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Abstract 

There is a need to have constant supply of sugarcane varieties adapted to different South 

African regions. However, the genetic improvement and selection of sugarcane cultivars with 

superior traits, e.g. drought tolerance, are difficult due to its complex polyploid and aneuploid 

genome. Biotechnology approaches are being investigated for the selection and/production 

of drought tolerant cultivars. Towards this end, the aim of this study was to establish: 1) the 

best source of meristematic explant for initiation and mass propagation of in vitro shoots; 2) 

in vitro conditions to screen and select for drought tolerance; and 3) physiological 

parameters as indicators of drought tolerance in vitro. 

Sugarcane stalks and shoots from single-budded setts of NCo376 were used. From the 

former, 1.3 cm-long meristems were isolated and used for shoot induction, shoot 

multiplication and rooting. The single-budded setts (approx. 50 mm) were first germinated in 

20 ml sterile water or sterile moist paper, resulting in 100% and 60% sett contamination, 

respectively. With 1 mg l-1 methylene blue (MB) there was 30% sett contamination, whilst 1 

mg l-1 MB in combination with 1 ml l-1 Previcur® or 1 ml l-1 BRAVO® resulted in 40% and 7% 

contamination, respectively. The uncontaminated germinated shoots (approx. 1 - 2 cm) were 

excised after 10 days in culture and used as the other source of meristems. Meristems from 

both sources were multiplied and rooted in vitro and their plantlet yield was 60 

shoots/sugarcane stalk meristem and 10 shoots/meristem from in vitro-germinated sett. 

NCo376 and N41 varieties were used to determine the effect of mannitol (204, 326, 448 and 

569 mM) on in vitro plantlet shoot and root re-growth. For both, increased mannitol in the 

media delayed shoot and root re-growth, with NCo376 being affected first. Stress was more 

significant on root than on shoot re-growth. For NCo376 plantlets, there were significant 

differences in root re-growth between 0 and 204 mM and the other tested treatments. For 

N41 plantlets, % root re-growth at day 10 on 569 mM mannitol was significantly higher than 

that at the other treatments. At 4 – 10 days, % shoot re-growth of NCo376 on 0 and 204 mM 

mannitol was greater than that at 326, 448 and 569 mM mannitol. Similar results were 

observed with N41 plantlets. 

The LD50 and LD90 for mannitol were 332 and 606 mM for NCo376, and 851 and 1493 mM 

for N41. There was no differences between the effects of polyethylene glycol-6000 (PEG-

6000) and mannitol on root re-growth at the same osmotic potential. However, PEG-6000-

containing cultures required to be aerated. As at 87 mM PEG-6000, NCo376 plantlets 

showed 50% root re-growth compared to 10% in non-aerated cultures, mannitol was used in 

subsequent investigations. 
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Mannitol concentrations equivalent to LD50 and LD90 for NCo376 and N41 were used to 

screen N12, N36, N19 and N26 varieties. Based on the results obtained, the varieties were 

ranked on their tolerance to mannitol stress: N41 > N26 > N36 > N12 > N19 > NCo376.  

Leaf electrolyte leakage, leaf chlorophyll content measured with Soil Plant Analysis 

Development (SPAD) measurements, and histochemical detection of hydrogen peroxide 

(H2O2) (with nitroblue tetrazolium) and superoxide anion (O2
-•) (with 3, 3’-diaminobenzidine) 

production were evaluated as indicators of stress using N41, N26, N19 and NCo376 on 332, 

606 or 851 mM mannitol. N19 and NCo376 plantlets on 332 mM mannitol showed a higher 

% electrolyte leakage at day 5 (70%) than at day 10 (40 – 50%) of culture than N41 and N26 

plantlets. A slight decrease in chlorophyll content was recorded at day 10 of culture in 332 

and 851 mM mannitol, with no differences between NCo376 and N19, and N41 and N26. 

NCo376 and N19 accumulated more H2O2 than N41 and N26. O2
-• accumulation was also 

greater in NCo376 and N19 than in N41 and N26. All these parameters detected stress at 

lower levels of mannitol (332 and 606 mM), but not at 851 mM. It was concluded that 

mannitol stress in vitro (332 – 606 mM), in combination with the physiological assays allow 

for the discrimination of in vitro osmotic stress among sugarcane varieties. Further work is 

necessary before recommendations can be made regarding the use of the other stress 

biomarkers.  
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1. Introduction and rationale for the study  

Sugarcane (Saccharum spp. hybrids), a perennial grass which belongs to the Poaceae 

family (Daniels and Roach, 1987) is one of the top ten most planted crops in the world 

(Bower and Birch, 1992; Selman-Housein et al., 2000; Suprassanna et al., 2011; Pervaiz et 

al., 2013). It is grown mainly in tropical and sub-tropical regions in the world and the South 

African sugar industry is an eminent contributor as one of the world’s major cost 

manufacturers of high quality sugar (www.sasa.org.za). In South Africa, the sugar industry 

contributes to employment, particularly in rural areas, by supporting small scale farmers 

(SASA, 2013). For such a sustainable sugar industry, there is need to produce novel 

genotypes that are able to grow in different regions (Kern, 2002; James, 2008; Snyman et 

al., 2011). 

Sugarcane cultivars with desired traits, such as disease or stress tolerance, increased yield 

and improved ratooning ability, have been produced through breeding (Sengar et al., 2011; 

Snyman et al., 2011). However, sugarcane breeding is limited by many challenges, such as 

disease transmission, complex polyploid and aneuploid genome, and it takes 8 – 10 years to 

produce and release a novel and improved cultivar (Butterfield and Thomas, 1996; 

Butterfield et al., 2001; Snyman et al., 2011). Hence, new advances in biotechnology need to 

be explored in order to complement conventional breeding. 

Sugarcane production via conventional methods involves vegetative propagation through 

setts, which is a lengthy process (8 – 15 years), that is threatened by the possible 

transmission of diseases from one generation to the next (Basnayake et al., 2011; Snyman 

et al., 2011). In vitro propagation can be used for precise breeding aimed at improving 

varieties with specific traits, as well as to accelerate the production of these varieties 

(George, 1993; Snyman et al., 2011). In vitro culture and manipulation make use of a single 

explant and through the exogenous application of plant growth regulators (PGRs) exploits 

the cell’s totipotency in order to produce multiple genetically identical plants (George, 1993; 

Bhojwani and Radzani, 1996). In vitro culture methods are well established for sugarcane 

(Chen et al., 1988; Gamborg and Phillips, 1995; Snyman et al., 1996; 2000; Aftab and Iqbal, 

1999; Snyman et al., 2001; Anold et al., 2002; Baksha et al., 2002; Ali et al., 2008; Patade et 

al., 2008; Behera and Sahoo, 2009; Khan et al., 2009; Basnayake et al., 2011; Joshi et al., 

2013; de Arauja Silva, 2014) and have various applications, such as genetic transformation 

(Snyman et al., 1996, 2001), pathogen eradication (Irvine and Benda, 1985; Ramgareeb et 

al., 2010; Shahid et al., 2014), mutagenesis for production of novel genotypes (Khan and 

Khan, 2010; Koch et al., 2012, Mahlanza et al., 2013; Munsamy et al., 2013) and germplasm 

conservation (Watt et al., 2009).  

http://www.sasa.org.za/
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The generation of genetic variation used for the selection of desirable traits is an important 

step in any plant breeding program (Roane, 1973; Lebeda and Svabova, 2010), as well as in 

the biotechnological methods mentioned above. The selection of stress tolerance traits 

through conventional breeding is performed in the field, where lines with desirable 

agronomic traits are crossed with those with stress tolerance (Ming et al., 2006). However, 

this process is both time-consuming and labourious (Jain, 2001; Patade et al., 2008). In 

contrast, in vitro selection is a method which allows rapid screening and selection of 

numerous genotypes performed in a limited space and monitored conditions without 

influences by biotic and abiotic factors which could negatively affect selection (Chaleff et al., 

1983; Hajari et al., 2014). It has been shown to be a critical step in selection of genetically 

engineered and mutagenic events and it may be a way to discriminate amongst genotypes 

produced by traditional breeding (Bower and Birch, 1992; Chowdhury and Vasil, 1992; 

Arencibia et al., 1998; Ali et al., 2008; Patade et al., 2008; Wagih et al., 2004; Khamrit et al., 

2012; van der Vyver et al., 2013). 

Several studies have reported that in vitro culture alone (Sengar et al., 2009) or in 

combination with mutagenesis (Avinash et al., 2012; Koch et al., 2012; Mahlanza et al., 

2013), induced with biological or physicochemical agents (Errabii et al., 2006; Shomeili et al., 

2011; Gomez-Luciano et al., 2012; Rao and Jabeen et al., 2013), can be utilised to enhance 

mutants and genetic variability, as a prospective source of new commercial cultivars 

(Orbovic et al., 2008). The most commonly used approach for selection of stress tolerant 

genotypes is the in vitro selection pressure, which in the event of selecting for drought 

tolerant genotypes, involves the culture of explants on medium supplemented with either 

sorbitol (Albiski et al., 2012), mannitol (Cha-um and Kirdmanee, 2009; Cha-um et al., 2010) 

or polyethylene glycol (PEG) (Biswas et al., 2002; Patade et al., 2011; 2012; Soliman and 

Hendawy, 2013) of higher molecular weights. In sugarcane, in vitro selection strategies 

incorporating specified selection agents have been used to obtain plants with improved 

tolerance to salt (Patade et al., 2008), herbicide (Koch et al., 2012), pest (Mahlanza et al., 

2013) and drought (Errabii et al., 2006; Rao and Jabeen, 2013). Imperative to the 

development of new drought tolerant commercial cultivars is the knowledge and 

comprehension of how plants tolerate water deficit and distinguishing tolerance to water 

stress (Nepomuceno et al., 2001). In sugarcane, genetic advancement programs aimed at 

developing drought tolerant cultivars necessitate the identification of important physiological 

mechanisms that can be used as selection criteria (Smit and Singels, 2006; de Almeida Silva 

et al., 2011). The present study focused on this issue under in vitro conditions. 
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In nature, crops are exposed to hostile environmental stresses, such as drought, that not 

only affect growth and development (Zingaretti et al., 2012), but also cause a homeostasis 

disturbance that require crops to alter their metabolism for protection against stress 

(Zingaretti et al., 2012; Lakshmanan and Robinson, 2014). Upon exposure to water deficit, a 

plant’s initial response is a reduction in growth (Inman-Bamber et al., 2008; Wilkinson and 

Davies, 2010) which leads to a decrease in the rate of photosynthesis (Azevedo et al., 

2011), which ultimately affects processes such as stomatal conductance, respiration, foliar 

temperature and radiation capture (Silva et al., 2007).  Furthermore, drought-induced 

oxidative stress may occur as a result of a low carbon assimilation rate, which consequently 

leads to the overproduction of reactive oxygen species (ROS) (Edreva, 2005), such as 

hydrogen peroxide (H2O2), hydroxyl radicals (OH•) and superoxide (O2
-•), which have 

detrimental effects on cellular components (Arora et al., 2002; Apel and Hirt, 2004). 

Sugarcane varieties differ in their response to drought stress, and it is feasible to identify 

more tolerant ones, which is essential, especially in areas that experience long periods of 

water deficit (de Almeida Silva et al., 2011). These physiological parameters are known to be 

responsive to water stress (de Almeida Silva et al., 2011) and have been shown to be useful 

as indicators for stress in field (de Almeida Silva et al., 2011; Cha-um et al., 2012; de 

Almeida Silva et al., 2014), pot trials (Zhao et al., 2010; dos Santos et al., 2014) and in vitro 

studies (Cha-um and Kirdmanee, 2008; Patade et al., 2011; Cha-um et al., 2012; Patade et 

al., 2012).  

Consequently, the aims of the present study were to: 1) establish in vitro conditions to 

screen and select consequently, for drought tolerance; and 2) assess various physiological 

parameters as indicators of drought tolerance under in vitro conditions. In order to undertake 

the studies above, it was necessary to produce in vitro plantlets. The in vitro direct 

organogenesis standard culture procedures method (Ramgareeb et al., 2010) was used. 

However, this method not only requires extra care, it is also time-consuming and labourious 

since the meristems are obtained from sugarcane stalks. For this reason, the third aim of the 

present study was to establish the best source of meristematic explant for culture initiation 

and mass propagation of in vitro shoots. 
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2. Literature review 

2.1 Background and economic importance of sugarcane 

Grown mainly in tropical and sub-tropical parts of the globe, sugarcane is a tall perennial 

grass ranked among the ten most planted crops in the world (Bower and Birch, 1992; 

Selman-Housein et al, 2000; Suprasanna et al., 2011; Pervaiz et al., 2013). This grass 

species has culms equally bunched in stools of 5 – 10 inch or more (Pervaiz et al, 2013), 

and are juicy, with high sucrose content (Cheavegatti-Gianotto et al., 2011; Mnisi and 

Dlamini, 2012). This tropical crop thrives in soils with adequate drainage, that are rich in 

organic matter, medium to heavy and slightly alkaline (Anon, 2003). Being the most 

important source used for sweetening globally, sugarcane accounts for approximately 80% 

of the world’s sugar production (Raza et al., 2012). 

Sugarcane plays a crucial role in the economy of many developing countries (Bower and 

Birch, 1992; Allsopp and Manners, 1997). Although sugarcane-growing regions are mainly in 

the tropics, the crop is cultivated on approximately 23.8 million hectares in over ninety 

countries globally (Grivet and Arruda, 2001). There are some 45 million sugarcane farmers 

globally; their dependents and a vast number of agricultural laborers are involved in the 

cultivation, harvesting and supportive activities associated with cane farming, with 7.5% of 

these being rural farmers (Mnisi and Dlamini, 2012). 

The South African sugar industry is not only a prominent contributor to the national economy 

in areas such as KwaZulu-Natal (KZN), Mpumalanga and the Eastern Cape, but is also 

amongst the world’s leading cost capitalistic producers of high quality sugar 

(www.sasa.org.za). It is a versatile industry, merging the production of raw and refined sugar 

syrups, a range of by-products and specialized sugars. With an annual estimated average 

direct income of ZAR8 billion (SASA, 2013), the sugar industry contributes to employment, in 

particular to sustainable development, and in rural areas through supporting small scale 

farmers. It produces approximately 2.2 billion tons of sugar in each season, with 60% being 

marketed in the Southern African Customs Union (SACU), and the rest exported to markets 

in various regions such as Asia, Africa and the Middle East (SASA, 2013). 

Sugarcane belongs to the genus Saccharum L., which is a division of the Poaceae family 

(Selman-Housein et al., 2000). There are generally six recognised species in the Saccharum 

genus, with S. spontaneum and S. robustum found in the wild, and S. officinarum, S. barberi, 

S. sinense and S. edule found primarily in cultivation (Daniels and Roach, 1987; Tarimo and 

Takamura, 1998; Jackson, 2005). S. officinarum clones are known as the ‘noble’ canes and 

were the main supporters of the world’s commercial production prior to the exploitation of 

interspecific hybridization (Jackson, 2005). S. barberi and S. sinense are ancient land races 
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in India and China, respectively, and are distinguished by an aborted inflorescence 

(Jackson, 2005). Leading to the end of the 19th century, sugarcane clones of S. officinarum, 

a species which was domesticated from the wild species S. robustum, were the most 

cultivated cultivars (Grivet and Arruda, 2001; Lakshmanan et al., 2005). By crossing S. 

officinarum (2n = 80) with S. spontaneum (2n = 40 – 128), a wild and vigorous relative, and 

then backcrossing the hybrids to S. officinarum, initial sugarcane breeders were able to 

increase yield, disease resistance and better ratooning ability (Berding and Roach, 1987; 

Daniels and Roach, 1987; D'Hont et al., 1998; Grivet and Arruda, 2001; Lakshmanan et al., 

2005). 

The majority of the currently cultivated sugarcane varieties are derived from the interspecific 

hybridization of S. officinarum and S. spontaneum produced in the 1800s (Altpeter and 

Oraby, 2010; Snyman et al., 2011). The resulting progeny obtained from the early crosses 

were then backcrossed with S. officinarum and, since nobilisation is qualified by asymmetric 

chromosome transmission (Berding and Roach, 1987), current-day hybrids possess a limited 

gene pool and complex polyploid, aneuploid genomes (Butterfield et al., 2001). This complex 

cytology causes challenges in sugarcane breeding programs for the betterment of traits, 

since it is difficult to predict the resulting features of hybrids incurred by cross pollination of 

members of the Saccharum genus (Barnes, 1964; Jackson, 2005; D’Hont et al., 2008). 

In order for the sugarcane industry to remain profitable, there is a need to have a constant 

supply of varieties that are able to grow in different regions of the world (Kern, 2002; James, 

2008; Snyman et al., 2011). However, this is restricted by the complex genome, narrow gene 

pool, lengthy breeding and selection time, and the difficulty in predicting the outcome of 

crosses and lengthy vegetative propagation via stem cuttings (Ming et al., 1998; Brumbley et 

al., 2008; Snyman et al., 2011). In South Africa, the main challenges facing the industries 

are specific pests and diseases and low annual rainfall levels (Snyman et al., 2008). 

Therefore, the commercial varieties that are produced in South Africa should be able to 

withstand those (Snyman et al., 2011). 

2.2 Sugarcane breeding 

Presently, at the South African Sugarcane Research Institute (SASRI), and in other parts of 

the world, there are integrated breeding programs established for the development of new 

sugarcane varieties, and these programs make use of the germplasm of existing commercial 

and ancestral lines (Nair et al., 1999; Najarajan et al., 2000; Botha, 2007; Snyman et al., 

2011). This involves extensive crossing of selected cultivars through cross pollination 

(Selman-Housein, 2000). It is achieved by aligning the arrows of the male and female clone 

in isolation to facilitate natural cross pollination. Manual dusting of the pollen onto the 
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flowering arrow of the female clone can also be employed (Sleper and Poehlman, 2006). 

Breeding sugarcane in this way is a lengthy process and generally takes between 12-15 

years (Barba et al., 1978; Pathak et al., 2009). 

Upon the production and selection of new genotypes through breeding programmes, they 

are vegetatively propagated by nodal cuttings, such as billets, seedcanes or setts (30 – 40 

cm in height) to be used in clonal plantations (Snyman et al., 2011). Although, this is 

relatively a simple process, it has two main shortcomings, viz. slow propagation and the risk 

of diseases being transferred (Snyman et al., 2008; Snyman et al., 2011). The number of 

buds on a mature stalk restricts the multiplication rate, and propagation rates are eight – to 

tenfold in one annual growth cycle (Dookun et al., 1996; Snyman et al., 2008). Furthermore, 

the effectiveness of such propagation may be limited by the transmission of disease from the 

seedcane to the resultant crop in the event that phytosanitation measures are not rigorously 

followed (Snyman et al., 2011). Disease transmission occurs because in sugarcane, a 

ratooning monoculture, the infection is carried on through rootstocks (Lee, 1987; Victoria et 

al., 1999; Flynn et al., 2005). The removal of pathogens is a labourious process involving hot 

water treatment of sugarcane stalks, which fails to eradicate viral particles (Victoria et al., 

1999; Flynn et al., 2005). 

Some of the above-mentioned problems can be overcome with in vitro culture. According to 

Snyman et al. (2006), the use of such cultures can increase the vegetative propagation 

potential of sugarcane by 20 - 35 times. Furthermore, meristem-derived tissue culture plants 

are pathogen-free (Ramgareeb et al., 2010; Sengar et al., 2011; Snyman et al., 2011). 

2.3 In vitro culture systems 

Micropropagation is the outcome of in vitro culture manipulations that lead to the mass 

propagation of one genotype, usually possessing superior traits (Bhojwani and Radzan, 

1996, George et al., 2008). This process is made possible by totipotency, which is the ability 

of a single cell to dedifferentiate, divide and differentiate into tissues, organs and plants. This 

is usually achieved in vitro through the exogenous application of PGRs (George, 1993; 

Bhojwani and Radzan, 1996, George et al., 2008). Numerous in vitro techniques used for the 

mass propagation of healthy sugarcane plantlets have been established (Table 1) and are 

required in present-day efforts to improve sugarcane germplasm via genetic engineering and 

induced mutagenesis (Rutherford et al., 2014). In addition, such protocols extend strategies 

to deal with the propagation and storage restrictions and narrow genetic diversity currently 

curbing sugarcane industries globally (Snyman et al., 2011). 

There are two main morphogenic routes leading to the regeneration of whole plants in vitro, 

viz. somatic embryogenesis and organogenesis (Phillips, 2004; George et al., 2008). Both 
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routes can take place either directly from the explant or indirectly subsequent to an 

intervening callus stage (Gamborg and Phillips, 1995). A limited number of plant species 

have the ability to regenerate through both organogenic and somatic embryogenic pathways, 

including sugarcane (Table 1), as discussed below. 

2.3.1 Organogenesis 

Organogenesis involves the formation of shoots or roots from plant tissues (George et al., 

2008). Direct or indirect organogenesis relies both on the manipulation of the medium 

components and on the plasticity of the plant tissue (George et al., 2008; Slater et al., 2008). 

The auxin:cytokinin ratio contained in the medium determines the developmental route of 

regeneration (George et al., 2008; Slater et al., 2008). In most cases during direct 

organogenesis, shoot multiplication occurs under the influence of both auxins and cytokinins, 

whilst root formation is influenced by the presence of auxin alone (George, 1993; Mamun et 

al., 2004; Khan et al., 2006; Ali et al., 2008; George et al., 2008). 

According to Sugiyama (1999), organogenesis occurs in three distinct stages which are 

dependent on the balanced application of PGRs. During the first stage, cells adopt 

‘competence’, wherein they are able to respond to plant regulator signals. In the second 

stage, the dedifferentiated cells are channelled and determined for particular organ formation 

in response to exogenous application of PGRs. During the third stage, exogenous supply of 

PGRs is ceased and morphogenesis proceeds independently. 

In sugarcane, a combination of auxin and cytokinin has been employed to achieve shoot 

multiplication (Table 2), of which the commonly used cytokinin is benzylaminopurine (BAP) 

(Lee, 1987; Gambley et al., 1993; Huang et al., 2003; Ali et al., 2008). The optimal BAP 

concentration varies among different varieties and ranges between 0.5 to 2 mg l-1 (Mamun et 

al., 2004; Ali et al., 2008; Khan et al., 2008; Pathak et al., 2009), with 1.5 mg l-1 being 

commonly used (Mamun et al., 2004, Khan et al., 2006; Ali et al., 2008). A combination of 

BAP and 6-furfuryaminopurine (kinetin) can be used to improve shoot multiplication, and the 

optimum concentration also differs amongst varieties (0.1 to 0.5 mg l-1) (Lee, 1987; Khan et 

al., 2006; Ali et al., 2008; Pathak et al., 2009). To induce direct organogenic pathways, 

auxins used to achieve shoot multiplication include naphthaleneacetic acid (NAA) and 

indole-3-acetic acid (IAA), whilst auxins commonly used for root formation are indole-3-

butyric acid (IBA) and NAA. 
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Table 1: Examples of studies utilizing different morphogenic routes of sugarcane micropropagation 

and their applications.  

Morphogenic route Application Reference 

   
Direct somatic embryogenesis Micropropagation Aftab and Iqbal (1999) 
  Snyman et al. (2000) 
  de Arauja Silva (2014) 
   
 Genetic transformation Snyman et al. (2006) 
  Taparia et al. (2012) 
   
 Minimal growth and storage/ 

germplasm preservation 
Watt et al. (2009) 

   
   
Indirect somatic embryogenesis Micropropagation Ho and Vasil (1983) 
 Cryopreservation Chanprame et al. (1993) 
   
 Genetic transformation Snyman et al. (1996), (2001) 
   
 Mutagenesis Khan and Khan (2010) 
  Koch et al. (2012) 
  Mahlanza et al. (2013) 
  Munsamy et al. (2013) 
   
   
Direct organogenesis Pathogen eradication Irvine and Benda (1985) 
   
 Micropropagation Baksha et al. (2002) 
  Ali et al. (2008) 
  Joshi et al. (2013) 
   
 Virus elimination Ramgareeb et al. (2010) 

   
Indirect organogenesis Micropropagation Behera and Sahoo (2009) 
  Khan et al. (2009) 
  Dibax et al. (2012) 
   
 Virus elimination Ramgareeb et al. (2010) 
  Shahid et al. (2014) 

 

Most researchers use Murashige and Skoog (1962) (MS) as the nutrient formulation in 

sugarcane organogenesis protocols (Ho and Vasil, 1983; Lorenzo et al., 2001; Mamun et al., 

2004; Behera and Sahoo, 2009; Ramgareeb et al., 2010), and sucrose is the most common 

carbon source (Lorenzo et al., 2001; Ali et al., 2008; Ramgareeb et al., 2010). Occasionally, 

coconut milk (Lee, 1987), myo-inisitol (Lee, 1987; Lorenzo et al., 2001) or coconut water (Ho 

and Vail, 1983, Mamun et al., 2004), arginine and thiamine (Lee, 1987) have been used as 

supplements in the media.  
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Table 2: Examples of various protocols developed for plantlet regeneration through the use of culture 

systems. PGRs 2,4-D = 2,4-dichlorophenoxyacetic acid, IBA = indole-3-butyric acid, BA or BAP = 6-

benzylaminopurine, GA3 = gibberellic acid, NAA = 1-napththylacetic acid, kinetin = N-6-

furfuryladenanine and TDZ = thiadiazuron. 

