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“One of the statistics that always amazes me is the approval of the Chinese gov-

ernment, not elected, is over 80 percent. The approval of the U.S. government,

fully elected, is 19 percent. Well, we elected these people and they didn’t elect those

people. Isn’t it supposed to be different? Aren’t we supposed to like the people that

we elected?”

Bill Gates
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Different sectors of economies are significantly affected by the supply of electricity.

However, with the available limited resources, supply and demand of electricity in

Africa are strongly correlated. In order to efficiently improve electricity supply,

its demand has to be accurately predicted. In this research, we analyse electricity

demand in two cases; peak monthly electricity demand in Uganda from January

2008 to December 2013, and daily electricity demand for South Africa from 1st

January 2004 to 30th June 2008, using ARIMA and ARCH/GARCH models. We

use this data to forecast future demand for both countries in order to help pol-

icy makers in the electricity sector make decisions for sustainable development of

both countries. GARCH models are introduced to correct the volatility found in

South Africa’s daily demand data. Results from the study show that; for Uganda,

a seasonal ARIMA(0,0,0)(1,1,1)[12] model describes the data better, with RMSE

of 4.872027 and MAPE of 2.347028, and gives better forecasts which display a

continued increase in electricity demand for months ahead. For South African

data, a seasonal ARIMA(1,0,1)(0,1,0)[365] describes the data better but a stan-

dard GARCH(1,1) with normally distributed error terms accommodates volatility.

Therefore, a combination of the two models produces better forecast accuracy.

Keywords: Seasonal ARIMA (SARIMA), ARCH/GARCH, peak electricity de-

mand, Forecast accuracy.
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Chapter 1

Introduction

Electricity is a form of energy that plays an essential role in modern life, bringing

benefits and progress in various sectors; for example, transportation, manufac-

turing, mining and communication. Electricity is the backbone for an economy’s

prosperity and progress because it plays an important role in socio-economic devel-

opment. It has the capability to make useful contributions to planning and future

policy formulation of the energy sector. Uses of electricity are rapidly increasing

day by day, leading to a tremendous advancement in human civilization. For this

reason, demand for electricity is a vital topic to study since it is integrated with

all aspects of development. This chapter covers the initial and introductory parts

of this study. It gives the basis for definitions used in the study. Most of the topics

and terminologies introduced here are used for further reference in the course of

the study. This research is inspired by Sigauke and Chikobvu (2011), who did

similar work with South Africa’s daily electricity demand.

1.1 Forecasting

Forecasting is a statistical tool that helps to make predictions about the future,

using past and present data (Bajpai, 2009; Mittra, 2002). It can also be defined

as the process of making deductions about events whose actual outcomes have not

yet been observed. The data used to carry out the forecasting exercise can be

generated through different ways. The most common types of data are secondary

and primary data. Secondary data is collected due to a focus on some study (other

than the current study), but also happens to be useful to the current study. Such

1



Section 1.1. Forecasting Page 2

data is usually saved in archives of official statistical and academic organizations

(Hox and Boeije, 2005). On the other hand, primary data is generated specifically

for an ongoing study. This data can be collected through; interviews, question-

naires, mailing and direct observations. Nowadays, data can also be captured from

websites that have topics related to the study at hand.

The process of forecasting is mainly used to plan, make budgets and estimate

future growth. Various departments in companies need forecasting for different

reasons, for example, the accounting department uses forecasting to find out the

cost and profit estimates during a period of interest, the finance department can

find out how much cash flows in and out and how much funding is needed for a

given investment, the human resource department forecasts an estimated number

of people to hire, recruit or train, given the future of the company, and the mar-

keting department can use forecasting to figure out how to price given products

or services, where and when to give a promotion and the best strategy to use in

order to maximize their profits or sales.

According to previous studies such as Hyndman and Athanasopoulos (2014), a

forecast variable has never been 100% predictable. Therefore, when forecasting,

one needs to keep in mind that there is no certainty about the occurrence of the

event under study. Various studies, like, Zarnowitz (1984) indicate that group

forecasts are better than individual forecasts, for example, one can forecast the

average performance of the whole class using results from their midterm exams

better than forecasting one student’s performance using their previous grade. The

accuracy of forecasts reduces with increase in the time horizon (Woodside and

Martin, 2008). For that reason, some forecasting techniques, like, exponential

smoothing attach a lower weight to observations in the further past than those

in the recent past. There are two common approaches used when forecasting,

depending on the problem at hand, but a combination of the two can also be

applied to support their strength and reduce their individual weaknesses. These

approaches are:

• Judgemental Forecasting: This is forecasting based on one’s gut feeling about

the event. It requires only one’s intuition and experience. Human minds have

the ability to make connections and understand situations in a way that no

computerized system can (VSC website). However, there are limitations

(like bias) that make analysis of large data complex. The most common
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type of judgemental forecasting is the Delphi method. This method combines

results (in form of questionnaires) from independent experts. Questionnaires

are constructed about the topic under study and are sent out to experts in

several rounds. These experts then anonymously comment on the topic

and their responses are aggregated and discussed after every round. The

process continues until a mutual agreement about the topic is reached. That

agreement is considered as the correct response through consensus (Yousuf,

2007).

Judgemental forecasting works best under various cases, for example, when

there is no historical data, when launching new products, when there is a new

competitor in the market, when there are new growth plans, or during new

and unique market conditions. The limitations of this method include; in-

consistency (because it heavily depends on human intuition), unfair agendas

(either personal or political) and anchoring (subsequent forecasts converging

to an initial familiar reference point) (Hyndman and Athanasopoulos, 2014).

• Quantitative Forecasting: Here, numerical facts and prior experiences are

used to analyze historical data and predict future events. This approach em-

phasizes developing numerical information about events. Quantitative fore-

casting techniques use mathematics for the systematic treatment of actual

historical series of data to later identify and estimate functional relationships

that can be used to make forecasts of such a series. There are determinis-

tic techniques, for example, moving averages, exponential smoothing, trend

analysis, and stochastic techniques, like, the ARIMA models (Chavez et al.,

1999). Both deterministic and stochastic models can be used for any time

series. The choice depends on the data available, its nature, and the degree

of accuracy required for the analysis. For the strictly statistical criterion,

methods producing lower forecast errors are of interest. Once one has numer-

ical data, quantitative techniques can be used to carry out the forecasting

exercise. There are two ways in which this can be done;

– The time series method where by the researcher develops a model from

identified repeated patterns in historical data, and uses that model to

make forecasts. Usually in time series, the models developed use time as

an independent variable. In other words, time is used as the main fac-

tor to help researchers understand all events that can not be measured

but take place in time (Adhikari and Agrawal, 2013). The patterns
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common in time series data are trend, seasonality, cycles, irregular and

random variations. All these will be discussed further in the study. The

disadvantages of using this method include; requirement of large data

sets which might not be available in some cases, lack of variations in the

data, autocorrelation and multicollinearity. However, it is also advanta-

geous in that it provides cheap, fast and realistic forecasts. Regression

analysis that does not consider lags fails to account for the relation-

ship through time and also over estimates the relationship between the

dependent and independent variables (Berger, 2003).

– The explanatory method which relates two or more variables. It as-

sumes that there is a relationship between the variable of interest and

other variables in the environment. For example, the number of moun-

tain bikes that can be sold in an area depends almost entirely on the

number of young people living in that same area. In this case, the moun-

tains bikes sale is the predicted (dependent) variable and the number

of young people is the predictor (independent) variable. Many statis-

tical tools are available for determining such a relationship, but, liner

regression analysis is the most preferred. In this method, the main ob-

jective is to obtain an equation of a straight line minimizing the sum

of squared vertical deviations of data points from the line (Weisstein,

2002).

Some of the advantages of quantitative forecasting are (JRC Website); the

ability to clearly examine the rates of change of events, which makes it more

realistic to interpret data other than making theoretical conclusions. Also,

results from this approach easily and efficiently communicate to people in

case there is a lot of information being passed on. It allows employment of

useful supplementary methods like accounting tools which require numerical

data. Most importantly, it is less affected by bias. There are also some

disadvantages, for example; limiting most people’s contribution especially

when it comes to using complex statistical techniques. Most of the experts

employed when dealing with this approach are usually used to the same

modeling technique, which hinders them from working with other experts.

Various important social and political factors are usually neglected because

they can not be expressed numerically yet they are very significant to studies.

It also limits communication of results to people who can not easily interpret

numerical expressions. In case of limited historical data or insufficiently
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updated data, this approach may either be impossible to use, or result into

incorrect inference.

The main steps to be followed while forecasting as described by Hyndman and

Athanasopoulos (2014) involve:

• Defining the problem of the study. This is one of the hardest steps while

carrying out a forecasting exercise. One needs to carefully define the problem

according to the way they understand the requirements of the forecasts,

that is, who needs the forecasts, how the forecasts will be used, how the

determined model fits in the data at hand. This step can be simplified by

having enough communication and discussion time with everyone involved in

the study, like people responsible for collecting data, maintaining databases

and using the forecasts for future planning. At this stage, it is important

to note that any decision made basing on the results from the forecasts will

affect the future of the organization.

• Time horizon: One needs to know how much time the forecasts should cover.

Short-term forecasts usually cover a time period less than 1 year and they are

mainly for scheduling and assigning purposes. Short-term forecasts in the

electricity sector are useful in estimating load flows and making decisions

on how to prevent load shedding. Medium-term forecasts range between

1 to 3 years and they are usually for determining and planning for future

resource requirements. Lastly, long-term forecasts go for any period bigger

than 3 years and are for strategic planning and development. Different time

horizons develop different forecast accuracy. For example, it is very common

to have more accurate load forecasts for the next day than forecasts for one

year ahead. Accuracy of the forecasts keeps fading with increase in the time

horizon.

• Data collection: Keeping in mind the event to be forecast helps in collecting

valid and reliable historical data. As covered earlier in this chapter, data can

either be primary or secondary. In most cases, it is hard to collect enough

historical data for fitting the best model for the study. However, this is not

always a problem if not much historical data is needed, especially in situation

where very old data has become irrelevant due to changes in the event being

studied. Good data should be reliable, accurate, relevant, consistent and

timely.
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• After collecting all the data necessary for the study, one needs to check the

nature of that data. A time series plot is the best option for checking if

there are any patterns, like trend, seasonality, cycles and their significance.

Plotting also helps point out outliers if any exist and their meaning. Also the

significance of the relationship between or among the variables studied can

be identified through plotting the data. Data needs to be cleaned first, before

it is used for any analysis in order to have clear quality and completeness.

• Choosing the forecasting approach to use. In case very little data exists, the

product at hand is new in the market, or there is a new competitor, then the

qualitative methods would be better. Otherwise, one needs to choose and fit

models relevant to the data according to its nature. Choosing what models

fit the data best depends on the availability and relevance of historical data.

It is advisable to try and check different potential models before concluding

about the best (Faraway and Chatfield, 1998).

• Lastly, the chosen model’s parameters are estimated and the model is used

to make forecasts. The accuracy of a model is determined either by wait-

ing for actual data for the forecast period to become available then make

comparisons, or by dividing the available data into two sets, one for training

the model and estimating parameters and the other for evaluating the per-

formance of the model. However, for crucial studies like electricity demand,

policy makers might not have enough time to wait for the availability of ac-

tual data before taking decisions for the nation’s development. Therefore, it

is advisable to divide the available data in order to ease the decision making

process.

Electricity demand is affected by different factors in different countries. For exam-

ple, highly industrialised countries have a higher demand for electricity than low

industrialised countries, countries with stable seasonal weather changes, like, win-

ter and summer usually have an almost similar demand for electricity year after

year, in the respective seasons. Other factors affecting electricity demand include;

the supply of electricity, social factors and human activities. Since electricity de-

mand keeps changing continuously in time, we consider it to be a time series set of

data. Therefore, quantitative methods are preferred in making forecasts about it,

specifically, time series techniques, depending on the nature of the available data.
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This study will focus on forecasting electricity demand in two different scenar-

ios; monthly peak demand for Uganda and daily demand for South Africa, using

univariate time series volatility forecasting models. Univariate time series will be

used because of various reasons;

• The available data is univariate because of the absence of sufficiently accurate

data about other independent variables, such as weather changes. For that

reason, we shall follow studies such as Saab et al. (2001) and Price and

Sharp (1986) who found it more appropriate to use univariate forecasting

techniques to reach the objectives of their studies.

• Researchers such as; Huss (1985) and Meese and Geweke (1984), show that

univariate time series can give forecasts that are more accurate for a medium

term period than a variety of other more complex forecasting data sets.

• In addition, since the main objective of the study is to find the best fore-

casting models for both short term (for South Africa) and medium term (for

Uganda) electricity demand, we start with simpler (univariate) time series

models, which can only be used with univariate time series data.

1.2 General discussion

Forecasting the demand of any commodity or service is very important for proper

planning. Considering the electricity sector in this study, prediction of peak load

demand is vital for decision making in this sector. For any economy, it is important

to make accurate predictions in the electricity sector because most of the economic

growth is affected by electricity. Accurate predictions can be made by taking some

factors into consideration, for example, finding the maximum operation capacity

of power plants, say in a month (Sigauke and Chikobvu, 2011). Predicting load

demand is also a vital step to strategic planning for capacity expansion in a way

that, it helps the government decide whether to build another power generation

plant as a way of dealing with an increasing demand and catering for an unan-

ticipated demand. It also helps identify strategies to reduce losses made in the

electricity sector. Accurate prediction of peak load demand also helps determine

consistent and reliable supply schedules during peak periods. It also enables effec-

tive load shifting between transmission substations, scheduling of start up times
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of peak stations, load flow analysis and power system security studies (Sigauke

and Chikobvu, 2010).

Due to changing economic situations in both Uganda and South Africa, and the

unstable weather conditions, the demand of electricity keeps changing in short to

medium intervals. For that reason, precise forecasting of electricity demand should

be carried out for short periods. This helps in proper allocation of the available

limited resources and planning for sustainable development. In this study, we shall

consider both short and medium term forecasting for both data sets, which cover

several days and months upto a year respectively. This is because our interest is

in planning, maintenance and scheduling power supply in the future.

The available Ugandan data is in months and is analysed, modelled and used to

forecast monthly peak demand up to a year ahead. Daily South African data

is divided into two sets; where the training set is modelled and used to forecast

daily demand up to a period compared with the test set. Since the electricity

sector in these developing countries serves different groups of people for different

purposes, for example, home use, commercial use and industrial use, the pattern

of demand keeps changing for the different groups but stays almost constant for

different people in the same group.

Currently around 80% of Uganda’s power is generated by hydro power from 12

power stations with 3 main stations (Bujagali, Kiira and Nalubale with capacities

of 250MW, 200MW and 180MW respectively) and 10 other stations that produce

a total of 65.9MW (Baanabe, 2012). From all the available power stations, Uganda

has a capacity of generating total electricity of about 695.9 MW. However, some

of this electricity is lost through transmission and distribution. In 2009, the peak

demand (evenings) was estimated to be about 380 MW and daytime demand

about 260 MW (Saundry, 2009). If this was a constant demand, Uganda would

not be suffering load shedding currently with all the increase in power supply

through the new power plants. However, since it is a developing country, many

economic changes take place and as a result, the demand of electricity keeps going

up at an estimated average rate of 10% per year (New Vision Website). The

growing demand for electricity and the lack of public and private investments in

power infrastructure projects are major reasons affecting the electricity sector in

Uganda. But also, droughts and increased discharges lower the water level and

lead to significant power losses.
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Most of the information about the current electricity situation in South Africa

is from SAPower (2015). ESKOM is the South African electricity public utility,

established in 1923 as the Electricity Supply Commission (ESCOM) by the gov-

ernment of South Africa in terms of the Electricity Act (1922). It was founded

by a parliamentary act, namely the Electricity Act of 1922, which allowed the

Electricity Control Board to appoint Hendrik Johannes van der Bijl as the Chair-

man of the Board (Conradie and Messerschmidt, 2000). The company was also

known by its Afrikaans name Elektrisiteitsvoorsieningskommissie (EVKOM). The

two acronyms were combined in 1986 and the company is now known as ESKOM,

which represents South Africa in the Southern African Power Pool. ESKOM is;

the largest producer of electricity in Africa, among the top seven utilities in the

world in terms of generation capacity, and, among the top nine in terms of sales

(Vedavalli, 2007). ESKOM operates a number of notable power stations, including

Kendal Power Station, and Koeberg nuclear power station in the Cape Province,

the only nuclear power plant in Africa. The company is divided into Generation,

Transmission and Distribution divisions and together ESKOM generates approxi-

mately 95% of electricity used in South Africa.

Due to the South African government’s attempted privatisation of ESKOM in the

late 1990s, ESKOM’s requests for budget to build new stations were denied. For-

mer president Thabo Mbeki said in December 2007 that this was an error, and it

is now adversely affecting the South African economy (Van Wyk, 2012). In Jan-

uary 2008 ESKOM introduced “load shedding”, planned rolling blackouts based

on a rotating schedule, in periods where short supply threatens the integrity of

the grid. South Africa produces around 240,300 GW/hr (865,000 TJ) electric-

ity annually (SAPower, 2015). Most of this electricity is consumed domestically,

but around 12,000 GW/hr is annually exported to Swaziland, Botswana, Mozam-

bique, Lesotho, Namibia, Zambia, Zimbabwe and other Southern African Devel-

opment Community countries participating in the Southern African Power Pool.

South Africa supplements its electricity supply by importing around 9,000 GW/hr

per year from the Cahora Bassa hydroelectric generation station in Mozambique

via the 1,920 MW Cahora Bassa high-voltage direct current transmission system

(Africa., 2007). Most power stations in South Africa are owned and operated by

ESKOM and these plants account for 95% of all the electricity produced in South

Africa and 45% of all electricity produced on the African continent. In terms of

share of GDP in 2012, South Africa was the 4th largest investor in renewable power

in the world after Uruguay, Mauritius and Costa Rica (Martinot et al., 2005).



Section 1.2. General discussion Page 10

Often when forecasting, a key step is knowing whether it is possible to forecast

a given event accurately or not. Good forecasts capture the genuine patterns

and relationships which exist in the historical data, but do not replicate past

events that will not occur again (Hyndman and Athanasopoulos, 2014). With the

Ugandan data considered in this study, we use demand data from 2008 to 2013.

This is because previous studies, like, Mawejje et al. (2013) show that from 1998,

the average water level in Lake Victoria-which is the main reservoir for the Jinja

Complex-dropped significantly and reached its lowest level in 2005/06, since 1951.

This was because of the extended drought that occurred in Uganda, mainly the

Eastern part, from 2003 to 2006. The water level conditions improved towards the

end of 2006 which increased the supply and hence demand of electricity again. This

is not a genuine pattern and we are not certain of it happening again. Therefore,

we choose to ignore that data because it appears as a random fluctuation that

does not need to be modelled and extrapolated.

The available data from UMEME of Uganda and ESKOM of South Africa shows

monthly peak demand (maximum daily demand in 30-day period) of electricity in

Uganda, measured in Gigawatts (GW), and daily demand (total hourly demand

in 24-hour period) of electricity in South Africa, measured in GW/hr respectively.

The data from Uganda is of limited size, covering a period of 6 years with corre-

sponding months in each year, hence covering a total of 72 months (observations).

However, South African data is rich in quantity, mainly because the levels of data

management differ between these two countries. South African data runs from

1/01/2004 to 28/06/2008, covering a total of 1642 observations. This demand

only includes households and companies willing and able to pay for electricity and

actually have access to it. Data about households and companies willing and able

to pay for electricity but do not have access to it is not included in this study.

We are more worried about the peak demand than the off-peak demand because

when dealing with electricity (its transmission and distribution), the capacity of

any electricity generating plant has to be higher than the peak demand of all the

customers it serves. If it can serve the high demand, it can serve a lower demand.

In this study, we forecast demand of electricity using time series volatility forecast-

ing techniques. These techniques involve using historical data to construct a model

that describes the nature of the data and can be used to make forecasts for the

future. The study of medium-term demand forecasting of electricity began in the

1980’s and since then, various techniques have been developed in the forecasting
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discipline (Rallapalli and Ghosh, 2012). These include; exponential smoothing,

ARIMA, and the recently developed ARCH and GARCH models. From these,

we shall choose the best model that UMEME and ESKOM can use to predict

electricity demand for a specified periods using the data available.

This study is organized in such a way that; Chapter 2 covers the literature stud-

ied in relation to the work done in this study. Some of the work done by other

researchers and the current electricity situation in one of the countries - Uganda.

This gives deeper insight about the significance of the study to developing coun-

tries. Chapter 3 looks at theoretical aspects of time series analysis in detail and all

the relevant information needed to start a forecasting process. It also covers the

preliminary analysis of the data at hand with the necessary adjustments. Chap-

ter 4 studies all the possible linear models given the nature of both data sets. It

specifically tackles ARIMA models that do not focus on the change in the variance

of the data, and their properties. Chapter 5 covers modelling the available data

using ARIMA models and using the developed models to forecast future values.

Then Chapter 6 focuses on a change in variance of the data in detail. These are

called volatility models, mainly the ARCH and GARCH models. Chapter 7 covers

the application of volatility models to the residuals of the chosen ARIMA models.

A conclusion about the whole study is covered in Chapter 8, with the appendices

in the subsequent chapters. In this work, R-Studio software is used for all the

necessary programming required, and the codes are displayed in the appendices.



Chapter 2

Literature review

Since the early 19th century, electricity uses worldwide have expanded from light-

ing only to other uses like; cooking, washing, air conditioning, refrigeration, use of

television and computers. This has gradually made electricity demand forecast-

ing more complicated. Due to these changes, economic and natural factors have

been employed to help make forecasting of electricity demand possible (Hong and

Dickey, 2014). As a result of the oil crisis in the 1970’s, policy makers desired

to know the demand of energy even more. For that reason, many methodologies

were introduced to help policy makers in the energy sectors make constructive de-

cisions. From those methodologies a variety of models were developed which are

now used to analyze and forecast energy demand (Bhattacharyya and Timilsina,

2009), electricity inclusive.

After realizing the continuous increase in electricity demand, developed countries

opted for deregulation which encourages using other power sources like solar and

wind. Through deregulation, users get a variety of options to purchase and use

electricity, for example, the use of panels and turbines. However, the use of these

other sources makes the load forecasting problem harder because the production

of these power sources can not be predicted easily since it mainly depends on the

weather.

The process of forecasting electricity demand is hard for developed countries but

harder for developing countries because of various factors like lack of necessary his-

torical data, inadequate expertise and institutions to carry out the process with

appropriate models. Developed countries mainly face problems like inappropriate

12
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assumptions made by experts while constructing the models. Due to such situa-

tions, the deviation between predicted and actual electricity demand seems to be

a world-wide problem, irrespective of the level of development. In this chapter, we

look at various studies that have been carried out in order to forecast electricity

demand with deviation from the actual demand as minimum as possible.

2.1 Empirical studies

Irrespective of the limitations in electricity forecasting, a couple of recent empirical

studies show that forecasting electricity demand is actually possible using various

methods. These studies include the following:

• Similar to the current study, Yasmeen and Sharif (2014) studied forecast-

ing monthly electricity consumption (EC) for Pakistan. They analyzed the

monthly EC of Pakistan using linear and non linear modelling techniques.

