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 General abstract 
 

Quality protein maize (QPM) has high nutritional value, but production is threatened 

by downy mildew (DM) and maize streak virus disease (MSVD) among other 

constraints. There are few studies of DM and MSVD resistance in QPM cultivars. The 

objective of this study was to improve resistance to DM and MSVD in three QPM 

populations. This was realized through ascertaining farmers’ key production 

constraints and special preferences for cultivars; determining the utility of recurrent 

selection method for improvement of three QPM populations (SussumaS2, ZM521Q 

and Pop62SRQ); and determining grain yield potential. The study was conducted in 

Mozambique for DM and in Zimbabwe for MSV, during 2003 to 2006.  

 

Surveys were conducted in Manica and Angonia districts in Mozambique to ascertain 

farmers’ perceptions and preferences for maize varieties, especially QPM. 

Participatory rural appraisal tools that included semi-structured questionnaires and 

focus group discussions were used to collect data. Results showed that farmers 

predominantly grew open pollinated varieties and fewer normal maize hybrids (non-

QPM), and grain yield was estimated to be very low (0.2 to 0.6 t ha-1).  Results 

showed that drought and insect pests were the dominant constraints to maize 

productivity in Mozambique, while diseases were ranked third. Downy mildew 

disease and MSVD were considered to be the most important diseases reducing 

maize productivity.  Farmers also showed high preference for high yielding and early 

maturity cultivars in all areas. Predominantly, farmers were still using their local 

landraces because of sweet taste, particularly for home consumption and flint grain 

for storage. Farmers’ access to improved cultivars was limited due to high seed 

prices on the local market. Research priorities as perceived by the farmers included 

breeding for resistance to drought, grain weevils and diseases and sweetness. 

Generally, farmers showed little knowledge of QPM varieties and the importance of 

this trait, but they observed that the few QPM varieties they knew had some 

weaknesses such as poor storability and susceptibility to DM and MSVD which 

required improvement.  These results should be considered in breeding new 

cultivars, both normal and QPM. 

 

To improve DM and MSV disease resistance in QPM varieties, S1 recurrent selection 

was conducted in three QPM populations, Sussuma, ZM521Q and Pop62SRQ at 

Umbeluzi Research Station in Mozambique and at CIMMYT-Harare Research 
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Station in Zimbabwe during 2003 to 2006. Two selection cycles were formed and 

evaluated. Selection intensity was 50%, and 25% in cycle1 (C1) and cycle2 (C2), 

respectively.  Results indicated significant improvement in DM resistance from C1 to 

C2, with scores of 4.6-3.9 in Sussuma, 3.0-2.3 in ZM521Q and 4.0-3.3 in Pop62SRQ, 

respectively. This was associated with an increase in yield of about 4.67% in 

Sussuma, 4.68% in ZM521Q and 4.47% in Pop62SRQ. Results indicated also 

increases in genetic variances (σ2
G) for DM and MSVD from C1 to C2. Similarly, 

broad sense heritability (H2) estimates ranged from moderate to high and increased 

from C1 to C2 in all populations. There was also an improvement in flintiness of the 

grain with texture scores of 2.7-1.4 in Sussuma, 2.9-1.8 in ZM521Q and 2.5-1.7 in 

Pop62SRQ.  Maize streak virus disease results showed significant improvement in 

MSVD resistance from C1 to C2, with scores of 3.4-2.9 in Sussuma, 2.7-2.1 in 

ZM521Q and 3.47-3.0 in Pop62SRQ, respectively. This was associated with an 

increase in yield of about 4.57% in Sussuma, 4.62% in ZM521Q and 4.37%) in 

Pop62SRQ. There was also an improvement in flintiness of the grain with texture 

scores of 2.7-1.5 in Sussuma, 2.9-1.9 in ZM521Q and 2.5-1.7 in Pop62SRQ. 

 

In conclusion, the study indicated that farmers’ preferences would be greatly 

influenced by the major prevailing constraints, and thus should be included in the 

breeding programmes. Two cycles of S1 recurrent selection significantly improved 

DM and MSVD resistance in the three QPM populations although the basic levels of 

resistance differed. Therefore, farmers in the southern zones of Mozambique where 

DM is predominant would be encouraged to plant the new DM resistant versions of 

Sussumma, ZM521Q and Pop62SRQ, while those in the north and central medium to 

high altitude areas, where MSV is the major constraint, would be advised to plant the 

MSV resistant versions of these populations. Future improvement would still be 

viable because the genetic variances for both yield and disease resistance were not 

compromised during the two cycles of recurrent selection. 
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Introduction to thesis 

1. Importance of Maize in Africa  
 
Maize (Zea mays L.) is among the three leading cereal crops worldwide. Global 

production amounted to 130 million ha with output of 574 million MT (Ito, 1998). The 

other two are wheat and rice. It is an important staple food crop for millions of people 

in developing countries, and in developed countries it is used as feed for livestock 

and other industrial uses.  Maize is the main source of calories (20%) and proteins 

(17-60%) for the majority of the people in Africa (FAO, 1992). Therefore, adequate 

production of maize is required to feed both the urban and the rural people. However, 

production still fails to match the high demand for maize in most countries in sub-

Saharan Africa including Mozambique. 

 

Production varies among the African countries (Table 1). South Africa is the leading 

producer of maize in the continent. Nigeria produces most of the maize in West 

Africa while in East Africa Tanzania produces the bulk of the crop. Generally, grain 

yield is below 2 t ha-1 in most countries in sub-Saharan Africa (Table 1). The 

exceptions being Burkina Fasso with just over 2 t ha-1 in West Africa, and South 

Africa with more than 3 t ha-1 in southern Africa. In Mozambique, maize is produced 

on 1.2 million ha and the average yield almost 1 t ha-1.  

 

Although a lot of maize is consumed in Africa, the crop produces proteins of low 

biological quality hence it has low nutritional quality. This is because maize is 

deficient in two essential amino acids namely, lysine and tryptophan (Bathia and 

Robinson, 1987). The potential to improve nutritional quality of maize was realised 

after Mertz et al. (1964) discovered the genetic effects of the opaque-2 (o2) gene on 

maize endosperm protein. According to Vasal et al. (1997) this led to the breeding of 

quality protein maize (QPM), which is based on the (o2) mutation with selection for 

improved kernel types.  

 

Quality protein maize breeding has been initiated in Mozambique to alleviate the 

malnutrition pandemic. In the last 15 years Mozambique has been facing serious of 

natural disasters such as cyclic floods and drought that have displaced many 

families. Due to lack of food, malnutrition and poverty are increasing in the country. In 

2002 the level of malnutrition in the country was around 40% (DINA, 1995). Maize is 

the staple food for the majority of the Mozambican population and QPM with its high 
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quality protein can contribute to alleviate the malnutrition problems. There is a strong 

view that introduction of QPM could be a viable solution especially for feeding young 

babies. Unfortunately, the QPM varieties are susceptible to DM and MSVD that lower 

their grain yield potential and also affect their production in the country. For this 

reason the existing varieties need to be improved for resistance to DM and MSVD.  
Table.1: Maize production data for selected sub-Sahara African countries 
 

Name of the Country Total Area 

(million ha) 

Total Production 

(Metric Ton) 

Average Yield 

t/ha 

Ghana 732.95 1157.62 1.58 

Nigeria 3592.97 5957.00 1.66 

Mali 424.85 634.46 1.50 

Burkina Fasso 380.13 999.05 2.10 

Guinea 90.01 90.00 1.00 

Cameron 549.88 1023.11 1.90 

Benin 755.42 864.70 1.14 

Togo 380.00 485.00 1.28 

Malawi 1817.07 1253.00 1.70 

Mozambique 1230.01 1403.00 1.14 

South Africa 3222.16 11749.00 3.65 

Ethiopia 1950.00 3342.84 1.71 

Uganda 780.00 1170.00 1.50 

Tanzania 1998.31 3288.00 1.65 

Kenya 1771.12 2905.56 1.64 

Source: FAO, 1992 

 

Downy mildew was reported among the dominant constraints to maize production in 

Mozambique (Pingali and Pandey, 2001). Unfortunately, a significant number of QPM 

varieties grown by small scale farmers in coastal Mozambique still lack effective 

tolerance to DM. These varieties include Sussuma, ZM521Q and Pop62SRQ. As a 

result farmers face a huge yield “penalty” when these susceptible varieties are grown 

in environments where DM is prevalent, or during the seasons which favour DM 

development. Downy mildew is considered the major threat to maize production 

mainly in lowland areas and southern regions. On the other hand, the MSVD is 

prevalent in all production areas, even during the drought years which do not favour 

DM development, in both low and high yield potential environments throughout the 

country. Special attention is therefore being given to breeding DM and MSVD 
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resistance in these QPM varieties, which are already being grown by farmers. 

However, no studies have been conducted on the response to selection for DM and 

MSVD resistance in these QPM varieties. 

 

 

3. Downy Mildew  
 

Denic et al. (2001) reported that downy mildew disease, caused by 

Perenosclerospora sorghi, was the most destructive disease of maize in the lowland 

areas in central and southern Mozambique. Some widely grown maize varieties were 

withdrawn from the market due to their susceptibility to DM. There is therefore need 

to breed for resistance to DM in QPM. Deployment of resistant varieties was long ago 

identified as one of the viable options for controlling DM in maize (Singh et al., 1977). 

Resistance in local populations can be improved through selection to accumulate the 

resistance alleles in QPM populations (Vasal et al., 1997). In Mozambique, good 

progress in breeding for DM resistance and other traits in normal maize was realised 

through selection, therefore, it is expected that similar gains can be obtained in QPM 

populations (Denic et al., 2001).     

 

4 Maize Streak Virus Disease 
 

Bosque-Pérez (2000) reported that MSVD was among the most devastating diseases 

of maize in Africa. The disease has been reported to be most prevalent in mid 

altitude and subtropical areas throughout Africa (Pingali, 2001).  Huge grain yield 

losses of up to 100% are incurred when a young maize crop is attacked by the 

MSVD (Grahan et al., 1990; Bosque-Pérez, 2000). In Zimbabwe, Mzira (1984) 

reported 54% yield reduction when a two weeks old crop was subjected to MSV, 

while only 0.8% yield loss was incurred in a crop that was infested at 12 weeks after 

emergence.  Similar results were reported by Ampong-Nyarko et al. (1998).  

Therefore, heavy losses can be prevented if the crop is adequately protected at the 

young stage. It has been observed in Mozambique that early planted maize crop can 

escape MSVD because the disease intensifies late during the season. Denic et al. 

(2001) reported that the crop “reaches a safe age after the seven leaf stage before 

populations of the leafhoppers which transmit MSVD build up”. 
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Use of the escape mechanism is not always reliable because the leaf hoppers might 

over winter in irrigation schemes and still attack the early planted crop; hence 

breeding for MSVD resistance in varieties would be the most reliable in controlling 

the MSVD in Mozambique (Denic et al., 2001).  

 

5 Farmers’ Preferences in Quality Protein Maize  
 

Farmers’ preferences should be considered during the improvement of existing 

popular varieties and during development of new QPM populations in Mozambique. 

This will increase the chances of their adoption by farmers. Breeders alone may not 

be capable of identifying all the preferences of small-scale farmers. It has been 

reported that some superior varieties were not adopted because they were not 

meeting farmers’ preferences (Banziger and Cooper, 2001). In many areas of 

Mozambique, farmers are still using local varieties that are not improved for 

resistance to DM and MSVD, and that might be contributing to the significantly low 

yield and thus furthering the yield gap between actual yield and yield potential of the 

existing varieties. There is also need to investigate small-scale farmers’ perception 

on QPM varieties and also to identify the key factors they would consider in selecting 

a suitable QPM variety. Prior studies indicated that farmers in Mozambique have little 

knowledge about QPM varieties and their perceived nutritional value. However, they 

do recognize that the QPM varieties are highly preferred by grain weevils compared 

to the normal maize they are currently growing. There is a need of promoting the 

nutritional importance of QPM varieties in the smallholder farming sector and that 

they could contribute significantly to alleviate malnutrition in Mozambique.  

 

 

6 Objectives of the study 
The main objective of this study was to enhance productivity of QPM varieties in the 

small-holder and commercial sector in Mozambique by improving QPM cultivars for 

resistance to DM and MSVD. This was realised through ascertaining farmers’ key 

production constraints, special preferences and  perceptions on QPM cultivars, and 

determining the utility of recurrent selection method to improve three QPM 

populations Sussuma, ZM521Q and Pop62SRQ for DM and MSVD resistance. The 

information generated was used to devise appropriate breeding strategies to 
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enhance QPM germplasm for high yielding ability, tolerance to DM and MSVD in 

Mozambique national programme.   

 

Specific Objectives  

The specific objectives of the study were as follows:  

 

a) to determine the farmers’ preferences for maize cultivars, using a PRA- study 

in two regions of Mozambique; 

b) to determine the selection gains for DM and MSVD resistance and yield in 

three QPM populations: Sussuma S2, ZM521/SWA8075DMR//QSRDMR and 

Pop62SR using recurrent selection procedures, and 

c) to determine correlated responses of other important agronomic traits.  

 

7 Research Hypotheses 
The following research hypotheses were tested in the dissertation: 

a) there is adequate genetic variation and high levels of resistance to DM and 

MSVD which are highly heritable and are exploitable in a breeding 

programme to generate disease resistant materials; and 

b) there is simultaneous improvement of other agronomic traits through selection 

for DM and MSVD resistance.  

8 Thesis structure 
The thesis structure is as follows: 

Thesis structure 

General Introduction 

Chapter One        Literature Review 

Chapter Two        Participatory Rural Appraisal (PRA) 

Chapter Three      Recurrent Selection for Downy Mildew Resistance in three 

Quality         Protein Maize populations in Mozambique 

Chapter Four     Recurrent Selection for MSV Resistance in three QPM                     

                         population originated from Mozambique in Zimbabwe 

Chapter Five        Research Overview 
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Chapter 1: Literature Review 

 

1.1 The spread of maize into Mozambique 

Maize originated from Mexico in Mesoamerica because its closest relatives are found 

in this region (Doebley, 1994). Maize is now widely distributed in the American 

continent (Crosby, 1972) and worldwide. A large body of the literature indicates that 

the Portuguese were involved in moving maize to Brazil and several other 

destinations including Africa and Asia during the 16th century (Boxer, 1969). Whereas 

the actual dates of maize introduction into Africa are not known, Boxer (1969) 

reported that maize was cultivated in Africa around the middle of 1500s. The 

Portuguese writer Valentim Fernandes made reference to maize in West Africa 

during 1502, while on the east coast of Africa maize was first reported around the 

island of Mozambique. The Mozambican island was used as a major station for the 

Portuguese during their travel to and from Lisbon (Portugal) and Goa in India. By 

1561 maize had become a staple food for the Portuguese settlers in Mozambique. 

Today, maize is the major staple crop throughout the country, and in east and 

southern Africa, and provides much of the protein and calories to consumers in the 

region (Table 1.1).   

1.2 Quality protein maize  
The nutritional value of maize is similar to other cereal grains, but it is superior to 

wheat flour. However, it is inferior to rice (Vasal et al., 1997). Breeding and 

improvement of protein quality in maize started after the discovery of maize mutants 

with opaque-2 gene during mid1960s (Mertz et al., 1964). This gene enhances lysine 

and tryptophan content in the maize endosperm protein. However, these mutants 

have been linked with several undesirable traits which include opaque and chalk 

grain texture, low grain yield, higher levels of ear rot, slow drying down and high 

susceptibility to grain weevils. Improvement of QPM germplasm for these traits 

involved multi-disciplinary teams of breeders, biochemists and other scientists at 

CIMMYT (Vasal et al., 1997). As a result of these improvements, Cordova and 

Pandey (1999) reported that QPM germplasm now has similar quality traits as normal 

maize such as grain texture, taste and colour, but the QPM has almost double the 

levels of lysine and tryptophan compared to normal maize, in addition to high grain 

yield potential and stress tolerance. Superiority of QPM nutrition both as human food 
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and animal feed for pigs and poultry has been widely demonstrated worldwide (Vasal 

et al., 1997). 

 

Advances have been made in improving maize for yield and for nutritional 

value, but   the problem of malnutrition is still prevalent in developing countries 

(Vasal et al., 1997; Cordova and Pandey, 1999). The problem of malnutrition 

affects about 200 million children below five years worldwide (Cordova and 

Pandey, 1999). The problem results in stunted growth, weakened resistance 

to disease infection and reduced intellectual development in children. 

Therefore development of quality protein maize varieties might be a viable 

solution to reduce cases of malnutrition among the poor in Mozambique, who 

obtain 30% of their protein requirements from maize (Table 1.1). Quality protein 

maize, which contains high levels of essential amino acids, lysine and tryptophan, 

has more protein than normal maize, thus QPM can be used to alleviate problems of 

human malnutrition and to feed the livestock (FAO, 1992; Vasal et al., 1980).). The 

QPM is more valuable than normal maize with biological value of 80% and 40-50%, 

respectively (Bressani, 1992).  Use of QPM can also reduce the costs of livestock 

feed. Studies in the US indicated reductions of 2.6% to 3.4% in costs of poultry and 

pig feed when QPM was used when compared to traditional formulas containing 

soybean, sorghum and synthetic lysine and methionine (Lopez-Pereira 1993). 

Nyanamba et al. (2003) also reported a 5% reduction in cost when QPM was used to 

make poultry feed in Kenya.  

 
Table 1.1 Importance of maize in the diet of individuals in selected countries with respect to 
the percentage of calories and protein in the total diet 
 Maize as:  

Country % Total Calories % Total Protein 

Lesotho 58% 55% 

Zambia 57% 60% 

Malawi 54% 55% 

Zimbabwe 38% 46% 

Kenya 36% 34% 

Tanzania 33% 33% 

South Africa 33% 33% 

Togo 25% 29% 

Cape Verde 24% 26% 

Swaziland 23% 24% 

Mozambique 22% 31% 

Ethiopia 21% 17% 
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 Estimates calculated from FAO food balance sheets; FAOSTAT              

 

1.3 Genetics and Breeding Strategies of QPM 
 

Breeding of QPM entails manipulation of three distinct genetic systems comprising 

opaque-2 mutant alleles, endosperm modifiers and the amino acid modifiers. 

The first step is manipulation of the recessive mutant allele of the opaque-2 (o2) 

gene, which is the most important. These genes have been found to encode a 

transcription factor in the zein synthesis (Cordova and Pandey, 1999). The zeins, 

especially alpha-zein, have been found to be abundant in the maize endosperm 

(Gibbon et al., 2005). However, the zein has low levels of essential amino acids such 

as lysine and tryptophan. The homozygous o2 mutant reduces production of the zein 

proteins, which results in the increased level of proteins containing lysine and 

tryptophan (Gibbon et al., 2005). 

 

A QPM breeding programme also manages the alleles of endosperm hardness 

modifier genes, the “en-modifiers” Gibbon et al. (2005). These endosperm-modifiers 

convert the soft or opaque mutant endosperm to hard endosperm with minimum loss 

of protein quality. The  high levels of gamma zein protein has been shown to 

contribute to the recovery of a hard endosperm because  QPM grains have two-fold 

levels gamma zein in the endosperm compared to the o2 mutant (Gibbon et al., 

2005). During QPM breeding the en-modifiers and the o2 mutant allele are identified 

using rapid and cheap selection methods. Selection is then based on light projection 

through the vitreous grains or the light is blocked by opaque grains. The grain 

endosperm opaqueness is then rated using a scale of 1 -5, where 1 = completely 

hard/vitreous to 5 = soft or opaque grain (See Fig 1.1, by Gibbon et al., 2005).  The 

grains with a rating score of 1 and 5 are homozygous for the o2 allele, but scores 2 

and 3 have sufficiently modified hard endosperm and therefore qualify to be selected 

as QPM grains. 
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2- Completely hard/vitreous                5- Soft/opaque 
 
 
Fig 1.1 Grains showing different levels of modification as viewed from the light table (source: 
Gibbon et al., 2005) 
 

Bjarnason and Vasal (1992) reported the presence of a set of amino acid modifier 

genes (”aa-modifiers”). These genes influence the lysine and tryptophan content in 

maize grain endosperm, such that lysine level is about 2% of total protein in normal 

maize and about 4% in the QPM flour.  Variation for the levels of these amino acids 

have been found to  range from 1.6-2.6% in normal maize and from 2.7-4.5% in the 

QPM (o2) converted counterpart germplasm in different genetic backgrounds (Vassal 

et al., 1997) (Table 1. 2), indicating the scope for improvement of maize for the QPM 

trait. The lysine and tryptophan levels have been reported to be highly correlated 

(Bjarnason and Vasal, 1992), suggesting that only one amino acid can be measured 

depending on cost of the process. Generally, breeders evaluate tryptophan content 

and use the results to predict the lysine content. 

 
Table1.2: Percentage of lysine and tryptophan levels of total protein in whole grain of maize 
flour  
Amino acid Normal maize (%) QPM (%) Requirement (%) 

for 2–5 year old 
children 

Lysine  1.6-2.6 (avg 2.0) 2.7-4.5 (avg 4.0) 5.8 
Tryptophan 0.2-0.5 (avg 0.4) 0.5-1.1 (avg 0.8 1.1 
Source: FAO guideline requirements for children; FAO 1995, Energy and protein 
requirements. FAO, Rome;  
 

1.4 Production Constraints of Maize 
 

The main production constraints of maize were identified in all agro-ecological zones 

in Mozambique (Nunes et al., 1985). In southern Mozambique the main constraints 

were reported to be drought, maize streak virus disease (MSVD), downy mildew 

disease (DM), stalk borers and grain storage pests. In central and northern parts of 

the country, the main constraints were reported as low soil fertility, periodic drought in 

lowland areas; stem rots, ear rots, leaf blights and leaf rust diseases at higher 
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altitude; the MSVD and DM were prevalent in Manica and Sofala provinces, and 

grain weevils were also important in all areas. Much of the existing and available 

QPM germplasm is only adapted to the higher altitude areas which are the most 

productive environments, which account for 15 to 20% of total production, but this 

germplasm, is susceptible to DM and MSVD (Denic, 1994). Based on these identified 

constraints to QPM production, there is a need of selecting genotypes resistant to 

both DM and MSVD, which are limiting production in these principal maize production 

areas.  Therefore, in this study the focus is on improving QPM germplasm for 

resistance to DM and MSVD.  

1.5 Downy Mildew  
 

Downy mildews are a distinct fungal group with similar morphology and epidemic 

characteristics, and most of them cause devastating grain yield losses in many 

economic crops including maize and most grasses (van der Westthuizen, 1977). 

There are ten species belonging to three genera in the downy mildew group that 

affect maize (De Leon et al., 1993). The Peronosclerospora sorghi, which causes 

sorghum downy mildew (SDM), has been reported to cause the most widespread 

damage in maize and is prevalent in all maize growing areas, worldwide. The 

alternative hosts of P. sorghi are sorghum spp, teosinte, millet and panicum spp and 

common grass weeds in maize production (Kenneth, 1981). 

 

The P. sorghi is dispersed primarily through oospores and to a small extent through 

conidia (Frederiksen, 1980). The oospores, which are resting spores are dispersed 

by wind and infected maize debris. The conidia are produced on systemically 

infected plants and can be spread within a field. However, the P. sorghi produces few 

spores on maize, but produces most of its spores on sorghum (Sorghum bicolour) 

and the weed, Johnson grass, (Sorghum halapense) (Frederiksen and Renfro, 1977). 

Therefore management of both the plant debris or stovers and alternative host plants 

is important for the effective control of DM disease. 

 

The distribution of DM is on the increase globally. In Nigeria, DM has been 

widespread because of continuous cultivation of maize throughout the year (Kim et 

al., 1994). Bigirwa et al. (2001) reported SDM in 11 of 22 districts in Uganda and 

estimated the yield loss to be 4% in both 1994 and 1995. In the USA, SDM was long 

ago reported to be present from the North to Illinois and Kentucky, but it was found to 

be only important in Texas (Frederiksen and Renfro, 1977). 
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1.5.1 Epidemiology of Downy Mildews 
 

Initially, DM distribution is sporadic in the field depending on existence of an active 

inoculum and environmental conditions (van der Westhuizen, 1977). Craig and 

Frederinsen (1989) reported that infection may start with a single plant. The infection 

sources could be  from germination of a conidium or oospores, or mycelium 

contained in the seed or it arise from a latent state in some perennial organ of the 

plant. During the second phase the disease spreads throughout the field and the 

epidemic becomes apparent.  

