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Thesis summary 

 

Fungal endophytes are of interest due to their diverse taxonomy and biological functions. A 

range of definitions exists based on their identity, morphology, location and relationship 

with their host. Fungal endophytes belong to a wide range of taxa and they are categorized 

by a variety of characteristics. The detection and identification of these fungal endophytes 

can be performed using culture-dependent and culture-independent methods. These 

organisms have a range of application in pharmaceutical discovery and agriculture. 

Agricultural applications include the exploitation of the growth promoting and protective 

properties of fungal endophytes in crops such as wheat. This important crop is grown in 

South Africa where biotic and environmental stresses pose a challenge to its cultivation. 

Fungal endophytes have demonstrated potential to ameliorate these challenges. Future 

research will reveal how they can be harnessed to fight food insecurity brought about by 

stress factors such as climate change. 

 

Extraneous DNA interferes with PCR studies of endophytic fungi. A procedure was developed 

with which to evaluate the removal of extraneous DNA. Wheat (Triticum aestivum) leaves 

were sprayed with Saccharomyces cerevisiae and then subjected to physical and chemical 

surface treatments. The fungal ITS1 products were amplified from whole tissue DNA 

extractions. ANOVA was performed on the DNA bands representing S. cerevisiae on the 

agarose gel. Band profile comparisons using permutational multivariate ANOVA 

(PERMANOVA) and non-metric multidimensional scaling (NMDS) were performed on DGGE 

gel data, and band numbers were compared between treatments. Leaf surfaces were viewed 

under Variable Pressure Scanning Electron Microscopy (VPSEM). Yeast band analysis of the 

agarose gel showed that there was no significant difference in the mean band DNA quantity 

after physical and chemical treatments, but they both differed significantly (p < 0.05) from 

the untreated control. PERMANOVA revealed a significant difference between all treatments 

(p < 0.05). The mean similarity matrix showed that the physical treatment results were more 

reproducible than those from the chemical treatment results. The NMDS showed that the 

physical treatment was the most consistent. VPSEM indicated that the physical treatment 

was the most effective treatment to remove surface microbes and debris. The use of 
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molecular and microscopy methods for the post-treatment detection of yeast inoculated 

onto wheat leaf surfaces demonstrated the effectiveness of the surface treatment 

employed, and this can assist researchers in optimizing their surface sterilization techniques 

in DNA-based fungal endophyte studies. 

 

Denaturing gel electrophoresis (DGE) can be used in culture-independent studies of 

microbial community composition and the technique has several variants. This work 

compared two of these variants, namely denaturing gradient gel electrophoresis (DGGE) and 

temporal temperature gradient electrophoresis (TTGE), to establish their relative 

performance in terms of resolution and detection, as well as cost and preparation time. Per 

gel reagent and material costs and preparation times were recorded for comparison. 

Conversion formulae were developed to standardize denaturing conditions for comparison 

of DGGE and TTGE gels. For all gel samples, band numbers, positions, peak height and base 

width were recorded. Samples run on DGGE gels tended to be clearer and more distinct 

from each other and DGGE tended to provide higher band numbers and better resolution. 

However, TTGE was quicker and cheaper to prepare. The TTGE and DGGE gel data were 

strongly correlated but DGGE provided more accurate dendrograms for comparisons of pure 

fungal isolates. Non-metric multidimensional scaling showed that TTGE data profiles were 

more heterogeneous, while DGGE produced tighter clustering of replicate samples. Although 

TTGE could be an acceptable technique for resolving DNA sequences in certain applications, 

DGGE is preferable for fungal wheat endophyte studies. 

 

Fungal endophyte community composition can be affected by various factors, such as the 

host genome. Research into the host genome effects on fungal endophyte composition can 

assist in harnessing the potential benefits of such relationships in agro-ecosystems. Several 

culture-based studies have investigated the presence of a cultivar effect on endophyte 

composition. However, a culture-based approach can only detect organisms that can be 

isolated and grown. Culture-independent methods can detect both culturable and non-

culturable fungal endophytes for comparisons of fungal endophyte community composition 

(ECC) between wheat cultivars. Denaturing gradient gel electrophoresis (DGGE), high-

resolution melt (HRM) analysis of community profiles, quantitative PCR, and sequence 
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analysis were used to analyse and compare the fungal ECC of four wheat cultivars grown 

under field conditions. A significant organ and cultivar x organ interaction effects on fungal 

biomass were observed. A chytrid, namely Olpidium brassicae formed a significant 

component of the fungal endophyte community across all tissues in wheat. This finding 

highlighted the utility of the culture-independent in revealing cryptic interactions and 

endophytes, and raised questions about the factors that influence the organisms that reside 

within field-grown wheat. 

 

Systemic fungicides used in wheat production are pathogenic to many plant-inhabiting fungi 

such as fungal endophytes. The aim of the study was to reveal the effect of tebuconazole on 

the eukaryotic endophytes of wheat flag leaves using next generation sequencing (NGS). 

Treated and untreated leaves were surface sterilized prior to metagenomic DNA (mDNA) 

extraction. NGS was performed on DNA amplified using universal ITS primers. SCATA analysis 

was used for operational taxonomic unit (OTU) assignment of sequences, which were 

identified against CBS, UNITE and Genbank databases. A maximum likelihood (ML) tree was 

developed for taxonomic assignment of key genera. OTU mean read numbers and OTU 

richness were compared. The treatment effects were analysed using Principal Component 

Analysis (PCA), permutational multivariate ANOVA (PERMANOVA), distance-based test for 

homogeneity of multivariate dispersions (PERMDISP) and similarity percentage analysis 

(SIMPER). With one exception, non-wheat OTUs belonged to the Dikarya. Puccinia read 

numbers differed significantly (p = 0.01) between treatments and fungicide treatment 

tended to reduce total OTU read numbers and OTU richness. The variability of most key 

OTUs correlated positively with unsprayed samples. Treatment influenced OTU composition. 

Treated samples had the greatest homogeneity in endophyte composition and Puccinia 

made the greatest contribution to variation, with low contribution from the other OTUs. 

Dikarya were the dominant wheat flag leaf endophytes, and while the fungicide suppressed 

Puccinia and reduced fungal endophyte abundance, it did not significantly alter the 

community assemblage. 
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PCR-based studies of plant pathogen and endophyte community composition are 

constrained by primer problems such as variable amplification efficiency and non-target 

sequence amplification. This study developed non-extendable blocking primers (NEBPs) for 

use with universal eukaryotic ITS-PCR primers, to enhance target Puccinia Pers. and 

endophyte sequence amplification while suppressing host wheat DNA amplification. These 

NEBPs were 100% complementary to the priming site and flanking regions for wheat. ITS-

PCR products under increasing concentrations of NEBPs were compared on agarose gels. 

Diluted ITS-PCR products were used as template in qPCR assays of wheat host and Puccinia 

amplicon production under increasing NEBP concentrations. Gel analysis showed the 

suppression of wheat DNA amplification, while non-host target sequence amplification was 

enhanced as NEBP concentrations increased. The qPCR assay of wheat amplicons from ITS-

PCR products showed a linear decrease in wheat amplicons as NEBP concentration 

increased. Puccinia-specific qPCR of ITS-PCR products showed a non-linear association 

between Puccinia sequence quantities and increasing NEBP concentrations. Puccinia 

sequence amplification increased up to a specific NEBP concentration after which 

amplification was suppressed. It was shown that universal primers used with optimal NEBPs 

concentrations successfully suppressed host wheat DNA amplification with enhanced 

Puccinia and eukaryotic endophyte DNA amplification. 
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General introduction 

Global food security is under threat due to the increasing human population and climate 

change (Wheeler and von Braun, 2013). It is projected that after 2030 yields from staple 

crops are expected to decrease (Challinor et al., 2014). New strategies are being explored to 

increase yields and lower inputs for food production. Plant breeding efforts, as well as GMO 

strategies, are achieving some gains (Eisenstein, 2013, Hawkesford et al., 2013). However, 

plant-associated microbes also offer the potential for increased plant growth and for crop 

protection (Sessitsch and Mitter, 2015). 

 

Plant-associated microbes can include organisms known as endophytes, which live within 

the tissues of the host plants but do not cause disease symptoms. Their ecological 

significance is increasingly recognized since all plants in natural ecosystems probably harbor 

them (Rodriguez et al., 2009a). As initial model organisms, endophytes of forage grasses 

have been extensively studied for their role in grass biology, producing compounds that 

repel herbivores and because they affect the reproductive cycle of infected plants (Clay, 

1988). Subsequent interest in endophytes also increased due to the identification of new 

species, the discovery of novel pharmacological compounds, and the harnessing of 

endophytes for crop protection and plant growth promotion. Many of these endophytes 

have been shown to increase yields under challenging conditions such as drought or low 

nutrient availability. In addition, endophytes have also been shown to protect against 

pathogens where conventional pesticides are ineffective (Zhang et al., 2006). Various 

endophytes have been reported in association with important crop plants, including wheat 

(Triticum aestivum L.) (Larran et al., 2016). 
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Problem statement 

Wheat is regarded as one of the worlds’ most important food crops used for human 

consumption, providing much of the global human dietary protein and carbohydrates 

(Gustafson et al., 2009). According to the Food and Agricultural Organization of the United 

Nations (http://www.fao.org), wheat was ranked third in tons of cereal grains produced 

(675M tonnes), after maize (875M tonnes) and rice (718M tonnes). In South Africa, it is the 

second most important cereal (1.8M tonnes) produced after maize (12.5M tonnes). South 

Africa is the largest producer of wheat in Southern Africa. In a 2009 estimate, wheat 

accounted for approximately 17% of the total per capita calorific intake for South Africans. 

Additionally, due to urbanization, wheat consumption is increasing in southern Africa 

(Byerlee and Morris, 1990). The South African Bureau for Food and Agricultural Policy’s 10th 

BFAP Baseline report indicated that South Africa will be importing more wheat than it 

produces by 2022. Any factors that could affect wheat production are of major importance 

in South Africa and globally. Therefore, the role of endophytes in local wheat cultivation 

requires investigation. 
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Purpose of the study 

The identification of the wheat endophytes that are present in locally grown wheat is a 

necessary step in developing the potential of endophytes to enhance wheat production in 

South Africa. Wheat cultivation occurs under irrigation in the western and southern central 

parts of KwaZulu-Natal, South Africa (Burger and Kilian, 2009). This was an important 

practical consideration that allowed sampling of wheat material grown under typical local 

field conditions and transport of the samples to our laboratories for further processing, 

which took place within a few hours. 

 

Research has suggested that there may be a cultivar-based effect on the selection of the 

types of endophytes associating with wheat (Larran et al., 2007). There is theoretically the 

potential to incorporate endophyte association as a beneficial trait that could be selectively 

bred in wheat to bequeath desirable benefits on the host plant, since endophytes have been 

shown to enhance wheat yields and disease resistance (Marshall and Tunali, 2000). Research 

into the epigenetic effects of such endophytes on plants could also be explored in the 

context of wheat production because epigenetic regulation of plants by fungal endophytes 

has been established (Rodriguez et al., 2009b).  

 

Several culture-based studies have been performed to determine whether the genetic 

differences between wheat cultivars affect the diversity of fungal endophytes in them 

(Sieber et al., 1988; Crous et al., 1995; Larran et al., 2002; Larran et al., 2007). These studies 

only evaluated the microorganisms that could be cultured. In this study, a DNA-based 

approach was used. This was performed to see if the detection of the culturable and non-

culturable fungal endophytes could reveal a cultivar effect on fungal endophyte community 

composition and species richness in the roots, stems, and leaves of different wheat cultivars. 

Bacterial endophytes were also understood to be important but they were beyond the scope 

of this work which focussed on the fungal endophytes. 

 

While many fungi can be isolated from wheat with relative ease (Crous et al., 1995), this 

does not provide a complete picture of the endophytic fungal community composition. A 

culture-independent approach can detect those organisms which cannot be isolated and 
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identified by axenic culture. A culture-independent approach can employ techniques such as 

the polymerase chain reaction (PCR) to amplify regions that can be used to identify fungal 

species. This PCR is then coupled with techniques such as denaturing gradient 

electrophoresis (DGE) to resolve DNA from different species, high-resolution melt (HRM) 

analysis for profile discrimination, quantitative PCR (qPCR) to quantify relative fungal 

endophyte presence, clone libraries with Sanger sequencing to identify the fungal species 

present, and next generation sequencing to provide high sequence depth with operational 

taxonomic unit (OTU) analysis and identification. These are more recent approaches in 

microbial research that can be optimized and applied to the exploration of wheat fungal 

endophyte community composition.  
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Aim of the study 

The broad aim of this study is to develop and evaluate appropriate methods of sample 

preparation and DNA analysis for fungal endophytes of wheat, followed by comparisons of 

fungal endophyte community composition in different cultivars of wheat, as well as in 

fungicide-treated wheat. More detailed descriptions of aims are outlined in the research 

questions below. 

 

Research Questions:  

 

1. The first question that was raised was how the sample processing in terms of surface DNA 

decontamination could affect the detection of fungal endophytes. Microbial sampling 

procedures can greatly impact on the description of fungal community composition 

(Unterseher et al., 2011). In culture-based studies, a chemical surface sterilization procedure 

is typically used for isolation of endophytes (Bacon, 1988). The methods of surface 

sterilization in the traditional culture of endophytes on agar media is predicated on the 

destruction of surface microbial cells and spores, to ensure that they are not capable of 

growth, thus only allowing for the growth of those microbes left alive within the plant 

tissues (Schulz et al., 1993). As such, evaluating the efficiency of surface sterilization has 

been considered an important first step in culture-based endophyte studies (Schulz et al., 

1993; Reissinger et al., 2001; Paulus et al., 2003). In culture-independent fungal endophyte 

studies, it is necessary to remove DNA originating from fungal epiphytes and other incidental 

surface organisms. Establishing a way to determine and compare the efficiency of 

techniques used to destroy the DNA of epiphytes is thus of similar importance in DNA-based 

endophyte diversity studies (Guo, 2010). It was decided to investigate this and develop an 

effective surface decontamination procedure to use when comparing the cultivar-specific 

communities. 

 

2. The next question which arose was on which variant of denaturing gel electrophoresis 

(DGE) would be most suitable for the comparison of wheat fungal endophyte community 

profiles. A PCR-based approach combined with a form of DGE such as denaturing gradient 

gel electrophoresis (DGGE) was to be employed since this approach had been successfully 
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employed in another study of endophytes in different host cultivars (Sessitsch et al., 2002). 

The production of large numbers of DGE gels for the screening of fungal community profiles 

of the roots, stems, and leaves of several wheat cultivars is a laborious process. DGE is based 

on a principle that can be implemented in several different ways either by chemical or 

thermal denaturing of DNA as it moves through a gel (Muyzer et al., 1993; Muyzer and 

Smalla, 1998; Cornejo et al., 2004; Manzano et al., 2005). Both TTGE and DGGE could be 

performed on the available equipment. Both methods needed to be evaluated for their 

various attributes and performance, aiming to reduce the cost and effort of performing this 

type of fungal community profile analysis without losing resolution. In this context, it was 

hypothesized that TTGE could be a desirable alternative to DGGE. Once it was established 

which technique was most suitable for fungal community profile analysis, that method 

would be employed in the subsequent research to determine whether there was a selective 

effect by wheat cultivars on the endophytic populations associated with wheat. 

 

3. After addressing the technical considerations for determining the fungal endophyte 

composition, the research could investigate the principle focus of the work, namely the 

effect of wheat cultivar on fungal endophyte community composition. The genetic 

composition of the host plant has been shown to influence the composition of endophytes 

within it (Saikkonen et al., 2010), so it was anticipated that such an effect could be observed 

for different cultivars of wheat. Field grown wheat was to be sampled, surface sterilized and 

analyzed by PCR, followed by the appropriate form of DGE. Quantitative PCR and high-

resolution melt profiles would also be performed to explore the nature of fungal endophyte 

colonization amongst different wheat cultivars and to reveal the utility of these techniques 

in arriving at conclusions that might not be apparent from PCR-DGE alone. 

 

4. The samples analysed for the investigation on the effect of cultivar on fungal endophyte 

community composition were grown under commercial cultivation conditions where 

fungicides were applied. The question that arose from this was how such fungicides affected 

the composition of eukaryotic endophytes, i.e., including non-fungal organisms such as 

oomycetes. This would necessitate the use of universal eukaryotic primers with the deep 

sampling power of next generation sequencing (NGS). It was expected that fungicides could 
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significantly affect fungal community composition (Karlsson et al., 2014) and that non-fungal 

eukaryotes may opportunistically occupy the niche vacated by fungi. It was also expected 

that there would be useful data on the extent of primer bias and interference by host DNA, 

as seen in PCR-base endophyte studies (Arenz et al., 2015). 

 

5. The data from the use of the universal eukaryotic primers would undoubtedly result in the 

detection of host DNA sequences. The final question was whether it was possible to inhibit 

this amplification without using taxon-specific primers that introduce bias. The data acquired 

from the previous experiment could be used to develop a solution to this problem that 

affects culture-independent PCR-based fungal endophyte and pathogen studies, i.e., the 

presence and interference of host plant DNA and amplification bias from primer 

mismatches. By aligning the detected wheat, fungal endophyte, and pathogen sequences, it 

would be possible to develop non-extendable blocking primers to solve this issue. 

 

The research questions would be answered and the aims of the research achieved by 

working towards a series of study objectives. 

 

Objectives of the study: 

 

1-Evaluate surface sterilization methods using DNA-based techniques to develop a sample 

treatment protocol for wheat tissue samples for surface decontamination of any non-

endophytic DNA. (Chapter 2) 

 

2-Evaluate and compare the temporal temperature gradient gel electrophoresis (TTGE) and 

denaturing gradient gel electrophoresis (DGGE) variants of denaturation gradient 

electrophoresis in terms of cost, time and performances on the Bio-Rad Universal Mutation 

Detection System. This would determine the most appropriate method for comparing fungal 

wheat endophyte community profiles. (Chapter 3) 

 

3-Compare DGE, qPCR and HRM profile data from the organs of different wheat cultivars to 

reveal any cultivar-based influence on fungal endophyte community composition; and to 
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identify the dominant fungal endophytic taxa by DNA sequencing of cloned ITS1 to ITS4 

region sequences. (Chapter 4) 

 

4-Perform NGS analysis of the effect of a triazole fungicide on eukaryotic wheat endophytes, 

as detected by universal eukaryotic primers targeting the ITS1 to ITS4 regions. (Chapter 5) 

 

5-Develop a non-extendable blocking primer system to allow for the use of universal primers 

for unbiased PCR amplification and to suppress host DNA amplification in future PCR-based 

fungal wheat endophyte and pathogen studies. (Chapter 6) 

  



9 

 

Thesis format 

This thesis follows an official University of KwaZulu-Natal format whereby all experimental 

chapters are written in the form of discreet research papers. Some duplication is 

unavoidable, such as some references and materials and methods, although it was 

attempted to keep repetition to a minimum in the Introductions and Discussions of the 

chapters. There are six chapters. The first chapter is a review of relevant literature focused 

on fungal endophytes, their diversity, evolution, and how they can and have been utilized in 

agriculture, particularly wheat, touching briefly upon wheat and its cultivation. This is 

followed by five experimental chapters. A final Thesis Overview discusses the findings of 

each experimental chapter. It allows for a more speculative and philosophical review of the 

research, its implications, as well as a starting point for future research. 

 

As mentioned, the experimental chapters are presented in a stand-alone research paper 

format, consisting of an Introduction, Materials and Methods, Results and Discussion (with a 

Conclusion where this has been required by a journal) and references sections. This 

document has been produced in Microsoft Word (2013). For all the unpublished work in this 

thesis, the citations and references are in the author-date format, in a modified form of the 

author-date referencing style used in the journal FEMS Microbiology Ecology. This was 

implemented using Endnote X7. Where published work is included, it is in the format of the 

journal that the work was published and this is indicated in a footnote. 
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Chapter 1  

A review of fungal endophytes and their relation to 

wheat cultivation 

1.1 Abstract 

Fungal endophytes are of interest due to their diverse taxonomy and biological functions. A 

range of definitions exists based on their identity, morphology, location and relationship 

with their host. Fungal endophytes belong to a wide range of taxa and they are categorized 

by a variety of characteristics. The detection and identification of these fungal endophytes 

can be performed using culture-dependent and culture-independent methods. These 

organisms have a range of application in pharmaceutical discovery and agriculture. 

Agricultural applications include the exploitation of the growth promoting and protective 

properties of fungal endophytes in crops such as wheat. This important crop is grown in 

South Africa where biotic and environmental stresses pose a challenge to its cultivation. 

Fungal endophytes have demonstrated potential to ameliorate these challenges. Future 

research will reveal how they can be harnessed to fight food insecurity brought about by 

stress factors such as climate change. 

 

1.2 Introduction 

Endophytes are members of the plant microbiome that colonize the internal tissues of host 

plants (Bacon and White, 2016), i.e., the bacteria, fungi, and any other microbes that live 

inside plants. The study of these organisms encompasses a wide area of research. Aside from 

the taxonomy of the diverse array of endophytes found within a host plant, research on 

endophytic organisms includes the observation of the relationships with the host, host 

pathogens, and other endophytic co-inhabitants. Such investigations can broadly involve 

aspects of plant physiology and pathology, in particular, with relation to plant signaling and 

defence mechanisms; microbial ecology, in terms of interaction and succession; and 

microbial diversity, an evolving body of knowledge driven by developments in taxonomy, 

systematics, and phylogenetics. All of these areas have a wide scope. However, this review 
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will briefly discuss the concept of ‘endophytism’, with a primary focus on fungal endophytes; 

describe fungal endophyte research methodologies in terms of how endophytes are 

detected and identified; and review the applications of fungal endophytes in crop 

production, particularly in relation to the global and local cultivation of wheat. 

 

Endophyte research is partly characterized by the allure of developing beneficial applications 

in agricultural systems and the discovery of novel metabolites (Gillespie, 1988; Hallmann et 

al., 1997; Vallad and Goodman, 2004; Strobel, 2006; Johnson, 2008; Sessitsch and Mitter, 

2015). An important aspect of these discoveries and developments is the identification of 

endophytic organisms that have been isolated from or detected within the host plant. This 

inadvertently develops our knowledge of the ecological functions of all microbes, and their 

diversity. 

 

Even though most, if not all, plants are involved in symbiotic relationships with endophytes 

(Rodriguez et al., 2009), until relatively recently little was known about endophyte diversity, 

function, and ecology (Sturz and Nowak, 2000); but this knowledge is steadily growing. This 

is evident in the growth in endophyte research. Research on endophytes produced just over 

one research paper a year for nineteen years since 1971. This has expanded to more than 

fifteen papers a year for about six years following 2001, in English-language journals; and 

research on endophyte-linked issues including novel metabolites has increased more than 

two hundredfold (Arnold, 2007). This increased interest requires a scrutiny of what is meant 

by the term ‘endophyte’. 

1.3 Defining endophytes 

Several definitions have been applied to the plethora of organisms that have in common the 

trait of residing within a host plant. The term ‘endophyte’ was derived from the Greek 

meaning ‘in the plant’ (Siegel et al., 1987). It was apparently the famed mycologist, Thomas 

de Bary that was reported to have first suggested the term ‘endophyte’ (Kusari et al., 2012). 

There have subsequently been varying opinions on the criteria for membership in this group. 

 

Wilson (1995) discussed the definition, pointing out that fundamentally the term referred to 

the location of the organism; that it most commonly referred to bacteria and fungi; but that 
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referring to any organism living in a plant, as an endophyte, was not useful. It was proposed 

that these organisms must live entirely within the plant (thereby excluding mycorrhizae) and 

not produce disease symptoms during at least part of their life cycle (thereby including many 

plant pathogens). It was further suggested that endophytes are not only mutualists because 

the same mutualistic endophyte within a plant can present antagonistic properties, as 

observed for some clavicipitaceous endophytes. A noteworthy characteristic that Wilson 

(1995) raised was that endophytes do not trigger host defenses while they colonize the 

tissues. This could serve as a primary trait to qualify as an endophyte. Wilson (1995) was of 

the view that pathogens could be regarded as endophytes unless they immediately 

produced disease symptoms. This contrasted with Wennström (1994) who emphasized that 

pathogens such as rusts and smuts should not be classed as endophytes. Wilson (1995) also 

argued that simply because an organism was isolated from what appeared to be healthy 

tissue, did not mean it was not a pathogen, e.g., when a biotrophic pathogen is isolated at an 

early stage of infection, or when the pathogenic effects of the infection are not obvious. 

 

Further to the location of endophytes being a qualifying trait, Saikkonen et al. (1998) 

considered endophytes to be predominantly leaf inhabitants and only occasionally residing 

in roots. They went further to propose, as did Wilson (1995), that mycorrhizal fungi, such as 

arbuscular mycorrhizal (AM) fungi or ectomycorrhizae, could not be regarded as endophytes 

since their hyphae extended outside of the roots. Dark septate endophytes (DSE) are fungal 

root inhabitants (Addy et al., 2005), and many other inhabitants of roots conform to the 

definition of an endophyte, e.g., the clavicipitaceous fungus Metarhizium robertsii J.F. Bisch., 

Rehner and Humber (Sasan and Bidochka, 2012). Busby et al. (2015) even mentioned that 

some epiphytes also occur as endophytes. Therefore, aside from the spatial location, i.e., 

whether the organism can or does reside within the plant internal tissues or not, the location 

of the fungus does not always assist in defining endophytes. 

 

The taxonomic domains represented by endophytes have also varied according to their 

definition. Some definitions have limited the term ‘endophytes’ to fungi (Carroll, 1988), 

while others regarded endophytes as only bacteria that reside in the plant with or without 

any symbiotic interaction (Hallmann et al., 1997). This was probably in the context of the 
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research being performed. Brundrett (2006) suggested that any organism could be regarded 

as an endophyte when it occupies a plant without causing disease symptoms. Presumably, 

this would exclude insects, for example, which consume plant tissue, thereby harming the 

host while residing within it. 

 

The manner by which endophytes are detected also has implications for their definition. 

Describing endophytes as ‘bacteria and fungi that can be detected at a particular moment 

within tissues of apparently healthy plant hosts’ (Schulz and Boyle, 2006), excludes non-

culturable microorganisms. Archaea, for example, have been reported as endophytes using 

DNA-based detection methods (Chelius and Triplett, 2001; Ma et al., 2013). Microbes such 

as members of the Archaea and fungal obligate biotrophs cannot be cultured by axenic 

methods (Epstein, 2013), therefore, it is proposed here that this definition is inadequate . 

 

The shift from the location of the microorganism and its detection to the relationship with 

the host has played a significant part in trying to define endophytes (Wennström, 1994; 

Wilson, 1995). Initially, endophytes were regarded as microbial contaminants from 

unsuccessful surface sterilization, or as disease organisms, but it was later realized that these 

microorganisms could, in fact, have beneficial or neutral relationships with host plants. 

Therefore, authors have used the term ‘endophyte’ to refer to any organism living within 

plants, or algae, in a range of commensal and symbiotic relationships (Schulz and Boyle, 

2006). Schulz et al. (1999) considered endophytes as existing in a state of ‘balanced 

antagonism’ with the host, whereby an endophyte is distinguished from a pathogen in that 

the former fails to overcome the host defenses. Kogel et al. (2006) maintained a similar view 

but specified that the ‘balance’ was related to the response to, and production of, reactive 

oxygen species (ROS) by the endophyte or the plant. Photita et al. (2004) reported that some 

endophytes are latent plant pathogens, i.e., they eventually overcome the plant host 

defenses, supporting the argument by Wilson (1995) that even pathogens can be regarded 

as endophytes at some stage in their life-cycle. Kusari et al. (2012) also argued that the 

function of the organism was relevant to its qualification as an endophyte. Therefore, the 

relationship between host and microorganism does not seem to offer unambiguous support 

for membership to the endophyte category either. 
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The broadest definitions of endophytes categorize them as organisms that actively colonize 

the inside of a plant, spread throughout it and reproduce within it (van Overbeek, 2006). 

Sikora et al. (2007) described endophytes as ‘any organisms that live in plant tissue whether 

neutral, beneficial or detrimental’. These last two definitions effectively classify all organisms 

that spend any part of their life cycle within living plant tissue as endophytes. Since there is 

nothing in the etymology of the word ‘endophyte’ that prescribes a specific functional 

attribute to classification as such, these are acceptable definitions. However, the use of the 

term ‘endophyte’ has been implicitly used to imply a mutualism (Backman and Sikora, 2008), 

or at worst, commensalism. However, it is suggested that the term ‘endophyte’ should 

include members of the plant microbiome that are not immediately pathogens, as proposed 

by Wilson (1995). More recently, in a review of endophytes, they were described as 

microbes that inhabit plant tissues without causing disease symptoms (Porras-Alfaro and 

Bayman, 2011). Maybe the term endophyte should be seen from a temporal perspective; in 

that, once a microbe becomes pathogenic to the host it is no longer an endophyte. This 

suggests that endophytism can be a transitory property of various microbes. 

 

It becomes apparent that the definition of an endophyte may be difficult to restrict to a 

narrow set of traits. It may be simpler to consider that endophytes are not an exclusive 

group of organisms, but rather that endophytism is a trait that many organisms may possess. 

In this light, sensu lato, the definition used for this review is that an endophyte is a 

microorganism that partially or entirely resides within a plant (to include various mycorrhizal 

associations); spending a part of its life cycle inside a plant (to include facultatively 

biotrophic organisms); and which is not immediately pathogenic (to include latent 

pathogens). 

1.4 What are fungal endophytes? 

There term ‘fungal endophyte’ can refer to fungi that belong to a range of taxa. Certain 

highly adapted grass symbionts are members of the Clavicipitaceae, as described in the 

detailed review by Clay (1990); these endophytes have been regarded as the most 

frequently studied of all microbial endophytes that display a mutualistic interaction with the 

host plant (Anand, 2006). Another group of fungi, the dark septate endophytes (DSE), are 
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considered to be the most plentiful (Sieber and Grünig, 2006). The DSE are often members 

of the Ascomycota, they are taxonomically diverse and may include ectendomycorrhizal 

species (Jumpponen, 2001; Addy et al., 2005). As stated previously, for the purpose of this 

review, mycorrhizae are included as endophytes. The AM fungi are members of the 

Glomeromycota (Krüger et al., 2009) and ectomycorrhizal fungi can be members of the 

Basidiomycota, Ascomycota, and Zygomycota (Tedersoo et al., 2010). Even the 

Chytridiomycota have been represented as endophytes (Barrow et al., 1997), although this is 

uncommon. It appears then, that ‘endophytism’ is not limited to specific taxonomic groups 

and that endophytes can differ greatly in terms of their biology. 

 

Fungal endophytes are considered to occur in almost all land and aquatic plants (Stone et al., 

2000), and even seaweeds (Suryanarayanan, 2012). Stone et al. (2000) discussed their 

presence in grasses, dicotyledonous plants, lichens, mosses and ferns, tree bark, xylem 

vessels, plant roots, galls, and cysts. It would seem that they are pervasive in the tissues of 

plants and their relatives. In some cases, the host type has been used to categorize fungal 

endophytes. 

 

Several systems have been devised to categorize different types or classes of endophytes. 

The nomenclature for classifying fungal endophytes devised by Carrol (1988) defined Type I 

and Type II endophytes as constitutive mutualists and inducible mutualists, respectively 

(Yuan, 2009). Rodriguez et al. (2009a) described Type I endophytes as systemic endophytes, 

usually belonging to the family Clavicipitaceae, transmitted via seeds and Type II endophytes 

as belonging to a wide variety of organisms that are horizontally transmitted (Yuan, 2009). 

Horizontal transmission occurs when endophytes are transmitted from the environment, 

including from other plants, to the host plant (Chung and Schardl, 1997); whereas 

transmission from parent to seed is referred to as vertical transmission (Afkhami and 

Rudgers, 2008). The way in which a fungal endophyte reaches its host was one of the several 

factors used by Rodriguez et al. (2009a) to develop a system that categorizes fungal 

endophytes. They reasoned that clavicipitaceous (C) endophytes and non-clavicipitaceous 

(NC) endophytes could be grouped into four classes based on a set of criteria that included 

host range, tissues colonized, the degree of colonization and diversity, manner of 
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transmission and the fitness benefits conferred on the host. Class 1 endophytes include 

clavicipitaceous endophytes that have a narrow host range; colonize shoots and rhizomes 

extensively; have a low in planta biodiversity; are vertically and horizontally transmitted; and 

confer non-habitat-adapted benefits to the host. These benefits include enhanced plant 

growth or tolerance of dry conditions, traits which are frequently found to be independent 

of where the plants grow. Habitat-adapted benefits are derived due to the evolution 

encouraged by conditions in specific habitats, e.g. acidity and temperature. Class 2, 3 and 4 

endophytes are all non-clavicipitaceous endophytes and have broad host ranges. Class 2 

endophytes colonize shoots, roots and rhizomes extensively, have low in planta biodiversity, 

are vertically and horizontally transmitted and confer both non-habitat-adapted and habitat-

adapted benefits to the host plant. Class 3 endophytes only colonize shoots to a limited 

extent, with high in planta biodiversity. They are horizontally transmitted while conferring 

non-habitat-adaptive benefits to the host. Class 4 endophytes colonize the roots extensively 

and have undetermined degrees of in planta biodiversity. They are horizontally transmitted 

and confer non-habitat-adapted benefits to the host. Clay and Schardl (2002) further 

categorize C-endophytes into three types (Table 1.1). 

