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A Note of Introduction 

This thesis reflects two essentially independent projects completed in fulfilment of the requirements 

for the degree of Masters of Science, and found under the same cover. Consequently, they are 

presented in Chapter A and Chapter B of the manuscript. The reason for such “doubling-up” is 

explained later in the thesis (at the end of Chapter A). As the contents of Chapter A and Chapter B are 

largely independent and are bound only by the common theme of oxime-and-amide ligands pursued 

in our research group, we decided to introduce independent numbering of figures, tables, schemes, 

references, and compounds in each of these chapters. 
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Abstract for Chapter A 

In this part of the thesis our intention was to pave the way for the synthesis of pentadentate ligands 

with the bis-chelate methyl-hydroxyacetamide binding centre augmented with a flexible pendant arm 

that may provide additional coordination from an axial direction (scorpionate action), Fig. 4. 

Analysis of the possible synthetic approaches revealed that to realise a variety of ligands with the 

above features, a class of key intermediate compounds will have to be prepared, namely, 1,3-

diaminopropanes with a flexible arm of variable length bearing terminal nucleophile and grafted on 

the C2-carbon, Figure 5. In principle, the synthesis of substituted 1,3-diaminopropanes can be achieved 

through a number of routes, Schemes 1A-6A, of which in present work we explored two. 

In total, we have synthesised eleven compounds, five of them new: 2,2’-(2-hydroxypropane-1,3-

diyl)bis(1H-isoindole-1,3(2H)-dione) (2), 2,2’-(2-bromopropane-1,3-diyl)bis(1H-isoindole-1,3(2H)-di-

one) (3), [2-(benzyloxy)ethyl]propanedinitrile (22a), [3-(benzyloxy)propyl]propanedinitrile (22b) and 

2-(2-hydroxyethyl)propane-1,3-diaminium dichloride (24a). Previously known compounds were 

characterised by 1H and 13C NMR spectroscopy. New compounds were characterised by complete 

range of instrumental techniques described in Chapter A. 

Pivotal 2-(2-hydroxyethyl)alkyl-1,3-diaminium dichloride precursor (24a) was synthesised via benzylic 

mono-protection of diols, followed by bromo-de-hydroxylation, alkylation of malononitrile at the C2 

carbon with the intermediate prepared, deprotection, and catalysed hydrogenation. The reduction 

proved to be persistently difficult, and highly hydroscopic diamine hydrochloride salt formed in rather 

low yield. 

An alternative route, emanating from bromo-de-hydroxylation of (2) into (3), was briefly explored but 

abandoned due to a regrettable oversight. As a matter of fact, the synthesis of (3) was accomplished 

successfully, and the routes that rely on this or similar Boc-protected intermediate (13), in retrospect, 

are probably the most promising ones. 
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Abstract for Chapter B 

In this part of the thesis we set out to synthesise new class of the bis-chelate N,N'-alkane-

1,x-diylbis[2-cyano-2-(hydroxyimino)ethanamide] ligands, Fig. 6, with a variable length and nature of 

polymethylene bridge (ethyl, methyl, butyl and 1,3-diaminopropyl-2-ol) between the two 

cyanohydroxyiminoacetamide moieties. Prior to our work only one such ligand was reported in 

literature. These new compounds were synthesised for future studies of their thermodynamics of 

protonation and metallation with a range of transition metals. 

In total, we have synthesised nine compounds in this chapter, of which three are new (5a, 5c, and 5d). 

Previously known compounds were characterised by 1H and 13C NMR spectroscopy. All new 

compounds were characterised by complete range of instrumental techniques described in Chapter B. 

Two routes towards the synthesis of desired ligands were explored, and the path that relies on the 

intermediate bis-amides, Scheme 15 path A, turned out to be successful. 

In particular, 

a) three of the four bis-cyanoamide precursors were synthesised in solvent medium, with the yield 

of 67% (4a), 76 % (4b) and 66 % (4d); the remaining bis-cyanoamide (4c) was synthesised in 87 % 

yield using a solvent-free procedure, 

b) all four desired bis-cyanoxime-and-amide ligands (5a-d) were prepared successfully in 3.6, 24, 6.6 

and 6.2 % yield, respectively. 

For two representative compounds, N,N’-ethane-1,2-diylbis(2-cyanoacetamide) (4a) and N,N’-ethane-

1,2-diylbis[2-cyano-2-(hydroxyimino)ethanamide] (5a), we were able to obtain suitable single crystals 

and to determine their molecular and crystal structure by X-ray diffraction. Both crystals structures are 

the first of their kind. 
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In recent years the interest in the research group to which I belong, the group Prof I Nikolayenko, is 

focused on the synthesis, characterisation, and both solid state and solution studies of the mono- and 

bis-chelate ligands with the hydroxyiminoacetamide (HIAA) moiety, Figure 1, as well as their metal 

complexes with late 3d-transition metals. 

O

OH

R2

NH

R1

N

 

Fig. 1. Generic structure of a ligand with hydroxyiminoacetamide (HIAA) chelating moiety 

(highlighted). 

There are four donor centres in the HIAA moiety, two oxygen atoms and two nitrogen atoms, which 

leads to a large variety of metal complexes, depending on the pH and metal to ligand ratio. When two 

such moieties are joined by a flexible polymethylene bridge, one is faced with bis-chelate ligands. 

One stable isolatable and persistent mono-nuclear complex of a ligand with propane bridge is that of 

MLH-3 stoichiometry. It corresponds to triply deprotonated pseudo-macrocyclic structure, and forms 

at equimolar metal to ligand ratio in the pH range from weakly acidic to strongly basic (exact range is 

metal dependent). A representative structure of such complex is shown below, Figure 2. 

A few examples of the TM-mhiaa2p complexes, with Ni(II) and Cu(II), were reported in literature prior 

to the work of our group.[1] Both are of the above MLH-3 type, and are characterised by the following 

attractive features. First, the ligand in the complex is folded to provide square-planar 2Nox2Nam 

coordination environment around the metal, and the steric strain on the bridge is relieved by adopting 

an envelope conformation (the middle methylene group of the spacer is out of plane in an otherwise 
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nearly perfectly planar complex). The square-planar complex structure is assisted by the fact that both 

chelating units are already planar in free ligand, due to the π-conjugation of oxime and amide groups. 

The complex is further stabilised by the formation of a pseudo-macrocyclic structure as a result of 

hydrogen bonding between one protonated and one deprotonated oxime group. 

Cu
2+

O
- N

O

N
-

N
-

O

N
O

H

 

Fig. 2. The structure of a stable Cu(II)-N,N'-propane-1,3-diylbis[2-(hydroxyimino)propanamide] 

(mhiaa2p) complex (MLH-3 type). 

High thermodynamic stability and attractive geometric features of such complexes prompted 

conceptual idea of this project. 

In the early 1990’s Kimura[2] discovered that Ni(II)/Ni(III) complex of a pentadentate tetrapodal ligand 

dioxopentamine, Figure 3, was capable of oxidising benzene to phenol under very mild conditions. 

Essential feature of such square-pyramid binding is squeezing of the metal ion into a higher oxidation 

state (as its reduced ionic radius allows better orbital overlap and hence stabilizes the complex), while 

still allowing a substrate access to the metal centre from an unoccupied axial direction. Both of these 

features are essential for the catalysis.  

NH

Ni

NH NH

NN

O O

 

Fig. 3. Kimura’s catalytically active Ni(II)/Ni(III)-cyclic dioxopentamine complex. 

In view of what has been said above, the conceptual idea for this project was to augment attractive 

square-planar 4N binding centre of the bis-chelate oxime-and-amide ligands with additional mono-

dentate binding to the transition metal centre from one axial direction. As we have discussed, 

M-(hiaa2pH-3) complexes adopt envelope conformation on the bridge when the ligand is coordinated 
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to Ni(II) or Cu(II) in pseudo-macrocyclic triply deprotonated MLH-3 fashion; grafting a pendant flexible 

arm equipped with a terminal nucleophile group in the centre of polymethylene bridge should lead to 

square pyramidal* coordination, Figure 4.  

M
2+

O
- N

O

N
-

N
-

O
NO

H

Nu

 

Fig. 4. A concept of the metal complex with tetrapodal oxime-and-amide binding site augmented 

with a scorpion action. 

Once synthesised, such ligands are expected to form stable metal complexes where pressure is exerted 

on the metal centre to reduce its ionic radius, improve orbital overlap, and thus stabilize higher 

oxidation state. At the same time, free access of a substrate to the metal ion is still possible from the 

side opposite to the one where terminal nucleophile bites.  As we have mentioned earlier, both of 

these features are desirable for an oxidation catalysis. 

Consequently, the ultimate aim of the project was to develop ligands of this kind, prepare their metal 

complexes, and test for catalytic activity in the oxidation reactions. 

In view of the preferred donor atoms for late transition metals, we thought that terminal hydroxyl or 

amino group might work well. As far as geometrical considerations for a pendant arm are concerned, 

a chain of two to four methylene groups† terminated in a suitable nucleophile and grafted on the C2 

carbon of the ligand bridge should give the most favourable coordination geometry. 

It soon became obvious that to realise a variety of ligands with the above features, a class of key 

intermediate compounds will have to be prepared, namely, 1,3-diaminopropanes with a flexible arm 

of variable length bearing terminal nucleophile and grafted on the C2-carbon, Figure 5. 

                                                           
* In some literature it is called pentadentate tetrapodal coordination, though almost always it is associated with 

heterocyclic species. We prefer to call such coordination geometry square-pyramidal (when it is well defined) 

or scorpionic in general. The term arises from the scorpion’s ability to hold its prey with its pincers and to sting 

and inject venom from above with its tail; in our c ase, the pincers are equivalent to planar bis-chelate part of 

the ligand, and the tail represents the pendant fle xible arm responsible for the axial coordination.  

† One of them could be an amino group as it is more accessible synthetically. 
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NH2 Nu

n

n = 0, 1, 2
 

Fig. 5. Key synthetic intermediate required for the preparation of ligands with scorpionic action. 

R = CH2 or NH.
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2.1 Oxime-and-Amide Chelates 

An early interest in the metal complexes of multidentate oxime-and-amide donor ligands, similar to 

the kind discussed in this thesis, is traceable to their ability to catalyse hydrolysis of acetyl phosphate.[3] 

Acetyl phosphate decomposition is an important model reaction from a biological perspective as it 

mimics a step of the key energy transfer cycle, namely, conversion of adenosine triphosphate, ATP, to 

adenosine diphosphate, ADP.[4] 

N

N
N

N

O
O

O

OH

O

O

OH

O

O

OH

OH

NH2

OHHO

N

N
N

N

O
O

O

OH

O

O

OH

OH

NH2

OHHO
 

Fig. 6. Adenosine Triphosphate, (ATP), and Adenosine Diphosphate, (ADP). 

Melhado and Gutsche[3] discovered that late transition metal complexes of 5-dodecyltriethylene-

tetramine catalysed acetyl phosphate decomposition. It was established that free ligand had no effect 

on the reaction rate. In the presence of Zn(II) ions the rate of acetyl phosphate decomposition 

decreased compared to that of the free ligand, for Ni(II) ions it remained unchanged, while in the 

presence of Cu(II) ions a two-fold increase in the rate was observed. Consequently, it was concluded 

that catalytic action is associated with the presence of a metal complex. Further work, published by 

Lau and Gutsche,[5] explored these findings further. The focus of that extended study was to look at 

the effect the addition of a nucleophile, attached to the N-terminus of triethylenetetramine, would 

have on the reaction rate.[5] 

The concept of possible catalytic action according to Lau and Gutsche[5] is illustrated by Figure 7. 

Of particular interest to the work carried out in our group was a Cu(II)-oxime-and-amide complex that 

showed ten-fold  increase in catalytic activity in comparison to free ligand,[5] Figure  8. Two possible 

mechanisms, postulated by the authors, are shown in this Figure; both of them are conceivable as 

nucleophilic groups are present at both ends of the ligand. Some years later Gutsche and Mei[6] 

synthesised a symmetric bis-chelate ligand with a long aliphatic chain attached to the spacer to make 

it soluble in lipid layers and micelles, 1-undecyl-N,N’-bis[(2-hydroxyimino)propanol]ethylenediamine,  

Figure 9. 
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Fig. 7. Reaction mechanism of the complex-catalysed hydrolysis of acetyl phosphate initially 

suggested by Lau and Gutsche.[5] 
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Fig. 8. Alternative reaction mechanisms suggested in[5] for the hydrolysis of acetyl phosphate, when 

catalysed by the Cu(II)-complex of oxime-and-amide ligand with a terminal nucleophile. 

Ten-fold increase in reaction rate in comparison to free ligand was observed in this case.  

OH
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O

NH

O

NH

9

 

Fig. 9. 1-Undecyl-N,N’-bis[(2-hydroxyimino)propanol]ethylenediamine ligand.  

Similar approach to the testing of effects of the presence or absence of transition metal complexes on 

the rate of acetyl phosphate decomposition was undertaken. Substantial positive catalytic activity was 

confirmed for the free ligand and its complexes with Ni(II), Cu(II), and Zn(II),[6] though, the last one has 

never been isolated or characterised. These results pointed to a possibility of advancement in the 

ligand design. Again, two mechanisms were proposed for the catalytic action, with the first being very 

similar to previous suggestions, Figure 10. 
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Fig. 10. Transition metal complex of 1-undecyl-N,N’-bis[(2-hydroxyimino)propanol]ethylenediamine, 

and proposed reaction mechanisms for the catalysed decomposition of acetyl phosphate. 

According to the first mechanism, the 1-undecyl-N,N’-bis[(2-hydroxyimino)propanol]ethylenediamine 

metal complex acts as a catalyst under basic conditions; in the presence of the chelated oxime an acyl 

transfer to the oxime oxygen occurs, followed by rapid hydrolysis of oxime acetate. 

According to the second mechanism, the complex in question can be considered as a phosphatase 

mimic, as it catalyses the transfer of the acetyl group from acetyl phosphate to water. In the latter 

case, the oxime abstracts a proton from an appropriately positioned water molecule. This, in turn, 

generates a hydroxide in the vicinity of acetyl phosphate, and liberates acetic acid directly without the 

formation of an acyl intermediate.[6] 

The field remained relatively quiet for the next decade. In 1995 Onindo et al[7] published a study of 

N-pyruvoylaminoacid oximes, (CH3C(=NOH)CONHRCO2H), in an attempt to gain better understanding 

of the metal-protein interactions. These ligands were structurally similar to dipeptides but for the 

oxime moieties in place of the amino groups. Solution equilibrium studies indicated the formation of 

a range of stable Cu(II)-complexes of N-pyruvoylaminoacid oximes. The analysis of solid state 

structures of these complexes revealed that such ligands are ambidentate and that their coordination 

properties are highly influenced by the CH3C(=NOH)CONH planar framework, which leads to the 

formation of nearly planar complexes. Two principal chelation modes were established for Cu(II) 

cation: a) N(oxime),N(amide) chelation and b) conformationally altered N(oxime),O(carbonyl) 

chelation.[7-8] With the knowledge that the CH3C(=NOH)CONH moiety strongly chelates Cu (II)-ions, let 

us now have a closer look at the individual functional groups involved. 

2.1.1 Coordination Chemistry of the Oxime Group 

Oxime or hydroxyimino functional group consists of a nitrogen atom on one side double-bonded to a 

carbon and on the other side bearing a hydroxyl. The general formula for oximes is R1R2CN=OH, and 

they can act both as weak acids and weak bases. Hydroxyimino group is a very weak acid, with typical 



MSc Thesis 2014 Chapter A 

8 

 

pKa values in the range from 8 to 12, and is fully deprotonated only in alkaline solutions. Oxime nitrogen 

is a very weak base; it can be protonated but only in highly acidic medium at pH less than 1. From a 

geometrical point of view, the most stable conformation for an oxime is the one shown below, with 

three lone electron pairs located on the oxygen and nitrogen atoms, Figure 11. 

N

R1 R2

O

H

 

Fig. 11. Generic view of an oxime, illustrating spatial location of the lone pairs that are available for 

metal coordination. 

The structure is commonly planar unless distorted by bulky substituent groups R1 and R2. Two lone 

pairs carried by the oxygen atom are out of plane of the molecule, while the nitrogen lone pair is in 

plane. Presence of these lone pairs and the ability of the oxime groups to deprotonate account for the 

metal coordination in a number of modes. Coordination can occur in monodentate manner to oxime 

nitrogen[8] or oxime oxygen,[9] in chelate manner to N-O unit by the same metal,[10] or in a bridging 

manner when two different metal centres are simultaneously coordinated to the N-O pair.[11] Metal 

coordination tends to be stronger for deprotonated oximes.[12] The ability to form hydrogen bonds 

adds to the appeal of oxime group as a building block in ligand structures, and helps with the formation 

of crystal lattices. Conventionally, oximes are synthesised via acid or base catalysed hydroxylamination 

of active methylenic carbons.[13-16] 

2.1.2 Coordination Chemistry of the Amide Group 

Amides are exceptionally well studied compounds in view of their significance for the polypeptide and 

protein chemistry. Conventionally, they are formed in the reaction between an acyl halide and an 

amine, or via condensation of an ester with primary amine.[17-18] Geometrically their structure is also 

planar, with the lone electron pair on nitrogen atom occupying  pz-orbital perpendicular to the plane 

of the amide group, Figure 12. Two more lone pairs are resident on the carbonyl oxygen and both are 

in plane of the amide moiety. 
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O

R1 N

R2

H   

O

R1 N

R2

H  

Fig. 12. Generic representation of the amide group illustrating special location of the lone pairs on 

oxygen and nitrogen atoms.* 

The amide group is an exceptionally weak acid, with pKa ≥ 15. Consequently, ionisation of the amide 

hydrogen is not observed in aqueous solutions of free amides but does happen in the presence of 

metal ions, when the formation of a metal complex compensates for the thermodynamically 

unfavourable cleavage of the N-H bond.[15] 

The amide group has two donor centres, O and N, and can coordinate to metals through both of them. 

When the amide hydrogen is ionised, N-donor centre becomes significantly more nucleophilic. In 

addition, the lone pair on N-centre bodes well for the formation of hydrogen bonds.1 

2.1.3 Coordination Chemistry of the HIAA Moiety 

Combining oxime and amide functionalities in one unit, in an oxime-and-amide or as we prefer to call 

it HydroxyIminoAcetAmide (HIAA) moiety, Figure 13, does not simply add up their individual properties 

but also confers new structural and functional features onto it in a synergetic manner. 

The first of these new features is almost perfect planarity of the moiety, caused by π-conjugation 

across the whole -N=C–C(=O)–N- framework, as each of the mentioned atoms has an electron in the 

pz-orbital perpendicular to the plane of the molecule. Any rotation around indicated bonds will disrupt 

such planarity, reduce the π-orbital overlap and destabilise the structure. The second feature is the 

intramolecular hydrogen bonding of the amide proton to the oxime nitrogen as shown in Figure 13. 

These two features combined lead to the conformational shape shown above, namely, E-type 

arrangement of the double bonds. This has been confirmed by us both in direct structural studies 

(single crystal XRD) and quantum mechanical calculations at high level of the DFT (see later in the 

Experimental section). 

                                                           
* Formally, an amide may contain yet another substituent group on the nitrogen atom. Only R1 and R2 

substituents are shown in Figure 12 because in the scope of current thesis the third group is always hydrogen. 
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Fig. 13. Generic structure of a ligand with 2-methyl hydroxyiminoacetamide (HIAA) chelating moiety. 

There are four donor centres in the HIAA moiety, two oxygen atoms and two nitrogen atoms, which 

lead to a large variety of metal complex structures depending on the pH and metal to ligand ratio, 

Figure 14. 
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Fig. 14. Various coordination modes of the metal ions by MHIAA moiety, including an illustration of 

the geometrical need for amide deprotonation to achieve N(ox)N(ad) chelation. 

In summary, the following attributes can be assigned to the HIAA chelating unit. It is ambidentate and 

can bind through N(ox) and O(ad) in regions of low pH, where both the oxime and amide groups are 

still protonated (note that amide proton blocks the N(ox)N(ad) metal chelation). At higher pH 

deprotonation of the oxime group occurs, enabling the coordination through O(ox). In the presence of 

a suitable metal in this pH region the amide proton can also be ionised, leading to the N(ox)N(ad) 

chelation. In addition, coordination through oxime oxygen allows the bridging of two metal centres, as 

shown in Figure 14, right-hand side structure. 

2.1.4 Coordination Chemistry of the HIAA bis-Chelates 

Naturally, with the knowledge of HIAA moiety being favourable binding site for the transition metal 

coordination, further work led to the preparation of bis-chelate ligands of this nature. 

The first ligand of this kind, N,N’-bis(2-hydroxyiminopropionyl)ethylendiamine, was synthesised in 

1978 by Lau and Gutsche.[5] In 1997 Duda et al[1] reported the preparation of 

N,N’-bis(2-hydroxyimino-propionyl)propane-1,3-diamine ligand. The interest in these types of ligands 

at the time was due to the fact that dioximes had been used extensively in analytical chemistry and 
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metallurgy as very efficient complexing agents. It was thought that ligands including HIAA functionality 

would also prove to be effective chelates. Duda et al[1] performed potentiometric and spectroscopic 

investigation of the new ligand, N,N’-bis(2-hydroxyiminopropionyl)propane-1,3-diamine, Figure 15, as 

well as its Ni(II) and Cu(II) complexes. 

N

O

NH

CH3

OH OH

N

O

NH

CH3

 

Fig. 15. N,N’-Bis(2-hydroxyiminopropionyl)propane-1,3-diamine. 

Their study indicated tetradentate 2N(ox)N(ad) coordination in square-planar pseudo-macrocyclic 

structure for both Ni(II)- and Cu(II)-complexes,[1] Figure 16, assisted by the deprotonation of oxime and 

amide groups. 

Cu2+

O- N

O

N-

N-

O

NO

H

CH3

CH3  

Fig. 16. The structure of Cu(II)-N,N'-propane-1,3-diylbis[2-(hydroxyimino)propanamide] (mhiaa2p) 

complex (MLH-3 type). 

N(ox)O(ad) chelation mode was reported a year later[8] for Cu(II)-N,N’-bis(2-hydroxyiminopro 

pionyl)butane-1,4-diamine complex, which was isolated in the solid state. XRD structure of this 

complex was entirely different, representing di-copper di-ligand arrangement.[8] In this new complex 

two Cu(II)-ions are sandwiched between two relatively linear ligands, forming a stepwise structure. 

Each copper ion is chelated by two N(ox)O(ad) moieties that belong to two different ligands. Such 

coordination arrangement highlighted the importance of dimers in these types of systems.[8,20] 

To reiterate, the solid state studies of the Ni(II)- and Cu(II)-complexes with N,N’-bis(2-hydroxyimino-

propionyl)propane-1,3-diamine revealed square-planar coordination; the ligand being triply 

deprotonated with the remaining oxime proton stabilising the pseudo-macrocyclic structure by 

hydrogen-bonding to the deprotonated oxime terminal. Conformation of the propane bridge in the 

complex was “flap of the envelope” type, with the middle methylene group significantly out of plane 
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of the complex.[1] N,N'-Bis[(3E)-3-(hydroxyimino)-2-methylbutan-2-yl]propane-1,3-diamine and two 

analogues with variable length of the methylene bridge were also synthesised.[19] Thermodynamic 

stability of their Cu(II)-complexes was studied by potentiometry, and the results confirmed the peak 

of stability for the ligand with the propane bridge.[19] The reason for this is the relief of the steric strain 

on the bridge and the optimum bite angle for the metal centre. 
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2.2 Metal Complexes in Oxidation Catalysis 

The concept of catalysis was first introduced by Jons Jacob Berzelius in 1835. He rationalised a number 

of isolated scientific observations made by members of the scientific community and postulated the 

existence of substances that “awaken affinities, which are asleep at particular temperatures by their 

mere presence and not by their own affinity”. He called this phenomenon “catalytic power”. The 

concept of catalysts and their behaviour was debated for almost a century without much of clear 

understanding.[21-22] Modern interpretation of the catalytic action is, probably, traceable to the close 

inspection of the Deacon “Chlorine process” by Falkenstine, who in 1906 outlined the following 

features of catalytic behaviour: ”… the catalysis was perceived as operation to produce equilibrium in 

a system more rapidly than could be achieved in the absence of a catalyst. However, the catalyst could 

not shift the equilibrium position; it was independent of the catalyst’s nature”.[21] 

The concept that metal complexes may act as catalytic centres in, say, oxidation reactions (which is 

essentially behind this chapter of the thesis), stems from the study of electrochemical and structural 

behaviour of Ni(II) macrocyclic dioxopentaamines.[2] It was determined that in the Ni(II) macrocylic 

pentamine complex, Figure 17, Ni(II) is high spin with the square-pyramidal coordination geometry 

around it, and the complex has half-wave redox potential for the Ni (III)/Ni (II) couple,
1 2

E
Ο

, of 0.66 V. 

In comparison, in the Ni(II) cyclo dioxotertamine complex, Figure 18, Ni(II) is low spin, coordination 

geometry is square-planar, and 
1 2

E
Ο

 value is 0.81 V. 

NH

Ni

NH NH

NHNH

 

Fig. 17. Ni(II) macrocylic pentamine complex. 

Ni

N N

NHNH

O O

 

Fig. 18. Ni(II) cyclo dioxotertamine complex. 
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In light of these redox potential values, a complex was synthesised in the Kimura group where the 

ligand combined structural features of the above two ligands, Figure 19. 

NH

Ni

NH NH

NN

O O

 

Fig. 19. Ni(II) macrocyclic dioxopentaamine complex. 

Ni(II)-complex of this new ligand displayed Ni(III)/Ni(II) redox half-wave potential of only 0.24 V under 

the same conditions. This was one of the lowest 1 2
E

Ο

 values ever reported for the Ni(III)/Ni(II) redox 

couple in the macrocyclic polyamine coordination environment in aqueous medium. Such low 

potential represents an easy oxidation of Ni(II) to Ni(III). Solid state XRD studies of both Ni(II)- and 

Ni(III)-complexes were obtained,[2] Figures 20-21, and the following observations made. 

18.4 
o

Ni
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N NH

NHN

O
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N H

 

Fig. 20. Ni (II) macrocyclic dioxopentaamine complex viewed from the side. 

In the square-pyramidal Ni(II) macrocyclic dioxopentaamine complex the steric strain is evident, with 

axial N-donor being at an angle of 18.4° to the optimal axial direction. Oxidation of the metal centre in 

this complex leads to reduction of the metal ion size, better fit into the ligand binding site, and 

significant relief of the steric strain. The solid state structure of Ni(III) macrocyclic dioxopentamine 

complex, Figure 21, shows this relief as the axial N-donor now deviates only by 7.7° from the axis 

perpendicular to the complex plane.[2] Consequently, the lower oxidation state of the metal centre, in 

this case, Ni(II), is destabilised by the steric strain, while the higher, Ni(III), oxidation state is stabilised 

by its relief in the complex. Both phenomena contribute to the extremely low value of the redox 

potential. 
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Fig. 21. Ni (III) macrocyclic dioxopentaamine complex viewed from the side. 

Interestingly, the above Ni (II) complex is able to bind dioxygen, O2 (g), and to catalyse oxidation of 

toluene to phenol at room temperature and atmospheric pressure,[2] very mild reaction conditions in 

comparison to the ones employed at present in the industrial manufacture of phenol.[23]  

The concept of imposing steric strain on a transition metal centre in a complex with square-pyrimidal 

environment seems enhanced and even more attractive with the ligands of interest to our research 

group, Figure 22, for the following reasons: 

1. Bis-chelate HIAA ligands easily form complexes of square-planar geometry of variable 

thermodynamic stability with a range of different transition metals. 4N equatorial coordination 

environment anchors the metal centre, while its planarity is conducive to the approach from 

both axial directions; that is by the fifth nucleophilic group and catalysed reaction substrate. 

2. The length and conformation of the spacer that separates two chelating units determines the 

size of the metal receptor site, resulting in the thermodynamic stability based selectively; metal 

ions of the matching size, will bind the strongest. 

3. Formation of the strong and short hydrogen bond between a deprotonated and a protonated 

oxime terminal adds to the complex stability through the pseudo-macrocyclic effect. 

4. The complex stability is strongly pH dependent: 

a) the very nature of the 2N(ox),2N(ad) coordination requires deprotonation of the amide 

nitrogens; the pH at which this happens is strongly metal dependent 

b) for the effect 3 above, partial deprotonation of the oxime terminals is also required. 

5. The fifth donor centre and its scorpionic action account for the stabilisation of a higher oxidation 

state and the destabilisation of a lower oxidation state of the metal in the complex as discussed 

above. This enhances catalytic activity of the complex in oxidation reactions. 
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6. As already mentioned, an unrestricted access by substrate to the catalytic centre from the 

“South Pole” axial direction is essential feature of a functioning catalytic system. 
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Fig. 22. Generic view of the metal complex of hydroxyiminoacetamide (HIAA) bis-chelate ligand with 

a propane bridge, functionalised with a scorpionic arm terminated in a nucleophile. The key 

to the numbers on the figure is as follows: 

1. Oxime-and-amide moieties are planar due to the double-bond conjugation. 

2. The length and conformation of the bridge between two chelate moieties determines 

the metal receptor size. 

3. Intramolecular H-bond between two oxime groups completes pseudo-macrocyclic 

structure and adds to the complex stability. 

4. Pendant arm with a terminal Nu-group, grafted on the spacer like a scorpion’s tail, is 

essential for the steric stress on metal a centre in the complex. 

5. The “South Pole” axial direction is free for the access of reaction substrate and the 

removal of reaction intermediate or product.† 

With the above in mind, we set out to synthesise new ligands with an expectation that their metal 

complexes might exhibit catalytic activity. 

We shall conclude this brief literature survey by mentioning that in recent years work has started on a 

class of tetrapodial pentadentate, MAE4, (M = Metal, A = Axial nucleophile, E = Equatorial nucleophile), 

complexes. The authors’ interest in ligands of this nature is linked to mimicking biological systems, 

such as hemes, in the oxidation of alkanes.[24] In addition, Wiedemann et al[25] have recently published 

a paper, where they are applying the above principles to the preparation of photo-electrochemical 

sensors. 

                                                           
† Although only substrate access has been discussed here, this site also lends itself to entry and exit of the catalyst 

reactivation agent. 
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3.0 Propane-1,3-diamine as a Key Intermediate 

As discussed previously, recent interest of our research group is focused on the synthesis, 

characterisation, and both solid state and solution studies of the mono- and bis-chelate ligands with 

the (HIAA) moiety; the methyl derivative being of interest to this project. 

O

OH

R

NH

CH3

N

 

Fig. 23. A ligand with 2-methyl hydroxyiminoacetamide (HIAA) chelating moiety (highlighted). 

The synthesis of bis-chelate ligands involves condensation of two equivalents of ethyl-2-(hydroxy-

imino)propanoate (HIPA) with a suitable primary diamine, Figure 24. 

O

OH

O

N

+ NH2 R NH2

2

O

OH

NH

N

O

OH

NH

N

R

 

Fig. 24. Generic scheme of the condensation of ethyl-2-(hydroxyimino)propanoate with a suitable 

primary diamine.[1,15] 

Variation of the length of the bridge between the two chelating moieties allows fine-tuning of the 

ligand binding cavity size to a specific metal ion. Potentiometric studies by Jackson et al[19] on 

N,N'-bis[(3)-3-(hydroxyimino)-2-methylbutan-2-yl]propane-1,3-diamine and its two analogues with 

variable length of the polymethylene linker indicated the propane bridge affording the most stable 

Cu(II)-complex. 

Taking into account that in this project we are interested in the stable Ni(II)- or Cu(II)-complexes of a 

modified ligand, the propane bridge between the two chelating units is a necessary choice. It will give 

the ligand optimum size of the binding site for these metal ions. Consequently, the synthesis of 

derivatised propane-1,3-diamines with a flexible alkyl chain grafted onto the C2 carbon of the propane 
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backbone and terminated with a suitable nucleophile, Figure 25, becomes strategically essential 

synthetic step. 

R

NH2

NH2 Nu 

Fig. 25. Generic structure of propane-1,3-diamine with a flexible alkyl chain grafted onto the 

C2-carbon of the propane backbone and terminated with a suitable nucleophile. 

As will become clear in the following section, once the preparation of derivatised propane-1,3-

diamines is accomplished, the path to the desired ligands is cleared as the rest of the synthetic steps 

is being well practiced by us. However, preparation of the compounds shown in Figure 25 is far from 

trivial. 
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3.1 Synthetic Strategies Considered 

In principle, a number of synthetic strategies can be employed to prepare bis-chelate ligands of interest 

with HIAA-units. Before we outline these strategies, it would be useful to mention a few points of 

general nature that merit consideration: 

a) one has to form the HIAA chelating moiety 

b) then, one has to assemble two of such moieties into a bis-chelate ligand 

c) as has been discussed in 3.0, derivatised propane-1,3-diamine is the key intermediate for point 

b) above. 

From practical perspective, 

d) one has to review available starting materials and 

e) consider the need and sequence of protection/deprotection of the sensitive functional groups. 

Six synthetic routes, potentially leading to the desired ligands, have been considered in this project. 

They are classified on the basis of two factors: 

1. The starting material at the route inception. 

2. The nature of compound to be grafted as a pendant arm on the ligand in a condensation step. 

To simplify the presentation of the proposed synthetic routes, only derivatives with two methylene 

carbons in the pendant arm will be shown. Longer polymethylene chains are also of interest in this 

work and are likely to be synthesised through the same steps, unless stated otherwise. 

Each compound in the following reaction schemes is assigned unique number under which it will be 

referred to everywhere in this thesis. Homologue compounds of similar nature are labelled in alpha-

numerical manner as shown below for aliphatic diols, Figure 26. 

OH

OH

OH

OH

OH OH

(1a) (1b) (1c)
 

Fig. 26. Illustration of the labelling principle for homologue compounds adopted in this thesis. This 

example is for the aliphatic diols. 
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3.1.1 1,3-Diaminopropane-2-ol & 2-Aminoethanol Route 

The only commercially available propane-1,3-diamine derivatised at C2-carbon is 1,3-diamino-

propane-2-ol (DAPOL). In the reaction scheme presented below, Scheme 1, two terminal amino groups 

of the starting compound are first protected with phthalamide, step a; the product is then converted 

into a bromide derivative, step b; then, the desired pendant arm is grafted in a condensation reaction, 

step c; followed by the deprotection, step d; and finally, attachment of two HIAA moieties in yet 

another condensation step, step e. 
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OH

NH

NHNH
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OH

N
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b
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d

e
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O

N

O

O

OH
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O
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O

O

N
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(2)
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Scheme 1. Sequence of the reaction steps for the 1,3-diaminopropan-2-ol and 2-aminoethanol 

route. Reagents required at different stages as well as essential external conditions are as 

follows: a) Phthalic anyhydride, b) HBr/CBr4PPh3, c)HOCH2CH2NH2, d) pH 12, RT, e) CH3C(=NOH)COOC2H5. 