Morphogenesis route Explant PGR Reference 
    
Direct organogenesis Single bud BAP, Kinetin Lee (1987) 
    
 Meristem BAP Lorenzo et al. (2006) 
    
 Apical meristem BAP, IAA, IBA, Kinetin Khan et al. (2006) 
    
 Spindle fibres BAP, IBA, Kinetin, NAA Pathak et al. (2009) 
    
 Apical meristem BA, Kinetin, NAA Ramgareeb et al. (2010) 
    
Indirect organogenesis Young meristem 2.4-D, BAP, IAA, IBA, 

Kinetin, NAA 
Behera and Sahoo (2009) 

    
 Meristem IBA, IAA, Kinetin Khan et al. (2009) 
    
 Meristem 2.4-D, BA Ramgareeb et al. (2010) 

    
Direct somatic 
embryogenesis 

Immature leaf roll 2.4-D, NAA Nadar and Heinz (1997) 

    
 Midrib segments 2.4-D, BAP, NAA Franklin et al. (2006) 
    
 Immature leaf roll 2.4-D Snyman et al. (2001) 

    
Indirect somatic 
embryogenesis 

Spindle tissue 2.4-D Barba et al. (1978) 

    
 Immature leaf 

segments 
2.4-D, BAP, Kinetin, NAA, 
zeatin 

Falco et al. (1996) 

    
 Mature seeds 2.4-D, IBA, picloram, TDZ Chengalrayan et al. (2005) 
    
 Shoot apical 

meristem, spindle 
leaves, pith 
parenchyma 

2.4-D, BAP, Kinetin Ali et al. (2007) 
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2.3.2 Somatic embryogenesis 

Somatic embryogenesis involves the formation of embryos from somatic cells (Anold et al., 

2002; George et al., 2008). In this developmental pathway, embryos develop from single, 

thin-walled, richly cytoplasmic cells with numerous starch grains and vacuoles (Ho and Vasil, 

1983; Guiderdoni and Demarly, 1988). The embryos resemble their zygotic counterparts in 

both developmental stages and structure (George, 1993; Bhojwani and Radzan, 1996; 

Snyman et al., 2011). Similar to zygotic embryo development, somatic embryo formation is 

characterized by the formation of cells into: i) globular, ii) heart-shaped, and iii) torpedo-

shaped phases in dicotyledons (Terzi and Loschiavo, 1990; Zimmerman, 1993; Litz and 

Gray, 1995; Dodeman et al., 1997); or i) globular, ii) scutellar, and iii) coleoptilar in 

monocotyledons (Gray et al., 1995). 

According to Jimenez (2005), somatic embryogenesis has two phases, induction and 

expression. In the former, the cellular state (physiology, metabolism and gene expression) of 

somatic cells is reorganised and they acquire embryogenic features. This is influenced by 

alterations in culture conditions (e.g. culture composition, medium, PGRs, osmotic potential 

and/or carbohydrate source) and leads the cells to reach the expression stage, wherein their 

embryogenic competence is displayed and they differentiate into somatic embryos. 

Plant regeneration through somatic embryogenesis takes place via: i) initiation of 

embryogenic culture through culturing the explant on medium containing PGRs, primarily 

auxin but occasionally also cytokinin; ii) proliferation of embryogenic cultures cultured on 

either liquid or semi-solid medium with PGRs, similar to initiation; iii) prematuration of 

somatic embryos cultured on medium without PGRs, where proliferation is inhibited and 

somatic embryo formation and development is stimulated; iv) maturation of somatic embryos 

on medium supplemented with ABA and/or diminished osmotic potential; and v) regeneration 

of plantlets by culturing on medium lacking PGRs (Anold et al., 2002).  

Ho and Vasil (1983) reported that calli formed from sugarcane explants during somatic 

embryogenesis were not consistent in appearance and possessed morphogenically different 

regions. The different calli were classified as: i) type 1 embryogenic, white and nodular in 

appearance; ii) type 2, yellow, soft and friable and may be embryogenic; and iii) type 3 

mucilaginous, shiny and non-embryogenic calli. In contrast, Taylor et al. (1992) categorised 

type 1 callus as semi-transparent with loose, large and elongated cells, type 2 as greyish-

yellow mucilaginous calli, type 3 as compact, nodular calli with yellowish-white cells, and 

type 4 as friable, yellow calli. In this description, type 1 and 2 calli were considered non-

embryogenic, whilst type 3 as embryogenic and type 4 as organogenic. 
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In sugarcane, the initiation of callus production requires the exogenous application of auxins 

to promote cell division and supress cell differentiation (George et al., 1993; Bhojwani and 

Radzani, 1996; Deo et al., 2010). Embryo formation in culture occurs under high levels of 

auxin, while auxin removal promotes embryo maturation and plantlet development (George 

et al., 1993; Bhojwani and Radzani, 1996; Khalil, 2002; Snyman et al., 2006). The most 

frequently reported medium that promotes callus induction in sugarcane consists of MS with 

vitamins, sucrose and 2.4-D (Table 2; Chen et al., 1988; Snyman et al., 2001; Khalil, 2002; 

Basnayake et al., 2011; Snyman et al., 2011). In sugarcane, the most commonly used auxin 

for optimal callus induction is 2.4-D at 3 – 4 mg l-1, even though this may differ among 

varieties (Khalil, 2002; Basnayake et al., 2011), but picloram has also been used (Table 2). 

In order to regenerate plants via somatic embryogenesis, an array of physical and chemical 

treatments should be employed with appropriate timing (Anold et al., 2002; George et al., 

2008). The frequency and morphological quality of the somatic embryos can be optimized 

through the manipulation of various culture treatments such as the PGR source and 

concentration, nutrient medium composition (e.g. carbohydrate sources and concentrations, 

inorganic versus organic nitrogen sources), choice of explant, culture conditions (e.g. quality 

and quantity of light, liquid or semi-solid medium, temperature, pH and gaseous 

environment) and osmotic potential (Phillips, 2004; George et al., 2008). 

2.3.3 Somaclonal variation and induced mutagenesis 

Early on in culture studies, it was noted that not all the plants regenerated from tissue culture 

were exactly identical to their parent plants, and a few expressed some variability in their 

agronomic traits (Larkin and Scowcroft, 1981). Hawaiian researchers Heinz and Mee (1969), 

who were the first to describe the regeneration of sugarcane plantlets from callus, brought 

attention to the fact that some of the progeny were not true-to-type clones. Numerous 

alterations within the regenerated plantlets were observed, including changes in morphology 

(such as slower growth, denser tillering, more upright), elevated chromosome number (from 

2n = 106 – 107 to 2n = 117 – 124), and varying electrophoretic forms of esterases in 

contrast to the parental genotype. Comparing chromosome numbers between somaclones 

and the parental clones revealed that differences in the magnitude of variation were a result 

of genetic dissimilarities (Rutherford et al., 2014). Two studies were set out to investigate 

yield facets, [(i.e. sugar content and Brix (the percentage of total soluble solids present in 

cane juice, including sucrose and non-sucrose constituents of sugarcane)] of in-vitro-

regenerated plants (Krishnamurthi, 1977; Liu and Chen, 1978). In the study by Liu and Chen 

(1978), somaclones and parent clones were compared with regards to their fibre and 

sucrose content, sensitivity to mildew and Fiji disease resistance ratings. Some of the 

observed results included improved sucrose yields and resistance to both Fiji disease and 
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downy mildew. It was noted that many traits could be changed simultaneously (Liu and 

Chen, 1978) when an elaborate morphological analysis was taken, comparing 

measurements of curvature of leaf blade, stem colour, auricle length, bud shape and 

presence or absence of leaf hair. Sugar analyses from more than two successive crops 

showed increases between 2 and 12% in comparison to the donor clones. Chromosome 

analyses revealed that the genetic variation existed even amongst the same plant (Liu and 

Chen, 1978). 

In 1981, Larkin and Scowcroft coined the term somaclonal variation to depict the genetic 

variability rendered in plants exposed to tissue culture cycles. Subsequent to the attention 

given to somaclonal variation research, it was soon acknowledged that somaclonal variation 

existed for nearly all phenotypic features in many species (Jayasankar, 2005), not only in 

sugarcane. The manipulation of culture condition, particularly the use of PGRs, which 

influence cell division (Gould and King, 1984), exclusive proliferation of certain cell types 

(Ghosh and Gadgil, 1979) and the extent of unsystematic growth (Karp, 1992) lead to the 

breakdown of standard cellular operation mechanisms, which in turn is responsible for the 

genetic unstableness in some in-vitro-generated plants. Different mechanisms have been 

reported to lead to somaclonal variation. These include: i) point mutations stimulated by 

exposing plant cells to medium supplemented with chemicals; ii) alteration of chromosome 

number and structure; iii) change of mitochondrial DNA; iv) DNA methylation; v) epigenetic 

variation caused by micro-environment of tissue culture conditions; and vi) alterations in 

plastid DNA (Jain, 1998; Miguel and Marum, 2011). In the event where the aim is to achieve 

true-to-type clonal propagation, somaclonal variation must be avoided. Nevertheless, it is 

useful as a source of genetic variation and can be beneficial to the industry aimed at 

producing genotypes with traits of interest (Rutherford et al., 2014). 

Undoubtedly, unprompted mutations have played a crucial role in the past when it comes to 

the breeding of novel crop cultivars. All the same, their competency in the grand scale of 

breeding programs (which are aimed at rapidly releasing varieties adjusted to meet the fast-

changing biotic and abiotic stresses) is rather limited because of their low rate of occurrence 

(Rutherford et al., 2014). Various mutagens, utilized to yield genetic variation, differ in terms 

of the type of mutations generated, and the ratio of each type of mutation that can be 

achieved (Rutherford et al., 2014). Stadler (1928) demonstrated that heritable mutations in 

barley can be induced through ionising radiation. The combination of such radiation and 

specific chemicals was later shown to be capable of inducing advantageous alterations in 

the genomes of various crops (Constantin, 1984; Ahloowalia and Maluszynski, 2001). From 

this approach, came several methods directed at improving mutation breeding supported by 

the potential alteration of genes through plant parts being exposed to chemical or physical 
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mutagens (Rutherford et al., 2014). Rao et al. (1966) reported that the use of such 

procedures in sugarcane, led to the release of a red rot-resistant mutant. Several studies 

have reported on the use of mutagens to obtain sugarcane mutants with increased yield, 

disease and pest resistance, and abiotic stress tolerance (Table 3). 

Ionising radiation is employed for the production of mutations by transferring energy, through 

excitation or ionisation, to sites among or in proximity with the genetic material, thus 

enhancing the chemical reactivity of the concerned sites (Rutherford et al., 2014). Different 

types of radiation are used, including high-energy forms (e.g. ultra-violet (UV) light, X-rays, 

y-rays, and fast neutrons. Point mutations are known to occur as a result of exposure to UV 

light, leading to the formation of pyrimidine dimers (TT and CC), whilst X-and y- rays lead to 

point mutations and minute deletions when breaks in phosphodiester bonds occur 

(Rutherford et al., 2014). According to Sikora et al. (2011), fast electrons induce 

chromosome loss, translocation and large chromosome omissions. Most of the research 

done on sugarcane has been aimed at determining the most effective exposure time and the 

dose that results in the highest mutation percentage, without being harmful or fatal 

(Rutherford et al., 2014). 

Chemical mutagens can affect the DNA directly or indirectly by producing mutations which 

result in base-pair transposition, generally GC to AT (Rutherford et al., 2014). For instance, 

ethylmethanesulphonate (methanesulphonic acid ethyl ester, EMS), an alkalating agent, 

haphazardly reacts with thymine and guanine residues, adding an ethyl group and results in 

them being discerned as cytosine and adenine, respectively, during DNA replication (Van 

Harten, 1998; Jander et al., 2003). Sodium azide, a mutagenic agent that has been widely 

used for inducing mutations in seeds, acts as a point mutagen during DNA replication (Al-

Qurainy and Khan, 2009) upon its conversion to azidoalanine (Owais et al., 1983). This 

mutagen induces base substitutions (GC to AT) (Koch et al., 1994). The use of other 

mutagens, such as hydrogen fluoride, methylemethanesulphonate (MMS) and N-methyl-N-

nitrosourea, has been common in other plants, but to a lesser extent in sugarcane (Parry et 

al., 2009). 

 The chemically-induced mutation method is considered to be relatively simple, regardless of 

the toxicity associated with chemical mutagens (Rutherford et al., 2014). In vitro 

mutagenesis through chemical mutagens in sugarcane is a recently researched area, with 

the first report by Ali et al. in 2007. Those authors investigated how embryogenic calli is 

affected by the presence of sodium azide. Their results revealed that the largest number of 

genetic variants was achieved by using 4.0 mg l-1 sodium azide, but all the regenerated 

plantlets died. Subsequently, EMS has been the preferred chemical mutagen for in vitro 
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chemically-induced mutagenesis of sugarcane calli (Sadal and Hoveize, 2012; Koch et al., 

2012; Mahlanza et al., 2013). 

 

Table 3: Examples of traits in sugarcane mutants obtained with gamma irradiation and chemical 

mutagens. 

Mutagen Trait Reference 

   

Gamma rays Red rot resistance Ali et al. (2007) 

 Salt tolerance Patade et al. (2008) 

 Increased yield Khan et al. (2007), (2010) 

 Brown rust resistance Oloriz et al. (2011) 

   

Ethyl methanesulfonate Red rot disease Khairwal et al. (1984) 

 Salt tolerance Kenganal et al. (2008) 

 Imazapyr tolerance Koch et al. (2012) 

 Fusarium sacchari tolerance Mahlanza et al. (2013) 

   

Sodium azide Colletotridium falcatum 
resistance 

Ali et al. (2007) 

   

Sodium nitrite Drought tolerance Wagih et al. (2004) 

 

2.4 Strategies used to induce stress tolerance in sugarcane 

2.4.1 Conventional breeding strategies 

Conventional plant breeding involves the recombination of genes of interest from crop 

species and their relatives through sexual hybridization to develop cultivars with superior 

traits, such as increased yield, tolerance to pests, diseases, drought, salinity and herbicides. 

New cultivars with desired traits such as high yield, disease tolerance and better ratooning 

ability have been created through sugarcane breeding (Sengar et al., 2011; Snyman et al., 

2011). However, due to the previously discussed multiple challenges associated with 

breeding sugarcane, this approach takes 8 – 10 years to develop and release a novel and 

improved sugarcane cultivar (Gururaj, 2001; Snyman et al., 2011). Therefore, there is need 

for new advances in plant biotechnology in order to complement conventional breeding in 

areas such as: i) commercial cultivation engineered with new genes, ii) molecular pathogen 

diagnostics towards improving exchange between Saccharum germplasm and related 
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genera (Patade and Suprasanna 2008); iii) plant tissue culture for propagation and 

molecular breeding (Patade and Suprasanna 2008; Snyman et al., 2011); iv) recognition of 

newly developed varieties (Khan et al., 2009); and v) ranking of different traits amongst the 

varieties (Gurujaj, 2001).  

2.4.2 Genetic modification 

Genetic modification is defined as the targeted transfer of a gene or genes from one plant to 

another of the same or different species, or from another organism to develop a plant with 

traits of interest. Naturally, the plant would acquire the genes through crossing or natural 

recombination, but in genetic modification the genes are obtained artificially. These newly 

developed plants are referred to as transgenic or genetically modified (GM). The genetic 

manipulation of sugarcane, like other crops, is used as a tool to quicken the production of 

plants with superior and improved agronomic attributes that would have otherwise taken 

longer or not been possible if produced conventionally (Bower and Birch, 1992; Sengar et 

al., 2011). Several steps are involved in genetic modification, such as distinguishing of the 

gene of interest, cloning the gene into a suitable plasmid vector, introduction of the vector 

into a plant, and the expression of the gene encoding a polypeptide (Wang et al., 1988; 

Christou et al., 1989; Bower and Birch 1992; Becker et al., 2000). 

Several transformation approaches have been developed for gene introduction in sugarcane 

leaf discs and calli. Microprojectile bombardment (Bower and Birch, 1992; Bower et al., 

1996; Lakshmanan et al., 2005; Rivera et al., 2012), electroporation or polyethylene glycol 

(PEG) treatments (Arencibia et al., 1995; Rivera et al., 2012) and Agrobacterium-mediated 

genetic transformation (Arencibia et al., 1998) are the most frequently-used techniques. 

Some of the novel characteristics that have been achieved in sugarcane through these 

techniques include virus resistance, herbicide tolerance, altered sucrose enzyme regulation, 

and insect resistance (Table 4). 

Microprojectile bombardment involves bombarding the target tissue with microprojectiles 

coated with foreign DNA (Birch and Franks, 1991; Hansen and Wright, 1999). There are 

essentially two methods of microprojectile bombardment, the particle inflow gun and the 

gene gun (Birch and Franks, 1991; Hansen and Wright, 1999, Deo et al., 2010). The former 

has DNA-coated microprojectiles that are accelerated into the target tissue (Birch and 

Franks, 1991; Newell, 2000; Deo et al., 2010). The gene gun makes use of micro-and 

macro- carriers (Birch and Franks, 1991; Deo et al., 2010), wherein a gas (generally helium) 

accelerates the macro-carriers containing DNA-coated micro-carriers into the target tissue 

(Birch and Franks, 1991; Newell, 2000; Deo et al., 2010). 
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Electroporation involves inducing membrane permeabilisation, allowing for a local drive force 

for both molecular and ionic transport via the pores (Arencibia et al., 1998). In this method, 

the application of an electric field allows for the temporary formation of pores (Newell, 2000; 

Rakoczy-Trojanowsha, 2002), through which the genes of interest can insert themselves in 

the plant cell. This is a fast and user-friendly method with negligible cell toxicity (Newell, 

2000; Rakoczy-Trojanowsha, 2002). Polyethylene glycol treatment permits for the adhering 

and precipitation of exogenous DNA with genes of interest to the membrane of the target 

plant cell (Chen et al., 1987; Newell, 2000; Aftab and Iqbal, 2001). In this case, the cell can 

take up the precipitated DNA since endocytosis is induced during the treatment (Newell, 

2000). 

Agrobacterium-mediated gene transfer makes use of a disarmed pathogenic bacterium that 

introduces a plasmid with the gene of interest into the target organism (Arencibia et al., 

1998). When the gram-negative Agrobacterium tumefaciens bacterium infects plants (De 

Cleene and Deley, 1976; Hansen and Wright, 1999, Newell, 2000), it leads to tumour 

formation known as gall tumour. The bacterium consists of a tumour-inducing (Ti) plasmid 

that incorporates itself in the DNA of the host cell and stimulates the formation of the tumour 

(de la Riva et al., 1998; Zupan et al., 2000). The T-DNA, the portion of the Ti plasmid that is 

integrated into the plant’s DNA, has two types of oncogenic genes coding for the 

manufacturing of cytokinins and auxins responsible for tumour formation, and genes coding 

for opine (food source for the bacterium) formation (de la Riva et al., 1998; Hansen and 

Wright, 1999; Zupan et al., 2000). The Ti plasmid also has virulence genes that aid in the 

integration of the T-DNA into the host’s DNA (de la Riva et al., 1998; Hansen and Wright, 

1999; Zupan et al., 2000).  

Transformation studies exploit the Ti plasmid, wherein the gene of interest is added within 

the T-DNA limits, and the oncogenes are removed and substituted with genes that permit for 

selection of the transformed cells (e.g. maker genes) (de la Riva et al., 1998; Hansen and 

Wright, 1999; Zupan et al., 2000). Agrobacterium-mediated genetic transformation has been 

successfully used in both monocotyledonous and dicotyledonous plants (Arencibia et al., 

1998; Elliot et al., 1998, Anderson and Birch, 2012). 
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Table 4: Examples of superior traits obtained in sugarcane using genetic transformation methods 

(modified from Watt et al., 2010). bar = phosphinotricin acetyl transferase, npt = Neomycin 

phosphotransferase, CryIAb = Bt endotoxin, SCMV = Sugarcane Mosaic Virus, SCYLV = Sugarcane 

Yellow Leaf Virus. 

Trait Transformation 
method 

Gene of interest Reference 

    
Herbicide tolerance    

Glufosinate ammonium Microprojectile bar Chowdhury and Vasil (1992) 
 Agrobacterium npt II Enrique-Obregon et al. (1998) 
    
Glyphosate (roundup) Agrobacterium cp4 epsps Snyman et al. (2001) 
    
Sulfonylurea Microprojectile als van der Vyver et al. (2013) 

    
Disease tolerance    

Fiji leaf gall Microprojectile SCMV-CP Joyce and McQualter (1998) 
    
Sugarcane mosaic virus Microprojectile npt II Sooknandan et al. (2003) 
    
Fungal damage resistance Microprojectile FVS9-ORFI McQualter et al. (2004a) 
    
Sugarcane yellow leaf virus Microprojectile SCYLV-CP Rangel et al. (2003) 
  CrylAc Gilbert et al. (2009) 
  Chinitase Khamrit et al. (2012) 
    

Antibiotic resistance Microprojectile npt-II Bower and Birch (1992) 

    
Metabolic engineering    

Increased sugar content Agrobacterium UBI/PFP Arencibia et al. (1998) 
    
p- Hydroxybenzoid acid Microprojectile als McQualter et al. (2004b) 

 

2.5 Use of in vitro culture systems in selecting and screening for stress tolerance 

The development of efficient approaches for the selection of traits of interest is a crucial step 

in plant breeding programmes (Roane, 1973; Novak and Brunner, 1992; Lebeda and 

Svabova, 2010). Conventionally, the selection of desirable traits is done in the field. 

However, this is both time-consuming and labourious (Novak and Brunner, 1992; Jain, 2001; 

Patade et al., 2008). Alternatively, in vitro selection can be employed, wherein the rapid 

selection of several clones of different varieties is done in a limited space and controlled 

conditions void of biotic and abiotic influences that could negatively interfere with selection 

(Chaleff, 1983; Jain, 2001; Hajari et al., 2014). It should be noted that in vitro conditions are 

different from those in field or pot trials. Some of the specific conditions in vitro include a 
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confined gaseous exchange environment, elevated humidity, supply of sucrose in the culture 

media, ample supply and homogenous dispersion of nutrients, exposure of roots to light, and 

nonexistence of soil micro- fauna or flora (Miller and Cramer, 2004; Roycewicz and Malamy, 

2012). In contrast, in nature plants experience multiform nutrient distribution and have to 

cope with dynamic environmental conditions (Forde, 2002; Roycewicz and Malamy, 2012). 

The plant’s ability to uptake and transport nutrients will therefore be constrained by these 

differences (Hajari et al., 2014). Despite the benefit of using in vitro systems in rapid 

screening of plants without environmental factors interfering, the findings must be interpreted 

with these shortcomings in mind (Roycewicz and Malamy, 2012). 

Nevertheless, various researchers have exploited the use of in vitro cultures to select traits 

of interest amongst varieties, wherein plant cells, tissues or organs are cultured on media 

with the appropriate selecting agent (Rai et al., 2011; Perez-Clemente and Gomez-Cadenas, 

2012). Suprasanna et al. (2009) stated that in vitro application of a selection pressure 

requires the concentration of the selecting agent that inhibits the growth of cells to be 

established and integrated into the selection medium in which the explants are cultured. 

The development of new tolerant commercial cultivars is mainly dependent on 

comprehending how plants tolerate water deficit and identifying mechanisms of water stress 

tolerance (Nepomuceno et al., 2001). Developing drought tolerant cultivars has been one of 

the chief objectives of genetic advancement programs involving sugarcane (Inman-Bamber 

and Smith, 2005). These programs require the recognition of significant physiological 

mechanisms that can be used as selection criteria (Smit and Singels, 2006). Sugarcane 

varieties respond differently to drought stress, and the more tolerant ones can be identified 

(de Almeida Silva et al., 2011). This identification is crucial, specifically in areas prone to 

experiencing long periods of water deficit (de Almeida Silva et al., 2011). 

2.6 Plant adaptive and protective responses to drought stress 

Plants are exposed to hostile environmental conditions, and drought is the major abiotic 

stress that can compromise both the plant’s growth and development (Zingaretti et al., 

2012). Drought can be defined as a multidimensional stress (Yordanov et al., 2000) and a 

period of below normal precipitation that contributes to limits on plant productivity in an 

agricultural or natural system (Boyer, 1982; Kramer and Boyer, 1995). In the field, plants are 

often vulnerable to a number of environmental stresses (e.g. combined heat, high irradiance 

and water at dry and hot summer periods), which more often than not, concurrently affect the 

plant (Yordanov et al., 2000). Drought also restricts the areas suitable for agriculture. For 

any crop, water is essential during vegetative growth in order to reach maximum yield, and 

drought during this stage can drastically decrease productivity (Zingaretti et al., 2012). 
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According to Lakshmanan and Robinson (2014), plants have developed mechanisms of 

adaptation, avoidance, acclimation or a combination of these in order to survive and thrive 

under stressful abiotic conditions. Adaptation is associated with permanent genetic 

modifications of the plant’s structure and function. In contrast, acclimation is when plants 

elicit temporary physiological and morphological alteration when exposed to periodic 

stresses. Acclimation is usually short-termed and irreversible since it is not affiliated with 

permanent genetic changes. On the other hand, avoidance is a protective method that may 

involve stress-avoiding structural traits, such as possessing deep roots in order to avoid the 

demand to extract water from uppermost soil which could be relatively dry. The fourth 

method, acclimation through phenotypic plasticity, allow plants to respond to a broad scope 

of environmental fluctuations. Therefore, the ability of plants to balance adaptation and 

phenotypic plasticity is crucial from an agricultural view as it will determine crop productivity 

under stressful conditions. 

According to Zingaretti et al. (2012), during vegetative growth of any crop, the requirement of 

water is essential for maximum yield, and drought events during this phase can potentially 

limit productivity. Sugarcane is one of the crops that produce a higher amount of biomass 

per unit of cultivated area and its water requirements vary at each developmental stage, thus 

water requirement is higher during tillering and development of culms than during the 

maturation stage. Under water deficit conditions, sugarcane experiences a cellular 

homeostasis disturbance and is required to alter metabolism to protect itself against stress.  

2.6.1 Molecular responses 

Molecular biology along with genetic breeding programs have been beneficial tools in 

discovering genetic variability by reducing the time and increasing the efficiency (Zingaretti 

et al., 2012). Both the recognition and characterization of genes affiliated with drought 

tolerance brings cognition about the perception of the stress and plant responses to these 

unfavourable conditions (Zingaretti et al., 2012). Drought is initially perceived by the roots 

(Zingaretti et al., 2012), leading to changes in the expression pattern including genes whose 

products play a role in early responses such as signal transduction, transcription and 

translation factors, as well as late response genes such as water transport, oxidative stress, 

osmotic balance and damage repair (Ramanjulu and Bartels, 2002; Shinozaki and 

Yamaguchi-Shinozaki, 2000; Knight and Knight, 2001). Detection in low soil water content 

emits a signal to leaves activating stomatal closure (Taiz and Zeiger, 2006). 

The plant hormone abscisic acid (ABA) is suggested to be involved in signalling between 

plant tissues (Schachtman and Goodger, 2008), as well as signalling the expression of 

certain stress-responsive genes (Shinozaki and Yamaguchi-Shinozaki, 2000). These 
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drought stress-responsive genes are divided into two categories: genes encoding functional 

proteins or genes encoding regulatory proteins. The functional protein group includes 

proteins such as transporters, chaperones, water channel, detoxification enzymes or 

proteases, whereas the regulatory group are proteins related to signalling and transcription 

factors (Shinozaki and Yamaguchi-Shinozaki, 2000). 

