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Abstract

In this dissertation, we consider the variable chaplygin gas (VCG) model as derived
from the Tachyon gas model and search for a sub-class of models that provide an
adequate fit to the cosmic microwave background (CMB) observations. We find
that, for an appropriate choice of VCG parameters, up to ~ 80% of the VCG
collapses into a gravitationally bound condensate which behaves as matter; the
evolution of the remaining VCG, as governed by its equation of state, brings about
accelerated expansion at late times. In light of this high collapsed fraction, we
approximate the VCG transfer function with that of cold dark matter. We show
that we can sufficiently describe the VCG cosmology from decoupling to today in
terms of a model in which the gravitationally bound condensate plays the role of
cold dark matter and the remaining VCG takes the place of dark energy in the
concordance model. We then compute the CMB temperature anisotropy spectrum
for a subset of VCG models and proceed to find a best-fit model to the WMAP-9yr
data [46]. Our best-fit model has a x? per degrees of freedom of 2.03.
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Chapter 1

Introduction

With the advances in observational and theoretical cosmology, in recent years, ques-
tions about the age, geometry, dynamics, content, and the origin of the structure
in the universe can be answered quantitatively with reasonable confidence. We
know that the very early universe was in an extremely hot state which expanded
rapidly, causing it to cool, and resulting in the present expanding state. Current
cosmological observations suggest that we live in an almost spatially flat, expanding
universe with about 70% percent of the energy density attributed to a component
with negative pressure, dubbed dark energy. The remainder of the energy density
is attributed to 25% non-baryonic matter, known as dark matter, and about 5%
baryonic matter.

This cosmological model is known as the ACDM model. The ACDM model supposes
that dark energy is Einstein’s cosmological constant, while dark matter particles are
assumed to non-relativistic, cold dark matter (CDM). However, despite the consis-
tency with most observations, the ACDM model has encountered some theoretical
problems [54]. Furthermore, neither dark matter nor dark energy has been directly
detected. This leaves the door open to the possibility that dark matter and dark en-
ergy are manifestations of the same cosmic fluid. This scenario, where dark matter
and dark energy are manifestations of the same cosmic fluid is called Quartessence.
In light of the challenges facing ACDM it is important to explore such a scenario.
In this dissertation, we investigate the possibility of a quartessence model known
as the variable Chaplygin gas (VCG) as a viable alternate cosmology to ACDM in
light of the current observational data.

In this introduction we first describe the theory that governs the dynamics of the
universe. Then we give a description of the current cosmological observations and
how these observations have led to the current concordance model. Most of this
background material is based on references [1, 2, 3]. Finally we present quartessence
as a possible alternative to ACDM.

1.1 Describing the Universe

In this section we present a qualitative description of the theoretical framework that
describes the dynamics of our universe.
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1.1.1 Equations of Motion

The universe is believed to be isotropic and homogeneous, the so-called cosmolog-
1cal principle. Isotropy means that the universe looks the same in every direction,
which then implies that observations made in one direction are a sufficient test of
cosmology. Isotropy is in very good agreement with observations (0.001% accuracy).
Homogeneity means the general picture of the universe as a function of time is inde-
pendent of the position of the observer. The assertion of the cosmological principle
together with General Relativity describes our universe. General Relativity relates
the metric, which describes gravitation, to the energy in the universe through the
Einstein equations, which determine the dynamics of the universe:

1
G =R — §g#,,R =8rGT,,, (1.1)

where G, is the Einstein tensor; R, is the Ricci tensor, which depends on the met-
ric derivatives; the Ricci scalar R is a contraction of the Ricci tensor, R = g"" R,,,;
G is Newton’s gravitational constant; and 7}, is the energy-momentum tensor. The
metric, g,,,, which describes a smooth expanding universe is the Friedman-Lemaitre-
Robertson-Walker (FRW) metric

ds® = dt* — a(t)[dr® 4+ S, (r)*dQ?], (1.2)

where a(t) is the scale factor. It is conventional to set its value today to unity and
its value at the Big Bang to be zero; dQ? = df? + sin®(0)d¢?* and

~Lsin(ry/k)  for k>0
Se=4q T k=10 . (1.3)
—~Lsinh(ry/k) for k <0

Here, k denotes the curvature of the universe and can be either positive, zero or
negative depending on the geometry of the universe. A flat universe is Euclidean and
has zero curvature: particles remain parallel as long as they travel freely. In an open
universe which has negative curvature, particles which start out parallel gradually
diverge as they travel freely. In a closed universe, which has positive curvature;
particles which start out parallel gradually converge as they travel freely.

The left hand side of (1.1) is a function of the metric and the right a function of
the energy. Assuming each component in the universe has an energy density p; and
pressure p;, the total energy density and pressure are given by

P = sz' (1.4)
p = szy (1.5)

respectively. For a perfect isotropic fluid the energy-momentum tensor is given by

(1.6)
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where p is the pressure of the fluid with energy density p. For a perfect fluid energy
conservation requires
™., =0, (1.7)

which yields as its longitudinal part the continuity equation

dp a
E%—Z’)a(p%—p) = 0. (1.8)

The continuity equation can then be integrated to get the evolution of the energy
density for each component as

a

“d
piocexp{—?)/ —a[l—i—wi(a )]} (1.9)
where w;(a) is the equation of state parameter, defined as

w; = 2 (1.10)
Pi
Knowing the equation of state parameter for a given component in the universe, the
energy density evolution of each component can be obtained using Equation (1.9).
The Einstein equations yields the evolution of a as

N 2
a 8rG K
_(Z -/ — =0 1.11
(a> +—pt 5 =0, (1.11)
and d is given by
i ArG
g + %(p%— 3p) = 0. (1.12)

Therefore, for a universe containing fluids with known equation of state parameters
w;, the dynamics are described by equations (1.9),(1.11) and (1.12). Equation (1.11)
is known as the Friedman equation. To quantify the change in the scale factor and
its relation to the energy, it is useful to define the Hubble parameter,

lda a
H=-"—="2 1.13
adt a ( )
Now the Friedman equation can be written using the Hubble parameter as
811G K
g2 2T — =0. 1.14
tgrt (1.14)

Another quantity that is frequently used in cosmology is the redshift, which is
defined as the ratio of the wavelength when light was observed and light was emitted,
ie,
A0 Serve ]‘
z 41 = Zoserved _ 2 (1.15)

Aemitted a

Redshift is often used as a time and distance parameter in cosmology. The redshift
of the light emitted by source at time ¢;, z; = a(t) !, gives the size of the universe
at the time ¢;.
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1.2 Evidence for the Big Bang Model

In this section we describe the current cosmological observations. In this descrip-
tion we highlight the role each these observations play in validating the Big Bang
Model. We then proceed to study how these observations have led to the current
concordance model universe.

1.2.1 The Hubble Expansion

One giant leap in understanding the dynamics of the universe was Edwin Hubble’s
discovery that the universe is expanding. Using the 100-inch Hooker telescope at
Mount Wilkinson Observatory Hubble measured distances to galaxies by isolating
individual Cepheids in those galaxies. Cepheids are stars which pulsate. The period
of their pulsation is related to their intrinsic brightness. Cepheids with same period
have the same intrinsic luminosity. Distances to these objects can be inferred by
finding the correlation between their true and observed brightness. Hubble com-
bined his measurements with Veto Slipher’s redshift measurements for the galaxies,
which may be determined by measuring the shifts of spectral lines in spectra from
galaxies. He found that galaxy redshifts were proportional to galaxy distances, and
concluded that these galaxies were receding from us with a velocity proportional to
their distance from us. According to the cosmological principle we hold no special
place in the universe, therefore it must be that galaxies recede from each other with
a velocity v, proportional to the distance, r, between them. This relation is known
as the Hubble law:

v = Hyr. (1.16)

The constant Hj is referred to as the Hubble constant and is a measure of the rate of
the recession. Present measures of the Hubble rate are parametrised by h, defined
via,

Hy = 100h km s ' Mpc . (1.17)

The Hubble law remains one of most compelling pieces of evidence that the universe
is expanding, which is consistent with the Big Bang model. Therefore accurate
measurement, of the expansion rate is paramount. The standard candles that are
used today are Type Ia supernovae (SNla), being much brighter than Cepheids
they can extend the Hubble diagram 1.1a to very large redshifts 1.1b, and measure
the expansion rate to a very high accuracy. very
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(a) The original Hubble diagram, showing the velocities of galaxies vs
distance, taken from [4]. The solid line is the line of best-fit for data
points (filled) corrected for the motion of the sun, while the dashed line
is the best-fit for the uncorrected data points (unfilled).
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(b) Hubble Diagram from the Hubble Space Telescope Key Project [5],
constructed from five different distance measures. The horizon lines give
the best-fit value of Hy = 724+ 8km s 'Mpc .

Figure 1.1
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1.2.2 Light Element Abundance

The abundance of elements in the universe provides one of the most compelling
pieces of evidence in support of the Big Bang model. Historically it was assumed
that all stars began their life comprised entirely of hydrogen, with heavier elements
being generated via nuclear fusion reactions at their cores. While this is the process
giving rise to heavy elements, it is now established that not all the light elements—
deuterium, helium-3, lithium, and especially helium-4, could have been created
in this manner. In fact the spectra of very young stars indicates these approach
non-zero abundances. In particular, the measurement of primordial deuterium pins
down the baryon density extremely accurately to only a few percent of the critical
density.

0-26||||1|| T T

‘He .

N N N i e o
,.2,_.\_-.,\.!-..\.k\.h\).\;\\.).\,':\. L

0.25

Mass fraction

*He/H, D/H

LirH

nxlﬂm

Figure 1.2: Constraints on the baryon density as predicted by BBN taken from [6].
The curves show the primordial abundances of deuterium, helium-3, lithium and
helium-4 as predicted by the standard model of the BBN, as function of baryon
density-photon ratio. The boxes show the observed abundances.
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When the universe was much hotter and denser, when the temperature was of
order ~ 10 MeV, there were no neutral atoms or even bound nuclei. The vast
amounts of radiation in such a hot environment ensured that any atom or nucleus
produced would be immediately destroyed by a high energy photon. However, ac-
cording to the Big Bang model, as the universe cooled well below binding energies
of typical nuclei (~ 1MeV), the production of light elements could take place. This
period when neutral nuclei began to form is referred to as the recombination epoch.
Knowing the conditions of the early universe and the relevant nuclear cross-sections
(standard model of particle physics), one can predict the expected primordial abun-
dances of Li, He and D in this model. This synthesis of light elements is known as
Big Bang Nucleosythesis (BBN). The predictions of BBN are in very good agree-
ment with the current estimates of light element predictions, and this consistency
sets the Big Bang model on an even firmer footing. The combined proton-neutron
density is called the baryon density since both protons and neutrons have baryon
number one and these are the only baryons around at these early times. Thus BBN
may be used to measure the baryon density in the universe (see section 1.3).

1.2.3 Cosmic Microwave Background

During the epoch of recombination, photons are coupled to baryons. Cosmic ex-
pansion causes the baryon density to decrease causing a decrease in photon-baryon
interaction. When the photon-baryon interaction rate decreases below the cosmic
expansion rate, the photons are decoupled from the baryons and begin to free-
stream. George Gamow in 1948 predicted that this primordial radiation should be
present today with an almost perfect uniformity everywhere in the universe. In the
early 1960s this primordial radiation was recognised by Robert Dicke and Yakov
Zeldovich as a detectable phenomenon.