MSc Thesis 2014 Chapter A 

21 

 

3.1.2 1,3-Diaminopropane-2-ol & t-Butyl(2-aminoethyl)carbamate 

Route 

This route is similar to the previous one but for the diamine to be grafted as a pendant arm instead of 

aminoalcohol, Scheme 2. The major difference is that the terminal amino-group of the pendant arm 

has to be protected to prevent formation of the undesirable side-products in steps c and d; final step 

f represents removal of the Boc-protection. 

e
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N

O

O
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O
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O
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N
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O
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Scheme 2. Sequence of the reaction steps for the 1,3-diaminopropan-2-ol & t-butyl(2-aminoethyl) 

carbamate route. Reagents required at different stages as well as essential external 

conditions are as follows: a) Phthalicanyhydride, b) HBr/CBr4 PPh3, c) HN2CH2CH2NH-Boc, d) LiAlH4, 

e) CH3C(=NOH)COOC2H5, f) HCl. 
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3.1.3 1,3-Diaminopropane-2-ol & 2-Aminoethanol Route 

This route is nearly identical to route one but for the Boc-protection of the starting diamine instead of 

the phthalamide protection, Scheme 3. It has its potential advantages, in particular, in steps b and c, 

which will be discussed later. 
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OH
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(1) (12)

(13)

(14a)(5a)

(6a)  

Scheme 3. Sequence of the reaction steps for the 1,3-diaminopropan-2-ol & 2-aminoethanol route. 

Reagents required at different stages as well as essential external conditions are as 

follows: a) Boc, b)  CBr4/PPh3, c) HN2CH2CH2OH, d)LiAlH4, e) CH3C(=NOH)COOC2H5. 
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3.1.4 1,3-Diaminopropane-2-ol & 2-(2-Aminoethyl)-1H-isoindole-

1,3(2H)-dione Route 

This route is similar to route three but for the diamine to be grafted as a pendant arm instead of 

aminoalcohol, Scheme 4. It was also considered an advantage to protect the terminal amino-group of 

the pendant arm with phthalamide, as it will remain in place in step d; that should reduce the formation 

of undesirable side-products in step e. Final step f represents removal of the phtalamide protection. 
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Scheme 4. Sequence of the reaction steps for the 1,3-diaminopropan-2-ol &2-(2-aminoethyl)-1H-

isoindole-1,3 (2H)-dione route. Reagents required at different stages as well as essential 

external conditions are as follows: a) Boc, b) CBr4/PPh3, c) HN2CH2CH2OH d) pH 1, RT, 

e) CH3C(=NOH)COOC2H5, f) pH 1, 100 ○C. 
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3.1.5 Malononitrile & Ethane-1,2-diol Route 

This route entails the use of malononitrile as the starting compound, Scheme 5. In the first step a diol 

is mono-protected with benzyl bromide; the product is then converted to a bromide derivative, step 

b; followed by the condensation with malononitrile, step c. Then, the product is reduced to a 

derivatised 1,3-propanediamine; followed by the deprotection of alcohol group, step e; and finally, 

two HIAA moieties are attached in yet another condensation step, step f. 

OH
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Scheme 5. Sequence of the reaction steps for the malononitrile & ethane-1,2-diol route. Reagents 

required at different stages as well as essential external conditions are as follows: a) benzyl 

bromide, b) HBr/CBr4 PPh3, c)NCCH2CN  t-BuOK, d) LiAlH4, e) Pd/C H2, f) CH3C(=NOH)COOC2H5. 
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3.1.6 Malononitrile & 2-Bromoethanamine Route 

This route is similar to that of Scheme 5 but for a bromoamine being used in place of the diol, Scheme 

6. In the first step amino-group is protected with Boc, step a; followed by the condensation with 

malononitrile, step b. Then, the product is reduced to a derivatised 1,3-propanediamine; followed by 

the attachment of two HIAA moieties in yet another condensation step, step d; and finally, the removal 

of Boc protection, step e. 

Br
NH

2
Br

NH

O

O

N
NH

O

O

N

NH
2

NH

O

O
NH2

OO

NH

NH

NHNH

OH

N

OO

OH

N

a

b

c

d

e

NH2

NH

NHNH

OH

N

OO

OH

N

(26a) (27a)

(28a)

(29a)(30a)

(31a)

 

Scheme 6. Sequence of the reaction steps for the malononitrile & ethane-1,2-diol route. Reagents 

required at different stages as well as essential external conditions are as follows: a) Boc 

protection, b) CNCH2CN  t-BuOK, c) NaBH4, d) CH3C(=NOH)COOC2H5, e) HCl. 
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3.2 Literature Review of the Chemistry of Synthetic Steps 

3.2.1 Protection of Functional Groups 

In the process of a multistep organic synthesis steps are often undertaken to derivatise certain 

functional groups in a molecule sequentially, one at a time, for which suitable reagents are chosen. It 

is not uncommon, upon completion of a particular step and analysis of results, to discover that in 

addition to the desired change other functionalities in the molecule have been modified. The solution 

to this problem is the protection of sensitive functional groups by suitable agents (during those steps 

when they may be altered) and removal of such modifications at the end of the multistep synthesis 

(deprotection). The choice of a suitable protection group is not a trivial one; it has to be inert or 

relatively inert towards all reagents and products in the reaction scheme between the stages of 

protection and deprotection. Additional problem arises when a molecule has two identical or similar 

functional groups but only one is to be modified in a particular reaction step. By a choice of suitable 

conditions the protection of a single group may be achieved, though one has to make sure the right 

group is protected. Alternatively, the protection of both groups can be done using two different 

reagents for certain functionalities, and only one of them removed at a later stage. In any case, both 

protecting groups have to remain in place for the steps between protection and deprotection. The 

conditions of deprotection of one group need to be sufficiently different from the ones for another to 

enable only mono-deprotection of the same functional group within the molecule to occur and to make 

the route viable. 

For the purposes of this project we will look at the protection and deprotection of alcohols and amines. 

With the above in mind, one has to look at the proposed synthetic path and make ones choice of 

protecting group(s) based on chemical compatibility with further steps. Other factors that also have to 

be considered are the ease of deprotection and the ability of modified molecules to survive the 

deprotection intact. The addition of a protection group normally adds up to the mass of a molecule. 

Consequently, the removal of such a group will have an effect of decreasing the mass of the molecule.  

At every step in a synthesis it is desirable to isolate the product; the reason for this being less 

interfering species at later stages. A general trend in chemistry is the heavier a molecule gets, the more 

likely it is to be a solid at room temperature.[26] Separation of solid products from a reaction mixture is 

generally easier than the separation of oils. Hence, employment of heavier protection groups might 

be beneficial to the separation in later steps. 

With all this in mind, it would be logical to review protecting groups, first, by their chemical inertness, 

and second, by the ease of protection and deprotection. 
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3.2.1.1 Protection of the Alcohol Group 

The synthetic path shown in Scheme 5 required mono-protection of linear diols. To the best of our 

knowledge, three major classes of protection groups employed for this purpose are listed below: 

1. Ethers. 

2. Esters. 

3. Silyls. 

The target molecules contain large number of polar functional groups, and steps in aqueous medium 

(during the separation or purification) are likely to be needed. We have left silyl-type protection out of 

consideration, as these groups cleave under aqueous conditions.[27] Another factor against using silyl-

type protection is that it is not very amenable to chromatographic separation.[27] 

3.2.1.1.1 Ether-Type Protection 

Methoxymethyl ethers (MOM) 

Generic structure of a MOM ether is shown below. 

R

OO

CH3  

Fig. 27. Generic structure of a MOM ether.  

Conditions of stability and conditions under which such protection group can be removed are 

summarised in Table 1. 

Table 1. Conditions of stability and removal for the MOM ethers.[28-29] 

Labile pH≤ 1  

Reduction:  Zn/HCl 

 Oxidation:  Br2 and Cl2 

Moderately stable pH ≥ 12  

Oxidation:  Acetic acid 

Tetrahydropyranyl ethers (THP) 

Generic structure of a THP ether is shown below. 

R

OO  

Fig. 28. Generic structure of a THP ether. 
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Conditions of stability and removal for this protection group are summarised in Table 2. 

Table 2. Conditions of stability and removal for the THP ethers.[28-29] 

Labile pH≤ 1 

Reduction:  Zn/HCl  

Oxidation: Br2 and Cl2 

Moderately stable pH≤ 4 

Oxidation:  Acetic acid 

t-Butyl ethers 

Generic structure of a THP ether is shown below. 

O

CH3
CH3

CH3

R

 

Fig. 29. Generic structure of a t-butyl ether. 

Conditions of stability and removal for this protection group are summarised in Table 3. 

Table 3. Conditions of stability and removal for the t-butyl ethers.[28-29] 

Labile pH≤ 1 above 100 oC 

Conditions of moderate stability None 

Allyl ethers 

Generic structure of an allyl ether is shown below. 

R

O

CH2  

Fig. 30. Generic structure of an allyl ether. 

Conditions of stability and removal for this protection group are summarised in Table 4. 
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Table 4. Conditions of stability and removal for the allylethers.[28-29] 

Labile pH≤ 1 above 100 oC, pH ≥ 12 above 100 oC 

Bases: t-BuOK 

Nucleophiles: NaOCH3 

 Electrophiles: Bu3SnH  

Reduction: H2/Ni   

Oxidation: KMnO4, Acetic acid, Br2 and Cl2. 

Conditions of moderate stability pH≥ 12   

Oxidation: I2 

Benzyl ethers (Bn) 

Generic structure of a Bn ether is shown below. 

O

R 

Fig. 31. Generic structure of a Bn ether. 

Conditions of stability and conditions under which such protection group can be removed are 

summarised in Table 5. 

Table 5. Conditions of stability and removal for the Bn ethers.[28-29] 

Labile pH≤ 1 above 100 oC 

Reduction: Ni/H2 and Na/NH3 

Conditions of moderate stability Oxidation: Br2 and Cl2 

 

3.2.1.1.2 Ester-Type Protection 

Acetate ester (Ac) 

Generic structure of an Ac ester is shown below 

R

O

O

 

Fig. 32.  Generic structure of an Ac ester. 

Conditions of stability and conditions under which such protection group can be removed are 

summarised in Table 6. 
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Table 6. Conditions of stability and removal for the Ac esters.[28-29] 

Labile pH≤ 1 above 100 oC, pH ≥ 12 

Bases: LDA and t-BuOK 

 Nucleophiles: Grignard reagents 

 Reduction:  LiAlH4 and Na/NH3 

Conditions of moderate stability pH≥ 9 

 Nucleophiles: NH3 and RNH2. 

Pivalate ester (Pv) 

Generic structure of a Pv ester is shown below. 

O

R

O

 

Fig. 33. Generic structure of a Pv ester. 

Conditions of stability and conditions under which such protection group can be removed are 

summarised in Table 7. 

Table 7. Conditions of stability and removal for the Pv esters.[28-29] 

Labile pH≤ 1 above 100 oC, pH ≥ 12 above 100 oC 

Bases: t-BuOK 

Nuclophiles: NH3 and RNH2 

Reduction: Na/NH3 and LiAlH4 

Conditions of moderate stability pH≥ 12  

Nucleophiles: Grignard reagents and NaOCH3 

Reduction: Na/NH3 and LiAlH4 

Benzoate ester (Bz) 

Generic structure of a Bz ester is shown below 

R

O

O

 

Fig. 34. Generic structure of a Bz ester.  
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Conditions of stability and conditions under which such protection group can be removed are 

summarised in Table 8. 

Table 8. Conditions of stability and removal for the Bz ester.[28-29] 

Labile pH≤ 1 above 100 oC, pH ≥ 12 above 100 oC 

Nucleophiles: Grignard reagents  

Reduction: Na/NH3 and LiAlH4 

Conditions of moderate stability pH≥ 12  

Nucleophiles: NH3/RNH2 and NaOCH3 

Choosing the Protection Group 

Grafting a pendant arm with the terminal hydroxyl functionality onto C2-carbon of 1,3-diaminopro-

pane, Scheme 5, requires mono-protection of a relevant diol. Suitable protection group must meet the 

following criteria:  

1. Be suitable for the diol mono-protection. 

2. Remain inert to t-BuOK used in the activation of malononitrile. 

3. Remain relatively inert to LiAlH4 used for the reduction of dinitriles. 

The choice that comes to mind is benzyl bromide as it fits all the above criteria, and is of high molecular 

mass, which is beneficial for separation. 

The applicability of a particular step is always benefited by mechanistic thinking (the consideration of 

the reaction mechanism, when known). The protection of alcohol functionalities by benzyl bromide is 

achieved in the Williamson ether synthesis, first accomplished in 1850.[30] The mechanistic details are 

as follows: 

O

H

Na

H

-H
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O
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Fig. 35. Williamson’s ether synthesis.[17] 
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The deprotonation can be achieved using strong base, such as NaH. However, in cases where selective 

substitution is needed, for example, discussed above case of mono-protection of diols, a weaker base, 

such as Ag2O, is preferred.[29] 

The removal of benzyl protection can be done through Pd/C hydrogenation under mild conditions if 

the desired product has no unsaturated double bonds.[31] 

3.2.1.2 Protection of the Amino Group 

The synthetic paths shown in Schemes 1-4, 6 require protection of terminal amino groups. Large 

variety of protecting agents for primary and secondary amines are reported in literature. We will 

present most common of them briefly before focusing on the ones chosen in this project. 

9-Fluroenylmethyl carbamate (Fmoc) 

Generic structure of an Fmoc product is shown below. 

R1

N

O

O

R2

 

Fig. 36. Generic structure of an Fmoc amide.  

Conditions of stability and conditions under which such protection group can be removed are 

summarised in Table 9. 

Table 9. Conditions of stability and removal of Fmoc.[28, 32] 

Conditions of lability H2O: pH ≤ 1 above 100 oC, pH ≥ 12 above 100 oC 

Nucleophiles: Gringard reagents, NH3 and RNH2 

Reduction: Na/ NH3 

Oxidation: CrO3 / Py 

Conditions of moderate stability H2O: pH ≥ 12, pH ≤ 1 

Bases: NEt3 and Py 

Nucleophiles: NaOCH3 

Reduction: LiAlH4 
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t-Butyl carbamate (Boc) 

Generic structure of a Boc product is shown below. 

O

O

N

R2

R1

 

Fig. 37. Generic structure of a Boc amide.  

Conditions of stability and conditions under which such protection group can be removed are 

summarised in Table 10. 

Table 10. Conditions of stability and removal of Boc.[28, 32] 

Conditions of lability H2O: pH ≤ 1  

Nucleophiles: Grignard reagents 

Reduction: Zn/ HCl 

Conditions of moderate stability H2O: pH ≥ 12 

Reduction: LiAlH4 

Benzyl carbamate (Cbz) 

Generic structure of a Cbz product is shown below. 

O

O N

R2

R1

 

Fig. 38. Generic structure of a Cbz amide.  

Conditions of stability and conditions under which such protection group can be removed are 

summarised in Table 11. 

Table 11.  Conditions of stability and removal for Cbz .[28, 32] 

Conditions of lability H2O: pH ≤ 1 above 100 oC, pH ≥ 12 above 100 oC 

Nucleophiles: Grignard reagents, NH3, RNH2,  

Reduction: H2/Ni, Na/NH3 and LiAlH4 

 

Conditions of moderate stability H2O: pH ≤ 1 

Reduction: Zn/HCl 
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Acetamide (Ac) 

Generic structure of an Ac product is shown below. 

O

N

R2

R1

 

Fig. 39. Generic structure of an Ac amide.  

Conditions of stability and conditions under which such protection group can be removed are 

summarised in Table 12. 

Table 12. Conditions of stability and removal for Ac.[28, 32] 

Conditions of lability H2O: pH ≤ 1 above 100 oC, pH ≥ 12 above 100 oC 

Bases: LDA 

Nucleophiles:  NH3 and RNH2 

Reduction: Na/NH3 and LiAlH4 

Conditions of moderate stability H2O: pH ≥ 12 

Nucleophiles: Grignard reagents 

Reduction: Zn/HCl 

Triflouroacetamide 

Generic structure of a triflouroacetamide is shown below. 

F

F

F

O

N

R2

R1

 

Fig. 40. Generic structure of a triflouroacetamide. 

Conditions of stability and conditions under which such protection group can be removed are 

summarised in Table 13. 
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Table 13. Conditions of stability and removal for Triflouroacetamides.[28, 32] 

Conditions of lability H2O: pH ≤ 1 above 100 oC, pH ≥ 12  

Nucleophiles: Grignard reagents, NH3 and RNH2 

 Reduction: Na/ NH3 

Oxidation: CrO3 /Py 

Conditions of moderate stability H2O: pH ≥ 12, pH ≤ 1 

Bases: NEt3 and Py 

Nucleophiles: NaOCH3 

Reduction: LiAlH4 

Phthalimide (Phth) 

Generic structure of a Phth product is shown below. 

RN

O

O

 

Fig. 41. Generic structure of a Phth.  

Conditions of stability and conditions under which such protection group can be removed are 

summarised in Table 14. 

Table 14. Conditions of stability and removal of Phth.[28, 32] 

Conditions of lability H2O: pH ≤ 1 above 100 oC, pH ≥ 12 above 100 oC 

Nucleophiles: NH3 and RNH2,  

 Reduction: H2/Rh, Na/NH3 and LiAlH4 

Conditions of moderate stability H2O: pH ≥ 12 

Nucleophiles: Grignard reagents 

Benzylamine (Bn) 

Generic structure of a benzylamine product is shown below. 

N

R1

R2

 

Fig. 42. Generic structure of a Bn.  
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Conditions of stability and conditions under which such protection group can be removed are 

summarised in Table 15. 

Table 15. Conditions of stability and removal of Bn.[28, 32] 

Conditions of lability H2O: pH ≤ 1 above 100 oC 

Electrophiles: CH3I 

 Reduction: H2/Ni, Na/NH3 

Oxidation: KMnO4, CrO3 /Py, RCOOH, Br2 and Cl2 

Conditions of moderate stability None 

Triphenylmethylamine (Tr) 

Generic structure of a Tr product is shown below. 

R1

N
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Ph

Ph

Ph

 

Fig. 43. Generic structure of a Tr.  

Conditions of stability and conditions under which such protection group can be removed are 

summarised in Table 16. 

Table 16. Conditions of stability and removal of Tr protection.[28, 32] 

Conditions of lability H2O: pH ≤ 1 

Electrophiles: CH3I 

Reduction:H2/Ni, Zn/HCl and Na/NH3 

Oxidation: KMnO4,CrO3/Py, RCOOOH, Cl2 and Br2 

Conditions of moderate stability H2O: pH ≤ 4 

Benzylideneamine 

Generic structure of a benzylideneamine is shown below. 

RN  

Fig. 44. Generic structure of a benzylideneamine. 

Conditions of stability and conditions under which such protection group can be removed are 

summarised in Table 17. 
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Table 17. Conditions of stability and removal of benzylideneamine protection.[28, 32] 

Conditions of lability H2O: pH ≤ 1, pH ≥ 12 above 100 oC 

Nucleophiles: Grignard reagents, NH3 and RNH2 

 Reduction: H2/Ni, Zn/HCl, Na/NH3 and LiAlH4 

Oxidation: KMnO4, CrO3/Py, RCOOH, Cl2, I2 and Br2 

Conditions of moderate stability H2O: pH ≥ 12, pH ≤ 4 

Nucleophiles: RCuLi 

Electrophiles: CH3I 

Reduction: NaBH4 

p-Toluenesulfonamide (Ts) 

Generic structure of a Ts product is shown below. 
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Fig. 45. Generic structure of a Ts protection.  

Conditions of stability and conditions under which such protection group can be removed are 

summarised in Table 18. 

Table 18. Conditions of stability and removal of Ts .[28, 32] 

Conditions of lability H2O: pH ≤ 1 above 100 oC 

Electrophiles: Grignard reagents 

Reduction: Zn/HCl and Na/NH3 

Conditions of moderate stability No moderately stable chemical condition 

 

Choosing the Protection Group 

Upon extensive consideration, we have settled on the use of t-butyl carbamate (Boc) and phthalimide 

(Phth) protection of amino groups in this project. Both offer a wide range of stability, with Boc amides 

being stable against NaBH4 and acetic acid. The latter allows selective Phth-deprotection of amino 

groups, as discussed earlier.[33] 

Mono-Boc protection of terminal diamines has been successfully achieved by Ms E. Diu, a postgraduate 

student in our research group, while the removal of Boc-protection in acidic conditions should not be 

a problem. According to observations from our potentiometric work, the ligands of this nature are 

fairly resilient on exposure to acidic conditions. 
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Phthalimide protection of 1,3-diamino-2-propanol has also been achieved previously in our research 

group by a postgraduate student, Mr A. Naseen. The deprotection can be enacted by a combination of 

NaBH4 and acetic acid.[33] 

In the following sections 3.2.2-3.2.5 we will consider in some detail reaction particulars reported in 

literature for the protection steps actually attempted in this project. 

3.2.2 Mono-Protection of Terminal Diols 

It has been reported that the treatment of diols with hydroxyl protecting agents in a 1 : 1 molar ratio 

results in a mixture of mono- and di-protected species as well as unreacted diol, usually, in the ratio of 

1 : 2 : 1.[34] This can be overcome by adding large excess of diol but the efficiency drops and separation 

becomes more difficult. To address the latter, Bouzide et al[34] suggested the use of Ag2O as a co-

catalyst. They observed, in the preparation of HIV-1 protease inhibitors, that protection of diols with 

benzyl bromide, NaH/THF, Na/DMF (which are challenging reagents), and phase transfer catalysts gave 

di-protected products, while, the use of Ag2O resulted in predominately mono-protected species (in 

97 : 3 ratio). The optimum stoichiometric ratios were determined to be diol : benzyl bromide : Ag2O =  

1 : 1.2 : 1.5. We tested the applicability of such ratios in a range of solvents, and CH2Cl2, CH3Cl, EtOEt 

and EtOAc proved to be suitable. Acetonitrile gave reduced yields, while THF should be avoided due to 

its ring opening behaviour.[34] Yields of 70 % for 2-(benzyloxy)ethanol and 87 % for 3-(benzyloxy) 

propan-1-ol, which are target intermediates in this project, were reported with minimal quantities of 

the di-protected species formed (≤ 3 %). 

Ag2O-catalysed mono-protection of secondary alcohols proceeds less favourably, though catalytic 

amounts of KI can be added to aid the reaction.[34] 

To the best of our knowledge, the exact mechanism of this reaction is not yet known. It has been 

suggested Ag2O coordinates to the diol oxygens in a bi-dentate fashion,[34] which increases the lability 

of a hydroxyl proton, particularly, if it is not involved in the intra-molecular hydrogen bonding. This is 

illustrated by the figure below. 
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Fig. 46. Diagrammatic representation of a terminal diol oxygens coordinating to Ag2O catalyst in a 

bi-dentate fashion. 

3.2.3 Halide-de-Hydroxylation 

Conversion of alcohols to alkyl halides can be done with a number of halogenating reagents. Among 

them are halogen acids, such as HCl, HBr and HI,[35] and inorganic halides, such as SOCl2, PCl3 and 

POCl3.[35] The formation of iodinated substituents employing HI can be troublesome, as it is known to 

reduce double bonds. Chloro- and bromo-de-hydroxylation of terminal alkyl alcohols with halogen 

acids works well but appears a slow reaction for secondary and ternary alcohols. The lack of reactivity 

can be altered by the addition of catalytic amounts of zinc chloride,[35] or by using glacial acetic acid as 

the solvent that aids activation.[35] 

Other halogenation options also exist. Popular among them is the conversion of terminal alkyl alcohols 

to terminal alkyl halides by using the CCl4/PPh3 or CBr4/PPh3 combination. Chemical conditions in this 

conversion are mild and the yields are good.[36] The drawbacks to this route are: a) the formation of tri-

phenylphosphine oxide (t-PPO), which has to be removed from the reaction medium, and b) the steric 

bulk of the three phenyl groups hindering the active site. In consequence, the reaction works well with 

terminal alkyl alcohols as they can readily access the active site. 

The issue of separating t-PPO by-product have been partially solved by us by “crashing it out” of 

solution with hexane or cold diethyl ether; this only works when the reaction products are soluble in 

either of the above mentioned solvents. In industry this problem was tackled by converting t-PPO to 

something else. Natural attempts to regenerate it back to tri-phenylphosphine (t-PP) proved to be 

difficult in view of the stability of phosphorus-oxygen double bond.[37] The approach by Denton et al[37] 

was to convert the t-PPO into a chlorophosphonium salt, which then was tested successfully on 

decanol as a chlorinating agent. Alternative approach to the problem is to re-think the phosphorylating 

agent. Work was done by Kalkeren et al[38] that included regeneration of the phosphorus intermediate 

in the primary reaction cycle. The authors tested a number of heterocyclic type phosphorous reagents 

with some success. 
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Reaction mechanism of chloro-de-hydroxylation, proposed by Appel,[36] is shown below. 

 

Fig. 47.  Appel’s chloro-de-hydroxylation mechanism.[39] 

3.2.4 Condensation with Malononitrile 

Preparation of alkylmalononitriles can be achieved by one of the two methods: 

a) in a direct synthesis, where malononitrile is alkylated with terminal alkyl halides, or 

b) in an indirect synthesis, where compounds with the alkylmalononitrile skeleton undergo 

certain transformation. 

Numerous direct methods of preparation di-substituted alkylmalononitriles were reported,[40] while 

mono-substituted derivatives were synthesised by indirect methods, such as alkylidene malononitrile 

reduction, diamide or cyanoacetamide dehydration, to name a few. No generic method of synthesising 

mono-substituted malononitriles existed[41] until the work of Diez-Barra et al,[40] who discovered the 

phase transfer catalyst route. They observed alkylation of malononitrile with terminal alkyl halides 

under solvent free conditions in the presence of a base and a phase transfer catalyst. Three bases were 

found to be effective for the deprotonation of malononitrile (essential activation step): potassium 

carbonate, potassium tert-butoxide, and sodium hydrogen carbonate. The base is chosen on the 

grounds of alkyl halide reactivity towards malononitrile.[40] Thus, potassium carbonate is used with 

more reactive alkyl halides. With less reactive alkyl halides, potassium t-butoxide is a preferred choice. 
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In a study with tert-butyl ammonium bromide, phase transfer catalyst at 4 mol percent of alkyl halide 

was employed.[40] With malononitrile being highly reactive, questions arose what molar ratios would 

be appropriate for mono-alkylation?  With more reactive alkyl halides the following two ratios were 

found to work well (malononitrile : alkyl halide : base = 2 : 1 : 1 and 2 : 1 : 2) with the first set of ratios 

delivering higher yields. The less reactive alkyl halides were found to give the highest yields when the 

ratio was 2 : 1 : 1.5.[40] Optimum temperature and reaction time were found to be specific to the alkyl 

halide used. 

Closer to our work, malononitrile mono-alkylation with 1-bromobutane and 1-bromooctane was 

reported,[40] which gave a set of starting conditions to work out in our malononitrile mono-substitution 

step. 

3.2.5 Hydrogenation of Substituted Malononitriles 

Nitrile groups can be hydrogenated with a multitude of reagents. Among them are: LiAlH4,[42] Pd/C, 

BF3/Ether, BH3·S(CH3)2,  NaBH4/BF·Ether, BF3·THF,[43] and PtO2/H2.[44] 

Lithium aluminium hydride 

Historically the first reagent tried was LiAlH4, which was extensively studied by Amundsen and co-

workers in 1951.[42] At that time, LiAlH4 had been shown to be a useful reagent for the reduction of 

nitriles to amines. The aim of their work was to develop a procedure that worked across a wide range 

of nitriles, and to resolve remaining ambiguity about optimal molar ratio.[42] Earlier work suggested 

that half a mole of LiAlH4 was needed per mole on nitrile as the reaction was perceived as follows: 

2RCN + LiAlH4↔ (RCH2N)2LiAl 

Results of Amundsen and Nelson[42] suggested otherwise. A set of studies on octanenitrile was 

performed with the aim to optimise reaction conditions, in particular, the molar loading, amount of 

solvent, and temperature. These studies yielded the following results: a) molar ratios of LiAlH4 to RCN 

= 0.63 : 1, 1:1 and large excess : 1 were tried, with the equimolar and excess ratios giving the highest 

yields. Difference in yield between the equimolar and LIAlH4 excess ratios was insignificant.[42] 

Reduction of octanenitrile was carried out at three different temperatures: 0, 25 and 35 ⁰C, with the 

yield varying about 3 % across the temperature range. The effect of solvent volume on the reaction 

outcome was also studied but revealed no appreciable change in yield. The hydrolysis of LiAlH4 was 

carried out with aqueous sodium hydroxide solution.[42] 
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Boranes 

Another option for the reduction of di-nitriles is the use of borane reagents. 

In the synthesis, one of the two forms of borane is used: either a solution of BH3, normally stabilised 

by coordination to a solvent, e.g., BH3·S(CH3)2 or BH3·THF, or a borane generated in situ in the reaction 

vessel. 

Due to the issue with stability, commercially available sources of boranes are 1.0 M (BH3.THF)[45] or 

2.0 M (BH3·S(CH3)2)[46] solutions in THF. One disadvantage of these solutions is that an appreciable 

quantity is needed to make up molar equivalents in the reaction mixture. What is more, they age rather 

quickly after opening, even if refrigerated. The in situ generation of BH3 can be achieved in the reaction 

between NaBH4 and BF3·Ether. However, complications arise from the fact that the BF3·Ether complex 

is unstable at atmospheric conditions. To avoid BF3·Ether inactivity, it is distilled daily before use under 

inert atmosphere, and transferred to the reaction vessel under the same anaerobic conditions. 

The reduction of di-nitriles of the kind relevant to this project has been reported previously by Hutching 

and Maryanoff,[43] who undertook the reduction of (2,2-dimethylpropyl) propanedinitrile, Figure 48. 

N

N  

Fig. 48.  The structure of (2,2-dimethylpropyl)propanedinitrile. 

Direct hydrogenation 

Yet another option for the reduction of di-nitriles is the catalysed hydrogenation with dihydrogen gas. 

Among the catalysts of choice, we will consider PtO2. Reading about this catalyst revealed that, unlike 

the palladium immobilised on carbon system, it is capable of reducing carbonyls, indicating that it is a 

stronger hydrogenation catalyst. A literature search on the applicability of PtO2 to reduce 1,3-dinitriles 

of the mono-substituted malononitrile framework returned two publications.[44, 47] In both of them the 

hydrogenation was performed at 30 to 50 % catalyst loading by weight in the presence of aqueous 

hydrochloric acid to afford the formation of ammonium salt. In one case[44]  dihydrogen gas at an 

elevated pressure of 460 kPa was used, in contrast to the hydrogenation at atmospheric pressure (of 

about 100 kPa), commonly used with Pd/C catalyst. Additional advantage of this procedure is that two 

nitrile groups can be reduced and the benzylic hydroxyl protection removed at the same time. 
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However, significant drawback of this route is high cost of the catalyst (in excess of R2,000 per gram) 

and the requirement of high catalyst loading. 

Another hydrogenation catalyst, the Raney nickel,[48] also reported to reduce nitriles well but 

experimental conditions usually call for the hydrogen gas pressures upwards of 42 atm at 

temperatures above 70 ○C.[49] 
The cost of Raney nickel is significantly lower than that of PtO2, however, 

it requires high-pressure hydrogenator. 



MSc Thesis 2014 Chapter A 

44 

 

In this section we will present reaction particulars, observations, and outcomes of the synthetic steps 

undertaken in this part of the project. 

4.1 Synthesis of 2,2'-(2-Bromopropane-1,3-diyl)bis(1H-iso-

indole-1,3-(2H)-dione) (3) 

As phthalimide protection of 1,3-propane-2-ol has been accomplished in our research group by my 

predecessor, Mr A. Naseem, I could proceed directly to the bromo-de-hydroxylation step, Figure 49. 

OH

O

O

NN

O

O

Br

O

O

NN

O

O

[Br]

-OH

 

Fig. 49.  Bromo-de-hydroxylation step of Schemes 1 and 2. 

The synthesis of 2,2'-(2-bromopropane-1,3-diyl)bis(1H-isoindole-1,3(2H)-dione) (3) from 2,2'-(2-

hydroxypropane-1,3-diyl)bis(1H-isoindole-1,3(2H)-dione) (2) was attempted with two sets of 

halogenating reagents; HBr/CH3COOH and CBr4/PPh3. In both cases molar loading and solvent volumes 

were kept the same, though, variations in the reaction time and temperature were explored. 

The generic procedure for the CBr4/PPh3 route was as follows. 

Tri-phenylphosphine (0.393 g, 1.50 mmol) was weighed into a 100 mL two-neck RBF flushed with 

argon, followed by (2) (0.525 g, 1.5 mmol) in dry CH2Cl2 (20 mL). Then a solution of carbon tetrabromide 

(0.497 g, 1.50 mmol) in dry CH2Cl2 (10 mL) was added drop-wise to the reaction mixture.  

a) Conditions: The reaction mixture was stirred for 12 hours under N2(g) at room temperature. 

Hexane was added, precipitated solid filtered off, and the mother liquor concentrated under 

reduced pressure. Remaining oil was separated by column chromatography (CH2Cl2 : EtOAc = 

9 : 1). 

Outcome: 1H and 13C NMR spectra of column fractions indicated un-reacted starting material 

and brominating agents. 
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b) Conditions: The reaction mixture was stirred for 12 hours under nitrogen at 35 °C. Hexane 

was added, precipitated solid filtered off, and the mother liquor concentrated under reduced 

pressure. 

Outcome: 1H and 13C NMR analysis of the concentrated mother liquor indicated presence of 

the starting material (2) and brominating reagents. 

The failure of the CBr4/PPh3 bromo-de-hydroxy conversion, possibly, can be attributed to a steric 

hindrance of the reaction site. According to the reaction mechanism,[36] an activated complex with a 

bond between the phosphourus atom of tri-phenylphosphine and the electrophilic carbon (C2-carbon) 

of the substrate molecule has to form, prior to the nucleophilic attack by bromine and the cleavage of 

hydroxyl. This might be difficult for (2), as it involves close interaction of five aromatic rings (two from 

the pthalimide reagent and three from the tri-phenylphosphine). Suggestions to overcoming this 

difficulty included using molar excess of carbon tetrabromide and tri-phenylphosphine.[50] We 

struggled to see the merit of this suggestion, as the formation of alcohol-TPP intermediate is required 

prior to the bromide attack, while carbon tetrabromide is already in excess. Excess of a brominating 

agent might be beneficiary from the perspective of Le Chatelier's principle, although, such reactions 

give excellent yields already at equimolar ratio. Mentioned above excess of brominating species arises 

from the carbon tetrabromide ability of exchanging all four bromine atoms in the reaction cycle 

sequentially.[36] Other suggestions included raising the reaction temperature and duration to aid bonds 

formation and cleavage.[51] Unfortunately, this proved unsuccessful in our case. 

The generic procedure for the HBr/CH3COOH route was as follows. 