 

Table 1.1 Categorization of C-endophytes, according to Clay and Schardl (2002). 

Type Characteristic 

I Symptomatic/pathogenic 

II Mixed-interaction 

III Asymptomatic 

 

According to Rodriguez et al. (2009a) fungal endophytes belonging to the same genus can 

vary in their categorization, e.g., Epichloë species can be either Type I or II. These 

endophytes can control how they are transmitted, and in some cases, they can control plant 

development via the production of plant hormones, including auxins. Backman and Sikora 

(2008) categorized endophytes in general as belonging to three groups: pathogens of other 

host plants that are harmless as endophytes; non-pathogenic microbes; or modified 

pathogens that have lost their pathogenicity but not their ability to colonize the host. 
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All these systems of classification are difficult to apply with any degree of certainty. It also 

raises the question as to why a system of classification needs to exist at all, considering the 

range of organisms; the highly variable nature of their interactions with the host plant; and 

the highly variable range of hosts that some endophytes can be found in. Like some aspects 

of taxonomy, the categorization of endophytes is artificial. It is suggested here that 

endophytism is a strain trait, as opposed to endophytes being a distinct group of organisms. 

 

There is some dispute whether mycorrhizae should be regarded as endophytes (Schulz and 

Boyle, 2006); and authors such as Kusari et al. (2012) who suggested that endophytes must 

reside entirely within the plant. Brundrett (2006) was more specific, stating that endophytes 

differ from mycorrhizae since they lack specialized hyphae that interface with the plant cell, 

their development is not synchronized with that of the plant and they do not transfer 

nutrients to the host. The last point is problematic in that the root endophyte Piriformospora 

indica Sav. Verma, Aj. Varma, Rexer, G. Kost and P. Franken has been shown to transfer 

phosphates to the host plant from the soil (Kumar et al., 2011). Mycorrhizae are usually 

beneficial to plants, possessing specialized hyphae which interface with host cells and 

provide nutrients to the plant from the hyphae extended beyond the root into the soil 

(Brundrett, 2006); however, some can also affect the host negatively (Jumpponen, 2001; 

Schulz and Boyle, 2006). In the same way that Wilson (1995) regarded rusts (which have 

specialized hyphal haustoria, are latent pathogens and are obligate biotrophs) as 

endophytes, it seems difficult not to regard mycorrhizae as endophytes because they largely 

meet the definition of endophytes as living within the host plant tissue and that they are 

‘microorganisms that establish neutral or beneficial interactions with their host plants’ 

(Anand et al., 2006). Considering that Jumpponen (2001) suggested that dark septate 

endophytes (DSE) could be considered as having a mycorrhizal relationship with plants, 

conversely, should mycorrhizae not be classed as endophytes if they colonize internal plant 

tissues? It would simplify matters if mycorrhizae were considered as a type of endophyte but 

which is distinct from the DSE and other endophytes. Since mycorrhizae are unable to exist 

unless they colonize the internal tissues of the host plant roots, it could even be suggested 

that they are obligate endophytes. It should at least be acknowledged that mycorrhizae 

possess the property of endophytism. 
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Carroll and Petrini (1983) suggested that the ability for a wide variety of fungal endophytes 

to occupy a single host was due to the division of resources amongst these endophytes with 

differing substrate requirements. In studies on both fungal endophytes and the fungal 

epiphytes in coffee bean plants, endophytes were found to be more numerous than 

epiphytes (Santamaria and Bayman, 2005). This suggests that the in planta environment 

provides a more stable and hospitable environment than the plant surface, and that it is an 

environment in which many organisms can co-exist. 

 

It is clear that the host range, taxonomy and ecological roles of fungal endophytes are 

extremely wide and varied. However, they share the ability to live within the host without 

hostility from the plant. New technologies are revealing not only the identities of these 

organisms but also how they interact and reside inside the plant without triggering host 

defence mechanisms (Kaul et al., 2016). Such studies of fungal endophytes and their 

interactions with other organisms at a molecular level will help to reveal how they occupy 

this niche, what they do there and how they evolved to do so. 

1.5 The evolution of fungal endophytes 

Studies of the ancient mycoflora in the Rhynie Chert Ecosystem, a 400-million-year-old 

fossilized ecosystem belonging to the early Devonian period, indicated that some 

endophytes may have begun as endomycorrhizae. These organisms are hypothesized to 

have transitioned from a parasitic to mutualistic relationship with the host plant, offering 

protection and improved phosphate uptake in the host (Taylor and Taylor, 2000). White et 

al. (2000) hypothesized that the clavicipitaceous endophytes probably evolved from an 

epiphytic grass symbiont; from there, groups developed separate phylogenies as they co-

evolved with their hosts. White et al. (2000) reasoned that the switch from epiphyte to 

endophyte was due to higher nutrient availability and escape from desiccation and 

predation. In exchange, the host received herbivore-deterring secondary metabolites, 

growth stimulating hormones and protection from other fungal pathogens, giving the host a 

competitive advantage over other plants. However, even though endophytes conferred a 

competitive advantage, Schardl and Wilkinson (2000) noted that dependence of a host on 

endophyte is rare. 
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The great number of non-clavicipitaceous endophytes that have been identified indicates 

that they also evolved to provide an advantage to the host. Freeman and Rodriguez (1993) 

proposed that the loss of a virulence factor by mutation could change a pathogen into an 

endophyte. There is further evidence supporting this, for example, when apparently 

harmless endophytes cause disease symptoms in stressed hosts; or the use of a limited 

number of substrates, typical of parasitic organisms, by certain endophytes; as well as the 

close taxonomic relationship between many endophytes and pathogens. Carroll (1988) 

suggested that endophytes evolved from plant pathogens and that the precondition for the 

formation of fungal endophytes was latency and mycotoxin production. Carroll (1988) also 

argued that plant-endophyte associations are due to the plant acquiring a form of chemical 

protection from the fungal endophyte; while fungal traits can evolve relatively quickly, plant 

defences do not, thus the hosting of a protective endophyte is highly desirable. 

 

An interesting proposal by Rodriguez et al. (2009a) was that some endophytes evolved from 

insect pathogens, migrating along the ‘nutrient stream’ from insect to plant, forming 

endophytes since they did not possess plant pathogenic genes. The fact that Beauveria 

bassiana (Bals.-Criv.) Vuill. is an entomopathogen and readily forms an endophytic 

association with various plants (Wagner and Lewis, 2000; Ownley et al., 2004; Quesada-

Moraga et al., 2006; Akello et al., 2007; Akello et al., 2008; Ownley et al., 2008; Tefera and 

Vidal, 2009) reinforces this suggestion. The presence of an entomopathogenic resident 

would certainly be advantageous for a plant that was vulnerable to attack by insects; 

therefore, a plant that actively promoted such an association would have an evolutionary 

advantage over competitor plants in an ecosystem. Further support for this hypothesis is 

most likely to be found in the understanding of the genetic composition of endophytes 

relative to their non-endophytic counterparts. 

 

Although fossil records of fungi do exist (Taylor and Taylor, 2000), the information they 

provide is limited relative to that of, for example, fossils of ancient reptiles and mammals. 

However, our ability to understand the genetic differences between organisms and 

subsequently their phylogenetic relationships as inferred by evolutionary models is 
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improving. These emerging methods form part of a range of methodological approaches to 

understanding the origins, diversity, interactions and functions of fungal endophytes. 

1.6 Fungal endophyte diversity research methods 

Fungal endophytes research methods continue to evolve with new technological 

developments, as is the case for biological research in general. Just as in other areas of 

biological research, work on fungal endophytes can be observational, where the diversity, 

quantity, and effect of fungal endophytes are deduced from naturally occurring populations; 

or experimental, where the fungal endophyte composition or biology is manipulated. For 

either of these experimental processes to occur, fungal endophytes need to be detected and 

distinguished by their unique features, i.e., their morphology or molecular composition. 

Schultz and Boyle (2006) outlined four general approaches for doing so, i.e., by microscopy; 

by isolation on growth media after surface sterilization of plant tissue; by specific 

biochemistry, such as ELISA; and finally, by molecular techniques involving PCR detection. 

 

However, endophyte research methods are not restricted to a limited number of techniques, 

although they are often described as belonging to two general approaches that are used to 

identify and characterize fungal endophytes. These two approaches are regarded as, either 

dependent on isolating and growing the endophytes (culture-dependent), or observing and 

analysing the endophytes without doing so (culture-independent) (Arnold et al., 2007). 

Combinations of the two methods can occur, for example, by the introduction of a fungal 

endophyte and its subsequent detection by PCR to establish how successfully it has 

colonized the host (Landa et al., 2013). Host colonization is also often the focus of in planta 

studies (Vági et al., 2014). 

 

In planta studies can be considered as a combinational approach because the endophytes 

are not necessarily studied while cultured on growth media, but that does not mean that 

they cannot be grown. In fact, the endophyte being studied may first have been isolated, 

grown and characterized before being applied to and colonizing a host plant. Once they have 

colonized the host, knowledge derived from DNA-based techniques may be used to study 

them. An example of this is with the use of confocal laser scanning microscopy that produces 

images such as those shown in Figure 1.1. Using this form of microscopy in conjunction with 
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FISH probes (Kutter et al., 2006; Vági et al., 2014) or with modified organisms that produce 

green fluorescent protein (GFP) (Coombs and Franco, 2003; Bolwerk et al., 2005) can reveal 

the location of fungal endophytes of interest relative to other co-inhabitants, and the 

interactions between them. 

 

 

Figure 1.1 Confocal Laser Scanning Microscopy images showing (a) blue auto-fluorescence of wheat 

leaf epidermal cell walls and (b) Differential Interference Contrast (DIC) image of the wheat leaf 

surface. Both show pink fluorescence of epiphytic microbes stained with a fluorescent nucleic acid 

dye (Images taken by Richard Burgdorf). 

 

The development of such techniques, therefore, can depend on the data produced from 

both culture-dependent and culture-independent methods; however, these methods are 

typically regarded as distinct approaches to understanding the identity and nature of fungal 

endophytes. 

1.6.1 Culture-dependent methods 

Hallmann et al. (2006) extensively reviewed the various approaches to isolating and 

culturing endophytes. Their review explained that culture-dependent endophyte research, 

by definition, requires the endophyte to be grown as an axenic culture, i.e., a pure fungal 

isolate that is free from contaminants. Aside from incidental contaminants that may be 

present from incomplete sterilization of media or equipment, the main consideration for the 

isolation of fungal endophytes is the removal or destruction of non-endophytic microbes 
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that exist on plant surfaces. This is referred to as ‘surface sterilization’ and is the first step in 

fungal endophyte isolation from host plant material. Surface sterilization methods can vary, 

but generally involve the immersion of plant tissue in disinfectants such as hydrogen 

peroxide, formaldehyde, sodium hypochlorite (bleach) and ethanol, or combinations 

thereof, followed by rinsing with sterile water (Schulz et al., 1993; Allen et al., 2003; Arnold 

et al., 2007) under aseptic conditions.  

 

Schulz et al. (1993) evaluated the most common methods of surface sterilization that used 

bleach, ethanol, and formaldehyde at various concentrations and durations, finding that 

with the exception of immersion in 50% ethanol for 5 minutes, all of the other methods 

reliably sterilized the tested plant surfaces. Reissinger et al. (2001) compared the efficacy of 

bleach, ethanol, and peracetic acid in surface sterilization and found that while peracetic 

acid was the most effective in destroying certain ascospores, it also resulted in damage to 

internal plant tissues and endophytes residing there. Meyer and Hoy (2008) found that 

immersion in a 6% bleach solution for 1 minute was sufficient to kill all surface fungi on 

insects. Surface sterilization, using a combination of ethanol, bleach and then rinsing with 

water, as described by Arnold et al. (2007), seems to be adequate as a method of killing 

epiphytic fungi and bacteria, although variations can be experimented with, followed by 

surface sterility checks performed by applying treated plant surfaces to nutrient media 

(Hallmann et al., 2006). 

 

After surface sterilization, standard culture procedures for selecting fungi can be applied, 

such as the use of bactericidal or bacteriostatic antibiotics or the alteration of factors such as 

pH and temperature (Hallmann et al., 2006). There is not a great deal of literature on 

selective media for fungal endophytes; however, an example of selective media being used 

to isolate a specific fungal endophyte is the work by Meyling and Eilenberg (2006) who used 

media containing dodine to isolate B. bassiana from plant leaves. Media such as 

Trichoderma Selective Media (Askew and Laing, 1993) could also be adapted to selectively 

isolate these fungi when they occur as endophytes as well. On such selective media, pieces 

of whole plant tissue can be placed, as shown in Figure 1.2. Other methods that extract 
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tissue fluids can also be used, e.g., centrifugation or vacuum extraction (Hallmann et al., 

2006). 

 

 

Figure 1.2 (a) Plating of surface sterilized plant material from which cultures were later isolated (b). 

(Images were taken by Richard Burgdorf). 

  

After their isolation, the identification of fungi follows standard methods that include 

microscopic observations of the morphology of hyphae, conidia, conidiophores, sclerotia, 

chlamydospores and, where possible, sexual fruiting bodies. Images taken under light 

microscopy are used to record morphological structures that are used in taxonomical 

assignations (Dugan, 2006). Scanning Electron Microscopy (SEM) and Transmission Electron 

Microscopy (TEM) are also used to distinguish between taxa (Guarro et al., 1999). Guarro et 

al. (1999) further discussed various physiological and biochemical techniques to distinguish 

between fungal organisms, such as growth rates under varying conditions or on different 

media; analysis of secondary metabolites; ubiquinones; fatty acids; cell wall and protein 

composition. 

 

More recently, molecular approaches utilizing extracted nucleic acids to identify fungal 

isolates have become popular because of the relative ease and speed with which they can be 

performed. This was proposed by Bruns et al. (1991) who provided an extensive review of 

fungal systematics by nucleic acid analysis. They discussed DNA-DNA hybridization, 

restriction fragment analysis, electrophoretic karyotyping, and sequence analysis, in 
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particular with regard to sequences that code for ribosomal RNA (rRNA) within the fungal 

genome. These rRNA sequences, amplified from genomic DNA by polymerase chain reaction 

(PCR) using universal primers, have been regarded as good determinants of fungal 

phylogeny. Beyond phylogenetic associations, sequencing of the internal transcribed spacer 

(ITS) regions, flanking the 5.8S ribosomal unit sequence between the small and large subunit 

rRNA sequences, are often used to identify species by comparing sequences to those in the 

Genbank database (Tooley et al., 1997; Guarro et al., 1999; Allen et al., 2003; Martin and 

Rygiewicz, 2005; Arnold et al., 2007; Xin et al., 2009; Blaalid et al., 2013). Consequently, the 

ITS region has become known as the ‘barcode’ for fungal identification (Schoch et al., 2012). 

 

Identifying fungal isolates usually forms part of a larger study on the diversity or composition 

(or function) of fungal endophytes within the host. In such studies, culture-dependent 

methods have been observed to exert a selective bias by enriching for certain microbial 

groups, revealing that this approach can be inadequate for accurately describing microbial 

communities (Wagner et al., 1993; Allen et al., 2003). Most microbial cells from 

environmental samples belong either to known organisms which are in a non-culturable 

state; or cannot be cultured with the method used; or are unknown organisms hitherto not 

cultured by axenic means (Amann et al., 1995). Subsequently, there has been skepticism 

that culture-dependent methods reflect the true number of endophytes in host plant tissue 

(Hallmann, 2006). Another limitation of the culture-dependent approach to endophyte 

studies is that it is not possible to guarantee the complete sterilization of plant surfaces 

(Anand et al. 2006). In addition, it has been proposed that the concentrations of chemicals 

required to completely sterilize plant tissue surfaces may also damage endophytic microbes 

within the tissues (Hallman, 1997). However, the need to isolate and grow fungal 

endophytes persists and the use of multiple culture-dependent approaches can increase the 

quantity and diversity of isolated organisms (Unterseher and Schnittler, 2009); and utilizing 

dilution-to-extinction plating as described by Collado et al. (2007) has proven to isolate a 

greater number of endophytes with greater ease than traditional plating methods. These 

techniques have increased the number of culturable organisms that can be detected within 

host plant tissues. 
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While culture-dependent studies of fungal endophyte diversity may fall out of favour relative 

to modern methods that are less laborious in detecting fungal endophytes, the need to 

culture fungal endophytes is unlikely to disappear. Fungal endophytes are often of interest 

due to the metabolites they produce (Kusari et al., 2012). The production of these chemicals 

for pharmaceutical and agricultural applications will require the organism to be studied in 

isolation to optimize growth and productivity conditions in much the same way as, for 

example, penicillin production from Penicillium spp. Therefore, the culture of fungal 

endophytes will continue to develop and new techniques and media will emerge as we learn 

more about the types of fungi that exist as endophytes, particularly through the use of 

culture-independent techniques. 

 

1.6.2 Culture-independent methods 

The term ‘culture-independent’ commonly refers to microbial research which does not 

require the axenic culture of the organism being studied. Stating that most microorganisms 

cannot be cultured on growth media, Su et al. (2012) comprehensively reviewed the various 

methods used to study environmental microorganisms in situ, including spectrometric 

detection, fluorescent in situ hybridization and microarrays, as well as DNA-based studies by 

PCR and the derivatives thereof. Considering that Hawksworth (1991) estimated that 83% of 

known fungi cannot be readily cultured, the methodologies that were discussed by Su et al. 

(2012) are readily applicable to fungal endophyte studies as well. These methods can be 

employed to study functional aspects of endophyte colonization, but often the aim of such 

work is to identify the range of fungi that have colonized the host plant. 

 

The use of molecular methods to identify endophytes is a relatively recent approach, and 

although there are limitations, it is likely to shed more light on endophytic populations than 

currently exists on the various taxonomic and functional aspects of plant colonization by 

microbes (Brundrett, 2006), especially since it can simultaneously detect those organisms 

which can be cultured and those which cannot (van Overbeek et al., 2006). As discussed 

previously, the culture of plant-associated microbes is understood to provide a limited 

representation of the total population of microbes that inhabit plant tissues (Bayman and 

Otero, 2006; Hallmann et al., 2006), while culture-independent methods are considered to 
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be better at revealing the true composition of fungal communities within plant tissues (Yang 

et al., 2001; Ma et al., 2005; Unterseher et al., 2016). A good example of this is in research 

on arbuscular mycorrhizal composition (where axenic culture is not possible), where Ma et 

al. (2005) found that culture-independent analysis of root material showed greater diversity 

than spore inspections. 

 

Culture-independent fungal endophyte research methods tend to refer largely to those 

which can detect, quantify and characterize fungal endophytes by the PCR-based detection 

of targeted DNA sequences within the host after the extraction of total host and endophyte 

DNA (Hallmann et al, 2006). This is a highly sensitive technique that requires the removal of 

contaminating non-endophytic extraneous DNA. Burgdorf et al. (2014) demonstrated that 

surface decontamination methods can influence the detection of fungal endophytes and the 

apparent composition of the population within the host. Therefore, PCR-based fungal 

endophyte analyses also have factors that can bias results. 

 

Primer choice can also introduce bias to PCR-based studies of fungal endophyte 

composition. This choice is governed by the region of interest, although many primer 

combinations can exist for individual regions, as evidenced by the various primers that 

amplify the fungal ITS region, as discussed by Martin and Rygiewicz (2005). While several 

regions have been used for phylogenetic analyses of fungal endophytes, e.g., elongation 

factor and tubulin genes (Zhu et al., 2013), those that amplify the ITS regions are most 

commonly used to elucidate fungal species composition (Schoch et al., 2012). Primers that 

amplify this region in eukaryotic organism were first developed by White et al. (1990) from 

ribosomal RNA sequences. Subsequently, the suitability of the ITS region for fungal diversity 

studies, and the strengths and weaknesses thereof have been discussed in great depth 

(Nilsson et al., 2008; Nilsson et al., 2009; Lindner and Banik, 2011; Schoch et al., 2012; 

Blaalid et al., 2013). This region continues to be used in fungal endophyte composition 

studies (Christian et al., 2016, Ofek-Lalzar et al., 2016, Unterseher et al., 2016); however, 

scrutiny has revealed bias from priming sequences used in the amplification of ITS sequences 

(Bellemain et al., 2010). This bias is caused by mismatches to the priming sequences, which 

result in some target sequences being amplified more efficiently than others. New primers 
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are continually developed to address this problem (Ihrmark et al., 2012; Toju et al., 2012). 

However, a better option may be the use of blocking primers, as shown by Burgdorf et al. 

(2016a), where universal eukaryotic primers are used to anneal to highly conserved flanking 

ribosomal DNA sequences, but host sequences are prevented from being amplified by prior 

annealing of non-extendable oligonucleotide sequences. 

 

After PCR of the target fungal sequences (in many cases, the ITS region) from the mixed host 

and endophyte template DNA, several downstream procedures can be employed to 

compare endophyte population composition between host plants. Muyzer (1999) suggested 

a protocol for culture-independent microbial community studies, starting with total DNA 

extraction and ending either with sequence analysis or FISH probe development for 

microscopy, as shown in Figure 1.3. 

 

 

Figure 1.3 Common culture-independent approach to environmental diversity studies adapted from 

Muyzer (1999). 

 

Many studies on microbial community composition have utilized techniques such as terminal 

restriction fragment length polymorphisms (T-RFLP’s) analysis and the production of clone 

libraries (Hallmann et al., 2006); however denaturing gel electrophoresis analysis of PCR 

amplified ITS fragments has been a popular choice for such research (Muyzer, 1999; Garbeva 

et al., 2001; Yang et al., 2001). 

 

Denaturing gel electrophoresis (DGE) was described by Fromin et al. (2002) as having three 

main forms, i.e., denaturing gradient gel electrophoresis (DGGE), temperature gradient gel 

electrophoresis (TGGE) and temporal temperature gel electrophoresis (TTGE). The principle 

of all DGE is the same, whereby the migration of PCR amplification products, or amplicons, 

that have different DNA sequences will migrate to a different position in a denaturing gel 
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because of the varying rate at which they denature stops or slows their migration in the gel, 

as illustrated in Figure 1.4 (Muyzer, 1999; Ercolini, 2004). 

 

 

Figure 1.4 An illustration of the effect of a denaturation gradient gel on mixed amplicons ‘a’, ‘b’ and 

‘c’ which separate as they move along a denaturing gradient. As amplicon ‘a’ denatures due to its 

lower denaturing properties, its movement is slowed and it separates from ‘b’ and ‘c’. All amplicons 

eventually separate according to their sequence differences. 

 

The various forms of DGE have been developed as standard tools in microbial diversity 

studies (Muyzer and Smalla, 1998; Muyzer, 1999; Ercolini, 2004; Mühling et al., 2008) and 

DGGE has been used in a variety of endophyte studies (Garbeva et al., 2001; Ma et al., 2005; 

Duong et al., 2006; van Overbeek et al., 2006; Andreote et al., 2010; Fernandes et al., 2015). 
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In 2006 it was noted that, until then, TGGE had not yet been applied to endophyte studies 

(van Overbeek et al., 2006). However, TTGE has been used in microbial diversity studies 

(Ogier et al., 2002) and Likar and Regvar (2009) used this method in a study of the fungal 

endophyte diversity in the roots of plants grown in heavy metal polluted soils based on their 

belief that it was more reproducible than DGGE. This assertion was ascribed to the work by 

Yoshino et al. (1991), although they did not evaluate DGGE as a comparative method, stating 

that their TTGE results were supported by TGGE and that the resulting gels were of good 

quality. Aside from that paper, there do not appear to be any published comparisons 

between methods to establish their suitability for fungal endophyte studies. These would be 

useful to select the variant of DGE to be used in endophyte studies. 

 

Muyzer et al. (1993) and Murray et al.(1996) suggested that the gel-banding profiles 

produced by DGE may not represent all the organisms present in a habitat because multiple 

taxa could be represented by a single band. On the other hand, Wakelin et al. (2007) 

regarded distinct bands as operational taxonomic units (OTUs), with their intensities 

reflecting their relative abundance. Adding to this, a study on ericoid mycorrhizal fungi 

revealed that multiple sequences represented a single fungal organism, due to 

heterogeneous repeats of ribosomal genes or differences in alleles with dikaryotic nuclei 

(Allen et al., 2003). This intragenomic variation of ITS sequences could result in inflated 

estimates of OTU diversity (Lindner and Banik, 2011). From a DGE perspective, it means that 

multiple bands could represent a single organism. However, this may not be an issue when 

comparing community profiles, where specific bands matter less than the general 

community changes that occur over time or between hosts. Therefore, despite some 

limitations, PCR-DGGE is a technique that will probably continue to be used for some time, 

even with the current and future advances in DNA sequencing technology (Izard, 2015). 

 

DNA sequencing has been used extensively in research on fungal endophyte diversity. Clone 

libraries have been produced from PCR amplification of mixed-template genomic DNA 

targeting the ITS region (Gao et al., 2005), followed by Sanger sequencing (Sanger et al., 

1977). This approach identified the most frequent fungal endophyte sequences that were 

detected within the host tissue. The procedures in these studies were laborious and costly, 
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using ‘high-throughput’ multi-capillary sequencing systems to produce clone libraries of a 

few hundred sequences that were distributed amongst multiple samples, resulting in low 

sequence depth (Vandenkoornhuyse et al., 2002; O'Brien et al., 2005; Parfitt et al., 2010). By 

contrast, the development of next-generation sequencing (NGS) in the last decade has 

revolutionized the tools available for research into fungal endophyte composition within the 

host plant. The process for species composition analysis commonly follows pre-sequencing 

PCR-enrichment of taxonomically informative regions, such as the ITS1 or ITS2 region, as 

used by Bullington and Larkin (2015) to investigate foliar pine fungal endophytes. Several 

million sequence reads and over a thousand OTUs were generated from less than 10 

samples, indicating that depth of sampling is several orders of magnitude greater than for 

the approach of clone library development. This sequence depth has allowed for reduced 

sample replicates numbers in culture-independent studies exploring microbial diversity from 

metagenomic DNA samples (Smith and Peay, 2014). 

 

A variety of technologies exist that are classified as NGS have been emerged since 2005. 

These technologies use approaches that can be separated into two major categories, i.e., 

sequencing by synthesis and single-molecule sequencing. The main sequencing by synthesis 

platforms are the Roche, Illumina and Life Technologies systems. These platforms all make 

use of PCR during library preparation and sequence detection, but differ in the detection 

methods. The Roche 454 system uses an emulsion PCR enrichment step, followed by 

sequence detection via the production of light from the release of a pyrophosphate 

molecule during PCR synthesis. The Illumina MiSeq® and HiSeq® systems also use an 

enrichment step producing immobilized sequence clusters on a flow cell. These clusters then 

undergo PCR synthesis with fluorescently labelled nucleotides and the light released during 

PCR nucleotide incorporation reveals the cluster sequences. The Life Technologies Ion 

Torrent™ detects the sequences of DNA within a DNA library, during PCR synthesis, by 

measuring the hydrogen ion concentration as synthesis proceeds.  The single molecule 

sequence platforms, namely the Helicos Bisociences HeliScope™ and the Pacific Biosciences 

SMRT Sequencer differ from the previously mentioned systems in that they do not utilize a 

pre-sequencing enrichment PCR step. However, the sequencing process also makes use of 

PCR synthesis for nucleotide detection. These NGS platforms and technologies have varying 
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capabilities in terms of read length and run time. Each system has advantages and 

disadvantages; however, in general the sequence depth of all of these systems enables the 

detection of small community composition differences that were undetectable with the 

prior approach of clone libraries and Sanger sequencing (Shokralla et al., 2012).  

 

 However, an issue that emerges from NGS studies is the large quantity of data produced. 

The analysis of such data presents new challenges that were not present with the relatively 

small numbers of samples and sequences involved in clone library sequencing projects. 

Lindahl et al. (2013) provided a comprehensive guide to the various NGS software pipelines, 

such as QIIME, MOTHUR, and SCATA, which assign OTUs to sequences, interpret the data 

and, in some cases, present the data for biological interpretation. They also detailed the 

various procedures and platforms used for designing and preparing studies on fungal 

community composition. This provides an invaluable guide for researchers engaging in such 

work. 

 

Increasingly, NGS is being applied to fungal endophyte studies. These studies are revealing 

interesting aspects of fungal endophyte and plant pathogen diversity within host plants; 

however, it is being found that data handling can also affect the conclusions made from such 

analyses (Kemler et al., 2013). Undoubtedly, the methods of handling the information 

derived from NGS will evolve as quickly as the technology itself, and this will be to the 

benefit of endophyte research and its applications. 

1.7 Applications of fungal endophytes  

The symbioses between plants and fungal endophytes are a major motivation for fungal 

endophyte research because of their ecological role in natural systems and their potential 

impact on agricultural production systems. Endophytes are regarded as having significant 

potential in the commercial application of biological control and plant growth promotion 

(Compant et al., 2005) and they are used in commercial agriculture (Kloepper and Ryu, 

2006). The regulation of the composition of endophytes in commercially important plants, 

such as cereal crops is starting to be regarded as being a vital aspect in plant breeding since 

the presence and variety of endophytes within a host can be more influential on plant 

properties than the genetic differences between host cultivars (Easton, 2007). Some plant 
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breeders even screen for ‘endophyte enhanced’ hosts (Rodriguez et al., 2009b). Within the 

host, fungal endophytes receive nutrients and protection. In return, they provide plant 

growth promoting substances, as well as compounds that help protect the plant from 

herbivores (Choudhary, 2012), pathogens (Busby et al., 2015) and abiotic stress (Azad and 

Kaminskyj, 2016). Some endophytes produce insecticidal secondary metabolites that deter 

herbivorous insects (Schulz, 2006; Kuldau and Bacon, 2008) and others improve plant 

tolerance of insect herbivory (Cosme et al., 2016). Fungal endophytes also appear to be able 

to enhance host plant defences against herbivores and microbial pathogens by ‘priming’ the 

plant defence mechanisms (Pieterse et al., 2014). 

 

It is evident that fungal endophytes can contribute to improvements in crop production. This 

has been accepted for AM fungi that have demonstrated that they are effective in a range of 

beneficial activities including plant growth promotion, heightened fecundity, drought 

tolerance, disease inhibition and the increased uptake of important nutrients such as 

nitrogen and phosphate (Ma et al., 2005). The various growth enhancing and protective 

traits that other groups of endophytes can bestow on crop plants is being explored further. 

1.7.1 Plant growth promotion by endophytes 

Under typical conditions, plant growth is regulated by nutrient availability and plant growth 

hormones. These are both aspects that can be mediated by fungal endophytes. The 

endophytes receive the nutrients they require for growth from the host plant and in turn 

produce chemicals that promote healthy growth in the plant; they can also assist in the 

retrieval of essential nutrients from the environment (Mayerhofer et al. 2012). Plants have 

been observed using endophytic organisms as a heterotrophic nutrient source (Paungfoo-

Lonhienne et al., 2010), indicating that fungal endophytes can serve as nutrient reserves.  

 

Endophytic plant growth promoting fungi can produce the growth promoting hormones 

gibberellic acid and indoleacetic acid which may significantly increase the development of 

host biomass (Waqas et al., 2012). Khan et al. (2012) found that many endophytic fungal 

isolates can promote plant growth; however, some isolates also inhibited growth. It seems 

there may be trade-offs in the composition of the endophyte mycobiome. Perhaps some 

endophytes provide other benefits, such as protection from herbivory, which requires the 



37 

 

release of secondary metabolites that are inhibitory to plant growth. Other fungal 

endophytes might be recruited to mitigate these effects. An example of this reciprocal 

phenomenon can be seen with the fungal endophyte, Piriformospora indica that was 

discovered by Verma et al. (1998). The improved growth of tobacco plants colonized by P. 

indica reduced plant resistance to herbivory (Barazani et al., 2005). Therefore, fungal 

endophyte combinations need to be explored to deliver successful outcomes from 

endophyte applications.  

 

The varied outcomes of fungal endophyte applications have received scrutiny. In a meta-

analysis of existing research Newsham (2011) found that DSE usually have a positive effect 

on host growth, particularly when most of the nitrogen is available in organic form. Neutral 

to negative effects arising from applications of ascomycetous root endophytes were found in 

a meta-analysis by Mayerhofer et al. (2012); however, they suggested that the substantial 

differences between experimental conditions between the studies that were analyzed may 

have contributed to this finding. It may be that underlying factors, such as the ‘competence’ 

of organisms within the environment, need to be considered more closely. Sturz and Nowak 

(2000) proposed that some biological control agents (BCAs) perform poorly because of poor 

rhizosphere competence. Similarly, Busby (2015) suggested that variable environmental 

biotic and abiotic factors can cause varied fungal endophyte performance in terms of plant 

growth promotion. Therefore, as the numbers of studies increase, the optimal conditions 

will be revealed for harnessing the growth promotion by endophytes, as well as protection 

from herbivores and pathogens. 