 

Changes in relative humidity cause the conidia to be detached and are spread by the 

wind. Conidial germination, which occurs over a range of temperatures, is not as 

important as the sporulation for disease occurrence. Craig and Frederiksen (1983) 

reported that sporulation was greatest in darkness and continuous wetness at 10- 

25oC. The other major sources of inoculum, soil-borne oospores, were favoured by 

temperatures of 15-32oC (Smith and Renfro, 1999). Although the oospores can 

survive for five years, they are vulnerable to attack by some hyperparasites (Craig 

and Frederiksen 1983). The factors that provide optimum conditions for DM 

epidemics to develop in tropical areas include soil temperatures up to 32oC, wet and 

warm nights, and a wetness period at ambient temperature up to 30oC during 

daytime (van der Westhuizen, 1977). These conditions are common in southern 

Mozambique, where DM is a major problem. 

 

The fungus can over-winter as oospores in the soil, in plant debris (Kim et al., 1994) 

and in perennial grasses (Kenneth, 1981). Both local and systemic infection occurs in 

maize. The systemic infection can occur when the oospores germinate and invade 

the roots, especially under low soil moisture and low temperature conditions 

(Frederiksen et al., 1969). The fungal mycelia are found in seed embryos, but can 

lose viability when seed moisture is less than 20%, but the mycelium spreads 

internally from the roots to the leaf tissues (Frederiksen et al., 1969). The conidia 

which are produced on the leaves from the systemic infection can be spread by wind 

to other plants in the field, resulting in secondary local infection (Smith and Renfro, 

1999).  
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1.5.2 Disease symptoms   
 
The DM symptoms on infected plants may be in the form of leaf chlorosis or white 

stripes on the leaves. Usually the infected leaves are narrower and more upright than 

the non-infected leaves. Symptoms develop from the first leaf and spread to the 

young leaves. There is a distinct margin between the diseased basal portion of the 

leaf and non-diseased area towards the tip (Craig and Frederiksen, 1983). At greater 

than 95% relative humidity and 20-22oC there is massive asexual sporulation on the 

infected abaxial surface of leaves resulting in a downy appearance (Frederiksen et 

al., 1969).  Systemically infected seedlings become chlorotic and growth is stunted. 

Leaf chlorosis is more noticeable on the lower half of the leaf (Frederiksen et al., 

1969) and the infected young plants can die prematurely. Frederiksen et al. (1969) 

and Craig and Frederiksen (1983) reported that under cool and humid conditions a 

white downy growth, as a result of conidia and conidiophores growth, was observed 

on the lower surface of leaves. The conidia are mainly produced at night because 

they require a layer of moisture on the leaf for spore production to occur. The leaf 

symptoms usually are more pronounced as the plants grow (Smith and Renfro, 1999) 

and the old leaves often display some alternating parallel stripes of green and 

yellowish-green to white tissue.   

 

1.5.3 Control of DM 
 

Several methods can be used to control DM disease in maize. Cultural and chemical 

controls can be utilised to control the disease. Cultural methods involve removal of 

the alternative host species and deep ploughing to bury the maize debris to reduce 

the inoculums sources. The time of planting can also be adjusted so that the crops 

will escape the high disease pressure during the growing season. For example, 

Frederiksen and Renfro (1977) reported that young plants out-grew DM when they 

were not infected at the seedling stage. While the seed treatments with fungicides 

have been effective, they are not readily available in remote areas in Mozambique. 

Bigirwa et al. (2001) also reported that planting maize in well-drained soils could be 

effective in reducing infection by oospores. It appears that breeding QPM for 

resistance would be most effective and economical means of controlling SDM for 

small-scale farmers in Mozambique. 
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1.5.4 Source of resistance to Downy Mildew and Breeding Progress 
 

A survey of literature indicates that DM resistance has not been reported in QPM 

germplasm. However, DM resistance has been reported in normal maize. Resistance 

to DM has also been reported in CIMMYT lines and populations which were 

adaptable to tropical conditions (Pratt and Gordon, 2006). Pratt and Gordon (2006) 

also reported several tropical and temperate inbred lines that were resistant to DM. 

The temperate lines with resistance included Mo17, NC248, T250, T254, Tx61M, 

Tx403, Tx601, Tx5855, and Tx6252 (Darrah, 1985, as reported in Pratt and Gordon, 

2006). This germplasm would not be very useful for the breeding programme in 

Mozambique, because they are not adapted. In most cases the temperate 

germplasm has yellow endosperm which is not preferred by small-scale farmers in 

Africa. The resistant sources developed under lowland tropical conditions at IITA in 

Nigeria would be more adaptable to lowland conditions in southern Mozambique. In 

addition, germplasm from Thailand was reported to be highly resistant to DM under 

the tropical African conditions (Brewbaker et al., 1989; Adipala et al., 1999). For 

example, materials that were derived from Suwan-1 have been used in develping the 

QPM population ZM521QSR in Mozambique.  The Asian materials from the 

Phillipines were also reported to be useful sources of DM resistance in the IITA 

breeding programme in Nigeria. 

 

High breeding progress was reported to be associated with improvements in 

inoculation techniques (Caldwell et al., 1997; Kim et al., 1994). Previously, 

repeatability of DM screening trials had been very low due to high rate of germplasm 

escaping the disease during screening experiments. The new techniques included 

the use of spreader rows which is not labour intensive. Spreader rows have also 

been used in screening maize germplasm in the Mozambican programme at 

Umbeluzi Research Station near Maputo (Denic et al., 2001). With this method 

labour requirements were reduced because germplasm could be rated once without 

compromising selection efficiency (Ajala et al., 2003). Rapid progress in DM 

resistance has not been associated with reduction in grain yield and other important 

agronomic traits in normal maize (De Leon et al., 1993; Ajala et al., 2003), 

suggesting that DM resistance was not negatively correlated with grain yield in 

normal maize. Similar breeding progress would be expected in selecting for DM 

resistance in QPM. Although there are few reports of breeding for DM resistance in 

QPM, Denic et al. (2001) reported significant gains for DM resistance in both normal 

and QPM germplasm in Mozambique using full-sib recurrent selection.  
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1.6 The Maize Streak Virus in Africa 
   
Maize streak disease (MSVD) is caused by a geminivirus that is transmitted by 

viruliferous leafhoppers (Cicadulina mbila) in Africa (van Rensburg et al., 1991; Welz, 

1998; Pratt and Gordon, 2006). This disease has not been reported anywhere else in 

the world. It is a single-stranded DNA virus and different strains have been reported 

in Africa (Bosque-Pérez et al., 1999). There were also differences in the 

pathogenicity of the different subtypes of MSV (Bosque-Pérez et al., 1999; Pernet et 

al., 1999). This suggested that the most virulent and predominant pathotype should 

be identified and used to screen QPM germplasm in Mozambique. 

 

A detailed review of the MSVD in maize was presented by Pratt and Gordon (2006). 

A large body of the literature has suggested that the maize streak virus disease is the 

most important disease that compromises maize grain production in many countries 

in sub-Saharan Africa (Bosque-Perez, 2000). The disease causes devastating grain 

yield reduction especially in the mid altitude areas (800-1600 masl) and throughout 

the sub-tropical regions in Africa (Pingali and Pandey, 2001).  In east and southern 

Africa, the MSVD has been reported to be devastating in Mozambique (Denic et al., 

2001), Zimbabwe (Mzira, 1984), and Kenya (Pingali and Pandey, 2001). It appears 

that control strategies which target the vector Cicadulina species would be effective 

in controlling this disease. The MSVD is strongly associated with occurrence of 

Cicadulina species which act as vectors (Pham, 1992). In Mozambique, surveys 

conducted during 2002-2003 showed that MSVD was most severe in mid-altitude 

and highland areas (Denic et al., 2001) where the vector was prevalent. The disease 

was very severe and inflicted heavy grain yield losses when young plants were 

infested (van Rensburg et al., 1991; Kyetere et al., 1999; Bosque-Pérez, 2000). 

Studies conducted in Zimbabwe showed that proper timing of planting would be 

effective in reducing yield losses that were attributed to MSVD. Under natural 

infection, Mzira (1984) reported 54% yield losses when young plants were attacked 

compared to 0.8% when old plants were infested in Zimbabwe. Denic (1997) 

reported that there were few leaf hoppers to transmit the disease at the beginning of 

the season in Mozambique suggesting that early sowing might be used in managing 

the disease.  This strategy may not be sustainable because all farmers might not use 

the same planting date or they may grow winter crops which can serve as alternative 

hosts for the leaf hoppers (DeVries and Toenniessen, 2001). The beginning of the 

rainy season is also difficult to predict, which poses problems in timing the planting 
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(Bosque-Pérez, 2000). The early rains were associated with high incidences of 

Cicadulina leaf hoppers in West Africa which provided early hosts before the maize 

crop was established. Use of chemicals to control the vector might not be viable due 

to cost and limited availability in remote areas in Mozambique. Seemingly, breeding 

for host plant resistance in maize cultivars would be preferred and has been widely 

recommended (Bosque-Pérez, 1999; DeVries and Toenniessen, 2001) and might be 

more sustainable in QPM varieties that would predominantly be grown by small-scale 

farmers in Mozambique 

 
 

1.6.1 Epidemiology of maize streak virus 
 
The MSVD causes high grain yield losses in maize especially under irrigated 

conditions (Engelbrecht, 1975). Several grass species which grow under these 

irrigated conditions act as alternative hosts and provide favourable conditions for 

development of the vectors during the off-season. The disease first appears on 

young plant leaves as pale and small circular spots (van Rensburg et al., 1991). The 

numbers of spots then increase and expand in length, and form chlorotic areas 

between narrow broken stripes along leaf veins (van Rensburg et al., 1991).  

According to Barrow (1992), the secondary and tertiary veins are more affected than 

primary veins resulting in five to seven groups of parallel streaks on maize leaves. 

The symptoms are observed on the young leaves while the old leaves remain green 

which can be used to estimate the time of infection. Early infection of young plants 

results in stunted growth and production of small cobs, which causes low yield. The 

loss of chloroplasts which is reflected by chlorosis of the leaves reduces 

photosynthesis in relation to respiration, which compromises leaf size and plant 

height leading to stunted growth (Pernet et al., 1999). Number of leaves with disease 

symptoms has been reported to be closely associated with single plant yield (Efro et 

al., 1989). 
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1.6.2 Sources of Resistance   
 

There are few sources of MSVD resistance identified in QPM but many sources have 

been reported in normal maize. Denic et al. (2001) reported resistance in the QPM 

population Pool l5 and the QPM inbred line E-5Q from Ghana. Both at CIMMYT and 

at the International Institute of Tropical Agricultural (IITA) have reported some 

resistance sources in normal maize germplasm (Barrow, 1992), which can be used in 

breeding for MSVD resistance in QPM. The MSVD resistance has been reported in 

germplasm that were derived from Tuxpeño and yellow germplasm from East Africa 

(Efron et al., 1989; Bjarnason, 1986). Bjarnason (1986) also reported some MSVD 

resistance in the population “La Revolution”, from Réunion Island and in Tuxpeño x 

Ilonga composite from Tanzania.  Earlier, Storey (1967) reported that resistance from 

the sources was incorporated into regional populations that were used as base 

germplasm throughout sub-Saharan Africa. Conventional breeding efforts in national 

maize programmes have also made significant progress in breeding and releasing 

MSVD resistant varieties, but most of them are normal maize.  This has been mainly 

realised through collaborative efforts between national programmes with CIMMYT 

and IITA (Tang and Bjarnason 1993).  

 

Use of both field and screen-house screening has led to development of resistant 

germplasm at IITA in Nigeria and CIMMYT in Zimbabwe (Mzira, 1984; Kim et al., 

1994; Efron et al., 1989). In a comprehensive review, Pratt and Gordon (2006) 

reported many lines and populations with high levels of resistance to MSVD. The 

following inbred lines have been released at IITA in Nigeria Tzi3, Tzi4, Tzi15, and 

Tzi17 (Brewbaker et al., 1989). Resistant lines have also been derived from the Pop 

49-SR at CIMMYT in Zimbabwe. The CIMMYT lines CML217-238, CML195-CML215, 

CML442 and the population ZM607 are resistant to MSVD (Pratt and Gordon, 2006). 

In the same review, it was indicated that CVR3-C3 (Bjarnason, 1986), CIRAD 390 

(Barrow, 1992), D211 (Pernet, 1999), MSIRI 3B (Bjarnason, 1986), and population 

IRAT297 (Caulfield et al., 1997) were resistant to MSVD. In southern Africa, MSVD 

resistance has also been bred in both yellow and white commercial hybrids in 

Zimbabwe and South Africa (Barrow, 1992; van Rensburg et al., 1991). Various 

sources of resistance can therefore be utilised to bread for resistance to MSVD in 

Mozambique and in the region.  
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1.6.3 Progress on breeding maize streak virus in QPM 
 

Both population improvement and pedigree breeding procedures have been 

successful in developing MSVD resistant germplasm (Tang and Bjarnason, 1996) in 

both normal and QPM. A survey of the literature seems to indicate that yield has not 

been significantly compromised in the process of breeding for MSVD resistance.  

Development of QPM varieties started in 1988 at the Research Institute of Agriculture 

in Mozambique. New QPM germplasm was developed by crossing Pool 15Q and E-

5Q inbred lines which are resistant to MSV to the adapted normal lines from 

populations Matuba and Rampur 8075 DMR. The S1 and Full-sib (FS) recurrent 

selection methods were used to develop early white-flint QPM varieties resistant to 

maize streak virus and downy mildew. Early generation QPM materials were crossed 

with Obatanpa, Pop 62Q and Pop 63Q, SIW91Q and Pool 15Q to create five QPM 

interpolpulations to start other FS recurrent selections. All materials were subjected 

to heavy MSVD infection in the nurseries. The method of spreader rows was used to 

infest many breeding materials as recommended by William (1984), with 

modifications but it was modified by including combinations of late and continuous 

planting to ensure adequate MSV pressure as recommended by Caldwell et al. 

(1997) and Denic (1994).  

 

1.7 Recurrent Selection in maize 
 

Recurrent selection (RS) is a process of cyclical selection in a breeding population to 

increase the frequency of favourable alleles. These populations can then be used to 

extract new and superior inbred lines and prevent development of a possible genetic 

ceiling for future hybrid improvement (Duvick, 1992; Kannenberg and Falk, 1995). 

There are several methods of RS; but when there is no over dominance gene action, 

Self progeny selection using either S1 or S2 lines was reported to be superior to 

other methods for maize population improvement (Lamkey, 1993). During S RS 

alleles are fixed rapidly and deleterious, homozygous alleles are exposed and 

eliminated early in selection (Weyhrich et al., 1998). Population improvement through 

S selection is the result of direct selection favouring additive genetic effects because 

there are no masking effects of a tester.  
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Development of QPM using recurrent selection to improve the population has been 

done in Mozambique since 1998. Extensive programme on screening for disease 

resistance and endosperm modification in QPM has been carried out. Three cycles of 

selection for MSVD resistance, grain texture and endosperm modification, and one 

cycle of DM resistance were completed in 2000 in Mozambique (Denic et al., 2001). 

After three cycles of selection 419 S1 and S2 lines with MSVD resistance from four 

populations were formed but susceptibility to DM was still high. In cycle one of DM 

resistance screening, 38 experimental populations with 933 progenies were included 

and they showed some distinctive classes of DM resistance with class intervals of 10 

% (Denic et al., 2001). Denic et al. (2001) reported that the differences between 

MSVD and DM resistance in the same germplasm were largely due to number of 

cycles of selection for MSVD (C3) than for DM (C1) resulting in, and the differences 

allele frequencies for resistance to the two diseases. Similar to observations in 

normal maize populations In Mozambique, reported by Denic et al. (2001), the study 

concluded that screening for DM and MSVD resistance did not compromise the 

genetic variation within populations which remained large. This variation makes 

selection for both MSV and DM disease resistance more efficient.  

 

1.8 Participatory Rural Appraisal 
 

Farmer participatory research approaches have previously been used in plant 

breeding. Derera et al. (2006) investigated the preferences of cultivars by farmers in 

eastern Zimbabwe using PRA tools such as focus groups. They reported that farmers 

unanimously preferred the old hybrids that were developed in the 1970s to new 

hybrids because they were more tolerant to stress than the new hybrids.  A local 

landrace was also found to be preferred by farmers because of its superior taste and 

flint grain texture than the new hybrids. There were specific preferences in terms of 

cultivars according to the agro-ecological conditions of each district. Farmers living in 

the more productive areas showed high preference for grain-weevil resistant 

cultivars, while those living in less productive zones preferred cultivars with drought 

tolerance among other traits. This indicated that farmers’ requirements were quite 

different in this region hence it would not be viable to breed for broad adaptation in 

cultivars. The PRA results from Zimbabwe might be applicable to some parts of 

Mozambique because the farmers in eastern Zimbabwe share a similar culture to 

farmers in Mozambique. They are most likely to behave in a similar manner. In fact 
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Derera et al. (2006) reported that farmers in Zimbabwe were also growing some 

landraces from Mozambique. 

 

In all the surveyed districts farmers still relied on their landraces instead of improved 

varieties because of their early maturity, taste and flint texture of the grain that is 

thought to prevent losses in storage. Langyintuo et al. (2005) also reported that 

adoption of new cultivars was very low in Mozambique. They suggested that low 

adoption was as result of poor performance of improved varieties, unavailability of 

preferred improved seed, and limited resources to purchase new seed. However, 

some improved cultitivars were popular among a few farmers. These included 

Matuba (OPV), and hybrids SC513 and PAN64, and the QPM OPV “Sussuma”.  

 

 

In Ghana, participatory breeding (PB) programme was reported in developing 

cassava cultivars (Manu-Aduening et al. (2006). A trend similar to that observed in 

maize was observed as farmers preferred landraces to new cultivars. Similar reasons 

such as superior taste and poundability of landraces were given for the trends 

(Manu-Aduening et al., 2006). The farmers also preferred early maturing cultivars, 

with high yield potential and high quality traits for cooking and marketing.  According 

to Manu-Aduening et al. (2006) the PB approach resulted in development of cultivars 

with large storage roots and high yield potential which were among the most 

preferred traits.  

 

These cases indicated the importance of encouraging the breeder-farmer interactions 

during variety development. Similar approaches should be considered in improving 

QPM germplasm for the farmer preferred traits.  This would increase adoption of new 

QPM varieties in Mozambique. 
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1.9 Summary 
 
This review showed that there is very little published information on research in 

breeding for disease resistance especially DM and MSVD in QPM populations 

despite the demonstrated importance and potential of QPM in alleviating malnutrition 

in sub-Sahara Africa. A huge gap still exists between grain yield potential and actual 

yield because the yielding ability of QPM can be increased through breeding for 

resistance to DM and MSVD which cause heavy yield losses in Mozambique, 

especially if these diseases affect the young crop i.e., before flowering. Genetic 

variation for DM and MSVD has been reported in QPM populations in Mozambique. 

This genetic variation allows for further improvement of the populations through RS 

which was shown to be effective in improving the resistance to diseases and yield. In 

addition, there are several sources of DM and MSVD resistance which can be 

exploited in improving MSVD resistance in populations and inbred lines in 

Mozambique in the future.  

 

The review on participatory rural appraisal revealed that for farmers to adopt the 

variety, it must meet their preferences. Farmers still rely on their landraces because 

their varieties meet their preferences. In Mozambique, besides the variety not 

meeting farmers’ preferences there were other problems that influence adoption of 

improved varieties such as unsatisfactory performance, unavailability of preferred 

improved seed and lack of cash to purchase improved seed. The review also 

revealed that farmers’ preferences were generally determined by environmental 

conditions under which they grew their crops, suggesting that breeders should have 

a thorough understanding of these conditions in order to design suitable products for 

small scale farmers especially in marginal areas. 
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Chapter 2: Farmer perceptions on maize production constraints and 
the status of DM and MSV in two districts of Mozambique  
 

Abstract 
 
Agriculture in Mozambique is primarily small-scale, subsistence level and it is 

characterized by low productivity. The objective of this study was to determine maize 

production constraints, assess the status of downy mildew (DM) and maize streak 

virus disease (MSVD), and to determine farmers’ preferences and varietals selection 

criteria. Participatory rural appraisal (PRA) was conducted in Manica and Angonia 

districts in Mozambique during 2005 and 2006. To guide the group discussion and 

individual interview of selected farmers, semi-structured questionnaires and surveys 

were used. Problems listing, analysis and ranking by farmers and other key 

informants were tools employed in conducting the PRA study. Results showed that 

farmer’s predominantly grew open pollinated varieties (OPVs) and a few hybrids. 

Grain yield of maize grown by smallholder farmers was very low and ranged from 0.2 

to 0.6 t ha-1.  Results showed that drought and insect pests were the dominant 

constraints to maize productivity in Mozambique. Diseases were ranked the third 

most important production constraint, and DM and MSVD were considered the most 

important threats of maize productivity. Angonia and Manica districts are located in 

different agro-ecological zones in the country, and production constraints differed 

between districts. Angonia is located in the highland zone and is a more productive 

region than Manica. Farmers in both regions preferred weevil resistant cultivars. 

Manica is located in the intermediate zone. Farmers preferred high yielding and early 

maturing cultivars. Farmers are still using their local landraces because of sweet 

taste, particularly for home consumption and flint grain for storage. In all districts 

farmers showed common preference for high yielding, white coloured kernels, and 

early maturing cultivars. Research priorities as perceived by the farmers included 

combination of high yield potential, disease resistance and early maturity in all 

districts, and weevil resistance in the relatively more productive areas. Farmers in 

both districts had little knowledge about QPM cultivars and their nutritional 

advantage. The few farmers who were aware, however, recognized that QPM 

varieties were more susceptible to insect pests and diseases. It was concluded that 

breeders needed to develop cultivars combining these traits and promote QPM and 

its nutritional superiorities to the farmers. 
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2.1 Introduction 
 

In Southern Africa, the small-scale and subsistence farmers dominate in maize 

production. The productivity of maize is low (below 1.0 t ha-1), because the crop is 

grown under marginal conditions of low soil fertility, drought, disease and pests 

(Banziger and de Meyer, 2002). Under these conditions, farmers devote a lot of their 

effort to minimise risks of crop failure (Kieft, 1993). These farmers have limited 

access to essential inputs such as water, fertilisers and pesticides. Landraces are 

mostly (about 63%) grown by farmers, even when improved varieties are available 

(Sthapit et al., 1996). Perhaps the available varieties do not meet farmers’ 

requirements in the marginal environments. Breeders may not be able to identify 

farmers’ preferences and perceptions that influence their variety selection criteria 

without engaging farmers during the variety development process (Toomey, 1999; 

Banziger and Cooper, 2001; Pingali, 2001; Derera, 2005).  

 

The farmers’ requirements are not uniform and depend on their niches, yet breeders 

normally select cultivars for broad adaptation (Sthapit et al., 1996). Appropriate 

maize breeding strategy should take care of requirements of the small-scale farmers 

in the marginal environments. This requires proper identification of their perceptions 

on production constraints and factors that influence variety selection (Derera, 2005). 

According to Witcombe et al. (1996) this can be achieved by interacting with farmers 

in the varietal development process at the beginning so that the right breeding 

objectives are set and appropriate breeding germplasm is identified.  

 

The farmers’ perceptions on QPM varieties have not been established in 

Mozambique, which may affect rapid adoption of QPM varieties. In addition to the 

QPM trait, farmers would be interested in the agronomic quality of the varieties, and 

its tolerance to stress in the marginal environments.  It has been previously shown 

that farmer participation in variety development can help the breeders to get 

information on cultivar design which includes plant type, grain qualities, taste, stress 

resistance and market qualities (Sthapit et al., 1996; Derera, 2005). Although QPM 

varieties have been introduced in Mozambique, it has not been established whether 

farmers know the advantage of these varieties over their normal maize landraces. 

