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Abstract

In the standard modeling of the pricing of options and derivatives as generally understood

these days the underlying process is taken to be a Wiener Process or a Levy Process. The

stochastic process is modeled as a stochastic differential equation. From this equation a partial

differential equation is obtained by application of the Feynman-Kac Theorem. The resulting

partial differential equation is of Hamilton-Jacobi-Bellman type.

Analysis of the partial differential equations arising from Mathematics of Finance using the

methods of the Lie Theory of Continuous Groups has been performed over the last twenty

years, but it is only in recent years that there has been a concerted effort to make full use

of the Lie theory. We propose an extension of Mahomed and Leach’s (1990) formula for the

nth-prolongation of an nth-order ordinary differential equation to the nth-prolongation of the

generator of an hyperbolic partial differential equation with p dependent and k independent

variables. The symmetry analysis of this partial differential equation shows that the associated

Lie algebra is {sl(2, R)⊕W3} ⊕s∞A1 with 12 optimal systems.

A modeling approach based upon stochastic volatility for modeling prices in the deregulated

Pennsylvania State Electricity market is adopted for application. We propose a dynamic linear

model (DLM) in which switching structure for the measurement matrix is incorporated into a

two-state Gaussian mixture/first-order autoregressive (AR (1)) configuration in a nonstationary

independent process defined by time-varying probabilities. The estimates of maximum likeli-
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hood of the parameters from the “modified” Kalman filter showed a significant mean-reversion

rate of 0.9363 which translates to a half-life price of electricity of nine months. Associated with

this mean-reversion is the high measure of price volatility at 35%.

Within the last decade there has been some work done upon the symmetries of stochastic differ-

ential equations. Here empirical results contradict earliest normality hypotheses on log-return

series in favour of asymmetry of the probability distribution describing the process. Using the

Akaike Information Criterion (AIC) and the Log-likelihood estimation (LLH) methods as selec-

tion criteria, the normal inverse Gaussian (NIG) outperformed four other candidate probability

distributions among the class of Generalized Hyperbolic (GH) distributions in describing the

heavy tails present in the process. Similarly, the Skewed Student’s t (SSt) is the best fit for

Bonny Crude Oil and Natural Gas log-returns. The observed volatility measures of these three

commodity prices were examined. The Weibull distribution gives the best fit both electricity

and crude oil data while the Gamma distribution is selected for natural gas data in the volatility

profiles among the five candidate probability density functions (Normal, Lognormal, Gamma,

Inverse Gamma and the Inverse Gaussian) considered.
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Chapter 1

Preliminaries

Sophus M Lie believed that any natural mathematical theory should be transparent,

and that difficulties in mathematics usually arise not from the essence of the problem

but from badly conceived definitions. -Yaglom (1988)

1.1 Introduction

We present this thesis in two parts. The first part discusses symmetry analysis as a procedure

for finding solutions of differential equations and symmetries of our given partial differential

equation. Through Lie point symmetries of this partial differential equation we find closed-

form solutions necessary for modeling prices of electricity futures. In the second part we try

to construct a “bridge” that links the given partial differential equation to numerical data and

attempt to fit some probability distributions. Goodness-of-fit tests are intended to find or

identify a class of probability distributions the random processes of which generated the data.

In the following sections of this chapter we sketch some of the relevant definitions that are used

in the two parts of the Thesis.
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1.2 Overview of Symmetries

The perception of symmetry that lies at the core of our conscious life manifests in most abstract

and physical situations and it makes nature have a sense of beauty. Due to the common occur-

rence of symmetries, most people intrinsically feel they understand its concept. The concept is a

powerful one, finding applications in such diverse fields as art and science. Symmetry is univer-

sal, fascinating and of immense importance. Despite an astonishing variety of shapes (Cantwell

2002), all members of the animal kingdom possess body architectures that can be sorted into

about 37 basic types. In Art, paintings by the Dutch artist M C Escher (Schattschneider D.

1990), for example, make extensive use of various symmetry operations. Today most floor tiles

and textile designs are based upon the concepts of symmetry. Birkhoff (1933) in his fascinating

work attempted to quantify the relationship between symmetry and beauty and as a result

developed what he called the “Aesthetic Measure”.

Although several definitions of symmetry exist depending upon the application for which it is

intended, Weyl (1952) has it that an object is symmetrical if one can subject it to a certain

operation and it remains exactly the same after that operation. The object is then said to be

invariant with respect to the given operation. Leach (2006) defined symmetry as an operation

that leaves invariant that upon which it operates. The symmetry properties of an object can

usually be expressed in terms of a set of matrices each of which, when used to transform

the various points comprising the object, leaves it unchanged in appearance. To classify the

notion of symmetry and its mathematical description Cantwell examined the rotational and

reflectional properties of a snowflake. Two types of symmetry can be distinguished, namely

discrete and continuous symmetries. A discrete symmetry is one which must be performed as

a single operation and cannot be broken up into parts. An example is provided by translations

in the plane, as in, for example, floor tiles where specific pattern is repeated at finite intervals

and hence invariant under finite translation of precise discreteness in the plane. The equilateral

triangle is another example that is invariant under rotation about its centroid by any multiple

of 120◦. It has six distinct symmetries; the isosceles triangle has two, while the scalene (the

triangle with three unequal sides) has only a trivial symmetry (Hydon 2000). As we see in this
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Thesis, the number of point symmetries generated from a differential equation depends upon

certain conditions specified for that equation.

A continuous symmetry on the other hand is one which depends upon the value of a parameter

which can take all values in an interval of the real line. Invariance under a continuous trans-

formation can be demonstrated by the rotation of a circle (or a disc) about an axis through

its centre normal to the plane of the circle. No matter the angle through which the circle is

rotated, the appearance of the circle remains unchanged. Since the angle can vary continuously,

these rotations are known as continuous transformations.

Symmetries provide a systematic means to obtain an enriched understanding of physical phe-

nomena and the associated equations. For instance, Leach and Andriopoulos (2005) and Naicker

et al (2005) report that knowledge of symmetries of partial differential equations enables re-

searchers to have a completely new way of looking at problems arising in Applied Mathematics

especially in modeling problems of mathematical finance. From the definition of a symmetrical

transformation one can deduce that every system of partial differential equations with topo-

logically continuous solution sets admits symmetries. This plays a major role in many of the

applications associated with differential equations. Such roles include the following:

(i) The deduction of new solutions from known ones;

(ii) The reduction of order of ordinary and partial differential equations;

(iii) The classification of special solutions;

(iv) The classification of families of equations;

(v) The construction of types of equations that admit a prescribed group of transformations;

(vi) The linearisation of equations by invertible transformations; the asymptotics of solutions;

and

(vii) Benchmarks for the testing of numerical algorithms.

One of the most important uses of symmetries is their contribution to the reduction of the

number of variables of a partial differential equation which is attributable to the interdepen-

3



dence of symmetry group techniques and the integrability of the equations. As a result of this

reduction higher-order equations can usually be reduced to quadratures if there is a sufficient

number of symmetries. It is important to recall that there are four approaches to the analysis

of the system

ui = fi (x, u) , i = 1, 2, ..., n. (1.2.1)

These are the techniques of dynamical systems, numerical and computational mathematics,

singularity analysis and symmetry analysis. The first two approaches Leach (2006) observes,

are generally applicable while the latter two are particularly relevant to integrable systems be-

cause the results of the analyses provide information about the integrability or otherwise of the

system. For the case of integrable systems they provide a procedure for finding the solution.

Once the symmetries of the system are known, all other techniques of tackling the problem

such as the numerical analysis can then be applied more effectively and with a better basic

understanding of the problem.

The three major methods to find symmetries of a system are the classical Lie method (we

introduce some of its concepts in section 1.4 and discuss its details in Chapters Two and

Three), the nonclassical method and the direct method. The last is a subset of the nonclassical

method. For the algorithms and comparisons of these methods the reader is referred to Arrigo

et al (1993, 1994), Bluman and Cole (1974), Bluman and Kumei (1987), Clarkson (1989a,b;

1995), Clarkson and Kruskal (1989) and Olver (1987).

1.3 Symmetries

The evolution in time of different symmetry types were introduced in the following order (Leach

2003): Point, Contact, Generalized and Nonlocal symmetries. We briefly outline them in the

following subsections.
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1.3.1 Point symmetry

Let x denote the position of a general point of an object and, if

Γ : x −→ x̂(x) (1.3.1)

is any symmetry, then we assume that x̂ is infinitely differentiable with respect to x. Moreover,

since Γ−1 is also a symmetry, x is infinitely differentiable with respect to x̂. Thus Γ is a (C∞)

diffeomorphism, that is a differentiable mapping which has a differentiable inverse (see, for

instance, Cantwell (2002) and Hydon (2000)).

Consider the infinitesimal transformation for a function f(x, u), x independent and u dependent

variables written as

x̄ = x+ εξ(x, u)

ū = u+ εη(x, u),

where ε is the parameter of smallness, the infinitesimal. When this transformation is written

in terms of a differential operator

Γ = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u
(1.3.2)

we refer to ξ and η as coefficient functions because of the way they occur in the definition of

Γ in (1.3.2). Under the action of the infinitesimal transformation generated by Γ a function

f(x, u) becomes

f̂ = (1 + εΓ)f(x, u) ≡ f(x+ εξ, u+ εη)

= f(x, u) + ε

(
ξ
∂f

∂x
+ η

∂f

∂u

)
.

When the function f(x, u) has a generator Γ under which it is invariant (unchanged), that is,

f̂(x̂, û) = f(x, u),

or

ξ
∂f

∂x
+ η

∂f

∂u
= 0,
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then Γ is called the symmetry of f(x, u) (see further illustrations in Sections (2.2) and (2.3)

of this Thesis). If ξ and η are coefficient functions of x and u only, then we have a point

transformation (1.3.2) and the symmetry is called a point symmetry.

For the generator to represent a symmetry of a differential equation, we need to extend the

group generated by Γ into the derivatives of, say, the first derivative

dû

dx̂
=

d(u+ εη)

d(x+ εξ)
=
du+ εdη

dx+ εdξ

=

(
du

dx
+ ε

dη

dx

)(
1 + ε

dξ

dx

)−1

=
(
u
′
+ εη

′
)(

1 + εξ
′
)−1

=
(
u
′
+ εη

′
)(

1− εξ′ + ε2ξ
′2 − · · ·

)
= u

′
+ ε

(
η
′ − u′ξ′

)
+O

(
ε2
)
,

where O (ε2) stands for the sum of all terms of second order or greater which is terminated at

O (ε) since ε is infinitesimal and prime denotes total differentiation with respect to x.

1.3.2 Contact symmetry

If, in addition to the dependent and independent variables in the point symmetry given in

Subsection 1.3.1 above, the coefficient functions depend upon u′, so that

Γ = ξ (x, u, u′) ∂x + η (x, u, u′) ∂u + ζ (x, u, u′) ∂u′ . (1.3.3)

Since the first extension Γ[1] does not contain u
′′

we require that, in

ζ (x, u, u′) = η′ (x, u, u′)− u′ξ′ (x, u, u′)

=
∂η

∂x
+ u′

∂η

∂u
+ u′′

∂η

∂u′
− u′

(
∂ξ

∂x
+ u′

∂ξ

∂u
+ u′′

∂ξ

∂u′

)
=

∂η

∂x
− u′ ∂ξ

∂x
+ u′

(
∂η

∂u
− u′ ∂ξ

∂u

)
+ u′′

(
∂η

∂u′
− u′ ∂ξ

∂u′

)
, (1.3.4)
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the last term is zero. This implies that Γ is a contact symmetry only if the coefficient of u
′′

is

zero, that is
∂η

∂u′
= u′

∂ξ

∂u′
.

1.3.3 Generalized symmetries

If the coefficient functions in Γ depend upon the derivatives possibly up to the highest admissible

derivative1, that is,

Γ = ξ (x, u, u′, ...) ∂x + η (x, u, u′, ...) ∂u. (1.3.5)

This produces some technical problems in that (x, u) space is extended to
(
x, u, u

′
, . . .

)
space.

It was to overcome this problem that the concept of contact transformation was introduced.

However, an nth-order transformation is of the form

Γ = ξ
(
x, u, u′, ..., u(n)

)
∂x + η

(
x, u, u′, ..., u(n)

)
∂u + ζ1

(
x, u, u′, ..., u(n)

)
∂u′

+...+ ζn
(
x, u, u′, ..., u(n)

)
∂u(n) ,

(1.3.6)

where substitution for nth derivatives has been made with one of the nth-order equations. We

note here that a point transformation is of order zero, contact symmetry is of first order, while

that of the generalized symmetry is of the nth-order of the differential equation. For details of

generalized symmetries and its historical evolution please see Olver (1993).

1.3.4 Nonlocal symmetry

Nonlocal symmetries are those symmetries in which the coefficient functions depend upon

integrals containing the derivatives and the dependent (and the independent) variables of the

differential equation. These symmetries are important as they have been linked with integrable

models (Olver, 1993).

A hidden symmetry is a Lie point symmetry which appears in the given differential equation

after a change of order and which does not have a point counterpart in the given equation. These

1In the case of an nth-order ordinary differential equation this means up to the (n− 1)th derivative but this

constraint falls away with partial differential equations.
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hidden symmetries that manifest themselves as nonlocal symmetries of the original equation

are suspected (Govinder and Leach, 1996) to be in their local form (where the transformations

depend on the variables of the equation) as a point symmetry following a reduction (or increase)

in the order of an equation. To summarize, the coefficient functions can depend upon integrals

of integrands of which are functions of x, u and u
′ (
u
′′
, . . .

)
.

Two types of hidden symmetries are identifiable, viz. TypeI and TypeII. A hidden symmetry

of Type I occurs when the order of a given differential equation is increased, whereas decreasing

the order of a given equation gives rise to a Type II hidden symmetry (Abraham-Shrauner and

Guo, 1994). For instance, if a differential equation has p symmetries and its descendant after

reduction of order produced q(q > p) symmetries, then these q − p symmetries were hidden

and are referred to as Type II hidden symmetries. Hence equations possessing no Lie point

symmetries may be reduced to quadratures when an increase in the order of the equation results

in a Type I hidden symmetry (Abraham-Shrauner et al 1995). These nonlocal symmetries are

referred to as “lost” because they cannot be determined via the infinitesimal generators of a

differential equation. However, due to their content, omitting them would mean discarding a

number of physical interesting solutions. For methods and procedures of finding these nonlocal

symmetries, see, for instance, Abraham-Shrauner and Guo (1992), Abraham-Shrauner and

Govinder (2006) and Anco and Bluman (1996).

1.4 Lie Group Theory

We define some of the key concepts that are used throughout this Thesis as powerful tools to

guide computations. Details of items defined hereunder can be found in Bluman and Kumei

(1989), Olver (1986) and Ovsyannikov (1982).

1.4.1 Group

A group G is a set of elements (numbers, vectors, octonions, etc.) with a law of composition φ

between elements satisfying the following properties:
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Closure Property: If X and Y are elements of G, then φ (X, Y ) is an element of G.

Associative Property: For any elements X, Y and Z of G

φ (X,φ (Y, Z)) = φ (φ (X, Y ) , Z) . (1.4.1)

Identity Property: There exists a unique identity element I of G such that for any element

X of G,

φ (X, I) = X = φ (I,X) . (1.4.2)

Inverse Element: For any element X of G there exists a unique element in G denoted by

X−1 such that

φ
(
X,X−1

)
= I = φ

(
X−1, X

)
, (1.4.3)

the element X−1 is called the inverse of X.

If two elements X and Y of a group (in G) satisfy the property

φ (X, Y ) = φ (Y,X) , (1.4.4)

they are said to commute.

1.4.2 Group of transformations

A set of transformations

x̄ = X (x, ε) (1.4.5)

defined for each x in D ⊂ R, depending upon the parameter ε lying in the set S ⊂ R with

φ (ε, δ) defining a composition of parameters ε and δ in S, forms a group of transformations on

D if

(i) for each parameter ε in S the parameter is one-to-one onto D.

(ii) S, with the law of composition φ, forms a group.
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(iii) x̄ = x when ε = I, that is

X (x, I) = x. (1.4.6)

(iv) If x̄ = X (x, ε) , ¯̄x = X (x̄, δ) , then

¯̄x = X (x, φ (ε, δ)) . (1.4.7)

1.4.3 Lie Group of transformations

A one-parameter (ε) Lie group of transformations is a group of transformations which, in

addition to the properties stated above, satisfies the following conditions:

(i) ε is a continuous parameter, that is, S is an interval in R (without loss of generality ε = 0

corresponds to the identity element I).

(ii) X is infinitely differentiable with respect to x in D and an analytic function of ε in S.

(iii) φ (ε, δ) is an analytic function of ε and δ and ε ∈ S, δ ∈ S.

1.4.4 Lie algebra of operators

An r-parameter Lie transformation group has associated r group operators Γ1, . . . ,Γr, which

are linearly independent and form an r-dimensional vector space over R with the additional

structure of closure under the operation of taking a Lie Bracket. Let

Γα = ξ1,α (x)
∂

∂x1

+ ...+ ξn,α (x)
∂

∂xn
, α = 1, ..., r

and

Γβ = ξ1,β (x)
∂

∂x1

+ ...+ ξn,β (x)
∂

∂xn
, β = 1, ..., r,

be any two operators. Then the first-order differential operator,[Γα,Γβ]LB , is defined by

[Γα,Γβ]LB =
n∑
i=1

(Γα (ξi,β)− Γβ (ξi,α))
∂

∂xi
= ΓαΓβ − ΓβΓα ∈ L. (1.4.8)

The Lie Bracket [Γα,Γβ]LB ( = [Γα,Γβ] from now on without loss of generality) satisfies the

following axioms:
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(i) Bilinearity: [k1Γα + k2Γβ,Γγ] = k1 [Γα,Γγ] + k2 [Γβ,Γγ]

where k1 and k2 are constants.

(ii) Skew Symmetric: [Γα,Γβ] = − [Γβ,Γα].

(iii) Jacobi Identity:[Γα, [Γβ,Γγ]] + [Γβ, [Γγ,Γα]] + [Γγ, [Γα,Γβ]] = 0

for all vectors Γα,Γβ,Γγ ⊂ L.

Any vector space of operators satisfying the above three axioms is called a Lie algebra of

operators. A Lie algebra of operators contains all the information necessary to reconstruct a

Lie group. If [Γα,Γβ] = 0, then the generators Γα and Γβ are said to commute. In particular

every generator commutes with itself, that is, [Γα,Γα] = 0. If all the elements (generators) of

L (basis) commute, then L is called an Abelian Lie algebra.

The finite-dimensional Lie algebra Lr is usually indicated by the vector basis {Γi} in the space

Lr. In this case and in accordance with the axiom of bilinearity the operation of the vector

basis in Lr is fully defined by the table of Lie Brackets, that is, by an r × r square matrix in

which the Lie Bracket [Γi,Γj] (i, j = 1, ..., r) is the (i, j)th element of the square matrix (see,

for example, Table 2.1 of Chapter Two).

NB: The dimension dim L of the Lie algebra is the dimension of the vector space L. We therefore

use the symbol Lr to denote an r−dimensional Lie algebra.

1.4.5 Linear combination

Suppose we let Γ ∈ Lr be any operator and ck be any constant. Then Γ = c1Γ1 + · · · + ckΓk

is called a linear combination of the Γk, r = 1, ..., k . For example, if we let Γ1 = ∂
∂x
, Γ2 =

∂
∂u
, Γ3 = x ∂

∂x
− u ∂

∂u
then we refer to Γ = c1Γ1 + c2Γ2 + c3Γ3 as a linear combination of these

operators.
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1.4.6 Basis of the vector space

Let Lr be a finite-dimensional Lie algebra and suppose that Γα = ξiα (x)
∂

∂xi
, α = 1, ..., r be a

basis of the vector space Lr . In particular [Γα,Γβ] ∈ Lr. Hence [Γα,Γβ] = Ck
αβΓk, α, β, k =

1, ..., r. The constant coefficients Ck
αβ are called the structure constants of the algebra Lr .

1.4.7 Optimal system

Let the finite Lie algebra Lr be spanned by the operators Γ provide a possibility to find invariant

solutions of a differential equation based on one-dimensional subalgebras of the algebra Lr i.e.,

on any operator Γ ∈ Lr. However, there are infinite number of one-dimensional subalgebras

of Lr and since an arbitrary operator can be written from Lr as a linear combination of the

operators and hence depends on r arbitrary constants2. The desire to minimize the search

for invariant solutions by finding nonequivalent branches of solutions leads to the concept of

an optimal system. The set of representatives of all classes of similar operators Γ ∈ Lr is

an optimal system of one-dimensional subalgebras. Similarly, when all invariant solutions are

obtained in principle by constructing the invariant solution for each member of the optimal

system of subalgebras, the set of invariant solutions obtained in this way is an optimal system

of invariant solutions (Ibragimov 2009).

1.4.8 Linear span

Suppose we have operators Γ1,Γ2, ...,Γs. Then their linear span is denoted by 〈Γ1,Γ2, ...,Γs〉 .

For example, given Lr with basis Γα = ξiα (x)
∂

∂xi
, α = 1, ..., r, the span is denoted by Lα =

〈Γ1,Γ2, ...,Γr〉 .
2L. V. Ovsyannikov (1982) introduced the concept of optimal system of subalgebras (in order to make

the problem of infinite number of 1− dimensional subalgebras manageable) by noting that if two subalgebras

are similar, i.e., connected with each other by a transformation of symmetry group, then their corresponding

invariant solutions are connected with each other by the same transformation.
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1.4.9 Subalgebra

Suppose that L is a Lie algebra. A subspace K ⊂ L of a vector space L is called a subalgebra

of the Lie algebra L if K is closed under the Lie Bracket [K,K] ⊂ K. In other words a Lie

algebra Lq is a subalgebra of Lr(q < r) if Lq ⊂ Lr.

1.4.10 Ideal

The subalgebra Lq is called an ideal of subalgebras of Lr if, for any Γα ∈ Lq and Γβ ∈ Lr the

Lie Bracket [Γα,Γβ] ∈ Lq. For illustrative examples of subalgebras the reader is referred to

Cantwell (2002, p.128).

1.4.11 Solvable Lie algebras

Consider the Lie algebra corresponding to Γα,Γβ and Γγ. If the sequence of subalgebras L0, L1 =

Γγ, L
2 = Γα,Γγ, L

3 = Γα,Γβ,Γγ has the property that each item in the sequence is an ideal of

the next item, then the subalgebra is solvable.

Definition 1.4.1 (Cantwell). The Lie algebra Lq is a q-dimensional solvable Lie algebra if

there exists a chain of subalgebras

L0 ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Lq−1 ⊂ Lq (1.4.9)

such that Lk is a k-dimensional Lie algebra and Lk−1 is an ideal of Lk for k = 1, 2, ..., q. Here

L0 is the null ideal with no operators.

1.4.12 Lie equation

Consider the group transformation x̄i = fi (x, ε) , i = 1, ..., n in n-dimensional space with gener-

ator Γ = ξi (x)
∂

∂xi
, where ξi (x) =

∂fi (x, ε)

∂ε
|ε=0 is defined by integrating the following general

differential equation called the Lie equation,
∂x̄i
∂ε

= ξi (x̄) , x̄i |ε=0= xi. It is reported in Yaglom

(1988) that Lie’s main result is the proof that it is always possible to assign to a continuous
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group (Lie group) a corresponding Lie algebra and vice versa. Thus for the real special linear

group, SL (n,R) , there is a corresponding Lie algebra, sl (n,R) and for the special orthogonal

group, SO (n,R) , there is the corresponding special orthogonal algebra so (n,R) .

1.4.13 Symmetry group

Mathematical objects such as functions, differential equations, surfaces etc are closely related

to the concept of a group as well as invariance and symmetry. Let G be a set of invertible

transformations T . Then any given object M on which T acts on does not change, that is,

T : M −→M. Mathematically T : M −→M contains the following transformation,

(i) Identity I.

(ii) Inverse T−1 and

(iii) Product T1T2,

where T1 and T2 ∈ G. G is called a group or more precisely a symmetry group of the object M.

1.4.14 Extended Lie group transformations

An extended Lie group of transformations of a partial differential equation is a continuous group

of transformations which act on an extended space of variables that include the parameters

of the equation in addition to independent and dependent variables. An extended group of

transformations represents a particular case of an equivalence group that preserves the class

of partial differential equations that have the same differential structure but with arbitrary

functions having different forms. The approach to find these equivalence transformation groups

with the use of the Lie infinitesimal technique was introduced by Ovsyannikov (1982). He

suggested using Lie’s infinitesimal criterion in the properly extended space of variables including

dependent and independent variables, arbitrary functions and their derivatives. I. S. Akhatov

and his group in 1989 further developed Ovsyannikov’s original method. The generalization of

this idea has appeared in several research papers, see, for instance, Romano and Torrisi (1999)

14



and the references therein. The transformations in the extended space of variables obtained by

the addition of parameters to the list of independent variables have been used in the context of

the renormalization group (RG) symmetries by Kovalev et al(1998) and Shirkov and Kovalev

(2001).

1.5 Probability Concepts

In this section we present some necessary definitions and sketch descriptions of probability and

probability distributions that are applied in Chapters Four and Five. Much information on

probability, its theory and modeling abounds in the mathematical and statistical literature. In

particular, the reader may refer to Feller (1957), Ross (2000), Dineen (2005) and Shreve (2004)

for details.

1.5.1 Probability spaces

Let Ω be a nonempty set and let F be a collection of subsets of Ω.

Definition 1.5.1. A σ-algebra (sometimes called a σ-field) is a collection F of subsets of Ω

with the following properties:

(i)

φ,Ω ∈ F ; (1.5.1)

(ii) If

A ∈ F , then A
′ ∈ F ; (1.5.2)

(iii) If

A1, A2, ... ∈ F , then
∞⋃
k=1

Ak,

∞⋂
k=1

Ak ∈ F . (1.5.3)

The points in F being subsets of Ω are called F -events or F -measurable sets. A pair (Ω,F) is

called a measurable space.
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Definition 1.5.2. If F is a σ−algebra of subsets of Ω, then P : F −→ [0, 1] is a probability

measure if

(i)

P (φ) = 0 and P (Ω) = 1; (1.5.4)

(ii)

A1, A2, ... ∈ F , then P

(
∞⋃
k=1

Ak

)
≤

∞∑
k=1

P (Ak) . (1.5.5)

It therefore follows that, if A,B ∈ F , then A ⊆ B implies that P (A) ⊆ P (B) .

The triple (Ω,F ,P) is called a probability space. We note here that the probability space is

the proper setting for mathematical theory. This means that we must firstly carefully identify

an appropriate (Ω,F ,P) whenever we try to solve problems.

Having defined the elements in the σ-algebra from a set-theoretic viewpoint, we now consider

them as events. Associated with each event is information, which in the financial world, in-

creases as time increases. A sample space Ω = {ω1, ω2, ..., ωN} is the set of all possible outcomes

of some experiment, ε , while the σ-algebra F represents the events that are observed and can

be recorded when the experiment is performed. In other words it is the information we receive

upon performing the experiment. Thus after the experiment we can observe whether or not

A = {ωj1, ωj2, ..., ωjm; j = 1, 2, ..., N} ∈ F occurred. If F1 and F2 are two σ-algebras on Ω,

then F1 ⊂ F2 if and only if F2 contains more information than F1.

Definition 1.5.3. Let (Ω,F) be a measurable space.

(i) A discrete filtration on (Ω,F) is an increasing sequence of σ−algebras (F)∞k=1 such that

F1 ⊂ F2 ⊂ · · · ⊂ Fi ⊂ · · · ⊂ F .

(ii) A continuous filtration on (Ω,F) is a set of σ−algebras (F)t∈I , where I is an interval in

R such that for all t, s ∈ I, t < s, we have Ft ⊂ Fs ⊂ F .

We call Fk (respectively Ft ) the history up to time k (respectively time t).
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1.5.2 Random variables

Unlike the point of time of the impact on the ground of a stone dropped from certain altitude

being known before execution of the experiment (Newton’s Laws), quantities of complex systems

(such as stocks, commodity prices etc) are nondeterministic. However, their values may be

predicted under uncertainties. Contrary to the falling stone, data which cannot be described

successfully by a deterministic mechanism can be modeled by random variables.

