ~ 5) with a clay content of 18.75 % (m/m). An anticipated extended

treatment time scale and the fact that there were nine projected treatments for the bioremediation

were the two main factors considered in selecting sonication extraction for the extraction ofthe

creosote components from the soil. The method was also selected because it had shown good

reproducibility in the spiking experiments done as part ofthis project. Sonication extraction is

also not time or labour intensive and does not require specialized skills. In addition, any error

introduced in the preliminary analyses would be negated as the same method would be used

throughout the study.

la Atagana, University ofNatal, Pietermaritzburg, South Africa.
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The initial soil contamination level was determined to be 258 257 mg.kg- l soil. More than 400

compounds are present in creosote, therefore infra-red spectroscopy was selected for the

determination of the total creosote content. The concentration of twelve marker compounds,

viz., 0-, m-, p-cresol, naphthalene,. anthracene, phenanthrene, pyrrole, fluorene, pyrene,

fluoroanthrene, chrysene and benzo(a)pyrene was further determined by GCIFID analyses.

The final results indicated a percentage reduction in the overall creosote content ofbetween 16.7

and 88.7 % for the nine treatments. While the 16.7 % reduction could be attributed to normal

soil-analyte interactions affecting extraction method efficacy, there can be no doubting that the

88.7 % reduction in the creosote contamination levels was due to successful bioremediation of

the soil.

The above case study illustrated that ifthe analyte concentration levels are reduced substantially

in the course of the remediation treatment, then the contribution by some factors e.g. soil

interaction may be considered negligible in the overall scheme of the study. However, if the

contamination levels were much lower than those in this study, then some doubt could be cast

on results obtained by any ofthe extraction methods. In the latter case, there would be a greater

need to confirm bioremediation by monitoring for the analyte metabolites. These additional

analyses was omitted in this particular case because ofthe large number ofcomponents present

in creosote.
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5.2 Preliminary analyses of atrazine degradation in a Hutton soil

5.2.1 Experimental protocol

The experimental variables examined were sterilized (Gamma irradiation, Gamwave Durban),

fertilized/non-fertilized and non-sterilized, fertilized/non-fertilized Hutton soil (Appendix A).

Twenty replicates were made for each variable.

The soil was packed into black plastic bottles (21) as follows. Distilled water ( 250 m!) was

added to the soil (1 kg, air-dried and sieved to pass through a 2 mm sieve) in each bottle prior

to equilibration at ambient temperature in the dark for one week. For the fertilizer treatments,

basic mineral salts solution (100 m!) (4.1.1) was added to each bottle, together with distilled

water (100 m!) prior to equilibration so that the maximum water holding capacity was achieved.

The bottles were maintained at ambient temperature in the dark to minimize any photocatalytic

degradation. For each bottle, powdered atrazine (800 wettable powder, Sanachem Durban) (300

mg) was added. The upper layer ofsoil (2 cm depth) was well tilled to ensure a homogeneous

distribution of the pesticide. A piece of gauze, cut to fit the diameter of the bottle, was then

placed on the soil surface to facilitate an even distribution of water. For the sterilized soil,

sterilized non-absorbent cotton wool was added also. Each bottle was watered with 50 ml of

sterilized (121°C (205 kPa), 15 minutes) distilled water every week for the first four weeks, after

which the volume was reduced to 25 m!. After 12 weeks, the fertilized soil replicates were re­

supplemented with sterile mineral salts solution (50 ml) (4.1.1), while the non-fertilized soil

replicates received 50 ml ofsterile distilled water. The former were then re-supplemented every

four weeks. Sampling for soil pH (4.5.3), microbial activity (4.5.4), residual atrazine

concentration (4.5.2, gradient elution) and soil moisture content (4.5.5) was made after the first

two weeks and then at monthly intervals. Each data point in Figures 5.19 - 5.23 is the mean of

four replicates. The ambient minimum and maximum weekly temperatures were recorded.
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Extraction and Analyses ofAtrazine and Atrazine Degradation Products

Extraction of atrazine and its degradation products was accomplished with a combination of

methanol and water as stipulated by Mills and Thurman (1992). Distilled water (10 ml) was

added to a sample of air-dried soil (20 g) and the slurry was allowed to equilibrate for 1h by

shaking on a platform shaker (Thermolyne). Methanol (15 mT) was added and the slurry was

tpixed with a vortex shaker. The slurry was then heated to 75°C for 30 minutes with periodic

mixing. The sample was allowed to cool and was then centrifuged (7840 x g). The supernatant

was decanted into a round-bottom flask and the process was repeated. The methanol was

removed by rotary evaporation (Heidolph) from the combined extracts and the aqueous portion

was passed through a pre-conditioned C-18 Sep-pak cartridge followed by ethyl acetate (4 ml).

Pre-conditioning of the sep-pak cartridge was made by passing, sequentially, methanol (2 mT),

ethyl acetate (2 mT), methanol (2 mT) and distilled water (2 mT) through the cartridge. Finally,

the solvent was removed under a low flow ofnitrogen until the extract was dry.

Analysis of the samples was made by reversed phase HPLC (4.5.2).

5.2.2 Results and discussion

The Hutton soil used in this study was last worked approximately 10 years prior to collection and

had not been treated with any pesticides in the interim. Therefore, it was tentatively considered

that it had returned to its virgin status (D. Leeagm,3 personal communication).

It is .well documented that sterilization techniques, such as the application of dry/moist heat

(including autoclaving), cobalt<> irradiation (gamma irradiation), propylene oxide or mercuric

chloride, can influence significantly the physical and chemical properties of soil (Wolf, Dao,

Scott and Lavy, 1989). In general, autoclaving and gamma irradiation have proven to be

effective for sterilization with the latter thought to alter the chemical properties of the soil to a

3n.Leeagm, Applegate Farm, Merrivale, Kwa Zulu Natal, South Africa.
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lesser extent than the former (McLaren, 1969). Autoclaving soil may result in the production

oftoxic substances and a reduction in pH through the release oforganic acids (Sheremata, Yong

and Guiot, 1997). It is believed that gamma irradiation increases the available manganese

concentration and the pH with concomitant decreases in the concentrations of aluminium and

iron due to hydroxide precipitations (Sims, 1986). Sodium azide (NaN3), although used

commonly as a general enzyme inhibitor (Skipper and Westermann, 1973), could not be used

as a sterilizing agent because atrazine is degraded/transformed in its presence (Ro, Chung and

Robinson, 1995). Ro et al (1995) found that two products, 3-ethylamino,5-isopropylamino-s­

triazyl azide and 3-ethylamino,5-isopropylamino..:s-triazinone, arise from the chemical

interactions between NaN3 and atrazine.

Nel and Reinhardt (1984) stated that the factors which most affect atrazine degradation in soils

are the organic matter content, the moisture content, the ambient temperature and the pR In soil

orwater, the rate ofatrazine degradation is affected by extremes ofpH, dissolved organic matter,

sorption to (soil) colloids and the presence of photosensitizing compounds such as nitrate and

humic acids (Capriel, Haisch and Khan, 1985).

Microbial activity determination by fluorescein production (Mandelbaum et ai, 1988) is

considered to be somewhat non-specific as it is reflected by the hydrolytic cleavage of

fluorescein diacetate and is indicative ofthe overall activity ofa number ofenzymes (proteases,

lipases and esterases) rather than a specific class of enzymes (Schnurer and Rosswall, 1982).

Enzyme activity may be influenced by subtle pH changes in the sample since abiotic hydrolysis

may also occur.