Gene expression in plants is controlled at different levels and a substantial number of 

drought-induced genes are regulated at the transcriptional level (Xoconostle-Cazares et al., 

2011). Transcriptome analyses that make use of RNA microarrays have demonstrated that 

ABA-dependent and independent signal transduction pathways function in drought-stressed 

plants (Shinozaki and Yamaguchi-Shinozaki, 2000). Several transcription factors (TFs) have 

been recognised as being induced under drought stress through the use of bioinformatics 

(Abe et al., 1997; Bartels and Sunkar, 2005; Ashraf et al., 2008). TFs can be divided into six 

family categories: bZIP (Basic leucine-zipper protein), MYB/MYC, Zinc-finger protein (Abe et 

al., 1997; Rodriguez-Uribe and O’ Connell, 2006), AP2/EFF (APETALA2/ethylene-response 

factor) (Marcotte et al., 1989; Abe et al., 1997), CDT-1 (Furini et al., 1997) and NAC families 

(Yamaguchi-Shinozaki and Shinozaki, 1994; Bartels and Sunkar, 2005; Umezawa et al., 

2006; Stockinger et al., 1997; Liu et al., 1998). With the aid of genomic analyses in the 

identification of TFs, transgenic plants expressing transcriptional activators have been 

developed for the output of drought tolerant plants (Lam and Meisel, 1999). 

2.6.2 Physiological and biochemical responses 

In nature, terrestrial plants have developed genetically encoded strategies to deal with water 

deficit stress (Monneveux and Belhassen 1996). One of these impressive strategies involves 

the accumulation of water to either escape from or delay the stress (Xoconostlen-Cazares et 

al., 2011). The plant’s initial response to water deficit is a decrease in plant growth (Inman-

Bamber et al. 2008; Wilkinson and Davies 2010) and then photosynthesis rates decrease 

due to the decline in plant water potential (Azevedo et al., 2011). 

At the physiological level, changes can be observed in a number of processes, such as 

photosynthesis, respiration, stomatal conductance, radiation capture and foliar temperature, 

which ultimately affect crop productivity (Qing et al., 2001; Silva et al., 2007). Drought 

tolerant plants, such as resurrection plants, are able to cope with the stress by decreasing 

their metabolic activities, which are later resumed upon relief from the stress (Chandler and 

Bartels, 1999; Bartels, 2005). Some plants can sustain their biological activities at reduced 

water potentials, although with restrained development (Ramanjulu and Bartels, 2002). 

Plant and cell water balance is influenced by transpiration to the environment and water 

absorption from the soil (Lawlor and Cornic, 2002). In events where transpiration surpasses 
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absorption, cell turgor decreases as relative water content (RWC) along with cell volume, 

while the cellular solute concentration increases, leading to a fall in both osmotic potential (π) 

and water potential (ψ) (Lawlor and Cornic, 2002). When RWC and cell turgor are low, 

growth and stomatal conductance for water is decreased (Lawlor and Cornic, 2002). Relative 

water content is a good measure of the association between cellular water status and 

metabolism, and a rapid and easily measured indicator of cellular water status (Lawlor and 

Cornic, 2002). In sugarcane, water content has been observed to decrease in the presence 

of stress conditions (Errabii et al., 2007). This is mostly seen in drought susceptible 

genotypes. For instance, Boaretto et al. (2014) reported that a drought tolerant cultivar 

retained water under water deficit, thus sustaining a higher leaf RWC compared to a drought 

susceptible cultivar. Drought stress tolerance is often affiliated with the sustenance of high 

RWCs in sugarcane cultivars (Landell et al., 2005; Cia et al., 2012; Silva et al., 2007). 

Leaf chlorophyll concentration is determined through the use of organic extracting solvents 

including methanol (Cenkci et al., 2010), acetone (Liu et al., 2008; Efeoglu et al., 2009), N, 

N-dimethylformamide (DMF) (Cubas et al., 2008), dimethylsulphoxide (DMSO) (Netto et al., 

2005), and subsequent chlorophyll content is measured using a spectrophotometer. Such in 

vitro evaluations are labourious, costly and time-consuming. Hence, more rapid and 

affordable alternative methods are useful in estimation of leaf chlorophyll content 

(Jangpromma et al., 2010). Li et al. (2006) showed that there are indirect and much faster 

techniques of measuring photosynthetic activity, such as the chlorophyll a fluorescence 

technique, which particularly measures the maximum photochemical efficiency of 

photosystem II (which can be evaluated via the variable-to-maximum chlorophyll a 

fluorescence ratio, [Fv/Fm]  and estimated chlorophyll content (via SPAD unit). This method 

has been found to be just as efficient as the time-consuming gas exchange techniques in 

distinguishing differences among drought tolerant and susceptible barley genotypes (Li et 

al., 2006). In sugarcane, the portable fluorometer has been used to elicit the relationship 

between drought tolerance and chlorophyll content (Luo et al., 2004; Molinari et al., 2007; 

Silva et al., 2007; Shomeili et al., 2011; Cha-um et al., 2012). 

In efforts to limit water loss to air, other plants utilise abscisic acid-mediated regulation of 

stomatal closure (Xoconostlen-Cazares et al., 2011). Being highly specialised cells, stomata 

are usually responsible for significant water loss through leaf transpiration (Xoconostlen-

Cazares et al., 2011). During drought stress, stomata can close (Xiong et al., 2006; 

Xoconostlen-Cazares et al., 2011), resulting in the accumulation of gases, such as carbon 

dioxide and oxygen, which change photosynthesis (Bohnert and Sheveleva, 1998; Waseem 

et al., 2011). Consequently, an energy imbalance occurs resulting in a net flow of electrons 
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towards oxygen that can give rise to ROS and oxidative processes (Levine, 1999), as 

discussed below. 

Preliminary work showed that in sugarcane there is decreased activity of enzymes such as 

ribulose-1,5-bisphosphate carboxylase (Rubisco), NADP malic enzyme (NADP-ME), 

phosphoenolpyruvate carboxylase (PEPC), PPDK, associated with the decline in leaf water 

potential (Du et al., 1998). Nevertheless, the available literature on the response of PEPC to 

drought stress is inconsistent, with some studies reporting a minute increase in activity 

(Saliendra et al., 1996) or no alterations in its activity (Vu and Allen, 2009). 

Being a C4 plant, sugarcane has developed a system for carbon dioxide fixation for use in 

sugar production with minimal water loss (Xoconostlen-Cazares et al., 2011). It makes use 

of a carbon dioxide concentrating mechanism which allows for, amidst other advantages, a 

reduction in photorespiration and an increased water use efficiency (Ghannoum, 2008). 

Studies suggest that sugarcane uses two different forms of C4 metabolism, recognised by 

the decarboxylation enzymes utilized: (NADP-ME) and phosphoenolpyruvate carboxykinase 

(PEPCK), with PEPCK decarboxylation prevailing over NADP-ME (Calsa and Figueira, 

2007; Granum et al., 2009). Those authors suggested that the elevated expression of 

PEPCK-encoding genes might be affiliated with water deficit since the samples were 

collected during the drier maturing season. 

Through the nocturnal assimilation of carbon dioxide, sugarcane can effectively channel 

carbon dioxide to RuBisco (Xoconostlen-Cazares et al., 2011). These crops have developed 

a specific leaf anatomy, where chloroplast is present in bundle sheath cells, besides 

mesophyll cells as in C3 metabolism (Xoconostlen-Cazares et al., 2011). Alternately, 

sugarcane does not undergo direct fixation in the Calvin cycle, but rather converts carbon 

dioxide to a 4-C organic acid capable of generating carbon dioxide in the chloroplasts of the 

bundle sheath cells, which then produce carbohydrates by the traditional C3 pathway 

(Xoconostlen-Cazares et al., 2011). According to McNaughton (1991) and Zhu et al. (2008), 

during this process, stomata are opened at night, enabling the plant to colonise hot 

environments, as they are known to have a far less water expense compared to other plants. 

Upon exposure to stress and in attempts to cope with the stress, a plant’s adaptive 

responses are mainly focused oin maintaining water potential in important tissues 

(Xoconostlen-Cazares et al., 2011). In response to the stress, organelle function and cell 

integrity are limited when the membrane and endomembrane system drastically alter their 

temperament (Gigon et al., 2004). The cell wall, which is normally a physical barrier, also 

provides some protection, albeit limited because of its deforming features (Murphy and 

Ortega, 1995). During dehydration, the cell wall offers mechanical protection, but due to its 
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permeability, desiccation can occur if a strong enough stress is applied (Verslues et al., 

2006). 

a) Drought-induced oxidative stress 

Under drought adversities, plants usually have a lower carbon assimilation rate, which 

results in an inadequate sink for electrons generated in the electron transport chain, 

therefore leading to an overproduction of ROS (Edreva, 2005) such as hydroxyl radicals 

(OH•), superoxide (O2
-•) and hydrogen peroxide (H2O2) (Inze and Montagu, 1995). ROS can 

react with various biomolecules, changing or blocking their biological functions, leading to 

damage to cellular components, such as enzymes, membrane lipids, nucleic acids, 

carbohydrates and to the photosystem II complex (Guan et al., 2000; Arora et al., 2002; Apel 

and Hirt, 2004). Hydroxyl radicals have the ability to instantly react with DNA, proteins and 

lipids, leading to cell damage (Inze and Montagu, 1995). Hydrogen peroxide and superoxide 

are able to demobilise different macromolecules, but their toxicity results when they are 

converted into hydroxyl radicals, a reaction catalysed by transition metals (Inze and 

Montagu, 1995). Different metabolic processes can also use ROS in a profitable way; for 

instance, H2O2 and O2
-• are associated with the formation of lignin in the cell walls (Inze and 

Montagu, 1995). The leakage of electrolytes, due to membrane integrity disruption, has been 

used as a criterion to select for stress tolerance crops (Martin et al., 1987). Also, H2O2 and 

O2
-• histochemical detection has been used to screen for tolerant cultivars (Kumar et al., 

2013). 

b) Drought-induced defense mechanisms 

Plants make use of non-enzymatic and enzymatic protective mechanisms that scavenge 

ROS. Oxidative stress, the injuries caused by ROS, constitutes one of the chief damage 

factors in plants exposed to various abiotic factors such as drought (Kwon et al., 2002). 

Studies showed that ABA and ROS are affiliated with abiotic stress sensing associated with 

faster activation of defense mechanisms in tolerant than in sensitive poplar species (Chen 

and Polle, 2011). In attempt to reduce the toxic effects of ROS, plants utilize highly regulated 

enzymatic and non-enzymatic mechanisms to uphold a balance between the synthesis and 

quenching of ROS to maintain cell homeostasis (Guan et al., 2000; Sairam and Tyagi, 

2004). An antioxidant can be considered to be any compound capable of quenching ROS 

without being converted into a harmful radical (Dedemo et al., 2013). According to Noctor 

and Foyer (1998), antioxidants and antioxidant enzymes disturb cascades of uncontrolled 

oxidation. Consequently, plants are capable of combating oxidative stress through ROS-

scavenging systems such as superoxide dismutase (SOD), ascorbate peroxidase (APX), 

catalase (CAT) and low molecular weight antioxidant compounds including glutathione, 
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polyamines, ascorbate (ASC) and phenolic compounds. Furthermore, enzymes such as 

dehydroascorbate reductase (DHAR), monodehydro-ascorbate reductase (MDHAR) and 

glutathione reductase (GR), which are required for the regeneration of glutathione and 

ascorbate are also implicated (Dedemo et al., 2013).  

The interaction between drought stress and responses involving the antioxidant systems in 

sugarcane is poorly understood, for the most part because the complexity of the sugarcane 

genome forecloses a thorough perception of the genetic, physiological, and biochemical 

issues underlying this process (Azevedo et al., 2011). A recent report by Ribeiro et al. (2013) 

revealed how complex this can be in sugarcane, wherein whilst drought events caused 

reductions in leaf gas exchange in three different genotypes, photosynthesis in one of the 

studied genotypes was linked to both non-stomatal and stomatal restrictions, while in the 

other two genotypes photosynthesis was restricted only stomatally.  

In point of fact, when most plant species are subjected to water deficit, the ROS-scavenging 

system is set in play (Kar, 2011), and this varies with the severity of the stress and the time 

length of exposure, tissue/organ involved and the developmental stage (Dourado et al., 

2013). To a certain level, ROS production during stress may function as a signal to induce 

acclamatory or defense responses through transduction pathways, which may use hydrogen 

peroxide as a secondary messenger (Cruz de Carvalho, 2008; Miller et al., 2010). Over a 

certain level, however, ROS may have harmful effects in plant cells. Thus defences against 

ROS, involving enzymatic and non-enzymatic antioxidants working in an effective 

detoxification system, are triggered (Gratao et al., 2005; Impa et al., 2012). The non-

enzymatic system involves alkaloids, flavonoids, phenolic compounds, carotenoids and 

tocopherols (Gratao et al., 2005). The enzymatic response includes an array of enzymes 

such as ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT) and 

many more (Mittler, 2002; Gratao et al., 2005; Gallego et al., 2012).  

Only recently more attention has been given to the understanding of the antioxidant defense 

system in plants subjected to drought and water deficit conditions (Ghane et al., 2012; 

Doupis et al., 2013; Kaur et al., 2013). In sugarcane, the presence of antioxidant enzymes is 

increased under drought conditions (Patade et al., 2011; Patade et al., 2012; Hemapraba et 

al., 2013). 

c) Drought sensing and signal transduction at a biochemical level 

Although there is still obscurity about the sensor(s) for drought stress, it is generally 

accepted that the organ with such ability is the root system (Xoconostle-Cazares et al., 

2011). This stress response is known to be mediated by the endogenous plant regulator 

ABA (Raghavendra et al., 2010). There are suggestions that the response to drought could 
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be elicited by a redox imbalance or possibly the change in the integrity of cell membranes 

(Kacperska, 2004). Research done on Arabidopsis showed that two histidine kinase 

receptors (ATHK) are induced during early drought stress (Urao et al., 1999). In addition, the 

Arabidopsis leucine rich protein RPK1 (Hong et al., 1997) and SPK1 from Phaseolus 

vulgaris (Montalvo-Hernandez et al., 2008) have been described as the most ample 

transcript under drought stress. In Arabidopsis, SPK1 is induced by ABA (Osakabe et al., 

2005). Drought stress conditions stimulate high levels of ABA, coupled with potent 

alterations in gene expression and adaptive physiological responses (Christmann et al., 

2007), and it is believed that ABA plays a fundamental role in early plant responses to 

drought stress. The discovery of the ABA receptor RCARs/PYR1/PYLs, known to deactivate 

type 2C protein phosphatases (ABI1 and ABI) (Kang et al., 2010), gives insights into both 

ABA-dependent gene expression and ion channels.  

d) Drought-induced osmotic adjustment and protein synthesis 

A frequently noted biochemical adaptation is osmotic adjustment, which is due to the 

accumulation of newly-produced metabolites (Yancey et al., 1982; Bartels and Sunkar, 

2005). These are useful if water supply is to be limited at a later stage, because their 

hydrophilic and highly soluble nature enables them to produce a solvation surface that binds 

and captures water molecules (Xoconostlen-Cazares et al., 2011). Examples of these 

molecules include sugars, sugar alcohols, amino acids and glycine-betaine, which are non-

toxic even at high concentrations, ensuring non-interference with cellular metabolism 

(Xoconostlen-Cazares et al., 2011). 

Other workers have suggested that osmolytes may have additional functions other than 

maintaining turgidity, such as dealing with oxidative stress by quenching ROS (Chen and 

Murata, 2002; Bartels and Sunkar, 2005). During drought stress, sugars that accumulate are 

hypothesized to be involved in stabilizing membranes and forestalling membrane fusion 

together with other macromolecules such as Late Embryogenesis Abundant (LEA) proteins 

(Xoconostlen-Cazares et al., 2011). The disaccharide trehalose accumulates during drought 

stress and is associated with the development of embryos and flowers, as well as the 

regulation of both carbon metabolism and photosynthesis (Phillips et al., 2002). Glycine 

betaine has been suggested to be an osmoprotectant ensuring plant organs water 

equilibrium maintenance (Chen and Murata, 2002). 

Proline accumulation is suggested to play a crucial role in plant stress tolerance (Verbruggen 

and Herman, 2008). According to Peng et al. (1996) and Hare and Cress (1997), proline acts 

as a compatible osmolyte and a store for carbon and nitrogen. Early in vitro studies showed 

that proline functions as a ROS scavenger during the onset of oxidative stress induced by 
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abiotic factors such as drought (Smirnoff and Cumbes, 1989; Hong et al., 2000). Proline has 

also been reported to stabilize protein structure, buffer cytosolic pH and balance plant cell 

redox status. The accumulation of proline during osmotic stress, which is due to its 

increased synthesis and diminished degradation, is part of stress signalling regulating 

adaptive responses (Maggio et al., 2002). In sugarcane, it is suggested that proline is a 

stress resistance marker (Alvarez et al., 2003; Ehsanpour and Fatahian, 2003). However, 

Errabii et al. (2007) suggested that proline accumulation in sugarcane is merely an indication 

of injury rather than a stress tolerance characteristic. In fact, this has been reported in other 

species under stress conditions (Cano et al., 1996; Garcia et al., 1997; Tonon et al., 2004). 

Some workers pointed out that from a quantitative point of view, the role of proline in osmotic 

adjustment is insignificant in cultivars under salt and mannitol stress (Mohamed et al., 2000; 

Benlloch-Gonzalez et al., 2005). 

Different kinases known to be induced by stress (Conley et al., 1997) include MAPKs (Jonak 

et al., 1996), which are also activated by other abiotic stresses, indicating that reversible 

phosphorylation plays a vital role in drought signalling (Mizoguchi et al., 1996). ABA-

mediated stomatal closure stimulates the increase in intra-or extracellular Ca2
+ 

concentration, which in turn induces calcium-dependent protein kinases (CDPKs) 

(Schroeder et al., 2001, Ramanjulu and Bartels, 2002). According to Hirayama et al. (1995), 

the signal molecule inositol triphosphate (ITP) is induced by drought, salinity and cold stress 

in Arabidopsis, with the ABA sensing-related phospholipase D (PLD) regulating stomatal 

opening and ion channel activity (Sang et al., 2001). 

Another mechanism regulating plant response(s) to drought stress is translational control 

(Xoconostle-Cazares et al., 2011). The proteins synthesized during translation have primary 

functions in membrane and protein protection (Xoconostle-Cazares et al., 2011). Proteins of 

this nature are involved in attaining water and ions, as well as maintaining homeostasis in 

basal cell functions (Xoconostle-Cazares et al., 2011). The LEA protein family, a group 

highly elevated in plant embryos, is classified as one of the above-mentioned proteins (Dure 

et al., 1981; Galau et al., 1986). Drought and osmotic stresses induce LEA proteins that are 

expressed at basal levels (Ingram and Bartels, 1996; Berrera-Figueroa et al., 2007). Five 

LEA protein groups have been identified according to their structural domains; these include 

group 3 and 5 which form dimers with a coiled-coil shape responsible for ion coordination 

during stress (Dure et al., 1981). Aquaporins (AQPs) are membrane-spanning proteins (can 

be found in the tonoplast or plasma membrane) (Johansson et al., 2000) involved in water 

uptake and allocation through the formation of water pores (Xoconostle-Cazares et al., 

2011). Certain stress tolerant plant varieties have been shown to have differential 

aggregation of AQP (Montalvo-Hernandez et al., 2008). 
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Heat Shock Proteins (HSPs), molecular chaperones broadly distributed in nature and also 

highly present during stress, aid in protein folding and assembly as well as the remotion and 

disposition of non-functional proteins (Wang et al., 2003). Workers such as Alamillo et al. 

(1995) and Campalans et al. (2001) found that HSPs are induced by abiotic stress such as 

drought and salinity, and in vivo studies propose that these proteins preclude thermal 

aggregation (Lee et al., 1995), thus helping in post-abiotic stress cell recovery. The 

classification of these proteins is based on their molecular weights: the Hsp70 family (family 

Dnak), the Hsp100 family, the chaperonins (GroEL and Hsp60), the Hsp90 family and the 

small Hsp (sHsp) family (Wang et al., 2004). The chaperone protein highly induced under 

drought stress, cyclophilin, has systemic attributes allowing for involvement in protein 

folding, and the overexpression of cyclophilin-encoding genes bestows tolerance to multiple 

abiotic stresses (Gottschalk et al., 2008; Sekhar et al., 2010). Some of these responses 

have been detected in vitro (Alamillo et al., 1995; Alvarez et al., 2003; Errabii et al., 2007; 

Cha-um and Kirdmanee, 2008; Cha-um et al., 2010; Haslbeck and Buchner, 2015). 
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3 Materials and Methods 

3.1 Collection and preparation of plant material 

Sugarcane plant stalks of variety NCo376 were collected from the South African Sugar 

Research Institute (SASRI) in Mount Edgecombe, KwaZulu-Natal, South Africa, and used for 

plant regeneration via in vitro direct organogenesis. SASRI supplied in vitro shoots of 

varieties N41, N12, N19, N36 and N26. Shoots from all these varieties were multiplied, 

rooted and used to test the effect of mannitol and PEG-6000 stress on in vitro plant 

responses. The SASRI also supplied field-grown sugarcane stems of varieties NCo376 that 

were used for in vitro sett germination. 

3.2 In vitro sett germination 

Sugarcane stems of variety NCo376 were cut into single-budded setts, washed under 

running tap water and detergent (Care®), then surface sterilized with 70 % (v/v) ethanol, 1% 

sodium hypochloride and placed in 20 ml sterile water in culture bottles (1 sett/60 mm culture 

bottle). To eradicate culture contamination during sett germination, the anti-fungal agents 1 

ml l-1 BRAVO® 500 (500 g l-1 chlorotalonil, Syngenta Ireland Ltd), 1 ml l-1 Previcur® N (722 g l-1 

propamocarb hydrochloride, Bayer CropScience Inc.) and anti-bacterial methylene blue (1 

mg l-1) were tested. The setts were set out to germinate for 10 days in a growth room and the 

number of shoot-producing setts was recorded. Furthermore, to investigate if the anti-

bacterial or anti-fungal agents delayed shoot production by the setts, the shoots produced 

were recorded in one of two categories, viz. short (1 – 2 cm in length) or long (> 2 cm in 

length) shoots.    

3.3 In vitro direct organogenesis standard culture procedures 

3.3.1 Stage 1: Apical meristem initiation 

Sugarcane stalks of NCo376 were used to obtain the meristem for mass production of in 

vitro shoots. The outer leaf sheaths were removed, and the stalks were inverted and surface 

sterilized with 70% (v/v) ethanol. Under the laminar flow, the innermost leaf sheath was 

removed with a sterile blade and the stalk cut (approx. 30 – 40 mm in length) in liquid media 

[full strength MS salts and vitamins (Murashige and Skoog, 1962), 0.1 mg l-1 BAP, 0.015 mg 

l-1 Kinetin, 1.0 mg l-1 methylene blue and 20 g l-1 sucrose]. With a scalpel blade, the leaf 

sheaths were further removed with the aid of a light dissecting microscope (Zeiss, 

Germany). This was done until the conical-shaped meristem (approx. 1.3 cm) was reached. 

The meristem was removed using a sterile blade and cultured on semi-solid shoot induction 

media (1 meristem/60 mm Petri dish with 20 ml medium) containing full strength MS salts 

and vitamins (Murashige and Skoog [1962], 0.1 mg l-1 BAP, 0.015 mg l-1 Kinetin, 3.5 g l-1 
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activated charcoal, 1.0 mg l-1 methylene blue, 8 g l-1 agar and 20 g l-1 sucrose, and incubated 

in the dark at 26 ± 1°C for a week.  

After 1 week, the meristems were transferred onto semi-solid shoot induction medium (1 

meristem/60 mm Petri dish with 20 ml medium) lacking activated charcoal [full strength MS 

salts and vitamins (Murashige and Skoog [1962], 0.1 mg l-1 BAP, 0.015 mg l-1 kinetin, 1.0 mg 

l-1 methylene blue, 8 g l-1 agar and 20 g l-1 sucrose]. For the first 4 days after culture, the 

cultures (1 meristem/60 mm Petri dish with 20 ml medium) were kept at low light intensity (by 

covering cultures with paper towel) in the growth room, after which they were moved to 

normal light exposure in the same Petri dishes at 16 h light, 200 µm m-2 s-1 photon flux 

density/8 h dark photoperiod and 26°C (day)/23°C (night) for 2 weeks. 

3.3.2 Stage 2: Shoot multiplication 

Once the meristems reached approx. 1 cm in length, they were subcultured onto liquid shoot 

multiplication medium (1 meristem/60 mm culture bottle with 20 ml medium) containing full 

strength MS salts and vitamins, 0.1 mg l-1 BAP, 0.015 mg l-1 kinetin, 1.0 mg l-1 methylene 

blue, and 20 g l-1 sucrose for 2 weeks. Once developed (approx. 1 cm in height), the shoots 

were maintained in the culture bottles (1 shoot/60 mm culture bottle with 20 ml medium) 

containing liquid shoot multiplication medium and were then subcultured into Magenta 

vessels (1 - 2 clumps/90 mm Magenta vessel with 60 ml medium) every 2 - 3 weeks onto 

fresh liquid shoot multiplication medium.   

 3.3.3: Rooting 

Once multiplied for 2 – 3 weeks, individual shoots (approx. 1 cm in height), were separated 

from the shoot clumps and placed on liquid rooting medium (1 shoot/culture tube with 5 ml 

medium) containing full strength MS salts and vitamins (Murashige and Skoog [1962], 1.0 

mg l-1 IBA, 1.0 mg l-1 methylene blue and 30 g l-1 sucrose) for 3 - 4 weeks.  