Definition 1.5.4. Let (Ω,F ,P) be a probability space. A random variable is a real-valued

function X defined on Ω with the property that for every Borel subset B of R the subset of Ω

given by

{X ∈ B} = {ω ∈ Ω;X (ω) ∈ B}

is in the σ−algebra F .

For properties of random variables the reader is referred to the references listed at the beginning

of this section. A random variable X is a numerical quantity the value of which is determined

by the random experiment choosing ω ∈ Ω. The properties of probability measures P (B) for

every Boral subset B of R . Denoting the distribution measure of X under P by µX , we have

for the set of all probabilities,

µX [a, b] = P (ωi : a ≤ Xω ≤ b) , −∞ < a ≤ b <∞ (1.5.6)

a measure that determines the distribution of X. In other words the distribution is defined by

the probabilities of all events which depend upon X.

We can describe the distribution function of a random variable in terms of its cumulative

distribution function (cdf)

F (x) = P (X ≤ x) , x ∈ R (1.5.7)

The F (x) is monotonically increasing and converges for x −→ −∞ to 0 and for x −→∞ to 1.

If there is a function, p, such that the probabilities can be computed by means of an integral

P (a ≤ X ≤ b) =

b∫
a

p (x) dx, (1.5.8)
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p is called the probability density or, simply, density of X. When the cumulative function is a

primitive of p,

F (x) = P (X ≤ x) =

x∫
−∞

p (y) dy. (1.5.9)

Thus p(x) is a measure of the likelihood that X takes values close to x and the pdf

f (x) =
∂

∂x
F (x) , i.e., φ (x) dx = Φ

′
(x) dx. (1.5.10)

The most important family of distributions with densities is the family of normal distribution.

It is characterised by two parameters the mean, µ, and the variance,σ2. The density is given by

fX
(
x;µ, σ2

)
=

1√
2πσ2

exp

{
−1

2

(
x− µ
σ

)2
}
, (1.5.11)

for −∞ < x <∞,−∞ < µ <∞, σ2 ≥ 0, and

fZ (z; 0, 1) =
1√
2π

exp

{
−z

2

2

}
. (1.5.12)

The distribution with density (1.5.12) is called the standard normal distribution for which the

mean and variance of Z are zero and one respectively and that in (1.5.11) shows that X is a

normal random variable distributed as X ∼ N (µ, σ2) .

Closely related to the normal distribution is the log-normal distribution that is very important

in modeling commodity prices. Let X be a positive random variable with natural logarithm of

which, ln (X) ∼ N (µ, σ2) . We say that X is log-normally distributed with parameters µ and

σ2. Its cumulative distribution function follows from (1.5.9) as

F (x) = P (lnX ≤ x) = Φ

(
lnX − µ

σ

)
, x > 0. (1.5.13)

Hence

fX
(
lnx;µ, σ2

)
=

1√
2πσ2x

exp

{
−1

2

(
lnx− µ

σ

)2
}
. (1.5.14)

Most other probability distributions especially the continuous types are either special cases or

derivable from the normal distribution.
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1.5.3 Moments of random variables

Let X be a random variable defined on a probability space (Ω,F ,P) . The first moment known

as the mathematical expectation or the mean E (X) of a real random variable X is a measure

for the location of the distribution of X. If X has a density p(x), then its expectation is defined

as

E (X) =


∫∞
−∞ xp(x)dx if x is continuous∑∞
i=1 xip (xi) if x is discrete,

(1.5.15)

where
∫

Ω
X(ω)dP (ω) is a Lebesgue integral. A measure of the dispersion of a random variable

X around its mean is given by the variance V (X) as

V (X) =

∞∫
−∞

(x− E (X))2 p (x) dx. (1.5.16)

The log-normally distributed random variable X defined in (1.5.14) has mean

E (X) = eµ+ 1
2
σ2

(1.5.17)

and variance

V (X) = e2µ+σ2
(
eσ

2 − 1
)
. (1.5.18)

Details of other relevant definitions, theorems and axioms can be found in the references cited

earlier.

1.6 Stochastic Processes

Definition 1.6.1. A stochastic process X(t) is a family of random variables {Xt (γ) , t ∈ T, γ ∈ Ω} ,

i.e., for each t in the index set T , X(t) is a random variable. Here we interpret t as time and

call X(t) the state of the process at time t.

Since a stochastic process is a family of random variables, its specification is analogous to that

for random vectors.
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1.7 Objectives

This Thesis is intended to address some fundamental issues facing contemporary mathematics

and statistics−issues of flexibility, adaptability and applicability to our environment. It is

known that mathematical models grow out of equations that determine how a system changes

from one state to the next and/or how one variable depends upon the value/state of other

variables (state equations). It is also known that statistical models include the characterisation

of numerical data, estimation of the probabilistic future behaviour of a system based upon

its past behaviour, extrapolation, interpolation of data based on some goodness-of-fit, error

estimates of observations and spectral analysis of data or model generated output. A well-

known academic statistician, George Box, once said that “All models are wrong, but some

are useful.” We see how some of these mathematical models can be turned into useful tools

for solving societal problems. Mathematicians are justifiably attracted by the beauty of their

subject which Bertrand Russell characterised as cold and austere like the beauty of sculpture.

While context obscures structure in mathematics, context provides meaning in data analysis.

There is truism in mathematical theorems whereas statistical methods are sometimes effective

when used with skill. These points are demonstrated in this Thesis.
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Chapter 2

Lie Point Symmetries of Evolution

Equations

2.1 Introduction

In this Chapter we introduce the notion of evolution equations and their method of solution

through symmetry analysis. We give a typical example of an evolution equation relevant to this

study in order to appreciate the algorithm involved in finding solutions through the symmetry

method. We start by defining the evolution partial differential equation.

Definition 2.1.1 (Evolution equation). An evolution partial differential equation is an equa-

tion involving an unknown function of several variables that includes time, t, as one of the

independent variables.

A second-order evolution partial differential equation in one dependent and two independent

variables is an equation of the form

F (x, t, u, ux, ut, uxx) = 0, (x, t) ∈ D, (2.1.1)

where, as is indicated, the independent variables x and t lie in some given domain D ∈ R2.

By this definition, u is the dependent variable while the x − t domain D in R2, on which the

problem is defined, is called the space-time domain. By a solution of (2.1.1) we mean a twice
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continuously differentiable function u = u(x, t), defined on D which, when substituted into

(2.1.1), reduces (2.1.1) to an identity on the domain D. The function u = u(x, t), is assumed

to belong to a set of all twice continuously differentiable functions on R that vanish at infinity

so that calculation of its first and second derivatives and the substitution of these derivatives

into (2.1.1) is defined.

There are four standard approaches to the solution of an evolution partial differential equation

(in fact the general differential equation, whether linear or nonlinear). These approaches which

have extensive literatures as we have observed in Section 1.2 of Chapter 1. The singularity

analysis is synonymous with Painlevé while the symmetry analysis is associated with Sophus

Lie. In this Thesis we concentrate on the method of symmetry analysis of evolution partial

differential equations (hereinafter referred to as partial differential equations without loss of

generality).

2.2 Lie Groups of Transformations

The idea of a group has been introduced in Section 1.4. Consider u = u(x, t), that is to say

f = f (x, t, u) . (2.2.1)

If f : X −→ u is a smooth function from X ' Rp to u ' Rq so that

u = f (x) =
(
f
′
(x) , ..., f q (x)

)
is a partial differential equation with q dependent variables (here u is the dependent variable)

and p independent variables. We let p = 2 such that x and t here represent the two independent

variables. Then the general vector field on X × U ' R2 × R. Here a point transformation is a

diffeomorphism

Γ : (x, t, u) 7→
(
x̂ (x, t, u) , t̂ (x, t, u) , û (x, t, u)

)
. (2.2.2)
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This transformation maps the surface u = u (x, t) to the surface parametrized by x and t as

follows

x̂ = x̂ (x, t, u)

t̂ = t̂ (x, t, u) (2.2.3)

û = û (x, t, u) .

The infinitesimal transformations of these variables in Taylor series for the Lie group action

(see Cantwell (2002) and Hydon (2000) for details) are

x̂ = x+ εξ (x, t, u) + o (ε2) = x+ εΓx+ · · ·

t̂ = t+ ετ (x, t, u) + o (ε2) = t+ εΓt+ · · ·

û = u+ εη (x, t, u) + o (ε2) = u+ εΓu+ · · ·

 (2.2.4)

with the vector fields which span the associated Lie algebra, called the generators of the in-

finitesimal transformation (2.2.4), Γ, so that

Γ = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
(2.2.5)

and

x̂ = (1 + εΓ)x = x+ εξ

t̂ = (1 + εΓ) t = t+ ετ

û = (1 + εΓ)u = u+ εη

 . (2.2.6)

In particular the components of Γ at (x, t, u) are

ξ (x, t, u) =
∂x̂

∂ε

∣∣∣∣
ε=0

, τ (x, t, u) =
∂t̂

∂ε

∣∣∣∣
ε=0

, η (x, t, u) =
∂û

∂ε

∣∣∣∣
ε=0

. (2.2.7)

We recall that ξ, τ and η occur in the definition of Γ and are called coefficient functions, that

is, the components of the tangent vector (vector field) Γ are exactly ξ, τ and η. The operator Γ

is called the generator of the infinitesimal transformation.

Example 2.2.1. Consider the transformation variables (x, u) in the xu− plane (say, the rota-

tional symmetry of a circle by an arbitrary angle, ε mathematically as a transformation) given

by

x̂ = x cos ε− u sin ε

û = x sin ε+ u cos ε,
(2.2.8)
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where ε ∈ R. The object moves under the action of the transformation while the reference axis

remains fixed. The transformation (2.2.8) can be written as x̂

û

 = (1− εJ)

 x

u

 , (2.2.9)

where (2.2.9) is the 2× 2 symplectic matrix and

J :=

 0 1

−1 0

 . (2.2.10)

A reflectional symmetry is also expressed in a similar way. The rotations have determinant

of J = +1 while the reflections have determinant of J = −1. Note that for each ε these

transformations constitute a rotation. Hence this family of transformations forms a Lie group

known as a rotation group. The image point (x̂, û) can be determined by rotating the radius

vector to the source point (x, u) counterclockwise through the angle, ε. The identity element is

given by ε = 0 and the inverse transformation by −ε.

2.3 The Infinitesimal Transformations

In this Section we are interested in determining the nth extension of the generator of an

infinitesimal transformation. We have looked at a specific example, namely, invariance under

rotation and reflection in a plane. We now consider the general infinitesimal transformation

which is another way to look at a transformation group.

2.3.1 One dependent and one independent variable

We begin by assuming that for a system u = f (x) there is an arbitrary point for the case of one

dependent variable, u, and an independent variable, x. Let the infinitesimal transformation be

x̂ = x+ εξ

û = u+ εφ

 , (2.3.1)

24



where ξ and φ are arbitrary functions. It so happens (Leach (2006), Bluman and Kumei (1989),

Bluman and Anco (2002), Dresner (1999) and Stephani (1989)) that, if the differential operator

Γ = ξ(x, u)
∂

∂x
+ φ(x, u)

∂

∂u
(2.3.2)

is a generator of an infinitesimal point transformation, then its extension up to the nth derivative

is

Γ[n] = ξ
∂

∂x
+ φ

∂

∂u
+ φ′

∂

∂u′
+ · · ·+ φ(n) ∂

∂u(n)
, (2.3.3)

where the coefficients φ(n)
(
x, u, u

′
, ..., u(n)

)
are given recursively by

φ(n) =
dφ(n−1)

dx
− u(n) dξ

dx
, n = 1, 2, ..., (2.3.4)

and φ(0) = φ (x, u) . Leach (2006) extended the generator to the nth derivative by deriving the

following
dû

dx̂
= u′ + ε (φ′ − ξ′u′)

d2û

dx̂2
= u′′ + ε (φ′′ − 2ξ′u′′ − ξ′′u′)

d3û

dx̂3
= u′′′ + ε (φ′′′′ − 3ξ′u′′′ − 3ξ′′u′′ − ξ′′′u′)

d4û

dx̂4
= uiv + ε

(
φiv − 4ξ′uiv − 6ξ′′u′′′ − 4ξ′′′u′′ − ξivu′

)


. (2.3.5)

He observed that the coefficients of the derivatives of ξ are just the binomial coefficients less

the first one and then generalised (2.3.5) to

dnû

dx̂n
= u(n) + ε

φ(n) −
n∑
i=1

 n

i

 ξ(i)u(n−i+1)

 . (2.3.6)

To enable Γ deal with derivatives Mahomed and Leach (1990) gave the nth prolongation of the

generator of an nth-order ordinary differential equation compactly as

Γ[n] = Γ +
n∑
i=1

φ(i) −
i∑

j=1

 i

j

u(i+1−j)ξ(j)

 ∂

∂u(i)
. (2.3.7)

2.3.2 Generalization to p dependent and k independent variables

If (2.3.2) is written in vector notation such as

Γ = λ (ν,u)
∂

∂ν
+ φ (ν,u)

∂

∂u
, (2.3.8)
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where λ = (λ1, λ2, ..., λk) ∼= (ξ, θ, ..., τ) ,ν = (ν1, ν2, ..., νk) ∼= (x, r, ..., t) and φ = (φ1, φ2, ..., φp) ,u =

(u1, u2, ..., up) . In this we require that the coefficient functions λ and φ depend upon the in-

dependent and dependent variables, ν and u respectively. For simplicity and without causing

confusion we drop the “boldness” for the vectors without losing their original meanings. In line

with Leach (2006)

dû

dν̂
=

d (u+ εφ)

d (ν + ελ)
=
du+ εdφ

dν + εdλ

=

du

dν
+ ε

dφ

dν
dν

dν
+ ε

dλ

dν

=

du

dx
+
du

dr
+ · · ·+ du

dt
+ ε

(
dφ

dx
+
dφ

dr
+ · · ·+ dφ

dt

)
1 + ε

(
dξ

dx
+
dθ

dr
+ · · ·+ dτ

dt

)

=

k∑
i=1

du

dνi
+ ε

k∑
i=1

dφ

dνi

1 + ε
k∑
i=1

dλ

dνi

=
ux + ur + · · ·+ ut + ε (φx + φr + · · ·+ φt)

1 + ε (ξx + θr + · · ·+ τt)

=
u′ + εφ′

(1 + ελ′)
= (u′ + εφ′) (1 + ελ′)

−1

= (u′ + εφ′)
(

1− ελ′ + ε2λ′
2 − · · ·

)
= (u′ + εφ′) (1− ελ′) = u′ + εφ′ − ελ′u′ − ε2λ′φ′

= u′ + εφ′ − ελ′u′ − o (ε)

= u′ + ε (φ′ − λ′u′) . (2.3.9)

Notice that u′ = ux + ur + · · ·+ ut, λ′ = ξx + θr + · · ·+ τt and φ′ = φx + φr + · · ·+ φt and we

continue with this notation throughout this derivation.
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The second extension (n = 2) is derived as follows

d2û

dν̂2
=

d

dν̂

(
dû

dν̂

)
=

d

dν̂
[u′ + ε (φ′ − λ′u′)] =

du′ + εd (φ′ − λ′u′)
dν̂ + εdλ

=
u′′ + ε (φ′′ − λ′′u′ − λ′u′′)

1 + ελ′

= [u′′ + ε (φ′′ − λ′′u′ − λ′u′′)] (1− ελ′)

= u′′ − ελ′u′′ + ε (φ′′ − λ′′u′ − λ′u′′)− ε2λ′ (φ′′ − λ′′u′ − λ′u′′)

= u′′ − ελ′u′′ + ε (φ′′ − λ′′u′ − λ′u′′) + o(ε)

= u′′ + ε (φ′′ − 2λ′u′′ − λ′′u′) . (2.3.10)

Here u′′ = uxx + urr + · · ·+ utt, λ
′′ = ξxx + θrr + · · ·+ τtt and φ′′ = φxx + φrr + · · ·+ φtt.

For the third extension (n = 3), we proceed as follows:

d3û

dν̂3
=

d

dν̂

(
d2û

dν̂2

)
=

d

dν̂
[u′′ + ε (φ′′ − 2λ′u′′ − λ′′u′)] =

d [u′′ + ε (φ′′ − 2λ′u′′ − λ′′u′)]
d (ν̂ + ελ)

=
u′′′ + ε (φ′′′ − 2λ′′u′′ − 2λ′u′′′ − λ′′′u′ − λ′′u′′)

1 + ελ′

= [u′′′ + ε (φ′′′ − 3λ′′u′′ − 2λ′u′′′ − λ′′′u′)] (1− ελ′)

= u′′′ − ελ′u′′′ + ε (φ′′′ − 3λ′′u′′ − 2λ′u′′′ − λ′′′u′)− ε2λ′ (φ′′′ − 3λ′′u′′ − 2λ′u′′′ − λ′′′u′)

= u′′′ − ελ′u′′′ + ε (φ′′′ − 3λ′′u′′ − 2λ′u′′′ − λ′′′u′) + o(ε)

= u′′′ + ε (φ′′′ − 3λ′u′′′ − 3λ′′u′′ − λ′′′u′) . (2.3.11)

Also u′′′ = uxxx+urrr + · · ·+uttt, λ′′′ = ξxxx+θrrr + · · ·+ τttt and φ′′′ = φxxx+φrrr + · · ·+φttt.

The fourth (n = 4) extension is similarly obtained as

d4û

dν̂4
= uiv + ε

(
φiv − 4λ′uiv − 6λ′′u′′′ − 4λ′′′u′′ − λivu′

)
. (2.3.12)

To deal with the infinitesimal transformations of equations and functions involving derivatives

we need the extensions of the generator Γ. We therefore indicate that Γ has been extended by
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writing

Γ[1] = Γ + (φ′ − λ′u′) ∂

∂u′

Γ[2] = Γ[1] + (φ′′ − 2λ′u′′ − λ′′u′) ∂

∂u′′

in the case of one independent variable which generalises to equation (2.3.7). For the general

k independent variables, equation (2.3.9) through (2.3.12) yields

Γ[n] = Γ +
∑
ν

[
Dn
ν

(
φ−

k∑
i=1

λiui

)
+

k∑
i=1

λiuν,i(n)

]
∂

∂uν
, (2.3.13)

where
∑

ν sums for each independent variable, Dn
ν denotes the nth total derivative (for the

desired nth prolongation) with respect to ν. All four vectors are now understood as

ν = {νi}i=1,2,...,k ⇒ ν1 = x, ν2 = r, ..., νk = t.

Case A: Two independent variables, x and t, and one dependent variable, u

Recall (2.3.8)

Γ = ξ (x, t, u)
∂

dx
+ τ (x, t, u)

∂

dt
+ φ (x, t, u)

∂

∂u
. (2.3.14)

The second extension using (2.3.13) is

Γ[2] = Γ + Dx (φ− ξux − τut) + ξuxx + τuxt

+ Dt (φ− ξux − τut) + ξutx + τutt

n = 1

+ DxDx (φ− ξux − τut) + ξuxxx + τuxxt

+ DtDx (φ− ξux − τut) + ξutxx + τutxt

+ DtDt (φ− ξux − τut) + ξuttx + τuttt

n = 2.

(2.3.15)

In (2.3.15) only the inner part (.) of the [..] in (2.3.13) is taken as the rest eventually

vanishes on simplification. That aspect can be denoted by φ
(n)
ν as explained hereunder.

Equation (2.3.15) can then be written as

Γ[2] = Γ + φx
∂

∂ux
+ φt

∂

∂ut︸ ︷︷ ︸
n=1

+φxx
∂2

∂u2
x

+ φxt
∂2

∂uxut
+ φtt

∂2

∂u2
t︸ ︷︷ ︸

n=2

φ(1)
x = Dx (φ− ξux − τut) ,
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φ
(1)
t = Dt (φ− ξux − τut) ,

φ(2)
xx = DxDx (φ− ξux − τut) = D2

x (φ− ξux − τut)

and similarly,

φ
(2)
xt = DxDt (φ− ξux − τut) ,

φ
(2)
tt = DtDt (φ− ξux − τut) .

On expansion these total derivatives give

Dx (φ− ξux − τut) =
∂φ

∂x
+

(
∂φ

∂u
− ∂ξ

∂x

)
ux −

∂τ

∂x
ut −

∂ξ

∂u
u2
x −

∂τ

∂u
uxut (2.3.16)

Dt (φ− ξux − τut) =
∂φ

∂t
+

(
∂φ

∂u
− ∂τ

∂t

)
ut −

∂ξ

∂t
ux −

∂τ

∂u
u2
t −

∂ξ

∂u
ξuuxut (2.3.17)

Dxx (φ− ξux − τut) =
∂2φ

∂x2
+

(
2
∂2φ

∂x∂u
− ∂2ξ

∂x2

)
ux −

∂2τ

∂x2
ut +

(
∂2φ

∂u2
− 2

∂2ξ

∂x∂u

)
u2
x

−2
∂2τ

∂x∂u
uxut −

∂2ξ

∂u2
u3
x −

∂2τ

∂u2
u2
xut +

(
∂φ

∂u
− 2

∂ξ

∂x

)
uxx

−2
∂τ

∂x
uxt − 3

∂ξ

∂u
uxuxx −

∂τ

∂u
uxxut − 2

∂τ

∂u
uxuxt (2.3.18)

Dtt (φ− ξux − τut) =
∂2φ

∂t2
+

(
2
∂2φ

∂t∂u
− ∂2τ

∂t2

)
ut −

∂2ξ

∂t2
ux +

(
∂2φ

∂u2
− 2

∂2τ

∂t∂u

)
u2
t

−2
∂2ξ

∂x∂u
uxut −

∂2τ

∂u2
u3
t −

∂2ξ

∂u2
uxu

2
t +

(
∂φ

∂u
− 2

∂τ

∂t

)
utt

−2
∂ξ

∂t
uxt − 3

∂τ

∂u
ututt −

∂ξ

∂u
uxutt − 2

∂ξ

∂u
utuxt (2.3.19)

Dxt (φ− ξux − τut) = − ∂ξ

∂t
uxx +

∂2φ

∂x∂t
+

(
∂2φ

∂t∂u
− ∂2ξ

∂x∂t

)
ux +

(
∂2φ

∂x∂u
− ∂2τ

∂x∂t

)
ut

+

(
∂φ

∂u
− ∂ξ

∂x
− ∂τ

∂t

)
uxt −

∂2ξ

∂t∂u
u2
x +

(
∂2φ

∂u2
− ∂2τ

∂t∂u
− ∂2ξ

∂x∂u

)
uxut

− ∂τ

∂x
utt −

∂2τ

∂x∂u
u2
t −

∂2ξ

∂u2
u2
xut −

∂2τ

∂u2
uxu

2
t − 2

∂ξ

∂u
uxuxt − 2

∂τ

∂u
utuxt

− ∂τ

∂u
uxutt −

∂ξ

∂u
utuxx. (2.3.20)
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Case B: Three independent variables, x, r and t

Γ = ξ (x, r, t, u)
∂

dx
+ θ (x, r, t, u)

∂

∂r
+ τ (x, r, t, u)

∂

∂t
+ φ (x, r, t, u)

∂

∂u
. (2.3.21)

The first and second extensions are

Γ[2] = Γ +
∑
v

[Dv (φ− ξux − θur − τut) + ξux + θur + τut]
∂

∂uv

= Γ +Dx (φ− ξux − θur − τut) + ξuxx + θuxr + τuxt

+Dr (φ− ξux − θur − τut) + ξurx + θurr + τurt

+Dt (φ− ξux − θur − τut) + ξutx + θutr + τutt

 n = 1

+DxDx (φ− ξux − θur − τut) + ξuxxx + θuxxr + τuxxt

+DxDr (φ− ξux − θur − τut) + ξuxrx + θuxrr + τuxrt

+DxDt (φ− ξux − θur − τut) + ξuxtx + θuxtr + τuxtt

+DrDr (φ− ξux − θur − τut) + ξurrx + θurrr + τurrt

+DrDt (φ− ξux − θur − τut) + ξurtx + θurtr + τurtt

+DtDt (φ− ξux − θur − τut) + ξuttx + θuttr + τuttt



n = 2

= Γ + φx
∂

∂ux
+ φr

∂

∂ur
+ φt

∂

∂ut︸ ︷︷ ︸
n=1

+φxx
∂

∂uxx
+ φxr

∂

∂uxr
+ φrr

∂

∂urr
+ φxt

∂

∂uxt
+ φrt

∂

∂urt
+ φtt

∂

∂utt︸ ︷︷ ︸
n=2

.

(2.3.22)

Notice the action of
∑

ν [ ] on the entire [.] and the vector ν. The behaviour of

Dn
ν is also clear, where n = 1 in the first extension and n = 2, etc. The portion

Dn
ν (φ− ξux − θur − τut) is the relevant portion since others eventually cancel after fac-

torization. Influence of n and v are noticeable only on φ as we see

φ(1)
x = Dx (φ)− uxDx (ξ)− urDx (θ)− utDx (τ)

=
∂φ

∂x
+

(
∂φ

∂u
− ∂ξ

∂x

)
ux −

∂θ

∂x
ur −

∂τ

∂x
ut

(2.3.23)

φ(1)
r = Dr (φ)− uxDr (ξ)− urDr (θ)− utDr (τ)

=
∂φ

∂r
+

(
∂φ

∂u
− ∂θ

∂r

)
ur −

∂ξ

∂r
ux −

∂τ

∂r
ut

(2.3.24)

30



φ
(1)
t = Dt (φ)− uxDt (ξ)− urDt (θ)− utDt (τ)

=
∂φ

∂t
+

(
∂φ

∂u
− ∂τ

∂t

)
ut −

∂ξ

∂t
ux −

∂θ

∂t
ur

(2.3.25)

φ(2)
xx = Dx (φx)− uxxDx (ξ)− uxrDx (θ)− uxtDx (τ)

=
∂2φ

∂x2
+

(
2
∂2φ

∂x∂u
− ∂2ξ

∂x2

)
ux −

∂2θ

∂x2
ur − 2

∂τ

∂x
uxt +

(
∂φ

∂u
− 2

∂ξ

∂x

)
uxx

−∂
2τ

∂x2
ut − 2

∂θ

∂x
uxr

(2.3.26)

φ(2)
xr = φ(2)

rx = Dr (φx)− urxDr (ξ)− urrDr (θ)− urtDr (τ)

=
∂2φ

∂x∂r
+

(
∂2φ

∂r∂u
− ∂2θ

∂x∂r

)
ux +

(
∂2φ

∂x∂u
− ∂2ξ

∂x∂r

)
ur +

(
∂φ

∂u
− ∂ξ

∂x
− ∂θ

∂r

)
uxr

−∂θ
∂x
urr −

∂ξ

∂r
uxx −

∂τ

∂r
uxt −

∂τ

∂x
urt −

∂2τ

∂x∂r
ut

(2.3.27)

φ
(2)
xt = φ

(2)
tx = Dx (φt)− uxxDx (ξ)− uxrDx (θ)− uxtDx (τ)

=
∂2φ

∂x∂t
+

(
∂2φ

∂t∂u
− ∂2θ

∂x∂t

)
ux +

(
∂2φ

∂x∂u
− ∂2ξ

∂x∂t

)
ut +

(
∂φ

∂u
− ∂ξ

∂x
− ∂τ

∂t

)
uxt

−∂τ
∂x
utt −

∂ξ

∂t
uxx −

∂θ

∂t
uxr −

∂θ

∂x
urt −

∂2θ

∂x∂t
ur

(2.3.28)

φ(2)
rr = Dr (φr)− urxDr (ξ)− urrDr (θ)− urtDr (τ)

=
∂2φ

∂r2
+

(
2
∂2φ

∂r∂u
− ∂2θ

∂r2

)
ur −

∂2ξ

∂r2
ux − 2

∂τ

∂r
urt +

(
∂φ

∂u
− 2

∂θ

∂r

)
urr

−∂
2τ

∂r2
ut − 2

∂ξ

∂r
uxr

(2.3.29)

φ
(2)
rt = φ

(2)
tr = Dr (φt)− urxDr (ξ)− urrDr (θ)− urtDr (τ)

=
∂2φ

∂r∂t
+

(
∂2φ

∂t∂u
− ∂2φ

∂r∂t

)
ur +

(
∂2φ

∂r∂u
− ∂2φ

∂r∂t

)
ut +

(
∂φ

∂u
− ∂θ

∂r
− ∂τ

∂t

)
urt

−∂θ
∂t
urr −

∂τ

∂r
utt −

∂ξ

∂t
uxt −

∂ξ

∂r
uxt −

∂2ξ

∂r∂t
ux

(2.3.30)

φ
(2)
tt = Dt (φt)− utxDt (ξ)− utrDt (θ)− uttDt (τ)

=
∂2φ

∂t2
+

(
2
∂2φ

∂t∂u
− ∂2τ

∂t2

)
ut −

∂2ξ

∂t2
ux − 2

∂θ

∂t
urt +

(
∂φ

∂u
− 2

∂τ

∂t

)
utt

−∂
2θ

∂t2
ur − 2

∂ξ

∂t
uxr.