In 1965, Arno Penzias and Robert Wilson at the Bell Telephone Laboratories in
New Jersey were measuring sky brightness at radio wavelengths. Their measure-
ments had an excess of 3.5 K which they could not account for. When Penzias and
Wilson heard of Dicke’s work they realised they had detected the CMB. In 1990
satellite measurements confirmed the CMB has a blackbody spectral distribution
with an apparent temperature of 2.7 K. As a result of the continual expansion of
the universe, this radiation has been stretched out to longer wavelengths which to-
day exist in the microwave region of the electromagnetic spectrum. Due to its near
perfect uniformity, we conclude that this radiation originated in a time when the
universe was much smaller, hotter, and denser.

1.3 Cosmic Budget

One major goal in observational cosmology is to know the precisely the fraction
contribution of each component of the universe. Observations and theory point to
a universe made up of radiation, p,, baryonic matter (electrons, neutrons, protons),
oy, dark matter, pg,,, dark energy, pge and neutrinos p,,. In this section we calculate
the contribution of each of the above mentioned species to the energy density of the
universe. Before we proceed we need to define the critical density. Note that in a
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flat universe (k = 0) the Friedman equation (1.14) becomes

8rG
_H 4 ”T,o =0 (1.18)
which leads to the definition of the critical density
3H?
o = . 1.19
Por = (1.19)

Equation (1.19) says that, in a flat universe, the total energy density is p,,, i.e, in
a universe with M components the total energy is

M

To facilitate comparison between the difference in contributions made by each com-
ponent to the total energy density, it is useful to define the density parameter, which
is a dimensionless quantity

Q= (1.21)

pCT

and is the fractional contribution of the different components to the energy den-
sity of the universe (With the total energy density comprising the sum of all con-
stituents). For a flat universe, @ = 1. In this dissertation, we denote values of
cosmological parameters today with a “0” subscript.

Matter

Matter effectively has zero pressure, and therefore its equation of state parameter
Wy, vanishes, so that the matter energy density scales as

pm(a) o< exp {—3 / d—“} =a (1.22)

a

Observations point to the existence of non-baryonic matter, also referred to non-
luminous matter since it does not interact in any significant way with radiation.
The matter contribution is therefore, €2, = Q, + Qan.

Baryons

Current estimates of the baryon density constrain the baryon density to ~ 2 — 5%
of the critical density. BBN, which has already been discussed in section 1.2.2,
constrains the baryon density to Q0h? = 0.020 & 0.002 [51]. Another approach is
to look at spectra of distant galaxies, and measuring the amount of light absorption.
The amount of light absorbed quantifies the amount of hydrogen the light encounters
along the way, the baryon density is then inferred from the estimate of the amount
of hydrogen. This approach roughly estimates 5 0h* ~ 0.020 [29]. One can also
compute the baryon content of the Universe from the anisotropies of the CMB
radiation. This approach puts fairly stringent limits on the baryon content to
about Oy 0h? = 0.02470 003 [45].
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Dark Matter

The matter density of a system may also be measured by studying the gravitational
field produced by the matter in that system. In the case of spiral galaxies, one
can measure the rotation of a galaxy at different distances from its centre and plot
the rotational velocity against the distance, the so-called rotational curve. The
gravitational field due to spiral galaxies can then be determined by studying their
rotational curves. However, this technique estimates about 80% more matter than
that inferred from the spectra of these galaxies, pointing to the existence of non-
luminous matter. Furthermore, non-luminous estimates of the luminous/baryonic
matter predict the matter density to be 20 — 30%. One of these techniques uses a
phenomena predicted by general relativity— the trajectory of a photon is affected by
the curvature of space-time induced by the presence of a massive object (the “lens”)—
known as gravitational lensing. Current gravitational lensing measurements of the
matter density constrain it to §2,,0 = 0.248+0.019 [51]. Clusters of galaxies, which
are the largest known objects, are likely to be representative of the matter in the
universe. Therefore, measurements of the baryon to matter ratio in these objects
combined with good estimates of the baryonic matter density will give estimates
of the dark matter density. The baryon to matter ratio in these objects is roughly
20%. One could also infer the matter density by looking at CMB anisotropies,
which constraints the matter density to Q,,0h* = 0.1326 £ 0.00063 [45]. These
independent methods provide compelling evidence that the baryon density is of
order of 5% of the critical density, while the total matter density is about five times
larger, providing clear evidence for non-baryonic matter. However, dark matter has
not been detected directly and all the current evidence is based on its gravitational
effects. Currently the most viable candidate for dark matter is known as cold dark
matter (CDM), which is mostly composed of non-relativistic particles, although,
theory also allows for dark matter composed of relativistic particles; hot dark matter
(HDM). However, relativistic particles cannot clump together easily, and therefore
could not have stimulated the formation of small (on cosmological scales) structures
like galaxies and clusters of galaxies. Therefore, dark matter particles are predicted
to move slowly to allow them to clump to form the dark matter halos that give
the structure of the universe. As a candidate for the CDM particle, the particle
physics inspired weakly interacting particle (WIMP) was proposed. WIMPs are
postulated to interact mainly through the weak force and gravity, but not through
the electromagnetic force, making them the prime candidates for DM particles.

Dark Energy

With matter (baryonic and non-baryonic) making up ~ 27% of the critical density
and indications of spatial flatness, there is clearly a shortfall in the energy density
budget. This points to another component in the universe that makes up about two-
thirds of the critical density. Furthermore, in 1998, two independent groups (Riess
et al. 1998 [30], Perlmutter et al. 1999 [31]) observed a group of SNla standard
candles to be fainter than expected in a matter dominated universe. The manner in
which the brightness of standard candles evolves with redshift provides information
about the evolution of the universe at late times. Their results are indicative of an
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accelerated expansion rate. Since all known matter is attractive, a component with
a negative pressure is therefore believed to be driving the accelerated expansion
rate. This component is believed to be the cosmological constant which was first
introduced by Einstein in order avoid the non-static universe predicted by his theory
of General Relativity. The pressure of this component is given by

PA = —PA- (123)

A has been interpreted as vacuum energy; in quantum physics one possible origin
is a type of ‘zero-point energy’, which remains even in the absence of matter. The
density of the cosmological constant, p,, is constant throughout the evolution of
the universe, i.e., A(t) = constant. This component has been shown to give rise to
the accelerated expansion phase detected by SNIa observations.

Currently the best estimates for the cosmic budget are the WMAP [45] values:
Qgeo = 0.734 £ 0.029, Qg0 = 0.222 £ 0.026, o = 0.0449 £ 0.0028.

1.4 Quartessence an Alternative to ACDM

The ACDM model accounts for a wide range of observations, but encounters two
theoretical issues. Firstly, according to the standard model of particle physics, A
must have tiny energy density (~ 10 47 GeV % ). This requirement for a fine-
tuned value of A, is called the fine-tuning problem. The second problems arises
when the ACDM model is extrapolated back in time to the very early Universe.
The dark energy density decreases at a different rate from the matter density, and
their ratio shrinks by many orders of magnitude as we extrapolate back in time.
Now, the ACDM model predicts the ratio was set initially just right so that today,
some fourteen billion years later, the ratio is of order unity. It is a remarkable
coincidence that somehow we exist in this small (on cosmological scales) epoch
when Q, /€, ~ 1. This is known as the coincidence problem. To address the fine
tuning and coincidence problems many other models have been proposed, most of
which propose a dynamic dark energy. Dynamical dark energy models have a time
varying dark energy component, A(¢). Among these, quintessence [7, 8], holographic
dark energy [10], quintom [9] and phantom [11] are the most famous. These models
attempt to address the fine-tuning problem that arises from the ACDM model,
and provide a satisfactory fit to observations. However like the ACDM model,
these models treat dark matter and dark energy as separate entities. However,
since there has been no direct detection of either dark matter or dark energy, a
scenario where dark dark matter and dark energy are manifestations of the same
cosmic fluid has been sought. Such a scenario is called Quartessence or unified
dark mater, dark energy (UDME). The Chaplygin gas [19, 39], which is a fluid
with an exotic equation of state, provides an interesting quartessence scenario. The
redshift dependence of this gas is such that at high redshifts (early times), it behaves
like matter and low redshift (late times) it behaves like dark energy. However, to
successfully model the universe, a sufficient fraction of this fluid has to condense
into a gravitationally bound condensate in order to account for structure in the
universe. In this dissertation we will study a version of the Chaplygin gas, known
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as the variable Chaplygin gas, in light of the CMB observations. Other variations
of the Chaplygin gas exist, namely, the Generalised Chaplygin gas [39] and the
Modified Chaplygin gas [14]. However, unlike the standard Chaplygin gas, these
variations do not have an equivalent brane interpretation [12].

1.5 About This Thesis

In Chapter 2, we describe the growth of the primordial density perturbations. We
start with a Newtonian formalism for the growth of a spherically symmetric over-
density and then move on to formulate a fully General Relativistic model for a
spherically symmetric space-time. We then apply this model to a single fluid model.
In Chapter 3, we study how the observed CMB and matter power spectra can be
used to test the validity of cosmological models. In Chapter 4, we introduce the
idea of quartessence, in particular the Chaplygin gas. We also describe the evolu-
tion of the inhomogeneous variable Chaplygin gas. In chapter 5, we first calculate
the fraction of VCG that collapses into a gravitationally bound condensate. We
then move on to formulate our VCG cosmology. We also describe the FORTRAN
90 code used to do the calculations. In Chapter 6 we discuss the the effects of
the VCG on the CMB spectrum and finally in chapter 7 we make our concluding
remarks.



Chapter 2

Cosmological Perturbations

The cosmological principle holds on cosmological scales. On smaller scales however,
the universe contains density fluctuations ranging from planets to large super clus-
ters and voids. On smaller scales homogeneity and isotropy are clearly violated.
This violation of the cosmological principle may be explained by supposing that, in
its infancy, the primordial density fluctuations were very close to smooth, with tiny
density fluctuations. These tiny density fluctuations have grown by gravitational
instability to bring about the complex structure we observe today. As for the origin
of the tiny density fluctuations, the widely accepted hypothesis assumes they are
quantum fluctuations amplified by a brief period of exponential expansion, known
as inflation. In this section we study the evolution of the primordial density field.
The material in this chapter is based on references [1, 2].

2.1 Formation of Structure

In this section we describe growth of structure. We first describe a linear approach
using Newtonian theory, and then we describe a General Relativistic approach to
gravitational collapse.

2.1.1 Gravitational Instability

Consider some component of the universe with energy density p(r,¢), which depends
on position and time. The spatially averaged energy density, at a given time,
averaged over some volume V'; which is much larger than the largest structure in
the universe, is

p= %/Vp(r,t)d?’r. (2.1)

The density contrast is defined as

5(r, 1) = AT g(; Z(r’ H (2.2)

In overdense regions, 6 > 0, and § < 0 in underdense regions. The density contrast
is a minimum, 6 = —1, when p = 0, and there is no definite upper limit on §. The

17
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study of the growth of structure requires knowing how small density perturbations
0 < 1, grow in amplitude under the influence of gravity. Before we continue it is
useful to define the Jeans Length in a context of a expanding universe. Consider a
spherical overdensity with radius R. In the absence of pressure, the time scale for
collapse is

tan ~ (GB) V2. (2.3)

In the presence of pressure, collapse will be countered by steepening of the pressure
gradient within the perturbation. The steepening, however, is not instantaneous,
since any changes in pressure travel at the local (of the perturbation) sound speed,
¢s. Thus the time it takes for the pressure to build up is

b 2 (2.4)
Hydrostatic equilibrium requires the pressure gradient to build up before the over-
dense region collapses, i.e., the time it takes for the pressure to build up must be
less than the collapse time scale. Considering equations (2.3) and (2.4), one can
conclude that for a density perturbation to be stabilised by pressure against col-
lapse, it must be smaller by some characteristic size A, the so-called Jeans Length

)\J ~ Cstdyn ~ (Gﬁ) 1/2 s (25)

including all the factors of 7, the Jeans Length is
)\J = 27T05tdyn . (26)

Overdense regions of scales larger than the Jeans length will collapse under their
own gravity, while regions smaller than the Jeans length oscillate in density. Now
consider a flat expanding universe with average density p, and with fluctuations of
amplitude |§] < 1. The characteristic time for expansion in such a universe is the

Hubble time,
302 1/2
H'= (87er> : (2.7)

which, together with equation (2.3), leads to

3 1/2
H'= (5) tayn - (2.8)

The Jeans length in an expanding universe therefore becomes

3\ % ¢
AJ = 2TCstayn = 27 (§> ﬁs . (2.9)

2.1.2 A Newtonian Approach

A Newtonian approach is sufficient to study the growth of small perturbations in
a flat expanding universe. Consider a matter filled universe, with density p(r,t).
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Within a spherical slightly (§ < 1) overdense region of radius R, the density within
the sphere is

p(t) = p()[1 +6(1)] - (2.10)
The total gravitational acceleration at the surface of the sphere is
.. GM Gar 4
= _ = — = —— p+0p) . 2.11
R 7 73 PR 5 GR(P+0p) (2.11)

The equation of motion for a point at surface of the sphere is

R .