Compound (2) (0.250 g, 0.71 mmol) was weighed into a 100 mL RBF, glacial acetic acid (10 mL) added, 

followed by HBr(48 wt. %), (75 μL, 0.66 mmol). 

a) Conditions: The mixture was refluxed under low light conditions, to reduce decomposition 

rate of HBr, for 24 hours. Once cooled to RT, the contents of the RBF were neutralised with 

Na2CO3 (80 mL, 10 %), and the brine added (10 mL). The aqueous layer was extracted with CH2Cl2 

(2×100 mL), organic fractions combined and concentrated under the reduced pressure. The 

remaining residue was separated by column chromatography (Hexane : EtOAc = 1 : 4). 

Outcome: 1H NMR spectra showed un-reacted starting material. 

b) Conditions: Similar to a) but refluxed for 48 hours. 

Outcome:  1H and 13C NMR analysis indicated a mixture closely resembling starting materials. 

Upon later review (during the preparation of this manuscript) of the NMR and IR data for the samples 

from the HBr/CH3COOH attempts it was realised that the starting material (2) and desired product (3) 
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have very similar “fingerprints”. When multiple samples were compared side by side, it became 

evident two distinctly different species, the starting material and the desired product, were present. It 

is regrettable this oversight has occurred, and the parameters of the procedure were not finalised, as 

the outcome of this synthetic step at the time was considered a failure. Consequently, synthetic routes 

represented by Schemes 1 and 2, which depended on this intermediate, were never explored. 

4.2 Synthesis of mono-Protected Terminal Diols (20a-c) 

As at this point preparation of (3) was thought to be a failure, alternative routes were considered, and 

attention switched to a malononitrile one, Schemes 5-6. 

As mentioned earlier, treatment of diols with the hydroxyl protecting agents in a 1 : 1 molar ratio 

results in a mixture of mono- and di-protected species, as well as unreacted diol (usually, in the ratio 

of 1 : 2 : 1). To improve on this, Bouzide and Sauvé[34] proposed the use of Ag2O as a co-catalyst, and 

the optimum stoichiometric ratio was determined to be (diol : benzyl bromide : Ag2O) =  (1 : 1.2 : 1.5). 

We have performed the synthesis in CH2Cl2 as it was the solvent quoted in literature to work for this 

type of reaction. All starting reagents but Ag2O were soluble in it and the low boiling point of CH2Cl2 

made the concentration of the mother liquor easier. 

The authors[34] claimed yield of 70 % for 2-(benzyloxy)ethanol and 87 % for 3-(benzyloxy)propan-1-ol, 

but initially we have observed the yields of only 10 to 15 %. To improve on these, we followed their 

suggestion of using freshly prepared co-catalyst. 

Ag2O was prepared in a manner similar to that of Tanabe and Peters,[52] although, we did not dry it 

under high vacuum, as suggested in the paper. Instead, we transferred it into a 500 mL RBF and dried 

it by rotary evaporation under reduced pressure. The bath temperature was kept at 80 ⁰C, which 

significantly shortened drying time.  

Use of fresh dry Ag2O in the mono-protection reaction improved yields by a few percent. Another 

observation made was the existence of “dead areas” in the RBF (the areas where stirring was absent) 

due to the high content of solid Ag2O. To counteract this phenomenon, RBF was replaced with a wide 

beaker and large stirrer bars just fitting into it. Such arrangement improved interaction of Ag2O with 

the solvent mixture. This left one more problem with the experimental setup to solve. It turned out, 

the solvent, (CH2Cl2), kept evaporating during the reaction. The latter is undesirable as it leads to 

inefficient stirring of the reaction mixture and formation of a viscous paste that sticks to the reactor 

walls. An attempt to cover the beaker with a watch glass did not work because the reaction, being 

exothermic, heated and evaporated the solvent through the beaker pouring lip. Finally, we used filter 
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paper to cap the beaker, and then sealed the top with a Parafilm “M”. This afforded reasonable 

protection of the parafilm, which otherwise is decomposed on exposure to the CH2Cl2 vapour. The yield 

has improved to 31 % for 2-(benzyloxy)ethanol (20a) and 47 % for 3-(benzyloxy)propan-1-ol (20b) but 

still remained far below claimed in literature.[34] 

4.3 Synthesis of [(Bromoalkoxy)methyl]benzenes (21a-c) 

Both [(2-Bromoethoxy)methyl]benzene (21a) and [(3-bromopropoxy)methyl]benzene (21b) were 

successfully synthesised from their precursors (20a-b) via the CBr4/PPh3 route. Careful drying of the 

reagents and glassware substantially aids the yield of this reaction,[53] so tri-phenylphosphine and 

carbon tetrabromide were kept under argon in a desiccator with phosphorus pentoxide drying agent. 

Glassware was dried in an oven at 110oC for 12 hours, and the solvent transferred through a dry 

cannula from a solvent purifying station. All solvent bottles as well as collecting flasks were kept under 

N2 atmosphere. The reaction was performed in CH2Cl2 with the molar ratio of CBr4 : PPh3 : R-OH = 

1 :  1 : 1, as suggested by Appel’s mechanism.[36] At room temperature the reaction proceeded to 

relative completion in 3 hours with only mild heating of the mixture due to exothermic nature of the 

reaction. However, the heat dissipation became a concern when the procedure was scaled up four-

fold. To address this problem the reactor was placed in an ice bath prior to the addition of CBr4 solution. 

Upon completion of the reaction the mixture was reduced on rotary evaporator. At this stage two 

separation options were explored. The first of them was to separate the entire mixture by 

chromatography, while the second was to add cold hexane to precipitate out tri-phenylphosphine-

oxide (TPPO), leaving predominantly the brominated product in solution. The latter is effective only if 

the desired product is soluble in hexane; which is the case with (21a-b). Neither of the separation 

methods turned trouble free. With the first, equimolar quantity of TPP contributes approximately a 

third of the load mass on a chromatographic column; as it is fairly polar compound, it moves through 

the column slowly and requires a lot of solvent to elute. This would not be a huge problem, were the 

intention to discard the residual TPPO together with the silica waste. However, recyclable columns for 

an automated system were used in this work, and the cost of their replacement was not insignificant. 

With the second, adding hexane to the concentrated reaction mixture caused the formation of TPPO 

clumps, trapping product (21a) or (21b) inside, and lowering the yield. The problem of TPPO clumping 

was solved by drop-wise addition of hexane and vigorous stirring of the reaction mixture. Leaving the 

mixture flask stoppered with a septum and stirring it overnight took care of any remaining clumps 

(they were broken into smaller particles). Analysis of the reaction mixture after the removal of TPPO 

revealed that it contained about 20 mol percent of starting material. These residual components were 
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separated from the product by column chromatography. The first fraction, fairly non-polar, was the 

product; the second, was a mixture of unconverted reagents and starting materials. The volume of 

solvent required to elute the latter was greatly reduced in comparison to solely chromatographic 

separation, affording more economical procedure. Achieved yield of (21a) and (21b) was 76 % and 

84 %, respectively. 

4.4 Synthesys of [n-(Benzyloxy)alkyl]propanedinitriles 

(22a-c) 

We have found no mention of compounds (22a-c) in literature. Referring to the procedure of Diez-

Barra et al,[40] who discovered the phase-transfer catalyst route and synthesised among other products 

1-bromobutane, we started with the conditions described in their synthesis as a template for our work. 

Initially, potassium carbonate was employed as a base but the outcome was unsuccessful. We replaced 

it with potassium t-butoxide, which happened to work well for both products (22a-b). 

As these compounds are new and were synthesised by us for the first time, a range of reaction 

conditions were explored. The best yield was achieved at the molar ratio (malononitrile : alkyl halide : 

base) = (3 to 4 : 1 : 1). Reaction times from 24 to 132 hours were tried but the yield of product stopped 

increaseing after 48 hours. Limiting the amount of potassium t-butoxide and employing an excess of 

malononitrile ensured that only mono-deprotonation of the latter occurred.  

At first, the reaction mixture was extracted with CH2Cl2, which left the salts behind, the organic 

fractions were combined and the solvent removed by rotary evaporation. Separation of the product 

was attempted on a chromatographic column but met with some difficulties. After trying a number of 

solvent systems we settled on CHCl3, the only solvent that worked reasonably well. Although we could 

get the mixture moving on the column with CHCl3, malononitrile co-eluted with the product fraction. 

Attempts to vary the flow rate or column loading failed to overcome this difficulty. At this point, a 

column pre-wash procedure was considered, and it turned out that pre-washing concentrated organic 

fractions with water and hexane helped. Hexane helped removing unreacted alkyl halide, while water 

took care of unreacted malononitrile. Two additional problems were associated with this procedure. 

The first was that the reaction mixture could not be washed with hexane and water simultaneously. 

Our attempts of washing with a mixture of immiscible solvents give widely variable results. This 

problem was solved by washing the mixture sequentially, first with hexane and then with water. In 

addition, target compounds (22a-b) were partially soluble both in water and hexane. Consequently, 

the volume of hexane and water used became critical, as too much water would wash away not only 
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malononitrile but also (22a-b); too little would leave unreacted malononitrile in the product fraction. 

Hexane behaved in a similar manner but for leaving unreacted [(bromoalkoxy)methyl]benzene in the 

product fraction instead of malononitrile. Optimal volume of each of these solvents in the separation 

procedure had to be determined independently for both homologues (22a-b) as somewhat higher 

loading of malononitrile was used in the [3-(benzyloxy)propyl]propanedinitrile synthesis. Attempts to 

separate the hexane and water layers from the concentrated reaction mixture by using a filter paper 

cone turned upside down worked as it did not let higher viscosity product through. We also tried 

centrifugal separation as an alternative, and it worked well. Chromatographic separation of the pre-

washed mixture proved successful as residual traces of malononitrile did not co-elute with the target 

compounds. The yield of 34 % was achieved for (22a) and of 38 % for (22b). 

Isolated products were characterised by 1H and 13C NMR spectroscopy. In addition, as they were new 

compounds, a range of 2D and correlation NMR spectra were recorded. This information helped to 

assign chemical shifts in all three structures unambiguously (see experimental section 5.4). In 

particular, we paid close attention to the chemical shifts at the sites that were derivatised. Thus, δ 

values for 13C in NCCHCH are 19.7 for (22a) and 22.6 ppm for (22b). They compare favourably with 

chemical shifts of 22.7 ppm for prop-2-en-1-ylpropanedinitrile, 24.7 ppm for benzylpropanedinitrile, 

and 22.8 ppm for prop-2-yn-1-ylpropanedinitrile reported Diez-Barra et al.[40] This confirmed the fact 

reported previously[40] that 13C resonance of the CH group, sandwiched between two nitriles, is 

relatively unaffected by the nature of the β-carbon on the grafted pendant arm. 1H resonances of the 

same group, CH, in two of our compounds vary slightly more. Thus, previously reported values were in 

the range 3.54 to 3.78 ppm, while we observed the shifts at 3.92 and 4.07 ppm. 13C resonances of the 

nitrile group carbons, 112 and 113 ppm for  (22a) and (22b), respectively, compare well with the range 

characteristic of this group, 105 to 117 ppm.[40, 54]  

In addition, (22b) was characterised by high-resolution mass spectroscopy, which confirmed its 

molecular composition and verified the synthetic procedure. 

Our experience showed that compounds (22a-b) are best kept refrigerated, and they should not be 

exposed to temperatures exceeding 40 ⁰C. 

4.5 Synthesis of [n-(Benzyloxy)alkyl]-1,3-propanediamines 

(23a-c) 

The reduction of derivatised malononitriles (Scheme 5, step d) was first attempted by us with LiAlH4 

following reaction conditions suggested in 1951 by Amundsen et al.[42] They concluded that an optimal 
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molar ratio was (LiAlH4 : RCN) = (1 : 1), with both reagents dissolved in dry THF. With this in mind, the 

following procedure was attempted on intermediate (22b). 

a) LiAlH4 (0.151 g, 3.63mmol) was weighed into a round bottom flask blanketed with argon. Dry 

THF or diethyl ether (25 mL) was added to the flask through a cannula, followed by the solution 

of (22b) (0.323 g, 1.51 mmol) in THF or ether (10 mL). The mixture was refluxed for 1 hour, 

allowed to cool to room temperature, and left stirring for 24 hours under N2 atmosphere. After 

that, it was placed in an ice bath and quenched slowly with water (0.137 mL), NaOH (10 %, 

0.274 mL), and more water (0.411 mL). The mixture was filtered and the mother liquor 

concentrated under reduced pressure. 

1H NMR spectra of the concentrated mother liquor indicated the reaction did not occur with either of 

the solvents, so a test reaction on malononitrile was set up under the same conditions but for stirring 

the reaction mixture for 72 hours at room temperature. 1H NMR spectrum of the mother liquor from 

this attempt still revealed absence of 1,3-diaminopropane. Next, the condition of LiAlH4 was checked 

by a reaction with water, which proved to be very vigorous. Consequently, an alternative approach 

was considered at this point. As the target molecules have no double bonds, their precursors could be 

hydrogenated under more strenuous conditions. The hydrogenation of [n-(benzyloxy)alkyl]propane-

dinitrile homologues was tried with H2(g) on Pd/C catalyst in ethanol and on Pd/C catalyst in acetic 

acid, which is an activating solvent. Unfortunately, in both cases the reaction failed. Any concerns 

about the age and activity of the of Pd/C catalyst were dispelled by successful test reaction. We think, 

the above failure might have been caused by the intramolecular interaction between freshly reduced 

amine group and still in place nitrile group. Such possibility was first mentioned by Briggs et al[55] in 

their synthesis of non-ionic surfactants with malononitrile backbone. According to the study of di-

butylpropanedinitrile, by Briggs et al, Figure 50, the reduction of 1,3-dinitriles does not proceed with 

a wide range of hydrogenation catalysts and under a variety of conditions. Unfortunately, exact nature 

of the catalysts tried by Briggs et al[55] was not specified. Paradoxiacally, the reaction was reported to 

proceed successfully when LiAlH4 was used.[55] 

N

N

CH3

CH3

 

Fig. 50. Chemical structure of di-butylpropanedinitrile, which reduction was investigated by Briggs et 

al.[55] 
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To summarise our laboratory experience up to this point, attempts at reduction of 1,3-dinitrile with 

either LiAlH4 or H2(g) on Pd/C catalyst in ethanol failed. The only notable difference between the 

structure of di-butylpropanedinitrile and those of [n-(benzyloxy)alkyl]propanedinitriles, synthesised in 

this work, is the presence of a proton on C2 carbon atom of the malononitrile fragment. 

At this point direct hydrogenation was abandoned and alternative reducing agents looked at. 

Reduction of di-nitriles of similar nature, in particular, of (2,2-dimethylpropyl)propanedinitrile, has 

been reported previously in Organic Synthesis by Hutching and Maryanoff.[43] We have decided to 

follow their procedure in an attempt to reduce [n-(benzyloxy)alkyl]propanedinitrile via in situ borane 

generation. NMR spectra indicated a mixture of products, repeatability in producing the same mixture 

proved to be tricky, while the separation of fractions was difficult. In the case of (2,2-dimethylpropyl) 

propanedinitrile, last two fractions were separated by distillation. For the compounds of interest in 

this work, the latter was not feasible due to their higher molecular mass and higher boiling points. 

With (2,2-dimethylpropyl) propanedinitrile already distilling at 100 ⁰C (at 27 mbar), this separation 

approach for target compounds had to be abandoned; as mentioned earlier, they are not sufficiently 

heat resistant. To save the effort and cost of purification, while still looking for the conditions of 

successful reduction, we decided to use crude [n-(benzyloxy)alkyl]propanedinitriles (generated via 

borane reduction). Various conditions were tried for the deprotection of the benzylic moiety in the 

crude material; in particular, H2 on Pd/C in EtOH, H2 on Pd/C in CH3COOH, and reflux in aqueous HCl 

(pH 0.5) for 12 hours; all without success. Next, we tried BF3·Ether as a hydrogenation catalyst. The 

results were complicated and inconclusive (difficult multicomponent mixture ensued). Before we 

finished working with the BH3 generated in situ, the ability to make it was lost as the commercial 

manufacture of its precursor, BF3·ether, was discontinued.  

One last catalyst for hydrogenation that we could think of was platinum dioxide, PtO2. Platinum dioxide 

catalysed hydrogenation was approached with caution, keeping in mind the statement by Briggs et 

al[55] that such reduction of 1,3-dinitriles to diamines failed. First, test reactions were performed on 

the hydrogenation of malononitrile and deprotection of 3-(benzyloxy)propan-1-ol. In both cases PtO2 

performed successfully at times of 7 and 9 hours, respectively. Next, as we desired to prepare free 

amine, the hydrogenation in dry ethanol without a hydrogen chloride source was tried but failed to 

reduce the dinitriles. Finally, with the above in mind, the following procedure was settled on. 

Procedure: [2-(Benzyloxy)ethyl]propanedinitrile (287 mg, 1.31 mmol) was weighed into a 100 mL RBF, 

followed by PtO2 (143 mg, 50 wt. %), dry EtOH (90 mL) and concentrated aqueous HCl (32 %, 895 μL). 

The mixture was stirred under H2 (460 kPa) for 48 hours. Resulting solution was filtered through two 

filter papers, and mother liquor concentrated under reduced pressure. The residue was re-dissolved 
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in EtOH (5 mL) and C2H5OC2H5 (45 mL) was added to it in a centrifuge tube. The precipitate was dried 

over P2O5 for two weeks resulting in a fine yellow highly hydroscopic powder. 

The amount of acid was chosen in line with the Sundarmoorthie and Keenan’s recommendation of 

three molar equivalents of acid per nitrile unit,[44] and the volume of solvent was chosen to keep pH at 

about 1. The reaction mixture was filtered through two filter papers to allow recovery and reuse of the 

PtO2(the literature cited using celite). Once the mother liquor was catalyst-free and reduced to a small 

volume of ethanolic solution, addition of larger volumes of C2H5OC2H5 became possible. The ether 

changes polarity of the solvent system and the amine hydrochloride salt precipitates out. The yield of 

this reaction with product (24b) was approximately 3%, which is, of course, unsatisfactory from 

practical perspective. Nevertheless, this desired new compound has been undoubtedly synthesised. 

1H and 13C NMR spectroscopy confirmed the nature of 2-(2-hydroxyethyl) propane-1,3-diaminium 

dichloride beyond any doubt (see section 5.5). As it turned out, this ammonium salt is extremely 

hygroscopic. Drying off a sample for the NMR studies took two weeks in a vacuum desiccator over 

phosphorus pentoxide. 

Below is the summary of our attempts at the reduction of dinitriles. 

(2,2-Dimethylpropyl)propanedinitrile can be reduced with LiAlH4 but not with dihydrogen gas, no 

matter which catalyst is used. In contrast, reduction of [2-(benzyloxy)ethyl]propanedinitrile with LiAlH4 

failed. The only structural difference between two substrates that might affect their ability to undergo 

reduction is that one is mono-alkylated on the C2-carbon of malononitrile, while the other bi-alkylated. 

The reduction of nitrile groups in compounds (23a-b) possibly occurs with BH3, though it failed to occur 

with LiAlH4; unfortunately, we were unable to complete this part of the work conclusively. Such 

outcome is fascinating, as the reaction mechanism is expected to be similar for both reagents. 

The results of direct catalysed hydrogenation, with H2(g), are puzzling. With PtO2 catalyst, separate 

deprotection of benzyl bromide and reduction malononitrile is achieved in good yield. However, when 

both derivatisations were attempted in one pot, deprotection of the alcohol group occurred, and the 

reduction of dinitriles was achieved but in very poor yields. And this was with reaction times being at 

least four times longer than for the separate reactions. Such behaviour is odd and, probably, should 

be investigated in a separate project where comparative reduction of the nitrile groups of mono- and 

bi-alkylated malononitrile derivatives is investigated. 

At this stage the project described in this chapter, chapter A, was shelved for two reasons. First, we 

ran out of time. It took nearly two years of work to reach this point. Trying anything else along similar 

lines might have put at risk successful completion of this MSc project. The time frame for the 

preparation of intermediate compounds (22a-b) was about six weeks and the synthesis had been done 
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twice already. Second, the cost of the work escalated to the level where it was considered 

unsustainable. Prohibitively high cost of the platinum dioxide catalyst, at over R2,000 per gram, and 

the need of its 50 percent loading by weight, with about 3 percent intermediate product yield and two 

more sequential synthetic steps still to go, made continuation of this pursuit untenable. 
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In this section we will present particulars of synthetic procedures followed and instrumental 

techniques used for the compound characterisation. For each compound synthesised by us in this part 

of the project we will report instrumental data collected and the structure assigned. 

5.1 Experimental 

5.1.1 Solvents and Reagents 

The solvents and starting materials used are listed in Tables 19 and 20, respectively. 

Table 19. Common solvents used and internal purification procedures 

Solvent Claimed Purity Purification procedure 

Water Level II, 15 MΩ cm ELGAa 

Methanol ≥98 % Distillation 

Ethanol ≥98 % None 

Ethyl acetate ≥98 % None 

Dichloromethane ≥98 % Molecular sievesb 

Chloroform ≥98 % None 

Tetrahydrofuran ≥98 % Molecular sievesb 

Diethyl ether ≥98 % Molecular sievesb 

Hexane ≥95 % Distillation 

a) Water purification system: ELGA Veolia, Option R/7. 
b) Multi-solvent purification system: Innovative Technology Inc., Model PS-ND-7. 
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Table 20. Commercially available reagents used for the synthesis in this chapter of the thesis.* 

Name Structure 
Assay/ 

% 

MW/ 

g mol-1 

Phase state 

at 25 °C 

Density/ 

g cm-3 

1,2- Ethanediamine 
NH2

NH2  
99 60.10 l 0.900 

1,3-Propanediamine NH2NH2  
99 74.13 l 0.888 

1,3-Diaminopropan-2-ol 
NH2NH2

OH  

95 90.13 s  

Ethylene glycol 
OH

OH  
99 62.07 l 1.113 

1,3-Propanediol OH OH 
98 76.10 l 1.053 

1, 6-Hexanediol 
OH

OH  
99 118.18   

Malononitrile 
NN  

98 66.06 s  

(Bromomethyl)benzene 
Br

 

98 171.04 l 1.438 

2-Bromoethanamine 

hydrobromide 
Br

NH2
BrH.

 

95 204.89 s  

2-Aminoethanol 
OH

NH2  
98 61.08 l 1.012 

3-Aminopropanol OHNH2  
99 71.11 l 0.982 

Silver oxide AgO2 97 231.735 s  

Triphenylphosphine 
P

 

99 262.29 s  

Tetrabromomethane Br

Br

Br

Br

 

99 331.63 s  

Tetrabutylammonium bromide 

Br
-

N
+

 

99 322.37 s  

Potassium t-butoxide O
-

K
+

 

98 112.21 s  

                                                           
*) All reagents were purchased from Sigma-Aldrich and used without further purification. 
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5.1.2 Instrumental 

IR: FTIR spectra were recorded on Perkin Elmer Spectrum 100 in the range of 450 to 4000 cm-1 

with a resolution of 1 cm-1. All samples were recorded in KBr disks unless otherwise stated. 

CHN: Elemental analysis was performed on Thermo-Scientific Flash 2000 Organic Elemental 

CHNS-O Analyser. 

NMR: 1H and 13C NMR spectra were recorded on Bruker Avance III 400 MHz or Bruker Avance III 

500 MHz spectrometer at frequencies of 400/500 Mhz (for 1H nucleus) and 100/125 MHz (for 

13C nucleus). One of the following probes was used in each case: 5 mm BBOZ probe 19F-31P-

109Ag-{1H}, 5 mm BBIZ probe 1H-{31P-109Ag}, or 5 mm TBIZ probe 1H-{31P-31P-103Rh}. All proton 

and carbon chemical shifts are quoted relative to the relevant solvent signal (e.g., for DMSO-

d6, 1H: 2.500 ppm, 13C: 39.500 ppm). Proton-proton coupling constants are reported in Hertz 

(Hz). All experiments, unless stated otherwise, were conducted at 30 °C. 

MS/ToF: High-resolution mass spectra were recorded on Waters Acquity UPLC+LCT Premier ToF-MS 

spectrometer. Samples were dissolved in DMSO to a concentration of approximately 2 

ng μL-1. For low resolution measurements, the instrument was internally calibrated with 

either reserpine (positive ionisation mode) or raffinose (negative ionisation mode). High 

resolution measurements were performed using DMSO as the lock mass standard. Cone 

voltage was kept at 20 kV in all cases unless stated otherwise. All samples were directly 

injected into the MS port, i.e. bypassing the LC system. 

Flash Chromatography:  Gradient chromatography was used in majority of cases. The notation 

explained below was adopted for the description of solvent ramping: 

 “EtOH : Hex = (0:1) to (1:0) solvent system. Product fraction (2)” 

This notation first introduces the solvent system, in the above case “EtOH : Hex”; then, the 

volume ratio of solvents at the start and at the end of elution period is given “(0:1) to (1:0)”; 

and finally, the number of a product fraction is specified (fractions are counted in order, in 

which they leave the column) “(2)”. 
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5.1.3 Interpretation of the NMR Results 

No single approach to the elucidation of chemical structure from the NMR data exists. The procedure 

adopted by us, which is explained below, worked well for the type of molecules encountered in this 

thesis. Routinely, we have recorded 1H and 13C spectra. For all new substances, as well as for the 

substances not extensively studied previously, in addition, we have recorded a range of 2D- and 

correlation spectra, e.g., g-COSY, DEPT-135, DEPT-90, NOESY, HSQC, HMBC, etc. 

The first spectrum interpreted is “dept-135” for the 13C nucleus. It allows one to associate carbon 

resonances with the CH3, CH2, or CH groups, with the methylene signals appearing as lines of opposite 

sign in the spectrum. Remaining ambiguity in the assignment of CH3 and CH carbon signals (both 

resonances appear as positive lines in the spectrum) is then resolved in the 13C “dept-90” spectrum, 

where positive lines appear only for the CH nuclei. Once this is done, the whole of 13C spectrum is 

interpreted by assigning all remaining lines to the quaternary carbons. 

Next, assignment of the protons to carbon centres, to which they are covalently bound, is carried out 

by analysing the HSQC spectrum; the latter indicates short distance carbon-proton correlations. With 

this information in hand, one can check whether the number of protons, derived from the integrated 

signals for each proton resonance in the 1H spectrum, matches the number expected from the DEPT 

spectra. If the two agree, one has established the number of hydrogen atoms connected to each non-

quaternary carbon. 

At this stage, an issue of carbon connectivity can be considered. It is based on a) the analysis of 

multiplet structure of 1H resonances (unfortunately, the usefulness of this approach is limited by first-

order spectra) and b) interpretation of the HMBC spectra. 

Separation of the lines in a proton spectrum that are suspected to belong to a multiplet can be checked 

and, if it turns out to be same, confirms the multiplet nature, affords the coupling constant, and gives 

the number of equivalent protons (N+1 rule) in the groups directly connected to parent carbon atom. 

HMBC spectra allow to detect the correlation between protons and carbon atoms separated by two, 

three and, on occasion, four bonds. In part, it provides information similar to the one derived from the 

(N + 1) rule; this allows cross-checking of the HMBC assignment. However, cases exist where the HMBC 

interpretation fails; say, when a chain of quaternary carbons occurs in a molecule. On occasion, the 

HMBC spectrum gives one the same correlation as the HSQC spectrum. The latter accounts for which 

protons are connected to which carbon, and the former accounts for which protons are connected to 

carbons adjacent to the carbon of interest. Similarity of the HSQC and HMBC correlations happens for 

the molecules of symmetrical nature, which makes sense as one carbon correlates to the proton on 
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the carbon equivalent to it. Yet again, this takes place only if the separation between equivalent 

carbons is less than approximately four bonds. The presence of equivalent hydrogens is also reflected 

in higher values of signal integrals in the 1H spectrum. 

In addition, the values of chemical shifts can be taken into account to aid structural assignment. When 

present in certain functional groups, both proton and carbon atoms display characteristic chemical 

shifts, which are altered relatively little by the rest of molecular structure. 

Correlation of the protons through space is another useful NMR technique, which helps to choose the 

most likely conformational structure. 

Finally, incremental and quantum mechanical modelling of both 1H and 13C NMR spectra became useful 

additional tool in testing the correctness of assignment of molecular structures. 
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In total, we have synthesised eleven compounds in this part of the project, of which five were new. 

Whether the compound is new or is known in literature is stated in the relevant section that describes 

its preparation and characterisation. 

In addition to their systematic names, compounds synthesised and isolated by us are labelled with 

integer numbers that already appeared in Schemes 1-6, Section 3. For homologous compounds with 

variable length of the alkane chain, a letter is added to the number; in particular, letter “a” designates 

ethane chain, letter “b” propane one, and letter “c” hexane one. For example, (20c) would mean 

compound of class 20, which is a mono-protected diol with hexane chain, i.e. 6-(benzyloxy)hexan-1-ol. 

5.2 Intermediates with protected functional groups  

First, we will present compounds prepared by protecting alcohol or amine functional groups. 

5.2.1 Phthalimide di-protected 1,3-diaminopropan-2-ol (2) 

O

OH

N

O O

N

O

 

Procedure: 1,3-Diaminopropane-2-ol (2.76g, 30.6 mmol) was added to a RBF, followed by phthalic 

anyhydride (9.01g, 60.8 mmol). The mixture was dissolved in toluene (155 mL) and triethylamine 

(0.42 mL, 3.01 mmol) pipetted in. Reaction mixture was refluxed for 10 hours under Dean-Stark 

conditions. Once cooled to RT, the mixture was filtered and solids recrystallised from glacial acetic acid. 

Product has appearance of colourless needles. 

(2) 2,2'-(2-Hydroxypropane-1,3-diyl)bis(1H-isoindole-1,3(2H)-dione) 

This compound is known in literature.[56] 

Yield: 10.1 g, 29.1 mmol (95 %). 
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IR (KBr, ν / cm-1): 3489(br, O-H), 2948, 2893, 1770, 1710 (s, C=O), 1612, 1466, 1420, 1394 (s, C-N), 

1361, 1342, 1191, 1156, 1128, 1089, 1066 (s, C-OH), 1038 (s, C-OH), 1012, 996, 910, 875, 846, 797, 

744, 722 (s), 717 (s), 695, 679, 531(s). 

1H NMR (400 MHz, CDCl3, δ/ ppm): 3.55-3.69 (m, 4H, -CH2-), 4.15-4.20 (m, 1H, -CH(OH)-), 5.29 (d, 

J = 5.3 Hz, 1H, -OH), 7.82-7.85 (m, 8H, Ar). 

13C NMR (400 MHz, CDCl3, δ/ ppm): 42.0 (t,-CH2-), 65.0 (d, -CH(OH)-), 122.9 (d, -CHC(C=O)-), 131.6 

(s, -C(C=O)-), 134.3 (d, -CHCHC(C=O)-), 167.8 (s, C=O). 

Original spectra for this compound are presented in appendix A, Figures A1-A7. 

Characterisation was achieved by means of 1H, 13C, and correlation NMR spectra. Analysis of the data 

indicated that the desired species has been synthesised. No comparable data was reported in the 

Appleton and Hall paper.[56] 

5.2.2 Mono-protected terminal diols (20a-c) 

O

OH
n

 

n= 1, 2, 5 

Generic procedure: CH2Cl2 (30 mL) and fresh Ag2O (12.1 g, 52.0 mmol) were charged to a beaker, 

and a diol of interest (34.6 mmol) was added to it with stirring, followed by benzyl bromide (4.62 mL, 

38.1 mmol). The beaker was covered, first, with paper and, then, with parafilm. The mixture was stirred 

at room temperature for 3 hours. Ag2O was filtered off and washed with CH2Cl2 (3x10 mL). Then, it was 

suspended in more dichloromethane and filtered off; yet again, it was washed with CH2Cl2 (3x10 mL). 

The CH2Cl2 extracts were combined and shaken, first, with Na2CO3 (5%, 5 mL) and then, with brine 

(5 mL). The aqueous layers were combined and extracted with CH2Cl2. All organic layers were 

combined, and the solvent removed by rotary evaporation. The residual brown liquid was purified by 

column chromatography using (EtOH : Hex) = (0:1) to (1:0) solvent system. Product fraction (fraction 2) 

was reduced in volume by rotary evaporation at 80 ⁰C. Residual liquid was purified by distillation at 

atmospheric pressure. The products were golden-brown viscous liquids. 

(20a) 2-(Benzyloxy)ethanol 

This compound is known in literature.[57-58] 
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Yield: 1.64 g, 10.6 mmol (31 %). 

1H NMR (400 MHz, CDCl3, δ/ ppm): 3.44-3.47 (m, 2H, -OCH2CH2-), 3.74-3.77 (m, 2H, -CH2OH), 

4.56 (s, 2H, PhCH2-), 7.24-7.35 (m, 5H, Ph). 

13C NMR (100 MHz, CDCl3, δ/ ppm): 62.0 (t, -CH2OH), 71.6 (t, -OCH2CH2-), 73.4 (t, PhCH2-), 127.1 (d, 

Ph), 128.8 (d, Ph), 138.1 (s, Ph). 

Original spectra for this compound are presented in appendix A, Figures A8-A10. 

 (20b) 3-(Benzyloxy)propan-1-ol 

This compound is known in literature.[59-60] 

Yield: 2.89 g, 16.3 mmol (47 %). 

1H NMR (400 MHz, CDCl3, δ/ ppm): 1.87 (p, J = 5.7 Hz, 2H, -CH2CH2OH), 3.67 (t, J = 5.8 Hz, 

2H, -OCH2CH2-), 3.79 (t, J = 5.7 Hz, 2H, -CH2OH), 4.53 (s, 2H, PhCH2-), 7.26-7.34 (m, 5H, Ph).  

13C NMR (100 MHz, CDCl3, δ/ ppm): 32.3 (t,-CH2CH2OH), 62.1 (t, -CH2OH), 69.6 (t, -OCH2CH2-), 73.5 

(t, PhCH2-), 127.8 (d, Ph), 127.9 (d, Ph), 128.6 (d, Ph), 138.3 (s, Ph).  

HRMS (ES-, m/z): [M + Na]+ calcd. for C10H14O2Na, 189.0891; found, 189.0893. 

Original spectra for this compound are presented in appendix A, Figures A11-A18. 

 (20c) 6-(Benzyloxy)hexan-1-ol 

This compound is known in literature.[61-62] 

Yield: 2.85 g, 13.68 mmol (40%).  

1H NMR (400 MHz, CDCl3, δ/ ppm): 1.30-1.34 (m, 4H, -OCH2CH2CH2CH2-), 1.50 (p, J = 6.9 Hz, 

2H, -CH2CH2CH2OH), 1.56 (p, J = 6.9 Hz, 2H, -OCH2CH2CH2-), 3.40 (t,  J = 6.5 Hz, 2H, PhCH2OCH2-), 3.56 

(t, J = 6.6 Hz, 2H, -CH2OH), 4.43 (s, 2H, PhCH2-) 7.19-7.27 (m, 5H, Ph). 