3.4 Experimental design 

The approach followed in this study is shown in Figure 1. Meristems (approx. 1.3 cm) and in 

vitro plantlets were obtained as described in 3.2 and 3.3, respectively. The established 

plantlets were used to investigate their tolerance and/sensitivity to osmotic stress provided 

as mannitol or PEG-6000. Parameters such as plantlet root and shoot re-growth were 

determined as indicators of mannitol stress tolerance, and root re-growth was found to be 

the best stress indicator than shoot regrowth, hence it was the chosen parameter for 

subsequent investigations. Additionally, the effect of mannitol or PEG-6000 as a drought 

stress agent on in vitro plantlet root re-growth was also investigated. Subsequently, mannitol 

LD50 and LD90 concentrations were established and used to determine the equivalent PEG-
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6000 concentrations at the same osmotic potential.  Mannitol and PEG-6000 induced similar 

effects on plantlet root re-growth, but because initial results showed that mannitol required 

no aeration of the cultures and was easily dissolved in the medium, it was the stress agent of 

choice for subsequent investigations. The established LD50 and LD90 mannitol 

concentrations (concentrations inhibiting root re-growth by 50 and 90%, respectively) were 

then used to screen different sugarcane varieties for tolerance and/sensitivity to mannitol 

stress. The leaf chlorophyll content (via SPAD meter measurements), leaf electrolyte 

leakage and leaf accumulation of H2O2 and O2
-• were assessed as indicators of stress 

tolerance and/sensitivity at the established LD50 and LD90 mannitol concentrations.  

3.5 Effect of mannitol stress on in vitro plant responses of varieties NCo376 and N41 

3.5.1 In vitro-induced drought stress using mannitol 

The effect of mannitol on NCo376 and N41 plantlets’ responses was investigated. Towards 

this, the plantlets’ roots, shoots or both were trimmed using a sterile blade in a laminar flow 

and the plantlets exposed to rooting medium (section 3.3.3) supplemented with different 

concentrations of mannitol (0, 204, 326, 448 and 569 mM). Each mannitol treatment had 15 

replicates for both varieties. Plantlet root and shoot re-growth were recorded at 2 days 

intervals for a maximum of 10 days. Based on the results obtained, plantlet root re-growth 

was selected for subsequent investigations. To determine if the effect of mannitol was 

permanent, the plantlets were cultured on rooting medium lacking mannitol (recovery 

medium containing Murashige and Skoog (1962), 1.0 mg l-1 IBA, 1.0 mg l-1 methylene blue 

and 30 g l-1 sucrose) for a period of 14 days.  

3.5.2 LD50 and LD90 determination 

The plantlets’ root re-growth at day 10 in the presence of the different concentrations of 

mannitol in the medium was used to obtain the LD50 and LD90 (concentrations inhibiting root 

re-growth by 50 and 90%, respectively) from a linear regression analysis of mannitol 

concentration vs. plantlet root re-growth (Graph Pad Prism 5.0, Graph Pad software Inc., 

San Diego, CA, USA), using the formula: y = mx + c, at the regression coefficient of ≥ 80%. 

3.5.3 Comparison of mannitol and PEG-6000 effects on plantlet root re-growth of 
varieties NCo376 and N41 

To investigate if mannitol and PEG-6000 induced similar effects on in vitro plantlet root re-

growth, sugarcane cultivars NCo376 and N41 were subjected to mannitol and PEG-6000 

concentrations of the same osmotic potential and plantlet root re-growth recorded at day 10. 

Cultures on PEG-6000 were placed in one of two conditions, viz. static (on the shelf) or on a 

shelf shaker (100 rpm) to determine the need for aeration. Plantlet root re-growth was 
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recorded after 10 days. Based on the results obtained, mannitol was the chosen stress 

agent for subsequent investigations.  

3.6 In vitro screening of sugarcane varieties for responses to mannitol stress 

LD50 and LD90 mannitol concentrations for varieties NCo376 and N41 (332 and 851 mM, 

respectively) and (606 and 1493 mM, respectively) were used to screen varieties N12, N29, 

N26 and N36 in order to discriminate mannitol stress tolerance and/sensitivity amongst 

them. Plantlet root re-growth was recorded after 10 days of culture in medium containing 

mannitol. 

3.7 Evaluation of physiological parameters as indicators of drought stress 

Based on the results obtained from the work described in section 3.5, only four sugarcane 

varieties were chosen for this part of the investigation, viz. NCo376, N19, N26 and N41. 

Plantlet root re-growth was observed at 0, 332 and 851 mM mannitol for 10 days. Estimated 

chlorophyll content, detection of hydrogen peroxide and superoxide and electrolyte leakage 

were determined as described below.  

3.7.1 Leaf chlorophyll content (via SPAD-502)  

The leaf chlorophyll content of the tested varieties was determined using a SPAD-502 Plus 

Minolta (Spectrum Technologies, Inc.). Measurements were taken at days 5 and 10 of 

exposure to the LD50 and LD90 mannitol concentrations on the middle section of leaf 3 of all 

the varieties on 5 replicates per leaf. Five replicates were used for each variety per mannitol 

concentration (332 and 851 mM). 

3.7.2 Histochemical detection of hydrogen peroxide (H2O2) and superoxide (O2
-•) 

At days 5 and 10 of mannitol stress (332 and 851 mM), the leaf accumulation of H2O2 and 

O2
-• was detected histochemically by staining with 3,3’-diaminobenzidine (DAB) and nitroblue 

tetrazolium (NBT), respectively (Kumar et al., 2013). For the detection of H2O2, the plantlets’ 

entire leaves were immersed in a solution of DAB (1 mg ml-1, pH 3.8) overnight, after which 

chlorophyll was extracted by boiling the leaves in 70% (v/v) ethanol for 10 minutes. The 

presence of a reddish-brown colour denoted H2O2 content and was photographed. For the 

detection of O2
-•, the plantlets’ leaves were floated in 50 mM sodium phosphate (pH 7.5) with 

0.2% NBT. A dark blue insoluble formazan compound denoted the presence of O2
-• and was 

photographed. This was repeated 3 times with a total of 5 leaves per mannitol concentration.  
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Figure 1: A summary of the experimental design and stages of direct organogenesis standard culture procedures adapted to establish in vitro shoot 

multiplication protocol. 
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3.7.3 Electrolyte leakage assay 

The electrolyte leakage of NCo376, N19, N26 and N41 was evaluated at days 5 and 10 of 

mannitol stress exposure. Entire leaves were excised, weighed, immersed in 20 ml 

deionised water and the electrolyte conductivity (EC1) was measured using the CM100-2 

Conductivity Meter (Reid and Associates, Durban, South Africa). The samples were then 

incubated at 55°C in a water bath for 30 minutes, and the electrolyte conductivity (EC2) of 

the solution was measured. Thereafter, the samples were incubated in a water bath at 

100°C for an hour, and the electrical conductivity (EC3) of the solution was measured. Five 

replicates were used for each variety per mannitol concentration (332 and 851 mM). The 

relative electrolyte leakage was expressed as a percentage of the total conductivity 

calculated with the following equation:  

Relative electrolyte leakage (%) = [{EC2 – EC1) / EC3] x 100 

3.8 Environmental conditions 

All cultures except those maintained in the dark during shoot induction, were incubated at 16 

h light, 200 µm m-2 s-1 photon flux density/8 h dark photoperiod and 26 °C (day)/23 °C 

(night). Shoot induction medium was at pH 4.5, whilst shoot multiplication and rooting 

medium were at pH 5.3 and were autoclaved at 121°C for 20 minutes. 

 3.9 Photography 

 All photographs were taken using a Nikon E4500 camera. 

 3.10 Data collection and statistical analysis 

The statistical program Graph Pad Prism version 5.0 was used for all analyses. Data 

presented as percentages were subjected to arcsine transformation prior to further statistical 

analyses. All data were tested for normality using D'Agostino-Pearson test (p < 0.05) and 

analysed using Analysis of Variance (ANOVA) followed by the Least Significant Difference 

(LSD) test to distinguish significantly different means (p < 0.05). 
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4. RESULTS 

4.1 Establishment of a protocol for mass propagation of in vitro shoots using 
sugarcane variety NCo376 

This investigation served to establish the best source of meristematic explant for culture 

initiation and mass propagation of in vitro shoots. 

4.1.1 Direct organogenesis using apical meristems explants from stalks of sugarcane 
variety NCo376 

A direct organogenesis protocol for Saccharum cultivar NCo376 using apical meristems as 

explants (Ramgareeb et al., 2010) was used. Leaf rolls were surface-sterilized and 1.3 cm 

long meristems (Figure 2A) excised and established on semi-solid shoot induction medium 

with activated charcoal (Figure 2B) and incubated in the dark for 1 week. As a precaution, 

after 3 days, the meristems were moved to an undisturbed area of the medium in the same 

Petri dish to avoid phenolic suppression of shoot formation, although the phenolics were not 

detected as the medium was blackened by the presence of activated charcoal. After 1 wk in 

the dark, the cultures were transferred to semi-solid shoot induction medium lacking 

activated charcoal and placed in a photoperiod growth room for 2 weeks. During this stage, 

the outer leaf covering the meristem turned brown and was dissected away, facilitating the 

development of new shoots (Figure 2C). The newly-formed shoots were transferred to 

culture bottles (1 shoot/60 mm culture bottle) with 4 ml liquid shoot multiplication medium 

(Figure 2D - 1E). After 2 weeks, shoots were subcultured on Magenta vessels with fresh 

liquid multiplication media (Figure 2F), where approx. 60±0.93 shoots/explant were 

produced. 

4.1.2 Direct organogenesis using apical meristems explants from shoots of in vitro-
germinated setts of sugarcane variety NCo376 

Isolation of 1 mm long meristems from sugarcane stalks (Ramgareeb et al., 2010) is a 

labourious process, and since they are very small, they can be easily damaged. Hence, 

another source of meristem explants was investigated: the shoots of setts germinated in 

vitro. Field-grown sugarcane stems (Figure 3A), cut into single-budded setts (approx. 50 

mm, Figure 3B) were placed in culture bottles (1 sett/60 mm culture bottle) with sterile water 

(Figure 3C) and incubated in a photoperiod growth room. Individual shoots germinated from 

the setts after 10 days in culture (Figure 3D). 
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Figure 2: Different stages of direct organogenesis of variety NCo376 from an apical meristem explant. 

(A) 1 cm long meristem obtained from a sugarcane stalk, bar = 1.3 cm; (B) Meristem on semi-solid 

shoot induction medium containing activated charcoal, bar = 6.1 cm; (C) Meristem with developing 

shoot on shoot induction medium lacking activated charcoal, bar = 1 cm; (D) Shoot developed from 

meristem on liquid shoot multiplication medium, bar = 1.1 cm; (E) small clump of developing shoots 

on shoot multiplication medium, bar = 0.9 cm; (F) larger shoot clump on multiplication medium, bar = 

1.6 cm. 
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Figure 3: Stages of shoot production from (A) sugarcane stems with nodes, bar = 2.5 cm. (B) 

Individual single-budded sett, bar = 1.2 cm cultured on (C) 20 ml sterile water, bar = 1.5 cm. After 10 

days, (D) individual shoot was produced, bar = 3.3 cm, from which meristem explant was excised. 

 

As a significantly high % (60 - 100) of the germinated setts maintained in water only and in 

moist paper towel were found to be contaminated (Figure 4A), the need for antibacterial 

(methylene blue) and antifungal (BRAVO® and Previcur®) agents was investigated. 

Contamination of setts was significantly lower in treatments supplemented with methylene 

blue alone or combined with BRAVO® or Previcur® than in the control treatment (water only). 

However, no significant differences were detected amongst the treatments (Figure 4A). The 

inclusion of methylene blue alone or in combination with BRAVO® or Previcur® did not 

decrease shoot production (Figure 4B), when compared with the water only and moist paper 

towel treatments, as there was no significant difference amongst all the treatments.  

To determine if methylene blue+BRAVO® delayed shoot production, the shoots produced 

were recorded in one of two categories, viz. short (1 – 2 cm in length) or long (> 2 cm in 

length) shoots. No significant differences in production of short shoots were detected 

amongst all the treatments (Figure 5A). The water+methylene blue treatment resulted in a 

significantly higher production of long shoots from the water only treatment, but not from the 

other treatments (Figure 5B). These results, therefore, indicate that the treatments did not 

delay shoot production. 
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Figure 4: Effect of anti-bacterial and anti-fungal agents on the % setts with (A) contamination and (B) 

% setts producing shoots (B) 10 days after   in different treatments. n = 25, mean ± SE. a – e denote 

statistically significant differences amongst the mean of the treatment groups: W = water only, W + 

MB = water + methylene blue, W + MB + P = water + methylene blue + Previcur®, W + MB + B = 

water + methylene blue + BRAVO®, MT = moist paper towel. Data were statistically analysed with 

ANOVA, p < 0.05. 
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Figure 5: Effect of anti-bacterial and anti-fungal agents on the production of (A) short (1 - 2 cm in 

height) and (B) long (> 2 cm in height) shoots from individual single-budded sugarcane setts 10 days 

after germination in different treatments. n = 25, mean ± SE. a - b denote statistically significant 

differences amongst treatment groups: W = water only, W + MB = water + methylene blue, W + MB + 

P = water + methylene blue + Previcur®, W + MB + B = water + methylene blue + BRAVO®, MT = 

moist paper towel. Data were statistically analysed with ANOVA, p < 0.05.  
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Once isolated from the source, i.e. from stalks in protocol 1 and from shoots of in vitro-

germinated setts in protocol 2, the explants were subjected to shoot induction and 

multiplication. After 2 - 3 weeks on shoot multiplication medium, a non-contaminated explant 

from the stalk yielded approx. 60±0.93 shoots, while a non-contaminated explant from the 

shoot of in vitro-germinated sett yielded approx. 10±0.86 shoots (Table 5). The low number 

of shoots produced with the latter protocol may have been due to endogenous sett 

contamination which only appeared during shoot multiplication. Even though the addition of 

methylene blue+BRAVO® decreased contamination during sett germination, there was 90% 

sett contamination when the shoots that developed from such setts were placed in shoot 

multiplication medium.  Therefore, protocol 1 proved to be the most efficient protocol for the 

mass propagation of NCo376 in vitro shoots. 

 

Table 5:  A summary of the yield of shoots produced from each of the tested protocols used to source 

meristems of NCo376. Stage 1 involved the germination of setts in vitro and stage 2 involved 

meristem excision, shoot induction and multiplication (Section 4.1.1) In protocol 1, the meristems 

were obtained from the apex of sugarcane stalks, and in protocol 2 they were obtained from shoots of 

in vitro-germinated setts. In both protocols, semi-solid medium was used for shoot induction and once 

the meristems reached 1 cm in height, they were transferred to liquid shoot multiplication medium. n = 

25.  

Protocol Source of 
meristem 

Contaminated setts (%) Number of shoots 
produced/meristem 

  Stage 1 Stage 2  

1 Sugarcane stalk N/A 0 ±60 

     

2 Shoot of in 
vitro-

germinated sett 

7 90 ±10 

 

4.2 Effect of different mannitol concentrations on shoot and root re-growth of NCo376 
and N41 plantlets 

To investigate the plants’ responses to mannitol, the roots or shoots were trimmed prior to 

subjecting the plantlets to the stress (0, 204, 326, 448, 569 mM) for 10 days. Both shoot and 

root re-growth were determined. 

For both varieties, the plantlets turned brown after 2 – 3 days in culture, but this did not 

hinder either shoot (visible as new green shoots) or root re-growth (visible as new root 

radicle). When NCo376 plantlets were subjected to 0 or 204 mM mannitol, root re-growth 

was 20% after 2 days, and it increased with time in culture up to day 8, when ±83% root re-
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growth was observed (Figure 6). There were no significant differences in % plantlet root re-

growth from day 4 to day 10 when NCo376 plantlets were cultured on 0 and on 204 mM 

mannitol (Table 6). At 326 mM mannitol, root re-growth was delayed from day 2 to day 4, 

whilst at 448 and 569 mM mannitol root re-growth was delayed from day 2 to day 6. At 326, 

448 and 569 mM mannitol, the % plantlet root re-growth recorded were 10 - 35% after 8 

days in culture. There was no significant difference in root re-growth over time between 

NCo376 plantlets cultured on 448 and 569 mM mannitol.  

When N41 plantlets were subjected to 0, 204 or 326 mM mannitol, root re-growth increased 

to 30, 20 and 20%, respectively and increased with time in culture up to day 8, where 80 - 

100% root re-growth was observed (Figure 6). There was no significant difference in root re-

growth from day 4 to day 10 when N41 plantlets were cultured on 326, 448 and 569 mM 

mannitol (Table 6). At 448 and 569 mM mannitol, root re-growth was delayed from day 2 to 

day 4 and at these concentrations, the highest % plantlet root re-growth recorded was 

between 60 - 75% after 8 days in culture. There was no significant difference in % plantlet 

root re-growth between days 4, 6, 8 and 10 when N41 plantlets were subjected to 326, 448 

and 569 mM mannitol.  

Tukey’s multiple comparison test showed which mannitol concentrations resulted in 

significantly different root re-growth within the sampling days (Table 7). For NCo376, there 

were no significant differences in % plantlet root re-growth of plantlets subjected to 0 or 204 

mM mannitol at days 4, 6, 8 and 10 (Table 7). For NCo376 plantlets, there were significant 

differences between these two treatments (0 and 204 mM) and the other tested treatments 

(326, 448 and 569 mM mannitol) with respect to plantlet root re-growth. Similar results were 

observed for N41. For N41 plantlets, significantly different % plantlet root re-growth was 

observed at day 10 of culture on 569 mM mannitol as compared with the other tested 

treatments (0, 204, 326 and 448 mM mannitol). With NCo376 plantlets, 50% root re-growth 

was observed after 4, 5 and 4 days of culture in mannitol of 0, 204, and 326 mM, 

respectively. Plantlet root re-growth reached 50% in N41 after days 2 and 4 of culture in 0 

and 204 mM mannitol, respectively. 

As observed for root re-growth, increased mannitol concentration in the culture medium 

delayed plantlet shoot re-growth by 2 days, except in the case of 204 mM. For example, at 

326, 448 and 569 mM mannitol, shoot re-growth was delayed from day 2 to day 4 for 

NCo376 and N41 plantlets (Figure 7). No significant differences in shoot re-growth were 

observed when NCo376 plantlets were subjected to 569 mM mannitol over time. Similar 

results were obtained for N41, where mannitol at 326, 448 and 569 mM resulted in non-

significantly different plantlet shoot re-growth over time. For NCo376, significant differences 

in shoot re-growth of plantlets were observed across all tested mannitol concentrations over 
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time except at 569 mM mannitol (Figure 7, Table 7). At 0, 204 and 326 mM mannitol, culture 

days 2 and 4 showed significant differences in % plantlet shoot re-growth when compared 

with culture days 6, 8 and 10. With NCo376 plantlets, 50% shoot re-growth was observed 

after 4 days of culture in 0 and 204 mM mannitol. Plantlet root re-growth reached 50% in 

N41 after days 2 of culture in 0, 204 and 326 mM mannitol, whilst 50% shoot re-growth was 

observed after day 4 of culture in 448 and 569 mM mannitol. 

 

Table 6: Statistical analysis of the % plantlet root re-growth results in Figure 6 for varieties NCo376 

and N41. A Two-way ANOVA (Tukey’s multiple comparison test) was performed using GraphPad 

Prism statistical package. These results compared which mannitol concentration resulted in statistical 

significantly different % plantlet root re-growth over time. n = 15. 

       NCo376  N41 

 
Mannitol (mM)  Mannitol (mM) 

 0 204 326 448 569  0 204 326 448 569 

Days            

2 * # + ∆ ¤  * # + ∆ ¤ 

4 * #  + ∆ ¤  ** # + ∆ ¤ 

6 ** # #  + + ∆ ¤  ** # # + ∆ ¤ 

8 ** # # ++ ∆∆ ¤  ** # # + ∆ ¤ 

10 ** # # + + ∆∆ ¤  ** # # + ∆ ¤ 

The number of *, #, +, ∆ and ¤ denote statistical significant differences (p < 0.05) in % plantlet shoot re-growth at 
a particular mannitol concentration across all tested days. 

When shoot re-growth was compared at each day across the tested mannitol 

concentrations, significant differences were detected. For NCo376, % plantlet shoot re-

growth at days 4, 6, 8 and 10 was significantly higher in plantlets cultured on 0 and 204 mM 

mannitol than those cultured on 326, 448 and 569 mM mannitol at those days (Table 7). 

Similar results were observed with N41 plantlets. The above results indicated that the 

negative effect of mannitol was more significant on plantlet root than on shoot re-growth. 

Hence, plantlet root re-growth was the chosen parameter for subsequent investigations. 

To determine if the negative effect of mannitol was permanent on plantlet root re-growth 

after exposure to mannitol, NCo376 and N41 plantlets were cultured on rooting medium 

lacking mannitol (recovery medium). The negative effect of mannitol on the ability of the 

plantlets to exhibit root re-growth was found to be permanent (Table 8).
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Figure 6: Effect of different mannitol concentrations on root re-growth of NCo376 and N41 plantlets at 

days 2, 4, 6, 8 and 10. All media contained full strength MS salts and vitamins (Murashige and Skoog, 

1962), 1.0 mg l-1 IBA and 30 g l-1 sucrose and varying concentrations of mannitol. n = 15, mean ± SE. 

The experiment was repeated three times for each of the tested mannitol concentrations. 
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Figure 7: Effect of different mannitol concentrations on shoot re-growth of NCo376 and N41 plantlets 

at days 2, 4, 6, 8 and 10. All media contained full strength MS salts and vitamins (Murashige and 

Skoog, 1962), 1.0 mg l-1 IBA and 30 g l-1 sucrose and varying concentrations of mannitol. n = 15, 

mean ± SE. The experiment was repeated three times for each of the tested mannitol concentrations. 
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Table 7: Statistical analysis of the % plantlet shoot re-growth results in Figure 7 for varieties NCo376 

and N41. A Two-way ANOVA (Tukey’s multiple comparison test) was performed using GraphPad 

Prism statistical package. These results compared which mannitol concentration resulted in 

significantly different % plantlet shoot re-growth within the tested days. n = 15.   

       NCo376  N41 

 
Mannitol (mM)  Mannitol (mM) 

 0 204 326 448 569  0 204 326 448 569 

Days            

2 * * * * *  * * * * * 

4 # # # # # # # #  # # # # # # # # 

6 + +  + + + + + +  + +  + + + + + + 

8 ∆ ∆ ∆∆ ∆∆ ∆∆  ∆ ∆ ∆∆ ∆∆ ∆∆ 

10 ¤ ¤ ¤¤ ¤¤ ¤¤  ¤ ¤ ¤ ¤ ¤¤ 
The number of *, #, +, ∆ and ¤ denote statistical significant differences (p < 0.05) in % plantlet root re-growth at 

different mannitol concentrations within the sampling days. 

 

 

Table 8: Percentage plantlet root re-growth of plantlets exposed to different mannitol concentrations 

for 10 days (stress medium) and after 14 days in recovery medium. For both varieties, stress medium 

contained full strength MS salts and vitamins (Murashige and Skoog, 1962), 1.0 mg l-1 IBA, 30 g l-1 

sucrose and varying concentrations of mannitol. Subsequently, the cultures were subcultured on 

recovery medium [full strength MS salts and vitamins (Murashige and Skoog, 1962), 1.0 mg l-1 IBA, 30 

g l-1 sucrose]. n = 15. The experiment was repeated three times. a – b denote statistical significant 

differences (p < 0.05) in % plantlet root re-growth. 

Mannitol (mM) NCo376 root re-growth (%) N41 root re-growth (%) 
 Stress Recovery  Stress  Recovery  
 
0 

204 
326 
448 
569 

 
 93±13.6a 

87±13.6a 

40±19.6b 

27±17.7b 

20±16.0b 

 
93±13.6a 

87±13.6a 

40±19.6b 

27±17.7b 

20±16.0b 

 
100±0.0a 

93±13.6a 

86±16.0a 

80±16.0a 

73±18.9a 

 
100±0.0a 

93±13.6a 

86±16.0a 

80±16.0a 

73±18.9a 
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4.3 Comparison of the use of mannitol and PEG-6000 as drought stress agents on in 

vitro plantlets of NCo376 and N41. 

Mannitol and PEG (molecular weights of 4000 to 8000) are the most frequently used agents 

to induce osmotic stress (Mexal et al., 1975; Rai et al., 2011). Hence, it was important to 

investigate if they induced similar effects in vitro. Towards this, the mannitol concentrations 

resulting in 50% (LD50) and 90% (LD90) inhibition of root re-growth at day 10 were calculated 

for both varieties (Figure 8). From these, the equivalent PEG-6000 concentrations were 

determined based on their osmotic potentials (Table 9) and medium supplemented with 

different PEG-6000 concentrations were used to assess in vitro plantlet responses. 

Plant injury in culture has been reported in the presence of PEG, mainly due to the 

considerable reduction of oxygen availability (Mexal et al., 1975; Verslues et al., 1998; 

Munns et al., 2010; El Siddig et al., 2013). For this reason, before comparing PEG and 

mannitol effects, the need for aeration was investigated by placing the cultures containing 

PEG in the medium on a shelf shaker (100 rev/min), and their root re-growth was compared 

with that of static cultures (on the shelf). For NCo376, at each of the concentration tested (87 

and 250 mM PEG-6000), aeration resulted in significantly higher % plantlet root re-growth, 

e.g. at 87 mM root re-growth was 50% compared with 10% in the static cultures. Similar 

results were obtained with N41, e.g. at 350 mM, aeration resulted in 55% root re-growth 

compared with 10% in the static cultures (Figure 9). These results indicate that aeration of 

PEG cultures is essential to obtain significant root re-growth for both NCo376 and N41. 

The calculations in Figure 8 and 9 were used to investigate if the determined LD50 and LD90 

of mannitol and the equivalent PEG-6000 concentrations resulted in similar % plantlet 

showing root re-growth. For both varieties, LD50 and LD90 of mannitol and the equivalent 

PEG-6000 resulted in non-significantly different % plantlet root re-growth at the same 

osmotic potential (Table 10). For instance, at - 0.82 MPa, mannitol and PEG-6000 resulted 

in 50% root re-growth for NCo376, and at - 2.10 MPa, mannitol resulted in ±50% root re-

growth whilst PEG-6000 resulted in ±55% root re-growth. 

These results indicate that, at the same osmotic potential, mannitol and PEG-6000 resulted 

in similar root re-growth. Since PEG-6000 requires more labour, such as aeration of cultures, 

and is difficult to dissolve in the medium, mannitol was the stress agent of choice for 

subsequent screening of other varieties. 
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Figure 8: Determination of 50% lethal dose (LD50) of mannitol for % plantlet root re-growth. This was 

calculated from the data obtained in Figure 6 at day 10. For both varieties, plantlets were cultured on 

stress medium containing full strength MS salts and vitamins (Murashige and Skoog, 1962), 1.0 mg l-1 

IBA, 30 g l-1 sucrose and varying concentrations of mannitol for 10 days. n = 15. The experiment was 

repeated three times.  