Therefore, it is important that the objectives of the national maize breeding 

programme in Mozambique should be based on the understanding of the small-scale 

farmers’ preferences and perceptions on both normal and QPM varieties if 

productivity is to be improved in the country.  
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2.2 Objectives and Research hypothesis of the study 
 

The main objective of the study was to identify farmers’ needs and preferences and 

to establish the importance of two major maize diseases (DM and MSV) among other 

production constraints.  

 

The specific objectives of the study were: 

a) to understand farmer’s preferences and selection criteria for future varietal 

development, 

b) to assess the current status of downy mildew and maize streak virus 

diseases, and the status of the QPM varieties, and  

c) to identify farmers maize production constraints. 

 

2.3 Material and Methods 
 

2.3.1 Study Area 
 

In order to understand the farmers’ needs with regard to maize varieties the 

Participatory Rural Appraisal (PRA) technique was used in two districts of 

Mozambique. The study was conducted in Manica and Angonia districts in Central 

region of Mozambique during the wet season of 2005 and 2006.  The selected areas 

are among the leading regions in maize production in Mozambique and represent 

different agro-ecologies. As the environmental factors influencing downy mildew and 

maize streak virus disease epidemic the selection of these agro-ecologies was 

extremely important for the outcomes. Another reason was that the rainfall amount 

and pattern is modified by altitude, such that high elevation (Angonia) receives the 

highest and most reliable rainfall, while Manica (mid-altitude) receives the least 

amount of rainfall which is erratic and poorly distributed over the season. Manica 

district lies at range of 600 m above sea level (masl) (mid-altitude), while Angonia lies 

at range of 1550 masl (high-altitude).  In Manica district crop production is to a great 

extent dominated by small-scale farmers. Angonia district with the most reliable 

rainfall is dominated by small maize production commercial companies and small-

scale farmers. Diallo (1999) noted that in recent years DM and MSVD epidemics 

cover all areas ranging from lowlands to highlands of Mozambique.   
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2.3.2 Selection of farmers 
 

The selection of districts for the study was based on the importance of the area under 

maize cultivation, and represent mid-altitude and highlands of Mozambique. Fifty 

farmers were selected from each of the districts. Two villages in each district were 

selected and 25 farmers including male and female were selected. The selected 

farmers formed focus group discussions from each district. The choice of farmers 

from each village was done by the area leader and the district extension officer 

based on the following criteria: respectability in the community, maize production 

capacity, and recommendation by traditional leaders. The selection was done in such 

way that all socio-economic classes of farmers were represented adequately in the 

study. From Manica district the study took place in Machipanda and Zonoue village, 

while in Angonia district the study covered Lisulo and Matwere villages. Two parishes 

in each village were selected.  

2.3.4 Data collection    
 

Data were collected using different PRA techniques. Formal and informal approaches 

were employed in data collection in order to enhance precision. According to Mergeai 

et al. (2001, cited by Derera, 2005) informal PRA approach enhances evidential 

value by taking into account relevant situational local knowledge and identifying key 

elements, while greater precision is obtained from formal surveys.    Village leaders 

and extension staff facilitated the survey by creating good atmosphere, by mobilizing 

farmers for the focus group discussion and provided lists of farmers to be sampled 

for the formal survey. A combination of three data collection techniques was 

employed: a) semi-structured interviews for focus group discussion; b) transect walks 

for field observations with the groups; and c) formal survey with questionnaires for 

individual interviews.  

 

The PRA involved three focus group discussions and interviews with key informants 

such as local teachers, businessmen, school headmasters. The techniques 

employed consisted of problem listing, analyses and ranking by important informants 

using semi-structured questionnaires (Appendixes 2.1 and 2.2). Group discussions 

were held with a selected sample of 15 farmers to confirm results from 

questionnaires for individual farmer interviews including a key informant.  
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The important informants were designed to guide the discussions yet provided the 

group sufficient opportunity to bring up their own issues. Discussion in the groups 

started by farmers listing uses of maize in the area, and identifying important cereals 

and other crops they grew. During discussions, farmers were asked to list and rank 

the major constraints to maize production in the area. Constraints were ranked by 

drawn rank matrices.  

 

Farmers ranked independently the constraints, and the highest score was considered 

the most important. Observations in the farmers fields were made during the transect 

walks. Selection of different traits and plant characters that were considered 

important by farmers were recorded. Special requirements such as consumption, 

marketing and improved maize seed availability were discussed as the way to 

increase the productivity.       

2.3.5 Data analyses 
 

Data collected from questionnaires and interviews were analyzed using SPSS 

computer package (SPSS Inc., 2002). Average scores and ranks were calculated 

from both quantitative and qualitative data. Descriptive statistics, analysis of 

variances and mean comparisons were computed for data collected in each district 

followed by mean comparisons between districts   
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2.4 Results 
 

2.4.1 Maize consumption 
 
Survey conducted indicated that on average 65% of maize was consumed and 30% 

sold for cash or exchanged for labour at weeding time and 5% donated to extended 

members of the family in need. Almost all the sorghum produced by the average 

household was consumed in the household. Only 5% was estimated to be sold 

(Table 2.1).  
 

Table 2.1: Average percentage of crop utilization in the Districts of Angonia 
and Manica 
Crop Own consumption               Sales           Donation 

Maize 

Sorghum 

Cowpeas 

Beans 

Cotton 

65 

90 

50 

15 

0 

30 

5 

50 

85 

100 

5 

5 

0 

0 

0 

 

Note: Donation refers to gratuitous transfer of part of the harvest to family members 

living outside the household (urban areas or areas affected by poor rainfall).  

 

2.4.2 Household Characteristics 
 

In 90% of the cases, the household head was male. The average age of the 

household head was 47 years. The level of education was low, averaging 3.5 years 

of schooling for all adults. There were five adults per household. The maximum area 

under cultivation was 5.5 ha. The dominant crop in the area was maize. Other crops 

included sorghum, beans, cowpeas, cotton, tobacco, sunflower and horticultural 

crops in the lowlands. 

 

Most of the interviewed farmers in Manica district were former refugees in Zimbabwe 

for years during the Mozambican civil war. While in Zimbabwe most of these small 

scale farmers were introduced to high input intensive farming techniques. This may 

explain the higher percentage of input use in Manica district compared to Angonia. 

Another possible reason is the lower costs of inputs in Zimbabwe. Interviewed 
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farmers near the border said that they bought most of their inputs, from the 

neighbouring city of Mutare in Zimbabwe, 7 km across the Machipanda border.  

 

Data taken from the two districts under study showed that maize was a significant 

staple food in both districts. Maize was ranked first followed by sorghum (Table 2.2). 

The main uses of maize were as food (Nsima), brewing and as a snack (fresh and 

dry grain).  Household sizes were smaller in Manica district than Angonia district. The 

average land holding differed significantly between districts, ranking from 0.8 ha in 

Manica to 2.0 ha in Angonia.  

 
Table 2.2 Rank of crops as preferred by farmers in Zoonue and  Machipanda in Manica 
district 
 
Crop Zoonue Machipanda 
 
Maize 
Sorghum 
Beans 
Pearl-millet 
Groundnut 

 
1 
2 
4 
3 
5 

 
1 
2 
3 
4 
5 

Scores: 1 = best and 5 = least preferred crop for the area 
 

 

 
Table 2.3 Rank of crops as preferred by farmers in Lusulo and Matwere of Angonia district 
 
Crop Lusulo Matwere 
 
Maize 
Sorghum 
Beans 
Pearl-millet 
Groundnut 

 
2 
1 
4 
5 
3 

 
3 
1 
2 
5 
4 

Scores: 1 = best and 5 = least preferred crop for the area 
 

 

2.4.3 Maize Production 
  

Although the majority of the farmers still grew local varieties, there was a substantial 

use of inputs such as seeds of new improved cultivars. On average, twenty three 

percent said they used improved cultivars in the previous season. The highest 

proportion of improved cultivar users were found in Manica district, with 40% using 

new maize cultivars, compared to 23% for Angonia. Most of the new cultivars were 

open pollinated varieties (OPVs), which were being reused.  Seed and fertilizer have 
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been introduced to maize farmers in Manica and Angonia through public and private 

extension services. Open pollinated varieties, hybrids, and fertilizer have been 

introduced by government extension and seed company demonstration plots as well 

as on on-farm trials. A number of farmers have had access to these new inputs 

through emergency programs or through development programs such as SG2000, 

PAN (National Action Programme) action and others. Other practices being promoted 

include conservation tillage and herbicide use. Several white, open pollinated 

cultivars and hybrids developed by public and private institutions are available to 

farmers including quality protein maize (QPM), but the adoption of all of them is still 

limited. Twenty eight percent of the interviewed farmers in the two districts planted 

both traditional and an improved cultivar in the previous cropping season (2004/05) 

(Table 2.4). No single farmer interviewed planted only the improved cultivar. Farmers 

planted both traditional and new improved cultivars. The average area planted to an 

improved maize cultivar, among those planting the new cultivars was 0.5 ha while the 

traditional cultivars were planted by all on an average of 2.3 ha.  

 

Table 2.4 Farmers who planted at least one improved maize variety  in 
2005/06. 
 
District Number of farmers 

(Sample out of 100) 
Number of farmers  

using improved seed 
% of users 

 
Manica 
 
Angonia 
 
Total 

 
10 

 
22 

 
32 

 
4 
 

5 
 

9 

 
40.0 

 
22.7 

 
28.1 

 

Improved cultivars in the region were early, intermediate and late maturing. Early 

maturing cultivars such Matuba, were planted. Among the intermediate to late 

cultivars grown in Manica were the hybrid PANNAR 67 (PAN 67) and QPM 

Sussuma. Fertilizers were not commonly used in the food crop sector in Manica. 

Most of the interviewed households said that the same land is repeatedly sown with 

the same crops, and they were aware of soil quality deterioration and therefore the 

need of fertilizer to improve soil fertility. Fertilizer was, however, used primarily on 

cash crops such as cotton and tobacco. In case of these crops the processors 

usually supplied inputs on credit against the crop delivery. The assurance of 

repayments allowed the creditors to offer the farmers relatively favourable interest 

rates, thus explaining the greater use of capital in these enterprises relative to food 

crops such as maize.  
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Farmers, especially in the district of Manica, close to the border with Zimbabwe, 

bought maize hybrids and OPV seeds in the neighbouring Zimbabwe. The local 

varieties included a group of varieties that have been locally adapted or selected. 

The local varieties’ seeds were obtained from other farmers and passed from 

generation to generation. The local varieties commonly used in the surveyed area 

included Chimanica, La Posta, Kangere, Chinyamwana, Macolo and Chingenda. All 

local varieties were tall with long season maturity, white large grain and of good 

poundability. Improved cultivars included hybrids and OPVs. The most used 

improved maize OPVs were Matuba, Sussuma and Manica. Farmers surveyed 

reported that they obtained seed from markets, home saved seed, donations and 

purchase from shops (Table 2.8).  

 

Agro-climatic conditions of the two districts are different; hence the maize grain 

production differed significantly between locations during 2005 and 2006 period, with 

Angonia having reliable rainfall during the season, and consequently highest yield, 

Manica and cyclic years of drought and erratic rainfall. This affected strongly the 

maize grain production during 2005/06 season. Data from family unit survey revealed 

that in both districts farmers predominantly grew open pollinated varieties (OPVs), 

and few hybrids from: Seed Co (SC), Qualita (QL) and Pannar (PAN). In Manica 

district, although farmers have accepted the new early maturing OPVs, they showed 

very high regard for their local varieties. The general perception was that improved 

varieties were not as drought tolerant as their local varieties. Related to other 

agronomic traits, in both districts farmers were less concerned about them, while 

grain texture preference was the trait for their concern. Most farmers, consistently 

preferred flint grain texture to the dent. In all districts, farmers were of the opinion that 

flint grain texture conferred high storability, and better taste (Table 2.5).  

 
Table 2.5 Mean rank values for preferred traits of stress tolerant cultivars from formal survey 
in each district 
Characteristic                 District            Overall 
 
Drought tolerance 
Low soil fertility 
Disease and pests 
Grain weevils 
Maturity 
High yield 
Cob size 
Grain texture 
Ear per plant 

          Angonia 
2.9 
3.0 
2.8 
2.7 
3.7 
1.8 
3.5 
2.6 
2.5 

          Manica 
2.7 
3.4 
2.6 
3.6 
2.9 
1.5 
2.8 
2.5 
2.0 

 
2.8 
3.2 
2.7 
3.2 
3.3 
1.7 
3.2 
2.5 
2.2 

Scores were: 1 = most important and 5 = least important 
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2.4.6 Production Constraints 
 

Drought was ranked the most important factor among others that hampered maize 

production in both districts, followed by lack of improved seed. In addition, weevils 

(storage pests) were ranked highly due to the damage that they caused to maize rain 

during post-harvest storage. Diseases were ranked in third, just after the seed 

availability (Tables 2.6 and 2.7).  
 
Table 2.6 Mean rank for perceived production constraints in focus group 
discussion in Manica district 
                                                     Manica District 
Constraint Zonue  Machipanda  
Drought tolerance 
Seed availability 
Disease and Pests 
Low soil fertility 

1.0 
1.5 
3.0 
2.5 

 

 1.0 
2.0 
2.5 
3.0 

 

 

Scores were: 1 = most important and 5 = least important 
 
 

Table 2.7 Mean rank for perceived production constraints in focus group 
discussion in Angonia district 
                                                     Angonia District 
Constraint Lusulo  Matwere  
Drought tolerance 
Seed availability 
Disease and Pests 
Low soil fertility 

2.5 
1.0 
3.0 
2.0 

 

 2.0 
1.0 
3.0 
2.5 

 

Scores were: 1 = most important and 5 = least important 
 

The survey revealed that farmers did not have the best approaches for controlling 

diseases and pests. More that 50% of the farmers mentioned that they would pluck 

and burn the affected plants and 25% said they had no solution to control disease 

and insect pests problem. The use of unimproved seed contributed to the reduction 

on maize grain yield in both locations.Only 15.7% purchased seeds from the market 

(Table 2.8). 

 

Table 2.8 Source of seed for farmers in two districts 
                                                            District 
Seed source Angonia Manica Total 

Frequency 
Percentage 

Market 
Own home saved 
Donations 
Purchase from shops 
Total 

12 
18 
26 
15 
71 

10 
19 
23 
18 
70 

22 
37 
49 
33 
141 

15.7 
26.2 
34.8 
23.4 
100 
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2.4.7 Importance of downy mildew and maize streak virus disease. 
 

There were different opinions in terms of disease prevalence between the two 

districts (Table 2.9). Farmers described disease symptoms that devastated their 

crops and were able to identify them from photographs that extension officers 

presented. Twenty five percent of the farmers interviewed in Angonia district reported 

that maize streak virus (MSV) was the most important disease followed by gray leaf 

spot (GLS). In Manica district, 23 % of the farmers reported that downy mildew (DM) 

was the most important disease followed by MSV. 

 
Table 2.9 Importance of DM and MSV and their ranking in two districts: 
Percent of farmers reporting a particular disease  
                                                            District 
Disease Angonia (%) Manica (%) Total 

Frequency (%) 
Rust 
GLS 
Turcicum 
MSV 
DM 
 
Total 

1 
12 
5 

25 
5 
 

48 

1 
9 
3 

16 
23 

 
52 

2 
21 
8 
41 
28 
 

100 
 

 

2.5 Discussion 
 

The Participatory Rural Appraisal study indicated that farmers were still using own 

saved seed. They grew unimproved cultivars for stress tolerance and therefore these 

varieties succumbed to disease and insect pest damages. This finding is in 

conformity with those reported by Gibbon et al. (2005) who observed that most 

farmers selected seeds for planting from the best plants in their fields. Due to 

occasional droughts, some farmers in Manica district obtained their seeds from 

donations (NGO’s and Projects).  These are improved seeds that help farmers to get 

higher maize grain yields. In Angonia, farmers reported higher grain yield than 

Manica district. These farmers were able to sell part of their produce, indicating that 

Angonia has the potential to produce surplus grain.  

 

During the survey, some special farmers’ preferences were identified in both districts. 

They included large white kernels and high density for marketing and sweet taste for 

home consumption. These attributes were also reported from a survey in Uganda 
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and Tanzania (Gibbon et al., 2005). These attributes have not been addressed by 

breeders       

In Angonia farmers acknowledged MSV as an important constraint in maize 

production.   

 

In Manica farmers mentioned DM as a major constraint of maize, especially if 

infection occurs in the early stages of plant development. In other studies downy 

mildew was reported as a destructive disease of maize in the lowland and especially 

for southern part of Mozambique (Denic 1994). Manica district which receives lower 

rainfall and high humidity than Angonia provided favourable conditions for DM 

development. Pingali (2001) reported that DM was considered as one of the major 

constraints contributing to yield gap in sub-Sahara Africa. Since most improved 

maize cultivars grown by farmers were not improved for DM resistance, an epidemic 

could cause a great losse in farmers’ fields. The National Maize Programme in 

Mozambique has begum improving the existing maize cultivars for resistance to DM. 

 

From the survey findings, control measures for DM and MSVD employed by farmers 

consisted of early planting and removal of growing tip of young affected plants, a 

pratice similar to rouging. Early planting could help crops escape DM and MSVD, 

which is better than what farmers were doing because removal of growing tip kills the 

plants before producing any ear. Early planting could also help avoid leafhopper 

population build-up, thus reducing MSVD severity; however farmers delayed land 

preparation thus encouraging leafhopper population build-up during the season. 

Some farmers rotated cultivars in each season and planted some cultivars in one or 

the other season which was only effective where MSVD occurrence was sporadic but 

did not work where continuous occurrence of MSVD was prevalent.   

 

Nevertheless, the effectiveness of these control methods as described by farmers 

depended on season, crop growth stage at which the infection occurred and the 

genetic make up of the plant cultivar in question. According to Pingali (2001) the 

most commonly used practice by farmers to control yield losses were timely planting 

and treatment of seed with systemic insecticides. DeVries and Toenniessen (2001), 

reported that for subsistence farmers a more effective and practical solution for yield 

losses is high yielding maize cultivars that are resistant to DM and MSVD.   In both 

districts, there were few farmers who grew improved seed, due to the influence of the 

neighbouring countries (Zimbabwe with Manica and Malawi with Angonia) (DINA, 
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1995). These farmers, although they grew hybrids, still mentioned that those hybrids 

suffered DM and MSV damages, causing yield losses.  

 

2.6 Conclusions 
 

The survey revealed that farmers in Angonia and Manica districts obtain most of their food 

and cash from the crops they raise mainly maize, sorghum, cowpeas and beans.  

 

The survey also revealed that drought, seed unavailability and diseases and insect pests 

(DM, MSVD, stalk borers and weevils) were the four dominant factors as maize production 

constraints in the two districts. Declining soil fertility was other factors identified as maize 

production constraints. Among the diseases DM was the most important in Manica district 

while MSVD was the most important in Angonia district. 

 

Results of the study showed that farmers still have a basic preference for high yielding and 

early maturity maize cultivars with large, white and high density kernels and sweet tastes. 

Priorities for crop improvement as perceived by farmers therefore should address resistance 

to drought, insect pests and disease.  

 

In both districts surveyed few farmers have knowledge about QPM cultivars and those few 

they recognized that QPM cultivars were more susceptible to insect pests and diseases 

compare to the normal maize.  
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Farmers’ Key Constraints & P 

references for QPM Cultivars  

 

Informal questionnaire for the preliminary PRA study at Angonia and Manica districts 

of Mozambique 

 

By David Mariote 

 

Objective: To obtain the overview of key constraints and farmers’ preferences for 

quality protein maize resistant cultivars. 

 

Hypothesis: Farmers recognise key production constraints and have special 

preferences for cultivars 

 

Research Question 1: Do farmers recognise Quality Protein Maize? 

Research Question 2: Do farmers recognise the maize production constraints? 

Research Question 3: What are the farmers’ preferred plant traits? 

 

a) Importance of Maize 

1. What are the uses of maize in your area? List the uses. 

2. Which maize varieties do you grow in your area? List them 

3. What are the other important cereals in your district? List them 

4. What other crops do you grow? List them and give the reasons why you grow 

them. 

 

b) Major Maize Production Constraints 

1. What are the major production constraints of maize in your area? [e.g. 

disease; drought; seed viability; fertility (soil type); low yield; insect pests 

including storage pests] a) Name them ; b) Rank them 

2. Which measures do farmers use to overcome the constraints? List them. 

 

c) Cultivar and Plant Trait Preferences 

1. Which QPM cultivars have you planted in recent years? List the cultivars. 

2. Which QPM cultivar you did not like to grow again? Name and give the 

reasons. 
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3. Which QPM cultivar do you like to grow again in your farm? Name the cultivar 

& state the reason. 

4. Which plant traits do you prefer? List them. 

 

d) Sources of Seed 

1. Where do you obtain QPM seed for planting ever year? Name. 

2. How many seed dealers are in your district and which do you know that 

commercialize QPM varieties? List them 

3. How many seed companies are operating in your district? List. 

 

 

 

Appendix 2.2  Formal Survey on Key Constraints and Preferences of Disease 
Tolerant  Maize Cultivars 

 

 

District: ______________   Village: _________________________ 

Questionnaire Number: __________ 

Enumerator: __________________________________ 
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Household details 

   

1. Name of household head: …………………………………………………….. 

2. State the gender ---------------------------------------(male/female) 

3. What is the composition of the household?  

 

Gender Group Number in household Number with formal education 

Male adults   

Female adults   

Male children   

Female children   

 

 

4. How many animals do you own? 

Livestock  Number 

  

Cattle  

Chickens  

Goats  

Sheep   

Donkeys  

Pigs   

Others (specify) …………………………..  

 

 

5. Which assets do you own? 

Asset  Number 

  

a) Motor vehicles  

b) Television sets  

c) Radio set  

d) Tractor  

e) Plough  

f) Harrow  

g) Water pump  

h) Modern house (brick and asbestos sheets)  
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Production Constraints Data 

 

1. Name and rank the production constraints in your district? 

Constraint  Rank (1 Worst, 5 least problematic) 

  

  

  

  

Options:,Diseases and  insect pests seed availability cultivar problems,  and  poor 

fertility 

 

7. Biotic Constraints (List and rank them) 

 

Constraint Rank   

  

  

  

  

  

Options: Diseases, insects, weeds,  and others 

 

8. How much fertiliser did you apply last season? 

 

Fertiliser Type Quantity (No. of bags) 

Manure  

Basal Maize Fertiliser  

Top Dressing   

Lime   

Others (Specify) -----------------------------  

c) If No, explain why you did not apply fertiliser 

___________________________________________________________________

___________________________________________________________________

__________________________________________________________ 

Options: Expensive, not available 
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9. How do you apply fertiliser/Manure?  

 

Fertiliser Type Method Of Application 

Manure  

Basal Maize Fertiliser  

Top Dressing   

Others (Specify) -----------------------------  

Options:  a) Drilling, b) Broadcast, c) Other method       

Seed 

 

10. What type and how much seed did you buy? 

 

Year Cultivar Name/Brand Place Quantity  

2005/6    

2004/5    

2003/4    

2002/3    

  

Rains 

 

11. Commend on the rainfall in your district 

Year  Quantity 

  

2005/6  

2004/5  

2003/4  

2002/3  

1. Options: Quantity: Little, moderate 

2.  sufficient or insufficient for the maize crop. 
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Grain Yield 

12. How many bags of grain did you produce during the past years? 

 

Year  Number of Bags Produced Comment 

   

2006   

2005   

2004   

2003   

2002   

 

13. How many bags of grain did you sell over the past years?   

  

Year  Number of Bags Sold Where did you sell the grain? 

   

2006   

2005   

2004   

2003   

2002   

Options: a) Less than 5 bags, b) 6 to 10 bags, c) More than 10 bags, d) zero 

   

14. How many bags do you require for the family consumption every year?  ------------

-------- 

a) Less than 5 bags       

b) 6 to 10 bags        

c) More than 10 bags 
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15. List the factors that you consider when selecting maize varieties?  