13C NMR (100 MHz, CDCl3, δ/ ppm): 25.8 (t, -OCH2CH2CH2-), 26.2 (t, -CH2CH2OH), 29.9 

(t, -OCH2CH2CH2-), 32.9 (t, -CH2CH2CH2OH), 63.1 (t, -CH2OH), 70.5 (t, PhCH2OCH2-), 73.1 (t, PhCH2-), 

127.7 (d, Ph), 127.8 (d, Ph), 128.5 (d, Ph), 138.9 (s, Ph). 

Original spectra for this compound are presented in appendix A, Figures A19-A24. 

Characterisation was achieved by means of IR, 1H, 13C, and correlation NMR; as well as IR. Analysis of 

the data indicated that the desired species has been synthesised. For all three mono-protected diols, 

1H and 13C NMR data are in satisfactory agreement with the values reported in literature.[57-62] 
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5.2.3 Boc protected 1,3-diaminopropan-2-ol (12) 

OH

O

CH3

CH3
CH3

O

NHNH O

CH3

CH3

CH3

O

 

(12) Di-t-butyl(2-hydroxypropane-1,3-diyl)bis-carbamate 

The above Boc di-protected 1,3-diaminopropan-2-ol is of relevance to the synthetic path presented in 

Scheme 4. Unfortunately, it was not explored by us due to time constraints. The synthesis of this 

compound in our research group has been accomplished by Elizabeth Diu. However, taking into 

account deviation from the original direction of her PhD work, the particulars of such synthesis are not 

included in Elizabeth’s dissertation. For the completeness of record on the work done on scorpionate 

ligands, the specifics of this preparation are included in appendix A of this report, Figure A25. 

5.2.4 Boc mono-protected diamines (7) 

O

O

CH3

CH3

CH3

NH2

NH

n

 

n = 1, 2 

(7a-b) t-Butyl(n-aminoalkyl)carbamates 

The above Boc mono-protected aliphatic diamines are of relevance to the synthetic route presented 

in Scheme 2. Due to time constraints we have not explored this path. The synthesis of these 

compounds in our research group has been accomplished by Elizabeth Diu, but taking into account 

deviation from the original direction of her PhD work, the particulars of their preparation are not 

included in Elizabeth’s dissertation. For the completeness of record on the work done on scorpionate 

ligands, the specifics of this synthetic step are included in appendix A of our report, Figure A26. 
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5.3 Products of bromo-de-hydroxylation 

5.3.1 2,2'-(2-Bromopropane-1,3-diyl)bis(1H-isoindole-1,3(2H)-

dione) (3) 

Br

O

N

O O

N

O

 

Procedure: 2,2'-(2-Hydroxypropane-1,3-diyl)bis(1H-isoindole-1,3(2H)-dione), (2), (0.250 g, 

0.71 mmol) was weighed into a RBF, and acetic acid (10 mL) and HBr (48 wt. %) (75 μL, 0.66 mmol) 

added sequentially. The mixture was refluxed under low light conditions for 24 hours. Once cooled to 

RT, the contents of the flask were neutralised with Na2CO3 (10 %) (80 mL) and washed with brine 

(10 mL). The aqueous layer was extracted with CH2Cl2 (2×100 mL). Organic fractions were combined 

and concentrated by rotary evaporation. The residue was separated by column chromatography using 

(EtOAc : Hexane) = (4 : 1) solvent system. Resulting product is a white powder. 

(3) 2,2'-(2-Bromopropane-1,3-diyl)bis(1H-isoindole-1,3(2H)-dione) 

This compound is new. 

It was first synthesised in our research group by Ahmed Naseem in 2008.[63] 

Yield: Not measured. 

IR (KBr, ν / cm-1): 3435(br, O-H), 2938, 1774, 1772, 1726(s), 1713 (s, C=O), 1612, 1466, 1433, 1423, 

1397 (s, C-N), 1372, 1291, 1276, 1189, 1120, 999 (s, C-Br), 906, 882, 845, 798, 744, 724, 715, 695, 

532(s). 

1H NMR (400 MHz, CDCl3, δ/ ppm): 3.82-3.91 (m, 4H, -CH2-), 5.29-5.35 (m, 1H, -CHBr-), 7.84-7.92 

(m, 8H, Ar). 

13C NMR (100 MHz, CDCl3, δ/ ppm): 38.9 (t, -CH2-), 68.9 (d, -CHBr-), 123.1 (d, -CHC(C=O)-), 131.3 (-

C(C=O)), 131.5 (d, -CHCH(C=O)-), 167.6 (C=O). 

Original spectra for this compound are presented in appendix A, Figures A27-A32. 

The comparison of NMR and IR data for compounds (2) and (3) revealed a high level of similarity; one 

major band shift in the IR spectra was from 1038 (s, C-OH) to 999 (s, C-Br) cm-1, and a small shift in 13C 
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NMR spectra for the derivatised was carbon from 65.00 (d, -CH(OH)-) to 68.93 (d, -CHBr-) ppm. Initially 

we thought that compound (3) was not obtained, as its IR and NMR spectra were very close to those 

of (2), and we could not get positive MS results indicating it was indeed the bromine homologue. Only 

at the stage of compiling this thesis when we compared our results with those of Ahmed and analysed 

large numbers of reaction samples derived from the use of different bromo-de-hydroxylation agents, 

did we realise that they closely resembling each other but are nevertheless distinctly different 

compounds (2) and (3) were present. A regrettable oversight. 

5.3.2  [(n-Bromoalkyloxy)methyl]benzenes, (21) 

O

Br
n  

n = 1, 2, 5 

Generic procedure: Triphenylphosphine (2.86g, 10.8 mmol) was dissolved in CH2Cl2 (30 mL) in a 

RBF and relevant (benzyloxy)alcohol (10.6 mmol) added to it. A solution of carbon tetrabromide (3.62 

g, 10.8 mmol) in CH2Cl2 (10 mL) was added drop-wise to the flask, which was kept in an ice bath. The 

mixture was allowed to warm up and was stirred for 3 hours at RT under N2. The organic layer was 

washed with Na2CO3 (aq, 5 wt. %) (5 mL), and brine (5 mL). Aqueous layers were extracted with CH2Cl2, 

organic fractions combined, and concentrated by rotary evaporation. The residue was re-dissolved in 

hexane (30 mL), which was added slowly with stirring, and left stirring overnight. Resulting white solid 

was filtered off and mother liquor concentrated by rotary evaporation. The residue was purified by 

column chromatography, (CH2Cl2 : EtOAc) = (1:0) to (0:1). The product fraction (fraction 1) was 

collected and distilled at atmospheric pressure (90 ⁰C). The product is a golden-brown liquid.  

(21a) [(2-Bromoethoxy)methyl]benzene 

This compound is known in literature.[64-65] 

Yield: 1.83 g, 8.20 mmol (76%). 

1H NMR (400 MHz, CDCl3, δ/ ppm): 3.49 (t, J = 6.2 Hz, 2H, -CH2Br), 3.79 (t, J = 6.2 Hz, 2H, -CH2CH2Br), 

4.59 (s, 2H, PhCH2-), 7.29-7.36 (m, 5H, Ph). 

13C NMR (100 MHz, CDCl3, δ/ ppm): 30.6 (t, -CH2Br), 70.2 (t, -CH2CH2Br), 73.4 (t, PhCH2-), 127.9 (d, 

Ph), 128.1 (d, Ph), 128.68 (d, Ph), 138.0 (s, Ph). 

Original spectra for this compound are presented in appendix A, Figures A33-A38. 



MSc Thesis 2014 Chapter A 

65 

 

Characterisation was achieved by means of 1H, 13C, and correlation NMR spectra. Analysis of the data 

indicated that the desired species has been synthesised. 

(21b) [(3-Bromopropoxy)methyl]benzene 

This compound is known in literature.[59] 

Yield: 2.04 g, 8.71 mmol (84%).  

1H NMR (400 MHz, CDCl3, δ/ ppm): 2.14 (p, J = 6.2 Hz, 2H, -CH2CH2Br), 3.54 (t, J = 6.6 Hz, 2H, -CH2Br), 

3.61 (t, J = 5.8 Hz, 2H, -OCH2-), 4.52 (s, 2H, PhCH2-), 7.26-7.36 (m, 5H, Ph). 

13C NMR (100 MHz, CDCl3, δ/ ppm): 30.8 (t, -CH2Br), 33.1 (t, -CH2CH2Br), 67.9 (t, -OCH2-), 73.3 (t, 

PhCH2-), 127.8 (d, Ph), 127.9 (d, Ph), 128.6 (d, Ph), 138.5 (s, Ph). 

Original spectra for this compound are presented in appendix A, Figures A39-A43. 

Characterisation was achieved by means of 1H, 13C, and correlation NMR spectra. Analysis of the data 

indicated that the desired species has been synthesised. 

(21c) {[(6-Bromohexyl)oxy]methyl}benzene 

This compound is known in literature.[66-67] 

Yield: 2.32 g, 8.56 mmol (81 %). 

1H NMR (400 MHz, CDCl3, δ/ ppm): 1.38-1.50 (m, 4H ,-CH2CH2CH2CH2Br), 1.64 (p, J = 7.0 Hz, 

2H, -OCH2CH2-), 1.87 (p, J = 6.9 Hz, 2H, -CH2CH2Br), 3.41 (t, J = 6.8 Hz, 2H, -CH2Br), 3.48 (t, J = 6.5 Hz, 

2H, -OCH2-), 4.51 (s, 2H, PhCH2-), 7.29-7.35 (m, 5H, Ph). 

13C NMR (100 MHz, CDCl3, δ/ ppm): 25.6 (t, -CH2CH2CH2Br), 28.2 (t, -OCH2CH2CH2-), 29.8 

(t, -OCH2CH2-), 32.9 (t, -CH2CH2Br), 34.0 (t, -CH2Br), 70.4 (t, -OCH2-), 73.1 (t, PhCH2-), 127.7 (d, Ph), 127.8 

(d, Ph), 128.5 (d, Ph), 138.8 (s, Ph). 

Original spectra for this compound are presented in appendix A, Figures A44-A49. 

Characterisation was achieved by means of 1H, 13C, and correlation NMR spectra. Analysis of the data 

indicated that the desired species has been synthesised. For all compounds in this category, 1H and 13C 

NMR data are in satisfactory agreement with the values reported in literature.[59, 64-67] 
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5.4 Condensation with malononitrile 

(22a) [2-(Benzyloxy)ethyl]propanedinitrile 

O

N

N

 

This compound is new. 

Procedure: Malononitrile (3.30 g, 49.5 mmol) was weighed into a dry 100 mL RBF flushed with Ar. 

[(2-Bromoethoxy)methyl]benzene (3.70g, 16.5 mmol), t-butylammonium bromide (0.215 g, 

0.66 mmol) and dry THF (10 mL) were added sequentially. After stirring for 1 hour, potassium 

t-butoxide (2.11 g, 18.5 mmol) was added. The reaction mixture was stirred for further 12 hours under 

N2 at 60 °C. The mixture was extracted with CH2Cl2 (3×100 mL) and the residual solid filtered off. It was 

washed with CH2Cl2 (60 mL). The dichloromethane fractions were combined and the solvent removed 

under reduced pressure at RT to a CH2Cl2 free residue, which was washed, first, with hexane (74 mL), 

and then, with water (30 mL). Each time two-phase liquid system was filtered through a double paper 

filter that removed the solvent layer but left the viscous liquid phase on top. This phase was transferred 

to a RBF and the residual solvent removed under vacuum. Thereafter, a small amount of EtOH was 

added to the residue and it was separated by column chromatography using (CHCl3 : EtOH) = (1 : 0)- to 

(0 : 1) solvent system. Resulting product is a pale-brown viscous liquid. 

Note: The product is heat sensitive and should not be subjected to temperatures above 40 °C in the 

separation procedure! On average, we had a success with this separation procedure four times out of 

five. In the case of failure, one should re-combine all fractions, remove the solvents by evaporation, 

and try the separation again.  

Yield: 1.18 g, 5.55 mmol (34%).  

1H NMR (400 MHz, CDCl3, δ/ ppm): 2.28-2.31 (m, 1H, -CH2CH(CN)2), 2.30-2.33 (m, 1H, -CH2CH(CN)2), 

3.69 (t, J = 11.0 Hz, 2H, -OCH2CH2-), 4.07 (t,  J = 7.6 Hz, 1H, -CH(CN)2), 4.55 (s, 2H, PhCH2-), 7.31-7.39 

(m, 5H, Ph). 

13C NMR (100 MHz, CDCl3, δ/ ppm): 19.7 (d, -CH(CN)2), 31.7 (t, -CH2CH(CN)2), 64.7 (t, -OCH2-), 73.8 (t, 

PhCH2-), 112.6 (s, -C≡N), 128.1 (d, Ph), 128.4 (d, Ph), 128.8 (d, Ph), 137.3 (s, Ph). 
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Original spectra for this compound are presented in the appendix A, Figures A50-A54. 

Characterisation was achieved by means of 1H, 13C, and correlation NMR spectra. Analysis of the data 

indicated that the desired species has been synthesised. 

 (22b) [3-(Benzyloxy)propyl]propanedinitrile 

N

N

O

 

This compound is new. 

Procedure: Malononitrile (0.87 g, 13.1 mmol) was weighed in a dry 100 mL RBF flushed with Ar. 

[(3-Bromopropoxy)methyl]benzene (1.00g, 4.36 mmol), t-butylammonium bromide (0.039 g, 

0.12 mmol), and dry THF (10 mL) were added sequentially. After stirring for 1 hour potassium 

t-butoxide (0.376 g, 3.29 mmol) was added. The reaction mixture was stirred for further 12 hours under 

N2 at 60 °C. Then it was extracted with CH2Cl2 (3×32 mL) and the residual solid filtered off. It was 

washed with CH2Cl2 (20 mL) and all dichloromethane fractions combined. The solvent was removed 

under reduced pressure at RT to a CH2Cl2 free residue, which was washed, first, with hexane (16 mL), 

and then, with water (8 mL). Each time two-phase liquid system was filtered through a double paper 

filter that removed the solvent layer but left the viscous liquid phase on top. This phase was transferred 

to a RBF and the residual solvent removed under vacuum. Thereafter, a small amount of EtOH was 

added to the residue, and it was separated by column chromatography using (CHCl3 : EtOH) = (1 : 0) to 

(0 : 1) solvent system. Resulting product is a pale-brown viscous liquid.  

Note: The product is heat sensitive and should not be subjected to temperatures above 40 °C in the 

separation procedure! 

Yield: 0.373 g, 1.65 mmol (38%).  

1H NMR (400 MHz, CDCl3, δ/ ppm): 1.89-1.94 (m, 2H, -OCH2CH2-), 2.16-2.21 (m, 2H, -CH2CH(CN)2), 

3.57 (t, J = 5.6 Hz, 2H, -OCH2-), 3.91 (t, J = 7.3 Hz, 1H, -CH(CN)2), 4.51 (s, 2H, PhCH2-), 7.30-7.37 (m, 5H, 

Ph).  

13C NMR (100 MHz, CDCl3, δ/ ppm): 22.6 (d, -CH(CN)2), 26.5 (t, -OCH2CH2-), 29.1 (t, -CH2CH(CN)2), 

68.7 (t, -OCH2-), 73.4 (t, PhCH2-), 112.9 (s, -C≡N), 127.9 (d, Ph), 128.1 (d, Ph), 128.8 (d, Ph), 137.9 (s, 

Ph).  

HRMS (ES-, m/z):  [M + Na]+ calcd. for C13H14N2ONa, 237.1004; found, 237.1009. 
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Original spectra for this compound are presented in the appendix A, Figures A55-A61. 

As both of the above two species are new, full NMR characterisation was carried out. The assignment 

of the structure was achieved by analysing 1D, 2D, and correlation spectra, (1H, 13C, dept-135, 

dept-90, hsqc, hmbc, cosy). Molecular formula of (22b) was confirmed by high-resolution mass 

spectroscopy. 

5.5 Reduction of malononitrile intermediates 

(24a) 2-(2-Hydroxyethyl)propane-1,3-diaminium dichloride  

OH

NH3
+

NH3
+

Cl
-

2.

 

This compound is new. 

Procedure: [n-(Benzyloxy)ethyl]propanedinitrile (287 mg, 1.31 mmol) was weighed into a 100 mL 

RBF, to which PtO2 (143 mg, 50 wt. %), dry EtOH (90 mL), and concentrated aqueous HCl (32 wt. %,  

895 μL) were added sequentially. The mixture was stirred under H2 (at 460 kPa) for 48 hours. Resulting 

mixture was filtered through two filter papers, and mother liquor concentrated under reduced 

pressure. The residue was re-dissolved in EtOH (5 mL) and transferred to a centrifuge tube, where 

C2H5OC2H5 (45 mL) was added in. The precipitate formed was centrifuged, and dried over P2O5 for two 

weeks, resulting in a fine yellow highly hygroscopic powder.  

Note: pH of the solvent mixture should not exceed 1! The choice of D2O for NMR studies was caused 

by the fact that the product failed to dissolve in either CDCl3 or DMSO-d6. 

Yield: Approximately 3 wt. %. 

1H NMR (400 MHz, D2O, δ/ ppm): 1.84-1.89 (m, 2H, HOCH2CH2-), 2.35-2.40 (m, 1H, -CH2CH(CH2)2), 

3.20-3.24 (m, 4H, -CH2NH3
+), 3.82-3.85 (t, J = 11.8 Hz, 2H, HOCH2-)†. 

                                                           
†) Sample had some impurities, which caused the loss of resolution in the 1H spectrum; the value of the splitting constant is 

provisional.  
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13C NMR (100 MHz, D2O, δ/ ppm): 31.1 (t, HOCH2CH2-) 33.4 (d, -CH(CH2)2-), 40.8 (t, -CH2NH3
+), 58.5 

(t, HOCH2-). 

Original spectra for this compound are presented in the appendix A, Figures A62-A66. 

As this compound is new, assignment of the NMR data was achieved with the aid of 1D, 2D, and 

correlation spectra. 
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1. In total, we have synthesised eleven compounds, of which five were new (2, 3, 22a, 22b, and 

23b). Previously known compounds were characterised by 1H and 13C NMR spectroscopy; in all 

cases the comparison with literature data was satisfactory. New compounds were characterised 

by complete range of instrumental techniques described in this Chapter. 

2. The mono-protection of diols was achieved with benzyl bromide and silver oxide as a co-catalyst. 

Yields for mono-protected species were 31 % for 2-(benzyloxy)ethanol (20a), 47 % for 3-(benzyl-

oxy)propan-1-ol (20b), and 40 % for 6-(benzyloxy)hexan-1-ol (20c). This is lower than the values 

in excess of 70 percent, claimed in literature, despite extensive optimisation of the synthetic 

procedure undertaken by us. The reaction was performed on more than six occasions and the 

procedure proved repeatable. 

3. Two different brominating agents were employed in the conversion of protected alcohols (2 and 

20) to the respective bromides (3 and 21): 

a) Bromo-de-hydroxylation of (2), 2,2'-(2-hydroxypropane-1,3-diyl)bis(1H-isoindole-1,3(2H)-

dione), was attempted with CBr4/PPh3 and HBr/CH3COOH, and initially thought to have 

failed in both cases. On review of the data from a number of attempts, we realised the 

HBr/CH3COOH route was successful. 

b) Bromo-de-hydroxylation of alcohols (20a-c) to bromides (21a-c) proceeded well via the 

CBr4/PPh3 route. Yields of 75 percent or higher were in accord with reported in literature. 

4. Two of the six synthetic routes considered in Chapter A required intermediate (3), 2,2'-(2-

bromopropane-1,3-diyl)bis(1H-isoindole-1,3(2H)-dione), the synthesis of which was attempted 

by the bromo-de-hydroxylation of compound (2). We have abandoned this direction as at the 

time it was believed that preparation of (3) has failed. Later review of experimental evidence 

changed that conclusion and, in fact, the synthesis of (3) was successfully achieved. In particular, 

IR and NMR data for both compounds were very close but for a couple of small differences in 

certain parts of the spectra. When spectra for a range of samples were compared side by side, 

it became clear they represent two distinctly different species. Regrettably, this oversight was 

corrected only recently. Hence, the parameters of the procedure were not finalised, and two 

synthetic paths that depended on intermediate (3) were not followed.  

5. According to the experience gained in our research group, mono-substitution of malononitriles 

at C2-carbon has always been difficult due to the lability of hydrogen atom remaining on this 
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carbon. In all previous attempted syntheses with various halogenating agents, bi-substitution 

occurred. We have succeeded to achieve mono-substitution with intermediates (21a-b) by 

employing potassium t-butoxide and a three-fold excess of malononitrile. Yields of derivatised 

malononitriles (22a-b) were in the range of 30 to 40 percent. 

6. Conversion of intermediates (22a-b) to 1,3-diamino-2-alkyl derivatives (24a-b) involves two 

separate reactions. The first is de-protection of the mono-protected benzyl ether alcohol, and 

the second is reduction of the di-nitrile. Initially we thought both steps could be achieved with 

the palladium-on-carbon hydrogenation catalyst, but it proved unsuccessful even in activating 

solvents. Various other reducing agents were tried, among them LiAlH4 and BH3, without 

success. The first proved unable to reduce mono-substituted dinitriles, while the second resulted 

in the formation of inseparable mixtures. 

7. Hydrogenation of [3-(benzyloxy)propyl]propanedinitrile (22b) to 2-(2-hydroxyethyl)propane-

1,3-diamonium dichloride salt (24b) was achieved for the first time with PtO2 catalyst under 

acidic conditions. Highly hygroscopic product was isolated in approximately 3 % yield. Low yield 

for this one-pot reaction is puzzling, as the test reactions on stepwise hydrogenation – 

de-protection afforded moderate to high yields.  

It took us two years of work to arrive at the results just summarised above. Although, much was 

learned and many useful synthetic steps accomplished, our primary objective – to synthesise 

derivatised 1,3-propanediamines – was not met in satisfactory fashion. At this stage, upon consultation 

with my supervisor, it was decided to shelve present project for two reasons. First, we ran out of time. 

Trying anything else along similar lines would require another year, year and a half, without certainty 

that it will work, and might have put at risk successful completion of this MSc project. Second, the cost 

of the work escalated to the level where it was considered unsustainable. Prohibitively high cost of the 

platinum dioxide catalyst, at over R2,000 per gram, and the need of its 50 percent loading by weight, 

with about 3 percent intermediate product yield and two more sequential synthetic steps still to go, 

made continuation of this pursuit untenable. 

Overall feeling that the project was not a success, after so much work and effort, led to another 

suggestion of my supervisor, which I accepted. It was to change synthetic direction to the synthesis of 

novel bis-chelate cyanoxime-and-amide ligands, which at the time was just tested and shown promise. 

Consequently, Chapter B that follows is a reflection of the essence and outcome of this second effort 

in my Master’s work. 
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Preparation of the bis-chelate ligands with oxime-and-amide moieties, derivatised at some point of an 

aliphatic bridge, remains important synthetic target in our research group. Below are some suggestion 

for the future work, formulated on the basis of experience gained in the course of performing this 

project. 

1. Considering the failure of most common hydrogenation catalysts employed by us to reduce 

substituted malononitriles, hydrogenation under harsh conditions, such as H2(g) at 200 atm in 

liquid ammonia in the presence of a suitable composite metal catalyst, should be tried. We could 

not try this in the current project, as it requires highly specialised apparatus. Capital investment 

in such equipment will be difficult to justify within our department, and its cost is very substantial 

(a few million Rand). The best solution would be to find collaborators overseas, who already 

possess such apparatus, and to arrange trial runs at their facility. 

2. If mechanistic questions about the reduction of substituted malononitriles are to be answered, 

one may consider more systematic study, where a range of derivatives is prepared with and 

without a hydrogen atom on the C2-carbon of malononitrile, followed by an investigation of their 

reactivity. In particular, a range of mono-alkylated products may be synthesised according to 

Diez-Barra et al
[40] , and another range of derivatives, with the olefin-type grafting (see Scheme 7), 

may be prepared according to Zhang et al
[68] or Moussaoui and Salem.[69] By subjecting these 

analogues to hydrogenation with a number of reducing agents (among them: LiAlH4, BH3, refluxing 

with concentrated acids, and direct hydrogenation with a range of catalysts), one might gain an 

understanding of factors essential to the reduction of substituted malononitriles to derivatised 

1,3-diaminopropanes. 

3. In view of the difficulties encountered with the reduction of substituted malononitriles, one 

should revisit the preparation of brominated compound (3), and explore synthetic routes 

presented in Schemes 1-2. Alternatively, if the above proves difficult, Boc-protection of 

1,3-diaminopropane-2-ol should be considered, and Schemes 3-4 followed. 

4. Otherwise, an entirely new approach might be considered. The fact that malononitrile has two 

fairly acidic protons allows it to undergo a Knoevenenagel condensation, which is yet another way 

of grafting an arm onto C2-carbon of malononitrile, Scheme 7. Knoevenenagel condensation 

products are synthesised on alumina under solvent free conditions, or by grinding neat reagents 

with K2CO3. The reaction gives slightly better yields if R1 is hydrogen and R2 is carbon β to an 
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aromatic moiety, though, yields in the region of 50 % were achieved for non-aromatic 

substituents. This approach may allow a wide range of arms to be grafted on C2-carbon of 

malononitrile.[68] Reduction of the nitrile groups that follows might at the same time convert the 

double bond into a saturated hydrocarbon chain, as desired in this project. 

N N

O

R1 R2

NN

R1 R2

+

 

Scheme 7. Generic Knoevenenagel condensation of malononitrile with ketones. 
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As the contents of Chapter A and Chapter B are essentially independent and are bound only by the 

common theme of oxime-and-amide ligands pursued in our research group, we have decided to 

introduce independent numbering of Figures, Tables, Schemes, References, compounds, etc. in each 

of these Chapters. If a reference, say, to a Figure 5 from Chapter A is made in Chapter B, it would be 

expanded to Figure 5A. Within the same Chapter it would be referred to simply as Figure 5. 

As has already been mentioned in the introduction to Chapter A, the interest in the research group to 

which I belong is focused on the synthesis, characterisation, and both solid state and solution studies 

of the mono- and bis-chelate ligands with the hydroxyiminoacetamide (hiaa) moiety, Figure 1, as well 

as their metal complexes with late 3d-transition metals. 

O

OH

R2

NH

R1

N

 

Fig. 1. Generic structure of a ligand with hydroxyiminoacetamide (hiaa) chelating moiety 

(highlighted). 

Prior to present work, most of the research published in literature, as well as research performed in 

our group, was centred on ligands with R1 = CH3. Bis-chelates of such nature (we shall abbreviate them 
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as mhiaa2z
*) and their metal complexes possess a range of attractive structural and physical properties. 

Please refer to the introduction in Chapter A for more detail. In addition to the Ni(II) and Cu(II) 

pseudo-macrocyclic mono-nuclear mhiaa2z complexes of the MLH-3 composition,[1-3] which we have 

discussed previously, mhiaa2z ligands with even number of methylene groups in the bridge, namely, 

mhiaa2e and mhiaa2b, were shown to form dinuclear-diligand complexes with Cu(II).[4] Spectroscopic 

(UV-Vis and ESR) and structural studies of these complexes indicated different coordination 

environment around the metal. In particular, for [M] : [L] = 1 : 1, in the pH range from fairly acidic to 

slightly basic (where the deprotonation of only oxime groups occurs), conformation of the oxime-and-

amide moiety changes from E to Z, and the square-planar coordination environment around copper(II) 

becomes 2N(ox)2O(ad), the mode entirely different from the 2N(ox)2N(ad) coordination environment 

discussed previously for the mono-dentate complexes. 

Reported initially by Fritsky et al,[4] as well as confirmed in our group,[5] crystal structures of such 

complexes revealed chelation not previously observed for these ligands, Figures 2-3. Inability of the 

bis-chelate to bind the same Cu(II) centre in its protonated amide conformation led to interesting two-

platforms di-metal di-ligand complexes (see below). As already mentioned, such structures arise both 

in solution and in solid state only if the flexible bridge between two chelate units consists of an even 

number of methylene groups (2 or 4). For mhiaa2p ligand, where the bridge consists of 3 methylene 

groups, no formation of such complex is observed at all. 

 

Fig. 2. Solid state structure of the di-copper – di-ligand complex [Cu2(mhiaa2eH-1)2].
[5] 

                                                           
* This abbreviation is derived from two methylhydroxyiminoacetamide units and z representing the nature of a 

flexible bridge, e.g., z = e for ethane, z = p for propane, etc. 
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Fig. 3. Solid state structure of the di-copper – di-ligand complex [Cu2(mhiaa2bH-1)2].
[5] 

Among distinctive geometrical features of these complexes are: a) square-planar 2N(ox)2O(ad) 

coordination environment around copper, b) “two-platform” stepwise shape, c) relief of a steric strain 

on the polymethylene bridge via adopting a “zig-zag” conformation. Nevertheless, as for 2N(ox)2N(ad) 

complexes, the planarity of the metal bound sites is aided by the fact that both chelating units are in 

prearranged planar conformation due to the π-conjugation of oxime and amide groups. Another 

essential stabilising feature is partial deprotonation of the terminal oxime groups and the formation 

of short intra-molecular hydrogen bond between one ligand deprotonated and another ligand still 

protonated oxime group. The latter adds pseudo-macrocyclic character to the complex structure and 

increases its thermodynamic stability. 

Taking into account the formation of stable Ni(II)- and Cu(II)-complexes with mhiaa2z ligands, where 

the planarity of mhiaa moiety, the nucleophilicity of its donor centres, and the conformational shape 

of the chelate all play essential role, we deemed it extremely interesting to explore the influence of an 

electron withdrawing group in place of the methyl group on the above factors, as well as on the 

complex stability. Supported in part by quantum-mechanical modelling in our group, the expectation 

was that strongly electron withdrawing functional group (such as nitrile) will render oxime (and 

possibly amide) protons of hiaa more acidic, resulting in their early (at lower pH) deprotonation and 

affecting the stability of metal complexes. Also, we were curious to explore how this newly increased 

acidity of the oxime groups will affect intra-molecular hydrogen bonding of the pseudo-macrocyclic 

complexes, and thus reveal its relative significance in stabilising such structures. 

The first test of the concept of electron redistribution within the hiaa moiety, came from the 

comparison of the protonation behaviour of two similar acetamides, NCC(=NOH)C(=O)NH2 (chiaa) and 

H3CC(=NOH)C(=O)NH2, (mhiaa), Figure 4. 
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Fig. 4. 2-Cyano-2-(hydroxyimino)acetamide or chiaa (left) and 2-hydroxyiminopropanamide or 

mhiaa (right). 

According to Sliva et al,[6] oxime protonation constants for mhiaa and chiaa were found to be 9.87 and 

5.12 (for log10K), respectively. As anticipated, there is huge increase (by more than 4 orders of 

magnitude!) in the acidity of the oxime proton, in response to placement of the electron withdrawing 

nitrile group in immediate vicinity of the oxime group.  

The thermodynamics of protonation and metallation of a range of bis-chelate mhiaa2z ligands, 

Figure 5, with Co(II), Ni(II), and Cu(II) in aqueous solutions have been investigated in our group in recent 

years.[5] 

OH
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NHNH

O

N

OH

N

n

 

n = 0, 1, 2, 1-OH 

Fig. 5. Mhiaa2z ligands investigated in our group previously.[5] 

In line with the considerations expressed above, in this Chapter of the thesis we will describe the 

synthesis and characterisation of a range of similar chiaa2z ligands, Figure 6, intended for the future 

protonation and metallation thermodynamic studies. 
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NHNH
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n = 0, 1, 2, 1-OH 

Fig. 6. Bis-chelate cyano-hydroxyiminoacetamide (chiaa2z) ligands to be studied in the second part 

of the project. 
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2.1 Introduction to Cyanoximes 

Early addition of the hydroxyimino (oxime) group to an organic molecule is traceable to the work of 

Victor Meyer and Alios Janny, who explored the synthesis of aldoximes and ketoximes, Figure 7.[7-8] 

OH

R2R1

N

R2R1

Oximating agent

 

Fig. 7. The concept of synthetic approach to oximation after Victor Meyer.[8] 

By constraining one of the above substituent groups to a nitrile, first cyanoximes were prepared. They 

have found application as intermediates in the synthesis of heterocyclic systems.[9-11] Oximes also 

proved useful in the area of coordination chemistry, as they form fairly stable complexes or salts with 

a variety of metal ions; among them, Ni(II), Cu(II), Pb(II), Ag(I), Tl(I) and Sb(V), to mention a few.[6, 12, 13] 

In recent years oximes have attracted attention as building blocks in supramolecular assemblies,[14, 15] 

possible gas sensors,[16] and medical indwelling devices.[17] 

Our interest in this area is associated with the oxime-and-amide ligands, traceable to the study of 

2-(hydroxyimino)propanamides, H3C-C(=NOH)CONH-, by Lau and Gutsche,[18] and later by Onindo et 

al.[19] Structurally such ligands are similar to dipeptides but for the oxime functionality in place of the 

terminal amino group. XRD data for a number of Cu(II)-complexes of N-pyruvoylaminoacid oximes 

confirmed the fact that the ligand chelate moiety was ambidentate, and the square-planar complexes 

formed were characterised by high degree of planarity. Two major chelation modes were established: 

a) N(oxime) N(amide) and b) a conformationally altered N(oxime) O(carbonyl).[1, 2, 19] 

As already mention in the Introduction to this Chapter, conceptual idea for this part of the project was 

to look at the consequences the replacement of the methyl group riding oxime carbon with strongly 

electron withdrawing group (such as nitrile) would have on the properties of bis-chelate ligands, as 

well as on their binding of transition metals. First potentiometric and spectroscopic data by Sliva et 

al[6] for the ligand with 2-cyan(hydroxyimino)acetamide moiety confirmed very substantial change in 

the protonation and metallation behaviour in comparison to the methylated ligand.  

At this point we would like to review coordination properties of individual functional groups and their 

combinations in the ligands under discussion. 
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2.2 Coordination Chemistry of Isolated Functional Groups 

Coordination behaviour of the isolated oxime and amide groups has been already reviewed in chapter 

A, and the reader is advised to consult it, (pages 7-9). We will also skip the discussion of coordination 

behaviour of an isolated nitrile group as it not relevant to the focus of present work.* 

2.3 Coordination by Cyanoximes 

As already mentioned in the Introduction, the cyanoxime moiety consists of a hydroxyimino group with 

one of the substituents being a nitrile. In general the formula is: N≡C-C(=N-OH)R1, Figure 8. 

N

N

R1

O

H

 

Fig. 8. Generic view of the cyanoxime moiety in its most stable conformational form with the lone 

pairs available for the metal coordination displayed.  