Figure 5.19 shows the changes in microbial activity with time for the four treatments. During

weeks 2 to 18, the differences between the sterilized and non-sterilized soils generally were

negligible. The initial comparable activities may be explained by a number of factors e.g.,

availability ofthe atrazine may have been limited to the microorganisms at the soil pH (4 - 5.5)

due to strong sorption (Gao, Maguhn, Spitzhauer and Kettrup, 1998) or the elevated atrazine

concentration (+/- 300 mg.kg-1
) may have been microbicidallmicrobistatic to the microorganisms
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in the non-sterilized soil and this, in turn, could have lead to the formation ofcritical artifacts

(C.F. Reinhardt,4 personal communication). Gan, Becker, Koskinen and Buhler (1996) found

that pesticides in elevated concentrations behaved very differently to pesticides applied at

normal field dosages. One must consider, also, that Fomsgaard (1995), in his reviewofpesticide

degradation studies, concluded that no direct correlationbetween degradation rate and microbial

activity could be shown. He also cautioned that sterilization cannot ensure that degradation is

not carried out by the microbial extracellular enzymes which were produced before sterilization.
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Figure 5.19 Changes with microbial activity with time of
sampling of atrazine-contaminated soil subjected to the
foUowing conditions: sterilized/fertilized (e); sterilized/non­
fertilized (~; non-sterilized/fertilized (?);and non­
sterilized/non-fertilized (.A)

Between weeks 18 and 22 increases in microbial activity were recorded, particularly in the non­

sterilized soil. Surprisingly, nutrient addition appeared to impact negatively on microbial

activity as evidenced by the sterilized/fertilized and the non-sterilized/fertilized soils compared

to their non-fertilized counterparts.

4
Professor C.F. Reinhard, Department ofPlant Production and Soil Science, University of
Pretoria, South Africa.
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From Figure 5.20 it can be seen that the moisture content of the sterilized soil increased from

week 10 while that of the non-sterilized/fertilized soil decreased from week 14. The moisture

content of the non-sterilized/non-fertilized soil decreased throughout most of the study.

This phenomenon could have been due to the altered water-holding capacity of the sterilized

soil. In the sterilized soil, nutrient addition appeared to increase the water-holding capacity,

while in the non-sterilized soil the reverse appeared to be true between weeks 18 and 34. The

nutrient additions appeared to be less significant towards the latter part ofthe study (week 34)

when the soil moisture contents ofthe fertilized and non-fertilized treatments were comparable.

Atrazine adsorption increases with a decrease in the soil moisture content owing to the resultant

increase in the pesticide concentration and the fact that the chemical can compete more

effectively with fewer water molecules for the sorption positions of the soil (Dao and Lavy,

1978).

Figure 5.21 shows the recorded differences (+/- 0.2 - 0.4 pH units) in the pH values of the

sterilized and the non-sterilized soil.
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The lowered pH may be attributed to irradiation by gamma rays (Sims, 1986). Nutrient

supplementation ofthe sterilized soil produced no measurable effect on the pH between weeks

2 and 10 after which the pH ofthe non-fertilized soil remained higher than that ofthe fertilized

soil. This trend was reversed in week 34. The non-sterilized soil recorded higher pH values in

the absence ofnutrient fertilization.

Figure 5.22 shows the average minimum and maximum ambient temperatures at weekly

intervals. Throughout the study, the temperature did not fall below IOoe, did not exceed 28°e

and did not appear to be the primary determinant ofmicrobial activity (Figure 5.19).
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Figure 5.23 shows the changes in the residual atrazine concentrations with time.
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The initial decreases may be attributed to the rapid adsorption ofatrazine onto the soil followed

by the desorption of the molecule as the water content and, thus, the competition for sorption

sites increased. As the moisture content decreased in the non-sterilized soil, atrazine adsorption

increased once again. The increased moisture content of the sterilized soil may have been
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responsible also for the apparent increase in the residual atrazine concentration through

increased mobility. Analyses by reversed phase HPLC indicated that hydroxyatrazine was the

only degradation intermediate formed. There was no evidence of the de-alkylated products

which are associated commonly with microbial catabolism. Qiao, Ma and Hummel (1996)

found that the dominant pathway for atrazine degradation in acidic soils was chemical

degradation with very little or no contribution from microbial catabolism. It was shown that

hydroxyatrazine formation predominated in chemical degradation In a similar study by

Korpraditskul, Katayama and Kuwatsuka (1993) of sterilized and non-sterilized soil, the

contribution of chemical degradation to atrazine mineralization was found to be > 80 % in the

pH of 4 to 8. They suggested that soil conditions were the major determinants of atrazine

degradation. Although many researchers have cited the work of Armstrong et al (1967) to

support a chemical mechanism for soil hydroxyatrazine formation, Mandelbaum et al (1993)

concluded that microbial degradation of atrazine to hydroxyatrazine may be significant in

groundwater and soil. They stated that the mathematical correlation between a high organic

matter content and hydroxyatrazine formation in non-sterile soils could have resulted from

increased microbial enzymatic activity associated with the high organic matter content. In the

present study, higher microbial activities were recorded in the non-sterile soil but microbial

degradation ofatrazine to hydroxyatrazine was not considered to be operative because ofthe soil

pH (4.3 - 5.2).

The adsorption ofatrazine onto soil components is critical to its transformation. Huang, Grover

and McKercher (1984) found that besides governing the adSorption ofatrazine, both the organic

matter content and the non-crystalline to poorly-crystalline oxides of aluminium and iron

enhanced markedly the dynamics ofthe process. The Hutton soil used in this study had an iron

content of 0.75 % (m/m), a manganese content of0.04 % (m/m) and an aluminium content of

0.01% (m/m) (as determined by the ammonium oxalate extractable Fe method). Armstrong,

Chesters and Harris (1967) postulated that nucleophilic compounds and/or Fe and Al dissolved

from the soil were capable of catalyzing the hydrolysis of atrazine because the nucleophilic

compounds behaved in a similar manner to alkalies while the metals were capable of forming

complexes which behave as Lewis-type acids. The adsorption of atrazine through hydrogen
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bondingbetween its amino groups and the acidic protons on the soil colloidal surfaces could also

catalyse hydrolysis since the ring becomes de-activated and the C-CI bond becomes more

susceptible to nucleophilic attack by water, thereby forming the hydroxy-derivative. Singh et

af (1998) speculated that Feo may promote dechlorination and hydroxylation of atrazine by

sorption on Fe and AI sesquioxides. They used Feo successfully to remove atrazine and enhance

its degradation in contaminated soil and water (2.3.4).

The reduced atrazine degradation in the sterilized soil may be attributed to the decreased

concentrations ofAI and Fe due to their precipitation as hydroxides as a direct consequence of

gamma irradiation (Sims, 1986).

The residual atrazine concentrations remained higher in the non-fertilized soil. This

phenomenon may be attributed to the increased competition for sorption sites between the

atrazine molecules and the phosphorus component ofthe basic mineral salts solution. Smit, Nel

and Folscher (1981) found that there was a decrease in atrazine adsorption with an increase in

the concentration of potassium hydrogen phosphate applied to soil. They concluded that the

negatively-charged phosphorus ion competes with atrazine for the available sorption positions

on the amorphous (Fe.AI.OH) component of sesquioxide soils at low pH values. In its cationic

form, atrazine may bind with phosphate and sulphate components ofthe soil, or added nutrients,

thereby increasing its mobility and decreasing its adsorption to the soil.

The results of this study showed that the soil pH and moisture content both played important

roles in atrazine degradation in Hutton soil. Chemical degradation, catalyzed by the presence

of Fe and AI oxides in the soil and soil organic matter, was considered to be the dominant

pathway. The physical changes induced in the soil due to gamma irradiation were probably

responsible for the decreased degradation in the sterilized soil while the application of basic

mineral salts solution served to reduce adsorption and, therefore, hydroxylation ofatrazine by

the soil components. Microbial activity was not considered to be a major mechanism ofatrazine

degradation as the soil pH did not favour bacterial catabolism. For this reason it has been

120



suggested (B.D. Schroeder,5 personal communication) that soil sluny bioreactors should be

operated at slightly elevated pH values (6.8 -7.0).