Their emphasis was on ARIMA, Seasonal ARIMA (SARIMA) and ARCH/-

GARCH models. Due to lack of appropriate EC data in a developing country

like Pakistan, they approximated electricity production data for consump-

tion in their study. A series of monthly EC data measured in GigaWatt

hours (GWh) from January 1990 to December 2011 was used. The data

from all economic sectors (industrial, residential, and commercial) of Pak-

istan was recorded by Department of Federal Bureau of Statistics Pakistan.

Time series plots exhibited a significant trend in the data, so they took log

transformations to stabilise the variance and mean. Seasonality was evident

since plots showed higher EC in the months of May, June, July and August,

due to the high temperature in those months.

The data was divided into a training set January 1990-December 2006 (for

training the models) and the test set January 2007-December 2011 (for com-

paring different models). The monthly behavior of forecast values depicted

that EC was higher for summer season and was expected to increase in the

future. The forecast model and forecast values revealed that EC was increas-

ing with time. They evaluated the models by diagnostic tests and compared

the forecast values to select the most appropriate model. The least out of

sample forecast performance; Mean Absolute Percentage Error (MAPE) val-

ues and the minimum forecast standard deviation values showed that among
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the four competing time series models, ARIMA(3,1,2) model was the most

appropriate model to forecast EC in Pakistan.

• Sigauke and Chikobvu (2011) studied the prediction of daily peak elec-

tricity demand in South Africa using three volatility forecasting models;

a seasonal auto regressive integrated moving average (SARIMA) model,

a SARIMA with generalized autoregressive conditional heteroskedastic er-

rors (SARIMA-GARCH) model and a regression-SARIMA-GARCH (Reg-

SARIMA-GARCH) model. They emphasized accurate load prediction for

proper decision making in the South African electricity sector. Their study

took into consideration the fact that for electricity as a good, its demand

can not exceed its supply. This is because, electricity being a non storable

good, there are no market forces influencing its prices. When dealing with

the electricity market, the normal “buy-and-hold” theory for determining

prices (as used for other goods) becomes irrelevant. Therefore, the number

of power plants determine the supply which in turn determines the demand.

If there is limited supply, say, few power plants available to produce electric-

ity for current consumption and the unforeseen demand, the demand will

automatically have to go down. If in any case demand ever exceeds sup-

ply, some areas in the country do not receive power and this might cause a

system-wide blackout. In order to avoid this, last resort intervention policies

are used like load shedding.

Data used in the study was about the net energy sent out (NESO), which

was defined as the rate at which electricity is delivered to customers and was

measured in megawatts (MW). The data was in form of daily peak demand

(the maximum hourly demand in a 24-hour period) from 1st January 1996

to 14th December 2009 with 5097 observations. They preferred daily peak

demand data because their interest was in making shot-term forecasts. It

excluded data on demand of those willing and able to pay for electricity but

could not access it at the time of the study. After analysing the data, multiple

seasonality was evident, corresponding to weekly and monthly periodicity.

Since the data was short-term, frequent fluctuations led to non-zero mean

and non-constant variance. Therefore, they applied volatility models, and

GARCH was given preference. The developed models were also used for

out of sample prediction of daily peak demand and concluded that the Reg-

SARIMA-GARCH model produced better forecast accuracy with a mean

absolute percent error of 1.42%.
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• Another similar study was done by Ghosh (2008). They studied the monthly

peak demand of electricity in the northern region of India, using univariate

time series techniques. Two univariate models were applied in this study;

Multiplicative SARIMA (MSARIMA) model and Holt-Winters Multiplica-

tive Exponential Smoothing model (H/WMES). Originally, their focus was

on studying non stationary homogeneous ARIMA models with seasonal vari-

ations and general multiplicative seasonal models. This was because most

monthly demand data is faced by seasonal variations which cause non sta-

tionarity. For exponential smoothing, they preferred the H/WMES because

it is more appropriate when it comes to data with seasonal variations.

The data used in their study was collected from the Northern Regional Load

Dispatch Center (NRLDC) website and was measured in Megawatts (MW).

It covered a period between April 2000 and February 2007 and was used to

make forecasts for the next 15 months. They also divided their data into 2

sets, the first one was from April 2000 to April 2006 and the second covered

May 2006 to February 2007. Since they studied a very highly weather sensi-

tive region, they used weather related variables to forecast the peak demand.

After finding the error differences, root mean square error (RMSE), mean

absolute error (MAE) and mean absolute percentage error (MAPE) were

calculated. Using the AIC and RMSE, the MSARIMA model gave better

results than the H/WMES model. However, finding out which technique

worked best was so general and they narrowed it down using the Box and

Jenkins methodology. This helped them identify the most suitable ARIMA

model. They found that SARIMA (2, 0, 0)(0, 1, 1)12 was the best model to

explain the monthly peak demand of electricity according to the data they

had, and make appropriate forecasts. Results of the study were meant to

help NRLDC make necessary arrangements to meet the future peak demand

of electricity in Northern India.

• In their study, Kesavabhotla and Babu (2012) used Statistics, operations re-

search and computer programming to discover and communicate meaningful

patterns in data. This is commonly known as analytics. These techniques

were used to forecast day-ahead electricity demand. The study investigated

the application of ARMA and GARCH modeling techniques to fit the his-

torical data and estimate the coefficients to predict the day-ahead electricity

demand. R-Programming was used to fit the models. The data popula-

tion of 375 observations from daily electricity demand of Andhra Pradesh
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State, India between 2005 and 2006 was considered. To identify and fit the

model, 365 daily electricity observations of 2005 were used for sampling and

forecasting 10 days-ahead electricity demand. 10 observations of 2006 were

considered for comparing the predicted electricity demand. The fitted model

could be applied to all the other years for validation. The preliminary data

analysis consisted of the average daily load in each year, year on year change

in average daily load, minimum daily load in each year, and maximum daily

load in each year.

The ARMA(1,1) model gave predictions of day-ahead electricity demand

with 80− 95% confidence bounds for short duration. However the assump-

tion of constant variance of residuals is not true in reality for various rea-

sons. Therefore, the residuals of ARMA(1,1) were tested for autoregressive

conditional heteroskedasticity (ARCH) effects using McLeod and Ljung-Box

tests. The GARCH(1,1) model was identified, whose coefficients were es-

timated in order to use the model for prediction of conditional variances.

From the results it was concluded that it is always a good practice to test

the volatility of the errors after fitting linear models to the data. This helps

to improve the accuracy of predictions. Non linear issues of errors can be

handled appropriately through GARCH models which provide flexibility to

coexist with other models. The combination of ARMA and GARCH models

gave accurate forecasting in high volatility scenarios.

• An application of the linear models applied in this study was carried out by

Kumar and Anand (2014). They used time series ARIMA forecasting models

to predict sugarcane production in India. ARIMA models, also commonly

known as Box-Jenkins’ models were used in the study because they work

best when forecasting single variables. The main reason for choosing ARIMA

models for forecasting was because these model have the capabilities to make

predictions using time series data with any kind of pattern, and assume and

take into account the non-zero autocorrelation between successive values of

the time series data. Sugarcane was chosen because, apart from Brazil,

India has the largest sugar production capacity in the whole world. Data

covering a period of 62 years of sugarcane production was used to predict 5

years ahead. The data was taken from the Department of Agriculture and

Cooperation (DAC) in India, from 1950 to 2012.
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After modelling and analysing the data, an ARIMA(2,1,0) was chosen as

the best model explaining the patterns of the data perfectly. Further, efforts

were made to forecast, as accurate as possible, the future sugarcane pro-

duction for a period upto 5 years. Forecast results showed that the annual

sugarcane production would grow in 2013, then take a sharp dip in 2014 and

in subsequent years 2015 through 2017. It would then continuously grow

with an average growth rate of approximately 3% for the following years.

The study statistically tested and validated that the successive residuals in

the fitted ARIMA time series were not correlated, and the residuals seem to

be normally distributed with mean zero and constant variance. In conclu-

sion, the selected ARIMA(2,1,0) was an adequate predictive model for the

sugarcane production in India. Although, like any other predictive models

in forecasting, ARIMA also has limitations on accuracy of predictions yet it

is used more widely for forecasting the future successive values in the time

series.

• Saab et al. (2001) modelled and forecast electricity consumption in Lebanon

using univariate approaches. Three univariate techniques were used to model

and forecast EC; autoregressive (AR), ARIMA models and a combination

of an AR(1) with a high pass filter (AR(1)/HPF). The main aim of their

study was to investigate different univariate models and use them to forecast

one month ahead electricity consumption in Lebanon. The interest was in

identifying a forecasting method that would perform best on the unusual data

that was available. This was a vital study because electricity had become

the main source of energy in all the economic sectors of Lebanon. It was

critical to forecast demand in order to help in the development of that sector

and the country at large.

Monthly average EC data was used, covering January 1970 until May 1999.

A time series plot revealed evident non continuous behaviour between Jan-

uary 1975 to December 1989. This was attributed to the civil war that took

place during that time in Lebanon. However, since this civil war brought

about random fluctuations in the power sector, which caused a non genuine

pattern in the consumption, data during that period was ignored. There

was uncertainty about the war happening again, therefore, data used run

from January 1990 to May 1999. Due to the odd stochastic characteristics

in the data, an adequate model was vital to carry out the forecasting exer-

cise. A non linear deterministic model was used to represent the trend in the
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data after the war, since from the ACF plot, the data was a non-stationary

random process.

After the analysis, there were insignificant almost uniform correlations in

the ARIMA model, for all the positive lags, with the 39th lag having a 0.057

standard deviation and maximum correlation of 20.155. For the AR(1)/HPF

model, there were diverse correlations in all positive lags, with the 4th lag

having 0.09 standard deviation and 20.32 maximum correlation. Since it is

necessary for residuals to be statistically uncorrelated for a reliable ARIMA

model, and there were uncorrelated residuals for both the ARIMA and

AR(1)/HPF models, the ARIMA model was ideal enough. Assessment of

each of the models was performed using sum of absolute errors (SAE), per-

centage mean absolute error (PMAE), sum of squared errors (SSE) and

the percentage mean squared error (PMSE). Model performances were com-

pared with the actual values and this resulted into better forecasts for the

AR(1)/HPF model, as compared to both the AR and ARIMA models.

• In Rallapalli and Ghosh (2012), a study to forecast monthly peak demand

of electricity was carried out. Similar to Ghosh (2008), this study was about

India which is a developing country with a great need to accurately fore-

cast demand in the energy sector using advanced forecasting methods. Due

to the level of development in this country, there is a scarcity of resources.

Therefore, India does not need to poorly invest in the electricity sector be-

cause it will affect the investments in other developmental activities, but still

under estimation will cause electricity shortages. That is why proper fore-

casting is necessary for proper planning and sustainable development. Since

all the forecasts made in India by the Central Electricity Authority (CEA)

were usually over estimated because of poor techniques, this study tried to

predict the same demand using MSARIMA model.

An ARIMA model was considered, which was divided into the non station-

ary homogeneous models with seasonal variations and general multiplicative

seasonal models. Data about the peak demand (measured in MW) of all the

regions in India (north, west, east, south and south-east) for the period of

April 2005 to March 2011 was collected from CEA. An adequate represen-

tation of the data through a model was important, that is why an ACF and

PACF were used to determine the stationarity of the data and identify the
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possible values of the regular part of the model. Point estimates of the coeffi-

cients of the model using the Maximum Likelihood Estimation method were

then obtained in order to identify the seasonal part of the model. According

to the standard errors of these coefficients, the most insignificant coefficients

were dropped off from the model. The AIC information criterion and RMSE

were used to identify the best model explaining the data, and an inspection

of the model residuals for any remaining autocorrelation was carried out.

Model performance of both the MSARIMA model and the trend model used

by CEA was evaluated, using RMSE, MAE and MAPE. Errors generated

by the MSARIMA model were much smaller than the CEA trend model

errors. For clarity, forecasts for the period April 2011 to July 2011 were

calculated and compared with the CEA actual peak demand data at its

time of publication. MSARIMA results were still doing better in all the

five regions of India. CEA was advised to use some of the modern and

more accurate forecasting techniques like MSARIMA, ARIMA-EGARCH,

Exponential Smoothing, Vector Auto Regression and Neural Networks.

• In a case study of Dubai, Roken and Badri (2006) studied forecasting monthly

peak load demand using time series models. In this study, an attempt to

develop, test, and recommend reliable and accurate models of forecasting

monthly peak load was carried out. Different time series models were devel-

oped to provide forecasts as accurate as possible. The univariate time series

models used in the study include a variety of complex techniques, such as

exponential smoothing, Box-Jenkins (BJ) and dynamic regression. The ob-

jective was to produce short term monthly forecasts of one year ahead by

analysing the behaviour of monthly peak loads. The study was carried out

using Dubai data alone because other emirates refused to provide timely

data for reasons of confidentiality and secrecy.

Data was used in two portions; for evaluation and validation of the perfor-

mances of the models. Comparisons for how well the historical and forecast

data for the holdout period matched and correlated were also carried out.

Such efforts reflected how the recommended models captured most of the

characteristics of the data. Monthly electricity peak load data from January

1985 to March 2007 was provided by the Dubai Electricity and Water Au-

thorities (DEWA). In total, there were 267 cases available between 1985 and
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2007. The data ranged from 296MW (January-1985) to 4113MW (August-

2006) with a mean of 1395MW and a standard deviation of 862.3679MW.

From the time series plot of the data, there existed patterns of seasonality

and trend. Demand was highest in July and August and lowest in January

and February. A trend line equation was drawn, whose slope was estimated

as 9.6643. This indicated a strong upward trend.

The process utilized in the study followed 7 main steps; Obtaining time se-

ries data, performing initial data screening to identify trend and seasonality,

performing trend and seasonality analysis to identify data features, selecting

time series models to use, analysing and obtaining results for each model with

model performance statistics, performing out-of-sample diagnostics and va-

lidity tests, and lastly, recommending the final model. Through this process,

different models were recommended; Winters exponential smoothing (linear

trend with multiplicative seasonality) and Box-Jenkins ARIMA model with

root transform [(1, 1, 1) ∗ (0, 1, 1)].

The recommended models passed a sequence of stringent diagnostic tests,

including comparing outputs with selected holdout samples. A comparison

of the performance of the recommended models with those of electric au-

thorities showed that the recommended model had better diagnostic results

with the actual hold-out-sample. In conclusion, the developed model was

recommended not only to the Dubai monthly peak-load data, but also to

other data sets displaying seasonality and trends. Given the similar climatic

conditions in other regions of the country, the method and process used in

the study can be reasonably generalized.

2.2 The electricity situation in Uganda

Uganda is a developing country in the eastern part of Africa, with agriculture as

its main economic activity. It is an electricity deficient country and the electricity

sector operates at bare capacity margin. Uganda fulfills its energy requirement

through different sources, which include oil, coal, gas and firewood. In 1999 the

government of Uganda embarked on the most extensive power sector reform pro-

gram all over Africa, in order to deal with the power crisis (Mawejje et al., 2013;
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Wamukonya, 2003). This reform and privatization policy resulted in the sepa-

ration of the Uganda Electricity Board (UEB) into generation, transmission and

distribution successor companies (Keating, 2006; Turkson and Wohlgemuth, 2001).

Electricity Regulatory Authority (ERA) is a statutory body established in 2000 in

accordance with the Electricity Act 1999 to regulate the generation, transmission,

distribution, sale, export and import of electrical energy in Uganda. Functions

performed by this body as listed on the ERA website include; guiding the lib-

eralization of the electricity industry, managing licensing, rates, safety and other

matters concerning the electricity industry. ERA also supervises all licensed com-

panies within the electricity sector to ensure they comply with the Electricity Act

1999 and Regulations thereto, and to safeguard all stakeholders’ often competing

interests. In performance of its functions, the authority ensures that electricity

companies comply with the conditions of their licenses and protects the interests

of electricity consumers in respect to prices, charges and other terms of supply

of electricity and the quality, efficiency, continuity and reliability of the supply

services (Mawejje et al., 2012).

Uganda Electricity Transmission Company Limited (UETCL) is a Public Limited

Company which was incorporated on 26th March 2001. The company operates

under policy guidance of the Ministry of Energy and Mineral Development. It is a

public limited liability company owned by the Ministry of Finance, Planning and

Economic Development. It has the operational mandate that is divided into the

single buyer business and transmission system operator. It therefore undertakes

bulk power purchases and sales, import and export of energy, operation of the high

voltage transmission grid and plays the national system operator role (UETCL

website).

Uganda Electricity Distribution Company Limited (UEDCL) is a limited liability

company incorporated under the Companies Act and started operating on 1st April

2001. UEDCL is one of the successors of the Uganda electricity board and the

owner of the electricity distribution network up to 33KV, as shown on the UEDCL

website. The network was handed over to UMEME limited on the 1st march 2005,

under a concession arrangement (Mawejje et al., 2012). The concession involved

UMEME and other parties entering into a number of agreements, for example,

the power sales agreement with UETCL and licenses for electricity distribution,

supply, and embedded generation by ERA.
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For Uganda to attain its development goals, the available resources need to be

utilised sustainably. One of the most important sectors for a developing country

like Uganda is the energy sector. Therefore, the ability to predict, plan and manage

demand in this sector is very vital for the development of the country. Until

July of 2012, the country was undergoing a deficiency in power supply. This

was especially during the peak hours (evenings) where demand was 443MW yet

supply was 330MW (New Vision Website). Peak demand in Uganda is in the

evening because some medium scale industries usually extend their work till late

evening hours whenever electricity is available. Likewise, during that time, people

are free to do their leisure activities after a long day of work. The construction

of the Bujagaali power plant increased the supply by 250MW and as a result,

the demand of electricity increased aggressively (Baanabe, 2012). The increase in

power supply was expected to enhance economic activities and reduce most of the

expenses incurred while using generators.

From electricity demand forecasts made by UMEME, the future demand was sup-

posed to be settled at least within the next 24 months by the surplus electricity

that was produced, without any load shedding (Skyscrapercity). However, because

of the escalated investments in industries whose activities heavily rely on electric-

ity and increase in operation of industries that were originally under-producing,

like China’s Tiang Tang Steel factory, the forecasts made earlier have become irrel-

evant. The overall energy consumption in Uganda has increased exponentially in

the previous years, as stated by New Vision Website, where the chief of ERA, Dr

Benon Mutambi, was quoted saying “although the electrification rate in Uganda is

still low, the demand of electricity is currently increasing at a rate of 10% per year,

compared to the previous years”. Therefore, alternative power generating sources

need to be established in the country to take care of the increasing demand. By

the end of 2012, UETCL’s statistics section found out that the peak demand had

increased from the previous 443 MW to 487 MW in a very short time because of

the economic activities that were increased (Skyscrapercity).

According to the Uganda Investment Authority (UIA), the favourable investment

climate in Uganda has led to increased industrialization (Odenthal et al., 1999).

Likewise, local commercial and agro-processing businesses are on a rise and in

order for them to produce goods of standard quality and value, they will need

electricity. This means a high increase in electricity demand, yet there are no

profound strategies for significantly increasing supply. Therefore, to create an
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even more favourable environment for these investments, adequate, affordable and

reliable electricity should be available. The National Development Plan (NDP)

identified low electricity generation transmission and distribution capacity as the

main limitations faced by the electricity sector and suggested that construction of

larger power plants would be the first intervention strategy (New Vision Website).

Uganda’s manufacturers and traders in the industrial sector were relieved from

the problem of load shedding and using generators after the construction of the

Bujagali hydro power dam. By the end of 2013, ERA recorded statistics of around

500MW of peak demand, yet the total capacity of the available power plants was

682MW (Emma Onyango). This proved the fact that peak demand kept increasing

at a 10 − 12% rate annually. Due to the threatening increase in the demand

of electricity, the Government of Uganda, through the Ministry of Energy and

Mineral Development signed a contract with a Chinese company called Sinohydro

to construct a 600MW dam at Karuma falls towards the end of 2013 and it is

anticipated to be completed after a period 60 months (Mawejje et al., 2013). For

the same cause, another 183MW power plant is under construction at Isimba falls

in Kamuli District. This contract is also with a Chinese company called China

International Water and Electric Corporation (CWE) and it is expected to take

40 months.

The former Prime Minister of Uganda Mr. J. P. Amama Mbabzi also launched a

nuclear power generating program which he said would help in sustainable devel-

opment (Uganda). This contract is with the International Atomic Energy Agency

(IAEA) and was signed towards the end of 2013. Mr. Mbabazi’s reason for the

launch of the program was to attract more investment opportunities that the

country needs, which he said would not be possible without proper infrastructure,

most especially electricity. In an article by Emma Onyango, Dr Mutambi was

also quoted talking about two heavy fuel oil-based plants of 100MW reserved in

Tororo and Namanve that are able to meet the growing demand for some time.

He however said that these two renewable energy sources can only be used as last

resort because they incur a high maintenance cost. Dr. Mutambi talked about

the policies currently being undertaken by ERA like the Global Energy Transfer

for Feed-in-Tariffs (GETFiT) scheme, which acts as an incentive for investors to

embark on renewable energy projects to produce energy.

The first time ERA sent out bids for the GETFiT, a capacity of 83.7MW from

eight renewable energy projects was realized. These projects were meant to start in
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2014 and go for either two or three year. Bids equivalent to a capacity of 67MW

were established towards the end of the year 2013 from which more renewable

energy projects are expected to qualify for the GETFiT premium. ERA has also

taken a step in the direction of solar energy as a remedy to solve the increasing

electricity demand with limited supply. During the first half of the financial year

2013/14, five permits were given to different companies to study the anticipated

development of solar photovoltaic power of 99MW which would supply different

parts of the country.

More projects of 50MW from solar photovoltaic are expected to be commis-

sioned by mid-2015. Five other permits were issued for prospected development

of 33.7MW of small hydro power plants, ERA also extended the duration of three

permits for the prospected development of 36.2MW from renewable energy. All

these power sources are aimed at increasing the power generation capacity hence

increasing power supply. However, not knowing the demand for which supply

is increasing is another problem. Therefore, the first step to these strategies is

knowing how much electricity is demanded and all the relevant information nec-

essary to affect the supply of electricity. This means having accurate electricity

demand forecasts made if the electricity sector is to meet and adequately supply

the demand of the country.

Given that Uganda is a developing country, the process of forecasting its future

electricity demand is more complicated because of various factors like; poor per-

formance of the energy sector, poor infrastructure and denial to transform from

traditional to modern energy sources. In addition to those factors, it is hard to

estimate demand for the whole country since it is divided into different economical

and social classes. There is a fast growing urban sector co-existing with a rural

“dormant” sector. Rural areas are characterized by informal economic activities,

unemployment or semi-employment, more itemized than monetized transactions

and either low payments or payment in kind as rewards of work. This division

leads to a non uniform level of industrialization in the country, which results into

non uniform changes in the economic structure of the country as a whole.

In their study, Bhattacharyya and Timilsina (2009) note that due to the existence

of the rural sector and the use of traditional energy sources, developing countries

have “incomplete markets” whose prices are hard to determine, hence complicating

output and income distribution, irrespective of the existing supply and demand.