Factor  Reasons 

  

  

  

  

  

Options:  

1. High yielding 

2. Tolerance to disease/pest 

3. Drought stress tolerance 

4. Resistance to storage pests (e.g. grain weevils) 

5. Maturity period 

6. Grain texture 

7. Cob coverage 

8. Number of cobs per plant 

9. Cob size 
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16. Which of these factors are most important? Rank them 

Factor  Rank  

High yielding  

Tolerance to disease/pest  

Drought stress tolerance  

Resistance to storage pests (e.g. grain weevils  

Maturity period  

Cob coverage  

Grain texture  

Number of cobs per plant  

Cob size  

 

17. Which maize variety have you planted in recent years? Give reasons.  

Year  Cultivar Reasons 

   

2005/6   

2004/5   

2003/4   

2002/3   

 

Name the variety you would like to grow next year, and give the reasons. 

Variety: ----------------------------------------------------------------------------- 

Reasons: ---------------------------------------------------------------------------- 

 

18. Which the most popular maize varieties according to performance. 

 

Cultivar Rank 
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19. Which of the following grain texture does the farmer prefer? (Show ear samples 

of each type). Indicate the preferred texture with a cross (X). 

 

Grain texture Preferred Reasons  

   

Flint   

Intermediate    

Dent    
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Chapter 3: Response to selection for downy mildew resistance, grain 
yield, and secondary traits in three quality protein maize populations in 
Mozambique 
 

Abstract 
 

Downy mildew (DM) is a major problem in quality protein maize (QPM) varieties 

under cultivation in Mozambique. Recurrent selection was therefore initiated to 

improve DM resistance in three QPM populations, mainly Sussuma, ZM521Q and 

Pop62SRQ at Umbeluzi Research Station in Mozambique, during 2003-2006 

seasons. Downy mildew disease incidence and severity were rated at four and eight 

weeks after infection (WAI) based on visual assessment of the whole plot. Selfed S1 

progenies were selected based on FS progeny performance. Two selection cycles 

were formed and evaluated. Selection intensity was 50%, and 25% in cycle 1 (C1) 

and cycle 2 (C2), respectively. The C1 and C2 were evaluated in a randomized 

complete block design with three replications in 2005/6 season. Results indicated 

significant improvement in DM resistance from C1 to C2, with scores of 4.6-3.9 in 

Sussuma, 3.0-2.3 in ZM521Q and 4.0-3.3 in Pop62SRQ, respectively. Results also 

indicated increase in genetic variances (σ2
G) for DM from 0.069 in C1 to 0.119 in C2 

in Sussuma; 0.054 in C1 to 0.1442 in C2 in ZM521Q, and from 0.097 in C1 to 0.313 

in C2 in Pop62SRQ. Broad sense heritability (H2) estimates ranged from moderate to 

high and increased from C1 to C2 in all populations. The H2 estimates were 0.63-

0.76 in Sussuma; 0.60-0.63 in ZM521Q and 0.60-0.63 in Pop62SRQ. These changes 

were associated with an increase in yield of about 4.67% in Sussuma, 4.68% in 

ZM521Q and 4.47% in Pop62SRQ. There was also an improvement in flint nature of 

the grain with texture scores of 2.7-1.4 in Sussuma, 2.9-1.8 in ZM521Q and 2.5-1.7 

in Pop62SRQ. There were no significant changes in anthesis-silking interval, plant 

height and number of ears plant-1. This study showed that S1 recurrent selection was 

effective in improving QPM populations for DM resistance, increasing genetic 

variances and broad sense heritability estimates without compromising grain yield, 

texture, and other important characteristics.  
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3.1 Introduction 
 

The objective of QPM breeding is to improve the nutritional value of proteins in maize 

grain, which is only 40% of that of milk (Bressani, 1991). Maize is therefore 

recommended and consumed with other balancing proteins from legumes and animal 

products, which are not readily available to small-scall farmers. Most people in sub-

Saharan Africa rely on a predominantly maize based diet hence cases of malnutrition 

abound.  In Africa for example, maize contributes 20% of total daily calories and 

accounts for 17 to 60% protein FAO (1995) requirements, yet it lacks in essential 

amino acids. QPM varieties would therefore address such inadequacy in maize. 

 

Although the grain yield potential of QPM varieties has been improved, the varieties 

in Mozambique are still highly susceptible to many diseases. The disease pressure is 

high on QPM varieties because the varieties were presumably developed from 

germplasn with little resistance to prevalent pathogens in Mozambique.  Downy 

mildew is one of the most serious diseases that compromise yield. Downy mildew, 

which is caused by Peronosclerospora sorghi reduces grain yield when it attacks the 

maize crop during the early growth stages and development (Denic et al., 2001). In 

Africa, this disease is prevalent in East Africa (Weston and Uppal, 1932), southern 

Nigeria in West Africa, Abedon and Tracy (1988) and Mozambique in Southern Africa 

(Plumb-Dhindsa and Mondjane, 1984; Denic, 1994).  

 

Rana et al. (1982) reported that Indian inbred maize lines were resistant to DM 

pathogens (Peronosclerospora sorghi (SDM) and Perenosclerospora heteropogoni; 

(RDM). They also reported that resistance was polygenically inherited and that 

resistance was dominant over susceptibility in that germplasm.  In a later study, Nair 

et al. (2004) found that resistance was partially dominant when lines were subjected 

to SDM infection, but was complete in lines infected with RDM. However, they 

concluded that additive genetic variance was more important than the non-additive 

genetic variance in controlling resistance to SDM and RDM, (Nair et al., 2004), 

suggesting that resistance could be improved by selection. In Mozambique, the SDM 

is the predominant pathogen that has been associated with DM in maize. 

Recurrent selection (RS) methods have been widely used to improve yield and 

agronomic performance of maize populations (Ceballos et al., 1991). During 

recurrent selection it is desired to improve mean performance for the desirable 
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attributes without compromising the genetic variation which is required to ensure 

continued selection gains. Thus the RS which has been proven to be efficient in 

exploiting additive effects (Moll and Smith, 1981) would be used to improve three 

QPM populations for resistance to DM in Mozambique.   A survey of available 

literature showed that very little RS, if any, has been conducted to improve QPM 

especially for DM resistance. However, some progress on DM resistance has been 

reported in normal maize (CIMMYT, 2001), especially when S1 selection was used in 

combination with full-sib selection (Ajala, 1992).  The QPM populations under 

cultivation in Mozambique have not been studied for genetic variability for DM 

resistance and their response to selection for DM resistance. This study was, 

therefore, based on the premise that DM resistance is polygenically controlled by 

predominantly additive gene action, and can be improved by recurrent selection.       

3.2 Objectives and Research hypothesis  
 

The specific objectives of the study were: 

a)  To study the response to recurrent selection for DM resistance and other 

important traits using selfed progenies (S1) in combination with full-sib evaluation 

of three QPM populations,  

b)  To determine correlated responses of the three populations for yield, ASI, 

grain texture, grain moisture and other important agronomic characteristics after 

two cycles of recurrent selection.    

 

The hypothesis tested was:  

a) Resistance to DM in QPM populations can be improved by using recurrent 

selection, and genetic variability for DM and other important traits remains 

high after cycles of recurrent selection. 

 

3.3 Materials and methods 

3.3.1 Location of the study 
 

The experiment was conducted at Umbeluzi Research Station, which is located 30 

km south of Maputo, with a mean altitude of 15m above sea level (a.s.l). The  

research station area is located in the Boane district in the Maputo province, 

Mozambique, between the latitude 26°02' – 26°04' south and the longitude 32°17' – 

32°19' west. The climate is subtropical, with a monomodal rainfall pattern. The 
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average rainfall per annum is 678 mm. January is the wettest month and August the 

driest month of the year. The rainy season runs from October to April and the dry 

season from May to September. The annual average temperature is 22.9°C. The 

highest average temperature is in January (25.6°C) and the lowest in July (17.8°C). 

The relative humidity does not vary markedly during the year with values ranging 

between 65% during August/September to 72% in March/April.  

3.3.2 Germplasm  
 

The three quality protein maize populations Sussuma (S2 generation), ZM521Q, and 

Pop62SRQ (Table 3.1) used in this study were obtained from CIMMYT. They are 

high grain yielding but highly susceptible to downy mildew. These populations were 

designated Sussuma, ZM521Q and Pop62SRQ, respectively, in this study. All three 

populations were originally developed at the International Maize and Wheat 

Improvement Centre (CIMMYT) Mexico and Harare. All the populations are adapted 

to tropical environments in East and Southern Africa. They were converted to QPM at 

Instituto de Investigação Agrária de Moçambique (IIAM), in Mozambique. The 

characteristics of these populations are summarized in Table 3.1. 
 

 

Table 3.1: Characteristics of three QPM populations subjected to recurrent 
selection for downy mildew resistance in Mozambique 
Designate Name Source Population Characteristics 

 

 

ZM 521Q 

 

 

[ZM521/SW8075DMR//QSRDMR] 

F2 

● Intermediate to late maturing; high-

yielding white grain, flint grain type. 

Improved for quality protein Adapted to 

tropical environments. Grown at sea level 

to 1500m in Mozambique. 

 

 

SUSSUMA 

 

 

Sussuma S2  

● Has Obatanpa GH background, derived 

from Pop63SR, originated from CIMMYT, 

Mexico. Intermediate to Late maturing; 

high-yielding white grain; semi- dent grain 

type. Improved for high quality maize 

protein, grain texture and drought 

tolerance at ex-INIA, IIAM. Adapted to 

tropical environments. Grown at sea level 

to 1500m in Mozambique. 

 

 

POP 62 SRQ 

 

 

Pop 62 SR 

● QPM early maturing; high-yielding white 

grain, flint grain type. Adapted to tropical 

environment. Grown at sea level to 1500m 

in Mozambique. 
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3.3.3 Establishment of screening nurseries and artificial inoculation of 
spreader rows for downy mildew  

 

Downy mildew nurseries were established three seasons to screen the progenies at 

Umbeluzi Research Station, (URS) in December 2003, November 2004, and 

November 2005. Selected ears from selfed (S1) seeds of each population were 

planted for screening for DM resistance. The population size of about 5,316 plants for 

each population was established. Screening nurseries were laid out in three blocks 

for each population on one row plots of 5 m long. The blocks were made up of 275 

rows. Field layout involved planting four rows of spreaders (susceptible checks) at 

the beginning of each block, followed by five rows of the population to be screened, 

and at the end of the block. The progenies of the selected plants from the selfed 

generation (S1) were planted in an ear-to-row method in which progenies of each 

plant were planted in one 5 m long row only. Agronomic practices included fertilizer 

application at the rate of 375 kg ha-1 compound (12N:24P:12K ) at planting;  

herbicide application with glyphosate before planting followed by weeding and top 

dressing with urea (46% N) at the rate of 150 kg ha-1 during the vegetative stage.  

Stalk borer control was done by spraying with insecticide Decis (pyrethroid) at regular 

intervals to reduce crop loss. A combination of night-time infection techniques 

developed in Thailand (Caldwell et al., 1997), and a modified inoculation procedure 

(Caldwell et al., 1997) were used to inoculate trials. Seeds of a susceptible variety 

were selected, and treated with 5% savlon (desinfectant) for 1 min, and then washed 

with tap water, and left to pre-germinate for 72 hrs. Downy mildew diseased leaves 

were harvested late afternoon and used to make a layer in a plastic box. The layer of 

seedlings was placed over the layer of diseased leaves and left to sporulate over 

night, in a controlled chamber at 20 oC. The infected seedlings were then planted in 

the field as spreader rows and the S1 progeny rows were planted 14 days later. The 

pathogen was already sporulating on the spreader plants by the time the test 

materials were planted.  

3.3.4 Formation of the cycles 
  
During the test period, all selected plants had their ear shoots covered with 

cellophane bags at flowering time. The ears of the selected progenies were self-

pollinated to provide S1 seed. Pollen from selfed plants was used to pollinate ears 

from other randomly selected plants to form full-sib seed. Full-sib families were 
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harvested and evaluated and the results used as base to select the S1 progenies 

The formation of cycles is illustrated in Figure 3.1. Selfed progenies based on the 

best FS progenies were selected for quality protein content using light tables (Pixley 

and Bjarnason, 2002). To confirm the results of light table selection, enzyme-linked 

immunosorbent assay (Elisa) test was conducted in the laboratory for selected grain, 

and only those that met QPM protein requirement levels were selected. The selected 

S1 seeds were planted in an isolated plot to allow them to inter-mate and then the 

seed was bulked to form C1. The process was repeated using C1 seed as base to 

form C2 seed Although FS and S1 progenies from an equal number of plants in each 

of the three populations were sought, the proportion of plants obtained was 50% 

(2658 plants), 25% (665 plants) and 25% (166 plants) for the populations Sussuma, 

ZM521Q and Pop62SRQ, respectively. The rational of choosing this selection 

intensity was to maintain the variability within populations for future selections. These 

were plants with adequate FS seed with resistance to DM used to form the base 

population referred to herein as  cycle 1.  

 

 
In 2005/06, a trial was planted for evaluation of the two cycles of each population. A 

simple lattice was used. Selected high yielding progenies of full-sib families were 

randomly assigned to each block. Planting density was 53,333 plants ha-1. Plot size 

was one row of 5 m length, 80 cm between and 25 cm within rows. The hills were 

over planted and thinned to one plant per hill. Additional variables, such as days to 

50% anthesis, plant height and ear height were recorded for each plot. Plots were 

hand harvested and shelled grain weight recorded. Grain moisture at harvest was 

determined and plot yields adjusted to 13.5% moisture level. Data were analyzed on 

a per block basis and individual analyses of variance pooled over blocks for a trial. 

Selection was based on FS performance within blocks. Only those FS that yielded 

above their respective blocks means and were equal to or below the average grain 

moisture at harvest and with desirable quality protein content were selected. Selfed 

(S1) progenies based on superior FS families were advanced to the next generation. 
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Fig. 3.1 Formation of cycles using S1 and full-sib families in QPM populations 
 
 

Establishment of nursery with artificial 
inoculation of seed with DM using 
spreader rows techniques 

 
C0 (Population to be improved) 

At flowering time ears of the selected 
progenies were self-pollinated to provide 
S1 progenies 

Pollen from selfed plants used to 
pollinate randomly selected plants from 
the population to form full-sib families 

Best S1 ears were selected based on 
visual assessment of kernels for QPM 
trait,using  the light table, and grain texture 
assessment on a  scale of 1 (flint) to 5 
(dent). 
 

Full-sib families evaluated in replicated 
trials 

Selected best S1 ears were assigned to 
an isolated plot for random 
recombination to form cycle 1.  

Process repeated (establish nursery select 
plants for S1 and FS formation, evaluate FS, 
select respective progenies) Formatted: Font: (Default) Arial, 9

pt, English (U.S.)
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3.3.5 Selection method 
 

The selection method for DM was based on single plant selection. This was done just 

before flowering stage (because of the need for cross and self pollination). The best 

rows were selected and in each row the best five plants were selected. The best 

plants were those that showed resistance to downy mildew. The selected plants were 

hand self-pollinated to generate selfed progenies, and cross pollination was carried 

out for full-sib progenies formation using randomly selected plants from the 

population. The full-sib families were also selected at harvest for yield and other 

environmental responses. Selection of plants for advancement to the next generation 

was conducted in stages: First, based on DM disease severity scores. Plants with 

zero (0) severities scores were not selected because they could not be differentiated 

from escapes. Only plants that showed symptoms with severity scores of 2 and 3 

indicating high resistance were selected. About 10% (510/5,316) of the plants with 

scores of 2 to 3 (rating scale 0 to 5) were selected, equivalent to selection intensity of 

1.74 (Falconer, 1981). Second, the self-pollinated progenies of each population were 

again selected during harvest time and taken to the laboratory for the final analysis of 

tryptophan content to keep the protein quality of the selected progenies for the next 

generation of selection. Selected progenies with resistance to DM were also selected 

on the basis of grain texture. Selection for grain texture was based on levels of 

flintiness of the grain, and was done after harvest. In each population best ears were 

selected for flintiness using the scale of 1 (flint) to 5 (completely dent). Only plants 

showing grain texture scores between 1.9 and 2.8 indicating high levels of flintiness 

were selected and advanced to the next cycle of selection.  

 

3.3.6 Experimental layout of yield trial 
 

For yield evaluation and other agronomic characteristics, full-sib families were formed 

by cross pollinating and the selected plants were used. Trials were laid out as a 

randomized complete block design with three replications. Each entry was planted in 

two rows, 5m long with spacing of 80cm between rows and 25cm between hills within 

rows.  
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Progenies under evaluation                        Spreader rows (infested material)   
 
 

  
       Fig. 3.2 Downy mildew nursery planted at Umbeluzi Research  
        Station in December 2005 
 
 

3.3.7 Data collection  
 
Disease development was monitored throughout the growth cycle, and the data was 

recorded. Downy mildew disease incidence and severity were scored twice after 

planting as infection takes place about three weeks after planting, based on visual 

assessment of the whole plot. Disease incidence was scored by recording the 

number of plants in each population showing DM symptoms and expressing that as a 

percentage of total plant population. Disease severity was scored on the whole plant 

as a proportion of total leaf area diseased using a rating scale of 1 to 5 where 1= no 

disease on leaves, 2 = lesions on lower leaves and no lesions on leaves above the 

ear, 3 = disease on most leaves and some lower leaves dead, 4 = dead lower leaves 

and many lesions on all leaves and ear, and 5 = nearly all the leaves are dead 

(CIMMYT, 2001). The number of days to mid-silking (DMS) and anthesis (DMP) were 

estimated as number of days from planting to 50% plants with silks emerged and 

tassels shedding pollen, respectively. Plant and ear height were measured as the 

distance from the base of the plant to the height of the first tassel branch and the 

height of the node bearing the uppermost ear, respectively. Grain weight and 

moisture content per plot were obtained at harvest and values obtained were used to 

estimate grain yield (t ha-1) adjusted to 13.5% moisture content.  
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3.4 Data analysis 
Quantitative data generated from 2006 infected trials were each subjected to a 

separate ANOVA using REML tool in Field book. Data were analyzed using the 

following model:   Yijk = μ + βi + gj + еijk, where μ is the general mean, βi the effect of 

ithe blocks, gj the effect of jthe genotype and еij the error associated with particular 

measurement 

 

Table 3.2 Skeleton analysis of variance when g genotypes are raised in 
RCBD with r replications 
Source  Df  S.S  MS Expected  
             Mean square 
Replications (r-1)       
         
Among genotypes (g-1)  rΣ(yi-y..)2  M1 Σ2e + σ2g 
         
Within genotypes (r-1)(g-1)  Σ(yij-yi.)2  M2 Σ2e  
         
Total   (rg-1)             
 

 

Response to selection was determined using the following formula: R = iH2σ2
P 

(Falconer, 1961), where i = selection intensity of 50 and 25%; H2 = broad sense 

heritability; and σ2
P = phenotypic variance. Response to selection per cycle-1 was 

also calculated as the difference between cycles where appropriate (C2-C1). Broad-

sense heritability estimates were calculated using the following formula: H2 = σ2g/σ2P 

x 100 (Falconer, 1961). Genetic covariance between FS was estimated as: Covg 

(FS) = t (1/2VA + 1/4VD + VEc) (Lonnquist et al., 1967) ; genetic coefficient of 

variation for DM and yield were obtained using the following formula: GCV = √σ/X x 

100 (Eberhart et al.,1973); and the correlations for the FS were obtained using the 

following formula  t = (1/2VA + 1/4VD + VEc)/VP (Falconer, 1961).  

 

3.5 Results 
 

Responses to selection per cycle-1 in C1 and C2 for all three QPM populations are 

presented in Table 3.3 as the difference between two cycles (C2-C1. Variances 

associated with differences among FS families in three QPM populations were highly 

significant (3.4, 3.5, and 3.6). Seed availability of C0 was not adequate to be included 

during evaluation of C1 and C2. it was include in Table 3.3 to show DM values of the 

original population.  
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Table 3.3 Means and response to selection for DM rating, yield and agronomic traits of different cycles  
of selection in three QPM populations 
 
                                                  SUSSUMA                                            ZM 521Q                                                Pop 62 SR Q 
 

+ Response to selection cycle-1 = C2-C1 

Trait C0 C1 C2 +Resp 
cycle-1 

LSD C0 C1 C2 +Resp 
cycle-1 

LSD C0 C1 C2    +Resp 
Cycle-1 

LSD 

                
DM rating (1-5) 4.60 4.25 3.9 -0.35 1.2 3.0 2.75 2.30 -0.45 0.7 4.40 3.50 2.95       -0.55 0.6 
 
Yield (t ha-1) 

 
3.36 

 
3.49 

 
3.67 

 
0.18 

 
1.08 

 
3.05 

 
3.15 

 
3.30 

 
0.15 

 
1.80 

 
1.65 

 
1.89 

 
2.0           
 

 
0.18 

 
0.67 

 
Plant height 
(cm) 

 
147.2 

 
145.6 

 
145.1 

 
-0.50 

34.0  
165.3 

 
164.7 

 
163.9 

 
-0.70 

 
44.7 

 
152.1 

 
150.9 

 
150      
 

 
-0.9 

 
22.0 

 
Ear height (cm) 

 
64.3 

 
63.7 

 
62.8 

 
-0.90 

 
0.15 

 
82.6 

 
81.5 

 
80.8 

 
-0.70 

 
0.44 

 
76.2 

 
75.4 

 
74.9      
 

 
-0.50 

 
0.29 

 
Days to 50% 
silking 

 
64.6 

 
62.2 

 
60.3 

 
-2.15 

 
0.11 

 
66.0 

 
63.7 

 
61.2 

 
-2.50 

 
0.13 

 
71.0 

 
68.8 

 
65.8      
 

 
-3.0 

 
0.17 

 
Days to 50% 
pollen shed 

 
61.5 

 
59.6 

 
58.1 

 
-1.5 

 
0.09 

 
62.5 

 
60.6 

 
59.7 

 
-0.9 

 
1.2 

 
67.3 

 
65.4 

 
63.3     
 

 
-2.1 

 
0.12 

 
Anth-Silk 
Interval (ASI) 

 
3.1 

 
2.6 

 
2.2 

 
-0.40 

 
1.3 

 
3.5 

 
3.1 

 
2.1 

 
-1.0 

 
2.0 

 
3.7 

 
3.4 

 
2.5      
 

 
-0.90 

 
1.6 

 
Ear per plant 

 
1.07 

 
1.11 

 
1.15 

 
0.04 

 
1.1 

 
0.88 

 
0.93 

 
1.06 

 
0.13 

 
0.9 

 
1.06 

 
1.08 

 
1.16    

 
0.08 

 
1.3. 

 
Grain moisture 
(%) 

 
15.60 

 
17.40 

 
14.90 

 
-2.50 

 
1.4 

 
15.20 

 
17.30 

 
14.90 

 
-2.40 

 
5.9 

 
15.50 

 
15.70 

 
14.87    
 
 

 
-0.83 

 
1.5 

Grain Texture 
(1-5) 

2.7 2.1 1.4 -0.70 0.8 2.9 2.1 1.8 -0.30 0.8 2.5 2.1 1.7 -0.40 0.5 
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3.5.1 Downy Mildew  
 

Downy mildew ratings for resistance showed a reduction in disease severity of 0.35 in 

Sussuma, 0.45 in ZM521Q, and 0.55 in Pop62SRQ per cycle (Table 3.3).  

The change from C1 to C2 had had reduced the infection rate from 4.60 to 3.90 in 

Sussuma, from 3.00 to 2.10 in ZM521Q, and from 4.40 to 3.30 in Pop62SRQ (Table 

3.3).  

Table 3.4 Estimated variance components of the SUSSUMA population related to 

the different agronomic traits in cycles C1 and C2 

 

Mean squares for downy mildew rating revealed highly significant variation (P≤0.01) 

among full-sib families in all QPM populations (Appendices 3.1, 3.2, and 3.3). Genetic 

variances for DM resistance  increased from C1 to C2 from 0.069 to 0.119 in Sussuma; 

from 0.054 to 0.1442 in ZM521Q; and from 0.097 to 0.313 in Pop62SRQ (Tables 3.4, 3.5 

and 3.6). Comparatively, higher heritability estimates were observed for DM resistance in 

C1 in Pop62SRQ (0.70) than Sussuma population (0.63) and ZM521Q (0.60) (Tables 

3.4, 3.5 and 3.6).  
 

