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Abstract 

The agriculture sector in Amhara National Regional State is characterised by producing 

cereal crops which occupy the largest percentage (84.3%) of the total crop area 

cultivated in the region. As a result, it is imperative to investigate which factors 

influence the yields of cereal crops particularly in relation to the five major types of 

cereals in the study region namely barley, maize, sorghum, teff and wheat. Therefore, in 

this thesis, using data collected by the Central Statistical Agency of Ethiopia, various 

statistical methods such as multiple regression analysis were applied to investigate the 

factors which influence the mean yields of the major cereal crops. Moreover, a mixed 

model analysis was implemented to assess the effects associated with the sampling units 

(enumeration areas), and a cluster analysis to classify the region into similar groups of 

zones. 

The multiple regression results indicate that all the studied cereals mean yields are 

affected by zone, fertilizer type and crop damage effects. In addition to this, barley is 

affected by extension programme; maize crop by seed type, irrigation, and protection of 

soil erosion; sorghum and teff crops are additionally affected by crop prevention 

method, extension programme, protection of soil erosion, and gender of the household 

head; and wheat crop by crop prevention methods, extension programme and gender of 

the household head. The results from the mixed model analysis were entirely different 

from the regression results due to the observed dependencies of the cereals mean yields 

on the sampling unit. Based on the hierarchical cluster analysis, five groups of classes 

(clusters) were identified which seem to be in agreement with the geographical 

neighbouring positions of the locations and the similarity of the type of crops produced. 
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   Chapter 1 

Background and Objectives of the Study 

1.1 Introduction  

Ethiopia is located between 3
0
-15

0
 N latitude and 33

0
-48

0
 E longitude of the equator. 

The country covers a land area of about 1.12 million km
2
 in the east of Africa. Ethiopia 

is administratively sub-divided into nine regional states and two city administrations. 

The population of Ethiopia, according to the 2007 Population and Housing Census 

preliminary report by the Central Statistical Agency (CSA), was estimated at 

73,918,505 people. Of these, 37,296,657 (50.5%) were males and 36,621,848 (49.5%) 

females. About 84 percent of the total population in the country were found to live in 

rural areas while the remaining 16 percent lived in urban areas (CSA, 2008).  

Ethiopia has different types of climate ranging from semi-arid desert in the lowlands to 

humid and warm (temperate) in the southwest. The mean annual rainfall distribution has 

a maximum of over 2000mm and a minimum of less than 300mm over the South-

eastern and North-eastern lowlands. The mean annual temperature ranges from a 

minimum of 15 
0
C over the highlands to a maximum of over 25 

0
C in the lowlands 

(NMSA, 2001). 

Agriculture is the most important production sector of the country‟s economy. It 

provides about 85% of the total employment for the population and contributes about 

50% to the country‟s gross domestic product (GDP). It supplies around 70% of the raw 

material requirement of agro-based domestic industries (MEDaC, 1999). It is also the 
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major source of food for the nation and hence the prime contributing sector to food 

security. In addition, agriculture is expected to play a key role to speed up the overall 

socio-economic development of the country. 

Though agriculture is the backbone of the country‟s economy, it is dominated by small-

scale farmers who have been implementing low input with traditional farming 

technologies. For this reason the government of Ethiopia has been introducing 

agricultural extension services based on its strategy for “Agricultural Development-led 

Industrialisation” starting from the early 1990s to address the use of fertilizer, improved 

seeds, pesticides, irrigation, and other inputs which are expected to play a major role in 

increasing crop production. Thus far there have been improvements in the use of 

modern agricultural inputs by subsistence farmers but the country‟s agricultural sector is 

still suffering from the problem of low productivity, shortage of productive farm land, 

and persistent rural poverty (Samuel, 2006). Bakhsh et al. (2005), studied the factors 

affecting cotton yield by applying multiple regression method, and their results show 

that land preparation, irrigation, seed rate, plant protection measures, fertilizer nutrients, 

and the number of schooling years of respondents were important variables in the 

production process. It is hence the objective of this study to identify and assess which of 

the above-mentioned inputs, among other factors, are influencing cereal crop production 

in the study region, the Amhara National Regional State.  

Cereals are the major food crops both in terms of the areas they are planted in and the 

volumes of production. They are produced in larger quantities when compared with 

other crops because they are the principal staple crops. Of the total grain crop area 

cultivated during the 2006/2007 main agricultural season, 79.98% was covered under 
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cereal crops, 76.05% of which was covered by barley, maize, sorghum, teff
1
 and wheat. 

With respect to the production contribution, these crops made-up 82.55% of the total 

cereal production in the region (CSA, 2007). For this reason, it is vital to focus on these 

five main crop types to investigate the factors that affect cereal production or yield. 

Various statistical methods such as regression analysis are employed to investigate the 

effects of these factors on crop yield. Moreover, to investigate the effects of the random 

probability sampling units (i.e. the enumeration areas), a general linear mixed model is 

applied to the data. 

1.2 The Study Area 

The Amhara National Regional State (ANRS) which occupies much of north western 

and north central part (see on Fig 1.1) of Ethiopia,  is located between 9°20' and 14°20' 

North latitude and 36° 20' and 40° 20' East longitude.  

The region is administratively divided into 11 zones
2
, 140 districts (locally called 

„weredas‟) and about 3429 localities (called „kebeles‟) which are the smallest 

administrative settings. Based on the 2008 census results reported by the CSA, the 

region has a total of 17,214,056 people of whom 8,636,875 were men and 8,577,181 

women; with an estimated area of 159,173.66 square kilometers and a population 

density area of 108.15 people per square kilometer (CSA, 2008). 

 

                                                
1
 Teff , Eragrostis tef. (Zucc.) Trotter, is one of the most important cereals which is endemic to Ethiopia 

(Alemu, 2005).  

 
2
 Zones are the higher administrative settings dividing the regional state into 11 sceneries. 
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     Figure 1.1 Map of Ethiopia highlighting the Amhara National Regional State  

Of the total population 88% depend on agriculture for their livelihood and it accounts 

for about 55.8% of the GDP of the regional state. Crop production and animal 

husbandry are the major agricultural activities in the region. With regard to crop 

production of all crop types, cereals, pulses, oil crops, fibre crops, fruits and vegetables 

are grown in different parts of the region and cereals account for the highest percentage 

(84.3%) of cultivated area and 85% of the total production (CSA, 2007). 
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         Source: CSA Department of Cartography, 2007. 

    Figure 1.2 Map of the study region (Amhara National Regional State) 

The 11administrative Zones include one special zone, “Bahir-Dar”, which is the capital 

city of the regional state. However, the agricultural sample survey (2006/07) of the CSA 

was undertaken by merging the region‟s capital city within the West-Gojjam zone 

(Zone7) , as shown on the map (Fig. 1.2), and making a total number of 10 zones in the 

region. These 10 administrative zones include: North Gondar (Zone1), South Gondar 

(Zone2), North Wollo (Zone3), South Wollo (Zone4), North Shewa (Zone5), East 

Gojam (Zone6), West Gojam (Zone7), Wag Himra (Zone8), Awi (Zone9), and Oromia 

Zone (Zone10).  These 10 zones were considered for analysis of the agricultural data in 

this thesis.  
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1.3 Objective and Significance of the Study 

The main objective of this study is to identify important factors affecting the main 

cereal crop production in the Amhara National Regional State. The other objective is to 

group the zones by their cereal production type using cluster analysis. Such a 

classification is useful to make relevant decisions with regard to: 

i) distributing agricultural inputs such as improved seeds, chemical fertilizer, pesticides   

 and insecticides in the region, 

ii) marketing a particular cereal crop produced in different parts of the region, and 

iii) identifying the zones in the region that are grouped into classes which have similar 

 set-ups with regard to a particular cereal production.      

The identification of major input factors affecting cereal crop production are necessary 

for the assessment , evaluation, and formulation of programmes and policies being put 

in place to overcome the primary obstacles in the agricultural sector and to identify 

avenues for future research.  The results of this work will also contribute to the literature 

based on the impact of main agricultural inputs on cereal crop yield in the region. 
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 Chapter 2 

  The Data Set and Preliminary Analysis 

2.1 The Data Set  

2.1.1 Source of the Data 

The data used in this study were drawn from the main season agricultural sample survey 

(2006/2007) results conducted by the Central Statistical Agency of Ethiopia in the 

Amhara National Regional State. 

2.1.2 Sampling Frame, Design and Coverage  

The CSA (2007) report on area and production of crops indicated that the sampling 

frame was obtained from the lists of the 2001/02 Ethiopian agricultural sample 

enumeration. A stratified two-stage cluster sample design was used to select the 

enumeration areas (EAs) as the primary sampling units, and the agricultural households 

as secondary sampling units. Enumeration areas from each stratum were systematically 

selected using a probability proportional to size sampling technique, and from the new 

list of households within each sample of EAs, a random sample of 20 agricultural 

households were systematically selected (CSA, 2007). 

The survey took place in the rural parts of the 10 administrative zones in the Amhara 

National Regional State. A total of 8,800 households from 440 selected EAs were 

planned to be included in the study, however 8,768 households (99.63%) and 439 EAs 

(99.77%) were successfully covered.                       
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2.1.3 Data Collection 

The agricultural data for the year 2006/07 was collected from randomly selected rural 

agricultural households on cereals, pulses, oilseeds, vegetables, root crops and fruit 

crops by interviewing and undertaking physical measurements on their fields (CSA, 

2007). 

2.1.4 Variables of Interest 

In our study a number of variables which we assumed to have a potential effect on the 

main cereal crop production are selected from the 2006/2007 agricultural sample survey 

data collected by CSA. The variables to be considered are: 

Dependent variable:        Cereal crop yield  

Independent variables:  1) Seed type, 2) Fertilizer type, 3) Extension programme, 4) 

Type of crop prevention, 5) Crop damage, 6) Protection of soil erosion, 7) Crop 

irrigation,  8) Gender of the household head, and 9) Zone (the administrative area 

settings in which the crops are cultivated). 

The categorical variables with their corresponding codes and descriptions are 

summarized as shown in Table 2.1. 
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Table 2.1   Summary of Description of the Categorical Variables 

Factors Variable Names 
Category 

code 
Description of Variable 

Seed type 
Seedtype1

 
1 Improved 

Seedtype2 2 Non-improved 

Fertilizer type 

Fertliz0
 

0 No fertilizer used 

Fertliz1 1 Natural fertilizer 

Fertliz2 2 Chemical fertilizer 

Fertliz3 3 Both natural and chemical 

Extension programme 
Ext1 1 Included in the program 

Ext2
 

2 Not included in the program 

Crop prevention 

methods 

Cropprev0
 

0 No prevention 

Cropprev1 1 Non-chemical prevention 

Cropprev2 2 Chemical-type of prevention 

Cropprev3 3 Both chemical and non-chemical 

Crop damage 
Damage1 1 Yes 

Damage2
 

2 No 

Crop irrigation 
Irrg1 1 Yes 

Irrg2
 

2 No 

Soil erosion protection 
Serrop1 1 Yes 

Serrop2
 

2 No 

Gender of  the 

household  head   

HHsex1
 

1 Male 

HHsex2 2 Female 

Zone 

Zone1 01 Zone1 (N.Gondar) 

Zone2 02 Zone2 (S.Gondar) 

Zone3 03 Zone3 (N.Wello) 

Zone4 04 Zone4 (S.Wello) 

Zone5 05 Zone5 (N.Shewa) 

Zone6 06 Zone6 (E.Gojam) 

Zone7 07 Zone7 (W.Gojam) 

Zone8 08 Zone8 (Wag-Hemra) 

Zone9 09 Zone9 (Awi) 

Zone10 10 Zone10 (Oromia Zone) 
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2.2 Preliminary Analysis of the Data 

In order to gain some understanding of the data, an exploratory data analysis was 

carried out and is presented in this section. The data was checked for the amount of 

mean yield in quintal (100kg) per hectare for each type of crop considered in this study 

and the result is presented in Table 2.2. The computed mean yield in quintal per hectare 

for barley, maize, sorghum, teff and wheat was found to be 12.9 qt/ha, 19.4 qt/ha, 16.3 

qt/ha, 10.7 qt/ha, and 14.7 qt/ha with a standard deviation of 5.24, 8.87, 6.13, 4.38, and 

5.82 respectively. From these sample means and standard deviations of the cereals, it 

can be seen that there is a large variation in the yields of the cereals across households 

in view of the fact that the standard deviations from their respective mean values are 

quite large. The observed variation in the yields of the cereals across households can be 

linked to differences in input usage on the farms and other additional factors.  

      Table 2.2 Mean Yield in Quintal per Hectare by Crop Type 

Region Crop Type Mean Yield in Quintal per Hectare 

   (Standard deviation) 

Amhara 

Barley 
12.9 

(5.24) 

Maize 
19.4 

(8.87) 

Sorghum 
16.3 

(6.13) 

Teff 
10.7 

(4.38) 

Wheat 
14.7 

(5.82) 

 

The summary of farm holders‟ frequency percentage on their use of inputs and practices 

by crop types is displayed in Table 2.3.  
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Table 2.3 Summary of Frequency Percentages for Use of Agricultural Inputs  

        and Practices on Cereal Crop Farms  

Factors Labels 

Crop Types Average for 

all crop 

types (%) Barley Maize Sorghum Teff Wheat 

Seedtype 

 

Improved .0% 13.1% .0% .3% 1.5% 2.98% 

Non-Improved 100.0% 86.9% 100.0% 99.7% 98.5% 97.02% 

Fertliz 

 

 

 

No fertilizer 67.8% 26.3% 80.4% 50.9% 48.9% 54.86% 

Natural Fertilizer 24.9% 47.2% 18.2% 9.9% 14.6% 22.96% 

Chemical Fertilizer 6.9% 21.7% 1.4% 38.2% 34.8% 20.60% 

Both Natural & Chem .4% 4.8% .1% 1.1% 1.7% 1.62% 

Cropprev 

 

 

 

No Prevention 8.6% 8.5% 10.1% 2.8% 8.7% 7.74% 

Chem Prev .8% .3% 1.5% 1.4% 2.9% 1.38% 

Non-Chem Prev 89.7% 90.1% 86.4% 91.2% 82.7% 88.02% 

Both Chem & Non-

Chem  
.8% 1.1% 1.9% 4.6% 5.8% 2.84% 

Damage 

 

Yes 39.8% 42.4% 46.3% 27.2% 30.1% 37.16% 

No 60.2% 57.6% 53.7% 72.8% 69.9% 62.84% 

Ext 

 

Included 3.9% 22.6% 1.6% 24.4% 19.8% 14.46% 

Not Included 96.1% 77.4% 98.4% 75.6% 80.2% 85.54% 

Irrg 

 

Yes .9% 2.0% .5% .3% .7% 0.88% 

No 99.1% 98.0% 99.5% 99.7% 99.3% 99.12% 

Serrop 

 

Yes 83.7% 75.8% 76.4% 85.9% 87.5% 81.86% 

No 16.3% 24.2% 23.6% 14.1% 12.5% 18.14% 

HHsex 

 

Male 89.4% 86.1% 89.9% 90.2% 89.6% 89.04% 

Female 10.6% 13.9% 10.1% 9.8% 10.4% 10.96% 

 

With regard to seed type, 97.02% of the farmers applied local seed varieties (non-

improved seed types) and only 2.98% of them used improved seed types. In referring to 

this factor by crop type, none of the sorghum and barley farm holders used improved 
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seed types on their farms. The highest users of improved seed types were seen on maize 

farms (13.1%); and there were only 1.5% and 0.3% users on wheat and teff farms 

respectively. 