Mass conservation requires the mass inside the sphere

Me¥§mwu+am3%w, (2.13)

to remain constant as the universe expands, leading to
R(t) o p(t) 1/3[1 +0(t)] /3 (2.14)

3 we also have

Since this universe is matter-dominated, p x a
R(t) o< a(t)[1 + 6(t)] /3. (2.15)

Equation (2.15) implies that if the sphere is slightly overdense, its radius will grow
slightly less rapidly than the scale factor. If the sphere is slightly is slightly under-
dense it will grow slightly more rapidly than the scale factor. The time derivative
of (2.15) is

Rmaﬂ+ﬂ1“—%ﬂ1+ﬂ4“& (2.16)

and the second time derivative is

. 2 2 1 .

Rocidll +6] Y3~ gau + 0] 36 (1 — 5[1 + 0] 15> — g[1 +6] 3. (2.17)
Considering that § < 1, then dividing by equation (2.15) yields

ey e ey (2.18)

then (2.12) and (2.18) lead to the acceleration equation for a such a slightly per-
turbed matter-dominated homogeneous, isotropic universe,

S0 5 0=——Gp+0p), (2.19)

which, when § = 0, reduces to the acceleration for a homogeneous, isotropic matter-
dominated universe

—=-50p. (2.20)
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To find an expression that describes how small perturbations grow, equation (2.20)
may be subtracted from equation (2.19) leaving only terms linear in 0:

1. 24. dr
S54 2%~ T ass 2.91
30350 =300 (2.21)

or, using equation (1.13) ) .
0+ 2H6 = 4nGop. (2.22)

This form of the equation can be applied to a universe with non-negligible pressure,
such as the cosmological constant. However in a multi-component universe, ¢ rep-
resents the fluctuations only in the matter density. Equation (2.22) may be written
in terms of the matter density parameter,

6+ 2H — ngH% =0. (2.23)

During epochs when matter does not dominate the universe,  does not grow rapidly
in amplitude. For instance, during the radiation domination era(H = 1/2t, 2 < 1),
equation (2.23) becomes

..
b+ b0, (2.24)

which has solution

During radiation dominance, the matter perturbations grow at a logarithmic rate.
And more recently, during the dark energy (cosmological constant) domination era,
equation (2.23) becomes

S+ 2H\ 6 ~ 0, (2.26)

with solution

(5(t) ~ CI -+ 026 ZHat . (227)

In a A-dominated universe, the matter fluctuations asymptotically approach a con-
stant fractional amplitude. When matter-dominates the energy density of the uni-
verse, there is a significant growth in the amplitude of the density fluctuations. In
this case, H = 2/3t, Q,, = 1:

4 . 2

bt 50— 350=0. (2.28)

One may try a power-law solution of the form d6(t) = Dt",

4 2
—1)Dt" >+ —nDt" ' — —Dt" =0 2.29
n(n—1)DE" 2+ —aDi" 1~ D" =0, (229)
or 1 5
—1)+-n—=-=0. 2.30
nn—1)+ 50— (230
This quadratic equation has solution, n = —1,2/3, giving general solution

5(t) = Dyt?® + Dyt 1. (2.31)



2.1. FORMATION OF STRUCTURE 21

The initial conditions for §(¢) can be used to determine, Dy, Ds. The decaying
mode Dyt ! eventually becomes insignificant compared to the growing mode d;t*/?
as t grows. It is worth remembering that this evolution of the density fluctuations
holds as long 6 < 1. When § ~ 1, the above approach becomes unreliable to
study the evolution of density fluctuations. To study the evolution of § ~ 1 and
0 > 1 computer simulations can be used. In these simulations, when a region
reaches an overdensity 6 ~ 1, it breaks away from the Hubble flow and collapses.
The overdense region oscillates a few times then and attains viral equilibrium as
gravitationally bound structure. Baryonic matter evolves to form the stellar part
of galaxies, while the dark-matter forms the dark halos within which the stellar
components of galaxies are embedded [1].

2.1.3 A Full GR Approach

In this section we describe a spherically symmetric inhomogeneity. We mainly
follow the full General Relativistic formalism presented in [12]. The space-time of
a spherically symmetric inhomogeneity is described by the metric [12]

ds® = N(t,7)dt* — b(t,r)*(dr® + 12 S, (t,7)dQ?) (2.32)

where N is the local lapse function, b is the local expansion factor and S,(t,r)
describes spatial curvature. In the limit » — oo, the above metric approaches the
FRW metric, i.e., N(r,t) = 1, S, — 1 and b(r,t) — a(t). The Hubble parameter
in a space-time described by the metric (2.32) is given by [12]

1 (by 18,
H=__|2=4+ = 2.
N(b+3s;) (2:33)

and the shear is given by

2/ 1 Seo\?
2 k.0
=- | == : 2.34
? 3(mv&) (2:34)
Assuming the density contrast to be of fixed Gaussian shape with comoving size R,
the energy density evolves as

p(t,r) = p(t)[1 + 6(t, R)e "/CF)] (2.35)

The density contrast is given by
(o) = 292l (2.36)

where background quantities are bared. Since every region is treated as being
independent in spherical models, the spatial derivatives of N, p, b vanish at the
origin. Hence we may expand b and N about the origin as follows

N(r,t) = N(t,0)[1+0(r?)] (2.37)
b(r,t) = b(t,0)[1+0O(r?)] . (2.38)
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Now, evaluating Einstein’s equation G°; = 0 leads to [12]

bi b1 (Seo bo\  Ni [ bo  Ses)  Seo (1 18.,\
27+7(sﬁ—2?) N(2?+Sﬁ 5755 ) =0 239

Recalling that the first three terms vanish at origin, the above equality holds only

if ng = 0 at the origin. Looking at Equation (2.34) we see that the shear vanishes

at the origin.

For a one-component model, the Raychaudhury equation
3H +3H* + 0,,0" + uw'u” R, =i",,. (2.40)

combines with Einsteins equations (1.1) to give [12]

) ) ) v p,
3H +3H*+ 0" +4rG(p+3p) = | ——— | . (2.41)
pte /),
Evaluating this equation at the origin we get
1 dH(t0) 2 47rG s (p(t )—P())
H(t,0 3p . (2.42

From now on we denote the inhomogeneity quantities evaluated at the origin as,
H(t,0) = H, b(t,0) =0, N(¢,0) = N. Therefore we rewrite Equation (2.42) as

1 dH ArG 2 op
—— +H*4+ — 3 _— 2.43
Nar TH e s am (2.43)
The evolution of p(t) may described the continuity equation
dp
a +3H(p+p) =0. (2.44)

Then with an equation of state p = p(p), the growth of a spherically symmetric
inhomogeneity of a one-component fluid is described by Equations (2.43) and (2.44).
Looking at Equation (2.33), the Hubble parameter evaluated at the origin is

1db

=-——. 24
bdt (2.45)
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2.1.4 Statistics of Collapsed Objects: The Press-Schechter
Theory

Up to this point, we have discussed a theory that describes the evolution of the
density fluctuations set up during inflation. However, thus far, the theory cannot
predict the fraction of matter that has collapsed into non-linear structure. For
instance, one may predict the matter distribution in the universe but cannot predict
the number density of galaxies. The Press-Schechter formalism is the basis for much
of the work that studies the statistics of collapsed objects [16]. The idea is that for
a given spherical volume of radius R, if the density contrast inside exceeds a certain
critical value ., then the mass in this volume will collapse and form a dark matter
halo of mass M = (47 /3)R3p. With a Gaussian random field,

P(6, R)dd = d—(sex <6—2) (2.46)

’ 2102 (R) P 20%(R) )’ .
the probability of finding collapsed objects of mass greater than M can be obtained
by the integral

F(R) = /5 PO, R)dS = 2 /5 %(R)exp (_%ER)) (2.47)
5

e <ﬁT(R>> , (2.48)

where o(R) is the variance in matter fluctuations at a scale R, defined by

o(R) = /0 %exp (—k*R?) A*(k), (2.49)

and where A(k) is defined by equation (3.14). The normalisation factor of 2, in
equation (2.47) is required to account for underdense regions that can exist within
overdense regions, this effect is known as the cloud-in-cloud problem, which is not
predicted by the original theory. Nevertheless, with the inclusion of this normalisa-
tion factor, Numerical simulations have shown that this method to work extremely
well [17] and [18]. The value of J., is predicted by linear theory to be d. = 1.686, in
a flat dark matter-dominated universe.

In section 5.1.1 we will use this formalism to estimate the fraction of the variable
chaplygin gas that collapses under the influence of gravity to form structure.



Chapter 3

Cosmological Observations

In order to evaluate whether a cosmological model is viable, we require a means of
comparing its predictions with observational data. As described in section 1.2.3, the
CMB is a rich source of information about the state of perturbations in the universe
at the last scattering surface. Another observation which is just as important as the
CMB is the observed distribution of galaxies. Galaxies are organised in clusters of
galaxies which in turn form super-clusters that are separated by large voids. This
structure of the universe is often referred to as the cosmic web. Figure 3.1 shows
the distribution of galaxies from the Sloan Digital Sky Survey (SDSS) main galaxy
redshift sample. The SDSS is an imaging and redshift survey that uses a 2.5 meter
wide-angle optical telescope. The SDSS imaging results cover over 35% of the full
sky with photometric observations of around 500 million objects and spectra for
more than a million objects. The main galaxy sample of this survey is at redshift
z ~ 0.1 [44].

24
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Figure 3.1: Large scale structure in the northern equatorial slice of the SDSS main
galaxy redshift sample [42]. The slice is 2.5 degrees thick.

This observation is important since this structure must be linked to the initial
density fluctuations set up during inflation. Therefore a viable cosmology has to
account for, and have the primordial density fluctuations that have evolved to form
the large scale structure we observe on large scales today. In this chapter we describe
how the theory that describes the evolution of the primordial density fluctuations
may be compared with observational data. The subsequent description of the matter
and temperature fluctuations will only highlight the important results, assumptions
and definitions.