1.7.2 Plant protection 

Plants defend themselves against both biotic and abiotic stresses. Biotic stresses include 

herbivory or infection by pathogens. Abiotic stresses include problems such as excessive 

heat and insufficient water. Microbes such as fungal endophytes assist in the protection of 

plants against these challenges (Choudhary, 2012). Fungal endophytes have an advantage 

when compared to other disease control approaches due to their ability to colonize plant 

tissue and form relatively stable in planta communities (Berretta et al., 1998). 
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Fungal endophytes can be deterrents to herbivores as well as being antagonistic to microbial 

pathogens (Carroll, 1988), therefore demonstrating potential as BCAs. Interest in biological 

control has increased due to the rising cost of pesticides, reduced efficacy of these pesticides 

and the increased demand for pest control agents that do not contain chemical pesticides. In 

addition, BCAs have the benefit of being regarded as ‘low-input practical agents’. (Compant 

et al., 2005). Fungal endophytes can protect against insect herbivores (Azevedo et al., 2000; 

Akello et al., 2008; Backman and Sikora, 2008; Vega et al., 2008) and this characteristic is 

often linked to the ability of the fungus to produce toxins that reduce plant palatability 

(Azevedo et al., 2000; Vega et al., 2008). There have also been circumstances where fungal 

endophytes produce alkaloids that deter feeding on plants by undesirable pests but do not 

appear to affect palatability to farm animals or their well-being (Johnson, 2008). This is a 

highly desirable symbiosis from an agricultural perspective. 

 

There are several examples of endophytic fungi that are harnessed to protect crops and 

some popular species of fungal endophytes exist. The entomopathogenic fungus Beauveria 

bassiana has been commercially applied as a microbial insecticide (Gillespie, 1988), 

protecting cotton and tomatoes against fungal plant pathogens as well as inducing systemic 

resistance against certain bacterial diseases (Ownley et al., 2008). Beauveria bassiana is 

regarded as a ‘dual-purpose’ agent of biological control (Ownley et al., 2004). This naturally 

occurring endophyte has potential for use against insect pests in the important South African 

Rooibos herbal tea crop (Hatting et al., 2016). Aside from Beauveria sp., a plethora of 

entomopathogenic fungi exists (Quinlan, 1988) that can exist as endophytes and protect the 

host plants from insects. 

 

Fungal endophytes can also be antagonistic to microbial pathogens (Carroll, 1988). However, 

while endophytes can modify plant disease, the extent of this modification is ‘context-

dependent’, i.e., a plant-protecting endophyte of one host species may not be effective in 

another host; more research is necessary in this regard and blanket allocation of plant-

beneficial properties to single endophyte species may not be possible, considering the 

ecological complexity and interactions within a particular host (Busby et al., 2015). 

Nonetheless, endophytes have been shown to elicit systemic protection against disease, 
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thereby reducing the incidence and severity thereof (Kloepper and Ryu, 2006). In addition, 

plant-associated microbes are implicated in priming, where plants have a heightened ability 

to activate defensive responses to stress or pathogens (Beckers and Conrath, 2007). 

Furthermore, fungi such as endophytic Trichoderma sp. can assist plant defenses by induced 

systemic resistance (ISR) (Pieterse, 2014). Vallad and Goodman (2004) discussed ISR and 

systemic acquired resistance (SAR) extensively, as well as the role of beneficial microbes 

such as endophytic fungi in these forms of induced resistance. Therefore, endophytic fungi 

fulfill essential roles in plant immunity and resistance against pathogens. Fungal endophytes 

are considered as the plant equivalent of animal mobile immune cells (Talbot, 2015). This 

aspect of fungal endophytes put them in a different light, prompting the search for more 

allies against crop diseases. 

 

 It has been noted that while endophytes are largely antagonistic to pathogens, occasionally 

they can assist pathogens instead (Busby et al., 2015). Another negative aspect of plant 

protection by fungal endophytes is the production of mycotoxins by certain fungi in food 

crops that are of potential danger to humans and livestock (Bacon and Yates, 2006). These 

mycotoxins are secondary metabolites that are often very stable. Examples of mycotoxins 

include ergot poisoning by the sclerotia of Claviceps purpurea in grain as well as the 

mutagenic and carcinogenic substances produced by members of the Penicillium, Fusarium, 

Aspergillus, Rhizoctonia, Pithomyces, Stachybotrys, Cladosporium and Alternaria genera. 

Mycotoxins belong to groups of chemicals such as the ergot alkaloids, aflatoxins, and 

trichothecenes. Aside from symptomatic diagnosis of humans or animals exposed to 

mycotoxins, they can be detected in foods by chromatography techniques (Kendrick, 1992) 

to try and prevent exposure. These mycotoxins are believed to inhibit bacterial quorum 

sensing, therefore protecting plants against bacterial pathogens (Bacon and White, 2015). 

While undesirable in terms of food consumption, mycotoxin-producing endophytes could be 

of use in the production of crops grown for fibre or fuel. 

 

As factors such as climate change cause greater levels of abiotic stress in agricultural 

environments, endophytes may begin to play an important role because they can protect 

plants from abiotic stresses (Rodriguez et al., 2009b) such as heat and drought (Hubbard et 
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al., 2014). Even the clavicipitaceous fungi protect their hosts from abiotic stress (Kuldau and 

Bacon, 2008). For example, the fungal endophyte P. indica can increase the salt-tolerance of 

barley in addition to tolerance to several other forms of abiotic stress (Baltruschat et al., 

2008). Murphy et al. (2015) demonstrated how endophytes enabled barley to survive under 

conditions of abiotic stress. It has been found that beneficial fungal endophytes significantly 

reduced the levels of abscisic acid to increase abiotic stress tolerance. Depending on the 

type of stress, the fungal endophytes produced varying effects on levels of jasmonic and 

salicylic acid. This shows that fungal endophytes synchronize with the endogenous 

mechanisms of plants for dealing with such abiotic stress (Waqas et al., 2012). 

 

The abiotic stress-mitigating mechanisms that fungal endophytes possess enhance the 

abilities that plants have for dealing with abiotic factors that can affect crop production. 

Plant breeding addresses such problems but it may be worth considering that fungal 

endophytes could significantly advance the capacity of crops to be grown under increasingly 

challenging conditions brought about by climate change and increasing anthropogenic 

pressures such as water scarcity and pollution (Redman et al., 2011).  

 

1.7.3 Phytoremediation 

An area that has also received attention is the role of fungal endophytes in 

phytoremediation. Phytoremediation generally refers to the remediation of environments, 

often soils, from pollutants such as petroleum-related hydrocarbons or heavy metals 

(Weyens et al., 2009). An investigation by Soleimani et al., (2010) revealed that grasses 

infected with symbiotic endophytes may be more efficient at removing petroleum 

pollutants. Endophytes are not only able to assist in phytoremediation due to their plant 

growth promoting and plant protecting properties, but also because they can sequester 

heavy metals (Porras-Alfaro and Bayman, 2011). The presence of DSE fungi in heavy metal 

rich soils has been studied and it was found that their levels remained unchanged and they 

continued to confer beneficial properties such as growth promotion onto the host (Berthelot 

et al., 2016). Research on the role of endophytes in phytoremediation indicates that they 

assist plants in growing in such hostile environments by producing growth stimulating plant 

hormones and increasing the uptake of nutrients (Li et al., 2012). 
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1.7.4 Novel chemicals 

Fungi produce some of the most important chemicals to human health such as antibiotics, 

e.g., penicillin, and immunosuppressant drugs, e.g., cyclosporine. As producers of 

biologically active compounds, fungal endophytes may yield products that could aid in the 

fight against antibiotic-resistant bacteria, amongst other challenges in human health, such as 

cancer treatment (Strobel, 2003). The expensive cancer treatment drug, Taxol, is produced 

by Paraconiothyrium sp., a fungal endophyte isolated from yew trees that were the original 

source of the drug (Talbot, 2015). Kharwar et al. (2011) produced an extensive review of the 

‘anti-cancer’ metabolites produced by fungal endophytes, which revealed a great diversity of 

chemicals with pharmaceutical potential. Fungal endophytes also produce chemicals that 

have agricultural applications, since they exist within the plants that protective or growth 

promoting strategies are intended for (Schulz et al., 2002). Strobel (2006) discovered a 

tropical endophyte producing biologically active volatile organic compounds (VOC) of 

interest to both the pharmaceutical industry and agriculture because they display activity 

against both human and plant pathogens. The characterization of novel chemicals produced 

by fungal endophytes may deliver agricultural chemicals, such as the strobilurin fungicides 

that were discovered to be produced by a saprophytic fungus (Anke et al., 1977). Such 

chemicals are important in the production of food crops such as wheat. 

 

1.8 Wheat, its fungal pathogens, and endophytes 

Wheat belongs to the genus Triticum and the grass family known as the Poaceae (Mauseth, 

2003) of which there are an estimated 10,000 members (Kuldau and Bacon, 2008). Like 

many other kinds of grass such as maize, rice, and oats, wheat is a major food crop 

(Gustafson et al., 2009). Common or bread wheat is one of many species of wheat and while 

there are large numbers of cultivars of this species, collectively all AABBDD hexaploid wheat 

species are referred to as Triticum aestivum (Peterson, 1965). Henceforth any use of the 

word wheat will imply T. aestivum. 
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1.8.1 Wheat biology and cultivation in South Africa 

Wheat is a cereal crop that is generally cultivated in the cooler seasons in South Africa. South 

African spring and winter wheat varieties differ in that the latter require prolonged cold for 

vernalisation (i.e. the requirement of exposure to cold temperatures that some plants need 

to start flowering), while the former do not (Scott, 1990). Under appropriate conditions in 

South Africa, wheat sown to at a depth of around 2.5 to7.5 cm (Peterson, 1965) will go 

through the growth stages described by Tottman (1987). 

 

Wheat is grown in both the summer rainfall region (Mpumalanga, Gauteng, Limpopo, 

Eastern Cape interior, Central Free State, Eastern Free State, North Western Free State, 

South Western Free State and KwaZulu-Natal (Figure 1.5) and the winter rainfall region 

(Western Cape) of South Africa under irrigated and dryland production conditions, 

respectively (Burger and Kilian, 2009). Yields in South Africa tend to be lower than those 

achieved in Europe and America due to poor soils, drought, and disease (Scott, 1990). 

 

 

Figure 1.5 Wheat grown at Winterton, KwaZulu-Natal, South Africa photographed at various stages 

during the growing season from June (a) through September (b) to December (c) 2009 (Images were 

taken by Richard Burgdorf). 

 

Several cultivars are available in South Africa, selected according to their specific disease 

resistance or tolerance of conditions such as aluminium toxicity or drought. These cultivars 

are bred by the Small Grains Institute (SGI) of the Agricultural Research Council (ARC), and 

are produced by seed companies such as PANNAR, Monsanto, and Sensako. A 

comprehensive report on these cultivars is available from the Agricultural Research Council’s 

Small Grains Institute, which describes the cultivars and their disease resistance and 
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susceptibility to common wheat diseases (Burger and Kilian, 2009). These diseases also 

require consideration in relation to the fungal endophytes wheat. 

1.8.2 Wheat fungal pathogens 

As per the definition of an endophyte by Wilson (1995) and the observations by Photita et 

al.(2004) that latent pathogens can also exist as endophytes, a list of microbes that are 

known wheat pathogens is provided. Several of these organisms have been detected in 

plants during research into wheat endophyte diversity and composition (Crous et al., 1995). 

Scott (1990) described the common fungal diseases of wheat in South Africa, as listed in 

Table 1.2. It should be noted that the root rot caused by Pythium spp. was not included in 

the table as they probably cause immediate disease symptoms and are not members of the 

fungal kingdom. It would, however, be worth investigating whether there are any oomycetes 

that exist as endophytes as few reports exist in the literature on this topic. 
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Table 1.2 A list of fungal diseases of wheat in South Africa (Scott, 1990). 

Disease Causal agent 

Basal stem rot Sclerotium rolfsii Sacc. 

Common root rot Bipolaris sorokiniana (Sacc.) Schoem. (synonym Helminthosporium sativum 

P.K. and B.; teleomorph Cochliobolus sativus (Ito and Kurib.) Drechs.)  

Crater disease Rhizoctonia solani Kühn 

Crown rot Fusarium graminearum Schw. , Fusarium spp. 

Eyespot Pseudocercosporella herpotrichiodes (Fron.) Deid. 

Glume blotch Septoria nodorum (Berk.) Berk. (teleomorph Leptosphaeria nodorum Müll.) 

Head blight Gibberella zea (Schw.) Petch. (anamorph Fusarium graminearum Schw.) 

Fusarium spp. 

Leaf rust Puccinia recondita Rob. Ex Desm. F. sp. tritici 

Loose smut Ustilago tritici (Pers.) Rostr. (synonym Ustilago nuda var. Tritici Schaffn.) 

Powdery mildew Erysiphe graminis D.C. f. sp. tritici E. Marchal 

Speckled leaf blotch Septoria tritici (Rob.) E. Desm. (teleomorph Mycosphaerella graminicola 

(Fück.) Schroeter) 

Stem rust Puccinia graminis Pers. F. sp. tritici Eriks. and Henn.  

Stinking smut  Tilletia spp. 

Take-all Gaeumannomyces graminis (Sacc.) Arx and Oliv. var. tritici Walker; 

Magnaporthe rhizophila Scott and Deacon 

Tan spot Pyrenophora tritici-repentis (Died.) Drechs. (anamorph Drechslera tritici-

repentis (Died.) Schoem. synonym Helminthosporium tritici-repentis Died.) 

 

The significant cost of crop losses and pesticide applications encourages the investigation 

into avirulent forms of these fungal pathogens existing as fungal endophytes. Hypovirulent 

forms of fungal pathogens can occupy the pathogenic counterpart’s niche. Such non-

pathogenic forms can be created by exposure to certain viruses (Sneh, 1998). This could be 

an area of exploration to convert fungal wheat pathogens to endophytes. 
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1.8.3 Wheat fungal endophytes 

Due to its global importance as a food crop, the diversity and function of fungal wheat endophytes 

have received attention. Several studies have investigated on the diversity of endophytic fungi within 

wheat (Sieber et al., 1988; 1995; Crous et al., 1995; Larran et al., 2002). Fungal endophytes have 

been described in some culture-based studies are shown in Table 1.3. 
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Table 1.3 Previously isolated fungal wheat endophytes from two studies performed in South Africa 

and Argentina. Genera common to both studies are highlighted. 

Crous et al. (1995), South Africa Larran et al. (2002), Argentina 

Alternaria alternata (Fr.) Keisler 

Ascochyta sp., Acremonium sp. 

Bipolaris australis Alcorn 

 

Brachysporiella setosa (Berk. and M.A. Curtis) M.B. Ellis 

Chaetomium sp. 

Cladosporium sp. 

Coniothyrium sp. Cladorrhinum sp., Cochliobolus sativus 

(S. Ito and Kurib.) Drechsler ex Dastur, Colletotrichum 

gloeosporioides (Penz.) Penz. and Sacc., Cylindrocarpon 

destructans (Zinssm.) Scholten, Didymella sp. 

Epicoccum nigrum Link 

Fusarium avenaceum (Fr.) Sacc. Fusarium acuminatum 

Ellis and Everh., Fusarium culmorum (W.G. Sm.) Sacc., 

Fusarium equiseti (Corda) Sacc., Fusarium oxysporum 

Schltdl., Fusarium scirpi Lambotte and Fautrey 

Microdochium bolleyi (R. Sprague) de Hoog and Herm.-

Nijh., Nigrospora sphaerica (Sacc.) Mason, Periconia sp. 

Phoma glomerata (Cda) Wollenw. and Hochapf. 

Phomopsis sp. 

Pleospora herbarum (Pers.) Rabenh. 

Stagonospora nodorum (Berk.) Cast. and Germ., 

Truncatella angustata (Pers.) S. Hughes, Geotrichum 

candidum Link, Gliocladium roseum Bainier, Gliocladium 

sp., Gnomonia sp., Hyalodendron sp., Leptosphaeria sp., 

Ophiobolus sp., Periconia sp., Phialophora sp., 

Pyrenophora tritici-repentis, Pyrenophora sp., 

Phaeoseptoria sp., Pyrenochaeta sp., Pythium sp., 

Robillarda sessilis (Sacc.) Sacc., Septoria tritici, 

Sporormiella australis (Speg.) S.I. Ahmed and Cain, 

Verticillium sp. 

Alternaria alternata, Alternaria spp. 

Arthrinium sp. Aspergillus sp. 

Bipolaris sp., Bipolaris cynodontis (Marig.) 

Schoem., Bipolaris sorokiniana (Sacc.) Schoem. 

 

Chaetomium globosum Kunze ex Fries  

Cladosporium herbarum (Pers.) Link 

Cryptococcus sp. 

 

 

 

Epicoccum nigrum 

Fusarium sp. 

 

 

 

Penicillium sp. 

 

Phoma sp. 

Phomopsis sp. 

Pleospora herbarum (Pers.) Rabenh. 

Rhodotorula rubra Harrison, Stemphylium sp. 
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In both the studies listed in Table 1.3 the composition of fungal species from multiple 

cultivars was investigated but no significant interaction between the microorganisms and 

cultivars were found. However, using culture-independent methods, Sapkota et al. (2015) 

found that the host cultivar influenced the composition of the phyllosphere microbiome. In 

addition, a culture-independent study of South African fungal wheat endophytes revealed a 

significant cultivar x organ x fungal endophyte interaction, indicating that while host 

genotype effects may not be obvious, possibly diminishing as phenotypic differences 

become smaller, such effects do exist and may offer routes for harnessing fungal endophytes 

for increased wheat production (Burgdorf et al., 2016b) 

 

Culture-independent studies have helped develop knowledge on the diversity and functions 

of fungal endophytes; however, culture-based studies are still relevant in the discovery and 

application of biological control in wheat. A Microdochium bolleyi strain has been shown to 

inhibit Septoria nodorum, as well as Fusarium and Gaeumannomyces species (Sieber and 

Grünig, 2006). In another example, the colonization of wheat roots by Piriformospora indica 

resulted in increased biomass under conditions of low fertility and reduced the severity of 

infection by Pseudocercosporella herpotrichoides under field conditions (Serfling et al., 2007) 

(Note: The field trials were conducted in Germany and the authors of the study 

recommended that P. indica may be better suited to tropical and sub-tropical regions. This 

organism should be investigated as an endophyte of South African crops, including wheat). 

Several fungal endophytes have been shown to suppress Pyrenophora tritici-repentis, which 

causes tan spot (Larran et al., 2016). Evidently, the discovery of these BCAs and the potential 

benefits for wheat production encourages further research on fungal endophytes in the 

growth promotion and the control of wheat diseases. Further research could reveal fungal 

endophytes that are active against the diseases listed in Table 1.2. They may also benefit 

crop production in the presence of other environmental challenges. Fungal endophytes have 

demonstrated the ability to mitigate abiotic stress, i.e., heat stress and drought, in wheat. 

These endophytes may also enhance the germination of second generation seeds (Hubbard 

et al., 2014). This is an epigenetic effect and Hubbard et al. (2014) correctly emphasize that 

this phenomenon requires further investigation for its future potential in wheat cultivation. 
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Methods of isolating, identifying and characterizing endophytes continue to produce a 

greater understanding of their biology. This reveals new areas in which fungal endophytes 

and their chemical products can be applied. 

1.9 The future of endophyte research 

Endophytes will play a greater future role in agriculture with the advance of climate change, 

resulting in raised temperatures, waterlogging and drought. It has been argued that greater 

attention should be given to the use of fungal endophytes in cereal production because of 

their great potential for the control of diseases (particularly in the EU with increasing 

restrictions on the use of chemical pesticides) (O’Hanlon et al., 2012). A deeper 

understanding of the factors that affect the colonization of host plants by fungal 

endophytes, for example, as demonstrated by the influence of the hosts genome on 

mycobiome composition (Sapkota et al., 2015; Burgdorf et al., 2016b) could develop 

‘integrated plant breeding’ as a complementary approach alongside integrated pest 

management, to enhance crop yields in the presence of increased pesticide resistance, 

water scarcity and soil infertility. 

 

Further to the development of a better understanding of the factors that govern endophytic 

biology, it has been suggested that the complex multitrophic interactions between different 

endophytic taxa, e.g., bacteria and fungi, are not clearly understood despite their 

significance (van Overbeek and Saikkonen, 2016). The development of NGS and advanced 

protein analysis, forming the various “meta’omics” (e.g. metagenomics, transcriptomics, and 

proteomics), should enable better understanding to be developed of these complex 

biological systems and their interactions, as in the case of wheat endophytes. In addition, it 

has been advocated that better databases should be developed in conjunction with modern 

methods that generate such large amounts of data; it has also been advocated that there is a 

greater global interaction between researchers engaging in this type of research to utilize 

and make sense of this data (Peršoh, 2015). In the context of this review it is evident that 

wheat fungal endophyte research spans several continents but there is little evidence of 

inter-continental collaboration on wheat endophytes, as is the case with rust pathogens that 

require international co-operation to combat these major threats to food security (Byerlee 



49 

 

and Moya, 1993; Lantican et al., 2005). Future consideration should be made for fungal 

endophytes at international forums for wheat and other important crops. 

 

The knowledge of endophyte diversity and biology will inevitably increase over time. With it 

will come a new and deeper understanding of the symbioses between living organisms; new 

chemicals for health, agriculture and industry; and new agricultural practices and paradigms. 

From what was once regarded as a ‘contaminant’, endophytes have come a long way and 

have emerged as an often astonishing area of research that could have profound 

implications for humans and the world they inhabit. The future of endophyte research holds 

great appeal for scientists in a wide range of disciplines and exciting discoveries await them. 
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Chapter 2 A procedure to evaluate the efficiency of surface 

sterilization methods in culture-independent fungal 

endophyte studies1 

2.1 Abstract 

Extraneous DNA interferes with PCR studies of endophytic fungi. A procedure was developed 

with which to evaluate the removal of extraneous DNA. Wheat (Triticum aestivum) leaves 

were sprayed with Saccharomyces cerevisiae and then subjected to physical and chemical 

surface treatments. The fungal ITS1 products were amplified from whole tissue DNA 

extractions. ANOVA was performed on the DNA bands representing S. cerevisiae on the 

agarose gel. Band profile comparisons using permutational multivariate ANOVA 

(PERMANOVA) and non-metric multidimensional scaling (NMDS) were performed on DGGE 

gel data, and band numbers were compared between treatments. Leaf surfaces were viewed 

under Variable Pressure Scanning Electron Microscopy (VPSEM). Yeast band analysis of the 

agarose gel showed that there was no significant difference in the mean band DNA quantity 

after physical and chemical treatments, but they both differed significantly (p < 0.05) from 

the untreated control. PERMANOVA revealed a significant difference between all treatments 

(p < 0.05). The mean similarity matrix showed that the physical treatment results were more 

reproducible than those from the chemical treatment results. The NMDS showed that the 

physical treatment was the most consistent. VPSEM indicated that the physical treatment 

was the most effective treatment to remove surface microbes and debris. The use of 

molecular and microscopy methods for the post-treatment detection of yeast inoculated 

onto wheat leaf surfaces demonstrated the effectiveness of the surface treatment 

employed, and this can assist researchers in optimizing their surface sterilization techniques 

in DNA-based fungal endophyte studies. 

Keywords: endophyte; fungi; DNA; surface sterilization 

                                                      

1 This chapter is formatted as per the requirements of The Brazilian Journal of Microbiology, with the exception 
that the heading, figure and caption numbering has been modified. 



72 

 

2.2 Introduction 

Endophytes are microorganisms that live within the tissues of plants without causing 

damage (Backman and Sikora, 2008). Research which focuses on these organisms must 

exclude those microbes found on the surfaces of host plants including the lipophilic waxy 

plant cuticle surface, which is colonized by various fungi and bacteria (Müller and Riederer, 

2005). More micro-organisms are to be found on the aerial surfaces of a plant than within 

plant tissues (Lindow and Brandl, 2003), which emphasizes the importance of extraneous 

DNA removal as it can affect the conclusions of culture-independent endophyte studies. The 

removal of these plant surface microbes and their DNA is particularly important when using 

a PCR-based approach to investigate endophytes. The use of standard surface sterilization 

techniques employed in culture-dependent research may not guarantee the complete 

removal of surface organisms (Anand et al., 2006; Manter et al., 2010), so they cannot 

guarantee the removal of the DNA belonging to these organisms either, in addition to any 

ambient DNA that may be present. While surfaces are often tested for microbial sterility by 

plating the post-treated surface onto a nutrient agar (Sessitsch et al., 2002), Guo (2010) 

warned that some surface sterilization methods may not sufficiently denature epiphytic DNA 

in molecular studies of endophytes. 

 

The efficiency of surface sterilization of plants in culture-based endophyte studies (Schulz et 

al., 1993), the removal of surface fungal DNA from insects (Meyer and Hoy, 2008), as well as 

DNA removal from the surface of bones and teeth (Kemp and Smith, 2005) has been 

evaluated. However, the efficiency of surface DNA removal techniques from plant tissues 

has not been established definitively. 

 

The aim of this investigation was to develop a procedure in which the efficacy of commonly 

adopted surface sterilization approaches to removing non-endophytic DNA could be 

evaluated. Saccharomyces cerevisiae Meyen ex E.C. Hansen was used as a test organism on 

winter wheat (Triticum aestivum L.), and statistical analysis methods were employed to draw 

conclusions from the outcomes of surface treatments determined by the presence of PCR-

detected S. cerevisiae and other microbial DNA. Support for these conclusions was provided 

by electron microscopy. 
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2.3 Materials and Methods 

2.3.1 Wheat cultivation and sample preparation 

Wheat (Triticum aestivum L. cv Duzi) was planted in 300 mm pots at a plant density 

equivalent to 47 kg of seed per hectare, on the 11th of July 2010 in Pietermaritzburg, 

KwaZulu-Natal, South Africa. Plants were grown outside under 10% shade, in composted 

pine bark, with drip irrigation providing 4:1:3 NPK (N at 200 ppm) for 10 min 3 times per day. 

Mean rainfall, mean high and mean low temperatures over the growth period were 0.1 mm, 

24.3°C and 10.5°C2 respectively. 

 

Four replicate pots were used for the treatments, and for the positive control and the 

negative control (n = 16), arranged in a completely randomized design. On the 22nd of 

September 2010, at growth stage 60 (Tottman, 1987), leaves in each of the four replicates of 

the two treatments and the positive control pots were inoculated with 100 mL of yeast broth 

inoculum per pot. Inoculum was sprayed using a Fragram (Carrara, Queensland, Australia) 

1.5 L pressure sprayer, which delivered the broth culture in a fine mist. 

 

The total volume of 1.2 L of inoculum consisted of malt extract broth (MEB), made from 

30 g L-1 malt extract (Merck, Darmstadt, Germany) and 2.5 g L-1 yeast extract (Merck) in 

distilled water. This was autoclaved for 15 min at 121°C, cooled to room temperature and 

inoculated with 1.7 g L-1 of dried S. cerevisiae granules (instant baking yeast from NCP, 

Johannesburg, South Africa). The broth was incubated in a Model TU-453 shaking incubator 

(MRC, Holon, Israel) at 25°C for 18 h, reaching a viable cell concentration of 

1.02 x 108 cfu mL-1. 

 

2.3.2 Sample collection and surface treatments 

After 72 h, during which no rain fell and mean high and mean low temperatures were 24.4°C 

and 12.7°C respectively, leaves were harvested. Four 0.1 g replicates of sprayed leaves were 

                                                      

2 All climate data courtesy of Agrometeorology Discipline, School of Agricultural, Earth and Environmental 
Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa 
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subjected to two treatments (A and B). The experimental controls comprised a positive 

control (Y), with four replicates of wheat leaf tissue that were sprayed with yeast broth, but 

not surface treated, and a negative control (N), which consisted of four replicates of wheat 

leaf tissue that were not sprayed with yeast broth and were not surface treated in any way. 

The Physical Treatment (A) was a modification of the method used by Sessitsch et al. (2002). 

Leaf samples (0.1 g) were placed in McCartney bottles with 20 mL of a 0.01% water solution 

of Tween 20 (Merck) and sonicated for 5 min in a Biosonic sonication bath 

(Colténe/Whaledent, Altstätten, Switzerland). Leaf samples were rinsed once with tap water 

and once with sterile distilled water. Samples were placed in a 2 mL microtube with 1.5 mL 

0.9% NaCl solution and 0.3 g of 0.1 mL acid washed beads (Sigma-Aldrich, St. Louis, MO, 

USA). The tubes were vortexed on a Disruptor Genie Vortex (Scientific Industries, Inc., 

Bohemia, NY, USA) for 20 min. Samples were rinsed three times in 1 mL of sterile ultra-pure 

water and then stored individually in plastic bags and frozen at -80°C before further 

processing. 

 

The Chemical Treatment (B) was according to the method described by Arnold et al. (2007). 

Leaf samples (0.1 g) were immersed in a 95% ethanol solution for 5 s, followed by 2 min in a 

NaOCl solution (0.5% free Cl2) and finally 2 min in 70% ethanol. After that, the samples were 

dried in a laminar flow hood. Samples were stored individually in plastic bags and frozen at -

80°C before further processing.  

 

2.3.3 DNA extraction and amplification 

Four replicate leaf samples (0.1 g) for each treatment and controls were ground in liquid 

nitrogen with the addition of 0.1 mm sterile acid-washed beads (Sigma-Aldrich) and the DNA 

was extracted using the CTAB protocol for the Nucleospin Plant II Genomic DNA extraction 

kit (Macherey-Nagel, Düren, Germany). S. cerevisiae genomic DNA was extracted from yeast 

cells pelleted from 1 mL of the same broth used for inoculation, according to the same 

method as for the plant tissue. Working solutions of all genomic DNA were made up to a 

final concentration of 10 ng μL-1 using nuclease free water (Promega, Madison, WI, USA). 
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All PCR reactions were performed using the KAPA2G Fast HotStart ReadyMix Kit (Kapa 

Biosystems, Woburn, MA, USA) and universal fungal primers ITS1F-GC forward primer (5′-

CGC CCG CCG CGC CCC GCG CCC GGC CCG CCG CCC CTT GGT CAT TTA GAG GAA GTA A-3′) 

and the ITS2 reverse primer (5′-TTY GCT GYG TTC TTC ATC G-3′) (Wakelin et al., 2007). The 

dNTP’s were at a 0.2 mM concentration, MgCl₂ at 1.5 mM, and forward and reverse primers 

at a final concentration of 800 nM each. The final reaction volume was 20 μL. A sample of 

8 ng of genomic DNA template was added to each reaction tube. PCR was performed on a G-

storm Goldblock Thermal Cycler (Syngene, Cambridge, United Kingdom). The PCR program 

consisted of a 2 min denaturation at 95°C followed by 35 cycles at 95°C for 15 s, 55°C for 30 s 

and 72°C for 10 s. This was followed by a final elongation at 72°C for 30 s. 

 

PCR products and a GeneRulerTM 100 bp ladder marker (Thermo Fisher Scientific, Waltham, 

MA, USA) were run on 1.5% Seakem LE Agarose (Lonza, Basel, Switzerland) gels containing 

SYBR® Safe nucleic acid stain (Invitrogen, Carlsbad, California) at 5 V cm-1 for 1 h in a 1 x TBE 

buffer. Gels were visualized and images captured with the GeneSnap Software on the I-

chemi G-Box (Syngene) and analyzed using the GeneTools software (Syngene). 

 

2.3.4 Agarose gel analysis 

The bands corresponding to the band position of the S. cerevisiae amplicons in each sample 

were quantified relative to the molecular weight marker band representing a molecular 

weight of 500 bp and a quantity of 115 ng of DNA, in accordance with the manufacturer’s 

instructions (Thermo Fisher Scientific). The quantity of DNA of the band corresponding to 

the position of the pure S. cerevisiae amplicon was therefore used as a measure of the 

efficiency of the surface treatment. Means of band DNA quantity for the four replicates for 

Treatments A, B and the positive control (Y) were compared with a one-way analysis of 

variance (ANOVA), in Genstat (Payne et al., 2011). 

 

2.3.5 DGGE gel analysis 

PCR products were run on DGGE gels. Gels were run on a Bio-Rad DcodeTM Universal 

Mutation Detection System (Bio-Rad, Hercules, California, USA). A sample of 20 μL of PCR 
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product per well was run on a 6% Acrylamide/Bisacrylamide (40%, 19:1, Sigma-Aldrich) gel 

with a 27 to 44% denaturation gradient, for 16.5 h at 100 V in a 60°C 1 x TAE buffer. The gel 

was stained in a 1 x SYBR® Gold nucleic acid stain (Invitrogen) for 40 min and the image 

captured on the I-chemi G-box Gel Documentation system (Syngene). A band presence 

matrix was produced and band pixel intensity was determined using Quantity One Gel 

Analysis Software (Bio-Rad). 

 

Contour maps are able to display three-dimensional information in two dimensions: in this 

case, DGGE band positions and intensity. Band pixel intensity, as a percentage of the pixel 

intensity value of the brightest band on the gel, was square-root transformed and plotted on 

a contour map, along with band position a, using the gplots library (Warnes et al., 2013) in R 

(R Core Team, 2013) and edited in Microsoft Windows Paint (2010). 

 

Permutational Multivariate ANOVA (PERMANOVA) implements a flexible non-parametric 

distance-based analogue of analysis of variance for multivariate data that provides a 

distribution-free means of testing differences between treatments in their multivariate 

profile (Anderson, 2001). This was used to test for differences in band composition among 

treatments. 

 

Non-metric multidimensional scaling (NMDS) provides a robust method of visualizing 

differences in composition within and between treatments (McCune et al., 2002). NMDS 

projects multivariate distances among samples in low dimensional space so that distances 

between projected sample points best approximate their original multivariate differences: 

sites close in the graph are most similar in their overall composition and sites located at 

opposite ends of the plotted dimensions have a distinct multivariate profile. This was applied 

to replicate samples within and among treatments. The software package Primer (v. 6) 

(Clarke and Gorley, 2006) was used for both multivariate analyses. 