It is observed that about 54.86% of the main cereal crop producers did not use any type 

of fertilizer on their farms. Among these sorghum farm holders were the largest non- 

users (80.4%) followed by barley (67.8%), teff (50.9%), wheat (48.9%) and maize 

(26.3%). Chemical fertilizers were applied to approximately 20.6% of the crops, while 

its largest application was seen by teff farm holders and the smallest proportion was by 

sorghum farm holders. On average 37.16% of the cereal farm holders reported that there 

was crop damage during the production season, whereas 62.84% reported no crop 

damage. The highest damages of 46.3%, 42.4%, and 39.8% were reported for sorghum, 

maize and barley farms, in that order. In addition to the above tabular examination of 

the data, it was also assessed via visual representations through the use of histograms 

and box plots in order to check for normality of distribution and to verify the presence 

of outliers and extreme cases. The frequency distribution plots of the cereal yields by 

crop type are displayed on Fig. 2.1. The plots clearly show that all the cereal crops, 

namely barley, maize, sorghum, teff, and wheat, have a distribution pattern slightly 

skewed to the right.  
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         Figure 2.1 Frequency distributions of the original yield data by crop types                                   

Furthermore, the variability in the mean yields of the cereals and their distribution with 

respect to the crop types as well as that of the independent factors were examined 

through the use of box plots of mean yields vs crop types, and mean yields vs individual 

independent factors. The plot in Fig. 2.2 indicates that the variation in the mean yields 

per hectare differs by crop type and is the highest for maize and the lowest for teff 

yields. There are few outliers on the high side of the mean yields, and for all cereal 

types the distribution is found to be slightly skewed towards higher values. 
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            Figure 2.2 Box plot showing the variability of mean yield by crop types 

The box plots displayed in Fig. 2.3 and Fig.2.4 (in groups), which indicate the 

variability pattern in the mean yields of cereals associated with respect to each of the 

independent factors included in this study, were summarised as follows:   

Seed type: The box plot for seed type shows that the variability of the response variable 

for applying improved and non-improved seed types is approximately similar on maize 

farms. However, the non (or very few) application of improved seeds on barley, teff and 

wheat farms showed lower variability on yields. On the other hand, the median response 

for improved seed types is higher for maize and wheat farms as compared to that of the 

non-improved seed types. It was not possible to construct a plot for sorghum due to fact 

that improved seed types are applied on very few farms. 

Crop prevention methods: The response variability for chemical type crop prevention 

measures was the highest for maize and the least for sorghum crops. But with respect to 

the median response values, there were a maximum for sorghum and a minimum for teff 

crops.                                                                                                                      

Fertilizer type: The variability of the cereals responses from the use of both natural and 
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chemical fertilizers was higher for barley, maize, sorghum, and teff crop farm than 

wheat. For wheat crops, the highest response variability was observed from the use of 

chemical fertilizer. It was revealed that for all types of crop farms on which no fertilizer 

was used and those on which natural fertilizer was applied, found to vary approximately 

equally in their median responses. There were also potential outliers and extreme cases 

in each of the crop types for at least two or more levels of fertilizer use. 

  

 

Figure 2.3 The relationship between yield and seed type, fertilizer type, crop 

 prevention measures, and crop damage by crop type  

Soil erosion protection: With regard to the soil erosion prevention factor, the 

variability on the response due to protecting soil erosion was higher for barley, teff and 
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wheat and lower for maize and sorghum crop yields (see the box-plot “SERRO” in Fig. 

2.4). 

Crop damage: The response variability for all levels of crop damage factors for barley 

and sorghum seem to be equal, whereas it is higher for maize, teff, and wheat farms 

with no crop damage. There are also outliers and extreme values at each level of the 

independent factor in the data. 

       

 

Figure 2.4 The relationship between yield and extension, prevention of soil erosion, 

 irrigation, and gender of head of the household by crop type  
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Irrigation: unlike for teff and wheat crops, where their median response from irrigated 

farms was higher than the non-irrigated farms, for maize crops the median response 

from non-irrigated farms was higher than that of the irrigated farms. On the other hand, 

the median responses for irrigated and non-irrigated farms for sorghum and barley crops 

appeared to have equal values.   

Extension programme: The effect of agricultural extension programmes on cereal 

yields variability and its distribution showed that barley and teff crop types had equal 

median response values for both included and non-included factor levels of extension 

programmes whereas it was higher for maize, sorghum and wheat included in the 

programmes. In terms of the response variability, it was higher for barley, maize and 

wheat farms included in the extension programmes than in the non-included farms. 

Gender of head of the household: The response variability for gender was relatively 

high for barley, sorghum and teff crops, whereas it had very little effect on the 

variability of the response for maize and wheat crops. 

From the exploratory data analysis it was observed that the distributions of original 

yield data for all cereal crop types were slightly skewed to the right. In light of the 

observed violation of the normality assumptions, it was clear that an appropriate 

transformation technique should be selected and applied on the cereals yield data in 

order to fulfil the requirement for further statistical analysis of the data. Thus, in the 

next section the transformation techniques applied in this paper are discussed. 
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2.3 Transformation of the Data 

Data transformations are commonly used tools that can serve many functions including 

improving normality of a distribution and equalizing variance to meet assumptions and 

improve effect sizes, thus constituting important aspects of data cleaning and preparing 

for our statistical analyses. Hence, the evaluated transformation techniques include the 

square root, the logarithmic and the box-cox methods. These are all members of a class 

of transformations called power transformations. Power transformations are 

transformations that raise numbers to an exponent (power).  

Box and Cox (1964) proposed a parametric power transformation technique in order to 

reduce non-normality and heteroscedasticity. The original form of the box-cox 

transformation takes the following form: 

 

yi
λ =  

(yi
λ − 1)/λ;       λ ≠ 0 

log yi ;                λ = 0
     

where λ stands for transformation parameter estimate.   

The three transformation techniques applied on each crop type data is displayed in 

Table 2.4. Furthermore, before the selection was made, the Kolmogorov-Smirnov test 

statistic (see Table 2.4) was carried out to test the normality of the data. However, for 

all tested transformation techniques, it rejects the null hypothesis which states that the 

data come from the normal distribution. This could be due to the high possibility of the 

test statistic to reject the null hypothesis as the sample size becomes larger and larger 

(SAS, 2004). Therefore, it is suggested that examining of other statistics, such as 

skewness and kurtosis measures and the plots, for instance histograms and Q-Q plots, 
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are important to make a final assessment of normality tests for large data sets (SAS, 

2004).  

Table 2.4 Tests of Normality Results for the Original and Transformed Yield Data 

     by Crop Types 

Crop Type 
Kolmogorov -

Smirnov Tests of 

Normality 
 

 

Original 

 

Transformation Techniques Tested 

Square root 
 

Log Box-Cox  

Barley 

Statistic .081 .040 .072 .040 

Df 6653 6653 6653 6653 

Sig. .000 .000 .000 .000 

 

Maize 

Statistic .082 .037 .059 .037 

Df 9653 9653 9653 9653 

Sig. .000 .000 .000 .000 

 

Sorghum 

Statistic .048 .041 .094 .040 

Df 7292 7292 7292 7292 

Sig. .000 .000 .000 .000 

 

Teff 

Statistic .082 .054 .059 .053 

Df 10509 10509 10509 10509 

Sig. .000 .000 .000 .000 

 

Wheat 

Statistic .089 .065 .072 .065 

Df 6127 6127 6127 6127 

Sig. .000 .000 .000 .000 

 

As a result, the selection of an appropriate transformation method for our data was made 

by comparing the improvements in the skewness and kurtosis statistic values of the 

candidate transformation techniques, as shown in Table 2.5.  
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Table 2.5 Skewness and Kurtosis Results for Selecting Transformation Methods 

   Crop Type 
Transformations 

 

Skewness Kurtosis  

 Selected 

Transformation 

Method   

 Statistic 

Std. 

Error Statistic 

Std. 

Error 

Barley 

None
 

.528 .030 .042 .060  

Square root
 

-.049 .030 -.110 .060           Square root 

Log
 

-.749 .030 .892 .060  

Box-Cox (λ  = 0.52) -.049 .030 -.111 .060  

   

Maize 

None
 

.647 .025 .056 .050  

Square root
 

.084 .025 -.332 .050  Square root 

Log
 

-.645 .025 .787 .050  

Box-Cox (λ = 0.50) .084 .025 -.333 .050  

 

Sorghum 

None
 

.301 .029 -.036 .057  

Square root
 

-.089 .029 .066 .057  Square root 

Log
 

-.995 .029 1.296 .057  

Box-Cox (λ = 0.70) .097 .029 -.095 .057  

 

Teff 

None
 

.577 .024 -.424 .048  

Square root
 

.097 .024 -.632 .048  Square root 

Log
 

-.243 .024 -.464 .048  

Box-Cox (λ = 0.42) -.099 .024 -.630 .048  

 

Wheat 

None
 

.372 .031 -.517 .063  

Square root
 

-.041 .031 -.616 .063  Square root 

Log
 

-.577 .031 .326 .063  

Box-Cox (λ = 0.65) -.041 .031 -.616 .063  

 

In particular, the frequency distribution plots (Histograms) and the Normal Q-Q plots of 

the transformed response variable were examined for each data set. Thus, based on the 

results on different trials on transforming the cereals yield, a square root transformation 

method was selected as the best technique to apply on the original yield data of the 

cereals. 
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Barley           Histogram 

          

                          Q-Q plot 

         

Maize                Histogram 

           

                        Q-Q plot 

         

Sorghum           Histogram  

           

                         Q-Q plot 

     

Teff                Histogram  

          

                        Q-Q plot 

     
 

Wheat               Histogram 

         

                        Q-Q plot 

     

Figure 2.5 Frequency distributions and the Nnormal Q – Q plots for transformed 

cereal yields by crop type.  
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The histograms with the corresponding Q-Q plots in Fig 2.5 for the selected 

transformed yield data (square root of yield data) by crop types clearly shows that the 

application of this transformation resulted in an improvement of the normality of the 

data. Thus, the square root transformation of the yield data for each cereal type will be 

used in the analysis section of the subsequent chapters.   

2.4 Summary of the Preliminary Analysis of the Data  

Based on the results of the preliminary analysis, the data for all crop types seem to 

follow a slightly skewed distribution to the right. Therefore, for further statistical 

analysis to be employed, a square root transformation method was selected and applied 

to the cereals yield data. The transformation consequently revealed that the observed 

violation of the data in the assumption of normal distribution had been improved.  

The next chapter reviews the theory and application of a multiple regression analysis to 

the transformed yield data for each particular crop type. Furthermore, model diagnostics 

and interpretation of the results obtained from the fitted models are discussed.  
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Chapter 3 

Theory and Application of Multiple 

                    Regression Analysis          

3.1 Introduction  

Regression analysis is a statistical tool for the investigation of relationships between a 

continuous dependent variable and of one or more independent variables. This analysis 

allows us to understand which variables influence the response, and to predict a value of 

one variable for a given value of another. The independent variables used in regression 

can be either continuous or categorical. Independent categorical variables with more 

than two levels must be converted into variables that only have two levels, called 

dummy variables, before they are to be used in the regression analysis (Rawlings, 1988; 

Weisberg, 1985). 

In simple linear regression we study the relationship between a response variable y and 

a single explanatory variable x whilst in multiple regression we study the relationship 

between y and a number of p explanatory variables (x1, x2, . . ., xp). This enables us to 

estimate models of greater complexity and investigate the relationship of each 

explanatory variable to the dependent variable while controlling for the effects of the 

other variables in the model. An understanding of these statistical techniques is 

therefore essential to identify the effects of agricultural factors on crop production. It is 

worthwhile noting that the data in this thesis cannot be analysed through a multivariate 

regression method of analysis since for every dependent crop yield variable there is a 
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different set of values of the agricultural factor levels. Thus, a brief discussion of 

multiple linear regression models which is to be used for analysing our data is presented 

in the subsequent sections of this chapter. 

3.2 Multiple Linear Regression Models 

A multiple linear regression model involves the dependent variable, Yi specified as a 

linear combination of independent variables (xi1, xi2, xi,p-1) and the population 

parameters, (β0, β1, β2, . . . . , β p-1). The regression equation takes the form: 

              Yi  = β0 +  β1Xi1 +  β2Xi2 + … . . + βp−1Xi,p−1 +  εi               (3.1)                         

where: Yi   is the dependent variable, the β1,  β2, . . ., βp, are the regression coefficients. A 

multiple regression coefficient β tells us about the average amount the dependent 

variable increases when the independent variable increases by one unit keeping the 

other variables constant. In the case of dummy variables, it tells about the difference in 

the expected value of the dependent variable between the conditions described by the 0 

value of the variable and the condition described by the 1 value of the variable. The 

variable βo is the intercept, representing the amount of Y when all the independent 

variables are zero and εi represents the random error term of the regression equation. 

The sign of a regression coefficient is interpreted as the direction of the relationship 

between the dependent and an independent variable, that means if a coefficient  β is 

positive (negative), then the relationship of the variable with the dependent variable is 

positive (negative). Moreover, if the β coefficient is equal to 0 then it implies that, there 

is no linear relationship between the variables. 
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In regression analysis we need to have a set of assumptions that are required to validate 

model estimation and hence to make inferences from a sample to a population. The 

most common assumptions used in this analysis about the error terms are:- 

• The mean of the probability distribution of the error term is zero; i.e. E[ εi ]= 0, 

• The probability distribution of error terms εi‟s are assumed to have a constant 

variance ζ
2
, 

• The probability distribution of the error term is assumed to be distributed as a 

normal distribution and, 

• The errors terms are uncorrelated to each other. 

3.2.1 Estimating the Model Parameters  

The sample regression model is formulated by modifying the regression model in 

equation 3.1 as follows: 

                       Yi  = β 0 +  β 1Xi1 +   β 2Xi2 +  … . . +  β p−1Xi,p−1 +  ei                 (3.2)       

where: Yi‟s are the observed values, i = 1, 2, . . ., n,   

 ei   is the residual (an estimate of the error term εi) related with the i
th

 

observation. 

The fitted model is then given by: 

                       Y i  =  β 0 +  β 1Xi1 +   β 2Xi2 +  … . . +  β p−1Xi,p−1                           (3.3)                   

The sample regression model equation 3.2 can also be represented in matrix form as 

follows: 

                             𝐘 =  𝐗 𝛃 + 𝐞                                                      (3.4) 
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where: 

   𝐘 =    

 
 
 
 
 
Y1

Y2
∙
∙
∙

Yn 
 
 
 
 

 ,          𝐗 =  

 
 
 
 1
1
⋮
1

   x11   
x21

⋮
xn1

x12  .  .  . x1,p−1
x22  .  .  . x2,p−1

⋮
xn2

⋱
.  .  .