Cyanoxime moiety is effectively planar for most of the substituent groups R1. Two lone pairs carried by 

the oxygen atom are out of plane of this moiety, while the oxime nitrogen lone pair is in plane. The 

very existence of these lone pairs and the ability of oxime group to deprotonate allow for the metal to 

be coordinated in a number of modes. Among them are monodentate coordination to oxime 

nitrogen[2] or oxime oxygen,[20] chelating coordination to the N-O unit by the same metal,[21] or 

monodentate coordination of two metal centres to the same N-O pair;[13] with the involvement of two 

or more ligands the latter commonly results in the formation of polynuclear complexes, where the 

metal ions are linked in a bridging manner. Cyanoximes have the ability to form salts or stable 

complexes with a variety of metals; the examples include benzoylcyanoxime complexes of Ni(II), Cu(II) 

and Ag(I) and hydroxyiminopropanamide complexes of Sb(V) and Sn(IV), to mention a few.[12, 20, 22] 

                                                           
* It will be briefly considered later in the section on crystallography (Section 3.4). 
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2.4 Coordination Chemistry of the CHIAA Moiety. 

Placing the cyanoxime and amide functionality in immediate vicinity of each other in the same 

molecule leads to the ligands with strong chelation preference towards transition metals. Coordination 

chemistry of the HIAA moiety has been already discussed in chapter A. A reader is advised to consult 

the relevant section of the thesis (pages 9-10). 

The first ligand of this kind, 2-cyano-2-(hydroxyimino)ethanamide, Figure 9, was synthesised in 1909 

by Conrad and Schulze,[23] though its coordination behaviour remained unexplored until the 1997 work 

of Sliva et al.[6]  

NH2

N

OH

N

O  

Fig. 9. 2-Cyano-2-(hydroxyimino)ethanamide (chiaad), the first cyanoxime-and-amide chelating 

ligand. 

From the spectroscopic and solid state studies of the Ni(II) complexes of this ligand the authors 

concluded that the metal centre in them was in a distorted square planar N4 coordination 

environment. Two ligand molecules coordinated the same metal in a chelate manner and were trans 

to each other.[6] A year later Sliva et al[13] synthesised the first ligand derived from a diamine, (2E)-N-

(2-aminoethyl)-2-cyano-2-(hydroxyimino)ethanamide (chiaaea), Figure 10. On the grounds of 

spectroscopic evidence it was also shown to bind Cu(II). 

NH

N

OH

N

O

NH2

 

Fig. 10. (2E)-N-(2-aminoethyl)-2-cyano-2-(hydroxyimino)ethanamide ligand. 

Since then, more than a dozen of other cyanoxime-and-amide ligands and their metal complexes were 

reported in literature. We will provide the list of synthesised to date chiaa ligands in section 2.7. 
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2.5 Bis-Chelate Ligands with CHIAA Moieties 

Combining two cyanoxime-and-amide moieties in one molecule leads to bis-chelate ligands, which are 

the subject of our project. 

To the best of our knowledge only two cyanoxime-and-amide bis-chelate ligands were reported 

previously. The first of them, chiaa2p ligand, Figure 11, was synthesised by Kolotilov et al,[24] who also 

studied magnetic properties of the materials derived from its dinuclear and trinuclear Cu(II) amido 

oximate complexes.  
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Fig. 11. (2E,2E’)-N,N’-propane-1,3-diylbis[2-cyano-2-(hydroxyimino)ethanamide] (chiaa2p) ligand. 

Clearly, the ligand was able to bind copper centres, though no meaningful characterisation of such 

complexes was reported. Individual complexes were spontaneously assembled into multinuclear metal 

clusters, and the authors were primarily interested in the magnetic properties of the latter. 

The second ligand, (2E,2E’)-3,3’-piperazine-1,4-diylbis[2-(hydroxyimino)-3-oxopropanenitrile] or 

(chiaa2ppz), was prepared by Cheadle et al[15] as a bifunctional building block for supramolecular and 

coordination chemistry, Figure 12. 
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Fig. 12. Molecular structure of (2E,2E’)-3,3’-Piperazine-1,4-diylbis[2-(hydroxyimino)-3-oxo 

propane-nitrile] or (chiaa2ppz) ligand.[15] 

As shown by the XRD structure of chiaa2ppz Tl(I)-complex, the metal centre in it is coordinated to five 

deprotonated oxime groups. A number of other metal ions also formed complexes with this ligand; 

among them were monovalent sodium, silver and thallium, and divalent nickel, palladium and 

platinum. 



MSc Thesis 2014 Chapter B 

86 

 

The mention of chiaa2p ligands in literature inspired optimism, as it was one of the series of ligands 

desired in this project. We hoped that its preparation[24] will provide a template for the synthesis of 

other new ligands of this series. 

In conclusion, we can reiterate that two examples of the bis-chelate ligands with cyanoxime-and-amide 

moieties have been reported in literature, and that such ligands have been shown to bind Ni(II) and 

Cu(II) strongly, both in solution and in the solid state. 
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2.6 Possible Applications of Ligands with Cyanoxime-and-

Amide Chelates 

In this section we will take a brief look at the real world applications of cyanoximes. 

A number of cyanoximes have found industrial applications as plant growth regulators, e.g., 

2-cyano-2-(hydroxyimino)ethanamide or NCC(=N-OH)C(=O)NH2, and antidotes for pesticides, e.g., 

2-cyano-2-(hydroxyimino)-N,N-dimethylethanamide or NCC(=N-OH)C(=O)N(CH3)2.[12, 20] 

A range of promising sophisticated uses of this type of ligands and their metal complexes is expanding. 

Among some of them reported recently are tin(IV) cyanoximates as anti-cancer agents,[22] and 

precursors to peptide coupling agents.[25,26] Pd(II) and Pt(II) complexes of 2-(hydroxyl-

imino)-3-(morpholin-4-yl)-3-oxopropanenitrile (hmco), Figure 13, were also shown to have anticancer 

activity,[27] 
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Fig. 13. Molecular structure of (2E)-2-(hydroxyimino)-3-(morpholin-4-yl)-3-oxopropanenitrile 

(hmco).  

Ag(I)-2-cyano-2-(hydroxyimino)ethanamide or NCC(=NOAg)C(=O)NH2 and silver (I) salts of other 

cyanoximes studied by Gerasimchuck et al[16] exhibited long term light insensitivity, which is unusual 

for the silver(I) compounds of this nature. However, in the presence of NO(g), HCCH(g), H2(g), CO(g) or 

C2H4 (g) with light exposure certain amount of visible degradation occurred. Such behaviour allows 

these types of silver oxime salts to be used as non-electric gas sensors.[16] 

Silver(I) complexes of cyanoxime-and-amide ligands show high thermal stability, low solubility in 

aqueous environments and antibiotic activity, which are desired qualities for medical indwelling† 

antimicrobial agents.[17] 

Also, a range of Mn(II) 2-pyridylcyanoximes have been investigated recently as promising magnetic 

materials.[28] 

                                                           
† The term indwelling antimicrobial agent in this context refers to a device that is fixed to a bone near an implant 

with a purpose of suppressing microbial matter that threatens to infect the site and cause the implant rejection. 
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2.7 Synthesis of the CHIAA moiety 

With the synthesis of bis-chelate chiaa ligands being primary aim of the project, in this section we will 

take a look at how a number of structurally similar cyanoxime-and-amide species have been prepared, 

in a search for general synthetic path. 

2.7.1 General approach to the synthesis of cyanoxime-and-amide 

molecular fragment 

To the best of our knowledge, the first case of preparation cyanoxime-and-amide fragment is the 

nitrosation of 2-cyanoacetamide or NCCH2CONH2 according to Conrad and Schulze,[23] which can be 

classified as a Meyer-type reaction.[8] In this process, 2-cyanoacetamide is treated with aqueous 

solution of sodium nitrate and glacial acetic acid, resulting in the conversion of methylene group into 

a deprotonated oxime group. Following treatment of the crude product (oxime sodium salt) with acid 

affords free cyanoxime-and-amide chelate.[23] 

The preceding paragraph gave an example of oximation under acidic conditions; later it was found that 

similar conversion will proceed also under basic conditions. Indeed, a number of examples relevant to 

this work exist where such conditions were employed. Consequently, two major routes need to be 

considered for the 2-cyanamide oximation: acidic and basic oximation. A number of different acids 

were used in the low pH synthesis; also, a wide range of different bases and various alkylnitrite agents 

were used under the basic conditions. In addition, a variation in the sequence of oximation and 

condensation synthetic steps was reported.  

In the following two tables, Table 1 and 2, we have summarised the bulk of published information on 

the preparation of cyanoxime-and-amide species; in particular, we reflected on the order of synthetic 

steps and reaction conditions. 

The data presented in the tables allow to classify preparation of chiaa ligands on the basis of 

nitrosation conditions (acidic or basic) and the sequence of synthetic steps (nitrosation before 

condensation‡ or vice versa). From this viewpoint, their preparation can be subdivided into four 

classes. In the next two sections we will discuss a few examples chosen from each class. 

                                                           
‡ In this thesis the reaction between an amine and an ester, resulting in the formation of an amide, will be referred to as a 

condensation as it gives off an alcohol. 
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Table 1. Cyanoxime-and-amide ligands synthesised via acidic nitrosation. 

No Oxime Precursor Step one Step two Solvent 
Nitrite 

source 
Acid Reference 

1 NCC(=N-OH)C(=O)NH2 NCCH2C(=O)NH2 Cond. Nitr. H2O NaNO2 Acetic [23, 6] 

2 NCC(=N-OH)C(=O)NHCH2CH2NH2 NCC(=N-OH)C(=O)OCH2CH3 Nitr. Cond. H2O NaNO2 Acetic [13§] 

3 NCC(=N-OH)C(=O)N(CH3)2 NCCH2C(=O)N(CH3)2 Cond. Nitr. H2O KNO2 Acetic [20] 

4 NCC(=N-OH)C(=S)N(CH3)2 NCCH2C(=S)N(CH3)2 Cond. Nitr. H2O NaNO2 HCl [20] 

 

Table 2. Cyanoxime-and-amide ligands synthesised via basic nitrosation.** 

Nö Oxime Precursor 
Step 

one 

Step 

two 
Solvent 

Nitrite 

source 
Base Reference 

1 NCC(=N-OH)C(=O)NH2 NCCH2C(=O)NH2 Cond. Nitr. 
EtOH / 

MeOH 

EtONO/ 

MeONO 

EtONa/ 

MeONa 
 [29, 30] 

2 NCC(=N-OH)C(=O)NHCH3 NCCH2C(=O)NHCH3 Cond. Nitr. EtOH EtONO EtONa [29, 31] 

3 NCC(=N-OH)C(=O)NHPh NCCH2C(=O)NHPh Cond. Nitr. EtOH EtONO EtONa [29, 31] 

4 NCC(=N-OH)C(=O)NHC6H11-Cyclic NCCH2C(=O)NHC6H11-Cyclic Cond. Nitr. EtOH EtONO EtONa [29] 

5 NCC(=N-OH)C(=O)NHC6H4Br NCCH2C(=O)NHC6H4Br Cond. Nitr. EtOH EtONO EtONa [29] 

6 NCC(=N-OH)C(=O)NHCH2Ph NCCH2C(=O)NHCH2Ph Cond. Nitr. EtOH EtONO EtONa [31] 

7 NCC(=N-OH)C(=O)N(CH2)5-Cyclic NCCH2C(=O)N(CH2)5 -Cyclic Cond. Nitr. 
i-PrOH / 

MeOH 

t-BuONO 

/ MeONO 

i-PrONa / 

MeONa 
[32], [30] 

8 NCC(=N-OH)C(=O)N(CH2)4O-Cyclic NCCH2C(=O)N(CH2)4O-Cyclic Cond. Nitr. 
i-PrOH / 

MeOH 

t-BuONO 

/ MeONO 

i-PrONa / 

MeONa 
[32], [30] 

9 NCC(=N-OH)C(=O)NH(CH2)3NHC(=O)C(=N-OH)CN NCCH2C(=O)NH(CH2)3NHC(=O)CH2CN Cond. Nitr. EtOH EtONO EtONa [24] 

10 NCC(=N-OH)C(=O)NHC2H5 NCCH2C(=O)NHC2H5 Cond. Nitr. MeOH MeONO MeONa [30] 

11 NCC(=N-OH)C(=O)N(CH2)4NC(=O)C(=N-OH)CN NCCH2C(=O)N(CH2)4NC(=O)CH2CN Cond. Nitr. i-PrOH MeONO i-PrONa [15] 

                                                           
§ Precursor is synthesised according to.[6] 

** The summary of nitrosation under acidic and basic conditions, presented in the above two tables, is not an exhaustive 

account of all published cases of preparation cyanoxime-and-amide chelates; rather it serves to provide representative 

examples. A number of cyanoxime-and-amide ligands with aryl functionalities were also reported. These were excluded 
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2.7.2 Nitrosation followed by condensation 

One species of interest to this project, N,N-(2-aminoethyl)-2-cyano-2-(hydroxyimino)ethanamide, 

Figure 14, was synthesised by condensing ethyl 2-cyano(hydroxyimino)acetate, an already oximated 

intermediate, with 1,2-diaminopropane.[13] 

NH

N

OH

N

O

NH2

 

Fig. 14. N,N-(2-aminoethyl)-2-cyano-2-(hydroxyimino)ethanamide. 

2.7.3 Condensation followed by nitrosation 

The number of cyanoxime-and-amide ligands synthesised in this manor far exceeds the number of 

compounds from the previous section. We will consider representative examples in chronological 

order. The first two examples, 2-cyano-2-(hydroxyimino)-N,N-dimethylethanamide H(DCO), Figure 15, 

and 2-cyano-2-(hydroxyimino)-N,N-dimethylethanethioamide, H(TDCO), Figure 16, were synthesised 

by oximating 2-cyano-N,N-dimethylacetamide or NCCH2C(=O)N(CH3)2 and 2-cyano-N,N-dimethyl-

ethanethioamide or NCCH2C(=S)N(CH3)2, respectively, with the aim to explore their antimony 

complexes.[20] 

OH

N

O

N

N

 

Fig. 15. 2-Cyano-2-(hydroxyimino)-N,N-dimethylethanamide or H(DCO). 

                                                           
from the tables. Fairly extensive list of the cyanoximes studied to date can also be found in the supplementary information 

to the paper by Cheadle et al.[15]. 
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Fig. 16. 2-Cyano-2-(hydroxyimino)-N,N-dimethylethanethioamide or H(TDCO). 

The applicability of nitrosation after condensation route was further illustrated by the work of Kislyi et 

al[31] and Bakulev et al[29] on the cyclization reactions, for which they synthesised precursors shown 

below, Scheme 1. 

O
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R

OH

R
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N

NH

A1- A6 B1- B6
 

Scheme 1. Cyanoxime-and-amide precursors for the cyclisation reactions, R = CH3, CH2Ph, C6H11, 

Ph, C6H4OCH3 and C6H4Br. 

Wide range of substituents connected to the amide nitrogen (from methyl to cycloalkanes to aromatic 

derivatives) indicates that the process of nitrosation is fairly insensitive to the nature of the substituent 

group.[29, 31] The latter is encouraging if one desires to prepare a range of modified molecules. Even 

more complex analogues were derived from the condensation products of secondary amines, e.g., 

2-(hydroxyimino)-3-oxo-3-(piperidin-1-yl)propanenitrile or (HPiPCO), Scheme 2.[32] 

N

N

O

R
OH

N

N

N

O

R

(C1-C2) (D1-D2)  

Scheme 2. Reaction path for the preparation of HPiPCO (R = CH2) and HMCO (R = O). 

Cyanoxime-and-amide bis-chelates can also be prepared in a similar manner, e.g., the condensation of 

ethyl cyano(hydroxyimino)ethanoate with piperazine leads to 
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3,3’-piperazine-1,4-diylbis(3-oxo-propanenitrile), which is then converted to 3,3’-piperazine-

1,4-diylbis[2-(hydroxyimino)-3-oxo-propanenitrile], Scheme 3.[15]. 
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Scheme 3. Preparation of the 3,3’-piperazine bridged bis-cyano(hydroxyimino)acetamide ligand 

(F) from intermediate bis-cyanoacetamide (E). 

To the best of our knowledge, the publication by Cheadle et al[15]  is the only reported case of a 

bis-cyanoxime-and-amide ligand with the tertiary amine linker between the two chelating units. It was 

synthesised by the condensation of piperazine, which as a secondary diamine is in general less reactive 

than similar primary diamines, with cyano acetamide, followed by the nitrosation step. One may infer 

from these results that the condensation step should proceed well when more active primary diamines 

are involved. 

Such inference is confirmed by the work of Kolotilov et al,[24] who synthesised 

N,N'-propane-1,3-diylbis[2-cyano-2-(hydroxyimino)ethanamide], Figure 17, the first and only one of 

the bis-chelate chiaa ligands targeted in this project that was reported in literature.  

OH

N

N

OH

O

NHNH

O

N

N

 

Fig. 17. (2E,2'E)-N,N'-propane-1,3-diylbis[2-cyano-2-(hydroxyimino)ethanamide] ligand.[24] 
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2.8 Possible Side Reactions in the Preparation of Cyanoxime 

Ligands 

A number of side reactions may occur at various stages in the preparation of cyanoxime ligands. As 

they will affect the yield and even outcome of the relevant synthetic steps, it is important to 

understand the mechanisms and conditions under which they proceed prolifically, so that one may 

suppress or at least minimise such undesirable complications. 

2.8.1 Nitrosation of ethyl cyanoacetate 

Classical nitrosation of ethyl cyanoacetate according to Conrad and Schulze[23] is carried out on the 

mixture chilled below 0 °C, Scheme 4. 
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Scheme 4. Nitrosation of ethyl cyanoacetate (ECA) to ethyl (2E)-cyano(hydroxyimino)ethanoate 

(ECHIEA) after Conrad and Schulze.[23] 

Low temperature is required to avoid the saponification of the ester in acidic medium, Scheme 5. 
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Scheme 5. Possible saponification of ethyl cyanoacetate (ECA) to ethyl cyanoacetic acid (CAA). 

2.8.2 Cross-protonation of diamines 

Our attempts at direct condensation of ECHIEA with various diamines revealed the following facts: 

a) Instantaneous formation of ammonium salts upon mixing.†† 

b) Total absence of condensation products at the ECHIEA : diamine = 2 : 1 molar ratio. 

                                                           
†† Also confirmed in private communication by Professor N.N. Gerasimchuk. 
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c) Formation of only mono-condensate products at molar ratios 1 : 1 and 1 : 2. 

Our interpretation of these results is that much increased acidity of the oxime group of ECHIEA (Sliva 

et al[13] reported the value of logK = 6.61 for this group in 2-cyano-2-(hydroxyimino)acetic acid), is 

sufficient to protonate amino groups of the diamines, and thus render them unreactive,‡‡ Scheme 6. 
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Scheme 6. Cross-protonation of diamines caused by increased acidity of the oxime group in 

ECHIEA. 

A few suggestions to consider in order to overcome this undesirable effect are: 

a) to use sterically hindered strong base to deprotonate ECHIEA prior to the addition of a diamine 

b) employ dry aprotic solvents 

c) use an excess of diamine in relation to ECHIEA§§. 

2.8.3 Self-condensation of cyanoacetate esters 

In the presence of sterically hindered amines, e.g., di-iso-propyl amine, ethyl cyanoacetate undergoes 

self-condensation resulting in the formation of ammonium salt.[33] Initially, fairly acidic methylene 

group of the cyanoacetate ester is deprotonated, affording a carboanion. Nucleophilic attack by this 

anion on the carbonyl carbon of another ester molecule follows and, upon rearrangement, an organic 

ammonium salt is formed, Scheme 7. 

The carboanion in question is stabilised by the delocalisation of negative charge. The latter is 

distributed between three strongly electron withdrawing groups, Scheme 8, and consequently, is 

highly delocalised. A number of possible mesomeric forms confer high thermodynamic stability on the 

product in addition to the stabilising cation-anion Coulomb interaction. Of course, such increased 

stability of the side-product is undesired, and measures may need to be taken to suppress its 

formation, in particular, if this product is isolated from the reaction mixture. 

 

                                                           
‡‡ Ammonium groups are non-nucleophilic. 

§§ However, the latter makes preparation of bis-chelates difficult. 
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Scheme 7.  Self-condensation of ethyl cyanoacetate in the presence of a sterically hindered amine. 
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Scheme 8.  Possible resonance forms of the 1,3-dicyano-1-(methoxy 

carbonyl)-2-oxopropane-1-ide. 

2.8.4 The Thorpe-Ziegler reaction 

Yet another possible side reaction is a Thorpe-Ziegler cyclisation.[34] In the presence of strong 

non-coordinating bases α-alkyl nitrites undergo self-condensation, with enamines being common 

products. Similar to the previous case, deprotonation of the acidic methylene group by a 

non-coordinating base leads to the di-nitrile carboanion, which upon a series of rearrangements, 

hydrolysis, and decarboxylation affords the cyclic ketone product of Thorp-Ziegler reaction, Scheme 9. 
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Scheme 9.  An example of the Thorpe-Ziegler self-condensation of pentanedinitrile with an amine 

base. 

Even more important to our case is the Thorp-Ziegler reaction in the presence of an alkoxide base, 

Scheme 10. 
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Scheme 10.  An example of the Thorpe-Ziegler self-condensation of hexanedinitrile with tbutoxide 

base. 

According to Gerasimchuk et al,[35] when a substituted acetonitrile (the substrate) remains for a few 

hours in the alcoholic solution in the presence of a strong base and alkylnitrite, the following variant 

of the Thorpe self-condensation is observed, Scheme 11. 
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Scheme 11.  A variant of the Thorpe-Ziegler self-condensation of substituted acetonitriles in the 

presence of methylnitrite according to Gerasimchuk et al.[35] 

In the context of our synthesis (section 2.9), the Thorpe side reaction is a self-condensation of aliphatic 

nitriles catalysed by a strong base to form enamines, Scheme 12. 
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Scheme 12.  Generic representation of the Thorpe self-condensation of substituted aliphatic 

acetonitriles in the presence of a strong base, resulting in the formation of enamines. 

An important consequence to our work from the above is the need to acidify the reaction mixture, as 

soon as the formation of cyanoxime ligand is believed to be complete. We shall elaborate on this point 

later in the thesis. 

2.8.5 Side products affected by the reaction and work-up temperature 

Finally, we will mention side products that arose at different temperatures in the reaction of 

nitrosation and work-up in the course of preparation 2-hydroxyimino(phenyl)ethanenitrile. Two 

interesting observations have been made during an extensive recent study by Bohle et al.[36] The 

authors have synthesised the title compound via the nitrosylation of phenylacetonitrile, Scheme 13. 

They isolated three products when the reaction was conducted at 60 °C, the major of them being 

Z-isomer of hydroxyimino(phenyl)ethanenitrile, Scheme 13. 
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Scheme 13. Reaction products for the nitrosylation of phenylacetonitrile at 60 °C.[36] 

However, when the mixture was cooled to 0 °C and the reaction allowed to proceed for 48 hours, the 

major product isolated was dipotassium salt of bis-diazeniumdiolate, which formed in excellent yield, 

Scheme 14. Careful control of the temperature during the acidification of this salt allows selective 

formation of E/Z isomers of the oximes: thus, acidification at 0 °C in water or methanol gives 

predominantly E-isomer (less than 5 % of Z-isomer). 
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Scheme 14. Diazeniumdiolation products of benzyl cyanide. 

Bohle et al[36] also found that the composition of the conformer mixture was dependent on the reaction 

temperature even in cases when the dipotassium salt failed to appear, as well as on the temperature 

of work-up. These observations led them to a natural conclusion that conformational rearrangement 

is possible at elevated temperatures. 

Clearly, monitoring reaction conditions in the synthesis of desired cyanoxime-and-amide ligands is 

important. Careful characterisation of all products isolated is also desirable, as it might shed light on 

the conformational equilibria. 
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2.9 Proposed Synthetic Routes 

In this section we propose two synthetic routes to the desired cyanoxime-and-amide bis-chelate 

ligands. As no universally applicable oximation procedure was found in literature, we decided to design 

our synthetic strategy around three published cases, where products with similar structural features 

were isolated, Figure 18. 
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Fig. 18. Three structurally similar to the desired ligands compounds, which syntheses have been 

reported in literature: (2E)-N-(2-aminoethyl)-2-cyano-2-(hydroxyimino)ethanamide 

(chiaaea),[13] (2E,2E’)-N,N’-propane-1,3-diylbis[2-cyano-2-(hydroxyimino)ethanamide]  

(chiaa2p), [24] and (2E,2E’)-3,3’-piperazine-1,4-diylbis[2-(hydroxyimino)-3-oxopropanenitrile] 

(chiaa2ppz).[15] 

The first product, chiaaea, was synthesised by Sliva et al[13] in a condensation reaction of  

ethyl-cyano(hydroxyimino)ethanoate (chiaee) with ethane-1,2-diamine (en). Equimolar quantities of 

the reactants were employed in original publication, and a mono-chelate product was obtained. An 

option to use stoichiometric ratio of cyanoxime ester to diamine (chiaee : en = 2 : 1) may be considered 

in order to prepare the desired bis-chelate ligands. 

Both bis-chelate products, chiaa2p and chiaa2ppz, were synthesised in a two-stage process. First, ethyl 

cyanoacetate (eca) was condensed with a primary (1,3-diaminopropane) or a secondary (piperazine) 

terminal diamine. Next, intermediate bis-amides were oximated under strongly basic conditions to the 

products shown in Figure 18. Consequently, such approach was considered a viable option in the 

preparation of ligands desired in this project. 

As is evident from the above analysis, two sequences of synthetic steps may be followed to prepare 

bis-chelate ligands of the kind desired in this project, Scheme 15. 
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Scheme 15. Two synthetic routes towards the desired cyanoxime-and-amide bis-chelate ligands 

proposed in the current project. 

Both of them employ similar synthetic steps but in different order. Of the steps mentioned, one 

involves grafting a hydroxyimino group and another involves the formation of amide bonds. Each 

sequence has its merits and shortcomings. Which one to follow in particular circumstances, as well as 

reaction specifics, are discussed in the next section. 

2.9.1 Nitrosation followed by condensation 

Route B, Scheme 15, starts with ethyl cyanoacetate (1), which is available commercially. Oxime (2) can 

be easily synthesised from it in high yield following the Conrad and Schulze procedure.[23] 
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 All four diamines (3a-d) required for the condensation with (2) are also available commercially. The 

second step can be carried out after Sliva et al[13] with the adjusted reactant ratio as discussed above. 

2.9.2 Condensation followed by nitrosation 

Route A, Scheme 15, is the one followed by Kolotilov et al[24] in the preparation of ligand (5b), Figure 

19, the only cyanoxime-and-amide bis-chelate ligand of this type synthesised prior to our work. 
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Fig. 19. (2E,2E’)-N,N’-propane-1,3-diylbis[2-cyano-2-(hydroxyimino)ethanamide]  (chiaa2p) ligand 

synthesised by Kolotilov et al.[24] 

Extending this synthetic approach to the preparation of new ligands (5a, 5c, and 5d), Scheme 15, would 

require the condensation of two equivalents of ethyl cyanoacetate (1) with one equivalent of a primary 

diamine (3a-d). Such task has been accomplished successfully on numerous occasions, and extensive 

literature on the matter exists. We will refrain from presenting complete and exhaustive literature 

review of this matter here but rather account for a few most important and relevant publications. 

Gazit et al[37] synthesised three of the four bis-amide precursors of interest to this work (3a-c) in their 

study of benzylidene-malononitriles. Taking into consideration that both reactants were liquid, they 

chose to run the reaction under solvent-free conditions. The authors observed exothermic heat effect 

upon addition of the diamine to a stirred ethyl cyanoacetate, followed by the formation of a white 

precipitate; the latter was filtered off and re-crystallised from ethanol. NMR data confirmed the solids 

to be the desired bis-cyanoamides.[37] Product yields claimed by Gazit et al for three bis-amides are 

given in Table 3: 
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Table 3. Yield of various bis-cyanoamides in Gazit et al procedure.[37] 

n bis-Cyanoamide Yield (%) 

0 N,N'-ethane-1,2-diylbis(2-cyanoacetamide) 86 

1 N,N'-propane-1,3-diylbis(2-cyanoacetamide) 74 

2 N,N'-butane-1,4-diylbis(2-cyanoacetamide) 69 

Such high yields (upwards of 69 %) are synthetically attractive as they show high atom efficiency, and 

usually result in a fairly pure product. Within a year of the original publication, similar procedure was 

successfully applied to eight linear diamines (from ethane to octane), though no yield values were 

reported.[38] Remaining fourth precursor bis-amide (derived from the 1,3-diaminopropan-2-ol), 

required in this project, was synthesised in 2005 by Hill and Odell[39] in 90 % yield following the same 

procedure. We are aware of a number of more recent publications, where the preparation of the same 

bis-cyanoamides was reported.[40-43] However, in essence they all follow original procedure of Gazit et 

al. 

Solvent-free condensation of ethyl cyanoacetate with diamines affords the highest possible 

concentration of the reagents and eliminates the chance of solvent molecules becoming trapped in 

the crystal lattice of the product; it has been the norm in most publication to date. In contrast, 

condensation of ethyl pyruvate oxime with linear diamines proceeds better under solvated conditions, 

as was established in our research group previously, e.g., in the synthesis of various 

N,N'-alkyl-diylbis[2-(hydroxyimino)propanamides], Figure 20.[44] 
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n = 0, 1, 2, 1-OH 

Fig. 20. The range of N,N'-alkyl-diylbis[2-(hydroxyimino)propanamides] synthesised in the research 

group previously. 



MSc Thesis 2014 Chapter B 

103 

 

Two solvents were found to perform well in the above condensation,*** namely, CH2Cl2 and MeOH. 

The latter one accounts for slightly better yields due to its better activating properties. One also must 

keep in mind that the rate constant for the condensation of this nature exhibits “bell-shaped” profile, 

peaking in the pH range between 4 and 6;[44] consequently, a mild acid catalyst should be used. One 

that performs this task well and can be easily removed afterwards, is the acid washed glass beads. We 

intend to try both of the above approaches in the synthesis of bis-cyanoamides intermediates, 

Scheme 15 Route A, and follow it with the nitrosation of four precursors in a procedure similar to that 

of Kolotilov et al.[24] In particular, we intend to employ CH3ONO(g) as a nitrosation agent, in an aprotic 

iso-propanol medium in the presence of strong base such as sodium iso-propoxide. 

With the above in mind we set out to synthesise the four desired bis-chelate cyanoxime-and-amide 

ligands. 

                                                           
*** Please note that in this synthesis the oximation step precedes the condensation one. 
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2.10 Comparative Analysis of the Characterisation Data for 

Ligands with Cyanoxime-and-Amide Chelates 

This section contains a summary of the characterisation data for a range of cyanoxime-and-amide 

chelates found in literature. Such comparative analysis is informative, helps with the identification of 

compounds, and is presented here for future reference.  

2.10.1 Characteristic IR Data 

Table 4. Wavenumbers (in cm-1) of the characteristic valent vibrations in various 

cyanoxime-and-amide chelates according to literature.††† 

No Compound ν (O-H) ν (N-H) ν (C≡N) ν (Amide I) ν (Amide II) ν (N-O) Reference 

1 NCC(=N-OH)CONH2   2239    [45] 

2 NCC(=N-OH)CONHCH2CH2NH2  
3340, 3300, 

3060‡‡‡ 
 1648 1552 1130 [13] 

3 NCC(=N-OH)CON(CH3)2       [20] 

4 NCC(=N-OH)CSN(CH3)2       [20] 

5 NCC(=N-OH)CONHCH3   2244 1664 1552  [31] 

6 NCC(=N-OH)CONHPh   2250, 2240 1680, 1660 -, 1548  [29, 31] 

7 NCC(=N-OH )CONHC6H11 Cyclic   2225 1665   [29] 

8 NCC(=N-OH)CONHC6H4Br   2235 1650   [29] 

9 NCC(=N-OH)CONHCH2Ph   2242 1660 1550  [31] 

10 NCC(=N-OH)CON(CH2)5-Cyclic 2945  2236 1630  1036 [32] 

11 NCC(=N-OH)CON(CH2)4O Cyclic 2977  2236 1627  1006 [32] 

12 NCC(=N-OH)CONHC2H5       [30] 

13 NCC(=N-OH)CON(CH2)4NOCC(=N-OH)CN   2232 1625  1047 [15] 

14 NCC(=N-OH)CONH(CH2)3NHOCC(=N-OH)CN  3370 2110 1680 1560  [24] 

 

The data presented above reveal a number of regularities that may be summarised as follows: 

a) sharp peak in the range 3300 - 3370 cm-1 is attributable to the N-H stretch 

                                                           
††† Empty cells in the table mean that IR data were not reported. For some compounds the reference quoted is not the first 

ever account of the synthesis but the first traceable reference with IR data.  

‡‡‡ Three absorptions bands were attributed to the N-H vibration in this case; elsewhere in the table double entries arise 

from different papers. 
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b) valent vibration of the nitrile group (C≡N) is observed in the region 2110 - 2250 cm-1 and in many 

cases is surprisingly weak§§§; low signal to noise ratio is normally a concern but in this case it is 

easily identifiable as very few functional groups have transitions in this region of the spectrum 

c) amide functional group is characterised by two strong bands in the region 1540 – 1620 cm-1; the 

first of them, at about 1650 cm-1 and labelled as amide I, corresponds to the carbonyl bond 

stretch, while the second, at about 1550 cm-1 and labelled as amide II, represents essentially C-N 

stretch of this group 

d) N-O valent stretch of the oxime group is normally observed in the region of 1030 – 1130 cm-1 and 

is fairy intense. 

                                                           
§§§ The intensity of the band is low due to “increased polariziability of the cyano moiety in the conjugated anion”[16] 
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2.10.2 Characteristic NMR data 

Table 5. Representative 1H and 13C NMR chemical shifts (ppm) in various cyanoxime-and-amide 

chelates according to literature.**** 

No Oxime Solvent 1H (=N-OH) 1H (-C(=O)NHR) 13C (NCC(=N-OH)-) 13C (NCC(=N-OH)-) 13C (-C(=O)NR-) Reference 

1 NCC(=N-OH)CONH2 
DMSO-d6 

CDCl3 
- , 13.38 7.85, 7.07 109.3, 109.45 128.1, 128.58 160.2, 160.32 [45, 30] 

2 NCC(=N-OH)CONHCH2CH2NH2 DMSO-d6  8.15    [13] 

3 NCC(=N-OH)CON(CH3)2 n/a      [20] 

4 NCC(=N-OH)CSN(CH3)2 n/a      [20] 

5 NCC(=N-OH)CONHCH3 n/a 14.4 8.3    [31] 

6 NCC(=N-OH)CONHPh n/a -, 14.5 9.98 ,10.3    [29, 31] 

7 NCC(=N-OH)CONHC6H11 Cyclic n/a  8.21    [29] 

8 NCC(=N-OH)CONHC6H4Br n/a  10.51    [29] 

9 NCC(=N-OH)CONHCH2Ph n/a 14.5 9.0    [31] 

10 NCC(=N-OH)CON(CH2)5-Cyclic DMSO-d6  N/A 109.79 127.44 157.73 [30] 

11 NCC(HO-N=)CON(CH2)4O-Cyclic DMSO-d6 13.12 N/A 109.79 127.31 158.32 [30] 

12 NCC(=N-OH)CONHC2H5 DMSO-d6 13.59 7.83 108.39 157.96 158.01 [30] 

13 NCC(=N-OH)CON(CH2)4NOCC(=N-OH)CN DMSO-d6 14.27 N/A 109.2 130.1 158 [15] 

14 NCC(=N-OH)CONH(CH2)3NHOCC(=N-OH)CN DMSO-d6      [24] 

 

The data presented above reveal a number of trends that may be summarised as follows: 

a) chemical shift for the hydroxyimino proton is found in the range 13.1 to 14.5 ppm, a 

characteristically far downfield signal; the latter can be attributed to its highly de-shielded state, 

being β to a strongly electron withdrawing nitrile group 

b) chemical shift of the amide proton shows considerable variation (from 7 to 10.5 ppm), which 

can be attributed to the induction effects of functional groups α to the amide nitrogen 

c) chemical shift of the nitrile carbon is found in a narrow range between 127 – 130 ppm, which is 

characteristic of the cyanoxime-and-amide chelates studied so far 

d) chemical shift of the quaternary carbon that is α to both oxime and nitrile group is highly 

characteristic and confined to a narrow region at about 109 ppm. 