   C1   C2  
Traits σ2

g Se H2 σ 2
g Se H2 

 
Downy 
Mildew 

0.069 0.046 0.63 0.119 0.051 0.76 

Yield 0.561 0.131 0.69 0.667 0.135 0.72 
 

Plant 
height 

206.9 30.10 0.91 361.8 31.30 0.94 

Anthesis-
silking 
Interval 
(ASI) 

0.443 0.054 0.72 0.559 0.260 0.85 

Grain 
moisture 

1.965 0.876 0.60 3.504 1.250 0.86 
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In C2, higher heritability estimates for DM resistance were observed in Sussuma (0.76), 
followed by Pop 62SRQ (0.71), and ZM521Q (0.63) (Tables 3.4, 3.5, and 3.6).  
 

Table 3.5 Estimated variance components of the ZM 521 Q populations related to 
the different agronomic traits in cycles C1 and C2  
 
 

 

 

Genetic coefficients of variation (GCV) for DM resistance changed less in Sussuma than 

in Pop62SRQ with advances in selection. The increase in genetic covariance (Covg (FS-

S1) for yield from C1 to C2 was more pronounced in ZM521Q and Pop 62SRQ (Table 

3.7).  

 

 
 

 

 

 

 

 

 

 

 

   C1   C2  
Traits σ 2

g Se H2 σ2
g Se H2 

 

 
Downy 
Mildew 

0.054 0.032 0.60 0.1442 0.1019 0.63 
 
 

Yield 0.337 0.179 0.78 1.790 0.184 0.90 
 

Plant height 96.73 34.70 0.79 176.1 36.93 0.84 
 

Anthesis-
silking 
Interval 
(ASI) 
 

0.158 0.118 0.66 0.561 0.090 0.89 
 
 

Grain 
moisture 

2.210 1.480 0.71 2.258 3.140 0.79 
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Table 3.6 Estimated variance components of the Pop62SRQ population related 
to the different agronomic traits in cycles C1 and C2  

 

3.5.2 Grain yield 
The gain per cycle was 180 kg in Sussuma, 150 kg in ZM521Q and 180 kg in 

Pop62SRQ (Table 3.3). Mean squares for grain yield among full-sib families were highly 

significant (P≤0.01) in C2 of all populations (Appendices 3.1, 3.2, and 3.3). Similarly 

heritability estimates were highest in ZM521Q (0.90) in C1, and lowest in Sussuma 

(0.72) (Table 3.4, 3.5 and 3.6). Genetic variances for grain yield increased from 0.561 to 

0.667 in Sussuma; from 0.337 to 1.790 in ZM521Q; and from 0.944 to 2.699 in 

Pop62SRQ (Tables 3.4, 3.5, and 3.6) with selection. Genetic coefficients of variation 

(GCV) for yield changed very little from C1 to C2 in Sussuma whereas in Pop62SRQ 

GCV were approximately four times higher in C2 compared to values in C1 (Tables 3.7).  

More pronounced increase in genetic covariance (Covg (FS-S1) for yield was found in 

ZM521Q and Pop62SRQ from C1 to C2 (Table 3.7). Using a selection of intensity of 50 

% in C1 and 25 % in C2 the response to selection was 0.50 in C1 and 0.88 in C2 for 

Sussuma, 0.41 in C1 and 1.61 in ZM521Q and 0.64 in C1 and 1.87 in C2 for Pop62SRQ 

population (Table 3.8). 

 

   Pop 62 SRQ   

   C1   C2  

Traits σ2
g Se H2 σ2

g Se H2 

Downy 
Mildew 

0.097 0.135 0.70 0.313 0.046 0.71 

Yield 0.944 0.618 0.68 2.699 0.610 0.81 
 

Plant height 185.6 55.00 0.74 581.3 89.80 0.92 

Anthesis-
silking 
Interval 
(ASI) 

2.120 1.040 0.55 2.466 0.407 0.69 

Grain 
moisture 

0.725 0.537 0.65 5.986 0.731 0.76 
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Table 3.7 Genetic parameter estimates for FS families of the three QPM 
populations on cycles C1 and C2 
  

3.5.3 Plant height   

 

The gains per cycle were negligible in all their populations, Sussuma, ZM521Q and in 

Pop62SRQ (Table 3.3). Mean squares (Appendices 3.1, 3.2 and 3.3) were significant 

(P≤0.01) for plant height in all three QPM populations.. Mean square for C2 was 

significant (P≤0.01) in ZM521Q but not significant in Sussuma and Pop62SRQ 

(Appendices 3.1, 3.2 and 3.3. Heritability estimates were 0.91 in C1 and 0.94 in C2 for 

Sussuma, 0.74 in C1 and 0.92 in C2 for Pop62SRQ, and 0.79 in C1 and 0.89 in C2 in 

ZM521Q. Genetic variances for plant height showed an increase from C1 to C2 from 

206.9 to 361.8 in Sussuma, from 96.37 to 176.1 in ZM521Q, and from 185.6 to 581.3 in 

Pop62SRQ (Tables 3.4, 3.5 and 3.6).  

 

3.5.4 Anthesis-Silking Interval (ASI) 
The gain per cycle for ASI reduced by 3.5% in Sussuma, 3.0% in ZM521Q and 3.4% in 

Pop62SRQ (Table 3.3). Mean square among full-sib families for ASI was significant in 

Sussuma but not in ZM521Q and Pop62SRQ (Appendices 3.1, 3.2, and 3.3). Heritability 

estimate for Sussuma were 0.72 in C1 and 0.85 in C2, 0.66 in C1 and 0.89 in C2 in 

ZM521Q, and 0.55 in C1 and 0.69 in Pop62SRQ (Tables 3.4, 3.5, and 3.6). The invcreas 

in genetic variances for ASI was small in Sussuma but was large in ZM521Q (Tables 

3.4, 3.5, and 3.6).  

   YIELD     

       
  SUSSUMA  ZM521Q  Pop62SRQ 

 C1 C2 C1 C2 C1 C2 
Parameter FS FS FS FS FS FS 

       
GCV 21.46 22.25 18.43 40.54 52.51 82.14 
σ2

G 0.561 0.667 0.337 1.79 0.944 2.699 

Covg(FS-S1) 34.89 38.43 15.88 59.45 60.36 116.2 
H2 0.69 0.72 0.78 0.9 0.68 0.81 

 
 
 
 
GCV = Genetic coefient of variation; Covg  = genetic covariance; σ 2G = genetic 
variance; H2 = broad-sense heritability;  
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Table 3.8 Response to selection for yield in three QPM populations in C1 and C2 
 
   Yield    

  Sussuma  ZM521Q  Pop62SRQ  

       

       

  C1 C2 C1 C2 C1 C2 

I 0.798 1.271 0.798 1.271 0.798 1.271 

H2 0.69 0.72 0.78 0.90 0.68 0.81 

σP 0.9018 0.9638 0.6555 1.4071 1.1778 1.8209 

RS 0.50 0.88 0.41 1.61 0.64 1.87 

RS = response to selection;  i= selection intensity 
H2 = broad-sense heritability; σP = standard error of phenotypic variance 
 
Table 3.9 Genetic parameter estimates for FS families of the three QPM populations 
    Downy Mildew    
         
                   

SUSSUMA 
                 ZM 521 

Q 
       Pop 62 SRQ 

 C1 C2  C1 C2  C1 C2 
Parameter FS FS  FS FS  FS FS 
         
GCV 6.21 8.83  8.78 16.51  8.55 16.96 
σ2

G 0.069 0.118  0.054 0.144  0.097 0.313 
Covg(FS-
S1) 

5.26 5.96  4.36 10.9  5.64 18.81 

H2 0.63 0.76  0.6 0.63  0.7 0.71 

GCV = Genetic coefient of variation; Covg  = genetic covariance; σ 2G = genetic variance; H2 = 
broad-sense heritability 
 

3.5.5 Grain Moisture 
Selection reduced grain moisture by 4.78 % in Sussuma, 4.90 % in ZM521Q and 4.79 % 

in Pop62SRQ (Table 3.3). Mean squares for grain moisture among full-sib families was 

significant in all populations (Appendices 3.1, 3.2 and 3.3). Heritability estimates were 

0.60 in C1 and 0.86 in C2 for Sussuma, 0.71 in C1 and 0.79 in C2 for ZM521Q, and 0.65 

in C1 and 0.76 for C2 Pop62SRQ (Tables 3.4, 3.5 and 3.6). Genetic variances for grain 

moisture increased from 1.965 in C1 to 3.504 in C2 for Sussuma, from 2.210 in C1 to 

2.258 in C2 for ZM521Q; and from 0.725 in C1 to 5.986 in C2 for Pop62SRQ (Tables 

3.4, 3.5 and 3.6).  
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Table 3.10 Response to selection in Downy Mildew on three QPM populations in 
C1 and C2 
 
RS = response to selection;  i= selection intensity 
H2 = broad-sense heritability; σP = standard error of phenotypic variance 

 

3.5.6 Correlation Coefficients 
 

 In Sussuma significant correlations were observed between DM and ASI, and grain 

yield with ears per plant and grain moisture. Plant height was also significantly correlated 

with ears per plant and grain moisture. Grain texture exhibited high correlation with grain 

moisture (Table 3.11). 

 

Table 3.11 Correlations coefficients among measured parameters of Sussuma 
population in C 2 
 

 

In ZM521Q correlations were shown between DM with ear per plant and plant height 

with grain yield (Table 3.12).  

 

                            
Sussuma 

                         ZM 521Q   Pop 
62 
SR 

  

           
       
  C1 C2 C1 C2 C1 C2 
i 0.798 1.271 0.798 1.271 0.798 1.271 
H2 0.63 0.76 0.6 0.63 0.7 0.71 
σP 0.334 0.394 0.299 0.48 0.37 0.668 
RS 0.17 0.38 0.14 0.38 0.21 0.6 

 ASI Downy 
Mildew 

Ear per 
Plant 

Grain 
Moisture 

Grain 
Texture 

Grain 
Yield 

Plant 
Height 

ASI 
Downy Mildew 
Ear per Plant 
Grain Moisture 
Grain Texture 
Grain Yield 
Plant Height 
 

 
0.357* 
-0.06 
0.113 
0.099 
-0.19 
0.068 

 
 
0.043 
-0.295 
0.015 
-0.533 
0.209 

 
 
 
0.229* 
-0.113 
0.287* 
0.222* 

 
 
 
 
0.1730* 
0.4380** 
0.2510* 

 
 
 
 
 
-0.196 
-0.157 

 
 
 
 
 
 
0.181 
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Table 3.12 Correlations coefficients among measured parameters of ZM521Q 
population in C 2 

 
 ASI Downy 

Mildew 
Ear per 
Plant 

Grain 
Moisture 

Grain 
Texture 

Grain 
Yield 

Plant 
Height 

ASI 
Downy Mildew 
Ear per Plant 
Grain Moisture 
Grain Texture 
Grain Yield 
Plant Height 
 

 
-0.1100 
-0.0800 
0.0180 
0.0550 
0.0690 
0.1000* 

 
 
0.2020* 
-0.1210 
0.2610* 
-0.1640 
-0.1440 

 
 
 
-0.2440 
-0.0350 
-0.1200 
0.0460 

 
 
 
 
-0.0180 
-0.0420 
0.0350 

 
 
 
 
 
0.0740 
0.0090 

 
 
 
 
 
 
0.3440* 

 

 

In Pop62SRQ, DM exhibited high correlation with ASI, and grain texture was correlated 

with grain moisture. Grain yield showed high correlation with grain texture (Table 3.13).   

 

Table 3.13 Correlations coefficients among measured parameters of 
Pop62SR1Q population in C 2 

 

 

 ASI Downy 
Mildew 

Ear per 
Plant 

Grain 
Moisture 

Grain 
Texture 

Grain 
Yield 

Plant 
Height 

ASI 
Downy Mildew 
Ear per Plant 
Grain Moisture 
Grain Texture 
Grain Yield 
Plant Height 
 

 
0.275* 
-0.060 
0.186 
0.026 
0.102 
0.003 

 
 
-0.143 
-0.145 
-0.304 
-0.491 
-0.014 

 
 
 
-0.0100 
-0.0230 
0.1540 
0.0650 

 
 
 
 
0.2810* 
0.1230 
0.0250 

 
 
 
 
 
0.2330* 
0.1000 

 
 
 
 
 
 
-0.0130 
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3.7 Discussion 
 

3.7. 1 Sussuma 
 

Analyses of variance of FS in Sussuma population indicated highly significant variations 

among progenies.These variations could be useful for effective selection against DM 

resistance. A survey of the literature indicates that there are few previous studies of 

recurrent selection for DM resistance in QPM, most of the previous studies were 

conducted with normal maize. In the current study, two cycles of recurrent selection for 

DM resistance significantly reduced the infection rates from 4.6 to 3.9 (1.0 to 5.0 scale) 

in Sussuma. Moderate temperature (15-32oC) and high humidity favour infection of DM 

(Denic et al., 2001). The incidence of this disease is always high in southern part of 

Mozambique where such conditions are prevalent (Denic, 1994). An increase in genetic 

variance and heritability estimates for DM from C1 to C2 were observed in this 

population. This was probably due to the large number of S1 progenies advanced to the 

next cycle. The more than 500 S1s advanced for inter-mating could have mimicked 

panmixis. This is consistent with the finding of Denic et al. (1997) who observed that DM 

was highly heritable and not very complex to score. These authors concluded that 

screening of advanced lines should be sufficient to identify DM resistance in a maize 

breeding programme. Previously, Ajala (1992) found additive gene action being 

important in controlling resistance against DM. Nair et al. (2004) also reported that DM 

resistance is multi-genic and controlled by many partially dominant genes.  

 

Data on disease spread indicated that after two cycles of recurrent selection, the 

reduction in disease severity per cycle was 4.24 % in Sussuma. These findings are in 

conformity with those reported by De Leon et al. (1993) who observed reduction in the 

severity of downy mildew infection in advanced cycles of recurrent selection in maize 

populations. He also documented significant progress in levels of downy mildew 

resistance (-1.1.0 %) with correspondent increase in grain yield (507 kg ha-1) in four 

maize populations after conducting three cycles of S1 recurrent selection.  
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Mean square values for grain yield were highly significant (P≤ 0.01) for cycles and high 

correlation was observed between DM and number of ears per plant. It could be argued 

that improvement in grain yield was related to increased resistance to DM. Ceballos et 

al. (1991) reported a similar relationship between disease resistance and higher grain 

yield. Heritability estimates for grain yield were high indicating that an improvement 

would be achieved from field selection for grain yield. These results were similar to those 

of Abedon and Tracy (1998), who reported very close correspondence of expected and 

observed responses (446 vs. 421 kg ha-1) after two cycles of S1 recurrent selection in a 

high yielding maize synthetic variety. Recurrent selection significantly (P≤ 0.01) 

increased grain yield in Sussuma from 3.49 to 3.67 t ha-1. This response of Sussuma 

population could be a possible manifestation of its increased resistance to DM as 

observed in the present study. 

 

Grain yield increased by 180 kg ha-1 (4.73 %) per cycle in Sussuma. Highly significant 

increase in grain yield (507 kg cycle-1) in four populations was revealed by De Leon et al. 

(1993), after three cycles of S1 recurrent selection for downy mildew resistance. 

Ceballos et al. (1991) reported 19 % gain cycle-1 in early and 7 % gain cycle-1 in 

intermediate populations for grain yield under disease pressure. Similarly, Weyhrich et 

al. (1998) experienced significant increase in grain yield in the BS 11 maize population. 

They reported selection gains of 110 and 220 kg ha-1 gains cycle-1 after four cycles of 

progeny selection with 10 % and 30 % selection intensity, respectively. 

  

Analysis of variance of full-sib progenies indicated the presence of highly significant 

(P≤0.01) genetic variation in Sussuma for days to tasseling, silking and pollen shedding. 

These results suggested that despite high genetic variability among S1 lines, they were 

indeed highly consistent in performance over the two cycles of S1 line recurrent 

selection. These results are in agreement with those of De Leon et al. (1993), who 

reported significant differences for maturity in four tropical maize populations 

implementing S1-S2 line recurrent selection for downy mildew resistance. Abedon and 

Tracy (1998), observed significant variations for mid-silking and mid-pollen shedding 

using recurrent selection for rust resistance in three sweet corn populations. Using full-

sib recurrent selection for northern corn leaf blight disease resistance in subtropical 

maize populations, Ceballos et al. (1991) reported a significant decrease in maturity 

parameters. The reduction in days to silking and pollen shed per cycles in Sussuma  
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were 3.1 to 2.2d. Johnson et al. (1986) reported early flowering with a 4.4% increase in 

grain yield cycle-1 after conducting 15 cycles of full-sib recurrent selection in one lowland 

tropical maize population, Tuxpeno Crema1.  

 

3.7.2 ZM521Q and Pop62SRQ 
 

Populations ZM521Q and Pop62SRQ showed similar responses as Sussuma 

population. Populations ZM521Q and Pop62SRQ showed highly significant variations 

among progenies. Downy mildew (DM) resistance rating was significantly reduced from 

3.0 to 2.1 after two cycles of recurrent selection, while in Pop62SRQ the DM infection 

rate was reduced from 4.40 to 3.30.  In both populations increases in genetic variances 

and heritability estimates were observed for DM from C1 to C2.  These findings are in 

conformity with those reported by Ajala (1992). The reduction in disease severity per 

cycle was 3.5 % in ZM521Q, and 3.75 %, in Pop62SRQ after two cycles. De Leon et al. 

(1993) also observed reduction in the severity of downy mildew infection in advanced 

cycles of recurrent selection in maize populations.  

 

Highly significant correlations coefficients between grain yield and grain moisture; grain 

yield and ASI were observed in Pop62SRQ, while in ZM521Q highly significant 

correlations were detected among DM and plant height. These findings are in conformity 

with those reported by Ceballos et al. (1991) who observed similar association between 

disease resistance and higher grain yield. The grain yield increase after two cycles of 

recurrent selection was from 3.05 to 3.30 t ha-1 for ZM521Q, and from 1.65 to 2.0 t ha-1. 

The increase in yield cycle-1 was 150 kg ha-1 in ZM521Q and 180 kg ha-1 in Pop62SRQ. 

Ceballos et al. (1991) reported 19 % gain cycle-1 in early and 7 % gain cycle-1 under 

intermediate disease pressure trials for grain yield in maize populations. 

 

For silking and pollen shedding in Pop62SRQ the days were reduced from 3.7 to 2.5, 

while in ZM521Q days were reduced from 3.5 to 2.1. Johnson et al. (1986) reported 

early flowering with a 4.4% increase in grain yield cycle-1 after conducting 15 cycles of 

full-sib recurrent selection in one lowland tropical maize population, Tuxpeno Crema1. 
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3.8 Conclusions 
 

Two cycles of S1 recurrent selection significantly improved DM resistance in the three 

QPM populations although the basic levels differed. 

 

There was concurrent improvement in grain yield performance, ASI, grain texture, grain 

moisture, ears per plant and other desirable characteristics. 

 

Genetic variances and heritability estimates for DM resistance and other important 

characteristics generally increased or remained unchanged which was important for 

future continued selection within these populations. 

 

The objective of the Mozambican maize programme is to improve the nutritionally 

enhanced populations for DM resistance and other desirable characteristics. The 

germplasm generated so far in this work lays a firm foundation to achieve this objective.   
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Appendices  

 
Appendix 3.1 Means of DM, grain yield and secondary traits of Full-Sib families of 
Sussuma population in cycle two 
 
Entry  ASI Plant Ears/ Grain 

Sussuma C 2 
Downy 
Midew 

Grain 
Yield Rank   Height Plant Moist 

        
  (1-5)  t ha-1 Rank D Cm # % 
        

  
Bottom 
Ten      

15 2.3 1.70 30 3.4 130.4 1.11 14.3 
6 3.4 2.70 29 2.4 130.1 1.01 14.0 
9 1.5 2.83 28 3.3 125.2 1.07 14.3 
14 2.3 3.03 27 4.3 132.0 1.05 16.2 
27 3.8 3.13 26 2.7 129.7 1.03 13.8 
26 3.1 3.15 25 2.9 156.6 1.02 17.1 
8 1.1 3.16 24 2.6 130.3 1.00 14.0 
22 2.6 3.20 23 2.9 119.7 1.01 13.6 
22 1.8 3.20 23 2.9 119.7 1.01 13.6 
2 3.2 3.27 22 2.6 147.6 1.01 15.0 
  Top Ten      
17 2.8 5.07 1 2.1 174.7 1.06 15.4 
4 1.9 4.78 2 3.9 155.5 1.14 14.0 
12 2.1 4.75 3 4.2 148.8 0.96 14.0 
19 2.0 4.58 4 2.6 151.1 0.97 14.6 
3 1.8 4.57 5 2.9 172.8 1.12 13.7 
13 2.1 4.33 6 2.0 155.6 1.10 14.6 
25 3.8 4.30 7 3.7 145.8 1.05 13.6 
30 1.5 4.28 8 2.9 150.0 1.04 15.3 
29 3.0 4.02 9 3.4 141.2 1.07 14.7 
28 1.7 3.80 10 2.7 159.3 0.86 14.7 
Mean 3.9 3.67  2.2 145.1 1.15 14.9 
LSD (0.05) 3.3 1.08  1.3   0.15 1.4 
Mse 4.3 0.58   0.7 195.3 0.01 0.8 
CV 3.6 20.75   27.2 9.6 8.94 6 
P 3.2 0   0.045   0.17 0 
P 2.9 ***   * Ns Ns *** 
Min 2.5 1.7 1 2 119.7 0.86 13.4 
Max 2.9 5.07 30 4.3 174.7 1.14 17.1 
StandardError 0.6 0.53  0.7 9.6 0.07 0.7 
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Appendix 3.2 Means of DM, grain yield and secondary traits of full-sib  
families of ZM521Q population in cycle two 
 
Entry   ASI Plant Ears/ Grain 

  Downy 
Mildew 

 Grain 
Yield Rank   Height Plant Moist 

ZM 521 Q C 2         
  (1-5)  t ha-1 Rank d Cm # % 
                 
    Bottom ten      
         
12 4.1  1.55 142 1.9 163.0 0.48 23.2 
30 3.8  1.58 141 2.0 150.2 0.93 21.7 
38 3.6  1.13 145 2.8 127.4 0.54 22.7 
44 3.5  0.80 146 1.5 154.5 1.45 23.1 
49 3.4  1.72 139 2.6 165.4 0.79 25.4 
83 3.4  1.25 144 2.1 160.8 0.86 18.7 
102 3.3  1.79 138 3.0 159.5 1.16 17.6 
121 3.2  1.66 140 2.5 153.0 0.86 26.7 
122 3.1  1.52 143 2.7 133.5 0.81 21.1 
2 3.0  1.81 136 2.5 186.3 0.73 20.6 
   Top ten      
         
32 2.3  5.05 5 3.1 177.3 1.07 20.9 
123 2.4  5.16 4 2.5 174.6 1.17 22.8 
133 2.4  5.34 3 2.4 156.5 0.88 23.7 
134 2.5  4.98 7 3.5 161.5 0.98 27.1 
135 2.5  5.03 6 2.5 199.6 0.91 25.6 
136 2.6  4.90 10 2.0 182.3 0.91 23.0 
138 2.7  4.95 8 2.0 142.2 0.95 24.7 
142 2.8  5.37 2 3.0 141.3 0.93 26.9 
145 2.9  4.91 9 1.3 186.6 0.99 21.6 
148 2.9  6.05 1 2.0 120.2 0.94 19.6 
Mean 2.30  3.30 73 2.1 153.9 1.06 14.90 
LSD (0.05) 0.7  1.80 42 2.0 44.7 0.44 5.9 
Mse 0.2  0.83   1.1 557.2 0.05 8.6 
CV 14.6  27.63   42.9 14.4 23.08 12.9 
P 0.005  0.000   0.883 0.013 0.303 0.015 
P **  ***   ns * Ns * 
Min 2.3  0.80 1 -2.0 120.2 0.48 15.0 
Max 4.1  6.05 146 4.0 210.5 1.45 28.6 
StandardError 0.3  0.91  1.0 22.6 0.22 3.0 
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Appendix 3.3 Means of DM, grain yield and secondary traits of full-sib families of 
Pop62SRQ population in cycle two 
 