⋮
xn,p−1 

 
 
 
 , 

                𝛃 =  

 
 
 
 
 
 
β 0

β 1

∙
∙
∙

β 𝑝−1 
 
 
 
 
 

 ,          and              𝐞 =  

 
 
 
 
 
e1
e2

∙
∙
∙

en 
 
 
 
 

 . 

And the fitted values are represented by: 

                                             𝐘 = 𝐗𝛃                                                               

where    𝐘   is an (n × 1) vector of fitted values and, 

              𝛃    is a (p × 1) vector of the estimated value of population parameter β.                                            

To estimate the unknown population parameter (β‟s), a method of Ordinary Least 

Squares (OLS) is employed to obtain  𝛃  that minimises the sum of the squares of the 

residuals, S (Berk, 2004).  

                                                            𝑆 =  ∑ei
2, 

 

or                                                       𝑆 = ∑( Yi–Y i)
2,  

 or                                                       𝑺 = (𝐘 −  𝐗𝛃 )′(𝐘 −  𝐗𝛃 ).                                            

Then, the minimum value of 𝐒 (Berk, 2004) occurs at 

                                                            𝛃 = (𝐗′𝐗 )−𝟏𝐗′  𝐘.                                                          
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The unbiased estimator of the variance, which represents the estimation of the random 

error variance, ζ
2
, (Berk, 2004) is computed as: 

        
 

                  σ 2 = ∑
ei

2

n−p

 .  
                                                              

And hence, the estimate of variance covariance matrix for 
 𝛃  (Berk, 2004) is given by: 

           Var(𝛃 )  =  σ 2(𝐗′𝐗 )−1.       

3.2.2 Model Selection and Inferences  

The investigator usually wishes to reduce the number of explanatory variables to be 

used in the final model. There are several reasons for this. Primarily, a regression model 

with numerous explanatory variables may be difficult to maintain. In addition to this, 

regression models with a limited number of explanatory variables are easier to work 

with and understand. Furthermore, the presence of many highly inter-correlated 

explanatory variables may substantially increase the sampling variation of the 

regression coefficients and it could adversely affect the descriptive abilities of the 

model. Likewise, elimination of key explanatory variables can seriously damage the 

explanatory power of the model and lead to biased estimates of regression coefficients, 

mean responses, and predictions of new observations, as well as biased estimates of 

error variance. Thus, the choice of an appropriate model with a few explanatory 

variables for final consideration needs to be done with great care. Basically, there are 

three approaches (Bowerman, 1986) for selecting explanatory variables in dealing with 

the best regression model: 
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i. Forward Selection  

The forward selection method starts by choosing the independent variable which 

explains the most variation in the dependent variable and continues to include variables 

by their order of significance until no variables significantly explain the variation in the 

outcome variable. 

ii. Backward Selection  

This method starts with all the variables in the model, and excludes the non-significant 

variable until we are left with only significant variables. 

iii. Stepwise selection  

This method involves the combination of the above two selection methods in which 

case variables entered are checked at each step for removal, and at the same time, 

variables excluded will be checked for re-entry in the removal method.  

The next stage, after selecting the regression model to be employed in this study, is to 

check in detail whether the selected model fits our data well. The diagnostic checks are 

useful for identifying influential or outlying observations, multicolinearity and the like. 

Besides, a variety of residual plots and analyses can be employed to identify any lack of 

fit, outliers, and influential observations in the data. 

 

 Goodness of fit tests 

The goodness of fit of the model can be measured by the coefficients of multiple 

determinations denoted by R
2 

which measures the proportion of the variability 

explained by the model, and its significance
 
is then tested by the F-test, which actually 

means testing the significance of the regression model as a whole. 
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The coefficient of multiple determinations (R
2
) is given by: 

                                                                 R2 =
SSR

SST
= 1 −

SSE

SST
                                              

where: SSR, SSE and SST denote the regression, error, and total sum of squares 

respectively.  

Although R
2
 measures the proportion of variation explained by the model, the high 

value of R
2
, however, does not necessarily imply that the model is adequate. This is due 

to the fact that an increase in the number of independent variables included in the model 

ultimately results in a higher value of R
2
. Therefore, to discourage the unnecessary 

inclusion of explanatory variables, the adjusted coefficient of multiple determinations 

denoted by  Radj
2  is used instead to test the adequacy of the model. And it is calculated 

as: 

                                                           Radj
2 = 1 −  

n−1

n−p
 

SSE

SST
 .                

                                  

 Analysis of variance (ANOVA) Table 

The analysis of a variance table is used as a tool for testing the possibility of using the 

regression models. The Analysis of Variance table for linear regression analysis is 

presented below: 
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      Table 3.1   Regression Analysis of Variance (ANOVA) Table  

 

Source of Variation 

 

SS 

 

df 

 

MS 

Regression 

 

𝐒𝐒𝐑 = 𝛃 ′𝐗′𝐘 −  
𝟏

𝐧
 𝐘′ 𝐉 𝐘 

 

p - 1 𝐌𝐒𝐑 =
𝐒𝐒𝐑

𝐩 − 𝟏
 

Error 

 

𝐒𝐒𝐄 = 𝐞′𝐞 = 𝐘′𝐘 − 𝛃 ′𝐗′𝐘 

 

n - p 𝐌𝐒𝐄 =
𝐒𝐒𝐄

𝐧 − 𝐩
 

Total 𝐒𝐒𝐓 =  𝐘′𝐘 −  
𝟏

𝐧
 𝐘′ 𝐉 𝐘 n – 1  

 

We test a hypothesis to see whether the dependent variable (Y) and the independent 

variables X1, X2, . . ., X p-1 have significant relation. Thus, the null and alternative 

hypothesis is presented as: 

    Ho : β1 = β2 . . . = βp-1=0 

H1 : Not all  βj  are zeros,     

where  j = 1, 2, . . . , p-1 (i.e. at least one coefficient is different from zero).   

To test the above hypothesis we use the statistic: 

 𝐅cal  =
𝐌𝐒𝐑

𝐌𝐒𝐄
 . 

We will compare Fcal with F at a specific level of significance, α, with (p-1) and (n-p) 

degrees of freedom. 

If Fcal ≤ F1-α,p-1,n-p  , then we do not reject Ho and conclude that the independent variables 

do not contribute significantly to the dependent variable. On the other hand, if  

Fcal > F1-α,p-1,n-p , we reject Ho in favour of H1, we conclude that at least one independent 

variable has significant relation with the dependent variable. If we conclude the latter, 
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we have to test the coefficients individually to identify which variable is significantly 

linearly related to the dependent variable.  

To test that the regression coefficients equal to zero, the null hypothesis Ho and the 

alternative hypothesis H1 are constructed as: 

                                                             Ho  : βj = 0 

                                       H1  : βj ≠ 0. 

The test statistic t, with (n–p) degrees of freedom is calculated as:  

                                                        t =
β j

s β j 
 

where, β 
j
 is the estimated value of βj and  s β j  is the standard error of β 

j
. 

If |t|  ≤ tα
2    n−p , we do not reject Ho and conclude that there is no evidence to reject 

that β 
j
 is not significantly different from zero, otherwise if |t|  >  tα

2    n−p , reject Ho 

and conclude that β 
j
 is significantly different from zero. 

The hypotheses on β can also be tested using a  1 − α 100% confidence interval which 

is constructed from the estimated β 
j
 for each regression coefficients (βj′s). 

We have:                        
β j− βj

s(β j )
 ~ t (n − p) 

 ⇒  −t1−α
2 ,   n−p  ≤

β j− β j

s(β j )
 ≤ t1−α

2    n−p , 

                                                  ⇒     β j  − t1−α
2  , n−p  s β j ≤  βj ≤ t1−α

2    n−p  s β j . 
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Hence, the (1−α)100% confidence interval for βj is: 

                                    β j  ± t1−α
2,   n−p  s β j ,               where   j = 1, 2, . . . , p. 

3.2.3 Model Diagnostics 

 Outliers 

An outlier can be defined as a data point which is far away from the rest of the data. If 

outliers are occurred due to errors in recording, they can be rejected automatically. 

Otherwise they should be carefully investigated since they could represent new 

information (Draper, 1966). Therefore, it is proposed that some procedures should be 

employed in dealing with severe outliers as follows: 

i)  remove the observations from the data set and repeat the regression to see whether 

 the fit or the sign of one of  the coefficients change or not - if there is no sign 

 change, we can conclude that the outliers do not affect the results and they can 

 be removed from the data;   

ii)  if there is a change in the fit or in the sign of one of the coefficients, further care 

 should be taken in deciding either to drop them or to keep them in the data and 

 during interpretation of the estimates (Berk, 2004). 

 Influential observations 

Influential observation is an observation that causes the least square point estimates to 

be substantially different from what they would be if the observation was removed from 

the data (Bowerman, 1986).  An observation could be an outlier but it does not 

necessarily mean that all outliers are influential. There are a number of measures to 
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identify observations which significantly influence the estimates of the model 

parameters; however in this study Cook‟s distance measure will be used. 

 Cook’s Distance (Ci )   

Cook's Distance is defined as the standardised difference between β (i) the vector of 

estimate obtained by omitting the i
th

 observation, and  β  the vector of parameter 

estimate obtained using all the data. It is an important diagnostic measure in making 

decisions about observations that influence the fitted model (Berk, 2004). Cook‟s 

distance is formulated as: 

                                           Ci =
 𝛃 − 𝛃  𝐢  (var  𝛃   )−𝟏 𝛃 − 𝛃  𝐢  

k
 

where, var 𝛃    is the variance covariance matrix of parameter estimate of β (i), and k is 

the number of explanatory variables in the model.  

A large Ci implies that the i
th 

observation has an influence on the set of parameter 

estimates. With regard to the decision criteria, an observation with Ci value in excess of 

1 is commonly taken as an influential observation (Berk, 2004). 

3.3 Application of the Multiple Regression Model to Crop 

 Yield Data 

The multiple linear regression model discussed in Section 3.2 was fitted to each of the 

five types of crops yield data and the relationship between the explanatory variables and 

the yield is specified and analysed by the SPSS (Statistical Package for Social 

Scientists) statistical software through the use of the following linear relationship:  
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Yi  = β 0 +  β 1 Seedty2 +   β 2 Fertliz1 + β 3 Fertliz2 + β 4 Fertliz3 +

β 5 Cropp1 + β 6 Cropp2 + β 7 Cropp3 + β 8 Damage1 + β 9 Ext1 +

β 10 Irrg1 + β 11 Serro1 + β 12 HHsex2 + β 13 Zone1 + β 14 Zone2 +

β 15 Zone3 + β 16 Zone4 + β 17 Zone5 + β 18 Zone6 + β 19 Zone7 +

β 20 Zone8 + β 21 Zone9 + ei                                                                               (3.5)                                                                                

where: Yi               = Crop yield in quintal per hectare,   

           Seedty2  = Dummy variable for local seed (1: if local seed, 0: if improved seed),   

 Fertliz1  = Dummy variable for chemical fertilizer (1: if chemical, 0: otherwise), 

Fertliz2 = Dummy variable for non-chemical fertilizer (1: if non-chemical, 0: 

otherwise), 

Fertliz3 = Dummy variable for both chemical and non-chemical fertilizer use         

(1: if both types used together, 0: otherwise),  

Cropp1 = Dummy variable for use of chemical for crop prevention (1: if 

chemical, 0: otherwise), 

Cropp2,  = Dummy variable for use of non-chemical type of crop prevention (1: 

if non-chemical, 0: otherwise),  

Cropp3   = Dummy variable for use of both chemical and non-chemical type of 

crop prevention (1: if both types used together, 0: otherwise),  

Damage1 = Dummy variable for crop damage (1: if there is crop damage, 0: if 

no crop damage), 

Ext1     = Dummy variable for farms under extension programme (1: if included 

in the programme, 0: if not), 

            Irrg1      = Dummy variable for farm irrigation (1: if irrigated, 0: if not irrigated), 

            Serrop1  = Dummy variable for soil erosion protection (1: if it exists, 0: if not), 
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HHsex2 = Dummy variable for gender of the head of the household (1: if    

female,   0: if male), 

Zone1, Zone2, . . . , Zone9 are dummy variables for ZONE coded with „1‟ if the 

crop  is within the particular administrative zone or „0‟ otherwise, and     

ei          =  the error term;  β 0 is the constant; and β 1, β 2, β 3,   .  .  .  , β 21  are the       

coefficients of the independent variables.             

On the basis of the data available in this study, the mean crop yield is hypothesised to 

be affected by the zone (location) in which the crop is cultivated, seed type, fertilizer 

use, crop prevention method, crop damage, agricultural extension programme, 

irrigation, protection of soil erosion, and gender of the head of the household. At the 

start of the analysis, all of the categorical dummy variables stated in equation (3.5) were 

considered for inclusion in the model. Then a stepwise selection method was employed 

to identify and retain only the dummy variables which significantly explain the model 

as compared to their respective reference categories at 5% level of significance, and to 

exclude those dummy factor levels which do not. In the sections that follow the 

regression models that are fitted to the transformed yield data by crop type and their 

results are discussed. 

3.3.1 Fitting a Model for Transformed Yields of the Data  

Recall that in the exploratory analysis section of Chapter 2, the distributions of all the 

studied cereal yields were slightly skewed to the right. Thus, the linear stepwise 

regression procedure was applied to the transformed data (square root of yield) to 

estimate the regression coefficients for the particular crop types. The stepwise 

regression results for the fitted cereals models which considered the transformed yield 
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as dependent variable and all the dummies explained in the model equation (3.5) as 

independents, are displayed in the Tables 3.3.1, 3.3.2 and 3.3.3.  

Table 3.3.1, the regression analysis of variance (ANOVA) table by crop type, showed 

that the overall model for barley, maize, sorghum, teff and wheat crops were significant 

with overall F ratio values of F (11, 6567) = 172.765, F (15, 9598) = 307.915, F (6, 7252) = 

107.345, F (16, 10437 = 335.323 and F (14, 6079) = 243.056 respectively at α = 0.05 

significance level. Therefore, it is concluded that at least one of the regression 

coefficients significantly contributed to explain the variability in the transformed yield 

of their respective crop types. The table also showed that the R
2
 values of 22.4%, 

32.5%, 25.2%, 34%, and 35.9% for barley, maize, sorghum, teff and wheat crops 

respectively. which indicates the percentage of variation explained by the independent 

factor levels (dummies) included in the particular models. In addition, the results on the 

amount of variability contributed by each of the included dummy factor levels, i.e. the 

change in R
2
 and the corresponding significance measures of the changes in F values are 

presented in the Appendix A section from Tables A.1 to A.5.  
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Table 3.3.1 Regression Analysis of Variance Table for Models of Transformed 

    Cereals Yields by Crop Type 

Crop Type  Sum of Squares Df Mean Square F Sig. 