 

An unpaired Student’s t-test comparing band numbers (excluding the yeast bands) for 

Treatments A and B, was performed in Microsoft Excel (2010). 
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2.3.6 Variable Pressure Scanning Electron Microscopy (VPSEM) 

A leaf segment was taken for Treatments A, B and the two controls, and viewed under a 

Zeiss Evo LF-15 Variable Pressure Scanning Electron Microscope (Zeiss, Oberkochen, 

Germany). Samples did not require treatment before viewing (Stokes, 2008). Sample 

surfaces were observed at a working distance from 7 mm to 7.5 mm, 15 kGV, between 

2000 x and 4350 x magnifications and 0.89 to 0.9 Torr pressure. Representative micrographs 

were captured to demonstrate differences in surface characteristics due to the treatments. 

 

2.4 Results 

2.4.1 Agarose gel analysis 

In Figure 2.1 the presence of S. cerevisiae from the original inoculum was confirmed by a 

band corresponding to that of the amplified ITS1 region from pure S. cerevisiae genomic 

DNA that was used as the positive PCR control. There were no native endophytes or 

epiphytes that shared the same sized ITS1 fragment as S. cerevisiae in the non-inoculated 

control samples. There were visible differences in intensity of the band representing the 

S. cerevisiae amplicon in Treatments A, B and the positive control. 
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Figure 2.1 PCR of all treatments. Lanes 1 and 20, 100 bp molecular weight marker (Thermo Fisher 

Scientific); Lanes 2 to 5, Treatment A (physical); Lanes 6 to 9, Treatment B (chemical); Lanes 10 to 13, 

Control Y; Lanes 14 to 17, Control N; Lane 18, positive PCR control from pure yeast DNA; Lane 19, 

template-free control. The S. cerevisiae band is absent in the negative control samples and the 

treatments and positive controls show differing intensities of the band corresponding to the 530 bp 

pure S. cerevisiae band. 

 

The raw data of individual band DNA quantities were transformed to the square root of the 

measured values. ANOVA of the transformed data (Table 2.1) showed no significant 

difference between Treatments A and B, although they differed significantly from the 

positive control (Y). 
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Table 2.1 Results of ANOVA analysis of yeast ITS1 fragment band intensity. 

 Mean ± (standard 

error) 

Square-root transformed 

mean ± (standard error) 

CV% 

Physical treatment (A) 1.37 ± 0.732 1.00 ± 0.357a 72.39 

Chemical treatment (B) 3.43 ± 2.934 1.31 ± 0.755a 115.34 

No treatment with Yeast (Y) 60.29 ± 33.331 7.62 ± 0.870b 22.84 

F-value₍₂‚₉d.f.₎  28.787  

P-value  < 0.001  

LSD (p > 0.05)  2.227  

Means with the same letters are not significantly different (p > 0.05). CV percentages were of 

transformed data. 

 

2.4.2 DGGE gel analysis 

The contour map (Figure 2.2) of DGGE gel data showed differences in the banding patterns, 

as a result of surface treatments, and in the controls. Region P accommodated the two 

bands for the yeast ITS1 amplicon (S) in the positive control samples (Y), which were present, 

to some extent in surface treated samples (A and B) , but absent in the samples that were 

not inoculated. Region Q consisted of the bands which were greatly reduced by the surface 

treatments. Region R was populated by bands present in all samples to a varying degree. 
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Figure 2.2 Contour map indicating band position and intensities from the DGGE gel data. This shows 

different regions (P, Q and R) with varying effects of surface and control treatments in the columns A, 

B, Y and N. The yeast ITS1 fragment is represented by two bands (S) in Region P. The key indicates 

the increasing intensity of the band with increasing darkness, corresponding to the square root of the 

percentage of maximum band intensity. 

 

The PERMANOVA analysis (Pseudo-F = 5.7151) indicated a significant difference (P = 0.0001) 

in band composition amongst treatments. Pair-wise tests established that all treatments 

differed from one another (p < 0.05) in their banding patterns. 

 

Mean similarity values (Table 2.2) provided a measure of the magnitude of the differences in 

band composition between and within treatments. 
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Table 2.2 Mean Similarity (%) between/within groups from pairwise PERMANOVA analysis. 

Treatment Physical Chemical Yeast None 

A - Physical  59.10    

B - Chemical  38.72 48.46   

Y- Yeast  23.41 18.48 48.67  

N- Negative 19.40 13.86 12.73 39.32 

 

The NMDS plot (Figure 2.3) illustrated the variation within and among treatments quantified 

in Table 2.2. The proximity of chemically and physically treated samples in the plot 

confirmed their similarity, though Physical Treatment (A) samples were less dispersed in the 

plot, than samples subject to Chemical Treatment (B). Both were dissimilar in composition to 

the samples from the controls. NMDS including peak intensity data for each band showed a 

similar pattern of treatment effects on DGGE band profiles (result not shown). 

 

 

Figure 2.3 An NMDS plot of DGGE bands, showing the clustering of replicate samples from different 

treatments. 

 

The Student’s t-test showed mean band numbers did not differ significantly (p > 0.05) 

between Treatments A and B. 
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2.4.3 VPSEM 

The VPSEM micrographs of uninoculated leaf surfaces of the Negative Control (N) (Figure 2.4 

A) indicated extraneous microbial hyphae and debris on the leaf surface, while abundant 

yeast cells were present on the surfaces of the Positive Control (inoculated and untreated 

leaf surfaces) (Figure 2.4 B). Micrographs of leaf surfaces exposed to the two treatments 

indicated the degree of removal of particulates adhering to the surface was more effective 

with physical abrasion (Figure 2.4 C) than with chemical treatment (Figure 2.4 D). 

 

 

Figure 2.4 VPSEM micrographs of A-an un-inoculated and untreated leaf surface (Negative Control-N) 

showing fungal hyphae (W), B-inoculated and untreated leaf surfaces (Positive Control-Y) showing 

abundant yeast cells (X), C-inoculated and physically abraded leaf surfaces (Treatment A) indicating a 

significant reduction in debris and S. cerevisiae cells, and D-inoculated and chemically surface 

sterilized leaf surfaces (Treatment B) indicating the presence of S. cerevisiae cells (y) and debris (z). 

 

2.5 Discussion 

The yeast S. cerevisiae was chosen as an epiphytic indicator of surface treatment efficiency 

because it does not appear to have been isolated in previous culture-based endophyte 

studies of wheat (Crous et al., 1995; Larran et al., 2002). In addition, PCR amplification 

revealed that the ITS1 region amplicon derived from S. cerevisiae was discernible from 

native fungal DNA on or within the leaf and it was absent from those leaves which were not 
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sprayed with yeast (Figure 2.1). This demonstrated that S. cerevisiae can serve as a useful 

inoculant in determining the removal of epiphytic fungal DNA from the leaf. 

 

The goal of a surface treatment method is to remove as much DNA from the surface of the 

plant while doing minimal damage to endophytic fungal DNA; the relative efficiency of a 

surface treatment could be inferred from the degree to which yeast DNA could still be 

detected in DNA extracts from leaf tissue after the treatments. 

 

The components of the chemical treatment (Treatment B) were expected to destroy viable 

cells on the leaf surface (Arnold et al., 2007), yet the PCR amplification of S. cerevisiae DNA 

sequences (Figure 2.1) from surface treated leaves demonstrated that epiphytic yeast DNA 

sequences were not eliminated ,as predicted by Guo (2010). PCR is more sensitive in 

detecting fungi than traditional culture plating (Baek and Kenerley, 1998), which emphasizes 

the importance of recognizing that microbial sterility does not guarantee the elimination of 

extraneous or epiphytic DNA. 

 

ANOVA analysis (Table 2.1) of the agarose gel (Figure 2.1) confirmed that Treatments A and 

B did not eliminate the yeast DNA, but significantly reduced its presence relative to the 

positive control (Y). The lower CV% value in Treatment A indicated that this was the more 

consistent method of the two. 

 

The ideal outcome of any surface treatment revealed by DGGE gel data would be no 

amplification of the yeast or epiphytic DNA with as many other bands as possible while 

bearing minimal similarity in DNA band composition to the control samples. In the contour 

map (Figure 2.2) Region P was largely populated by the yeast amplicons, which were strongly 

represented in the positive control (Y), due to the high presence of yeast DNA. The relative 

absence of amplicons in Region Q and increased band density in Region R for the two 

treatments (A and B), compared to the negative control (N), suggested that both surface 

treatments resulted in an enhanced amplification of endophyte target sequences due to 

reduced competition for primers (von Wintzingerode et al., 1997) by epiphytic target 

sequences. 
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The PERMANOVA of implied that the treatments varied in their effect on epiphyte diversity. 

The mean similarity percentages showed that Treatment A produced the most consistent 

band profiles (Table 2.2), arguing in its favor as the preferred treatment of the two. 

 

The NMDS plot (Figure 2.3) exhibited compromised consistency of the chemical treatment 

(B); however, it was less similar to the two controls (Y and N) than the physical treatment 

(A). Because of this, it was speculated that the chemical treatment damaged target 

sequences belonging to endophytes as well, even though there was no any significant 

difference in mean band numbers for the two treatments. 

 

VPSEM images (Figure 2.4) showed qualitative differences between the treatments. The 

abundance of S. cerevisiae cells on the inoculated but untreated control (Figure 2.4 B) 

correlated with the pronounced PCR amplification of S. cerevisiae (Figure 2.1). The VPSEM 

showed that physical abrasion (Figure 2.4 C) was more efficient in removing microbes and 

debris than chemical treatment (Figure 2.4 D), although the PCR analysis revealed no 

significant difference (Table 2.1). VPSEM results alone may not provide a reliable evaluation 

method in DNA-based studies. 

 

From this data, we would recommend that the physical abrasion technique is superior to the 

chemical technique along the criteria of greater consistency. This higher-input method may 

perform better, but larger sample sizes would favor the ease and rapidity of the chemical 

treatment, which produced the same number of bands found in physically abraded leaves, 

even though profiles differed slightly. 

 

Since the initial analysis from the agarose gel (Figure 2.1 and Table 2.1) was supported by 

the subsequent analyses of DGGE gel data (Figures 2.2 and 2.3; Table 2.2), we propose that 

this procedure alone constitutes adequate investigative effort when striving to optimize 

surface DNA removal techniques in DNA-based fungal endophyte studies, using S. cerevisiae 

as a control organism. 



85 

 

2.6 Acknowledgments 

This material is based upon work supported financially, in part, by the National Research 

Foundation of South Africa and the Winter Cereal Trust. 

2.7 References 

Anand R, Paul L, Chanway C (2006) Research on endophytic bacteria: recent advances with 

forest trees. In: Schultz, B., Boyle, C., Sieber, T.(eds). Microbial Root Endophytes, Vol. 9. 

Springer-Verlag, Berlin, 89-103. 

 

Anderson MJ (2001) A new method for non‐parametric multivariate analysis of variance. 

Austral Ecol 26:32-46. 

 

Arnold AE, Henk DA, Eells RL, Lutzoni F, Vilgalys R (2007) Diversity and phylogenetic affinities 

of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. 

Mycologia 99:185-206. 

 

Backman PA, Sikora RA (2008) Endophytes: An emerging tool for biological control. Biol Cont 

46:1-3. 

 

Baek JM, Kenerley CM (1998) Detection and enumeration of a genetically modified fungus in 

soil environments by quantitative competitive polymerase chain reaction. FEMS Microbiol 

Ecol 25:419-428. 

 

Clarke, KR, Gorley, RN (2006) PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth. 

 

Crous PW, Petrini O, Marais GF, Pretorius ZA, Rehder F (1995). Occurrence of fungal 

endophytes in cultivars of Triticum aestivum in South Africa. Mycoscience 36:105-111. 

 

Guo LD (2010) Molecular diversity and identification of endophytic fungi. In: Gherbawy, Y., 

Voigt, K.(eds). Molecular Identification of Fungi. Springer, Berlin, 277-296. 

 



86 

 

Kemp BM, Smith DG (2005) Use of bleach to eliminate contaminating DNA from the surface 

of bones and teeth. Forensic Sci Int 154:53-61. 

 

Larran S, Perelló A, Simon MR, Moreno V (2002) Isolation and analysis of endophytic 

microorganisms in wheat (Triticum aestivum L.) leaves. World J Microbiol Biotechnol 18:683-

686. 

 

Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 

69:1875-1883. 

 

Manter D, Delgado J, Holm D, Stong R (2010) Pyrosequencing reveals a highly diverse and 

cultivar-specific bacterial endophyte community in potato roots. Microbial Ecol 60:157-166. 

 

McCune B, Grace JB, Urban DL (2002) Analysis of ecological communities (Vol. 28). MjM 

software design, Gleneden Beach, Oregon. 

 

Meyer JM, Hoy MA (2008) Removal of fungal contaminants and their DNA from the surface 

of Diaphorina citri (Hemiptera: Psyllidae) prior to a molecular survey of endosymbionts. Fla 

Entomol 91:702-705. 

 

Müller C, Riederer M (2005) Plant surface properties in chemical ecology. J Chem Ecol 

31:2621-2651. 

 

Payne RW, Murray DA, Harding SA, Baird DB, Soutar DM (2011) An Introduction to Genstat 

for Windows (14th Edition). VSN International, Hemel Hempstead, UK. 

 

R Core Team (2013). R: A language and environment for statistical computing. R Foundation 

for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org. Accessed 

24 November 2013. 

 

http://www.r-project.org/


87 

 

Schulz B, Wanke U, Draeger S, Aust HJ (1993) Endophytes from herbaceous plants and 

shrubs: effectiveness of surface sterilization methods. Mycol Res 97:1447-1450. 

 

Sessitsch A, Reiter B, Pfeifer U, Wilhelm E (2002) Cultivation-independent population 

analysis of bacterial endophytes in three potato varieties based on eubacterial and 

Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiol Ecol 39:23-32. 

 

Stokes D (2008) Principles and Practice of Variable Pressure/Environmental Scanning 

Electron Microscopy (VP-ESEM). John Wiley and Sons, Ltd, Chichester. 

 

Tottman DR (1987) The decimal code for the growth stages of cereals, with illustrations. Ann 

Appl Biol 110:441-454. 

 

von Wintzingerode F, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity 

in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213-

229. 

 

Wakelin SA, Colloff MJ, Harvey PR, Marschner P, Gregg AL, Rogers SL (2007) The effects of 

stubble retention and nitrogen application on soil microbial community structure and 

functional gene abundance under irrigated maize. FEMS Microbiol Ecol 59:661-670. 

 

Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A, Lumley T, Maechler M, 

Magnusson A, Moeller S, Schwartz M, Venables B (2013) gplots: Various R programming 

tools for plotting data. Rpackage version 2.12.1. http://www.cran.r-

project.org/web/packages/gplots 



88 

 

Chapter 3 The evaluation of denaturing gradient gel 

electrophoresis and temporal temperature gradient 

electrophoresis for fungal wheat endophyte 

investigations 

3.1 Abstract 

Denaturing gel electrophoresis (DGE) can be used in culture-independent studies of 

microbial community composition and the technique has several variants. This work 

compared two of these variants, namely denaturing gradient gel electrophoresis (DGGE) and 

temporal temperature gradient electrophoresis (TTGE), to establish their relative 

performance in terms of resolution and detection, as well as cost and preparation time. Per 

gel reagent and material costs and preparation times were recorded for comparison. 

Conversion formulae were developed to standardize denaturing conditions for comparison 

of DGGE and TTGE gels. For all gel samples, band numbers, positions, peak height and base 

width were recorded. Samples run on DGGE gels tended to be clearer and more distinct 

from each other and DGGE tended to provide higher band numbers and better resolution. 

However, TTGE was quicker and cheaper to prepare. The TTGE and DGGE gel data were 

strongly correlated but DGGE provided more accurate dendrograms for comparisons of pure 

fungal isolates. Non-metric multidimensional scaling showed that TTGE data profiles were 

more heterogeneous, while DGGE produced tighter clustering of replicate samples. Although 

TTGE could be an acceptable technique for resolving DNA sequences in certain applications, 

DGGE is preferable for fungal wheat endophyte studies. 

3.2 Introduction 

Denaturing gel electrophoresis (DGE) is a technique used in culture-independent PCR-based 

microbial studies of microbial community composition. The mixed DNA amplicons derived 

from the PCR of environmental samples are separated based on their individual DNA 

sequence composition. This mixture of double-stranded DNA is driven by electrophoresis 

under increasing denaturing conditions through an acrylamide gel. The increasing 

denaturation causes structural DNA changes, i.e., becoming larger, resulting in reduced 
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mobility through the gel matrix (Fromin et al., 2002). Therefore, as the sequences move 

down the gel they separate in the order of those with lowest to highest guanine-cytosine 

content (GC-content) because the lower the GC-content of a DNA sequence, the lower the 

melting temperature (Muyzer, 1999). The variant of this technique known as denaturing 

gradient gel electrophoresis (DGGE) employs a chemical gradient produced using increasing 

urea and formamide concentrations. In temporal temperature gradient gel electrophoresis 

(TTGE), instead of a chemical denaturing gradient, the temperature of the electrophoresis 

buffer is increased over time. Therefore, as DNA strands move along the gel matrix, the 

increasing temperature causes the double-stranded DNA to melt, just as in DGGE (Cornejo et 

al., 2004). Both of these variants can be performed on the Bio-Rad DCodeTM Universal 

Mutation Detection System (Bio-Rad Laboratories, Inc., Hercules, California, USA). 

 

Based on a protocol evaluation, TTGE was hypothesized to be quicker, easier and cheaper to 

prepare than DGGE. However, the number of published articles for each method on two 

internet databases (Figure 3.1) indicated that TTGE is used less frequently than DGGE. 

 

Figure 3.1 A chart of the number of articles published in English found with the specific title keyword 

searches, ‘Temporal temperature gradient gel electrophoresis’, ‘Denaturing gradient gel 

electrophoresis’, ‘TTGE’ and ‘DGGE’, and in Google Scholar and Science Direct from 2003 to 2013 

(Search performed 17/04/2013). 
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On the other hand, both DGGE (Ma et al., 2005; Duong et al., 2006; Miletto et al., 2007; 

Andreote et al., 2009) and TTGE (Cornejo et al., 2004; Ogier et al., 2004; Nieguitsila et al., 

2007; Úbeda et al., 2009) have both been used in successful microbial diversity studies. This 

indicates that there may be both benefits and disadvantages to each technique. 

 

The aim of this work was to determine whether DGGE or TTGE is more suitable for the study 

of fungal wheat endophytes. 

 

3.3 Materials and Methods 

3.3.1 Sample preparation 

All PCR reactions were performed using the KAPA2G Fast HotStart ReadyMix Kit (Kapa 

Biosystems, Wilmington, Massachusetts, USA) and universal fungal primers ITS1F-GC 

forward primer (5′-CGC CCG CCG CGC CCC GCG CCC GGC CCG CCG CCC CTT GGT CAT TTA 

GAG GAA GTA A-3′) and the ITS2 reverse primer (5′-TTY GCT GYG TTC TTC ATC G-3′) (Wakelin 

et al., 2007) synthesized by Inqaba Biotec (Pretoria, South Africa). The dNTP’s were at a 

0.2 mM concentration, MgCl₂ at 1.5 mM, and the forward and reverse primers were at a 

final concentration of 800 nM each. The final reaction volume was 50 μL. All reactions were 

performed on a G-storm Thermal Cycler (Syngene, Cambridge, UK) with the following 

program parameters: 2 min denaturation at 95°C, 35 cycles at 95°C for 15 s, 55°C for 30 s 

and 72°C for 10 s, with a final elongation step at 72°C for 30 s. Three sets of PCR product 

were prepared using previously extracted genomic DNA originating from the following 

sources: 

 

Set 1: PCR products were amplified from 2 ng of genomic template DNA from the first 

replicate of each of the surface treatments (A and B) and controls (Y and N) from a study on 

surface decontamination (Burgdorf et al., 2014), as well as a DNA-free no template sterile 

water control (NTC) and a pure Saccharomyces cerevisiae Meyen ex E.C. Hansen genomic 

DNA positive control. This set of samples compared mixed template samples on each of the 

gel types. 
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Set 2: PCR products were amplified from 1 ng of genomic template DNA extracted from 10 

previously isolated fungal wheat endophyte cultures as well as Beauveria bassiana (Bals.-

Criv.) Vuill. and S. cerevisiae and an NTC. This set of samples compared the ability of each 

method to discriminate between fungal isolates. 

 

Set 3: PCR products amplified for analysis by DGGE in a previous study (Burgdorf et al., 2014) 

were retained to be run on a TTGE gel in this experiment. This set was used to evaluate the 

performance of each method on replicated mixed template samples. 

 

To confirm amplification of products for sets 1 and 2, 5 μL of sample PCR products, along 

with a GeneRulerTM 100 bp ladder marker (Thermo Fisher Scientific, Inc., Waltham, 

Massachusetts, USA) were run on a 1.5% agarose gel containing 1 x SYBR® Safe nucleic acid 

stain (Thermo Fisher Scientific) in 1 x TBE buffer at 5 V.cm-1 for 1 h. Gels were visualized and 

images captured with the GeneSnap Software (Syngene) on the I-chemi G-Box gel 

documentation system (Syngene). 

3.3.2 DGGE and TTGE parameters 

The actual denaturing temperature (ADT) values under varying parameters for 

corresponding sets of TTGE and DGGE gels were determined. In DGGE, the buffer 

temperature (bT) was constant while urea concentration ([U]) and formamide quantities 

(% Formamide) increased, raising the ADT by 2°C per mole of urea, as per the DCode™ 

Universal Detection System user manual (Bio-Rad) and 0.6°C per percent formamide, as per 

Sadhu et al. (1984) (Formula 3.1, Table 3.1). 

 

ADT = bT + ([Urea] x 2) + (% Formamide x 0.6)  Formula 3.1 
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Table 3.1 DGGE denaturing parameters calculated from Formula 3.1, at a constant buffer 

temperature of 60°C. 

Chemical denaturing % [Urea] 

(M) 

% Formamide ADT (°C) 

50 3.5 20 79 

40 2.8 16 75.2 

30 2.1 12 71.4 

20 1.4 8 67.6 

 

For TTGE gels the ADT values were calculated at constant urea concentrations and varying 

buffer temperatures (Formula 3.2, Table 3.2). 

 

ADT = ([Urea] x 2) + bT     Formula 3.2 

 

Table 3.2 TTGE denaturing parameters calculated from Formula 3.2, at two constant urea 

concentrations of 8M and 4M. 

Buffer Temperature (°C) At 8M Urea Buffer Temperature (°C) at 4M Urea ADT (°C) 

64 72 80 

62 70 78 

60 68 76 

58 66 74 

56 64 72 

54 62 70 

52 60 68 

 

The calculated running conditions were established for the three samples sets in Table 3.3 to 

produce a common ADT in each of the DGGE and TTGE gels. 
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Table 3.3 Reagent and temperature parameters for attaining equivalent denaturing conditions in 

DGGE and TTGE gels on which three sets of PCR product were run. 

Set 

 

Voltage Run duration  Acrylamide/Bisacrylamide 

Ratio 

DGGE 

chemical 

denaturing 

range 

TTGE buffer 

temperature 

range/Urea 

concentration 

1 100 V 16 h 37.5:1 30-40% 55-59°C / 8M 

2 60 V 16 h 37.5:1 30-50% 55-63°C / 8M 

3 100 V 16 h 19:1 25-40% 62-69°C / 4M 

 

All gels were run on the Bio-Rad DcodeTM Universal Mutation Detection System (Bio-Rad). 

For all three sets, 15 μL of each sample was run on 6% acrylamide/bisacrylamide (Sigma-

Aldrich, St. Louis, Missouri, USA) in a 1 x TAE buffer and were post-stained in a 1x SYBR® 

Gold (Thermo Fisher Scientific) solution for 40 min. 

 

Cost per gel for each set was calculated according to the volume of each gel-specific reagent 

required to produce a 25 mL gel and run this in a 7 L tank. Costs for other materials, such as 

water and pH-adjusting buffers, were not included in these calculations. The reagent 

preparation and gel casting times were recorded to calculate the mean casting time per gel 

type. The time taken to collect and prepare other materials, such as glassware, was not 

included in the analysis. 

 

3.3.3 Preparation and casting of DGGE gels 

A 1 mL solution of a 10% ammonium persulfate (Merck, Darmstadt, Germany) (APS) solution 

was prepared by adding 0.1 g of APS to 1 mL of ultra-pure sterile water and stored on ice. 

The 0% denaturing solution was prepared by mixing 15 mL of 40% acrylamide/bisacrylamide 

solution (Sigma-Aldrich) to 2 mL 50 x Tris-acetic acid-EDTA (TAE) buffer (pH 8.0) and 83 mL 

ultra-pure sterile water. The 100% denaturing solution was prepared by mixing 15 mL 40% 

acrylamide/bisacrylamide solution (Sigma-Aldrich), 2 mL 50 x TAE solution, 40 mL formamide 

(Sigma-Aldrich) and 42 g of urea (Merck) which was made up to a final volume of 100 mL 
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with ultra-pure sterile water. These solutions were degassed by sonication and then stored 

in the dark at 4°C until required. 

 

A 1 mL plug consisting of 100% denaturing solution with 7 μL APS and 1 μL N,N,N′,N′-

tetramethylethylenediamine (TEMED) (Merck) was poured into the gel cartridge. This was 

followed by 22 mL of a chemical gradient solution produced in a gradient mixer with varying 

volumes of 100% and 0% denaturing solution, as per Table 3.4, to produce the gradients for 

the three sets shown in Table 3.3. Prior to introduction to the gradient mixer, a volume of 

50 μL of APS was added to each solution. In addition, 10 μL of TEMED was added to the 

higher percentage solution and 5 μL to the lower percentage solution. Each solution was 

placed in a separate chamber of the gradient mixer and then introduced to the gel chamber. 

Once the gradient gel solution was poured it was capped with 3 mL of the 0% solution 

containing 21 μL APS and 1 μL TEMED. The gel comb was inserted and the gel left to 

polymerize for 1.5 h. 

 

Table 3.4 Quantity of 0% and 100% solutions needed to produce desired DGGE gradient 

% Denaturation Quantity of 0% 

solution (mL) 

Quantity of 100% 

solution (mL) 

20 8.8 2.2 

25 8.25 2.75 

30 7.7 3.3 

35 7.15 3.85 

40 6.6 4.4 

45 6.05 4.95 

50 5.5 5.5 

 

3.3.4 Preparation and casting of TTGE gels 

The preparation of the APS solution was as described previously. Gels for the TTGE reagents 

for the 3 sets of gel comparisons were mixed according to Table 3.5 and made up to a final 

volume of 25 mL with ultra-pure sterile water. Solutions were degassed by sonication and 

stored in the dark at 4°C until required. Prior to pouring the gels, 250 μL of APS and 25 μL of 
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TEMED were added to the gel solutions. After pouring the gels, the combs were set, and the 

gels were left to polymerize for 1.5 h. 

 

Table 3.5 Materials used per 25 mL TTGE gel per set of PCR products. 

Set Urea (g) 40% Acrylamide : Bisacrylamide solution (mL) 50 x TAE (mL) 

1 12 3.75 0.5 

2 12 3.75 0.5 

3 6 3.75 0.5 

 

3.3.1 Analysis of DGGE and TTGE gels 

Gel images were captured on the I-chemi G-Box gel documentation system (Syngene). Bands 

were detected, counted and the peak height and peak width were determined using the 

GeneTools (Syngene) software package. 

 

For peak height and width, all values were background subtracted. Peak height was the 

background-corrected maximum signal of the peak in grayscale values lying between 

0 - 65535. Peak width was the pixel distance between the start and end of the background-

corrected peak. 

 

Paired Student’s t-test on mean band numbers and for mean band peak height/peak width 

ratios (as measures of sensitivity and resolution respectively) in each gel pair per set were 

performed in Microsoft Excel (2010) (Microsoft, Redmond, Washington, USA). 

 

Unweighted pair-group arithmetic average (UPGAMA) clustered dendrograms derived from 

the DGGE and TTGE gels of the fungal isolates (Figures 3.4 and 3.5 respectively) were 

produced using GeneTools (Syngene). 

 

DGGE and TTGE gel band matrices were produced from the previously acquired images using 

Quantity One gel analysis software (Bio-Rad). A Mantel test was performed on the gel 

matrices in PC-ORD (v 4.25) (McCune and Mefford, 2011). 
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Non-metric multidimensional scaling plots (NMDS) (based on Jaccard similarity coefficient) 

for Set 3 gel band profiles were produced using Primer (v. 6) (Clarke and Gorley, 2006). 

3.4 Results 

3.4.1 Sample preparation 

PCR products for fungal isolates and wheat leaf DNA (Figure 3.2) showed bands of suitable 

quality and size expected for the ITS1 region. 

 

 

Figure 3.2 Agarose gel of PCR product for fungal wheat endophyte isolates F1-F10 (Lanes 2-11) for Set 1, wheat 

leaf DNA extracts (Lanes 12-15) for Set 2, B. bassiana (Lane 16) and S. cerevisiae (Lane 17) used as controls in 

Set 1. 100 bp ladder markers are in Lanes 1 and 20. 

 

3.4.2 DGGE and TTGE gels 

A visual inspection of the DGGE gel of Set 1 sample products (Figure 3.3 A) showed greater 

numbers of bands, which were clearer and more distinct than bands that were seen after 

the same samples were run on TTGE (Figure 3.3 B). Bands on the TTGE gel appeared to be 

more diffuse. 
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Figure 3.3 DGGE of wheat samples (A) and TTGE gel of wheat samples (B) with 100 bp ladder markers 

(Lanes 1 and 8), sample A1 (Lane 2), B1 (Lane 3), Y1 (Lane 4), N1 (Lane 5), template free control (Lane 

6) and pure S. cerevisiae (Lane 7). 

 

A visual inspection of the DGGE gel produced from Set 2 samples (Figure 3.4) showed that 

the bands appeared more numerous and more distinct than on the TTGE gels (Figure 3.5). 
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Figure 3.4 DGGE gel of fungal isolate samples with the 100 bp ladder marker (Lane 1), fungal isolates 

F1-F10 (Lane 2-11), B. bassiana (Lane 12) and S. cerevisiae (Lane 13). 

 

Bands in the TTGE gel from Set 2 (Figure 3.5) were more widely separated than in the DGGE 

gel, but were not as distinct (Figure 3.4). 
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Figure 3.5 TTGE gel of fungal isolate samples with the 100 bp ladder marker (Lane 1), fungal isolates 

F1-F10 (Lane 2-11), B. bassiana (Lane 12) and S. cerevisiae (Lane 13). 

 

The PCR products from previous work (Burgdorf et al., 2014) used for Set 3 (Figure 3.6) 

showed bands of suitable size and quantity to be run on DGGE and TTGE gels. 
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Figure 3.6 The agarose gel of PCR products from wheat leaf extracts after: A–physical treatment 

(Lanes 2- 5); B–chemical treatment (Lanes 6-9); Y–positive control (Lanes 10-13); N–negative control 

(Lanes 14-17); y-pure yeast positive PCR control (Lane 18); n-template-free PCR negative control 

(Lane 19) and 100 bp molecular weight marker (Lanes 1 and 20) (from Burgdorf et al., 2014). 

 

The DGGE gel (Figure 3.7) of the Set 3 samples showed band profiles with similarities 

between samples within treatment replicates. 
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Figure 3.7 DGGE gel PCR products from wheat leaf extracts after: A–physical treatment (Lanes 2-5); 

B–chemical treatment (Lanes 6-9); Y–positive control (Lanes 10-13); N–negative control (Lanes 14-

17); y-pure yeast positive PCR control (Lane 18); n-template-free PCR negative control (Lane 19) and 

100 bp molecular weight marker (Lanes 1 and 20) (from Burgdorf et al., 2014). 

 

The TTGE gel (Figure 3.8) of the Set 3 samples (Figure 3.6) also showed similarities between 

samples within treatment replicates; however, the band profiles differed from the DGGE gel 

(Figure 3.7). 
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Figure 3.8 TTGE gel of PCR products from Chapter 2 wheat leaf extracts after: A–physical treatment 

(Lanes 2-5); B–chemical treatment (Lanes 6-9); Y–positive control (Lanes 10-13); N–negative control 

(Lanes 14-17); y-pure yeast positive PCR control (Lane 18); n-template-free PCR negative control 

(Lane 19) and 100 bp molecular weight marker (Lanes 1 and 20). 

 

3.4.3 DGGE and TTGE gel analyses 

A comparison of the time taken to prepare reagents for each method (Table 3.6) showed 

that the TTGE reagents were significantly quicker to prepare than for DGGE. 
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Table 3.6 Mean time required to prepare reagents for each gel for the 3 sets. 

Gel type Mean time to prepare reagents (min) 

DGGE 7.81a 

TTGE 6.37b 

Means with different letters differed significantly (p < 0.05) 

 

A comparison of the time taken to cast gels showed a significant and very substantial 

difference in the time needed to prepare gels for each method (Table 3.7). Casting the TTGE 

gels required less than a tenth of the time than DGGE gels. 

 

Table 3.7 Mean time taken to cast gels for the 3 sets. 

Gel type Mean time taken to cast gel (min) 

DGGE 28.91a 

TTGE 2.07b 

Means with different letters differed significantly (p < 0.05) 

 

A comparison of the cost of reagents required to prepare gels for each method (Table 3.8) 

showed that TTGE was significantly cheaper than DGGE to prepare. There was a 7.89% 

difference in mean cost. 

 

Table 3.8 Mean reagent costs for preparing gels as of 02/04/2013. 