(2.3.31)
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Proposition 2.3.1. Let f : V −→ U be a smooth function from V ' Rk to U ' Rp so that the

general vector field on V ×U ' Rk×Rp. Then the nth extension of the generator Γ is given by

Γ[n] = Γ +
∑
ν

[
Dn
ν

(
φ−

k∑
i=1

λiui

)
+

k∑
i=1

λiuν,i(n)

]
∂

∂uν

where Γ, ν, λ, φ, u,
∑

ν and Dn
ν are as defined under equations (2.3.8) and (2.3.13). With this

proposition we have succeeded in establishing a formula for the nth prolongation of a generator

Γ with k independent variables and p dependent variables.

2.4 Group-invariance of Differential Equations

Symmetry groups of partial differential equations can be used to reduce the total number of

variables (dependent and independent) in an equation (Clarkson, 1995) during an attempt to

obtain the solution to the original equation. Each attempt of a group reduction results in an

introduction of new variables through which the number of independent variables decreases by

one. Thus for partial differential equations, like the heat equation, admitting only two inde-

pendent variables, a single reduction transforms it into an ordinary differential equation which

is generally simpler to solve than the original partial differential equation and its solution still

maintains the characteristics of the particular partial differential equation.

The Lie method has the advantage that the new variables can be determined through the sym-

metries of the partial differential equation. The solutions obtained by this method were referred

to by Olver and Rosenau (1987) as group-invariant solutions (also called similarity solutions

especially when scale-invariance is involved) of the partial differential equation. The likes of

Bluman and Kumei (1989), Dresner (1999), Ibragimov (1995) and Stephani (1989) are all in

unison that this method is one of the best known systematic methods for the simplification

and solution of partial differential equations. The beauty of the Lie method is that it enables

a systematic approach to the determination of particular solutions. It is the combination of

the Lie algebra of the differential equation and compatibility with boundary/initial conditions

which provides the possibility of obtaining the solution. We may also seek various forms of

solution such as similarity solutions, traveling-wave solutions, separable solutions, et cetera.
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Consider the nth-order partial differential equation (2.1.1) for n ≥ 2 that admits a one-

parameter Lie group of point transformations with the infinitesimal generator (2.3.8), where

λ (ν, u) is not identically zero.

Definition 2.4.1 (Bluman and Anco). u = Θ (λ) is an invariant solution of (2.1.1) resulting

from its admitted point symmetry with the infinitesimal generator (2.3.8) if and only if

(i) u = Θ (λ) is an invariant surface of (2.3.8) and

(ii) u = Θ (λ) solves (2.1.1).

It follows that we obtain the invariant surface conditions for reduction by solving the cor-

responding characteristic equation Γ (u−Θ (λ)) = 0 when u = Θ (λ) , i.e. from

Γ = ξ (x, · · · , t, u)
∂

dx
+ · · ·+ τ (x, · · · , t, u)

∂

∂t
+ η (x, · · · , t, u)

∂

∂u
(2.4.1)

dx

ξ(x, · · · , t, u)
= · · · = dt

τ(x, · · · , t, u)
=

du

η(x, · · · , t, u)

The invariance requirement is determined by

Γ[2] (u−Θ (λ))|u=Θ(λ) = 0 (2.4.2)

extended to the second jet space, parameterized by (x, t, u, ux, ut, uxx, uxt, utt) . Equation (2.4.2)

is a polynomial equation in a set of independent functions of the derivatives of u. As the equation

must be true for arbitrary values of these independent functions, their coefficients must vanish

and this leads to an overdetermined linear system of equations known as the determining

equations for the coefficients ξ (x, t, u) , τ (x, t, u) and η (x, t, u) . For known functions, ξ, τ and

η, invariant solutions u corresponding to (2.2.4) satisfy the invariant surface condition

∆ = ξ (x, t, u)
∂

dx
+ τ (x, t, u)

∂

∂t
+ η (x, t, u)

∂

∂u
= 0

which, when solved as a first-order partial differential equation by the method of characteristics,

yields the functional form of the similarity solution in terms of an arbitrary function, i.e.,

u = φ (x, t, φ(z)) , z = z(x, t),

where φ is an arbitrary function of an invariant z for the symmetry. The substitution of this

functional form into ∆(x, t, u, ux, ut, uxx, uxt, utt) = 0 produces a quotient ordinary differential

equation which can be solved for the function φ (z) .
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2.5 Lie’s Algorithm

The computation of Lie point symmetries follow a particular sequence usually called the Lie

algorithm. The determination of symmetries of a given differential equation involves setting

up and solving an associated system of linear homogeneous partial differential equations called

determining equations. We discuss how determining equations arise from symmetry problems

and illustrate this by outlining the derivation of such equations using the heat equation as

an example. Lie (1881) gave the group classification of linear second-order partial differential

equations with two independent variables and developed methods of their integration. In Lie’s

classification (Gazizov and Ibragimov (1998)) all parabolic equations admitting the symmetry

group of the highest order reduce to the heat equation. By this statement the heat equation

clearly becomes the benchmark for accessing other parabolic partial differential equations. This

property of the heat equation is revisited in Chapter Three of this Thesis when we map our

working partial differential equation to the linear heat equation.

2.5.1 New Solutions from old ones

Definition 2.5.1. A symmetry of a given partial differential equation is a transformation which

maps every solution of the system to another solution of the same equation (i.e., it maps the

solution set of the equation into itself).

Symmetries of certain differential equations are obvious, such as that of the Laplace equation

which is not discussed here. The next example illustrates the fact that symmetries of differential

equations such as that of the linear heat equation are not always obvious.

Example 2.5.2 ( The heat Equation). Consider the linear heat equation

∂u

∂t
− h∂

2u

∂x2
= 0, (2.5.1)

where u represents the temperature of the medium at time, t, and x the only spatial variable

represents distance while h is a constant representing the diffusivity of the medium. Equation

(2.5.1) has been studied for nearly two centuries as a model of the flow (or diffusion) of heat

34



in a continuous medium. It is one of the most successful and widely used models in Applied

Mathematics and a considerable body of theory on its properties and solution abound. Without

loss of generality (2.5.1) can be suitably rescaled to

∂u

∂t
− ∂2u

∂x2
= 0 (2.5.2)

which has an unobvious symmetry (x, t, u) 7−→
(
x̂, t̂, û

)
given by1

x̂ =
x

1− εt
, t̂ =

t

1− εt
, û = u

√
1− εt exp

(
−εx2

4 (1− εt)

)
(2.5.3)

for ε ∈ R. By calculating how ut and uxx transform under (2.5.2) and demonstrating that

∂̂
∂t̂

= ∂̂2

∂x̂2
, (i.e ût = ûx̂x̂) when ∂

∂t
= ∂2

∂x2
, it is straightforward but algebraically tedious to verify

that (2.5.2) is a symmetry of (2.5.1). Symmetries can be used to generate nonobvious solutions

from obvious ones, a property which can be exploited in application (Olver, 1993). Take the

trivial solution u = 1 (of (2.5.1)); it represents a plane in (x, t, u)− space. The symmetry (2.5.2)

maps u = 1 into a family of surfaces in (x, t, u)−space, representing solutions û = ψ̂
(
x̂, t̂
)

of

ût̂ = ûx̂x̂, see Figure 2.5.1.

Inverting (2.3.2) we obtain

x =
x̂

1− εt̂
, t =

t̂

1− εt̂
and u = û

√
1− εt̂ exp

(
−εx̂2

4
(
1− εt̂

)) . (2.5.4)

So under the action of the above symmetry the solution u = 1 maps to

û
√

1− εt̂ exp

(
εx̂2

4
(
1− εt̂

)) = 1 (2.5.5)

or, equivalently,

u =
1√

1 + εt
exp

(
−εx2

4 (1 + εt)

)
(2.5.6)

after dropping the caret and by letting ε = −ε.

1Actually the finite transformation corresponds to some symmetry.
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Figure 2.5.1: The solution surface of the trivial solution of the heat equation for u = 1

2.5.2 Computation of Lie Point Symmetries

We demonstrate in this subsection a systematic procedure due to Lie for obtaining related

partial differential equations which, if solved fully, yield all infinitesimal symmetries2

Example 2.5.3. Consider the heat equation of Example 2.5.1

∂u

∂t
− h∂

2u

∂x2
= 0.

Recall the differential operator of (2.3.14)

Γ = ξ (x, t, u)
∂

∂x
+ τ (x, t, u)

∂

∂t
+ φ (x, t, u)

∂

∂u
.

Then after the application of its second extension (2.3.15) and the observation of the infinites-

imal criterion for invariance, i.e.,

Γ[2]

(
∂u

∂t
− h∂

2u

∂x2

)∣∣∣∣
∂u
∂t
−h ∂2u

∂x2
=0

= 0, (2.5.7)

2It is important to note however that certain difficulties preclude the possibilities of solving the determining

equations for all infinitesimal symmetries.
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we obtain

φt = hφxx (2.5.8)

whenever ut = huxx is satisfied. Substitution of huxx for ut wherever ut occurs in (2.5.8)

(recalling (2.3.17) and (2.3.18)) yields

ηt + uxx (ηu − τt)− ξtux − τuu2
xx − ξuuxuxx − hηxx − hux (2ηxu − ξxx)

+hτxxuxx − hu2
x (ηuu − 2ξxu) + 2huxuxxτxu + hξuuu

3
x + hτuuu

2
xuxx − huxx (ηu − 2ξx)

+2hτxuxt + 3hξuuxuxx + hτuu
2
xx + 2hτuuxuxt = 0.

(2.5.9)

Equation (2.5.9) is satisfied if and only if all the coefficients of the powers of the derivatives

of u are identically zero since ξ, τ, and η are functions of x, t and u only. This leads to the

following set of coupled linear partial differential equations

1 : ηt − hηxx = 0

ux : 2hηxu − hξxx + ξt = 0

u2
x : ηuu − 2ξxu = 0

u3
x : ξuu = 0

uxx : 2ξx + hτxx − τt = 0

u2
xx : τu = 0

uxuxx : ξu + hτxu = 0

u2
xuxx : τuu = 0

uxt : τx = 0

uxuxt : τu = 0



. (2.5.10)

Solution of these determining equations leads to

ξ (x, t, u) = 1
2
c2x+ c3xt+ c4 + c5t

τ (x, t, u) = c1 + c2t+ c3t
2

η (x, t, u) = −
[
c3

(
1
2
t+ 1

4h
x2
)

+ 1
2h
c5x− c6

]
u+ f (x, t)

 . (2.5.11)

The arbitrary constants, c1, ..., c6, in (2.5.11) indicate that the system has a six-parameter Lie

group of infinitesimal operators which we list hereunder

Γ1 =
∂

∂x
(2.5.12)
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Γ2 =
∂

∂t
(2.5.13)

Γ3 = u
∂

∂u
(2.5.14)

Γ4 =
1

2
x
∂

∂x
+ t

∂

∂t
(2.5.15)

Γ5 = t
∂

∂x
− 1

2h
xu

∂

∂u
(2.5.16)

Γ6 = xt
∂

∂x
+ t2

∂

∂t
−
(

1

4h
x2 +

1

2
t

)
u
∂

∂u
(2.5.17)

Γ∞ = f (x, t)
∂

∂u
, (2.5.18)

where f (x, t) is any solution of the original heat equation reflecting its linearity. Thus this

equation admits an infinite-dimensional Lie symmetry algebra. The associated Lie algebra of

(2.5.12)–(2.5.18) is given by Dimas et al (2009) as {sl (2, R)⊕sW3} ⊕s∞A1, where W3 is the

three-dimensional Heisenberg-Weyl algebra.

By the definition of the Lie Brackets of (1.4.8) in Section (1.4) we construct Table 2.5.1, where

its elements are the structure constants arising from the commutation relations among pairs

of operators in (2.5.12)–(2.5.17). Possession of a sufficient number of point symmetries is a

rare phenomenon among differential equations and those partial differential equations modeled

from natural applications such as those arising from financial mathematics often belong to this

category. However, most of them are linked through a coordinate transformation to the heat

equation (Bluman and Kumei (1989)) in 1 + 1 dimensions. In fact it has been shown in Bluman

and Cole (1974) that the heat equation is the only polynomial partial differential equation of

the second order with two independent parameters invariant under the finite group of the heat

equation itself. These are some of the reasons why the heat equation is relevant to this study

and therefore used to demonstrate the algorithm.

Although the method of determining point symmetries of differential equations is entirely

algorithmic, manual calculations always involve tedious computations and any slip in handling

of the algebra results in inaccurate results and sometimes frustration. Fortunately the advent

of symbolic manipulation of packages has virtually eliminated the strenuous algebra involved

in the application of Lie algorithm. There are several programs available for the prosecution of
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Table 2.5.1: Table of Lie Brackets for (2.5.12)−(2.5.17)

[Γi,Γj] Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

Γ1 0 0 0 1
2
Γ1 − 1

2h
Γ3 Γ5

Γ2 0 0 0 Γ2 Γ1 −1
2
Γ3 + Γ4

Γ3 0 0 0 0 0 0

Γ4 −1
2
Γ1 −Γ2 0 0 1

2
Γ5 Γ6

Γ5
1

2h
Γ3 −Γ1 0 −1

2
Γ5 0 0

Γ6 −Γ5
1
2
Γ3 − Γ4 0 −Γ6 0 0

the task of finding symmetries of differential equations. Some of them that are implemented in

the MATHEMATICA environment are the Program LIE3 (Head 1993, 1996) and Sherring et al

(1997). Some of the stand-alone programs are REDUCE (Schwarz 1982) and Nucci (1990, 1996)

while other computer implementation packages that are problem specifics (specific to some

differential equations) are those of Hereman and Nuseir (1997), Fushchych and Kornyak (2001)

and Champagne et al (1991). Hereman (1994, 1996) reviews symbolic manipulation programs

that have been in use and especially, those adaptable for Lie group analysis of differential

equations. One of the most recent packages used interactively with MATHEMATICA is the

package SYM by Dimas and Tsoubelis (2005, 2006) and this was used in Chapter Three of this

Thesis.

2.6 Chapter Summary

In 1990 Mahomed and Leach published their derivation (in correction of the error in Krause and

Michel (1990)) of the nth prolongation of an ordinary differential equation of order n, see for

3The program LIE was introduced by Alan Head as a stand-alone PC program for the analysis of differential

equations and written in MUMATH (Woof and Hodgkinson, 1987), a symbolic mathematics language for IBM-

type PCs. Sinkala (2006) observed that sometimes LIE fails to find the symmetries of certain differential

equations automatically and so he applied LIE interactively with MATHEMATICA in what he referred to as

MATHEMATICA-assisted computation of Lie point symmetries.
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instance, equation (2.3.7) of section 2.3. We have extended this result to the nth prolongation of

the general k independent variables and p dependent variables of nth-order partial differential

equation. This result was formally stated in Proposition 2.3.1. This proposed formula is

expected to take care of prolongations in ordinary differential equations. This formula was

applied in Section 2.5 of this Chapter for the heat equation and in Chapter Three in which

we analysed the partial differential equation for pricing of electricity future contracts. We

reviewed the Lie algorithm and applied it in the determination of Lie point symmetries of the

heat equation.
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Chapter 3

Symmetry Analysis of a

Commodity-Pricing Model

3.1 Introduction

We perform a complete symmetry analysis of the electricity pricing model and its variants. Over

the last few decades there has been a great interest in the modeling and analysis of problems

arising in commodity markets. Some of these problems are modeled in terms of evolution

partial differential equations. A number of studies have been devoted to the use of symmetry

techniques for partial differential equations arising in the field of Financial Mathematics, see,

for example, Ibragimov and Gazizov (1998), Goard (2000), Chou and Li (2001) and Sinkala

et al (2008a,b). The general form of our model (the partial differential equation under the

equivalent martingale measure Q) is

1
2
σ2νt

∂2y(t, νt)

∂ν2
t

+ (κθ − (κ+ λν) νt)
∂y(t, νt)

∂νt
+
∂y(t, νt)

∂t
= k1νty(t, νt) (3.1.1)

with boundary condition for the value at maturity (Kellerhals 2004, p.192)

y (T, νt) = exp (k1νT ) (3.1.2)
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For simplicity and without loss of generality we let k1 = k, νt = x, λν = λ so that y (νt, t) =

u (x, t) . Hence (3.1.1) becomes

∂u

∂t
+ 1

2
σ2x

∂2u

∂x2
+ (κθ − (κ+ λ)x)

∂u

∂x
− kxu = 0 (3.1.3)

The package SYM (Dimas and Tsoubelis 2005, 2006) was used with MATHEMATICA 6.0 for

the results which we present below.

3.2 The Lie Point Symmetries of (3.1.3)

As we saw in Chapter Two, the determination of the Lie point symmetries means finding the

functions ξ (x, t, u) , τ (x, t, u) and η (x, t, u) such that the symmetry conditions are met. The

symmetry conditions lead to a system of linear partial differential equations for the independent

and dependent variables which eventually split into many more equations since they (indepen-

dent and dependent variables) are independent of the derivatives of the dependent variable.

However, the coefficients of these variables do depend upon these derivatives.

The basis operators of the Lie algebra under the subcase for which α = κ+ λ and σ2 = 4θκ/3

are given as

Γ1 =
∂

∂t
(3.2.1)

Γ2 = u
∂

∂u
(3.2.2)

Γ3,4 = e±
1
2
φt

[√
x
∂

∂x
− 1

4θκ
√
x

(2θκ± 3x (α± φ))u
∂

∂u

]
(3.2.3)

Γ5,6 = e±φt
[
x
∂

∂x
± 1

φ

∂

∂t
+

3

4θκφ
(φx− θκ) (α± φ)u

∂

∂u

]
(3.2.4)

and

Γ∞ = f (x, t)
∂

∂u
, (3.2.5)

where φ =
√
κ2 + λ2 + 2κλ+ 2kσ2 and f (x, t) is any solution of (3.1.3). The basis symmetries

in (3.2.1)−(3.2.5) may be represented for convenience as

Γ1 =
∂

∂t
(3.2.6)
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Γ2 = u
∂

∂u
(3.2.7)

Γ3 = e
1
2
φt

[√
x
∂

∂x
−
(

1

2
√
x

+A
√
x

)
u
∂

∂u

]
(3.2.8)

Γ4 = e−
1
2
φt

[√
x
∂

∂x
−
(

1

2
√
x
− B
√
x

)
u
∂

∂u

]
(3.2.9)

Γ5 = eφt
[
x
∂

∂x
+

1

φ

∂

∂t
+ (Ax− C)u ∂

∂u

]
(3.2.10)

Γ6 = e−φt
[
x
∂

∂x
− 1

φ

∂

∂t
+ (Bx−D)u

∂

∂u

]
(3.2.11)

and

Γ∞ = f (x, t)
∂

∂u
, (3.2.12)

where A = 3
4θκ

(α + φ) ,B = 3
4θκ

(α− φ) , C = 3
4φ

(α + φ) and D = 3
4φ

(α− φ). The nongeneric

Lie point symmetries Γ1,Γ3 − Γ6, comprise two groups: the first group of symmetries Γ1,Γ5

and Γ6 constitutes the Lie algebra sl (2, R) and the second group Γ3 and Γ4 correspond to the

solution symmetries of the one-dimensional free particle. The former is characteristic of an

equation arising from finance. It is important to note that the Lie algebra of point symmetries

for (3.2.6)-(3.2.12) spanned by the vectors Γ1 (translation in t), Γ2 (dilatation in u), Γ3 and

Γ4(Galilean boost), Γ5 and Γ6 (local symmetries) and Γ∞ is an additional infinite-dimensional

subalgebra in which f (x, t) is the solution of (3.1.3) and reflects its linearity. The associated Lie

algebra of the above six-parameter Lie group of infinitesimal operators is {sl (2, R)⊕W3} ⊕s
∞A1 , where W3 is the three-dimensional Heisenberg-Weyl algebra implied by the commutation

relations given in Table 3.2.1, when the solution symmetry is omitted. Note that the symbol

⊕ is used when all elements of the first subalgebra have zero Lie Brackets with all elements

of the second. According to Andriopoulos (2008) it is important to note that the knowledge

of the algebra of a given differential equation is vital. Not only does one perceive better the

internal structure of the symmetries the differential equation possesses but also, provided the

Lie algebra is either a well-studied one or consists of well-known subalgebras, one can disern

those which are, for example, solvable and proceed to an order of reduction using one symmetry

at a time.
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Table 3.2.1: Table of Lie Brackets for (3.2.6)−(3.2.11)

[Γi,Γj] Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

Γ1 0 0 φ
2
Γ3 −φ

2
Γ4 φΓ5 −φΓ6

Γ2 0 0 0 0 0 0

Γ3 −φ
2
Γ3 0 0 −3φ

θκ
Γ2 0 −Γ4

Γ4
φ
2
Γ4 0 3φ

θκ
Γ2 0 −Γ3 0

Γ5 −φΓ5 0 0 Γ3 0 32
φ

Γ1 − 24α
φ

Γ2

Γ6 φΓ6 0 Γ4 0 −32
φ

Γ1 + 24α
φ

Γ2 0

3.2.1 Adjoint Representation of (3.2.6)−(3.2.11)

The problem of deriving the minimal combination (optimal systems) of subalgebras spanned by

these operators is equivalent to finding an optimal system of Lie symmetries (or group invariant

solutions). This is possible because there is a connection between the Lie group and the adjoint

representation of Lie algebra. We construct the adjoint representation to define an equivalence

relation on one-dimensional subalgebras which is generated through Γi, i = 1, ..., 6, by summing

the Lie series given in Olver (1993) as

Ad (exp (εΓi)) Γj =
∞∑
n=0

εn

n!
(AdΓi)

n = Γj − ε [Γi,Γj] +
ε2

2
[Γi, [Γi,Γj]]− · · ·

with reference to the table of Lie Brackets (Table 3.2.1), where [Γi,Γj] = ΓiΓj − ΓjΓi, is the

Lie Bracket and ε ∈ R. However, we adopt the global matrix (discussed in Section 3.3) of the

adjoint transformations instead, from which we deduce that

Ad(j) = A (j, ε) Γi, (3.2.13)

where A (j, ε) is some r × r (here r = 6) matrix corresponding to each generator Γj The

transpose of (3.2.13) yields the ij−th entry of Table 3.2.2.
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Table 3.2.2: Actions of the Adjoint representation of (3.2.6)−(3.2.11)

Ad Γ̃1 Γ̃2 Γ̃3 Γ̃4 Γ̃5 Γ̃6

Γ̃1 Γ1 Γ2 e−
φ
2
εΓ3 e

φ
2
εΓ4 e−φεΓ5 eφεΓ6

Γ̃2 Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

Γ̃3 Γ1 + φ
2
εΓ3 Γ2 Γ3 Γ4 + 3φ

θκ
εΓ2 Γ5 Γ6 + εΓ4

Γ̃4 Γ1 − φ
2
εΓ4 Γ2 Γ3 − 3φ

θκ
εΓ2 Γ4 Γ5 + εΓ3 Γ6

Γ̃5 Γ1 + φεΓ5 Γ2 Γ3 Γ4 + εΓ3 Γ5 Γ6 − 32
φ
εΓ1 + 24α

φ
εΓ2

Γ̃6 Γ1 − φεΓ6 Γ2 Γ3 + εΓ4 Γ4 Γ5 + 32
φ
εΓ1 − 24α

φ
εΓ2 Γ6

3.2.2 Construction of invertible mapping: Transformation of (3.1.3)

to the heat equation

Bluman and Cole (1974) and Bluman (1980, 1983) proved that the heat equation is the only

polynomial partial differential equation of the second order in two independent variables invari-

ant under the finite group of the heat equation itself. Bluman and Kumei (1989), in Chapter

Six, provide not only the framework for the existence and construction of a transformation

between two (linear or nonlinear) partial differential equations but an algorithm to determine

whether the necessary and sufficient conditions for the linearisation of a partial differential

equation are satisfied. In this Subsection we construct a transformation which maps our given

partial differential equation (3.1.3) to a target partial differential equation, the heat equation.

If such a mapping exists, it is necessary that any infinitesimal generator admitted by (3.1.3)

be mapped into an infinitesimal generator admitted by the heat equation. The necessary and

sufficient conditions for the existence of an invertible mapping are now stated from Bluman

and Kumei (1989).

Theorem 3.2.1 (Bluman and Kumei). In the case of one dependent variable, u, a mapping µ

defines an invertible mapping from
(
x, u, u(1), ..., u(p)

)
−space to

(
z, w, w(1), ..., w(p)

)
−space for

any fixed p if and only if u, is a one-to-one contact transformation of the form

z = φ
(
x, u, u(1)

)
, (3.2.14)

45



w = ψ
(
x, u, u(1)

)
, (3.2.15)

w(1) = ψ(1)

(
x, u, u(1)

)
. (3.2.16)

Note that, if φ and ψ are independent of u(1), then (3.2.14)−(3.2.16) define a point transfor-

mation.

Theorem 3.2.2 (Necessary conditions for the existence of an invertible mapping). If there

exists an invertible transformation µ which maps a given nonlinear partial differential equation

R {x, t, u} to a linear system of partial differential equation S {z, w} , then

(a) the mapping must be a point transformation of the form

zj = φj (x, t, u) , j = 1, 2, (3.2.17)

w = ϕ (x, t, u) ; (3.2.18)

(b) R {x, t, u} must admit an infinite-parameter Lie group of point transformations having

infinitesimal generator

Γ = ξ (x, t, u)
∂

∂x
+ τ (x, t, u)

∂

∂t
+ η (x, t, u)

∂

∂u
(3.2.19)

with ξ (x, t, u) , τ (x, t, u) and η (x, t, u) characterised by

ξ (x, t, u) = α (x, t, u)F (x, t, u) (3.2.20)

τ (x, t, u) = β (x, t, u)F (x, t, u) (3.2.21)

η (x, t, u) = ϕ (x, t, u)F (x, t, u) , (3.2.22)

where α (x, t, u) , β (x, t, u) and ϕ (x, t, u) are specific functions of (x, t, u) and F is an arbitrary

solution of some linear system of partial differential equations

L [Γ]F = 0 (3.2.23)

with L [Γ] representing a linear differential operator depending upon independent variables

Γ = (Γ1 (x, t, u) ,Γ2 (x, t, u)) (3.2.24)

of the same order as the order of the partial differential equation R {x, t, u}.
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Theorem 3.2.3 (Sufficient conditions for the existence of an invertible mapping). Let a given

nonlinear system of partial differential equation R {x, t, u} admit an infinitesimal generator

(3.2.20) the coefficients of which are of the form (3.2.20)−(3.2.22) with F being an arbitrary

solution of a linear system, (3.2.19), with specific independent variables (3.2.24). If the linear

homogeneous system of m first-order partial differential equations for scalar Φ,

α (x, t, u)
∂Φ

∂x
+ β (x, t, u)

∂Φ

∂t
+ ϕ (x, t, u)

∂Φ

∂u
= 0 (3.2.25)

has two functionally independent solutions, Γ1 (x, t, u) and Γ2 (x, t, u) , and the linear first-order

partial differential equation,

α (x, t, u)
∂ψ

∂x
+ β (x, t, u)

∂ψ

∂t
+ ϕ (x, t, u)

∂ψ

∂u
= 1, (3.2.26)

has the solution,

ψ = (ψ1 (x, t, u) , ψ2 (x, t, u)) ,

then the invertible mapping µ given by

z1 = φ1 (x, t, u) = Γ1 (x, t, u) , (3.2.27)

z2 = φ2 (x, t, u) = Γ2 (x, t, u) , (3.2.28)

w = ψ (x, t, u) (3.2.29)

transforms R {x, t, u} to a linear partial differential equation S {z, w}

L [z]w = g (z)

for some nonhomogeneous term g (z) .