Barley 

Regression 814.890 11 74.081 172.765 .000      

Residual 2815.899 6567 .429     

Total 3630.788 6578       

  R
2 
= 0.224, Adjusted  R

2
 = 0.223                

 

Maize 

Regression 3200.430 15 213.362 307.915 .000 

Residual 6650.688 9598 .693     

Total 9851.118 9613       

  R
2 
=  0.325, Adjusted  R

2
 = 0.324                 

 

Sorghum 

Regression 368.866 6 61.478 107.345 .000 

Residual 4153.301 7252 .573     

Total 4522.167 7258       

  R
2 
= 0.252, Adjusted  R

2
 = 0.250                  

 

Teff 

Regression 1568.677 16 98.042 335.323 .000  

Residual 3051.590 10437 .292     

Total 4620.267 10453       

  R
2 
= 0.340, Adjusted  R

2
 = 0.339                  

 

Wheat 

Regression 1304.571 14 93.184 243.056 .000 

Residual 2330.588 6079 .383     

Total 3635.159 6093       

  R
2 
= 0.359, Adjusted  R

2
 = 0.357       

 

After the significance of the overall model had been confirmed, it was necessary to 

identify which variables were important and significant in explaining the variability in 

the mean yields of the fitted models. However, before making any inferences about the 

identified parameter estimates it is also imperative to undertake model diagnostics to 

check whether the regression assumptions are not violated. Therefore, in the sections 



38 

 

that follow, the validity of the basic assumptions of normality and homoscedasticity of 

the residuals for the fitted models are assessed. 

 Model Checking and Diagnostics 

The fitted models were assessed using graphic tools such as the frequency distribution 

plots of the residuals, p-p plots, scatter plots and Cook‟s distance plots to investigate 

whether the regression assumptions were not violated. With regard to our fitted models, 

Figure 3.3.1 was presented to look at the frequency distributions (histograms) of the 

transformed yields and the normal p-p plots by crop type. The p-p plot is a graphical 

technique used for assessing whether or not a data set is normally distributed. If the 

distribution is normal, the points on the normal p-p plot fall reasonably close to a 

straight line. Therefore, as shown in the figure, the normal p-p plot for transformed 

yields of the studied cereal types indicated a pattern of clustering of points close to a 

straight line. Thus, it is concluded that the assumption of normality of the residuals for 

the fitted models under all types of the crops were not violated. 
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Barley               Histogram 

          

                          p-p plot 

     

Maize                Histogram 

           

                        p-p plot 

     
Sorghum           Histogram  

           

                         p-p plot 

     
Teff                Histogram  

          

                        p-p plot 

     
 Wheat               Histogram 

         

                        p-p plot 

 

Figure 3.3.1 Frequency distribution and p-p plots of the fitted models residuals by 

 crop type 
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Moreover, scatter plots and Cook‟s distance plots were used as further model diagnostic 

techniques of the analysis. The scatter plots are used to observe any change in the 

spread or dispersion of the plotted points and thus to check whether the assumptions of 

constant variance were not violated; and Cook‟s distance (Ci) is used to measure the 

influence
 
of an observation and how much the regression coefficients are

 
changed by 

deleting the particular observation in question. It is suggested that an observation with a 

Ci >1
 
may deserve closer inspection, and if the model is correct, then

 
the expected Ci is 

<1 (i.e there are no influential cases that should be dropped).  

For our models of the cereals in this section, the scatter plot of the standardised 

residuals versus the standardised predicted values and Cook‟s distance plots were 

plotted and presented in Figure 3.3.2 by crop type to examine the assumption of 

homoscedasticity of the error variance as well as to check for the existence of influential 

observations in the data. From the figure, it was observed that there was no evidence of 

a specific pattern revealed in any of the scatter plots shown by crop types. This confirms 

that the assumption of homoscedasticity was valid after transforming the yields of the 

cereals. Moreover, the figure also showed that Cook‟s distance value of each of the 

observations under the corresponding fitted models by crop types were less than one in 

their magnitude. This suggests that none of the observations were influential on the 

parameter estimates in the fitted models of their respective cereal types. Therefore the 

observed outliers were retained in the data. 
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Barley                  Scatter plot 

           

           Cook‟s distance plot   

 
Maize                    Scatter plot 

             

              Cook‟s distance plot   

   
Sorghum                  Scatter plot 

              

               Cook‟s distance plot   

   
Teff                          Scatter plot 
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Wheat                       Scatter plot 

              

             Cook‟s distance plot   

 

Figure 3.3.2 Scatter plots and Cook’s distance plots for the fitted models by crop 

 type  
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Table 3.3.2 presents the magnitude and significance of the estimated regression 

coefficients of the fitted models by crop type. These coefficients are useful
 

for 

constructing the regression equations and also for making direct interpretations.  For 

Barley crop type the t-value of all the estimated regression coefficients, except for 

Zone2, were found to be significant at α=0.05 level of significance, and hence Zone2 

will not be included in the prediction model. Likewise, the different sets of predictors 

under each of the other four crop types were assessed and found to affect the mean 

yields of their respective crop types significantly. Therefore, it is evident that only these 

dummy variables, which have been found to contribute significantly to the variability of 

their respective mean yields, could be used to formulate the regression equations. 

The (1-α) 100% confidence interval, the interval in which the true parameter lies, could 

also be used as an additional means for testing the significance of the regression 

parameter estimates. Thus, the 95% confidence interval of the coefficients estimates 

under all the cereal types is presented in Table 3.3.3. It is shown that the coefficients of 

all the predictor dummy variables, except Zone2 under barley crop type, do not include 

zero values in their estimated 95% confidence intervals; this confirms that those 

coefficients had a significant effect on the variability of the transformed yield of the 

cereals as compared to the effects of their respective reference category levels.  
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Table 3.3.2 Estimates of the Regression Parameter Coefficients for the Fitted  

            Models by Crop Type (Standard Deviations in Parentheses) 

  Effects 

Barley Maize Sorghum Teff Wheat 

Estimates Sig. Estimates Sig. Estimates Sig. Estimates Sig. Estimates Sig. 

(Constant) 3.205 

(.026) .000 

4.025 

(.046) .000 

3.758 

(.036) .000 

3.551 

(.037) .000 

3.700 

(.031) .000 

Seedtype2 (Reference = 

Seedtype1) 
... ... -.256 

(.032) 
.000 ... ... ... ... ... ... 

Fertliz1 (Reference = 

Fertliz0) 
.067 

(.019) .000 
.055 

(.021) .010 
.173 

(.022) .000 
.113 

(.019) .000 
.074 

(.024) .002 

Fertliz2 -.383 

(.039) .000 

.437 

(.031) .000 

... ... .036 

(.016) .026 

.157 

(.021) .000 

Fertliz3 ... ... .286 
(.045) .000 

... ... ... ... ... ... 

Ext1 (Reference = Ext2) .257 

(.051) .000 

... ... .239 

(.076) .002 

.095 

(.017) .000 

.218 

(.025) .000 

Cropprev1 (Reference = 

Cropprev0) 
... ... ... ... .811 

(.081) .000 

... ... ... ... 

Cropprev2 ... ... ... ... .106 

(.027) .000 

.090 

(.019) .000 

.110 

(.026) .000 

Cropprev3 ... ... ... ... .331 

(.064) .000 

... ... .159 

(.042) .000 

Damage1 (Reference = 

Damage2) 
-.055 

(.017) .001 

-.155 

(.018) 
.000 -.060 

(.016) .000 
-.153 

(.012) .000 
-.143 

(.018) .000 

Irrg1 (Reference = Irrg2) ... ... .452 

(.060) .000 

... ... ... ... ... ... 

Serrop1 (Reference = 

Serrop2) 
... ... -.120 

(.022) .000 

-.410 

(.021) .000 
.062 

(.016) .000 
... ... 

HHsex2 (Reference = 

HHsex1) 
... ... ... ... -.065 

(.027) .016 

.052 

(.018) .004 

.058 

(.026) .025 

Zone1 (Reference = 

Zone10) 
.511 

(.035) .000 

.699 

(.033) .000 

.577 

(.025) .000 

-.585 

(.035) .000 

.347 

(.036) .000 

Zone2 -.055 
(.033) .095 

.115 
(.035) .001 

-.129 
(.039) .001 

-.640 
(.033) .000 

-.342 
(.026) .000 

Zone3 .311 

(.032) .000 

... ... .156 

(.029) .000 

-.326 

(.033) .000 

-.096 

(.029) .001 

Zone4 .197 
(.033) .000 

.478 

(.040) 
.000 .207 

(.028) .000 
-.201 

(.032) .000 
... ... 

Zone5 1.008 

(.032) .000 

.831 

(.042) .000 

.763 

(.029) .000 

.532 

(.033) .000 

.972 

(.023) .000 

Zone6 .107 

(.035) .002 

.528 

(.037) .000 

.729 

(.047) .000 

-.341 

(.034) .000 

... ... 

Zone7 ... ... .971 

(.033) .000 

.429 

(.121) .000 

-.662 

(.035) .000 

.236 

(.033) .000 

Zone8 .331 

(.036) .000 

-.124 

(.045) .005 

... ... -.320 

(.036) .000 

.130 

(.039) .001 

Zone9 ... ... .984 
(.035) .000 

-1.151 
(.075) .000 

-.717 
(.035) .000 

-.234 
(.053) .000 
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Table 3.3.3 The 95% Confidence Interval for Parameter Estimates of the Fitted 

     Models by Crop Types 

 

Effects 

95% Confidence Intervals  

Barley Maize Sorghum Teff Wheat 

Lower 

bound 

Upper 

bound 

Lower 

bound 

Upper 

bound 

Lower 

bound 

Upper 

bound 

Lower 

bound 

Upper 

bound 

Lower 

bound 

Upper 

bound 

(Constant) 3.155 3.256 3.936 4.115 3.687 3.828 3.478 3.625 3.640 3.760 

Seedtype2 (Reference = Seedtype1) ... ... -.319 -.192 ... ... ... ... ... ... 

Fertliz1 (Reference = Fertliz0) .029 .105 .013 .097 .129 .217 .076 .149 .027 .121 

Fertliz2 -.460 -.307 .375 .498 ... ... .004 .067 .115 .199 

Fertliz3 ... ... .197 .374 ... ... ... ... ... ... 

Ext1 (Reference = Ext2) .156 .358 ... ... .090 .387 .061 .129 .170 .267 

Cropprev1 (Reference = Cropprev0) ... ... ... ... .652 .969 ... ... ... ... 

Cropprev2 ... ... ... ... .053 .159 .052 .128 .060 .160 

Cropprev3 ... ... ... ... .207 .456 ... ... .077 .241 

Damage1 (Reference = Damage2) -.088 -.022 -.189 -.120 -.092 -.028 -.176 -.129 -.177 -.109 

Irrg1 (Reference = Irrg2) ... ... .334 .571 ... ... ... ... ... ... 

Serrop1 (Reference = Serrop2) ... ... -.163 -.078 -.451 -.369 .031 .094 ... ... 

HHsex2 (Reference = HHsex1) ... ... ... ... -.117 -.012 .017 .087 .007 .109 

Zone1 (Reference = Zone10) .443 .579 .633 .765 .528 .626 -.654 -.517 .276 .418 

Zone2 -.120 .010 .047 .184 -.204 -.053 -.705 -.576 -.394 -.291 

Zone3 .248 .375 ... ... .101 .212 -.391 -.261 -.153 -.039 

Zone4 .133 .262 .399 .557 .153 .262 -.264 -.139 ... ... 

Zone5 .946 1.070 .748 .913 .707 .819 .467 .596 .927 1.017 

Zone6 .039 .176 .457 .600 .636 .821 -.407 -.274 ... ... 

Zone7 ... ... .907 1.035 .193 .666 -.730 -.594 .172 .301 

Zone8 .260 .401 -.212 -.037 ... ... -.391 -.249 .054 .206 

Zone9 ... ... .915 1.052 -1.297 -1.004 -.787 -.648 -.337 -.130 

 

The regression equation to explain the variability in the transformed mean yields of 

barley crop can be built into a final model as: 

   YB
∗      = 3.205 +  1.008 Zone5 +  0.511 Zone1 +  −0.383 Fertliz2

+  0.311 Zone3 +   0.331 Zone8 +  0.257 Ext1 +  0.197 Zone4

+  −0.055 Damage1 0.067 Fertliz1 +  0.107 Zone6                  (3.6) 

where:   YB
∗    is the transformed mean yield for Barley. 
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From the above prediction equation we can observe that the dummy variables Zone1, 

Zone3, Zone4, Zone5, Zone6, Zone8, Ext1, and Fertliz1which are included in the 

selected model, had positive significant effects whereas Fertliz2, and Damage1 had 

negative significant effects on the transformed mean yield for barley as compared to 

their respective reference category levels. The rest of the other dummy variables were 

found to have no significant effects on the transformed mean yield of barley as 

compared to their respective reference categories. Thus, they were not included in the 

prediction model for studying the variability in the mean yields of barley crops.  

Similarly, the regression equations for the rest of the other four cereal types could be 

formulated and interpreted in the same manner as it has been done for Barley crop; but 

to avoid the repetitive nature of the interpretation, we only presented brief discussions 

of the regression results in Section 3.4 that follows.    

3.4 Discussions and Conclusions on Results of the Multiple 

 Regression  

The ANOVA tables for all the five types of cereals based on the multiple regression 

analysis results show that the p-value was significantly smaller than the significance 

level α = 0.05, which confirms the overall relevance of the fitted models to each crop 

data. Moreover, the R
2
 value which indicates the percentage of variations in the mean 

yield that is explained by the independent variables included in the models for barley, 

maize, sorghum, teff and wheat crops are 22.4%, 32.5%, 25.2%, 34%, and 35.9% 

respectively. The multiple regression estimates of the effects of independent factors on 

cereal crop yields are summarized as follows: 



46 

 

Seed Type:  Seed type is one of the factors considered to have an effect on the mean 

yields of cereal crops production. Obviously, farmers who apply improved seed types 

on their farms are expected to get more yields as compared to those who used non-

improved seed types. Thus, the results for the studied cereal crop types indicated that 

the use of non-improved seed type significantly influenced the mean yield of maize crop 

to decrease by 0.256 units as compared to that of using improved seed type at 5% 

significance level. However, there was no significant difference between the use of non-

improved and improved seed type effects on the mean yields for barley, sorghum, teff, 

and wheat crops. This could be due to the low level use of improved seed type on farms 

of these crop types in the study region (See Table 2.3).  

Irrigation:  Results presented in Table 2.3 in the preliminary analysis section clearly 

showed that irrigation was applied on less than 1% (0.88%) of the total cultivated cereal 

crop farms in the region. As a result, the effects of irrigation on the mean yields from 

barley, sorghum, teff, and wheat farms were not statistically significant at the 5% level. 

The reason for the non-significance of the effects of irrigation on these cereal crops 

mean yields could be associated with the inconsistent application of irrigation practices 

on farms in the region. Whilst, for maize crop the estimated coefficient for the irrigation 

factor level (Irrg1= 0.452) was statistically significant and positive. This positive effect 

could be interpreted as the effects of irrigating maize farms increases the mean yields by 

0.452 units as compared to that of non-irrigating the farms. 