Gel type Mean reagent cost to prepare gels (Rand) 

DGGE R 73.05a 

TTGE R 67.29b 

Means with different letters differed significantly (p < 0.05) 
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A comparison of the band numbers and h/w ratios for each of the 3 sets for each method 

(Table 3.9) revealed that in most instances the mean band numbers did not differ 

significantly, while h/w ratios usually did. DGGE tended to produce more bands with higher 

h/w ratios. 

 

Table 3.9 Results of Paired Student’s t-test for band numbers and h/w ratios for each set of gel 

comparisons. 

Set Mean Band Number Mean h/w 

 DGGE TTGE DGGE TTGE 

1 16.50a 9.83a 287.82e 49.25f 

2  7.50b 7.33b 125.39g 81.32h 

3 17.17c  11.42d 132.20i 152.33i 

Means with same letters did not differ significantly (p > 0.05) 

 

The Mantel test analysis comparing three sets of the two methods (Table 3.10) revealed a 

medium to high correlation between band profiles, with correlation decreasing as band 

numbers increase (seen from mean band numbers in Table 3.9). 

 

Table 3.10 Mantel test statistics for gel matrix comparisons of DGGE and TTGE gels for each set where r = 0 

indicates no relationship. 

Set Standardized Mantel Statistic 

(r) 

P-value 

1 0.76 0.00 

2 0.99 0.01 

3 0.58 0.00 

 

A dendrogram (Figure 3.9) of the Set 2 band profiles from the DGGE gel (Figure 3.4) 

illustrated the relative band profile similarities between the fungal isolates, with isolate 1, 3 

and 4 being identical. 
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Figure 3.9 An unweighted pair-group arithmetic average (UPGAMA) clustered dendrogram derived from DGGE 

gel of fungal isolates in Figure 3.4. 

 

A dendrogram derived from Set 2 samples run on the TTGE gel (Figure 3.10) indicated less 

similarity between isolates as compared to those shown on the DGGE gel (Figure 3.9). 
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Figure 3.10 An unweighted pair-group arithmetic average (UPGAMA) clustered dendrogram derived 

from TTGE gel of wheat fungal isolates in Figure 3.5. 

 

An NMDS plot of DGGE bands (Figure 3.11) from the Set 3 samples showed the similarities 

between the treatments revealed by DGGE gels (Figure 3.7). Samples formed clusters 

according to their treatments. 
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Figure 3.11 An NMDS plot (based on Jaccard similarity coefficient) of DGGE bands from Figure 3.7 

(from Burgdorf et al., 2014). 

 

An NMDS plot of the TTGE bands (Figure 3.12) from the Set 3 samples showed the clustering 

patterns of the TTGE gel samples (Figure 3.8). The chemically treated samples (B) were more 

widely dispersed as compared to the data from the DGGE gel (Figure 3.10). 
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Figure 3.12 An NMDS plot (based on Jaccard similarity coefficient) of TTGE bands from Figure 3.8, 

showing similar clustering of replicate samples for groups A, Y and N, but significantly more dispersal 

of group B, compared to DGGE. 

 

3.5 Discussion 

There were several evident differences between the methods, demonstrating the merits and 

disadvantages of each. Despite an initial visual evaluation, after objective analysis of the 

criteria used for comparison, it was revealed that TTGE performed unexpectedly well. 

However, it has previously been demonstrated that TTGE can be used in microbial diversity 

analysis, with results being comparable to those from clone libraries and analysis by 

fluorescent in situ hybridization (FISH) (Bosshard et al., 2000). 

 

The data for Set 1 compared the gel characteristics with a mixture of sample types; Set 2 

compared the ability of DGGE and TTGE to distinguish between pure fungal isolates; and Set 

3 compared the detection of fungal endophytes in replicated wheat samples. For Set 1 DGGE 

showed bands which are crisper and more evenly dispersed along the gel (Figure 3.3 A). 

Band crispness is also demonstrated in Set 2 (Figure 3.4 and 3.5). In the gels from Set 3 

(Figures 3.7 and 3.8), the TTGE showed improved crispness, but as in all the other TTGE gels, 

the clear double banded yeast product seen in DGGE gels was not clearly represented. The 
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diffused appearance of TTGE bands was observed in images of gels by other researchers 

(Cornejo et al., 2004; Ogier et al., 2004; Nieguitsila et al., 2007). This was due to the diffusion 

of mixed DNA in the loading well, as observed by Farnleitner et al. (2000), who suggested 

that TTGE lacks the focusing provided by DGGE with its fixed spatial gradient. The slightly 

improved crispness of TTGE bands in Set 3 could either be due to the increased focusing 

from better sample loading or because of the smaller pore size of the lower 

acrylamide/bisacrylamide ratio (19:1) for that gel. The mixed DNA template moves quickly 

down the liquid of the well but meets resistance as it hits the gel. With the greater pore size 

of the 37.5:1 matrix, DNA template can start moving into the gel more immediately, 

resulting in greater distance between homogenous sequences in the original heterogeneous 

mixture. In the 19:1 ratio the DNA migration into the gel is slower, resulting in a smaller gap 

between leading and trailing homogeneous DNA sequences in the mixture. 

 

The improved TTGE band clarity in Set 3 (Figure 3.8) demonstrated that the TTGE gels could 

be optimized further, while the DGGE method was more robust because DGGE performed 

satisfactorily under the varying conditions for all three sample sets. Therefore, less 

optimization effort is required in performing DGGE, relative to TTGE. DGGE is usually 

optimized in terms of establishing the best upper and lower denaturing conditions, while 

TTGE requires optimization of the temperature gradient and the urea concentration. 

 

The calculated ADTs (Formulae 3.1 and 3.2) were intended to provide the same denaturing 

conditions between across the DGGE and TTGE gels per sample set (Tables 3.1 and 3.2). 

However, it appeared that the effect of the chemical and temperature gradients did not 

correspond between methods. This was visible also in the differences between band profiles 

of the ladder markers between DDGE and TTGE gels in each set (Figures 3.3, 3.4, 3.5, 3.7 and 

3.8). This highlighted a discrepancy in the reported 2°C per mole change in denaturing 

temperature for urea indicated in the Bio-Rad user manual compared to the 2.25°C per mole 

change that was reported by Hutton (1977). In addition to this, the chemical denaturing 

effect on DNA by formamide is not constant (Sadhu et al., 1984) and can vary according to 

the GC-content of the DNA (Blake and Delcourt, 1996). Therefore, sequence separation 

conditions were not linearly correlated between the two methods. In the TTGE gels the 
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actual gradient was wider than was calculated due to the underestimated effect of the urea, 

although this issue could be rectified by increasing the concentration accordingly. 

Furthermore, the inconsistent effect of the formamide in the DGGE gels implied that TTGE 

can potentially perform more predictably because formamide is not used in these gels. 

 

The significant difference in preparation times of each method was highlighted in the 

substantial difference in time taken to cast the gel (Tables 3.6 and 3.7). This is an important 

determinant in which method to use, especially if basic screening is all that is required. In 

this case, TTGE would be the preferable method, in addition to being cheaper. 

 

For Sets 1 and 2 (Figures 3.3 to 3.5), DGGE gels visibly appeared to produce more distinct 

bands than the TTGE gels. However, statistical analysis revealed that mean band numbers 

were not significantly different (Table 3.9). This was because the gel analysis technology 

(hardware and software) overcame the limitations of visual band discrimination. However, in 

Sets 1 and 2, the h/w ratios for all the bands were significantly higher for DGGE (Table 3.9), 

explaining why the mean band numbers tended to be higher for DGGE gels. This was 

because the resolution of these samples was better in the DGGE gels, so bands with very 

similar sequences were more likely to separate in the DGGE gels than in TTGE gels. The third 

set of gels demonstrated the greater sensitivity of the DGGE gel, without a significant 

difference in resolution. Therefore, the results showed that DGGE tended to have greater 

sensitivity and resolution than TTGE. Farnleitner et al. (2000) observed that DGGE had up to 

eight times greater spatial separation ability than TTGE and that TTGE was sometimes not 

able to separate certain bands, detecting 29% fewer bands than DGGE. This partly explains 

why culture-based methods could detect a greater number of fungal taxa than TTGE in a 

previous study comparing the two approaches (Nieguitsila et al., 2007). 

 

The greatest correlation between methods was found when comparing the band profiles of 

the fungal culture isolates (Table 3.10), which indicated that the TTGE could provide similar 

data to that of DGGE in such an application. However, comparing the dendrograms of the 

same two gels for Set 2 (Figures 3.9 and 3.10) showed that TTGE and DGGE had important 

differences in terms of comparing the identities of the isolates. Sequence analysis of these 
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isolates (data not shown) supported the conclusions of the DGGE dendrogram (Figure 3.9), 

which showed that the isolates represented in Lanes 1, 3 and 4 were identical. Therefore, 

the phylogenetic conclusions from the TTGE gel were less accurate than those from the 

DGGE gel. This indicated that TTGE inadequately distinguished between fungal isolates. 

 

The NMDS plots of the two sets of data from the gels in Set 3 (Figures 3.11 and 3.12) showed 

that the TTGE gel produced more widely dispersed data points, complicating the 

interpretation of this data. Marie et al. (2006) found that while DGGE and TTGE profiles were 

comparable, DGGE provided a greater number of bands and the data produced from DGGE 

and TTGE did not correspond entirely. However, in contrast, they opted to use the data from 

the TTGE gels because the DGGE data was more complex. Therefore, the selection of which 

method to use can be a compromise between data quality and complexity. Empirical 

comparisons, such as those performed in this work, must determine which method is 

preferable for a specific study subject.  

 

This work revealed that DGGE was preferable to TTGE for the study of fungal wheat 

endophytes because TTGE could underestimate species richness and fail to confirm 

sequence similarities. Considering the time and cost benefits, the optimization of TTGE could 

be explored further for use in other environmental diversity studies. However, DGGE proved 

to be the more robust and consistent method for use in fungal wheat endophyte studies. 
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Chapter 4 Molecular analyses of field grown wheat reveal a 

cultivar x organ interaction on fungal endophyte biomass 

and a significant chytrid presence 

4.1 Abstract 

Fungal endophyte community composition can be affected by various factors, such as the 

host genome. Research into the host genome effects on fungal endophyte composition can 

assist in harnessing the potential benefits of such relationships in agro-ecosystems. Several 

culture-based studies have investigated the presence of a cultivar effect on endophyte 

composition. However, a culture-based approach can only detect organisms that can be 

isolated and grown. Culture-independent methods can detect both culturable and non-

culturable fungal endophytes for comparisons of fungal endophyte community composition 

(ECC) between wheat cultivars. Denaturing gradient gel electrophoresis (DGGE), high-

resolution melt (HRM) analysis of community profiles, quantitative PCR, and sequence 

analysis were used to analyse and compare the fungal ECC of four wheat cultivars grown 

under field conditions. A significant organ and cultivar x organ interaction effects on fungal 

biomass were observed. A chytrid, namely Olpidium brassicae formed a significant 

component of the fungal endophyte community across all tissues in wheat. This finding 

highlighted the utility of the culture-independent in revealing cryptic interactions and 

endophytes, and raised questions about the factors that influence the organisms that reside 

within field-grown wheat. 

 

4.2 Introduction 

Microbial endophytes, which occur within plants without causing disease, have been likened 

to the human gut microbiome in function and impact on host health and are of increasing 

interest for agriculture (Sessitsch and Mitter, 2015). These organisms are being studied to 

reveal the relationship between host plant and microbe and to develop new biological 

control strategies for crop production (Porras-Alfaro and Bayman, 2011). To harness the 

benefits of endophytes in agriculture, several studies have sought evidence of a selective 
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influence on endophyte diversity by the plant host genotype (Sessitsch et al., 2002; Hoffman 

and Arnold, 2008; Pan et al., 2008; Andreote et al., 2010; Manter et al., 2010; Wearn et al., 

2012). 

 

Wheat is a major global food crop (Mayer et al., 2014), and several culture-based studies 

have investigated the wheat endophyte community composition to detect a cultivar-based 

effect. Sieber et al. (1988) reported that cultivar did not affect the composition of 

endophytes isolated from four wheat cultivars. Other researchers also observed that wheat 

cultivar did not influence the detected wheat endophyte diversity (Crous et al., 1995; Larran 

et al., 2002), although another study detected several interactions between microorganisms, 

tissues, growth stages and cultivar (Larran et al., 2007). Subsequently, host genome effects 

on wheat-associated microbes were revealed by culture-independent studies (Sapkota et al., 

2015), suggesting that a culture-independent approach may reveal cultivar-based effects or 

interactions that were not readily discovered by traditional culture-based methods. 

 

While culture-based methods can identify many fungal endophytes, such methods cannot 

identify organisms that do not grow on artificial media (Sánchez Márquez et al., 2012). On 

the other hand, culture-independent methods can detect both culturable and non-culturable 

endophytes (Saito et al., 2007). PCR amplification of DNA sequences that can be used to 

identify fungi, followed by denaturing gradient gel electrophoresis (DGGE), can be used to 

identify endophytic fungi sequences and compare host profiles of endophyte composition by 

separation of these sequences on DGGE gels (Garbeva et al., 2001). PCR primers amplifying 

the internal transcribed spacer (ITS) regions have optimal sizes for DGGE (Fromin et al., 

2002). These primers amplify the ITS region which can be used for sequence identification of 

fungal species and for the characterization fungal endophyte composition (Blaalid et al., 

2013) across a broad range of fungal taxa (Schoch et al., 2012). Quantitative PCR (qPCR) 

would be able to compare relative quantities of fungal biomass within host plant (Tellenbach 

et al., 2010). In addition, community fingerprinting by high-resolution melt (HRM) analysis, 

which has been used to compare microbial communities (Hjelmsø et al., 2014; Kim and Lee, 

2014), could reveal further endophyte community characteristics. 
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This research employed culture-independent methods, including PCR-DGGE, qPCR, HRM and 

sequence analysis, to investigate fungal endophyte community composition of different 

tissues in different wheat cultivars, to determine whether genomic differences in wheat 

cultivars can affect fungal endophyte composition and which types of fungal endophytes 

associate wheat under field conditions. 

4.3 Materials and Methods 

4.3.1 Sample collection 

Samples were collected from a field trial run by the Agricultural Research Council’s Small 

Grains Institute (SGI) (Blydskap Road, Lindley Direction, Bethlehem-District, 9700) in South 

Africa. The trial was located at 28°50′56.72′′S and 29°28′5.22′′E in the KwaZulu-Natal 

Province, within a commercial irrigated wheat field, subject to pesticide and fertilizer 

applications by the farmer. It was arranged in a randomized blocks design with 18 cultivars 

(4 replicate blocks per cultivar), including the commonly cultivated, national cultivars Duzi, 

Kariega, Krokodil and Olifants that were selected for fungal endophyte analysis in this study. 

These cultivars were selected because their rust disease resistance profiles differed, 

according to the ARC’s Guidelines (Burger and Kilian, 2009). Blocks consisted of 8 rows of 

wheat, which were 5 m long and spaced 0.017 m apart at a planting density of 

225 plants.m-2. The total fertilizer application reached a target of 220, 30 and 20 kg.ha-1 NPK, 

with micronutrient application between the tillering and the stem elongation stages. 

 

The wheat was planted on 05 June 2009. Seeds were treated with Anchor® (Chemtura, USA) 

fungicidal seed treatment (carboxin + thiram (200 +200 g.L-1)) before planting. Insecticides 

and herbicides were applied as necessary. Personal communications with the farmer 

indicated that the fungicides Folicur® (Bayer CropScience Ag, Germany) (tebuconazole) and 

Amistar® (Syngenta, Switzerland) (azoxystrobin) were each applied three times to control 

wheat rusts, as per the manufacturer's recommendations. Whole plant samples were 

collected on the 16th of September 2009 from wheat plants at the Feekes Growth Stage 11.1 

(Large, 1954) because this stage was considered to harbour the highest diversity of 

endophytes (Larran et al., 2007). Single plants for each of the cultivars, Duzi, Kariega, 

Krokodil and Olifants (n = 16), were randomly sampled from the central region of each 
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replicate plot to ensure spatial independence from all other samples. Whole plants were 

washed in running tap water, removing soil from the roots and then stored for at -20°C to 

reduce DNA degradation (Allentoft et al., 2012) before further processing. Sample sections 

were taken from the same regions in the respective tissues, weighing approximately 0.2 g 

each. For the leaves, single segments were taken from the middle section of the leaf at the 

midpoint of the plant. Stem segments were taken from the midsection of the first internode 

after the second visible stem node from the base. Root segments were taken from each 

plant, from the middle of the largest roots. 

 

4.3.2 Surface sterilization and DNA extraction 

The leaf, root and stem sections were surface sterilized using the physical abrasion method 

described by Burgdorf et al. (2014). Tissue segments were placed in 30 mL McCartney 

bottles with 20 mL of a 0.01% water solution of Tween 20 (Merck, Darmstadt, Germany) and 

sonicated for 5 min in a Biosonic sonication bath (Coltene, Altstätten, Switzerland). Samples 

were then rinsed once with tap water, sterile water and then placed in a 2 mL microtube 

with 1.5 mL 0.9% NaCl solution and 0.3 g of 0.1 mm glass beads (Sigma-Aldrich, St. Louis, 

Missouri, USA). The tubes were vortexed on a Disruptor Genie Vortex (Scientific Industries, 

Bohemia, New York, USA) for 20 min, rinsed three times in 1 mL of sterile ultra-pure water 

and stored at -80°C for further processing. 

 

DNA was extracted from all tissues according to a modified version of the extraction process 

described by Kang et al. (1998): Samples consisting of 0.2 g of plant tissue were ground in 

liquid nitrogen with 0.1 g of 0.1 mm glass beads (Sigma-Aldrich) using decontaminated 

ceramic mortars and pestles. The ground tissue was placed in a 2 mL microtube with 400 μL 

Extraction Buffer 1 (0.5% SDS, 0.2 M Tris (adjusted to pH 8.0 with 1 M HCl), 0.2 M NaCl and 

0.025 M EDTA) and 50 μg of Proteinase K (Sigma-Aldrich) and then incubated at 37°C for 1 h. 

To this was added 400 μL of Extraction Buffer 2 (2% CTAB (w/v), 0.1 M Tris (pH 8.0), 0.02 M 

EDTA (pH 8.0), 1.4 M NaCl, 1% polyvinylpyrrolidone MW 40,000) and then 400 μL of 

24:1:1.25 chloroform: isoamyl alcohol: phenol (pH 8.0) . The tubes were mixed by gentle 

inversion and then centrifuged at 14,000 x g for 10 min at 4°C. The supernatant was 

transferred to a 1.5 mL microtube with 400 μL of chloroform and centrifuged before. The 

https://www.google.com/search?q=Altst%C3%A4tten+Switzerland&stick=H4sIAAAAAAAAAOPgE-LWT9c3NDIqMkovsFDi1M_VN0jPTSsu19LKTrbSzy9KT8zLrEosyczPQ-FYZaQmphSWJhaVpBYVAwCdlYjMRgAAAA&sa=X&ved=0ahUKEwiV_JDLnczQAhVMAcAKHaVIBZ0QmxMIeygBMBE&biw=1536&bih=755
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supernatant was transferred to a 2 mL microtube, 2/3 of the supernatant volume of 

isopropanol was added and then stored at -20°C overnight. The tubes were then centrifuged 

at 16,000 x g for 10 min at 4°C and the supernatant was discarded. The pellet was washed 

twice with 70% ethanol, dried in a laminar flow hood and then resuspended in 50 μL of 

1 x TE buffer. DNA purity and quantity was confirmed on a Nanodrop 1000 (Thermo Fisher 

Scientific, Inc., Waltham, Massachusetts, USA). 

 

4.3.3 PCR, DGGE, gel analysis and band identification 

Three sets of PCR (root (n=16), stem (n=16) and leaf (n=16) samples) were performed on the 

G-Storm Thermal Cycler (Syngene) using the GC-clamped universal fungal ITS1F-GC forward 

primer (5′-CGC CCG CCG CGC CCC GCG CCC GGC CCG CCG CCC CTT GGT CAT TTA GAG GAA 

GTA A-3′) and the ITS2 reverse primer (5′-TTY GCT GYG TTC TTC ATC G-3′) (Wakelin et al., 

2007) with the Kapa 2G Fast PCR kit (Kapa Biosystems, Wilmington, Massachusetts, USA). 

Primer concentration was at 400 nM, and template DNA concentrations were standardized 

at 0.4 ng, 2 ng and 4 ng per reaction for root, leaf and stem tissue respectively, in a final 

reaction volume of 25 μL. DNA from unidentified fungal endophytes previously isolated from 

the respective organs of wheat samples was used as PCR positive controls. The PCR 

parameters consisted of initial denaturation at 95°C for 2 min, followed by 35 cycles of 95°C 

for 15 s, 55°C for 30 s and 72°C for 15 s, with a final elongation step at 72°C for 1 min. The 

quality of PCR products and product sizes were confirmed by agarose gel electrophoresis. 

 

All root, stem and leaf PCR products (15 μL per lane) were run along a 30-45% 

urea/formamide denaturation gradient on 6% gels (37.5:1 acrylamide/bisacrylamide (Sigma-

Aldrich)) at 100 V for 16 h in 60°C 1 x TAE buffer on the Bio-Rad DcodeTM Universal Mutation 

Detection System (Bio-Rad Laboratories Inc., USA). Gels were stained in a 1 x SYBR® Gold 

nucleic acid stain (Thermo Fisher Scientific) for 40 min and the images were captured on the 

I-chemi G-box gel documentation system (Syngene). Band presence / absence matrices with 

band pixel intensities were produced using Quantity One gel analysis software (Bio-Rad). 
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Differences in band composition (presence / absence of bands resolved by DGGE) among 

cultivars and tissue were tested by Permutational Multivariate Analysis of Variance 

(PERMANOVA) (Anderson, 2001) using Primer (v.6) (Clarke and Gorley, 2006). 

 

A Mantel test (Mantel, 1967), using Mantel’s asymptotic approximation (Douglas and Endler, 

1982), was performed to correlate band profiles between organs using PC-ORD (v. 4.25) 

(McCune and Mefford, 2011). 

 

Based on the banding profile data from DGGE gels of all the cultivar organs, it was decided to 

identify some of the band sequences in the Duzi cultivar that were commonly observed in 

the other cultivars as well. Replicate samples of root, stem, and leaf PCR products were 

pooled according to tissue type and run on a DGGE gel as before. The gel was stained with 

1 x SYBR® Safe (Thermo Fisher Scientific) and selected bands of suitable quality were excised, 

rinsed in sterile water and placed in a 1.5 mL tube with 100 μL of 0.5 x TE buffer and three 

2 mm zirconia beads (Biospec Products, Inc., Bartlesville, Oklahoma, USA). Samples were 

homogenized on a Biospec 16 bead beater (Biospec Products, Inc.) for 30 s and incubated 

overnight at 4°C. The samples were then centrifuged briefly and the supernatant used as 

PCR template at 1 μL per 25 μL reaction. The PCR was performed under the same conditions 

as before. Products were sent to Inqaba Biotec (Pretoria, South Africa) for sequencing using 

the Big Dye® Terminator kit (V3.1, Thermo Fisher Scientific) on the ABI 3500 XL Genetic 

Analyzer (Thermo Fisher Scientific). Sequences were checked for quality and submitted for 

BLAST searches (Altschul et al., 1990) on the NCBI database. Sample identity was assigned 

according to highest percentage matches that were found. 

 

4.3.4 Quantitative PCR (qPCR) and high-resolution melt (HRM) analysis 

PCR of samples of the replicates of root, stem and leaf DNA extracts from the four wheat 

cultivars was performed on a Rotor-Gene 6000 (Qiagen, Hilden, Germany) using the same 

primers as before, using the Kapa SYBR Universal qPCR kit (Kapa Biosystems). The PCR 

parameters consisted of a 10 min denaturing step at 95°C, followed by 40 cycles of 95°C for 

20 s, 52°C for 30 s and 72°C for30 s. This was followed by a high resolution melting step 

ranging from 75°C to 95°C at 0.1°C increments. Template DNA was at the same 
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concentration as before in a 25 μL reaction volume. A series of duplicate reactions from 

serial dilutions (100, 10-1, 10-2, 10-3 and 10-4) of previously extracted genomic DNA from 

Beauveria bassiana (Bals.-Criv.) Vuill. at a starting template concentration of 0.02 ng.μL-1 was 

included on the PCR run for the purposes of developing a standard curve for relative fungal 

DNA quantification, as an indicator of relative fungal biomass. 

 

Relative quantities of original DNA template for each template were calculated using the 

Rotor-Gene 6000 Series Software (v.1.7 (Build 75), Corbett Research, Mortlake, Australia). A 

two-way ANOVA was performed comparing log10 transformed relative DNA quantity 

between tissues and cultivars in Genstat (Payne et al., 2011). 

 

Principal Component Analysis (PCA) was performed on HRM profiles (dF / dT values per 

0.1°C increment) in Canoco 5 (Ter Braak and Šmilauer, 2012) and PERMANOVA and 

PERMDISP on the same data were performed in Primer 6 (Clarke and Gorley, 2006). 

 

4.3.5 Clone library sequence analysis  

Based on the DGGE gel observations root, stem and leaf tissue replicate PCR products were 

pooled according to organ type for the cultivar Duzi as a representative of general fungal 

endophyte composition for all cultivars. The products were also pooled to produce a clone 

library of the most common fungal endophytes within the replicated samples. Pooled 

products were purified using the Zymo SV Gel and PCR cleanup kit (Zymo Research, Irvine, 

California, USA). Clone libraries were produced using the Clonejet PCR Cloning Kit (Thermo 

Fisher Scientific) and E. cloni® 10G Chemically Competent Cells (Lucigen, Middleton, 

Wisconsin USA). Colonies were randomly selected and checked for suitably sized inserts and 

then ten PCR amplification products from each clone library per organ were sent to Inqaba 

Biotec for sequencing. Sequences were submitted for BLAST searches on the NCBI database 

for identification. 

 

A cladogram was produced to provide support for the identification of sequences identities 

that were returned from the BLAST search, as follows: a total of 54 sequences, including the 

30 from the 3 clone libraries and another 24 selected from the NCBI database were used to 
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develop a neighbour-joining tree (Saitou and Nei, 1987) in MEGA5 (Tamura et al., 2011) 

using the p-distance method (Nei and Kumar, 2000) after removing ambiguities. The tree 

was tested with 1000 bootstraps. 

 

4.4 Results 

4.4.1 DGGE gel profiles 

The DGGE gels showed profiles that appeared largely consistent between cultivars and their 

replicates. Groups of bands could be seen to occur in all cultivars and organs, and the 

identities of these recurring groups were determined from the sequences of excised bands, 

shown in Figure 4.1. 
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Figure 4.1 Fungal ITS PCR products for wheat root, stem, and leaf tissue separated on DGGE gels with 

each of the replicates for cultivars, Duzi (Lanes 1-4), Kariega (Lanes 5-8), Krokodil (Lanes 9-12) and 

Olifants (Lanes 13-16) and a marker (M). Excised band identities are indicated, representing Olpidium 

brassicae (Ob), Phoma terrestris (Pt), Cochliobolus lunatus (Cl) and Blumeria graminis (Bg). 

4.4.2 Gel analysis 

PERMANOVA of root, stem, and leaf band profiles showed no significant differences 

between cultivar profiles (p > 0.05). 

 

The Mantel test of DGGE band profiles showed negligible correlations (r ~ 0) and supported 

the null hypothesis of no relationship (p > 0.05) between the DGGE profiles of fungal 
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endophytes for different organs. This indicated that the fungal endophyte gel profiles 

differed significantly between roots, stems, and leaves. 

 

4.4.3 qPCR analysis 

 

A plot of the mean log10 transformed relative fungal DNA values for the four cultivars (Figure 

4.2) illustrated how differences in the fungal biomass per organ interacted with cultivar. 

 

 

Figure 4.2 Log10 transformed means of replicate leaf, stem, and root sample values for relative 

quantities of fungal DNA for the different cultivars, showing a switch in the pattern of organ 

colonization preference that was influenced by cultivar. 

 

The two-way ANOVA of log10 transformed relative DNA quantities (Table 4.1) revealed a 

cultivar x organ interaction effect on relative fungal DNA quantity, i.e., fungal biomass (p = 

0.026). There was also a significant difference in relative amounts of fungal biomass 

between organs (p < 0.001). The fungal biomass in roots and leaves did not differ, but both 

differed significantly from the amounts in stems (see Table 4.1). 
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Table 4.1 Results of a two-way ANOVA of log10 transformed relative DNA quantities for cultivar, organ and 

cultivar x organ effects. 

Source of 

variation 

d.f. (m.v.) s.s. m.s. f-ratio p-value 

Cultivar 3  0.3147 0.1049 f-ratio 0.545 

Organ 2  4.4968 2.2484 0.72 <.001 

Cultivar x 

Organ 

6  2.4058 0.4010 15.48 0.026 

Residual 35 (1) 5.0834 0.1452 2.76  

Total 46 (1) 12.2857    

Grand 

mean 

-2.507      

Cultivar Duzi Kariega Krokodil Olifants   

Mean -2.369 -2.540 -2.551 -2.571   

Organ Leaf Root Stem    

Mean -2.333f -2.252f -2.938g    

Cultivar x 

Organ 

Leaf Stem Root    

Duzi -1.844d -3.115ab -2.147cd    

Kariega -2.184bcd -3.132a -2.304abcd    

Krokodil -2.674abcd -2.848abc -2.131cd    

Olifants -2.629abcd -2.657abcd -2.427abcd    

Means with the same letters were not significantly different (p > 0.05) 

 

4.4.4 HRM analysis 

The PERMANOVA of the HRM profiles found no significant effects or interactions for 

cultivars; however, DNA profiles between organs differed significantly (p = 0.001). 

 

The PERMDISP analysis of HRM profiles found a significant difference in heterogeneity 

between organs (p = 0.001), but not between cultivars (p = 0.344). There was no significant 

difference in heterogeneity between roots and leaves (p = 0.327), but they both differed 

from stem tissue (p = 0.001), which had the most homogeneous profiles. 
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The PCA biplot of the HRM profile data (Figure 4.3) showed homogeneity among the 

samples from tissues, but not among cultivars. Root samples differed the most from leaf and 

stem samples. 

 

Figure 4.3 PCA biplot of HRM profile data for all replicates from all organs of each cultivar, showing 

the greatest variation explained by differences between organ-type, with no significant variability 

attributed to cultivar differences. 

 

4.4.5 Sequence analysis 

BLAST sequence identities of root (R1-10), stem (S1-10) and leaf (L1-10) fungal sequences 

were presented on a neighbour-joining tree (Figure 4.4) and revealed a high incidence of the 

obligate biotroph, Olpidium brassicae (Woronin) P.A. Dang. in all tissues. Except for a few 

matches with wheat DNA sequences, the sequences corresponded to fungal ITS sequences 

on the NCBI database. The sequences from root tissue included saprophytic fungi known to 

exist in soil and to associate with plant roots. The sequences from leaf tissue included 

sequences belonging to fungal species known to be endophytes or pathogens of wheat. 

Some typically root-associated organisms were also detected. 
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Figure 4.4 A neighbour-joining tree for 54 sequences including clone sequences, nearest Genbank 

matches, and selected sequences from Genbank. Bootstrap values above 70% are shown at nodes. 

The scale indicates the number of base differences per site. Cloned sequence clusters are assigned to 

fungal operational taxonomic units in bold. 
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4.5 Discussion 

The cultivation-independent approach in this study aimed to reveal culturable and non-

culturable fungal endophytes, and any host genotype effects or interactions that have not 

previously been revealed by culture-based studies of wheat endophytes. The root, stem and 

leaf fungal endophytes detected by PCR were visualized on DGGE gels, which were then 

analysed for evidence of a cultivar effect on fungal endophyte composition.  

 

Some taxa were represented by multiple bands (Figure 4.1), referred to as paralogues (Woo 

et al., 2010; Lewis et al., 2011). This phenomenon confounds diversity estimates from these 

gels and suggests that there were relatively few organisms detected by PCR and visualized by 

DGGE. Instances have occurred where DGGE has detected fewer species relative to culturing 

methods (Duong et al., 2006). In this study the application of systemic, broad-spectrum 

fungicides to the wheat plants in the field by the farmer would have reduced species 

richness, since Riesen and Close (1987) noted a reduction in the abundance of certain fungal 

endophytes in fungicide-treated barley leaves, and Karlsson et al. (2014) found that 

fungicides reduced fungal OTU richness in the wheat phyllosphere. 

 

PERMANOVA of DGGE band profiles indicated that host cultivar did not affect endophyte 

community composition, i.e., diversity of fungi was the same for all cultivars under these 

field conditions, as concluded in studies by Sieber et al. (1988) and Crous et al. (1995). 

Similarly, the tissue specificity revealed by the Mantel test was also supported by Crous et al. 

(1995), who found that fungal endophyte profiles differed between plant organs, and by 

Sieber et al. (1988), who reported that the plant organ had the greatest influence on fungal 

endophyte composition, while cultivar had the least effect. 

 

The two-way ANOVA of DNA quantities (Table 4.1) showed a cultivar x organ interaction for 

relative fungal endophyte biomass, although overall biomass between cultivars did not 

differ. The interactive effect of cultivar x tissue on fungal biomass showed that while total 

biomass remained constant, certain cultivars favoured denser endophytic colonization of 

certain tissues (Figure 4.2). This suggests that there is a controlled level of endophyte 

colonization within a plant, limiting the extent to which each organ is colonized by fungal 
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endophytes. The control of colonization by organisms in distal tissues is supported by the 

observation that signaling is essential to plant-microbe symbioses (Witzany, 2006) and that 

fungal leaf endophytes affect metabolic activity in host plant roots (Malinowski et al., 2000). 