NB: z in Theorems 3.3.2 and 3.3.3 is in fact z = (z1, z2) .

We apply these theorems to the construction of an invertible point mapping by finding the point

transformation which relates our given equation to the heat equation. Since the generators Γ4

and Γ6 of (3.2.9)−(3.2.11) commute, we use them to construct a transformation that maps

(3.1.3) invertibly to the heat equation. Let X1 := Γ4 and X2 := Γ6. From the vectors of the

infinitesimal symmetries of (3.1.3)

X1 = ξ11 (x, t)
∂

∂x
+ ξ12 (x, t)

∂

∂t
+ f1 (x, t)u

∂

∂u
(3.2.30)
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X2 = ξ21 (x, t)
∂

∂x
+ ξ22 (x, t)

∂

∂t
+ f2 (x, t)u

∂

∂u
, (3.2.31)

where

ξ11 =
√
xe

1
2
φt ξ12 = 0 f1 =

(
1

2
√
x
− B
√
x

)
ue

1
2
φt

ξ21 = xe−φt ξ22 =
1

φ
e−φt f2 = − (Bx−D) e−φt

To verify that the Jacobian of the transformation is nonzero, we find the determinant

J =

∣∣∣∣∣∣ ξ11 ξ12

ξ21 ξ22

∣∣∣∣∣∣ =

√
x

φ
e−

3
2
φt 6= 0, φ 6= 0.

Since J 6= 0, then the existence of an invertible mapping of the form

z = α (x, t)

τ = ϕ (x, t)

ω = ν (x, t)u

 (3.2.32)

is guaranteed for the mapping of (3.1.3) into a constant partial differential equation. The

mapping (3.2.32) must satisfy the following necessary conditions

ξ11αx + ξ12αt = 1; ξ21αx + ξ22αt = 0 (3.2.33)

ξ11ϕx + ξ12ϕt = 0; ξ21ϕx + ξ22ϕt = 1 (3.2.34)

ξ11νx + ξ12νt + f1ν = 0; ξ21νx + ξ22νt + f2ν = 0 (3.2.35)

Substitution of the values of the ξij′s into (3.2.33)−(3.2.35) and solution of the resulting simul-

taneous systems yield

√
xe−

1
2
φtαx + 0 = 1

xe−φtαx − 1
φ
e−φtαt = 0

 αx = 1√
x
e

1
2
φt

αt = −φ
√
xe

1
2
φt

(3.2.36)

√
xe−

1
2
φtϕx + 0 = 0

xe−φtϕx − 1
φ
e−φtϕt = 1

 ϕx = 0

ϕt = −φeφt
(3.2.37)

√
xe−

1
2
φtνx + 0 =

(
1

2
√
x
− B
√
x
)
e−

1
2
φtu

xe−φtνx − 1
φ
e−φtνt = (Bx−D) e−φt

 νx = − 1
φ

(2Bx− 1)u

νt = φ
2

(D − Bx+ 1)u.
(3.2.38)
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From (3.2.36)

α (x, t) =

∫
αxdx = 2

√
xe

1
2
φt + a (t) .

∴ a (t) = A1 =⇒ α (x, t) = K +
2
√
x

φ
(2φ− 1) e

1
2
φt.

From (3.2.37)

ϕ (x, t) =

∫
ϕxdx = b (t)

∂

∂t
ϕ (x, t) = ϕt =⇒ ḃ(t) = −φeφt, b(t) = L − eφt

.

∴ ϕ (x, t) = L − eφt.

From (3.2.38)

ν (x, t) =

∫
νxdx = −uBx+

1

2
u lnx+ c(t)

∂

∂t
ν(x, t) = νt =⇒ 0 + ċ(t) =

φ

2
(D − Bx+ 1)u and c(t) =

φ

2
(D − Bx+ 1)ut+M

∴ ν(x, t) =M exp

{
φ

2
(D − Bx+ 1) t− Bx+

1

2
lnx

}
,

where K,L and M are arbitrary constants. Without loss of generality we may let K = L = 0

and M = 1 to have (3.2.39)−(3.2.41).

z =
2

φ

√
x (2φ− 1) e−

1
2
φt , (3.2.39)

τ = −eφt (3.2.40)

and

w(z, τ) = u(x, t) exp

{
φ

2
(D − Bx+ 1) t− Bx+

1

2
lnx

}
. (3.2.41)

We now map (3.1.3) invertibly to the heat equation by using the transformation (3.2.39)−(3.2.41).

Using calculus and especially the principle of the chain rule, we obtain

∂u

∂t
=

x−
1
2

φ
(2φ− 1) e

1
2
t∂w

∂z
− φeφt∂w

∂τ
− φ

2

√
x (Bx−D − 1)w

 eψ (3.2.42)

∂u

∂x
=

x−
1
2

φ
(2φ− 1) e

1
2
t∂w

∂z
− x−

1
2

2
(φBtx+ 2Bx− 1)w

 eψ (3.2.43)
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and

∂2u

∂x2
=


x−1

φ2
(2φ− 1)2 eφt ∂

2w
∂z2
− x

−
3
2

2φ
(2φ− 1) e

1
2
φt ∂w
∂z

+1
4

[
(φBtx+ 2Bx− 1)x−1 − x−

3
2

]
(φBtx+ 2Bx− 1)w

 eψ (3.2.44)

where ψ = φ
2

(D − Bx+ 1) t − Bx. Substituting (3.2.29)−(3.2.31) into (3.1.3) we obtain the

linear heat equation
∂w

∂τ
−H∂

2w

∂z2
= 0, (3.2.45)

where

H =
2θκ

3φ3
(2φ− 1)2.

3.3 Construction of an Optimal System of One-dimensional

Subalgebras

It is well known that reduction of the independent variables of a partial differential equation

by one is possible using any linear combination of our symmetry generators Γi, i = 1, ..., 6.

We now construct a set of minimal combinations known as an optimal system for which the

commutators of the admitted symmetries given in Table 3.2.1 are an essential component.

3.3.1 Construction of linear transformation

As explained in Olver (1993), the infinite-dimensionl subalgebra Γ∞ does not lead to group

invariant solutions. Consequently it is not considered in the classification problem. We need to

classify the generators for a particular algebra. This classification applies to every differential

equation with a Lie algebra whether ordinary or partial differential equation. The approaches

for the classification of symmetry generators can be found in Bluman and Kumei (1989), Ibrag-

imov (1999), Ibragimov et al (1991) and Hydon (2000). Recall that any Lie algebra is closed

under the operation of taking the Lie Bracket. We split Γ and Γ̃ into components as follows:

Γ = κiΓi (3.3.1)
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and

Γ̃ = κiΓ̃i = κie−εΓjΓie
εΓj , (3.3.2)

where

Γ̃i = (A (j, ε))mi Γm. (3.3.3)

A (j, ε) is some matrix corresponding to each generator Γj. To obtain A (j, ε) Hydon used the

generator Γ̃i. which is the solution of the initial-value problem

dΓ̃i
dε

= −e−εΓj [Γj,Γi] e
εΓj = Ck

ijΓ̃k

Γ̃i

∣∣∣
ε=0

= Γi

Wherefore from (3.3.3)
d (A (j, ε))mi

dε
Γm = Ck

ij (A (j, ε))mk Γm,

(A (j, 0))mi Γm = Γi.

The generators Γm are linearly independent and so

d (A (j, ε))mi
dε

= Ck
ij (A (j, ε))mk , (A (j, 0))mi = δmi , (3.3.4)

where the structure constants Ck
ij can be used to define the matrix C (j) with the following

relationship

(C (j))ki = Ck
ij. (3.3.5)

Using (3.3.4) we have the matrix differential equation

dA (j, ε)

dεj
= C (j)A (j, ε) , A (j, 0) = I, (3.3.6)

with the general solution

A(j, εj) = exp [εjC(j)] =
∞∑
n=0

C(j)n
εnj
n!
. (3.3.7)

The necessary (and sufficient) condition for invariants of I (κ) such that

I (κ exp [εjC (j)]) = I (κ) ∀j, ε, (3.3.8)
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for which
∂I (κ exp [εjC(j)])

∂ε

∣∣∣∣
ε=0

= 0 (3.3.9)

is1

K (κ)∇I (κ) = O. (3.3.10)

When we consider the nonvanishing two-dimensional Lie algebra the basis of which is presented

as the elements of the Lie Brackets in Table 3.2.1, the only nonzero structure constants Ck
ij

with j = 1 are C3
31 = −φ/2, C4

41 = φ/2, C5
51 = −φ,C6

61 = φ and for j = 3 are C3
13 = φ/2, C2

43 =

3φ/θκ, C4
63 = 1 and so on. When we apply (3.3.5), we obtain

C (1) =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 −φ
2

0 0 0

0 0 0 φ
2

0 0

0 0 0 0 −φ 0

0 0 0 0 0 φ


, C(2) = O6×6,

C (3) =



0 0 φ
2

0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 3φ
θκ

0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0


, C(4) =



0 0 0

0 0 0

0 −3φ
θκ

0

−φ
2

0 0

0 0 0

0 0 0

0 0 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0


,

C (5) =



0 0 0 0 φ 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 −1 0 0 0

0 0 0 0 0 0

−32
φ

24α
φ

0 0 0 0


, C (6) =



0 0 0 0 0 −φ

0 0 0 0 0 0

0 0 −1 0 0 0

0 0 0 0 0 0

32
φ

−24α
φ

0 0 0 0

0 0 0 0 0 0


.

1Using MATHEMATICA we generate the matrix A (j, εj) using C (j) with the command

MatrixExp [εj {{...} , ..., {...}}] , where the {...} represents the ith row of C (j) .

52



When we utilize (3.3.7), the exponentiated matrices exp [εjC(j)] = A(j, εj) are

A (1, ε1) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 e−
φε1
2 0 0 0

0 0 0 e
φε1
2 0 0

0 0 0 0 e−φε1 0

0 0 0 0 0 eφε1


, A (2, ε2) = I6×6,

A (3, ε3) =



1 0 φ
2
ε3 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 3φ
θκ
ε3 0 1 0 0

0 0 0 0 1 0

0 3φ
2θκ
ε2

3 0 ε3 0 1


, A (4, ε4) =



1 0 0 −φ
2
ε4 0 0

0 1 0 0 0 0

0 −3φ
θκ
ε4 1 0 0 0

0 0 0 1 0 0

0 −3φ
2θκ

ε2
4 ε4 0 1 0

0 0 0 0 0 1


,

A (5, ε5) =



1 0 0 0 φε5 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 −ε5 1 0 0

0 0 0 0 1 0

−32
φ
ε5

24α
φ
ε5 0 0 −16ε2

5 1


,

A (6, ε6) =



1 0 0 0 0 −φε6

0 1 0 0 0 0

0 0 e−ε6 0 0 0

0 0 0 1 0 0

32
φ
ε6

−24α
φ
ε6 0 0 1 −16ε2

6

0 0 0 0 0 1


.

The transformations generated by the A (j, ε)′ s are

Ei = (λ1, λ2, λ3, λ4, λ5, λ6) [A(j, εj)] (3.3.11)
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E1 =

{
λ1, λ2, e

−φ
2
ε1λ3, e

φ
2
ε1λ4, e

−φε1λ5, e
φε1λ6

}
E2 = {λ1, λ2, λ3, λ4, λ5, λ6}

E3 =

{
λ1, λ2 +

3φ

θκ
λ4ε3 +

3φ

2θκ
λ6ε

2
3, λ3 +

φ

2
λ1ε3, λ4 + λ6ε3, λ5, λ6

}
E4 =

{
λ1, λ2 −

3φ

θκ
λ3ε4 −

3φ

2θκ
λ5ε

2
4, λ3 + λ5ε4, λ4 −

φ

2
λ1ε4, λ5, λ6

}
E5 =

{
λ1 −

32

φ
λ6ε5, λ2 +

24α

φ
λ6ε5, λ3 − λ4ε5, λ4, λ5 + φλ1ε5 − 16λ6ε

2
5, λ6

}
E6 =

{
λ1 +

32

φ
λ5ε6, λ2 −

24α

φ
λ5ε6, e

−ε2λ3, λ4, λ5, λ6 − φλ1ε6 − 16λ5ε
2
6

}
.

3.3.2 One functionally invariant solutions

The invariance condition (3.3.10) is not of full rank and may be solved by the method of

characteristics. This means that the transformations (E1)− (E6) have precisely one functional

invariant. The integration of the equations

Ei (D) = 0 i = 1, ..., 6,

λ5 + φλ1ε5 − 16λ6ε
2
5 = 0,

D = (φλ1)2 + 64λ5λ6. (3.3.12)

The invariant (3.3.12) (which is simply the discriminant of the quadratic in any Ei) simplifies

further calculations immediately. The solution of the quadratic in E5 is

ε5 =
λ2

1 ±
√
D

32λ6

. (3.3.13)

As D is quadratic in the components of λ1, rescaling can only multiply D by a positive constant.

Hence we must consider the three distinct conditions: D > 0, D = 0 and D < 0.

CASES

Case I: The Case D > 0 and λ6 = 0

We bifurcate this case into the following subcases namely: (a) λ5 6= 0 and (b) λ5 = 0
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(a) λ6 = 0 and λ5 6= 0

Consider the vector λ = (λ1, λ2, λ3, λ4, λ5, λ6) . Then by subcase (a) we have

(λ1, λ2, λ3, λ4, λ5, 0) , (3.3.14)

where λ5 6= 0. Using λ5 to reduce the vector given above in E4, we obtain λ3 + λ5ε4 = 0.

Therefore ε4 = −λ3/λ5 ⇒ λ3 = 0. From E6 λ1 + 32λ5ε6/φ = 0 and so ε6 = −φλ1/32λ5 ⇒

λ1 = 0 and λ2 − 24αλ5ε6/φ = 0 from which ε6 = φλ2/2αλ5 ⇒ λ2 = 0. The above vector

therefore reduces to the form

(0, 0, 0, λ4, λ5, 0) . (3.3.15)

a(i) We can make λ5 = ±1 to obtain the following representative for the optimal system

Γ4 + Γ5 and Γ4 − Γ5. (3.3.16)

a(ii) If we consider Γ4 in (3.3.15) and divide through by Γ5, we have the reduced vector

as

(0, 0, 0, k, 1, 0) . (3.3.17)

If λ4 = 0 in (3.3.15), we obtain a reduced vector given by

(0, 0, 0, 0, λ5, 0).

These operations produce the following representative for the optimal system

kΓ4 + Γ5 and Γ5. (3.3.18)

(b) λ6 = 0, and λ5 = 0

In this subcase we have the vector

(λ1, λ2, λ3, λ4, 0, 0) . (3.3.19)

b(i) Suppose λ1 6= 0. Then from E3, λ3 + 1
2
φλ1ε3 = 0. Therefore ε3 = −2λ3/φλ1 =⇒

λ3 = 0. Again from E4, λ4 − 1
2
φλ1ε4 = 0. So that ε4 = 2λ4/φλ1 =⇒ λ4 = 0. Hence we

now have the vector

(λ1, λ2, 0, 0, 0, 0) . (3.3.20)

55



From (3.3.20) we have another representative for the optimal system

Γ1 + Γ2. (3.3.21)

b(ii) Suppose λ1 = 0 in (3.3.19). We then consider the vector

(0, λ2, λ3, λ4, 0, 0) . (3.3.22)

Based on the vector (3.3.22) we consider λ4 6= 0, then using the transformation E3, λ2 +

3φλ4ε3/θκ+3φλ6ε
2
3/2θκ = 0 and, because λ6 = 0 already, ε3 = −θκλ2/3φλ4. This implies

that λ2 = 0 and from transformation E5, λ3 − λ4ε5 = 0 so that ε5 = λ3/λ4 =⇒ λ3 = 0.

Hence we now obtain a new reduced vector

(0, 0, 0, λ4, 0, 0) . (3.3.23)

The vector (3.3.23) provides the optimal system representative given by

Γ4. (3.3.24)

When we consider λ4 = 0 in (3.3.22), we produce the reduced vector

(0, λ2, λ3, 0, 0, 0) . (3.3.25)

b (ii′) If λ3 6= 0 in (3.3.26), then from E4, λ2 − 3φλ3ε4/θκ = 0 (since λ5 = 0 already)

ε4 = θκλ2/3φλ3 =⇒ λ2 = 0 If we take into account the possibility that λ3 = 0, we then

have the new reduced vectors

(0, λ2, 0, 0, 0, 0) and (0, 0, λ3, 0, 0, 0) (3.3.26)

which yield a representation for the optimal systems given by

Γ2 and Γ3. (3.3.27)

Case II: The Case D = 0 and λ6 6= 0

For this condition we use (3.3.27), i.e., ε5 = λ2
1/32λ6 which implies that λ1 = 0. This

procedure yields the new vector

(0, λ2, λ3, λ4, 0, λ6) . (3.3.28)
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Furthermore, if λ1 = 0, we have D = 62λ5λ6 but D = 0 yields λ5 = 0 since λ6 6= 0 and we

obtain the same vector as (3.3.28). When we use E3, λ4 + λ6ε3 = 0, where ε3 = −λ4/λ6

so that λ4 = 0. Similarly from E5, ε5 = −φλ2/24αλ6 ⇒ λ2 = 0. The new vector is

(0, 0, λ3, 0, 0, λ6) . (3.3.29)

The representative for the optimal system is

Γ3 + Γ6. (3.3.30)

Case III: The Case D < 0 and λ6 6= 0

D < 0 means that (φλ1)2 + 62λ5λ6 < 0, that is λ5 6= 0. We can apply the transformations

E3, E4 and E5 respectively, as follows

λ4 + λ6ε3 = 0, i.e ε3 = −λ4/λ6 =⇒ λ4 = 0

λ3 + λ5ε4 = 0, i.e., ε4 = −λ3/λ5 =⇒ λ3 = 0.

λ1 − 32λ6ε5/φ = 0, i.e., ε5 = ϕλ1/32λ6 =⇒ λ1 = 0.

λ2 + 24αλ6ε5/φ = 0, i.e., ε5 = −φλ2/24αλ6 =⇒ λ2 = 0.

The above operations reduce the vector to

(0, 0, 0, 0, λ5, λ6) . (3.3.31)

The components λ5 and λ6 of the vector (3.3.31) do not have a common sign since D < 0

and λ1 = 0 already. For D < 0 we need λ5λ6 < 0. The condition is that either λ5 = +1

and λ6 = −1 or λ5 = −1 and λ6 = +1. Vector (3.3.31) then yields the representation for

the optimal system as

Γ5 − Γ6 and − Γ5 + Γ6. (3.3.32)

Case IV: The Case D > 0 and λ6 6= 0

Since D is an invariant under the transformations E1, E3−E6, the condition D > 0 shows

that either λ1 6= 0 or λ5 6= 0. Another possibility is that λ1 6= 0 and λ5 = 0 since λ6 6= 0

and condition D > 0 is still met, or λ1 = 0 and both λ5 and λ6 have the same signs such

that λ5λ6 > 0 (when λ1 = 0 ).
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λ6 6= 0, λ1 6= 0 and λ5 6= 0

From E3 − E6, respectively, we have

λ4 + λ6ε3 = 0, i.e., ε3 = −λ4/λ6 =⇒ λ4 = 0

λ3 + λ5ε5 = 0, i.e., ε5 = −λ3/λ5 =⇒ λ3 = 0

λ2 + 24αλ6ε5/φ = 0, i.e., ε5 = −φλ2/24αλ6 =⇒ λ2 = 0

λ1 + 32λ5ε6/φ = 0, i.e., ε6 = −φλ1/32λ6 =⇒ λ1 = 0

for which we obtain a reduced vector of the form

(0, 0, 0, 0, λ5, λ6) (3.3.33)

such that the representative for the optimal system is

−Γ5 − Γ6 and Γ5 + Γ6. (3.3.34)

• Summary of the optimal system (3.3.16)−(3.3.34)

Γ2, Γ3, Γ4, Γ5,

Γ1 + Γ2, Γ3 + Γ6, Γ4 + Γ5, Γ4 − Γ5,

Γ5 + Γ6, Γ5 − Γ6, −Γ5 + Γ6, −(Γ5 + Γ6), kΓ4 + Γ5.

3.3.3 Symmetry reductions and invariant solutions

Having obtained an optimal system of generators, we can use the method of group invariant

solutions to calculate the associated invariant solutions. We then start by noting that the

invariance condition for the operator Γ2 is u = u (t) and provides a trivial solution that u =

constant.

A: Γ = Γ1 + Γ2

Γ = Γ1 + Γ2 =
∂

∂t
+ u

∂

∂u
. (3.3.35)

The associated Lagrange’s system of (3.3.35) is

dt

1
=
dx

0
=
du

u

dt

1
=
dx

0
⇒ D1 = x (3.3.36)
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dt

1
=
du

u

D2 = ue−t. (3.3.37)

Invariant checks

(a) Γ(D1) = (Γ1 + Γ2)(D1) =

(
∂

∂t
+ u

∂

∂u

)
(x) = 0.

Hence the invariance condition is satisfied.

(b) Γ(D2) = (Γ1 + Γ2)(D2) =

(
∂

∂t
+ u

∂

∂u

)
(ue−t)

=
d

dt
ue−t + u

d

du
ue−t = −ue−t + ue−t = 0.

The invariance condition is also satisfied.

Working with D1 and D2 and designating one of them as a function of the other we have

D2 = ϕ (D1) , i.e., ue−t = ϕ(x)⇒ u = etϕ(x). (3.3.38)

Substituting (3.3.38) and the partial derivatives of u with respect to t and x into our given

equation we obtain
2

3
θκxϕ′′ + (θκ− αx)ϕ′ + (1− kx)ϕ = 0, (3.3.39)

where α = κ+ λ and σ2 = 4θκ/3.

B: Γ = Γ4 = e−
1
2
φt

[
√
x
∂

∂x
− 1

4θκ
√
x

(2θκ− 3x (α− φ))u
∂

∂u

]
The associated Lagrange’s system is

dt

0
=

dx√
x

=
−4θκ

√
xdu

u (2θκ− 3x (α− φ))

dt

0
=

dx√
x
⇒ dt = 0⇒ D1 = t (3.3.40)

dx√
x

=
−4θκ

√
xdu

u (2θκ− 3x (α− φ))
, i.e.,

− (2θκ− 3x (α− φ)) dx

4θκx
=
du

u

D2 = ue−
3x
4θκ

(α−φ)x1/2 or D2 = u exp

(
− ln
√
x+

3x

4θκ
(α− φ)

)
. (3.3.41)

Invariant checks:
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(a) Γ(D1) = Γ4(D1) = e−
1
2
φt

[
√
x
∂

∂x
− 1

4θκ
√
x

(2θκ− 3x (α− φ))u
∂

∂u

]
(t) = 0.

This operator satisfies the invariance condition.

(b)

Γ(D2) = Γ4(D2) = e−
1
2
φt

[√
x
∂

∂x
− 1

4θκ
√
x

(2θκ− 3x (α− φ))u
∂

∂u

](
ue−

3x
4θκ

(α−φ)x
1
2

)
= 0.

This operator also satisfies the invariant condition.

Making D2 a function of D1 we have

D2 = ϕ (D1) .

We obtain the invariant

u exp

{
− 3x

4θκ
(α− φ)

}√
x = ϕ (t) ⇒ u = exp

{
3x

4θκ
(α− φ)

}
x−1/2 ϕ (t) . (3.3.42)

Differentiating (3.3.42) partially with respect to t and x we obtain

ut = exp

{
3x

4θκ
(α− φ)

}
x−1/2ϕ′ (3.3.43)

ux =
3

4θκ
(α− φ)x−1/2 exp

{
3x

4θκ
(α− φ)

}
ϕ− 1

2
x−1/2 exp

{
3x

4θκ
(α− φ)

}
ϕ (3.3.44)

uxx =

[(
3

4θκ
(α− φ)

)2

− 3

4θκ
(α− φ)x+

3

4
x−2

]
x−1/2 exp

{
3x

4θκ
(α− φ)

}
ϕ. (3.3.45)

Substitution of (3.3.43)−(3.3.45) into our given equation (3.1.3) gives

ϕ′+

{[
3x

8θκ
(α− φ)− x2

2
+

3

4θκ
(θ − αx)

]
(α− φ) +

θκ

2x
− 1

2
(θκ− αx)− kx

}
ϕ = 0, (3.3.46)

where α = κ+ λ and σ2 = 4θκ/3.

Let A =

[
3x

8θκ
(α− φ)− x2

2
+

3

4θκ
(θ − αx)

]
(α− φ) +

θκ

2x
− 1

2
(θκ− αx)− kx

so that (3.3.46) becomes

ϕ′ + Aϕ = 0. (3.3.47)

The solution of (3.3.47) yields

ϕ = Ke−At1 (3.3.48)
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3.4 Chapter summary

In this Chapter we focused on the solution of the partial differential equation for pricing future

contracts for electricity given in equation (3.1.1). We determined the symmetries admitted by

this partial differential equation and used them to construct the solutions in line with the Lie

algorithm reviewed in Chapter Two. Our calculations showed that our model for pricing future

contracts for electricity admits six Lie point symmetries and a solution symmetry. We deter-

mined the Lie symmetry algebra admitted by (3.1.3) and found that it may be decomposed

into {sl (2, R)⊕W3} ⊕s∞A1. We also constructed a transformation that map the symmetries

admitted by our given equation into a constant coefficient heat equation. In addition we de-

rived the adjoint representation group which was used in the construction of a one-dimensional

optimal system for equation (3.1.3). Two invariant solutions out of the eleven optimal systems

were calculated and we believe that these solutions will one day find practical applications in

line with the reported thinking in Ibragimov (1995, Vol. 2, p.29).
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Chapter 4

A Stochastic Volatility Model for

Prices of Electricity Future Contracts

Theory without practice is pointless. Practice without theory is mindless.

4.1 Introduction

It is known that new events influence stock market prices either positively or negatively. For

example, political disturbances (among others), especially in oil producing countries, affect com-

modity markets such as crude oil prices substantially. The electricity market as an incomplete

market has peculiar characteristics: nonstorability and inventories cannot be held. Overtime-

forced outages of generation plants or unexpected contingencies in transmission networks often

result in short time fluctuations in prices. This first of the two Chapters that constitute Part

Two of this Thesis is devoted to developing a model to estimate the parameters of stochastic

volatility of the electricity market with reference to the Pennsylvania daily prices of Electricity

Futures Contract. We propose a model of dynamic linear type incorporating switching regimes

as this is a particular class of state-space models that allow many of the relevant inferences to

be performed exactly using the Kalman filter. Although the Kalman filter was designed ini-

tially for tracking problems, it has recently been very successful in estimating parameters in a
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wide range of applications including those in Mathematics of Finance. In the following Section

we give without proof some theorems and definitions necessary for our theoretical framework

followed by Section 4.3 in which the pricing and some stochastic volatility models are discussed.

We introduce the concept of Kalman filter state-space or dynamic linear modeling and we show

the equivalence of the Kalman filter state-space and the popular Heston/CIR dynamic models

in Section 4.4. In Section 4.5 we discuss modified Kalman filter algorithms and filtering equa-

tions. Implementation of the algorithm is discussed in Section 4.6 and empirical results are

presented in Section 4.7. Thereafter we conclude.

4.2 Some Elements of Stochastic Calculus

As in Subsection 1.4.1 of Chapter One, we assume that there exists a probability space (Ω,F ,P)

where Ω is the sample space, F the σ-algebra-generated process ω = (wt : t ∈ R) and P

the probability measure, P: F 7→ [0, 1]. We use the fundamental Brownian motion wt on

the probability space (Ω,F ,P) to represent our important stochastic engine for modelling the

randomness in the financial market. Stochastic calculus is the calculus that has been developed

to work with the stochastic process. We limit our discussion to stochastic processes known as

Itô processes. Reference can be made to Øksendal (1995) for a more extensive and rigorous

treatment of stochastic differential equations.

Definition 4.2.1 (Brownian Motion). 1 The stochastic process ω = {wi : t ∈ R} on the

probability space (Ω,F ,P) is called a Wiener or Brownian motion process if the following

properties hold almost surely.