This makes it hard for policy makers to find solutions to the problems existing



Section 2.2. The electricity situation in Uganda Page 25

in such countries, since the common neoclassical paradigm can not be applied

(Herr et al., 2009). Changes in social factors like technology and fuel consumption

in developing countries are important dynamics for determining future energy

demand, since they have an effect on the environment and the sustainability of

the economy as a whole. It is always wise to incorporate such dynamics when

modeling the transition of these countries.

Due to poor policies and wrong investment decisions, developing countries suffer

from electricity supply shortages. This means that not everyone who demands

for electricity is supplied. Therefore, the recorded consumption data does not

exactly represent actual demand because there is a portion of demand that is not

supplied. This means that market forces of supply and demand are distorted, so

the market does not freely clear up. The big difference in income level also leads to

inequality in the consumption of electricity. This discourages the put up of social

policies which in the end results into losses in the energy sector. The costs of

distributing electricity in all regions of the country are the same but the recovery

from rural regions is usually low. This leads to low profit inflows into UMEME,

which results into low financial performance, leading to a reduction in capital for

more investments hence reducing the capacity to supply electricity even more.

In reality, it seems “impossible” to forecast electricity demand in a developing

country given all constraints discussed in this section. That is why, this study

concentrates on finding a model that will help make forecasts as accurate as pos-

sible, given the available data.



Chapter 3

Theoretical aspects of time series

analysis

Time series analysis is used to either model randomness in a given data series or

forecast future values basing on observed historical data. Time series data can

be from any field, but is more often collected when monitoring industrial and

corporate business processes (Chukwukelue et al., 2013). This chapter gives a

brief overview of some of the basic tools and concepts used to model and analyse

time series data. Areas covered include; describing different features and patterns

of time series data, transformations, differencing, autocovarinace, autocorrelation

functions (ACF) and Partial Autocorrelation Functions (PACF) in detail. It also

covers preliminary analysis of electricity demand data from both Uganda and

South Africa. Concepts in this chapter are useful for reference purposes in the

following chapters.

3.1 General description of time series data

A time series is a sequence of data ordered in uniform time intervals. An example

of time series data is monthly electricity demand observed over many years. It

is also called a historical or chronological series (Chavez et al., 1999). Univariate

time series analysis involves using data about a single variable to build a model

that describes the behaviour of the variable in the past. Basing on the built model,

satisfactory forecasts for the future are ably made. Since the analysis of time series

data depends on what is observed in the past about a specific variable, it becomes

26
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more difficult to analyse this type of data as compared to other data types. The

element of correlation within the data has to be taken into consideration.

Suppose we have a series of N observations for a variable X observed over time;

X1, X2, · · · , XN and want to forecast its value at time N +h. Denote the forecast

as X̂N(h), where;

• X̂ is the forecast of X.

• N is the base time at which forecasting is done.

• h is the time horizon which shows how far ahead the forecast covers.

If the forecast X̂N(h) is a future value calculated using a model developed from

all observations up to period N , then it is called an out-of-sample forecast. The

problem with out-of-sample forecasts is that their accuracy can not be evaluated

until real observed data for the initially forecast time horizon is available. Alter-

natively, if the used model is developed from all the available data and it is used

to forecast a value within the available data, then the resultant forecast is called

an in-sample forecast. The accuracy of an in-sample forecast can be evaluated

but it is usually not genuine because the data used to develop the model is the

same data used to test it (Chatfield, 2002). A better way of dealing with time

series data for forecasting is to split the series into two parts. The first part is

called the estimation/training sample and it is used to estimate the starting values,

smoothing parameters and also train the model. It usually contains (75− 80)% of

the observations, depending on the size of the series. The remaining (20 − 25)%

makes the test sample, which is used to check the performance and accuracy of

the forecasting model (Hyndman and Athanasopoulos, 2014).

Time series analysis covers two types of quantitative forecasting, namely, uni-

variate (analysing historical data of a single series) and multivariate (analysing

historical data of more than one variable). Before carrying out a forecasting ex-

ercise, one needs to know the features of the data available in order to choose

the right model to fit to the data. The easiest way to do this is to make a time

series plot with observations against time. Using the time series plot, features

like trend, seasonality, outliers, changes in structure, turning points and sudden

discontinuities are easily observed.
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3.2 Components of a time series

Time series processes generally contain two different types of variation, namely,

the systematic variation (trends, seasonal, cyclic, that we would like to capture

and model), and the random variation (inherent background noise in the process).

3.2.1 Seasonal component

This type of variation generally repeats itself at fixed intervals within a year, for

example, weekly, monthly or quarterly. During these intervals similar patterns of

behaviour are observed. Seasonality exists when a series is influenced by seasonal

factors and is usually predictable. It always happens during a fixed and known

time interval. However, if a time series is measured only once per year, detecting

seasonality might be complicated (Chatfield, 2002).

3.2.2 Cyclic component

This pattern exists when the data series exhibits rises and falls that are not of

fixed periods (Bhar and Sharma, 2005; Jebb et al., 2015). The duration of these

fluctuations is usually of at least 2 years. Cyclic variations are regular in nature

and often occur in periods of more than one year. Cyclic patterns are common in

economic and business data where declines or growths can happen over a period

of time, say, five years but the duration is not known beforehand. The main

difference between cycles and seasons is that; if the changes are not of fixed period

then they are cyclic. Otherwise, if the period is constant and associated with some

aspect of the calendar, then the pattern is seasonal (Hyndsight Website).

3.2.3 Trend component

A trend exists when a series exhibits steady upward or downward movement over

a long period of time. This movement can either be linear or non-linear. It is

defined by Chatfield (2002) as the long-term change in the mean level per unit

time. If a time series does not show an increasing or decreasing pattern then the

series is stationary in the mean. A trend is usually caused by long term factors
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affecting the variable under study, for example, population growth, price inflation

and general economic changes.

3.2.4 Random component

This is also called the irregular fluctuation. It is the variation left in a data series

after removing all systematic effects, like, trend, seasonality and cycles. Random

effects are changes in data caused by non-recurring factors, for example, tsunamis,

earthquakes. These effects are completely random and unpredictable. In other

wards, they can not be forecast. During a forecasting exercise, the main objective

is to model all the systematic components until the only unexplained component

is the irregular fluctuation.

Time series plots showing some of the different time series patterns are shown in

Figure 3.1 (Hyndman and Athanasopoulos, 2014).

Time series data features

Figure 3.1: Top-left corner shows seasonality, top-right corner shows a down-
ward trend, bottom-left corner is an upward trend and bottom-right corner is

a random fluctuation.
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In this study, we focus more on the trend component because of the nature of the

data. Originally, trend was statistically defined as (Chatfield, 2002);

Tt = α + βt, (3.1)

where; Tt is the trend at time t, α is the intercept, and β is the slope.

Equation 3.1 is called a simple linear global trend model which shows that trend

does not depend on time. However, recent studies show that trend is better mod-

eled with an effect of time, for example, studies by Chatfield (1996) and University

of South Carolina include local α and β which evolve through time. This results

into a trend model

µt = αt + βtt, (3.2)

where; µt is the local mean level at time t, αt is the local intercept, and βt is the

local slope.

Equation 3.2 is called a simple local linear trend equation which considers the fact

that parameters α and β change over time. This type of equation is preferred to the

classic global liner trend equation because models developed from it (equation 3.2)

produce more realistic results when applied to real data (Chatfield, 2002). There

are other types of trend which will not be discussed in this study, for example,

quadratic and logarithmic.

3.3 Stationarity

A time series is said to be stationary if there is no systematic change in mean

and variance. In other words, the properties of the data are much more uniform

throughout all sections of one series. In simple terms, a stationary time series

will have no predictable patterns in the long run. Therefore, a series with trend

and seasonality components is not stationary because these components affect the

value of the series at different times of observation (Hyndman and Athanasopoulos,

2014).

A time series is said to be strictly stationary if the joint distribution ofXt1 , Xt2 , ..., Xtn

is the same as that of Xt1−k, Xt2−k, ..., Xtn−k for all time periods t and all time lags
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k (Shumway and Stoffer, 2010; Washington et al., 2010). Shifting the time origin

by an amount k has no effect on the joint distributions, which must therefore

depend only on the intervals between t1, t2, ..., tn. This means that for a strictly

stationary process, the mean, E(Xt) = E(Xt−k) = µ and variance, var(Xt) =

var(Xt−k) = σ2 = γ(0) are constant throughout time. Likewise, the covariance be-

tween any two observations depends only on the time lag between them; γ(t, t−k)

depends on k only. A series is said to be second order stationary if both the

first and second order moments do not depend on time and both the covarinace

and correlation are functions of the time lag only (Reinert, 2002). Second order

stationarity is also called weak stationarity.

Majority of time series analysis methods can easily be applied to stationary time

series. Therefore, it is always important to know whether the data at hand is

stationary or non-stationary before any further analysis. If not stationary, one is

required to use appropriate transformations to achieve stationarity. Testing for

stationarity helps to find out if there is any correlation that needs to be dealt with

and determining which model best suits the data. Different methods can be used

to test for staionarity, for example, software like the unit root test or Augmented

Dickey-Fuller (ADF) test, Kwiatkowski-Phillips-Schmidt-Shin (KPSS), plotting

an ACF, and a time series plot as well.

Stationarity is primarily violated when the mean of a series changes, especially in

a trendy manner (Maradiaga et al., 2013). There are two popular approaches for

non stationary series with a trending mean;

• Trend stationary: In this case, the mean trend is deterministic. Once the

trend is estimated and removed from the data (using regression), the residual

series is a stationary stochastic process (Clements et al., 2001). Effects of

shocks in series with a deterministic trend are always eliminated in the long

run. As a result, forecast intervals from this approach have constant width.

• Difference stationary: Here the mean trend is stochastic. Differencing the

series yields a stationary stochastic process. Time series with a stochastic

trend have forecast intervals that grow over time and their shock effects are

permanent (Franses, 1998; Heij et al., 2004). Unit root tests work well when

assessing the presence of a stochastic trend in any observed series.
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A non stationary series can be transformed to become stationary through different

ways, for example, detrending (using regression to fit the trend), taking logs (sta-

bilize the variance of the series), differencing (to stabilize the mean of the series

by eliminating trend and seasonality) and using moments.

3.4 Differencing

Differencing is a special type of filtering used to remove trend from time series

data until stationarity is achieved. Suppose we have a stochastic process {Xt}.
The first difference ∇Xt is defined as;

∇Xt = Xt −Xt−1. (3.3)

This means the second difference ∇2Xt is defined as;

∇2Xt = ∇(∇Xt) = ∇(Xt −Xt−1), (3.4)

= (Xt −Xt−1)− (Xt−1 −Xt−2), (3.5)

= Xt − 2Xt−1 +Xt−2. (3.6)

In general, the dth difference process (∇dXt) is defined as;

∇dXt = ∇d−1(∇Xt), (3.7)

= ∇d−1Xt −∇d−1Xt−1 ; d = 1, 2, · · · (3.8)

In most cases, when dealing with real data, instead of fitting a stochastic model to

a non stationary series to remove the linear trend, preference is given to taking the

first difference and examining the results for stationarity. One advantage of differ-

encing over detrending is that no parameters are estimated in taking differences.

However, differencing does not provide an estimate of the error process. Therefore,

if an estimate of the error process is crucial, detrending may be more appropriate.

Otherwise, if the goal is only to make the data stationary, then differencing may

be preferred (Shumway and Stoffer, 2010).

Taking first differences removes a linear deterministic trend. However, if the data

exhibits a quadratic trend, then it is necessary to take the second difference in



Section 3.5. The autocovariance and autocorrelation functions Page 33

order to remove that trend. It is not so common to take third or higher order

differences when dealing with real data (Chatfield, 2002).

3.5 The autocovariance and autocorrelation func-

tions

Assume moments are taken on a series {Xt};

MN = E[X − (E(X))N ]. (3.9)

In studies like Reza (1961) and Press et al. (1992), it is indicated that the first

order moment about the origin is the mean E(Xt) of the data and the second

order moment about the mean is the variance Var(Xt) which is mathematically

the same as the covariance Cov(Xt, Xt). Generally, the second order moment is

the covariance between variables Xt and Xt−k, which becomes the variance when

k = 0. Such a type of covariance in a series between current and lagged values is

called autocovariance, and it is usually represented by γ (Wang and Jain, 2003;

Wei, 1994). The autocovariance function at lag k, γk is expressed as;

γ(k) = Cov(Xt, Xt−k), (3.10)

= E[(Xt − E(Xt))(Xt−k − E(Xt))]. (3.11)

In order to understand how a variable of interest is related to its own past ob-

served values, one can use the autocorrelation (or serial correlation ρ). In simple

terms, autocorrelation explains the correlations between values of a random pro-

cess at two different times, as a function of those two time points (Haag, 2005).

Autocorrelation is preferred to autocovariance when interpreting results because

autocovariance depends on the units of measurement of the variable under study

(Scheaffer and Young, 2009). Autocorrelation is usually measured on a scale of

−1 to 1. The autocorrelation function (ACF) at lag k is expressed as;

ρ(k) = Corr(Xt, Xt−k) =
Cov(Xt, Xt−k)√

Var(Xt)Var(Xt−k)
=⇒ γk

γ0
. (3.12)
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For a stationary process,
√

Var(Xt)Var(Xt−k) = σ2 because var(Xt) = varXt−k,

ρ(k) = ρ(−k), ρ(0) = 1, and |ρ(k)| 6 1.

A partial autocorrelation function (PACF) is another indicator of correlation. It

measures the relationship between observations Xt and Xt−k after removing the

effects of the other time lags; 1, 2, 3, · · · , k − 1 (Vivanco, 2008). This means the

first value of the PACF is identical to the first value of the ACF because there

is no lag whose effect should be removed. The PACF, which is also called the

conditional correlation function is expressed as;

φk = Corr(Xt, Xt−k|Xt−1,··· ,Xt−k+1
). (3.13)

The ACF and PACF can be used to determine whether the data is stationary or

not, and to identify the best model to fit to the data. When testing for stationarity,

the ACF plays a vital role. If a series is stationary, the ACF drops to zero relatively

quicker than that of a non-stationary series, which shows a slower decay and longer

tails. For model identification, the PACF is used to identify an autoregressive (AR)

process. If plotting a given data set shows a sharp cut off in the PACF and a slower

decay in the ACF, then we can conclude that the series is more of an AR process.

The lag at which the PACF cuts off indicates the order of the AR process.

On the other hand, if the ACF of a differenced series shows a sharp cut off and

the autocorrelation value at the first lag is non negative, then we can conclude

that the series has a moving average (MA) component in it. The lag at which the

ACF cuts off indicates the number of MA terms to be considered when building

the model. For example, for an AR(1) process, the ACF declines in geometric

progression from its highest value at lag 1, while the PACF cuts off abruptly

after lag 1 (Chramcov, 2011). The opposite pattern applies to an MA(1) process,

where, the ACF cuts off abruptly after lag 1 and the PACF declines in geometric

progression from its highest value at lag 1. Table 3.1 can be of good importance

when choosing appropriate values of p and q using the PACF and ACF.

AR(p) MA(q)
ACF Tails off Cuts off after lag q

PACF Cuts off after lag p Tails off

Table 3.1: Relating the ACF and PACF to the AR and MA processes.
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3.6 Transformations

Transforming data means performing the same mathematical operation on each

piece of the original data (McDonald, 2009). Many common methods of analysis

assume that the amount of variability in a time series is constant across time, which

is not always true. When dealing with non stationary time series, it is important

to transform the data first before any further analysis. For example, if there is

clear evidence of non constant variance over time, then a suitable transformation

to the data might remove, or reduce the impact of, the non constant variance

pattern.

A situation in which the variability of a time series is unequal across time is called

heteroscedasticity (de Carvalho et al., 2014; Rubliková and Hill, 2006). In case the

time series plot of the data displays a change in variance, then a transformation is

necessary prior to the main analysis. Transforming the data helps to stabilise the

variance thereby making the series homoscedastic. A transformation may also be

helpful in making the data more normally distributed, especially if the observations

appear to be skewed to some direction (Monsen and Van Horn, 2007). Likewise, if

the seasonal effect in the data appears to be multiplicative, it would be desirable to

make the effect additive and this can be done through a transformation (Farooque,

2002). This is because linear effects are generally easier to handle.

Data transformations are an important tool for the proper statistical analysis of

any type of data. For presentation purposes, it is essential that one is able to defend

their choice of data transformations. There are many types of transformations,

but it is better to use a transformation that other researchers within the same field

of study commonly use, such as the square-root transformation for count data or

the log transformation for size data (O’hara and Kotze, 2010; Osborne, 2005).

In this study, we consider a transformation commonly used by researchers in the

electricity demand forecasting specialisation, and this is either differencing or log

transformation. Furthermore, with a limited data set, we may not be able to see

much effect of the transformations on the normality and homoscedasticity.

Let X1, · · · , Xt denote the original observations and W1, · · · ,Wt, the transformed

observations. Then, a logarithmic transformation is given as Wt = log(Xt). Log-

arithms are commonly preferred because they do not require complex interpreta-

tion. Changes in a log value are relative or percentage changes on the original

scale (Keene, 1995). If log base 10 is used, then an increase of 1 on the log scale
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corresponds to a multiplication of 10 on the original scale. Log transformations

also constrain the forecasts to stay positive on the original scale (Hyndman and

Athanasopoulos, 2014). Log transformation can lead to substantial reductions in

forecast mean squared error (MSE), if taking logs leads to a more stable variance

of the data. Otherwise, if the transformation is applied but does not make the vari-

ance more homogeneous, it can be damaging to the forecast precision (Lütkepohl

and Xu, 2012).

Other transformations are also used, for example, square and cube roots. These

are called power transformations because they can be written in the form Wt = Xp
t .

A useful family of transformations that includes logarithms and power transfor-

mations is the Box-Cox transformations developed by Box and Cox (1964). These

transformations depend on the parameter λ and are defined as;

Wt =


Xλ
t −1
λ

; λ 6= 0

logXt ; λ = 0.
(3.14)

This class of transformations is preferable for theoretical analysis because it takes

into account the discontinuity at λ = 0 (Sakia, 1992). The definition in equation

3.14 is only valid for positive values of X, (Xt > 0). Therefore, modifications had

to be made for negative observations. Box and Cox proposed the shifted power

transformation of the form;

Wt =


(Xt+λ2)λ1−1

λ1
; λ1 6= 0

log(Xt + λ2) ; λ1 = 0.
(3.15)

Where λ1 is a parameter defining a particular transformation and λ2 is chosen in

such a way that Xt > −λ2 (Li, 2005). The aim of the Box-Cox transformations

is to ensure that the usual assumptions for linear models hold. Most common

transformations reduce positive skewness but may worsen negative skewness unless

the variable is reflected prior to transformation. The Box-Cox transformation

eliminates the need to reflect variables (Osborne, 2010).

The main objective in the analysis of Box-Cox transformation model is to estimate

the transformation parameter λ. Most, but not all, of the modern Statistical pack-

ages have implemented ways of estimating λ. For example, SAS has a convenient

and well done implementation of Box-Cox within proc transreg that iteratively

tests a variety of λ and identifies the best options (Osborne, 2010). Otherwise, λ
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can be estimated by hand. Box and Cox considered two approaches; the Bayesian

method which requires one to first ensure that the model is fully identifiable, and

the Maximum Likelihood method (MLE). MLE is commonly used because of its

easy concepts and an easy-to-compute profile likelihood function. It is also easy to

obtain an approximate confidence interval for λ because of the asymptotic property

of MLE (Li, 2005).

Another proposed procedure for manual calculation of λ is given by Osborne

(2010), where they used an example to verify their proposal.

• They divided their data into at least 10 regions which turned out evenly

distributed.

• They selected each part and calculated their respective means and standard

deviations.

• Then took log10 of each mean and standard deviation (sd) and plotted the

resultant data as log(sd) against log(mean) for all parts.

• They estimated the slope (b) of the plot, and used 1−b as the initial estimate

of λ.

In case the plot is in form of a curve, it is better to estimate the slope for each

segment of the line and calculate the average of all. This produces an average

slope (b) which can then be used to calculate λ. The resultant value of λ from the

proposed procedure was interestingly very close to the empirically derived value.

The Box-Cox class of transformation incorporates many traditional transforma-

tions (see table 3.2):

λ Effect
1.00 Produces results identical to original data
0.50 square root transformation
0.33 cube root transformation
0.25 fourth root transformation
0.00 natural log transformation
-0.50 reciprocal square root transformation
-1.00 reciprocal (inverse) transformation

Table 3.2: Box-Cox Transformations
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3.7 Preliminary analysis of the available data

The first step in any time series analysis is to make a time series plot (Reinert,

2002). The plot should show all important features of the data such as trend,

seasonality, cycles and randomness. A time series plot is very important for data

description and in helping to formulate a sensible model for both analysis and

forecasting (Adhikari and Agrawal, 2013; Chatfield, 2000).

3.7.1 Uganda monthly electricity demand data

The time series plot in Figure 3.2 shows the monthly peak demand of electricity in

Uganda for 72 months. We faced a big challenge of limited data, given that

Uganda is a developing country, characterised by limited data and poor data

storage systems. The series shows a positive linear trend along with random

fluctuations about this trend. This long term increase is mainly due to economic

development of the country over the years. With the increase in Lake Victoria

water levels since the end of 2006, and the entry into service of additional plants,

there has been a continuous increase in the supply and demand of electricity (New

Vision Website).

The series starts in January 2008 and increases with random fluctuations until the

middle of the year, from where it keeps increasing gradually. At the beginning

of 2009, which is the 13th month, it drops back but at a level higher than the

beginning of the previous year. This trend continues, until the big decline at the

end of 2009 (24th month), before surging back at the beginning of the next year.

The trend keeps on for the rest of the year until the beginning of the next year

where it drops again but still at a level higher than the beginning of the yeah

before. This pattern continues with the demand dropping at the beginning of

every year but to a level higher than the beginning of the year before.

In most countries, electricity demand is expected to be influenced by seasonal

changes. However, in Uganda, there are no extreme weather changes that can

affect the demand of electricity (Safari Website). Daily mean temperature in

major towns of Uganda measured in degrees Celsius as reported on the Kabiza

Website is shown in Table 3.3
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Figure 3.2: Time series plot for monthly peak demand (in Gigawatts) for the
period 01/01/2008 to 31/12/2013.

Region High range Low range
Kampala 27-30 16 - 18
Entebbe 26 16 - 18
Fort Portal 25 12 - 14
Kabale 23 9 - 11
Gulu 29-33 16 - 18
Masindi 28 12 - 13
Jinja 28 14 - 15

Table 3.3: Mean daily temperature in Uganda.

From Table 3.3, we see that there are no regions with extreme temperatures that

would require use of electricity for either cooling or heating in Uganda. There are

two rainy seasons in Uganda; March to May and September to November. This

means during those rainy months electricity demand is low because people do not

use their fans for cooling. Which then means demand should be higher during

other months, for example, January, February, June,. However, this contradicts

the pattern seen from the time series plot where demand falls every January.