3.1 The Power Spectrum

The previous chapter described the evolution of the primordial density field. To
compare theory with observations, i.e., to make quantitative tests of cosmological
models, it is necessary to know how to characterise the CMB fluctuations and
large scale structure distribution. Cosmological theories are expected to predict
the statistical properties of the Universe and not, for example, the exact positions
of each overdensity in the dark matter distribution. Therefore, power spectra are
very important tools in cosmology, as they can give quantitative information about
the variations of a field on different scales. In this section we will study the CMB
(temperature fluctuations) and matter power (large scale structure) spectra. We
mainly follow the formalism in given in [1, 2].
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3.1.1 The Matter Power Spectrum

In the case of the large scale structure observations it is useful to take the Fourier
transform of the galaxy distribution map in Figure 3.1. The advantage of working in
Fourier space is that its easier to distinguish between large and small scales. Work-
ing in Fourier space, the most important statistic about the observed large scale
structure is the variance in the distribution, known as the matter power spectrum
P(k): Consider the Fourier transform of the density fluctuation d(r),

i(k) = /5(r)e kT By (3.1)
The power spectrum is then defined as
(53 )) = (2m)* P(k)6(k — k), (3.2)

where 6% is the Dirac delta function which constrainsk = k .

The construction of the matter power spectrum requires a solution to the evolution
of each Fourier mode §(k,n) and the initial power spectrum generated by inflation.
Performing the Fourier transform effectively means breaking up the function §(r)
into an infinite number of sine waves, each with comoving wavenumber k, and
comoving wavelength A = 27/k. In conformal time, the density perturbations can
be written as

d(k, 1) o< k*T' (k) (k, 1) D(1n) (3.3)

where ¢(k,n;) is the primordial gravitational potential at some initial time 7; and
T'(k) is known as the transfer function. The transfer function which describes the
evolution of the perturbations is a function of scale, while the growth factor D(n)
describes the scale independent independent growth at later times. Equation (3.3)
together with definition of the power spectrum, equation (3.2), yield

P(k) oc K'T*(k)(¢(k,n:)*) D*(n). (3.4)

We relate the potential during this late epoch to the primordial potential, this is
achieved through
Di(a)

9
ol ) = 150k, a) T(k) = (35)
where the transfer function is defined as
k ate
T(k) = Ok, Grare) (3.6)

(blarge—scale

This definition is of the transfer function is such that its value is unity on large
scales. This is achieved by neglecting the decline in wavelength perturbations as
they enter matter-radiation equality. By defining the ratio of the potential to its
value at late epochs as

¢(a) _ Difa)
¢(alate) B a ’ (37)
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Dy becomes the growth of matter perturbations at late times.
Poisson’s equation may be used to relate the matter perturbations and the potential:

_ AnGppa®d(k, a)

ok, a) = TP 39
and recalling how matter evolves with scale factor, p, = .00cr0 /a® and the
definition pero = %, leads to
2 k2p(k,a)a
ka)=-——"" )

which may be combined with equation (3.5), to give an expression that relates the
overdensity today to the primordial potential:

3 k2
5 Q H2

5(k,a) = (k. a;)T(k) Dy (a). (3.10)

This equation is independent of how the initial potential ¢(k,a;) was generated,
but in the context of inflation, ¢(k, a;) is drawn from a Gaussian distribution with

mean variance ) )
50 [k \" Q
P,=— | — 0% — 11
© 7 )3 (HO) H(Dl(azl)) ’ (3-11)

so the power spectrum at late times is

LA D (a) ?
P(k,a) =2m 6HH6L+3T (k) (m) , (3.12)

where 0% is the perturbation amplitude at horizon crossing. The power spectrum
has dimensions of (length)3, but to expresses it as a dimensionless quantity, one
may associate d*kP(k)/(2m) with the excess power in a bin of width k centred at
k. Integrating over all orientations of £k gives

dk

d*kP(k)/(2n)% = ?AQ(k’), (3.13)
where ,
A*(k) = i 21;(2@' (3.14)

Figure 3.2 shows the concordance model matter power spectrum. On large scales
the power increases as function of increasing k, then beyond some k.. the power
decreases as function of £ on small scales. To explain this turn-over on small scales,
consider that small scales enter the horizon well before matter-radiation equality,
i.e., during the radiation epoch, when the potential decays and therefore the transfer
function is much smaller than unity. Small scale modes are therefore suppressed
from the time they enter the horizon up until the epoch when matter dominates.
Thus the power spectrum is a decreasing function of k£ on small scales.
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Figure 3.2: Shows the matter power spectrum for the ACDM constructed from the
WMAP-9 cosmological parameters [45]. This plot was generated using CAMB [49].

3.1.2 The CMB Anisotropy Spectrum

The CMB is observed today as a isotropic radiation field that is very smooth on
large scales. However, correcting our relative motion to the CMB rest frame reveals
tiny anisotropies in the CMB temperature, of order AT/T ~ 10 5. To first order,
these fractional anisotropies only depend on the direction n of the observer. The
CMB may be taken to be a 2D-field on the surface of a sphere; one may expand
the CMB temperature distribution in spherical harmonics. Therefore the two-point
function is a function of multipole moment ¢, instead of the wavenumber k:

M;(m => i: o Yo (12), (3.15)

=2 m= {

where the ay,, are the multipole co-efficients and the Y}, are the spherical harmonics.
Each ¢ corresponds to an angular scale given by 6 ~ 180 /¢. Now assuming that
the temperature perturbations follow a Gaussian distribution and are statistically
isotropic, the power C;, on angular scales ¢, may be defined by

(o aim) = Cp Op¢ O (3.16)

The distribution is assumed to Gaussian to ensure that the power spectrum C,
contains all the information, making it the only quantity required to characterise
the temperature field. The Kronecker delta’s, d;/;, ensure that the power distribution
through the multipoles is a function of angular scale. The observed angular power
spectrum is given by

y4
1 2
= ——— m 9 -1
Ce 2£+1mZ e"” | (3.17)
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where C; is assumed to contain all the statistical information characterising the
temperature field, defined by (3.16).

Relating the CMB anisotropies to the density fluctuation, which can be predicted
by cosmological models, is the key to extracting the information that was encoded
within the CMB temperature field by the cosmic fluid at the last scattering surface.
Assume that the temperature field is given by

T(r,n,n) =T(mn)(1+ 6(r,n,n)), (3.18)

where © is characteristic of the photon perturbation distribution function. The
field © may be expanded in terms of spherical harmonics [2]:

O(r,n,n) Z Z Ao (T, 1) Yo (12). (3.19)

=1 m= 1

Then using the spherical harmonics othornomality property [2],

/ AV ()Y, () = GpprBy

, and inverting equation (3.19) by multiplying both sides by Y, (7) and integrating
to obtain

k. . .
o) = [ e [ a0, @)en.n) (3.20)
we may write the angular power spectrum, as defined by equation (3.16), as
d3k . A . A
Co= W dQY, (n)O(k, k- n) | dQY,(n)O (k k- n) (3.21)

where O(k, 72, 1) is the Fourier transform of O(r,7n,n). Now to obtain an expression
for Cy, one needs (©(k,n,n)© (k,n,n)). This expectation value depends on two
separate phenomena: (i) the initial amplitude and the phase of the perturbation is
chosen during inflation from a Gaussian distribution and (ii) the evolution of the
initial perturbation that turns into anisotropies, i.e., produces the n dependence. To
simplify, one may write the photon distribution as ¢ x (©/0), where the dark matter
overdensity does not depend on any directional vector. (©/§) does not depend on
the initial amplitude, so it can be removed from the averaging over the distribution

(e, (i) = (605 () () (TERD) -

Then, recall the definition of the matter power spectrum ((3.2)). The ratio 6/0
depends only on the magnitude of k and the dot product k - f: two modes with
the same k and k - i evolve identically regardless of their initial conditions or phase
(from now on, the dependence on 7 may be taken to be implicit). Thus,

Ok, )0 (k, 7)) = (27 P(k)5* (k — k) (9(12’(2)' fz)) (9((’;’ (iﬁﬁ)> (3.23)
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Then combining equation (3.21) with equation (3.23), the angular power spectrum
may be related to the density perturbations through

[ Pk ﬁ@(k,fc-ﬁ) . O (k,k-n)
cg_/(%)zfcmygm( 2 /dQng( e e

It can be further shown that the angular power spectrum (CMB anisotropies) is
related to the matter power spectrum (density fluctuations) through

2

¢ = %/O dk K2P(k) ’2‘&’;)

Generation of CMB Anisotropies

(3.25)

We now present a qualitative description of the mechanism that generates the CMB
anisotropies; then we move on to study features of the CMB spectrum.

CMB Anisotropies may be grouped into two categories; primary anisotropies are
the anisotropies generated at the last scattering surface and secondary anisotropies
are generated along the CMB photon’s path to us. The fluctuations ¢, already
present in the photon density at the surface of last scattering create anisotropies
in the CMB. CMB anisotropies are also generated when the CMB photons are
gravitationally redshifted or blueshifted by time evolving gravitational potentials.
Fluctuations in the matter density will give rise to ‘local’ potential wells (minima)
and hills (maxima). Photons lose energy in climbing out of the potential well and
are consequently redshifted, while they gain energy when they roll off a potential
hill, and are consequently blueshifted. Therefore depending on whether a CMB
photon was in potential well or a potential hill at the time of last scattering, its
temperature will either be subtly higher or lower. This mechanism of creating
temperature fluctuations by variations in the gravitational potential is known as
the Sachs-Wolfe effect [43]. The potential wells and hills present at decoupling
do not evolve with time as long the universe is matter dominated, and therefore
do not generate more anisotropies. However, at a redshift of about z = 0.6 the
energy density becomes dominated by dark energy. Then the potential wells and
hills are no longer static, these time evolving gravitational potentials generate more
temperature fluctuations in the CMB photons. This effect is known as the integrated
Sachs-Wolfe effect (ISW) [43]. Furthermore, bulk velocities of the baryon-photon
fluid relative to an observer causes a Doppler shift which also contributes to the
CMB anisotropies. To summarise:

AT 1 1 ™ dgh
) = 10 0l + 38, —neut [

3.26
lss d77 ( )

where the first term is due to gravitational redshifting by the gravitational poten-
tial wells and hills, the Sachs-Wolfe effect. The second term arises from the al-
ready existing photon density fluctuations, which are characterised by the Stephen-
Boltzmann law p, = 67" (where o is the Stephen Boltzmann constant). The third
term is due to the relative motion of the baryon-photon fluid with respect to us and
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the fourth term is due to the ISW effect.

Figure 3.3 shows the CMB anisotropy spectrum, computed using the concordance
model with the WMAP-7 best fit cosmological parameters:ACDM model; Hy =
71.0, Q. = 0.222 , O, = 0.0449.
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Figure 3.3: Shows ACDM CMB Anisotropy spectrum constructed from the WMAP-
9 cosmological parameters[45]. This plot was generated using CAMB [49].

During the period just before the CMB photons were liberated from the baryons
cosmic expansion had cooled the CMB photons to a temperature of about 1" ~
3000k. During this epoch, the electrons couple the baryons to the photons by Comp-
ton scattering and electromagnetic interactions, resulting a singe baryon-photon
fluid. Gravity attracts and compresses the fluid into the potential wells and hills.
Photon pressure counters the compression and sets up acoustic oscillations in the
fluid. These acoustic oscillations are frozen into the distribution of photons at re-
combination. During the radiation domination epoch, the pressure gradients due to
the gravitational potentials from matter can be neglected. However, once the gra-
dients have turned infall into acoustic oscillations and the potentials decay, leading
to lower amplitudes in the subsequent oscillations.

At the same time the universe continues to cool adiabatically to a point where
the photons and baryons decouple. These photons are the CMB photons we de-
tect today, which have free streamed from the point of decoupling. Figure 3.3
shows the CMB anisotropy spectrum, this spectrum is computed using the code for
anisotropies in the CMB (CAMB) [49].