LD50 

LD50 
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Table 9: LD50 and LD90 mannitol concentrations for inhibition of plantlet root re-growth and equivalent 

PEG-6000 concentrations for NCo376 and N41 used to screen other varieties for their drought 

tolerance status. 

Variety Osmotic potential 
(MPa) 

Mannitol (mM) PEG-6000 (mM) 

NCo376    

LD50 - 0.82 332 87 

LD90 -1.50 606 250 

N41    

LD50 - 2.10 851 350 

LD90 - 3.69 1493 615 

 

 

 

Table 10: Root re-growth of plantlets at the mannitol and PEG-6000 concentrations that resulted in 

the LD50 and LD90. For all varieties, plantlets were cultured on medium containing full strength MS 

salts and vitamins (Murashige and Skoog, 1962), 1.0 mg l-1 IBA, 30 g l-1 sucrose and the different 

concentrations of mannitol and PEG-6000. Plantlet root re-growth was recorded after 10 days to 

compare the effect of mannitol and PEG-6000 at the same osmotic potential. n = 15. The investigation 

was repeated three times. a – b denote statistical significant differences (p < 0.05) in % plantlet root 

re-growth. 

Variety Osmotic potential 
(MPa) 

Osmoticum (mM) Plantlet root re-
growth (%) 

NCo376 - 0.82 Mannitol (332) 50a 
  PEG-6000 (87) 

 
50a 

 - 1.50 Mannitol (606) 10a 
    PEG-6000 (250) 

 
10a 

N41 - 2.10 Mannitol (851) 50a 
  PEG-6000 (350) 

 
55a 

 - 3.69 Mannitol (1493) 90b 
  PEG-6000 (615) 

 
85b 
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Figure 9: The effect of PEG-6000 on the % plantlet root re-growth when the cultures were static or 

aerated. For both varieties, plantlets were cultured on medium containing full strength MS salts and 

vitamins (Murashige and Skoog, 1962), 1.0 mg l-1 IBA, 30 g l-1 sucrose and the different 

concentrations of PEG-6000 calculated from the LD50 and LD90 mannitol concentrations for NCo376 

and N41. n = 20, mean ± SE, repeated three times. a – c denote statistical significant differences in % 

plantlet root re-growth for static vs. shaker cultures at each PEG-6000 concentration. * denotes 

statistical significant differences in % plantlet root re-growth for either static or aerated cultures at the 

two PEG-6000 concentrations. Data were analysed with ANOVA, p < 0.05. 
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4.4 Screening of different sugarcane varieties for responses to mannitol stress. 

The determined concentrations of mannitol that resulted in LD50 and LD90 for NCo376 and 

N41 (Table 9) were used to rank different varieties with respect to their sensitivity/tolerance 

to mannitol. As previously mentioned (Section 4.2), % plantlet root re-growth was the chosen 

parameter for screening for mannitol stress amongst varieties. However, only the 332, 606 

and 851 concentrations were used to screen the different varieties, as 1493 mM mannitol did 

not dissolve completely in the culture media. The tested varieties were N12, N19, N26 and 

N36.  

At 332 mM mannitol, there were no significant differences in % plantlet root re-growth 

amongst plantlets of NCo376, N12 and N19, and also amongst N26, N36 and N41 (Figure 

10). At 606 mM mannitol, there were no differences in this parameter between N41 and N26, 

but it was significantly higher than the values obtained for N36, N12, N19 and NCo376 

plantlets. Furthermore, root re-growth of N19 and NCo376 plantlets were significantly lower 

than the other varieties. No significant differences were detected in root re-growth amongst 

all the varieties at 851 mM mannitol. For N36, 332 mM mannitol resulted in significantly 

different % plantlet root re-growth than at 606 and 851 mM. For NCo376 and N19, mannitol 

at 332 mM resulted % plantlet with root re-growth which was significantly different from that 

at 606 and 851 mM mannitol. For N41 and N26, mannitol at 851 mM resulted in significantly 

lower % plantlet root re-growth than at 332 and 606 mM. 

The above results indicate that the different sugarcane varieties responded differently to 

mannitol stress in vitro and these responses were used to deduce a probable ranking 

system (Table 11) with regards to the varieties’ sensitivity or tolerance to mannitol stress. 

When compared with NCo376, varieties N12 and N19 had similar in vitro responses to 332 

mM mannitol stress, whilst the in vitro response to mannitol of N26, N36 were similar to that 

of N41 at that concentration. At 606 mM mannitol, N41 and N26 demonstrated more 

tolerance to the stress, followed by N36 and N12, and N19 and NCo376 being the least 

tolerant to mannitol at that concentration. At the above-mentioned mannitol concentrations, 

N41 and N26 showed more tolerant to the stress than the other tested varieties. However, 

mannitol at 851 mM resulted in similar in vitro responses amongst all the tested varieties, 

suggesting that at this mannitol concentration accurate screening for stress tolerance was 

may not be feasible. 
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Figure 10: Percentage plantlet root re-growth of different varieties subjected to 332 and 606 mM 

mannitol which were determined to be the LD50 and LD90 for NCo376 in vitro, respectively, and 851 

which is the LD50 for N41 at day 10. All plantlets were cultured on medium containing full strength MS 

salts and vitamins, 1.0 mg l-1 IBA, 30 g l-1 sucrose and the different concentrations of mannitol. n = 15. 

Tukey’s multiple comparisons test was performed to compare significantly different % plantlet root re-

growth of the tested varieties within and across the mannitol concentrations. a – c denote statistically 

different % plantlet root re-growth of the varieties within each mannitol concentration. * denotes 

statistically different % plantlet root re-growth of each variety across the mannitol concentrations. Data 

was analysed using ANOVA, p < 0.05. 
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Table 11: Proposed ranking system of different varieties based on their in vitro responses to mannitol 

concentrations at the LD50 and LD90 established for NCo376 and N41 (Figure 10).  

Mannitol (mM) Probable ranking system 

332 N41 = N26 = N36 > N12 = N19 = NCo376 

606 N41 = N26 > N36 = N12 > N19 = NCo376 

851 N41 = N26 = N36 = N12 = N19 = NCo376 

 

 

4.5 Physiological parameters used to assess the impact of in vitro mannitol (drought) 
stress on sugarcane varieties. 

The objective was to develop a quick and reliable in vitro method to screen for in vitro 

drought tolerance among different sugarcane varieties. In addition to the response of root re-

growth to mannitol stress presented previously, other parameters were investigated with the 

aim to find other drought tolerance indicators. Towards this, four varieties were chosen, i.e. 

NCo376 and N19 which were found to be least tolerant to mannitol stress, and N41 and N26 

which were found to be most tolerant to mannitol stress, under mannitol stress in vitro 

(Figure 10 and Table11). For all the varieties, culturing at 851 mM mannitol resulted in 

senescence of the leaflets and therefore the assessment of the below assays at this 

concentration of mannitol did not give a conclusive indication of tolerance to mannitol. 

4.5.1 Electrolyte leakage assay. 

At day 5 and day 10 of culture in 332 and 851 Mm mannitol (Figure 8), the leaflets of the 

tested varieties were assayed for their electrolyte leakage. At 332 mM mannitol no significant 

differences in % electrolyte leakage were detected between NCo376 and N19 and also 

between N26 and N41 (Figure 11) at both tested days, and electrolyte leakage of NCo376 

and N19 were significantly higher than those of N26 and N41 plantlets. At 0 and 851 mM 

mannitol, no significant differences in electrolyte leakage were detected amongst all of the 

varieties. At day 5 and day 10, mannitol at 332 mM resulted in significantly higher electrolyte 

leakage than 0 and 851 mM for both NCo376 and N19 at both day 5 and day 10. All the 

tested varieties at both day 5 and day 10 showed very little leakage (< 40%) without 

mannitol, but more at day 5 than day 10. Mannitol at 0 and 851 mM resulted in similar 

electrolyte leakage amongst the tested varieties at both day 5 and day 10. 
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4.5.2 Leaf chlorophyll content measured with SPAD-502. 

The leaf ‘greenness’ or relative chlorophyll content of different varieties was determined by 

taking SPAD meter measurements after day 5 and 10 of culture in medium containing 332 

and 851 mM mannitol. At both days 5 and 10, N41 and N26 had a higher SPAD index 

compared with those of NCo376 and N19 plantlets when cultured on all medium containing 

the various mannitol concentrations. At 0 mM mannitol, at both day 5 and day 10, there were 

significant differences in the SPAD index amongst varieties, with NCo376 and N19 behaving 

similarly (Figure 12).  

4.5.3 Histochemical detection of superoxide and hydrogen peroxide. 

At day 5 and day 10 of culture in 332 and 851 Mm mannitol, the oldest leaflet of each of the 

plantlets from all varieties were assayed for the accumulation of superoxide (O2
-•) anion and 

hydrogen peroxide (H2O2) through staining with nitroblue tetrazolium (NBT) and 3,3′-

diaminobenzidine (DAB), respectively. Ten days of culture in mannitol media proved to be 

stressful to the varieties, as there was minimal staining and most of the leaflets had 

senesced and the stain was not picked up by the leaflets of any of the varieties. Staining 

using DAB resulted in more H2O2 accumulation (brown colour was more intense) in NCo376 

and N19 than in N26 and N41 (Figure 13). Similar results were obtained with NBT staining, 

where O2
-• accumulated to a greater extent (greater intensity of the blue colour) in NCo376 

and N19, than in N26 and N41.  

4.5.4 Ranking different sugarcane varieties based on physiological parameters. 

The results obtained from the electrolyte leakage assay, leaf chlorophyll content via SPAD 

and the histochemical detection of superoxide and hydrogen peroxide may provide some 

indication as to the sensitivity or tolerance of the tested varieties to the mannitol stress when 

performed at day 5 of exposure to stress as 10 days of culture proved to be too stressful. 

Based on the obtained results, the tested varieties classified as either sensitive or tolerant to 

mannitol stress at 332 and 851 mM (Table 12). The ranking of the tested varieties revealed 

that N41 = N26 > N19 = NCo376, and they match the rankings previously obtained under 

mannitol stress (Section 4.4, Table 11). 



53 

 

0 3 3 2 8 5 1

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

R
e

la
ti

v
e

 e
le

c
tr

o
ly

te

le
a

k
a

g
e

 (
%

)

  M a n n i t o l  ( m M )

0 -  0 . 8 2 -  2 . 1 0 O s m o t i c  p o t e n t i a l  ( M P a )

a

a

a

a

b

c

b

c

d

d

d
d

* * N C o 3 7 6

N 2 6

N 1 9

N 4 1

A

0 3 3 2 8 5 1

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

R
e

la
ti

v
e

 e
le

c
tr

o
ly

te

 l
e

a
k

a
g

e
 (

%
)

0 -  0 . 8 2 -  2 . 1 0

M a n n i t o l  ( m M )

O s m o t i c  p o t e n t i a l  ( M P a )

a

a

a
a

b

b

c

c d

d

d d

*

*

N C o 3 7 6

N 2 6

N 1 9

N 4 1

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Percentage relative electrolyte leakage of four varieties subjected to different mannitol 

concentrations for 5 (A) and 10 (B) days. For all varieties, plantlets were cultured on medium 

containing full strength MS salts and vitamins (Murashige and Skoog, 1962), 1.0 mg l-1 IBA, 30 g l-1 

sucrose and the different concentrations of mannitol. n = 15, mean ± SE. a – d denote statistical 

significant differences in % relative electrolyte leakage of the varieties within a particular mannitol 

concentration. * denotes statistical significant differences in % relative electrolyte leakage of each 

variety across all tested mannitol concentrations. Data were statistically analysed using ANOVA, p < 

0.05. 
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Figure 12: Leaf chlorophyll content of four varieties subjected to different mannitol concentrations for 

5 (A) and 10 (B) days. For all varieties, plantlets were cultured on medium containing full strength MS 

salts and vitamins (Murashige and Skoog, 1962), 1.0 mg l-1 IBA, 30 g l-1 sucrose and the different 

concentrations of mannitol. n = 15, mean ± SE. Data were statistically analysed using ANOVA, p < 

0.05.  
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Figure 13: Superoxide and hydrogen peroxide accumulation in the leaves of sugarcane varieties subjected to 0 (A), 332 (B) and 851 mM (C) mannitol for 5 

days. 
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Table 12: Discrimination of tolerance and/ sensitivity to mannitol stress at 332 and 851 mM amongst 

varieties NCo376, N19, N41 and N26 based on the tested physiological parameters at day 5 of stress 

exposure. The % plantlet root re-growth was obtained from Figure 13. n = 5. a – b denote statistically 

significant different % plantlet root re-growth of the varieties within each mannitol concentration. 

Mannitol (mM) 

332 851 

Variety Plantlet 
root re-
growth 

(%) 

SPAD  

meter 

Electrolyte 
leakage 

H2O2  and O2
-• 

accumulation 
Plantlet 
root re-
growth 

(%) 

SPAD 

meter 

Electrolyte 
leakage 

H2O2  and O2
-• 

accumulation 

N41 100a ++ ++ ++ 50a + + + 

N26 90a ++ ++ ++ 50a + + + 

N19 57b + + + 30a + + + 

NCo376 50b + + + 25a + + + 

+ denotes sensitivity of variety, whilst ++ denotes tolerance to mannitol stress based on each of the tested physiological 

parameters.
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5. Discussion 

5.1 Determining the best source of meristematic tissue explant for mass propagation 
of in vitro shoots. 

In sugarcane, the production and selection of new genotypes through breeding programs is 

followed by clonal propagation using nodal cutting known as billets, setts or seedcane, 

(Snyman et al., 2011). As previously described, although this process is relatively simple, 

there are two main disadvantages associated with it, viz. the likelihood of disease 

transmission and slow multiplication rate. According to Dookun et al. (1996) and Snyman et 

al. (2008), the multiplication rate is restricted by the number of buds present on a well-

developed stalk, leading to propagation rates of eight-to tenfold in one growth cycle annually. 

Furthermore, the possible presence and transfer of systemic pathogens from the parent 

seedcane to the resultant crop may limit the effectiveness of such propagation if 

phytosanitation protocols are not strictly upheld (Snyman et al., 2011). Since sugarcane is a 

ratooning monoculture, this perpetuates pathogen infection through the rootstock (Lee, 

1987; Victoria et al., 1999; Flynn et al., 2005). Pathogens can be removed conventionally 

through hot water treatment of sugarcane stalk, which is not only labour-intensive, but does 

not eradicate viral pathogens (Victoria et al., 1999; Flynn et al., 2005). 

The use of in vitro techniques to mass propagate healthy sugarcane plantlets via direct 

organogenesis is therefore commonly used as an alternative to, or in support of the 

conventional methods. At SASRI, the explant for such propagation is usually the apical 

meristem culture from sugarcane stalks grown in the field (Snyman et al., 2011). As 

sugarcane stalks are field-grown, this increases the chance of disease transmission, and the 

excision of meristem from such explants requires skilled personnel and care. To overcome 

this limitation, Ramgareeb et al. (2010) used single-budded setts grown in the greenhouse 

as a source of meristems, and reported that this process takes 6 - 8 weeks to produce 

shoots from which the meristem could be excised (Ramgareeb et al., 2010). 

In the present study, attempts were made to reduce the period it takes to obtain shoots from 

single-budded setts using the method of Ramgareeb et al. (2010), by germinating the setts 

in vitro. Comparisons of total shoot yield from the two sources of meristematic tissue explant, 

i.e. from stalk germinated in the field and shoots of in vitro-germinated sett, revealed that the 

stalk was the best source to use to obtain meristematic tissue explant (Table 5). This was 

because the meristems obtained from the shoots of in vitro-germinated setts produced less 

shoots as a result of endogenous contamination that became apparent once transferred to 

shoot multiplication medium (Table 5). 
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As this present study demonstrated that the length of time for sett germination was reduced 

from 6 - 8 weeks to 10 days under in vitro conditions, this approach seems to have potential 

to reduce the required time for sett germination. However, further work needs to be done to 

eradicate the persistent endogenous contamination.  

5.2 Establishment of a protocol to screen for drought stress tolerance in sugarcane 
varieties in vitro. 

The exploitation of effective approaches for selection of traits of interest is significant in crop 

breeding programs (Lebeda and Svabova, 2010). As previously mentioned, the selection of 

such traits is conventionally performed under field conditions, which is labour-intensive and 

time-consuming. If in vitro selection techniques could be employed in trait selection, this 

would have the advantage of rapid screening and selection of numerous clones of different 

varieties in a limited space, void of interfering environmental factors. In sugarcane, 

presuming there is a correlation between cellular and in vivo whole plant responses, in vitro 

culture can be employed to select drought tolerant cultivars (Mohamed et al., 2000). In vitro 

selection for cells with increased tolerance to drought stress has been reported in rice 

(Biswas et al., 2002) by assessing seed germination, % callus induction, callus health and % 

embryogenic callus production upon culture on 5, 10 and 15 g l-1 PEG-6000. Also, working 

with rice, Cha-um et al. (2010) used mannitol to investigate its effect on proline content and 

chlorophyll a fluorescence. Albiski et al. (2012) exposed in vitro potato plants to assess the 

sorbitol tolerance and measured parameters such as root length, leaf area, dry weights and 

stem thickness. In sugarcane, Errabii et al. (2006) assessed mannitol tolerance of calli and 

used proline accumulation, relative growth rate and callus water content as selection criteria. 

Cha-um and Kirdmanee (2009) also investigated drought tolerance in sugarcane through 

studying the effect of mannitol on photosynthetic rate, proline content and chlorophyll a 

fluorescence. In the above-mentioned studies, the authors suggest that these approaches 

could be applied in identification of crops with improved stress tolerance. However, it is 

worth noting some of the possible drawbacks associated with such in vitro selection, viz. loss 

of regeneration power during selection, epigenetic adaptation, and the lack of affiliation 

between the mechanisms of tolerance observed in culture and those of the whole plant (Tal, 

1994; Rai et al., 2011). 

The use of lethal doses of a selecting agent in screening for abiotic stress tolerance has 

been demonstrated by, amongst others, Koch et al. (2012), who screened and selected for 

herbicide imazapyr tolerance in embryogenic sugarcane calli cultured on plantlet 

regeneration medium supplemented with 0.042 (LD50) and 0.08 (LD90) µM imazapyr. In the 

present study, such an approach allowed for discrimination of different varieties with respect 

to their responses to mannitol stress (Figure 10). For example, For NCo376 and N19, 
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mannitol at 332 mM resulted in 50 – 58% plantlet root re-growth, which was significantly 

higher than that at 606 and 851 mM mannitol. For N41 and N26, mannitol at 851 mM 

resulted in significantly lower % plantlet root re-growth than at 332 and 606 mM.  

In the present study, one of the objectives was to determine which growth parameter to use 

to discriminate in vitro responses to osmotic stress among sugarcane varieties through 

induced mannitol stress (204, 326, 448 and 569 mM). For this investigation, NCo376 and 

N41 plantlets with trimmed shoots, trimmed roots or both were used. The delay (by 2 days) 

of both root (at 36, 448 and 569 mM for NCo376 and 448 and 569 for N41) and shoot (326, 

448 and 569 mM for NCo376 and N41) re-growth when cultured on mannitol indicated that 

mannitol stress had a negative effect on plantlet re-growth at those concentrations. In both 

growth responses, NCo376 was affected first, suggesting it may be more sensitive to 

mannitol stress (326, 448 and 569 mM) than N41. Significant differences in both varieties 

were observed in root rather than shoot re-growth across mannitol treatments (332, 448 and 

569 mM) over time (Figure 6 and 7), indicating that the former was more responsive than the 

latter to mannitol stress at those concentrations. Hence, plantlet root re-growth was deemed 

the better indicator to screen and discriminate mannitol stress tolerance and/sensitivity 

amongst sugarcane varieties. Similar results were obtained by Govindaraj et al. (2010) who 

reported that root length was more affected in PEG-induced drought conditions than shoot 

length of pearl millet genotypes.  

The level of mannitol stress tolerance was defined by the mannitol concentration required to 

inhibit NCo376 and N41 plantlets’ root re-growth by 50 and 90% (Figure 8) using a linear 

regression analysis. The decrease in plantlet root re-growth observed with a gradual 

increase in mannitol concentration revealed that the LD50 and LD90 mannitol were 332 and 

606 mM for NCo376, and 851 and 1493 mM for N41, respectively. These values were used 

to screen varieties N12, N19, N26 and N36 for mannitol stress tolerance/sensitivity using 

plantlet root re-growth as an indicator of the stress.  In conclusion, the tested varieties had 

different % plantlet root re-growth (Figure 10), indicating that sugarcane varieties responded 

differently to the same mannitol stress conditions in culture. Since continuation of root 

growth in sugarcane under drought conditions is regarded as an adaptive mechanism that 

facilitates water uptake by the roots (Patade et al., 2011), the tested varieties exposed to 

mannitol at 332, 606 and 851 mM which exhibited high % plantlet root re-growth can be 

considered as tolerant to mannitol stress and able to thrive under such in vitro conditions. 

Under in vitro conditions, drought stress has been induced through the use of mannitol 

(Ochatt and Power, 1989; Gangopadhyay et al., 1997; Samantaray et al., 1999; Sabba et al., 

1990; Mohamed et al., 2000; Errabii et al., 2006) and PEG (Smith et al., 1985; Fallon and 

Phillips, 1989; Santos-Diaz and Ochoa-Alejo, 1994; Purushotham et al., 1998). According to 
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those authors, using these compounds is advantageous since they are non-ionic, non-

penetrating osmotica that lower the water potential of the medium without being phytotoxic 

or taken up by the plant cells. The main drawback with using PEG is that it reduces oxygen 

levels and diffusion to root systems (Mexal et al., 1975). PEG decreases stirring of the 

culture medium, thus reducing oxygen movement to the roots, which then become oxygen 

deficient (Mexal et al., 1975; Verslues et al., 1998). As reported earlier by Verslues et al. 

(1998), when PEG-containing solutions were supplied with bubbles rather than air, there was 

a decrease in root growth. However, the oxygen unavailability was not overcome by vigorous 

bubbling with air and gentle aeration was suggested (Verslues et al., 1998). 

In the present study, the decreased % plantlet root re-growth in non-aerated cultures 

supplemented with PEG-6000 suggested a marked decline in oxygen supply to the plantlets, 

resulting in plant death. This could be a result of the pronounced viscosity of the PEG-

containing culture medium. The significantly high % plantlet root re-growth in aerated PEG-

6000-containing cultures indicated that the availability of oxygen to the root system was 

sufficient enough to facilitate root re-growth under such in vitro conditions. In contrast, even 

with aeration, Verslues et al. (1998) reported marked oxygen deficiency in maize seedlings 

cultured in PEG solutions. Those authors suggested that oxygen must be supplemented in 

such solutions in order to avoid hypoxia. Mannitol and PEG-6000 at the LD50 and LD90 

concentrations resulted in similar plantlet root re-growth, suggesting that either one could be 

used as an osmotic agent in vitro. Therefore, in this study, mannitol was used.  

When the tested varieties were exposed to mannitol stress (332, 606 and 851 mM), they 

responded differently with respect to % plantlet root re-growth (Figure 10). Varieties N41, 

N26 and N36 were observed to be tolerant to mannitol stress, as they demonstrated higher 

% plantlet root re-growth compared with varieties NCo376, N19 and N12, which were 

observed to be sensitive to mannitol stress, especially at 332 and 606 mM. 

In addition to plantlet root re-growth, other assays were performed to investigate possible 

selection criteria for mannitol stress tolerance at 332, and 851 mM mannitol previously 

established as the LD50 and LD90 concentrations for NCo376, respectively. The assays 

undertaken were the estimation of leaf chlorophyll content, leaf electrolyte leakage 

measurements and leaf accumulation of H2O2 and O2
-• in the in vitro leaves of varieties 

NCo376, N19, N26 and N41. A comparison between the results obtained from the plantlet 

root re-growth and the above-mentioned assays was done in order to assess the credibility 

of these stress biomarkers.   

The membrane integrity of the four varieties was evaluated through leaf electrolyte leakage 

measurements after culture on 0, 332 and 851 mM mannitol for 5 and 10 days (Figure 11). 
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The higher the electrical conductivity of the cell sap, the greater the extent of membrane 

permeability (Patade et al., 2012), i.e. the high levels of electrolyte leakage obtained for 

NCo376 and N19 as compared with those for N41 and N26, suggested that these varieties 

were more sensitive to the mannitol stress than N41 and N26. For example, at 332 mM 

mannitol, a higher electrolyte leakage was observed at day 5 of mannitol stress, with 75% for 

NCO376 and 70% for N19, whilst N41 and N26 showed a significantly lower electrolyte 

leakage, with 40 and 41%, respectively (Figure 11). Thus, their membrane integrity was 

likely to have been impaired, since cellular membranes are usually the first targets of 

stresses such as drought (Levitt, 1972). Similar results were obtained by Martin et al. (1987), 

who stated that minimized leakage of membranes was correlated with drought tolerance. 

Similarly, Almeselmani et al. (2011) observed in durum wheat genotypes, that the membrane 

integrity of drought tolerant genotypes was conserved compared with susceptible ones. For 

all the tested varieties in the present study, mannitol at 0 and 851 mM resulted in similar 

electrolyte leakage for both days 5 and 10. This was probably because plantlets cultured in 

851 mM mannitol showed prominent and similar senescence patterns at both tested days. 

Based on the obtained results for plantlet root re-growth (Figure 10), NCo376 and N19 were 

suggested to be more drought susceptible than N41 and N26. These results correspond with 

those of the electrolyte leakage assay. 

Another of the assays tested for detection of mannitol stress was the estimation of 

chlorophyll content through SPAD meter measurements. Chlorophyll degradation is affiliated 

with the effect of water stress conditions in sugarcane (Silva et al., 2007; de Almeida Silva  

al., 2011) and in the present study this was observed when plantlets were grown on mannitol 

(332 and 851 mM) (Figure 12). However, varieties NCo376 and N19 showed greater decline 

in leaf chlorophyll than N41 and N26, suggesting their sensitivity to mannitol stress at those 

concentrations. These results relate well to the responses of the varieties to plantlet root re-

growth and electrolyte leakage. Although there are presently no reports on SPAD meter 

measurements of in vitro grown sugarcane, field work by de Almeida Silva et al. (2011) on 

sugarcane cultivars exposed to well-watered and drought irrigation regimes revealed that 

drought conditions had a negative effect on the SPAD unit, with drought susceptible cultivars 

showing remarkably lower SPAD unit values than drought tolerant ones at both day 4 and 90 

after the start of irrigation treatments. It must be pointed out, however, that it was difficult to 

perform SPAD meter measurements on in vitro plants because of the small size of the 

leaves make it a lengthy and labour-intensive process. Hence, this approach is not 

recommended.  