5E. D. Schroeder, University ofCalifornia, Davis
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5.3 Atrazine degradation in a soil slurry reactor

Atrazine degradation in soil slurries was determined under carbon limitation, nitrogen limitation,

non-carbon/nitrogen limitation and carbon and nitrogen limitation where atrazine was the sole

source of carbon and nitrogen (Table 5.1).

Table 5.1 Carbon and nitrogen additions made to atrazine-supplemented (300 mg.mtl, m/m soil) soil slurries

to effect elemental limitations

Nutrient limitation Supplementation Medium/solution used (4.1.2)

sucrose + tri- ~N03

Na-citrate

non-C/N ,/ ,/ "ideal" (en)

C X ,/ carbon-free (elm)

N ,/ X nitrogen-free (nlm)

C/N X X basic mineral salts solution

(bms)

5.3.1 Experimental protocol

Soil Spiking

Atrazine (technical grade, 0.24 g) was added to the Hutton soil (air-dried, 800 g), which had

been raised to a 9.09 % (v/m) water content by the addition ofdistilled water (80 m!), and was

mixed thoroughly to ensure homogenous distribution ofthe pesticide and w~ter throughout the

soil. The soil was maintained in the dark at 4°C for 20 days to facilitate analyte-soil interactions.

Subsequently, soil slurries were prepared as described in 4.4.
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Inocula

For the inoculated bioreactors, the inocula (4.2) contained the following (CFUs.mt l
):

cn (7.1 x 1012); elm (2.06 x 107
); nlm (1.43 x 109

); and bms (1.38 x 108
).

5.3.2 Results and discussion

Non-inoculated Bioreactors

For all four bioreactors, hydroxyatrazine was detected in every slurry sample which indicated

that atrazine transfonnation to hydroxyatrazine was probably mediated chemically/abiotically

since the soil was aged at 4°C to minimize any microbial degradation.

The pH values changed little in the carbon- and nitrogen-limited bioreactors until day 16, after

which decreases were recorded (Figure 5.24). For the fonner, the change was 0.8 units, while

for the latter the change was 0.2 units. The pH values for the other two bioreactors increased

during the first 7 days, after which a decrease in pH (0.7 pH units) was noted for the non-C/N­

limited bioreactor, while the C/N-limited slurry remained unchanged.
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Figure 5.24 Changes in pH with time of slurries of atrazine­
contaminated soil subjected to carbon- limited (11), nitrogen­
limited (~'), carbon/nitrogen-limited (A) and non­
carbon/nitrogen-limited (e) conditions in bioreactor batch
operation
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The changes in microbial activity with time (as determined by the rate offluorescein production)

are shown in Figure 5.25. As expected, microbial activity was greatest in the non-CIN-limited

bioreactor, probably due to the additional sources ofboth carbon (sucrose, 1 g.t
l
; tri-Na-citrate,

1 g.tl ) and nitrogen CNHJN03, 0.5 g.tl
). For the three other bioreactors, the highest fluctuations

were recorded in the N-limited slurry. For this bioreactor, the fluorescein production rate fell

between days 16 and 23 to ~ 0.5 mg fluorescein.mt l slurry.h- l and corresponded with a very

marginal decrease (0.2 units) in pH.
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Figure 5.25 Chang~s in microbial activities with time of
atrazine contaminated soil subjected to carbon-limited (11),
nitrogen-limited (Y), carbon/nitrogen-limited (£.) and non­
carbon/nitrogen-limited (e) conditions in bioreactor batch
operation

Figure 5.26 shows the changes in residual ammonium concentrations with time for the four

bioreactors. Ammonium nitrate was not added to the CIN-limited and N-limited cultures so the

concentrations remained <0.5 mM. For the C-limited bioreactor, the residual ammonium

concentration changed little (3.4 mM) until day 16, after which it fell to 1.6 mM and coincided

concomitantly with a decrease in the pH, probably due to the microbial metabolism ofthe added

ammonium nitrate. The residual ammonium concentration fluctuated in the non-CIN-limited

bioreactor with an approximate 45 % decline ( from 4.2 mM to 2.3 mM) evident between days

10 and 16. An increase in the ammonium concentration then resulted, probably due to atrazine

ring-cleavage (Radosevich, Traina, Hao, and Tuovinen, 1995).
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The initial residual atrazine concentration increases (Figure 5.27) between days 0 and 3 in all

four bioreactors may be attributed to the mass-transfer effects ofatrazine solubilization. For the

N-limited bioreactor, the atrazine concentration dropped sharply between days 3 and 5 and by

day 7 any residual atrazine was below the HPLC detection limit. For the non-CIN-limited

bioreactor, a similar rapid decrease was recorded between days 5 and 7, after which no residual

atrazine was detected. For the C-limited bioreactor, the residual atrazine concentration changed

little between days 3 and 7 but fell to near zero between days 7 and 10. The slowest atrazine

concentration reductions were recorded for the C/N-limited bioreactor in which atrazine

degradation was complete by day 16. From these results it appeared that carbon limitation had

a greater influence on atrazine degradation than did nitrogen limitation as a slower decrease in

residual atrazine concentration was recorded with the former, although for both bioreactors

degradation was complete by day 10. Once atrazine catabolism had started, the rate was greatest

in the N-limited bioreactor.
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Figure 5.27 Changes in residual atrazine concentrations with
time of slurries of atrazine-contaminated soil subjected to
carbon- limited (~, nitrogen-limited (~),carbonlnitrogen­

limited (A) and non-carbonlnitrogen-Iimited (e) conditions
in bioreactor batch operation

In the non-carbon/nitrogen-limited culture, atrazine and hydroxyatrazine were degraded

simultaneously and hydroxyatrazine degradation continued after atrazine was removed fully.

It must be noted, however, that accurate quantification ofhydroxyatrazine was not possible and

these results were from visual observations ofthe HPLC chromatograms only. A similar pattern

was recorded for the C-limited bioreactor although othercommon atrazine degradation products

such as deethylatrazine and deisopropylatrazine were not detected. Forthe nitrogen-limited and

dual carbon/nitrogen-limited bioreactors, the dealkylated product, deisopropylatrazine, was

detected and this was confirmed by spiking a sample with a solution of the molecule. Cook

(1987), on the basis of studies of four s-triazine-catabolizing bacterial strains, postulated that

most s-triazine degradation pathways converge at cyanuric acid, at which point ring cleavage

occurs. Cyanuric acid has also been shown to be the central intermediate in the atrazine

catabolic pathway ofatrazine-degrading microbial associations ( de Souza, Newcombe, Alvey,

Crowley, Hay, Sadowsky and Wackett, 1998). Cyanuric acid and biuret were detected inall four

. bioreactors so it may be concluded that atrazine was catabolized by the indigenous soil bacteria

under all four C/N elemental regimes tested.
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Inoculated Bioreactors

To detennine ifatrazine catabolism in soil slurries was promoted by the addition ofan atrazine­

degrading inoculum, the experiment was repeated with inoculated (5.3.1) bioreactors.

For the non-CIN-limited bioreactor and the C-limited bioreactor the pH values changed little

between days 0 and 16 (Figure 5.28). Subsequently (days 16 to 23), pH reductions of 1.35 and

0.6 units were recorded, respectively. In the presence ofnitrogen-limitation, an initial pH rise

of one unit was recorded before stabilization. With carbon and nitrogen limitation, the pH

increased slightly (~O.3 units) over the fIrst 16 days and then decreased tojustbelowthe starting

value on day 23.

~l
!If ~

I I,..
~,

j ---- ~l:J 1-............ - I
If

'~
!