                                                           
**** Empty cells in the table mean that NMR data were not reported; in some cases NMR shifts were reported to one decimal 

place only. Synthesis of some of the compounds was reported earlier than the references in the table but no NMR data 

was given; consequently, we quote the first (and following) NMR containing references. 
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e) chemical shift of the carbonyl carbon in amide moiety is pegged at about 158 ppm, in line with 

the well-known behaviour of this functional group. 
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In this section we will present particulars of synthetic procedures followed in the preparation of 

compounds and instrumental techniques used for their characterisation. For each substance 

synthesised we will report instrumental data collected and the structure assigned on their basis. 

3.1 Experimental 

3.1.1 Solvents and Reagents 

Most of the common solvents and reagents used have already been described in section 5.1.1, Chapter 

A. Consequently, only items new to this part of the project are reported below, Tables 6 and 7. 

Table 6. Common solvents used and internal purification procedures. 

Solvent Supplied Purity Purification procedure 

iso-Propanol ≥98% Distillation 

 

Table 7. Commercially available reagents used for the synthesis in this chapter of the thesis.* 

Name Structure 
Assay/ 

% 

MW/ 

g mol-1 

Phase state 

at 25 °C 

Density/ 

g cm-3 

Ethyl cyanoacetate 

 
O

N

O

 

98 113.12 l 1.06 

 

3.1.2 Instrumental 

Most of the instrumental procedures employed for characterisation have also been described in 

section 5.1.2, Chapter A. Please, refer to this section for particulars. The only new technique used in 

this part of the project was single crystal X-ray diffraction, and the specific information for it is given in 

section 3.4 of this chapter. 

 

                                                           
*) Purchased from Sigma-Aldrich and used without further purification. 
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In total, we have synthesised nine compounds in this part of the project, of which three were new. 

Whether the compound is new or is known in literature is stated in the relevant section that describes 

its preparation and characterisation. 

In addition to their systematic names, compounds synthesised and isolated by us are labelled with 

integer numbers that already appeared in Scheme 8, section 2 of this Chapter. For homologous 

compounds with variable length of the alkane chain, a letter is added to the number; in particular, 

letter “a” designates ethane chain, letter “b” propane one, letter “c” butane one, and letter “d” 

2-hydroxypropane one. For example, (4c) would mean compound of class 4, which is 

bis-hydroxyimino-acetamide, with a butane bridge, i.e. N,N'-butane-1,4-diylbis(2-cyanoacetamide). 

As has been discussed in the preceding section, we explored two different paths that might lead from 

the starting compound (1), ethyl cyanoacetate, to the desired bis-hydroxyiminoacetamides (5), 

Scheme 15. 

Along this route (1) is condensed with a suitable diamine (3) to form bis-cyanacetamide (4), which is 

then oximated according to Kolotilov et al.[24] This proved to be a successful approach and all desired 

compounds (four bis-cyanoacetamides (4) and four bis-cyano(hydroxyimino)acetamides (5)) were 

synthesised, isolated, and characterised by following it. 

3.2 Synthesis of the bis-Cyanoacetamide Precursors 

Two variations of the synthetic procedure were employed for the preparation bis-cyanoamides. The 

first was a catalysed condensation in solvent medium, and the second was a solvent-free condensation. 

Three of the four compounds of interest were synthesised via the former procedure, and the remaining 

one via the latter. The procedure below refers to compounds (4a, 4b, and 4d). 

N

O

NHNH

O

N

n

 

n = 0, 1, 1-OH 

Procedure: Ethyl cyanoacetate (5.43 mL, 50.0 mmol) was pipetted into a 100 mL RBF flushed with 

Ar, followed by dry methanol (25 mL) and a catalytic amount of the acid washed glass beads (106 μm). 
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Thereafter, relevant alkyl-diamine (25.5 mmol) was slowly injected through a septum, and the mixture 

stirred at room temperature for 24 hours. White precipitate that formed was filtered off, washed first 

with methanol (100 mL), then with aqueous HCl (0.1 M, 100 mL), and dried on a watch glass, affording 

white powder. 

(4a) N,N'-Ethane-1,2-diylbis(2-cyanoacetamide) 

This compound is known in literature.[37, 39. 41] 

Yield:  3.56 g, 18.1 mmol (67 %). 

CHN: Calcd. for C8H10N4O2: C, 49.48; H, 5.19; N, 28.85. Found: C, 49.70; H, 5.20; N, 28.57. 

1H NMR (400 MHz, DMSO-d6, δ/ ppm): 3.13-3.15 (m, 4H, -CH2NH-), 3.59 (s, 4H, -CH2C≡N), 8.26 (t-

br, 2H, -NH-).  

13C NMR (100 MHz, DMSO-d6, δ/ ppm): 25.3 (t, -CH2NH-), 38.4 (t, -CH2C≡N), 116.0 (s, -C≡N), 162.3 (s, -

C(=O)-). 

Original spectra for this compound are presented in Appendix B, Figures B1-B4. 

(4b) N,N'-Propane-1,3-diylbis(2-cyanoacetamide) 

This compound is known in literature.[37, 39, 41] 

Yield: 4.11 g, 19.6 mmol (76 %). 

1H NMR (400 MHz, DMSO-d6, δ/ ppm): 1.56 (p, J = 7.0 Hz, 2H, -CH2CH2CH2-), 3.06-3.11 

(m, 4H, -CH2NH-), 3.60 (s, 4H, -CH2C(=O)-), 8.19 (t-br, J = 4.8 Hz, 2H, -NH-). 

13C NMR (100 MHz, DMSO-d6, δ/ ppm): 25.2 (t, -CH2CH2CH2-), 28.5 (t, - CH2NH-), 36.9 (t, -CH2C), 116.1 

(s, -C≡N), 162.0 (s, -C(=O)-). 

Original spectra for this compound are presented in Appendix B, Figures B5-B7. 

(4d) N,N'-(2-Hydroxypropane-1,3-diyl)bis(2-cyanoacetamide) 

This compound is known in literature.[39] 

Yield: 4.09 g, 18.0 mmol (66 %). 

CHN: Calcd. for C9H12N4O3: C, 48.21; H, 5.39; N, 24.99. Found: C, 48.14; H, 5.01; N, 25.21.  

1H NMR (400 MHz, DMSO-d6, δ/ ppm): 2.99-3.05 (m, 2H, -CH(a)H(b)NH-), 3.11-3.17 (m, 

2H, -CH(a)H(b)NH-), 3.55-3.60 (m, 1H, -CH(OH)-), 3.63 (s, 4H, -CH2C≡N), 5.08 (d, J = 5.0 Hz, 1H, -OH), 

8.19 (t, J = 5.1 Hz, 2H, -NH-). 
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13C NMR (100 MHz, DMSO-d6, δ/ ppm): 25.2 (t, - CH2NH-), 43.3 (t, -CH2C≡N), 67.6 (d, -CH(OH)-), 116.2 

(s, -C≡N), 162.3 (-C(=O)-).  

HRMS (ES-, m/z):  [M + Na]+ calcd. for C9H12N4O3Na, 247.0807; found, 247.0813. 

Original spectra for this compound are presented in Appendix B, Figures B11-B15. 

Characterisation of the above three compounds was done by means of 1H and 13C NMR spectroscopy. 

In all three cases data are in satisfactory agreement with the values reported in literature,†, [39, 41-43] 

which indicates that the desired substances have been prepared. For compounds (4a and 4d) we have 

obtained additional characterisation data, which up to now were not reported in literature. In 

particular, we have performed microanalysis on compounds (4a and 4d), and obtained high-resolution 

mass-spectrum for compound (4d). 

(4c) N,N'-butane-1,4-diylbis(2-cyanoacetamide) 

This compound is known in literature.[37, 39, 41] 

We have synthesised this compound via a solvent-free variation of the condensation procedure 

described below. 

NH

O

N

N

O

NH

 

Procedure: Ethyl cyanoacetate (8.69 mL, 80.0 mmol) was pipetted into a 100 mL RBF flushed with 

Ar. Butane-1,4-diamine (4.14 mL, 40.8 mmol) was slowly injected through a septum, and the mixture 

stirred at room temperature for 24 hours. White precipitate that formed was filtered off, washed with 

ethanol (40 mL), and dried on a watch glass, affording white powder. 

Yield: 7.20 g, 35.3 mmol (87 %).  

1H NMR (400 MHz, DMSO-d6, δ/ ppm): 1.38-1.41 (m, 4H, -CH2CH2NH-), 3.04-3.09 (m, 4H, - CH2NH-), 

3.58 (s, 4H, -CH2C(=O)-), 8.19 (t-br, J = 4.9 Hz, 2H, -NH-). 

 13C NMR (100 MHz, DMSO-d6, δ/ ppm): 25.2 (t, -CH2CH2NH-), 26.1 (t, - CH2NH-), 38.7 (t, -CH2C≡N), 

116.2 (s, -C≡N), 161.9 (s, -C(=O)-).  

Original spectra for this compound are presented in Appendix B, Figures B8-B10. 

                                                           
†) References that follow are not the first where the synthesis of these compounds was reported, but the first 

where reliable NMR spectra in DMSO-d6 were obtained.  
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Compound (4c) was characterised by NMR spectroscopy, and the data are in satisfactory agreement 

with values reported in literature.‡, [39, 41, 43] Other characterisation data for this compound are also 

reported. 

                                                           
‡) References that follow are not the first where the synthesis of these compounds was reported, but the first 

where reliable NMR spectra in DMSO-d6 were obtained.  
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3.3 Synthesis of the bis-Chelate Cyanoxime-and-Amide 

Ligands 

OH

N

O

NHNH

O

N

OH

N

N

n

 

n = 0, 1, 2, 1-OH 

Preparation of the desired cyanoxime-and-amide bis-chelate ligands required generation of the 

methylnitrite gas and its use in the oximation process. As the conditions of the former and latter are 

dramatically different, the reaction could not be carried out in one pot. Consequently, we have 

employed an apparatus shown below, Figures 21-23. As its nature falls outside of the day-to-day used 

synthetic setup in organic chemistry, we shall explain the procedure in some detail. 

The apparatus with two bubbles was employed to better utilise the methyl nitrite gas by increasing 

both the contact area and the contact time between the gas bubbles with the basic solution of 

bis-cyanoacetamide. We also thought that the second bubbler might act in part as a scrubber, thus, 

reducing the amount of highly toxic gas discharged into the extraction cabinet. 

 

Fig. 21. Diagrammatic representation of the apparatus for the oximation of bis-cyanacetamides. 
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In the generic procedure that follows we will refer to three solutions labelled as A, B, and C. Their 

composition and preparation is briefly described below. 

Solution A: Aqueous H2SO4 (6.25 M). 

Chilled (ice bath) deionised water (200 mL) was placed in a 500 mL beaker, and concentrated 

sulphuric acid (98 wt. %, 100 mL) added in small portions of about 5-10 mL.§  

Solution B: NaNO2 solution (1.00 M) in H2O : MeOH = 1 : 1 mixed solvent. 

NaNO2 (13.94 g, 200 mmol) was weighed out and dissolved in deionised water (100 mL) in a 

500 mL RBF. Thereafter, methanol (100 mL, 2.46 mol) was added and the mixture left stirring 

until needed.  

Solution C: Bis-cyanoacetamide (3.00 mmol) and sodium iso-propoxide (0.038 M) in iso-propanol. 

Sodium metal was washed with n-hexane from the storage oil, oxidised surface layer scrapped 

with a sharp knife, and the shiny bar of it (ca. 0.152 g, 6.00 mmol) weighed in a beaker filled with 

Ar gas. The ingot was cut into thin slivers and placed into a 250 mL RBF flushed with argon. 

Freshly distilled iso-propanol (160 mL) was added to the flask and the contents stirred under 

nitrogen until all of the sodium has dissolved. On average, the process of dissolution took 

between 2 and 3 hours. Before use clear solution was decanted from the trace quantities of the 

products of oxidation (undissolved) of the sodium metal. Respective bis-cyanoacetamide (3.00 

mmol)** was weighed into a 500 mL Erlenmeyer flask, and the above sodium iso-propoxide 

solution added to it. The mixture was stirred for about 30 min, during which time some of the 

bis-amide has dissolved but most remained in a suspended state. 

Respective solutions were charged to the following parts of the apparatus: 

Solution A was placed in the dropping funnel attached to the three-neck round bottom reactor. 

Solution B was placed in the three-neck reactor. 

Solution C was divided into two equal parts by volume and placed in two bubblers. 

                                                           
§) CAUTION! The process is highly exothermic and can lead to splashes, which may cause severe burns. 

**) In view of the two bubblers employed in the apparatus, the solution of bis-cyanoacetamide (3.00 mmol) in 

solution B (160 mL) was split equally between them. 
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Fig. 22. An image of the actual methyl nitrite generating vessel employed in the above process. 

 

Fig. 23. Overview of the actual apparatus employed in the above process. 

Procedure: Solution A (60 mL) was placed in a 100 mL dropping funnel, solution B (200 mL) was 

charged to the three-neck reactor, and suspension C (160 mL), subdivided into two equal halves, was 

placed into two bubblers; each of the three vessels had a magnetic stirrer bar in it. The apparatus was 

assembled and flushed with a flow of N2 gas for a few minutes. RBF with solution B was kept in an 

ice-bath throughout the synthesis. Dropping funnel containing solution A was back-pressured with N2 

gas and aqueous sulphuric acid added drop-wise (at the rate of about 1 drop per minute). Generated 

MeONO gas, with a co-flow of N2 gas, was discharged through the bubblers. Solution B and suspension 

C in both bubblers were continuously stirred through the duration of the synthesis. Within seconds of 

bubbling methyl nitrite gas through suspension C, it turned visibly yellow, and the colour intensified as 

oximation progressed. After approximately 3 hours, the contents of two bubblers were combined, 

undissolved bis-cyanoamide filtered off, and the mother liquor reduced by rotary evaporation to 

yellow crystals. The latter were re-dissolved in hot deionised water (20 mL), allowed to cool to a room 

temperature, and acidified with aqueous HCl (2.0 M) to pH of 2.8 (controlled by pH meter with a 

glass-sensor). Slow evaporation of the resulting solution on a watch glass afforded the desired product. 
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(5a) N,N'-Ethane-1,2-diylbis[2-cyano-2-(hydroxyimino)ethanamide] 

This compound is new. 

Yield: 0.027 g, 0.10 mmol (3.6%), yellow crystals. 

CHN: Calcd. for C8H8N6O4: C, 38.10; H, 3.20; N, 33.32. Found: C, 37.78; H, 3.02; N, 33.17. 

IR (KBr, ν / cm-1): 3391 (s, N-H), 3147, 2968, 2241, 1676 (s, C=O), 1542 (s, C-N), 1451, 1243 (s), 1172, 

1073 (s, N-O), 872, 755, 633. 

1H NMR (400 MHz, DMSO-d6, δ/ ppm): 3.31-3.33 (m, 2H, -CH2-), 8.56 (t, J = 5.51 Hz, 2H, -NH-), 

14.44 (s, 2H, -OH). 

13C NMR (100 MHz, DMSO-d6, δ/ ppm): 38.5 (t, -CH2-), 108.9 (s, -C(=NOH)-), 128.1 (s, -C≡N), 158.3 (s, 

-C(=O)-). 

HRMS (ES-, m/z):  [MH-1]-, calcd. for C8H7N6O4, 251.0529; found, 251.0526 (-1.2 ppm). 

Original spectra for this compound are presented in Appendix B, Figures B16-B25. 

(5b) N,N'-Propane-1,3-diylbis[2-cyano-2-(hydroxyimino)ethanamide] 

A single reference to this compound was found in literature.[24] 

Yield: 0.194 g, 0.725 mmol (24 %), light to dark yellow crystals.  

IR (KBr, ν / cm-1): 3369 (s, N-H), 3131 (br, O-H), 2182, 2235, 1679 (s, C=O), 1553 (s, C-N), 1457, 1449, 

1414 (s), 1373, 1306, 1224 (s), 1182 , 1082 (s, N-O), 1066 (s), 923, 829, 798, 750 (s), 655, 519, 479. 

  

1H NMR (400 MHz, DMSO-d6, δ/ ppm): 1.66 (p, J = 6.74 Hz, 2H, -CH2CH2CH2-), 3.17-3.22 (m, 

4H, - CH2NH-), 8.51 (t, J = 5.93 Hz, 2H, -NH-), 14.45 (s, 2H, -OH). 

13C NMR (100 MHZ, DMSO-d6, δ/ ppm): 28.6 (t, -CH2CH2CH2-), 36.4 (t, - CH2NH-), 108.9 (s, -C(=NOH)-), 

128.1 (s, -C≡N), 158.0 (s, -C(=O)-). 

HRMS (ES-, m/z):  [MH-1]-, calcd. for C9H9N6O4, 265.0685; found, 265.0689 (+1.5 ppm). 

Original spectra for this compound are presented in Appendix B, Figures B26-B34. 

 (5c) N,N'-Butane-1,4-diylbis[2-cyano-2-(hydroxyimino)ethanamide] 

This compound is new. 

Yield: 0.056 g, 0.20 mmol (6.6 %), dark yellow crystals. 

CHN: Calcd. for C10H12N6O4: C, 42.86; H, 4.32; N, 29.99. Found: C, 43.24; H, 4.26; N, 29.61. 



MSc Thesis 2014 Chapter B 

117 
 

IR (KBr, ν / cm-1): 3346 (s, N-H), 3139 (br, O-H), 2975, 2364, 1662 (s, C=O), 1543 (s, C-N), 1445, 

1396 (s), 1366, 1249, 1200, 1175, 1059 (s, N-O), 1039, 969, 935, 812, 758 (s), 686.  

1H NMR (400 MHz, DMSO-d6, δ/ ppm): 1.45-1.46 (m, 2H, - CH2CH2 NH -), 3.17-3.18 (m, 4H, - CH2NH-), 

8.51 (t, J = 5.84 Hz, 2H, -NH-), 14.39 (s-br, 2H, -OH). 

13C NMR (100 MHz, DMSO-d6, δ/ ppm): 26.2 (t, -CH2CH2NH-), 38.7 (t, -CH2NH-), 108.9 (s, -C(=NOH)-), 

128.1 (s, -C≡N), 157.9 (s, -C(=O)-). 

HRMS (ES-, m/z):  [MH-1]-, calcd. for C10H11N6O4, 279.0842; found, 279.0840 (-0.7 ppm).  

Original spectra for this compound are presented in Appendix B, Figures B35-B45. 

(5d) N,N'-(2-Hydroxypropane-1,3-diyl)bis[2-cyano-2-(hydroxyimino)ethanamide] 

This compound is new. 

Yield: 0.053 g, 0.19 mmol (6.2 %), white powder. 

CHN: Calcd. for C9H10N6O5: C, 38.30; H, 3.57; N, 29.78. Found: C, 38.15; H, 3.43; N, 29.63. 

IR (KBr, ν / cm-1): 3381, 3324, 2960, 2363, 1684 (s, C=O), 1618, 1546 (s, N-H), 1421, 1242, 1180, 1110 

(s, C-0H), 1067 (s, N-O), 712. 

1H NMR (400 MHz, DMSO-d6, δ/ ppm): 3.13-3.26 (m, 4H, -CH2-), 3.73 (p, J = 5.32 Hz, 1H, -CH(OH)-), 

5.11 (s-br, 1H, -CH(OH)-), 8.34 (t, J = 6.03 Hz, 2H, -NH-), 14.49 (s-br, 2H, =N-OH). 

13C NMR (100 MHz, DMSO-d6, δ/ ppm): 42.7 (t, -CH2-), 67.3 (d, -CH(OH)-), 108.9 (s, -C(=NOH)-), 128.0 

(s, -C≡N), 158.2 (s, -C(=O)-). 

HRMS (ES-, m/z):  [MH-1]-, calcd. for C9H9N605, 281.0634; found 281.0636 (+0.7 ppm).  

Original spectra for this compound are presented in Appendix B, Figures B46-B55. 

All but one (5b) of these compounds are new. All of them have been characterised by microanalysis, 

IR, NMR (1H, 13C, 2D, correlation) and high-resolution MS spectrometry. Experimental data were 

consistent with the expected compounds, and we were able to assign molecular structures with 

confidence. 

Our 1H NMR data for compound (5b), the only one reported previously, compare well with the 

literature values.[24] In addition, we have recorded 13C and correlation NMR spectra for this compounds, 

as well as its high-resolution mass-spectrum. We have also performed elemental analysis of this 

compound. 

The nitrile IR band appearing at 2241 to 2364 cm-1 in these compound is weak but discernable. Oxime 

proton shifts 1H proved very characteristic across the range of compounds (5a-d): all of them confined 
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to a narrow range of 14.39-14.49 ppm. 13C MNR data showed a pattern similar to the published results 

for cyanoxime-and-amide moieties as shown in Table 5. 
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Along this route, compound (1) is first oximated to ethyl (2E)-cyano(hydroxyimino)ethanoate (2), 

which is subsequently condensed with a suitable diamine (3). Compound (2) was successfully 

synthesised, isolated, and characterised by us. However, not even trace quantities of 

bis-cyano(hydroxyimino)acetamides (5) were detected among products of condensation with 

diamines. In general, this synthetic step led to mixtures that were difficult to separate. Under certain 

conditions, which will be described elsewhere, this step led to the formation of 

(2E)-N-(X-aminoalkyl)-2-cyano-2-(hydroxyimino)ethanamides, of which all but one were new. It was 

decided to exclude these compounds from the present thesis as they will constitute the basis of future 

work. Hence, only data pertinent to compound (2) are presented below. 

(2) Ethyl (2E)-cyano(hydroxyimino)ethanoate 

This compound is known in literature.[23] 

OH

N

O

N

O CH3

 

Procedure: Sodium nitrate (20.91 g, 300.0 mmol) was weighed into a RBF, water (110 mL) added, 

and the mixture stirred until all of the solid had dissolved. The flask was placed in an ice bath and ethyl 

cyanoacetate (27.1 mL, 250 mmol) pipetted into it, followed by glacial acetic acid (19.8 mL, 345 mmol), 

which was added slowly. Thereafter, the mixture was stirred for 24 hours. This afforded primary 

precipitate, which was filtered off, and the mother liquor. The former was washed in a beaker with 

aqueous HCl (2M, 100 mL), then filtered off and dried on a watch glass (α fraction). Within thirty 

minutes secondary precipitate has formed in the filtrate; it was also filtered off and left to dry on a 

watch glass (β fraction), while the filtrate was set aside (acidic filtrate fraction). Mother liquor was 

extracted with ether (3×50 mL) and aqueous HCl (2M, 80 mL) added to it. Both acidic fractions were 

combined and extracted again, this time with CH3Cl (3×65 mL). All organic fractions were combined 

and reduced to a solid by rotary evaporation (γ fraction). 

Once α, β and γ were confirmed to be the same desired product by 1H NMR, all three were combined 

and recrystallized from hot water. 

Yield: 26.8 g, 0.188 mol (75 %). 
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1H NMR (400 MHz, DMSO, δ/ ppm): 1.28 (t, J = 7.1 Hz, 3H, -CH3), 4.31 (q, J = 7.1 Hz, 2H, -CH2-), 

15.07 (s-br, 1H, =N-OH). 

13C NMR (100 MHz, DMSO, δ/ ppm): 13.8 (t, -CH3), 62.5 (d, -CH2-), 108.8 (s, -C(=N-)-), 125.7 (s, N≡C-), 

158.4 (s, -C(=O)-). 

In addition to 1H and 13C NMR spectra we have also recorded dept-135, g-hsqc, g-hmbc, and g-cosy 

spectra for this compound. They all were consistent with the structure expected. 

Original spectra for this compound are presented in Appendix B, Figures B56-B57. 

As this compound is known, its characterisation by NMR spectroscopy was deemed sufficient. 

Spectroscopic data conclusively indicated that the desired product has been synthesised. 
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3.4 Solid State Structures 

We have succeeded in crystallising out two compounds, one bis-cyanoacetamide and one bis-chelate 

ligand, and determined their structure by single crystal X-ray diffraction. Each primary data set was 

collected in a different laboratory, the first by Dr M. Ackerman at UKZN and the second by Professor 

N.N. Gerasimchuck at MSU, to whom we express our sincere appreciation. We also gratefully 

acknowledge their assistance with the solution of crystal structures. The results of these 

determinations are presented in this section. 

3.4.1 N,N’-Ethane-1,2-diylbis(2-cyanoacetamide) (4a) 

This compound is known. Its synthesis and properties are describe in a number of publications,[37, 39, 41]  

but no known crystal structure has been reported so far. 

Experimental 

General: The X-ray data were recorded on a Bruker Apex Duo diffractometer equipped with an 

Oxford Instruments Cryojet operating at 100(2) K and an Incoatec microsource operating at 30 W 

power. The data were collected with Mo Kα (λ = 0.71073 Å) radiation at a crystal-to-detector distance 

of 50 mm. The data collections were performed using ω and ψ scans with exposures taken at 30 W 

X-ray power and 0.50° frame widths using APEX2.[46] The data were reduced with the programme 

SAINT[46] using outlier rejection, scan speed scaling, as well as standard Lorentz and polarisation 

correction factors. A SADABS semi-empirical multi-scan absorption correction[46] was applied to the 

data. Direct methods, SHELXS-97[47] and WinGX[48] were used to solve the structure. All non-hydrogen 

atoms were located in the difference density map and refined anisotropically with SHELXL-97.[47] All 

hydrogen atoms were included as idealized contributors in the least squares process. Their positions 

were calculated using a standard riding model with C–Hmethylene distances of 0.99 Å and Uiso = 1.2 Ueq. 

Amide hydrogen atoms, N–H, were located in the difference density map, and refined isotropically. 

The checkCIF report is included in Appendix B, Figure B58. 
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Specific: A clear yellow needle-like single crystal was selected after inspection under microscope. 

It was mounted with the help of a mitegen loop. 

Crystal and structure refinement data are given in Table 8. 

Table 8. Sample and crystal data for compound (4a). 

Name N,N’-ethane-1,2-diylbis(2-cyanoacetamide) 

Chemical Formula C8H10N4O2 

Formula weight  97.10 

Temperature  100 K 

Wavelength  0.71073 Å 

Crystal size  0.25 × 0.10 × 0.10 mm 

Crystal appearance clear yellow needle 

Crystal system  monoclinic 

Space Group P 21/c 

Unit cell dimensions a = 4.4555(5) Å  α = 90° 

 b = 8.7443(7) Å  β = 99.125(7) ° 

 c = 11.6123(10) Å  γ = 90° 

Volume  446.69(7) Å3 

Z  4 

Density (calculated)  1.444 g cm-3 

Absorption coefficient  0.108 mm-1 

F(000)  204 
Theta range for data collection  2.93 to 26.27° 
Index ranges  -5≤h≤4, -10≤k≤10, -14≤l≤14 
Reflections collected  3802 
Independent reflections  862 [Rint = 0.0402] 
Max. and min. transmission  0.9893 and 0.9735 
Refinement method  Full-matrix least-squares on F2 
Function minimized  Σ w(Fo

2 - Fc
2)2 

Data / restraints / parameters  862 / 0 / 64 
Goodness-of-fit on F2  1.09 
Final R indices  782 data; I>2σ(I)  R1 = 0.0408, wR2 = 0.1151 

 all data  R1 = 0.0446, wR2 = 0.1190 
Weighing scheme  w=1/[σ2(Fo

2)+(0.0666P)2+0.2084P], where P=(Fo
2+2Fc

2)/3 
Largest diff. peak and hole  0.308 and -0.213 eÅ-3 
RMS deviation from mean  0.056 eÅ-3 

 

Selected bond lengths and angles are given in Table 9. 
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Table 9. Selected geometric parameters for compound (4a). 

Bond lengths (Å) 

N1—C1 1.144 (2) C2—O1 1.234 (2) 

C1—C2 1.462 (2) C3—N2 1.330 (2) 

C2—C3 1.533 (2) C2—C4 1.460 (2) 

 

Bond angles (°) 

N1-C1-C2 179.20 (19) O1-C3-N2 124.32 (14) 
C1-C2-C3 110.43 (12) C3-N2-C4 122.72 (12) 
C2-C3-N2 114.06 (12) C3-N2-H1 118.6 

 

Torsion angles (°) 

N1-C1-C2-C3 103 (11) O1-C3-N2-C4 -3.9 (3) 
C1-C2-C3-O1 5.7 (2) O1-C3-N2-H1 176.03 
C1-C2-C3-N2 -174.76 (13)   

Molecular Structure 

The title compound is centrosymmetric, Figure 24. Selected bond distances are given in Table 9, and 

are fairly representative of such compounds.[49]  2-Cyano-ethanamide moiety is essentially planar. The 

most distant atom from the average plane drawn through all non-hydrogen atoms of this fragment is 

methylene group carbon (at 0.061 Å), Figure 25. Within the moiety nitrile and carbonyl groups are cis 

to each other.  

Essential feature of the molecular structure of (4a) is that the molecule is not in linear but in the 

step-wise “two parallel platform” conformation, with the distance between average platform planes 

of 1.841 Å, Figure 25. Terminal cyanoacetamide moieties are trans to each other. Two methylene 

groups of the ethane bridge are in a staggered conformation.  

 

Fig. 24. A view of the molecular structure of (4a) with the numbering scheme. Displacement 

ellipsoids (Mercury 3.3) are drawn at the 50 % probability level; representative bond 

distances are given in Angstroms (Å). 
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Fig. 25. A view of the molecular structure of (4a) illustrating the planarity of the cyanoacetamide 

moieties. 

Crystal Structure 

As can be seen from Figure 24, solid phase of (4a) is solvent-free. A packing diagram for the crystal 

structure of this compound is shown in Figure 26. It crystallises in P 21/c space group of the monoclinic 

system. At 100 K the unit cell has a volume of 446.69 Å3, and contains 4 asymmetric units. 

The spatial arrangement of molecules is influenced by two major factors: a) multiple intermolecular 

hydrogen bonds, and b) π-stacking interactions between double and triple bonds on neighbouring (4a) 

molecules. 

There are four hydrogen-bonding interaction between amine and carbonyl groups per molecule, 

Figure 27. Geometric parameters of such interactions are given in Table 10. Amine-carbonyl 

interactions are also shown in Figure 28. They represent hydrogen bonding of moderate strength, and 

are characterised by the bond length of 2.11 Å, and bond angle of 156.4 °.  

 

Fig. 26. A packing diagram viewed down a-axis for the crystal structure of (4a). 
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Fig. 27. H-Bonding interactions in the crystal structure of (4a). 

Table 10. Hydrogen-bond geometry in crystal structure of (4a). 

D─H ┄ A 
       Distance (Å)                               

Angle (°) 
D─H H ┄ A D ┈ A 

N2-H1...O1i 0.88 2.11 2.94(2) 156.4 

Symmetry codes: (i) –x, -1/2+y, ½-z. 

 

Fig. 28. Representative H-bonding interactions in the crystal structure of (4a) that involve amine and 

carbonyl groups. 

π-Stacking plays important role in the formation of this crystal structure. There are two types of such 

interaction. The first of them are shown in Figures 29 and 30. The first of then represents back-to-back 

π-stacking of terminal nitrile groups, while the second represents stacking of the nitrile and carbonyl 

functional groups. Molecules linked by these interactions form infinite linear strands, which intersect 

as shown in Figure 31. The combination of hydrogen bonding, π-stacking interactions and weak van 

der Waals forces affords three-dimensional crystal structure. A view of the fragment of this structural 

down a-axis is shown in Figure 32. It also can be described as a stack of parallel molecular strands, 

shown in Figures 33 and 34. 
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Fig. 29. π-Stacking interaction of the first kind in the crystal structure of (4a). 

 

Fig. 30. π-Stacking interaction of the second kind in the crystal structure of (4a). 

 

Fig. 31. Two intersecting molecular strands arising from π-stacking interactions in the crystal 

structure of (4a). 

 

Fig. 32. A view of the crystal structure of (5a) down a-axis. 



MSc Thesis 2014 Chapter B 

127 
 

 

Fig. 33. A view of the crystal structure of (4a) down the axis of strands. 

 

Fig. 34. A view of the crystal structure of (4a) perpendicular to the axis of strands. 
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3.4.2 N,N’-Ethane-1,2-diylbis[2-cyano-2-(hydroxyimino)ethanamide] 

(5a) 

This compound is new. Consequently, the crystal structure determined is the first for the new class of 

bis-chelate cyanoxime-and-amide ligands. 

Experimental 

General: Crystal data were collected on the Bruker APEX 2 diffractometer, equipped with a SMART 

CCD area detector. The intensity data were collected in ω scan mode using the Mo tube (Kα radiation; 

λ = 0.71073 Å) with a highly oriented graphite monochromator. Intensities were integrated from 4 

series of 364 exposures, each covering 0.5° in ω at 20 seconds of acquisition time, with the total data 

set being a sphere.[50] Determination of the space group was done with the aid of XPREP software.[50] 

The absorption correction was performed by the numerical method using the set of images obtained 

from the video-microscope and using the SADABS program from Bruker AXS software package.[51] The 

structure was solved by direct methods and refined by least squares on weighted F2 values for all 

reflections using the SHELXTL program. Drawing of crystal structures and packing diagrams was done 

using the ORTEP[52] and Mercury software packages.[53] The crystal structure has been deposited into 

the CCDC, deposition numbers: 992014-992015. The PLATON[54] checkCIF report is included in 

Appendix B, Figure B59. 

Specific: A clear platelet-like single crystal was selected after inspection under polarized light.  With 

the help of vacuum grease it was mounted on a thin galls fibre attached to the copper-pin positioned 

on the goniometer head of the Bruker APEX 2 diffractometer. A total of 1456 frames were collected. 