 

Larran et al. (2007) attributed their findings of a microorganism x wheat cultivar interactions 

to the frequency of endophyte isolation. This could be indicative of differences in the extent 

of colonization, i.e., the relative biomass, of the microbes that were isolated. The 

quantitative nature of NGS (Amend et al., 2010) could have contributed to the discovery of a 

host genotype effect on fungal community composition in different wheat cultivars by 

Sapkota et al. (2015), who found significant differences in certain fungal OTU abundances. 

Therefore, the use of quantitative analysis by qPCR may be necessary for future 

investigations of host genotype effects on microbial endophyte composition, especially 

where differences in diversity are not evident and agronomic practices, e.g. fungicide 

applications, may influence endophytic association with host plants. 

 

The PERMANOVA of HRM data supported the findings of the DGGE, with no significant effect 

by cultivar on the HRM profiles, nor any interaction. The latter may seem to contradict the 

findings of the two-way ANOVA; however, this was because HRM profiles were derived from 

end-point PCR reactions, which did not provide quantitative information on fungal biomass. 

The reporting of this finding is mainly to recommend the use of HRM as a less labour-

intensive screening tool in fungal endophyte studies for comparing community profiles, as 

proposed by Hjelmsø et al. (2014). PCA of HRM data also provided graphic depiction of the 

homogeneity of stem samples relative to the leaves and roots, where there was greater 

heterogeneity. This information was confirmed by the PERMDISP analysis, which implied 

that the stems were a more restrictive environment for endophyte colonization than leaves 

and roots. 

 

The DNA sequence data emphasized the strengths of the molecular approach to endophyte 

studies. Considering that only 0.2 g of material per sample was analysed, the detected 

organisms probably represented the dominant systemic population within the plants, 
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representing the dominant organisms and the general fungal endophyte community 

composition within tissues and cultivars. 

 

The Genbank database has many erroneous taxonomic assignments to sequence data (Hyde 

and Soytong, 2008). Many of the uncultured Glomerales sequences were closely matched to 

Olpidium brassicae. It is unlikely that arbuscular mycorrhizal (AM) fungi are found in stems 

and leaves (see clade membership of root, stem and leaf OTU’s with O. brassicae in Figure 

4.4). Therefore, several NCBI sequences assigned to Glomerales are probably misidentified 

Olpidium sp. isolates. The identities of the detected sequences were inferred from clade 

membership on the neighbour-joining tree (Figure 4.4) because of such uncertainties in the 

BLAST search. 

 

Alternaria, Fusarium, Phoma and Epicoccum spp. are frequently isolated from wheat (Crous 

et al., 1995; Larran et al., 2002; Larran et al., 2007). Alternaria spp. and Fusarium spp. are 

economically important pathogens of wheat and produce mycotoxins (Magan et al., 1984; 

Snijders and Perkowski, 1990). Phoma spp. have been described as endophytes of certain 

grasses (Wang et al., 2007). Phoma glomerata (Corda) Wollenw. and Hochapfel has been 

reported as a pathogen of wheat (Hosford, 1975), but it has also been described as a 

mycoparasite of a powdery mildew (Sullivan and White, 2000). Its presence and role as a 

wheat endophyte may also be worthy of further investigation. Aureobasidium pullulans (De 

Bary) G. Arnaud ex Cif., Ribaldi and Corte and Epicoccum nigrum Link have been reported to 

be plant endophytes with biological control potential (Martini et al., 2009). Trichocladium 

spp. have been identified as grass endophytes (Márquez et al., 2010) and an endophytic 

Codinaeopsis sp. is the source of a compound named codinaeopsin, which has significant 

pharmacological properties (Rosa et al., 2011). Blumeria graminis (DC.) Speer causes 

powdery mildew of wheat (Bélanger et al., 2003). Therefore, the detected fungal 

endophytes were likely to have had a range of interactions that influenced wheat growth 

and health. The presence of the obligate biotroph, O. brassicae, seemed to be inversely 

correlated to the presence of B. graminis in leaf samples (see leaf gel in Figure 4.1), 

suggesting that these organisms may be antagonists. O. brassicae cannot presently be 

detected by a culture-based approach, which confirmed that the culture-independent 
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approach can reveal the presence of organisms and interactions that evade detection by 

culture-based methods. It is noteworthy that a substantial proportion of endophyte 

sequences, i.e., at least 33% of clones in the stem, 56% in the leaf tissue and as much as 90% 

in the root tissue (Figure 4.4) belonged to O. brassicae. While O. brassicae is known to 

associate with wheat (Zhang et al., 1994; Mozafar et al., 2000), the chytrids are a group of 

fungi rarely considered to be prevalent in agricultural environments, particularly as 

endophytes. Chytrids are reported to inhabit disturbed environments, (a definition which 

can describe a commercial wheat field), as well as being parasites of other fungi such as 

arbuscular mycorrhizal fungi (Klein, 2006). The absence of AM fungi in this study supports 

the notion that the O. brassicae displaced the AM fungi or parasitized them. The dominant 

endophyte, O. brassicae, may have filled a niche left by the suppression of AM fungi due to 

the application of phosphate-containing fertilizers (Graham and Abbott, 2000). These 

scenarios merit further investigation regarding the potential benefits or losses to wheat 

caused by this organism. Furthermore, the biology of such an unexpected endophyte invites 

speculation on the conditions that resulted in this organism associating with the host plant 

and the effect that it had.  

 

The culture-independent work in this study revealed that, under the study field conditions, 

the fungal endophytes detected were equally capable of colonizing all wheat cultivars, 

although there were differences in the endophyte composition of roots, stems and leaves. 

Therefore, while host genotype influences fungal endophyte composition, there may be a 

spectrum of influence, which can be overwhelmed by environmental factors, such as 

pesticide applications and land management. The agronomic practices that affect endophyte 

composition need to be explored further before the beneficial properties of such organisms 

can be harnessed. 
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Chapter 5 Next generation sequencing analysis of the effect 

of tebuconazole on wheat flag leaf eukaryotic endophyte 

composition 

5.1 Abstract 

Systemic fungicides used in wheat production are pathogenic to many plant-inhabiting fungi 

such as fungal endophytes. The aim of the study was to reveal the effect of tebuconazole on 

the eukaryotic endophytes of wheat flag leaves using next generation sequencing (NGS). 

Treated and untreated leaves were surface sterilized prior to metagenomic DNA (mDNA) 

extraction. NGS was performed on DNA amplified using universal ITS primers. SCATA analysis 

was used for operational taxonomic unit (OTU) assignment of sequences, which were 

identified against CBS, UNITE and Genbank databases. A maximum likelihood (ML) tree was 

developed for taxonomic assignment of key genera. OTU mean read numbers and OTU 

richness were compared. The treatment effects were analysed using Principal Component 

Analysis (PCA), permutational multivariate ANOVA (PERMANOVA), distance-based test for 

homogeneity of multivariate dispersions (PERMDISP) and similarity percentage analysis 

(SIMPER). With one exception, non-wheat OTUs belonged to the Dikarya. Puccinia read 

numbers differed significantly (P=0.01) between treatments and fungicide treatment tended 

to reduce total OTU read numbers and OTU richness. The variability of most key OTUs 

correlated positively with unsprayed samples. Treatment influenced OTU composition. 

Treated samples had the greatest homogeneity in endophyte composition and Puccinia 

made the greatest contribution to variation, with low contribution from the other OTUs. 

Dikarya were the dominant wheat flag leaf endophytes, and while the fungicide suppressed 

Puccinia and reduced fungal endophyte abundance, it did not significantly alter the 

community assemblage. 

5.2 Introduction 

Agronomic conditions, such as fungicide application, determine the composition of the 

endophytic eukaryotic organisms that reside within wheat (Burgdorf et al., 2016). Studies on 
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the effects of fungicides on wheat found that several fungicides, including tebuconazole, 

delayed wheat senescence and increased grain yield (Ruske et al., 2003; Zhang et al., 2010). 

A high-throughput sequencing study of wheat reported the reduced fungal species richness 

resulting from fungicide application and suggested that the suppression of phyllosphere 

saprotrophs was responsible for the delayed senescence and increased yield (Karlsson et al., 

2014). Further exploration using the power of next generation sequencing (NGS) may reveal 

additional factors that could explain these effects. For example, NGS has revealed that 

fungicide application is a major determinant of the fungal community composition 

(epiphytes and endophytes) on and within cereal leaves (Sapkota et al., 2015)  

 

NGS produces many thousands of reads per sample at an affordable price and is reducing 

the cost of DNA sequencing (Izard and Rivera, 2014). This makes the technology available to 

a wider range of scientists, including those studying endophytes by culture-independent 

methods (Akinsanya et al., 2015). The increased sampling depth offered by NGS allows for 

greater insight into the diversity and dynamics of endophyte communities (Bullington and 

Larkin, 2015). 

 

A PCR-based NGS approach requires the use of high-coverage primers to describe fungal 

community assemblages. Numerous primers have been recommended for the 

characterization of fungal endophyte communities and many of these try to provide a 

degree of taxon specificity; however, this introduces a level of bias to the PCR (Manter and 

Vivanco, 2007). This bias can be reduced by using classic universal primers with high-range 

species coverage (Martin and Rygiewicz, 2005, Tedersoo et al., 2010, Toju et al., 2012). In 

the case of eukaryotic endophytes, host plant DNA would be expected to co-amplify and 

then be sequenced as well. However, the high sequence depth of NGS (Smith and Peay, 

2014) would be expected to detect the most abundant endophytic DNA sequences present 

in the metagenomic DNA (mDNA) derived from host plant samples. 

 

The aim of this study was to investigate the effect of tebuconazole on both the fungal and 

non-fungal eukaryotic endophyte community composition of wheat flag leaves. This would 

be performed using universal eukaryotic PCR primers and the deep sequencing power of 



141 

 

NGS to establish the effect of fungicides on the dominant eukaryotic wheat flag leaf 

endophytes, which may include non-fungal organisms. 

 Materials and methods 

5.2.1 Wheat cultivation, fungicide application, sampling, surface 

sterilization, and storage 

Wheat (Triticum aestivum cv Duzi) was planted on the 12th of July 2013 at a rate of 54 kg.h-1 

in three 2.5 x 4.0 m plots at the Controlled Environment Facility at the University of KwaZulu-

Natal, Pietermaritzburg. Each plot was broadcast fertilized with 1 kg of general purpose 2:3:4 

(NPK) fertilizer (Gromor (PTY) Ltd, Cato Ridge, South Africa) at planting. 

 

Just prior to flag leaf emergence, the three plots were each divided into two on the longest 

side and separated using plastic sheeting to form a total of six sub-plots. Therefore, each full 

plot consisted of one fungicide treated (samples 1, 4 and 5) and one untreated (samples 2, 3 

and 6) sub-plot. Using a knapsack sprayer, plants in the treated sub-plots were sprayed to 

run-off with Folicur (25mL/10L), at the emergence of the flag leaves (Feekes Growth Stage 8) 

on the 21st of August 2013, and again at flowering (Feekes Growth Stage 10.5.1) on the 12th 

of September 2013. Mean temperature and total rainfall over the growth period are 

presented in Table 5.1. 

 

Table 5.1 Mean minimum and maximum temperatures and total monthly rainfall for July to October 

2013. Data provided by the AgMet department at UKZN. 

Month Mean minimum temperature 

(˚C) 

Mean maximum temperature 

(˚C) 

Total rainfall 

(mm) 

July 4.9 22.2 5.6 

August 6.3 23.7 14.7 

September 7.4 25.7 18.0 

October 9.2 24.2 137.4 

 

A total of thirty-six flag leaves from individual plants were randomly collected per sub-plot 

on the 12th of October 2013 at Feekes Growth Stage 11.1. Dried leaf tips were removed to 
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exclude senesced material. Leaves were surface sterilized, using a modification of the 

technique described by Arnold et al. (2007), because of the large number of leaves and their 

size (Burgdorf et al. 2014). Leaves were rinsed for 1 min under tap water, and then using 

clean 10 L buckets (washed thoroughly with soap decontaminated with 0.5% NaOCl and 

rinsed with sterile autoclaved ultra-pure water), leaf samples were immersed in 95% ethanol 

for 5 s, 0.5% NaOCl for 2 min and 70% ethanol for 2 min. Samples were then rinsed in ultra-

pure water, dried in a laminar flow cabinet and then stored at -80˚C. 

 

5.2.2 DNA extraction 

All extraction processes took place in a laminar flow using equipment that had been washed 

with soap, decontaminated with 0.5% NaOCl, rinsed with sterile ultra-pure water and 

autoclaved where possible. For each sample (n = 6) the 36 leaves were frozen in liquid 

nitrogen and homogenized in a Waring 8009L stainless steel blender (Conair Corporation, 

East Windsor, NJ, USA). A 1.5 g subsample of the pulverized mixture was placed in a sterile 

plastic 50 mL conical tube. The DNA was extracted as per a modified version of the method 

described by Kang et al. (1998): 15 mL of Buffer 1 (0.5% SDS, 0.2 M Tris, 0.2 M NaCl and 

0.025 M EDTA, pH 8.0) was added to the tubes. The samples were mixed gently and frozen 

overnight at -20˚C. The tubes were then incubated at 80˚C for 2 hours. This was followed by 

the addition of 15 mL of Buffer 2 (2% CTAB (w/v), 0.1 M Tris, 0.02 M EDTA, 1.4 M NaCl, 1% 

polyvinylpyrrolidone MW 40,000, pH 8.0). The samples were frozen again overnight at -20˚C. 

To each of the tubes 15 mL of chloroform: isoamyl alcohol (24:1) with 5% phenol (pH 8.0) 

was added. The samples were shaken at 40 rpm on an MRC benchtop orbital shaker (MRC, 

Holon, Israel) for 1 h. The tubes were then centrifuged at 10,000 x g for 10 min. For each 

sample, 600 μL of supernatant was removed and mixed with 400 μL of isopropanol in a 2 mL 

microtube. The tubes were inverted several times and then centrifuged at 16,000 x g for 10 

minutes at 4˚C. The supernatants were discarded and the pellets were washed twice with 

70% ethanol and then dried in a laminar flow cabinet. The pellets were re-suspended in 

100 μL of 1 x TE buffer and the purified DNA was checked for quantity and quality on a 

Nanodrop 1000 (Thermo Fisher Scientific, Inc., Waltham, Massachusetts, USA) and by 

agarose gel electrophoresis. 
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5.2.3 Sequencing 

The extracted DNA was sent to Inqaba Biotec (Pretoria, South Africa), where genomic DNA 

was standardized to 30 ng of template DNA per PCR reaction, and amplified using the 

universal primer pair ITS5 and ITS4 (White et al., 1990) with the addition of indexing 

adapters on the 5′ end of each primer. Gel purified amplicons of size range 500-700bp were 

individually indexed and sequenced using the MiSeq V3 sequencing kit on the Illumina MiSeq 

platform (Software version 1.8) (Thermo Fisher Scientific). 

 

5.2.4 Sequence analysis and OTU assignment 

Raw files were received from Inqaba Biotec and sequence quality of raw data for each of the 

samples was checked using FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The indexed and Q30 quality 

filtered files also supplied by Inqaba Biotec were processed further, using the SCATA pipeline 

(Durling et al., 2011) as follows: All six forward read FASTQ files were merged in Bio Linux 8 

and uploaded as a single FASTQ file to the SCATA server for clustering and operational 

taxonomic unit (OTU) assignment. Quality data was ignored and OTUs were assigned with a 

proportional primer match of 0.7, 3% clustering distance, a 200bp minimum length of 

pairwise alignment, and using the ‘CBS isolates’ and ‘UNITE Dec. 2014’ reference databases 

to tentatively identify OTUs. All other settings were left at default. After the OTU assignment 

and identification had taken place, discarding any singletons (Karlsson et al., 2014), the 

sequence clusters were labeled (OTU1 to OTU86) and paired with their respective sequences 

in BioEdit (version 7.2.0) (Hall, 1999) to produce a FASTA file. This file was uploaded to 

SCATA as a reference database to produce OTU tables for all samples. Individual samples 

were then run against this reference database, using the same parameter settings as before. 

The previously assigned OTUs were identified for each sample and OTU tables produced in 

Microsoft Excel 2010 (Microsoft, Redmond, Washington, USA) for further comparison. As 

before, all singletons in individual samples were discarded. 

 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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5.2.5 Phylogenetic tree and taxonomic assignment 

NGS read abundance is semi-quantitative (Amend et al., 2010); therefore, the wheat 

sequence read numbers were used as an internal quantity standard for relative individual 

OTU abundance among species and samples. OTU numbers were standardized by scaling 

down all sample wheat read numbers to rounded relative proportions of the lowest 

recorded wheat sequence read number value. The data from the OTU tables were then 

filtered to exclude all wheat sequences and those that were represented by standardized 

read numbers of less than 1% of the total non-wheat sequence reads. Since the SCATA OTU 

identification yielded multiple identities for many of the remaining OTUs, the sequences 

were matched to the nearest identities by performing a BLAST search (Altschul et al., 1990) 

on the NCBI Genbank database (http://blast.ncbi.nlm.nih.gov/Blast.cgi). For each of the 

OTUs, the highest scoring sequence matches with identities at greater than 97% coverage in 

genera proposed by SCATA, were downloaded from Genbank and used to produce the 

phylogenetic tree. The sequences were aligned in BioEdit using ClustalW (Thompson et al., 

2002). Molecular phylogenetic analysis was performed in Mega6 (Tamura et al., 2013), a 

model test was performed and evolutionary history was inferred by the maximum likelihood 

(ML) method based on the Tamura 3-parameter model (Tamura, 1992). The initial tree for 

the heuristic search was obtained automatically by applying the maximum parsimony 

method. A discrete gamma distribution was used to model evolutionary rate differences 

among sites (5 categories (+G, parameter = 2.4807)), eliminating all positions containing 

gaps and missing data. The ML tree that was produced was used to establish the most 

probable taxonomic identity of the OTUs that were assigned within the samples. 

 

5.2.6 Statistical analyses of effects of the fungicide treatment 

A paired t-test (Microsoft Excel 2010) compared the mean log10(1 + x) transformed 

standardized OTU read numbers individually for each of the eight dominant OTUs between 

the two treatments. A paired t-test also compared mean total OTU richness between 

treatments and log10 transformed mean total standardized OTU read numbers, including 

those which occurred at frequencies less than 1% of total OTU read numbers, between 

treatments. For Principal Component Analysis (PCA), only standardized log10(1 + x) 

transformed read numbers for OTUs representing more than 1% of total read numbers were 
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included. The PCA triplot was produced in Canoco 5 (Ter Braak and Šmilauer, 2012). 

Permutational ANOVA (PERMANOVA), using a Monte Carlo permutation test (recommended 

for small sample numbers); Euclidean distance-based test for homogeneity of multivariate 

dispersions (PERMDISP); and similarity percentage analysis for species contributions 

(SIMPER) were performed using Primer 6 (Clarke and Gorley, 2006) on standardized 

log10(1 + x) transformed read numbers for OTUs representing more than 1% of total read 

numbers.  

5.3 Results 

5.3.1 Sequence analysis and OTU assignment 

Mean raw data file size was 281.5 ± 59.3 Mb in size. The mean Q30 filtered file size was 

239.2 ± 52.3 Mb for the forward reads and 7.8 ± 1.7 Mb for the reverse. The FastQC analysis 

showed that while the forward reads were suitable for further analysis, but the reverse 

reads had substantially higher error levels; therefore, only the forward reads were 

considered for further analysis in this study. 

 

After SCATA analyses and the removal of singletons from the forward reads, total sequences 

numbers were 2,198,001 reads, of which wheat sequences accounted for 2,191,146 

(99.69%) and 6855(0.31%) non-wheat OTUs. Individual sample sequence read numbers 

ranged from 286,380 to 483,052 reads (mean = 366,333.5 ± 78760.8 reads). In these 

samples, wheat sequences represented 99.85 to 99.94% of reads. A total of 86 OTUs were 

assigned by SCATA from the merged sample data. Of the 86 OTUs, 35 were identified as 

wheat sequences. Only 44 of the original OTUs were identified in the analysis of the six 

samples against the merged file OTU reference database. An additional two read clusters 

that were not assigned OTUs in the merged data used to produce a reference database were 

found separately in two of the individual samples. Of the 46 OTUs, four could not be 

matched to any known sequences and one OTU sequence found only in one sprayed wheat 

flag leaf sample matched that of the bird cherry-oat aphid, Rhopalosiphum padi L. The rest 

were all members of the Dikarya. Non-wheat sample read numbers for the 46 OTUs ranged 

from 2 to 4,370 reads per OTU. 
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The SCATA derived OTU identities in several cases resulted in multiple species within 

multiple genera (Table 5.2). However, a search of Mycobank (www.mycobank.org) for some 

of the genera, such as Stagonosporopsis , Peyronellaea, Boeremia and Didymella indicated 

that these were synonymous with Phoma sp., and that some Botryotinia sp. are teleomorphs 

of a Botrytis sp. Therefore, not all genera were included in the phylogenetic analysis to avoid 

duplication or redundancy. Additionally, Genbank searches of genera such as 

Sphaerothyrium and Myriosclerotinia did not yield sequences for inclusion as matches were 

not found that had more than 97% coverage. There were a total of 6855 reads for the OTUs 

that were represented by more than 1% of the sequences in the total non-wheat read 

sequences. These were regarded as the most abundant OTUs, which were subjected to 

further analyses. 

 

Table 5.2 Taxonomic assignments by SCATA from the UNITE/CBS databases for the most abundant 

OTUs represented by more than 1% of non-standardized wheat reads. 

OTU Genera Total read numbers 

per OTU 

2 Puccinia, 4370 

3 Aspergillus 536 

4 Cladosporium, Mycosphaerella 525 

5 Articulospora 312 

6 Phoma, Epicoccum, Stagonosporopsis, Peyronellaea, Boeremia, 

Didymella, Macroventuria, Sphaeriothyrium 

257 

7 Sclerotinia, Botryotinia, Dumontinia, Ciboria, Myriosclerotinia, 

Monilinia, Botrytis 

207 

8 Pleurotus, Lentinus 159 

9 Alternaria 154 

 

5.3.2 Phylogenetic tree and taxonomic assignment 

The ML tree that was produced (Figure 5.1) had 173 positions in the final dataset. Apart 

from OTU5, all the other eight most abundant OTUs had 100% matches to sequences in the 

Genbank database, several of which were type material (Figure 5.1). A pairwise alignment 
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search on the CBS database confirmed a 99% match for OTU5 with Articulospora proliferata 

A. Roldán and W.J.J. van der Merwe (Accession no. SH148516.06FU). 
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Figure 5.1 A maximum likelihood tree with bootstrap values above 70 shown at nodes and the scale 

indicating the rate of base pair substitution. 
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From the ML tree (Figure 5.1) and searches on the CBS database, taxonomic assignments 

were proposed for each of the eight dominant OTUs. The species identity was mostly 

uncertain, as several OTUs shared 100% sequence matches with multiple taxa, e.g., OTU3 

matched type material sequences for both Aspergillus flavus Link and Aspergillus oryzae 

(Ahlb.) Cohn and OTU4 matched type material sequences for both Cladosporium varians U. 

Braun, Melnik and K. Schub. and Cladosporium colombiae K. Schub. and Crous. In most 

cases, taxonomy could be proposed with a degree of confidence to at least the genus level, 

as shown in Table 5.3. The table shows that all major taxa were members of the Dikarya and 

most taxa belonged to the Phylum Ascomycota. The highest read numbers were for Puccinia 

Pers., a genus containing known biotrophic wheat pathogens (Scott, 1990). The rest of the 

genera contain species that have been recorded as endophytes of plants, including wheat, as 

well as those that have been classified as wheat pathogens. 

 

Table 5.3 Proposed taxonomic assignment to genus level for OTUs represented by more than 1% of reads as 

inferred from the ML tree in Fig 5.1. 

OTU  Phylum Class Order Family Genus % of non-

wheat reads 

2 Basidiomycota Pucciniomycetes Pucciniales Pucciniaceae Puccinia 65.5 

3 Ascomycota Eurotiomycetes Eurotiales Trichocomaceae Aspergillus 7.0 

4 Ascomycota Dothideomycetes Capnodiales Davidiellaceae Cladosporium 7.7 

5 Ascomycota Leotiomycetes Helotiales Helotiaceae Articulospora* 

 

4.7 

6 Ascomycota Dothideomycetes Pleosporales Pleosporaceae Epicoccum 3.9 

7 Ascomycota Leotiomycetes, Helotiales Sclerotiniaceae Sclerotinia 2.5 

8 Basidiomycota Agaricomycetes Agaricales Pleurotaceae Pleurotus/Lentinus 1.9 

9 Ascomycota Dothideomycetes Pleosporales Pleosporaceae Alternaria 2.3 

* As inferred from the CBS database sequence match 
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The stack plot of the sample OTU composition (Figure 5.2) using the log10(1+x) 

transformation of standardized read numbers suggested that Puccinia dominated the 

community composition of unsprayed wheat. 

 

 

Figure 5.2 A stack plot log10(1 + x) transformed standardized read numbers showing OTU proportions 

of total reads for samples that were unsprayed or sprayed with fungicide. 

 

5.3.3 Statistical analyses of effect of fungicide treatments 

The paired t-tests for individual OTU read numbers that were presented graphically in the 

stack plot (Figure 5.2) found that only Puccinia (p = 0.04) and Alternaria (p = 0.02) differed 

significantly between samples. 

 

The graphical comparison of the log10 of mean sequence numbers per treatment (Figure 

5.3 a) showed total OTU read numbers tended to be higher in unsprayed samples, although 

the paired t-test indicated that the differences were not significant (p = 0.15). A graphical 

comparison of mean OTUs per treatment (Figure 5.3 b) suggested that OTU richness tended 

to be greater in unsprayed wheat flag leaf samples, although the paired t-test did not find 

the difference to be significant (p = 0.44). 
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Figure 5.3 (a) A scatter plot of sample log10 transformed fungal OTU sequence read numbers per 

treatment, with a bar showing the mean value. (b) A scatter plot of sample OTUs per treatment, with 

a bar showing the mean values, for samples that were unsprayed or sprayed with fungicide. 

 

The PCA triplot (Figure 5.4) demonstrated a spraying effect on OTU composition. Most OTU 

read numbers were positively correlated with the unsprayed samples, displaying strong 

correlations between increases in OTU2, OTU4 and OTU9 and no fungicidal application, and 

a weak correlation between either treatment and OTU7 and OTU8. Therefore, spraying 

reduced the abundance of OTU2, OTU9, OTU4, and to a lesser extent, OTU5, whereas OTU6, 

OTU3, OTU7 and OTU8 appeared to be relatively unaffected. 
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Figure 5.4 PCA triplot showing variation in the abundance of OTUs (arrows), samples (points) and 

treatment centroids (triangles) for log10(1+x) transformed standardized OTU read numbers. 

 

PERMANOVA analysis results (Table 5.4) suggested that treatment with the fungicide tended 

to alter community composition (Pseudo-F = 3.7765, p(MC) = 0.057). 

 

Table 5.4 Results of PERMANOVA analysis for log10(1+x) transformed standardized OTU read 

numbers for OTUs represented by more than 1% of non-wheat sequences, revealing a discernible 

effect on sample community composition caused by fungicide application. 

Source df SS MS Pseudo-F p(perm) Unique 

perms 

p(MC) 

SP 1 57.586 57.586 4.3141 0.109 10 0.057 

Res 4 53.393 13.348     

Total 5 110.98      
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The PERMDISP pairwise comparison results indicated that sprayed treatment tended to be 

more homogenous in OTU composition than non-sprayed samples (Table 5.5), but because 

of the small sample size, dispersions were not significantly different (p(perm) = 0.115).  

 

Table 5.5 Means and standard errors for dispersions of log10(1+x) transformed standardized OTU 

read numbers for OTUs represented by more than 1% of non-wheat sequences, showing greater 

mean dispersion for unsprayed samples, which indicates that they had a greater composition 

heterogeneity. 

Group Size Mean SE 

Sprayed 3 1.79 0.94 

Unsprayed 3 3.73 0.57 

 

The SIMPER analysis indicated that OTU2 (Puccinia) contributed most of the variability 

between treatments (97.7%), followed by OTU4 (Cladosporium) (1.4%), while the remainder 

of the most abundant OTUs (OTU3 to OTU9) collectively contributed less than 1% to 

variation in Euclidean distance between treatments. 

 

5.4 Discussion 

The combined depth of sequencing by NGS and the broad taxonomic range of universal PCR 

primers was used to establish what the dominant eukaryotic endophytes were within the 

flag leaves of wheat, and to observe how they were affected by a systemic fungicide. A 

greater number of sequences were produced than by traditional clone library sequencing 

approaches, although a substantial portion of the data from the reverse reads was not 

suitable for further analysis. 

 

The poor quality of the reverse reads on the Illumina MiSeq platform has been reported as a 

problem (Quail et al., 2012, Bolger et al., 2014). The exclusion of the reverse read data from 

the analysis was further justified because of the great difference in magnitude between the 

final quality filtered forward and reverse read data, and the sequence composition variation 

that would result from this. However, the use of the forward reads was justified because the 
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difference between the raw data and Q30 filtered data for forward reads was low and the 

FastQC analysis indicated that the data quality was good. 

 

The high incidence of wheat sequence reads was expected because the ITS5 and ITS4 

primers developed by White et al. (1990) had few internal mismatches with the wheat 

priming site, and no terminal 3′-end mismatches. In PCR, mismatches at the 3′-end of the 

primer inhibit (but do not prevent) the amplification of non-target sequences, while internal 

mismatches can have a negligible effect on amplification (Stadhouders et al., 2010). To 

illustrate the problem of low primer specificity, in an NGS study of soil fungi using fungal-

specific primers it was found that almost half of the sequences amplified from soil were of 

non-fungal origin, almost half of those were of plant origin, and from 16 soil samples, almost 

80% of the total data was discarded after data filtering (Schmidt et al., 2013). This also 

demonstrated the extent to which NGS can harness the depth of sequencing to analyze 

microbial community composition, even when the great majority of sequences are not from 

target organisms. 

 

The impartial amplification of both wheat and insect ITS1 regions demonstrated the capacity 

to amplify a broad taxonomic range due to the lack of specificity of the primers used in this 

study. However, all the detected microbial eukaryote sequences belonged to the Dikarya 

(Tables 5.2 and 5.3), which partially validates the development of Dikarya specific primers 

by, for example, Toju et al. (2012). Despite the relatively low number of non-wheat 

sequences detected, the number of sequence reads produced (Table 5.2) in this work would 

have required far greater effort using a traditional clone library approach, where PCR 

amplicons are ligated to plasmids, E.coli transformed, and individual colonies selected at 

random to represent individual sequences. Using this approach to produce as many 

sequences as shown in Table 5.2 would be prohibitive in terms of time and cost. 

 

The ML tree (Figure 5.1) was developed to provide the most likely taxonomic assignments 

for the most abundant OTUs. The major clades formed by the ML tree (Figure 5.1) separated 

the OTUs according to phyla. OTU2 and OTU8 were both Basidiomycetes and formed a 

distinct branch from all the other OTUs, which were Ascomycetes. The more detailed 
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taxonomy of the proposed genera (Table 5.3) was well supported by the clades formed in 

the ML tree. OTU5 and OTU7 are correctly grouped together in the order Heliotales; OTU6 

and OTU9, which are grouped closely with one another (Figure 5.1), are also members of the 

family Pleosporaceae (Table 5.3). This provided confidence in the model used to produce the 

tree, as well as the taxonomic assignment to the genera proposed in Table 5.3. 

 

The identities inferred from the ML tree (Figure 5.1) were considered in terms of the 

taxonomic and biological likelihood of the taxonomic assignment. OTU2 was identified as a 

member of the genus Puccinia Pers., a group of rust-causing fungal diseases of wheat (not an 

endophyte sensu stricto), identified as either P. triticina Erikss., or 

P. persistens var. triticina (Erikss.) Z. Urb. and J. Marková. However, according to the 

MycoBank database (www.mycobank.org) these two are synonymous. P. triticina is one of 

the most widespread wheat leaf rust species (Huerta-Espino et al., 2011) and it was 

recognized in KwaZulu-Natal, South Africa after 2007 (Terefe et al., 2009), which validates 

this taxonomic assignment of OTU2 to P. triticina.  

 

OTU3 was found to be a member of the genus Aspergillus P. Micheli ex Haller. A. flavus is a 

mycotoxin-producing opportunistic plant pathogen and A. oryzae is a domesticated fungus 

used in food production. These are closely related species within the same sub-genus 

(Machida et al., 2005). This explains the 100% match of the OTU3 sequence to both type 

specimens on Genbank. Aspergillus spp. are not typical wheat pathogens and Larran et al. 

(2002) isolated an endophytic Aspergillus sp. from wheat leaves. While A. oryzae has been 

reported as an endophyte of coffee (Chaves et al., 2012), assignment to species level was 

uncertain. 