I~I
I

7.5

7

6

5

o 5 10 15
Time (days)

20 25

Figure 5.28 Changes in pH with time of slurries of atrazine­
contaminated soil subjected to carbon- limited (_), nitrogen­
limited (~), carbon/nitrogen-limited (A) and non­
carbon/nitrogen-limited (e) conditions in inoculated
bioreactor batch operation

Figure 5.29 charts the changes in microbial activities with time for the same bioreactors. All

four were characterized by microbial activity increases between days 0 and 3 with the lowest

increase recorded for the carbon-limited bioreactor. Although differing in magnitude, the

nitrogen-limited and nitrogen/carbon-limited bioreactors recorded a similar pattern ofchanges

in microbial activity. The overall rates ofmicrobial activity were N-limited >C/N-limited >non­

CIN-limited >C-limited, in contrast to the non-inoculated bioreactors where the order was non-
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CIN-limited > N-limited >C-limited > CIN-limited and indicated that carbon-limitation had a

deleterious effect on microbial activity. N-limitation was the more serious limitation as the

organisms were adapted to using atrazine as a C-source. This was in contrast to the non­

inoculatedbioreactors where it appeared that co-metabolismwas required initially, therefore the

lack ofa readily metabolized C-source (i.e. C-limitation) would have been the major problem.
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Figure 5.29 Changes in microbial activities with time of
slurries of atrazine-contaminated soil subjected to carbon­
limited~, nitrogen-limited (-'),carbonlnitrogen-limited (A)
and non-carbonlnitrogen-Iimited (e) conditions in inoculated
bioreador batch operation

The residual ammonium concentrations (Figure 5.30) in the non-CIN-limited and C-limited

bioreactors changed little between days 0 and 16 but then decreased. For the nitrogen-limited

bioreactor, the ammonium concentration increased from 0.5 mM to 1.75 mM between days 0

and 16 while for the CIN-limited bioreactor initial steady increases from 0.25 mM to

1.5 mM (days 0 and 7) were followed by a marked increase to 4.5 mM (day 10), before

reductions to 2.5 mM and 0.75 mM were recorded on days 16 and 23, respectively. Ammonium

release is associated often with atrazine mineralization (Chung, Ro and Roy, 1996) so it is

possible that atrazine degradation was responsible for the release of ammonium in the CIN­

limited bioreactor. Such a release would also account for the higher ammonium concentrations

recorded in the N-limited cultures (Figures 5.26 and 5.30).
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Figure 5.30 Chauges in residual ammonium concentrations
with time ofslurries ofatrazine-contaminated soil subjected to
carbon- limited (11), nitrogen-limited ("),carbonlnitrogen­
limited (A) and non-carbonlnitrogen-Iimited (e) conditions
in inoculated bioreactor batch operation

Figure 5.31 shows the changes in residual atrazine concentrations with time in all four

bioreactors. As with the non-inoculated bioreactors the initial increases may be attributed to

atrazine mass-transfer from the soil into the aqueous portion ofthe slurry as a result ofagitation.

In contrast to the non-inoculated reactors, atrazine degradation began earlier in all four

bioreactors and was complete by day 7 (C-limited, non-CIN-limited and N-limited) or day 10

(non-CIN-limited). Once catabolism had started, the catabolic rate (between days 3 and 5) was

fastest (6.385 x 10-3mg.mil.d-l) in the N-limited and C-limited bioreactors, followed by the non­

CIN-limited (5.555 x 10-3 mg.rnll.d-l) and the CIN-limited (5 x 10-3 mg.rnll.d-l) bioreactors.

Comparing the residual atrazine concentration between days 3 and 5, it can be seen that

inoculation increased the atrazine catabolic rates in the non-CIN-limited (5.555 x 10-3 versus

1.665 x 10-3 mg.rnll.d-l (Figure 5.27)), the C-limited bioreactor (6.385 x 10-3 versus 2.8 x 10-4

mg.mil.d-I(Figure 5.27)) and the CIN-limited bioreactor (5 x 10-3 versus 1.525 x 10-3mg.rnll.d-l

(Figure 5.27). The N-limited bioreactor recorded much faster atrazine catabolic rates without

inoculation (6.385 x 10-3 versus 1.028 x 10-2 mg.mil.d-l (Figure 5.27)). It may be concluded,

therefore, that inoculation may be necessary to overcome the possible protracted lag phases in

C-limited (7 days) and CIN-limited (11 days) bioreactors.
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Figure 5.31 Changes in residual atrazine concentrations with
time of slurries of atrazine-c:ontaminated soil subjected to
carbon- limited (_), nitrogen-limited (T),carbon!nitrogen­
limited (A) and non-carbon!nitrogen-limited (e) conditions
in inoculated bioreactor batch operation

Analysis ofthe non-CIN-limited bioreactor slurry showed thathydroxyatrazine was the principal

degradation product. Degradation of atrazine and hydroxyatrazine continued until day 23.

Comparable results were recorded for the C-limited bioreactor while the N-limited bioreactor

recorded a slower increase in hydroxyatrazine formation prior to its degradation. In the presence

of carbon and nitrogen limitation, degradation of hydroxyatrazine proceeded once the

concentration ofatrazine was below its detection threshold. There was no evidence offormation

ofany of the dealkylated atrazine intermediates in any ofthe bioreactors. The transformation

of atrazine to hydroxyatrazine is of environmental significance as the latter is not herbicidal

(Mandelbaum, Wackett and Allan, 1993). Qualitative analysis showed the presence ofcyanuric

acid and biuret in all four bioreactors. Since the presence of this molecule confIrmS atrazine

catabolism (Cook, 1987; de Souza et ai, 1998), it may be assumed that the pesticide was

catabolized in all four bioreactors.
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5.3.3 General discussion

Skipper and Yolk (1972) reported that different soil types effected dramatic differences in

metabolite formation and mineralization due to different microbial activities. Similarly, the

stimulatory or inhibitory effects of supplemental carbon or nitrogen sources on microbial

atrazine catabolism have been shown to vary (Struthers, Jayachandran and Moorman, 1998).

Forexample, Mandelbaum et al (1993) found that the addition ofammonium nitrate suppressed

atrazine degradation in cultures that had been grown in a nitrogen-free medium. These results

supported those ofEntry, Mattson and Emmingham (1993) who reported a negative correlation

between the atrazine degradation rate and the soil nitrate concentration. A negative relationship

between the soil N03--N, N02--N or NH/-N content and atrazine transformation was also

reported by Stolpe and Shea (1995) and this was attributed to the preferential utilization of

readily available nitrogen rather than atrazine nitrogen. Similarly, Alvey and Crowley (1995)

reported that treatments which received inorganic nitrogen resulted in considerably lower rates

ofatrazine mineralization than treatments without nitrogen supplementation. Bichat, Sims and

Mulvaney (1999) also investigated the effects ofexogenous nitrogen on atrazine degradation by

monocultures ofPseudomonas sp. strain ADP, Agrobacterium radiobacter and bacterium

M91-3. For the fIrst two species, atrazine degradation was unaffected by the nitrogen while no

degradation was recorded with bacterium M91-3 in a medium which contained urea or~+-N.

By changing the limitation from carbon to nitrogen, Yanze-Kontchou and Gschwind (1994)

showed that carbon sources such as glucose, succinate and L-alanine did not stimulate the

degradation ofatrazine bythe bacterial strain YAYA6. Alveyand Crowley (1995) after studying

the effects ofa range oforganic compounds such as rice hulls, starch, compost, glucose, Sudan

hay and sodium citrate on the rate of atrazine mineralization, concluded, however, that the

carbon source may be a strong determinant ofthe microbial catabolic species, while Assafand

Turco (1994) foUnd that the long-term mineralization ofatrazine and its metabolites may be a

function of the soil carbon concentration.