In order to study the CMB anisotropy features, we consider a fiducial ACDM cos-
mology constructed from the Wilkinson Microwave Anisotropy Probe (WMAP)-
9yr best fit cosmological parameters [45]. The WMAP is a satellite which measures
CMB radiation across the full sky. WMAP measurements play a key role constrain-
ing cosmological models, and are well fitted by the current concordance model. In
the context of a flat universe, we wish to study the effects of varying some of the
ACDM cosmological parameters in turn.
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e Increasing €2 o increases the amplitudes of the odd peaks over the even peaks,
while decreasing (2, o decreases the amplitudes of the even peaks over the odd
ones. This is because baryons drag the baryon-photon fluid deeper into the
potential wells. This results in the compressional (odd) peaks being enhanced
by the baryons and the rarefaction (even) peaks being suppressed [28].

o Decreasing €2 boosts the amplitudes of all the peaks. This predominately
affects the higher ¢, which correspond to the matter-radiation equality epoch,
essentially because decreasing ()., reduces the matter-radiation ratio.

e Varying (25 o in a flat universe is at the cost of varying ). and visa-versa, so
this case is included in the second point.

In ACDM, wy(a) = —1. However, since the goal of this thesis is study the effects
of a time varying dark energy model we also wish to study the effect of a time
varying w on the CMB. Therefore we consider a simple dynamical dark energy
model described by the linear relation [53]

Wee(a) =a+ (1 —a)p (3.27)

where the constants « and 8 are chosen such that —1 < wg.(a) < 0. We then com-
pare the CMB spectra from this model to that obtained from ACDM for the same
Hy, o and €2.o. Figure 3.4 shows CMB spectra obtained from the dark energy
model defined by Equation (3.27) for {a,f} = {—1,0.9},{—1,0.5} (green,blue)
and the red curve is the ACDM spectrum. These plots are for the same cosmolog-
ical parameters except that they have different equation of state parameters. For
the model with 5 = 0.5, the equation of state parameter deviates from —1 at an
earlier time, i.e., the model tends towards ACDM later than the = 0.9 model.
We see that a time varying dark energy component shifts the position of the peaks
to smaller ¢, which enhances the amplitudes of the first peaks. This effect is more
evident in the model with § = 0.5. This shift in amplitude peaks is a result of a
smaller distance to the scattering surface caused by the time evolving w(a). This
is because the point of last scattering occurs at a lower redshift for dynamical DE
models since there is higher pg. at early times at the expense of p. (flat universe)
which delays matter-radiation equality and subsequently the point of decoupling.
To illustrate, consider a dark energy model which has w(a) > —1 at some early
time t;. According to equation (1.9) this model will have higher density at time ¢;
compared to a model with w = —1.
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Figure 3.4: Shows the CMB spectra for the for two dynamical dark energy models
described by Equation (3.27), with {«, 5} = {-1,0.9},{—1,0.5} (green,blue) and
the red curve is the ACDM model same set of parameters except that w(a) is varying
the dynamical DE models. This plot was generated using CAMB [49].

3.2 The Likelihood Function

The evaluation of cosmological models in light of observational data is key in both
theoretical and observational cosmology. Recent analysis is based on the likelihood
function, which is a function of the parameters of a statistical model. The underly-
ing assumption is, the likelihood of a set of parameter values given some observed
outcomes is equal to the probability of those observed outcomes given those pa-
rameter values. If the distribution of the measurements that constitute the data D
are Gaussian around their true values, then under the hypothesis £, the likelihood

function is given by
2
L(6) o exp (XT(O) , (3.28)

where

X(§) = (x(§) - D) — (D —x(¢))", (3.29)
where x is a vector of modelled data constructed from the parameter set £ and C
is the covariance matrix of the data.



Chapter 4

Chaplygin (Gas Cosmology

The Chaplygin gas falls into a class of models called Quartessence, which attempt to
find a single cosmic fluid that could give rise to both dark matter and dark energy.
In this section we discuss the idea of unifying dark matter and energy. We start
by introducing ideas behind Quartessence, we then look at possible models that
attempt this unification. Finally we study the variable Chaplygin gas and describe
the equations that govern its time evolution.

4.1 Quartessence: DM /DE unification

The lack of direct detection of the dark matter particles opens the door to the possi-
bility that both dark matter and dark energy are manifestations of the same cosmic
fluid. The idea is that some perturbations in the fluid evolve into a non-linear
regime to form gravitational condensates that behave as CDM in the concordance
model, while the uncondensed fluid plays the role of dark energy at later times.
Quartessence also provides a natural solution to the coincidence problem. The most
promising models of quartessence are the so-called k-essence [36, 37] models, which
are scalar field theories described by a generally covariant and Lorentz invariant
action with non-canonical kinetic terms. Concerns about k-essence perturbations
violating causality were raised [35] upon discovery that k-essence requires superlu-
minal sound speed propagation in order to solve the coincidence problem. However
it was later demonstrated that superluminal sound speed propagation in k-essence
models does not necessarily lead to causality violation [33, 38].
Quartessence models still however face the challenge of a non-vanishing sound speed.
A fluid with a non-zero sound speed has a characteristic scale below which the pres-
sure effectively opposes gravity. The implication is that perturbations of scales
below the sonic horizon will be prevented from growing. Essentially this follows
from the adiabatic speed of sound [12]
2= [@
dp
where p is the pressure and p the energy density. The associated comoving acoustic
horizon is

, (4.1)

:| constant entropy

c
dy = [ dt=, 4.2
/ a ( )
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where a is the scale factor. Perturbations whose comoving size R is larger than d,
grow as . Once the perturbations enter the sonic horizon, i.e., R < d,, they undergo
damped oscillations and eventually die out [19]. This effect can be studied for small
(0 < 1) perturbations using the linear theory described in section 2.1.2. However,
we need to study the evolution of large perturbations in order to understand the
growth of large scale structure in quartessence models. Therefore since linear theory
is only relevant when § < 1, another approach is needed to study the growth of
perturbations 0 > 1 into the non-linear regime. The approach described in section
2.1.3 for a perfectly symmetric spherical perturbation is adequate to study the
growth perturbations well into the non-linear regime. However, in this model,
the collapse of a perturbation is indicated by d(a) — oo at a finite a, while the
perturbations that are prevented from growing are damped, as in the linear theory.
Nevertheless, if some of the perturbations overcome the sound speed and grow into
the non-linear regime the quartessence fluid grows into a two phased mixture; the
condensate and uncondensed gas. These two entities will evolve differently with
time, the gravitationally bound condensate will evolve like matter, while evolution
of the uncondensed fluid will be governed by its equation of state.

4.2 The Chaplygin Gas

The simplest Chaplygin gas model is characterised by a perfect fluid with equation
of state [19]

b= —; (4.3)

where p is the pressure, p is the energy density and A is a positive constant. This
equation of state is derived from the string theory Tachyon Lagrangian [26, 27]

L= +/Al-X), (4.4)

where
X = gwjgp,u%p,u ) (45)
and the scalar potential ¢ is related to the 4-velocity u,, by
= AL (4.6)

The Chaplygin gas has been studied extensively because of its unique features.
Using energy conservation, the evolution of the energy density of the Chaplygin
gas, as a function of the scale factor a, is

pla) =1/ A+ g (4.7)

where B is a positive integration constant. It is evident from (4.7) that at early
times (a << 1), p(a) o< v B/a®, meaning that the Chaplygin gas behaves like CDM.
At later times a ~ 1, p(a) < v/ A+ B =constant, like in the case of the cosmolog-
ical constant. This gas smoothly interpolates between DM and DE domination
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phases. The Chaplygin gas behaves like dark matter at early times, during these
early times some of the Chaplygin gas grows into the deeply non-linear regime to
form a gravitationally bound condensate; we shall refer to the fraction of the VCG
that collapses to form structure as the collapsed fraction. The evolution of the un-
collapsed Chaplygin gas is governed by equation (4.3). The energy density of this
uncollapsed Chaplygin gas approaches a constant at later times and brings about
accelerated expansion.

The collapsed fraction depends on the Chaplygin gas sound speed. It was shown in
[19] that, in order for the Chaplygin gas to fit the CMB data, about 93% percent
of the Chaplygin gas has to collapse, but they also showed that less than 1% of
the Chaplygin gas collapses. Therefore the Chaplygin gas has been ruled out as a
viable cosmology due to retarded structure formation. To illustrate: the acoustic
horizon for the Chaplygin gas is [12]

a7/?

ds ~ —. 4.8
s~ (43)
During the epoch of structure formation, z ~ 10 or a ~ 0.1, the acoustic horizon
is of order 10 Mpc, which is much bigger than typical perturbation size at these
early times. Therefore, since perturbations of scale less than the acoustic horizon
are damped, the formation of structure is prevented by the large acoustic horizon.
Furthermore, even models where the Chaplygin gas is mixed with CDM [22, 23, 24|
and only plays the role of DE have been ruled out in light of SNIa data [24] and

lensing statics [22, 23].

4.2.1 The Generalised Chaplygin Gas

A more ‘general’ form of the Chaplygin gas, the so-called generalised Chaplygin gas
(GCG) [39], has been proposed. The generalised Chaplygin gas is defined by the
equation of state

p e (4.9)
with 1 > « > 0 for stability and causality [32]. The additional parameter a,
affords greater flexibility, and can be fine-tuned to enhance structure formation.
For example, for small «, it was shown in [12] that the acoustic horizon is given by

2
ds ~ \/Sa . (4.10)

0

Therefore, in the context of a fine-tuned value of «, the sound horizon can be low
enough to allow for sufficient collapse. In fact, it was shown that when o < 10 °
the GCG is consistent with CMB and SNIa data [48].

In references [21, 48] it is shown that the case where the GCG is mixed with CDM,
and only plays the role of DE, is only consistent with SNIa and CMB data in the
limit o« — 0. In this limit however, the GCG behaves like A for all a. Furthermore,
the analysis of [40, 41, 20] demonstrated that the SNIa data favours the case o > 1,
which was shown [32] to violate causality.
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4.2.2 The Variable Chaplygin Gas

Another version of the Chaplygin gas model which has been proposed to address
the structure formation difficulties in the standard Chaplygin gas is the Variable
Chaplygin Gas (VCG), which replaces the constant A in the SCG by a potential
V(¢(a)), where the scalar field ¢, is dependent on the scale factor. The pressure is
related to the density as follows:

p=——"—" (4.11)

where n > 0, is a free parameter. This version of the Chaplygin gas maintains
the properties of the SCG, that is, it behaves like dark matter at early times, then
smoothly evolves to behave like dark energy later on. The VCG has an acoustic

horizon
o (7/2+3n)

ds ~ = —. (4.12)
The extra parameter n allows for much smaller acoustic horizon, enhancing struc-
ture formation. At redshift z = 10, ds ~kpc, which is low enough to allow for
structure formation. In fact, compared to SCG, the VCG enhances structure for-
mation by two orders of magnitude [12]. Furthermore, it has been shown [12] that
about 73% of the VCG can collapse into a gravitationally bound structure. In refer-
ence [13] it has also been shown that the VCG is compatible with SNIa observations.
Both the VCG and the GCG attempt to address the structure formation problem
of the Chaplygin gas, however unlike in the case of the SCG, the Lagrangian asso-
ciated with the GCG has no equivalent brane interpretation [12].
The VCG is derived from the more general Tachyon Lagrangian, of which the Born-
Infeld Lagrangian (Equation (4.4)) is a special case. Consider the embedding of a
(3 + 1)-dimensional brane in a (4 4+ 1)-dimensional bulk described by coordinates
oM = (z#, 2%), where the index p runs over 0, 1, 2, 3. The Tachyon Lagrangian is
defined as