The accumulation of H2O2 and O2
-• in the leaflets of varieties NCo376, N19, N41 and N26 

was histochemically detected (Figure 13). Mannitol at 851 mM did not provide a good 
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indication of stress tolerance and/sensitivity because the leaves had senesced. However, at 

332 mM mannitol, the results revealed greater accumulation of these ROS in varieties 

NCo376 and N19 than in N41 and N26, suggesting that the latter possessed more efficient 

adaptive or protective mechanisms to cope with the mannitol stress (332 and 851 mM). 

Similar results were observed by Kumar et al. (2013), where H2O2 and O2
-• increased in 

fifteen-day old Brassica juncea seedlings after a 3 day exposure to mannitol stress (200 mM) 

in vitro.  

From the results of leaf chlorophyll content, electrolyte leakage, and H2O2 and O2
-• 

accumulation discussed above, varieties NCo376 and N19 were observed to be more 

sensitive to mannitol stress at 332 mM, whilst N41 and N26 were less sensitive at the same 

concentration (Figure 11, 12 and 13). In conclusion, based on the results obtained for the 

plantlet root re-growth, it is proposed that the in vitro drought tolerance status of the tested 

varieties can be ranked, with N41 = N26 = N36 > N12 = N19 = NCo376, N41 = N26 > N36 = 

N12 > N19 = NCo376 and N41 = N26 = N36 = N12 = N19 = NCo376 at 332, 606 and 851 

mM mannitol, respectively. 

5.3 Concluding remarks  

a) Best source for meristematic tissue explant and mass propagation of in vitro 
shoots.  

In terms of yield, meristems (approx. 1.3 cm in length) isolated directly from the stalk apex 

were the best source of meristematic tissue explant for in vitro mass propagation of NCo376 

shoots. However, meristems isolated from shoots of in vitro-germinated setts can be used 

provided that sett germination is done in sterile water supplemented with 1 ml l-1 BRAVO® in 

combination with 1.0 mg l-1 methylene blue. The lower yield (10 shoots/meristem) of the 

explant obtained from the shoot of in vitro-germinated sett compared with the 60 

shoots/meristem of the explant from stalks can be counteracted by optimization of 

decontamination protocol focused in eradicating pathogen manifestation during both shoot 

induction and multiplication when meristems are isolated from the former source. This 

approach should be pursued because it allows for rapid germination of setts in a controlled 

environment compared with the lengthy process of germinating setts in the greenhouse.  
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b) Establishment of mannitol tolerance screening protocol 

The present study encompassed initial investigations into obtaining a quick and simple 

method to screen and select for drought tolerance amongst and within varieties through the 

employment of in vitro selection pressures. The approaches used involved the determination 

of the best morphological parameter to determine mannitol stress tolerance, which was 

found to be root re-growth. The LD50 and LD90 levels of mannitol for in vitro root re-growth 

were determined for a variety deemed drought tolerant (N41) and another deemed drought 

sensitive (NCo376) based on field trials (Snyman. pers. comm.). The established in vitro 

LD50 and LD90 mannitol concentrations were then used to screen for tolerance/sensitivity to 

mannitol amongst other varieties (N12, N19, N26 and N36). Based on this, the suggested 

rankings were N41 = N26 = N36 > N12 = N19 = NCo376, N41 = N26 > N36 = N12 > N19 = 

NCo376 and N41 = N26 = N36 = N12 = N19 = NCo376 at 332, 606 and 851 mM mannitol, 

respectively. 

The measurement of leaf chlorophyll content, leaf electrolyte leakage and ROS 

accumulation in the leaves were also determined at the same LD50 and LD90 levels of 

mannitol. Of the physiological parameters tested, leaf ROS accumulation and electrolyte 

leakage are the recommended assays, because they are relatively easy to perform on in 

vitro plants as opposed to the leaf estimation of chlorophyll content of in vitro plants. 

Rankings based on these physiological assays (N41 = N26 > NCo376 = N19) were found to 

be similar to those obtained with plantlet root re-growth (N41 = N26 = N36 > N12 = N19 = 

NCo376) when mannitol stress did not exceed 332 mM. Furthermore, the results of the 

present study correspond with field rankings of varieties N41 (drought tolerant) and NCo376 

(drought susceptible), as per SASRI rankings (Snyman. pers. comm.). 

In addition, the following recommendations should be considered when employing the 

screening approach described above: 

1)  Mannitol stress exceeding 606 mM may result in plant injury and consequently death, 

thus making screening for tolerance, particularly the measurement of leaf chlorophyll 

content, leakage of electrolytes as a result of membrane impairment and the 

accumulation of ROS such as H2O2 and O2
-•, beyond this level, difficult.  

    2) The length of mannitol stress exposure is critical during in vitro screening and selecting 

for tolerance, and this should be performed at no later than day 5 after subjecting 

plantlets to mannitol stress.  



64 

 

References 

Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosokawa, D., Shinozaki, K. 1997. 
Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene 
expression. The Plant Cell Online 9, 1859 - 1868. 

Aftab, F., Igbal, J. 1999. Plant regeneration from protoplasts derived from cell suspension of 
adventive somatic embryos in sugarcane (Saccharum spp. hybrid cv. CoL-54 and cv. CP-
43/33). Plant Cell, Tissue and Organ Culture 56, 155 - 162. 

Aftab, F., Iqbal, J. 2001. PEG-mediated somatic hybridization studies in sugarcane 
(Saccharum spp. hybrids cvs. CoL-54 and CP-43/33). Pakistan Journal of Botany 33, 233 - 
238. 

Ahloowalia, B.S., Maluszynski, M. 2001. Induced mutations: A new paradigm in plant 
breeding. Euphytica, 118, 167 - 173. 

Alamillo, J., Almoguera, C., Bartels, D., Jordano, J. 1995. Constitutive expression of small 
heat shock proteins in vegetative tissues of the resurrection plant Craterostigma 
plantagineum. Plant Molecular Biology, 29, 1093 -1099. 

Albiski, F., Najla, S., Sanoubar, R., Alkabani, N., Murshed, R. 2012. In vitro screening of 
potato lines for drought tolerance. Physiology and Molecular Biology of Plants, 18(4), 315 -
321. 

Ali, A., Naz, S., Alam, S.S., Iqbal, J. 2007. In vitro induced mutation for screening of red rot 
(Colletotrichum falcatum) resistance in sugarcane (Saccharum officinarum). Pakistan 
Journal of Botany 39, 1979 -1994.  

Ali, A., Naz, S., Siddiqui, A., Iqbal, J. 2008. An efficient protocol for large scale production of 
sugarcane through micropropagation. Pakistan Journal of Botany 40, 139 -149. 

Allsopp, P.G., Manners, J.M. 1997. Novel approaches for managing pests and diseases in 
sugarcane, In: Keating, B.A., Wilson, J. R. (Ed.), Intensive Sugarcane Production: Meeting 
the Challenges Beyond 2000. CAB International, Wallingford. pp. 125 - 140. 

Almeselmani, M., Saud, A.A.R., Al-zubi, K., Hareri, F., Al-nassan, M., Ammar, M.A., Al-sael, 
H.A. 2011. Physiological attributes associated to water deficit tolerance of Syrian durum 
wheat varieties. Journal of Agricultural Science 3, 127 - 133. 

Al-Qurainy, F., Khan, S. 2009. Mutagenic effects of sodium azide and its application in crop 
improvement. World Applied Science Journal 6, 1589 - 1601. 

Altpeter, F., Oraby, H. 2010. Sugarcane, in: Altpeter, F., Oraby, H. (Ed.), Genetic 
modification of plants: Biotechnology in agriculture and forestry. Springer Berlin, pp. 453 - 
472. 

Alvarez I., Tomaro L.M., Benavides, M.P. 2003. Changes in polyamines, proline and 
ethylene in sunflower calluses treated with NaCl. Plant Cell, Tissue and Organ Culture 74, 
51 - 59. 



65 

 

Anderson, D.J., Birch, R.G. 2012. Minimal handling and super-binary vectors facilitate 
efficient Agrobacterium-mediated transformation off sugarcane (Saccharum spp. hybrid). 
Tropical Plant Biology 5, 183 - 192. 

Anold, V.S., Sabala, I., Bozhkov, P., Dyachok, J., Filonova, L. 2002. Developmental 
pathways of somatic embryogenesis. Plant Cell, Tissue and Organ Culture 69, 233 - 249. 

Anonymous 2003 Modern irrigation and fertigation methodologies for higher yields in 
sugarcane.http://www.jains.com/PDF/crop/sugarcane%20cultivation.pdf. Accessed 09 
September 2010. 

Apel, K., Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal 
transduction. Annual Review in Plant Biology 55, 373 - 399. 

Arencibia, A., Carmona, E., Tellez, P., Chan, M.T., Yu, S.M., Trujillo, L., Oramas, P. 1998. 
An efficient protocol for sugarcane (Saccharum spp.) transformation mediated by 
Agrobacterium tumefaciens. Transgenic Research 7, 213 - 222. 

Arencibia, A., Molina, P., de la Riva, G., Selman-Housein, G. 1995. Production of transgenic 
sugarcane (Saccharum officinarum L.) plants by intact cell electroporation. Plant Cell 
Reports 14, 305 - 309.  

Arora, A., Sairam, R. K., Sriuastava, G.C. 2002. Oxidative stress and antioxidative system in 
plants. Current Science 82(10), 1227 - 1238. 

Ashraf, M., Athar, H.R., Harris, P.J.C., Kwon, T.R. 2008. Some prospective strategies for 
improving crop salt tolerance. Advances in Agronomy 97, 45 - 110. 

Avinash, L., Prashant, N., Bharose, A.A. 2012. In vitro screening of sugarcane cultivar Co 
86032 for salinity tolerance. Journal of Sugarcane Research 2, 1 - 5.  

Azevedo, R. A., Carvalho, R.F., Cia, M.C., Gratão, P.L. 2011. Sugarcane under pressure: an 
overview of biochemical and physiological studies of abiotic stress. Tropical Plant Biology 4, 
42 - 51. 

Baksha, R., Alam, R., M.Z., Karim, M.Z., Paul, S.K., Hossain, M.A. 2002. In vitro shoot tip 
culture of sugarcane (Saccharum officinarum) variety Isd28. Biotechnology 1, 67 - 72. 

Barba, R.C., Zamora, A.B., Mallion, A.K., Linga, C.K. 1978. Sugarcane tissue culture 
research. Sugar Tech 16, 1843 - 1863. 

Barnes, A.C. 1964. Sugarcane: botany, cultivation and utilisation. Interscience Publishers. 
New York. pp. 456. 

Barrera-Figueroa, B.E., Peña-Castro, J.M., Acosta-Gallegos, J.A., Ruiz-Medrano, R., 
Xoconostle-Cázares, B. 2007. Isolation of dehydration-responsive genes in a drought 
tolerant common bean cultivar and expression of a group 3 late embryogenesis abundant 
mRNA in tolerant and susceptible bean cultivars. Functional Plant Biology 34, 368 - 381. 

Bartels, D. 2005. Desiccation tolerance studied in the resurrection plant Craterostigma 
plantagineum. Integrative and Comparative Biology 45, 696 - 701. 



66 

 

Bartels, D., Sunkar, R. 2005. Drought and salt tolerance in plants. Critical Reviews in Plant 
Sciences 24, 23 - 58. 

Basnayake, S.W.V., Moyle, R., Birch, R.G. 2011. Embryogenic callus proliferation and 
regeneration conditions for genetic transformation of diverse sugarcane cultivars. Plant Cell 
Reproduction 30, 439 - 448. 

Becker, D.K., Dugdale, B., Smith, M.K., Harding, R.M., Dale, J.L. 2000. Genetic 
transformation of Cavendish banana (Musa sp. AAA group) cv. Grand Nain via 
microprojectile bombardment. Plant Cell Reports 19, 229 - 234. 

Behera, K.K., Sahoo, S., 2009. Rapid in vitro micropropagation of sugarcane (Saccharum 
officinarum L. cv-Nayana) through callus culture. Nature and Science 7, 1 - 10. 

Benlloch-Gonza`lez M., Fournier J.M, Ramos J., Benlloch M. 2005. Strategies underlying 
salt tolerance in halophytes are present in Cynara cardunculus Plant Science 168, 653 - 
659. 

Berding N., Roach B.T.  1987. Germplasm collection, maintenance and use. In: Heinz D. 
(Ed.), Sugarcane improvement through breeding. Developments in Crop Science, vol II. 
Elsevier,The Netherlands  143 -  210. 

Bhojwani, S.S., Radzan, M.K. 1996. Plant tissue culture: theory and practice. Elsevier 
Science Publishers, Netherlands. pp 39 - 62. 

Birch, R.G., Franks, T. 1991. Development and optimization of microprojectile systems for 
plant genetic transformation. Australian Journal of Plant Physiology 18, 453 - 469. 

Biswas, J., Chowdhury, B., Bhattacharya, A., Mandal, A.B. 2002. In vitro screening for 
increased drought tolerance in rice. In Vitro Cellular and Developmental Biology-Plant 38, 
525 - 530. 

Boaretto, L.F., Carvalho, G., Borgo, L., Creste, S., Landell, M.G., Mazzafera, P., Azevedo, 
R.A. 2014. Water stress reveals differential antioxidant responses of tolerant and non-
tolerant sugarcane genotypes. Plant Physiology and Biochemistry 74, 165 - 175. 

Bohnert, H.J., Sheveleva, E. 1998. Plant stress adaptations-making metabolism move. 
Current Opinions in Plant Biology 1, 267 - 274. 

Botha, F.C. 2007. Precision breeding to improve the usefulness of sugarcane. Proceedings 
of the International Society of Sugar Cane Technologists 26, 35 - 41. 

Bower, R., Bernard, A.R., Potier, A.M., Birch, G.R., 1996. High-efficiency, microprojectile-
mediated contransformation of sugarcane, using visible or selectable marker. Molecular 
Breeding 2, 239 - 249. 

Bower, R., Birch, G.R., 1992. Transgenic sugarcane plants via microprojectile bombardment. 
The Plant Journal 2, 409 - 416. 

Boyer, J.S. 1982 Plant productivity and environment. Science 218, 443 - 448. 



67 

 

Brumbley, S.M., Snyman, S.J.,Gnanasambandam, A., Joyce, P., Herman, S.R., da Silva, 
J.A.G., McQualter, R.B., Wang, M.W., Egan, B.T., Patterson, A.H., Albert, H.H., Moore, P.H. 
2008. Sugarcane. In: Kole, C., Hall, T.C. (Ed.), Transgenic sugar, tuber and fiber crops. 
Wiley-Blackwell, West Sussex, UK. pp. 1 - 58. 

Butterfield M.K., Thomas D.W. 1996. Sucrose, yield and disease resistance characteristics 
of sugarcane varieties under test in the SASEX selection programme. Proceedings of the 
South African Sugar Technologist Association 70, 103 - 105. 

Butterfield, M.K., D’Hont, A., Berding, N. 2001. The sugarcane genome: a synthesis of 
current understanding and lessons for breeding and biotechnology. Proceedings of the 
South African Sugar Technologist Association 75, 1 - 5. 

Calsa T., Figueira A. 2007. Serial analysis of gene expression in sugarcane (Saccharum 
spp.) leaves revealed alternative C4 metabolism and putative antisense transcripts. Plant 
Molecular Biology 63, 745 - 762. 

Campalans, A., Pagès, M., Messeguer, R. 2001. Identification of differentially expressed 
genes by the cDNA-AFLP technique during dehydration of almond (Prunus amygdalus). 
Tree Physiology 21, 633 - 643. 

Cano, E.A., Perez-Alfocea, F., Moreno, V., Bolarin, M.C .1996. Responses to NaCl stress of 
cultivated and wild tomato species and their hydrids in callus cultures. Plant Cell Rep 15, 
791 - 794. 

Cenkci, S., Ciğerci, İ. H., Yıldız, M., Özay, C., Bozdağ, A., Terzi, H. 2010. Lead 
contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica 
rapa L. Environmental and Experimental Botany 67, 467 - 473. 

Chaleff, R.S. 1983. Isolation of agronomically useful mutants from plant cell cultures. 
Science 219, 676 - 682.  

Chandler, J., Bartels, D. 1999. Plant desiccation, in: Lerner, H.R. (Ed.), Plant responses to 
environmental stresses: from phytohormones to genome reorganization. Marcel Dekker, 
New York, USA, pp. 575 - 590. 

Chanprame, S., Lersrutaiyotin, R., Weerasathakul, C. 1993. Effect of cryoprotectants on 
cryopreservation sugarcane cells. Kasetsart Jounal Natural Science 27, 1 - 3. 

Cha-um, S., Kirdmanee, C. 2009. Proline accumulation, photosynthetic abilities and growth 
characters of sugarcane (Saccharum offinarum L.) plantlets in response to iso-osmotic salt 
and water-deficit stress. Agricultural. Science 8, 51 - 58. 

Cha-Um, S., Nhung, N.T.H., Kirdmanee, C. 2010. Effect of mannitol-and salt-induced iso-
osmotic stress on proline accumulation, photosynthetic abilities and growth characters of rice 
cultivars (Oryza sativa L. spp. indica). Pakistan Journal of Botany 42, 927 - 941. 

Cha-um, S., Wangmoon, S., Mongkolsiriwatana, C., Ashraf, M., Kirdmanee, C. 2012. 
Evaluating sugarcane (Saccharum sp.) cultivars for water deficit tolerance using some key 
physiological markers. Plant Biotechnology 29, 431 - 439. 



68 

 

Cheavegatti-Gianotto, A., Couto de Abreu, M.H., Arruda, P., Filho, B.C.J., Burnquist, L.W., 
Creste, S., Luciana di Ciera, Ferro, A.J., Vargas de Oliveira Figueira, A., Filgueiras, T., 
Grossi-de-Sa, M., Guzzo, E.C., Hoffmann, H.P., Landell, M.G.A., Macedo, N., Matsuoko, S., 
Fernando de Castro Reinach, Romano, E., Jose a Silva, W., Filho, M.C.S., Uliana, C.E., 
2011. Sugarcane (Saccharum officinarum): A reference study for the regulation of 
genetically modified cultivars in Brazil. Tropical Plant Biology, 1 - 44. 

Chen W.H.; Davey M.R.; Power J.B.; Cocking E.C. 1988. Control and maintenance of plant 
regeneration in sugarcane callus cultures. Journal of Experimental Botany 39, 251 - 261. 

Chen, S., Polle, A. 2011. Salinity tolerance of Populus. Plant Biology 12, 317 - 333. 

Chen, T. H., Murata, N. 2002. Enhancement of tolerance of abiotic stress by metabolic 
engineering of betaines and other compatible solutes. Current Opinion in Plant Biology 5, 
250 - 257. 

Chen, W.H., Gartland, K.M.A., Davey, M.R, Sotak, R., Gartland, J.S., Mulligan, B.J., Power, 
J.B., Cocking, E.C. 1987. Transformation of sugarcane protoplasts by direct uptake of a 
selectable chimaeric gene. Plant Cell Reports 6, 297 - 301. 

Chengalrayan, K., Abouzid, A., Gallo-Meagher, M. 2005. In vitro regeneration of plants from 
sugarcane seed derived callus. In Vitro Cellular and Developmental Biology - Plant 41, 477-
482. 

Chowdhury, M. K. U., Vasil, I. 1992. Stably transformed herbicide resistant callus of 
sugarcane via microprojectile bombardment of cell suspension cultures and electroporation 
of protoplasts. Plant Cell Reports 11, 494 - 498. 

Christmann, A., Weiler, E. W., Steudle, E., Grill, E. 2007. A hydraulic signal in root‐to‐shoot 
signalling of water shortage. The Plant Journal 52, 167 - 174. 

Christou, P., Swain, W., Yang, N.S., McCabe, D. 1989. Inheritance and expression of foreign 
genes in transgenic soybean plants. Proceedings of the National Academy of Science 89, 
7500 - 7504. 

Christou, P.,Swain, W.F.,Yang, N.-Sand McCabe, D.E. 1989 Inheritance and expression of 
foreign genes in transgenic soybean plants. Proceedings of National Academy of Science 
USA, 86, 7500 - 7504. 

Cia, M.C., Guimarães, A.C.R., Medici, L.O., Chabregas, S.M., Azevedo, R.A. 2012. 
Antioxidant response to water deficit by drought-tolerant and sensitive sugarcane varieties. 
Annual Applied Biology 161, 313 - 324. 

Conley T.R., Sharp R.E., Walker J.C. 1997. Water deficit stimulates the activity of protein 
kinase in the elongation zone of the maize primary root. Plant Physiology 113, 219 - 226. 

Constantin, M.J. 1984. Potential of in vitro mutation breeding for improvement of vegetatively 
propagated crop plants. In: Induced Mutation for Crop improvement in Latin America. 
FAO/IAEA SM-305. IAEA and Food and Agriculture Organization of the United 
Nations,Vienna,Austria. 59 - 78. 



69 

 

Cruz de Carvalho, M.H., 2008. Drought stress and reactive oxygen species. Plant Signaling 
Behaviour 3, 156 - 165. 

Cubas, C., Lobo, M. G., González, M. 2008. Optimization of the extraction of chlorophylls in 
green beans (Phaseolus vulgaris L.) by N, N-dimethylformamide using response surface 
methodology. Journal of Food Composition and Analysis 21, 125 - 133. 

D’Hont, A., Sousa, G.M., Menossi, M., Vincentz, M., Van Sluys, M., Glaszmann, J.C., Ulian, 
E. 2008. Sugarcane: A major source of sweetness, alcohol, and bio-energy. In: Moore, P.H., 
Ming R. (Ed.), Genomics of Tropical Crop Plants. Springer. pp. 483 - 518. 

Daniels, J., Roach, B.T., 1987. Taxonomy and evolution, in: Heinz, D.J. (Ed.), Sugarcane 
improvement through breeding. Elservier, Amsterdam, pp. 7 - 84. 

de Almeida Silva, M., Jifon, J.L., Sharma, V., da Silva, J.A., Caputo, M.M., Damaj, M.B., 
Ferro, M.I. 2011. Use of physiological parameters in screening drought tolerance in 
sugarcane genotypes. Sugar Tech 13, 191 - 197. 

de Almeida Silva, M., Jifon, J.L., Da Silva, J.A.G., Dos Santos, C.M., Sharma, V. 2014. 
Relationships between physiological traits and productivity of sugarcane in response to 
water deficit. The Journal of Agricultural Science 152, 104 - 118. 

De Cleene, M., Deley, J. 1976. The host range of crown gall. The Botanical Review 42, 389 - 
466.  

de la Riva, G.A., Vazquez-Padron, R., Ayra-Pardo, C., 1998. Agrobacterium tumefaciens: a 
natural tool for plant transformation. Electronic Journal of Biotechnology 1, 119 - 133. 

Dedemo, G.C., Rodrigues, F.A., Roberto, P.G., Neto, C.B., França, S.C., Zingaretti, S. M. 
2013. Osmoprotection in Sugarcane under water deficit conditions. Plant Stress 7, 1 - 7. 

Deo, P.C., Tyagi, A.P., Taylor, M., Harding, R., Becker, D. 2010. Factors affecting somatic 
embryogenesis and transformation in modern plant breeding. The South Pacific Journal of 
Natural and Applied Sciences 28, 27 - 40. 

D'Hont, A., Ison, D., Alix, K., Roux, C., Glaszmann, J.C. 1998. Determination of basic 
chromosome number in the genus Saccharum by physical mapping of ribosomal RNA 
genes. Genome 41, 221 - 225. 

Dodeman, V.L., Ducreux, G., Kreis, M. 1997 Zygotic embryogenesis versus somatic 
embryogenesis. Journal of Experimental Botany 48, 1493 - 1509. 

Dookun, A.; Moutia, M.; Mulleedadoo, K.; Autrey, J.C. 1996. Constraints in sugarcane 
micropropagation by tissue culture. Proceedings of International Society of Sugar Cane 
Technology 22, 314 - 324. 

dos Santos, C.M., de Almeida Silva, M., Lima, G.P.P., Bortolheiro, F.P.D.A.P., Brunelli, 
M.C., de Holanda, L.A., Oliver, R. 2014. Physiological changes associated with antioxidant 
anzymes in response to sugarcane tolerance to water deficit and rehydration. Sugar Tech 1-
14. 



70 

 

Doupis, G., Bertaki, M., Psarras, G., Kasapakis, I., Chartzoulakis, K. 2013. Water relations, 
physiological behavior and antioxidant defence mechanism of olive plants subjected to 
different irrigation regimes. Science Horticulture 153, 150 - 156. 

Dourado, M.N., Martins, P.F., Quecine, M.C., Piotto, F.A., Souza, L.A., Franco, M.R., 
Tezotto, T., Azevedo, R.A. 2013. Burkholderia sp. SCMS54 reduces cadmium toxicity and 
promotes growth in tomato. Annual Applied Biology 163, 494 - 507. 

Du, Y. C., Nose, A., Wasano, K., Uchida, Y. 1998. Responses to water stress of enzyme 
activities and metabolite levels in relation to sucrose and starch synthesis, the Calvin cycle 
and the C4 pathway in sugarcane (Saccharum sp.) leaves. Functional Plant Biology 25, 253 - 
260. 

Dure III, L., Greenway, S.C., Galau, G.A. 1981. Developmental biochemistry of cottonseed 
embryogenesis and germination: changing messenger ribonucleic acid populations as 
shown by in vitro and in vivo protein synthesis. Biochemistry 20, 4162 - 4168. 

Edreva, A. 2005. Generation and scavenging of reactive oxygen species in chloroplasts: a 
submolecular approach. Agriculture, Ecosystems and Environment 106,119 - 133. 

Efeoğlu, B., Ekmekci, Y., Cicek, N. 2009. Physiological responses of three maize cultivars to 
drought stress and recovery. South African Journal of Botany 75, 34 - 42. 

Ehsanpour A.A, Fatahian N. 2003. Effects of salt and proline on Medicago sativa callus. 
Plant Cell Tissue Organ Culture, 73, 53 - 56. 