(i) P (W0 = 0)=1;

1In Financial Mathematics Brownian motion (also called the Wiener process), is a particular type of stochas-

tic process that is often incorporated into models of financial asset to model uncertainty in the market (see for

example, Neftci (1996) and or Hull (1989) for a good introduction). The (Financial Mathematics) Brownian

motion process is actually a mathematical model of a phenomenon first reported by the Scottish botanist Robert

Brown in 1827. He observed under the lens of the microscope that pollen grains suspended in water behave in

a random manner.
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(ii) For each n ≥ 1 and any 0 ≤ t0 < t1 < . . . < tn the random variables W1 −W0,W2 −

W1, . . . ,Wn −Wn−1 are independent;

(iii) For any t and h > 0(i.e. t > h ≥ 0), the random variable Wt+h − Wt is normally

distributed with:

(a) E[Wt+h −Wt] = µh, µ a real positive constant

(b) E[Wt+h −Wt]
2 = σ2h, σ2 a positive constant

where µ and σ2 are the drift and variance parameters respectively; and

(iv) Wt is continuous in t ≥ 0.

The process with µ = 0 and σ = 0 is called normalized or standard Brownian motion process.

Lemma 4.2.2. If Wt is Brownian motion process, then Cov[Wt+h,Wt] = min(t+ h, t).

Proof. (see Sobczyk 1995, p63).

Remark 4.2.1 This lemma is a very elementary application of independent increments

and the mean-zero properties of the Brownian motion process. It also demonstrates how ap-

plication of independent increments can rely on the zero-mean property.

Definition 4.2.1 [1-dimensional Itô Process ] Let (Wt)0≤t≤T be a Brownian motion. The

Itô process (stochastic process) Xt on the probability space (Ω,F ,P) is then given by

Xt = X0 +

∫ t

0

µ(Xs, s)ds+

∫ t

0

σ(Xs, s)dWs (4.2.1)

often written in a shorter form

dXt = µ(Xs, t)dt+ σ(Xt, t)dWs (4.2.2)
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Figure 4.2.1: Simulation of sample Brownian path

such that the following conditions hold almost surely:

P

[∫ t

0

|σ(Xs, s)ds| <∞, ∀t ≥ 0

]
= 1

and

P

[∫ t

0

|µ(Xs, s)ds| <∞,∀t ≥ 0

]
= 1.

Equation (4.2.1) is generally known in financial economics as a stochastic differential equation

(SDE) because with Xt already a stochastic process it is a differential equation with a noise

term added. SDE (4.2.1) consists of two terms; the first term µdt defined as the drift term and

the second term σdWt which specifies the random part (the noise) of the process sometimes

called the diffusion part. For the existence and uniqueness of the SDE given in (4.2.1) we need

the following existence and uniqueness condition on µ and σ to be fulfilled.
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Theorem 4.2.3 (Existence and uniqueness). The condition that guarantees the existence and

uniqueness of the solution of SDE (4.2.1) is the growth condition, i.e., µ and σ satisfy

|µ(x, t)|+ |σ(x, t)| ≤ C(1 + |x|), x ∈ R, t ∈ [0, T ]

for some constant C, which guarantees global existence; and the Lipshitz condition

|σ(x, t)− σ(y, t)|+ |µ(x, t)− µ(y, t)| ≤ D|x− y|, x, y ∈ R, t ∈ [0, T ]

for some constant D, which guarantees local uniqueness; where Ft is the filtration generated by

W = {Wt : t ∈ R}.

Proof. See Øksendal (2000).

The Itô formula is one fundamental result that enables the use of and solution of SDEs. It is

the stochastic analogue to the chain rule in ordinary mathematical analysis.2 It transforms the

Brownian motion given a function Yt = f(Xt, t), where Xt is defined in (4.2.1), the dynamics

of Yt is then given by applying the second-order Taylor expansion.

Theorem 4.2.4 (Itô formula). Let Xt be a stochastic process given by the SDE (4.2.1) and let

u(x, t) ∈ C1,2([0,∞]× R)3. Then Yt = u(Xt, t) is an Itô process and

dYt =
∂u

∂t
((Xt, t))dt+

∂u

∂t
((Xt, t))dXt +

1

2

∂2u

∂2t
((Xt, t))(dXt)

2

in which the following multiplication rules have been used

2Itô’s Lemma (Itô, 1951) is to stochastic calculus what the Taylor expansion is to ordinary calculus. It

is largely used to construct differential equations for a function (e.g., options) of stochastic variable(s) like a

commodity price.
3i.e. u is twice continuously differentiable on [0,∞)
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· dt dWt

dt 0 0

dWt 0 dt

Proof. Detailed proof in either Liptser and Shiryayev (1977) or Etheridge (2002).

Remark 4.2.2 The class of Itô processes does not include all processes for which Itô’s

formula works, but it is sufficiently broad to include the majority of applications in Financial

Mathematics. The Brownian motion has two major drawbacks that do not allow it function

properly in financial market setting. These drawbacks include (a) asset prices, St, are always

positive (St ∈ (0,∞)) and, since the price of an asset is a normal random variable, it can the-

oretically become negative (Xt ∈ (−∞,∞)), and (b) fluctuations in the price are proportional

to the price of the asset. Instead we introduce a nonnegative functional of Brownian motion

called geometric Brownian motion4 defined as follows:

dSt = µStdt+ σStdWt (4.2.3)

which is a short form of the following equation

St = S0 +

∫ t

0

µSzdz +

∫ t

0

σSzdWz (4.2.4)

We assume for now that the daily asset returns follow a log normal distribution and we

denote this by rt = ln

(
St
S0

)
. By applying Itôs formula we get the following expression

drt =

(
µ− 1

2
σ2

)
dt+ σdWt

finding the primitive function

rt =

(
µ− 1

2
σ2

)
t+ σWt

and finally ending up with, see for example, Hull (1997) and Shreve (2004),

St = S0 exp

{(
µ− 1

2
σ2

)
t+ σWt

}
, (4.2.5)

4The underlying stock is assumed to follow geometric Brownian motion in the famous Black-Scholes model.
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where dt is the change in time for which St changes to St + dSt, dSt/St is the return to in-

vestment in the asset and dWt is a standard Wiener process (see Osborn, 1959 for discussion),

dWt = εt
√
dt and εt ∼ N(0, dt). Here the drift parameter, µ is a measure of growth of the

asset (i.e. the expected return per unit time) and σ is the measure of volatility of the asset

as estimated by the standard deviation of the returns. Equation (4.2.5) is the solution of the

stochastic differential equation (4.2.3). It then follows that the geometric Brownian motion

(GBM) with initial value S0 has the following log-normal distribution

p (St, t;S0, t0) =
1√

2σ2τSt
exp

−
[
ln
(
St
S0

)
−
(
µ− 1

2
σ2
)
τ
]2

2σ2τ

 , (4.2.6)

where τ = t − t0. Equation (4.2.6) is the probability density function (pdf) of the GBM,

distributed as

Rt ∼ N

(
lnS0 +

(
µ− σ2

2

)
t, σ2t

)
The expected value of the process (4.2.5) is given by

E[St] = S0 exp(µt) (4.2.7)

Interested readers may consult Samuelson (1965), Tuckwell (1988), Ross (2000) and Marathe

and Ryan (2005) for details.

4.3 Heston’s Stochastic Volatility Model Revisited

In the literature a different way to improve the traditional financial models based upon Brownian

motion is represented by stochastic volatility models. The main future of stochastic volatility

processes is, clearly, the fact that their unconditional volatility changes stochastically over

time. A number of different stochastic volatility models have been developed since 1987.5 A

stochastic volatility model can be seen as a discrete-time approximation to the Hull and White

derivative pricing model (Hull and White, 1987) in which the stock price dynamics are governed

5The first application of stochastic volatility for derivative pricing is due to Hull and White (1987).
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by unobservable state variables. In their model stock price follow a diffusion process

dSt
St

= αdt+ σ(t)dW1 (4.3.1)

and the logarithm of σ(t) follows a diffusion process given by the Ornstein-Uhlenbeck (O-U)

process:

d(log σ) = λ (ξ − lnσ) dt+ γdW2, (4.3.2)

where St is the stock price, σ(t) the instantaneous variance of S1 and W1, W2 are two Wiener

processes. This model therefore generalizes the classical Black-Scholes option-pricing formula

of Black and Scholes (1973) to allow for stochastic volatility. The general form of the diffusion

process for the short rate, rt , with real-world drift, µr , and volatility, σr , is governed by the

stochastic differential equation of the form

drt = µr(rt, t)dt+ σr(rt, t)dWt, (4.3.3)

where the functional forms µr and σr determine the behaviour of the short rate and dWt is a

standard Brownian motion. Let us denote by νt the value at time t of an interest rate contingent

claim with maturity T . As it derives from the single factor model assumption, only the short

rate and the time to maturity T − t will affect the price of the claim so that we can write

St(rt) ≡ ν(rt, t) ≡ ν(rt, t, T ) (4.3.4)

This consists of the determination of the fair value ν(rt, t) of the bond for t < T. With the

application of Itô’s lemma and using (4.3.3) and (4.3.4) yields the claim dynamics

dνt =

(
∂νt
∂t

+ µr
∂νt
∂rt

+
1

2
σ2
r

∂2νt
∂r2

t

)
dt+

(
σr
∂νt
∂rt

)
dWt (4.3.5)

Dividing both sides by νt yields the instantaneous return on the contingent claim by applying

the definition of the market price at risk, λt(which may be interpreted as the extra profit on

the portfolio per unit risk (Kwot 1998), we obtain

∂νt
νt

= (rt + λtν(t, T ))dt+ ν(t, T )dWt (4.3.6)

with

ν(t, T ) =
σr(rt, t)

νt

∂νt
∂rt

(4.3.7)
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Equating the drift in (4.3.6) with the drift in (4.3.5) we obtain a second-order partial differ-

ential equation (called the Feynman-Kac equation) that must be satisfied by any interest rate

contingent claim in no-arbitrage one factor model

∂νt
∂t

+ (µr − λtσr)
∂νt
∂rt

+
1

2
σ2
r

∂2νt
∂r2

t

− rtνt = 0 (4.3.8)

The term νr−λtσr in (4.38) is often called the risk adjusted drift. As we see hereafter, equation

(4.3.8) will be the fundamental equation on which any interest-rate contingent claim price can

be computed as the solution of such a partial differential equation subject to an appropriate

boundary condition. With different configurations of µr and σr as inputs, different interest

rate contingent claims will produce the same partial differential equation but with different

boundary conditions.

Under the risk-neutral measure Q, the term structure of interest rates in the ordinary

Vasicek (1977) model evolves according to the stochastic differential equation

drt = κ(θ − rt)dt+ σdWQ
t (4.3.9)

where θ = µ − λσ

κ
is the risk-neutral mean, κ and σ are positive constants. This defines a

random walk around a trend with a mean reverting characteristic. In this formulation the

diffusion process allows for the possibility of negative interest rates. To rectify this problem of

negative interest rates in the Vasicek model, Cox, Ingersoll and Ross (CIR) in 1985 introduced

a modification of (4.3.9) known as the square-root process

drt = κ(θ − rt)dt+ σ
√
rtdW

Q
t , θ, κ, σ > 0. (4.3.10)

This model corresponds to a continuous time first-order autoregressive process where the ran-

domly moving interest rate reverts elastically to its long-term value, θ. This implies that interest

rates (commodity prices) are determined by the supply and demand of individuals. Equations

(4.3.9) and (4.3.10) are special cases of the general mean-reverting process

drt = κ(θ − βrt)dt+ σrδtdW
Q
t (4.3.11)

where 0 ≤ δ ≤ 1 constant. Set δ = 0 in (4.3.11) and we obtain the generalized Vasicek model

while setting δ = 0.5 yields the generalized CIR model.
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Hull and White (1990) propose a generalization of Vasicek and CIR models to be arbitrage-free

such that rt is governed by

drt = κ(θt − βtrt)dt+ σtr
δ
tdW

Q
t , (4.3.12)

for some constant κ ≥ 0.

Consider the basic stochastic volatility model proposed by Heston (1993) that assumes a system

of SDEs under the objective probability measure P,

drt = µStdt+ St
√
νtdW

S
t (4.3.13)

and

drt = κ[θ − rt]dt+ ξ
√
rtdW

ν
t (4.3.14)

where νt the instantaneous stochastic variance of the equity spot price St is represented by a

CIR process defined by (4.3.14). The parameters in these equations are defined as follows:

µ is the deterministic drift (a.k.a the deterministic rate of return) of the asset, St

i.e., µ =
St − St−1

ST−1

,

θ is the long run average value of the stochastic variance of (a.k.a long vol);

i.e. as t −→∞, E(νt) −→ θ,

κ is the rate at which returns to θ, (a.k.a. the mean reversion rate of the volatility);

i.e., κ ≈ E
(
θ − νt
θ

)
= 1− 1

θ
E(νt)

is the volatility of volatility6 (a.k.a vol of vol) which, as the name suggests, determines the

variance of

i.e., ξ ≈
√
V ar(νt),

ρ is the correlation between the two Weiner processes dW S
t and dW ν

t ;

i.e., ρ = Corr(dWQ
S , dW

ν
S ), ρ ∈ [−1, 1].

6If the parameters obey the Feller condition (Albrecher et al 2007), then the process, νt , is strictly positive,

i.e., 2κθ ≥ σ2.
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The stochastic behaviour of St assumed in (4.3.13) shows that the stock price follows a geomet-

ric Browning motion with stochastic specification of the volatility term inspired (Kellerhals,

2004) by the modification of the standard Heston model for pricing electricity forwards. The

modification of (4.3.13) and (4.3.14) are based on the idea of Ross (1997) and using the Girsanov

transformations dW S,Q
t = dW S,Q

t +λ∗
√
νtdt under the martingale measure, Q, and X∗t = lnSt ,

where λ∗ = λ−0.5 and X∗t constitute the transformed spot price. These transformations above

results in the following system of SDEs

dX∗t = [µ− λνt]dt+
√
νtdW

S
t (4.3.15)

and

dνt = [κ(θ − νt)− λννt]dt+ ξ
√
νtdW

ν
t (4.3.16)

where λννt is the market price of risk and λν a constant. Motivated by SDEs (4.3.15) and

(4.3.16), Kellerhals suggests a corresponding partial differential equation for the pricing of

electricity forward contract under the equivalent martingale measure Q of the form

1

2
σ2νt

∂2y(t, νt)

∂ν2
t

+ (κθ − (κ+ λν)νt)
∂y(t, νt)

∂νt
+
∂2y(t, νt)

∂t
= k1νty(t, νt) (4.3.17)

with boundary condition for the value at maturity Kellerhals (2004, p192)

y(T, νt) = exp(k1νT ) (4.3.18)

where k1 = λ− κ+ λν
σ

− 1

2
(1− ρ2).

The model (4.3.17) is at the centre of this Thesis. We have already performed a symmetry

analysis of a particular case of the model in Chapter Three and in the following Sections we

outline methods of parameter estimation and their implementation.

Remark 4.3.1 Heston (1993)chooses the market price of volatility risk to be proportional to

volatility, i.e., Λ(S, ν, t) = κ
√
ν or Λ(S, ν, t)ξ

√
ν = κξν. Let λ = κξ, so that the coefficient

of ∂u/∂ν in (4.3.17) becomes [κ(θ − ν) − λν]. There are analytical advantages in this choice

of market price of volatility risk. The drift term of the specified process (4.3.17) is an affine

function of the state variable itself and its affinity makes the model easier to solve. For the
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different exponential affine structure models proposed especially for the Cox-Ingersoll-Ross

(CIR) model, see for example Cox et al (1985) and Heston (1993) while their implementations

using Kalman filtering7 , see for instance Chen and Scott (2003), Chetterjee (2003), Do (2008),

Geyer and Pichler (1999) and Babs and Nowman (1999).

4.4 The Kalman State-Space Model or Dynamic Linear

Model(DLM)

4.4.1 The Basics

Kalman (1960)and Kalman and Bucy (1961) introduced a very general model that incorporates

many special cases of interest in time series data analysis, called the State-Space or Dynamic

Linear Model (DLM) defined in its basic form as;

Xt = α + ΦXt−1 + ωt (4.4.1)

and

Yt = AtXt + νt, (4.4.2)

where equation (4.4.1) is the state equation which through a p × p transition matrix Φ deter-

mines the rule for the generation of Xti from the past states X(t−1),j , j = 1, . . . , p for i = 1, . . . , p

and the time points t = 1, . . . , n of the original vector of interest called the state vector Xt,

assumed to be directly unobservable. The ωt are p×1 identically and independently distributed

(i.i.d.) zero mean Gaussian vectors with covariance matrix Q. Also, α is a p× 1 vector of con-

stants such that, if E(Xt) = µ, then α = (I −Φ)µ. Equation (4.4.2) is the observable equation

which through a q × p measurement or observation matrix At determines Yt as the directly

observable linearly transformed version of Xt with added noise νt assumed to be a Gaussian

white noise with a q × q covariance matrix, R. The noise processes {ωt} and {νt} may or may

7The Kalman filter is an iterative procedure (as soon becomes clearer below) that forecasts the state variable

one period into the future by a linear projection and then updates this forecast when the observation on the

variable Yt becomes available.
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not be correlated as

Cov(wt, νt) =

E(wtν
′
t) = S at time t

0 otherwise.

State-space models are based on the idea that the time series Yt is an incomplete and noisy

function of some underlying unobservable process Xt, t = 1, ..., n, called the state process. More

generally, we might think of Xt as an auxiliary random process which facilitates the task of

specifying the probability law of the time series: the observable process Yt depends on the latent

state process Xt, which has a simpler, Markovian dynamics, and we can reasonably assume that

the observation Yt only depends on the state of the system at the time the measurement is taken,

Xt. Figure 4.4.1 represents the sketch of the dependences among variables that we are assuming.

X0 −→ X1 −→ X2 −→ · · · −→ Xt−1 −→ Xt −→ Xt+1 −→ · · ·

↓ ↓ ↓ ↓ ↓

Y1 Y2 Yt−1 Yt Yt+1 · · ·
Figure 4.4.1; State space model dependence structure

Formally, the nature of the assumptions of a state space model may be stated as:

(a) Xt, t = 1, ..., n is a Markov chain; that is, Xt depends on the past values X0, X1, ..., Xt−1

only through Xt. Thus, the probability law of the process Xt, t = 1, ..., n is specified by

assigning the initial density p0(X0) of X0 and the transition densities p(Xt|Xt−1) of Xt

conditionally on Xt−1.

(b) Conditionally on Xt, t = 1, ..., n, the Yt are independent and Yt depends on Xt only. It fol-

lows that, for any n ≥ 1, (Y1, ..., Yn)|X1, ..., Xn have joint conditional density
∏n

t=1 f(yt|Xt).

Just as there are variations in stochastic volatility models in the literature, there are also several

modifications of the general Kalman filtering method that have been developed for dealing with

stochastic volatility models. We propose in the next Subsection some modifications to enhance

parameter estimation of our model through the maximum likelihood estimation.
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4.4.2 Gaussian-mixture: A Primer

A special case of a regime switching model is the independent and identically distributed

mixture of two normal distributions in two states. Let the state (regime) that an unobservable

process is in at time t be denoted as Xt, where there are N = 2, say, possible regimes (Xt = 0, 1).

When the unobserved process is at state j, i.e., Xt = j, the observed sample yt is presumed

to have been drawn from a N(µj, σ
2
j ) distribution. Hence the density of yt conditional on the

state variable Xt taking on the value j is given by

f(yt|Xt = j; θ) =
1√

2πσ2
j

exp

{
−(yt − µj)2

2σ2
j

}
, j = 0, 1 (4.4.3)

where θ is a vector of population parameters such that θ ≡ (µ0, µ1, σ
2
0, σ

2
1)′. The unobservable

regime {Xt} is presumed to have been generated by some probability distribution for which

the unconditional probability that {Xt} takes on the value j is πj:

πj = P{Xt = j; θ}, for j = 0, 1. (4.4.4)

The probabilities πo and π1 are also included in θ so that θ is now given by the parameter

vector θ ≡ (µ0, µ1, σ
2
0, σ

2
1, π0, π1)′. Combining (4.4.3) and (4.4.4) we have the joint probability

density function (pdf) of yt and Xt given by

P (yt, Xt = j; θ) = f(yt|Xt = j; θ) = P{Xt = j; θ} (4.4.5)

which is

P (yt, Xt = j; θ) =
πj√
2πσ2

j

exp

{
−(yt − µj)2

2σ2
j

}
(4.4.6)

We find the unconditional density of yt by summing over all possible values that state variable

can take:

f(yt; θ) =
2∑
j=1

P (yt, Xt = j; θ)

=
π1√
2πσ2

1

exp

{
−(yt − µ1)2

2σ2
1

}
+

π2√
2πσ2

2

exp

{
−(yt − µ2)2

2σ2
2

}
(4.4.7)

Since the regime Xt is unobserved, the expression by equation (4.4.7) is the relevant density

describing the data, yt , actually observed. If the state variable Xt is independent and identically
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distributed across different time points, t, then the log likelihood for the observed data can be

calculated using (4.4.7) as

L(θ) =
T∑
t=1

logf(yt; θ) (4.4.8)

where T is the time horizon. The maximum likelihood estimate of θ is obtained by maximizing

(4.4.8) subject to the restrictions π0 + π1 = 1 and πj ≥ 0 for j = 0, 1. The probability density

function of the form of equation (4.4.7) can be used to represent a broad class of different

densities. Figure 4.4.2(top) gives an example of a Gaussian mixture for N = 2. However, a

mixture of two Gaussian variables need not have the bimodal appearance as in Figure 4.4.2(top),

but can produce a unimodal density allowing skew or kurtosis different from that of a single

Gaussian variable as in Figure 4.4.2(bottom).

Figure 4.4.1: Gaussian mixture of two normal distributions with varying means and variances:

bimodal (top) and unimodal bottom

This basic idea given in this Subsection serves as a primer to Section 4.5, where we incorpo-

rate the expectation maximization (EM) algorithm of Dempster et al (1977) which is basically

a two-phase iterative algorithm whereby inference about an unobserved regime is computed
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(expectation) and the maximum likelihood estimates of the parameters are calculated (maxi-

mization) for the Gaussian mixtures. Hamilton (1994) illustrates which regime is more likely

to have been responsible for producing the observation yt as.

P{Xt = j|yt; θ} =
P (Xt = j; θ)

f(yi; θ)
=
πjf(yt|Xt = j; θ)

f(yi; θ)
(4.4.9)

Hamilton gives the maximum likelihood estimates of the parameter set θ as

µ̂j =

∑T
t=1 ytP{Xt = j|yt; θ̂}∑T
t=1 P{Xt = j|yt; θ̂}

(4.4.10)

and

σ̂2
j =

∑T
t=1 ytP{Xt = j|(yt − µj)2; θ̂}∑T

t=1 P{Xt = j|yt; θ̂}
, (4.4.11)

π̂j =
1

T

T∑
t=1

P{Xt = j|yt; θ̂}. (4.4.12)

In the discrete time log-normal stochastic volatility models the approach advocated by Harvey

et al (1994) has been influential. Their approach was to remove the predictable part of the

returns. So we think of Y = M again and work with logR2
t = νt + log ε2

t . If the volatility

has short memory then this form of the model can be handled using the Kalman filter while

long memory models are often dealt with in the frequency domain. Either way this delivers

a Gaussian quasi-likelihood which can be used to estimate the parameters of the model. The

linearised model is non-Gaussian8 due to the long left hand tail9 of log ε2
t which generates

outliers when εt is small.

4.4.3 A Gaussian-mixture/AR Model

Recall that in(4.4.2), the measurement matrix At converts the unobservable measurement into

data vectors Yt so that (4.4.2) can be assumed to possess a Markov behavior with switching

regimes (Kim, 1994, So et al 1998). We assume that the log-volatilities follow an autoregressive

8By taking logarithms of squared returns, we obtain a linear albeit non-Gaussian state space model. Because

log y2t is not truly Gaussian, the Kalman filter yields minimum mean square linear estimators (MMSLE) of Xt

of future observations rather than minimum mean square estimators (MMSE).
9Implications of tails are discussed in Chapter Five.
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(AR(1)) process with a Markov switching mean so that the underlying process is observed via

conditionally independent and normally distributed daily returns, say.

Suppose, instead of the observation stochastic process in the Heston/CIR model, we let{St}

be a price process and rt = 4 lnSt be defined as the log-return of a commodity at time

t. Under the assumption of efficient markets, the log-returns have null conditional mean:

E(rt+1|r1, ..., rt) = 0. Chan et al (1992) show that many of the specific stochastic differential

equations used in the literature can be written as a special case of (4.3.12)

drt = (θt − βtrt)dt+ σtr
δ
tdW

Q
t . (4.4.13)

If we let θt = θ and βt = β and allow the volatility parameter to be time-varying in line with

Ball and Torous (1999), then a simple discretization of (4.4.13) leads to

∆rt = θ + βrt−1 + σtr
δ
t−1εt (4.4.14)

where ∆rt = rt − rt−1 and εt is a standard normal variable. This model allows log-volatility to

evolve stochastically as a simple AR(1) process

log σ2
t = φ0 + φ1 log σ2

t−1 + ωt (4.4.15)

where the disturbance term ω(ωt ∼ iid(0, σ2
ω)) which makes process (4.4.15) stochastic in the

variance is itself subject to random shocks. By using the residual in (4.4.15) to write the

system in a state-space form and then applying the Kalman filter recursively, one builds up

the log-likelihood function. The transformation is employed on the residual (Harvey, et al

1994, Mahieu and Schotman, 1998 and So, et al 1998 defined their residual variously in the

neighbourhood of rt = ϑ exp{νt/2}εt through ARCH and GARCH models):

Rt = σtr
δ
t−1εt = ∆rt − θ − βrt−1 (4.4.16)

If we take the log of the square of the residual in (4.4.16) we obtain

logR2
t = log σ2

t + 2δ log rt−1 + log ε2
t (4.4.17)

If we let Yt = logR2
t which is observable given the observed returns, νt = log σ2

t is a state

variable (i.e., log-volatility) and γt = log ε2
t in (4.4.17) then we have the system rewritten into
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a state-space form as

Yt = νt + 2δ log rt−1 + γt (4.4.18)

and

νt = φ0 + φ1νt−1 + ωt (4.4.19)

NB: Equation (4.4.18) is a general set-up that applies to both diffusion and non-diffusion

models; since our approach is non-diffusion, we set δ = 0 in (4.4.18) to obtain

Yt = α + νt + γt (4.4.20)

where

Yt = logR2
t is the log of the squared standardized returns Rt of the asset St at time t,

α = deterministic component,

νt = log(R2
t /ε

2
t ) represents an autoregressive model of order one (AR(1)) in (4.4.17),

γ = UtZt0 + (1− Ut)Zt1
Ut is the Markov regime state variable which is an i.i.d. Bernoulli process such that Pr{Ut =

0} = π0, P r{Ut = 1} = π1 with (π0 + π1 = 1), and

Ztj are two i.i.d. Gaussian processes such that Ztj ∼ N(µj, σ
2
j ), j = 0, 1 with µ0 = 0 so that

the mixture γt of the two Gaussian distributions forms a white noise. The idea of writing

the observation equation in the form (4.4.20) above is to make room for simplicity and a

more general approach in the sense of allowing the dynamics of the observation error, γt, to

depend upon parameters that are to be fitted. Suppose further that, instead of the CIR process

representation for volatility, νt follows a first-order autoregressive (AR (1)) process defined by

νt = φ0 + φ1νt−1 + ωt (4.4.21)

or equivalently

νt = φ0(1− φ1) + φ1νt−1 + σωt, (4.4.22)

where φ0, φ1, σ are parameters and the white Gaussian noise ωt ∼ N(0, σ2) in (4.4.21) or ωt ∼

N(0, 1) in (4.4.22). This assumption is necessary in constructing regime-switching regression

models or Kalman filtering algorithms with Markov switching-regimes, see for example, Goldfeld

and Quandt (1973)10, Hamilton (1989, 2005), and Shumway and Stoffer (1991, 2009).

10Markov-switching regressions were introduced in econometrics in 1973 by Stephen M. Goldfeld and Richard
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4.4.4 Analogy between the Gaussian-mixture/AR model and Hes-

ton/CIR model

Let the vectors of parameters for the Heston/CIR model and the Gaussian-mixture/AR model

be denoted respectively by

ψ = (µ, κ, θ, ξ, σ2
s , σ

2
ν) Basic Heston/CIR model

and

Θ = (α, φ0, φ1, σ, µ
2
0, µ1, σ

2
1, π1) Gaussian-mixture/AR model.