Therefore, any fluctuations seen in the data might be due to changes other than

temperature. Likewise, the standard of living in Uganda is not high enough for

people to afford cooling and heating appliances in their houses during extreme

weathers (if any).
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The other main preliminary task is to make a careful assessment of the data to see

if there are any obvious errors, outliers, missing observations, smooth changes in

structure and turning points or sudden discontinuities. It is of no purpose to focus

on forecasting if the data is originally of poor quality. Therefore, it is essential

to clean the data before proceeding with the analysis, in case there are unusual

components identified (Elliott et al., 2006). In this study, the time series plot

shows a big fall in the 24th month. We can not visually conclude that it is an

outlier, therefore, we make a box plot in R to help in identifying whether this

value is truly an outlier or not. However, this can easily return a biased result

because the data is not stationary in the mean. A box plot using first differences of

the data is inspected (Perron and Rodŕıguez, 2003). We consider first differences

because stationarity is attained after taking the first difference. Figure 3.3 shows

no evidence of outliers in the stationary data.

Figure 3.3: Box plot showing no outliers in stationary data.

In 2009, the Government of Uganda, through ERA, announced that power tariffs

reduce by an average of 8% for all tariff categories. This was attributed to increased

energy generation by new entrants and the strengthening of the Ugandan Shilling

against the US Dollar (EPRC). The reduction changed the tariff for domestic

consumers from USh.426.1/kWh to USh.385.6/kWh. Therefore, there was an

increase in demand. However, as the year progressed, there was a decline in the

water levels of lake Victoria where Nalubaale and Kiira power stations, the biggest

power station in Uganda then, have their reservoirs. Hence affecting the supply

of electricity generally, and the demand in return. Lake Victoria water levels hit
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their lowest (in 2009) towards the end of the year, as seen in figure 3.4 (Mawejje

et al., 2013).

Lake Victoria water levels

Figure 3.4: Water levels of Lake Victoria.

Hence, dropping electricity supply to its lowest in that year, and the demand as

well. This is because the other power generating plants could not supply enough

electricity to meet the had-been-increasing demand. Since electricity is a non-

storable good, supply influences how much is demanded (Ghosh, 2008). Therefore,

irrespective of the incentives to demand, supply hindered this demand from being

as high as it would have been in case there was no decline in water levels.

The scale on the vertical axis of Figure 3.4 shows the height variations in water

levels. The figure displays negative levels for the whole of 2006. This does not

indicate that the water levels became negative. It rather shows that the differ-

ence in water levels between a current period and one preceding it, was negative.

Meaning the water kept decreasing month after month and hit the lowest levels

towards the end of the year. It however started rising again between November

and December.

Since there is no evidence of outliers in the data, the unusual value at time 24 is

replaced with the arithmetic average of its 2 preceding and 2 succeeding values.

This is because it looks like an outlier and more likely to distort the general pattern

of the data. The new series is shown in Figure 3.5 and it is what we use for all

the following analyses in this study.
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Figure 3.5: New series plotted after adjusting the values at time 24.

3.7.2 South Africa daily electricity demand data

The time series plot in Figure 3.7 shows the daily electricity demand for South

Africa from 1st-January-2004 to 28th-June-2008. The data is collected from a

confidential source who prefers the province and sector where the data is from

remain classified. This data originally contains missing values which makes it

hard to fit ARIMA models directly without correcting the missing values first.

Therefore, certain approaches have to be employed, depending on the size and

nature of both the missing values and the overall sample.

3.7.2.1 Missing Data Mechanisms

Most of the discussions in this section are found in Moritz et al. (2015) who study

imputation of missing values in univariate time series data.

Most of the commonly used statistical methods depend on complete data. Having

missing values in a data set can be a very big hindrance to statistical analysis.

Therefore, it is vital to account for the missing values before carrying out further

analysis. There are different approaches used to analyse data with missing values,

but, commonly analysts apply established statistical methods to impute these
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missing values. This approach is called imputation of missing values (Honaker

and King, 2010).

Understanding the distribution of the gaps caused by missing values in a given data

set is important when dealing with any type of data. It is vital because it can

be used as defence for choosing an appropriate imputation method. Categorising

imputation methods depends on the approach used and the output got as a result of

applying the approach (Little and Rubin, 2014). Some approaches impute a single

value and use it to replace the missing value. This has a limitation of neglecting

the uncertainty that the new imputed value introduces to the data (Bögl et al.,

2015). Other approaches use repeated re-sampling, which makes it possible to

calculate the standard error from the variability of estimates. Approaches that

use multiples imputation techniques, like, Monte Carlo based simulations, make

the computation of estimates and confidence intervals possible, which can be used

to communicate the uncertainty of the imputation (Schafer, 1999). Missing data

mechanisms are divided into three categories;

• Missing completely at random (MCAR): In this case, there is no systematic

mechanism on the way the data is missing. Missing data points occur entirely

at random. Since there are no other variables existent for univariate time

series data other than time, MCAR in this case means the probability for

a certain observation being missing is independent of the point of time of

this observation in the series. For other data types, MCAR means; the

probability for a certain observation being missing is independent from the

values of other variables, and the probability for an observation being missing

is also independent of the value of the observation itself. For example, an

administrative error causing several test results to be misplaced prior to data

entry.

• Missing at random (MAR): This is similar to MCAR, but the information

is not missing entirely at random. Here, the propensity for missing data is

correlated with other variables related to the study. In MAR, the probability

for an observation being missing is also independent of the value of the

observation itself, but is dependent on other variables. For example, consider

a study for assessing the relationship between drug use and self esteem in high

school students. Drug abuse may be associated with frequent absenteeism,

leading to a higher probability of missing data on the self esteem measure.
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This happens mainly because students using drugs are always absent on the

days researchers carry out the self esteem survey. For univariate time series

data, since other than time no other variables are given, the probability

for an observation being missing is dependent of the point in time of this

observation in the series.

• Not missing at random (NMAR): In this case, observations are not missing

in a random manner. The data is neither MCAR nor MAR. That means,

the probability for an observation missing depends on the value of the ob-

servation itself. Furthermore the probability can be dependent on other

variables (for other data types) or point of time (for univariate time series).

For example, temperature sensor gives no values for temperatures over 100

degrees.

In practice, testing for MCAR can be done using different tests like, the t-test, and

Little’s test developed by Little (1988). Software like R also have packages like

MissMech, developed by Jamshidian et al. (2014), whose functions can be used to

test if missing data is MCAR. However, for data either MAR or NMAR, checking

requires manual analysis of the patterns in the data. Most of the missing data

approaches consider either MCAR or MAR because the missing data mechanism

is considered ignorable for both cases. (Rubin, 1976).

For univariate time series dealing with missing data is different, this is because

there is one variable of the data. Therefore, time has to be treated as another

variable to make imputations possible. The other difference is that algorithms

used to impute univariate time series data can use characteristics of the series

instead of covariates for missing value estimates only, like for other data types.

The missing values in the data available for this study show evidence of MAR.

This is because according to the definition of MAR in univariate time series data,

the probability that an observation will be missing depends on the point in time of

this observation in the series. Most of the variables missing happen to be clustered

at different point. That means all the points close to a missing value, in time, have

a high probability of missing as well. The missing values are shown by breaking

patterns in the time series plot of South Africa electricity demand data seen in

figure 3.6, for example, between the 700-800th days, there exists breaks.
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Figure 3.6: A time series plot of South Africa’s original data with missing
values

.

3.7.2.2 Univariate time series imputation

Instead of using covariates like in multivariate datasets, univariate time series use

time dependencies to perform an effective imputation. Techniques capable of doing

imputation for univariate series can be roughly divided into three:

• Univariate algorithms. These are algorithms employed when imputing miss-

ing data in a univariate data set. They however do not consider the time

series characteristics of the data. Therefore, can not be used to impute the

missing data in this study.

• Univariate time series algorithms. Unlike the univariate algorithms, univari-

ate time series algorithms take into consideration the time series aspect of

the data. Examples of such algorithms include; locf (last observation carried

forward), nocb (next observation carried backward), arithmetic smoothing

and linear interpolation. The more advanced algorithms are based on struc-

tural time series models and can handle seasonality.
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• Multivariate algorithms on lagged data. These algorithms are not normally

used when dealing with univariate data. However, for univariate time series,

time is implicitly considered as another variable whose characteristics can

then be used as covariates. This can be done using lags (variables that take

the value of another variable in the previous time) and leads (variables that

take the value of another variable in the next time). This then makes it

possible to use multivariate imputation algorithms.

In this study we use linear interpolation to impute missing values. This is because

the available data is a time series of univariate nature with no evidence of trend.

For the same reason, we do not use multiple imputation, which is a better way

of imputing missing data, but works best with multivariate data. Likewise, if the

optimal reason for the project is statistical inference, then multiple imputation is

greatly advised. Otherwise, for optimal point forecasting (which is the aim of this

study), researchers such as Rubin (1996) advise against using multiple imputation.

We use the na.interp algorithm in R which was developed by Hyndman et al.

(2015). This algorithm uses linear interpolation to replace the missing values for

non seasonal data. It can also be applied to seasonal data, where its periodic

stl decomposition works on the seasonal component of the data. We use a more

general function called tsclean; a combination of na.interp and tsoutliers which

handles both missing values and outliers (in case there exists any). It returns

a cleaned version of a time series with outliers and missing values replaced by

estimated values. The new dataset produced is plotted against time in figure 3.7

The new plotted dataset shows no evidence of trend, but a pattern of seasonality.

Mainly fluctuations are happening at different points in time. There is one point

in time when the demand is slightly higher than all other points but that does not

confirm that it is an outlier. Likewise, from the time series plot, it is not clear

whether the variance of the data is stationary or non stationary through time. At

this point, there is no certainty to perform transformations. However, a deeper

analysis of this data will be studied in the next chapters to confirm the stationarity

of the data and how to attain it in case the data is not actually stationary.
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Figure 3.7: A time series plot of South Africa’s daily electricity demand data

.



Chapter 4

Time series analysis using

ARIMA models

A forecasting model is a statistical description of the data generating process from

which a forecast may be derived (Ord and Fildes, 2012). It is very important to

study different time series models before choosing a method that best suits the

forecasting exercise at hand. Scientifically, a forecasting method is an efficiently

established systematic process of generating a forecast with certain levels of accu-

racy, using a series of steps (Hyndman and Athanasopoulos, 2014). In this study,

we shall focus on univariate time series models because of the available data. A

univariate time series model describes the distribution of a single random variable

(X) at time t, in terms of its relationship with past values (Adhikari and Agrawal,

2013).

4.1 ARIMA models

The word ARIMA stands for AutoRegressive(AR) Intergrated(I) Moving Aver-

age(MA). In this study, we shall tackle each element of this model individually as

we build up to its general purpose. ARIMA models are mainly used for forecasting

data that is originally non stationary but can be made stationary by differencing

(Karamouz et al., 2012; Nason, 2006). These models are also called Box-Jenkins

models because they were developed by Box and Jenkins (1976).

48
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4.1.1 AR models

A series Xt is said to be an autoregressive process of order p, denoted by AR(p),

if it can be expressed in the form;

Xt = φ1Xt−1 + φ2Xt−2 + · · ·+ φpXt−p + et. (4.1)

In back shift operator notation, we can write the model as;

Xt(1− φ1B − φ2B
2 − · · · − φpBp) = et. (4.2)

Where;

• B is the back shift operator

• φ1, · · · , φp are parameters of the model.

• et is a normally distributed random process with mean 0 and a constant

variance σ2
e . This term is assumed to be independent of all previous process

values Xt−1, Xt−2, · · ·

Equation 4.2 is called an Autoregressive model. It is similar to a multiple

regression model with the value of X at time t linearly depending on a combination

of its weighted p past values. The term autoregressive means that it is a regression

of the variable of interest against its past values plus an error term et at time t. AR

models are normally restricted to stationary data (Hyndman and Athanasopoulos,

2014). That is why it is always necessary to check for stationarity of the data before

fitting such models. In this model, it is assumed that E(Xt) = 0. However, a non

zero mean could be added to the model by replacing Xt with Xt − µ, for all t.

This would not affect the properties of the model.

After applying the back shift notation operator, equation 4.2 can be used to yield

the AR(p) characteristic equation as;

φ(x) = 1− φ1x− φ2x
2 − · · · − φpxp = 0. (4.3)

It is important to note that an AR(p) process is stationary if and only if the p

roots of φ(x) each exceed 1 in absolute value (Cryer and Kellet).
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The autocovariance and autocorrelation functions of an AR process can be derived

using the Yule-Walker equations (Eshel, 2010). If we assume a stationary AR(p)

process with zero means, multiplying both sides by Xt−k yields;

XtXt−k = φ1Xt−1Xt−k + φ2Xt−2Xt−k + · · ·+ φpXt−pXt−k + etXt−k. (4.4)

Since we assumed zero means, it means the autocovariance of the process at lag k

is given by

γk = Var(XtXt−k) = E(XtXt−k)− E(Xt)E(Xt−k),

= E(XtXt−k).

Taking expectations of equation 4.4 gives;

E(XtXt−k) = E(φ1Xt−1Xt−k + φ2Xt−2Xt−k + · · ·+ φpXt−pXt−k + etXt−k),

γk = φ1γk−1 + φ2γk−2 + · · ·+ φpγk−p. (4.5)

Dividing through by the process variance γ0, we get;

ρk = φ1ρk−1 + φ2ρk−2 + · · ·+ φpρk−p. (4.6)

Equation 4.6 gives a set of Yule-Walker equations, for k > 0. For known values

of φ1, φ2, · · · , φp, we can compute the first lag p autocorrelations ρ1, ρ2, · · · , ρp
(Plasmans, 2006). Values of ρk, for k > p, can be obtained by using the recursive

relation in equation 4.6 (Von Storch and Zwiers, 2001).

4.1.1.1 MLE estimation of AR(1) parameters

The most important step to study the Maximum Likelihood Estimation method is

to evaluate the sample joint distributions. These joint distributions form likelihood

functions if they are treated as a function of the parameters given by the data.

In the case of identically and independently distributed samples, the likelihood

function is the product of marginal densities of individual samples (Reid, 2010).

However, with time series analysis, the dependence structure of observation is

specified. Therefore, it is not advisable to use the product of marginal densities

to evaluate the likelihood function. It is important to note that while we assume



Section 4.1. ARIMA models Page 51

that et ∼ i.i.dN(0, σ2), it does not imply that the data Xt is i.i.d as well. To

evaluate the sample likelihood, the conditional density is needed.

A stationary normally distributed AR(1) process takes the form

Xt = c+ φXt−1 + et. (4.7)

We know from the conditions of stationarity of an AR process, that, assuming

stationarity means that |φ| < 1. The parameters to be estimated in this model are;

Θ = (c, φ, σ2)′. Consider the probability density function of the first observation

in the sample, X1. This is a random variable with mean and variance respectively,

E(X1) =
c

1− φ
. (4.8)

E(X1X1) =
σ2

1− φ2
. (4.9)

Since the error term is assumed to be normally distributed, the data is also normal.

That means X1 ∼ N( c
1−φ ,

σ2

1−φ2 ). Therefore,

fX1(x1; Θ) = fX1(x1; c, φ, σ
2), (4.10)

=
1

√
2π
√

σ2

1−φ2

exp

−1

2

(
x1 − c

1−φ

)2
σ2

1−φ2

 . (4.11)

Next, we consider the distribution of the second observation X2 conditional on the

first observation X1 = x1. This means we are treating the random variable X1 as

a deterministic constant x1. Relating to equation 4.7,

X2 = c+ φX1 + e2. (4.12)

From the conditional perspective, equation 4.12 can also be defined as the constant

(c+ φx1), plus the normally distributed error term et. Therefore,

(X2|X1 = x1) ∼ N((c+ φx1), σ
2). (4.13)
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This means that the probability density function (pdf) of the second observation

is;

fX2|X1(x2|x1; Θ) =
1√

2πσ2
exp

{
−1

2

(x2 − c− x1)2

σ2

}
. (4.14)

The joint density of observations X1 and X2 is then given by;

fX2, X1(x2, x1; Θ) = fX2|X1(x2|x1; Θ)fX1(x1; Θ). (4.15)

Generally, the values of X1, X2, · · · , Xt−1 matter for Xt only through the value

of Xt−1 (Songsiri et al., 2009). The pdf of the tth observation conditional on the

preceding t− 1 observations is given by;

fXt|Xt−1, · · · , X1(xt|xt−1, · · · , x1; Θ) =
1√

2πσ2
exp

{
−1

2

(xt − c− xt−1)2

σ2

}
.

(4.16)

The likelihood of the general sample can then be calculated as;

fXT , XT−1, · · · , X1(xT , xT−1, · · · , x1; Θ) = fX1(x1; Θ)
T∏
t=2

fXt|Xt−1(xt|xt−1; Θ).

(4.17)

The product in equation 4.17 starts counting from the second period (t = 2) be-

cause the first observation is not included in the general multiplication. In equation

4.11, we saw the pdf of the first observation which has a different formulation from

the rest of the observations’ pdfs. Therefore the generalisation in the overall pdf

excludes it. Taking logs of equation 4.17 gives the log likelihood function as;

L(Θ) = log fX1(x1; Θ) +
T∑
t=2

fXt|Xt−1(xt|xt−1; Θ). (4.18)

Using the pdfs for the respective observations we get;
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L(Θ) =− 1

2

log(2π) + log

(
σ2

1− φ2

)
+

(
x1 − c

1−φ

)2
σ2

1−φ2


− T − 1

2

[
log(2π) + log(σ2)

]
−

T∑
t=2

e2t
2σ2

. (4.19)

where et = xt − c− xt−1 Using equation 4.19, we can either calculate the exact or

conditional MLEs. For conditional MLEs, we let the value of the first observation

become deterministic (fX1(x1) = 1) and maximize the likelihood conditioned on

the first observation (Kirk and Stumpf, 2009). Therefore, our objective changes

to maximising

L(Θ) = −T − 1

2

[
log(2π) + log(σ2)

]
−

T∑
t=2

e2t
2σ2

. (4.20)

Maximising equation 4.20 with respect to c and φ is equivalent to minimising the

autoregression vector (Zivot and Wang, 2007)

(y −Xβ)′(y −Xβ) =
T∑
t=2

(xt − c− xt−1)2, (4.21)

which is achieved by an ordinary least square (OLS) regression of xt on a constant

and its own lagged value (Eden, 2008), where

y =


x1

x2
...

xT

 , X =


1 x1

1 x2
...

...

1 xT

 , β =

[
c

φ

]
. (4.22)

The conditional maximum likelihood estimates of c and φ are therefore given by;

[
ĉ

φ̂

]
=


T − 1

T∑
t=2

xt−1

T∑
t=2

xt−1

T∑
t=2

x2t−1


−1 

T∑
t=2

xt−1

T∑
t=2

xt−1xt

 . (4.23)
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The conditional maximum likelihood estimator of σ2 is found by setting

∂L(Θ)

∂σ2
= −T − 1

2σ2
+

T∑
t=2

(xt − c− xt−1)2

2σ4
= 0. (4.24)

4.1.2 MA model

A series with a white noise process of mean 0 and variance σ2
e is said to be a

moving average process of order q, denoted as MA(q), if it can be expressed as a

weighted linear sum of the past forecast errors.

Xt = et + θ1et−1 + θ2et−2 + · · ·+ θqet−q. (4.25)

In back shift operator notation, we can write the model as;

Xt = et(1 + θ1B + θ2B
2 + · · ·+ θqB

q). (4.26)

Where;

• B is the back shift operator notation.

• θ0, θ1, · · · , θq are coefficients of the lagged error terms. θ0 is usually equated

to 1 (Broersen, 2006; Hipel and McLeod, 1994).

• et is a normally distributed white noise with mean 0 and variance σ2
e .

Equation 4.26 is called a Moving Average model. Some authors note the

parameters of an MA process as negatives, in order to have characteristic operators

of the same signs for both AR and MA processes. However, this has no significant

change to the interpretation of the model (Chatfield, 2002).

The autocovariance functions of an MA(q) model is defined as γk = Cov(Xt, Xt−k),

where it becomes the variance of the process if k = 0. Therefore, from the defini-

tion of the model,

γ0 = σ2
e(1 + θ21 + θ22 + · · ·+ θ2q). (4.27)
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The general autocovarinace function of the model is given by;

γk =



σ2
e

q∑
i=0

θ2i for k = 0

σ2
e

q−k∑
i=0

θiθi+k for k = 1, 2, · · · , q

0 for k > q

. (4.28)

Dividing equation 4.28 by γ0, we obtain the autocorrelation function (Hipel and

McLeod, 1994);

γk =



1 for k = 0

σ2
e

q−k∑
i=0

θiθi+k

σ2
e

q∑
i=0

θ2i

for k = 1, 2, · · · , q

0 for k > q

. (4.29)

An MA model is said to be invertible if it is algebraically equivalent to a converging

infinite order AR model (Rao, 2008). Convergence means that the coefficients of

the AR model decrease to 0 as we move back in time. Invertibility is a restriction

programmed into time series software used to estimate the coefficients of models

with MA terms. It is some what unusual to check for invertibility while carrying

out a data analysis exercise (Oduro-Gyimah, 2011). From the definition, we see

that stationary AR models are automatically invertible (since they contain no MA

terms). However, the condition is not obvious for MA models, not all stationary

MA models are invertible (Bartlett). Taking an example of an MA model with

q = 1, equation 4.26 becomes;

Xt = (1 + θB)et, (4.30)

which can also be written as;

et = (1 + θB)−1Xt. (4.31)
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Obtaining the binomial expansion of (1 + θB)−1 gives

et = (1− θB + θ2B2 − θ3B3 + · · · )Xt, (4.32)

=
∞∑
i=0

(−θ)iXt−i. (4.33)

Equation 4.33 shows that et can be expressed as a causal function of Xt. This

shows that the MA(1) model has been expressed as an infinite-order AR model

AR(∞), which converges if |θ| < 1. Therefore, we can say that this MA(1) process

is invertible if and only if |θ| < 1.

Generally, an MA(q) process is inverible if and only if all roots of the MA(q)

characteristic polynomial, θ(x) = 1 + θ1x+ θ2x
2 + · · ·+ θqx

q, exceed 1 in absolute

values, or lie outside the unit circle.

4.1.2.1 MLE estimation of MA(1) parameters

Assume a normally distributed invertible (|θ| < 1) MA(1) model

Xt = c+ et + θet−1, (4.34)

where et ∼ i.i.dN(0, σ2). The aims is to estimate parameters Θ = (c, θ, σ2)′ using

MLE. We consider the pdf of the first observation of the sample

X1 = c+ e1 + θe0, (4.35)

whose mean and variance are defined as

E(X1) = c, (4.36)

E(X1X1) = σ2(1 + θ2). (4.37)

The normality definition of et, where t takes on all possible values, makes us

define X1 as normal too. Therefore, X1 ∼ N(c, σ2(1 + θ2)). The pdf of the first
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observation then changes to

fX1(x1; Θ) = fX1(x1; c, θ, σ
2), (4.38)

=
1√

2π
√
σ2(1 + θ2)

exp

{
−1

2
· (x1 − c)2

σ2(1 + θ2

}
, (4.39)

The next observation X2 has a distribution conditional on the first observation

X1 = x1.