 

 The two Cladosporium type-specimens matched with OTU4 suggested that this OTU is a 

member of the genus Cladosporium; however, the Mycobank database indicated that these 

were distinct organisms. Members of this genus have been reported as endophytes, most 

notably a Taxol-producing species (Zhang et al., 2009). Cladosporium spp. have been 

identified as wheat phyllosphere inhabitants (Karlsson et al., 2014). Along with Alternaria 

spp., Cladosporium spp. have been reported as the dominant fungal species within the 

http://www.mycobank.org/
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phyllosphere of cereal crops, including wheat (Sapkota et al., 2015). A member of this genus, 

C. herbarum (Pers.) Link has been described as a pathogen of wheat. While a BLAST search of 

the Genbank database limited to this wheat pathogen yielded a 99% match with 100% 

coverage, considering the erroneous multi-species matches in non-curated databases 

(Nilsson et al., 2006), the species identity was inconclusive.  

 

OTU5 matched Articulospora proliferata, which has been reported as a grass endophyte 

(Martin and Dombrowski, 2015) and it has been described as an aquatic hyphomycete in 

South Africa and Spain (Jooste et al., 1990). It has probably not been reported as an 

endophyte more frequently because it belongs to a group of fungi that are difficult to isolate 

and culture (Sugahara et al., 2008).  

 

Epicoccum nigrum Link is the likely identity of OTU6 as it has frequently been associated with 

wheat, often as an endophyte (Sieber et al., 1988, Crous et al., 1995, Larran et al., 2007, Blixt 

et al., 2010, Vujanovic et al., 2012, Karlsson et al., 2014, Nicolaisen et al., 2014).  

 

A literature search did not yield any reports of Sclerotinia spp.as either endophytes or 

pathogens of wheat. The same was true for the closely related Botrytis cinerea Pers.; 

therefore, this is a first report of Sclerotinium/Botrytis as a wheat endophyte or pathogen, 

although species identity was uncertain. 

 

OTU8 that was identified as a Pleurotus/Lentinus sp. A Pleurotus sp. has been identified as a 

root endophyte of barley (Lopez-Llorca et al., 2006) and another species was isolated from 

grape leaves (Brum et al., 2012). The detection of this fungus as a dominant endophyte of 

wheat was unexpected and worthy of further investigation; however, it was beyond the 

scope of this study.  

 

The genus Alternaria Nees has been associated with wheat. A. alternata (Fr.) Keissl. has been 

isolated from wheat leaves with high frequency (Crous et al., 1995, Larran et al., 2002); and 

the pathogen A. triticina Prasada and Prabhu causes a foliar blight in wheat (Chaurasia et al., 

2000). The 100% ITS1 matches to multiple Alternaria species (Figure 5.1) could infer that the 
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species proposed as identities from the ML tree are closely related. However, the previous 

description of A. alternata as a frequently isolated wheat leaf endophyte in Argentina and 

South Africa, as well as the sample leaves having been asymptomatic, suggests that OTU9 

represented A. alternata.  

 

The organisms associated with the eight OTUs, OTU2 to OTU9, were considered the key 

species because they were abundant enough to be ecologically meaningful in the endophyte 

community of the sampled wheat flag leaves. Another NGS study of the wheat phyllosphere 

mycobiome also found fewer than ten dominant fungal species in the endophytic and 

epiphytic community combined (Sapkota et al., 2015). As a percentage of total reads, the 

most abundant genus detected was Puccinia (Table 5.3). This was influenced by the high 

read numbers for OTU2 in the unsprayed samples (see Figure 5.2). The remainder of the key 

OTUs were at substantially lower levels, indicative of a quantitative difference between 

pathogens and endophytes.  

 

From the results of the paired t-tests comparing OTUs and the stack plot (Figure 5.2), OTU2 

(Puccinia) and OTU9 (Alternaria) were the only OTUs that had a significant difference in 

presence. The stack plot also showed that all OTUs were represented in both treatments and 

in most samples. Therefore, the fungicide treatment did not affect the species assemblages 

and that the most observable effect was in suppressing  rust, which is a disease that 

tebuconazole is intended to control (Milus, 1994), and Alteraria, which is a source of 

mycotoxins in wheat (Patriarca et al., 2007).  

 

It has been proposed that the lack of difference in endophyte species composition could be 

due to the presence of DNA from non-living fungi that had been killed by the fungicide 

(Karlsson et al., 2014), which requires further investigation; however, the substantial 

differences in Puccini sp. reads between sprayed and unsprayed leaves challenged this 

explanation, because this substantial difference was not observed in the other endophytes. 

 

Comparisons between treatments indicated that unsprayed samples had higher 

standardized read numbers (Figure 5.3 a) and more OTUs (Figure 5.3 b). Previous NGS 
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studies have also found that mean OTU richness of the phyllosphere was greater for 

unsprayed leaves (Sapkota et al., 2015; Karlsson et al., 2014). The lower standardized read 

numbers for non-wheat OTUs (Figure 5.3 b) demonstrated the suppression of fungal growth 

within the flag leaves by the systemic fungicide. The reduced OTU abundance due to 

fungicidal activity has also been observed in other studies (Sapkota et al.,2015; Karlsson et 

al.,2014). 

 

The PCA triplot (Figure 5.4) summarized the data, showing that there was a clear fungicidal 

effect on the endophytic community composition. The unsprayed samples had not been 

treated with a systemic fungicide; therefore, the observation that there were positive 

correlations between these and the variation in most of the key OTUs (Figure 5.4) was 

expected. The weak effect on variation in OTU7 and OTU8 was because the organisms they 

represent were less sensitive to the fungicide (Karlsson et al., 2014). The PERMANOVA 

analysis supported what is apparent in the stack plot of genera (Figure 5.2), where 

community composition was altered in terms of relative abundance of the key OTUs; and the 

PERMDISP analysis showed that, as is visible from the dispersion of samples in the PCA 

triplot and Table 5.5, OTU variation was greatest in unsprayed samples, because the Puccinia 

flourished in the absence of the fungicide, with only the plant defences to suppress it. This is 

evident from the SIMPER analysis, which showed that 97% of the variation between 

treatments was due to OTU2. OTU4 (Cladosporium sp.), contributed the next largest amount 

of variation (1.4%), which was negligible in comparison, as were the rest of the OTUs. From 

this, it is apparent that the fungicide had the greatest effect on the pathogen it was targeted 

at, although it did not have a significantly detrimental effect on the other endophytes. This 

supports the potential use of fungal endophytes as biological control agents, even in 

commercial wheat cultivation where tebuconazole is applied. It also supports the suggestion 

that the available environmental candidate endophytes have a predominant influence on 

fungal endophyte community composition (Burgdorf et al, 2016). 

 

Our studies regarding the effects of the fungicide on the fungi associated with wheat leaves 

were supported by the conclusions of Karlsson et al. (2014). However, the bulk of the 

dominant non-pathogenic organisms they detected were categorized as yeasts. None of the 
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most abundant organisms in this study were yeasts (Figure 5.2) because the surface 

sterilization removed epiphytes and their DNA (Burgdorf et al., 2014). This was an example 

of the greater abundance of epiphytes compared with endophytes (Lindow and Brandl, 

2003). 

 

This study demonstrated that the universal eukaryotic primers confirmed Dikarya to be the 

dominant endophytes residing within the flag leaves of wheat, regardless of whether they 

were sprayed with a systematic fungicide or not. It also showed that tebuconazole slightly 

reduced the number and abundance of fungal species, as well as the community 

composition, but that the types of organisms that were present did not alter significantly. 

NGS analysis can be used to determine the effects of fungicides on endophytic community 

composition, particularly during co-infection by pathogens, such as Puccinia. This may help 

with developing new integrated pest management strategies based on the effects of the 

fungicides. 
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Chapter 6 Enhanced PCR detection of Puccinia and fungal 

endophytes of wheat using non-extendable blocking 

primers 

6.1 Abstract 

PCR-based studies of plant pathogen and endophyte community composition are 

constrained by primer problems such as variable amplification efficiency and non-target 

sequence amplification. This study developed non-extendable blocking primers (NEBPs) for 

use with universal eukaryotic ITS-PCR primers, to enhance target Puccinia Pers. and 

endophyte sequence amplification while suppressing host wheat DNA amplification. These 

NEBPs were 100% complementary to the priming site and flanking regions for wheat. ITS-

PCR products under increasing concentrations of NEBPs were compared on agarose gels. 

Diluted ITS-PCR products were used as template in qPCR assays of wheat host and Puccinia 

amplicon production under increasing NEBP concentrations. Gel analysis showed the 

suppression of wheat DNA amplification, while non-host target sequence amplification was 

enhanced as NEBP concentrations increased. The qPCR assay of wheat amplicons from ITS-

PCR products showed a linear decrease in wheat amplicons as NEBP concentration 

increased. Puccinia-specific qPCR of ITS-PCR products showed a non-linear association 

between Puccinia sequence quantities and increasing NEBP concentrations. Puccinia 

sequence amplification increased up to a specific NEBP concentration after which 

amplification was suppressed. It was shown that universal primers used with optimal NEBPs 

concentrations successfully suppressed host wheat DNA amplification with enhanced 

Puccinia and eukaryotic endophyte DNA amplification. 

6.2 Introduction 

PCR, followed by next generation sequencing (NGS), can reveal the species composition of 

fungi that infect plants, either as pathogens or endophytes (Knief, 2014). However, bias 

introduced during PCR amplicon formation can have a great impact on subsequent NGS data 

(Shokralla et al., 2012). Bellemain et al. (2010) showed that PCR primers are a significant 

source of such bias in the amplification of fungal sequences. While considering this problem, 
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Ihrmark et al. (2012) explained that it is difficult to develop primers that are both wide-

ranging, i.e., ‘universal’, as well as specific to a desired group of organisms. In other words, it 

may not be possible to design primers that specifically amplify fungi but exclude all other 

non-fungal organisms. Further to this, Toju et al. (2012) found that certain primers that 

amplify the fungal ITS region also amplify non-target sequences in mixed-template 

metagenomic DNA (mDNA). Clearly this is a significant problem in PCR-based detection of 

fungal pathogens and endophytes where the overwhelming majority of the DNA available 

belongs to the host plant. 

 

Vestheim and Jarman (2008) offered a solution to this problem. They proposed that 

universal primers that target conserved regions could be used in mixed template PCR, 

provided that they are prevented from annealing to matching sequences of non-target host 

DNA. This is achieved by including a non-extendable blocking primer (NEBP) at the annealing 

site for each of the extending primers. These oligonucleotide sequences are perfectly 

complementary to the region spanning the primer annealing site for non-target template 

DNA but have been modified to prevent extension by the polymerase enzyme. These NEBPs 

are typically longer than the amplifying primers and consequently, have higher annealing 

temperatures. The NEBPs bind to the priming region before the amplifying primers can 

anneal and, as a result, they prevent the amplification of that sequence (Vestheim and 

Jarman, 2008). 

 

This technique was originally developed by Vestheim and Jarman (2008) for a PCR-based 

study of the stomach contents of krill. Subsequently, Boessenkool et al. (2012) employed the 

same technique to block human contaminant DNA in a study of rare ancient mammal DNA. 

Leray et al. (2013) also showed that such NEBPs were more effective than predator DNA 

digestion in PCR-based DNA identification of prey species from the gut contents and faeces 

of coral fish. Further utilizing the enhanced detection capability of this approach, Wang et al. 

(2013) designed NEBPs to detect rare cancer mutations in tumours. Applied to plants, NEBPs 

were utilized to study bacterial endophyte communities in a species of North American 

prairie grass, resulting in a 300-fold increase in bacterial sequence detection with no plant 

chloroplast sequences detected (Arenz et al., 2015). 
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In this work, we designed NEBPs complementary to the sequences flanking the wheat ITS 

region. We aimed to establish whether the use of these NEBPs in combination with universal 

eukaryotic primers would inhibit the amplification of wheat sequences and enhance the 

detection of Puccinia Pers. species and other fungi in wheat mDNA. The use of NEBPs in 

combination with universal primers in PCR would obviate the need for fungi-specific primers 

in studies that explore fungal presence and diversity within host plants, and at the same 

time, reduce primer-related taxonomic bias in future NGS investigations on the dynamics of 

fungal community composition during infection by pathogens such as Puccinia spp. 

 

6.3 Materials and Methods 

6.3.1 Primer design 

Wheat and fungal ITS sequences obtained from a previous NGS study of wheat mDNA 

samples (Burgdorf et al., 2016) were used to find identical matches in the Genbank 

database. The region from the 3′ end of the small subunit (SSU) ribosomal DNA to the 5′ end 

of the large subunit (LSU) ribosomal DNA sequence, up to, and in the case of wheat, 

including the ITS5 and ITS4 (White et al., 1990) priming sites, was downloaded for each of 

the wheat and fungal sequences. These were aligned in BioEdit v7.2.0 (Hall, 1999). All 

blocking and amplifying primers were developed using PerlPrimer v1.1.21 (Marshall, 2004) in 

the Bio-Linux 8 operating system. All primers were synthesized by Inqaba Biotec (South 

Africa) and each of the NEBPs had a 7-carbon amino acid added to the 3′ end, which 

prevented extension by the DNA polymerase but did not prevent annealing to the 

corresponding DNA target sites. 

 

The design of the NEBPs followed the guidelines proposed by Vestheim et al. (2011). The 

NEBPs were designed to have a 100% match to wheat sequences at the 3′ ends of the ITS5 

(forward) and ITS4 (reverse) priming regions, respectively. The NEBPs were designed to 

anneal specifically to the highly variable sections of the wheat ITS region within the forward 

and reverse primers, to prevent annealing to other eukaryotic sequences. At the same time, 

they were designed to overlap slightly onto the universal primer annealing site to prevent 
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the 3’ end of the amplifying primer from binding to the site, thereby preventing the DNA 

polymerase from extending. 

 

These NEBP target sites are shown in Figure 6.1 and Figure 6.2, which illustrate where the 

blocking and extending primers anneal relative to one another. The forward NEBP 

(TaITS5blk, Figure 6.1) was designed with a 3 bp overlap with the 3′ end of the ITS5 primer 

and included a relatively conserved region which corresponds to the annealing site of the 

ITS1 primer (White et al., 1990), although that primer was not used in this study. The reverse 

NEBP (TaITS4blk, Figure 6.2) was designed with a 4 bp overlap with the 3′ ITS4 primer and 

had several fungal sequence mismatches distributed relatively evenly across the NEBP. 

 

Figure 6.1 Position and coverage of the forward primer and NEBP, TaITS5blk, in relation to the wheat target 

area and the priming sites of sequences from previously identified fungi associated with wheat. Dots represent 

bases that are identical to the corresponding bases in the wheat sequence. 

 

Figure 6.2 Position and coverage of reverse primer and NEBP, TAITS4blk, in relation to the wheat target area 

and the priming sites of sequences from previously identified fungi associated with wheat. Dots represent 

bases that are identical to the corresponding base in the wheat sequence. 
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Two additional primers pairs were developed for qPCR. The first primer pair was designed to 

anneal internally to the NEBPs and specifically amplify wheat ITS sequences, therefore being 

able to amplify any wheat sequences that were produced by the ITS5 and ITS4 primers 

during the ITS-PCR. The second primer pair specifically amplified a Puccinia sequence that 

had previously been detected in the wheat mDNA samples used as template in the PCR 

reaction with the universal eukaryotic primers and the NEBPs. A Primer-BLAST search was 

performed on the NCBI website to confirm the specificity of the wheat and Puccinia primers 

and gel analysis of PCR products was used to confirm that they produced amplicons of the 

expected size. 

 

6.3.2 qPCR and agarose gel electrophoresis 

All PCR reactions were performed on a Rotor-Gene 6000 (Qiagen, Hilden, Germany) using 

the Kapa SYBR® Fast qPCR Universal kit (Kapa Biosystems, Wilmington, Massachusetts, USA). 

The final PCR reaction volume for all samples was 25 μL. 

 

To investigate the effect of increasing NEBP concentrations on total ITS region amplification 

from wheat mDNA (ITS-PCR), the universal eukaryotic ITS5 and ITS4 primers (Table 6.1) were 

used at a final reaction concentration of 400 nM for each reaction. Duplicate samples were 

prepared for increasing NEBP concentrations, with 0 nM, 100 nm, 200 nM, 400 nM, 600 nM 

and 800 nM concentrations of each of the two NEBPs, TaITS5blk and TaITS4blk (Table 6.1). 

Template DNA consisted of 30 ng per reaction of surface-sterilized wheat leaf mDNA that 

had been used in a previous study of fungal wheat endophytes. Included in the run were 

positive controls consisting of genomic Beauveria bassiana (Bals.-Criv.) Vuill. DNA at 2.2 ng 

and 0.022 ng per reaction respectively. There was also a ‘no template’ control (NTC) 

included in the run, which consisted of a reaction mixture with the ITS5 and ITS4 primers, 

but no template DNA or NEBPs. The NEBPs had been previously tested with the ITS5 and 

ITS4 primers to ensure they did not form any spurious PCR products. 

 

The ITS-PCR parameters comprised of an initial denaturation step of 3 min at 95°C, followed 

by 40 cycles of 10 s at 95°C, 20 s at 54°C and 10 s at 72°C. Threshold cycle (CT) values, 

represented by the cycle number at which a significant change in fluorescence across all 
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qPCR samples occurs, indicative of the change in target template DNA concentration (where 

low CT values are associated with higher template concentration and high CT values with 

lower ones) (Schmittgen and Livak, 2008), were used to analyse the effects of increasing 

NEBP concentrations (Boessenkool et al., 2012). The CT values were determined using the 

Rotor-Gene Series 6000 Software (Qiagen). 

 

Products were run on a 2% agarose gel containing 1 x SYBR® Safe (Thermo Fisher Scientific, 

Waltham, Massachusetts, USA) in 1 x TBE at 6 V.cm-1 for 1 h. The gel was viewed and 

captured to detect bands using the GeneSnap software (Syngene, Cambridge, UK) on an I-

chemi G-box gel documentation system (Syngene). The gel was analysed using the 

GeneTools software (Syngene) to determine band molecular weights and DNA 

concentrations relative to those of a 100 bp GeneRuler™ Plus molecular weight marker 

(Thermo Fisher Scientific). 

 

For the evaluation of wheat sequence amplification at increasing NEBP concentration, a 10-5 

dilution was made from the PCR products of the ITS-PCR with increasing NEBP 

concentrations; 1 μL volumes from these solutions were used as the templates for the qPCR 

determination of relative wheat amplicon quantity using the wheat-specific primer pair, 

TaSPITS1F and TaSPITS1R (Table 6.1). A two-step qPCR was performed with an initial 

denaturation step of 1 min at 95°C, followed by 40 cycles at 95°C for 5 s and 60°C for 15 s. 

The CT values were determined in the Rotor-Gene Series 6000 Software. The sample 

products were run on a 1.5% agarose gel containing 1 x SYBR® Safe in 1 x TBE at 6 V.cm-1 for 

1 h, with a 100 bp GeneRuler™ Plus molecular weight marker to confirm the formation of a 

single band of the appropriate size. 

 

For the evaluation of Puccinia sequence amplification at increasing NEBP concentration, a 

10-4 dilution was made from the PCR products of the ITS-PCR with increasing NEBP 

concentrations; 1 μL volumes from these solutions were used as the template for the qPCR 

determination of relative Puccinia amplicon quantity using the Puccini-specific primer pair, 

PuSPITS1F and PuSPITS1R (Table 1). A two-step qPCR was performed with an initial 

denaturation step of 1 min at 95°C, followed by 40 cycles at 95°C for 5 s and 57°C for 15 s. 
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The CT values were determined in the Rotor-Gene Series 6000 Software. The sample 

products were run on a 1.5% agarose gel with 1 x TBE containing 1 x SYBR® Safe at 6 V cm-1 

for 1 h, with a 100 bp GeneRuler™ Plus molecular weight marker, to confirm the formation 

of a single band of the appropriate size. 

 

Table 6.1 A list of the primers used in this study. The Tm of each primer was calculated using the nearest 

neighbour method on http://simgene.com/OligoCalc . The number ‘7’ in the NEBP sequences TaITS5blk and 

TaITS4blk represents the C7 amino acid on the 3′ end which serves to prevent extension from the primer. 

 

Name Sequence 

(5′-3′) 

Tm 

(˚C) 

Reference 

ITS5 (F) GGAAGTAAAAGTCGTAACAAGG 58 White et al. (1990) 

ITS4(R) TCCTCCGCTTATTGATATGC 56 White et al. (1990) 

TaITS5blk (F) AGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTC

GTGACCCTGACCAAAACAG7 

74 This study 

TaITS4blk (R) ATGCTTAAACTCAGCGGGTAGTCCCGCCTGACCTGGGG

TCGCGGT7 

75 This study 

TaSpITS1F (F) ACGCGTCATCCAATCCGT 53 This study 

TaSpITS1R (R) CGGGTTAGGCACAGTGTTC 52 This study 

PuSpITS1F (F) CCTGCGGAAGGATCATTA 49 This study 

PuSpITS1R (R) TGCCACGTATACTTAATCAC 47 This study 

 

6.3.3 Statistical analysis 

All qPCR data was exported to and analysed using Microsoft Office Excel 2013 (Microsoft, 

Redmond, Washington, USA). Mean fluorescence values versus cycle number were used to 

http://simgene.com/OligoCalc
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present all duplicate qPCR samples. Linear and curvilinear (quadratic) regression models 

were fitted to the response of CT values to increasing NEBP amounts. Where applicable, 

values were calculated from quadratic formulae to establish maximum or minimum 

concentrations of the NEBPs at which changes in amplicon production characteristics took 

place. 

 

6.4 Results 

6.4.1 Primer-BLAST 

A Genbank BLAST search of the designed NEBPs indicated that they were also 100% identical 

to the same region of the ribosomal/ITS DNA region for a wide variety of plant species, 

particularly grasses. The forward NEBP had only a single complete match to a purported 

uncultured fungal sequence. The reverse NEBP completely matched only four purported 

fungal sequences. 

 

6.4.2 ITS-PCR gel analysis and qPCR 

The agarose gel analysis (Figure 6.3) showed the increase in concentration of the NEBPs 

(TaITS5blk and TaITS4blk) in the ITS-PCR reaction with the ITS5 and ITS4 primer pair used to 

amplify all eukaryotic ITS target sequences resulted in a decrease in the ~700 bp-sized wheat 

ITS DNA band intensity and an increase in non-wheat ITS DNA band numbers, although the 

intensity and presence of these bands decreased in most cases after 400 nM. The bright 700-

730 bp band was assumed consist of wheat ITS amplicons, since the amplification of this 

wheat mDNA with the ITS5 and ITS4 primers, in a previous study (Burgdorf et al., 2016), had 

revealed that more than 99% of the sequences belonged to the wheat, which, according to 

the Genbank sequences used for the NEBP design (a consensus sequence produced from the 

T. aestivum L. sequences AY049040.1, FJ609737.1, and KJ131565.1), was 714 bp long. This is 

the closest size to the band assigned to wheat. The band F3 was assumed to represent 

Puccinia, which was the most numerous fungal sequence present in the same previous 

study, and a Genbank Primer-BLAST showed that Puccinia fragments amplified using ITS5 
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and ITS4 were approximately 680-700 bp long, which corresponds to the position of the 

band F3. 

 

In total six non-wheat bands were seen (F1-F6, Figure 6.3), with the highest number of non-

wheat bands observed at 400 nM concentration of NEBP (F1, F2, F3, F4, and F6). Beyond 400 

nM a band (F5) formed that was only present at 600 nM and 800 nM NEBP concentrations. 

 

 

Figure 6.3 Agarose gel of ITS-PCR products from qPCR amplification of ITS from wheat mDNA with increasing 

concentrations of NEBPs (lanes 2 to 13); lanes 1 and 17 contain 100 bp molecular weight ladder markers, while 

lanes 14 and 15 contain PCR product from two different dilutions of genomic B. bassiana DNA without any 

NEBPs and lane 16 consists of a no template control with only the ITS5 and ITS4 primers. 

 

The graph in Figure 6.4 was derived from the analysis of the gel shown in Figure 6.3. The 

graph showed that the DNA quantity of the band representing wheat ITS DNA decreased, 

initially quite rapidly, as the NEBP concentrations were increased. It was also shown that the 

sum of the DNA quantity for non-wheat bands (F1 - F6, Figure 6.3), excluding primer dimer 

DNA, increased as NEBP concentration increased. The relative change in DNA quantity in 

both instances appeared to diminish at NEBP concentrations beyond 400 nM. 
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Figure 6.4 Response of mean DNA quantities, for bands shown in Figure 6.3, to increasing concentrations of 

NEBPs. The lines represent the mean amplified wheat ITS DNA band quantities and the summed DNA band 

quantities of the remaining bands (excluding primer dimers) separately. Error bars show the standard error for 

the duplicate samples. 

 

The qPCR fluorescence curves in Figure 6.5 showed that the increase in NEBP concentration 

in the ITS-PCR of wheat mDNA delayed the exponential increase of fluorescence, indicating a 

suppression of PCR amplicon formation. This was demonstrated by the steepest portions 

(exponential DNA amplification) of the mean curves of fluorescence versus cycle number 

occurring at increasingly high cycle numbers, as NEBP concentrations increased. 
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Figure 6.5 Plot of real-time PCR progression, showing mean sample fluorescence per cycle, with ITS5 and ITS4 

primers and increasing concentrations of NEBPs. The legend indicates the concentration of both of the NEBPs 

in each pair of sample replicates. 

 

A plot of CT values against the increasing NEBP concentration (Figure 6.6) showed that the CT 

values increased as NEBP concentrations increased, but at a decreasing rate. Extrapolation 

from the quadratic equation of the fitted line showed that the CT reached a maximum of 

33.24 at the NEBP concentration of 780 nM, after which the CT started decreasing. 
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Figure 6.6 Quadratic response of CT values to NEBP concentration for ITS-PCR with markers showing the 

duplicate CT values for each NEBP concentration. 

 

6.4.3 Wheat and Puccinia qPCR 

In Figure 6.7 the wheat-specific qPCR amplifying wheat ITS DNA from 10-5 dilutions of PCR 

products from the ITS-PCR showed that the use of increasing concentrations of NEBPs had 

inhibited the amplification of wheat ITS DNA sequences. This was demonstrated by the delay 

in exponential increase in fluorescence as NEBP concentrations increased. 
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Figure 6.7 Mean fluorescence against cycle number for wheat-specific qPCR amplification of templates from 

10-5 dilutions of replicate samples shown in Figure 6.5. The legend indicates the concentration of each NEBP in 

each pair of sample replicates. 

 

In Figure 6.8 the plot of the CT values against NEBP concentrations for the wheat-specific 

qPCR showed that there was a strong positive correlation (R2 = 0.90) between increasing CT 

values and increased NEBP concentration, demonstrating that the NEBPs caused a significant 

reduction in the amount of wheat ITS sequences that were produced during ITS-PCR with the 

universal eukaryotic primers. 
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Figure 6.8 Linear response of CT values to increasing NEBP concentrations for wheat-specific PCR in samples 

shown in Figure 6.7, with markers showing the duplicate CT values at each NEBP concentration. 

 

In Figure 6.9 the curve of mean fluorescence against cycle numbers for Puccinia-specific 

qPCR of the 10-4diluted PCR product showed an initial increase in Puccinia amplicon 

production, with exponential amplification occurring at the lowest number of cycles for PCR 

products at 400 nM NEBP. The sample produced without the use of NEBPs (0 nM) had the 

latest amplification take-off. This showed that the NEBPs increased the production of 

Puccinia amplicons up to a specific concentration, after which it started declining; however, 

there were always more Puccinia target sequences produced in the presence of NEBPs than 

in the sample produced without the use of the NEBPs. 
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Figure 6.9 Mean fluorescence against cycle number curve plots for Puccinia-specific qPCR amplification of 

templates from 10-4 dilutions of the samples shown in Figure 5. The legend indicates the concentration of each 

of the NEBPs per sample. 

 

Figure 6.10 for qPCR of Puccinia in the 10-4 diluted PCR products showed a strong correlation 

with the increasing concentrations of NEBPs (R2 = 0.93). This demonstrated that increasing 

concentrations of NEBPs caused a lowering in CT value, until a point after which the CT value 

gradually increased. The maximum CT response of 13.94 occurred at a 466.25 nM 

concentration of NEBP. 
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Figure 6.10 Response of CT values to NEBP concentration for Puccinia-specific PCR of samples shown in Figure 

6.9, with markers showing the duplicate CT values at each NEBP concentration. 

 

Agarose gels of the wheat-specific and Puccinia-specific PCR confirmed the presence of 

single bands of appropriate size (~145 bp and ~140 bp respectively, data not shown). 

 

6.5 Discussion 

The purpose of this work was to enhance the detection of pathogens, such as Puccinia sp., as 

well as other fungal endophytes that could be amplified from wheat mDNA, with NEBPs used 

in conjunction with universal eukaryotic primers. This approach can reveal characteristics of 

the fungal endophyte community composition during infection by a pathogen such as 

Puccinia. The use of universal primers would result in reduced bias in PCR amplification of 

target organisms, therefore providing a more accurate representation of the eukaryotic 

microbial community composition within the wheat tissues. The NEBPs would also reduce 

the amplification of host plant DNA, allowing for deeper sequence reads and resulting in 

more sensitive detection of relevant organisms during future NGS analysis. 

 

The NEBPs designed in this study matched a wide variety of plant sequences, which indicates 

that these NEBPs could also be used in PCR-based studies that describe the eukaryotic 

microbial community composition within other host plants, especially grasses. The NEBPs 
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designed in this work straddled an interface between regions of conservation (at the 

ribosomal sequence ends) and hypervariability (within the ITS1 and ITS2 sequence regions). 

This was a particularly useful characteristic for the design of NEBPs employed to reduce bias 

in culture-independent PCR analysis of the fungal pathogen and endophyte community 

composition because the sequence conservation at the priming site accommodates universal 

extending primers, while the hypervariable region further downstream allows for highly 

specific annealing of the NEBP to the host plant sequence, thereby blocking its amplification. 

The few Genbank matches to purported fungal sequences were due to erroneous taxonomic 

assignment of submitted sequences, which is a recognized problem (Nilsson et al., 2006). 

 

The effect of the NEBPs was clear in the agarose gel of the wheat mDNA-derived ITS 

products (Figure 6.3) as the intensity of the ~700 bp band representing wheat diminished 

rapidly while other bands started appearing with varying intensity as the NEBP 

concentrations increased. This was because the NEBPs were successfully inhibiting the 

amplification of the wheat ITS sequences by the universal eukaryotic primers. The 

extendable universal primers were, therefore, annealing to the targeted Puccinia and fungal 

(or non-fungal eukaryotic e.g. Oomycete) endophyte sequences that were available instead. 

However, as NEBP concentrations increased, they were starting to anneal to the target non-

host sequences as well, as evidenced by the formation and suppression of different bands at 

higher NEBP concentrations, i.e., the formation of band F6 up to 400 nM NEBP, while at 600 

nM and higher, the formation of F5 took place instead (Figure 6.3). This occurred because 

the high concentrations of NEBPs and the large difference between the Tm of the NEBPs and 

the amplifying primers ITS5 and ITS4 (16°C and 19°C respectively) allowed the NEBP 

TaITS5blk to start annealing non-specifically to the conserved ~30 bp region of non-host 

sequences, downstream from the ITS5 annealing region where it is complementary to both 

wheat and endophyte sequences (Figure 6.1). 

 

Further supporting this argument, certain fungal sequences that were previously detected in 

the wheat mDNA samples (Burgdorf et al., 2016) that were used in this study had 

mismatches (e.g. Cladosporium and Alternaria, Figure 6.1) within the conserved region, 

which would bind to the NEBPs less efficiently, therefore allowing for a greater probability of 
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annealing with amplifying primers than those with fewer mismatches to the NEBPs. This 

explains how the formation or suppression of different non-host sequences (e.g. band F5 

versus F6, Figure 6.3) took place as NEBP concentrations increased. The TaITS4blk NEBP (at 

the ITS4 priming site, Figure 6.2) would have made a lower contribution to this effect than 

the TaITS5blk NEBP (at the ITS5 priming site, Figure 6.1) since the mismatches were spread 

more evenly across the NEBP, therefore reducing the level of non-specific binding. It is worth 

noting that in the case of the TaITS5blk primer, the conserved region corresponds to that of 

the ITS1 primer (White et al., 1990), which lies between the two mismatches seen in the 

Cladosporium and Alternaria sequences. The ITS1 primer may be a better option to use in 

conjunction with the TaITS5blk NEBP, as it would reduce the size of the conserved area and 

the length of the more variable region downstream could be extended in the design of an 

alternative NEBP, lessening non-specific binding of NEBPs to non-host sequences. However, 

the ITS1/ITS4 primer pair had high self-complementarity, and the ITS1 primer had three G’s 

and one C at the 3′ end, both of which have been considered to be sub-optimal primer 

characteristics (Chen et al., 2002), therefore this combination was not used in this study. 

 

The graphical representation of the quantified agarose gel bands for the PCR products of 

wheat ITS sequences and the sum of all other measured PCR products (Figure 6.4) exhibited 

an inverse correlation between the wheat and target product formation, due to the NEBPs 

effectively binding to the wheat sequences and suppressing their amplification, allowing for 

the increased formation of alternative products. However, the efficacy tapered off after 

400 nM for the same reasons explained previously, whereby the NEBPs started inhibiting 

target non-host sequence amplification as well. The sum quantity of non-wheat bands 

remained substantially lower than the single wheat band found in uninhibited PCR of wheat 

mDNA with ITS5 and ITS4 primers (Figure 6.4) because the non-wheat target DNA template 

concentration was low relative to that of wheat ITS sequences, so higher cycle numbers 

would be required to increase band intensities. 