The constant α in the Gaussian-mixture /AR model represents the deterministic component

of Yt just as µ represents the deterministic drift (a.k.a the deterministic rate of return) of the

price of asset, St, in the Heston/CIR model.

⇒ µ ≡ α.

θ is the long run average value of the variance of νt, i.e., as t→∞,E(νt)→ θ.

If we let θ be the mean of νt as an AR (1) expressed in the Gaussian-mixture/AR model, then

⇒ θ ≡

(1− φ1)φ0 + φ1νt−1 conditional on νt−1,

φ0 unconditionally (in the long run).

κ is the rate at which reverts to θ (a.k.a. volatility’s mean reversion rate);

⇒ κ ≡ E(
θ − νt
θ

) = 1− 1

φ
E(νt)

=


φ1(φ0 + 1)

φ0

νt−1 conditional on νt−1,

0 unconditionally.

ξ is the volatility of volatility which, as the name suggests, determines the variance of νt

ξ ≡
√
V ar(νt) =


σ conditional on νt−1,

σ√
1− φ1

unconditionally.

ρ is the correlation between the two Weiner processes dW s
t and dW ν

t comparable to the corre-

lation between the two Gaussian processes γt, the observation noise, and ωt, the state noise, in

which case

ρ ≡ Corr(γt, ωt) =

0, when the state and observation noises are uncorrelated,

g(α, µ0, σ
2
o , µ1, σ

2
1, π1), say, when they are correlated at time, t,

E. Quandt.
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where g(.) stands for some function of the parameters in its argument.

4.5 Applying the Kalman State-Space methodology to

Stochastic Volatility modeling

4.5.1 The Kalman filter

A Kalman filter is simply an optimal recursive data-processing algorithm. It combines all avail-

able measurement data plus prior knowledge about the system to produce an estimate of the

desired variables in such a manner that the error is minimized statistically. One of the many

ways the filter obtains optimal estimates of desired quantities from data provided by a noisy

environment is the Bayesian viewpoint. In the Bayesian principle we want the filter to prop-

agate the conditional probability density of the desired quantity, conditioned on knowledge of

the actual data coming from the measuring devices. The key notion here is that given the data

Yt = (Yt, Yt−1, ..., Y1), inference about the state of nature, Xt, can be performed through a

direct application of Bayes’ theorem:

Pr{State of nature|Data} ∝ Pr{Data|State of nature} × Pr{State of nature}

Pr(Xt|Yt) ∝ Pr(Yt|Xt, Yt−1)× Pr(Xt|Yt−1). (4.5.1)

Expression (4.5.1) denotes the posterior distribution for X at time t, whereas the first and

second expressions on the right hand side denote the likelihood and the prior distribution for

X, respectively. Given the realization of the state variables at time t and t − 1(St = j and

St−1 = i where i, j = 0 or 1) and using the notation X t−1
t to denote the variable conditional on

the realized states j and i, the Kalman filter can now be represented in what follows (see also,

Hamilton, 1989, Kim, 1994).

Let Xs
t = E(Xt|Ys), where Ys = {y1, ..., ys} represents the conditional expectation of a com-

modity price at time t given observations up to and including time s, so that

P s
t1,t2

= E{(Xt1 −Xs
t1

)(Xt2 −Xs
t2

)′} = P s
t when t1 = t2 = t.
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Let the initial conditions11 be

X0
0 = µ and P 0

0 = Σ0 for t = 1, . . . , n, (4.5.2)

while

Xn
n and P n

n for t > n, (4.5.3)

are initial conditions for the accomplishment of (4.5.6) and (4.5.7). The Kalman gain and

smooth gain matrix are defined respectively as

Kt = P t−1
t A′t[AtP

t−1
t A

′

t +R]−1 (4.5.4)

Jt−1 = P t−1
t Φ

′
[P t−1
t ]−1. (4.5.5)

Property 4.5.1 (Shumway and Stoffer, 2009) The Kalman Filter:

For the state-space model specified in (4.4.1) and (4.4.2) with the initial conditions in (4.5.3)

for t = 1,...,n

when s < t,

X t−1
t = ΦX t−1

t−1 (4.5.6)

P t−1
t = ΦX t−1

t−1 Φ′ +Q (4.5.7)

when s = t,

X t
t = X t−1

t +Kt(Yt − AtX t−1
t ) (4.5.8)

P t
t = [I −KtAt]P

t−1
t (4.5.9)

where Kt is the Kalman gain defined in (4.5.4) above.

Remark 4.5.1 When t > n, prediction is accomplished using initial conditions Xn
n and P n

n

and (4.5.6) and (4.5.7).

Property 4.5.2 The Kalman Smoother (obtaining estimators Xn
t for Xt based on the entire

11The initialization of the covariance matrix
∑

0 can be arbitrary, as long as it is nonzero, as the filter

eventually converges and “forget” initialization errors (Jazwinski, 1972, Anderson and Moore, 1979 and Kailath

et al 2000).
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data sample Y1, ..., Yn, t ≤ n). For the state-space model specified in (4.4.1) and (4.4.2) with

the initial conditions in (4.5.3) obtained from Property 4.5.1, and for t = n, n− 1, ..., 1,

X t−1
n = X t−1

t−1 + Jt−1(Xn
t −X t−1

t ) (4.5.10)

P t−1
n = P t−1

t−1 + Jt−1(P n
t − P t−1

t )J ′t−1 (4.5.11)

where Jt−1 is the smoother gain matrix defined in (4.5.5) above.

The recursion can be understood in two stages: prediction and correction, described visually

in Figure 4.5.1 below.

Figure 4.5.1: Prediction and correction stages of the Kalman-filter recursion

4.5.2 Modified Kalman filter: DLMs with switching

In modeling change in an evolving time series we assume discontinuous changes in the dynamics

of some underlying model such as

(i) Changes occurring over time in error covariances,

(ii) Assigning mixture distributions to the observation error, νt, and

(iii) Allowing switches in the design matrix - in the classical regression case.

To incorporate a reasonable switching structure for the measurement matrix into the DLM that

is compatible with practical situations, we assume that there are m possible state configurations

in a nonstationary independent process defined by the time-varying probabilities

πj (t) = Pr (At = Mj) , j = 1, ...,m and t = 1, ..., n (4.5.12)
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such that important information about the current state of the measurement process is given

by the filtered probabilities of being in state j, defined as the conditional probabilities

πj (t |t) = Pr (At = Mj |Yt ) , j = 1, . . . ,m and t = 1, . . . , n (4.5.13)

which also vary as a function of time. This gives the estimates of the probability of being in

state j given the data to time t. The modified predictors X t−1
t are given by

E(Xt |Yt−1 ) = X t−1
t = ΦX t−1

t−1 (4.5.14)

with associated error variance-covariance matrix given by

P t−1
t = ΦP t−1

t−1 Φ′ + Q (4.5.15)

The modified filters X t
t are given by

E(Xt |Yt ) = X t
t = X t−1

t +
m∑
j=1

πj(t |t)Ktjεtj, (4.5.16)

where the innovation (or residual), i.e., error in predicting Yt from the point t− 1 is thus

εtj = Yt −MjX
t−1
t (4.5.17)

and the associated error variance-covariance matrix is given by

P t
t =

m∑
j=1

πj(t |t)(I −KtjMj)P
t−1
t , (4.5.18)

where

Ktj = P t−1
t M ′

j

(
Σ−1
tj

)′
+ Q (4.5.19)

and the innovation value,

Σtj = MjP
t−1
t M ′

j +R. (4.5.20)

Also, the modified filters πj (t | t) are given by

πj(t |t) =
πj(t)fj(t |t− 1)
m∑
k=1

πk(t)fk(t |t− 1)
, (4.5.21)
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where the fi (t | t− 1) denote the conditional density of Yt given the past Yt, Yt−1, ..., Y1 and

for At = Mj for j = 1, ..., n, and we assume the distribution πj(t) for j = 1, ...,m has been

specified before observing Yt, Yt−1, ..., Y1.

If we have no reason to prefer one state over another at time t, the choice of uniform priors,

πj(t) = m−1, j = 1, ...,m, suffices. Smoothness can be introduced by letting

πj(t) =
m∑
i=1

πi(t− 1 |t− 1)πij, (4.5.22)

where the nonnegative weights πij are chosen so that
∑m

i=1 πij = 1. Although fj (t | t− 1) can

be expressed in an explicit form, its evaluation can be highly computationally intensive and as

such a remedy is to approximate it using the closest (in the sense of Kullback-Leibler distance)

normal distribution. In this case the approximation leads to a choice of normal distribution with

the same mean and variance associated with fj (t | t− 1) ; that is, we approximate fj (t | t− 1)

by a normal with mean MjX
t−1
t and variance ΣtjMjP

t−1
t M ′

j + R as in the innovation value in

(4.5.20) above.

4.5.3 The Maximum Likelihood Estimation Procedure

The joint density of the observed data is given by

f(y1, · · · ,yn) =
n∏
t=1

f(yt |Yt−1 ) =
n∏
t=1

m∑
j=1

Pr(At = Mj |Yt−1 )f(yt |At = Mj, Yt−1) (4.5.23)

and so the log-likelihood can be written as

lnLY (Θ) =
n∑
t=1

ln
(∑m

j=1
πj(t)fj(t |t− 1)

)
, (4.5.24)

where Θ = {µ0, Φ, Q, R} is the vector of parameters containing respectively the elements

of the initial mean, the transition matrix, the state and observation covariance matrices. We

consider maximizing (4.5.24) directly as a function of the parameters using a Newton method,

or we may consider applying the EM algorithm to the complete data likelihood. Thus the

parameters in the model are Θ = (α, φ0, φ1, σ, µ0, σ
2
0, µ1, σ

2
1, π1) and they can be estimated by

the method of maximum likelihood on the basis of the following likelihood

lnLY (Θ) =
n∑
t=1

ln

(
1∑
j=0

πj(t)fj(t |t− 1)

)
, (4.5.25)
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where the density fj (t | t− 1) is approximated by the normal density with mean νt−1
t + µj

and variance σ2
j . The quasi-maximum likelihood estimates of the model can be obtained by

maximizing the log-likelihood function with respect to the unknown parameters.

4.5.4 The filtering Equations

Equations (4.5.4−4.5.11) are related to (4.5.12−4.5.21) in the model by the following filtering

equations for ease of programming in R:

νtt+1 = φ0 + φ1ν
t−1
t +

1∑
j=0

πtjktjεtj (4.5.26)

P t
t+1 = φ2

1P
t−1
t + σ2

ω −
1∑
j=0

πtjk
2
tjΣtj (4.5.27)

εt0 = yt − α− νt−1
t − µ0 (4.5.28)

εt1 = yt − α− νt−1
t − µ1 (4.5.29)

Σt0 = P t−1
t + σ2

0 (4.5.30)

Σt1 = P t−1
t + σ2

1 (4.5.31)

kt0 =
φ1P

t−1
t

Σt0

(4.5.32)

kt1 =
φ1P

t−1
t

Σt1

. (4.5.33)

4.6 Estimation of Parameters

As indicated in Sections 4.4 and 4.5 the Kalman-filtering procedure allows us to estimate the

state variables over time given particular assumptions about the process for which all of the

previous probabilistic results assumed that the parameters of the process were known. The

Kalman filtering paradigm also allows one to calculate efficiently the likelihood of a set of ob-

servations given a particular set of parameters (see, e.g., Harvey 1989, Chapter 3.4, for details).

By varying the parameters and rerunning the Kalman filtering for each set of parameters, we
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can identify the set of parameters that maximizes this likelihood function. The iterative proce-

dure was performed by the Stochastic Volatility function (SVfilter) in R software programming

until an appropriate convergence criterion is satisfied. In our model there are seven parameters

to be estimated Θ = (α, φ0, φ1, σ, µ0, σ
2
0, µ1, σ

2
1, π1) plus the terms in the covariance matrix for

the errors of measurement (P t
t ). We used the optimization function optm in R to request the nu-

merical optimization, a Broyden-Fletcher-Goldfarb-Shanno (SFGS) method and the associated

Hessian matrix to determine estimates of the parameters and standard errors for these estimates

respectively. To be sure that our routine for the estimation of the maximum likelihood reaches

global (rather than local) maximum, we reran the optimization problem from a variety of initial

values of the (especially φ0 = 0.1, 0.2, ..., 0.9 and recall that φ0 + φ1 = 1) parameters. In all

cases we started the Kalman filter with a prior mean (α =
∑N

t yt/N) and covariance matrix

(P 0
0 6= 0) based respectively on the observed means and covariance in the data. Although the

likelihood scores vary somewhat, the estimated state variables and parameters did not appear

to be very sensitive to the assumed initial mean and covariance. Some results of the estimation

are plotted for visual interpretion.

4.7 Empirical Results

To conduct an empirical implementation of the proposed model we use the historical time series

data of Pennsylvania Daily Electricity Forward Contract12 from January 1, 2002 to October

10, 2010. Consider the daily log-return series as discussed earlier in Section 4.3. The series

show signs of positive autocorrelation in the squared returns. This characteristic is commonly

referred to as volatility clustering, a common feature of financial returns data that usually

induce excess kurtosis. Panels (b) and (c) of Figure 4.7.1 show the daily log-returns of the

prices of Pennsylvania Electricity Futures Contract. It can be seen that the price volatility is

not constant over time and in addition, the volatility is lowest at the second quarter of the

entire time horizon (Figure 4.7.1 (c) and (d)). As a consequence, a normal distribution is not

capable of describing the return series adequately. As we see in Chapter Five both histogram

12Http://www.eia.doe.gov/cneaf/electricity/wholesale/wholesale
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displays and goodness-of-fit tests of daily returns clearly expose the inadequacy of the normal

distribution to describe the system and correctly estimate the probability of both low returns

around zero and extremely high absolute returns. One possibility to overcome the shortcomings

of the normal distribution is to employ a mixture of two (see Section 4.2.2) or more normal

distributions. Mixture distributions are useful in the context of overdispersed or multimodal

data that may be caused by unobserved heterogeneity in the data.

It appeared from Figure 4.7.1 (c) that quiet periods, characterized by relatively small returns,

alternate with relatively volatile periods, where price changes are rather large. This can be

confirmed by the examination of the first-order autocorrelation function (ACF) of returns and

squared returns in Figure 4.7.2 ((a) and (b)). While the autocorrelations of the return series

only show minor activity (Figure 4.7.2 (a)), the autocorrelation function of squared returns

show significant correlations up to an extended lag length (Figure 4.7.2 (b)).

Figure 4.7.1: Plots of prices of Pennsylvania Electricity futures Contracts for 1900 trading days
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Table 4.7.1: Values of estimates of parameters and their standard errors for various combina-

tions of π0 and π1

Prob
π0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

π1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Para

φ0
.1445 .1531 .1606 .1582 .1481 .1402 .1332 .1269 .1234

(.1645) (.1806) (.1881) (.1815) (.1718) (.1630) (.1555) (.1447) (.1294)

φ1
.9363 .9294 .9256 .9268 .9296 .9324 .9350 .9387 .9437

(.0263) (.0280) (.0286) (.0272) (.0257) (.0247) (.0240) (.0231) (.0221)

σ
.3544 .3834 .3914 .3867 .3769 .3649 .3511 .3303 .2965

(.0843) (.0839) (.0835) (.0803) (.0771) (.0747) (.0728) (.0705) (.0675)

α
-2.5810 -2.5810 -2.5691 -2.6317 -2.7138 -2.7588 -2.8401 -2.9475 -3.1198

(2.3588) (2.3889) (2.3665) (2.3367) (2.3076) (2.2872) (2.2698) (2.392) (2.1470)

σ2
0

.2829 .5269 .7028 .8632 1.0088 1.1428 1.2717 1.4103 1.5941

(.2513) (.1295) (.1028) (.0875) (.0769) (.0697) (.0652) (.0628) (.0595)

µ1

-1.7896 -1.9139 -2.0693 -2.2560 -2.4807 -2.7713 -3.1899 -3.8652 -5.1415

(.1934) (.1700) (.1708) (.1815) (.1981) (.2204) (.2525) (.3030) (.3641)

σ2
1

2.4744 2.5427 2.6085 2.6726 2.7379 2.8046 2.8601 2.8608 2.6600

(.0672) (.0745) (.0837) (.0957) (.1112) (.1315) (.1601) (.2062) (.2659)

Criteria

IV 1537.47 1474.39 1420.39 1378.82 1350.42 1336.13 1338.65 1365.04 1438.29

LLH 1304.31 1280.40 1263.51 1251.22 1242.16 1235.77 1232.20 1232.59 1240.46

Noi 32 37 39 22 28 42 26 41 53

NB: Prob = probability; Para = parameter with its standard error in parenthesis; Criteria: IV = initial value;

LLH = log likelihood value and Noi = number of iterations before convergence.
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Figure 4.7.2: Autocorrelation and partial autocorrelation functions for the return series ((a)

and (c)) and squarded series ((a) and (d))

The main steps we performed towards the estimation of the parameters Θ were the following.

Firstly we chose an initial guess for Θ, (see Table 4.7.2). The starting values of time-varying

probabilities π0 and π1 as stated in Section 4.6 (see Table 4.7.1) and the combination that

generates the highest value of the log-likelihood is chosen. This approach assures optimal

value of estimates of the parameters. The log-likelihood13 is also initialized to zero. At each

iteration the value of the log-likelihood function was compared against the values in the previous

iteration and, if the difference between the current and the old value is positive and smaller

than a specified quantity (we choose 0.00001), the iterative procedure terminates.14 The results

13The log-likelihood is actually the “strength of evidence” about the likelihood that a given estimate is optimal

relative to others.
14The choice of the maximum value of the log-likelihood function is informed by the MLE principle that gives
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are given in Table 4.7.2. Estimates came from the combination (π0, π1) = (0.1, 0.9) with the

highest log-likelihood function value of 1304.3068 in 32 iterations.

Table 4.7.2: Estimation Results Penn Fit

Parameter Inititial Values Estimates(standard error)

φ0 0 0.1445(0.1645)

φ1 0.95 0.9363(0.0263)

σ 0.20 0.3544(0.0843)

α 57.98 -2.5810(2.3588)

σ2
0 1.00 0.2849(0.2513)

µ1 -3.00 -1.7896(0.1934)

σ2
1 2.00 2.4744(0.0672)

Figure 4.7.1 shows the observed prices, St, log returns, rt, standardized returns, Rt, and the

squared standardized returns, R2
t , which we refer to in this Chapter as a measure of observed

volatility. On closer examination of Figure 4.7.1 (c and d) one observes volatility clustering in

the process. The influence of initial values of π0 and π1 on the parameter estimation is shown

in Figure 4.7.3 where the three state parameters (Figure 4.7.3(a)) seem to be invariant while

the other two variances (σ2
0 and σ2

1 ) change monotonically with increasing values of π0. The

optimal value of the log-likelihood function is shown to be a function of the combinations of

the initial values of π0 and π1 (Figure 4.7.3 (b)).

The first four iterations (see, for instance, Figure 4.7.4) confirm the fact that the filter eventually

forgets initialization errors and then slowly converges to the optimal values of the parameters.

The coefficient of mean-reversion is estimated by φ1 = 0.9363. This value translates to a half-

life of price of electricity of nine months (= −ln(0.5)/φ1) which is a significant rate of mean-

reversion. The key property of the mean reversion is its half-life which is the time taken for the

price to revert to half of its long-run level from the current level if no random shocks arrive.

the optimal values of the parameters of the population that have most likely generated that sample. We are also

guided by the fact that the estimators of the maximum likelihood function are consistent and asymptotically

efficient. It can be shown that each iteration on this algorithm increases the value of the likelihood function.
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Hence the half-life of nine months means that on the average shocks to the price of electricity

takes about nine months to decay to half their deviation from the long run level estimated

as φ0 = 0.1445. Related to the coefficient of mean reversion is the parameter σ (= 0.3544

or 35.44%) which measures how volatile the price of electricity fluctuates around its long-run

mean.

Figure 4.7.3: Influence of initial values of π0 and π1 on the parameters and the log-likelihood

function

Figures 4.7.5 and 4.7.6 depict this 35% high volatility and the nine months half-life. The

estimates of σ2
0 and σ2

1 as 0.2829 and 2.4744 respectively indicate that major daily shocks occur

frequently with sizeable effect on volatility of the system at the two states (or regimes). This

is understandable and reflects the probability of the system of being in state j = 1(π1 = 0.9).
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Figure 4.7.4: The convergence sequence of the algorithm

Figure 4.7.5: Observed volatility and prediced (filtered) log volatility compared
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Figure 4.7.6: Predicted volatility

4.8 Chapter Summary

We derived a dynamic linear model in Section 4.4 based on the general Heston’s (1997) type

diffusion stochastic differential equation underlying energy futures prices. This model is flexible

in the sense that we were able to construct, through the model observation equation, a Markov

switching regime so that the modified Kalman filter is implemented. Empirical results show that

volatility appeared to be very high for the daily data which exhibited volatility clustering and

followed by mean reversion with half-life of nine months. This result is similar to those obtained

in Krichene (2008) for crude oil pieces using GARCH(1,1) and Kellerhals (2004) for California

electricity futures and spot prices using affine structure models. Our preliminary study of this

dataset as visualized in Figure 4.7.2 show an autocorrelation of lag one authenticating our

modeling the process state variable as a first order autoregressive AR(1) process.
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Chapter 5

Selection of a Model for the Process

Describing Energy Prices

5.1 Introduction

The values of the rate of mean-reversion and volatility parameters obtained in Chapter Four

show that there are frequent large fluctuations in prices of Pennsylvania futures contracts. The

observed volatility clustering indicates the presence of heavy tails in the returns series. In this

second and concluding chapter of Part Two of this Thesis we continue in the modeling of the

energy price generating process by the examination of the properties of the process. We propose

an appropriate probability distribution for the process using empirical results from goodness-

of-fit tests. We identify two families of probability density functions to study the characteristics

of these series: the Generalized Hyperbolic (GH) distributions for the return series, and the

extreme value distributions for the volatility series. Each of these families has members which

we discuss shortly. We briefly review what motivates our further search for the characteristics of

these series in the next Section while we present the concomitant variables of interest in Section

5.3. The candidate probability distributions for the two series are defined in Sections 5.4 and

5.5 respectively for return and volatility series. The normal (Gaussian) and the lognormal

distributions however are not discussed further as they have been presented in Chapter One.
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Strategies for selection of candidate models are presented in Section 5.6 while implementation

and discussion of empirical results are in Sections 5.7 and 5.8 respectively. Included in these two

sections is a comparative study of the characteristics of three basic energy datasets; electricity,

crude oil and natural gas. Section 5.9 summarizes the Chapter findings.

5.2 Motivation

The large price fluctuations frequently observed in energy markets lead to nonnormal devia-

tions from the long-term mean towards which the prices revert. Schwartz (1997) introduced

the mean-reversion process which has become a popular class of stochastic models in recent

literature on commodity price. Given prior information on the behaviour of stocks and that the

log-returns of assets are frequently heavy tailed thereby violating the normal hypothesis implied

by geometric Brownian motion (see, for example, Fama (1965), Mandelbrot (1963)), it becomes

necessary to call for generalizations in modeling large changes in futures prices.The combination

of features of normal and stable distributions especially those of the Levy processes of hyper-

bolic type offer more flexibility in modeling financial time series data. In addition economic

analysis of risks in commodity markets depends upon accurate estimation of the probability of

tail quantiles. Barndorff-Nielsen (1994) found a good fit in GH distributions to Danish stock

returns. Hyperbolic distributions, a family member of the GH which also have exponentially

decreasing tails,were independently suggested as distributions of German stock returns repre-

sented in the stock index DAX by Eberlein and Keller (1995) and Küchler et al (1994). The

logarithm of the density of a Hyperbolic distribution is an hyperbola. Extreme value theory

can provide a promising estimation of the tail part of risk. In this Chapter we intend to apply

such extreme value models as the Weibull distribution to estimate the tail risk of our data

sets. From the early 1990s application of extreme value theory in modeling financial extremes

has become more and more popular, especially in measuring Value at Risk (VaR) on the tails

of the Profit & Loss (P& L) distribution (Chen and Chen, 2002). Malevergne and Sornette

(2004) found the so called “modified” Weibull distribution useful for financial purposes and

specifically for portfolio and risk management. This is because the distribution offers a flex-
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ible parametric representation of the distribution of returns on assets either in a conditional

or unconditional framework. Also in this class is the Inverse Gaussian (IG) distribution for

modeling nonnegative random variables. These distributions are compared especially against

the Gaussian model. There are some well-known empirical facts about log returns on stocks

(Granger, 2005):

(i) Log returns are reasonably approximated by uncorrelated identically distributed random

variables (independent in the Gaussian case).

(ii) The empirical distribution is leptokurtic and heavier-tailed compared to the normal dis-

tribution.

(iii) Although there is no significant serial correlation in stock returns, there is serial correlation

in squared-log returns.

Empirical and theoretical investigations of (i) above have a long history. Fama (1963, 1965),

Mandelbrot (1963) and Mandelbrot and Taylor (1967) proposed Pareto-stable distributions to

explain the excess kurtosis in stock returns while Mittnik and Rachev (1993) give an overview

and comparison of alternative distributions in modeling stock returns. Clewlow and Strick-

land (2000), Eydeland and Wolyniec (2003) and Pilipovic (1998) incorporated an additional

jump-noise term into the stochastic differential equation in defining Schwartz’ dynamics which

unfortunately makes statistical fitting more cumbersome as the noise comes in a multiplicative

manner. A deseasonalized spot price model as the exponential of a non-Gaussian Ornstein-

Uhlenbeck process, as suggested by Benth and Salityte-Benth (2004) has the advantage when

fitting the model to data. This alternate definition of the stochastic dynamics of the spot price

suits the objectives of this Chapter.

5.3 Variables of Interest

The basic quantity under investigation and for individual product with index i is the commodity

price process (St)t∈[0,∞] . The time, t, runs over the trading days (weeks) of the spot/futures
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prices to time T. For each product we calculate the returns defined by the logarithmic differ-

ences,

ri(t) = lnSi(t)− lnSi(t− 1) = ln

(
Si(t)

Si(t− 1)

)
(5.3.1)

where (St)t≥0 is the price process (over time, t, where (0 ≤ t ≤ T ) of the Levy process Lt =

ln(St) through a geometric Levy process

St = S0 exp(Lt). (5.3.2)

Because the products under study are priced under different market environments and recorded

in different units, we standardize ri(t) for ease of comparison of the distributional forms. If we

let ri and υi be the sample mean and standard deviation of the returns series then define the

standardized process as

Ri(t) =
ri(t)− ri

υi
(5.3.3)

where −∞ ≤ Ri(t) ≤ ∞ . While we work with Ri(t) as in Amaral et al (2000) and Barndorff-

Nielsen and Prause (2001), some other researchers such as Wang et al (2007) suggest standard-

ized volatility series as

Gi(t) =
|ri(t)− ri|

υi
for Gi(t) ≥ 0, (5.3.4)

where υi in (5.3.4) is defined as

υi =
1

N

N∑
t=1

|ri(t)− ri(t− 1)| (5.3.5)

Mandelbrot (1963), Müller et al (1990) and Guillaume et al (1997) stressed that the modeling of

high frequency data in finance is to analyze volatility on different time scales. They then defined

volatility measure, υi, as the average of absolute logarithmic price change as in (5.3.5) instead

of the standard deviation of the dataset. Given a probability space, (Ω,F ,P), a Levy process

L = Lt, t > 0 is an infinitely divisible continuous-time stochastic process, Lt : Ω → R, with

stationary and independent increments. Levy processes are more versatile than Gaussian-driven

processes as they can model skewness, excess Kurtosis and even Jumps. Let X1, X2, ..., Xn be

n statistically independent observations of a random variable X(t), here X represents our

R(t) ∈ R for the standardized return series or G(t) = |R(t)| ∈ R+ for volatility measure.
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5.4 The Generalized Hyperbolic Distribution Family

We start with an exposition of the univariate Generalized Hyperbolic (GH) Distribution in-

troduced in the literature by Ole Barndorff-Neilsen in 1977 while modeling particle size from

a diamond mine (see, e.g., Barndorff-Neilsen, 1977) and the subclasses which are relevant for

application in this Thesis. The distribution is well applied in economics particularly in the

fields of modeling financial markets and risk management due to its semi-heavy tails.