From the results obtained in this study, it was evident that the indigenous microorganisms ofthe

Hutton soil had the ability to catabolize atrazine in the presence/absence of C- and/or N-
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limitation. The extracellular enzymes appeared unaffected by the inorganic nitrogen content

since degradation occurred under conditions ofexcess nitrogen although the catabolic rate was

lower for the C-limited bioreactor than the non-C/N-limited bioreactor (Figure 5.27). The

addition ofsucrose and citrate together with~N03 appeared to impact negatively on atrazine

catabolism (compared with the carbon-limited bioreactor) and complete atrazine removal was

effected faster under conditions of nitrogen limitation. Similarly, Mandelbaum et al (1993)

argued that sucrose and citrate addition may have contributed to the success oftheir enrichment

cultures although this could have been due simply to the provision of labile carbon which

increased the total microbial population and, thus, the number ofatrazine-catabolizing species.

From these results, it appeared that the additionofsupplementarycarbon sources such as glucose

and tri-Na-citrate should promote the rate of atrazine catabolism in situ although, as with all

remediation, the additional costs would have to be justified.

The defined media used in the enrichment and isolation programme (4.2) reflected the nutrient

limitation conditions chosen for each bioreactor. Degradation started within 5·days in all four

inoculated bioreactors and for the carbon-limitedand the C-/N-limitedbioreactors was complete

9 and 3 days earlier, respectively, than in their corresponding non-inoculated controls. This

justifies, despite the expense, the provision of an inoculum under conditions of carbon

limitation. Inoculation had negligible effects on the non-C/N-limited and N-limited slurries

compared to the non-inoculated controls, as atrazine removal occurred within the same time

period (7 days) in the N-limited slurry while, despite inoculation, residual atrazine was still

present in the non-C/N-limited slurry on day 10. It is interesting to note that in the uninoculated

N-limited bioreactor there was evidence ofdealkylation whilst no dealkylated metabolites were

detected in the equivalent inoculated bioreactor. Similar findings were recorded for the C/N­

limited inoculated bioreactor. From these observations, it would appear that different microbial

associations/strains were responsible for the atrazine catabolism in the inoculated and non­

inoculated controls, possibly due to the selective media used in the enrichment and isolation

programme(s).
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Inoculation also elicited altered trends in microbial activity. For the non-inoculated bioreactors

(Figure 5.25), the non-CIN-limited slurry recorded the highest activities, which exceeded the

other three bioreactors by> 4 mg.mfl.h-l on day 7. Among the inoculated bioreactors (Figure

5.29), however, the activity rates were N-limited > CIN-limited > non-CIN-limited > C-limited

slurry from day 7 onwards. Together with these changes, inoculation served to decrease the

disparities in the fluorescein production rate between the different nutrient-supplemented

slurries.

Like the microbial activity determinations, the changes in residual ammonium concentrations

were affected by inoculation. As expected, higher ammonium concentrations were recorded for

the non-CIN-limited and the C-limited slurries than the nitrogen limited slurries due to the

supplemental nitrogen in the former. While only minimal fluctuations in the residual

ammonium concentrations were recorded for non-inoculated slurries in the CIN-limited and the

N-limited bioreactors, their inoculated counterparts recorded gradual increases up to day 7 and

then a sharper increase for the CIN-limited slurry between days 7 and 10, followed by a dramatic

decline. These observations indicate that inoculation promoted atrazine catabolism and the

inherent release ofammonia under conditions ofnitrogen limitation.

Although the fIrst step of the atrazine degradation pathway resulted in the production of

hydroxyatrazine, it became apparent that accumulation ofthis intermediate restricted primary

molecule catabolism. This phenomenon was evident in two inoculated bioreactors, one operated

under "ideal" conditions and the other under conditions of carbon limitation when atrazine

degradation was incomplete (- 80% degradation) after 90 days. For both of these bioreactors,

the presence of the intermediate in the inoculum, even after dilution by the soil slurry, still

effected protracted lag phases. This phenomenon was previously reported by Goswami and

Green (1972), who found that microorganisms were capable of degrading the ring of

hydroxyatrazine to a much greater extent than the atrazine ring ifboth molecules were present

in the medium. Atrazine catabolism was concluded tentatively from the indirect evidence (the

presence of cyanuric acid; ammonia release) of this study. More conclusive evidence would,
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undoubtedly, have been gained if 14C-ring-Iabelled atrazine had been used and 14C02 had been

detected.

Inoculation ensured that atrazine degradation was complete by day 10 under all three nutrient

limitations but did not enhance the degradation rate in the bioreactors with supplemental carbon

(N-limited and non-CIN-limited). The same rate ofatrazine degradation was recorded in the C­

limited slurry inthe presence and absence ofthe inoculum. The effects ofinoculation were most

marked under conditions ofboth carbon and nitrogen limitation (CIN-limitation) with complete

atrazine degradation occurring 6 days earlier than in the non-inoculated slurry. Despite this, the

expense of inoculum preparation would not be justified since element (C/N) supplementation

would give equal stimulation.
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CONCLUSION

The extraction and quantification of pollutants from soil is a necessary tool to monitor

bioremediation practices. Many researchers use extraction methods without considering their

inherent limitations and the factors governing their efficacies. This study evaluated soil

pollutant extraction methodologies for three commonly occurring pollutants, namely, phenol,

atrazine and the BTEX component ofpetrol. In addition, the effect ofsoil type was investigated

using three soils, viz., a Swartland, Rensburg and a Hutton soil, chosen to encompass the

mineralogical range prevalent in Kwa Zulu Natal. Each soil extraction method evaluated had

its limitations, as well as its advantages, under the conditions tested, i. e., extraction after the soil

was spiked with different analyte concentrations, after prolonged ageing times up to 21-d, and

when the composition of the spiking solution was changed from an organic to an aqueous

solution.

The results showed that recovery procedures for phenol, atrazine and the BTEX components of

petrol from soil must be tailored to suit the analyte(s) in question. It became obvious that the

pollutants would interact very differently with the different types of soils used in this study,

primarily because of their different characters. The functional groups present on a molecule

govern the polarity, polarizability and their solubility in water. These properties would, thus,

determine whether the compounds bind to the soil by hydrogen bonding, ionic/covalent bonding,

ligand exchange or by chelate formation (Hayes, 1991).

This study focussed primarily on surface soils. It is important to realise that xenobiotic

compounds can be found in subsurface soils as a result ofleachingprocesses (Fomsgaard, 1995).

Guzella et al (1996) found that pesticide concentrations were greatly reduced in soil samples

collected below a depth of 30 cm from the surface. The authors however, cautioned that the

continuous accumulation of these compounds in the unsaturated zone would have long term

repercussions for the quality ofunderground water resources. Different remediation strategies

would also be needed for subsurface soils because, amongst other factors, the lower soil
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temperatures, the lower number ofmicroorganisms and the lower oxygen levels (Fomsgaard,

1995).

Phenol is an example ofan organic compound that is acidic in nature and is, therefore, anionic

in nature and so would attach to the neutral siloxane surfaces between cationic sites in kaolinite­

rich soils via hydrophobic bonding. In smectite-rich soils, the molecule would enter the internal

surfaces of the clay and coordinate directly to the exchangeable cations or bridge to the

coordinated water molecules. Where the chemistry of the soil is dominated by the Fe and Al

oxide coating of the minerals, phenol may be retained by ligand exchange, and phenol

polymerization would also occur.

Atrazine, being cationic in nature, would be sorbed onto the surface of the kaolinitic clays and

this would be accompanied by H-bonding (Johnston, 1996). As in the case for phenol, smectite

clays would retain atrazine by sorption into the interlayer. In soils containing Fe and Al oxides,

the free electron on the nitrogens, in the ring and the amino groups ofatrazine, would inter~ct

with the positive charge ofthe (Fe.Al.OH)-component in the soil. This component consists of

an iron rich subfraction which tends to bind strongly to crystalline materials such as kaolinite

and a weakly bound aluminium component that retains a residual positive charge (Nel and

Reinhardt, 1984).

Hydrocarbons are non-polar and will not coordinate with the cations on the clay surfaces.