Entry  ASI Plant Ears/ Grain 

  Downy  
Mildew 

Grain  
Yield Rank   Height Plant Moist 

Pop 62SRC 2        
  (1-5) t ha-1 Rank D Cm # % 
        
  Bottom Ten      
15 2.7 1.10 30 3.7 154.0 1.30 25.8 
21 3.2 1.31 29 2.2 142.9 1.06 20.7 
30 3.5 1.34 28 3.3 141.9 0.99 24.9 
17 4.0 1.45 27 1.4 142.5 1.19 25.2 
6 4.2 1.57 26 3.4 145.9 1.15 20.4 
2 2.9 1.75 25 3.0 146.5 1.14 23.1 
10 3.3 1.76 24 2.0 143.6 1.31 23.3 
24 4.6 1.76 23 2.4 159.4 0.98 27.4 
9 3.2 1.78 22 2.0 156.5 1.37 22.6 
12 3.7 1.91 21 2.6 160.7 1.10 26.2 
        
        
  Top Ten      
22 0.7 2.77 1 2.3 164.1 1.23 21.3 
29 1.7 2.72 2 1.7 161.7 1.44 20.4 
14 1.9 2.70 3 3.3 151.3 1.07 27.5 
18 1.6 2.49 4 2.4 162.6 0.96 26.3 
16 2.2 2.40 5 2.3 148.6 1.15 28.1 
11 1.8 2.33 6 2.3 126.4 1.03 25.8 
8 2.3 2.28 7 2.0 145.2 1.10 23.1 
7 2.1 2.28 8 2.3 153.9 0.93 20.3 
27 1.8 2.28 9 2.7 143.1 1.29 23.2 
23 1.9 2.20 10 2.3 156.9 1.21 25.6 
        
Mean 2.95 2.00  2.5 150.0 1.16 14.87 
LSD (0.05) 0.6 0.67 9 1.6 22.0 0.29   
MSe 0.1 0.25   0.9 273.6 0.03 5.7 
CV 13.5 25.05   38.4 11.0 15.64 9.9 
P 0.000 0.000   0.329 0.067 0.084   
P *** ***   Ns + + Ns 
Min 0.7 1.10 1 1.4 126.4 0.93 20.3 
Max 4.6 2.77 30 3.7 164.1 1.44 28.1 
StandardError 0.3 0.33  0.8 10.7 0.14 2.0 
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Appendix 3.4 Means of DM, grain yield and secondary traits of Full-Sib  
families of Sussuma population in cycle one 
 
 

 Entry   ASI Plant Ears/ Grain 

  Downy 
Mildew 

 Grain 
Yield Rank   Height Plant Moist 

SUSSUMA 
C1          

  (1-5)  t ha-1 Rank d Cm # % 
                 

  

                 
Bottom 
ten      

         
12 4.8  1.97 18 2.6 150.7 1.07 18.5 

30 4..6  2.37 25 3.2 158.3 1.08 18.3 

38 4.5  2.46 22 3.6 156.4 1.00 18.3 

44 4.0  2.66 13 2.0 155.5 1.01 17.9 

49 4.4  2.73 19 2.2 157.3 1.00 17.8 

83 4.2  2.74 10 2.3 158.8 1.19 17.6 

102 4.3  2.76 27 2.7 153.9 1.07 17.3 

121 4.5  2.77 21 2.4 161.4 1.00 17.1 

122 4.1  3.05 11 3.6 156.5 1.00 17.0 

2 4.3  3.07 24 3.0 161.5 1.05 16.9 

   Top 
Ten      

         

32 3.8  3.35 15 1.9 161.5 1.09 17.5 

123 3.6  3.37 14 3.0 153.5 1.00 17.6 

133 3.7  3.48 7 2.2 155.1 1.10 17.8 

134 3.7  3.49 26 2.8 153.0 1.08 17.6 

135 3.8  3.52 29 1.2 148.2 1.00 17.5 

136 3.6  3.60 17 1.5 156.3 1.11 16.9 

138 3.8  3.62 28 3.3 151.3 1.00 16.8 

142 3.7  3.66 23 2.8 160.5 1.04 17.0 

145 3.6  3.77 8 3.4 162.9 1.03 16.9 

148 3.7  4.17 30 1.9 156.9 1.01 17.2 

Mean 4.25  3.49  2.6 145.6 1.11 17.40 

LSD (0.05) 3.3  1.00  2.9 16.0 0.14 27.2 

Mse 4.3  0.45  3.8 150.4 1.00 24.3 

CV 22.5  21.27 6 3.2 7.9 1.05 24.7 

P 3.2  0.005 12 2.1 0.449 1.22 29.2 

P 2.9  ** 2 3.5 ns 1.01 26.7 

Min 3.6  1.97 4 2.0 144.0  24.1 

Max 4.9  4.17 3 1.9 164.1 1.05  

StandardError   3.14   155.6 0.14 24.9 
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Appendix 3.5 Means of DM, grain yield and secondary traits of Full-Sib families of 
 ZM521Q population in cycle one 
 

 
Entry   ASI Plant Ears/ Grain 

  Downy 
Mildew 

 Grain 
Yield Rank   Height Plant Moist 

ZM521Q C1         
  (1-5)  t ha-1 Rank d Cm # % 
                 

  

                 
Botton 
ten      

         
12 3.8  0.97 30 2.6 114141 1.01 16.1 

28 3.5  1.01 29 2.1 145.9 1.12 17.5 

38 3.5  1.01 28 1.7 145.9 1.03 17.8 

39 3.4  1.12 27 3.0 140.2 0.97 17.8 

42 3.3  1.16 26 2.3 153.0 1.01 18.6 

57 3.3  1.23 25 2.4 158.8 1.01 16.5 

88 2.9  1.29 24 1.8 147.8 0.97 17.1 

123 2.8  1.39 23 2.0 160.2 1.05 18.7 

135 2.7  1.42 22 1.5 152.8 1.00 18.6 

144 2.6  1.58 21 2.7 160.0 1.03 18.9 

         

         

32 2.8  2.47 1 1.7 147.5 0.94 18.6 

96 2.9  2.46 2 2.3 160.8 1.13 16.8 

113 2.5  2.19 3 1.8 154.5 1.08 16.3 

124 2.3  2.15 4 1.6 155.0 1.10 19.1 

129 2.5  2.15 5 2.6 166.6 1.03 18.5 

135 2.4  2.08 6 2.7 152.9 0.98 21.4 

138 2,5  2.02 7 2.4 163.7 0.98 17.2 

141 2.6  2.01 8 2.1 164.3 1.08 16.9 

143 2.3  1.89 9 2.4 166.7 1.30 16.5 

145 2.7  1.87 10 2.2 148.4 1.17 17.0 

Mean 2.75  3.15 37 3.1 146..7 0.93 17.30 

LSD (0.05) 3.0  0.78 38 2.7 2.3 1.03 15.7 

Mse 3.1  0.25 42 2.9 2.0 1.03 16.5 

CV 2.8  28.82 41 2.3 60.2 1.11 16.5 

P 2.9  0.003 30 2.5 0.716 0.97 19.0 

P 2.7  ** 22 ** ns 0.99 18.6 

Min 2.3  0.97 31 0.97 0.7 0.99 20.0 

Max 3.0  2.47 36 2.47 3.8 0.96 24.2 

StandardError 3.0  1.73 14 1.73 2.4 1.20 17.0 
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Appendix 3.6 Means of DM, grain yield and secondary traits of Full-Sib families of 
Pop62SRQ population in cycle one 
 
Entry   ASI Plant Ears/ Grain 

  Downy 
Mildew 

 Grain 
Yield Rank   Height Plant Moist 

Pop62SRQC1         
  (1-5)  t ha-1 Rank d Cm # % 
                 

  

                 
Botton 
ten      

         
15 4.7  1.10 30 3.7 154.5 1.00 17.1 

21 4.6  1.31 29 2.2 160.8 1.18 16.0 

30 4.3  1.34 28 3.3 166.0 0.87 17.4 

17 4.3  1.45 27 1.4 147.5 1.02 16.9 

6 4.1  1.57 26 3.4 152.9 1.00 18.1 

2 4.0  1.75 25 3.0 154.5 0.97 16.8 

10 4.0  1.76 24 2.0 151.9 1.31 14.4 

24 4.0  1.76 23 2.4 156.1 1.12 18.1 

9 3.8  1.78 22 2.0 152.8 1.14 16.2 

12 3.6  1.91 21 2.6 149.1 1.22 15.0 

         

         

22 2.5  2.77 1 2.3 159.7 1.20 15.5 

29 2.6  2.72 2 1.7 155.0 0.97 15.8 

14 2.8  2.70 3 3.3 136.6 0.93 14.8 

18 2.9  2.49 4 2.4 164.3 1.31 15.1 

16 3.0  2.40 5 2.3 157.6 1.21 19.6 

11 3.0  2.33 6 2.3 161.1 0.93 17.4 

8 3.1  2.28 7 2.0 149.8 1.08 15.1 

7 3.2  2.28 8 2.3 153.0 1.12 14.0 

27 3.3  2.28 9 2.7 148.4 0.95 15.0 

23 3.5  2.20 10 2.3 163.7 1.38 15.4 

Mean 3.50  1.89 16 3.4 150.9 1.08 15.70 

LSD (0.05) 1.3  0.67 9 2.3 13.1 0.42 4.5 

Mse 0.6  0.25   2.0 68.6 0.06 8.2 

CV 33.5  25.05   60.2 5.3 22.86 10.6 

P 0.118  0.000   0.716 0.000 0.273 0.153 

P ns  ***   ns *** ns Ns 

Min 1.1  1.10 1 0.7 136.6 0.87 24.0 

Max 3.5  2.77 30 3.8 166.7 1.49 29.8 

StandardError   2.00  2.4 2.5   
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Appendix 3.7 Correlations coefficients among measured parameters of Sussuma 
population in C 1 
 

 
 
 
 
 
Appendix 3.8 Correlations coefficients among measured parameters of ZM521Q 
population in C 1 
 

 
 
 
 
 
Appendix 3.9 Correlations coefficients among measured parameters of 
Pop62SR1Q population in C 1 
 
 

 

 ASI Downy 
Mildew 

Ear per 
Plant 

Grain 
Moisture 

Grain 
Texture 

Grain 
Yield 

Plant 
Height 

ASI 
Downy Mildew 
Ear per Plant 
Grain Moisture 
Grain Texture 
Grain Yield 
Plant Height 
 

 
-0.1200 
-0.0700 
0.0380 
0.0430 
0.0690 
0.0750 

 
 
-0.0220 
-0.1280 
0.02860 
-0.1454 
-0.1360 

 
 
 
-0.4330 
-0.2350 
0.1200* 
0.0460 

 
 
 
 
0.2800* 
-0.4200 
0.3500 

 
 
 
 
 
0.0540 
0.0190 

 
 
 
 
 
 
0.0440 

 

 ASI Downy 
Mildew 

Ear per 
Plant 

Grain 
Moisture 

Grain 
Texture 

Grain 
Yield 

Plant 
Height 

ASI 
Downy Mildew 
Ear per Plant 
Grain Moisture 
Grain Texture 
Grain Yield 
Plant Height 
 

 
0.247* 
-0.08 
0.031 
0.056 
-0.39 
0.058 

 
 
-0.436 
-0.159 
0.067 
-0.853 
0.0210 

 
 
 
0.122* 
-0.213 
0.187* 
0.067 

 
 
 
 
-0.1300 
0.2380* 
-0.2510 

 
 
 
 
 
-0.167 
-0.159 

 
 
 
 
 
 
0.0198 
 

 

 ASI Downy 
Mildew 

Ear per 
Plant 

Grain 
Moisture 

Grain 
Texture 

Grain 
Yield 

Plant 
Height 

ASI 
Downy Mildew 
Ear per Plant 
Grain Moisture 
Grain Texture 
Grain Yield 
Plant Height 
 

 
-0.0285 
-0.060 
0.0186 
0.026 
0.0102 
0.003 

 
 
-0.234 
0.0154 
-0.340 
0.091 
-0.136 

 
 
 
-0.0100 
-0.0230 
0.1540 
0.0650 

 
 
 
 
0.1320* 
0.02810 
0.0520 

 
 
 
 
 
0.3240* 
0.1000 

 
 
 
 
 
 
-0.0230 
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Chapter 4: Response to selection for maize streak resistance, grain yield, 
and secondary traits in three quality protein maize populations in 
Zimbabwe 
 
 

Abstract 
 

Maize Streak Virus disease (MSVD) is a major problem in quality protein maize (QPM) in 

Mozambique. Recurrent selection was applied to improve MSVD resistance in three 

QPM populations, Sussuma, ZM521Q and Pop62SRQ at CIMMYT-Harare Research 

Station in Zimbabwe, during 2003-2006. Maize streak virus disease incidence and 

severity were rated at four weeks after emergence and at flowering stage based on 

visual assessment of the whole plot. Two selection cycles were formed and evaluated. 

Selection intensity was 50%, and 25% in cycle 1 (C1) and cycle 2 (C2), respectively. The 

C1 and C2 were evaluated in a randomized complete block design with three 

replications in 2005/6 season. Results showed significant improvement in MSVD 

resistance from C1 to C2, with scores of 3.4-2.9 in Sussuma, 2.7-2.3 in ZM521Q and 

3.47-3.0 in Pop62SRQ, respectively. Results also indicated increase in genetic 

variances (σ2
G) for MSVD from C1 to C2, from 0.314 in C1 to 0.559 in C2 in Sussuma; 

from 0.519 in C1 to 0.640 in C2 in ZM521Q, and from 0.135 in C1 to 0.781 in C2 in 

Pop62SRQ. Broad sense heritability estimates (H2) ranged from moderate to high and 

increased from C1 to C2 in all populations. The H2 estimates were 0.83-0.94 in 

Sussuma; 0.70-0.88 in ZM521Q and 0.65-0.87 in Pop62SRQ. This was associated with 

an increase in yield of about 4.57% in Sussuma, 4.62% in ZM521Q and 4.37%) in 

Pop62SRQ. There was also an improvement in flintiness of the grain with texture scores 

of 2.7-1.5 in Sussuma, 2.9-1.9 in ZM521Q and 2.5-1.7 in Pop62SRQ. There were no 

significant changes in anthesis-silking interval, plant height and number of ears plant-1. 

This study showed that S1 recurrent selection was effective in improving QPM 

populations for MSVD resistance, increasing genetic variances and broad sense 

heritability estimates without compromising grain yield, texture, and other important 

characteristics.  

 

 

 



 82

 

4.1 Introduction  
     

Maize streak virus disease (MSVD) is one of the most important diseases affecting 

quality protein maize (QPM) in Mozambique. It is the second most important disease in 

cereal crops in Africa (Engelbrecht, 1975) and causes severe damage to maize in the 

mid-altitude and highland areas in Mozambique (DINA, 1995). Breeding for resistance to 

MSVD in maize is therefore important in northern and central Mozambique (DINA, 1995), 

where it is most prevalent.  The disease is also important in other countries in sub-

Saharan Africa and causes yield losses reaching 100% (Mzira, 1984; Bjarnason, 1986; 

Bosque-Perez, 2000). van Rensburg (1991) reported that yield reduction due to MSVD 

was higher when young plants are infected. 

  

Different methods can be used to control the disease. Insecticides can be used to 

control leafhoppers which transmit the disease, but the chemicals are not always 

available in Africa due to limited resources. Outbreaks of MSVD is associated with the 

behaviour of the Cicadulina vector species in Southern African (Pham 1992), while it has 

been associated with drought, irregular and early rains in West Africa (Bosque-Pérez, 

2000). High MSVD epidemics have also been associated with increasing intensity of 

maize production (Bosque-Pérez, 2000). Due to limitation of resources it sounds most 

economical to control MSVD by breeding for resistance in QPM varieties, since the crop 

is grown by subsistence farmers in Mozambique (Barrow, 1992; Bosque-Pérez, 1998; 

DeVries and Toenniessen, 2001).  

There are few reports of recurrent selection for MSVD in QPM germplasm.   However, 

resistance to MSVD can be improved by recurrent selection (RS) methods which have 

resulted in significant gains for yield and other traits in maize populations (Efron et al., 

1989), without compromising the genetic variation required for future improvement (Moll 

and Smith, 1981). Quality protein maize (QPM) varieties have been introduced in 

Mozambique but are very susceptible to MSVD. There is need to breed for durable 

resistance to MSVD in these populations.  
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4.2 Objective and research hypothesis of the study 
 

The specific objectives of the study were: 

a) To study the response to recurrent selection for MSVD resistance using full-sib 

and selfed progenies (S1) of three QPM populations.  

b)  To determine correlated responses of the three populations for yield, ASI, grain 

texture, grain moisture and other important characteristics after two cycles of 

recurrent selection.  

The hypothesis tested was: 

 Resistance to MSVD in QPM populations can be improved by using recurrent 

selection, and genetic variability of important traits remains high after cycles of 

recurrent selection.  

 

4.3 Material and Methods 
 

4.3.1 Location of the experiment 
 

The experiments were conducted at International Maize and Wheat Improvement Centre 

(CIMMYT) in Harare, Zimbabwe, test plots located on the University of Zimbabwe Farm, 

about 13 km North of Harare.  

4.3.2 Germplasm  
 

The three quality protein maize populations Sussuma (S2 generation), ZM521Q and 

Pop62SRQ (Table 3.1) were used in this study. They are high grain yielding and highly 

susceptible to maize streak virus (MSV). These populations were designated Sussuma, 

ZM521Q and Pop62SRQ, respectively, in this study. All three populations were originally 

developed at the International Maize and Wheat Improvement Centre (CIMMYT) in 

Harare. All the populations were adapted to tropical environments in East and Southern 

Africa. They were improved for QPM at Instituto de Investigação Agrária de Moçambique 

(IIAM),  in Mozambique.  
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4.3.3. Establishment of screening nurseries, artificial inoculation for Maize Streak 
Virus Disease and formation of the cycles 
 

At CIMMYT-Harare Research Station, in November 2003, November 2004, and 

November 2005 MSVD nurseries were established every season to screen the 

progenies. Selected ears from selfed seeds of each population were planted for 

screening for MSVD resistance. The population size of plants was established and was 

equal number of that used for screening to DM, around 5000 plants for each 

population.The progenies of the selected plants were planted in an ear-to-row method in 

which progenies of each plant were planted in one row only. Screening nurseries were 

laid out in three blocks for each population on one row plots of 5 m long. The blocks 

were made up of 275 rows. Virus-free leafhoppers were allowed to acquire the virus on 

stocks of infected MSVD susceptible maize plants for 2 d. Maize streak virus inoculum 

source was a composite of isolates obtained from infected maize sampled throughout 

Zimbabwe. Three to five leafhoppers were dropped into the plant whorl at the V3 stage 

(Efron et al., 1989), about 3 weeks after planting. When streak symptoms appeared, 

plants were thinned to one plant per hill. All plants per row were individually rated two 

times at biweekly intervals beginning 2 weeks after infestation. The numbers of diseased 

and healthy plants were recorded and percentage of plants with systemic MSVD was 

calculated. Agronomic practices included fertilizer application at planting with NPK 

(120:60:60), herbicide application with glyphosate before planting followed by weeding 

and top dressing with urea (46% of N) at 150 kg ha-1 during the vegetative stage.  Stalk 

borer control was done by spraying with insecticide Decis (pyrethroid) at regular intervals 

to reduce crop loss.   

 
During flowering time, all selected plants had their ear shoots covered. The ears of the 

selected progenies were self-pollinated to provide S1 seed, and other ears of other 

randomly selected plants were also cross-pollinated using pollen from the selfed plants 

to form FS seed. Selfed S1 progenies from the best FS were used to advance to the 

next generation as described in section 3.3.3 of this thesis. To keep the protein quality, 

the best S1 progenies were also again selected in laboratory, using ELISA test.  

Although FS and S1 progenies from an equal number of plants in each of the three 

populations were sought, the proportion of plants obtained was 50% (around 2658 

plants), 25% (around 665 plants) and 25% (around 166 plants) for the populations 
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Sussuma, ZM521Q and Pop62SRQ, respectively. These were plants with adequate FS 

seed with resistance to MSVD used to form the base population referred to herein as a 

cycle 1.  

 

In November 2005, a trial was planted for evaluation of the two cycles of each population 

in the season 05/06. A lattice design with nine blocks and three replications was used. 

Selected high yielding progenies of full-sib families were randomly assigned to each 

block planting density was 53,333 plants ha-1. Plot size was one row of 5m length with 

hills spaced 80cm between rows and 25cm within rows. The hills were over planted and 

thinned to one plant per hill. Additional variables, such as days to 50% pollen shedding, 

plant height and ear height were recorded for each plot. Plots were hand harvested and 

shelled grain weight recorded. Grain moisture at harvest was determined and plot yields 

adjusted to 13.5% moisture level converted to yield. Data were analyzed on a per block 

basis and individual analyses of variance pooled over blocks for a trial. Selection was 

based on FS performance within blocks. Only those FS that yielded above their 

respective block means and were equal to or below the average grain moisture at 

harvest and with quality protein content were selected. Selfed (S1) progenies of superior 

FS families were advanced to the next generation. 

4.3.4 Selection method 
 

The selection method used was the same for DM selection process. It was based on 

single plant selection. This was done just before flowering stage (because of cross and 

self pollination). Best rows were selected and in each row the best five plants were 

selected. The best plants were those that showed resistance to maize streak virus. The 

selected progenies were self-pollinated to generate selfed progenies, and crossed to 

form full-sib progenies formation using the same selected plants crossed to randomly 

selected plants from the population. Although the resistance to maize streak virus 

disease was the principal criterion of the progenies selection, grain yield, ASI, grain 

moisture and grain texture were also considered during selection. The full-sib families 

were also selected at harvest for yield and other environmental responses. Selection of 

plants for advancement to the next generation was conducted in stages: First, plants 

with zero (0) severities were not selected and only those that showed symptoms with 

severity scores of 2 and 3 were selected. About 10% (510/5,316) of the plants with 

scores of 2 to 3 (rating scale 0-5) were selected, equivalent to a selection intensity of 
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1.74 (Falconer, 1981). Second, the self-pollinated progenies of each population were 

again selected during harvest time and taken to the laboratory for the tryptophan 

analysis. Selected progenies with resistance to MSVD were also selected on the basis of 

grain texture. Selection for grain texture was based on levels of flintiness of the grain 

using a scale of 1 (flint) to 5 (completely dent). Only plants showing grain texture scores 

between 1.9 and 2.8 were selected and advanced to the next generation of selection.  

4.3.5 Experimental layout of yield trial 
 

For yield evaluation and other agronomic characteristics full-sib families formed through 

cross pollination of the selected progenies were used. Cycles C1 and C2 were evaluated 

at CIMMYT-Harare Research Station (planted in November 2005 -season 05/06). Trials 

were laid out as a randomized complete block design with three replications. Each entry 

was planted in two rows: 5m long with 80cm between rows and 25cm between hills 

within rows. All entries were over planted and later thinned to one plant per station to 

give 53 333 plants ha-1. 

4.3.7 Data collection  
 
Disease development was monitored throughout the growth cycle, and the data 

recorded. Maize streak virus disease incidence and severity were scored twice; at four 

weeks after emergence and at flowering (critical stages for MSVD effect on yield) based 

on visual assessment of the whole plot. Disease incidence was scored by recording the 

number of plants in each population showing MSVD symptoms and expressing that as a 

percentage of the total plant population. Disease severity was scored on the whole plant 

as a proportion of total leaf area diseased using a scale of 0 to 5. Details of the rating 

scale were as follow: 0= no visible disease symptoms, 1 = very few streaks on some 

leaves, 2 = light streak symptoms on most leaves, 3 = moderate streak symptoms on 

most leaves, 4 = abundant symptoms on all leaves (≥60%) leaf area affected, 5 = severe 

symptoms on all leaves (≥80%) of leaves affected with no yield (Bosque-Perez, 1998).  

The rating scale was used to evaluate the disease at CIMMYT-Harare Research Station 

during 2004/05 to 2005/06 seasons. The number of days to mid-silking (DMS) and 

anthesis (DMP) were estimated as number of days from planting to 50% plants with silks 

emerged and tassels shedding pollen, respectively. Plant and ear height were measured 

as the distance from the base of the plant to the height of the first tassel branch and the 
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height of the node bearing the uppermost ear, respectively. Grain weight and moisture 

content per plot were obtained at harvest and values obtained were used to estimate 

grain yield (t ha-1) adjusted to 13.5% moisture content.  