L=-V(pWV1-X, (4.13)

where X is defined by equation (4.5) and ¢(z#) is a scalar field describing the
embedding of the brane into the bulk. The pressure and energy density are defined
as [12]

p = [’((an)7 (414)
p = 2XLx(p,X)— L(p, X). (4.15)

For hydrostatic equilibrium the adiabatic speed of sound ¢? > 0, while causality
requires ¢2 < 1. The scalar field ¢ and the function X are given by [12]

P’ = X(p,p), (4.16)

X (g, p) = exp (2/ Czdp) , (4.17)

p+p

and
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while the evolution of the energy density p, is given by the continuity equation

p+3H(p+p) =0. (4.18)
It has been shown [12] that the adiabatic speed of sound
0 0
&2 = {—p} - {—p] (4.19)
] 4/ opl,
coincides with the effective speed of sound
@ =Px (4.20)
Px
that is,
2 = &
{@} = X (4.21)
dp 0 PX

Violating the strong energy condition with positive p requires p < 0, while stability
demands the adiabatic sound speed to be positive. These criteria are met by [12]

A
p= 22 (1.22)
pCM
where
Ap) >0, (4.23)
and since the adiabatic speed of sound coincides with the effective speed of sound,
we have P A
2o _odl) (4.24)
ap poz+1
which requires o > 0. Now when the null energy condition,
p+p=0, (4.25)

is saturated, i.e., when A(p) = p**! it is evident from (4.24) that only for o = 1
does ¢ = 1 when the null energy condition is saturated. Therefore, the equation
of state arising from the Born-Infeld Lagrangian (4.13), which is consistent with
causality and stability, is

p=— : (4.26)

where V()2 = A(p) is chosen to ensure condition (4.23).
From (4.17) and (4.24) we have

X(p,p) = exp [2A(90) / L}

PP+ Alp)p
= exp|[—4ln(p) + 2ln(p — A(p))]
_ oAl
02
_ A (4.27)
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The equation of state parameter, w, for the VCG is then given by

2
wel o V@ e (4.28)
P

p? ’

V2 2n
p=— ";0 (4.29)

4.3 Variable Chaplygin Gas Evolution

Now that we have the equation of state, we need to model the growth of inho-
mogeneities in the VCG. Assuming that the VCG inhomogeneities are spherically
symmetric, we may use the spherical model described in section 2.1.3,

db
— — NbH = 4.
7 0 (4.30)
dp
a +3NH((p+p) = 0 (4.31)
dH 4G 2 éop
— + N |H*+ — 3p)— ———| = 0. 4.32

where b is the local expansion scale, N is the local lapse function and § = d(a) is
the density contrast given by

8(a) = pla) = pla) (4.33)

This set of coupled differential equations may be supplemented by a similar set of
equations for the background evolution:

ds -
d—f+3H(ﬁ+p) =0, (4.34)

di ., 4nG _

E+H2+%H(ﬁ+3ﬁ) = 0, (4.35)

where p = p(p, ¢). In k-essence, the field ¢ in comoving co-ordinates is a function
of time only[36] which leads to,

G a0

In the asymptotic region, r — 0o, ¢ is given by

(Cfi—f) — X(p,5) . (137)

Equating (4.36) with (4.37) leads to an expression for N in terms of X

N =+/X(p,p)/X(p,p) . (4.38)
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The set of coupled differential equations (4.30)-(4.37) describes both the evolution
of the spherical inhomogeneity and the background. To express the evolution of the
background in terms of the scale factor a we use the definition of the scale factor

1da
H=-—— 4.39
implying
d dda d (4.40)

dt " dadt  da
The next chapter describes how these evolutions equations (Equations (4.30)- (4.37))
may be solved, for some initial conditions, to determine the evolution of the back-
ground and the inhomogeneous evolution in VCG cosmology.



Chapter 5

Methodology

The aim of this work is to determine whether the VCG is a viable alternate cos-
mology to the concordance model. In order to do so, we need to assess whether the
VCG provides an adequate fit to current cosmological data. In this dissertation, we
assume that universe evolves in a standard way until the point of decoupling, when
the universe becomes transparent, i.e., photons can free stream. This point occurs
at a redshift of z4. ~ 1088.2 [45]. During this early epoch the VCG behaves like
dark matter with its equation of state parameter in the limit w(a) — 0; its effective
pressure approaches zero.

To get an initial estimate of the VCG cosmological parameters at decoupling,
we consider a ACDM cosmology with the WMAP-9yr best fit parameters [45]:
Hy = 70.0 £22kms ! Mpc ', Q.0 = 0.233 £+ 0.023 ,Q0 = 0.0463 £ 0.0024,
Qo = 0.279 £ 0.025, Q4 = 0.721 £ 0.025. Recalling the evolution of matter with
scale factor, p oc @ 3, the matter density parameter at decoupling may be estimated
as

O
Qm(adec) = CZS 0 (51)
dec
~ 1.

The second equality follows, since the universe is matter-dominated at decoupling.
Therefore at decoupling,

ﬁcr(ade(:):% = )Ocr,()% (5.2)
Alowe) = 4| poloue)
GG Qo
= \/TIOCT,O aze;

— H, fg—m (5.3)

Adec = ! ! (5.4)

1+ 200 1+ 1088.2°
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Assuming ¢(ag.) = 0, equations (5.2)-(5.3) may be used as initial conditions for
the background evolution. Then, assuming a tiny initial perturbation d;,, the initial
conditions for the inhomogeneity evolution are:

por(adec) = ﬁcr(adec) [1 + 5171] (55)
I 5171

H(adec) == H(adec) <1 + ?> (56)

bdec =  QAdec- (57)

These initial conditions for the inhomogeneity complete the set of initial conditions
to evolve the inhomogeneous VCG model described by equations (4.30)-(4.37). As
can be seen from equations (5.2)-(5.7), the parameter p..(ag4.) dictates the VCG
model initial conditions; from this point, we refer to pe(Ggec) as paec- In fact we will
see in the next chapter that, for a given n, the VCG model evolution is determined
by the choice of the parameters pg.. and V,,. The n and the V,, in question are the
VCG parameters in equation (4.29).

The set of coupled differential equations (4.30)-(4.37) may be solved numerically to
obtain the evolution of the VCG universe. The first step in this process requires
the solution to equations (4.30)-(4.37). These equations form a set of coupled dif-
ferential equations which we solve numerically in FORTRAN 90 using the Runge-
Kutta-Cashkarp (rkbck) method, using the initial conditions described above.This
numerical solution gives the evolution of p(a), p(a) , H(a), H(a), b(a) and p(a).
Ideally one would use these solutions to obtain the density fluctuations in the VCG
as a function of redshift and compute the corresponding transfer function describing
the growth of these perturbations as a function of scale. Assuming an initial spec-
trum of primordial perturbations, one would then construct the power spectrum of
the VCG model and compare it to the observational data. However, the calculation
of the transfer function is beyond the scope of this dissertation. The reason for this
is that equations (4.30)-(4.32) are for a completely spherically symmetric model,
and as stated previously, collapse in this model is indicated by a diverging density
contrast at finite a. Nevertheless, to reiterate a point made in the previous section;
the fraction of the VCG that evolves into the deeply non-linear regime remains
as a gravitationally bound condensate, rendering its effective pressure negligible.
This collapsed fraction of the VCG behaves as CDM throughout the evolution of
the universe. Therefore, assuming that this CDM like condensate dominates VCG
model critical density at early times, we may approximate its transfer function with
that of CDM. This is a reasonable approximation, recalling that in comparison to
the SCG condensate formation is enhanced by two orders of magnitude. In fact
it has been shown; [12], that this condensate fraction may be as high as 70% and
we will show later that, with the right choice of V,, and pg4e., the VCG condensate
may be as high as 80%. In fact, a damped large scale perturbation will behave
as CDM right up until it starts to change to a more dark energy like behaviour,
which depending on the size and sign of the perturbation can be quite late, a ~ 0.3.
Thus the approximation to use a CDM transfer function to describe the growth
of perturbations in the VCG condensate is reasonable until relatively late times.
Furthermore we do not expect the CDM transfer function to have a huge impact
on the observed CMB spectrum. Since the goal of this dissertation is to study the
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effect of the VCG on the CMB spectrum this approximation is reasonable. It will
however affect the ISW effect, since this effect affects the CMB spectrum at late
times. This will be investigated in future work.

5.1 VCG Cosmic Budget

In this section we discuss the components making our VCG cosmology. Firstly
we use the Press-Schechter formalism (Section 2.1.4) to calculate the fraction of
the VCG that evolves into the deeply non-linear regime to form a gravitationally
bound condensate. At this point, our model consists of two constituents: the grav-
itationally bound condensate and VCG that does not collapse and plays the role
of dark energy at late times. Then we present the VCG cosmological parameters.
Finally we provide a description of the numerical calculations used to study the evo-
lution of the background and inhomogeneity (Equations (4.30)-(4.37)). We evolve
these components forward in time and compute their relative energy densities to-
day. These values will be part of the set of cosmological parameters which describe
our cosmological model and will be used to compute the CMB spectrum.

5.1.1 The Condensate

We need to estimate the fraction of the VCG that collapses to form the gravitation-
ally bound condensate. There exits an initial density contrast §(a;,, R) = d.(R) on
a given scale, R, below which density perturbations are damped and above which
the perturbations grow into the non-linear regime to form a gravitationally bound
condensate [19]. This threshold initial density may be found by tracking the evo-
lution of the the density contrast d(a), using equations (4.34)- (4.37). Figure 5.1
illustrates the evolution of two initial perturbations from decoupling for R = 10kpc,
n = 2. As stated previously a diverging d(a) at a finite a signals collapse while a
damply oscillating §(a) indicates a perturbation that does not collapse. The green
curve represents collapsing perturbation while the red curve represents a damped
perturbation.

In contrast to linear theory where all initial perturbations will eventually grow into
the non-linear regime to form a gravitationally bound condensate, in the case of
the Chaplygin gas, perturbations with d(R, a;,,) > 6.(R) will grow into a non-linear
gravitational condensate that remains a condensate even at low redshift. To lo-
cate this threshold d.(R), which at given scale separates these two regimes we use
a bisection method— For each scale, we first define minimum and maximum val-
ues, 0T §MaT starting from an arbitrary d(a;,) we track its evolution §(a). If
d(a) diverges we assign this initial value to be %% but if §(a) is damped (see
Figure 5.1) then we assign it to be 67" and redo the calculation starting with
Oin = (Oa® — §mim) /2. This process is repeated until 7% are 07" ‘indistinguish-
able’. Figure 5.2 shows how this threshold initial density contrast varies with scale.
For each n, the region below each curve (thin) represents the regime where the
fluctuations are damped, while the region above the curves represent the region
where the fluctuations grow into the deeply non-linear regime, i.e., § — oo. o(R)
(thick) is the variance in density fluctuations on a given scale R, calculated from
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Figure 5.1: Evolution of dg(a) for a spherical inhomogeneity from age. = 1/1089.2
for n = 2, R = 10 kpc. 0% (agec) =0.004 (red) falls in the regime suffering from
retarded structure formation, and undergoes damped oscillations. 5}?(%%) =0.006
(green) falls into the regime where d(a) — oo signalling the formation of bound
structure.

the concordance model. Figure 5.2 is generated by finding the threshold §.(R) for
various R (1073 < R < 10%).