Therefore, these molecules will also not enter between the layers ofexpandable clays. Although

the non-polar nature of the BTEX molecule would ensure adsorption on the neutral siloxane

surfaces and the hydrophobic sites, the primary mode ofsorption would be via incorporation into

the soil organic matter and the humic acid coatings of the clay mineral fraction.

In this study, it was found that Soxhlet extraction was the most suitable for phenol extraction

from all three soil types. Since phenol is sorbed strongly to all three soils, this result may be

rationalized by the fact that the large solvent volumes and the high temperatures used were

sufficient to overcome the high heats ofadsorption.
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Anyone ofthree methods, viz., sonication, agitation and the ethyl acetate micro method could

be selected for atrazine extraction from all three soils, while the BTEXmolecules were extracted

most efficiently by sonication extraction.

In general, it was found that the recoveries from Soxhlet extraction were unaffected by the

dominant minerals in the different soils, except when methanol was used as the extraction

solvent. In this instance, many hydrophilic substances were co-extracted with the analytes,

necessitating further extraction. This result illustrates that solvent choice is critical and the

solvent must be selected to suit both the soil and the analyte.

Another factor to consider is that ofpercentage recovery versus reproducibility/precision ofthe

extraction method, e.g., although Soxhlet extraction invariably furnished higher percentage

recoveries than sonication extraction, the latter method was more reproducible. It is probable

that the factors contributing to the better percentage recoveries from Soxhlet extraction, viz.,

high temperatures and large solvent volumes, contributed to the loss ofprecision by causing the

random, irreproducible dissolution/recrystallization ofthe soil amorphous fraction.

The effects on percentage recovery ofprolonged ageing and changing the spiking concentration

showed different trends for the three representative molecules used in this study. Varyingtrends

may be attributed to the manner in which the molecules were adsorbed to the different soil

fractions. The adsorption may have been via physical or chemical processes and the sorption

could have been instantaneous or requiring long equilibrium times, thus ensuring different

degrees ofsorption for the different spiking concentrations and different ageing times, therefore

affecting the percentage recoveries.

Although these methods were effective under the conditions present in this study, it must be

borne in mind that there is a global trend towards eliminating/reducing organic solvent usage.

Due to financial constraints, and the lack ofinfrastructure in South Africa that would necessitate

them, many ofthe newer, more sophisticated extraction methodologies, e.g., supercritical fluid

extraction, microwave-assisted extraction, purge and trap and headspace extraction, to name a
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few, were not evaluated and it is possible that these methods, in addition to being

environmentally friendly, could be quicker and less prone to matrix effects and, thus, be more

efficient.

The literature indicates that diverse results have been obtained from the many studies on this

subject. In order to rationalize these contradictory statements, one must remember that the tests

have been made under very specific conditions and changing any experimental variable might

provide different results. It is, therefore, crucial when monitoring bioremediation to be aware

of the limitations of the chosen extraction methodology. The simultaneous monitoring of a

known degradation product(s) would also furnish more evidence ofsuccessful bioremediation.

Further research would include determining the effect of a wider range of solvents on the

efficacy ofthe different extractionmethods. In addition to looking at different organic solvents,

it would be interesting to determine how water could be used more effectively as an extraction

solvent. To this end, it would be necessary to incorporate cations, anions or surfactants to water

to ensure that organic molecules would be extracted preferentially into the aqueous solvent. pH

modification bybuffer incorporation should also be investigated. Essentially, the focus offuture

research should be on developing more environmentally friendly extraction procedures, that

would eithereliminate totallyor reduce significantlyorganic solventusage by optimizinganalyte

desorption from soils.

The second part of this study was a preliminary appraisal of atrazine degradation in a Hutton

soil. This soil type was used for this facet ofthe study since soils rich in Fe and Al oxides are

plentiful in Kwa Zulu Natal. Also, we would expect the chemistry of Hutton soils to be

dominated by their oxide content rather than their organic matter content and atrazine recovery

from this soil type showed good reproducibility over a limited ageing period up to 21-<1. Solid

phase extraction using Sep-pak cartridges was selected to minimize organic solvent usage with

the added advantage that both atrazine and its commonly occurring degradation products could

be extracted simultaneously. Atrazine degradation was monitored in sterilized (Gamma

irradiated), fertilized/non-fertilized and non-sterilized, fertilized/non-fertilized soils.
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The results showed that chemical/abiotic factors were predominant in the degradation ofatrazine

in Hutton soil. The use ofa basic mineral salts solution in lieu ofa fertilizer reduced adsorption

and, therefore, hydroxylation ofatrazine by the abiotic soil components. The physical changes

in the soil due to gamma irradiation, such as pH changes and precipitation of the Fe and Al

oxides, were thought to be responsible for the decreased degradation observed in the sterilized

soils. It was also postulated that microbial degradation did not occur due to the non-conducive

soil pH of ~ 5.8 units, although this does not take into consideration atrazine degradation by

fungi. Although microbial degradation did not occur under these conditions, atrazine was

converted to hydroxyatrazine which is not phytotoxic and this transformation would be deemed

sufficient for some agricultural requirements. Also, hydroxyatrazine is much more strongly

sorbed to soils.

The hypothesis that increasing the soil pH to 6.8-7.0 would facilitate microbial degradation was

tested by using soil slurry reactors. The bioremediation of artificially fortified (300 mg.kg-1

atrazine) soils was attempted in slurry reactors under conditions ofcarbon-limitation, nitrogen­

limitation, carbon/nitrogen-limitation and no limitation. The use of a constantly agitated soil

slurry effected mass-transfer ofatrazine from the soil to the aqueous phase and eliminated to a

large degree soil-atrazine immobilization. The molecule and its degradation products were

monitored by HPLC after solid-phase extraction using Sep-Pak cartridges. Atrazine catabolism

by the indigenous soil microbial population was concludedbythe disappearance ofthe molecule

and the presence of cyanuric acid and biuret, two molecules associated commonly with

microbially induced atrazine degradation. Inoculation ofa second set of identical bioreactors

under the same conditions ofnutrient limitation resulted in faster atrazine catabolism. However,

upon comparing the results obtained for the inoculated and non-inoculated bioreactors, it was

concluded that the expense ofinoculation and culture maintenance was notjustified since carbon

and nitrogen supplementation would be equally effective.

More conclusive results would have been obtained if l4C-Iabeled molecules had been used in all

facets ofthis study. The use ofthese molecules in the assessment ofextraction methodologies

would have furnished information about soil-bound residues and more accurate estimates of
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percentage recoveries would have been obtained. A detailed degradation pathway and,

especially, the confirmation (or not) ofatrazine mineralization would have been confirmed with

the use ofthese labeled isotopes.

This investigation has revealed that great care must be employed when selecting soil extraction

methods and that further confirmation ofbioremediation by monitoring degradation products

is imperative. The innate ability ofthe indigenous microbial population to return the Hutton soil

to its original pristine condition was also confIrmed.

It would be interesting to compare the effIcacies ofthe more advanced extraction methodologies

with those used in this study to determine whether or not the expense ofbuying more complex

equipment would be justifIed. A wider range of soil types would also give credence to, or

negate, the fInal selection of extraction methods. The identifIcation and enrichment of the

atrazine degrading microbial population and their use in remediating large tracts of atrazine­

contaminated agricultural soil under less artifIcial conditions would be a practical application

of the work done in this study.