5.4.1 The Generalized Hyperbolic Distribution

A random variable X is said to follow a Generalized Hyperbolic (GH) distribution if its prob-

ability density function is given by

fGH(x;α, β, δ, λ, µ) =
(γ/δ)γ√

2πKλ(δγ)

Kλ− 1
2
(α
√
δ2 + (x− µ)2)

(
√
δ2 + (x− µ)2)/α)

1
2
−λ
β(x− µ) (5.4.1)

where γ =
√
α2 − β2, µ, λ, α, β, δ ∈ R and µ, βand δ are location, asymmetry and scale

parameters respectively while Kλ is the modified Bessel function of the third kind with index

λ. δ ≥ 0 and 0 ≤ |β| < α . The mean and variance of this distribution are respectively given

by

E[X] = µ+
δβKλ+1(δγ)

γKλ(δγ)
(5.4.2)

and

V[X] =
δKλ+1(δγ)

γKγ(δγ)
+

(
βδ

γ

)2(
Kλ+2(δγ)

Kλ(δγ)
−
k2
λ+1(δγ)

K2
λ(δγ)

)
(5.4.3)

Special cases of the generalized hyperbolic distribution (see, e.g., Jørgensen (1982), Barndorff-

Neilsen and Stelzer (2004)) are

(i) When λ = −1
2
, the GH specializes to the Normal Inverse Gaussian (NIG) and

(ii) When λ = 1, the GH becomes the Hyperbolic distribution.

Definition 5.4.1 (Modified Bessel Function of the Third Kind with Index λ). 1 The integral

representation of the modified Bessel function of the third kind with index λ can be found in

1In addition we have an explicit from of the Bessel fuction, K 1
2

(x) =
√

π
2x exp(−x)
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Barndorff-Neilsen et al (1982) and Abramowitz and Stegun (1972):

Kλ(x) =
1

2

∫ ∞
0

yλ−1exp
{
−x

2

(
y − y−1

)}
dy, x > 0. (5.4.4)

The substitution y = x
√
χ/ψ can be used to obtain the following relation which allows one to

bring the GH (5.4.1) into a closed-form expression∫ ∞
0

yλ−1 exp

{
−1

2

(
χ

y
+ yψ

)}
dy = 2

(
χ

ψ

)λ/2
Kλ

(√
ψχ
)
. (5.4.5)

Asymptotic relations for small arguments x can be used for calculating the densities of

special cases of the GH density as follows

Kλ(x) ∼ Γ(λ)2λ−1x−λ as x ↓ 0 and λ > 0 (5.4.6)

and

Kλ(x) ∼ Γ(λ)2λ−1x−λ as x ↓ 0 and λ < 0 (5.4.7)

The asymptotic relation for large arguments x is given in footnote 3.

5.4.2 The Normal Inverse Gaussian

A random variable X follows a Normal Inverse Gaussian (NIG) distribution with parameter

vector (α, β, µ, δ) if its probability density function is

fNIG(x : α, β, µ, δ) =
αδ exp [p (x)]

πq (x)
K1 [αq (x)] (5.4.8)

where p(x) = δ
√

(α2 − β2) + β (x− µ) , q(x) =
√

(x− µ)2 + δ2 and K1 is the modified Bessel

function2 of the third kind with order one (see e.g., Abramowitz and Stegun 1972). Here µ ∈ R

is a location density, β ∈ R is the skewness parameter and, if β < 0, the NIG is negatively

skewed; α ≥ |β| measures the heaviness of the tails (shape of the distribution) and finally

δ > 0 is the scale parameter. The NIG is a very flexible member of the family of distributions

enjoying the convolution property as shown in Kalemanova and Werner (2006):

2Specifically K1(x) =
x

4

∫∞
0

exp

{
t+

x2

4t

}
t−2dt, x ∈ R.
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Property 5.4.1

The NIG is a mixture of normal and inverse Gaussian distributions. Let

X|Y =

 y ∼ N(µ+ βy, y)

Y ∼ IG (δγ, γ2) with γ :=
√
α2 − β2

(5.4.9)

then X ∼ NIG (α, β, µ, δ) is what is denoted by the density function

fNIG (α, β, µ, δ) =

∫ ∞
0

fN (x;µ+ βy, y).fIG
(
y; δγ, γ2

)
dy. (5.4.10)

Property 5.4.2

The NIG distribution is closed under convolution. In fact it is the only member of the

family of general hyperbolic distributions to have the property that for independent random

variables, X ∼ NIG (α, β, µX , δX) and Y ∼ NIG (α, β, µY , δY ), their sum is NIG distributed,

that is,

X + Y ∼ NIG (α, β, µX , δX) ∗NIG (α, β, µY , δY ) = NIG (α, β, µX + µY , δX + δY ) (5.4.11)

The mean, variance, skewness and kurtosis of this random variable X are, respectively,

E [X] = µ+
δβ√
α2 − β2

, (5.4.12)

V [X] =
δα2

(α2 − β2)3/2
, (5.4.13)

S [X] =
3 (β/α)(

δ
√
α2 − β2

)1/2
(5.4.14)

and

K [X] =
3
(
1 + 4(β/α)2)
δ
√
α2 − β2

. (5.4.15)

However, moment estimators as starting values of the NIG distribution may be used. If m̄i, i =

1, 2, 3, 4, are the sample mean, variance, skewness and kurtosis respectively, then define

γ̂ =
3

m̄3

√
3m̄4 − 5m̄2

3

.
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The moment estimators are then given by

µ̂ = m̄1 − β̂δ̂
/
γ̂,

β̂ =
(
m̄3m̄2γ̂

2
)/

3,

δ̂ =
(
m̄2

2γ̂
3
)/(

β̂2 + γ̂2
)

and

α̂ =
(
β̂2 + γ̂2

)1/2

.

These initial values can also be estimated by the method of moments (Bolviken and Benth

2000) from a given sample x1, x2, ..., xn for X ∼ NIG (α, β, µ, δ) through the ratio

(S [X])2/K [X] ,K [X] > 0.

5.4.3 The Hyperbolic Distribution

The random variable X is said to have a Hyperbolic (HYP) distribution if its probability density

function is given by

fHY P (x;α, β, δ, µ) =

√
α2 − β2

2αδK1

(
δ
√
α2 − β2

) exp {−α (u (x)) + β (x− µ)} , (5.4.16)

where u (x) =
√(

δ2 + (x− µ)2) and −∞ ≤ x ≤ ∞. The domain of variation of the parameters

is µ ∈ R, δ > 0, and 0 ≤ |β| < α. The first application of the hyperbolic distribution to

finance is in Eberlein and Keller (1995). The alternative set of distributions for modeling skew

and heavy-tailed data is the skew extension to the Student’s t−distribution. Hansen (1994)

was the first to propose a skew extension to the Student’s t−distribution for modeling financial

returns. There are several versions of this distribution, for details, see for example Fernandez

and Steel (1998), Branco and Dey (2001), Jones and Faddy (2003) and Azzalini and Capitanio

(2003). However, all these skew-type distributions have both tails behaving like polynomials

which mean that they fit fat-tailed data well but deficient in handling substantial skewness.

The probability density function derived by Aas and Haff (2006) as a limiting case of the GH

distribution
(
λ = −ν

2
and α→ |β|

)
in (5.4.1) which they referred to as GH skew Student’s
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t−distribution. The main attraction of this distribution is that unlike any other member of the

GH family, it has one tail determined by a polynomial and the other by exponential behaviour.

In addition, it is almost as analytically tractable as the NIG distribution. Therefore, the skew

Student’s t−distribution has one heavy and one semi-heavy tail.

5.4.4 The Skewed Student’s t−distribution

A random variable X is said to follow a GH skew Student’s t−distribution (SSt) if its (Aas and

Haff, 2006) probability density function is given by

fSSt (x; ν, µ, β, δ) =



2(1−ν)/2δν |β|(ν−1)/2K(ν+1)/2 (|β|u (x))

Γ
(ν

2

)√
π (u (x))(ν+1)/2

exp {β (x− µ)} for β 6= 0,

Γ

(
ν + 1

2

)
δΓ
(ν

2

)√
π

[
1 +

(x− µ)2

δ2

]−(ν+1)/2

for β = 0,

(5.4.17)

where u (x) =
√(

δ2 + (x− µ)2). It can be recognized that the density in (5.4.17) is that of a

non-central (scaled) Student’s t−distribution with ν degrees of freedom when β = 0. The mean

and variance of a SSt distributed random variable X are respectively

E [X] = µ+
βδ2

ν − 2
(5.4.18)

and

V [X] =
2β2δ4

(ν − 2)2 (ν − 4)
+

δ2

ν − 2
. (5.4.19)

Another subclass of the GH distributions family is the Variance-Gamma distribution that we

consider in the next Subsection. It is the normal variance-mean mixture where the mixing

density is the gamma distribution. The tails of the distribution decrease more slowly than the

normal distribution. It is therefore suitable to model phenomena where numerically large values

are more probable than is the case for the normal distribution. The distribution was introduced

in the finance literature by Madan and Seneta (1990) and has been successful applied in diverse

fields such as modeling returns from financial assets and turbulent wind speeds.
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5.4.5 The Variance-Gamma distribution

Let X be a continuous random variable. X is said to be distributed as the Variance-Gamma

(VG) distribution if its probability density function is of the form

fV G (x;α, µ, λ, β) =
(α2 − β2)

λ|x− µ|λ−1/2Kλ−1/2 (α |x− µ|)
√
πΓ (λ) (2α)λ−1/2

exp (β (x− µ)) , (5.4.20)

where −∞ < x <∞ , µ (location parameter), α , β (asymmetry parameter) are real and λ > 0.

Here, Γ (.) denotes the Gamma function, and Kλ, the Bessel function of the third kind. The

mean and variance of X are

E [X] = µ+
2βλ

α2 − β2
(5.4.21)

and

V [X] =
2λ

(α2 − β2)

(
1 +

2β

α2 − β2

)
. (5.4.22)

The class of Variance-Gamma distributions is closed under convolution in the following sense

that if X1 and X2 are independent random variables that are variance-gamma distributed

with the same values of the parameters α and β, but possibly different values of the other

parameters, λ1, µ1 and λ2, µ2 respectively, then X1 + X2 is variance-gamma distributed with

parameters α, β, λ1 + λ2 and µ1 + µ2.

5.5 The Extreme Value distribution family

5.5.1 The Weibull Distribution

A random variable X is assumed to follow a three-parameter Weibull distribution if its proba-

bility density function is of the form

fWEI (x; ν, α, β) =


(
β

α

)(
x− ν
α

)β−1

exp

{
−
[

(x− ν)

α

]β}
, x ≥ ν

0, otherwise

(5.5.1)

where α, β ∈ R+ while ν ≥ 0 (i.e., nonnegative). Here α is the scale parameter, β is the

shape parameter (and provides information about the properties of incurred risk mode) and
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ν = min(x1, x2, ..., xn). The cumulative density function of X is

FWEI (x; ν, α, β) = 1− exp

{
−
[

(x− ν)

α

]β}
, x > ν. (5.5.2)

If ν = 0 in equations (5.5.1) and (5.5.2), we have a 2-parameter Weibull distribution. However,

in most practical situations ν 6= 0 so that the following transformation becomes necessary

W =

X − ν, if ν is positive

X + ν, if ν is negative

(5.5.3)

The new random variable3 W ∼ Wei(α, β) has a probability density function given by

fW (w;α, β) =


(
β

α

)(w
α

)β−1

exp

{
−
[

(w)

α

]β}
, w ≥ 0

0, otherwise.

(5.5.4)

The maximum likelihood estimate of the mean and variance of X are given in Johnson et al

(2004) as follows

E [X] = µX = ν + αΓ

(
1 +

1

β

)
(5.5.5)

and

V [X] = σ2
X = α2

[
Γ

(
1 +

2

β

)
− Γ

(
1 +

1

β

)
Γ

(
1 +

1

β

)]
, (5.5.6)

with skewness and kurtosis coefficients respectively as

S [X] =
Γ
(

1 + 3
β

)
α3 − 3µσ2 − µ3

σ3
(5.5.7)

and

K [X] =
Γ
(

1 + 4
β

)
α4 − 4S (W )µσ3 − 6µ2σ2 − µ4

σ4
. (5.5.8)

Parameter estimation 4 : The three parameters of the Weibull distribution in (5.5.1) can be

estimated using the relationships (Derman et al 1973) as follows

ν = min (x1, x2, ..., xn) , (5.5.9)

3The values of α and β remain the same as in (5.5.1) and (5.5.2), but ν as a location parameter only “shifts”

the entire distribution to the left or right along the real line to locate the mean of the distribution.
4The values of z = 1/β can be obtained quite easily from the table of the gamma function

Γ (1 + z) Γ (1 + z) /Γ (1 + 2z) and Γ (1 + z) provided in Derman et al (1973).
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α =
µX − ν

Γ
(

1 + 1
β

) (5.5.10)

and

(µX − ν)

σ2
X + (µX − ν)2 =

Γ
(

1 + 1
β

)
Γ
(

1 + 1
β

)
Γ
(

1 + 2
β

) . (5.5.11)

Prominent among the Weibull subfamily are the Double Weibull (DW), Compound Weibull

(CW) and Modified Weibull (MW). Because of the accumulated evidence against stable Pare-

tian distributions, Mittnik and Rachev (1993) suggests the double Weibull (DW) distribution

for stock returns with density

fDW (x;α, λ) =
β

2α

∣∣∣∣x− να
∣∣∣∣β−1

exp

{
−
(
x− ν
α

)β}
α > 0, β > 0,−∞ < x <∞. (5.5.12)

One of their arguments in favour of this distribution is that tails decrease exponentially. (They

estimate α to be close to 1.).

5.5.2 The Generalized Inverse Gaussian Distribution

The probability density function (pdf) of a Generalized Inverse Gaussian (GIG) is given for a

random variable X,X ∈ R+, as

fGIG (x, λ, β, γ) =


(γ/β)λ/2

2Kλ

(√
βγ
)xλ−1 exp

{
1

2

(
β

x
+ γx

)}
, x > 0

0, otherwise.

(5.5.13)

This pdf has domain of the variation of the parameters β, γ ∈ R+and λ ∈ R while Kλ is the

modified Bessel function of the third kind with index λ. The parameters satisfy the following

conditions

β ≥ 0, γ > 0, if λ > 0,

β > 0, γ > 0, if λ = 0,

β > 0, γ ≥ 0, if λ < 0.

(5.5.14)

Jørgensen (1982) and Barndorff-Neilsen and Stelzer (2004) have shown that if β, γ > 0, then

the rth moment of X can be computed using

E [Xr] =

(
β

γ

)r/2Kλ+r

(√
βγ
)

Kλ

(√
βγ
) (5.5.15)
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especially when r = ±1 and 2, and

E [log (X)] =
dE [Xr]

dr

∣∣∣∣
r=0

. (5.5.16)

Equation 5.5.13 needs to be evaluated numerically. Jørgensen (1982) investigated a class of

GIG and observes as follows

(i) When λ = −1
2

, then the GIG specializes to the two parameter inverse Gaussian(IG)

distribution, which can be given the probabilistic interpretation as a distribution of the

first hitting time to the level
√
β of a Brownian motion with drift

√
γ and unit diffusion

coefficient (Rydberg 1999);

(ii) When λ > 0 and γ → 0 as β →∞, GIG tends to the Gamma distribution;

(iii) When λ < 0, β > 0 as γ → 0, GIG tends to the Inverse Gamma (IGam) distribution.

This distribution has a tail of the Pareto type.

5.5.3 The Inverse Gaussian Distribution

A nonnegative random variable X has an Inverse Gaussian (IG) distribution with probability

density function of the form

fIG(x;α, β) =


α√

2πβx3
exp

{
−

[
(α− βx)2

2β

]}
, x ≥ 0

0, otherwise

(5.5.17)

with a corresponding distribution function as

FIG(x;α, β) =


α√
2πβ

∫ x
0
z−3/2 exp

{
−(α− βz)2

2βz

}
dz, x > 0

0, otherwise

(5.5.18)

where α, β ∈ R+ and β is the diffusion coefficient. The first four central moments of X ∼

IG (α, β) have been shown in Johnson et al (1994) (with µ = α
β
, λ = α2

β
) to be

E [X] =
α

β
, V [X] =

α

β2
, S [X] =

3√
α
, K [X] = 3 +

15

α
. (5.5.19)
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The square of the coefficient of variation (CV) of X is equal to 1
α
.

The IG has some attractive statistical and probabilistic properties in modeling nonnegative and

positively skewed data. For example, it belongs to the exponential family, has the reproductive

property and possesses similar inferential properties to that of the normal distribution, see for

example, Mudholkar and Natarajan (2002) and Chhikara and Folks (1989). This distribution

can produce stable estimates of parameters in the presence of outliers, and, in general, it is

highly flexible because it allows for different degrees of kurtosis and asymmetry other than

modality and bimodality.

5.5.4 The Gamma Distribution

A nonnegative random variable X has a Gamma distribution with probability density function

of the form

fGAM (x;α, β) =


βα

Γ (α)
xα−1 exp {−βx} , x > 0, β > 0

0, elsewhere

(5.5.20)

here Γ(.) is the Gamma function and the associated moments of X are

E [X] =
α

β
, V [X] =

α

β2
and E [log (x)] = ψ (α)− log (β) . (5.5.21)

5.5.5 The Inverse Gamma Distribution

A nonnegative random variable X has an Inverse Gamma (IGam) distribution with probability

density function of the form

fIGam (x;α, β) =


βα

Γ (α)
x−α−1 exp

{
−β
x

}
, x > 0, β > 0

0, elsewhere

(5.5.22)

If X ∼ Gam(α, β), then X−1 ∼ InvGam(α, β). The following moments are associated with X:

E [X] =
β

α− 1
if α > 1, (5.5.23)

V [X] =
β

(α− 1)2 (α− 2)
if α > 2 (5.5.24)
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and

E [log (x)] = log (β)− ψ (α) . (5.5.25)

5.6 Procedures for Model Selection

In Sections 5.4 and 5.5 we described different competing probabilistic models from the family

of generalized hyperbolic distributions and the family of distributions modeling non-negative

random variables respectively. In this section we outline different methods for choosing the best

fitting model to a given dataset. Suppose there are two families, say, F = {f (x; θ) ; θ ∈ Rp}

and G = {g (x;ϕ) ;ϕ ∈ Rq} , the problem is to choose the correct family for a given dataset

{x1, x2, ..., xn} . The methods we describe in the following Subsections are used for model dis-

crimination in the next Section.

5.6.1 Maximum Likelihood Criterion

Suppose a random variable X has a density function f (x; θ1, θ2, ..., θk) that depends on k param-

eters. Let θ̂i denote the maximum likelihood estimator (MLE) of θi for the likelihood function

L (X, θ) =
n∏
i=1

f (xi; θ1, θ2, ..., θk). Similarly let θ̂′i denote the MLE of θ′i from another density

function with likelihood function L (X, θ′) . The maximum likelihood principle proposed in Cox

(1962) is a maximum likelihood ratio test procedure

T
(
θ̂, θ̂′

)
=

n∑
i=1

ln

 f
(
xi|θ̂

)
f
(
xi|θ̂′

)
, (5.6.1)

where θ̂ and θ̂′ are maximum likelihood estimators of parameter vectors of competing models.

Because the estimators provide the best explanation of the observed data, we choose the density

F if T > 0, otherwise choose G . The solution F is sometimes called the Cox’s statistic. Lu et

al (2002) observed that the statistic ln T should be asymptotically normally distributed when

properly normalized. Other researchers, see for example, Voung (1989), Fearn and Nebenzah

(1991), Martial et al (2001), Kundu and Manglick (2004) and Kundu et al (2005) studied the

regularity conditions needed for the asymptotic distribution to hold. They used the likelihood
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ratio test and extensive simulation study to determine the probability of correct selection for

different sample sizes. Kundu and his team exploit the asymptotic property of T and determine

the minimum sample size required for discriminating among different competing models.

5.6.2 Minimum Distance Criterion

It is natural to choose a particular model among competing models based on which of the

models has a function closest to the empirical cumulative distribution function (ECDF) of a

given dataset according to some distance measure between the two distribution functions.

Definition 5.6.1. Let X1, X2, ..., Xn denote a random sample from a cumulative distribution

function F (.) and let Y1 ≤ Y2 ≤ ... ≤ Yn denote the corresponding order statistics. The sample

cumulative distribution function, denoted by Fn (x) is defined by

Fn (x) =
1

n
(number of Yj ≤ x) ≡ 1

n
(number of Xi ≤ x) . (5.6.2)

We then define the distance statistic as

Dn = sup
−∞<x<∞

|Fn (x)− F (x)| , (5.6.3)

whereDn is a random quantity that measures how far the empirical distribution function,Fn (x) ,

deviates from assumed distribution function F (x) =
∫ x
a
f (y, θ) dy. Here f (y, θ) is the pdf of

the order statistics. Dn is popularly called the Kolmogorov statistic and it is distribution-free

in the sense that the critical values do not depend on the specific distribution being tested.

To implement this procedure, a candidate from each parametric family that has the smallest

Kolmogorov-Sminorv (K-S) distance is identified and then the best fitted distributions com-

pared. With a test of appropriate size, α , any hypothesis regarding the distributional form is

rejected if the test statistic Dn is greater than the tabulated value, or, which is the same, if the

p−value is lower than the significance level, α .
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5.6.3 Akaike Information Criterion

Suppose X is a continuous random variable as defined in subsection 5.4.1 representing a model,

say,

X = h (t, q) + ε (5.6.4)

where h is a mathematical model such as a partial differential equation, probability density

function, etc; ε is a random error term that is independent and identically distributed with a

probability distribution such as the normal. In 1973 Hirotugu Akaike proposed in a seminal

paper, Akaike (1973), a criterion for selecting a model from candidate models with equal data

sample sizes. This criterion, known as the Akaike Information Criterion (AIC), is generally

regarded as the first and still continues to be the most widely known model selection criterion

because of its utilization of the relationship between the maximum likelihood and the Kullback-

Leibler information. The motivation is that:

(i) The actual model is unknown to the researcher;

(ii) The parameter vector θ in g, say, must be estimated from the empirical data y generated

from f (x) which is a realization of X having specified dimension and structure;

(iii) For a parametric candidate model of interest, the likelihood function reflects the confor-

mity of the model to the observed data. Thus selecting the fitted model that maximizes

the empirical likelihood invariably leads to choosing the most complex model in the can-

didate collection;

(iv) The estimator θ̂ (y) of θ is a random variable and therefore the information I
(
f, g

(
.
∣∣∣θ̂ (y)

))
is also a random variable. The selection target is

min
g∈G

Ey

[
I
(
f, g

(
.
∣∣∣θ̂ (y)

))]
. (5.6.5)

In (5.6.5) G is a collection of admissible models (in terms of probability density functions), θ̂

MLE based on model g and data y, where y as stated earlier is the random sample from a

density function f (x) . The criterion for selection is based on

min
g∈G

EyEx

[
ln
(
g
(
x
∣∣∣θ̂ (y)

))]
. (5.6.6)
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Hence an appropriately unbiased estimate of EyEx

[
ln
(
g
(
x
∣∣∣θ̂ (y)

))]
for large sample and

good model is

ln
(
L
(
θ̂ |y
))
− k (5.6.7)

where L is the likelihood function, θ̂ the MLE of θ and k the number of estimated parameters

(including the variance) in the model. Here good model refers to the model g(y) that is close

to f in the sense of having the minimum AIC value.

Based on the AIC value we evaluate the following:

(i) The loss of information when a fitted model is used rather than the best approximating

model is given by the AIC differences

∆i = AICi − AICmin, (5.6.8)

where AICmin is AIC value for the best model in the set.

(ii) The likelihood of a model being useful in making inference concerning the relative strength

of evidence for each of the models in the set is given by

L (gi |y ) ∝ exp

(
−1

2
∆i

)
. (5.6.9)

(iii) The Akaike weight of evidence in favour of model i being the best approximating model

in the set is

wi =
exp

(
−1

2
∆i

)
R∑
r=1

exp
(
−1

2
∆r

) (5.6.10)

where R is the total number of models in the set. Readers interested in AIC are referred to

Akaike (1974), Çetin and Erar (2002), Bozdogan (1987, 2000) and Burnham and Anderson

(2002) for details.

5.6.4 The Normality Hypothesis

The Shapiro-Wilk test, see for example, Shapiro and Wilk (1965) is one of the most powerful

normality tests in statistics literature applied for testing log return series. Normality is tested
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by matching two alternative variance estimates: a non-parametric estimator obtained by a

linear combination of ordered sample and the usual parametric estimator. The weights, ai , are

available in many statistical tables. The Shapiro-Wilk statistic, W , is defined by

W =

(
n∑
i=1

ai
(
x(i)

))2

n∑
i=1

(xi − x̄)2
, (5.6.11)

where the x(i) are the ordered sample values ( x(1) is the smallest) and the ai are constants

generated from the means, variances and covariances of the order statistics of a sample of size n

from a normal distribution (see Pearson and Hartley 1972, Table 15). It gives the value of the

statistic W and the corresponding p−value which is compared to a specified significant level,

α . The normality hypothesis is rejected if p < α implying that W lies in the critical region.

We discuss possible skewness in a model because it is fundamental to mainstream financial

modeling, portfolio investment decisions, and in many statistical testing procedures relating to

asset returns. Skewness is defined as follows

γ1 =
µ3

µ3
2

. (5.6.12)

where µ3 = E(xi − µ)3,E is the expectation operator, µ is the mean of random return variable

xi and µ2 ≡ σ2 is the variance. For a normal distribution, γ1 = 0; otherwise, the distribution

is asymmetric. Skewness is positive when the right hand tail is heavier and negative when the

left hand tail is heavier.

There are at least four different alternate approaches to perform a significance test for skewness.

The first alternative is to assume that the dataset is i.i.d. normally distributed and then apply

the standard test for skewness (see Alles and Kling 1994). Second alternative is to adjust the

level of significance to take into account the observed autocorrelation (if any) (see Alles and

Kling 1994). The third way is to filter the autocorrelation out from the data and then apply

the standard tests for skewness. The forth alternative is to test a wide range of distributions

and consider the kurtosis and skewness together (see Badrinath and Chatterjee 1988, 1991).

However, Töyli (2002) reports that there are relatively few studies considering the skewness in

stock market data and most of the results are contradictory (see also Kon 1984, Fielitz and

Rozell 1983).
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An undisputable exception from the classical asset returns’ normality assumption is that empir-

ical return distributions indicate substantial excess kurtosis. A large positive value for kurtosis

indicates that the tails of the distribution are longer (heavier) than those of a normal distribu-

tion, while a negative value indicates shorter tails (becoming like those of a box-shaped uniform

distribution). It was Mandelbrot and Fama that first reported this fundamental deviation from

normality (Mandelbrot 1963, Fama 1965). The kurtosis is defined as

γ2 =
µ4

µ2
2

− 3 = k − 3 (5.6.13)

where µ4 = E(xi − µ)4,E is the expectation operator,xi and µ2 ≡ σ2 is the variance. For a

normal distribution, the value of k is three. When the γ1 > 0 in (5.1.2) the distribution is

referred to as leptokurtic and called platykurtic if γ1 < 0.

5.7 Implementation, Simulation and Application

We study two energy datasets5 in addition to the electricity dataset introduced in Chapter

four. These three datasets are the U.S. Daily Electricity Prices for Pennsylvania State (PJMW)

from January 01, 2002 to October 28, 2010 corresponding to 1,900 observations, the Weekly

Nigeria Bonny Light (Crude Oil) Spot Price FOB (US Dollars per Barrel) from January 03,

1997 to November 05, 2010 corresponding to 721 observations and the Daily Natural Gas

Futures Contract 1 (US Dollars per Million BTU) from January 13, 1994 to November 09, 2010

corresponding to 4214 daily observations. The following acronyms are used for the datasets:

Penn03 and Penn04 for Electricity Prices standardized log returns R (t) ∈ R, and volatility

measure G (t) ∈ R+, respectively. Similarly we denote Crude Oil Prices by Bonny03 and

Bonny04 and Natural Gas by NatGas03 and NatGas04. Implementation of these models are

based on the R packages6 “fBasics”, “SuppDists”, “MASS”, “HyperbolicDist”, etc, for the GIG

class of distributions including the Weibull and Lognormal distributions. The R package “ghyp”

was used for the class of GH distributions and its special cases which include the Variance-

5Source: Energy Information Administration (EIA)[Intercontinental Exchange(ICE)].
6http://www.r-project.org/; The HyperbolicDist Package by David Scott; The ghyp Package by Wolfgang

Breymann and David Luethi; and The fBasics Package by Diethelm Wuertz.
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Gamma (VG) and Hyperbolic Skewed Student’s t− (SSt) distributions. All these packages

are available from the Comprehensive R Archive Network (CRAN). With special statistical

functions in these packages we implement density, cumulative distribution functions, quantiles

and random seed generation. Other functions implement simulation for maximum likelihood

estimates (mle) (especially the Nelder and Mead algorithm) of parameters and tests making

descriptive statistics of data and comparative study of various classes of models possible.