Crop prevention measures:  Crop prevention measures, according to the definition 

given in the CSA reports (2007), include weeding, hoeing and application of pesticide 

to control pest and disease on cereal crops. The results of the regression analysis for 
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transformed sorghum mean yield reveals that crop protection measures had statistically 

significant positive coefficients for non-chemical, chemical, and both chemical and non-

chemical categories as compared to the effects of the reference category. This result 

indicated that the application of chemical, non-chemical, or both chemical and non-

chemical crop prevention methods have significant influence on the transformed mean 

yields of sorghum. Besides, non-chemical prevention methods applied on teff and wheat 

crop farms resulted in a positive significant difference effect on their mean yields. On 

the other hand, for barley and maize crops, all dummies of the factor (i.e. crop 

prevention measures) have shown no significant difference effects on their transformed 

mean yields. 

Fertilizer use:  The application of either of the natural or chemical, or both 

combinations of natural and chemical types of fertilizers to cereal crop farms were 

expected to considerably increase mean yields of the crops as compared to non use of 

any of the fertilizer types. Therefore, the dummies for the use of fertilizer types were 

included in the models to investigate their influence on the mean yields of the studied 

crop types. Consequently, the SPSS stepwise regression analysis results showed that the 

estimated coefficients of Fertliz1 (a category representing “Natural fertilizer type”) was 

positive and statistically significant in all the particular models of the crops, at α = 0.05 

level of significance. The results indicated that the use of fertilizer had contributed 

towards an increase in the transformed mean yields of the cereal crops as compared to 

no use of fertilizer. Furthermore, the higher values of the coefficients of chemical 

fertilizer level for maize and wheat indicate that the transformed mean yields of these 

crops could be more enhanced by applying chemical fertilizers as compared to the 

reference level (no use of fertilizer). 
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Extension Programme:  There were positive effects of extension programmes on the 

transformed mean yields of all cereal crops except Maize. This could be due to the fact 

that farmers have applied improved agricultural inputs and better management practices 

on farms which were taught to them in the extension programme. This result highlights 

the need to bring more number of farmers (crop farms) into the extension programmes 

for increased productivity of the cereal crops.  

Crop Damage: The frequency of occurrence of crop damages such as crop diseases, 

frost, flood, pests, weeds, etc on farm fields could greatly influence the gain in the 

transformed mean yields of cereal crops. The stepwise regression analysis results for 

each type of cereal crop types revealed that the “Crop Damage” factor labelled as 

“Damage1”, representing the incidence of crop damage, had a significantly decreasing 

effect on the transformed mean yields of all the cereal crop types as compared to the 

effects with no crop damage (Damage2) level. This piece of evidence is reflected by the 

estimated negative coefficients of the factor level “Damage1” included in Table 3.3.2 

for barley, maize, sorghum, teff, and wheat crop types respectively.  

Prevention of Soil Erosion: Terracing, planting trees, ploughing along the contour are 

among the methods used for preventing the soil on farm fields from severe erosion. The 

results for the dummy variables of this factor indicated that for teff crops the protection 

measures has resulted in a positive significant difference effect on the mean yields of 

the teff crops, whereas its effect was negative on maize and sorghum cereals mean 

yields as compared to the effects with no protection measures for soil erosion on the 

respective cereals mean yields. The unexpected negative effects could implicate the 
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severity of the soil erosion problems in those particular areas producing maize and 

sorghum crops irrespective of the efforts made to protect the soil.     

 Gender of head of the household:  Accounting for gender differences is important in 

view of the fact that adoption and use of new agricultural technologies and inputs could 

be affected by who owns and controls the crop farms. Thus, the gender factor dummy 

variable „HHsex2‟, which stands for female headed households, was included in the 

regression model. The results from stepwise regression indicated that the female headed 

households had a positive significant difference effects on the mean yields of Teff and 

Wheat crops as compared to male headed households. Whereas, this effect of gender on 

the Sorghum mean yields was negative and significant at 5% level. It was observed 

from Table 3.3.2 that the prediction model equations for maize and barley could not 

include the gender factor since it fails to significantly affect the transformed mean 

yields of the crops as compared to its reference category (i.e. male headed households).  

Zones: To account for the effects due to differences among the administrative zones in 

terms of, for instance, topographic and climatic variability, we included the zone 

dummy variables into each crop type regression models. Although it is not possible to 

clearly point out what is being controlled, the results from the regression analysis 

indicated that the inclusion of the zone dummies had resulted in a highly significant 

difference effects on the mean yields of all cereal crops. Moreover, a much better R
2
 

value of the fitted models than the R
2
 values for models without the zone effects (See in 

Appendix Tables A.6 to A.10) were obtained. 
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        Chapter 4 

Theory and Application of Mixed Model  

4.1 Introduction 

Though the primary interest in this thesis is identifying the factors (fixed effects) which 

affect cereal crop yield, it is worthwhile to see if there is any effect associated with the 

sampling units (random effects) to improve our model efficiency. The ordinary 

regression model discussed in Chapter 3 may not be appropriate for this type of 

analysis, since it does not allow including the random sampling units effect (random 

effect) into the model. This drawback of the linear regression model could be overcome 

if we fit a linear mixed model to the data.  

Fixed effects are effects which can be used only if our interest is in the effect of the 

levels of the factors used in the study, whereas the effect is random if the levels in the 

study are randomly selected and our interest is in the effects of the population of the 

levels of a factor or factors. Thus, a mixed model is a model which is capable of 

handling both the fixed and random effects simultaneously. Moreover, the capability of 

mixed models to deal with unbalanced data, and the possibility of predicting random 

effects through the Best Linear Unbiased Prediction (BLUP) methods are among the 

major features that make the mixed model more beneficial (Duchateau et al., 1998:18; 

cited in Ramroop, 2002). Consequently, in the following section, the theory of general 

linear mixed model is reviewed and the results of the fitted models to the transformed 

yield data are discussed. 
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4.2 The General Linear Mixed Model 

A mixed effects model is a model which includes both fixed and random factors in one 

model. A factor is said to be fixed if all the levels of the factor are selected by a 

researcher to identify the effects of levels on the response variable of interest. The 

purpose of the fixed factors is to compare the effects of the levels on the response 

variable. Whereas, a factor is random if the effects associated with the levels of the 

factor can be viewed as being like a random sample from a population of effects. The 

purpose of random factors is to draw conclusions about variation in the population of 

random effects.   

A linear mixed model can be formulated by generalizing the ordinary regression model 

which was represented in equation (3.1). Now, the linear mixed model takes a broad 

view of the regression model in the following way:  

                     𝐘 = 𝐗𝛃 + 𝐙𝐔 + 𝛆                                                           (4.1) 

Where, Y represents the (n×1) vector of observed responses, 

            β is an unknown (p×1) vector of fixed-effects parameters,  

            X is known design matrix of dimension (n×p),   

            U is an unknown vector of random-effects parameters of dimension (q×1), 

            Z is known design matrix of dimension (n×q) and 

            ε is an unknown random error (n×1) vector of residual components. 

The residuals (ε) are assumed to be independent and normally distributed with mean 

vector zero and covariance matrix σ2In ; where In  is an n×n identity matrix (Verbeke 

and Molenberghs, 2000). 
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The vectors Y, β and ε have the same interpretation as in the linear regression case. 

Since the model (4.1) contains both fixed and random effects, it is referred to as a mixed 

effects model. The assumptions required of the linear mixed effects model are (Laird 

and Ware, 1982):                                   

   𝐔 ~ N 0, 𝐆 ,  

   𝛆 ~ N 0, 𝐑 , and 𝐔 and 𝛆 are independent  

where G denotes the variance-covariance matrix associated with the random effects and 

R denotes the variance-covariance matrix of the residuals. Note that the residuals are no 

longer required to be independent or homogeneous as it is assumed in the linear 

regression. Within the structure of the mixed effect model, the residuals (and random 

effects) can have correlated and heterogeneous variances. However, it is still required to 

assume that both residuals and random effects are normally distributed. In addition, we 

assume that the random effects are independent of the residuals. In matrix form, it can 

be summarized as:                  

                                               E  
𝐔
𝛆
 =  

0
0
  and      Var 

𝐔
𝛆
 =  

𝐆 0
0 𝐑

  . 

The variance of Y is denoted by Var(Y) or simply V, and it can be shown that   

    𝐕 = 𝐙𝐆𝐙′ + 𝐑.                                                                (4.2) 

The linear mixed model implies the marginal model (Verbeke and Molenberghs, 2000), 

                                     𝐘 ~ 𝐍(𝐗𝛃, 𝐙𝐆𝐙′ + 𝐑)  ⟹    𝐘 ~ 𝐍(𝐗𝛃, 𝐕). 
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It should be noted that if 𝐑 = 𝛔𝛆
𝟐 𝐈 and Z = 0 then the linear mixed effects model has 

identical structure to that of the standard linear model (SAS, 2004). 

4.3 Estimation of the Model Parameters 

The procedures for estimating parameters in the linear mixed effects model appears to 

be more complex than the standard regression model in that the mixed model requires 

us not only to obtain estimates of the unknown fixed parameters β, but also to obtain 

predictors of the unknowns in the random parameters R, and U. This complexity of 

estimating the parameters is attributable mainly to the dependence of the fixed effects 

on the estimates of the covariance parameters. Thus, before trying to estimate the 

parameters, there should be an appropriate means for adjusting the covariance structure 

of the data (SPSS, 2005).  

There are several methods available, such as the ANOVA method, Hederson‟s methods 

I, II, & III, the maximum likelihood (ML), restricted maximum likelihood (REML), and 

the minimum norm quadratic unbiased estimation (MINQUE) in estimating the 

unknown parameters in the mixed model. Although many authors (Harville, 1977; 

Robinson, 1991 and Searle, Casella and McCulloch, 1992 cited in Zewotir and Galpin, 

2005 ) do not seem to reach to consensus on any of the methods as the best way of 

estimating parameters, the ML, REML, and MINQUE are considered as standard 

estimating methods for the linear mixed models (Zewotir and Galpin, 2005).   

In the SAS user‟s guide (2004), it is recommended that the ML and REML methods are 

the best approaches used in many situations for estimating the parameters in mixed 

models (Hartley and Rao 1967; Patterson and Thompson 1971; Harville 1974; Laird 
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and Ware 1982; Jennrich and Schluchter 1986). Also, Ramroop (2002) suggested, based 

on results from simulated data, that ML and REML methods work well in estimating the 

variance components of the linear mixed model. 

In light of the fact that the applications for estimating parameters are computationally 

intensive, it is necessary to make use of statistical packages. Thus, the SAS Proc Mixed 

procedure, which is the most efficient procedure to analyze mixed effects models and 

which also implements the ML and REML techniques for estimating (predicting) the 

parameters, is used to analyze the crop yield data in this thesis. The next sections 

discuss these two parameter estimation (prediction) approaches.  

4.3.1 Maximum Likelihood Estimation  

The maximum likelihood approach makes inference based on estimators obtained from 

maximizing the log-likelihood function (Verbeke and Molenberghs, 2000): 

 𝑙MLE  𝛉 =
−n

2
log 2π −

1

2
log 𝐕 −

1

2
 𝐘 − 𝐗𝛃 ′𝐕−𝟏 𝐘 − 𝐗𝛃                                 (4.3) 

with respect to θ, where 𝛉 = (𝛃′, 𝛂′)′ and α denotes the vector of all variance and 

covariance parameters (i.e. variance components) contained in equation (4.2). It can be 

shown that the maximum likelihood estimators (MLE) for the fixed effects parameters, 

β, and random effects parameters, U, obtained from maximizing (4.3) conditional on α 

(i.e. V) respectively are given by (Laird and Ware, 1982): 

                               𝛃 = (𝐗′𝐕−𝟏𝐗)−𝟏𝐗′𝐕−𝟏𝐘                                                                             

and                         𝐔 = 𝐆𝐙′𝐕−𝟏 𝐘 − 𝐗𝛃                                                                                   
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which are dependent on V, the matrix of unknown variance components. Since all 

estimators (predictors) are dependent on V an iterative procedure is used to obtain 

solutions for all unknowns, based on some initial values of V. The iterative procedure 

refines the solution with successive iterations until a likelihood convergence criterion 

has been satisfied. Popular iterative procedures include the Newton-Raphson algorithm, 

and Fisher-Scoring method. The detailed discussion of these procedures is given in 

Littell et al. (2006) and Lindstrom and Bates (1988). 

4.3.2 Restricted Maximum Likelihood Estimation 

The MLE of the variance components does not take into account of the loss of degrees 

of freedom resulting from estimating the fixed effects. The Restricted Maximum 

Likelihood technique for estimating the fixed effects and the variance components does 

not suffer from this defect. The REML technique differs from MLE in that REML 

maximizes the portion of the likelihood function which is invariant to the fixed effects 

in the linear mixed model. It has been shown (Harville, 1974) that the log-likelihood 

function for the REML is given by: 

𝑙REML  𝛉 =
− n − p 

2
log 2π −

1

2
log 𝐕 −

1

2
 𝐘 − 𝐗𝛃 ′𝐕−𝟏 𝐘 − 𝐗𝛃 

−
1

2
log 𝐗′𝐕−𝟏𝐗 .                                                                               (4.4) 

The REML technique can be used to obtain estimates of the fixed effects parameter β, 

and the covariance component α by maximizing the REML log likelihood in equation 

(4.4) with respect to θ and β.  
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Comparatively, the REML estimation has better bias characteristics (Diggle, 1988), 

handles high correlations more effectively, and is less sensitive to outliers than ML, but 

cannot be used for model comparison of fixed effects. ML estimation ignores the 

degrees of freedom used up by fixed effects in mixed models, leading to 

underestimation of variance components. However, ML may nonetheless be preferred 

when comparing two models with different parameterizations of the same effect (for 

example, simple variable vs. quadratically transformed version of the variable), because 

ML is invariant to different parameterizations of a fixed effect but REML will treat 

different parameterizations as different models and compute different likelihood ratios.  

4.4 The Covariance Structure  

In mixed models, we have to specify the type of covariance structure to be assumed for 

random effects; so that it can be used as a starting point to work out the estimation for 

parameters in the ML or REML iterative procedures. The default covariance structure 

for random effects is termed the „variance components‟ structure which assumes the 

variances of the random effects be independent of the random errors and their sum 

equals the variance of the dependent variable. This variance-covariance matrix is the 

basis for estimating between-groups effects. Few of the other possible covariance 

structure types for assumptions include Compound Symmetry (CS), Unstructured (UN), 

and Autoregressive (AR).   

The Goodness of fit statistics such as Akaike Information Criterion (AIC) or Schwarz's 

Bayesian Criterion (BIC) are commonly used to select the best covariance structure 

type. This is achieved by comparing the AIC (or BIC) values for candidate models 

under different covariance structures and selecting the one with the lowest value on AIC 
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(or BIC) as the best model. Besides, it is also possible to use a likelihood ratio test based 

on the difference between a model with a given covariance structure assumption and 

another model under a different assumption (Verbeke and Molenbergh, 2000).  

4.5 Interpretation of Parameter Estimates (Predictions) 

The estimated fixed effects parameters are interpreted the same way as the regression 

coefficients interpreted in the ordinary regression analysis in Chapter 3 of this thesis. 

Whereas, the covariance estimates for random effects and random error (residual) are 

obtained from the SAS output labeled “Covariance Parameter Estimates” and hence, 

checking for significance of their estimates is possible since the table includes the 

standard errors and the test statistic corresponding to the estimates. 