It was envisaged that the contribution of surfactant extraction would be one of the areas that

needed further investigation. The extraction ofhydrocarbon-contaminated soil by surfactants

is currently being investigated in collaboration with the Department ofChemistry (University

ofNatal,Pietermaritzburg), (Jaganyi, D).6 Initial investigation involves determining the efficacy

ofsurfactants for hydrocarbon extraction with a view to extending this research to include soil

washing by the surfactants as a means of cleaning hydrocarbon-contaminated soils.

linr D. Jaganyi, Department ofChemistry, University ofNatal, Pietermaritzburg.
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Soils

APPENDIX A

Table 1

Summary ofsoil physical properties

Particle Size Distribution Percentage (m/m)

Swartland Rensburg Hutton

Coarse Sand 2 - 0.5 mm 4.1 25 1.34

Medium Sand 0.5 - 0.25 mm 9.5 5 1.57

Fine Sand 0.25 - 0.1 mm 13.7 10.5 6.38

Very Fine Sand 0.25 mm 7.1 9.29

Coarse Silt 0.05 - 0.02 mm 15.9 11.2 22..97

Fine Silt 0.02 - 0.002 mm 14.3 14.8

Clay < 0.002 mm 29.4 46.8 67.57

Organic Carbon 1.9 1.7 3.31

Mineralogy of Clay Fraction

Kao1inite 31 12 40-60

Mica 20

Smectite 19 65

Vermiculite 40-60

Quartz 18 12

Feldspar 12 11

pH (HP) 5.16 7.76 6.36

pH(KCI) 4.16 6.18 5.05

CEC Cmol c lOO g ·1 oven- dry soil 14.3 24.4

Ca 10.0

Mg 3.42

Na 0.74

K 0.6
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APPENDIX B

Effect of spiking concentration on percentage phenol recoveries

***** Analysis of variance *****

Variate: Recovery (%)

Source of variation d. f. s.s. rn.s. v.r. F pr.

reps stratum 3 91.14 30.38 1.03

reps.*Units* stratum

extrac 2 5661. 06 2830.53 95.63 <.001

soil 3 7204.47 2401. 49 81.14 <.001

cone 2 15885.10 7942.55 268.34 <.001

extrac.soil 6 22386.28 3731. 05 126.05 <.001

extrac.conc 4 20791. 28 5197.82 175.61 <.001

soil.conc 6 12481. 57 2080.26 70.28 <.001

extrac.soil.conc 12 15586.56 1298.88 43.88 <.001

Residual 105 3107.86 29.60

Total 143 103195.31

***** Tables of means *****

Variate: Recovery (% )

extrac soil cone 5000 500 50 Means

SX SA 47.50 54.50 0.00 34.00

SW 90.50 69.00 53.50 71. 00

RN 81. 75 81. 75 105.50 89.67

HU 78.50 75.00 94.00 82.50

Means 74.56 70.06 63.25

AD SA 41. 00 33.25

159

81.75 52.00



SW 51. 50 44.00 124.00 73.17

RN 36.25 24.25 99.50 53.33

HU 44.50 55.75 68.25 56.17

Means 43.31 39.31 93.37

SE SA 86.50 68.00 89.75 81. 42

SW 90.75 35.75 110.25 78.92

RN 39.50 53.00 81. 50 58.00

HU 84.50 77.00 66.50 76.00

Means 75.31 58.44 87.00

soil conc 5000 500 50 Means

SA 58.33 51. 92 57.17 55.81

SW 77.58 49.58 95.92 74.36

RN 52.50 53.00 95.50 67.00

HU 69.17 69.25 76.25 71. 56

Means 64.40 55.94 81.21

*** Least significant differences of means (5% level) ***

Table extrac soil conc extrac

soil

rep. 48 36 48 12

d. f. 105 105 105 105

l.s.d. 2.202 2.543 2.202 4.404

Table extrac soil extrac

conc conc soil

conc

rep. 16 12 4

d. f. 105 105 105
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los.d. 3.814 4.404 7.628

***** Stratum standard errors and coefficients of variation *****

Variate: Recovery (%)

Stratum

reps

reps.*Units*

d. f.

3

105

s.e.

0.919

5.440
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Effect of ageing time on percentage phenol recoveries

***** Analysis of variance *****

Variate: Recovery (% )

Source of variation d. f. s.s. m.s. v.r. F pr.

reps stratum 3 450.19 150.06 2.61

reps.*Units* stratum

extrac 2 26691. 79 13345.90 232.29 <.001

soil 2 6468.88 3234.44 56.30 <.001

ageing 3 4117.74 1372.58 23.89 <.001

extrac.soil 4 4996.96 1249.24 21. 74 <.001

extrac.ageing 6 2329.99 388.33 6.76 <.001

soil.ageing 6 3245.24 540.87 9.41 <.001

extrac.soil.ageing 12 3853.10 321. 09 5.59 <.001

Residual 105 6032.56 57.45

Total 143 58186.44

***** Tables of means *****

Variate: Recovery (%)

SX SW

RN

HU

extrac

Means

soil ageing 1h 48h 1wk 21d Means

90.50 78.75 59.25 74.75 75.81

81.75 59.00 54.75 50.50 61. 50

78.50 70.00 59.50 63.25 67.81
83.58 69.25 57.83 62.83

AD SW

RN

HU

51.50

36.25

44.50

42.25

37.00

31. 75
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Means 44.08 37.00 41. 42 30.33

SE SW 90.75 87.50 75.50 69.00 80.69

RN 39.50 50.50 45.25 52.75 47.00

HU 84.50 50.00 66.25 75.75 69.13

Means 71. 58 62.67 62.33 65.83

soil

SW

RN

HU

ageing Ih

77.58

52.50

69.17

48h

69.50

48.83

50.58

lwk

52.67

48.50

60.42

21d

56.75

43.17

59.08

Means

64.13

48.25

59.81

Means 66.42 56.31 53.86 53.00

*** Least significant differences of means (5% level) ***

Table

rep.

d.f.

1. s. d.

Table

rep.

d. f.

los.d.

extrac

48

105

3.068

extrac

ageing

12

105

6.136

soil

48

105

3.068

soil

ageing

12

105

6.136

ageing

36

105

3.542

extrac

soil

ageing

4

105

10.627

extrac

soil

16

105

5.314

***** Stratum standard errors and coefficients of variation *****
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Variate: Recovery (%)

Stratum

reps

reps.*Units*

d. f.

3

105

s.e.

2.042

7.580
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Effect of composition of spiking solution on percentage phenol recoveries

***** Analysis of variance

Variate: recov

*****

Source of variation d. f. s.s. m.s. v.r. F pr.

reps stratum 3 484.72 161. 57 2.12

reps.*Units* stratum

extrac 2 8093.08 4046.54 53.09 <.001

soil 2 410.08 205.04 2.69 0.078

spike 1 8320.50 8320.50 109.16 <.001

extrac.soil 4 915.33 228.83 3.00 0.027

extrac.spike 2 2330.08 1165.04 15.29 <.001

soil. spike 2 1569.25 784.62 10.29 <.001
extrac.soil.spike 4 287.17 71.79 0.94 0.447
Residual 51 3887.28 76.22

Total 71 26297.50

***** Tables of means *****

Variate: recov

Grand mean 42.2

extrac sx ad se

47.1 27.5 52.1

soil sw rn hu

44.0 38.9 43.9

spike acetone water

53.0 31.5

extrac soil sw rn hu
sx 54.4 43.5 43.4
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ad 23.8 26.4 32.5

se 53.7 46.7 55.9

extrac spike acetone water

sx 62.8 31.3

ad 30.3 24.7

se 65.8 38.4

soil spike acetone water

sw 56.7 31.2

rn 43.2 34.6

hu 59.1 28.8

soil sw rn hu

extrac spike acetone water acetone water acetone water

sx 74.7 34.0 50.5 36.5 63.2 23.5

ad 26.5 21.0 26.3 26.5 38.2 26.7

se 69.0 38.5 52.7 40.8 75.7 36.0

*** Least significant differences of means (5% level) ***

Table extrac soil spike extrac

soil

rep. 24 24 36 8

d.f. 51 51 51 51

los.d. 5.06 5.06 4.13 8.76

Table extrac soil extrac

spike spike soil

spike

rep. 12 12 4

d. f. 51 51 51

los.d. 7.16 7.16 12.39
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***** Stratum standard errors and coefficients of variation *****