Elliot, A.R., Campbell, J.A., Brettell, R.I.S., Grof, C.P.L. 1998. Agrobacterium–mediated 
transformation of sugarcane using GFP as a screenable marker. Australian Journal of Plant 
Physiology 25, 739 - 732. 

Enriquez-Obregon, G.A., Vazquez, P.R.I., Prieto, S.D.L., Riva-Gustavo, A.D.L., Mamun, A., 
Selman, M.H.G. 1998. Herbicide resistant sugarcane (Saccharum officinarum L.) plants by 
Agrobacterium-mediated transformation. Planta 206, 20 - 27. 

Errabii, T., Gandonou, C. B., Essalmani, H., Abrini, J., Idaomar, M., Senhaji, N. S. 2007. 
Effects of NaCl and mannitol induced stress on sugarcane (Saccharum sp.) callus 
cultures. Acta Physiologiae Plantarum, 29, 95 - 102. 

Errabii, T., Gandonou, C.B., Essalmani, H., Abrini, J., Idomar, M., Senhaji, N.S., 2006. 
Growth, proline and ion accumulation in sugarcane callus cultures under drought-induced 
osmotic stress and its subsequent relief. African Journal of Biotechnology 5, 1488 - 1493. 

Falco, M.C., Mendes, B.M., Neto, A.T., 1996. Cell suspension culture of sugarcane: growth, 
management and plant regeneration. Ravista Brasileira de Fisiologia Vegetal 8, 1-6. 

Fallon, K.M., Phillips, R., 1989. Responses to water stress in adapted and unadapted carrot 
cell suspension cultures. Journal of Experimental Botany 40, 681 - 687. 

Flynn, J., Powell, G., Perdomo, R., Montes, G., Quebedeaux, K., Comstock, J. 2005. 
Comparison of sugarcane disease incidence and yield of field-run, heat-treated and tissue-
culture based seed cane. Journal of American Society Sugarcane Technology 25, 88 - 100. 



71 

 

Forde, B.G. 2002. Local and long-range signalling pathways regulating plant responses to 
nitrate. Annual Reviews of Plant Biology 53, 203 - 224. 

Franklin, G., Arvinth, S., Sheeba, C.J., Kanchana, M., Subramonian, N. 2006. Auxin 
pretreatment promotes regeneration of sugarcane (Saccharum spp. hybrids) midrib segment 
explants. Plant Growth Regulation 50, 111 - 119. 

Furini, A., Koncz, C., Salamini, F., Bartels, D. 1997. High level transcription of a member of a 
repeated gene family confers dehydration tolerance to callus tissue of Craterostigma 
plantagineum. The EMBO Journal 16, 3599 - 3608. 

Galau, G. A., Hughes, D. W., Dure III, L. 1986. Abscisic acid induction of cloned cotton late 
embryogenesis-abundant (Lea) mRNAs. Plant Molecular Biology 7, 155 - 170. 

Gallego, S.M., Pena, L.B., Barcia, R.A., Azpilicueta, C.E., Iannone, M.F., Rosales, E.P., 
Zawoznik, M.S., Groppa, M.D., Benavides, M.P. 2012. Unraveling cadmium toxicity and 
tolerance in plants: insight into regulatory mechanism. Environmental Experiments Botany 
83, 33 - 46. 

Gambley, R.L., Ford, R., Smith, G.R. 1993. Microprojectile transformation of sugarcane 
meristems and regeneration of shoots expressing β-glucuronidase. Plant Cell Reports 12, 
343 - 346.  

Gamborg, O.L.; Phillips, G.C. 1995. Plant cell, tissue and organ culture – fundamental 
methods. Heidelberg, New York: Springer-Verlag, pp. 23. 

Gangopadhyay, G., Basu, S., Gupta, S. 1997. In vitro selection and physiological 
characterization of NaCl- and mannitol-adapted callus lines in Brassica juncea. Plant Cell 
Tissue Organ Culture 50, 161 -169. 

Garcia, A.B., Engler, J.D.A., Iyer, S., Gerats, T., Van Montagu, M. and Caplan, A.B. 1997. 
Effects of osmoprotectants upon NaCl stress in rice. Plant Physiology 115, 159 - 169. 

George, E.F. 1993. Plant micropropagation by tissue culture. Part 1: The Technology. 
Exegenetics Limited, England, pp. 89 - 91. 

George, E.F., Hall, M.A., de Klerk, G-J. 2008. Plant propagation by tissue culture - volume 1, 
the background. Springer, Netherlands. Pp. 175 - 204. 

Ghane, S.G., Lokhande, V.H., Nikam, T.D., 2012. Differential growth, physiological and 
biochemical responses of niger (Guizotia abyssinica Cass.) cultivars to water-deficit 
(drought) stress. Acta Physiol. Plant 34, 215 - 225. 

Ghannoum, O. 2008. C4 photosynthesis and water stress. Annual Botany 103, 635 - 644. 

Ghosh, A. and Gadgil, V.N. 1979. Shift in ploidy level of callus tissue: a function of growth 
substances. Indian Journal of Experimental Biology, 17, 562–564. 

Gigon, A., Matos, A.R., Laffray, D., Zuily-Fodil, Y., Pham-Thi, A.T. 2004. Effect of drought 
stress on lipid metabolism in the leaves of Arabidopsis thaliana (Ecotype Columbia). Annales 
Botanici Fennici 94, 343 - 351. 



72 

 

Gilbert, R.A., Glynn, N.C., Costock, J.C., Davis, M.J. 2009. Agronomic performance and 
genetic characterization of sugarcane transformed for resistance to sugarcane yellow leaf 
virus. Field Crops Research 111, 39 - 46. 

Gómez-Luciano, L.B., Su, S.H., Wu, C.W.,Hsieh, C.H. 2012. Establishment of a rapid 
screening method for drought tolerance of rice genotypes at seedling stage. Journal of 
International Cooperation, 7, 107 - 122. 

Gottschalk, M., Dolgener, E., Xoconostle-Cázares, B., Lucas, W. J., Komor, E., Schobert, C. 
2008. Ricinus communis cyclophilin: functional characterisation of a sieve tube protein 
involved in protein folding. Planta 228, 687 - 700. 

Gould, A.R., King, P.J. 1984. Control of the cell cycle in cultured plant cells. Critical Reviews 
in Plant Sciences, 1, 315 - 344. 

Govindaraj, M., Shanmugasundaram, P., Sumathi, P., Muthiah, A.R. 2010. Simple, rapid and 
cost effective screening method for drought resistant breeding in pearl millet. Electronic 
Journal of Plant Breeding 1, 590 - 599. 

Granum E, Roberts K, Raven J.A, Leegood R.C 2009. Primary carbon and nitrogen 
metabolic gene expression in the diatom Thalassiosira pseudonana (Bacillariophyceae): Diel 
periodicity and effects of inorganic carbon and nitrogen. Journal of Phycology 45, 1083 - 
1092. 

Gratão P.L, Polle A, Lea P.J, Azevedo R.A. 2005. Making the life of heavy metal-stressed 
plants a little easier. Functional Plant Biology 32, 481 - 494. 

Gray, D.J., Compton, M.E., Harrell, R.C., Cantliffe, D.J. 1995. Somatic embryogenesis and 
the technology of synthetic seed. In: Bajaj, Y.P.S. (Ed.), Somatic embryogenesis and 
synthetic seed I. Biotechnology in agriculture and forestry. Springer-Verlag, Berlin. pp. 126 -
151. 

Grivet, L., Arruda, P. 2001. Sugarcane genomics: depicting the complex genome of an 
important tropical crop. Current Opinion in Biotechnology 5, 122 - 127 

Guan, L., Zhao, J., Scandalios, J. 2000 Cis elements and trans-factors that regulate 
expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 
is the likely intermediary signalling molecule for the response. Plant Journal 22, 87 - 95 

Guiderdoni, E. and Demarly, Y. 1988. Histology in cultured leaf segments of sugarcane 
plantlets. Plant Cell Tissue and Organ Culture 14, 71 - 88. 

Gururaj, H. 2001. Sugarcane in agriculture and industry. Prism Books Pvt, India. pp. 1472. 

Hajari, E., Snyman, S.J., Watt, M.P. 2014. Inorganic nitrogen uptake kinetics of sugarcane 
(Saccharum spp.) varieties under in vitro conditions with varying N supply. Plant Cell, Tissue 
and Organ Culture 117, 361 - 371. 

Hansen, G., Wright, M.S. 1999. Recent advances in the transformation of plants. Trends in 
Plant Science 4, 226 - 231. 



73 

 

Haslbeck, M., Buchner, J. 2015. Assays to characterize molecular chaperone function in 
vitro. Stress Responses: Methods and Protocols 39 - 51. 

Hare, P.D., Cress, W.A. 1997. Metabolic implications of stress-induced proline accumulation 
in plants. Plant growth regulation 21, 79 -102. 

Heinz, D.J., Mee, G.W.P. 1969. Plant differentiation from callus tissue of Saccharum 
species. Crop Science 9, 346 - 348. 

Hemaprabha, G., Swapna, S., Lavanya, D.L., Sajitha, B., Venkataramana, S. 2013. 
Evaluation of drought tolerance potential of elite genotypes and progenies of sugarcane 
(Saccharum sp. hybrids). Sugar Tech 15, 9 -16. 

Hirayama T., Ohto C., Mizoguchi T., Shinozaki K. 1995. A gene encoding a 
phosphotidylinositol-specific phospholipase C is induced by dehydration and salt stress in 
Arabidopsis. Proceedings of the National Academy of Sciences, USA 92, 3903 – 3907. 

Ho, W., Vasil, I.K. 1983. Somatic embryogenesis in sugarcane (Saccharum officinarum L.): 
growth and plant regeneration from embryogenic cell suspension cultures. Annals of Botany 
51, 719 - 726. 

Hong, S.W., Jon, J.H., Kwak, J.M., Nam, H.J. 1997. Identification of a receptor-like protein 
kinase rapidly induced by abscisic acid, dehydration, high salt and cold treatments in 
Arabidopsis thaliana. Plant Physiology 113, 1203 - 1212. 

Hong, Z, Lakkineni, K, Zhang, Z, Verma, D.P.S. 2000. Removal of feedback inhibition of 
delta-1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and 
protection of plants from osmotic stress. Plant Physiology 122, 1129 - 1136. 

Huang, C., Li, Y., Ye, Y. 2003. Minimizing phenol pollution in sugarcane stem apical 
meristem culture. Sugar Tech 5, 297 – 300. 

Impa, S.M.S., Nadaradjan, S., Jagadish, S.V.K. 2012. Drought stress induced reactive 
oxygen species and anti-oxidants in plants. In: Ahmad, P., Prasad, M.N.V. (Eds.), Abiotic 
Stress Responses in Plants. Springer, New York, pp. 131 - 147. 

Ingram J., Bartels D. 1996. The molecular basis of dehydration tolerance in plants. Annual 
Review of Plant Physiology and Plant Molecular Biology 47, 377 – 403. 

Inman-Bamber, N. G., Bonnett, G. D., Spillman, M. F., Hewitt, M. L., Jackson, J. 2008. 
Increasing sucrose accumulation in sugarcane by manipulating leaf extension and 
photosynthesis with irrigation. Crop and Pasture Science 59, 13 - 26. 

Inzé, D., Van Montagu, M. 1995. Oxidative stress in plants. Current Opinion in 
Biotechnology 6, 153 - 158. 

Irvine, J.E., Benda, G.T.A. 1985. Sugarcane mosaic virus in plantlets regenerated from 
diseased leaf tissue. Plant Cell, Tissue and Organ Culture 5, 101 - 106. 

Jackson, P.A., 2005. Breeding for improved sugar content in sugarcane. Field Crops 
Research 92, 277 - 290. 



74 

 

Jain, S.M. 1998. Plant biotechnology and mutagenesis for sustainable crop improvement. In: 
Behl, R.K., Singh, D.K., Lodhi, G.P. (Ed.), Crop Improvement for Stress Tolerance. CCSHAU 
Hisar and MMB, New Delhi. pp. 218 - 232. 

Jain, S.M. 2001. Tissue culture-derived variation in crop improvement. Euphytica 118, 153-
166. 

James, C. 2008. Global status of commercialized biotec/GM crops. International Service for 
the Acquisition of Agri-biotech Applications. ISAAA Brief No. 39, Ithaca, New York. pp 99 – 
153.  

Jander, G., Baerson, S.R.,Hudak, J.A.,Gonzalez, K.A.,Gruys, K. J., Last, R.L. 2003. Ethyl 
methanesulfonate saturation mutagenesis in Arabidopsis to determine the frequency of 
herbicide resistance. Plant Physiology, 131, 139–146. 

Jangpromma, N., Songsri, P., Thammasirirak, S., Jaisil, P. 2010. Rapid assessment of 
chlorophyll content in sugarcane using a SPAD chlorophyll meter across different water 
stress conditions. Asian Journal of Plant Sciences. 

Jayasankar, S. 2005. Variation in tissue culture. In: Trigiano, R.N., Gray, D.J.G., (Eds.), 
Plant Development and Biotechnology. CRC Press Inc., Boca Raton, FL, USA. 301 – 309. 

Jimenez, V.M., 2005. Involvement of plant homones and plant growth regulators on in vitro 
somatic embryogenesis. Plant Growth Regulation 47, 91-110. 

Jonak, C., Kiegerl, S., Ligterink, W., Barker, P.J., Huskisson, N.S., Hirt, H. 1996. Stress 
signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and 
drought. Proceedings of the National Academy of Sciences 93, 11274-11279. 

Joshi, S., Jain, M., Tillman, B.L., Altpeter, F., Gallo, M. 2013. Comparative analysis of direct 
plant regeneration from immature leaf whorl and floral explants for three elite US sugarcane 
(Saccharum spp. hybrids) genotypes. In Vitro Cellular & Developmental Biology-Plant, 49(6), 
674-681. 

Joyce, P.A., McQualter, R.B. 1998. Engineering for resistance to SCMV in sugarcane. Acta 
Horticulturae 461, 385-391. 

Kacperska, A. 2004. Sensor types in signal transduction pathways in plant cells responding 
to abiotic stressors: do they depend on stress intensity?. Physiologia Plantarum 122, 159-
168. 

Kang, J., Hwang, J.U., Lee, M., Kim, Y.Y., Assmann, S.M., Martinoia, E., Lee, Y. 2010. PDR-
type ABC transporter mediates cellular uptake of the phytohormone abscisic 
acid. Proceedings of the National Academy of sciences, 107, 2355-2360. 

Kar, R.K. 2011. Plant responses to water stress. Role of reactive oxygen species. Plant 
Signal. Behav. 6, 1741-1745. 

Kaur, K., Kaur, N., Gupta, A.K., Singh, I. 2013. Exploration of the antioxidative defense 
system to characterize chickpea genotypes showing differential response towards water 
deficit conditions. Plant Growth Regulation 70, 49-60. 



75 

 

Kenganal, M., Hanchinal, R.R., Nadaf, H.L. 2008. Ethyl methanesulfonate (EMS) induced 
mutation and selection for salt tolerance in sugarcane in vitro. Indian Journal of Plant 
Physiology 13, 405-410. 

Kern, M. 2002. Food, feed, fibre, fuel and industrial products of the future: challenges and 
opportunities. Understanding the strategic potential of plant genetic engineering. Journal of 
Agronomy and Crop Sciences 188, 291-305. 

Khairwal, I. S., Singh, S., Paroda, R.S., Taneja, A.D. 1984. Induced mutations in sugarcane 
– Effects of physical and chemical mutagens on commercial sugarcane quality and other 
other traits. Proceeding of the Indian National Science Academy 5, 505-511. 

Khalil, S.M., 2002. Regeneration via somatic embryogenesis and microprojectile-mediated 
co-transformation of sugarcane. Arab Journal of Biotechnology 5, 19 – 32. 

Khamrit, R., Jaisil, P., Bunnag, S. 2014. Callus induction, regeneration and transformation of 
sugarcane (Saccharum officinarum L.) with chitinase gene using particle 
bombardment. African Journal of Biotechnology 11, 6612-6618. 

Khamrit, R., Jaisil, P., Sumontip, B. 2012. Callus induction, regeneration and transformation 
of sugarcane (Saccharum officinarum L.) with chitinase gene using particle bombardment. 
African Journal of Biotechnology 11, 6612-6618. 

Khan, A.I., Dahot, M.U., N., S., Yasmin, S., Bibi, S., Khatri, A., 2009. Genetic variability in 
sugarcane plantlets developed through in vitro mutagenesis. Pakistan Journal of Botany 41, 
153-166. 

Khan, I.A., Dahot, M.U., Khatri, A.B.D.U.L.L.A.H. 2007. Study of genetic variability in 
sugarcane induced through mutation breeding. Pakistan Journal of Botany 35(8), 1489-
1501. 

Khan, I.A., Dahot, U., Yasmin, S., Khatri, A., Seema, N., Naqvi, M.H. 2006. Effect of sucrose 
and growth regulators on the micropropagation of sugarcane clones. Pakistan Journal of 
Botany 38, 961. 

Khan, S.J., Khan, M.A. 2010. Applications of in vitro mutation techniques for sugarcane 
improvement. Journal of Agricultural Research 48, 429 – 435. 

Knight, H., Knight, M.R. 2001. Abiotic stress signalling pathways: Specificity and cross-talk. 
Trends in Plant Science 6, 262-267. 

Koch A.C., Ramgareeb S., Rutherford R.S., Snyman S.J., Watt M.P. 2012. An in vitro 
mutagenesis protocol for the production of sugarcane tolerant to the herbicide imazapyr. In 
Vitro Cellular and Developmental Biology – Plant 11-171 

Koch, W.E., Henrikson, E.N., Kupchella, E., Cebula-Thomas, A. 1994. Salmonella 
typhimurium strain TA100 differentiates several classes of carcinogens and mutagens by 
base substitution specificity. Carcinogenesis 15, 79–88. 

Kramer, P.J. and Boyer, J.S. 1995. Water Relations of Plants and Soils. San Diego: 
Academic Press. 



76 

 

Krishnamurthi, M. 1977. Sugarcane improvement through tissue culture. Proceedings of the 
International Society of Sugarcane Technologists, 16, 23–28. 

Kumar, D., Yusuf, M.A., Singh, P., Sardar, M., Sarin, N.B. 2013. Modulation of antioxidant 
machinery in α-tocopherol-enriched transgenic Brassica juncea plants tolerant to abiotic 
stress conditions. Protoplasma 250, 1079-1089. 

Kwon, S.Y., Jeong, Y.J., Lee, H.S., Kim, J.S., Cho, K.Y., Allen, R.D., Kwak, S.S. 2002. 
Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase 
and ascorbate peroxidase in chloroplasts against methyl viologen‐mediated oxidative 
stress. Plant, Cell and Environment 25, 873-882. 

Lakshmanan, P., Geijskes, R.J., Aitken, R.J., Grof, C.P.L., Bonnett, N., Smith, R.S., 2005. 
Invited review: sugarcane biotechnology: the challenges and opportunities. In Vitro Cellular 
and Developmental Biology - Plant 41, 345-363. 

Lakshmanan, P., Robinson, N. 2014. Stress physiology: Abiotic stresses, in: Moore, P., 
Botha, F.C. (Ed.), Sugarcane: Physiology, Biochemistry, and Functional Biology, John Wiley 
& Sons Ltd, Chichester, UK. pp. 411-430. 

Lam, E., Meisel, L. 1999. Gene switches and stress management: Modulation of gene 
expression by transcription factors, in: Lerner, H.R. (Ed.), Plant responses to environmental 
stresses: from phytohormones to genome reorganization, Marcel Dekker, New York, USA, 
pp. 51-70. 

Landell, M.G.A., Campana, M.P., Figueiredo, P., Vasconcelos, A.C.M., Xavier, M.A., Bidoia, 
M.A.P., Prado, H., Silva, M.A., Dinardo-Miranda, L.L., Santos, A.S., Perecin, D., Rossetto, 
R., Silva, D.N., Martins, A.L.M., Gallo, P.B., Kantack, R.A.D., Cavichioll, J.C., Veiga Filho, 
A.A., Anjos, I.A., Azania, C.A.A.M., Pinto, L.R., Souza, S.A.C.D., 2005. Variedades de cana-
de-açúcar para o Centro-Sul do Brasil. Instituto Agronômico, Campinas, p. 33 (IAC. Boletim 
técnico, 197); (série tecnologia APTA). 

Larkin, P.J., Scowcroft, W.R. 1981. Somaclonal variation – a novel source of variability from 
cell cultures for plant improvement. Theoretical and Applied Genetics 60, 197-214. 

Lawlor DW, Cornic G. 2002. Photosynthetic carbon assimilation and associated metabolism 
in relation to water deficits in higher plants. Plant Cell Environment 25, 275-294. 

Lebeda, A., Svabova, L. 2010. In vitro screening methods for assessing plant disease 
resistance. In: Mass screening techniques for selecting crops resistant to disease. Joint 
FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture. IAEA, pp 5 - 46. 

Lee, G. J., Pokala, N., Vierling, E. 1995. Structure and in vitro molecular chaperone activity 
of cytosolic small heat shock proteins from pea. Journal of Biological Chemistry 270(18), 
10432-10438. 

Lee, T.S.G., 1987. Micropropagation of sugarcane (Saccharum spp.). Plant Cell, Tissue and 
Organ Culture 10, 47-55. 



77 

 

Levine, A. 1999. Oxidative stress as a regulator of environmental responses in plants, in: 
Lerner, H.R. (Ed.), Plant responses to environmental stresses: from phytohormones to 
genome reorganization. Marcel Dekker, New York, USA, pp. 247-264. 

Levitt, J. 1972. Responses of plants to environmental stresses. Academic Press: New York. 

Li, R.H., Guo, P.G., Michael, B., Stefania, G., Salvatore, C. 2006. Evaluation of chlorophyll 
content and fluorescence parameters as indicators of drought tolerance in 
barley. Agricultural Sciences in China 5(10), 751-757. 

Litz, R.E., Gray, D.J. 1995. Somatic embryogenesis for agricultural improvement. World 
Journal of Microbiology and Biotechnology 11(4), 416-425. 

Liu, M.C., Chen, W.H. 1976. Tissue and cell culture as aids to sugarcane breeding. II. 
Performance and yield potential of callus derived lines. Euphytica, 27, 273–282. 

Liu, M.C., Chen, W.H. 1978. Tissue and cell culture as aids to sugarcane breeding II. 
Performance and yield potential of callus derived lines. Euphytica 27, 273-282. 

Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K. 
1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding 
domain separate two cellular signal transduction pathways in drought-and low-temperature-
responsive gene expression, respectively, in Arabidopsis. The Plant Cell Online 10(8), 1391-
1406. 

Liu, Y., Zhang, T., & Wang, J. 2008. Photosynthesis and metabolite levels in dehydrating 
leaves. Acta Biologica Cracoviensia Series Botanica, 50(1), 19-26. 

Lorenzo, J.C., Blanco, M.A., Pelaez, O., Gonzales, A., Cid, M., Iglesias, A., Gonzales, B., 
Escalona, M., Espinosa, P., Borrot, C. 2001. Sugarcane micropropagation and phenolic 
excretion. Plant Cell, Tissue and Organ Culture 65, 1 – 8. 

Luo, J., Zhang, M. Q., Lin, Y. Q., Zhang, H., Chen, R. K. 2004. Studies on the relationship of 
chlorophyll fluorescence characters and drought tolerance in seedling of sugarcane under 
water stress. Scientia Agricultura Sinica 37(11), 1718-1721. 

Maggio, A., Miyazaki, S., Veronese, P., Fujita, T., Ibeas, J. I., Damsz, B., .Bressan, R. A. 
2002. Does proline accumulation play an active role in stress‐induced growth reduction? The 
Plant Journal 31(6), 699-712. 

Mahlanza, T., Rutherford, R.S., Snyman, S.J., Watt, M.P. 2013. In vitro generation of 
somaclonal variant plants of sugarcane for tolerance to Fusarium sacchari. Plant Cell 
Reports 32, 249-262. 

Mamun, M.A., Sikdar, M.B.H., Paul, D.K., Rahman, M.M., Islam, M.R. 2004. In vitro 
micropropagation of some important sugarcane varieties of Bangladesh. Asian Journal of 
Plant Science 3, 666 – 669. 

Marcotte, W. R., Russell, S. H., Quatrano, R. S. 1989. Abscisic acid-responsive sequences 
from the em gene of wheat. The Plant Cell Online 1(10), 969-976. 



78 

 

Martin, U., Alladru, S.G., Bahari, Z.A. 1987. Dehydration tolerance of leaf tissues of six 
woody angiosperm species. Physiologia Plantarum 69, 182-186. 

McNaughton, S.J. 1991. Dryland Herbaceous Perennials, in: Mooney, H.A., Winner, W.E., 
Pell, E. (Ed.), Response of plants to multiple stresses, Academic Press Incorporated, USA, 
pp. 307-328. 

McQualter, R.B., Dale, J.L., Smith, G.R., Harding, R.M. 2004a. Production of transgenic 
sugarcane containing a Fiji disease virus (FDV) genome segment S9-derived synthetic 
resistance gene. Australia Journal of Research 55, 139-145.  

McQualter, R.B., Fong Cong, B., O'Shea, M., Meyer, K., van Dyk, D.E., Viitanen, P.V., 
Brumbley, S.M. 2004b. Initial evaluation of sugarcane as a production platform for p-
hydroxybenoic acid. Journal of Plant Biotechnology 2, 1-13. 

Mexal, J., Fisher, J.T., Osteryoung, J., Reid, C.P.1975. Oxygen availability in polyethylene 
glycol solutions and its implications in plant-water relations. Plant Physiology 55 (1), 20-24. 

Miguel, C., Marum, L. 2011. An epigenetic view of plant cells cultured in vitro: somaclonal 
variation and beyond. Journal of Experimental Botany 62, 3713-3725. 

Miller A.J, Cramer M.D. 2004. Root nitrogen acquisition and assimilation. Plant Soil 274:1–
36. 

Miller, G., Suzuki, N., Ciftci-Yilmaz, S., Mittler, R. 2010. Reactive oxygen species 
homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 33, 453-
467. 

Ming, R., Lui, S.C., da Silva, J., Wilson, W., Braga, D., van Deynze, A., Wenslaff, T.F., Wu, 
K.K., Moore, P.H., Burnquist, W., Sorrells, M.E., Irvine, J.E., Paterson, A.H. 1998. Detailed 
alignment of Saccharum and Sorghum chromosomes: comparative organization of closely 
related diploid and polyploid genomes. Genetics 150, 1663 – 1682. 