X2 = c+ e2 + θe1. (4.40)

Following the method of calculating the joint density of the complete sample in

part 4.1.1.1, conditional on X1 = x1 means treating the random variable X1 as

the deterministic constant x1. Therefore, equation 4.40 defines X2 as a constant

(c+θe1) plus the normally distributed error term e2. However, since we are dealing

with an MA model which focuses on error terms not observations, this method

of calculation might not apply directly. This is because observing X1 = x1 gives

no information on the realization of e1 because we can not distinguish e1 from e0

even after the first observation on x1 (C. Lee, 2006).

In order to make the information of the observation on X1 = x1 useful, C. Lee

(2006) suggests imposing an additional assumption such that we know with cer-

tainty that e0 = 0. This means

(X1|e0 = 0) ∼ N(c, σ2). (4.41)

This means the pdf of the first observation given e0 is;

fX1|e0 = 0(x1|e0 = 0) =
1√

2πσ2
exp

{
−1

2
· (x1 − c)2

σ2

}
, (4.42)

=
1√

2πσ2
exp

{
− e21

2σ2

}
. (4.43)

Given the observation x1, the value of e1 is then known with certainty as well.

That means

(X2|X1 = x1, e0 = 0) ∼ N(c+ θe1σ
2). (4.44)
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Hence;

fX2|X1, e0 = 0(x2|x1, e0 = 0; Θ) =
1√

2πσ2
exp

{
−1

2
· (x2 − c− θe1)2

σ2

}
, (4.45)

=
1√

2πσ2
exp

{
− e22

2σ2

}
. (4.46)

Continuing in this same manner, it implies that given condition that e0 = 0, the

full sequence {e1, e2, · · · , eT} can be calculated from {x1, x2, · · · , xT} by iterating

on

et = xt − c− θet−1 for t = 1, 2, · · · , T

. The general conditional pdf can then be calculated as;

fXt|Xt−1, · · · , X1, e0 = 0(xt|xt−1, · · · , x1, e0 = 0; Θ) = fXt|et−1(xt|et−1; Θ),

(4.47)

=
1√

2πσ2
exp

{
− e2t

2σ2

}
.

(4.48)

The likelihood function of the complete sample conditional on e0 = 0 can thus be

calculated as the product of these individual densities (Hurlin, 2013)

fXT , · · · , X1|e0 = 0(xT , · · · , x1|e0 = 0; Θ) (4.49)

= fX1|e0 = 0(x1|e0 = 0; Θ) ·
T∏
t=2

fXt|Xt−1, · · · , X1, e0 = 0(xt|xt−1, · · · , x1; Θ).

The conditional log likelihood function is therefore defined by

lnL(Θ) = −T
2

log(2π)− T

2
log(σ2)−

T∑
t=2

e2t
2σ2

. (4.50)

The log likelihood function is a fairly complicated non linear function of c and θ.

Therefore, an analytical expression for the MLE of c and θ is not readily calculated.

Hence even the conditional MLE for an MA(1) process must be found by numerical

optimization (C. Lee, 2006). For MA models, estimating the process by conditional

MLE requires the use of all the T observations in the sample since the estimation

is conditional on e0 = 0 and not on the first observation X1. More studies about
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approximations and conditions made when estimating MA(1) parameters have

been covered, for example, in Shephard (1993) and Davis and Dunsmuir (1996).

4.1.3 ARMA model

Combining both the AR(p) and MA(q) models gives rise to an Autoregressive

Moving Average model (ARMA(p,q)) which is expressed as;

Xt = φ1Xt−1 + φ2Xt−2 + · · ·+ φpXt−p + et + θ1et−1 + θ2et−2 + · · ·+ θqet−q.

(4.51)

Re-arranging the model gives

Xt − φ1Xt−1 − φ2Xt−2 − · · · − φpXt−p = et + θ1et−1 + θ2et−2 + · · ·+ θqet−q.

(4.52)

Using the back shift operator,

Xt(1− φ1B − φ2B
2 − · · · − φpBp) = et(1 + θ1B + θ2B

2 + · · ·+ θqB
q).

(4.53)

This can be simplified to;

φ(B)Xt = θ(B)et, (4.54)

where;

φ(B) = (1− φ1B − φ2B
2 − · · · − φpBp), (4.55)

θ(B) = (1 + θ1B + θ2B
2 + · · ·+ θqB

q). (4.56)

Both the AR(p) and MA(q) are special cases of the ARMA model. An ARMA(p,0)

process is the same as an AR(p) process and an ARMA(0,q) process is the same

as an MA(q) process. If the data available is stationary, it is better modeled using

an ARMA(p,q) model than AR(p) or MA(q) models individually (Chin and Fan,

2005). This is because an ARMA(p,q) in such a case uses fewer parameter than
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the individual models and gives a better representation of the data. This is called

the principle of parsimony (Singh, 2002; Woodward et al., 2011).

For an ARMA(p,q) process to be stationary, the absolute value of the roots of all

the AR(p) characteristic polynomials should be greater than 1. For invertibility,

absolute values of the roots of all the MA(q) characteristic polynomials should be

greater than 1. For example, given a model below;

Xt = 0.5Xt−1 + et − 0.3et−1 + 1.2et−2

Xt = 0.5BXt + et − 0.3Bet + 1.2B2et

Xt(1− 0.5B) = et(1− 0.3B + 1.2B2)

From the left hand side, the AR characteristic polynomial is φ(x) = 1−0.5x, with

root x = 2 which is greater than 1. Therefore, the model is stationary. The right

hand side gives the MA characteristic polynomial, θ(x) = 1− 0.3x + 1.2x2 which

gives complex roots |x| = 0.125 ± 0.9.4i =⇒ |x| =
√

(0.125)2 + (0.9.4)2 = 0.913

which is less than 1, hence the process is not invertible. The invertibility and

stationarity conditions of any proces are independent of each other. For example,

a pure, finite order AR process is always invertible but not necessarily stationary,

while a pure, finite order MA process is always stationary, even if it is not invertible

(Chatfield, 2002).

4.1.3.1 MLE estimation of ARMA(p,q) parameters

Let us assume a stationary and invertible normal ARMA(p,q) process with an

error term et ∼ N(0, σ2). The parameters to be estimated in this case are Θ =

(c, φ1, · · · , φp, θ1, · · · , θq, σ2)′. The approximation to the likelihood function for an

AR model is conditional on initial values of the x′s. The approximation to the

likelihood function for an MA model is conditional on initial values of the error

terms e′s. Therefore, a common approximation to the likelihood function of an

ARMA process is conditional on initial values of both the process and error terms

(Hamilton, 1994).

The (p+ 1)th observation of an ARMA(p,q) process can be given by;

Xp+1 = c+ φ1Xp + φ2Xp−1 + · · ·+ φpX1 + ep+1 + θ1ep + · · ·+ θqep−q+1. (4.57)
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There are different schools of thought when dealing with this type of parameter

estimation. Among all, Box et al. (2011) suggested that all random variables X ′s

equal to their actual observations and error terms equal to their individual expec-

tation, which is 0. Therefore, the distribution of the observation Xp+1 becomes;

Xp+1 ∼ N((c+ φ1Xp + φ2Xp−1 + · · ·+ φpX1), σ
2). (4.58)

Then the conditional log likelihood function calculated from t = (p+ 1), · · · , T is

logL(Θ) = log f(xT , xT−1, · · · , xp+1|xp, · · · , x1, ep = ep−1 = · · · = ep−q+1 = 0; Θ),

(4.59)

= −T − p
2

log(2π)− T − p
2

log(σ2)−
T∑

t=p+1

e2t
2σ2

. (4.60)

The sequence {ep+1, ep+2, · · · , eT} can be calculated from {x1, x2, · · · , xT} by iter-

ating on (Hamilton, 1994)

et = Xt − c− φ1Xt−1 − φ2Xt−2 − · · · − φpXt−p − θ1et−1 − θ2et−2 − · · · − θqet−q.
(4.61)

Solutions to the conditional log likelihood function in equation 4.60 can be cal-

culated using the method of conditional sum of squares estimation as studied by

Robinson (2006).

4.1.4 ARIMA model

In reality, most time series data is not stationary because of seasonality and trend.

Therefore, one can neither apply the AR, MA, nor ARMA models directly. The

most suitable method of obtaining stationarity when dealing with ARIMA models

is differencing (Systematics, 1994). Generally, time series data can be differenced d

times, d = 1, 2, 3, · · · , until it becomes stationary. The first difference (Xt−Xt−1)

can also be expressed using a back shift notation as (1 − B)Xt. Therefore, by

convention, differencing d times can be written as; (1−B)dXt. If the original data

series is differenced d times before fitting an ARMA(p,q) model, then the model

for the original undifferenced series is said to be an Autoregressive Integrated

Moving Average model (ARIMA(p,d,q)), where d represents the number of
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times the data has been differenced. Taking first differences normally removes a

linear deterministic trend (Hendry, 1995).

Differencing deals with the observed values at different times, not the error terms.

Therefore, in an ARMA model, adding a differencing term changes only the AR

side, not the MA side. Differencing d times changes equation 4.53 to;

Xt(1− φ1B − φ2B
2 − · · · − φpBp)(1−B)d = et(1 + θ1B + θ2B

2 + · · ·+ θqB
q),

(4.62)

which can be simplified to;

φ(B)(1−B)dXt = θ(B)et. (4.63)

Equation 4.63 is called an ARIMA model with the term φ(B) corresponding to

the AR characteristic polynomial of order p, (1 − B)d for the integrated part of

order d, and θ(B) for the MA characteristic polynomial of order q. All the models

discussed in section 4.1 are a special type of ARIMA models. For example, white

noise-ARIMA(0,0,0), random walk-ARIMA(0,1,0) autoregression-ARIMA(p,0,0),

moving average-ARIMA(0,0,q) and autoregressive moving average-ARIMA(p,0,q).

4.1.5 SARIMA model

ARIMA models can also be used to model seasonal data. ARIMA models that in-

corporate seasonal patterns occurring over time are called Seasonal Autoregres-

sive Integrated Moving Average models (SARIMA). With seasonal data,

dependence with the past occurs most prominently at multiples of an underlying

seasonal lag, denoted by s (Ghysels et al., 2006). SARIMA models include an

additional seasonal term as indicated;

ARIMA(p, d, q)(P,D,Q)s, (4.64)

where s denotes the number of periods per season. The uppercase notation in

equation 4.64 is for the seasonal part and the lowercase notation for the non-

seasonal parts of the model. The seasonal part of the model consists of terms that

are very similar to the non-seasonal components of the model, but they involve

backshifts of the seasonal period. For example, if a seasonal component is added
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to equation 4.63, the resultant model will be;

φ(B)Φ(Bs)(1−B)d(1−Bs)DXt = θ(B)Θ(Bs)et. (4.65)

According to Chatfield (2002), the most common SARIMA model for monthly

data is the SARIMA(0, 1, 1)(0, 1, 1)12 and it is defined as;

(1−B)(1−B12)Xt = (1 + θB)(1 + ΘB12)et. (4.66)

4.2 Model specification

Statistical model building usually has three main stages, namely: Model specifi-

cation (or model identification), model fitting (or model estimation) and model

checking (or model verification). Bad choices of orders p, d, and q lead to bad

models, which in turn lead to bad forecasts of future values (Okyere and Nanga,

2014). It is therefore essential to make sure that the choices made are consistent

with the underlying structure of the observed data.

For any series of data, a clear indicator of non stationarity is that the ACF exhibits

a very slow decay across lags. This occurs because in a non stationary process,

the series tends to “hang together” and displays trends. If the data is non station-

ary seasonally, then the ACF displays clusters of either positive and/or negative

autocorrelation. However, there are other common methods of determining non

stationarity, for example, the ADF and/or KPSS test and using a time series plot.

When there is a clear linear trend in the data and the ACF for the series decays

very slowly, it is usually advisable to take first differences (Ord and Fildes, 2012).

If the ACF of first differenced data resembles that of a stationary ARMA process

(decays quickly), then d in ARIMA(p,d,q) is taken to be 1. The ACF and PACF

of first differenced data can then be used to identify plausible values of p and

q. Otherwise, second differences are taken and d = 2 is used instead. Then the

plotted ACF and PACF at that point is used to identify plausible values of p and

q. The order of differencing can take on any value until stationarity is attained.

However, in real data analysis, there is rarely a need to consider values of d > 2

(Chatfield, 2002).
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For MA(q) models, the ACF is usually non zero for lags k < q and is equal to 0

for lags k > q. That means, the ACF for an MA(q) process “drops off” to zero

after lag q. Therefore, the ACF provides a considerable amount of information

about the order when the process is truly a moving average. On the other hand,

if the process is AR(p), then the ACF may not tell us much about the order. It is

therefore advisable to use the PACF to determine the order of an AR(p) process.

Once the model order has been identified, then the parameters in the model can be

estimated. This can be done using different software like R-Studio which estimates

the ARIMA model using MLE (Hevia, 2008). This technique finds the values of

the parameters which maximize the probability of obtaining the data that has been

observed. For ARIMA models, MLE is very similar to the least square estimates

that would be obtained by minimising squared errors. In practice, R reports the

value of the log likelihood of the data, which is the logarithm of the probability

of the observed data coming from the estimated model. For given values of p, d

and q, R tries to maximize the log likelihood when finding parameter estimates

(Hyndman and Athanasopoulos, 2014).

When fitting SARIMA models, one must choose suitable values for the two orders

of differencing, both seasonal (D) and non-seasonal(d) first, so as to make the series

stationary and remove (most of) the seasonality. Then an ARMA-type model is

fitted to the differenced series with the added complication that there may be AR

and MA terms at lags which are a multiple of the season length s.



Chapter 5

Applying ARIMA models to

electricity demand data

In this chapter, we follow a general procedure to help us fit an ARIMA model to

the available time series data.

5.1 Uganda monthly electricity demand data

It is clear from the time series plot in Figure 3.2 that there are variations in the

amount of electricity demanded per month. There also is evidence of a reduction

in demand towards the end of every year, and a rise every beginning of a new

year. This time series can be described using an additive model because the

random fluctuations seem to be roughly constant in size over time (Hyndman and

Athanasopoulos, 2014). That means that the data has a stable variance, thus no

need to transform it.

We plot the ACF of the data for visual inspection of stationarity. The ACF for a

non stationary series shows large autocorrelations that diminish only very slowly

at large lags (Montgomery et al., 2015). From Figure 5.1 the ACF decays off at a

very slow rate, hence indicating non stationarity of the data. This means there is

need to take the first difference of the data in order to make it stationary.

Figure 3.2 also shows some evidence of seasonality, because of the repeated drop

in demand at the end of every year and increase at the beginning of the follow-

ing year. However, the ACF in figure 5.1 displays neither positive nor negative

65
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Figure 5.1: ACF and PACF of non stationary data.

clusters of autocorrelations. Therefore, seasonality might be present but not sig-

nificant enough to be considered while modelling. For certainty, we run a monthly

seasonality check in R using the tbats function, which returns positive monthly

seasonality in the data. This is shown in Figure 5.2

Figure 5.2: Monthly seasonality in Ugandan data

With a positive confirmation of monthly seasonality in the data, we apply seasonal

differencing in order to make the data stationary. At first glance of figure 5.3,
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the data now looks stationary because it displays a constant mean over time.

However, we run a unit-root test for stationarity to be sure that the data is now

stationary. Different tests can be used to test for stationarity of data, for example,

the Kwiatkowski Phillips Schmidt Shin (KPSS) test, Augmented Dickey Fuller

(ADF) test.

Figure 5.3: Time series plot of the data after taking the seasonal difference.

5.1.1 Testing for stationarity using the ADF test

The original Dickey Fuller test, developed by Dickey and Fuller (1979), is used

to test whether a unit root is present in an autoregressive model. The condition

for stationarity as studied in subsection 4.1.1 shows that for an AR model to

be stationary, |φ| < 1. The case where φ = 1 corresponds to the random walk

which is not stationary. In this test, the null hypothesis of the variable containing

a unit root is tested against the alternative that the variable was generated by a

stationary process. The general idea is to set up an AR model for the observations

Xt and test if φ = 1.

Consider the AR(1) model

Xt = φXt−1 + et. (5.1)
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The unit root null hypothesis against the stationary alternative corresponds to

H0 : φ > 1

H1 : φ < 1.

Alternatively, the model can be formulated as (Nielsen, 2006);

∆Xt = (φ− 1)Xt−1 + et, (5.2)

= πXt−1 + et. (5.3)

where π = φ−1 = φ(1). The unit root hypotheses therefore change to: H0 : π = 0

against H1 : π < 0. The DF test is simply the standard t-statistic calculated as;

t̂n =
1− φ̂√√√√σ̂2

(
n∑
t=2

X2
t−1

)−1 , (5.4)

where φ̂ and σ̂2 are estimators for φ and the variance σ2 of et respectively. For

increasing n the statistic calculated in equation 5.4 does not converge to a standard

normal distribution but instead to the distribution of a function following a Wiener

process (da Silva Lopes, 2006). All critical values considered to draw conclusions

in the DF distribution are one sided (Nielsen, 2006). The null hypothesis H0 of

a unit root is rejected when the test statistic in equation 5.4 is smaller than the

critical value.

The disadvantage of using the DF test is that the normal test significance level

(usually 5%) is not reliable when the error terms et in 5.3 are autocorrelated. The

larger the autocorrelation of et, the more distorted the significance of the test

becomes (Jürgen et al., 2011). These autocorrelations can not be ignored because

they might affect the decision of the test. H0 can be rejected at a low significance

level say, 5%, when in reality the significance level lies at, for example, 30%. To

solve the problem of negatives related to their test, Dickey and Fuller suggest

another test which contains lagged differences.

This is called the Augmented Dickey Fuller (ADF) Test, which tests larger and

more complicated sets of time series models by removing all the autocorrelation

in the time series, then using the same procedure as the DF (Dwyer et al., 2012).
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The ADF statistic used in the test is a negative number. The more negative it is,

the stronger the rejection of the hypothesis that there is a unit root at some level

of confidence. The rejection criterion for this test is similar to that of a simple DF

test. Jürgen et al. (2011) simulated a process in which they correlated errors et

through a relationship

et = βεt−1 + εt, (5.5)

where εt are i.i.d. (0, σ2). This is the same as an MA model of order 1, whose

variance, covariance and ACF can be calculated from subsection 4.1.2. Detailed

examples with simulations about the theoretical application and calculation of the

ADF can be found in both Nielsen (2006) and Jürgen et al. (2011).

5.1.2 Testing for stationarity using the KPSS test

The KPSS test is used to test a null hypothesis that an observable time series is

stationary around a deterministic trend. Such models were proposed in 1982 by

Bhargava (1986), where several sample tests for unit roots were developed. Later,

Kwiatkowski et al. (1992) proposed a test of the null hypothesis that an observable

series is stationary around a deterministic trend. The series is expressed as the

sum of deterministic trend, random walk, and stationary error. The test is a

Lagrange Multiplier (LM) test of the hypothesis that the random walk has zero

variance. By testing both the unit root hypothesis and the stationarity hypothesis,

one can distinguish series that appear to be stationary, series that appear to have

a unit root, and series for which the data are not sufficiently informative to be

sure whether they are stationary or integrated (Nusair et al., 2003).

Results from the KPSS test are intended to be complementary to those derived

from unit root tests. However, the KPSS test uses a null hypothesis of stationarity

and an alternative of a unit root. The test may be conducted under the null of

either trend stationarity or level stationarity. For trend stationarity, the regression

model with a time trend takes the form

Xt = c+ µt+ k

t∑
i=1

εi + ηt, (5.6)
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where ηt are assumed to be stationary and εt ∼ i.i.dN(0, 1). If k = 0, equation 5.6

becomes trend stationary, otherwise (k 6= 0), the process is integrated (Shin and

Schmidt, 1992). Therefore, the null and alternative hypotheses are defined as;

H0 : k = 0

H1 : k 6= 0.

Using an estimation method, for example least square estimation, it is possible

to obtain residuals η̂t from equation 5.6. These residuals can then be used to

calculate a partial sum

St =
t∑
i=1

η̂i,

which increases linearly with t. The KPSS test statistic is then calculated as;

KPSST =

n∑
t=1

S2
t

n2ω̂2
T

, (5.7)

where (Jürgen et al., 2011)

ω̂2
T = σ̂2

η + 2
T∑
τ=1

(
1− τ

T − 1

)
γ̂τ , (5.8)

is an estimator of the spectral density at a frequency of zero, with σ̂2
η as the

variance estimator of ηt and

γ̂τ =
1

n

n∑
t=τ+1

η̂tη̂t−τ

is the covariance estimator.

The main problem with a KPSS test is to determine the reference point T . T

must be chosen with a very fragile procedure because, if T is very small, the test

will become biased especially if there is evidence of autocorrelation. Otherwise, a

very large T also makes the test lose its power (Cappuccio and Lubian, 2010).
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If we assume there is no trend, the regression model formed takes the form;

Xt = εt + et, (5.9)

where et is assumed to be stationary and εt is a random walk of the form

εt = εt−1 + vt; vt ∼ i.i.d(0, σ2
v). (5.10)

If the variance σ2
v is zero, then εt = ε0 for all t and Xt is stationary. Therefore, in

this case, the null and alternative hypotheses will respectively be;

H0 : σ2
v = 0

H1 : σ2
v > 0.

The KPSS test statistic is given by

KPSS =
1

T 2
·

T∑
t=1

S2
t

σ̂2
∞

, (5.11)

where σ̂2
∞ is a heteroscedasticity and autocorrelation consistent (HAC) estimator

of the variance of êt, and St is the partial sum defined by

St =
t∑

s=1

ês. (5.12)

The estimate êt can be calculated using a simple regression, for example (Nielsen,

2006),

Xt = µ̂+ êt, (5.13)

assuming the null that êt is stationary.

In this study, we only use the KPSS function in R to test for stationarity of the

data after taking the first seasonal difference. We use a significance level of 5%

to make a decision. That means a p-value less than 0.05 suggests that further

differencing is required. In this case, the KPSS p-value is 0.1, which is greater

than 0.05. Therefore, we accept the null hypothesis of stationarity.
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5.1.3 Testing for normality

We check for normality of the data because the methods we are applying in the

study, for example, ARIMA models, assume normality of the data. In their study,

Ahad et al. (2011) tested the sensitivity of normality tests when given non nor-

mal data. Their results showed that the Shapiro-Wilk test is the best normality

test because it rejects the null hypothesis of normality at the smallest sample size

compared to the other tests, for all levels of skewness and kurtosis of these distri-

butions. Therefore, we use the same test to check if the available data follows a

normal distribution, given how small the sample size is.

The Shapiro-Wilk test was developed by Samuel Sanford Shapiro and Martin

Wilk in Shapiro and Wilk. This test uses the null hypothesis to check whether a

given sample came from a normally distributed population. It has a test statistic

W ∈ (0, 1]) calculated as

W =

(
n∑
i=1

aiXi

)2

n∑
i=1

(Xi − X̄)2
, (5.14)

where the constants ai (a1, . . . , an) are given by

ai =
m′V −1

(m′V −1V −1m)1/2
(5.15)

and

m = (m1, · · · ,mn)′. (5.16)

m1, · · · ,mn are the expected values of the order statistics of i.i.d random variables

sampled from the standard normal distribution, and V is the covariance matrix of

those order statistics. Under the null hypothesis H0, the numerator is an estimator

for (n−1)σ2, and the denominator is also an estimator for (n−1)σ2 (Castro, 2013).