1
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Figure 5.2: Shows how the threshold J.(R) separates the condensation regime from
the damped oscillation regime for n = 0,1, 2; the blue, green and red curves. The
region below each curve (thin) represents the regime where the fluctuations are
damped, while the region above the curves represent the region where the fluctu-
ations grow into the deeply non-linear regime, i.e., § — oo. o(R) (thick) is the
variance in density fluctuations on a given scale R, calculated from the concordance
model

The next step is to determine the fraction of the VCG that collapses into a
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gravitationally bound condensate, i.e, that falls into the regime above 6.(R). To
calculate this fraction we shall use the Press-Schechter procedure (Section 2.1.4).
Assuming J.(R) is given by a Gaussian random field with dispersion o(R), the
collapse fraction at a scale R is then given by equation (2.47) [12], where 0.(R) is
the threshold that divides the two above mentioned regimes at a comoving scale R
and o(R) is the dispersion calculated using the Gaussian window function of the
variance concordance model, given by

dk
o(R) = / —oxD (k2 R?) A% (k, an), (5.8)
0
where
L 4 ) k 1 ns
A%(k.a)=711x10 °( — | T?*k . 5.9
(k,a) x (aH) ()<7.5a0H0) (5.9)
1
n=0 ——
n=1 ——
n=2 ——
01 F
@U 0.01
0.001
0.0001 1 |
0.001 0.01 0.1 1 10 100

R [Mpc]
Figure 5.3: Shows the fraction of the collapsed objects using o(R) and d.(R) from
Figure 5.2. The highest point of the curve F'(R), which occurs on small scales, is
taken to be the collapse fraction on all scales.

As stated previously, we will approximate the VCG transfer function with that
of CDM. Assuming such a transfer function, [34], the parameters Hy,ay may be
fixed by fitting equation (5.9) to the SDSS data [44] and we use the WMAP-9yr
data values for the spectral index ny = 1.0 and €2, o = 0.0499. The fraction of the
perturbations that forms a gravitationally bound condensate may then be obtained
through equation (2.47) (see Figure 5.3); The integration in equation (5.8) required
to find F'(R) is done numerically using the trapezoidal rule, F'(R) (Equation (2.47))
is then found using the FORTRAN 90 function erfe, the value of f,. is simply found
by locating the peak of the F/(R) function, which calculates the complimentary error
function. The peak of this curve, which occurs on small scales, is taken to be the
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collapse fraction on all scales. That is, we are approximating the fraction of VCG
that collapses on larger scales to be that which we calculated on smaller scales. This
is a reasonable approximation considering that the larger scale perturbations will
generally also contain smaller scale perturbations. Even though a pure Gaussian
large scale perturbation might have a high ¢, it will in general contain smaller
scale perturbations within it which will collapse sooner - forming CDM like clumps
within the larger scale perturbation. These CDM like clumps will assist the larger
scale perturbations to collapse for a smaller . than the pure Gaussian perturbations
would suggest. This is because the collapsed smaller scale perturbations will behave
effectively like CDM, by adding to the gravity but not the pressure of the rest of
the VCG in the large scale perturbation.

Our results show that about 74%, 47% and 1% of the VCG forms gravitationally
bound condensates for n = 0, 1, 2 respectively, these results are in agreement with
[12]. Now having the fraction of the VCG that will collapse to form and remain as
condensate, we now proceed to describe its evolution.

Taking f. to be the collapsed fraction, the density p.,, of VCG component that
grows into the deeply non-linear regime, forming gravitationally bound condensate
is

pcn(a> = fe X p(a), (5-10)

where p(a) is the energy density of the VCG, which we obtain from solving the
system of coupled differential equations (4.34)- (4.37). As stated previously, we fix
this fraction of the VCG, p., as

pon = 1o () plae) (5.11)

where p(agec) is the density of the VCG at decoupling.

5.1.2 The effective VCG Component

The rest of the VCG behaves as matter at early times but then tends to behave
more and more like dark energy at later times. This behaviour may be seen by
looking at how the VCG equation of state parameter w evolves with time. Figure
5.4 shows how the VCG transitions from behaving like matter (w = 0) to behaving
like dark energy (w = —1) as a function of scale factor. This plot is generated using
equations (4.28) and (4.29), where ¢ and p are found using the numerical solution
described earlier in this chapter..
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Figure 5.4: Shows the evolution of the VCG equation of state parameter w as a
function of scale factor for n = 2. w(a) transitions from behaving like matter
(w = 0) to behaving like dark energy (w = —1).

The fraction of the VCG that collapses is f.. Therefore the energy density of
the fraction of the VCG that has pressure given by equation (4.29) is

pueg(@) = (1 = fe)p(a). (5.12)

The equation of state parameter for this component is given by equation (4.28).

5.1.3 A VCG Cosmological Model

In this section we formulate our VCG cosmological model. The constituents of
this model were described in the previous section. So far we have not discussed
the baryon content in the context of the VCG model. However we have seen the
crucial role they play in the generation of anisotropies in the CMB (Section 3.1.2).
Therefore, we will add baryons to the energy density. The computation of the CMB
spectrum is done using the Code for Anisotropies in the Microwave Background
(CAMB) [49]. To compute the CMB spectrum using CAMB, we need values of the
following parameters: the value of the Hubble parameter today, Hy; the contribution
(today) to the critical density of the component that plays the role of CDM, and
the baryon contribution. The baryon contribution to the critical density today is
fixed using the current BBN estimate for QoA i.e.,

Qtor = Qb,O + an,O + chg,O =L (513)

To determine the Hubble parameter in our cosmology, recall that in a spatially flat
universe

H(a) = ?pw(a). (5.14)
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In our cosmology

per(a) = pveg(a) + pen(a) + po(a). (5.15)

Therefore
H@ = (@) + puala) + ol (5.10
Hy = \/? (Pveg.0 + Peno + Pbo)- (5.17)

The VCG cosmic budget at a = 1 is made up of the following constituents:

1. The Baryons:
The baryon contribution is fixed using the current BBN estimate [52]

Qp0h* = 0.022 4 0.0022 ; (5.18)

2. The condensate:
The energy density today of the component which collapses gravitationally is

given by
3
an,O = fcM ; (519)
3. The effective VCG:
Qyogo = 2200 (5.20)
pCT

This component has equation of state parameter,

pln) VoY)
pues(@)  PRy@)

w(a) , (5.21)

where ¢ and p,., may be obtained from equations (4.37) and (4.34) and an
initial estimate of V,, is shown in the Appendix. This component has w =
—1 at a = 1 (see Figure 5.4) and can therefore account for the accelerated
expansion measured using SNIa observations [13].



Chapter 6

Discussion and Results

In this chapter we study the effect of the VCG on the CMB anisotropy spectrum.
In our VCG model, the VCG that collapses plays the role of CDM in structure
formation, while the rest of the VCG gas brings about accelerated expansion at late
times. We shall refer to this cosmology as the VCG-CDM model. The parameters
of this model were presented in section 5.1.3. The evolution of the VCG that does
not collapse is determined by the equation of state (5.21); from now on we denote
the effective VCG equation of state parameter by w,(a). This component behaves
like CDM at early times and transitions to a more dark energy like behaviour at late
times. The evolution of the collapsed VCG follows that of CDM with a vanishing
effective pressure.

Assuming a CDM transfer function provides a sufficient description of the VCG
density perturbations, we proceed to study the validity the VCG-CDM cosmology
in light of the WMAP-9yr CMB data [46].

6.1 The effects of V,, and p,.. on the collapsed frac-
tion and w.(a)

Our VCG-CDM model is characterised by two free parameters, namely the energy
density of the VCG at decoupling, pge., and the parameter, V,,, that appears in the
VCG equation of state (Equation 5.21). In this section we investigate the effect
these parameters have on the collapsed fraction, f. and the effective VCG equation
of state parameter w,(a).

The Collapsed Fraction

The collapsed fraction f., is the fraction of the VCG that collapses into a gravi-
tationally bound condensate, which plays the role of dark matter in structure for-
mation. In this section we investigate the dependence of this collapse fraction on
the parameters V,, and pge.. First, to gauge the effect of V,, on f. we vary V,, while
keeping pge. fixed. Figure 6.1a illustrates this dependence of f. on V,,. The plots
show that models with lower V,, have higher collapsed fractions, while models with
higher V,, have lower collapsed fractions. This is because the amount of fluid that
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collapses in a given time period depends on the pressure of the fluid. Essentially,
the VCG pressure opposes gravity, retarding collapse. This VCG pressure goes as
p < V2 therefore increasing V,, increases the retarding influence of the pressure on
gravitational collapse, leading to a lower f..

Similarly, we may gauge the effect of pge. on f. by varying pge. at fixed V,. Figure
6.1b shows this dependence of f. on pg... The plots show that models with higher
Pdec have higher collapse fractions. This is because a higher pg4.. increases the criti-
cal density which leads to a higher Hy. Now since the VCG sound horizon is given
by [12]

q(7/2+3n)

dS ~ TO, (61)

a higher Hj results in a lower sound horizon. Now, recalling that J.(R) is the
minimum density contrast needed to overcome the sound sound horizon, a higher
paec Will lead to a lower §.(R) and consequently to a larger collapsed fraction.
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(a) Shows how V;, affects f., the model
with the highest V,, has the lowest f.
(red) and the model with the lowest V,,
has the highest f. (blue).

(b) Shows how pge. affects f., the model
with highest pge. has the highest f.
(blue) and the model with the lowest
Pdec has the lowest fe.

The Effective VCG equation of state parameter

We now proceed to investigate the effect of V,, and pge. on the effective VCG equation
of state parameter. We start with V,, since w(a) has an explicit dependence on
this parameter (Equation (5.21)). As we have already seen, the VCG equation
of state parameter transitions from we(a) = 0 — w.(a) = —1. We now wish to
study how varying V,, affects this transition. Now, looking at the effective VCG
equation of state (Equation (4.29)), we see that in the limit V;, — 0, we(a) — 0
and for large V,, we(a) —= —1 (Causality requires w™" = —1, see Equation
(4.28)). Therefore, low V,, values will favour the limit w,.(a) — 0 which will delay
the w.(a) = 0 — we(a) = —1 transition to later times. Similarly, large V,, values

will favour the limit w,.(a) — —1 and therefore shift the transition to earlier times.
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(c) Shows how V;, affects we(a), the onset of the transition we(a) =0 —
we(a) = —1 is earlier for highest V;, (red) and the onset is later for the
lowest V;, (blue)
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(d) Shows how pge. affects we(a), the onset of the transition we(a) =
0 — we(a) = —1 is later for the highest pge. (blue) and the onset earlier
for the lowest pgec (red)

This effect is illustrated in Figure 6.1c. The plot shows that in models with lower
V., the onset of the transition we(a) = 0 — we(a) = —1 is shifted to later times.
Similarly, we now fix V,, and vary pge. to study how pge. affects w,(a). Consider the
VCG equation of state,

V(e (6.2)

Assuming V' (p) remains fixed, increasing p will result in a smaller p. Therefore,
increasing p will favour the limit w = p/p — 0. Increasing pge., will therefore shift
the onset of the transition w,(a) = 0 — w,(a) = —1 to later times, since increasing
Paec Will result in larger p,.,. This effect is illustrated in Figure 6.1d. The plot
shows that in models with a higher pge., the transition w.(a) =0 — we(a) = —1 is
onset at later times, and the onset is earlier for models with lower pge..
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6.2 The Effect of the VCG on the CMB Spectrum

The software that we use to compute the CMB anisotropy spectra, CAMB [49],
takes as input parameters the value of the Hubble parameter today, Hy, the contri-
bution to the energy density from baryons, €2, o, the component that plays the role
of dark matter, {24, 0, and the equation of state parameter wg.(a) of the component
that plays the role of dark energy; wg.(a) may be constant or time varying. In our
case Qim0 = Qeno, and in the case of ACDM Qg 0 = Qe p.

In section 3.1.2, considering a fiducial ACDM model, we saw how the components
of universe affect the CMB spectrum. With that analysis in mind, we wish to gauge
how f,. and w,(a) affect the parameters we will input into CAMB. These parameters
are, Qb,O; an,g and Ho.