If the predicted variance component of the random factor has significant effect, we 

conclude that the dependent variable varies by the random effect. This further means 

that a fixed-effects analysis of dependent variables ignoring the random effect would 

violate the assumption of independence of observations since observations vary 

depending on random effects. 

 Intra-class correlation (ICC)  

For variance components models the intra-class correlation coefficient is calculated as 

the random effect variance divided by total variance. This indicates the percentage value 

of the variability accounted for by the random effects of the total variability. In equation 

form, the intra-class correlation coefficient can be formulated as: 

                 ICC =
𝛔𝐢
𝟐

𝛔𝐢
𝟐+𝛔𝛆

𝟐                                                         
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where 𝛔𝐢
𝟐  represents the variance component associated with the i

th
 random effect, 

 𝛔𝛆
𝟐   is the variance component associated with the random error. 

Note: To make comparisons between models fitted with only random effects and 

models fitted with both the random and fixed effects will help in drawing appropriate 

conclusions regarding the random as well as the fixed factors included in the models.  

 Unconditional model: is a model only with a random variable and which 

excludes all the fixed factors to look at the variability in the response 

variable. 

 Conditional model: is a model which includes a random variable and one or 

more fixed factors. If there is any difference in the fit between the 

conditional model and the corresponding unconditional model, then its 

significance can be evaluated by using the likelihood ratio tests and 

conclusions about the covariance components as well as the fixed factors in 

the model can be made accordingly.   

4.6 Model Selection and Diagnostics 

In mixed model analysis the selection of variables (fixed effects, random effects and 

covariance parameters) that enter the model can be conducted based on the Likelihood 

Ratio Tests (LRT). It should be noted that the likelihood ratio test for fixed effects 

assumes ML estimation, while for random effects and covariance components either the 

ML or REML estimation methods could be assumed. 

There are a number of statistical measures for goodness of fit tests which includes 
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-2×Restricted Log Likelihood (-2RLL), Akaike Information Criterion (AIC), and 

Schwarz's Bayesian Criterion (BIC). The Akaike's Information Criterion (AIC)   

(Akaike, 1974) is defined as:  

                             AIC = −2𝑙(θ ) + 2p   

where 𝑙(θ ) is the maximized log likelihood or the residual log likelihood, and p is the 

number of parameters in the model (SAS, 2004). It can be used to compare models with 

the same fixed effects but different variance structures; the model having the smallest 

AIC is deemed best. The Schwarz's Bayesian Criterion (BIC) (Schwarz, 1978) is 

computed as: 

 BIC = −2𝑙 θ  + plogN∗  

where: N∗ stands for the total number of observations (N) for ML estimation and  

(N − p) for REML estimation method. Again, we prefer models with smallest BIC, but 

note that BIC penalizes models with a greater number of covariance parameters more 

than AIC does, and the two criteria may not agree as to which covariance model is best 

(SAS, 2004). 

If one covariance model is a sub model of another, it is possible to carry out a likelihood 

ratio test for the significance of the more general model by computing -2 times the 

difference between their log likelihoods (SAS, 2004). This test is used to determine 

whether it is necessary to model the covariance structure of the data at all. The "Chi-

Square" value is -2 times the log likelihood from the null model minus -2 times the log 

likelihood from the fitted model, where the null model is the one with only the fixed 
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effects (i.e. χ2 = −2  𝑙 β ο − 𝑙 β    where 𝑙 β 
ο
  is the maximized log likelihood under 

H0 and 𝑙 β   is the maximized log likelihood over all β). 

 Influence diagnostics and detecting outliers 

Further diagnosing measures with regard to detecting outliers and identifying influential 

observations in mixed models are applicable by extending the statistical measures and 

graphical methods used in the ordinary linear models (for the details see, Zewotir and 

Galpin, 2005;  Schabenberger, 2004 ). It is indicated that the extended diagnostics tools 

are analogues of, for example, Cook‟s distance (Cook, 1977), and likelihood distance 

(Cook and Weisberg, 1982) which were used to measure influence on the fixed factors 

(Zewotir and Galpin, 2005).  

4.7 Application of the Mixed Model to the Data     

The general linear mixed model discussed in this chapter is used to fit the yield data. In 

the fitted model, transformed cereal crop yields is taken as the response variable; and all 

the categorical fixed factors explained in Section 2.1.4, (Seed type, Fertilizer type, 

Extension program, Type of crop prevention, Crop damage, Protection of soil erosion, 

Crop irrigation, Household head Sex, and Zone), and a random factor (i.e. the 

Enumeration Area), are included in the model as the explanatory variables. The models 

used to fit the data are formulated as shown below: 

                                                         𝐘 = 𝐗𝛃 + 𝐙𝐔 + 𝛆 

    where Y: is a (40,235 x 1) vector of values resulting from a square root 

transformation of cereal crops mean yields,  
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 β: is a (22 x 1) vector of the overall mean and the main effects parameters of the 

fixed effects; which represents: β = (β0, seedtype1, Fertliz0, Fertliz1, Fertliz2, Cropp0, 

cropp1, Cropp2, Damage1, Ext1, Irrg1, Serrop1, HHsex1, Zone1, Zone2, Zone3, Zone4, 

Zone5, Zone6, Zone7, Zone8, and Zone9). 

 X: is the known design matrix of dimension (40,432 x 22), 

 U: represents a (439 x 1) vector of the random effect parameters (i.e. the 439 

randomly selected Enumeration areas (EAs) in the region),  

 Z: is a matrix of size (40,432 x 439) for the random (EA) effects and, 

 ε: is the random error of size (40,432 x 1) vector of residual components. 

Before summarizing the above general linear model equation in a matrix notation to 

represent the data, we would look at the Variance Components Model for estimating the 

variance components, in our case variances of the random variables (EAs) and the 

random effects (Residuals), as follows: 

Yijklmnopqrs = μ + αi + β
j

+ γ
k

+ δl + θm + νn + κo + χ
p

+ ηq + ηr + εijklmnopqrs  

Where: μ stands for the overall mean  

α represents the seed type effect for i = 1; 2, 

β represents the type of fertilizer use effect for j = 0; 1; 2; 3, 

γ represents crop prevention effect for k = 0; 1; 2; 3, 

δ represents crop damage effect for l = 1; 2, 

θ represents extension programme for m = 1; 2, 

ν represents crop irrigation for n = 1; 2, 

κ represents prevention of soil erosion for o = 1; 2, 

χ represents head of household sex for p = 1; 2, 

η represents the zone effect for q = 1; 2; . . . ; 10, 
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η represents the random effects of the random factor (EA) for r = 1; 2; . . . ; 439, 

and  

ε represents the residual components for the specified levels. 

The next section is devoted to fit the mixed model discussed in this chapter to our 

transformed cereals yield data and discuss the results obtained for each crop type.  

4.8 Discussions and Conclusions on Results of the Mixed 

 Models  

Analyzing the crop yields data using mixed models procedures was implemented 

initially by fitting the unconditional means models (i.e.  models with only the random 

factors, EAs) to the yield data of the cereal crops; and then the conditional means 

models (i.e. models including the random factors and all the fixed factors) are fitted. 

This helps to use the estimated outputs for covariance components as a basis for making 

comparisons with the subsequently fitted models and to draw appropriate conclusions 

regarding the effects of random factors as well as the fixed factors included in the 

models. Thus, the covariance parameter estimates corresponding to the unconditional 

and conditional mean yields models, by crop type, are presented in Table 4.1 and Table 

4.2 respectively. In Table 4.1, it is revealed that the mean yields for all types of the 

cereal crops have shown significant variability between the random factors (EAs). This 

can be observed from Table 4.1, for example, that the unconditional model estimated 

the variance for barley mean yields due to the random effects, EAs, as σEA
2 = 0.5306; 

and the random errors as σε
2 = 2.013 x10−7 .   
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Table 4.1 Unconditional Models Covariance Parameter Estimates by Crop Type 

 

Crop Type 

 

Covariance Parameter Estimates 

Cov Parm Subject Estimate Standard Error Z Value Pr Z 

 

Barley 

 

Intercept EAID 0.5306 0.04171 12.72 <.0001 

Residual  2.013E-7 0 . . 

Maize Intercept EAID 0.9624 0.06929 13.89 <.0001 

Residual  2.38E-7 0 . . 

Sorghum Intercept EAID 0.6473 0.05518 11.73 <.0001 

Residual  1.575E-7 0 . . 

Teff Intercept EAID 0.4468 0.03267 13.68 <.0001 

Residual  1.06E-7 0 . . 

Wheat Intercept EAID 0.6903 0.05598 12.33 <.0001 

Residual  5.319E-7 0 . . 

 

Table 4.2 Conditional Models Covariance Parameter Estimates by Crop Type 

 

Crop Type 

 

Covariance Parameter Estimates 

Cov Parm Subject Estimate Standard Error Z Value Pr Z 

 

Barley 

 

Intercept EAID 0.4490 0.03583 12.53 <.0001 

Residual  2.039E-7 0 . . 

Maize Intercept EAID 0.7681 0.05606 13.70 <.0001 

Residual  2.387E-7 0 . . 

Sorghum Intercept EAID 0.5427 0.04704 11.54 <.0001 

Residual  1.584E-7 0 . . 

Teff Intercept EAID 0.3408 0.02526 13.49 <.0001 

Residual  1.066E-7 0 . . 

Wheat Intercept EAID 0.5415 0.04462 12.14 <.0001 

Residual  5.052E-7 0 . . 

 

The estimated component of variances for the random factors suggested that the mean 

crop yield for barley varies considerably between the enumerations areas (EAs) in the 

region. Likewise, the estimated variance for residuals, which shows the unexplained 

variance in the mean yields for barley after controlling for the random sampling factor, 

EAs, was close to zero. This is true for the other four crop types as well, because their 

estimated residual values are similarly close to zero. 
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We can also make more interpretations by taking the estimated covariances for the 

random effects shown in the Tables 4.1 and 4.2 and computing for barley crop as 

0.5306−0.4490

0.5306
 = 0.1538 . This result (0.1538) pointed out that only 15.38% of the 

portion of explainable variation is explained by the fixed factors included in the model 

for barley crop yield data. This means that a very small fraction of the EA to EA 

variation in the barley mean yields was explained by the included fixed factors. Or, in 

other words, there is still a large fraction of variation (84.62%) of the explainable EA to 

EA variations for barley mean yields remain unexplained. For maize, sorghum, teff, and 

wheat crops, the explained portion of variation by the fixed factors of the explainable 

EA to EA variations were calculated to be 20.19%, 16.16%, 23.72%, and 21.56% 

respectively. These values can be interpreted in a similar way as it was done with the 

values for barley mean yield. 

 Results for Type 3 tests of fixed effects 

Tests of fixed effects table, from SAS Proc Mixed Procedure outputs, can be used to test 

the collective effects of all levels of a categorical variable included in a model. Thus, for 

our fitted models, the table for 
3
Type 3 tests of fixed effects by crop type is given in 

Tables 4.3, 4.4, 4.5, 4.6, and 4.7 for barley, maize, sorghum, teff, and wheat crops 

respectively. The results showed that the zone effects on the transformed mean yields of 

the crops were strongly significant for all cereal crop types; whereas crop prevention 

methods, gender of head of the household, and extension programme were significantly 

affecting the transformed mean yields of maize, sorghum, and teff crops respectively. 

                                                
3
 Type 3 tests examine the significance of each partial effect, that is, the significance of an effect with all 

the other effects in the model (SAS, 2004). 
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       Table 4.3 Type 3 Tests of Fixed Effects 

           for Transformed Barley Data 

Effect Num DF Den DF F Value Pr > F 

Zone 9 314 7.56 <.0001 

Seedtype 1 1 0.00 0.9791 

Fertliz 3 291 0.08 0.9696 

Cropprev 3 149 0.66 0.5800 

Damage 1 233 2.10 0.1489 

Irrg 1 15 0.00 0.9994 

Ext 1 51 0.00 0.9835 

Serrop 1 118 0.00 0.9768 

HHsex 1 186 0.26 0.6140 

 

Table 4.4 Type 3 Tests of Fixed Effects 

                         for Transformed Maize Data 

Effect Num DF Den DF F Value Pr > F 

Zone 9 375 11.94 <.0001 

Seedtype 1 98 0.02 0.8787 

Fertliz 3 516 0.69 0.5606 

Cropprev 3 201 3.19 0.0248 

Damage 1 332 0.03 0.8593 

Irrg 1 61 0.03 0.8739 

Ext 1 132 2.49 0.1173 

Serrop 1 182 0.82 0.3666 

HHsex 1 320 0.83 0.3625 

                     

                   Table 4.5 Type 3 Tests of Fixed Effects 

             for Transformed Sorghum Data     

Effect Num DF Den DF F Value Pr > F 

Zone 9 266 6.90 <.0001 

Seedtype 1 1 0.00 0.9735 

Fertliz 3 187 0.21 0.8880 

Cropprev 3 170 0.14 0.9355 

Damage 1 224 0.30 0.5860 

Irrg 1 13 0.00 0.9914 

Ext 1 18 0.13 0.7239 

Serrop 1 118 0.14 0.7139 

HHsex 1 194 5.09 0.0252 
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Table 4.6 Type 3 Tests of Fixed Effects 

             for Transformed Teff Data       

Effect Num DF Den DF F Value Pr > F 

Zone 9 364 13.49 <.0001 

Seedtype 1 11 0.03 0.8557 

Fertliz 3 382 0.79 0.4978 

Cropprev 3 161 0.48 0.6993 

Damage 1 295 1.42 0.2347 

Irrg 1 21 0.00 0.9935 

Ext 1 119 8.41 0.0045 

Serrop 1 152 1.51 0.2204 

HHsex 1 249 0.25 0.6145 

 

                                  Table 4.7 Type 3 Tests of Fixed Effects 

            for Transformed Wheat Data 

Effect Num DF Den DF F Value Pr > F 

Zone 9 294 10.34 <.0001 

Seedtype 1 46 0.25 0.6172 

Fertliz 3 317 0.04 0.9891 

Cropprev 3 163 0.86 0.4639 

Damage 1 217 0.75 0.3878 

Irrg 1 17 0.01 0.9244 

Ext 1 100 2.36 0.1273 

Serrop 1 105 2.28 0.1338 

Hhsex 1 167 0.11 0.7441 

 

The factors such as seed type, type of fertilizer used, crop damage, crop irrigation, and 

protection of soil erosion, included in the model were found to have no significant 

difference effects between the respective categorical variable levels in terms of the 

mean yields the cereal crops.  

These results of the mixed model analysis parameter estimates were completely 

different from the results obtained by applying OLS estimating methods of the multiple 

regression analysis in Chapter 3. This could be due to ignoring the EAs effect in the 

OLS analysis which resulted in biased parameter estimations; and the capability of 

mixed models to account for the variability in the mean yields due to the survey random 
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sampling units (i.e. the EAs).  This suggests that the regression results based on the 

OLS methods for our data would likely be misleading since the assumptions of 

independence and homoscedasticity are being violated by the observed dependences of 

the crops mean yields on the Enumeration Areas. 