Hence, under H0,W ≈ 1. Under H1, the numerator tends to be smaller. Therefore,

we reject the null hypothesis for small values of W.

Otherwise, one can also use the p-value from the test to draw conclusions. If the

p-value is less than the chosen significance level, then H0 is rejected and there is
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evidence that the data tested is not from a normally distributed population. In

our study, we use the Shapiro-Wilk test in R to check for normality. This test was

developed by Royston (1995) who suggested that an approximate p-value for the

test is said to be adequate for p-value < 0.1. With the available data, the function

returns a p-value of 0.836, which is greater than 0.1. Therefore, we fail to reject

the H0 and conclude that the data is from a normally distributed population. For

verification purposes, we also use a Q-Q plot in addition to the test.

In order to determine normality graphically, we can use the output of a normal

Q-Q Plot. If the data is normally distributed, data points are close to the diagonal

line. If data points stray from the line in an obvious non-linear manner, then the

data is not normally distributed. As we can see from the normal Q-Q plot in figure

5.4 below, the data looks normally distributed.

Figure 5.4: Q-Q plot of data.

5.1.4 Model order selection

We plot the ACF and PACF again, but this time with differenced data in order

to examine which p and q values would give an appropriate model, as discussed

in section 3.5. This is shown in figure 5.5.

We are able to read different plausible values of p and q by visual inspection of

the ACF and PACF. From the ACF, we read off an MA(1) model because only

one lag exceeds the significance bounds. From the PACF we read off an AR(2)

model because only the first 2 lags exceed the significance bounds, and combining
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Figure 5.5: ACF and PACF plots for stationary data.

the ACF and PACF results, we get an ARMA(2,1) model. Since stationarity is

attained after the taking the first difference, d = 1. This results into 3 possible

models, that is, ARIMA(0,1,1), ARIMA(2,1,0) and ARIMA(2,1,1). Using the law

of parsimony, the best model is ARIMA(0,1,1) because it has the least number of

parameters. However, we choose to try out all possible models and select the best

using different criteria. In this study, we compare models using the AIC, AICC

and BIC criteria.

The oldest and most popular criterion is the Akaike information criterion (AIC)

developed by Akaike (1973). This criterion is a measure of the comparative quality

of a statistical model for a given set of data (Kiche et al., 2014; Vandekerckhove

et al., 2015). It estimates the quality of each model as compared to other proposed

models. Theoratically, the AIC is defined as

AIC = −2 log(L) + 2(p+ q + k + 1), (5.17)

where L is the likelihood of the data, k = 1 if c 6= 0 and k = 0 if c = 0. The last

term in brackets is the number of independent parameters estimated in the model,

including the variance of the residuals, σ2 (Chatfield, 2002).

A study by Hurvich and Tsai (1989) was done to improve the effectiveness of

the AIC and correct it of bias. The corrected method is called the AICC, often
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written as AICc. The correction is of particular use when the sample size is small,

or when the number of fitted parameters is either a moderate or large fraction of

the sample size. The corrected method is asymptotically efficient if the true model

is infinite dimensional. Furthermore, when the true model is of finite dimension,

AICC is found to provide better model order choices than any other asymptotically

efficient method. For ARIMA models, AICC can be written as (Hyndman and

Athanasopoulos, 2014);

AICC = AIC +
2(p+ q + k + 1)(p+ q + k + 2)

T − p− q − k − 2
. (5.18)

The Bayesian information criterion (BIC) is another famous criterion developed

by Schwarz et al. (1978). It is partially based on the likelihood function and closely

related to the AIC. The BIC can be written as (Wang and Liu, 2006)

BIC = −2 log(L) + (p+ q + k + 1) log(T ) (5.19)

= AIC + (log(T )− 2)(p+ q + k + 1). (5.20)

All rejection criteria choose the model with the best fit, as measured by the like-

lihood function, subject to a penalty term that increases with the number of

parameters fitted in the model. The best model is obtained by minimizing the

AIC, AICC and BIC as seen in table 5.1. The “arima()” function in R, applied to

all the possible models gives the following AIC, AICC and BIC results;

Model AIC AICc BIC
ARIMA(0,1,1) 477.08 477.25 481.60
ARIMA(2,1,0) 473.57 473.93 480.36
ARIMA(2,1,1) 475.56 476.16 484.61

Table 5.1: Information criteria for the three models

We see that the BIC gives ARIMA(1,1,0) as the best model but the AIC and AICC

give ARIMA(2,1,0). The best model from the analysis is ARIMA(2,1,0) relative

to all other models. It does not have a very high BIC and has the lowest AIC and

AICC.

We also consider possible seasonal models because the data tests true for monthly

seasonality. These models are developed using the auto.arima() function in R,
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with different levels of differencing. The best model is selected depending on

accuracy measures, rather than information criteria. This is because, comparing

models using information criteria requires that all models have the same orders of

differencing, which is not true in this case (Hyndman and Athanasopoulos, 2014).

In this study, we mainly focus on the mean absolute percent error (MAPE) and

root mean square error (RMSE). Theoretically, MAPE and RMSE are respectively

calculated as;

MAPE =
100

n

n∑
i=1

|Ai − Fi|
Ai

,

RMSE =
1

n

n∑
i=1

(Ai − Fi)2,

where Ai and Fi represent the actual observation and forecast respectively, at a

given time i and n represents the number of observations. In R, accuracy measures

are calculated using the accuracy function which in this case returns in-sample

accuracy measures because of the absence of actual data for comparisons.

The returned accuracy measures are shown in Table 5.2

ARIMA RMSE MAPE
(2,1,0) 6.036516 3.080902
(0,0,0)(2,2,0)[12] 5.926322 2.426974
(0,0,0)(1,1,1)[12] 4.872027 2.347028

Table 5.2: Accuracy measures for the different models

From Table 5.2, the best model is SARIMA(0,0,0)(1,1,1)[12] with coefficients:

sar1 sma1 drift
Parameters -0.0996 -0.7421 1.1580

s.e. 0.2135 0.3634 0.0289

Table 5.3: Coefficients for the SARIMA(0,0,0)(1,1,1)[12] model
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5.1.5 Forecasting with seasonal ARIMA(0,0,0)(1,1,1)[12]

After identifying the best model, we use it to make forecasts for future values of

the series. Considering a time horizon of 12 months ahead, we apply the fore-

cast.Arima() function in the forecast R package to equation 7.2. The point and

interval forecasts developed using this function for both 80% and 95% confidence

intervals are shown in Table 5.4

Point Forecast Lo-80 Hi-80 Lo-95 Hi-95

185.5849 178.6963 192.4736 175.0497 196.1202
175.0248 168.1361 181.9134 164.4895 185.5601
185.4329 178.5443 192.3216 174.8976 195.9682
183.7596 176.8709 190.6482 173.2243 194.2949
190.5924 183.7038 197.4811 180.0571 201.1277
190.7364 183.8477 197.6250 180.2011 201.2717
190.1033 183.2146 196.9919 179.5680 200.6385
194.2202 187.3316 201.1089 183.6849 204.7555
191.3214 184.4328 198.2101 180.7861 201.8567
195.6508 188.7622 202.5395 185.1156 206.1861
192.1151 185.2265 199.0038 181.5799 202.6504
195.0531 188.1645 201.9418 184.5178 205.5884

Table 5.4: Forecasts for 12 months ahead.

The SARIMA(0,0,0)(1,1,1)[12] model chosen gives the forecast demand of electric-

ity ranging from 175GW to 195GW as displayed in Figure 5.6. There is an ex-

pected increase in demand of electricity in Uganda during the following 12 months.

We see that as we go further in time, the interval of the forecasts increases because

the level of uncertainty also increases. A longer time horizon is likely to have more

inaccurate forecasts than a short time horizon.

5.1.6 Diagnosis of seasonal ARIMA(0,0,0)(1,1,1)[12]

It is advisable to investigate whether the forecast errors of an ARIMA model are

homoskedastic, normally distributed, and whether there are correlations between

successive forecast errors. This can be done by plotting the ACF of the residuals,

and doing a portmanteau test of the residuals using the Ljung-Box test. If residuals

do not look like white noise, it means the model can be modified to improve
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Figure 5.6: Point forecasts shown by the extending blue line.

the forecasts. Once the residuals look like white noise, the model can then be

considered effective and used for forecasting.

5.1.6.1 Autocorrelation

We use the Ljung Box test developed by Ljung and Box (1978) to check for any

evidence of autocorrelation. The test is usually applied to the residuals of a time

series after fitting an ARIMA model, not the original data, and it examines all

autocorrelations of the residuals (Arranz, 2005). In this test, the null hypothesis

(H0) of zero autocorrelation is tested against the alternative (H1) of autocorrela-

tion. For any given series, say, Yt of length T, the test statistic Q is calculated

as;

Q = T (T + 2)
m∑
k=1

(T − k)−1r2k, (5.21)

where; T is the length of the time series, rk is the kth autocorrelation coefficient

of the residuals, and m is the number of lags to be tested. The null hypothesis is

rejected if

Q > χ2
1−α,h,

where α is the level of significance and h are the degrees of freedom. The degrees

of freedom need to be adjusted to account for the estimated model parameters.
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Therefore, h = m − p − q, where p and q are the parameters from the chosen

ARIMA model (Maynard, 2003). In their study, Hyndman and Athanasopoulos

(2014) recommended using h = 10 for non-seasonal data and h = 2m for seasonal

data, where m is the period of seasonality. They based their recommendations on

power considerations, because they wanted to ensure that h was large enough to

capture any meaningful and troublesome correlations.

A conclusion can also be drawn using the p-value, and this is the considered option

in this study. We use the Ljung Box Statistic test in R to test the same hypotheses

as theoretically suggested. The null hypothesis of randomness or no autocorrela-

tion is tested against the alternative of non randomness or autocorrelation. We

test lags from 5 to 50 in intervals of 5. According to the test, no lag returns a

p-value less than 0.05 as seen in Table 5.5.

Lag test stat p-value
5 2.858157 0.7218427
10 8.310156 0.5985696
15 13.489736 0.5645262
20 19.528189 0.4877694
25 23.668310 0.5385987
30 25.257068 0.7124451
35 38.768240 0.3035306
40 39.500716 0.4925622
45 44.573411 0.4899108
50 46.564569 0.6120341

Table 5.5: Absence of autocorrelation in SARIMA(0,0,0)(1,1,1)[12] residuals.

Therefore, we fail to reject the null hypothesis and conclude that, the data is

random. That means, there is no evidence of autocorrelation in the residuals of

the SARIMA(0,0,0)(1,1,1)[12] model chosen.

An alternative test is the Breusch-Godfrey serial correlation Lagrange multiplier

test, where the test is equivalent to one based on the idea of Lagrange multiplier

testing.

Graphically, we also make a plot to test for the autocorrelation effect in the residu-

als of the SARIMA(0,0,0)(1,1,1)[12] model as shown in Figure 5.7. None of the lags

shows significant spikes, indicating no evidence of autocorrelation in the residuals

of the SARIMA(0,0,0)(1,1,1)[12] model.
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Figure 5.7: ACF of in-sample residuals.

5.1.6.2 Normality

We use the Jarque-Bera (JB) test to investigate whether the skewness and kurtosis

of the residuals are the same as for normally distributed data. The null hypothesis

is a joint hypothesis of the skewness being 0 and the excess kurtosis being 0. The

JB test is defined by the following procedure; consider testing the null hypothesis

H0 : normal distribution (both skewness and excess kurtosis are zero), against

the alternative hypothesis H1 : non-normal distribution. The JB test statistic is

calculated as:

JB =
n

6

(
S2 +

1

4
(C − 3)2

)
, (5.22)

where; n is the number of observations, also called the degrees of freedom, S is

the sample skewness calculated by:

S =
1
n

∑n
i=1(xi − x̄)3(

1
n

∑n
i=1(xi − x̄)2

) 3
2

, (5.23)

and C is the sample kurtosis. We use C−3 in this expression because for normally

distributed data, the kurtosis is expected to be 3. This means any excess kurtosis
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should be 0 (C − 3). The sample kurtosis is calculated by:

C =
1
n

∑n
i=1(xi − x̄)4(

1
n

∑n
i=1(xi − x̄)2

)2 . (5.24)

The calculated test statistics in equation 5.22 can be compared with a χ2 (chi-

square) value with 2 degrees of freedom and a chosen level of significance α (Thade-

wald and Büning, 2007). The null hypothesis of normality is rejected if the cal-

culated test statistic is greater than the tabulated value. Otherwise, a conclusion

can also be drawn using the p-value. In our study, we choose this option because

of the software used (R). The same hypotheses are tested. A p-value of 0.002698

is calculated, which is less than 0.05. Hence leading to the rejection of the null

hypothesis of normality and concluding that the residuals show evidence of a non

normal distribution.

As the definition of JB shows, any deviation from skewness and excess kurtosis of

0 increases the JB statistic. With the available data, the calculated JB statistic

is 11.831, which is not a high value. This means there is not much deviation

from skewness and excess kurtosis of 0, according to the available data. For small

samples the chi-squared approximation is overly sensitive, often rejecting the null

hypothesis when it is in fact true (Tao et al., 2014). This might be the reason

behind these JB test results with a small sample of 72 observations. The sample

size of 72 is too small for the underlying asymptotic approximations for the JB

test to work (Wuertz and Katzgraber, 2005). Therefore, the reported p-value is

neither uniform nor sufficient enough for use in hypothesis testing.

To further investigate the non normality of the residuals, we make a time series

plot and a histogram (with overlaid normal curve) of residuals. We use residuals

from in-sample forecasts because observed data for the forecast is not readily

available. The histogram in figure 5.8 shows that the distribution of residuals

from in-sample forecasts is not centred on zero and has flatter tails compared to

a normal distribution.

The same conclusion is drawn from the Q-Q plot of residuals plotted in Figure5.9.

The residuals have heavier tails on both the right and left ends. Therefore indicat-

ing non normality. However, in their book, Hyndman and Athanasopoulos (2014)

point out that it is useful, but not necessary for the residuals to also have a con-

stant variance and be normally distributed. These two properties only make the
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Figure 5.8: Histogram of in-sample residuals.

calculation of prediction intervals easier. If a forecasting model produces residuals

that are homoskedastic and show no evidence of autocorrelation, then little can

be done to achieve normality from the model’s residuals. That models can be

considered sufficient enough for forecasting if the main aim for building it was to

carry out forecasting exercises.

Figure 5.9: Q-Q plot showing non normality of residuals.

The time series plot in figure 5.10 shows that the variance of the forecast errors

is not constant over time. However, more formal tests for homoskedasticity are
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carried out in Chapter 7.

Figure 5.10: Time plot of in-sample residuals.

The main objective of this study is to predict electricity demand for Uganda in

order to help electricity generating bodies and policy makers plan for the future of

Uganda sustainably and adequately. Since successive forecast errors do not show

evidence of auto correlation, we concluded that the SARIMA(0,0,0)(1,1,1)[12]

model is an adequate predictive model for the peak monthly demand of electricity

in Uganda.

5.2 South Africa daily electricity demand data

In this section, we fit an ARIMA model to South Africa’s daily electricity demand

data. We are able to identify a seasonal pattern, with no trend, from the time

series plot in Figure 3.7. From the time series plot, the data shows an unstable

variance over time. It is necessary to adjust it accordingly to gain stationarity.

We divide the data into two sets; the first set has the first 1342 observations used

to train the model, and the second set has the last 300 observations used to test

the efficiency of the ARIMA model.

We plot the ACF of the training set in order to check for stationarity because

visual inspection of the time series plot is some times misleading. From Figure

5.11 the data is not stationary. The ACF decays off at a very slow rate.
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Figure 5.11: ACF and PACF of non stationary data.

5.2.1 Testing for stationarity

In order to gain stationarity, different transformations can be used. A log trans-

formation is commonly used in electricity studies but for the available data, the

log transformation alone is not effective enough to attain stationarity. Due to the

seasonality component exhibited by the data, a seasonal difference is a better way

of making the data stationary. The tbats function in R reveals the presence of

annual seasonality in the data, as shown in Figure 5.12.

Figure 5.12: Annual seasonality in South Africa data.
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After a log transformation, a seasonal difference is applied to the data too and the

results are shown in Figure 5.13. At initial glance, Figure 5.13 shows stataionarity

in the data. However, we run a KPSS test for certainty, which returns a p-value

of 0.1. Since the returned p-value is greater than 0.05, we fail to reject the null

hypothesis and conclude that the data is now stationary.

Figure 5.13: Time series plot of the data after taking the seasonal difference.

5.2.2 Testing for normality

We use the Shapiro-Wilk test for normality. The function returns a p-value of

4.781e− 09, which is less than 0.1. Therefore, we reject H0 and conclude that the

data does not follow a normal distribution. The Q-Q plot in Figure 5.14 also shows

non normal data because most of the data points stray away from the diagonal

line.

5.2.3 Model order selection

We plot the ACF and PACF with seasonal differenced data in order to select the

appropriate p and q values to use when constructing the model. This is shown in

figure 5.15.

However, since the data shows evidence of seasonality, we use the auto.arima

function in R, together with different values of D (the seasonal difference), to
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Figure 5.14: Q-Q plot of South Africa data.

Figure 5.15: ACF and PACF of seasonal differenced data.

develop different possible models from which the best is chosen using accuracy

measurements. In this case, we do not choose the best model depending on its

AIC, AICc,or BIC because, comparing models using these information criteria

requires that all models have the same orders of differencing, which is not the case

for the seasonal difference used (Hyndman and Athanasopoulos, 2014). These

models are shown in Table 5.6;

We compare 2 models with D = 1, 2 because in reality, it is not common to

difference data more than twice before stationarity is achieved (Chatfield, 2000).
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ARIMA(1,0,1)(0,1,0)[365] with drift ARIMA(1,0,1)(0,2,0)[365]
ME 1553.408 -17639.39

RMSE 581600.1 775767
MAE 373029.5 394677.6
MPE -0.6057378 -0.688367

MAPE 7.098341 7.549908
MASE 0.4243369 0.4489625
ACF1 -0.001359556 -0.003033473

Table 5.6: Plausible models from the auto.arima function

Using the accuracy measures (mainly RMSE and MAPE) as shown in Table 5.6,

the best model for the available data is ARIMA(1,0,1)(0,1,0)[365] with a drift.

It has the lowest RMSE and MAPE. The coefficients of the model are shown in

Table 5.7:

ar1 ma1 drift
Parameters 0.6518 0.3511 531.1491

s.e. 0.0296 0.0364 231.3203

Table 5.7: Coefficients for the ARIMA(1,0,1)(0,1,0)[365] model

5.2.4 Forecasting with seasonal ARIMA(1,0,1)(0,1,0)[365]

We then use the identified model to make forecasts. The desired time horizon is

300 days ahead, in order to compare the forecasts with the test set of actual data.

Using the forecast package in R, we develop both point and interval forecasts for

80% and 95% confidence intervals, covering a period of 300 days, as shown in

Figure 5.16.

5.2.5 Diagnosis of seasonal ARIMA(1,0,1)(0,1,0)[365]

Here we investigate the normality of the errors and autocorrelation between succes-

sive forecast errors. To get the forecast errors, we calculate the difference between

the observed test set and the forecasts from the chosen model.
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Figure 5.16: Point forecasts shown by the extending blue line.

5.2.5.1 Autocorrelation

We use the Ljung Box Statistic test with the null hypothesis of zero autocorrelation

against the alternative of autocorrelation. According to the Ljung Box Statistic

test used in the study, all lags return p-values less than 0.05. This is shown in

Table 5.8. Therefore, we reject the null hypothesis and conclude that, the residuals

are not random, meaning there is evidence of autocorrelation in the residuals of

the chosen ARIMA model.

Lags Test stat P-value
Lag 5 266.1336 1.893091e-55
Lag 10 293.0550 4.563708e-57
Lag 15 302.5744 1.630482e-55
Lag 20 315.3051 5.987907e-55
Lag 25 346.9746 1.996977e-58
Lag 30 367.9272 8.046908e-60
Lag 35 377.7595 4.309539e-59
Lag 40 388.6129 1.133349e-58
Lag 45 431.3102 1.535623e-64
Lag 50 438.3353 1.789481e-63

Table 5.8: Ljung Box results for ARIMA(1,0,1)(0,1,0)[365] model residuals.

Graphically, Figure 5.17 shows the ACF of the residuals, with significant spikes in

most lags. Hence autocorrelated residuals of the ARIMA(1,0,1)(0,1,0)[365] model.
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Figure 5.17: ACF of out-of-sample residuals.

5.2.5.2 Normality

Using the JB test in R, a p-value of 1.376e − 12 is calculated, which is less than

0.05. Hence rejecting HO, and concluding that the residuals have a non normal

distribution.

Graphically, we plot a time series plot and a histogram with an overlaid normal

curve of residuals. The time series plot in Figure 5.18 shows that the mean of

the forecast errors fluctuates about zero but the variance still varies roughly. We

conclude that the data does not have a constant variance.

The histogram in Figure 5.19 shows that the residuals from out-of-sample forecasts

are skewed to the left. The calculated mean of the residuals is −55714.73, which

highly varies from 0. The histogram also shows that the residuals have flatter

tails and a higher kurtosis than a normal data set. Therefore, we confirm that the

residuals are not normally distributed. They neither have a constant variance nor

0 mean.

The normal Q-Q plot in figure 5.20 also confirms the non normality of the residuals.
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Figure 5.18: Time plot of out-of-sample residuals.

Figure 5.19: Histogram of out-of-sample residuals.

5.2.6 Conclusion

ARIMA models are used because of their capabilities to make predictions using

time series data with any kind of pattern and with autocorrelations between the

successive values in the series (Kumar and Anand, 2014). We have statistically

tested and validated that the residuals in the fitted ARIMA model are correlated,

and are not normally distributed. Therefore, the chosen ARIMA(1,0,1)(0,1,0)[365]

can be improved to produce better forecasts.
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Figure 5.20: Q-Q plot of out-of-sample residuals.

Like other forecasting models, ARIMA models have limitations on accuracy of

predictions. The forecasts provided by an ARIMA model can be improved in

various ways, for example, taking into consideration the change in variance of the

data. This is called volatility testing and various models have been developed over

the years to take volatility into consideration while forecasting.



Chapter 6

Volatility forecasting models

In this chapter we study some of the statistical methods for analysing and modeling

volatility in any given data set, with specific emphasis on electricity demand data.

The models to be studied are called conditional heteroscedastic models. Since our

emphasis is on univariate models, we shall study the AutoRegressive Conditional

Heteroscedastic (ARCH) model developed by Engle (1982) and the generalized

ARCH (GARCH) model developed by Bollerslev (1986).

Linear methods often work well and may provide an adequate approximation for

the task at hand. These methods can also be used as a basis for comparison

with the results from more complicated alternative analyses. However, in reality,

life processes can not be restricted to linearity only. Therefore, it is necessary to

apply the use of non linear models as well for time series analysis. Data that looks

stationary in the mean but is non-stationary in variance can not be explained by

a linear model, and so non-linear models are needed to describe such data because

of the change in variance through time.