5.8 Empirical Results

In this section we present the estimation results of each subclass of distributions considered in

Sections 5.4 and 5.5 using discussions of different criteria of section 5.6 above. The results in

Table 5.8.1 indicate that NIG is the best model given the set of six candidate models (R = 6)

for Penn03. It satisfied the selection conditions of section 5.6 having the least AIC value of

5003.911 with Akaike weight of evidence of 0.7239 (or 72%) for being the best fitting model.

Although the second best GH has the highest LLH value of −2497.952, the estimates of model’s

five parameters as against four for NIG (with respect to equation (5.6.7)) raised its AIC value to

5005.903. The weight of evidence in its favour is 0.2674 (or 27%). Only NIG and GH out of the

six competitors took up 99% weight of evidence for fitting the Penn03 dataset. To discriminate

between NIG and GH or to what extent NIG is better than GH we resort to evidence ratio

(ER) wNIG/wGH = 0.7239/0.2674 = 2.71 which shows that NIG is about three times better

than the GH in fitting the dataset among other candidate models. Use of the rule of the thumb

given in Burnham and Anderson (2002), a ∆i < 2 suggest substantial evidence for model i,

values within the interval 3 ≤ ∆i ≤ 7 indicate that the model has considerably less support

whereas a ∆i > 10 indicates that the model is very unlikely to fit the data well. With this rule,

GAUSS has no support. The value of ∆GAUSS is 388.88 and with weight of evidence, wGAUSS,

of 0.0000 (or 0%).

From Table 5.8.2, SSt, NIG, HYP and VG have ∆i < 2 with 32%, 28%, 20% and 13% weights

of evidence respectively. The evidence ratio ER indicates that SSt is only 1.17 more likely to

be better model relative to NIG and so any of the them (SSt and NIG) is a good fit with SSt
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Table 5.8.1: Penn03 Model fits: ᾱ parametrization

Model

Parameter GH HYP NIG SSt VG GAUSS

λ -0.4639 1.0000 -0.5000 - 1.0270 -

ᾱ 0.5221 0.1590 0.5197 - - -

µ -0.0568 -0.0717 -0.0563 -0.0451 -0.0693 -0.0000

ν - - - 2.9926 - -

σ 0.9980 0.9645 0.9988 1.0988 0.9692 1.0002

γ 0.0567 0.0717 0.0562 0.04989 0.0692 -

LLH -2497.952 -2504.560 -2497.955 -2502.537 -2505.855 -2694.396

AIC 5005.903 5017.120 5003.911 5013.073 5019.710 5392.791

∆i 1.992 13.209 0.0000 9.164 15.799 388.880

wi 0.2674 0.0010 0.7239 0.0074 0.0003 0.0000

NB: Tables (5.8.1)−(5.8.3) are results from (λ, ᾱ, µ,Σ, γ) parametrization while Tables

(5.8.6)−(5.8.9) are from (λ, α, µ,∆, δ, β) parametrization.

being superior for the Bonny03 dataset. It has the highest LLH and has the least AIC value.

The model is, however, about two or three times more likely to be the best model than the

HYP and VG respectively. GH has considerably less support by the data and the Gaussian is

ruled out of contention as being very unlikely. Similarly, results in Table 5.8.3 indicate that

SSt is the only model with ∆i < 2 and weight of evidence approximately 75% of all the weights

of the contending models. GH is, however, in the far second position with ∆i = 2.08(> 2) and

with Akaike weight of 26%. SSt therefore has ER = 2.8291 about three times more likely to

be the best model than the GH given the candidate models under consideration for NatGas02

dataset.

The models fitted for the volatility measure datasets are all two parameter models. From

Table 5.8.4, the Weibull distribution has the highest log-likelihood value of −1166.496 and the

least AIC value of 2336.992 with 100% weight of evidence against five other candidate models

in the Penn03 dataset. This shows that the Penn03 dataset has heavy tail with the Weibull
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Table 5.8.2: Bonny03 Model fits: ᾱ parametrization

Model

Parameter GH HYP NIG SSt VG GAUSS

λ 0.2552 1.0 -0.5 2.9789 2.1248 -

ᾱ 1.6827 1.3753 1.6638 - - -

µ 0.3034 0.3250 0.2972 0.2519 0.3469 0.0000

ν - - - 5.9578 - -

σ 0.9739 0.9649 0.9687 0.9763 0.9622 1.0000

γ -0.2967 -0.3252 -0.2972 -0.2526 -0.3469 -

LLH -992.2024 -992.3098 -991.9710 -991.8174 -992.7348 -1021.1339

AIC 1994.405 1992.620 1991.942 1991.635 1993.470 2046.268

∆i 2.770 0.985 0.307 0.000 1.835 54.630

wi 0.0803 0.1960 0.2750 0.3207 0.1281 0.0000

Table 5.8.3: NatGas04 Model fit: ᾱ parametrization

Model

Parameter GH HYP NIG SSt VG GAUSS

λ -1.8945 1.0000 -0.5000 - 1.4825 -

ᾱ 0.3397 0.6827 0.9053 - - -

µ -0.0513 -0.0477 -0.0479 -0.0484 -0.0416 0.0000

ν - - - 4.0538 - -

σ 0.9925 0.9682 0.9822 1.0032 0.9686 1.0000

γ 0.0494 0.0472 0.0478 0.0485 0.0415 -

LLH -5652.951 -5674.559 -5660.107 -5652.910 -5682.775 -5976.288

AIC 11315.90 11357.12 11328.21 11313.82 11373.55 11956.58

∆i 2.08 43.30 14.39 0.00 59.73 642.76

wi 0.2610 0.0000 0.0006 0.7384 0.0000 0.0000

117



Table 5.8.4: Model fits for Penn03 (Standard errors are in parenthesis)

Normal LN Weibull Gamma IGam IG

Shape
0.7140 -0.0357 0.9972 1.3116 1.9931 0.8974

(0.0173) (0.0228) (0.0178) (0.0383) (0.0600) (0.0172)

Scale
0.7520 0.9928 0.6791 0.9029 12.9675 1.2849

(0.0122) (0.0161) (0.0164) (0.0320) (0.4439) (0.0417)

Skew -0.0041 9.3145 2.0572 1.8168 7.7504 2.4599

Kurt -0.0028 183.2755 5.6531 4.7672 93.9212 10.5244

LLH -2153.225 -2613.029 -1166.496 -2568.031 -3464.596 -1382.205

AIC 4310.449 5230.058 2336.992 5140.062 6925.191 2768.411

wi 0 0 100 0 0 0

distribution fitting it much better than the other models under reference (see Figure 5.8.1).

Similar inference is deduced from Table 5.8.5 for Bonny03 dataset where the weight of evidence

is strongly in support for Weibull distribution as the best model in this dataset and the Gamma

distribution is the best model for NatGas03 dataset (Table 5.8.6) given our criteria for selection.

Visual inspection of Figure 5.8.1 shows that tail performances of GH and NIG are outstanding

(being closest to the data points) with respect to other distributions. The slight edge NIG has

over GH here is that while NIG is fitted with four parameters, the GH is fitted with five. The

SSt overestimated in both tails while HYP and VG underestimated the tails. The Gaussian

(Normal) is far from fitting the data. An interesting observation from these plots is that the

tail plots show almost linear behaviour especially in the left tail. The implication of this linear

tail plot is that Penn03 dataset is drawn from a power-law distribution. In Figure 5.8.2 we

observe that the five models are close in fitting the data especially in the left tail better than in

the right tail. This is why selection among them is difficult, as we saw in their numerical values

(Tables 5.8.2 & 5.8.8) and in addition, GAUSS has no support. However, SSt leads in the left

tail but neck-neck with GH in the right tail. Similarly, SSt is superior in fitting NatGas dataset

in Figure 5.8.3. A close observation of the shape of the tail plots show polynomial behaviour.
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Table 5.8.5: Model fits for Bonny03 (Standard errors are in parenthesis)

Normal LN Weibull Gamma IGam IG

Shape
0.7452 1.3248 1.1613 1.6900 2.1110 1.3248

(0.0249) (0.0450) (0.0338) (0.0504) (0.0639) (0.0450)

Scale
0.6684 1.5976 0.7745 1.2482 6.0166 1.5976

(0.0176) (0.0842) (0.0262) (0.0432) (0.2053) (0.0842)

Skew -0.1020 4.4738 1.5216 1.7007 6.6733 2.1042

Kurt 0.0086 32.6414 3.0268 5.6003 68.5634 5.40726

LLH -731.583 -1024.527 -485.7715 -2339.715 -2208.712 -834.2527

AIC 1467.166 2053.054 975.543 4683.430 4413.424 1672.505

wi 0 0 100 0 0 0

Table 5.8.6: Model fits for NatGas04 (Standard errors are in parenthesis)

Normal LN Weibull Gamma IGam IG

Shape
0.7106 -0.0187 1.1464 1.4023 6.0218 1.0325

(0.0106) (0.0155) (0.0137) (0.0412) (0.1383) (0.0131)

Scale
0.6908 1.0039 0.7885 0.9967 2.0214 1.5164

(0.0075) (0.0109) (0.0112) (0.0112) (0.0409) (0.0330)

Skew 0.0270 4.9991 1.9265 1.6450 25.8757 0

Kurt 0.327 44.0049 6.9472 4.3060 910.7773 0

LLH -4419.797 -5915.751 -2944.366 -2486.86 -4565.691 -3604.112

AIC 8843.593 11835.50 5892.732 4977.72 9127.382 7212.225

wi 0 0 0 100 0 0
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Table 5.8.7: Penn03 parameter estimation and Model selection(alpha parametrization)

Model

Parameter GH HYP NIG SSt VG GAUSS

α 0.7418 1.4871 0.7239 - - -

β 0.0570 0.0771 0.0566 - - -

δ 0.7061 0.1072 0.7199 - - -

µ -0.05674 -0.0717 -0.0564 -0.0451 -0.0693 0.0000

σ - - - 1.0988 0.9692 1.0003

γ - - - 0.0412 0.0692

λ -0.4631 - - 2.9926 1.0275 -

LLH -2497.952 -2504.560 -2497.624 -2502.537 -2505.855 -2694.396

Table 5.8.8: Bonny03 parameter estimation and Model selection(alpha parametrization)

Model

Parameter GH HYP NIG SSt VG GAUSS

α 0.6472 1.8404 1.3686 - - -

β -0.2789 -0.3492 -0.3170 - - -

δ 1.7764 0.7600 1.2493 - - -

µ 0.2642 0.3249 0.2975 0.2519 0.3469 0.0000

σ - - - 0.9763 0.9622 1.0000

γ - - - -0.2526 -0.369 -

λ -2.3810 - - 5.9578 2.1248 -

LLH -991.742 -992.310 -991.971 -991.817 -992.735 -1021.134
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Table 5.8.9: NatGas03 parameter estimation and Model selection(alpha parametrization)

Model

Parameter GH HYP NIG SSt VG GAUSS

α 0.1490 1.6102 0.9699 - - -

β 0.0490 0.0507 0.0494 - - -

δ 1.4182 0.4255 0.9344 - - -

µ -0.0489 -0.0477 -0.0478 -0.0484 -0.0416 -0.0002

σ - - - 1.0032 0.9686 1.0001

γ - - - 0.0485 0.0485 -

λ -1.9717 - - 4.0538 1.4825 -

LLH -5652.849 -5674.558 -5660.107 -5652.910 -5682.775 -5976.288

h!

Figure 5.8.1: Tail plots for Penn03: Left tail (left panel) and Right tail (right panel)
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Figure 5.8.2: Tail plots for Bonny03: Left tail (left panel) and Right tail (right panel)

Figure 5.8.3: Tail plots for NatGas03: Left tail (left panel) and Right tail (right panel)

122



5.9 Chapter Summary

In order to analyse prices of energy futures in this Chapter we assumed that the log-return

series of the prices are driven by Levy process of the generalized hyperbolic (GH) type. We

compared five members of the GH family (the generalized hyperbolic (GH), hyperbolic (HYP),

normal inverse Gaussian (NIG), variance gamma (VG) and hyperbolic skewed Student t (SSt)

distributions) along with the normal distribution as the benchmark. This comparison was

performed for the three datasets in the energy sector namely; electricity futures prices, crude

oil prices and natural gas prices. We present in Table 5.9.1 a summary of the outcome when

these distributions were fitted to the datasets. Using Akaike information criteria (AIC) and

the log likelihood (LLH) criteria Table 5.9.1 shows that NIG and GH controls 99% weight of

evidence for being best among the six candidate probability distribution functions in the family

with NIG being exceptional for Pennsylvania dataset. The fit in Bonny shows a “kin” contest

in which the best two had only 60% weight of evidence followed closely by HYP (20%) and VG

(13%). Although SSt performed well, any of SSt, NIG and HYP is good enough to fit the Bonny

crude oil dataset. The SSt is outstanding in fitting Natural Gas dataset and is recommended

accordingly. The result for Bonny is similar to that of Krichene (2008) who fitted the NIG

to his crude oil dataset (2000−2007) segmented into two, see for instance, summary results

of parameter estimates in Table 5.9.2. Krichene shows that “NIG process fits closely oil price

returns” during the period of investigation.

Table 5.9.1: Performance table for best distributions fitted to each series

Pennsylvania Electricity Bonny Crude Oil Natural Gas

Distributions selected
NIG (72%) SSt (32%) SSt (74%)

GH (27%) NIG (28%) GH (26%)

Enlarging the scope of models to five in the GH family increases our degrees of freedom and

makes our choice superior. The NIG distribution has two tails that behave differently, but they

are both semiheavy. One would therefore expect NIG to model skewness rather well, but only

in cases where the tails are not too heavy. The SSt, on the other hand, is a distribution that is
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Table 5.9.2: Our result for Bonny NIG compared to Krichene’s (2008)

Normal Inverse Gaussian (NIG) Parameters

Lambda Alpha.bar Mu Sigma Beta

Our result -0.5 1.6638 0.2972 0.9687 -0.2972

Krichene 2000m1-2003m4 -0.5 1.46 0.08 2.22 -0.08

Krichene 2003m5-2005m10 -0.5 2.68 0.29 1.69 -0.17

good in modeling skewness and heavy-tailed data. This explains why these two distributions

dominated others in fitting the three datasets.

In modeling the volatility process for the three datasets we compared five probability den-

sity functions in the extreme value distribution family (the Weibull, lognormal, gamma, inverse

gamma and the inverse Gaussian distributions) along with the normal distribution. With sim-

ilar argument as presented above, the two-parameter Weibull density function is recommended

for volatility in Pennsylvania electricity futures prices and Bonny light crude oil while the

gamma density function is recommended for natural gas dataset. These results show the in-

ability of the Gaussian process to fit high frequency data as underscored by Mandelbrot (1963)

and Fama (1965) in which both authors proposed stable distributions for modeling skewness

and kurtosis. The high kurtosis in the electricity returns series of Chapter Four is hereby ad-

dressed. The main attraction to the GH distributions is that they are constructed as mixtures

of variance-mean normal distributions with time varying stochastic variance.
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Chapter 6

Conclusion

We have not succeeded in answering all our problems. The answers we have found

only serve to raise a whole lot of new questions. In some ways we feel we are as

confused as ever, but we believe we are confused on a higher level and about more

important things. - B. Øksendal (2000)

This Thesis is in two parts: mathematical and statistical− with each part comprising two

chapters. In Part One we discussed the theory and analysis of partial differential equations

using the Lie symmetry technique to analyse an evolution partial differential equation arising

from financial mathematics, see for instance, equation (3.1.1) of Chapter Three. The second

part concerns applications to real life problems where calibrations and statistical goodness-of-fit

tests were performed.

A formula (proposition 2.3.1) for the nth prolongation of a generator Γ with k indepen-

dent and p dependent variables of an nth-order partial differential equation is proposed and

we claim to have extended the result (equation (2.3.6)) derived by Mahomed and Leach in

1990. The basic problem in the modeling of physical and other phenomena is to find solu-

tions of differential equations. Many methods of solution of differential equations use a change

of variables that transforms a given differential equation into another equation with known

properties. We constructed a transformation that maps symmetries of our PDE invertibly into

the heat equation which is a well studied equation with appealing characteristics. As a result
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of the symmetry analysis performed we also show that our given partial differential equation

admits a finite number of Lie point symmetries characterized by the six-dimensional algebra

isomorphic to {sl (2, R)⊕W3}⊕s∞A1, with one solution symmetry where the subalgebra is of

the Heisenberg-Weyl type. Two general solutions calculated from the twelve optimal systems

of invariant solutions are given in equations (3.3.40) and (3.3.49). It is our thinking that these

equations will one day be found useful for practical applications.

The complete probability space (Ω,F ,P) with natural filtration {Fk}∞1 and Levy proceses Lt

were assumed. We propose a dynamic linear model (DLM) with switching regimes for modeling

the stochastic volatility of log return series for prices of electricity contracts. A modified Kalman

filter algorithm was introduced to fit the regime-switching Markov model and estimation of the

parameters using quasi-maximum likelihood method were performed. Results displayed in Ta-

ble 4.7.1 are comparable to results obtained by Kellerhals (2004) using affine structure models

for spot and futures prices, and Krichene (2008) for crude oil prices using GARCH(1,1) models.

It will be of interest to compare our model with models used by Kellerhals and Krichene using

our dataset.

Two observations were immediate. The first is that both small and large changes come clus-

tered, i.e., there are periods of low and high volatility. The second is that, from time to time, we

observe rather large changes which may be hard to reconcile with the standard distributional

assumption in statistics and econometrics, that is, normality. From empirical results the dataset

exhibited volatility clustering followed by mean reversion with half-life of nine months. This

informed our use of Gaussian mixtures in the model. The mixing of Gaussian distributions is

well suited for financial modeling, as it allows for the construction of very flexible distributions.

This fact is demonstrated in Chapter Five, where the normal-mean-variance mixture, on which

the generalized hyperbolic distribution (GH) of Barndorff-Nielsen (1977) is based, generally

exhibits heavier tails than the Gaussian distribution. We used this to great advantage. Inter-

estingly we derived our DLM based on this idea and the generalization of the Vasicek and CIR

models (or for some authors, the general Heston model) governed by the stochastic differential

equation (4.3.12). The adequacy of our model was authenticated by the preliminary study of

the dataset that displayed evidence of first-order autocorrelation showing that the state variable
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is a first-order autoregressive AR(1) process.

The major concern in Chapter Five was the identification of the probability distribution of

the process that generated the dataset. From each of the three datasets (Daily Pennsylvania

Electricity Future Contract, Weekly Bonny Crude oil Spot prices and Daily Natural Gas Prices)

we generated and studied two concomitant variables: log return series and volatility series.

Five probability density functions of the generalized hyperbolic family (Generalized Hyperbolic

(GH), Hyperbolic (HYP), Normal Inverse Gaussian (NIG), Variance-Gamma (VG), and Skew

Student-t (SSt)) and five from the extreme value family (Weibull, Gamma, Lognormal, Inverse

Gaussian and Inverse gamma) were fitted to the datasets and compared with the Normal

distribution as the benchmark.

We established that energy return series is fat-tailed and with significant kurtosis. The normal

distribution showed very poor fit in both series. Using the Akaike Information (AIC) and the

Log-likelihood (LLH) criteria, we conclude that NIG (which is a mixture of the normal and the

inverse Gaussian distributions) is best suited to fit and for prediction of prices for Pennsylvania

electricity future contracts. This model performed well in fitting the crude oil dataset but

ranked second only to SSt. The SSt (which also has a convolution property) dominated other

five candidate models (74% dominance) in the natural gas dataset. With this result we posit

that SSt is good for fitting oil and gas datasets while NIG is the choice for electricity series, see

Table 6.0.1. These results are not surprising. The SSt has one heavy and one semi-heavy tail,

i.e., one tail determined by a polynomial and the other by an exponential behaviour. The normal

inverse Gaussian process Lt is a Levy process where increments in Lt are distributed according

to the NIG distribution. Another appeal of the NIG distribution is that it is characterised by

the first four moments(mean,variance, skewness and kurtosis). These are the moments we care

about for inference in real life applications including risk management and derivative pricing.

In fitting stochastic volatility series, the Weibull distribution performed wonderfully well in

both the electricity and crude oil datasets while the gamma distribution is recommended for

natural gas volatility series. The gamma process can be expressed as a limiting case of the

generalized inverse Gaussian(GIG) process with λ = −0.5 (similar to the NIG). The Weibull

on the other hand is popular in the analysis of lifetime data.
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Table 6.0.1: Performance summary of different models

Recommended Models

Dataset Return Series Volatility Series

Electricity
NIG (72%) Weibull

GH (27%)

Crude Oil
SSt (32%) Weibull

NIG (28%)

Natural Gas
SSt (74%) Gamma

GH (26%)

Contrary to the assumption of “all things being equal” there are very high probability of higher

or lower energy prices than previously expected over time. This suggests that compared to

the normal distribution, the actual probability distribution of return and volatility series are

fat-tailed, implying that the probability of large differences in prices of energy contracts is much

higher than would be implied by time-invariant unconditional Gaussian distribution.

128



Bibliography

[1] Aas, K. and Haff, I. H. (2006) The generalized hyperbolic skew Student’s t-distribution.

Journal of Financial Econometrics, 4 (2), 275–309.

[2] Abraham-Shrauner, B. and Guo, A. (1992) Hidden symmetries associated with the pro-

jective group of nonlinear first-order ordinary differential equations. Journal of Physics,

A: Mathematical and General, 25, 5597–5608.

[3] Abraham-Shrauner, B. and Guo, A. (1993) Hidden and nonlocal symmetries of nonlinear

differential equations. In Modern Group Analysis: Advanced Analytical and Computational

Methods in Mathematical Physics. Ibragimov, N. H., Torrissi, M. and Valenti, A., editors,

p. 1–5. Kluwer Academics, Dordrencht.

[4] Abraham-Shrauner, B. and Guo, A. (1994) Hidden symmetries of differential equations.

Contemporary Mathematics, 160, 1–13.

[5] Abraham-Shrauner, B. and Govinder, K. S. (2006) Provenance of Type II hidden sym-

metries from nonlinear partial differential equations. Journal of Nonlinear Mathematical

Physics, 13, 612–622.

[6] Abraham-Shrauner, B., Govinder, K, S. and Leach, P. G. L. (1995) Integration of second-

order equations not possessing point symmetries. Physics Letters A, 203, 169–174.

[7] Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. Dover

Publications, New York.

129



[8] Akaike, H. (1973) Information theory and an extension of the maximum likelihood prin-

ciple. In B. N. Petrov and F. Csaki, eds., 2nd International Symposium on Information

Theory. Akademia Kiado, Budapast, 267–281.

[9] Akaike, H. (1974) A new look at the statistical model identification. IEEE Transactions

on Automatic Control, 19, 716–723.

[10] Albrecher, H. , Mayer, P., Schoutens, W. and Tistaert, J. (2007) The little Heston trap.

WILMOT, 83–92.

[11] Alles, L. A. and Kling, J. L. (1994) Regularities in the variation of skewness in asset

returns. The Journal of Financial Research, 17, 427–438.

[12] Amaral, L.A.N., Plerou, V., Gopikrishnan, P., Meyer, M. and Stanley, H. E. (2000) The

distribution of returns of stock prices. International Journal of Theoretical and Applied

Finance, 3 (3), 365–369.

[13] Anco, S. C. and Bluman, B. W. (1996) Derivation of conservation laws from nonlocal

symmetries of differential equations. Journal of Mathematical Physics, 37, 2361–2375.

[14] Anderson, B. O. D. and Moore, J. B. (1979) Optimal filtering. Prentice Hall Inc., New

Jersey.

[15] Andriopoulos, K. (2008) Classification of Differential Equations by Group Theoretical

Methods. PhD Thesis, School of Mathematical Sciences, University of KwaZulu-Natal,

Durban, Republic of South Africa.

[16] Arrigo, D. J., Broadbridge, P. and Hill, J. M. (1993) Nonclassical symmetries and the

methods of Bluman-Cole and Clarkson-Kruskal. Journal of Mathematical Physics, 34,

4692–4703.

[17] Arrigo, D. J., Hill, J. M. and Broadbridge, P. (1994) Nonclassical symmetry reductions of

the diffusion equation with nonlinear source. IMA Journal of Applied Mathematics, 52,

1–24.

130



[18] Atkinson, A. C. (1987) Plots, Transformations, and Regression. Clarendon Press, London.

[19] Azzalini, A. and Capitanio, A. (2003) Distributions generated by perturbation of symmetry

with emphasis on a multivariate skew t-distribution. Journal of the Royal Statistical

Society Series B, 65, 579–602.

[20] Babs, S. H. and Nowman, K. B. (1999) Kalman filtering of generalized Vasicek term

structure models. Journal of Financial and Quantitative Analysis, 34(1), 115–130.

[21] Badrinath, S. G. and Chatterjee, S. (1988) On measuring skewness and elongation in

common stock return distributions: the case of the market index. Journal of Business,

61(4), 451–472.

[22] Badrinath, S. G. and Chatterjee, S. (1991) A data-analytic look at skewness and elongation

in common-stock-return distributions. Journal of Business and Economic Statistics, 9(2),

223–233.

[23] Ball, C. A. and Torous, W. N. (1999) The stochastic volatility of short-term interest rates:

some international evidence. Journal of Finance, 54(6), 2339–2359.

[24] Barndorff-Nielsen, O. E. (1977) Exponentially decreasing distributions for the logarithm

of particle size. Proceedings of the Royal Society of London, A, 353, 401–419.

[25] Barndorff-Nielsen, O. E (1994) Gaussian-inverse Gaussian process and the modeling of

stock returns. Paper presented at the second Workshop on Stochastics and Finance 1994

in Berlin.

[26] Barndorff-Nielsen, O. E. and Prause, K. (2001) Apparent scaling. Finance and Stochastics.

5, 103–113.

[27] Barndorff-Nielsen, O. E., Kent, J. and Sorensen, M. (1982) Normal variance-mean mixtures

and z-distributions. International Statistical Review, 50, 145–159.

[28] Barndorff-Nielsen, O. E and Stelzer, R. (2005) Absolute moments of generalized hyper-

bolic distributions and approximate scaling of normal inverse Gaussian Lévy processes.
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[44] Çetin, M. C. and Erar, A. (2002) Variable selection with Akaike information criterion: a

comparative study. Hacettepe Journal of Mathematics Statistics. 31, 89–97.

[45] Champagne, B., Hereman, W. and Winternitz, P. (1991) The computer calculation of Lie

point symmetries of large systems of differential equations. Computer Physics Communi-

cations, 66, 319–340.

[46] Chan, K. C., Karolyi, A., Longstaff, F. and Sanders, A. (1992) An empirical comparison

of alternative models of the short term interest rate. Journal of Finance, 47, 1209–1227.

[47] Chen, R. R. and Scott, L. (2003) Multi-factor Cox-Ingersoll-Ross models of term structure:

estimation and tests from a Kalman filter model. Journal of Real Estate Finance and

Economics, 27(2), 143–172.

[48] Chetterjee, R. (2003) Application of the Kalman filter for estimating continuous time

term structure models: evidence from the UK and Germany. Working paper, Department

of Economics, University of Glasgow.

[49] Chhikara, R. S. and Folks, J. L. (1989) The Inverse Gaussian Distribution. Marcel Dekker,

New York.

[50] Chou, K. S and Li, G. X. (2001) A note on optimal system for the heat equation. Journal

of Mathematical Analysis and Applications, 261, 741–751.

[51] Clarkson, P. A. (1989) New similarity solutions of the modified Boussinesq equation. Jour-

nal of Physics A: Mathematical and General, 22, 2355–2367.

133



[52] Clarkson, P. A. (1989) New similarity solutions and Painlevé analysis for the symmetric
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