In conclusion, the results implied that we need to use such as mixed models to our data 

and to include additional explanatory variables to explain the fraction of variations 

between the EAs which is not explained by the already included fixed factors. 

Furthermore, the results also justify the need for clustering of cereal crop yields within 

the enumeration areas (EAs).  
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Chapter 5 

  Cluster Analysis and its Application 

5.1 Introduction 

Cluster analysis is one of the multivariate methods used for displaying the similarities 

and dissimilarities between pairs of objects or cases in a set. The aim of cluster analysis 

is to identify the actual groups of objects or cases that are similar to each other but 

different from objects or cases in the other group (Kaufman, 1990).   

The procedures for forming clusters or groups can be classified into two broad 

clustering methods:  Hierarchical and Non-Hierarchical. In the hierarchical procedures, 

a hierarchy or tree-like structure is constructed to see the relationship among 

observations or individuals. In the non-hierarchical method a position in the 

measurement is taken as central place and distance is measured from such central point 

which is usually called a seed. Since it is not easy to identify the right central point, the 

non-hierarchical methods are rarely used in clustering (Romesburg, 1984). 

5.2 Hierarchical Clustering 

As mentioned above, hierarchical clustering method enables us to find successive 

clusters by using previously established clusters. The clusters could be formed based on 

either agglomerative or divisive method.  

Agglomerative hierarchical clustering begins with every case being a cluster by itself 

and at successive steps, similar clusters are merged to form larger clusters until all cases 
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merged in one cluster. Divisive clustering starts with all set of cases/objects in one 

cluster and end up with each case/object as individual clusters.  

 Steps for Hierarchical Clustering 

In general, grouping of cases through the use of hierarchical cluster analysis methods 

follows the following three main steps:  

i.     Choose a statistic that quantifies how far apart or similar two cases are,  

ii.    Determine which clusters are to be merged at successive steps, and 

iii.   Decide on the number of clusters needed to represent the data. 

 Measure of Distance Between Clusters 

Distance (similarity) is a measure of how far apart (how similar) two objects are. 

Distance measures are smaller for objects/cases that are similar, while their similarity 

measures are large. Although there are many different definitions of distance and 

similarity, the most accepted agglomerative methods are discussed as under:  

Single linkage (nearest neighbour): this method is based on the smallest distance 

between two cases in the different clusters, 

Complete linkage (furthest neighbour): this is based on the distance between the two 

furthest points in a cluster, and 

 Average linkage: this is based on the average distance from samples in one cluster to 

samples in other clusters. All of these methods use some measure of distance between 

data points as a basis for creating groups. The most frequently used distance measure is 

the generalized Euclidian distance,  
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                                                    𝑑𝑖𝑗 =  ∑  𝑥𝑖𝑘 − 𝑥𝑗𝑘 
2𝑝

𝑘=1  
1 2 

 

Where 𝑑𝑖𝑗  is the distance measure, which defines the distance between two clusters for 

combining clusters at each stage of  clustering procedures,  𝑥𝑖𝑘  is the value of variable 

Xk for object i and 𝑥𝑗𝑘  is the value of the same variable for object j (Manly, 2005).  

 Standardizing Variables 

Standardizing of variables is necessary if variables are measured on different scales. 

This is due to the fact that variables with large values tend to contribute more to the 

distance measure than variables with small values. Thus, they are standardized in some 

way so that all of the variables will be equally important in determining the distance 

measure. In this thesis, however, all the variables considered for clustering are measured 

on the same measurement scale, and hence, that is not of a problem. 

 Plotting the Distances  

A visual representation of the distance at which clusters are combined can be displayed 

by a tree-like plot called dendrogram. The distinct clusters produced are then interpreted 

by observing the grouping and relating them with some practical meaning in terms of 

the objective in this research which is to find possible groupings of similar zones based 

on quantitative data, i.e. the area percentage value allocated for each crop types as 

compared to the total cultivated area of the cereals within each particular zones in the 

region. 
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 Determining the number of clusters 

In order to have some measure to help deciding on the number of clusters, in addition to 

the visual assessment of the dendrogram, we can consider the statistics values of semi-

partial R
2
 (SPRSQ) and R-square (RSQ). SPRSQ value represents the decrease in the 

proportion of variance accounted for by joining the two clusters. RSQ indicates the 

proportion of variance accounted for by the clusters.  

There are no general rules available for assessing whether or not values of the statistics 

SPRSQ and RSQ are small or large, but the relative changes in the values of the 

statistics as the number of clusters increase can be useful in determining the number of 

clusters. A marked decrease or increase for SPRSQ and RSQ respectively may indicate 

that a satisfactory number of clusters have been reached (SAS).  

5.3 Discussions and Conclusions on Results of Clustering the 

 Data 

In this study we aimed to group the zones into similar classes which minimizes the 

variance within the classes and at the same time maximizes the variance between 

classes. The classes are determined based on the percentage value of the ratio of 

cultivated area for each type of the cereal crops to the total cultivated area of the crops 

within the respective zones in the region. The data collected during the year 2007/2008 

main agricultural season of the region by CSA was used to calculate the magnitudes 

(percentage values) for the classification. Hence, the complete linkage hierarchical 

clustering results presented in the clustering history table (Table 5.1) clearly showed 

that Zone 4 and Zone 5 were the two closest areas at a distance of about 0.23 units apart. 

As the distance increases slightly larger, i.e. at about 0.27 units, Zone 3 and Zone 8 
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joined together and the joining of the other zones continued and finally at a distance of 

about 2.04 units, it ends with Zone 1 and Zone 10 joining with the other groups of zones 

in one cluster. 

               Table 5.1 Cluster History of the Complete Linkage  

                                                  Cluster Analysis 

NCL CLUSTERS JOINED FREQ SPRSQ RSQ 
NORM 

Max 

Dist 9 4 5 2 0.0047 .995 0.2273 

8 3 8 2 0.0065 .989 0.2673 

7 2 6 2 0.0086 .980 0.3084 

6 7 9 2 0.0126 .968 0.373 

5 1 10 2 0.0237 .944 0.5113 

4 CL8 CL9 4 0.0380 .906 0.653 

3 CL7 CL6 4 0.1065 .800 0.8729 

2 CL3 CL4 8 0.2770 .523 1.3768 

1 CL5 CL2 10 0.5225 .000 2.0379 

 

This result implied that the most similar group has been determined by Zone 4 and  

Zone 5. These two zones are neighbours sharing similar geographic position which 

contributed in the similarity of the proportion of farm lands allocated for cultivating 

each of the five cereal crop types. In contrast, the cluster determined by Zone 1 and 

Zone 10 had been distinctively different from the rest of the other clusters of zones. 

These two zones are characterized by their hot climatic conditions and being major 

Sorghum producing areas in the region where more than 50% (approximately 54% in 

Zone 1 and 70% in Zone 10) of the total cultivated cereal farms was allocated to 

sorghum crops in each Zone. 

In Table 5.1 it is shown that the changes in SPRSQ are great when going from 1 to 2, 2 

to 3, 3 to 4 and from 4 to 5 clusters. Whereas, the additional decrease from having 6   

(or from 5 to 6) clusters is not that large as compared to the decrease from 4 to 5 
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clusters, indicating that the choice of five clusters would be reasonable. Likewise, the 

RSQ value also shows that going from 1 to 5 numbers of clusters yields a large gain 

whereas additional clustering does not produce large increase in RSQ value indicating 

how well the clusters are separated. Thus, based on these results obtained from SPRSQ 

and RSQ values and by considering the interpretability of the clusters, we determine 

that five groups of clusters would be satisfactory. 

The identified five groups of clusters resulting from the complete linkage analysis were 

as follows:  

Cluster 1 “Zone 4 and Zone 5”: mainly characterized by cultivating wheat and barley 

 crop types; 

Cluster 2 “Zone 3 and Zone 8”: mainly characterized by cultivating barley and sorghum 

 crop types; 

Cluster 3 “Zone 2 and Zone 6”: mainly characterized by cultivating teff and wheat 

 crop types;  

Cluster 4 “Zone 7 and Zone 9”: mainly characterized by cultivating maize and teff 

 crop types; and 

Cluster 5 “Zone 1 and Zone 10”: mainly characterized by cultivating sorghum crops. 
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Figure 5.1 Dendrogram of zones obtained from cluster analysis of complete 

 linkage analysis method. 

 Except for Cluster 5, the groupings of the zones revealed by the dendrogram (Fig. 5.1) 

were consistent with geographic locations of the zones in the region. There were also 

close relationship in the cultivated cereal crop types in the zones grouped within the 

same cluster and differences in crop types between different clusters. Thus the 

clustering pattern of the zones could also reflect the distribution patterns of different 

cereal crop types cultivated in the region since the apparent differences in the 

geographical and environmental conditions revealed the distribution of different cereal 

crop types cultivated in the region. Furthermore, this could be considered as the main 

reason for the similarities of the cultivated crops within each of the five groupings of the 

zones by the cluster analysis. This result brought to light the fact that the yield 

variability of cereals in the region could also be influenced by differences in the zones 

geographical and climatic conditions. 
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Chapter 6 

Summary and Conclusions 

The primary objective of this study was to identify the factors influencing the yield of 

main cereal crops using the data collected by CSA in the Amhara Nationals Regional 

State of Ethiopia. The factors along with some of the agricultural practices presented in 

the study included: seed type, fertilizer type, crop prevention measures, crop damage, 

extension program, irrigation, prevention of soil erosion, gender of the head of the 

household, and the zones.  The effects of these factors on the transformed mean yields 

of barley, maize, sorghum, teff and wheat crops were investigated using stepwise 

multiple regression analysis by applying the ordinary least squares (OLS) estimation 

method. 

From the stepwise regression, the R
2 

values of   0.224,   0.325, 0.252, 0.340, and 0.359 

resulted for barley, maize, sorghum, teff, and wheat models respectively; and these 

values actually account for the percentage of variation in the transformed mean yields of 

the cereals that is explained by the independent variables included in the models. They 

translate to 22.4%, 32.5%, 25.2%, 34%, and 35.9% respectively.  

In general, the most important factors that are identified to significantly influencing the 

transformed mean yields of the studied cereals are summarised and presented in Table 

6.1. The summaries are made based on the regression results summarised in Section 3.4 

and the “Type 3 Tests of Fixed Effects” tables (see the tables by crop type in Appendix 

Tables A.11-A.15) obtained by fitting a linear mixed model to the transformed data only 
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for fixed factors (i.e. no random factor effects except the error term). Hence, the 

combined effects of all levels of a factor which significantly influences mean yields of 

the particular cereals are identified and presented as shown in the table below.  

Table 6.1 Summary for the Type 3 Tests of Significance for Fixed Effects by  

     Crop Type 

Crop types 

 

Factors significantly affecting the mean yields of cereals 

 

Barley Zone, Fertilizer type, Extension programme, and Crop damage. 

Maize 
Zone, Seed type, Fertilizer type, Crop damage, Irrigation, and Protection of 

soil erosion. 

Sorghum 

Zone, Fertilizer type, Crop prevention method, Extension programme, 

Crop damage, Protection of soil erosion, and Gender of the household 

head. 

Teff 

Zone, Fertilizer type, Crop prevention method, Extension programme, 

Crop damage, Protection of soil erosion, and Gender of the household 

head. 

Wheat 
Zone, Fertilizer type, Crop prevention method, Extension programme, 

Crop damage, and Gender of the household head. 

 

The summarised results of the Type 3 tests of the fixed factors in the above table 

depicted that the location factor (zone), the type of fertilizers applied on farms and the 

effects of crop damages (i.e. crop diseases, pests, flood, frost, locust etc.) were the 

factors in all cereal models which have significantly influenced mean yields of the 

cereals in the region.  Likewise, the effects of extension programmes have shown to 

have significant effect on the mean yields of all, except maize, cereal crops. There were 

also no significant differences of effects with respect to seed type and irrigation factors 

as compared to their respective reference categories on the transformed mean yields of 
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all cereal crops except maize. The application of crop prevention methods on the cereal 

farms had significant difference effects between its categorical levels on the mean yields 

of sorghum, teff and wheat crop types. However, it fails to significantly differ between 

its levels to influence the transformed mean yields of barley and maize crops. In 

addition, the transformed mean yields of these three crop types were affected by 

difference effects between the levels of gender which highlights the importance of 

accounting for gender differences when dealing with the productivity of cereal crops in 

the region.  

Subsequently, the linear mixed model was applied to the transformed data to improve 

our model efficiency and to see effects associated with the random effects. The results 

(see Tables 4.3 - 4.7) show that the difference effects between the levels of the zone 

variable were strongly significant in influencing the transformed mean yields of all the 

cereal types. In addition to this, crop prevention methods, gender, and extension 

programmes were found to have significant difference effects between their levels on 

the transformed mean yields of maize, sorghum and teff crops respectively. The other 

factors, such as seed type, the type of fertilizer use, crop damage, crop irrigation, and 

protection of soil erosion, were found to have no significant difference effects between 

their levels on the transformed mean yields of the cereals. These results were entirely 

different from the prior summaries made on the OLS estimates of the multiple 

regression analysis. This could be as a result of the capability of mixed models to 

account for the variability in the transformed mean yields due to the random effects (i.e. 

the EAs).  This suggests that the regression results based on the OLS methods for our 

data must be interpreted with caution in view of the observed dependencies of the 

transformed mean yields of the crops on the enumeration areas. Furthermore, it 
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confirms the need to use models which are capable of accounting for the random 

effects, such as mixed models, instead of applying the ordinary regression models to our 

data.  

Finally, cluster analysis was implemented to identify the similarities and dissimilarities 

of zones in different groups, using the complete linkage hierarchical clustering methods. 

The clustering methods were implemented based on the percentage of cultivated area 

values for the particular cereal crop within the zone. The five identified groups of 

classes (clusters) resulting from the analysis seems to be in agreement with the type of 

crops produced in the respective geographical locations. These clusters of zones were 

identified as: cluster 1 „Zone 4 and Zone 5‟ (or S.Wello and N.Shewa); cluster 2 „Zone 

3 and Zone 8‟ (or N.Wello and Wag-Hemra); cluster 3 „Zone 2 and Zone  6‟ (or 

S.Gondar and E.Gojam); cluster 4 „Zone 7 and Zone 9‟ (or W.Gojam and Awi); and 

cluster 5 „Zone 1 and Zone 10‟ (or N.Gondar and Oromia zone). 

In conclusion, the study showed that the yield variability of cereals in the region is 

strongly influenced by the differences in their locations (zones). This could be reflected 

mainly by the differences in zonal environmental and geo-climatic conditions. Likewise 

the significance of the difference effects between the levels of extension programme on 

transformed mean yields of the cereals points us in the direction for the need to bring 

more number of farmers (cereal farms) into the extension programmes. This is due to 

the fact that the possibility of applying improved agricultural inputs and better 

management practices of the farmers would increase accordingly. The low level use of 

improved seed types as well as the existing inconsistent application of irrigation 

practices in the region could be considered among the main reasons for their 

insignificance of the difference effects between their levels to influence the transformed 
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mean yields of the cereals (see Table 2.3). This shows the importance to increase 

application of improved seeds and better irrigation practices on the cereal farms. 