In our study, we have analysed and forecast the available data using ARIMA

models. However, we need to check the residuals for normality, autocorrelation

and homoscedasticiy. If any of these tests returns a negative result, then the

model chosen is not adequate enough and forecasts can be improved with further

analysis of extra data features. For that reason, volatility models are important

to accommodate the volatility in the residuals of the data after applying ARIMA

models.

92
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6.1 Significance of this chapter

The main aim of this chapter is to study some of the volatility forecasting models

used in the analysis of univariate time series data and to use these processes to

model volatility in the residuals of electricity demand data for both Uganda and

South Africa. This helps improve the level of accuracy of the forecasts. The

specific objectives are to;

• identify the best fitting model for the electricity demand data available.

• assess the contribution of these models to understanding of volatility in elec-

tricity demand.

• examine and compare the ARCH model and its extensions with ARIMA

models, both theoretically and practically.

To attain these objectives, this chapter will be organised as follows; Meaning and

more understanding of volatility, development and properties of an ARCH model,

extension to the GARCH model and its properties, model specification, application

to electricity demand data and lastly the conclusion.

6.2 Definition of Volatility

Volatility is the rate at which the variance of a given variable under study changes

over time. It can also be defined as the level of uncertainty about changes in

the value of a given variable. Modelling volatility in electricity demand is very

vital because many factors affecting the demand of electricity change in very short

time intervals. Volatility modelling improves the accuracy of forecasts by giving

better variance estimates which can be used to compute more reliable prediction

intervals (Tsay, 2005). It also improves the efficiency in parameter estimation,

especially when dealing with time series data. High volatility means that the

value of a variable can potentially be spread out over a larger range of values

(Investopidia-Volatility). With electricity demand, the higher the volatility, the

more complicated it gets to forecast demand accurately because the values are

widely spread out. Therefore, complex forecasting techniques are employed in

such cases in order to accommodate all the values.
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Volatility can either be measured using the standard deviation or variance. Au-

thors like Talke (2003) prefer using the standard deviation because it is measured

in the same units as the original data. In this study, we shall also use the stan-

dard deviation symbol, σ, to denote volatility. According to Tsay (2005), the most

common characteristics of volatility include; no direct observation especially when

dealing with univariate time series data, existence of volatility clusters when the

data is plotted, continuous progress over time, variation in a fixed range-meaning

divergence does not reach infinity.

6.3 The ARCH model

This was the first and simplest model to provide a systematic framework for volatil-

ity modelling. It was developed in 1982 by economist Robert F. Engle (Engle,

1982). The acronym ARCH stands for AutoRegressive Conditional Heteroscedas-

ticity. The AR comes from the fact that this model is a type of autoregressive

model. Heteroscedasticity means non constant variance. However, with an ARCH

model, it is not the variance itself that changes with time, rather, the conditional

variance. This variance is conditional on the available data. It represents the un-

certainty about the next period’s observation given all the information currently

available. ARCH models are usually employed to data that assumes an unstable

variance in the error term at any given point in the series. In particular, ARCH

models assume that the variance of the current error term is a function of the

previous time periods’ error terms (Perrelli, 2001).

Eberly College Website suggests the possibility of using an ARCH model for any

series that has changing variance, for example, residuals after fitting an ARIMA

model to the data. Therefore, in this study we use residuals from our ARIMA

analysis as data to which volatility models are applied. We have chosen to use

the notation Yt instead of Xt, to emphasize that these volatility models are not

applied directly to the observed data. The derived series Yt is from the residuals

of the direct observations. Assume yt represents residuals and εt is a normal white

noise process where, εt ∼ iid(0, 1), and let Yt−1 be a set of information available

at time t− 1. That means, at a current time, Yt−1 = {y1, y2, · · · , yt−1}. Then, yt

is said to follow an ARCH process if;

yt = σtεt, (6.1)
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where σt is the local conditional standard deviation of the process and is not

directly observable (Tsay, 2005). It can be calculated from the conditional variance

σ2
t which is related to squares of the previous error terms, depending on the order

of the process.

6.3.1 ARCH(1)

An ARCH(1) is the simplest version of ARCH models. The number “1” in the

brackets shows that it is of order 1. In this model, the conditional variance σ2
t is

calculated as;

σ2
t = α0 + α1y

2
t−1, (6.2)

where α0 and α1 are parameters, carefully chosen in order to avoid a negative

conditional variance. That is, for positive variance, the conditions that α0 > 0

and α1 > 0 are assumed, and α1 < 1 is assumed for stationarity (Chatfield, 2002).

It is clear from equation 6.2 that the variance at time t is connected to the value of

the series at time t−1. Therefore, a large past residual implies a large conditional

variance which in turn gives a large current residual yt, in absolute terms. That is

why it is common to expect large residuals to be followed by other large residuals

and the same applies to smaller residuals (Talke, 2003). Due to the dependence

of the conditional variance on past series’ values, the process yt is not indepen-

dent. Substituting equation 6.2 into equation 7 gives an ARCH(1) model, which

is represented as;

yt = εt

(√
α0 + α1y2t−1

)
, (6.3)

where yt−1 denotes the observed value of the derived series at time t − 1. Con-

sidering the assumption of normality of εt, the ARCH(1) process can be written

conditional on Yt−1 as;

yt|Yt−1 = yt|yt−1 ∼ N(0, σ2
t ). (6.4)
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6.3.1.1 Properties of ARCH(1) process

• Mean: This is calculated conditional on all past information and it is given

by;

E(yt|Yt−1) = E(σtεt|Yt−1), (6.5)

= σtE(εt|Yt−1), (6.6)

= 0. (From the normality assumption of εt.) (6.7)

This means the series yt is a martingale difference sequence (MDS) because

its expectation with respect to the past observations is zero.

• Variance: If it is assumed that yt is second order stationary, then the variance

is constant at all times. That means Var(yt) = E(y2t ) = E(y2t−1) = Var(yt−1).

Therefore;

Var(yt) = E(y2t )− (E(yt))
2 (6.8)

= E(σ2
t ε

2
t )− 0 (6.9)

= E[σ2
t (E(ε2t |Yt−1))] (6.10)

= E[σ2
t (1)] (From the normality assumption of εt.) (6.11)

= E[α0 + α1y
2
t−1] (6.12)

= α0 + α1E(y2t−1) (6.13)

= α0 + α1Var(yt) (6.14)

=
α0

1− α1

. (6.15)

• Other properties of the ARCH(1) model are its skewness and kurtosis that

have not been discussed in this study.

6.3.1.2 Parameter estimation in ARCH(1)

Parameters α0 and α1 in equation 6.3 have to be estimated for the model to be

considered for analysis. Different methods can be used but in this study we shall

use the MLE method because we assumed normality of the process, with 0 mean

and constant variance (see equation 6.4). If we assume a series y1, y2, ..., yT to be a

realization of the ARCH(1) process, we begin by defining the distribution function
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of the process as;

f(yT |yT−1) =
1√

2πσ2
t

exp

(
− y2t

2σ2
t

)
. (6.16)

We then derive the likelihood function containing the unknown parameters of the

model as a product of all conditionals.

L(y1, ..., yT |β) = f(yT |YT−1)f(yT−1|YT−2)...f(y2|Y1)f(y1|β), (6.17)

where β = (α0, α1)
′ represents the parameters to be estimated. The conditional

expression f(y1|β) can not be obtained easily. However, Tsay (2005) and Talke

(2003) consider y1 to take on it’s observed value. Therefore, it is dropped from

the original likelihood function and considered for conditioning, especially if the

data set is big. This changes equation 6.17 to;

L(y2, ..., yT |β; y1) = f(yT |YT−1)f(yT−1|YT−2)...f(y2|Y1). (6.18)

Using the normal distribution function in 6.16, the final conditional likelihood

function becomes;

L(y2, ..., yT |β; y1) =
T∏
t=2

1√
2πσ2

t

exp

(
−

T∑
t=2

y2t
2σ2

t

)
, (6.19)

=
T∏
t=2

(2πσ2
t )
− 1

2 exp

(
−

T∑
t=2

y2t
2σ2

t

)
. (6.20)

We take natural logarithms for equation 6.20 in order to get the conditional log

likelihood function.

l(y2, ..., yT |β; y1) = −1

2

T∑
t=2

ln(2πσ2
t )−

1

2

T∑
t=2

y2t
σ2
t

, (6.21)

= −1

2

T∑
t=2

(
ln(2π) + ln(σ2

t ) +
y2t
σ2
t

)
. (6.22)

The values of α0 and α1 that maximize the sample likelihood are called MLEs and

can be obtained by maximizing the log likelihood function with respect to these

parameters. Taking partial derivatives in the first term of equation 6.22 results
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into a 0 since it does not have any of the parameters of interest. Therefore, we

can remove it from the function and replace σ2
t by α0 +α1y

2
t−1 from equation 6.2 .

l(y2, ..., yT |β; y1) = −1

2

T∑
t=2

ln(α0 + α1y
2
t−1)−

1

2

T∑
t=2

y2t
α0 + α1y2t−1

. (6.23)

It is often very complicated to analytically find the parameter estimates from

equation 6.23. However, different studies have used different approaches to solve

this problem, for example, Talke (2003) suggested the numerical approach to find

the estimates. They argued that if data was made available with a known max-

imum time T, then the parameter estimates could be computed. Some studies

propose the use of algorithms. For example, Allal and Benmoumen (2014) pro-

posed an estimate algorithm for the parameters of a ARCH(1) model. They did

not consider any assumptions about initial values even if these assumptions are

important in the Quasi-maximum likelihood estimation method (QMLE). They

combined the maximum likelihood method, Kalman filter algorithm and the Si-

multaneous Perturbation Stochastic Approximation method (SPSA) to create the

algorithm. Using simulated data, their results showed that the algorithm was very

reliable, viable and promising in estimating the parameter values of a given model.

6.3.1.3 Forecasting with ARCH(1)

Unlike linear ARIMA models, when forecasting with volatility models we take

into consideration the variance of the data. Assume a series YT = {y1, ..., yT},
the forecast yT (l) is the minimum square error predictor and it minimises the

expression E(yT+l − f(y))2 among all functions of observations y, f(y) (Talke,

2003). When dealing with time series data, yT (l) is calculated depending on

observed data as;

yT (l) = E(yT+l|YT ) (6.24)

= E(σT+lεT+l|YT ) For an ARCH(1)process, (6.25)

= σT+lE(εT+l|YT ) = 0. (6.26)
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For this reason, Shephard (1996) suggested the use of squares of the series to make

more meaningful forecasts for an ARCH model. They calculated yT (l) using;

y2T (l) = E(y2T+l|YT ) YT = {y21, ..., y2T} (6.27)

= E(σ2
T+1ε

2
T+1|YT ) For l = 1 (6.28)

= E(σ2
T+1) (6.29)

= α̂0 + α̂1E(y2T ) (6.30)

But at time T, yT is already observed, therefore its expectation takes the real

observed value. The parameter α̂0 and α̂1 are the conditional maximum likelihood

estimates calculated in part 6.3.1.2.

y2T (1) = α̂0 + α̂1y
2
T = σ2

T (1) = E(σ2
T+1|YT ). (6.31)

If l = 2, then the forecast is given as;

y2T (1) = E(y2T+2|YT ) = E(σT+2|YT ) (6.32)

= E(α̂0 + α̂1y
2
T+1|YT ) = α̂0 + α̂1E(y2T+1|YT ) (6.33)

= α̂0 + α̂1(α̂0 + α̂1y
2
T ) (6.34)

= α̂0 + α̂1σ
2
T (1). (6.35)

6.3.2 ARCH(q)

The ACRH(1) model can be extended to include many parameters. This means

the conditional variance will depend on observations from q previous times, hence

the term ARCH(q). In this case,

σ2
t = Var(yt|yt−1, · · · , yt−p), (6.36)

= α0 + α1y
2
t−1 + ...+ αqy

2
t−q, (6.37)

where the restrictions α0 > 0 and αi ≥ 0 for i = 1, 2, ..., q for positive variance

still hold like in ARCH(1). The properties of an ARCH(q) process are similar

to those of an ARCH(1) process. The mean is still 0 and the variance takes

into consideration the other parameters introduced in the model. Therefore, the
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variance becomes;

Var(yt) =
α0

1−
∑q

i=1 αi
. (6.38)

The condition for second order stationarity is still assumed, therefore
∑q

i=1 αi < 1.

All the other procedures, like estimation of parameters and forecasting in this

process are similar to those discussed in the ARCH(1) process, with just a increase

in the number of parameters included. An ARCH(q) process is uncorrelated with

constant conditional and unconditional means, a constant unconditional variance,

and a non constant conditional variance, just like an ARCH(1) process (Ruppert,

2010).

ARCH models are suitably used when the change in variance takes short intervals.

They can also be used for gradual changes over time, but, gradual increasing

variance connected to a gradually increasing mean level can be handled better

using transformation methods as discussed in section 3.6 (Eberly College Website).

Some disadvantages of using ARCH Models include (Tsay, 2005);

• The model assumes the same effect on volatility from both positive and

negative errors, since it uses squares of previous errors. However, this is not

correct, for example, from a financial point of view, reality shows that the

price of a financial asset responds differently to positive and negative shocks.

• ARCH models do not provide any new ideas for understanding the source

of variations of any given time series. They only help us understand the

behaviour of the conditional variance.

• ARCH models are likely to over predict the volatility because they respond

slowly to large isolated errors to the new developed series.

6.4 GARCH model

Due to the limitations presented by the ARCH models, a better model was pro-

posed by Bollerslev in 1986 (Bollerslev, 1986) in order to solve the problem of

requiring many parameter to adequately describe any given data while using

an ARCH model. It is called the Generalised AutoRegressive Conditional Het-

eroskedasticity (GARCH) model. GARCH models allow the conditional variance,



Section 6.4. GARCH model Page 101

σ2
t , to depend on both previous conditional variances (σ2

t−i) and previous squared

values of the series (y2t−i). Using GARCH models to control the problem of het-

eroskedasticity helps to obtain valid standard errors, which can be used to evalu-

ate the chosen model and also construct forecasts with correct prediction intervals

(Efimova, 2013). GARCH models typically fit any data as well as any high order

ARCH model, but are more advantageous because they hold the condition of par-

simony. The idea behind a GARCH model is similar to that behind an ARMA

model. A high order AR or MA model may often be approximated by a mixed

ARMA model, with fewer parameters (Chatfield, 2000).

Just like an ARCH process, a GARCH process is still defined using equation 7,

where; εt is still assumed to be a sequence of iid random variables with mean 0

and variance 1. σ2
t is generally a function of previous conditional variances and

previous observed values of the series. However, it specifically depends on the

order of the model.

6.4.1 GARCH(1,1)

A GARCH(1,1) process is simply an extension of an ARCH(1) process. In this

specification, the current conditional variance σ2
t is expected to be an average of

a past derived series and a past conditional variance, plus a constant;

σ2
t = α0 + α1y

2
t−1 + β1σ

2
t−1. (6.39)

The assumptions for stationarity and positive variance still hold like for an ARCH

process, with the inclusion of the coefficient of the past conditional variance, β1.

The introduced lagged variance reduces the initially many ARCH parameters to

an easily dealt with quantity. This can be explained by expansion of the model

6.39;

σ2
t = α0 + α1y

2
t−1 + β1(α0 + α1y

2
t−2 + β1σ

2
t−2), (6.40)

= α0 + β1α0 + α1y
2
t−1 + β1α1y

2
t−2 + β2

1σ
2
t−2. (6.41)

The expansion for the conditional variance can go on until infinity. That is a not

so desirable situation, especially when applying the models to practical data.
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As was the case in the ARCH model, the coefficients of a GARCH model must

also be restricted to ensure that the conditional variances are uniformly positive.

In a GARCH(1,1), these restrictions are; for a positive conditional variance, the

parameters α0 > 0, α1 ≥ 0 and β1 ≥ 0, and for the assumption of stationarity,

α1 + β1 < 1. The properties of a GARCH(1,1) model are not so different from

those if an ARCH(1) process. The conditional mean is still 0, therefore the series

is still a martingale difference. Due to the structure of the model in this case, the

information set is, Yt−1 = {y1, σ2
1, ..., yt−1, σ

2
t−1}. Therefore, to get the variance

in this case, we still assume second order stationarity like for the ARCH process,

and;

E(y2t ) = E(σ2
t ε

2
t |Yt−1) (6.42)

= E(σ2
t (E(ε2t |Yt−1))) (6.43)

= E(σ2
t ) = E(α0 + α1(y

2
t−1) + β1(σ

2
t−1)). (6.44)

From the information set σ2
t−1 is observed. Therefore, its expectation takes on its

real value, which is the variance of yt−1. Then, the assumption of second order

stationarity shows that E(y2t ) is equal to E(y2t−1) which is equal to the variance.

Thus,

E(y2t ) = α0 + α1(E(y2t )) + β1(E(y2t )), (6.45)

=
α0

1− (α1 + β1)
. (6.46)

Forecasting the conditional variance one step ahead follows directly from the

model. Forecasting more than one step ahead is carried out by replacing future

values of σ2
t and of y2t by their estimates.

6.4.2 GARCH(p,q)

A GARCH model of order (p, q) assumes the conditional variance depends on the

squares of the last p values of the series and on the last q values of the conditional

variance. The properties and applications of this model are not different from

those of a GARCH(1,1) model, however, it is very rare in practice to require the

use of a GARCH model of order higher than (1,1).
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In practice, if such a model is fitted to data and the stationarity condition is not

satisfied, squared observations can be made stationary after taking first differences.

This results into the Integrated GARCH (IGARCH) model. Other extensions of

the basic GARCH model include Quadratic GARCH (QGARCH), which allows

for negative shocks to have more effect on the conditional variance than positive

shocks, and exponential GARCH (EGARCH) which also allows an asymmetric

response by modelling log σ2
t , rather than σ2

t (Chatfield, 2002).

6.5 Non-normal distributions

All the ARCH models discussed earlier assume a normally distributed data set.

Although this assumption is commonly used by researchers modelling volatility, it

is not always obvious or appropriate. In fact, ARCH models with normal errors

capture some but not necessarily all the nature of the distribution of data. There-

fore, ARCH models involving errors that follow distributions with fatter tails than

the normal distribution are also investigated. Commonly studied are ARCH mod-

els with errors following the Student-t distribution suggested by Bollerslev in 1987

(Bollerslev et al., 1992; Heracleous, 2003) and ARCH models with errors following

the generalised error distribution suggested by Nelson in 1991 (Bollerslev et al.).

If the error term εt is assumed to follow a Student-t distribution with n > 2 degrees

of freedom, then its probability distribution function (pdf) will be given by;

f(εt) =
Γ
(
n+1
2

)
Γ
(
n
2

)√
(n− 2)πσ2

t

[
1 +

y2t
(n− 2)σ2

t

]− (n+1)
2

, (6.47)

where Γ() represents a gamma function. The Student-t distribution is symmetric

about 0 and converges to the normal as n approaches infinity (Brase and Brase,

2011). Unlike the kurtosis of a normal distribution which is 3, the Student-t

distribution has a bigger kurtosis of 3 + 6
n−4 . This explains the presence of heavier

tails in a Student-t distribution (Rachev et al., 2008).

Another type of models developed by Nelson (1991) are the EGRACH models.

These models assumed errors following the generalised error distribution with a
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pdf given by;

f(εt) =
n exp

[
−(1

2
)| εt
λ
|n
]

λ2(1+ 1
n
)Γ( 1

n
)

, (6.48)

where Vasudeva and Kumari (2013) define λ as

λ =

[
2(−2

n
)Γ( 1

n
)

Γ( 3
n
)

]( 1
2
)

(6.49)

and n as the tail thickness parameter. When n = 2, the errors follow a standard

normal distribution. When n < 2, the errors follow a distribution with thicker

tails, and n > 2 gives the errors a distribution with thinner tails as compared to

those of a normal distribution (Talke, 2003).

6.6 Model Specification

The best identification tool may be a time series plot of the series. It is usually

easy to spot periods of increased variation throughout the series. It is also helpful

to study the ACF and PACF of both yt and y2t . For instance, if yt appears to

be white noise and the PACF of the y2t suggests AR(1), then ARCH(1) model for

the variance is suggested. In practice, it is advisable to experiment with various

ARCH and GARCH structures after realising the need to in the time series plot

of the series (Eberly College Website).

Identifying an appropriate ARCH or GARCH model is not as easy as dealing with

linear models, which partially explains why many analysts assume GARCH(1,1) to

be the standard model (Chatfield, 2002). A series with GARCH(1,1) variances may

look like uncorrelated white noise if second-order properties alone are examined,

and so non-linearity has to be assessed by examining the properties of higher order

moments (as for other non-linear models). If Yt is GARCH(1,1), then it can be

shown that Y 2
t has the same auto correlation structure as an ARMA(1,1) process.

In their study, Garcia et al. (2005) propose a general scheme for obtaining a desired

and appropriate GARCH model as follows :

• A class of models is formulated assuming certain hypotheses. In this step,

a general GARCH formulation is selected to model the available data. This
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selection is carried out by careful inspection of the main characteristics of

the series. For example, in most of the competitive electricity markets, the

data usually exhibits high frequency, non constant mean and variance, and

multiple seasonality. These factors are among the main ones applied when

selecting the GARCH model.

• A model is identified for the observed data. A trial model must be identified

for the available data, as seen in the first step. In a first trial, the observation

of the ACF and PACF plots of the data can help to make this selection. In

successive trials, the same observation of the residuals obtained can refine

the structure of the functions in the model.

• The model parameters are estimated. After the functions of the model have

been specified, the parameters of these functions must be estimated. Good

estimators of the parameters can be found by maximizing the likelihood with

respect to the parameters. Any Statistical software system can be used to

estimate the parameters of the model in the previous step.

• If the hypotheses of the model are validated, we can proceed to the next

step. Otherwise, it is advisable to go back to the previous steps and refine

the model. In this step, a diagnosis check is used to validate the assumptions

of the GARCH model. Among the tests to validate the assumptions of the

GARCH model chosen is a careful inspection of the ACF and PACF plots

of the residuals.

• The model can then be used to forecast future values of the data.



Chapter 7

Applying ARCH models to

ARIMA residual

In this chapter, we use the residuals from both ARIMA(0,0,0)(1,1,1)[12] and

ARIMA(1,0,1)(0,1,0)[365] models for Uganda and South Africa respectively as

new data. We test for the ARCH effect in both sets of data. We need to test

whether these residuals display a change in variance before applying volatility

models.

7.1 ARCH effect in ARIMA(0,0,0)(1,1,1)[12] resid-

uals

To test for ARCH effects in ARIMA residuals, one can use the McLeod-Li test.