Ming, R., Moore, P. H., Wu, K., D Hont, A., Glaszmann, J. C., Tew, T. L., Paterson, A. H. 
2006. Sugarcane improvement through breeding and biotechnology. Plant breeding 
reviews, 27, 15. 

Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in plant 
science 7(9), 405-410. 

Mizoguchi, T., Irie, K., Hirayama, T., Hayashida, N., Yamaguchi-Shinozaki, K., Matsumoto, 
K., Shinozaki, K. 1996. A gene encoding a mitogen-activated protein kinase kinase kinase is 
induced simultaneously with genes for a mitogen-activated protein kinase and an S6 
ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. 
Proceedings of the National Academy of Sciences 93(2), 765-769. 

Mnisi, S.M., Dhlamini, S.C., 2012. The concept of sustainable sugarcane production: Global, 
African and South African perceptions. African Journal of Agricultural Research 7, 4337-
4343. 

Mohamed, M.A.H., Harris, P.J.C., Henderson, J. 2000. In vitro selection and characterisation 
of a drought tolerant clone of Tagetes minuta. Plant Science 159, 213–222. 



79 

 

Molinari, H. B. C., Marur, C. J., Daros, E., De Campos, M. K. F., De Carvalho, J. F. R. P., 
Pereira, L. F. P., Vieira, L. G. E. 2007. Evaluation of the stress‐inducible production of 
proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll 
fluorescence and oxidative stress. Physiologia Plantarum 130(2), 218-229. 

Monneveux, P., Belhassen, E. 1996. The diversity of drought adaptation in the wide. Plant 
Growth Regulation 20, 85-92. 

Montalvo‐Hernández, L., Piedra‐Ibarra, E., Gómez‐Silva, L., Lira‐Carmona, R., 
Acosta‐Gallegos, J. A., Vazquez‐Medrano, J., Ruíz‐Medrano, R. 2008. Differential 
accumulation of mRNAs in drought‐tolerant and susceptible common bean cultivars in 
response to water deficit. New Phytologist 177(1), 102-113. 

Munsamy, A., Rutherford, R. S., Snyman, S. J., & Watt, M. P. 2013. 5-Azacytidine as a tool 
to induce somaclonal variants with useful traits in sugarcane (Saccharum spp.). Plant 
Biotechnology Reports 7(4), 489-502. 

Murashige T.; Skoog F.1962.  A revised medium for rapid growth and bioassays with 
tobacco tissue cultures. Physiologia Plant 15, 473–497. 

Murphy, R., Ortega, J.K.E. 1995. A new pressure probe method to determine the average 
volumetric elastic-modulus of cells in plant tissue. Plant Physiology 107, 995-1005. 

Nadar, M.H., Heinz, D.J., 1977. Root and shoot development from sugarcane callus tissue. 
Crop Science 17, 814-816. 

Nair, N.V., Nagarajan, R., Matthew, M.D., Screenivasan, T.V. 1999. Components of yield 
and quality in intraspecific hybrids of Saccharum officinarum L. selected for ancillary uses. 
Sugar Tech 1, 124 – 127. 

Najarajan, R., Alarmelu, S., Shanthi, R.M. 2000. Studies on variation in interspecific hybrids 
of Saccharum spp. Sugar Tech 2, 42-46.  

Nepomuceno, A.L., Neumaier, N., Farias, J.R.B., Oyax, T. 2001. Toleraˆncia a` seca em 
plantas. Biotecnologia, Cieˆncia e Desenvolvimento 4, 12–18. 

Netto, A.T., Campostrini, E., de Oliveira, J.G., & Bressan-Smith, R. E. 2005. Photosynthetic 
pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee 
leaves. Scientia Horticulturae, 104(2), 199-209. 

Newell, C.A. 2000. Plant transformation technology: developments and applications. 
Molecular Biotechnology 16, 53 – 65. 

Noctor, G., Foyer, C.H. 1998. Ascorbate and Glutathione: Keeping active oxygen under 
control. Annual Review of Plant Physiology and Molecular Biology 49: 249–270. 

Novak. F.J. and Brunner, H. 1992. Plant breeding: Induced mutation technology for crop 
improvement. IAEA Bulletin 4, 25-33. 

Ochatt, S.J., Power, J.B., 1989. Selection for salt and drought tolerance in protoplast- and 
explant-derived tissue cultures of Colt cherry (Prunus avium×pseudocerasus). Tree Physiol. 
5, 259–266. 



80 

 

Oloriz, M. IO., Gil, V., Rojas, L., Veitan, N., Hoffe, M. and Jimenez, E. 2012. Selection and 
characterisation of sugarcane mutants with improved resistance to brown rust obtained by 
induced mutation. Crop Pasture, 62, 1037–1044. 

Orbović, V., Ćalović, M., Viloria , Z., Nielsen,  B., Gmitter, F., Castle, W., Grosser, J. 2008. 
Analysis of genetic variability in various tissue culture-derived lemon plant populations using 
RAPD and flow cytometry. Euphytican 161 329–335. 

Orepeza, M., Garcia, E., Ramirez, J.H., 1995. Identification of sugarcane (Saccharum spp.) 
somaclonal variants resistant to sugarcane mosaic virus via RAPD marker. Plant Molecular 
Biology Reporter 13, 182-191. 

Osakabe, Y., Maruyama, K., Seki, M., Satou, M., Shinozaki, K., Yamaguchi-Shinozaki, K. 
2005. Leucine-rich repeat receptor-like kinase1 is a key membrane-bound regulator of 
abscisic acid early signalling in Arabidopsis. The Plant Cell Online 17(4), 1105-1119. 

Owais, W.M., Rosichan, J.L., Ronald, R.C., Kleinhofs, A., Nillan, R.A. 1983. A mutagenic 
metabolite synthesized in the presence of azide is azidoalamine. Mutation Research 118, 
229–239. 

Parry, M.A.J., Madgwick, P.J., Bayon, C., Tearall, K., Hernadez-Lopez, A., Baudo, M., 
Rakszegi, M., Hamada, W.,Alyassin, A., Ouabbous, H., Labhililis, M., Phillips, A. 2009. 
Mutation discovery for crop improvement. Journal of Experimental Botany, 60, 2817–2825. 

Patade, V.Y., Bhargava, S., Suprasanna, P. 2011. Salt and drought tolerance of sugarcane 
under iso-osmotic salt and water stress: growth, osmolytes accumulation, and antioxidant 
defense. Journal of Plant Interactions, 6(4), 275-282. 

Patade, V.Y., Bhargava, S., Suprasanna, P. 2012. Effects of NaCl and iso-osmotic PEG 
stress on growth, osmolytes accumulation and antioxidant defense in cultured sugarcane 
cells. Plant Cell, Tissue and Organ Culture 108(2), 279-286. 

Patade, V.Y., Suprasanna, P., Bapat, B.A. 2008. Gamma irradiation of embryogenic callus 
cultures and in vitro selection for salt tolerance in sugarcane (Saccharum officinarum L.). 
Agricultural Sciences in China 7, 1147-1152. 

Pathak, S., Lal, M., Tiwari, A.K., Sharma, M.L. 2009. Effect of growth regulators on in vitro 
multiplication and rooting of shoots in sugarcane. Sugar Tech 11, 86-88. 

Peng, Z., Lu, Q., Verma, D.P.S. 1996. Reciprocal regulation of Δ 1-pyrroline-5-carboxylate 
synthetase and proline dehydrogenase genes controls proline levels during and after 
osmotic stress in plants. Molecular and General Genetics 253(3), 334-341. 

Pérez-Clemente, R.M., Gómez-Cadenas, A. 2012. In vitro tissue culture, a tool for the study 
and breeding of plants subjected to abiotic stress conditions. Recent Advances in Plant in 
Vitro Culture 5, 91-108. 

Pervaiz, U., Khan, F., Jan, D., Huma, Z., Zafarullah, M. 2013. An analysis of sugarcane 
production with reference to the extension services in Union Council Malakandher- 
Peshawar. Sarhad Journal of Agriculture 29(1), 145-150. 



81 

 

Phillips, G.C., 2004. Invited review: In vitro morphogenesis - Recent advances. In Vitro 
Cellular and Developmental Biology - Plant 40, 342-345. 

Phillips, J. R., Oliver, M. J., Bartels, D. 2002. Molecular genetics of desiccation and tolerant 
systems. Desiccation and survival in plants: drying without dying. CABI Publishing, 
Wallingford, 319-341. 

Purohit, M., Srivastava, S., Srivastava, P.S. 1998. Stress tolerant plants through tissue 
culture. In: Srivastava, P.S. (Ed.), Plant Tissue Culture and Molecular Biology: Application 
and Prospects. Narosa Publishing House, New Delhi, pp. 554–578. 

Purushotham, M.G., Patil, V., Raddey, P.C., Prasad, T.G., Vajranabhaiah, S.N. 1998. 
Development of in vitro PEG stress tolerant cell lines in two groundnut (Arachis hypogaea L.) 
genotypes. Indian Journal of Plant Physiology 3, 49–51. 

Qing, Z.M., Jing, L.G., Kai, C.R. 2001. Photosynthesis characteristics in eleven cultivars of 
sugarcane and their responses to water stress during the elongation stage. Proceedings of 
the International Society of Sugarcane Technology 24, 642-643. 

Raghavendra, A. S., Gonugunta, V. K., Christmann, A., Grill, E. 2010. ABA perception and 
signalling. Trends in Plant Science 15(7), 395-401. 

Rai, M.K., Kalia, R.K., Singh, R., Gangola, M.P., Dhawan, A.K. 2011. Developing stress 
tolerant plants through in vitro selection - An overview of the recent progress. Environmental 
and Experimental Botany 71, 89–98 

Rakoczy-Trojanowska, M. 2002. Alternative methods of plant transformation – a short 
review. Cellular and Molecular Biology Letters 7, 849 – 858. 

Ramanjulu, S., Bartels, D. 2002. Drought- and desiccation-induced modulation of gene 
expression in plants. Plant Cell Environment 25, 141-151. 

Ramgareeb, S., Snyman, S.J., Van Antwerpen, Rutherford, R.S. 2010. Elimination of virus 
and rapid propagation of disease-free sugarcane (Saccharum spp. cultivar NCo376) using 
apical meristem culture. Plant Cell, Tissue and Organ Culture 100, 175-181. 

Rangel, P., Gomez, L., Victoria, J.I., Angel, F. 2003. Transgenic plants of CC 84-75 resistant 
to the virus associated with the sugarcane yellow leaf syndrome, Proceedings of 
International Society of Sugar Cane Technologists, Molecular Biology Workshop, 
Montpellier, pp. 30. 

Rao, S., Jabeen, F.T.Z. 2013. In vitro selection and characterization of polyethylene glycol 
(PEG) tolerant callus lines and regeneration of plantlets from the selected callus lines in 
sugarcane (Saccharum officinarum L.).Physiology and Molecular Biology of Plants 19(2), 
261-268. 

Raza, S., Qamarunisa, S., Hussain, M., Jamil, I., Anjum, S., Qureshi, J.A. 2012. 
Regeneration in sugarcane via somatic embryogenesis and genomic instability in 
regenerated plants. Journal of Crop Science Biotechnology 15, 131-136. 

Ribeiro, R.V., Machado, R.S., Machado, E.C., Machado, D.F.S.P., Magalhães Filho, J.R., 
Landell, M.G.A. 2013. Revealing drought-resistance and productive patterns in sugarcane 



82 

 

genotypes by evaluating both physiological responses and stalk yield. Experimental 
Agriculture 49, 212-224. 

Rivera, A.L., Gomez-Lim, M., Feenandez, F., Loske, A.M. 2012. Physical methods for 
genetic plant transformation. Physics of Life Reviews 9, 308-345. 

Roane, C.W. 1973. Trends in breeding for disease resistance in crops. Annual Review of 
Phytopathology 11, 463-486. 

Rodriguez-Uribe, L., O' Connell, M. A. 2006. A root-specific bZIP transcription factor is 
responsive to water deficit stress in tepary bean (Phaseolus acutifolius) and common bean 
(P. vulgaris). Journal of experimental of Botany 57(6), 1391-1398. 

Roycewicz P, Malamy J.E 2012 Dissecting the effects of nitrate,sucrose and osmotic 
potential on Arabidopsis root and shoot system growth in laboratory assays. Phil Trans R 
Soc B 367:1489–1500. 

Rutherford, R. S., Snyman, S.J., Watt, M.P. 2014. In vitro studies on somaclonal variation 
and induced mutagenesis: a review (Saccharum spp.). Journal of Horticultural Science and 
Biotechnology- in press.  

Sabbah, S., Tal, M. 1990. Development of callus and suspension cultures of potato resistant 
to NaCl and mannitol and their response to stress. Plant Cell Tissue Organ Culture 21, 119–
124. 

Sairam, R.K., and Aruna. Tyagi. 2004. Physiology and molecular biology of salinity stress 
tolerance in plants. Current Science 86(3), 407–421. 

Saliendra, N.Z, Meinzer, F.C, Perry, M, Thom, M. 1996. Associations between partitioning of 
carboxylase activity and bundle sheath leakiness to CO2, carbon isotope discrimination, 
photosynthesis, and growth in sugarcane. Journal of Experimental Botany 47,907–914. 

Samantaray, S., Rout, G.R., Das, P. 1999. In vitro selection and regeneration of zinc tolerant 
calli from Setaria italica L. Plant Science 143, 201–209. 

Sang, Y., Zheng, S., Li, W., Huang, B.  Wang, X. 2001. Regulation of plant water loss by 
manipulating the expression of phospholipase Dα. The Plant Journal 28(2), 135-144. 

Santos-Diaz, M.S., Ochoa-Alejo, N. 1994. PEG–tolerant cell clones of chili pepper: growth, 
osmotic potentials and solute accumulation. Plant Cell Tissue Organ Culture 37, 1–8. 

SASA, 2013. http://www.sasa.org.za/sugar_industry/IndustryOverview.aspx. Date accessed: 
20 March 2014. 

Schachtman, D.P., Goodger, J.Q.D. 2008. Chemical root to shoot signalling under drought. 
Trends in Plant Science 13 (6), 281-287. 

Schroeder, J.I., Kwak, J.M., Allen, G.J. 2001. Guard cell abscisic acid signalling and 
engineering drought hardiness in plants. Nature 410(6826), 327-330. 



83 

 

Sekhar, K., Priyanka, B., Reddy, V.D., Rao, K.V. 2010. Isolation and characterization of a 
pigeonpea cyclophilin (CcCYP) gene, and its over‐expression in Arabidopsis confers multiple 
abiotic stress tolerance. Plant, Cell and Environment 33(8), 1324-1338. 

Selman-Housein, G., 2000. Towards the improvement of sugarcane bagasse as raw 
material for the production of paper pulp and animal feed, in: Arencibia, A.D. (Ed.), Plant 
engineering towards the third millenium. Elsevier, pp. 189-193. 

Selman-Housein, G., Lopez, M.A., Ramos, O., Carmona, E.R., Arencibia, A.D., Menedez E., 
Mirinda, F. 2000. Towards the improvement of sugarcane bagasse as raw material for the 
production of paper pulp and animal feed. Developments in Plant Genetics and Breeding 5, 
189-193. 

Sengar, A.S., Thind, K. S., Kumar, B., Pallavi, M., Gosal, S.S. 2009. In vitro selection at 
cellular level for red rot resistance in sugarcane (Saccharum sp.). Plant growth 
regulation 58(2), 201-209. 

Sengar, R.S., Sengar, K., Garg, S.K., 2011. Biotechnological approaches for high sugarcane 
yield. Plant Science Feeds 1, 101-111. 

Shinozaki, K, & Yamaguchi-Shinozaki, K. 2000. Molecular responses to dehydration and low 
temperature: differences and cross-talk between two stress signalling pathways. Current 
Opinion in Plant Biology 3 (3), 217-223. 

Shomeili, M., Nabipour, M., Meskarbashee, M., Memari, H.R. 2011. Evaluation of Sugarcane 
(Saccharum officinarum L.) Somaclonals tolerance to salinity via In Vitro and In Vivo. Hayati 
Journal of Biosciences 18(2), 91. 

Sikora, P., Chawade, A., Larsson, M., Olsson, J. Olsson, O. 2011. Mutagenesis as a tool in 
plant genetics, functional genomics, and breeding. International Journal of Plant Genomics 
2011, 13 pp. (http://dx.doi.org/10.1155/2011/314829). 

Silva, M.D.A., Jifon, J.L., Da Silva, J.A., Sharma, V. 2007. Use of physiological parameters 
as fast tools to screen for drought tolerance in sugarcane. Brazilian Journal of Plant 
Physiology 19(3), 193-201. 

Slater, A., Nigel, W.S., Fowler, M.R. 2008. Plant Biotechnology: The genetic and 
manipulation of plants, 2. Oxford, UK, pp. 51. 

Sleper, D.A., Poehlman, J.M., 2006. Sugarcane, in: Sleper, D.A. and Poehlman, J.M. (Ed.), 
The breeding of field crops. Blackwell Publishing, UK, pp. 377-393. 

Smirnoff, N., Cumbes, Q.J. 1989. Hydroxyl radical scavenging activity of compatible 
solutes. Phytochemistry 28(4), 1057-1060. 

Smit M.A., Singels, A. 2006 The response of sugarcane canopy development to water 
stress. Field Crops Research 98, 91–97 

Smith, R.H., Bhaskaran, S., Miller, F.R. 1985. Screening for drought tolerance in sorghum 
using cell culture. In Vitro Cell Developmental Biology-Plant 21, 541– 545. 



84 

 

Snyman S.J., Huckett B.I., Botha F.C., Watt M.P. 2001. A comparison of direct and indirect 
somatic morphogenesis for the production of transgenic sugarcane (Saccharum spp. 
hybrids). Acta Horticulture 56, 105–108. 

Snyman, S.J., Meyer, G.M., Banasiak, M., Nicholson, T.L., Van Antwerpen, T., Naidoo, P., 
Erasmus, J.D. 2008. Micropropagation of sugarcane via Novacane®: Preliminary steps in 
commercial application. Proceedings of the South African Sugarcane Technologists’ 
Association 81, 513-516. 

Soliman, H.I., Hendawy, M.H. 2013. Selection for drought tolerance genotypes in durum 
wheat (Triticum durum Desf.) under in vitro conditions. Middle-East Journal of Scientific 
Research 14, 69-78. 

Sooknandan, S., Snyman, S.J., Potier, B.A.M., Huckett, B.I. 2003. Progress in the 
development of mosaic resistant sugarcane via transgenesis. Proceedings of South African 
Sugarcane Technologists' Association 77, 624-627. 

Stadler, L.J. 1928. Mutations in barley induced by X-rays and radium. Science 68(1756), 
186-187. 

Stockinger E.J., Gilmour S.J., Thomashow M.F. 1997. Arabidopsis thaliana CBF1 encodes 
an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis 
acting DNA regulatory element that stimulates transcription in response to low temperature 
and water deficit. Proceedings of the National Academy of Sciences, USA 94, 1035–1040. 

Sugiyama, M. 1999. Organogenesis in vitro. Current Opinion in Plant Biology 2, 61-64. 

Suprasanna, P., Sidha, M., Bapat, V.A. 2009. Integrated approaches of mutagenesis and in 
vitro selection for crop improvement. In: Kumar, A., Shekhawat, N.S. (Ed.), Plant tissue 
culture, molecular markers and their role in crop productivity. IK International Publishers, 
New Delhi. pp. 73-92. 

Tal, M. 1994. In vitro selection for salt tolerance in crop plants: Theoretical and practical 
considerations. In Vitro Cell Developmental Biology-Plant 30, 175–180. 

Taparia, Y., Gallo, M., Altpeter, F. 2012. Comparison of direct and indirect embryogenesis 
protocols, biolistic gene transfer and selection parameters for efficient genetic transformation 
of sugarcane. Plant Cell, Tissue and Organ Culture 111, 131-141. 

Tarimo, A.J.P., Takamura, Y.T. 1998. Sugarcane production, processing and marketing in 
Tanzania. African Study Monographs 19, 1-11. 

Taylor, P.W.J., Ko, H., Adkins, S.W., Rathus, C., Birch, R.G. 1992. Establishment of 
embryogenic callus and high protoplast yielding suspension cultures of sugarcane 
(Saccharum spp. hybrids). Plant Cell, Tissue and Organ Culture 28, 69 – 78. 

Terzi, S.A., Loschiavo, F. 1990. Somatic embryogenesis. In: Bhojwani, S.S. (Ed.) Plant 
tissue culture: applications and limitations. Elsevier, New York. pp. 54-66. 

Tonon, G., Kevers, C., Faivre-Rampant, O., Graziani, M., Gaspar, T. 2004. Effect of NaCl 
and mannitol iso-osmotic stresses on proline and free polyamine levels in embryogenic 
Fraxinus angustifolia callus. Journal of Plant Physiology 161, 701–708. 



85 

 

Umezawa, T., Fujita, M., Fujita, Y., Yamaguchi-Shinozaki, K., Shinozaki, K. 2006. 
Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. 
Current Opinion in Biotechnology 17, 113-122. 

Urao, T., Yakubov, B., Satoh, R., Yamaguchi-Shinozaki, K., Seki, M., Hirayama, T., 
Shinozaki, K. 1999. A transmembrane hybrid-type histidine kinase in Arabidopsis functions 
as an osmosensor. The Plant Cell Online 11, 1743-1754. 

Van Harten, A.M. 1998. Mutation Breeding: Theory and Practical Applications. Cambridge 
University Press, London, UK. 376 pp. 

Verbruggen, N., Hermans, C. 2008. Proline accumulation in plants: a review. Amino acids 
35, 753-759. 

Verslues, P. E., Agarwal, M., Katiyar‐Agarwal, S., Zhu, J., Zhu, J.K. 2006. Methods and 
concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect 
plant water status. The Plant Journal 45, 523-539. 

Verslues, P.E., Ober, E.S., Sharp, R.E. 1998. Root growth and oxygen relations at low water 
potentials. Impact of oxygen availability in polyethylene glycol solutions. Plant 
Physiology 116, 1403-1412. 

Victoria, J.I, Guzmán, M.L, Garcés, F., Jaramillo, A.D. 1999. Pathogen-free seedcane 
production and its impact on a commercial scale in Colombia. Proceedings of International 
Society Sugar Cane Technology 23, 390–397. 

Vu, J.C.V., Allen, L.H. 2009. Growth at elevated CO2 delays the adverse effects of drought 
stress on leaf photosynthesis of the C4 sugarcane. Journal of Plant Physiology 166,107–116. 

Wagih, M.E., Ala, A., Musa, Y. 2004. Regeneration and evaluation of sugarcane somaclonal 
variants for drought tolerance. Sugar Tech 6, 35–40. 

Wang, W., Vinocur, B., Altman, A. 2003. Plant responses to drought, salinity and extreme 
temperatures: towards genetic engineering for stress tolerance. Planta, 218, 1-14.  

Wang, Y.C., Klein, T.M., Fromm, M., Cao, J., Sandford, J.C., Wu, R. 1988. Transient 
expression of foreign genes in rice, wheat and soybean cells following particle 
bombardment. Plant Molecular Biology 11, 433-439. 

Waseem, M., Ali, A., Tahir, M., Nadeem, M.A., Ayub, M., Tanveer, A., Ahmad, R., Hussain, 
M. 2011. Mechanism of drought tolerance in plant and its management through different 
methods. Continental Journal of Agricultural Science 5, 10 – 25. 

Watt, D.A., Sweby, D.L., Potier, B.A.M., Snyman, S.J., 2010. Sugarcane genetic engineering 
research in South Africa: From gene discovery to transgene expression. Sugar Tech 12, 85-
90. 

Watt, M.P., Banasiak, M., Reddy, D., Albertse, E.H., Snyman, S.J. 2009. In vitro minimal 
growth storage of Saccharum spp. hybrid (genotype 88H0019) at two stages of direct 
somatic embryogenic regeneration. Plant Cell, Tissue and Organ Culture 96, 263 – 271 



86 

 

Wilkinson, S., Davies, W.J. 2010. Drought, ozone, ABA and ethylene: new insights from cell 
to plant community. Plant Cell Environment 33, 510–525. 

Xiong, L., Wang, R.G., Mao, G., Koczan, J.M. 2006. Identification of drought tolerance 
determinants by genetic analysis of root response to drought stress and abscisic acid. Plant 
Physiology 142, 1065-1074. 

Xoconostle-Cazares, B., Ramirez-Ortega, F. A., Flores-Elenes, L., Ruiz-Medrano, R. 2011. 
Drought tolerance in crop plants. American Journal of Plant Physiology 5, 241-256. 

Yamaguchi-Shinozaki, K., Shinozaki, K. 1994. A novel cis-acting element in an Arabidopsis 
gene is involved in responsiveness to drought, low-temperature, or high-salt stress. The 
Plant Cell Online 6, 251 - 264. 

Yancey, P.H. Clark, M.E., Hand, S.C., Bowlus, R.D., Somero, G.N. 1982. Living with water 
stress: Evolution of osmolyte systems. Science 217, 1214-1222. 

Yordanov, V., Velikova, V., Tsonev, T. 2000. Plant responses to drought, acclimation and 
stress tolerance. Photosynthetica 38, 171-186. 

Zhao, D., Glaz, B., Comstock, J.C. 2010. Sugarcane response to water-deficit stress during 
early growth on organic and sand soils. American Journal of Agricultural and Biological 
Sciences 5(3), 403. 

Zhu, X.G., Long, S.P., Ort, D.R. 2008. What is the maximum efficiency with which 
photosynthesis can convert solar energy into biomass? Current Opinion in Biotechnology 19, 
153-159. 

Zimmerman, J.L. 1993. Somatic embryogenesis: A model for early development in higher 
plants. The Plant Cell 5, 1411-1423. 

Zingaretti, S.., Rodrigues, F.A., da Graça, J.P., de Matos Pereira, L., Lourenço, M.V. 2012. 
Sugarcane responses at water deficit conditions. Water Stress, Prof. Ismail Md. Mofizur 
Rahman (Ed.), ISBN: 978-953-307-963-9, InTech. 

Zupan, J., Muth, T.R., Zambryski, P. 2000. The transfer of DNA from Agrobacterium 
tumefaciens into plants: a feast of fundamental insights. The Plant Journal 23, 11 - 28. 

 

 

 

 