Moreover, efforts should be made to provide farmers with the best possible means of 

reducing the prevalent crop damages so as to enhance the productivity of cereal crops in 

the region.  

Cereal crop production in Ethiopia in general and in the Amhara National Regional 

State in particular, is characterized by its reliance on low input usage and high 

dependence on rain fed agriculture. In such type of agriculture unsteadiness concerning 

the yield of cereal crops was mainly the result of variation in weather condition (Alemu, 

2005, Jaeger, 1991). Thus, the limitations associated with this study are due to the 

nature of the available data which fails to include factors regarding weather variability. 

Therefore, future studies in this area need to incorporate the climatic factors and other 

relevant additional variables in their data. 
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Appendix A: Additional Tables 

Appendix Tables 

Table A.1 Model Summary for Transformed Barley Data 

Step-wisely 

included 

factors  

  

R 

Square 

  

Adjusted 

R Square 

  

Std. Error 

of the 

Estimate 

  

Change Statistics 

R 

Square 

Change F Change df1 df2 

Sig. F 

Change 

Zone5 .155 .155 .68305 .155 1205.012 1 6577 .000 

Zone1 .177 .176 .67425 .022 173.842 1 6576 .000 

FERTLIZ2 .192 .192 .66781 .016 128.522 1 6575 .000 

Zone2 .206 .206 .66221 .014 112.614 1 6574 .000 

Zone3 .210 .210 .66050 .004 35.104 1 6573 .000 

Zone8 .216 .215 .65833 .005 44.388 1 6572 .000 

EXT1 .218 .217 .65733 .003 21.054 1 6571 .000 

Zone4 .221 .220 .65619 .003 23.814 1 6570 .000 

DAMAGE1 .222 .221 .65566 .001 11.525 1 6569 .001 

FERTLIZ1 .223 .222 .65524 .001 9.457 1 6568 .002 

Zone6 .224 .223 .65482 .001 9.395 1 6567 .002 

 

Table A.2 Model Summary for Transformed Maize Data  

Step-wisely 

included 

factors  

 

R 

Square 

  

Adjusted 

R Square 

  

Std. Error 

of the 

Estimate 

  

Change Statistics 

R Square 

Change F Change df1 df2 

Sig. F 

Change 

Fertliz2 .150 .150 .93321 .150 1699.617 1 9612 .000 

Zone7 .180 .180 .91680 .030 348.128 1 9611 .000 

Zone9 .226 .226 .89068 .046 573.172 1 9610 .000 

Zone1 .250 .250 .87690 .024 305.246 1 9609 .000 

Zone5 .272 .271 .86418 .022 285.962 1 9608 .000 

Zone6 .289 .288 .85401 .017 231.175 1 9607 .000 

Zone4 .299 .299 .84781 .010 142.074 1 9606 .000 

Seedty2 .306 .306 .84340 .007 101.671 1 9605 .000 

Damage1 .312 .311 .84034 .005 71.184 1 9604 .000 

Fertliz3 .316 .315 .83792 .004 56.505 1 9603 .000 

Irrg1 .320 .319 .83545 .004 57.961 1 9602 .000 

Serro1 .322 .321 .83394 .003 35.631 1 9601 .000 

Zone2 .324 .323 .83301 .002 22.578 1 9600 .000 

Zone8 .324 .323 .83267 .001 8.863 1 9599 .003 

Fertliz1 .325 .324 .83242 .001 6.686 1 9598 .010 
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Table A.3 Model summary for Transformed Sorghum Data  

Step-wisely 

included 

factors  

  

R 

Square 

  

Adjusted 

R Square 

  

Std. Error 

of the 

Estimate 

  

Change Statistics 

R Square 

Change F Change df1 df2 

Sig. F 

Change 

Zone1 .070 .070 .76108 .070 550.038 1 7257 .000 

Zone5 .142 .141 .73142 .071 601.461 1 7256 .000 

Zone9 .177 .177 .71628 .035 310.985 1 7255 .000 

Zone6 .195 .195 .70842 .018 162.878 1 7254 .000 

Cropp1 .213 .212 .70064 .018 163.000 1 7253 .000 

Serrop1 .227 .226 .69437 .014 132.516 1 7252 .000 

Fertliz1 .233 .232 .69169 .006 57.425 1 7251 .000 

Zone4 .238 .237 .68949 .005 47.267 1 7250 .000 

Zone3 .242 .241 .68746 .005 43.869 1 7249 .000 

Zone7 .244 .243 .68676 .002 15.812 1 7248 .000 

Cropp3 .246 .244 .68610 .002 14.925 1 7247 .000 

Cropp2 .247 .246 .68533 .002 17.244 1 7246 .000 

Damage1 .249 .247 .68477 .001 13.008 1 7245 .000 

Zone2 .250 .248 .68430 .001 10.985 1 7244 .001 

Ext1 .251 .249 .68385 .001 10.382 1 7243 .001 

HHsex2 .252 .250 .68363 .001 5.817 1 7242 .016 

 

Table A.4 Model Summary for Transformed Teff Data  

Step-wisely 

included 

factors  

 

R 

Square 

  

Adjusted 

R Square 

  

Std. Error 

of the 

Estimate 

  

Change Statistics 

R 

Square 

Change F Change df1 df2 

Sig. F 

Change 

Zone5 .238 .238 .58049 .238 3259.328 1 10452 .000 

Zone4 .259 .258 .57249 .021 295.007 1 10451 .000 

Zone6 .272 .272 .56733 .013 192.120 1 10450 .000 

Zone3 .284 .283 .56285 .012 167.879 1 10449 .000 

Damage1 .292 .291 .55965 .008 120.974 1 10448 .000 

Zone8 .300 .299 .55649 .008 119.851 1 10447 .000 

Fertliz1 .305 .305 .55437 .005 81.151 1 10446 .000 

Zone9 .308 .307 .55333 .003 40.237 1 10445 .000 

Zone2 .310 .310 .55245 .002 34.514 1 10444 .000 

Zone7 .316 .315 .55026 .006 84.136 1 10443 .000 

Zone1 .335 .334 .54258 .019 298.618 1 10442 .000 

Ext1 .337 .336 .54180 .002 31.183 1 10441 .000 

Cropp2 .338 .337 .54135 .001 18.386 1 10440 .000 

Serrop1 .339 .338 .54103 .001 13.486 1 10439 .000 

HHsex2 .339 .338 .54083 .001 8.767 1 10438 .003 

Fertliz2 .340 .339 .54072 .001 4.934 1 10437 .026 
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Table A.5 Model Summary for Transformed Wheat Data  

Step-wisely 

included 

factors  

  

R 

Square 

  

Adjusted 

R Square 

  

Std. Error 

of the 

Estimate 

  

Change Statistics 

R Square 

Change F Change df1 df2 

Sig. F 

Change 

Zone5 .278 .278 .65651 .278 2342.105 1 6092 .000 

Zone2 .307 .307 .64291 .030 261.572 1 6091 .000 

Zone7 .318 .317 .63821 .010 90.918 1 6090 .000 

Zone1 .329 .328 .63306 .011 100.598 1 6089 .000 

Cropp2 .335 .334 .63020 .006 56.420 1 6088 .000 

Damage1 .341 .341 .62723 .006 58.729 1 6087 .000 

Ext1 .344 .343 .62602 .003 24.554 1 6086 .000 

Fertliz2 .351 .350 .62270 .007 66.126 1 6085 .000 

Zone9 .353 .352 .62182 .002 18.166 1 6084 .000 

Zone3 .355 .354 .62094 .002 18.271 1 6083 .000 

Cropp3 .356 .355 .62027 .001 14.022 1 6082 .000 

Zone8 .357 .356 .61983 .001 9.765 1 6081 .002 

Fertliz1 .358 .357 .61938 .001 9.742 1 6080 .002 

HHsex2 .359 .357 .61918 .001 4.998 1 6079 .025 

 

Table A.6 Model Summary for Transformed Barley Data without Zone Effect 

Model 
R 

Square 

Adjusted 

R Square 

Std. Error 

of the 

Estimate 

Change Statistics 

R Square 

Change 

F 

Change 
df1 df2 

Sig. F 

Change 

1 .013 .013 .73822 .013 85.443 1 6577 .000 

2 .020 .020 .73557 .007 48.387 1 6576 .000 

3 .022 .022 .73478 .002 15.087 1 6575 .000 

4 .024 .023 .73435 .001 8.750 1 6574 .003 

5 .025 .024 .73403 .001 6.811 1 6573 .009 

6 .025 .025 .73377 .001 5.537 1 6572 .019 
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Table A.7 Model Summary for Transformed Maize Data without Zone Effect 

Model 
R 

Square 

Adjusted 

R Square 

Std. Error 

of the 

Estimate 

Change Statistics 

R 

Square 

Change 

F Change df1 df2 
Sig. F 

Change 

1 .150 .150 .93321 .150 1699.617 1 9612 .000 

2 .175 .175 .91950 .025 289.813 1 9611 .000 

3 .188 .187 .91254 .013 148.117 1 9610 .000 

4 .193 .193 .90936 .006 68.459 1 9609 .000 

5 .197 .197 .90730 .004 44.668 1 9608 .000 

6 .200 .200 .90561 .003 36.866 1 9607 .000 

7 .201 .201 .90493 .001 15.392 1 9606 .000 

8 .203 .202 .90430 .001 14.332 1 9605 .000 

9 .204 .203 .90380 .001 11.663 1 9604 .001 

10 .204 .203 .90348 .001 7.901 1 9603 .005 

 

 

Table A.8 Model Summary for Transformed Sorghum Data without Zone Effect 

Model 
R 

Square 

Adjusted 

R Square 

Std. Error 

of the 

Estimate 

Change Statistics 

R Square 

Change 
F Change df1 df2 

Sig. F 

Change 

1 .050 .050 .76923 .050 385.383 1 7257 .000 

2 .066 .066 .76278 .016 124.421 1 7256 .000 

3 .073 .073 .76013 .007 51.608 1 7255 .000 

4 .076 .075 .75914 .003 19.973 1 7254 .000 

5 .078 .077 .75831 .002 16.803 1 7253 .000 

6 .082 .081 .75678 .004 30.457 1 7252 .000 
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Table A.9 Model Summary for Transformed Teff Data without Zone Effect 

Model 

 

R 

Square 

Adjusted 

R Square 

Std. Error 

of the 

Estimate 

Change Statistics 

 

R 

Square 

Change 

F Change df1 df2 
Sig. F 

Change 

1 .019 .018 .65868 .019 197.099 1 10452 .000 

2 .023 .023 .65718 .005 49.042 1 10451 .000 

3 .028 .028 .65553 .005 53.460 1 10450 .000 

4 .031 .031 .65443 .003 36.097 1 10449 .000 

5 .035 .034 .65335 .003 35.784 1 10448 .000 

6 .037 .036 .65277 .002 19.342 1 10447 .000 

7 .037 .037 .65255 .001 8.313 1 10446 .004 

8 .038 .037 .65242 .000 5.069 1 10445 .024 

9 .038 .037 .65230 .000 4.823 1 10444 .028 

 

Table A.10 Model Summary for Transformed Wheat Data without Zone Effect 

Model 
R 

Square 

Adjusted 

R Square 

Std. Error 

of the 

Estimate 

Change Statistics 

R Square 

Change 
F Change df1 df2 

Sig. F 

Change 

1 .029 .029 .76119 .029 181.951 1 6092 .000 

2 .044 .043 .75547 .015 93.471 1 6091 .000 

3 .046 .046 .75455 .002 15.869 1 6090 .000 

4 .051 .051 .75254 .005 33.593 1 6089 .000 

5 .053 .052 .75192 .002 11.062 1 6088 .001 

6 .055 .054 .75131 .002 10.885 1 6087 .001 

7 .056 .055 .75084 .001 8.587 1 6086 .003 

8 .057 .056 .75052 .001 6.312 1 6085 .012 
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       Table A.11 Type 3 Tests of Fixed Effects for  

             Transformed Barley Data  

   (no random factor, EAs) 

Effect Num DF Den DF F Value Pr > F 

ZONE 9 6557 187.96 <.0001 

SEEDTYPE 1 6557 1.18 0.2782 

FERTLIZ 3 6557 38.22 <.0001 

CROPPREV 3 6557 1.46 0.2235 

DAMAGE 1 6557 11.14 0.0009 

IRRG 1 6557 2.05 0.1523 

EXT 1 6557 25.38 <.0001 

SERROP 1 6557 0.70 0.4035 

HHSEX 1 6557 2.75 0.0975 

                                     

        Table A.12 Type 3 Tests of Fixed Effects for  

Transformed Maize Data 

 (no random factor, EAs )   

Effect Num DF Den DF F Value Pr > F 

ZONE 9 9592 191.07 <.0001 

SEEDTYPE 1 9592 48.25 <.0001 

FERTLIZ 3 9592 57.00 <.0001 

CROPPREV 3 9592 1.46 0.2239 

DAMAGE 1 9592 78.70 <.0001 

IRRG 1 9592 53.63 <.0001 

EXT 1 9592 1.50 0.2214 

SERROP 1 9592 32.06 <.0001 

HHSEX 1 9592 1.72 0.1894 

 

Table A.13 Type 3 Tests of Fixed Effects for 

Transformed Sorghum Data 

(no random factor, EAs ) 

Effect Num DF Den DF F Value Pr > F 

ZONE 9 7237 182.76 <.0001 

SEEDTYPE 1 7237 0.04 0.8352 

FERTLIZ 3 7237 20.88 <.0001 

CROPPREV 3 7237 35.83 <.0001 

DAMAGE 1 7237 14.60 0.0001 

IRRG 1 7237 0.42 0.5182 

EXT 1 7237 13.27 0.0003 

SERROP 1 7237 168.69 <.0001 

HHSEX 1 7237 5.81 0.0160 
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     Table A.14 Type 3 Tests of Fixed Effects for 

Transformed Teff Data  

(no random factor, EAs ) 

Effect Num DF Den DF F Value Pr > F 

ZONE 9 1E4 530.41 <.0001 

SEEDTYPE 1 1E4 0.66 0.4182 

FERTLIZ 3 1E4 15.23 <.0001 

CROPPREV 3 1E4 8.90 <.0001 

DAMAGE 1 1E4 162.19 <.0001 

IRRG 1 1E4 3.14 0.0766 

EXT 1 1E4 27.13 <.0001 

SERROP 1 1E4 14.11 0.0002 

HHSEX 1 1E4 8.71 0.0032 

                                               

                              Table A.15 Type 3 Tests of Fixed Effects for 

Transformed Wheat Data  

                          (no random factor, EAs ) 

Effect Num DF Den DF F Value Pr > F 

ZONE 9 6072 321.32 <.0001 

SEEDTYPE 1 6072 2.02 0.1549 

FERTLIZ 3 6072 26.40 <.0001 

CROPPREV 3 6072 23.88 <.0001 

DAMAGE 1 6072 66.56 <.0001 

IRRG 1 6072 0.61 0.4360 

EXT 1 6072 61.08 <.0001 

SERROP 1 6072 0.05 0.8275 

HHSEX 1 6072 5.11 0.0238 

 