This test was developed by McLeod and Li (1983) who proposed a formal test for

ARCH effect based on the Ljung-Box test. The test looks at the autocorrelation

function of the squares of the residuals and tests whether the first chosen, say L,

autocorrelations for the squared residuals are collectively small in magnitude. The

Ljung-Box Q-statistic of McLeod-Li test is given by:

Q = T (T + 2)
L∑
k=1

(T − k)−1r2k, (7.1)

where in this case rk is the sample autocorrelation of squared residual series at

lag k. The statistic Q is used to test the null hypothesis of no ARCH effect in the
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data against the alternative hypothesis of the presence of ARCH effect. The test

statistic is asymptotically χ2(L) distributed with L degrees of freedom (Janacek;

Patterson and Ashley, 2000; Wei, 2007)

While testing for autocorrelation in part 5.1.6.1, the residuals were statistically

uncorrelated, which was emphasised by the ACF. However, we are not sure if

these residuals are identically independently distributed through time. We use

visual inspection of the time series plot of residuals in figure 5.10 and find no

tendency of large (small) absolute values of the residual process being followed

by other large (small) absolute values, which is a common behaviour of ARCH

processes. This is evidence of the absence of ARCH effects.

In their work, Wang et al. (2005) suggested the use of the ACF of squared residuals

in identifying dependency in the series. Therefore, we plot the ACF of squared

residuals as shown in Figure 7.1. There are no significant spikes all through the

20 lags that are considered. Therefore, we conclude that there is no evidence of

dependency in the residuals. This means that the variance of residual series is

not conditional on its history. Therefore, the residual series does not exhibit an

ARCH effect.

Figure 7.1: ACF of in-sample squared residuals.

We also consider a more “formal” method to test for ARCH effects. We use the

ArchTest() function in R at lag 4. The null hypothesis of no ARCH is tested

against the alternative hypothesis of ARCH effect at a 5% level of significance. A
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p-value of 0.3299 is found which is greater than 0.05. We fail to reject the null

hypothesis and conclude that there is no ARCH effect in the squared residuals of

the ARIMA model.

Due to these realisations, we do not find it necessary to proceed with volatility

testing. Results show that the monthly electricity demand data in Uganda does

not exhibit changing variance and autocorrelation. Therefore, the originally chosen

ARIMA(0,0,0)(1,1,1)[12] is the best model for making predictions for upto 12

months for the monthly electricity demand in Uganda. Policy makers in Uganda

can use this model to make predictions of monthly electricity demand in Uganda.

7.2 ARCH effect in ARIMA(1,0,1)(0,1,0)[365] resid-

uals

By visual inspection of the time series plot of residuals in Figure 5.18 there exists

a tendency of large (small) absolute values of the residual process being followed

by other large (small) absolute values. This is evidence of an ARCH processes. To

certainly confirm presence of ARCH effects, we plot the ACF of squared residuals

as shown in Figure 7.2. There are many significant spikes, indicating the existence

of dependency in the residuals. This means the variance of residuals is conditional

on its history.

Figure 7.2: ACF of out-of-sample squared residuals.
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Using the formal ARCH test in R, a p-value < 2.2e − 16 is returned which is

less than 0.05. Therefore, we reject H0 and conclude that there is an ARCH

effect in the squared residuals of the ARIMA(1,0,1)(0,1,0)[365] model. Thus, the

heteroskedasticity of errors needs further analysis using a volatility model such as

GARCH where the variances themselves are modelled as an AR(p) model. Since

both positive and negative changes are observed in the daily electricity load this

is another factor for considering a non linear model to analyse the errors.

7.2.1 Model order selection

We plot the PACF of squared residuals in order to select the plausible q values to

use when constructing the appropriate model. This is shown in Figure 7.3.

Figure 7.3: PACF of squared residuals.

From the PACF in Figure 7.3 we read off q = 1, 2 because there are two significant

spikes. Using the the rugarch function in R, we try different plausible models

and compare their information criteria to choose the best. We also fit a standard

GARCH(1,1) to the data, whose errors are assumed to follow a normal distribution.

Table 7.1 shows the Akaike(A), Bayes(B), Shibata(S), and Hannan-Quinn(H-Q)

results for all the possible models;
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Model A B S H-Q
ARCH(1) -0.60208 -0.56505 -0.60228 -0.58726
ARCH(2) -0.59576 -0.54637 -0.59610 -0.57599
GARCH(1,1) -0.58731 -0.53792 -0.58765 -0.56754
EGARCH(1,1) -0.59044 -0.52871 -0.59098 -0.56574
Standard GARCH(1,1) -1.4002 -1.3261 -1.4010 -1.3706

Table 7.1: Information criteria for different models

The best model from the analysis is the standard GARCH(1,1) relative to all the

other suggested models. It has the lowest values for all information criteria. The

coefficients of the model are shown in Table 7.2:

µ ω α1 β1
Parameter -0.020456 0.001184 0.342303 0.656697

s.e. 0.010219 0.001115 0.073618 0.072525

Table 7.2: Coefficients for the standard GARCH(1,1) model

Therefore, the best chosen model is:

σ2
t = 0.001184 + 0.342303ε2t−1 + 0.656697σ2

t−1. (7.2)

7.2.2 Forecasting volatility with standard GARCH(1,1)

We then use the identified model to make volatility forecasts. The interest of the

study is to make forecasts that cover a time horizon of 30 days ahead. The sigma

and series forecasts developed are shown in Table 7.3

The chosen standard GARCH(1,1) model forecasts the volatility in residuals for

the demand of electricity as displayed in Figure 7.4.

7.2.3 Autocorrelation of standard GARCH(1,1) residuals

When we fit the standard GARCH(1,1) model to the data, among the results

returned is the test for autocorrelation on the model’s standardised residuals. Like

in the case of ARIMA models, autocorrelation is tested with a null hypothesis of
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Time Series Sigma Time Series Sigma
T+1 0.003799 0.1062 T+16 -0.018753 0.1152
T+2 -0.005095 0.1068 T+17 -0.018758 0.1157
T+3 -0.010483 0.1075 T+18 -0.018761 0.1163
T+4 -0.013747 0.1081 T+19 -0.018762 0.1168
T+5 -0.015725 0.1088 T+20 -0.018764 0.1173
T+6 -0.016923 0.1094 T+21 -0.018764 0.1178
T+7 -0.017649 0.1100 T+22 -0.018765 0.1183
T+8 -0.018089 0.1106 T+23 -0.018765 0.1188
T+9 -0.018356 0.1112 T+24 -0.018765 0.1193
T+10 -0.018517 0.1118 T+25 -0.018765 0.1198
T+11 -0.018615 0.1124 T+26 -0.018765 0.1203
T+12 -0.018674 0.1129 T+27 -0.018765 0.1208
T+13 -0.018710 0.1135 T+28 -0.018765 0.1213
T+14 -0.018732 0.1141 T+29 -0.018765 0.1218
T+15 -0.018745 0.1146 T+30 -0.018765 0.1222

Table 7.3: Standard GARCH(1,1) volatility forecasts for 30 days ahead.

Figure 7.4: Volatility forecasts from the standard GARCH(1,1) model.

no autocorrelation, against the alternative of autocorrelation. Table 7.4 shows a

sample of the tested lags and their p-values all greater than 0.05.

Graphically, figure 7.5 shows the ACF of the residuals. All significant spikes are

within the estimated boundaries. Therefore, there is no evidence of autocorrelation

in the residuals of the chosen standard GARCH(1,1) model.
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Lag statistic p-value
1 0.1554 0.6934
5 0.5903 1.0000
9 2.4577 0.9555

Table 7.4: Autocorrelation test for different lags

Figure 7.5: ACF showing no evidence of autcorrelation.

7.2.4 Dependency of standard GARCH(1,1) residuals

Another set of information returned from fitting the standard GARCH(1,1) model

to the residuals is the test for dependency on the model’s standardised squared

residuals. Different lags are tested and none of them returns a p-value below 0.05,

using two degrees of freedom. Therefore we fail to reject the null and conclude

that there is no dependency in the squared residuals. Table 7.5 shows a sample of

the tested lags.

Lag statistic p-value
1 0.0003894 0.9843
5 2.2068301 0.5704
9 4.1850309 0.5578

Table 7.5: Dependency test for different lags
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Graphically, Figure 7.6 shows the ACF of squared residuals. None of the lags

shows significant spikes. Therefore, there is no evidence of dependency in the

squared residuals of the chosen standard GARCH(1,1) model.

Figure 7.6: ACF showing no evidence of dependency.

Likewise, a time series plot of the residuals as shown in Figure 7.7 shows no

evidence of clustering; low variations followed by low variations and high variations

followed by high variations. The variance in the plot is fairly constant. Therefore,

there is no evidence of ARCH effects in the residuals.

Figure 7.7: Time series plot of residuals.
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7.2.5 Remarks

A standard GARCH(1,1) model has been applied to residuals from a seasonal

ARIMA model. Residuals of the standard GARCH(1,1) model show a big improve-

ment as compared to residuals from the linear seasonal ARIMA(1,0,1)(0,1,0)[365]

model. This means, a combination of these two models gives better forecasts as

compared to a simple ARIMA model.

More sophisticated models have not been considered in this study for various

reasons. For example;

• The main objective of the study was to find a model that fits the data best

and can be used by policy and decision makers in the electricity sector to

make the most accurate forecasts possible. If the aim was to study various

volatility models then more complicated models would have been considered.

• Extended versions of the GARCH model (IGARCH, EGARCH, TGACRH,

to mention but a few), work best when dealing with financial data. This is

because deeper features such as, leverage, convergence, persistent variance,

are considered when using these models. In our study, after fitting a standard

GARCH model, the residuals returned passed all diagnostic tests. That is

why we did not find it fit to consider more complicated versions.

• From the tried models, an EGARCH was considered as seen in Table 7.1 ,

which returned information criteria values higher than the standard GARCH

model.



Chapter 8

Holt-Winters Exponential

Smoothing

Normally when forecasting, developed models are compared with a simple bench-

mark model. In this study, we compare the developed models with Holt-Winters

model because of the seasonality components exhibited by both data sets. Most of

the literature about the Holt-Winters Exponential Smoothing method used in this

study is from Hyndman and Athanasopoulos (2014). This model was developed

by both Holt (1957) and Winters (1960) who extended Holt’s original Exponential

Smoothing method to capture seasonality. The Holt-Winters seasonal method is

made up of the forecast equation and three smoothing equations; for the level,

trend, and the seasonal component, with their respective smoothing parameters.

In this study, m is used to denote the period of the seasonality, for example, 4 for

quarterly data, 12 for monthly data, and 52 for weekly data.

Seasonality can be viewed in two different ways;

• Additive seasonality: When using the Holt-Winters model, the additive

method is used if the seasonal variation is roughly constant throughout the

data. Here the seasonal component is expressed in absolute terms in the

scale of the observed series, and in the level equation the series is season-

ally adjusted by subtracting the seasonal component. The additive model is

written as;

ŷt+h|t = lt + hbt + st−m+h+m
, (8.1)
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where; the level equation (lt) with smoothing parameter α shows a weighted

average between the seasonally adjusted observation (yt − st−m) and the

non-seasonal forecast (lt−1 + bt−1) for time t. It is defined as;

lt = α(yt − st−m) + (1− α)(lt−1 + bt−1), (8.2)

the trend equation (bt) with smoothing parameter β∗ is identical to Holt’s

linear method. The seasonal equation shows a weighted average between the

current seasonal index, (yt− lt−1− bt−1), and the seasonal index of the same

season the year before (m time periods ago). It is defined as;

bt = β∗(lt − lt−1) + (1− β∗)bt−1, (8.3)

and the seasonal equation (st) with smoothing parameter γ is defined as;

st = γ(yt − lt−1 − bt−1) + (1− γ)st−m. (8.4)

Estimates of the seasonal indices used for forecasting should be from the final

year of the sample, that is the purpose of having h+m = b(h− 1)mod mc+ 1

as part of the equation.

• Multiplicative seasonality: With seasonal variations changing proportional

to the level of the data, the multiplicative method is preferred. Here the

seasonal component is expressed in percentages and the series is seasonally

adjusted by dividing through by the seasonal component. A multiplicative

model is written as;

ŷt+h|t = (lt + hbt)st−m+h+m
, (8.5)

where;

lt = α
yt
st−m

+ (1− α)(lt−1 + bt−1), (8.6)

bt = β∗(lt − lt−1) + (1− β∗)bt−1, (8.7)

st = γ
yt

(lt−1 + bt−1)
+ (1− γ)st−m. (8.8)
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8.1 Application of Holt-Winters model to data

A time series described using an additive model with increasing or decreasing

trend and seasonality can be forecast using Holt-Winters exponential smoothing

for short-term forecasts. Holt-Winters exponential smoothing estimates the level,

slope and seasonal component at the current time point, using their respective

smoothing parameters. The parameters α, β and γ all have values between 0 and

1. Values close to 0 mean that relatively little weight is placed on the most recent

observations when making forecasts of future values.

8.1.1 Uganda Monthly demand data.

Uganda monthly electricity demand data tests positive for both trend and monthly

seasonality, therefore can be described using an additive model. To make forecasts

of this data, we fit a predictive model to the data using the HoltWinters() function

in R. We face a problem when applying Holt-Winters model to the available data.

Although the data tested positive for monthly seasonality when using ARIMA

models, the Holt-Winters models does not recognise the seasonality. When tested,

the data returns an error time series has no or less than 2 periods, which is not

actually true.

We try fitting an ordinary Holt’s exponential smoothing model to the data, by

setting the seasonality smoothing parameter to “false”. The estimated value of

α = 0.3968748, and β = 0.308989. These are both low values, implying that

both estimates of the current value of the level and slope of the trend component

are based mostly upon observations far in the past in the time series. This is

realistically true because from the time series plot in Figure 3.2, the level and the

slope of the time series both do not change quite a lot over time.

We can see from Figure 8.1 that the in-sample forecasts do not match the observed

values well. They tend to take a different nature all together. This means the fitted

model does not define the nature of the data well. This concurs with the initial

problem faced where the model fails to capture the seasonal nature of the data.

With this limitation, we do not go ahead to evaluate the accuracy of the model.
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Figure 8.1: Forecasting monthly electricity demand in Uganda using Holt’s
exponential smoothing.

8.1.2 South Africa daily demand data.

Although the data does not show a trend component, it shows clear seasonality

and tests positive for annual seasonality. Therefore, an additive model can be

employed to make forecasts. Testing the data using the HoltWinters() function

in R returns the same error as it does for Uganda monthly data. We also fit an

ordinary Holt’s exponential smoothing model to the test set of South Africa daily

electricity demand data.

The estimated value of α = 1, and β = 0.01366412. This means that the estimate

of the current value of the level is based on recent observations but that of the

trend component is based mostly upon observations very far in the past. This is

true because the data shows no evidence of a trend in Figure 3.7, but the level

changes quite a lot over time.

Figure 8.2 shows that the in-sample forecasts match the observed values perfectly.

This shows evidence that the fitted model defines the nature of the data well. We

go ahead to forecast demand for the next 300 days and compare it with the test

set. All forecasts for 300 days can not be displayed in a table but they follow a

decreasing pattern as we go further in time. The maximum demand is 5334310

which appears at step h = 1 and the minimum is 4242225 at h = 300. This is
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Figure 8.2: Forecasting daily electricity demand in South Africa using Holt’s
exponential smoothing.

a clear characteristic of exponential smoothing but it is not a realistic pattern,

especially with the given seasonal data. Forecasts are displayed in Figure 8.3.

Figure 8.3: Out-of-sample forecasts for 300 days ahead using Holt’s exponen-
tial smoothing.

Visual inspection of Figure 8.3 shows that forecasts do not follow the original

pattern of the data. Therefore, we do not go on to conduct model diagnosis, but

rather conclude that a Holt’s exponential smoothing model is still not a good

choice for South Africa daily electricity demand data.



Chapter 9

Conclusion

In this study, we have investigated models for forecasting electricity demand in

both Uganda and South Africa. For Uganda, we used peak monthly data collected

from UMEME, from January 2008 to December 2013. We faced a problem of

limited data from Uganda because of the economic condition of the country. It

is characterised with poor data management and storage policies. The furthest

UMEME could go back in time was 2008, and the data was received in May 2014.

Hence the duration the data covered. For South Africa, daily data from 1-January-

2004 to 30-June-2008 was collected from ESKOM, for an anonymous region in the

country. We faced a problem of constrained details about the data. We could not

explain explicitly why the data had its features because of the confidentiality that

was required of us when receiving the data.

The main purpose of the study was to investigate how better volatility models

forecast electricity demand, compared to linear models. Linear models were ap-

plied to electricity demand data from the two countries under study, and residuals

were modelled using volatility models like GARCH. The linear models were used

to forecast 12 months ahead electricity demand for Uganda and 300 days ahead

electricity demand for South Africa, after dividing the data into the training and

test sets. Both data sets were tried with a Holt’s exponential smoothing model

but it was not a good choice because it did not capture the nature of the data

clear enough for it too be considered for forecasting.

A seasonal ARIMA(0,0,0)(1,1,1)[12] model with a drift was found to be the most

suitable model to make 12 months-ahead predictions of peak monthly electricity

demand for Uganda. The residuals of the seasonal ARIMA(0,0,0)(1,1,1)[12] model

120



Page 121

were tested for autocorrelation, normality, and ARCH effects. These residuals

showed no evidence of autocorrelation, non-normality, and ARCH effects. There-

fore, we did not proceeded with the application of volatility models. This indi-

cated that the seasonal ARIMA(0,0,0)(1,1,1)[12] model (with a drift) with RMSE

of 4.872027 and MAPE of 2.347028 and homoskedastic error terms is the most

appropriate model for forecasting monthly electricity in Uganda. The monthly

behaviour of forecast values of Ugandan data depicts that the electricity demand

will increase in the following year with fluctuations between 175GW and 195GW

through the tested months. The forecast model and the forecast graph reveal that

electricity demand is increasing with time, with the highest demand (195GW) pre-

dicted during October and December. This means that the government of Uganda

must take effective steps to increase the electricity production through construc-

tion of many power plants and implementing different energy sources. This will

help improve the economical status of the country by meeting the increasing de-

mand of electricity.

For South African data, a seasonal ARIMA(1,0,1)(0,1,0)[365] (with a drift) was

found to be the most suitable model. However, it returned autocorrelated non-

normal residuals which also tested positive for ARCH effects. Therefore, there was

room to improve the forecasts by modelling volatility. Different ARCH models

were tried based on the PACF of residuals and the standard GARCH(1,1) model,

with assumed normal residuals was chosen because of its lowest information criteria

values. The standard GARCH(1,1) parameter coefficients were estimated in order

to fit the model to the residuals and use it to predict the conditional variances.

The non linear issues of variances were handled appropriately through the fitted

standard GARCH models. This is because a model diagnosis run after fitting the

standard GARCH model returned homoskedastic, non-autoocorrelated residuals.

Therefore, we conclude that it is always a good practice to test the volatility

of variances and standard deviations after fitting linear models to improve the

accuracy of the forecasts. These models provide flexibility to coexist with other

models. The combination of Seasonal ARIMA and GARCH gives more accurate

forecasts than just a linear model. R-programming is well suited for modelling

and forecasting electricity demand in this case.

This study is similar to one carried out by Yasmeen and Sharif (2014), where

monthly electricity consumption (EC) for Pakistan was studied and a model de-

veloped to forecast four years ahead. Emphasis was given to both linear and non
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linear models; ARIMA, Seasonal ARIMA (SARIMA), ARCH and GARCH mod-

els. Unlike results in our study, the ARIMA(3,1,2) model was the most appropriate

model to forecast monthly EC in Pakistan. However, this is similar to the results

obtained using Uganda monthly demand data; linear models out performed non

linear volatility models. Another similar study was carried out by Sigauke and

Chikobvu (2011), who studied the prediction of daily peak electricity demand in

South Africa using three volatility forecasting models; a seasonal auto regressive

integrated moving average (SARIMA) model, a SARIMA with generalized au-

toregressive conditional heteroskedastic errors (SARIMA-GARCH) model and a

regression-SARIMA-GARCH (Reg-SARIMA-GARCH) model. Similar to our re-

sults, the non linear volatility model out performed linear models when dealing

with daily demand data. The Reg-SARIMA-GARCH model produced better fore-

cast accuracy with a MAPE of 1.42%, for out of sample prediction of daily peak

demand.

This indicates that when policy makers want to make forecasts for medium term

periods, the best models to consider are linear models. This is because monthly,

quarterly, annual or any other longer-period historical data does not experience

high volatility. The residuals of such series are homoskedastic. Therefore, it would

be both time and resource wastage to apply volatility models to such data. On the

other hand however, weekly, daily, hourly or any other shorter-period historical

data requires application of volatility models. This is because during short periods

there is a lot of variation in data points. In order to save time, non linear models

should be taken into consideration initially when dealing with such data.

Areas for further study would include;

• Fitting models whose distributions accommodate non-normality in case the

available time series data is not normal. For example, the Gamma function

and student t-distribution.

• Introducing hybrid models in the forecasting process. This can be done

through various ways for example, using Artificial Neural Networks (ANNs)

or combining different models to develope one model that suits the data

perfectly.



Appendix A

Codes used in R

This was the code used to plot the histogram with an overlaid normal curve as

developed by Coghlan (2014)

Avril Coghlan’s function

plotForecastErrors <- function(forecasterrors) {

# make a histogram of the forecast errors:

mybinsize <- IQR(forecasterrors)/4

mysd <- sd(forecasterrors)

mymin <- min(forecasterrors) - mysd * 5

mymax <- max(forecasterrors) + mysd * 3

# generate normally distributed data with mean 0 and standard deviation

# mysd

mynorm <- rnorm(10000, mean = 0, sd = mysd)

mymin2 <- min(mynorm)

mymax2 <- max(mynorm)

if (mymin2 < mymin) {

mymin <- mymin2

}

if (mymax2 > mymax) {

mymax <- mymax2

}

# make a red histogram of the forecast errors, with the normally

# distributed data overlaid:

mybins <- seq(mymin, mymax, mybinsize)
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hist(forecasterrors, col = "red", freq = FALSE, breaks = mybins)

# freq=FALSE ensures the area under the histogram = 1 generate normally

# distributed data with mean 0 and standard deviation mysd

myhist <- hist(mynorm, plot = FALSE, breaks = mybins)

# plot the normal curve as a blue line on top of the histogram of forecast

# errors:

points(myhist$mids, myhist$density, type = "l", col = "blue", lwd = 2)

}



Appendix B

Other relevant tables

Table B.1 below represents the ACF and PACF coefficients for lag 1 to 20 of the

differenced Uganda monthly electricity demand data. To calculate these coeffi-

cients, we used the acf() and pacf() functions in R and set ”plot=FALSE” in both

functions.

ACF and PACF coefficients

Lag ACF PACF Lag ACF PACF

1 -0.624 -0.624 11 0.063 -0.045

2 0.205 -0.301 12 0.022 -0.011

3 -0.047 -0.123 13 -0.133 -0.131

4 -0.041 -0.137 14 0.176 -0.039

5 0.084 -0.017 15 -0.046 0.180

6 -0.195 -0.246 16 -0.082 -0.071

7 0.251 -0.017 17 0.162 0.139

8 -0.219 -0.099 18 -0.191 -0.064

9 0.203 0.075 19 0.099 -0.098

10 -0.159 0.022 20 -0.040 -0.020

Table B.1: ACF and PACF coefficients for first order differenced data.
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