 

The delay in take-off of fluorescence in the mean cycle curves for the ITS-PCR from wheat 

mDNA with increasing NEBP concentrations (Figure 6.5) demonstrated how the exponential 

increase in fluorescence was delayed because the increasing NEBP concentrations were 
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inhibiting the PCR by preventing the amplification of wheat ITS sequences. In the absence of 

NEBPs and when their concentration was low, the bulk of amplification was initially due to 

amplification of wheat ITS sequences, as seen in Figure 6.4, but as the amplification of wheat 

sequences was increasingly inhibited by the increasing NEBP concentration, exponential 

amplification was delayed to later cycles. This rate of increase in CT values eventually 

diminished as non-host sequence amplification and primer-dimer formation started 

increasing, therefore reducing the relative delay in exponential amplification. The 

deceleration in the response rate of the CT to increasing NEBP at high levels suggests that 

the overall inhibition of amplification by the NEBPs started becoming less effective as NEBP 

concentrations increased. This was because other products were still forming, even though 

the amplification of wheat sequences was inhibited. After 780 nM concentration of NEBP the 

CT values started to decrease, i.e., fluorescence due to PCR amplification started to increase, 

because of rising fluorescence from the increasing production of primer dimers, as can be 

seen in agarose gel (Figure 6.3). Primer dimers are a result of interactions between primers 

that are at high concentrations and develop at later PCR cycles (Brownie et al., 1997), so 

because the NEBPs were inhibiting amplification and consequently inhibiting the 

incorporation of the extendable primers, this effect became more pronounced as NEBP 

concentration increased. 

 

The mean fluorescence curves for PCR amplification, using wheat-specific primers, of wheat 

ITS sequences from 10-5 dilutions of the ITS-PCR products, at increasing NEBP concentrations 

(Figure 6.7), showed that the production of wheat ITS sequences was being suppressed by 

increased levels of NEBP. The plot of CT values against NEBP concentration (Figure 6.8) was 

strongly linear, indicating that wheat sequence amplification would continue to be 

suppressed as NEBP concentrations increased. This supports the previous assertion that the 

diminishing rate at which CT values increased for PCR with universal primers (Figure 6.6) was 

not due to the increase in wheat sequences being amplified as cycle numbers increase, but 

rather due to increased amplification of target Puccinia and fungal endophyte sequences, as 

well as (at higher NEBP concentrations) increasing primer dimer production. 
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The exponential DNA amplification of Puccinia ITS sequences, revealed by the earlier take-off 

of fluorescence, occurred at earlier PCR cycles as NEBP concentrations increased up to 

400 nM (Figure 6.9); the subsequent reversal of the trend (seen clearly in Figure 6.10) 

corresponded to the fading of the band represented by Puccinia (F3 in Figure 6.3) and the 

band representing wheat ITS amplicons. The reversal occurred because the increased NEBP 

concentrations started having an inhibitory effect on Puccinia sequence amplification by 

non-specific binding of NEBPs to Puccinia amplicons, as discussed previously. It was evident 

from the parabolic response of the CT values to NEBP concentrations that an optimum 

concentration of NEBP exists. Vestheim and Jarman (2008) determined that there was an 

optimum ratio between NEBP and extending primers, with ratios as high as 20:1 for NEBP to 

primer. However, it is also necessary to consider the quantity of potential priming sites, 

regardless of this ratio, since any unblocked, host plant priming sites could be primed for 

extension if there were insufficient NEBPs. It is possible that optimum NEBP concentration 

can be estimated using qPCR, whereby the NEBP concentration should at least match the 

estimated concentration of non-target annealing sites. 

 

In culture-independent PCR-based microbial community composition studies, sequence 

depth is preferable to sample replication (Smith & Peay, 2014); therefore, lower sample 

numbers can be analyzed with NGS studies as compared to the use of traditional clone 

libraries. Combined with barcode tagging which allows for the pooling of different samples 

(Frank, 2009), this potentially results in a substantial reduction of analysis costs when using 

NGS. Any methods that can reduce the number of redundant sequences and increase the 

production of target sequences will complement these factors since they increase the 

relative quantity of relevant data. In this sense, the application of NEBPs is particularly suited 

to studies where target DNA quantities are relatively low when compared to the host, 

especially since non-target DNA can often represent a significant portion of the NGS data. 

For example, even with the use of fungi-specific primers, Karlsson et al. (2014) found that 

3.5% of the detected sequences their NGS study of wheat fungal endophytes belonged to 

the host plant. Similarly, also with the use of fungi-specific primers, Schmidt et al. (2013) 

observed that almost 20% of their usable sequences amplified from soil were of plant origin. 

Culture-independent PCR-based studies of fungal plant pathogens and endophytes will 
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always be influenced by the presence of host DNA. Along with the reduction of PCR 

amplification bias with the use of universal primers, reduction of this non-target DNA ‘noise’ 

can be achieved by using NEBPs. 

 

Further work that needs to be done is a comparative study using fungal ITS specific primers 

versus universal primers with NEBPs on an artificial fungal pathogen and endophyte 

community mixed with wheat mDNA, to see which sets produce amplification products that 

most closely reflect the original community composition, as has been done in other primer 

design studies (Manter and Vivanco, 2007, Ihrmark et al., 2012). A comparison of the 

efficacy of using only the forward or reverse NEBPs described in this work would also 

provide information on NEBP design improvement since these NEBPs differed in the 

distribution of mismatches (Figures 6.1 and 6.2). The important effects of such mismatches 

have already been characterized for extendable primers (Stadhouders et al., 2010). 

 

It is possible that the use of NEBPs could displace nested PCR, which has been used to 

enhance detection of target sequences in mixed templates (Landa et al., 2013). 

Furthermore, using universal primers with NEBPs may aid the detection and characterization 

of cryptic or non-culturable organisms, such as the newly described Cryptomycota M.D.M. 

Jones & T.A. Richards (Lazarus and James, 2015), that could form part of the plant 

endosphere community. 

 

The use of NEBPs in combination with primers that have a broad target range offers a highly 

relevant solution to some of the challenges that face culture-independent PCR-based plant 

pathogen detection and fungal endophyte community composition studies since target DNA 

is such a minor component of mDNA extracted from the host plant. This work showed that 

the use of these NEBPs enhances target sequence amplification, which may reveal greater 

numbers of organisms that associate with plants or describe new organisms altogether. 

Their use can, therefore, complement and enhance the power of PCR-based NGS studies 

that aim to elucidate on fungal endophyte composition during infection by Puccinia. This 

could assist in the development of alternative pest management strategies for the control of 

this serious threat to wheat production. 
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Thesis overview 

Introduction 

The hypothesis that inspired this investigation of fungal wheat endophytes was that wheat 

cultivar phenotypic traits influence the composition of the fungal wheat endophyte 

communities that reside within them. It was postulated that selected endophytes exert 

epigenetic influence on the host plant that would be expressed as cultivar traits, such as 

disease resistance or increased yield. The work of this thesis was a study on the culture-

independent detection of endophytes for the comparison of the fungal endophyte 

community composition of different cultivars of wheat, and of the effect of certain 

agronomic conditions on fungal wheat endophyte populations. 

 

Chapter 1-The literature review 

This review serves as a reference point for further studies on wheat endophytes. The review 

was chiefly related to fungal endophyte diversity, potential functions, and association with 

wheat. The review encompassed the definition of endophytes; fungal endophyte diversity 

and classification; fungal endophyte evolution; methods and technologies for studying 

fungal endophytes from both a culture-dependent and culture-independent perspective; 

interactions between fungal endophytes and plants, specifically in relation to their 

colonization of plant tissues and the consequences thereof; and the biological control 

potential of fungal endophytes. However, one area that was not discussed was the diversity 

and function of bacterial endophytes, in general, and of wheat. This was beyond the scope 

of the work here, but the hypotheses and questions raised during this work could equally be 

tested in the context of bacterial endophytes, or better still, for both fungal and bacterial 

endophytes combined. 

 

The focus on fungal endophytes probably echoes a traditional perception by plant 

pathologists who see fungi (and fungus-like organisms) as the dominant participants in plant 

symbioses and disease (Ainsworth, 1981) because bacterial diseases of plants are considered 

less commercially significant than fungal diseases and more difficult to treat (Vidhyasekaran, 
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2004). Therefore, fungi are considered to have a more significant relationship with healthy 

plants as well. Considering aspects such as cytokinin production (Holland, 1997), and 

nitrogen fixation by bacteria (White et al., 2012) and their impact on plant survival, let alone 

health, this view is not adequate, and bacterial endophytes of plants require consideration. 

However, puzzles are completed one piece at a time, which is why this work focused only on 

the fungal endophytes of wheat. A single, broader review of the literature available on all 

the microbes that form endophytes with wheat will emerge with the exploration of the 

interactions between different endophyte groups. As such, the interactions between 

endophytic fungi and bacteria and their hosts are beginning to attract attention (van 

Overbeek and Saikkonen, 2016). 

 

Microbial endophytes offer a trove of novel genetic resources that can be harnessed for crop 

protection and enhancement. Plant breeding and crop management strategies that consider 

the gene-environment (G X E) interactions, such as the work performed by Paterson et al. 

(2003), could also consider the microbial interactions that can affect plant growth and 

health. These interactions could explain some of the difficulties in predicting G X E 

interactions that were reported by Chapman et al. (2000). El-Soda et al. (2014) include 

‘epigenesis’ as an underlying model for G X E interactions; therefore, the epigenetic effects 

of fungal endophytes need to be explored further. 

 

In crop production, microbes can vary within and between host plants, and within the 

environment, because of agronomic conditions (Burgdorf et al., 2016). Further exploration 

of the functions and potential of endophytes in the ‘agro-biome’ will undoubtedly emerge to 

increase food production. Such work will describe the effects and interactions between 

successive crops, soil management, and endophytes, as has been done to examine 

important agronomic microbes such as the arbuscular mycorrhizal fungi (Brígido et al., 2014) 

and nitrogen-fixing rhizobia (Souza et al., 2013). 
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Chapter 2- Plant surface decontamination for PCR detection 

of endophytes 

This was the first experimental chapter of this thesis and this study was published in the 

Brazilian Journal of Microbiology in 2014. A technical aspect of culture-independent PCR-

based endophyte studies, namely, how to distinguish between endophytic organisms and 

those that are not inhabitants of the internal plant tissue was addressed and the findings 

were presented. 

 

The term ‘surface sterilization’ is probably better applied to the concept of killing 

contaminating organisms, while ‘surface decontamination’ is a more appropriate term that 

implies the removal of any traces of these organisms. In the latter context, the experiment 

was designed to test modified surface sterilization procedures used previously in culture-

independent studies, specifically the physical and chemical removal of plant surface 

contaminants. Their performance was tested in terms of surface decontamination as 

detected by PCR and visualized on agarose and denaturation gradient gel electrophoresis 

(DGGE) gels. After applying Saccharomyces cerevisiae Meyen ex E.C. Hansen as a test 

organism to wheat leaf surfaces, it was evident that the yeast could live on the wheat 

surface and was subsequently used in the assessment of surface decontamination. 

S. cerevisiae was not detected in the controls and has not been reported as a wheat 

endophyte. The S. cerevisiae produced a PCR band that was distinct from other endophytes 

and epiphytes in both the agarose and DGGE gels, which was vital to being able to visualize 

the treatment effects. After the surface sterilization treatments, PCR-DGGE profiles of fungal 

community composition showed clear differences between treatments and variability in the 

consistencies of the treatments. Gel analyses, including non-metric multidimensional scaling 

(nMDS) of DGGE profiles, successfully characterized these differences between methods and 

intra-treatment variability. This revealed that the way the plant surface is decontaminated 

has a discernible effect on the PCR-detected community composition. The simple technique 

of PCR-amplification of DNA from surface-applied non-endophytic microbes, which produce 

distinctive PCR product bands, can be a standard protocol by which surface decontamination 

methods can be evaluated in the future. 
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Future work evaluating surface decontamination methods could incorporate qPCR, with 

organism-specific primers, instead of standard PCR, to accurately quantify the removal of the 

applied organisms as a measure of the effectiveness of the surface decontamination 

techniques. These techniques could include variations in the chemical and physical removal 

or degradation of DNA to determine the most effective surface decontamination approach 

that is suitable for the plant species being studied. S. cerevisiae, used in baking, is resilient 

and ubiquitously available and can, therefore, serve as a standard organism for 

benchmarking other organisms. Other microbes can be evaluated as epiphytic organisms to 

test for intra-organism variation, on the condition that they are not commonly found as 

endophytes, or at least not, detected in untreated controls of the plant being studied. Other 

microbes for testing should include biofilm producing fungi and bacteria to determine the 

extent to which biofilm may shield epiphytes from surface decontamination treatments. 

There are also the differences in adsorption to plant surfaces amongst microbes to consider. 

 

During this research, some experimentation was performed on the effects of surface 

sterilization on the roots and stems of wheat. The results showed similar outcomes to those 

seen for leaves. While this approach was successful on leaves, it is acknowledged that the 

surface of roots and leaves are quite different, so alternative methods of both treatment and 

the evaluation thereof may need to be considered. The relationship between microbes that 

exist on the surface of leaves and stems differ from those that inhabit the root surface, 

which is inhabited by many fungi that are essential for plant growth. Consider, for example, 

mycorrhizal fungi which penetrate the root tissue (Allen, 1991); therefore, alternative 

treatment and assay methods may be more appropriate for root endophyte studies. 

 

Technological advances in both molecular biology and microscopy have provided several 

new ways for microbes to be visualized within plant tissues. Microbes that have been 

modified to include green fluorescent protein (GFP) could be employed to observe and 

measure the presence of endophytic and epiphytic fungi (or bacteria). Such organisms have 

been used in fungal pathogen (Lagopodi et al., 2002) and endophyte studies (Sasan and 

Bidochka, 2012). This approach would be appropriate for root-associated microbe studies 

because it would indicate the degree of colonization of exterior and interior tissues. Confocal 
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microscopy with fluorescent in situ hybridization (FISH) could also be utilized in this way, as 

employed by Takeuchi and Frank (2001) in the examination of the microbial 

decontamination of lettuce leaves. Confocal microscopy of these FISH probes would also 

reveal the regions of colonization of either applied or autochthonous fungi, and their 

subsequent removal. 

 

Confocal microscopy with FISH and the use of GFP-modified organism are more costly and 

laborious techniques than the protocol developed in this work. The increased research 

investment into the issue of surface decontamination inevitably raises the question of 

whether it is necessary to distinguish between epiphytes and endophytes, since the 

exhaustive investigation of how effective a surface decontamination procedure could seem 

excessive when the most important factor is whether the organisms that are being detected 

are interacting with the plant or protecting it in some way, or not. It is therefore also 

necessary to establish how epiphytic microbes affect the plant relative to endophytes. Work 

by Osono (2008) revealed the that the endophytic colonization was synchronized with leaf 

development while the epiphyte community composition was undifferentiated during host-

leaf aging. This is one example suggesting that the relationship between endophyte and host 

may be of greater significance than that of microbial epiphytes, under typical circumstances 

where the epiphyte is defined according to the same conditions of having no negative effect 

on the host plant (for example, the covering of leaves by sooty mould, inhibiting 

photosynthesis, has a substantially negative effect on a plant). Other factors to consider, in 

comparing the relative significance of interactions, are that the water-repelling properties of 

a leaf influences microbial presence on the leaf surface and that the waxy cuticle tends to 

discourage microbial growth (Barthlott and Neinhuis, 1997), so many of the epiphytic 

microbes referred to by Lindow and Brandl (2003) could be incidental contaminants that are 

not necessarily growing. It was, therefore, assumed that there is a greater intimacy between 

endophytes and their hosts, which was why it was deemed necessary to remove any 

epiphytic microbes because they were not considered to interact significantly with the host 

plant. It would, however, be interesting to explore the ideas proposed by Leben (1965), who 

speculated on the effect that epiphytic microbes may have on plant pathogens; and Lindow 
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and Brandl (2003), who saw the study of the microbial ecology of leaf surfaces as being of 

increasing interest. 

 

Chapter 3- DGGE versus TTGE 

Denaturing electrophoresis is a technique that is likely to remain in use for some time (Izard, 

2015). In the third chapter, two variants of the DGE technique were compared to establish 

which one would be most suitable for comparing endophyte community composition in 

terms of data quality, cost, and labour, with the materials and equipment that was available. 

The most commonly applied method, according to literature searches of published research, 

was denaturing gradient gel electrophoresis (DGGE), which uses a chemical gradient to 

denature DNA as it migrates down an acrylamide gel. This was compared to the 

denaturation of DNA by increasing the temperature of the tank buffer as the DNA migrated 

through an acrylamide gel. This variation of DGE is referred to as temporal temperature 

gradient electrophoresis (TTGE). Both methods were performed on the same equipment and 

the only differences were in the addition of denaturing chemicals to the gels and changes in 

the temperature during electrophoresis. The cost and time required to prepare gels for each 

were recorded. Identical samples were run on each of the two kinds of gels and band 

profiles and band quality was compared. Under the tested conditions, it was evident that 

DGGE produced bands that seemed more numerous and clearer. Profile correlations 

between methods were moderately to strongly positive, decreasing with increasing gel 

profile complexity. Band quality and number tended to be higher for DGGE but the 

difference was not always significant. The TTGE gels were slightly less costly to produce, but 

not so much as to overlook other performance criteria. The most significant difference was 

in preparation time where TTGE was much quicker to prepare. This was a major factor that 

initially motivated the research. 

 

When screening large sample numbers, the preparation time can be a significant factor, yet 

it was shown that relatively few studies make use of this version of DGE. Inspection of some 

of the studies that did make use of TTGE often displayed gels that were clearly not as well 

resolved as can be seen on DGGE gels. An example of this can be seen in the TTGE gels 

produced by Nieguitsila et al.(2007) compared to those produced by Götz et al.(2006). 
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However, this view could be regarded as subjective. In some instances, TTGE seemed to 

produce perfectly adequate gels. 

 

The aim of this chapter was to establish a means of objectively comparing the methods and 

then use that information to make a judgment on whether the benefits of the TTGE 

outweighed the disadvantages, if any. While a great number of variables could have been 

tested, we decided to make only the minimum changes in the materials when comparing the 

two methods. To this end, a conversion method was developed to compare denaturing 

conditions with varying denaturant and temperature. This can be of use when employing 

TTGE in lieu of DDGE for screening purposes or vice versa. 

 

A method of comparing the techniques was successfully developed. This has not been 

described before and it appears that generally methods were simply assessed as to whether 

they produced visible band profiles that could be analysed further. Peak height and width 

are values commonly determined with image capture systems, in addition to the general 

profile properties such as band number and position. It was reasoned that the greater the 

peak height/width ratio was, the better the quality of a band is, i.e., a high peak with a 

narrow base is more crisply resolved and distinguished from neighbouring bands. This can 

provide a general quality control method, to assist with decision-making in whether to 

accept a band or not for all types of DGE gels. This is important, because the presence or 

absence of a band can be a subjective decision, or left to the settings on the image capture 

system, which may not always be reasonable, e.g., setting pixel height or density thresholds 

may include dark smears that do not represent clearly resolved bands. This can result in poor 

data quality or biased data that is subsequently processed by various statistical methods that 

fail to detect meaningful differences due to excessive background noise on the gels. Testing 

for statistically significant differences in band number and peak height/width allows for a 

decision to be made on the suitability of the DGE method that is used. In this work, in all 

cases, the DGGE had at least one significantly better characteristic than TTGE; and band 

numbers and height/width ratios tended to be higher for DGGE. This led to the conclusion 

that DGGE was producing better data for analysis. 
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The results of this work suggested that DGGE is a better method in terms of data quality, 

explaining its popularity in scientific literature compared to other variants of DGE. It is a 

robust, reliable and established method that can be used successfully for microbial 

community profiling. This may discourage the use of TTGE in the future, but more factors 

could still be tested to see if TTGE could be optimized to produce gels of sufficient or equal 

quality compared to that of DGGE. For example, Yoshino et al. (1991) found that 

temperature sweep gel electrophoresis (TSGE), a synonym for TTGE, performed as well as 

temperature gradient gel electrophoresis (TGGE) in point mutation detection. They noted 

that a very high ratio of acrylamide to bisacrylamide was crucial for producing acceptable 

results. This was not a factor that was explored in depth in this work. Considering the major 

reduction in preparation time and the significant reduction in cost, it is worth testing their 

recommendation further and providing a final verdict on the utility of TTGE. 

 

Chapter 4- Comparison of fungal endophyte profiles for 

different wheat cultivars 

In this study, we explored the hypothesis that wheat cultivar phenotypic traits influence the 

endophytic colonization of the wheat plant. The development of DGGE gels required the 

initial PCR amplification of fungal internal transcribed spacer (ITS) DNA sequences from 

metagenomic wheat DNA. This was performed on a quantitative PCR (qPCR) system to 

measure target DNA amounts as an indicator of fungal endophyte biomass. The qPCR was 

followed by high-resolution melt (HRM) analysis. The HRM profiles were shown to produce 

the same conclusions as found by DGGE analysis, in that there were no apparent differences 

in fungal profiles among wheat cultivars, although profiles differed significantly between 

tissue types. This HRM analysis of community profiles has recently emerged as a method to 

quickly and reliably compare microbial community profiles (Kim and Lee, 2014). The benefit 

is that there no further DNA processing, i.e., gel analysis, is required, other than PCR, saving 

a great deal of time and effort and allowing for greater numbers of samples to be evaluated, 

increasing the likelihood of detecting significant changes in community composition. 
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While DGGE and the HRM analysis failed to detect a cultivar effect on fungal endophyte 

community composition, the qPCR detected a significant cultivar-organ interaction on the 

amount of target DNA found in the various tissues. This is an important finding because 

much of the past work has focused on changes or differences in endophyte community 

composition, without quantitative comparisons of biomass. 

 

Previously discovered interactions in culture-based studies were not necessarily in terms of 

composition, but possibly in the frequency of isolating the most abundant colonizer with 

limited sampling depth, i.e., this may be a quantitative issue in terms of certain plants 

favouring more colonization of certain tissues, rather than the types of fungi that colonize 

them. Host plants will accommodate the microbes that are available to them, unless they 

are vertically transmitted (Christian et al., 2016). If the available microbes are opportunistic 

endophytes, with no long-established evolutionary symbiosis with the host (such as found 

with Epichlöe fungi and Festuca grasses), there will not necessarily be a selective exclusion of 

other fungi, but rather a greater or lesser interaction with those available, varying across 

different organs and influenced by the cultivar, as indicated in this study. For future work, it 

would be important to consider biomass as well as community composition when looking for 

cultivar effects on the phytobiome. 

 

It would also be worth having an idea of the relative amounts of endophytes living within 

plants. Raw qPCR data showed that the threshold cycles for amplification occurred at very 

high cycle numbers. This hinted that the quantities of fungal genomic DNA were extremely 

low in the metagenomic wheat DNA template solution, suggesting that actual fungal 

biomass in plant tissue could be quite low. Future work on these quantities would provide 

some insight into the metabolic significance of these organisms and the energetic impact 

they have on the host. Just as ecosystems with higher species richness are seen as healthy, 

we would also be interested in determining how endophyte biomass relates to crop 

performance in environments where species richness is constrained by agronomic practices. 

Furthermore, the fact that endophyte community composition depends on the microbes 

that are locally available to colonize the host was clearly demonstrated by the strong 

presence of Olpidium brassicae sequences detected in wheat leaves, stems, and roots. This 
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organism has not been commonly reported as an endophyte, although it is a known fungal 

root pathogen of several broad-leaf crops. The association of O. brassicae with wheat was 

probably the result of the environmental conditions under which the wheat was growing. 

How this organism affects wheat relative to other endophytes may be worth exploring. It 

may be that certain opportunistic endophytes, while not overtly pathogenic, may reduce 

yields or disease resistance, instead of conferring any benefit. The definition of an 

endophyte as an organism found within a plant without causing disease symptoms could be 

reviewed in this light. Organisms should be evaluated using a procedure analogous to the 

Koch’s postulate procedure, to show that they confer benefits before they can be 

categorized as an endophyte. This will be challenging for organisms that defy axenic culture, 

but plant performance with and without these organisms could classify organisms as 

endophytes, or place them along a spectrum ranging from plant pathogens to endophytes, 

in general, and for specific host plants. 

 

The individual testing of endophytes on host plants could have further implications. The 

testing of individually isolated endophytes on different host cultivars would also be a 

sensible approach to test cultivar effects on endophyte selection. The degree of colonization 

could be measured by qPCR, culture-based methods, or microscopically. If a particular 

cultivar had a higher affinity for colonization by a specific endophytic fungus this would 

indicate that the plant genome, at cultivar level, determined the endophyte community 

composition. If that particular endophyte possessed plant growth promotion or protective 

properties, then these could be considered as epigenetic traits of a particular cultivar. This 

would encourage breeding for increased cultivar affinity for beneficial microbes, which could 

be introduced to the environment in which the crop is grown, or inoculated at planting. This 

approach deconstructs the original hypothesis, putting it into effect, as opposed to searching 

for evidence thereof in trials where many other factors may exist. Overall, the opportunistic 

association of plants with available microbes bodes well for the biological control and 

growth-promoting potential of endophytes. 

Chapter 5- NGS analysis of fungicide effects on endophytes 

Throughout the research performed for this thesis, observations were made regarding 

methodological variations that could influence experimental outcomes. These included 
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sample treatment, as described in Chapter 2; post-PCR DNA analysis, as seen in Chapter 3 

and the possible effects of fungicides on fungal endophyte community composition that 

were considered in Chapter 4. It was suspected that fungicides limited the number of fungi 

available to associate with the host plants in the field, masking the selective associations by 

the host. Additionally, there was also a concern that the use of fungal-specific primers would 

not allow the detection of potential non-fungal endophytes such as Oomycetes (which are 

prevalent in soil but not commonly reported as endophytes). Consequently, the question 

arose whether Oomycetes were not reported because they were absent as endophytes, or 

because they were present but not detected by the method used. Therefore, in this study 

we i) investigated the effect of fungicides (which could create an open niche for non-fungal 

endophytes) on wheat endophytes and ii) expanded the range of NGS detection of wheat 

endophytes, to potentially include the detection of previously unreported eukaryotic 

organisms, by using universal primers. 

 

The ITS5 and ITS4 primers described by White et al. (1990), commonly used in the 

identification of fungi and in culture-independent analyses of soil microbiota (Slabbert et al., 

2010) were used. While there were several base pair mismatches to the corresponding 

wheat ITS priming region, it was anticipated that wheat sequences would be amplified. To 

this end, it was presumed that next generation sequencing, with its substantial depth of 

sequencing, would detect most systemically significant organisms. This data was expected to 

show what the effect of the fungicide was on the main endophytic organisms, as well as 

whether there are non-fungal eukaryotic endophytes forming a significant component of the 

endophyte community. 

 

It was found that most detected sequences belonged to wheat with sufficient fungal 

sequences detected for further analysis. The fungicides did not dramatically change the 

types and quantity of fungi detected, and the predominant fungi were members of the 

Dikarya. Although the most abundant fungal species detected in this work differed 

somewhat from that of the Swedish study of cereal phyllosphere fungi by Sapkota et al. 

(2015), it was interesting to note that they also detected pathogenic fungi in the healthy 

leaves of both fungicide-treated and untreated samples, representing substantial portions of 



202 

 

the fungal community. In this study the chytrids (seen in Chapter 4) were absent, indicating 

that wheat associates with what is available, and not always with what would be expected, 

as exemplified by the detection of Sclerotinia/Botrytis and Pleurotus spp. 

 

The sequence analysis revealed the ambiguous taxonomic identification of sequence clusters 

on databases used by NGS data analysis pipelines. Even the curated database used to 

identify the sequence clusters contained non-type material and in some instances 

teleomorphic and anamorphic sequences of the same organism were represented 

separately. Such ambiguity hinders OTU richness estimates because sequence clusters are 

occasionally assigned to different species names which are in fact anamorphic. When sample 

data files are analysed individually the OTUs are assigned identities before comparisons 

between samples are made. Consequently, the downstream problems of taxonomic 

ambiguity are amplified and will negatively affect the interpretation of the experimental 

results. To overcome OTU assignment errors based on multiple species name identity, in this 

work all sequence data for all samples used in the experiment was merged, clustered, 

identified and then used as the reference database for each individual sample. This ensured 

that at an OTU level the clusters were assigned to the same OTU and taxonomic identity in 

all samples. 

 

Overall, irrespective of a relatively low number of detected species the most numerous 

organisms were detected and their relative abundance was determined from read numbers. 

Dikarya were found to be the dominant organisms present in both fungicide-treated and 

untreated wheat. This meant that the application of fungicides was not providing a niche for 

alternative non-fungal taxa to occupy. The detection of the Dikarya as the dominant 

organisms alluded to the reason why many other studies of fungal endophytes focus on this 

group of organisms in their selection of taxon-specific primers. 

 

The primers universal ITS primers, developed by White et al. (1990), that were used in this 

study, had several mismatches to wheat. However, because there were no terminal 3’ 

mismatches to wheat DNA annealing sites, wheat DNA amplification was not greatly 

inhibited. For the same reason, alternative primers that have been subsequently been 
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developed for fungal community analysis, for example, those proposed by Bokulich and Mills 

(2013) would also amplify wheat. Therefore, such Dikarya-specific primers are still unable to 

overcome the problem of host DNA amplification, which is abundant in the mDNA used as 

template in endophyte studies. From this, it is evident that endophytes studies have a 

unique challenge compared with other environmental studies, i.e., the overwhelming 

presence of contaminating host DNA that can be co-amplified. 

 

Chapter 6- Blocking primers for endophyte studies 

The conflict between taxonomic range versus the taxonomic specificity of primers used in 

fungal community composition studies was addressed in the final experimental chapter. The 

abundance of host DNA in the mDNA template deters the use of universal primers that 

target the conserved regions among eukaryotic taxa. 

 

Some strategies have been proposed to reduce the presence of non-target DNA, including 

sample enrichment to increase microbial DNA while reducing plant DNA. For example, in a 

study of the bacterial composition of stem bark of a plant with potential pharmacological 

use, DNA was extracted from the supernatants of large quantities of homogenized bark, as 

compared to the DNA extraction from a few grams of bark (Wang et al., 2008). This is not 

viable with softer tissues such as wheat leaves, where the homogenization would release a 

great deal of host DNA, compared to bark. Pressure cycling technology (PCT) has been to 

extract DNA from wheat samples and found to increase the detection of root pathogens 

(Okubara et al., 2007), probably because the PCT approach to lysis was less likely to damage 

DNA, so rarer sequences could be detected. PCT has resulted in the detection of higher 

numbers of unique bacterial T-RFLP fragments compared with bead beating, but there was 

no difference in fungal T-RFLP numbers suggesting that PCT possesses innate extraction 

biases as well (Bruner et al., (2015). However, regardless of any potential benefits, both 

methods do not eliminate host DNA, therefore the problem of contaminating host DNA is 

not resolved. An alternative to consider could include subtractive hybridization, whereby 

endophyte free host DNA is used as a subtractive template to immobilise host DNA in an 

mDNA solution. Shotgun metagenomic sequencing of mDNA with data filtering was 

discussed in a personal communication with Oxford Nanopore, who suggested that their 
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MinION single molecule desktop PC USB stick sequencer could be set to reject sequences 

identified as wheat, sequencing only non-wheat fragments. This may be a way in which to 

physically filter and sequence the DNA in the sequencer itself, providing large numbers of 

mostly microbial DNA sequences without any PCR bias. These are potential methods that 

could be explored and adapted to endophyte studies. 

 

In the meantime, it is unlikely that PCR-based NGS approaches to community composition 

analysis of plant pathogens and endophytes will discontinue in the immediate future. The 

use of non-extendable blocking primers (NEBPs) to mask the presence of host DNA is a 

simple and effective way to prevent host sequence amplification. In this study, it was shown 

that increasing concentrations of NEBPs led to a corresponding decrease in host DNA 

sequence amplification and an increase in the detection of fungal pathogen and endophyte 

sequences. The increase in fungal sequence amplification occurred up to an optimum NEBP 

concentration, after which it was increasingly inhibited and primer dimers began to form, 

demonstrating that optimum NEBP concentrations can be determined for the maximum 

detection of non-host sequences by universal primers. The use of such primers reduces 

biases caused by primer specificity. 

 

The implementation of NEBPs significantly benefits PCR-based NGS studies of plant-

associated microbes that attempt to describe the effect of endophyte composition on 

disease development Endophytic organisms that exhibit disease reducing properties could 

then be isolated, cultured and applied to crops to measure their performance. This is a 

useful tool for elucidating on general endophyte diversity using PCR-base culture-

independent studies for application in the pursuit of targeted biological control research. 

Conclusion 

Throughout this work, challenges of studying environmental microorganisms were 

encountered and engaged with, in the context of endophytes within a host plant. Methods 

for culture-independent endophyte composition analysis have been changing dramatically, 

for example, methods such as clone library development are being usurped by NGS. Such 

culture-independent studies can provide far greater depth and quantity of information in 

this regard compared to culture-based studies. However, this knowledge is irrelevant 
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without having a prescribed purpose. It is, therefore, important to recognize the applications 

and value of the two approaches: culture-dependent studies can still be valuable in 

experiments where useful products can be tested; whereas culture-independent methods 

produce knowledge which creates a framework from which such applications can develop. In 

this context, the work performed in this produced new knowledge to strengthen 

experimental scientific research into harnessing endophytes for crop production. 
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