Overall exposure time was 8.09 hours. Integration of the data for a monoclinic unit cell yielded a total 

of 6787 reflections to the maximum θ angle of 27.48° (0.77 Å resolution), of which 1273 were 

independent (average redundancy 5.332, completeness 99.8%, Rint = 5.08%) and 897 (70.46%) were 

greater than 2σ(F2). The final cell constants, a = 8.170(2) Å, b = 6.6782(18) Å, c = 10.309(3) Å, 

β = 99.320(4)°, volume = 555.0(3) Å3, are based on the refinement of XYZ-centroids for the reflections 

above 20 σ(I). The calculated minimum and maximum transmission coefficients (based on the crystal 

size) are 0.7268 and 0.7456.  

The structure was solved and refined using Bruker SHELXTL Software Package, for the space group 

P 21/n, with Z = 4 for the asymmetric formula unit, C4H4N3O2. The final anisotropic full-matrix 

least-squares refinement on F2 with 97 variables converged at R1 = 4.59 %, for the observed data, and 

wR2 = 12.60 % for all data. The goodness-of-fit was 1.039. The largest peak in the final difference 
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electron density map was 0.453 e-/Å3 and the largest hole was -0.268 e-/Å3 with the RMS deviation of 

0.065 e-/Å3. On the basis of the final model, the calculated density was 1.509 g cm-3 and F(000) was 

260 e-. 

Remarkable feature of this data set was that all hydrogen atoms in the structure were located in the 

difference density map and, consequently, refined anisotropically. 

The summary of crystal data and refinement parameters is presented in Table 11, while selected 

geometric parameters are given in Table 12. 

Table 11. Sample and crystal data for compound (5a). 

Name N,N-ethane-1,2-diylbis[2-cyano-2-(hydroxyimino)ethanamide] 

Chemical Formula C8H8N6O4 

Formula weight  126.10 

Temperature  120(2) K 

Wavelength  0.71073 Å 

Crystal size  0.090 × 0.230 × 0.340 mm 

Crystal appearance clear light colourless plate 

Crystal system  monoclinic 

Space Group P 21/n 

Unit cell dimensions a = 8.170(2) Å  α = 90° 

 b = 6.6782(18) Å  β = 99.320(4)° 

 c = 10.309(3) Å  γ = 90° 

Volume  555.0(3) Å3 

Z  4 

Density (calculated)  1.509 g cm-3 

Absorption coefficient  0.124 mm-1 

F(000)  260 
Theta range for data collection  2.96 to 27.48° 
Index ranges  -10≤h≤10, -8≤k≤8, -13≤l≤13 
Reflections collected  6787 
Independent reflections  1273 [Rint = 0.0508] 
Max. and min. transmission  0.7456 and 0.7268 
Structure solution technique  direct methods 
Structure solution program  SHELXS-1013 (Sheldrick, 2013) 
Refinement method  Full-matrix least-squares on F2 
Refinement program  SHELXL-2013 (Sheldrick, 2013) 
Function minimized  Σ w(Fo

2 - Fc
2)2 

Data / constraints / parameters  1273 / 0 / 97 
Goodness-of-fit on F2  1.039 
Final R indices  897 data; I>2σ(I)  R1 = 0.0459, wR2 = 0.1056 

 all data  R1 = 0.0730, wR2 = 0.1260 
Weighing scheme  w=1/[σ2(Fo

2)+(0.0479P)2+0.5247P], where P=(Fo
2+2Fc

2)/3 
Largest diff. peak and hole  0.453 and -0.268 eÅ-3 
RMS deviation from mean  0.065 eÅ-3 
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Molecular Structure 

The title compound is centrosymmetric, Figure 35. Selected bond distances are given in Table 12, and 

are fairly representative of such compounds.[49]  2-Cyano-2-(hydroxyimino)ethanamide moiety is 

essentially planar, as expected on the grounds of π-conjugation of double bonds. The most distant 

atom from the average plane drawn through all non-hydrogen atoms of this fragment is carbonyl 

oxygen (at 0.084 Å), Figure 36. Oxime and carbonyl groups within the moiety are trans to each other, 

as is the case in almost all known to us oxime-and-amide compounds. Intramolecular hydrogen bond 

between the amide hydrogen and oxime nitrogen is weak, and at Nox┄Had distance of 2.323 Å, probably, 

can be discounted. 

Table 12. Selected geometric parameters for compound (5a). 

Bond lengths (Å) 

C1-N1 1.287(3) C1-C2 1.446(3) 
C1-C3 1.499(3) C2-N2 1.140(3) 
C3-O2 1.242(2) C3-N3 1.322(3) 
N1-O1 1.360(2) N3-H1N3 0.85(3) 
O1-H1O1 0.97(3)   
 

Bond angles (°) 

N1-C1-C2 123.45(19) N1-C1-C3 118.88(18) 
C2-C1-C3 117.61(18) N2-C2-C1 178.5(2) 
O2-C3-N3 124.7(2) O2-C3-C1 119.10(18) 
N3-C3-C1 116.18(18) N3-C4-C4 110.6(2) 
C1-N1-O1 113.41(17) N1-O1-H1O1 100.2(15) 

 

Torsion angles (°) 

N1-C1-C3-O2 172.8(2) C2-C1-C3-N3 176.6(2) 
N1-C1-C3-N3 -5.8(3) C2-C1-N1-O1 1.3(3) 
O2-C3-N3-C4 -1.9(3) O2-C3-N3-H1N1 -178.6(2) 
C1-N1-O1-H1O1 177.4(2) C1-C3-N3-H1N3 0.1(3) 

 

Essential feature of the molecular structure of (5a) is that the molecule is not in a linear but in the step-

wise “two parallel platform” conformation, with the distance between average platform planes of 

1.420 Å, Figure 36. This feature was also present in the structure of anhydrous 

2-methyl-2-(hydroxylimino)ethanamide analogue obtained in our research group previously,[5] as well 

as in the structure published by Fritsky et al.[49] Terminal 2-cyano-2-(hydroxyimino)ethanamide 

chelating moieties are also trans to each other. The methylene groups of the ethane bridge are in a 

staggered conformation. 
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Fig. 35. A view of the molecular structure of (5a) with the numbering scheme. Displacement 

ellipsoids (Mercury 3.3) are drawn at the 50 % probability level; representative bond 

distances are given in Angstroms (Å). 

 

Fig. 36. A view of the molecular structure of (5a) illustrating the planarity of chelating moieties. 

Crystal Structure 

As can be seen from Figure 35, solid phase of (5a) is solvent-free. A packing diagram for the crystal 

structure of this compound is shown in Figure 37. It crystallises in P 21/n space group of the monoclinic 

system. At 120 K the unit cell has a volume of 555.0(3) Å3, and contains 4 asymmetric units. 

The spatial arrangement of molecules is influenced by two major factors: a) intricate system of multiple 

intermolecular hydrogen bonds, and b) multiple π-stacking interactions between conjugate systems of 

the double bonds on neighbouring (5a) molecules. 

There are four hydrogen-bonding interaction between oxime and carbonyl groups per molecule, and 

four more such interactions between amine and nitrile groups, Figure 38. Geometric parameters of 

such interactions are given in Table 13. Oxime-carbonyl interactions are also shown in Figure 39. They 

represent strong hydrogen bonding, and are characterised by rather short bond length, 1.66(3) Å, and 

nearly optimal bond angle, 172.8 °. In comparison, amine-nitrile interactions are significantly weaker. 
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As can be seen from Figure 40, the bond length at 2.37(3) Å is longer, and the bond angle at 133.2 ° is 

far from optimal. 

 

Fig. 37. A packing diagram viewed down b-axis for the crystal structure of (5a). 

 

Fig. 38. Major types of H-bonding interactions in the crystal structure of (5a). 

Table 13. Hydrogen-bond geometry in crystal structure of (5a). 

D─H ┄ A 
       Distance (Å)                               

Angle (°) 
D─H H ┄ A D ┈ A 

O1-H1O1...O2i1 0.97(3) 1.66(3) 2.627(2) 172.8 

N3-H1N3...N2i2 0.85(3) 2.37(3) 3.018(3) 133.2 

Symmetry codes: (i1) ½+x, 1.5-y, ½+z; (i2) -1/2+x, 1.5-y, ½+z. 
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Fig. 39. Representative H-bonding interactions in the crystal structure of (5a) that involve oxime and 

carbonyl groups. 

 

Fig. 40. Representative H-bonding interactions in the crystal structure of (5a) that involve amine and 

nitrile groups. 

As has already been mentioned, high degree of planarity of cyanoxime-and-amide chelates is the 

reflection of extended π-conjugation of their double bonds. π-Stacking of these extended systems 

plays important role in the formation of crystal structure. Two types of such interactions are shown in 

Figures 41 and 42. The first of them represents back-to-back π-stacking of terminal oxime groups, while 

the second represents four-centre stacking of the oxime-and-amide moieties. Molecules linked by 

each kind of these interactions form infinite linear strands, Figure 43, which intersect as shown in 

Figure 44. Sheets of such stands are stitched by hydrogen bonds into three-dimensional networks. 

Weak van der Waals intermolecular forces complement the above two kinds of interactions, and in 

combination are responsible for intricate three-dimensional crystal structure. A view of the fragment 

of this structural down a-axis is shown in Figure 45; as can be seen from this angle, the molecules form 

beautiful undulating array. 
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Fig. 41. π-Stacking interaction of the first kind in the crystal structure of (5a). 

 

Fig. 42. π-Stacking interaction of the second kind in the crystal structure of (5a). 

 

 

Fig. 43. Two types of molecular strands arising from π-stacking interactions in the crystal structure 

of (5a). 
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Fig. 44. Two intersecting molecular strands in the crystal structure of (5a). 

 

Fig. 45. A view of the crystal structure of (5a) down a-axis. 

 



MSc Thesis 2014 Chapter B 

136 

 

In this section we will discuss our findings and observations accumulated in the course of ligand 

synthesis. Among other matters we will consider the sequence of steps, apparatus design, and 

evidence for the conformers formation. 

4.1 Two Synthetic Routes 

In view of two possible synthetic routes towards the desired cyanoxime-and-amide bis-chelates, which 

have been considered earlier, Scheme 15, we will take a close look at the reagents and starting 

materials used in each of them. The first step of each path, path A and path B, was accomplished by us 

with relative ease, and does not merit much of further discussion here. Ethyl cyanoacetate (1) and four 

diamines (3a-d) required for the precursor synthesis are all commercially available. 

The second step of path A, Scheme 15, implies bubbling CH3ONO gas* through a solution/suspension 

of bis-cyanoamide precursor in iso-propanol that also contains sodium iso-propoxide. Advantages of 

this approach include gaseous nitrosation agent, which is easy to remove from the reaction mixture, 

and the synthesis of intermediate bis-cyanoamides (4a-d) that is well documented in literature.[37, 39] 

The latter are synthesised in one-pot reactions, in high yield, and with very little separation required. 

Drawbacks of this approach are the need of daily preparation of the iso-propoxide base† and the 

complication of working with a highly toxic methyl nitrite gas.  

The second step of path B, Scheme 15, involves condensation of ethyl-cyano(hydroxyimino) 

ethanoate (2) with four diamines (3a-d). Similar reactions have been carried out successfully in our 

group previously in dry methanol in the presence of acid washed glass beads as a catalyst. 

From a pragmatic point of view path B appears advantageous to path A as it does not require 

preparation of strong unstable base or use of a toxic nitrosation agent. In addition, one might argue 

the merit of each path in terms of time and effort spent on step one. In truth, both sets of precursors 

are made with relative ease and in high yield. However, path B is more appealing from this perspective 

as only one rather than four precursors need to be made. 

                                                           
* Which is generated in a separate container by the drop wise addition of sulfuric acid to a solution of sodium 

nitrite in a mixed water-MeOH medium. 

† This involves dissolving sodium metal in freshly distilled iso-propanol. 
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4.2. Path B 

We will start with this path for two reasons: a) it was the first path we tried, and b) it failed completely 

to deliver bis-chelates. 

4.2.1 Step One: Oximation 

This synthetic step is described in section 3. It was completed successfully, and we have no additional 

comments about it. 

4.2.2 Step Two: Condensation 

Four attempts to synthesise the desired ligands following Scheme 15 path B were made with diamines 

(3a-d). The generic procedure employed is given below. 

Generic Procedure: Ethyl-cyano(hydroxyimino)ethanoate (2) (1.03 g, 7.00 mmol) was weighed into 

a RBF (100 mL), flushed with Ar, and dry MeOH added. The flask was sealed with a septum and the 

diamine (3a-d) (3.50 mmol) added dropwise.‡ The mixture was stirred for 12 hours, the solvent 

removed by rotary evaporation, and the crude material analysed by means of 1H and 13C NMR 

spectroscopy.  

Despite using stoichiometric ratio of the ester to diamine (2 : 1), in all four cases characterisation data 

indicated exclusive formation of mono-condensates, without even trace quantities of bis-chelates. In 

addition, separation of the products proved rather difficult, as is known to be the case from the work 

on a line of similar mono-chelate ligands (mhiaa) by Ms E. Diu, a postgraduate student in our research 

group. 

Initially, these results puzzled us, because similar approach worked well for the preparation of methyl 

substituted analogues, N,N’-alkyl-diylbis[2-(hydroxyimino)propanamide]s, (mhiaa2z), Scheme 16.[44] 
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Scheme 16. Synthesis of N,N’-alkyl-diylbis[2-(hydroxyimino)propanamide]s. 

                                                           
‡ In the case of 1,3-diamonopropan-2-ol, which is solid at room temperature, its solution in MeOH was used. 
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However, it completely failed when the methyl group α to oxime was replaced with nitrile, Scheme 17. 
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Scheme 17. Attempted condensation step (step two) of path B. 

We have already discusses possible reasons for such failure in section 2.8.2. In addition to what was 

said there, we offer the following explanation to exclusive formation of mono-condensates. Strictly 

stoichiometric ratio of ethyl-cyano(hydroxyimino)ethanoate (2) to diamine (3a-d) (2 : 1) results in 

complete protonation of both amino groups and, consequently, lack of any condensation products. In 

practice, slight excess of a diamine is employed (about 5 to 10 %) to compensate for its partial oxidation 

and loss due to evaporation. This excessive quantity of diamine remains in its molecular form and is 

able to attack electrophilic carbonyl carbon of the ester, affording mono-condensed product. However, 

once such product is formed, Figure 46, involvement of the second amino group into condensation 

process becomes impossible, no matter how large excess of the diamine is present. We think, the 

reason for it is additional Coulomb, and possibly hydrogen-bonding intramolecular stabilisation due to 

the formation of Zwitter-ions, as shown below. 
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Fig. 46. Suggested Zwitter-ion type stabilisation of cyanoxime-amide-amine mono-condensates. 

This stabilisation is responsible for the fact that the terminal amino group of the mono-condensate is 

always going to be in protonated state, rather than other sacrificial amine or diamine. Consequently, 

further condensation with another unit of ester (2) becomes impossible as the terminal amino group 

of mono-condensate is “switched off”. 

Having realised that this presences an unsurmountable obstacle on the way to bis-chelate ligands, we 

focused our synthetic efforts on path A, Scheme 15. 
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4.3. Path A: 

The sequence of synthetic steps similar to the ones represented in path A, Scheme 15, led to the 

preparation of the first, and prior to our work the only, desired bis-chelate cyanoxime-and-amide 

ligand (5b or chiaa2p).[24] This was encouraging, and we proceeded to repeat the preparation of this 

and synthesise three new ligands of the series (5a, 5c and 5d). 

4.3.1 Step One: Condensation 

Four homologue bis-cyanoacetamides shown below, required as intermediates, were synthesised 

following two procedures. On three occasions, the reaction was carried out in solvent medium. In 

another instance neat reagents were used in a solvent-free synthesis. Some of the relevant issues have 

already been discussed in section 2.9.2, and an interested reader is advised to consult it. 
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Initially, the synthesis of N,N’-propane-1,3-diylbis(2-cyanoacetamide) (4b) was attempted in CH2Cl2 

medium without a catalyst and in MeOH medium with acid washed glass beads catalyst. In both cases 

the synthesis proceeded well, precipitating out the product within a few hours. 

Correspondingly, the merit of each solvent system was judged by the yield achieved in two synthetic 

attempts. In addition, we recorded the yield at every stage of the working up of the product mixture. 

Our data show that the product was recovered as a primary precipitate and from the mother liquor on 

both occasions, with the yields given below. 

Table 14. Yield of N,N’-propane-1,3-diylbis(2-cyanoacetamide) (4b) per fraction in two different 

solvated systems. 

Solvent system 
Yeild (%) from primary 

precipitate yield 

Yeild (%) from mother liquor 

precipitates 

CH2Cl2 59 38 

MeOH/Glass Beads 76 10 

As can be seen from the table, more (4b) product was isolated as primary precipitate when the reaction 

was run in methanol in the presence of the catalyst, 76 % as opposed to 59 %. However, more product 
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was recovered from the dichloromethane mother liquor, 38 % versus 10 %. Overall yield, excellent on 

both occasions, nevertheless give slight advantage to the CH2Cl2 medium (yield 97 %) against 

MeOH/beads system (yield 86 %). On the downside of the CH2Cl2 system, was the need to work-up 

more synthetic fractions, which takes both time and effort. Such approach is justified if the starting 

materials are expensive. This was not the case, with ethyl cyanoacetate (1) and four diamines (3a-d) 

being affordable. Consequently, with time being of essence, we opted for the MeOH/catalyst system 

in the preparation of bis-cyanoacetamides (3a, 3b, and 3d), and decided to sacrifice residual amount 

of product still present in the mother liquor. 

Now that we have considered the case of condensation reaction in two solvent media, we will turn our 

attention to the procedure of Gazit et al,[37] who synthesised the same compounds without any solvent 

at all, Table 15. 

Table 15. Yield of bis-cyanoacetamides according to Gazit et al[37]  (solvent-free) and in our synthesis 

in MeOH/glass beads medium. 

No Bis-cyanoacetamide 
Yield (%) 

Gazit et al 

Yield (%) 

MeOH/glass beads 

4a N,N’-ethane-1,2-diylbis(2-cyanoacetamide) 86 67 

4b N,N’-propane-1,3-diylbis(2-cyanoacetamide) 74 76 

As the data from the table indicate, both procedures are viable, with one giving better yield for 

compound (4a) and another giving slightly better yield for compound (4b). 

Major shortcomings of the Gazit et al[37] approach are the danger of heat induced side-reactions, and 

the need for more rigorous separation work-up. Being run without the solvent, the reaction mixture 

becomes very viscous and could experience local overheating. The latter is thermodynamically 

undesirable, as it may lead to decomposition and side reactions. Dissolving such mixtures, sometimes 

fused and in addition containing poorly soluble side products, is also problematic. For these reasons, 

we opted mostly for the MeOH/catalyst syntheses, as mentioned above. 

However, the Gazit et al procedure[37] has an advantage of the glass beads being absent from primary 

precipitate. General way of removing them, is to re-dissolve the precipitate and filter the beads off. 

This works well for reasonably soluble condensation products but presents a problem for our 

bis-cyanoacetamides. They are poorly soluble in the common organic solvents. Even in the most 

suitable solvents found by us, alcohols, their solubility does not exceed 0.5 g L-1, with the consequence 

of large volumes of solvent needed to purify just a few grams. 
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At this point we considered what consequences leaving the glass beads in the crude would have on 

the overall success of the synthetic route. Taking into account that typical catalyst load was about 

11 mg per 5 g of substrate (or 0.22 wt. %), we elected to leave the glass beads in the mixture as they 

would be neutralised by an excess of strong base in the succeeding oximation step, rendered 

indifferent, and finally, separated from the product solution by filtration. 

When the characterisation data on bis-cyanoacetamides were required, small portions of the crude 

were dissolved, the glass beads filtered off, and the product re-crystallised.  

Another positive fact related to this synthesis was the ease of removal of unreacted reagents. The 

wash solvents employed in this synthesis were 0.1 M HCl and MeOH. The aqueous hydrochloric acid 

protonates any remaining diamine into ammonim hydrochloride salt, which is perfectly soluble in 

water and washes away easily. On the other hand, ethyl cyanoacetate is very soluble in methanol. 

Sequential rinsing with these two solvents efficiently removes starting materials from the product, 

which is, as mentioned earlier, practically insoluble in water and relatively insoluble in methanol.  

4.3.2 Step Two: Oximation 

Here we will consider chemical factors and the impact of external conditions on the outcome of 

oximation step. 

4.3.2.1 Initial attempts at oximation 

The first successful oximation of a bis-cyanoacetamide to the desired bis-chelate ligand was reported 

by Kolotilov et al,[24] and refers to the preparation of N,N'-propane-1,3-diylbis 

[2-cyano-2-(hydroxyimino)ethanamide] (5b). An excerpt from their procedure reads as follows: 

“N,N’-propane-1,3-diylbis(2-cyanoacetamide) (10 mmol) was partially dissolved/suspended in a 

solution of NaOEt (20 mmol) (prepared from 0.46 g, 20 mmol of Na) in 60 mL of absolute EtOH, and 

treated with gaseous EtONO (20.5 mmol) prepared separately by reaction of NaNO2 (1.42 g, 

20.5 mmol) with an excess H2SO4 in EtOH-water solution. After 5 hours 2 equivalents of aqueous HCl 

were added to the mixture, which was then filtered and concentrated by rotary evaporation until 

yellow orange crystals appeared”, …, ”yield  0.93 g, 35 %”.[24].  

Our first attempt at the oximation reaction under the conditions suggested above was the synthesis of 

N,N’-butane-1,4-diylbis(2-cyanoacetamide) (4c). It immediately became clear that the starting 

bis-cyanoacetamide was poorly soluble in basic alkoxide-alcohol medium and the bubbler mixture was 

fairly viscous; both factors causing hydrodynamic resistance to the gas flow. Upon processing the 
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product mixture, we also established that the yield of new ligand was much less than 35 % claimed by 

Kolotilov et al.[24]  The fact that this was the only set of synthetic conditions proposed literature, and 

they did not work very well for new ligands, lead to the realisation that we would have to optimise 

chemical and external parameters for such reactions. 

4.3.2.2 The bubbler design 

As the glassware used in this synthesis was outside of the routine set employed by organic chemists, 

we have included short description of the laboratory setup and a few diagrams to aid the discussion. 

Synthetic procedure and the composition of three solutions charged to the apparatus are described in 

section 3.3; we advise the reader interested in details to consult this section. 

Initially, we attempted to pass methyl nitrite gas through a single common laboratory bubbler, as 

shown in Figure 47. 

 

Fig. 47. An apparatus for oximation with a single common laboratory bubbler. 

During the pilot run with this apparatus two observations were made, which gave cause to concern. 

First, it was noticed that the bis-cyanoacetamide failed to dissolve fully in the sodium propoxide/ iso-

propanol solution.§ Second, the gas bubbles emerging from the end of a spout were quite large, 

between 5 and 7 mm in diameter. Both these facts were unfortunate from the perspective of 

maximising the product yield. From our understanding of the reaction mechanism, at the activation 

stage the methylene group α to the nitrile group of bis-cyanoacetamide has to be deprotonated, which 

                                                           
§ Solution in the bubbler. 
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should make the latter reasonably soluble in the basic iso-propanol medium. The fact that it remained 

largely in suspended solid state was somewhat puzzling. Of course, solid suspension offers much 

diminished contact area with gas bubbles in comparison to the matter fully dissolved in liquid medium. 

Second, large size methyl nitrite bubbles also reduce contact area and contact time with liquid solution 

of reactant, with obvious kinetic and thermodynamic implications. 

We tried to combat these problems by adding a coarse ceramic frit at the end of a spout, which was 

expected to break the gas flow into large number of small bubbles (of 1 mm diameter or less) , and 

increasing the bubbler volume (to accommodate more solvent) to dissolve more of the precursor 

bis-cyanoacetamide. Diagrammatic view of the modified apparatus is shown in Figure 48. 

 

Fig. 48. An apparatus for oximation with a large volume bubbler adorned with a coarse ceramic frit. 

Pilot run with the new apparatus afforded two observations. First, the pressure required for the gas to 

bubble through the frit was much higher than through the open tube. Second, the level of undissolved 

bis-cyanoacetamide has dropped, which was a positive sign. However, when we analysed the product 

mixture, the results were discouraging. The yield of desired product fell to about half of the value 

achieved previously in the standard bubbler type apparatus. 

Careful analysis brought forward the theory that much higher gas pressure, required to overcome 

resistance caused by the frit, caused more methyl nitrite gas escaping through the glass ground joints 

of the apparatus. Even when we took additional precautions, by adding PTFE tape and employing Keck 

clips on every joint to stop gas leaks, certain amount of leakage remained. A consideration to cut down 

on the number of glass joints in the apparatus was rejected on practical grounds; it would complicate 

cleaning and hinder access to the inner part of the apparatus. 
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Hence, we reverted back to a design with an open tube bubbler. However, to increase the contact time 

of larger bubbles with the solution, we decided to go for a thinner internal tube and a longer bubbler. 

As practical considerations (such as the height of extraction cabinet, etc.) impose constraints on the 

usable height of a bubbler, we opted for a design with two relatively tall narrow sequential bubblers. 

It would allow, on one hand, to use larger quantity of solvent and, consequently, to dissolve more of 

the bis-cyanoacetamide precursor, and on the other hand, to increase the contact time between the 

gas and the solution. The new apparatus we settled on is shown in Figure 49. 

 

Fig. 49. An apparatus for oximation with two sequential common laboratory bubblers. 

This design proved to be superior to the two discussed previously. In general, the apparatus works 

well, though on a few occasions the contents of one bubbler were partially blown over into the next 

one by a flow of N2 gas during the purge of the system. To prevent this from happening again, we 

introduced a gas flow restriction device, which came in the form of thin tube about 1 mm diameter 

and 45 mm long, and was installed on the incoming nitrogen supply line just before the flask where 

methyl nitrite gas was generated. Its role was to filter large shock waves in the gas supply line by 

constricting the flow. 

Also, as can be seen from the diagram, the dropping funnel is backed by the nitrogen gas from the 

same line, equilibrating pressure on both sides of the dropping funnel solution; the latter aids 

controlled continuous drop-wise addition of this solution to the reaction flask and prevents emerging 

methyl nitrite from bubbling through the funnel. An advantage of such fine control of the methyl nitrite 

production is the ability to create stable, continuous, slow gas stream, which allows longer contact 

time of the bubbles of an acceptable size with the solution. 
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 Subsequently, this apparatus was employed for the synthesis of remaining ligands. 

4.3.2.3 Optimising the conditions for oximation 

As already mentioned, our early attempts at the oximation step under the conditions proposed by 

Kolotilov et al[24] were not entirely satisfactory as the yield was significantly lower than reported by 

authors 35 %. Consequently, we decided to optimise reaction conditions with the aim of improving the 

yield. The plan was to carry out the reaction under a range of conditions, changing one at a time, and 

to file the outcome, in terms of yield and product purity, in a matrix type map. The following conditions 

were considered important, and were altered as primary variables. 

1. The nature of base and solvent and the source of a nitrosation agent. 

2. Base to bis-cyanoacetamide ratio (base loading). 

3. Base and bis-cyanoacetamide concentration. 

4. Temperature.  

Chemical parameters of oximation 

First, we review the kind of reagents used in three selective oximation reactions reported in literature. 

Our test substance in this case was N,N’-butane-1,4-diylbis(2-cyanoacetamide) (4c), and the attempted 

reaction is shown in Scheme 18. 
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Scheme 18. Oximation of N,N'-butane-1,4-diylbis(2-cyanoacetamide) (4c) to bis-chelate (5c) used 

as a test reaction for the optimisation of external conditions. 

Two strong bases used previously were NaOCH3 and NaOC2H5 in the solution of a parent alcohol.[24, 15] 

Considering the structure of our bis-cyanoacetamide, it was decided that somewhat stronger and more 
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hindered base would be a better choice.** Consequently, we settled on sodium iso-propoxide in 

iso-propanol. 

According to Bohle et al,[36] different oximation products and in different ratio were formed when the 

same base but with different counter ion (Na+ or K+) was used. As our work is closely related to the 

synthesis of 3,3’-piperazine-1,4-diylbis[2-(hydroxyimino)-3-oxopropanenitrile][15] and 

N,N’-propane-1,3-diylbis[2-cyano-2-(hydroxyimino)ethanamide],[24] it was decided to employ the 

same cation, namely Na+, in both cases.  

Next, we considered practical aspects of the preparation of such sodium alkoxide solution. The choice 

was between dissolving sodium hydroxide or sodium metal in dry alcohol. By-product of the latter 

reaction is dihydrogen gas, while by-product of the former is water. For obvious reasons we have 

chosen dissolving metallic sodium in freshly distilled iso-propanol as a preferred procedure. 

The third factor is the choice of nitrosation agent. Two such agents, CH3ONO and C2H5ONO, were 

employed in a similar reaction previously.[24, 15]. We settled on CH3ONO, which is a gas at RT and can 

be easily synthesised in a secondary reaction vessel. It can be easily removed from the oximation 

reactor and, probably, has higher chemical reactivity.††  

With the base and nitrosation agent settled, next we looked at the stoichiometric ratio of the base to 

starting material. Experimental results are presented in Table 16, which specifically refers to the 

oximation of N,N’-butane-1,4-diylbis(2-cyanoacetamide) (4c). 

                                                           
** The base is required to deprotonate the methylene group but should not participate in any condensation 

reactions of its own. 

†† The latter assumption is based on lesser steric hindrance this agent might experience during the electrophilic 

attack on rather crowded bis-amide precursor. 
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Table 16. Yield of bis-chelate ligand (5c) for various ratios of starting materials. 

Run Bis-amide (4c) (mmol) iPrONa (mmol) iPrOH (mL) Yield (%) Product Purity 

4‡‡ 1.5 3.0 85 24 High 

5 1.0 1.0 65 13 
Contained about 10 % 

of starting material 

6a§§ 1.0 2.2 65 10 High 

6b 1.0 2.2 65 7.9 High 

7a 1.0 3.1 65 4.2 High 

7*** 1.0 3.1 65 0 
No bis-chelate detected as 

no CH3ONO was bubbled 

8a 1.5 3.0 80 13 High 

8 1.5 9.0 80 5.4 High 

A few conclusions can be drawn from the data presented in this table; they are discussed below. 

Base loading 

Two subsets of comparable data, different only by the bis-cyanacetamide to base ratio, are shown in 

Table 17. 

                                                           
‡‡ Runs listed in the table do not start from 1 due to the fact that a few experiments were conducted earlier to 

optimise the apparatus setup. 

§§ Entries that are labelled as a or b refer to the experiments where the contents of two sequentially connected 

bubblers were worked up separately. 

*** This sample was run with methyl nitrite source disconnected from the bubbler. The purpose was to check 

whether nitrosation agent plays any role in the deprotonation of bis-cyanacetamides. 
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Table 17. Yield of bis-chelate ligand (5c) in comparable runs with different precursor to base ratios. 

Run Bis-amide (4c) (mmol) iPrONa (mmol) Yield (%) 

5 1 1 13††† 

6a 1 2.2 10 

7a 1 3.1 4.2 

8a 1.5 3 13 

8 1.5 9 5.4 

Analysis of these data allows to draw a few conclusions. Runs 5, 6a and 7a were performed under 

identical conditions but for the increasing base loading. Same applies to runs 8a and 8, though, they 

were carried out with increased overall amount of bis-cyanacetamide. 

Starting with run 5, which was carried out at bis-cyanoacetamide to base ratio of 1 : 1, rather than at 

stoichiometric 1 : 2 ratio, somewhat to our surprise, fairly high yield of the product (about 11.5 %) was 

achieved. However, recovered from the mother liquor product contained not only bis-chelate 

cyanoxime-and-amide ligand but also about 10 % of the unreacted starting material. Further increase 

of the base loading in runs 6a and 7a to 1 : 2.2 and 1 : 3.1, respectively, caused the yield to fall from 

10 % to 4.2 %.‡‡‡ Similar outcome was recorded for runs 8a and 8, where increasing the base loading 

from 1 : 2 to 1 : 6, dropped the yield from 13 to 5.4 %.  

Overall conclusion from these two sets of runs and similar data for other ligands is that optimal yield 

is achieved at stoichiometric precursor to base ratio (1 : 2). Crude product obtained under such 

conditions is characterised by low level of impurities and can be upgraded to an analytical sample 

through the separation procedure. Similar yield may be achieved with lower base loading of about 

1 : 1.1 ratio. However, in the latter case the sample is contaminated with noticeable amount of the 

bis-cyanacetamide salt, which is more difficult to separate from the target product. 

Bis-cyanoacetamide concentration 

The next factor to consider is bis-cyanacetamide concentration in the bubbler. Given that 

bis-cyanacetamide precursors (4a-c) are poorly soluble in most solvents, including sodium 

                                                           
††† 13 % yield value is overestimated. It was derived from the weight of a sample, which upon analysis turned 

out to be a mixture of product and approximately 10 % of starting bis-cyanacetamide. The real yield was 

under 11.5 %. In contrast, the yield for all other runs in the table represents analytically pure product. 

‡‡‡ In truth, the yield at 1 : 2 ratio might have been the highest. Unfortunately, we did not prepare exact 

stoichiometric ratio in run 6a. Small excess (about 10 %) of the base over the above ratio, probably, had 

detrimental effect on the yield. 
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iso-propoxide/iso-propanol system charged to the bubbler, it was difficult to estimate actual precursor 

concentration in different runs. In fact, as was evident from experimental observations, most of the 

bis-cyanacetamide in the bubbler remained undissolved through the process of oximation. The best 

comparison we can offer in this regard is between runs 6a and 8a, Table 18, where the last column is 

not the true concentration in solution, which is much lower, but formal ratio of the precursor amount 

to the volume of liquid phase used. 

Table 18. Yield of bis-chelate ligand (5c) in comparable runs with different amount of precursor 

present in solution. 

Run Bis-amide (4c) (mmol) iPrONa (mmol) iPrOH (mL) Yield (%) 
Formal (4c) to iPrOH ratio 

(M) 

6a 1.0 2.2 65 10 0.0154 

8a 1.5 3.0 80 13 0.0188 

 

The difference in yield is not significant enough to draw far reaching conclusions. It may well be caused 

by slightly higher base loading in run 6a. On the other hand, if we assume the solubility of the precursor 

in iso-propanol medium being the same, higher yield in run 8a may signify an advantage of having 

larger overall amount of the reactant in solution. Probably, larger overall volume of solution in the 

bubbler also helps as it increases the contact time. 

Efficiency of sequential bubblers 

Next we will consider the efficiency of sequential bubblers. 

As we have been compelled to introduce the second bubbler in our apparatus design, it became of 

interest how much of the generated methyl nitrite gas goes through it after a portion was consumed 

in the first bubbler. At the first glance, one might expect some decrease in yield in the second bubbler 

due to lower partial pressure of the nitrosation agent in the gas mixture (CH3ONO flow is 

complemented by the stream of N2). However, as the reaction was run with large excess of methyl 

nitrite over the bis-cyanacetamide (at about 200 : 1 molar ratio), that seemed unlikely. Nevertheless, 

noticeable drop in the conversion ratio between the two bubblers was observed in all such 

experiments. The data in Table 19 illustrate this point. 
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Table 19. Yield of bis-chelate ligand (5c) in two sequential bubblers using the same gas source. 