First lets consider f.. Looking at equations (5.10) and (5.12), we see that increasing
fe leads to a higher p., to p,., ratio today, which results in a smaller Hj since like
CDM the VCG condensate opposes cosmic expansion. Now since we have fixed
Y oh? = 0.022, Q¢ will also vary as Hy varies. To gauge the effect of w.(a) on
these parameters, imagine that w.(a) approaches —1 at earlier times, then

Pocg X €XP {—B/Q a;—a[l + we(a )]}

will give a larger pyey to pen ratio, compared to models where w.(a) — —1 at later
times, which will result in higher H, and consequently affect €2 .

Knowing how the VCG parameters affect the CMB spectrum, we now attempt
to fit the VCG-CDM model to the WMAP-9 CMB data [46]. We use a chi-squared
(x?) test to gauge the likelihood our model is the correct description of our universe.
The 2 test is a special case of likelihood test described in section 3.2, and is defined

by
N

(&~ &)’
=D T (6.3)
where &, are the observed frequencies, §; are the predicted frequencies, o; is the
variance in the observed frequencies and N is the number of observations. To
quantify the accuracy of a model, it useful to define the x? per degrees of freedom
parameter,

2
2 X
=2 4

where D, is the degrees of freedom given by D = N —m —1, where N is the number
of data points fitted and m is the number of free parameters of the model. In our
case, we fit to 1199 WMAP-9 data points and our model has two free parameters,
therefore D = 1199 — 2 — 1 = 1196. A good fit model is then considered to be one
with x% ~ 1.

We now proceed to compare our VCG-CDM to the WMAP data. Table 6.1 shows
the parameters used to construct different VCG-CDM models, in the last column
are the %, for the different models. Table 6.1a represents models in which V,, is
kept constant and pg.. is allowed to vary and Table 6.1b represents models in which
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Pdec 18 kept constant while V,, is allowed to vary. From these tables we see that
models with a higher f, have smaller x% values compared to models with a lower

fe-

Vn ﬁdec fc Qb Oh2 an,0h2 Qb 0 an,O chg,[) HO X2D

) )

1.0000 0.7500 0.7126 0.0220 0.0682 0.0473 0.1469 0.8079 68.1652 || 14.16
1.0000 0.9000 0.7308 0.0220 0.0855 0.0456 0.1771 0.7793 69.4659 | 5.43
1.0000 1.0000 0.7405 0.0220 0.0948 0.0447 0.1926 0.7646 70.1576 | 5.64
1.0000 1.2000 0.7566 0.0220 0.1160 0.0428 0.2256 0.7333 71.7042 | 4.07
1.0000 1.3000 0.7640 0.0220 0.1275 0.0418 0.2424 0.7174 72.5295 || 2.65

Vi X Pdec X fe Qb,Ohf2 an,0h2 Qb,O an,O chg,O Hy XQD
0.5000 1.0000 0.7583 0.0220 0.0967 0.0531 0.2337 0.7159 64.3370 || 5.10
0.7500 1.0000 0.7482 0.0220 0.0949 0.0482 0.2078 0.7462 67.5819 || 5.53
0.9000 1.0000 0.7434 0.0220 0.0966 0.0458 0.2010 0.7552 69.3285 || 5.24
1.0000 1.0000 0.7358 0.0220 0.0946 0.0426 0.1831 0.7760 71.8615 || 5.64
1.2500 1.0000 0.7346 0.0220 0.0938 0.0422 0.1799 0.7796 72.1983 || 5.96

(b)

Table 6.1: Table showing the dependence of the VCG cosmology on the parameters
Vis pdec- In table (a) V,, is fixed and pge. varies, while table (b) has fixed pge. and
varying V;,. The WMAP-9 ACDM values are Hy = 70.0, Q. = 0.233, o = 0.0463
Q= 0.721

Figures 6.1e and 6.1f shows the CMB spectra computed from some of the models
in Table 6.1a and 6.1b respectively. In both sub-figures, the green green curve is the
ACDM model constructed from the WMAP-9 best fit parameters and the error bars
are from the WMAP-9 data [46]. Figure 6.1e represents the models in Table 6.1a,
in which V), is fixed and pge. varies. These plots show that increasing pge. lowers
the peak amplitudes and as discussed above, this is a consequence of a higher p.,
to pyeg ratio. Figure 6.1f represents models in Table 6.1b, in which pge. is fixed.
These plots show that increasing V,, results in higher peak amplitudes. This is a
consequence of a lower p., to p,.4 ratio. Now recalling the analysis in section 3.1.2,
higher amplitude peaks are due to a low CDM to dark energy ratio. Therefore
in the case of the VCG-CDM model, we need a higher p., to p,., ratio to lower
amplitude peaks. We have already seen that high p., to p,., ratios are due to high
pdec and low V,, values, this trend is also evident in Table 6.1. This ratio is also
higher in models with a higher f.. In fact looking at Figure 6.1, we see that models
with a higher f. are better fits to the WMAP data.
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(e) Shows four VCG models taken from Table 6.1a and the WMAP-9 binned data error
bars (red) [46]. The green curve represents a ACDM model constructed from the WMAP-9
best fit parameters [45]. Hy = 70.0,$.0 = 0.23,§ o = 0.0463. In the plots pge. increases
from 0.75 pgec to 1.3 pgec (blue-black) while V;, is kept constant.
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(f) Shows four VCG models taken from Table 6.1b and the WMAP-9 binned data error
bars (red) [46]. The green curve represents a ACDM model constructed from the WMAP-
9 best fit parameters [45]. Hy = 70.0,Q.0 = 0.23,p 0 = 0.0463. In the plots V;, increases
from 0.5V, to 1.25 V,, (black-blue) while pge. is kept constant.

Figure 6.1

We therefore search for a VCG-CDM model constructed from a combination of
V,, and pge. that give a high collapse fraction. As a prior for this model, we impose
the WMAP-9 constraint, Hy = 70.0 £ 2.2kms 'Mpc !, on this model. Different
combinations of V,, and pg.. can have very high collapse fractions. However we found
that high collapsing models constructed from V, and p,., which are too different
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from the V,, and pge. values estimated by equations (A.6) and (5.2) respectively, are
not good fits to the data. We therefore restrict our search to the ranges 2.0p4e. >
Pace = 0.5pgec and 1.5V, >V, > 0.1V,,. We find that model that has the lowest
X% value and a high f. is one with V,, = 0.7V, and p,,.. = 1.65p4.; the values are
X% = 2.03 and f. = 80%. Figure 6.2 shows the spectrum for this model, we see
that this model is much better fit compared to the models in Table 6.1. However,
the VCG-CDM peak positions are slightly shifted towards smaller ¢. There is also
a slight disparity in the peak amplitudes relative to the ACDM spectrum. As we
saw in section 3.1.2, a shift in peak positions is caused by a smaller distance to the
last scattering surface. Indeed looking at the values of Hy in both models we see
that the VCG-CDM model has lower Hy compared to the ACDM model.
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Figure 6.2: Shows a VCG-CDM model with f. = 0.796, o = 0.0460, Q.0 =
0.341, Queg0 = 0.615, Hy = 69.17. Also included is the WMAP-9 binned data
error bars (red) [46]. The green curve represents a ACDM model constructed from
the WMAP-9 best fit parameters [46]: Hy = 70.00, Q.0 = 0.233 , 2o = 0.0463.

In Figure 6.3 we show the corresponding peaks separately for a better view of
the disparity in peak amplitudes between the two spectra. Also included in the
plots are the WMAP-9 binned data error bars. The plots show that all the peaks
of VCG-CDM spectra are lower than their corresponding ACDM peaks except for
the first peak. Now, as previously stated, a high dark matter to dark energy ratio
today leads to lower peak amplitudes. Looking at comparing these ratios for the
ACDM (p.o to pao) and the VCG-CDM model (peno t0 pyeg0) We see that the
VCG-CDM ratio is higher. Indeed, looking at the respective peak amplitudes in
Figure 6.3, we see that the VCG-CDM amplitudes are lower than those of ACDM.
The enhancement of the odd peaks over the even peaks with respect to the even
peaks is likely due to a lower 2,y = 0.0460 in the VCG-CDM model compared
to Qo = 0.0463 in the ACDM, since decreasing €2, lowers the the even peak
amplitudes.
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Figure 6.3: Shows the difference in the CMB spectrum amplitudes and positions
of the VCG-CDM model (green) and the ACDM model (blue) constructed from
the WMAP-9 cosmological parameters, also included in the plots are the WMAP-9
binned data error bars (red)



Chapter 7

Summary and Conclusions

Although the concordance model has been shown to fit a wide range of observa-
tions, it is plagued by theoretical issues. These problems are naturally addressed
in quartessence cosmology. However, it is important to compare these quartessence
models to observational data. In this dissertation we have studied the effect of a
quartessence model known as the variable chaplygin gas on the CMB anisotropy
spectrum.

The main challenge of quartessence cosmology is getting a sufficient amount of the
quartessence fluid to collapse via gravity to form structure. This gravitational col-
lapse is retarded by large effective sound speeds. Indeed the simple chaplygin gas
has been ruled out as a viable cosmology due to retarded structure formation. Gen-
eralisations of the chaplygin gas were subsequently proposed to address the issue of
structure formation. Firstly, the generalised chaplygin gas model. This model has
an extra parameter «, and through a fine-tuned value of this extra parameter this
model is able to achieve the sufficient collapse to account for the observed structure.
However, in the limit that the GCG accounts for the observed structure, it is equiv-
alent to the concordance model. Secondly, the VCG has recently been proposed.
Unlike the GCG the VCG avoids causality and stability violations. Bili¢ et al.[12]
showed that for n = 2 about 70% of the VCG can grow into the non-linear regime
to form gravitationally bound structure.

In this dissertation we have investigated whether it is possible to find a VCG cos-
mological model that can fit the current CMB data. We have done this by assuming
that a CDM transfer function provides an adequate description of the VCG density
perturbations. We find that a collapse fraction is required to fit the CMB data. We
have shown that for n = 2, this collapsed fraction can be as high as 80% for the ap-
propriate choices of the parameters describing our VCG cosmology. Using a model
in which the collapsed VCG condensate plays the role of CDM in the concordance
model and the remaining uncollapsed VCG replacing dark energy, we compute the
CMB power spectrum for our VCG cosmology. Our best fit VCG model (Figure6.2)
has a x? per degrees of freedom of 2.03 with respect to the WMAP-9yr data. How-
ever, there is slight discrepancy in peak positions and amplitudes between our model
and the concordance which we have concluded is due a shorter distance to the last
scattering surface and different effective dark matter to dark energy ratios and a
different baryonic content respectively.

o7
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Our results are very encouraging and suggest that the viability of a VCG cosmology
as an alternate concordant model warrants further investigation. In this analysis
we have used the CDM transfer function as an approximation of that of the VCG
condensate. However, as discussed, in fact the critical density contrast required
to overcome the sound horizon of the VCG is scale dependent. A more thorough
analysis would require the computation of the VCG transfer function. We hope to
calculate this transfer function as an extension to this work.



Appendix A

Estimating V),

We want to must estimate V,,. This estimation is taken from [12]. Since we want
to get something that looks like ACDM we approximate w(a) as in ACDM

Qp
then using equation (4.37) we get
o _
da
do? (da _
da dt N
do\* _
da B
do _
da
= (A.2)
(A.3)
2 QACL?’
~ ———ArcT — . A4
o(a) TN rcTan ( 0 ) (A.4)
Fixing the pressure given by VCG to be equal to that of A at a =1,
-V Vot (a =1
00 = (¥) _ n¥ ( ) = 00O, (A.5)
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