 

4.4. Data analysis 
Quantitative data generated from 2006 infected trials were each subjected to a separate 

ANOVA using REML tool in Field book. Data were analyzed using the following model:   

Yijk = μ + βi + gj + еijk, where μ is the general mean, βi the effect of ith block, gj the effect 

of jth genotype and еij the error associated with particular measurement. 

 

Table 4.1 Skeleton analysis of variance when g genotypes are raised in RCBD 
with r replications  

 

Response to selection was determined using the following formula: R = iH2σ2
P (Falconer, 

1961), where i = selection intensity of 50 and 25%; H2 = broad sense heritability; and σ2
P 

= phenotypic variance. Broad-sense heritability estimates were calculated using the 

following formula: H2 = σ2g/σ2P x 100 (Falconer, 1961). Genetic covariance between FS 

was estimated as: Covg (FS) = t (1/2VA + 1/4VD + VEc) (Lonnquist et al., 1967); 

Genetic coefficient of variation for DM and yield were obtained using the following 

formula: GCV = √σ/X x 100 (Eberhart et al.,1973); and the correlations for the FS were 

obtained using the following formula  t = (1/2VA + 1/4VD + VEc)/VP (Falconer, 1961).  

 

Source  Df  S.S  MS Expected  
             Mean square 
Replications (r-1)       
         
Among 
genotypes (g-1)  rΣ (yi-y.)2  M1 σ2e + σ2g 
         
Within genotypes (r-1)(g-1)  Σ(yij-yi.)2  M2 σ2e  
         
Total   (rg-1)             
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4.5 Results 
 
Variances associated with differences among FS families in three QPM populations were 

highly significant (Tables 4.3, 4.4, and 4.5). Responses to selection per cycle-1 in C1 and 

C2 for all three QPM populations are presented in Table 4.2.  

 

4.5.1 Maize Streak Virus 
 

Maize streak virus disease rating decreased by 0.35 in Sussuma, 0.15 in ZM521Q, and 

0.25 in Pop62SRQ per cycle (Table 4.2). The gain cycle-1 was reduced by 4.26% for 

Sussuma, 3.88% for ZM521Q, and 4.32% for Pop62SRQ (Table 4.2). Mean square for 

maize streak virus disease scores were highly significant (P≤0.01) among full-sib 

families in all QPM populations (Appendices 4.1, 4.2, and 4.3). Genetic variances for  

MSVD increased from 0.314 in C1 to 0.559 in C2 in Sussuma, from 0.519 in C1 to 0.640 

in C2 in ZM521Q, and from 0.135 in C1 to 0.781 in C2 in Pop62SRQ (Tables 4.3, 4.4, 

and 4.5).  
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Table 4.2 Means and response to selection for MSVD rating, yield and other agronomic traits of different cycles  
of selection in three QPM population  
                       
                                                               SUSSUMA                                            ZM 521Q                                         Pop 62 SR Q 

 

 

Trait C0 C1 C2 +Resp. 
cycle-1 

LSD C0 C1 C2 +Resp. 
cycle-1 

LSD C0 C1 C2   +Resp 
Cycle-1 

LSD 

                
MSV rating (1-
5) 

3.4 3.25 2.9 -0.35 0.8 2.70 2.45 2.3 -0.15 1.3 3.47 3.25 3.0       -0.25 1.0 

 
Yield (t ha-1) 

 
3.18 

 
3.38 

 
3.58 

 
0.20 

 
0.9 

 
4.30 

 
4.40 

 
4.70 

 
0..30 

 
1.65 

 
2.75 

 
2.95 

 
3.15      
 

 
0.20 

 
1.52 

 
Plant height 
(cm) 

 
187.6 

 
185.7 

 
183.8 

 
-1.9 

13.8  
185.8 

 
184.9 

 
183.8 

 
-1.1 

 
12.3 

 
189.2 

 
187.6 

 
186.3     
 

 
-1.3 

 
22.0 

 
Ear height (cm) 

 
83.3 

 
82.7 

 
81.1 

 
-1.6 

 
0.34 

 
87.6 

 
85.8 

 
84.8 

 
-1.0 

 
0.27 

 
93.6 

 
92.8 

 
92.4      
 

 
-0.4 

 
0.36 

 
Days to 50% 
silking 

 
88.7 

 
87.7 

 
85.6 

 
-2.1 

 
0.17 

 
87.5 

 
86.3 

 
84.7 

 
-1.6 

 
0.14 

 
89.2 

 
88.0 

 
86.3      
 

 
-1.7 

 
0.19 

 
Days to 50% 
pollenshed 

 
85.3 

 
84.5 

 
82.5 

 
-2.0 

 
0.13 

 
83.9 

 
82.9 

 
81.4 

 
-1.5 

 
0.11 

 
86.6 

 
85.6 

 
84.1      
 

 
-1.5 

 
0.12 

 
Anth-Silk 
Interval (ASI) 

 
4.10 

 
3.30 

 
2.50 

 
-0.8 

3.1  
4.6 

 
4.10 

 
3.20 

 
-0.9 

 
2.0 

 
2.60 

 
2.40 

 
2.20       
 

 
-0.20 

2.0 

 
Ear per plant 

 
0.9 

 
1.07 

 
1.20 

 
0.13 

2.3  
0.94 

 
1.07 

 
1.16 

 
0.12 

 
2.1 

 
0.89 

 
1.06 

 
1.20        
 

 
0.14 

 
0.22 

 
Grain moisture 
(%) 

 
12.90 

 
12.60 

 
12.22 

 
-0.38 

 
1.6 

 
14.90 

 
14.40 

 
13.80 

 
-0.60 

 
1.0 

 
17.90 

 
17.50 

 
17.00    
 
 

 
-0.5 

 
4.3 

Grain Texture 
(1-5) 

2.7 2.1 1.5 -0.6 0.8 2.9 2.4 1.9 -0.5 0.9 2.5 2.0 1.6 -0.4 0.6 

+ Response to selection cycle-1 = C2-C1 
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Comparatively, higher heritability estimates for MSVD were observed in C2 in Sussuma 

(0.94) than in ZM521Q (0.88) and Pop62SRQ (0.87) (Tables 4.3, 4.4 and 4.5). Genetic 

coefficients of variation (GCV) for MSVD in Sussuma changed very little from C1 to C2, 

compared with that in Pop62SRQ (Tables 4.6).  

 

Table 4.3 Estimated variance components of the Sussuma related to the different 
agronomic traits in cycles C1 and C2  

 

Using  a selection intensity of 50% in C1 and 25% in C2 selection intensities (from the 

Table of Falconer, 1981) respectively, the response to selection was 0.41 in C1 and 0.92 

in C2 for Sussuma, 0.53 in C1 and 0.86 in C2 for ZM521Q,  and 0.24 in C1 and 1.0 in 

C2 for Pop62SRQ (Table 4.8).  

 

 

 

 

 

 

 

 

 

  C1   C2  
Traits σ2

g Se H2 σ2
g Se H2 

 
Maize 
Streak 
Virus 

0.314 0.139 0.83 0.559 0.164 0.94 

Yield 0.209 0.132 0.64 0.347 0.132 0.81 
Plant 
height 

14.22 10.80 0.36 10.85 6.920 0.86 

Ant-
silking 
Interv 

0.047 0.037 0.63 0.135 0.053 0.79 

Grain 
moisture 

0.038 0.056 0.71 1.043 0.378 0.82 
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Table 4.4 Estimated variance components of the ZM521Q related to the different 
agronomic traits in cycles C1 and C2  

 

4.5.2 Grain yield 
 
The gain cycle-1 of  grain yield of each selection cycle contributed in 150 kg in Sussuma, 

180 kg in ZM521Q and 200 kg in Pop62SRQ (Table 4.2). Mean squares for grain yield 

were highly significant (P≤0.01) among full-sib families in all populations (Appendices 

4.1, 4.2, and 4.3). Similarly the heritability estimates were higher in Sussuma population 

(0.64 in C1, and 0.81 in C2), followed by ZM521Q (0.64 in C1 and 0.70 in C2), and, and 

Pop62SRQ (0.51 in C1 and 0.59 in C2) (Table 4.3, 4.4 and 4.5). Genetic variances for 

grain yield increased from 0.209 in C1 to 0.347 in C2 in Sussuma, from 0.116 in C1 to 

0.172 in C2 in ZM521Q; and 0.197 in C1 to 0.728 in C2 in Pop62SRQ (Tables 4.3, 4.4, 

and 4.5). Genetic  coefficients of variation (GCV) for yield in Sussuma and ZM521Q 

changed very little from C1 to C2, than in Pop 62 SRQ where GCV values on C2 were 

approximately two times higher compared to the C1 (Tables 4.6). Little increase was 

observed in genetic covariance (Covg (FS-S1) for yield from C1 to C2 in ZM521Q but 

higher increase of these variances were achieved from C1 to C2 in Pop 62SRQ (Table 

4.6). 

 

 

 

   ZM 521 Q    
   C1   C2  
Traits σ2

g Se H2 σ2
g Se H2 

 

 
Maize 
Streak 
Virus 

0.640 0.150 0.70 0.519 0.171 0.88 
 
 

Yield 0.116 0.066 0.64 0.172 0.104 0.70 
 

Plant 
height 

4.660 4.460 0.26 16.67 9.190 0.77 

Ant-silking 
Interv 

0.149 0.096 0.58 0.199 0.060 0.86 
 
 

Grain 
moisture 

1.426 0.696 0.68 7.201 2.347 0.75 
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Table 4.5 Estimated variance components of the Pop62SRQ related to the 
different agronomic traits in cycles C1 and C2  
 

 

 

 

 

 

 

   C1   C2  
Traits σ2

g g Se H2 σ2
g Se H2 

Maize 
Streak 
Virus 

0.135 0.042 0.65 0.781 0.840 0.87 

Yield 0.197 0.146 0.51 0.728 0.211 0.59 
 
 

Plant 
height 

19.13 15.73 0.54 28.86 12.53 0.70 

Ant-silking 
Interv 

0.239 0.556 0.71 1.894 0.507 0.72 

Grain 
moisture 

0.032 0.047 0.52 0.298 0.018 0.87 
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Table 4.6 Genetic parameter estimates for FS families of the three QPM 
populations 
 

GCV = Genetic coeficient of variation; Covg = genetic covariance; σ2G = genetic 
variance; H2 = broad-sense heritability 
 
Using a selection intensity of 50% in C1 and 25% in C2 the response to selection was 

0.29 in C1 and 0.67 in C2 for Sussuma, 0.22 in C1 and 0.44 in ZM521Q, and 0.24 in C1 

and 0.89 in C2 for Pop62SRQ population (Table 4.9).  

 

Table 4.7 Genetic parameter estimates for FS families of the three QPM 
populations on cycles C1 and C2 
 
 

GCV = Genetic coefient of variation; Covg  = genetic covariance; σ 2G = genetic 
variance; H2 = broad-sense heritability 
 

 

   YIELD    
       
  SUSSUMA  ZM 521 Q  Pop 62 SRQ 
 C1 C2 C1 C2 C1 C2 
Parameter FS FS FS FS FS FS 
GCV 12.76 17.17 7.49 8.82 14.10 28.43 
σ2

G 0.208 0.347 0.116 0.172 0.197 0.728 

Covg(FS-
S1) 

14.89 15.07 8.37 10.37 16.87 78.14 

H2 0.64 0.81 0.64 0.70 0.51 0.59 

    Maize Streak 
Virus 

  

        
  SUSSUMA   ZM 521 

Q 
 Pop 62 SRQ 

 C1 C2  C1 C2 C1 C2 
Parameter FS FS  FS FS FS FS 
        
GCV 15.66 21.81  15.84 17.03 12.23 28.06 
σ2 G 0.314 0.559  0.519 0.640 0.135 0.781 
Covg(FS-
S1) 

13.12 16.81  18.65 38.52 9.28 29.06 

H2 0.83 0.94  0.70 0.88 0.65 0.87 
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4.5.3 Plant height  
 

The gain per cycle-1 for plant height was negligible in all the three populations (Table 

4.2). Mean squares among full-sib families (Appendices 4.1, 4.2, and 4.3) were 

significant (P≤0.01) for plant height in all three QPM populations. Similarly estimates of 

heritability for plant height were higher and are presented in Table 4.3, 4.4, and 4.5. 

Heritability estimates were 0.36 in C1 and 0.86 in C2 for Sussuma, 0.54 in C1 and 0.70 

in C2 and C2 for Pop62SRQ, and 0.26 in C1 and 0.77 in C2 for ZM521Q. Genetic 

variances increased from 10.85 in C1 to 14.22 in C2 in Sussuma, from  4.660 in C1 to 

16.67 in C2 in ZM521Q, and from 19.13 in C1 to 28.86 in C2 in Pop62SRQ (Tables 4.3, 

4.4, and 4.5).  

 

Table 4.8 Response to selection for MSV on three QPM populations in C1 and 
C2 
 
RS = response to selection;  i= selection intensity 
H2 = broad-sense heritability; σP = standard error of phenotypic variance 

 

4.5.4 Anthesis-Silking Interval  
The ASI was reduced by 0.8 d in Sussuma; 0.9 d in ZM521Q and 0.2 d in Pop62SRQ 

populations (Table 4.2). Mean squares for ASI (Appendices 4.1, 4.2, and 4.3) were 

significant (P≤0.01) among full-sib families in all three QPM populations. Similarly 

estimates of heritability for ASI were higher and are presented in Table 4.3, 4.4, and 4.5. 

Heritability estimates were 0.63 in C1 and 0.79 in C2 for Sussuma, 0.58 in C1 and 0.86 

in C2 for ZM521Q, and 0.71 in C1 and 0.72 in C2 for Pop62SRQ. Genetic variances 

showed an increase from C1 to C2 for ASI from 0.047 to 0.135 in Sussuma higher 

increase from 0.239 to 1.894 in Pop62SRQ and from 0.1490 to 0.1990 in ZM521Q 

(Tables 4.3, 4.4, and 4.5).  

  Sussuma  ZM 521Q  Pop 62 SR  
       
  C1 C2 C1 C2 C1 C2 
i 0.798 1.271 0.798 1.271 0.798 1.271 
H2 0.83 0.94 0.70 0.88 0.65 0.87 
σP 0.617 0.772 0.956 0.769 0.453 0.950 
RS 0.41 0.92 0.53 0.86 0.24 1.0 
RS = 
ih2σP   
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Table 4.9 Response to selection for yield on three QPM populations in C1 and C2 
 
RS = response to selection;  i= selection intensity 

H2 = broad-sense heritability; σP = standard error of phenotypic variance 
 

4.5.5 Correlations 
 

In Sussuma population high correlations coefficients were observed between grain 
moisture and MSV. Grain yield also exhibited correlations with grain texture. ASI and 
MSV were less correlated (Table 4.10).  

 
Table 4.10 Correlations coefficients among measured parameters (below) and 
probabilities (above) of Sussuma population in C 2 
 
 ASI Maize 

Streak 
Virus 

Ear per 
Plant 

Grain 
Moisture 

Grain 
Texture 

Grain 
Yield 

Plant 
Height 

ASI 
Maize Streak Virus 
Ear per Plant 
Grain Moisture 
Grain Texture 
Grain Yield 
Plant Height 
 

 
-0.2800 
-0.0880 
0.0180 
0.0550 
0.0690 
0.1000 

 
 
0.1210 
0.3320* 
0.0060 
-0.1590 
0.0640 

 
 
 
-0.0244 
-0.0350 
-0.1200 
0.0460 

 
 
 
 
-0.0180 
-0.0420 
0.0090 

 
 
 
 
 
0.0740 
0.0090 

 
 
 
 
 
 
0.0350 

 

 

 

 

 

 

   Yield    
  Sussuma  ZM 521Q  Pop 62 

SR 
 

       
  C1 C2 C1 C2 C1 C2 
i 0.798 1.271 0.798 1.271 0.798 1.271 
H2 0.64 0.81 0.64 0.70 0.51 0.59 
σP 0.569 0.654 0.426 0.495 0.581 1.189 
RS 0.29 0.67 0.22 0.44 0.24 0.89 
RS = 
iH2σP   
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In ZM521Q population significant correlation coefficients were observed between grain 

moisture and ASI and grain texture with ear per plant. Grain yield was also correlated 

with grain texture (Table 4.11). 

 
Table 4.11 Correlations coefficients among measured parameters (below) and 
probabilities (above) of ZM521Q population in C 2 
 
 ASI Maize Streak 

Virus 
Ear per 
Plant 

Grain 
Moisture 

Grain 
Texture 

Grain 
Yield 

Plant 
Height 

ASI 
Maize Streak Virus 
Ear per Plant 
Grain Moisture 
Grain Texture 
Grain Yield 
Plant Height 
 

 
-0.1231 
-0.1640 
0.2610* 
-0.1451 
-0.1123 
0.2020 

 
 
-0.0420 
-0.0180 
0.0350 
0.0180 
-0.2440 
 

 
 
 
0.0740 
0.3440* 
0.0690 
-0.1211 

 
 
 
 
0.0090 
0.0550 
-0.0350 

 
 
 
 
 
0.1000 
0.0460 

 
 
 
 
 
 
-0.0812 

 

 

 

In Pop62SRQ population Grain yield was highly correlated with ear per plant and grain 

moisture. Plant height exhibited high correlation with grain yield and grain texture (Table 

4.12). 

 
 
Table 4.12 Correlations coefficients among measured parameters of Pop62SRQ 
population in C 2 
 
 
 

 
 
 
 
 

 ASI Maize 
Streak Virus 

Ear per 
Plant 

Grain 
Moisture 

Grain 
Texture 

Grain 
Yield 

Plant 
Height 

ASI 
Maize Streak Virus 
Ear per Plant 
Grain Moisture 
Grain Texture 
Grain Yield 
Plant Height 
 

 
0.0155 
-0.0880 
0.0180 
0.0550 
0.0690 
0.1000 

 
 
-0.0521 
0.0320 
-0.1423 
0.1350 
-0.3020 

 
 
 
-0.2440 
-0.0350 
0.3200** 
0.0460 

 
 
 
 
-0.0180 
0.4200** 
0.0350 

 
 
 
 
 
0.0740 
0.3440* 

 
 
 
 
 
 
0.3652** 
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4.7 Discussion 

4.7.1 Sussuma, ZM521Q and Pop62SRQ populations 
Conventional breeding methods are among some of the practical tools used by breeders 

to develop cultivars resistant to MSV disease. In this study recurrent selection method 

was utilised to select for resistance to MSVD in three QPM populations.  

 

All selected progenies that had low incidence also experienced low disease severity. 

This observation appeared to suggest preferences by leafhoppers to feed on some 

plants. Higher MSVD decrease severity was recorded in C1 than in C2 indicating that 

recurrent selection method was effective in improving resistance to MSVD. These 

observations conform to findings reported in earlier studies (Dudley, 1984; Lamkey et al., 

1993). High heritability estimates for MSVD were shown in all the three populations. This 

indicates that once MSVD disease occurs it would be easy to score, the symptoms are 

highly evident and easy to score. These results support earlier reports by Welz et al. 

(1998); Kyetere et al. (1999), and Pernet et al. (1999). All QPM populations under study 

had highly significant variations among progenies. In the current study, two cycles of 

recurrent selection for MSVD resistance significantly reduced the infection in Sussuma, 

ZM521Q and in Pop62SRQ. It was concluded that all QPM populations were responsive 

to selection for MSVD resistance. Analysis of variance of full-sib progenies indicated the 

presence of highly significant (P≤0.01) genetic variation in all populations for days to 

50% tasseling, silking and pollen shedding.  

 

In Sussuma population analyses of variance of FS indicated highly significant variations 

among progenies which could be useful for effective selection against MSVD resistance. 

After two cycles of recurrent selection for MSVD resistance higher decrease in disease 

severity was recorded indicating that recurrent selection method was effective in 

improving resistance to MSVD, which support earlier fingings (Welz et al., 1998; Kyetere 

et al., 1999; Pernet et al., 1999). The decrease of MSVD severity from cycle 1 to cycle 2 

in Sussuma population was presented by reduction the infection scores from 3.4 to 2.9 

(1.0 to 5.0 scales).  

 

Genetic variance and heritability estimates for MSVD presented an increase from C1 to 

C2. This was probably due to the large number of S1 progenies advanced to the next 
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cycle. Denic et al. (1997) observed that MSVD was highly heritable and not very 

complex to score and concluded that screening of advanced lines should be sufficient to 

identify MSVD. High heritability estimates for MSVD indicates that once MSVD disease 

occurs it would be easy to score, the symptoms are highly evident and easy to score. 

These results support earlier reports by Welz et al. (1998); Kyetere et al. (1999), and 

Pernet et al. (1999). Mean square values for grain yield in MSVD were highly significant 

(P≤ 0.01) for cycles and high correlation was observed between MSVD and grain 

moisture. It could be argued that improvement in grain yield was related with increased 

resistance to MSVD. Heritability estimates for grain yield were high indicating that an 

improvement would be achieved from field selection for grain yield. These results were 

comparable to those of Denic et al. (2001), who reported very close correspondence of 

expected and observed responses (365 vs. 350 kg ha-1) after two cycles of S1 recurrent 

selection in a high yielding maize variety.  

 

Recurrent selection significantly (P≤ 0.01) increased grain yield in Sussuma from 3.38 to 

3.58 tha-1. This response of Sussuma population could be a possible manifestation of its 

increased resistance to MSVD as observed in the present study. Grain yield increased 

by 200 kg ha-1 per cycle in Sussuma. Analysis of variance of full-sib progenies indicated 

the presence of highly significant (P≤0.01) genetic variation in Sussuma for days to 

tasseling, silking and pollen shedding. These results suggested that despite high genetic 

variability among S1 lines, they were indeed highly consistent in performance over the 

two cycles of S1 line recurrent selection. These results are in agreement with those of 

Kyetere et al. (199), who reported significant differences for maturity in four tropical 

maize populations implementing S1-S2 line recurrent selection for MSVD resistance. 

Pernet et al. (1999) also observed significant variations for mid-silking and mid-pollen 

shedding using recurrent selection for MSVD resistance in maize populations. The 

reduction in days to silking and pollen shed per cycles in Sussuma was 3.3 to 2.5. 

Johnson et al. (1986) reported early flowering with a 4.4% increase in grain yield cycle-1 

after 15 cycles of full-sib recurrent selection in one lowland tropical maize population, 

Tuxpeno Crema1.  

 

Populations ZM521Q and Pop62SRQ showed similar responses as Sussuma 

population. These two populations showed highly significant variations among 

progenies. Maize streak virus (MSVD) resistance rating was significantly reduced from 
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2.45 to 2.3 after two cycles of recurrent selection in ZM521Q, while in Pop62SRQ the 

MSVD severity was reduced from 3.25 to 3.0. In both populations increases in genetic 

variances and heritability estimates were observed for MSVD from C1 to C2. Highly 

significant correlation coefficients between grain moisture and MSVD; MSVD and ASI 

and grain yield with grain moisture in Sussuma were observed. In ZM521Q correlation 

coefficients were grain texture and ear per plant; grain yield and grin texture, while in 

Pop62SRQ correlation coefficients were grain yield and grain moisture; grain yield and 

ear per plant and grain yield and plant height. 

 

The grain yield increase after two cycles of recurrent selection was from 3.38 to 3.58 t 

ha-1 for Sussuma; from 4.40 to 4.70 t ha-1 for ZM521Q and from 2.95 to  3.15 t ha-1. 

The increase in yield cycle-1 was 200 kg ha-1 in Sussuma, 300 kg ha-1 ZM521Q and 

200 Pop62SRQ kg ha-1. All selected progenies that had low incidence also experienced 

low disease severity. This observation appeared to suggest preferences by leafhoppers 

to feed on some plants.  Higher MSVD decrease severity was recorded in C1 than in C2 

indicating that recurrent selection method was effective in improving resistance to 

MSVD. These observations conform with finding reported in earlier studies (Dudley, 

1984; Lamkey et al., 1993).. In the current study, two cycles of recurrent selection for 

MSVD resistance significantly reduced the infection in Sussuma, ZM521Q and in 

Pop62SRQ. It was concluded that all QPM populations were responsive to selection for 

MSVD resistance. Analysis of variance of full-sib progenies indicated the presence of 

highly significant (P≤0.01) genetic variation in all populations for tasseling, silking and 

pollen shedding. Genetic co-variances were high in all three populations indicating 

recurrent selection significantly improved MSVD resistance. Variability in all the 

populations indicates the possibility of more selections in future breeding activities.  
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4.8 Conclusions 
 

 Breeding for resistance to MSVD using recurrent selection method was highly effective. 