Run Yield (%) 

6a 10 

6b 7.9 

We do not have convincing explanation to this effect. However, from a practical point a view, it is well 

worth the trouble of setting up additional bubbler and getting 7.9 % extra material from the same 

oximation process.  

Temperature 

As is well known from chemical thermodynamics, the temperature may have profound effect on 

reaction yield. Logically, in view of its importance, the issue of reaction temperature in the bubblers 

should have been considered earlier. We have deferred it until now because the temperature effect 

on yield was studied by us only for ligand (5b), N,N-propane-1,3-diylbis[2-cyano-2-(hydroxyimino) 

ethanamide] and not for ligand (5c), as was the case with the rest of external factors.  

Two comparable runs were made in the preparation of (5b); the first with the bubblers at RT and the 

second with the bubblers submerged in an oil bath maintained at 65 °C. The results of this experiment 

are presented in Table 20. 

Table 20. Yield of bis-chelate ligand (5b), N,N’-propane-1,3-diylbis 

[2-cyano-2-(hydroxyimino)ethan-amide] in comparable runs at different temperatures. 

Run Temperatue (°C) Yield (%) 

3 27 24 

4 65 17 

As can be seen from the above table, heating the oximation vessel is counterproductive to the product 

yield. The latter also implies exothermic enthalpy of reaction. 

Synthetic Repeatability 

To justify trust in the above results, we also tested synthetic repeatability by carrying multiple 

repetitive runs for one chosen ligand. 

The oximation reaction aimed at the preparation of ligand (5d), N,N’-(2-hydroxypropane-1,3-diyl)bis 

[2-cyano-2-(hydroxyimino)ethanamide], was performed  last. By this time final synthetic procedure 
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was well established. The following five synthetic runs were carried out following the same generic 

procedure, which allowed us to test the repeatability of our approach, Table 21. 

Table 21.  Yield of bis-chelate ligand (5d), N,N'-(2-hydroxypropane-1,3-diyl) 

bis[2-cyano-2-(hydroxyimino)ethanamide],  in five identical runs. 

Run Yield (%) 

1 5.1 

2 5.4 

3 4.7 

4 4.7 

5 6.6 

Average yield was (5.3 ± 2.35) % at the 95 % probability level.  

Yield figures for different ligands 

Finally, we will present average yields of the desired compounds in the oximation step across the series 

of bis-chelate cyanoxime-and-amide ligands, Table 22. All such runs were performed under 

comparable conditions following the optimised generic procedure. 

Table 22. Representative yield of the oximation step for different bis-chelate ligands synthesised in 

this project. 

Ligand Yield (%) 

N,N'-ethane-1,2-diylbis[2-cyano-2-(hydroxyimino)ethanamide], (n=0) (5a) 3.6 

N,N'-propane-1,3-diylbis[2-cyano-2-(hydroxyimino)ethanamide], (n=1) (5b) 24 

N,N'-butane-1,4-diylbis[2-cyano-2-(hydroxyimino)ethanamide], (n=2) (5c) 13 

N,N'-(2-hydroxypropane-1,3-diyl)bis[2-cyano-2-(hydroxyimino)ethanamide], (n=1-OH) (5d) 5.1 

As can be seen from the table, oximation with methyl nitrite agent works best for the ligand with 

propane spacer between two chelate moieties. The ligand with butane spacer is next in line. However, 

the ligands with shorter (ethane) or more complex (2-hydroxyethane) linkers form in lower yield. This 

is likely to be attributed to steric difficulties in the formation of reaction intermediate.  
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4.3.3 Evidence of different molecular forms 

In the course of synthetic work on this project we have made two interesting observations, which lead 

us to believe that on two occasions we isolated different molecular forms of the same compound. 

Bis-cyanacetamide salt 

The first observation pertains to the recovered unreacted bis-cyanoacetamide material. As has been 

mentioned earlier, during the oximation procedure some of the bis-cyanoacetamide precursor remains 

in suspension, and is filtered off at the end of the reaction. The solid suspension is predominantly 

starting material (white) mixed with another solid phase (yellow). 1H NMR spectrum of this second 

phase is similar to the spectrum of precursor bis-cyanacetamide with only slightly altered values of 

chemical shifts. However, most striking feature of the spectrum is complete absence of all methylene 

protons signals on the carbons α to nitrile groups. This secondary species is fairly stable, but reverts to 

the original precursor when dissolved in hot water, acidified to pH 2.8, and left to precipitate. 1H NMR 

analysis of this recovered solid is identical to the original bis-cyanoacetamide. 

These facts, complemented by the knowledge that cyanamide salts are yellow, lead us to conclude 

that the secondary species is a tetra sodium salt of original bis-cyanoacetamide. Two additional 

observations fit well with such suggestion: a) the solubility of yellow compound is much higher than 

that of molecular bis-cyanoacetamides, which is characteristic of salts, and b) when we acidify the solid 

mixture only molecular bis-cyanoacetamides precursor precipitates out. 

1H NMR spectra of the molecular form and its suspected tetra sodium salt are presented below in 

Figures 50-51. 
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Fig. 50. 1H NMR spectrum of the molecular form of bis-cyanacetamide (4c). 

 

Fig. 51. 1H NMR spectrum of the suspected tetrasodium salt of bis-cyanacetamide (4c). 

Conformers 

During the synthesis of ligand (5c), N,N’-butane-1,4-diylbis[2-cyano-2-(hydroxyimino)ethanamide], 

which we repeated numerous times, on occasion, secondary amide peak (at about 8.7 ppm) was 

detected in the 1H NMR spectrum of the product, Figure 52. 
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Fig. 52. 1H NMR spectrum of ligand (5c), hinting at the mixture of two conformers. 

Analysis of the NMR data indicated that it was unrelated to any starting material but, in fact, was 

associated with the product. Additional COSY spectrum of this sample, Figure 53, confirmed that both 

peaks of interest correlate with the methylenic protons α to amide nitrogen (3.17-3.20 ppm). 

 

Fig. 53. COSY NMR spectrum of ligand (5c), indicating the mixture of two conformers. 

Such behaviour is characteristic of a mixture of conformers, where two amide protons are in slightly 

different environments. Based on the integrated proton signals, the ratio of two conformers in the 

mixture appears to be 3 : 1. It is also interesting to note that the amide proton signal of the major 
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conformer is a well resolved multiplet, implying strong coupling to the protons of neighbouring 

methylene group. In contrast, similar signal for the minor conformer is unresolved broad singlet. 

As for the exact nature of these conformers, it is yet unknown to us and will be the subject of future 

computational work emanating from this chapter. At this stage, we are only prepared to say that the 

major conformer is likely to be structurally constrained, probably due to the intramolecular hydrogen 

bonding of the amide proton, while its minor counterpart lacks such interaction and has an amide 

group with a more exchangeable proton. 
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1. In total, we have synthesised nine compounds in this chapter, of which three are new (5a, 5c, and 

5d). Previously known compounds were characterised by 1H and 13C NMR spectroscopy, and in all 

cases the comparison with literature data was satisfactory. For a few compounds certain 

characterisation data were not reported in literature (e.g., 13C NMR spectra, high-resolution MS 

spectra, etc.). For these compounds such measurements were performed and the blanks filled. 

All new compounds were characterised by complete range of instrumental techniques described 

in this Chapter. 

2. Three of the four bis-cyanoamide precursors, Scheme 15 path A (p. 101), were synthesised in 

solvent medium, with the yield of 67% (4a), 76 % (4b) and 66 % (4d). The fourth bis-cyanoamide 

(4c) was synthesised in 87 % yield using a solvent-free procedure. 

3. All four desired bis-cyanoxime-and-amide ligands (5a-d), three of which are new (5a, 5c, 5d), were 

successfully prepared following path A, Scheme 15 (p. 101). The yield was 3.6, 24, 6.6 and 6.2 % 

for compounds (5a-d), respectively. 

4. All our attempts at the preparation of ligands (5a-d) following path B, Scheme 15 (p. 101), failed. 

The likely reason for this is high acidity of the oxime group in cyanoxime compounds, leading to 

the cross-protonation of diamine substrates. Resulting ammonium salts are non-nucleophilic and 

are unable to engage the cyanoxime ester in the condensation reaction. 
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We fully intend to continue the investigation of this new class of cyanoxime-and-amide bis-chelate 

ligands at the PhD level. In particular, we would like to expand the work in three directions. First, we 

will synthesise four cyanoxime-and-amide molecules, this time of a mono-chelate nature, which will 

constitute yet another new class of ligands. Second, we will undertake thermodynamic investigation 

of the ligand protonation in aqueous medium. Finally, we would like to explore interaction of the above 

ligands with a few divalent late 3d-transition metals, both in solution and in solid state. 

These plans are explained in more detail below. 

6.1 New ligand synthesis 

We have already developed an approach toward the synthesis of cyanoxime-and-amide mono-chelate 

ligands, and synthesised a few of them. In future, we will complete the synthesis of a representative 

range of such ligands, isolate and characterise them. 

6.2 Protonation studies 

As has been already established by Sliva et al,[6] substitution of the methyl group in mhiaa ligand for 

the strongly electron withdrawing nitrile group in chiaa ligand, Figure 54, lead to significant increase 

in acidity of the oxime group. 

 

NH2

CH3

OH

N

O  

NH2

N

OH

N

O   

Fig. 54. 2-Hydroxyiminopropanamide or mhiaa, left, and 2-cyano-2-(hydroxyimino)acetamide or 

chiaa, right. 

In particular, the value of log10K, where K is the protonation constant, has dropped from 9.87 for mhiaa 

to 5.12 for chiaa.[6] This four orders of magnitude increase in acidity makes the oxime proton ionisable 

in the biological pH region. Consequently, the ligands of this nature are expected to coordinate metal 
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ions in much more acidic solutions, and possibly in a different manner, than the ligands with 

conventional oxime functionalities. 

Our future intention is to investigate the protonation behaviour of these two new classes of cyanoxime 

ligands by means of potentiometric, spectroscopic and calorimetric titrations. Expected outcomes here 

would be protonation constants, enthalpies of protonation and entropies of protonation. 

6.3 Conformational studies 

Due to intra-molecular hydrogen bonding and π-conjugation, the ligands under consideration may 

exist in a variety of conformational states. In future work we intend to probe this variety by 

quantum-mechanical calculations at the DFT level with two objectives in mind: a) to relate 

experimental thermodynamic quantities of protonation to particular conformational structures, and 

b) to relate such structures to the experimental conditions, under which ligands were synthesised or 

isolated. 

For example, during the synthesis of N,N'-butane-1,4-diylbis[2-cyano-2-(hydroxyimino)ethanamide] 

(5c), on occasion secondary amide peak appeared in the 1H NMR spectrum at about 8.7 ppm that was 

unrelated to any starting material. The COSY correlation spectrum indicated it to originate from the 

same species. Such behaviour is characteristic of two amide protons being in non-equivalent magnetic 

environment. We interpret it as a mixture of conformers, in this case conformers of ligand (5c). The 

exact nature of the second suspected conformer is not yet known, and we will try to elucidate it 

computationally. Also, taking into account the work of Bohle et al,[36] who have shown that the 

temperature of acidification has a profound effect on the ratio of conformers isolated in a similar 

oximation reaction, future synthetic attempts of this nature should cover the range of temperatures 

of acidification (and, in general, other synthetic conditions) and their comparison to the ratio of 

isolated conformers. 

6.4 Metallation of the Cyanoxime-and-Amide Ligands 

Stability constants for Co(II), Ni(II) and Cu(II) complexes in aqueous solutions with a range of mono- 

and bis-chelate mhiaa2z and mhiaaza ligands, Figure 55, have been investigated in our group in recent 

years.[5]  
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Fig. 55. Mhiaa2z and mhiaaza ligands investigated in our group previously.[5] 

Numerous complex compositions and structures were determined in this study, and interesting trends 

and regularities correlating complex stability to its structure were established. 

Of equal interest would be a comparative study of cyanoxime ligands, Figure 56, in particular, with 

respect to the effect an electron withdrawing functionality has on the complex stability and structure. 
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Fig. 56. Two new classes of 2-cyano-(2-hydroxyimino)acetamide ligands, chiaa2z and chiaaza, 

designated for the future metallation studies. 

In addition, novel multinuclear Cu(II) and Pt(II) metal clusters are expected to form with the new class 

of tridentate, N(ox)N(ad)N(am), ligands, as has been established recently in our group for their 

methyl-analogues.[55] 

We plan to measure thermodynamic stability of these two new classes of cyanoxime ligand complexes 

in aqueous solutions by means of potentiometric, spectroscopic and calorimetric titrations. We also 

intend to isolate a range of such complexes in solid state, grow their monocrystals, and to determine 

their molecular and crystal structure by X-ray diffraction. 

Expected outcomes here would include stability constants, enthalpies and entropies of complex 

formation, and complex molecular structures. 
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Appendices 

Use of this section. 

The following section shows raw characterisation data for the compounds discussed in the thesis.  

Subsequently, all spectra have been presented as figures, which are listed with either an “A” or “B” 

prefix. Using an alpha numeral reference allows us to easily distinguish between species discussed in 

chapters A and B of the text.  The exact position of information pertaining to a particular synthetic 

product is shown by a list of numbers summarised under the characterisation specifics of that 

species in the relevant sections. (Chapter A, 4.1-4.5 and Chapter B, 3.2-3.3) 

 



 
Fig. A1. Representitive IR spectrum of 2,2'-(2-hydroxypropane-1,3-diyl)bis(1H-isoindole-1,3(2H)-dione). 
 



 
Fig. A2. 1H NMR spectrum of 2,2'-(2-hydroxypropane-1,3-diyl)bis(1H-isoindole-1,3(2H)-dione). 



 
Fig. A3. 13C NMR spectrum of 2,2'-(2-hydroxypropane-1,3-diyl)bis(1H-isoindole-1,3(2H)-dione). 



 
Fig. A4. DEPT 135 NMR spectrum of 2,2'-(2-hydroxypropane-1,3-diyl)bis(1H-isoindole-1,3(2H)-dione). 



 
Fig. A5. HSQC NMR spectrum of 2,2'-(2-hydroxypropane-1,3-diyl)bis(1H-isoindole-1,3(2H)-dione). 



 
Fig. A6. HMBC NMR spectrum of 2,2'-(2-hydroxypropane-1,3-diyl)bis(1H-isoindole-1,3(2H)-dione). 



 
Fig. A7. COSY NMR spectrum of 2,2'-(2-hydroxypropane-1,3-diyl)bis(1H-isoindole-1,3(2H)-dione). 



 
Fig. A8. 1H NMR spectrum of 2-(benzyloxy)ethanol. 



 

Fig. A9. 13C NMR spectrum of 2-(benzyloxy)ethanol. 



 

Fig. A10. DEPT 135 NMR spectrum of 2-(benzyloxy)ethanol. 



 

Fig. A11. 1H NMR spectrum of 3-(benzyloxy)propan-1-ol. 



 

Fig. A12. 13C NMR spectrum of 3-(benzyloxy)propan-1-ol. 



 

Fig. A13. DEPT 135 NMR spectrum of 3-(benzyloxy)propan-1-ol. 



 

Fig. A14. HSQC NMR spectrum of 3-(benzyloxy)propan-1-ol. 



 

Fig. A15. HMBC NMR spectrum of 3-(benzyloxy)propan-1-ol. 



 

Fig. A16. COSY NMR spectrum of 3-(benzyloxy)propan-1-ol. 



 

Fig. A17. Mass spectrum of 3-(benzyloxy)propan-1-ol without mass lock..



 

Fig. A18. Mass spectrum of 3-(benzyloxy)propan-1-ol with mass lock..



 

Fig. A19. 1H NMR spectrum of 6-(benzyloxy)hexan-1-ol. 



 

Fig. A20. 13C NMR spectrum of 6-(benzyloxy)hexan-1-ol. 



 

Fig. A21. DEPT 135 NMR spectrum of 6-(benzyloxy)hexan-1-ol. 



 

Fig. A22. HSQC NMR spectrum of 6-(benzyloxy)hexan-1-ol. 



  

Fig. A23. HMBC NMR spectrum of 6-(benzyloxy)hexan-1-ol. 



 

Fig. A24. COSY NMR spectrum of 6-(benzyloxy)hexan-1-ol.
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Procedure: An equal mixture of acetonitrile : water (35 mL) in 250 mL RBF was chilled to 4 °C in 

an ice bath; NaHCO3 (5.04 g, 60.0 mmol) added. In a separate vessel 1,3-diamino-2-propanol ( 1.26 g: 

14.0 mmol) and di-tert-butyl-carbonate (26.9 mmol, 5.86 g) dissolved in an equal mixture of 

acetonitrile : water (35 mL). This mixture was added drop wise to the contents of the RBF and stirred 

on ice for 2 hours and overnight at RT. The acetonitrile was removed under reduced pressure and 

the remaining aqueous layer extracted with CH2Cl2 (3x40 mL). The organic fraction were combined, 

dried over magnesium sulphate and concentrated under reduced pressure; resulting oil 

re-crystallised from diethyl ether : hexane. 

Di-tert-butyl (2-hydroxypropane-1,3-diyl)biscarbamate 

Yield: 3.19g, 10.9 mmol (78 %) 

1H NMR (400 MHz, CDCl3, δ/ ppm): 1.44 (s, 18H, -C(CH3)3), 2.58 (s, 1H, OH), 3.13-3.27 (m, 4H,-

CH2CH(OH)-) 3.76-3.71 (m, 1H, -CH(OH)-), 5.07(s, 2H, -HN-) 

13C NMR (100 MHz, CDCl3, δ/ ppm): 28.3, 43.8, 71.3, 79.9, 157.3.  

Fig. A25. Synthetic procedure for di-tert-butyl (2-hydroxypropane-1,3-diyl)biscarbamate.  
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n = 1, 2 

Generic procedure: An alkanediamine (54 mmol) was added to a RBF and dissolved in CH2Cl2 (17 

mL). Di-tert-butyl-carbonate (9.0 mmol, 2.06 mL) dissolved in 120 mL CHCl2 and added drop wise 

with stirring to the contents of the RBF on ice. The mixture was stirred for 24 hours at RT and then 

concentrated under reduced pressure. Residual oil/solid dissolved in aqueous CaCO3 (2 M), (100 mL) 

and extracted with CH2Cl2 (2x100 mL). The organic fractions combined, dried over MgSO4 and 

concentrated under reduce pressure. The product appears as pale yellow liquid. 

tert-Butyl (2-aminoethyl)carbamate, (n = 1) 

Yeild:  1.40g, 8.8 mmol (97 %), Pale yellow liquid. 

1H NMR (400MHz, CDCl3,  δ/ ppm): 1.40 (s, 9H, - C(CH3)3), 2.25 (s, 2H, H2N-), 2.78 (t, 2H, H2NCH2-

),3.12-3.17 (m, 2H, -CH2NH-), 5.11 (s, 1H, -NH-). 

13C NMR (100 MHz, CDCl3, δ/ ppm): 28.32, 41.61, 42.99, 79.15, 156.22. 

tert-Butyl (3-aminopropyl)carbamate, (n =2) 

Yield:  1.44 g, 8.3 mmol (92 %) 

1H NMR (400MHz, CDCl3, δ/ ppm): 1.41 (s, 9H, -C(CH3)3), 1.70 (s, 2H, H2N-), 1.59-1.65 (q, 2H, -

CH2CH2CH2-), 2.75-2.79 (t, 2H, H2NCH2-) 3.17-3.23 (q, 2H, -CH2NH-), 4.88 (s, -NH-). 

13C NMR (CDCl3,δ): 28.41, 33.23, 39.60, 79.12, 156.18, Unknown. 

Fig. A26. Synthetic procedure for two tert-Butyl (n-aminoalkyl)carbamates. 

      



 

Fig. A27. Representitive IR spectrum of. 2,2'-(2-bromopropane-1,3-diyl)bis(1H-isoindole-1,3(2H)-dione). 



 

Fig. A28. 1H NMR spectrum of. 2,2'-(2-bromopropane-1,3-diyl)bis(1H-isoindole-1,3(2H)-dione). 



 

Fig. A29. 13C NMR spectrum of. 2,2'-(2-bromopropane-1,3-diyl)bis(1H-isoindole-1,3(2H)-dione). 



 

Fig. A30. DEPT 135 NMR spectrum of. 2,2'-(2-bromopropane-1,3-diyl)bis(1H-isoindole-1,3(2H)-dione). 



 

Fig. A31. HSQC NMR spectrum of. 2,2'-(2-bromopropane-1,3-diyl)bis(1H-isoindole-1,3(2H)-dione). 



 

Fig. 32. COSY NMR spectrum of. 2,2'-(2-bromopropane-1,3-diyl)bis(1H-isoindole-1,3(2H)-dione). 



 

Fig. A33. 1H NMR spectrum of [(2-bromoethoxy)methyl]benzene. 



 

Fig. A34. 13C NMR spectrum of [(2-bromoethoxy)methyl]benzene. 



 

Fig. A35. DEPT 135 NMR spectrum of [(2-bromoethoxy)methyl]benzene. 



 

Fig. A36 . HSQC NMR spectrum of [(2-bromoethoxy)methyl]benzene. 



 

Fig. A37. HMBC NMR spectrum of [(2-bromoethoxy)methyl]benzene. 



 

Fig. A38. COSY NMR spectrum of [(2-bromoethoxy)methyl]benzene. 



 
Fig. A39. 1H NMR spectrum of [(3-bromopropoxy)methyl]benzene. 



 

Fig. A40. 13C NMR spectrum of [(3-bromopropoxy)methyl]benzene. 



 

Fig. A41. DEPT 135 NMR spectrum of [(3-bromopropoxy)methyl]benzene. 



 

Fig. A42. HSQC NMR spectrum of [(3-bromopropoxy)methyl]benzene. 



 

Fig. A43. COSY NMR spectrum of [(3-bromopropoxy)methyl]benzene. 



 

Fig. A44. 1H NMR spectrum of. {[(6-bromohexyl)oxy]methyl}benzene. 



  

Fig. A45. 13C NMR spectrum of. {[(6-bromohexyl)oxy]methyl}benzene. 



 

Fig. A46. DEPT 135 NMR spectrum of. {[(6-bromohexyl)oxy]methyl}benzene. 



 

Fig. A47. HSQC NMR spectrum of. {[(6-bromohexyl)oxy]methyl}benzene. 



 

Fig. A48. HMBC NMR spectrum of. {[(6-bromohexyl)oxy]methyl}benzene. 



.  

Fig. A49. NMR spectrum of. {[(6-bromohexyl)oxy]methyl}benzene. 



 

Fig. A50. 1H NMR spectrum of [2-(benzyloxy)ethyl]propanedinitrile. 



 

Fig. A51. 13C NMR spectrum of [2-(benzyloxy)ethyl]propanedinitrile. 



 

Fig. A52. DEPT 135 NMR spectrum of [2-(benzyloxy)ethyl]propanedinitrile. 



 

Fig. A53. HSQC NMR spectrum of [2-(benzyloxy)ethyl]propanedinitrile. 



 

Fig. A54. HMBC NMR spectrum of [2-(benzyloxy)ethyl]propanedinitrile. 



 

Fig. A55. 1H NMR spectrum of [3-(benzyloxy)propyl]propanedinitrile. 



 

Fig. A56. 13C NMR spectrum of [3-(benzyloxy)propyl]propanedinitrile. 



 

Fig. A57. DEPT 135 NMR spectrum of [3-(benzyloxy)propyl]propanedinitrile. 



 

Fig. A58. DEPT 90 NMR spectrum of [3-(benzyloxy)propyl]propanedinitrile. 



 

Fig. A59. HSQC NMR spectrum of [3-(benzyloxy)propyl]propanedinitrile. 



 

Fig. A60. Mass spectrum of [3-(benzyloxy)propyl]propanedinitrile without mass lock. 



 

Fig. A61. Mass spectrum of [3-(benzyloxy)propyl]propanedinitrile with mass lock. 

 



 

Fig. A62. 1H NMR spectrum of 2-(2-hydroxyethyl)propane-1,3-diaminium dichloride. 



 

Fig. A63. 13C NMR spectrum of 2-(2-hydroxyethyl)propane-1,3-diaminium dichloride. 



 

Fig. A64. DEPT 135 NMR spectrum of 2-(2-hydroxyethyl)propane-1,3-diaminium dichloride. 



 

Fig. A65. HSQC NMR spectrum of 2-(2-hydroxyethyl)propane-1,3-diaminium dichloride. 



 

Fig. A66. COSY NMR spectrum of 2-(2-hydroxyethyl)propane-1,3-diaminium dichloride. 



 

Fig. B1. 1H NMR spectrum of N,N'-ethane-1,2-diylbis(2-cyanoacetamide). 



 

Fig. B2. 13C NMR spectrum of N,N'-ethane-1,2-diylbis(2-cyanoacetamide). 



 

Fig. B3. DEPT 135 NMR spectrum of N,N'-ethane-1,2-diylbis(2-cyanoacetamide). 



 

Fig. B4. CHN chromatogram of N,N'-ethane-1,2-diylbis(2-cyanoacetamide).



 

Fig. B5. 1H NMR spectrum of N,N'-propane-1,3-diylbis(2-cyanoacetamide). 



 

Fig. B6. 13C NMR spectrum of N,N'-propane-1,3-diylbis(2-cyanoacetamide).



 

Fig. B7. DEPT 135 NMR spectrum of N,N'-propane-1,3-diylbis(2-cyanoacetamide). 



 

Fig. B8. 1H NMR spectrum of N,N'-butane-1,4-diylbis(2-cyanoacetamide). 



 

Fig. B9. 13C NMR spectrum of N,N'-butane-1,4-diylbis(2-cyanoacetamide). 



 

Fig. B10. DEPT 135 NMR spectrum of N,N'-butane-1,4-diylbis(2-cyanoacetamide). 



 

Fig. B11. 1H NMR spectrum of N,N'-(2-hydroxypropane-1,3-diyl)bis(2-cyanoacetamide). 



 

Fig. B12. 13C NMR spectrum of N,N'-(2-hydroxypropane-1,3-diyl)bis(2-cyanoacetamide). 



 

Fig. B13. DEPT 135 NMR spectrum of N,N'-(2-hydroxypropane-1,3-diyl)bis(2-cyanoacetamide). 



 

Fig. B14. Mass spectrum of N,N'-(2-hydroxypropane-1,3-diyl)bis(2-cyanoacetamide) without 

mass lock. 

 



 

Fig. B15. CHN chromatogram of N,N'-(2-hydroxypropane-1,3-diyl)bis(2-cyanoacetamide)
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Fig. B16. IR spectrum of N,N'-ethane-1,2-diylbis[2-cyano-2-(hydroxyimino)ethanamide], KBr disk. 



 

Fig. B17. 1H NMR spectrum N,N'-ethane-1,2-diylbis[2-cyano-2-(hydroxyimino)ethanamide]. 



 

Fig. B18. 13C NMR spectrum N,N'-ethane-1,2-diylbis[2-cyano-2-(hydroxyimino)ethanamide]. 



 

Fig. B19. DEPT 135 NMR spectrum N,N'-ethane-1,2-diylbis[2-cyano-2-(hydroxyimino)ethanamide]. 



 

Fig. B20. HSQC NMR spectrum N,N'-ethane-1,2-diylbis[2-cyano-2-(hydroxyimino)ethanamide]. 



 

Fig. B21. HMBC NMR spectrum N,N'-ethane-1,2-diylbis[2-cyano-2-(hydroxyimino)ethanamide]. 



 

Fig. B22. COSY NMR spectrum of N,N'-ethane-1,2-diylbis[2-cyano-2-(hydroxyimino)ethanamide]. 



 

Fig. B23. Mass spectrum N,N'-ethane-1,2-diylbis[2-cyano-2-(hydroxyimino)ethanamide] without mass lock. 



 

Fig. B24. Mass spectrum N,N'-ethane-1,2-diylbis[2-cyano-2-(hydroxyimino)ethanamide] with 

mass lock. 

 



 

Fig. B25. CHN chromatogram of 

N,N'-ethane-1,2-diylbis[2-cyano-2-(hydroxyimino)ethanamide].
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Fig. B26. IR spectrum of N,N'-propane-1,3-diylbis[2-cyano-2-(hydroxyimino)ethanamide, KBr disk.



 

Fig. B27. 1H NMR spectrum of N,N'-propane-1,3-diylbis[2-cyano-2-(hydroxyimino)ethanamide]. 



 

Fig. B28. 13C NMR spectrum of N,N'-propane-1,3-diylbis[2-cyano-2-(hydroxyimino)ethanamide]. 



 

Fig. B29. DEPT 135 NMR spectrum of N,N'-propane-1,3-diylbis[2-cyano-2-(hydroxyimino)ethanamide]. 



 

Fig. B30. HSQC NMR spectrum of N,N'-propane-1,3-diylbis[2-cyano-2-(hydroxyimino)ethanamide]. 



 

Fig. B31. HMBC NMR spectrum of N,N'-propane-1,3-diylbis[2-cyano-2-(hydroxyimino)ethanamide]. 



 

Fig. B32. COSY NMR spectrum of N,N'-propane-1,3-diylbis[2-cyano-2-(hydroxyimino)ethanamide]. 



 

Fig. B33. Mass spectrum of N,N'-propane-1,3-diylbis[2-cyano-2-(hydroxyimino)ethanamide] without mass lock. 



 

Fig. B34. Mass spectrum of N,N'-propane-1,3-diylbis[2-cyano-2-(hydroxyimino)ethanamide 

with mass lock.
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Fig. B35. IR spectrum of N,N'-butane-1,4-diylbis[2-cyano-2-(hydroxyimino)ethanamide] , KBr disk.



 
Fig. B36. 1H NMR spectrum of N,N'-butane-1,4-diylbis[2-cyano-2-(hydroxyimino)ethanamide]. 



 
Fig. B37. 13C NMR spectrum of N,N'-butane-1,4-diylbis[2-cyano-2-(hydroxyimino)ethanamide]. 



 
Fig. B38. DEPT 135 NMR spectrum of N,N'-butane-1,4-diylbis[2-cyano-2-(hydroxyimino)ethanamide]. 



 
Fig. B39. HSQC NMR spectrum of N,N'-butane-1,4-diylbis[2-cyano-2-(hydroxyimino)ethanamide]. 



 
Fig. B40. HMBC NMR spectrum of N,N'-butane-1,4-diylbis[2-cyano-2-(hydroxyimino)ethanamide]. 



 
Fig. B41. COSY NMR spectrum of N,N'-butane-1,4-diylbis[2-cyano-2-(hydroxyimino)ethanamide]. 



 
Fig. B42. Mass spectrum of N,N'-butane-1,4-diylbis[2-cyano-2-(hydroxyimino)ethanamide]without mass lock. 



 
Fig. B43. Mass spectrum of N,N'-butane-1,4-diylbis[2-cyano-2-(hydroxyimino)ethanamide] 

with mass lock. 



 
Fig. B44. CHN chromatogram of 

N,N'-butane-1,4-diylbis[2-cyano-2-(hydroxyimino)ethanamide] 1.



 
Fig. B45. CHN chromatogram of 

N,N'-butane-1,4-diylbis[2-cyano-2-(hydroxyimino)ethanamide] 2. 
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Fig. B46. IR spectrum of N,N'-butane-1,4-diylbis[2-cyano-2-(hydroxyimino)ethanamide] , KBr disk.



 
Fig. B47. 1H NMR spectrum of N,N'-(2-hydroxypropane-1,3-diyl)bis[2-cyano-2-(hydroxyimino)ethanamide]. 



 
Fig. B48. 13C NMR spectrum of N,N'-(2-hydroxypropane-1,3-diyl)bis[2-cyano-2-(hydroxyimino)ethanamide]. 



 
Fig. B49. DEPT 135 NMR spectrum of N,N'-(2-hydroxypropane-1,3-diyl)bis[2-cyano-2-(hydroxyimino)ethanamide]. 



 
Fig. B50. HSQC NMR spectrum of N,N'-(2-hydroxypropane-1,3-diyl)bis[2-cyano-2-(hydroxyimino)ethanamide]. 



 
Fig. B51. HMBC NMR spectrum of N,N'-(2-hydroxypropane-1,3-diyl)bis[2-cyano-2-(hydroxyimino)ethanamide]. 



 
Fig. B52. COSY NMR spectrum of N,N'-(2-hydroxypropane-1,3-diyl)bis[2-cyano-2-(hydroxyimino)ethanamide]. 



 
Fig. B53. Mass spectrum of N,N'-(2-hydroxypropane-1,3-diyl)bis[2-cyano-2-(hydroxyimino)ethanamide] without mass lock.



 
Fig. B54. Mass spectrum of 

N,N'-(2-hydroxypropane-1,3-diyl)bis[2-cyano-2-(hydroxyimino)ethanamide] with 

mass lock. 



 
Fig. B55. CHN chromatogram of 

N,N'-(2_hydroxypropane-1,3-diyl)bis[2-cyano-2-(hydroxyimino)ethanamide]. 



 

Fig. B56. 1H NMR spectrum of ethyl-cyano(hydroxyimino)ethanoate. 



 

Fig. B57. 13C NMR spectrum of ethyl-cyano(hydroxyimino)ethanoate 
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PLAT975_ALERT_2_C Check Calcd Residual Density  0.89A From      N1       0.45 eA-3   

 

Alert level G 

FORMU01_ALERT_1_G  There is a discrepancy between the atom counts in the 

            _chemical_formula_sum and _chemical_formula_moiety. This is 

            usually due to the moiety formula being in the wrong format. 

            Atom count from _chemical_formula_sum:   C4 H4 N3 O2 

            Atom count from _chemical_formula_moiety:C8 H8 N6 O2 

PLAT042_ALERT_1_G Calc. and Reported MoietyFormula Strings  Differ     Please Check 



PLAT045_ALERT_1_G Calculated and Reported Z Differ by ............       0.50 Ratio  

PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels ..........          2 Note   

PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L=  0.600          2 Note   

 
   0 ALERT level A = Most likely a serious problem - resolve or explain 

   0 ALERT level B = A potentially serious problem, consider carefully 

   1 ALERT level C = Check. Ensure it is not caused by an omission or oversight 

   5 ALERT level G = General information/check it is not something unexpected 

 

   3 ALERT type 1 CIF construction/syntax error, inconsistent or missing 

data 

   1 ALERT type 2 Indicator that the structure model may be wrong or deficient 

   0 ALERT type 3 Indicator that the structure quality may be low 

   2 ALERT type 4 Improvement, methodology, query or suggestion 

   0 ALERT type 5 Informative message, check 

 
 

PLATON version of 05/02/2014; check.def file version of 05/02/2014  

Datablock I - ellipsoid plot 

 

Fig. B59 Cifcheck for 5a 