Variate: recov

Stratum d.f. s. e. cv%

reps 3 3.00 7.1

reps.*Units* 51 8.73 20.7
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Effect of spiking concentration on percentage atrazine recoveries

***** Analysis168 of variance *****

variate: Recovery (%)

Source of variation d.f. s.s. m.s. v.r. F pr.

reps stratum 3 20.91 6.97 0.25

reps.*Units* stratum
extrac 3 6279.58 2093.19 75.31 <.001
soil 2 4035.10 2017.55 72.59 <.001
cone 2 11970.06 5985.03 215.34 <.001
extrac.soil 6 10950.57 1825.09 65.67 <.001
extrac.conc 6 4472.94 745.49 26.82 <.001
soil.conc 4 1667.36 416.84 15.00 <.001
extrac.soil.conc 12 11855.47 987.96 35.55 <.001
Residual 105 2918.34 27.79

Total 143 54170.33

***** Tables of means *****

Variate: Recovery (% )

extrac soil cone 120 60 30 Means

SX SW 86.00 39.25 71.25 65.50
RN 83.75 96.75 57.25 79.25
HU 71.25 52.00 60.75 61.33

Means 80.33 62.67 63.08

SE SW 55.25 70.50 52.75 59.50
RN 48.50 36.25 48.00 44.25
HU 59.75 86.75 35.25 60.58

Means 54.50 64.50 45.33

AE SW 51.50 52.75 38.00 47.42
RN 66.75 55.75 25.25 49.25
HU 73.25 61.50 48.25 61.00

Means 63.83 56.67 37.17

MM SW 49.25 48.00 . 24.00 40.42
RN 71.25 31.50 27.00 43.25
HU 87.25 88.25 53.50 76.33Means 69.25 55.92 34.83

soil cone 120 60 30 Means

SW 60.50 52.63 46.50 53.21
RN 67.56 55.06 39.38 54.00
HU 72.87 72 .12 49.44 64.81

Means 66.98 59.94 45.10
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*** Least significant differences of means (5% level) ***

Table extrac soil conc extrac
soil

rep. 36 48 48 12
d. f. 105 105 105 105
los.d. 2.464 2.134 2.134 4.268

Table extrac soil extrac
conc conc soil

conc
rep. 12 16 4
d. f. 105 105 105
los.d. 4.268 3.696 7.392

***** Stratum standard errors and coefficients of variation *****

Variate: recov

Stratum

reps
reps.*Units*

d. f.

3
105

s.e.

0.440
5.272
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Effect of ageing time on percentage atrazine recoveries

***** Analysis of variance *****

Variate: Recovery (% )

Source of variation d. f. s . s. m.s. v.r. F pr.

reps stratum 3 48.88 16.29 0.52

reps.*Units* stratum
extrac 3 22696.50 7565.50 240.41 <.001
soil 2 7749.76 3874.88 123.13 <.001
ageing 3 5819.21 1939.74 61. 64 <.001
extrac.soil 6 1679.91 279.98 8.90 <.001
extrac.ageing 9 13709.54 1523.28 48.41 <.001
soil.ageing 6 4541. 57 756.93 24.05 <.001
extrac.soil.ageing 18 10063.43 559.08 17.77 <.001
Residual 141 4437.13 31. 47

Total 191 70745.92

***** Tables of means *****

Variate: Recovery (%)

extrac soil ageing Ih 48h 1wk 21d Means

SX SW 86.00 74.75 62.25 57.75 70.19
RN 83.50 56.50 65.50 81. 50 71. 75
HU 71.25 67.50 81.50 87.25 76.87

Means 80.25 66.25 69.75 75.50

SE SW 55.25 42.75 42.00 6.50 36.62
RN 48.50 59.00 38.50 30.75 44.19
HU 59.75 65.50 39.00 29.25 48.37

Means 54.50 55.75 39.83 22.17

AE SW 51. 50 51.25 64.50 27.75 48.75
RN 66.75 32.00 77.25 73.75 62.44
HU 73.25 76.25 70.50 74.50 73.62

Means 63.83 53.17 70.75 58.67

MM SW 49.25 41.00 29.25 55.50 43.75
RN 71. 25 33.00 59.25 63.50 56.75HU 87.25 34.25 65.25 63.00 62.44

Means 69.25 36.08 51.25 60.67

soil ageing Ih 48h 1wk 21d Means

SW 60.50 52.44 49.50 36.87 49.83
RN 67.50 45.13 60.13 62.37 58.78HU 72.87 60.88 64.06 63.50 65.33

Means 66.96 52.81 57.90 54.25
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*** Least significant differences of means (5% level) ***

Table extrac soil ageing extrac
soil

rep. 48 64 48 16
d. f. 141 141 141 141
los.d. 2.264 1. 960 2.264 3.921

Table extrac soil extrac
ageing ageing soil

ageing
rep. 12 16 4
d. f. 141 141 141
los.d. 4.527 3.921 7.842

***** Stratum standard errors and coefficients of variation *****

Variate: recov

Stratum

reps
reps.*Units*

d. f.

3
141

s.e.

0.583
5.610

171
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Effect of ageing time on percentage BTEX recoveries

***** Analysis 9f variance *****

Variate: recov

Source of variation d. f. s.s. m.s. v.r. F pr.

reps stratum 3 8.62 2.87 0.15

reps.*Units* stratum
ageing 3 22133.18 7377.73 396.09 <.001
extrac 1 7839.67 7839.67 420.89 <.001
soil 2 2006.17 1003.09 53.85 <.001
ageing.extrac 3 2119.13 706.38 37.92 <.001
ageing.soil 6 3203.81 533.97 28.67 <.001
extrac.soil 2 1082.42 541. 21 29.06 <.001
ageing.extrac.soil 6 1096.43 182.74 9.81 <.001
Residual 69 1285.23 18.63

Total 95 40774.64

***** Tables of means *****

Variate: recov

Grand mean 25.61

ageing 1h 48h 1wk 3wk
46.28 32.25 18.23 5.69

extrac se ae
34.65 16.58

soil sw rn hu
31. 44 20.28 25.12

ageing extrac se ae
1h 54.63 37.92

48h 49.16 15.35
1wk 23.43 13.04
3wk 11.39 0.00

ageing soil sw rn hu
1h 58.12 45.92 34.79

48h 43.21 19.61 33.93
1wk 20.17 15.59 18.94
3wk 4.27 0.00 12.81

extrac soil sw rn hu
se 38.44 26.62 38.89
ae 24.45 13.93 11.35

extrac se ae
ageing soil sw rn hu sw rn hu1h 62.64 57.86 43.39 53.60 33.98 26.2048h 60.15 28.12 59.20 26.27 11.11 8.671wk 22.42 20.53 27.35 17.93 10.65 10.533wk 8.55 0.00 25.62 0.00 0.00 0.00
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*** Standard errors of means ***

Table ageing extrac soil ageing
extrac

rep. 24 48 32 12
d. f. 69 69 69 69
e.s.e. 0.881 0.623 0.763 1.246

Table ageing extrac ageing
soil soil extrac

soil
rep. 8 16 4
d. f. 69 69 69
e.s.e. 1. 526 1. 079 2.158

*** Least significant differences of means (5% level) ***

Table ageing extrac soil ageing
extrac

rep. 24 48 32 12
d. f. 69 69 69 69
los.d. 2.485 1.757 2.152 3.515

Table ageing extrac ageing
soil soil extrac

soil
rep. 8 16 4
d. f. 69 69 69
1.s.d. 4.305 3.044 6.088

***** Stratum standard errors and coefficients of variation *****

Variate: recov

Stratum

reps
reps.*Units*

d. f.

3
69

s.e.

0.346
4.316
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1.4
16.8
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