 

Two cycles of S1 recurrent selection significantly improved MSVD resistance in the three 

QPM populations although the basic levels differed. 

 

There was concurrent improvement in grain yield performance, ASI, grain texture, grain 

moisture, ears per plant and other desirable characteristics. 

 

Genetic variances and heritability estimates for MSVD resistance and other important 

characteristics generally increased or remained unchanged which was important for 

future continued selection within these populations. 
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Appendix 4.1 Means of MSVD, grain yield and secondary traits of Full-Sib  
families of Sussuma population in cycle two 
Entry  ASI Plant Ears/ Grain 

Sussuma 

Maize 
Streak 
Virus 

Grain 
Yield Rank   Height Plant Moist 

        
  (1-5)  t ha-1 Rank d Cm # % 
        

  
Bottom 
Ten      

5 3.0 2.5 30 2.5 204.9 1.05 13.0 
41 3.8 2.6 29 4.3 178.0 1.09 10.4 
40 3.4 2.7 28 3.0 149.0 1.01 12.3 
43 2.0 2.8 27 4.3 174.0 1.14 12.4 
29 2.8 2.8 26 0.8 166.8 1.13 12.1 
25 3.1 2.9 25 3.4 174.1 1.21 12.6 
22 2.9 3.1 24 3.3 188.5 1.04 12.6 
38 1.4 3.3 23 2.7 189.7 0.86 12.4 
8 3.3 3.3 22 1.4 181.4 1.31 10.8 
30 1.4 3.4 21 6.1 175.1 1.14 12.0 
  2.5      
        

  
Top 
Ten      

4 3.0 5.6 1 2.3 169.1 1.45 11.8 
3 2.9 4.8 2 3.7 175.8 1.28 11.3 
11 3.0 4.6 3 4.1 173.5 1.24 12.6 
18 4.1 4.5 4 3.1 176.4 1.06 12.6 
1 2.4 4.5 5 5.3 173.6 1.02 12.3 
42 2.9 4.5 6 3.3 165.4 1.14 13.2 
32 3.8 4.3 7 2.2 176.3 1.32 12.1 
34 3.1 4.2 8 3.6 172.5 0.76 11.6 
7 3.3 4.2 9 4.0 198.1 1.04 13.0 
12 1.7 4.0 10 2.4 186.9 1.24 12.8 
Mean 2.9 3.58  2.5 183.8 1.20 12.2 
LSD 
(0.05) 0.8  0.9  3.1 13.8 0.34 1.6 

MSe 0.2 0.80  3.0 285.0 0.04 1.0 
CV 17.1 25.05  52.0 9.5 18.18 8.3 
P 0.000    0.361 0.000 0.024 0.002 
P *** Ns  Ns *** * ** 
Min 1.4 1.89  0.8 149.0 0.76 9.9 
Max 4.4 5.64  6.1 204.9 1.45 13.2 
Standard 
Error 0.3971 0.7597  1.5 6.765 0.1676  

 
 
 
 

Formatted: Width:  595.35 pt,
Height:  842 pt
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Appendix 4.2 Means of MSVD, grain yield and secondary traits of Full-Sib  
families of ZM521Q population in cycle two 
Entry   ASI Plant Ears/ Grain 

  
Maize 
Streak 
Virus 

 Grain 
Yield Rank   Height Plant Moist 

ZM 521 Q         
  (1-5)  t ha-1 Rank D cm # % 
                 
         

  
 Bottom 

Ten      
9 3.5  4.0 30 3.2 163.8 1.10 14.2 
32 2.7  4.0 29 3.3 152.8 1.18 12.9 
13 2.5  4.1 28 3.3 157.4 1.18 13.5 
18 3.2  4.1 27 3.7 218.7 1.44 14.8 
7 3.3  4.2 26 3.1 165.4 1.13 13.9 
2 2.8  4.3 25 3.2 177.6 1.42 13.6 
15 3.4  4.5 24 3.8 169.8 1.04 14.0 
6 3.1  4.5 23 3.7 184.4 1.37 13.6 
23 3.0  4.5 22 3.9 163.7 1.28 14.3 
22 2.4  4.6 21 4.0 162.1 1.13 14.0 
         

   Top 
Ten      

14 1.1  7.6 1 3.4 164.4 1.16 14.6 
3 1.4  6.2 2 2.8 179.1 1.20 13.9 
21 1.6  6.0 3 4.5 174.5 1.18 13.3 
33 1.7  5.6 4 4.0 179.9 1.08 14.1 
16 1.8  5.5 5 5.3 190.5 1.06 12.7 
10 1.9  5.3 6 3.3 176.0 1.15 13.3 
24 2.1  5.2 7 3.7 144.1 1.03 15.0 
8 2.2  5.2 8 3.9 190.8 1.37 14.3 
11 1.5  5.1 9 4.4 173.2 1.10 14.2 
4 1.2  5.1 10 3.5 162.1 1.09 13.2 
Mean 2.3   4.70  3.2 173.0 1.16 13.8 
LSD (0.05)  1.3  1.65  2.0  12.3 0.27 1.0 
Mse  0.6  1.06   1.5 216.4 0.03 0.4 
CV  33.5  21.93   33.1 8.5 14.79 4.3 
P  0.118  0.001   0.435   0.158 0.000 
P  Ns  **   Ns ns ns *** 
Min  1.1  4.0  2.6 144.1 1.00 12.7 
Max  3.5  7.6  5.6 218.7 1.44 15.0 
Standard Error   0.8093      
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Appendix 4.3 Means of MSVD, grain yield and secondary traits of Full-Sib 
families of Pop62SRQ population in cycle two 
Entry  ASI Plant Ears/ Grain 

  Maize Streak 
Virus 

Grain  
Yield Rank   Height Plant Moist 

Pop 62 SR         
  (1-5) t ha-1 Rank D Cm # % 
        
  Bottom Ten      
5 4.3 2.98 30 2.5 154.0 0.92 17.0 
41 3.0 3.04 29 2.4 142.9 0.88 16.1 
40 3.3 3.11 28 1.0 141.9 0.88 15.9 
43 3.1 3.14 27 2.1 142.5 0.72 16.6 
29 3.0 3.19 26 1.9 145.9 0.83 14.9 
25 3.2 3.28 25 2.0 146.5 0.97 17.0 
22 2.9 3.29 24 2.5 143.6 0.93 17.1 
38 3.1 3.33 23 4.0 159.4 0.99 16.6 
8 2.5 3.34 22 2.4 156.5 0.86 17.3 
30 2.2 3.34 21 3.0 160.7 1.02 17.0 
        
        
  Top Ten      
4 2.0 4.85 1 2.4 164.1 1.00 15.7 
3 3.1 4.60 2 2.5 161.7 0.88 16.0 
11 2.5 4.57 3 2.4 151.3 0.90 24.6 
18 2.1 3.98 4 2.0 162.6 0.85 16.5 
1 3.5 3.84 5 2.5 148.6 0.99 25.5 
42 3.1 3.80 6 1.5 146.4 0.97 17.4 
32 3.2 3.79 7 2.5 145.2 0.75 16.0 
34 2.5 3.75 8 2.0 153.9 0.89 16.3 
7 3.2 3.70 9 2.5 143.1 0.98 16.3 
12 3.2 3.69 10 3.4 156.9 1.05 16.3 
        
Mean 3.0 3.15  2.2 144.1 1.20 17.0 
LSD (0.05) 1.0 1.52  2.0 22.0  0.22 4.3 
MSe 0.3 0.54   1.1 273.6 0.03 5.3 
CV 18.0 23.45   42.9 11.0 17.64 13.7 
P 0.001 0.025   0.883 0.067   0.013 
P ** *   ns + Ns * 
Min 2.0 2.98 1 -2.0 141.9 0.61 14.5 
Max 4.3 4.85 49 4.0 164.1 1.21 25.5 
Standard Error 0.5 0.76  0 10.7 0.16 2.1 
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Appendix 4.4 Means of MSVD, grain yield and secondary traits of Full-Sib  
families of Sussuma population in cycle one 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Entry  ASI Plant Ears/ Grain 

Sussuma 
C 1 

Maize 
Streak 
Virus 

Grain 
Yield Rank   Height Plant Moist 

        
  (1-5)  t ha-1 Rank d Cm # % 
        

  
Bottom 
Ten      

5 3.0 2.5 30 2.5 204.9 1.05 13.0 
41 3.8 2.6 29 4.3 178.0 1.09 10.4 
40 3.4 2.7 28 3.0 149.0 1.01 12.3 
43 3.0 2.8 27 4.3 174.0 1.14 12.4 
29 2.8 2.8 26 0.8 166.8 1.13 12.1 
25 3.1 2.9 25 3.4 174.1 1.21 12.6 
22 2.9 3.1 24 3.3 188.5 1.04 12.6 
38 3.4 3.3 23 2.7 189.7 0.86 12.4 
8 3.3 3.3 22 1.4 181.4 1.31 10.8 
30 2.4 3.4 21 6.1 175.1 1.14 12.0 
  2.5      
        

  
Top 
Ten      

4 3.0 5.6 1 2.3 169.1 1.45 11.8 
3 3.0 4.8 2 3.7 175.8 1.28 11.3 
11 3.0 4.6 3 4.1 173.5 1.24 12.6 
18 3.9 4.5 4 3.1 176.4 1.06 12.6 
1 3.4 4.5 5 5.3 173.6 1.02 12.3 
42 2.9 4.5 6 3.3 165.4 1.14 13.2 
32 3.8 4.3 7 2.2 176.3 1.32 12.1 
34 3.1 4.2 8 3.6 172.5 0.76 11.6 
7 3.3 4.2 9 4.0 198.1 1.04 13.0 
12 2.7 4.0 10 2.4 186.9 1.24 12.8 
Mean 3.25 3.38  3.3 185.7 1.07 12.6 
LSD 
(0.05) 0.8    3.1 13.8 0.34 1.6 

MSe 0.2 0.80  3.0 285.0 0.04 1.0 
CV 17.1 25.05  52.0 9.5 18.18 8.3 
P 0.000    0.361 0.000 0.024 0.002 
P *** Ns  ns *** * ** 
Min 1.4 1.89  0.8 149.0 0.76 9.9 
Max 4.4 5.64  6.1 204.9 1.45 13.2 
Standard 
Error 0.3971 0.7597  1.5 6.765 0.1676  
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Appendix 4.5 Means of MSVD, grain yield and secondary traits of Full-Sib  
families of ZM521Q population in cycle one 
 
Entry   ASI Plant Ears/ Grain 

  
Maize 
Streak 
Virus 

 Grain 
Yield Rank   Height Plant Moist 

ZM 521 Q C1         
  (1-5)  t ha-1 Rank D cm # % 
                 
         

  
 Bottom 

Ten      
8 3.5  2.8 30 3.2 163.8 1.10 14.2 
29 3.7  3.0 29 3.3 152.8 1.18 12.9 
17 3.5  3.2 28 3.3 157.4 1.18 13.5 
21 3.2  3.8 27 3.7 218.7 1.44 14.8 
12 3.3  3.9 26 3.1 165.4 1.13 13.9 
15 2.8  4.1 25 3.2 177.6 1.42 13.6 
19 3.4  4.2 24 3.8 169.8 1.04 14.0 
7 3.1  4.4 23 3.7 184.4 1.37 13.6 
32 3.0  4.4 22 3.9 163.7 1.28 14.3 
21 2.4  4.5 21 4.0 162.1 1.13 14.0 
         

   Top 
Ten      

9 2.1  5.6 1 3.4 164.4 1.16 14.6 
45 1.4  5.2 2 2.8 179.1 1.20 13.9 
53 1.6  5.0 3 4.5 174.5 1.18 13.3 
6 1.7  4.6 4 4.0 179.9 1.08 14.1 
23 1.8  4.5 5 5.3 190.5 1.06 12.7 
43 1.9  4.3 6 3.3 176.0 1.15 13.3 
26 2.1  4.2 7 3.7 144.1 1.03 15.0 
14 2.2  4.2 8 3.9 190.8 1.37 14.3 
11 1.5  4.1 9 4.4 173.2 1.10 14.2 
4 1.2  4.1 10 3.5 162.1 1.09 13.2 
Mean 2.45   4.40  4.1 184.9 1.07 14.4 
LSD (0.05)  1.3  1.65  2.0   0.27 1.0 
Mse  0.6  1.06   1.5 216.4 0.03 0.4 
CV  33.5  21.93   33.1 8.5 14.79 4.3 
P  0.118  0.001   0.435   0.158 0.000 
P  Ns  **   Ns ns ns *** 
Min  1.1  2.95 1 2.6 144.1 1.00 12.7 
Max  3.5  7.62 35 5.6 218.7 1.44 15.0 
Standard Error   0.8093      
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Appendix 4.6 Means of MSVD, grain yield and secondary traits of Full-Sib  
families of Pop62SRQ population in cycle one 
 

 
 
The correlation coefficients in Sussuma population showed grain yield highly 
correlated with ear per plant and grain texture.   
 

Entry  ASI Plant Ears/ Grain 

  Maize Streak Virus Grain  
Yield Rank   Height Plant Moist 

Pop 62 SR C1         
  (1-5) t ha-1 Rank D Cm # % 
        
  Bottom Ten      
5 4.3 2.98 30 2.5 154.0 0.92 17.0 
41 3.0 3.04 29 2.4 142.9 0.88 16.1 
40 3.3 3.11 28 1.0 141.9 0.88 15.9 
43 3.1 3.14 27 2.1 142.5 0.72 16.6 
29 3.0 3.19 26 1.9 145.9 0.83 14.9 
25 3.2 3.28 25 2.0 146.5 0.97 17.0 
22 2.9 3.29 24 2.5 143.6 0.93 17.1 
38 3.1 3.33 23 4.0 159.4 0.99 16.6 
8 2.5 3.34 22 2.4 156.5 0.86 17.3 
30 2.2 3.34 21 3.0 160.7 1.02 17.0 
        
        
  Top Ten      
4 2.0 4.85 1 2.4 164.1 1.00 15.7 
3 3.1 4.60 2 2.5 161.7 0.88 16.0 
11 2.5 4.57 3 2.4 151.3 0.90 24.6 
18 2.1 3.98 4 2.0 162.6 0.85 16.5 
1 3.5 3.84 5 2.5 148.6 0.99 25.5 
42 3.1 3.80 6 1.5 126.4 0.97 17.4 
32 3.2 3.79 7 2.5 145.2 0.75 16.0 
34 2.5 3.75 8 2.0 153.9 0.89 16.3 
7 3.2 3.70 9 2.5 143.1 0.98 16.3 
12 3.2 3.69 10 3.4 156.9 1.05 16.3 
        
Mean 3.25 2.95  2.4 187.6 1.06 17.5 
LSD (0.05) 1.0 1.52  2.0 22.0   4.3 
MSe 0.3 0.54  1.1 273.6 0.03 5.3 
CV 18.0 23.45  42.9 11.0 17.64 13.7 
P 0.001 0.025  0.883 0.067   0.013 
P ** *  ns + Ns * 
Min 2.0 1.63  -2.0 126.4 0.61 14.5 
Max 4.4 4.85  4.0 164.1 1.21 25.5 
Standard Error 0.5 0.76 0 10.7 0.16 2.1
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Appendix 4.7 Correlations coefficients among measured parameters and 
probabilities of Sussuma population in C 1 

 
 
 
 
The correlation coefficients in ZM521Q population showed grain yield highly 
correlated with ear per plant.   
 
Appendix 4.8 Correlations coefficients among measured parameters and 
probabilities of ZM521Q population in C 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ASI Maize Streak 
Virus 

Ear per 
Plant 

Grain 
Moisture 

Grain 
Texture 

Grain 
Yield 

Plant 
Height 

ASI 
Maize Streak Virus 
Ear per Plant 
Grain Moisture 
Grain Texture 
Grain Yield 
Plant Height 
 

 
-0.2612 
-0.3464 
-0.2310 
-0.2451 
-0.2330 
-0.2020 

 
 
-0.0240 
-0.0380 
0.0350 
0.0189 
-0.2640 
 

 
 
 
0.0740 
0.0440 
0.1900* 
-0.2211 

 
 
 
 
0.0790 
0.0450 
-0.3800 

 
 
 
 
 
0.1430* 
0.0460 

 
 
 
 
 
 
0.0182 

 

 ASI Maize 
Streak 
Virus 

Ear per 
Plant 

Grain 
Moisture 

Grain 
Texture 

Grain 
Yield 

Plant Height 

ASI 
Maize Streak Virus 
Ear per Plant 
Grain Moisture 
Grain Texture 
Grain Yield 
Plant Height 
 

 
-0.0680 
-0.0380 
0.0197 
0.0650 
0.0670 
0.0187 

 
 
0.1240 
-0.3120 
0.0760 
-0.1890 
0.0680 

 
 
 
-0.0468 
-0.0345 
0.1320* 
0.0460 

 
 
 
 
-0.1180 
-0.0450 
0.0190 

 
 
 
 
 
0.02400 
0.0860 

 
 
 
 
 
 
0.0370 
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The correlation coefficients in Pop62SRQ population showed grain yield 
highly correlated with grain moisture, and plant height with grain texture and 
grain yield 
 
 
Table 4.13 Correlations coefficients among measured parameters and 
probabilities of Pop62SRQ population in C 2 
 

 ASI Maize 
Streak Virus 

Ear per 
Plant 

Grain 
Moisture 

Grain 
Texture 

Grain 
Yield 

Plant 
Height 

ASI 
Maize Streak Virus 
Ear per Plant 
Grain Moisture 
Grain Texture 
Grain Yield 
Plant Height 
 

 
0.0133 
-0.7540 
0.0580 
0.0350 
0.0480 
0.0127 

 
 
-0.241 
0.0430 
-0.234 
-0.350 
-0.320 

 
 
 
-0.2654 
-0.3860 
-0.3420 
0.0654 

 
 
 
 
-0.480 
0.2400* 
0.0350 

 
 
 
 
 
0.0740 
0.1880* 

 
 
 
 
 
 
0.2565* 
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Chapter 5: General Overview 
 

5.1 Introduction 

 

The purpose of this overview is to close the thesis by reviewing and concluding the 

completed research, and drawing out some of its implications for breeding. The study 

was conducted with the objective to enhance productivity of QPM cultivars in 

smallholder and commercial maize sectors in Mozambique by improving the 

resistance to DM and MSVD of three QPM populations. The following research 

hypotheses were tested: 

b) Farmers’ preferences correspond to the characteristics that breeders select 

for; 

c) Resistance to DM and MSVD in QPM populations can be improved by using 

recurrent selection without compromising other important traits. 

 

5.2 Research findings 

 

Farmers’ preferences 

Manica district  

Farmers in Manica district preferred maize varieties that are tolerant to DM, MSVD, 

drought and insect pests particularly stalk borers.  Farmers also wanted sweet tasting 

varieties and flint grain types which they thought stored better and were easier to 

process (poundability) than dent types commonly used in improved varieties. As a 

result most farmers used recycled seed from previous generations because they said 

improved varieties did not always meet these criteria. Breeding programmes in 

Mozambique have mostly targeted improving yield and disease resistance 

particularly DM, MSVD and gray leaf spot (GLS). Therefore many of the traits 

preferred by farmers have not have not concentrated on farmer preferred traits 

included in breeding objectives. The findings of this study should be used to 

formulate new breeding objectives in Mozambique which incorporate farmer 

preferred traits particularly drought tolerance, weevil resistance, stalk borer 

resistance, flint grain type and sweet taste. This might partly address the low 

adoption rates of improved varieties in this district. 
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Angonia district 

 

Farmers in Angonia district preferred high yielding varieties with good husk cover to 

avoid ear rots, flint grain type which was also thought to improve storage of the grain, 

resistance to diseases and pests and sweet taste. The sweet taste identified in both 

districts is probably because of the common practice of roasting or boiling the maize 

still at the soft dough stage for consumption. The differences in varietal preferences 

between the districts were due to environmental conditions where Angonia district is 

a better maize production environment than Manica district. However, like in Manica 

district, some of the farmer preferences in Angonia are not part of breeding 

objectives in Mozambique.  In the case of Angonia district breeding objectives extra 

objectives cited include high yield potential and good husk cover in addition to 

flintiness, sweet taste, disease and pest resistance. 

 

The implications of outcomes from this study are that farmer preferences will vary 

depending upon their environmental conditions. Results from this survey will help to 

formulate breeding objectives targeting specific environments where differences 

occur. In both districts most farmers were not aware of QPM varieties and the 

benefits they could bring to the consumers. The few farmers who had some 

information on QPM varieties thought that they were more susceptible to disease 

both in the field and in storage than ordinary maize. There is a need for promotion of 

QPM varieties because these are the communities likely to benefit most from the 

nutritional advantages offered by these varieties. 

 

Adoption of the improved varieties 

 

Farmers in Mozambique have special preferences such a taste, size of cobs, good 

husk cover,and grain flint type that breeders have not take seriously in the 

developing a new variety. These preferences are part of the reasons farmers do not 

readily adopt improved varieties even if they have important traits such as resistance 

to diseases. A way to achieve higher adoption rates of new cultivars is to involve 

farmers from the beginning of the breeding programme. By Involving farmers from 

early breeders can appreciate and comprehend farmer’s preferences and include 

them in their selection process. However this is expensive and there may be 
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problems of ownership of the variety at the end of the breeding process. Another 

reason for the low adoption of improved varieties in Mozambique by farmers is 

unavailability of preferred improved seed, lack of cash to purchase improved seed 

among other reasons. The challenge is that before the release of the variety, 

evaluation process in different environments must be conducted  by breeders and 

other stakeholders such as Non-Governmental Organisations (NGOs), Projects and 

farmers’ associations so that at the end the breeders will be able to recommend the 

variety for the appropriate environment. A strong seed industry must be in place to 

provide improved seed to the market and to the farmers. 

 

Implication for the response to selection 
 

The good response to selection for both DM and MSVD in the three QPM 

populations implies that there is inherent quantitative resistance genes for both 

pathogens which can be exploited by selection. There is therefore scope for the 

generation of durable resistance in these populations through recurrent selection. 

Yield and other correlated traits improved due to selection showing that these traits 

were not compromised as a result of the improvement in disease resistance of the 

populations. In addition, genetic variances and heritability estimates generally 

increased for the primary traits under selection and the other related traits. Increased 

genetic variances between cycles was probably due to the large number of S1 

progenies (>500) included in forming the next cycle. The implications are that 

continued selection will result in further improvements in these populations provided 

large numbers of progenies are advanced to the next cycle.  

 

New developed QPM populations 
 

Six new QPM populations were developed in this study. Sussuma DMR (Sussuma 

downy mildew resistant), Sussuma SVR (Sussuma streak virus resistant), ZM521Q 

DMR (ZM521Q downy mildew resistant), ZM521Q SVR (ZM521Q streak virus 

resistant), Pop62SRQ DMR (Pop62SRQ downy mildew resistant), and Pop62SRQ 

SVR (Pop62SR streak virus resistant). These new populations will be evaluated in 

different locations in Mozambique. At least two seasons of evaluation will be carried 

out before release and making available for marketing to the farmers. The short term 

challenge is to produce adequate seed of these populations and to make them 

available to the farmers, in conjunction with a strong promotion effort to bring 
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awareness to the farmers about QPM varieties per se and improved DM and MSVD 

diseases in these populations. The improvement in flintiness observed in these 

populations during selection should make them attractive to farmers because this 

was identified as a farmer preferred trait. In the long term, breeders should 

incorporate the other traits identified by farmers into these populations to improve 

their adoption. Efforts should be made to improve these populations by incorporating 

drought tolerance,, ear rot resistance, and further improvement of flintiness, weevil 

resistance and sweet taste, among other traits. In order to fully capture farmer 

preferences needed for inclusion in the breeding objectives, PRA studies should be 

conducted in the different agro-ecological zones in the country.  
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